Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 *		IPv4 specific functions
   9 *
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 *
  18 *	This program is free software; you can redistribute it and/or
  19 *      modify it under the terms of the GNU General Public License
  20 *      as published by the Free Software Foundation; either version
  21 *      2 of the License, or (at your option) any later version.
  22 */
  23
  24/*
  25 * Changes:
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *					This code is dedicated to John Dyson.
  28 *		David S. Miller :	Change semantics of established hash,
  29 *					half is devoted to TIME_WAIT sockets
  30 *					and the rest go in the other half.
  31 *		Andi Kleen :		Add support for syncookies and fixed
  32 *					some bugs: ip options weren't passed to
  33 *					the TCP layer, missed a check for an
  34 *					ACK bit.
  35 *		Andi Kleen :		Implemented fast path mtu discovery.
  36 *	     				Fixed many serious bugs in the
  37 *					request_sock handling and moved
  38 *					most of it into the af independent code.
  39 *					Added tail drop and some other bugfixes.
  40 *					Added new listen semantics.
  41 *		Mike McLagan	:	Routing by source
  42 *	Juan Jose Ciarlante:		ip_dynaddr bits
  43 *		Andi Kleen:		various fixes.
  44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  45 *					coma.
  46 *	Andi Kleen		:	Fix new listen.
  47 *	Andi Kleen		:	Fix accept error reporting.
  48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  50 *					a single port at the same time.
  51 */
  52
 
  53
  54#include <linux/bottom_half.h>
  55#include <linux/types.h>
  56#include <linux/fcntl.h>
  57#include <linux/module.h>
  58#include <linux/random.h>
  59#include <linux/cache.h>
  60#include <linux/jhash.h>
  61#include <linux/init.h>
  62#include <linux/times.h>
  63#include <linux/slab.h>
  64
  65#include <net/net_namespace.h>
  66#include <net/icmp.h>
  67#include <net/inet_hashtables.h>
  68#include <net/tcp.h>
  69#include <net/transp_v6.h>
  70#include <net/ipv6.h>
  71#include <net/inet_common.h>
  72#include <net/timewait_sock.h>
  73#include <net/xfrm.h>
  74#include <net/netdma.h>
  75#include <net/secure_seq.h>
 
  76
  77#include <linux/inet.h>
  78#include <linux/ipv6.h>
  79#include <linux/stddef.h>
  80#include <linux/proc_fs.h>
  81#include <linux/seq_file.h>
  82
  83#include <linux/crypto.h>
  84#include <linux/scatterlist.h>
  85
  86int sysctl_tcp_tw_reuse __read_mostly;
  87int sysctl_tcp_low_latency __read_mostly;
  88EXPORT_SYMBOL(sysctl_tcp_low_latency);
  89
  90
  91#ifdef CONFIG_TCP_MD5SIG
  92static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
  93						   __be32 addr);
  94static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
  95			       __be32 daddr, __be32 saddr, struct tcphdr *th);
  96#else
  97static inline
  98struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
  99{
 100	return NULL;
 101}
 102#endif
 103
 104struct inet_hashinfo tcp_hashinfo;
 105EXPORT_SYMBOL(tcp_hashinfo);
 106
 107static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
 108{
 109	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
 110					  ip_hdr(skb)->saddr,
 111					  tcp_hdr(skb)->dest,
 112					  tcp_hdr(skb)->source);
 113}
 114
 115int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 116{
 117	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 118	struct tcp_sock *tp = tcp_sk(sk);
 119
 120	/* With PAWS, it is safe from the viewpoint
 121	   of data integrity. Even without PAWS it is safe provided sequence
 122	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 123
 124	   Actually, the idea is close to VJ's one, only timestamp cache is
 125	   held not per host, but per port pair and TW bucket is used as state
 126	   holder.
 127
 128	   If TW bucket has been already destroyed we fall back to VJ's scheme
 129	   and use initial timestamp retrieved from peer table.
 130	 */
 131	if (tcptw->tw_ts_recent_stamp &&
 132	    (twp == NULL || (sysctl_tcp_tw_reuse &&
 133			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
 134		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
 135		if (tp->write_seq == 0)
 136			tp->write_seq = 1;
 137		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 138		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 139		sock_hold(sktw);
 140		return 1;
 141	}
 142
 143	return 0;
 144}
 145EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 146
 
 
 
 
 
 
 
 
 147/* This will initiate an outgoing connection. */
 148int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 149{
 150	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 151	struct inet_sock *inet = inet_sk(sk);
 152	struct tcp_sock *tp = tcp_sk(sk);
 153	__be16 orig_sport, orig_dport;
 154	__be32 daddr, nexthop;
 155	struct flowi4 *fl4;
 156	struct rtable *rt;
 157	int err;
 158	struct ip_options_rcu *inet_opt;
 159
 160	if (addr_len < sizeof(struct sockaddr_in))
 161		return -EINVAL;
 162
 163	if (usin->sin_family != AF_INET)
 164		return -EAFNOSUPPORT;
 165
 166	nexthop = daddr = usin->sin_addr.s_addr;
 167	inet_opt = rcu_dereference_protected(inet->inet_opt,
 168					     sock_owned_by_user(sk));
 169	if (inet_opt && inet_opt->opt.srr) {
 170		if (!daddr)
 171			return -EINVAL;
 172		nexthop = inet_opt->opt.faddr;
 173	}
 174
 175	orig_sport = inet->inet_sport;
 176	orig_dport = usin->sin_port;
 177	fl4 = &inet->cork.fl.u.ip4;
 178	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 179			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 180			      IPPROTO_TCP,
 181			      orig_sport, orig_dport, sk, true);
 182	if (IS_ERR(rt)) {
 183		err = PTR_ERR(rt);
 184		if (err == -ENETUNREACH)
 185			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 186		return err;
 187	}
 188
 189	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 190		ip_rt_put(rt);
 191		return -ENETUNREACH;
 192	}
 193
 194	if (!inet_opt || !inet_opt->opt.srr)
 195		daddr = fl4->daddr;
 196
 197	if (!inet->inet_saddr)
 198		inet->inet_saddr = fl4->saddr;
 199	inet->inet_rcv_saddr = inet->inet_saddr;
 200
 201	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 202		/* Reset inherited state */
 203		tp->rx_opt.ts_recent	   = 0;
 204		tp->rx_opt.ts_recent_stamp = 0;
 205		tp->write_seq		   = 0;
 
 206	}
 207
 208	if (tcp_death_row.sysctl_tw_recycle &&
 209	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
 210		struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
 211		/*
 212		 * VJ's idea. We save last timestamp seen from
 213		 * the destination in peer table, when entering state
 214		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
 215		 * when trying new connection.
 216		 */
 217		if (peer) {
 218			inet_peer_refcheck(peer);
 219			if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
 220				tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
 221				tp->rx_opt.ts_recent = peer->tcp_ts;
 222			}
 223		}
 224	}
 225
 226	inet->inet_dport = usin->sin_port;
 227	inet->inet_daddr = daddr;
 228
 229	inet_csk(sk)->icsk_ext_hdr_len = 0;
 230	if (inet_opt)
 231		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 232
 233	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 234
 235	/* Socket identity is still unknown (sport may be zero).
 236	 * However we set state to SYN-SENT and not releasing socket
 237	 * lock select source port, enter ourselves into the hash tables and
 238	 * complete initialization after this.
 239	 */
 240	tcp_set_state(sk, TCP_SYN_SENT);
 241	err = inet_hash_connect(&tcp_death_row, sk);
 242	if (err)
 243		goto failure;
 244
 245	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 246			       inet->inet_sport, inet->inet_dport, sk);
 247	if (IS_ERR(rt)) {
 248		err = PTR_ERR(rt);
 249		rt = NULL;
 250		goto failure;
 251	}
 252	/* OK, now commit destination to socket.  */
 253	sk->sk_gso_type = SKB_GSO_TCPV4;
 254	sk_setup_caps(sk, &rt->dst);
 255
 256	if (!tp->write_seq)
 257		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
 258							   inet->inet_daddr,
 259							   inet->inet_sport,
 260							   usin->sin_port);
 261
 262	inet->inet_id = tp->write_seq ^ jiffies;
 263
 264	err = tcp_connect(sk);
 
 
 
 
 265	rt = NULL;
 266	if (err)
 267		goto failure;
 268
 269	return 0;
 270
 271failure:
 272	/*
 273	 * This unhashes the socket and releases the local port,
 274	 * if necessary.
 275	 */
 276	tcp_set_state(sk, TCP_CLOSE);
 277	ip_rt_put(rt);
 278	sk->sk_route_caps = 0;
 279	inet->inet_dport = 0;
 280	return err;
 281}
 282EXPORT_SYMBOL(tcp_v4_connect);
 283
 284/*
 285 * This routine does path mtu discovery as defined in RFC1191.
 286 */
 287static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
 288{
 289	struct dst_entry *dst;
 290	struct inet_sock *inet = inet_sk(sk);
 291
 292	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
 293	 * send out by Linux are always <576bytes so they should go through
 294	 * unfragmented).
 295	 */
 296	if (sk->sk_state == TCP_LISTEN)
 297		return;
 298
 299	/* We don't check in the destentry if pmtu discovery is forbidden
 300	 * on this route. We just assume that no packet_to_big packets
 301	 * are send back when pmtu discovery is not active.
 302	 * There is a small race when the user changes this flag in the
 303	 * route, but I think that's acceptable.
 304	 */
 305	if ((dst = __sk_dst_check(sk, 0)) == NULL)
 306		return;
 307
 308	dst->ops->update_pmtu(dst, mtu);
 309
 310	/* Something is about to be wrong... Remember soft error
 311	 * for the case, if this connection will not able to recover.
 312	 */
 313	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 314		sk->sk_err_soft = EMSGSIZE;
 315
 316	mtu = dst_mtu(dst);
 317
 318	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 319	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 320		tcp_sync_mss(sk, mtu);
 321
 322		/* Resend the TCP packet because it's
 323		 * clear that the old packet has been
 324		 * dropped. This is the new "fast" path mtu
 325		 * discovery.
 326		 */
 327		tcp_simple_retransmit(sk);
 328	} /* else let the usual retransmit timer handle it */
 329}
 330
 331/*
 332 * This routine is called by the ICMP module when it gets some
 333 * sort of error condition.  If err < 0 then the socket should
 334 * be closed and the error returned to the user.  If err > 0
 335 * it's just the icmp type << 8 | icmp code.  After adjustment
 336 * header points to the first 8 bytes of the tcp header.  We need
 337 * to find the appropriate port.
 338 *
 339 * The locking strategy used here is very "optimistic". When
 340 * someone else accesses the socket the ICMP is just dropped
 341 * and for some paths there is no check at all.
 342 * A more general error queue to queue errors for later handling
 343 * is probably better.
 344 *
 345 */
 346
 347void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
 348{
 349	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
 350	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
 351	struct inet_connection_sock *icsk;
 352	struct tcp_sock *tp;
 353	struct inet_sock *inet;
 354	const int type = icmp_hdr(icmp_skb)->type;
 355	const int code = icmp_hdr(icmp_skb)->code;
 356	struct sock *sk;
 357	struct sk_buff *skb;
 358	__u32 seq;
 359	__u32 remaining;
 360	int err;
 361	struct net *net = dev_net(icmp_skb->dev);
 362
 363	if (icmp_skb->len < (iph->ihl << 2) + 8) {
 364		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 365		return;
 366	}
 367
 368	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
 369			iph->saddr, th->source, inet_iif(icmp_skb));
 370	if (!sk) {
 371		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 372		return;
 373	}
 374	if (sk->sk_state == TCP_TIME_WAIT) {
 375		inet_twsk_put(inet_twsk(sk));
 376		return;
 377	}
 378
 379	bh_lock_sock(sk);
 380	/* If too many ICMPs get dropped on busy
 381	 * servers this needs to be solved differently.
 382	 */
 383	if (sock_owned_by_user(sk))
 384		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
 385
 386	if (sk->sk_state == TCP_CLOSE)
 387		goto out;
 388
 389	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 390		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 391		goto out;
 392	}
 393
 394	icsk = inet_csk(sk);
 395	tp = tcp_sk(sk);
 396	seq = ntohl(th->seq);
 397	if (sk->sk_state != TCP_LISTEN &&
 398	    !between(seq, tp->snd_una, tp->snd_nxt)) {
 399		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 400		goto out;
 401	}
 402
 403	switch (type) {
 404	case ICMP_SOURCE_QUENCH:
 405		/* Just silently ignore these. */
 406		goto out;
 407	case ICMP_PARAMETERPROB:
 408		err = EPROTO;
 409		break;
 410	case ICMP_DEST_UNREACH:
 411		if (code > NR_ICMP_UNREACH)
 412			goto out;
 413
 414		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 415			if (!sock_owned_by_user(sk))
 416				do_pmtu_discovery(sk, iph, info);
 417			goto out;
 418		}
 419
 420		err = icmp_err_convert[code].errno;
 421		/* check if icmp_skb allows revert of backoff
 422		 * (see draft-zimmermann-tcp-lcd) */
 423		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
 424			break;
 425		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 426		    !icsk->icsk_backoff)
 427			break;
 428
 429		if (sock_owned_by_user(sk))
 430			break;
 431
 432		icsk->icsk_backoff--;
 433		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
 434			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
 435		tcp_bound_rto(sk);
 436
 437		skb = tcp_write_queue_head(sk);
 438		BUG_ON(!skb);
 439
 440		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
 441				tcp_time_stamp - TCP_SKB_CB(skb)->when);
 442
 443		if (remaining) {
 444			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 445						  remaining, TCP_RTO_MAX);
 446		} else {
 447			/* RTO revert clocked out retransmission.
 448			 * Will retransmit now */
 449			tcp_retransmit_timer(sk);
 450		}
 451
 452		break;
 453	case ICMP_TIME_EXCEEDED:
 454		err = EHOSTUNREACH;
 455		break;
 456	default:
 457		goto out;
 458	}
 459
 460	switch (sk->sk_state) {
 461		struct request_sock *req, **prev;
 462	case TCP_LISTEN:
 463		if (sock_owned_by_user(sk))
 464			goto out;
 465
 466		req = inet_csk_search_req(sk, &prev, th->dest,
 467					  iph->daddr, iph->saddr);
 468		if (!req)
 469			goto out;
 470
 471		/* ICMPs are not backlogged, hence we cannot get
 472		   an established socket here.
 473		 */
 474		WARN_ON(req->sk);
 475
 476		if (seq != tcp_rsk(req)->snt_isn) {
 477			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 478			goto out;
 479		}
 480
 481		/*
 482		 * Still in SYN_RECV, just remove it silently.
 483		 * There is no good way to pass the error to the newly
 484		 * created socket, and POSIX does not want network
 485		 * errors returned from accept().
 486		 */
 487		inet_csk_reqsk_queue_drop(sk, req, prev);
 488		goto out;
 489
 490	case TCP_SYN_SENT:
 491	case TCP_SYN_RECV:  /* Cannot happen.
 492			       It can f.e. if SYNs crossed.
 493			     */
 494		if (!sock_owned_by_user(sk)) {
 495			sk->sk_err = err;
 496
 497			sk->sk_error_report(sk);
 498
 499			tcp_done(sk);
 500		} else {
 501			sk->sk_err_soft = err;
 502		}
 503		goto out;
 504	}
 505
 506	/* If we've already connected we will keep trying
 507	 * until we time out, or the user gives up.
 508	 *
 509	 * rfc1122 4.2.3.9 allows to consider as hard errors
 510	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 511	 * but it is obsoleted by pmtu discovery).
 512	 *
 513	 * Note, that in modern internet, where routing is unreliable
 514	 * and in each dark corner broken firewalls sit, sending random
 515	 * errors ordered by their masters even this two messages finally lose
 516	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 517	 *
 518	 * Now we are in compliance with RFCs.
 519	 *							--ANK (980905)
 520	 */
 521
 522	inet = inet_sk(sk);
 523	if (!sock_owned_by_user(sk) && inet->recverr) {
 524		sk->sk_err = err;
 525		sk->sk_error_report(sk);
 526	} else	{ /* Only an error on timeout */
 527		sk->sk_err_soft = err;
 528	}
 529
 530out:
 531	bh_unlock_sock(sk);
 532	sock_put(sk);
 533}
 534
 535static void __tcp_v4_send_check(struct sk_buff *skb,
 536				__be32 saddr, __be32 daddr)
 537{
 538	struct tcphdr *th = tcp_hdr(skb);
 539
 540	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 541		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 542		skb->csum_start = skb_transport_header(skb) - skb->head;
 543		skb->csum_offset = offsetof(struct tcphdr, check);
 544	} else {
 545		th->check = tcp_v4_check(skb->len, saddr, daddr,
 546					 csum_partial(th,
 547						      th->doff << 2,
 548						      skb->csum));
 549	}
 550}
 551
 552/* This routine computes an IPv4 TCP checksum. */
 553void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 554{
 555	struct inet_sock *inet = inet_sk(sk);
 556
 557	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 558}
 559EXPORT_SYMBOL(tcp_v4_send_check);
 560
 561int tcp_v4_gso_send_check(struct sk_buff *skb)
 562{
 563	const struct iphdr *iph;
 564	struct tcphdr *th;
 565
 566	if (!pskb_may_pull(skb, sizeof(*th)))
 567		return -EINVAL;
 568
 569	iph = ip_hdr(skb);
 570	th = tcp_hdr(skb);
 571
 572	th->check = 0;
 573	skb->ip_summed = CHECKSUM_PARTIAL;
 574	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
 575	return 0;
 576}
 577
 578/*
 579 *	This routine will send an RST to the other tcp.
 580 *
 581 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 582 *		      for reset.
 583 *	Answer: if a packet caused RST, it is not for a socket
 584 *		existing in our system, if it is matched to a socket,
 585 *		it is just duplicate segment or bug in other side's TCP.
 586 *		So that we build reply only basing on parameters
 587 *		arrived with segment.
 588 *	Exception: precedence violation. We do not implement it in any case.
 589 */
 590
 591static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
 592{
 593	struct tcphdr *th = tcp_hdr(skb);
 594	struct {
 595		struct tcphdr th;
 596#ifdef CONFIG_TCP_MD5SIG
 597		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
 598#endif
 599	} rep;
 600	struct ip_reply_arg arg;
 601#ifdef CONFIG_TCP_MD5SIG
 602	struct tcp_md5sig_key *key;
 
 
 
 
 603#endif
 604	struct net *net;
 605
 606	/* Never send a reset in response to a reset. */
 607	if (th->rst)
 608		return;
 609
 610	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
 611		return;
 612
 613	/* Swap the send and the receive. */
 614	memset(&rep, 0, sizeof(rep));
 615	rep.th.dest   = th->source;
 616	rep.th.source = th->dest;
 617	rep.th.doff   = sizeof(struct tcphdr) / 4;
 618	rep.th.rst    = 1;
 619
 620	if (th->ack) {
 621		rep.th.seq = th->ack_seq;
 622	} else {
 623		rep.th.ack = 1;
 624		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 625				       skb->len - (th->doff << 2));
 626	}
 627
 628	memset(&arg, 0, sizeof(arg));
 629	arg.iov[0].iov_base = (unsigned char *)&rep;
 630	arg.iov[0].iov_len  = sizeof(rep.th);
 631
 632#ifdef CONFIG_TCP_MD5SIG
 633	key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634	if (key) {
 635		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 636				   (TCPOPT_NOP << 16) |
 637				   (TCPOPT_MD5SIG << 8) |
 638				   TCPOLEN_MD5SIG);
 639		/* Update length and the length the header thinks exists */
 640		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 641		rep.th.doff = arg.iov[0].iov_len / 4;
 642
 643		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 644				     key, ip_hdr(skb)->saddr,
 645				     ip_hdr(skb)->daddr, &rep.th);
 646	}
 647#endif
 648	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 649				      ip_hdr(skb)->saddr, /* XXX */
 650				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 651	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 652	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 
 
 
 
 
 653
 654	net = dev_net(skb_dst(skb)->dev);
 
 655	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 656		      &arg, arg.iov[0].iov_len);
 657
 658	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 659	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
 
 
 
 
 
 
 
 
 660}
 661
 662/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 663   outside socket context is ugly, certainly. What can I do?
 664 */
 665
 666static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
 667			    u32 win, u32 ts, int oif,
 668			    struct tcp_md5sig_key *key,
 669			    int reply_flags)
 670{
 671	struct tcphdr *th = tcp_hdr(skb);
 672	struct {
 673		struct tcphdr th;
 674		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 675#ifdef CONFIG_TCP_MD5SIG
 676			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 677#endif
 678			];
 679	} rep;
 680	struct ip_reply_arg arg;
 681	struct net *net = dev_net(skb_dst(skb)->dev);
 682
 683	memset(&rep.th, 0, sizeof(struct tcphdr));
 684	memset(&arg, 0, sizeof(arg));
 685
 686	arg.iov[0].iov_base = (unsigned char *)&rep;
 687	arg.iov[0].iov_len  = sizeof(rep.th);
 688	if (ts) {
 689		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 690				   (TCPOPT_TIMESTAMP << 8) |
 691				   TCPOLEN_TIMESTAMP);
 692		rep.opt[1] = htonl(tcp_time_stamp);
 693		rep.opt[2] = htonl(ts);
 694		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 695	}
 696
 697	/* Swap the send and the receive. */
 698	rep.th.dest    = th->source;
 699	rep.th.source  = th->dest;
 700	rep.th.doff    = arg.iov[0].iov_len / 4;
 701	rep.th.seq     = htonl(seq);
 702	rep.th.ack_seq = htonl(ack);
 703	rep.th.ack     = 1;
 704	rep.th.window  = htons(win);
 705
 706#ifdef CONFIG_TCP_MD5SIG
 707	if (key) {
 708		int offset = (ts) ? 3 : 0;
 709
 710		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 711					  (TCPOPT_NOP << 16) |
 712					  (TCPOPT_MD5SIG << 8) |
 713					  TCPOLEN_MD5SIG);
 714		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 715		rep.th.doff = arg.iov[0].iov_len/4;
 716
 717		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 718				    key, ip_hdr(skb)->saddr,
 719				    ip_hdr(skb)->daddr, &rep.th);
 720	}
 721#endif
 722	arg.flags = reply_flags;
 723	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 724				      ip_hdr(skb)->saddr, /* XXX */
 725				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 726	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 727	if (oif)
 728		arg.bound_dev_if = oif;
 729
 730	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 731		      &arg, arg.iov[0].iov_len);
 732
 733	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 734}
 735
 736static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 737{
 738	struct inet_timewait_sock *tw = inet_twsk(sk);
 739	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 740
 741	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 742			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 743			tcptw->tw_ts_recent,
 744			tw->tw_bound_dev_if,
 745			tcp_twsk_md5_key(tcptw),
 746			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
 
 747			);
 748
 749	inet_twsk_put(tw);
 750}
 751
 752static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
 753				  struct request_sock *req)
 754{
 755	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
 756			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
 757			req->ts_recent,
 758			0,
 759			tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
 760			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
 
 
 761}
 762
 763/*
 764 *	Send a SYN-ACK after having received a SYN.
 765 *	This still operates on a request_sock only, not on a big
 766 *	socket.
 767 */
 768static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
 769			      struct request_sock *req,
 770			      struct request_values *rvp)
 
 771{
 772	const struct inet_request_sock *ireq = inet_rsk(req);
 773	struct flowi4 fl4;
 774	int err = -1;
 775	struct sk_buff * skb;
 776
 777	/* First, grab a route. */
 778	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 779		return -1;
 780
 781	skb = tcp_make_synack(sk, dst, req, rvp);
 782
 783	if (skb) {
 784		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
 785
 
 786		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
 787					    ireq->rmt_addr,
 788					    ireq->opt);
 789		err = net_xmit_eval(err);
 790	}
 791
 792	dst_release(dst);
 793	return err;
 794}
 795
 796static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
 797			      struct request_values *rvp)
 798{
 799	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
 800	return tcp_v4_send_synack(sk, NULL, req, rvp);
 801}
 802
 803/*
 804 *	IPv4 request_sock destructor.
 805 */
 806static void tcp_v4_reqsk_destructor(struct request_sock *req)
 807{
 808	kfree(inet_rsk(req)->opt);
 809}
 810
 811/*
 812 * Return 1 if a syncookie should be sent
 813 */
 814int tcp_syn_flood_action(struct sock *sk,
 815			 const struct sk_buff *skb,
 816			 const char *proto)
 817{
 818	const char *msg = "Dropping request";
 819	int want_cookie = 0;
 820	struct listen_sock *lopt;
 821
 822
 823
 824#ifdef CONFIG_SYN_COOKIES
 825	if (sysctl_tcp_syncookies) {
 826		msg = "Sending cookies";
 827		want_cookie = 1;
 828		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
 829	} else
 830#endif
 831		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
 832
 833	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
 834	if (!lopt->synflood_warned) {
 835		lopt->synflood_warned = 1;
 836		pr_info("%s: Possible SYN flooding on port %d. %s. "
 837			" Check SNMP counters.\n",
 838			proto, ntohs(tcp_hdr(skb)->dest), msg);
 839	}
 840	return want_cookie;
 841}
 842EXPORT_SYMBOL(tcp_syn_flood_action);
 843
 844/*
 845 * Save and compile IPv4 options into the request_sock if needed.
 846 */
 847static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
 848						  struct sk_buff *skb)
 849{
 850	const struct ip_options *opt = &(IPCB(skb)->opt);
 851	struct ip_options_rcu *dopt = NULL;
 852
 853	if (opt && opt->optlen) {
 854		int opt_size = sizeof(*dopt) + opt->optlen;
 855
 856		dopt = kmalloc(opt_size, GFP_ATOMIC);
 857		if (dopt) {
 858			if (ip_options_echo(&dopt->opt, skb)) {
 859				kfree(dopt);
 860				dopt = NULL;
 861			}
 862		}
 863	}
 864	return dopt;
 865}
 866
 867#ifdef CONFIG_TCP_MD5SIG
 868/*
 869 * RFC2385 MD5 checksumming requires a mapping of
 870 * IP address->MD5 Key.
 871 * We need to maintain these in the sk structure.
 872 */
 873
 874/* Find the Key structure for an address.  */
 875static struct tcp_md5sig_key *
 876			tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
 
 877{
 878	struct tcp_sock *tp = tcp_sk(sk);
 879	int i;
 880
 881	if (!tp->md5sig_info || !tp->md5sig_info->entries4)
 
 
 
 
 
 
 
 882		return NULL;
 883	for (i = 0; i < tp->md5sig_info->entries4; i++) {
 884		if (tp->md5sig_info->keys4[i].addr == addr)
 885			return &tp->md5sig_info->keys4[i].base;
 
 
 
 
 
 
 886	}
 887	return NULL;
 888}
 
 889
 890struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
 891					 struct sock *addr_sk)
 892{
 893	return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
 
 
 
 894}
 895EXPORT_SYMBOL(tcp_v4_md5_lookup);
 896
 897static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
 898						      struct request_sock *req)
 899{
 900	return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
 
 
 
 901}
 902
 903/* This can be called on a newly created socket, from other files */
 904int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
 905		      u8 *newkey, u8 newkeylen)
 906{
 907	/* Add Key to the list */
 908	struct tcp_md5sig_key *key;
 909	struct tcp_sock *tp = tcp_sk(sk);
 910	struct tcp4_md5sig_key *keys;
 911
 912	key = tcp_v4_md5_do_lookup(sk, addr);
 913	if (key) {
 914		/* Pre-existing entry - just update that one. */
 915		kfree(key->key);
 916		key->key = newkey;
 917		key->keylen = newkeylen;
 918	} else {
 919		struct tcp_md5sig_info *md5sig;
 920
 921		if (!tp->md5sig_info) {
 922			tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
 923						  GFP_ATOMIC);
 924			if (!tp->md5sig_info) {
 925				kfree(newkey);
 926				return -ENOMEM;
 927			}
 928			sk_nocaps_add(sk, NETIF_F_GSO_MASK);
 929		}
 930
 931		md5sig = tp->md5sig_info;
 932		if (md5sig->entries4 == 0 &&
 933		    tcp_alloc_md5sig_pool(sk) == NULL) {
 934			kfree(newkey);
 
 935			return -ENOMEM;
 936		}
 937
 938		if (md5sig->alloced4 == md5sig->entries4) {
 939			keys = kmalloc((sizeof(*keys) *
 940					(md5sig->entries4 + 1)), GFP_ATOMIC);
 941			if (!keys) {
 942				kfree(newkey);
 943				if (md5sig->entries4 == 0)
 944					tcp_free_md5sig_pool();
 945				return -ENOMEM;
 946			}
 947
 948			if (md5sig->entries4)
 949				memcpy(keys, md5sig->keys4,
 950				       sizeof(*keys) * md5sig->entries4);
 951
 952			/* Free old key list, and reference new one */
 953			kfree(md5sig->keys4);
 954			md5sig->keys4 = keys;
 955			md5sig->alloced4++;
 956		}
 957		md5sig->entries4++;
 958		md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
 959		md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
 960		md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
 961	}
 962	return 0;
 963}
 964EXPORT_SYMBOL(tcp_v4_md5_do_add);
 965
 966static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
 967			       u8 *newkey, u8 newkeylen)
 968{
 969	return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
 970				 newkey, newkeylen);
 
 
 
 971}
 
 972
 973int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
 974{
 975	struct tcp_sock *tp = tcp_sk(sk);
 976	int i;
 
 977
 978	for (i = 0; i < tp->md5sig_info->entries4; i++) {
 979		if (tp->md5sig_info->keys4[i].addr == addr) {
 980			/* Free the key */
 981			kfree(tp->md5sig_info->keys4[i].base.key);
 982			tp->md5sig_info->entries4--;
 983
 984			if (tp->md5sig_info->entries4 == 0) {
 985				kfree(tp->md5sig_info->keys4);
 986				tp->md5sig_info->keys4 = NULL;
 987				tp->md5sig_info->alloced4 = 0;
 988				tcp_free_md5sig_pool();
 989			} else if (tp->md5sig_info->entries4 != i) {
 990				/* Need to do some manipulation */
 991				memmove(&tp->md5sig_info->keys4[i],
 992					&tp->md5sig_info->keys4[i+1],
 993					(tp->md5sig_info->entries4 - i) *
 994					 sizeof(struct tcp4_md5sig_key));
 995			}
 996			return 0;
 997		}
 998	}
 999	return -ENOENT;
1000}
1001EXPORT_SYMBOL(tcp_v4_md5_do_del);
1002
1003static void tcp_v4_clear_md5_list(struct sock *sk)
1004{
1005	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
1006
1007	/* Free each key, then the set of key keys,
1008	 * the crypto element, and then decrement our
1009	 * hold on the last resort crypto.
1010	 */
1011	if (tp->md5sig_info->entries4) {
1012		int i;
1013		for (i = 0; i < tp->md5sig_info->entries4; i++)
1014			kfree(tp->md5sig_info->keys4[i].base.key);
1015		tp->md5sig_info->entries4 = 0;
1016		tcp_free_md5sig_pool();
1017	}
1018	if (tp->md5sig_info->keys4) {
1019		kfree(tp->md5sig_info->keys4);
1020		tp->md5sig_info->keys4 = NULL;
1021		tp->md5sig_info->alloced4  = 0;
1022	}
1023}
1024
1025static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1026				 int optlen)
1027{
1028	struct tcp_md5sig cmd;
1029	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1030	u8 *newkey;
1031
1032	if (optlen < sizeof(cmd))
1033		return -EINVAL;
1034
1035	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1036		return -EFAULT;
1037
1038	if (sin->sin_family != AF_INET)
1039		return -EINVAL;
1040
1041	if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1042		if (!tcp_sk(sk)->md5sig_info)
1043			return -ENOENT;
1044		return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1045	}
1046
1047	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1048		return -EINVAL;
1049
1050	if (!tcp_sk(sk)->md5sig_info) {
1051		struct tcp_sock *tp = tcp_sk(sk);
1052		struct tcp_md5sig_info *p;
1053
1054		p = kzalloc(sizeof(*p), sk->sk_allocation);
1055		if (!p)
1056			return -EINVAL;
1057
1058		tp->md5sig_info = p;
1059		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1060	}
1061
1062	newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1063	if (!newkey)
1064		return -ENOMEM;
1065	return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1066				 newkey, cmd.tcpm_keylen);
1067}
1068
1069static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1070					__be32 daddr, __be32 saddr, int nbytes)
1071{
1072	struct tcp4_pseudohdr *bp;
1073	struct scatterlist sg;
1074
1075	bp = &hp->md5_blk.ip4;
1076
1077	/*
1078	 * 1. the TCP pseudo-header (in the order: source IP address,
1079	 * destination IP address, zero-padded protocol number, and
1080	 * segment length)
1081	 */
1082	bp->saddr = saddr;
1083	bp->daddr = daddr;
1084	bp->pad = 0;
1085	bp->protocol = IPPROTO_TCP;
1086	bp->len = cpu_to_be16(nbytes);
1087
1088	sg_init_one(&sg, bp, sizeof(*bp));
1089	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1090}
1091
1092static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1093			       __be32 daddr, __be32 saddr, struct tcphdr *th)
1094{
1095	struct tcp_md5sig_pool *hp;
1096	struct hash_desc *desc;
1097
1098	hp = tcp_get_md5sig_pool();
1099	if (!hp)
1100		goto clear_hash_noput;
1101	desc = &hp->md5_desc;
1102
1103	if (crypto_hash_init(desc))
1104		goto clear_hash;
1105	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1106		goto clear_hash;
1107	if (tcp_md5_hash_header(hp, th))
1108		goto clear_hash;
1109	if (tcp_md5_hash_key(hp, key))
1110		goto clear_hash;
1111	if (crypto_hash_final(desc, md5_hash))
1112		goto clear_hash;
1113
1114	tcp_put_md5sig_pool();
1115	return 0;
1116
1117clear_hash:
1118	tcp_put_md5sig_pool();
1119clear_hash_noput:
1120	memset(md5_hash, 0, 16);
1121	return 1;
1122}
1123
1124int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1125			struct sock *sk, struct request_sock *req,
1126			struct sk_buff *skb)
1127{
1128	struct tcp_md5sig_pool *hp;
1129	struct hash_desc *desc;
1130	struct tcphdr *th = tcp_hdr(skb);
1131	__be32 saddr, daddr;
1132
1133	if (sk) {
1134		saddr = inet_sk(sk)->inet_saddr;
1135		daddr = inet_sk(sk)->inet_daddr;
1136	} else if (req) {
1137		saddr = inet_rsk(req)->loc_addr;
1138		daddr = inet_rsk(req)->rmt_addr;
1139	} else {
1140		const struct iphdr *iph = ip_hdr(skb);
1141		saddr = iph->saddr;
1142		daddr = iph->daddr;
1143	}
1144
1145	hp = tcp_get_md5sig_pool();
1146	if (!hp)
1147		goto clear_hash_noput;
1148	desc = &hp->md5_desc;
1149
1150	if (crypto_hash_init(desc))
1151		goto clear_hash;
1152
1153	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1154		goto clear_hash;
1155	if (tcp_md5_hash_header(hp, th))
1156		goto clear_hash;
1157	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1158		goto clear_hash;
1159	if (tcp_md5_hash_key(hp, key))
1160		goto clear_hash;
1161	if (crypto_hash_final(desc, md5_hash))
1162		goto clear_hash;
1163
1164	tcp_put_md5sig_pool();
1165	return 0;
1166
1167clear_hash:
1168	tcp_put_md5sig_pool();
1169clear_hash_noput:
1170	memset(md5_hash, 0, 16);
1171	return 1;
1172}
1173EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1174
1175static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1176{
1177	/*
1178	 * This gets called for each TCP segment that arrives
1179	 * so we want to be efficient.
1180	 * We have 3 drop cases:
1181	 * o No MD5 hash and one expected.
1182	 * o MD5 hash and we're not expecting one.
1183	 * o MD5 hash and its wrong.
1184	 */
1185	__u8 *hash_location = NULL;
1186	struct tcp_md5sig_key *hash_expected;
1187	const struct iphdr *iph = ip_hdr(skb);
1188	struct tcphdr *th = tcp_hdr(skb);
1189	int genhash;
1190	unsigned char newhash[16];
1191
1192	hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
 
1193	hash_location = tcp_parse_md5sig_option(th);
1194
1195	/* We've parsed the options - do we have a hash? */
1196	if (!hash_expected && !hash_location)
1197		return 0;
1198
1199	if (hash_expected && !hash_location) {
1200		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1201		return 1;
1202	}
1203
1204	if (!hash_expected && hash_location) {
1205		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1206		return 1;
1207	}
1208
1209	/* Okay, so this is hash_expected and hash_location -
1210	 * so we need to calculate the checksum.
1211	 */
1212	genhash = tcp_v4_md5_hash_skb(newhash,
1213				      hash_expected,
1214				      NULL, NULL, skb);
1215
1216	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1217		if (net_ratelimit()) {
1218			printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1219			       &iph->saddr, ntohs(th->source),
1220			       &iph->daddr, ntohs(th->dest),
1221			       genhash ? " tcp_v4_calc_md5_hash failed" : "");
1222		}
1223		return 1;
1224	}
1225	return 0;
1226}
1227
1228#endif
1229
1230struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1231	.family		=	PF_INET,
1232	.obj_size	=	sizeof(struct tcp_request_sock),
1233	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1234	.send_ack	=	tcp_v4_reqsk_send_ack,
1235	.destructor	=	tcp_v4_reqsk_destructor,
1236	.send_reset	=	tcp_v4_send_reset,
1237	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1238};
1239
1240#ifdef CONFIG_TCP_MD5SIG
1241static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1242	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1243	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1244};
1245#endif
1246
1247int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1248{
1249	struct tcp_extend_values tmp_ext;
1250	struct tcp_options_received tmp_opt;
1251	u8 *hash_location;
1252	struct request_sock *req;
1253	struct inet_request_sock *ireq;
1254	struct tcp_sock *tp = tcp_sk(sk);
1255	struct dst_entry *dst = NULL;
1256	__be32 saddr = ip_hdr(skb)->saddr;
1257	__be32 daddr = ip_hdr(skb)->daddr;
1258	__u32 isn = TCP_SKB_CB(skb)->when;
1259	int want_cookie = 0;
1260
1261	/* Never answer to SYNs send to broadcast or multicast */
1262	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1263		goto drop;
1264
1265	/* TW buckets are converted to open requests without
1266	 * limitations, they conserve resources and peer is
1267	 * evidently real one.
1268	 */
1269	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1270		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1271		if (!want_cookie)
1272			goto drop;
1273	}
1274
1275	/* Accept backlog is full. If we have already queued enough
1276	 * of warm entries in syn queue, drop request. It is better than
1277	 * clogging syn queue with openreqs with exponentially increasing
1278	 * timeout.
1279	 */
1280	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1281		goto drop;
1282
1283	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1284	if (!req)
1285		goto drop;
1286
1287#ifdef CONFIG_TCP_MD5SIG
1288	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1289#endif
1290
1291	tcp_clear_options(&tmp_opt);
1292	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1293	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1294	tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1295
1296	if (tmp_opt.cookie_plus > 0 &&
1297	    tmp_opt.saw_tstamp &&
1298	    !tp->rx_opt.cookie_out_never &&
1299	    (sysctl_tcp_cookie_size > 0 ||
1300	     (tp->cookie_values != NULL &&
1301	      tp->cookie_values->cookie_desired > 0))) {
1302		u8 *c;
1303		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1304		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1305
1306		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1307			goto drop_and_release;
1308
1309		/* Secret recipe starts with IP addresses */
1310		*mess++ ^= (__force u32)daddr;
1311		*mess++ ^= (__force u32)saddr;
1312
1313		/* plus variable length Initiator Cookie */
1314		c = (u8 *)mess;
1315		while (l-- > 0)
1316			*c++ ^= *hash_location++;
1317
1318		want_cookie = 0;	/* not our kind of cookie */
1319		tmp_ext.cookie_out_never = 0; /* false */
1320		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1321	} else if (!tp->rx_opt.cookie_in_always) {
1322		/* redundant indications, but ensure initialization. */
1323		tmp_ext.cookie_out_never = 1; /* true */
1324		tmp_ext.cookie_plus = 0;
1325	} else {
1326		goto drop_and_release;
1327	}
1328	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1329
1330	if (want_cookie && !tmp_opt.saw_tstamp)
1331		tcp_clear_options(&tmp_opt);
1332
1333	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1334	tcp_openreq_init(req, &tmp_opt, skb);
1335
1336	ireq = inet_rsk(req);
1337	ireq->loc_addr = daddr;
1338	ireq->rmt_addr = saddr;
1339	ireq->no_srccheck = inet_sk(sk)->transparent;
1340	ireq->opt = tcp_v4_save_options(sk, skb);
1341
1342	if (security_inet_conn_request(sk, skb, req))
1343		goto drop_and_free;
1344
1345	if (!want_cookie || tmp_opt.tstamp_ok)
1346		TCP_ECN_create_request(req, tcp_hdr(skb));
1347
1348	if (want_cookie) {
1349		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1350		req->cookie_ts = tmp_opt.tstamp_ok;
1351	} else if (!isn) {
1352		struct inet_peer *peer = NULL;
1353		struct flowi4 fl4;
1354
1355		/* VJ's idea. We save last timestamp seen
1356		 * from the destination in peer table, when entering
1357		 * state TIME-WAIT, and check against it before
1358		 * accepting new connection request.
1359		 *
1360		 * If "isn" is not zero, this request hit alive
1361		 * timewait bucket, so that all the necessary checks
1362		 * are made in the function processing timewait state.
1363		 */
1364		if (tmp_opt.saw_tstamp &&
1365		    tcp_death_row.sysctl_tw_recycle &&
1366		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1367		    fl4.daddr == saddr &&
1368		    (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1369			inet_peer_refcheck(peer);
1370			if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1371			    (s32)(peer->tcp_ts - req->ts_recent) >
1372							TCP_PAWS_WINDOW) {
1373				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1374				goto drop_and_release;
1375			}
1376		}
1377		/* Kill the following clause, if you dislike this way. */
1378		else if (!sysctl_tcp_syncookies &&
1379			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1380			  (sysctl_max_syn_backlog >> 2)) &&
1381			 (!peer || !peer->tcp_ts_stamp) &&
1382			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1383			/* Without syncookies last quarter of
1384			 * backlog is filled with destinations,
1385			 * proven to be alive.
1386			 * It means that we continue to communicate
1387			 * to destinations, already remembered
1388			 * to the moment of synflood.
1389			 */
1390			LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1391				       &saddr, ntohs(tcp_hdr(skb)->source));
1392			goto drop_and_release;
1393		}
1394
1395		isn = tcp_v4_init_sequence(skb);
1396	}
1397	tcp_rsk(req)->snt_isn = isn;
1398	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1399
1400	if (tcp_v4_send_synack(sk, dst, req,
1401			       (struct request_values *)&tmp_ext) ||
 
1402	    want_cookie)
1403		goto drop_and_free;
1404
1405	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1406	return 0;
1407
1408drop_and_release:
1409	dst_release(dst);
1410drop_and_free:
1411	reqsk_free(req);
1412drop:
1413	return 0;
1414}
1415EXPORT_SYMBOL(tcp_v4_conn_request);
1416
1417
1418/*
1419 * The three way handshake has completed - we got a valid synack -
1420 * now create the new socket.
1421 */
1422struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1423				  struct request_sock *req,
1424				  struct dst_entry *dst)
1425{
1426	struct inet_request_sock *ireq;
1427	struct inet_sock *newinet;
1428	struct tcp_sock *newtp;
1429	struct sock *newsk;
1430#ifdef CONFIG_TCP_MD5SIG
1431	struct tcp_md5sig_key *key;
1432#endif
1433	struct ip_options_rcu *inet_opt;
1434
1435	if (sk_acceptq_is_full(sk))
1436		goto exit_overflow;
1437
1438	newsk = tcp_create_openreq_child(sk, req, skb);
1439	if (!newsk)
1440		goto exit_nonewsk;
1441
1442	newsk->sk_gso_type = SKB_GSO_TCPV4;
1443
1444	newtp		      = tcp_sk(newsk);
1445	newinet		      = inet_sk(newsk);
1446	ireq		      = inet_rsk(req);
1447	newinet->inet_daddr   = ireq->rmt_addr;
1448	newinet->inet_rcv_saddr = ireq->loc_addr;
1449	newinet->inet_saddr	      = ireq->loc_addr;
1450	inet_opt	      = ireq->opt;
1451	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1452	ireq->opt	      = NULL;
1453	newinet->mc_index     = inet_iif(skb);
1454	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
 
1455	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1456	if (inet_opt)
1457		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1458	newinet->inet_id = newtp->write_seq ^ jiffies;
1459
1460	if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1461		goto put_and_exit;
1462
 
 
 
 
1463	sk_setup_caps(newsk, dst);
1464
1465	tcp_mtup_init(newsk);
1466	tcp_sync_mss(newsk, dst_mtu(dst));
1467	newtp->advmss = dst_metric_advmss(dst);
1468	if (tcp_sk(sk)->rx_opt.user_mss &&
1469	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1470		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1471
1472	tcp_initialize_rcv_mss(newsk);
1473	if (tcp_rsk(req)->snt_synack)
1474		tcp_valid_rtt_meas(newsk,
1475		    tcp_time_stamp - tcp_rsk(req)->snt_synack);
1476	newtp->total_retrans = req->retrans;
1477
1478#ifdef CONFIG_TCP_MD5SIG
1479	/* Copy over the MD5 key from the original socket */
1480	key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
 
1481	if (key != NULL) {
1482		/*
1483		 * We're using one, so create a matching key
1484		 * on the newsk structure. If we fail to get
1485		 * memory, then we end up not copying the key
1486		 * across. Shucks.
1487		 */
1488		char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1489		if (newkey != NULL)
1490			tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1491					  newkey, key->keylen);
1492		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1493	}
1494#endif
1495
1496	if (__inet_inherit_port(sk, newsk) < 0)
1497		goto put_and_exit;
1498	__inet_hash_nolisten(newsk, NULL);
1499
1500	return newsk;
1501
1502exit_overflow:
1503	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1504exit_nonewsk:
1505	dst_release(dst);
1506exit:
1507	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1508	return NULL;
1509put_and_exit:
 
 
 
1510	sock_put(newsk);
1511	goto exit;
1512}
1513EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1514
1515static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1516{
1517	struct tcphdr *th = tcp_hdr(skb);
1518	const struct iphdr *iph = ip_hdr(skb);
1519	struct sock *nsk;
1520	struct request_sock **prev;
1521	/* Find possible connection requests. */
1522	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1523						       iph->saddr, iph->daddr);
1524	if (req)
1525		return tcp_check_req(sk, skb, req, prev);
1526
1527	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1528			th->source, iph->daddr, th->dest, inet_iif(skb));
1529
1530	if (nsk) {
1531		if (nsk->sk_state != TCP_TIME_WAIT) {
1532			bh_lock_sock(nsk);
1533			return nsk;
1534		}
1535		inet_twsk_put(inet_twsk(nsk));
1536		return NULL;
1537	}
1538
1539#ifdef CONFIG_SYN_COOKIES
1540	if (!th->syn)
1541		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1542#endif
1543	return sk;
1544}
1545
1546static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1547{
1548	const struct iphdr *iph = ip_hdr(skb);
1549
1550	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1551		if (!tcp_v4_check(skb->len, iph->saddr,
1552				  iph->daddr, skb->csum)) {
1553			skb->ip_summed = CHECKSUM_UNNECESSARY;
1554			return 0;
1555		}
1556	}
1557
1558	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1559				       skb->len, IPPROTO_TCP, 0);
1560
1561	if (skb->len <= 76) {
1562		return __skb_checksum_complete(skb);
1563	}
1564	return 0;
1565}
1566
1567
1568/* The socket must have it's spinlock held when we get
1569 * here.
1570 *
1571 * We have a potential double-lock case here, so even when
1572 * doing backlog processing we use the BH locking scheme.
1573 * This is because we cannot sleep with the original spinlock
1574 * held.
1575 */
1576int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1577{
1578	struct sock *rsk;
1579#ifdef CONFIG_TCP_MD5SIG
1580	/*
1581	 * We really want to reject the packet as early as possible
1582	 * if:
1583	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1584	 *  o There is an MD5 option and we're not expecting one
1585	 */
1586	if (tcp_v4_inbound_md5_hash(sk, skb))
1587		goto discard;
1588#endif
1589
1590	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1591		sock_rps_save_rxhash(sk, skb->rxhash);
1592		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1593			rsk = sk;
1594			goto reset;
1595		}
1596		return 0;
1597	}
1598
1599	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1600		goto csum_err;
1601
1602	if (sk->sk_state == TCP_LISTEN) {
1603		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1604		if (!nsk)
1605			goto discard;
1606
1607		if (nsk != sk) {
1608			sock_rps_save_rxhash(nsk, skb->rxhash);
1609			if (tcp_child_process(sk, nsk, skb)) {
1610				rsk = nsk;
1611				goto reset;
1612			}
1613			return 0;
1614		}
1615	} else
1616		sock_rps_save_rxhash(sk, skb->rxhash);
1617
1618	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1619		rsk = sk;
1620		goto reset;
1621	}
1622	return 0;
1623
1624reset:
1625	tcp_v4_send_reset(rsk, skb);
1626discard:
1627	kfree_skb(skb);
1628	/* Be careful here. If this function gets more complicated and
1629	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1630	 * might be destroyed here. This current version compiles correctly,
1631	 * but you have been warned.
1632	 */
1633	return 0;
1634
1635csum_err:
1636	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1637	goto discard;
1638}
1639EXPORT_SYMBOL(tcp_v4_do_rcv);
1640
1641/*
1642 *	From tcp_input.c
1643 */
1644
1645int tcp_v4_rcv(struct sk_buff *skb)
1646{
1647	const struct iphdr *iph;
1648	struct tcphdr *th;
1649	struct sock *sk;
1650	int ret;
1651	struct net *net = dev_net(skb->dev);
1652
1653	if (skb->pkt_type != PACKET_HOST)
1654		goto discard_it;
1655
1656	/* Count it even if it's bad */
1657	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1658
1659	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1660		goto discard_it;
1661
1662	th = tcp_hdr(skb);
1663
1664	if (th->doff < sizeof(struct tcphdr) / 4)
1665		goto bad_packet;
1666	if (!pskb_may_pull(skb, th->doff * 4))
1667		goto discard_it;
1668
1669	/* An explanation is required here, I think.
1670	 * Packet length and doff are validated by header prediction,
1671	 * provided case of th->doff==0 is eliminated.
1672	 * So, we defer the checks. */
1673	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1674		goto bad_packet;
1675
1676	th = tcp_hdr(skb);
1677	iph = ip_hdr(skb);
1678	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1679	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1680				    skb->len - th->doff * 4);
1681	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1682	TCP_SKB_CB(skb)->when	 = 0;
1683	TCP_SKB_CB(skb)->flags	 = iph->tos;
1684	TCP_SKB_CB(skb)->sacked	 = 0;
1685
1686	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1687	if (!sk)
1688		goto no_tcp_socket;
1689
1690process:
1691	if (sk->sk_state == TCP_TIME_WAIT)
1692		goto do_time_wait;
1693
1694	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1695		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1696		goto discard_and_relse;
1697	}
1698
1699	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1700		goto discard_and_relse;
1701	nf_reset(skb);
1702
1703	if (sk_filter(sk, skb))
1704		goto discard_and_relse;
1705
1706	skb->dev = NULL;
1707
1708	bh_lock_sock_nested(sk);
1709	ret = 0;
1710	if (!sock_owned_by_user(sk)) {
1711#ifdef CONFIG_NET_DMA
1712		struct tcp_sock *tp = tcp_sk(sk);
1713		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1714			tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1715		if (tp->ucopy.dma_chan)
1716			ret = tcp_v4_do_rcv(sk, skb);
1717		else
1718#endif
1719		{
1720			if (!tcp_prequeue(sk, skb))
1721				ret = tcp_v4_do_rcv(sk, skb);
1722		}
1723	} else if (unlikely(sk_add_backlog(sk, skb))) {
 
1724		bh_unlock_sock(sk);
1725		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1726		goto discard_and_relse;
1727	}
1728	bh_unlock_sock(sk);
1729
1730	sock_put(sk);
1731
1732	return ret;
1733
1734no_tcp_socket:
1735	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1736		goto discard_it;
1737
1738	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1739bad_packet:
1740		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1741	} else {
1742		tcp_v4_send_reset(NULL, skb);
1743	}
1744
1745discard_it:
1746	/* Discard frame. */
1747	kfree_skb(skb);
1748	return 0;
1749
1750discard_and_relse:
1751	sock_put(sk);
1752	goto discard_it;
1753
1754do_time_wait:
1755	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1756		inet_twsk_put(inet_twsk(sk));
1757		goto discard_it;
1758	}
1759
1760	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1761		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1762		inet_twsk_put(inet_twsk(sk));
1763		goto discard_it;
1764	}
1765	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1766	case TCP_TW_SYN: {
1767		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1768							&tcp_hashinfo,
1769							iph->daddr, th->dest,
1770							inet_iif(skb));
1771		if (sk2) {
1772			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1773			inet_twsk_put(inet_twsk(sk));
1774			sk = sk2;
1775			goto process;
1776		}
1777		/* Fall through to ACK */
1778	}
1779	case TCP_TW_ACK:
1780		tcp_v4_timewait_ack(sk, skb);
1781		break;
1782	case TCP_TW_RST:
1783		goto no_tcp_socket;
1784	case TCP_TW_SUCCESS:;
1785	}
1786	goto discard_it;
1787}
1788
1789struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1790{
1791	struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1792	struct inet_sock *inet = inet_sk(sk);
1793	struct inet_peer *peer;
1794
1795	if (!rt ||
1796	    inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1797		peer = inet_getpeer_v4(inet->inet_daddr, 1);
1798		*release_it = true;
1799	} else {
1800		if (!rt->peer)
1801			rt_bind_peer(rt, inet->inet_daddr, 1);
1802		peer = rt->peer;
1803		*release_it = false;
1804	}
1805
1806	return peer;
1807}
1808EXPORT_SYMBOL(tcp_v4_get_peer);
1809
1810void *tcp_v4_tw_get_peer(struct sock *sk)
1811{
1812	struct inet_timewait_sock *tw = inet_twsk(sk);
1813
1814	return inet_getpeer_v4(tw->tw_daddr, 1);
1815}
1816EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1817
1818static struct timewait_sock_ops tcp_timewait_sock_ops = {
1819	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1820	.twsk_unique	= tcp_twsk_unique,
1821	.twsk_destructor= tcp_twsk_destructor,
1822	.twsk_getpeer	= tcp_v4_tw_get_peer,
1823};
1824
1825const struct inet_connection_sock_af_ops ipv4_specific = {
1826	.queue_xmit	   = ip_queue_xmit,
1827	.send_check	   = tcp_v4_send_check,
1828	.rebuild_header	   = inet_sk_rebuild_header,
1829	.conn_request	   = tcp_v4_conn_request,
1830	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1831	.get_peer	   = tcp_v4_get_peer,
1832	.net_header_len	   = sizeof(struct iphdr),
1833	.setsockopt	   = ip_setsockopt,
1834	.getsockopt	   = ip_getsockopt,
1835	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1836	.sockaddr_len	   = sizeof(struct sockaddr_in),
1837	.bind_conflict	   = inet_csk_bind_conflict,
1838#ifdef CONFIG_COMPAT
1839	.compat_setsockopt = compat_ip_setsockopt,
1840	.compat_getsockopt = compat_ip_getsockopt,
1841#endif
1842};
1843EXPORT_SYMBOL(ipv4_specific);
1844
1845#ifdef CONFIG_TCP_MD5SIG
1846static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1847	.md5_lookup		= tcp_v4_md5_lookup,
1848	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1849	.md5_add		= tcp_v4_md5_add_func,
1850	.md5_parse		= tcp_v4_parse_md5_keys,
1851};
1852#endif
1853
1854/* NOTE: A lot of things set to zero explicitly by call to
1855 *       sk_alloc() so need not be done here.
1856 */
1857static int tcp_v4_init_sock(struct sock *sk)
1858{
1859	struct inet_connection_sock *icsk = inet_csk(sk);
1860	struct tcp_sock *tp = tcp_sk(sk);
1861
1862	skb_queue_head_init(&tp->out_of_order_queue);
1863	tcp_init_xmit_timers(sk);
1864	tcp_prequeue_init(tp);
1865
1866	icsk->icsk_rto = TCP_TIMEOUT_INIT;
1867	tp->mdev = TCP_TIMEOUT_INIT;
1868
1869	/* So many TCP implementations out there (incorrectly) count the
1870	 * initial SYN frame in their delayed-ACK and congestion control
1871	 * algorithms that we must have the following bandaid to talk
1872	 * efficiently to them.  -DaveM
1873	 */
1874	tp->snd_cwnd = TCP_INIT_CWND;
1875
1876	/* See draft-stevens-tcpca-spec-01 for discussion of the
1877	 * initialization of these values.
1878	 */
1879	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1880	tp->snd_cwnd_clamp = ~0;
1881	tp->mss_cache = TCP_MSS_DEFAULT;
1882
1883	tp->reordering = sysctl_tcp_reordering;
1884	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1885
1886	sk->sk_state = TCP_CLOSE;
1887
1888	sk->sk_write_space = sk_stream_write_space;
1889	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1890
1891	icsk->icsk_af_ops = &ipv4_specific;
1892	icsk->icsk_sync_mss = tcp_sync_mss;
1893#ifdef CONFIG_TCP_MD5SIG
1894	tp->af_specific = &tcp_sock_ipv4_specific;
1895#endif
1896
1897	/* TCP Cookie Transactions */
1898	if (sysctl_tcp_cookie_size > 0) {
1899		/* Default, cookies without s_data_payload. */
1900		tp->cookie_values =
1901			kzalloc(sizeof(*tp->cookie_values),
1902				sk->sk_allocation);
1903		if (tp->cookie_values != NULL)
1904			kref_init(&tp->cookie_values->kref);
1905	}
1906	/* Presumed zeroed, in order of appearance:
1907	 *	cookie_in_always, cookie_out_never,
1908	 *	s_data_constant, s_data_in, s_data_out
1909	 */
1910	sk->sk_sndbuf = sysctl_tcp_wmem[1];
1911	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1912
1913	local_bh_disable();
1914	percpu_counter_inc(&tcp_sockets_allocated);
1915	local_bh_enable();
1916
1917	return 0;
1918}
1919
1920void tcp_v4_destroy_sock(struct sock *sk)
1921{
1922	struct tcp_sock *tp = tcp_sk(sk);
1923
1924	tcp_clear_xmit_timers(sk);
1925
1926	tcp_cleanup_congestion_control(sk);
1927
1928	/* Cleanup up the write buffer. */
1929	tcp_write_queue_purge(sk);
1930
1931	/* Cleans up our, hopefully empty, out_of_order_queue. */
1932	__skb_queue_purge(&tp->out_of_order_queue);
1933
1934#ifdef CONFIG_TCP_MD5SIG
1935	/* Clean up the MD5 key list, if any */
1936	if (tp->md5sig_info) {
1937		tcp_v4_clear_md5_list(sk);
1938		kfree(tp->md5sig_info);
1939		tp->md5sig_info = NULL;
1940	}
1941#endif
1942
1943#ifdef CONFIG_NET_DMA
1944	/* Cleans up our sk_async_wait_queue */
1945	__skb_queue_purge(&sk->sk_async_wait_queue);
1946#endif
1947
1948	/* Clean prequeue, it must be empty really */
1949	__skb_queue_purge(&tp->ucopy.prequeue);
1950
1951	/* Clean up a referenced TCP bind bucket. */
1952	if (inet_csk(sk)->icsk_bind_hash)
1953		inet_put_port(sk);
1954
1955	/*
1956	 * If sendmsg cached page exists, toss it.
1957	 */
1958	if (sk->sk_sndmsg_page) {
1959		__free_page(sk->sk_sndmsg_page);
1960		sk->sk_sndmsg_page = NULL;
1961	}
1962
1963	/* TCP Cookie Transactions */
1964	if (tp->cookie_values != NULL) {
1965		kref_put(&tp->cookie_values->kref,
1966			 tcp_cookie_values_release);
1967		tp->cookie_values = NULL;
1968	}
1969
1970	percpu_counter_dec(&tcp_sockets_allocated);
 
1971}
1972EXPORT_SYMBOL(tcp_v4_destroy_sock);
1973
1974#ifdef CONFIG_PROC_FS
1975/* Proc filesystem TCP sock list dumping. */
1976
1977static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1978{
1979	return hlist_nulls_empty(head) ? NULL :
1980		list_entry(head->first, struct inet_timewait_sock, tw_node);
1981}
1982
1983static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1984{
1985	return !is_a_nulls(tw->tw_node.next) ?
1986		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1987}
1988
1989/*
1990 * Get next listener socket follow cur.  If cur is NULL, get first socket
1991 * starting from bucket given in st->bucket; when st->bucket is zero the
1992 * very first socket in the hash table is returned.
1993 */
1994static void *listening_get_next(struct seq_file *seq, void *cur)
1995{
1996	struct inet_connection_sock *icsk;
1997	struct hlist_nulls_node *node;
1998	struct sock *sk = cur;
1999	struct inet_listen_hashbucket *ilb;
2000	struct tcp_iter_state *st = seq->private;
2001	struct net *net = seq_file_net(seq);
2002
2003	if (!sk) {
2004		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2005		spin_lock_bh(&ilb->lock);
2006		sk = sk_nulls_head(&ilb->head);
2007		st->offset = 0;
2008		goto get_sk;
2009	}
2010	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2011	++st->num;
2012	++st->offset;
2013
2014	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2015		struct request_sock *req = cur;
2016
2017		icsk = inet_csk(st->syn_wait_sk);
2018		req = req->dl_next;
2019		while (1) {
2020			while (req) {
2021				if (req->rsk_ops->family == st->family) {
2022					cur = req;
2023					goto out;
2024				}
2025				req = req->dl_next;
2026			}
2027			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2028				break;
2029get_req:
2030			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2031		}
2032		sk	  = sk_nulls_next(st->syn_wait_sk);
2033		st->state = TCP_SEQ_STATE_LISTENING;
2034		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2035	} else {
2036		icsk = inet_csk(sk);
2037		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2038		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2039			goto start_req;
2040		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2041		sk = sk_nulls_next(sk);
2042	}
2043get_sk:
2044	sk_nulls_for_each_from(sk, node) {
2045		if (!net_eq(sock_net(sk), net))
2046			continue;
2047		if (sk->sk_family == st->family) {
2048			cur = sk;
2049			goto out;
2050		}
2051		icsk = inet_csk(sk);
2052		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2053		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2054start_req:
2055			st->uid		= sock_i_uid(sk);
2056			st->syn_wait_sk = sk;
2057			st->state	= TCP_SEQ_STATE_OPENREQ;
2058			st->sbucket	= 0;
2059			goto get_req;
2060		}
2061		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2062	}
2063	spin_unlock_bh(&ilb->lock);
2064	st->offset = 0;
2065	if (++st->bucket < INET_LHTABLE_SIZE) {
2066		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2067		spin_lock_bh(&ilb->lock);
2068		sk = sk_nulls_head(&ilb->head);
2069		goto get_sk;
2070	}
2071	cur = NULL;
2072out:
2073	return cur;
2074}
2075
2076static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2077{
2078	struct tcp_iter_state *st = seq->private;
2079	void *rc;
2080
2081	st->bucket = 0;
2082	st->offset = 0;
2083	rc = listening_get_next(seq, NULL);
2084
2085	while (rc && *pos) {
2086		rc = listening_get_next(seq, rc);
2087		--*pos;
2088	}
2089	return rc;
2090}
2091
2092static inline int empty_bucket(struct tcp_iter_state *st)
2093{
2094	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2095		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2096}
2097
2098/*
2099 * Get first established socket starting from bucket given in st->bucket.
2100 * If st->bucket is zero, the very first socket in the hash is returned.
2101 */
2102static void *established_get_first(struct seq_file *seq)
2103{
2104	struct tcp_iter_state *st = seq->private;
2105	struct net *net = seq_file_net(seq);
2106	void *rc = NULL;
2107
2108	st->offset = 0;
2109	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2110		struct sock *sk;
2111		struct hlist_nulls_node *node;
2112		struct inet_timewait_sock *tw;
2113		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2114
2115		/* Lockless fast path for the common case of empty buckets */
2116		if (empty_bucket(st))
2117			continue;
2118
2119		spin_lock_bh(lock);
2120		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2121			if (sk->sk_family != st->family ||
2122			    !net_eq(sock_net(sk), net)) {
2123				continue;
2124			}
2125			rc = sk;
2126			goto out;
2127		}
2128		st->state = TCP_SEQ_STATE_TIME_WAIT;
2129		inet_twsk_for_each(tw, node,
2130				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2131			if (tw->tw_family != st->family ||
2132			    !net_eq(twsk_net(tw), net)) {
2133				continue;
2134			}
2135			rc = tw;
2136			goto out;
2137		}
2138		spin_unlock_bh(lock);
2139		st->state = TCP_SEQ_STATE_ESTABLISHED;
2140	}
2141out:
2142	return rc;
2143}
2144
2145static void *established_get_next(struct seq_file *seq, void *cur)
2146{
2147	struct sock *sk = cur;
2148	struct inet_timewait_sock *tw;
2149	struct hlist_nulls_node *node;
2150	struct tcp_iter_state *st = seq->private;
2151	struct net *net = seq_file_net(seq);
2152
2153	++st->num;
2154	++st->offset;
2155
2156	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2157		tw = cur;
2158		tw = tw_next(tw);
2159get_tw:
2160		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2161			tw = tw_next(tw);
2162		}
2163		if (tw) {
2164			cur = tw;
2165			goto out;
2166		}
2167		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2168		st->state = TCP_SEQ_STATE_ESTABLISHED;
2169
2170		/* Look for next non empty bucket */
2171		st->offset = 0;
2172		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2173				empty_bucket(st))
2174			;
2175		if (st->bucket > tcp_hashinfo.ehash_mask)
2176			return NULL;
2177
2178		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2179		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2180	} else
2181		sk = sk_nulls_next(sk);
2182
2183	sk_nulls_for_each_from(sk, node) {
2184		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2185			goto found;
2186	}
2187
2188	st->state = TCP_SEQ_STATE_TIME_WAIT;
2189	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2190	goto get_tw;
2191found:
2192	cur = sk;
2193out:
2194	return cur;
2195}
2196
2197static void *established_get_idx(struct seq_file *seq, loff_t pos)
2198{
2199	struct tcp_iter_state *st = seq->private;
2200	void *rc;
2201
2202	st->bucket = 0;
2203	rc = established_get_first(seq);
2204
2205	while (rc && pos) {
2206		rc = established_get_next(seq, rc);
2207		--pos;
2208	}
2209	return rc;
2210}
2211
2212static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2213{
2214	void *rc;
2215	struct tcp_iter_state *st = seq->private;
2216
2217	st->state = TCP_SEQ_STATE_LISTENING;
2218	rc	  = listening_get_idx(seq, &pos);
2219
2220	if (!rc) {
2221		st->state = TCP_SEQ_STATE_ESTABLISHED;
2222		rc	  = established_get_idx(seq, pos);
2223	}
2224
2225	return rc;
2226}
2227
2228static void *tcp_seek_last_pos(struct seq_file *seq)
2229{
2230	struct tcp_iter_state *st = seq->private;
2231	int offset = st->offset;
2232	int orig_num = st->num;
2233	void *rc = NULL;
2234
2235	switch (st->state) {
2236	case TCP_SEQ_STATE_OPENREQ:
2237	case TCP_SEQ_STATE_LISTENING:
2238		if (st->bucket >= INET_LHTABLE_SIZE)
2239			break;
2240		st->state = TCP_SEQ_STATE_LISTENING;
2241		rc = listening_get_next(seq, NULL);
2242		while (offset-- && rc)
2243			rc = listening_get_next(seq, rc);
2244		if (rc)
2245			break;
2246		st->bucket = 0;
2247		/* Fallthrough */
2248	case TCP_SEQ_STATE_ESTABLISHED:
2249	case TCP_SEQ_STATE_TIME_WAIT:
2250		st->state = TCP_SEQ_STATE_ESTABLISHED;
2251		if (st->bucket > tcp_hashinfo.ehash_mask)
2252			break;
2253		rc = established_get_first(seq);
2254		while (offset-- && rc)
2255			rc = established_get_next(seq, rc);
2256	}
2257
2258	st->num = orig_num;
2259
2260	return rc;
2261}
2262
2263static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2264{
2265	struct tcp_iter_state *st = seq->private;
2266	void *rc;
2267
2268	if (*pos && *pos == st->last_pos) {
2269		rc = tcp_seek_last_pos(seq);
2270		if (rc)
2271			goto out;
2272	}
2273
2274	st->state = TCP_SEQ_STATE_LISTENING;
2275	st->num = 0;
2276	st->bucket = 0;
2277	st->offset = 0;
2278	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2279
2280out:
2281	st->last_pos = *pos;
2282	return rc;
2283}
2284
2285static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2286{
2287	struct tcp_iter_state *st = seq->private;
2288	void *rc = NULL;
2289
2290	if (v == SEQ_START_TOKEN) {
2291		rc = tcp_get_idx(seq, 0);
2292		goto out;
2293	}
2294
2295	switch (st->state) {
2296	case TCP_SEQ_STATE_OPENREQ:
2297	case TCP_SEQ_STATE_LISTENING:
2298		rc = listening_get_next(seq, v);
2299		if (!rc) {
2300			st->state = TCP_SEQ_STATE_ESTABLISHED;
2301			st->bucket = 0;
2302			st->offset = 0;
2303			rc	  = established_get_first(seq);
2304		}
2305		break;
2306	case TCP_SEQ_STATE_ESTABLISHED:
2307	case TCP_SEQ_STATE_TIME_WAIT:
2308		rc = established_get_next(seq, v);
2309		break;
2310	}
2311out:
2312	++*pos;
2313	st->last_pos = *pos;
2314	return rc;
2315}
2316
2317static void tcp_seq_stop(struct seq_file *seq, void *v)
2318{
2319	struct tcp_iter_state *st = seq->private;
2320
2321	switch (st->state) {
2322	case TCP_SEQ_STATE_OPENREQ:
2323		if (v) {
2324			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2325			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2326		}
2327	case TCP_SEQ_STATE_LISTENING:
2328		if (v != SEQ_START_TOKEN)
2329			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2330		break;
2331	case TCP_SEQ_STATE_TIME_WAIT:
2332	case TCP_SEQ_STATE_ESTABLISHED:
2333		if (v)
2334			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2335		break;
2336	}
2337}
2338
2339static int tcp_seq_open(struct inode *inode, struct file *file)
2340{
2341	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2342	struct tcp_iter_state *s;
2343	int err;
2344
2345	err = seq_open_net(inode, file, &afinfo->seq_ops,
2346			  sizeof(struct tcp_iter_state));
2347	if (err < 0)
2348		return err;
2349
2350	s = ((struct seq_file *)file->private_data)->private;
2351	s->family		= afinfo->family;
2352	s->last_pos 		= 0;
2353	return 0;
2354}
 
2355
2356int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2357{
2358	int rc = 0;
2359	struct proc_dir_entry *p;
2360
2361	afinfo->seq_fops.open		= tcp_seq_open;
2362	afinfo->seq_fops.read		= seq_read;
2363	afinfo->seq_fops.llseek		= seq_lseek;
2364	afinfo->seq_fops.release	= seq_release_net;
2365
2366	afinfo->seq_ops.start		= tcp_seq_start;
2367	afinfo->seq_ops.next		= tcp_seq_next;
2368	afinfo->seq_ops.stop		= tcp_seq_stop;
2369
2370	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2371			     &afinfo->seq_fops, afinfo);
2372	if (!p)
2373		rc = -ENOMEM;
2374	return rc;
2375}
2376EXPORT_SYMBOL(tcp_proc_register);
2377
2378void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2379{
2380	proc_net_remove(net, afinfo->name);
2381}
2382EXPORT_SYMBOL(tcp_proc_unregister);
2383
2384static void get_openreq4(struct sock *sk, struct request_sock *req,
2385			 struct seq_file *f, int i, int uid, int *len)
2386{
2387	const struct inet_request_sock *ireq = inet_rsk(req);
2388	int ttd = req->expires - jiffies;
2389
2390	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2391		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2392		i,
2393		ireq->loc_addr,
2394		ntohs(inet_sk(sk)->inet_sport),
2395		ireq->rmt_addr,
2396		ntohs(ireq->rmt_port),
2397		TCP_SYN_RECV,
2398		0, 0, /* could print option size, but that is af dependent. */
2399		1,    /* timers active (only the expire timer) */
2400		jiffies_to_clock_t(ttd),
2401		req->retrans,
2402		uid,
2403		0,  /* non standard timer */
2404		0, /* open_requests have no inode */
2405		atomic_read(&sk->sk_refcnt),
2406		req,
2407		len);
2408}
2409
2410static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2411{
2412	int timer_active;
2413	unsigned long timer_expires;
2414	struct tcp_sock *tp = tcp_sk(sk);
2415	const struct inet_connection_sock *icsk = inet_csk(sk);
2416	struct inet_sock *inet = inet_sk(sk);
2417	__be32 dest = inet->inet_daddr;
2418	__be32 src = inet->inet_rcv_saddr;
2419	__u16 destp = ntohs(inet->inet_dport);
2420	__u16 srcp = ntohs(inet->inet_sport);
2421	int rx_queue;
2422
2423	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2424		timer_active	= 1;
2425		timer_expires	= icsk->icsk_timeout;
2426	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2427		timer_active	= 4;
2428		timer_expires	= icsk->icsk_timeout;
2429	} else if (timer_pending(&sk->sk_timer)) {
2430		timer_active	= 2;
2431		timer_expires	= sk->sk_timer.expires;
2432	} else {
2433		timer_active	= 0;
2434		timer_expires = jiffies;
2435	}
2436
2437	if (sk->sk_state == TCP_LISTEN)
2438		rx_queue = sk->sk_ack_backlog;
2439	else
2440		/*
2441		 * because we dont lock socket, we might find a transient negative value
2442		 */
2443		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2444
2445	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2446			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2447		i, src, srcp, dest, destp, sk->sk_state,
2448		tp->write_seq - tp->snd_una,
2449		rx_queue,
2450		timer_active,
2451		jiffies_to_clock_t(timer_expires - jiffies),
2452		icsk->icsk_retransmits,
2453		sock_i_uid(sk),
2454		icsk->icsk_probes_out,
2455		sock_i_ino(sk),
2456		atomic_read(&sk->sk_refcnt), sk,
2457		jiffies_to_clock_t(icsk->icsk_rto),
2458		jiffies_to_clock_t(icsk->icsk_ack.ato),
2459		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2460		tp->snd_cwnd,
2461		tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2462		len);
2463}
2464
2465static void get_timewait4_sock(struct inet_timewait_sock *tw,
2466			       struct seq_file *f, int i, int *len)
2467{
2468	__be32 dest, src;
2469	__u16 destp, srcp;
2470	int ttd = tw->tw_ttd - jiffies;
2471
2472	if (ttd < 0)
2473		ttd = 0;
2474
2475	dest  = tw->tw_daddr;
2476	src   = tw->tw_rcv_saddr;
2477	destp = ntohs(tw->tw_dport);
2478	srcp  = ntohs(tw->tw_sport);
2479
2480	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2481		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2482		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2483		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2484		atomic_read(&tw->tw_refcnt), tw, len);
2485}
2486
2487#define TMPSZ 150
2488
2489static int tcp4_seq_show(struct seq_file *seq, void *v)
2490{
2491	struct tcp_iter_state *st;
2492	int len;
2493
2494	if (v == SEQ_START_TOKEN) {
2495		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2496			   "  sl  local_address rem_address   st tx_queue "
2497			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2498			   "inode");
2499		goto out;
2500	}
2501	st = seq->private;
2502
2503	switch (st->state) {
2504	case TCP_SEQ_STATE_LISTENING:
2505	case TCP_SEQ_STATE_ESTABLISHED:
2506		get_tcp4_sock(v, seq, st->num, &len);
2507		break;
2508	case TCP_SEQ_STATE_OPENREQ:
2509		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2510		break;
2511	case TCP_SEQ_STATE_TIME_WAIT:
2512		get_timewait4_sock(v, seq, st->num, &len);
2513		break;
2514	}
2515	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2516out:
2517	return 0;
2518}
2519
 
 
 
 
 
 
 
 
2520static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2521	.name		= "tcp",
2522	.family		= AF_INET,
2523	.seq_fops	= {
2524		.owner		= THIS_MODULE,
2525	},
2526	.seq_ops	= {
2527		.show		= tcp4_seq_show,
2528	},
2529};
2530
2531static int __net_init tcp4_proc_init_net(struct net *net)
2532{
2533	return tcp_proc_register(net, &tcp4_seq_afinfo);
2534}
2535
2536static void __net_exit tcp4_proc_exit_net(struct net *net)
2537{
2538	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2539}
2540
2541static struct pernet_operations tcp4_net_ops = {
2542	.init = tcp4_proc_init_net,
2543	.exit = tcp4_proc_exit_net,
2544};
2545
2546int __init tcp4_proc_init(void)
2547{
2548	return register_pernet_subsys(&tcp4_net_ops);
2549}
2550
2551void tcp4_proc_exit(void)
2552{
2553	unregister_pernet_subsys(&tcp4_net_ops);
2554}
2555#endif /* CONFIG_PROC_FS */
2556
2557struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2558{
2559	const struct iphdr *iph = skb_gro_network_header(skb);
2560
2561	switch (skb->ip_summed) {
2562	case CHECKSUM_COMPLETE:
2563		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2564				  skb->csum)) {
2565			skb->ip_summed = CHECKSUM_UNNECESSARY;
2566			break;
2567		}
2568
2569		/* fall through */
2570	case CHECKSUM_NONE:
2571		NAPI_GRO_CB(skb)->flush = 1;
2572		return NULL;
2573	}
2574
2575	return tcp_gro_receive(head, skb);
2576}
2577
2578int tcp4_gro_complete(struct sk_buff *skb)
2579{
2580	const struct iphdr *iph = ip_hdr(skb);
2581	struct tcphdr *th = tcp_hdr(skb);
2582
2583	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2584				  iph->saddr, iph->daddr, 0);
2585	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2586
2587	return tcp_gro_complete(skb);
2588}
2589
2590struct proto tcp_prot = {
2591	.name			= "TCP",
2592	.owner			= THIS_MODULE,
2593	.close			= tcp_close,
2594	.connect		= tcp_v4_connect,
2595	.disconnect		= tcp_disconnect,
2596	.accept			= inet_csk_accept,
2597	.ioctl			= tcp_ioctl,
2598	.init			= tcp_v4_init_sock,
2599	.destroy		= tcp_v4_destroy_sock,
2600	.shutdown		= tcp_shutdown,
2601	.setsockopt		= tcp_setsockopt,
2602	.getsockopt		= tcp_getsockopt,
2603	.recvmsg		= tcp_recvmsg,
2604	.sendmsg		= tcp_sendmsg,
2605	.sendpage		= tcp_sendpage,
2606	.backlog_rcv		= tcp_v4_do_rcv,
2607	.hash			= inet_hash,
2608	.unhash			= inet_unhash,
2609	.get_port		= inet_csk_get_port,
2610	.enter_memory_pressure	= tcp_enter_memory_pressure,
2611	.sockets_allocated	= &tcp_sockets_allocated,
2612	.orphan_count		= &tcp_orphan_count,
2613	.memory_allocated	= &tcp_memory_allocated,
2614	.memory_pressure	= &tcp_memory_pressure,
2615	.sysctl_mem		= sysctl_tcp_mem,
2616	.sysctl_wmem		= sysctl_tcp_wmem,
2617	.sysctl_rmem		= sysctl_tcp_rmem,
2618	.max_header		= MAX_TCP_HEADER,
2619	.obj_size		= sizeof(struct tcp_sock),
2620	.slab_flags		= SLAB_DESTROY_BY_RCU,
2621	.twsk_prot		= &tcp_timewait_sock_ops,
2622	.rsk_prot		= &tcp_request_sock_ops,
2623	.h.hashinfo		= &tcp_hashinfo,
2624	.no_autobind		= true,
2625#ifdef CONFIG_COMPAT
2626	.compat_setsockopt	= compat_tcp_setsockopt,
2627	.compat_getsockopt	= compat_tcp_getsockopt,
2628#endif
 
 
 
 
 
2629};
2630EXPORT_SYMBOL(tcp_prot);
2631
2632
2633static int __net_init tcp_sk_init(struct net *net)
2634{
2635	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2636				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2637}
2638
2639static void __net_exit tcp_sk_exit(struct net *net)
2640{
2641	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2642}
2643
2644static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2645{
2646	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2647}
2648
2649static struct pernet_operations __net_initdata tcp_sk_ops = {
2650       .init	   = tcp_sk_init,
2651       .exit	   = tcp_sk_exit,
2652       .exit_batch = tcp_sk_exit_batch,
2653};
2654
2655void __init tcp_v4_init(void)
2656{
2657	inet_hashinfo_init(&tcp_hashinfo);
2658	if (register_pernet_subsys(&tcp_sk_ops))
2659		panic("Failed to create the TCP control socket.\n");
2660}
v3.5.6
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 *		IPv4 specific functions
   9 *
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 *
  18 *	This program is free software; you can redistribute it and/or
  19 *      modify it under the terms of the GNU General Public License
  20 *      as published by the Free Software Foundation; either version
  21 *      2 of the License, or (at your option) any later version.
  22 */
  23
  24/*
  25 * Changes:
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *					This code is dedicated to John Dyson.
  28 *		David S. Miller :	Change semantics of established hash,
  29 *					half is devoted to TIME_WAIT sockets
  30 *					and the rest go in the other half.
  31 *		Andi Kleen :		Add support for syncookies and fixed
  32 *					some bugs: ip options weren't passed to
  33 *					the TCP layer, missed a check for an
  34 *					ACK bit.
  35 *		Andi Kleen :		Implemented fast path mtu discovery.
  36 *	     				Fixed many serious bugs in the
  37 *					request_sock handling and moved
  38 *					most of it into the af independent code.
  39 *					Added tail drop and some other bugfixes.
  40 *					Added new listen semantics.
  41 *		Mike McLagan	:	Routing by source
  42 *	Juan Jose Ciarlante:		ip_dynaddr bits
  43 *		Andi Kleen:		various fixes.
  44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  45 *					coma.
  46 *	Andi Kleen		:	Fix new listen.
  47 *	Andi Kleen		:	Fix accept error reporting.
  48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  50 *					a single port at the same time.
  51 */
  52
  53#define pr_fmt(fmt) "TCP: " fmt
  54
  55#include <linux/bottom_half.h>
  56#include <linux/types.h>
  57#include <linux/fcntl.h>
  58#include <linux/module.h>
  59#include <linux/random.h>
  60#include <linux/cache.h>
  61#include <linux/jhash.h>
  62#include <linux/init.h>
  63#include <linux/times.h>
  64#include <linux/slab.h>
  65
  66#include <net/net_namespace.h>
  67#include <net/icmp.h>
  68#include <net/inet_hashtables.h>
  69#include <net/tcp.h>
  70#include <net/transp_v6.h>
  71#include <net/ipv6.h>
  72#include <net/inet_common.h>
  73#include <net/timewait_sock.h>
  74#include <net/xfrm.h>
  75#include <net/netdma.h>
  76#include <net/secure_seq.h>
  77#include <net/tcp_memcontrol.h>
  78
  79#include <linux/inet.h>
  80#include <linux/ipv6.h>
  81#include <linux/stddef.h>
  82#include <linux/proc_fs.h>
  83#include <linux/seq_file.h>
  84
  85#include <linux/crypto.h>
  86#include <linux/scatterlist.h>
  87
  88int sysctl_tcp_tw_reuse __read_mostly;
  89int sysctl_tcp_low_latency __read_mostly;
  90EXPORT_SYMBOL(sysctl_tcp_low_latency);
  91
  92
  93#ifdef CONFIG_TCP_MD5SIG
  94static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  95			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
 
 
 
 
 
 
 
 
  96#endif
  97
  98struct inet_hashinfo tcp_hashinfo;
  99EXPORT_SYMBOL(tcp_hashinfo);
 100
 101static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
 102{
 103	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
 104					  ip_hdr(skb)->saddr,
 105					  tcp_hdr(skb)->dest,
 106					  tcp_hdr(skb)->source);
 107}
 108
 109int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 110{
 111	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 112	struct tcp_sock *tp = tcp_sk(sk);
 113
 114	/* With PAWS, it is safe from the viewpoint
 115	   of data integrity. Even without PAWS it is safe provided sequence
 116	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 117
 118	   Actually, the idea is close to VJ's one, only timestamp cache is
 119	   held not per host, but per port pair and TW bucket is used as state
 120	   holder.
 121
 122	   If TW bucket has been already destroyed we fall back to VJ's scheme
 123	   and use initial timestamp retrieved from peer table.
 124	 */
 125	if (tcptw->tw_ts_recent_stamp &&
 126	    (twp == NULL || (sysctl_tcp_tw_reuse &&
 127			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
 128		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
 129		if (tp->write_seq == 0)
 130			tp->write_seq = 1;
 131		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 132		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 133		sock_hold(sktw);
 134		return 1;
 135	}
 136
 137	return 0;
 138}
 139EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 140
 141static int tcp_repair_connect(struct sock *sk)
 142{
 143	tcp_connect_init(sk);
 144	tcp_finish_connect(sk, NULL);
 145
 146	return 0;
 147}
 148
 149/* This will initiate an outgoing connection. */
 150int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 151{
 152	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 153	struct inet_sock *inet = inet_sk(sk);
 154	struct tcp_sock *tp = tcp_sk(sk);
 155	__be16 orig_sport, orig_dport;
 156	__be32 daddr, nexthop;
 157	struct flowi4 *fl4;
 158	struct rtable *rt;
 159	int err;
 160	struct ip_options_rcu *inet_opt;
 161
 162	if (addr_len < sizeof(struct sockaddr_in))
 163		return -EINVAL;
 164
 165	if (usin->sin_family != AF_INET)
 166		return -EAFNOSUPPORT;
 167
 168	nexthop = daddr = usin->sin_addr.s_addr;
 169	inet_opt = rcu_dereference_protected(inet->inet_opt,
 170					     sock_owned_by_user(sk));
 171	if (inet_opt && inet_opt->opt.srr) {
 172		if (!daddr)
 173			return -EINVAL;
 174		nexthop = inet_opt->opt.faddr;
 175	}
 176
 177	orig_sport = inet->inet_sport;
 178	orig_dport = usin->sin_port;
 179	fl4 = &inet->cork.fl.u.ip4;
 180	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 181			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 182			      IPPROTO_TCP,
 183			      orig_sport, orig_dport, sk, true);
 184	if (IS_ERR(rt)) {
 185		err = PTR_ERR(rt);
 186		if (err == -ENETUNREACH)
 187			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 188		return err;
 189	}
 190
 191	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 192		ip_rt_put(rt);
 193		return -ENETUNREACH;
 194	}
 195
 196	if (!inet_opt || !inet_opt->opt.srr)
 197		daddr = fl4->daddr;
 198
 199	if (!inet->inet_saddr)
 200		inet->inet_saddr = fl4->saddr;
 201	inet->inet_rcv_saddr = inet->inet_saddr;
 202
 203	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 204		/* Reset inherited state */
 205		tp->rx_opt.ts_recent	   = 0;
 206		tp->rx_opt.ts_recent_stamp = 0;
 207		if (likely(!tp->repair))
 208			tp->write_seq	   = 0;
 209	}
 210
 211	if (tcp_death_row.sysctl_tw_recycle &&
 212	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
 213		struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
 214		/*
 215		 * VJ's idea. We save last timestamp seen from
 216		 * the destination in peer table, when entering state
 217		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
 218		 * when trying new connection.
 219		 */
 220		if (peer) {
 221			inet_peer_refcheck(peer);
 222			if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
 223				tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
 224				tp->rx_opt.ts_recent = peer->tcp_ts;
 225			}
 226		}
 227	}
 228
 229	inet->inet_dport = usin->sin_port;
 230	inet->inet_daddr = daddr;
 231
 232	inet_csk(sk)->icsk_ext_hdr_len = 0;
 233	if (inet_opt)
 234		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 235
 236	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 237
 238	/* Socket identity is still unknown (sport may be zero).
 239	 * However we set state to SYN-SENT and not releasing socket
 240	 * lock select source port, enter ourselves into the hash tables and
 241	 * complete initialization after this.
 242	 */
 243	tcp_set_state(sk, TCP_SYN_SENT);
 244	err = inet_hash_connect(&tcp_death_row, sk);
 245	if (err)
 246		goto failure;
 247
 248	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 249			       inet->inet_sport, inet->inet_dport, sk);
 250	if (IS_ERR(rt)) {
 251		err = PTR_ERR(rt);
 252		rt = NULL;
 253		goto failure;
 254	}
 255	/* OK, now commit destination to socket.  */
 256	sk->sk_gso_type = SKB_GSO_TCPV4;
 257	sk_setup_caps(sk, &rt->dst);
 258
 259	if (!tp->write_seq && likely(!tp->repair))
 260		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
 261							   inet->inet_daddr,
 262							   inet->inet_sport,
 263							   usin->sin_port);
 264
 265	inet->inet_id = tp->write_seq ^ jiffies;
 266
 267	if (likely(!tp->repair))
 268		err = tcp_connect(sk);
 269	else
 270		err = tcp_repair_connect(sk);
 271
 272	rt = NULL;
 273	if (err)
 274		goto failure;
 275
 276	return 0;
 277
 278failure:
 279	/*
 280	 * This unhashes the socket and releases the local port,
 281	 * if necessary.
 282	 */
 283	tcp_set_state(sk, TCP_CLOSE);
 284	ip_rt_put(rt);
 285	sk->sk_route_caps = 0;
 286	inet->inet_dport = 0;
 287	return err;
 288}
 289EXPORT_SYMBOL(tcp_v4_connect);
 290
 291/*
 292 * This routine does path mtu discovery as defined in RFC1191.
 293 */
 294static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
 295{
 296	struct dst_entry *dst;
 297	struct inet_sock *inet = inet_sk(sk);
 298
 299	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
 300	 * send out by Linux are always <576bytes so they should go through
 301	 * unfragmented).
 302	 */
 303	if (sk->sk_state == TCP_LISTEN)
 304		return;
 305
 306	/* We don't check in the destentry if pmtu discovery is forbidden
 307	 * on this route. We just assume that no packet_to_big packets
 308	 * are send back when pmtu discovery is not active.
 309	 * There is a small race when the user changes this flag in the
 310	 * route, but I think that's acceptable.
 311	 */
 312	if ((dst = __sk_dst_check(sk, 0)) == NULL)
 313		return;
 314
 315	dst->ops->update_pmtu(dst, mtu);
 316
 317	/* Something is about to be wrong... Remember soft error
 318	 * for the case, if this connection will not able to recover.
 319	 */
 320	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 321		sk->sk_err_soft = EMSGSIZE;
 322
 323	mtu = dst_mtu(dst);
 324
 325	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 326	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 327		tcp_sync_mss(sk, mtu);
 328
 329		/* Resend the TCP packet because it's
 330		 * clear that the old packet has been
 331		 * dropped. This is the new "fast" path mtu
 332		 * discovery.
 333		 */
 334		tcp_simple_retransmit(sk);
 335	} /* else let the usual retransmit timer handle it */
 336}
 337
 338/*
 339 * This routine is called by the ICMP module when it gets some
 340 * sort of error condition.  If err < 0 then the socket should
 341 * be closed and the error returned to the user.  If err > 0
 342 * it's just the icmp type << 8 | icmp code.  After adjustment
 343 * header points to the first 8 bytes of the tcp header.  We need
 344 * to find the appropriate port.
 345 *
 346 * The locking strategy used here is very "optimistic". When
 347 * someone else accesses the socket the ICMP is just dropped
 348 * and for some paths there is no check at all.
 349 * A more general error queue to queue errors for later handling
 350 * is probably better.
 351 *
 352 */
 353
 354void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
 355{
 356	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
 357	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
 358	struct inet_connection_sock *icsk;
 359	struct tcp_sock *tp;
 360	struct inet_sock *inet;
 361	const int type = icmp_hdr(icmp_skb)->type;
 362	const int code = icmp_hdr(icmp_skb)->code;
 363	struct sock *sk;
 364	struct sk_buff *skb;
 365	__u32 seq;
 366	__u32 remaining;
 367	int err;
 368	struct net *net = dev_net(icmp_skb->dev);
 369
 370	if (icmp_skb->len < (iph->ihl << 2) + 8) {
 371		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 372		return;
 373	}
 374
 375	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
 376			iph->saddr, th->source, inet_iif(icmp_skb));
 377	if (!sk) {
 378		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 379		return;
 380	}
 381	if (sk->sk_state == TCP_TIME_WAIT) {
 382		inet_twsk_put(inet_twsk(sk));
 383		return;
 384	}
 385
 386	bh_lock_sock(sk);
 387	/* If too many ICMPs get dropped on busy
 388	 * servers this needs to be solved differently.
 389	 */
 390	if (sock_owned_by_user(sk))
 391		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
 392
 393	if (sk->sk_state == TCP_CLOSE)
 394		goto out;
 395
 396	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 397		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 398		goto out;
 399	}
 400
 401	icsk = inet_csk(sk);
 402	tp = tcp_sk(sk);
 403	seq = ntohl(th->seq);
 404	if (sk->sk_state != TCP_LISTEN &&
 405	    !between(seq, tp->snd_una, tp->snd_nxt)) {
 406		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 407		goto out;
 408	}
 409
 410	switch (type) {
 411	case ICMP_SOURCE_QUENCH:
 412		/* Just silently ignore these. */
 413		goto out;
 414	case ICMP_PARAMETERPROB:
 415		err = EPROTO;
 416		break;
 417	case ICMP_DEST_UNREACH:
 418		if (code > NR_ICMP_UNREACH)
 419			goto out;
 420
 421		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 422			if (!sock_owned_by_user(sk))
 423				do_pmtu_discovery(sk, iph, info);
 424			goto out;
 425		}
 426
 427		err = icmp_err_convert[code].errno;
 428		/* check if icmp_skb allows revert of backoff
 429		 * (see draft-zimmermann-tcp-lcd) */
 430		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
 431			break;
 432		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 433		    !icsk->icsk_backoff)
 434			break;
 435
 436		if (sock_owned_by_user(sk))
 437			break;
 438
 439		icsk->icsk_backoff--;
 440		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
 441			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
 442		tcp_bound_rto(sk);
 443
 444		skb = tcp_write_queue_head(sk);
 445		BUG_ON(!skb);
 446
 447		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
 448				tcp_time_stamp - TCP_SKB_CB(skb)->when);
 449
 450		if (remaining) {
 451			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 452						  remaining, TCP_RTO_MAX);
 453		} else {
 454			/* RTO revert clocked out retransmission.
 455			 * Will retransmit now */
 456			tcp_retransmit_timer(sk);
 457		}
 458
 459		break;
 460	case ICMP_TIME_EXCEEDED:
 461		err = EHOSTUNREACH;
 462		break;
 463	default:
 464		goto out;
 465	}
 466
 467	switch (sk->sk_state) {
 468		struct request_sock *req, **prev;
 469	case TCP_LISTEN:
 470		if (sock_owned_by_user(sk))
 471			goto out;
 472
 473		req = inet_csk_search_req(sk, &prev, th->dest,
 474					  iph->daddr, iph->saddr);
 475		if (!req)
 476			goto out;
 477
 478		/* ICMPs are not backlogged, hence we cannot get
 479		   an established socket here.
 480		 */
 481		WARN_ON(req->sk);
 482
 483		if (seq != tcp_rsk(req)->snt_isn) {
 484			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 485			goto out;
 486		}
 487
 488		/*
 489		 * Still in SYN_RECV, just remove it silently.
 490		 * There is no good way to pass the error to the newly
 491		 * created socket, and POSIX does not want network
 492		 * errors returned from accept().
 493		 */
 494		inet_csk_reqsk_queue_drop(sk, req, prev);
 495		goto out;
 496
 497	case TCP_SYN_SENT:
 498	case TCP_SYN_RECV:  /* Cannot happen.
 499			       It can f.e. if SYNs crossed.
 500			     */
 501		if (!sock_owned_by_user(sk)) {
 502			sk->sk_err = err;
 503
 504			sk->sk_error_report(sk);
 505
 506			tcp_done(sk);
 507		} else {
 508			sk->sk_err_soft = err;
 509		}
 510		goto out;
 511	}
 512
 513	/* If we've already connected we will keep trying
 514	 * until we time out, or the user gives up.
 515	 *
 516	 * rfc1122 4.2.3.9 allows to consider as hard errors
 517	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 518	 * but it is obsoleted by pmtu discovery).
 519	 *
 520	 * Note, that in modern internet, where routing is unreliable
 521	 * and in each dark corner broken firewalls sit, sending random
 522	 * errors ordered by their masters even this two messages finally lose
 523	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 524	 *
 525	 * Now we are in compliance with RFCs.
 526	 *							--ANK (980905)
 527	 */
 528
 529	inet = inet_sk(sk);
 530	if (!sock_owned_by_user(sk) && inet->recverr) {
 531		sk->sk_err = err;
 532		sk->sk_error_report(sk);
 533	} else	{ /* Only an error on timeout */
 534		sk->sk_err_soft = err;
 535	}
 536
 537out:
 538	bh_unlock_sock(sk);
 539	sock_put(sk);
 540}
 541
 542static void __tcp_v4_send_check(struct sk_buff *skb,
 543				__be32 saddr, __be32 daddr)
 544{
 545	struct tcphdr *th = tcp_hdr(skb);
 546
 547	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 548		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 549		skb->csum_start = skb_transport_header(skb) - skb->head;
 550		skb->csum_offset = offsetof(struct tcphdr, check);
 551	} else {
 552		th->check = tcp_v4_check(skb->len, saddr, daddr,
 553					 csum_partial(th,
 554						      th->doff << 2,
 555						      skb->csum));
 556	}
 557}
 558
 559/* This routine computes an IPv4 TCP checksum. */
 560void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 561{
 562	const struct inet_sock *inet = inet_sk(sk);
 563
 564	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 565}
 566EXPORT_SYMBOL(tcp_v4_send_check);
 567
 568int tcp_v4_gso_send_check(struct sk_buff *skb)
 569{
 570	const struct iphdr *iph;
 571	struct tcphdr *th;
 572
 573	if (!pskb_may_pull(skb, sizeof(*th)))
 574		return -EINVAL;
 575
 576	iph = ip_hdr(skb);
 577	th = tcp_hdr(skb);
 578
 579	th->check = 0;
 580	skb->ip_summed = CHECKSUM_PARTIAL;
 581	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
 582	return 0;
 583}
 584
 585/*
 586 *	This routine will send an RST to the other tcp.
 587 *
 588 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 589 *		      for reset.
 590 *	Answer: if a packet caused RST, it is not for a socket
 591 *		existing in our system, if it is matched to a socket,
 592 *		it is just duplicate segment or bug in other side's TCP.
 593 *		So that we build reply only basing on parameters
 594 *		arrived with segment.
 595 *	Exception: precedence violation. We do not implement it in any case.
 596 */
 597
 598static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
 599{
 600	const struct tcphdr *th = tcp_hdr(skb);
 601	struct {
 602		struct tcphdr th;
 603#ifdef CONFIG_TCP_MD5SIG
 604		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
 605#endif
 606	} rep;
 607	struct ip_reply_arg arg;
 608#ifdef CONFIG_TCP_MD5SIG
 609	struct tcp_md5sig_key *key;
 610	const __u8 *hash_location = NULL;
 611	unsigned char newhash[16];
 612	int genhash;
 613	struct sock *sk1 = NULL;
 614#endif
 615	struct net *net;
 616
 617	/* Never send a reset in response to a reset. */
 618	if (th->rst)
 619		return;
 620
 621	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
 622		return;
 623
 624	/* Swap the send and the receive. */
 625	memset(&rep, 0, sizeof(rep));
 626	rep.th.dest   = th->source;
 627	rep.th.source = th->dest;
 628	rep.th.doff   = sizeof(struct tcphdr) / 4;
 629	rep.th.rst    = 1;
 630
 631	if (th->ack) {
 632		rep.th.seq = th->ack_seq;
 633	} else {
 634		rep.th.ack = 1;
 635		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 636				       skb->len - (th->doff << 2));
 637	}
 638
 639	memset(&arg, 0, sizeof(arg));
 640	arg.iov[0].iov_base = (unsigned char *)&rep;
 641	arg.iov[0].iov_len  = sizeof(rep.th);
 642
 643#ifdef CONFIG_TCP_MD5SIG
 644	hash_location = tcp_parse_md5sig_option(th);
 645	if (!sk && hash_location) {
 646		/*
 647		 * active side is lost. Try to find listening socket through
 648		 * source port, and then find md5 key through listening socket.
 649		 * we are not loose security here:
 650		 * Incoming packet is checked with md5 hash with finding key,
 651		 * no RST generated if md5 hash doesn't match.
 652		 */
 653		sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
 654					     &tcp_hashinfo, ip_hdr(skb)->daddr,
 655					     ntohs(th->source), inet_iif(skb));
 656		/* don't send rst if it can't find key */
 657		if (!sk1)
 658			return;
 659		rcu_read_lock();
 660		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
 661					&ip_hdr(skb)->saddr, AF_INET);
 662		if (!key)
 663			goto release_sk1;
 664
 665		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
 666		if (genhash || memcmp(hash_location, newhash, 16) != 0)
 667			goto release_sk1;
 668	} else {
 669		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
 670					     &ip_hdr(skb)->saddr,
 671					     AF_INET) : NULL;
 672	}
 673
 674	if (key) {
 675		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 676				   (TCPOPT_NOP << 16) |
 677				   (TCPOPT_MD5SIG << 8) |
 678				   TCPOLEN_MD5SIG);
 679		/* Update length and the length the header thinks exists */
 680		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 681		rep.th.doff = arg.iov[0].iov_len / 4;
 682
 683		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 684				     key, ip_hdr(skb)->saddr,
 685				     ip_hdr(skb)->daddr, &rep.th);
 686	}
 687#endif
 688	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 689				      ip_hdr(skb)->saddr, /* XXX */
 690				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 691	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 692	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 693	/* When socket is gone, all binding information is lost.
 694	 * routing might fail in this case. using iif for oif to
 695	 * make sure we can deliver it
 696	 */
 697	arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
 698
 699	net = dev_net(skb_dst(skb)->dev);
 700	arg.tos = ip_hdr(skb)->tos;
 701	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 702		      &arg, arg.iov[0].iov_len);
 703
 704	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 705	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
 706
 707#ifdef CONFIG_TCP_MD5SIG
 708release_sk1:
 709	if (sk1) {
 710		rcu_read_unlock();
 711		sock_put(sk1);
 712	}
 713#endif
 714}
 715
 716/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 717   outside socket context is ugly, certainly. What can I do?
 718 */
 719
 720static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
 721			    u32 win, u32 ts, int oif,
 722			    struct tcp_md5sig_key *key,
 723			    int reply_flags, u8 tos)
 724{
 725	const struct tcphdr *th = tcp_hdr(skb);
 726	struct {
 727		struct tcphdr th;
 728		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 729#ifdef CONFIG_TCP_MD5SIG
 730			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 731#endif
 732			];
 733	} rep;
 734	struct ip_reply_arg arg;
 735	struct net *net = dev_net(skb_dst(skb)->dev);
 736
 737	memset(&rep.th, 0, sizeof(struct tcphdr));
 738	memset(&arg, 0, sizeof(arg));
 739
 740	arg.iov[0].iov_base = (unsigned char *)&rep;
 741	arg.iov[0].iov_len  = sizeof(rep.th);
 742	if (ts) {
 743		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 744				   (TCPOPT_TIMESTAMP << 8) |
 745				   TCPOLEN_TIMESTAMP);
 746		rep.opt[1] = htonl(tcp_time_stamp);
 747		rep.opt[2] = htonl(ts);
 748		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 749	}
 750
 751	/* Swap the send and the receive. */
 752	rep.th.dest    = th->source;
 753	rep.th.source  = th->dest;
 754	rep.th.doff    = arg.iov[0].iov_len / 4;
 755	rep.th.seq     = htonl(seq);
 756	rep.th.ack_seq = htonl(ack);
 757	rep.th.ack     = 1;
 758	rep.th.window  = htons(win);
 759
 760#ifdef CONFIG_TCP_MD5SIG
 761	if (key) {
 762		int offset = (ts) ? 3 : 0;
 763
 764		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 765					  (TCPOPT_NOP << 16) |
 766					  (TCPOPT_MD5SIG << 8) |
 767					  TCPOLEN_MD5SIG);
 768		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 769		rep.th.doff = arg.iov[0].iov_len/4;
 770
 771		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 772				    key, ip_hdr(skb)->saddr,
 773				    ip_hdr(skb)->daddr, &rep.th);
 774	}
 775#endif
 776	arg.flags = reply_flags;
 777	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 778				      ip_hdr(skb)->saddr, /* XXX */
 779				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 780	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 781	if (oif)
 782		arg.bound_dev_if = oif;
 783	arg.tos = tos;
 784	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 785		      &arg, arg.iov[0].iov_len);
 786
 787	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 788}
 789
 790static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 791{
 792	struct inet_timewait_sock *tw = inet_twsk(sk);
 793	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 794
 795	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 796			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 797			tcptw->tw_ts_recent,
 798			tw->tw_bound_dev_if,
 799			tcp_twsk_md5_key(tcptw),
 800			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
 801			tw->tw_tos
 802			);
 803
 804	inet_twsk_put(tw);
 805}
 806
 807static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
 808				  struct request_sock *req)
 809{
 810	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
 811			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
 812			req->ts_recent,
 813			0,
 814			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
 815					  AF_INET),
 816			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
 817			ip_hdr(skb)->tos);
 818}
 819
 820/*
 821 *	Send a SYN-ACK after having received a SYN.
 822 *	This still operates on a request_sock only, not on a big
 823 *	socket.
 824 */
 825static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
 826			      struct request_sock *req,
 827			      struct request_values *rvp,
 828			      u16 queue_mapping)
 829{
 830	const struct inet_request_sock *ireq = inet_rsk(req);
 831	struct flowi4 fl4;
 832	int err = -1;
 833	struct sk_buff * skb;
 834
 835	/* First, grab a route. */
 836	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 837		return -1;
 838
 839	skb = tcp_make_synack(sk, dst, req, rvp);
 840
 841	if (skb) {
 842		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
 843
 844		skb_set_queue_mapping(skb, queue_mapping);
 845		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
 846					    ireq->rmt_addr,
 847					    ireq->opt);
 848		err = net_xmit_eval(err);
 849	}
 850
 851	dst_release(dst);
 852	return err;
 853}
 854
 855static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
 856			      struct request_values *rvp)
 857{
 858	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
 859	return tcp_v4_send_synack(sk, NULL, req, rvp, 0);
 860}
 861
 862/*
 863 *	IPv4 request_sock destructor.
 864 */
 865static void tcp_v4_reqsk_destructor(struct request_sock *req)
 866{
 867	kfree(inet_rsk(req)->opt);
 868}
 869
 870/*
 871 * Return true if a syncookie should be sent
 872 */
 873bool tcp_syn_flood_action(struct sock *sk,
 874			 const struct sk_buff *skb,
 875			 const char *proto)
 876{
 877	const char *msg = "Dropping request";
 878	bool want_cookie = false;
 879	struct listen_sock *lopt;
 880
 881
 882
 883#ifdef CONFIG_SYN_COOKIES
 884	if (sysctl_tcp_syncookies) {
 885		msg = "Sending cookies";
 886		want_cookie = true;
 887		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
 888	} else
 889#endif
 890		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
 891
 892	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
 893	if (!lopt->synflood_warned) {
 894		lopt->synflood_warned = 1;
 895		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
 
 896			proto, ntohs(tcp_hdr(skb)->dest), msg);
 897	}
 898	return want_cookie;
 899}
 900EXPORT_SYMBOL(tcp_syn_flood_action);
 901
 902/*
 903 * Save and compile IPv4 options into the request_sock if needed.
 904 */
 905static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
 906						  struct sk_buff *skb)
 907{
 908	const struct ip_options *opt = &(IPCB(skb)->opt);
 909	struct ip_options_rcu *dopt = NULL;
 910
 911	if (opt && opt->optlen) {
 912		int opt_size = sizeof(*dopt) + opt->optlen;
 913
 914		dopt = kmalloc(opt_size, GFP_ATOMIC);
 915		if (dopt) {
 916			if (ip_options_echo(&dopt->opt, skb)) {
 917				kfree(dopt);
 918				dopt = NULL;
 919			}
 920		}
 921	}
 922	return dopt;
 923}
 924
 925#ifdef CONFIG_TCP_MD5SIG
 926/*
 927 * RFC2385 MD5 checksumming requires a mapping of
 928 * IP address->MD5 Key.
 929 * We need to maintain these in the sk structure.
 930 */
 931
 932/* Find the Key structure for an address.  */
 933struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
 934					 const union tcp_md5_addr *addr,
 935					 int family)
 936{
 937	struct tcp_sock *tp = tcp_sk(sk);
 938	struct tcp_md5sig_key *key;
 939	struct hlist_node *pos;
 940	unsigned int size = sizeof(struct in_addr);
 941	struct tcp_md5sig_info *md5sig;
 942
 943	/* caller either holds rcu_read_lock() or socket lock */
 944	md5sig = rcu_dereference_check(tp->md5sig_info,
 945				       sock_owned_by_user(sk) ||
 946				       lockdep_is_held(&sk->sk_lock.slock));
 947	if (!md5sig)
 948		return NULL;
 949#if IS_ENABLED(CONFIG_IPV6)
 950	if (family == AF_INET6)
 951		size = sizeof(struct in6_addr);
 952#endif
 953	hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
 954		if (key->family != family)
 955			continue;
 956		if (!memcmp(&key->addr, addr, size))
 957			return key;
 958	}
 959	return NULL;
 960}
 961EXPORT_SYMBOL(tcp_md5_do_lookup);
 962
 963struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
 964					 struct sock *addr_sk)
 965{
 966	union tcp_md5_addr *addr;
 967
 968	addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
 969	return tcp_md5_do_lookup(sk, addr, AF_INET);
 970}
 971EXPORT_SYMBOL(tcp_v4_md5_lookup);
 972
 973static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
 974						      struct request_sock *req)
 975{
 976	union tcp_md5_addr *addr;
 977
 978	addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
 979	return tcp_md5_do_lookup(sk, addr, AF_INET);
 980}
 981
 982/* This can be called on a newly created socket, from other files */
 983int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
 984		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
 985{
 986	/* Add Key to the list */
 987	struct tcp_md5sig_key *key;
 988	struct tcp_sock *tp = tcp_sk(sk);
 989	struct tcp_md5sig_info *md5sig;
 990
 991	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
 992	if (key) {
 993		/* Pre-existing entry - just update that one. */
 994		memcpy(key->key, newkey, newkeylen);
 
 995		key->keylen = newkeylen;
 996		return 0;
 997	}
 
 
 
 
 
 
 
 
 
 
 998
 999	md5sig = rcu_dereference_protected(tp->md5sig_info,
1000					   sock_owned_by_user(sk));
1001	if (!md5sig) {
1002		md5sig = kmalloc(sizeof(*md5sig), gfp);
1003		if (!md5sig)
1004			return -ENOMEM;
 
1005
1006		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007		INIT_HLIST_HEAD(&md5sig->head);
1008		rcu_assign_pointer(tp->md5sig_info, md5sig);
1009	}
 
 
 
 
 
1010
1011	key = sock_kmalloc(sk, sizeof(*key), gfp);
1012	if (!key)
1013		return -ENOMEM;
1014	if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015		sock_kfree_s(sk, key, sizeof(*key));
1016		return -ENOMEM;
 
 
 
 
 
 
 
1017	}
 
 
 
1018
1019	memcpy(key->key, newkey, newkeylen);
1020	key->keylen = newkeylen;
1021	key->family = family;
1022	memcpy(&key->addr, addr,
1023	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1024				      sizeof(struct in_addr));
1025	hlist_add_head_rcu(&key->node, &md5sig->head);
1026	return 0;
1027}
1028EXPORT_SYMBOL(tcp_md5_do_add);
1029
1030int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1031{
1032	struct tcp_sock *tp = tcp_sk(sk);
1033	struct tcp_md5sig_key *key;
1034	struct tcp_md5sig_info *md5sig;
1035
1036	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037	if (!key)
1038		return -ENOENT;
1039	hlist_del_rcu(&key->node);
1040	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041	kfree_rcu(key, rcu);
1042	md5sig = rcu_dereference_protected(tp->md5sig_info,
1043					   sock_owned_by_user(sk));
1044	if (hlist_empty(&md5sig->head))
1045		tcp_free_md5sig_pool();
1046	return 0;
 
 
 
 
 
 
 
 
 
 
 
1047}
1048EXPORT_SYMBOL(tcp_md5_do_del);
1049
1050void tcp_clear_md5_list(struct sock *sk)
1051{
1052	struct tcp_sock *tp = tcp_sk(sk);
1053	struct tcp_md5sig_key *key;
1054	struct hlist_node *pos, *n;
1055	struct tcp_md5sig_info *md5sig;
1056
1057	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1058
1059	if (!hlist_empty(&md5sig->head))
 
 
 
 
 
 
1060		tcp_free_md5sig_pool();
1061	hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062		hlist_del_rcu(&key->node);
1063		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064		kfree_rcu(key, rcu);
 
1065	}
1066}
1067
1068static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069				 int optlen)
1070{
1071	struct tcp_md5sig cmd;
1072	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
 
1073
1074	if (optlen < sizeof(cmd))
1075		return -EINVAL;
1076
1077	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078		return -EFAULT;
1079
1080	if (sin->sin_family != AF_INET)
1081		return -EINVAL;
1082
1083	if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085				      AF_INET);
 
 
1086
1087	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088		return -EINVAL;
1089
1090	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092			      GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093}
1094
1095static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096					__be32 daddr, __be32 saddr, int nbytes)
1097{
1098	struct tcp4_pseudohdr *bp;
1099	struct scatterlist sg;
1100
1101	bp = &hp->md5_blk.ip4;
1102
1103	/*
1104	 * 1. the TCP pseudo-header (in the order: source IP address,
1105	 * destination IP address, zero-padded protocol number, and
1106	 * segment length)
1107	 */
1108	bp->saddr = saddr;
1109	bp->daddr = daddr;
1110	bp->pad = 0;
1111	bp->protocol = IPPROTO_TCP;
1112	bp->len = cpu_to_be16(nbytes);
1113
1114	sg_init_one(&sg, bp, sizeof(*bp));
1115	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1116}
1117
1118static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1120{
1121	struct tcp_md5sig_pool *hp;
1122	struct hash_desc *desc;
1123
1124	hp = tcp_get_md5sig_pool();
1125	if (!hp)
1126		goto clear_hash_noput;
1127	desc = &hp->md5_desc;
1128
1129	if (crypto_hash_init(desc))
1130		goto clear_hash;
1131	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132		goto clear_hash;
1133	if (tcp_md5_hash_header(hp, th))
1134		goto clear_hash;
1135	if (tcp_md5_hash_key(hp, key))
1136		goto clear_hash;
1137	if (crypto_hash_final(desc, md5_hash))
1138		goto clear_hash;
1139
1140	tcp_put_md5sig_pool();
1141	return 0;
1142
1143clear_hash:
1144	tcp_put_md5sig_pool();
1145clear_hash_noput:
1146	memset(md5_hash, 0, 16);
1147	return 1;
1148}
1149
1150int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151			const struct sock *sk, const struct request_sock *req,
1152			const struct sk_buff *skb)
1153{
1154	struct tcp_md5sig_pool *hp;
1155	struct hash_desc *desc;
1156	const struct tcphdr *th = tcp_hdr(skb);
1157	__be32 saddr, daddr;
1158
1159	if (sk) {
1160		saddr = inet_sk(sk)->inet_saddr;
1161		daddr = inet_sk(sk)->inet_daddr;
1162	} else if (req) {
1163		saddr = inet_rsk(req)->loc_addr;
1164		daddr = inet_rsk(req)->rmt_addr;
1165	} else {
1166		const struct iphdr *iph = ip_hdr(skb);
1167		saddr = iph->saddr;
1168		daddr = iph->daddr;
1169	}
1170
1171	hp = tcp_get_md5sig_pool();
1172	if (!hp)
1173		goto clear_hash_noput;
1174	desc = &hp->md5_desc;
1175
1176	if (crypto_hash_init(desc))
1177		goto clear_hash;
1178
1179	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180		goto clear_hash;
1181	if (tcp_md5_hash_header(hp, th))
1182		goto clear_hash;
1183	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184		goto clear_hash;
1185	if (tcp_md5_hash_key(hp, key))
1186		goto clear_hash;
1187	if (crypto_hash_final(desc, md5_hash))
1188		goto clear_hash;
1189
1190	tcp_put_md5sig_pool();
1191	return 0;
1192
1193clear_hash:
1194	tcp_put_md5sig_pool();
1195clear_hash_noput:
1196	memset(md5_hash, 0, 16);
1197	return 1;
1198}
1199EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1200
1201static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1202{
1203	/*
1204	 * This gets called for each TCP segment that arrives
1205	 * so we want to be efficient.
1206	 * We have 3 drop cases:
1207	 * o No MD5 hash and one expected.
1208	 * o MD5 hash and we're not expecting one.
1209	 * o MD5 hash and its wrong.
1210	 */
1211	const __u8 *hash_location = NULL;
1212	struct tcp_md5sig_key *hash_expected;
1213	const struct iphdr *iph = ip_hdr(skb);
1214	const struct tcphdr *th = tcp_hdr(skb);
1215	int genhash;
1216	unsigned char newhash[16];
1217
1218	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219					  AF_INET);
1220	hash_location = tcp_parse_md5sig_option(th);
1221
1222	/* We've parsed the options - do we have a hash? */
1223	if (!hash_expected && !hash_location)
1224		return false;
1225
1226	if (hash_expected && !hash_location) {
1227		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228		return true;
1229	}
1230
1231	if (!hash_expected && hash_location) {
1232		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233		return true;
1234	}
1235
1236	/* Okay, so this is hash_expected and hash_location -
1237	 * so we need to calculate the checksum.
1238	 */
1239	genhash = tcp_v4_md5_hash_skb(newhash,
1240				      hash_expected,
1241				      NULL, NULL, skb);
1242
1243	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245				     &iph->saddr, ntohs(th->source),
1246				     &iph->daddr, ntohs(th->dest),
1247				     genhash ? " tcp_v4_calc_md5_hash failed"
1248				     : "");
1249		return true;
 
1250	}
1251	return false;
1252}
1253
1254#endif
1255
1256struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257	.family		=	PF_INET,
1258	.obj_size	=	sizeof(struct tcp_request_sock),
1259	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1260	.send_ack	=	tcp_v4_reqsk_send_ack,
1261	.destructor	=	tcp_v4_reqsk_destructor,
1262	.send_reset	=	tcp_v4_send_reset,
1263	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1264};
1265
1266#ifdef CONFIG_TCP_MD5SIG
1267static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1269	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1270};
1271#endif
1272
1273int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274{
1275	struct tcp_extend_values tmp_ext;
1276	struct tcp_options_received tmp_opt;
1277	const u8 *hash_location;
1278	struct request_sock *req;
1279	struct inet_request_sock *ireq;
1280	struct tcp_sock *tp = tcp_sk(sk);
1281	struct dst_entry *dst = NULL;
1282	__be32 saddr = ip_hdr(skb)->saddr;
1283	__be32 daddr = ip_hdr(skb)->daddr;
1284	__u32 isn = TCP_SKB_CB(skb)->when;
1285	bool want_cookie = false;
1286
1287	/* Never answer to SYNs send to broadcast or multicast */
1288	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289		goto drop;
1290
1291	/* TW buckets are converted to open requests without
1292	 * limitations, they conserve resources and peer is
1293	 * evidently real one.
1294	 */
1295	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1296		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297		if (!want_cookie)
1298			goto drop;
1299	}
1300
1301	/* Accept backlog is full. If we have already queued enough
1302	 * of warm entries in syn queue, drop request. It is better than
1303	 * clogging syn queue with openreqs with exponentially increasing
1304	 * timeout.
1305	 */
1306	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1307		goto drop;
1308
1309	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310	if (!req)
1311		goto drop;
1312
1313#ifdef CONFIG_TCP_MD5SIG
1314	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315#endif
1316
1317	tcp_clear_options(&tmp_opt);
1318	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1320	tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1321
1322	if (tmp_opt.cookie_plus > 0 &&
1323	    tmp_opt.saw_tstamp &&
1324	    !tp->rx_opt.cookie_out_never &&
1325	    (sysctl_tcp_cookie_size > 0 ||
1326	     (tp->cookie_values != NULL &&
1327	      tp->cookie_values->cookie_desired > 0))) {
1328		u8 *c;
1329		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1331
1332		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333			goto drop_and_release;
1334
1335		/* Secret recipe starts with IP addresses */
1336		*mess++ ^= (__force u32)daddr;
1337		*mess++ ^= (__force u32)saddr;
1338
1339		/* plus variable length Initiator Cookie */
1340		c = (u8 *)mess;
1341		while (l-- > 0)
1342			*c++ ^= *hash_location++;
1343
1344		want_cookie = false;	/* not our kind of cookie */
1345		tmp_ext.cookie_out_never = 0; /* false */
1346		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347	} else if (!tp->rx_opt.cookie_in_always) {
1348		/* redundant indications, but ensure initialization. */
1349		tmp_ext.cookie_out_never = 1; /* true */
1350		tmp_ext.cookie_plus = 0;
1351	} else {
1352		goto drop_and_release;
1353	}
1354	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1355
1356	if (want_cookie && !tmp_opt.saw_tstamp)
1357		tcp_clear_options(&tmp_opt);
1358
1359	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360	tcp_openreq_init(req, &tmp_opt, skb);
1361
1362	ireq = inet_rsk(req);
1363	ireq->loc_addr = daddr;
1364	ireq->rmt_addr = saddr;
1365	ireq->no_srccheck = inet_sk(sk)->transparent;
1366	ireq->opt = tcp_v4_save_options(sk, skb);
1367
1368	if (security_inet_conn_request(sk, skb, req))
1369		goto drop_and_free;
1370
1371	if (!want_cookie || tmp_opt.tstamp_ok)
1372		TCP_ECN_create_request(req, skb);
1373
1374	if (want_cookie) {
1375		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376		req->cookie_ts = tmp_opt.tstamp_ok;
1377	} else if (!isn) {
1378		struct inet_peer *peer = NULL;
1379		struct flowi4 fl4;
1380
1381		/* VJ's idea. We save last timestamp seen
1382		 * from the destination in peer table, when entering
1383		 * state TIME-WAIT, and check against it before
1384		 * accepting new connection request.
1385		 *
1386		 * If "isn" is not zero, this request hit alive
1387		 * timewait bucket, so that all the necessary checks
1388		 * are made in the function processing timewait state.
1389		 */
1390		if (tmp_opt.saw_tstamp &&
1391		    tcp_death_row.sysctl_tw_recycle &&
1392		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1393		    fl4.daddr == saddr &&
1394		    (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1395			inet_peer_refcheck(peer);
1396			if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1397			    (s32)(peer->tcp_ts - req->ts_recent) >
1398							TCP_PAWS_WINDOW) {
1399				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1400				goto drop_and_release;
1401			}
1402		}
1403		/* Kill the following clause, if you dislike this way. */
1404		else if (!sysctl_tcp_syncookies &&
1405			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1406			  (sysctl_max_syn_backlog >> 2)) &&
1407			 (!peer || !peer->tcp_ts_stamp) &&
1408			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1409			/* Without syncookies last quarter of
1410			 * backlog is filled with destinations,
1411			 * proven to be alive.
1412			 * It means that we continue to communicate
1413			 * to destinations, already remembered
1414			 * to the moment of synflood.
1415			 */
1416			LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1417				       &saddr, ntohs(tcp_hdr(skb)->source));
1418			goto drop_and_release;
1419		}
1420
1421		isn = tcp_v4_init_sequence(skb);
1422	}
1423	tcp_rsk(req)->snt_isn = isn;
1424	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1425
1426	if (tcp_v4_send_synack(sk, dst, req,
1427			       (struct request_values *)&tmp_ext,
1428			       skb_get_queue_mapping(skb)) ||
1429	    want_cookie)
1430		goto drop_and_free;
1431
1432	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1433	return 0;
1434
1435drop_and_release:
1436	dst_release(dst);
1437drop_and_free:
1438	reqsk_free(req);
1439drop:
1440	return 0;
1441}
1442EXPORT_SYMBOL(tcp_v4_conn_request);
1443
1444
1445/*
1446 * The three way handshake has completed - we got a valid synack -
1447 * now create the new socket.
1448 */
1449struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1450				  struct request_sock *req,
1451				  struct dst_entry *dst)
1452{
1453	struct inet_request_sock *ireq;
1454	struct inet_sock *newinet;
1455	struct tcp_sock *newtp;
1456	struct sock *newsk;
1457#ifdef CONFIG_TCP_MD5SIG
1458	struct tcp_md5sig_key *key;
1459#endif
1460	struct ip_options_rcu *inet_opt;
1461
1462	if (sk_acceptq_is_full(sk))
1463		goto exit_overflow;
1464
1465	newsk = tcp_create_openreq_child(sk, req, skb);
1466	if (!newsk)
1467		goto exit_nonewsk;
1468
1469	newsk->sk_gso_type = SKB_GSO_TCPV4;
1470
1471	newtp		      = tcp_sk(newsk);
1472	newinet		      = inet_sk(newsk);
1473	ireq		      = inet_rsk(req);
1474	newinet->inet_daddr   = ireq->rmt_addr;
1475	newinet->inet_rcv_saddr = ireq->loc_addr;
1476	newinet->inet_saddr	      = ireq->loc_addr;
1477	inet_opt	      = ireq->opt;
1478	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1479	ireq->opt	      = NULL;
1480	newinet->mc_index     = inet_iif(skb);
1481	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1482	newinet->rcv_tos      = ip_hdr(skb)->tos;
1483	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1484	if (inet_opt)
1485		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1486	newinet->inet_id = newtp->write_seq ^ jiffies;
1487
1488	if (!dst) {
1489		dst = inet_csk_route_child_sock(sk, newsk, req);
1490		if (!dst)
1491			goto put_and_exit;
1492	} else {
1493		/* syncookie case : see end of cookie_v4_check() */
1494	}
1495	sk_setup_caps(newsk, dst);
1496
1497	tcp_mtup_init(newsk);
1498	tcp_sync_mss(newsk, dst_mtu(dst));
1499	newtp->advmss = dst_metric_advmss(dst);
1500	if (tcp_sk(sk)->rx_opt.user_mss &&
1501	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1502		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1503
1504	tcp_initialize_rcv_mss(newsk);
1505	if (tcp_rsk(req)->snt_synack)
1506		tcp_valid_rtt_meas(newsk,
1507		    tcp_time_stamp - tcp_rsk(req)->snt_synack);
1508	newtp->total_retrans = req->retrans;
1509
1510#ifdef CONFIG_TCP_MD5SIG
1511	/* Copy over the MD5 key from the original socket */
1512	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1513				AF_INET);
1514	if (key != NULL) {
1515		/*
1516		 * We're using one, so create a matching key
1517		 * on the newsk structure. If we fail to get
1518		 * memory, then we end up not copying the key
1519		 * across. Shucks.
1520		 */
1521		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1522			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
 
 
1523		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1524	}
1525#endif
1526
1527	if (__inet_inherit_port(sk, newsk) < 0)
1528		goto put_and_exit;
1529	__inet_hash_nolisten(newsk, NULL);
1530
1531	return newsk;
1532
1533exit_overflow:
1534	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1535exit_nonewsk:
1536	dst_release(dst);
1537exit:
1538	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1539	return NULL;
1540put_and_exit:
1541	tcp_clear_xmit_timers(newsk);
1542	tcp_cleanup_congestion_control(newsk);
1543	bh_unlock_sock(newsk);
1544	sock_put(newsk);
1545	goto exit;
1546}
1547EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1548
1549static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1550{
1551	struct tcphdr *th = tcp_hdr(skb);
1552	const struct iphdr *iph = ip_hdr(skb);
1553	struct sock *nsk;
1554	struct request_sock **prev;
1555	/* Find possible connection requests. */
1556	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1557						       iph->saddr, iph->daddr);
1558	if (req)
1559		return tcp_check_req(sk, skb, req, prev);
1560
1561	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1562			th->source, iph->daddr, th->dest, inet_iif(skb));
1563
1564	if (nsk) {
1565		if (nsk->sk_state != TCP_TIME_WAIT) {
1566			bh_lock_sock(nsk);
1567			return nsk;
1568		}
1569		inet_twsk_put(inet_twsk(nsk));
1570		return NULL;
1571	}
1572
1573#ifdef CONFIG_SYN_COOKIES
1574	if (!th->syn)
1575		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1576#endif
1577	return sk;
1578}
1579
1580static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1581{
1582	const struct iphdr *iph = ip_hdr(skb);
1583
1584	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1585		if (!tcp_v4_check(skb->len, iph->saddr,
1586				  iph->daddr, skb->csum)) {
1587			skb->ip_summed = CHECKSUM_UNNECESSARY;
1588			return 0;
1589		}
1590	}
1591
1592	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1593				       skb->len, IPPROTO_TCP, 0);
1594
1595	if (skb->len <= 76) {
1596		return __skb_checksum_complete(skb);
1597	}
1598	return 0;
1599}
1600
1601
1602/* The socket must have it's spinlock held when we get
1603 * here.
1604 *
1605 * We have a potential double-lock case here, so even when
1606 * doing backlog processing we use the BH locking scheme.
1607 * This is because we cannot sleep with the original spinlock
1608 * held.
1609 */
1610int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1611{
1612	struct sock *rsk;
1613#ifdef CONFIG_TCP_MD5SIG
1614	/*
1615	 * We really want to reject the packet as early as possible
1616	 * if:
1617	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1618	 *  o There is an MD5 option and we're not expecting one
1619	 */
1620	if (tcp_v4_inbound_md5_hash(sk, skb))
1621		goto discard;
1622#endif
1623
1624	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1625		sock_rps_save_rxhash(sk, skb);
1626		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1627			rsk = sk;
1628			goto reset;
1629		}
1630		return 0;
1631	}
1632
1633	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1634		goto csum_err;
1635
1636	if (sk->sk_state == TCP_LISTEN) {
1637		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1638		if (!nsk)
1639			goto discard;
1640
1641		if (nsk != sk) {
1642			sock_rps_save_rxhash(nsk, skb);
1643			if (tcp_child_process(sk, nsk, skb)) {
1644				rsk = nsk;
1645				goto reset;
1646			}
1647			return 0;
1648		}
1649	} else
1650		sock_rps_save_rxhash(sk, skb);
1651
1652	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1653		rsk = sk;
1654		goto reset;
1655	}
1656	return 0;
1657
1658reset:
1659	tcp_v4_send_reset(rsk, skb);
1660discard:
1661	kfree_skb(skb);
1662	/* Be careful here. If this function gets more complicated and
1663	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1664	 * might be destroyed here. This current version compiles correctly,
1665	 * but you have been warned.
1666	 */
1667	return 0;
1668
1669csum_err:
1670	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1671	goto discard;
1672}
1673EXPORT_SYMBOL(tcp_v4_do_rcv);
1674
1675/*
1676 *	From tcp_input.c
1677 */
1678
1679int tcp_v4_rcv(struct sk_buff *skb)
1680{
1681	const struct iphdr *iph;
1682	const struct tcphdr *th;
1683	struct sock *sk;
1684	int ret;
1685	struct net *net = dev_net(skb->dev);
1686
1687	if (skb->pkt_type != PACKET_HOST)
1688		goto discard_it;
1689
1690	/* Count it even if it's bad */
1691	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1692
1693	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1694		goto discard_it;
1695
1696	th = tcp_hdr(skb);
1697
1698	if (th->doff < sizeof(struct tcphdr) / 4)
1699		goto bad_packet;
1700	if (!pskb_may_pull(skb, th->doff * 4))
1701		goto discard_it;
1702
1703	/* An explanation is required here, I think.
1704	 * Packet length and doff are validated by header prediction,
1705	 * provided case of th->doff==0 is eliminated.
1706	 * So, we defer the checks. */
1707	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1708		goto bad_packet;
1709
1710	th = tcp_hdr(skb);
1711	iph = ip_hdr(skb);
1712	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1713	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1714				    skb->len - th->doff * 4);
1715	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1716	TCP_SKB_CB(skb)->when	 = 0;
1717	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1718	TCP_SKB_CB(skb)->sacked	 = 0;
1719
1720	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1721	if (!sk)
1722		goto no_tcp_socket;
1723
1724process:
1725	if (sk->sk_state == TCP_TIME_WAIT)
1726		goto do_time_wait;
1727
1728	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1729		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1730		goto discard_and_relse;
1731	}
1732
1733	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1734		goto discard_and_relse;
1735	nf_reset(skb);
1736
1737	if (sk_filter(sk, skb))
1738		goto discard_and_relse;
1739
1740	skb->dev = NULL;
1741
1742	bh_lock_sock_nested(sk);
1743	ret = 0;
1744	if (!sock_owned_by_user(sk)) {
1745#ifdef CONFIG_NET_DMA
1746		struct tcp_sock *tp = tcp_sk(sk);
1747		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1748			tp->ucopy.dma_chan = net_dma_find_channel();
1749		if (tp->ucopy.dma_chan)
1750			ret = tcp_v4_do_rcv(sk, skb);
1751		else
1752#endif
1753		{
1754			if (!tcp_prequeue(sk, skb))
1755				ret = tcp_v4_do_rcv(sk, skb);
1756		}
1757	} else if (unlikely(sk_add_backlog(sk, skb,
1758					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
1759		bh_unlock_sock(sk);
1760		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1761		goto discard_and_relse;
1762	}
1763	bh_unlock_sock(sk);
1764
1765	sock_put(sk);
1766
1767	return ret;
1768
1769no_tcp_socket:
1770	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1771		goto discard_it;
1772
1773	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1774bad_packet:
1775		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1776	} else {
1777		tcp_v4_send_reset(NULL, skb);
1778	}
1779
1780discard_it:
1781	/* Discard frame. */
1782	kfree_skb(skb);
1783	return 0;
1784
1785discard_and_relse:
1786	sock_put(sk);
1787	goto discard_it;
1788
1789do_time_wait:
1790	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1791		inet_twsk_put(inet_twsk(sk));
1792		goto discard_it;
1793	}
1794
1795	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1796		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1797		inet_twsk_put(inet_twsk(sk));
1798		goto discard_it;
1799	}
1800	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1801	case TCP_TW_SYN: {
1802		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1803							&tcp_hashinfo,
1804							iph->daddr, th->dest,
1805							inet_iif(skb));
1806		if (sk2) {
1807			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1808			inet_twsk_put(inet_twsk(sk));
1809			sk = sk2;
1810			goto process;
1811		}
1812		/* Fall through to ACK */
1813	}
1814	case TCP_TW_ACK:
1815		tcp_v4_timewait_ack(sk, skb);
1816		break;
1817	case TCP_TW_RST:
1818		goto no_tcp_socket;
1819	case TCP_TW_SUCCESS:;
1820	}
1821	goto discard_it;
1822}
1823
1824struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1825{
1826	struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1827	struct inet_sock *inet = inet_sk(sk);
1828	struct inet_peer *peer;
1829
1830	if (!rt ||
1831	    inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1832		peer = inet_getpeer_v4(inet->inet_daddr, 1);
1833		*release_it = true;
1834	} else {
1835		if (!rt->peer)
1836			rt_bind_peer(rt, inet->inet_daddr, 1);
1837		peer = rt->peer;
1838		*release_it = false;
1839	}
1840
1841	return peer;
1842}
1843EXPORT_SYMBOL(tcp_v4_get_peer);
1844
1845void *tcp_v4_tw_get_peer(struct sock *sk)
1846{
1847	const struct inet_timewait_sock *tw = inet_twsk(sk);
1848
1849	return inet_getpeer_v4(tw->tw_daddr, 1);
1850}
1851EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1852
1853static struct timewait_sock_ops tcp_timewait_sock_ops = {
1854	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1855	.twsk_unique	= tcp_twsk_unique,
1856	.twsk_destructor= tcp_twsk_destructor,
1857	.twsk_getpeer	= tcp_v4_tw_get_peer,
1858};
1859
1860const struct inet_connection_sock_af_ops ipv4_specific = {
1861	.queue_xmit	   = ip_queue_xmit,
1862	.send_check	   = tcp_v4_send_check,
1863	.rebuild_header	   = inet_sk_rebuild_header,
1864	.conn_request	   = tcp_v4_conn_request,
1865	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1866	.get_peer	   = tcp_v4_get_peer,
1867	.net_header_len	   = sizeof(struct iphdr),
1868	.setsockopt	   = ip_setsockopt,
1869	.getsockopt	   = ip_getsockopt,
1870	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1871	.sockaddr_len	   = sizeof(struct sockaddr_in),
1872	.bind_conflict	   = inet_csk_bind_conflict,
1873#ifdef CONFIG_COMPAT
1874	.compat_setsockopt = compat_ip_setsockopt,
1875	.compat_getsockopt = compat_ip_getsockopt,
1876#endif
1877};
1878EXPORT_SYMBOL(ipv4_specific);
1879
1880#ifdef CONFIG_TCP_MD5SIG
1881static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1882	.md5_lookup		= tcp_v4_md5_lookup,
1883	.calc_md5_hash		= tcp_v4_md5_hash_skb,
 
1884	.md5_parse		= tcp_v4_parse_md5_keys,
1885};
1886#endif
1887
1888/* NOTE: A lot of things set to zero explicitly by call to
1889 *       sk_alloc() so need not be done here.
1890 */
1891static int tcp_v4_init_sock(struct sock *sk)
1892{
1893	struct inet_connection_sock *icsk = inet_csk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894
1895	tcp_init_sock(sk);
 
1896
1897	icsk->icsk_af_ops = &ipv4_specific;
1898
1899#ifdef CONFIG_TCP_MD5SIG
1900	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1901#endif
1902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903	return 0;
1904}
1905
1906void tcp_v4_destroy_sock(struct sock *sk)
1907{
1908	struct tcp_sock *tp = tcp_sk(sk);
1909
1910	tcp_clear_xmit_timers(sk);
1911
1912	tcp_cleanup_congestion_control(sk);
1913
1914	/* Cleanup up the write buffer. */
1915	tcp_write_queue_purge(sk);
1916
1917	/* Cleans up our, hopefully empty, out_of_order_queue. */
1918	__skb_queue_purge(&tp->out_of_order_queue);
1919
1920#ifdef CONFIG_TCP_MD5SIG
1921	/* Clean up the MD5 key list, if any */
1922	if (tp->md5sig_info) {
1923		tcp_clear_md5_list(sk);
1924		kfree_rcu(tp->md5sig_info, rcu);
1925		tp->md5sig_info = NULL;
1926	}
1927#endif
1928
1929#ifdef CONFIG_NET_DMA
1930	/* Cleans up our sk_async_wait_queue */
1931	__skb_queue_purge(&sk->sk_async_wait_queue);
1932#endif
1933
1934	/* Clean prequeue, it must be empty really */
1935	__skb_queue_purge(&tp->ucopy.prequeue);
1936
1937	/* Clean up a referenced TCP bind bucket. */
1938	if (inet_csk(sk)->icsk_bind_hash)
1939		inet_put_port(sk);
1940
1941	/*
1942	 * If sendmsg cached page exists, toss it.
1943	 */
1944	if (sk->sk_sndmsg_page) {
1945		__free_page(sk->sk_sndmsg_page);
1946		sk->sk_sndmsg_page = NULL;
1947	}
1948
1949	/* TCP Cookie Transactions */
1950	if (tp->cookie_values != NULL) {
1951		kref_put(&tp->cookie_values->kref,
1952			 tcp_cookie_values_release);
1953		tp->cookie_values = NULL;
1954	}
1955
1956	sk_sockets_allocated_dec(sk);
1957	sock_release_memcg(sk);
1958}
1959EXPORT_SYMBOL(tcp_v4_destroy_sock);
1960
1961#ifdef CONFIG_PROC_FS
1962/* Proc filesystem TCP sock list dumping. */
1963
1964static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1965{
1966	return hlist_nulls_empty(head) ? NULL :
1967		list_entry(head->first, struct inet_timewait_sock, tw_node);
1968}
1969
1970static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1971{
1972	return !is_a_nulls(tw->tw_node.next) ?
1973		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1974}
1975
1976/*
1977 * Get next listener socket follow cur.  If cur is NULL, get first socket
1978 * starting from bucket given in st->bucket; when st->bucket is zero the
1979 * very first socket in the hash table is returned.
1980 */
1981static void *listening_get_next(struct seq_file *seq, void *cur)
1982{
1983	struct inet_connection_sock *icsk;
1984	struct hlist_nulls_node *node;
1985	struct sock *sk = cur;
1986	struct inet_listen_hashbucket *ilb;
1987	struct tcp_iter_state *st = seq->private;
1988	struct net *net = seq_file_net(seq);
1989
1990	if (!sk) {
1991		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1992		spin_lock_bh(&ilb->lock);
1993		sk = sk_nulls_head(&ilb->head);
1994		st->offset = 0;
1995		goto get_sk;
1996	}
1997	ilb = &tcp_hashinfo.listening_hash[st->bucket];
1998	++st->num;
1999	++st->offset;
2000
2001	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2002		struct request_sock *req = cur;
2003
2004		icsk = inet_csk(st->syn_wait_sk);
2005		req = req->dl_next;
2006		while (1) {
2007			while (req) {
2008				if (req->rsk_ops->family == st->family) {
2009					cur = req;
2010					goto out;
2011				}
2012				req = req->dl_next;
2013			}
2014			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2015				break;
2016get_req:
2017			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2018		}
2019		sk	  = sk_nulls_next(st->syn_wait_sk);
2020		st->state = TCP_SEQ_STATE_LISTENING;
2021		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022	} else {
2023		icsk = inet_csk(sk);
2024		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2026			goto start_req;
2027		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2028		sk = sk_nulls_next(sk);
2029	}
2030get_sk:
2031	sk_nulls_for_each_from(sk, node) {
2032		if (!net_eq(sock_net(sk), net))
2033			continue;
2034		if (sk->sk_family == st->family) {
2035			cur = sk;
2036			goto out;
2037		}
2038		icsk = inet_csk(sk);
2039		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2040		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2041start_req:
2042			st->uid		= sock_i_uid(sk);
2043			st->syn_wait_sk = sk;
2044			st->state	= TCP_SEQ_STATE_OPENREQ;
2045			st->sbucket	= 0;
2046			goto get_req;
2047		}
2048		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2049	}
2050	spin_unlock_bh(&ilb->lock);
2051	st->offset = 0;
2052	if (++st->bucket < INET_LHTABLE_SIZE) {
2053		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2054		spin_lock_bh(&ilb->lock);
2055		sk = sk_nulls_head(&ilb->head);
2056		goto get_sk;
2057	}
2058	cur = NULL;
2059out:
2060	return cur;
2061}
2062
2063static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2064{
2065	struct tcp_iter_state *st = seq->private;
2066	void *rc;
2067
2068	st->bucket = 0;
2069	st->offset = 0;
2070	rc = listening_get_next(seq, NULL);
2071
2072	while (rc && *pos) {
2073		rc = listening_get_next(seq, rc);
2074		--*pos;
2075	}
2076	return rc;
2077}
2078
2079static inline bool empty_bucket(struct tcp_iter_state *st)
2080{
2081	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2082		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2083}
2084
2085/*
2086 * Get first established socket starting from bucket given in st->bucket.
2087 * If st->bucket is zero, the very first socket in the hash is returned.
2088 */
2089static void *established_get_first(struct seq_file *seq)
2090{
2091	struct tcp_iter_state *st = seq->private;
2092	struct net *net = seq_file_net(seq);
2093	void *rc = NULL;
2094
2095	st->offset = 0;
2096	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2097		struct sock *sk;
2098		struct hlist_nulls_node *node;
2099		struct inet_timewait_sock *tw;
2100		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2101
2102		/* Lockless fast path for the common case of empty buckets */
2103		if (empty_bucket(st))
2104			continue;
2105
2106		spin_lock_bh(lock);
2107		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2108			if (sk->sk_family != st->family ||
2109			    !net_eq(sock_net(sk), net)) {
2110				continue;
2111			}
2112			rc = sk;
2113			goto out;
2114		}
2115		st->state = TCP_SEQ_STATE_TIME_WAIT;
2116		inet_twsk_for_each(tw, node,
2117				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2118			if (tw->tw_family != st->family ||
2119			    !net_eq(twsk_net(tw), net)) {
2120				continue;
2121			}
2122			rc = tw;
2123			goto out;
2124		}
2125		spin_unlock_bh(lock);
2126		st->state = TCP_SEQ_STATE_ESTABLISHED;
2127	}
2128out:
2129	return rc;
2130}
2131
2132static void *established_get_next(struct seq_file *seq, void *cur)
2133{
2134	struct sock *sk = cur;
2135	struct inet_timewait_sock *tw;
2136	struct hlist_nulls_node *node;
2137	struct tcp_iter_state *st = seq->private;
2138	struct net *net = seq_file_net(seq);
2139
2140	++st->num;
2141	++st->offset;
2142
2143	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2144		tw = cur;
2145		tw = tw_next(tw);
2146get_tw:
2147		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2148			tw = tw_next(tw);
2149		}
2150		if (tw) {
2151			cur = tw;
2152			goto out;
2153		}
2154		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2155		st->state = TCP_SEQ_STATE_ESTABLISHED;
2156
2157		/* Look for next non empty bucket */
2158		st->offset = 0;
2159		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2160				empty_bucket(st))
2161			;
2162		if (st->bucket > tcp_hashinfo.ehash_mask)
2163			return NULL;
2164
2165		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2166		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2167	} else
2168		sk = sk_nulls_next(sk);
2169
2170	sk_nulls_for_each_from(sk, node) {
2171		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2172			goto found;
2173	}
2174
2175	st->state = TCP_SEQ_STATE_TIME_WAIT;
2176	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2177	goto get_tw;
2178found:
2179	cur = sk;
2180out:
2181	return cur;
2182}
2183
2184static void *established_get_idx(struct seq_file *seq, loff_t pos)
2185{
2186	struct tcp_iter_state *st = seq->private;
2187	void *rc;
2188
2189	st->bucket = 0;
2190	rc = established_get_first(seq);
2191
2192	while (rc && pos) {
2193		rc = established_get_next(seq, rc);
2194		--pos;
2195	}
2196	return rc;
2197}
2198
2199static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2200{
2201	void *rc;
2202	struct tcp_iter_state *st = seq->private;
2203
2204	st->state = TCP_SEQ_STATE_LISTENING;
2205	rc	  = listening_get_idx(seq, &pos);
2206
2207	if (!rc) {
2208		st->state = TCP_SEQ_STATE_ESTABLISHED;
2209		rc	  = established_get_idx(seq, pos);
2210	}
2211
2212	return rc;
2213}
2214
2215static void *tcp_seek_last_pos(struct seq_file *seq)
2216{
2217	struct tcp_iter_state *st = seq->private;
2218	int offset = st->offset;
2219	int orig_num = st->num;
2220	void *rc = NULL;
2221
2222	switch (st->state) {
2223	case TCP_SEQ_STATE_OPENREQ:
2224	case TCP_SEQ_STATE_LISTENING:
2225		if (st->bucket >= INET_LHTABLE_SIZE)
2226			break;
2227		st->state = TCP_SEQ_STATE_LISTENING;
2228		rc = listening_get_next(seq, NULL);
2229		while (offset-- && rc)
2230			rc = listening_get_next(seq, rc);
2231		if (rc)
2232			break;
2233		st->bucket = 0;
2234		/* Fallthrough */
2235	case TCP_SEQ_STATE_ESTABLISHED:
2236	case TCP_SEQ_STATE_TIME_WAIT:
2237		st->state = TCP_SEQ_STATE_ESTABLISHED;
2238		if (st->bucket > tcp_hashinfo.ehash_mask)
2239			break;
2240		rc = established_get_first(seq);
2241		while (offset-- && rc)
2242			rc = established_get_next(seq, rc);
2243	}
2244
2245	st->num = orig_num;
2246
2247	return rc;
2248}
2249
2250static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2251{
2252	struct tcp_iter_state *st = seq->private;
2253	void *rc;
2254
2255	if (*pos && *pos == st->last_pos) {
2256		rc = tcp_seek_last_pos(seq);
2257		if (rc)
2258			goto out;
2259	}
2260
2261	st->state = TCP_SEQ_STATE_LISTENING;
2262	st->num = 0;
2263	st->bucket = 0;
2264	st->offset = 0;
2265	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2266
2267out:
2268	st->last_pos = *pos;
2269	return rc;
2270}
2271
2272static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273{
2274	struct tcp_iter_state *st = seq->private;
2275	void *rc = NULL;
2276
2277	if (v == SEQ_START_TOKEN) {
2278		rc = tcp_get_idx(seq, 0);
2279		goto out;
2280	}
2281
2282	switch (st->state) {
2283	case TCP_SEQ_STATE_OPENREQ:
2284	case TCP_SEQ_STATE_LISTENING:
2285		rc = listening_get_next(seq, v);
2286		if (!rc) {
2287			st->state = TCP_SEQ_STATE_ESTABLISHED;
2288			st->bucket = 0;
2289			st->offset = 0;
2290			rc	  = established_get_first(seq);
2291		}
2292		break;
2293	case TCP_SEQ_STATE_ESTABLISHED:
2294	case TCP_SEQ_STATE_TIME_WAIT:
2295		rc = established_get_next(seq, v);
2296		break;
2297	}
2298out:
2299	++*pos;
2300	st->last_pos = *pos;
2301	return rc;
2302}
2303
2304static void tcp_seq_stop(struct seq_file *seq, void *v)
2305{
2306	struct tcp_iter_state *st = seq->private;
2307
2308	switch (st->state) {
2309	case TCP_SEQ_STATE_OPENREQ:
2310		if (v) {
2311			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2312			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2313		}
2314	case TCP_SEQ_STATE_LISTENING:
2315		if (v != SEQ_START_TOKEN)
2316			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2317		break;
2318	case TCP_SEQ_STATE_TIME_WAIT:
2319	case TCP_SEQ_STATE_ESTABLISHED:
2320		if (v)
2321			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2322		break;
2323	}
2324}
2325
2326int tcp_seq_open(struct inode *inode, struct file *file)
2327{
2328	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2329	struct tcp_iter_state *s;
2330	int err;
2331
2332	err = seq_open_net(inode, file, &afinfo->seq_ops,
2333			  sizeof(struct tcp_iter_state));
2334	if (err < 0)
2335		return err;
2336
2337	s = ((struct seq_file *)file->private_data)->private;
2338	s->family		= afinfo->family;
2339	s->last_pos 		= 0;
2340	return 0;
2341}
2342EXPORT_SYMBOL(tcp_seq_open);
2343
2344int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2345{
2346	int rc = 0;
2347	struct proc_dir_entry *p;
2348
 
 
 
 
 
2349	afinfo->seq_ops.start		= tcp_seq_start;
2350	afinfo->seq_ops.next		= tcp_seq_next;
2351	afinfo->seq_ops.stop		= tcp_seq_stop;
2352
2353	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2354			     afinfo->seq_fops, afinfo);
2355	if (!p)
2356		rc = -ENOMEM;
2357	return rc;
2358}
2359EXPORT_SYMBOL(tcp_proc_register);
2360
2361void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2362{
2363	proc_net_remove(net, afinfo->name);
2364}
2365EXPORT_SYMBOL(tcp_proc_unregister);
2366
2367static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2368			 struct seq_file *f, int i, int uid, int *len)
2369{
2370	const struct inet_request_sock *ireq = inet_rsk(req);
2371	int ttd = req->expires - jiffies;
2372
2373	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2374		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2375		i,
2376		ireq->loc_addr,
2377		ntohs(inet_sk(sk)->inet_sport),
2378		ireq->rmt_addr,
2379		ntohs(ireq->rmt_port),
2380		TCP_SYN_RECV,
2381		0, 0, /* could print option size, but that is af dependent. */
2382		1,    /* timers active (only the expire timer) */
2383		jiffies_to_clock_t(ttd),
2384		req->retrans,
2385		uid,
2386		0,  /* non standard timer */
2387		0, /* open_requests have no inode */
2388		atomic_read(&sk->sk_refcnt),
2389		req,
2390		len);
2391}
2392
2393static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2394{
2395	int timer_active;
2396	unsigned long timer_expires;
2397	const struct tcp_sock *tp = tcp_sk(sk);
2398	const struct inet_connection_sock *icsk = inet_csk(sk);
2399	const struct inet_sock *inet = inet_sk(sk);
2400	__be32 dest = inet->inet_daddr;
2401	__be32 src = inet->inet_rcv_saddr;
2402	__u16 destp = ntohs(inet->inet_dport);
2403	__u16 srcp = ntohs(inet->inet_sport);
2404	int rx_queue;
2405
2406	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2407		timer_active	= 1;
2408		timer_expires	= icsk->icsk_timeout;
2409	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2410		timer_active	= 4;
2411		timer_expires	= icsk->icsk_timeout;
2412	} else if (timer_pending(&sk->sk_timer)) {
2413		timer_active	= 2;
2414		timer_expires	= sk->sk_timer.expires;
2415	} else {
2416		timer_active	= 0;
2417		timer_expires = jiffies;
2418	}
2419
2420	if (sk->sk_state == TCP_LISTEN)
2421		rx_queue = sk->sk_ack_backlog;
2422	else
2423		/*
2424		 * because we dont lock socket, we might find a transient negative value
2425		 */
2426		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2427
2428	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2429			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2430		i, src, srcp, dest, destp, sk->sk_state,
2431		tp->write_seq - tp->snd_una,
2432		rx_queue,
2433		timer_active,
2434		jiffies_to_clock_t(timer_expires - jiffies),
2435		icsk->icsk_retransmits,
2436		sock_i_uid(sk),
2437		icsk->icsk_probes_out,
2438		sock_i_ino(sk),
2439		atomic_read(&sk->sk_refcnt), sk,
2440		jiffies_to_clock_t(icsk->icsk_rto),
2441		jiffies_to_clock_t(icsk->icsk_ack.ato),
2442		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2443		tp->snd_cwnd,
2444		tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2445		len);
2446}
2447
2448static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2449			       struct seq_file *f, int i, int *len)
2450{
2451	__be32 dest, src;
2452	__u16 destp, srcp;
2453	int ttd = tw->tw_ttd - jiffies;
2454
2455	if (ttd < 0)
2456		ttd = 0;
2457
2458	dest  = tw->tw_daddr;
2459	src   = tw->tw_rcv_saddr;
2460	destp = ntohs(tw->tw_dport);
2461	srcp  = ntohs(tw->tw_sport);
2462
2463	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2464		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2465		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2466		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2467		atomic_read(&tw->tw_refcnt), tw, len);
2468}
2469
2470#define TMPSZ 150
2471
2472static int tcp4_seq_show(struct seq_file *seq, void *v)
2473{
2474	struct tcp_iter_state *st;
2475	int len;
2476
2477	if (v == SEQ_START_TOKEN) {
2478		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2479			   "  sl  local_address rem_address   st tx_queue "
2480			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2481			   "inode");
2482		goto out;
2483	}
2484	st = seq->private;
2485
2486	switch (st->state) {
2487	case TCP_SEQ_STATE_LISTENING:
2488	case TCP_SEQ_STATE_ESTABLISHED:
2489		get_tcp4_sock(v, seq, st->num, &len);
2490		break;
2491	case TCP_SEQ_STATE_OPENREQ:
2492		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2493		break;
2494	case TCP_SEQ_STATE_TIME_WAIT:
2495		get_timewait4_sock(v, seq, st->num, &len);
2496		break;
2497	}
2498	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2499out:
2500	return 0;
2501}
2502
2503static const struct file_operations tcp_afinfo_seq_fops = {
2504	.owner   = THIS_MODULE,
2505	.open    = tcp_seq_open,
2506	.read    = seq_read,
2507	.llseek  = seq_lseek,
2508	.release = seq_release_net
2509};
2510
2511static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2512	.name		= "tcp",
2513	.family		= AF_INET,
2514	.seq_fops	= &tcp_afinfo_seq_fops,
 
 
2515	.seq_ops	= {
2516		.show		= tcp4_seq_show,
2517	},
2518};
2519
2520static int __net_init tcp4_proc_init_net(struct net *net)
2521{
2522	return tcp_proc_register(net, &tcp4_seq_afinfo);
2523}
2524
2525static void __net_exit tcp4_proc_exit_net(struct net *net)
2526{
2527	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2528}
2529
2530static struct pernet_operations tcp4_net_ops = {
2531	.init = tcp4_proc_init_net,
2532	.exit = tcp4_proc_exit_net,
2533};
2534
2535int __init tcp4_proc_init(void)
2536{
2537	return register_pernet_subsys(&tcp4_net_ops);
2538}
2539
2540void tcp4_proc_exit(void)
2541{
2542	unregister_pernet_subsys(&tcp4_net_ops);
2543}
2544#endif /* CONFIG_PROC_FS */
2545
2546struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2547{
2548	const struct iphdr *iph = skb_gro_network_header(skb);
2549
2550	switch (skb->ip_summed) {
2551	case CHECKSUM_COMPLETE:
2552		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2553				  skb->csum)) {
2554			skb->ip_summed = CHECKSUM_UNNECESSARY;
2555			break;
2556		}
2557
2558		/* fall through */
2559	case CHECKSUM_NONE:
2560		NAPI_GRO_CB(skb)->flush = 1;
2561		return NULL;
2562	}
2563
2564	return tcp_gro_receive(head, skb);
2565}
2566
2567int tcp4_gro_complete(struct sk_buff *skb)
2568{
2569	const struct iphdr *iph = ip_hdr(skb);
2570	struct tcphdr *th = tcp_hdr(skb);
2571
2572	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2573				  iph->saddr, iph->daddr, 0);
2574	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2575
2576	return tcp_gro_complete(skb);
2577}
2578
2579struct proto tcp_prot = {
2580	.name			= "TCP",
2581	.owner			= THIS_MODULE,
2582	.close			= tcp_close,
2583	.connect		= tcp_v4_connect,
2584	.disconnect		= tcp_disconnect,
2585	.accept			= inet_csk_accept,
2586	.ioctl			= tcp_ioctl,
2587	.init			= tcp_v4_init_sock,
2588	.destroy		= tcp_v4_destroy_sock,
2589	.shutdown		= tcp_shutdown,
2590	.setsockopt		= tcp_setsockopt,
2591	.getsockopt		= tcp_getsockopt,
2592	.recvmsg		= tcp_recvmsg,
2593	.sendmsg		= tcp_sendmsg,
2594	.sendpage		= tcp_sendpage,
2595	.backlog_rcv		= tcp_v4_do_rcv,
2596	.hash			= inet_hash,
2597	.unhash			= inet_unhash,
2598	.get_port		= inet_csk_get_port,
2599	.enter_memory_pressure	= tcp_enter_memory_pressure,
2600	.sockets_allocated	= &tcp_sockets_allocated,
2601	.orphan_count		= &tcp_orphan_count,
2602	.memory_allocated	= &tcp_memory_allocated,
2603	.memory_pressure	= &tcp_memory_pressure,
 
2604	.sysctl_wmem		= sysctl_tcp_wmem,
2605	.sysctl_rmem		= sysctl_tcp_rmem,
2606	.max_header		= MAX_TCP_HEADER,
2607	.obj_size		= sizeof(struct tcp_sock),
2608	.slab_flags		= SLAB_DESTROY_BY_RCU,
2609	.twsk_prot		= &tcp_timewait_sock_ops,
2610	.rsk_prot		= &tcp_request_sock_ops,
2611	.h.hashinfo		= &tcp_hashinfo,
2612	.no_autobind		= true,
2613#ifdef CONFIG_COMPAT
2614	.compat_setsockopt	= compat_tcp_setsockopt,
2615	.compat_getsockopt	= compat_tcp_getsockopt,
2616#endif
2617#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2618	.init_cgroup		= tcp_init_cgroup,
2619	.destroy_cgroup		= tcp_destroy_cgroup,
2620	.proto_cgroup		= tcp_proto_cgroup,
2621#endif
2622};
2623EXPORT_SYMBOL(tcp_prot);
 
2624
2625static int __net_init tcp_sk_init(struct net *net)
2626{
2627	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2628				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2629}
2630
2631static void __net_exit tcp_sk_exit(struct net *net)
2632{
2633	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2634}
2635
2636static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2637{
2638	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2639}
2640
2641static struct pernet_operations __net_initdata tcp_sk_ops = {
2642       .init	   = tcp_sk_init,
2643       .exit	   = tcp_sk_exit,
2644       .exit_batch = tcp_sk_exit_batch,
2645};
2646
2647void __init tcp_v4_init(void)
2648{
2649	inet_hashinfo_init(&tcp_hashinfo);
2650	if (register_pernet_subsys(&tcp_sk_ops))
2651		panic("Failed to create the TCP control socket.\n");
2652}