Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
  28
  29#include "sas_internal.h"
  30
 
  31#include <scsi/scsi_transport.h>
  32#include <scsi/scsi_transport_sas.h>
  33#include "../scsi_sas_internal.h"
  34
  35static int sas_discover_expander(struct domain_device *dev);
  36static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  37static int sas_configure_phy(struct domain_device *dev, int phy_id,
  38			     u8 *sas_addr, int include);
  39static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  40
  41/* ---------- SMP task management ---------- */
  42
  43static void smp_task_timedout(unsigned long _task)
  44{
  45	struct sas_task *task = (void *) _task;
  46	unsigned long flags;
  47
  48	spin_lock_irqsave(&task->task_state_lock, flags);
  49	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  50		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  51	spin_unlock_irqrestore(&task->task_state_lock, flags);
  52
  53	complete(&task->completion);
  54}
  55
  56static void smp_task_done(struct sas_task *task)
  57{
  58	if (!del_timer(&task->timer))
  59		return;
  60	complete(&task->completion);
  61}
  62
  63/* Give it some long enough timeout. In seconds. */
  64#define SMP_TIMEOUT 10
  65
  66static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  67			    void *resp, int resp_size)
  68{
  69	int res, retry;
  70	struct sas_task *task = NULL;
  71	struct sas_internal *i =
  72		to_sas_internal(dev->port->ha->core.shost->transportt);
  73
 
  74	for (retry = 0; retry < 3; retry++) {
  75		task = sas_alloc_task(GFP_KERNEL);
  76		if (!task)
  77			return -ENOMEM;
 
  78
 
 
 
 
 
  79		task->dev = dev;
  80		task->task_proto = dev->tproto;
  81		sg_init_one(&task->smp_task.smp_req, req, req_size);
  82		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  83
  84		task->task_done = smp_task_done;
  85
  86		task->timer.data = (unsigned long) task;
  87		task->timer.function = smp_task_timedout;
  88		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  89		add_timer(&task->timer);
  90
  91		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
  92
  93		if (res) {
  94			del_timer(&task->timer);
  95			SAS_DPRINTK("executing SMP task failed:%d\n", res);
  96			goto ex_err;
  97		}
  98
  99		wait_for_completion(&task->completion);
 100		res = -ECOMM;
 101		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 102			SAS_DPRINTK("smp task timed out or aborted\n");
 103			i->dft->lldd_abort_task(task);
 104			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 105				SAS_DPRINTK("SMP task aborted and not done\n");
 106				goto ex_err;
 107			}
 108		}
 109		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 110		    task->task_status.stat == SAM_STAT_GOOD) {
 111			res = 0;
 112			break;
 113		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
 114		      task->task_status.stat == SAS_DATA_UNDERRUN) {
 
 115			/* no error, but return the number of bytes of
 116			 * underrun */
 117			res = task->task_status.residual;
 118			break;
 119		} if (task->task_status.resp == SAS_TASK_COMPLETE &&
 120		      task->task_status.stat == SAS_DATA_OVERRUN) {
 
 121			res = -EMSGSIZE;
 122			break;
 123		} else {
 
 
 
 
 124			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 125				    "status 0x%x\n", __func__,
 126				    SAS_ADDR(dev->sas_addr),
 127				    task->task_status.resp,
 128				    task->task_status.stat);
 129			sas_free_task(task);
 130			task = NULL;
 131		}
 132	}
 133ex_err:
 
 134	BUG_ON(retry == 3 && task != NULL);
 135	if (task != NULL) {
 136		sas_free_task(task);
 137	}
 138	return res;
 139}
 140
 141/* ---------- Allocations ---------- */
 142
 143static inline void *alloc_smp_req(int size)
 144{
 145	u8 *p = kzalloc(size, GFP_KERNEL);
 146	if (p)
 147		p[0] = SMP_REQUEST;
 148	return p;
 149}
 150
 151static inline void *alloc_smp_resp(int size)
 152{
 153	return kzalloc(size, GFP_KERNEL);
 154}
 155
 156/* ---------- Expander configuration ---------- */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 159			   void *disc_resp)
 160{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161	struct expander_device *ex = &dev->ex_dev;
 162	struct ex_phy *phy = &ex->ex_phy[phy_id];
 163	struct smp_resp *resp = disc_resp;
 164	struct discover_resp *dr = &resp->disc;
 165	struct sas_rphy *rphy = dev->rphy;
 166	int rediscover = (phy->phy != NULL);
 
 167
 168	if (!rediscover) {
 
 
 169		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 170
 171		/* FIXME: error_handling */
 172		BUG_ON(!phy->phy);
 173	}
 174
 175	switch (resp->result) {
 176	case SMP_RESP_PHY_VACANT:
 177		phy->phy_state = PHY_VACANT;
 178		break;
 179	default:
 180		phy->phy_state = PHY_NOT_PRESENT;
 181		break;
 182	case SMP_RESP_FUNC_ACC:
 183		phy->phy_state = PHY_EMPTY; /* do not know yet */
 184		break;
 185	}
 186
 
 
 
 
 
 
 
 
 187	phy->phy_id = phy_id;
 188	phy->attached_dev_type = dr->attached_dev_type;
 189	phy->linkrate = dr->linkrate;
 190	phy->attached_sata_host = dr->attached_sata_host;
 191	phy->attached_sata_dev  = dr->attached_sata_dev;
 192	phy->attached_sata_ps   = dr->attached_sata_ps;
 193	phy->attached_iproto = dr->iproto << 1;
 194	phy->attached_tproto = dr->tproto << 1;
 195	memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 
 
 
 
 
 
 
 196	phy->attached_phy_id = dr->attached_phy_id;
 197	phy->phy_change_count = dr->change_count;
 198	phy->routing_attr = dr->routing_attr;
 199	phy->virtual = dr->virtual;
 200	phy->last_da_index = -1;
 201
 
 
 202	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 203	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 
 
 204	phy->phy->identify.phy_identifier = phy_id;
 205	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 206	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 207	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 208	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 209	phy->phy->negotiated_linkrate = phy->linkrate;
 210
 211	if (!rediscover)
 212		if (sas_phy_add(phy->phy)) {
 213			sas_phy_free(phy->phy);
 214			return;
 215		}
 216
 217	SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 219		    phy->routing_attr == TABLE_ROUTING ? 'T' :
 220		    phy->routing_attr == DIRECT_ROUTING ? 'D' :
 221		    phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
 222		    SAS_ADDR(phy->attached_sas_addr));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 224	return;
 225}
 226
 227#define DISCOVER_REQ_SIZE  16
 228#define DISCOVER_RESP_SIZE 56
 229
 230static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 231				      u8 *disc_resp, int single)
 232{
 233	int i, res;
 
 234
 235	disc_req[9] = single;
 236	for (i = 1 ; i < 3; i++) {
 237		struct discover_resp *dr;
 238
 239		res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 240				       disc_resp, DISCOVER_RESP_SIZE);
 241		if (res)
 242			return res;
 243		/* This is detecting a failure to transmit initial
 244		 * dev to host FIS as described in section G.5 of
 245		 * sas-2 r 04b */
 246		dr = &((struct smp_resp *)disc_resp)->disc;
 247		if (memcmp(dev->sas_addr, dr->attached_sas_addr,
 248			  SAS_ADDR_SIZE) == 0) {
 249			sas_printk("Found loopback topology, just ignore it!\n");
 250			return 0;
 251		}
 252		if (!(dr->attached_dev_type == 0 &&
 253		      dr->attached_sata_dev))
 254			break;
 255		/* In order to generate the dev to host FIS, we
 256		 * send a link reset to the expander port */
 257		sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
 258		/* Wait for the reset to trigger the negotiation */
 259		msleep(500);
 260	}
 261	sas_set_ex_phy(dev, single, disc_resp);
 262	return 0;
 263}
 264
 265static int sas_ex_phy_discover(struct domain_device *dev, int single)
 266{
 267	struct expander_device *ex = &dev->ex_dev;
 268	int  res = 0;
 269	u8   *disc_req;
 270	u8   *disc_resp;
 271
 272	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 273	if (!disc_req)
 274		return -ENOMEM;
 275
 276	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
 277	if (!disc_resp) {
 278		kfree(disc_req);
 279		return -ENOMEM;
 280	}
 281
 282	disc_req[1] = SMP_DISCOVER;
 283
 284	if (0 <= single && single < ex->num_phys) {
 285		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 286	} else {
 287		int i;
 288
 289		for (i = 0; i < ex->num_phys; i++) {
 290			res = sas_ex_phy_discover_helper(dev, disc_req,
 291							 disc_resp, i);
 292			if (res)
 293				goto out_err;
 294		}
 295	}
 296out_err:
 297	kfree(disc_resp);
 298	kfree(disc_req);
 299	return res;
 300}
 301
 302static int sas_expander_discover(struct domain_device *dev)
 303{
 304	struct expander_device *ex = &dev->ex_dev;
 305	int res = -ENOMEM;
 306
 307	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 308	if (!ex->ex_phy)
 309		return -ENOMEM;
 310
 311	res = sas_ex_phy_discover(dev, -1);
 312	if (res)
 313		goto out_err;
 314
 315	return 0;
 316 out_err:
 317	kfree(ex->ex_phy);
 318	ex->ex_phy = NULL;
 319	return res;
 320}
 321
 322#define MAX_EXPANDER_PHYS 128
 323
 324static void ex_assign_report_general(struct domain_device *dev,
 325					    struct smp_resp *resp)
 326{
 327	struct report_general_resp *rg = &resp->rg;
 328
 329	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 330	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 331	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 
 332	dev->ex_dev.conf_route_table = rg->conf_route_table;
 333	dev->ex_dev.configuring = rg->configuring;
 334	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 335}
 336
 337#define RG_REQ_SIZE   8
 338#define RG_RESP_SIZE 32
 339
 340static int sas_ex_general(struct domain_device *dev)
 341{
 342	u8 *rg_req;
 343	struct smp_resp *rg_resp;
 344	int res;
 345	int i;
 346
 347	rg_req = alloc_smp_req(RG_REQ_SIZE);
 348	if (!rg_req)
 349		return -ENOMEM;
 350
 351	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 352	if (!rg_resp) {
 353		kfree(rg_req);
 354		return -ENOMEM;
 355	}
 356
 357	rg_req[1] = SMP_REPORT_GENERAL;
 358
 359	for (i = 0; i < 5; i++) {
 360		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 361				       RG_RESP_SIZE);
 362
 363		if (res) {
 364			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 365				    SAS_ADDR(dev->sas_addr), res);
 366			goto out;
 367		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 368			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 369				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 370			res = rg_resp->result;
 371			goto out;
 372		}
 373
 374		ex_assign_report_general(dev, rg_resp);
 375
 376		if (dev->ex_dev.configuring) {
 377			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 378				    SAS_ADDR(dev->sas_addr));
 379			schedule_timeout_interruptible(5*HZ);
 380		} else
 381			break;
 382	}
 383out:
 384	kfree(rg_req);
 385	kfree(rg_resp);
 386	return res;
 387}
 388
 389static void ex_assign_manuf_info(struct domain_device *dev, void
 390					*_mi_resp)
 391{
 392	u8 *mi_resp = _mi_resp;
 393	struct sas_rphy *rphy = dev->rphy;
 394	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 395
 396	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 397	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 398	memcpy(edev->product_rev, mi_resp + 36,
 399	       SAS_EXPANDER_PRODUCT_REV_LEN);
 400
 401	if (mi_resp[8] & 1) {
 402		memcpy(edev->component_vendor_id, mi_resp + 40,
 403		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 404		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 405		edev->component_revision_id = mi_resp[50];
 406	}
 407}
 408
 409#define MI_REQ_SIZE   8
 410#define MI_RESP_SIZE 64
 411
 412static int sas_ex_manuf_info(struct domain_device *dev)
 413{
 414	u8 *mi_req;
 415	u8 *mi_resp;
 416	int res;
 417
 418	mi_req = alloc_smp_req(MI_REQ_SIZE);
 419	if (!mi_req)
 420		return -ENOMEM;
 421
 422	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 423	if (!mi_resp) {
 424		kfree(mi_req);
 425		return -ENOMEM;
 426	}
 427
 428	mi_req[1] = SMP_REPORT_MANUF_INFO;
 429
 430	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 431	if (res) {
 432		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 433			    SAS_ADDR(dev->sas_addr), res);
 434		goto out;
 435	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 436		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 437			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 438		goto out;
 439	}
 440
 441	ex_assign_manuf_info(dev, mi_resp);
 442out:
 443	kfree(mi_req);
 444	kfree(mi_resp);
 445	return res;
 446}
 447
 448#define PC_REQ_SIZE  44
 449#define PC_RESP_SIZE 8
 450
 451int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 452			enum phy_func phy_func,
 453			struct sas_phy_linkrates *rates)
 454{
 455	u8 *pc_req;
 456	u8 *pc_resp;
 457	int res;
 458
 459	pc_req = alloc_smp_req(PC_REQ_SIZE);
 460	if (!pc_req)
 461		return -ENOMEM;
 462
 463	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 464	if (!pc_resp) {
 465		kfree(pc_req);
 466		return -ENOMEM;
 467	}
 468
 469	pc_req[1] = SMP_PHY_CONTROL;
 470	pc_req[9] = phy_id;
 471	pc_req[10]= phy_func;
 472	if (rates) {
 473		pc_req[32] = rates->minimum_linkrate << 4;
 474		pc_req[33] = rates->maximum_linkrate << 4;
 475	}
 476
 477	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 478
 479	kfree(pc_resp);
 480	kfree(pc_req);
 481	return res;
 482}
 483
 484static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 485{
 486	struct expander_device *ex = &dev->ex_dev;
 487	struct ex_phy *phy = &ex->ex_phy[phy_id];
 488
 489	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 490	phy->linkrate = SAS_PHY_DISABLED;
 491}
 492
 493static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 494{
 495	struct expander_device *ex = &dev->ex_dev;
 496	int i;
 497
 498	for (i = 0; i < ex->num_phys; i++) {
 499		struct ex_phy *phy = &ex->ex_phy[i];
 500
 501		if (phy->phy_state == PHY_VACANT ||
 502		    phy->phy_state == PHY_NOT_PRESENT)
 503			continue;
 504
 505		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 506			sas_ex_disable_phy(dev, i);
 507	}
 508}
 509
 510static int sas_dev_present_in_domain(struct asd_sas_port *port,
 511					    u8 *sas_addr)
 512{
 513	struct domain_device *dev;
 514
 515	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 516		return 1;
 517	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 518		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 519			return 1;
 520	}
 521	return 0;
 522}
 523
 524#define RPEL_REQ_SIZE	16
 525#define RPEL_RESP_SIZE	32
 526int sas_smp_get_phy_events(struct sas_phy *phy)
 527{
 528	int res;
 529	u8 *req;
 530	u8 *resp;
 531	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 532	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 533
 534	req = alloc_smp_req(RPEL_REQ_SIZE);
 535	if (!req)
 536		return -ENOMEM;
 537
 538	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 539	if (!resp) {
 540		kfree(req);
 541		return -ENOMEM;
 542	}
 543
 544	req[1] = SMP_REPORT_PHY_ERR_LOG;
 545	req[9] = phy->number;
 546
 547	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 548			            resp, RPEL_RESP_SIZE);
 549
 550	if (!res)
 551		goto out;
 552
 553	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 554	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 555	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 556	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 557
 558 out:
 559	kfree(resp);
 560	return res;
 561
 562}
 563
 564#ifdef CONFIG_SCSI_SAS_ATA
 565
 566#define RPS_REQ_SIZE  16
 567#define RPS_RESP_SIZE 60
 568
 569static int sas_get_report_phy_sata(struct domain_device *dev,
 570					  int phy_id,
 571					  struct smp_resp *rps_resp)
 572{
 573	int res;
 574	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 575	u8 *resp = (u8 *)rps_resp;
 576
 577	if (!rps_req)
 578		return -ENOMEM;
 579
 580	rps_req[1] = SMP_REPORT_PHY_SATA;
 581	rps_req[9] = phy_id;
 582
 583	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 584			            rps_resp, RPS_RESP_SIZE);
 585
 586	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 587	 * standards cockup here.  sas-2 explicitly specifies the FIS
 588	 * should be encoded so that FIS type is in resp[24].
 589	 * However, some expanders endian reverse this.  Undo the
 590	 * reversal here */
 591	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 592		int i;
 593
 594		for (i = 0; i < 5; i++) {
 595			int j = 24 + (i*4);
 596			u8 a, b;
 597			a = resp[j + 0];
 598			b = resp[j + 1];
 599			resp[j + 0] = resp[j + 3];
 600			resp[j + 1] = resp[j + 2];
 601			resp[j + 2] = b;
 602			resp[j + 3] = a;
 603		}
 604	}
 605
 606	kfree(rps_req);
 607	return res;
 608}
 609#endif
 610
 611static void sas_ex_get_linkrate(struct domain_device *parent,
 612				       struct domain_device *child,
 613				       struct ex_phy *parent_phy)
 614{
 615	struct expander_device *parent_ex = &parent->ex_dev;
 616	struct sas_port *port;
 617	int i;
 618
 619	child->pathways = 0;
 620
 621	port = parent_phy->port;
 622
 623	for (i = 0; i < parent_ex->num_phys; i++) {
 624		struct ex_phy *phy = &parent_ex->ex_phy[i];
 625
 626		if (phy->phy_state == PHY_VACANT ||
 627		    phy->phy_state == PHY_NOT_PRESENT)
 628			continue;
 629
 630		if (SAS_ADDR(phy->attached_sas_addr) ==
 631		    SAS_ADDR(child->sas_addr)) {
 632
 633			child->min_linkrate = min(parent->min_linkrate,
 634						  phy->linkrate);
 635			child->max_linkrate = max(parent->max_linkrate,
 636						  phy->linkrate);
 637			child->pathways++;
 638			sas_port_add_phy(port, phy->phy);
 639		}
 640	}
 641	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 642	child->pathways = min(child->pathways, parent->pathways);
 643}
 644
 645static struct domain_device *sas_ex_discover_end_dev(
 646	struct domain_device *parent, int phy_id)
 647{
 648	struct expander_device *parent_ex = &parent->ex_dev;
 649	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 650	struct domain_device *child = NULL;
 651	struct sas_rphy *rphy;
 652	int res;
 653
 654	if (phy->attached_sata_host || phy->attached_sata_ps)
 655		return NULL;
 656
 657	child = kzalloc(sizeof(*child), GFP_KERNEL);
 658	if (!child)
 659		return NULL;
 660
 
 661	child->parent = parent;
 662	child->port   = parent->port;
 663	child->iproto = phy->attached_iproto;
 664	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 665	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 666	if (!phy->port) {
 667		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 668		if (unlikely(!phy->port))
 669			goto out_err;
 670		if (unlikely(sas_port_add(phy->port) != 0)) {
 671			sas_port_free(phy->port);
 672			goto out_err;
 673		}
 674	}
 675	sas_ex_get_linkrate(parent, child, phy);
 
 676
 677#ifdef CONFIG_SCSI_SAS_ATA
 678	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 679		child->dev_type = SATA_DEV;
 680		if (phy->attached_tproto & SAS_PROTOCOL_STP)
 681			child->tproto = phy->attached_tproto;
 682		if (phy->attached_sata_dev)
 683			child->tproto |= SATA_DEV;
 684		res = sas_get_report_phy_sata(parent, phy_id,
 685					      &child->sata_dev.rps_resp);
 686		if (res) {
 687			SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
 688				    "0x%x\n", SAS_ADDR(parent->sas_addr),
 689				    phy_id, res);
 690			goto out_free;
 691		}
 692		memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
 693		       sizeof(struct dev_to_host_fis));
 694
 
 
 
 
 695		rphy = sas_end_device_alloc(phy->port);
 696		if (unlikely(!rphy))
 697			goto out_free;
 698
 699		sas_init_dev(child);
 700
 701		child->rphy = rphy;
 
 702
 703		spin_lock_irq(&parent->port->dev_list_lock);
 704		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 705		spin_unlock_irq(&parent->port->dev_list_lock);
 706
 707		res = sas_discover_sata(child);
 708		if (res) {
 709			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 710				    "%016llx:0x%x returned 0x%x\n",
 711				    SAS_ADDR(child->sas_addr),
 712				    SAS_ADDR(parent->sas_addr), phy_id, res);
 713			goto out_list_del;
 714		}
 715	} else
 716#endif
 717	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 718		child->dev_type = SAS_END_DEV;
 719		rphy = sas_end_device_alloc(phy->port);
 720		/* FIXME: error handling */
 721		if (unlikely(!rphy))
 722			goto out_free;
 723		child->tproto = phy->attached_tproto;
 724		sas_init_dev(child);
 725
 726		child->rphy = rphy;
 
 727		sas_fill_in_rphy(child, rphy);
 728
 729		spin_lock_irq(&parent->port->dev_list_lock);
 730		list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 731		spin_unlock_irq(&parent->port->dev_list_lock);
 732
 733		res = sas_discover_end_dev(child);
 734		if (res) {
 735			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 736				    "at %016llx:0x%x returned 0x%x\n",
 737				    SAS_ADDR(child->sas_addr),
 738				    SAS_ADDR(parent->sas_addr), phy_id, res);
 739			goto out_list_del;
 740		}
 741	} else {
 742		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 743			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 744			    phy_id);
 745		goto out_free;
 746	}
 747
 748	list_add_tail(&child->siblings, &parent_ex->children);
 749	return child;
 750
 751 out_list_del:
 752	sas_rphy_free(child->rphy);
 753	child->rphy = NULL;
 
 754	list_del(&child->dev_list_node);
 
 755 out_free:
 756	sas_port_delete(phy->port);
 757 out_err:
 758	phy->port = NULL;
 759	kfree(child);
 760	return NULL;
 761}
 762
 763/* See if this phy is part of a wide port */
 764static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 765{
 766	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 767	int i;
 768
 769	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 770		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 771
 772		if (ephy == phy)
 773			continue;
 774
 775		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 776			    SAS_ADDR_SIZE) && ephy->port) {
 777			sas_port_add_phy(ephy->port, phy->phy);
 778			phy->port = ephy->port;
 779			phy->phy_state = PHY_DEVICE_DISCOVERED;
 780			return 0;
 781		}
 782	}
 783
 784	return -ENODEV;
 785}
 786
 787static struct domain_device *sas_ex_discover_expander(
 788	struct domain_device *parent, int phy_id)
 789{
 790	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 791	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 792	struct domain_device *child = NULL;
 793	struct sas_rphy *rphy;
 794	struct sas_expander_device *edev;
 795	struct asd_sas_port *port;
 796	int res;
 797
 798	if (phy->routing_attr == DIRECT_ROUTING) {
 799		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 800			    "allowed\n",
 801			    SAS_ADDR(parent->sas_addr), phy_id,
 802			    SAS_ADDR(phy->attached_sas_addr),
 803			    phy->attached_phy_id);
 804		return NULL;
 805	}
 806	child = kzalloc(sizeof(*child), GFP_KERNEL);
 807	if (!child)
 808		return NULL;
 809
 810	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 811	/* FIXME: better error handling */
 812	BUG_ON(sas_port_add(phy->port) != 0);
 813
 814
 815	switch (phy->attached_dev_type) {
 816	case EDGE_DEV:
 817		rphy = sas_expander_alloc(phy->port,
 818					  SAS_EDGE_EXPANDER_DEVICE);
 819		break;
 820	case FANOUT_DEV:
 821		rphy = sas_expander_alloc(phy->port,
 822					  SAS_FANOUT_EXPANDER_DEVICE);
 823		break;
 824	default:
 825		rphy = NULL;	/* shut gcc up */
 826		BUG();
 827	}
 828	port = parent->port;
 829	child->rphy = rphy;
 
 830	edev = rphy_to_expander_device(rphy);
 831	child->dev_type = phy->attached_dev_type;
 
 832	child->parent = parent;
 833	child->port = port;
 834	child->iproto = phy->attached_iproto;
 835	child->tproto = phy->attached_tproto;
 836	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 837	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 838	sas_ex_get_linkrate(parent, child, phy);
 839	edev->level = parent_ex->level + 1;
 840	parent->port->disc.max_level = max(parent->port->disc.max_level,
 841					   edev->level);
 842	sas_init_dev(child);
 843	sas_fill_in_rphy(child, rphy);
 844	sas_rphy_add(rphy);
 845
 846	spin_lock_irq(&parent->port->dev_list_lock);
 847	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 848	spin_unlock_irq(&parent->port->dev_list_lock);
 849
 850	res = sas_discover_expander(child);
 851	if (res) {
 
 852		spin_lock_irq(&parent->port->dev_list_lock);
 853		list_del(&child->dev_list_node);
 854		spin_unlock_irq(&parent->port->dev_list_lock);
 855		kfree(child);
 856		return NULL;
 857	}
 858	list_add_tail(&child->siblings, &parent->ex_dev.children);
 859	return child;
 860}
 861
 862static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 863{
 864	struct expander_device *ex = &dev->ex_dev;
 865	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 866	struct domain_device *child = NULL;
 867	int res = 0;
 868
 869	/* Phy state */
 870	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 871		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 872			res = sas_ex_phy_discover(dev, phy_id);
 873		if (res)
 874			return res;
 875	}
 876
 877	/* Parent and domain coherency */
 878	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 879			     SAS_ADDR(dev->port->sas_addr))) {
 880		sas_add_parent_port(dev, phy_id);
 881		return 0;
 882	}
 883	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 884			    SAS_ADDR(dev->parent->sas_addr))) {
 885		sas_add_parent_port(dev, phy_id);
 886		if (ex_phy->routing_attr == TABLE_ROUTING)
 887			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 888		return 0;
 889	}
 890
 891	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 892		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 893
 894	if (ex_phy->attached_dev_type == NO_DEVICE) {
 895		if (ex_phy->routing_attr == DIRECT_ROUTING) {
 896			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 897			sas_configure_routing(dev, ex_phy->attached_sas_addr);
 898		}
 899		return 0;
 900	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
 901		return 0;
 902
 903	if (ex_phy->attached_dev_type != SAS_END_DEV &&
 904	    ex_phy->attached_dev_type != FANOUT_DEV &&
 905	    ex_phy->attached_dev_type != EDGE_DEV) {
 
 906		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
 907			    "phy 0x%x\n", ex_phy->attached_dev_type,
 908			    SAS_ADDR(dev->sas_addr),
 909			    phy_id);
 910		return 0;
 911	}
 912
 913	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
 914	if (res) {
 915		SAS_DPRINTK("configure routing for dev %016llx "
 916			    "reported 0x%x. Forgotten\n",
 917			    SAS_ADDR(ex_phy->attached_sas_addr), res);
 918		sas_disable_routing(dev, ex_phy->attached_sas_addr);
 919		return res;
 920	}
 921
 922	res = sas_ex_join_wide_port(dev, phy_id);
 923	if (!res) {
 924		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 925			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
 926		return res;
 927	}
 928
 929	switch (ex_phy->attached_dev_type) {
 930	case SAS_END_DEV:
 
 931		child = sas_ex_discover_end_dev(dev, phy_id);
 932		break;
 933	case FANOUT_DEV:
 934		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
 935			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
 936				    "attached to ex %016llx phy 0x%x\n",
 937				    SAS_ADDR(ex_phy->attached_sas_addr),
 938				    ex_phy->attached_phy_id,
 939				    SAS_ADDR(dev->sas_addr),
 940				    phy_id);
 941			sas_ex_disable_phy(dev, phy_id);
 942			break;
 943		} else
 944			memcpy(dev->port->disc.fanout_sas_addr,
 945			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
 946		/* fallthrough */
 947	case EDGE_DEV:
 948		child = sas_ex_discover_expander(dev, phy_id);
 949		break;
 950	default:
 951		break;
 952	}
 953
 954	if (child) {
 955		int i;
 956
 957		for (i = 0; i < ex->num_phys; i++) {
 958			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
 959			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
 960				continue;
 961			/*
 962			 * Due to races, the phy might not get added to the
 963			 * wide port, so we add the phy to the wide port here.
 964			 */
 965			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
 966			    SAS_ADDR(child->sas_addr)) {
 967				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
 968				res = sas_ex_join_wide_port(dev, i);
 969				if (!res)
 970					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
 971						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
 972
 973			}
 974		}
 975	}
 976
 977	return res;
 978}
 979
 980static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
 981{
 982	struct expander_device *ex = &dev->ex_dev;
 983	int i;
 984
 985	for (i = 0; i < ex->num_phys; i++) {
 986		struct ex_phy *phy = &ex->ex_phy[i];
 987
 988		if (phy->phy_state == PHY_VACANT ||
 989		    phy->phy_state == PHY_NOT_PRESENT)
 990			continue;
 991
 992		if ((phy->attached_dev_type == EDGE_DEV ||
 993		     phy->attached_dev_type == FANOUT_DEV) &&
 994		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
 995
 996			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
 997
 998			return 1;
 999		}
1000	}
1001	return 0;
1002}
1003
1004static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1005{
1006	struct expander_device *ex = &dev->ex_dev;
1007	struct domain_device *child;
1008	u8 sub_addr[8] = {0, };
1009
1010	list_for_each_entry(child, &ex->children, siblings) {
1011		if (child->dev_type != EDGE_DEV &&
1012		    child->dev_type != FANOUT_DEV)
1013			continue;
1014		if (sub_addr[0] == 0) {
1015			sas_find_sub_addr(child, sub_addr);
1016			continue;
1017		} else {
1018			u8 s2[8];
1019
1020			if (sas_find_sub_addr(child, s2) &&
1021			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1022
1023				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1024					    "diverges from subtractive "
1025					    "boundary %016llx\n",
1026					    SAS_ADDR(dev->sas_addr),
1027					    SAS_ADDR(child->sas_addr),
1028					    SAS_ADDR(s2),
1029					    SAS_ADDR(sub_addr));
1030
1031				sas_ex_disable_port(child, s2);
1032			}
1033		}
1034	}
1035	return 0;
1036}
1037/**
1038 * sas_ex_discover_devices -- discover devices attached to this expander
1039 * dev: pointer to the expander domain device
1040 * single: if you want to do a single phy, else set to -1;
1041 *
1042 * Configure this expander for use with its devices and register the
1043 * devices of this expander.
1044 */
1045static int sas_ex_discover_devices(struct domain_device *dev, int single)
1046{
1047	struct expander_device *ex = &dev->ex_dev;
1048	int i = 0, end = ex->num_phys;
1049	int res = 0;
1050
1051	if (0 <= single && single < end) {
1052		i = single;
1053		end = i+1;
1054	}
1055
1056	for ( ; i < end; i++) {
1057		struct ex_phy *ex_phy = &ex->ex_phy[i];
1058
1059		if (ex_phy->phy_state == PHY_VACANT ||
1060		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1061		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1062			continue;
1063
1064		switch (ex_phy->linkrate) {
1065		case SAS_PHY_DISABLED:
1066		case SAS_PHY_RESET_PROBLEM:
1067		case SAS_SATA_PORT_SELECTOR:
1068			continue;
1069		default:
1070			res = sas_ex_discover_dev(dev, i);
1071			if (res)
1072				break;
1073			continue;
1074		}
1075	}
1076
1077	if (!res)
1078		sas_check_level_subtractive_boundary(dev);
1079
1080	return res;
1081}
1082
1083static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1084{
1085	struct expander_device *ex = &dev->ex_dev;
1086	int i;
1087	u8  *sub_sas_addr = NULL;
1088
1089	if (dev->dev_type != EDGE_DEV)
1090		return 0;
1091
1092	for (i = 0; i < ex->num_phys; i++) {
1093		struct ex_phy *phy = &ex->ex_phy[i];
1094
1095		if (phy->phy_state == PHY_VACANT ||
1096		    phy->phy_state == PHY_NOT_PRESENT)
1097			continue;
1098
1099		if ((phy->attached_dev_type == FANOUT_DEV ||
1100		     phy->attached_dev_type == EDGE_DEV) &&
1101		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1102
1103			if (!sub_sas_addr)
1104				sub_sas_addr = &phy->attached_sas_addr[0];
1105			else if (SAS_ADDR(sub_sas_addr) !=
1106				 SAS_ADDR(phy->attached_sas_addr)) {
1107
1108				SAS_DPRINTK("ex %016llx phy 0x%x "
1109					    "diverges(%016llx) on subtractive "
1110					    "boundary(%016llx). Disabled\n",
1111					    SAS_ADDR(dev->sas_addr), i,
1112					    SAS_ADDR(phy->attached_sas_addr),
1113					    SAS_ADDR(sub_sas_addr));
1114				sas_ex_disable_phy(dev, i);
1115			}
1116		}
1117	}
1118	return 0;
1119}
1120
1121static void sas_print_parent_topology_bug(struct domain_device *child,
1122						 struct ex_phy *parent_phy,
1123						 struct ex_phy *child_phy)
1124{
1125	static const char ra_char[] = {
1126		[DIRECT_ROUTING] = 'D',
1127		[SUBTRACTIVE_ROUTING] = 'S',
1128		[TABLE_ROUTING] = 'T',
1129	};
1130	static const char *ex_type[] = {
1131		[EDGE_DEV] = "edge",
1132		[FANOUT_DEV] = "fanout",
1133	};
1134	struct domain_device *parent = child->parent;
1135
1136	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1137		   "has %c:%c routing link!\n",
1138
1139		   ex_type[parent->dev_type],
1140		   SAS_ADDR(parent->sas_addr),
1141		   parent_phy->phy_id,
1142
1143		   ex_type[child->dev_type],
1144		   SAS_ADDR(child->sas_addr),
1145		   child_phy->phy_id,
1146
1147		   ra_char[parent_phy->routing_attr],
1148		   ra_char[child_phy->routing_attr]);
1149}
1150
1151static int sas_check_eeds(struct domain_device *child,
1152				 struct ex_phy *parent_phy,
1153				 struct ex_phy *child_phy)
1154{
1155	int res = 0;
1156	struct domain_device *parent = child->parent;
1157
1158	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1159		res = -ENODEV;
1160		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1161			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1162			    SAS_ADDR(parent->sas_addr),
1163			    parent_phy->phy_id,
1164			    SAS_ADDR(child->sas_addr),
1165			    child_phy->phy_id,
1166			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1167	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1168		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1169		       SAS_ADDR_SIZE);
1170		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1171		       SAS_ADDR_SIZE);
1172	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1173		    SAS_ADDR(parent->sas_addr)) ||
1174		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1175		    SAS_ADDR(child->sas_addr)))
1176		   &&
1177		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1178		     SAS_ADDR(parent->sas_addr)) ||
1179		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1180		     SAS_ADDR(child->sas_addr))))
1181		;
1182	else {
1183		res = -ENODEV;
1184		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1185			    "phy 0x%x link forms a third EEDS!\n",
1186			    SAS_ADDR(parent->sas_addr),
1187			    parent_phy->phy_id,
1188			    SAS_ADDR(child->sas_addr),
1189			    child_phy->phy_id);
1190	}
1191
1192	return res;
1193}
1194
1195/* Here we spill over 80 columns.  It is intentional.
1196 */
1197static int sas_check_parent_topology(struct domain_device *child)
1198{
1199	struct expander_device *child_ex = &child->ex_dev;
1200	struct expander_device *parent_ex;
1201	int i;
1202	int res = 0;
1203
1204	if (!child->parent)
1205		return 0;
1206
1207	if (child->parent->dev_type != EDGE_DEV &&
1208	    child->parent->dev_type != FANOUT_DEV)
1209		return 0;
1210
1211	parent_ex = &child->parent->ex_dev;
1212
1213	for (i = 0; i < parent_ex->num_phys; i++) {
1214		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1215		struct ex_phy *child_phy;
1216
1217		if (parent_phy->phy_state == PHY_VACANT ||
1218		    parent_phy->phy_state == PHY_NOT_PRESENT)
1219			continue;
1220
1221		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1222			continue;
1223
1224		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1225
1226		switch (child->parent->dev_type) {
1227		case EDGE_DEV:
1228			if (child->dev_type == FANOUT_DEV) {
1229				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1230				    child_phy->routing_attr != TABLE_ROUTING) {
1231					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1232					res = -ENODEV;
1233				}
1234			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1235				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1236					res = sas_check_eeds(child, parent_phy, child_phy);
1237				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1238					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1239					res = -ENODEV;
1240				}
1241			} else if (parent_phy->routing_attr == TABLE_ROUTING &&
1242				   child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1243				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1244				res = -ENODEV;
 
 
 
 
 
1245			}
1246			break;
1247		case FANOUT_DEV:
1248			if (parent_phy->routing_attr != TABLE_ROUTING ||
1249			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1250				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1251				res = -ENODEV;
1252			}
1253			break;
1254		default:
1255			break;
1256		}
1257	}
1258
1259	return res;
1260}
1261
1262#define RRI_REQ_SIZE  16
1263#define RRI_RESP_SIZE 44
1264
1265static int sas_configure_present(struct domain_device *dev, int phy_id,
1266				 u8 *sas_addr, int *index, int *present)
1267{
1268	int i, res = 0;
1269	struct expander_device *ex = &dev->ex_dev;
1270	struct ex_phy *phy = &ex->ex_phy[phy_id];
1271	u8 *rri_req;
1272	u8 *rri_resp;
1273
1274	*present = 0;
1275	*index = 0;
1276
1277	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1278	if (!rri_req)
1279		return -ENOMEM;
1280
1281	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1282	if (!rri_resp) {
1283		kfree(rri_req);
1284		return -ENOMEM;
1285	}
1286
1287	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1288	rri_req[9] = phy_id;
1289
1290	for (i = 0; i < ex->max_route_indexes ; i++) {
1291		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1292		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1293				       RRI_RESP_SIZE);
1294		if (res)
1295			goto out;
1296		res = rri_resp[2];
1297		if (res == SMP_RESP_NO_INDEX) {
1298			SAS_DPRINTK("overflow of indexes: dev %016llx "
1299				    "phy 0x%x index 0x%x\n",
1300				    SAS_ADDR(dev->sas_addr), phy_id, i);
1301			goto out;
1302		} else if (res != SMP_RESP_FUNC_ACC) {
1303			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1304				    "result 0x%x\n", __func__,
1305				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1306			goto out;
1307		}
1308		if (SAS_ADDR(sas_addr) != 0) {
1309			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1310				*index = i;
1311				if ((rri_resp[12] & 0x80) == 0x80)
1312					*present = 0;
1313				else
1314					*present = 1;
1315				goto out;
1316			} else if (SAS_ADDR(rri_resp+16) == 0) {
1317				*index = i;
1318				*present = 0;
1319				goto out;
1320			}
1321		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1322			   phy->last_da_index < i) {
1323			phy->last_da_index = i;
1324			*index = i;
1325			*present = 0;
1326			goto out;
1327		}
1328	}
1329	res = -1;
1330out:
1331	kfree(rri_req);
1332	kfree(rri_resp);
1333	return res;
1334}
1335
1336#define CRI_REQ_SIZE  44
1337#define CRI_RESP_SIZE  8
1338
1339static int sas_configure_set(struct domain_device *dev, int phy_id,
1340			     u8 *sas_addr, int index, int include)
1341{
1342	int res;
1343	u8 *cri_req;
1344	u8 *cri_resp;
1345
1346	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1347	if (!cri_req)
1348		return -ENOMEM;
1349
1350	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1351	if (!cri_resp) {
1352		kfree(cri_req);
1353		return -ENOMEM;
1354	}
1355
1356	cri_req[1] = SMP_CONF_ROUTE_INFO;
1357	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1358	cri_req[9] = phy_id;
1359	if (SAS_ADDR(sas_addr) == 0 || !include)
1360		cri_req[12] |= 0x80;
1361	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1362
1363	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1364			       CRI_RESP_SIZE);
1365	if (res)
1366		goto out;
1367	res = cri_resp[2];
1368	if (res == SMP_RESP_NO_INDEX) {
1369		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1370			    "index 0x%x\n",
1371			    SAS_ADDR(dev->sas_addr), phy_id, index);
1372	}
1373out:
1374	kfree(cri_req);
1375	kfree(cri_resp);
1376	return res;
1377}
1378
1379static int sas_configure_phy(struct domain_device *dev, int phy_id,
1380				    u8 *sas_addr, int include)
1381{
1382	int index;
1383	int present;
1384	int res;
1385
1386	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1387	if (res)
1388		return res;
1389	if (include ^ present)
1390		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1391
1392	return res;
1393}
1394
1395/**
1396 * sas_configure_parent -- configure routing table of parent
1397 * parent: parent expander
1398 * child: child expander
1399 * sas_addr: SAS port identifier of device directly attached to child
1400 */
1401static int sas_configure_parent(struct domain_device *parent,
1402				struct domain_device *child,
1403				u8 *sas_addr, int include)
1404{
1405	struct expander_device *ex_parent = &parent->ex_dev;
1406	int res = 0;
1407	int i;
1408
1409	if (parent->parent) {
1410		res = sas_configure_parent(parent->parent, parent, sas_addr,
1411					   include);
1412		if (res)
1413			return res;
1414	}
1415
1416	if (ex_parent->conf_route_table == 0) {
1417		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1418			    SAS_ADDR(parent->sas_addr));
1419		return 0;
1420	}
1421
1422	for (i = 0; i < ex_parent->num_phys; i++) {
1423		struct ex_phy *phy = &ex_parent->ex_phy[i];
1424
1425		if ((phy->routing_attr == TABLE_ROUTING) &&
1426		    (SAS_ADDR(phy->attached_sas_addr) ==
1427		     SAS_ADDR(child->sas_addr))) {
1428			res = sas_configure_phy(parent, i, sas_addr, include);
1429			if (res)
1430				return res;
1431		}
1432	}
1433
1434	return res;
1435}
1436
1437/**
1438 * sas_configure_routing -- configure routing
1439 * dev: expander device
1440 * sas_addr: port identifier of device directly attached to the expander device
1441 */
1442static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1443{
1444	if (dev->parent)
1445		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1446	return 0;
1447}
1448
1449static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1450{
1451	if (dev->parent)
1452		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1453	return 0;
1454}
1455
1456/**
1457 * sas_discover_expander -- expander discovery
1458 * @ex: pointer to expander domain device
1459 *
1460 * See comment in sas_discover_sata().
1461 */
1462static int sas_discover_expander(struct domain_device *dev)
1463{
1464	int res;
1465
1466	res = sas_notify_lldd_dev_found(dev);
1467	if (res)
1468		return res;
1469
1470	res = sas_ex_general(dev);
1471	if (res)
1472		goto out_err;
1473	res = sas_ex_manuf_info(dev);
1474	if (res)
1475		goto out_err;
1476
1477	res = sas_expander_discover(dev);
1478	if (res) {
1479		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1480			    SAS_ADDR(dev->sas_addr), res);
1481		goto out_err;
1482	}
1483
1484	sas_check_ex_subtractive_boundary(dev);
1485	res = sas_check_parent_topology(dev);
1486	if (res)
1487		goto out_err;
1488	return 0;
1489out_err:
1490	sas_notify_lldd_dev_gone(dev);
1491	return res;
1492}
1493
1494static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1495{
1496	int res = 0;
1497	struct domain_device *dev;
1498
1499	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1500		if (dev->dev_type == EDGE_DEV ||
1501		    dev->dev_type == FANOUT_DEV) {
1502			struct sas_expander_device *ex =
1503				rphy_to_expander_device(dev->rphy);
1504
1505			if (level == ex->level)
1506				res = sas_ex_discover_devices(dev, -1);
1507			else if (level > 0)
1508				res = sas_ex_discover_devices(port->port_dev, -1);
1509
1510		}
1511	}
1512
1513	return res;
1514}
1515
1516static int sas_ex_bfs_disc(struct asd_sas_port *port)
1517{
1518	int res;
1519	int level;
1520
1521	do {
1522		level = port->disc.max_level;
1523		res = sas_ex_level_discovery(port, level);
1524		mb();
1525	} while (level < port->disc.max_level);
1526
1527	return res;
1528}
1529
1530int sas_discover_root_expander(struct domain_device *dev)
1531{
1532	int res;
1533	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1534
1535	res = sas_rphy_add(dev->rphy);
1536	if (res)
1537		goto out_err;
1538
1539	ex->level = dev->port->disc.max_level; /* 0 */
1540	res = sas_discover_expander(dev);
1541	if (res)
1542		goto out_err2;
1543
1544	sas_ex_bfs_disc(dev->port);
1545
1546	return res;
1547
1548out_err2:
1549	sas_rphy_remove(dev->rphy);
1550out_err:
1551	return res;
1552}
1553
1554/* ---------- Domain revalidation ---------- */
1555
1556static int sas_get_phy_discover(struct domain_device *dev,
1557				int phy_id, struct smp_resp *disc_resp)
1558{
1559	int res;
1560	u8 *disc_req;
1561
1562	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1563	if (!disc_req)
1564		return -ENOMEM;
1565
1566	disc_req[1] = SMP_DISCOVER;
1567	disc_req[9] = phy_id;
1568
1569	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1570			       disc_resp, DISCOVER_RESP_SIZE);
1571	if (res)
1572		goto out;
1573	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1574		res = disc_resp->result;
1575		goto out;
1576	}
1577out:
1578	kfree(disc_req);
1579	return res;
1580}
1581
1582static int sas_get_phy_change_count(struct domain_device *dev,
1583				    int phy_id, int *pcc)
1584{
1585	int res;
1586	struct smp_resp *disc_resp;
1587
1588	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1589	if (!disc_resp)
1590		return -ENOMEM;
1591
1592	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1593	if (!res)
1594		*pcc = disc_resp->disc.change_count;
1595
1596	kfree(disc_resp);
1597	return res;
1598}
1599
1600static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1601					 int phy_id, u8 *attached_sas_addr)
1602{
1603	int res;
1604	struct smp_resp *disc_resp;
1605	struct discover_resp *dr;
1606
1607	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1608	if (!disc_resp)
1609		return -ENOMEM;
1610	dr = &disc_resp->disc;
1611
1612	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1613	if (!res) {
1614		memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1615		if (dr->attached_dev_type == 0)
1616			memset(attached_sas_addr, 0, 8);
 
1617	}
1618	kfree(disc_resp);
1619	return res;
1620}
1621
1622static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1623			      int from_phy, bool update)
1624{
1625	struct expander_device *ex = &dev->ex_dev;
1626	int res = 0;
1627	int i;
1628
1629	for (i = from_phy; i < ex->num_phys; i++) {
1630		int phy_change_count = 0;
1631
1632		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1633		if (res)
1634			goto out;
1635		else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
 
 
 
 
 
 
 
 
1636			if (update)
1637				ex->ex_phy[i].phy_change_count =
1638					phy_change_count;
1639			*phy_id = i;
1640			return 0;
1641		}
1642	}
1643out:
1644	return res;
1645}
1646
1647static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1648{
1649	int res;
1650	u8  *rg_req;
1651	struct smp_resp  *rg_resp;
1652
1653	rg_req = alloc_smp_req(RG_REQ_SIZE);
1654	if (!rg_req)
1655		return -ENOMEM;
1656
1657	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1658	if (!rg_resp) {
1659		kfree(rg_req);
1660		return -ENOMEM;
1661	}
1662
1663	rg_req[1] = SMP_REPORT_GENERAL;
1664
1665	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1666			       RG_RESP_SIZE);
1667	if (res)
1668		goto out;
1669	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1670		res = rg_resp->result;
1671		goto out;
1672	}
1673
1674	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1675out:
1676	kfree(rg_resp);
1677	kfree(rg_req);
1678	return res;
1679}
1680/**
1681 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1682 * @dev:domain device to be detect.
1683 * @src_dev: the device which originated BROADCAST(CHANGE).
1684 *
1685 * Add self-configuration expander suport. Suppose two expander cascading,
1686 * when the first level expander is self-configuring, hotplug the disks in
1687 * second level expander, BROADCAST(CHANGE) will not only be originated
1688 * in the second level expander, but also be originated in the first level
1689 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1690 * expander changed count in two level expanders will all increment at least
1691 * once, but the phy which chang count has changed is the source device which
1692 * we concerned.
1693 */
1694
1695static int sas_find_bcast_dev(struct domain_device *dev,
1696			      struct domain_device **src_dev)
1697{
1698	struct expander_device *ex = &dev->ex_dev;
1699	int ex_change_count = -1;
1700	int phy_id = -1;
1701	int res;
1702	struct domain_device *ch;
1703
1704	res = sas_get_ex_change_count(dev, &ex_change_count);
1705	if (res)
1706		goto out;
1707	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1708		/* Just detect if this expander phys phy change count changed,
1709		* in order to determine if this expander originate BROADCAST,
1710		* and do not update phy change count field in our structure.
1711		*/
1712		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1713		if (phy_id != -1) {
1714			*src_dev = dev;
1715			ex->ex_change_count = ex_change_count;
1716			SAS_DPRINTK("Expander phy change count has changed\n");
1717			return res;
1718		} else
1719			SAS_DPRINTK("Expander phys DID NOT change\n");
1720	}
1721	list_for_each_entry(ch, &ex->children, siblings) {
1722		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1723			res = sas_find_bcast_dev(ch, src_dev);
1724			if (*src_dev)
1725				return res;
1726		}
1727	}
1728out:
1729	return res;
1730}
1731
1732static void sas_unregister_ex_tree(struct domain_device *dev)
1733{
1734	struct expander_device *ex = &dev->ex_dev;
1735	struct domain_device *child, *n;
1736
1737	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1738		child->gone = 1;
1739		if (child->dev_type == EDGE_DEV ||
1740		    child->dev_type == FANOUT_DEV)
1741			sas_unregister_ex_tree(child);
1742		else
1743			sas_unregister_dev(child);
1744	}
1745	sas_unregister_dev(dev);
1746}
1747
1748static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1749					 int phy_id, bool last)
1750{
1751	struct expander_device *ex_dev = &parent->ex_dev;
1752	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1753	struct domain_device *child, *n;
1754	if (last) {
1755		list_for_each_entry_safe(child, n,
1756			&ex_dev->children, siblings) {
1757			if (SAS_ADDR(child->sas_addr) ==
1758			    SAS_ADDR(phy->attached_sas_addr)) {
1759				child->gone = 1;
1760				if (child->dev_type == EDGE_DEV ||
1761				    child->dev_type == FANOUT_DEV)
1762					sas_unregister_ex_tree(child);
1763				else
1764					sas_unregister_dev(child);
 
1765				break;
1766			}
1767		}
1768		parent->gone = 1;
1769		sas_disable_routing(parent, phy->attached_sas_addr);
1770	}
1771	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1772	if (phy->port) {
1773		sas_port_delete_phy(phy->port, phy->phy);
 
1774		if (phy->port->num_phys == 0)
1775			sas_port_delete(phy->port);
1776		phy->port = NULL;
1777	}
1778}
1779
1780static int sas_discover_bfs_by_root_level(struct domain_device *root,
1781					  const int level)
1782{
1783	struct expander_device *ex_root = &root->ex_dev;
1784	struct domain_device *child;
1785	int res = 0;
1786
1787	list_for_each_entry(child, &ex_root->children, siblings) {
1788		if (child->dev_type == EDGE_DEV ||
1789		    child->dev_type == FANOUT_DEV) {
1790			struct sas_expander_device *ex =
1791				rphy_to_expander_device(child->rphy);
1792
1793			if (level > ex->level)
1794				res = sas_discover_bfs_by_root_level(child,
1795								     level);
1796			else if (level == ex->level)
1797				res = sas_ex_discover_devices(child, -1);
1798		}
1799	}
1800	return res;
1801}
1802
1803static int sas_discover_bfs_by_root(struct domain_device *dev)
1804{
1805	int res;
1806	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1807	int level = ex->level+1;
1808
1809	res = sas_ex_discover_devices(dev, -1);
1810	if (res)
1811		goto out;
1812	do {
1813		res = sas_discover_bfs_by_root_level(dev, level);
1814		mb();
1815		level += 1;
1816	} while (level <= dev->port->disc.max_level);
1817out:
1818	return res;
1819}
1820
1821static int sas_discover_new(struct domain_device *dev, int phy_id)
1822{
1823	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1824	struct domain_device *child;
1825	bool found = false;
1826	int res, i;
1827
1828	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1829		    SAS_ADDR(dev->sas_addr), phy_id);
1830	res = sas_ex_phy_discover(dev, phy_id);
1831	if (res)
1832		goto out;
1833	/* to support the wide port inserted */
1834	for (i = 0; i < dev->ex_dev.num_phys; i++) {
1835		struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1836		if (i == phy_id)
1837			continue;
1838		if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1839		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1840			found = true;
1841			break;
1842		}
1843	}
1844	if (found) {
1845		sas_ex_join_wide_port(dev, phy_id);
1846		return 0;
1847	}
1848	res = sas_ex_discover_devices(dev, phy_id);
1849	if (!res)
1850		goto out;
1851	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1852		if (SAS_ADDR(child->sas_addr) ==
1853		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1854			if (child->dev_type == EDGE_DEV ||
1855			    child->dev_type == FANOUT_DEV)
1856				res = sas_discover_bfs_by_root(child);
1857			break;
1858		}
1859	}
1860out:
1861	return res;
1862}
1863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1865{
1866	struct expander_device *ex = &dev->ex_dev;
1867	struct ex_phy *phy = &ex->ex_phy[phy_id];
1868	u8 attached_sas_addr[8];
 
1869	int res;
1870
1871	res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1872	switch (res) {
1873	case SMP_RESP_NO_PHY:
1874		phy->phy_state = PHY_NOT_PRESENT;
1875		sas_unregister_devs_sas_addr(dev, phy_id, last);
1876		goto out; break;
1877	case SMP_RESP_PHY_VACANT:
1878		phy->phy_state = PHY_VACANT;
1879		sas_unregister_devs_sas_addr(dev, phy_id, last);
1880		goto out; break;
1881	case SMP_RESP_FUNC_ACC:
1882		break;
1883	}
1884
1885	if (SAS_ADDR(attached_sas_addr) == 0) {
1886		phy->phy_state = PHY_EMPTY;
1887		sas_unregister_devs_sas_addr(dev, phy_id, last);
1888	} else if (SAS_ADDR(attached_sas_addr) ==
1889		   SAS_ADDR(phy->attached_sas_addr)) {
1890		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1891			    SAS_ADDR(dev->sas_addr), phy_id);
 
 
1892		sas_ex_phy_discover(dev, phy_id);
1893	} else
1894		res = sas_discover_new(dev, phy_id);
1895out:
1896	return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897}
1898
1899/**
1900 * sas_rediscover - revalidate the domain.
1901 * @dev:domain device to be detect.
1902 * @phy_id: the phy id will be detected.
1903 *
1904 * NOTE: this process _must_ quit (return) as soon as any connection
1905 * errors are encountered.  Connection recovery is done elsewhere.
1906 * Discover process only interrogates devices in order to discover the
1907 * domain.For plugging out, we un-register the device only when it is
1908 * the last phy in the port, for other phys in this port, we just delete it
1909 * from the port.For inserting, we do discovery when it is the
1910 * first phy,for other phys in this port, we add it to the port to
1911 * forming the wide-port.
1912 */
1913static int sas_rediscover(struct domain_device *dev, const int phy_id)
1914{
1915	struct expander_device *ex = &dev->ex_dev;
1916	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1917	int res = 0;
1918	int i;
1919	bool last = true;	/* is this the last phy of the port */
1920
1921	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1922		    SAS_ADDR(dev->sas_addr), phy_id);
1923
1924	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1925		for (i = 0; i < ex->num_phys; i++) {
1926			struct ex_phy *phy = &ex->ex_phy[i];
1927
1928			if (i == phy_id)
1929				continue;
1930			if (SAS_ADDR(phy->attached_sas_addr) ==
1931			    SAS_ADDR(changed_phy->attached_sas_addr)) {
1932				SAS_DPRINTK("phy%d part of wide port with "
1933					    "phy%d\n", phy_id, i);
1934				last = false;
1935				break;
1936			}
1937		}
1938		res = sas_rediscover_dev(dev, phy_id, last);
1939	} else
1940		res = sas_discover_new(dev, phy_id);
1941	return res;
1942}
1943
1944/**
1945 * sas_revalidate_domain -- revalidate the domain
1946 * @port: port to the domain of interest
1947 *
1948 * NOTE: this process _must_ quit (return) as soon as any connection
1949 * errors are encountered.  Connection recovery is done elsewhere.
1950 * Discover process only interrogates devices in order to discover the
1951 * domain.
1952 */
1953int sas_ex_revalidate_domain(struct domain_device *port_dev)
1954{
1955	int res;
1956	struct domain_device *dev = NULL;
1957
1958	res = sas_find_bcast_dev(port_dev, &dev);
1959	if (res)
1960		goto out;
1961	if (dev) {
1962		struct expander_device *ex = &dev->ex_dev;
1963		int i = 0, phy_id;
1964
1965		do {
1966			phy_id = -1;
1967			res = sas_find_bcast_phy(dev, &phy_id, i, true);
1968			if (phy_id == -1)
1969				break;
1970			res = sas_rediscover(dev, phy_id);
1971			i = phy_id + 1;
1972		} while (i < ex->num_phys);
 
 
 
1973	}
1974out:
1975	return res;
1976}
1977
1978int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1979		    struct request *req)
1980{
1981	struct domain_device *dev;
1982	int ret, type;
1983	struct request *rsp = req->next_rq;
1984
1985	if (!rsp) {
1986		printk("%s: space for a smp response is missing\n",
1987		       __func__);
1988		return -EINVAL;
1989	}
1990
1991	/* no rphy means no smp target support (ie aic94xx host) */
1992	if (!rphy)
1993		return sas_smp_host_handler(shost, req, rsp);
1994
1995	type = rphy->identify.device_type;
1996
1997	if (type != SAS_EDGE_EXPANDER_DEVICE &&
1998	    type != SAS_FANOUT_EXPANDER_DEVICE) {
1999		printk("%s: can we send a smp request to a device?\n",
2000		       __func__);
2001		return -EINVAL;
2002	}
2003
2004	dev = sas_find_dev_by_rphy(rphy);
2005	if (!dev) {
2006		printk("%s: fail to find a domain_device?\n", __func__);
2007		return -EINVAL;
2008	}
2009
2010	/* do we need to support multiple segments? */
2011	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2012		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2013		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2014		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2015		return -EINVAL;
2016	}
2017
2018	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2019			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2020	if (ret > 0) {
2021		/* positive number is the untransferred residual */
2022		rsp->resid_len = ret;
2023		req->resid_len = 0;
2024		ret = 0;
2025	} else if (ret == 0) {
2026		rsp->resid_len = 0;
2027		req->resid_len = 0;
2028	}
2029
2030	return ret;
2031}
v3.5.6
   1/*
   2 * Serial Attached SCSI (SAS) Expander discovery and configuration
   3 *
   4 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   6 *
   7 * This file is licensed under GPLv2.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License as
  11 * published by the Free Software Foundation; either version 2 of the
  12 * License, or (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but
  15 * WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  17 * General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/scatterlist.h>
  26#include <linux/blkdev.h>
  27#include <linux/slab.h>
  28
  29#include "sas_internal.h"
  30
  31#include <scsi/sas_ata.h>
  32#include <scsi/scsi_transport.h>
  33#include <scsi/scsi_transport_sas.h>
  34#include "../scsi_sas_internal.h"
  35
  36static int sas_discover_expander(struct domain_device *dev);
  37static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  38static int sas_configure_phy(struct domain_device *dev, int phy_id,
  39			     u8 *sas_addr, int include);
  40static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  41
  42/* ---------- SMP task management ---------- */
  43
  44static void smp_task_timedout(unsigned long _task)
  45{
  46	struct sas_task *task = (void *) _task;
  47	unsigned long flags;
  48
  49	spin_lock_irqsave(&task->task_state_lock, flags);
  50	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
  51		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  52	spin_unlock_irqrestore(&task->task_state_lock, flags);
  53
  54	complete(&task->completion);
  55}
  56
  57static void smp_task_done(struct sas_task *task)
  58{
  59	if (!del_timer(&task->timer))
  60		return;
  61	complete(&task->completion);
  62}
  63
  64/* Give it some long enough timeout. In seconds. */
  65#define SMP_TIMEOUT 10
  66
  67static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
  68			    void *resp, int resp_size)
  69{
  70	int res, retry;
  71	struct sas_task *task = NULL;
  72	struct sas_internal *i =
  73		to_sas_internal(dev->port->ha->core.shost->transportt);
  74
  75	mutex_lock(&dev->ex_dev.cmd_mutex);
  76	for (retry = 0; retry < 3; retry++) {
  77		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  78			res = -ECOMM;
  79			break;
  80		}
  81
  82		task = sas_alloc_task(GFP_KERNEL);
  83		if (!task) {
  84			res = -ENOMEM;
  85			break;
  86		}
  87		task->dev = dev;
  88		task->task_proto = dev->tproto;
  89		sg_init_one(&task->smp_task.smp_req, req, req_size);
  90		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
  91
  92		task->task_done = smp_task_done;
  93
  94		task->timer.data = (unsigned long) task;
  95		task->timer.function = smp_task_timedout;
  96		task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  97		add_timer(&task->timer);
  98
  99		res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
 100
 101		if (res) {
 102			del_timer(&task->timer);
 103			SAS_DPRINTK("executing SMP task failed:%d\n", res);
 104			break;
 105		}
 106
 107		wait_for_completion(&task->completion);
 108		res = -ECOMM;
 109		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 110			SAS_DPRINTK("smp task timed out or aborted\n");
 111			i->dft->lldd_abort_task(task);
 112			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 113				SAS_DPRINTK("SMP task aborted and not done\n");
 114				break;
 115			}
 116		}
 117		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 118		    task->task_status.stat == SAM_STAT_GOOD) {
 119			res = 0;
 120			break;
 121		}
 122		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 123		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 124			/* no error, but return the number of bytes of
 125			 * underrun */
 126			res = task->task_status.residual;
 127			break;
 128		}
 129		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 130		    task->task_status.stat == SAS_DATA_OVERRUN) {
 131			res = -EMSGSIZE;
 132			break;
 133		}
 134		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 135		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 136			break;
 137		else {
 138			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
 139				    "status 0x%x\n", __func__,
 140				    SAS_ADDR(dev->sas_addr),
 141				    task->task_status.resp,
 142				    task->task_status.stat);
 143			sas_free_task(task);
 144			task = NULL;
 145		}
 146	}
 147	mutex_unlock(&dev->ex_dev.cmd_mutex);
 148
 149	BUG_ON(retry == 3 && task != NULL);
 150	sas_free_task(task);
 
 
 151	return res;
 152}
 153
 154/* ---------- Allocations ---------- */
 155
 156static inline void *alloc_smp_req(int size)
 157{
 158	u8 *p = kzalloc(size, GFP_KERNEL);
 159	if (p)
 160		p[0] = SMP_REQUEST;
 161	return p;
 162}
 163
 164static inline void *alloc_smp_resp(int size)
 165{
 166	return kzalloc(size, GFP_KERNEL);
 167}
 168
 169static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 170{
 171	switch (phy->routing_attr) {
 172	case TABLE_ROUTING:
 173		if (dev->ex_dev.t2t_supp)
 174			return 'U';
 175		else
 176			return 'T';
 177	case DIRECT_ROUTING:
 178		return 'D';
 179	case SUBTRACTIVE_ROUTING:
 180		return 'S';
 181	default:
 182		return '?';
 183	}
 184}
 185
 186static enum sas_dev_type to_dev_type(struct discover_resp *dr)
 
 187{
 188	/* This is detecting a failure to transmit initial dev to host
 189	 * FIS as described in section J.5 of sas-2 r16
 190	 */
 191	if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
 192	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 193		return SATA_PENDING;
 194	else
 195		return dr->attached_dev_type;
 196}
 197
 198static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 199{
 200	enum sas_dev_type dev_type;
 201	enum sas_linkrate linkrate;
 202	u8 sas_addr[SAS_ADDR_SIZE];
 203	struct smp_resp *resp = rsp;
 204	struct discover_resp *dr = &resp->disc;
 205	struct sas_ha_struct *ha = dev->port->ha;
 206	struct expander_device *ex = &dev->ex_dev;
 207	struct ex_phy *phy = &ex->ex_phy[phy_id];
 
 
 208	struct sas_rphy *rphy = dev->rphy;
 209	bool new_phy = !phy->phy;
 210	char *type;
 211
 212	if (new_phy) {
 213		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 214			return;
 215		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 216
 217		/* FIXME: error_handling */
 218		BUG_ON(!phy->phy);
 219	}
 220
 221	switch (resp->result) {
 222	case SMP_RESP_PHY_VACANT:
 223		phy->phy_state = PHY_VACANT;
 224		break;
 225	default:
 226		phy->phy_state = PHY_NOT_PRESENT;
 227		break;
 228	case SMP_RESP_FUNC_ACC:
 229		phy->phy_state = PHY_EMPTY; /* do not know yet */
 230		break;
 231	}
 232
 233	/* check if anything important changed to squelch debug */
 234	dev_type = phy->attached_dev_type;
 235	linkrate  = phy->linkrate;
 236	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 237
 238	phy->attached_dev_type = to_dev_type(dr);
 239	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 240		goto out;
 241	phy->phy_id = phy_id;
 
 242	phy->linkrate = dr->linkrate;
 243	phy->attached_sata_host = dr->attached_sata_host;
 244	phy->attached_sata_dev  = dr->attached_sata_dev;
 245	phy->attached_sata_ps   = dr->attached_sata_ps;
 246	phy->attached_iproto = dr->iproto << 1;
 247	phy->attached_tproto = dr->tproto << 1;
 248	/* help some expanders that fail to zero sas_address in the 'no
 249	 * device' case
 250	 */
 251	if (phy->attached_dev_type == NO_DEVICE ||
 252	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 253		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 254	else
 255		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 256	phy->attached_phy_id = dr->attached_phy_id;
 257	phy->phy_change_count = dr->change_count;
 258	phy->routing_attr = dr->routing_attr;
 259	phy->virtual = dr->virtual;
 260	phy->last_da_index = -1;
 261
 262	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 263	phy->phy->identify.device_type = dr->attached_dev_type;
 264	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 265	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 266	if (!phy->attached_tproto && dr->attached_sata_dev)
 267		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 268	phy->phy->identify.phy_identifier = phy_id;
 269	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 270	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 271	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 272	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 273	phy->phy->negotiated_linkrate = phy->linkrate;
 274
 275	if (new_phy)
 276		if (sas_phy_add(phy->phy)) {
 277			sas_phy_free(phy->phy);
 278			return;
 279		}
 280
 281 out:
 282	switch (phy->attached_dev_type) {
 283	case SATA_PENDING:
 284		type = "stp pending";
 285		break;
 286	case NO_DEVICE:
 287		type = "no device";
 288		break;
 289	case SAS_END_DEV:
 290		if (phy->attached_iproto) {
 291			if (phy->attached_tproto)
 292				type = "host+target";
 293			else
 294				type = "host";
 295		} else {
 296			if (dr->attached_sata_dev)
 297				type = "stp";
 298			else
 299				type = "ssp";
 300		}
 301		break;
 302	case EDGE_DEV:
 303	case FANOUT_DEV:
 304		type = "smp";
 305		break;
 306	default:
 307		type = "unknown";
 308	}
 309
 310	/* this routine is polled by libata error recovery so filter
 311	 * unimportant messages
 312	 */
 313	if (new_phy || phy->attached_dev_type != dev_type ||
 314	    phy->linkrate != linkrate ||
 315	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 316		/* pass */;
 317	else
 318		return;
 319
 320	/* if the attached device type changed and ata_eh is active,
 321	 * make sure we run revalidation when eh completes (see:
 322	 * sas_enable_revalidation)
 323	 */
 324	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 325		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 326
 327	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 328		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 329		    SAS_ADDR(dev->sas_addr), phy->phy_id,
 330		    sas_route_char(dev, phy), phy->linkrate,
 331		    SAS_ADDR(phy->attached_sas_addr), type);
 332}
 333
 334/* check if we have an existing attached ata device on this expander phy */
 335struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 336{
 337	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 338	struct domain_device *dev;
 339	struct sas_rphy *rphy;
 340
 341	if (!ex_phy->port)
 342		return NULL;
 343
 344	rphy = ex_phy->port->rphy;
 345	if (!rphy)
 346		return NULL;
 347
 348	dev = sas_find_dev_by_rphy(rphy);
 349
 350	if (dev && dev_is_sata(dev))
 351		return dev;
 352
 353	return NULL;
 354}
 355
 356#define DISCOVER_REQ_SIZE  16
 357#define DISCOVER_RESP_SIZE 56
 358
 359static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 360				      u8 *disc_resp, int single)
 361{
 362	struct discover_resp *dr;
 363	int res;
 364
 365	disc_req[9] = single;
 
 
 366
 367	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 368			       disc_resp, DISCOVER_RESP_SIZE);
 369	if (res)
 370		return res;
 371	dr = &((struct smp_resp *)disc_resp)->disc;
 372	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 373		sas_printk("Found loopback topology, just ignore it!\n");
 374		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 375	}
 376	sas_set_ex_phy(dev, single, disc_resp);
 377	return 0;
 378}
 379
 380int sas_ex_phy_discover(struct domain_device *dev, int single)
 381{
 382	struct expander_device *ex = &dev->ex_dev;
 383	int  res = 0;
 384	u8   *disc_req;
 385	u8   *disc_resp;
 386
 387	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 388	if (!disc_req)
 389		return -ENOMEM;
 390
 391	disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
 392	if (!disc_resp) {
 393		kfree(disc_req);
 394		return -ENOMEM;
 395	}
 396
 397	disc_req[1] = SMP_DISCOVER;
 398
 399	if (0 <= single && single < ex->num_phys) {
 400		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 401	} else {
 402		int i;
 403
 404		for (i = 0; i < ex->num_phys; i++) {
 405			res = sas_ex_phy_discover_helper(dev, disc_req,
 406							 disc_resp, i);
 407			if (res)
 408				goto out_err;
 409		}
 410	}
 411out_err:
 412	kfree(disc_resp);
 413	kfree(disc_req);
 414	return res;
 415}
 416
 417static int sas_expander_discover(struct domain_device *dev)
 418{
 419	struct expander_device *ex = &dev->ex_dev;
 420	int res = -ENOMEM;
 421
 422	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
 423	if (!ex->ex_phy)
 424		return -ENOMEM;
 425
 426	res = sas_ex_phy_discover(dev, -1);
 427	if (res)
 428		goto out_err;
 429
 430	return 0;
 431 out_err:
 432	kfree(ex->ex_phy);
 433	ex->ex_phy = NULL;
 434	return res;
 435}
 436
 437#define MAX_EXPANDER_PHYS 128
 438
 439static void ex_assign_report_general(struct domain_device *dev,
 440					    struct smp_resp *resp)
 441{
 442	struct report_general_resp *rg = &resp->rg;
 443
 444	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 445	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 446	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 447	dev->ex_dev.t2t_supp = rg->t2t_supp;
 448	dev->ex_dev.conf_route_table = rg->conf_route_table;
 449	dev->ex_dev.configuring = rg->configuring;
 450	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 451}
 452
 453#define RG_REQ_SIZE   8
 454#define RG_RESP_SIZE 32
 455
 456static int sas_ex_general(struct domain_device *dev)
 457{
 458	u8 *rg_req;
 459	struct smp_resp *rg_resp;
 460	int res;
 461	int i;
 462
 463	rg_req = alloc_smp_req(RG_REQ_SIZE);
 464	if (!rg_req)
 465		return -ENOMEM;
 466
 467	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 468	if (!rg_resp) {
 469		kfree(rg_req);
 470		return -ENOMEM;
 471	}
 472
 473	rg_req[1] = SMP_REPORT_GENERAL;
 474
 475	for (i = 0; i < 5; i++) {
 476		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 477				       RG_RESP_SIZE);
 478
 479		if (res) {
 480			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
 481				    SAS_ADDR(dev->sas_addr), res);
 482			goto out;
 483		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 484			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
 485				    SAS_ADDR(dev->sas_addr), rg_resp->result);
 486			res = rg_resp->result;
 487			goto out;
 488		}
 489
 490		ex_assign_report_general(dev, rg_resp);
 491
 492		if (dev->ex_dev.configuring) {
 493			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
 494				    SAS_ADDR(dev->sas_addr));
 495			schedule_timeout_interruptible(5*HZ);
 496		} else
 497			break;
 498	}
 499out:
 500	kfree(rg_req);
 501	kfree(rg_resp);
 502	return res;
 503}
 504
 505static void ex_assign_manuf_info(struct domain_device *dev, void
 506					*_mi_resp)
 507{
 508	u8 *mi_resp = _mi_resp;
 509	struct sas_rphy *rphy = dev->rphy;
 510	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 511
 512	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 513	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 514	memcpy(edev->product_rev, mi_resp + 36,
 515	       SAS_EXPANDER_PRODUCT_REV_LEN);
 516
 517	if (mi_resp[8] & 1) {
 518		memcpy(edev->component_vendor_id, mi_resp + 40,
 519		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 520		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 521		edev->component_revision_id = mi_resp[50];
 522	}
 523}
 524
 525#define MI_REQ_SIZE   8
 526#define MI_RESP_SIZE 64
 527
 528static int sas_ex_manuf_info(struct domain_device *dev)
 529{
 530	u8 *mi_req;
 531	u8 *mi_resp;
 532	int res;
 533
 534	mi_req = alloc_smp_req(MI_REQ_SIZE);
 535	if (!mi_req)
 536		return -ENOMEM;
 537
 538	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 539	if (!mi_resp) {
 540		kfree(mi_req);
 541		return -ENOMEM;
 542	}
 543
 544	mi_req[1] = SMP_REPORT_MANUF_INFO;
 545
 546	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 547	if (res) {
 548		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
 549			    SAS_ADDR(dev->sas_addr), res);
 550		goto out;
 551	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 552		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
 553			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
 554		goto out;
 555	}
 556
 557	ex_assign_manuf_info(dev, mi_resp);
 558out:
 559	kfree(mi_req);
 560	kfree(mi_resp);
 561	return res;
 562}
 563
 564#define PC_REQ_SIZE  44
 565#define PC_RESP_SIZE 8
 566
 567int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 568			enum phy_func phy_func,
 569			struct sas_phy_linkrates *rates)
 570{
 571	u8 *pc_req;
 572	u8 *pc_resp;
 573	int res;
 574
 575	pc_req = alloc_smp_req(PC_REQ_SIZE);
 576	if (!pc_req)
 577		return -ENOMEM;
 578
 579	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 580	if (!pc_resp) {
 581		kfree(pc_req);
 582		return -ENOMEM;
 583	}
 584
 585	pc_req[1] = SMP_PHY_CONTROL;
 586	pc_req[9] = phy_id;
 587	pc_req[10]= phy_func;
 588	if (rates) {
 589		pc_req[32] = rates->minimum_linkrate << 4;
 590		pc_req[33] = rates->maximum_linkrate << 4;
 591	}
 592
 593	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 594
 595	kfree(pc_resp);
 596	kfree(pc_req);
 597	return res;
 598}
 599
 600static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 601{
 602	struct expander_device *ex = &dev->ex_dev;
 603	struct ex_phy *phy = &ex->ex_phy[phy_id];
 604
 605	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 606	phy->linkrate = SAS_PHY_DISABLED;
 607}
 608
 609static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 610{
 611	struct expander_device *ex = &dev->ex_dev;
 612	int i;
 613
 614	for (i = 0; i < ex->num_phys; i++) {
 615		struct ex_phy *phy = &ex->ex_phy[i];
 616
 617		if (phy->phy_state == PHY_VACANT ||
 618		    phy->phy_state == PHY_NOT_PRESENT)
 619			continue;
 620
 621		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 622			sas_ex_disable_phy(dev, i);
 623	}
 624}
 625
 626static int sas_dev_present_in_domain(struct asd_sas_port *port,
 627					    u8 *sas_addr)
 628{
 629	struct domain_device *dev;
 630
 631	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 632		return 1;
 633	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 634		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 635			return 1;
 636	}
 637	return 0;
 638}
 639
 640#define RPEL_REQ_SIZE	16
 641#define RPEL_RESP_SIZE	32
 642int sas_smp_get_phy_events(struct sas_phy *phy)
 643{
 644	int res;
 645	u8 *req;
 646	u8 *resp;
 647	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 648	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 649
 650	req = alloc_smp_req(RPEL_REQ_SIZE);
 651	if (!req)
 652		return -ENOMEM;
 653
 654	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 655	if (!resp) {
 656		kfree(req);
 657		return -ENOMEM;
 658	}
 659
 660	req[1] = SMP_REPORT_PHY_ERR_LOG;
 661	req[9] = phy->number;
 662
 663	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 664			            resp, RPEL_RESP_SIZE);
 665
 666	if (!res)
 667		goto out;
 668
 669	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
 670	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
 671	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
 672	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
 673
 674 out:
 675	kfree(resp);
 676	return res;
 677
 678}
 679
 680#ifdef CONFIG_SCSI_SAS_ATA
 681
 682#define RPS_REQ_SIZE  16
 683#define RPS_RESP_SIZE 60
 684
 685int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 686			    struct smp_resp *rps_resp)
 
 687{
 688	int res;
 689	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 690	u8 *resp = (u8 *)rps_resp;
 691
 692	if (!rps_req)
 693		return -ENOMEM;
 694
 695	rps_req[1] = SMP_REPORT_PHY_SATA;
 696	rps_req[9] = phy_id;
 697
 698	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 699			            rps_resp, RPS_RESP_SIZE);
 700
 701	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 702	 * standards cockup here.  sas-2 explicitly specifies the FIS
 703	 * should be encoded so that FIS type is in resp[24].
 704	 * However, some expanders endian reverse this.  Undo the
 705	 * reversal here */
 706	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 707		int i;
 708
 709		for (i = 0; i < 5; i++) {
 710			int j = 24 + (i*4);
 711			u8 a, b;
 712			a = resp[j + 0];
 713			b = resp[j + 1];
 714			resp[j + 0] = resp[j + 3];
 715			resp[j + 1] = resp[j + 2];
 716			resp[j + 2] = b;
 717			resp[j + 3] = a;
 718		}
 719	}
 720
 721	kfree(rps_req);
 722	return res;
 723}
 724#endif
 725
 726static void sas_ex_get_linkrate(struct domain_device *parent,
 727				       struct domain_device *child,
 728				       struct ex_phy *parent_phy)
 729{
 730	struct expander_device *parent_ex = &parent->ex_dev;
 731	struct sas_port *port;
 732	int i;
 733
 734	child->pathways = 0;
 735
 736	port = parent_phy->port;
 737
 738	for (i = 0; i < parent_ex->num_phys; i++) {
 739		struct ex_phy *phy = &parent_ex->ex_phy[i];
 740
 741		if (phy->phy_state == PHY_VACANT ||
 742		    phy->phy_state == PHY_NOT_PRESENT)
 743			continue;
 744
 745		if (SAS_ADDR(phy->attached_sas_addr) ==
 746		    SAS_ADDR(child->sas_addr)) {
 747
 748			child->min_linkrate = min(parent->min_linkrate,
 749						  phy->linkrate);
 750			child->max_linkrate = max(parent->max_linkrate,
 751						  phy->linkrate);
 752			child->pathways++;
 753			sas_port_add_phy(port, phy->phy);
 754		}
 755	}
 756	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 757	child->pathways = min(child->pathways, parent->pathways);
 758}
 759
 760static struct domain_device *sas_ex_discover_end_dev(
 761	struct domain_device *parent, int phy_id)
 762{
 763	struct expander_device *parent_ex = &parent->ex_dev;
 764	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 765	struct domain_device *child = NULL;
 766	struct sas_rphy *rphy;
 767	int res;
 768
 769	if (phy->attached_sata_host || phy->attached_sata_ps)
 770		return NULL;
 771
 772	child = sas_alloc_device();
 773	if (!child)
 774		return NULL;
 775
 776	kref_get(&parent->kref);
 777	child->parent = parent;
 778	child->port   = parent->port;
 779	child->iproto = phy->attached_iproto;
 780	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 781	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 782	if (!phy->port) {
 783		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 784		if (unlikely(!phy->port))
 785			goto out_err;
 786		if (unlikely(sas_port_add(phy->port) != 0)) {
 787			sas_port_free(phy->port);
 788			goto out_err;
 789		}
 790	}
 791	sas_ex_get_linkrate(parent, child, phy);
 792	sas_device_set_phy(child, phy->port);
 793
 794#ifdef CONFIG_SCSI_SAS_ATA
 795	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 796		res = sas_get_ata_info(child, phy);
 797		if (res)
 
 
 
 
 
 
 
 
 
 798			goto out_free;
 
 
 
 799
 800		sas_init_dev(child);
 801		res = sas_ata_init(child);
 802		if (res)
 803			goto out_free;
 804		rphy = sas_end_device_alloc(phy->port);
 805		if (!rphy)
 806			goto out_free;
 807
 
 
 808		child->rphy = rphy;
 809		get_device(&rphy->dev);
 810
 811		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 
 
 812
 813		res = sas_discover_sata(child);
 814		if (res) {
 815			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
 816				    "%016llx:0x%x returned 0x%x\n",
 817				    SAS_ADDR(child->sas_addr),
 818				    SAS_ADDR(parent->sas_addr), phy_id, res);
 819			goto out_list_del;
 820		}
 821	} else
 822#endif
 823	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 824		child->dev_type = SAS_END_DEV;
 825		rphy = sas_end_device_alloc(phy->port);
 826		/* FIXME: error handling */
 827		if (unlikely(!rphy))
 828			goto out_free;
 829		child->tproto = phy->attached_tproto;
 830		sas_init_dev(child);
 831
 832		child->rphy = rphy;
 833		get_device(&rphy->dev);
 834		sas_fill_in_rphy(child, rphy);
 835
 836		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 
 
 837
 838		res = sas_discover_end_dev(child);
 839		if (res) {
 840			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
 841				    "at %016llx:0x%x returned 0x%x\n",
 842				    SAS_ADDR(child->sas_addr),
 843				    SAS_ADDR(parent->sas_addr), phy_id, res);
 844			goto out_list_del;
 845		}
 846	} else {
 847		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
 848			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 849			    phy_id);
 850		goto out_free;
 851	}
 852
 853	list_add_tail(&child->siblings, &parent_ex->children);
 854	return child;
 855
 856 out_list_del:
 857	sas_rphy_free(child->rphy);
 858	list_del(&child->disco_list_node);
 859	spin_lock_irq(&parent->port->dev_list_lock);
 860	list_del(&child->dev_list_node);
 861	spin_unlock_irq(&parent->port->dev_list_lock);
 862 out_free:
 863	sas_port_delete(phy->port);
 864 out_err:
 865	phy->port = NULL;
 866	sas_put_device(child);
 867	return NULL;
 868}
 869
 870/* See if this phy is part of a wide port */
 871static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 872{
 873	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 874	int i;
 875
 876	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 877		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 878
 879		if (ephy == phy)
 880			continue;
 881
 882		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 883			    SAS_ADDR_SIZE) && ephy->port) {
 884			sas_port_add_phy(ephy->port, phy->phy);
 885			phy->port = ephy->port;
 886			phy->phy_state = PHY_DEVICE_DISCOVERED;
 887			return true;
 888		}
 889	}
 890
 891	return false;
 892}
 893
 894static struct domain_device *sas_ex_discover_expander(
 895	struct domain_device *parent, int phy_id)
 896{
 897	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 898	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 899	struct domain_device *child = NULL;
 900	struct sas_rphy *rphy;
 901	struct sas_expander_device *edev;
 902	struct asd_sas_port *port;
 903	int res;
 904
 905	if (phy->routing_attr == DIRECT_ROUTING) {
 906		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
 907			    "allowed\n",
 908			    SAS_ADDR(parent->sas_addr), phy_id,
 909			    SAS_ADDR(phy->attached_sas_addr),
 910			    phy->attached_phy_id);
 911		return NULL;
 912	}
 913	child = sas_alloc_device();
 914	if (!child)
 915		return NULL;
 916
 917	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 918	/* FIXME: better error handling */
 919	BUG_ON(sas_port_add(phy->port) != 0);
 920
 921
 922	switch (phy->attached_dev_type) {
 923	case EDGE_DEV:
 924		rphy = sas_expander_alloc(phy->port,
 925					  SAS_EDGE_EXPANDER_DEVICE);
 926		break;
 927	case FANOUT_DEV:
 928		rphy = sas_expander_alloc(phy->port,
 929					  SAS_FANOUT_EXPANDER_DEVICE);
 930		break;
 931	default:
 932		rphy = NULL;	/* shut gcc up */
 933		BUG();
 934	}
 935	port = parent->port;
 936	child->rphy = rphy;
 937	get_device(&rphy->dev);
 938	edev = rphy_to_expander_device(rphy);
 939	child->dev_type = phy->attached_dev_type;
 940	kref_get(&parent->kref);
 941	child->parent = parent;
 942	child->port = port;
 943	child->iproto = phy->attached_iproto;
 944	child->tproto = phy->attached_tproto;
 945	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 946	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 947	sas_ex_get_linkrate(parent, child, phy);
 948	edev->level = parent_ex->level + 1;
 949	parent->port->disc.max_level = max(parent->port->disc.max_level,
 950					   edev->level);
 951	sas_init_dev(child);
 952	sas_fill_in_rphy(child, rphy);
 953	sas_rphy_add(rphy);
 954
 955	spin_lock_irq(&parent->port->dev_list_lock);
 956	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 957	spin_unlock_irq(&parent->port->dev_list_lock);
 958
 959	res = sas_discover_expander(child);
 960	if (res) {
 961		sas_rphy_delete(rphy);
 962		spin_lock_irq(&parent->port->dev_list_lock);
 963		list_del(&child->dev_list_node);
 964		spin_unlock_irq(&parent->port->dev_list_lock);
 965		sas_put_device(child);
 966		return NULL;
 967	}
 968	list_add_tail(&child->siblings, &parent->ex_dev.children);
 969	return child;
 970}
 971
 972static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 973{
 974	struct expander_device *ex = &dev->ex_dev;
 975	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 976	struct domain_device *child = NULL;
 977	int res = 0;
 978
 979	/* Phy state */
 980	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 981		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 982			res = sas_ex_phy_discover(dev, phy_id);
 983		if (res)
 984			return res;
 985	}
 986
 987	/* Parent and domain coherency */
 988	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 989			     SAS_ADDR(dev->port->sas_addr))) {
 990		sas_add_parent_port(dev, phy_id);
 991		return 0;
 992	}
 993	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
 994			    SAS_ADDR(dev->parent->sas_addr))) {
 995		sas_add_parent_port(dev, phy_id);
 996		if (ex_phy->routing_attr == TABLE_ROUTING)
 997			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 998		return 0;
 999	}
1000
1001	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1002		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1003
1004	if (ex_phy->attached_dev_type == NO_DEVICE) {
1005		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1006			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1007			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1008		}
1009		return 0;
1010	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1011		return 0;
1012
1013	if (ex_phy->attached_dev_type != SAS_END_DEV &&
1014	    ex_phy->attached_dev_type != FANOUT_DEV &&
1015	    ex_phy->attached_dev_type != EDGE_DEV &&
1016	    ex_phy->attached_dev_type != SATA_PENDING) {
1017		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1018			    "phy 0x%x\n", ex_phy->attached_dev_type,
1019			    SAS_ADDR(dev->sas_addr),
1020			    phy_id);
1021		return 0;
1022	}
1023
1024	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1025	if (res) {
1026		SAS_DPRINTK("configure routing for dev %016llx "
1027			    "reported 0x%x. Forgotten\n",
1028			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1029		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1030		return res;
1031	}
1032
1033	if (sas_ex_join_wide_port(dev, phy_id)) {
 
1034		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1035			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1036		return res;
1037	}
1038
1039	switch (ex_phy->attached_dev_type) {
1040	case SAS_END_DEV:
1041	case SATA_PENDING:
1042		child = sas_ex_discover_end_dev(dev, phy_id);
1043		break;
1044	case FANOUT_DEV:
1045		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1046			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1047				    "attached to ex %016llx phy 0x%x\n",
1048				    SAS_ADDR(ex_phy->attached_sas_addr),
1049				    ex_phy->attached_phy_id,
1050				    SAS_ADDR(dev->sas_addr),
1051				    phy_id);
1052			sas_ex_disable_phy(dev, phy_id);
1053			break;
1054		} else
1055			memcpy(dev->port->disc.fanout_sas_addr,
1056			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1057		/* fallthrough */
1058	case EDGE_DEV:
1059		child = sas_ex_discover_expander(dev, phy_id);
1060		break;
1061	default:
1062		break;
1063	}
1064
1065	if (child) {
1066		int i;
1067
1068		for (i = 0; i < ex->num_phys; i++) {
1069			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1070			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1071				continue;
1072			/*
1073			 * Due to races, the phy might not get added to the
1074			 * wide port, so we add the phy to the wide port here.
1075			 */
1076			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1077			    SAS_ADDR(child->sas_addr)) {
1078				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1079				if (sas_ex_join_wide_port(dev, i))
 
1080					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1081						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1082
1083			}
1084		}
1085	}
1086
1087	return res;
1088}
1089
1090static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1091{
1092	struct expander_device *ex = &dev->ex_dev;
1093	int i;
1094
1095	for (i = 0; i < ex->num_phys; i++) {
1096		struct ex_phy *phy = &ex->ex_phy[i];
1097
1098		if (phy->phy_state == PHY_VACANT ||
1099		    phy->phy_state == PHY_NOT_PRESENT)
1100			continue;
1101
1102		if ((phy->attached_dev_type == EDGE_DEV ||
1103		     phy->attached_dev_type == FANOUT_DEV) &&
1104		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105
1106			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1107
1108			return 1;
1109		}
1110	}
1111	return 0;
1112}
1113
1114static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115{
1116	struct expander_device *ex = &dev->ex_dev;
1117	struct domain_device *child;
1118	u8 sub_addr[8] = {0, };
1119
1120	list_for_each_entry(child, &ex->children, siblings) {
1121		if (child->dev_type != EDGE_DEV &&
1122		    child->dev_type != FANOUT_DEV)
1123			continue;
1124		if (sub_addr[0] == 0) {
1125			sas_find_sub_addr(child, sub_addr);
1126			continue;
1127		} else {
1128			u8 s2[8];
1129
1130			if (sas_find_sub_addr(child, s2) &&
1131			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1132
1133				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1134					    "diverges from subtractive "
1135					    "boundary %016llx\n",
1136					    SAS_ADDR(dev->sas_addr),
1137					    SAS_ADDR(child->sas_addr),
1138					    SAS_ADDR(s2),
1139					    SAS_ADDR(sub_addr));
1140
1141				sas_ex_disable_port(child, s2);
1142			}
1143		}
1144	}
1145	return 0;
1146}
1147/**
1148 * sas_ex_discover_devices -- discover devices attached to this expander
1149 * dev: pointer to the expander domain device
1150 * single: if you want to do a single phy, else set to -1;
1151 *
1152 * Configure this expander for use with its devices and register the
1153 * devices of this expander.
1154 */
1155static int sas_ex_discover_devices(struct domain_device *dev, int single)
1156{
1157	struct expander_device *ex = &dev->ex_dev;
1158	int i = 0, end = ex->num_phys;
1159	int res = 0;
1160
1161	if (0 <= single && single < end) {
1162		i = single;
1163		end = i+1;
1164	}
1165
1166	for ( ; i < end; i++) {
1167		struct ex_phy *ex_phy = &ex->ex_phy[i];
1168
1169		if (ex_phy->phy_state == PHY_VACANT ||
1170		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1171		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1172			continue;
1173
1174		switch (ex_phy->linkrate) {
1175		case SAS_PHY_DISABLED:
1176		case SAS_PHY_RESET_PROBLEM:
1177		case SAS_SATA_PORT_SELECTOR:
1178			continue;
1179		default:
1180			res = sas_ex_discover_dev(dev, i);
1181			if (res)
1182				break;
1183			continue;
1184		}
1185	}
1186
1187	if (!res)
1188		sas_check_level_subtractive_boundary(dev);
1189
1190	return res;
1191}
1192
1193static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1194{
1195	struct expander_device *ex = &dev->ex_dev;
1196	int i;
1197	u8  *sub_sas_addr = NULL;
1198
1199	if (dev->dev_type != EDGE_DEV)
1200		return 0;
1201
1202	for (i = 0; i < ex->num_phys; i++) {
1203		struct ex_phy *phy = &ex->ex_phy[i];
1204
1205		if (phy->phy_state == PHY_VACANT ||
1206		    phy->phy_state == PHY_NOT_PRESENT)
1207			continue;
1208
1209		if ((phy->attached_dev_type == FANOUT_DEV ||
1210		     phy->attached_dev_type == EDGE_DEV) &&
1211		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1212
1213			if (!sub_sas_addr)
1214				sub_sas_addr = &phy->attached_sas_addr[0];
1215			else if (SAS_ADDR(sub_sas_addr) !=
1216				 SAS_ADDR(phy->attached_sas_addr)) {
1217
1218				SAS_DPRINTK("ex %016llx phy 0x%x "
1219					    "diverges(%016llx) on subtractive "
1220					    "boundary(%016llx). Disabled\n",
1221					    SAS_ADDR(dev->sas_addr), i,
1222					    SAS_ADDR(phy->attached_sas_addr),
1223					    SAS_ADDR(sub_sas_addr));
1224				sas_ex_disable_phy(dev, i);
1225			}
1226		}
1227	}
1228	return 0;
1229}
1230
1231static void sas_print_parent_topology_bug(struct domain_device *child,
1232						 struct ex_phy *parent_phy,
1233						 struct ex_phy *child_phy)
1234{
 
 
 
 
 
1235	static const char *ex_type[] = {
1236		[EDGE_DEV] = "edge",
1237		[FANOUT_DEV] = "fanout",
1238	};
1239	struct domain_device *parent = child->parent;
1240
1241	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1242		   "phy 0x%x has %c:%c routing link!\n",
1243
1244		   ex_type[parent->dev_type],
1245		   SAS_ADDR(parent->sas_addr),
1246		   parent_phy->phy_id,
1247
1248		   ex_type[child->dev_type],
1249		   SAS_ADDR(child->sas_addr),
1250		   child_phy->phy_id,
1251
1252		   sas_route_char(parent, parent_phy),
1253		   sas_route_char(child, child_phy));
1254}
1255
1256static int sas_check_eeds(struct domain_device *child,
1257				 struct ex_phy *parent_phy,
1258				 struct ex_phy *child_phy)
1259{
1260	int res = 0;
1261	struct domain_device *parent = child->parent;
1262
1263	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1264		res = -ENODEV;
1265		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1266			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1267			    SAS_ADDR(parent->sas_addr),
1268			    parent_phy->phy_id,
1269			    SAS_ADDR(child->sas_addr),
1270			    child_phy->phy_id,
1271			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1272	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1273		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1274		       SAS_ADDR_SIZE);
1275		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1276		       SAS_ADDR_SIZE);
1277	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1278		    SAS_ADDR(parent->sas_addr)) ||
1279		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1280		    SAS_ADDR(child->sas_addr)))
1281		   &&
1282		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1283		     SAS_ADDR(parent->sas_addr)) ||
1284		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1285		     SAS_ADDR(child->sas_addr))))
1286		;
1287	else {
1288		res = -ENODEV;
1289		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1290			    "phy 0x%x link forms a third EEDS!\n",
1291			    SAS_ADDR(parent->sas_addr),
1292			    parent_phy->phy_id,
1293			    SAS_ADDR(child->sas_addr),
1294			    child_phy->phy_id);
1295	}
1296
1297	return res;
1298}
1299
1300/* Here we spill over 80 columns.  It is intentional.
1301 */
1302static int sas_check_parent_topology(struct domain_device *child)
1303{
1304	struct expander_device *child_ex = &child->ex_dev;
1305	struct expander_device *parent_ex;
1306	int i;
1307	int res = 0;
1308
1309	if (!child->parent)
1310		return 0;
1311
1312	if (child->parent->dev_type != EDGE_DEV &&
1313	    child->parent->dev_type != FANOUT_DEV)
1314		return 0;
1315
1316	parent_ex = &child->parent->ex_dev;
1317
1318	for (i = 0; i < parent_ex->num_phys; i++) {
1319		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1320		struct ex_phy *child_phy;
1321
1322		if (parent_phy->phy_state == PHY_VACANT ||
1323		    parent_phy->phy_state == PHY_NOT_PRESENT)
1324			continue;
1325
1326		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1327			continue;
1328
1329		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1330
1331		switch (child->parent->dev_type) {
1332		case EDGE_DEV:
1333			if (child->dev_type == FANOUT_DEV) {
1334				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1335				    child_phy->routing_attr != TABLE_ROUTING) {
1336					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1337					res = -ENODEV;
1338				}
1339			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1340				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1341					res = sas_check_eeds(child, parent_phy, child_phy);
1342				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1343					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1344					res = -ENODEV;
1345				}
1346			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1347				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1348				    (child_phy->routing_attr == TABLE_ROUTING &&
1349				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1350					/* All good */;
1351				} else {
1352					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1353					res = -ENODEV;
1354				}
1355			}
1356			break;
1357		case FANOUT_DEV:
1358			if (parent_phy->routing_attr != TABLE_ROUTING ||
1359			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1360				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361				res = -ENODEV;
1362			}
1363			break;
1364		default:
1365			break;
1366		}
1367	}
1368
1369	return res;
1370}
1371
1372#define RRI_REQ_SIZE  16
1373#define RRI_RESP_SIZE 44
1374
1375static int sas_configure_present(struct domain_device *dev, int phy_id,
1376				 u8 *sas_addr, int *index, int *present)
1377{
1378	int i, res = 0;
1379	struct expander_device *ex = &dev->ex_dev;
1380	struct ex_phy *phy = &ex->ex_phy[phy_id];
1381	u8 *rri_req;
1382	u8 *rri_resp;
1383
1384	*present = 0;
1385	*index = 0;
1386
1387	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1388	if (!rri_req)
1389		return -ENOMEM;
1390
1391	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1392	if (!rri_resp) {
1393		kfree(rri_req);
1394		return -ENOMEM;
1395	}
1396
1397	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1398	rri_req[9] = phy_id;
1399
1400	for (i = 0; i < ex->max_route_indexes ; i++) {
1401		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1402		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1403				       RRI_RESP_SIZE);
1404		if (res)
1405			goto out;
1406		res = rri_resp[2];
1407		if (res == SMP_RESP_NO_INDEX) {
1408			SAS_DPRINTK("overflow of indexes: dev %016llx "
1409				    "phy 0x%x index 0x%x\n",
1410				    SAS_ADDR(dev->sas_addr), phy_id, i);
1411			goto out;
1412		} else if (res != SMP_RESP_FUNC_ACC) {
1413			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1414				    "result 0x%x\n", __func__,
1415				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1416			goto out;
1417		}
1418		if (SAS_ADDR(sas_addr) != 0) {
1419			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1420				*index = i;
1421				if ((rri_resp[12] & 0x80) == 0x80)
1422					*present = 0;
1423				else
1424					*present = 1;
1425				goto out;
1426			} else if (SAS_ADDR(rri_resp+16) == 0) {
1427				*index = i;
1428				*present = 0;
1429				goto out;
1430			}
1431		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1432			   phy->last_da_index < i) {
1433			phy->last_da_index = i;
1434			*index = i;
1435			*present = 0;
1436			goto out;
1437		}
1438	}
1439	res = -1;
1440out:
1441	kfree(rri_req);
1442	kfree(rri_resp);
1443	return res;
1444}
1445
1446#define CRI_REQ_SIZE  44
1447#define CRI_RESP_SIZE  8
1448
1449static int sas_configure_set(struct domain_device *dev, int phy_id,
1450			     u8 *sas_addr, int index, int include)
1451{
1452	int res;
1453	u8 *cri_req;
1454	u8 *cri_resp;
1455
1456	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1457	if (!cri_req)
1458		return -ENOMEM;
1459
1460	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1461	if (!cri_resp) {
1462		kfree(cri_req);
1463		return -ENOMEM;
1464	}
1465
1466	cri_req[1] = SMP_CONF_ROUTE_INFO;
1467	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1468	cri_req[9] = phy_id;
1469	if (SAS_ADDR(sas_addr) == 0 || !include)
1470		cri_req[12] |= 0x80;
1471	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1472
1473	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1474			       CRI_RESP_SIZE);
1475	if (res)
1476		goto out;
1477	res = cri_resp[2];
1478	if (res == SMP_RESP_NO_INDEX) {
1479		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1480			    "index 0x%x\n",
1481			    SAS_ADDR(dev->sas_addr), phy_id, index);
1482	}
1483out:
1484	kfree(cri_req);
1485	kfree(cri_resp);
1486	return res;
1487}
1488
1489static int sas_configure_phy(struct domain_device *dev, int phy_id,
1490				    u8 *sas_addr, int include)
1491{
1492	int index;
1493	int present;
1494	int res;
1495
1496	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1497	if (res)
1498		return res;
1499	if (include ^ present)
1500		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1501
1502	return res;
1503}
1504
1505/**
1506 * sas_configure_parent -- configure routing table of parent
1507 * parent: parent expander
1508 * child: child expander
1509 * sas_addr: SAS port identifier of device directly attached to child
1510 */
1511static int sas_configure_parent(struct domain_device *parent,
1512				struct domain_device *child,
1513				u8 *sas_addr, int include)
1514{
1515	struct expander_device *ex_parent = &parent->ex_dev;
1516	int res = 0;
1517	int i;
1518
1519	if (parent->parent) {
1520		res = sas_configure_parent(parent->parent, parent, sas_addr,
1521					   include);
1522		if (res)
1523			return res;
1524	}
1525
1526	if (ex_parent->conf_route_table == 0) {
1527		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1528			    SAS_ADDR(parent->sas_addr));
1529		return 0;
1530	}
1531
1532	for (i = 0; i < ex_parent->num_phys; i++) {
1533		struct ex_phy *phy = &ex_parent->ex_phy[i];
1534
1535		if ((phy->routing_attr == TABLE_ROUTING) &&
1536		    (SAS_ADDR(phy->attached_sas_addr) ==
1537		     SAS_ADDR(child->sas_addr))) {
1538			res = sas_configure_phy(parent, i, sas_addr, include);
1539			if (res)
1540				return res;
1541		}
1542	}
1543
1544	return res;
1545}
1546
1547/**
1548 * sas_configure_routing -- configure routing
1549 * dev: expander device
1550 * sas_addr: port identifier of device directly attached to the expander device
1551 */
1552static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1553{
1554	if (dev->parent)
1555		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1556	return 0;
1557}
1558
1559static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1560{
1561	if (dev->parent)
1562		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1563	return 0;
1564}
1565
1566/**
1567 * sas_discover_expander -- expander discovery
1568 * @ex: pointer to expander domain device
1569 *
1570 * See comment in sas_discover_sata().
1571 */
1572static int sas_discover_expander(struct domain_device *dev)
1573{
1574	int res;
1575
1576	res = sas_notify_lldd_dev_found(dev);
1577	if (res)
1578		return res;
1579
1580	res = sas_ex_general(dev);
1581	if (res)
1582		goto out_err;
1583	res = sas_ex_manuf_info(dev);
1584	if (res)
1585		goto out_err;
1586
1587	res = sas_expander_discover(dev);
1588	if (res) {
1589		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1590			    SAS_ADDR(dev->sas_addr), res);
1591		goto out_err;
1592	}
1593
1594	sas_check_ex_subtractive_boundary(dev);
1595	res = sas_check_parent_topology(dev);
1596	if (res)
1597		goto out_err;
1598	return 0;
1599out_err:
1600	sas_notify_lldd_dev_gone(dev);
1601	return res;
1602}
1603
1604static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1605{
1606	int res = 0;
1607	struct domain_device *dev;
1608
1609	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1610		if (dev->dev_type == EDGE_DEV ||
1611		    dev->dev_type == FANOUT_DEV) {
1612			struct sas_expander_device *ex =
1613				rphy_to_expander_device(dev->rphy);
1614
1615			if (level == ex->level)
1616				res = sas_ex_discover_devices(dev, -1);
1617			else if (level > 0)
1618				res = sas_ex_discover_devices(port->port_dev, -1);
1619
1620		}
1621	}
1622
1623	return res;
1624}
1625
1626static int sas_ex_bfs_disc(struct asd_sas_port *port)
1627{
1628	int res;
1629	int level;
1630
1631	do {
1632		level = port->disc.max_level;
1633		res = sas_ex_level_discovery(port, level);
1634		mb();
1635	} while (level < port->disc.max_level);
1636
1637	return res;
1638}
1639
1640int sas_discover_root_expander(struct domain_device *dev)
1641{
1642	int res;
1643	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1644
1645	res = sas_rphy_add(dev->rphy);
1646	if (res)
1647		goto out_err;
1648
1649	ex->level = dev->port->disc.max_level; /* 0 */
1650	res = sas_discover_expander(dev);
1651	if (res)
1652		goto out_err2;
1653
1654	sas_ex_bfs_disc(dev->port);
1655
1656	return res;
1657
1658out_err2:
1659	sas_rphy_remove(dev->rphy);
1660out_err:
1661	return res;
1662}
1663
1664/* ---------- Domain revalidation ---------- */
1665
1666static int sas_get_phy_discover(struct domain_device *dev,
1667				int phy_id, struct smp_resp *disc_resp)
1668{
1669	int res;
1670	u8 *disc_req;
1671
1672	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1673	if (!disc_req)
1674		return -ENOMEM;
1675
1676	disc_req[1] = SMP_DISCOVER;
1677	disc_req[9] = phy_id;
1678
1679	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1680			       disc_resp, DISCOVER_RESP_SIZE);
1681	if (res)
1682		goto out;
1683	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1684		res = disc_resp->result;
1685		goto out;
1686	}
1687out:
1688	kfree(disc_req);
1689	return res;
1690}
1691
1692static int sas_get_phy_change_count(struct domain_device *dev,
1693				    int phy_id, int *pcc)
1694{
1695	int res;
1696	struct smp_resp *disc_resp;
1697
1698	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1699	if (!disc_resp)
1700		return -ENOMEM;
1701
1702	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1703	if (!res)
1704		*pcc = disc_resp->disc.change_count;
1705
1706	kfree(disc_resp);
1707	return res;
1708}
1709
1710static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1711				    u8 *sas_addr, enum sas_dev_type *type)
1712{
1713	int res;
1714	struct smp_resp *disc_resp;
1715	struct discover_resp *dr;
1716
1717	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1718	if (!disc_resp)
1719		return -ENOMEM;
1720	dr = &disc_resp->disc;
1721
1722	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1723	if (res == 0) {
1724		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1725		*type = to_dev_type(dr);
1726		if (*type == 0)
1727			memset(sas_addr, 0, 8);
1728	}
1729	kfree(disc_resp);
1730	return res;
1731}
1732
1733static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1734			      int from_phy, bool update)
1735{
1736	struct expander_device *ex = &dev->ex_dev;
1737	int res = 0;
1738	int i;
1739
1740	for (i = from_phy; i < ex->num_phys; i++) {
1741		int phy_change_count = 0;
1742
1743		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1744		switch (res) {
1745		case SMP_RESP_PHY_VACANT:
1746		case SMP_RESP_NO_PHY:
1747			continue;
1748		case SMP_RESP_FUNC_ACC:
1749			break;
1750		default:
1751			return res;
1752		}
1753
1754		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1755			if (update)
1756				ex->ex_phy[i].phy_change_count =
1757					phy_change_count;
1758			*phy_id = i;
1759			return 0;
1760		}
1761	}
1762	return 0;
 
1763}
1764
1765static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1766{
1767	int res;
1768	u8  *rg_req;
1769	struct smp_resp  *rg_resp;
1770
1771	rg_req = alloc_smp_req(RG_REQ_SIZE);
1772	if (!rg_req)
1773		return -ENOMEM;
1774
1775	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1776	if (!rg_resp) {
1777		kfree(rg_req);
1778		return -ENOMEM;
1779	}
1780
1781	rg_req[1] = SMP_REPORT_GENERAL;
1782
1783	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1784			       RG_RESP_SIZE);
1785	if (res)
1786		goto out;
1787	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1788		res = rg_resp->result;
1789		goto out;
1790	}
1791
1792	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1793out:
1794	kfree(rg_resp);
1795	kfree(rg_req);
1796	return res;
1797}
1798/**
1799 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1800 * @dev:domain device to be detect.
1801 * @src_dev: the device which originated BROADCAST(CHANGE).
1802 *
1803 * Add self-configuration expander suport. Suppose two expander cascading,
1804 * when the first level expander is self-configuring, hotplug the disks in
1805 * second level expander, BROADCAST(CHANGE) will not only be originated
1806 * in the second level expander, but also be originated in the first level
1807 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1808 * expander changed count in two level expanders will all increment at least
1809 * once, but the phy which chang count has changed is the source device which
1810 * we concerned.
1811 */
1812
1813static int sas_find_bcast_dev(struct domain_device *dev,
1814			      struct domain_device **src_dev)
1815{
1816	struct expander_device *ex = &dev->ex_dev;
1817	int ex_change_count = -1;
1818	int phy_id = -1;
1819	int res;
1820	struct domain_device *ch;
1821
1822	res = sas_get_ex_change_count(dev, &ex_change_count);
1823	if (res)
1824		goto out;
1825	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1826		/* Just detect if this expander phys phy change count changed,
1827		* in order to determine if this expander originate BROADCAST,
1828		* and do not update phy change count field in our structure.
1829		*/
1830		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1831		if (phy_id != -1) {
1832			*src_dev = dev;
1833			ex->ex_change_count = ex_change_count;
1834			SAS_DPRINTK("Expander phy change count has changed\n");
1835			return res;
1836		} else
1837			SAS_DPRINTK("Expander phys DID NOT change\n");
1838	}
1839	list_for_each_entry(ch, &ex->children, siblings) {
1840		if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1841			res = sas_find_bcast_dev(ch, src_dev);
1842			if (*src_dev)
1843				return res;
1844		}
1845	}
1846out:
1847	return res;
1848}
1849
1850static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1851{
1852	struct expander_device *ex = &dev->ex_dev;
1853	struct domain_device *child, *n;
1854
1855	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1856		set_bit(SAS_DEV_GONE, &child->state);
1857		if (child->dev_type == EDGE_DEV ||
1858		    child->dev_type == FANOUT_DEV)
1859			sas_unregister_ex_tree(port, child);
1860		else
1861			sas_unregister_dev(port, child);
1862	}
1863	sas_unregister_dev(port, dev);
1864}
1865
1866static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1867					 int phy_id, bool last)
1868{
1869	struct expander_device *ex_dev = &parent->ex_dev;
1870	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1871	struct domain_device *child, *n, *found = NULL;
1872	if (last) {
1873		list_for_each_entry_safe(child, n,
1874			&ex_dev->children, siblings) {
1875			if (SAS_ADDR(child->sas_addr) ==
1876			    SAS_ADDR(phy->attached_sas_addr)) {
1877				set_bit(SAS_DEV_GONE, &child->state);
1878				if (child->dev_type == EDGE_DEV ||
1879				    child->dev_type == FANOUT_DEV)
1880					sas_unregister_ex_tree(parent->port, child);
1881				else
1882					sas_unregister_dev(parent->port, child);
1883				found = child;
1884				break;
1885			}
1886		}
 
1887		sas_disable_routing(parent, phy->attached_sas_addr);
1888	}
1889	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1890	if (phy->port) {
1891		sas_port_delete_phy(phy->port, phy->phy);
1892		sas_device_set_phy(found, phy->port);
1893		if (phy->port->num_phys == 0)
1894			sas_port_delete(phy->port);
1895		phy->port = NULL;
1896	}
1897}
1898
1899static int sas_discover_bfs_by_root_level(struct domain_device *root,
1900					  const int level)
1901{
1902	struct expander_device *ex_root = &root->ex_dev;
1903	struct domain_device *child;
1904	int res = 0;
1905
1906	list_for_each_entry(child, &ex_root->children, siblings) {
1907		if (child->dev_type == EDGE_DEV ||
1908		    child->dev_type == FANOUT_DEV) {
1909			struct sas_expander_device *ex =
1910				rphy_to_expander_device(child->rphy);
1911
1912			if (level > ex->level)
1913				res = sas_discover_bfs_by_root_level(child,
1914								     level);
1915			else if (level == ex->level)
1916				res = sas_ex_discover_devices(child, -1);
1917		}
1918	}
1919	return res;
1920}
1921
1922static int sas_discover_bfs_by_root(struct domain_device *dev)
1923{
1924	int res;
1925	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1926	int level = ex->level+1;
1927
1928	res = sas_ex_discover_devices(dev, -1);
1929	if (res)
1930		goto out;
1931	do {
1932		res = sas_discover_bfs_by_root_level(dev, level);
1933		mb();
1934		level += 1;
1935	} while (level <= dev->port->disc.max_level);
1936out:
1937	return res;
1938}
1939
1940static int sas_discover_new(struct domain_device *dev, int phy_id)
1941{
1942	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1943	struct domain_device *child;
1944	int res;
 
1945
1946	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1947		    SAS_ADDR(dev->sas_addr), phy_id);
1948	res = sas_ex_phy_discover(dev, phy_id);
1949	if (res)
1950		return res;
1951
1952	if (sas_ex_join_wide_port(dev, phy_id))
 
 
 
 
 
 
 
 
 
 
 
1953		return 0;
1954
1955	res = sas_ex_discover_devices(dev, phy_id);
1956	if (res)
1957		return res;
1958	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1959		if (SAS_ADDR(child->sas_addr) ==
1960		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1961			if (child->dev_type == EDGE_DEV ||
1962			    child->dev_type == FANOUT_DEV)
1963				res = sas_discover_bfs_by_root(child);
1964			break;
1965		}
1966	}
 
1967	return res;
1968}
1969
1970static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1971{
1972	if (old == new)
1973		return true;
1974
1975	/* treat device directed resets as flutter, if we went
1976	 * SAS_END_DEV to SATA_PENDING the link needs recovery
1977	 */
1978	if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1979	    (old == SAS_END_DEV && new == SATA_PENDING))
1980		return true;
1981
1982	return false;
1983}
1984
1985static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1986{
1987	struct expander_device *ex = &dev->ex_dev;
1988	struct ex_phy *phy = &ex->ex_phy[phy_id];
1989	enum sas_dev_type type = NO_DEVICE;
1990	u8 sas_addr[8];
1991	int res;
1992
1993	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1994	switch (res) {
1995	case SMP_RESP_NO_PHY:
1996		phy->phy_state = PHY_NOT_PRESENT;
1997		sas_unregister_devs_sas_addr(dev, phy_id, last);
1998		return res;
1999	case SMP_RESP_PHY_VACANT:
2000		phy->phy_state = PHY_VACANT;
2001		sas_unregister_devs_sas_addr(dev, phy_id, last);
2002		return res;
2003	case SMP_RESP_FUNC_ACC:
2004		break;
2005	}
2006
2007	if (SAS_ADDR(sas_addr) == 0) {
2008		phy->phy_state = PHY_EMPTY;
2009		sas_unregister_devs_sas_addr(dev, phy_id, last);
2010		return res;
2011	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2012		   dev_type_flutter(type, phy->attached_dev_type)) {
2013		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2014		char *action = "";
2015
2016		sas_ex_phy_discover(dev, phy_id);
2017
2018		if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2019			action = ", needs recovery";
2020		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2021			    SAS_ADDR(dev->sas_addr), phy_id, action);
2022		return res;
2023	}
2024
2025	/* delete the old link */
2026	if (SAS_ADDR(phy->attached_sas_addr) &&
2027	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2028		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2029			    SAS_ADDR(dev->sas_addr), phy_id,
2030			    SAS_ADDR(phy->attached_sas_addr));
2031		sas_unregister_devs_sas_addr(dev, phy_id, last);
2032	}
2033
2034	return sas_discover_new(dev, phy_id);
2035}
2036
2037/**
2038 * sas_rediscover - revalidate the domain.
2039 * @dev:domain device to be detect.
2040 * @phy_id: the phy id will be detected.
2041 *
2042 * NOTE: this process _must_ quit (return) as soon as any connection
2043 * errors are encountered.  Connection recovery is done elsewhere.
2044 * Discover process only interrogates devices in order to discover the
2045 * domain.For plugging out, we un-register the device only when it is
2046 * the last phy in the port, for other phys in this port, we just delete it
2047 * from the port.For inserting, we do discovery when it is the
2048 * first phy,for other phys in this port, we add it to the port to
2049 * forming the wide-port.
2050 */
2051static int sas_rediscover(struct domain_device *dev, const int phy_id)
2052{
2053	struct expander_device *ex = &dev->ex_dev;
2054	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2055	int res = 0;
2056	int i;
2057	bool last = true;	/* is this the last phy of the port */
2058
2059	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2060		    SAS_ADDR(dev->sas_addr), phy_id);
2061
2062	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2063		for (i = 0; i < ex->num_phys; i++) {
2064			struct ex_phy *phy = &ex->ex_phy[i];
2065
2066			if (i == phy_id)
2067				continue;
2068			if (SAS_ADDR(phy->attached_sas_addr) ==
2069			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2070				SAS_DPRINTK("phy%d part of wide port with "
2071					    "phy%d\n", phy_id, i);
2072				last = false;
2073				break;
2074			}
2075		}
2076		res = sas_rediscover_dev(dev, phy_id, last);
2077	} else
2078		res = sas_discover_new(dev, phy_id);
2079	return res;
2080}
2081
2082/**
2083 * sas_revalidate_domain -- revalidate the domain
2084 * @port: port to the domain of interest
2085 *
2086 * NOTE: this process _must_ quit (return) as soon as any connection
2087 * errors are encountered.  Connection recovery is done elsewhere.
2088 * Discover process only interrogates devices in order to discover the
2089 * domain.
2090 */
2091int sas_ex_revalidate_domain(struct domain_device *port_dev)
2092{
2093	int res;
2094	struct domain_device *dev = NULL;
2095
2096	res = sas_find_bcast_dev(port_dev, &dev);
2097	while (res == 0 && dev) {
 
 
2098		struct expander_device *ex = &dev->ex_dev;
2099		int i = 0, phy_id;
2100
2101		do {
2102			phy_id = -1;
2103			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2104			if (phy_id == -1)
2105				break;
2106			res = sas_rediscover(dev, phy_id);
2107			i = phy_id + 1;
2108		} while (i < ex->num_phys);
2109
2110		dev = NULL;
2111		res = sas_find_bcast_dev(port_dev, &dev);
2112	}
 
2113	return res;
2114}
2115
2116int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2117		    struct request *req)
2118{
2119	struct domain_device *dev;
2120	int ret, type;
2121	struct request *rsp = req->next_rq;
2122
2123	if (!rsp) {
2124		printk("%s: space for a smp response is missing\n",
2125		       __func__);
2126		return -EINVAL;
2127	}
2128
2129	/* no rphy means no smp target support (ie aic94xx host) */
2130	if (!rphy)
2131		return sas_smp_host_handler(shost, req, rsp);
2132
2133	type = rphy->identify.device_type;
2134
2135	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2136	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2137		printk("%s: can we send a smp request to a device?\n",
2138		       __func__);
2139		return -EINVAL;
2140	}
2141
2142	dev = sas_find_dev_by_rphy(rphy);
2143	if (!dev) {
2144		printk("%s: fail to find a domain_device?\n", __func__);
2145		return -EINVAL;
2146	}
2147
2148	/* do we need to support multiple segments? */
2149	if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2150		printk("%s: multiple segments req %u %u, rsp %u %u\n",
2151		       __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2152		       rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2153		return -EINVAL;
2154	}
2155
2156	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2157			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2158	if (ret > 0) {
2159		/* positive number is the untransferred residual */
2160		rsp->resid_len = ret;
2161		req->resid_len = 0;
2162		ret = 0;
2163	} else if (ret == 0) {
2164		rsp->resid_len = 0;
2165		req->resid_len = 0;
2166	}
2167
2168	return ret;
2169}