Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
 
  32#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  33#define SUPPORT_SYSRQ
  34#endif
  35
  36#include <linux/module.h>
  37#include <linux/ioport.h>
  38#include <linux/init.h>
  39#include <linux/console.h>
  40#include <linux/sysrq.h>
  41#include <linux/device.h>
  42#include <linux/tty.h>
  43#include <linux/tty_flip.h>
  44#include <linux/serial_core.h>
  45#include <linux/serial.h>
  46#include <linux/amba/bus.h>
  47#include <linux/amba/serial.h>
  48#include <linux/clk.h>
  49#include <linux/slab.h>
  50#include <linux/dmaengine.h>
  51#include <linux/dma-mapping.h>
  52#include <linux/scatterlist.h>
  53#include <linux/delay.h>
 
 
 
 
 
 
 
  54
  55#include <asm/io.h>
  56#include <asm/sizes.h>
  57
  58#define UART_NR			14
  59
  60#define SERIAL_AMBA_MAJOR	204
  61#define SERIAL_AMBA_MINOR	64
  62#define SERIAL_AMBA_NR		UART_NR
  63
  64#define AMBA_ISR_PASS_LIMIT	256
  65
  66#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  67#define UART_DUMMY_DR_RX	(1 << 16)
  68
  69
  70#define UART_WA_SAVE_NR 14
  71
  72static void pl011_lockup_wa(unsigned long data);
  73static const u32 uart_wa_reg[UART_WA_SAVE_NR] = {
  74	ST_UART011_DMAWM,
  75	ST_UART011_TIMEOUT,
  76	ST_UART011_LCRH_RX,
  77	UART011_IBRD,
  78	UART011_FBRD,
  79	ST_UART011_LCRH_TX,
  80	UART011_IFLS,
  81	ST_UART011_XFCR,
  82	ST_UART011_XON1,
  83	ST_UART011_XON2,
  84	ST_UART011_XOFF1,
  85	ST_UART011_XOFF2,
  86	UART011_CR,
  87	UART011_IMSC
  88};
  89
  90static u32 uart_wa_regdata[UART_WA_SAVE_NR];
  91static DECLARE_TASKLET(pl011_lockup_tlet, pl011_lockup_wa, 0);
  92
  93/* There is by now at least one vendor with differing details, so handle it */
  94struct vendor_data {
 
  95	unsigned int		ifls;
  96	unsigned int		fifosize;
  97	unsigned int		lcrh_tx;
  98	unsigned int		lcrh_rx;
 
 
  99	bool			oversampling;
 100	bool			interrupt_may_hang;   /* vendor-specific */
 101	bool			dma_threshold;
 
 
 
 
 
 102};
 103
 
 
 
 
 
 104static struct vendor_data vendor_arm = {
 
 105	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 106	.fifosize		= 16,
 107	.lcrh_tx		= UART011_LCRH,
 108	.lcrh_rx		= UART011_LCRH,
 
 109	.oversampling		= false,
 110	.dma_threshold		= false,
 
 
 
 
 111};
 112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113static struct vendor_data vendor_st = {
 
 114	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 115	.fifosize		= 64,
 116	.lcrh_tx		= ST_UART011_LCRH_TX,
 117	.lcrh_rx		= ST_UART011_LCRH_RX,
 
 118	.oversampling		= true,
 119	.interrupt_may_hang	= true,
 120	.dma_threshold		= true,
 
 
 
 
 121};
 122
 123static struct uart_amba_port *amba_ports[UART_NR];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124
 125/* Deals with DMA transactions */
 126
 127struct pl011_sgbuf {
 128	struct scatterlist sg;
 129	char *buf;
 130};
 131
 132struct pl011_dmarx_data {
 133	struct dma_chan		*chan;
 134	struct completion	complete;
 135	bool			use_buf_b;
 136	struct pl011_sgbuf	sgbuf_a;
 137	struct pl011_sgbuf	sgbuf_b;
 138	dma_cookie_t		cookie;
 139	bool			running;
 
 
 
 
 
 
 140};
 141
 142struct pl011_dmatx_data {
 143	struct dma_chan		*chan;
 144	struct scatterlist	sg;
 145	char			*buf;
 146	bool			queued;
 147};
 148
 149/*
 150 * We wrap our port structure around the generic uart_port.
 151 */
 152struct uart_amba_port {
 153	struct uart_port	port;
 
 154	struct clk		*clk;
 155	const struct vendor_data *vendor;
 156	unsigned int		dmacr;		/* dma control reg */
 157	unsigned int		im;		/* interrupt mask */
 158	unsigned int		old_status;
 159	unsigned int		fifosize;	/* vendor-specific */
 160	unsigned int		lcrh_tx;	/* vendor-specific */
 161	unsigned int		lcrh_rx;	/* vendor-specific */
 162	bool			autorts;
 
 163	char			type[12];
 164	bool			interrupt_may_hang; /* vendor-specific */
 165#ifdef CONFIG_DMA_ENGINE
 166	/* DMA stuff */
 167	bool			using_tx_dma;
 168	bool			using_rx_dma;
 169	struct pl011_dmarx_data dmarx;
 170	struct pl011_dmatx_data	dmatx;
 
 171#endif
 172};
 173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174/*
 175 * Reads up to 256 characters from the FIFO or until it's empty and
 176 * inserts them into the TTY layer. Returns the number of characters
 177 * read from the FIFO.
 178 */
 179static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 180{
 181	u16 status, ch;
 182	unsigned int flag, max_count = 256;
 183	int fifotaken = 0;
 184
 185	while (max_count--) {
 186		status = readw(uap->port.membase + UART01x_FR);
 187		if (status & UART01x_FR_RXFE)
 188			break;
 189
 190		/* Take chars from the FIFO and update status */
 191		ch = readw(uap->port.membase + UART01x_DR) |
 192			UART_DUMMY_DR_RX;
 193		flag = TTY_NORMAL;
 194		uap->port.icount.rx++;
 195		fifotaken++;
 196
 197		if (unlikely(ch & UART_DR_ERROR)) {
 198			if (ch & UART011_DR_BE) {
 199				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 200				uap->port.icount.brk++;
 201				if (uart_handle_break(&uap->port))
 202					continue;
 203			} else if (ch & UART011_DR_PE)
 204				uap->port.icount.parity++;
 205			else if (ch & UART011_DR_FE)
 206				uap->port.icount.frame++;
 207			if (ch & UART011_DR_OE)
 208				uap->port.icount.overrun++;
 209
 210			ch &= uap->port.read_status_mask;
 211
 212			if (ch & UART011_DR_BE)
 213				flag = TTY_BREAK;
 214			else if (ch & UART011_DR_PE)
 215				flag = TTY_PARITY;
 216			else if (ch & UART011_DR_FE)
 217				flag = TTY_FRAME;
 218		}
 219
 220		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 221			continue;
 222
 223		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 224	}
 225
 226	return fifotaken;
 227}
 228
 229
 230/*
 231 * All the DMA operation mode stuff goes inside this ifdef.
 232 * This assumes that you have a generic DMA device interface,
 233 * no custom DMA interfaces are supported.
 234 */
 235#ifdef CONFIG_DMA_ENGINE
 236
 237#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 238
 239static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 240	enum dma_data_direction dir)
 241{
 242	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 
 
 
 243	if (!sg->buf)
 244		return -ENOMEM;
 245
 246	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
 
 
 
 
 247
 248	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
 249		kfree(sg->buf);
 250		return -EINVAL;
 251	}
 252	return 0;
 253}
 254
 255static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 256	enum dma_data_direction dir)
 257{
 258	if (sg->buf) {
 259		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
 260		kfree(sg->buf);
 
 261	}
 262}
 263
 264static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
 265{
 266	/* DMA is the sole user of the platform data right now */
 267	struct amba_pl011_data *plat = uap->port.dev->platform_data;
 
 268	struct dma_slave_config tx_conf = {
 269		.dst_addr = uap->port.mapbase + UART01x_DR,
 
 270		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 271		.direction = DMA_TO_DEVICE,
 272		.dst_maxburst = uap->fifosize >> 1,
 
 273	};
 274	struct dma_chan *chan;
 275	dma_cap_mask_t mask;
 276
 277	/* We need platform data */
 278	if (!plat || !plat->dma_filter) {
 279		dev_info(uap->port.dev, "no DMA platform data\n");
 280		return;
 281	}
 
 
 282
 283	/* Try to acquire a generic DMA engine slave TX channel */
 284	dma_cap_zero(mask);
 285	dma_cap_set(DMA_SLAVE, mask);
 286
 287	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
 288	if (!chan) {
 289		dev_err(uap->port.dev, "no TX DMA channel!\n");
 290		return;
 
 
 
 
 
 
 
 
 291	}
 292
 293	dmaengine_slave_config(chan, &tx_conf);
 294	uap->dmatx.chan = chan;
 295
 296	dev_info(uap->port.dev, "DMA channel TX %s\n",
 297		 dma_chan_name(uap->dmatx.chan));
 298
 299	/* Optionally make use of an RX channel as well */
 300	if (plat->dma_rx_param) {
 301		struct dma_slave_config rx_conf = {
 302			.src_addr = uap->port.mapbase + UART01x_DR,
 303			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 304			.direction = DMA_FROM_DEVICE,
 305			.src_maxburst = uap->fifosize >> 1,
 306		};
 307
 
 308		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 
 309		if (!chan) {
 310			dev_err(uap->port.dev, "no RX DMA channel!\n");
 311			return;
 312		}
 
 
 
 
 
 
 
 
 
 
 
 
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314		dmaengine_slave_config(chan, &rx_conf);
 315		uap->dmarx.chan = chan;
 316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317		dev_info(uap->port.dev, "DMA channel RX %s\n",
 318			 dma_chan_name(uap->dmarx.chan));
 319	}
 320}
 321
 322#ifndef MODULE
 323/*
 324 * Stack up the UARTs and let the above initcall be done at device
 325 * initcall time, because the serial driver is called as an arch
 326 * initcall, and at this time the DMA subsystem is not yet registered.
 327 * At this point the driver will switch over to using DMA where desired.
 328 */
 329struct dma_uap {
 330	struct list_head node;
 331	struct uart_amba_port *uap;
 332};
 333
 334static LIST_HEAD(pl011_dma_uarts);
 335
 336static int __init pl011_dma_initcall(void)
 337{
 338	struct list_head *node, *tmp;
 339
 340	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
 341		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
 342		pl011_dma_probe_initcall(dmau->uap);
 343		list_del(node);
 344		kfree(dmau);
 345	}
 346	return 0;
 347}
 348
 349device_initcall(pl011_dma_initcall);
 350
 351static void pl011_dma_probe(struct uart_amba_port *uap)
 352{
 353	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
 354	if (dmau) {
 355		dmau->uap = uap;
 356		list_add_tail(&dmau->node, &pl011_dma_uarts);
 357	}
 358}
 359#else
 360static void pl011_dma_probe(struct uart_amba_port *uap)
 361{
 362	pl011_dma_probe_initcall(uap);
 363}
 364#endif
 365
 366static void pl011_dma_remove(struct uart_amba_port *uap)
 367{
 368	/* TODO: remove the initcall if it has not yet executed */
 369	if (uap->dmatx.chan)
 370		dma_release_channel(uap->dmatx.chan);
 371	if (uap->dmarx.chan)
 372		dma_release_channel(uap->dmarx.chan);
 373}
 374
 375/* Forward declare this for the refill routine */
 376static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 
 377
 378/*
 379 * The current DMA TX buffer has been sent.
 380 * Try to queue up another DMA buffer.
 381 */
 382static void pl011_dma_tx_callback(void *data)
 383{
 384	struct uart_amba_port *uap = data;
 385	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 386	unsigned long flags;
 387	u16 dmacr;
 388
 389	spin_lock_irqsave(&uap->port.lock, flags);
 390	if (uap->dmatx.queued)
 391		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 392			     DMA_TO_DEVICE);
 393
 394	dmacr = uap->dmacr;
 395	uap->dmacr = dmacr & ~UART011_TXDMAE;
 396	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 397
 398	/*
 399	 * If TX DMA was disabled, it means that we've stopped the DMA for
 400	 * some reason (eg, XOFF received, or we want to send an X-char.)
 401	 *
 402	 * Note: we need to be careful here of a potential race between DMA
 403	 * and the rest of the driver - if the driver disables TX DMA while
 404	 * a TX buffer completing, we must update the tx queued status to
 405	 * get further refills (hence we check dmacr).
 406	 */
 407	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 408	    uart_circ_empty(&uap->port.state->xmit)) {
 409		uap->dmatx.queued = false;
 410		spin_unlock_irqrestore(&uap->port.lock, flags);
 411		return;
 412	}
 413
 414	if (pl011_dma_tx_refill(uap) <= 0) {
 415		/*
 416		 * We didn't queue a DMA buffer for some reason, but we
 417		 * have data pending to be sent.  Re-enable the TX IRQ.
 418		 */
 419		uap->im |= UART011_TXIM;
 420		writew(uap->im, uap->port.membase + UART011_IMSC);
 421	}
 422	spin_unlock_irqrestore(&uap->port.lock, flags);
 423}
 424
 425/*
 426 * Try to refill the TX DMA buffer.
 427 * Locking: called with port lock held and IRQs disabled.
 428 * Returns:
 429 *   1 if we queued up a TX DMA buffer.
 430 *   0 if we didn't want to handle this by DMA
 431 *  <0 on error
 432 */
 433static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 434{
 435	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 436	struct dma_chan *chan = dmatx->chan;
 437	struct dma_device *dma_dev = chan->device;
 438	struct dma_async_tx_descriptor *desc;
 439	struct circ_buf *xmit = &uap->port.state->xmit;
 440	unsigned int count;
 441
 442	/*
 443	 * Try to avoid the overhead involved in using DMA if the
 444	 * transaction fits in the first half of the FIFO, by using
 445	 * the standard interrupt handling.  This ensures that we
 446	 * issue a uart_write_wakeup() at the appropriate time.
 447	 */
 448	count = uart_circ_chars_pending(xmit);
 449	if (count < (uap->fifosize >> 1)) {
 450		uap->dmatx.queued = false;
 451		return 0;
 452	}
 453
 454	/*
 455	 * Bodge: don't send the last character by DMA, as this
 456	 * will prevent XON from notifying us to restart DMA.
 457	 */
 458	count -= 1;
 459
 460	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 461	if (count > PL011_DMA_BUFFER_SIZE)
 462		count = PL011_DMA_BUFFER_SIZE;
 463
 464	if (xmit->tail < xmit->head)
 465		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 466	else {
 467		size_t first = UART_XMIT_SIZE - xmit->tail;
 468		size_t second = xmit->head;
 
 
 
 
 469
 470		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 471		if (second)
 472			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 473	}
 474
 475	dmatx->sg.length = count;
 476
 477	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 478		uap->dmatx.queued = false;
 479		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 480		return -EBUSY;
 481	}
 482
 483	desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE,
 484					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 485	if (!desc) {
 486		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 487		uap->dmatx.queued = false;
 488		/*
 489		 * If DMA cannot be used right now, we complete this
 490		 * transaction via IRQ and let the TTY layer retry.
 491		 */
 492		dev_dbg(uap->port.dev, "TX DMA busy\n");
 493		return -EBUSY;
 494	}
 495
 496	/* Some data to go along to the callback */
 497	desc->callback = pl011_dma_tx_callback;
 498	desc->callback_param = uap;
 499
 500	/* All errors should happen at prepare time */
 501	dmaengine_submit(desc);
 502
 503	/* Fire the DMA transaction */
 504	dma_dev->device_issue_pending(chan);
 505
 506	uap->dmacr |= UART011_TXDMAE;
 507	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 508	uap->dmatx.queued = true;
 509
 510	/*
 511	 * Now we know that DMA will fire, so advance the ring buffer
 512	 * with the stuff we just dispatched.
 513	 */
 514	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 515	uap->port.icount.tx += count;
 516
 517	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 518		uart_write_wakeup(&uap->port);
 519
 520	return 1;
 521}
 522
 523/*
 524 * We received a transmit interrupt without a pending X-char but with
 525 * pending characters.
 526 * Locking: called with port lock held and IRQs disabled.
 527 * Returns:
 528 *   false if we want to use PIO to transmit
 529 *   true if we queued a DMA buffer
 530 */
 531static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 532{
 533	if (!uap->using_tx_dma)
 534		return false;
 535
 536	/*
 537	 * If we already have a TX buffer queued, but received a
 538	 * TX interrupt, it will be because we've just sent an X-char.
 539	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 540	 */
 541	if (uap->dmatx.queued) {
 542		uap->dmacr |= UART011_TXDMAE;
 543		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 544		uap->im &= ~UART011_TXIM;
 545		writew(uap->im, uap->port.membase + UART011_IMSC);
 546		return true;
 547	}
 548
 549	/*
 550	 * We don't have a TX buffer queued, so try to queue one.
 551	 * If we successfully queued a buffer, mask the TX IRQ.
 552	 */
 553	if (pl011_dma_tx_refill(uap) > 0) {
 554		uap->im &= ~UART011_TXIM;
 555		writew(uap->im, uap->port.membase + UART011_IMSC);
 556		return true;
 557	}
 558	return false;
 559}
 560
 561/*
 562 * Stop the DMA transmit (eg, due to received XOFF).
 563 * Locking: called with port lock held and IRQs disabled.
 564 */
 565static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 566{
 567	if (uap->dmatx.queued) {
 568		uap->dmacr &= ~UART011_TXDMAE;
 569		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 570	}
 571}
 572
 573/*
 574 * Try to start a DMA transmit, or in the case of an XON/OFF
 575 * character queued for send, try to get that character out ASAP.
 576 * Locking: called with port lock held and IRQs disabled.
 577 * Returns:
 578 *   false if we want the TX IRQ to be enabled
 579 *   true if we have a buffer queued
 580 */
 581static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 582{
 583	u16 dmacr;
 584
 585	if (!uap->using_tx_dma)
 586		return false;
 587
 588	if (!uap->port.x_char) {
 589		/* no X-char, try to push chars out in DMA mode */
 590		bool ret = true;
 591
 592		if (!uap->dmatx.queued) {
 593			if (pl011_dma_tx_refill(uap) > 0) {
 594				uap->im &= ~UART011_TXIM;
 595				ret = true;
 596			} else {
 597				uap->im |= UART011_TXIM;
 598				ret = false;
 599			}
 600			writew(uap->im, uap->port.membase + UART011_IMSC);
 601		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 602			uap->dmacr |= UART011_TXDMAE;
 603			writew(uap->dmacr,
 604				       uap->port.membase + UART011_DMACR);
 605		}
 606		return ret;
 607	}
 608
 609	/*
 610	 * We have an X-char to send.  Disable DMA to prevent it loading
 611	 * the TX fifo, and then see if we can stuff it into the FIFO.
 612	 */
 613	dmacr = uap->dmacr;
 614	uap->dmacr &= ~UART011_TXDMAE;
 615	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 616
 617	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
 618		/*
 619		 * No space in the FIFO, so enable the transmit interrupt
 620		 * so we know when there is space.  Note that once we've
 621		 * loaded the character, we should just re-enable DMA.
 622		 */
 623		return false;
 624	}
 625
 626	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
 627	uap->port.icount.tx++;
 628	uap->port.x_char = 0;
 629
 630	/* Success - restore the DMA state */
 631	uap->dmacr = dmacr;
 632	writew(dmacr, uap->port.membase + UART011_DMACR);
 633
 634	return true;
 635}
 636
 637/*
 638 * Flush the transmit buffer.
 639 * Locking: called with port lock held and IRQs disabled.
 640 */
 641static void pl011_dma_flush_buffer(struct uart_port *port)
 
 
 642{
 643	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 644
 645	if (!uap->using_tx_dma)
 646		return;
 647
 648	/* Avoid deadlock with the DMA engine callback */
 649	spin_unlock(&uap->port.lock);
 650	dmaengine_terminate_all(uap->dmatx.chan);
 651	spin_lock(&uap->port.lock);
 652	if (uap->dmatx.queued) {
 653		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 654			     DMA_TO_DEVICE);
 655		uap->dmatx.queued = false;
 656		uap->dmacr &= ~UART011_TXDMAE;
 657		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 658	}
 659}
 660
 661static void pl011_dma_rx_callback(void *data);
 662
 663static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 664{
 665	struct dma_chan *rxchan = uap->dmarx.chan;
 666	struct dma_device *dma_dev;
 667	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 668	struct dma_async_tx_descriptor *desc;
 669	struct pl011_sgbuf *sgbuf;
 670
 671	if (!rxchan)
 672		return -EIO;
 673
 674	/* Start the RX DMA job */
 675	sgbuf = uap->dmarx.use_buf_b ?
 676		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 677	dma_dev = rxchan->device;
 678	desc = rxchan->device->device_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 679					DMA_FROM_DEVICE,
 680					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 681	/*
 682	 * If the DMA engine is busy and cannot prepare a
 683	 * channel, no big deal, the driver will fall back
 684	 * to interrupt mode as a result of this error code.
 685	 */
 686	if (!desc) {
 687		uap->dmarx.running = false;
 688		dmaengine_terminate_all(rxchan);
 689		return -EBUSY;
 690	}
 691
 692	/* Some data to go along to the callback */
 693	desc->callback = pl011_dma_rx_callback;
 694	desc->callback_param = uap;
 695	dmarx->cookie = dmaengine_submit(desc);
 696	dma_async_issue_pending(rxchan);
 697
 698	uap->dmacr |= UART011_RXDMAE;
 699	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 700	uap->dmarx.running = true;
 701
 702	uap->im &= ~UART011_RXIM;
 703	writew(uap->im, uap->port.membase + UART011_IMSC);
 704
 705	return 0;
 706}
 707
 708/*
 709 * This is called when either the DMA job is complete, or
 710 * the FIFO timeout interrupt occurred. This must be called
 711 * with the port spinlock uap->port.lock held.
 712 */
 713static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 714			       u32 pending, bool use_buf_b,
 715			       bool readfifo)
 716{
 717	struct tty_struct *tty = uap->port.state->port.tty;
 718	struct pl011_sgbuf *sgbuf = use_buf_b ?
 719		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 720	struct device *dev = uap->dmarx.chan->device->dev;
 721	int dma_count = 0;
 722	u32 fifotaken = 0; /* only used for vdbg() */
 723
 724	/* Pick everything from the DMA first */
 
 
 
 
 
 
 
 
 
 
 
 725	if (pending) {
 726		/* Sync in buffer */
 727		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 728
 729		/*
 730		 * First take all chars in the DMA pipe, then look in the FIFO.
 731		 * Note that tty_insert_flip_buf() tries to take as many chars
 732		 * as it can.
 733		 */
 734		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
 735						   sgbuf->buf, pending);
 736
 737		/* Return buffer to device */
 738		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 739
 740		uap->port.icount.rx += dma_count;
 741		if (dma_count < pending)
 742			dev_warn(uap->port.dev,
 743				 "couldn't insert all characters (TTY is full?)\n");
 744	}
 745
 
 
 
 
 746	/*
 747	 * Only continue with trying to read the FIFO if all DMA chars have
 748	 * been taken first.
 749	 */
 750	if (dma_count == pending && readfifo) {
 751		/* Clear any error flags */
 752		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
 753		       uap->port.membase + UART011_ICR);
 754
 755		/*
 756		 * If we read all the DMA'd characters, and we had an
 757		 * incomplete buffer, that could be due to an rx error, or
 758		 * maybe we just timed out. Read any pending chars and check
 759		 * the error status.
 760		 *
 761		 * Error conditions will only occur in the FIFO, these will
 762		 * trigger an immediate interrupt and stop the DMA job, so we
 763		 * will always find the error in the FIFO, never in the DMA
 764		 * buffer.
 765		 */
 766		fifotaken = pl011_fifo_to_tty(uap);
 767	}
 768
 769	spin_unlock(&uap->port.lock);
 770	dev_vdbg(uap->port.dev,
 771		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 772		 dma_count, fifotaken);
 773	tty_flip_buffer_push(tty);
 774	spin_lock(&uap->port.lock);
 775}
 776
 777static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 778{
 779	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 780	struct dma_chan *rxchan = dmarx->chan;
 781	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 782		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 783	size_t pending;
 784	struct dma_tx_state state;
 785	enum dma_status dmastat;
 786
 787	/*
 788	 * Pause the transfer so we can trust the current counter,
 789	 * do this before we pause the PL011 block, else we may
 790	 * overflow the FIFO.
 791	 */
 792	if (dmaengine_pause(rxchan))
 793		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 794	dmastat = rxchan->device->device_tx_status(rxchan,
 795						   dmarx->cookie, &state);
 796	if (dmastat != DMA_PAUSED)
 797		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 798
 799	/* Disable RX DMA - incoming data will wait in the FIFO */
 800	uap->dmacr &= ~UART011_RXDMAE;
 801	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 802	uap->dmarx.running = false;
 803
 804	pending = sgbuf->sg.length - state.residue;
 805	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 806	/* Then we terminate the transfer - we now know our residue */
 807	dmaengine_terminate_all(rxchan);
 808
 809	/*
 810	 * This will take the chars we have so far and insert
 811	 * into the framework.
 812	 */
 813	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 814
 815	/* Switch buffer & re-trigger DMA job */
 816	dmarx->use_buf_b = !dmarx->use_buf_b;
 817	if (pl011_dma_rx_trigger_dma(uap)) {
 818		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 819			"fall back to interrupt mode\n");
 820		uap->im |= UART011_RXIM;
 821		writew(uap->im, uap->port.membase + UART011_IMSC);
 822	}
 823}
 824
 825static void pl011_dma_rx_callback(void *data)
 826{
 827	struct uart_amba_port *uap = data;
 828	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 
 829	bool lastbuf = dmarx->use_buf_b;
 
 
 
 
 830	int ret;
 831
 832	/*
 833	 * This completion interrupt occurs typically when the
 834	 * RX buffer is totally stuffed but no timeout has yet
 835	 * occurred. When that happens, we just want the RX
 836	 * routine to flush out the secondary DMA buffer while
 837	 * we immediately trigger the next DMA job.
 838	 */
 839	spin_lock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
 
 
 840	uap->dmarx.running = false;
 841	dmarx->use_buf_b = !lastbuf;
 842	ret = pl011_dma_rx_trigger_dma(uap);
 843
 844	pl011_dma_rx_chars(uap, PL011_DMA_BUFFER_SIZE, lastbuf, false);
 845	spin_unlock_irq(&uap->port.lock);
 846	/*
 847	 * Do this check after we picked the DMA chars so we don't
 848	 * get some IRQ immediately from RX.
 849	 */
 850	if (ret) {
 851		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 852			"fall back to interrupt mode\n");
 853		uap->im |= UART011_RXIM;
 854		writew(uap->im, uap->port.membase + UART011_IMSC);
 855	}
 856}
 857
 858/*
 859 * Stop accepting received characters, when we're shutting down or
 860 * suspending this port.
 861 * Locking: called with port lock held and IRQs disabled.
 862 */
 863static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
 864{
 865	/* FIXME.  Just disable the DMA enable */
 866	uap->dmacr &= ~UART011_RXDMAE;
 867	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869
 870static void pl011_dma_startup(struct uart_amba_port *uap)
 871{
 872	int ret;
 873
 
 
 
 874	if (!uap->dmatx.chan)
 875		return;
 876
 877	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 878	if (!uap->dmatx.buf) {
 879		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
 880		uap->port.fifosize = uap->fifosize;
 881		return;
 882	}
 883
 884	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
 885
 886	/* The DMA buffer is now the FIFO the TTY subsystem can use */
 887	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
 888	uap->using_tx_dma = true;
 889
 890	if (!uap->dmarx.chan)
 891		goto skip_rx;
 892
 893	/* Allocate and map DMA RX buffers */
 894	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 895			       DMA_FROM_DEVICE);
 896	if (ret) {
 897		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 898			"RX buffer A", ret);
 899		goto skip_rx;
 900	}
 901
 902	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
 903			       DMA_FROM_DEVICE);
 904	if (ret) {
 905		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 906			"RX buffer B", ret);
 907		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 908				 DMA_FROM_DEVICE);
 909		goto skip_rx;
 910	}
 911
 912	uap->using_rx_dma = true;
 913
 914skip_rx:
 915	/* Turn on DMA error (RX/TX will be enabled on demand) */
 916	uap->dmacr |= UART011_DMAONERR;
 917	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 918
 919	/*
 920	 * ST Micro variants has some specific dma burst threshold
 921	 * compensation. Set this to 16 bytes, so burst will only
 922	 * be issued above/below 16 bytes.
 923	 */
 924	if (uap->vendor->dma_threshold)
 925		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
 926			       uap->port.membase + ST_UART011_DMAWM);
 927
 928	if (uap->using_rx_dma) {
 929		if (pl011_dma_rx_trigger_dma(uap))
 930			dev_dbg(uap->port.dev, "could not trigger initial "
 931				"RX DMA job, fall back to interrupt mode\n");
 
 
 
 
 
 
 
 
 
 
 932	}
 933}
 934
 935static void pl011_dma_shutdown(struct uart_amba_port *uap)
 936{
 937	if (!(uap->using_tx_dma || uap->using_rx_dma))
 938		return;
 939
 940	/* Disable RX and TX DMA */
 941	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
 942		barrier();
 943
 944	spin_lock_irq(&uap->port.lock);
 945	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
 946	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 947	spin_unlock_irq(&uap->port.lock);
 948
 949	if (uap->using_tx_dma) {
 950		/* In theory, this should already be done by pl011_dma_flush_buffer */
 951		dmaengine_terminate_all(uap->dmatx.chan);
 952		if (uap->dmatx.queued) {
 953			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 954				     DMA_TO_DEVICE);
 955			uap->dmatx.queued = false;
 956		}
 957
 958		kfree(uap->dmatx.buf);
 959		uap->using_tx_dma = false;
 960	}
 961
 962	if (uap->using_rx_dma) {
 963		dmaengine_terminate_all(uap->dmarx.chan);
 964		/* Clean up the RX DMA */
 965		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
 966		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
 
 
 967		uap->using_rx_dma = false;
 968	}
 969}
 970
 971static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
 972{
 973	return uap->using_rx_dma;
 974}
 975
 976static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
 977{
 978	return uap->using_rx_dma && uap->dmarx.running;
 979}
 980
 981
 982#else
 983/* Blank functions if the DMA engine is not available */
 984static inline void pl011_dma_probe(struct uart_amba_port *uap)
 985{
 986}
 987
 988static inline void pl011_dma_remove(struct uart_amba_port *uap)
 989{
 990}
 991
 992static inline void pl011_dma_startup(struct uart_amba_port *uap)
 993{
 994}
 995
 996static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
 997{
 998}
 999
1000static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1001{
1002	return false;
1003}
1004
1005static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1006{
1007}
1008
1009static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1010{
1011	return false;
1012}
1013
1014static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1015{
1016}
1017
1018static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1019{
1020}
1021
1022static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1023{
1024	return -EIO;
1025}
1026
1027static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1028{
1029	return false;
1030}
1031
1032static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1033{
1034	return false;
1035}
1036
1037#define pl011_dma_flush_buffer	NULL
1038#endif
1039
1040
1041/*
1042 * pl011_lockup_wa
1043 * This workaround aims to break the deadlock situation
1044 * when after long transfer over uart in hardware flow
1045 * control, uart interrupt registers cannot be cleared.
1046 * Hence uart transfer gets blocked.
1047 *
1048 * It is seen that during such deadlock condition ICR
1049 * don't get cleared even on multiple write. This leads
1050 * pass_counter to decrease and finally reach zero. This
1051 * can be taken as trigger point to run this UART_BT_WA.
1052 *
1053 */
1054static void pl011_lockup_wa(unsigned long data)
1055{
1056	struct uart_amba_port *uap = amba_ports[0];
1057	void __iomem *base = uap->port.membase;
1058	struct circ_buf *xmit = &uap->port.state->xmit;
1059	struct tty_struct *tty = uap->port.state->port.tty;
1060	int buf_empty_retries = 200;
1061	int loop;
1062
1063	/* Stop HCI layer from submitting data for tx */
1064	tty->hw_stopped = 1;
1065	while (!uart_circ_empty(xmit)) {
1066		if (buf_empty_retries-- == 0)
1067			break;
1068		udelay(100);
1069	}
1070
1071	/* Backup registers */
1072	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1073		uart_wa_regdata[loop] = readl(base + uart_wa_reg[loop]);
1074
1075	/* Disable UART so that FIFO data is flushed out */
1076	writew(0x00, uap->port.membase + UART011_CR);
1077
1078	/* Soft reset UART module */
1079	if (uap->port.dev->platform_data) {
1080		struct amba_pl011_data *plat;
1081
1082		plat = uap->port.dev->platform_data;
1083		if (plat->reset)
1084			plat->reset();
1085	}
1086
1087	/* Restore registers */
1088	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1089		writew(uart_wa_regdata[loop] ,
1090				uap->port.membase + uart_wa_reg[loop]);
1091
1092	/* Initialise the old status of the modem signals */
1093	uap->old_status = readw(uap->port.membase + UART01x_FR) &
1094		UART01x_FR_MODEM_ANY;
1095
1096	if (readl(base + UART011_MIS) & 0x2)
1097		printk(KERN_EMERG "UART_BT_WA: ***FAILED***\n");
1098
1099	/* Start Tx/Rx */
1100	tty->hw_stopped = 0;
1101}
1102
1103static void pl011_stop_tx(struct uart_port *port)
1104{
1105	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1106
1107	uap->im &= ~UART011_TXIM;
1108	writew(uap->im, uap->port.membase + UART011_IMSC);
1109	pl011_dma_tx_stop(uap);
1110}
1111
 
 
 
 
 
 
 
 
 
 
1112static void pl011_start_tx(struct uart_port *port)
1113{
1114	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1115
1116	if (!pl011_dma_tx_start(uap)) {
1117		uap->im |= UART011_TXIM;
1118		writew(uap->im, uap->port.membase + UART011_IMSC);
1119	}
1120}
1121
1122static void pl011_stop_rx(struct uart_port *port)
1123{
1124	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1125
1126	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1127		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1128	writew(uap->im, uap->port.membase + UART011_IMSC);
1129
1130	pl011_dma_rx_stop(uap);
1131}
1132
1133static void pl011_enable_ms(struct uart_port *port)
1134{
1135	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1136
1137	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1138	writew(uap->im, uap->port.membase + UART011_IMSC);
1139}
1140
1141static void pl011_rx_chars(struct uart_amba_port *uap)
 
 
1142{
1143	struct tty_struct *tty = uap->port.state->port.tty;
1144
1145	pl011_fifo_to_tty(uap);
1146
1147	spin_unlock(&uap->port.lock);
1148	tty_flip_buffer_push(tty);
1149	/*
1150	 * If we were temporarily out of DMA mode for a while,
1151	 * attempt to switch back to DMA mode again.
1152	 */
1153	if (pl011_dma_rx_available(uap)) {
1154		if (pl011_dma_rx_trigger_dma(uap)) {
1155			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1156				"fall back to interrupt mode again\n");
1157			uap->im |= UART011_RXIM;
1158		} else
1159			uap->im &= ~UART011_RXIM;
1160		writew(uap->im, uap->port.membase + UART011_IMSC);
 
 
 
 
 
 
 
 
 
 
1161	}
1162	spin_lock(&uap->port.lock);
1163}
1164
1165static void pl011_tx_chars(struct uart_amba_port *uap)
 
 
 
 
 
 
 
 
 
 
 
 
 
1166{
1167	struct circ_buf *xmit = &uap->port.state->xmit;
1168	int count;
1169
1170	if (uap->port.x_char) {
1171		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1172		uap->port.icount.tx++;
1173		uap->port.x_char = 0;
1174		return;
1175	}
1176	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1177		pl011_stop_tx(&uap->port);
1178		return;
1179	}
1180
1181	/* If we are using DMA mode, try to send some characters. */
1182	if (pl011_dma_tx_irq(uap))
1183		return;
1184
1185	count = uap->fifosize >> 1;
1186	do {
1187		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1188		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1189		uap->port.icount.tx++;
1190		if (uart_circ_empty(xmit))
1191			break;
1192	} while (--count > 0);
 
 
 
 
 
1193
1194	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1195		uart_write_wakeup(&uap->port);
1196
1197	if (uart_circ_empty(xmit))
1198		pl011_stop_tx(&uap->port);
1199}
1200
1201static void pl011_modem_status(struct uart_amba_port *uap)
1202{
1203	unsigned int status, delta;
1204
1205	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1206
1207	delta = status ^ uap->old_status;
1208	uap->old_status = status;
1209
1210	if (!delta)
1211		return;
1212
1213	if (delta & UART01x_FR_DCD)
1214		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1215
1216	if (delta & UART01x_FR_DSR)
1217		uap->port.icount.dsr++;
1218
1219	if (delta & UART01x_FR_CTS)
1220		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
 
1221
1222	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1223}
1224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225static irqreturn_t pl011_int(int irq, void *dev_id)
1226{
1227	struct uart_amba_port *uap = dev_id;
1228	unsigned long flags;
1229	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
 
1230	int handled = 0;
1231
1232	spin_lock_irqsave(&uap->port.lock, flags);
1233
1234	status = readw(uap->port.membase + UART011_MIS);
1235	if (status) {
1236		do {
1237			writew(status & ~(UART011_TXIS|UART011_RTIS|
1238					  UART011_RXIS),
1239			       uap->port.membase + UART011_ICR);
 
 
1240
1241			if (status & (UART011_RTIS|UART011_RXIS)) {
1242				if (pl011_dma_rx_running(uap))
1243					pl011_dma_rx_irq(uap);
1244				else
1245					pl011_rx_chars(uap);
1246			}
1247			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1248				      UART011_CTSMIS|UART011_RIMIS))
1249				pl011_modem_status(uap);
1250			if (status & UART011_TXIS)
1251				pl011_tx_chars(uap);
1252
1253			if (pass_counter-- == 0) {
1254				if (uap->interrupt_may_hang)
1255					tasklet_schedule(&pl011_lockup_tlet);
1256				break;
1257			}
1258
1259			status = readw(uap->port.membase + UART011_MIS);
1260		} while (status != 0);
1261		handled = 1;
1262	}
1263
1264	spin_unlock_irqrestore(&uap->port.lock, flags);
1265
1266	return IRQ_RETVAL(handled);
1267}
1268
1269static unsigned int pl01x_tx_empty(struct uart_port *port)
1270{
1271	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1272	unsigned int status = readw(uap->port.membase + UART01x_FR);
1273	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
 
 
1274}
1275
1276static unsigned int pl01x_get_mctrl(struct uart_port *port)
1277{
1278	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1279	unsigned int result = 0;
1280	unsigned int status = readw(uap->port.membase + UART01x_FR);
1281
1282#define TIOCMBIT(uartbit, tiocmbit)	\
1283	if (status & uartbit)		\
1284		result |= tiocmbit
1285
1286	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1287	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1288	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1289	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1290#undef TIOCMBIT
1291	return result;
1292}
1293
1294static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1295{
1296	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1297	unsigned int cr;
1298
1299	cr = readw(uap->port.membase + UART011_CR);
1300
1301#define	TIOCMBIT(tiocmbit, uartbit)		\
1302	if (mctrl & tiocmbit)		\
1303		cr |= uartbit;		\
1304	else				\
1305		cr &= ~uartbit
1306
1307	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1308	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1309	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1310	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1311	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1312
1313	if (uap->autorts) {
1314		/* We need to disable auto-RTS if we want to turn RTS off */
1315		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1316	}
1317#undef TIOCMBIT
1318
1319	writew(cr, uap->port.membase + UART011_CR);
1320}
1321
1322static void pl011_break_ctl(struct uart_port *port, int break_state)
1323{
1324	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1325	unsigned long flags;
1326	unsigned int lcr_h;
1327
1328	spin_lock_irqsave(&uap->port.lock, flags);
1329	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1330	if (break_state == -1)
1331		lcr_h |= UART01x_LCRH_BRK;
1332	else
1333		lcr_h &= ~UART01x_LCRH_BRK;
1334	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1335	spin_unlock_irqrestore(&uap->port.lock, flags);
1336}
1337
1338#ifdef CONFIG_CONSOLE_POLL
1339static int pl010_get_poll_char(struct uart_port *port)
 
1340{
1341	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342	unsigned int status;
1343
1344	status = readw(uap->port.membase + UART01x_FR);
 
 
 
 
 
 
1345	if (status & UART01x_FR_RXFE)
1346		return NO_POLL_CHAR;
1347
1348	return readw(uap->port.membase + UART01x_DR);
1349}
1350
1351static void pl010_put_poll_char(struct uart_port *port,
1352			 unsigned char ch)
1353{
1354	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1355
1356	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1357		barrier();
1358
1359	writew(ch, uap->port.membase + UART01x_DR);
1360}
1361
1362#endif /* CONFIG_CONSOLE_POLL */
1363
1364static int pl011_startup(struct uart_port *port)
1365{
1366	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1367	unsigned int cr;
1368	int retval;
1369
 
 
 
1370	/*
1371	 * Try to enable the clock producer.
1372	 */
1373	retval = clk_enable(uap->clk);
1374	if (retval)
1375		goto out;
1376
1377	uap->port.uartclk = clk_get_rate(uap->clk);
1378
 
 
 
 
 
1379	/*
1380	 * Allocate the IRQ
 
1381	 */
1382	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1383	if (retval)
1384		goto clk_dis;
1385
1386	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
 
1387
1388	/*
1389	 * Provoke TX FIFO interrupt into asserting.
1390	 */
1391	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1392	writew(cr, uap->port.membase + UART011_CR);
1393	writew(0, uap->port.membase + UART011_FBRD);
1394	writew(1, uap->port.membase + UART011_IBRD);
1395	writew(0, uap->port.membase + uap->lcrh_rx);
1396	if (uap->lcrh_tx != uap->lcrh_rx) {
 
 
 
 
 
 
 
 
1397		int i;
1398		/*
1399		 * Wait 10 PCLKs before writing LCRH_TX register,
1400		 * to get this delay write read only register 10 times
1401		 */
1402		for (i = 0; i < 10; ++i)
1403			writew(0xff, uap->port.membase + UART011_MIS);
1404		writew(0, uap->port.membase + uap->lcrh_tx);
1405	}
1406	writew(0, uap->port.membase + UART01x_DR);
1407	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1408		barrier();
1409
1410	cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1411	writew(cr, uap->port.membase + UART011_CR);
1412
1413	/* Clear pending error interrupts */
1414	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
1415	       uap->port.membase + UART011_ICR);
1416
1417	/*
1418	 * initialise the old status of the modem signals
1419	 */
1420	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1421
1422	/* Startup DMA */
1423	pl011_dma_startup(uap);
1424
1425	/*
1426	 * Finally, enable interrupts, only timeouts when using DMA
1427	 * if initial RX DMA job failed, start in interrupt mode
1428	 * as well.
1429	 */
 
 
1430	spin_lock_irq(&uap->port.lock);
 
 
 
1431	uap->im = UART011_RTIM;
1432	if (!pl011_dma_rx_running(uap))
1433		uap->im |= UART011_RXIM;
1434	writew(uap->im, uap->port.membase + UART011_IMSC);
1435	spin_unlock_irq(&uap->port.lock);
 
1436
1437	if (uap->port.dev->platform_data) {
1438		struct amba_pl011_data *plat;
 
 
 
 
1439
1440		plat = uap->port.dev->platform_data;
1441		if (plat->init)
1442			plat->init();
1443	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445	return 0;
1446
1447 clk_dis:
1448	clk_disable(uap->clk);
1449 out:
1450	return retval;
1451}
1452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453static void pl011_shutdown_channel(struct uart_amba_port *uap,
1454					unsigned int lcrh)
1455{
1456      unsigned long val;
1457
1458      val = readw(uap->port.membase + lcrh);
1459      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1460      writew(val, uap->port.membase + lcrh);
1461}
1462
1463static void pl011_shutdown(struct uart_port *port)
 
 
 
 
 
1464{
1465	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 
 
 
 
 
 
 
 
1466
1467	/*
1468	 * disable all interrupts
1469	 */
 
 
 
 
 
 
 
1470	spin_lock_irq(&uap->port.lock);
 
 
1471	uap->im = 0;
1472	writew(uap->im, uap->port.membase + UART011_IMSC);
1473	writew(0xffff, uap->port.membase + UART011_ICR);
 
1474	spin_unlock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
1475
1476	pl011_dma_shutdown(uap);
1477
1478	/*
1479	 * Free the interrupt
1480	 */
1481	free_irq(uap->port.irq, uap);
1482
1483	/*
1484	 * disable the port
1485	 */
1486	uap->autorts = false;
1487	writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR);
1488
1489	/*
1490	 * disable break condition and fifos
1491	 */
1492	pl011_shutdown_channel(uap, uap->lcrh_rx);
1493	if (uap->lcrh_rx != uap->lcrh_tx)
1494		pl011_shutdown_channel(uap, uap->lcrh_tx);
1495
1496	/*
1497	 * Shut down the clock producer
1498	 */
1499	clk_disable(uap->clk);
 
 
1500
1501	if (uap->port.dev->platform_data) {
1502		struct amba_pl011_data *plat;
1503
1504		plat = uap->port.dev->platform_data;
1505		if (plat->exit)
1506			plat->exit();
1507	}
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509}
1510
1511static void
1512pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1513		     struct ktermios *old)
1514{
1515	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1516	unsigned int lcr_h, old_cr;
1517	unsigned long flags;
1518	unsigned int baud, quot, clkdiv;
1519
1520	if (uap->vendor->oversampling)
1521		clkdiv = 8;
1522	else
1523		clkdiv = 16;
1524
1525	/*
1526	 * Ask the core to calculate the divisor for us.
1527	 */
1528	baud = uart_get_baud_rate(port, termios, old, 0,
1529				  port->uartclk / clkdiv);
 
 
 
 
 
 
 
1530
1531	if (baud > port->uartclk/16)
1532		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1533	else
1534		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1535
1536	switch (termios->c_cflag & CSIZE) {
1537	case CS5:
1538		lcr_h = UART01x_LCRH_WLEN_5;
1539		break;
1540	case CS6:
1541		lcr_h = UART01x_LCRH_WLEN_6;
1542		break;
1543	case CS7:
1544		lcr_h = UART01x_LCRH_WLEN_7;
1545		break;
1546	default: // CS8
1547		lcr_h = UART01x_LCRH_WLEN_8;
1548		break;
1549	}
1550	if (termios->c_cflag & CSTOPB)
1551		lcr_h |= UART01x_LCRH_STP2;
1552	if (termios->c_cflag & PARENB) {
1553		lcr_h |= UART01x_LCRH_PEN;
1554		if (!(termios->c_cflag & PARODD))
1555			lcr_h |= UART01x_LCRH_EPS;
 
 
1556	}
1557	if (uap->fifosize > 1)
1558		lcr_h |= UART01x_LCRH_FEN;
1559
1560	spin_lock_irqsave(&port->lock, flags);
1561
1562	/*
1563	 * Update the per-port timeout.
1564	 */
1565	uart_update_timeout(port, termios->c_cflag, baud);
1566
1567	port->read_status_mask = UART011_DR_OE | 255;
1568	if (termios->c_iflag & INPCK)
1569		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1570	if (termios->c_iflag & (BRKINT | PARMRK))
1571		port->read_status_mask |= UART011_DR_BE;
1572
1573	/*
1574	 * Characters to ignore
1575	 */
1576	port->ignore_status_mask = 0;
1577	if (termios->c_iflag & IGNPAR)
1578		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1579	if (termios->c_iflag & IGNBRK) {
1580		port->ignore_status_mask |= UART011_DR_BE;
1581		/*
1582		 * If we're ignoring parity and break indicators,
1583		 * ignore overruns too (for real raw support).
1584		 */
1585		if (termios->c_iflag & IGNPAR)
1586			port->ignore_status_mask |= UART011_DR_OE;
1587	}
1588
1589	/*
1590	 * Ignore all characters if CREAD is not set.
1591	 */
1592	if ((termios->c_cflag & CREAD) == 0)
1593		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1594
1595	if (UART_ENABLE_MS(port, termios->c_cflag))
1596		pl011_enable_ms(port);
1597
1598	/* first, disable everything */
1599	old_cr = readw(port->membase + UART011_CR);
1600	writew(0, port->membase + UART011_CR);
1601
1602	if (termios->c_cflag & CRTSCTS) {
1603		if (old_cr & UART011_CR_RTS)
1604			old_cr |= UART011_CR_RTSEN;
1605
1606		old_cr |= UART011_CR_CTSEN;
1607		uap->autorts = true;
1608	} else {
1609		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1610		uap->autorts = false;
1611	}
1612
1613	if (uap->vendor->oversampling) {
1614		if (baud > port->uartclk / 16)
1615			old_cr |= ST_UART011_CR_OVSFACT;
1616		else
1617			old_cr &= ~ST_UART011_CR_OVSFACT;
1618	}
1619
 
 
 
 
 
 
 
 
 
 
 
 
1620	/* Set baud rate */
1621	writew(quot & 0x3f, port->membase + UART011_FBRD);
1622	writew(quot >> 6, port->membase + UART011_IBRD);
1623
1624	/*
1625	 * ----------v----------v----------v----------v-----
1626	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
 
1627	 * ----------^----------^----------^----------^-----
1628	 */
1629	writew(lcr_h, port->membase + uap->lcrh_rx);
1630	if (uap->lcrh_rx != uap->lcrh_tx) {
1631		int i;
1632		/*
1633		 * Wait 10 PCLKs before writing LCRH_TX register,
1634		 * to get this delay write read only register 10 times
1635		 */
1636		for (i = 0; i < 10; ++i)
1637			writew(0xff, uap->port.membase + UART011_MIS);
1638		writew(lcr_h, port->membase + uap->lcrh_tx);
1639	}
1640	writew(old_cr, port->membase + UART011_CR);
1641
1642	spin_unlock_irqrestore(&port->lock, flags);
1643}
1644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645static const char *pl011_type(struct uart_port *port)
1646{
1647	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1648	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1649}
1650
1651/*
1652 * Release the memory region(s) being used by 'port'
1653 */
1654static void pl010_release_port(struct uart_port *port)
1655{
1656	release_mem_region(port->mapbase, SZ_4K);
1657}
1658
1659/*
1660 * Request the memory region(s) being used by 'port'
1661 */
1662static int pl010_request_port(struct uart_port *port)
1663{
1664	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1665			!= NULL ? 0 : -EBUSY;
1666}
1667
1668/*
1669 * Configure/autoconfigure the port.
1670 */
1671static void pl010_config_port(struct uart_port *port, int flags)
1672{
1673	if (flags & UART_CONFIG_TYPE) {
1674		port->type = PORT_AMBA;
1675		pl010_request_port(port);
1676	}
1677}
1678
1679/*
1680 * verify the new serial_struct (for TIOCSSERIAL).
1681 */
1682static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1683{
1684	int ret = 0;
1685	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1686		ret = -EINVAL;
1687	if (ser->irq < 0 || ser->irq >= nr_irqs)
1688		ret = -EINVAL;
1689	if (ser->baud_base < 9600)
1690		ret = -EINVAL;
1691	return ret;
1692}
1693
1694static struct uart_ops amba_pl011_pops = {
1695	.tx_empty	= pl01x_tx_empty,
1696	.set_mctrl	= pl011_set_mctrl,
1697	.get_mctrl	= pl01x_get_mctrl,
1698	.stop_tx	= pl011_stop_tx,
1699	.start_tx	= pl011_start_tx,
1700	.stop_rx	= pl011_stop_rx,
1701	.enable_ms	= pl011_enable_ms,
1702	.break_ctl	= pl011_break_ctl,
1703	.startup	= pl011_startup,
1704	.shutdown	= pl011_shutdown,
1705	.flush_buffer	= pl011_dma_flush_buffer,
1706	.set_termios	= pl011_set_termios,
1707	.type		= pl011_type,
1708	.release_port	= pl010_release_port,
1709	.request_port	= pl010_request_port,
1710	.config_port	= pl010_config_port,
1711	.verify_port	= pl010_verify_port,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712#ifdef CONFIG_CONSOLE_POLL
1713	.poll_get_char = pl010_get_poll_char,
1714	.poll_put_char = pl010_put_poll_char,
 
1715#endif
1716};
1717
1718static struct uart_amba_port *amba_ports[UART_NR];
1719
1720#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1721
1722static void pl011_console_putchar(struct uart_port *port, int ch)
1723{
1724	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
1725
1726	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1727		barrier();
1728	writew(ch, uap->port.membase + UART01x_DR);
1729}
1730
1731static void
1732pl011_console_write(struct console *co, const char *s, unsigned int count)
1733{
1734	struct uart_amba_port *uap = amba_ports[co->index];
1735	unsigned int status, old_cr, new_cr;
 
 
1736
1737	clk_enable(uap->clk);
1738
 
 
 
 
 
 
 
 
1739	/*
1740	 *	First save the CR then disable the interrupts
1741	 */
1742	old_cr = readw(uap->port.membase + UART011_CR);
1743	new_cr = old_cr & ~UART011_CR_CTSEN;
1744	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1745	writew(new_cr, uap->port.membase + UART011_CR);
 
 
1746
1747	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1748
1749	/*
1750	 *	Finally, wait for transmitter to become empty
1751	 *	and restore the TCR
1752	 */
1753	do {
1754		status = readw(uap->port.membase + UART01x_FR);
1755	} while (status & UART01x_FR_BUSY);
1756	writew(old_cr, uap->port.membase + UART011_CR);
 
 
 
 
1757
1758	clk_disable(uap->clk);
1759}
1760
1761static void __init
1762pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1763			     int *parity, int *bits)
1764{
1765	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1766		unsigned int lcr_h, ibrd, fbrd;
1767
1768		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1769
1770		*parity = 'n';
1771		if (lcr_h & UART01x_LCRH_PEN) {
1772			if (lcr_h & UART01x_LCRH_EPS)
1773				*parity = 'e';
1774			else
1775				*parity = 'o';
1776		}
1777
1778		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1779			*bits = 7;
1780		else
1781			*bits = 8;
1782
1783		ibrd = readw(uap->port.membase + UART011_IBRD);
1784		fbrd = readw(uap->port.membase + UART011_FBRD);
1785
1786		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1787
1788		if (uap->vendor->oversampling) {
1789			if (readw(uap->port.membase + UART011_CR)
1790				  & ST_UART011_CR_OVSFACT)
1791				*baud *= 2;
1792		}
1793	}
1794}
1795
1796static int __init pl011_console_setup(struct console *co, char *options)
1797{
1798	struct uart_amba_port *uap;
1799	int baud = 38400;
1800	int bits = 8;
1801	int parity = 'n';
1802	int flow = 'n';
 
1803
1804	/*
1805	 * Check whether an invalid uart number has been specified, and
1806	 * if so, search for the first available port that does have
1807	 * console support.
1808	 */
1809	if (co->index >= UART_NR)
1810		co->index = 0;
1811	uap = amba_ports[co->index];
1812	if (!uap)
1813		return -ENODEV;
1814
1815	if (uap->port.dev->platform_data) {
 
 
 
 
 
 
 
1816		struct amba_pl011_data *plat;
1817
1818		plat = uap->port.dev->platform_data;
1819		if (plat->init)
1820			plat->init();
1821	}
1822
1823	uap->port.uartclk = clk_get_rate(uap->clk);
1824
1825	if (options)
1826		uart_parse_options(options, &baud, &parity, &bits, &flow);
1827	else
1828		pl011_console_get_options(uap, &baud, &parity, &bits);
 
 
 
 
 
1829
1830	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1831}
1832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833static struct uart_driver amba_reg;
1834static struct console amba_console = {
1835	.name		= "ttyAMA",
1836	.write		= pl011_console_write,
1837	.device		= uart_console_device,
1838	.setup		= pl011_console_setup,
 
1839	.flags		= CON_PRINTBUFFER,
1840	.index		= -1,
1841	.data		= &amba_reg,
1842};
1843
1844#define AMBA_CONSOLE	(&amba_console)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845#else
1846#define AMBA_CONSOLE	NULL
1847#endif
1848
1849static struct uart_driver amba_reg = {
1850	.owner			= THIS_MODULE,
1851	.driver_name		= "ttyAMA",
1852	.dev_name		= "ttyAMA",
1853	.major			= SERIAL_AMBA_MAJOR,
1854	.minor			= SERIAL_AMBA_MINOR,
1855	.nr			= UART_NR,
1856	.cons			= AMBA_CONSOLE,
1857};
1858
1859static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1860{
1861	struct uart_amba_port *uap;
1862	struct vendor_data *vendor = id->data;
1863	void __iomem *base;
1864	int i, ret;
1865
1866	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1867		if (amba_ports[i] == NULL)
1868			break;
1869
1870	if (i == ARRAY_SIZE(amba_ports)) {
1871		ret = -EBUSY;
1872		goto out;
1873	}
1874
1875	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1876	if (uap == NULL) {
1877		ret = -ENOMEM;
1878		goto out;
 
 
 
 
 
 
1879	}
1880
1881	base = ioremap(dev->res.start, resource_size(&dev->res));
1882	if (!base) {
1883		ret = -ENOMEM;
1884		goto free;
 
 
 
 
 
 
 
 
 
 
 
 
 
1885	}
 
 
 
 
1886
1887	uap->clk = clk_get(&dev->dev, NULL);
1888	if (IS_ERR(uap->clk)) {
1889		ret = PTR_ERR(uap->clk);
1890		goto unmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891	}
1892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893	uap->vendor = vendor;
1894	uap->lcrh_rx = vendor->lcrh_rx;
1895	uap->lcrh_tx = vendor->lcrh_tx;
1896	uap->fifosize = vendor->fifosize;
1897	uap->interrupt_may_hang = vendor->interrupt_may_hang;
1898	uap->port.dev = &dev->dev;
1899	uap->port.mapbase = dev->res.start;
1900	uap->port.membase = base;
1901	uap->port.iotype = UPIO_MEM;
1902	uap->port.irq = dev->irq[0];
1903	uap->port.fifosize = uap->fifosize;
1904	uap->port.ops = &amba_pl011_pops;
1905	uap->port.flags = UPF_BOOT_AUTOCONF;
1906	uap->port.line = i;
1907	pl011_dma_probe(uap);
1908
1909	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1910
1911	amba_ports[i] = uap;
 
 
1912
1913	amba_set_drvdata(dev, uap);
1914	ret = uart_add_one_port(&amba_reg, &uap->port);
1915	if (ret) {
1916		amba_set_drvdata(dev, NULL);
1917		amba_ports[i] = NULL;
1918		pl011_dma_remove(uap);
1919		clk_put(uap->clk);
1920 unmap:
1921		iounmap(base);
1922 free:
1923		kfree(uap);
1924	}
1925 out:
1926	return ret;
1927}
1928
1929static int pl011_remove(struct amba_device *dev)
1930{
1931	struct uart_amba_port *uap = amba_get_drvdata(dev);
1932	int i;
1933
1934	amba_set_drvdata(dev, NULL);
1935
1936	uart_remove_one_port(&amba_reg, &uap->port);
1937
1938	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1939		if (amba_ports[i] == uap)
1940			amba_ports[i] = NULL;
1941
1942	pl011_dma_remove(uap);
1943	iounmap(uap->port.membase);
1944	clk_put(uap->clk);
1945	kfree(uap);
1946	return 0;
1947}
1948
1949#ifdef CONFIG_PM
1950static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1951{
1952	struct uart_amba_port *uap = amba_get_drvdata(dev);
1953
1954	if (!uap)
1955		return -EINVAL;
1956
1957	return uart_suspend_port(&amba_reg, &uap->port);
1958}
1959
1960static int pl011_resume(struct amba_device *dev)
1961{
1962	struct uart_amba_port *uap = amba_get_drvdata(dev);
1963
1964	if (!uap)
1965		return -EINVAL;
1966
1967	return uart_resume_port(&amba_reg, &uap->port);
1968}
1969#endif
1970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971static struct amba_id pl011_ids[] = {
1972	{
1973		.id	= 0x00041011,
1974		.mask	= 0x000fffff,
1975		.data	= &vendor_arm,
1976	},
1977	{
1978		.id	= 0x00380802,
1979		.mask	= 0x00ffffff,
1980		.data	= &vendor_st,
1981	},
 
 
 
 
 
1982	{ 0, 0 },
1983};
1984
 
 
1985static struct amba_driver pl011_driver = {
1986	.drv = {
1987		.name	= "uart-pl011",
 
1988	},
1989	.id_table	= pl011_ids,
1990	.probe		= pl011_probe,
1991	.remove		= pl011_remove,
1992#ifdef CONFIG_PM
1993	.suspend	= pl011_suspend,
1994	.resume		= pl011_resume,
1995#endif
1996};
1997
1998static int __init pl011_init(void)
1999{
2000	int ret;
2001	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2002
2003	ret = uart_register_driver(&amba_reg);
2004	if (ret == 0) {
2005		ret = amba_driver_register(&pl011_driver);
2006		if (ret)
2007			uart_unregister_driver(&amba_reg);
2008	}
2009	return ret;
2010}
2011
2012static void __exit pl011_exit(void)
2013{
 
2014	amba_driver_unregister(&pl011_driver);
2015	uart_unregister_driver(&amba_reg);
2016}
2017
2018/*
2019 * While this can be a module, if builtin it's most likely the console
2020 * So let's leave module_exit but move module_init to an earlier place
2021 */
2022arch_initcall(pl011_init);
2023module_exit(pl011_exit);
2024
2025MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2026MODULE_DESCRIPTION("ARM AMBA serial port driver");
2027MODULE_LICENSE("GPL");
v4.10.11
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
  32
  33#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  34#define SUPPORT_SYSRQ
  35#endif
  36
  37#include <linux/module.h>
  38#include <linux/ioport.h>
  39#include <linux/init.h>
  40#include <linux/console.h>
  41#include <linux/sysrq.h>
  42#include <linux/device.h>
  43#include <linux/tty.h>
  44#include <linux/tty_flip.h>
  45#include <linux/serial_core.h>
  46#include <linux/serial.h>
  47#include <linux/amba/bus.h>
  48#include <linux/amba/serial.h>
  49#include <linux/clk.h>
  50#include <linux/slab.h>
  51#include <linux/dmaengine.h>
  52#include <linux/dma-mapping.h>
  53#include <linux/scatterlist.h>
  54#include <linux/delay.h>
  55#include <linux/types.h>
  56#include <linux/of.h>
  57#include <linux/of_device.h>
  58#include <linux/pinctrl/consumer.h>
  59#include <linux/sizes.h>
  60#include <linux/io.h>
  61#include <linux/acpi.h>
  62
  63#include "amba-pl011.h"
 
  64
  65#define UART_NR			14
  66
  67#define SERIAL_AMBA_MAJOR	204
  68#define SERIAL_AMBA_MINOR	64
  69#define SERIAL_AMBA_NR		UART_NR
  70
  71#define AMBA_ISR_PASS_LIMIT	256
  72
  73#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  74#define UART_DUMMY_DR_RX	(1 << 16)
  75
  76static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  77	[REG_DR] = UART01x_DR,
  78	[REG_FR] = UART01x_FR,
  79	[REG_LCRH_RX] = UART011_LCRH,
  80	[REG_LCRH_TX] = UART011_LCRH,
  81	[REG_IBRD] = UART011_IBRD,
  82	[REG_FBRD] = UART011_FBRD,
  83	[REG_CR] = UART011_CR,
  84	[REG_IFLS] = UART011_IFLS,
  85	[REG_IMSC] = UART011_IMSC,
  86	[REG_RIS] = UART011_RIS,
  87	[REG_MIS] = UART011_MIS,
  88	[REG_ICR] = UART011_ICR,
  89	[REG_DMACR] = UART011_DMACR,
 
 
 
 
 
  90};
  91
 
 
 
  92/* There is by now at least one vendor with differing details, so handle it */
  93struct vendor_data {
  94	const u16		*reg_offset;
  95	unsigned int		ifls;
  96	unsigned int		fr_busy;
  97	unsigned int		fr_dsr;
  98	unsigned int		fr_cts;
  99	unsigned int		fr_ri;
 100	bool			access_32b;
 101	bool			oversampling;
 
 102	bool			dma_threshold;
 103	bool			cts_event_workaround;
 104	bool			always_enabled;
 105	bool			fixed_options;
 106
 107	unsigned int (*get_fifosize)(struct amba_device *dev);
 108};
 109
 110static unsigned int get_fifosize_arm(struct amba_device *dev)
 111{
 112	return amba_rev(dev) < 3 ? 16 : 32;
 113}
 114
 115static struct vendor_data vendor_arm = {
 116	.reg_offset		= pl011_std_offsets,
 117	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 118	.fr_busy		= UART01x_FR_BUSY,
 119	.fr_dsr			= UART01x_FR_DSR,
 120	.fr_cts			= UART01x_FR_CTS,
 121	.fr_ri			= UART011_FR_RI,
 122	.oversampling		= false,
 123	.dma_threshold		= false,
 124	.cts_event_workaround	= false,
 125	.always_enabled		= false,
 126	.fixed_options		= false,
 127	.get_fifosize		= get_fifosize_arm,
 128};
 129
 130static struct vendor_data vendor_sbsa = {
 131	.reg_offset		= pl011_std_offsets,
 132	.fr_busy		= UART01x_FR_BUSY,
 133	.fr_dsr			= UART01x_FR_DSR,
 134	.fr_cts			= UART01x_FR_CTS,
 135	.fr_ri			= UART011_FR_RI,
 136	.access_32b		= true,
 137	.oversampling		= false,
 138	.dma_threshold		= false,
 139	.cts_event_workaround	= false,
 140	.always_enabled		= true,
 141	.fixed_options		= true,
 142};
 143
 144static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 145	[REG_DR] = UART01x_DR,
 146	[REG_ST_DMAWM] = ST_UART011_DMAWM,
 147	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 148	[REG_FR] = UART01x_FR,
 149	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
 150	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
 151	[REG_IBRD] = UART011_IBRD,
 152	[REG_FBRD] = UART011_FBRD,
 153	[REG_CR] = UART011_CR,
 154	[REG_IFLS] = UART011_IFLS,
 155	[REG_IMSC] = UART011_IMSC,
 156	[REG_RIS] = UART011_RIS,
 157	[REG_MIS] = UART011_MIS,
 158	[REG_ICR] = UART011_ICR,
 159	[REG_DMACR] = UART011_DMACR,
 160	[REG_ST_XFCR] = ST_UART011_XFCR,
 161	[REG_ST_XON1] = ST_UART011_XON1,
 162	[REG_ST_XON2] = ST_UART011_XON2,
 163	[REG_ST_XOFF1] = ST_UART011_XOFF1,
 164	[REG_ST_XOFF2] = ST_UART011_XOFF2,
 165	[REG_ST_ITCR] = ST_UART011_ITCR,
 166	[REG_ST_ITIP] = ST_UART011_ITIP,
 167	[REG_ST_ABCR] = ST_UART011_ABCR,
 168	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 169};
 170
 171static unsigned int get_fifosize_st(struct amba_device *dev)
 172{
 173	return 64;
 174}
 175
 176static struct vendor_data vendor_st = {
 177	.reg_offset		= pl011_st_offsets,
 178	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 179	.fr_busy		= UART01x_FR_BUSY,
 180	.fr_dsr			= UART01x_FR_DSR,
 181	.fr_cts			= UART01x_FR_CTS,
 182	.fr_ri			= UART011_FR_RI,
 183	.oversampling		= true,
 
 184	.dma_threshold		= true,
 185	.cts_event_workaround	= true,
 186	.always_enabled		= false,
 187	.fixed_options		= false,
 188	.get_fifosize		= get_fifosize_st,
 189};
 190
 191static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
 192	[REG_DR] = ZX_UART011_DR,
 193	[REG_FR] = ZX_UART011_FR,
 194	[REG_LCRH_RX] = ZX_UART011_LCRH,
 195	[REG_LCRH_TX] = ZX_UART011_LCRH,
 196	[REG_IBRD] = ZX_UART011_IBRD,
 197	[REG_FBRD] = ZX_UART011_FBRD,
 198	[REG_CR] = ZX_UART011_CR,
 199	[REG_IFLS] = ZX_UART011_IFLS,
 200	[REG_IMSC] = ZX_UART011_IMSC,
 201	[REG_RIS] = ZX_UART011_RIS,
 202	[REG_MIS] = ZX_UART011_MIS,
 203	[REG_ICR] = ZX_UART011_ICR,
 204	[REG_DMACR] = ZX_UART011_DMACR,
 205};
 206
 207static unsigned int get_fifosize_zte(struct amba_device *dev)
 208{
 209	return 16;
 210}
 211
 212static struct vendor_data vendor_zte = {
 213	.reg_offset		= pl011_zte_offsets,
 214	.access_32b		= true,
 215	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 216	.fr_busy		= ZX_UART01x_FR_BUSY,
 217	.fr_dsr			= ZX_UART01x_FR_DSR,
 218	.fr_cts			= ZX_UART01x_FR_CTS,
 219	.fr_ri			= ZX_UART011_FR_RI,
 220	.get_fifosize		= get_fifosize_zte,
 221};
 222
 223/* Deals with DMA transactions */
 224
 225struct pl011_sgbuf {
 226	struct scatterlist sg;
 227	char *buf;
 228};
 229
 230struct pl011_dmarx_data {
 231	struct dma_chan		*chan;
 232	struct completion	complete;
 233	bool			use_buf_b;
 234	struct pl011_sgbuf	sgbuf_a;
 235	struct pl011_sgbuf	sgbuf_b;
 236	dma_cookie_t		cookie;
 237	bool			running;
 238	struct timer_list	timer;
 239	unsigned int last_residue;
 240	unsigned long last_jiffies;
 241	bool auto_poll_rate;
 242	unsigned int poll_rate;
 243	unsigned int poll_timeout;
 244};
 245
 246struct pl011_dmatx_data {
 247	struct dma_chan		*chan;
 248	struct scatterlist	sg;
 249	char			*buf;
 250	bool			queued;
 251};
 252
 253/*
 254 * We wrap our port structure around the generic uart_port.
 255 */
 256struct uart_amba_port {
 257	struct uart_port	port;
 258	const u16		*reg_offset;
 259	struct clk		*clk;
 260	const struct vendor_data *vendor;
 261	unsigned int		dmacr;		/* dma control reg */
 262	unsigned int		im;		/* interrupt mask */
 263	unsigned int		old_status;
 264	unsigned int		fifosize;	/* vendor-specific */
 265	unsigned int		old_cr;		/* state during shutdown */
 
 266	bool			autorts;
 267	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
 268	char			type[12];
 
 269#ifdef CONFIG_DMA_ENGINE
 270	/* DMA stuff */
 271	bool			using_tx_dma;
 272	bool			using_rx_dma;
 273	struct pl011_dmarx_data dmarx;
 274	struct pl011_dmatx_data	dmatx;
 275	bool			dma_probed;
 276#endif
 277};
 278
 279static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 280	unsigned int reg)
 281{
 282	return uap->reg_offset[reg];
 283}
 284
 285static unsigned int pl011_read(const struct uart_amba_port *uap,
 286	unsigned int reg)
 287{
 288	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 289
 290	return (uap->port.iotype == UPIO_MEM32) ?
 291		readl_relaxed(addr) : readw_relaxed(addr);
 292}
 293
 294static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 295	unsigned int reg)
 296{
 297	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 298
 299	if (uap->port.iotype == UPIO_MEM32)
 300		writel_relaxed(val, addr);
 301	else
 302		writew_relaxed(val, addr);
 303}
 304
 305/*
 306 * Reads up to 256 characters from the FIFO or until it's empty and
 307 * inserts them into the TTY layer. Returns the number of characters
 308 * read from the FIFO.
 309 */
 310static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 311{
 312	u16 status;
 313	unsigned int ch, flag, max_count = 256;
 314	int fifotaken = 0;
 315
 316	while (max_count--) {
 317		status = pl011_read(uap, REG_FR);
 318		if (status & UART01x_FR_RXFE)
 319			break;
 320
 321		/* Take chars from the FIFO and update status */
 322		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 
 323		flag = TTY_NORMAL;
 324		uap->port.icount.rx++;
 325		fifotaken++;
 326
 327		if (unlikely(ch & UART_DR_ERROR)) {
 328			if (ch & UART011_DR_BE) {
 329				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 330				uap->port.icount.brk++;
 331				if (uart_handle_break(&uap->port))
 332					continue;
 333			} else if (ch & UART011_DR_PE)
 334				uap->port.icount.parity++;
 335			else if (ch & UART011_DR_FE)
 336				uap->port.icount.frame++;
 337			if (ch & UART011_DR_OE)
 338				uap->port.icount.overrun++;
 339
 340			ch &= uap->port.read_status_mask;
 341
 342			if (ch & UART011_DR_BE)
 343				flag = TTY_BREAK;
 344			else if (ch & UART011_DR_PE)
 345				flag = TTY_PARITY;
 346			else if (ch & UART011_DR_FE)
 347				flag = TTY_FRAME;
 348		}
 349
 350		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 351			continue;
 352
 353		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 354	}
 355
 356	return fifotaken;
 357}
 358
 359
 360/*
 361 * All the DMA operation mode stuff goes inside this ifdef.
 362 * This assumes that you have a generic DMA device interface,
 363 * no custom DMA interfaces are supported.
 364 */
 365#ifdef CONFIG_DMA_ENGINE
 366
 367#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 368
 369static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 370	enum dma_data_direction dir)
 371{
 372	dma_addr_t dma_addr;
 373
 374	sg->buf = dma_alloc_coherent(chan->device->dev,
 375		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 376	if (!sg->buf)
 377		return -ENOMEM;
 378
 379	sg_init_table(&sg->sg, 1);
 380	sg_set_page(&sg->sg, phys_to_page(dma_addr),
 381		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 382	sg_dma_address(&sg->sg) = dma_addr;
 383	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
 384
 
 
 
 
 385	return 0;
 386}
 387
 388static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 389	enum dma_data_direction dir)
 390{
 391	if (sg->buf) {
 392		dma_free_coherent(chan->device->dev,
 393			PL011_DMA_BUFFER_SIZE, sg->buf,
 394			sg_dma_address(&sg->sg));
 395	}
 396}
 397
 398static void pl011_dma_probe(struct uart_amba_port *uap)
 399{
 400	/* DMA is the sole user of the platform data right now */
 401	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 402	struct device *dev = uap->port.dev;
 403	struct dma_slave_config tx_conf = {
 404		.dst_addr = uap->port.mapbase +
 405				 pl011_reg_to_offset(uap, REG_DR),
 406		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 407		.direction = DMA_MEM_TO_DEV,
 408		.dst_maxburst = uap->fifosize >> 1,
 409		.device_fc = false,
 410	};
 411	struct dma_chan *chan;
 412	dma_cap_mask_t mask;
 413
 414	uap->dma_probed = true;
 415	chan = dma_request_slave_channel_reason(dev, "tx");
 416	if (IS_ERR(chan)) {
 417		if (PTR_ERR(chan) == -EPROBE_DEFER) {
 418			uap->dma_probed = false;
 419			return;
 420		}
 421
 422		/* We need platform data */
 423		if (!plat || !plat->dma_filter) {
 424			dev_info(uap->port.dev, "no DMA platform data\n");
 425			return;
 426		}
 427
 428		/* Try to acquire a generic DMA engine slave TX channel */
 429		dma_cap_zero(mask);
 430		dma_cap_set(DMA_SLAVE, mask);
 431
 432		chan = dma_request_channel(mask, plat->dma_filter,
 433						plat->dma_tx_param);
 434		if (!chan) {
 435			dev_err(uap->port.dev, "no TX DMA channel!\n");
 436			return;
 437		}
 438	}
 439
 440	dmaengine_slave_config(chan, &tx_conf);
 441	uap->dmatx.chan = chan;
 442
 443	dev_info(uap->port.dev, "DMA channel TX %s\n",
 444		 dma_chan_name(uap->dmatx.chan));
 445
 446	/* Optionally make use of an RX channel as well */
 447	chan = dma_request_slave_channel(dev, "rx");
 
 
 
 
 
 
 448
 449	if (!chan && plat && plat->dma_rx_param) {
 450		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 451
 452		if (!chan) {
 453			dev_err(uap->port.dev, "no RX DMA channel!\n");
 454			return;
 455		}
 456	}
 457
 458	if (chan) {
 459		struct dma_slave_config rx_conf = {
 460			.src_addr = uap->port.mapbase +
 461				pl011_reg_to_offset(uap, REG_DR),
 462			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 463			.direction = DMA_DEV_TO_MEM,
 464			.src_maxburst = uap->fifosize >> 2,
 465			.device_fc = false,
 466		};
 467		struct dma_slave_caps caps;
 468
 469		/*
 470		 * Some DMA controllers provide information on their capabilities.
 471		 * If the controller does, check for suitable residue processing
 472		 * otherwise assime all is well.
 473		 */
 474		if (0 == dma_get_slave_caps(chan, &caps)) {
 475			if (caps.residue_granularity ==
 476					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 477				dma_release_channel(chan);
 478				dev_info(uap->port.dev,
 479					"RX DMA disabled - no residue processing\n");
 480				return;
 481			}
 482		}
 483		dmaengine_slave_config(chan, &rx_conf);
 484		uap->dmarx.chan = chan;
 485
 486		uap->dmarx.auto_poll_rate = false;
 487		if (plat && plat->dma_rx_poll_enable) {
 488			/* Set poll rate if specified. */
 489			if (plat->dma_rx_poll_rate) {
 490				uap->dmarx.auto_poll_rate = false;
 491				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 492			} else {
 493				/*
 494				 * 100 ms defaults to poll rate if not
 495				 * specified. This will be adjusted with
 496				 * the baud rate at set_termios.
 497				 */
 498				uap->dmarx.auto_poll_rate = true;
 499				uap->dmarx.poll_rate =  100;
 500			}
 501			/* 3 secs defaults poll_timeout if not specified. */
 502			if (plat->dma_rx_poll_timeout)
 503				uap->dmarx.poll_timeout =
 504					plat->dma_rx_poll_timeout;
 505			else
 506				uap->dmarx.poll_timeout = 3000;
 507		} else if (!plat && dev->of_node) {
 508			uap->dmarx.auto_poll_rate = of_property_read_bool(
 509						dev->of_node, "auto-poll");
 510			if (uap->dmarx.auto_poll_rate) {
 511				u32 x;
 512
 513				if (0 == of_property_read_u32(dev->of_node,
 514						"poll-rate-ms", &x))
 515					uap->dmarx.poll_rate = x;
 516				else
 517					uap->dmarx.poll_rate = 100;
 518				if (0 == of_property_read_u32(dev->of_node,
 519						"poll-timeout-ms", &x))
 520					uap->dmarx.poll_timeout = x;
 521				else
 522					uap->dmarx.poll_timeout = 3000;
 523			}
 524		}
 525		dev_info(uap->port.dev, "DMA channel RX %s\n",
 526			 dma_chan_name(uap->dmarx.chan));
 527	}
 528}
 529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 530static void pl011_dma_remove(struct uart_amba_port *uap)
 531{
 
 532	if (uap->dmatx.chan)
 533		dma_release_channel(uap->dmatx.chan);
 534	if (uap->dmarx.chan)
 535		dma_release_channel(uap->dmarx.chan);
 536}
 537
 538/* Forward declare these for the refill routine */
 539static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 540static void pl011_start_tx_pio(struct uart_amba_port *uap);
 541
 542/*
 543 * The current DMA TX buffer has been sent.
 544 * Try to queue up another DMA buffer.
 545 */
 546static void pl011_dma_tx_callback(void *data)
 547{
 548	struct uart_amba_port *uap = data;
 549	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 550	unsigned long flags;
 551	u16 dmacr;
 552
 553	spin_lock_irqsave(&uap->port.lock, flags);
 554	if (uap->dmatx.queued)
 555		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 556			     DMA_TO_DEVICE);
 557
 558	dmacr = uap->dmacr;
 559	uap->dmacr = dmacr & ~UART011_TXDMAE;
 560	pl011_write(uap->dmacr, uap, REG_DMACR);
 561
 562	/*
 563	 * If TX DMA was disabled, it means that we've stopped the DMA for
 564	 * some reason (eg, XOFF received, or we want to send an X-char.)
 565	 *
 566	 * Note: we need to be careful here of a potential race between DMA
 567	 * and the rest of the driver - if the driver disables TX DMA while
 568	 * a TX buffer completing, we must update the tx queued status to
 569	 * get further refills (hence we check dmacr).
 570	 */
 571	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 572	    uart_circ_empty(&uap->port.state->xmit)) {
 573		uap->dmatx.queued = false;
 574		spin_unlock_irqrestore(&uap->port.lock, flags);
 575		return;
 576	}
 577
 578	if (pl011_dma_tx_refill(uap) <= 0)
 579		/*
 580		 * We didn't queue a DMA buffer for some reason, but we
 581		 * have data pending to be sent.  Re-enable the TX IRQ.
 582		 */
 583		pl011_start_tx_pio(uap);
 584
 
 585	spin_unlock_irqrestore(&uap->port.lock, flags);
 586}
 587
 588/*
 589 * Try to refill the TX DMA buffer.
 590 * Locking: called with port lock held and IRQs disabled.
 591 * Returns:
 592 *   1 if we queued up a TX DMA buffer.
 593 *   0 if we didn't want to handle this by DMA
 594 *  <0 on error
 595 */
 596static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 597{
 598	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 599	struct dma_chan *chan = dmatx->chan;
 600	struct dma_device *dma_dev = chan->device;
 601	struct dma_async_tx_descriptor *desc;
 602	struct circ_buf *xmit = &uap->port.state->xmit;
 603	unsigned int count;
 604
 605	/*
 606	 * Try to avoid the overhead involved in using DMA if the
 607	 * transaction fits in the first half of the FIFO, by using
 608	 * the standard interrupt handling.  This ensures that we
 609	 * issue a uart_write_wakeup() at the appropriate time.
 610	 */
 611	count = uart_circ_chars_pending(xmit);
 612	if (count < (uap->fifosize >> 1)) {
 613		uap->dmatx.queued = false;
 614		return 0;
 615	}
 616
 617	/*
 618	 * Bodge: don't send the last character by DMA, as this
 619	 * will prevent XON from notifying us to restart DMA.
 620	 */
 621	count -= 1;
 622
 623	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 624	if (count > PL011_DMA_BUFFER_SIZE)
 625		count = PL011_DMA_BUFFER_SIZE;
 626
 627	if (xmit->tail < xmit->head)
 628		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 629	else {
 630		size_t first = UART_XMIT_SIZE - xmit->tail;
 631		size_t second;
 632
 633		if (first > count)
 634			first = count;
 635		second = count - first;
 636
 637		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 638		if (second)
 639			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 640	}
 641
 642	dmatx->sg.length = count;
 643
 644	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 645		uap->dmatx.queued = false;
 646		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 647		return -EBUSY;
 648	}
 649
 650	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 651					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 652	if (!desc) {
 653		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 654		uap->dmatx.queued = false;
 655		/*
 656		 * If DMA cannot be used right now, we complete this
 657		 * transaction via IRQ and let the TTY layer retry.
 658		 */
 659		dev_dbg(uap->port.dev, "TX DMA busy\n");
 660		return -EBUSY;
 661	}
 662
 663	/* Some data to go along to the callback */
 664	desc->callback = pl011_dma_tx_callback;
 665	desc->callback_param = uap;
 666
 667	/* All errors should happen at prepare time */
 668	dmaengine_submit(desc);
 669
 670	/* Fire the DMA transaction */
 671	dma_dev->device_issue_pending(chan);
 672
 673	uap->dmacr |= UART011_TXDMAE;
 674	pl011_write(uap->dmacr, uap, REG_DMACR);
 675	uap->dmatx.queued = true;
 676
 677	/*
 678	 * Now we know that DMA will fire, so advance the ring buffer
 679	 * with the stuff we just dispatched.
 680	 */
 681	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 682	uap->port.icount.tx += count;
 683
 684	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 685		uart_write_wakeup(&uap->port);
 686
 687	return 1;
 688}
 689
 690/*
 691 * We received a transmit interrupt without a pending X-char but with
 692 * pending characters.
 693 * Locking: called with port lock held and IRQs disabled.
 694 * Returns:
 695 *   false if we want to use PIO to transmit
 696 *   true if we queued a DMA buffer
 697 */
 698static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 699{
 700	if (!uap->using_tx_dma)
 701		return false;
 702
 703	/*
 704	 * If we already have a TX buffer queued, but received a
 705	 * TX interrupt, it will be because we've just sent an X-char.
 706	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 707	 */
 708	if (uap->dmatx.queued) {
 709		uap->dmacr |= UART011_TXDMAE;
 710		pl011_write(uap->dmacr, uap, REG_DMACR);
 711		uap->im &= ~UART011_TXIM;
 712		pl011_write(uap->im, uap, REG_IMSC);
 713		return true;
 714	}
 715
 716	/*
 717	 * We don't have a TX buffer queued, so try to queue one.
 718	 * If we successfully queued a buffer, mask the TX IRQ.
 719	 */
 720	if (pl011_dma_tx_refill(uap) > 0) {
 721		uap->im &= ~UART011_TXIM;
 722		pl011_write(uap->im, uap, REG_IMSC);
 723		return true;
 724	}
 725	return false;
 726}
 727
 728/*
 729 * Stop the DMA transmit (eg, due to received XOFF).
 730 * Locking: called with port lock held and IRQs disabled.
 731 */
 732static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 733{
 734	if (uap->dmatx.queued) {
 735		uap->dmacr &= ~UART011_TXDMAE;
 736		pl011_write(uap->dmacr, uap, REG_DMACR);
 737	}
 738}
 739
 740/*
 741 * Try to start a DMA transmit, or in the case of an XON/OFF
 742 * character queued for send, try to get that character out ASAP.
 743 * Locking: called with port lock held and IRQs disabled.
 744 * Returns:
 745 *   false if we want the TX IRQ to be enabled
 746 *   true if we have a buffer queued
 747 */
 748static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 749{
 750	u16 dmacr;
 751
 752	if (!uap->using_tx_dma)
 753		return false;
 754
 755	if (!uap->port.x_char) {
 756		/* no X-char, try to push chars out in DMA mode */
 757		bool ret = true;
 758
 759		if (!uap->dmatx.queued) {
 760			if (pl011_dma_tx_refill(uap) > 0) {
 761				uap->im &= ~UART011_TXIM;
 762				pl011_write(uap->im, uap, REG_IMSC);
 763			} else
 
 764				ret = false;
 
 
 765		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 766			uap->dmacr |= UART011_TXDMAE;
 767			pl011_write(uap->dmacr, uap, REG_DMACR);
 
 768		}
 769		return ret;
 770	}
 771
 772	/*
 773	 * We have an X-char to send.  Disable DMA to prevent it loading
 774	 * the TX fifo, and then see if we can stuff it into the FIFO.
 775	 */
 776	dmacr = uap->dmacr;
 777	uap->dmacr &= ~UART011_TXDMAE;
 778	pl011_write(uap->dmacr, uap, REG_DMACR);
 779
 780	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 781		/*
 782		 * No space in the FIFO, so enable the transmit interrupt
 783		 * so we know when there is space.  Note that once we've
 784		 * loaded the character, we should just re-enable DMA.
 785		 */
 786		return false;
 787	}
 788
 789	pl011_write(uap->port.x_char, uap, REG_DR);
 790	uap->port.icount.tx++;
 791	uap->port.x_char = 0;
 792
 793	/* Success - restore the DMA state */
 794	uap->dmacr = dmacr;
 795	pl011_write(dmacr, uap, REG_DMACR);
 796
 797	return true;
 798}
 799
 800/*
 801 * Flush the transmit buffer.
 802 * Locking: called with port lock held and IRQs disabled.
 803 */
 804static void pl011_dma_flush_buffer(struct uart_port *port)
 805__releases(&uap->port.lock)
 806__acquires(&uap->port.lock)
 807{
 808	struct uart_amba_port *uap =
 809	    container_of(port, struct uart_amba_port, port);
 810
 811	if (!uap->using_tx_dma)
 812		return;
 813
 814	/* Avoid deadlock with the DMA engine callback */
 815	spin_unlock(&uap->port.lock);
 816	dmaengine_terminate_all(uap->dmatx.chan);
 817	spin_lock(&uap->port.lock);
 818	if (uap->dmatx.queued) {
 819		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 820			     DMA_TO_DEVICE);
 821		uap->dmatx.queued = false;
 822		uap->dmacr &= ~UART011_TXDMAE;
 823		pl011_write(uap->dmacr, uap, REG_DMACR);
 824	}
 825}
 826
 827static void pl011_dma_rx_callback(void *data);
 828
 829static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 830{
 831	struct dma_chan *rxchan = uap->dmarx.chan;
 
 832	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 833	struct dma_async_tx_descriptor *desc;
 834	struct pl011_sgbuf *sgbuf;
 835
 836	if (!rxchan)
 837		return -EIO;
 838
 839	/* Start the RX DMA job */
 840	sgbuf = uap->dmarx.use_buf_b ?
 841		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 842	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 843					DMA_DEV_TO_MEM,
 
 844					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 845	/*
 846	 * If the DMA engine is busy and cannot prepare a
 847	 * channel, no big deal, the driver will fall back
 848	 * to interrupt mode as a result of this error code.
 849	 */
 850	if (!desc) {
 851		uap->dmarx.running = false;
 852		dmaengine_terminate_all(rxchan);
 853		return -EBUSY;
 854	}
 855
 856	/* Some data to go along to the callback */
 857	desc->callback = pl011_dma_rx_callback;
 858	desc->callback_param = uap;
 859	dmarx->cookie = dmaengine_submit(desc);
 860	dma_async_issue_pending(rxchan);
 861
 862	uap->dmacr |= UART011_RXDMAE;
 863	pl011_write(uap->dmacr, uap, REG_DMACR);
 864	uap->dmarx.running = true;
 865
 866	uap->im &= ~UART011_RXIM;
 867	pl011_write(uap->im, uap, REG_IMSC);
 868
 869	return 0;
 870}
 871
 872/*
 873 * This is called when either the DMA job is complete, or
 874 * the FIFO timeout interrupt occurred. This must be called
 875 * with the port spinlock uap->port.lock held.
 876 */
 877static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 878			       u32 pending, bool use_buf_b,
 879			       bool readfifo)
 880{
 881	struct tty_port *port = &uap->port.state->port;
 882	struct pl011_sgbuf *sgbuf = use_buf_b ?
 883		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 
 884	int dma_count = 0;
 885	u32 fifotaken = 0; /* only used for vdbg() */
 886
 887	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 888	int dmataken = 0;
 889
 890	if (uap->dmarx.poll_rate) {
 891		/* The data can be taken by polling */
 892		dmataken = sgbuf->sg.length - dmarx->last_residue;
 893		/* Recalculate the pending size */
 894		if (pending >= dmataken)
 895			pending -= dmataken;
 896	}
 897
 898	/* Pick the remain data from the DMA */
 899	if (pending) {
 
 
 900
 901		/*
 902		 * First take all chars in the DMA pipe, then look in the FIFO.
 903		 * Note that tty_insert_flip_buf() tries to take as many chars
 904		 * as it can.
 905		 */
 906		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 907				pending);
 
 
 
 908
 909		uap->port.icount.rx += dma_count;
 910		if (dma_count < pending)
 911			dev_warn(uap->port.dev,
 912				 "couldn't insert all characters (TTY is full?)\n");
 913	}
 914
 915	/* Reset the last_residue for Rx DMA poll */
 916	if (uap->dmarx.poll_rate)
 917		dmarx->last_residue = sgbuf->sg.length;
 918
 919	/*
 920	 * Only continue with trying to read the FIFO if all DMA chars have
 921	 * been taken first.
 922	 */
 923	if (dma_count == pending && readfifo) {
 924		/* Clear any error flags */
 925		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 926			    UART011_FEIS, uap, REG_ICR);
 927
 928		/*
 929		 * If we read all the DMA'd characters, and we had an
 930		 * incomplete buffer, that could be due to an rx error, or
 931		 * maybe we just timed out. Read any pending chars and check
 932		 * the error status.
 933		 *
 934		 * Error conditions will only occur in the FIFO, these will
 935		 * trigger an immediate interrupt and stop the DMA job, so we
 936		 * will always find the error in the FIFO, never in the DMA
 937		 * buffer.
 938		 */
 939		fifotaken = pl011_fifo_to_tty(uap);
 940	}
 941
 942	spin_unlock(&uap->port.lock);
 943	dev_vdbg(uap->port.dev,
 944		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 945		 dma_count, fifotaken);
 946	tty_flip_buffer_push(port);
 947	spin_lock(&uap->port.lock);
 948}
 949
 950static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 951{
 952	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 953	struct dma_chan *rxchan = dmarx->chan;
 954	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 955		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 956	size_t pending;
 957	struct dma_tx_state state;
 958	enum dma_status dmastat;
 959
 960	/*
 961	 * Pause the transfer so we can trust the current counter,
 962	 * do this before we pause the PL011 block, else we may
 963	 * overflow the FIFO.
 964	 */
 965	if (dmaengine_pause(rxchan))
 966		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 967	dmastat = rxchan->device->device_tx_status(rxchan,
 968						   dmarx->cookie, &state);
 969	if (dmastat != DMA_PAUSED)
 970		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 971
 972	/* Disable RX DMA - incoming data will wait in the FIFO */
 973	uap->dmacr &= ~UART011_RXDMAE;
 974	pl011_write(uap->dmacr, uap, REG_DMACR);
 975	uap->dmarx.running = false;
 976
 977	pending = sgbuf->sg.length - state.residue;
 978	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 979	/* Then we terminate the transfer - we now know our residue */
 980	dmaengine_terminate_all(rxchan);
 981
 982	/*
 983	 * This will take the chars we have so far and insert
 984	 * into the framework.
 985	 */
 986	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 987
 988	/* Switch buffer & re-trigger DMA job */
 989	dmarx->use_buf_b = !dmarx->use_buf_b;
 990	if (pl011_dma_rx_trigger_dma(uap)) {
 991		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 992			"fall back to interrupt mode\n");
 993		uap->im |= UART011_RXIM;
 994		pl011_write(uap->im, uap, REG_IMSC);
 995	}
 996}
 997
 998static void pl011_dma_rx_callback(void *data)
 999{
1000	struct uart_amba_port *uap = data;
1001	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1002	struct dma_chan *rxchan = dmarx->chan;
1003	bool lastbuf = dmarx->use_buf_b;
1004	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1005		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1006	size_t pending;
1007	struct dma_tx_state state;
1008	int ret;
1009
1010	/*
1011	 * This completion interrupt occurs typically when the
1012	 * RX buffer is totally stuffed but no timeout has yet
1013	 * occurred. When that happens, we just want the RX
1014	 * routine to flush out the secondary DMA buffer while
1015	 * we immediately trigger the next DMA job.
1016	 */
1017	spin_lock_irq(&uap->port.lock);
1018	/*
1019	 * Rx data can be taken by the UART interrupts during
1020	 * the DMA irq handler. So we check the residue here.
1021	 */
1022	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1023	pending = sgbuf->sg.length - state.residue;
1024	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1025	/* Then we terminate the transfer - we now know our residue */
1026	dmaengine_terminate_all(rxchan);
1027
1028	uap->dmarx.running = false;
1029	dmarx->use_buf_b = !lastbuf;
1030	ret = pl011_dma_rx_trigger_dma(uap);
1031
1032	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1033	spin_unlock_irq(&uap->port.lock);
1034	/*
1035	 * Do this check after we picked the DMA chars so we don't
1036	 * get some IRQ immediately from RX.
1037	 */
1038	if (ret) {
1039		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1040			"fall back to interrupt mode\n");
1041		uap->im |= UART011_RXIM;
1042		pl011_write(uap->im, uap, REG_IMSC);
1043	}
1044}
1045
1046/*
1047 * Stop accepting received characters, when we're shutting down or
1048 * suspending this port.
1049 * Locking: called with port lock held and IRQs disabled.
1050 */
1051static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1052{
1053	/* FIXME.  Just disable the DMA enable */
1054	uap->dmacr &= ~UART011_RXDMAE;
1055	pl011_write(uap->dmacr, uap, REG_DMACR);
1056}
1057
1058/*
1059 * Timer handler for Rx DMA polling.
1060 * Every polling, It checks the residue in the dma buffer and transfer
1061 * data to the tty. Also, last_residue is updated for the next polling.
1062 */
1063static void pl011_dma_rx_poll(unsigned long args)
1064{
1065	struct uart_amba_port *uap = (struct uart_amba_port *)args;
1066	struct tty_port *port = &uap->port.state->port;
1067	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1068	struct dma_chan *rxchan = uap->dmarx.chan;
1069	unsigned long flags = 0;
1070	unsigned int dmataken = 0;
1071	unsigned int size = 0;
1072	struct pl011_sgbuf *sgbuf;
1073	int dma_count;
1074	struct dma_tx_state state;
1075
1076	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1077	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1078	if (likely(state.residue < dmarx->last_residue)) {
1079		dmataken = sgbuf->sg.length - dmarx->last_residue;
1080		size = dmarx->last_residue - state.residue;
1081		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1082				size);
1083		if (dma_count == size)
1084			dmarx->last_residue =  state.residue;
1085		dmarx->last_jiffies = jiffies;
1086	}
1087	tty_flip_buffer_push(port);
1088
1089	/*
1090	 * If no data is received in poll_timeout, the driver will fall back
1091	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1092	 */
1093	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1094			> uap->dmarx.poll_timeout) {
1095
1096		spin_lock_irqsave(&uap->port.lock, flags);
1097		pl011_dma_rx_stop(uap);
1098		uap->im |= UART011_RXIM;
1099		pl011_write(uap->im, uap, REG_IMSC);
1100		spin_unlock_irqrestore(&uap->port.lock, flags);
1101
1102		uap->dmarx.running = false;
1103		dmaengine_terminate_all(rxchan);
1104		del_timer(&uap->dmarx.timer);
1105	} else {
1106		mod_timer(&uap->dmarx.timer,
1107			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1108	}
1109}
1110
1111static void pl011_dma_startup(struct uart_amba_port *uap)
1112{
1113	int ret;
1114
1115	if (!uap->dma_probed)
1116		pl011_dma_probe(uap);
1117
1118	if (!uap->dmatx.chan)
1119		return;
1120
1121	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1122	if (!uap->dmatx.buf) {
1123		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1124		uap->port.fifosize = uap->fifosize;
1125		return;
1126	}
1127
1128	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1129
1130	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1131	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1132	uap->using_tx_dma = true;
1133
1134	if (!uap->dmarx.chan)
1135		goto skip_rx;
1136
1137	/* Allocate and map DMA RX buffers */
1138	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1139			       DMA_FROM_DEVICE);
1140	if (ret) {
1141		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1142			"RX buffer A", ret);
1143		goto skip_rx;
1144	}
1145
1146	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1147			       DMA_FROM_DEVICE);
1148	if (ret) {
1149		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1150			"RX buffer B", ret);
1151		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1152				 DMA_FROM_DEVICE);
1153		goto skip_rx;
1154	}
1155
1156	uap->using_rx_dma = true;
1157
1158skip_rx:
1159	/* Turn on DMA error (RX/TX will be enabled on demand) */
1160	uap->dmacr |= UART011_DMAONERR;
1161	pl011_write(uap->dmacr, uap, REG_DMACR);
1162
1163	/*
1164	 * ST Micro variants has some specific dma burst threshold
1165	 * compensation. Set this to 16 bytes, so burst will only
1166	 * be issued above/below 16 bytes.
1167	 */
1168	if (uap->vendor->dma_threshold)
1169		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1170			    uap, REG_ST_DMAWM);
1171
1172	if (uap->using_rx_dma) {
1173		if (pl011_dma_rx_trigger_dma(uap))
1174			dev_dbg(uap->port.dev, "could not trigger initial "
1175				"RX DMA job, fall back to interrupt mode\n");
1176		if (uap->dmarx.poll_rate) {
1177			init_timer(&(uap->dmarx.timer));
1178			uap->dmarx.timer.function = pl011_dma_rx_poll;
1179			uap->dmarx.timer.data = (unsigned long)uap;
1180			mod_timer(&uap->dmarx.timer,
1181				jiffies +
1182				msecs_to_jiffies(uap->dmarx.poll_rate));
1183			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1184			uap->dmarx.last_jiffies = jiffies;
1185		}
1186	}
1187}
1188
1189static void pl011_dma_shutdown(struct uart_amba_port *uap)
1190{
1191	if (!(uap->using_tx_dma || uap->using_rx_dma))
1192		return;
1193
1194	/* Disable RX and TX DMA */
1195	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1196		cpu_relax();
1197
1198	spin_lock_irq(&uap->port.lock);
1199	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1200	pl011_write(uap->dmacr, uap, REG_DMACR);
1201	spin_unlock_irq(&uap->port.lock);
1202
1203	if (uap->using_tx_dma) {
1204		/* In theory, this should already be done by pl011_dma_flush_buffer */
1205		dmaengine_terminate_all(uap->dmatx.chan);
1206		if (uap->dmatx.queued) {
1207			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1208				     DMA_TO_DEVICE);
1209			uap->dmatx.queued = false;
1210		}
1211
1212		kfree(uap->dmatx.buf);
1213		uap->using_tx_dma = false;
1214	}
1215
1216	if (uap->using_rx_dma) {
1217		dmaengine_terminate_all(uap->dmarx.chan);
1218		/* Clean up the RX DMA */
1219		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1220		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1221		if (uap->dmarx.poll_rate)
1222			del_timer_sync(&uap->dmarx.timer);
1223		uap->using_rx_dma = false;
1224	}
1225}
1226
1227static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1228{
1229	return uap->using_rx_dma;
1230}
1231
1232static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1233{
1234	return uap->using_rx_dma && uap->dmarx.running;
1235}
1236
 
1237#else
1238/* Blank functions if the DMA engine is not available */
1239static inline void pl011_dma_probe(struct uart_amba_port *uap)
1240{
1241}
1242
1243static inline void pl011_dma_remove(struct uart_amba_port *uap)
1244{
1245}
1246
1247static inline void pl011_dma_startup(struct uart_amba_port *uap)
1248{
1249}
1250
1251static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1256{
1257	return false;
1258}
1259
1260static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1261{
1262}
1263
1264static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1265{
1266	return false;
1267}
1268
1269static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1270{
1271}
1272
1273static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1274{
1275}
1276
1277static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1278{
1279	return -EIO;
1280}
1281
1282static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1283{
1284	return false;
1285}
1286
1287static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1288{
1289	return false;
1290}
1291
1292#define pl011_dma_flush_buffer	NULL
1293#endif
1294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295static void pl011_stop_tx(struct uart_port *port)
1296{
1297	struct uart_amba_port *uap =
1298	    container_of(port, struct uart_amba_port, port);
1299
1300	uap->im &= ~UART011_TXIM;
1301	pl011_write(uap->im, uap, REG_IMSC);
1302	pl011_dma_tx_stop(uap);
1303}
1304
1305static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1306
1307/* Start TX with programmed I/O only (no DMA) */
1308static void pl011_start_tx_pio(struct uart_amba_port *uap)
1309{
1310	uap->im |= UART011_TXIM;
1311	pl011_write(uap->im, uap, REG_IMSC);
1312	pl011_tx_chars(uap, false);
1313}
1314
1315static void pl011_start_tx(struct uart_port *port)
1316{
1317	struct uart_amba_port *uap =
1318	    container_of(port, struct uart_amba_port, port);
1319
1320	if (!pl011_dma_tx_start(uap))
1321		pl011_start_tx_pio(uap);
 
 
1322}
1323
1324static void pl011_stop_rx(struct uart_port *port)
1325{
1326	struct uart_amba_port *uap =
1327	    container_of(port, struct uart_amba_port, port);
1328
1329	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1330		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1331	pl011_write(uap->im, uap, REG_IMSC);
1332
1333	pl011_dma_rx_stop(uap);
1334}
1335
1336static void pl011_enable_ms(struct uart_port *port)
1337{
1338	struct uart_amba_port *uap =
1339	    container_of(port, struct uart_amba_port, port);
1340
1341	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1342	pl011_write(uap->im, uap, REG_IMSC);
1343}
1344
1345static void pl011_rx_chars(struct uart_amba_port *uap)
1346__releases(&uap->port.lock)
1347__acquires(&uap->port.lock)
1348{
 
 
1349	pl011_fifo_to_tty(uap);
1350
1351	spin_unlock(&uap->port.lock);
1352	tty_flip_buffer_push(&uap->port.state->port);
1353	/*
1354	 * If we were temporarily out of DMA mode for a while,
1355	 * attempt to switch back to DMA mode again.
1356	 */
1357	if (pl011_dma_rx_available(uap)) {
1358		if (pl011_dma_rx_trigger_dma(uap)) {
1359			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1360				"fall back to interrupt mode again\n");
1361			uap->im |= UART011_RXIM;
1362			pl011_write(uap->im, uap, REG_IMSC);
1363		} else {
1364#ifdef CONFIG_DMA_ENGINE
1365			/* Start Rx DMA poll */
1366			if (uap->dmarx.poll_rate) {
1367				uap->dmarx.last_jiffies = jiffies;
1368				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1369				mod_timer(&uap->dmarx.timer,
1370					jiffies +
1371					msecs_to_jiffies(uap->dmarx.poll_rate));
1372			}
1373#endif
1374		}
1375	}
1376	spin_lock(&uap->port.lock);
1377}
1378
1379static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1380			  bool from_irq)
1381{
1382	if (unlikely(!from_irq) &&
1383	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1384		return false; /* unable to transmit character */
1385
1386	pl011_write(c, uap, REG_DR);
1387	uap->port.icount.tx++;
1388
1389	return true;
1390}
1391
1392static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1393{
1394	struct circ_buf *xmit = &uap->port.state->xmit;
1395	int count = uap->fifosize >> 1;
1396
1397	if (uap->port.x_char) {
1398		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1399			return;
1400		uap->port.x_char = 0;
1401		--count;
1402	}
1403	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1404		pl011_stop_tx(&uap->port);
1405		return;
1406	}
1407
1408	/* If we are using DMA mode, try to send some characters. */
1409	if (pl011_dma_tx_irq(uap))
1410		return;
1411
 
1412	do {
1413		if (likely(from_irq) && count-- == 0)
 
 
 
1414			break;
1415
1416		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1417			break;
1418
1419		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1420	} while (!uart_circ_empty(xmit));
1421
1422	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1423		uart_write_wakeup(&uap->port);
1424
1425	if (uart_circ_empty(xmit))
1426		pl011_stop_tx(&uap->port);
1427}
1428
1429static void pl011_modem_status(struct uart_amba_port *uap)
1430{
1431	unsigned int status, delta;
1432
1433	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1434
1435	delta = status ^ uap->old_status;
1436	uap->old_status = status;
1437
1438	if (!delta)
1439		return;
1440
1441	if (delta & UART01x_FR_DCD)
1442		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1443
1444	if (delta & uap->vendor->fr_dsr)
1445		uap->port.icount.dsr++;
1446
1447	if (delta & uap->vendor->fr_cts)
1448		uart_handle_cts_change(&uap->port,
1449				       status & uap->vendor->fr_cts);
1450
1451	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1452}
1453
1454static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1455{
1456	unsigned int dummy_read;
1457
1458	if (!uap->vendor->cts_event_workaround)
1459		return;
1460
1461	/* workaround to make sure that all bits are unlocked.. */
1462	pl011_write(0x00, uap, REG_ICR);
1463
1464	/*
1465	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1466	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1467	 * so add 2 dummy reads
1468	 */
1469	dummy_read = pl011_read(uap, REG_ICR);
1470	dummy_read = pl011_read(uap, REG_ICR);
1471}
1472
1473static irqreturn_t pl011_int(int irq, void *dev_id)
1474{
1475	struct uart_amba_port *uap = dev_id;
1476	unsigned long flags;
1477	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1478	u16 imsc;
1479	int handled = 0;
1480
1481	spin_lock_irqsave(&uap->port.lock, flags);
1482	imsc = pl011_read(uap, REG_IMSC);
1483	status = pl011_read(uap, REG_RIS) & imsc;
1484	if (status) {
1485		do {
1486			check_apply_cts_event_workaround(uap);
1487
1488			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1489					       UART011_RXIS),
1490				    uap, REG_ICR);
1491
1492			if (status & (UART011_RTIS|UART011_RXIS)) {
1493				if (pl011_dma_rx_running(uap))
1494					pl011_dma_rx_irq(uap);
1495				else
1496					pl011_rx_chars(uap);
1497			}
1498			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1499				      UART011_CTSMIS|UART011_RIMIS))
1500				pl011_modem_status(uap);
1501			if (status & UART011_TXIS)
1502				pl011_tx_chars(uap, true);
1503
1504			if (pass_counter-- == 0)
 
 
1505				break;
 
1506
1507			status = pl011_read(uap, REG_RIS) & imsc;
1508		} while (status != 0);
1509		handled = 1;
1510	}
1511
1512	spin_unlock_irqrestore(&uap->port.lock, flags);
1513
1514	return IRQ_RETVAL(handled);
1515}
1516
1517static unsigned int pl011_tx_empty(struct uart_port *port)
1518{
1519	struct uart_amba_port *uap =
1520	    container_of(port, struct uart_amba_port, port);
1521	unsigned int status = pl011_read(uap, REG_FR);
1522	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1523							0 : TIOCSER_TEMT;
1524}
1525
1526static unsigned int pl011_get_mctrl(struct uart_port *port)
1527{
1528	struct uart_amba_port *uap =
1529	    container_of(port, struct uart_amba_port, port);
1530	unsigned int result = 0;
1531	unsigned int status = pl011_read(uap, REG_FR);
1532
1533#define TIOCMBIT(uartbit, tiocmbit)	\
1534	if (status & uartbit)		\
1535		result |= tiocmbit
1536
1537	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1538	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1539	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1540	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1541#undef TIOCMBIT
1542	return result;
1543}
1544
1545static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1546{
1547	struct uart_amba_port *uap =
1548	    container_of(port, struct uart_amba_port, port);
1549	unsigned int cr;
1550
1551	cr = pl011_read(uap, REG_CR);
1552
1553#define	TIOCMBIT(tiocmbit, uartbit)		\
1554	if (mctrl & tiocmbit)		\
1555		cr |= uartbit;		\
1556	else				\
1557		cr &= ~uartbit
1558
1559	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1560	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1561	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1562	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1563	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1564
1565	if (uap->autorts) {
1566		/* We need to disable auto-RTS if we want to turn RTS off */
1567		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1568	}
1569#undef TIOCMBIT
1570
1571	pl011_write(cr, uap, REG_CR);
1572}
1573
1574static void pl011_break_ctl(struct uart_port *port, int break_state)
1575{
1576	struct uart_amba_port *uap =
1577	    container_of(port, struct uart_amba_port, port);
1578	unsigned long flags;
1579	unsigned int lcr_h;
1580
1581	spin_lock_irqsave(&uap->port.lock, flags);
1582	lcr_h = pl011_read(uap, REG_LCRH_TX);
1583	if (break_state == -1)
1584		lcr_h |= UART01x_LCRH_BRK;
1585	else
1586		lcr_h &= ~UART01x_LCRH_BRK;
1587	pl011_write(lcr_h, uap, REG_LCRH_TX);
1588	spin_unlock_irqrestore(&uap->port.lock, flags);
1589}
1590
1591#ifdef CONFIG_CONSOLE_POLL
1592
1593static void pl011_quiesce_irqs(struct uart_port *port)
1594{
1595	struct uart_amba_port *uap =
1596	    container_of(port, struct uart_amba_port, port);
1597
1598	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1599	/*
1600	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1601	 * we simply mask it. start_tx() will unmask it.
1602	 *
1603	 * Note we can race with start_tx(), and if the race happens, the
1604	 * polling user might get another interrupt just after we clear it.
1605	 * But it should be OK and can happen even w/o the race, e.g.
1606	 * controller immediately got some new data and raised the IRQ.
1607	 *
1608	 * And whoever uses polling routines assumes that it manages the device
1609	 * (including tx queue), so we're also fine with start_tx()'s caller
1610	 * side.
1611	 */
1612	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1613		    REG_IMSC);
1614}
1615
1616static int pl011_get_poll_char(struct uart_port *port)
1617{
1618	struct uart_amba_port *uap =
1619	    container_of(port, struct uart_amba_port, port);
1620	unsigned int status;
1621
1622	/*
1623	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1624	 * debugger.
1625	 */
1626	pl011_quiesce_irqs(port);
1627
1628	status = pl011_read(uap, REG_FR);
1629	if (status & UART01x_FR_RXFE)
1630		return NO_POLL_CHAR;
1631
1632	return pl011_read(uap, REG_DR);
1633}
1634
1635static void pl011_put_poll_char(struct uart_port *port,
1636			 unsigned char ch)
1637{
1638	struct uart_amba_port *uap =
1639	    container_of(port, struct uart_amba_port, port);
1640
1641	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1642		cpu_relax();
1643
1644	pl011_write(ch, uap, REG_DR);
1645}
1646
1647#endif /* CONFIG_CONSOLE_POLL */
1648
1649static int pl011_hwinit(struct uart_port *port)
1650{
1651	struct uart_amba_port *uap =
1652	    container_of(port, struct uart_amba_port, port);
1653	int retval;
1654
1655	/* Optionaly enable pins to be muxed in and configured */
1656	pinctrl_pm_select_default_state(port->dev);
1657
1658	/*
1659	 * Try to enable the clock producer.
1660	 */
1661	retval = clk_prepare_enable(uap->clk);
1662	if (retval)
1663		return retval;
1664
1665	uap->port.uartclk = clk_get_rate(uap->clk);
1666
1667	/* Clear pending error and receive interrupts */
1668	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1669		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1670		    uap, REG_ICR);
1671
1672	/*
1673	 * Save interrupts enable mask, and enable RX interrupts in case if
1674	 * the interrupt is used for NMI entry.
1675	 */
1676	uap->im = pl011_read(uap, REG_IMSC);
1677	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
 
1678
1679	if (dev_get_platdata(uap->port.dev)) {
1680		struct amba_pl011_data *plat;
1681
1682		plat = dev_get_platdata(uap->port.dev);
1683		if (plat->init)
1684			plat->init();
1685	}
1686	return 0;
1687}
1688
1689static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1690{
1691	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1692	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1693}
1694
1695static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1696{
1697	pl011_write(lcr_h, uap, REG_LCRH_RX);
1698	if (pl011_split_lcrh(uap)) {
1699		int i;
1700		/*
1701		 * Wait 10 PCLKs before writing LCRH_TX register,
1702		 * to get this delay write read only register 10 times
1703		 */
1704		for (i = 0; i < 10; ++i)
1705			pl011_write(0xff, uap, REG_MIS);
1706		pl011_write(lcr_h, uap, REG_LCRH_TX);
1707	}
1708}
 
 
 
 
 
 
 
 
 
1709
1710static int pl011_allocate_irq(struct uart_amba_port *uap)
1711{
1712	pl011_write(uap->im, uap, REG_IMSC);
 
1713
1714	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1715}
1716
1717/*
1718 * Enable interrupts, only timeouts when using DMA
1719 * if initial RX DMA job failed, start in interrupt mode
1720 * as well.
1721 */
1722static void pl011_enable_interrupts(struct uart_amba_port *uap)
1723{
1724	spin_lock_irq(&uap->port.lock);
1725
1726	/* Clear out any spuriously appearing RX interrupts */
1727	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1728	uap->im = UART011_RTIM;
1729	if (!pl011_dma_rx_running(uap))
1730		uap->im |= UART011_RXIM;
1731	pl011_write(uap->im, uap, REG_IMSC);
1732	spin_unlock_irq(&uap->port.lock);
1733}
1734
1735static int pl011_startup(struct uart_port *port)
1736{
1737	struct uart_amba_port *uap =
1738	    container_of(port, struct uart_amba_port, port);
1739	unsigned int cr;
1740	int retval;
1741
1742	retval = pl011_hwinit(port);
1743	if (retval)
1744		goto clk_dis;
1745
1746	retval = pl011_allocate_irq(uap);
1747	if (retval)
1748		goto clk_dis;
1749
1750	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1751
1752	spin_lock_irq(&uap->port.lock);
1753
1754	/* restore RTS and DTR */
1755	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1756	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1757	pl011_write(cr, uap, REG_CR);
1758
1759	spin_unlock_irq(&uap->port.lock);
1760
1761	/*
1762	 * initialise the old status of the modem signals
1763	 */
1764	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1765
1766	/* Startup DMA */
1767	pl011_dma_startup(uap);
1768
1769	pl011_enable_interrupts(uap);
1770
1771	return 0;
1772
1773 clk_dis:
1774	clk_disable_unprepare(uap->clk);
 
1775	return retval;
1776}
1777
1778static int sbsa_uart_startup(struct uart_port *port)
1779{
1780	struct uart_amba_port *uap =
1781		container_of(port, struct uart_amba_port, port);
1782	int retval;
1783
1784	retval = pl011_hwinit(port);
1785	if (retval)
1786		return retval;
1787
1788	retval = pl011_allocate_irq(uap);
1789	if (retval)
1790		return retval;
1791
1792	/* The SBSA UART does not support any modem status lines. */
1793	uap->old_status = 0;
1794
1795	pl011_enable_interrupts(uap);
1796
1797	return 0;
1798}
1799
1800static void pl011_shutdown_channel(struct uart_amba_port *uap,
1801					unsigned int lcrh)
1802{
1803      unsigned long val;
1804
1805      val = pl011_read(uap, lcrh);
1806      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1807      pl011_write(val, uap, lcrh);
1808}
1809
1810/*
1811 * disable the port. It should not disable RTS and DTR.
1812 * Also RTS and DTR state should be preserved to restore
1813 * it during startup().
1814 */
1815static void pl011_disable_uart(struct uart_amba_port *uap)
1816{
1817	unsigned int cr;
1818
1819	uap->autorts = false;
1820	spin_lock_irq(&uap->port.lock);
1821	cr = pl011_read(uap, REG_CR);
1822	uap->old_cr = cr;
1823	cr &= UART011_CR_RTS | UART011_CR_DTR;
1824	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1825	pl011_write(cr, uap, REG_CR);
1826	spin_unlock_irq(&uap->port.lock);
1827
1828	/*
1829	 * disable break condition and fifos
1830	 */
1831	pl011_shutdown_channel(uap, REG_LCRH_RX);
1832	if (pl011_split_lcrh(uap))
1833		pl011_shutdown_channel(uap, REG_LCRH_TX);
1834}
1835
1836static void pl011_disable_interrupts(struct uart_amba_port *uap)
1837{
1838	spin_lock_irq(&uap->port.lock);
1839
1840	/* mask all interrupts and clear all pending ones */
1841	uap->im = 0;
1842	pl011_write(uap->im, uap, REG_IMSC);
1843	pl011_write(0xffff, uap, REG_ICR);
1844
1845	spin_unlock_irq(&uap->port.lock);
1846}
1847
1848static void pl011_shutdown(struct uart_port *port)
1849{
1850	struct uart_amba_port *uap =
1851		container_of(port, struct uart_amba_port, port);
1852
1853	pl011_disable_interrupts(uap);
1854
1855	pl011_dma_shutdown(uap);
1856
 
 
 
1857	free_irq(uap->port.irq, uap);
1858
1859	pl011_disable_uart(uap);
 
 
 
 
 
 
 
 
 
 
 
1860
1861	/*
1862	 * Shut down the clock producer
1863	 */
1864	clk_disable_unprepare(uap->clk);
1865	/* Optionally let pins go into sleep states */
1866	pinctrl_pm_select_sleep_state(port->dev);
1867
1868	if (dev_get_platdata(uap->port.dev)) {
1869		struct amba_pl011_data *plat;
1870
1871		plat = dev_get_platdata(uap->port.dev);
1872		if (plat->exit)
1873			plat->exit();
1874	}
1875
1876	if (uap->port.ops->flush_buffer)
1877		uap->port.ops->flush_buffer(port);
1878}
1879
1880static void sbsa_uart_shutdown(struct uart_port *port)
1881{
1882	struct uart_amba_port *uap =
1883		container_of(port, struct uart_amba_port, port);
1884
1885	pl011_disable_interrupts(uap);
1886
1887	free_irq(uap->port.irq, uap);
1888
1889	if (uap->port.ops->flush_buffer)
1890		uap->port.ops->flush_buffer(port);
1891}
1892
1893static void
1894pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1895{
1896	port->read_status_mask = UART011_DR_OE | 255;
1897	if (termios->c_iflag & INPCK)
1898		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1899	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1900		port->read_status_mask |= UART011_DR_BE;
1901
1902	/*
1903	 * Characters to ignore
1904	 */
1905	port->ignore_status_mask = 0;
1906	if (termios->c_iflag & IGNPAR)
1907		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1908	if (termios->c_iflag & IGNBRK) {
1909		port->ignore_status_mask |= UART011_DR_BE;
1910		/*
1911		 * If we're ignoring parity and break indicators,
1912		 * ignore overruns too (for real raw support).
1913		 */
1914		if (termios->c_iflag & IGNPAR)
1915			port->ignore_status_mask |= UART011_DR_OE;
1916	}
1917
1918	/*
1919	 * Ignore all characters if CREAD is not set.
1920	 */
1921	if ((termios->c_cflag & CREAD) == 0)
1922		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1923}
1924
1925static void
1926pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1927		     struct ktermios *old)
1928{
1929	struct uart_amba_port *uap =
1930	    container_of(port, struct uart_amba_port, port);
1931	unsigned int lcr_h, old_cr;
1932	unsigned long flags;
1933	unsigned int baud, quot, clkdiv;
1934
1935	if (uap->vendor->oversampling)
1936		clkdiv = 8;
1937	else
1938		clkdiv = 16;
1939
1940	/*
1941	 * Ask the core to calculate the divisor for us.
1942	 */
1943	baud = uart_get_baud_rate(port, termios, old, 0,
1944				  port->uartclk / clkdiv);
1945#ifdef CONFIG_DMA_ENGINE
1946	/*
1947	 * Adjust RX DMA polling rate with baud rate if not specified.
1948	 */
1949	if (uap->dmarx.auto_poll_rate)
1950		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1951#endif
1952
1953	if (baud > port->uartclk/16)
1954		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1955	else
1956		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1957
1958	switch (termios->c_cflag & CSIZE) {
1959	case CS5:
1960		lcr_h = UART01x_LCRH_WLEN_5;
1961		break;
1962	case CS6:
1963		lcr_h = UART01x_LCRH_WLEN_6;
1964		break;
1965	case CS7:
1966		lcr_h = UART01x_LCRH_WLEN_7;
1967		break;
1968	default: // CS8
1969		lcr_h = UART01x_LCRH_WLEN_8;
1970		break;
1971	}
1972	if (termios->c_cflag & CSTOPB)
1973		lcr_h |= UART01x_LCRH_STP2;
1974	if (termios->c_cflag & PARENB) {
1975		lcr_h |= UART01x_LCRH_PEN;
1976		if (!(termios->c_cflag & PARODD))
1977			lcr_h |= UART01x_LCRH_EPS;
1978		if (termios->c_cflag & CMSPAR)
1979			lcr_h |= UART011_LCRH_SPS;
1980	}
1981	if (uap->fifosize > 1)
1982		lcr_h |= UART01x_LCRH_FEN;
1983
1984	spin_lock_irqsave(&port->lock, flags);
1985
1986	/*
1987	 * Update the per-port timeout.
1988	 */
1989	uart_update_timeout(port, termios->c_cflag, baud);
1990
1991	pl011_setup_status_masks(port, termios);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992
1993	if (UART_ENABLE_MS(port, termios->c_cflag))
1994		pl011_enable_ms(port);
1995
1996	/* first, disable everything */
1997	old_cr = pl011_read(uap, REG_CR);
1998	pl011_write(0, uap, REG_CR);
1999
2000	if (termios->c_cflag & CRTSCTS) {
2001		if (old_cr & UART011_CR_RTS)
2002			old_cr |= UART011_CR_RTSEN;
2003
2004		old_cr |= UART011_CR_CTSEN;
2005		uap->autorts = true;
2006	} else {
2007		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2008		uap->autorts = false;
2009	}
2010
2011	if (uap->vendor->oversampling) {
2012		if (baud > port->uartclk / 16)
2013			old_cr |= ST_UART011_CR_OVSFACT;
2014		else
2015			old_cr &= ~ST_UART011_CR_OVSFACT;
2016	}
2017
2018	/*
2019	 * Workaround for the ST Micro oversampling variants to
2020	 * increase the bitrate slightly, by lowering the divisor,
2021	 * to avoid delayed sampling of start bit at high speeds,
2022	 * else we see data corruption.
2023	 */
2024	if (uap->vendor->oversampling) {
2025		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2026			quot -= 1;
2027		else if ((baud > 3250000) && (quot > 2))
2028			quot -= 2;
2029	}
2030	/* Set baud rate */
2031	pl011_write(quot & 0x3f, uap, REG_FBRD);
2032	pl011_write(quot >> 6, uap, REG_IBRD);
2033
2034	/*
2035	 * ----------v----------v----------v----------v-----
2036	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2037	 * REG_FBRD & REG_IBRD.
2038	 * ----------^----------^----------^----------^-----
2039	 */
2040	pl011_write_lcr_h(uap, lcr_h);
2041	pl011_write(old_cr, uap, REG_CR);
 
 
 
 
 
 
 
 
 
 
2042
2043	spin_unlock_irqrestore(&port->lock, flags);
2044}
2045
2046static void
2047sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2048		      struct ktermios *old)
2049{
2050	struct uart_amba_port *uap =
2051	    container_of(port, struct uart_amba_port, port);
2052	unsigned long flags;
2053
2054	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2055
2056	/* The SBSA UART only supports 8n1 without hardware flow control. */
2057	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2058	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2059	termios->c_cflag |= CS8 | CLOCAL;
2060
2061	spin_lock_irqsave(&port->lock, flags);
2062	uart_update_timeout(port, CS8, uap->fixed_baud);
2063	pl011_setup_status_masks(port, termios);
2064	spin_unlock_irqrestore(&port->lock, flags);
2065}
2066
2067static const char *pl011_type(struct uart_port *port)
2068{
2069	struct uart_amba_port *uap =
2070	    container_of(port, struct uart_amba_port, port);
2071	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2072}
2073
2074/*
2075 * Release the memory region(s) being used by 'port'
2076 */
2077static void pl011_release_port(struct uart_port *port)
2078{
2079	release_mem_region(port->mapbase, SZ_4K);
2080}
2081
2082/*
2083 * Request the memory region(s) being used by 'port'
2084 */
2085static int pl011_request_port(struct uart_port *port)
2086{
2087	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2088			!= NULL ? 0 : -EBUSY;
2089}
2090
2091/*
2092 * Configure/autoconfigure the port.
2093 */
2094static void pl011_config_port(struct uart_port *port, int flags)
2095{
2096	if (flags & UART_CONFIG_TYPE) {
2097		port->type = PORT_AMBA;
2098		pl011_request_port(port);
2099	}
2100}
2101
2102/*
2103 * verify the new serial_struct (for TIOCSSERIAL).
2104 */
2105static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2106{
2107	int ret = 0;
2108	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2109		ret = -EINVAL;
2110	if (ser->irq < 0 || ser->irq >= nr_irqs)
2111		ret = -EINVAL;
2112	if (ser->baud_base < 9600)
2113		ret = -EINVAL;
2114	return ret;
2115}
2116
2117static struct uart_ops amba_pl011_pops = {
2118	.tx_empty	= pl011_tx_empty,
2119	.set_mctrl	= pl011_set_mctrl,
2120	.get_mctrl	= pl011_get_mctrl,
2121	.stop_tx	= pl011_stop_tx,
2122	.start_tx	= pl011_start_tx,
2123	.stop_rx	= pl011_stop_rx,
2124	.enable_ms	= pl011_enable_ms,
2125	.break_ctl	= pl011_break_ctl,
2126	.startup	= pl011_startup,
2127	.shutdown	= pl011_shutdown,
2128	.flush_buffer	= pl011_dma_flush_buffer,
2129	.set_termios	= pl011_set_termios,
2130	.type		= pl011_type,
2131	.release_port	= pl011_release_port,
2132	.request_port	= pl011_request_port,
2133	.config_port	= pl011_config_port,
2134	.verify_port	= pl011_verify_port,
2135#ifdef CONFIG_CONSOLE_POLL
2136	.poll_init     = pl011_hwinit,
2137	.poll_get_char = pl011_get_poll_char,
2138	.poll_put_char = pl011_put_poll_char,
2139#endif
2140};
2141
2142static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2143{
2144}
2145
2146static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2147{
2148	return 0;
2149}
2150
2151static const struct uart_ops sbsa_uart_pops = {
2152	.tx_empty	= pl011_tx_empty,
2153	.set_mctrl	= sbsa_uart_set_mctrl,
2154	.get_mctrl	= sbsa_uart_get_mctrl,
2155	.stop_tx	= pl011_stop_tx,
2156	.start_tx	= pl011_start_tx,
2157	.stop_rx	= pl011_stop_rx,
2158	.startup	= sbsa_uart_startup,
2159	.shutdown	= sbsa_uart_shutdown,
2160	.set_termios	= sbsa_uart_set_termios,
2161	.type		= pl011_type,
2162	.release_port	= pl011_release_port,
2163	.request_port	= pl011_request_port,
2164	.config_port	= pl011_config_port,
2165	.verify_port	= pl011_verify_port,
2166#ifdef CONFIG_CONSOLE_POLL
2167	.poll_init     = pl011_hwinit,
2168	.poll_get_char = pl011_get_poll_char,
2169	.poll_put_char = pl011_put_poll_char,
2170#endif
2171};
2172
2173static struct uart_amba_port *amba_ports[UART_NR];
2174
2175#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2176
2177static void pl011_console_putchar(struct uart_port *port, int ch)
2178{
2179	struct uart_amba_port *uap =
2180	    container_of(port, struct uart_amba_port, port);
2181
2182	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2183		cpu_relax();
2184	pl011_write(ch, uap, REG_DR);
2185}
2186
2187static void
2188pl011_console_write(struct console *co, const char *s, unsigned int count)
2189{
2190	struct uart_amba_port *uap = amba_ports[co->index];
2191	unsigned int old_cr = 0, new_cr;
2192	unsigned long flags;
2193	int locked = 1;
2194
2195	clk_enable(uap->clk);
2196
2197	local_irq_save(flags);
2198	if (uap->port.sysrq)
2199		locked = 0;
2200	else if (oops_in_progress)
2201		locked = spin_trylock(&uap->port.lock);
2202	else
2203		spin_lock(&uap->port.lock);
2204
2205	/*
2206	 *	First save the CR then disable the interrupts
2207	 */
2208	if (!uap->vendor->always_enabled) {
2209		old_cr = pl011_read(uap, REG_CR);
2210		new_cr = old_cr & ~UART011_CR_CTSEN;
2211		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2212		pl011_write(new_cr, uap, REG_CR);
2213	}
2214
2215	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2216
2217	/*
2218	 *	Finally, wait for transmitter to become empty
2219	 *	and restore the TCR
2220	 */
2221	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
2222		cpu_relax();
2223	if (!uap->vendor->always_enabled)
2224		pl011_write(old_cr, uap, REG_CR);
2225
2226	if (locked)
2227		spin_unlock(&uap->port.lock);
2228	local_irq_restore(flags);
2229
2230	clk_disable(uap->clk);
2231}
2232
2233static void __init
2234pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2235			     int *parity, int *bits)
2236{
2237	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2238		unsigned int lcr_h, ibrd, fbrd;
2239
2240		lcr_h = pl011_read(uap, REG_LCRH_TX);
2241
2242		*parity = 'n';
2243		if (lcr_h & UART01x_LCRH_PEN) {
2244			if (lcr_h & UART01x_LCRH_EPS)
2245				*parity = 'e';
2246			else
2247				*parity = 'o';
2248		}
2249
2250		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2251			*bits = 7;
2252		else
2253			*bits = 8;
2254
2255		ibrd = pl011_read(uap, REG_IBRD);
2256		fbrd = pl011_read(uap, REG_FBRD);
2257
2258		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2259
2260		if (uap->vendor->oversampling) {
2261			if (pl011_read(uap, REG_CR)
2262				  & ST_UART011_CR_OVSFACT)
2263				*baud *= 2;
2264		}
2265	}
2266}
2267
2268static int __init pl011_console_setup(struct console *co, char *options)
2269{
2270	struct uart_amba_port *uap;
2271	int baud = 38400;
2272	int bits = 8;
2273	int parity = 'n';
2274	int flow = 'n';
2275	int ret;
2276
2277	/*
2278	 * Check whether an invalid uart number has been specified, and
2279	 * if so, search for the first available port that does have
2280	 * console support.
2281	 */
2282	if (co->index >= UART_NR)
2283		co->index = 0;
2284	uap = amba_ports[co->index];
2285	if (!uap)
2286		return -ENODEV;
2287
2288	/* Allow pins to be muxed in and configured */
2289	pinctrl_pm_select_default_state(uap->port.dev);
2290
2291	ret = clk_prepare(uap->clk);
2292	if (ret)
2293		return ret;
2294
2295	if (dev_get_platdata(uap->port.dev)) {
2296		struct amba_pl011_data *plat;
2297
2298		plat = dev_get_platdata(uap->port.dev);
2299		if (plat->init)
2300			plat->init();
2301	}
2302
2303	uap->port.uartclk = clk_get_rate(uap->clk);
2304
2305	if (uap->vendor->fixed_options) {
2306		baud = uap->fixed_baud;
2307	} else {
2308		if (options)
2309			uart_parse_options(options,
2310					   &baud, &parity, &bits, &flow);
2311		else
2312			pl011_console_get_options(uap, &baud, &parity, &bits);
2313	}
2314
2315	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2316}
2317
2318/**
2319 *	pl011_console_match - non-standard console matching
2320 *	@co:	  registering console
2321 *	@name:	  name from console command line
2322 *	@idx:	  index from console command line
2323 *	@options: ptr to option string from console command line
2324 *
2325 *	Only attempts to match console command lines of the form:
2326 *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2327 *	    console=pl011,0x<addr>[,<options>]
2328 *	This form is used to register an initial earlycon boot console and
2329 *	replace it with the amba_console at pl011 driver init.
2330 *
2331 *	Performs console setup for a match (as required by interface)
2332 *	If no <options> are specified, then assume the h/w is already setup.
2333 *
2334 *	Returns 0 if console matches; otherwise non-zero to use default matching
2335 */
2336static int __init pl011_console_match(struct console *co, char *name, int idx,
2337				      char *options)
2338{
2339	unsigned char iotype;
2340	resource_size_t addr;
2341	int i;
2342
2343	if (strcmp(name, "pl011") != 0)
2344		return -ENODEV;
2345
2346	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2347		return -ENODEV;
2348
2349	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2350		return -ENODEV;
2351
2352	/* try to match the port specified on the command line */
2353	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2354		struct uart_port *port;
2355
2356		if (!amba_ports[i])
2357			continue;
2358
2359		port = &amba_ports[i]->port;
2360
2361		if (port->mapbase != addr)
2362			continue;
2363
2364		co->index = i;
2365		port->cons = co;
2366		return pl011_console_setup(co, options);
2367	}
2368
2369	return -ENODEV;
2370}
2371
2372static struct uart_driver amba_reg;
2373static struct console amba_console = {
2374	.name		= "ttyAMA",
2375	.write		= pl011_console_write,
2376	.device		= uart_console_device,
2377	.setup		= pl011_console_setup,
2378	.match		= pl011_console_match,
2379	.flags		= CON_PRINTBUFFER,
2380	.index		= -1,
2381	.data		= &amba_reg,
2382};
2383
2384#define AMBA_CONSOLE	(&amba_console)
2385
2386static void pl011_putc(struct uart_port *port, int c)
2387{
2388	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2389		cpu_relax();
2390	if (port->iotype == UPIO_MEM32)
2391		writel(c, port->membase + UART01x_DR);
2392	else
2393		writeb(c, port->membase + UART01x_DR);
2394	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2395		cpu_relax();
2396}
2397
2398static void pl011_early_write(struct console *con, const char *s, unsigned n)
2399{
2400	struct earlycon_device *dev = con->data;
2401
2402	uart_console_write(&dev->port, s, n, pl011_putc);
2403}
2404
2405static int __init pl011_early_console_setup(struct earlycon_device *device,
2406					    const char *opt)
2407{
2408	if (!device->port.membase)
2409		return -ENODEV;
2410
2411	device->con->write = pl011_early_write;
2412	return 0;
2413}
2414OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2415OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2416
2417#else
2418#define AMBA_CONSOLE	NULL
2419#endif
2420
2421static struct uart_driver amba_reg = {
2422	.owner			= THIS_MODULE,
2423	.driver_name		= "ttyAMA",
2424	.dev_name		= "ttyAMA",
2425	.major			= SERIAL_AMBA_MAJOR,
2426	.minor			= SERIAL_AMBA_MINOR,
2427	.nr			= UART_NR,
2428	.cons			= AMBA_CONSOLE,
2429};
2430
2431static int pl011_probe_dt_alias(int index, struct device *dev)
2432{
2433	struct device_node *np;
2434	static bool seen_dev_with_alias = false;
2435	static bool seen_dev_without_alias = false;
2436	int ret = index;
2437
2438	if (!IS_ENABLED(CONFIG_OF))
2439		return ret;
 
2440
2441	np = dev->of_node;
2442	if (!np)
2443		return ret;
 
2444
2445	ret = of_alias_get_id(np, "serial");
2446	if (ret < 0) {
2447		seen_dev_without_alias = true;
2448		ret = index;
2449	} else {
2450		seen_dev_with_alias = true;
2451		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2452			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2453			ret = index;
2454		}
2455	}
2456
2457	if (seen_dev_with_alias && seen_dev_without_alias)
2458		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2459
2460	return ret;
2461}
2462
2463/* unregisters the driver also if no more ports are left */
2464static void pl011_unregister_port(struct uart_amba_port *uap)
2465{
2466	int i;
2467	bool busy = false;
2468
2469	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2470		if (amba_ports[i] == uap)
2471			amba_ports[i] = NULL;
2472		else if (amba_ports[i])
2473			busy = true;
2474	}
2475	pl011_dma_remove(uap);
2476	if (!busy)
2477		uart_unregister_driver(&amba_reg);
2478}
2479
2480static int pl011_find_free_port(void)
2481{
2482	int i;
2483
2484	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2485		if (amba_ports[i] == NULL)
2486			return i;
2487
2488	return -EBUSY;
2489}
2490
2491static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2492			    struct resource *mmiobase, int index)
2493{
2494	void __iomem *base;
2495
2496	base = devm_ioremap_resource(dev, mmiobase);
2497	if (IS_ERR(base))
2498		return PTR_ERR(base);
2499
2500	index = pl011_probe_dt_alias(index, dev);
2501
2502	uap->old_cr = 0;
2503	uap->port.dev = dev;
2504	uap->port.mapbase = mmiobase->start;
2505	uap->port.membase = base;
2506	uap->port.fifosize = uap->fifosize;
2507	uap->port.flags = UPF_BOOT_AUTOCONF;
2508	uap->port.line = index;
2509
2510	amba_ports[index] = uap;
2511
2512	return 0;
2513}
2514
2515static int pl011_register_port(struct uart_amba_port *uap)
2516{
2517	int ret;
2518
2519	/* Ensure interrupts from this UART are masked and cleared */
2520	pl011_write(0, uap, REG_IMSC);
2521	pl011_write(0xffff, uap, REG_ICR);
2522
2523	if (!amba_reg.state) {
2524		ret = uart_register_driver(&amba_reg);
2525		if (ret < 0) {
2526			dev_err(uap->port.dev,
2527				"Failed to register AMBA-PL011 driver\n");
2528			return ret;
2529		}
2530	}
2531
2532	ret = uart_add_one_port(&amba_reg, &uap->port);
2533	if (ret)
2534		pl011_unregister_port(uap);
2535
2536	return ret;
2537}
2538
2539static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2540{
2541	struct uart_amba_port *uap;
2542	struct vendor_data *vendor = id->data;
2543	int portnr, ret;
2544
2545	portnr = pl011_find_free_port();
2546	if (portnr < 0)
2547		return portnr;
2548
2549	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2550			   GFP_KERNEL);
2551	if (!uap)
2552		return -ENOMEM;
2553
2554	uap->clk = devm_clk_get(&dev->dev, NULL);
2555	if (IS_ERR(uap->clk))
2556		return PTR_ERR(uap->clk);
2557
2558	uap->reg_offset = vendor->reg_offset;
2559	uap->vendor = vendor;
2560	uap->fifosize = vendor->get_fifosize(dev);
2561	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
 
 
 
 
 
 
2562	uap->port.irq = dev->irq[0];
 
2563	uap->port.ops = &amba_pl011_pops;
 
 
 
2564
2565	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2566
2567	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2568	if (ret)
2569		return ret;
2570
2571	amba_set_drvdata(dev, uap);
2572
2573	return pl011_register_port(uap);
 
 
 
 
 
 
 
 
 
 
 
2574}
2575
2576static int pl011_remove(struct amba_device *dev)
2577{
2578	struct uart_amba_port *uap = amba_get_drvdata(dev);
 
 
 
2579
2580	uart_remove_one_port(&amba_reg, &uap->port);
2581	pl011_unregister_port(uap);
 
 
 
 
 
 
 
 
2582	return 0;
2583}
2584
2585#ifdef CONFIG_PM_SLEEP
2586static int pl011_suspend(struct device *dev)
2587{
2588	struct uart_amba_port *uap = dev_get_drvdata(dev);
2589
2590	if (!uap)
2591		return -EINVAL;
2592
2593	return uart_suspend_port(&amba_reg, &uap->port);
2594}
2595
2596static int pl011_resume(struct device *dev)
2597{
2598	struct uart_amba_port *uap = dev_get_drvdata(dev);
2599
2600	if (!uap)
2601		return -EINVAL;
2602
2603	return uart_resume_port(&amba_reg, &uap->port);
2604}
2605#endif
2606
2607static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2608
2609static int sbsa_uart_probe(struct platform_device *pdev)
2610{
2611	struct uart_amba_port *uap;
2612	struct resource *r;
2613	int portnr, ret;
2614	int baudrate;
2615
2616	/*
2617	 * Check the mandatory baud rate parameter in the DT node early
2618	 * so that we can easily exit with the error.
2619	 */
2620	if (pdev->dev.of_node) {
2621		struct device_node *np = pdev->dev.of_node;
2622
2623		ret = of_property_read_u32(np, "current-speed", &baudrate);
2624		if (ret)
2625			return ret;
2626	} else {
2627		baudrate = 115200;
2628	}
2629
2630	portnr = pl011_find_free_port();
2631	if (portnr < 0)
2632		return portnr;
2633
2634	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2635			   GFP_KERNEL);
2636	if (!uap)
2637		return -ENOMEM;
2638
2639	ret = platform_get_irq(pdev, 0);
2640	if (ret < 0) {
2641		if (ret != -EPROBE_DEFER)
2642			dev_err(&pdev->dev, "cannot obtain irq\n");
2643		return ret;
2644	}
2645	uap->port.irq	= ret;
2646
2647	uap->reg_offset	= vendor_sbsa.reg_offset;
2648	uap->vendor	= &vendor_sbsa;
2649	uap->fifosize	= 32;
2650	uap->port.iotype = vendor_sbsa.access_32b ? UPIO_MEM32 : UPIO_MEM;
2651	uap->port.ops	= &sbsa_uart_pops;
2652	uap->fixed_baud = baudrate;
2653
2654	snprintf(uap->type, sizeof(uap->type), "SBSA");
2655
2656	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2657
2658	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2659	if (ret)
2660		return ret;
2661
2662	platform_set_drvdata(pdev, uap);
2663
2664	return pl011_register_port(uap);
2665}
2666
2667static int sbsa_uart_remove(struct platform_device *pdev)
2668{
2669	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2670
2671	uart_remove_one_port(&amba_reg, &uap->port);
2672	pl011_unregister_port(uap);
2673	return 0;
2674}
2675
2676static const struct of_device_id sbsa_uart_of_match[] = {
2677	{ .compatible = "arm,sbsa-uart", },
2678	{},
2679};
2680MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2681
2682static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2683	{ "ARMH0011", 0 },
2684	{},
2685};
2686MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2687
2688static struct platform_driver arm_sbsa_uart_platform_driver = {
2689	.probe		= sbsa_uart_probe,
2690	.remove		= sbsa_uart_remove,
2691	.driver	= {
2692		.name	= "sbsa-uart",
2693		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2694		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2695	},
2696};
2697
2698static struct amba_id pl011_ids[] = {
2699	{
2700		.id	= 0x00041011,
2701		.mask	= 0x000fffff,
2702		.data	= &vendor_arm,
2703	},
2704	{
2705		.id	= 0x00380802,
2706		.mask	= 0x00ffffff,
2707		.data	= &vendor_st,
2708	},
2709	{
2710		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2711		.mask	= 0x00ffffff,
2712		.data	= &vendor_zte,
2713	},
2714	{ 0, 0 },
2715};
2716
2717MODULE_DEVICE_TABLE(amba, pl011_ids);
2718
2719static struct amba_driver pl011_driver = {
2720	.drv = {
2721		.name	= "uart-pl011",
2722		.pm	= &pl011_dev_pm_ops,
2723	},
2724	.id_table	= pl011_ids,
2725	.probe		= pl011_probe,
2726	.remove		= pl011_remove,
 
 
 
 
2727};
2728
2729static int __init pl011_init(void)
2730{
 
2731	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2732
2733	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2734		pr_warn("could not register SBSA UART platform driver\n");
2735	return amba_driver_register(&pl011_driver);
 
 
 
 
2736}
2737
2738static void __exit pl011_exit(void)
2739{
2740	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2741	amba_driver_unregister(&pl011_driver);
 
2742}
2743
2744/*
2745 * While this can be a module, if builtin it's most likely the console
2746 * So let's leave module_exit but move module_init to an earlier place
2747 */
2748arch_initcall(pl011_init);
2749module_exit(pl011_exit);
2750
2751MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2752MODULE_DESCRIPTION("ARM AMBA serial port driver");
2753MODULE_LICENSE("GPL");