Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Just-In-Time compiler for eBPF filters on 32bit ARM
   4 *
   5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
   6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   7 */
   8
   9#include <linux/bpf.h>
  10#include <linux/bitops.h>
  11#include <linux/compiler.h>
  12#include <linux/errno.h>
  13#include <linux/filter.h>
  14#include <linux/netdevice.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/if_vlan.h>
  18
  19#include <asm/cacheflush.h>
  20#include <asm/hwcap.h>
  21#include <asm/opcodes.h>
  22#include <asm/system_info.h>
  23
  24#include "bpf_jit_32.h"
  25
  26/*
  27 * eBPF prog stack layout:
  28 *
  29 *                         high
  30 * original ARM_SP =>     +-----+
  31 *                        |     | callee saved registers
  32 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
  33 *                        | ... | eBPF JIT scratch space
  34 * eBPF fp register =>    +-----+
  35 *   (BPF_FP)             | ... | eBPF prog stack
  36 *                        +-----+
  37 *                        |RSVD | JIT scratchpad
  38 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
  39 *                        |     |
  40 *                        | ... | Function call stack
  41 *                        |     |
  42 *                        +-----+
  43 *                          low
  44 *
  45 * The callee saved registers depends on whether frame pointers are enabled.
  46 * With frame pointers (to be compliant with the ABI):
  47 *
  48 *                              high
  49 * original ARM_SP =>     +--------------+ \
  50 *                        |      pc      | |
  51 * current ARM_FP =>      +--------------+ } callee saved registers
  52 *                        |r4-r9,fp,ip,lr| |
  53 *                        +--------------+ /
  54 *                              low
  55 *
  56 * Without frame pointers:
  57 *
  58 *                              high
  59 * original ARM_SP =>     +--------------+
  60 *                        |  r4-r9,fp,lr | callee saved registers
  61 * current ARM_FP =>      +--------------+
  62 *                              low
  63 *
  64 * When popping registers off the stack at the end of a BPF function, we
  65 * reference them via the current ARM_FP register.
  66 */
  67#define CALLEE_MASK	(1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
  68			 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
  69			 1 << ARM_FP)
  70#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
  71#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
  72
  73enum {
  74	/* Stack layout - these are offsets from (top of stack - 4) */
  75	BPF_R2_HI,
  76	BPF_R2_LO,
  77	BPF_R3_HI,
  78	BPF_R3_LO,
  79	BPF_R4_HI,
  80	BPF_R4_LO,
  81	BPF_R5_HI,
  82	BPF_R5_LO,
  83	BPF_R7_HI,
  84	BPF_R7_LO,
  85	BPF_R8_HI,
  86	BPF_R8_LO,
  87	BPF_R9_HI,
  88	BPF_R9_LO,
  89	BPF_FP_HI,
  90	BPF_FP_LO,
  91	BPF_TC_HI,
  92	BPF_TC_LO,
  93	BPF_AX_HI,
  94	BPF_AX_LO,
  95	/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
  96	 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
  97	 * BPF_REG_FP and Tail call counts.
  98	 */
  99	BPF_JIT_SCRATCH_REGS,
 100};
 101
 102/*
 103 * Negative "register" values indicate the register is stored on the stack
 104 * and are the offset from the top of the eBPF JIT scratch space.
 105 */
 106#define STACK_OFFSET(k)	(-4 - (k) * 4)
 107#define SCRATCH_SIZE	(BPF_JIT_SCRATCH_REGS * 4)
 108
 109#ifdef CONFIG_FRAME_POINTER
 110#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
 111#else
 112#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
 113#endif
 114
 115#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)	/* TEMP Register 1 */
 116#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)	/* TEMP Register 2 */
 117#define TCALL_CNT	(MAX_BPF_JIT_REG + 2)	/* Tail Call Count */
 118
 119#define FLAG_IMM_OVERFLOW	(1 << 0)
 120
 121/*
 122 * Map eBPF registers to ARM 32bit registers or stack scratch space.
 123 *
 124 * 1. First argument is passed using the arm 32bit registers and rest of the
 125 * arguments are passed on stack scratch space.
 126 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
 127 * arguments are mapped to scratch space on stack.
 128 * 3. We need two 64 bit temp registers to do complex operations on eBPF
 129 * registers.
 130 *
 131 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
 132 * registers, we have to map each eBPF registers with two arm 32 bit regs or
 133 * scratch memory space and we have to build eBPF 64 bit register from those.
 134 *
 135 */
 136static const s8 bpf2a32[][2] = {
 137	/* return value from in-kernel function, and exit value from eBPF */
 138	[BPF_REG_0] = {ARM_R1, ARM_R0},
 139	/* arguments from eBPF program to in-kernel function */
 140	[BPF_REG_1] = {ARM_R3, ARM_R2},
 141	/* Stored on stack scratch space */
 142	[BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
 143	[BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
 144	[BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
 145	[BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
 146	/* callee saved registers that in-kernel function will preserve */
 147	[BPF_REG_6] = {ARM_R5, ARM_R4},
 148	/* Stored on stack scratch space */
 149	[BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
 150	[BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
 151	[BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
 152	/* Read only Frame Pointer to access Stack */
 153	[BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
 154	/* Temporary Register for internal BPF JIT, can be used
 155	 * for constant blindings and others.
 156	 */
 157	[TMP_REG_1] = {ARM_R7, ARM_R6},
 158	[TMP_REG_2] = {ARM_R9, ARM_R8},
 159	/* Tail call count. Stored on stack scratch space. */
 160	[TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
 161	/* temporary register for blinding constants.
 162	 * Stored on stack scratch space.
 163	 */
 164	[BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
 165};
 166
 167#define	dst_lo	dst[1]
 168#define dst_hi	dst[0]
 169#define src_lo	src[1]
 170#define src_hi	src[0]
 171
 172/*
 173 * JIT Context:
 174 *
 175 * prog			:	bpf_prog
 176 * idx			:	index of current last JITed instruction.
 177 * prologue_bytes	:	bytes used in prologue.
 178 * epilogue_offset	:	offset of epilogue starting.
 179 * offsets		:	array of eBPF instruction offsets in
 180 *				JITed code.
 181 * target		:	final JITed code.
 182 * epilogue_bytes	:	no of bytes used in epilogue.
 183 * imm_count		:	no of immediate counts used for global
 184 *				variables.
 185 * imms			:	array of global variable addresses.
 186 */
 187
 188struct jit_ctx {
 189	const struct bpf_prog *prog;
 190	unsigned int idx;
 191	unsigned int prologue_bytes;
 192	unsigned int epilogue_offset;
 193	unsigned int cpu_architecture;
 194	u32 flags;
 195	u32 *offsets;
 196	u32 *target;
 197	u32 stack_size;
 198#if __LINUX_ARM_ARCH__ < 7
 199	u16 epilogue_bytes;
 200	u16 imm_count;
 201	u32 *imms;
 202#endif
 203};
 204
 205/*
 206 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 207 * (where the assembly routines like __aeabi_uidiv could cause problems).
 208 */
 209static u32 jit_udiv32(u32 dividend, u32 divisor)
 210{
 211	return dividend / divisor;
 212}
 213
 214static u32 jit_mod32(u32 dividend, u32 divisor)
 215{
 216	return dividend % divisor;
 217}
 218
 219static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 220{
 221	inst |= (cond << 28);
 222	inst = __opcode_to_mem_arm(inst);
 223
 224	if (ctx->target != NULL)
 225		ctx->target[ctx->idx] = inst;
 226
 227	ctx->idx++;
 228}
 229
 230/*
 231 * Emit an instruction that will be executed unconditionally.
 232 */
 233static inline void emit(u32 inst, struct jit_ctx *ctx)
 234{
 235	_emit(ARM_COND_AL, inst, ctx);
 236}
 237
 238/*
 239 * This is rather horrid, but necessary to convert an integer constant
 240 * to an immediate operand for the opcodes, and be able to detect at
 241 * build time whether the constant can't be converted (iow, usable in
 242 * BUILD_BUG_ON()).
 243 */
 244#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
 245#define const_imm8m(x)					\
 246	({ int r;					\
 247	   u32 v = (x);					\
 248	   if (!(v & ~0x000000ff))			\
 249		r = imm12val(v, 0);			\
 250	   else if (!(v & ~0xc000003f))			\
 251		r = imm12val(v, 2);			\
 252	   else if (!(v & ~0xf000000f))			\
 253		r = imm12val(v, 4);			\
 254	   else if (!(v & ~0xfc000003))			\
 255		r = imm12val(v, 6);			\
 256	   else if (!(v & ~0xff000000))			\
 257		r = imm12val(v, 8);			\
 258	   else if (!(v & ~0x3fc00000))			\
 259		r = imm12val(v, 10);			\
 260	   else if (!(v & ~0x0ff00000))			\
 261		r = imm12val(v, 12);			\
 262	   else if (!(v & ~0x03fc0000))			\
 263		r = imm12val(v, 14);			\
 264	   else if (!(v & ~0x00ff0000))			\
 265		r = imm12val(v, 16);			\
 266	   else if (!(v & ~0x003fc000))			\
 267		r = imm12val(v, 18);			\
 268	   else if (!(v & ~0x000ff000))			\
 269		r = imm12val(v, 20);			\
 270	   else if (!(v & ~0x0003fc00))			\
 271		r = imm12val(v, 22);			\
 272	   else if (!(v & ~0x0000ff00))			\
 273		r = imm12val(v, 24);			\
 274	   else if (!(v & ~0x00003fc0))			\
 275		r = imm12val(v, 26);			\
 276	   else if (!(v & ~0x00000ff0))			\
 277		r = imm12val(v, 28);			\
 278	   else if (!(v & ~0x000003fc))			\
 279		r = imm12val(v, 30);			\
 280	   else						\
 281		r = -1;					\
 282	   r; })
 283
 284/*
 285 * Checks if immediate value can be converted to imm12(12 bits) value.
 286 */
 287static int imm8m(u32 x)
 288{
 289	u32 rot;
 290
 291	for (rot = 0; rot < 16; rot++)
 292		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 293			return rol32(x, 2 * rot) | (rot << 8);
 294	return -1;
 295}
 296
 297#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
 298
 299static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
 300{
 301	op |= rt << 12 | rn << 16;
 302	if (imm12 >= 0)
 303		op |= ARM_INST_LDST__U;
 304	else
 305		imm12 = -imm12;
 306	return op | (imm12 & ARM_INST_LDST__IMM12);
 307}
 308
 309static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
 310{
 311	op |= rt << 12 | rn << 16;
 312	if (imm8 >= 0)
 313		op |= ARM_INST_LDST__U;
 314	else
 315		imm8 = -imm8;
 316	return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
 317}
 318
 319#define ARM_LDR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
 320#define ARM_LDRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
 321#define ARM_LDRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
 322#define ARM_LDRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
 323
 324#define ARM_STR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
 325#define ARM_STRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
 326#define ARM_STRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
 327#define ARM_STRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
 328
 329/*
 330 * Initializes the JIT space with undefined instructions.
 331 */
 332static void jit_fill_hole(void *area, unsigned int size)
 333{
 334	u32 *ptr;
 335	/* We are guaranteed to have aligned memory. */
 336	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 337		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 338}
 339
 340#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 341/* EABI requires the stack to be aligned to 64-bit boundaries */
 342#define STACK_ALIGNMENT	8
 343#else
 344/* Stack must be aligned to 32-bit boundaries */
 345#define STACK_ALIGNMENT	4
 346#endif
 347
 348/* total stack size used in JITed code */
 349#define _STACK_SIZE	(ctx->prog->aux->stack_depth + SCRATCH_SIZE)
 350#define STACK_SIZE	ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 351
 352#if __LINUX_ARM_ARCH__ < 7
 353
 354static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 355{
 356	unsigned int i = 0, offset;
 357	u16 imm;
 358
 359	/* on the "fake" run we just count them (duplicates included) */
 360	if (ctx->target == NULL) {
 361		ctx->imm_count++;
 362		return 0;
 363	}
 364
 365	while ((i < ctx->imm_count) && ctx->imms[i]) {
 366		if (ctx->imms[i] == k)
 367			break;
 368		i++;
 369	}
 370
 371	if (ctx->imms[i] == 0)
 372		ctx->imms[i] = k;
 373
 374	/* constants go just after the epilogue */
 375	offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 376	offset += ctx->prologue_bytes;
 377	offset += ctx->epilogue_bytes;
 378	offset += i * 4;
 379
 380	ctx->target[offset / 4] = k;
 381
 382	/* PC in ARM mode == address of the instruction + 8 */
 383	imm = offset - (8 + ctx->idx * 4);
 384
 385	if (imm & ~0xfff) {
 386		/*
 387		 * literal pool is too far, signal it into flags. we
 388		 * can only detect it on the second pass unfortunately.
 389		 */
 390		ctx->flags |= FLAG_IMM_OVERFLOW;
 391		return 0;
 392	}
 393
 394	return imm;
 395}
 396
 397#endif /* __LINUX_ARM_ARCH__ */
 398
 399static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 400				 const struct jit_ctx *ctx) {
 401	int to, from;
 402
 403	if (ctx->target == NULL)
 404		return 0;
 405	to = ctx->offsets[bpf_to];
 406	from = ctx->offsets[bpf_from];
 407
 408	return to - from - 1;
 409}
 410
 411/*
 412 * Move an immediate that's not an imm8m to a core register.
 413 */
 414static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 415{
 416#if __LINUX_ARM_ARCH__ < 7
 417	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 418#else
 419	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 420	if (val > 0xffff)
 421		emit(ARM_MOVT(rd, val >> 16), ctx);
 422#endif
 423}
 424
 425static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 426{
 427	int imm12 = imm8m(val);
 428
 429	if (imm12 >= 0)
 430		emit(ARM_MOV_I(rd, imm12), ctx);
 431	else
 432		emit_mov_i_no8m(rd, val, ctx);
 433}
 434
 435static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 436{
 437	if (elf_hwcap & HWCAP_THUMB)
 438		emit(ARM_BX(tgt_reg), ctx);
 439	else
 440		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 441}
 442
 443static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 444{
 445#if __LINUX_ARM_ARCH__ < 5
 446	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 447	emit_bx_r(tgt_reg, ctx);
 448#else
 449	emit(ARM_BLX_R(tgt_reg), ctx);
 450#endif
 451}
 452
 453static inline int epilogue_offset(const struct jit_ctx *ctx)
 454{
 455	int to, from;
 456	/* No need for 1st dummy run */
 457	if (ctx->target == NULL)
 458		return 0;
 459	to = ctx->epilogue_offset;
 460	from = ctx->idx;
 461
 462	return to - from - 2;
 463}
 464
 465static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
 466{
 467	const s8 *tmp = bpf2a32[TMP_REG_1];
 468
 469#if __LINUX_ARM_ARCH__ == 7
 470	if (elf_hwcap & HWCAP_IDIVA) {
 471		if (op == BPF_DIV)
 472			emit(ARM_UDIV(rd, rm, rn), ctx);
 473		else {
 474			emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
 475			emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 476		}
 477		return;
 478	}
 479#endif
 480
 481	/*
 482	 * For BPF_ALU | BPF_DIV | BPF_K instructions
 483	 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 484	 * function, we need to save it on caller side to save
 485	 * it from getting destroyed within callee.
 486	 * After the return from the callee, we restore ARM_R0
 487	 * ARM_R1.
 488	 */
 489	if (rn != ARM_R1) {
 490		emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 491		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 492	}
 493	if (rm != ARM_R0) {
 494		emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 495		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 496	}
 497
 498	/* Call appropriate function */
 499	emit_mov_i(ARM_IP, op == BPF_DIV ?
 500		   (u32)jit_udiv32 : (u32)jit_mod32, ctx);
 501	emit_blx_r(ARM_IP, ctx);
 502
 503	/* Save return value */
 504	if (rd != ARM_R0)
 505		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 506
 507	/* Restore ARM_R0 and ARM_R1 */
 508	if (rn != ARM_R1)
 509		emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 510	if (rm != ARM_R0)
 511		emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 512}
 513
 514/* Is the translated BPF register on stack? */
 515static bool is_stacked(s8 reg)
 516{
 517	return reg < 0;
 518}
 519
 520/* If a BPF register is on the stack (stk is true), load it to the
 521 * supplied temporary register and return the temporary register
 522 * for subsequent operations, otherwise just use the CPU register.
 523 */
 524static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
 525{
 526	if (is_stacked(reg)) {
 527		emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 528		reg = tmp;
 529	}
 530	return reg;
 531}
 532
 533static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
 534				   struct jit_ctx *ctx)
 535{
 536	if (is_stacked(reg[1])) {
 537		if (__LINUX_ARM_ARCH__ >= 6 ||
 538		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 539			emit(ARM_LDRD_I(tmp[1], ARM_FP,
 540					EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 541		} else {
 542			emit(ARM_LDR_I(tmp[1], ARM_FP,
 543				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 544			emit(ARM_LDR_I(tmp[0], ARM_FP,
 545				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 546		}
 547		reg = tmp;
 548	}
 549	return reg;
 550}
 551
 552/* If a BPF register is on the stack (stk is true), save the register
 553 * back to the stack.  If the source register is not the same, then
 554 * move it into the correct register.
 555 */
 556static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
 557{
 558	if (is_stacked(reg))
 559		emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 560	else if (reg != src)
 561		emit(ARM_MOV_R(reg, src), ctx);
 562}
 563
 564static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
 565			      struct jit_ctx *ctx)
 566{
 567	if (is_stacked(reg[1])) {
 568		if (__LINUX_ARM_ARCH__ >= 6 ||
 569		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 570			emit(ARM_STRD_I(src[1], ARM_FP,
 571				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 572		} else {
 573			emit(ARM_STR_I(src[1], ARM_FP,
 574				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 575			emit(ARM_STR_I(src[0], ARM_FP,
 576				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 577		}
 578	} else {
 579		if (reg[1] != src[1])
 580			emit(ARM_MOV_R(reg[1], src[1]), ctx);
 581		if (reg[0] != src[0])
 582			emit(ARM_MOV_R(reg[0], src[0]), ctx);
 583	}
 584}
 585
 586static inline void emit_a32_mov_i(const s8 dst, const u32 val,
 587				  struct jit_ctx *ctx)
 588{
 589	const s8 *tmp = bpf2a32[TMP_REG_1];
 590
 591	if (is_stacked(dst)) {
 592		emit_mov_i(tmp[1], val, ctx);
 593		arm_bpf_put_reg32(dst, tmp[1], ctx);
 594	} else {
 595		emit_mov_i(dst, val, ctx);
 596	}
 597}
 598
 599static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
 600{
 601	const s8 *tmp = bpf2a32[TMP_REG_1];
 602	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
 603
 604	emit_mov_i(rd[1], (u32)val, ctx);
 605	emit_mov_i(rd[0], val >> 32, ctx);
 606
 607	arm_bpf_put_reg64(dst, rd, ctx);
 608}
 609
 610/* Sign extended move */
 611static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
 612				       const u32 val, struct jit_ctx *ctx) {
 613	u64 val64 = val;
 614
 615	if (is64 && (val & (1<<31)))
 616		val64 |= 0xffffffff00000000ULL;
 617	emit_a32_mov_i64(dst, val64, ctx);
 618}
 619
 620static inline void emit_a32_add_r(const u8 dst, const u8 src,
 621			      const bool is64, const bool hi,
 622			      struct jit_ctx *ctx) {
 623	/* 64 bit :
 624	 *	adds dst_lo, dst_lo, src_lo
 625	 *	adc dst_hi, dst_hi, src_hi
 626	 * 32 bit :
 627	 *	add dst_lo, dst_lo, src_lo
 628	 */
 629	if (!hi && is64)
 630		emit(ARM_ADDS_R(dst, dst, src), ctx);
 631	else if (hi && is64)
 632		emit(ARM_ADC_R(dst, dst, src), ctx);
 633	else
 634		emit(ARM_ADD_R(dst, dst, src), ctx);
 635}
 636
 637static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 638				  const bool is64, const bool hi,
 639				  struct jit_ctx *ctx) {
 640	/* 64 bit :
 641	 *	subs dst_lo, dst_lo, src_lo
 642	 *	sbc dst_hi, dst_hi, src_hi
 643	 * 32 bit :
 644	 *	sub dst_lo, dst_lo, src_lo
 645	 */
 646	if (!hi && is64)
 647		emit(ARM_SUBS_R(dst, dst, src), ctx);
 648	else if (hi && is64)
 649		emit(ARM_SBC_R(dst, dst, src), ctx);
 650	else
 651		emit(ARM_SUB_R(dst, dst, src), ctx);
 652}
 653
 654static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 655			      const bool hi, const u8 op, struct jit_ctx *ctx){
 656	switch (BPF_OP(op)) {
 657	/* dst = dst + src */
 658	case BPF_ADD:
 659		emit_a32_add_r(dst, src, is64, hi, ctx);
 660		break;
 661	/* dst = dst - src */
 662	case BPF_SUB:
 663		emit_a32_sub_r(dst, src, is64, hi, ctx);
 664		break;
 665	/* dst = dst | src */
 666	case BPF_OR:
 667		emit(ARM_ORR_R(dst, dst, src), ctx);
 668		break;
 669	/* dst = dst & src */
 670	case BPF_AND:
 671		emit(ARM_AND_R(dst, dst, src), ctx);
 672		break;
 673	/* dst = dst ^ src */
 674	case BPF_XOR:
 675		emit(ARM_EOR_R(dst, dst, src), ctx);
 676		break;
 677	/* dst = dst * src */
 678	case BPF_MUL:
 679		emit(ARM_MUL(dst, dst, src), ctx);
 680		break;
 681	/* dst = dst << src */
 682	case BPF_LSH:
 683		emit(ARM_LSL_R(dst, dst, src), ctx);
 684		break;
 685	/* dst = dst >> src */
 686	case BPF_RSH:
 687		emit(ARM_LSR_R(dst, dst, src), ctx);
 688		break;
 689	/* dst = dst >> src (signed)*/
 690	case BPF_ARSH:
 691		emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 692		break;
 693	}
 694}
 695
 696/* ALU operation (32 bit)
 697 * dst = dst (op) src
 698 */
 699static inline void emit_a32_alu_r(const s8 dst, const s8 src,
 700				  struct jit_ctx *ctx, const bool is64,
 701				  const bool hi, const u8 op) {
 702	const s8 *tmp = bpf2a32[TMP_REG_1];
 703	s8 rn, rd;
 704
 705	rn = arm_bpf_get_reg32(src, tmp[1], ctx);
 706	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 707	/* ALU operation */
 708	emit_alu_r(rd, rn, is64, hi, op, ctx);
 709	arm_bpf_put_reg32(dst, rd, ctx);
 710}
 711
 712/* ALU operation (64 bit) */
 713static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
 714				  const s8 src[], struct jit_ctx *ctx,
 715				  const u8 op) {
 716	const s8 *tmp = bpf2a32[TMP_REG_1];
 717	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 718	const s8 *rd;
 719
 720	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 721	if (is64) {
 722		const s8 *rs;
 723
 724		rs = arm_bpf_get_reg64(src, tmp2, ctx);
 725
 726		/* ALU operation */
 727		emit_alu_r(rd[1], rs[1], true, false, op, ctx);
 728		emit_alu_r(rd[0], rs[0], true, true, op, ctx);
 729	} else {
 730		s8 rs;
 731
 732		rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 733
 734		/* ALU operation */
 735		emit_alu_r(rd[1], rs, true, false, op, ctx);
 736		if (!ctx->prog->aux->verifier_zext)
 737			emit_a32_mov_i(rd[0], 0, ctx);
 738	}
 739
 740	arm_bpf_put_reg64(dst, rd, ctx);
 741}
 742
 743/* dst = src (4 bytes)*/
 744static inline void emit_a32_mov_r(const s8 dst, const s8 src,
 745				  struct jit_ctx *ctx) {
 746	const s8 *tmp = bpf2a32[TMP_REG_1];
 747	s8 rt;
 748
 749	rt = arm_bpf_get_reg32(src, tmp[0], ctx);
 750	arm_bpf_put_reg32(dst, rt, ctx);
 751}
 752
 753/* dst = src */
 754static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
 755				  const s8 src[],
 756				  struct jit_ctx *ctx) {
 757	if (!is64) {
 758		emit_a32_mov_r(dst_lo, src_lo, ctx);
 759		if (!ctx->prog->aux->verifier_zext)
 760			/* Zero out high 4 bytes */
 761			emit_a32_mov_i(dst_hi, 0, ctx);
 762	} else if (__LINUX_ARM_ARCH__ < 6 &&
 763		   ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
 764		/* complete 8 byte move */
 765		emit_a32_mov_r(dst_lo, src_lo, ctx);
 766		emit_a32_mov_r(dst_hi, src_hi, ctx);
 767	} else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
 768		const u8 *tmp = bpf2a32[TMP_REG_1];
 769
 770		emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 771		emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 772	} else if (is_stacked(src_lo)) {
 773		emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 774	} else if (is_stacked(dst_lo)) {
 775		emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 776	} else {
 777		emit(ARM_MOV_R(dst[0], src[0]), ctx);
 778		emit(ARM_MOV_R(dst[1], src[1]), ctx);
 779	}
 780}
 781
 782/* Shift operations */
 783static inline void emit_a32_alu_i(const s8 dst, const u32 val,
 784				struct jit_ctx *ctx, const u8 op) {
 785	const s8 *tmp = bpf2a32[TMP_REG_1];
 786	s8 rd;
 787
 788	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 789
 790	/* Do shift operation */
 791	switch (op) {
 792	case BPF_LSH:
 793		emit(ARM_LSL_I(rd, rd, val), ctx);
 794		break;
 795	case BPF_RSH:
 796		emit(ARM_LSR_I(rd, rd, val), ctx);
 797		break;
 798	case BPF_ARSH:
 799		emit(ARM_ASR_I(rd, rd, val), ctx);
 800		break;
 801	case BPF_NEG:
 802		emit(ARM_RSB_I(rd, rd, val), ctx);
 803		break;
 804	}
 805
 806	arm_bpf_put_reg32(dst, rd, ctx);
 807}
 808
 809/* dst = ~dst (64 bit) */
 810static inline void emit_a32_neg64(const s8 dst[],
 811				struct jit_ctx *ctx){
 812	const s8 *tmp = bpf2a32[TMP_REG_1];
 813	const s8 *rd;
 814
 815	/* Setup Operand */
 816	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 817
 818	/* Do Negate Operation */
 819	emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
 820	emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
 821
 822	arm_bpf_put_reg64(dst, rd, ctx);
 823}
 824
 825/* dst = dst << src */
 826static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
 827				    struct jit_ctx *ctx) {
 828	const s8 *tmp = bpf2a32[TMP_REG_1];
 829	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 830	const s8 *rd;
 831	s8 rt;
 832
 833	/* Setup Operands */
 834	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 835	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 836
 837	/* Do LSH operation */
 838	emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
 839	emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
 840	emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
 841	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
 842	emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
 843	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
 844
 845	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 846	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 847}
 848
 849/* dst = dst >> src (signed)*/
 850static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
 851				     struct jit_ctx *ctx) {
 852	const s8 *tmp = bpf2a32[TMP_REG_1];
 853	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 854	const s8 *rd;
 855	s8 rt;
 856
 857	/* Setup Operands */
 858	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 859	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 860
 861	/* Do the ARSH operation */
 862	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 863	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 864	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 865	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 866	_emit(ARM_COND_PL,
 867	      ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
 868	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
 869
 870	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 871	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 872}
 873
 874/* dst = dst >> src */
 875static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
 876				    struct jit_ctx *ctx) {
 877	const s8 *tmp = bpf2a32[TMP_REG_1];
 878	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 879	const s8 *rd;
 880	s8 rt;
 881
 882	/* Setup Operands */
 883	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 884	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 885
 886	/* Do RSH operation */
 887	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 888	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 889	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 890	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 891	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
 892	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
 893
 894	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 895	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 896}
 897
 898/* dst = dst << val */
 899static inline void emit_a32_lsh_i64(const s8 dst[],
 900				    const u32 val, struct jit_ctx *ctx){
 901	const s8 *tmp = bpf2a32[TMP_REG_1];
 902	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 903	const s8 *rd;
 904
 905	/* Setup operands */
 906	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 907
 908	/* Do LSH operation */
 909	if (val < 32) {
 910		emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
 911		emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
 912		emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
 913	} else {
 914		if (val == 32)
 915			emit(ARM_MOV_R(rd[0], rd[1]), ctx);
 916		else
 917			emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
 918		emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
 919	}
 920
 921	arm_bpf_put_reg64(dst, rd, ctx);
 922}
 923
 924/* dst = dst >> val */
 925static inline void emit_a32_rsh_i64(const s8 dst[],
 926				    const u32 val, struct jit_ctx *ctx) {
 927	const s8 *tmp = bpf2a32[TMP_REG_1];
 928	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 929	const s8 *rd;
 930
 931	/* Setup operands */
 932	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 933
 934	/* Do LSR operation */
 935	if (val == 0) {
 936		/* An immediate value of 0 encodes a shift amount of 32
 937		 * for LSR. To shift by 0, don't do anything.
 938		 */
 939	} else if (val < 32) {
 940		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 941		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 942		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
 943	} else if (val == 32) {
 944		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 945		emit(ARM_MOV_I(rd[0], 0), ctx);
 946	} else {
 947		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
 948		emit(ARM_MOV_I(rd[0], 0), ctx);
 949	}
 950
 951	arm_bpf_put_reg64(dst, rd, ctx);
 952}
 953
 954/* dst = dst >> val (signed) */
 955static inline void emit_a32_arsh_i64(const s8 dst[],
 956				     const u32 val, struct jit_ctx *ctx){
 957	const s8 *tmp = bpf2a32[TMP_REG_1];
 958	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 959	const s8 *rd;
 960
 961	/* Setup operands */
 962	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 963
 964	/* Do ARSH operation */
 965	if (val == 0) {
 966		/* An immediate value of 0 encodes a shift amount of 32
 967		 * for ASR. To shift by 0, don't do anything.
 968		 */
 969	} else if (val < 32) {
 970		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 971		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 972		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
 973	} else if (val == 32) {
 974		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 975		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 976	} else {
 977		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
 978		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 979	}
 980
 981	arm_bpf_put_reg64(dst, rd, ctx);
 982}
 983
 984static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
 985				    struct jit_ctx *ctx) {
 986	const s8 *tmp = bpf2a32[TMP_REG_1];
 987	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 988	const s8 *rd, *rt;
 989
 990	/* Setup operands for multiplication */
 991	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 992	rt = arm_bpf_get_reg64(src, tmp2, ctx);
 993
 994	/* Do Multiplication */
 995	emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
 996	emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
 997	emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
 998
 999	emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1000	emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1001
1002	arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1003	arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1004}
1005
1006static bool is_ldst_imm(s16 off, const u8 size)
1007{
1008	s16 off_max = 0;
1009
1010	switch (size) {
1011	case BPF_B:
1012	case BPF_W:
1013		off_max = 0xfff;
1014		break;
1015	case BPF_H:
1016		off_max = 0xff;
1017		break;
1018	case BPF_DW:
1019		/* Need to make sure off+4 does not overflow. */
1020		off_max = 0xfff - 4;
1021		break;
1022	}
1023	return -off_max <= off && off <= off_max;
1024}
1025
1026/* *(size *)(dst + off) = src */
1027static inline void emit_str_r(const s8 dst, const s8 src[],
1028			      s16 off, struct jit_ctx *ctx, const u8 sz){
1029	const s8 *tmp = bpf2a32[TMP_REG_1];
1030	s8 rd;
1031
1032	rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1033
1034	if (!is_ldst_imm(off, sz)) {
1035		emit_a32_mov_i(tmp[0], off, ctx);
1036		emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1037		rd = tmp[0];
1038		off = 0;
1039	}
1040	switch (sz) {
1041	case BPF_B:
1042		/* Store a Byte */
1043		emit(ARM_STRB_I(src_lo, rd, off), ctx);
1044		break;
1045	case BPF_H:
1046		/* Store a HalfWord */
1047		emit(ARM_STRH_I(src_lo, rd, off), ctx);
1048		break;
1049	case BPF_W:
1050		/* Store a Word */
1051		emit(ARM_STR_I(src_lo, rd, off), ctx);
1052		break;
1053	case BPF_DW:
1054		/* Store a Double Word */
1055		emit(ARM_STR_I(src_lo, rd, off), ctx);
1056		emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1057		break;
1058	}
1059}
1060
1061/* dst = *(size*)(src + off) */
1062static inline void emit_ldx_r(const s8 dst[], const s8 src,
1063			      s16 off, struct jit_ctx *ctx, const u8 sz){
1064	const s8 *tmp = bpf2a32[TMP_REG_1];
1065	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1066	s8 rm = src;
1067
1068	if (!is_ldst_imm(off, sz)) {
1069		emit_a32_mov_i(tmp[0], off, ctx);
1070		emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1071		rm = tmp[0];
1072		off = 0;
1073	} else if (rd[1] == rm) {
1074		emit(ARM_MOV_R(tmp[0], rm), ctx);
1075		rm = tmp[0];
1076	}
1077	switch (sz) {
1078	case BPF_B:
1079		/* Load a Byte */
1080		emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1081		if (!ctx->prog->aux->verifier_zext)
1082			emit_a32_mov_i(rd[0], 0, ctx);
1083		break;
1084	case BPF_H:
1085		/* Load a HalfWord */
1086		emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1087		if (!ctx->prog->aux->verifier_zext)
1088			emit_a32_mov_i(rd[0], 0, ctx);
1089		break;
1090	case BPF_W:
1091		/* Load a Word */
1092		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1093		if (!ctx->prog->aux->verifier_zext)
1094			emit_a32_mov_i(rd[0], 0, ctx);
1095		break;
1096	case BPF_DW:
1097		/* Load a Double Word */
1098		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1099		emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1100		break;
1101	}
1102	arm_bpf_put_reg64(dst, rd, ctx);
1103}
1104
1105/* Arithmatic Operation */
1106static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1107			     const u8 rn, struct jit_ctx *ctx, u8 op,
1108			     bool is_jmp64) {
1109	switch (op) {
1110	case BPF_JSET:
1111		if (is_jmp64) {
1112			emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1113			emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1114			emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1115		} else {
1116			emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1117		}
1118		break;
1119	case BPF_JEQ:
1120	case BPF_JNE:
1121	case BPF_JGT:
1122	case BPF_JGE:
1123	case BPF_JLE:
1124	case BPF_JLT:
1125		if (is_jmp64) {
1126			emit(ARM_CMP_R(rd, rm), ctx);
1127			/* Only compare low halve if high halve are equal. */
1128			_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1129		} else {
1130			emit(ARM_CMP_R(rt, rn), ctx);
1131		}
1132		break;
1133	case BPF_JSLE:
1134	case BPF_JSGT:
1135		emit(ARM_CMP_R(rn, rt), ctx);
1136		if (is_jmp64)
1137			emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1138		break;
1139	case BPF_JSLT:
1140	case BPF_JSGE:
1141		emit(ARM_CMP_R(rt, rn), ctx);
1142		if (is_jmp64)
1143			emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1144		break;
1145	}
1146}
1147
1148static int out_offset = -1; /* initialized on the first pass of build_body() */
1149static int emit_bpf_tail_call(struct jit_ctx *ctx)
1150{
1151
1152	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1153	const s8 *r2 = bpf2a32[BPF_REG_2];
1154	const s8 *r3 = bpf2a32[BPF_REG_3];
1155	const s8 *tmp = bpf2a32[TMP_REG_1];
1156	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1157	const s8 *tcc = bpf2a32[TCALL_CNT];
1158	const s8 *tc;
1159	const int idx0 = ctx->idx;
1160#define cur_offset (ctx->idx - idx0)
1161#define jmp_offset (out_offset - (cur_offset) - 2)
1162	u32 lo, hi;
1163	s8 r_array, r_index;
1164	int off;
1165
1166	/* if (index >= array->map.max_entries)
1167	 *	goto out;
1168	 */
1169	BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1170		     ARM_INST_LDST__IMM12);
1171	off = offsetof(struct bpf_array, map.max_entries);
1172	r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1173	/* index is 32-bit for arrays */
1174	r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1175	/* array->map.max_entries */
1176	emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1177	/* index >= array->map.max_entries */
1178	emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1179	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1180
1181	/* tmp2[0] = array, tmp2[1] = index */
1182
1183	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
1184	 *	goto out;
1185	 * tail_call_cnt++;
1186	 */
1187	lo = (u32)MAX_TAIL_CALL_CNT;
1188	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1189	tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1190	emit(ARM_CMP_I(tc[0], hi), ctx);
1191	_emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1192	_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1193	emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1194	emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1195	arm_bpf_put_reg64(tcc, tmp, ctx);
1196
1197	/* prog = array->ptrs[index]
1198	 * if (prog == NULL)
1199	 *	goto out;
1200	 */
1201	BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1202	off = imm8m(offsetof(struct bpf_array, ptrs));
1203	emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1204	emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1205	emit(ARM_CMP_I(tmp[1], 0), ctx);
1206	_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1207
1208	/* goto *(prog->bpf_func + prologue_size); */
1209	BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1210		     ARM_INST_LDST__IMM12);
1211	off = offsetof(struct bpf_prog, bpf_func);
1212	emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1213	emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1214	emit_bx_r(tmp[1], ctx);
1215
1216	/* out: */
1217	if (out_offset == -1)
1218		out_offset = cur_offset;
1219	if (cur_offset != out_offset) {
1220		pr_err_once("tail_call out_offset = %d, expected %d!\n",
1221			    cur_offset, out_offset);
1222		return -1;
1223	}
1224	return 0;
1225#undef cur_offset
1226#undef jmp_offset
1227}
1228
1229/* 0xabcd => 0xcdab */
1230static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1231{
1232#if __LINUX_ARM_ARCH__ < 6
1233	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1234
1235	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1236	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1237	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1238	emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1239#else /* ARMv6+ */
1240	emit(ARM_REV16(rd, rn), ctx);
1241#endif
1242}
1243
1244/* 0xabcdefgh => 0xghefcdab */
1245static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1246{
1247#if __LINUX_ARM_ARCH__ < 6
1248	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1249
1250	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1251	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1252	emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1253
1254	emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1255	emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1256	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1257	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1258	emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1259	emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1260	emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1261
1262#else /* ARMv6+ */
1263	emit(ARM_REV(rd, rn), ctx);
1264#endif
1265}
1266
1267// push the scratch stack register on top of the stack
1268static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1269{
1270	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1271	const s8 *rt;
1272	u16 reg_set = 0;
1273
1274	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1275
1276	reg_set = (1 << rt[1]) | (1 << rt[0]);
1277	emit(ARM_PUSH(reg_set), ctx);
1278}
1279
1280static void build_prologue(struct jit_ctx *ctx)
1281{
1282	const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1283	const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1284	const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1285	const s8 *tcc = bpf2a32[TCALL_CNT];
1286
1287	/* Save callee saved registers. */
1288#ifdef CONFIG_FRAME_POINTER
1289	u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1290	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1291	emit(ARM_PUSH(reg_set), ctx);
1292	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1293#else
1294	emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1295	emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1296#endif
1297	/* mov r3, #0 */
1298	/* sub r2, sp, #SCRATCH_SIZE */
1299	emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1300	emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1301
1302	ctx->stack_size = imm8m(STACK_SIZE);
1303
1304	/* Set up function call stack */
1305	emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1306
1307	/* Set up BPF prog stack base register */
1308	emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1309
1310	/* Initialize Tail Count */
1311	emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1312	emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1313
1314	/* Move BPF_CTX to BPF_R1 */
1315	emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1316
1317	/* end of prologue */
1318}
1319
1320/* restore callee saved registers. */
1321static void build_epilogue(struct jit_ctx *ctx)
1322{
1323#ifdef CONFIG_FRAME_POINTER
1324	/* When using frame pointers, some additional registers need to
1325	 * be loaded. */
1326	u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1327	emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1328	emit(ARM_LDM(ARM_SP, reg_set), ctx);
1329#else
1330	/* Restore callee saved registers. */
1331	emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1332	emit(ARM_POP(CALLEE_POP_MASK), ctx);
1333#endif
1334}
1335
1336/*
1337 * Convert an eBPF instruction to native instruction, i.e
1338 * JITs an eBPF instruction.
1339 * Returns :
1340 *	0  - Successfully JITed an 8-byte eBPF instruction
1341 *	>0 - Successfully JITed a 16-byte eBPF instruction
1342 *	<0 - Failed to JIT.
1343 */
1344static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1345{
1346	const u8 code = insn->code;
1347	const s8 *dst = bpf2a32[insn->dst_reg];
1348	const s8 *src = bpf2a32[insn->src_reg];
1349	const s8 *tmp = bpf2a32[TMP_REG_1];
1350	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1351	const s16 off = insn->off;
1352	const s32 imm = insn->imm;
1353	const int i = insn - ctx->prog->insnsi;
1354	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1355	const s8 *rd, *rs;
1356	s8 rd_lo, rt, rm, rn;
1357	s32 jmp_offset;
1358
1359#define check_imm(bits, imm) do {				\
1360	if ((imm) >= (1 << ((bits) - 1)) ||			\
1361	    (imm) < -(1 << ((bits) - 1))) {			\
1362		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
1363			i, imm, imm);				\
1364		return -EINVAL;					\
1365	}							\
1366} while (0)
1367#define check_imm24(imm) check_imm(24, imm)
1368
1369	switch (code) {
1370	/* ALU operations */
1371
1372	/* dst = src */
1373	case BPF_ALU | BPF_MOV | BPF_K:
1374	case BPF_ALU | BPF_MOV | BPF_X:
1375	case BPF_ALU64 | BPF_MOV | BPF_K:
1376	case BPF_ALU64 | BPF_MOV | BPF_X:
1377		switch (BPF_SRC(code)) {
1378		case BPF_X:
1379			if (imm == 1) {
1380				/* Special mov32 for zext */
1381				emit_a32_mov_i(dst_hi, 0, ctx);
1382				break;
1383			}
1384			emit_a32_mov_r64(is64, dst, src, ctx);
1385			break;
1386		case BPF_K:
1387			/* Sign-extend immediate value to destination reg */
1388			emit_a32_mov_se_i64(is64, dst, imm, ctx);
1389			break;
1390		}
1391		break;
1392	/* dst = dst + src/imm */
1393	/* dst = dst - src/imm */
1394	/* dst = dst | src/imm */
1395	/* dst = dst & src/imm */
1396	/* dst = dst ^ src/imm */
1397	/* dst = dst * src/imm */
1398	/* dst = dst << src */
1399	/* dst = dst >> src */
1400	case BPF_ALU | BPF_ADD | BPF_K:
1401	case BPF_ALU | BPF_ADD | BPF_X:
1402	case BPF_ALU | BPF_SUB | BPF_K:
1403	case BPF_ALU | BPF_SUB | BPF_X:
1404	case BPF_ALU | BPF_OR | BPF_K:
1405	case BPF_ALU | BPF_OR | BPF_X:
1406	case BPF_ALU | BPF_AND | BPF_K:
1407	case BPF_ALU | BPF_AND | BPF_X:
1408	case BPF_ALU | BPF_XOR | BPF_K:
1409	case BPF_ALU | BPF_XOR | BPF_X:
1410	case BPF_ALU | BPF_MUL | BPF_K:
1411	case BPF_ALU | BPF_MUL | BPF_X:
1412	case BPF_ALU | BPF_LSH | BPF_X:
1413	case BPF_ALU | BPF_RSH | BPF_X:
1414	case BPF_ALU | BPF_ARSH | BPF_X:
1415	case BPF_ALU64 | BPF_ADD | BPF_K:
1416	case BPF_ALU64 | BPF_ADD | BPF_X:
1417	case BPF_ALU64 | BPF_SUB | BPF_K:
1418	case BPF_ALU64 | BPF_SUB | BPF_X:
1419	case BPF_ALU64 | BPF_OR | BPF_K:
1420	case BPF_ALU64 | BPF_OR | BPF_X:
1421	case BPF_ALU64 | BPF_AND | BPF_K:
1422	case BPF_ALU64 | BPF_AND | BPF_X:
1423	case BPF_ALU64 | BPF_XOR | BPF_K:
1424	case BPF_ALU64 | BPF_XOR | BPF_X:
1425		switch (BPF_SRC(code)) {
1426		case BPF_X:
1427			emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1428			break;
1429		case BPF_K:
1430			/* Move immediate value to the temporary register
1431			 * and then do the ALU operation on the temporary
1432			 * register as this will sign-extend the immediate
1433			 * value into temporary reg and then it would be
1434			 * safe to do the operation on it.
1435			 */
1436			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1437			emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1438			break;
1439		}
1440		break;
1441	/* dst = dst / src(imm) */
1442	/* dst = dst % src(imm) */
1443	case BPF_ALU | BPF_DIV | BPF_K:
1444	case BPF_ALU | BPF_DIV | BPF_X:
1445	case BPF_ALU | BPF_MOD | BPF_K:
1446	case BPF_ALU | BPF_MOD | BPF_X:
1447		rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1448		switch (BPF_SRC(code)) {
1449		case BPF_X:
1450			rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1451			break;
1452		case BPF_K:
1453			rt = tmp2[0];
1454			emit_a32_mov_i(rt, imm, ctx);
1455			break;
1456		default:
1457			rt = src_lo;
1458			break;
1459		}
1460		emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1461		arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1462		if (!ctx->prog->aux->verifier_zext)
1463			emit_a32_mov_i(dst_hi, 0, ctx);
1464		break;
1465	case BPF_ALU64 | BPF_DIV | BPF_K:
1466	case BPF_ALU64 | BPF_DIV | BPF_X:
1467	case BPF_ALU64 | BPF_MOD | BPF_K:
1468	case BPF_ALU64 | BPF_MOD | BPF_X:
1469		goto notyet;
1470	/* dst = dst << imm */
1471	/* dst = dst >> imm */
1472	/* dst = dst >> imm (signed) */
1473	case BPF_ALU | BPF_LSH | BPF_K:
1474	case BPF_ALU | BPF_RSH | BPF_K:
1475	case BPF_ALU | BPF_ARSH | BPF_K:
1476		if (unlikely(imm > 31))
1477			return -EINVAL;
1478		if (imm)
1479			emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1480		if (!ctx->prog->aux->verifier_zext)
1481			emit_a32_mov_i(dst_hi, 0, ctx);
1482		break;
1483	/* dst = dst << imm */
1484	case BPF_ALU64 | BPF_LSH | BPF_K:
1485		if (unlikely(imm > 63))
1486			return -EINVAL;
1487		emit_a32_lsh_i64(dst, imm, ctx);
1488		break;
1489	/* dst = dst >> imm */
1490	case BPF_ALU64 | BPF_RSH | BPF_K:
1491		if (unlikely(imm > 63))
1492			return -EINVAL;
1493		emit_a32_rsh_i64(dst, imm, ctx);
1494		break;
1495	/* dst = dst << src */
1496	case BPF_ALU64 | BPF_LSH | BPF_X:
1497		emit_a32_lsh_r64(dst, src, ctx);
1498		break;
1499	/* dst = dst >> src */
1500	case BPF_ALU64 | BPF_RSH | BPF_X:
1501		emit_a32_rsh_r64(dst, src, ctx);
1502		break;
1503	/* dst = dst >> src (signed) */
1504	case BPF_ALU64 | BPF_ARSH | BPF_X:
1505		emit_a32_arsh_r64(dst, src, ctx);
1506		break;
1507	/* dst = dst >> imm (signed) */
1508	case BPF_ALU64 | BPF_ARSH | BPF_K:
1509		if (unlikely(imm > 63))
1510			return -EINVAL;
1511		emit_a32_arsh_i64(dst, imm, ctx);
1512		break;
1513	/* dst = ~dst */
1514	case BPF_ALU | BPF_NEG:
1515		emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1516		if (!ctx->prog->aux->verifier_zext)
1517			emit_a32_mov_i(dst_hi, 0, ctx);
1518		break;
1519	/* dst = ~dst (64 bit) */
1520	case BPF_ALU64 | BPF_NEG:
1521		emit_a32_neg64(dst, ctx);
1522		break;
1523	/* dst = dst * src/imm */
1524	case BPF_ALU64 | BPF_MUL | BPF_X:
1525	case BPF_ALU64 | BPF_MUL | BPF_K:
1526		switch (BPF_SRC(code)) {
1527		case BPF_X:
1528			emit_a32_mul_r64(dst, src, ctx);
1529			break;
1530		case BPF_K:
1531			/* Move immediate value to the temporary register
1532			 * and then do the multiplication on it as this
1533			 * will sign-extend the immediate value into temp
1534			 * reg then it would be safe to do the operation
1535			 * on it.
1536			 */
1537			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1538			emit_a32_mul_r64(dst, tmp2, ctx);
1539			break;
1540		}
1541		break;
1542	/* dst = htole(dst) */
1543	/* dst = htobe(dst) */
1544	case BPF_ALU | BPF_END | BPF_FROM_LE:
1545	case BPF_ALU | BPF_END | BPF_FROM_BE:
1546		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1547		if (BPF_SRC(code) == BPF_FROM_LE)
1548			goto emit_bswap_uxt;
1549		switch (imm) {
1550		case 16:
1551			emit_rev16(rd[1], rd[1], ctx);
1552			goto emit_bswap_uxt;
1553		case 32:
1554			emit_rev32(rd[1], rd[1], ctx);
1555			goto emit_bswap_uxt;
1556		case 64:
1557			emit_rev32(ARM_LR, rd[1], ctx);
1558			emit_rev32(rd[1], rd[0], ctx);
1559			emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1560			break;
1561		}
1562		goto exit;
1563emit_bswap_uxt:
1564		switch (imm) {
1565		case 16:
1566			/* zero-extend 16 bits into 64 bits */
1567#if __LINUX_ARM_ARCH__ < 6
1568			emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1569			emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1570#else /* ARMv6+ */
1571			emit(ARM_UXTH(rd[1], rd[1]), ctx);
1572#endif
1573			if (!ctx->prog->aux->verifier_zext)
1574				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1575			break;
1576		case 32:
1577			/* zero-extend 32 bits into 64 bits */
1578			if (!ctx->prog->aux->verifier_zext)
1579				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1580			break;
1581		case 64:
1582			/* nop */
1583			break;
1584		}
1585exit:
1586		arm_bpf_put_reg64(dst, rd, ctx);
1587		break;
1588	/* dst = imm64 */
1589	case BPF_LD | BPF_IMM | BPF_DW:
1590	{
1591		u64 val = (u32)imm | (u64)insn[1].imm << 32;
1592
1593		emit_a32_mov_i64(dst, val, ctx);
1594
1595		return 1;
1596	}
1597	/* LDX: dst = *(size *)(src + off) */
1598	case BPF_LDX | BPF_MEM | BPF_W:
1599	case BPF_LDX | BPF_MEM | BPF_H:
1600	case BPF_LDX | BPF_MEM | BPF_B:
1601	case BPF_LDX | BPF_MEM | BPF_DW:
1602		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1603		emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1604		break;
1605	/* ST: *(size *)(dst + off) = imm */
1606	case BPF_ST | BPF_MEM | BPF_W:
1607	case BPF_ST | BPF_MEM | BPF_H:
1608	case BPF_ST | BPF_MEM | BPF_B:
1609	case BPF_ST | BPF_MEM | BPF_DW:
1610		switch (BPF_SIZE(code)) {
1611		case BPF_DW:
1612			/* Sign-extend immediate value into temp reg */
1613			emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1614			break;
1615		case BPF_W:
1616		case BPF_H:
1617		case BPF_B:
1618			emit_a32_mov_i(tmp2[1], imm, ctx);
1619			break;
1620		}
1621		emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1622		break;
1623	/* STX XADD: lock *(u32 *)(dst + off) += src */
1624	case BPF_STX | BPF_XADD | BPF_W:
1625	/* STX XADD: lock *(u64 *)(dst + off) += src */
1626	case BPF_STX | BPF_XADD | BPF_DW:
1627		goto notyet;
1628	/* STX: *(size *)(dst + off) = src */
1629	case BPF_STX | BPF_MEM | BPF_W:
1630	case BPF_STX | BPF_MEM | BPF_H:
1631	case BPF_STX | BPF_MEM | BPF_B:
1632	case BPF_STX | BPF_MEM | BPF_DW:
1633		rs = arm_bpf_get_reg64(src, tmp2, ctx);
1634		emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1635		break;
1636	/* PC += off if dst == src */
1637	/* PC += off if dst > src */
1638	/* PC += off if dst >= src */
1639	/* PC += off if dst < src */
1640	/* PC += off if dst <= src */
1641	/* PC += off if dst != src */
1642	/* PC += off if dst > src (signed) */
1643	/* PC += off if dst >= src (signed) */
1644	/* PC += off if dst < src (signed) */
1645	/* PC += off if dst <= src (signed) */
1646	/* PC += off if dst & src */
1647	case BPF_JMP | BPF_JEQ | BPF_X:
1648	case BPF_JMP | BPF_JGT | BPF_X:
1649	case BPF_JMP | BPF_JGE | BPF_X:
1650	case BPF_JMP | BPF_JNE | BPF_X:
1651	case BPF_JMP | BPF_JSGT | BPF_X:
1652	case BPF_JMP | BPF_JSGE | BPF_X:
1653	case BPF_JMP | BPF_JSET | BPF_X:
1654	case BPF_JMP | BPF_JLE | BPF_X:
1655	case BPF_JMP | BPF_JLT | BPF_X:
1656	case BPF_JMP | BPF_JSLT | BPF_X:
1657	case BPF_JMP | BPF_JSLE | BPF_X:
1658	case BPF_JMP32 | BPF_JEQ | BPF_X:
1659	case BPF_JMP32 | BPF_JGT | BPF_X:
1660	case BPF_JMP32 | BPF_JGE | BPF_X:
1661	case BPF_JMP32 | BPF_JNE | BPF_X:
1662	case BPF_JMP32 | BPF_JSGT | BPF_X:
1663	case BPF_JMP32 | BPF_JSGE | BPF_X:
1664	case BPF_JMP32 | BPF_JSET | BPF_X:
1665	case BPF_JMP32 | BPF_JLE | BPF_X:
1666	case BPF_JMP32 | BPF_JLT | BPF_X:
1667	case BPF_JMP32 | BPF_JSLT | BPF_X:
1668	case BPF_JMP32 | BPF_JSLE | BPF_X:
1669		/* Setup source registers */
1670		rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1671		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1672		goto go_jmp;
1673	/* PC += off if dst == imm */
1674	/* PC += off if dst > imm */
1675	/* PC += off if dst >= imm */
1676	/* PC += off if dst < imm */
1677	/* PC += off if dst <= imm */
1678	/* PC += off if dst != imm */
1679	/* PC += off if dst > imm (signed) */
1680	/* PC += off if dst >= imm (signed) */
1681	/* PC += off if dst < imm (signed) */
1682	/* PC += off if dst <= imm (signed) */
1683	/* PC += off if dst & imm */
1684	case BPF_JMP | BPF_JEQ | BPF_K:
1685	case BPF_JMP | BPF_JGT | BPF_K:
1686	case BPF_JMP | BPF_JGE | BPF_K:
1687	case BPF_JMP | BPF_JNE | BPF_K:
1688	case BPF_JMP | BPF_JSGT | BPF_K:
1689	case BPF_JMP | BPF_JSGE | BPF_K:
1690	case BPF_JMP | BPF_JSET | BPF_K:
1691	case BPF_JMP | BPF_JLT | BPF_K:
1692	case BPF_JMP | BPF_JLE | BPF_K:
1693	case BPF_JMP | BPF_JSLT | BPF_K:
1694	case BPF_JMP | BPF_JSLE | BPF_K:
1695	case BPF_JMP32 | BPF_JEQ | BPF_K:
1696	case BPF_JMP32 | BPF_JGT | BPF_K:
1697	case BPF_JMP32 | BPF_JGE | BPF_K:
1698	case BPF_JMP32 | BPF_JNE | BPF_K:
1699	case BPF_JMP32 | BPF_JSGT | BPF_K:
1700	case BPF_JMP32 | BPF_JSGE | BPF_K:
1701	case BPF_JMP32 | BPF_JSET | BPF_K:
1702	case BPF_JMP32 | BPF_JLT | BPF_K:
1703	case BPF_JMP32 | BPF_JLE | BPF_K:
1704	case BPF_JMP32 | BPF_JSLT | BPF_K:
1705	case BPF_JMP32 | BPF_JSLE | BPF_K:
1706		if (off == 0)
1707			break;
1708		rm = tmp2[0];
1709		rn = tmp2[1];
1710		/* Sign-extend immediate value */
1711		emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1712go_jmp:
1713		/* Setup destination register */
1714		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1715
1716		/* Check for the condition */
1717		emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1718			  BPF_CLASS(code) == BPF_JMP);
1719
1720		/* Setup JUMP instruction */
1721		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1722		switch (BPF_OP(code)) {
1723		case BPF_JNE:
1724		case BPF_JSET:
1725			_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1726			break;
1727		case BPF_JEQ:
1728			_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1729			break;
1730		case BPF_JGT:
1731			_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1732			break;
1733		case BPF_JGE:
1734			_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1735			break;
1736		case BPF_JSGT:
1737			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1738			break;
1739		case BPF_JSGE:
1740			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1741			break;
1742		case BPF_JLE:
1743			_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1744			break;
1745		case BPF_JLT:
1746			_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1747			break;
1748		case BPF_JSLT:
1749			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1750			break;
1751		case BPF_JSLE:
1752			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1753			break;
1754		}
1755		break;
1756	/* JMP OFF */
1757	case BPF_JMP | BPF_JA:
1758	{
1759		if (off == 0)
1760			break;
1761		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1762		check_imm24(jmp_offset);
1763		emit(ARM_B(jmp_offset), ctx);
1764		break;
1765	}
1766	/* tail call */
1767	case BPF_JMP | BPF_TAIL_CALL:
1768		if (emit_bpf_tail_call(ctx))
1769			return -EFAULT;
1770		break;
1771	/* function call */
1772	case BPF_JMP | BPF_CALL:
1773	{
1774		const s8 *r0 = bpf2a32[BPF_REG_0];
1775		const s8 *r1 = bpf2a32[BPF_REG_1];
1776		const s8 *r2 = bpf2a32[BPF_REG_2];
1777		const s8 *r3 = bpf2a32[BPF_REG_3];
1778		const s8 *r4 = bpf2a32[BPF_REG_4];
1779		const s8 *r5 = bpf2a32[BPF_REG_5];
1780		const u32 func = (u32)__bpf_call_base + (u32)imm;
1781
1782		emit_a32_mov_r64(true, r0, r1, ctx);
1783		emit_a32_mov_r64(true, r1, r2, ctx);
1784		emit_push_r64(r5, ctx);
1785		emit_push_r64(r4, ctx);
1786		emit_push_r64(r3, ctx);
1787
1788		emit_a32_mov_i(tmp[1], func, ctx);
1789		emit_blx_r(tmp[1], ctx);
1790
1791		emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1792		break;
1793	}
1794	/* function return */
1795	case BPF_JMP | BPF_EXIT:
1796		/* Optimization: when last instruction is EXIT
1797		 * simply fallthrough to epilogue.
1798		 */
1799		if (i == ctx->prog->len - 1)
1800			break;
1801		jmp_offset = epilogue_offset(ctx);
1802		check_imm24(jmp_offset);
1803		emit(ARM_B(jmp_offset), ctx);
1804		break;
1805notyet:
1806		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1807		return -EFAULT;
1808	default:
1809		pr_err_once("unknown opcode %02x\n", code);
1810		return -EINVAL;
1811	}
1812
1813	if (ctx->flags & FLAG_IMM_OVERFLOW)
1814		/*
1815		 * this instruction generated an overflow when
1816		 * trying to access the literal pool, so
1817		 * delegate this filter to the kernel interpreter.
1818		 */
1819		return -1;
1820	return 0;
1821}
1822
1823static int build_body(struct jit_ctx *ctx)
1824{
1825	const struct bpf_prog *prog = ctx->prog;
1826	unsigned int i;
1827
1828	for (i = 0; i < prog->len; i++) {
1829		const struct bpf_insn *insn = &(prog->insnsi[i]);
1830		int ret;
1831
1832		ret = build_insn(insn, ctx);
1833
1834		/* It's used with loading the 64 bit immediate value. */
1835		if (ret > 0) {
1836			i++;
1837			if (ctx->target == NULL)
1838				ctx->offsets[i] = ctx->idx;
1839			continue;
1840		}
1841
1842		if (ctx->target == NULL)
1843			ctx->offsets[i] = ctx->idx;
1844
1845		/* If unsuccesfull, return with error code */
1846		if (ret)
1847			return ret;
1848	}
1849	return 0;
1850}
1851
1852static int validate_code(struct jit_ctx *ctx)
1853{
1854	int i;
1855
1856	for (i = 0; i < ctx->idx; i++) {
1857		if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1858			return -1;
1859	}
1860
1861	return 0;
1862}
1863
1864void bpf_jit_compile(struct bpf_prog *prog)
1865{
1866	/* Nothing to do here. We support Internal BPF. */
1867}
1868
1869bool bpf_jit_needs_zext(void)
1870{
1871	return true;
1872}
1873
1874struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1875{
1876	struct bpf_prog *tmp, *orig_prog = prog;
1877	struct bpf_binary_header *header;
1878	bool tmp_blinded = false;
1879	struct jit_ctx ctx;
1880	unsigned int tmp_idx;
1881	unsigned int image_size;
1882	u8 *image_ptr;
1883
1884	/* If BPF JIT was not enabled then we must fall back to
1885	 * the interpreter.
1886	 */
1887	if (!prog->jit_requested)
1888		return orig_prog;
1889
1890	/* If constant blinding was enabled and we failed during blinding
1891	 * then we must fall back to the interpreter. Otherwise, we save
1892	 * the new JITed code.
1893	 */
1894	tmp = bpf_jit_blind_constants(prog);
1895
1896	if (IS_ERR(tmp))
1897		return orig_prog;
1898	if (tmp != prog) {
1899		tmp_blinded = true;
1900		prog = tmp;
1901	}
1902
1903	memset(&ctx, 0, sizeof(ctx));
1904	ctx.prog = prog;
1905	ctx.cpu_architecture = cpu_architecture();
1906
1907	/* Not able to allocate memory for offsets[] , then
1908	 * we must fall back to the interpreter
1909	 */
1910	ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1911	if (ctx.offsets == NULL) {
1912		prog = orig_prog;
1913		goto out;
1914	}
1915
1916	/* 1) fake pass to find in the length of the JITed code,
1917	 * to compute ctx->offsets and other context variables
1918	 * needed to compute final JITed code.
1919	 * Also, calculate random starting pointer/start of JITed code
1920	 * which is prefixed by random number of fault instructions.
1921	 *
1922	 * If the first pass fails then there is no chance of it
1923	 * being successful in the second pass, so just fall back
1924	 * to the interpreter.
1925	 */
1926	if (build_body(&ctx)) {
1927		prog = orig_prog;
1928		goto out_off;
1929	}
1930
1931	tmp_idx = ctx.idx;
1932	build_prologue(&ctx);
1933	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1934
1935	ctx.epilogue_offset = ctx.idx;
1936
1937#if __LINUX_ARM_ARCH__ < 7
1938	tmp_idx = ctx.idx;
1939	build_epilogue(&ctx);
1940	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1941
1942	ctx.idx += ctx.imm_count;
1943	if (ctx.imm_count) {
1944		ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1945		if (ctx.imms == NULL) {
1946			prog = orig_prog;
1947			goto out_off;
1948		}
1949	}
1950#else
1951	/* there's nothing about the epilogue on ARMv7 */
1952	build_epilogue(&ctx);
1953#endif
1954	/* Now we can get the actual image size of the JITed arm code.
1955	 * Currently, we are not considering the THUMB-2 instructions
1956	 * for jit, although it can decrease the size of the image.
1957	 *
1958	 * As each arm instruction is of length 32bit, we are translating
1959	 * number of JITed intructions into the size required to store these
1960	 * JITed code.
1961	 */
1962	image_size = sizeof(u32) * ctx.idx;
1963
1964	/* Now we know the size of the structure to make */
1965	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1966				      sizeof(u32), jit_fill_hole);
1967	/* Not able to allocate memory for the structure then
1968	 * we must fall back to the interpretation
1969	 */
1970	if (header == NULL) {
1971		prog = orig_prog;
1972		goto out_imms;
1973	}
1974
1975	/* 2.) Actual pass to generate final JIT code */
1976	ctx.target = (u32 *) image_ptr;
1977	ctx.idx = 0;
1978
1979	build_prologue(&ctx);
1980
1981	/* If building the body of the JITed code fails somehow,
1982	 * we fall back to the interpretation.
1983	 */
1984	if (build_body(&ctx) < 0) {
1985		image_ptr = NULL;
1986		bpf_jit_binary_free(header);
1987		prog = orig_prog;
1988		goto out_imms;
1989	}
1990	build_epilogue(&ctx);
1991
1992	/* 3.) Extra pass to validate JITed Code */
1993	if (validate_code(&ctx)) {
1994		image_ptr = NULL;
1995		bpf_jit_binary_free(header);
1996		prog = orig_prog;
1997		goto out_imms;
1998	}
1999	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2000
2001	if (bpf_jit_enable > 1)
2002		/* there are 2 passes here */
2003		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2004
2005	bpf_jit_binary_lock_ro(header);
2006	prog->bpf_func = (void *)ctx.target;
2007	prog->jited = 1;
2008	prog->jited_len = image_size;
2009
2010out_imms:
2011#if __LINUX_ARM_ARCH__ < 7
2012	if (ctx.imm_count)
2013		kfree(ctx.imms);
2014#endif
2015out_off:
2016	kfree(ctx.offsets);
2017out:
2018	if (tmp_blinded)
2019		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2020					   tmp : orig_prog);
2021	return prog;
2022}
2023