Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
 
  28
  29#include "sas_internal.h"
  30
 
  31#include <scsi/scsi_transport.h>
  32#include <scsi/scsi_transport_sas.h>
  33#include "../scsi_sas_internal.h"
  34
  35static int sas_discover_expander(struct domain_device *dev);
  36static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  37static int sas_configure_phy(struct domain_device *dev, int phy_id,
  38			     u8 *sas_addr, int include);
  39static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  40
  41/* ---------- SMP task management ---------- */
  42
  43static void smp_task_timedout(unsigned long _task)
  44{
  45	struct sas_task *task = (void *) _task;
  46	unsigned long flags;
  47
  48	spin_lock_irqsave(&task->task_state_lock, flags);
  49	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  50		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  51	spin_unlock_irqrestore(&task->task_state_lock, flags);
  52
  53	complete(&task->completion);
  54}
  55
  56static void smp_task_done(struct sas_task *task)
  57{
  58	if (!del_timer(&task->timer))
  59		return;
  60	complete(&task->completion);
 
 
 
 
 
 
 
 
  61}
  62
 
 
  63/* Give it some long enough timeout. In seconds. */
  64#define SMP_TIMEOUT 10
  65
  66static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  67			    void *resp, int resp_size)
  68{
  69	int res, retry;
  70	struct sas_task *task = NULL;
  71	struct sas_internal *i =
  72		to_sas_internal(dev->port->ha->core.shost->transportt);
 
  73
 
 
  74	for (retry = 0; retry < 3; retry++) {
  75		task = sas_alloc_task(GFP_KERNEL);
  76		if (!task)
  77			return -ENOMEM;
 
  78
 
 
 
 
 
  79		task->dev = dev;
  80		task->task_proto = dev->tproto;
  81		sg_init_one(&task->smp_task.smp_req, req, req_size);
  82		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  83
  84		task->task_done = smp_task_done;
  85
  86		task->timer.data = (unsigned long) task;
  87		task->timer.function = smp_task_timedout;
  88		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  89		add_timer(&task->timer);
  90
  91		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
  92
  93		if (res) {
  94			del_timer(&task->timer);
  95			SAS_DPRINTK("executing SMP task failed:%d\n", res);
  96			goto ex_err;
  97		}
  98
  99		wait_for_completion(&task->completion);
 100		res = -ECOMM;
 101		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 102			SAS_DPRINTK("smp task timed out or aborted\n");
 103			i->dft->lldd_abort_task(task);
 104			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 105				SAS_DPRINTK("SMP task aborted and not done\n");
 106				goto ex_err;
 107			}
 108		}
 109		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 110		    task->task_status.stat == SAM_STAT_GOOD) {
 111			res = 0;
 112			break;
 113		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
 114		      task->task_status.stat == SAS_DATA_UNDERRUN) {
 
 115			/* no error, but return the number of bytes of
 116			 * underrun */
 117			res = task->task_status.residual;
 118			break;
 119		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
 120		      task->task_status.stat == SAS_DATA_OVERRUN) {
 
 121			res = -EMSGSIZE;
 122			break;
 123		} else {
 124			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 125				    "status 0x%x\n", __func__,
 126				    SAS_ADDR(dev->sas_addr),
 127				    task->task_status.resp,
 128				    task->task_status.stat);
 
 
 
 
 129			sas_free_task(task);
 130			task = NULL;
 131		}
 132	}
 133ex_err:
 
 
 134	BUG_ON(retry == 3 && task != NULL);
 135	if (task != NULL) {
 136		sas_free_task(task);
 137	}
 138	return res;
 139}
 140
 
 
 
 
 
 
 
 
 
 
 
 141/* ---------- Allocations ---------- */
 142
 143static inline void *alloc_smp_req(int size)
 144{
 145	u8 *p = kzalloc(size, GFP_KERNEL);
 146	if (p)
 147		p[0] = SMP_REQUEST;
 148	return p;
 149}
 150
 151static inline void *alloc_smp_resp(int size)
 152{
 153	return kzalloc(size, GFP_KERNEL);
 154}
 155
 156/* ---------- Expander configuration ---------- */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 159			   void *disc_resp)
 160{
 
 
 
 
 
 161	struct expander_device *ex = &dev->ex_dev;
 162	struct ex_phy *phy = &ex->ex_phy[phy_id];
 163	struct smp_resp *resp = disc_resp;
 164	struct discover_resp *dr = &resp->disc;
 165	struct sas_rphy *rphy = dev->rphy;
 166	int rediscover = (phy->phy != NULL);
 
 167
 168	if (!rediscover) {
 
 
 169		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 170
 171		/* FIXME: error_handling */
 172		BUG_ON(!phy->phy);
 173	}
 174
 175	switch (resp->result) {
 176	case SMP_RESP_PHY_VACANT:
 177		phy->phy_state = PHY_VACANT;
 178		break;
 179	default:
 180		phy->phy_state = PHY_NOT_PRESENT;
 181		break;
 182	case SMP_RESP_FUNC_ACC:
 183		phy->phy_state = PHY_EMPTY; /* do not know yet */
 184		break;
 185	}
 186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187	phy->phy_id = phy_id;
 188	phy->attached_dev_type = dr->attached_dev_type;
 189	phy->linkrate = dr->linkrate;
 190	phy->attached_sata_host = dr->attached_sata_host;
 191	phy->attached_sata_dev  = dr->attached_sata_dev;
 192	phy->attached_sata_ps   = dr->attached_sata_ps;
 193	phy->attached_iproto = dr->iproto << 1;
 194	phy->attached_tproto = dr->tproto << 1;
 195	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 
 
 
 
 
 
 196	phy->attached_phy_id = dr->attached_phy_id;
 197	phy->phy_change_count = dr->change_count;
 198	phy->routing_attr = dr->routing_attr;
 199	phy->virtual = dr->virtual;
 200	phy->last_da_index = -1;
 201
 
 
 202	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 203	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 
 
 204	phy->phy->identify.phy_identifier = phy_id;
 205	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 206	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 207	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 208	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 209	phy->phy->negotiated_linkrate = phy->linkrate;
 
 210
 211	if (!rediscover)
 
 212		if (sas_phy_add(phy->phy)) {
 213			sas_phy_free(phy->phy);
 214			return;
 215		}
 216
 217	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
 218		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 219		    phy->routing_attr == TABLE_ROUTING ? 'T' :
 220		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
 221		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
 222		    SAS_ADDR(phy->attached_sas_addr));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224	return;
 
 
 
 
 
 
 
 
 
 225}
 226
 227#define DISCOVER_REQ_SIZE  16
 228#define DISCOVER_RESP_SIZE 56
 229
 230static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 231				      u8 *disc_resp, int single)
 
 232{
 233	int i, res;
 
 234
 235	disc_req[9] = single;
 236	for (i = 1 ; i < 3; i++) {
 237		struct discover_resp *dr;
 238
 239		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 240				       disc_resp, DISCOVER_RESP_SIZE);
 241		if (res)
 242			return res;
 243		/* This is detecting a failure to transmit initial
 244		 * dev to host FIS as described in section G.5 of
 245		 * sas-2 r 04b */
 246		dr = &((struct smp_resp *)disc_resp)->disc;
 247		if (memcmp(dev->sas_addr, dr->attached_sas_addr,
 248			  SAS_ADDR_SIZE) == 0) {
 249			sas_printk("Found loopback topology, just ignore it!\n");
 250			return 0;
 251		}
 252		if (!(dr->attached_dev_type == 0 &&
 253		      dr->attached_sata_dev))
 254			break;
 255		/* In order to generate the dev to host FIS, we
 256		 * send a link reset to the expander port */
 257		sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
 258		/* Wait for the reset to trigger the negotiation */
 259		msleep(500);
 260	}
 261	sas_set_ex_phy(dev, single, disc_resp);
 262	return 0;
 263}
 264
 265static int sas_ex_phy_discover(struct domain_device *dev, int single)
 266{
 267	struct expander_device *ex = &dev->ex_dev;
 268	int  res = 0;
 269	u8   *disc_req;
 270	u8   *disc_resp;
 271
 272	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 273	if (!disc_req)
 274		return -ENOMEM;
 275
 276	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
 277	if (!disc_resp) {
 278		kfree(disc_req);
 279		return -ENOMEM;
 280	}
 281
 282	disc_req[1] = SMP_DISCOVER;
 283
 284	if (0 <= single && single < ex->num_phys) {
 285		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 286	} else {
 287		int i;
 288
 289		for (i = 0; i < ex->num_phys; i++) {
 290			res = sas_ex_phy_discover_helper(dev, disc_req,
 291							 disc_resp, i);
 292			if (res)
 293				goto out_err;
 294		}
 295	}
 296out_err:
 297	kfree(disc_resp);
 298	kfree(disc_req);
 299	return res;
 300}
 301
 302static int sas_expander_discover(struct domain_device *dev)
 303{
 304	struct expander_device *ex = &dev->ex_dev;
 305	int res = -ENOMEM;
 306
 307	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 308	if (!ex->ex_phy)
 309		return -ENOMEM;
 310
 311	res = sas_ex_phy_discover(dev, -1);
 312	if (res)
 313		goto out_err;
 314
 315	return 0;
 316 out_err:
 317	kfree(ex->ex_phy);
 318	ex->ex_phy = NULL;
 319	return res;
 320}
 321
 322#define MAX_EXPANDER_PHYS 128
 323
 324static void ex_assign_report_general(struct domain_device *dev,
 325					    struct smp_resp *resp)
 326{
 327	struct report_general_resp *rg = &resp->rg;
 328
 329	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 330	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 331	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 332	dev->ex_dev.conf_route_table = rg->conf_route_table;
 333	dev->ex_dev.configuring = rg->configuring;
 334	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 335}
 336
 337#define RG_REQ_SIZE   8
 338#define RG_RESP_SIZE 32
 339
 340static int sas_ex_general(struct domain_device *dev)
 341{
 342	u8 *rg_req;
 343	struct smp_resp *rg_resp;
 
 344	int res;
 345	int i;
 346
 347	rg_req = alloc_smp_req(RG_REQ_SIZE);
 348	if (!rg_req)
 349		return -ENOMEM;
 350
 351	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 352	if (!rg_resp) {
 353		kfree(rg_req);
 354		return -ENOMEM;
 355	}
 356
 357	rg_req[1] = SMP_REPORT_GENERAL;
 358
 359	for (i = 0; i < 5; i++) {
 360		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 361				       RG_RESP_SIZE);
 362
 363		if (res) {
 364			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 365				    SAS_ADDR(dev->sas_addr), res);
 366			goto out;
 367		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 368			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 369				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 370			res = rg_resp->result;
 371			goto out;
 372		}
 373
 374		ex_assign_report_general(dev, rg_resp);
 
 
 
 
 
 
 
 
 375
 376		if (dev->ex_dev.configuring) {
 377			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 378				    SAS_ADDR(dev->sas_addr));
 379			schedule_timeout_interruptible(5*HZ);
 380		} else
 381			break;
 382	}
 383out:
 384	kfree(rg_req);
 385	kfree(rg_resp);
 386	return res;
 387}
 388
 389static void ex_assign_manuf_info(struct domain_device *dev, void
 390					*_mi_resp)
 391{
 392	u8 *mi_resp = _mi_resp;
 393	struct sas_rphy *rphy = dev->rphy;
 394	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 395
 396	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 397	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 398	memcpy(edev->product_rev, mi_resp + 36,
 399	       SAS_EXPANDER_PRODUCT_REV_LEN);
 400
 401	if (mi_resp[8] & 1) {
 402		memcpy(edev->component_vendor_id, mi_resp + 40,
 403		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 404		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 405		edev->component_revision_id = mi_resp[50];
 406	}
 407}
 408
 409#define MI_REQ_SIZE   8
 410#define MI_RESP_SIZE 64
 411
 412static int sas_ex_manuf_info(struct domain_device *dev)
 413{
 414	u8 *mi_req;
 415	u8 *mi_resp;
 416	int res;
 417
 418	mi_req = alloc_smp_req(MI_REQ_SIZE);
 419	if (!mi_req)
 420		return -ENOMEM;
 421
 422	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 423	if (!mi_resp) {
 424		kfree(mi_req);
 425		return -ENOMEM;
 426	}
 427
 428	mi_req[1] = SMP_REPORT_MANUF_INFO;
 429
 430	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 431	if (res) {
 432		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 433			    SAS_ADDR(dev->sas_addr), res);
 434		goto out;
 435	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 436		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 437			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 438		goto out;
 439	}
 440
 441	ex_assign_manuf_info(dev, mi_resp);
 442out:
 443	kfree(mi_req);
 444	kfree(mi_resp);
 445	return res;
 446}
 447
 448#define PC_REQ_SIZE  44
 449#define PC_RESP_SIZE 8
 450
 451int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 452			enum phy_func phy_func,
 453			struct sas_phy_linkrates *rates)
 454{
 455	u8 *pc_req;
 456	u8 *pc_resp;
 457	int res;
 458
 459	pc_req = alloc_smp_req(PC_REQ_SIZE);
 460	if (!pc_req)
 461		return -ENOMEM;
 462
 463	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 464	if (!pc_resp) {
 465		kfree(pc_req);
 466		return -ENOMEM;
 467	}
 468
 469	pc_req[1] = SMP_PHY_CONTROL;
 470	pc_req[9] = phy_id;
 471	pc_req[10]= phy_func;
 472	if (rates) {
 473		pc_req[32] = rates->minimum_linkrate << 4;
 474		pc_req[33] = rates->maximum_linkrate << 4;
 475	}
 476
 477	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 478
 
 
 
 
 
 
 
 479	kfree(pc_resp);
 480	kfree(pc_req);
 481	return res;
 482}
 483
 484static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 485{
 486	struct expander_device *ex = &dev->ex_dev;
 487	struct ex_phy *phy = &ex->ex_phy[phy_id];
 488
 489	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 490	phy->linkrate = SAS_PHY_DISABLED;
 491}
 492
 493static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 494{
 495	struct expander_device *ex = &dev->ex_dev;
 496	int i;
 497
 498	for (i = 0; i < ex->num_phys; i++) {
 499		struct ex_phy *phy = &ex->ex_phy[i];
 500
 501		if (phy->phy_state == PHY_VACANT ||
 502		    phy->phy_state == PHY_NOT_PRESENT)
 503			continue;
 504
 505		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 506			sas_ex_disable_phy(dev, i);
 507	}
 508}
 509
 510static int sas_dev_present_in_domain(struct asd_sas_port *port,
 511					    u8 *sas_addr)
 512{
 513	struct domain_device *dev;
 514
 515	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 516		return 1;
 517	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 518		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 519			return 1;
 520	}
 521	return 0;
 522}
 523
 524#define RPEL_REQ_SIZE	16
 525#define RPEL_RESP_SIZE	32
 526int sas_smp_get_phy_events(struct sas_phy *phy)
 527{
 528	int res;
 529	u8 *req;
 530	u8 *resp;
 531	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 532	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 533
 534	req = alloc_smp_req(RPEL_REQ_SIZE);
 535	if (!req)
 536		return -ENOMEM;
 537
 538	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 539	if (!resp) {
 540		kfree(req);
 541		return -ENOMEM;
 542	}
 543
 544	req[1] = SMP_REPORT_PHY_ERR_LOG;
 545	req[9] = phy->number;
 546
 547	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 548			            resp, RPEL_RESP_SIZE);
 549
 550	if (!res)
 551		goto out;
 552
 553	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 554	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 555	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 556	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 557
 558 out:
 
 559	kfree(resp);
 560	return res;
 561
 562}
 563
 564#ifdef CONFIG_SCSI_SAS_ATA
 565
 566#define RPS_REQ_SIZE  16
 567#define RPS_RESP_SIZE 60
 568
 569static int sas_get_report_phy_sata(struct domain_device *dev,
 570					  int phy_id,
 571					  struct smp_resp *rps_resp)
 572{
 573	int res;
 574	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 575	u8 *resp = (u8 *)rps_resp;
 576
 577	if (!rps_req)
 578		return -ENOMEM;
 579
 580	rps_req[1] = SMP_REPORT_PHY_SATA;
 581	rps_req[9] = phy_id;
 582
 583	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 584			            rps_resp, RPS_RESP_SIZE);
 585
 586	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 587	 * standards cockup here.  sas-2 explicitly specifies the FIS
 588	 * should be encoded so that FIS type is in resp[24].
 589	 * However, some expanders endian reverse this.  Undo the
 590	 * reversal here */
 591	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 592		int i;
 593
 594		for (i = 0; i < 5; i++) {
 595			int j = 24 + (i*4);
 596			u8 a, b;
 597			a = resp[j + 0];
 598			b = resp[j + 1];
 599			resp[j + 0] = resp[j + 3];
 600			resp[j + 1] = resp[j + 2];
 601			resp[j + 2] = b;
 602			resp[j + 3] = a;
 603		}
 604	}
 605
 606	kfree(rps_req);
 607	return res;
 608}
 609#endif
 610
 611static void sas_ex_get_linkrate(struct domain_device *parent,
 612				       struct domain_device *child,
 613				       struct ex_phy *parent_phy)
 614{
 615	struct expander_device *parent_ex = &parent->ex_dev;
 616	struct sas_port *port;
 617	int i;
 618
 619	child->pathways = 0;
 620
 621	port = parent_phy->port;
 622
 623	for (i = 0; i < parent_ex->num_phys; i++) {
 624		struct ex_phy *phy = &parent_ex->ex_phy[i];
 625
 626		if (phy->phy_state == PHY_VACANT ||
 627		    phy->phy_state == PHY_NOT_PRESENT)
 628			continue;
 629
 630		if (SAS_ADDR(phy->attached_sas_addr) ==
 631		    SAS_ADDR(child->sas_addr)) {
 632
 633			child->min_linkrate = min(parent->min_linkrate,
 634						  phy->linkrate);
 635			child->max_linkrate = max(parent->max_linkrate,
 636						  phy->linkrate);
 637			child->pathways++;
 638			sas_port_add_phy(port, phy->phy);
 639		}
 640	}
 641	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 642	child->pathways = min(child->pathways, parent->pathways);
 643}
 644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645static struct domain_device *sas_ex_discover_end_dev(
 646	struct domain_device *parent, int phy_id)
 647{
 648	struct expander_device *parent_ex = &parent->ex_dev;
 649	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 650	struct domain_device *child = NULL;
 651	struct sas_rphy *rphy;
 652	int res;
 653
 654	if (phy->attached_sata_host || phy->attached_sata_ps)
 655		return NULL;
 656
 657	child = kzalloc(sizeof(*child), GFP_KERNEL);
 658	if (!child)
 659		return NULL;
 660
 
 661	child->parent = parent;
 662	child->port   = parent->port;
 663	child->iproto = phy->attached_iproto;
 664	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 665	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 666	if (!phy->port) {
 667		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 668		if (unlikely(!phy->port))
 669			goto out_err;
 670		if (unlikely(sas_port_add(phy->port) != 0)) {
 671			sas_port_free(phy->port);
 672			goto out_err;
 673		}
 674	}
 675	sas_ex_get_linkrate(parent, child, phy);
 
 676
 677#ifdef CONFIG_SCSI_SAS_ATA
 678	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 679		child->dev_type = SATA_DEV;
 680		if (phy->attached_tproto & SAS_PROTOCOL_STP)
 681			child->tproto = phy->attached_tproto;
 682		if (phy->attached_sata_dev)
 683			child->tproto |= SATA_DEV;
 684		res = sas_get_report_phy_sata(parent, phy_id,
 685					      &child->sata_dev.rps_resp);
 686		if (res) {
 687			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
 688				    "0x%x\n", SAS_ADDR(parent->sas_addr),
 689				    phy_id, res);
 690			goto out_free;
 691		}
 692		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
 693		       sizeof(struct dev_to_host_fis));
 694
 695		rphy = sas_end_device_alloc(phy->port);
 696		if (unlikely(!rphy))
 697			goto out_free;
 698
 699		sas_init_dev(child);
 700
 701		child->rphy = rphy;
 702
 703		spin_lock_irq(&parent->port->dev_list_lock);
 704		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 705		spin_unlock_irq(&parent->port->dev_list_lock);
 706
 707		res = sas_discover_sata(child);
 708		if (res) {
 709			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 710				    "%016llx:0x%x returned 0x%x\n",
 711				    SAS_ADDR(child->sas_addr),
 712				    SAS_ADDR(parent->sas_addr), phy_id, res);
 713			goto out_list_del;
 714		}
 715	} else
 716#endif
 717	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 718		child->dev_type = SAS_END_DEV;
 719		rphy = sas_end_device_alloc(phy->port);
 720		/* FIXME: error handling */
 721		if (unlikely(!rphy))
 722			goto out_free;
 723		child->tproto = phy->attached_tproto;
 724		sas_init_dev(child);
 725
 726		child->rphy = rphy;
 727		sas_fill_in_rphy(child, rphy);
 728
 729		spin_lock_irq(&parent->port->dev_list_lock);
 730		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 731		spin_unlock_irq(&parent->port->dev_list_lock);
 732
 733		res = sas_discover_end_dev(child);
 734		if (res) {
 735			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 736				    "at %016llx:0x%x returned 0x%x\n",
 737				    SAS_ADDR(child->sas_addr),
 738				    SAS_ADDR(parent->sas_addr), phy_id, res);
 739			goto out_list_del;
 740		}
 741	} else {
 742		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 743			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 744			    phy_id);
 745		goto out_free;
 746	}
 747
 
 
 
 748	list_add_tail(&child->siblings, &parent_ex->children);
 749	return child;
 750
 751 out_list_del:
 752	sas_rphy_free(child->rphy);
 753	child->rphy = NULL;
 754	list_del(&child->dev_list_node);
 755 out_free:
 756	sas_port_delete(phy->port);
 757 out_err:
 758	phy->port = NULL;
 759	kfree(child);
 760	return NULL;
 761}
 762
 763/* See if this phy is part of a wide port */
 764static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 765{
 766	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 767	int i;
 768
 769	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 770		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 771
 772		if (ephy == phy)
 773			continue;
 774
 775		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 776			    SAS_ADDR_SIZE) && ephy->port) {
 777			sas_port_add_phy(ephy->port, phy->phy);
 778			phy->port = ephy->port;
 779			phy->phy_state = PHY_DEVICE_DISCOVERED;
 780			return 0;
 781		}
 782	}
 783
 784	return -ENODEV;
 785}
 786
 787static struct domain_device *sas_ex_discover_expander(
 788	struct domain_device *parent, int phy_id)
 789{
 790	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 791	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 792	struct domain_device *child = NULL;
 793	struct sas_rphy *rphy;
 794	struct sas_expander_device *edev;
 795	struct asd_sas_port *port;
 796	int res;
 797
 798	if (phy->routing_attr == DIRECT_ROUTING) {
 799		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 800			    "allowed\n",
 801			    SAS_ADDR(parent->sas_addr), phy_id,
 802			    SAS_ADDR(phy->attached_sas_addr),
 803			    phy->attached_phy_id);
 804		return NULL;
 805	}
 806	child = kzalloc(sizeof(*child), GFP_KERNEL);
 807	if (!child)
 808		return NULL;
 809
 810	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 811	/* FIXME: better error handling */
 812	BUG_ON(sas_port_add(phy->port) != 0);
 813
 814
 815	switch (phy->attached_dev_type) {
 816	case EDGE_DEV:
 817		rphy = sas_expander_alloc(phy->port,
 818					  SAS_EDGE_EXPANDER_DEVICE);
 819		break;
 820	case FANOUT_DEV:
 821		rphy = sas_expander_alloc(phy->port,
 822					  SAS_FANOUT_EXPANDER_DEVICE);
 823		break;
 824	default:
 825		rphy = NULL;	/* shut gcc up */
 826		BUG();
 827	}
 828	port = parent->port;
 829	child->rphy = rphy;
 
 830	edev = rphy_to_expander_device(rphy);
 831	child->dev_type = phy->attached_dev_type;
 
 832	child->parent = parent;
 833	child->port = port;
 834	child->iproto = phy->attached_iproto;
 835	child->tproto = phy->attached_tproto;
 836	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 837	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 838	sas_ex_get_linkrate(parent, child, phy);
 839	edev->level = parent_ex->level + 1;
 840	parent->port->disc.max_level = max(parent->port->disc.max_level,
 841					   edev->level);
 842	sas_init_dev(child);
 843	sas_fill_in_rphy(child, rphy);
 844	sas_rphy_add(rphy);
 845
 846	spin_lock_irq(&parent->port->dev_list_lock);
 847	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 848	spin_unlock_irq(&parent->port->dev_list_lock);
 849
 850	res = sas_discover_expander(child);
 851	if (res) {
 
 852		spin_lock_irq(&parent->port->dev_list_lock);
 853		list_del(&child->dev_list_node);
 854		spin_unlock_irq(&parent->port->dev_list_lock);
 855		kfree(child);
 
 
 856		return NULL;
 857	}
 858	list_add_tail(&child->siblings, &parent->ex_dev.children);
 859	return child;
 860}
 861
 862static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 863{
 864	struct expander_device *ex = &dev->ex_dev;
 865	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 866	struct domain_device *child = NULL;
 867	int res = 0;
 868
 869	/* Phy state */
 870	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 871		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 872			res = sas_ex_phy_discover(dev, phy_id);
 873		if (res)
 874			return res;
 875	}
 876
 877	/* Parent and domain coherency */
 878	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 879			     SAS_ADDR(dev->port->sas_addr))) {
 880		sas_add_parent_port(dev, phy_id);
 881		return 0;
 882	}
 883	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 884			    SAS_ADDR(dev->parent->sas_addr))) {
 885		sas_add_parent_port(dev, phy_id);
 886		if (ex_phy->routing_attr == TABLE_ROUTING)
 887			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 888		return 0;
 889	}
 890
 891	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 892		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 893
 894	if (ex_phy->attached_dev_type == NO_DEVICE) {
 895		if (ex_phy->routing_attr == DIRECT_ROUTING) {
 896			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 897			sas_configure_routing(dev, ex_phy->attached_sas_addr);
 898		}
 899		return 0;
 900	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
 901		return 0;
 902
 903	if (ex_phy->attached_dev_type != SAS_END_DEV &&
 904	    ex_phy->attached_dev_type != FANOUT_DEV &&
 905	    ex_phy->attached_dev_type != EDGE_DEV) {
 906		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
 907			    "phy 0x%x\n", ex_phy->attached_dev_type,
 908			    SAS_ADDR(dev->sas_addr),
 909			    phy_id);
 
 910		return 0;
 911	}
 912
 913	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
 914	if (res) {
 915		SAS_DPRINTK("configure routing for dev %016llx "
 916			    "reported 0x%x. Forgotten\n",
 917			    SAS_ADDR(ex_phy->attached_sas_addr), res);
 918		sas_disable_routing(dev, ex_phy->attached_sas_addr);
 919		return res;
 920	}
 921
 922	res = sas_ex_join_wide_port(dev, phy_id);
 923	if (!res) {
 924		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 925			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
 926		return res;
 927	}
 928
 929	switch (ex_phy->attached_dev_type) {
 930	case SAS_END_DEV:
 
 931		child = sas_ex_discover_end_dev(dev, phy_id);
 932		break;
 933	case FANOUT_DEV:
 934		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
 935			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
 936				    "attached to ex %016llx phy 0x%x\n",
 937				    SAS_ADDR(ex_phy->attached_sas_addr),
 938				    ex_phy->attached_phy_id,
 939				    SAS_ADDR(dev->sas_addr),
 940				    phy_id);
 941			sas_ex_disable_phy(dev, phy_id);
 942			break;
 943		} else
 944			memcpy(dev->port->disc.fanout_sas_addr,
 945			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
 946		/* fallthrough */
 947	case EDGE_DEV:
 948		child = sas_ex_discover_expander(dev, phy_id);
 949		break;
 950	default:
 951		break;
 952	}
 953
 954	if (child) {
 955		int i;
 956
 957		for (i = 0; i < ex->num_phys; i++) {
 958			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
 959			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
 960				continue;
 961			/*
 962			 * Due to races, the phy might not get added to the
 963			 * wide port, so we add the phy to the wide port here.
 964			 */
 965			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
 966			    SAS_ADDR(child->sas_addr)) {
 967				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
 968				res = sas_ex_join_wide_port(dev, i);
 969				if (!res)
 970					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 971						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
 972
 973			}
 974		}
 975	}
 976
 977	return res;
 978}
 979
 980static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
 981{
 982	struct expander_device *ex = &dev->ex_dev;
 983	int i;
 984
 985	for (i = 0; i < ex->num_phys; i++) {
 986		struct ex_phy *phy = &ex->ex_phy[i];
 987
 988		if (phy->phy_state == PHY_VACANT ||
 989		    phy->phy_state == PHY_NOT_PRESENT)
 990			continue;
 991
 992		if ((phy->attached_dev_type == EDGE_DEV ||
 993		     phy->attached_dev_type == FANOUT_DEV) &&
 994		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
 995
 996			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
 997
 998			return 1;
 999		}
1000	}
1001	return 0;
1002}
1003
1004static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1005{
1006	struct expander_device *ex = &dev->ex_dev;
1007	struct domain_device *child;
1008	u8 sub_addr[8] = {0, };
1009
1010	list_for_each_entry(child, &ex->children, siblings) {
1011		if (child->dev_type != EDGE_DEV &&
1012		    child->dev_type != FANOUT_DEV)
1013			continue;
1014		if (sub_addr[0] == 0) {
1015			sas_find_sub_addr(child, sub_addr);
1016			continue;
1017		} else {
1018			u8 s2[8];
1019
1020			if (sas_find_sub_addr(child, s2) &&
1021			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1022
1023				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1024					    "diverges from subtractive "
1025					    "boundary %016llx\n",
1026					    SAS_ADDR(dev->sas_addr),
1027					    SAS_ADDR(child->sas_addr),
1028					    SAS_ADDR(s2),
1029					    SAS_ADDR(sub_addr));
1030
1031				sas_ex_disable_port(child, s2);
1032			}
1033		}
1034	}
1035	return 0;
1036}
1037/**
1038 * sas_ex_discover_devices -- discover devices attached to this expander
1039 * dev: pointer to the expander domain device
1040 * single: if you want to do a single phy, else set to -1;
1041 *
1042 * Configure this expander for use with its devices and register the
1043 * devices of this expander.
1044 */
1045static int sas_ex_discover_devices(struct domain_device *dev, int single)
1046{
1047	struct expander_device *ex = &dev->ex_dev;
1048	int i = 0, end = ex->num_phys;
1049	int res = 0;
1050
1051	if (0 <= single && single < end) {
1052		i = single;
1053		end = i+1;
1054	}
1055
1056	for ( ; i < end; i++) {
1057		struct ex_phy *ex_phy = &ex->ex_phy[i];
1058
1059		if (ex_phy->phy_state == PHY_VACANT ||
1060		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1061		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1062			continue;
1063
1064		switch (ex_phy->linkrate) {
1065		case SAS_PHY_DISABLED:
1066		case SAS_PHY_RESET_PROBLEM:
1067		case SAS_SATA_PORT_SELECTOR:
1068			continue;
1069		default:
1070			res = sas_ex_discover_dev(dev, i);
1071			if (res)
1072				break;
1073			continue;
1074		}
1075	}
1076
1077	if (!res)
1078		sas_check_level_subtractive_boundary(dev);
1079
1080	return res;
1081}
1082
1083static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1084{
1085	struct expander_device *ex = &dev->ex_dev;
1086	int i;
1087	u8  *sub_sas_addr = NULL;
1088
1089	if (dev->dev_type != EDGE_DEV)
1090		return 0;
1091
1092	for (i = 0; i < ex->num_phys; i++) {
1093		struct ex_phy *phy = &ex->ex_phy[i];
1094
1095		if (phy->phy_state == PHY_VACANT ||
1096		    phy->phy_state == PHY_NOT_PRESENT)
1097			continue;
1098
1099		if ((phy->attached_dev_type == FANOUT_DEV ||
1100		     phy->attached_dev_type == EDGE_DEV) &&
1101		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1102
1103			if (!sub_sas_addr)
1104				sub_sas_addr = &phy->attached_sas_addr[0];
1105			else if (SAS_ADDR(sub_sas_addr) !=
1106				 SAS_ADDR(phy->attached_sas_addr)) {
1107
1108				SAS_DPRINTK("ex %016llx phy 0x%x "
1109					    "diverges(%016llx) on subtractive "
1110					    "boundary(%016llx). Disabled\n",
1111					    SAS_ADDR(dev->sas_addr), i,
1112					    SAS_ADDR(phy->attached_sas_addr),
1113					    SAS_ADDR(sub_sas_addr));
1114				sas_ex_disable_phy(dev, i);
1115			}
1116		}
1117	}
1118	return 0;
1119}
1120
1121static void sas_print_parent_topology_bug(struct domain_device *child,
1122						 struct ex_phy *parent_phy,
1123						 struct ex_phy *child_phy)
1124{
1125	static const char ra_char[] = {
1126		[DIRECT_ROUTING] = 'D',
1127		[SUBTRACTIVE_ROUTING] = 'S',
1128		[TABLE_ROUTING] = 'T',
1129	};
1130	static const char *ex_type[] = {
1131		[EDGE_DEV] = "edge",
1132		[FANOUT_DEV] = "fanout",
1133	};
1134	struct domain_device *parent = child->parent;
1135
1136	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1137		   "has %c:%c routing link!\n",
 
 
 
 
 
 
 
 
 
 
1138
1139		   ex_type[parent->dev_type],
1140		   SAS_ADDR(parent->sas_addr),
1141		   parent_phy->phy_id,
1142
1143		   ex_type[child->dev_type],
1144		   SAS_ADDR(child->sas_addr),
1145		   child_phy->phy_id,
1146
1147		   ra_char[parent_phy->routing_attr],
1148		   ra_char[child_phy->routing_attr]);
 
 
1149}
1150
1151static int sas_check_eeds(struct domain_device *child,
1152				 struct ex_phy *parent_phy,
1153				 struct ex_phy *child_phy)
1154{
1155	int res = 0;
1156	struct domain_device *parent = child->parent;
 
1157
1158	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1159		res = -ENODEV;
1160		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1161			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1162			    SAS_ADDR(parent->sas_addr),
1163			    parent_phy->phy_id,
1164			    SAS_ADDR(child->sas_addr),
1165			    child_phy->phy_id,
1166			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1167	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1168		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1169		       SAS_ADDR_SIZE);
1170		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1171		       SAS_ADDR_SIZE);
1172	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1173		    SAS_ADDR(parent->sas_addr)) ||
1174		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1175		    SAS_ADDR(child->sas_addr)))
1176		   &&
1177		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1178		     SAS_ADDR(parent->sas_addr)) ||
1179		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1180		     SAS_ADDR(child->sas_addr))))
1181		;
1182	else {
1183		res = -ENODEV;
1184		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1185			    "phy 0x%x link forms a third EEDS!\n",
1186			    SAS_ADDR(parent->sas_addr),
1187			    parent_phy->phy_id,
1188			    SAS_ADDR(child->sas_addr),
1189			    child_phy->phy_id);
1190	}
1191
1192	return res;
1193}
1194
1195/* Here we spill over 80 columns.  It is intentional.
1196 */
1197static int sas_check_parent_topology(struct domain_device *child)
1198{
1199	struct expander_device *child_ex = &child->ex_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200	struct expander_device *parent_ex;
1201	int i;
1202	int res = 0;
1203
1204	if (!child->parent)
1205		return 0;
1206
1207	if (child->parent->dev_type != EDGE_DEV &&
1208	    child->parent->dev_type != FANOUT_DEV)
1209		return 0;
1210
1211	parent_ex = &child->parent->ex_dev;
1212
1213	for (i = 0; i < parent_ex->num_phys; i++) {
1214		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1215		struct ex_phy *child_phy;
1216
1217		if (parent_phy->phy_state == PHY_VACANT ||
1218		    parent_phy->phy_state == PHY_NOT_PRESENT)
1219			continue;
1220
1221		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1222			continue;
1223
1224		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1225
1226		switch (child->parent->dev_type) {
1227		case EDGE_DEV:
1228			if (child->dev_type == FANOUT_DEV) {
1229				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1230				    child_phy->routing_attr != TABLE_ROUTING) {
1231					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1232					res = -ENODEV;
1233				}
1234			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1236					res = sas_check_eeds(child, parent_phy, child_phy);
1237				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1238					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1239					res = -ENODEV;
1240				}
1241			} else if (parent_phy->routing_attr == TABLE_ROUTING &&
1242				   child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1243				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1244				res = -ENODEV;
1245			}
1246			break;
1247		case FANOUT_DEV:
1248			if (parent_phy->routing_attr != TABLE_ROUTING ||
1249			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1250				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1251				res = -ENODEV;
1252			}
1253			break;
1254		default:
1255			break;
1256		}
1257	}
1258
1259	return res;
1260}
1261
1262#define RRI_REQ_SIZE  16
1263#define RRI_RESP_SIZE 44
1264
1265static int sas_configure_present(struct domain_device *dev, int phy_id,
1266				 u8 *sas_addr, int *index, int *present)
1267{
1268	int i, res = 0;
1269	struct expander_device *ex = &dev->ex_dev;
1270	struct ex_phy *phy = &ex->ex_phy[phy_id];
1271	u8 *rri_req;
1272	u8 *rri_resp;
1273
1274	*present = 0;
1275	*index = 0;
1276
1277	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1278	if (!rri_req)
1279		return -ENOMEM;
1280
1281	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1282	if (!rri_resp) {
1283		kfree(rri_req);
1284		return -ENOMEM;
1285	}
1286
1287	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1288	rri_req[9] = phy_id;
1289
1290	for (i = 0; i < ex->max_route_indexes ; i++) {
1291		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1292		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1293				       RRI_RESP_SIZE);
1294		if (res)
1295			goto out;
1296		res = rri_resp[2];
1297		if (res == SMP_RESP_NO_INDEX) {
1298			SAS_DPRINTK("overflow of indexes: dev %016llx "
1299				    "phy 0x%x index 0x%x\n",
1300				    SAS_ADDR(dev->sas_addr), phy_id, i);
1301			goto out;
1302		} else if (res != SMP_RESP_FUNC_ACC) {
1303			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1304				    "result 0x%x\n", __func__,
1305				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1306			goto out;
1307		}
1308		if (SAS_ADDR(sas_addr) != 0) {
1309			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1310				*index = i;
1311				if ((rri_resp[12] & 0x80) == 0x80)
1312					*present = 0;
1313				else
1314					*present = 1;
1315				goto out;
1316			} else if (SAS_ADDR(rri_resp+16) == 0) {
1317				*index = i;
1318				*present = 0;
1319				goto out;
1320			}
1321		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1322			   phy->last_da_index < i) {
1323			phy->last_da_index = i;
1324			*index = i;
1325			*present = 0;
1326			goto out;
1327		}
1328	}
1329	res = -1;
1330out:
1331	kfree(rri_req);
1332	kfree(rri_resp);
1333	return res;
1334}
1335
1336#define CRI_REQ_SIZE  44
1337#define CRI_RESP_SIZE  8
1338
1339static int sas_configure_set(struct domain_device *dev, int phy_id,
1340			     u8 *sas_addr, int index, int include)
1341{
1342	int res;
1343	u8 *cri_req;
1344	u8 *cri_resp;
1345
1346	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1347	if (!cri_req)
1348		return -ENOMEM;
1349
1350	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1351	if (!cri_resp) {
1352		kfree(cri_req);
1353		return -ENOMEM;
1354	}
1355
1356	cri_req[1] = SMP_CONF_ROUTE_INFO;
1357	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1358	cri_req[9] = phy_id;
1359	if (SAS_ADDR(sas_addr) == 0 || !include)
1360		cri_req[12] |= 0x80;
1361	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1362
1363	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1364			       CRI_RESP_SIZE);
1365	if (res)
1366		goto out;
1367	res = cri_resp[2];
1368	if (res == SMP_RESP_NO_INDEX) {
1369		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1370			    "index 0x%x\n",
1371			    SAS_ADDR(dev->sas_addr), phy_id, index);
1372	}
1373out:
1374	kfree(cri_req);
1375	kfree(cri_resp);
1376	return res;
1377}
1378
1379static int sas_configure_phy(struct domain_device *dev, int phy_id,
1380				    u8 *sas_addr, int include)
1381{
1382	int index;
1383	int present;
1384	int res;
1385
1386	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1387	if (res)
1388		return res;
1389	if (include ^ present)
1390		return sas_configure_set(dev, phy_id, sas_addr, index,include);
 
1391
1392	return res;
1393}
1394
1395/**
1396 * sas_configure_parent -- configure routing table of parent
1397 * parent: parent expander
1398 * child: child expander
1399 * sas_addr: SAS port identifier of device directly attached to child
 
1400 */
1401static int sas_configure_parent(struct domain_device *parent,
1402				struct domain_device *child,
1403				u8 *sas_addr, int include)
1404{
1405	struct expander_device *ex_parent = &parent->ex_dev;
1406	int res = 0;
1407	int i;
1408
1409	if (parent->parent) {
1410		res = sas_configure_parent(parent->parent, parent, sas_addr,
1411					   include);
1412		if (res)
1413			return res;
1414	}
1415
1416	if (ex_parent->conf_route_table == 0) {
1417		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1418			    SAS_ADDR(parent->sas_addr));
1419		return 0;
1420	}
1421
1422	for (i = 0; i < ex_parent->num_phys; i++) {
1423		struct ex_phy *phy = &ex_parent->ex_phy[i];
1424
1425		if ((phy->routing_attr == TABLE_ROUTING) &&
1426		    (SAS_ADDR(phy->attached_sas_addr) ==
1427		     SAS_ADDR(child->sas_addr))) {
1428			res = sas_configure_phy(parent, i, sas_addr, include);
1429			if (res)
1430				return res;
1431		}
1432	}
1433
1434	return res;
1435}
1436
1437/**
1438 * sas_configure_routing -- configure routing
1439 * dev: expander device
1440 * sas_addr: port identifier of device directly attached to the expander device
1441 */
1442static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1443{
1444	if (dev->parent)
1445		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1446	return 0;
1447}
1448
1449static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1450{
1451	if (dev->parent)
1452		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1453	return 0;
1454}
1455
1456/**
1457 * sas_discover_expander -- expander discovery
1458 * @ex: pointer to expander domain device
1459 *
1460 * See comment in sas_discover_sata().
1461 */
1462static int sas_discover_expander(struct domain_device *dev)
1463{
1464	int res;
1465
1466	res = sas_notify_lldd_dev_found(dev);
1467	if (res)
1468		return res;
1469
1470	res = sas_ex_general(dev);
1471	if (res)
1472		goto out_err;
1473	res = sas_ex_manuf_info(dev);
1474	if (res)
1475		goto out_err;
1476
1477	res = sas_expander_discover(dev);
1478	if (res) {
1479		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1480			    SAS_ADDR(dev->sas_addr), res);
1481		goto out_err;
1482	}
1483
1484	sas_check_ex_subtractive_boundary(dev);
1485	res = sas_check_parent_topology(dev);
1486	if (res)
1487		goto out_err;
1488	return 0;
1489out_err:
1490	sas_notify_lldd_dev_gone(dev);
1491	return res;
1492}
1493
1494static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1495{
1496	int res = 0;
1497	struct domain_device *dev;
1498
1499	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1500		if (dev->dev_type == EDGE_DEV ||
1501		    dev->dev_type == FANOUT_DEV) {
1502			struct sas_expander_device *ex =
1503				rphy_to_expander_device(dev->rphy);
1504
1505			if (level == ex->level)
1506				res = sas_ex_discover_devices(dev, -1);
1507			else if (level > 0)
1508				res = sas_ex_discover_devices(port->port_dev, -1);
1509
1510		}
1511	}
1512
1513	return res;
1514}
1515
1516static int sas_ex_bfs_disc(struct asd_sas_port *port)
1517{
1518	int res;
1519	int level;
1520
1521	do {
1522		level = port->disc.max_level;
1523		res = sas_ex_level_discovery(port, level);
1524		mb();
1525	} while (level < port->disc.max_level);
1526
1527	return res;
1528}
1529
1530int sas_discover_root_expander(struct domain_device *dev)
1531{
1532	int res;
1533	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1534
1535	res = sas_rphy_add(dev->rphy);
1536	if (res)
1537		goto out_err;
1538
1539	ex->level = dev->port->disc.max_level; /* 0 */
1540	res = sas_discover_expander(dev);
1541	if (res)
1542		goto out_err2;
1543
1544	sas_ex_bfs_disc(dev->port);
1545
1546	return res;
1547
1548out_err2:
1549	sas_rphy_remove(dev->rphy);
1550out_err:
1551	return res;
1552}
1553
1554/* ---------- Domain revalidation ---------- */
1555
 
 
 
 
 
 
 
 
 
 
1556static int sas_get_phy_discover(struct domain_device *dev,
1557				int phy_id, struct smp_resp *disc_resp)
1558{
1559	int res;
1560	u8 *disc_req;
1561
1562	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1563	if (!disc_req)
1564		return -ENOMEM;
1565
1566	disc_req[1] = SMP_DISCOVER;
1567	disc_req[9] = phy_id;
1568
1569	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1570			       disc_resp, DISCOVER_RESP_SIZE);
1571	if (res)
1572		goto out;
1573	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1574		res = disc_resp->result;
1575		goto out;
1576	}
1577out:
1578	kfree(disc_req);
1579	return res;
1580}
1581
1582static int sas_get_phy_change_count(struct domain_device *dev,
1583				    int phy_id, int *pcc)
1584{
1585	int res;
1586	struct smp_resp *disc_resp;
1587
1588	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1589	if (!disc_resp)
1590		return -ENOMEM;
1591
1592	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1593	if (!res)
1594		*pcc = disc_resp->disc.change_count;
1595
1596	kfree(disc_resp);
1597	return res;
1598}
1599
1600static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1601					 int phy_id, u8 *attached_sas_addr)
1602{
1603	int res;
1604	struct smp_resp *disc_resp;
1605	struct discover_resp *dr;
1606
1607	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1608	if (!disc_resp)
1609		return -ENOMEM;
1610	dr = &disc_resp->disc;
1611
1612	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1613	if (!res) {
1614		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1615		if (dr->attached_dev_type == 0)
1616			memset(attached_sas_addr, 0, 8);
1617	}
1618	kfree(disc_resp);
1619	return res;
1620}
1621
1622static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1623			      int from_phy, bool update)
1624{
1625	struct expander_device *ex = &dev->ex_dev;
1626	int res = 0;
1627	int i;
1628
1629	for (i = from_phy; i < ex->num_phys; i++) {
1630		int phy_change_count = 0;
1631
1632		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1633		if (res)
1634			goto out;
1635		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
 
 
 
 
 
 
 
 
1636			if (update)
1637				ex->ex_phy[i].phy_change_count =
1638					phy_change_count;
1639			*phy_id = i;
1640			return 0;
1641		}
1642	}
1643out:
1644	return res;
1645}
1646
1647static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1648{
1649	int res;
1650	u8  *rg_req;
1651	struct smp_resp  *rg_resp;
1652
1653	rg_req = alloc_smp_req(RG_REQ_SIZE);
1654	if (!rg_req)
1655		return -ENOMEM;
1656
1657	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1658	if (!rg_resp) {
1659		kfree(rg_req);
1660		return -ENOMEM;
1661	}
1662
1663	rg_req[1] = SMP_REPORT_GENERAL;
1664
1665	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1666			       RG_RESP_SIZE);
1667	if (res)
1668		goto out;
1669	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1670		res = rg_resp->result;
1671		goto out;
1672	}
1673
1674	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1675out:
1676	kfree(rg_resp);
1677	kfree(rg_req);
1678	return res;
1679}
1680/**
1681 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1682 * @dev:domain device to be detect.
1683 * @src_dev: the device which originated BROADCAST(CHANGE).
1684 *
1685 * Add self-configuration expander suport. Suppose two expander cascading,
1686 * when the first level expander is self-configuring, hotplug the disks in
1687 * second level expander, BROADCAST(CHANGE) will not only be originated
1688 * in the second level expander, but also be originated in the first level
1689 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1690 * expander changed count in two level expanders will all increment at least
1691 * once, but the phy which chang count has changed is the source device which
1692 * we concerned.
1693 */
1694
1695static int sas_find_bcast_dev(struct domain_device *dev,
1696			      struct domain_device **src_dev)
1697{
1698	struct expander_device *ex = &dev->ex_dev;
1699	int ex_change_count = -1;
1700	int phy_id = -1;
1701	int res;
1702	struct domain_device *ch;
1703
1704	res = sas_get_ex_change_count(dev, &ex_change_count);
1705	if (res)
1706		goto out;
1707	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1708		/* Just detect if this expander phys phy change count changed,
1709		* in order to determine if this expander originate BROADCAST,
1710		* and do not update phy change count field in our structure.
1711		*/
1712		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1713		if (phy_id != -1) {
1714			*src_dev = dev;
1715			ex->ex_change_count = ex_change_count;
1716			SAS_DPRINTK("Expander phy change count has changed\n");
 
1717			return res;
1718		} else
1719			SAS_DPRINTK("Expander phys DID NOT change\n");
 
1720	}
1721	list_for_each_entry(ch, &ex->children, siblings) {
1722		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1723			res = sas_find_bcast_dev(ch, src_dev);
1724			if (*src_dev)
1725				return res;
1726		}
1727	}
1728out:
1729	return res;
1730}
1731
1732static void sas_unregister_ex_tree(struct domain_device *dev)
1733{
1734	struct expander_device *ex = &dev->ex_dev;
1735	struct domain_device *child, *n;
1736
1737	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1738		child->gone = 1;
1739		if (child->dev_type == EDGE_DEV ||
1740		    child->dev_type == FANOUT_DEV)
1741			sas_unregister_ex_tree(child);
1742		else
1743			sas_unregister_dev(child);
1744	}
1745	sas_unregister_dev(dev);
1746}
1747
1748static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1749					 int phy_id, bool last)
1750{
1751	struct expander_device *ex_dev = &parent->ex_dev;
1752	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1753	struct domain_device *child, *n;
1754	if (last) {
1755		list_for_each_entry_safe(child, n,
1756			&ex_dev->children, siblings) {
1757			if (SAS_ADDR(child->sas_addr) ==
1758			    SAS_ADDR(phy->attached_sas_addr)) {
1759				child->gone = 1;
1760				if (child->dev_type == EDGE_DEV ||
1761				    child->dev_type == FANOUT_DEV)
1762					sas_unregister_ex_tree(child);
1763				else
1764					sas_unregister_dev(child);
 
1765				break;
1766			}
1767		}
1768		parent->gone = 1;
1769		sas_disable_routing(parent, phy->attached_sas_addr);
1770	}
1771	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1772	if (phy->port) {
1773		sas_port_delete_phy(phy->port, phy->phy);
1774		if (phy->port->num_phys == 0)
1775			sas_port_delete(phy->port);
 
 
 
 
 
1776		phy->port = NULL;
1777	}
1778}
1779
1780static int sas_discover_bfs_by_root_level(struct domain_device *root,
1781					  const int level)
1782{
1783	struct expander_device *ex_root = &root->ex_dev;
1784	struct domain_device *child;
1785	int res = 0;
1786
1787	list_for_each_entry(child, &ex_root->children, siblings) {
1788		if (child->dev_type == EDGE_DEV ||
1789		    child->dev_type == FANOUT_DEV) {
1790			struct sas_expander_device *ex =
1791				rphy_to_expander_device(child->rphy);
1792
1793			if (level > ex->level)
1794				res = sas_discover_bfs_by_root_level(child,
1795								     level);
1796			else if (level == ex->level)
1797				res = sas_ex_discover_devices(child, -1);
1798		}
1799	}
1800	return res;
1801}
1802
1803static int sas_discover_bfs_by_root(struct domain_device *dev)
1804{
1805	int res;
1806	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1807	int level = ex->level+1;
1808
1809	res = sas_ex_discover_devices(dev, -1);
1810	if (res)
1811		goto out;
1812	do {
1813		res = sas_discover_bfs_by_root_level(dev, level);
1814		mb();
1815		level += 1;
1816	} while (level <= dev->port->disc.max_level);
1817out:
1818	return res;
1819}
1820
1821static int sas_discover_new(struct domain_device *dev, int phy_id)
1822{
1823	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1824	struct domain_device *child;
1825	bool found = false;
1826	int res, i;
1827
1828	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1829		    SAS_ADDR(dev->sas_addr), phy_id);
1830	res = sas_ex_phy_discover(dev, phy_id);
1831	if (res)
1832		goto out;
1833	/* to support the wide port inserted */
1834	for (i = 0; i < dev->ex_dev.num_phys; i++) {
1835		struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1836		if (i == phy_id)
1837			continue;
1838		if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1839		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1840			found = true;
1841			break;
1842		}
1843	}
1844	if (found) {
1845		sas_ex_join_wide_port(dev, phy_id);
1846		return 0;
1847	}
1848	res = sas_ex_discover_devices(dev, phy_id);
1849	if (!res)
1850		goto out;
1851	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1852		if (SAS_ADDR(child->sas_addr) ==
1853		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1854			if (child->dev_type == EDGE_DEV ||
1855			    child->dev_type == FANOUT_DEV)
1856				res = sas_discover_bfs_by_root(child);
1857			break;
1858		}
1859	}
1860out:
1861	return res;
1862}
1863
1864static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865{
1866	struct expander_device *ex = &dev->ex_dev;
1867	struct ex_phy *phy = &ex->ex_phy[phy_id];
1868	u8 attached_sas_addr[8];
 
 
 
1869	int res;
1870
1871	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
 
 
 
 
 
 
 
 
 
 
 
1872	switch (res) {
1873	case SMP_RESP_NO_PHY:
1874		phy->phy_state = PHY_NOT_PRESENT;
1875		sas_unregister_devs_sas_addr(dev, phy_id, last);
1876		goto out; break;
1877	case SMP_RESP_PHY_VACANT:
1878		phy->phy_state = PHY_VACANT;
1879		sas_unregister_devs_sas_addr(dev, phy_id, last);
1880		goto out; break;
1881	case SMP_RESP_FUNC_ACC:
1882		break;
 
 
 
 
1883	}
1884
1885	if (SAS_ADDR(attached_sas_addr) == 0) {
 
 
 
1886		phy->phy_state = PHY_EMPTY;
1887		sas_unregister_devs_sas_addr(dev, phy_id, last);
1888	} else if (SAS_ADDR(attached_sas_addr) ==
1889		   SAS_ADDR(phy->attached_sas_addr)) {
1890		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1891			    SAS_ADDR(dev->sas_addr), phy_id);
 
 
 
 
 
 
 
 
1892		sas_ex_phy_discover(dev, phy_id);
1893	} else
1894		res = sas_discover_new(dev, phy_id);
1895out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896	return res;
1897}
1898
1899/**
1900 * sas_rediscover - revalidate the domain.
1901 * @dev:domain device to be detect.
1902 * @phy_id: the phy id will be detected.
1903 *
1904 * NOTE: this process _must_ quit (return) as soon as any connection
1905 * errors are encountered.  Connection recovery is done elsewhere.
1906 * Discover process only interrogates devices in order to discover the
1907 * domain.For plugging out, we un-register the device only when it is
1908 * the last phy in the port, for other phys in this port, we just delete it
1909 * from the port.For inserting, we do discovery when it is the
1910 * first phy,for other phys in this port, we add it to the port to
1911 * forming the wide-port.
1912 */
1913static int sas_rediscover(struct domain_device *dev, const int phy_id)
1914{
1915	struct expander_device *ex = &dev->ex_dev;
1916	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1917	int res = 0;
1918	int i;
1919	bool last = true;	/* is this the last phy of the port */
1920
1921	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1922		    SAS_ADDR(dev->sas_addr), phy_id);
1923
1924	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1925		for (i = 0; i < ex->num_phys; i++) {
1926			struct ex_phy *phy = &ex->ex_phy[i];
1927
1928			if (i == phy_id)
1929				continue;
1930			if (SAS_ADDR(phy->attached_sas_addr) ==
1931			    SAS_ADDR(changed_phy->attached_sas_addr)) {
1932				SAS_DPRINTK("phy%d part of wide port with "
1933					    "phy%d\n", phy_id, i);
1934				last = false;
1935				break;
1936			}
1937		}
1938		res = sas_rediscover_dev(dev, phy_id, last);
1939	} else
1940		res = sas_discover_new(dev, phy_id);
1941	return res;
1942}
1943
1944/**
1945 * sas_revalidate_domain -- revalidate the domain
1946 * @port: port to the domain of interest
1947 *
1948 * NOTE: this process _must_ quit (return) as soon as any connection
1949 * errors are encountered.  Connection recovery is done elsewhere.
1950 * Discover process only interrogates devices in order to discover the
1951 * domain.
1952 */
1953int sas_ex_revalidate_domain(struct domain_device *port_dev)
1954{
1955	int res;
1956	struct domain_device *dev = NULL;
1957
1958	res = sas_find_bcast_dev(port_dev, &dev);
1959	if (res)
1960		goto out;
1961	if (dev) {
1962		struct expander_device *ex = &dev->ex_dev;
1963		int i = 0, phy_id;
1964
1965		do {
1966			phy_id = -1;
1967			res = sas_find_bcast_phy(dev, &phy_id, i, true);
1968			if (phy_id == -1)
1969				break;
1970			res = sas_rediscover(dev, phy_id);
1971			i = phy_id + 1;
1972		} while (i < ex->num_phys);
1973	}
1974out:
1975	return res;
1976}
1977
1978int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1979		    struct request *req)
1980{
1981	struct domain_device *dev;
1982	int ret, type;
1983	struct request *rsp = req->next_rq;
1984
1985	if (!rsp) {
1986		printk("%s: space for a smp response is missing\n",
1987		       __func__);
1988		return -EINVAL;
1989	}
1990
 
 
 
 
 
 
 
 
 
 
 
1991	/* no rphy means no smp target support (ie aic94xx host) */
1992	if (!rphy)
1993		return sas_smp_host_handler(shost, req, rsp);
1994
1995	type = rphy->identify.device_type;
1996
1997	if (type != SAS_EDGE_EXPANDER_DEVICE &&
1998	    type != SAS_FANOUT_EXPANDER_DEVICE) {
1999		printk("%s: can we send a smp request to a device?\n",
 
 
 
2000		       __func__);
2001		return -EINVAL;
2002	}
2003
2004	dev = sas_find_dev_by_rphy(rphy);
2005	if (!dev) {
2006		printk("%s: fail to find a domain_device?\n", __func__);
2007		return -EINVAL;
2008	}
2009
2010	/* do we need to support multiple segments? */
2011	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2012		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2013		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2014		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2015		return -EINVAL;
 
2016	}
2017
2018	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2019			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2020	if (ret > 0) {
2021		/* positive number is the untransferred residual */
2022		rsp->resid_len = ret;
2023		req->resid_len = 0;
2024		ret = 0;
2025	} else if (ret == 0) {
2026		rsp->resid_len = 0;
2027		req->resid_len = 0;
2028	}
2029
2030	return ret;
 
2031}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Serial Attached SCSI (SAS) Expander discovery and configuration
   4 *
   5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7 *
   8 * This file is licensed under GPLv2.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/scatterlist.h>
  12#include <linux/blkdev.h>
  13#include <linux/slab.h>
  14#include <linux/unaligned.h>
  15
  16#include "sas_internal.h"
  17
  18#include <scsi/sas_ata.h>
  19#include <scsi/scsi_transport.h>
  20#include <scsi/scsi_transport_sas.h>
  21#include "scsi_sas_internal.h"
  22
  23static int sas_discover_expander(struct domain_device *dev);
  24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26			     u8 *sas_addr, int include);
  27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28
  29static void sas_port_add_ex_phy(struct sas_port *port, struct ex_phy *ex_phy)
 
 
  30{
  31	sas_port_add_phy(port, ex_phy->phy);
  32	ex_phy->port = port;
  33	ex_phy->phy_state = PHY_DEVICE_DISCOVERED;
 
 
 
 
 
 
  34}
  35
  36static void sas_ex_add_parent_port(struct domain_device *dev, int phy_id)
  37{
  38	struct expander_device *ex = &dev->ex_dev;
  39	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
  40
  41	if (!ex->parent_port) {
  42		ex->parent_port = sas_port_alloc(&dev->rphy->dev, phy_id);
  43		/* FIXME: error handling */
  44		BUG_ON(!ex->parent_port);
  45		BUG_ON(sas_port_add(ex->parent_port));
  46		sas_port_mark_backlink(ex->parent_port);
  47	}
  48	sas_port_add_ex_phy(ex->parent_port, ex_phy);
  49}
  50
  51/* ---------- SMP task management ---------- */
  52
  53/* Give it some long enough timeout. In seconds. */
  54#define SMP_TIMEOUT 10
  55
  56static int smp_execute_task_sg(struct domain_device *dev,
  57		struct scatterlist *req, struct scatterlist *resp)
  58{
  59	int res, retry;
  60	struct sas_task *task = NULL;
  61	struct sas_internal *i =
  62		to_sas_internal(dev->port->ha->shost->transportt);
  63	struct sas_ha_struct *ha = dev->port->ha;
  64
  65	pm_runtime_get_sync(ha->dev);
  66	mutex_lock(&dev->ex_dev.cmd_mutex);
  67	for (retry = 0; retry < 3; retry++) {
  68		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  69			res = -ECOMM;
  70			break;
  71		}
  72
  73		task = sas_alloc_slow_task(GFP_KERNEL);
  74		if (!task) {
  75			res = -ENOMEM;
  76			break;
  77		}
  78		task->dev = dev;
  79		task->task_proto = dev->tproto;
  80		task->smp_task.smp_req = *req;
  81		task->smp_task.smp_resp = *resp;
  82
  83		task->task_done = sas_task_internal_done;
  84
  85		task->slow_task->timer.function = sas_task_internal_timedout;
  86		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  87		add_timer(&task->slow_task->timer);
 
  88
  89		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  90
  91		if (res) {
  92			del_timer_sync(&task->slow_task->timer);
  93			pr_notice("executing SMP task failed:%d\n", res);
  94			break;
  95		}
  96
  97		wait_for_completion(&task->slow_task->completion);
  98		res = -ECOMM;
  99		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 100			pr_notice("smp task timed out or aborted\n");
 101			i->dft->lldd_abort_task(task);
 102			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 103				pr_notice("SMP task aborted and not done\n");
 104				break;
 105			}
 106		}
 107		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 108		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
 109			res = 0;
 110			break;
 111		}
 112		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 113		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 114			/* no error, but return the number of bytes of
 115			 * underrun */
 116			res = task->task_status.residual;
 117			break;
 118		}
 119		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 120		    task->task_status.stat == SAS_DATA_OVERRUN) {
 121			res = -EMSGSIZE;
 122			break;
 123		}
 124		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 125		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 126			break;
 127		else {
 128			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 129				  __func__,
 130				  SAS_ADDR(dev->sas_addr),
 131				  task->task_status.resp,
 132				  task->task_status.stat);
 133			sas_free_task(task);
 134			task = NULL;
 135		}
 136	}
 137	mutex_unlock(&dev->ex_dev.cmd_mutex);
 138	pm_runtime_put_sync(ha->dev);
 139
 140	BUG_ON(retry == 3 && task != NULL);
 141	sas_free_task(task);
 
 
 142	return res;
 143}
 144
 145static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 146			    void *resp, int resp_size)
 147{
 148	struct scatterlist req_sg;
 149	struct scatterlist resp_sg;
 150
 151	sg_init_one(&req_sg, req, req_size);
 152	sg_init_one(&resp_sg, resp, resp_size);
 153	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 154}
 155
 156/* ---------- Allocations ---------- */
 157
 158static inline void *alloc_smp_req(int size)
 159{
 160	u8 *p = kzalloc(ALIGN(size, ARCH_DMA_MINALIGN), GFP_KERNEL);
 161	if (p)
 162		p[0] = SMP_REQUEST;
 163	return p;
 164}
 165
 166static inline void *alloc_smp_resp(int size)
 167{
 168	return kzalloc(size, GFP_KERNEL);
 169}
 170
 171static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 172{
 173	switch (phy->routing_attr) {
 174	case TABLE_ROUTING:
 175		if (dev->ex_dev.t2t_supp)
 176			return 'U';
 177		else
 178			return 'T';
 179	case DIRECT_ROUTING:
 180		return 'D';
 181	case SUBTRACTIVE_ROUTING:
 182		return 'S';
 183	default:
 184		return '?';
 185	}
 186}
 187
 188static enum sas_device_type to_dev_type(struct discover_resp *dr)
 189{
 190	/* This is detecting a failure to transmit initial dev to host
 191	 * FIS as described in section J.5 of sas-2 r16
 192	 */
 193	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 194	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 195		return SAS_SATA_PENDING;
 196	else
 197		return dr->attached_dev_type;
 198}
 199
 200static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 201			   struct smp_disc_resp *disc_resp)
 202{
 203	enum sas_device_type dev_type;
 204	enum sas_linkrate linkrate;
 205	u8 sas_addr[SAS_ADDR_SIZE];
 206	struct discover_resp *dr = &disc_resp->disc;
 207	struct sas_ha_struct *ha = dev->port->ha;
 208	struct expander_device *ex = &dev->ex_dev;
 209	struct ex_phy *phy = &ex->ex_phy[phy_id];
 
 
 210	struct sas_rphy *rphy = dev->rphy;
 211	bool new_phy = !phy->phy;
 212	char *type;
 213
 214	if (new_phy) {
 215		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 216			return;
 217		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 218
 219		/* FIXME: error_handling */
 220		BUG_ON(!phy->phy);
 221	}
 222
 223	switch (disc_resp->result) {
 224	case SMP_RESP_PHY_VACANT:
 225		phy->phy_state = PHY_VACANT;
 226		break;
 227	default:
 228		phy->phy_state = PHY_NOT_PRESENT;
 229		break;
 230	case SMP_RESP_FUNC_ACC:
 231		phy->phy_state = PHY_EMPTY; /* do not know yet */
 232		break;
 233	}
 234
 235	/* check if anything important changed to squelch debug */
 236	dev_type = phy->attached_dev_type;
 237	linkrate  = phy->linkrate;
 238	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 239
 240	/* Handle vacant phy - rest of dr data is not valid so skip it */
 241	if (phy->phy_state == PHY_VACANT) {
 242		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 243		phy->attached_dev_type = SAS_PHY_UNUSED;
 244		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 245			phy->phy_id = phy_id;
 246			goto skip;
 247		} else
 248			goto out;
 249	}
 250
 251	phy->attached_dev_type = to_dev_type(dr);
 252	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 253		goto out;
 254	phy->phy_id = phy_id;
 
 255	phy->linkrate = dr->linkrate;
 256	phy->attached_sata_host = dr->attached_sata_host;
 257	phy->attached_sata_dev  = dr->attached_sata_dev;
 258	phy->attached_sata_ps   = dr->attached_sata_ps;
 259	phy->attached_iproto = dr->iproto << 1;
 260	phy->attached_tproto = dr->tproto << 1;
 261	/* help some expanders that fail to zero sas_address in the 'no
 262	 * device' case
 263	 */
 264	if (phy->attached_dev_type == SAS_PHY_UNUSED)
 265		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 266	else
 267		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 268	phy->attached_phy_id = dr->attached_phy_id;
 269	phy->phy_change_count = dr->change_count;
 270	phy->routing_attr = dr->routing_attr;
 271	phy->virtual = dr->virtual;
 272	phy->last_da_index = -1;
 273
 274	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 275	phy->phy->identify.device_type = dr->attached_dev_type;
 276	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 277	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 278	if (!phy->attached_tproto && dr->attached_sata_dev)
 279		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 280	phy->phy->identify.phy_identifier = phy_id;
 281	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 282	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 283	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 284	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 285	phy->phy->negotiated_linkrate = phy->linkrate;
 286	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 287
 288 skip:
 289	if (new_phy)
 290		if (sas_phy_add(phy->phy)) {
 291			sas_phy_free(phy->phy);
 292			return;
 293		}
 294
 295 out:
 296	switch (phy->attached_dev_type) {
 297	case SAS_SATA_PENDING:
 298		type = "stp pending";
 299		break;
 300	case SAS_PHY_UNUSED:
 301		type = "no device";
 302		break;
 303	case SAS_END_DEVICE:
 304		if (phy->attached_iproto) {
 305			if (phy->attached_tproto)
 306				type = "host+target";
 307			else
 308				type = "host";
 309		} else {
 310			if (dr->attached_sata_dev)
 311				type = "stp";
 312			else
 313				type = "ssp";
 314		}
 315		break;
 316	case SAS_EDGE_EXPANDER_DEVICE:
 317	case SAS_FANOUT_EXPANDER_DEVICE:
 318		type = "smp";
 319		break;
 320	default:
 321		type = "unknown";
 322	}
 323
 324	/* this routine is polled by libata error recovery so filter
 325	 * unimportant messages
 326	 */
 327	if (new_phy || phy->attached_dev_type != dev_type ||
 328	    phy->linkrate != linkrate ||
 329	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 330		/* pass */;
 331	else
 332		return;
 333
 334	/* if the attached device type changed and ata_eh is active,
 335	 * make sure we run revalidation when eh completes (see:
 336	 * sas_enable_revalidation)
 337	 */
 338	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 339		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 340
 341	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 342		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 343		 SAS_ADDR(dev->sas_addr), phy->phy_id,
 344		 sas_route_char(dev, phy), phy->linkrate,
 345		 SAS_ADDR(phy->attached_sas_addr), type);
 346}
 347
 348/* check if we have an existing attached ata device on this expander phy */
 349struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 350{
 351	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 352	struct domain_device *dev;
 353	struct sas_rphy *rphy;
 354
 355	if (!ex_phy->port)
 356		return NULL;
 357
 358	rphy = ex_phy->port->rphy;
 359	if (!rphy)
 360		return NULL;
 361
 362	dev = sas_find_dev_by_rphy(rphy);
 363
 364	if (dev && dev_is_sata(dev))
 365		return dev;
 366
 367	return NULL;
 368}
 369
 370#define DISCOVER_REQ_SIZE  16
 371#define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
 372
 373static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 374				      struct smp_disc_resp *disc_resp,
 375				      int single)
 376{
 377	struct discover_resp *dr = &disc_resp->disc;
 378	int res;
 379
 380	disc_req[9] = single;
 
 
 381
 382	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 383			       disc_resp, DISCOVER_RESP_SIZE);
 384	if (res)
 385		return res;
 386	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 387		pr_notice("Found loopback topology, just ignore it!\n");
 388		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389	}
 390	sas_set_ex_phy(dev, single, disc_resp);
 391	return 0;
 392}
 393
 394int sas_ex_phy_discover(struct domain_device *dev, int single)
 395{
 396	struct expander_device *ex = &dev->ex_dev;
 397	int  res = 0;
 398	u8   *disc_req;
 399	struct smp_disc_resp *disc_resp;
 400
 401	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 402	if (!disc_req)
 403		return -ENOMEM;
 404
 405	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 406	if (!disc_resp) {
 407		kfree(disc_req);
 408		return -ENOMEM;
 409	}
 410
 411	disc_req[1] = SMP_DISCOVER;
 412
 413	if (0 <= single && single < ex->num_phys) {
 414		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 415	} else {
 416		int i;
 417
 418		for (i = 0; i < ex->num_phys; i++) {
 419			res = sas_ex_phy_discover_helper(dev, disc_req,
 420							 disc_resp, i);
 421			if (res)
 422				goto out_err;
 423		}
 424	}
 425out_err:
 426	kfree(disc_resp);
 427	kfree(disc_req);
 428	return res;
 429}
 430
 431static int sas_expander_discover(struct domain_device *dev)
 432{
 433	struct expander_device *ex = &dev->ex_dev;
 434	int res;
 435
 436	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 437	if (!ex->ex_phy)
 438		return -ENOMEM;
 439
 440	res = sas_ex_phy_discover(dev, -1);
 441	if (res)
 442		goto out_err;
 443
 444	return 0;
 445 out_err:
 446	kfree(ex->ex_phy);
 447	ex->ex_phy = NULL;
 448	return res;
 449}
 450
 451#define MAX_EXPANDER_PHYS 128
 452
 
 
 
 
 
 
 
 
 
 
 
 
 
 453#define RG_REQ_SIZE   8
 454#define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
 455
 456static int sas_ex_general(struct domain_device *dev)
 457{
 458	u8 *rg_req;
 459	struct smp_rg_resp *rg_resp;
 460	struct report_general_resp *rg;
 461	int res;
 462	int i;
 463
 464	rg_req = alloc_smp_req(RG_REQ_SIZE);
 465	if (!rg_req)
 466		return -ENOMEM;
 467
 468	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 469	if (!rg_resp) {
 470		kfree(rg_req);
 471		return -ENOMEM;
 472	}
 473
 474	rg_req[1] = SMP_REPORT_GENERAL;
 475
 476	for (i = 0; i < 5; i++) {
 477		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 478				       RG_RESP_SIZE);
 479
 480		if (res) {
 481			pr_notice("RG to ex %016llx failed:0x%x\n",
 482				  SAS_ADDR(dev->sas_addr), res);
 483			goto out;
 484		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 485			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 486				 SAS_ADDR(dev->sas_addr), rg_resp->result);
 487			res = rg_resp->result;
 488			goto out;
 489		}
 490
 491		rg = &rg_resp->rg;
 492		dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 493		dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 494		dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 495		dev->ex_dev.t2t_supp = rg->t2t_supp;
 496		dev->ex_dev.conf_route_table = rg->conf_route_table;
 497		dev->ex_dev.configuring = rg->configuring;
 498		memcpy(dev->ex_dev.enclosure_logical_id,
 499		       rg->enclosure_logical_id, 8);
 500
 501		if (dev->ex_dev.configuring) {
 502			pr_debug("RG: ex %016llx self-configuring...\n",
 503				 SAS_ADDR(dev->sas_addr));
 504			schedule_timeout_interruptible(5*HZ);
 505		} else
 506			break;
 507	}
 508out:
 509	kfree(rg_req);
 510	kfree(rg_resp);
 511	return res;
 512}
 513
 514static void ex_assign_manuf_info(struct domain_device *dev, void
 515					*_mi_resp)
 516{
 517	u8 *mi_resp = _mi_resp;
 518	struct sas_rphy *rphy = dev->rphy;
 519	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 520
 521	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 522	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 523	memcpy(edev->product_rev, mi_resp + 36,
 524	       SAS_EXPANDER_PRODUCT_REV_LEN);
 525
 526	if (mi_resp[8] & 1) {
 527		memcpy(edev->component_vendor_id, mi_resp + 40,
 528		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 529		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 530		edev->component_revision_id = mi_resp[50];
 531	}
 532}
 533
 534#define MI_REQ_SIZE   8
 535#define MI_RESP_SIZE 64
 536
 537static int sas_ex_manuf_info(struct domain_device *dev)
 538{
 539	u8 *mi_req;
 540	u8 *mi_resp;
 541	int res;
 542
 543	mi_req = alloc_smp_req(MI_REQ_SIZE);
 544	if (!mi_req)
 545		return -ENOMEM;
 546
 547	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 548	if (!mi_resp) {
 549		kfree(mi_req);
 550		return -ENOMEM;
 551	}
 552
 553	mi_req[1] = SMP_REPORT_MANUF_INFO;
 554
 555	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
 556	if (res) {
 557		pr_notice("MI: ex %016llx failed:0x%x\n",
 558			  SAS_ADDR(dev->sas_addr), res);
 559		goto out;
 560	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 561		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 562			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
 563		goto out;
 564	}
 565
 566	ex_assign_manuf_info(dev, mi_resp);
 567out:
 568	kfree(mi_req);
 569	kfree(mi_resp);
 570	return res;
 571}
 572
 573#define PC_REQ_SIZE  44
 574#define PC_RESP_SIZE 8
 575
 576int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 577			enum phy_func phy_func,
 578			struct sas_phy_linkrates *rates)
 579{
 580	u8 *pc_req;
 581	u8 *pc_resp;
 582	int res;
 583
 584	pc_req = alloc_smp_req(PC_REQ_SIZE);
 585	if (!pc_req)
 586		return -ENOMEM;
 587
 588	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 589	if (!pc_resp) {
 590		kfree(pc_req);
 591		return -ENOMEM;
 592	}
 593
 594	pc_req[1] = SMP_PHY_CONTROL;
 595	pc_req[9] = phy_id;
 596	pc_req[10] = phy_func;
 597	if (rates) {
 598		pc_req[32] = rates->minimum_linkrate << 4;
 599		pc_req[33] = rates->maximum_linkrate << 4;
 600	}
 601
 602	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
 603	if (res) {
 604		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 605		       SAS_ADDR(dev->sas_addr), phy_id, res);
 606	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 607		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 608		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 609		res = pc_resp[2];
 610	}
 611	kfree(pc_resp);
 612	kfree(pc_req);
 613	return res;
 614}
 615
 616static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 617{
 618	struct expander_device *ex = &dev->ex_dev;
 619	struct ex_phy *phy = &ex->ex_phy[phy_id];
 620
 621	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 622	phy->linkrate = SAS_PHY_DISABLED;
 623}
 624
 625static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 626{
 627	struct expander_device *ex = &dev->ex_dev;
 628	int i;
 629
 630	for (i = 0; i < ex->num_phys; i++) {
 631		struct ex_phy *phy = &ex->ex_phy[i];
 632
 633		if (phy->phy_state == PHY_VACANT ||
 634		    phy->phy_state == PHY_NOT_PRESENT)
 635			continue;
 636
 637		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 638			sas_ex_disable_phy(dev, i);
 639	}
 640}
 641
 642static int sas_dev_present_in_domain(struct asd_sas_port *port,
 643					    u8 *sas_addr)
 644{
 645	struct domain_device *dev;
 646
 647	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 648		return 1;
 649	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 650		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 651			return 1;
 652	}
 653	return 0;
 654}
 655
 656#define RPEL_REQ_SIZE	16
 657#define RPEL_RESP_SIZE	32
 658int sas_smp_get_phy_events(struct sas_phy *phy)
 659{
 660	int res;
 661	u8 *req;
 662	u8 *resp;
 663	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 664	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 665
 666	req = alloc_smp_req(RPEL_REQ_SIZE);
 667	if (!req)
 668		return -ENOMEM;
 669
 670	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 671	if (!resp) {
 672		kfree(req);
 673		return -ENOMEM;
 674	}
 675
 676	req[1] = SMP_REPORT_PHY_ERR_LOG;
 677	req[9] = phy->number;
 678
 679	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 680			       resp, RPEL_RESP_SIZE);
 681
 682	if (res)
 683		goto out;
 684
 685	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 686	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 687	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 688	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 689
 690 out:
 691	kfree(req);
 692	kfree(resp);
 693	return res;
 694
 695}
 696
 697#ifdef CONFIG_SCSI_SAS_ATA
 698
 699#define RPS_REQ_SIZE  16
 700#define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
 701
 702int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 703			    struct smp_rps_resp *rps_resp)
 
 704{
 705	int res;
 706	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 707	u8 *resp = (u8 *)rps_resp;
 708
 709	if (!rps_req)
 710		return -ENOMEM;
 711
 712	rps_req[1] = SMP_REPORT_PHY_SATA;
 713	rps_req[9] = phy_id;
 714
 715	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 716			       rps_resp, RPS_RESP_SIZE);
 717
 718	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 719	 * standards cockup here.  sas-2 explicitly specifies the FIS
 720	 * should be encoded so that FIS type is in resp[24].
 721	 * However, some expanders endian reverse this.  Undo the
 722	 * reversal here */
 723	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 724		int i;
 725
 726		for (i = 0; i < 5; i++) {
 727			int j = 24 + (i*4);
 728			u8 a, b;
 729			a = resp[j + 0];
 730			b = resp[j + 1];
 731			resp[j + 0] = resp[j + 3];
 732			resp[j + 1] = resp[j + 2];
 733			resp[j + 2] = b;
 734			resp[j + 3] = a;
 735		}
 736	}
 737
 738	kfree(rps_req);
 739	return res;
 740}
 741#endif
 742
 743static void sas_ex_get_linkrate(struct domain_device *parent,
 744				       struct domain_device *child,
 745				       struct ex_phy *parent_phy)
 746{
 747	struct expander_device *parent_ex = &parent->ex_dev;
 748	struct sas_port *port;
 749	int i;
 750
 751	child->pathways = 0;
 752
 753	port = parent_phy->port;
 754
 755	for (i = 0; i < parent_ex->num_phys; i++) {
 756		struct ex_phy *phy = &parent_ex->ex_phy[i];
 757
 758		if (phy->phy_state == PHY_VACANT ||
 759		    phy->phy_state == PHY_NOT_PRESENT)
 760			continue;
 761
 762		if (sas_phy_match_dev_addr(child, phy)) {
 
 
 763			child->min_linkrate = min(parent->min_linkrate,
 764						  phy->linkrate);
 765			child->max_linkrate = max(parent->max_linkrate,
 766						  phy->linkrate);
 767			child->pathways++;
 768			sas_port_add_phy(port, phy->phy);
 769		}
 770	}
 771	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 772	child->pathways = min(child->pathways, parent->pathways);
 773}
 774
 775static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
 776			  struct domain_device *child, int phy_id)
 777{
 778	struct sas_rphy *rphy;
 779	int res;
 780
 781	child->dev_type = SAS_END_DEVICE;
 782	rphy = sas_end_device_alloc(phy->port);
 783	if (!rphy)
 784		return -ENOMEM;
 785
 786	child->tproto = phy->attached_tproto;
 787	sas_init_dev(child);
 788
 789	child->rphy = rphy;
 790	get_device(&rphy->dev);
 791	rphy->identify.phy_identifier = phy_id;
 792	sas_fill_in_rphy(child, rphy);
 793
 794	list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 795
 796	res = sas_notify_lldd_dev_found(child);
 797	if (res) {
 798		pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
 799			  SAS_ADDR(child->sas_addr),
 800			  SAS_ADDR(parent->sas_addr), phy_id, res);
 801		sas_rphy_free(child->rphy);
 802		list_del(&child->disco_list_node);
 803		return res;
 804	}
 805
 806	return 0;
 807}
 808
 809static struct domain_device *sas_ex_discover_end_dev(
 810	struct domain_device *parent, int phy_id)
 811{
 812	struct expander_device *parent_ex = &parent->ex_dev;
 813	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 814	struct domain_device *child = NULL;
 
 815	int res;
 816
 817	if (phy->attached_sata_host || phy->attached_sata_ps)
 818		return NULL;
 819
 820	child = sas_alloc_device();
 821	if (!child)
 822		return NULL;
 823
 824	kref_get(&parent->kref);
 825	child->parent = parent;
 826	child->port   = parent->port;
 827	child->iproto = phy->attached_iproto;
 828	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 829	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 830	if (!phy->port) {
 831		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 832		if (unlikely(!phy->port))
 833			goto out_err;
 834		if (unlikely(sas_port_add(phy->port) != 0)) {
 835			sas_port_free(phy->port);
 836			goto out_err;
 837		}
 838	}
 839	sas_ex_get_linkrate(parent, child, phy);
 840	sas_device_set_phy(child, phy->port);
 841
 
 842	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 843		res = sas_ata_add_dev(parent, phy, child, phy_id);
 844	} else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 845		res = sas_ex_add_dev(parent, phy, child, phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846	} else {
 847		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 848			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 849			  phy_id);
 850		res = -ENODEV;
 851	}
 852
 853	if (res)
 854		goto out_free;
 855
 856	list_add_tail(&child->siblings, &parent_ex->children);
 857	return child;
 858
 
 
 
 
 859 out_free:
 860	sas_port_delete(phy->port);
 861 out_err:
 862	phy->port = NULL;
 863	sas_put_device(child);
 864	return NULL;
 865}
 866
 867/* See if this phy is part of a wide port */
 868static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 869{
 870	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 871	int i;
 872
 873	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 874		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 875
 876		if (ephy == phy)
 877			continue;
 878
 879		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 880			    SAS_ADDR_SIZE) && ephy->port) {
 881			sas_port_add_ex_phy(ephy->port, phy);
 882			return true;
 
 
 883		}
 884	}
 885
 886	return false;
 887}
 888
 889static struct domain_device *sas_ex_discover_expander(
 890	struct domain_device *parent, int phy_id)
 891{
 892	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 893	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 894	struct domain_device *child = NULL;
 895	struct sas_rphy *rphy;
 896	struct sas_expander_device *edev;
 897	struct asd_sas_port *port;
 898	int res;
 899
 900	if (phy->routing_attr == DIRECT_ROUTING) {
 901		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 902			SAS_ADDR(parent->sas_addr), phy_id,
 903			SAS_ADDR(phy->attached_sas_addr),
 904			phy->attached_phy_id);
 
 905		return NULL;
 906	}
 907	child = sas_alloc_device();
 908	if (!child)
 909		return NULL;
 910
 911	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 912	/* FIXME: better error handling */
 913	BUG_ON(sas_port_add(phy->port) != 0);
 914
 915
 916	switch (phy->attached_dev_type) {
 917	case SAS_EDGE_EXPANDER_DEVICE:
 918		rphy = sas_expander_alloc(phy->port,
 919					  SAS_EDGE_EXPANDER_DEVICE);
 920		break;
 921	case SAS_FANOUT_EXPANDER_DEVICE:
 922		rphy = sas_expander_alloc(phy->port,
 923					  SAS_FANOUT_EXPANDER_DEVICE);
 924		break;
 925	default:
 926		rphy = NULL;	/* shut gcc up */
 927		BUG();
 928	}
 929	port = parent->port;
 930	child->rphy = rphy;
 931	get_device(&rphy->dev);
 932	edev = rphy_to_expander_device(rphy);
 933	child->dev_type = phy->attached_dev_type;
 934	kref_get(&parent->kref);
 935	child->parent = parent;
 936	child->port = port;
 937	child->iproto = phy->attached_iproto;
 938	child->tproto = phy->attached_tproto;
 939	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 940	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 941	sas_ex_get_linkrate(parent, child, phy);
 942	edev->level = parent_ex->level + 1;
 943	parent->port->disc.max_level = max(parent->port->disc.max_level,
 944					   edev->level);
 945	sas_init_dev(child);
 946	sas_fill_in_rphy(child, rphy);
 947	sas_rphy_add(rphy);
 948
 949	spin_lock_irq(&parent->port->dev_list_lock);
 950	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 951	spin_unlock_irq(&parent->port->dev_list_lock);
 952
 953	res = sas_discover_expander(child);
 954	if (res) {
 955		sas_rphy_delete(rphy);
 956		spin_lock_irq(&parent->port->dev_list_lock);
 957		list_del(&child->dev_list_node);
 958		spin_unlock_irq(&parent->port->dev_list_lock);
 959		sas_put_device(child);
 960		sas_port_delete(phy->port);
 961		phy->port = NULL;
 962		return NULL;
 963	}
 964	list_add_tail(&child->siblings, &parent->ex_dev.children);
 965	return child;
 966}
 967
 968static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 969{
 970	struct expander_device *ex = &dev->ex_dev;
 971	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 972	struct domain_device *child = NULL;
 973	int res = 0;
 974
 975	/* Phy state */
 976	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 977		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 978			res = sas_ex_phy_discover(dev, phy_id);
 979		if (res)
 980			return res;
 981	}
 982
 983	/* Parent and domain coherency */
 984	if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
 985		sas_ex_add_parent_port(dev, phy_id);
 
 986		return 0;
 987	}
 988	if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
 989		sas_ex_add_parent_port(dev, phy_id);
 
 990		if (ex_phy->routing_attr == TABLE_ROUTING)
 991			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 992		return 0;
 993	}
 994
 995	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 996		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 997
 998	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
 999		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1000			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1001			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1002		}
1003		return 0;
1004	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1005		return 0;
1006
1007	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1008	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1009	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1010	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1011		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1012			ex_phy->attached_dev_type,
1013			SAS_ADDR(dev->sas_addr),
1014			phy_id);
1015		return 0;
1016	}
1017
1018	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1019	if (res) {
1020		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1021			  SAS_ADDR(ex_phy->attached_sas_addr), res);
 
1022		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1023		return res;
1024	}
1025
1026	if (sas_ex_join_wide_port(dev, phy_id)) {
1027		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1028			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
 
1029		return res;
1030	}
1031
1032	switch (ex_phy->attached_dev_type) {
1033	case SAS_END_DEVICE:
1034	case SAS_SATA_PENDING:
1035		child = sas_ex_discover_end_dev(dev, phy_id);
1036		break;
1037	case SAS_FANOUT_EXPANDER_DEVICE:
1038		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1039			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1040				 SAS_ADDR(ex_phy->attached_sas_addr),
1041				 ex_phy->attached_phy_id,
1042				 SAS_ADDR(dev->sas_addr),
1043				 phy_id);
 
1044			sas_ex_disable_phy(dev, phy_id);
1045			return res;
1046		} else
1047			memcpy(dev->port->disc.fanout_sas_addr,
1048			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1049		fallthrough;
1050	case SAS_EDGE_EXPANDER_DEVICE:
1051		child = sas_ex_discover_expander(dev, phy_id);
1052		break;
1053	default:
1054		break;
1055	}
1056
1057	if (!child)
1058		pr_notice("ex %016llx phy%02d failed to discover\n",
1059			  SAS_ADDR(dev->sas_addr), phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060	return res;
1061}
1062
1063static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1064{
1065	struct expander_device *ex = &dev->ex_dev;
1066	int i;
1067
1068	for (i = 0; i < ex->num_phys; i++) {
1069		struct ex_phy *phy = &ex->ex_phy[i];
1070
1071		if (phy->phy_state == PHY_VACANT ||
1072		    phy->phy_state == PHY_NOT_PRESENT)
1073			continue;
1074
1075		if (dev_is_expander(phy->attached_dev_type) &&
 
1076		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1077
1078			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1079
1080			return 1;
1081		}
1082	}
1083	return 0;
1084}
1085
1086static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1087{
1088	struct expander_device *ex = &dev->ex_dev;
1089	struct domain_device *child;
1090	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1091
1092	list_for_each_entry(child, &ex->children, siblings) {
1093		if (!dev_is_expander(child->dev_type))
 
1094			continue;
1095		if (sub_addr[0] == 0) {
1096			sas_find_sub_addr(child, sub_addr);
1097			continue;
1098		} else {
1099			u8 s2[SAS_ADDR_SIZE];
1100
1101			if (sas_find_sub_addr(child, s2) &&
1102			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1103
1104				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1105					  SAS_ADDR(dev->sas_addr),
1106					  SAS_ADDR(child->sas_addr),
1107					  SAS_ADDR(s2),
1108					  SAS_ADDR(sub_addr));
 
 
1109
1110				sas_ex_disable_port(child, s2);
1111			}
1112		}
1113	}
1114	return 0;
1115}
1116/**
1117 * sas_ex_discover_devices - discover devices attached to this expander
1118 * @dev: pointer to the expander domain device
1119 * @single: if you want to do a single phy, else set to -1;
1120 *
1121 * Configure this expander for use with its devices and register the
1122 * devices of this expander.
1123 */
1124static int sas_ex_discover_devices(struct domain_device *dev, int single)
1125{
1126	struct expander_device *ex = &dev->ex_dev;
1127	int i = 0, end = ex->num_phys;
1128	int res = 0;
1129
1130	if (0 <= single && single < end) {
1131		i = single;
1132		end = i+1;
1133	}
1134
1135	for ( ; i < end; i++) {
1136		struct ex_phy *ex_phy = &ex->ex_phy[i];
1137
1138		if (ex_phy->phy_state == PHY_VACANT ||
1139		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1140		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1141			continue;
1142
1143		switch (ex_phy->linkrate) {
1144		case SAS_PHY_DISABLED:
1145		case SAS_PHY_RESET_PROBLEM:
1146		case SAS_SATA_PORT_SELECTOR:
1147			continue;
1148		default:
1149			res = sas_ex_discover_dev(dev, i);
1150			if (res)
1151				break;
1152			continue;
1153		}
1154	}
1155
1156	if (!res)
1157		sas_check_level_subtractive_boundary(dev);
1158
1159	return res;
1160}
1161
1162static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1163{
1164	struct expander_device *ex = &dev->ex_dev;
1165	int i;
1166	u8  *sub_sas_addr = NULL;
1167
1168	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1169		return 0;
1170
1171	for (i = 0; i < ex->num_phys; i++) {
1172		struct ex_phy *phy = &ex->ex_phy[i];
1173
1174		if (phy->phy_state == PHY_VACANT ||
1175		    phy->phy_state == PHY_NOT_PRESENT)
1176			continue;
1177
1178		if (dev_is_expander(phy->attached_dev_type) &&
 
1179		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1180
1181			if (!sub_sas_addr)
1182				sub_sas_addr = &phy->attached_sas_addr[0];
1183			else if (SAS_ADDR(sub_sas_addr) !=
1184				 SAS_ADDR(phy->attached_sas_addr)) {
1185
1186				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1187					  SAS_ADDR(dev->sas_addr), i,
1188					  SAS_ADDR(phy->attached_sas_addr),
1189					  SAS_ADDR(sub_sas_addr));
 
 
1190				sas_ex_disable_phy(dev, i);
1191			}
1192		}
1193	}
1194	return 0;
1195}
1196
1197static void sas_print_parent_topology_bug(struct domain_device *child,
1198						 struct ex_phy *parent_phy,
1199						 struct ex_phy *child_phy)
1200{
 
 
 
 
 
1201	static const char *ex_type[] = {
1202		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1203		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1204	};
1205	struct domain_device *parent = child->parent;
1206
1207	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1208		  ex_type[parent->dev_type],
1209		  SAS_ADDR(parent->sas_addr),
1210		  parent_phy->phy_id,
1211
1212		  ex_type[child->dev_type],
1213		  SAS_ADDR(child->sas_addr),
1214		  child_phy->phy_id,
1215
1216		  sas_route_char(parent, parent_phy),
1217		  sas_route_char(child, child_phy));
1218}
1219
1220static bool sas_eeds_valid(struct domain_device *parent,
1221			   struct domain_device *child)
1222{
1223	struct sas_discovery *disc = &parent->port->disc;
 
 
 
1224
1225	return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1226		SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1227	       (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1228		SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1229}
1230
1231static int sas_check_eeds(struct domain_device *child,
1232			  struct ex_phy *parent_phy,
1233			  struct ex_phy *child_phy)
1234{
1235	int res = 0;
1236	struct domain_device *parent = child->parent;
1237	struct sas_discovery *disc = &parent->port->disc;
1238
1239	if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1240		res = -ENODEV;
1241		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1242			SAS_ADDR(parent->sas_addr),
1243			parent_phy->phy_id,
1244			SAS_ADDR(child->sas_addr),
1245			child_phy->phy_id,
1246			SAS_ADDR(disc->fanout_sas_addr));
1247	} else if (SAS_ADDR(disc->eeds_a) == 0) {
1248		memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1249		memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1250	} else if (!sas_eeds_valid(parent, child)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1251		res = -ENODEV;
1252		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1253			SAS_ADDR(parent->sas_addr),
1254			parent_phy->phy_id,
1255			SAS_ADDR(child->sas_addr),
1256			child_phy->phy_id);
 
1257	}
1258
1259	return res;
1260}
1261
1262static int sas_check_edge_expander_topo(struct domain_device *child,
1263					struct ex_phy *parent_phy)
 
1264{
1265	struct expander_device *child_ex = &child->ex_dev;
1266	struct expander_device *parent_ex = &child->parent->ex_dev;
1267	struct ex_phy *child_phy;
1268
1269	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1270
1271	if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1272		if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1273		    child_phy->routing_attr != TABLE_ROUTING)
1274			goto error;
1275	} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1276		if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1277			return sas_check_eeds(child, parent_phy, child_phy);
1278		else if (child_phy->routing_attr != TABLE_ROUTING)
1279			goto error;
1280	} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1281		if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1282		    (child_phy->routing_attr != TABLE_ROUTING ||
1283		     !child_ex->t2t_supp || !parent_ex->t2t_supp))
1284			goto error;
1285	}
1286
1287	return 0;
1288error:
1289	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1290	return -ENODEV;
1291}
1292
1293static int sas_check_fanout_expander_topo(struct domain_device *child,
1294					  struct ex_phy *parent_phy)
1295{
1296	struct expander_device *child_ex = &child->ex_dev;
1297	struct ex_phy *child_phy;
1298
1299	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1300
1301	if (parent_phy->routing_attr == TABLE_ROUTING &&
1302	    child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1303		return 0;
1304
1305	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1306
1307	return -ENODEV;
1308}
1309
1310static int sas_check_parent_topology(struct domain_device *child)
1311{
1312	struct expander_device *parent_ex;
1313	int i;
1314	int res = 0;
1315
1316	if (!child->parent)
1317		return 0;
1318
1319	if (!dev_is_expander(child->parent->dev_type))
 
1320		return 0;
1321
1322	parent_ex = &child->parent->ex_dev;
1323
1324	for (i = 0; i < parent_ex->num_phys; i++) {
1325		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
 
1326
1327		if (parent_phy->phy_state == PHY_VACANT ||
1328		    parent_phy->phy_state == PHY_NOT_PRESENT)
1329			continue;
1330
1331		if (!sas_phy_match_dev_addr(child, parent_phy))
1332			continue;
1333
 
 
1334		switch (child->parent->dev_type) {
1335		case SAS_EDGE_EXPANDER_DEVICE:
1336			if (sas_check_edge_expander_topo(child, parent_phy))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337				res = -ENODEV;
 
1338			break;
1339		case SAS_FANOUT_EXPANDER_DEVICE:
1340			if (sas_check_fanout_expander_topo(child, parent_phy))
 
 
1341				res = -ENODEV;
 
1342			break;
1343		default:
1344			break;
1345		}
1346	}
1347
1348	return res;
1349}
1350
1351#define RRI_REQ_SIZE  16
1352#define RRI_RESP_SIZE 44
1353
1354static int sas_configure_present(struct domain_device *dev, int phy_id,
1355				 u8 *sas_addr, int *index, int *present)
1356{
1357	int i, res = 0;
1358	struct expander_device *ex = &dev->ex_dev;
1359	struct ex_phy *phy = &ex->ex_phy[phy_id];
1360	u8 *rri_req;
1361	u8 *rri_resp;
1362
1363	*present = 0;
1364	*index = 0;
1365
1366	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1367	if (!rri_req)
1368		return -ENOMEM;
1369
1370	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1371	if (!rri_resp) {
1372		kfree(rri_req);
1373		return -ENOMEM;
1374	}
1375
1376	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1377	rri_req[9] = phy_id;
1378
1379	for (i = 0; i < ex->max_route_indexes ; i++) {
1380		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1381		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1382				       RRI_RESP_SIZE);
1383		if (res)
1384			goto out;
1385		res = rri_resp[2];
1386		if (res == SMP_RESP_NO_INDEX) {
1387			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1388				SAS_ADDR(dev->sas_addr), phy_id, i);
 
1389			goto out;
1390		} else if (res != SMP_RESP_FUNC_ACC) {
1391			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1392				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1393				  i, res);
1394			goto out;
1395		}
1396		if (SAS_ADDR(sas_addr) != 0) {
1397			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1398				*index = i;
1399				if ((rri_resp[12] & 0x80) == 0x80)
1400					*present = 0;
1401				else
1402					*present = 1;
1403				goto out;
1404			} else if (SAS_ADDR(rri_resp+16) == 0) {
1405				*index = i;
1406				*present = 0;
1407				goto out;
1408			}
1409		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1410			   phy->last_da_index < i) {
1411			phy->last_da_index = i;
1412			*index = i;
1413			*present = 0;
1414			goto out;
1415		}
1416	}
1417	res = -1;
1418out:
1419	kfree(rri_req);
1420	kfree(rri_resp);
1421	return res;
1422}
1423
1424#define CRI_REQ_SIZE  44
1425#define CRI_RESP_SIZE  8
1426
1427static int sas_configure_set(struct domain_device *dev, int phy_id,
1428			     u8 *sas_addr, int index, int include)
1429{
1430	int res;
1431	u8 *cri_req;
1432	u8 *cri_resp;
1433
1434	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1435	if (!cri_req)
1436		return -ENOMEM;
1437
1438	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1439	if (!cri_resp) {
1440		kfree(cri_req);
1441		return -ENOMEM;
1442	}
1443
1444	cri_req[1] = SMP_CONF_ROUTE_INFO;
1445	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1446	cri_req[9] = phy_id;
1447	if (SAS_ADDR(sas_addr) == 0 || !include)
1448		cri_req[12] |= 0x80;
1449	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1450
1451	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1452			       CRI_RESP_SIZE);
1453	if (res)
1454		goto out;
1455	res = cri_resp[2];
1456	if (res == SMP_RESP_NO_INDEX) {
1457		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1458			SAS_ADDR(dev->sas_addr), phy_id, index);
 
1459	}
1460out:
1461	kfree(cri_req);
1462	kfree(cri_resp);
1463	return res;
1464}
1465
1466static int sas_configure_phy(struct domain_device *dev, int phy_id,
1467				    u8 *sas_addr, int include)
1468{
1469	int index;
1470	int present;
1471	int res;
1472
1473	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1474	if (res)
1475		return res;
1476	if (include ^ present)
1477		return sas_configure_set(dev, phy_id, sas_addr, index,
1478					 include);
1479
1480	return res;
1481}
1482
1483/**
1484 * sas_configure_parent - configure routing table of parent
1485 * @parent: parent expander
1486 * @child: child expander
1487 * @sas_addr: SAS port identifier of device directly attached to child
1488 * @include: whether or not to include @child in the expander routing table
1489 */
1490static int sas_configure_parent(struct domain_device *parent,
1491				struct domain_device *child,
1492				u8 *sas_addr, int include)
1493{
1494	struct expander_device *ex_parent = &parent->ex_dev;
1495	int res = 0;
1496	int i;
1497
1498	if (parent->parent) {
1499		res = sas_configure_parent(parent->parent, parent, sas_addr,
1500					   include);
1501		if (res)
1502			return res;
1503	}
1504
1505	if (ex_parent->conf_route_table == 0) {
1506		pr_debug("ex %016llx has self-configuring routing table\n",
1507			 SAS_ADDR(parent->sas_addr));
1508		return 0;
1509	}
1510
1511	for (i = 0; i < ex_parent->num_phys; i++) {
1512		struct ex_phy *phy = &ex_parent->ex_phy[i];
1513
1514		if ((phy->routing_attr == TABLE_ROUTING) &&
1515		    sas_phy_match_dev_addr(child, phy)) {
 
1516			res = sas_configure_phy(parent, i, sas_addr, include);
1517			if (res)
1518				return res;
1519		}
1520	}
1521
1522	return res;
1523}
1524
1525/**
1526 * sas_configure_routing - configure routing
1527 * @dev: expander device
1528 * @sas_addr: port identifier of device directly attached to the expander device
1529 */
1530static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1531{
1532	if (dev->parent)
1533		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1534	return 0;
1535}
1536
1537static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1538{
1539	if (dev->parent)
1540		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1541	return 0;
1542}
1543
1544/**
1545 * sas_discover_expander - expander discovery
1546 * @dev: pointer to expander domain device
1547 *
1548 * See comment in sas_discover_sata().
1549 */
1550static int sas_discover_expander(struct domain_device *dev)
1551{
1552	int res;
1553
1554	res = sas_notify_lldd_dev_found(dev);
1555	if (res)
1556		return res;
1557
1558	res = sas_ex_general(dev);
1559	if (res)
1560		goto out_err;
1561	res = sas_ex_manuf_info(dev);
1562	if (res)
1563		goto out_err;
1564
1565	res = sas_expander_discover(dev);
1566	if (res) {
1567		pr_warn("expander %016llx discovery failed(0x%x)\n",
1568			SAS_ADDR(dev->sas_addr), res);
1569		goto out_err;
1570	}
1571
1572	sas_check_ex_subtractive_boundary(dev);
1573	res = sas_check_parent_topology(dev);
1574	if (res)
1575		goto out_err;
1576	return 0;
1577out_err:
1578	sas_notify_lldd_dev_gone(dev);
1579	return res;
1580}
1581
1582static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1583{
1584	int res = 0;
1585	struct domain_device *dev;
1586
1587	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1588		if (dev_is_expander(dev->dev_type)) {
 
1589			struct sas_expander_device *ex =
1590				rphy_to_expander_device(dev->rphy);
1591
1592			if (level == ex->level)
1593				res = sas_ex_discover_devices(dev, -1);
1594			else if (level > 0)
1595				res = sas_ex_discover_devices(port->port_dev, -1);
1596
1597		}
1598	}
1599
1600	return res;
1601}
1602
1603static int sas_ex_bfs_disc(struct asd_sas_port *port)
1604{
1605	int res;
1606	int level;
1607
1608	do {
1609		level = port->disc.max_level;
1610		res = sas_ex_level_discovery(port, level);
1611		mb();
1612	} while (level < port->disc.max_level);
1613
1614	return res;
1615}
1616
1617int sas_discover_root_expander(struct domain_device *dev)
1618{
1619	int res;
1620	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1621
1622	res = sas_rphy_add(dev->rphy);
1623	if (res)
1624		goto out_err;
1625
1626	ex->level = dev->port->disc.max_level; /* 0 */
1627	res = sas_discover_expander(dev);
1628	if (res)
1629		goto out_err2;
1630
1631	sas_ex_bfs_disc(dev->port);
1632
1633	return res;
1634
1635out_err2:
1636	sas_rphy_remove(dev->rphy);
1637out_err:
1638	return res;
1639}
1640
1641/* ---------- Domain revalidation ---------- */
1642
1643static void sas_get_sas_addr_and_dev_type(struct smp_disc_resp *disc_resp,
1644					  u8 *sas_addr,
1645					  enum sas_device_type *type)
1646{
1647	memcpy(sas_addr, disc_resp->disc.attached_sas_addr, SAS_ADDR_SIZE);
1648	*type = to_dev_type(&disc_resp->disc);
1649	if (*type == SAS_PHY_UNUSED)
1650		memset(sas_addr, 0, SAS_ADDR_SIZE);
1651}
1652
1653static int sas_get_phy_discover(struct domain_device *dev,
1654				int phy_id, struct smp_disc_resp *disc_resp)
1655{
1656	int res;
1657	u8 *disc_req;
1658
1659	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1660	if (!disc_req)
1661		return -ENOMEM;
1662
1663	disc_req[1] = SMP_DISCOVER;
1664	disc_req[9] = phy_id;
1665
1666	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1667			       disc_resp, DISCOVER_RESP_SIZE);
1668	if (res)
1669		goto out;
1670	if (disc_resp->result != SMP_RESP_FUNC_ACC)
1671		res = disc_resp->result;
 
 
1672out:
1673	kfree(disc_req);
1674	return res;
1675}
1676
1677static int sas_get_phy_change_count(struct domain_device *dev,
1678				    int phy_id, int *pcc)
1679{
1680	int res;
1681	struct smp_disc_resp *disc_resp;
1682
1683	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1684	if (!disc_resp)
1685		return -ENOMEM;
1686
1687	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1688	if (!res)
1689		*pcc = disc_resp->disc.change_count;
1690
1691	kfree(disc_resp);
1692	return res;
1693}
1694
1695int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1696			     u8 *sas_addr, enum sas_device_type *type)
1697{
1698	int res;
1699	struct smp_disc_resp *disc_resp;
 
1700
1701	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1702	if (!disc_resp)
1703		return -ENOMEM;
 
1704
1705	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1706	if (res == 0)
1707		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, type);
 
 
 
1708	kfree(disc_resp);
1709	return res;
1710}
1711
1712static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1713			      int from_phy, bool update)
1714{
1715	struct expander_device *ex = &dev->ex_dev;
1716	int res = 0;
1717	int i;
1718
1719	for (i = from_phy; i < ex->num_phys; i++) {
1720		int phy_change_count = 0;
1721
1722		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1723		switch (res) {
1724		case SMP_RESP_PHY_VACANT:
1725		case SMP_RESP_NO_PHY:
1726			continue;
1727		case SMP_RESP_FUNC_ACC:
1728			break;
1729		default:
1730			return res;
1731		}
1732
1733		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1734			if (update)
1735				ex->ex_phy[i].phy_change_count =
1736					phy_change_count;
1737			*phy_id = i;
1738			return 0;
1739		}
1740	}
1741	return 0;
 
1742}
1743
1744static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1745{
1746	int res;
1747	u8  *rg_req;
1748	struct smp_rg_resp  *rg_resp;
1749
1750	rg_req = alloc_smp_req(RG_REQ_SIZE);
1751	if (!rg_req)
1752		return -ENOMEM;
1753
1754	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1755	if (!rg_resp) {
1756		kfree(rg_req);
1757		return -ENOMEM;
1758	}
1759
1760	rg_req[1] = SMP_REPORT_GENERAL;
1761
1762	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1763			       RG_RESP_SIZE);
1764	if (res)
1765		goto out;
1766	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1767		res = rg_resp->result;
1768		goto out;
1769	}
1770
1771	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1772out:
1773	kfree(rg_resp);
1774	kfree(rg_req);
1775	return res;
1776}
1777/**
1778 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1779 * @dev:domain device to be detect.
1780 * @src_dev: the device which originated BROADCAST(CHANGE).
1781 *
1782 * Add self-configuration expander support. Suppose two expander cascading,
1783 * when the first level expander is self-configuring, hotplug the disks in
1784 * second level expander, BROADCAST(CHANGE) will not only be originated
1785 * in the second level expander, but also be originated in the first level
1786 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1787 * expander changed count in two level expanders will all increment at least
1788 * once, but the phy which chang count has changed is the source device which
1789 * we concerned.
1790 */
1791
1792static int sas_find_bcast_dev(struct domain_device *dev,
1793			      struct domain_device **src_dev)
1794{
1795	struct expander_device *ex = &dev->ex_dev;
1796	int ex_change_count = -1;
1797	int phy_id = -1;
1798	int res;
1799	struct domain_device *ch;
1800
1801	res = sas_get_ex_change_count(dev, &ex_change_count);
1802	if (res)
1803		goto out;
1804	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1805		/* Just detect if this expander phys phy change count changed,
1806		* in order to determine if this expander originate BROADCAST,
1807		* and do not update phy change count field in our structure.
1808		*/
1809		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1810		if (phy_id != -1) {
1811			*src_dev = dev;
1812			ex->ex_change_count = ex_change_count;
1813			pr_info("ex %016llx phy%02d change count has changed\n",
1814				SAS_ADDR(dev->sas_addr), phy_id);
1815			return res;
1816		} else
1817			pr_info("ex %016llx phys DID NOT change\n",
1818				SAS_ADDR(dev->sas_addr));
1819	}
1820	list_for_each_entry(ch, &ex->children, siblings) {
1821		if (dev_is_expander(ch->dev_type)) {
1822			res = sas_find_bcast_dev(ch, src_dev);
1823			if (*src_dev)
1824				return res;
1825		}
1826	}
1827out:
1828	return res;
1829}
1830
1831static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1832{
1833	struct expander_device *ex = &dev->ex_dev;
1834	struct domain_device *child, *n;
1835
1836	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1837		set_bit(SAS_DEV_GONE, &child->state);
1838		if (dev_is_expander(child->dev_type))
1839			sas_unregister_ex_tree(port, child);
 
1840		else
1841			sas_unregister_dev(port, child);
1842	}
1843	sas_unregister_dev(port, dev);
1844}
1845
1846static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1847					 int phy_id, bool last)
1848{
1849	struct expander_device *ex_dev = &parent->ex_dev;
1850	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1851	struct domain_device *child, *n, *found = NULL;
1852	if (last) {
1853		list_for_each_entry_safe(child, n,
1854			&ex_dev->children, siblings) {
1855			if (sas_phy_match_dev_addr(child, phy)) {
1856				set_bit(SAS_DEV_GONE, &child->state);
1857				if (dev_is_expander(child->dev_type))
1858					sas_unregister_ex_tree(parent->port, child);
 
 
1859				else
1860					sas_unregister_dev(parent->port, child);
1861				found = child;
1862				break;
1863			}
1864		}
 
1865		sas_disable_routing(parent, phy->attached_sas_addr);
1866	}
1867	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1868	if (phy->port) {
1869		sas_port_delete_phy(phy->port, phy->phy);
1870		sas_device_set_phy(found, phy->port);
1871		if (phy->port->num_phys == 0) {
1872			list_add_tail(&phy->port->del_list,
1873				&parent->port->sas_port_del_list);
1874			if (ex_dev->parent_port == phy->port)
1875				ex_dev->parent_port = NULL;
1876		}
1877		phy->port = NULL;
1878	}
1879}
1880
1881static int sas_discover_bfs_by_root_level(struct domain_device *root,
1882					  const int level)
1883{
1884	struct expander_device *ex_root = &root->ex_dev;
1885	struct domain_device *child;
1886	int res = 0;
1887
1888	list_for_each_entry(child, &ex_root->children, siblings) {
1889		if (dev_is_expander(child->dev_type)) {
 
1890			struct sas_expander_device *ex =
1891				rphy_to_expander_device(child->rphy);
1892
1893			if (level > ex->level)
1894				res = sas_discover_bfs_by_root_level(child,
1895								     level);
1896			else if (level == ex->level)
1897				res = sas_ex_discover_devices(child, -1);
1898		}
1899	}
1900	return res;
1901}
1902
1903static int sas_discover_bfs_by_root(struct domain_device *dev)
1904{
1905	int res;
1906	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1907	int level = ex->level+1;
1908
1909	res = sas_ex_discover_devices(dev, -1);
1910	if (res)
1911		goto out;
1912	do {
1913		res = sas_discover_bfs_by_root_level(dev, level);
1914		mb();
1915		level += 1;
1916	} while (level <= dev->port->disc.max_level);
1917out:
1918	return res;
1919}
1920
1921static int sas_discover_new(struct domain_device *dev, int phy_id)
1922{
1923	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1924	struct domain_device *child;
1925	int res;
 
1926
1927	pr_debug("ex %016llx phy%02d new device attached\n",
1928		 SAS_ADDR(dev->sas_addr), phy_id);
1929	res = sas_ex_phy_discover(dev, phy_id);
1930	if (res)
1931		return res;
1932
1933	if (sas_ex_join_wide_port(dev, phy_id))
 
 
 
 
 
 
 
 
 
 
 
1934		return 0;
1935
1936	res = sas_ex_discover_devices(dev, phy_id);
1937	if (res)
1938		return res;
1939	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1940		if (sas_phy_match_dev_addr(child, ex_phy)) {
1941			if (dev_is_expander(child->dev_type))
 
 
1942				res = sas_discover_bfs_by_root(child);
1943			break;
1944		}
1945	}
 
1946	return res;
1947}
1948
1949static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1950{
1951	if (old == new)
1952		return true;
1953
1954	/* treat device directed resets as flutter, if we went
1955	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1956	 */
1957	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1958	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1959		return true;
1960
1961	return false;
1962}
1963
1964static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1965			      bool last, int sibling)
1966{
1967	struct expander_device *ex = &dev->ex_dev;
1968	struct ex_phy *phy = &ex->ex_phy[phy_id];
1969	enum sas_device_type type = SAS_PHY_UNUSED;
1970	struct smp_disc_resp *disc_resp;
1971	u8 sas_addr[SAS_ADDR_SIZE];
1972	char msg[80] = "";
1973	int res;
1974
1975	if (!last)
1976		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1977
1978	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1979		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1980
1981	memset(sas_addr, 0, SAS_ADDR_SIZE);
1982	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1983	if (!disc_resp)
1984		return -ENOMEM;
1985
1986	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1987	switch (res) {
1988	case SMP_RESP_NO_PHY:
1989		phy->phy_state = PHY_NOT_PRESENT;
1990		sas_unregister_devs_sas_addr(dev, phy_id, last);
1991		goto out_free_resp;
1992	case SMP_RESP_PHY_VACANT:
1993		phy->phy_state = PHY_VACANT;
1994		sas_unregister_devs_sas_addr(dev, phy_id, last);
1995		goto out_free_resp;
1996	case SMP_RESP_FUNC_ACC:
1997		break;
1998	case -ECOMM:
1999		break;
2000	default:
2001		goto out_free_resp;
2002	}
2003
2004	if (res == 0)
2005		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, &type);
2006
2007	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2008		phy->phy_state = PHY_EMPTY;
2009		sas_unregister_devs_sas_addr(dev, phy_id, last);
2010		/*
2011		 * Even though the PHY is empty, for convenience we update
2012		 * the PHY info, like negotiated linkrate.
2013		 */
2014		if (res == 0)
2015			sas_set_ex_phy(dev, phy_id, disc_resp);
2016		goto out_free_resp;
2017	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2018		   dev_type_flutter(type, phy->attached_dev_type)) {
2019		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2020		char *action = "";
2021
2022		sas_ex_phy_discover(dev, phy_id);
2023
2024		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2025			action = ", needs recovery";
2026		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2027			 SAS_ADDR(dev->sas_addr), phy_id, action);
2028		goto out_free_resp;
2029	}
2030
2031	/* we always have to delete the old device when we went here */
2032	pr_info("ex %016llx phy%02d replace %016llx\n",
2033		SAS_ADDR(dev->sas_addr), phy_id,
2034		SAS_ADDR(phy->attached_sas_addr));
2035	sas_unregister_devs_sas_addr(dev, phy_id, last);
2036
2037	res = sas_discover_new(dev, phy_id);
2038out_free_resp:
2039	kfree(disc_resp);
2040	return res;
2041}
2042
2043/**
2044 * sas_rediscover - revalidate the domain.
2045 * @dev:domain device to be detect.
2046 * @phy_id: the phy id will be detected.
2047 *
2048 * NOTE: this process _must_ quit (return) as soon as any connection
2049 * errors are encountered.  Connection recovery is done elsewhere.
2050 * Discover process only interrogates devices in order to discover the
2051 * domain.For plugging out, we un-register the device only when it is
2052 * the last phy in the port, for other phys in this port, we just delete it
2053 * from the port.For inserting, we do discovery when it is the
2054 * first phy,for other phys in this port, we add it to the port to
2055 * forming the wide-port.
2056 */
2057static int sas_rediscover(struct domain_device *dev, const int phy_id)
2058{
2059	struct expander_device *ex = &dev->ex_dev;
2060	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2061	int res = 0;
2062	int i;
2063	bool last = true;	/* is this the last phy of the port */
2064
2065	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2066		 SAS_ADDR(dev->sas_addr), phy_id);
2067
2068	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2069		for (i = 0; i < ex->num_phys; i++) {
2070			struct ex_phy *phy = &ex->ex_phy[i];
2071
2072			if (i == phy_id)
2073				continue;
2074			if (sas_phy_addr_match(phy, changed_phy)) {
 
 
 
2075				last = false;
2076				break;
2077			}
2078		}
2079		res = sas_rediscover_dev(dev, phy_id, last, i);
2080	} else
2081		res = sas_discover_new(dev, phy_id);
2082	return res;
2083}
2084
2085/**
2086 * sas_ex_revalidate_domain - revalidate the domain
2087 * @port_dev: port domain device.
2088 *
2089 * NOTE: this process _must_ quit (return) as soon as any connection
2090 * errors are encountered.  Connection recovery is done elsewhere.
2091 * Discover process only interrogates devices in order to discover the
2092 * domain.
2093 */
2094int sas_ex_revalidate_domain(struct domain_device *port_dev)
2095{
2096	int res;
2097	struct domain_device *dev = NULL;
2098
2099	res = sas_find_bcast_dev(port_dev, &dev);
2100	if (res == 0 && dev) {
 
 
2101		struct expander_device *ex = &dev->ex_dev;
2102		int i = 0, phy_id;
2103
2104		do {
2105			phy_id = -1;
2106			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2107			if (phy_id == -1)
2108				break;
2109			res = sas_rediscover(dev, phy_id);
2110			i = phy_id + 1;
2111		} while (i < ex->num_phys);
2112	}
 
2113	return res;
2114}
2115
2116int sas_find_attached_phy_id(struct expander_device *ex_dev,
2117			     struct domain_device *dev)
2118{
2119	struct ex_phy *phy;
2120	int phy_id;
 
2121
2122	for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2123		phy = &ex_dev->ex_phy[phy_id];
2124		if (sas_phy_match_dev_addr(dev, phy))
2125			return phy_id;
2126	}
2127
2128	return -ENODEV;
2129}
2130EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2131
2132void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2133		struct sas_rphy *rphy)
2134{
2135	struct domain_device *dev;
2136	unsigned int rcvlen = 0;
2137	int ret = -EINVAL;
2138
2139	/* no rphy means no smp target support (ie aic94xx host) */
2140	if (!rphy)
2141		return sas_smp_host_handler(job, shost);
 
 
2142
2143	switch (rphy->identify.device_type) {
2144	case SAS_EDGE_EXPANDER_DEVICE:
2145	case SAS_FANOUT_EXPANDER_DEVICE:
2146		break;
2147	default:
2148		pr_err("%s: can we send a smp request to a device?\n",
2149		       __func__);
2150		goto out;
2151	}
2152
2153	dev = sas_find_dev_by_rphy(rphy);
2154	if (!dev) {
2155		pr_err("%s: fail to find a domain_device?\n", __func__);
2156		goto out;
2157	}
2158
2159	/* do we need to support multiple segments? */
2160	if (job->request_payload.sg_cnt > 1 ||
2161	    job->reply_payload.sg_cnt > 1) {
2162		pr_info("%s: multiple segments req %u, rsp %u\n",
2163			__func__, job->request_payload.payload_len,
2164			job->reply_payload.payload_len);
2165		goto out;
2166	}
2167
2168	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2169			job->reply_payload.sg_list);
2170	if (ret >= 0) {
2171		/* bsg_job_done() requires the length received  */
2172		rcvlen = job->reply_payload.payload_len - ret;
 
2173		ret = 0;
 
 
 
2174	}
2175
2176out:
2177	bsg_job_done(job, ret, rcvlen);
2178}