Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
 
  28
  29#include "sas_internal.h"
  30
 
  31#include <scsi/scsi_transport.h>
  32#include <scsi/scsi_transport_sas.h>
  33#include "../scsi_sas_internal.h"
  34
  35static int sas_discover_expander(struct domain_device *dev);
  36static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  37static int sas_configure_phy(struct domain_device *dev, int phy_id,
  38			     u8 *sas_addr, int include);
  39static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  40
  41/* ---------- SMP task management ---------- */
  42
  43static void smp_task_timedout(unsigned long _task)
  44{
  45	struct sas_task *task = (void *) _task;
 
  46	unsigned long flags;
  47
  48	spin_lock_irqsave(&task->task_state_lock, flags);
  49	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  50		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
 
 
  51	spin_unlock_irqrestore(&task->task_state_lock, flags);
  52
  53	complete(&task->completion);
  54}
  55
  56static void smp_task_done(struct sas_task *task)
  57{
  58	if (!del_timer(&task->timer))
  59		return;
  60	complete(&task->completion);
  61}
  62
  63/* Give it some long enough timeout. In seconds. */
  64#define SMP_TIMEOUT 10
  65
  66static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  67			    void *resp, int resp_size)
  68{
  69	int res, retry;
  70	struct sas_task *task = NULL;
  71	struct sas_internal *i =
  72		to_sas_internal(dev->port->ha->core.shost->transportt);
  73
 
  74	for (retry = 0; retry < 3; retry++) {
  75		task = sas_alloc_task(GFP_KERNEL);
  76		if (!task)
  77			return -ENOMEM;
 
  78
 
 
 
 
 
  79		task->dev = dev;
  80		task->task_proto = dev->tproto;
  81		sg_init_one(&task->smp_task.smp_req, req, req_size);
  82		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  83
  84		task->task_done = smp_task_done;
  85
  86		task->timer.data = (unsigned long) task;
  87		task->timer.function = smp_task_timedout;
  88		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  89		add_timer(&task->timer);
  90
  91		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
  92
  93		if (res) {
  94			del_timer(&task->timer);
  95			SAS_DPRINTK("executing SMP task failed:%d\n", res);
  96			goto ex_err;
  97		}
  98
  99		wait_for_completion(&task->completion);
 100		res = -ECOMM;
 101		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 102			SAS_DPRINTK("smp task timed out or aborted\n");
 103			i->dft->lldd_abort_task(task);
 104			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 105				SAS_DPRINTK("SMP task aborted and not done\n");
 106				goto ex_err;
 107			}
 108		}
 109		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 110		    task->task_status.stat == SAM_STAT_GOOD) {
 111			res = 0;
 112			break;
 113		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
 114		      task->task_status.stat == SAS_DATA_UNDERRUN) {
 
 115			/* no error, but return the number of bytes of
 116			 * underrun */
 117			res = task->task_status.residual;
 118			break;
 119		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
 120		      task->task_status.stat == SAS_DATA_OVERRUN) {
 
 121			res = -EMSGSIZE;
 122			break;
 123		} else {
 124			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 125				    "status 0x%x\n", __func__,
 126				    SAS_ADDR(dev->sas_addr),
 127				    task->task_status.resp,
 128				    task->task_status.stat);
 
 
 
 
 129			sas_free_task(task);
 130			task = NULL;
 131		}
 132	}
 133ex_err:
 
 134	BUG_ON(retry == 3 && task != NULL);
 135	if (task != NULL) {
 136		sas_free_task(task);
 137	}
 138	return res;
 139}
 140
 
 
 
 
 
 
 
 
 
 
 
 141/* ---------- Allocations ---------- */
 142
 143static inline void *alloc_smp_req(int size)
 144{
 145	u8 *p = kzalloc(size, GFP_KERNEL);
 146	if (p)
 147		p[0] = SMP_REQUEST;
 148	return p;
 149}
 150
 151static inline void *alloc_smp_resp(int size)
 152{
 153	return kzalloc(size, GFP_KERNEL);
 154}
 155
 156/* ---------- Expander configuration ---------- */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 159			   void *disc_resp)
 160{
 
 
 
 
 
 
 161	struct expander_device *ex = &dev->ex_dev;
 162	struct ex_phy *phy = &ex->ex_phy[phy_id];
 163	struct smp_resp *resp = disc_resp;
 164	struct discover_resp *dr = &resp->disc;
 165	struct sas_rphy *rphy = dev->rphy;
 166	int rediscover = (phy->phy != NULL);
 
 167
 168	if (!rediscover) {
 
 
 169		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 170
 171		/* FIXME: error_handling */
 172		BUG_ON(!phy->phy);
 173	}
 174
 175	switch (resp->result) {
 176	case SMP_RESP_PHY_VACANT:
 177		phy->phy_state = PHY_VACANT;
 178		break;
 179	default:
 180		phy->phy_state = PHY_NOT_PRESENT;
 181		break;
 182	case SMP_RESP_FUNC_ACC:
 183		phy->phy_state = PHY_EMPTY; /* do not know yet */
 184		break;
 185	}
 186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187	phy->phy_id = phy_id;
 188	phy->attached_dev_type = dr->attached_dev_type;
 189	phy->linkrate = dr->linkrate;
 190	phy->attached_sata_host = dr->attached_sata_host;
 191	phy->attached_sata_dev  = dr->attached_sata_dev;
 192	phy->attached_sata_ps   = dr->attached_sata_ps;
 193	phy->attached_iproto = dr->iproto << 1;
 194	phy->attached_tproto = dr->tproto << 1;
 195	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 
 
 
 
 
 
 
 196	phy->attached_phy_id = dr->attached_phy_id;
 197	phy->phy_change_count = dr->change_count;
 198	phy->routing_attr = dr->routing_attr;
 199	phy->virtual = dr->virtual;
 200	phy->last_da_index = -1;
 201
 
 
 202	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 203	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 
 
 204	phy->phy->identify.phy_identifier = phy_id;
 205	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 206	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 207	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 208	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 209	phy->phy->negotiated_linkrate = phy->linkrate;
 
 210
 211	if (!rediscover)
 
 212		if (sas_phy_add(phy->phy)) {
 213			sas_phy_free(phy->phy);
 214			return;
 215		}
 216
 217	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
 218		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 219		    phy->routing_attr == TABLE_ROUTING ? 'T' :
 220		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
 221		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
 222		    SAS_ADDR(phy->attached_sas_addr));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225}
 226
 227#define DISCOVER_REQ_SIZE  16
 228#define DISCOVER_RESP_SIZE 56
 229
 230static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 231				      u8 *disc_resp, int single)
 232{
 233	int i, res;
 
 234
 235	disc_req[9] = single;
 236	for (i = 1 ; i < 3; i++) {
 237		struct discover_resp *dr;
 238
 239		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 240				       disc_resp, DISCOVER_RESP_SIZE);
 241		if (res)
 242			return res;
 243		/* This is detecting a failure to transmit initial
 244		 * dev to host FIS as described in section G.5 of
 245		 * sas-2 r 04b */
 246		dr = &((struct smp_resp *)disc_resp)->disc;
 247		if (memcmp(dev->sas_addr, dr->attached_sas_addr,
 248			  SAS_ADDR_SIZE) == 0) {
 249			sas_printk("Found loopback topology, just ignore it!\n");
 250			return 0;
 251		}
 252		if (!(dr->attached_dev_type == 0 &&
 253		      dr->attached_sata_dev))
 254			break;
 255		/* In order to generate the dev to host FIS, we
 256		 * send a link reset to the expander port */
 257		sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
 258		/* Wait for the reset to trigger the negotiation */
 259		msleep(500);
 260	}
 261	sas_set_ex_phy(dev, single, disc_resp);
 262	return 0;
 263}
 264
 265static int sas_ex_phy_discover(struct domain_device *dev, int single)
 266{
 267	struct expander_device *ex = &dev->ex_dev;
 268	int  res = 0;
 269	u8   *disc_req;
 270	u8   *disc_resp;
 271
 272	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 273	if (!disc_req)
 274		return -ENOMEM;
 275
 276	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
 277	if (!disc_resp) {
 278		kfree(disc_req);
 279		return -ENOMEM;
 280	}
 281
 282	disc_req[1] = SMP_DISCOVER;
 283
 284	if (0 <= single && single < ex->num_phys) {
 285		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 286	} else {
 287		int i;
 288
 289		for (i = 0; i < ex->num_phys; i++) {
 290			res = sas_ex_phy_discover_helper(dev, disc_req,
 291							 disc_resp, i);
 292			if (res)
 293				goto out_err;
 294		}
 295	}
 296out_err:
 297	kfree(disc_resp);
 298	kfree(disc_req);
 299	return res;
 300}
 301
 302static int sas_expander_discover(struct domain_device *dev)
 303{
 304	struct expander_device *ex = &dev->ex_dev;
 305	int res = -ENOMEM;
 306
 307	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 308	if (!ex->ex_phy)
 309		return -ENOMEM;
 310
 311	res = sas_ex_phy_discover(dev, -1);
 312	if (res)
 313		goto out_err;
 314
 315	return 0;
 316 out_err:
 317	kfree(ex->ex_phy);
 318	ex->ex_phy = NULL;
 319	return res;
 320}
 321
 322#define MAX_EXPANDER_PHYS 128
 323
 324static void ex_assign_report_general(struct domain_device *dev,
 325					    struct smp_resp *resp)
 326{
 327	struct report_general_resp *rg = &resp->rg;
 328
 329	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 330	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 331	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 
 332	dev->ex_dev.conf_route_table = rg->conf_route_table;
 333	dev->ex_dev.configuring = rg->configuring;
 334	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 335}
 336
 337#define RG_REQ_SIZE   8
 338#define RG_RESP_SIZE 32
 339
 340static int sas_ex_general(struct domain_device *dev)
 341{
 342	u8 *rg_req;
 343	struct smp_resp *rg_resp;
 344	int res;
 345	int i;
 346
 347	rg_req = alloc_smp_req(RG_REQ_SIZE);
 348	if (!rg_req)
 349		return -ENOMEM;
 350
 351	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 352	if (!rg_resp) {
 353		kfree(rg_req);
 354		return -ENOMEM;
 355	}
 356
 357	rg_req[1] = SMP_REPORT_GENERAL;
 358
 359	for (i = 0; i < 5; i++) {
 360		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 361				       RG_RESP_SIZE);
 362
 363		if (res) {
 364			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 365				    SAS_ADDR(dev->sas_addr), res);
 366			goto out;
 367		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 368			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 369				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 370			res = rg_resp->result;
 371			goto out;
 372		}
 373
 374		ex_assign_report_general(dev, rg_resp);
 375
 376		if (dev->ex_dev.configuring) {
 377			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 378				    SAS_ADDR(dev->sas_addr));
 379			schedule_timeout_interruptible(5*HZ);
 380		} else
 381			break;
 382	}
 383out:
 384	kfree(rg_req);
 385	kfree(rg_resp);
 386	return res;
 387}
 388
 389static void ex_assign_manuf_info(struct domain_device *dev, void
 390					*_mi_resp)
 391{
 392	u8 *mi_resp = _mi_resp;
 393	struct sas_rphy *rphy = dev->rphy;
 394	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 395
 396	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 397	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 398	memcpy(edev->product_rev, mi_resp + 36,
 399	       SAS_EXPANDER_PRODUCT_REV_LEN);
 400
 401	if (mi_resp[8] & 1) {
 402		memcpy(edev->component_vendor_id, mi_resp + 40,
 403		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 404		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 405		edev->component_revision_id = mi_resp[50];
 406	}
 407}
 408
 409#define MI_REQ_SIZE   8
 410#define MI_RESP_SIZE 64
 411
 412static int sas_ex_manuf_info(struct domain_device *dev)
 413{
 414	u8 *mi_req;
 415	u8 *mi_resp;
 416	int res;
 417
 418	mi_req = alloc_smp_req(MI_REQ_SIZE);
 419	if (!mi_req)
 420		return -ENOMEM;
 421
 422	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 423	if (!mi_resp) {
 424		kfree(mi_req);
 425		return -ENOMEM;
 426	}
 427
 428	mi_req[1] = SMP_REPORT_MANUF_INFO;
 429
 430	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 431	if (res) {
 432		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 433			    SAS_ADDR(dev->sas_addr), res);
 434		goto out;
 435	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 436		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 437			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 438		goto out;
 439	}
 440
 441	ex_assign_manuf_info(dev, mi_resp);
 442out:
 443	kfree(mi_req);
 444	kfree(mi_resp);
 445	return res;
 446}
 447
 448#define PC_REQ_SIZE  44
 449#define PC_RESP_SIZE 8
 450
 451int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 452			enum phy_func phy_func,
 453			struct sas_phy_linkrates *rates)
 454{
 455	u8 *pc_req;
 456	u8 *pc_resp;
 457	int res;
 458
 459	pc_req = alloc_smp_req(PC_REQ_SIZE);
 460	if (!pc_req)
 461		return -ENOMEM;
 462
 463	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 464	if (!pc_resp) {
 465		kfree(pc_req);
 466		return -ENOMEM;
 467	}
 468
 469	pc_req[1] = SMP_PHY_CONTROL;
 470	pc_req[9] = phy_id;
 471	pc_req[10]= phy_func;
 472	if (rates) {
 473		pc_req[32] = rates->minimum_linkrate << 4;
 474		pc_req[33] = rates->maximum_linkrate << 4;
 475	}
 476
 477	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 478
 
 
 
 
 
 
 
 479	kfree(pc_resp);
 480	kfree(pc_req);
 481	return res;
 482}
 483
 484static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 485{
 486	struct expander_device *ex = &dev->ex_dev;
 487	struct ex_phy *phy = &ex->ex_phy[phy_id];
 488
 489	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 490	phy->linkrate = SAS_PHY_DISABLED;
 491}
 492
 493static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 494{
 495	struct expander_device *ex = &dev->ex_dev;
 496	int i;
 497
 498	for (i = 0; i < ex->num_phys; i++) {
 499		struct ex_phy *phy = &ex->ex_phy[i];
 500
 501		if (phy->phy_state == PHY_VACANT ||
 502		    phy->phy_state == PHY_NOT_PRESENT)
 503			continue;
 504
 505		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 506			sas_ex_disable_phy(dev, i);
 507	}
 508}
 509
 510static int sas_dev_present_in_domain(struct asd_sas_port *port,
 511					    u8 *sas_addr)
 512{
 513	struct domain_device *dev;
 514
 515	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 516		return 1;
 517	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 518		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 519			return 1;
 520	}
 521	return 0;
 522}
 523
 524#define RPEL_REQ_SIZE	16
 525#define RPEL_RESP_SIZE	32
 526int sas_smp_get_phy_events(struct sas_phy *phy)
 527{
 528	int res;
 529	u8 *req;
 530	u8 *resp;
 531	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 532	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 533
 534	req = alloc_smp_req(RPEL_REQ_SIZE);
 535	if (!req)
 536		return -ENOMEM;
 537
 538	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 539	if (!resp) {
 540		kfree(req);
 541		return -ENOMEM;
 542	}
 543
 544	req[1] = SMP_REPORT_PHY_ERR_LOG;
 545	req[9] = phy->number;
 546
 547	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 548			            resp, RPEL_RESP_SIZE);
 549
 550	if (!res)
 551		goto out;
 552
 553	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 554	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 555	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 556	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 557
 558 out:
 
 559	kfree(resp);
 560	return res;
 561
 562}
 563
 564#ifdef CONFIG_SCSI_SAS_ATA
 565
 566#define RPS_REQ_SIZE  16
 567#define RPS_RESP_SIZE 60
 568
 569static int sas_get_report_phy_sata(struct domain_device *dev,
 570					  int phy_id,
 571					  struct smp_resp *rps_resp)
 572{
 573	int res;
 574	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 575	u8 *resp = (u8 *)rps_resp;
 576
 577	if (!rps_req)
 578		return -ENOMEM;
 579
 580	rps_req[1] = SMP_REPORT_PHY_SATA;
 581	rps_req[9] = phy_id;
 582
 583	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 584			            rps_resp, RPS_RESP_SIZE);
 585
 586	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 587	 * standards cockup here.  sas-2 explicitly specifies the FIS
 588	 * should be encoded so that FIS type is in resp[24].
 589	 * However, some expanders endian reverse this.  Undo the
 590	 * reversal here */
 591	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 592		int i;
 593
 594		for (i = 0; i < 5; i++) {
 595			int j = 24 + (i*4);
 596			u8 a, b;
 597			a = resp[j + 0];
 598			b = resp[j + 1];
 599			resp[j + 0] = resp[j + 3];
 600			resp[j + 1] = resp[j + 2];
 601			resp[j + 2] = b;
 602			resp[j + 3] = a;
 603		}
 604	}
 605
 606	kfree(rps_req);
 607	return res;
 608}
 609#endif
 610
 611static void sas_ex_get_linkrate(struct domain_device *parent,
 612				       struct domain_device *child,
 613				       struct ex_phy *parent_phy)
 614{
 615	struct expander_device *parent_ex = &parent->ex_dev;
 616	struct sas_port *port;
 617	int i;
 618
 619	child->pathways = 0;
 620
 621	port = parent_phy->port;
 622
 623	for (i = 0; i < parent_ex->num_phys; i++) {
 624		struct ex_phy *phy = &parent_ex->ex_phy[i];
 625
 626		if (phy->phy_state == PHY_VACANT ||
 627		    phy->phy_state == PHY_NOT_PRESENT)
 628			continue;
 629
 630		if (SAS_ADDR(phy->attached_sas_addr) ==
 631		    SAS_ADDR(child->sas_addr)) {
 632
 633			child->min_linkrate = min(parent->min_linkrate,
 634						  phy->linkrate);
 635			child->max_linkrate = max(parent->max_linkrate,
 636						  phy->linkrate);
 637			child->pathways++;
 638			sas_port_add_phy(port, phy->phy);
 639		}
 640	}
 641	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 642	child->pathways = min(child->pathways, parent->pathways);
 643}
 644
 645static struct domain_device *sas_ex_discover_end_dev(
 646	struct domain_device *parent, int phy_id)
 647{
 648	struct expander_device *parent_ex = &parent->ex_dev;
 649	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 650	struct domain_device *child = NULL;
 651	struct sas_rphy *rphy;
 652	int res;
 653
 654	if (phy->attached_sata_host || phy->attached_sata_ps)
 655		return NULL;
 656
 657	child = kzalloc(sizeof(*child), GFP_KERNEL);
 658	if (!child)
 659		return NULL;
 660
 
 661	child->parent = parent;
 662	child->port   = parent->port;
 663	child->iproto = phy->attached_iproto;
 664	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 665	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 666	if (!phy->port) {
 667		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 668		if (unlikely(!phy->port))
 669			goto out_err;
 670		if (unlikely(sas_port_add(phy->port) != 0)) {
 671			sas_port_free(phy->port);
 672			goto out_err;
 673		}
 674	}
 675	sas_ex_get_linkrate(parent, child, phy);
 
 676
 677#ifdef CONFIG_SCSI_SAS_ATA
 678	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 679		child->dev_type = SATA_DEV;
 680		if (phy->attached_tproto & SAS_PROTOCOL_STP)
 681			child->tproto = phy->attached_tproto;
 682		if (phy->attached_sata_dev)
 683			child->tproto |= SATA_DEV;
 684		res = sas_get_report_phy_sata(parent, phy_id,
 685					      &child->sata_dev.rps_resp);
 686		if (res) {
 687			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
 688				    "0x%x\n", SAS_ADDR(parent->sas_addr),
 689				    phy_id, res);
 690			goto out_free;
 
 
 
 
 
 
 
 
 
 
 
 
 691		}
 692		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
 693		       sizeof(struct dev_to_host_fis));
 694
 695		rphy = sas_end_device_alloc(phy->port);
 696		if (unlikely(!rphy))
 697			goto out_free;
 698
 699		sas_init_dev(child);
 
 
 
 
 
 
 
 700
 701		child->rphy = rphy;
 
 702
 703		spin_lock_irq(&parent->port->dev_list_lock);
 704		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 705		spin_unlock_irq(&parent->port->dev_list_lock);
 706
 707		res = sas_discover_sata(child);
 708		if (res) {
 709			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 710				    "%016llx:0x%x returned 0x%x\n",
 711				    SAS_ADDR(child->sas_addr),
 712				    SAS_ADDR(parent->sas_addr), phy_id, res);
 713			goto out_list_del;
 714		}
 715	} else
 716#endif
 717	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 718		child->dev_type = SAS_END_DEV;
 719		rphy = sas_end_device_alloc(phy->port);
 720		/* FIXME: error handling */
 721		if (unlikely(!rphy))
 722			goto out_free;
 723		child->tproto = phy->attached_tproto;
 724		sas_init_dev(child);
 725
 726		child->rphy = rphy;
 
 
 727		sas_fill_in_rphy(child, rphy);
 728
 729		spin_lock_irq(&parent->port->dev_list_lock);
 730		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 731		spin_unlock_irq(&parent->port->dev_list_lock);
 732
 733		res = sas_discover_end_dev(child);
 734		if (res) {
 735			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 736				    "at %016llx:0x%x returned 0x%x\n",
 737				    SAS_ADDR(child->sas_addr),
 738				    SAS_ADDR(parent->sas_addr), phy_id, res);
 739			goto out_list_del;
 740		}
 741	} else {
 742		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 743			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 744			    phy_id);
 745		goto out_free;
 746	}
 747
 748	list_add_tail(&child->siblings, &parent_ex->children);
 749	return child;
 750
 751 out_list_del:
 752	sas_rphy_free(child->rphy);
 753	child->rphy = NULL;
 
 754	list_del(&child->dev_list_node);
 
 755 out_free:
 756	sas_port_delete(phy->port);
 757 out_err:
 758	phy->port = NULL;
 759	kfree(child);
 760	return NULL;
 761}
 762
 763/* See if this phy is part of a wide port */
 764static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 765{
 766	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 767	int i;
 768
 769	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 770		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 771
 772		if (ephy == phy)
 773			continue;
 774
 775		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 776			    SAS_ADDR_SIZE) && ephy->port) {
 777			sas_port_add_phy(ephy->port, phy->phy);
 778			phy->port = ephy->port;
 779			phy->phy_state = PHY_DEVICE_DISCOVERED;
 780			return 0;
 781		}
 782	}
 783
 784	return -ENODEV;
 785}
 786
 787static struct domain_device *sas_ex_discover_expander(
 788	struct domain_device *parent, int phy_id)
 789{
 790	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 791	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 792	struct domain_device *child = NULL;
 793	struct sas_rphy *rphy;
 794	struct sas_expander_device *edev;
 795	struct asd_sas_port *port;
 796	int res;
 797
 798	if (phy->routing_attr == DIRECT_ROUTING) {
 799		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 800			    "allowed\n",
 801			    SAS_ADDR(parent->sas_addr), phy_id,
 802			    SAS_ADDR(phy->attached_sas_addr),
 803			    phy->attached_phy_id);
 804		return NULL;
 805	}
 806	child = kzalloc(sizeof(*child), GFP_KERNEL);
 807	if (!child)
 808		return NULL;
 809
 810	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 811	/* FIXME: better error handling */
 812	BUG_ON(sas_port_add(phy->port) != 0);
 813
 814
 815	switch (phy->attached_dev_type) {
 816	case EDGE_DEV:
 817		rphy = sas_expander_alloc(phy->port,
 818					  SAS_EDGE_EXPANDER_DEVICE);
 819		break;
 820	case FANOUT_DEV:
 821		rphy = sas_expander_alloc(phy->port,
 822					  SAS_FANOUT_EXPANDER_DEVICE);
 823		break;
 824	default:
 825		rphy = NULL;	/* shut gcc up */
 826		BUG();
 827	}
 828	port = parent->port;
 829	child->rphy = rphy;
 
 830	edev = rphy_to_expander_device(rphy);
 831	child->dev_type = phy->attached_dev_type;
 
 832	child->parent = parent;
 833	child->port = port;
 834	child->iproto = phy->attached_iproto;
 835	child->tproto = phy->attached_tproto;
 836	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 837	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 838	sas_ex_get_linkrate(parent, child, phy);
 839	edev->level = parent_ex->level + 1;
 840	parent->port->disc.max_level = max(parent->port->disc.max_level,
 841					   edev->level);
 842	sas_init_dev(child);
 843	sas_fill_in_rphy(child, rphy);
 844	sas_rphy_add(rphy);
 845
 846	spin_lock_irq(&parent->port->dev_list_lock);
 847	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 848	spin_unlock_irq(&parent->port->dev_list_lock);
 849
 850	res = sas_discover_expander(child);
 851	if (res) {
 
 852		spin_lock_irq(&parent->port->dev_list_lock);
 853		list_del(&child->dev_list_node);
 854		spin_unlock_irq(&parent->port->dev_list_lock);
 855		kfree(child);
 
 
 856		return NULL;
 857	}
 858	list_add_tail(&child->siblings, &parent->ex_dev.children);
 859	return child;
 860}
 861
 862static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 863{
 864	struct expander_device *ex = &dev->ex_dev;
 865	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 866	struct domain_device *child = NULL;
 867	int res = 0;
 868
 869	/* Phy state */
 870	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 871		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 872			res = sas_ex_phy_discover(dev, phy_id);
 873		if (res)
 874			return res;
 875	}
 876
 877	/* Parent and domain coherency */
 878	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 879			     SAS_ADDR(dev->port->sas_addr))) {
 880		sas_add_parent_port(dev, phy_id);
 881		return 0;
 882	}
 883	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 884			    SAS_ADDR(dev->parent->sas_addr))) {
 885		sas_add_parent_port(dev, phy_id);
 886		if (ex_phy->routing_attr == TABLE_ROUTING)
 887			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 888		return 0;
 889	}
 890
 891	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 892		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 893
 894	if (ex_phy->attached_dev_type == NO_DEVICE) {
 895		if (ex_phy->routing_attr == DIRECT_ROUTING) {
 896			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 897			sas_configure_routing(dev, ex_phy->attached_sas_addr);
 898		}
 899		return 0;
 900	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
 901		return 0;
 902
 903	if (ex_phy->attached_dev_type != SAS_END_DEV &&
 904	    ex_phy->attached_dev_type != FANOUT_DEV &&
 905	    ex_phy->attached_dev_type != EDGE_DEV) {
 906		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
 907			    "phy 0x%x\n", ex_phy->attached_dev_type,
 908			    SAS_ADDR(dev->sas_addr),
 909			    phy_id);
 
 910		return 0;
 911	}
 912
 913	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
 914	if (res) {
 915		SAS_DPRINTK("configure routing for dev %016llx "
 916			    "reported 0x%x. Forgotten\n",
 917			    SAS_ADDR(ex_phy->attached_sas_addr), res);
 918		sas_disable_routing(dev, ex_phy->attached_sas_addr);
 919		return res;
 920	}
 921
 922	res = sas_ex_join_wide_port(dev, phy_id);
 923	if (!res) {
 924		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 925			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
 926		return res;
 927	}
 928
 929	switch (ex_phy->attached_dev_type) {
 930	case SAS_END_DEV:
 
 931		child = sas_ex_discover_end_dev(dev, phy_id);
 932		break;
 933	case FANOUT_DEV:
 934		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
 935			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
 936				    "attached to ex %016llx phy 0x%x\n",
 937				    SAS_ADDR(ex_phy->attached_sas_addr),
 938				    ex_phy->attached_phy_id,
 939				    SAS_ADDR(dev->sas_addr),
 940				    phy_id);
 941			sas_ex_disable_phy(dev, phy_id);
 942			break;
 943		} else
 944			memcpy(dev->port->disc.fanout_sas_addr,
 945			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
 946		/* fallthrough */
 947	case EDGE_DEV:
 948		child = sas_ex_discover_expander(dev, phy_id);
 949		break;
 950	default:
 951		break;
 952	}
 953
 954	if (child) {
 955		int i;
 956
 957		for (i = 0; i < ex->num_phys; i++) {
 958			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
 959			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
 960				continue;
 961			/*
 962			 * Due to races, the phy might not get added to the
 963			 * wide port, so we add the phy to the wide port here.
 964			 */
 965			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
 966			    SAS_ADDR(child->sas_addr)) {
 967				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
 968				res = sas_ex_join_wide_port(dev, i);
 969				if (!res)
 970					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 971						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
 972
 973			}
 974		}
 975	}
 976
 977	return res;
 978}
 979
 980static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
 981{
 982	struct expander_device *ex = &dev->ex_dev;
 983	int i;
 984
 985	for (i = 0; i < ex->num_phys; i++) {
 986		struct ex_phy *phy = &ex->ex_phy[i];
 987
 988		if (phy->phy_state == PHY_VACANT ||
 989		    phy->phy_state == PHY_NOT_PRESENT)
 990			continue;
 991
 992		if ((phy->attached_dev_type == EDGE_DEV ||
 993		     phy->attached_dev_type == FANOUT_DEV) &&
 994		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
 995
 996			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
 997
 998			return 1;
 999		}
1000	}
1001	return 0;
1002}
1003
1004static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1005{
1006	struct expander_device *ex = &dev->ex_dev;
1007	struct domain_device *child;
1008	u8 sub_addr[8] = {0, };
1009
1010	list_for_each_entry(child, &ex->children, siblings) {
1011		if (child->dev_type != EDGE_DEV &&
1012		    child->dev_type != FANOUT_DEV)
1013			continue;
1014		if (sub_addr[0] == 0) {
1015			sas_find_sub_addr(child, sub_addr);
1016			continue;
1017		} else {
1018			u8 s2[8];
1019
1020			if (sas_find_sub_addr(child, s2) &&
1021			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1022
1023				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1024					    "diverges from subtractive "
1025					    "boundary %016llx\n",
1026					    SAS_ADDR(dev->sas_addr),
1027					    SAS_ADDR(child->sas_addr),
1028					    SAS_ADDR(s2),
1029					    SAS_ADDR(sub_addr));
1030
1031				sas_ex_disable_port(child, s2);
1032			}
1033		}
1034	}
1035	return 0;
1036}
1037/**
1038 * sas_ex_discover_devices -- discover devices attached to this expander
1039 * dev: pointer to the expander domain device
1040 * single: if you want to do a single phy, else set to -1;
1041 *
1042 * Configure this expander for use with its devices and register the
1043 * devices of this expander.
1044 */
1045static int sas_ex_discover_devices(struct domain_device *dev, int single)
1046{
1047	struct expander_device *ex = &dev->ex_dev;
1048	int i = 0, end = ex->num_phys;
1049	int res = 0;
1050
1051	if (0 <= single && single < end) {
1052		i = single;
1053		end = i+1;
1054	}
1055
1056	for ( ; i < end; i++) {
1057		struct ex_phy *ex_phy = &ex->ex_phy[i];
1058
1059		if (ex_phy->phy_state == PHY_VACANT ||
1060		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1061		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1062			continue;
1063
1064		switch (ex_phy->linkrate) {
1065		case SAS_PHY_DISABLED:
1066		case SAS_PHY_RESET_PROBLEM:
1067		case SAS_SATA_PORT_SELECTOR:
1068			continue;
1069		default:
1070			res = sas_ex_discover_dev(dev, i);
1071			if (res)
1072				break;
1073			continue;
1074		}
1075	}
1076
1077	if (!res)
1078		sas_check_level_subtractive_boundary(dev);
1079
1080	return res;
1081}
1082
1083static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1084{
1085	struct expander_device *ex = &dev->ex_dev;
1086	int i;
1087	u8  *sub_sas_addr = NULL;
1088
1089	if (dev->dev_type != EDGE_DEV)
1090		return 0;
1091
1092	for (i = 0; i < ex->num_phys; i++) {
1093		struct ex_phy *phy = &ex->ex_phy[i];
1094
1095		if (phy->phy_state == PHY_VACANT ||
1096		    phy->phy_state == PHY_NOT_PRESENT)
1097			continue;
1098
1099		if ((phy->attached_dev_type == FANOUT_DEV ||
1100		     phy->attached_dev_type == EDGE_DEV) &&
1101		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1102
1103			if (!sub_sas_addr)
1104				sub_sas_addr = &phy->attached_sas_addr[0];
1105			else if (SAS_ADDR(sub_sas_addr) !=
1106				 SAS_ADDR(phy->attached_sas_addr)) {
1107
1108				SAS_DPRINTK("ex %016llx phy 0x%x "
1109					    "diverges(%016llx) on subtractive "
1110					    "boundary(%016llx). Disabled\n",
1111					    SAS_ADDR(dev->sas_addr), i,
1112					    SAS_ADDR(phy->attached_sas_addr),
1113					    SAS_ADDR(sub_sas_addr));
1114				sas_ex_disable_phy(dev, i);
1115			}
1116		}
1117	}
1118	return 0;
1119}
1120
1121static void sas_print_parent_topology_bug(struct domain_device *child,
1122						 struct ex_phy *parent_phy,
1123						 struct ex_phy *child_phy)
1124{
1125	static const char ra_char[] = {
1126		[DIRECT_ROUTING] = 'D',
1127		[SUBTRACTIVE_ROUTING] = 'S',
1128		[TABLE_ROUTING] = 'T',
1129	};
1130	static const char *ex_type[] = {
1131		[EDGE_DEV] = "edge",
1132		[FANOUT_DEV] = "fanout",
1133	};
1134	struct domain_device *parent = child->parent;
1135
1136	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1137		   "has %c:%c routing link!\n",
 
 
 
 
 
 
1138
1139		   ex_type[parent->dev_type],
1140		   SAS_ADDR(parent->sas_addr),
1141		   parent_phy->phy_id,
1142
1143		   ex_type[child->dev_type],
1144		   SAS_ADDR(child->sas_addr),
1145		   child_phy->phy_id,
1146
1147		   ra_char[parent_phy->routing_attr],
1148		   ra_char[child_phy->routing_attr]);
1149}
1150
1151static int sas_check_eeds(struct domain_device *child,
1152				 struct ex_phy *parent_phy,
1153				 struct ex_phy *child_phy)
1154{
1155	int res = 0;
1156	struct domain_device *parent = child->parent;
1157
1158	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1159		res = -ENODEV;
1160		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1161			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1162			    SAS_ADDR(parent->sas_addr),
1163			    parent_phy->phy_id,
1164			    SAS_ADDR(child->sas_addr),
1165			    child_phy->phy_id,
1166			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1167	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1168		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1169		       SAS_ADDR_SIZE);
1170		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1171		       SAS_ADDR_SIZE);
1172	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1173		    SAS_ADDR(parent->sas_addr)) ||
1174		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1175		    SAS_ADDR(child->sas_addr)))
1176		   &&
1177		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1178		     SAS_ADDR(parent->sas_addr)) ||
1179		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1180		     SAS_ADDR(child->sas_addr))))
1181		;
1182	else {
1183		res = -ENODEV;
1184		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1185			    "phy 0x%x link forms a third EEDS!\n",
1186			    SAS_ADDR(parent->sas_addr),
1187			    parent_phy->phy_id,
1188			    SAS_ADDR(child->sas_addr),
1189			    child_phy->phy_id);
1190	}
1191
1192	return res;
1193}
1194
1195/* Here we spill over 80 columns.  It is intentional.
1196 */
1197static int sas_check_parent_topology(struct domain_device *child)
1198{
1199	struct expander_device *child_ex = &child->ex_dev;
1200	struct expander_device *parent_ex;
1201	int i;
1202	int res = 0;
1203
1204	if (!child->parent)
1205		return 0;
1206
1207	if (child->parent->dev_type != EDGE_DEV &&
1208	    child->parent->dev_type != FANOUT_DEV)
1209		return 0;
1210
1211	parent_ex = &child->parent->ex_dev;
1212
1213	for (i = 0; i < parent_ex->num_phys; i++) {
1214		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1215		struct ex_phy *child_phy;
1216
1217		if (parent_phy->phy_state == PHY_VACANT ||
1218		    parent_phy->phy_state == PHY_NOT_PRESENT)
1219			continue;
1220
1221		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1222			continue;
1223
1224		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1225
1226		switch (child->parent->dev_type) {
1227		case EDGE_DEV:
1228			if (child->dev_type == FANOUT_DEV) {
1229				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1230				    child_phy->routing_attr != TABLE_ROUTING) {
1231					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1232					res = -ENODEV;
1233				}
1234			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1236					res = sas_check_eeds(child, parent_phy, child_phy);
1237				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1238					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1239					res = -ENODEV;
1240				}
1241			} else if (parent_phy->routing_attr == TABLE_ROUTING &&
1242				   child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1243				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1244				res = -ENODEV;
 
 
 
 
 
1245			}
1246			break;
1247		case FANOUT_DEV:
1248			if (parent_phy->routing_attr != TABLE_ROUTING ||
1249			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1250				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1251				res = -ENODEV;
1252			}
1253			break;
1254		default:
1255			break;
1256		}
1257	}
1258
1259	return res;
1260}
1261
1262#define RRI_REQ_SIZE  16
1263#define RRI_RESP_SIZE 44
1264
1265static int sas_configure_present(struct domain_device *dev, int phy_id,
1266				 u8 *sas_addr, int *index, int *present)
1267{
1268	int i, res = 0;
1269	struct expander_device *ex = &dev->ex_dev;
1270	struct ex_phy *phy = &ex->ex_phy[phy_id];
1271	u8 *rri_req;
1272	u8 *rri_resp;
1273
1274	*present = 0;
1275	*index = 0;
1276
1277	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1278	if (!rri_req)
1279		return -ENOMEM;
1280
1281	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1282	if (!rri_resp) {
1283		kfree(rri_req);
1284		return -ENOMEM;
1285	}
1286
1287	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1288	rri_req[9] = phy_id;
1289
1290	for (i = 0; i < ex->max_route_indexes ; i++) {
1291		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1292		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1293				       RRI_RESP_SIZE);
1294		if (res)
1295			goto out;
1296		res = rri_resp[2];
1297		if (res == SMP_RESP_NO_INDEX) {
1298			SAS_DPRINTK("overflow of indexes: dev %016llx "
1299				    "phy 0x%x index 0x%x\n",
1300				    SAS_ADDR(dev->sas_addr), phy_id, i);
1301			goto out;
1302		} else if (res != SMP_RESP_FUNC_ACC) {
1303			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1304				    "result 0x%x\n", __func__,
1305				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1306			goto out;
1307		}
1308		if (SAS_ADDR(sas_addr) != 0) {
1309			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1310				*index = i;
1311				if ((rri_resp[12] & 0x80) == 0x80)
1312					*present = 0;
1313				else
1314					*present = 1;
1315				goto out;
1316			} else if (SAS_ADDR(rri_resp+16) == 0) {
1317				*index = i;
1318				*present = 0;
1319				goto out;
1320			}
1321		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1322			   phy->last_da_index < i) {
1323			phy->last_da_index = i;
1324			*index = i;
1325			*present = 0;
1326			goto out;
1327		}
1328	}
1329	res = -1;
1330out:
1331	kfree(rri_req);
1332	kfree(rri_resp);
1333	return res;
1334}
1335
1336#define CRI_REQ_SIZE  44
1337#define CRI_RESP_SIZE  8
1338
1339static int sas_configure_set(struct domain_device *dev, int phy_id,
1340			     u8 *sas_addr, int index, int include)
1341{
1342	int res;
1343	u8 *cri_req;
1344	u8 *cri_resp;
1345
1346	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1347	if (!cri_req)
1348		return -ENOMEM;
1349
1350	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1351	if (!cri_resp) {
1352		kfree(cri_req);
1353		return -ENOMEM;
1354	}
1355
1356	cri_req[1] = SMP_CONF_ROUTE_INFO;
1357	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1358	cri_req[9] = phy_id;
1359	if (SAS_ADDR(sas_addr) == 0 || !include)
1360		cri_req[12] |= 0x80;
1361	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1362
1363	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1364			       CRI_RESP_SIZE);
1365	if (res)
1366		goto out;
1367	res = cri_resp[2];
1368	if (res == SMP_RESP_NO_INDEX) {
1369		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1370			    "index 0x%x\n",
1371			    SAS_ADDR(dev->sas_addr), phy_id, index);
1372	}
1373out:
1374	kfree(cri_req);
1375	kfree(cri_resp);
1376	return res;
1377}
1378
1379static int sas_configure_phy(struct domain_device *dev, int phy_id,
1380				    u8 *sas_addr, int include)
1381{
1382	int index;
1383	int present;
1384	int res;
1385
1386	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1387	if (res)
1388		return res;
1389	if (include ^ present)
1390		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1391
1392	return res;
1393}
1394
1395/**
1396 * sas_configure_parent -- configure routing table of parent
1397 * parent: parent expander
1398 * child: child expander
1399 * sas_addr: SAS port identifier of device directly attached to child
 
1400 */
1401static int sas_configure_parent(struct domain_device *parent,
1402				struct domain_device *child,
1403				u8 *sas_addr, int include)
1404{
1405	struct expander_device *ex_parent = &parent->ex_dev;
1406	int res = 0;
1407	int i;
1408
1409	if (parent->parent) {
1410		res = sas_configure_parent(parent->parent, parent, sas_addr,
1411					   include);
1412		if (res)
1413			return res;
1414	}
1415
1416	if (ex_parent->conf_route_table == 0) {
1417		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1418			    SAS_ADDR(parent->sas_addr));
1419		return 0;
1420	}
1421
1422	for (i = 0; i < ex_parent->num_phys; i++) {
1423		struct ex_phy *phy = &ex_parent->ex_phy[i];
1424
1425		if ((phy->routing_attr == TABLE_ROUTING) &&
1426		    (SAS_ADDR(phy->attached_sas_addr) ==
1427		     SAS_ADDR(child->sas_addr))) {
1428			res = sas_configure_phy(parent, i, sas_addr, include);
1429			if (res)
1430				return res;
1431		}
1432	}
1433
1434	return res;
1435}
1436
1437/**
1438 * sas_configure_routing -- configure routing
1439 * dev: expander device
1440 * sas_addr: port identifier of device directly attached to the expander device
1441 */
1442static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1443{
1444	if (dev->parent)
1445		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1446	return 0;
1447}
1448
1449static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1450{
1451	if (dev->parent)
1452		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1453	return 0;
1454}
1455
1456/**
1457 * sas_discover_expander -- expander discovery
1458 * @ex: pointer to expander domain device
1459 *
1460 * See comment in sas_discover_sata().
1461 */
1462static int sas_discover_expander(struct domain_device *dev)
1463{
1464	int res;
1465
1466	res = sas_notify_lldd_dev_found(dev);
1467	if (res)
1468		return res;
1469
1470	res = sas_ex_general(dev);
1471	if (res)
1472		goto out_err;
1473	res = sas_ex_manuf_info(dev);
1474	if (res)
1475		goto out_err;
1476
1477	res = sas_expander_discover(dev);
1478	if (res) {
1479		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1480			    SAS_ADDR(dev->sas_addr), res);
1481		goto out_err;
1482	}
1483
1484	sas_check_ex_subtractive_boundary(dev);
1485	res = sas_check_parent_topology(dev);
1486	if (res)
1487		goto out_err;
1488	return 0;
1489out_err:
1490	sas_notify_lldd_dev_gone(dev);
1491	return res;
1492}
1493
1494static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1495{
1496	int res = 0;
1497	struct domain_device *dev;
1498
1499	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1500		if (dev->dev_type == EDGE_DEV ||
1501		    dev->dev_type == FANOUT_DEV) {
1502			struct sas_expander_device *ex =
1503				rphy_to_expander_device(dev->rphy);
1504
1505			if (level == ex->level)
1506				res = sas_ex_discover_devices(dev, -1);
1507			else if (level > 0)
1508				res = sas_ex_discover_devices(port->port_dev, -1);
1509
1510		}
1511	}
1512
1513	return res;
1514}
1515
1516static int sas_ex_bfs_disc(struct asd_sas_port *port)
1517{
1518	int res;
1519	int level;
1520
1521	do {
1522		level = port->disc.max_level;
1523		res = sas_ex_level_discovery(port, level);
1524		mb();
1525	} while (level < port->disc.max_level);
1526
1527	return res;
1528}
1529
1530int sas_discover_root_expander(struct domain_device *dev)
1531{
1532	int res;
1533	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1534
1535	res = sas_rphy_add(dev->rphy);
1536	if (res)
1537		goto out_err;
1538
1539	ex->level = dev->port->disc.max_level; /* 0 */
1540	res = sas_discover_expander(dev);
1541	if (res)
1542		goto out_err2;
1543
1544	sas_ex_bfs_disc(dev->port);
1545
1546	return res;
1547
1548out_err2:
1549	sas_rphy_remove(dev->rphy);
1550out_err:
1551	return res;
1552}
1553
1554/* ---------- Domain revalidation ---------- */
1555
1556static int sas_get_phy_discover(struct domain_device *dev,
1557				int phy_id, struct smp_resp *disc_resp)
1558{
1559	int res;
1560	u8 *disc_req;
1561
1562	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1563	if (!disc_req)
1564		return -ENOMEM;
1565
1566	disc_req[1] = SMP_DISCOVER;
1567	disc_req[9] = phy_id;
1568
1569	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1570			       disc_resp, DISCOVER_RESP_SIZE);
1571	if (res)
1572		goto out;
1573	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1574		res = disc_resp->result;
1575		goto out;
1576	}
1577out:
1578	kfree(disc_req);
1579	return res;
1580}
1581
1582static int sas_get_phy_change_count(struct domain_device *dev,
1583				    int phy_id, int *pcc)
1584{
1585	int res;
1586	struct smp_resp *disc_resp;
1587
1588	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1589	if (!disc_resp)
1590		return -ENOMEM;
1591
1592	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1593	if (!res)
1594		*pcc = disc_resp->disc.change_count;
1595
1596	kfree(disc_resp);
1597	return res;
1598}
1599
1600static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1601					 int phy_id, u8 *attached_sas_addr)
1602{
1603	int res;
1604	struct smp_resp *disc_resp;
1605	struct discover_resp *dr;
1606
1607	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1608	if (!disc_resp)
1609		return -ENOMEM;
1610	dr = &disc_resp->disc;
1611
1612	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1613	if (!res) {
1614		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1615		if (dr->attached_dev_type == 0)
1616			memset(attached_sas_addr, 0, 8);
 
 
1617	}
1618	kfree(disc_resp);
1619	return res;
1620}
1621
1622static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1623			      int from_phy, bool update)
1624{
1625	struct expander_device *ex = &dev->ex_dev;
1626	int res = 0;
1627	int i;
1628
1629	for (i = from_phy; i < ex->num_phys; i++) {
1630		int phy_change_count = 0;
1631
1632		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1633		if (res)
1634			goto out;
1635		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
 
 
 
 
 
 
 
 
1636			if (update)
1637				ex->ex_phy[i].phy_change_count =
1638					phy_change_count;
1639			*phy_id = i;
1640			return 0;
1641		}
1642	}
1643out:
1644	return res;
1645}
1646
1647static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1648{
1649	int res;
1650	u8  *rg_req;
1651	struct smp_resp  *rg_resp;
1652
1653	rg_req = alloc_smp_req(RG_REQ_SIZE);
1654	if (!rg_req)
1655		return -ENOMEM;
1656
1657	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1658	if (!rg_resp) {
1659		kfree(rg_req);
1660		return -ENOMEM;
1661	}
1662
1663	rg_req[1] = SMP_REPORT_GENERAL;
1664
1665	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1666			       RG_RESP_SIZE);
1667	if (res)
1668		goto out;
1669	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1670		res = rg_resp->result;
1671		goto out;
1672	}
1673
1674	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1675out:
1676	kfree(rg_resp);
1677	kfree(rg_req);
1678	return res;
1679}
1680/**
1681 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1682 * @dev:domain device to be detect.
1683 * @src_dev: the device which originated BROADCAST(CHANGE).
1684 *
1685 * Add self-configuration expander suport. Suppose two expander cascading,
1686 * when the first level expander is self-configuring, hotplug the disks in
1687 * second level expander, BROADCAST(CHANGE) will not only be originated
1688 * in the second level expander, but also be originated in the first level
1689 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1690 * expander changed count in two level expanders will all increment at least
1691 * once, but the phy which chang count has changed is the source device which
1692 * we concerned.
1693 */
1694
1695static int sas_find_bcast_dev(struct domain_device *dev,
1696			      struct domain_device **src_dev)
1697{
1698	struct expander_device *ex = &dev->ex_dev;
1699	int ex_change_count = -1;
1700	int phy_id = -1;
1701	int res;
1702	struct domain_device *ch;
1703
1704	res = sas_get_ex_change_count(dev, &ex_change_count);
1705	if (res)
1706		goto out;
1707	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1708		/* Just detect if this expander phys phy change count changed,
1709		* in order to determine if this expander originate BROADCAST,
1710		* and do not update phy change count field in our structure.
1711		*/
1712		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1713		if (phy_id != -1) {
1714			*src_dev = dev;
1715			ex->ex_change_count = ex_change_count;
1716			SAS_DPRINTK("Expander phy change count has changed\n");
 
1717			return res;
1718		} else
1719			SAS_DPRINTK("Expander phys DID NOT change\n");
 
1720	}
1721	list_for_each_entry(ch, &ex->children, siblings) {
1722		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1723			res = sas_find_bcast_dev(ch, src_dev);
1724			if (*src_dev)
1725				return res;
1726		}
1727	}
1728out:
1729	return res;
1730}
1731
1732static void sas_unregister_ex_tree(struct domain_device *dev)
1733{
1734	struct expander_device *ex = &dev->ex_dev;
1735	struct domain_device *child, *n;
1736
1737	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1738		child->gone = 1;
1739		if (child->dev_type == EDGE_DEV ||
1740		    child->dev_type == FANOUT_DEV)
1741			sas_unregister_ex_tree(child);
1742		else
1743			sas_unregister_dev(child);
1744	}
1745	sas_unregister_dev(dev);
1746}
1747
1748static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1749					 int phy_id, bool last)
1750{
1751	struct expander_device *ex_dev = &parent->ex_dev;
1752	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1753	struct domain_device *child, *n;
1754	if (last) {
1755		list_for_each_entry_safe(child, n,
1756			&ex_dev->children, siblings) {
1757			if (SAS_ADDR(child->sas_addr) ==
1758			    SAS_ADDR(phy->attached_sas_addr)) {
1759				child->gone = 1;
1760				if (child->dev_type == EDGE_DEV ||
1761				    child->dev_type == FANOUT_DEV)
1762					sas_unregister_ex_tree(child);
1763				else
1764					sas_unregister_dev(child);
 
1765				break;
1766			}
1767		}
1768		parent->gone = 1;
1769		sas_disable_routing(parent, phy->attached_sas_addr);
1770	}
1771	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1772	if (phy->port) {
1773		sas_port_delete_phy(phy->port, phy->phy);
 
1774		if (phy->port->num_phys == 0)
1775			sas_port_delete(phy->port);
 
1776		phy->port = NULL;
1777	}
1778}
1779
1780static int sas_discover_bfs_by_root_level(struct domain_device *root,
1781					  const int level)
1782{
1783	struct expander_device *ex_root = &root->ex_dev;
1784	struct domain_device *child;
1785	int res = 0;
1786
1787	list_for_each_entry(child, &ex_root->children, siblings) {
1788		if (child->dev_type == EDGE_DEV ||
1789		    child->dev_type == FANOUT_DEV) {
1790			struct sas_expander_device *ex =
1791				rphy_to_expander_device(child->rphy);
1792
1793			if (level > ex->level)
1794				res = sas_discover_bfs_by_root_level(child,
1795								     level);
1796			else if (level == ex->level)
1797				res = sas_ex_discover_devices(child, -1);
1798		}
1799	}
1800	return res;
1801}
1802
1803static int sas_discover_bfs_by_root(struct domain_device *dev)
1804{
1805	int res;
1806	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1807	int level = ex->level+1;
1808
1809	res = sas_ex_discover_devices(dev, -1);
1810	if (res)
1811		goto out;
1812	do {
1813		res = sas_discover_bfs_by_root_level(dev, level);
1814		mb();
1815		level += 1;
1816	} while (level <= dev->port->disc.max_level);
1817out:
1818	return res;
1819}
1820
1821static int sas_discover_new(struct domain_device *dev, int phy_id)
1822{
1823	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1824	struct domain_device *child;
1825	bool found = false;
1826	int res, i;
1827
1828	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1829		    SAS_ADDR(dev->sas_addr), phy_id);
1830	res = sas_ex_phy_discover(dev, phy_id);
1831	if (res)
1832		goto out;
1833	/* to support the wide port inserted */
1834	for (i = 0; i < dev->ex_dev.num_phys; i++) {
1835		struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1836		if (i == phy_id)
1837			continue;
1838		if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1839		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1840			found = true;
1841			break;
1842		}
1843	}
1844	if (found) {
1845		sas_ex_join_wide_port(dev, phy_id);
1846		return 0;
1847	}
1848	res = sas_ex_discover_devices(dev, phy_id);
1849	if (!res)
1850		goto out;
1851	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1852		if (SAS_ADDR(child->sas_addr) ==
1853		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1854			if (child->dev_type == EDGE_DEV ||
1855			    child->dev_type == FANOUT_DEV)
1856				res = sas_discover_bfs_by_root(child);
1857			break;
1858		}
1859	}
1860out:
1861	return res;
1862}
1863
1864static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865{
1866	struct expander_device *ex = &dev->ex_dev;
1867	struct ex_phy *phy = &ex->ex_phy[phy_id];
1868	u8 attached_sas_addr[8];
 
 
1869	int res;
1870
1871	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
 
 
 
 
 
 
 
1872	switch (res) {
1873	case SMP_RESP_NO_PHY:
1874		phy->phy_state = PHY_NOT_PRESENT;
1875		sas_unregister_devs_sas_addr(dev, phy_id, last);
1876		goto out; break;
1877	case SMP_RESP_PHY_VACANT:
1878		phy->phy_state = PHY_VACANT;
1879		sas_unregister_devs_sas_addr(dev, phy_id, last);
1880		goto out; break;
1881	case SMP_RESP_FUNC_ACC:
1882		break;
 
 
 
 
1883	}
1884
1885	if (SAS_ADDR(attached_sas_addr) == 0) {
1886		phy->phy_state = PHY_EMPTY;
1887		sas_unregister_devs_sas_addr(dev, phy_id, last);
1888	} else if (SAS_ADDR(attached_sas_addr) ==
1889		   SAS_ADDR(phy->attached_sas_addr)) {
1890		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1891			    SAS_ADDR(dev->sas_addr), phy_id);
1892		sas_ex_phy_discover(dev, phy_id);
1893	} else
1894		res = sas_discover_new(dev, phy_id);
1895out:
1896	return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897}
1898
1899/**
1900 * sas_rediscover - revalidate the domain.
1901 * @dev:domain device to be detect.
1902 * @phy_id: the phy id will be detected.
1903 *
1904 * NOTE: this process _must_ quit (return) as soon as any connection
1905 * errors are encountered.  Connection recovery is done elsewhere.
1906 * Discover process only interrogates devices in order to discover the
1907 * domain.For plugging out, we un-register the device only when it is
1908 * the last phy in the port, for other phys in this port, we just delete it
1909 * from the port.For inserting, we do discovery when it is the
1910 * first phy,for other phys in this port, we add it to the port to
1911 * forming the wide-port.
1912 */
1913static int sas_rediscover(struct domain_device *dev, const int phy_id)
1914{
1915	struct expander_device *ex = &dev->ex_dev;
1916	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1917	int res = 0;
1918	int i;
1919	bool last = true;	/* is this the last phy of the port */
1920
1921	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1922		    SAS_ADDR(dev->sas_addr), phy_id);
1923
1924	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1925		for (i = 0; i < ex->num_phys; i++) {
1926			struct ex_phy *phy = &ex->ex_phy[i];
1927
1928			if (i == phy_id)
1929				continue;
1930			if (SAS_ADDR(phy->attached_sas_addr) ==
1931			    SAS_ADDR(changed_phy->attached_sas_addr)) {
1932				SAS_DPRINTK("phy%d part of wide port with "
1933					    "phy%d\n", phy_id, i);
1934				last = false;
1935				break;
1936			}
1937		}
1938		res = sas_rediscover_dev(dev, phy_id, last);
1939	} else
1940		res = sas_discover_new(dev, phy_id);
1941	return res;
1942}
1943
1944/**
1945 * sas_revalidate_domain -- revalidate the domain
1946 * @port: port to the domain of interest
1947 *
1948 * NOTE: this process _must_ quit (return) as soon as any connection
1949 * errors are encountered.  Connection recovery is done elsewhere.
1950 * Discover process only interrogates devices in order to discover the
1951 * domain.
1952 */
1953int sas_ex_revalidate_domain(struct domain_device *port_dev)
1954{
1955	int res;
1956	struct domain_device *dev = NULL;
1957
1958	res = sas_find_bcast_dev(port_dev, &dev);
1959	if (res)
1960		goto out;
1961	if (dev) {
1962		struct expander_device *ex = &dev->ex_dev;
1963		int i = 0, phy_id;
1964
1965		do {
1966			phy_id = -1;
1967			res = sas_find_bcast_phy(dev, &phy_id, i, true);
1968			if (phy_id == -1)
1969				break;
1970			res = sas_rediscover(dev, phy_id);
1971			i = phy_id + 1;
1972		} while (i < ex->num_phys);
1973	}
1974out:
1975	return res;
1976}
1977
1978int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1979		    struct request *req)
1980{
1981	struct domain_device *dev;
1982	int ret, type;
1983	struct request *rsp = req->next_rq;
1984
1985	if (!rsp) {
1986		printk("%s: space for a smp response is missing\n",
1987		       __func__);
1988		return -EINVAL;
1989	}
1990
1991	/* no rphy means no smp target support (ie aic94xx host) */
1992	if (!rphy)
1993		return sas_smp_host_handler(shost, req, rsp);
1994
1995	type = rphy->identify.device_type;
1996
1997	if (type != SAS_EDGE_EXPANDER_DEVICE &&
1998	    type != SAS_FANOUT_EXPANDER_DEVICE) {
1999		printk("%s: can we send a smp request to a device?\n",
 
 
 
2000		       __func__);
2001		return -EINVAL;
2002	}
2003
2004	dev = sas_find_dev_by_rphy(rphy);
2005	if (!dev) {
2006		printk("%s: fail to find a domain_device?\n", __func__);
2007		return -EINVAL;
2008	}
2009
2010	/* do we need to support multiple segments? */
2011	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2012		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2013		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2014		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2015		return -EINVAL;
 
2016	}
2017
2018	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2019			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2020	if (ret > 0) {
2021		/* positive number is the untransferred residual */
2022		rsp->resid_len = ret;
2023		req->resid_len = 0;
2024		ret = 0;
2025	} else if (ret == 0) {
2026		rsp->resid_len = 0;
2027		req->resid_len = 0;
2028	}
2029
2030	return ret;
 
2031}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Serial Attached SCSI (SAS) Expander discovery and configuration
   4 *
   5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7 *
   8 * This file is licensed under GPLv2.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/scatterlist.h>
  12#include <linux/blkdev.h>
  13#include <linux/slab.h>
  14#include <asm/unaligned.h>
  15
  16#include "sas_internal.h"
  17
  18#include <scsi/sas_ata.h>
  19#include <scsi/scsi_transport.h>
  20#include <scsi/scsi_transport_sas.h>
  21#include "../scsi_sas_internal.h"
  22
  23static int sas_discover_expander(struct domain_device *dev);
  24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26			     u8 *sas_addr, int include);
  27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28
  29/* ---------- SMP task management ---------- */
  30
  31static void smp_task_timedout(struct timer_list *t)
  32{
  33	struct sas_task_slow *slow = from_timer(slow, t, timer);
  34	struct sas_task *task = slow->task;
  35	unsigned long flags;
  36
  37	spin_lock_irqsave(&task->task_state_lock, flags);
  38	if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  39		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  40		complete(&task->slow_task->completion);
  41	}
  42	spin_unlock_irqrestore(&task->task_state_lock, flags);
 
 
  43}
  44
  45static void smp_task_done(struct sas_task *task)
  46{
  47	del_timer(&task->slow_task->timer);
  48	complete(&task->slow_task->completion);
 
  49}
  50
  51/* Give it some long enough timeout. In seconds. */
  52#define SMP_TIMEOUT 10
  53
  54static int smp_execute_task_sg(struct domain_device *dev,
  55		struct scatterlist *req, struct scatterlist *resp)
  56{
  57	int res, retry;
  58	struct sas_task *task = NULL;
  59	struct sas_internal *i =
  60		to_sas_internal(dev->port->ha->core.shost->transportt);
  61
  62	mutex_lock(&dev->ex_dev.cmd_mutex);
  63	for (retry = 0; retry < 3; retry++) {
  64		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  65			res = -ECOMM;
  66			break;
  67		}
  68
  69		task = sas_alloc_slow_task(GFP_KERNEL);
  70		if (!task) {
  71			res = -ENOMEM;
  72			break;
  73		}
  74		task->dev = dev;
  75		task->task_proto = dev->tproto;
  76		task->smp_task.smp_req = *req;
  77		task->smp_task.smp_resp = *resp;
  78
  79		task->task_done = smp_task_done;
  80
  81		task->slow_task->timer.function = smp_task_timedout;
  82		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  83		add_timer(&task->slow_task->timer);
 
  84
  85		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  86
  87		if (res) {
  88			del_timer(&task->slow_task->timer);
  89			pr_notice("executing SMP task failed:%d\n", res);
  90			break;
  91		}
  92
  93		wait_for_completion(&task->slow_task->completion);
  94		res = -ECOMM;
  95		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  96			pr_notice("smp task timed out or aborted\n");
  97			i->dft->lldd_abort_task(task);
  98			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  99				pr_notice("SMP task aborted and not done\n");
 100				break;
 101			}
 102		}
 103		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 104		    task->task_status.stat == SAM_STAT_GOOD) {
 105			res = 0;
 106			break;
 107		}
 108		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 109		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 110			/* no error, but return the number of bytes of
 111			 * underrun */
 112			res = task->task_status.residual;
 113			break;
 114		}
 115		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 116		    task->task_status.stat == SAS_DATA_OVERRUN) {
 117			res = -EMSGSIZE;
 118			break;
 119		}
 120		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 121		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 122			break;
 123		else {
 124			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 125				  __func__,
 126				  SAS_ADDR(dev->sas_addr),
 127				  task->task_status.resp,
 128				  task->task_status.stat);
 129			sas_free_task(task);
 130			task = NULL;
 131		}
 132	}
 133	mutex_unlock(&dev->ex_dev.cmd_mutex);
 134
 135	BUG_ON(retry == 3 && task != NULL);
 136	sas_free_task(task);
 
 
 137	return res;
 138}
 139
 140static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 141			    void *resp, int resp_size)
 142{
 143	struct scatterlist req_sg;
 144	struct scatterlist resp_sg;
 145
 146	sg_init_one(&req_sg, req, req_size);
 147	sg_init_one(&resp_sg, resp, resp_size);
 148	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 149}
 150
 151/* ---------- Allocations ---------- */
 152
 153static inline void *alloc_smp_req(int size)
 154{
 155	u8 *p = kzalloc(size, GFP_KERNEL);
 156	if (p)
 157		p[0] = SMP_REQUEST;
 158	return p;
 159}
 160
 161static inline void *alloc_smp_resp(int size)
 162{
 163	return kzalloc(size, GFP_KERNEL);
 164}
 165
 166static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 167{
 168	switch (phy->routing_attr) {
 169	case TABLE_ROUTING:
 170		if (dev->ex_dev.t2t_supp)
 171			return 'U';
 172		else
 173			return 'T';
 174	case DIRECT_ROUTING:
 175		return 'D';
 176	case SUBTRACTIVE_ROUTING:
 177		return 'S';
 178	default:
 179		return '?';
 180	}
 181}
 182
 183static enum sas_device_type to_dev_type(struct discover_resp *dr)
 184{
 185	/* This is detecting a failure to transmit initial dev to host
 186	 * FIS as described in section J.5 of sas-2 r16
 187	 */
 188	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 189	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 190		return SAS_SATA_PENDING;
 191	else
 192		return dr->attached_dev_type;
 193}
 194
 195static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 
 196{
 197	enum sas_device_type dev_type;
 198	enum sas_linkrate linkrate;
 199	u8 sas_addr[SAS_ADDR_SIZE];
 200	struct smp_resp *resp = rsp;
 201	struct discover_resp *dr = &resp->disc;
 202	struct sas_ha_struct *ha = dev->port->ha;
 203	struct expander_device *ex = &dev->ex_dev;
 204	struct ex_phy *phy = &ex->ex_phy[phy_id];
 
 
 205	struct sas_rphy *rphy = dev->rphy;
 206	bool new_phy = !phy->phy;
 207	char *type;
 208
 209	if (new_phy) {
 210		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 211			return;
 212		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 213
 214		/* FIXME: error_handling */
 215		BUG_ON(!phy->phy);
 216	}
 217
 218	switch (resp->result) {
 219	case SMP_RESP_PHY_VACANT:
 220		phy->phy_state = PHY_VACANT;
 221		break;
 222	default:
 223		phy->phy_state = PHY_NOT_PRESENT;
 224		break;
 225	case SMP_RESP_FUNC_ACC:
 226		phy->phy_state = PHY_EMPTY; /* do not know yet */
 227		break;
 228	}
 229
 230	/* check if anything important changed to squelch debug */
 231	dev_type = phy->attached_dev_type;
 232	linkrate  = phy->linkrate;
 233	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 234
 235	/* Handle vacant phy - rest of dr data is not valid so skip it */
 236	if (phy->phy_state == PHY_VACANT) {
 237		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 238		phy->attached_dev_type = SAS_PHY_UNUSED;
 239		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 240			phy->phy_id = phy_id;
 241			goto skip;
 242		} else
 243			goto out;
 244	}
 245
 246	phy->attached_dev_type = to_dev_type(dr);
 247	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 248		goto out;
 249	phy->phy_id = phy_id;
 
 250	phy->linkrate = dr->linkrate;
 251	phy->attached_sata_host = dr->attached_sata_host;
 252	phy->attached_sata_dev  = dr->attached_sata_dev;
 253	phy->attached_sata_ps   = dr->attached_sata_ps;
 254	phy->attached_iproto = dr->iproto << 1;
 255	phy->attached_tproto = dr->tproto << 1;
 256	/* help some expanders that fail to zero sas_address in the 'no
 257	 * device' case
 258	 */
 259	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 260	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 261		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 262	else
 263		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 264	phy->attached_phy_id = dr->attached_phy_id;
 265	phy->phy_change_count = dr->change_count;
 266	phy->routing_attr = dr->routing_attr;
 267	phy->virtual = dr->virtual;
 268	phy->last_da_index = -1;
 269
 270	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 271	phy->phy->identify.device_type = dr->attached_dev_type;
 272	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 273	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 274	if (!phy->attached_tproto && dr->attached_sata_dev)
 275		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 276	phy->phy->identify.phy_identifier = phy_id;
 277	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 278	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 279	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 280	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 281	phy->phy->negotiated_linkrate = phy->linkrate;
 282	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 283
 284 skip:
 285	if (new_phy)
 286		if (sas_phy_add(phy->phy)) {
 287			sas_phy_free(phy->phy);
 288			return;
 289		}
 290
 291 out:
 292	switch (phy->attached_dev_type) {
 293	case SAS_SATA_PENDING:
 294		type = "stp pending";
 295		break;
 296	case SAS_PHY_UNUSED:
 297		type = "no device";
 298		break;
 299	case SAS_END_DEVICE:
 300		if (phy->attached_iproto) {
 301			if (phy->attached_tproto)
 302				type = "host+target";
 303			else
 304				type = "host";
 305		} else {
 306			if (dr->attached_sata_dev)
 307				type = "stp";
 308			else
 309				type = "ssp";
 310		}
 311		break;
 312	case SAS_EDGE_EXPANDER_DEVICE:
 313	case SAS_FANOUT_EXPANDER_DEVICE:
 314		type = "smp";
 315		break;
 316	default:
 317		type = "unknown";
 318	}
 319
 320	/* this routine is polled by libata error recovery so filter
 321	 * unimportant messages
 322	 */
 323	if (new_phy || phy->attached_dev_type != dev_type ||
 324	    phy->linkrate != linkrate ||
 325	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 326		/* pass */;
 327	else
 328		return;
 329
 330	/* if the attached device type changed and ata_eh is active,
 331	 * make sure we run revalidation when eh completes (see:
 332	 * sas_enable_revalidation)
 333	 */
 334	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 335		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 336
 337	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 338		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 339		 SAS_ADDR(dev->sas_addr), phy->phy_id,
 340		 sas_route_char(dev, phy), phy->linkrate,
 341		 SAS_ADDR(phy->attached_sas_addr), type);
 342}
 343
 344/* check if we have an existing attached ata device on this expander phy */
 345struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 346{
 347	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 348	struct domain_device *dev;
 349	struct sas_rphy *rphy;
 350
 351	if (!ex_phy->port)
 352		return NULL;
 353
 354	rphy = ex_phy->port->rphy;
 355	if (!rphy)
 356		return NULL;
 357
 358	dev = sas_find_dev_by_rphy(rphy);
 359
 360	if (dev && dev_is_sata(dev))
 361		return dev;
 362
 363	return NULL;
 364}
 365
 366#define DISCOVER_REQ_SIZE  16
 367#define DISCOVER_RESP_SIZE 56
 368
 369static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 370				      u8 *disc_resp, int single)
 371{
 372	struct discover_resp *dr;
 373	int res;
 374
 375	disc_req[9] = single;
 
 
 376
 377	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 378			       disc_resp, DISCOVER_RESP_SIZE);
 379	if (res)
 380		return res;
 381	dr = &((struct smp_resp *)disc_resp)->disc;
 382	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 383		pr_notice("Found loopback topology, just ignore it!\n");
 384		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 385	}
 386	sas_set_ex_phy(dev, single, disc_resp);
 387	return 0;
 388}
 389
 390int sas_ex_phy_discover(struct domain_device *dev, int single)
 391{
 392	struct expander_device *ex = &dev->ex_dev;
 393	int  res = 0;
 394	u8   *disc_req;
 395	u8   *disc_resp;
 396
 397	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 398	if (!disc_req)
 399		return -ENOMEM;
 400
 401	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 402	if (!disc_resp) {
 403		kfree(disc_req);
 404		return -ENOMEM;
 405	}
 406
 407	disc_req[1] = SMP_DISCOVER;
 408
 409	if (0 <= single && single < ex->num_phys) {
 410		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 411	} else {
 412		int i;
 413
 414		for (i = 0; i < ex->num_phys; i++) {
 415			res = sas_ex_phy_discover_helper(dev, disc_req,
 416							 disc_resp, i);
 417			if (res)
 418				goto out_err;
 419		}
 420	}
 421out_err:
 422	kfree(disc_resp);
 423	kfree(disc_req);
 424	return res;
 425}
 426
 427static int sas_expander_discover(struct domain_device *dev)
 428{
 429	struct expander_device *ex = &dev->ex_dev;
 430	int res = -ENOMEM;
 431
 432	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 433	if (!ex->ex_phy)
 434		return -ENOMEM;
 435
 436	res = sas_ex_phy_discover(dev, -1);
 437	if (res)
 438		goto out_err;
 439
 440	return 0;
 441 out_err:
 442	kfree(ex->ex_phy);
 443	ex->ex_phy = NULL;
 444	return res;
 445}
 446
 447#define MAX_EXPANDER_PHYS 128
 448
 449static void ex_assign_report_general(struct domain_device *dev,
 450					    struct smp_resp *resp)
 451{
 452	struct report_general_resp *rg = &resp->rg;
 453
 454	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 455	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 456	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 457	dev->ex_dev.t2t_supp = rg->t2t_supp;
 458	dev->ex_dev.conf_route_table = rg->conf_route_table;
 459	dev->ex_dev.configuring = rg->configuring;
 460	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 461}
 462
 463#define RG_REQ_SIZE   8
 464#define RG_RESP_SIZE 32
 465
 466static int sas_ex_general(struct domain_device *dev)
 467{
 468	u8 *rg_req;
 469	struct smp_resp *rg_resp;
 470	int res;
 471	int i;
 472
 473	rg_req = alloc_smp_req(RG_REQ_SIZE);
 474	if (!rg_req)
 475		return -ENOMEM;
 476
 477	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 478	if (!rg_resp) {
 479		kfree(rg_req);
 480		return -ENOMEM;
 481	}
 482
 483	rg_req[1] = SMP_REPORT_GENERAL;
 484
 485	for (i = 0; i < 5; i++) {
 486		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 487				       RG_RESP_SIZE);
 488
 489		if (res) {
 490			pr_notice("RG to ex %016llx failed:0x%x\n",
 491				  SAS_ADDR(dev->sas_addr), res);
 492			goto out;
 493		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 494			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 495				 SAS_ADDR(dev->sas_addr), rg_resp->result);
 496			res = rg_resp->result;
 497			goto out;
 498		}
 499
 500		ex_assign_report_general(dev, rg_resp);
 501
 502		if (dev->ex_dev.configuring) {
 503			pr_debug("RG: ex %llx self-configuring...\n",
 504				 SAS_ADDR(dev->sas_addr));
 505			schedule_timeout_interruptible(5*HZ);
 506		} else
 507			break;
 508	}
 509out:
 510	kfree(rg_req);
 511	kfree(rg_resp);
 512	return res;
 513}
 514
 515static void ex_assign_manuf_info(struct domain_device *dev, void
 516					*_mi_resp)
 517{
 518	u8 *mi_resp = _mi_resp;
 519	struct sas_rphy *rphy = dev->rphy;
 520	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 521
 522	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 523	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 524	memcpy(edev->product_rev, mi_resp + 36,
 525	       SAS_EXPANDER_PRODUCT_REV_LEN);
 526
 527	if (mi_resp[8] & 1) {
 528		memcpy(edev->component_vendor_id, mi_resp + 40,
 529		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 530		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 531		edev->component_revision_id = mi_resp[50];
 532	}
 533}
 534
 535#define MI_REQ_SIZE   8
 536#define MI_RESP_SIZE 64
 537
 538static int sas_ex_manuf_info(struct domain_device *dev)
 539{
 540	u8 *mi_req;
 541	u8 *mi_resp;
 542	int res;
 543
 544	mi_req = alloc_smp_req(MI_REQ_SIZE);
 545	if (!mi_req)
 546		return -ENOMEM;
 547
 548	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 549	if (!mi_resp) {
 550		kfree(mi_req);
 551		return -ENOMEM;
 552	}
 553
 554	mi_req[1] = SMP_REPORT_MANUF_INFO;
 555
 556	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 557	if (res) {
 558		pr_notice("MI: ex %016llx failed:0x%x\n",
 559			  SAS_ADDR(dev->sas_addr), res);
 560		goto out;
 561	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 562		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 563			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
 564		goto out;
 565	}
 566
 567	ex_assign_manuf_info(dev, mi_resp);
 568out:
 569	kfree(mi_req);
 570	kfree(mi_resp);
 571	return res;
 572}
 573
 574#define PC_REQ_SIZE  44
 575#define PC_RESP_SIZE 8
 576
 577int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 578			enum phy_func phy_func,
 579			struct sas_phy_linkrates *rates)
 580{
 581	u8 *pc_req;
 582	u8 *pc_resp;
 583	int res;
 584
 585	pc_req = alloc_smp_req(PC_REQ_SIZE);
 586	if (!pc_req)
 587		return -ENOMEM;
 588
 589	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 590	if (!pc_resp) {
 591		kfree(pc_req);
 592		return -ENOMEM;
 593	}
 594
 595	pc_req[1] = SMP_PHY_CONTROL;
 596	pc_req[9] = phy_id;
 597	pc_req[10]= phy_func;
 598	if (rates) {
 599		pc_req[32] = rates->minimum_linkrate << 4;
 600		pc_req[33] = rates->maximum_linkrate << 4;
 601	}
 602
 603	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 604	if (res) {
 605		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 606		       SAS_ADDR(dev->sas_addr), phy_id, res);
 607	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 608		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 609		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 610		res = pc_resp[2];
 611	}
 612	kfree(pc_resp);
 613	kfree(pc_req);
 614	return res;
 615}
 616
 617static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 618{
 619	struct expander_device *ex = &dev->ex_dev;
 620	struct ex_phy *phy = &ex->ex_phy[phy_id];
 621
 622	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 623	phy->linkrate = SAS_PHY_DISABLED;
 624}
 625
 626static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 627{
 628	struct expander_device *ex = &dev->ex_dev;
 629	int i;
 630
 631	for (i = 0; i < ex->num_phys; i++) {
 632		struct ex_phy *phy = &ex->ex_phy[i];
 633
 634		if (phy->phy_state == PHY_VACANT ||
 635		    phy->phy_state == PHY_NOT_PRESENT)
 636			continue;
 637
 638		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 639			sas_ex_disable_phy(dev, i);
 640	}
 641}
 642
 643static int sas_dev_present_in_domain(struct asd_sas_port *port,
 644					    u8 *sas_addr)
 645{
 646	struct domain_device *dev;
 647
 648	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 649		return 1;
 650	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 651		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 652			return 1;
 653	}
 654	return 0;
 655}
 656
 657#define RPEL_REQ_SIZE	16
 658#define RPEL_RESP_SIZE	32
 659int sas_smp_get_phy_events(struct sas_phy *phy)
 660{
 661	int res;
 662	u8 *req;
 663	u8 *resp;
 664	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 665	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 666
 667	req = alloc_smp_req(RPEL_REQ_SIZE);
 668	if (!req)
 669		return -ENOMEM;
 670
 671	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 672	if (!resp) {
 673		kfree(req);
 674		return -ENOMEM;
 675	}
 676
 677	req[1] = SMP_REPORT_PHY_ERR_LOG;
 678	req[9] = phy->number;
 679
 680	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 681			            resp, RPEL_RESP_SIZE);
 682
 683	if (res)
 684		goto out;
 685
 686	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 687	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 688	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 689	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 690
 691 out:
 692	kfree(req);
 693	kfree(resp);
 694	return res;
 695
 696}
 697
 698#ifdef CONFIG_SCSI_SAS_ATA
 699
 700#define RPS_REQ_SIZE  16
 701#define RPS_RESP_SIZE 60
 702
 703int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 704			    struct smp_resp *rps_resp)
 
 705{
 706	int res;
 707	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 708	u8 *resp = (u8 *)rps_resp;
 709
 710	if (!rps_req)
 711		return -ENOMEM;
 712
 713	rps_req[1] = SMP_REPORT_PHY_SATA;
 714	rps_req[9] = phy_id;
 715
 716	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 717			            rps_resp, RPS_RESP_SIZE);
 718
 719	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 720	 * standards cockup here.  sas-2 explicitly specifies the FIS
 721	 * should be encoded so that FIS type is in resp[24].
 722	 * However, some expanders endian reverse this.  Undo the
 723	 * reversal here */
 724	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 725		int i;
 726
 727		for (i = 0; i < 5; i++) {
 728			int j = 24 + (i*4);
 729			u8 a, b;
 730			a = resp[j + 0];
 731			b = resp[j + 1];
 732			resp[j + 0] = resp[j + 3];
 733			resp[j + 1] = resp[j + 2];
 734			resp[j + 2] = b;
 735			resp[j + 3] = a;
 736		}
 737	}
 738
 739	kfree(rps_req);
 740	return res;
 741}
 742#endif
 743
 744static void sas_ex_get_linkrate(struct domain_device *parent,
 745				       struct domain_device *child,
 746				       struct ex_phy *parent_phy)
 747{
 748	struct expander_device *parent_ex = &parent->ex_dev;
 749	struct sas_port *port;
 750	int i;
 751
 752	child->pathways = 0;
 753
 754	port = parent_phy->port;
 755
 756	for (i = 0; i < parent_ex->num_phys; i++) {
 757		struct ex_phy *phy = &parent_ex->ex_phy[i];
 758
 759		if (phy->phy_state == PHY_VACANT ||
 760		    phy->phy_state == PHY_NOT_PRESENT)
 761			continue;
 762
 763		if (SAS_ADDR(phy->attached_sas_addr) ==
 764		    SAS_ADDR(child->sas_addr)) {
 765
 766			child->min_linkrate = min(parent->min_linkrate,
 767						  phy->linkrate);
 768			child->max_linkrate = max(parent->max_linkrate,
 769						  phy->linkrate);
 770			child->pathways++;
 771			sas_port_add_phy(port, phy->phy);
 772		}
 773	}
 774	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 775	child->pathways = min(child->pathways, parent->pathways);
 776}
 777
 778static struct domain_device *sas_ex_discover_end_dev(
 779	struct domain_device *parent, int phy_id)
 780{
 781	struct expander_device *parent_ex = &parent->ex_dev;
 782	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 783	struct domain_device *child = NULL;
 784	struct sas_rphy *rphy;
 785	int res;
 786
 787	if (phy->attached_sata_host || phy->attached_sata_ps)
 788		return NULL;
 789
 790	child = sas_alloc_device();
 791	if (!child)
 792		return NULL;
 793
 794	kref_get(&parent->kref);
 795	child->parent = parent;
 796	child->port   = parent->port;
 797	child->iproto = phy->attached_iproto;
 798	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 799	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 800	if (!phy->port) {
 801		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 802		if (unlikely(!phy->port))
 803			goto out_err;
 804		if (unlikely(sas_port_add(phy->port) != 0)) {
 805			sas_port_free(phy->port);
 806			goto out_err;
 807		}
 808	}
 809	sas_ex_get_linkrate(parent, child, phy);
 810	sas_device_set_phy(child, phy->port);
 811
 812#ifdef CONFIG_SCSI_SAS_ATA
 813	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 814		if (child->linkrate > parent->min_linkrate) {
 815			struct sas_phy *cphy = child->phy;
 816			enum sas_linkrate min_prate = cphy->minimum_linkrate,
 817				parent_min_lrate = parent->min_linkrate,
 818				min_linkrate = (min_prate > parent_min_lrate) ?
 819					       parent_min_lrate : 0;
 820			struct sas_phy_linkrates rates = {
 821				.maximum_linkrate = parent->min_linkrate,
 822				.minimum_linkrate = min_linkrate,
 823			};
 824			int ret;
 825
 826			pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
 827				   SAS_ADDR(child->sas_addr), phy_id);
 828			ret = sas_smp_phy_control(parent, phy_id,
 829						  PHY_FUNC_LINK_RESET, &rates);
 830			if (ret) {
 831				pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
 832				       SAS_ADDR(child->sas_addr), phy_id, ret);
 833				goto out_free;
 834			}
 835			pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
 836				  SAS_ADDR(child->sas_addr), phy_id);
 837			child->linkrate = child->min_linkrate;
 838		}
 839		res = sas_get_ata_info(child, phy);
 840		if (res)
 
 
 
 841			goto out_free;
 842
 843		sas_init_dev(child);
 844		res = sas_ata_init(child);
 845		if (res)
 846			goto out_free;
 847		rphy = sas_end_device_alloc(phy->port);
 848		if (!rphy)
 849			goto out_free;
 850		rphy->identify.phy_identifier = phy_id;
 851
 852		child->rphy = rphy;
 853		get_device(&rphy->dev);
 854
 855		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 
 
 856
 857		res = sas_discover_sata(child);
 858		if (res) {
 859			pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
 860				  SAS_ADDR(child->sas_addr),
 861				  SAS_ADDR(parent->sas_addr), phy_id, res);
 
 862			goto out_list_del;
 863		}
 864	} else
 865#endif
 866	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 867		child->dev_type = SAS_END_DEVICE;
 868		rphy = sas_end_device_alloc(phy->port);
 869		/* FIXME: error handling */
 870		if (unlikely(!rphy))
 871			goto out_free;
 872		child->tproto = phy->attached_tproto;
 873		sas_init_dev(child);
 874
 875		child->rphy = rphy;
 876		get_device(&rphy->dev);
 877		rphy->identify.phy_identifier = phy_id;
 878		sas_fill_in_rphy(child, rphy);
 879
 880		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 
 
 881
 882		res = sas_discover_end_dev(child);
 883		if (res) {
 884			pr_notice("sas_discover_end_dev() for device %16llx at %016llx:%02d returned 0x%x\n",
 885				  SAS_ADDR(child->sas_addr),
 886				  SAS_ADDR(parent->sas_addr), phy_id, res);
 
 887			goto out_list_del;
 888		}
 889	} else {
 890		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 891			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 892			  phy_id);
 893		goto out_free;
 894	}
 895
 896	list_add_tail(&child->siblings, &parent_ex->children);
 897	return child;
 898
 899 out_list_del:
 900	sas_rphy_free(child->rphy);
 901	list_del(&child->disco_list_node);
 902	spin_lock_irq(&parent->port->dev_list_lock);
 903	list_del(&child->dev_list_node);
 904	spin_unlock_irq(&parent->port->dev_list_lock);
 905 out_free:
 906	sas_port_delete(phy->port);
 907 out_err:
 908	phy->port = NULL;
 909	sas_put_device(child);
 910	return NULL;
 911}
 912
 913/* See if this phy is part of a wide port */
 914static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 915{
 916	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 917	int i;
 918
 919	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 920		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 921
 922		if (ephy == phy)
 923			continue;
 924
 925		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 926			    SAS_ADDR_SIZE) && ephy->port) {
 927			sas_port_add_phy(ephy->port, phy->phy);
 928			phy->port = ephy->port;
 929			phy->phy_state = PHY_DEVICE_DISCOVERED;
 930			return true;
 931		}
 932	}
 933
 934	return false;
 935}
 936
 937static struct domain_device *sas_ex_discover_expander(
 938	struct domain_device *parent, int phy_id)
 939{
 940	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 941	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 942	struct domain_device *child = NULL;
 943	struct sas_rphy *rphy;
 944	struct sas_expander_device *edev;
 945	struct asd_sas_port *port;
 946	int res;
 947
 948	if (phy->routing_attr == DIRECT_ROUTING) {
 949		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 950			SAS_ADDR(parent->sas_addr), phy_id,
 951			SAS_ADDR(phy->attached_sas_addr),
 952			phy->attached_phy_id);
 
 953		return NULL;
 954	}
 955	child = sas_alloc_device();
 956	if (!child)
 957		return NULL;
 958
 959	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 960	/* FIXME: better error handling */
 961	BUG_ON(sas_port_add(phy->port) != 0);
 962
 963
 964	switch (phy->attached_dev_type) {
 965	case SAS_EDGE_EXPANDER_DEVICE:
 966		rphy = sas_expander_alloc(phy->port,
 967					  SAS_EDGE_EXPANDER_DEVICE);
 968		break;
 969	case SAS_FANOUT_EXPANDER_DEVICE:
 970		rphy = sas_expander_alloc(phy->port,
 971					  SAS_FANOUT_EXPANDER_DEVICE);
 972		break;
 973	default:
 974		rphy = NULL;	/* shut gcc up */
 975		BUG();
 976	}
 977	port = parent->port;
 978	child->rphy = rphy;
 979	get_device(&rphy->dev);
 980	edev = rphy_to_expander_device(rphy);
 981	child->dev_type = phy->attached_dev_type;
 982	kref_get(&parent->kref);
 983	child->parent = parent;
 984	child->port = port;
 985	child->iproto = phy->attached_iproto;
 986	child->tproto = phy->attached_tproto;
 987	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 988	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 989	sas_ex_get_linkrate(parent, child, phy);
 990	edev->level = parent_ex->level + 1;
 991	parent->port->disc.max_level = max(parent->port->disc.max_level,
 992					   edev->level);
 993	sas_init_dev(child);
 994	sas_fill_in_rphy(child, rphy);
 995	sas_rphy_add(rphy);
 996
 997	spin_lock_irq(&parent->port->dev_list_lock);
 998	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 999	spin_unlock_irq(&parent->port->dev_list_lock);
1000
1001	res = sas_discover_expander(child);
1002	if (res) {
1003		sas_rphy_delete(rphy);
1004		spin_lock_irq(&parent->port->dev_list_lock);
1005		list_del(&child->dev_list_node);
1006		spin_unlock_irq(&parent->port->dev_list_lock);
1007		sas_put_device(child);
1008		sas_port_delete(phy->port);
1009		phy->port = NULL;
1010		return NULL;
1011	}
1012	list_add_tail(&child->siblings, &parent->ex_dev.children);
1013	return child;
1014}
1015
1016static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1017{
1018	struct expander_device *ex = &dev->ex_dev;
1019	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1020	struct domain_device *child = NULL;
1021	int res = 0;
1022
1023	/* Phy state */
1024	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1025		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1026			res = sas_ex_phy_discover(dev, phy_id);
1027		if (res)
1028			return res;
1029	}
1030
1031	/* Parent and domain coherency */
1032	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1033			     SAS_ADDR(dev->port->sas_addr))) {
1034		sas_add_parent_port(dev, phy_id);
1035		return 0;
1036	}
1037	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1038			    SAS_ADDR(dev->parent->sas_addr))) {
1039		sas_add_parent_port(dev, phy_id);
1040		if (ex_phy->routing_attr == TABLE_ROUTING)
1041			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1042		return 0;
1043	}
1044
1045	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1046		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1047
1048	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1049		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1050			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1051			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1052		}
1053		return 0;
1054	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1055		return 0;
1056
1057	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1058	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1059	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1060	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1061		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1062			ex_phy->attached_dev_type,
1063			SAS_ADDR(dev->sas_addr),
1064			phy_id);
1065		return 0;
1066	}
1067
1068	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1069	if (res) {
1070		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1071			  SAS_ADDR(ex_phy->attached_sas_addr), res);
 
1072		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1073		return res;
1074	}
1075
1076	if (sas_ex_join_wide_port(dev, phy_id)) {
1077		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1078			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
 
1079		return res;
1080	}
1081
1082	switch (ex_phy->attached_dev_type) {
1083	case SAS_END_DEVICE:
1084	case SAS_SATA_PENDING:
1085		child = sas_ex_discover_end_dev(dev, phy_id);
1086		break;
1087	case SAS_FANOUT_EXPANDER_DEVICE:
1088		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1089			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1090				 SAS_ADDR(ex_phy->attached_sas_addr),
1091				 ex_phy->attached_phy_id,
1092				 SAS_ADDR(dev->sas_addr),
1093				 phy_id);
 
1094			sas_ex_disable_phy(dev, phy_id);
1095			return res;
1096		} else
1097			memcpy(dev->port->disc.fanout_sas_addr,
1098			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1099		/* fallthrough */
1100	case SAS_EDGE_EXPANDER_DEVICE:
1101		child = sas_ex_discover_expander(dev, phy_id);
1102		break;
1103	default:
1104		break;
1105	}
1106
1107	if (!child)
1108		pr_notice("ex %016llx phy%02d failed to discover\n",
1109			  SAS_ADDR(dev->sas_addr), phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110	return res;
1111}
1112
1113static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1114{
1115	struct expander_device *ex = &dev->ex_dev;
1116	int i;
1117
1118	for (i = 0; i < ex->num_phys; i++) {
1119		struct ex_phy *phy = &ex->ex_phy[i];
1120
1121		if (phy->phy_state == PHY_VACANT ||
1122		    phy->phy_state == PHY_NOT_PRESENT)
1123			continue;
1124
1125		if (dev_is_expander(phy->attached_dev_type) &&
 
1126		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1127
1128			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1129
1130			return 1;
1131		}
1132	}
1133	return 0;
1134}
1135
1136static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1137{
1138	struct expander_device *ex = &dev->ex_dev;
1139	struct domain_device *child;
1140	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1141
1142	list_for_each_entry(child, &ex->children, siblings) {
1143		if (!dev_is_expander(child->dev_type))
 
1144			continue;
1145		if (sub_addr[0] == 0) {
1146			sas_find_sub_addr(child, sub_addr);
1147			continue;
1148		} else {
1149			u8 s2[SAS_ADDR_SIZE];
1150
1151			if (sas_find_sub_addr(child, s2) &&
1152			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1153
1154				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1155					  SAS_ADDR(dev->sas_addr),
1156					  SAS_ADDR(child->sas_addr),
1157					  SAS_ADDR(s2),
1158					  SAS_ADDR(sub_addr));
 
 
1159
1160				sas_ex_disable_port(child, s2);
1161			}
1162		}
1163	}
1164	return 0;
1165}
1166/**
1167 * sas_ex_discover_devices - discover devices attached to this expander
1168 * @dev: pointer to the expander domain device
1169 * @single: if you want to do a single phy, else set to -1;
1170 *
1171 * Configure this expander for use with its devices and register the
1172 * devices of this expander.
1173 */
1174static int sas_ex_discover_devices(struct domain_device *dev, int single)
1175{
1176	struct expander_device *ex = &dev->ex_dev;
1177	int i = 0, end = ex->num_phys;
1178	int res = 0;
1179
1180	if (0 <= single && single < end) {
1181		i = single;
1182		end = i+1;
1183	}
1184
1185	for ( ; i < end; i++) {
1186		struct ex_phy *ex_phy = &ex->ex_phy[i];
1187
1188		if (ex_phy->phy_state == PHY_VACANT ||
1189		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1190		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1191			continue;
1192
1193		switch (ex_phy->linkrate) {
1194		case SAS_PHY_DISABLED:
1195		case SAS_PHY_RESET_PROBLEM:
1196		case SAS_SATA_PORT_SELECTOR:
1197			continue;
1198		default:
1199			res = sas_ex_discover_dev(dev, i);
1200			if (res)
1201				break;
1202			continue;
1203		}
1204	}
1205
1206	if (!res)
1207		sas_check_level_subtractive_boundary(dev);
1208
1209	return res;
1210}
1211
1212static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1213{
1214	struct expander_device *ex = &dev->ex_dev;
1215	int i;
1216	u8  *sub_sas_addr = NULL;
1217
1218	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1219		return 0;
1220
1221	for (i = 0; i < ex->num_phys; i++) {
1222		struct ex_phy *phy = &ex->ex_phy[i];
1223
1224		if (phy->phy_state == PHY_VACANT ||
1225		    phy->phy_state == PHY_NOT_PRESENT)
1226			continue;
1227
1228		if (dev_is_expander(phy->attached_dev_type) &&
 
1229		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1230
1231			if (!sub_sas_addr)
1232				sub_sas_addr = &phy->attached_sas_addr[0];
1233			else if (SAS_ADDR(sub_sas_addr) !=
1234				 SAS_ADDR(phy->attached_sas_addr)) {
1235
1236				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1237					  SAS_ADDR(dev->sas_addr), i,
1238					  SAS_ADDR(phy->attached_sas_addr),
1239					  SAS_ADDR(sub_sas_addr));
 
 
1240				sas_ex_disable_phy(dev, i);
1241			}
1242		}
1243	}
1244	return 0;
1245}
1246
1247static void sas_print_parent_topology_bug(struct domain_device *child,
1248						 struct ex_phy *parent_phy,
1249						 struct ex_phy *child_phy)
1250{
 
 
 
 
 
1251	static const char *ex_type[] = {
1252		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1253		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1254	};
1255	struct domain_device *parent = child->parent;
1256
1257	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1258		  ex_type[parent->dev_type],
1259		  SAS_ADDR(parent->sas_addr),
1260		  parent_phy->phy_id,
1261
1262		  ex_type[child->dev_type],
1263		  SAS_ADDR(child->sas_addr),
1264		  child_phy->phy_id,
1265
1266		  sas_route_char(parent, parent_phy),
1267		  sas_route_char(child, child_phy));
 
 
 
 
 
 
 
 
1268}
1269
1270static int sas_check_eeds(struct domain_device *child,
1271				 struct ex_phy *parent_phy,
1272				 struct ex_phy *child_phy)
1273{
1274	int res = 0;
1275	struct domain_device *parent = child->parent;
1276
1277	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1278		res = -ENODEV;
1279		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1280			SAS_ADDR(parent->sas_addr),
1281			parent_phy->phy_id,
1282			SAS_ADDR(child->sas_addr),
1283			child_phy->phy_id,
1284			SAS_ADDR(parent->port->disc.fanout_sas_addr));
 
1285	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1286		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1287		       SAS_ADDR_SIZE);
1288		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1289		       SAS_ADDR_SIZE);
1290	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1291		    SAS_ADDR(parent->sas_addr)) ||
1292		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1293		    SAS_ADDR(child->sas_addr)))
1294		   &&
1295		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1296		     SAS_ADDR(parent->sas_addr)) ||
1297		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1298		     SAS_ADDR(child->sas_addr))))
1299		;
1300	else {
1301		res = -ENODEV;
1302		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1303			SAS_ADDR(parent->sas_addr),
1304			parent_phy->phy_id,
1305			SAS_ADDR(child->sas_addr),
1306			child_phy->phy_id);
 
1307	}
1308
1309	return res;
1310}
1311
1312/* Here we spill over 80 columns.  It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316	struct expander_device *child_ex = &child->ex_dev;
1317	struct expander_device *parent_ex;
1318	int i;
1319	int res = 0;
1320
1321	if (!child->parent)
1322		return 0;
1323
1324	if (!dev_is_expander(child->parent->dev_type))
 
1325		return 0;
1326
1327	parent_ex = &child->parent->ex_dev;
1328
1329	for (i = 0; i < parent_ex->num_phys; i++) {
1330		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1331		struct ex_phy *child_phy;
1332
1333		if (parent_phy->phy_state == PHY_VACANT ||
1334		    parent_phy->phy_state == PHY_NOT_PRESENT)
1335			continue;
1336
1337		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1338			continue;
1339
1340		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1341
1342		switch (child->parent->dev_type) {
1343		case SAS_EDGE_EXPANDER_DEVICE:
1344			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1345				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1346				    child_phy->routing_attr != TABLE_ROUTING) {
1347					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1348					res = -ENODEV;
1349				}
1350			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1351				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352					res = sas_check_eeds(child, parent_phy, child_phy);
1353				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1354					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355					res = -ENODEV;
1356				}
1357			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1358				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1359				    (child_phy->routing_attr == TABLE_ROUTING &&
1360				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1361					/* All good */;
1362				} else {
1363					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1364					res = -ENODEV;
1365				}
1366			}
1367			break;
1368		case SAS_FANOUT_EXPANDER_DEVICE:
1369			if (parent_phy->routing_attr != TABLE_ROUTING ||
1370			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1371				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1372				res = -ENODEV;
1373			}
1374			break;
1375		default:
1376			break;
1377		}
1378	}
1379
1380	return res;
1381}
1382
1383#define RRI_REQ_SIZE  16
1384#define RRI_RESP_SIZE 44
1385
1386static int sas_configure_present(struct domain_device *dev, int phy_id,
1387				 u8 *sas_addr, int *index, int *present)
1388{
1389	int i, res = 0;
1390	struct expander_device *ex = &dev->ex_dev;
1391	struct ex_phy *phy = &ex->ex_phy[phy_id];
1392	u8 *rri_req;
1393	u8 *rri_resp;
1394
1395	*present = 0;
1396	*index = 0;
1397
1398	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1399	if (!rri_req)
1400		return -ENOMEM;
1401
1402	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1403	if (!rri_resp) {
1404		kfree(rri_req);
1405		return -ENOMEM;
1406	}
1407
1408	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1409	rri_req[9] = phy_id;
1410
1411	for (i = 0; i < ex->max_route_indexes ; i++) {
1412		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1413		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1414				       RRI_RESP_SIZE);
1415		if (res)
1416			goto out;
1417		res = rri_resp[2];
1418		if (res == SMP_RESP_NO_INDEX) {
1419			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1420				SAS_ADDR(dev->sas_addr), phy_id, i);
 
1421			goto out;
1422		} else if (res != SMP_RESP_FUNC_ACC) {
1423			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1424				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1425				  i, res);
1426			goto out;
1427		}
1428		if (SAS_ADDR(sas_addr) != 0) {
1429			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1430				*index = i;
1431				if ((rri_resp[12] & 0x80) == 0x80)
1432					*present = 0;
1433				else
1434					*present = 1;
1435				goto out;
1436			} else if (SAS_ADDR(rri_resp+16) == 0) {
1437				*index = i;
1438				*present = 0;
1439				goto out;
1440			}
1441		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1442			   phy->last_da_index < i) {
1443			phy->last_da_index = i;
1444			*index = i;
1445			*present = 0;
1446			goto out;
1447		}
1448	}
1449	res = -1;
1450out:
1451	kfree(rri_req);
1452	kfree(rri_resp);
1453	return res;
1454}
1455
1456#define CRI_REQ_SIZE  44
1457#define CRI_RESP_SIZE  8
1458
1459static int sas_configure_set(struct domain_device *dev, int phy_id,
1460			     u8 *sas_addr, int index, int include)
1461{
1462	int res;
1463	u8 *cri_req;
1464	u8 *cri_resp;
1465
1466	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1467	if (!cri_req)
1468		return -ENOMEM;
1469
1470	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1471	if (!cri_resp) {
1472		kfree(cri_req);
1473		return -ENOMEM;
1474	}
1475
1476	cri_req[1] = SMP_CONF_ROUTE_INFO;
1477	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1478	cri_req[9] = phy_id;
1479	if (SAS_ADDR(sas_addr) == 0 || !include)
1480		cri_req[12] |= 0x80;
1481	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1482
1483	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1484			       CRI_RESP_SIZE);
1485	if (res)
1486		goto out;
1487	res = cri_resp[2];
1488	if (res == SMP_RESP_NO_INDEX) {
1489		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1490			SAS_ADDR(dev->sas_addr), phy_id, index);
 
1491	}
1492out:
1493	kfree(cri_req);
1494	kfree(cri_resp);
1495	return res;
1496}
1497
1498static int sas_configure_phy(struct domain_device *dev, int phy_id,
1499				    u8 *sas_addr, int include)
1500{
1501	int index;
1502	int present;
1503	int res;
1504
1505	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1506	if (res)
1507		return res;
1508	if (include ^ present)
1509		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1510
1511	return res;
1512}
1513
1514/**
1515 * sas_configure_parent - configure routing table of parent
1516 * @parent: parent expander
1517 * @child: child expander
1518 * @sas_addr: SAS port identifier of device directly attached to child
1519 * @include: whether or not to include @child in the expander routing table
1520 */
1521static int sas_configure_parent(struct domain_device *parent,
1522				struct domain_device *child,
1523				u8 *sas_addr, int include)
1524{
1525	struct expander_device *ex_parent = &parent->ex_dev;
1526	int res = 0;
1527	int i;
1528
1529	if (parent->parent) {
1530		res = sas_configure_parent(parent->parent, parent, sas_addr,
1531					   include);
1532		if (res)
1533			return res;
1534	}
1535
1536	if (ex_parent->conf_route_table == 0) {
1537		pr_debug("ex %016llx has self-configuring routing table\n",
1538			 SAS_ADDR(parent->sas_addr));
1539		return 0;
1540	}
1541
1542	for (i = 0; i < ex_parent->num_phys; i++) {
1543		struct ex_phy *phy = &ex_parent->ex_phy[i];
1544
1545		if ((phy->routing_attr == TABLE_ROUTING) &&
1546		    (SAS_ADDR(phy->attached_sas_addr) ==
1547		     SAS_ADDR(child->sas_addr))) {
1548			res = sas_configure_phy(parent, i, sas_addr, include);
1549			if (res)
1550				return res;
1551		}
1552	}
1553
1554	return res;
1555}
1556
1557/**
1558 * sas_configure_routing - configure routing
1559 * @dev: expander device
1560 * @sas_addr: port identifier of device directly attached to the expander device
1561 */
1562static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1563{
1564	if (dev->parent)
1565		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1566	return 0;
1567}
1568
1569static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1570{
1571	if (dev->parent)
1572		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1573	return 0;
1574}
1575
1576/**
1577 * sas_discover_expander - expander discovery
1578 * @dev: pointer to expander domain device
1579 *
1580 * See comment in sas_discover_sata().
1581 */
1582static int sas_discover_expander(struct domain_device *dev)
1583{
1584	int res;
1585
1586	res = sas_notify_lldd_dev_found(dev);
1587	if (res)
1588		return res;
1589
1590	res = sas_ex_general(dev);
1591	if (res)
1592		goto out_err;
1593	res = sas_ex_manuf_info(dev);
1594	if (res)
1595		goto out_err;
1596
1597	res = sas_expander_discover(dev);
1598	if (res) {
1599		pr_warn("expander %016llx discovery failed(0x%x)\n",
1600			SAS_ADDR(dev->sas_addr), res);
1601		goto out_err;
1602	}
1603
1604	sas_check_ex_subtractive_boundary(dev);
1605	res = sas_check_parent_topology(dev);
1606	if (res)
1607		goto out_err;
1608	return 0;
1609out_err:
1610	sas_notify_lldd_dev_gone(dev);
1611	return res;
1612}
1613
1614static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1615{
1616	int res = 0;
1617	struct domain_device *dev;
1618
1619	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1620		if (dev_is_expander(dev->dev_type)) {
 
1621			struct sas_expander_device *ex =
1622				rphy_to_expander_device(dev->rphy);
1623
1624			if (level == ex->level)
1625				res = sas_ex_discover_devices(dev, -1);
1626			else if (level > 0)
1627				res = sas_ex_discover_devices(port->port_dev, -1);
1628
1629		}
1630	}
1631
1632	return res;
1633}
1634
1635static int sas_ex_bfs_disc(struct asd_sas_port *port)
1636{
1637	int res;
1638	int level;
1639
1640	do {
1641		level = port->disc.max_level;
1642		res = sas_ex_level_discovery(port, level);
1643		mb();
1644	} while (level < port->disc.max_level);
1645
1646	return res;
1647}
1648
1649int sas_discover_root_expander(struct domain_device *dev)
1650{
1651	int res;
1652	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1653
1654	res = sas_rphy_add(dev->rphy);
1655	if (res)
1656		goto out_err;
1657
1658	ex->level = dev->port->disc.max_level; /* 0 */
1659	res = sas_discover_expander(dev);
1660	if (res)
1661		goto out_err2;
1662
1663	sas_ex_bfs_disc(dev->port);
1664
1665	return res;
1666
1667out_err2:
1668	sas_rphy_remove(dev->rphy);
1669out_err:
1670	return res;
1671}
1672
1673/* ---------- Domain revalidation ---------- */
1674
1675static int sas_get_phy_discover(struct domain_device *dev,
1676				int phy_id, struct smp_resp *disc_resp)
1677{
1678	int res;
1679	u8 *disc_req;
1680
1681	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1682	if (!disc_req)
1683		return -ENOMEM;
1684
1685	disc_req[1] = SMP_DISCOVER;
1686	disc_req[9] = phy_id;
1687
1688	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1689			       disc_resp, DISCOVER_RESP_SIZE);
1690	if (res)
1691		goto out;
1692	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1693		res = disc_resp->result;
1694		goto out;
1695	}
1696out:
1697	kfree(disc_req);
1698	return res;
1699}
1700
1701static int sas_get_phy_change_count(struct domain_device *dev,
1702				    int phy_id, int *pcc)
1703{
1704	int res;
1705	struct smp_resp *disc_resp;
1706
1707	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1708	if (!disc_resp)
1709		return -ENOMEM;
1710
1711	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1712	if (!res)
1713		*pcc = disc_resp->disc.change_count;
1714
1715	kfree(disc_resp);
1716	return res;
1717}
1718
1719static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1720				    u8 *sas_addr, enum sas_device_type *type)
1721{
1722	int res;
1723	struct smp_resp *disc_resp;
1724	struct discover_resp *dr;
1725
1726	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1727	if (!disc_resp)
1728		return -ENOMEM;
1729	dr = &disc_resp->disc;
1730
1731	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1732	if (res == 0) {
1733		memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1734		       SAS_ADDR_SIZE);
1735		*type = to_dev_type(dr);
1736		if (*type == 0)
1737			memset(sas_addr, 0, SAS_ADDR_SIZE);
1738	}
1739	kfree(disc_resp);
1740	return res;
1741}
1742
1743static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1744			      int from_phy, bool update)
1745{
1746	struct expander_device *ex = &dev->ex_dev;
1747	int res = 0;
1748	int i;
1749
1750	for (i = from_phy; i < ex->num_phys; i++) {
1751		int phy_change_count = 0;
1752
1753		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1754		switch (res) {
1755		case SMP_RESP_PHY_VACANT:
1756		case SMP_RESP_NO_PHY:
1757			continue;
1758		case SMP_RESP_FUNC_ACC:
1759			break;
1760		default:
1761			return res;
1762		}
1763
1764		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1765			if (update)
1766				ex->ex_phy[i].phy_change_count =
1767					phy_change_count;
1768			*phy_id = i;
1769			return 0;
1770		}
1771	}
1772	return 0;
 
1773}
1774
1775static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1776{
1777	int res;
1778	u8  *rg_req;
1779	struct smp_resp  *rg_resp;
1780
1781	rg_req = alloc_smp_req(RG_REQ_SIZE);
1782	if (!rg_req)
1783		return -ENOMEM;
1784
1785	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1786	if (!rg_resp) {
1787		kfree(rg_req);
1788		return -ENOMEM;
1789	}
1790
1791	rg_req[1] = SMP_REPORT_GENERAL;
1792
1793	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1794			       RG_RESP_SIZE);
1795	if (res)
1796		goto out;
1797	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1798		res = rg_resp->result;
1799		goto out;
1800	}
1801
1802	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1803out:
1804	kfree(rg_resp);
1805	kfree(rg_req);
1806	return res;
1807}
1808/**
1809 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1810 * @dev:domain device to be detect.
1811 * @src_dev: the device which originated BROADCAST(CHANGE).
1812 *
1813 * Add self-configuration expander support. Suppose two expander cascading,
1814 * when the first level expander is self-configuring, hotplug the disks in
1815 * second level expander, BROADCAST(CHANGE) will not only be originated
1816 * in the second level expander, but also be originated in the first level
1817 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1818 * expander changed count in two level expanders will all increment at least
1819 * once, but the phy which chang count has changed is the source device which
1820 * we concerned.
1821 */
1822
1823static int sas_find_bcast_dev(struct domain_device *dev,
1824			      struct domain_device **src_dev)
1825{
1826	struct expander_device *ex = &dev->ex_dev;
1827	int ex_change_count = -1;
1828	int phy_id = -1;
1829	int res;
1830	struct domain_device *ch;
1831
1832	res = sas_get_ex_change_count(dev, &ex_change_count);
1833	if (res)
1834		goto out;
1835	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1836		/* Just detect if this expander phys phy change count changed,
1837		* in order to determine if this expander originate BROADCAST,
1838		* and do not update phy change count field in our structure.
1839		*/
1840		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1841		if (phy_id != -1) {
1842			*src_dev = dev;
1843			ex->ex_change_count = ex_change_count;
1844			pr_info("ex %016llx phy%02d change count has changed\n",
1845				SAS_ADDR(dev->sas_addr), phy_id);
1846			return res;
1847		} else
1848			pr_info("ex %016llx phys DID NOT change\n",
1849				SAS_ADDR(dev->sas_addr));
1850	}
1851	list_for_each_entry(ch, &ex->children, siblings) {
1852		if (dev_is_expander(ch->dev_type)) {
1853			res = sas_find_bcast_dev(ch, src_dev);
1854			if (*src_dev)
1855				return res;
1856		}
1857	}
1858out:
1859	return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864	struct expander_device *ex = &dev->ex_dev;
1865	struct domain_device *child, *n;
1866
1867	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868		set_bit(SAS_DEV_GONE, &child->state);
1869		if (dev_is_expander(child->dev_type))
1870			sas_unregister_ex_tree(port, child);
 
1871		else
1872			sas_unregister_dev(port, child);
1873	}
1874	sas_unregister_dev(port, dev);
1875}
1876
1877static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1878					 int phy_id, bool last)
1879{
1880	struct expander_device *ex_dev = &parent->ex_dev;
1881	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1882	struct domain_device *child, *n, *found = NULL;
1883	if (last) {
1884		list_for_each_entry_safe(child, n,
1885			&ex_dev->children, siblings) {
1886			if (SAS_ADDR(child->sas_addr) ==
1887			    SAS_ADDR(phy->attached_sas_addr)) {
1888				set_bit(SAS_DEV_GONE, &child->state);
1889				if (dev_is_expander(child->dev_type))
1890					sas_unregister_ex_tree(parent->port, child);
 
1891				else
1892					sas_unregister_dev(parent->port, child);
1893				found = child;
1894				break;
1895			}
1896		}
 
1897		sas_disable_routing(parent, phy->attached_sas_addr);
1898	}
1899	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1900	if (phy->port) {
1901		sas_port_delete_phy(phy->port, phy->phy);
1902		sas_device_set_phy(found, phy->port);
1903		if (phy->port->num_phys == 0)
1904			list_add_tail(&phy->port->del_list,
1905				&parent->port->sas_port_del_list);
1906		phy->port = NULL;
1907	}
1908}
1909
1910static int sas_discover_bfs_by_root_level(struct domain_device *root,
1911					  const int level)
1912{
1913	struct expander_device *ex_root = &root->ex_dev;
1914	struct domain_device *child;
1915	int res = 0;
1916
1917	list_for_each_entry(child, &ex_root->children, siblings) {
1918		if (dev_is_expander(child->dev_type)) {
 
1919			struct sas_expander_device *ex =
1920				rphy_to_expander_device(child->rphy);
1921
1922			if (level > ex->level)
1923				res = sas_discover_bfs_by_root_level(child,
1924								     level);
1925			else if (level == ex->level)
1926				res = sas_ex_discover_devices(child, -1);
1927		}
1928	}
1929	return res;
1930}
1931
1932static int sas_discover_bfs_by_root(struct domain_device *dev)
1933{
1934	int res;
1935	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1936	int level = ex->level+1;
1937
1938	res = sas_ex_discover_devices(dev, -1);
1939	if (res)
1940		goto out;
1941	do {
1942		res = sas_discover_bfs_by_root_level(dev, level);
1943		mb();
1944		level += 1;
1945	} while (level <= dev->port->disc.max_level);
1946out:
1947	return res;
1948}
1949
1950static int sas_discover_new(struct domain_device *dev, int phy_id)
1951{
1952	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1953	struct domain_device *child;
1954	int res;
 
1955
1956	pr_debug("ex %016llx phy%02d new device attached\n",
1957		 SAS_ADDR(dev->sas_addr), phy_id);
1958	res = sas_ex_phy_discover(dev, phy_id);
1959	if (res)
1960		return res;
1961
1962	if (sas_ex_join_wide_port(dev, phy_id))
 
 
 
 
 
 
 
 
 
 
 
1963		return 0;
1964
1965	res = sas_ex_discover_devices(dev, phy_id);
1966	if (res)
1967		return res;
1968	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1969		if (SAS_ADDR(child->sas_addr) ==
1970		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1971			if (dev_is_expander(child->dev_type))
 
1972				res = sas_discover_bfs_by_root(child);
1973			break;
1974		}
1975	}
 
1976	return res;
1977}
1978
1979static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1980{
1981	if (old == new)
1982		return true;
1983
1984	/* treat device directed resets as flutter, if we went
1985	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1986	 */
1987	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1988	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1989		return true;
1990
1991	return false;
1992}
1993
1994static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1995			      bool last, int sibling)
1996{
1997	struct expander_device *ex = &dev->ex_dev;
1998	struct ex_phy *phy = &ex->ex_phy[phy_id];
1999	enum sas_device_type type = SAS_PHY_UNUSED;
2000	u8 sas_addr[SAS_ADDR_SIZE];
2001	char msg[80] = "";
2002	int res;
2003
2004	if (!last)
2005		sprintf(msg, ", part of a wide port with phy%02d", sibling);
2006
2007	pr_debug("ex %016llx rediscovering phy%02d%s\n",
2008		 SAS_ADDR(dev->sas_addr), phy_id, msg);
2009
2010	memset(sas_addr, 0, SAS_ADDR_SIZE);
2011	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2012	switch (res) {
2013	case SMP_RESP_NO_PHY:
2014		phy->phy_state = PHY_NOT_PRESENT;
2015		sas_unregister_devs_sas_addr(dev, phy_id, last);
2016		return res;
2017	case SMP_RESP_PHY_VACANT:
2018		phy->phy_state = PHY_VACANT;
2019		sas_unregister_devs_sas_addr(dev, phy_id, last);
2020		return res;
2021	case SMP_RESP_FUNC_ACC:
2022		break;
2023	case -ECOMM:
2024		break;
2025	default:
2026		return res;
2027	}
2028
2029	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2030		phy->phy_state = PHY_EMPTY;
2031		sas_unregister_devs_sas_addr(dev, phy_id, last);
2032		/*
2033		 * Even though the PHY is empty, for convenience we discover
2034		 * the PHY to update the PHY info, like negotiated linkrate.
2035		 */
2036		sas_ex_phy_discover(dev, phy_id);
2037		return res;
2038	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2039		   dev_type_flutter(type, phy->attached_dev_type)) {
2040		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2041		char *action = "";
2042
2043		sas_ex_phy_discover(dev, phy_id);
2044
2045		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2046			action = ", needs recovery";
2047		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2048			 SAS_ADDR(dev->sas_addr), phy_id, action);
2049		return res;
2050	}
2051
2052	/* we always have to delete the old device when we went here */
2053	pr_info("ex %016llx phy%02d replace %016llx\n",
2054		SAS_ADDR(dev->sas_addr), phy_id,
2055		SAS_ADDR(phy->attached_sas_addr));
2056	sas_unregister_devs_sas_addr(dev, phy_id, last);
2057
2058	return sas_discover_new(dev, phy_id);
2059}
2060
2061/**
2062 * sas_rediscover - revalidate the domain.
2063 * @dev:domain device to be detect.
2064 * @phy_id: the phy id will be detected.
2065 *
2066 * NOTE: this process _must_ quit (return) as soon as any connection
2067 * errors are encountered.  Connection recovery is done elsewhere.
2068 * Discover process only interrogates devices in order to discover the
2069 * domain.For plugging out, we un-register the device only when it is
2070 * the last phy in the port, for other phys in this port, we just delete it
2071 * from the port.For inserting, we do discovery when it is the
2072 * first phy,for other phys in this port, we add it to the port to
2073 * forming the wide-port.
2074 */
2075static int sas_rediscover(struct domain_device *dev, const int phy_id)
2076{
2077	struct expander_device *ex = &dev->ex_dev;
2078	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2079	int res = 0;
2080	int i;
2081	bool last = true;	/* is this the last phy of the port */
2082
2083	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2084		 SAS_ADDR(dev->sas_addr), phy_id);
2085
2086	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2087		for (i = 0; i < ex->num_phys; i++) {
2088			struct ex_phy *phy = &ex->ex_phy[i];
2089
2090			if (i == phy_id)
2091				continue;
2092			if (SAS_ADDR(phy->attached_sas_addr) ==
2093			    SAS_ADDR(changed_phy->attached_sas_addr)) {
 
 
2094				last = false;
2095				break;
2096			}
2097		}
2098		res = sas_rediscover_dev(dev, phy_id, last, i);
2099	} else
2100		res = sas_discover_new(dev, phy_id);
2101	return res;
2102}
2103
2104/**
2105 * sas_ex_revalidate_domain - revalidate the domain
2106 * @port_dev: port domain device.
2107 *
2108 * NOTE: this process _must_ quit (return) as soon as any connection
2109 * errors are encountered.  Connection recovery is done elsewhere.
2110 * Discover process only interrogates devices in order to discover the
2111 * domain.
2112 */
2113int sas_ex_revalidate_domain(struct domain_device *port_dev)
2114{
2115	int res;
2116	struct domain_device *dev = NULL;
2117
2118	res = sas_find_bcast_dev(port_dev, &dev);
2119	if (res == 0 && dev) {
 
 
2120		struct expander_device *ex = &dev->ex_dev;
2121		int i = 0, phy_id;
2122
2123		do {
2124			phy_id = -1;
2125			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2126			if (phy_id == -1)
2127				break;
2128			res = sas_rediscover(dev, phy_id);
2129			i = phy_id + 1;
2130		} while (i < ex->num_phys);
2131	}
 
2132	return res;
2133}
2134
2135void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2136		struct sas_rphy *rphy)
2137{
2138	struct domain_device *dev;
2139	unsigned int rcvlen = 0;
2140	int ret = -EINVAL;
 
 
 
 
 
 
2141
2142	/* no rphy means no smp target support (ie aic94xx host) */
2143	if (!rphy)
2144		return sas_smp_host_handler(job, shost);
 
 
2145
2146	switch (rphy->identify.device_type) {
2147	case SAS_EDGE_EXPANDER_DEVICE:
2148	case SAS_FANOUT_EXPANDER_DEVICE:
2149		break;
2150	default:
2151		pr_err("%s: can we send a smp request to a device?\n",
2152		       __func__);
2153		goto out;
2154	}
2155
2156	dev = sas_find_dev_by_rphy(rphy);
2157	if (!dev) {
2158		pr_err("%s: fail to find a domain_device?\n", __func__);
2159		goto out;
2160	}
2161
2162	/* do we need to support multiple segments? */
2163	if (job->request_payload.sg_cnt > 1 ||
2164	    job->reply_payload.sg_cnt > 1) {
2165		pr_info("%s: multiple segments req %u, rsp %u\n",
2166			__func__, job->request_payload.payload_len,
2167			job->reply_payload.payload_len);
2168		goto out;
2169	}
2170
2171	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2172			job->reply_payload.sg_list);
2173	if (ret >= 0) {
2174		/* bsg_job_done() requires the length received  */
2175		rcvlen = job->reply_payload.payload_len - ret;
 
2176		ret = 0;
 
 
 
2177	}
2178
2179out:
2180	bsg_job_done(job, ret, rcvlen);
2181}