Loading...
1/*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25#include <linux/scatterlist.h>
26#include <linux/blkdev.h>
27#include <linux/slab.h>
28
29#include "sas_internal.h"
30
31#include <scsi/scsi_transport.h>
32#include <scsi/scsi_transport_sas.h>
33#include "../scsi_sas_internal.h"
34
35static int sas_discover_expander(struct domain_device *dev);
36static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37static int sas_configure_phy(struct domain_device *dev, int phy_id,
38 u8 *sas_addr, int include);
39static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
40
41/* ---------- SMP task management ---------- */
42
43static void smp_task_timedout(unsigned long _task)
44{
45 struct sas_task *task = (void *) _task;
46 unsigned long flags;
47
48 spin_lock_irqsave(&task->task_state_lock, flags);
49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51 spin_unlock_irqrestore(&task->task_state_lock, flags);
52
53 complete(&task->completion);
54}
55
56static void smp_task_done(struct sas_task *task)
57{
58 if (!del_timer(&task->timer))
59 return;
60 complete(&task->completion);
61}
62
63/* Give it some long enough timeout. In seconds. */
64#define SMP_TIMEOUT 10
65
66static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67 void *resp, int resp_size)
68{
69 int res, retry;
70 struct sas_task *task = NULL;
71 struct sas_internal *i =
72 to_sas_internal(dev->port->ha->core.shost->transportt);
73
74 for (retry = 0; retry < 3; retry++) {
75 task = sas_alloc_task(GFP_KERNEL);
76 if (!task)
77 return -ENOMEM;
78
79 task->dev = dev;
80 task->task_proto = dev->tproto;
81 sg_init_one(&task->smp_task.smp_req, req, req_size);
82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83
84 task->task_done = smp_task_done;
85
86 task->timer.data = (unsigned long) task;
87 task->timer.function = smp_task_timedout;
88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89 add_timer(&task->timer);
90
91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92
93 if (res) {
94 del_timer(&task->timer);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res);
96 goto ex_err;
97 }
98
99 wait_for_completion(&task->completion);
100 res = -ECOMM;
101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i->dft->lldd_abort_task(task);
104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
106 goto ex_err;
107 }
108 }
109 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110 task->task_status.stat == SAM_STAT_GOOD) {
111 res = 0;
112 break;
113 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114 task->task_status.stat == SAS_DATA_UNDERRUN) {
115 /* no error, but return the number of bytes of
116 * underrun */
117 res = task->task_status.residual;
118 break;
119 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120 task->task_status.stat == SAS_DATA_OVERRUN) {
121 res = -EMSGSIZE;
122 break;
123 } else {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__,
126 SAS_ADDR(dev->sas_addr),
127 task->task_status.resp,
128 task->task_status.stat);
129 sas_free_task(task);
130 task = NULL;
131 }
132 }
133ex_err:
134 BUG_ON(retry == 3 && task != NULL);
135 if (task != NULL) {
136 sas_free_task(task);
137 }
138 return res;
139}
140
141/* ---------- Allocations ---------- */
142
143static inline void *alloc_smp_req(int size)
144{
145 u8 *p = kzalloc(size, GFP_KERNEL);
146 if (p)
147 p[0] = SMP_REQUEST;
148 return p;
149}
150
151static inline void *alloc_smp_resp(int size)
152{
153 return kzalloc(size, GFP_KERNEL);
154}
155
156/* ---------- Expander configuration ---------- */
157
158static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159 void *disc_resp)
160{
161 struct expander_device *ex = &dev->ex_dev;
162 struct ex_phy *phy = &ex->ex_phy[phy_id];
163 struct smp_resp *resp = disc_resp;
164 struct discover_resp *dr = &resp->disc;
165 struct sas_rphy *rphy = dev->rphy;
166 int rediscover = (phy->phy != NULL);
167
168 if (!rediscover) {
169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170
171 /* FIXME: error_handling */
172 BUG_ON(!phy->phy);
173 }
174
175 switch (resp->result) {
176 case SMP_RESP_PHY_VACANT:
177 phy->phy_state = PHY_VACANT;
178 break;
179 default:
180 phy->phy_state = PHY_NOT_PRESENT;
181 break;
182 case SMP_RESP_FUNC_ACC:
183 phy->phy_state = PHY_EMPTY; /* do not know yet */
184 break;
185 }
186
187 phy->phy_id = phy_id;
188 phy->attached_dev_type = dr->attached_dev_type;
189 phy->linkrate = dr->linkrate;
190 phy->attached_sata_host = dr->attached_sata_host;
191 phy->attached_sata_dev = dr->attached_sata_dev;
192 phy->attached_sata_ps = dr->attached_sata_ps;
193 phy->attached_iproto = dr->iproto << 1;
194 phy->attached_tproto = dr->tproto << 1;
195 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196 phy->attached_phy_id = dr->attached_phy_id;
197 phy->phy_change_count = dr->change_count;
198 phy->routing_attr = dr->routing_attr;
199 phy->virtual = dr->virtual;
200 phy->last_da_index = -1;
201
202 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
203 phy->phy->identify.target_port_protocols = phy->attached_tproto;
204 phy->phy->identify.phy_identifier = phy_id;
205 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
206 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
207 phy->phy->minimum_linkrate = dr->pmin_linkrate;
208 phy->phy->maximum_linkrate = dr->pmax_linkrate;
209 phy->phy->negotiated_linkrate = phy->linkrate;
210
211 if (!rediscover)
212 if (sas_phy_add(phy->phy)) {
213 sas_phy_free(phy->phy);
214 return;
215 }
216
217 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
218 SAS_ADDR(dev->sas_addr), phy->phy_id,
219 phy->routing_attr == TABLE_ROUTING ? 'T' :
220 phy->routing_attr == DIRECT_ROUTING ? 'D' :
221 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
222 SAS_ADDR(phy->attached_sas_addr));
223
224 return;
225}
226
227#define DISCOVER_REQ_SIZE 16
228#define DISCOVER_RESP_SIZE 56
229
230static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
231 u8 *disc_resp, int single)
232{
233 int i, res;
234
235 disc_req[9] = single;
236 for (i = 1 ; i < 3; i++) {
237 struct discover_resp *dr;
238
239 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
240 disc_resp, DISCOVER_RESP_SIZE);
241 if (res)
242 return res;
243 /* This is detecting a failure to transmit initial
244 * dev to host FIS as described in section G.5 of
245 * sas-2 r 04b */
246 dr = &((struct smp_resp *)disc_resp)->disc;
247 if (memcmp(dev->sas_addr, dr->attached_sas_addr,
248 SAS_ADDR_SIZE) == 0) {
249 sas_printk("Found loopback topology, just ignore it!\n");
250 return 0;
251 }
252 if (!(dr->attached_dev_type == 0 &&
253 dr->attached_sata_dev))
254 break;
255 /* In order to generate the dev to host FIS, we
256 * send a link reset to the expander port */
257 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
258 /* Wait for the reset to trigger the negotiation */
259 msleep(500);
260 }
261 sas_set_ex_phy(dev, single, disc_resp);
262 return 0;
263}
264
265static int sas_ex_phy_discover(struct domain_device *dev, int single)
266{
267 struct expander_device *ex = &dev->ex_dev;
268 int res = 0;
269 u8 *disc_req;
270 u8 *disc_resp;
271
272 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
273 if (!disc_req)
274 return -ENOMEM;
275
276 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
277 if (!disc_resp) {
278 kfree(disc_req);
279 return -ENOMEM;
280 }
281
282 disc_req[1] = SMP_DISCOVER;
283
284 if (0 <= single && single < ex->num_phys) {
285 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
286 } else {
287 int i;
288
289 for (i = 0; i < ex->num_phys; i++) {
290 res = sas_ex_phy_discover_helper(dev, disc_req,
291 disc_resp, i);
292 if (res)
293 goto out_err;
294 }
295 }
296out_err:
297 kfree(disc_resp);
298 kfree(disc_req);
299 return res;
300}
301
302static int sas_expander_discover(struct domain_device *dev)
303{
304 struct expander_device *ex = &dev->ex_dev;
305 int res = -ENOMEM;
306
307 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
308 if (!ex->ex_phy)
309 return -ENOMEM;
310
311 res = sas_ex_phy_discover(dev, -1);
312 if (res)
313 goto out_err;
314
315 return 0;
316 out_err:
317 kfree(ex->ex_phy);
318 ex->ex_phy = NULL;
319 return res;
320}
321
322#define MAX_EXPANDER_PHYS 128
323
324static void ex_assign_report_general(struct domain_device *dev,
325 struct smp_resp *resp)
326{
327 struct report_general_resp *rg = &resp->rg;
328
329 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
330 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
331 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
332 dev->ex_dev.conf_route_table = rg->conf_route_table;
333 dev->ex_dev.configuring = rg->configuring;
334 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
335}
336
337#define RG_REQ_SIZE 8
338#define RG_RESP_SIZE 32
339
340static int sas_ex_general(struct domain_device *dev)
341{
342 u8 *rg_req;
343 struct smp_resp *rg_resp;
344 int res;
345 int i;
346
347 rg_req = alloc_smp_req(RG_REQ_SIZE);
348 if (!rg_req)
349 return -ENOMEM;
350
351 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
352 if (!rg_resp) {
353 kfree(rg_req);
354 return -ENOMEM;
355 }
356
357 rg_req[1] = SMP_REPORT_GENERAL;
358
359 for (i = 0; i < 5; i++) {
360 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
361 RG_RESP_SIZE);
362
363 if (res) {
364 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
365 SAS_ADDR(dev->sas_addr), res);
366 goto out;
367 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
368 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
369 SAS_ADDR(dev->sas_addr), rg_resp->result);
370 res = rg_resp->result;
371 goto out;
372 }
373
374 ex_assign_report_general(dev, rg_resp);
375
376 if (dev->ex_dev.configuring) {
377 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
378 SAS_ADDR(dev->sas_addr));
379 schedule_timeout_interruptible(5*HZ);
380 } else
381 break;
382 }
383out:
384 kfree(rg_req);
385 kfree(rg_resp);
386 return res;
387}
388
389static void ex_assign_manuf_info(struct domain_device *dev, void
390 *_mi_resp)
391{
392 u8 *mi_resp = _mi_resp;
393 struct sas_rphy *rphy = dev->rphy;
394 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
395
396 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
397 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
398 memcpy(edev->product_rev, mi_resp + 36,
399 SAS_EXPANDER_PRODUCT_REV_LEN);
400
401 if (mi_resp[8] & 1) {
402 memcpy(edev->component_vendor_id, mi_resp + 40,
403 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
404 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
405 edev->component_revision_id = mi_resp[50];
406 }
407}
408
409#define MI_REQ_SIZE 8
410#define MI_RESP_SIZE 64
411
412static int sas_ex_manuf_info(struct domain_device *dev)
413{
414 u8 *mi_req;
415 u8 *mi_resp;
416 int res;
417
418 mi_req = alloc_smp_req(MI_REQ_SIZE);
419 if (!mi_req)
420 return -ENOMEM;
421
422 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
423 if (!mi_resp) {
424 kfree(mi_req);
425 return -ENOMEM;
426 }
427
428 mi_req[1] = SMP_REPORT_MANUF_INFO;
429
430 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
431 if (res) {
432 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
433 SAS_ADDR(dev->sas_addr), res);
434 goto out;
435 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
436 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
437 SAS_ADDR(dev->sas_addr), mi_resp[2]);
438 goto out;
439 }
440
441 ex_assign_manuf_info(dev, mi_resp);
442out:
443 kfree(mi_req);
444 kfree(mi_resp);
445 return res;
446}
447
448#define PC_REQ_SIZE 44
449#define PC_RESP_SIZE 8
450
451int sas_smp_phy_control(struct domain_device *dev, int phy_id,
452 enum phy_func phy_func,
453 struct sas_phy_linkrates *rates)
454{
455 u8 *pc_req;
456 u8 *pc_resp;
457 int res;
458
459 pc_req = alloc_smp_req(PC_REQ_SIZE);
460 if (!pc_req)
461 return -ENOMEM;
462
463 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
464 if (!pc_resp) {
465 kfree(pc_req);
466 return -ENOMEM;
467 }
468
469 pc_req[1] = SMP_PHY_CONTROL;
470 pc_req[9] = phy_id;
471 pc_req[10]= phy_func;
472 if (rates) {
473 pc_req[32] = rates->minimum_linkrate << 4;
474 pc_req[33] = rates->maximum_linkrate << 4;
475 }
476
477 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
478
479 kfree(pc_resp);
480 kfree(pc_req);
481 return res;
482}
483
484static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
485{
486 struct expander_device *ex = &dev->ex_dev;
487 struct ex_phy *phy = &ex->ex_phy[phy_id];
488
489 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
490 phy->linkrate = SAS_PHY_DISABLED;
491}
492
493static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
494{
495 struct expander_device *ex = &dev->ex_dev;
496 int i;
497
498 for (i = 0; i < ex->num_phys; i++) {
499 struct ex_phy *phy = &ex->ex_phy[i];
500
501 if (phy->phy_state == PHY_VACANT ||
502 phy->phy_state == PHY_NOT_PRESENT)
503 continue;
504
505 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
506 sas_ex_disable_phy(dev, i);
507 }
508}
509
510static int sas_dev_present_in_domain(struct asd_sas_port *port,
511 u8 *sas_addr)
512{
513 struct domain_device *dev;
514
515 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
516 return 1;
517 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
518 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
519 return 1;
520 }
521 return 0;
522}
523
524#define RPEL_REQ_SIZE 16
525#define RPEL_RESP_SIZE 32
526int sas_smp_get_phy_events(struct sas_phy *phy)
527{
528 int res;
529 u8 *req;
530 u8 *resp;
531 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
532 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
533
534 req = alloc_smp_req(RPEL_REQ_SIZE);
535 if (!req)
536 return -ENOMEM;
537
538 resp = alloc_smp_resp(RPEL_RESP_SIZE);
539 if (!resp) {
540 kfree(req);
541 return -ENOMEM;
542 }
543
544 req[1] = SMP_REPORT_PHY_ERR_LOG;
545 req[9] = phy->number;
546
547 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
548 resp, RPEL_RESP_SIZE);
549
550 if (!res)
551 goto out;
552
553 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
554 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
555 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
556 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
557
558 out:
559 kfree(resp);
560 return res;
561
562}
563
564#ifdef CONFIG_SCSI_SAS_ATA
565
566#define RPS_REQ_SIZE 16
567#define RPS_RESP_SIZE 60
568
569static int sas_get_report_phy_sata(struct domain_device *dev,
570 int phy_id,
571 struct smp_resp *rps_resp)
572{
573 int res;
574 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
575 u8 *resp = (u8 *)rps_resp;
576
577 if (!rps_req)
578 return -ENOMEM;
579
580 rps_req[1] = SMP_REPORT_PHY_SATA;
581 rps_req[9] = phy_id;
582
583 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
584 rps_resp, RPS_RESP_SIZE);
585
586 /* 0x34 is the FIS type for the D2H fis. There's a potential
587 * standards cockup here. sas-2 explicitly specifies the FIS
588 * should be encoded so that FIS type is in resp[24].
589 * However, some expanders endian reverse this. Undo the
590 * reversal here */
591 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
592 int i;
593
594 for (i = 0; i < 5; i++) {
595 int j = 24 + (i*4);
596 u8 a, b;
597 a = resp[j + 0];
598 b = resp[j + 1];
599 resp[j + 0] = resp[j + 3];
600 resp[j + 1] = resp[j + 2];
601 resp[j + 2] = b;
602 resp[j + 3] = a;
603 }
604 }
605
606 kfree(rps_req);
607 return res;
608}
609#endif
610
611static void sas_ex_get_linkrate(struct domain_device *parent,
612 struct domain_device *child,
613 struct ex_phy *parent_phy)
614{
615 struct expander_device *parent_ex = &parent->ex_dev;
616 struct sas_port *port;
617 int i;
618
619 child->pathways = 0;
620
621 port = parent_phy->port;
622
623 for (i = 0; i < parent_ex->num_phys; i++) {
624 struct ex_phy *phy = &parent_ex->ex_phy[i];
625
626 if (phy->phy_state == PHY_VACANT ||
627 phy->phy_state == PHY_NOT_PRESENT)
628 continue;
629
630 if (SAS_ADDR(phy->attached_sas_addr) ==
631 SAS_ADDR(child->sas_addr)) {
632
633 child->min_linkrate = min(parent->min_linkrate,
634 phy->linkrate);
635 child->max_linkrate = max(parent->max_linkrate,
636 phy->linkrate);
637 child->pathways++;
638 sas_port_add_phy(port, phy->phy);
639 }
640 }
641 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
642 child->pathways = min(child->pathways, parent->pathways);
643}
644
645static struct domain_device *sas_ex_discover_end_dev(
646 struct domain_device *parent, int phy_id)
647{
648 struct expander_device *parent_ex = &parent->ex_dev;
649 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
650 struct domain_device *child = NULL;
651 struct sas_rphy *rphy;
652 int res;
653
654 if (phy->attached_sata_host || phy->attached_sata_ps)
655 return NULL;
656
657 child = kzalloc(sizeof(*child), GFP_KERNEL);
658 if (!child)
659 return NULL;
660
661 child->parent = parent;
662 child->port = parent->port;
663 child->iproto = phy->attached_iproto;
664 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
665 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
666 if (!phy->port) {
667 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
668 if (unlikely(!phy->port))
669 goto out_err;
670 if (unlikely(sas_port_add(phy->port) != 0)) {
671 sas_port_free(phy->port);
672 goto out_err;
673 }
674 }
675 sas_ex_get_linkrate(parent, child, phy);
676
677#ifdef CONFIG_SCSI_SAS_ATA
678 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
679 child->dev_type = SATA_DEV;
680 if (phy->attached_tproto & SAS_PROTOCOL_STP)
681 child->tproto = phy->attached_tproto;
682 if (phy->attached_sata_dev)
683 child->tproto |= SATA_DEV;
684 res = sas_get_report_phy_sata(parent, phy_id,
685 &child->sata_dev.rps_resp);
686 if (res) {
687 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
688 "0x%x\n", SAS_ADDR(parent->sas_addr),
689 phy_id, res);
690 goto out_free;
691 }
692 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
693 sizeof(struct dev_to_host_fis));
694
695 rphy = sas_end_device_alloc(phy->port);
696 if (unlikely(!rphy))
697 goto out_free;
698
699 sas_init_dev(child);
700
701 child->rphy = rphy;
702
703 spin_lock_irq(&parent->port->dev_list_lock);
704 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
705 spin_unlock_irq(&parent->port->dev_list_lock);
706
707 res = sas_discover_sata(child);
708 if (res) {
709 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
710 "%016llx:0x%x returned 0x%x\n",
711 SAS_ADDR(child->sas_addr),
712 SAS_ADDR(parent->sas_addr), phy_id, res);
713 goto out_list_del;
714 }
715 } else
716#endif
717 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
718 child->dev_type = SAS_END_DEV;
719 rphy = sas_end_device_alloc(phy->port);
720 /* FIXME: error handling */
721 if (unlikely(!rphy))
722 goto out_free;
723 child->tproto = phy->attached_tproto;
724 sas_init_dev(child);
725
726 child->rphy = rphy;
727 sas_fill_in_rphy(child, rphy);
728
729 spin_lock_irq(&parent->port->dev_list_lock);
730 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
731 spin_unlock_irq(&parent->port->dev_list_lock);
732
733 res = sas_discover_end_dev(child);
734 if (res) {
735 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
736 "at %016llx:0x%x returned 0x%x\n",
737 SAS_ADDR(child->sas_addr),
738 SAS_ADDR(parent->sas_addr), phy_id, res);
739 goto out_list_del;
740 }
741 } else {
742 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
743 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
744 phy_id);
745 goto out_free;
746 }
747
748 list_add_tail(&child->siblings, &parent_ex->children);
749 return child;
750
751 out_list_del:
752 sas_rphy_free(child->rphy);
753 child->rphy = NULL;
754 list_del(&child->dev_list_node);
755 out_free:
756 sas_port_delete(phy->port);
757 out_err:
758 phy->port = NULL;
759 kfree(child);
760 return NULL;
761}
762
763/* See if this phy is part of a wide port */
764static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
765{
766 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
767 int i;
768
769 for (i = 0; i < parent->ex_dev.num_phys; i++) {
770 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
771
772 if (ephy == phy)
773 continue;
774
775 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
776 SAS_ADDR_SIZE) && ephy->port) {
777 sas_port_add_phy(ephy->port, phy->phy);
778 phy->port = ephy->port;
779 phy->phy_state = PHY_DEVICE_DISCOVERED;
780 return 0;
781 }
782 }
783
784 return -ENODEV;
785}
786
787static struct domain_device *sas_ex_discover_expander(
788 struct domain_device *parent, int phy_id)
789{
790 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
791 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
792 struct domain_device *child = NULL;
793 struct sas_rphy *rphy;
794 struct sas_expander_device *edev;
795 struct asd_sas_port *port;
796 int res;
797
798 if (phy->routing_attr == DIRECT_ROUTING) {
799 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
800 "allowed\n",
801 SAS_ADDR(parent->sas_addr), phy_id,
802 SAS_ADDR(phy->attached_sas_addr),
803 phy->attached_phy_id);
804 return NULL;
805 }
806 child = kzalloc(sizeof(*child), GFP_KERNEL);
807 if (!child)
808 return NULL;
809
810 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
811 /* FIXME: better error handling */
812 BUG_ON(sas_port_add(phy->port) != 0);
813
814
815 switch (phy->attached_dev_type) {
816 case EDGE_DEV:
817 rphy = sas_expander_alloc(phy->port,
818 SAS_EDGE_EXPANDER_DEVICE);
819 break;
820 case FANOUT_DEV:
821 rphy = sas_expander_alloc(phy->port,
822 SAS_FANOUT_EXPANDER_DEVICE);
823 break;
824 default:
825 rphy = NULL; /* shut gcc up */
826 BUG();
827 }
828 port = parent->port;
829 child->rphy = rphy;
830 edev = rphy_to_expander_device(rphy);
831 child->dev_type = phy->attached_dev_type;
832 child->parent = parent;
833 child->port = port;
834 child->iproto = phy->attached_iproto;
835 child->tproto = phy->attached_tproto;
836 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
837 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
838 sas_ex_get_linkrate(parent, child, phy);
839 edev->level = parent_ex->level + 1;
840 parent->port->disc.max_level = max(parent->port->disc.max_level,
841 edev->level);
842 sas_init_dev(child);
843 sas_fill_in_rphy(child, rphy);
844 sas_rphy_add(rphy);
845
846 spin_lock_irq(&parent->port->dev_list_lock);
847 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
848 spin_unlock_irq(&parent->port->dev_list_lock);
849
850 res = sas_discover_expander(child);
851 if (res) {
852 spin_lock_irq(&parent->port->dev_list_lock);
853 list_del(&child->dev_list_node);
854 spin_unlock_irq(&parent->port->dev_list_lock);
855 kfree(child);
856 return NULL;
857 }
858 list_add_tail(&child->siblings, &parent->ex_dev.children);
859 return child;
860}
861
862static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
863{
864 struct expander_device *ex = &dev->ex_dev;
865 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
866 struct domain_device *child = NULL;
867 int res = 0;
868
869 /* Phy state */
870 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
871 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
872 res = sas_ex_phy_discover(dev, phy_id);
873 if (res)
874 return res;
875 }
876
877 /* Parent and domain coherency */
878 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
879 SAS_ADDR(dev->port->sas_addr))) {
880 sas_add_parent_port(dev, phy_id);
881 return 0;
882 }
883 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
884 SAS_ADDR(dev->parent->sas_addr))) {
885 sas_add_parent_port(dev, phy_id);
886 if (ex_phy->routing_attr == TABLE_ROUTING)
887 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
888 return 0;
889 }
890
891 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
892 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
893
894 if (ex_phy->attached_dev_type == NO_DEVICE) {
895 if (ex_phy->routing_attr == DIRECT_ROUTING) {
896 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
897 sas_configure_routing(dev, ex_phy->attached_sas_addr);
898 }
899 return 0;
900 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
901 return 0;
902
903 if (ex_phy->attached_dev_type != SAS_END_DEV &&
904 ex_phy->attached_dev_type != FANOUT_DEV &&
905 ex_phy->attached_dev_type != EDGE_DEV) {
906 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
907 "phy 0x%x\n", ex_phy->attached_dev_type,
908 SAS_ADDR(dev->sas_addr),
909 phy_id);
910 return 0;
911 }
912
913 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
914 if (res) {
915 SAS_DPRINTK("configure routing for dev %016llx "
916 "reported 0x%x. Forgotten\n",
917 SAS_ADDR(ex_phy->attached_sas_addr), res);
918 sas_disable_routing(dev, ex_phy->attached_sas_addr);
919 return res;
920 }
921
922 res = sas_ex_join_wide_port(dev, phy_id);
923 if (!res) {
924 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
925 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
926 return res;
927 }
928
929 switch (ex_phy->attached_dev_type) {
930 case SAS_END_DEV:
931 child = sas_ex_discover_end_dev(dev, phy_id);
932 break;
933 case FANOUT_DEV:
934 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
935 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
936 "attached to ex %016llx phy 0x%x\n",
937 SAS_ADDR(ex_phy->attached_sas_addr),
938 ex_phy->attached_phy_id,
939 SAS_ADDR(dev->sas_addr),
940 phy_id);
941 sas_ex_disable_phy(dev, phy_id);
942 break;
943 } else
944 memcpy(dev->port->disc.fanout_sas_addr,
945 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
946 /* fallthrough */
947 case EDGE_DEV:
948 child = sas_ex_discover_expander(dev, phy_id);
949 break;
950 default:
951 break;
952 }
953
954 if (child) {
955 int i;
956
957 for (i = 0; i < ex->num_phys; i++) {
958 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
959 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
960 continue;
961 /*
962 * Due to races, the phy might not get added to the
963 * wide port, so we add the phy to the wide port here.
964 */
965 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
966 SAS_ADDR(child->sas_addr)) {
967 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
968 res = sas_ex_join_wide_port(dev, i);
969 if (!res)
970 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
971 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
972
973 }
974 }
975 }
976
977 return res;
978}
979
980static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
981{
982 struct expander_device *ex = &dev->ex_dev;
983 int i;
984
985 for (i = 0; i < ex->num_phys; i++) {
986 struct ex_phy *phy = &ex->ex_phy[i];
987
988 if (phy->phy_state == PHY_VACANT ||
989 phy->phy_state == PHY_NOT_PRESENT)
990 continue;
991
992 if ((phy->attached_dev_type == EDGE_DEV ||
993 phy->attached_dev_type == FANOUT_DEV) &&
994 phy->routing_attr == SUBTRACTIVE_ROUTING) {
995
996 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
997
998 return 1;
999 }
1000 }
1001 return 0;
1002}
1003
1004static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1005{
1006 struct expander_device *ex = &dev->ex_dev;
1007 struct domain_device *child;
1008 u8 sub_addr[8] = {0, };
1009
1010 list_for_each_entry(child, &ex->children, siblings) {
1011 if (child->dev_type != EDGE_DEV &&
1012 child->dev_type != FANOUT_DEV)
1013 continue;
1014 if (sub_addr[0] == 0) {
1015 sas_find_sub_addr(child, sub_addr);
1016 continue;
1017 } else {
1018 u8 s2[8];
1019
1020 if (sas_find_sub_addr(child, s2) &&
1021 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1022
1023 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1024 "diverges from subtractive "
1025 "boundary %016llx\n",
1026 SAS_ADDR(dev->sas_addr),
1027 SAS_ADDR(child->sas_addr),
1028 SAS_ADDR(s2),
1029 SAS_ADDR(sub_addr));
1030
1031 sas_ex_disable_port(child, s2);
1032 }
1033 }
1034 }
1035 return 0;
1036}
1037/**
1038 * sas_ex_discover_devices -- discover devices attached to this expander
1039 * dev: pointer to the expander domain device
1040 * single: if you want to do a single phy, else set to -1;
1041 *
1042 * Configure this expander for use with its devices and register the
1043 * devices of this expander.
1044 */
1045static int sas_ex_discover_devices(struct domain_device *dev, int single)
1046{
1047 struct expander_device *ex = &dev->ex_dev;
1048 int i = 0, end = ex->num_phys;
1049 int res = 0;
1050
1051 if (0 <= single && single < end) {
1052 i = single;
1053 end = i+1;
1054 }
1055
1056 for ( ; i < end; i++) {
1057 struct ex_phy *ex_phy = &ex->ex_phy[i];
1058
1059 if (ex_phy->phy_state == PHY_VACANT ||
1060 ex_phy->phy_state == PHY_NOT_PRESENT ||
1061 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1062 continue;
1063
1064 switch (ex_phy->linkrate) {
1065 case SAS_PHY_DISABLED:
1066 case SAS_PHY_RESET_PROBLEM:
1067 case SAS_SATA_PORT_SELECTOR:
1068 continue;
1069 default:
1070 res = sas_ex_discover_dev(dev, i);
1071 if (res)
1072 break;
1073 continue;
1074 }
1075 }
1076
1077 if (!res)
1078 sas_check_level_subtractive_boundary(dev);
1079
1080 return res;
1081}
1082
1083static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1084{
1085 struct expander_device *ex = &dev->ex_dev;
1086 int i;
1087 u8 *sub_sas_addr = NULL;
1088
1089 if (dev->dev_type != EDGE_DEV)
1090 return 0;
1091
1092 for (i = 0; i < ex->num_phys; i++) {
1093 struct ex_phy *phy = &ex->ex_phy[i];
1094
1095 if (phy->phy_state == PHY_VACANT ||
1096 phy->phy_state == PHY_NOT_PRESENT)
1097 continue;
1098
1099 if ((phy->attached_dev_type == FANOUT_DEV ||
1100 phy->attached_dev_type == EDGE_DEV) &&
1101 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1102
1103 if (!sub_sas_addr)
1104 sub_sas_addr = &phy->attached_sas_addr[0];
1105 else if (SAS_ADDR(sub_sas_addr) !=
1106 SAS_ADDR(phy->attached_sas_addr)) {
1107
1108 SAS_DPRINTK("ex %016llx phy 0x%x "
1109 "diverges(%016llx) on subtractive "
1110 "boundary(%016llx). Disabled\n",
1111 SAS_ADDR(dev->sas_addr), i,
1112 SAS_ADDR(phy->attached_sas_addr),
1113 SAS_ADDR(sub_sas_addr));
1114 sas_ex_disable_phy(dev, i);
1115 }
1116 }
1117 }
1118 return 0;
1119}
1120
1121static void sas_print_parent_topology_bug(struct domain_device *child,
1122 struct ex_phy *parent_phy,
1123 struct ex_phy *child_phy)
1124{
1125 static const char ra_char[] = {
1126 [DIRECT_ROUTING] = 'D',
1127 [SUBTRACTIVE_ROUTING] = 'S',
1128 [TABLE_ROUTING] = 'T',
1129 };
1130 static const char *ex_type[] = {
1131 [EDGE_DEV] = "edge",
1132 [FANOUT_DEV] = "fanout",
1133 };
1134 struct domain_device *parent = child->parent;
1135
1136 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1137 "has %c:%c routing link!\n",
1138
1139 ex_type[parent->dev_type],
1140 SAS_ADDR(parent->sas_addr),
1141 parent_phy->phy_id,
1142
1143 ex_type[child->dev_type],
1144 SAS_ADDR(child->sas_addr),
1145 child_phy->phy_id,
1146
1147 ra_char[parent_phy->routing_attr],
1148 ra_char[child_phy->routing_attr]);
1149}
1150
1151static int sas_check_eeds(struct domain_device *child,
1152 struct ex_phy *parent_phy,
1153 struct ex_phy *child_phy)
1154{
1155 int res = 0;
1156 struct domain_device *parent = child->parent;
1157
1158 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1159 res = -ENODEV;
1160 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1161 "phy S:0x%x, while there is a fanout ex %016llx\n",
1162 SAS_ADDR(parent->sas_addr),
1163 parent_phy->phy_id,
1164 SAS_ADDR(child->sas_addr),
1165 child_phy->phy_id,
1166 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1167 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1168 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1169 SAS_ADDR_SIZE);
1170 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1171 SAS_ADDR_SIZE);
1172 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1173 SAS_ADDR(parent->sas_addr)) ||
1174 (SAS_ADDR(parent->port->disc.eeds_a) ==
1175 SAS_ADDR(child->sas_addr)))
1176 &&
1177 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1178 SAS_ADDR(parent->sas_addr)) ||
1179 (SAS_ADDR(parent->port->disc.eeds_b) ==
1180 SAS_ADDR(child->sas_addr))))
1181 ;
1182 else {
1183 res = -ENODEV;
1184 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1185 "phy 0x%x link forms a third EEDS!\n",
1186 SAS_ADDR(parent->sas_addr),
1187 parent_phy->phy_id,
1188 SAS_ADDR(child->sas_addr),
1189 child_phy->phy_id);
1190 }
1191
1192 return res;
1193}
1194
1195/* Here we spill over 80 columns. It is intentional.
1196 */
1197static int sas_check_parent_topology(struct domain_device *child)
1198{
1199 struct expander_device *child_ex = &child->ex_dev;
1200 struct expander_device *parent_ex;
1201 int i;
1202 int res = 0;
1203
1204 if (!child->parent)
1205 return 0;
1206
1207 if (child->parent->dev_type != EDGE_DEV &&
1208 child->parent->dev_type != FANOUT_DEV)
1209 return 0;
1210
1211 parent_ex = &child->parent->ex_dev;
1212
1213 for (i = 0; i < parent_ex->num_phys; i++) {
1214 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1215 struct ex_phy *child_phy;
1216
1217 if (parent_phy->phy_state == PHY_VACANT ||
1218 parent_phy->phy_state == PHY_NOT_PRESENT)
1219 continue;
1220
1221 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1222 continue;
1223
1224 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1225
1226 switch (child->parent->dev_type) {
1227 case EDGE_DEV:
1228 if (child->dev_type == FANOUT_DEV) {
1229 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1230 child_phy->routing_attr != TABLE_ROUTING) {
1231 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1232 res = -ENODEV;
1233 }
1234 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1236 res = sas_check_eeds(child, parent_phy, child_phy);
1237 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1238 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1239 res = -ENODEV;
1240 }
1241 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1242 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1243 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1244 res = -ENODEV;
1245 }
1246 break;
1247 case FANOUT_DEV:
1248 if (parent_phy->routing_attr != TABLE_ROUTING ||
1249 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1250 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1251 res = -ENODEV;
1252 }
1253 break;
1254 default:
1255 break;
1256 }
1257 }
1258
1259 return res;
1260}
1261
1262#define RRI_REQ_SIZE 16
1263#define RRI_RESP_SIZE 44
1264
1265static int sas_configure_present(struct domain_device *dev, int phy_id,
1266 u8 *sas_addr, int *index, int *present)
1267{
1268 int i, res = 0;
1269 struct expander_device *ex = &dev->ex_dev;
1270 struct ex_phy *phy = &ex->ex_phy[phy_id];
1271 u8 *rri_req;
1272 u8 *rri_resp;
1273
1274 *present = 0;
1275 *index = 0;
1276
1277 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1278 if (!rri_req)
1279 return -ENOMEM;
1280
1281 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1282 if (!rri_resp) {
1283 kfree(rri_req);
1284 return -ENOMEM;
1285 }
1286
1287 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1288 rri_req[9] = phy_id;
1289
1290 for (i = 0; i < ex->max_route_indexes ; i++) {
1291 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1292 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1293 RRI_RESP_SIZE);
1294 if (res)
1295 goto out;
1296 res = rri_resp[2];
1297 if (res == SMP_RESP_NO_INDEX) {
1298 SAS_DPRINTK("overflow of indexes: dev %016llx "
1299 "phy 0x%x index 0x%x\n",
1300 SAS_ADDR(dev->sas_addr), phy_id, i);
1301 goto out;
1302 } else if (res != SMP_RESP_FUNC_ACC) {
1303 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1304 "result 0x%x\n", __func__,
1305 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1306 goto out;
1307 }
1308 if (SAS_ADDR(sas_addr) != 0) {
1309 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1310 *index = i;
1311 if ((rri_resp[12] & 0x80) == 0x80)
1312 *present = 0;
1313 else
1314 *present = 1;
1315 goto out;
1316 } else if (SAS_ADDR(rri_resp+16) == 0) {
1317 *index = i;
1318 *present = 0;
1319 goto out;
1320 }
1321 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1322 phy->last_da_index < i) {
1323 phy->last_da_index = i;
1324 *index = i;
1325 *present = 0;
1326 goto out;
1327 }
1328 }
1329 res = -1;
1330out:
1331 kfree(rri_req);
1332 kfree(rri_resp);
1333 return res;
1334}
1335
1336#define CRI_REQ_SIZE 44
1337#define CRI_RESP_SIZE 8
1338
1339static int sas_configure_set(struct domain_device *dev, int phy_id,
1340 u8 *sas_addr, int index, int include)
1341{
1342 int res;
1343 u8 *cri_req;
1344 u8 *cri_resp;
1345
1346 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1347 if (!cri_req)
1348 return -ENOMEM;
1349
1350 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1351 if (!cri_resp) {
1352 kfree(cri_req);
1353 return -ENOMEM;
1354 }
1355
1356 cri_req[1] = SMP_CONF_ROUTE_INFO;
1357 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1358 cri_req[9] = phy_id;
1359 if (SAS_ADDR(sas_addr) == 0 || !include)
1360 cri_req[12] |= 0x80;
1361 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1362
1363 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1364 CRI_RESP_SIZE);
1365 if (res)
1366 goto out;
1367 res = cri_resp[2];
1368 if (res == SMP_RESP_NO_INDEX) {
1369 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1370 "index 0x%x\n",
1371 SAS_ADDR(dev->sas_addr), phy_id, index);
1372 }
1373out:
1374 kfree(cri_req);
1375 kfree(cri_resp);
1376 return res;
1377}
1378
1379static int sas_configure_phy(struct domain_device *dev, int phy_id,
1380 u8 *sas_addr, int include)
1381{
1382 int index;
1383 int present;
1384 int res;
1385
1386 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1387 if (res)
1388 return res;
1389 if (include ^ present)
1390 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1391
1392 return res;
1393}
1394
1395/**
1396 * sas_configure_parent -- configure routing table of parent
1397 * parent: parent expander
1398 * child: child expander
1399 * sas_addr: SAS port identifier of device directly attached to child
1400 */
1401static int sas_configure_parent(struct domain_device *parent,
1402 struct domain_device *child,
1403 u8 *sas_addr, int include)
1404{
1405 struct expander_device *ex_parent = &parent->ex_dev;
1406 int res = 0;
1407 int i;
1408
1409 if (parent->parent) {
1410 res = sas_configure_parent(parent->parent, parent, sas_addr,
1411 include);
1412 if (res)
1413 return res;
1414 }
1415
1416 if (ex_parent->conf_route_table == 0) {
1417 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1418 SAS_ADDR(parent->sas_addr));
1419 return 0;
1420 }
1421
1422 for (i = 0; i < ex_parent->num_phys; i++) {
1423 struct ex_phy *phy = &ex_parent->ex_phy[i];
1424
1425 if ((phy->routing_attr == TABLE_ROUTING) &&
1426 (SAS_ADDR(phy->attached_sas_addr) ==
1427 SAS_ADDR(child->sas_addr))) {
1428 res = sas_configure_phy(parent, i, sas_addr, include);
1429 if (res)
1430 return res;
1431 }
1432 }
1433
1434 return res;
1435}
1436
1437/**
1438 * sas_configure_routing -- configure routing
1439 * dev: expander device
1440 * sas_addr: port identifier of device directly attached to the expander device
1441 */
1442static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1443{
1444 if (dev->parent)
1445 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1446 return 0;
1447}
1448
1449static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1450{
1451 if (dev->parent)
1452 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1453 return 0;
1454}
1455
1456/**
1457 * sas_discover_expander -- expander discovery
1458 * @ex: pointer to expander domain device
1459 *
1460 * See comment in sas_discover_sata().
1461 */
1462static int sas_discover_expander(struct domain_device *dev)
1463{
1464 int res;
1465
1466 res = sas_notify_lldd_dev_found(dev);
1467 if (res)
1468 return res;
1469
1470 res = sas_ex_general(dev);
1471 if (res)
1472 goto out_err;
1473 res = sas_ex_manuf_info(dev);
1474 if (res)
1475 goto out_err;
1476
1477 res = sas_expander_discover(dev);
1478 if (res) {
1479 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1480 SAS_ADDR(dev->sas_addr), res);
1481 goto out_err;
1482 }
1483
1484 sas_check_ex_subtractive_boundary(dev);
1485 res = sas_check_parent_topology(dev);
1486 if (res)
1487 goto out_err;
1488 return 0;
1489out_err:
1490 sas_notify_lldd_dev_gone(dev);
1491 return res;
1492}
1493
1494static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1495{
1496 int res = 0;
1497 struct domain_device *dev;
1498
1499 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1500 if (dev->dev_type == EDGE_DEV ||
1501 dev->dev_type == FANOUT_DEV) {
1502 struct sas_expander_device *ex =
1503 rphy_to_expander_device(dev->rphy);
1504
1505 if (level == ex->level)
1506 res = sas_ex_discover_devices(dev, -1);
1507 else if (level > 0)
1508 res = sas_ex_discover_devices(port->port_dev, -1);
1509
1510 }
1511 }
1512
1513 return res;
1514}
1515
1516static int sas_ex_bfs_disc(struct asd_sas_port *port)
1517{
1518 int res;
1519 int level;
1520
1521 do {
1522 level = port->disc.max_level;
1523 res = sas_ex_level_discovery(port, level);
1524 mb();
1525 } while (level < port->disc.max_level);
1526
1527 return res;
1528}
1529
1530int sas_discover_root_expander(struct domain_device *dev)
1531{
1532 int res;
1533 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1534
1535 res = sas_rphy_add(dev->rphy);
1536 if (res)
1537 goto out_err;
1538
1539 ex->level = dev->port->disc.max_level; /* 0 */
1540 res = sas_discover_expander(dev);
1541 if (res)
1542 goto out_err2;
1543
1544 sas_ex_bfs_disc(dev->port);
1545
1546 return res;
1547
1548out_err2:
1549 sas_rphy_remove(dev->rphy);
1550out_err:
1551 return res;
1552}
1553
1554/* ---------- Domain revalidation ---------- */
1555
1556static int sas_get_phy_discover(struct domain_device *dev,
1557 int phy_id, struct smp_resp *disc_resp)
1558{
1559 int res;
1560 u8 *disc_req;
1561
1562 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1563 if (!disc_req)
1564 return -ENOMEM;
1565
1566 disc_req[1] = SMP_DISCOVER;
1567 disc_req[9] = phy_id;
1568
1569 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1570 disc_resp, DISCOVER_RESP_SIZE);
1571 if (res)
1572 goto out;
1573 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1574 res = disc_resp->result;
1575 goto out;
1576 }
1577out:
1578 kfree(disc_req);
1579 return res;
1580}
1581
1582static int sas_get_phy_change_count(struct domain_device *dev,
1583 int phy_id, int *pcc)
1584{
1585 int res;
1586 struct smp_resp *disc_resp;
1587
1588 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1589 if (!disc_resp)
1590 return -ENOMEM;
1591
1592 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1593 if (!res)
1594 *pcc = disc_resp->disc.change_count;
1595
1596 kfree(disc_resp);
1597 return res;
1598}
1599
1600static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1601 int phy_id, u8 *attached_sas_addr)
1602{
1603 int res;
1604 struct smp_resp *disc_resp;
1605 struct discover_resp *dr;
1606
1607 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1608 if (!disc_resp)
1609 return -ENOMEM;
1610 dr = &disc_resp->disc;
1611
1612 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1613 if (!res) {
1614 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1615 if (dr->attached_dev_type == 0)
1616 memset(attached_sas_addr, 0, 8);
1617 }
1618 kfree(disc_resp);
1619 return res;
1620}
1621
1622static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1623 int from_phy, bool update)
1624{
1625 struct expander_device *ex = &dev->ex_dev;
1626 int res = 0;
1627 int i;
1628
1629 for (i = from_phy; i < ex->num_phys; i++) {
1630 int phy_change_count = 0;
1631
1632 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1633 if (res)
1634 goto out;
1635 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1636 if (update)
1637 ex->ex_phy[i].phy_change_count =
1638 phy_change_count;
1639 *phy_id = i;
1640 return 0;
1641 }
1642 }
1643out:
1644 return res;
1645}
1646
1647static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1648{
1649 int res;
1650 u8 *rg_req;
1651 struct smp_resp *rg_resp;
1652
1653 rg_req = alloc_smp_req(RG_REQ_SIZE);
1654 if (!rg_req)
1655 return -ENOMEM;
1656
1657 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1658 if (!rg_resp) {
1659 kfree(rg_req);
1660 return -ENOMEM;
1661 }
1662
1663 rg_req[1] = SMP_REPORT_GENERAL;
1664
1665 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1666 RG_RESP_SIZE);
1667 if (res)
1668 goto out;
1669 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1670 res = rg_resp->result;
1671 goto out;
1672 }
1673
1674 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1675out:
1676 kfree(rg_resp);
1677 kfree(rg_req);
1678 return res;
1679}
1680/**
1681 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1682 * @dev:domain device to be detect.
1683 * @src_dev: the device which originated BROADCAST(CHANGE).
1684 *
1685 * Add self-configuration expander suport. Suppose two expander cascading,
1686 * when the first level expander is self-configuring, hotplug the disks in
1687 * second level expander, BROADCAST(CHANGE) will not only be originated
1688 * in the second level expander, but also be originated in the first level
1689 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1690 * expander changed count in two level expanders will all increment at least
1691 * once, but the phy which chang count has changed is the source device which
1692 * we concerned.
1693 */
1694
1695static int sas_find_bcast_dev(struct domain_device *dev,
1696 struct domain_device **src_dev)
1697{
1698 struct expander_device *ex = &dev->ex_dev;
1699 int ex_change_count = -1;
1700 int phy_id = -1;
1701 int res;
1702 struct domain_device *ch;
1703
1704 res = sas_get_ex_change_count(dev, &ex_change_count);
1705 if (res)
1706 goto out;
1707 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1708 /* Just detect if this expander phys phy change count changed,
1709 * in order to determine if this expander originate BROADCAST,
1710 * and do not update phy change count field in our structure.
1711 */
1712 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1713 if (phy_id != -1) {
1714 *src_dev = dev;
1715 ex->ex_change_count = ex_change_count;
1716 SAS_DPRINTK("Expander phy change count has changed\n");
1717 return res;
1718 } else
1719 SAS_DPRINTK("Expander phys DID NOT change\n");
1720 }
1721 list_for_each_entry(ch, &ex->children, siblings) {
1722 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1723 res = sas_find_bcast_dev(ch, src_dev);
1724 if (*src_dev)
1725 return res;
1726 }
1727 }
1728out:
1729 return res;
1730}
1731
1732static void sas_unregister_ex_tree(struct domain_device *dev)
1733{
1734 struct expander_device *ex = &dev->ex_dev;
1735 struct domain_device *child, *n;
1736
1737 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1738 child->gone = 1;
1739 if (child->dev_type == EDGE_DEV ||
1740 child->dev_type == FANOUT_DEV)
1741 sas_unregister_ex_tree(child);
1742 else
1743 sas_unregister_dev(child);
1744 }
1745 sas_unregister_dev(dev);
1746}
1747
1748static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1749 int phy_id, bool last)
1750{
1751 struct expander_device *ex_dev = &parent->ex_dev;
1752 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1753 struct domain_device *child, *n;
1754 if (last) {
1755 list_for_each_entry_safe(child, n,
1756 &ex_dev->children, siblings) {
1757 if (SAS_ADDR(child->sas_addr) ==
1758 SAS_ADDR(phy->attached_sas_addr)) {
1759 child->gone = 1;
1760 if (child->dev_type == EDGE_DEV ||
1761 child->dev_type == FANOUT_DEV)
1762 sas_unregister_ex_tree(child);
1763 else
1764 sas_unregister_dev(child);
1765 break;
1766 }
1767 }
1768 parent->gone = 1;
1769 sas_disable_routing(parent, phy->attached_sas_addr);
1770 }
1771 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1772 if (phy->port) {
1773 sas_port_delete_phy(phy->port, phy->phy);
1774 if (phy->port->num_phys == 0)
1775 sas_port_delete(phy->port);
1776 phy->port = NULL;
1777 }
1778}
1779
1780static int sas_discover_bfs_by_root_level(struct domain_device *root,
1781 const int level)
1782{
1783 struct expander_device *ex_root = &root->ex_dev;
1784 struct domain_device *child;
1785 int res = 0;
1786
1787 list_for_each_entry(child, &ex_root->children, siblings) {
1788 if (child->dev_type == EDGE_DEV ||
1789 child->dev_type == FANOUT_DEV) {
1790 struct sas_expander_device *ex =
1791 rphy_to_expander_device(child->rphy);
1792
1793 if (level > ex->level)
1794 res = sas_discover_bfs_by_root_level(child,
1795 level);
1796 else if (level == ex->level)
1797 res = sas_ex_discover_devices(child, -1);
1798 }
1799 }
1800 return res;
1801}
1802
1803static int sas_discover_bfs_by_root(struct domain_device *dev)
1804{
1805 int res;
1806 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1807 int level = ex->level+1;
1808
1809 res = sas_ex_discover_devices(dev, -1);
1810 if (res)
1811 goto out;
1812 do {
1813 res = sas_discover_bfs_by_root_level(dev, level);
1814 mb();
1815 level += 1;
1816 } while (level <= dev->port->disc.max_level);
1817out:
1818 return res;
1819}
1820
1821static int sas_discover_new(struct domain_device *dev, int phy_id)
1822{
1823 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1824 struct domain_device *child;
1825 bool found = false;
1826 int res, i;
1827
1828 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1829 SAS_ADDR(dev->sas_addr), phy_id);
1830 res = sas_ex_phy_discover(dev, phy_id);
1831 if (res)
1832 goto out;
1833 /* to support the wide port inserted */
1834 for (i = 0; i < dev->ex_dev.num_phys; i++) {
1835 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1836 if (i == phy_id)
1837 continue;
1838 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1839 SAS_ADDR(ex_phy->attached_sas_addr)) {
1840 found = true;
1841 break;
1842 }
1843 }
1844 if (found) {
1845 sas_ex_join_wide_port(dev, phy_id);
1846 return 0;
1847 }
1848 res = sas_ex_discover_devices(dev, phy_id);
1849 if (!res)
1850 goto out;
1851 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1852 if (SAS_ADDR(child->sas_addr) ==
1853 SAS_ADDR(ex_phy->attached_sas_addr)) {
1854 if (child->dev_type == EDGE_DEV ||
1855 child->dev_type == FANOUT_DEV)
1856 res = sas_discover_bfs_by_root(child);
1857 break;
1858 }
1859 }
1860out:
1861 return res;
1862}
1863
1864static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1865{
1866 struct expander_device *ex = &dev->ex_dev;
1867 struct ex_phy *phy = &ex->ex_phy[phy_id];
1868 u8 attached_sas_addr[8];
1869 int res;
1870
1871 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1872 switch (res) {
1873 case SMP_RESP_NO_PHY:
1874 phy->phy_state = PHY_NOT_PRESENT;
1875 sas_unregister_devs_sas_addr(dev, phy_id, last);
1876 goto out; break;
1877 case SMP_RESP_PHY_VACANT:
1878 phy->phy_state = PHY_VACANT;
1879 sas_unregister_devs_sas_addr(dev, phy_id, last);
1880 goto out; break;
1881 case SMP_RESP_FUNC_ACC:
1882 break;
1883 }
1884
1885 if (SAS_ADDR(attached_sas_addr) == 0) {
1886 phy->phy_state = PHY_EMPTY;
1887 sas_unregister_devs_sas_addr(dev, phy_id, last);
1888 } else if (SAS_ADDR(attached_sas_addr) ==
1889 SAS_ADDR(phy->attached_sas_addr)) {
1890 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1891 SAS_ADDR(dev->sas_addr), phy_id);
1892 sas_ex_phy_discover(dev, phy_id);
1893 } else
1894 res = sas_discover_new(dev, phy_id);
1895out:
1896 return res;
1897}
1898
1899/**
1900 * sas_rediscover - revalidate the domain.
1901 * @dev:domain device to be detect.
1902 * @phy_id: the phy id will be detected.
1903 *
1904 * NOTE: this process _must_ quit (return) as soon as any connection
1905 * errors are encountered. Connection recovery is done elsewhere.
1906 * Discover process only interrogates devices in order to discover the
1907 * domain.For plugging out, we un-register the device only when it is
1908 * the last phy in the port, for other phys in this port, we just delete it
1909 * from the port.For inserting, we do discovery when it is the
1910 * first phy,for other phys in this port, we add it to the port to
1911 * forming the wide-port.
1912 */
1913static int sas_rediscover(struct domain_device *dev, const int phy_id)
1914{
1915 struct expander_device *ex = &dev->ex_dev;
1916 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1917 int res = 0;
1918 int i;
1919 bool last = true; /* is this the last phy of the port */
1920
1921 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1922 SAS_ADDR(dev->sas_addr), phy_id);
1923
1924 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1925 for (i = 0; i < ex->num_phys; i++) {
1926 struct ex_phy *phy = &ex->ex_phy[i];
1927
1928 if (i == phy_id)
1929 continue;
1930 if (SAS_ADDR(phy->attached_sas_addr) ==
1931 SAS_ADDR(changed_phy->attached_sas_addr)) {
1932 SAS_DPRINTK("phy%d part of wide port with "
1933 "phy%d\n", phy_id, i);
1934 last = false;
1935 break;
1936 }
1937 }
1938 res = sas_rediscover_dev(dev, phy_id, last);
1939 } else
1940 res = sas_discover_new(dev, phy_id);
1941 return res;
1942}
1943
1944/**
1945 * sas_revalidate_domain -- revalidate the domain
1946 * @port: port to the domain of interest
1947 *
1948 * NOTE: this process _must_ quit (return) as soon as any connection
1949 * errors are encountered. Connection recovery is done elsewhere.
1950 * Discover process only interrogates devices in order to discover the
1951 * domain.
1952 */
1953int sas_ex_revalidate_domain(struct domain_device *port_dev)
1954{
1955 int res;
1956 struct domain_device *dev = NULL;
1957
1958 res = sas_find_bcast_dev(port_dev, &dev);
1959 if (res)
1960 goto out;
1961 if (dev) {
1962 struct expander_device *ex = &dev->ex_dev;
1963 int i = 0, phy_id;
1964
1965 do {
1966 phy_id = -1;
1967 res = sas_find_bcast_phy(dev, &phy_id, i, true);
1968 if (phy_id == -1)
1969 break;
1970 res = sas_rediscover(dev, phy_id);
1971 i = phy_id + 1;
1972 } while (i < ex->num_phys);
1973 }
1974out:
1975 return res;
1976}
1977
1978int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1979 struct request *req)
1980{
1981 struct domain_device *dev;
1982 int ret, type;
1983 struct request *rsp = req->next_rq;
1984
1985 if (!rsp) {
1986 printk("%s: space for a smp response is missing\n",
1987 __func__);
1988 return -EINVAL;
1989 }
1990
1991 /* no rphy means no smp target support (ie aic94xx host) */
1992 if (!rphy)
1993 return sas_smp_host_handler(shost, req, rsp);
1994
1995 type = rphy->identify.device_type;
1996
1997 if (type != SAS_EDGE_EXPANDER_DEVICE &&
1998 type != SAS_FANOUT_EXPANDER_DEVICE) {
1999 printk("%s: can we send a smp request to a device?\n",
2000 __func__);
2001 return -EINVAL;
2002 }
2003
2004 dev = sas_find_dev_by_rphy(rphy);
2005 if (!dev) {
2006 printk("%s: fail to find a domain_device?\n", __func__);
2007 return -EINVAL;
2008 }
2009
2010 /* do we need to support multiple segments? */
2011 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2012 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2013 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2014 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2015 return -EINVAL;
2016 }
2017
2018 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2019 bio_data(rsp->bio), blk_rq_bytes(rsp));
2020 if (ret > 0) {
2021 /* positive number is the untransferred residual */
2022 rsp->resid_len = ret;
2023 req->resid_len = 0;
2024 ret = 0;
2025 } else if (ret == 0) {
2026 rsp->resid_len = 0;
2027 req->resid_len = 0;
2028 }
2029
2030 return ret;
2031}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 *
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7 *
8 * This file is licensed under GPLv2.
9 */
10
11#include <linux/scatterlist.h>
12#include <linux/blkdev.h>
13#include <linux/slab.h>
14#include <asm/unaligned.h>
15
16#include "sas_internal.h"
17
18#include <scsi/sas_ata.h>
19#include <scsi/scsi_transport.h>
20#include <scsi/scsi_transport_sas.h>
21#include "../scsi_sas_internal.h"
22
23static int sas_discover_expander(struct domain_device *dev);
24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 u8 *sas_addr, int include);
27static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
28
29/* ---------- SMP task management ---------- */
30
31static void smp_task_timedout(struct timer_list *t)
32{
33 struct sas_task_slow *slow = from_timer(slow, t, timer);
34 struct sas_task *task = slow->task;
35 unsigned long flags;
36
37 spin_lock_irqsave(&task->task_state_lock, flags);
38 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
39 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
40 complete(&task->slow_task->completion);
41 }
42 spin_unlock_irqrestore(&task->task_state_lock, flags);
43}
44
45static void smp_task_done(struct sas_task *task)
46{
47 del_timer(&task->slow_task->timer);
48 complete(&task->slow_task->completion);
49}
50
51/* Give it some long enough timeout. In seconds. */
52#define SMP_TIMEOUT 10
53
54static int smp_execute_task_sg(struct domain_device *dev,
55 struct scatterlist *req, struct scatterlist *resp)
56{
57 int res, retry;
58 struct sas_task *task = NULL;
59 struct sas_internal *i =
60 to_sas_internal(dev->port->ha->core.shost->transportt);
61
62 mutex_lock(&dev->ex_dev.cmd_mutex);
63 for (retry = 0; retry < 3; retry++) {
64 if (test_bit(SAS_DEV_GONE, &dev->state)) {
65 res = -ECOMM;
66 break;
67 }
68
69 task = sas_alloc_slow_task(GFP_KERNEL);
70 if (!task) {
71 res = -ENOMEM;
72 break;
73 }
74 task->dev = dev;
75 task->task_proto = dev->tproto;
76 task->smp_task.smp_req = *req;
77 task->smp_task.smp_resp = *resp;
78
79 task->task_done = smp_task_done;
80
81 task->slow_task->timer.function = smp_task_timedout;
82 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
83 add_timer(&task->slow_task->timer);
84
85 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
86
87 if (res) {
88 del_timer(&task->slow_task->timer);
89 pr_notice("executing SMP task failed:%d\n", res);
90 break;
91 }
92
93 wait_for_completion(&task->slow_task->completion);
94 res = -ECOMM;
95 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
96 pr_notice("smp task timed out or aborted\n");
97 i->dft->lldd_abort_task(task);
98 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
99 pr_notice("SMP task aborted and not done\n");
100 break;
101 }
102 }
103 if (task->task_status.resp == SAS_TASK_COMPLETE &&
104 task->task_status.stat == SAM_STAT_GOOD) {
105 res = 0;
106 break;
107 }
108 if (task->task_status.resp == SAS_TASK_COMPLETE &&
109 task->task_status.stat == SAS_DATA_UNDERRUN) {
110 /* no error, but return the number of bytes of
111 * underrun */
112 res = task->task_status.residual;
113 break;
114 }
115 if (task->task_status.resp == SAS_TASK_COMPLETE &&
116 task->task_status.stat == SAS_DATA_OVERRUN) {
117 res = -EMSGSIZE;
118 break;
119 }
120 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
121 task->task_status.stat == SAS_DEVICE_UNKNOWN)
122 break;
123 else {
124 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
125 __func__,
126 SAS_ADDR(dev->sas_addr),
127 task->task_status.resp,
128 task->task_status.stat);
129 sas_free_task(task);
130 task = NULL;
131 }
132 }
133 mutex_unlock(&dev->ex_dev.cmd_mutex);
134
135 BUG_ON(retry == 3 && task != NULL);
136 sas_free_task(task);
137 return res;
138}
139
140static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
141 void *resp, int resp_size)
142{
143 struct scatterlist req_sg;
144 struct scatterlist resp_sg;
145
146 sg_init_one(&req_sg, req, req_size);
147 sg_init_one(&resp_sg, resp, resp_size);
148 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
149}
150
151/* ---------- Allocations ---------- */
152
153static inline void *alloc_smp_req(int size)
154{
155 u8 *p = kzalloc(size, GFP_KERNEL);
156 if (p)
157 p[0] = SMP_REQUEST;
158 return p;
159}
160
161static inline void *alloc_smp_resp(int size)
162{
163 return kzalloc(size, GFP_KERNEL);
164}
165
166static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
167{
168 switch (phy->routing_attr) {
169 case TABLE_ROUTING:
170 if (dev->ex_dev.t2t_supp)
171 return 'U';
172 else
173 return 'T';
174 case DIRECT_ROUTING:
175 return 'D';
176 case SUBTRACTIVE_ROUTING:
177 return 'S';
178 default:
179 return '?';
180 }
181}
182
183static enum sas_device_type to_dev_type(struct discover_resp *dr)
184{
185 /* This is detecting a failure to transmit initial dev to host
186 * FIS as described in section J.5 of sas-2 r16
187 */
188 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
189 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
190 return SAS_SATA_PENDING;
191 else
192 return dr->attached_dev_type;
193}
194
195static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
196{
197 enum sas_device_type dev_type;
198 enum sas_linkrate linkrate;
199 u8 sas_addr[SAS_ADDR_SIZE];
200 struct smp_resp *resp = rsp;
201 struct discover_resp *dr = &resp->disc;
202 struct sas_ha_struct *ha = dev->port->ha;
203 struct expander_device *ex = &dev->ex_dev;
204 struct ex_phy *phy = &ex->ex_phy[phy_id];
205 struct sas_rphy *rphy = dev->rphy;
206 bool new_phy = !phy->phy;
207 char *type;
208
209 if (new_phy) {
210 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
211 return;
212 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
213
214 /* FIXME: error_handling */
215 BUG_ON(!phy->phy);
216 }
217
218 switch (resp->result) {
219 case SMP_RESP_PHY_VACANT:
220 phy->phy_state = PHY_VACANT;
221 break;
222 default:
223 phy->phy_state = PHY_NOT_PRESENT;
224 break;
225 case SMP_RESP_FUNC_ACC:
226 phy->phy_state = PHY_EMPTY; /* do not know yet */
227 break;
228 }
229
230 /* check if anything important changed to squelch debug */
231 dev_type = phy->attached_dev_type;
232 linkrate = phy->linkrate;
233 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
234
235 /* Handle vacant phy - rest of dr data is not valid so skip it */
236 if (phy->phy_state == PHY_VACANT) {
237 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
238 phy->attached_dev_type = SAS_PHY_UNUSED;
239 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
240 phy->phy_id = phy_id;
241 goto skip;
242 } else
243 goto out;
244 }
245
246 phy->attached_dev_type = to_dev_type(dr);
247 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
248 goto out;
249 phy->phy_id = phy_id;
250 phy->linkrate = dr->linkrate;
251 phy->attached_sata_host = dr->attached_sata_host;
252 phy->attached_sata_dev = dr->attached_sata_dev;
253 phy->attached_sata_ps = dr->attached_sata_ps;
254 phy->attached_iproto = dr->iproto << 1;
255 phy->attached_tproto = dr->tproto << 1;
256 /* help some expanders that fail to zero sas_address in the 'no
257 * device' case
258 */
259 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
260 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
261 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
262 else
263 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
264 phy->attached_phy_id = dr->attached_phy_id;
265 phy->phy_change_count = dr->change_count;
266 phy->routing_attr = dr->routing_attr;
267 phy->virtual = dr->virtual;
268 phy->last_da_index = -1;
269
270 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
271 phy->phy->identify.device_type = dr->attached_dev_type;
272 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
273 phy->phy->identify.target_port_protocols = phy->attached_tproto;
274 if (!phy->attached_tproto && dr->attached_sata_dev)
275 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
276 phy->phy->identify.phy_identifier = phy_id;
277 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
278 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
279 phy->phy->minimum_linkrate = dr->pmin_linkrate;
280 phy->phy->maximum_linkrate = dr->pmax_linkrate;
281 phy->phy->negotiated_linkrate = phy->linkrate;
282 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
283
284 skip:
285 if (new_phy)
286 if (sas_phy_add(phy->phy)) {
287 sas_phy_free(phy->phy);
288 return;
289 }
290
291 out:
292 switch (phy->attached_dev_type) {
293 case SAS_SATA_PENDING:
294 type = "stp pending";
295 break;
296 case SAS_PHY_UNUSED:
297 type = "no device";
298 break;
299 case SAS_END_DEVICE:
300 if (phy->attached_iproto) {
301 if (phy->attached_tproto)
302 type = "host+target";
303 else
304 type = "host";
305 } else {
306 if (dr->attached_sata_dev)
307 type = "stp";
308 else
309 type = "ssp";
310 }
311 break;
312 case SAS_EDGE_EXPANDER_DEVICE:
313 case SAS_FANOUT_EXPANDER_DEVICE:
314 type = "smp";
315 break;
316 default:
317 type = "unknown";
318 }
319
320 /* this routine is polled by libata error recovery so filter
321 * unimportant messages
322 */
323 if (new_phy || phy->attached_dev_type != dev_type ||
324 phy->linkrate != linkrate ||
325 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
326 /* pass */;
327 else
328 return;
329
330 /* if the attached device type changed and ata_eh is active,
331 * make sure we run revalidation when eh completes (see:
332 * sas_enable_revalidation)
333 */
334 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
335 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
336
337 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
338 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
339 SAS_ADDR(dev->sas_addr), phy->phy_id,
340 sas_route_char(dev, phy), phy->linkrate,
341 SAS_ADDR(phy->attached_sas_addr), type);
342}
343
344/* check if we have an existing attached ata device on this expander phy */
345struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
346{
347 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
348 struct domain_device *dev;
349 struct sas_rphy *rphy;
350
351 if (!ex_phy->port)
352 return NULL;
353
354 rphy = ex_phy->port->rphy;
355 if (!rphy)
356 return NULL;
357
358 dev = sas_find_dev_by_rphy(rphy);
359
360 if (dev && dev_is_sata(dev))
361 return dev;
362
363 return NULL;
364}
365
366#define DISCOVER_REQ_SIZE 16
367#define DISCOVER_RESP_SIZE 56
368
369static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
370 u8 *disc_resp, int single)
371{
372 struct discover_resp *dr;
373 int res;
374
375 disc_req[9] = single;
376
377 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
378 disc_resp, DISCOVER_RESP_SIZE);
379 if (res)
380 return res;
381 dr = &((struct smp_resp *)disc_resp)->disc;
382 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
383 pr_notice("Found loopback topology, just ignore it!\n");
384 return 0;
385 }
386 sas_set_ex_phy(dev, single, disc_resp);
387 return 0;
388}
389
390int sas_ex_phy_discover(struct domain_device *dev, int single)
391{
392 struct expander_device *ex = &dev->ex_dev;
393 int res = 0;
394 u8 *disc_req;
395 u8 *disc_resp;
396
397 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
398 if (!disc_req)
399 return -ENOMEM;
400
401 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
402 if (!disc_resp) {
403 kfree(disc_req);
404 return -ENOMEM;
405 }
406
407 disc_req[1] = SMP_DISCOVER;
408
409 if (0 <= single && single < ex->num_phys) {
410 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
411 } else {
412 int i;
413
414 for (i = 0; i < ex->num_phys; i++) {
415 res = sas_ex_phy_discover_helper(dev, disc_req,
416 disc_resp, i);
417 if (res)
418 goto out_err;
419 }
420 }
421out_err:
422 kfree(disc_resp);
423 kfree(disc_req);
424 return res;
425}
426
427static int sas_expander_discover(struct domain_device *dev)
428{
429 struct expander_device *ex = &dev->ex_dev;
430 int res = -ENOMEM;
431
432 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
433 if (!ex->ex_phy)
434 return -ENOMEM;
435
436 res = sas_ex_phy_discover(dev, -1);
437 if (res)
438 goto out_err;
439
440 return 0;
441 out_err:
442 kfree(ex->ex_phy);
443 ex->ex_phy = NULL;
444 return res;
445}
446
447#define MAX_EXPANDER_PHYS 128
448
449static void ex_assign_report_general(struct domain_device *dev,
450 struct smp_resp *resp)
451{
452 struct report_general_resp *rg = &resp->rg;
453
454 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
455 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
456 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
457 dev->ex_dev.t2t_supp = rg->t2t_supp;
458 dev->ex_dev.conf_route_table = rg->conf_route_table;
459 dev->ex_dev.configuring = rg->configuring;
460 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
461}
462
463#define RG_REQ_SIZE 8
464#define RG_RESP_SIZE 32
465
466static int sas_ex_general(struct domain_device *dev)
467{
468 u8 *rg_req;
469 struct smp_resp *rg_resp;
470 int res;
471 int i;
472
473 rg_req = alloc_smp_req(RG_REQ_SIZE);
474 if (!rg_req)
475 return -ENOMEM;
476
477 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
478 if (!rg_resp) {
479 kfree(rg_req);
480 return -ENOMEM;
481 }
482
483 rg_req[1] = SMP_REPORT_GENERAL;
484
485 for (i = 0; i < 5; i++) {
486 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
487 RG_RESP_SIZE);
488
489 if (res) {
490 pr_notice("RG to ex %016llx failed:0x%x\n",
491 SAS_ADDR(dev->sas_addr), res);
492 goto out;
493 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
494 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
495 SAS_ADDR(dev->sas_addr), rg_resp->result);
496 res = rg_resp->result;
497 goto out;
498 }
499
500 ex_assign_report_general(dev, rg_resp);
501
502 if (dev->ex_dev.configuring) {
503 pr_debug("RG: ex %llx self-configuring...\n",
504 SAS_ADDR(dev->sas_addr));
505 schedule_timeout_interruptible(5*HZ);
506 } else
507 break;
508 }
509out:
510 kfree(rg_req);
511 kfree(rg_resp);
512 return res;
513}
514
515static void ex_assign_manuf_info(struct domain_device *dev, void
516 *_mi_resp)
517{
518 u8 *mi_resp = _mi_resp;
519 struct sas_rphy *rphy = dev->rphy;
520 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
521
522 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
523 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
524 memcpy(edev->product_rev, mi_resp + 36,
525 SAS_EXPANDER_PRODUCT_REV_LEN);
526
527 if (mi_resp[8] & 1) {
528 memcpy(edev->component_vendor_id, mi_resp + 40,
529 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
530 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
531 edev->component_revision_id = mi_resp[50];
532 }
533}
534
535#define MI_REQ_SIZE 8
536#define MI_RESP_SIZE 64
537
538static int sas_ex_manuf_info(struct domain_device *dev)
539{
540 u8 *mi_req;
541 u8 *mi_resp;
542 int res;
543
544 mi_req = alloc_smp_req(MI_REQ_SIZE);
545 if (!mi_req)
546 return -ENOMEM;
547
548 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
549 if (!mi_resp) {
550 kfree(mi_req);
551 return -ENOMEM;
552 }
553
554 mi_req[1] = SMP_REPORT_MANUF_INFO;
555
556 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
557 if (res) {
558 pr_notice("MI: ex %016llx failed:0x%x\n",
559 SAS_ADDR(dev->sas_addr), res);
560 goto out;
561 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
562 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
563 SAS_ADDR(dev->sas_addr), mi_resp[2]);
564 goto out;
565 }
566
567 ex_assign_manuf_info(dev, mi_resp);
568out:
569 kfree(mi_req);
570 kfree(mi_resp);
571 return res;
572}
573
574#define PC_REQ_SIZE 44
575#define PC_RESP_SIZE 8
576
577int sas_smp_phy_control(struct domain_device *dev, int phy_id,
578 enum phy_func phy_func,
579 struct sas_phy_linkrates *rates)
580{
581 u8 *pc_req;
582 u8 *pc_resp;
583 int res;
584
585 pc_req = alloc_smp_req(PC_REQ_SIZE);
586 if (!pc_req)
587 return -ENOMEM;
588
589 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
590 if (!pc_resp) {
591 kfree(pc_req);
592 return -ENOMEM;
593 }
594
595 pc_req[1] = SMP_PHY_CONTROL;
596 pc_req[9] = phy_id;
597 pc_req[10]= phy_func;
598 if (rates) {
599 pc_req[32] = rates->minimum_linkrate << 4;
600 pc_req[33] = rates->maximum_linkrate << 4;
601 }
602
603 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
604 if (res) {
605 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
606 SAS_ADDR(dev->sas_addr), phy_id, res);
607 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
608 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
609 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
610 res = pc_resp[2];
611 }
612 kfree(pc_resp);
613 kfree(pc_req);
614 return res;
615}
616
617static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
618{
619 struct expander_device *ex = &dev->ex_dev;
620 struct ex_phy *phy = &ex->ex_phy[phy_id];
621
622 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
623 phy->linkrate = SAS_PHY_DISABLED;
624}
625
626static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
627{
628 struct expander_device *ex = &dev->ex_dev;
629 int i;
630
631 for (i = 0; i < ex->num_phys; i++) {
632 struct ex_phy *phy = &ex->ex_phy[i];
633
634 if (phy->phy_state == PHY_VACANT ||
635 phy->phy_state == PHY_NOT_PRESENT)
636 continue;
637
638 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
639 sas_ex_disable_phy(dev, i);
640 }
641}
642
643static int sas_dev_present_in_domain(struct asd_sas_port *port,
644 u8 *sas_addr)
645{
646 struct domain_device *dev;
647
648 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
649 return 1;
650 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
651 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
652 return 1;
653 }
654 return 0;
655}
656
657#define RPEL_REQ_SIZE 16
658#define RPEL_RESP_SIZE 32
659int sas_smp_get_phy_events(struct sas_phy *phy)
660{
661 int res;
662 u8 *req;
663 u8 *resp;
664 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
665 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
666
667 req = alloc_smp_req(RPEL_REQ_SIZE);
668 if (!req)
669 return -ENOMEM;
670
671 resp = alloc_smp_resp(RPEL_RESP_SIZE);
672 if (!resp) {
673 kfree(req);
674 return -ENOMEM;
675 }
676
677 req[1] = SMP_REPORT_PHY_ERR_LOG;
678 req[9] = phy->number;
679
680 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
681 resp, RPEL_RESP_SIZE);
682
683 if (res)
684 goto out;
685
686 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
687 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
688 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
689 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
690
691 out:
692 kfree(req);
693 kfree(resp);
694 return res;
695
696}
697
698#ifdef CONFIG_SCSI_SAS_ATA
699
700#define RPS_REQ_SIZE 16
701#define RPS_RESP_SIZE 60
702
703int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
704 struct smp_resp *rps_resp)
705{
706 int res;
707 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
708 u8 *resp = (u8 *)rps_resp;
709
710 if (!rps_req)
711 return -ENOMEM;
712
713 rps_req[1] = SMP_REPORT_PHY_SATA;
714 rps_req[9] = phy_id;
715
716 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
717 rps_resp, RPS_RESP_SIZE);
718
719 /* 0x34 is the FIS type for the D2H fis. There's a potential
720 * standards cockup here. sas-2 explicitly specifies the FIS
721 * should be encoded so that FIS type is in resp[24].
722 * However, some expanders endian reverse this. Undo the
723 * reversal here */
724 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
725 int i;
726
727 for (i = 0; i < 5; i++) {
728 int j = 24 + (i*4);
729 u8 a, b;
730 a = resp[j + 0];
731 b = resp[j + 1];
732 resp[j + 0] = resp[j + 3];
733 resp[j + 1] = resp[j + 2];
734 resp[j + 2] = b;
735 resp[j + 3] = a;
736 }
737 }
738
739 kfree(rps_req);
740 return res;
741}
742#endif
743
744static void sas_ex_get_linkrate(struct domain_device *parent,
745 struct domain_device *child,
746 struct ex_phy *parent_phy)
747{
748 struct expander_device *parent_ex = &parent->ex_dev;
749 struct sas_port *port;
750 int i;
751
752 child->pathways = 0;
753
754 port = parent_phy->port;
755
756 for (i = 0; i < parent_ex->num_phys; i++) {
757 struct ex_phy *phy = &parent_ex->ex_phy[i];
758
759 if (phy->phy_state == PHY_VACANT ||
760 phy->phy_state == PHY_NOT_PRESENT)
761 continue;
762
763 if (SAS_ADDR(phy->attached_sas_addr) ==
764 SAS_ADDR(child->sas_addr)) {
765
766 child->min_linkrate = min(parent->min_linkrate,
767 phy->linkrate);
768 child->max_linkrate = max(parent->max_linkrate,
769 phy->linkrate);
770 child->pathways++;
771 sas_port_add_phy(port, phy->phy);
772 }
773 }
774 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
775 child->pathways = min(child->pathways, parent->pathways);
776}
777
778static struct domain_device *sas_ex_discover_end_dev(
779 struct domain_device *parent, int phy_id)
780{
781 struct expander_device *parent_ex = &parent->ex_dev;
782 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
783 struct domain_device *child = NULL;
784 struct sas_rphy *rphy;
785 int res;
786
787 if (phy->attached_sata_host || phy->attached_sata_ps)
788 return NULL;
789
790 child = sas_alloc_device();
791 if (!child)
792 return NULL;
793
794 kref_get(&parent->kref);
795 child->parent = parent;
796 child->port = parent->port;
797 child->iproto = phy->attached_iproto;
798 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
799 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
800 if (!phy->port) {
801 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
802 if (unlikely(!phy->port))
803 goto out_err;
804 if (unlikely(sas_port_add(phy->port) != 0)) {
805 sas_port_free(phy->port);
806 goto out_err;
807 }
808 }
809 sas_ex_get_linkrate(parent, child, phy);
810 sas_device_set_phy(child, phy->port);
811
812#ifdef CONFIG_SCSI_SAS_ATA
813 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
814 if (child->linkrate > parent->min_linkrate) {
815 struct sas_phy *cphy = child->phy;
816 enum sas_linkrate min_prate = cphy->minimum_linkrate,
817 parent_min_lrate = parent->min_linkrate,
818 min_linkrate = (min_prate > parent_min_lrate) ?
819 parent_min_lrate : 0;
820 struct sas_phy_linkrates rates = {
821 .maximum_linkrate = parent->min_linkrate,
822 .minimum_linkrate = min_linkrate,
823 };
824 int ret;
825
826 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
827 SAS_ADDR(child->sas_addr), phy_id);
828 ret = sas_smp_phy_control(parent, phy_id,
829 PHY_FUNC_LINK_RESET, &rates);
830 if (ret) {
831 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
832 SAS_ADDR(child->sas_addr), phy_id, ret);
833 goto out_free;
834 }
835 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
836 SAS_ADDR(child->sas_addr), phy_id);
837 child->linkrate = child->min_linkrate;
838 }
839 res = sas_get_ata_info(child, phy);
840 if (res)
841 goto out_free;
842
843 sas_init_dev(child);
844 res = sas_ata_init(child);
845 if (res)
846 goto out_free;
847 rphy = sas_end_device_alloc(phy->port);
848 if (!rphy)
849 goto out_free;
850 rphy->identify.phy_identifier = phy_id;
851
852 child->rphy = rphy;
853 get_device(&rphy->dev);
854
855 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
856
857 res = sas_discover_sata(child);
858 if (res) {
859 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
860 SAS_ADDR(child->sas_addr),
861 SAS_ADDR(parent->sas_addr), phy_id, res);
862 goto out_list_del;
863 }
864 } else
865#endif
866 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
867 child->dev_type = SAS_END_DEVICE;
868 rphy = sas_end_device_alloc(phy->port);
869 /* FIXME: error handling */
870 if (unlikely(!rphy))
871 goto out_free;
872 child->tproto = phy->attached_tproto;
873 sas_init_dev(child);
874
875 child->rphy = rphy;
876 get_device(&rphy->dev);
877 rphy->identify.phy_identifier = phy_id;
878 sas_fill_in_rphy(child, rphy);
879
880 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
881
882 res = sas_discover_end_dev(child);
883 if (res) {
884 pr_notice("sas_discover_end_dev() for device %16llx at %016llx:%02d returned 0x%x\n",
885 SAS_ADDR(child->sas_addr),
886 SAS_ADDR(parent->sas_addr), phy_id, res);
887 goto out_list_del;
888 }
889 } else {
890 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
891 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
892 phy_id);
893 goto out_free;
894 }
895
896 list_add_tail(&child->siblings, &parent_ex->children);
897 return child;
898
899 out_list_del:
900 sas_rphy_free(child->rphy);
901 list_del(&child->disco_list_node);
902 spin_lock_irq(&parent->port->dev_list_lock);
903 list_del(&child->dev_list_node);
904 spin_unlock_irq(&parent->port->dev_list_lock);
905 out_free:
906 sas_port_delete(phy->port);
907 out_err:
908 phy->port = NULL;
909 sas_put_device(child);
910 return NULL;
911}
912
913/* See if this phy is part of a wide port */
914static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
915{
916 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
917 int i;
918
919 for (i = 0; i < parent->ex_dev.num_phys; i++) {
920 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
921
922 if (ephy == phy)
923 continue;
924
925 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
926 SAS_ADDR_SIZE) && ephy->port) {
927 sas_port_add_phy(ephy->port, phy->phy);
928 phy->port = ephy->port;
929 phy->phy_state = PHY_DEVICE_DISCOVERED;
930 return true;
931 }
932 }
933
934 return false;
935}
936
937static struct domain_device *sas_ex_discover_expander(
938 struct domain_device *parent, int phy_id)
939{
940 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
941 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
942 struct domain_device *child = NULL;
943 struct sas_rphy *rphy;
944 struct sas_expander_device *edev;
945 struct asd_sas_port *port;
946 int res;
947
948 if (phy->routing_attr == DIRECT_ROUTING) {
949 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
950 SAS_ADDR(parent->sas_addr), phy_id,
951 SAS_ADDR(phy->attached_sas_addr),
952 phy->attached_phy_id);
953 return NULL;
954 }
955 child = sas_alloc_device();
956 if (!child)
957 return NULL;
958
959 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
960 /* FIXME: better error handling */
961 BUG_ON(sas_port_add(phy->port) != 0);
962
963
964 switch (phy->attached_dev_type) {
965 case SAS_EDGE_EXPANDER_DEVICE:
966 rphy = sas_expander_alloc(phy->port,
967 SAS_EDGE_EXPANDER_DEVICE);
968 break;
969 case SAS_FANOUT_EXPANDER_DEVICE:
970 rphy = sas_expander_alloc(phy->port,
971 SAS_FANOUT_EXPANDER_DEVICE);
972 break;
973 default:
974 rphy = NULL; /* shut gcc up */
975 BUG();
976 }
977 port = parent->port;
978 child->rphy = rphy;
979 get_device(&rphy->dev);
980 edev = rphy_to_expander_device(rphy);
981 child->dev_type = phy->attached_dev_type;
982 kref_get(&parent->kref);
983 child->parent = parent;
984 child->port = port;
985 child->iproto = phy->attached_iproto;
986 child->tproto = phy->attached_tproto;
987 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
988 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
989 sas_ex_get_linkrate(parent, child, phy);
990 edev->level = parent_ex->level + 1;
991 parent->port->disc.max_level = max(parent->port->disc.max_level,
992 edev->level);
993 sas_init_dev(child);
994 sas_fill_in_rphy(child, rphy);
995 sas_rphy_add(rphy);
996
997 spin_lock_irq(&parent->port->dev_list_lock);
998 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
999 spin_unlock_irq(&parent->port->dev_list_lock);
1000
1001 res = sas_discover_expander(child);
1002 if (res) {
1003 sas_rphy_delete(rphy);
1004 spin_lock_irq(&parent->port->dev_list_lock);
1005 list_del(&child->dev_list_node);
1006 spin_unlock_irq(&parent->port->dev_list_lock);
1007 sas_put_device(child);
1008 sas_port_delete(phy->port);
1009 phy->port = NULL;
1010 return NULL;
1011 }
1012 list_add_tail(&child->siblings, &parent->ex_dev.children);
1013 return child;
1014}
1015
1016static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1017{
1018 struct expander_device *ex = &dev->ex_dev;
1019 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1020 struct domain_device *child = NULL;
1021 int res = 0;
1022
1023 /* Phy state */
1024 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1025 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1026 res = sas_ex_phy_discover(dev, phy_id);
1027 if (res)
1028 return res;
1029 }
1030
1031 /* Parent and domain coherency */
1032 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1033 SAS_ADDR(dev->port->sas_addr))) {
1034 sas_add_parent_port(dev, phy_id);
1035 return 0;
1036 }
1037 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1038 SAS_ADDR(dev->parent->sas_addr))) {
1039 sas_add_parent_port(dev, phy_id);
1040 if (ex_phy->routing_attr == TABLE_ROUTING)
1041 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1042 return 0;
1043 }
1044
1045 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1046 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1047
1048 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1049 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1050 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1051 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1052 }
1053 return 0;
1054 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1055 return 0;
1056
1057 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1058 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1059 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1060 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1061 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1062 ex_phy->attached_dev_type,
1063 SAS_ADDR(dev->sas_addr),
1064 phy_id);
1065 return 0;
1066 }
1067
1068 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1069 if (res) {
1070 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1071 SAS_ADDR(ex_phy->attached_sas_addr), res);
1072 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1073 return res;
1074 }
1075
1076 if (sas_ex_join_wide_port(dev, phy_id)) {
1077 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1078 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1079 return res;
1080 }
1081
1082 switch (ex_phy->attached_dev_type) {
1083 case SAS_END_DEVICE:
1084 case SAS_SATA_PENDING:
1085 child = sas_ex_discover_end_dev(dev, phy_id);
1086 break;
1087 case SAS_FANOUT_EXPANDER_DEVICE:
1088 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1089 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1090 SAS_ADDR(ex_phy->attached_sas_addr),
1091 ex_phy->attached_phy_id,
1092 SAS_ADDR(dev->sas_addr),
1093 phy_id);
1094 sas_ex_disable_phy(dev, phy_id);
1095 return res;
1096 } else
1097 memcpy(dev->port->disc.fanout_sas_addr,
1098 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1099 /* fallthrough */
1100 case SAS_EDGE_EXPANDER_DEVICE:
1101 child = sas_ex_discover_expander(dev, phy_id);
1102 break;
1103 default:
1104 break;
1105 }
1106
1107 if (!child)
1108 pr_notice("ex %016llx phy%02d failed to discover\n",
1109 SAS_ADDR(dev->sas_addr), phy_id);
1110 return res;
1111}
1112
1113static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1114{
1115 struct expander_device *ex = &dev->ex_dev;
1116 int i;
1117
1118 for (i = 0; i < ex->num_phys; i++) {
1119 struct ex_phy *phy = &ex->ex_phy[i];
1120
1121 if (phy->phy_state == PHY_VACANT ||
1122 phy->phy_state == PHY_NOT_PRESENT)
1123 continue;
1124
1125 if (dev_is_expander(phy->attached_dev_type) &&
1126 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1127
1128 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1129
1130 return 1;
1131 }
1132 }
1133 return 0;
1134}
1135
1136static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1137{
1138 struct expander_device *ex = &dev->ex_dev;
1139 struct domain_device *child;
1140 u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1141
1142 list_for_each_entry(child, &ex->children, siblings) {
1143 if (!dev_is_expander(child->dev_type))
1144 continue;
1145 if (sub_addr[0] == 0) {
1146 sas_find_sub_addr(child, sub_addr);
1147 continue;
1148 } else {
1149 u8 s2[SAS_ADDR_SIZE];
1150
1151 if (sas_find_sub_addr(child, s2) &&
1152 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1153
1154 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1155 SAS_ADDR(dev->sas_addr),
1156 SAS_ADDR(child->sas_addr),
1157 SAS_ADDR(s2),
1158 SAS_ADDR(sub_addr));
1159
1160 sas_ex_disable_port(child, s2);
1161 }
1162 }
1163 }
1164 return 0;
1165}
1166/**
1167 * sas_ex_discover_devices - discover devices attached to this expander
1168 * @dev: pointer to the expander domain device
1169 * @single: if you want to do a single phy, else set to -1;
1170 *
1171 * Configure this expander for use with its devices and register the
1172 * devices of this expander.
1173 */
1174static int sas_ex_discover_devices(struct domain_device *dev, int single)
1175{
1176 struct expander_device *ex = &dev->ex_dev;
1177 int i = 0, end = ex->num_phys;
1178 int res = 0;
1179
1180 if (0 <= single && single < end) {
1181 i = single;
1182 end = i+1;
1183 }
1184
1185 for ( ; i < end; i++) {
1186 struct ex_phy *ex_phy = &ex->ex_phy[i];
1187
1188 if (ex_phy->phy_state == PHY_VACANT ||
1189 ex_phy->phy_state == PHY_NOT_PRESENT ||
1190 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1191 continue;
1192
1193 switch (ex_phy->linkrate) {
1194 case SAS_PHY_DISABLED:
1195 case SAS_PHY_RESET_PROBLEM:
1196 case SAS_SATA_PORT_SELECTOR:
1197 continue;
1198 default:
1199 res = sas_ex_discover_dev(dev, i);
1200 if (res)
1201 break;
1202 continue;
1203 }
1204 }
1205
1206 if (!res)
1207 sas_check_level_subtractive_boundary(dev);
1208
1209 return res;
1210}
1211
1212static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1213{
1214 struct expander_device *ex = &dev->ex_dev;
1215 int i;
1216 u8 *sub_sas_addr = NULL;
1217
1218 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1219 return 0;
1220
1221 for (i = 0; i < ex->num_phys; i++) {
1222 struct ex_phy *phy = &ex->ex_phy[i];
1223
1224 if (phy->phy_state == PHY_VACANT ||
1225 phy->phy_state == PHY_NOT_PRESENT)
1226 continue;
1227
1228 if (dev_is_expander(phy->attached_dev_type) &&
1229 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1230
1231 if (!sub_sas_addr)
1232 sub_sas_addr = &phy->attached_sas_addr[0];
1233 else if (SAS_ADDR(sub_sas_addr) !=
1234 SAS_ADDR(phy->attached_sas_addr)) {
1235
1236 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1237 SAS_ADDR(dev->sas_addr), i,
1238 SAS_ADDR(phy->attached_sas_addr),
1239 SAS_ADDR(sub_sas_addr));
1240 sas_ex_disable_phy(dev, i);
1241 }
1242 }
1243 }
1244 return 0;
1245}
1246
1247static void sas_print_parent_topology_bug(struct domain_device *child,
1248 struct ex_phy *parent_phy,
1249 struct ex_phy *child_phy)
1250{
1251 static const char *ex_type[] = {
1252 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1253 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1254 };
1255 struct domain_device *parent = child->parent;
1256
1257 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1258 ex_type[parent->dev_type],
1259 SAS_ADDR(parent->sas_addr),
1260 parent_phy->phy_id,
1261
1262 ex_type[child->dev_type],
1263 SAS_ADDR(child->sas_addr),
1264 child_phy->phy_id,
1265
1266 sas_route_char(parent, parent_phy),
1267 sas_route_char(child, child_phy));
1268}
1269
1270static int sas_check_eeds(struct domain_device *child,
1271 struct ex_phy *parent_phy,
1272 struct ex_phy *child_phy)
1273{
1274 int res = 0;
1275 struct domain_device *parent = child->parent;
1276
1277 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1278 res = -ENODEV;
1279 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1280 SAS_ADDR(parent->sas_addr),
1281 parent_phy->phy_id,
1282 SAS_ADDR(child->sas_addr),
1283 child_phy->phy_id,
1284 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1285 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1286 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1287 SAS_ADDR_SIZE);
1288 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1289 SAS_ADDR_SIZE);
1290 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1291 SAS_ADDR(parent->sas_addr)) ||
1292 (SAS_ADDR(parent->port->disc.eeds_a) ==
1293 SAS_ADDR(child->sas_addr)))
1294 &&
1295 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1296 SAS_ADDR(parent->sas_addr)) ||
1297 (SAS_ADDR(parent->port->disc.eeds_b) ==
1298 SAS_ADDR(child->sas_addr))))
1299 ;
1300 else {
1301 res = -ENODEV;
1302 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1303 SAS_ADDR(parent->sas_addr),
1304 parent_phy->phy_id,
1305 SAS_ADDR(child->sas_addr),
1306 child_phy->phy_id);
1307 }
1308
1309 return res;
1310}
1311
1312/* Here we spill over 80 columns. It is intentional.
1313 */
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316 struct expander_device *child_ex = &child->ex_dev;
1317 struct expander_device *parent_ex;
1318 int i;
1319 int res = 0;
1320
1321 if (!child->parent)
1322 return 0;
1323
1324 if (!dev_is_expander(child->parent->dev_type))
1325 return 0;
1326
1327 parent_ex = &child->parent->ex_dev;
1328
1329 for (i = 0; i < parent_ex->num_phys; i++) {
1330 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1331 struct ex_phy *child_phy;
1332
1333 if (parent_phy->phy_state == PHY_VACANT ||
1334 parent_phy->phy_state == PHY_NOT_PRESENT)
1335 continue;
1336
1337 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1338 continue;
1339
1340 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1341
1342 switch (child->parent->dev_type) {
1343 case SAS_EDGE_EXPANDER_DEVICE:
1344 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1345 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1346 child_phy->routing_attr != TABLE_ROUTING) {
1347 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1348 res = -ENODEV;
1349 }
1350 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1351 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352 res = sas_check_eeds(child, parent_phy, child_phy);
1353 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1354 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355 res = -ENODEV;
1356 }
1357 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1358 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1359 (child_phy->routing_attr == TABLE_ROUTING &&
1360 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1361 /* All good */;
1362 } else {
1363 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1364 res = -ENODEV;
1365 }
1366 }
1367 break;
1368 case SAS_FANOUT_EXPANDER_DEVICE:
1369 if (parent_phy->routing_attr != TABLE_ROUTING ||
1370 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1371 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1372 res = -ENODEV;
1373 }
1374 break;
1375 default:
1376 break;
1377 }
1378 }
1379
1380 return res;
1381}
1382
1383#define RRI_REQ_SIZE 16
1384#define RRI_RESP_SIZE 44
1385
1386static int sas_configure_present(struct domain_device *dev, int phy_id,
1387 u8 *sas_addr, int *index, int *present)
1388{
1389 int i, res = 0;
1390 struct expander_device *ex = &dev->ex_dev;
1391 struct ex_phy *phy = &ex->ex_phy[phy_id];
1392 u8 *rri_req;
1393 u8 *rri_resp;
1394
1395 *present = 0;
1396 *index = 0;
1397
1398 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1399 if (!rri_req)
1400 return -ENOMEM;
1401
1402 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1403 if (!rri_resp) {
1404 kfree(rri_req);
1405 return -ENOMEM;
1406 }
1407
1408 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1409 rri_req[9] = phy_id;
1410
1411 for (i = 0; i < ex->max_route_indexes ; i++) {
1412 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1413 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1414 RRI_RESP_SIZE);
1415 if (res)
1416 goto out;
1417 res = rri_resp[2];
1418 if (res == SMP_RESP_NO_INDEX) {
1419 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1420 SAS_ADDR(dev->sas_addr), phy_id, i);
1421 goto out;
1422 } else if (res != SMP_RESP_FUNC_ACC) {
1423 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1424 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1425 i, res);
1426 goto out;
1427 }
1428 if (SAS_ADDR(sas_addr) != 0) {
1429 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1430 *index = i;
1431 if ((rri_resp[12] & 0x80) == 0x80)
1432 *present = 0;
1433 else
1434 *present = 1;
1435 goto out;
1436 } else if (SAS_ADDR(rri_resp+16) == 0) {
1437 *index = i;
1438 *present = 0;
1439 goto out;
1440 }
1441 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1442 phy->last_da_index < i) {
1443 phy->last_da_index = i;
1444 *index = i;
1445 *present = 0;
1446 goto out;
1447 }
1448 }
1449 res = -1;
1450out:
1451 kfree(rri_req);
1452 kfree(rri_resp);
1453 return res;
1454}
1455
1456#define CRI_REQ_SIZE 44
1457#define CRI_RESP_SIZE 8
1458
1459static int sas_configure_set(struct domain_device *dev, int phy_id,
1460 u8 *sas_addr, int index, int include)
1461{
1462 int res;
1463 u8 *cri_req;
1464 u8 *cri_resp;
1465
1466 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1467 if (!cri_req)
1468 return -ENOMEM;
1469
1470 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1471 if (!cri_resp) {
1472 kfree(cri_req);
1473 return -ENOMEM;
1474 }
1475
1476 cri_req[1] = SMP_CONF_ROUTE_INFO;
1477 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1478 cri_req[9] = phy_id;
1479 if (SAS_ADDR(sas_addr) == 0 || !include)
1480 cri_req[12] |= 0x80;
1481 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1482
1483 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1484 CRI_RESP_SIZE);
1485 if (res)
1486 goto out;
1487 res = cri_resp[2];
1488 if (res == SMP_RESP_NO_INDEX) {
1489 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1490 SAS_ADDR(dev->sas_addr), phy_id, index);
1491 }
1492out:
1493 kfree(cri_req);
1494 kfree(cri_resp);
1495 return res;
1496}
1497
1498static int sas_configure_phy(struct domain_device *dev, int phy_id,
1499 u8 *sas_addr, int include)
1500{
1501 int index;
1502 int present;
1503 int res;
1504
1505 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1506 if (res)
1507 return res;
1508 if (include ^ present)
1509 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1510
1511 return res;
1512}
1513
1514/**
1515 * sas_configure_parent - configure routing table of parent
1516 * @parent: parent expander
1517 * @child: child expander
1518 * @sas_addr: SAS port identifier of device directly attached to child
1519 * @include: whether or not to include @child in the expander routing table
1520 */
1521static int sas_configure_parent(struct domain_device *parent,
1522 struct domain_device *child,
1523 u8 *sas_addr, int include)
1524{
1525 struct expander_device *ex_parent = &parent->ex_dev;
1526 int res = 0;
1527 int i;
1528
1529 if (parent->parent) {
1530 res = sas_configure_parent(parent->parent, parent, sas_addr,
1531 include);
1532 if (res)
1533 return res;
1534 }
1535
1536 if (ex_parent->conf_route_table == 0) {
1537 pr_debug("ex %016llx has self-configuring routing table\n",
1538 SAS_ADDR(parent->sas_addr));
1539 return 0;
1540 }
1541
1542 for (i = 0; i < ex_parent->num_phys; i++) {
1543 struct ex_phy *phy = &ex_parent->ex_phy[i];
1544
1545 if ((phy->routing_attr == TABLE_ROUTING) &&
1546 (SAS_ADDR(phy->attached_sas_addr) ==
1547 SAS_ADDR(child->sas_addr))) {
1548 res = sas_configure_phy(parent, i, sas_addr, include);
1549 if (res)
1550 return res;
1551 }
1552 }
1553
1554 return res;
1555}
1556
1557/**
1558 * sas_configure_routing - configure routing
1559 * @dev: expander device
1560 * @sas_addr: port identifier of device directly attached to the expander device
1561 */
1562static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1563{
1564 if (dev->parent)
1565 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1566 return 0;
1567}
1568
1569static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1570{
1571 if (dev->parent)
1572 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1573 return 0;
1574}
1575
1576/**
1577 * sas_discover_expander - expander discovery
1578 * @dev: pointer to expander domain device
1579 *
1580 * See comment in sas_discover_sata().
1581 */
1582static int sas_discover_expander(struct domain_device *dev)
1583{
1584 int res;
1585
1586 res = sas_notify_lldd_dev_found(dev);
1587 if (res)
1588 return res;
1589
1590 res = sas_ex_general(dev);
1591 if (res)
1592 goto out_err;
1593 res = sas_ex_manuf_info(dev);
1594 if (res)
1595 goto out_err;
1596
1597 res = sas_expander_discover(dev);
1598 if (res) {
1599 pr_warn("expander %016llx discovery failed(0x%x)\n",
1600 SAS_ADDR(dev->sas_addr), res);
1601 goto out_err;
1602 }
1603
1604 sas_check_ex_subtractive_boundary(dev);
1605 res = sas_check_parent_topology(dev);
1606 if (res)
1607 goto out_err;
1608 return 0;
1609out_err:
1610 sas_notify_lldd_dev_gone(dev);
1611 return res;
1612}
1613
1614static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1615{
1616 int res = 0;
1617 struct domain_device *dev;
1618
1619 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1620 if (dev_is_expander(dev->dev_type)) {
1621 struct sas_expander_device *ex =
1622 rphy_to_expander_device(dev->rphy);
1623
1624 if (level == ex->level)
1625 res = sas_ex_discover_devices(dev, -1);
1626 else if (level > 0)
1627 res = sas_ex_discover_devices(port->port_dev, -1);
1628
1629 }
1630 }
1631
1632 return res;
1633}
1634
1635static int sas_ex_bfs_disc(struct asd_sas_port *port)
1636{
1637 int res;
1638 int level;
1639
1640 do {
1641 level = port->disc.max_level;
1642 res = sas_ex_level_discovery(port, level);
1643 mb();
1644 } while (level < port->disc.max_level);
1645
1646 return res;
1647}
1648
1649int sas_discover_root_expander(struct domain_device *dev)
1650{
1651 int res;
1652 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1653
1654 res = sas_rphy_add(dev->rphy);
1655 if (res)
1656 goto out_err;
1657
1658 ex->level = dev->port->disc.max_level; /* 0 */
1659 res = sas_discover_expander(dev);
1660 if (res)
1661 goto out_err2;
1662
1663 sas_ex_bfs_disc(dev->port);
1664
1665 return res;
1666
1667out_err2:
1668 sas_rphy_remove(dev->rphy);
1669out_err:
1670 return res;
1671}
1672
1673/* ---------- Domain revalidation ---------- */
1674
1675static int sas_get_phy_discover(struct domain_device *dev,
1676 int phy_id, struct smp_resp *disc_resp)
1677{
1678 int res;
1679 u8 *disc_req;
1680
1681 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1682 if (!disc_req)
1683 return -ENOMEM;
1684
1685 disc_req[1] = SMP_DISCOVER;
1686 disc_req[9] = phy_id;
1687
1688 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1689 disc_resp, DISCOVER_RESP_SIZE);
1690 if (res)
1691 goto out;
1692 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1693 res = disc_resp->result;
1694 goto out;
1695 }
1696out:
1697 kfree(disc_req);
1698 return res;
1699}
1700
1701static int sas_get_phy_change_count(struct domain_device *dev,
1702 int phy_id, int *pcc)
1703{
1704 int res;
1705 struct smp_resp *disc_resp;
1706
1707 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1708 if (!disc_resp)
1709 return -ENOMEM;
1710
1711 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1712 if (!res)
1713 *pcc = disc_resp->disc.change_count;
1714
1715 kfree(disc_resp);
1716 return res;
1717}
1718
1719static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1720 u8 *sas_addr, enum sas_device_type *type)
1721{
1722 int res;
1723 struct smp_resp *disc_resp;
1724 struct discover_resp *dr;
1725
1726 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1727 if (!disc_resp)
1728 return -ENOMEM;
1729 dr = &disc_resp->disc;
1730
1731 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1732 if (res == 0) {
1733 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1734 SAS_ADDR_SIZE);
1735 *type = to_dev_type(dr);
1736 if (*type == 0)
1737 memset(sas_addr, 0, SAS_ADDR_SIZE);
1738 }
1739 kfree(disc_resp);
1740 return res;
1741}
1742
1743static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1744 int from_phy, bool update)
1745{
1746 struct expander_device *ex = &dev->ex_dev;
1747 int res = 0;
1748 int i;
1749
1750 for (i = from_phy; i < ex->num_phys; i++) {
1751 int phy_change_count = 0;
1752
1753 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1754 switch (res) {
1755 case SMP_RESP_PHY_VACANT:
1756 case SMP_RESP_NO_PHY:
1757 continue;
1758 case SMP_RESP_FUNC_ACC:
1759 break;
1760 default:
1761 return res;
1762 }
1763
1764 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1765 if (update)
1766 ex->ex_phy[i].phy_change_count =
1767 phy_change_count;
1768 *phy_id = i;
1769 return 0;
1770 }
1771 }
1772 return 0;
1773}
1774
1775static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1776{
1777 int res;
1778 u8 *rg_req;
1779 struct smp_resp *rg_resp;
1780
1781 rg_req = alloc_smp_req(RG_REQ_SIZE);
1782 if (!rg_req)
1783 return -ENOMEM;
1784
1785 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1786 if (!rg_resp) {
1787 kfree(rg_req);
1788 return -ENOMEM;
1789 }
1790
1791 rg_req[1] = SMP_REPORT_GENERAL;
1792
1793 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1794 RG_RESP_SIZE);
1795 if (res)
1796 goto out;
1797 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1798 res = rg_resp->result;
1799 goto out;
1800 }
1801
1802 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1803out:
1804 kfree(rg_resp);
1805 kfree(rg_req);
1806 return res;
1807}
1808/**
1809 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1810 * @dev:domain device to be detect.
1811 * @src_dev: the device which originated BROADCAST(CHANGE).
1812 *
1813 * Add self-configuration expander support. Suppose two expander cascading,
1814 * when the first level expander is self-configuring, hotplug the disks in
1815 * second level expander, BROADCAST(CHANGE) will not only be originated
1816 * in the second level expander, but also be originated in the first level
1817 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1818 * expander changed count in two level expanders will all increment at least
1819 * once, but the phy which chang count has changed is the source device which
1820 * we concerned.
1821 */
1822
1823static int sas_find_bcast_dev(struct domain_device *dev,
1824 struct domain_device **src_dev)
1825{
1826 struct expander_device *ex = &dev->ex_dev;
1827 int ex_change_count = -1;
1828 int phy_id = -1;
1829 int res;
1830 struct domain_device *ch;
1831
1832 res = sas_get_ex_change_count(dev, &ex_change_count);
1833 if (res)
1834 goto out;
1835 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1836 /* Just detect if this expander phys phy change count changed,
1837 * in order to determine if this expander originate BROADCAST,
1838 * and do not update phy change count field in our structure.
1839 */
1840 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1841 if (phy_id != -1) {
1842 *src_dev = dev;
1843 ex->ex_change_count = ex_change_count;
1844 pr_info("ex %016llx phy%02d change count has changed\n",
1845 SAS_ADDR(dev->sas_addr), phy_id);
1846 return res;
1847 } else
1848 pr_info("ex %016llx phys DID NOT change\n",
1849 SAS_ADDR(dev->sas_addr));
1850 }
1851 list_for_each_entry(ch, &ex->children, siblings) {
1852 if (dev_is_expander(ch->dev_type)) {
1853 res = sas_find_bcast_dev(ch, src_dev);
1854 if (*src_dev)
1855 return res;
1856 }
1857 }
1858out:
1859 return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864 struct expander_device *ex = &dev->ex_dev;
1865 struct domain_device *child, *n;
1866
1867 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868 set_bit(SAS_DEV_GONE, &child->state);
1869 if (dev_is_expander(child->dev_type))
1870 sas_unregister_ex_tree(port, child);
1871 else
1872 sas_unregister_dev(port, child);
1873 }
1874 sas_unregister_dev(port, dev);
1875}
1876
1877static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1878 int phy_id, bool last)
1879{
1880 struct expander_device *ex_dev = &parent->ex_dev;
1881 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1882 struct domain_device *child, *n, *found = NULL;
1883 if (last) {
1884 list_for_each_entry_safe(child, n,
1885 &ex_dev->children, siblings) {
1886 if (SAS_ADDR(child->sas_addr) ==
1887 SAS_ADDR(phy->attached_sas_addr)) {
1888 set_bit(SAS_DEV_GONE, &child->state);
1889 if (dev_is_expander(child->dev_type))
1890 sas_unregister_ex_tree(parent->port, child);
1891 else
1892 sas_unregister_dev(parent->port, child);
1893 found = child;
1894 break;
1895 }
1896 }
1897 sas_disable_routing(parent, phy->attached_sas_addr);
1898 }
1899 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1900 if (phy->port) {
1901 sas_port_delete_phy(phy->port, phy->phy);
1902 sas_device_set_phy(found, phy->port);
1903 if (phy->port->num_phys == 0)
1904 list_add_tail(&phy->port->del_list,
1905 &parent->port->sas_port_del_list);
1906 phy->port = NULL;
1907 }
1908}
1909
1910static int sas_discover_bfs_by_root_level(struct domain_device *root,
1911 const int level)
1912{
1913 struct expander_device *ex_root = &root->ex_dev;
1914 struct domain_device *child;
1915 int res = 0;
1916
1917 list_for_each_entry(child, &ex_root->children, siblings) {
1918 if (dev_is_expander(child->dev_type)) {
1919 struct sas_expander_device *ex =
1920 rphy_to_expander_device(child->rphy);
1921
1922 if (level > ex->level)
1923 res = sas_discover_bfs_by_root_level(child,
1924 level);
1925 else if (level == ex->level)
1926 res = sas_ex_discover_devices(child, -1);
1927 }
1928 }
1929 return res;
1930}
1931
1932static int sas_discover_bfs_by_root(struct domain_device *dev)
1933{
1934 int res;
1935 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1936 int level = ex->level+1;
1937
1938 res = sas_ex_discover_devices(dev, -1);
1939 if (res)
1940 goto out;
1941 do {
1942 res = sas_discover_bfs_by_root_level(dev, level);
1943 mb();
1944 level += 1;
1945 } while (level <= dev->port->disc.max_level);
1946out:
1947 return res;
1948}
1949
1950static int sas_discover_new(struct domain_device *dev, int phy_id)
1951{
1952 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1953 struct domain_device *child;
1954 int res;
1955
1956 pr_debug("ex %016llx phy%02d new device attached\n",
1957 SAS_ADDR(dev->sas_addr), phy_id);
1958 res = sas_ex_phy_discover(dev, phy_id);
1959 if (res)
1960 return res;
1961
1962 if (sas_ex_join_wide_port(dev, phy_id))
1963 return 0;
1964
1965 res = sas_ex_discover_devices(dev, phy_id);
1966 if (res)
1967 return res;
1968 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1969 if (SAS_ADDR(child->sas_addr) ==
1970 SAS_ADDR(ex_phy->attached_sas_addr)) {
1971 if (dev_is_expander(child->dev_type))
1972 res = sas_discover_bfs_by_root(child);
1973 break;
1974 }
1975 }
1976 return res;
1977}
1978
1979static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1980{
1981 if (old == new)
1982 return true;
1983
1984 /* treat device directed resets as flutter, if we went
1985 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1986 */
1987 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1988 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1989 return true;
1990
1991 return false;
1992}
1993
1994static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1995 bool last, int sibling)
1996{
1997 struct expander_device *ex = &dev->ex_dev;
1998 struct ex_phy *phy = &ex->ex_phy[phy_id];
1999 enum sas_device_type type = SAS_PHY_UNUSED;
2000 u8 sas_addr[SAS_ADDR_SIZE];
2001 char msg[80] = "";
2002 int res;
2003
2004 if (!last)
2005 sprintf(msg, ", part of a wide port with phy%02d", sibling);
2006
2007 pr_debug("ex %016llx rediscovering phy%02d%s\n",
2008 SAS_ADDR(dev->sas_addr), phy_id, msg);
2009
2010 memset(sas_addr, 0, SAS_ADDR_SIZE);
2011 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2012 switch (res) {
2013 case SMP_RESP_NO_PHY:
2014 phy->phy_state = PHY_NOT_PRESENT;
2015 sas_unregister_devs_sas_addr(dev, phy_id, last);
2016 return res;
2017 case SMP_RESP_PHY_VACANT:
2018 phy->phy_state = PHY_VACANT;
2019 sas_unregister_devs_sas_addr(dev, phy_id, last);
2020 return res;
2021 case SMP_RESP_FUNC_ACC:
2022 break;
2023 case -ECOMM:
2024 break;
2025 default:
2026 return res;
2027 }
2028
2029 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2030 phy->phy_state = PHY_EMPTY;
2031 sas_unregister_devs_sas_addr(dev, phy_id, last);
2032 /*
2033 * Even though the PHY is empty, for convenience we discover
2034 * the PHY to update the PHY info, like negotiated linkrate.
2035 */
2036 sas_ex_phy_discover(dev, phy_id);
2037 return res;
2038 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2039 dev_type_flutter(type, phy->attached_dev_type)) {
2040 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2041 char *action = "";
2042
2043 sas_ex_phy_discover(dev, phy_id);
2044
2045 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2046 action = ", needs recovery";
2047 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2048 SAS_ADDR(dev->sas_addr), phy_id, action);
2049 return res;
2050 }
2051
2052 /* we always have to delete the old device when we went here */
2053 pr_info("ex %016llx phy%02d replace %016llx\n",
2054 SAS_ADDR(dev->sas_addr), phy_id,
2055 SAS_ADDR(phy->attached_sas_addr));
2056 sas_unregister_devs_sas_addr(dev, phy_id, last);
2057
2058 return sas_discover_new(dev, phy_id);
2059}
2060
2061/**
2062 * sas_rediscover - revalidate the domain.
2063 * @dev:domain device to be detect.
2064 * @phy_id: the phy id will be detected.
2065 *
2066 * NOTE: this process _must_ quit (return) as soon as any connection
2067 * errors are encountered. Connection recovery is done elsewhere.
2068 * Discover process only interrogates devices in order to discover the
2069 * domain.For plugging out, we un-register the device only when it is
2070 * the last phy in the port, for other phys in this port, we just delete it
2071 * from the port.For inserting, we do discovery when it is the
2072 * first phy,for other phys in this port, we add it to the port to
2073 * forming the wide-port.
2074 */
2075static int sas_rediscover(struct domain_device *dev, const int phy_id)
2076{
2077 struct expander_device *ex = &dev->ex_dev;
2078 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2079 int res = 0;
2080 int i;
2081 bool last = true; /* is this the last phy of the port */
2082
2083 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2084 SAS_ADDR(dev->sas_addr), phy_id);
2085
2086 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2087 for (i = 0; i < ex->num_phys; i++) {
2088 struct ex_phy *phy = &ex->ex_phy[i];
2089
2090 if (i == phy_id)
2091 continue;
2092 if (SAS_ADDR(phy->attached_sas_addr) ==
2093 SAS_ADDR(changed_phy->attached_sas_addr)) {
2094 last = false;
2095 break;
2096 }
2097 }
2098 res = sas_rediscover_dev(dev, phy_id, last, i);
2099 } else
2100 res = sas_discover_new(dev, phy_id);
2101 return res;
2102}
2103
2104/**
2105 * sas_ex_revalidate_domain - revalidate the domain
2106 * @port_dev: port domain device.
2107 *
2108 * NOTE: this process _must_ quit (return) as soon as any connection
2109 * errors are encountered. Connection recovery is done elsewhere.
2110 * Discover process only interrogates devices in order to discover the
2111 * domain.
2112 */
2113int sas_ex_revalidate_domain(struct domain_device *port_dev)
2114{
2115 int res;
2116 struct domain_device *dev = NULL;
2117
2118 res = sas_find_bcast_dev(port_dev, &dev);
2119 if (res == 0 && dev) {
2120 struct expander_device *ex = &dev->ex_dev;
2121 int i = 0, phy_id;
2122
2123 do {
2124 phy_id = -1;
2125 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2126 if (phy_id == -1)
2127 break;
2128 res = sas_rediscover(dev, phy_id);
2129 i = phy_id + 1;
2130 } while (i < ex->num_phys);
2131 }
2132 return res;
2133}
2134
2135void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2136 struct sas_rphy *rphy)
2137{
2138 struct domain_device *dev;
2139 unsigned int rcvlen = 0;
2140 int ret = -EINVAL;
2141
2142 /* no rphy means no smp target support (ie aic94xx host) */
2143 if (!rphy)
2144 return sas_smp_host_handler(job, shost);
2145
2146 switch (rphy->identify.device_type) {
2147 case SAS_EDGE_EXPANDER_DEVICE:
2148 case SAS_FANOUT_EXPANDER_DEVICE:
2149 break;
2150 default:
2151 pr_err("%s: can we send a smp request to a device?\n",
2152 __func__);
2153 goto out;
2154 }
2155
2156 dev = sas_find_dev_by_rphy(rphy);
2157 if (!dev) {
2158 pr_err("%s: fail to find a domain_device?\n", __func__);
2159 goto out;
2160 }
2161
2162 /* do we need to support multiple segments? */
2163 if (job->request_payload.sg_cnt > 1 ||
2164 job->reply_payload.sg_cnt > 1) {
2165 pr_info("%s: multiple segments req %u, rsp %u\n",
2166 __func__, job->request_payload.payload_len,
2167 job->reply_payload.payload_len);
2168 goto out;
2169 }
2170
2171 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2172 job->reply_payload.sg_list);
2173 if (ret >= 0) {
2174 /* bsg_job_done() requires the length received */
2175 rcvlen = job->reply_payload.payload_len - ret;
2176 ret = 0;
2177 }
2178
2179out:
2180 bsg_job_done(job, ret, rcvlen);
2181}