Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
  28
  29#include "sas_internal.h"
  30
 
  31#include <scsi/scsi_transport.h>
  32#include <scsi/scsi_transport_sas.h>
  33#include "../scsi_sas_internal.h"
  34
  35static int sas_discover_expander(struct domain_device *dev);
  36static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  37static int sas_configure_phy(struct domain_device *dev, int phy_id,
  38			     u8 *sas_addr, int include);
  39static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  40
  41/* ---------- SMP task management ---------- */
  42
  43static void smp_task_timedout(unsigned long _task)
  44{
  45	struct sas_task *task = (void *) _task;
  46	unsigned long flags;
  47
  48	spin_lock_irqsave(&task->task_state_lock, flags);
  49	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  50		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  51	spin_unlock_irqrestore(&task->task_state_lock, flags);
  52
  53	complete(&task->completion);
  54}
  55
  56static void smp_task_done(struct sas_task *task)
  57{
  58	if (!del_timer(&task->timer))
  59		return;
  60	complete(&task->completion);
  61}
  62
  63/* Give it some long enough timeout. In seconds. */
  64#define SMP_TIMEOUT 10
  65
  66static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  67			    void *resp, int resp_size)
  68{
  69	int res, retry;
  70	struct sas_task *task = NULL;
  71	struct sas_internal *i =
  72		to_sas_internal(dev->port->ha->core.shost->transportt);
  73
 
  74	for (retry = 0; retry < 3; retry++) {
  75		task = sas_alloc_task(GFP_KERNEL);
  76		if (!task)
  77			return -ENOMEM;
 
  78
 
 
 
 
 
  79		task->dev = dev;
  80		task->task_proto = dev->tproto;
  81		sg_init_one(&task->smp_task.smp_req, req, req_size);
  82		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  83
  84		task->task_done = smp_task_done;
  85
  86		task->timer.data = (unsigned long) task;
  87		task->timer.function = smp_task_timedout;
  88		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  89		add_timer(&task->timer);
  90
  91		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
  92
  93		if (res) {
  94			del_timer(&task->timer);
  95			SAS_DPRINTK("executing SMP task failed:%d\n", res);
  96			goto ex_err;
  97		}
  98
  99		wait_for_completion(&task->completion);
 100		res = -ECOMM;
 101		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 102			SAS_DPRINTK("smp task timed out or aborted\n");
 103			i->dft->lldd_abort_task(task);
 104			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 105				SAS_DPRINTK("SMP task aborted and not done\n");
 106				goto ex_err;
 107			}
 108		}
 109		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 110		    task->task_status.stat == SAM_STAT_GOOD) {
 111			res = 0;
 112			break;
 113		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
 114		      task->task_status.stat == SAS_DATA_UNDERRUN) {
 
 115			/* no error, but return the number of bytes of
 116			 * underrun */
 117			res = task->task_status.residual;
 118			break;
 119		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
 120		      task->task_status.stat == SAS_DATA_OVERRUN) {
 
 121			res = -EMSGSIZE;
 122			break;
 123		} else {
 
 
 
 
 124			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 125				    "status 0x%x\n", __func__,
 126				    SAS_ADDR(dev->sas_addr),
 127				    task->task_status.resp,
 128				    task->task_status.stat);
 129			sas_free_task(task);
 130			task = NULL;
 131		}
 132	}
 133ex_err:
 
 134	BUG_ON(retry == 3 && task != NULL);
 135	if (task != NULL) {
 136		sas_free_task(task);
 137	}
 138	return res;
 139}
 140
 141/* ---------- Allocations ---------- */
 142
 143static inline void *alloc_smp_req(int size)
 144{
 145	u8 *p = kzalloc(size, GFP_KERNEL);
 146	if (p)
 147		p[0] = SMP_REQUEST;
 148	return p;
 149}
 150
 151static inline void *alloc_smp_resp(int size)
 152{
 153	return kzalloc(size, GFP_KERNEL);
 154}
 155
 156/* ---------- Expander configuration ---------- */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 159			   void *disc_resp)
 160{
 
 
 
 
 
 
 161	struct expander_device *ex = &dev->ex_dev;
 162	struct ex_phy *phy = &ex->ex_phy[phy_id];
 163	struct smp_resp *resp = disc_resp;
 164	struct discover_resp *dr = &resp->disc;
 165	struct sas_rphy *rphy = dev->rphy;
 166	int rediscover = (phy->phy != NULL);
 
 167
 168	if (!rediscover) {
 
 
 169		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 170
 171		/* FIXME: error_handling */
 172		BUG_ON(!phy->phy);
 173	}
 174
 175	switch (resp->result) {
 176	case SMP_RESP_PHY_VACANT:
 177		phy->phy_state = PHY_VACANT;
 178		break;
 179	default:
 180		phy->phy_state = PHY_NOT_PRESENT;
 181		break;
 182	case SMP_RESP_FUNC_ACC:
 183		phy->phy_state = PHY_EMPTY; /* do not know yet */
 184		break;
 185	}
 186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187	phy->phy_id = phy_id;
 188	phy->attached_dev_type = dr->attached_dev_type;
 189	phy->linkrate = dr->linkrate;
 190	phy->attached_sata_host = dr->attached_sata_host;
 191	phy->attached_sata_dev  = dr->attached_sata_dev;
 192	phy->attached_sata_ps   = dr->attached_sata_ps;
 193	phy->attached_iproto = dr->iproto << 1;
 194	phy->attached_tproto = dr->tproto << 1;
 195	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 
 
 
 
 
 
 
 196	phy->attached_phy_id = dr->attached_phy_id;
 197	phy->phy_change_count = dr->change_count;
 198	phy->routing_attr = dr->routing_attr;
 199	phy->virtual = dr->virtual;
 200	phy->last_da_index = -1;
 201
 
 
 202	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 203	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 
 
 204	phy->phy->identify.phy_identifier = phy_id;
 205	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 206	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 207	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 208	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 209	phy->phy->negotiated_linkrate = phy->linkrate;
 210
 211	if (!rediscover)
 
 212		if (sas_phy_add(phy->phy)) {
 213			sas_phy_free(phy->phy);
 214			return;
 215		}
 216
 217	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 219		    phy->routing_attr == TABLE_ROUTING ? 'T' :
 220		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
 221		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
 222		    SAS_ADDR(phy->attached_sas_addr));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224	return;
 
 
 
 225}
 226
 227#define DISCOVER_REQ_SIZE  16
 228#define DISCOVER_RESP_SIZE 56
 229
 230static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 231				      u8 *disc_resp, int single)
 232{
 233	int i, res;
 
 234
 235	disc_req[9] = single;
 236	for (i = 1 ; i < 3; i++) {
 237		struct discover_resp *dr;
 238
 239		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 240				       disc_resp, DISCOVER_RESP_SIZE);
 241		if (res)
 242			return res;
 243		/* This is detecting a failure to transmit initial
 244		 * dev to host FIS as described in section G.5 of
 245		 * sas-2 r 04b */
 246		dr = &((struct smp_resp *)disc_resp)->disc;
 247		if (memcmp(dev->sas_addr, dr->attached_sas_addr,
 248			  SAS_ADDR_SIZE) == 0) {
 249			sas_printk("Found loopback topology, just ignore it!\n");
 250			return 0;
 251		}
 252		if (!(dr->attached_dev_type == 0 &&
 253		      dr->attached_sata_dev))
 254			break;
 255		/* In order to generate the dev to host FIS, we
 256		 * send a link reset to the expander port */
 257		sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
 258		/* Wait for the reset to trigger the negotiation */
 259		msleep(500);
 260	}
 261	sas_set_ex_phy(dev, single, disc_resp);
 262	return 0;
 263}
 264
 265static int sas_ex_phy_discover(struct domain_device *dev, int single)
 266{
 267	struct expander_device *ex = &dev->ex_dev;
 268	int  res = 0;
 269	u8   *disc_req;
 270	u8   *disc_resp;
 271
 272	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 273	if (!disc_req)
 274		return -ENOMEM;
 275
 276	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
 277	if (!disc_resp) {
 278		kfree(disc_req);
 279		return -ENOMEM;
 280	}
 281
 282	disc_req[1] = SMP_DISCOVER;
 283
 284	if (0 <= single && single < ex->num_phys) {
 285		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 286	} else {
 287		int i;
 288
 289		for (i = 0; i < ex->num_phys; i++) {
 290			res = sas_ex_phy_discover_helper(dev, disc_req,
 291							 disc_resp, i);
 292			if (res)
 293				goto out_err;
 294		}
 295	}
 296out_err:
 297	kfree(disc_resp);
 298	kfree(disc_req);
 299	return res;
 300}
 301
 302static int sas_expander_discover(struct domain_device *dev)
 303{
 304	struct expander_device *ex = &dev->ex_dev;
 305	int res = -ENOMEM;
 306
 307	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 308	if (!ex->ex_phy)
 309		return -ENOMEM;
 310
 311	res = sas_ex_phy_discover(dev, -1);
 312	if (res)
 313		goto out_err;
 314
 315	return 0;
 316 out_err:
 317	kfree(ex->ex_phy);
 318	ex->ex_phy = NULL;
 319	return res;
 320}
 321
 322#define MAX_EXPANDER_PHYS 128
 323
 324static void ex_assign_report_general(struct domain_device *dev,
 325					    struct smp_resp *resp)
 326{
 327	struct report_general_resp *rg = &resp->rg;
 328
 329	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 330	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 331	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 
 332	dev->ex_dev.conf_route_table = rg->conf_route_table;
 333	dev->ex_dev.configuring = rg->configuring;
 334	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 335}
 336
 337#define RG_REQ_SIZE   8
 338#define RG_RESP_SIZE 32
 339
 340static int sas_ex_general(struct domain_device *dev)
 341{
 342	u8 *rg_req;
 343	struct smp_resp *rg_resp;
 344	int res;
 345	int i;
 346
 347	rg_req = alloc_smp_req(RG_REQ_SIZE);
 348	if (!rg_req)
 349		return -ENOMEM;
 350
 351	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 352	if (!rg_resp) {
 353		kfree(rg_req);
 354		return -ENOMEM;
 355	}
 356
 357	rg_req[1] = SMP_REPORT_GENERAL;
 358
 359	for (i = 0; i < 5; i++) {
 360		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 361				       RG_RESP_SIZE);
 362
 363		if (res) {
 364			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 365				    SAS_ADDR(dev->sas_addr), res);
 366			goto out;
 367		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 368			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 369				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 370			res = rg_resp->result;
 371			goto out;
 372		}
 373
 374		ex_assign_report_general(dev, rg_resp);
 375
 376		if (dev->ex_dev.configuring) {
 377			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 378				    SAS_ADDR(dev->sas_addr));
 379			schedule_timeout_interruptible(5*HZ);
 380		} else
 381			break;
 382	}
 383out:
 384	kfree(rg_req);
 385	kfree(rg_resp);
 386	return res;
 387}
 388
 389static void ex_assign_manuf_info(struct domain_device *dev, void
 390					*_mi_resp)
 391{
 392	u8 *mi_resp = _mi_resp;
 393	struct sas_rphy *rphy = dev->rphy;
 394	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 395
 396	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 397	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 398	memcpy(edev->product_rev, mi_resp + 36,
 399	       SAS_EXPANDER_PRODUCT_REV_LEN);
 400
 401	if (mi_resp[8] & 1) {
 402		memcpy(edev->component_vendor_id, mi_resp + 40,
 403		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 404		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 405		edev->component_revision_id = mi_resp[50];
 406	}
 407}
 408
 409#define MI_REQ_SIZE   8
 410#define MI_RESP_SIZE 64
 411
 412static int sas_ex_manuf_info(struct domain_device *dev)
 413{
 414	u8 *mi_req;
 415	u8 *mi_resp;
 416	int res;
 417
 418	mi_req = alloc_smp_req(MI_REQ_SIZE);
 419	if (!mi_req)
 420		return -ENOMEM;
 421
 422	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 423	if (!mi_resp) {
 424		kfree(mi_req);
 425		return -ENOMEM;
 426	}
 427
 428	mi_req[1] = SMP_REPORT_MANUF_INFO;
 429
 430	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 431	if (res) {
 432		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 433			    SAS_ADDR(dev->sas_addr), res);
 434		goto out;
 435	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 436		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 437			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 438		goto out;
 439	}
 440
 441	ex_assign_manuf_info(dev, mi_resp);
 442out:
 443	kfree(mi_req);
 444	kfree(mi_resp);
 445	return res;
 446}
 447
 448#define PC_REQ_SIZE  44
 449#define PC_RESP_SIZE 8
 450
 451int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 452			enum phy_func phy_func,
 453			struct sas_phy_linkrates *rates)
 454{
 455	u8 *pc_req;
 456	u8 *pc_resp;
 457	int res;
 458
 459	pc_req = alloc_smp_req(PC_REQ_SIZE);
 460	if (!pc_req)
 461		return -ENOMEM;
 462
 463	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 464	if (!pc_resp) {
 465		kfree(pc_req);
 466		return -ENOMEM;
 467	}
 468
 469	pc_req[1] = SMP_PHY_CONTROL;
 470	pc_req[9] = phy_id;
 471	pc_req[10]= phy_func;
 472	if (rates) {
 473		pc_req[32] = rates->minimum_linkrate << 4;
 474		pc_req[33] = rates->maximum_linkrate << 4;
 475	}
 476
 477	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 478
 479	kfree(pc_resp);
 480	kfree(pc_req);
 481	return res;
 482}
 483
 484static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 485{
 486	struct expander_device *ex = &dev->ex_dev;
 487	struct ex_phy *phy = &ex->ex_phy[phy_id];
 488
 489	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 490	phy->linkrate = SAS_PHY_DISABLED;
 491}
 492
 493static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 494{
 495	struct expander_device *ex = &dev->ex_dev;
 496	int i;
 497
 498	for (i = 0; i < ex->num_phys; i++) {
 499		struct ex_phy *phy = &ex->ex_phy[i];
 500
 501		if (phy->phy_state == PHY_VACANT ||
 502		    phy->phy_state == PHY_NOT_PRESENT)
 503			continue;
 504
 505		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 506			sas_ex_disable_phy(dev, i);
 507	}
 508}
 509
 510static int sas_dev_present_in_domain(struct asd_sas_port *port,
 511					    u8 *sas_addr)
 512{
 513	struct domain_device *dev;
 514
 515	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 516		return 1;
 517	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 518		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 519			return 1;
 520	}
 521	return 0;
 522}
 523
 524#define RPEL_REQ_SIZE	16
 525#define RPEL_RESP_SIZE	32
 526int sas_smp_get_phy_events(struct sas_phy *phy)
 527{
 528	int res;
 529	u8 *req;
 530	u8 *resp;
 531	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 532	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 533
 534	req = alloc_smp_req(RPEL_REQ_SIZE);
 535	if (!req)
 536		return -ENOMEM;
 537
 538	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 539	if (!resp) {
 540		kfree(req);
 541		return -ENOMEM;
 542	}
 543
 544	req[1] = SMP_REPORT_PHY_ERR_LOG;
 545	req[9] = phy->number;
 546
 547	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 548			            resp, RPEL_RESP_SIZE);
 549
 550	if (!res)
 551		goto out;
 552
 553	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 554	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 555	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 556	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 557
 558 out:
 559	kfree(resp);
 560	return res;
 561
 562}
 563
 564#ifdef CONFIG_SCSI_SAS_ATA
 565
 566#define RPS_REQ_SIZE  16
 567#define RPS_RESP_SIZE 60
 568
 569static int sas_get_report_phy_sata(struct domain_device *dev,
 570					  int phy_id,
 571					  struct smp_resp *rps_resp)
 572{
 573	int res;
 574	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 575	u8 *resp = (u8 *)rps_resp;
 576
 577	if (!rps_req)
 578		return -ENOMEM;
 579
 580	rps_req[1] = SMP_REPORT_PHY_SATA;
 581	rps_req[9] = phy_id;
 582
 583	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 584			            rps_resp, RPS_RESP_SIZE);
 585
 586	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 587	 * standards cockup here.  sas-2 explicitly specifies the FIS
 588	 * should be encoded so that FIS type is in resp[24].
 589	 * However, some expanders endian reverse this.  Undo the
 590	 * reversal here */
 591	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 592		int i;
 593
 594		for (i = 0; i < 5; i++) {
 595			int j = 24 + (i*4);
 596			u8 a, b;
 597			a = resp[j + 0];
 598			b = resp[j + 1];
 599			resp[j + 0] = resp[j + 3];
 600			resp[j + 1] = resp[j + 2];
 601			resp[j + 2] = b;
 602			resp[j + 3] = a;
 603		}
 604	}
 605
 606	kfree(rps_req);
 607	return res;
 608}
 609#endif
 610
 611static void sas_ex_get_linkrate(struct domain_device *parent,
 612				       struct domain_device *child,
 613				       struct ex_phy *parent_phy)
 614{
 615	struct expander_device *parent_ex = &parent->ex_dev;
 616	struct sas_port *port;
 617	int i;
 618
 619	child->pathways = 0;
 620
 621	port = parent_phy->port;
 622
 623	for (i = 0; i < parent_ex->num_phys; i++) {
 624		struct ex_phy *phy = &parent_ex->ex_phy[i];
 625
 626		if (phy->phy_state == PHY_VACANT ||
 627		    phy->phy_state == PHY_NOT_PRESENT)
 628			continue;
 629
 630		if (SAS_ADDR(phy->attached_sas_addr) ==
 631		    SAS_ADDR(child->sas_addr)) {
 632
 633			child->min_linkrate = min(parent->min_linkrate,
 634						  phy->linkrate);
 635			child->max_linkrate = max(parent->max_linkrate,
 636						  phy->linkrate);
 637			child->pathways++;
 638			sas_port_add_phy(port, phy->phy);
 639		}
 640	}
 641	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 642	child->pathways = min(child->pathways, parent->pathways);
 643}
 644
 645static struct domain_device *sas_ex_discover_end_dev(
 646	struct domain_device *parent, int phy_id)
 647{
 648	struct expander_device *parent_ex = &parent->ex_dev;
 649	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 650	struct domain_device *child = NULL;
 651	struct sas_rphy *rphy;
 652	int res;
 653
 654	if (phy->attached_sata_host || phy->attached_sata_ps)
 655		return NULL;
 656
 657	child = kzalloc(sizeof(*child), GFP_KERNEL);
 658	if (!child)
 659		return NULL;
 660
 
 661	child->parent = parent;
 662	child->port   = parent->port;
 663	child->iproto = phy->attached_iproto;
 664	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 665	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 666	if (!phy->port) {
 667		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 668		if (unlikely(!phy->port))
 669			goto out_err;
 670		if (unlikely(sas_port_add(phy->port) != 0)) {
 671			sas_port_free(phy->port);
 672			goto out_err;
 673		}
 674	}
 675	sas_ex_get_linkrate(parent, child, phy);
 
 676
 677#ifdef CONFIG_SCSI_SAS_ATA
 678	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 679		child->dev_type = SATA_DEV;
 680		if (phy->attached_tproto & SAS_PROTOCOL_STP)
 681			child->tproto = phy->attached_tproto;
 682		if (phy->attached_sata_dev)
 683			child->tproto |= SATA_DEV;
 684		res = sas_get_report_phy_sata(parent, phy_id,
 685					      &child->sata_dev.rps_resp);
 686		if (res) {
 687			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
 688				    "0x%x\n", SAS_ADDR(parent->sas_addr),
 689				    phy_id, res);
 690			goto out_free;
 691		}
 692		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
 693		       sizeof(struct dev_to_host_fis));
 694
 
 
 
 
 695		rphy = sas_end_device_alloc(phy->port);
 696		if (unlikely(!rphy))
 697			goto out_free;
 698
 699		sas_init_dev(child);
 700
 701		child->rphy = rphy;
 
 702
 703		spin_lock_irq(&parent->port->dev_list_lock);
 704		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 705		spin_unlock_irq(&parent->port->dev_list_lock);
 706
 707		res = sas_discover_sata(child);
 708		if (res) {
 709			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 710				    "%016llx:0x%x returned 0x%x\n",
 711				    SAS_ADDR(child->sas_addr),
 712				    SAS_ADDR(parent->sas_addr), phy_id, res);
 713			goto out_list_del;
 714		}
 715	} else
 716#endif
 717	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 718		child->dev_type = SAS_END_DEV;
 719		rphy = sas_end_device_alloc(phy->port);
 720		/* FIXME: error handling */
 721		if (unlikely(!rphy))
 722			goto out_free;
 723		child->tproto = phy->attached_tproto;
 724		sas_init_dev(child);
 725
 726		child->rphy = rphy;
 
 727		sas_fill_in_rphy(child, rphy);
 728
 729		spin_lock_irq(&parent->port->dev_list_lock);
 730		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 731		spin_unlock_irq(&parent->port->dev_list_lock);
 732
 733		res = sas_discover_end_dev(child);
 734		if (res) {
 735			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 736				    "at %016llx:0x%x returned 0x%x\n",
 737				    SAS_ADDR(child->sas_addr),
 738				    SAS_ADDR(parent->sas_addr), phy_id, res);
 739			goto out_list_del;
 740		}
 741	} else {
 742		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 743			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 744			    phy_id);
 745		goto out_free;
 746	}
 747
 748	list_add_tail(&child->siblings, &parent_ex->children);
 749	return child;
 750
 751 out_list_del:
 752	sas_rphy_free(child->rphy);
 753	child->rphy = NULL;
 
 754	list_del(&child->dev_list_node);
 
 755 out_free:
 756	sas_port_delete(phy->port);
 757 out_err:
 758	phy->port = NULL;
 759	kfree(child);
 760	return NULL;
 761}
 762
 763/* See if this phy is part of a wide port */
 764static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 765{
 766	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 767	int i;
 768
 769	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 770		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 771
 772		if (ephy == phy)
 773			continue;
 774
 775		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 776			    SAS_ADDR_SIZE) && ephy->port) {
 777			sas_port_add_phy(ephy->port, phy->phy);
 778			phy->port = ephy->port;
 779			phy->phy_state = PHY_DEVICE_DISCOVERED;
 780			return 0;
 781		}
 782	}
 783
 784	return -ENODEV;
 785}
 786
 787static struct domain_device *sas_ex_discover_expander(
 788	struct domain_device *parent, int phy_id)
 789{
 790	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 791	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 792	struct domain_device *child = NULL;
 793	struct sas_rphy *rphy;
 794	struct sas_expander_device *edev;
 795	struct asd_sas_port *port;
 796	int res;
 797
 798	if (phy->routing_attr == DIRECT_ROUTING) {
 799		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 800			    "allowed\n",
 801			    SAS_ADDR(parent->sas_addr), phy_id,
 802			    SAS_ADDR(phy->attached_sas_addr),
 803			    phy->attached_phy_id);
 804		return NULL;
 805	}
 806	child = kzalloc(sizeof(*child), GFP_KERNEL);
 807	if (!child)
 808		return NULL;
 809
 810	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 811	/* FIXME: better error handling */
 812	BUG_ON(sas_port_add(phy->port) != 0);
 813
 814
 815	switch (phy->attached_dev_type) {
 816	case EDGE_DEV:
 817		rphy = sas_expander_alloc(phy->port,
 818					  SAS_EDGE_EXPANDER_DEVICE);
 819		break;
 820	case FANOUT_DEV:
 821		rphy = sas_expander_alloc(phy->port,
 822					  SAS_FANOUT_EXPANDER_DEVICE);
 823		break;
 824	default:
 825		rphy = NULL;	/* shut gcc up */
 826		BUG();
 827	}
 828	port = parent->port;
 829	child->rphy = rphy;
 
 830	edev = rphy_to_expander_device(rphy);
 831	child->dev_type = phy->attached_dev_type;
 
 832	child->parent = parent;
 833	child->port = port;
 834	child->iproto = phy->attached_iproto;
 835	child->tproto = phy->attached_tproto;
 836	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 837	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 838	sas_ex_get_linkrate(parent, child, phy);
 839	edev->level = parent_ex->level + 1;
 840	parent->port->disc.max_level = max(parent->port->disc.max_level,
 841					   edev->level);
 842	sas_init_dev(child);
 843	sas_fill_in_rphy(child, rphy);
 844	sas_rphy_add(rphy);
 845
 846	spin_lock_irq(&parent->port->dev_list_lock);
 847	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 848	spin_unlock_irq(&parent->port->dev_list_lock);
 849
 850	res = sas_discover_expander(child);
 851	if (res) {
 
 852		spin_lock_irq(&parent->port->dev_list_lock);
 853		list_del(&child->dev_list_node);
 854		spin_unlock_irq(&parent->port->dev_list_lock);
 855		kfree(child);
 856		return NULL;
 857	}
 858	list_add_tail(&child->siblings, &parent->ex_dev.children);
 859	return child;
 860}
 861
 862static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 863{
 864	struct expander_device *ex = &dev->ex_dev;
 865	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 866	struct domain_device *child = NULL;
 867	int res = 0;
 868
 869	/* Phy state */
 870	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 871		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 872			res = sas_ex_phy_discover(dev, phy_id);
 873		if (res)
 874			return res;
 875	}
 876
 877	/* Parent and domain coherency */
 878	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 879			     SAS_ADDR(dev->port->sas_addr))) {
 880		sas_add_parent_port(dev, phy_id);
 881		return 0;
 882	}
 883	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 884			    SAS_ADDR(dev->parent->sas_addr))) {
 885		sas_add_parent_port(dev, phy_id);
 886		if (ex_phy->routing_attr == TABLE_ROUTING)
 887			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 888		return 0;
 889	}
 890
 891	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 892		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 893
 894	if (ex_phy->attached_dev_type == NO_DEVICE) {
 895		if (ex_phy->routing_attr == DIRECT_ROUTING) {
 896			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 897			sas_configure_routing(dev, ex_phy->attached_sas_addr);
 898		}
 899		return 0;
 900	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
 901		return 0;
 902
 903	if (ex_phy->attached_dev_type != SAS_END_DEV &&
 904	    ex_phy->attached_dev_type != FANOUT_DEV &&
 905	    ex_phy->attached_dev_type != EDGE_DEV) {
 
 906		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
 907			    "phy 0x%x\n", ex_phy->attached_dev_type,
 908			    SAS_ADDR(dev->sas_addr),
 909			    phy_id);
 910		return 0;
 911	}
 912
 913	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
 914	if (res) {
 915		SAS_DPRINTK("configure routing for dev %016llx "
 916			    "reported 0x%x. Forgotten\n",
 917			    SAS_ADDR(ex_phy->attached_sas_addr), res);
 918		sas_disable_routing(dev, ex_phy->attached_sas_addr);
 919		return res;
 920	}
 921
 922	res = sas_ex_join_wide_port(dev, phy_id);
 923	if (!res) {
 924		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 925			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
 926		return res;
 927	}
 928
 929	switch (ex_phy->attached_dev_type) {
 930	case SAS_END_DEV:
 
 931		child = sas_ex_discover_end_dev(dev, phy_id);
 932		break;
 933	case FANOUT_DEV:
 934		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
 935			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
 936				    "attached to ex %016llx phy 0x%x\n",
 937				    SAS_ADDR(ex_phy->attached_sas_addr),
 938				    ex_phy->attached_phy_id,
 939				    SAS_ADDR(dev->sas_addr),
 940				    phy_id);
 941			sas_ex_disable_phy(dev, phy_id);
 942			break;
 943		} else
 944			memcpy(dev->port->disc.fanout_sas_addr,
 945			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
 946		/* fallthrough */
 947	case EDGE_DEV:
 948		child = sas_ex_discover_expander(dev, phy_id);
 949		break;
 950	default:
 951		break;
 952	}
 953
 954	if (child) {
 955		int i;
 956
 957		for (i = 0; i < ex->num_phys; i++) {
 958			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
 959			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
 960				continue;
 961			/*
 962			 * Due to races, the phy might not get added to the
 963			 * wide port, so we add the phy to the wide port here.
 964			 */
 965			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
 966			    SAS_ADDR(child->sas_addr)) {
 967				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
 968				res = sas_ex_join_wide_port(dev, i);
 969				if (!res)
 970					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 971						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
 972
 973			}
 974		}
 975	}
 976
 977	return res;
 978}
 979
 980static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
 981{
 982	struct expander_device *ex = &dev->ex_dev;
 983	int i;
 984
 985	for (i = 0; i < ex->num_phys; i++) {
 986		struct ex_phy *phy = &ex->ex_phy[i];
 987
 988		if (phy->phy_state == PHY_VACANT ||
 989		    phy->phy_state == PHY_NOT_PRESENT)
 990			continue;
 991
 992		if ((phy->attached_dev_type == EDGE_DEV ||
 993		     phy->attached_dev_type == FANOUT_DEV) &&
 994		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
 995
 996			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
 997
 998			return 1;
 999		}
1000	}
1001	return 0;
1002}
1003
1004static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1005{
1006	struct expander_device *ex = &dev->ex_dev;
1007	struct domain_device *child;
1008	u8 sub_addr[8] = {0, };
1009
1010	list_for_each_entry(child, &ex->children, siblings) {
1011		if (child->dev_type != EDGE_DEV &&
1012		    child->dev_type != FANOUT_DEV)
1013			continue;
1014		if (sub_addr[0] == 0) {
1015			sas_find_sub_addr(child, sub_addr);
1016			continue;
1017		} else {
1018			u8 s2[8];
1019
1020			if (sas_find_sub_addr(child, s2) &&
1021			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1022
1023				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1024					    "diverges from subtractive "
1025					    "boundary %016llx\n",
1026					    SAS_ADDR(dev->sas_addr),
1027					    SAS_ADDR(child->sas_addr),
1028					    SAS_ADDR(s2),
1029					    SAS_ADDR(sub_addr));
1030
1031				sas_ex_disable_port(child, s2);
1032			}
1033		}
1034	}
1035	return 0;
1036}
1037/**
1038 * sas_ex_discover_devices -- discover devices attached to this expander
1039 * dev: pointer to the expander domain device
1040 * single: if you want to do a single phy, else set to -1;
1041 *
1042 * Configure this expander for use with its devices and register the
1043 * devices of this expander.
1044 */
1045static int sas_ex_discover_devices(struct domain_device *dev, int single)
1046{
1047	struct expander_device *ex = &dev->ex_dev;
1048	int i = 0, end = ex->num_phys;
1049	int res = 0;
1050
1051	if (0 <= single && single < end) {
1052		i = single;
1053		end = i+1;
1054	}
1055
1056	for ( ; i < end; i++) {
1057		struct ex_phy *ex_phy = &ex->ex_phy[i];
1058
1059		if (ex_phy->phy_state == PHY_VACANT ||
1060		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1061		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1062			continue;
1063
1064		switch (ex_phy->linkrate) {
1065		case SAS_PHY_DISABLED:
1066		case SAS_PHY_RESET_PROBLEM:
1067		case SAS_SATA_PORT_SELECTOR:
1068			continue;
1069		default:
1070			res = sas_ex_discover_dev(dev, i);
1071			if (res)
1072				break;
1073			continue;
1074		}
1075	}
1076
1077	if (!res)
1078		sas_check_level_subtractive_boundary(dev);
1079
1080	return res;
1081}
1082
1083static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1084{
1085	struct expander_device *ex = &dev->ex_dev;
1086	int i;
1087	u8  *sub_sas_addr = NULL;
1088
1089	if (dev->dev_type != EDGE_DEV)
1090		return 0;
1091
1092	for (i = 0; i < ex->num_phys; i++) {
1093		struct ex_phy *phy = &ex->ex_phy[i];
1094
1095		if (phy->phy_state == PHY_VACANT ||
1096		    phy->phy_state == PHY_NOT_PRESENT)
1097			continue;
1098
1099		if ((phy->attached_dev_type == FANOUT_DEV ||
1100		     phy->attached_dev_type == EDGE_DEV) &&
1101		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1102
1103			if (!sub_sas_addr)
1104				sub_sas_addr = &phy->attached_sas_addr[0];
1105			else if (SAS_ADDR(sub_sas_addr) !=
1106				 SAS_ADDR(phy->attached_sas_addr)) {
1107
1108				SAS_DPRINTK("ex %016llx phy 0x%x "
1109					    "diverges(%016llx) on subtractive "
1110					    "boundary(%016llx). Disabled\n",
1111					    SAS_ADDR(dev->sas_addr), i,
1112					    SAS_ADDR(phy->attached_sas_addr),
1113					    SAS_ADDR(sub_sas_addr));
1114				sas_ex_disable_phy(dev, i);
1115			}
1116		}
1117	}
1118	return 0;
1119}
1120
1121static void sas_print_parent_topology_bug(struct domain_device *child,
1122						 struct ex_phy *parent_phy,
1123						 struct ex_phy *child_phy)
1124{
1125	static const char ra_char[] = {
1126		[DIRECT_ROUTING] = 'D',
1127		[SUBTRACTIVE_ROUTING] = 'S',
1128		[TABLE_ROUTING] = 'T',
1129	};
1130	static const char *ex_type[] = {
1131		[EDGE_DEV] = "edge",
1132		[FANOUT_DEV] = "fanout",
1133	};
1134	struct domain_device *parent = child->parent;
1135
1136	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1137		   "has %c:%c routing link!\n",
1138
1139		   ex_type[parent->dev_type],
1140		   SAS_ADDR(parent->sas_addr),
1141		   parent_phy->phy_id,
1142
1143		   ex_type[child->dev_type],
1144		   SAS_ADDR(child->sas_addr),
1145		   child_phy->phy_id,
1146
1147		   ra_char[parent_phy->routing_attr],
1148		   ra_char[child_phy->routing_attr]);
1149}
1150
1151static int sas_check_eeds(struct domain_device *child,
1152				 struct ex_phy *parent_phy,
1153				 struct ex_phy *child_phy)
1154{
1155	int res = 0;
1156	struct domain_device *parent = child->parent;
1157
1158	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1159		res = -ENODEV;
1160		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1161			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1162			    SAS_ADDR(parent->sas_addr),
1163			    parent_phy->phy_id,
1164			    SAS_ADDR(child->sas_addr),
1165			    child_phy->phy_id,
1166			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1167	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1168		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1169		       SAS_ADDR_SIZE);
1170		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1171		       SAS_ADDR_SIZE);
1172	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1173		    SAS_ADDR(parent->sas_addr)) ||
1174		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1175		    SAS_ADDR(child->sas_addr)))
1176		   &&
1177		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1178		     SAS_ADDR(parent->sas_addr)) ||
1179		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1180		     SAS_ADDR(child->sas_addr))))
1181		;
1182	else {
1183		res = -ENODEV;
1184		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1185			    "phy 0x%x link forms a third EEDS!\n",
1186			    SAS_ADDR(parent->sas_addr),
1187			    parent_phy->phy_id,
1188			    SAS_ADDR(child->sas_addr),
1189			    child_phy->phy_id);
1190	}
1191
1192	return res;
1193}
1194
1195/* Here we spill over 80 columns.  It is intentional.
1196 */
1197static int sas_check_parent_topology(struct domain_device *child)
1198{
1199	struct expander_device *child_ex = &child->ex_dev;
1200	struct expander_device *parent_ex;
1201	int i;
1202	int res = 0;
1203
1204	if (!child->parent)
1205		return 0;
1206
1207	if (child->parent->dev_type != EDGE_DEV &&
1208	    child->parent->dev_type != FANOUT_DEV)
1209		return 0;
1210
1211	parent_ex = &child->parent->ex_dev;
1212
1213	for (i = 0; i < parent_ex->num_phys; i++) {
1214		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1215		struct ex_phy *child_phy;
1216
1217		if (parent_phy->phy_state == PHY_VACANT ||
1218		    parent_phy->phy_state == PHY_NOT_PRESENT)
1219			continue;
1220
1221		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1222			continue;
1223
1224		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1225
1226		switch (child->parent->dev_type) {
1227		case EDGE_DEV:
1228			if (child->dev_type == FANOUT_DEV) {
1229				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1230				    child_phy->routing_attr != TABLE_ROUTING) {
1231					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1232					res = -ENODEV;
1233				}
1234			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1236					res = sas_check_eeds(child, parent_phy, child_phy);
1237				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1238					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1239					res = -ENODEV;
1240				}
1241			} else if (parent_phy->routing_attr == TABLE_ROUTING &&
1242				   child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1243				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1244				res = -ENODEV;
 
 
 
 
 
1245			}
1246			break;
1247		case FANOUT_DEV:
1248			if (parent_phy->routing_attr != TABLE_ROUTING ||
1249			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1250				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1251				res = -ENODEV;
1252			}
1253			break;
1254		default:
1255			break;
1256		}
1257	}
1258
1259	return res;
1260}
1261
1262#define RRI_REQ_SIZE  16
1263#define RRI_RESP_SIZE 44
1264
1265static int sas_configure_present(struct domain_device *dev, int phy_id,
1266				 u8 *sas_addr, int *index, int *present)
1267{
1268	int i, res = 0;
1269	struct expander_device *ex = &dev->ex_dev;
1270	struct ex_phy *phy = &ex->ex_phy[phy_id];
1271	u8 *rri_req;
1272	u8 *rri_resp;
1273
1274	*present = 0;
1275	*index = 0;
1276
1277	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1278	if (!rri_req)
1279		return -ENOMEM;
1280
1281	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1282	if (!rri_resp) {
1283		kfree(rri_req);
1284		return -ENOMEM;
1285	}
1286
1287	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1288	rri_req[9] = phy_id;
1289
1290	for (i = 0; i < ex->max_route_indexes ; i++) {
1291		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1292		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1293				       RRI_RESP_SIZE);
1294		if (res)
1295			goto out;
1296		res = rri_resp[2];
1297		if (res == SMP_RESP_NO_INDEX) {
1298			SAS_DPRINTK("overflow of indexes: dev %016llx "
1299				    "phy 0x%x index 0x%x\n",
1300				    SAS_ADDR(dev->sas_addr), phy_id, i);
1301			goto out;
1302		} else if (res != SMP_RESP_FUNC_ACC) {
1303			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1304				    "result 0x%x\n", __func__,
1305				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1306			goto out;
1307		}
1308		if (SAS_ADDR(sas_addr) != 0) {
1309			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1310				*index = i;
1311				if ((rri_resp[12] & 0x80) == 0x80)
1312					*present = 0;
1313				else
1314					*present = 1;
1315				goto out;
1316			} else if (SAS_ADDR(rri_resp+16) == 0) {
1317				*index = i;
1318				*present = 0;
1319				goto out;
1320			}
1321		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1322			   phy->last_da_index < i) {
1323			phy->last_da_index = i;
1324			*index = i;
1325			*present = 0;
1326			goto out;
1327		}
1328	}
1329	res = -1;
1330out:
1331	kfree(rri_req);
1332	kfree(rri_resp);
1333	return res;
1334}
1335
1336#define CRI_REQ_SIZE  44
1337#define CRI_RESP_SIZE  8
1338
1339static int sas_configure_set(struct domain_device *dev, int phy_id,
1340			     u8 *sas_addr, int index, int include)
1341{
1342	int res;
1343	u8 *cri_req;
1344	u8 *cri_resp;
1345
1346	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1347	if (!cri_req)
1348		return -ENOMEM;
1349
1350	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1351	if (!cri_resp) {
1352		kfree(cri_req);
1353		return -ENOMEM;
1354	}
1355
1356	cri_req[1] = SMP_CONF_ROUTE_INFO;
1357	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1358	cri_req[9] = phy_id;
1359	if (SAS_ADDR(sas_addr) == 0 || !include)
1360		cri_req[12] |= 0x80;
1361	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1362
1363	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1364			       CRI_RESP_SIZE);
1365	if (res)
1366		goto out;
1367	res = cri_resp[2];
1368	if (res == SMP_RESP_NO_INDEX) {
1369		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1370			    "index 0x%x\n",
1371			    SAS_ADDR(dev->sas_addr), phy_id, index);
1372	}
1373out:
1374	kfree(cri_req);
1375	kfree(cri_resp);
1376	return res;
1377}
1378
1379static int sas_configure_phy(struct domain_device *dev, int phy_id,
1380				    u8 *sas_addr, int include)
1381{
1382	int index;
1383	int present;
1384	int res;
1385
1386	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1387	if (res)
1388		return res;
1389	if (include ^ present)
1390		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1391
1392	return res;
1393}
1394
1395/**
1396 * sas_configure_parent -- configure routing table of parent
1397 * parent: parent expander
1398 * child: child expander
1399 * sas_addr: SAS port identifier of device directly attached to child
1400 */
1401static int sas_configure_parent(struct domain_device *parent,
1402				struct domain_device *child,
1403				u8 *sas_addr, int include)
1404{
1405	struct expander_device *ex_parent = &parent->ex_dev;
1406	int res = 0;
1407	int i;
1408
1409	if (parent->parent) {
1410		res = sas_configure_parent(parent->parent, parent, sas_addr,
1411					   include);
1412		if (res)
1413			return res;
1414	}
1415
1416	if (ex_parent->conf_route_table == 0) {
1417		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1418			    SAS_ADDR(parent->sas_addr));
1419		return 0;
1420	}
1421
1422	for (i = 0; i < ex_parent->num_phys; i++) {
1423		struct ex_phy *phy = &ex_parent->ex_phy[i];
1424
1425		if ((phy->routing_attr == TABLE_ROUTING) &&
1426		    (SAS_ADDR(phy->attached_sas_addr) ==
1427		     SAS_ADDR(child->sas_addr))) {
1428			res = sas_configure_phy(parent, i, sas_addr, include);
1429			if (res)
1430				return res;
1431		}
1432	}
1433
1434	return res;
1435}
1436
1437/**
1438 * sas_configure_routing -- configure routing
1439 * dev: expander device
1440 * sas_addr: port identifier of device directly attached to the expander device
1441 */
1442static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1443{
1444	if (dev->parent)
1445		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1446	return 0;
1447}
1448
1449static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1450{
1451	if (dev->parent)
1452		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1453	return 0;
1454}
1455
1456/**
1457 * sas_discover_expander -- expander discovery
1458 * @ex: pointer to expander domain device
1459 *
1460 * See comment in sas_discover_sata().
1461 */
1462static int sas_discover_expander(struct domain_device *dev)
1463{
1464	int res;
1465
1466	res = sas_notify_lldd_dev_found(dev);
1467	if (res)
1468		return res;
1469
1470	res = sas_ex_general(dev);
1471	if (res)
1472		goto out_err;
1473	res = sas_ex_manuf_info(dev);
1474	if (res)
1475		goto out_err;
1476
1477	res = sas_expander_discover(dev);
1478	if (res) {
1479		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1480			    SAS_ADDR(dev->sas_addr), res);
1481		goto out_err;
1482	}
1483
1484	sas_check_ex_subtractive_boundary(dev);
1485	res = sas_check_parent_topology(dev);
1486	if (res)
1487		goto out_err;
1488	return 0;
1489out_err:
1490	sas_notify_lldd_dev_gone(dev);
1491	return res;
1492}
1493
1494static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1495{
1496	int res = 0;
1497	struct domain_device *dev;
1498
1499	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1500		if (dev->dev_type == EDGE_DEV ||
1501		    dev->dev_type == FANOUT_DEV) {
1502			struct sas_expander_device *ex =
1503				rphy_to_expander_device(dev->rphy);
1504
1505			if (level == ex->level)
1506				res = sas_ex_discover_devices(dev, -1);
1507			else if (level > 0)
1508				res = sas_ex_discover_devices(port->port_dev, -1);
1509
1510		}
1511	}
1512
1513	return res;
1514}
1515
1516static int sas_ex_bfs_disc(struct asd_sas_port *port)
1517{
1518	int res;
1519	int level;
1520
1521	do {
1522		level = port->disc.max_level;
1523		res = sas_ex_level_discovery(port, level);
1524		mb();
1525	} while (level < port->disc.max_level);
1526
1527	return res;
1528}
1529
1530int sas_discover_root_expander(struct domain_device *dev)
1531{
1532	int res;
1533	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1534
1535	res = sas_rphy_add(dev->rphy);
1536	if (res)
1537		goto out_err;
1538
1539	ex->level = dev->port->disc.max_level; /* 0 */
1540	res = sas_discover_expander(dev);
1541	if (res)
1542		goto out_err2;
1543
1544	sas_ex_bfs_disc(dev->port);
1545
1546	return res;
1547
1548out_err2:
1549	sas_rphy_remove(dev->rphy);
1550out_err:
1551	return res;
1552}
1553
1554/* ---------- Domain revalidation ---------- */
1555
1556static int sas_get_phy_discover(struct domain_device *dev,
1557				int phy_id, struct smp_resp *disc_resp)
1558{
1559	int res;
1560	u8 *disc_req;
1561
1562	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1563	if (!disc_req)
1564		return -ENOMEM;
1565
1566	disc_req[1] = SMP_DISCOVER;
1567	disc_req[9] = phy_id;
1568
1569	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1570			       disc_resp, DISCOVER_RESP_SIZE);
1571	if (res)
1572		goto out;
1573	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1574		res = disc_resp->result;
1575		goto out;
1576	}
1577out:
1578	kfree(disc_req);
1579	return res;
1580}
1581
1582static int sas_get_phy_change_count(struct domain_device *dev,
1583				    int phy_id, int *pcc)
1584{
1585	int res;
1586	struct smp_resp *disc_resp;
1587
1588	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1589	if (!disc_resp)
1590		return -ENOMEM;
1591
1592	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1593	if (!res)
1594		*pcc = disc_resp->disc.change_count;
1595
1596	kfree(disc_resp);
1597	return res;
1598}
1599
1600static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1601					 int phy_id, u8 *attached_sas_addr)
1602{
1603	int res;
1604	struct smp_resp *disc_resp;
1605	struct discover_resp *dr;
1606
1607	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1608	if (!disc_resp)
1609		return -ENOMEM;
1610	dr = &disc_resp->disc;
1611
1612	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1613	if (!res) {
1614		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1615		if (dr->attached_dev_type == 0)
1616			memset(attached_sas_addr, 0, 8);
 
1617	}
1618	kfree(disc_resp);
1619	return res;
1620}
1621
1622static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1623			      int from_phy, bool update)
1624{
1625	struct expander_device *ex = &dev->ex_dev;
1626	int res = 0;
1627	int i;
1628
1629	for (i = from_phy; i < ex->num_phys; i++) {
1630		int phy_change_count = 0;
1631
1632		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1633		if (res)
1634			goto out;
1635		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
 
 
 
 
 
 
 
 
1636			if (update)
1637				ex->ex_phy[i].phy_change_count =
1638					phy_change_count;
1639			*phy_id = i;
1640			return 0;
1641		}
1642	}
1643out:
1644	return res;
1645}
1646
1647static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1648{
1649	int res;
1650	u8  *rg_req;
1651	struct smp_resp  *rg_resp;
1652
1653	rg_req = alloc_smp_req(RG_REQ_SIZE);
1654	if (!rg_req)
1655		return -ENOMEM;
1656
1657	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1658	if (!rg_resp) {
1659		kfree(rg_req);
1660		return -ENOMEM;
1661	}
1662
1663	rg_req[1] = SMP_REPORT_GENERAL;
1664
1665	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1666			       RG_RESP_SIZE);
1667	if (res)
1668		goto out;
1669	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1670		res = rg_resp->result;
1671		goto out;
1672	}
1673
1674	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1675out:
1676	kfree(rg_resp);
1677	kfree(rg_req);
1678	return res;
1679}
1680/**
1681 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1682 * @dev:domain device to be detect.
1683 * @src_dev: the device which originated BROADCAST(CHANGE).
1684 *
1685 * Add self-configuration expander suport. Suppose two expander cascading,
1686 * when the first level expander is self-configuring, hotplug the disks in
1687 * second level expander, BROADCAST(CHANGE) will not only be originated
1688 * in the second level expander, but also be originated in the first level
1689 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1690 * expander changed count in two level expanders will all increment at least
1691 * once, but the phy which chang count has changed is the source device which
1692 * we concerned.
1693 */
1694
1695static int sas_find_bcast_dev(struct domain_device *dev,
1696			      struct domain_device **src_dev)
1697{
1698	struct expander_device *ex = &dev->ex_dev;
1699	int ex_change_count = -1;
1700	int phy_id = -1;
1701	int res;
1702	struct domain_device *ch;
1703
1704	res = sas_get_ex_change_count(dev, &ex_change_count);
1705	if (res)
1706		goto out;
1707	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1708		/* Just detect if this expander phys phy change count changed,
1709		* in order to determine if this expander originate BROADCAST,
1710		* and do not update phy change count field in our structure.
1711		*/
1712		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1713		if (phy_id != -1) {
1714			*src_dev = dev;
1715			ex->ex_change_count = ex_change_count;
1716			SAS_DPRINTK("Expander phy change count has changed\n");
1717			return res;
1718		} else
1719			SAS_DPRINTK("Expander phys DID NOT change\n");
1720	}
1721	list_for_each_entry(ch, &ex->children, siblings) {
1722		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1723			res = sas_find_bcast_dev(ch, src_dev);
1724			if (*src_dev)
1725				return res;
1726		}
1727	}
1728out:
1729	return res;
1730}
1731
1732static void sas_unregister_ex_tree(struct domain_device *dev)
1733{
1734	struct expander_device *ex = &dev->ex_dev;
1735	struct domain_device *child, *n;
1736
1737	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1738		child->gone = 1;
1739		if (child->dev_type == EDGE_DEV ||
1740		    child->dev_type == FANOUT_DEV)
1741			sas_unregister_ex_tree(child);
1742		else
1743			sas_unregister_dev(child);
1744	}
1745	sas_unregister_dev(dev);
1746}
1747
1748static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1749					 int phy_id, bool last)
1750{
1751	struct expander_device *ex_dev = &parent->ex_dev;
1752	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1753	struct domain_device *child, *n;
1754	if (last) {
1755		list_for_each_entry_safe(child, n,
1756			&ex_dev->children, siblings) {
1757			if (SAS_ADDR(child->sas_addr) ==
1758			    SAS_ADDR(phy->attached_sas_addr)) {
1759				child->gone = 1;
1760				if (child->dev_type == EDGE_DEV ||
1761				    child->dev_type == FANOUT_DEV)
1762					sas_unregister_ex_tree(child);
1763				else
1764					sas_unregister_dev(child);
 
1765				break;
1766			}
1767		}
1768		parent->gone = 1;
1769		sas_disable_routing(parent, phy->attached_sas_addr);
1770	}
1771	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1772	if (phy->port) {
1773		sas_port_delete_phy(phy->port, phy->phy);
 
1774		if (phy->port->num_phys == 0)
1775			sas_port_delete(phy->port);
1776		phy->port = NULL;
1777	}
1778}
1779
1780static int sas_discover_bfs_by_root_level(struct domain_device *root,
1781					  const int level)
1782{
1783	struct expander_device *ex_root = &root->ex_dev;
1784	struct domain_device *child;
1785	int res = 0;
1786
1787	list_for_each_entry(child, &ex_root->children, siblings) {
1788		if (child->dev_type == EDGE_DEV ||
1789		    child->dev_type == FANOUT_DEV) {
1790			struct sas_expander_device *ex =
1791				rphy_to_expander_device(child->rphy);
1792
1793			if (level > ex->level)
1794				res = sas_discover_bfs_by_root_level(child,
1795								     level);
1796			else if (level == ex->level)
1797				res = sas_ex_discover_devices(child, -1);
1798		}
1799	}
1800	return res;
1801}
1802
1803static int sas_discover_bfs_by_root(struct domain_device *dev)
1804{
1805	int res;
1806	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1807	int level = ex->level+1;
1808
1809	res = sas_ex_discover_devices(dev, -1);
1810	if (res)
1811		goto out;
1812	do {
1813		res = sas_discover_bfs_by_root_level(dev, level);
1814		mb();
1815		level += 1;
1816	} while (level <= dev->port->disc.max_level);
1817out:
1818	return res;
1819}
1820
1821static int sas_discover_new(struct domain_device *dev, int phy_id)
1822{
1823	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1824	struct domain_device *child;
1825	bool found = false;
1826	int res, i;
1827
1828	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1829		    SAS_ADDR(dev->sas_addr), phy_id);
1830	res = sas_ex_phy_discover(dev, phy_id);
1831	if (res)
1832		goto out;
1833	/* to support the wide port inserted */
1834	for (i = 0; i < dev->ex_dev.num_phys; i++) {
1835		struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1836		if (i == phy_id)
1837			continue;
1838		if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1839		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1840			found = true;
1841			break;
1842		}
1843	}
1844	if (found) {
1845		sas_ex_join_wide_port(dev, phy_id);
1846		return 0;
1847	}
1848	res = sas_ex_discover_devices(dev, phy_id);
1849	if (!res)
1850		goto out;
1851	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1852		if (SAS_ADDR(child->sas_addr) ==
1853		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1854			if (child->dev_type == EDGE_DEV ||
1855			    child->dev_type == FANOUT_DEV)
1856				res = sas_discover_bfs_by_root(child);
1857			break;
1858		}
1859	}
1860out:
1861	return res;
1862}
1863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1865{
1866	struct expander_device *ex = &dev->ex_dev;
1867	struct ex_phy *phy = &ex->ex_phy[phy_id];
1868	u8 attached_sas_addr[8];
 
1869	int res;
1870
1871	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
 
1872	switch (res) {
1873	case SMP_RESP_NO_PHY:
1874		phy->phy_state = PHY_NOT_PRESENT;
1875		sas_unregister_devs_sas_addr(dev, phy_id, last);
1876		goto out; break;
1877	case SMP_RESP_PHY_VACANT:
1878		phy->phy_state = PHY_VACANT;
1879		sas_unregister_devs_sas_addr(dev, phy_id, last);
1880		goto out; break;
1881	case SMP_RESP_FUNC_ACC:
1882		break;
 
 
 
 
1883	}
1884
1885	if (SAS_ADDR(attached_sas_addr) == 0) {
1886		phy->phy_state = PHY_EMPTY;
1887		sas_unregister_devs_sas_addr(dev, phy_id, last);
1888	} else if (SAS_ADDR(attached_sas_addr) ==
1889		   SAS_ADDR(phy->attached_sas_addr)) {
1890		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1891			    SAS_ADDR(dev->sas_addr), phy_id);
 
 
1892		sas_ex_phy_discover(dev, phy_id);
1893	} else
1894		res = sas_discover_new(dev, phy_id);
1895out:
1896	return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897}
1898
1899/**
1900 * sas_rediscover - revalidate the domain.
1901 * @dev:domain device to be detect.
1902 * @phy_id: the phy id will be detected.
1903 *
1904 * NOTE: this process _must_ quit (return) as soon as any connection
1905 * errors are encountered.  Connection recovery is done elsewhere.
1906 * Discover process only interrogates devices in order to discover the
1907 * domain.For plugging out, we un-register the device only when it is
1908 * the last phy in the port, for other phys in this port, we just delete it
1909 * from the port.For inserting, we do discovery when it is the
1910 * first phy,for other phys in this port, we add it to the port to
1911 * forming the wide-port.
1912 */
1913static int sas_rediscover(struct domain_device *dev, const int phy_id)
1914{
1915	struct expander_device *ex = &dev->ex_dev;
1916	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1917	int res = 0;
1918	int i;
1919	bool last = true;	/* is this the last phy of the port */
1920
1921	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1922		    SAS_ADDR(dev->sas_addr), phy_id);
1923
1924	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1925		for (i = 0; i < ex->num_phys; i++) {
1926			struct ex_phy *phy = &ex->ex_phy[i];
1927
1928			if (i == phy_id)
1929				continue;
1930			if (SAS_ADDR(phy->attached_sas_addr) ==
1931			    SAS_ADDR(changed_phy->attached_sas_addr)) {
1932				SAS_DPRINTK("phy%d part of wide port with "
1933					    "phy%d\n", phy_id, i);
1934				last = false;
1935				break;
1936			}
1937		}
1938		res = sas_rediscover_dev(dev, phy_id, last);
1939	} else
1940		res = sas_discover_new(dev, phy_id);
1941	return res;
1942}
1943
1944/**
1945 * sas_revalidate_domain -- revalidate the domain
1946 * @port: port to the domain of interest
1947 *
1948 * NOTE: this process _must_ quit (return) as soon as any connection
1949 * errors are encountered.  Connection recovery is done elsewhere.
1950 * Discover process only interrogates devices in order to discover the
1951 * domain.
1952 */
1953int sas_ex_revalidate_domain(struct domain_device *port_dev)
1954{
1955	int res;
1956	struct domain_device *dev = NULL;
1957
1958	res = sas_find_bcast_dev(port_dev, &dev);
1959	if (res)
1960		goto out;
1961	if (dev) {
1962		struct expander_device *ex = &dev->ex_dev;
1963		int i = 0, phy_id;
1964
1965		do {
1966			phy_id = -1;
1967			res = sas_find_bcast_phy(dev, &phy_id, i, true);
1968			if (phy_id == -1)
1969				break;
1970			res = sas_rediscover(dev, phy_id);
1971			i = phy_id + 1;
1972		} while (i < ex->num_phys);
 
 
 
1973	}
1974out:
1975	return res;
1976}
1977
1978int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1979		    struct request *req)
1980{
1981	struct domain_device *dev;
1982	int ret, type;
1983	struct request *rsp = req->next_rq;
1984
1985	if (!rsp) {
1986		printk("%s: space for a smp response is missing\n",
1987		       __func__);
1988		return -EINVAL;
1989	}
1990
1991	/* no rphy means no smp target support (ie aic94xx host) */
1992	if (!rphy)
1993		return sas_smp_host_handler(shost, req, rsp);
1994
1995	type = rphy->identify.device_type;
1996
1997	if (type != SAS_EDGE_EXPANDER_DEVICE &&
1998	    type != SAS_FANOUT_EXPANDER_DEVICE) {
1999		printk("%s: can we send a smp request to a device?\n",
2000		       __func__);
2001		return -EINVAL;
2002	}
2003
2004	dev = sas_find_dev_by_rphy(rphy);
2005	if (!dev) {
2006		printk("%s: fail to find a domain_device?\n", __func__);
2007		return -EINVAL;
2008	}
2009
2010	/* do we need to support multiple segments? */
2011	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2012		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2013		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2014		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2015		return -EINVAL;
2016	}
2017
2018	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2019			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2020	if (ret > 0) {
2021		/* positive number is the untransferred residual */
2022		rsp->resid_len = ret;
2023		req->resid_len = 0;
2024		ret = 0;
2025	} else if (ret == 0) {
2026		rsp->resid_len = 0;
2027		req->resid_len = 0;
2028	}
2029
2030	return ret;
2031}
v4.10.11
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39			     u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(unsigned long _task)
  45{
  46	struct sas_task *task = (void *) _task;
  47	unsigned long flags;
  48
  49	spin_lock_irqsave(&task->task_state_lock, flags);
  50	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  51		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  52	spin_unlock_irqrestore(&task->task_state_lock, flags);
  53
  54	complete(&task->slow_task->completion);
  55}
  56
  57static void smp_task_done(struct sas_task *task)
  58{
  59	if (!del_timer(&task->slow_task->timer))
  60		return;
  61	complete(&task->slow_task->completion);
  62}
  63
  64/* Give it some long enough timeout. In seconds. */
  65#define SMP_TIMEOUT 10
  66
  67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  68			    void *resp, int resp_size)
  69{
  70	int res, retry;
  71	struct sas_task *task = NULL;
  72	struct sas_internal *i =
  73		to_sas_internal(dev->port->ha->core.shost->transportt);
  74
  75	mutex_lock(&dev->ex_dev.cmd_mutex);
  76	for (retry = 0; retry < 3; retry++) {
  77		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  78			res = -ECOMM;
  79			break;
  80		}
  81
  82		task = sas_alloc_slow_task(GFP_KERNEL);
  83		if (!task) {
  84			res = -ENOMEM;
  85			break;
  86		}
  87		task->dev = dev;
  88		task->task_proto = dev->tproto;
  89		sg_init_one(&task->smp_task.smp_req, req, req_size);
  90		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  91
  92		task->task_done = smp_task_done;
  93
  94		task->slow_task->timer.data = (unsigned long) task;
  95		task->slow_task->timer.function = smp_task_timedout;
  96		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97		add_timer(&task->slow_task->timer);
  98
  99		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
 100
 101		if (res) {
 102			del_timer(&task->slow_task->timer);
 103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104			break;
 105		}
 106
 107		wait_for_completion(&task->slow_task->completion);
 108		res = -ECOMM;
 109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110			SAS_DPRINTK("smp task timed out or aborted\n");
 111			i->dft->lldd_abort_task(task);
 112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113				SAS_DPRINTK("SMP task aborted and not done\n");
 114				break;
 115			}
 116		}
 117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118		    task->task_status.stat == SAM_STAT_GOOD) {
 119			res = 0;
 120			break;
 121		}
 122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124			/* no error, but return the number of bytes of
 125			 * underrun */
 126			res = task->task_status.residual;
 127			break;
 128		}
 129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130		    task->task_status.stat == SAS_DATA_OVERRUN) {
 131			res = -EMSGSIZE;
 132			break;
 133		}
 134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136			break;
 137		else {
 138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139				    "status 0x%x\n", __func__,
 140				    SAS_ADDR(dev->sas_addr),
 141				    task->task_status.resp,
 142				    task->task_status.stat);
 143			sas_free_task(task);
 144			task = NULL;
 145		}
 146	}
 147	mutex_unlock(&dev->ex_dev.cmd_mutex);
 148
 149	BUG_ON(retry == 3 && task != NULL);
 150	sas_free_task(task);
 
 
 151	return res;
 152}
 153
 154/* ---------- Allocations ---------- */
 155
 156static inline void *alloc_smp_req(int size)
 157{
 158	u8 *p = kzalloc(size, GFP_KERNEL);
 159	if (p)
 160		p[0] = SMP_REQUEST;
 161	return p;
 162}
 163
 164static inline void *alloc_smp_resp(int size)
 165{
 166	return kzalloc(size, GFP_KERNEL);
 167}
 168
 169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 170{
 171	switch (phy->routing_attr) {
 172	case TABLE_ROUTING:
 173		if (dev->ex_dev.t2t_supp)
 174			return 'U';
 175		else
 176			return 'T';
 177	case DIRECT_ROUTING:
 178		return 'D';
 179	case SUBTRACTIVE_ROUTING:
 180		return 'S';
 181	default:
 182		return '?';
 183	}
 184}
 185
 186static enum sas_device_type to_dev_type(struct discover_resp *dr)
 187{
 188	/* This is detecting a failure to transmit initial dev to host
 189	 * FIS as described in section J.5 of sas-2 r16
 190	 */
 191	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 192	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 193		return SAS_SATA_PENDING;
 194	else
 195		return dr->attached_dev_type;
 196}
 197
 198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 
 199{
 200	enum sas_device_type dev_type;
 201	enum sas_linkrate linkrate;
 202	u8 sas_addr[SAS_ADDR_SIZE];
 203	struct smp_resp *resp = rsp;
 204	struct discover_resp *dr = &resp->disc;
 205	struct sas_ha_struct *ha = dev->port->ha;
 206	struct expander_device *ex = &dev->ex_dev;
 207	struct ex_phy *phy = &ex->ex_phy[phy_id];
 
 
 208	struct sas_rphy *rphy = dev->rphy;
 209	bool new_phy = !phy->phy;
 210	char *type;
 211
 212	if (new_phy) {
 213		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 214			return;
 215		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 216
 217		/* FIXME: error_handling */
 218		BUG_ON(!phy->phy);
 219	}
 220
 221	switch (resp->result) {
 222	case SMP_RESP_PHY_VACANT:
 223		phy->phy_state = PHY_VACANT;
 224		break;
 225	default:
 226		phy->phy_state = PHY_NOT_PRESENT;
 227		break;
 228	case SMP_RESP_FUNC_ACC:
 229		phy->phy_state = PHY_EMPTY; /* do not know yet */
 230		break;
 231	}
 232
 233	/* check if anything important changed to squelch debug */
 234	dev_type = phy->attached_dev_type;
 235	linkrate  = phy->linkrate;
 236	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 237
 238	/* Handle vacant phy - rest of dr data is not valid so skip it */
 239	if (phy->phy_state == PHY_VACANT) {
 240		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 241		phy->attached_dev_type = SAS_PHY_UNUSED;
 242		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 243			phy->phy_id = phy_id;
 244			goto skip;
 245		} else
 246			goto out;
 247	}
 248
 249	phy->attached_dev_type = to_dev_type(dr);
 250	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 251		goto out;
 252	phy->phy_id = phy_id;
 
 253	phy->linkrate = dr->linkrate;
 254	phy->attached_sata_host = dr->attached_sata_host;
 255	phy->attached_sata_dev  = dr->attached_sata_dev;
 256	phy->attached_sata_ps   = dr->attached_sata_ps;
 257	phy->attached_iproto = dr->iproto << 1;
 258	phy->attached_tproto = dr->tproto << 1;
 259	/* help some expanders that fail to zero sas_address in the 'no
 260	 * device' case
 261	 */
 262	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 263	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 264		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 265	else
 266		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 267	phy->attached_phy_id = dr->attached_phy_id;
 268	phy->phy_change_count = dr->change_count;
 269	phy->routing_attr = dr->routing_attr;
 270	phy->virtual = dr->virtual;
 271	phy->last_da_index = -1;
 272
 273	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 274	phy->phy->identify.device_type = dr->attached_dev_type;
 275	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 276	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 277	if (!phy->attached_tproto && dr->attached_sata_dev)
 278		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 279	phy->phy->identify.phy_identifier = phy_id;
 280	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 281	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 282	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 283	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 284	phy->phy->negotiated_linkrate = phy->linkrate;
 285
 286 skip:
 287	if (new_phy)
 288		if (sas_phy_add(phy->phy)) {
 289			sas_phy_free(phy->phy);
 290			return;
 291		}
 292
 293 out:
 294	switch (phy->attached_dev_type) {
 295	case SAS_SATA_PENDING:
 296		type = "stp pending";
 297		break;
 298	case SAS_PHY_UNUSED:
 299		type = "no device";
 300		break;
 301	case SAS_END_DEVICE:
 302		if (phy->attached_iproto) {
 303			if (phy->attached_tproto)
 304				type = "host+target";
 305			else
 306				type = "host";
 307		} else {
 308			if (dr->attached_sata_dev)
 309				type = "stp";
 310			else
 311				type = "ssp";
 312		}
 313		break;
 314	case SAS_EDGE_EXPANDER_DEVICE:
 315	case SAS_FANOUT_EXPANDER_DEVICE:
 316		type = "smp";
 317		break;
 318	default:
 319		type = "unknown";
 320	}
 321
 322	/* this routine is polled by libata error recovery so filter
 323	 * unimportant messages
 324	 */
 325	if (new_phy || phy->attached_dev_type != dev_type ||
 326	    phy->linkrate != linkrate ||
 327	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 328		/* pass */;
 329	else
 330		return;
 331
 332	/* if the attached device type changed and ata_eh is active,
 333	 * make sure we run revalidation when eh completes (see:
 334	 * sas_enable_revalidation)
 335	 */
 336	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 337		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 338
 339	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 340		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 341		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 342		    sas_route_char(dev, phy), phy->linkrate,
 343		    SAS_ADDR(phy->attached_sas_addr), type);
 344}
 345
 346/* check if we have an existing attached ata device on this expander phy */
 347struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 348{
 349	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 350	struct domain_device *dev;
 351	struct sas_rphy *rphy;
 352
 353	if (!ex_phy->port)
 354		return NULL;
 355
 356	rphy = ex_phy->port->rphy;
 357	if (!rphy)
 358		return NULL;
 359
 360	dev = sas_find_dev_by_rphy(rphy);
 361
 362	if (dev && dev_is_sata(dev))
 363		return dev;
 364
 365	return NULL;
 366}
 367
 368#define DISCOVER_REQ_SIZE  16
 369#define DISCOVER_RESP_SIZE 56
 370
 371static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 372				      u8 *disc_resp, int single)
 373{
 374	struct discover_resp *dr;
 375	int res;
 376
 377	disc_req[9] = single;
 
 
 378
 379	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 380			       disc_resp, DISCOVER_RESP_SIZE);
 381	if (res)
 382		return res;
 383	dr = &((struct smp_resp *)disc_resp)->disc;
 384	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 385		sas_printk("Found loopback topology, just ignore it!\n");
 386		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 387	}
 388	sas_set_ex_phy(dev, single, disc_resp);
 389	return 0;
 390}
 391
 392int sas_ex_phy_discover(struct domain_device *dev, int single)
 393{
 394	struct expander_device *ex = &dev->ex_dev;
 395	int  res = 0;
 396	u8   *disc_req;
 397	u8   *disc_resp;
 398
 399	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 400	if (!disc_req)
 401		return -ENOMEM;
 402
 403	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 404	if (!disc_resp) {
 405		kfree(disc_req);
 406		return -ENOMEM;
 407	}
 408
 409	disc_req[1] = SMP_DISCOVER;
 410
 411	if (0 <= single && single < ex->num_phys) {
 412		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 413	} else {
 414		int i;
 415
 416		for (i = 0; i < ex->num_phys; i++) {
 417			res = sas_ex_phy_discover_helper(dev, disc_req,
 418							 disc_resp, i);
 419			if (res)
 420				goto out_err;
 421		}
 422	}
 423out_err:
 424	kfree(disc_resp);
 425	kfree(disc_req);
 426	return res;
 427}
 428
 429static int sas_expander_discover(struct domain_device *dev)
 430{
 431	struct expander_device *ex = &dev->ex_dev;
 432	int res = -ENOMEM;
 433
 434	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 435	if (!ex->ex_phy)
 436		return -ENOMEM;
 437
 438	res = sas_ex_phy_discover(dev, -1);
 439	if (res)
 440		goto out_err;
 441
 442	return 0;
 443 out_err:
 444	kfree(ex->ex_phy);
 445	ex->ex_phy = NULL;
 446	return res;
 447}
 448
 449#define MAX_EXPANDER_PHYS 128
 450
 451static void ex_assign_report_general(struct domain_device *dev,
 452					    struct smp_resp *resp)
 453{
 454	struct report_general_resp *rg = &resp->rg;
 455
 456	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 457	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 458	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 459	dev->ex_dev.t2t_supp = rg->t2t_supp;
 460	dev->ex_dev.conf_route_table = rg->conf_route_table;
 461	dev->ex_dev.configuring = rg->configuring;
 462	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 463}
 464
 465#define RG_REQ_SIZE   8
 466#define RG_RESP_SIZE 32
 467
 468static int sas_ex_general(struct domain_device *dev)
 469{
 470	u8 *rg_req;
 471	struct smp_resp *rg_resp;
 472	int res;
 473	int i;
 474
 475	rg_req = alloc_smp_req(RG_REQ_SIZE);
 476	if (!rg_req)
 477		return -ENOMEM;
 478
 479	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 480	if (!rg_resp) {
 481		kfree(rg_req);
 482		return -ENOMEM;
 483	}
 484
 485	rg_req[1] = SMP_REPORT_GENERAL;
 486
 487	for (i = 0; i < 5; i++) {
 488		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 489				       RG_RESP_SIZE);
 490
 491		if (res) {
 492			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 493				    SAS_ADDR(dev->sas_addr), res);
 494			goto out;
 495		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 496			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 497				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 498			res = rg_resp->result;
 499			goto out;
 500		}
 501
 502		ex_assign_report_general(dev, rg_resp);
 503
 504		if (dev->ex_dev.configuring) {
 505			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 506				    SAS_ADDR(dev->sas_addr));
 507			schedule_timeout_interruptible(5*HZ);
 508		} else
 509			break;
 510	}
 511out:
 512	kfree(rg_req);
 513	kfree(rg_resp);
 514	return res;
 515}
 516
 517static void ex_assign_manuf_info(struct domain_device *dev, void
 518					*_mi_resp)
 519{
 520	u8 *mi_resp = _mi_resp;
 521	struct sas_rphy *rphy = dev->rphy;
 522	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 523
 524	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 525	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 526	memcpy(edev->product_rev, mi_resp + 36,
 527	       SAS_EXPANDER_PRODUCT_REV_LEN);
 528
 529	if (mi_resp[8] & 1) {
 530		memcpy(edev->component_vendor_id, mi_resp + 40,
 531		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 532		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 533		edev->component_revision_id = mi_resp[50];
 534	}
 535}
 536
 537#define MI_REQ_SIZE   8
 538#define MI_RESP_SIZE 64
 539
 540static int sas_ex_manuf_info(struct domain_device *dev)
 541{
 542	u8 *mi_req;
 543	u8 *mi_resp;
 544	int res;
 545
 546	mi_req = alloc_smp_req(MI_REQ_SIZE);
 547	if (!mi_req)
 548		return -ENOMEM;
 549
 550	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 551	if (!mi_resp) {
 552		kfree(mi_req);
 553		return -ENOMEM;
 554	}
 555
 556	mi_req[1] = SMP_REPORT_MANUF_INFO;
 557
 558	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 559	if (res) {
 560		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 561			    SAS_ADDR(dev->sas_addr), res);
 562		goto out;
 563	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 564		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 565			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 566		goto out;
 567	}
 568
 569	ex_assign_manuf_info(dev, mi_resp);
 570out:
 571	kfree(mi_req);
 572	kfree(mi_resp);
 573	return res;
 574}
 575
 576#define PC_REQ_SIZE  44
 577#define PC_RESP_SIZE 8
 578
 579int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 580			enum phy_func phy_func,
 581			struct sas_phy_linkrates *rates)
 582{
 583	u8 *pc_req;
 584	u8 *pc_resp;
 585	int res;
 586
 587	pc_req = alloc_smp_req(PC_REQ_SIZE);
 588	if (!pc_req)
 589		return -ENOMEM;
 590
 591	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 592	if (!pc_resp) {
 593		kfree(pc_req);
 594		return -ENOMEM;
 595	}
 596
 597	pc_req[1] = SMP_PHY_CONTROL;
 598	pc_req[9] = phy_id;
 599	pc_req[10]= phy_func;
 600	if (rates) {
 601		pc_req[32] = rates->minimum_linkrate << 4;
 602		pc_req[33] = rates->maximum_linkrate << 4;
 603	}
 604
 605	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 606
 607	kfree(pc_resp);
 608	kfree(pc_req);
 609	return res;
 610}
 611
 612static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 613{
 614	struct expander_device *ex = &dev->ex_dev;
 615	struct ex_phy *phy = &ex->ex_phy[phy_id];
 616
 617	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 618	phy->linkrate = SAS_PHY_DISABLED;
 619}
 620
 621static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 622{
 623	struct expander_device *ex = &dev->ex_dev;
 624	int i;
 625
 626	for (i = 0; i < ex->num_phys; i++) {
 627		struct ex_phy *phy = &ex->ex_phy[i];
 628
 629		if (phy->phy_state == PHY_VACANT ||
 630		    phy->phy_state == PHY_NOT_PRESENT)
 631			continue;
 632
 633		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 634			sas_ex_disable_phy(dev, i);
 635	}
 636}
 637
 638static int sas_dev_present_in_domain(struct asd_sas_port *port,
 639					    u8 *sas_addr)
 640{
 641	struct domain_device *dev;
 642
 643	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 644		return 1;
 645	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 646		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 647			return 1;
 648	}
 649	return 0;
 650}
 651
 652#define RPEL_REQ_SIZE	16
 653#define RPEL_RESP_SIZE	32
 654int sas_smp_get_phy_events(struct sas_phy *phy)
 655{
 656	int res;
 657	u8 *req;
 658	u8 *resp;
 659	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 660	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 661
 662	req = alloc_smp_req(RPEL_REQ_SIZE);
 663	if (!req)
 664		return -ENOMEM;
 665
 666	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 667	if (!resp) {
 668		kfree(req);
 669		return -ENOMEM;
 670	}
 671
 672	req[1] = SMP_REPORT_PHY_ERR_LOG;
 673	req[9] = phy->number;
 674
 675	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 676			            resp, RPEL_RESP_SIZE);
 677
 678	if (!res)
 679		goto out;
 680
 681	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 682	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 683	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 684	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 685
 686 out:
 687	kfree(resp);
 688	return res;
 689
 690}
 691
 692#ifdef CONFIG_SCSI_SAS_ATA
 693
 694#define RPS_REQ_SIZE  16
 695#define RPS_RESP_SIZE 60
 696
 697int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 698			    struct smp_resp *rps_resp)
 
 699{
 700	int res;
 701	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 702	u8 *resp = (u8 *)rps_resp;
 703
 704	if (!rps_req)
 705		return -ENOMEM;
 706
 707	rps_req[1] = SMP_REPORT_PHY_SATA;
 708	rps_req[9] = phy_id;
 709
 710	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 711			            rps_resp, RPS_RESP_SIZE);
 712
 713	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 714	 * standards cockup here.  sas-2 explicitly specifies the FIS
 715	 * should be encoded so that FIS type is in resp[24].
 716	 * However, some expanders endian reverse this.  Undo the
 717	 * reversal here */
 718	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 719		int i;
 720
 721		for (i = 0; i < 5; i++) {
 722			int j = 24 + (i*4);
 723			u8 a, b;
 724			a = resp[j + 0];
 725			b = resp[j + 1];
 726			resp[j + 0] = resp[j + 3];
 727			resp[j + 1] = resp[j + 2];
 728			resp[j + 2] = b;
 729			resp[j + 3] = a;
 730		}
 731	}
 732
 733	kfree(rps_req);
 734	return res;
 735}
 736#endif
 737
 738static void sas_ex_get_linkrate(struct domain_device *parent,
 739				       struct domain_device *child,
 740				       struct ex_phy *parent_phy)
 741{
 742	struct expander_device *parent_ex = &parent->ex_dev;
 743	struct sas_port *port;
 744	int i;
 745
 746	child->pathways = 0;
 747
 748	port = parent_phy->port;
 749
 750	for (i = 0; i < parent_ex->num_phys; i++) {
 751		struct ex_phy *phy = &parent_ex->ex_phy[i];
 752
 753		if (phy->phy_state == PHY_VACANT ||
 754		    phy->phy_state == PHY_NOT_PRESENT)
 755			continue;
 756
 757		if (SAS_ADDR(phy->attached_sas_addr) ==
 758		    SAS_ADDR(child->sas_addr)) {
 759
 760			child->min_linkrate = min(parent->min_linkrate,
 761						  phy->linkrate);
 762			child->max_linkrate = max(parent->max_linkrate,
 763						  phy->linkrate);
 764			child->pathways++;
 765			sas_port_add_phy(port, phy->phy);
 766		}
 767	}
 768	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 769	child->pathways = min(child->pathways, parent->pathways);
 770}
 771
 772static struct domain_device *sas_ex_discover_end_dev(
 773	struct domain_device *parent, int phy_id)
 774{
 775	struct expander_device *parent_ex = &parent->ex_dev;
 776	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 777	struct domain_device *child = NULL;
 778	struct sas_rphy *rphy;
 779	int res;
 780
 781	if (phy->attached_sata_host || phy->attached_sata_ps)
 782		return NULL;
 783
 784	child = sas_alloc_device();
 785	if (!child)
 786		return NULL;
 787
 788	kref_get(&parent->kref);
 789	child->parent = parent;
 790	child->port   = parent->port;
 791	child->iproto = phy->attached_iproto;
 792	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 793	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 794	if (!phy->port) {
 795		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 796		if (unlikely(!phy->port))
 797			goto out_err;
 798		if (unlikely(sas_port_add(phy->port) != 0)) {
 799			sas_port_free(phy->port);
 800			goto out_err;
 801		}
 802	}
 803	sas_ex_get_linkrate(parent, child, phy);
 804	sas_device_set_phy(child, phy->port);
 805
 806#ifdef CONFIG_SCSI_SAS_ATA
 807	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 808		res = sas_get_ata_info(child, phy);
 809		if (res)
 
 
 
 
 
 
 
 
 
 810			goto out_free;
 
 
 
 811
 812		sas_init_dev(child);
 813		res = sas_ata_init(child);
 814		if (res)
 815			goto out_free;
 816		rphy = sas_end_device_alloc(phy->port);
 817		if (!rphy)
 818			goto out_free;
 819
 
 
 820		child->rphy = rphy;
 821		get_device(&rphy->dev);
 822
 823		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 
 
 824
 825		res = sas_discover_sata(child);
 826		if (res) {
 827			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 828				    "%016llx:0x%x returned 0x%x\n",
 829				    SAS_ADDR(child->sas_addr),
 830				    SAS_ADDR(parent->sas_addr), phy_id, res);
 831			goto out_list_del;
 832		}
 833	} else
 834#endif
 835	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 836		child->dev_type = SAS_END_DEVICE;
 837		rphy = sas_end_device_alloc(phy->port);
 838		/* FIXME: error handling */
 839		if (unlikely(!rphy))
 840			goto out_free;
 841		child->tproto = phy->attached_tproto;
 842		sas_init_dev(child);
 843
 844		child->rphy = rphy;
 845		get_device(&rphy->dev);
 846		sas_fill_in_rphy(child, rphy);
 847
 848		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 
 
 849
 850		res = sas_discover_end_dev(child);
 851		if (res) {
 852			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 853				    "at %016llx:0x%x returned 0x%x\n",
 854				    SAS_ADDR(child->sas_addr),
 855				    SAS_ADDR(parent->sas_addr), phy_id, res);
 856			goto out_list_del;
 857		}
 858	} else {
 859		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 860			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 861			    phy_id);
 862		goto out_free;
 863	}
 864
 865	list_add_tail(&child->siblings, &parent_ex->children);
 866	return child;
 867
 868 out_list_del:
 869	sas_rphy_free(child->rphy);
 870	list_del(&child->disco_list_node);
 871	spin_lock_irq(&parent->port->dev_list_lock);
 872	list_del(&child->dev_list_node);
 873	spin_unlock_irq(&parent->port->dev_list_lock);
 874 out_free:
 875	sas_port_delete(phy->port);
 876 out_err:
 877	phy->port = NULL;
 878	sas_put_device(child);
 879	return NULL;
 880}
 881
 882/* See if this phy is part of a wide port */
 883static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 884{
 885	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 886	int i;
 887
 888	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 889		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 890
 891		if (ephy == phy)
 892			continue;
 893
 894		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 895			    SAS_ADDR_SIZE) && ephy->port) {
 896			sas_port_add_phy(ephy->port, phy->phy);
 897			phy->port = ephy->port;
 898			phy->phy_state = PHY_DEVICE_DISCOVERED;
 899			return true;
 900		}
 901	}
 902
 903	return false;
 904}
 905
 906static struct domain_device *sas_ex_discover_expander(
 907	struct domain_device *parent, int phy_id)
 908{
 909	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 910	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 911	struct domain_device *child = NULL;
 912	struct sas_rphy *rphy;
 913	struct sas_expander_device *edev;
 914	struct asd_sas_port *port;
 915	int res;
 916
 917	if (phy->routing_attr == DIRECT_ROUTING) {
 918		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 919			    "allowed\n",
 920			    SAS_ADDR(parent->sas_addr), phy_id,
 921			    SAS_ADDR(phy->attached_sas_addr),
 922			    phy->attached_phy_id);
 923		return NULL;
 924	}
 925	child = sas_alloc_device();
 926	if (!child)
 927		return NULL;
 928
 929	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 930	/* FIXME: better error handling */
 931	BUG_ON(sas_port_add(phy->port) != 0);
 932
 933
 934	switch (phy->attached_dev_type) {
 935	case SAS_EDGE_EXPANDER_DEVICE:
 936		rphy = sas_expander_alloc(phy->port,
 937					  SAS_EDGE_EXPANDER_DEVICE);
 938		break;
 939	case SAS_FANOUT_EXPANDER_DEVICE:
 940		rphy = sas_expander_alloc(phy->port,
 941					  SAS_FANOUT_EXPANDER_DEVICE);
 942		break;
 943	default:
 944		rphy = NULL;	/* shut gcc up */
 945		BUG();
 946	}
 947	port = parent->port;
 948	child->rphy = rphy;
 949	get_device(&rphy->dev);
 950	edev = rphy_to_expander_device(rphy);
 951	child->dev_type = phy->attached_dev_type;
 952	kref_get(&parent->kref);
 953	child->parent = parent;
 954	child->port = port;
 955	child->iproto = phy->attached_iproto;
 956	child->tproto = phy->attached_tproto;
 957	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 958	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 959	sas_ex_get_linkrate(parent, child, phy);
 960	edev->level = parent_ex->level + 1;
 961	parent->port->disc.max_level = max(parent->port->disc.max_level,
 962					   edev->level);
 963	sas_init_dev(child);
 964	sas_fill_in_rphy(child, rphy);
 965	sas_rphy_add(rphy);
 966
 967	spin_lock_irq(&parent->port->dev_list_lock);
 968	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 969	spin_unlock_irq(&parent->port->dev_list_lock);
 970
 971	res = sas_discover_expander(child);
 972	if (res) {
 973		sas_rphy_delete(rphy);
 974		spin_lock_irq(&parent->port->dev_list_lock);
 975		list_del(&child->dev_list_node);
 976		spin_unlock_irq(&parent->port->dev_list_lock);
 977		sas_put_device(child);
 978		return NULL;
 979	}
 980	list_add_tail(&child->siblings, &parent->ex_dev.children);
 981	return child;
 982}
 983
 984static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 985{
 986	struct expander_device *ex = &dev->ex_dev;
 987	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 988	struct domain_device *child = NULL;
 989	int res = 0;
 990
 991	/* Phy state */
 992	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 993		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 994			res = sas_ex_phy_discover(dev, phy_id);
 995		if (res)
 996			return res;
 997	}
 998
 999	/* Parent and domain coherency */
1000	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1001			     SAS_ADDR(dev->port->sas_addr))) {
1002		sas_add_parent_port(dev, phy_id);
1003		return 0;
1004	}
1005	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1006			    SAS_ADDR(dev->parent->sas_addr))) {
1007		sas_add_parent_port(dev, phy_id);
1008		if (ex_phy->routing_attr == TABLE_ROUTING)
1009			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1010		return 0;
1011	}
1012
1013	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1014		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1015
1016	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1017		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1018			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1019			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1020		}
1021		return 0;
1022	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1023		return 0;
1024
1025	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1026	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1027	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1028	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1029		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1030			    "phy 0x%x\n", ex_phy->attached_dev_type,
1031			    SAS_ADDR(dev->sas_addr),
1032			    phy_id);
1033		return 0;
1034	}
1035
1036	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1037	if (res) {
1038		SAS_DPRINTK("configure routing for dev %016llx "
1039			    "reported 0x%x. Forgotten\n",
1040			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1041		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1042		return res;
1043	}
1044
1045	if (sas_ex_join_wide_port(dev, phy_id)) {
 
1046		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1047			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1048		return res;
1049	}
1050
1051	switch (ex_phy->attached_dev_type) {
1052	case SAS_END_DEVICE:
1053	case SAS_SATA_PENDING:
1054		child = sas_ex_discover_end_dev(dev, phy_id);
1055		break;
1056	case SAS_FANOUT_EXPANDER_DEVICE:
1057		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1058			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1059				    "attached to ex %016llx phy 0x%x\n",
1060				    SAS_ADDR(ex_phy->attached_sas_addr),
1061				    ex_phy->attached_phy_id,
1062				    SAS_ADDR(dev->sas_addr),
1063				    phy_id);
1064			sas_ex_disable_phy(dev, phy_id);
1065			break;
1066		} else
1067			memcpy(dev->port->disc.fanout_sas_addr,
1068			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1069		/* fallthrough */
1070	case SAS_EDGE_EXPANDER_DEVICE:
1071		child = sas_ex_discover_expander(dev, phy_id);
1072		break;
1073	default:
1074		break;
1075	}
1076
1077	if (child) {
1078		int i;
1079
1080		for (i = 0; i < ex->num_phys; i++) {
1081			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1082			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1083				continue;
1084			/*
1085			 * Due to races, the phy might not get added to the
1086			 * wide port, so we add the phy to the wide port here.
1087			 */
1088			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1089			    SAS_ADDR(child->sas_addr)) {
1090				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1091				if (sas_ex_join_wide_port(dev, i))
 
1092					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1093						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1094
1095			}
1096		}
1097	}
1098
1099	return res;
1100}
1101
1102static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1103{
1104	struct expander_device *ex = &dev->ex_dev;
1105	int i;
1106
1107	for (i = 0; i < ex->num_phys; i++) {
1108		struct ex_phy *phy = &ex->ex_phy[i];
1109
1110		if (phy->phy_state == PHY_VACANT ||
1111		    phy->phy_state == PHY_NOT_PRESENT)
1112			continue;
1113
1114		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1115		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1116		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1117
1118			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1119
1120			return 1;
1121		}
1122	}
1123	return 0;
1124}
1125
1126static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1127{
1128	struct expander_device *ex = &dev->ex_dev;
1129	struct domain_device *child;
1130	u8 sub_addr[8] = {0, };
1131
1132	list_for_each_entry(child, &ex->children, siblings) {
1133		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1134		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1135			continue;
1136		if (sub_addr[0] == 0) {
1137			sas_find_sub_addr(child, sub_addr);
1138			continue;
1139		} else {
1140			u8 s2[8];
1141
1142			if (sas_find_sub_addr(child, s2) &&
1143			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1144
1145				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1146					    "diverges from subtractive "
1147					    "boundary %016llx\n",
1148					    SAS_ADDR(dev->sas_addr),
1149					    SAS_ADDR(child->sas_addr),
1150					    SAS_ADDR(s2),
1151					    SAS_ADDR(sub_addr));
1152
1153				sas_ex_disable_port(child, s2);
1154			}
1155		}
1156	}
1157	return 0;
1158}
1159/**
1160 * sas_ex_discover_devices -- discover devices attached to this expander
1161 * dev: pointer to the expander domain device
1162 * single: if you want to do a single phy, else set to -1;
1163 *
1164 * Configure this expander for use with its devices and register the
1165 * devices of this expander.
1166 */
1167static int sas_ex_discover_devices(struct domain_device *dev, int single)
1168{
1169	struct expander_device *ex = &dev->ex_dev;
1170	int i = 0, end = ex->num_phys;
1171	int res = 0;
1172
1173	if (0 <= single && single < end) {
1174		i = single;
1175		end = i+1;
1176	}
1177
1178	for ( ; i < end; i++) {
1179		struct ex_phy *ex_phy = &ex->ex_phy[i];
1180
1181		if (ex_phy->phy_state == PHY_VACANT ||
1182		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1183		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1184			continue;
1185
1186		switch (ex_phy->linkrate) {
1187		case SAS_PHY_DISABLED:
1188		case SAS_PHY_RESET_PROBLEM:
1189		case SAS_SATA_PORT_SELECTOR:
1190			continue;
1191		default:
1192			res = sas_ex_discover_dev(dev, i);
1193			if (res)
1194				break;
1195			continue;
1196		}
1197	}
1198
1199	if (!res)
1200		sas_check_level_subtractive_boundary(dev);
1201
1202	return res;
1203}
1204
1205static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1206{
1207	struct expander_device *ex = &dev->ex_dev;
1208	int i;
1209	u8  *sub_sas_addr = NULL;
1210
1211	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1212		return 0;
1213
1214	for (i = 0; i < ex->num_phys; i++) {
1215		struct ex_phy *phy = &ex->ex_phy[i];
1216
1217		if (phy->phy_state == PHY_VACANT ||
1218		    phy->phy_state == PHY_NOT_PRESENT)
1219			continue;
1220
1221		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1222		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1223		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1224
1225			if (!sub_sas_addr)
1226				sub_sas_addr = &phy->attached_sas_addr[0];
1227			else if (SAS_ADDR(sub_sas_addr) !=
1228				 SAS_ADDR(phy->attached_sas_addr)) {
1229
1230				SAS_DPRINTK("ex %016llx phy 0x%x "
1231					    "diverges(%016llx) on subtractive "
1232					    "boundary(%016llx). Disabled\n",
1233					    SAS_ADDR(dev->sas_addr), i,
1234					    SAS_ADDR(phy->attached_sas_addr),
1235					    SAS_ADDR(sub_sas_addr));
1236				sas_ex_disable_phy(dev, i);
1237			}
1238		}
1239	}
1240	return 0;
1241}
1242
1243static void sas_print_parent_topology_bug(struct domain_device *child,
1244						 struct ex_phy *parent_phy,
1245						 struct ex_phy *child_phy)
1246{
 
 
 
 
 
1247	static const char *ex_type[] = {
1248		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1249		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1250	};
1251	struct domain_device *parent = child->parent;
1252
1253	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1254		   "phy 0x%x has %c:%c routing link!\n",
1255
1256		   ex_type[parent->dev_type],
1257		   SAS_ADDR(parent->sas_addr),
1258		   parent_phy->phy_id,
1259
1260		   ex_type[child->dev_type],
1261		   SAS_ADDR(child->sas_addr),
1262		   child_phy->phy_id,
1263
1264		   sas_route_char(parent, parent_phy),
1265		   sas_route_char(child, child_phy));
1266}
1267
1268static int sas_check_eeds(struct domain_device *child,
1269				 struct ex_phy *parent_phy,
1270				 struct ex_phy *child_phy)
1271{
1272	int res = 0;
1273	struct domain_device *parent = child->parent;
1274
1275	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1276		res = -ENODEV;
1277		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1278			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1279			    SAS_ADDR(parent->sas_addr),
1280			    parent_phy->phy_id,
1281			    SAS_ADDR(child->sas_addr),
1282			    child_phy->phy_id,
1283			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1284	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1285		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1286		       SAS_ADDR_SIZE);
1287		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1288		       SAS_ADDR_SIZE);
1289	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1290		    SAS_ADDR(parent->sas_addr)) ||
1291		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1292		    SAS_ADDR(child->sas_addr)))
1293		   &&
1294		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1295		     SAS_ADDR(parent->sas_addr)) ||
1296		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1297		     SAS_ADDR(child->sas_addr))))
1298		;
1299	else {
1300		res = -ENODEV;
1301		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1302			    "phy 0x%x link forms a third EEDS!\n",
1303			    SAS_ADDR(parent->sas_addr),
1304			    parent_phy->phy_id,
1305			    SAS_ADDR(child->sas_addr),
1306			    child_phy->phy_id);
1307	}
1308
1309	return res;
1310}
1311
1312/* Here we spill over 80 columns.  It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316	struct expander_device *child_ex = &child->ex_dev;
1317	struct expander_device *parent_ex;
1318	int i;
1319	int res = 0;
1320
1321	if (!child->parent)
1322		return 0;
1323
1324	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1325	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1326		return 0;
1327
1328	parent_ex = &child->parent->ex_dev;
1329
1330	for (i = 0; i < parent_ex->num_phys; i++) {
1331		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1332		struct ex_phy *child_phy;
1333
1334		if (parent_phy->phy_state == PHY_VACANT ||
1335		    parent_phy->phy_state == PHY_NOT_PRESENT)
1336			continue;
1337
1338		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1339			continue;
1340
1341		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1342
1343		switch (child->parent->dev_type) {
1344		case SAS_EDGE_EXPANDER_DEVICE:
1345			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1346				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1347				    child_phy->routing_attr != TABLE_ROUTING) {
1348					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1349					res = -ENODEV;
1350				}
1351			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1353					res = sas_check_eeds(child, parent_phy, child_phy);
1354				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1355					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1356					res = -ENODEV;
1357				}
1358			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1359				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1360				    (child_phy->routing_attr == TABLE_ROUTING &&
1361				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1362					/* All good */;
1363				} else {
1364					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1365					res = -ENODEV;
1366				}
1367			}
1368			break;
1369		case SAS_FANOUT_EXPANDER_DEVICE:
1370			if (parent_phy->routing_attr != TABLE_ROUTING ||
1371			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1372				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1373				res = -ENODEV;
1374			}
1375			break;
1376		default:
1377			break;
1378		}
1379	}
1380
1381	return res;
1382}
1383
1384#define RRI_REQ_SIZE  16
1385#define RRI_RESP_SIZE 44
1386
1387static int sas_configure_present(struct domain_device *dev, int phy_id,
1388				 u8 *sas_addr, int *index, int *present)
1389{
1390	int i, res = 0;
1391	struct expander_device *ex = &dev->ex_dev;
1392	struct ex_phy *phy = &ex->ex_phy[phy_id];
1393	u8 *rri_req;
1394	u8 *rri_resp;
1395
1396	*present = 0;
1397	*index = 0;
1398
1399	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1400	if (!rri_req)
1401		return -ENOMEM;
1402
1403	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1404	if (!rri_resp) {
1405		kfree(rri_req);
1406		return -ENOMEM;
1407	}
1408
1409	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1410	rri_req[9] = phy_id;
1411
1412	for (i = 0; i < ex->max_route_indexes ; i++) {
1413		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1414		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1415				       RRI_RESP_SIZE);
1416		if (res)
1417			goto out;
1418		res = rri_resp[2];
1419		if (res == SMP_RESP_NO_INDEX) {
1420			SAS_DPRINTK("overflow of indexes: dev %016llx "
1421				    "phy 0x%x index 0x%x\n",
1422				    SAS_ADDR(dev->sas_addr), phy_id, i);
1423			goto out;
1424		} else if (res != SMP_RESP_FUNC_ACC) {
1425			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1426				    "result 0x%x\n", __func__,
1427				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1428			goto out;
1429		}
1430		if (SAS_ADDR(sas_addr) != 0) {
1431			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1432				*index = i;
1433				if ((rri_resp[12] & 0x80) == 0x80)
1434					*present = 0;
1435				else
1436					*present = 1;
1437				goto out;
1438			} else if (SAS_ADDR(rri_resp+16) == 0) {
1439				*index = i;
1440				*present = 0;
1441				goto out;
1442			}
1443		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1444			   phy->last_da_index < i) {
1445			phy->last_da_index = i;
1446			*index = i;
1447			*present = 0;
1448			goto out;
1449		}
1450	}
1451	res = -1;
1452out:
1453	kfree(rri_req);
1454	kfree(rri_resp);
1455	return res;
1456}
1457
1458#define CRI_REQ_SIZE  44
1459#define CRI_RESP_SIZE  8
1460
1461static int sas_configure_set(struct domain_device *dev, int phy_id,
1462			     u8 *sas_addr, int index, int include)
1463{
1464	int res;
1465	u8 *cri_req;
1466	u8 *cri_resp;
1467
1468	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1469	if (!cri_req)
1470		return -ENOMEM;
1471
1472	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1473	if (!cri_resp) {
1474		kfree(cri_req);
1475		return -ENOMEM;
1476	}
1477
1478	cri_req[1] = SMP_CONF_ROUTE_INFO;
1479	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1480	cri_req[9] = phy_id;
1481	if (SAS_ADDR(sas_addr) == 0 || !include)
1482		cri_req[12] |= 0x80;
1483	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1484
1485	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1486			       CRI_RESP_SIZE);
1487	if (res)
1488		goto out;
1489	res = cri_resp[2];
1490	if (res == SMP_RESP_NO_INDEX) {
1491		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1492			    "index 0x%x\n",
1493			    SAS_ADDR(dev->sas_addr), phy_id, index);
1494	}
1495out:
1496	kfree(cri_req);
1497	kfree(cri_resp);
1498	return res;
1499}
1500
1501static int sas_configure_phy(struct domain_device *dev, int phy_id,
1502				    u8 *sas_addr, int include)
1503{
1504	int index;
1505	int present;
1506	int res;
1507
1508	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1509	if (res)
1510		return res;
1511	if (include ^ present)
1512		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1513
1514	return res;
1515}
1516
1517/**
1518 * sas_configure_parent -- configure routing table of parent
1519 * parent: parent expander
1520 * child: child expander
1521 * sas_addr: SAS port identifier of device directly attached to child
1522 */
1523static int sas_configure_parent(struct domain_device *parent,
1524				struct domain_device *child,
1525				u8 *sas_addr, int include)
1526{
1527	struct expander_device *ex_parent = &parent->ex_dev;
1528	int res = 0;
1529	int i;
1530
1531	if (parent->parent) {
1532		res = sas_configure_parent(parent->parent, parent, sas_addr,
1533					   include);
1534		if (res)
1535			return res;
1536	}
1537
1538	if (ex_parent->conf_route_table == 0) {
1539		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1540			    SAS_ADDR(parent->sas_addr));
1541		return 0;
1542	}
1543
1544	for (i = 0; i < ex_parent->num_phys; i++) {
1545		struct ex_phy *phy = &ex_parent->ex_phy[i];
1546
1547		if ((phy->routing_attr == TABLE_ROUTING) &&
1548		    (SAS_ADDR(phy->attached_sas_addr) ==
1549		     SAS_ADDR(child->sas_addr))) {
1550			res = sas_configure_phy(parent, i, sas_addr, include);
1551			if (res)
1552				return res;
1553		}
1554	}
1555
1556	return res;
1557}
1558
1559/**
1560 * sas_configure_routing -- configure routing
1561 * dev: expander device
1562 * sas_addr: port identifier of device directly attached to the expander device
1563 */
1564static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1565{
1566	if (dev->parent)
1567		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1568	return 0;
1569}
1570
1571static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1572{
1573	if (dev->parent)
1574		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1575	return 0;
1576}
1577
1578/**
1579 * sas_discover_expander -- expander discovery
1580 * @ex: pointer to expander domain device
1581 *
1582 * See comment in sas_discover_sata().
1583 */
1584static int sas_discover_expander(struct domain_device *dev)
1585{
1586	int res;
1587
1588	res = sas_notify_lldd_dev_found(dev);
1589	if (res)
1590		return res;
1591
1592	res = sas_ex_general(dev);
1593	if (res)
1594		goto out_err;
1595	res = sas_ex_manuf_info(dev);
1596	if (res)
1597		goto out_err;
1598
1599	res = sas_expander_discover(dev);
1600	if (res) {
1601		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1602			    SAS_ADDR(dev->sas_addr), res);
1603		goto out_err;
1604	}
1605
1606	sas_check_ex_subtractive_boundary(dev);
1607	res = sas_check_parent_topology(dev);
1608	if (res)
1609		goto out_err;
1610	return 0;
1611out_err:
1612	sas_notify_lldd_dev_gone(dev);
1613	return res;
1614}
1615
1616static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1617{
1618	int res = 0;
1619	struct domain_device *dev;
1620
1621	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1622		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1623		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1624			struct sas_expander_device *ex =
1625				rphy_to_expander_device(dev->rphy);
1626
1627			if (level == ex->level)
1628				res = sas_ex_discover_devices(dev, -1);
1629			else if (level > 0)
1630				res = sas_ex_discover_devices(port->port_dev, -1);
1631
1632		}
1633	}
1634
1635	return res;
1636}
1637
1638static int sas_ex_bfs_disc(struct asd_sas_port *port)
1639{
1640	int res;
1641	int level;
1642
1643	do {
1644		level = port->disc.max_level;
1645		res = sas_ex_level_discovery(port, level);
1646		mb();
1647	} while (level < port->disc.max_level);
1648
1649	return res;
1650}
1651
1652int sas_discover_root_expander(struct domain_device *dev)
1653{
1654	int res;
1655	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1656
1657	res = sas_rphy_add(dev->rphy);
1658	if (res)
1659		goto out_err;
1660
1661	ex->level = dev->port->disc.max_level; /* 0 */
1662	res = sas_discover_expander(dev);
1663	if (res)
1664		goto out_err2;
1665
1666	sas_ex_bfs_disc(dev->port);
1667
1668	return res;
1669
1670out_err2:
1671	sas_rphy_remove(dev->rphy);
1672out_err:
1673	return res;
1674}
1675
1676/* ---------- Domain revalidation ---------- */
1677
1678static int sas_get_phy_discover(struct domain_device *dev,
1679				int phy_id, struct smp_resp *disc_resp)
1680{
1681	int res;
1682	u8 *disc_req;
1683
1684	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1685	if (!disc_req)
1686		return -ENOMEM;
1687
1688	disc_req[1] = SMP_DISCOVER;
1689	disc_req[9] = phy_id;
1690
1691	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1692			       disc_resp, DISCOVER_RESP_SIZE);
1693	if (res)
1694		goto out;
1695	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1696		res = disc_resp->result;
1697		goto out;
1698	}
1699out:
1700	kfree(disc_req);
1701	return res;
1702}
1703
1704static int sas_get_phy_change_count(struct domain_device *dev,
1705				    int phy_id, int *pcc)
1706{
1707	int res;
1708	struct smp_resp *disc_resp;
1709
1710	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1711	if (!disc_resp)
1712		return -ENOMEM;
1713
1714	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1715	if (!res)
1716		*pcc = disc_resp->disc.change_count;
1717
1718	kfree(disc_resp);
1719	return res;
1720}
1721
1722static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1723				    u8 *sas_addr, enum sas_device_type *type)
1724{
1725	int res;
1726	struct smp_resp *disc_resp;
1727	struct discover_resp *dr;
1728
1729	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1730	if (!disc_resp)
1731		return -ENOMEM;
1732	dr = &disc_resp->disc;
1733
1734	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1735	if (res == 0) {
1736		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1737		*type = to_dev_type(dr);
1738		if (*type == 0)
1739			memset(sas_addr, 0, 8);
1740	}
1741	kfree(disc_resp);
1742	return res;
1743}
1744
1745static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1746			      int from_phy, bool update)
1747{
1748	struct expander_device *ex = &dev->ex_dev;
1749	int res = 0;
1750	int i;
1751
1752	for (i = from_phy; i < ex->num_phys; i++) {
1753		int phy_change_count = 0;
1754
1755		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1756		switch (res) {
1757		case SMP_RESP_PHY_VACANT:
1758		case SMP_RESP_NO_PHY:
1759			continue;
1760		case SMP_RESP_FUNC_ACC:
1761			break;
1762		default:
1763			return res;
1764		}
1765
1766		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1767			if (update)
1768				ex->ex_phy[i].phy_change_count =
1769					phy_change_count;
1770			*phy_id = i;
1771			return 0;
1772		}
1773	}
1774	return 0;
 
1775}
1776
1777static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1778{
1779	int res;
1780	u8  *rg_req;
1781	struct smp_resp  *rg_resp;
1782
1783	rg_req = alloc_smp_req(RG_REQ_SIZE);
1784	if (!rg_req)
1785		return -ENOMEM;
1786
1787	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1788	if (!rg_resp) {
1789		kfree(rg_req);
1790		return -ENOMEM;
1791	}
1792
1793	rg_req[1] = SMP_REPORT_GENERAL;
1794
1795	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1796			       RG_RESP_SIZE);
1797	if (res)
1798		goto out;
1799	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1800		res = rg_resp->result;
1801		goto out;
1802	}
1803
1804	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1805out:
1806	kfree(rg_resp);
1807	kfree(rg_req);
1808	return res;
1809}
1810/**
1811 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1812 * @dev:domain device to be detect.
1813 * @src_dev: the device which originated BROADCAST(CHANGE).
1814 *
1815 * Add self-configuration expander support. Suppose two expander cascading,
1816 * when the first level expander is self-configuring, hotplug the disks in
1817 * second level expander, BROADCAST(CHANGE) will not only be originated
1818 * in the second level expander, but also be originated in the first level
1819 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1820 * expander changed count in two level expanders will all increment at least
1821 * once, but the phy which chang count has changed is the source device which
1822 * we concerned.
1823 */
1824
1825static int sas_find_bcast_dev(struct domain_device *dev,
1826			      struct domain_device **src_dev)
1827{
1828	struct expander_device *ex = &dev->ex_dev;
1829	int ex_change_count = -1;
1830	int phy_id = -1;
1831	int res;
1832	struct domain_device *ch;
1833
1834	res = sas_get_ex_change_count(dev, &ex_change_count);
1835	if (res)
1836		goto out;
1837	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1838		/* Just detect if this expander phys phy change count changed,
1839		* in order to determine if this expander originate BROADCAST,
1840		* and do not update phy change count field in our structure.
1841		*/
1842		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1843		if (phy_id != -1) {
1844			*src_dev = dev;
1845			ex->ex_change_count = ex_change_count;
1846			SAS_DPRINTK("Expander phy change count has changed\n");
1847			return res;
1848		} else
1849			SAS_DPRINTK("Expander phys DID NOT change\n");
1850	}
1851	list_for_each_entry(ch, &ex->children, siblings) {
1852		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1853			res = sas_find_bcast_dev(ch, src_dev);
1854			if (*src_dev)
1855				return res;
1856		}
1857	}
1858out:
1859	return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864	struct expander_device *ex = &dev->ex_dev;
1865	struct domain_device *child, *n;
1866
1867	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868		set_bit(SAS_DEV_GONE, &child->state);
1869		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1870		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1871			sas_unregister_ex_tree(port, child);
1872		else
1873			sas_unregister_dev(port, child);
1874	}
1875	sas_unregister_dev(port, dev);
1876}
1877
1878static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1879					 int phy_id, bool last)
1880{
1881	struct expander_device *ex_dev = &parent->ex_dev;
1882	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1883	struct domain_device *child, *n, *found = NULL;
1884	if (last) {
1885		list_for_each_entry_safe(child, n,
1886			&ex_dev->children, siblings) {
1887			if (SAS_ADDR(child->sas_addr) ==
1888			    SAS_ADDR(phy->attached_sas_addr)) {
1889				set_bit(SAS_DEV_GONE, &child->state);
1890				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1891				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1892					sas_unregister_ex_tree(parent->port, child);
1893				else
1894					sas_unregister_dev(parent->port, child);
1895				found = child;
1896				break;
1897			}
1898		}
 
1899		sas_disable_routing(parent, phy->attached_sas_addr);
1900	}
1901	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1902	if (phy->port) {
1903		sas_port_delete_phy(phy->port, phy->phy);
1904		sas_device_set_phy(found, phy->port);
1905		if (phy->port->num_phys == 0)
1906			sas_port_delete(phy->port);
1907		phy->port = NULL;
1908	}
1909}
1910
1911static int sas_discover_bfs_by_root_level(struct domain_device *root,
1912					  const int level)
1913{
1914	struct expander_device *ex_root = &root->ex_dev;
1915	struct domain_device *child;
1916	int res = 0;
1917
1918	list_for_each_entry(child, &ex_root->children, siblings) {
1919		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1920		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1921			struct sas_expander_device *ex =
1922				rphy_to_expander_device(child->rphy);
1923
1924			if (level > ex->level)
1925				res = sas_discover_bfs_by_root_level(child,
1926								     level);
1927			else if (level == ex->level)
1928				res = sas_ex_discover_devices(child, -1);
1929		}
1930	}
1931	return res;
1932}
1933
1934static int sas_discover_bfs_by_root(struct domain_device *dev)
1935{
1936	int res;
1937	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1938	int level = ex->level+1;
1939
1940	res = sas_ex_discover_devices(dev, -1);
1941	if (res)
1942		goto out;
1943	do {
1944		res = sas_discover_bfs_by_root_level(dev, level);
1945		mb();
1946		level += 1;
1947	} while (level <= dev->port->disc.max_level);
1948out:
1949	return res;
1950}
1951
1952static int sas_discover_new(struct domain_device *dev, int phy_id)
1953{
1954	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1955	struct domain_device *child;
1956	int res;
 
1957
1958	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1959		    SAS_ADDR(dev->sas_addr), phy_id);
1960	res = sas_ex_phy_discover(dev, phy_id);
1961	if (res)
1962		return res;
1963
1964	if (sas_ex_join_wide_port(dev, phy_id))
 
 
 
 
 
 
 
 
 
 
 
1965		return 0;
1966
1967	res = sas_ex_discover_devices(dev, phy_id);
1968	if (res)
1969		return res;
1970	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1971		if (SAS_ADDR(child->sas_addr) ==
1972		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1973			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1974			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1975				res = sas_discover_bfs_by_root(child);
1976			break;
1977		}
1978	}
 
1979	return res;
1980}
1981
1982static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1983{
1984	if (old == new)
1985		return true;
1986
1987	/* treat device directed resets as flutter, if we went
1988	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1989	 */
1990	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1991	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1992		return true;
1993
1994	return false;
1995}
1996
1997static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1998{
1999	struct expander_device *ex = &dev->ex_dev;
2000	struct ex_phy *phy = &ex->ex_phy[phy_id];
2001	enum sas_device_type type = SAS_PHY_UNUSED;
2002	u8 sas_addr[8];
2003	int res;
2004
2005	memset(sas_addr, 0, 8);
2006	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2007	switch (res) {
2008	case SMP_RESP_NO_PHY:
2009		phy->phy_state = PHY_NOT_PRESENT;
2010		sas_unregister_devs_sas_addr(dev, phy_id, last);
2011		return res;
2012	case SMP_RESP_PHY_VACANT:
2013		phy->phy_state = PHY_VACANT;
2014		sas_unregister_devs_sas_addr(dev, phy_id, last);
2015		return res;
2016	case SMP_RESP_FUNC_ACC:
2017		break;
2018	case -ECOMM:
2019		break;
2020	default:
2021		return res;
2022	}
2023
2024	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2025		phy->phy_state = PHY_EMPTY;
2026		sas_unregister_devs_sas_addr(dev, phy_id, last);
2027		return res;
2028	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2029		   dev_type_flutter(type, phy->attached_dev_type)) {
2030		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2031		char *action = "";
2032
2033		sas_ex_phy_discover(dev, phy_id);
2034
2035		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2036			action = ", needs recovery";
2037		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2038			    SAS_ADDR(dev->sas_addr), phy_id, action);
2039		return res;
2040	}
2041
2042	/* delete the old link */
2043	if (SAS_ADDR(phy->attached_sas_addr) &&
2044	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2045		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2046			    SAS_ADDR(dev->sas_addr), phy_id,
2047			    SAS_ADDR(phy->attached_sas_addr));
2048		sas_unregister_devs_sas_addr(dev, phy_id, last);
2049	}
2050
2051	return sas_discover_new(dev, phy_id);
2052}
2053
2054/**
2055 * sas_rediscover - revalidate the domain.
2056 * @dev:domain device to be detect.
2057 * @phy_id: the phy id will be detected.
2058 *
2059 * NOTE: this process _must_ quit (return) as soon as any connection
2060 * errors are encountered.  Connection recovery is done elsewhere.
2061 * Discover process only interrogates devices in order to discover the
2062 * domain.For plugging out, we un-register the device only when it is
2063 * the last phy in the port, for other phys in this port, we just delete it
2064 * from the port.For inserting, we do discovery when it is the
2065 * first phy,for other phys in this port, we add it to the port to
2066 * forming the wide-port.
2067 */
2068static int sas_rediscover(struct domain_device *dev, const int phy_id)
2069{
2070	struct expander_device *ex = &dev->ex_dev;
2071	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2072	int res = 0;
2073	int i;
2074	bool last = true;	/* is this the last phy of the port */
2075
2076	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2077		    SAS_ADDR(dev->sas_addr), phy_id);
2078
2079	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2080		for (i = 0; i < ex->num_phys; i++) {
2081			struct ex_phy *phy = &ex->ex_phy[i];
2082
2083			if (i == phy_id)
2084				continue;
2085			if (SAS_ADDR(phy->attached_sas_addr) ==
2086			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2087				SAS_DPRINTK("phy%d part of wide port with "
2088					    "phy%d\n", phy_id, i);
2089				last = false;
2090				break;
2091			}
2092		}
2093		res = sas_rediscover_dev(dev, phy_id, last);
2094	} else
2095		res = sas_discover_new(dev, phy_id);
2096	return res;
2097}
2098
2099/**
2100 * sas_revalidate_domain -- revalidate the domain
2101 * @port: port to the domain of interest
2102 *
2103 * NOTE: this process _must_ quit (return) as soon as any connection
2104 * errors are encountered.  Connection recovery is done elsewhere.
2105 * Discover process only interrogates devices in order to discover the
2106 * domain.
2107 */
2108int sas_ex_revalidate_domain(struct domain_device *port_dev)
2109{
2110	int res;
2111	struct domain_device *dev = NULL;
2112
2113	res = sas_find_bcast_dev(port_dev, &dev);
2114	while (res == 0 && dev) {
 
 
2115		struct expander_device *ex = &dev->ex_dev;
2116		int i = 0, phy_id;
2117
2118		do {
2119			phy_id = -1;
2120			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2121			if (phy_id == -1)
2122				break;
2123			res = sas_rediscover(dev, phy_id);
2124			i = phy_id + 1;
2125		} while (i < ex->num_phys);
2126
2127		dev = NULL;
2128		res = sas_find_bcast_dev(port_dev, &dev);
2129	}
 
2130	return res;
2131}
2132
2133int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2134		    struct request *req)
2135{
2136	struct domain_device *dev;
2137	int ret, type;
2138	struct request *rsp = req->next_rq;
2139
2140	if (!rsp) {
2141		printk("%s: space for a smp response is missing\n",
2142		       __func__);
2143		return -EINVAL;
2144	}
2145
2146	/* no rphy means no smp target support (ie aic94xx host) */
2147	if (!rphy)
2148		return sas_smp_host_handler(shost, req, rsp);
2149
2150	type = rphy->identify.device_type;
2151
2152	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2153	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2154		printk("%s: can we send a smp request to a device?\n",
2155		       __func__);
2156		return -EINVAL;
2157	}
2158
2159	dev = sas_find_dev_by_rphy(rphy);
2160	if (!dev) {
2161		printk("%s: fail to find a domain_device?\n", __func__);
2162		return -EINVAL;
2163	}
2164
2165	/* do we need to support multiple segments? */
2166	if (bio_multiple_segments(req->bio) ||
2167	    bio_multiple_segments(rsp->bio)) {
2168		printk("%s: multiple segments req %u, rsp %u\n",
2169		       __func__, blk_rq_bytes(req), blk_rq_bytes(rsp));
2170		return -EINVAL;
2171	}
2172
2173	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2174			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2175	if (ret > 0) {
2176		/* positive number is the untransferred residual */
2177		rsp->resid_len = ret;
2178		req->resid_len = 0;
2179		ret = 0;
2180	} else if (ret == 0) {
2181		rsp->resid_len = 0;
2182		req->resid_len = 0;
2183	}
2184
2185	return ret;
2186}