Loading...
1/*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25#include <linux/scatterlist.h>
26#include <linux/blkdev.h>
27#include <linux/slab.h>
28
29#include "sas_internal.h"
30
31#include <scsi/scsi_transport.h>
32#include <scsi/scsi_transport_sas.h>
33#include "../scsi_sas_internal.h"
34
35static int sas_discover_expander(struct domain_device *dev);
36static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37static int sas_configure_phy(struct domain_device *dev, int phy_id,
38 u8 *sas_addr, int include);
39static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
40
41/* ---------- SMP task management ---------- */
42
43static void smp_task_timedout(unsigned long _task)
44{
45 struct sas_task *task = (void *) _task;
46 unsigned long flags;
47
48 spin_lock_irqsave(&task->task_state_lock, flags);
49 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51 spin_unlock_irqrestore(&task->task_state_lock, flags);
52
53 complete(&task->completion);
54}
55
56static void smp_task_done(struct sas_task *task)
57{
58 if (!del_timer(&task->timer))
59 return;
60 complete(&task->completion);
61}
62
63/* Give it some long enough timeout. In seconds. */
64#define SMP_TIMEOUT 10
65
66static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67 void *resp, int resp_size)
68{
69 int res, retry;
70 struct sas_task *task = NULL;
71 struct sas_internal *i =
72 to_sas_internal(dev->port->ha->core.shost->transportt);
73
74 for (retry = 0; retry < 3; retry++) {
75 task = sas_alloc_task(GFP_KERNEL);
76 if (!task)
77 return -ENOMEM;
78
79 task->dev = dev;
80 task->task_proto = dev->tproto;
81 sg_init_one(&task->smp_task.smp_req, req, req_size);
82 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83
84 task->task_done = smp_task_done;
85
86 task->timer.data = (unsigned long) task;
87 task->timer.function = smp_task_timedout;
88 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89 add_timer(&task->timer);
90
91 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92
93 if (res) {
94 del_timer(&task->timer);
95 SAS_DPRINTK("executing SMP task failed:%d\n", res);
96 goto ex_err;
97 }
98
99 wait_for_completion(&task->completion);
100 res = -ECOMM;
101 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102 SAS_DPRINTK("smp task timed out or aborted\n");
103 i->dft->lldd_abort_task(task);
104 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105 SAS_DPRINTK("SMP task aborted and not done\n");
106 goto ex_err;
107 }
108 }
109 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110 task->task_status.stat == SAM_STAT_GOOD) {
111 res = 0;
112 break;
113 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114 task->task_status.stat == SAS_DATA_UNDERRUN) {
115 /* no error, but return the number of bytes of
116 * underrun */
117 res = task->task_status.residual;
118 break;
119 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120 task->task_status.stat == SAS_DATA_OVERRUN) {
121 res = -EMSGSIZE;
122 break;
123 } else {
124 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125 "status 0x%x\n", __func__,
126 SAS_ADDR(dev->sas_addr),
127 task->task_status.resp,
128 task->task_status.stat);
129 sas_free_task(task);
130 task = NULL;
131 }
132 }
133ex_err:
134 BUG_ON(retry == 3 && task != NULL);
135 if (task != NULL) {
136 sas_free_task(task);
137 }
138 return res;
139}
140
141/* ---------- Allocations ---------- */
142
143static inline void *alloc_smp_req(int size)
144{
145 u8 *p = kzalloc(size, GFP_KERNEL);
146 if (p)
147 p[0] = SMP_REQUEST;
148 return p;
149}
150
151static inline void *alloc_smp_resp(int size)
152{
153 return kzalloc(size, GFP_KERNEL);
154}
155
156/* ---------- Expander configuration ---------- */
157
158static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159 void *disc_resp)
160{
161 struct expander_device *ex = &dev->ex_dev;
162 struct ex_phy *phy = &ex->ex_phy[phy_id];
163 struct smp_resp *resp = disc_resp;
164 struct discover_resp *dr = &resp->disc;
165 struct sas_rphy *rphy = dev->rphy;
166 int rediscover = (phy->phy != NULL);
167
168 if (!rediscover) {
169 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170
171 /* FIXME: error_handling */
172 BUG_ON(!phy->phy);
173 }
174
175 switch (resp->result) {
176 case SMP_RESP_PHY_VACANT:
177 phy->phy_state = PHY_VACANT;
178 break;
179 default:
180 phy->phy_state = PHY_NOT_PRESENT;
181 break;
182 case SMP_RESP_FUNC_ACC:
183 phy->phy_state = PHY_EMPTY; /* do not know yet */
184 break;
185 }
186
187 phy->phy_id = phy_id;
188 phy->attached_dev_type = dr->attached_dev_type;
189 phy->linkrate = dr->linkrate;
190 phy->attached_sata_host = dr->attached_sata_host;
191 phy->attached_sata_dev = dr->attached_sata_dev;
192 phy->attached_sata_ps = dr->attached_sata_ps;
193 phy->attached_iproto = dr->iproto << 1;
194 phy->attached_tproto = dr->tproto << 1;
195 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196 phy->attached_phy_id = dr->attached_phy_id;
197 phy->phy_change_count = dr->change_count;
198 phy->routing_attr = dr->routing_attr;
199 phy->virtual = dr->virtual;
200 phy->last_da_index = -1;
201
202 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
203 phy->phy->identify.target_port_protocols = phy->attached_tproto;
204 phy->phy->identify.phy_identifier = phy_id;
205 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
206 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
207 phy->phy->minimum_linkrate = dr->pmin_linkrate;
208 phy->phy->maximum_linkrate = dr->pmax_linkrate;
209 phy->phy->negotiated_linkrate = phy->linkrate;
210
211 if (!rediscover)
212 if (sas_phy_add(phy->phy)) {
213 sas_phy_free(phy->phy);
214 return;
215 }
216
217 SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
218 SAS_ADDR(dev->sas_addr), phy->phy_id,
219 phy->routing_attr == TABLE_ROUTING ? 'T' :
220 phy->routing_attr == DIRECT_ROUTING ? 'D' :
221 phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
222 SAS_ADDR(phy->attached_sas_addr));
223
224 return;
225}
226
227#define DISCOVER_REQ_SIZE 16
228#define DISCOVER_RESP_SIZE 56
229
230static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
231 u8 *disc_resp, int single)
232{
233 int i, res;
234
235 disc_req[9] = single;
236 for (i = 1 ; i < 3; i++) {
237 struct discover_resp *dr;
238
239 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
240 disc_resp, DISCOVER_RESP_SIZE);
241 if (res)
242 return res;
243 /* This is detecting a failure to transmit initial
244 * dev to host FIS as described in section G.5 of
245 * sas-2 r 04b */
246 dr = &((struct smp_resp *)disc_resp)->disc;
247 if (memcmp(dev->sas_addr, dr->attached_sas_addr,
248 SAS_ADDR_SIZE) == 0) {
249 sas_printk("Found loopback topology, just ignore it!\n");
250 return 0;
251 }
252 if (!(dr->attached_dev_type == 0 &&
253 dr->attached_sata_dev))
254 break;
255 /* In order to generate the dev to host FIS, we
256 * send a link reset to the expander port */
257 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
258 /* Wait for the reset to trigger the negotiation */
259 msleep(500);
260 }
261 sas_set_ex_phy(dev, single, disc_resp);
262 return 0;
263}
264
265static int sas_ex_phy_discover(struct domain_device *dev, int single)
266{
267 struct expander_device *ex = &dev->ex_dev;
268 int res = 0;
269 u8 *disc_req;
270 u8 *disc_resp;
271
272 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
273 if (!disc_req)
274 return -ENOMEM;
275
276 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
277 if (!disc_resp) {
278 kfree(disc_req);
279 return -ENOMEM;
280 }
281
282 disc_req[1] = SMP_DISCOVER;
283
284 if (0 <= single && single < ex->num_phys) {
285 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
286 } else {
287 int i;
288
289 for (i = 0; i < ex->num_phys; i++) {
290 res = sas_ex_phy_discover_helper(dev, disc_req,
291 disc_resp, i);
292 if (res)
293 goto out_err;
294 }
295 }
296out_err:
297 kfree(disc_resp);
298 kfree(disc_req);
299 return res;
300}
301
302static int sas_expander_discover(struct domain_device *dev)
303{
304 struct expander_device *ex = &dev->ex_dev;
305 int res = -ENOMEM;
306
307 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
308 if (!ex->ex_phy)
309 return -ENOMEM;
310
311 res = sas_ex_phy_discover(dev, -1);
312 if (res)
313 goto out_err;
314
315 return 0;
316 out_err:
317 kfree(ex->ex_phy);
318 ex->ex_phy = NULL;
319 return res;
320}
321
322#define MAX_EXPANDER_PHYS 128
323
324static void ex_assign_report_general(struct domain_device *dev,
325 struct smp_resp *resp)
326{
327 struct report_general_resp *rg = &resp->rg;
328
329 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
330 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
331 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
332 dev->ex_dev.conf_route_table = rg->conf_route_table;
333 dev->ex_dev.configuring = rg->configuring;
334 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
335}
336
337#define RG_REQ_SIZE 8
338#define RG_RESP_SIZE 32
339
340static int sas_ex_general(struct domain_device *dev)
341{
342 u8 *rg_req;
343 struct smp_resp *rg_resp;
344 int res;
345 int i;
346
347 rg_req = alloc_smp_req(RG_REQ_SIZE);
348 if (!rg_req)
349 return -ENOMEM;
350
351 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
352 if (!rg_resp) {
353 kfree(rg_req);
354 return -ENOMEM;
355 }
356
357 rg_req[1] = SMP_REPORT_GENERAL;
358
359 for (i = 0; i < 5; i++) {
360 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
361 RG_RESP_SIZE);
362
363 if (res) {
364 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
365 SAS_ADDR(dev->sas_addr), res);
366 goto out;
367 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
368 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
369 SAS_ADDR(dev->sas_addr), rg_resp->result);
370 res = rg_resp->result;
371 goto out;
372 }
373
374 ex_assign_report_general(dev, rg_resp);
375
376 if (dev->ex_dev.configuring) {
377 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
378 SAS_ADDR(dev->sas_addr));
379 schedule_timeout_interruptible(5*HZ);
380 } else
381 break;
382 }
383out:
384 kfree(rg_req);
385 kfree(rg_resp);
386 return res;
387}
388
389static void ex_assign_manuf_info(struct domain_device *dev, void
390 *_mi_resp)
391{
392 u8 *mi_resp = _mi_resp;
393 struct sas_rphy *rphy = dev->rphy;
394 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
395
396 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
397 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
398 memcpy(edev->product_rev, mi_resp + 36,
399 SAS_EXPANDER_PRODUCT_REV_LEN);
400
401 if (mi_resp[8] & 1) {
402 memcpy(edev->component_vendor_id, mi_resp + 40,
403 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
404 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
405 edev->component_revision_id = mi_resp[50];
406 }
407}
408
409#define MI_REQ_SIZE 8
410#define MI_RESP_SIZE 64
411
412static int sas_ex_manuf_info(struct domain_device *dev)
413{
414 u8 *mi_req;
415 u8 *mi_resp;
416 int res;
417
418 mi_req = alloc_smp_req(MI_REQ_SIZE);
419 if (!mi_req)
420 return -ENOMEM;
421
422 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
423 if (!mi_resp) {
424 kfree(mi_req);
425 return -ENOMEM;
426 }
427
428 mi_req[1] = SMP_REPORT_MANUF_INFO;
429
430 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
431 if (res) {
432 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
433 SAS_ADDR(dev->sas_addr), res);
434 goto out;
435 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
436 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
437 SAS_ADDR(dev->sas_addr), mi_resp[2]);
438 goto out;
439 }
440
441 ex_assign_manuf_info(dev, mi_resp);
442out:
443 kfree(mi_req);
444 kfree(mi_resp);
445 return res;
446}
447
448#define PC_REQ_SIZE 44
449#define PC_RESP_SIZE 8
450
451int sas_smp_phy_control(struct domain_device *dev, int phy_id,
452 enum phy_func phy_func,
453 struct sas_phy_linkrates *rates)
454{
455 u8 *pc_req;
456 u8 *pc_resp;
457 int res;
458
459 pc_req = alloc_smp_req(PC_REQ_SIZE);
460 if (!pc_req)
461 return -ENOMEM;
462
463 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
464 if (!pc_resp) {
465 kfree(pc_req);
466 return -ENOMEM;
467 }
468
469 pc_req[1] = SMP_PHY_CONTROL;
470 pc_req[9] = phy_id;
471 pc_req[10]= phy_func;
472 if (rates) {
473 pc_req[32] = rates->minimum_linkrate << 4;
474 pc_req[33] = rates->maximum_linkrate << 4;
475 }
476
477 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
478
479 kfree(pc_resp);
480 kfree(pc_req);
481 return res;
482}
483
484static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
485{
486 struct expander_device *ex = &dev->ex_dev;
487 struct ex_phy *phy = &ex->ex_phy[phy_id];
488
489 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
490 phy->linkrate = SAS_PHY_DISABLED;
491}
492
493static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
494{
495 struct expander_device *ex = &dev->ex_dev;
496 int i;
497
498 for (i = 0; i < ex->num_phys; i++) {
499 struct ex_phy *phy = &ex->ex_phy[i];
500
501 if (phy->phy_state == PHY_VACANT ||
502 phy->phy_state == PHY_NOT_PRESENT)
503 continue;
504
505 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
506 sas_ex_disable_phy(dev, i);
507 }
508}
509
510static int sas_dev_present_in_domain(struct asd_sas_port *port,
511 u8 *sas_addr)
512{
513 struct domain_device *dev;
514
515 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
516 return 1;
517 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
518 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
519 return 1;
520 }
521 return 0;
522}
523
524#define RPEL_REQ_SIZE 16
525#define RPEL_RESP_SIZE 32
526int sas_smp_get_phy_events(struct sas_phy *phy)
527{
528 int res;
529 u8 *req;
530 u8 *resp;
531 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
532 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
533
534 req = alloc_smp_req(RPEL_REQ_SIZE);
535 if (!req)
536 return -ENOMEM;
537
538 resp = alloc_smp_resp(RPEL_RESP_SIZE);
539 if (!resp) {
540 kfree(req);
541 return -ENOMEM;
542 }
543
544 req[1] = SMP_REPORT_PHY_ERR_LOG;
545 req[9] = phy->number;
546
547 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
548 resp, RPEL_RESP_SIZE);
549
550 if (!res)
551 goto out;
552
553 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
554 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
555 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
556 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
557
558 out:
559 kfree(resp);
560 return res;
561
562}
563
564#ifdef CONFIG_SCSI_SAS_ATA
565
566#define RPS_REQ_SIZE 16
567#define RPS_RESP_SIZE 60
568
569static int sas_get_report_phy_sata(struct domain_device *dev,
570 int phy_id,
571 struct smp_resp *rps_resp)
572{
573 int res;
574 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
575 u8 *resp = (u8 *)rps_resp;
576
577 if (!rps_req)
578 return -ENOMEM;
579
580 rps_req[1] = SMP_REPORT_PHY_SATA;
581 rps_req[9] = phy_id;
582
583 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
584 rps_resp, RPS_RESP_SIZE);
585
586 /* 0x34 is the FIS type for the D2H fis. There's a potential
587 * standards cockup here. sas-2 explicitly specifies the FIS
588 * should be encoded so that FIS type is in resp[24].
589 * However, some expanders endian reverse this. Undo the
590 * reversal here */
591 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
592 int i;
593
594 for (i = 0; i < 5; i++) {
595 int j = 24 + (i*4);
596 u8 a, b;
597 a = resp[j + 0];
598 b = resp[j + 1];
599 resp[j + 0] = resp[j + 3];
600 resp[j + 1] = resp[j + 2];
601 resp[j + 2] = b;
602 resp[j + 3] = a;
603 }
604 }
605
606 kfree(rps_req);
607 return res;
608}
609#endif
610
611static void sas_ex_get_linkrate(struct domain_device *parent,
612 struct domain_device *child,
613 struct ex_phy *parent_phy)
614{
615 struct expander_device *parent_ex = &parent->ex_dev;
616 struct sas_port *port;
617 int i;
618
619 child->pathways = 0;
620
621 port = parent_phy->port;
622
623 for (i = 0; i < parent_ex->num_phys; i++) {
624 struct ex_phy *phy = &parent_ex->ex_phy[i];
625
626 if (phy->phy_state == PHY_VACANT ||
627 phy->phy_state == PHY_NOT_PRESENT)
628 continue;
629
630 if (SAS_ADDR(phy->attached_sas_addr) ==
631 SAS_ADDR(child->sas_addr)) {
632
633 child->min_linkrate = min(parent->min_linkrate,
634 phy->linkrate);
635 child->max_linkrate = max(parent->max_linkrate,
636 phy->linkrate);
637 child->pathways++;
638 sas_port_add_phy(port, phy->phy);
639 }
640 }
641 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
642 child->pathways = min(child->pathways, parent->pathways);
643}
644
645static struct domain_device *sas_ex_discover_end_dev(
646 struct domain_device *parent, int phy_id)
647{
648 struct expander_device *parent_ex = &parent->ex_dev;
649 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
650 struct domain_device *child = NULL;
651 struct sas_rphy *rphy;
652 int res;
653
654 if (phy->attached_sata_host || phy->attached_sata_ps)
655 return NULL;
656
657 child = kzalloc(sizeof(*child), GFP_KERNEL);
658 if (!child)
659 return NULL;
660
661 child->parent = parent;
662 child->port = parent->port;
663 child->iproto = phy->attached_iproto;
664 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
665 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
666 if (!phy->port) {
667 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
668 if (unlikely(!phy->port))
669 goto out_err;
670 if (unlikely(sas_port_add(phy->port) != 0)) {
671 sas_port_free(phy->port);
672 goto out_err;
673 }
674 }
675 sas_ex_get_linkrate(parent, child, phy);
676
677#ifdef CONFIG_SCSI_SAS_ATA
678 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
679 child->dev_type = SATA_DEV;
680 if (phy->attached_tproto & SAS_PROTOCOL_STP)
681 child->tproto = phy->attached_tproto;
682 if (phy->attached_sata_dev)
683 child->tproto |= SATA_DEV;
684 res = sas_get_report_phy_sata(parent, phy_id,
685 &child->sata_dev.rps_resp);
686 if (res) {
687 SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
688 "0x%x\n", SAS_ADDR(parent->sas_addr),
689 phy_id, res);
690 goto out_free;
691 }
692 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
693 sizeof(struct dev_to_host_fis));
694
695 rphy = sas_end_device_alloc(phy->port);
696 if (unlikely(!rphy))
697 goto out_free;
698
699 sas_init_dev(child);
700
701 child->rphy = rphy;
702
703 spin_lock_irq(&parent->port->dev_list_lock);
704 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
705 spin_unlock_irq(&parent->port->dev_list_lock);
706
707 res = sas_discover_sata(child);
708 if (res) {
709 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
710 "%016llx:0x%x returned 0x%x\n",
711 SAS_ADDR(child->sas_addr),
712 SAS_ADDR(parent->sas_addr), phy_id, res);
713 goto out_list_del;
714 }
715 } else
716#endif
717 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
718 child->dev_type = SAS_END_DEV;
719 rphy = sas_end_device_alloc(phy->port);
720 /* FIXME: error handling */
721 if (unlikely(!rphy))
722 goto out_free;
723 child->tproto = phy->attached_tproto;
724 sas_init_dev(child);
725
726 child->rphy = rphy;
727 sas_fill_in_rphy(child, rphy);
728
729 spin_lock_irq(&parent->port->dev_list_lock);
730 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
731 spin_unlock_irq(&parent->port->dev_list_lock);
732
733 res = sas_discover_end_dev(child);
734 if (res) {
735 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
736 "at %016llx:0x%x returned 0x%x\n",
737 SAS_ADDR(child->sas_addr),
738 SAS_ADDR(parent->sas_addr), phy_id, res);
739 goto out_list_del;
740 }
741 } else {
742 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
743 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
744 phy_id);
745 goto out_free;
746 }
747
748 list_add_tail(&child->siblings, &parent_ex->children);
749 return child;
750
751 out_list_del:
752 sas_rphy_free(child->rphy);
753 child->rphy = NULL;
754 list_del(&child->dev_list_node);
755 out_free:
756 sas_port_delete(phy->port);
757 out_err:
758 phy->port = NULL;
759 kfree(child);
760 return NULL;
761}
762
763/* See if this phy is part of a wide port */
764static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
765{
766 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
767 int i;
768
769 for (i = 0; i < parent->ex_dev.num_phys; i++) {
770 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
771
772 if (ephy == phy)
773 continue;
774
775 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
776 SAS_ADDR_SIZE) && ephy->port) {
777 sas_port_add_phy(ephy->port, phy->phy);
778 phy->port = ephy->port;
779 phy->phy_state = PHY_DEVICE_DISCOVERED;
780 return 0;
781 }
782 }
783
784 return -ENODEV;
785}
786
787static struct domain_device *sas_ex_discover_expander(
788 struct domain_device *parent, int phy_id)
789{
790 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
791 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
792 struct domain_device *child = NULL;
793 struct sas_rphy *rphy;
794 struct sas_expander_device *edev;
795 struct asd_sas_port *port;
796 int res;
797
798 if (phy->routing_attr == DIRECT_ROUTING) {
799 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
800 "allowed\n",
801 SAS_ADDR(parent->sas_addr), phy_id,
802 SAS_ADDR(phy->attached_sas_addr),
803 phy->attached_phy_id);
804 return NULL;
805 }
806 child = kzalloc(sizeof(*child), GFP_KERNEL);
807 if (!child)
808 return NULL;
809
810 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
811 /* FIXME: better error handling */
812 BUG_ON(sas_port_add(phy->port) != 0);
813
814
815 switch (phy->attached_dev_type) {
816 case EDGE_DEV:
817 rphy = sas_expander_alloc(phy->port,
818 SAS_EDGE_EXPANDER_DEVICE);
819 break;
820 case FANOUT_DEV:
821 rphy = sas_expander_alloc(phy->port,
822 SAS_FANOUT_EXPANDER_DEVICE);
823 break;
824 default:
825 rphy = NULL; /* shut gcc up */
826 BUG();
827 }
828 port = parent->port;
829 child->rphy = rphy;
830 edev = rphy_to_expander_device(rphy);
831 child->dev_type = phy->attached_dev_type;
832 child->parent = parent;
833 child->port = port;
834 child->iproto = phy->attached_iproto;
835 child->tproto = phy->attached_tproto;
836 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
837 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
838 sas_ex_get_linkrate(parent, child, phy);
839 edev->level = parent_ex->level + 1;
840 parent->port->disc.max_level = max(parent->port->disc.max_level,
841 edev->level);
842 sas_init_dev(child);
843 sas_fill_in_rphy(child, rphy);
844 sas_rphy_add(rphy);
845
846 spin_lock_irq(&parent->port->dev_list_lock);
847 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
848 spin_unlock_irq(&parent->port->dev_list_lock);
849
850 res = sas_discover_expander(child);
851 if (res) {
852 spin_lock_irq(&parent->port->dev_list_lock);
853 list_del(&child->dev_list_node);
854 spin_unlock_irq(&parent->port->dev_list_lock);
855 kfree(child);
856 return NULL;
857 }
858 list_add_tail(&child->siblings, &parent->ex_dev.children);
859 return child;
860}
861
862static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
863{
864 struct expander_device *ex = &dev->ex_dev;
865 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
866 struct domain_device *child = NULL;
867 int res = 0;
868
869 /* Phy state */
870 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
871 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
872 res = sas_ex_phy_discover(dev, phy_id);
873 if (res)
874 return res;
875 }
876
877 /* Parent and domain coherency */
878 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
879 SAS_ADDR(dev->port->sas_addr))) {
880 sas_add_parent_port(dev, phy_id);
881 return 0;
882 }
883 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
884 SAS_ADDR(dev->parent->sas_addr))) {
885 sas_add_parent_port(dev, phy_id);
886 if (ex_phy->routing_attr == TABLE_ROUTING)
887 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
888 return 0;
889 }
890
891 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
892 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
893
894 if (ex_phy->attached_dev_type == NO_DEVICE) {
895 if (ex_phy->routing_attr == DIRECT_ROUTING) {
896 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
897 sas_configure_routing(dev, ex_phy->attached_sas_addr);
898 }
899 return 0;
900 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
901 return 0;
902
903 if (ex_phy->attached_dev_type != SAS_END_DEV &&
904 ex_phy->attached_dev_type != FANOUT_DEV &&
905 ex_phy->attached_dev_type != EDGE_DEV) {
906 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
907 "phy 0x%x\n", ex_phy->attached_dev_type,
908 SAS_ADDR(dev->sas_addr),
909 phy_id);
910 return 0;
911 }
912
913 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
914 if (res) {
915 SAS_DPRINTK("configure routing for dev %016llx "
916 "reported 0x%x. Forgotten\n",
917 SAS_ADDR(ex_phy->attached_sas_addr), res);
918 sas_disable_routing(dev, ex_phy->attached_sas_addr);
919 return res;
920 }
921
922 res = sas_ex_join_wide_port(dev, phy_id);
923 if (!res) {
924 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
925 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
926 return res;
927 }
928
929 switch (ex_phy->attached_dev_type) {
930 case SAS_END_DEV:
931 child = sas_ex_discover_end_dev(dev, phy_id);
932 break;
933 case FANOUT_DEV:
934 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
935 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
936 "attached to ex %016llx phy 0x%x\n",
937 SAS_ADDR(ex_phy->attached_sas_addr),
938 ex_phy->attached_phy_id,
939 SAS_ADDR(dev->sas_addr),
940 phy_id);
941 sas_ex_disable_phy(dev, phy_id);
942 break;
943 } else
944 memcpy(dev->port->disc.fanout_sas_addr,
945 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
946 /* fallthrough */
947 case EDGE_DEV:
948 child = sas_ex_discover_expander(dev, phy_id);
949 break;
950 default:
951 break;
952 }
953
954 if (child) {
955 int i;
956
957 for (i = 0; i < ex->num_phys; i++) {
958 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
959 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
960 continue;
961 /*
962 * Due to races, the phy might not get added to the
963 * wide port, so we add the phy to the wide port here.
964 */
965 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
966 SAS_ADDR(child->sas_addr)) {
967 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
968 res = sas_ex_join_wide_port(dev, i);
969 if (!res)
970 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
971 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
972
973 }
974 }
975 }
976
977 return res;
978}
979
980static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
981{
982 struct expander_device *ex = &dev->ex_dev;
983 int i;
984
985 for (i = 0; i < ex->num_phys; i++) {
986 struct ex_phy *phy = &ex->ex_phy[i];
987
988 if (phy->phy_state == PHY_VACANT ||
989 phy->phy_state == PHY_NOT_PRESENT)
990 continue;
991
992 if ((phy->attached_dev_type == EDGE_DEV ||
993 phy->attached_dev_type == FANOUT_DEV) &&
994 phy->routing_attr == SUBTRACTIVE_ROUTING) {
995
996 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
997
998 return 1;
999 }
1000 }
1001 return 0;
1002}
1003
1004static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1005{
1006 struct expander_device *ex = &dev->ex_dev;
1007 struct domain_device *child;
1008 u8 sub_addr[8] = {0, };
1009
1010 list_for_each_entry(child, &ex->children, siblings) {
1011 if (child->dev_type != EDGE_DEV &&
1012 child->dev_type != FANOUT_DEV)
1013 continue;
1014 if (sub_addr[0] == 0) {
1015 sas_find_sub_addr(child, sub_addr);
1016 continue;
1017 } else {
1018 u8 s2[8];
1019
1020 if (sas_find_sub_addr(child, s2) &&
1021 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1022
1023 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1024 "diverges from subtractive "
1025 "boundary %016llx\n",
1026 SAS_ADDR(dev->sas_addr),
1027 SAS_ADDR(child->sas_addr),
1028 SAS_ADDR(s2),
1029 SAS_ADDR(sub_addr));
1030
1031 sas_ex_disable_port(child, s2);
1032 }
1033 }
1034 }
1035 return 0;
1036}
1037/**
1038 * sas_ex_discover_devices -- discover devices attached to this expander
1039 * dev: pointer to the expander domain device
1040 * single: if you want to do a single phy, else set to -1;
1041 *
1042 * Configure this expander for use with its devices and register the
1043 * devices of this expander.
1044 */
1045static int sas_ex_discover_devices(struct domain_device *dev, int single)
1046{
1047 struct expander_device *ex = &dev->ex_dev;
1048 int i = 0, end = ex->num_phys;
1049 int res = 0;
1050
1051 if (0 <= single && single < end) {
1052 i = single;
1053 end = i+1;
1054 }
1055
1056 for ( ; i < end; i++) {
1057 struct ex_phy *ex_phy = &ex->ex_phy[i];
1058
1059 if (ex_phy->phy_state == PHY_VACANT ||
1060 ex_phy->phy_state == PHY_NOT_PRESENT ||
1061 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1062 continue;
1063
1064 switch (ex_phy->linkrate) {
1065 case SAS_PHY_DISABLED:
1066 case SAS_PHY_RESET_PROBLEM:
1067 case SAS_SATA_PORT_SELECTOR:
1068 continue;
1069 default:
1070 res = sas_ex_discover_dev(dev, i);
1071 if (res)
1072 break;
1073 continue;
1074 }
1075 }
1076
1077 if (!res)
1078 sas_check_level_subtractive_boundary(dev);
1079
1080 return res;
1081}
1082
1083static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1084{
1085 struct expander_device *ex = &dev->ex_dev;
1086 int i;
1087 u8 *sub_sas_addr = NULL;
1088
1089 if (dev->dev_type != EDGE_DEV)
1090 return 0;
1091
1092 for (i = 0; i < ex->num_phys; i++) {
1093 struct ex_phy *phy = &ex->ex_phy[i];
1094
1095 if (phy->phy_state == PHY_VACANT ||
1096 phy->phy_state == PHY_NOT_PRESENT)
1097 continue;
1098
1099 if ((phy->attached_dev_type == FANOUT_DEV ||
1100 phy->attached_dev_type == EDGE_DEV) &&
1101 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1102
1103 if (!sub_sas_addr)
1104 sub_sas_addr = &phy->attached_sas_addr[0];
1105 else if (SAS_ADDR(sub_sas_addr) !=
1106 SAS_ADDR(phy->attached_sas_addr)) {
1107
1108 SAS_DPRINTK("ex %016llx phy 0x%x "
1109 "diverges(%016llx) on subtractive "
1110 "boundary(%016llx). Disabled\n",
1111 SAS_ADDR(dev->sas_addr), i,
1112 SAS_ADDR(phy->attached_sas_addr),
1113 SAS_ADDR(sub_sas_addr));
1114 sas_ex_disable_phy(dev, i);
1115 }
1116 }
1117 }
1118 return 0;
1119}
1120
1121static void sas_print_parent_topology_bug(struct domain_device *child,
1122 struct ex_phy *parent_phy,
1123 struct ex_phy *child_phy)
1124{
1125 static const char ra_char[] = {
1126 [DIRECT_ROUTING] = 'D',
1127 [SUBTRACTIVE_ROUTING] = 'S',
1128 [TABLE_ROUTING] = 'T',
1129 };
1130 static const char *ex_type[] = {
1131 [EDGE_DEV] = "edge",
1132 [FANOUT_DEV] = "fanout",
1133 };
1134 struct domain_device *parent = child->parent;
1135
1136 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1137 "has %c:%c routing link!\n",
1138
1139 ex_type[parent->dev_type],
1140 SAS_ADDR(parent->sas_addr),
1141 parent_phy->phy_id,
1142
1143 ex_type[child->dev_type],
1144 SAS_ADDR(child->sas_addr),
1145 child_phy->phy_id,
1146
1147 ra_char[parent_phy->routing_attr],
1148 ra_char[child_phy->routing_attr]);
1149}
1150
1151static int sas_check_eeds(struct domain_device *child,
1152 struct ex_phy *parent_phy,
1153 struct ex_phy *child_phy)
1154{
1155 int res = 0;
1156 struct domain_device *parent = child->parent;
1157
1158 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1159 res = -ENODEV;
1160 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1161 "phy S:0x%x, while there is a fanout ex %016llx\n",
1162 SAS_ADDR(parent->sas_addr),
1163 parent_phy->phy_id,
1164 SAS_ADDR(child->sas_addr),
1165 child_phy->phy_id,
1166 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1167 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1168 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1169 SAS_ADDR_SIZE);
1170 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1171 SAS_ADDR_SIZE);
1172 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1173 SAS_ADDR(parent->sas_addr)) ||
1174 (SAS_ADDR(parent->port->disc.eeds_a) ==
1175 SAS_ADDR(child->sas_addr)))
1176 &&
1177 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1178 SAS_ADDR(parent->sas_addr)) ||
1179 (SAS_ADDR(parent->port->disc.eeds_b) ==
1180 SAS_ADDR(child->sas_addr))))
1181 ;
1182 else {
1183 res = -ENODEV;
1184 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1185 "phy 0x%x link forms a third EEDS!\n",
1186 SAS_ADDR(parent->sas_addr),
1187 parent_phy->phy_id,
1188 SAS_ADDR(child->sas_addr),
1189 child_phy->phy_id);
1190 }
1191
1192 return res;
1193}
1194
1195/* Here we spill over 80 columns. It is intentional.
1196 */
1197static int sas_check_parent_topology(struct domain_device *child)
1198{
1199 struct expander_device *child_ex = &child->ex_dev;
1200 struct expander_device *parent_ex;
1201 int i;
1202 int res = 0;
1203
1204 if (!child->parent)
1205 return 0;
1206
1207 if (child->parent->dev_type != EDGE_DEV &&
1208 child->parent->dev_type != FANOUT_DEV)
1209 return 0;
1210
1211 parent_ex = &child->parent->ex_dev;
1212
1213 for (i = 0; i < parent_ex->num_phys; i++) {
1214 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1215 struct ex_phy *child_phy;
1216
1217 if (parent_phy->phy_state == PHY_VACANT ||
1218 parent_phy->phy_state == PHY_NOT_PRESENT)
1219 continue;
1220
1221 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1222 continue;
1223
1224 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1225
1226 switch (child->parent->dev_type) {
1227 case EDGE_DEV:
1228 if (child->dev_type == FANOUT_DEV) {
1229 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1230 child_phy->routing_attr != TABLE_ROUTING) {
1231 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1232 res = -ENODEV;
1233 }
1234 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1236 res = sas_check_eeds(child, parent_phy, child_phy);
1237 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1238 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1239 res = -ENODEV;
1240 }
1241 } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1242 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1243 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1244 res = -ENODEV;
1245 }
1246 break;
1247 case FANOUT_DEV:
1248 if (parent_phy->routing_attr != TABLE_ROUTING ||
1249 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1250 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1251 res = -ENODEV;
1252 }
1253 break;
1254 default:
1255 break;
1256 }
1257 }
1258
1259 return res;
1260}
1261
1262#define RRI_REQ_SIZE 16
1263#define RRI_RESP_SIZE 44
1264
1265static int sas_configure_present(struct domain_device *dev, int phy_id,
1266 u8 *sas_addr, int *index, int *present)
1267{
1268 int i, res = 0;
1269 struct expander_device *ex = &dev->ex_dev;
1270 struct ex_phy *phy = &ex->ex_phy[phy_id];
1271 u8 *rri_req;
1272 u8 *rri_resp;
1273
1274 *present = 0;
1275 *index = 0;
1276
1277 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1278 if (!rri_req)
1279 return -ENOMEM;
1280
1281 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1282 if (!rri_resp) {
1283 kfree(rri_req);
1284 return -ENOMEM;
1285 }
1286
1287 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1288 rri_req[9] = phy_id;
1289
1290 for (i = 0; i < ex->max_route_indexes ; i++) {
1291 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1292 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1293 RRI_RESP_SIZE);
1294 if (res)
1295 goto out;
1296 res = rri_resp[2];
1297 if (res == SMP_RESP_NO_INDEX) {
1298 SAS_DPRINTK("overflow of indexes: dev %016llx "
1299 "phy 0x%x index 0x%x\n",
1300 SAS_ADDR(dev->sas_addr), phy_id, i);
1301 goto out;
1302 } else if (res != SMP_RESP_FUNC_ACC) {
1303 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1304 "result 0x%x\n", __func__,
1305 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1306 goto out;
1307 }
1308 if (SAS_ADDR(sas_addr) != 0) {
1309 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1310 *index = i;
1311 if ((rri_resp[12] & 0x80) == 0x80)
1312 *present = 0;
1313 else
1314 *present = 1;
1315 goto out;
1316 } else if (SAS_ADDR(rri_resp+16) == 0) {
1317 *index = i;
1318 *present = 0;
1319 goto out;
1320 }
1321 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1322 phy->last_da_index < i) {
1323 phy->last_da_index = i;
1324 *index = i;
1325 *present = 0;
1326 goto out;
1327 }
1328 }
1329 res = -1;
1330out:
1331 kfree(rri_req);
1332 kfree(rri_resp);
1333 return res;
1334}
1335
1336#define CRI_REQ_SIZE 44
1337#define CRI_RESP_SIZE 8
1338
1339static int sas_configure_set(struct domain_device *dev, int phy_id,
1340 u8 *sas_addr, int index, int include)
1341{
1342 int res;
1343 u8 *cri_req;
1344 u8 *cri_resp;
1345
1346 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1347 if (!cri_req)
1348 return -ENOMEM;
1349
1350 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1351 if (!cri_resp) {
1352 kfree(cri_req);
1353 return -ENOMEM;
1354 }
1355
1356 cri_req[1] = SMP_CONF_ROUTE_INFO;
1357 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1358 cri_req[9] = phy_id;
1359 if (SAS_ADDR(sas_addr) == 0 || !include)
1360 cri_req[12] |= 0x80;
1361 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1362
1363 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1364 CRI_RESP_SIZE);
1365 if (res)
1366 goto out;
1367 res = cri_resp[2];
1368 if (res == SMP_RESP_NO_INDEX) {
1369 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1370 "index 0x%x\n",
1371 SAS_ADDR(dev->sas_addr), phy_id, index);
1372 }
1373out:
1374 kfree(cri_req);
1375 kfree(cri_resp);
1376 return res;
1377}
1378
1379static int sas_configure_phy(struct domain_device *dev, int phy_id,
1380 u8 *sas_addr, int include)
1381{
1382 int index;
1383 int present;
1384 int res;
1385
1386 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1387 if (res)
1388 return res;
1389 if (include ^ present)
1390 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1391
1392 return res;
1393}
1394
1395/**
1396 * sas_configure_parent -- configure routing table of parent
1397 * parent: parent expander
1398 * child: child expander
1399 * sas_addr: SAS port identifier of device directly attached to child
1400 */
1401static int sas_configure_parent(struct domain_device *parent,
1402 struct domain_device *child,
1403 u8 *sas_addr, int include)
1404{
1405 struct expander_device *ex_parent = &parent->ex_dev;
1406 int res = 0;
1407 int i;
1408
1409 if (parent->parent) {
1410 res = sas_configure_parent(parent->parent, parent, sas_addr,
1411 include);
1412 if (res)
1413 return res;
1414 }
1415
1416 if (ex_parent->conf_route_table == 0) {
1417 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1418 SAS_ADDR(parent->sas_addr));
1419 return 0;
1420 }
1421
1422 for (i = 0; i < ex_parent->num_phys; i++) {
1423 struct ex_phy *phy = &ex_parent->ex_phy[i];
1424
1425 if ((phy->routing_attr == TABLE_ROUTING) &&
1426 (SAS_ADDR(phy->attached_sas_addr) ==
1427 SAS_ADDR(child->sas_addr))) {
1428 res = sas_configure_phy(parent, i, sas_addr, include);
1429 if (res)
1430 return res;
1431 }
1432 }
1433
1434 return res;
1435}
1436
1437/**
1438 * sas_configure_routing -- configure routing
1439 * dev: expander device
1440 * sas_addr: port identifier of device directly attached to the expander device
1441 */
1442static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1443{
1444 if (dev->parent)
1445 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1446 return 0;
1447}
1448
1449static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1450{
1451 if (dev->parent)
1452 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1453 return 0;
1454}
1455
1456/**
1457 * sas_discover_expander -- expander discovery
1458 * @ex: pointer to expander domain device
1459 *
1460 * See comment in sas_discover_sata().
1461 */
1462static int sas_discover_expander(struct domain_device *dev)
1463{
1464 int res;
1465
1466 res = sas_notify_lldd_dev_found(dev);
1467 if (res)
1468 return res;
1469
1470 res = sas_ex_general(dev);
1471 if (res)
1472 goto out_err;
1473 res = sas_ex_manuf_info(dev);
1474 if (res)
1475 goto out_err;
1476
1477 res = sas_expander_discover(dev);
1478 if (res) {
1479 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1480 SAS_ADDR(dev->sas_addr), res);
1481 goto out_err;
1482 }
1483
1484 sas_check_ex_subtractive_boundary(dev);
1485 res = sas_check_parent_topology(dev);
1486 if (res)
1487 goto out_err;
1488 return 0;
1489out_err:
1490 sas_notify_lldd_dev_gone(dev);
1491 return res;
1492}
1493
1494static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1495{
1496 int res = 0;
1497 struct domain_device *dev;
1498
1499 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1500 if (dev->dev_type == EDGE_DEV ||
1501 dev->dev_type == FANOUT_DEV) {
1502 struct sas_expander_device *ex =
1503 rphy_to_expander_device(dev->rphy);
1504
1505 if (level == ex->level)
1506 res = sas_ex_discover_devices(dev, -1);
1507 else if (level > 0)
1508 res = sas_ex_discover_devices(port->port_dev, -1);
1509
1510 }
1511 }
1512
1513 return res;
1514}
1515
1516static int sas_ex_bfs_disc(struct asd_sas_port *port)
1517{
1518 int res;
1519 int level;
1520
1521 do {
1522 level = port->disc.max_level;
1523 res = sas_ex_level_discovery(port, level);
1524 mb();
1525 } while (level < port->disc.max_level);
1526
1527 return res;
1528}
1529
1530int sas_discover_root_expander(struct domain_device *dev)
1531{
1532 int res;
1533 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1534
1535 res = sas_rphy_add(dev->rphy);
1536 if (res)
1537 goto out_err;
1538
1539 ex->level = dev->port->disc.max_level; /* 0 */
1540 res = sas_discover_expander(dev);
1541 if (res)
1542 goto out_err2;
1543
1544 sas_ex_bfs_disc(dev->port);
1545
1546 return res;
1547
1548out_err2:
1549 sas_rphy_remove(dev->rphy);
1550out_err:
1551 return res;
1552}
1553
1554/* ---------- Domain revalidation ---------- */
1555
1556static int sas_get_phy_discover(struct domain_device *dev,
1557 int phy_id, struct smp_resp *disc_resp)
1558{
1559 int res;
1560 u8 *disc_req;
1561
1562 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1563 if (!disc_req)
1564 return -ENOMEM;
1565
1566 disc_req[1] = SMP_DISCOVER;
1567 disc_req[9] = phy_id;
1568
1569 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1570 disc_resp, DISCOVER_RESP_SIZE);
1571 if (res)
1572 goto out;
1573 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1574 res = disc_resp->result;
1575 goto out;
1576 }
1577out:
1578 kfree(disc_req);
1579 return res;
1580}
1581
1582static int sas_get_phy_change_count(struct domain_device *dev,
1583 int phy_id, int *pcc)
1584{
1585 int res;
1586 struct smp_resp *disc_resp;
1587
1588 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1589 if (!disc_resp)
1590 return -ENOMEM;
1591
1592 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1593 if (!res)
1594 *pcc = disc_resp->disc.change_count;
1595
1596 kfree(disc_resp);
1597 return res;
1598}
1599
1600static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1601 int phy_id, u8 *attached_sas_addr)
1602{
1603 int res;
1604 struct smp_resp *disc_resp;
1605 struct discover_resp *dr;
1606
1607 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1608 if (!disc_resp)
1609 return -ENOMEM;
1610 dr = &disc_resp->disc;
1611
1612 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1613 if (!res) {
1614 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1615 if (dr->attached_dev_type == 0)
1616 memset(attached_sas_addr, 0, 8);
1617 }
1618 kfree(disc_resp);
1619 return res;
1620}
1621
1622static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1623 int from_phy, bool update)
1624{
1625 struct expander_device *ex = &dev->ex_dev;
1626 int res = 0;
1627 int i;
1628
1629 for (i = from_phy; i < ex->num_phys; i++) {
1630 int phy_change_count = 0;
1631
1632 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1633 if (res)
1634 goto out;
1635 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1636 if (update)
1637 ex->ex_phy[i].phy_change_count =
1638 phy_change_count;
1639 *phy_id = i;
1640 return 0;
1641 }
1642 }
1643out:
1644 return res;
1645}
1646
1647static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1648{
1649 int res;
1650 u8 *rg_req;
1651 struct smp_resp *rg_resp;
1652
1653 rg_req = alloc_smp_req(RG_REQ_SIZE);
1654 if (!rg_req)
1655 return -ENOMEM;
1656
1657 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1658 if (!rg_resp) {
1659 kfree(rg_req);
1660 return -ENOMEM;
1661 }
1662
1663 rg_req[1] = SMP_REPORT_GENERAL;
1664
1665 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1666 RG_RESP_SIZE);
1667 if (res)
1668 goto out;
1669 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1670 res = rg_resp->result;
1671 goto out;
1672 }
1673
1674 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1675out:
1676 kfree(rg_resp);
1677 kfree(rg_req);
1678 return res;
1679}
1680/**
1681 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1682 * @dev:domain device to be detect.
1683 * @src_dev: the device which originated BROADCAST(CHANGE).
1684 *
1685 * Add self-configuration expander suport. Suppose two expander cascading,
1686 * when the first level expander is self-configuring, hotplug the disks in
1687 * second level expander, BROADCAST(CHANGE) will not only be originated
1688 * in the second level expander, but also be originated in the first level
1689 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1690 * expander changed count in two level expanders will all increment at least
1691 * once, but the phy which chang count has changed is the source device which
1692 * we concerned.
1693 */
1694
1695static int sas_find_bcast_dev(struct domain_device *dev,
1696 struct domain_device **src_dev)
1697{
1698 struct expander_device *ex = &dev->ex_dev;
1699 int ex_change_count = -1;
1700 int phy_id = -1;
1701 int res;
1702 struct domain_device *ch;
1703
1704 res = sas_get_ex_change_count(dev, &ex_change_count);
1705 if (res)
1706 goto out;
1707 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1708 /* Just detect if this expander phys phy change count changed,
1709 * in order to determine if this expander originate BROADCAST,
1710 * and do not update phy change count field in our structure.
1711 */
1712 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1713 if (phy_id != -1) {
1714 *src_dev = dev;
1715 ex->ex_change_count = ex_change_count;
1716 SAS_DPRINTK("Expander phy change count has changed\n");
1717 return res;
1718 } else
1719 SAS_DPRINTK("Expander phys DID NOT change\n");
1720 }
1721 list_for_each_entry(ch, &ex->children, siblings) {
1722 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1723 res = sas_find_bcast_dev(ch, src_dev);
1724 if (*src_dev)
1725 return res;
1726 }
1727 }
1728out:
1729 return res;
1730}
1731
1732static void sas_unregister_ex_tree(struct domain_device *dev)
1733{
1734 struct expander_device *ex = &dev->ex_dev;
1735 struct domain_device *child, *n;
1736
1737 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1738 child->gone = 1;
1739 if (child->dev_type == EDGE_DEV ||
1740 child->dev_type == FANOUT_DEV)
1741 sas_unregister_ex_tree(child);
1742 else
1743 sas_unregister_dev(child);
1744 }
1745 sas_unregister_dev(dev);
1746}
1747
1748static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1749 int phy_id, bool last)
1750{
1751 struct expander_device *ex_dev = &parent->ex_dev;
1752 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1753 struct domain_device *child, *n;
1754 if (last) {
1755 list_for_each_entry_safe(child, n,
1756 &ex_dev->children, siblings) {
1757 if (SAS_ADDR(child->sas_addr) ==
1758 SAS_ADDR(phy->attached_sas_addr)) {
1759 child->gone = 1;
1760 if (child->dev_type == EDGE_DEV ||
1761 child->dev_type == FANOUT_DEV)
1762 sas_unregister_ex_tree(child);
1763 else
1764 sas_unregister_dev(child);
1765 break;
1766 }
1767 }
1768 parent->gone = 1;
1769 sas_disable_routing(parent, phy->attached_sas_addr);
1770 }
1771 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1772 if (phy->port) {
1773 sas_port_delete_phy(phy->port, phy->phy);
1774 if (phy->port->num_phys == 0)
1775 sas_port_delete(phy->port);
1776 phy->port = NULL;
1777 }
1778}
1779
1780static int sas_discover_bfs_by_root_level(struct domain_device *root,
1781 const int level)
1782{
1783 struct expander_device *ex_root = &root->ex_dev;
1784 struct domain_device *child;
1785 int res = 0;
1786
1787 list_for_each_entry(child, &ex_root->children, siblings) {
1788 if (child->dev_type == EDGE_DEV ||
1789 child->dev_type == FANOUT_DEV) {
1790 struct sas_expander_device *ex =
1791 rphy_to_expander_device(child->rphy);
1792
1793 if (level > ex->level)
1794 res = sas_discover_bfs_by_root_level(child,
1795 level);
1796 else if (level == ex->level)
1797 res = sas_ex_discover_devices(child, -1);
1798 }
1799 }
1800 return res;
1801}
1802
1803static int sas_discover_bfs_by_root(struct domain_device *dev)
1804{
1805 int res;
1806 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1807 int level = ex->level+1;
1808
1809 res = sas_ex_discover_devices(dev, -1);
1810 if (res)
1811 goto out;
1812 do {
1813 res = sas_discover_bfs_by_root_level(dev, level);
1814 mb();
1815 level += 1;
1816 } while (level <= dev->port->disc.max_level);
1817out:
1818 return res;
1819}
1820
1821static int sas_discover_new(struct domain_device *dev, int phy_id)
1822{
1823 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1824 struct domain_device *child;
1825 bool found = false;
1826 int res, i;
1827
1828 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1829 SAS_ADDR(dev->sas_addr), phy_id);
1830 res = sas_ex_phy_discover(dev, phy_id);
1831 if (res)
1832 goto out;
1833 /* to support the wide port inserted */
1834 for (i = 0; i < dev->ex_dev.num_phys; i++) {
1835 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1836 if (i == phy_id)
1837 continue;
1838 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1839 SAS_ADDR(ex_phy->attached_sas_addr)) {
1840 found = true;
1841 break;
1842 }
1843 }
1844 if (found) {
1845 sas_ex_join_wide_port(dev, phy_id);
1846 return 0;
1847 }
1848 res = sas_ex_discover_devices(dev, phy_id);
1849 if (!res)
1850 goto out;
1851 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1852 if (SAS_ADDR(child->sas_addr) ==
1853 SAS_ADDR(ex_phy->attached_sas_addr)) {
1854 if (child->dev_type == EDGE_DEV ||
1855 child->dev_type == FANOUT_DEV)
1856 res = sas_discover_bfs_by_root(child);
1857 break;
1858 }
1859 }
1860out:
1861 return res;
1862}
1863
1864static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1865{
1866 struct expander_device *ex = &dev->ex_dev;
1867 struct ex_phy *phy = &ex->ex_phy[phy_id];
1868 u8 attached_sas_addr[8];
1869 int res;
1870
1871 res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1872 switch (res) {
1873 case SMP_RESP_NO_PHY:
1874 phy->phy_state = PHY_NOT_PRESENT;
1875 sas_unregister_devs_sas_addr(dev, phy_id, last);
1876 goto out; break;
1877 case SMP_RESP_PHY_VACANT:
1878 phy->phy_state = PHY_VACANT;
1879 sas_unregister_devs_sas_addr(dev, phy_id, last);
1880 goto out; break;
1881 case SMP_RESP_FUNC_ACC:
1882 break;
1883 }
1884
1885 if (SAS_ADDR(attached_sas_addr) == 0) {
1886 phy->phy_state = PHY_EMPTY;
1887 sas_unregister_devs_sas_addr(dev, phy_id, last);
1888 } else if (SAS_ADDR(attached_sas_addr) ==
1889 SAS_ADDR(phy->attached_sas_addr)) {
1890 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1891 SAS_ADDR(dev->sas_addr), phy_id);
1892 sas_ex_phy_discover(dev, phy_id);
1893 } else
1894 res = sas_discover_new(dev, phy_id);
1895out:
1896 return res;
1897}
1898
1899/**
1900 * sas_rediscover - revalidate the domain.
1901 * @dev:domain device to be detect.
1902 * @phy_id: the phy id will be detected.
1903 *
1904 * NOTE: this process _must_ quit (return) as soon as any connection
1905 * errors are encountered. Connection recovery is done elsewhere.
1906 * Discover process only interrogates devices in order to discover the
1907 * domain.For plugging out, we un-register the device only when it is
1908 * the last phy in the port, for other phys in this port, we just delete it
1909 * from the port.For inserting, we do discovery when it is the
1910 * first phy,for other phys in this port, we add it to the port to
1911 * forming the wide-port.
1912 */
1913static int sas_rediscover(struct domain_device *dev, const int phy_id)
1914{
1915 struct expander_device *ex = &dev->ex_dev;
1916 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1917 int res = 0;
1918 int i;
1919 bool last = true; /* is this the last phy of the port */
1920
1921 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1922 SAS_ADDR(dev->sas_addr), phy_id);
1923
1924 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1925 for (i = 0; i < ex->num_phys; i++) {
1926 struct ex_phy *phy = &ex->ex_phy[i];
1927
1928 if (i == phy_id)
1929 continue;
1930 if (SAS_ADDR(phy->attached_sas_addr) ==
1931 SAS_ADDR(changed_phy->attached_sas_addr)) {
1932 SAS_DPRINTK("phy%d part of wide port with "
1933 "phy%d\n", phy_id, i);
1934 last = false;
1935 break;
1936 }
1937 }
1938 res = sas_rediscover_dev(dev, phy_id, last);
1939 } else
1940 res = sas_discover_new(dev, phy_id);
1941 return res;
1942}
1943
1944/**
1945 * sas_revalidate_domain -- revalidate the domain
1946 * @port: port to the domain of interest
1947 *
1948 * NOTE: this process _must_ quit (return) as soon as any connection
1949 * errors are encountered. Connection recovery is done elsewhere.
1950 * Discover process only interrogates devices in order to discover the
1951 * domain.
1952 */
1953int sas_ex_revalidate_domain(struct domain_device *port_dev)
1954{
1955 int res;
1956 struct domain_device *dev = NULL;
1957
1958 res = sas_find_bcast_dev(port_dev, &dev);
1959 if (res)
1960 goto out;
1961 if (dev) {
1962 struct expander_device *ex = &dev->ex_dev;
1963 int i = 0, phy_id;
1964
1965 do {
1966 phy_id = -1;
1967 res = sas_find_bcast_phy(dev, &phy_id, i, true);
1968 if (phy_id == -1)
1969 break;
1970 res = sas_rediscover(dev, phy_id);
1971 i = phy_id + 1;
1972 } while (i < ex->num_phys);
1973 }
1974out:
1975 return res;
1976}
1977
1978int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1979 struct request *req)
1980{
1981 struct domain_device *dev;
1982 int ret, type;
1983 struct request *rsp = req->next_rq;
1984
1985 if (!rsp) {
1986 printk("%s: space for a smp response is missing\n",
1987 __func__);
1988 return -EINVAL;
1989 }
1990
1991 /* no rphy means no smp target support (ie aic94xx host) */
1992 if (!rphy)
1993 return sas_smp_host_handler(shost, req, rsp);
1994
1995 type = rphy->identify.device_type;
1996
1997 if (type != SAS_EDGE_EXPANDER_DEVICE &&
1998 type != SAS_FANOUT_EXPANDER_DEVICE) {
1999 printk("%s: can we send a smp request to a device?\n",
2000 __func__);
2001 return -EINVAL;
2002 }
2003
2004 dev = sas_find_dev_by_rphy(rphy);
2005 if (!dev) {
2006 printk("%s: fail to find a domain_device?\n", __func__);
2007 return -EINVAL;
2008 }
2009
2010 /* do we need to support multiple segments? */
2011 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2012 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2013 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2014 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2015 return -EINVAL;
2016 }
2017
2018 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2019 bio_data(rsp->bio), blk_rq_bytes(rsp));
2020 if (ret > 0) {
2021 /* positive number is the untransferred residual */
2022 rsp->resid_len = ret;
2023 req->resid_len = 0;
2024 ret = 0;
2025 } else if (ret == 0) {
2026 rsp->resid_len = 0;
2027 req->resid_len = 0;
2028 }
2029
2030 return ret;
2031}
1/*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25#include <linux/scatterlist.h>
26#include <linux/blkdev.h>
27#include <linux/slab.h>
28
29#include "sas_internal.h"
30
31#include <scsi/sas_ata.h>
32#include <scsi/scsi_transport.h>
33#include <scsi/scsi_transport_sas.h>
34#include "../scsi_sas_internal.h"
35
36static int sas_discover_expander(struct domain_device *dev);
37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41
42/* ---------- SMP task management ---------- */
43
44static void smp_task_timedout(unsigned long _task)
45{
46 struct sas_task *task = (void *) _task;
47 unsigned long flags;
48
49 spin_lock_irqsave(&task->task_state_lock, flags);
50 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52 spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54 complete(&task->completion);
55}
56
57static void smp_task_done(struct sas_task *task)
58{
59 if (!del_timer(&task->timer))
60 return;
61 complete(&task->completion);
62}
63
64/* Give it some long enough timeout. In seconds. */
65#define SMP_TIMEOUT 10
66
67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68 void *resp, int resp_size)
69{
70 int res, retry;
71 struct sas_task *task = NULL;
72 struct sas_internal *i =
73 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75 mutex_lock(&dev->ex_dev.cmd_mutex);
76 for (retry = 0; retry < 3; retry++) {
77 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 res = -ECOMM;
79 break;
80 }
81
82 task = sas_alloc_task(GFP_KERNEL);
83 if (!task) {
84 res = -ENOMEM;
85 break;
86 }
87 task->dev = dev;
88 task->task_proto = dev->tproto;
89 sg_init_one(&task->smp_task.smp_req, req, req_size);
90 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92 task->task_done = smp_task_done;
93
94 task->timer.data = (unsigned long) task;
95 task->timer.function = smp_task_timedout;
96 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 add_timer(&task->timer);
98
99 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
100
101 if (res) {
102 del_timer(&task->timer);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 break;
105 }
106
107 wait_for_completion(&task->completion);
108 res = -ECOMM;
109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i->dft->lldd_abort_task(task);
112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
114 break;
115 }
116 }
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAM_STAT_GOOD) {
119 res = 0;
120 break;
121 }
122 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 task->task_status.stat == SAS_DATA_UNDERRUN) {
124 /* no error, but return the number of bytes of
125 * underrun */
126 res = task->task_status.residual;
127 break;
128 }
129 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 task->task_status.stat == SAS_DATA_OVERRUN) {
131 res = -EMSGSIZE;
132 break;
133 }
134 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 break;
137 else {
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__,
140 SAS_ADDR(dev->sas_addr),
141 task->task_status.resp,
142 task->task_status.stat);
143 sas_free_task(task);
144 task = NULL;
145 }
146 }
147 mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149 BUG_ON(retry == 3 && task != NULL);
150 sas_free_task(task);
151 return res;
152}
153
154/* ---------- Allocations ---------- */
155
156static inline void *alloc_smp_req(int size)
157{
158 u8 *p = kzalloc(size, GFP_KERNEL);
159 if (p)
160 p[0] = SMP_REQUEST;
161 return p;
162}
163
164static inline void *alloc_smp_resp(int size)
165{
166 return kzalloc(size, GFP_KERNEL);
167}
168
169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170{
171 switch (phy->routing_attr) {
172 case TABLE_ROUTING:
173 if (dev->ex_dev.t2t_supp)
174 return 'U';
175 else
176 return 'T';
177 case DIRECT_ROUTING:
178 return 'D';
179 case SUBTRACTIVE_ROUTING:
180 return 'S';
181 default:
182 return '?';
183 }
184}
185
186static enum sas_dev_type to_dev_type(struct discover_resp *dr)
187{
188 /* This is detecting a failure to transmit initial dev to host
189 * FIS as described in section J.5 of sas-2 r16
190 */
191 if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
192 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193 return SATA_PENDING;
194 else
195 return dr->attached_dev_type;
196}
197
198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199{
200 enum sas_dev_type dev_type;
201 enum sas_linkrate linkrate;
202 u8 sas_addr[SAS_ADDR_SIZE];
203 struct smp_resp *resp = rsp;
204 struct discover_resp *dr = &resp->disc;
205 struct sas_ha_struct *ha = dev->port->ha;
206 struct expander_device *ex = &dev->ex_dev;
207 struct ex_phy *phy = &ex->ex_phy[phy_id];
208 struct sas_rphy *rphy = dev->rphy;
209 bool new_phy = !phy->phy;
210 char *type;
211
212 if (new_phy) {
213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214 return;
215 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216
217 /* FIXME: error_handling */
218 BUG_ON(!phy->phy);
219 }
220
221 switch (resp->result) {
222 case SMP_RESP_PHY_VACANT:
223 phy->phy_state = PHY_VACANT;
224 break;
225 default:
226 phy->phy_state = PHY_NOT_PRESENT;
227 break;
228 case SMP_RESP_FUNC_ACC:
229 phy->phy_state = PHY_EMPTY; /* do not know yet */
230 break;
231 }
232
233 /* check if anything important changed to squelch debug */
234 dev_type = phy->attached_dev_type;
235 linkrate = phy->linkrate;
236 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237
238 phy->attached_dev_type = to_dev_type(dr);
239 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
240 goto out;
241 phy->phy_id = phy_id;
242 phy->linkrate = dr->linkrate;
243 phy->attached_sata_host = dr->attached_sata_host;
244 phy->attached_sata_dev = dr->attached_sata_dev;
245 phy->attached_sata_ps = dr->attached_sata_ps;
246 phy->attached_iproto = dr->iproto << 1;
247 phy->attached_tproto = dr->tproto << 1;
248 /* help some expanders that fail to zero sas_address in the 'no
249 * device' case
250 */
251 if (phy->attached_dev_type == NO_DEVICE ||
252 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
253 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
254 else
255 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
256 phy->attached_phy_id = dr->attached_phy_id;
257 phy->phy_change_count = dr->change_count;
258 phy->routing_attr = dr->routing_attr;
259 phy->virtual = dr->virtual;
260 phy->last_da_index = -1;
261
262 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
263 phy->phy->identify.device_type = dr->attached_dev_type;
264 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
265 phy->phy->identify.target_port_protocols = phy->attached_tproto;
266 if (!phy->attached_tproto && dr->attached_sata_dev)
267 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
268 phy->phy->identify.phy_identifier = phy_id;
269 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
270 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
271 phy->phy->minimum_linkrate = dr->pmin_linkrate;
272 phy->phy->maximum_linkrate = dr->pmax_linkrate;
273 phy->phy->negotiated_linkrate = phy->linkrate;
274
275 if (new_phy)
276 if (sas_phy_add(phy->phy)) {
277 sas_phy_free(phy->phy);
278 return;
279 }
280
281 out:
282 switch (phy->attached_dev_type) {
283 case SATA_PENDING:
284 type = "stp pending";
285 break;
286 case NO_DEVICE:
287 type = "no device";
288 break;
289 case SAS_END_DEV:
290 if (phy->attached_iproto) {
291 if (phy->attached_tproto)
292 type = "host+target";
293 else
294 type = "host";
295 } else {
296 if (dr->attached_sata_dev)
297 type = "stp";
298 else
299 type = "ssp";
300 }
301 break;
302 case EDGE_DEV:
303 case FANOUT_DEV:
304 type = "smp";
305 break;
306 default:
307 type = "unknown";
308 }
309
310 /* this routine is polled by libata error recovery so filter
311 * unimportant messages
312 */
313 if (new_phy || phy->attached_dev_type != dev_type ||
314 phy->linkrate != linkrate ||
315 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
316 /* pass */;
317 else
318 return;
319
320 /* if the attached device type changed and ata_eh is active,
321 * make sure we run revalidation when eh completes (see:
322 * sas_enable_revalidation)
323 */
324 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
325 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
326
327 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
328 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
329 SAS_ADDR(dev->sas_addr), phy->phy_id,
330 sas_route_char(dev, phy), phy->linkrate,
331 SAS_ADDR(phy->attached_sas_addr), type);
332}
333
334/* check if we have an existing attached ata device on this expander phy */
335struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
336{
337 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
338 struct domain_device *dev;
339 struct sas_rphy *rphy;
340
341 if (!ex_phy->port)
342 return NULL;
343
344 rphy = ex_phy->port->rphy;
345 if (!rphy)
346 return NULL;
347
348 dev = sas_find_dev_by_rphy(rphy);
349
350 if (dev && dev_is_sata(dev))
351 return dev;
352
353 return NULL;
354}
355
356#define DISCOVER_REQ_SIZE 16
357#define DISCOVER_RESP_SIZE 56
358
359static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
360 u8 *disc_resp, int single)
361{
362 struct discover_resp *dr;
363 int res;
364
365 disc_req[9] = single;
366
367 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
368 disc_resp, DISCOVER_RESP_SIZE);
369 if (res)
370 return res;
371 dr = &((struct smp_resp *)disc_resp)->disc;
372 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
373 sas_printk("Found loopback topology, just ignore it!\n");
374 return 0;
375 }
376 sas_set_ex_phy(dev, single, disc_resp);
377 return 0;
378}
379
380int sas_ex_phy_discover(struct domain_device *dev, int single)
381{
382 struct expander_device *ex = &dev->ex_dev;
383 int res = 0;
384 u8 *disc_req;
385 u8 *disc_resp;
386
387 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
388 if (!disc_req)
389 return -ENOMEM;
390
391 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
392 if (!disc_resp) {
393 kfree(disc_req);
394 return -ENOMEM;
395 }
396
397 disc_req[1] = SMP_DISCOVER;
398
399 if (0 <= single && single < ex->num_phys) {
400 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
401 } else {
402 int i;
403
404 for (i = 0; i < ex->num_phys; i++) {
405 res = sas_ex_phy_discover_helper(dev, disc_req,
406 disc_resp, i);
407 if (res)
408 goto out_err;
409 }
410 }
411out_err:
412 kfree(disc_resp);
413 kfree(disc_req);
414 return res;
415}
416
417static int sas_expander_discover(struct domain_device *dev)
418{
419 struct expander_device *ex = &dev->ex_dev;
420 int res = -ENOMEM;
421
422 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
423 if (!ex->ex_phy)
424 return -ENOMEM;
425
426 res = sas_ex_phy_discover(dev, -1);
427 if (res)
428 goto out_err;
429
430 return 0;
431 out_err:
432 kfree(ex->ex_phy);
433 ex->ex_phy = NULL;
434 return res;
435}
436
437#define MAX_EXPANDER_PHYS 128
438
439static void ex_assign_report_general(struct domain_device *dev,
440 struct smp_resp *resp)
441{
442 struct report_general_resp *rg = &resp->rg;
443
444 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
445 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
446 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
447 dev->ex_dev.t2t_supp = rg->t2t_supp;
448 dev->ex_dev.conf_route_table = rg->conf_route_table;
449 dev->ex_dev.configuring = rg->configuring;
450 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
451}
452
453#define RG_REQ_SIZE 8
454#define RG_RESP_SIZE 32
455
456static int sas_ex_general(struct domain_device *dev)
457{
458 u8 *rg_req;
459 struct smp_resp *rg_resp;
460 int res;
461 int i;
462
463 rg_req = alloc_smp_req(RG_REQ_SIZE);
464 if (!rg_req)
465 return -ENOMEM;
466
467 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
468 if (!rg_resp) {
469 kfree(rg_req);
470 return -ENOMEM;
471 }
472
473 rg_req[1] = SMP_REPORT_GENERAL;
474
475 for (i = 0; i < 5; i++) {
476 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
477 RG_RESP_SIZE);
478
479 if (res) {
480 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
481 SAS_ADDR(dev->sas_addr), res);
482 goto out;
483 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
484 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
485 SAS_ADDR(dev->sas_addr), rg_resp->result);
486 res = rg_resp->result;
487 goto out;
488 }
489
490 ex_assign_report_general(dev, rg_resp);
491
492 if (dev->ex_dev.configuring) {
493 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
494 SAS_ADDR(dev->sas_addr));
495 schedule_timeout_interruptible(5*HZ);
496 } else
497 break;
498 }
499out:
500 kfree(rg_req);
501 kfree(rg_resp);
502 return res;
503}
504
505static void ex_assign_manuf_info(struct domain_device *dev, void
506 *_mi_resp)
507{
508 u8 *mi_resp = _mi_resp;
509 struct sas_rphy *rphy = dev->rphy;
510 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
511
512 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
513 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
514 memcpy(edev->product_rev, mi_resp + 36,
515 SAS_EXPANDER_PRODUCT_REV_LEN);
516
517 if (mi_resp[8] & 1) {
518 memcpy(edev->component_vendor_id, mi_resp + 40,
519 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
520 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
521 edev->component_revision_id = mi_resp[50];
522 }
523}
524
525#define MI_REQ_SIZE 8
526#define MI_RESP_SIZE 64
527
528static int sas_ex_manuf_info(struct domain_device *dev)
529{
530 u8 *mi_req;
531 u8 *mi_resp;
532 int res;
533
534 mi_req = alloc_smp_req(MI_REQ_SIZE);
535 if (!mi_req)
536 return -ENOMEM;
537
538 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
539 if (!mi_resp) {
540 kfree(mi_req);
541 return -ENOMEM;
542 }
543
544 mi_req[1] = SMP_REPORT_MANUF_INFO;
545
546 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
547 if (res) {
548 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
549 SAS_ADDR(dev->sas_addr), res);
550 goto out;
551 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
552 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
553 SAS_ADDR(dev->sas_addr), mi_resp[2]);
554 goto out;
555 }
556
557 ex_assign_manuf_info(dev, mi_resp);
558out:
559 kfree(mi_req);
560 kfree(mi_resp);
561 return res;
562}
563
564#define PC_REQ_SIZE 44
565#define PC_RESP_SIZE 8
566
567int sas_smp_phy_control(struct domain_device *dev, int phy_id,
568 enum phy_func phy_func,
569 struct sas_phy_linkrates *rates)
570{
571 u8 *pc_req;
572 u8 *pc_resp;
573 int res;
574
575 pc_req = alloc_smp_req(PC_REQ_SIZE);
576 if (!pc_req)
577 return -ENOMEM;
578
579 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
580 if (!pc_resp) {
581 kfree(pc_req);
582 return -ENOMEM;
583 }
584
585 pc_req[1] = SMP_PHY_CONTROL;
586 pc_req[9] = phy_id;
587 pc_req[10]= phy_func;
588 if (rates) {
589 pc_req[32] = rates->minimum_linkrate << 4;
590 pc_req[33] = rates->maximum_linkrate << 4;
591 }
592
593 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
594
595 kfree(pc_resp);
596 kfree(pc_req);
597 return res;
598}
599
600static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
601{
602 struct expander_device *ex = &dev->ex_dev;
603 struct ex_phy *phy = &ex->ex_phy[phy_id];
604
605 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
606 phy->linkrate = SAS_PHY_DISABLED;
607}
608
609static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
610{
611 struct expander_device *ex = &dev->ex_dev;
612 int i;
613
614 for (i = 0; i < ex->num_phys; i++) {
615 struct ex_phy *phy = &ex->ex_phy[i];
616
617 if (phy->phy_state == PHY_VACANT ||
618 phy->phy_state == PHY_NOT_PRESENT)
619 continue;
620
621 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
622 sas_ex_disable_phy(dev, i);
623 }
624}
625
626static int sas_dev_present_in_domain(struct asd_sas_port *port,
627 u8 *sas_addr)
628{
629 struct domain_device *dev;
630
631 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
632 return 1;
633 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
634 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
635 return 1;
636 }
637 return 0;
638}
639
640#define RPEL_REQ_SIZE 16
641#define RPEL_RESP_SIZE 32
642int sas_smp_get_phy_events(struct sas_phy *phy)
643{
644 int res;
645 u8 *req;
646 u8 *resp;
647 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
648 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
649
650 req = alloc_smp_req(RPEL_REQ_SIZE);
651 if (!req)
652 return -ENOMEM;
653
654 resp = alloc_smp_resp(RPEL_RESP_SIZE);
655 if (!resp) {
656 kfree(req);
657 return -ENOMEM;
658 }
659
660 req[1] = SMP_REPORT_PHY_ERR_LOG;
661 req[9] = phy->number;
662
663 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
664 resp, RPEL_RESP_SIZE);
665
666 if (!res)
667 goto out;
668
669 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
670 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
671 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
672 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
673
674 out:
675 kfree(resp);
676 return res;
677
678}
679
680#ifdef CONFIG_SCSI_SAS_ATA
681
682#define RPS_REQ_SIZE 16
683#define RPS_RESP_SIZE 60
684
685int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
686 struct smp_resp *rps_resp)
687{
688 int res;
689 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
690 u8 *resp = (u8 *)rps_resp;
691
692 if (!rps_req)
693 return -ENOMEM;
694
695 rps_req[1] = SMP_REPORT_PHY_SATA;
696 rps_req[9] = phy_id;
697
698 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
699 rps_resp, RPS_RESP_SIZE);
700
701 /* 0x34 is the FIS type for the D2H fis. There's a potential
702 * standards cockup here. sas-2 explicitly specifies the FIS
703 * should be encoded so that FIS type is in resp[24].
704 * However, some expanders endian reverse this. Undo the
705 * reversal here */
706 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
707 int i;
708
709 for (i = 0; i < 5; i++) {
710 int j = 24 + (i*4);
711 u8 a, b;
712 a = resp[j + 0];
713 b = resp[j + 1];
714 resp[j + 0] = resp[j + 3];
715 resp[j + 1] = resp[j + 2];
716 resp[j + 2] = b;
717 resp[j + 3] = a;
718 }
719 }
720
721 kfree(rps_req);
722 return res;
723}
724#endif
725
726static void sas_ex_get_linkrate(struct domain_device *parent,
727 struct domain_device *child,
728 struct ex_phy *parent_phy)
729{
730 struct expander_device *parent_ex = &parent->ex_dev;
731 struct sas_port *port;
732 int i;
733
734 child->pathways = 0;
735
736 port = parent_phy->port;
737
738 for (i = 0; i < parent_ex->num_phys; i++) {
739 struct ex_phy *phy = &parent_ex->ex_phy[i];
740
741 if (phy->phy_state == PHY_VACANT ||
742 phy->phy_state == PHY_NOT_PRESENT)
743 continue;
744
745 if (SAS_ADDR(phy->attached_sas_addr) ==
746 SAS_ADDR(child->sas_addr)) {
747
748 child->min_linkrate = min(parent->min_linkrate,
749 phy->linkrate);
750 child->max_linkrate = max(parent->max_linkrate,
751 phy->linkrate);
752 child->pathways++;
753 sas_port_add_phy(port, phy->phy);
754 }
755 }
756 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
757 child->pathways = min(child->pathways, parent->pathways);
758}
759
760static struct domain_device *sas_ex_discover_end_dev(
761 struct domain_device *parent, int phy_id)
762{
763 struct expander_device *parent_ex = &parent->ex_dev;
764 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
765 struct domain_device *child = NULL;
766 struct sas_rphy *rphy;
767 int res;
768
769 if (phy->attached_sata_host || phy->attached_sata_ps)
770 return NULL;
771
772 child = sas_alloc_device();
773 if (!child)
774 return NULL;
775
776 kref_get(&parent->kref);
777 child->parent = parent;
778 child->port = parent->port;
779 child->iproto = phy->attached_iproto;
780 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
781 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
782 if (!phy->port) {
783 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
784 if (unlikely(!phy->port))
785 goto out_err;
786 if (unlikely(sas_port_add(phy->port) != 0)) {
787 sas_port_free(phy->port);
788 goto out_err;
789 }
790 }
791 sas_ex_get_linkrate(parent, child, phy);
792 sas_device_set_phy(child, phy->port);
793
794#ifdef CONFIG_SCSI_SAS_ATA
795 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
796 res = sas_get_ata_info(child, phy);
797 if (res)
798 goto out_free;
799
800 sas_init_dev(child);
801 res = sas_ata_init(child);
802 if (res)
803 goto out_free;
804 rphy = sas_end_device_alloc(phy->port);
805 if (!rphy)
806 goto out_free;
807
808 child->rphy = rphy;
809 get_device(&rphy->dev);
810
811 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
812
813 res = sas_discover_sata(child);
814 if (res) {
815 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
816 "%016llx:0x%x returned 0x%x\n",
817 SAS_ADDR(child->sas_addr),
818 SAS_ADDR(parent->sas_addr), phy_id, res);
819 goto out_list_del;
820 }
821 } else
822#endif
823 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
824 child->dev_type = SAS_END_DEV;
825 rphy = sas_end_device_alloc(phy->port);
826 /* FIXME: error handling */
827 if (unlikely(!rphy))
828 goto out_free;
829 child->tproto = phy->attached_tproto;
830 sas_init_dev(child);
831
832 child->rphy = rphy;
833 get_device(&rphy->dev);
834 sas_fill_in_rphy(child, rphy);
835
836 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837
838 res = sas_discover_end_dev(child);
839 if (res) {
840 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
841 "at %016llx:0x%x returned 0x%x\n",
842 SAS_ADDR(child->sas_addr),
843 SAS_ADDR(parent->sas_addr), phy_id, res);
844 goto out_list_del;
845 }
846 } else {
847 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
848 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
849 phy_id);
850 goto out_free;
851 }
852
853 list_add_tail(&child->siblings, &parent_ex->children);
854 return child;
855
856 out_list_del:
857 sas_rphy_free(child->rphy);
858 list_del(&child->disco_list_node);
859 spin_lock_irq(&parent->port->dev_list_lock);
860 list_del(&child->dev_list_node);
861 spin_unlock_irq(&parent->port->dev_list_lock);
862 out_free:
863 sas_port_delete(phy->port);
864 out_err:
865 phy->port = NULL;
866 sas_put_device(child);
867 return NULL;
868}
869
870/* See if this phy is part of a wide port */
871static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
872{
873 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
874 int i;
875
876 for (i = 0; i < parent->ex_dev.num_phys; i++) {
877 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
878
879 if (ephy == phy)
880 continue;
881
882 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
883 SAS_ADDR_SIZE) && ephy->port) {
884 sas_port_add_phy(ephy->port, phy->phy);
885 phy->port = ephy->port;
886 phy->phy_state = PHY_DEVICE_DISCOVERED;
887 return true;
888 }
889 }
890
891 return false;
892}
893
894static struct domain_device *sas_ex_discover_expander(
895 struct domain_device *parent, int phy_id)
896{
897 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
898 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899 struct domain_device *child = NULL;
900 struct sas_rphy *rphy;
901 struct sas_expander_device *edev;
902 struct asd_sas_port *port;
903 int res;
904
905 if (phy->routing_attr == DIRECT_ROUTING) {
906 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
907 "allowed\n",
908 SAS_ADDR(parent->sas_addr), phy_id,
909 SAS_ADDR(phy->attached_sas_addr),
910 phy->attached_phy_id);
911 return NULL;
912 }
913 child = sas_alloc_device();
914 if (!child)
915 return NULL;
916
917 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
918 /* FIXME: better error handling */
919 BUG_ON(sas_port_add(phy->port) != 0);
920
921
922 switch (phy->attached_dev_type) {
923 case EDGE_DEV:
924 rphy = sas_expander_alloc(phy->port,
925 SAS_EDGE_EXPANDER_DEVICE);
926 break;
927 case FANOUT_DEV:
928 rphy = sas_expander_alloc(phy->port,
929 SAS_FANOUT_EXPANDER_DEVICE);
930 break;
931 default:
932 rphy = NULL; /* shut gcc up */
933 BUG();
934 }
935 port = parent->port;
936 child->rphy = rphy;
937 get_device(&rphy->dev);
938 edev = rphy_to_expander_device(rphy);
939 child->dev_type = phy->attached_dev_type;
940 kref_get(&parent->kref);
941 child->parent = parent;
942 child->port = port;
943 child->iproto = phy->attached_iproto;
944 child->tproto = phy->attached_tproto;
945 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
946 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
947 sas_ex_get_linkrate(parent, child, phy);
948 edev->level = parent_ex->level + 1;
949 parent->port->disc.max_level = max(parent->port->disc.max_level,
950 edev->level);
951 sas_init_dev(child);
952 sas_fill_in_rphy(child, rphy);
953 sas_rphy_add(rphy);
954
955 spin_lock_irq(&parent->port->dev_list_lock);
956 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
957 spin_unlock_irq(&parent->port->dev_list_lock);
958
959 res = sas_discover_expander(child);
960 if (res) {
961 sas_rphy_delete(rphy);
962 spin_lock_irq(&parent->port->dev_list_lock);
963 list_del(&child->dev_list_node);
964 spin_unlock_irq(&parent->port->dev_list_lock);
965 sas_put_device(child);
966 return NULL;
967 }
968 list_add_tail(&child->siblings, &parent->ex_dev.children);
969 return child;
970}
971
972static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
973{
974 struct expander_device *ex = &dev->ex_dev;
975 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
976 struct domain_device *child = NULL;
977 int res = 0;
978
979 /* Phy state */
980 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
981 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
982 res = sas_ex_phy_discover(dev, phy_id);
983 if (res)
984 return res;
985 }
986
987 /* Parent and domain coherency */
988 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
989 SAS_ADDR(dev->port->sas_addr))) {
990 sas_add_parent_port(dev, phy_id);
991 return 0;
992 }
993 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
994 SAS_ADDR(dev->parent->sas_addr))) {
995 sas_add_parent_port(dev, phy_id);
996 if (ex_phy->routing_attr == TABLE_ROUTING)
997 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
998 return 0;
999 }
1000
1001 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1002 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1003
1004 if (ex_phy->attached_dev_type == NO_DEVICE) {
1005 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1006 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1007 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1008 }
1009 return 0;
1010 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1011 return 0;
1012
1013 if (ex_phy->attached_dev_type != SAS_END_DEV &&
1014 ex_phy->attached_dev_type != FANOUT_DEV &&
1015 ex_phy->attached_dev_type != EDGE_DEV &&
1016 ex_phy->attached_dev_type != SATA_PENDING) {
1017 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1018 "phy 0x%x\n", ex_phy->attached_dev_type,
1019 SAS_ADDR(dev->sas_addr),
1020 phy_id);
1021 return 0;
1022 }
1023
1024 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1025 if (res) {
1026 SAS_DPRINTK("configure routing for dev %016llx "
1027 "reported 0x%x. Forgotten\n",
1028 SAS_ADDR(ex_phy->attached_sas_addr), res);
1029 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1030 return res;
1031 }
1032
1033 if (sas_ex_join_wide_port(dev, phy_id)) {
1034 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1035 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1036 return res;
1037 }
1038
1039 switch (ex_phy->attached_dev_type) {
1040 case SAS_END_DEV:
1041 case SATA_PENDING:
1042 child = sas_ex_discover_end_dev(dev, phy_id);
1043 break;
1044 case FANOUT_DEV:
1045 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1046 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1047 "attached to ex %016llx phy 0x%x\n",
1048 SAS_ADDR(ex_phy->attached_sas_addr),
1049 ex_phy->attached_phy_id,
1050 SAS_ADDR(dev->sas_addr),
1051 phy_id);
1052 sas_ex_disable_phy(dev, phy_id);
1053 break;
1054 } else
1055 memcpy(dev->port->disc.fanout_sas_addr,
1056 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1057 /* fallthrough */
1058 case EDGE_DEV:
1059 child = sas_ex_discover_expander(dev, phy_id);
1060 break;
1061 default:
1062 break;
1063 }
1064
1065 if (child) {
1066 int i;
1067
1068 for (i = 0; i < ex->num_phys; i++) {
1069 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1070 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1071 continue;
1072 /*
1073 * Due to races, the phy might not get added to the
1074 * wide port, so we add the phy to the wide port here.
1075 */
1076 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1077 SAS_ADDR(child->sas_addr)) {
1078 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1079 if (sas_ex_join_wide_port(dev, i))
1080 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1081 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1082
1083 }
1084 }
1085 }
1086
1087 return res;
1088}
1089
1090static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1091{
1092 struct expander_device *ex = &dev->ex_dev;
1093 int i;
1094
1095 for (i = 0; i < ex->num_phys; i++) {
1096 struct ex_phy *phy = &ex->ex_phy[i];
1097
1098 if (phy->phy_state == PHY_VACANT ||
1099 phy->phy_state == PHY_NOT_PRESENT)
1100 continue;
1101
1102 if ((phy->attached_dev_type == EDGE_DEV ||
1103 phy->attached_dev_type == FANOUT_DEV) &&
1104 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105
1106 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1107
1108 return 1;
1109 }
1110 }
1111 return 0;
1112}
1113
1114static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115{
1116 struct expander_device *ex = &dev->ex_dev;
1117 struct domain_device *child;
1118 u8 sub_addr[8] = {0, };
1119
1120 list_for_each_entry(child, &ex->children, siblings) {
1121 if (child->dev_type != EDGE_DEV &&
1122 child->dev_type != FANOUT_DEV)
1123 continue;
1124 if (sub_addr[0] == 0) {
1125 sas_find_sub_addr(child, sub_addr);
1126 continue;
1127 } else {
1128 u8 s2[8];
1129
1130 if (sas_find_sub_addr(child, s2) &&
1131 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1132
1133 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1134 "diverges from subtractive "
1135 "boundary %016llx\n",
1136 SAS_ADDR(dev->sas_addr),
1137 SAS_ADDR(child->sas_addr),
1138 SAS_ADDR(s2),
1139 SAS_ADDR(sub_addr));
1140
1141 sas_ex_disable_port(child, s2);
1142 }
1143 }
1144 }
1145 return 0;
1146}
1147/**
1148 * sas_ex_discover_devices -- discover devices attached to this expander
1149 * dev: pointer to the expander domain device
1150 * single: if you want to do a single phy, else set to -1;
1151 *
1152 * Configure this expander for use with its devices and register the
1153 * devices of this expander.
1154 */
1155static int sas_ex_discover_devices(struct domain_device *dev, int single)
1156{
1157 struct expander_device *ex = &dev->ex_dev;
1158 int i = 0, end = ex->num_phys;
1159 int res = 0;
1160
1161 if (0 <= single && single < end) {
1162 i = single;
1163 end = i+1;
1164 }
1165
1166 for ( ; i < end; i++) {
1167 struct ex_phy *ex_phy = &ex->ex_phy[i];
1168
1169 if (ex_phy->phy_state == PHY_VACANT ||
1170 ex_phy->phy_state == PHY_NOT_PRESENT ||
1171 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1172 continue;
1173
1174 switch (ex_phy->linkrate) {
1175 case SAS_PHY_DISABLED:
1176 case SAS_PHY_RESET_PROBLEM:
1177 case SAS_SATA_PORT_SELECTOR:
1178 continue;
1179 default:
1180 res = sas_ex_discover_dev(dev, i);
1181 if (res)
1182 break;
1183 continue;
1184 }
1185 }
1186
1187 if (!res)
1188 sas_check_level_subtractive_boundary(dev);
1189
1190 return res;
1191}
1192
1193static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1194{
1195 struct expander_device *ex = &dev->ex_dev;
1196 int i;
1197 u8 *sub_sas_addr = NULL;
1198
1199 if (dev->dev_type != EDGE_DEV)
1200 return 0;
1201
1202 for (i = 0; i < ex->num_phys; i++) {
1203 struct ex_phy *phy = &ex->ex_phy[i];
1204
1205 if (phy->phy_state == PHY_VACANT ||
1206 phy->phy_state == PHY_NOT_PRESENT)
1207 continue;
1208
1209 if ((phy->attached_dev_type == FANOUT_DEV ||
1210 phy->attached_dev_type == EDGE_DEV) &&
1211 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1212
1213 if (!sub_sas_addr)
1214 sub_sas_addr = &phy->attached_sas_addr[0];
1215 else if (SAS_ADDR(sub_sas_addr) !=
1216 SAS_ADDR(phy->attached_sas_addr)) {
1217
1218 SAS_DPRINTK("ex %016llx phy 0x%x "
1219 "diverges(%016llx) on subtractive "
1220 "boundary(%016llx). Disabled\n",
1221 SAS_ADDR(dev->sas_addr), i,
1222 SAS_ADDR(phy->attached_sas_addr),
1223 SAS_ADDR(sub_sas_addr));
1224 sas_ex_disable_phy(dev, i);
1225 }
1226 }
1227 }
1228 return 0;
1229}
1230
1231static void sas_print_parent_topology_bug(struct domain_device *child,
1232 struct ex_phy *parent_phy,
1233 struct ex_phy *child_phy)
1234{
1235 static const char *ex_type[] = {
1236 [EDGE_DEV] = "edge",
1237 [FANOUT_DEV] = "fanout",
1238 };
1239 struct domain_device *parent = child->parent;
1240
1241 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1242 "phy 0x%x has %c:%c routing link!\n",
1243
1244 ex_type[parent->dev_type],
1245 SAS_ADDR(parent->sas_addr),
1246 parent_phy->phy_id,
1247
1248 ex_type[child->dev_type],
1249 SAS_ADDR(child->sas_addr),
1250 child_phy->phy_id,
1251
1252 sas_route_char(parent, parent_phy),
1253 sas_route_char(child, child_phy));
1254}
1255
1256static int sas_check_eeds(struct domain_device *child,
1257 struct ex_phy *parent_phy,
1258 struct ex_phy *child_phy)
1259{
1260 int res = 0;
1261 struct domain_device *parent = child->parent;
1262
1263 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1264 res = -ENODEV;
1265 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1266 "phy S:0x%x, while there is a fanout ex %016llx\n",
1267 SAS_ADDR(parent->sas_addr),
1268 parent_phy->phy_id,
1269 SAS_ADDR(child->sas_addr),
1270 child_phy->phy_id,
1271 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1272 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1273 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1274 SAS_ADDR_SIZE);
1275 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1276 SAS_ADDR_SIZE);
1277 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1278 SAS_ADDR(parent->sas_addr)) ||
1279 (SAS_ADDR(parent->port->disc.eeds_a) ==
1280 SAS_ADDR(child->sas_addr)))
1281 &&
1282 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1283 SAS_ADDR(parent->sas_addr)) ||
1284 (SAS_ADDR(parent->port->disc.eeds_b) ==
1285 SAS_ADDR(child->sas_addr))))
1286 ;
1287 else {
1288 res = -ENODEV;
1289 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1290 "phy 0x%x link forms a third EEDS!\n",
1291 SAS_ADDR(parent->sas_addr),
1292 parent_phy->phy_id,
1293 SAS_ADDR(child->sas_addr),
1294 child_phy->phy_id);
1295 }
1296
1297 return res;
1298}
1299
1300/* Here we spill over 80 columns. It is intentional.
1301 */
1302static int sas_check_parent_topology(struct domain_device *child)
1303{
1304 struct expander_device *child_ex = &child->ex_dev;
1305 struct expander_device *parent_ex;
1306 int i;
1307 int res = 0;
1308
1309 if (!child->parent)
1310 return 0;
1311
1312 if (child->parent->dev_type != EDGE_DEV &&
1313 child->parent->dev_type != FANOUT_DEV)
1314 return 0;
1315
1316 parent_ex = &child->parent->ex_dev;
1317
1318 for (i = 0; i < parent_ex->num_phys; i++) {
1319 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1320 struct ex_phy *child_phy;
1321
1322 if (parent_phy->phy_state == PHY_VACANT ||
1323 parent_phy->phy_state == PHY_NOT_PRESENT)
1324 continue;
1325
1326 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1327 continue;
1328
1329 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1330
1331 switch (child->parent->dev_type) {
1332 case EDGE_DEV:
1333 if (child->dev_type == FANOUT_DEV) {
1334 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1335 child_phy->routing_attr != TABLE_ROUTING) {
1336 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1337 res = -ENODEV;
1338 }
1339 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1340 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1341 res = sas_check_eeds(child, parent_phy, child_phy);
1342 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1343 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1344 res = -ENODEV;
1345 }
1346 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1347 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1348 (child_phy->routing_attr == TABLE_ROUTING &&
1349 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1350 /* All good */;
1351 } else {
1352 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1353 res = -ENODEV;
1354 }
1355 }
1356 break;
1357 case FANOUT_DEV:
1358 if (parent_phy->routing_attr != TABLE_ROUTING ||
1359 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1360 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361 res = -ENODEV;
1362 }
1363 break;
1364 default:
1365 break;
1366 }
1367 }
1368
1369 return res;
1370}
1371
1372#define RRI_REQ_SIZE 16
1373#define RRI_RESP_SIZE 44
1374
1375static int sas_configure_present(struct domain_device *dev, int phy_id,
1376 u8 *sas_addr, int *index, int *present)
1377{
1378 int i, res = 0;
1379 struct expander_device *ex = &dev->ex_dev;
1380 struct ex_phy *phy = &ex->ex_phy[phy_id];
1381 u8 *rri_req;
1382 u8 *rri_resp;
1383
1384 *present = 0;
1385 *index = 0;
1386
1387 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1388 if (!rri_req)
1389 return -ENOMEM;
1390
1391 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1392 if (!rri_resp) {
1393 kfree(rri_req);
1394 return -ENOMEM;
1395 }
1396
1397 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1398 rri_req[9] = phy_id;
1399
1400 for (i = 0; i < ex->max_route_indexes ; i++) {
1401 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1402 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1403 RRI_RESP_SIZE);
1404 if (res)
1405 goto out;
1406 res = rri_resp[2];
1407 if (res == SMP_RESP_NO_INDEX) {
1408 SAS_DPRINTK("overflow of indexes: dev %016llx "
1409 "phy 0x%x index 0x%x\n",
1410 SAS_ADDR(dev->sas_addr), phy_id, i);
1411 goto out;
1412 } else if (res != SMP_RESP_FUNC_ACC) {
1413 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1414 "result 0x%x\n", __func__,
1415 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1416 goto out;
1417 }
1418 if (SAS_ADDR(sas_addr) != 0) {
1419 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1420 *index = i;
1421 if ((rri_resp[12] & 0x80) == 0x80)
1422 *present = 0;
1423 else
1424 *present = 1;
1425 goto out;
1426 } else if (SAS_ADDR(rri_resp+16) == 0) {
1427 *index = i;
1428 *present = 0;
1429 goto out;
1430 }
1431 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1432 phy->last_da_index < i) {
1433 phy->last_da_index = i;
1434 *index = i;
1435 *present = 0;
1436 goto out;
1437 }
1438 }
1439 res = -1;
1440out:
1441 kfree(rri_req);
1442 kfree(rri_resp);
1443 return res;
1444}
1445
1446#define CRI_REQ_SIZE 44
1447#define CRI_RESP_SIZE 8
1448
1449static int sas_configure_set(struct domain_device *dev, int phy_id,
1450 u8 *sas_addr, int index, int include)
1451{
1452 int res;
1453 u8 *cri_req;
1454 u8 *cri_resp;
1455
1456 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1457 if (!cri_req)
1458 return -ENOMEM;
1459
1460 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1461 if (!cri_resp) {
1462 kfree(cri_req);
1463 return -ENOMEM;
1464 }
1465
1466 cri_req[1] = SMP_CONF_ROUTE_INFO;
1467 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1468 cri_req[9] = phy_id;
1469 if (SAS_ADDR(sas_addr) == 0 || !include)
1470 cri_req[12] |= 0x80;
1471 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1472
1473 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1474 CRI_RESP_SIZE);
1475 if (res)
1476 goto out;
1477 res = cri_resp[2];
1478 if (res == SMP_RESP_NO_INDEX) {
1479 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1480 "index 0x%x\n",
1481 SAS_ADDR(dev->sas_addr), phy_id, index);
1482 }
1483out:
1484 kfree(cri_req);
1485 kfree(cri_resp);
1486 return res;
1487}
1488
1489static int sas_configure_phy(struct domain_device *dev, int phy_id,
1490 u8 *sas_addr, int include)
1491{
1492 int index;
1493 int present;
1494 int res;
1495
1496 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1497 if (res)
1498 return res;
1499 if (include ^ present)
1500 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1501
1502 return res;
1503}
1504
1505/**
1506 * sas_configure_parent -- configure routing table of parent
1507 * parent: parent expander
1508 * child: child expander
1509 * sas_addr: SAS port identifier of device directly attached to child
1510 */
1511static int sas_configure_parent(struct domain_device *parent,
1512 struct domain_device *child,
1513 u8 *sas_addr, int include)
1514{
1515 struct expander_device *ex_parent = &parent->ex_dev;
1516 int res = 0;
1517 int i;
1518
1519 if (parent->parent) {
1520 res = sas_configure_parent(parent->parent, parent, sas_addr,
1521 include);
1522 if (res)
1523 return res;
1524 }
1525
1526 if (ex_parent->conf_route_table == 0) {
1527 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1528 SAS_ADDR(parent->sas_addr));
1529 return 0;
1530 }
1531
1532 for (i = 0; i < ex_parent->num_phys; i++) {
1533 struct ex_phy *phy = &ex_parent->ex_phy[i];
1534
1535 if ((phy->routing_attr == TABLE_ROUTING) &&
1536 (SAS_ADDR(phy->attached_sas_addr) ==
1537 SAS_ADDR(child->sas_addr))) {
1538 res = sas_configure_phy(parent, i, sas_addr, include);
1539 if (res)
1540 return res;
1541 }
1542 }
1543
1544 return res;
1545}
1546
1547/**
1548 * sas_configure_routing -- configure routing
1549 * dev: expander device
1550 * sas_addr: port identifier of device directly attached to the expander device
1551 */
1552static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1553{
1554 if (dev->parent)
1555 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1556 return 0;
1557}
1558
1559static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1560{
1561 if (dev->parent)
1562 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1563 return 0;
1564}
1565
1566/**
1567 * sas_discover_expander -- expander discovery
1568 * @ex: pointer to expander domain device
1569 *
1570 * See comment in sas_discover_sata().
1571 */
1572static int sas_discover_expander(struct domain_device *dev)
1573{
1574 int res;
1575
1576 res = sas_notify_lldd_dev_found(dev);
1577 if (res)
1578 return res;
1579
1580 res = sas_ex_general(dev);
1581 if (res)
1582 goto out_err;
1583 res = sas_ex_manuf_info(dev);
1584 if (res)
1585 goto out_err;
1586
1587 res = sas_expander_discover(dev);
1588 if (res) {
1589 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1590 SAS_ADDR(dev->sas_addr), res);
1591 goto out_err;
1592 }
1593
1594 sas_check_ex_subtractive_boundary(dev);
1595 res = sas_check_parent_topology(dev);
1596 if (res)
1597 goto out_err;
1598 return 0;
1599out_err:
1600 sas_notify_lldd_dev_gone(dev);
1601 return res;
1602}
1603
1604static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1605{
1606 int res = 0;
1607 struct domain_device *dev;
1608
1609 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1610 if (dev->dev_type == EDGE_DEV ||
1611 dev->dev_type == FANOUT_DEV) {
1612 struct sas_expander_device *ex =
1613 rphy_to_expander_device(dev->rphy);
1614
1615 if (level == ex->level)
1616 res = sas_ex_discover_devices(dev, -1);
1617 else if (level > 0)
1618 res = sas_ex_discover_devices(port->port_dev, -1);
1619
1620 }
1621 }
1622
1623 return res;
1624}
1625
1626static int sas_ex_bfs_disc(struct asd_sas_port *port)
1627{
1628 int res;
1629 int level;
1630
1631 do {
1632 level = port->disc.max_level;
1633 res = sas_ex_level_discovery(port, level);
1634 mb();
1635 } while (level < port->disc.max_level);
1636
1637 return res;
1638}
1639
1640int sas_discover_root_expander(struct domain_device *dev)
1641{
1642 int res;
1643 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1644
1645 res = sas_rphy_add(dev->rphy);
1646 if (res)
1647 goto out_err;
1648
1649 ex->level = dev->port->disc.max_level; /* 0 */
1650 res = sas_discover_expander(dev);
1651 if (res)
1652 goto out_err2;
1653
1654 sas_ex_bfs_disc(dev->port);
1655
1656 return res;
1657
1658out_err2:
1659 sas_rphy_remove(dev->rphy);
1660out_err:
1661 return res;
1662}
1663
1664/* ---------- Domain revalidation ---------- */
1665
1666static int sas_get_phy_discover(struct domain_device *dev,
1667 int phy_id, struct smp_resp *disc_resp)
1668{
1669 int res;
1670 u8 *disc_req;
1671
1672 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1673 if (!disc_req)
1674 return -ENOMEM;
1675
1676 disc_req[1] = SMP_DISCOVER;
1677 disc_req[9] = phy_id;
1678
1679 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1680 disc_resp, DISCOVER_RESP_SIZE);
1681 if (res)
1682 goto out;
1683 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1684 res = disc_resp->result;
1685 goto out;
1686 }
1687out:
1688 kfree(disc_req);
1689 return res;
1690}
1691
1692static int sas_get_phy_change_count(struct domain_device *dev,
1693 int phy_id, int *pcc)
1694{
1695 int res;
1696 struct smp_resp *disc_resp;
1697
1698 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1699 if (!disc_resp)
1700 return -ENOMEM;
1701
1702 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1703 if (!res)
1704 *pcc = disc_resp->disc.change_count;
1705
1706 kfree(disc_resp);
1707 return res;
1708}
1709
1710static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1711 u8 *sas_addr, enum sas_dev_type *type)
1712{
1713 int res;
1714 struct smp_resp *disc_resp;
1715 struct discover_resp *dr;
1716
1717 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1718 if (!disc_resp)
1719 return -ENOMEM;
1720 dr = &disc_resp->disc;
1721
1722 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1723 if (res == 0) {
1724 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1725 *type = to_dev_type(dr);
1726 if (*type == 0)
1727 memset(sas_addr, 0, 8);
1728 }
1729 kfree(disc_resp);
1730 return res;
1731}
1732
1733static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1734 int from_phy, bool update)
1735{
1736 struct expander_device *ex = &dev->ex_dev;
1737 int res = 0;
1738 int i;
1739
1740 for (i = from_phy; i < ex->num_phys; i++) {
1741 int phy_change_count = 0;
1742
1743 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1744 switch (res) {
1745 case SMP_RESP_PHY_VACANT:
1746 case SMP_RESP_NO_PHY:
1747 continue;
1748 case SMP_RESP_FUNC_ACC:
1749 break;
1750 default:
1751 return res;
1752 }
1753
1754 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1755 if (update)
1756 ex->ex_phy[i].phy_change_count =
1757 phy_change_count;
1758 *phy_id = i;
1759 return 0;
1760 }
1761 }
1762 return 0;
1763}
1764
1765static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1766{
1767 int res;
1768 u8 *rg_req;
1769 struct smp_resp *rg_resp;
1770
1771 rg_req = alloc_smp_req(RG_REQ_SIZE);
1772 if (!rg_req)
1773 return -ENOMEM;
1774
1775 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1776 if (!rg_resp) {
1777 kfree(rg_req);
1778 return -ENOMEM;
1779 }
1780
1781 rg_req[1] = SMP_REPORT_GENERAL;
1782
1783 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1784 RG_RESP_SIZE);
1785 if (res)
1786 goto out;
1787 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1788 res = rg_resp->result;
1789 goto out;
1790 }
1791
1792 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1793out:
1794 kfree(rg_resp);
1795 kfree(rg_req);
1796 return res;
1797}
1798/**
1799 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1800 * @dev:domain device to be detect.
1801 * @src_dev: the device which originated BROADCAST(CHANGE).
1802 *
1803 * Add self-configuration expander suport. Suppose two expander cascading,
1804 * when the first level expander is self-configuring, hotplug the disks in
1805 * second level expander, BROADCAST(CHANGE) will not only be originated
1806 * in the second level expander, but also be originated in the first level
1807 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1808 * expander changed count in two level expanders will all increment at least
1809 * once, but the phy which chang count has changed is the source device which
1810 * we concerned.
1811 */
1812
1813static int sas_find_bcast_dev(struct domain_device *dev,
1814 struct domain_device **src_dev)
1815{
1816 struct expander_device *ex = &dev->ex_dev;
1817 int ex_change_count = -1;
1818 int phy_id = -1;
1819 int res;
1820 struct domain_device *ch;
1821
1822 res = sas_get_ex_change_count(dev, &ex_change_count);
1823 if (res)
1824 goto out;
1825 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1826 /* Just detect if this expander phys phy change count changed,
1827 * in order to determine if this expander originate BROADCAST,
1828 * and do not update phy change count field in our structure.
1829 */
1830 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1831 if (phy_id != -1) {
1832 *src_dev = dev;
1833 ex->ex_change_count = ex_change_count;
1834 SAS_DPRINTK("Expander phy change count has changed\n");
1835 return res;
1836 } else
1837 SAS_DPRINTK("Expander phys DID NOT change\n");
1838 }
1839 list_for_each_entry(ch, &ex->children, siblings) {
1840 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1841 res = sas_find_bcast_dev(ch, src_dev);
1842 if (*src_dev)
1843 return res;
1844 }
1845 }
1846out:
1847 return res;
1848}
1849
1850static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1851{
1852 struct expander_device *ex = &dev->ex_dev;
1853 struct domain_device *child, *n;
1854
1855 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1856 set_bit(SAS_DEV_GONE, &child->state);
1857 if (child->dev_type == EDGE_DEV ||
1858 child->dev_type == FANOUT_DEV)
1859 sas_unregister_ex_tree(port, child);
1860 else
1861 sas_unregister_dev(port, child);
1862 }
1863 sas_unregister_dev(port, dev);
1864}
1865
1866static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1867 int phy_id, bool last)
1868{
1869 struct expander_device *ex_dev = &parent->ex_dev;
1870 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1871 struct domain_device *child, *n, *found = NULL;
1872 if (last) {
1873 list_for_each_entry_safe(child, n,
1874 &ex_dev->children, siblings) {
1875 if (SAS_ADDR(child->sas_addr) ==
1876 SAS_ADDR(phy->attached_sas_addr)) {
1877 set_bit(SAS_DEV_GONE, &child->state);
1878 if (child->dev_type == EDGE_DEV ||
1879 child->dev_type == FANOUT_DEV)
1880 sas_unregister_ex_tree(parent->port, child);
1881 else
1882 sas_unregister_dev(parent->port, child);
1883 found = child;
1884 break;
1885 }
1886 }
1887 sas_disable_routing(parent, phy->attached_sas_addr);
1888 }
1889 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1890 if (phy->port) {
1891 sas_port_delete_phy(phy->port, phy->phy);
1892 sas_device_set_phy(found, phy->port);
1893 if (phy->port->num_phys == 0)
1894 sas_port_delete(phy->port);
1895 phy->port = NULL;
1896 }
1897}
1898
1899static int sas_discover_bfs_by_root_level(struct domain_device *root,
1900 const int level)
1901{
1902 struct expander_device *ex_root = &root->ex_dev;
1903 struct domain_device *child;
1904 int res = 0;
1905
1906 list_for_each_entry(child, &ex_root->children, siblings) {
1907 if (child->dev_type == EDGE_DEV ||
1908 child->dev_type == FANOUT_DEV) {
1909 struct sas_expander_device *ex =
1910 rphy_to_expander_device(child->rphy);
1911
1912 if (level > ex->level)
1913 res = sas_discover_bfs_by_root_level(child,
1914 level);
1915 else if (level == ex->level)
1916 res = sas_ex_discover_devices(child, -1);
1917 }
1918 }
1919 return res;
1920}
1921
1922static int sas_discover_bfs_by_root(struct domain_device *dev)
1923{
1924 int res;
1925 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1926 int level = ex->level+1;
1927
1928 res = sas_ex_discover_devices(dev, -1);
1929 if (res)
1930 goto out;
1931 do {
1932 res = sas_discover_bfs_by_root_level(dev, level);
1933 mb();
1934 level += 1;
1935 } while (level <= dev->port->disc.max_level);
1936out:
1937 return res;
1938}
1939
1940static int sas_discover_new(struct domain_device *dev, int phy_id)
1941{
1942 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1943 struct domain_device *child;
1944 int res;
1945
1946 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1947 SAS_ADDR(dev->sas_addr), phy_id);
1948 res = sas_ex_phy_discover(dev, phy_id);
1949 if (res)
1950 return res;
1951
1952 if (sas_ex_join_wide_port(dev, phy_id))
1953 return 0;
1954
1955 res = sas_ex_discover_devices(dev, phy_id);
1956 if (res)
1957 return res;
1958 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1959 if (SAS_ADDR(child->sas_addr) ==
1960 SAS_ADDR(ex_phy->attached_sas_addr)) {
1961 if (child->dev_type == EDGE_DEV ||
1962 child->dev_type == FANOUT_DEV)
1963 res = sas_discover_bfs_by_root(child);
1964 break;
1965 }
1966 }
1967 return res;
1968}
1969
1970static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1971{
1972 if (old == new)
1973 return true;
1974
1975 /* treat device directed resets as flutter, if we went
1976 * SAS_END_DEV to SATA_PENDING the link needs recovery
1977 */
1978 if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1979 (old == SAS_END_DEV && new == SATA_PENDING))
1980 return true;
1981
1982 return false;
1983}
1984
1985static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1986{
1987 struct expander_device *ex = &dev->ex_dev;
1988 struct ex_phy *phy = &ex->ex_phy[phy_id];
1989 enum sas_dev_type type = NO_DEVICE;
1990 u8 sas_addr[8];
1991 int res;
1992
1993 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1994 switch (res) {
1995 case SMP_RESP_NO_PHY:
1996 phy->phy_state = PHY_NOT_PRESENT;
1997 sas_unregister_devs_sas_addr(dev, phy_id, last);
1998 return res;
1999 case SMP_RESP_PHY_VACANT:
2000 phy->phy_state = PHY_VACANT;
2001 sas_unregister_devs_sas_addr(dev, phy_id, last);
2002 return res;
2003 case SMP_RESP_FUNC_ACC:
2004 break;
2005 }
2006
2007 if (SAS_ADDR(sas_addr) == 0) {
2008 phy->phy_state = PHY_EMPTY;
2009 sas_unregister_devs_sas_addr(dev, phy_id, last);
2010 return res;
2011 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2012 dev_type_flutter(type, phy->attached_dev_type)) {
2013 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2014 char *action = "";
2015
2016 sas_ex_phy_discover(dev, phy_id);
2017
2018 if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2019 action = ", needs recovery";
2020 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2021 SAS_ADDR(dev->sas_addr), phy_id, action);
2022 return res;
2023 }
2024
2025 /* delete the old link */
2026 if (SAS_ADDR(phy->attached_sas_addr) &&
2027 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2028 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2029 SAS_ADDR(dev->sas_addr), phy_id,
2030 SAS_ADDR(phy->attached_sas_addr));
2031 sas_unregister_devs_sas_addr(dev, phy_id, last);
2032 }
2033
2034 return sas_discover_new(dev, phy_id);
2035}
2036
2037/**
2038 * sas_rediscover - revalidate the domain.
2039 * @dev:domain device to be detect.
2040 * @phy_id: the phy id will be detected.
2041 *
2042 * NOTE: this process _must_ quit (return) as soon as any connection
2043 * errors are encountered. Connection recovery is done elsewhere.
2044 * Discover process only interrogates devices in order to discover the
2045 * domain.For plugging out, we un-register the device only when it is
2046 * the last phy in the port, for other phys in this port, we just delete it
2047 * from the port.For inserting, we do discovery when it is the
2048 * first phy,for other phys in this port, we add it to the port to
2049 * forming the wide-port.
2050 */
2051static int sas_rediscover(struct domain_device *dev, const int phy_id)
2052{
2053 struct expander_device *ex = &dev->ex_dev;
2054 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2055 int res = 0;
2056 int i;
2057 bool last = true; /* is this the last phy of the port */
2058
2059 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2060 SAS_ADDR(dev->sas_addr), phy_id);
2061
2062 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2063 for (i = 0; i < ex->num_phys; i++) {
2064 struct ex_phy *phy = &ex->ex_phy[i];
2065
2066 if (i == phy_id)
2067 continue;
2068 if (SAS_ADDR(phy->attached_sas_addr) ==
2069 SAS_ADDR(changed_phy->attached_sas_addr)) {
2070 SAS_DPRINTK("phy%d part of wide port with "
2071 "phy%d\n", phy_id, i);
2072 last = false;
2073 break;
2074 }
2075 }
2076 res = sas_rediscover_dev(dev, phy_id, last);
2077 } else
2078 res = sas_discover_new(dev, phy_id);
2079 return res;
2080}
2081
2082/**
2083 * sas_revalidate_domain -- revalidate the domain
2084 * @port: port to the domain of interest
2085 *
2086 * NOTE: this process _must_ quit (return) as soon as any connection
2087 * errors are encountered. Connection recovery is done elsewhere.
2088 * Discover process only interrogates devices in order to discover the
2089 * domain.
2090 */
2091int sas_ex_revalidate_domain(struct domain_device *port_dev)
2092{
2093 int res;
2094 struct domain_device *dev = NULL;
2095
2096 res = sas_find_bcast_dev(port_dev, &dev);
2097 while (res == 0 && dev) {
2098 struct expander_device *ex = &dev->ex_dev;
2099 int i = 0, phy_id;
2100
2101 do {
2102 phy_id = -1;
2103 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2104 if (phy_id == -1)
2105 break;
2106 res = sas_rediscover(dev, phy_id);
2107 i = phy_id + 1;
2108 } while (i < ex->num_phys);
2109
2110 dev = NULL;
2111 res = sas_find_bcast_dev(port_dev, &dev);
2112 }
2113 return res;
2114}
2115
2116int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2117 struct request *req)
2118{
2119 struct domain_device *dev;
2120 int ret, type;
2121 struct request *rsp = req->next_rq;
2122
2123 if (!rsp) {
2124 printk("%s: space for a smp response is missing\n",
2125 __func__);
2126 return -EINVAL;
2127 }
2128
2129 /* no rphy means no smp target support (ie aic94xx host) */
2130 if (!rphy)
2131 return sas_smp_host_handler(shost, req, rsp);
2132
2133 type = rphy->identify.device_type;
2134
2135 if (type != SAS_EDGE_EXPANDER_DEVICE &&
2136 type != SAS_FANOUT_EXPANDER_DEVICE) {
2137 printk("%s: can we send a smp request to a device?\n",
2138 __func__);
2139 return -EINVAL;
2140 }
2141
2142 dev = sas_find_dev_by_rphy(rphy);
2143 if (!dev) {
2144 printk("%s: fail to find a domain_device?\n", __func__);
2145 return -EINVAL;
2146 }
2147
2148 /* do we need to support multiple segments? */
2149 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2150 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2151 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2152 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2153 return -EINVAL;
2154 }
2155
2156 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2157 bio_data(rsp->bio), blk_rq_bytes(rsp));
2158 if (ret > 0) {
2159 /* positive number is the untransferred residual */
2160 rsp->resid_len = ret;
2161 req->resid_len = 0;
2162 ret = 0;
2163 } else if (ret == 0) {
2164 rsp->resid_len = 0;
2165 req->resid_len = 0;
2166 }
2167
2168 return ret;
2169}