Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Just-In-Time compiler for eBPF filters on 32bit ARM
4 *
5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
7 */
8
9#include <linux/bpf.h>
10#include <linux/bitops.h>
11#include <linux/compiler.h>
12#include <linux/errno.h>
13#include <linux/filter.h>
14#include <linux/netdevice.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/if_vlan.h>
18
19#include <asm/cacheflush.h>
20#include <asm/hwcap.h>
21#include <asm/opcodes.h>
22#include <asm/system_info.h>
23
24#include "bpf_jit_32.h"
25
26/*
27 * eBPF prog stack layout:
28 *
29 * high
30 * original ARM_SP => +-----+
31 * | | callee saved registers
32 * +-----+ <= (BPF_FP + SCRATCH_SIZE)
33 * | ... | eBPF JIT scratch space
34 * eBPF fp register => +-----+
35 * (BPF_FP) | ... | eBPF prog stack
36 * +-----+
37 * |RSVD | JIT scratchpad
38 * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
39 * | ... | caller-saved registers
40 * +-----+
41 * | ... | arguments passed on stack
42 * ARM_SP during call => +-----|
43 * | |
44 * | ... | Function call stack
45 * | |
46 * +-----+
47 * low
48 *
49 * The callee saved registers depends on whether frame pointers are enabled.
50 * With frame pointers (to be compliant with the ABI):
51 *
52 * high
53 * original ARM_SP => +--------------+ \
54 * | pc | |
55 * current ARM_FP => +--------------+ } callee saved registers
56 * |r4-r9,fp,ip,lr| |
57 * +--------------+ /
58 * low
59 *
60 * Without frame pointers:
61 *
62 * high
63 * original ARM_SP => +--------------+
64 * | r4-r9,fp,lr | callee saved registers
65 * current ARM_FP => +--------------+
66 * low
67 *
68 * When popping registers off the stack at the end of a BPF function, we
69 * reference them via the current ARM_FP register.
70 *
71 * Some eBPF operations are implemented via a call to a helper function.
72 * Such calls are "invisible" in the eBPF code, so it is up to the calling
73 * program to preserve any caller-saved ARM registers during the call. The
74 * JIT emits code to push and pop those registers onto the stack, immediately
75 * above the callee stack frame.
76 */
77#define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
78 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
79 1 << ARM_FP)
80#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
81#define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC)
82
83#define CALLER_MASK (1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
84
85enum {
86 /* Stack layout - these are offsets from (top of stack - 4) */
87 BPF_R2_HI,
88 BPF_R2_LO,
89 BPF_R3_HI,
90 BPF_R3_LO,
91 BPF_R4_HI,
92 BPF_R4_LO,
93 BPF_R5_HI,
94 BPF_R5_LO,
95 BPF_R7_HI,
96 BPF_R7_LO,
97 BPF_R8_HI,
98 BPF_R8_LO,
99 BPF_R9_HI,
100 BPF_R9_LO,
101 BPF_FP_HI,
102 BPF_FP_LO,
103 BPF_TC_HI,
104 BPF_TC_LO,
105 BPF_AX_HI,
106 BPF_AX_LO,
107 /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
108 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
109 * BPF_REG_FP and Tail call counts.
110 */
111 BPF_JIT_SCRATCH_REGS,
112};
113
114/*
115 * Negative "register" values indicate the register is stored on the stack
116 * and are the offset from the top of the eBPF JIT scratch space.
117 */
118#define STACK_OFFSET(k) (-4 - (k) * 4)
119#define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4)
120
121#ifdef CONFIG_FRAME_POINTER
122#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
123#else
124#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
125#endif
126
127#define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */
128#define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */
129#define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */
130
131#define FLAG_IMM_OVERFLOW (1 << 0)
132
133/*
134 * Map eBPF registers to ARM 32bit registers or stack scratch space.
135 *
136 * 1. First argument is passed using the arm 32bit registers and rest of the
137 * arguments are passed on stack scratch space.
138 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
139 * arguments are mapped to scratch space on stack.
140 * 3. We need two 64 bit temp registers to do complex operations on eBPF
141 * registers.
142 *
143 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
144 * registers, we have to map each eBPF registers with two arm 32 bit regs or
145 * scratch memory space and we have to build eBPF 64 bit register from those.
146 *
147 */
148static const s8 bpf2a32[][2] = {
149 /* return value from in-kernel function, and exit value from eBPF */
150 [BPF_REG_0] = {ARM_R1, ARM_R0},
151 /* arguments from eBPF program to in-kernel function */
152 [BPF_REG_1] = {ARM_R3, ARM_R2},
153 /* Stored on stack scratch space */
154 [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
155 [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
156 [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
157 [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
158 /* callee saved registers that in-kernel function will preserve */
159 [BPF_REG_6] = {ARM_R5, ARM_R4},
160 /* Stored on stack scratch space */
161 [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
162 [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
163 [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
164 /* Read only Frame Pointer to access Stack */
165 [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
166 /* Temporary Register for internal BPF JIT, can be used
167 * for constant blindings and others.
168 */
169 [TMP_REG_1] = {ARM_R7, ARM_R6},
170 [TMP_REG_2] = {ARM_R9, ARM_R8},
171 /* Tail call count. Stored on stack scratch space. */
172 [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
173 /* temporary register for blinding constants.
174 * Stored on stack scratch space.
175 */
176 [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
177};
178
179#define dst_lo dst[1]
180#define dst_hi dst[0]
181#define src_lo src[1]
182#define src_hi src[0]
183
184/*
185 * JIT Context:
186 *
187 * prog : bpf_prog
188 * idx : index of current last JITed instruction.
189 * prologue_bytes : bytes used in prologue.
190 * epilogue_offset : offset of epilogue starting.
191 * offsets : array of eBPF instruction offsets in
192 * JITed code.
193 * target : final JITed code.
194 * epilogue_bytes : no of bytes used in epilogue.
195 * imm_count : no of immediate counts used for global
196 * variables.
197 * imms : array of global variable addresses.
198 */
199
200struct jit_ctx {
201 const struct bpf_prog *prog;
202 unsigned int idx;
203 unsigned int prologue_bytes;
204 unsigned int epilogue_offset;
205 unsigned int cpu_architecture;
206 u32 flags;
207 u32 *offsets;
208 u32 *target;
209 u32 stack_size;
210#if __LINUX_ARM_ARCH__ < 7
211 u16 epilogue_bytes;
212 u16 imm_count;
213 u32 *imms;
214#endif
215};
216
217/*
218 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
219 * (where the assembly routines like __aeabi_uidiv could cause problems).
220 */
221static u32 jit_udiv32(u32 dividend, u32 divisor)
222{
223 return dividend / divisor;
224}
225
226static u32 jit_mod32(u32 dividend, u32 divisor)
227{
228 return dividend % divisor;
229}
230
231static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
232{
233 inst |= (cond << 28);
234 inst = __opcode_to_mem_arm(inst);
235
236 if (ctx->target != NULL)
237 ctx->target[ctx->idx] = inst;
238
239 ctx->idx++;
240}
241
242/*
243 * Emit an instruction that will be executed unconditionally.
244 */
245static inline void emit(u32 inst, struct jit_ctx *ctx)
246{
247 _emit(ARM_COND_AL, inst, ctx);
248}
249
250/*
251 * This is rather horrid, but necessary to convert an integer constant
252 * to an immediate operand for the opcodes, and be able to detect at
253 * build time whether the constant can't be converted (iow, usable in
254 * BUILD_BUG_ON()).
255 */
256#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
257#define const_imm8m(x) \
258 ({ int r; \
259 u32 v = (x); \
260 if (!(v & ~0x000000ff)) \
261 r = imm12val(v, 0); \
262 else if (!(v & ~0xc000003f)) \
263 r = imm12val(v, 2); \
264 else if (!(v & ~0xf000000f)) \
265 r = imm12val(v, 4); \
266 else if (!(v & ~0xfc000003)) \
267 r = imm12val(v, 6); \
268 else if (!(v & ~0xff000000)) \
269 r = imm12val(v, 8); \
270 else if (!(v & ~0x3fc00000)) \
271 r = imm12val(v, 10); \
272 else if (!(v & ~0x0ff00000)) \
273 r = imm12val(v, 12); \
274 else if (!(v & ~0x03fc0000)) \
275 r = imm12val(v, 14); \
276 else if (!(v & ~0x00ff0000)) \
277 r = imm12val(v, 16); \
278 else if (!(v & ~0x003fc000)) \
279 r = imm12val(v, 18); \
280 else if (!(v & ~0x000ff000)) \
281 r = imm12val(v, 20); \
282 else if (!(v & ~0x0003fc00)) \
283 r = imm12val(v, 22); \
284 else if (!(v & ~0x0000ff00)) \
285 r = imm12val(v, 24); \
286 else if (!(v & ~0x00003fc0)) \
287 r = imm12val(v, 26); \
288 else if (!(v & ~0x00000ff0)) \
289 r = imm12val(v, 28); \
290 else if (!(v & ~0x000003fc)) \
291 r = imm12val(v, 30); \
292 else \
293 r = -1; \
294 r; })
295
296/*
297 * Checks if immediate value can be converted to imm12(12 bits) value.
298 */
299static int imm8m(u32 x)
300{
301 u32 rot;
302
303 for (rot = 0; rot < 16; rot++)
304 if ((x & ~ror32(0xff, 2 * rot)) == 0)
305 return rol32(x, 2 * rot) | (rot << 8);
306 return -1;
307}
308
309#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
310
311static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
312{
313 op |= rt << 12 | rn << 16;
314 if (imm12 >= 0)
315 op |= ARM_INST_LDST__U;
316 else
317 imm12 = -imm12;
318 return op | (imm12 & ARM_INST_LDST__IMM12);
319}
320
321static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
322{
323 op |= rt << 12 | rn << 16;
324 if (imm8 >= 0)
325 op |= ARM_INST_LDST__U;
326 else
327 imm8 = -imm8;
328 return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
329}
330
331#define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
332#define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
333#define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
334#define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
335
336#define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
337#define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
338#define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
339#define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
340
341/*
342 * Initializes the JIT space with undefined instructions.
343 */
344static void jit_fill_hole(void *area, unsigned int size)
345{
346 u32 *ptr;
347 /* We are guaranteed to have aligned memory. */
348 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
349 *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
350}
351
352#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
353/* EABI requires the stack to be aligned to 64-bit boundaries */
354#define STACK_ALIGNMENT 8
355#else
356/* Stack must be aligned to 32-bit boundaries */
357#define STACK_ALIGNMENT 4
358#endif
359
360/* total stack size used in JITed code */
361#define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE)
362#define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
363
364#if __LINUX_ARM_ARCH__ < 7
365
366static u16 imm_offset(u32 k, struct jit_ctx *ctx)
367{
368 unsigned int i = 0, offset;
369 u16 imm;
370
371 /* on the "fake" run we just count them (duplicates included) */
372 if (ctx->target == NULL) {
373 ctx->imm_count++;
374 return 0;
375 }
376
377 while ((i < ctx->imm_count) && ctx->imms[i]) {
378 if (ctx->imms[i] == k)
379 break;
380 i++;
381 }
382
383 if (ctx->imms[i] == 0)
384 ctx->imms[i] = k;
385
386 /* constants go just after the epilogue */
387 offset = ctx->offsets[ctx->prog->len - 1] * 4;
388 offset += ctx->prologue_bytes;
389 offset += ctx->epilogue_bytes;
390 offset += i * 4;
391
392 ctx->target[offset / 4] = k;
393
394 /* PC in ARM mode == address of the instruction + 8 */
395 imm = offset - (8 + ctx->idx * 4);
396
397 if (imm & ~0xfff) {
398 /*
399 * literal pool is too far, signal it into flags. we
400 * can only detect it on the second pass unfortunately.
401 */
402 ctx->flags |= FLAG_IMM_OVERFLOW;
403 return 0;
404 }
405
406 return imm;
407}
408
409#endif /* __LINUX_ARM_ARCH__ */
410
411static inline int bpf2a32_offset(int bpf_to, int bpf_from,
412 const struct jit_ctx *ctx) {
413 int to, from;
414
415 if (ctx->target == NULL)
416 return 0;
417 to = ctx->offsets[bpf_to];
418 from = ctx->offsets[bpf_from];
419
420 return to - from - 1;
421}
422
423/*
424 * Move an immediate that's not an imm8m to a core register.
425 */
426static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
427{
428#if __LINUX_ARM_ARCH__ < 7
429 emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
430#else
431 emit(ARM_MOVW(rd, val & 0xffff), ctx);
432 if (val > 0xffff)
433 emit(ARM_MOVT(rd, val >> 16), ctx);
434#endif
435}
436
437static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
438{
439 int imm12 = imm8m(val);
440
441 if (imm12 >= 0)
442 emit(ARM_MOV_I(rd, imm12), ctx);
443 else
444 emit_mov_i_no8m(rd, val, ctx);
445}
446
447static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
448{
449 if (elf_hwcap & HWCAP_THUMB)
450 emit(ARM_BX(tgt_reg), ctx);
451 else
452 emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
453}
454
455static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
456{
457#if __LINUX_ARM_ARCH__ < 5
458 emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
459 emit_bx_r(tgt_reg, ctx);
460#else
461 emit(ARM_BLX_R(tgt_reg), ctx);
462#endif
463}
464
465static inline int epilogue_offset(const struct jit_ctx *ctx)
466{
467 int to, from;
468 /* No need for 1st dummy run */
469 if (ctx->target == NULL)
470 return 0;
471 to = ctx->epilogue_offset;
472 from = ctx->idx;
473
474 return to - from - 2;
475}
476
477static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
478{
479 const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
480 const s8 *tmp = bpf2a32[TMP_REG_1];
481
482#if __LINUX_ARM_ARCH__ == 7
483 if (elf_hwcap & HWCAP_IDIVA) {
484 if (op == BPF_DIV)
485 emit(ARM_UDIV(rd, rm, rn), ctx);
486 else {
487 emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
488 emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
489 }
490 return;
491 }
492#endif
493
494 /*
495 * For BPF_ALU | BPF_DIV | BPF_K instructions
496 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
497 * function, we need to save it on caller side to save
498 * it from getting destroyed within callee.
499 * After the return from the callee, we restore ARM_R0
500 * ARM_R1.
501 */
502 if (rn != ARM_R1) {
503 emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
504 emit(ARM_MOV_R(ARM_R1, rn), ctx);
505 }
506 if (rm != ARM_R0) {
507 emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
508 emit(ARM_MOV_R(ARM_R0, rm), ctx);
509 }
510
511 /* Push caller-saved registers on stack */
512 emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
513
514 /* Call appropriate function */
515 emit_mov_i(ARM_IP, op == BPF_DIV ?
516 (u32)jit_udiv32 : (u32)jit_mod32, ctx);
517 emit_blx_r(ARM_IP, ctx);
518
519 /* Restore caller-saved registers from stack */
520 emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
521
522 /* Save return value */
523 if (rd != ARM_R0)
524 emit(ARM_MOV_R(rd, ARM_R0), ctx);
525
526 /* Restore ARM_R0 and ARM_R1 */
527 if (rn != ARM_R1)
528 emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
529 if (rm != ARM_R0)
530 emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
531}
532
533/* Is the translated BPF register on stack? */
534static bool is_stacked(s8 reg)
535{
536 return reg < 0;
537}
538
539/* If a BPF register is on the stack (stk is true), load it to the
540 * supplied temporary register and return the temporary register
541 * for subsequent operations, otherwise just use the CPU register.
542 */
543static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
544{
545 if (is_stacked(reg)) {
546 emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
547 reg = tmp;
548 }
549 return reg;
550}
551
552static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
553 struct jit_ctx *ctx)
554{
555 if (is_stacked(reg[1])) {
556 if (__LINUX_ARM_ARCH__ >= 6 ||
557 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
558 emit(ARM_LDRD_I(tmp[1], ARM_FP,
559 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
560 } else {
561 emit(ARM_LDR_I(tmp[1], ARM_FP,
562 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
563 emit(ARM_LDR_I(tmp[0], ARM_FP,
564 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
565 }
566 reg = tmp;
567 }
568 return reg;
569}
570
571/* If a BPF register is on the stack (stk is true), save the register
572 * back to the stack. If the source register is not the same, then
573 * move it into the correct register.
574 */
575static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
576{
577 if (is_stacked(reg))
578 emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
579 else if (reg != src)
580 emit(ARM_MOV_R(reg, src), ctx);
581}
582
583static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
584 struct jit_ctx *ctx)
585{
586 if (is_stacked(reg[1])) {
587 if (__LINUX_ARM_ARCH__ >= 6 ||
588 ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
589 emit(ARM_STRD_I(src[1], ARM_FP,
590 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
591 } else {
592 emit(ARM_STR_I(src[1], ARM_FP,
593 EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
594 emit(ARM_STR_I(src[0], ARM_FP,
595 EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
596 }
597 } else {
598 if (reg[1] != src[1])
599 emit(ARM_MOV_R(reg[1], src[1]), ctx);
600 if (reg[0] != src[0])
601 emit(ARM_MOV_R(reg[0], src[0]), ctx);
602 }
603}
604
605static inline void emit_a32_mov_i(const s8 dst, const u32 val,
606 struct jit_ctx *ctx)
607{
608 const s8 *tmp = bpf2a32[TMP_REG_1];
609
610 if (is_stacked(dst)) {
611 emit_mov_i(tmp[1], val, ctx);
612 arm_bpf_put_reg32(dst, tmp[1], ctx);
613 } else {
614 emit_mov_i(dst, val, ctx);
615 }
616}
617
618static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
619{
620 const s8 *tmp = bpf2a32[TMP_REG_1];
621 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
622
623 emit_mov_i(rd[1], (u32)val, ctx);
624 emit_mov_i(rd[0], val >> 32, ctx);
625
626 arm_bpf_put_reg64(dst, rd, ctx);
627}
628
629/* Sign extended move */
630static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
631 const u32 val, struct jit_ctx *ctx) {
632 u64 val64 = val;
633
634 if (is64 && (val & (1<<31)))
635 val64 |= 0xffffffff00000000ULL;
636 emit_a32_mov_i64(dst, val64, ctx);
637}
638
639static inline void emit_a32_add_r(const u8 dst, const u8 src,
640 const bool is64, const bool hi,
641 struct jit_ctx *ctx) {
642 /* 64 bit :
643 * adds dst_lo, dst_lo, src_lo
644 * adc dst_hi, dst_hi, src_hi
645 * 32 bit :
646 * add dst_lo, dst_lo, src_lo
647 */
648 if (!hi && is64)
649 emit(ARM_ADDS_R(dst, dst, src), ctx);
650 else if (hi && is64)
651 emit(ARM_ADC_R(dst, dst, src), ctx);
652 else
653 emit(ARM_ADD_R(dst, dst, src), ctx);
654}
655
656static inline void emit_a32_sub_r(const u8 dst, const u8 src,
657 const bool is64, const bool hi,
658 struct jit_ctx *ctx) {
659 /* 64 bit :
660 * subs dst_lo, dst_lo, src_lo
661 * sbc dst_hi, dst_hi, src_hi
662 * 32 bit :
663 * sub dst_lo, dst_lo, src_lo
664 */
665 if (!hi && is64)
666 emit(ARM_SUBS_R(dst, dst, src), ctx);
667 else if (hi && is64)
668 emit(ARM_SBC_R(dst, dst, src), ctx);
669 else
670 emit(ARM_SUB_R(dst, dst, src), ctx);
671}
672
673static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
674 const bool hi, const u8 op, struct jit_ctx *ctx){
675 switch (BPF_OP(op)) {
676 /* dst = dst + src */
677 case BPF_ADD:
678 emit_a32_add_r(dst, src, is64, hi, ctx);
679 break;
680 /* dst = dst - src */
681 case BPF_SUB:
682 emit_a32_sub_r(dst, src, is64, hi, ctx);
683 break;
684 /* dst = dst | src */
685 case BPF_OR:
686 emit(ARM_ORR_R(dst, dst, src), ctx);
687 break;
688 /* dst = dst & src */
689 case BPF_AND:
690 emit(ARM_AND_R(dst, dst, src), ctx);
691 break;
692 /* dst = dst ^ src */
693 case BPF_XOR:
694 emit(ARM_EOR_R(dst, dst, src), ctx);
695 break;
696 /* dst = dst * src */
697 case BPF_MUL:
698 emit(ARM_MUL(dst, dst, src), ctx);
699 break;
700 /* dst = dst << src */
701 case BPF_LSH:
702 emit(ARM_LSL_R(dst, dst, src), ctx);
703 break;
704 /* dst = dst >> src */
705 case BPF_RSH:
706 emit(ARM_LSR_R(dst, dst, src), ctx);
707 break;
708 /* dst = dst >> src (signed)*/
709 case BPF_ARSH:
710 emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
711 break;
712 }
713}
714
715/* ALU operation (32 bit)
716 * dst = dst (op) src
717 */
718static inline void emit_a32_alu_r(const s8 dst, const s8 src,
719 struct jit_ctx *ctx, const bool is64,
720 const bool hi, const u8 op) {
721 const s8 *tmp = bpf2a32[TMP_REG_1];
722 s8 rn, rd;
723
724 rn = arm_bpf_get_reg32(src, tmp[1], ctx);
725 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
726 /* ALU operation */
727 emit_alu_r(rd, rn, is64, hi, op, ctx);
728 arm_bpf_put_reg32(dst, rd, ctx);
729}
730
731/* ALU operation (64 bit) */
732static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
733 const s8 src[], struct jit_ctx *ctx,
734 const u8 op) {
735 const s8 *tmp = bpf2a32[TMP_REG_1];
736 const s8 *tmp2 = bpf2a32[TMP_REG_2];
737 const s8 *rd;
738
739 rd = arm_bpf_get_reg64(dst, tmp, ctx);
740 if (is64) {
741 const s8 *rs;
742
743 rs = arm_bpf_get_reg64(src, tmp2, ctx);
744
745 /* ALU operation */
746 emit_alu_r(rd[1], rs[1], true, false, op, ctx);
747 emit_alu_r(rd[0], rs[0], true, true, op, ctx);
748 } else {
749 s8 rs;
750
751 rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
752
753 /* ALU operation */
754 emit_alu_r(rd[1], rs, true, false, op, ctx);
755 if (!ctx->prog->aux->verifier_zext)
756 emit_a32_mov_i(rd[0], 0, ctx);
757 }
758
759 arm_bpf_put_reg64(dst, rd, ctx);
760}
761
762/* dst = src (4 bytes)*/
763static inline void emit_a32_mov_r(const s8 dst, const s8 src,
764 struct jit_ctx *ctx) {
765 const s8 *tmp = bpf2a32[TMP_REG_1];
766 s8 rt;
767
768 rt = arm_bpf_get_reg32(src, tmp[0], ctx);
769 arm_bpf_put_reg32(dst, rt, ctx);
770}
771
772/* dst = src */
773static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
774 const s8 src[],
775 struct jit_ctx *ctx) {
776 if (!is64) {
777 emit_a32_mov_r(dst_lo, src_lo, ctx);
778 if (!ctx->prog->aux->verifier_zext)
779 /* Zero out high 4 bytes */
780 emit_a32_mov_i(dst_hi, 0, ctx);
781 } else if (__LINUX_ARM_ARCH__ < 6 &&
782 ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
783 /* complete 8 byte move */
784 emit_a32_mov_r(dst_lo, src_lo, ctx);
785 emit_a32_mov_r(dst_hi, src_hi, ctx);
786 } else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
787 const u8 *tmp = bpf2a32[TMP_REG_1];
788
789 emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
790 emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
791 } else if (is_stacked(src_lo)) {
792 emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
793 } else if (is_stacked(dst_lo)) {
794 emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
795 } else {
796 emit(ARM_MOV_R(dst[0], src[0]), ctx);
797 emit(ARM_MOV_R(dst[1], src[1]), ctx);
798 }
799}
800
801/* Shift operations */
802static inline void emit_a32_alu_i(const s8 dst, const u32 val,
803 struct jit_ctx *ctx, const u8 op) {
804 const s8 *tmp = bpf2a32[TMP_REG_1];
805 s8 rd;
806
807 rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
808
809 /* Do shift operation */
810 switch (op) {
811 case BPF_LSH:
812 emit(ARM_LSL_I(rd, rd, val), ctx);
813 break;
814 case BPF_RSH:
815 emit(ARM_LSR_I(rd, rd, val), ctx);
816 break;
817 case BPF_ARSH:
818 emit(ARM_ASR_I(rd, rd, val), ctx);
819 break;
820 case BPF_NEG:
821 emit(ARM_RSB_I(rd, rd, val), ctx);
822 break;
823 }
824
825 arm_bpf_put_reg32(dst, rd, ctx);
826}
827
828/* dst = ~dst (64 bit) */
829static inline void emit_a32_neg64(const s8 dst[],
830 struct jit_ctx *ctx){
831 const s8 *tmp = bpf2a32[TMP_REG_1];
832 const s8 *rd;
833
834 /* Setup Operand */
835 rd = arm_bpf_get_reg64(dst, tmp, ctx);
836
837 /* Do Negate Operation */
838 emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
839 emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
840
841 arm_bpf_put_reg64(dst, rd, ctx);
842}
843
844/* dst = dst << src */
845static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
846 struct jit_ctx *ctx) {
847 const s8 *tmp = bpf2a32[TMP_REG_1];
848 const s8 *tmp2 = bpf2a32[TMP_REG_2];
849 const s8 *rd;
850 s8 rt;
851
852 /* Setup Operands */
853 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
854 rd = arm_bpf_get_reg64(dst, tmp, ctx);
855
856 /* Do LSH operation */
857 emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
858 emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
859 emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
860 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
861 emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
862 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
863
864 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
865 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
866}
867
868/* dst = dst >> src (signed)*/
869static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
870 struct jit_ctx *ctx) {
871 const s8 *tmp = bpf2a32[TMP_REG_1];
872 const s8 *tmp2 = bpf2a32[TMP_REG_2];
873 const s8 *rd;
874 s8 rt;
875
876 /* Setup Operands */
877 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
878 rd = arm_bpf_get_reg64(dst, tmp, ctx);
879
880 /* Do the ARSH operation */
881 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
882 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
883 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
884 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
885 _emit(ARM_COND_PL,
886 ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
887 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
888
889 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
890 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
891}
892
893/* dst = dst >> src */
894static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
895 struct jit_ctx *ctx) {
896 const s8 *tmp = bpf2a32[TMP_REG_1];
897 const s8 *tmp2 = bpf2a32[TMP_REG_2];
898 const s8 *rd;
899 s8 rt;
900
901 /* Setup Operands */
902 rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
903 rd = arm_bpf_get_reg64(dst, tmp, ctx);
904
905 /* Do RSH operation */
906 emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
907 emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
908 emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
909 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
910 emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
911 emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
912
913 arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
914 arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
915}
916
917/* dst = dst << val */
918static inline void emit_a32_lsh_i64(const s8 dst[],
919 const u32 val, struct jit_ctx *ctx){
920 const s8 *tmp = bpf2a32[TMP_REG_1];
921 const s8 *tmp2 = bpf2a32[TMP_REG_2];
922 const s8 *rd;
923
924 /* Setup operands */
925 rd = arm_bpf_get_reg64(dst, tmp, ctx);
926
927 /* Do LSH operation */
928 if (val < 32) {
929 emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
930 emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
931 emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
932 } else {
933 if (val == 32)
934 emit(ARM_MOV_R(rd[0], rd[1]), ctx);
935 else
936 emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
937 emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
938 }
939
940 arm_bpf_put_reg64(dst, rd, ctx);
941}
942
943/* dst = dst >> val */
944static inline void emit_a32_rsh_i64(const s8 dst[],
945 const u32 val, struct jit_ctx *ctx) {
946 const s8 *tmp = bpf2a32[TMP_REG_1];
947 const s8 *tmp2 = bpf2a32[TMP_REG_2];
948 const s8 *rd;
949
950 /* Setup operands */
951 rd = arm_bpf_get_reg64(dst, tmp, ctx);
952
953 /* Do LSR operation */
954 if (val == 0) {
955 /* An immediate value of 0 encodes a shift amount of 32
956 * for LSR. To shift by 0, don't do anything.
957 */
958 } else if (val < 32) {
959 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
960 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
961 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
962 } else if (val == 32) {
963 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
964 emit(ARM_MOV_I(rd[0], 0), ctx);
965 } else {
966 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
967 emit(ARM_MOV_I(rd[0], 0), ctx);
968 }
969
970 arm_bpf_put_reg64(dst, rd, ctx);
971}
972
973/* dst = dst >> val (signed) */
974static inline void emit_a32_arsh_i64(const s8 dst[],
975 const u32 val, struct jit_ctx *ctx){
976 const s8 *tmp = bpf2a32[TMP_REG_1];
977 const s8 *tmp2 = bpf2a32[TMP_REG_2];
978 const s8 *rd;
979
980 /* Setup operands */
981 rd = arm_bpf_get_reg64(dst, tmp, ctx);
982
983 /* Do ARSH operation */
984 if (val == 0) {
985 /* An immediate value of 0 encodes a shift amount of 32
986 * for ASR. To shift by 0, don't do anything.
987 */
988 } else if (val < 32) {
989 emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
990 emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
991 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
992 } else if (val == 32) {
993 emit(ARM_MOV_R(rd[1], rd[0]), ctx);
994 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
995 } else {
996 emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
997 emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
998 }
999
1000 arm_bpf_put_reg64(dst, rd, ctx);
1001}
1002
1003static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
1004 struct jit_ctx *ctx) {
1005 const s8 *tmp = bpf2a32[TMP_REG_1];
1006 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1007 const s8 *rd, *rt;
1008
1009 /* Setup operands for multiplication */
1010 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1011 rt = arm_bpf_get_reg64(src, tmp2, ctx);
1012
1013 /* Do Multiplication */
1014 emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
1015 emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1016 emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1017
1018 emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1019 emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1020
1021 arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1022 arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1023}
1024
1025static bool is_ldst_imm(s16 off, const u8 size)
1026{
1027 s16 off_max = 0;
1028
1029 switch (size) {
1030 case BPF_B:
1031 case BPF_W:
1032 off_max = 0xfff;
1033 break;
1034 case BPF_H:
1035 off_max = 0xff;
1036 break;
1037 case BPF_DW:
1038 /* Need to make sure off+4 does not overflow. */
1039 off_max = 0xfff - 4;
1040 break;
1041 }
1042 return -off_max <= off && off <= off_max;
1043}
1044
1045/* *(size *)(dst + off) = src */
1046static inline void emit_str_r(const s8 dst, const s8 src[],
1047 s16 off, struct jit_ctx *ctx, const u8 sz){
1048 const s8 *tmp = bpf2a32[TMP_REG_1];
1049 s8 rd;
1050
1051 rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1052
1053 if (!is_ldst_imm(off, sz)) {
1054 emit_a32_mov_i(tmp[0], off, ctx);
1055 emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1056 rd = tmp[0];
1057 off = 0;
1058 }
1059 switch (sz) {
1060 case BPF_B:
1061 /* Store a Byte */
1062 emit(ARM_STRB_I(src_lo, rd, off), ctx);
1063 break;
1064 case BPF_H:
1065 /* Store a HalfWord */
1066 emit(ARM_STRH_I(src_lo, rd, off), ctx);
1067 break;
1068 case BPF_W:
1069 /* Store a Word */
1070 emit(ARM_STR_I(src_lo, rd, off), ctx);
1071 break;
1072 case BPF_DW:
1073 /* Store a Double Word */
1074 emit(ARM_STR_I(src_lo, rd, off), ctx);
1075 emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1076 break;
1077 }
1078}
1079
1080/* dst = *(size*)(src + off) */
1081static inline void emit_ldx_r(const s8 dst[], const s8 src,
1082 s16 off, struct jit_ctx *ctx, const u8 sz){
1083 const s8 *tmp = bpf2a32[TMP_REG_1];
1084 const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1085 s8 rm = src;
1086
1087 if (!is_ldst_imm(off, sz)) {
1088 emit_a32_mov_i(tmp[0], off, ctx);
1089 emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1090 rm = tmp[0];
1091 off = 0;
1092 } else if (rd[1] == rm) {
1093 emit(ARM_MOV_R(tmp[0], rm), ctx);
1094 rm = tmp[0];
1095 }
1096 switch (sz) {
1097 case BPF_B:
1098 /* Load a Byte */
1099 emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1100 if (!ctx->prog->aux->verifier_zext)
1101 emit_a32_mov_i(rd[0], 0, ctx);
1102 break;
1103 case BPF_H:
1104 /* Load a HalfWord */
1105 emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1106 if (!ctx->prog->aux->verifier_zext)
1107 emit_a32_mov_i(rd[0], 0, ctx);
1108 break;
1109 case BPF_W:
1110 /* Load a Word */
1111 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1112 if (!ctx->prog->aux->verifier_zext)
1113 emit_a32_mov_i(rd[0], 0, ctx);
1114 break;
1115 case BPF_DW:
1116 /* Load a Double Word */
1117 emit(ARM_LDR_I(rd[1], rm, off), ctx);
1118 emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1119 break;
1120 }
1121 arm_bpf_put_reg64(dst, rd, ctx);
1122}
1123
1124/* Arithmatic Operation */
1125static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1126 const u8 rn, struct jit_ctx *ctx, u8 op,
1127 bool is_jmp64) {
1128 switch (op) {
1129 case BPF_JSET:
1130 if (is_jmp64) {
1131 emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1132 emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1133 emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1134 } else {
1135 emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1136 }
1137 break;
1138 case BPF_JEQ:
1139 case BPF_JNE:
1140 case BPF_JGT:
1141 case BPF_JGE:
1142 case BPF_JLE:
1143 case BPF_JLT:
1144 if (is_jmp64) {
1145 emit(ARM_CMP_R(rd, rm), ctx);
1146 /* Only compare low halve if high halve are equal. */
1147 _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1148 } else {
1149 emit(ARM_CMP_R(rt, rn), ctx);
1150 }
1151 break;
1152 case BPF_JSLE:
1153 case BPF_JSGT:
1154 emit(ARM_CMP_R(rn, rt), ctx);
1155 if (is_jmp64)
1156 emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1157 break;
1158 case BPF_JSLT:
1159 case BPF_JSGE:
1160 emit(ARM_CMP_R(rt, rn), ctx);
1161 if (is_jmp64)
1162 emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1163 break;
1164 }
1165}
1166
1167static int out_offset = -1; /* initialized on the first pass of build_body() */
1168static int emit_bpf_tail_call(struct jit_ctx *ctx)
1169{
1170
1171 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1172 const s8 *r2 = bpf2a32[BPF_REG_2];
1173 const s8 *r3 = bpf2a32[BPF_REG_3];
1174 const s8 *tmp = bpf2a32[TMP_REG_1];
1175 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1176 const s8 *tcc = bpf2a32[TCALL_CNT];
1177 const s8 *tc;
1178 const int idx0 = ctx->idx;
1179#define cur_offset (ctx->idx - idx0)
1180#define jmp_offset (out_offset - (cur_offset) - 2)
1181 u32 lo, hi;
1182 s8 r_array, r_index;
1183 int off;
1184
1185 /* if (index >= array->map.max_entries)
1186 * goto out;
1187 */
1188 BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1189 ARM_INST_LDST__IMM12);
1190 off = offsetof(struct bpf_array, map.max_entries);
1191 r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1192 /* index is 32-bit for arrays */
1193 r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1194 /* array->map.max_entries */
1195 emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1196 /* index >= array->map.max_entries */
1197 emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1198 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1199
1200 /* tmp2[0] = array, tmp2[1] = index */
1201
1202 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1203 * goto out;
1204 * tail_call_cnt++;
1205 */
1206 lo = (u32)MAX_TAIL_CALL_CNT;
1207 hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1208 tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1209 emit(ARM_CMP_I(tc[0], hi), ctx);
1210 _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1211 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1212 emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1213 emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1214 arm_bpf_put_reg64(tcc, tmp, ctx);
1215
1216 /* prog = array->ptrs[index]
1217 * if (prog == NULL)
1218 * goto out;
1219 */
1220 BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1221 off = imm8m(offsetof(struct bpf_array, ptrs));
1222 emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1223 emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1224 emit(ARM_CMP_I(tmp[1], 0), ctx);
1225 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1226
1227 /* goto *(prog->bpf_func + prologue_size); */
1228 BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1229 ARM_INST_LDST__IMM12);
1230 off = offsetof(struct bpf_prog, bpf_func);
1231 emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1232 emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1233 emit_bx_r(tmp[1], ctx);
1234
1235 /* out: */
1236 if (out_offset == -1)
1237 out_offset = cur_offset;
1238 if (cur_offset != out_offset) {
1239 pr_err_once("tail_call out_offset = %d, expected %d!\n",
1240 cur_offset, out_offset);
1241 return -1;
1242 }
1243 return 0;
1244#undef cur_offset
1245#undef jmp_offset
1246}
1247
1248/* 0xabcd => 0xcdab */
1249static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1250{
1251#if __LINUX_ARM_ARCH__ < 6
1252 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1253
1254 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1255 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1256 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1257 emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1258#else /* ARMv6+ */
1259 emit(ARM_REV16(rd, rn), ctx);
1260#endif
1261}
1262
1263/* 0xabcdefgh => 0xghefcdab */
1264static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1265{
1266#if __LINUX_ARM_ARCH__ < 6
1267 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1268
1269 emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1270 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1271 emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1272
1273 emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1274 emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1275 emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1276 emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1277 emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1278 emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1279 emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1280
1281#else /* ARMv6+ */
1282 emit(ARM_REV(rd, rn), ctx);
1283#endif
1284}
1285
1286// push the scratch stack register on top of the stack
1287static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1288{
1289 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1290 const s8 *rt;
1291 u16 reg_set = 0;
1292
1293 rt = arm_bpf_get_reg64(src, tmp2, ctx);
1294
1295 reg_set = (1 << rt[1]) | (1 << rt[0]);
1296 emit(ARM_PUSH(reg_set), ctx);
1297}
1298
1299static void build_prologue(struct jit_ctx *ctx)
1300{
1301 const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1302 const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1303 const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1304 const s8 *tcc = bpf2a32[TCALL_CNT];
1305
1306 /* Save callee saved registers. */
1307#ifdef CONFIG_FRAME_POINTER
1308 u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1309 emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1310 emit(ARM_PUSH(reg_set), ctx);
1311 emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1312#else
1313 emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1314 emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1315#endif
1316 /* mov r3, #0 */
1317 /* sub r2, sp, #SCRATCH_SIZE */
1318 emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1319 emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1320
1321 ctx->stack_size = imm8m(STACK_SIZE);
1322
1323 /* Set up function call stack */
1324 emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1325
1326 /* Set up BPF prog stack base register */
1327 emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1328
1329 /* Initialize Tail Count */
1330 emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1331 emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1332
1333 /* Move BPF_CTX to BPF_R1 */
1334 emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1335
1336 /* end of prologue */
1337}
1338
1339/* restore callee saved registers. */
1340static void build_epilogue(struct jit_ctx *ctx)
1341{
1342#ifdef CONFIG_FRAME_POINTER
1343 /* When using frame pointers, some additional registers need to
1344 * be loaded. */
1345 u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1346 emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1347 emit(ARM_LDM(ARM_SP, reg_set), ctx);
1348#else
1349 /* Restore callee saved registers. */
1350 emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1351 emit(ARM_POP(CALLEE_POP_MASK), ctx);
1352#endif
1353}
1354
1355/*
1356 * Convert an eBPF instruction to native instruction, i.e
1357 * JITs an eBPF instruction.
1358 * Returns :
1359 * 0 - Successfully JITed an 8-byte eBPF instruction
1360 * >0 - Successfully JITed a 16-byte eBPF instruction
1361 * <0 - Failed to JIT.
1362 */
1363static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1364{
1365 const u8 code = insn->code;
1366 const s8 *dst = bpf2a32[insn->dst_reg];
1367 const s8 *src = bpf2a32[insn->src_reg];
1368 const s8 *tmp = bpf2a32[TMP_REG_1];
1369 const s8 *tmp2 = bpf2a32[TMP_REG_2];
1370 const s16 off = insn->off;
1371 const s32 imm = insn->imm;
1372 const int i = insn - ctx->prog->insnsi;
1373 const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1374 const s8 *rd, *rs;
1375 s8 rd_lo, rt, rm, rn;
1376 s32 jmp_offset;
1377
1378#define check_imm(bits, imm) do { \
1379 if ((imm) >= (1 << ((bits) - 1)) || \
1380 (imm) < -(1 << ((bits) - 1))) { \
1381 pr_info("[%2d] imm=%d(0x%x) out of range\n", \
1382 i, imm, imm); \
1383 return -EINVAL; \
1384 } \
1385} while (0)
1386#define check_imm24(imm) check_imm(24, imm)
1387
1388 switch (code) {
1389 /* ALU operations */
1390
1391 /* dst = src */
1392 case BPF_ALU | BPF_MOV | BPF_K:
1393 case BPF_ALU | BPF_MOV | BPF_X:
1394 case BPF_ALU64 | BPF_MOV | BPF_K:
1395 case BPF_ALU64 | BPF_MOV | BPF_X:
1396 switch (BPF_SRC(code)) {
1397 case BPF_X:
1398 if (imm == 1) {
1399 /* Special mov32 for zext */
1400 emit_a32_mov_i(dst_hi, 0, ctx);
1401 break;
1402 }
1403 emit_a32_mov_r64(is64, dst, src, ctx);
1404 break;
1405 case BPF_K:
1406 /* Sign-extend immediate value to destination reg */
1407 emit_a32_mov_se_i64(is64, dst, imm, ctx);
1408 break;
1409 }
1410 break;
1411 /* dst = dst + src/imm */
1412 /* dst = dst - src/imm */
1413 /* dst = dst | src/imm */
1414 /* dst = dst & src/imm */
1415 /* dst = dst ^ src/imm */
1416 /* dst = dst * src/imm */
1417 /* dst = dst << src */
1418 /* dst = dst >> src */
1419 case BPF_ALU | BPF_ADD | BPF_K:
1420 case BPF_ALU | BPF_ADD | BPF_X:
1421 case BPF_ALU | BPF_SUB | BPF_K:
1422 case BPF_ALU | BPF_SUB | BPF_X:
1423 case BPF_ALU | BPF_OR | BPF_K:
1424 case BPF_ALU | BPF_OR | BPF_X:
1425 case BPF_ALU | BPF_AND | BPF_K:
1426 case BPF_ALU | BPF_AND | BPF_X:
1427 case BPF_ALU | BPF_XOR | BPF_K:
1428 case BPF_ALU | BPF_XOR | BPF_X:
1429 case BPF_ALU | BPF_MUL | BPF_K:
1430 case BPF_ALU | BPF_MUL | BPF_X:
1431 case BPF_ALU | BPF_LSH | BPF_X:
1432 case BPF_ALU | BPF_RSH | BPF_X:
1433 case BPF_ALU | BPF_ARSH | BPF_X:
1434 case BPF_ALU64 | BPF_ADD | BPF_K:
1435 case BPF_ALU64 | BPF_ADD | BPF_X:
1436 case BPF_ALU64 | BPF_SUB | BPF_K:
1437 case BPF_ALU64 | BPF_SUB | BPF_X:
1438 case BPF_ALU64 | BPF_OR | BPF_K:
1439 case BPF_ALU64 | BPF_OR | BPF_X:
1440 case BPF_ALU64 | BPF_AND | BPF_K:
1441 case BPF_ALU64 | BPF_AND | BPF_X:
1442 case BPF_ALU64 | BPF_XOR | BPF_K:
1443 case BPF_ALU64 | BPF_XOR | BPF_X:
1444 switch (BPF_SRC(code)) {
1445 case BPF_X:
1446 emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1447 break;
1448 case BPF_K:
1449 /* Move immediate value to the temporary register
1450 * and then do the ALU operation on the temporary
1451 * register as this will sign-extend the immediate
1452 * value into temporary reg and then it would be
1453 * safe to do the operation on it.
1454 */
1455 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1456 emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1457 break;
1458 }
1459 break;
1460 /* dst = dst / src(imm) */
1461 /* dst = dst % src(imm) */
1462 case BPF_ALU | BPF_DIV | BPF_K:
1463 case BPF_ALU | BPF_DIV | BPF_X:
1464 case BPF_ALU | BPF_MOD | BPF_K:
1465 case BPF_ALU | BPF_MOD | BPF_X:
1466 rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1467 switch (BPF_SRC(code)) {
1468 case BPF_X:
1469 rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1470 break;
1471 case BPF_K:
1472 rt = tmp2[0];
1473 emit_a32_mov_i(rt, imm, ctx);
1474 break;
1475 default:
1476 rt = src_lo;
1477 break;
1478 }
1479 emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1480 arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1481 if (!ctx->prog->aux->verifier_zext)
1482 emit_a32_mov_i(dst_hi, 0, ctx);
1483 break;
1484 case BPF_ALU64 | BPF_DIV | BPF_K:
1485 case BPF_ALU64 | BPF_DIV | BPF_X:
1486 case BPF_ALU64 | BPF_MOD | BPF_K:
1487 case BPF_ALU64 | BPF_MOD | BPF_X:
1488 goto notyet;
1489 /* dst = dst << imm */
1490 /* dst = dst >> imm */
1491 /* dst = dst >> imm (signed) */
1492 case BPF_ALU | BPF_LSH | BPF_K:
1493 case BPF_ALU | BPF_RSH | BPF_K:
1494 case BPF_ALU | BPF_ARSH | BPF_K:
1495 if (unlikely(imm > 31))
1496 return -EINVAL;
1497 if (imm)
1498 emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1499 if (!ctx->prog->aux->verifier_zext)
1500 emit_a32_mov_i(dst_hi, 0, ctx);
1501 break;
1502 /* dst = dst << imm */
1503 case BPF_ALU64 | BPF_LSH | BPF_K:
1504 if (unlikely(imm > 63))
1505 return -EINVAL;
1506 emit_a32_lsh_i64(dst, imm, ctx);
1507 break;
1508 /* dst = dst >> imm */
1509 case BPF_ALU64 | BPF_RSH | BPF_K:
1510 if (unlikely(imm > 63))
1511 return -EINVAL;
1512 emit_a32_rsh_i64(dst, imm, ctx);
1513 break;
1514 /* dst = dst << src */
1515 case BPF_ALU64 | BPF_LSH | BPF_X:
1516 emit_a32_lsh_r64(dst, src, ctx);
1517 break;
1518 /* dst = dst >> src */
1519 case BPF_ALU64 | BPF_RSH | BPF_X:
1520 emit_a32_rsh_r64(dst, src, ctx);
1521 break;
1522 /* dst = dst >> src (signed) */
1523 case BPF_ALU64 | BPF_ARSH | BPF_X:
1524 emit_a32_arsh_r64(dst, src, ctx);
1525 break;
1526 /* dst = dst >> imm (signed) */
1527 case BPF_ALU64 | BPF_ARSH | BPF_K:
1528 if (unlikely(imm > 63))
1529 return -EINVAL;
1530 emit_a32_arsh_i64(dst, imm, ctx);
1531 break;
1532 /* dst = ~dst */
1533 case BPF_ALU | BPF_NEG:
1534 emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1535 if (!ctx->prog->aux->verifier_zext)
1536 emit_a32_mov_i(dst_hi, 0, ctx);
1537 break;
1538 /* dst = ~dst (64 bit) */
1539 case BPF_ALU64 | BPF_NEG:
1540 emit_a32_neg64(dst, ctx);
1541 break;
1542 /* dst = dst * src/imm */
1543 case BPF_ALU64 | BPF_MUL | BPF_X:
1544 case BPF_ALU64 | BPF_MUL | BPF_K:
1545 switch (BPF_SRC(code)) {
1546 case BPF_X:
1547 emit_a32_mul_r64(dst, src, ctx);
1548 break;
1549 case BPF_K:
1550 /* Move immediate value to the temporary register
1551 * and then do the multiplication on it as this
1552 * will sign-extend the immediate value into temp
1553 * reg then it would be safe to do the operation
1554 * on it.
1555 */
1556 emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1557 emit_a32_mul_r64(dst, tmp2, ctx);
1558 break;
1559 }
1560 break;
1561 /* dst = htole(dst) */
1562 /* dst = htobe(dst) */
1563 case BPF_ALU | BPF_END | BPF_FROM_LE:
1564 case BPF_ALU | BPF_END | BPF_FROM_BE:
1565 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1566 if (BPF_SRC(code) == BPF_FROM_LE)
1567 goto emit_bswap_uxt;
1568 switch (imm) {
1569 case 16:
1570 emit_rev16(rd[1], rd[1], ctx);
1571 goto emit_bswap_uxt;
1572 case 32:
1573 emit_rev32(rd[1], rd[1], ctx);
1574 goto emit_bswap_uxt;
1575 case 64:
1576 emit_rev32(ARM_LR, rd[1], ctx);
1577 emit_rev32(rd[1], rd[0], ctx);
1578 emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1579 break;
1580 }
1581 goto exit;
1582emit_bswap_uxt:
1583 switch (imm) {
1584 case 16:
1585 /* zero-extend 16 bits into 64 bits */
1586#if __LINUX_ARM_ARCH__ < 6
1587 emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1588 emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1589#else /* ARMv6+ */
1590 emit(ARM_UXTH(rd[1], rd[1]), ctx);
1591#endif
1592 if (!ctx->prog->aux->verifier_zext)
1593 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1594 break;
1595 case 32:
1596 /* zero-extend 32 bits into 64 bits */
1597 if (!ctx->prog->aux->verifier_zext)
1598 emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1599 break;
1600 case 64:
1601 /* nop */
1602 break;
1603 }
1604exit:
1605 arm_bpf_put_reg64(dst, rd, ctx);
1606 break;
1607 /* dst = imm64 */
1608 case BPF_LD | BPF_IMM | BPF_DW:
1609 {
1610 u64 val = (u32)imm | (u64)insn[1].imm << 32;
1611
1612 emit_a32_mov_i64(dst, val, ctx);
1613
1614 return 1;
1615 }
1616 /* LDX: dst = *(size *)(src + off) */
1617 case BPF_LDX | BPF_MEM | BPF_W:
1618 case BPF_LDX | BPF_MEM | BPF_H:
1619 case BPF_LDX | BPF_MEM | BPF_B:
1620 case BPF_LDX | BPF_MEM | BPF_DW:
1621 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1622 emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1623 break;
1624 /* speculation barrier */
1625 case BPF_ST | BPF_NOSPEC:
1626 break;
1627 /* ST: *(size *)(dst + off) = imm */
1628 case BPF_ST | BPF_MEM | BPF_W:
1629 case BPF_ST | BPF_MEM | BPF_H:
1630 case BPF_ST | BPF_MEM | BPF_B:
1631 case BPF_ST | BPF_MEM | BPF_DW:
1632 switch (BPF_SIZE(code)) {
1633 case BPF_DW:
1634 /* Sign-extend immediate value into temp reg */
1635 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1636 break;
1637 case BPF_W:
1638 case BPF_H:
1639 case BPF_B:
1640 emit_a32_mov_i(tmp2[1], imm, ctx);
1641 break;
1642 }
1643 emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1644 break;
1645 /* Atomic ops */
1646 case BPF_STX | BPF_ATOMIC | BPF_W:
1647 case BPF_STX | BPF_ATOMIC | BPF_DW:
1648 goto notyet;
1649 /* STX: *(size *)(dst + off) = src */
1650 case BPF_STX | BPF_MEM | BPF_W:
1651 case BPF_STX | BPF_MEM | BPF_H:
1652 case BPF_STX | BPF_MEM | BPF_B:
1653 case BPF_STX | BPF_MEM | BPF_DW:
1654 rs = arm_bpf_get_reg64(src, tmp2, ctx);
1655 emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1656 break;
1657 /* PC += off if dst == src */
1658 /* PC += off if dst > src */
1659 /* PC += off if dst >= src */
1660 /* PC += off if dst < src */
1661 /* PC += off if dst <= src */
1662 /* PC += off if dst != src */
1663 /* PC += off if dst > src (signed) */
1664 /* PC += off if dst >= src (signed) */
1665 /* PC += off if dst < src (signed) */
1666 /* PC += off if dst <= src (signed) */
1667 /* PC += off if dst & src */
1668 case BPF_JMP | BPF_JEQ | BPF_X:
1669 case BPF_JMP | BPF_JGT | BPF_X:
1670 case BPF_JMP | BPF_JGE | BPF_X:
1671 case BPF_JMP | BPF_JNE | BPF_X:
1672 case BPF_JMP | BPF_JSGT | BPF_X:
1673 case BPF_JMP | BPF_JSGE | BPF_X:
1674 case BPF_JMP | BPF_JSET | BPF_X:
1675 case BPF_JMP | BPF_JLE | BPF_X:
1676 case BPF_JMP | BPF_JLT | BPF_X:
1677 case BPF_JMP | BPF_JSLT | BPF_X:
1678 case BPF_JMP | BPF_JSLE | BPF_X:
1679 case BPF_JMP32 | BPF_JEQ | BPF_X:
1680 case BPF_JMP32 | BPF_JGT | BPF_X:
1681 case BPF_JMP32 | BPF_JGE | BPF_X:
1682 case BPF_JMP32 | BPF_JNE | BPF_X:
1683 case BPF_JMP32 | BPF_JSGT | BPF_X:
1684 case BPF_JMP32 | BPF_JSGE | BPF_X:
1685 case BPF_JMP32 | BPF_JSET | BPF_X:
1686 case BPF_JMP32 | BPF_JLE | BPF_X:
1687 case BPF_JMP32 | BPF_JLT | BPF_X:
1688 case BPF_JMP32 | BPF_JSLT | BPF_X:
1689 case BPF_JMP32 | BPF_JSLE | BPF_X:
1690 /* Setup source registers */
1691 rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1692 rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1693 goto go_jmp;
1694 /* PC += off if dst == imm */
1695 /* PC += off if dst > imm */
1696 /* PC += off if dst >= imm */
1697 /* PC += off if dst < imm */
1698 /* PC += off if dst <= imm */
1699 /* PC += off if dst != imm */
1700 /* PC += off if dst > imm (signed) */
1701 /* PC += off if dst >= imm (signed) */
1702 /* PC += off if dst < imm (signed) */
1703 /* PC += off if dst <= imm (signed) */
1704 /* PC += off if dst & imm */
1705 case BPF_JMP | BPF_JEQ | BPF_K:
1706 case BPF_JMP | BPF_JGT | BPF_K:
1707 case BPF_JMP | BPF_JGE | BPF_K:
1708 case BPF_JMP | BPF_JNE | BPF_K:
1709 case BPF_JMP | BPF_JSGT | BPF_K:
1710 case BPF_JMP | BPF_JSGE | BPF_K:
1711 case BPF_JMP | BPF_JSET | BPF_K:
1712 case BPF_JMP | BPF_JLT | BPF_K:
1713 case BPF_JMP | BPF_JLE | BPF_K:
1714 case BPF_JMP | BPF_JSLT | BPF_K:
1715 case BPF_JMP | BPF_JSLE | BPF_K:
1716 case BPF_JMP32 | BPF_JEQ | BPF_K:
1717 case BPF_JMP32 | BPF_JGT | BPF_K:
1718 case BPF_JMP32 | BPF_JGE | BPF_K:
1719 case BPF_JMP32 | BPF_JNE | BPF_K:
1720 case BPF_JMP32 | BPF_JSGT | BPF_K:
1721 case BPF_JMP32 | BPF_JSGE | BPF_K:
1722 case BPF_JMP32 | BPF_JSET | BPF_K:
1723 case BPF_JMP32 | BPF_JLT | BPF_K:
1724 case BPF_JMP32 | BPF_JLE | BPF_K:
1725 case BPF_JMP32 | BPF_JSLT | BPF_K:
1726 case BPF_JMP32 | BPF_JSLE | BPF_K:
1727 if (off == 0)
1728 break;
1729 rm = tmp2[0];
1730 rn = tmp2[1];
1731 /* Sign-extend immediate value */
1732 emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1733go_jmp:
1734 /* Setup destination register */
1735 rd = arm_bpf_get_reg64(dst, tmp, ctx);
1736
1737 /* Check for the condition */
1738 emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1739 BPF_CLASS(code) == BPF_JMP);
1740
1741 /* Setup JUMP instruction */
1742 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1743 switch (BPF_OP(code)) {
1744 case BPF_JNE:
1745 case BPF_JSET:
1746 _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1747 break;
1748 case BPF_JEQ:
1749 _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1750 break;
1751 case BPF_JGT:
1752 _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1753 break;
1754 case BPF_JGE:
1755 _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1756 break;
1757 case BPF_JSGT:
1758 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1759 break;
1760 case BPF_JSGE:
1761 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1762 break;
1763 case BPF_JLE:
1764 _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1765 break;
1766 case BPF_JLT:
1767 _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1768 break;
1769 case BPF_JSLT:
1770 _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1771 break;
1772 case BPF_JSLE:
1773 _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1774 break;
1775 }
1776 break;
1777 /* JMP OFF */
1778 case BPF_JMP | BPF_JA:
1779 {
1780 if (off == 0)
1781 break;
1782 jmp_offset = bpf2a32_offset(i+off, i, ctx);
1783 check_imm24(jmp_offset);
1784 emit(ARM_B(jmp_offset), ctx);
1785 break;
1786 }
1787 /* tail call */
1788 case BPF_JMP | BPF_TAIL_CALL:
1789 if (emit_bpf_tail_call(ctx))
1790 return -EFAULT;
1791 break;
1792 /* function call */
1793 case BPF_JMP | BPF_CALL:
1794 {
1795 const s8 *r0 = bpf2a32[BPF_REG_0];
1796 const s8 *r1 = bpf2a32[BPF_REG_1];
1797 const s8 *r2 = bpf2a32[BPF_REG_2];
1798 const s8 *r3 = bpf2a32[BPF_REG_3];
1799 const s8 *r4 = bpf2a32[BPF_REG_4];
1800 const s8 *r5 = bpf2a32[BPF_REG_5];
1801 const u32 func = (u32)__bpf_call_base + (u32)imm;
1802
1803 emit_a32_mov_r64(true, r0, r1, ctx);
1804 emit_a32_mov_r64(true, r1, r2, ctx);
1805 emit_push_r64(r5, ctx);
1806 emit_push_r64(r4, ctx);
1807 emit_push_r64(r3, ctx);
1808
1809 emit_a32_mov_i(tmp[1], func, ctx);
1810 emit_blx_r(tmp[1], ctx);
1811
1812 emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1813 break;
1814 }
1815 /* function return */
1816 case BPF_JMP | BPF_EXIT:
1817 /* Optimization: when last instruction is EXIT
1818 * simply fallthrough to epilogue.
1819 */
1820 if (i == ctx->prog->len - 1)
1821 break;
1822 jmp_offset = epilogue_offset(ctx);
1823 check_imm24(jmp_offset);
1824 emit(ARM_B(jmp_offset), ctx);
1825 break;
1826notyet:
1827 pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1828 return -EFAULT;
1829 default:
1830 pr_err_once("unknown opcode %02x\n", code);
1831 return -EINVAL;
1832 }
1833
1834 if (ctx->flags & FLAG_IMM_OVERFLOW)
1835 /*
1836 * this instruction generated an overflow when
1837 * trying to access the literal pool, so
1838 * delegate this filter to the kernel interpreter.
1839 */
1840 return -1;
1841 return 0;
1842}
1843
1844static int build_body(struct jit_ctx *ctx)
1845{
1846 const struct bpf_prog *prog = ctx->prog;
1847 unsigned int i;
1848
1849 for (i = 0; i < prog->len; i++) {
1850 const struct bpf_insn *insn = &(prog->insnsi[i]);
1851 int ret;
1852
1853 ret = build_insn(insn, ctx);
1854
1855 /* It's used with loading the 64 bit immediate value. */
1856 if (ret > 0) {
1857 i++;
1858 if (ctx->target == NULL)
1859 ctx->offsets[i] = ctx->idx;
1860 continue;
1861 }
1862
1863 if (ctx->target == NULL)
1864 ctx->offsets[i] = ctx->idx;
1865
1866 /* If unsuccesfull, return with error code */
1867 if (ret)
1868 return ret;
1869 }
1870 return 0;
1871}
1872
1873static int validate_code(struct jit_ctx *ctx)
1874{
1875 int i;
1876
1877 for (i = 0; i < ctx->idx; i++) {
1878 if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1879 return -1;
1880 }
1881
1882 return 0;
1883}
1884
1885void bpf_jit_compile(struct bpf_prog *prog)
1886{
1887 /* Nothing to do here. We support Internal BPF. */
1888}
1889
1890bool bpf_jit_needs_zext(void)
1891{
1892 return true;
1893}
1894
1895struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1896{
1897 struct bpf_prog *tmp, *orig_prog = prog;
1898 struct bpf_binary_header *header;
1899 bool tmp_blinded = false;
1900 struct jit_ctx ctx;
1901 unsigned int tmp_idx;
1902 unsigned int image_size;
1903 u8 *image_ptr;
1904
1905 /* If BPF JIT was not enabled then we must fall back to
1906 * the interpreter.
1907 */
1908 if (!prog->jit_requested)
1909 return orig_prog;
1910
1911 /* If constant blinding was enabled and we failed during blinding
1912 * then we must fall back to the interpreter. Otherwise, we save
1913 * the new JITed code.
1914 */
1915 tmp = bpf_jit_blind_constants(prog);
1916
1917 if (IS_ERR(tmp))
1918 return orig_prog;
1919 if (tmp != prog) {
1920 tmp_blinded = true;
1921 prog = tmp;
1922 }
1923
1924 memset(&ctx, 0, sizeof(ctx));
1925 ctx.prog = prog;
1926 ctx.cpu_architecture = cpu_architecture();
1927
1928 /* Not able to allocate memory for offsets[] , then
1929 * we must fall back to the interpreter
1930 */
1931 ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1932 if (ctx.offsets == NULL) {
1933 prog = orig_prog;
1934 goto out;
1935 }
1936
1937 /* 1) fake pass to find in the length of the JITed code,
1938 * to compute ctx->offsets and other context variables
1939 * needed to compute final JITed code.
1940 * Also, calculate random starting pointer/start of JITed code
1941 * which is prefixed by random number of fault instructions.
1942 *
1943 * If the first pass fails then there is no chance of it
1944 * being successful in the second pass, so just fall back
1945 * to the interpreter.
1946 */
1947 if (build_body(&ctx)) {
1948 prog = orig_prog;
1949 goto out_off;
1950 }
1951
1952 tmp_idx = ctx.idx;
1953 build_prologue(&ctx);
1954 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1955
1956 ctx.epilogue_offset = ctx.idx;
1957
1958#if __LINUX_ARM_ARCH__ < 7
1959 tmp_idx = ctx.idx;
1960 build_epilogue(&ctx);
1961 ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1962
1963 ctx.idx += ctx.imm_count;
1964 if (ctx.imm_count) {
1965 ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1966 if (ctx.imms == NULL) {
1967 prog = orig_prog;
1968 goto out_off;
1969 }
1970 }
1971#else
1972 /* there's nothing about the epilogue on ARMv7 */
1973 build_epilogue(&ctx);
1974#endif
1975 /* Now we can get the actual image size of the JITed arm code.
1976 * Currently, we are not considering the THUMB-2 instructions
1977 * for jit, although it can decrease the size of the image.
1978 *
1979 * As each arm instruction is of length 32bit, we are translating
1980 * number of JITed intructions into the size required to store these
1981 * JITed code.
1982 */
1983 image_size = sizeof(u32) * ctx.idx;
1984
1985 /* Now we know the size of the structure to make */
1986 header = bpf_jit_binary_alloc(image_size, &image_ptr,
1987 sizeof(u32), jit_fill_hole);
1988 /* Not able to allocate memory for the structure then
1989 * we must fall back to the interpretation
1990 */
1991 if (header == NULL) {
1992 prog = orig_prog;
1993 goto out_imms;
1994 }
1995
1996 /* 2.) Actual pass to generate final JIT code */
1997 ctx.target = (u32 *) image_ptr;
1998 ctx.idx = 0;
1999
2000 build_prologue(&ctx);
2001
2002 /* If building the body of the JITed code fails somehow,
2003 * we fall back to the interpretation.
2004 */
2005 if (build_body(&ctx) < 0) {
2006 image_ptr = NULL;
2007 bpf_jit_binary_free(header);
2008 prog = orig_prog;
2009 goto out_imms;
2010 }
2011 build_epilogue(&ctx);
2012
2013 /* 3.) Extra pass to validate JITed Code */
2014 if (validate_code(&ctx)) {
2015 image_ptr = NULL;
2016 bpf_jit_binary_free(header);
2017 prog = orig_prog;
2018 goto out_imms;
2019 }
2020 flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2021
2022 if (bpf_jit_enable > 1)
2023 /* there are 2 passes here */
2024 bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2025
2026 bpf_jit_binary_lock_ro(header);
2027 prog->bpf_func = (void *)ctx.target;
2028 prog->jited = 1;
2029 prog->jited_len = image_size;
2030
2031out_imms:
2032#if __LINUX_ARM_ARCH__ < 7
2033 if (ctx.imm_count)
2034 kfree(ctx.imms);
2035#endif
2036out_off:
2037 kfree(ctx.offsets);
2038out:
2039 if (tmp_blinded)
2040 bpf_jit_prog_release_other(prog, prog == orig_prog ?
2041 tmp : orig_prog);
2042 return prog;
2043}
2044