Loading...
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53
54#include <linux/bottom_half.h>
55#include <linux/types.h>
56#include <linux/fcntl.h>
57#include <linux/module.h>
58#include <linux/random.h>
59#include <linux/cache.h>
60#include <linux/jhash.h>
61#include <linux/init.h>
62#include <linux/times.h>
63#include <linux/slab.h>
64
65#include <net/net_namespace.h>
66#include <net/icmp.h>
67#include <net/inet_hashtables.h>
68#include <net/tcp.h>
69#include <net/transp_v6.h>
70#include <net/ipv6.h>
71#include <net/inet_common.h>
72#include <net/timewait_sock.h>
73#include <net/xfrm.h>
74#include <net/netdma.h>
75#include <net/secure_seq.h>
76
77#include <linux/inet.h>
78#include <linux/ipv6.h>
79#include <linux/stddef.h>
80#include <linux/proc_fs.h>
81#include <linux/seq_file.h>
82
83#include <linux/crypto.h>
84#include <linux/scatterlist.h>
85
86int sysctl_tcp_tw_reuse __read_mostly;
87int sysctl_tcp_low_latency __read_mostly;
88EXPORT_SYMBOL(sysctl_tcp_low_latency);
89
90
91#ifdef CONFIG_TCP_MD5SIG
92static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
93 __be32 addr);
94static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, struct tcphdr *th);
96#else
97static inline
98struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
99{
100 return NULL;
101}
102#endif
103
104struct inet_hashinfo tcp_hashinfo;
105EXPORT_SYMBOL(tcp_hashinfo);
106
107static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
108{
109 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
110 ip_hdr(skb)->saddr,
111 tcp_hdr(skb)->dest,
112 tcp_hdr(skb)->source);
113}
114
115int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
116{
117 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
118 struct tcp_sock *tp = tcp_sk(sk);
119
120 /* With PAWS, it is safe from the viewpoint
121 of data integrity. Even without PAWS it is safe provided sequence
122 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123
124 Actually, the idea is close to VJ's one, only timestamp cache is
125 held not per host, but per port pair and TW bucket is used as state
126 holder.
127
128 If TW bucket has been already destroyed we fall back to VJ's scheme
129 and use initial timestamp retrieved from peer table.
130 */
131 if (tcptw->tw_ts_recent_stamp &&
132 (twp == NULL || (sysctl_tcp_tw_reuse &&
133 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
134 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
135 if (tp->write_seq == 0)
136 tp->write_seq = 1;
137 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
138 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
139 sock_hold(sktw);
140 return 1;
141 }
142
143 return 0;
144}
145EXPORT_SYMBOL_GPL(tcp_twsk_unique);
146
147/* This will initiate an outgoing connection. */
148int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
149{
150 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151 struct inet_sock *inet = inet_sk(sk);
152 struct tcp_sock *tp = tcp_sk(sk);
153 __be16 orig_sport, orig_dport;
154 __be32 daddr, nexthop;
155 struct flowi4 *fl4;
156 struct rtable *rt;
157 int err;
158 struct ip_options_rcu *inet_opt;
159
160 if (addr_len < sizeof(struct sockaddr_in))
161 return -EINVAL;
162
163 if (usin->sin_family != AF_INET)
164 return -EAFNOSUPPORT;
165
166 nexthop = daddr = usin->sin_addr.s_addr;
167 inet_opt = rcu_dereference_protected(inet->inet_opt,
168 sock_owned_by_user(sk));
169 if (inet_opt && inet_opt->opt.srr) {
170 if (!daddr)
171 return -EINVAL;
172 nexthop = inet_opt->opt.faddr;
173 }
174
175 orig_sport = inet->inet_sport;
176 orig_dport = usin->sin_port;
177 fl4 = &inet->cork.fl.u.ip4;
178 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
179 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
180 IPPROTO_TCP,
181 orig_sport, orig_dport, sk, true);
182 if (IS_ERR(rt)) {
183 err = PTR_ERR(rt);
184 if (err == -ENETUNREACH)
185 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
186 return err;
187 }
188
189 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
190 ip_rt_put(rt);
191 return -ENETUNREACH;
192 }
193
194 if (!inet_opt || !inet_opt->opt.srr)
195 daddr = fl4->daddr;
196
197 if (!inet->inet_saddr)
198 inet->inet_saddr = fl4->saddr;
199 inet->inet_rcv_saddr = inet->inet_saddr;
200
201 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
202 /* Reset inherited state */
203 tp->rx_opt.ts_recent = 0;
204 tp->rx_opt.ts_recent_stamp = 0;
205 tp->write_seq = 0;
206 }
207
208 if (tcp_death_row.sysctl_tw_recycle &&
209 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
210 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
211 /*
212 * VJ's idea. We save last timestamp seen from
213 * the destination in peer table, when entering state
214 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
215 * when trying new connection.
216 */
217 if (peer) {
218 inet_peer_refcheck(peer);
219 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
220 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
221 tp->rx_opt.ts_recent = peer->tcp_ts;
222 }
223 }
224 }
225
226 inet->inet_dport = usin->sin_port;
227 inet->inet_daddr = daddr;
228
229 inet_csk(sk)->icsk_ext_hdr_len = 0;
230 if (inet_opt)
231 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
232
233 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
234
235 /* Socket identity is still unknown (sport may be zero).
236 * However we set state to SYN-SENT and not releasing socket
237 * lock select source port, enter ourselves into the hash tables and
238 * complete initialization after this.
239 */
240 tcp_set_state(sk, TCP_SYN_SENT);
241 err = inet_hash_connect(&tcp_death_row, sk);
242 if (err)
243 goto failure;
244
245 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
246 inet->inet_sport, inet->inet_dport, sk);
247 if (IS_ERR(rt)) {
248 err = PTR_ERR(rt);
249 rt = NULL;
250 goto failure;
251 }
252 /* OK, now commit destination to socket. */
253 sk->sk_gso_type = SKB_GSO_TCPV4;
254 sk_setup_caps(sk, &rt->dst);
255
256 if (!tp->write_seq)
257 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
258 inet->inet_daddr,
259 inet->inet_sport,
260 usin->sin_port);
261
262 inet->inet_id = tp->write_seq ^ jiffies;
263
264 err = tcp_connect(sk);
265 rt = NULL;
266 if (err)
267 goto failure;
268
269 return 0;
270
271failure:
272 /*
273 * This unhashes the socket and releases the local port,
274 * if necessary.
275 */
276 tcp_set_state(sk, TCP_CLOSE);
277 ip_rt_put(rt);
278 sk->sk_route_caps = 0;
279 inet->inet_dport = 0;
280 return err;
281}
282EXPORT_SYMBOL(tcp_v4_connect);
283
284/*
285 * This routine does path mtu discovery as defined in RFC1191.
286 */
287static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
288{
289 struct dst_entry *dst;
290 struct inet_sock *inet = inet_sk(sk);
291
292 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
293 * send out by Linux are always <576bytes so they should go through
294 * unfragmented).
295 */
296 if (sk->sk_state == TCP_LISTEN)
297 return;
298
299 /* We don't check in the destentry if pmtu discovery is forbidden
300 * on this route. We just assume that no packet_to_big packets
301 * are send back when pmtu discovery is not active.
302 * There is a small race when the user changes this flag in the
303 * route, but I think that's acceptable.
304 */
305 if ((dst = __sk_dst_check(sk, 0)) == NULL)
306 return;
307
308 dst->ops->update_pmtu(dst, mtu);
309
310 /* Something is about to be wrong... Remember soft error
311 * for the case, if this connection will not able to recover.
312 */
313 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
314 sk->sk_err_soft = EMSGSIZE;
315
316 mtu = dst_mtu(dst);
317
318 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
319 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
320 tcp_sync_mss(sk, mtu);
321
322 /* Resend the TCP packet because it's
323 * clear that the old packet has been
324 * dropped. This is the new "fast" path mtu
325 * discovery.
326 */
327 tcp_simple_retransmit(sk);
328 } /* else let the usual retransmit timer handle it */
329}
330
331/*
332 * This routine is called by the ICMP module when it gets some
333 * sort of error condition. If err < 0 then the socket should
334 * be closed and the error returned to the user. If err > 0
335 * it's just the icmp type << 8 | icmp code. After adjustment
336 * header points to the first 8 bytes of the tcp header. We need
337 * to find the appropriate port.
338 *
339 * The locking strategy used here is very "optimistic". When
340 * someone else accesses the socket the ICMP is just dropped
341 * and for some paths there is no check at all.
342 * A more general error queue to queue errors for later handling
343 * is probably better.
344 *
345 */
346
347void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
348{
349 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
350 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
351 struct inet_connection_sock *icsk;
352 struct tcp_sock *tp;
353 struct inet_sock *inet;
354 const int type = icmp_hdr(icmp_skb)->type;
355 const int code = icmp_hdr(icmp_skb)->code;
356 struct sock *sk;
357 struct sk_buff *skb;
358 __u32 seq;
359 __u32 remaining;
360 int err;
361 struct net *net = dev_net(icmp_skb->dev);
362
363 if (icmp_skb->len < (iph->ihl << 2) + 8) {
364 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
365 return;
366 }
367
368 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
369 iph->saddr, th->source, inet_iif(icmp_skb));
370 if (!sk) {
371 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372 return;
373 }
374 if (sk->sk_state == TCP_TIME_WAIT) {
375 inet_twsk_put(inet_twsk(sk));
376 return;
377 }
378
379 bh_lock_sock(sk);
380 /* If too many ICMPs get dropped on busy
381 * servers this needs to be solved differently.
382 */
383 if (sock_owned_by_user(sk))
384 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
385
386 if (sk->sk_state == TCP_CLOSE)
387 goto out;
388
389 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
390 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
391 goto out;
392 }
393
394 icsk = inet_csk(sk);
395 tp = tcp_sk(sk);
396 seq = ntohl(th->seq);
397 if (sk->sk_state != TCP_LISTEN &&
398 !between(seq, tp->snd_una, tp->snd_nxt)) {
399 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
400 goto out;
401 }
402
403 switch (type) {
404 case ICMP_SOURCE_QUENCH:
405 /* Just silently ignore these. */
406 goto out;
407 case ICMP_PARAMETERPROB:
408 err = EPROTO;
409 break;
410 case ICMP_DEST_UNREACH:
411 if (code > NR_ICMP_UNREACH)
412 goto out;
413
414 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
415 if (!sock_owned_by_user(sk))
416 do_pmtu_discovery(sk, iph, info);
417 goto out;
418 }
419
420 err = icmp_err_convert[code].errno;
421 /* check if icmp_skb allows revert of backoff
422 * (see draft-zimmermann-tcp-lcd) */
423 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
424 break;
425 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
426 !icsk->icsk_backoff)
427 break;
428
429 if (sock_owned_by_user(sk))
430 break;
431
432 icsk->icsk_backoff--;
433 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
434 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
435 tcp_bound_rto(sk);
436
437 skb = tcp_write_queue_head(sk);
438 BUG_ON(!skb);
439
440 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
441 tcp_time_stamp - TCP_SKB_CB(skb)->when);
442
443 if (remaining) {
444 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445 remaining, TCP_RTO_MAX);
446 } else {
447 /* RTO revert clocked out retransmission.
448 * Will retransmit now */
449 tcp_retransmit_timer(sk);
450 }
451
452 break;
453 case ICMP_TIME_EXCEEDED:
454 err = EHOSTUNREACH;
455 break;
456 default:
457 goto out;
458 }
459
460 switch (sk->sk_state) {
461 struct request_sock *req, **prev;
462 case TCP_LISTEN:
463 if (sock_owned_by_user(sk))
464 goto out;
465
466 req = inet_csk_search_req(sk, &prev, th->dest,
467 iph->daddr, iph->saddr);
468 if (!req)
469 goto out;
470
471 /* ICMPs are not backlogged, hence we cannot get
472 an established socket here.
473 */
474 WARN_ON(req->sk);
475
476 if (seq != tcp_rsk(req)->snt_isn) {
477 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478 goto out;
479 }
480
481 /*
482 * Still in SYN_RECV, just remove it silently.
483 * There is no good way to pass the error to the newly
484 * created socket, and POSIX does not want network
485 * errors returned from accept().
486 */
487 inet_csk_reqsk_queue_drop(sk, req, prev);
488 goto out;
489
490 case TCP_SYN_SENT:
491 case TCP_SYN_RECV: /* Cannot happen.
492 It can f.e. if SYNs crossed.
493 */
494 if (!sock_owned_by_user(sk)) {
495 sk->sk_err = err;
496
497 sk->sk_error_report(sk);
498
499 tcp_done(sk);
500 } else {
501 sk->sk_err_soft = err;
502 }
503 goto out;
504 }
505
506 /* If we've already connected we will keep trying
507 * until we time out, or the user gives up.
508 *
509 * rfc1122 4.2.3.9 allows to consider as hard errors
510 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
511 * but it is obsoleted by pmtu discovery).
512 *
513 * Note, that in modern internet, where routing is unreliable
514 * and in each dark corner broken firewalls sit, sending random
515 * errors ordered by their masters even this two messages finally lose
516 * their original sense (even Linux sends invalid PORT_UNREACHs)
517 *
518 * Now we are in compliance with RFCs.
519 * --ANK (980905)
520 */
521
522 inet = inet_sk(sk);
523 if (!sock_owned_by_user(sk) && inet->recverr) {
524 sk->sk_err = err;
525 sk->sk_error_report(sk);
526 } else { /* Only an error on timeout */
527 sk->sk_err_soft = err;
528 }
529
530out:
531 bh_unlock_sock(sk);
532 sock_put(sk);
533}
534
535static void __tcp_v4_send_check(struct sk_buff *skb,
536 __be32 saddr, __be32 daddr)
537{
538 struct tcphdr *th = tcp_hdr(skb);
539
540 if (skb->ip_summed == CHECKSUM_PARTIAL) {
541 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
542 skb->csum_start = skb_transport_header(skb) - skb->head;
543 skb->csum_offset = offsetof(struct tcphdr, check);
544 } else {
545 th->check = tcp_v4_check(skb->len, saddr, daddr,
546 csum_partial(th,
547 th->doff << 2,
548 skb->csum));
549 }
550}
551
552/* This routine computes an IPv4 TCP checksum. */
553void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
554{
555 struct inet_sock *inet = inet_sk(sk);
556
557 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
558}
559EXPORT_SYMBOL(tcp_v4_send_check);
560
561int tcp_v4_gso_send_check(struct sk_buff *skb)
562{
563 const struct iphdr *iph;
564 struct tcphdr *th;
565
566 if (!pskb_may_pull(skb, sizeof(*th)))
567 return -EINVAL;
568
569 iph = ip_hdr(skb);
570 th = tcp_hdr(skb);
571
572 th->check = 0;
573 skb->ip_summed = CHECKSUM_PARTIAL;
574 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
575 return 0;
576}
577
578/*
579 * This routine will send an RST to the other tcp.
580 *
581 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
582 * for reset.
583 * Answer: if a packet caused RST, it is not for a socket
584 * existing in our system, if it is matched to a socket,
585 * it is just duplicate segment or bug in other side's TCP.
586 * So that we build reply only basing on parameters
587 * arrived with segment.
588 * Exception: precedence violation. We do not implement it in any case.
589 */
590
591static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
592{
593 struct tcphdr *th = tcp_hdr(skb);
594 struct {
595 struct tcphdr th;
596#ifdef CONFIG_TCP_MD5SIG
597 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
598#endif
599 } rep;
600 struct ip_reply_arg arg;
601#ifdef CONFIG_TCP_MD5SIG
602 struct tcp_md5sig_key *key;
603#endif
604 struct net *net;
605
606 /* Never send a reset in response to a reset. */
607 if (th->rst)
608 return;
609
610 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611 return;
612
613 /* Swap the send and the receive. */
614 memset(&rep, 0, sizeof(rep));
615 rep.th.dest = th->source;
616 rep.th.source = th->dest;
617 rep.th.doff = sizeof(struct tcphdr) / 4;
618 rep.th.rst = 1;
619
620 if (th->ack) {
621 rep.th.seq = th->ack_seq;
622 } else {
623 rep.th.ack = 1;
624 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
625 skb->len - (th->doff << 2));
626 }
627
628 memset(&arg, 0, sizeof(arg));
629 arg.iov[0].iov_base = (unsigned char *)&rep;
630 arg.iov[0].iov_len = sizeof(rep.th);
631
632#ifdef CONFIG_TCP_MD5SIG
633 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
634 if (key) {
635 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
636 (TCPOPT_NOP << 16) |
637 (TCPOPT_MD5SIG << 8) |
638 TCPOLEN_MD5SIG);
639 /* Update length and the length the header thinks exists */
640 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
641 rep.th.doff = arg.iov[0].iov_len / 4;
642
643 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
644 key, ip_hdr(skb)->saddr,
645 ip_hdr(skb)->daddr, &rep.th);
646 }
647#endif
648 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
649 ip_hdr(skb)->saddr, /* XXX */
650 arg.iov[0].iov_len, IPPROTO_TCP, 0);
651 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
652 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
653
654 net = dev_net(skb_dst(skb)->dev);
655 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
656 &arg, arg.iov[0].iov_len);
657
658 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
659 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
660}
661
662/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
663 outside socket context is ugly, certainly. What can I do?
664 */
665
666static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
667 u32 win, u32 ts, int oif,
668 struct tcp_md5sig_key *key,
669 int reply_flags)
670{
671 struct tcphdr *th = tcp_hdr(skb);
672 struct {
673 struct tcphdr th;
674 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
675#ifdef CONFIG_TCP_MD5SIG
676 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
677#endif
678 ];
679 } rep;
680 struct ip_reply_arg arg;
681 struct net *net = dev_net(skb_dst(skb)->dev);
682
683 memset(&rep.th, 0, sizeof(struct tcphdr));
684 memset(&arg, 0, sizeof(arg));
685
686 arg.iov[0].iov_base = (unsigned char *)&rep;
687 arg.iov[0].iov_len = sizeof(rep.th);
688 if (ts) {
689 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
690 (TCPOPT_TIMESTAMP << 8) |
691 TCPOLEN_TIMESTAMP);
692 rep.opt[1] = htonl(tcp_time_stamp);
693 rep.opt[2] = htonl(ts);
694 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
695 }
696
697 /* Swap the send and the receive. */
698 rep.th.dest = th->source;
699 rep.th.source = th->dest;
700 rep.th.doff = arg.iov[0].iov_len / 4;
701 rep.th.seq = htonl(seq);
702 rep.th.ack_seq = htonl(ack);
703 rep.th.ack = 1;
704 rep.th.window = htons(win);
705
706#ifdef CONFIG_TCP_MD5SIG
707 if (key) {
708 int offset = (ts) ? 3 : 0;
709
710 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
711 (TCPOPT_NOP << 16) |
712 (TCPOPT_MD5SIG << 8) |
713 TCPOLEN_MD5SIG);
714 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
715 rep.th.doff = arg.iov[0].iov_len/4;
716
717 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
718 key, ip_hdr(skb)->saddr,
719 ip_hdr(skb)->daddr, &rep.th);
720 }
721#endif
722 arg.flags = reply_flags;
723 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
724 ip_hdr(skb)->saddr, /* XXX */
725 arg.iov[0].iov_len, IPPROTO_TCP, 0);
726 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
727 if (oif)
728 arg.bound_dev_if = oif;
729
730 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
731 &arg, arg.iov[0].iov_len);
732
733 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
734}
735
736static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
737{
738 struct inet_timewait_sock *tw = inet_twsk(sk);
739 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
740
741 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
742 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
743 tcptw->tw_ts_recent,
744 tw->tw_bound_dev_if,
745 tcp_twsk_md5_key(tcptw),
746 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
747 );
748
749 inet_twsk_put(tw);
750}
751
752static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
753 struct request_sock *req)
754{
755 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
756 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
757 req->ts_recent,
758 0,
759 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
760 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
761}
762
763/*
764 * Send a SYN-ACK after having received a SYN.
765 * This still operates on a request_sock only, not on a big
766 * socket.
767 */
768static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
769 struct request_sock *req,
770 struct request_values *rvp)
771{
772 const struct inet_request_sock *ireq = inet_rsk(req);
773 struct flowi4 fl4;
774 int err = -1;
775 struct sk_buff * skb;
776
777 /* First, grab a route. */
778 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
779 return -1;
780
781 skb = tcp_make_synack(sk, dst, req, rvp);
782
783 if (skb) {
784 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
785
786 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
787 ireq->rmt_addr,
788 ireq->opt);
789 err = net_xmit_eval(err);
790 }
791
792 dst_release(dst);
793 return err;
794}
795
796static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
797 struct request_values *rvp)
798{
799 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
800 return tcp_v4_send_synack(sk, NULL, req, rvp);
801}
802
803/*
804 * IPv4 request_sock destructor.
805 */
806static void tcp_v4_reqsk_destructor(struct request_sock *req)
807{
808 kfree(inet_rsk(req)->opt);
809}
810
811/*
812 * Return 1 if a syncookie should be sent
813 */
814int tcp_syn_flood_action(struct sock *sk,
815 const struct sk_buff *skb,
816 const char *proto)
817{
818 const char *msg = "Dropping request";
819 int want_cookie = 0;
820 struct listen_sock *lopt;
821
822
823
824#ifdef CONFIG_SYN_COOKIES
825 if (sysctl_tcp_syncookies) {
826 msg = "Sending cookies";
827 want_cookie = 1;
828 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
829 } else
830#endif
831 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
832
833 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
834 if (!lopt->synflood_warned) {
835 lopt->synflood_warned = 1;
836 pr_info("%s: Possible SYN flooding on port %d. %s. "
837 " Check SNMP counters.\n",
838 proto, ntohs(tcp_hdr(skb)->dest), msg);
839 }
840 return want_cookie;
841}
842EXPORT_SYMBOL(tcp_syn_flood_action);
843
844/*
845 * Save and compile IPv4 options into the request_sock if needed.
846 */
847static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
848 struct sk_buff *skb)
849{
850 const struct ip_options *opt = &(IPCB(skb)->opt);
851 struct ip_options_rcu *dopt = NULL;
852
853 if (opt && opt->optlen) {
854 int opt_size = sizeof(*dopt) + opt->optlen;
855
856 dopt = kmalloc(opt_size, GFP_ATOMIC);
857 if (dopt) {
858 if (ip_options_echo(&dopt->opt, skb)) {
859 kfree(dopt);
860 dopt = NULL;
861 }
862 }
863 }
864 return dopt;
865}
866
867#ifdef CONFIG_TCP_MD5SIG
868/*
869 * RFC2385 MD5 checksumming requires a mapping of
870 * IP address->MD5 Key.
871 * We need to maintain these in the sk structure.
872 */
873
874/* Find the Key structure for an address. */
875static struct tcp_md5sig_key *
876 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
877{
878 struct tcp_sock *tp = tcp_sk(sk);
879 int i;
880
881 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
882 return NULL;
883 for (i = 0; i < tp->md5sig_info->entries4; i++) {
884 if (tp->md5sig_info->keys4[i].addr == addr)
885 return &tp->md5sig_info->keys4[i].base;
886 }
887 return NULL;
888}
889
890struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
891 struct sock *addr_sk)
892{
893 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
894}
895EXPORT_SYMBOL(tcp_v4_md5_lookup);
896
897static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
898 struct request_sock *req)
899{
900 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
901}
902
903/* This can be called on a newly created socket, from other files */
904int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
905 u8 *newkey, u8 newkeylen)
906{
907 /* Add Key to the list */
908 struct tcp_md5sig_key *key;
909 struct tcp_sock *tp = tcp_sk(sk);
910 struct tcp4_md5sig_key *keys;
911
912 key = tcp_v4_md5_do_lookup(sk, addr);
913 if (key) {
914 /* Pre-existing entry - just update that one. */
915 kfree(key->key);
916 key->key = newkey;
917 key->keylen = newkeylen;
918 } else {
919 struct tcp_md5sig_info *md5sig;
920
921 if (!tp->md5sig_info) {
922 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
923 GFP_ATOMIC);
924 if (!tp->md5sig_info) {
925 kfree(newkey);
926 return -ENOMEM;
927 }
928 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
929 }
930
931 md5sig = tp->md5sig_info;
932 if (md5sig->entries4 == 0 &&
933 tcp_alloc_md5sig_pool(sk) == NULL) {
934 kfree(newkey);
935 return -ENOMEM;
936 }
937
938 if (md5sig->alloced4 == md5sig->entries4) {
939 keys = kmalloc((sizeof(*keys) *
940 (md5sig->entries4 + 1)), GFP_ATOMIC);
941 if (!keys) {
942 kfree(newkey);
943 if (md5sig->entries4 == 0)
944 tcp_free_md5sig_pool();
945 return -ENOMEM;
946 }
947
948 if (md5sig->entries4)
949 memcpy(keys, md5sig->keys4,
950 sizeof(*keys) * md5sig->entries4);
951
952 /* Free old key list, and reference new one */
953 kfree(md5sig->keys4);
954 md5sig->keys4 = keys;
955 md5sig->alloced4++;
956 }
957 md5sig->entries4++;
958 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
959 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
960 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
961 }
962 return 0;
963}
964EXPORT_SYMBOL(tcp_v4_md5_do_add);
965
966static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
967 u8 *newkey, u8 newkeylen)
968{
969 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
970 newkey, newkeylen);
971}
972
973int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
974{
975 struct tcp_sock *tp = tcp_sk(sk);
976 int i;
977
978 for (i = 0; i < tp->md5sig_info->entries4; i++) {
979 if (tp->md5sig_info->keys4[i].addr == addr) {
980 /* Free the key */
981 kfree(tp->md5sig_info->keys4[i].base.key);
982 tp->md5sig_info->entries4--;
983
984 if (tp->md5sig_info->entries4 == 0) {
985 kfree(tp->md5sig_info->keys4);
986 tp->md5sig_info->keys4 = NULL;
987 tp->md5sig_info->alloced4 = 0;
988 tcp_free_md5sig_pool();
989 } else if (tp->md5sig_info->entries4 != i) {
990 /* Need to do some manipulation */
991 memmove(&tp->md5sig_info->keys4[i],
992 &tp->md5sig_info->keys4[i+1],
993 (tp->md5sig_info->entries4 - i) *
994 sizeof(struct tcp4_md5sig_key));
995 }
996 return 0;
997 }
998 }
999 return -ENOENT;
1000}
1001EXPORT_SYMBOL(tcp_v4_md5_do_del);
1002
1003static void tcp_v4_clear_md5_list(struct sock *sk)
1004{
1005 struct tcp_sock *tp = tcp_sk(sk);
1006
1007 /* Free each key, then the set of key keys,
1008 * the crypto element, and then decrement our
1009 * hold on the last resort crypto.
1010 */
1011 if (tp->md5sig_info->entries4) {
1012 int i;
1013 for (i = 0; i < tp->md5sig_info->entries4; i++)
1014 kfree(tp->md5sig_info->keys4[i].base.key);
1015 tp->md5sig_info->entries4 = 0;
1016 tcp_free_md5sig_pool();
1017 }
1018 if (tp->md5sig_info->keys4) {
1019 kfree(tp->md5sig_info->keys4);
1020 tp->md5sig_info->keys4 = NULL;
1021 tp->md5sig_info->alloced4 = 0;
1022 }
1023}
1024
1025static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1026 int optlen)
1027{
1028 struct tcp_md5sig cmd;
1029 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1030 u8 *newkey;
1031
1032 if (optlen < sizeof(cmd))
1033 return -EINVAL;
1034
1035 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1036 return -EFAULT;
1037
1038 if (sin->sin_family != AF_INET)
1039 return -EINVAL;
1040
1041 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1042 if (!tcp_sk(sk)->md5sig_info)
1043 return -ENOENT;
1044 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1045 }
1046
1047 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1048 return -EINVAL;
1049
1050 if (!tcp_sk(sk)->md5sig_info) {
1051 struct tcp_sock *tp = tcp_sk(sk);
1052 struct tcp_md5sig_info *p;
1053
1054 p = kzalloc(sizeof(*p), sk->sk_allocation);
1055 if (!p)
1056 return -EINVAL;
1057
1058 tp->md5sig_info = p;
1059 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1060 }
1061
1062 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1063 if (!newkey)
1064 return -ENOMEM;
1065 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1066 newkey, cmd.tcpm_keylen);
1067}
1068
1069static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1070 __be32 daddr, __be32 saddr, int nbytes)
1071{
1072 struct tcp4_pseudohdr *bp;
1073 struct scatterlist sg;
1074
1075 bp = &hp->md5_blk.ip4;
1076
1077 /*
1078 * 1. the TCP pseudo-header (in the order: source IP address,
1079 * destination IP address, zero-padded protocol number, and
1080 * segment length)
1081 */
1082 bp->saddr = saddr;
1083 bp->daddr = daddr;
1084 bp->pad = 0;
1085 bp->protocol = IPPROTO_TCP;
1086 bp->len = cpu_to_be16(nbytes);
1087
1088 sg_init_one(&sg, bp, sizeof(*bp));
1089 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1090}
1091
1092static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1093 __be32 daddr, __be32 saddr, struct tcphdr *th)
1094{
1095 struct tcp_md5sig_pool *hp;
1096 struct hash_desc *desc;
1097
1098 hp = tcp_get_md5sig_pool();
1099 if (!hp)
1100 goto clear_hash_noput;
1101 desc = &hp->md5_desc;
1102
1103 if (crypto_hash_init(desc))
1104 goto clear_hash;
1105 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1106 goto clear_hash;
1107 if (tcp_md5_hash_header(hp, th))
1108 goto clear_hash;
1109 if (tcp_md5_hash_key(hp, key))
1110 goto clear_hash;
1111 if (crypto_hash_final(desc, md5_hash))
1112 goto clear_hash;
1113
1114 tcp_put_md5sig_pool();
1115 return 0;
1116
1117clear_hash:
1118 tcp_put_md5sig_pool();
1119clear_hash_noput:
1120 memset(md5_hash, 0, 16);
1121 return 1;
1122}
1123
1124int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1125 struct sock *sk, struct request_sock *req,
1126 struct sk_buff *skb)
1127{
1128 struct tcp_md5sig_pool *hp;
1129 struct hash_desc *desc;
1130 struct tcphdr *th = tcp_hdr(skb);
1131 __be32 saddr, daddr;
1132
1133 if (sk) {
1134 saddr = inet_sk(sk)->inet_saddr;
1135 daddr = inet_sk(sk)->inet_daddr;
1136 } else if (req) {
1137 saddr = inet_rsk(req)->loc_addr;
1138 daddr = inet_rsk(req)->rmt_addr;
1139 } else {
1140 const struct iphdr *iph = ip_hdr(skb);
1141 saddr = iph->saddr;
1142 daddr = iph->daddr;
1143 }
1144
1145 hp = tcp_get_md5sig_pool();
1146 if (!hp)
1147 goto clear_hash_noput;
1148 desc = &hp->md5_desc;
1149
1150 if (crypto_hash_init(desc))
1151 goto clear_hash;
1152
1153 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1154 goto clear_hash;
1155 if (tcp_md5_hash_header(hp, th))
1156 goto clear_hash;
1157 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1158 goto clear_hash;
1159 if (tcp_md5_hash_key(hp, key))
1160 goto clear_hash;
1161 if (crypto_hash_final(desc, md5_hash))
1162 goto clear_hash;
1163
1164 tcp_put_md5sig_pool();
1165 return 0;
1166
1167clear_hash:
1168 tcp_put_md5sig_pool();
1169clear_hash_noput:
1170 memset(md5_hash, 0, 16);
1171 return 1;
1172}
1173EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1174
1175static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1176{
1177 /*
1178 * This gets called for each TCP segment that arrives
1179 * so we want to be efficient.
1180 * We have 3 drop cases:
1181 * o No MD5 hash and one expected.
1182 * o MD5 hash and we're not expecting one.
1183 * o MD5 hash and its wrong.
1184 */
1185 __u8 *hash_location = NULL;
1186 struct tcp_md5sig_key *hash_expected;
1187 const struct iphdr *iph = ip_hdr(skb);
1188 struct tcphdr *th = tcp_hdr(skb);
1189 int genhash;
1190 unsigned char newhash[16];
1191
1192 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1193 hash_location = tcp_parse_md5sig_option(th);
1194
1195 /* We've parsed the options - do we have a hash? */
1196 if (!hash_expected && !hash_location)
1197 return 0;
1198
1199 if (hash_expected && !hash_location) {
1200 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1201 return 1;
1202 }
1203
1204 if (!hash_expected && hash_location) {
1205 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1206 return 1;
1207 }
1208
1209 /* Okay, so this is hash_expected and hash_location -
1210 * so we need to calculate the checksum.
1211 */
1212 genhash = tcp_v4_md5_hash_skb(newhash,
1213 hash_expected,
1214 NULL, NULL, skb);
1215
1216 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1217 if (net_ratelimit()) {
1218 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1219 &iph->saddr, ntohs(th->source),
1220 &iph->daddr, ntohs(th->dest),
1221 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1222 }
1223 return 1;
1224 }
1225 return 0;
1226}
1227
1228#endif
1229
1230struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1231 .family = PF_INET,
1232 .obj_size = sizeof(struct tcp_request_sock),
1233 .rtx_syn_ack = tcp_v4_rtx_synack,
1234 .send_ack = tcp_v4_reqsk_send_ack,
1235 .destructor = tcp_v4_reqsk_destructor,
1236 .send_reset = tcp_v4_send_reset,
1237 .syn_ack_timeout = tcp_syn_ack_timeout,
1238};
1239
1240#ifdef CONFIG_TCP_MD5SIG
1241static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1242 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1243 .calc_md5_hash = tcp_v4_md5_hash_skb,
1244};
1245#endif
1246
1247int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1248{
1249 struct tcp_extend_values tmp_ext;
1250 struct tcp_options_received tmp_opt;
1251 u8 *hash_location;
1252 struct request_sock *req;
1253 struct inet_request_sock *ireq;
1254 struct tcp_sock *tp = tcp_sk(sk);
1255 struct dst_entry *dst = NULL;
1256 __be32 saddr = ip_hdr(skb)->saddr;
1257 __be32 daddr = ip_hdr(skb)->daddr;
1258 __u32 isn = TCP_SKB_CB(skb)->when;
1259 int want_cookie = 0;
1260
1261 /* Never answer to SYNs send to broadcast or multicast */
1262 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1263 goto drop;
1264
1265 /* TW buckets are converted to open requests without
1266 * limitations, they conserve resources and peer is
1267 * evidently real one.
1268 */
1269 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1270 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1271 if (!want_cookie)
1272 goto drop;
1273 }
1274
1275 /* Accept backlog is full. If we have already queued enough
1276 * of warm entries in syn queue, drop request. It is better than
1277 * clogging syn queue with openreqs with exponentially increasing
1278 * timeout.
1279 */
1280 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1281 goto drop;
1282
1283 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1284 if (!req)
1285 goto drop;
1286
1287#ifdef CONFIG_TCP_MD5SIG
1288 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1289#endif
1290
1291 tcp_clear_options(&tmp_opt);
1292 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1293 tmp_opt.user_mss = tp->rx_opt.user_mss;
1294 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1295
1296 if (tmp_opt.cookie_plus > 0 &&
1297 tmp_opt.saw_tstamp &&
1298 !tp->rx_opt.cookie_out_never &&
1299 (sysctl_tcp_cookie_size > 0 ||
1300 (tp->cookie_values != NULL &&
1301 tp->cookie_values->cookie_desired > 0))) {
1302 u8 *c;
1303 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1304 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1305
1306 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1307 goto drop_and_release;
1308
1309 /* Secret recipe starts with IP addresses */
1310 *mess++ ^= (__force u32)daddr;
1311 *mess++ ^= (__force u32)saddr;
1312
1313 /* plus variable length Initiator Cookie */
1314 c = (u8 *)mess;
1315 while (l-- > 0)
1316 *c++ ^= *hash_location++;
1317
1318 want_cookie = 0; /* not our kind of cookie */
1319 tmp_ext.cookie_out_never = 0; /* false */
1320 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1321 } else if (!tp->rx_opt.cookie_in_always) {
1322 /* redundant indications, but ensure initialization. */
1323 tmp_ext.cookie_out_never = 1; /* true */
1324 tmp_ext.cookie_plus = 0;
1325 } else {
1326 goto drop_and_release;
1327 }
1328 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1329
1330 if (want_cookie && !tmp_opt.saw_tstamp)
1331 tcp_clear_options(&tmp_opt);
1332
1333 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1334 tcp_openreq_init(req, &tmp_opt, skb);
1335
1336 ireq = inet_rsk(req);
1337 ireq->loc_addr = daddr;
1338 ireq->rmt_addr = saddr;
1339 ireq->no_srccheck = inet_sk(sk)->transparent;
1340 ireq->opt = tcp_v4_save_options(sk, skb);
1341
1342 if (security_inet_conn_request(sk, skb, req))
1343 goto drop_and_free;
1344
1345 if (!want_cookie || tmp_opt.tstamp_ok)
1346 TCP_ECN_create_request(req, tcp_hdr(skb));
1347
1348 if (want_cookie) {
1349 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1350 req->cookie_ts = tmp_opt.tstamp_ok;
1351 } else if (!isn) {
1352 struct inet_peer *peer = NULL;
1353 struct flowi4 fl4;
1354
1355 /* VJ's idea. We save last timestamp seen
1356 * from the destination in peer table, when entering
1357 * state TIME-WAIT, and check against it before
1358 * accepting new connection request.
1359 *
1360 * If "isn" is not zero, this request hit alive
1361 * timewait bucket, so that all the necessary checks
1362 * are made in the function processing timewait state.
1363 */
1364 if (tmp_opt.saw_tstamp &&
1365 tcp_death_row.sysctl_tw_recycle &&
1366 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1367 fl4.daddr == saddr &&
1368 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1369 inet_peer_refcheck(peer);
1370 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1371 (s32)(peer->tcp_ts - req->ts_recent) >
1372 TCP_PAWS_WINDOW) {
1373 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1374 goto drop_and_release;
1375 }
1376 }
1377 /* Kill the following clause, if you dislike this way. */
1378 else if (!sysctl_tcp_syncookies &&
1379 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1380 (sysctl_max_syn_backlog >> 2)) &&
1381 (!peer || !peer->tcp_ts_stamp) &&
1382 (!dst || !dst_metric(dst, RTAX_RTT))) {
1383 /* Without syncookies last quarter of
1384 * backlog is filled with destinations,
1385 * proven to be alive.
1386 * It means that we continue to communicate
1387 * to destinations, already remembered
1388 * to the moment of synflood.
1389 */
1390 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1391 &saddr, ntohs(tcp_hdr(skb)->source));
1392 goto drop_and_release;
1393 }
1394
1395 isn = tcp_v4_init_sequence(skb);
1396 }
1397 tcp_rsk(req)->snt_isn = isn;
1398 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1399
1400 if (tcp_v4_send_synack(sk, dst, req,
1401 (struct request_values *)&tmp_ext) ||
1402 want_cookie)
1403 goto drop_and_free;
1404
1405 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1406 return 0;
1407
1408drop_and_release:
1409 dst_release(dst);
1410drop_and_free:
1411 reqsk_free(req);
1412drop:
1413 return 0;
1414}
1415EXPORT_SYMBOL(tcp_v4_conn_request);
1416
1417
1418/*
1419 * The three way handshake has completed - we got a valid synack -
1420 * now create the new socket.
1421 */
1422struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1423 struct request_sock *req,
1424 struct dst_entry *dst)
1425{
1426 struct inet_request_sock *ireq;
1427 struct inet_sock *newinet;
1428 struct tcp_sock *newtp;
1429 struct sock *newsk;
1430#ifdef CONFIG_TCP_MD5SIG
1431 struct tcp_md5sig_key *key;
1432#endif
1433 struct ip_options_rcu *inet_opt;
1434
1435 if (sk_acceptq_is_full(sk))
1436 goto exit_overflow;
1437
1438 newsk = tcp_create_openreq_child(sk, req, skb);
1439 if (!newsk)
1440 goto exit_nonewsk;
1441
1442 newsk->sk_gso_type = SKB_GSO_TCPV4;
1443
1444 newtp = tcp_sk(newsk);
1445 newinet = inet_sk(newsk);
1446 ireq = inet_rsk(req);
1447 newinet->inet_daddr = ireq->rmt_addr;
1448 newinet->inet_rcv_saddr = ireq->loc_addr;
1449 newinet->inet_saddr = ireq->loc_addr;
1450 inet_opt = ireq->opt;
1451 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1452 ireq->opt = NULL;
1453 newinet->mc_index = inet_iif(skb);
1454 newinet->mc_ttl = ip_hdr(skb)->ttl;
1455 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1456 if (inet_opt)
1457 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1458 newinet->inet_id = newtp->write_seq ^ jiffies;
1459
1460 if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1461 goto put_and_exit;
1462
1463 sk_setup_caps(newsk, dst);
1464
1465 tcp_mtup_init(newsk);
1466 tcp_sync_mss(newsk, dst_mtu(dst));
1467 newtp->advmss = dst_metric_advmss(dst);
1468 if (tcp_sk(sk)->rx_opt.user_mss &&
1469 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1470 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1471
1472 tcp_initialize_rcv_mss(newsk);
1473 if (tcp_rsk(req)->snt_synack)
1474 tcp_valid_rtt_meas(newsk,
1475 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1476 newtp->total_retrans = req->retrans;
1477
1478#ifdef CONFIG_TCP_MD5SIG
1479 /* Copy over the MD5 key from the original socket */
1480 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1481 if (key != NULL) {
1482 /*
1483 * We're using one, so create a matching key
1484 * on the newsk structure. If we fail to get
1485 * memory, then we end up not copying the key
1486 * across. Shucks.
1487 */
1488 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1489 if (newkey != NULL)
1490 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1491 newkey, key->keylen);
1492 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1493 }
1494#endif
1495
1496 if (__inet_inherit_port(sk, newsk) < 0)
1497 goto put_and_exit;
1498 __inet_hash_nolisten(newsk, NULL);
1499
1500 return newsk;
1501
1502exit_overflow:
1503 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1504exit_nonewsk:
1505 dst_release(dst);
1506exit:
1507 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1508 return NULL;
1509put_and_exit:
1510 sock_put(newsk);
1511 goto exit;
1512}
1513EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1514
1515static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1516{
1517 struct tcphdr *th = tcp_hdr(skb);
1518 const struct iphdr *iph = ip_hdr(skb);
1519 struct sock *nsk;
1520 struct request_sock **prev;
1521 /* Find possible connection requests. */
1522 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1523 iph->saddr, iph->daddr);
1524 if (req)
1525 return tcp_check_req(sk, skb, req, prev);
1526
1527 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1528 th->source, iph->daddr, th->dest, inet_iif(skb));
1529
1530 if (nsk) {
1531 if (nsk->sk_state != TCP_TIME_WAIT) {
1532 bh_lock_sock(nsk);
1533 return nsk;
1534 }
1535 inet_twsk_put(inet_twsk(nsk));
1536 return NULL;
1537 }
1538
1539#ifdef CONFIG_SYN_COOKIES
1540 if (!th->syn)
1541 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1542#endif
1543 return sk;
1544}
1545
1546static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1547{
1548 const struct iphdr *iph = ip_hdr(skb);
1549
1550 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1551 if (!tcp_v4_check(skb->len, iph->saddr,
1552 iph->daddr, skb->csum)) {
1553 skb->ip_summed = CHECKSUM_UNNECESSARY;
1554 return 0;
1555 }
1556 }
1557
1558 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1559 skb->len, IPPROTO_TCP, 0);
1560
1561 if (skb->len <= 76) {
1562 return __skb_checksum_complete(skb);
1563 }
1564 return 0;
1565}
1566
1567
1568/* The socket must have it's spinlock held when we get
1569 * here.
1570 *
1571 * We have a potential double-lock case here, so even when
1572 * doing backlog processing we use the BH locking scheme.
1573 * This is because we cannot sleep with the original spinlock
1574 * held.
1575 */
1576int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1577{
1578 struct sock *rsk;
1579#ifdef CONFIG_TCP_MD5SIG
1580 /*
1581 * We really want to reject the packet as early as possible
1582 * if:
1583 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1584 * o There is an MD5 option and we're not expecting one
1585 */
1586 if (tcp_v4_inbound_md5_hash(sk, skb))
1587 goto discard;
1588#endif
1589
1590 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1591 sock_rps_save_rxhash(sk, skb->rxhash);
1592 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1593 rsk = sk;
1594 goto reset;
1595 }
1596 return 0;
1597 }
1598
1599 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1600 goto csum_err;
1601
1602 if (sk->sk_state == TCP_LISTEN) {
1603 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1604 if (!nsk)
1605 goto discard;
1606
1607 if (nsk != sk) {
1608 sock_rps_save_rxhash(nsk, skb->rxhash);
1609 if (tcp_child_process(sk, nsk, skb)) {
1610 rsk = nsk;
1611 goto reset;
1612 }
1613 return 0;
1614 }
1615 } else
1616 sock_rps_save_rxhash(sk, skb->rxhash);
1617
1618 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1619 rsk = sk;
1620 goto reset;
1621 }
1622 return 0;
1623
1624reset:
1625 tcp_v4_send_reset(rsk, skb);
1626discard:
1627 kfree_skb(skb);
1628 /* Be careful here. If this function gets more complicated and
1629 * gcc suffers from register pressure on the x86, sk (in %ebx)
1630 * might be destroyed here. This current version compiles correctly,
1631 * but you have been warned.
1632 */
1633 return 0;
1634
1635csum_err:
1636 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1637 goto discard;
1638}
1639EXPORT_SYMBOL(tcp_v4_do_rcv);
1640
1641/*
1642 * From tcp_input.c
1643 */
1644
1645int tcp_v4_rcv(struct sk_buff *skb)
1646{
1647 const struct iphdr *iph;
1648 struct tcphdr *th;
1649 struct sock *sk;
1650 int ret;
1651 struct net *net = dev_net(skb->dev);
1652
1653 if (skb->pkt_type != PACKET_HOST)
1654 goto discard_it;
1655
1656 /* Count it even if it's bad */
1657 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1658
1659 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1660 goto discard_it;
1661
1662 th = tcp_hdr(skb);
1663
1664 if (th->doff < sizeof(struct tcphdr) / 4)
1665 goto bad_packet;
1666 if (!pskb_may_pull(skb, th->doff * 4))
1667 goto discard_it;
1668
1669 /* An explanation is required here, I think.
1670 * Packet length and doff are validated by header prediction,
1671 * provided case of th->doff==0 is eliminated.
1672 * So, we defer the checks. */
1673 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1674 goto bad_packet;
1675
1676 th = tcp_hdr(skb);
1677 iph = ip_hdr(skb);
1678 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1679 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1680 skb->len - th->doff * 4);
1681 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1682 TCP_SKB_CB(skb)->when = 0;
1683 TCP_SKB_CB(skb)->flags = iph->tos;
1684 TCP_SKB_CB(skb)->sacked = 0;
1685
1686 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1687 if (!sk)
1688 goto no_tcp_socket;
1689
1690process:
1691 if (sk->sk_state == TCP_TIME_WAIT)
1692 goto do_time_wait;
1693
1694 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1695 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1696 goto discard_and_relse;
1697 }
1698
1699 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1700 goto discard_and_relse;
1701 nf_reset(skb);
1702
1703 if (sk_filter(sk, skb))
1704 goto discard_and_relse;
1705
1706 skb->dev = NULL;
1707
1708 bh_lock_sock_nested(sk);
1709 ret = 0;
1710 if (!sock_owned_by_user(sk)) {
1711#ifdef CONFIG_NET_DMA
1712 struct tcp_sock *tp = tcp_sk(sk);
1713 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1714 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1715 if (tp->ucopy.dma_chan)
1716 ret = tcp_v4_do_rcv(sk, skb);
1717 else
1718#endif
1719 {
1720 if (!tcp_prequeue(sk, skb))
1721 ret = tcp_v4_do_rcv(sk, skb);
1722 }
1723 } else if (unlikely(sk_add_backlog(sk, skb))) {
1724 bh_unlock_sock(sk);
1725 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1726 goto discard_and_relse;
1727 }
1728 bh_unlock_sock(sk);
1729
1730 sock_put(sk);
1731
1732 return ret;
1733
1734no_tcp_socket:
1735 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1736 goto discard_it;
1737
1738 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1739bad_packet:
1740 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1741 } else {
1742 tcp_v4_send_reset(NULL, skb);
1743 }
1744
1745discard_it:
1746 /* Discard frame. */
1747 kfree_skb(skb);
1748 return 0;
1749
1750discard_and_relse:
1751 sock_put(sk);
1752 goto discard_it;
1753
1754do_time_wait:
1755 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1756 inet_twsk_put(inet_twsk(sk));
1757 goto discard_it;
1758 }
1759
1760 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1761 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1762 inet_twsk_put(inet_twsk(sk));
1763 goto discard_it;
1764 }
1765 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1766 case TCP_TW_SYN: {
1767 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1768 &tcp_hashinfo,
1769 iph->daddr, th->dest,
1770 inet_iif(skb));
1771 if (sk2) {
1772 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1773 inet_twsk_put(inet_twsk(sk));
1774 sk = sk2;
1775 goto process;
1776 }
1777 /* Fall through to ACK */
1778 }
1779 case TCP_TW_ACK:
1780 tcp_v4_timewait_ack(sk, skb);
1781 break;
1782 case TCP_TW_RST:
1783 goto no_tcp_socket;
1784 case TCP_TW_SUCCESS:;
1785 }
1786 goto discard_it;
1787}
1788
1789struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1790{
1791 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1792 struct inet_sock *inet = inet_sk(sk);
1793 struct inet_peer *peer;
1794
1795 if (!rt ||
1796 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1797 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1798 *release_it = true;
1799 } else {
1800 if (!rt->peer)
1801 rt_bind_peer(rt, inet->inet_daddr, 1);
1802 peer = rt->peer;
1803 *release_it = false;
1804 }
1805
1806 return peer;
1807}
1808EXPORT_SYMBOL(tcp_v4_get_peer);
1809
1810void *tcp_v4_tw_get_peer(struct sock *sk)
1811{
1812 struct inet_timewait_sock *tw = inet_twsk(sk);
1813
1814 return inet_getpeer_v4(tw->tw_daddr, 1);
1815}
1816EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1817
1818static struct timewait_sock_ops tcp_timewait_sock_ops = {
1819 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1820 .twsk_unique = tcp_twsk_unique,
1821 .twsk_destructor= tcp_twsk_destructor,
1822 .twsk_getpeer = tcp_v4_tw_get_peer,
1823};
1824
1825const struct inet_connection_sock_af_ops ipv4_specific = {
1826 .queue_xmit = ip_queue_xmit,
1827 .send_check = tcp_v4_send_check,
1828 .rebuild_header = inet_sk_rebuild_header,
1829 .conn_request = tcp_v4_conn_request,
1830 .syn_recv_sock = tcp_v4_syn_recv_sock,
1831 .get_peer = tcp_v4_get_peer,
1832 .net_header_len = sizeof(struct iphdr),
1833 .setsockopt = ip_setsockopt,
1834 .getsockopt = ip_getsockopt,
1835 .addr2sockaddr = inet_csk_addr2sockaddr,
1836 .sockaddr_len = sizeof(struct sockaddr_in),
1837 .bind_conflict = inet_csk_bind_conflict,
1838#ifdef CONFIG_COMPAT
1839 .compat_setsockopt = compat_ip_setsockopt,
1840 .compat_getsockopt = compat_ip_getsockopt,
1841#endif
1842};
1843EXPORT_SYMBOL(ipv4_specific);
1844
1845#ifdef CONFIG_TCP_MD5SIG
1846static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1847 .md5_lookup = tcp_v4_md5_lookup,
1848 .calc_md5_hash = tcp_v4_md5_hash_skb,
1849 .md5_add = tcp_v4_md5_add_func,
1850 .md5_parse = tcp_v4_parse_md5_keys,
1851};
1852#endif
1853
1854/* NOTE: A lot of things set to zero explicitly by call to
1855 * sk_alloc() so need not be done here.
1856 */
1857static int tcp_v4_init_sock(struct sock *sk)
1858{
1859 struct inet_connection_sock *icsk = inet_csk(sk);
1860 struct tcp_sock *tp = tcp_sk(sk);
1861
1862 skb_queue_head_init(&tp->out_of_order_queue);
1863 tcp_init_xmit_timers(sk);
1864 tcp_prequeue_init(tp);
1865
1866 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1867 tp->mdev = TCP_TIMEOUT_INIT;
1868
1869 /* So many TCP implementations out there (incorrectly) count the
1870 * initial SYN frame in their delayed-ACK and congestion control
1871 * algorithms that we must have the following bandaid to talk
1872 * efficiently to them. -DaveM
1873 */
1874 tp->snd_cwnd = TCP_INIT_CWND;
1875
1876 /* See draft-stevens-tcpca-spec-01 for discussion of the
1877 * initialization of these values.
1878 */
1879 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1880 tp->snd_cwnd_clamp = ~0;
1881 tp->mss_cache = TCP_MSS_DEFAULT;
1882
1883 tp->reordering = sysctl_tcp_reordering;
1884 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1885
1886 sk->sk_state = TCP_CLOSE;
1887
1888 sk->sk_write_space = sk_stream_write_space;
1889 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1890
1891 icsk->icsk_af_ops = &ipv4_specific;
1892 icsk->icsk_sync_mss = tcp_sync_mss;
1893#ifdef CONFIG_TCP_MD5SIG
1894 tp->af_specific = &tcp_sock_ipv4_specific;
1895#endif
1896
1897 /* TCP Cookie Transactions */
1898 if (sysctl_tcp_cookie_size > 0) {
1899 /* Default, cookies without s_data_payload. */
1900 tp->cookie_values =
1901 kzalloc(sizeof(*tp->cookie_values),
1902 sk->sk_allocation);
1903 if (tp->cookie_values != NULL)
1904 kref_init(&tp->cookie_values->kref);
1905 }
1906 /* Presumed zeroed, in order of appearance:
1907 * cookie_in_always, cookie_out_never,
1908 * s_data_constant, s_data_in, s_data_out
1909 */
1910 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1911 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1912
1913 local_bh_disable();
1914 percpu_counter_inc(&tcp_sockets_allocated);
1915 local_bh_enable();
1916
1917 return 0;
1918}
1919
1920void tcp_v4_destroy_sock(struct sock *sk)
1921{
1922 struct tcp_sock *tp = tcp_sk(sk);
1923
1924 tcp_clear_xmit_timers(sk);
1925
1926 tcp_cleanup_congestion_control(sk);
1927
1928 /* Cleanup up the write buffer. */
1929 tcp_write_queue_purge(sk);
1930
1931 /* Cleans up our, hopefully empty, out_of_order_queue. */
1932 __skb_queue_purge(&tp->out_of_order_queue);
1933
1934#ifdef CONFIG_TCP_MD5SIG
1935 /* Clean up the MD5 key list, if any */
1936 if (tp->md5sig_info) {
1937 tcp_v4_clear_md5_list(sk);
1938 kfree(tp->md5sig_info);
1939 tp->md5sig_info = NULL;
1940 }
1941#endif
1942
1943#ifdef CONFIG_NET_DMA
1944 /* Cleans up our sk_async_wait_queue */
1945 __skb_queue_purge(&sk->sk_async_wait_queue);
1946#endif
1947
1948 /* Clean prequeue, it must be empty really */
1949 __skb_queue_purge(&tp->ucopy.prequeue);
1950
1951 /* Clean up a referenced TCP bind bucket. */
1952 if (inet_csk(sk)->icsk_bind_hash)
1953 inet_put_port(sk);
1954
1955 /*
1956 * If sendmsg cached page exists, toss it.
1957 */
1958 if (sk->sk_sndmsg_page) {
1959 __free_page(sk->sk_sndmsg_page);
1960 sk->sk_sndmsg_page = NULL;
1961 }
1962
1963 /* TCP Cookie Transactions */
1964 if (tp->cookie_values != NULL) {
1965 kref_put(&tp->cookie_values->kref,
1966 tcp_cookie_values_release);
1967 tp->cookie_values = NULL;
1968 }
1969
1970 percpu_counter_dec(&tcp_sockets_allocated);
1971}
1972EXPORT_SYMBOL(tcp_v4_destroy_sock);
1973
1974#ifdef CONFIG_PROC_FS
1975/* Proc filesystem TCP sock list dumping. */
1976
1977static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1978{
1979 return hlist_nulls_empty(head) ? NULL :
1980 list_entry(head->first, struct inet_timewait_sock, tw_node);
1981}
1982
1983static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1984{
1985 return !is_a_nulls(tw->tw_node.next) ?
1986 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1987}
1988
1989/*
1990 * Get next listener socket follow cur. If cur is NULL, get first socket
1991 * starting from bucket given in st->bucket; when st->bucket is zero the
1992 * very first socket in the hash table is returned.
1993 */
1994static void *listening_get_next(struct seq_file *seq, void *cur)
1995{
1996 struct inet_connection_sock *icsk;
1997 struct hlist_nulls_node *node;
1998 struct sock *sk = cur;
1999 struct inet_listen_hashbucket *ilb;
2000 struct tcp_iter_state *st = seq->private;
2001 struct net *net = seq_file_net(seq);
2002
2003 if (!sk) {
2004 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2005 spin_lock_bh(&ilb->lock);
2006 sk = sk_nulls_head(&ilb->head);
2007 st->offset = 0;
2008 goto get_sk;
2009 }
2010 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2011 ++st->num;
2012 ++st->offset;
2013
2014 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2015 struct request_sock *req = cur;
2016
2017 icsk = inet_csk(st->syn_wait_sk);
2018 req = req->dl_next;
2019 while (1) {
2020 while (req) {
2021 if (req->rsk_ops->family == st->family) {
2022 cur = req;
2023 goto out;
2024 }
2025 req = req->dl_next;
2026 }
2027 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2028 break;
2029get_req:
2030 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2031 }
2032 sk = sk_nulls_next(st->syn_wait_sk);
2033 st->state = TCP_SEQ_STATE_LISTENING;
2034 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2035 } else {
2036 icsk = inet_csk(sk);
2037 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2038 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2039 goto start_req;
2040 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2041 sk = sk_nulls_next(sk);
2042 }
2043get_sk:
2044 sk_nulls_for_each_from(sk, node) {
2045 if (!net_eq(sock_net(sk), net))
2046 continue;
2047 if (sk->sk_family == st->family) {
2048 cur = sk;
2049 goto out;
2050 }
2051 icsk = inet_csk(sk);
2052 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2053 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2054start_req:
2055 st->uid = sock_i_uid(sk);
2056 st->syn_wait_sk = sk;
2057 st->state = TCP_SEQ_STATE_OPENREQ;
2058 st->sbucket = 0;
2059 goto get_req;
2060 }
2061 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2062 }
2063 spin_unlock_bh(&ilb->lock);
2064 st->offset = 0;
2065 if (++st->bucket < INET_LHTABLE_SIZE) {
2066 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2067 spin_lock_bh(&ilb->lock);
2068 sk = sk_nulls_head(&ilb->head);
2069 goto get_sk;
2070 }
2071 cur = NULL;
2072out:
2073 return cur;
2074}
2075
2076static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2077{
2078 struct tcp_iter_state *st = seq->private;
2079 void *rc;
2080
2081 st->bucket = 0;
2082 st->offset = 0;
2083 rc = listening_get_next(seq, NULL);
2084
2085 while (rc && *pos) {
2086 rc = listening_get_next(seq, rc);
2087 --*pos;
2088 }
2089 return rc;
2090}
2091
2092static inline int empty_bucket(struct tcp_iter_state *st)
2093{
2094 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2095 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2096}
2097
2098/*
2099 * Get first established socket starting from bucket given in st->bucket.
2100 * If st->bucket is zero, the very first socket in the hash is returned.
2101 */
2102static void *established_get_first(struct seq_file *seq)
2103{
2104 struct tcp_iter_state *st = seq->private;
2105 struct net *net = seq_file_net(seq);
2106 void *rc = NULL;
2107
2108 st->offset = 0;
2109 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2110 struct sock *sk;
2111 struct hlist_nulls_node *node;
2112 struct inet_timewait_sock *tw;
2113 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2114
2115 /* Lockless fast path for the common case of empty buckets */
2116 if (empty_bucket(st))
2117 continue;
2118
2119 spin_lock_bh(lock);
2120 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2121 if (sk->sk_family != st->family ||
2122 !net_eq(sock_net(sk), net)) {
2123 continue;
2124 }
2125 rc = sk;
2126 goto out;
2127 }
2128 st->state = TCP_SEQ_STATE_TIME_WAIT;
2129 inet_twsk_for_each(tw, node,
2130 &tcp_hashinfo.ehash[st->bucket].twchain) {
2131 if (tw->tw_family != st->family ||
2132 !net_eq(twsk_net(tw), net)) {
2133 continue;
2134 }
2135 rc = tw;
2136 goto out;
2137 }
2138 spin_unlock_bh(lock);
2139 st->state = TCP_SEQ_STATE_ESTABLISHED;
2140 }
2141out:
2142 return rc;
2143}
2144
2145static void *established_get_next(struct seq_file *seq, void *cur)
2146{
2147 struct sock *sk = cur;
2148 struct inet_timewait_sock *tw;
2149 struct hlist_nulls_node *node;
2150 struct tcp_iter_state *st = seq->private;
2151 struct net *net = seq_file_net(seq);
2152
2153 ++st->num;
2154 ++st->offset;
2155
2156 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2157 tw = cur;
2158 tw = tw_next(tw);
2159get_tw:
2160 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2161 tw = tw_next(tw);
2162 }
2163 if (tw) {
2164 cur = tw;
2165 goto out;
2166 }
2167 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2168 st->state = TCP_SEQ_STATE_ESTABLISHED;
2169
2170 /* Look for next non empty bucket */
2171 st->offset = 0;
2172 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2173 empty_bucket(st))
2174 ;
2175 if (st->bucket > tcp_hashinfo.ehash_mask)
2176 return NULL;
2177
2178 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2179 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2180 } else
2181 sk = sk_nulls_next(sk);
2182
2183 sk_nulls_for_each_from(sk, node) {
2184 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2185 goto found;
2186 }
2187
2188 st->state = TCP_SEQ_STATE_TIME_WAIT;
2189 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2190 goto get_tw;
2191found:
2192 cur = sk;
2193out:
2194 return cur;
2195}
2196
2197static void *established_get_idx(struct seq_file *seq, loff_t pos)
2198{
2199 struct tcp_iter_state *st = seq->private;
2200 void *rc;
2201
2202 st->bucket = 0;
2203 rc = established_get_first(seq);
2204
2205 while (rc && pos) {
2206 rc = established_get_next(seq, rc);
2207 --pos;
2208 }
2209 return rc;
2210}
2211
2212static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2213{
2214 void *rc;
2215 struct tcp_iter_state *st = seq->private;
2216
2217 st->state = TCP_SEQ_STATE_LISTENING;
2218 rc = listening_get_idx(seq, &pos);
2219
2220 if (!rc) {
2221 st->state = TCP_SEQ_STATE_ESTABLISHED;
2222 rc = established_get_idx(seq, pos);
2223 }
2224
2225 return rc;
2226}
2227
2228static void *tcp_seek_last_pos(struct seq_file *seq)
2229{
2230 struct tcp_iter_state *st = seq->private;
2231 int offset = st->offset;
2232 int orig_num = st->num;
2233 void *rc = NULL;
2234
2235 switch (st->state) {
2236 case TCP_SEQ_STATE_OPENREQ:
2237 case TCP_SEQ_STATE_LISTENING:
2238 if (st->bucket >= INET_LHTABLE_SIZE)
2239 break;
2240 st->state = TCP_SEQ_STATE_LISTENING;
2241 rc = listening_get_next(seq, NULL);
2242 while (offset-- && rc)
2243 rc = listening_get_next(seq, rc);
2244 if (rc)
2245 break;
2246 st->bucket = 0;
2247 /* Fallthrough */
2248 case TCP_SEQ_STATE_ESTABLISHED:
2249 case TCP_SEQ_STATE_TIME_WAIT:
2250 st->state = TCP_SEQ_STATE_ESTABLISHED;
2251 if (st->bucket > tcp_hashinfo.ehash_mask)
2252 break;
2253 rc = established_get_first(seq);
2254 while (offset-- && rc)
2255 rc = established_get_next(seq, rc);
2256 }
2257
2258 st->num = orig_num;
2259
2260 return rc;
2261}
2262
2263static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2264{
2265 struct tcp_iter_state *st = seq->private;
2266 void *rc;
2267
2268 if (*pos && *pos == st->last_pos) {
2269 rc = tcp_seek_last_pos(seq);
2270 if (rc)
2271 goto out;
2272 }
2273
2274 st->state = TCP_SEQ_STATE_LISTENING;
2275 st->num = 0;
2276 st->bucket = 0;
2277 st->offset = 0;
2278 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2279
2280out:
2281 st->last_pos = *pos;
2282 return rc;
2283}
2284
2285static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2286{
2287 struct tcp_iter_state *st = seq->private;
2288 void *rc = NULL;
2289
2290 if (v == SEQ_START_TOKEN) {
2291 rc = tcp_get_idx(seq, 0);
2292 goto out;
2293 }
2294
2295 switch (st->state) {
2296 case TCP_SEQ_STATE_OPENREQ:
2297 case TCP_SEQ_STATE_LISTENING:
2298 rc = listening_get_next(seq, v);
2299 if (!rc) {
2300 st->state = TCP_SEQ_STATE_ESTABLISHED;
2301 st->bucket = 0;
2302 st->offset = 0;
2303 rc = established_get_first(seq);
2304 }
2305 break;
2306 case TCP_SEQ_STATE_ESTABLISHED:
2307 case TCP_SEQ_STATE_TIME_WAIT:
2308 rc = established_get_next(seq, v);
2309 break;
2310 }
2311out:
2312 ++*pos;
2313 st->last_pos = *pos;
2314 return rc;
2315}
2316
2317static void tcp_seq_stop(struct seq_file *seq, void *v)
2318{
2319 struct tcp_iter_state *st = seq->private;
2320
2321 switch (st->state) {
2322 case TCP_SEQ_STATE_OPENREQ:
2323 if (v) {
2324 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2325 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2326 }
2327 case TCP_SEQ_STATE_LISTENING:
2328 if (v != SEQ_START_TOKEN)
2329 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2330 break;
2331 case TCP_SEQ_STATE_TIME_WAIT:
2332 case TCP_SEQ_STATE_ESTABLISHED:
2333 if (v)
2334 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2335 break;
2336 }
2337}
2338
2339static int tcp_seq_open(struct inode *inode, struct file *file)
2340{
2341 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2342 struct tcp_iter_state *s;
2343 int err;
2344
2345 err = seq_open_net(inode, file, &afinfo->seq_ops,
2346 sizeof(struct tcp_iter_state));
2347 if (err < 0)
2348 return err;
2349
2350 s = ((struct seq_file *)file->private_data)->private;
2351 s->family = afinfo->family;
2352 s->last_pos = 0;
2353 return 0;
2354}
2355
2356int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2357{
2358 int rc = 0;
2359 struct proc_dir_entry *p;
2360
2361 afinfo->seq_fops.open = tcp_seq_open;
2362 afinfo->seq_fops.read = seq_read;
2363 afinfo->seq_fops.llseek = seq_lseek;
2364 afinfo->seq_fops.release = seq_release_net;
2365
2366 afinfo->seq_ops.start = tcp_seq_start;
2367 afinfo->seq_ops.next = tcp_seq_next;
2368 afinfo->seq_ops.stop = tcp_seq_stop;
2369
2370 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2371 &afinfo->seq_fops, afinfo);
2372 if (!p)
2373 rc = -ENOMEM;
2374 return rc;
2375}
2376EXPORT_SYMBOL(tcp_proc_register);
2377
2378void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2379{
2380 proc_net_remove(net, afinfo->name);
2381}
2382EXPORT_SYMBOL(tcp_proc_unregister);
2383
2384static void get_openreq4(struct sock *sk, struct request_sock *req,
2385 struct seq_file *f, int i, int uid, int *len)
2386{
2387 const struct inet_request_sock *ireq = inet_rsk(req);
2388 int ttd = req->expires - jiffies;
2389
2390 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2391 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2392 i,
2393 ireq->loc_addr,
2394 ntohs(inet_sk(sk)->inet_sport),
2395 ireq->rmt_addr,
2396 ntohs(ireq->rmt_port),
2397 TCP_SYN_RECV,
2398 0, 0, /* could print option size, but that is af dependent. */
2399 1, /* timers active (only the expire timer) */
2400 jiffies_to_clock_t(ttd),
2401 req->retrans,
2402 uid,
2403 0, /* non standard timer */
2404 0, /* open_requests have no inode */
2405 atomic_read(&sk->sk_refcnt),
2406 req,
2407 len);
2408}
2409
2410static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2411{
2412 int timer_active;
2413 unsigned long timer_expires;
2414 struct tcp_sock *tp = tcp_sk(sk);
2415 const struct inet_connection_sock *icsk = inet_csk(sk);
2416 struct inet_sock *inet = inet_sk(sk);
2417 __be32 dest = inet->inet_daddr;
2418 __be32 src = inet->inet_rcv_saddr;
2419 __u16 destp = ntohs(inet->inet_dport);
2420 __u16 srcp = ntohs(inet->inet_sport);
2421 int rx_queue;
2422
2423 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2424 timer_active = 1;
2425 timer_expires = icsk->icsk_timeout;
2426 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2427 timer_active = 4;
2428 timer_expires = icsk->icsk_timeout;
2429 } else if (timer_pending(&sk->sk_timer)) {
2430 timer_active = 2;
2431 timer_expires = sk->sk_timer.expires;
2432 } else {
2433 timer_active = 0;
2434 timer_expires = jiffies;
2435 }
2436
2437 if (sk->sk_state == TCP_LISTEN)
2438 rx_queue = sk->sk_ack_backlog;
2439 else
2440 /*
2441 * because we dont lock socket, we might find a transient negative value
2442 */
2443 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2444
2445 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2446 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2447 i, src, srcp, dest, destp, sk->sk_state,
2448 tp->write_seq - tp->snd_una,
2449 rx_queue,
2450 timer_active,
2451 jiffies_to_clock_t(timer_expires - jiffies),
2452 icsk->icsk_retransmits,
2453 sock_i_uid(sk),
2454 icsk->icsk_probes_out,
2455 sock_i_ino(sk),
2456 atomic_read(&sk->sk_refcnt), sk,
2457 jiffies_to_clock_t(icsk->icsk_rto),
2458 jiffies_to_clock_t(icsk->icsk_ack.ato),
2459 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2460 tp->snd_cwnd,
2461 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2462 len);
2463}
2464
2465static void get_timewait4_sock(struct inet_timewait_sock *tw,
2466 struct seq_file *f, int i, int *len)
2467{
2468 __be32 dest, src;
2469 __u16 destp, srcp;
2470 int ttd = tw->tw_ttd - jiffies;
2471
2472 if (ttd < 0)
2473 ttd = 0;
2474
2475 dest = tw->tw_daddr;
2476 src = tw->tw_rcv_saddr;
2477 destp = ntohs(tw->tw_dport);
2478 srcp = ntohs(tw->tw_sport);
2479
2480 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2481 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2482 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2483 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2484 atomic_read(&tw->tw_refcnt), tw, len);
2485}
2486
2487#define TMPSZ 150
2488
2489static int tcp4_seq_show(struct seq_file *seq, void *v)
2490{
2491 struct tcp_iter_state *st;
2492 int len;
2493
2494 if (v == SEQ_START_TOKEN) {
2495 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2496 " sl local_address rem_address st tx_queue "
2497 "rx_queue tr tm->when retrnsmt uid timeout "
2498 "inode");
2499 goto out;
2500 }
2501 st = seq->private;
2502
2503 switch (st->state) {
2504 case TCP_SEQ_STATE_LISTENING:
2505 case TCP_SEQ_STATE_ESTABLISHED:
2506 get_tcp4_sock(v, seq, st->num, &len);
2507 break;
2508 case TCP_SEQ_STATE_OPENREQ:
2509 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2510 break;
2511 case TCP_SEQ_STATE_TIME_WAIT:
2512 get_timewait4_sock(v, seq, st->num, &len);
2513 break;
2514 }
2515 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2516out:
2517 return 0;
2518}
2519
2520static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2521 .name = "tcp",
2522 .family = AF_INET,
2523 .seq_fops = {
2524 .owner = THIS_MODULE,
2525 },
2526 .seq_ops = {
2527 .show = tcp4_seq_show,
2528 },
2529};
2530
2531static int __net_init tcp4_proc_init_net(struct net *net)
2532{
2533 return tcp_proc_register(net, &tcp4_seq_afinfo);
2534}
2535
2536static void __net_exit tcp4_proc_exit_net(struct net *net)
2537{
2538 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2539}
2540
2541static struct pernet_operations tcp4_net_ops = {
2542 .init = tcp4_proc_init_net,
2543 .exit = tcp4_proc_exit_net,
2544};
2545
2546int __init tcp4_proc_init(void)
2547{
2548 return register_pernet_subsys(&tcp4_net_ops);
2549}
2550
2551void tcp4_proc_exit(void)
2552{
2553 unregister_pernet_subsys(&tcp4_net_ops);
2554}
2555#endif /* CONFIG_PROC_FS */
2556
2557struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2558{
2559 const struct iphdr *iph = skb_gro_network_header(skb);
2560
2561 switch (skb->ip_summed) {
2562 case CHECKSUM_COMPLETE:
2563 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2564 skb->csum)) {
2565 skb->ip_summed = CHECKSUM_UNNECESSARY;
2566 break;
2567 }
2568
2569 /* fall through */
2570 case CHECKSUM_NONE:
2571 NAPI_GRO_CB(skb)->flush = 1;
2572 return NULL;
2573 }
2574
2575 return tcp_gro_receive(head, skb);
2576}
2577
2578int tcp4_gro_complete(struct sk_buff *skb)
2579{
2580 const struct iphdr *iph = ip_hdr(skb);
2581 struct tcphdr *th = tcp_hdr(skb);
2582
2583 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2584 iph->saddr, iph->daddr, 0);
2585 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2586
2587 return tcp_gro_complete(skb);
2588}
2589
2590struct proto tcp_prot = {
2591 .name = "TCP",
2592 .owner = THIS_MODULE,
2593 .close = tcp_close,
2594 .connect = tcp_v4_connect,
2595 .disconnect = tcp_disconnect,
2596 .accept = inet_csk_accept,
2597 .ioctl = tcp_ioctl,
2598 .init = tcp_v4_init_sock,
2599 .destroy = tcp_v4_destroy_sock,
2600 .shutdown = tcp_shutdown,
2601 .setsockopt = tcp_setsockopt,
2602 .getsockopt = tcp_getsockopt,
2603 .recvmsg = tcp_recvmsg,
2604 .sendmsg = tcp_sendmsg,
2605 .sendpage = tcp_sendpage,
2606 .backlog_rcv = tcp_v4_do_rcv,
2607 .hash = inet_hash,
2608 .unhash = inet_unhash,
2609 .get_port = inet_csk_get_port,
2610 .enter_memory_pressure = tcp_enter_memory_pressure,
2611 .sockets_allocated = &tcp_sockets_allocated,
2612 .orphan_count = &tcp_orphan_count,
2613 .memory_allocated = &tcp_memory_allocated,
2614 .memory_pressure = &tcp_memory_pressure,
2615 .sysctl_mem = sysctl_tcp_mem,
2616 .sysctl_wmem = sysctl_tcp_wmem,
2617 .sysctl_rmem = sysctl_tcp_rmem,
2618 .max_header = MAX_TCP_HEADER,
2619 .obj_size = sizeof(struct tcp_sock),
2620 .slab_flags = SLAB_DESTROY_BY_RCU,
2621 .twsk_prot = &tcp_timewait_sock_ops,
2622 .rsk_prot = &tcp_request_sock_ops,
2623 .h.hashinfo = &tcp_hashinfo,
2624 .no_autobind = true,
2625#ifdef CONFIG_COMPAT
2626 .compat_setsockopt = compat_tcp_setsockopt,
2627 .compat_getsockopt = compat_tcp_getsockopt,
2628#endif
2629};
2630EXPORT_SYMBOL(tcp_prot);
2631
2632
2633static int __net_init tcp_sk_init(struct net *net)
2634{
2635 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2636 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2637}
2638
2639static void __net_exit tcp_sk_exit(struct net *net)
2640{
2641 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2642}
2643
2644static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2645{
2646 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2647}
2648
2649static struct pernet_operations __net_initdata tcp_sk_ops = {
2650 .init = tcp_sk_init,
2651 .exit = tcp_sk_exit,
2652 .exit_batch = tcp_sk_exit_batch,
2653};
2654
2655void __init tcp_v4_init(void)
2656{
2657 inet_hashinfo_init(&tcp_hashinfo);
2658 if (register_pernet_subsys(&tcp_sk_ops))
2659 panic("Failed to create the TCP control socket.\n");
2660}
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53#define pr_fmt(fmt) "TCP: " fmt
54
55#include <linux/bottom_half.h>
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64#include <linux/slab.h>
65
66#include <net/net_namespace.h>
67#include <net/icmp.h>
68#include <net/inet_hashtables.h>
69#include <net/tcp.h>
70#include <net/transp_v6.h>
71#include <net/ipv6.h>
72#include <net/inet_common.h>
73#include <net/timewait_sock.h>
74#include <net/xfrm.h>
75#include <net/netdma.h>
76#include <net/secure_seq.h>
77#include <net/tcp_memcontrol.h>
78
79#include <linux/inet.h>
80#include <linux/ipv6.h>
81#include <linux/stddef.h>
82#include <linux/proc_fs.h>
83#include <linux/seq_file.h>
84
85#include <linux/crypto.h>
86#include <linux/scatterlist.h>
87
88int sysctl_tcp_tw_reuse __read_mostly;
89int sysctl_tcp_low_latency __read_mostly;
90EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93#ifdef CONFIG_TCP_MD5SIG
94static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96#endif
97
98struct inet_hashinfo tcp_hashinfo;
99EXPORT_SYMBOL(tcp_hashinfo);
100
101static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102{
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107}
108
109int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110{
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138}
139EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141static int tcp_repair_connect(struct sock *sk)
142{
143 tcp_connect_init(sk);
144 tcp_finish_connect(sk, NULL);
145
146 return 0;
147}
148
149/* This will initiate an outgoing connection. */
150int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151{
152 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153 struct inet_sock *inet = inet_sk(sk);
154 struct tcp_sock *tp = tcp_sk(sk);
155 __be16 orig_sport, orig_dport;
156 __be32 daddr, nexthop;
157 struct flowi4 *fl4;
158 struct rtable *rt;
159 int err;
160 struct ip_options_rcu *inet_opt;
161
162 if (addr_len < sizeof(struct sockaddr_in))
163 return -EINVAL;
164
165 if (usin->sin_family != AF_INET)
166 return -EAFNOSUPPORT;
167
168 nexthop = daddr = usin->sin_addr.s_addr;
169 inet_opt = rcu_dereference_protected(inet->inet_opt,
170 sock_owned_by_user(sk));
171 if (inet_opt && inet_opt->opt.srr) {
172 if (!daddr)
173 return -EINVAL;
174 nexthop = inet_opt->opt.faddr;
175 }
176
177 orig_sport = inet->inet_sport;
178 orig_dport = usin->sin_port;
179 fl4 = &inet->cork.fl.u.ip4;
180 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 IPPROTO_TCP,
183 orig_sport, orig_dport, sk, true);
184 if (IS_ERR(rt)) {
185 err = PTR_ERR(rt);
186 if (err == -ENETUNREACH)
187 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188 return err;
189 }
190
191 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192 ip_rt_put(rt);
193 return -ENETUNREACH;
194 }
195
196 if (!inet_opt || !inet_opt->opt.srr)
197 daddr = fl4->daddr;
198
199 if (!inet->inet_saddr)
200 inet->inet_saddr = fl4->saddr;
201 inet->inet_rcv_saddr = inet->inet_saddr;
202
203 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204 /* Reset inherited state */
205 tp->rx_opt.ts_recent = 0;
206 tp->rx_opt.ts_recent_stamp = 0;
207 if (likely(!tp->repair))
208 tp->write_seq = 0;
209 }
210
211 if (tcp_death_row.sysctl_tw_recycle &&
212 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
213 struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
214 /*
215 * VJ's idea. We save last timestamp seen from
216 * the destination in peer table, when entering state
217 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
218 * when trying new connection.
219 */
220 if (peer) {
221 inet_peer_refcheck(peer);
222 if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
223 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
224 tp->rx_opt.ts_recent = peer->tcp_ts;
225 }
226 }
227 }
228
229 inet->inet_dport = usin->sin_port;
230 inet->inet_daddr = daddr;
231
232 inet_csk(sk)->icsk_ext_hdr_len = 0;
233 if (inet_opt)
234 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
235
236 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
237
238 /* Socket identity is still unknown (sport may be zero).
239 * However we set state to SYN-SENT and not releasing socket
240 * lock select source port, enter ourselves into the hash tables and
241 * complete initialization after this.
242 */
243 tcp_set_state(sk, TCP_SYN_SENT);
244 err = inet_hash_connect(&tcp_death_row, sk);
245 if (err)
246 goto failure;
247
248 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
249 inet->inet_sport, inet->inet_dport, sk);
250 if (IS_ERR(rt)) {
251 err = PTR_ERR(rt);
252 rt = NULL;
253 goto failure;
254 }
255 /* OK, now commit destination to socket. */
256 sk->sk_gso_type = SKB_GSO_TCPV4;
257 sk_setup_caps(sk, &rt->dst);
258
259 if (!tp->write_seq && likely(!tp->repair))
260 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
261 inet->inet_daddr,
262 inet->inet_sport,
263 usin->sin_port);
264
265 inet->inet_id = tp->write_seq ^ jiffies;
266
267 if (likely(!tp->repair))
268 err = tcp_connect(sk);
269 else
270 err = tcp_repair_connect(sk);
271
272 rt = NULL;
273 if (err)
274 goto failure;
275
276 return 0;
277
278failure:
279 /*
280 * This unhashes the socket and releases the local port,
281 * if necessary.
282 */
283 tcp_set_state(sk, TCP_CLOSE);
284 ip_rt_put(rt);
285 sk->sk_route_caps = 0;
286 inet->inet_dport = 0;
287 return err;
288}
289EXPORT_SYMBOL(tcp_v4_connect);
290
291/*
292 * This routine does path mtu discovery as defined in RFC1191.
293 */
294static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
295{
296 struct dst_entry *dst;
297 struct inet_sock *inet = inet_sk(sk);
298
299 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
300 * send out by Linux are always <576bytes so they should go through
301 * unfragmented).
302 */
303 if (sk->sk_state == TCP_LISTEN)
304 return;
305
306 /* We don't check in the destentry if pmtu discovery is forbidden
307 * on this route. We just assume that no packet_to_big packets
308 * are send back when pmtu discovery is not active.
309 * There is a small race when the user changes this flag in the
310 * route, but I think that's acceptable.
311 */
312 if ((dst = __sk_dst_check(sk, 0)) == NULL)
313 return;
314
315 dst->ops->update_pmtu(dst, mtu);
316
317 /* Something is about to be wrong... Remember soft error
318 * for the case, if this connection will not able to recover.
319 */
320 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
321 sk->sk_err_soft = EMSGSIZE;
322
323 mtu = dst_mtu(dst);
324
325 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
326 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
327 tcp_sync_mss(sk, mtu);
328
329 /* Resend the TCP packet because it's
330 * clear that the old packet has been
331 * dropped. This is the new "fast" path mtu
332 * discovery.
333 */
334 tcp_simple_retransmit(sk);
335 } /* else let the usual retransmit timer handle it */
336}
337
338/*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition. If err < 0 then the socket should
341 * be closed and the error returned to the user. If err > 0
342 * it's just the icmp type << 8 | icmp code. After adjustment
343 * header points to the first 8 bytes of the tcp header. We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355{
356 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358 struct inet_connection_sock *icsk;
359 struct tcp_sock *tp;
360 struct inet_sock *inet;
361 const int type = icmp_hdr(icmp_skb)->type;
362 const int code = icmp_hdr(icmp_skb)->code;
363 struct sock *sk;
364 struct sk_buff *skb;
365 __u32 seq;
366 __u32 remaining;
367 int err;
368 struct net *net = dev_net(icmp_skb->dev);
369
370 if (icmp_skb->len < (iph->ihl << 2) + 8) {
371 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372 return;
373 }
374
375 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
376 iph->saddr, th->source, inet_iif(icmp_skb));
377 if (!sk) {
378 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379 return;
380 }
381 if (sk->sk_state == TCP_TIME_WAIT) {
382 inet_twsk_put(inet_twsk(sk));
383 return;
384 }
385
386 bh_lock_sock(sk);
387 /* If too many ICMPs get dropped on busy
388 * servers this needs to be solved differently.
389 */
390 if (sock_owned_by_user(sk))
391 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
392
393 if (sk->sk_state == TCP_CLOSE)
394 goto out;
395
396 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
397 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
398 goto out;
399 }
400
401 icsk = inet_csk(sk);
402 tp = tcp_sk(sk);
403 seq = ntohl(th->seq);
404 if (sk->sk_state != TCP_LISTEN &&
405 !between(seq, tp->snd_una, tp->snd_nxt)) {
406 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
407 goto out;
408 }
409
410 switch (type) {
411 case ICMP_SOURCE_QUENCH:
412 /* Just silently ignore these. */
413 goto out;
414 case ICMP_PARAMETERPROB:
415 err = EPROTO;
416 break;
417 case ICMP_DEST_UNREACH:
418 if (code > NR_ICMP_UNREACH)
419 goto out;
420
421 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
422 if (!sock_owned_by_user(sk))
423 do_pmtu_discovery(sk, iph, info);
424 goto out;
425 }
426
427 err = icmp_err_convert[code].errno;
428 /* check if icmp_skb allows revert of backoff
429 * (see draft-zimmermann-tcp-lcd) */
430 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431 break;
432 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
433 !icsk->icsk_backoff)
434 break;
435
436 if (sock_owned_by_user(sk))
437 break;
438
439 icsk->icsk_backoff--;
440 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442 tcp_bound_rto(sk);
443
444 skb = tcp_write_queue_head(sk);
445 BUG_ON(!skb);
446
447 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448 tcp_time_stamp - TCP_SKB_CB(skb)->when);
449
450 if (remaining) {
451 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452 remaining, TCP_RTO_MAX);
453 } else {
454 /* RTO revert clocked out retransmission.
455 * Will retransmit now */
456 tcp_retransmit_timer(sk);
457 }
458
459 break;
460 case ICMP_TIME_EXCEEDED:
461 err = EHOSTUNREACH;
462 break;
463 default:
464 goto out;
465 }
466
467 switch (sk->sk_state) {
468 struct request_sock *req, **prev;
469 case TCP_LISTEN:
470 if (sock_owned_by_user(sk))
471 goto out;
472
473 req = inet_csk_search_req(sk, &prev, th->dest,
474 iph->daddr, iph->saddr);
475 if (!req)
476 goto out;
477
478 /* ICMPs are not backlogged, hence we cannot get
479 an established socket here.
480 */
481 WARN_ON(req->sk);
482
483 if (seq != tcp_rsk(req)->snt_isn) {
484 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485 goto out;
486 }
487
488 /*
489 * Still in SYN_RECV, just remove it silently.
490 * There is no good way to pass the error to the newly
491 * created socket, and POSIX does not want network
492 * errors returned from accept().
493 */
494 inet_csk_reqsk_queue_drop(sk, req, prev);
495 goto out;
496
497 case TCP_SYN_SENT:
498 case TCP_SYN_RECV: /* Cannot happen.
499 It can f.e. if SYNs crossed.
500 */
501 if (!sock_owned_by_user(sk)) {
502 sk->sk_err = err;
503
504 sk->sk_error_report(sk);
505
506 tcp_done(sk);
507 } else {
508 sk->sk_err_soft = err;
509 }
510 goto out;
511 }
512
513 /* If we've already connected we will keep trying
514 * until we time out, or the user gives up.
515 *
516 * rfc1122 4.2.3.9 allows to consider as hard errors
517 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518 * but it is obsoleted by pmtu discovery).
519 *
520 * Note, that in modern internet, where routing is unreliable
521 * and in each dark corner broken firewalls sit, sending random
522 * errors ordered by their masters even this two messages finally lose
523 * their original sense (even Linux sends invalid PORT_UNREACHs)
524 *
525 * Now we are in compliance with RFCs.
526 * --ANK (980905)
527 */
528
529 inet = inet_sk(sk);
530 if (!sock_owned_by_user(sk) && inet->recverr) {
531 sk->sk_err = err;
532 sk->sk_error_report(sk);
533 } else { /* Only an error on timeout */
534 sk->sk_err_soft = err;
535 }
536
537out:
538 bh_unlock_sock(sk);
539 sock_put(sk);
540}
541
542static void __tcp_v4_send_check(struct sk_buff *skb,
543 __be32 saddr, __be32 daddr)
544{
545 struct tcphdr *th = tcp_hdr(skb);
546
547 if (skb->ip_summed == CHECKSUM_PARTIAL) {
548 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 } else {
552 th->check = tcp_v4_check(skb->len, saddr, daddr,
553 csum_partial(th,
554 th->doff << 2,
555 skb->csum));
556 }
557}
558
559/* This routine computes an IPv4 TCP checksum. */
560void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561{
562 const struct inet_sock *inet = inet_sk(sk);
563
564 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565}
566EXPORT_SYMBOL(tcp_v4_send_check);
567
568int tcp_v4_gso_send_check(struct sk_buff *skb)
569{
570 const struct iphdr *iph;
571 struct tcphdr *th;
572
573 if (!pskb_may_pull(skb, sizeof(*th)))
574 return -EINVAL;
575
576 iph = ip_hdr(skb);
577 th = tcp_hdr(skb);
578
579 th->check = 0;
580 skb->ip_summed = CHECKSUM_PARTIAL;
581 __tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582 return 0;
583}
584
585/*
586 * This routine will send an RST to the other tcp.
587 *
588 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589 * for reset.
590 * Answer: if a packet caused RST, it is not for a socket
591 * existing in our system, if it is matched to a socket,
592 * it is just duplicate segment or bug in other side's TCP.
593 * So that we build reply only basing on parameters
594 * arrived with segment.
595 * Exception: precedence violation. We do not implement it in any case.
596 */
597
598static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
599{
600 const struct tcphdr *th = tcp_hdr(skb);
601 struct {
602 struct tcphdr th;
603#ifdef CONFIG_TCP_MD5SIG
604 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605#endif
606 } rep;
607 struct ip_reply_arg arg;
608#ifdef CONFIG_TCP_MD5SIG
609 struct tcp_md5sig_key *key;
610 const __u8 *hash_location = NULL;
611 unsigned char newhash[16];
612 int genhash;
613 struct sock *sk1 = NULL;
614#endif
615 struct net *net;
616
617 /* Never send a reset in response to a reset. */
618 if (th->rst)
619 return;
620
621 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622 return;
623
624 /* Swap the send and the receive. */
625 memset(&rep, 0, sizeof(rep));
626 rep.th.dest = th->source;
627 rep.th.source = th->dest;
628 rep.th.doff = sizeof(struct tcphdr) / 4;
629 rep.th.rst = 1;
630
631 if (th->ack) {
632 rep.th.seq = th->ack_seq;
633 } else {
634 rep.th.ack = 1;
635 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636 skb->len - (th->doff << 2));
637 }
638
639 memset(&arg, 0, sizeof(arg));
640 arg.iov[0].iov_base = (unsigned char *)&rep;
641 arg.iov[0].iov_len = sizeof(rep.th);
642
643#ifdef CONFIG_TCP_MD5SIG
644 hash_location = tcp_parse_md5sig_option(th);
645 if (!sk && hash_location) {
646 /*
647 * active side is lost. Try to find listening socket through
648 * source port, and then find md5 key through listening socket.
649 * we are not loose security here:
650 * Incoming packet is checked with md5 hash with finding key,
651 * no RST generated if md5 hash doesn't match.
652 */
653 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654 &tcp_hashinfo, ip_hdr(skb)->daddr,
655 ntohs(th->source), inet_iif(skb));
656 /* don't send rst if it can't find key */
657 if (!sk1)
658 return;
659 rcu_read_lock();
660 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661 &ip_hdr(skb)->saddr, AF_INET);
662 if (!key)
663 goto release_sk1;
664
665 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666 if (genhash || memcmp(hash_location, newhash, 16) != 0)
667 goto release_sk1;
668 } else {
669 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670 &ip_hdr(skb)->saddr,
671 AF_INET) : NULL;
672 }
673
674 if (key) {
675 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676 (TCPOPT_NOP << 16) |
677 (TCPOPT_MD5SIG << 8) |
678 TCPOLEN_MD5SIG);
679 /* Update length and the length the header thinks exists */
680 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681 rep.th.doff = arg.iov[0].iov_len / 4;
682
683 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684 key, ip_hdr(skb)->saddr,
685 ip_hdr(skb)->daddr, &rep.th);
686 }
687#endif
688 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689 ip_hdr(skb)->saddr, /* XXX */
690 arg.iov[0].iov_len, IPPROTO_TCP, 0);
691 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693 /* When socket is gone, all binding information is lost.
694 * routing might fail in this case. using iif for oif to
695 * make sure we can deliver it
696 */
697 arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
698
699 net = dev_net(skb_dst(skb)->dev);
700 arg.tos = ip_hdr(skb)->tos;
701 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
702 &arg, arg.iov[0].iov_len);
703
704 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
706
707#ifdef CONFIG_TCP_MD5SIG
708release_sk1:
709 if (sk1) {
710 rcu_read_unlock();
711 sock_put(sk1);
712 }
713#endif
714}
715
716/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717 outside socket context is ugly, certainly. What can I do?
718 */
719
720static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721 u32 win, u32 ts, int oif,
722 struct tcp_md5sig_key *key,
723 int reply_flags, u8 tos)
724{
725 const struct tcphdr *th = tcp_hdr(skb);
726 struct {
727 struct tcphdr th;
728 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729#ifdef CONFIG_TCP_MD5SIG
730 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731#endif
732 ];
733 } rep;
734 struct ip_reply_arg arg;
735 struct net *net = dev_net(skb_dst(skb)->dev);
736
737 memset(&rep.th, 0, sizeof(struct tcphdr));
738 memset(&arg, 0, sizeof(arg));
739
740 arg.iov[0].iov_base = (unsigned char *)&rep;
741 arg.iov[0].iov_len = sizeof(rep.th);
742 if (ts) {
743 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744 (TCPOPT_TIMESTAMP << 8) |
745 TCPOLEN_TIMESTAMP);
746 rep.opt[1] = htonl(tcp_time_stamp);
747 rep.opt[2] = htonl(ts);
748 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
749 }
750
751 /* Swap the send and the receive. */
752 rep.th.dest = th->source;
753 rep.th.source = th->dest;
754 rep.th.doff = arg.iov[0].iov_len / 4;
755 rep.th.seq = htonl(seq);
756 rep.th.ack_seq = htonl(ack);
757 rep.th.ack = 1;
758 rep.th.window = htons(win);
759
760#ifdef CONFIG_TCP_MD5SIG
761 if (key) {
762 int offset = (ts) ? 3 : 0;
763
764 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765 (TCPOPT_NOP << 16) |
766 (TCPOPT_MD5SIG << 8) |
767 TCPOLEN_MD5SIG);
768 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769 rep.th.doff = arg.iov[0].iov_len/4;
770
771 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772 key, ip_hdr(skb)->saddr,
773 ip_hdr(skb)->daddr, &rep.th);
774 }
775#endif
776 arg.flags = reply_flags;
777 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778 ip_hdr(skb)->saddr, /* XXX */
779 arg.iov[0].iov_len, IPPROTO_TCP, 0);
780 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781 if (oif)
782 arg.bound_dev_if = oif;
783 arg.tos = tos;
784 ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
785 &arg, arg.iov[0].iov_len);
786
787 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
788}
789
790static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
791{
792 struct inet_timewait_sock *tw = inet_twsk(sk);
793 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
794
795 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797 tcptw->tw_ts_recent,
798 tw->tw_bound_dev_if,
799 tcp_twsk_md5_key(tcptw),
800 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801 tw->tw_tos
802 );
803
804 inet_twsk_put(tw);
805}
806
807static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808 struct request_sock *req)
809{
810 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812 req->ts_recent,
813 0,
814 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815 AF_INET),
816 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817 ip_hdr(skb)->tos);
818}
819
820/*
821 * Send a SYN-ACK after having received a SYN.
822 * This still operates on a request_sock only, not on a big
823 * socket.
824 */
825static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826 struct request_sock *req,
827 struct request_values *rvp,
828 u16 queue_mapping)
829{
830 const struct inet_request_sock *ireq = inet_rsk(req);
831 struct flowi4 fl4;
832 int err = -1;
833 struct sk_buff * skb;
834
835 /* First, grab a route. */
836 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
837 return -1;
838
839 skb = tcp_make_synack(sk, dst, req, rvp);
840
841 if (skb) {
842 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
843
844 skb_set_queue_mapping(skb, queue_mapping);
845 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
846 ireq->rmt_addr,
847 ireq->opt);
848 err = net_xmit_eval(err);
849 }
850
851 dst_release(dst);
852 return err;
853}
854
855static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
856 struct request_values *rvp)
857{
858 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859 return tcp_v4_send_synack(sk, NULL, req, rvp, 0);
860}
861
862/*
863 * IPv4 request_sock destructor.
864 */
865static void tcp_v4_reqsk_destructor(struct request_sock *req)
866{
867 kfree(inet_rsk(req)->opt);
868}
869
870/*
871 * Return true if a syncookie should be sent
872 */
873bool tcp_syn_flood_action(struct sock *sk,
874 const struct sk_buff *skb,
875 const char *proto)
876{
877 const char *msg = "Dropping request";
878 bool want_cookie = false;
879 struct listen_sock *lopt;
880
881
882
883#ifdef CONFIG_SYN_COOKIES
884 if (sysctl_tcp_syncookies) {
885 msg = "Sending cookies";
886 want_cookie = true;
887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888 } else
889#endif
890 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893 if (!lopt->synflood_warned) {
894 lopt->synflood_warned = 1;
895 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
896 proto, ntohs(tcp_hdr(skb)->dest), msg);
897 }
898 return want_cookie;
899}
900EXPORT_SYMBOL(tcp_syn_flood_action);
901
902/*
903 * Save and compile IPv4 options into the request_sock if needed.
904 */
905static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
906 struct sk_buff *skb)
907{
908 const struct ip_options *opt = &(IPCB(skb)->opt);
909 struct ip_options_rcu *dopt = NULL;
910
911 if (opt && opt->optlen) {
912 int opt_size = sizeof(*dopt) + opt->optlen;
913
914 dopt = kmalloc(opt_size, GFP_ATOMIC);
915 if (dopt) {
916 if (ip_options_echo(&dopt->opt, skb)) {
917 kfree(dopt);
918 dopt = NULL;
919 }
920 }
921 }
922 return dopt;
923}
924
925#ifdef CONFIG_TCP_MD5SIG
926/*
927 * RFC2385 MD5 checksumming requires a mapping of
928 * IP address->MD5 Key.
929 * We need to maintain these in the sk structure.
930 */
931
932/* Find the Key structure for an address. */
933struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
934 const union tcp_md5_addr *addr,
935 int family)
936{
937 struct tcp_sock *tp = tcp_sk(sk);
938 struct tcp_md5sig_key *key;
939 struct hlist_node *pos;
940 unsigned int size = sizeof(struct in_addr);
941 struct tcp_md5sig_info *md5sig;
942
943 /* caller either holds rcu_read_lock() or socket lock */
944 md5sig = rcu_dereference_check(tp->md5sig_info,
945 sock_owned_by_user(sk) ||
946 lockdep_is_held(&sk->sk_lock.slock));
947 if (!md5sig)
948 return NULL;
949#if IS_ENABLED(CONFIG_IPV6)
950 if (family == AF_INET6)
951 size = sizeof(struct in6_addr);
952#endif
953 hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
954 if (key->family != family)
955 continue;
956 if (!memcmp(&key->addr, addr, size))
957 return key;
958 }
959 return NULL;
960}
961EXPORT_SYMBOL(tcp_md5_do_lookup);
962
963struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
964 struct sock *addr_sk)
965{
966 union tcp_md5_addr *addr;
967
968 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
969 return tcp_md5_do_lookup(sk, addr, AF_INET);
970}
971EXPORT_SYMBOL(tcp_v4_md5_lookup);
972
973static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
974 struct request_sock *req)
975{
976 union tcp_md5_addr *addr;
977
978 addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
979 return tcp_md5_do_lookup(sk, addr, AF_INET);
980}
981
982/* This can be called on a newly created socket, from other files */
983int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
984 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
985{
986 /* Add Key to the list */
987 struct tcp_md5sig_key *key;
988 struct tcp_sock *tp = tcp_sk(sk);
989 struct tcp_md5sig_info *md5sig;
990
991 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
992 if (key) {
993 /* Pre-existing entry - just update that one. */
994 memcpy(key->key, newkey, newkeylen);
995 key->keylen = newkeylen;
996 return 0;
997 }
998
999 md5sig = rcu_dereference_protected(tp->md5sig_info,
1000 sock_owned_by_user(sk));
1001 if (!md5sig) {
1002 md5sig = kmalloc(sizeof(*md5sig), gfp);
1003 if (!md5sig)
1004 return -ENOMEM;
1005
1006 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1007 INIT_HLIST_HEAD(&md5sig->head);
1008 rcu_assign_pointer(tp->md5sig_info, md5sig);
1009 }
1010
1011 key = sock_kmalloc(sk, sizeof(*key), gfp);
1012 if (!key)
1013 return -ENOMEM;
1014 if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1015 sock_kfree_s(sk, key, sizeof(*key));
1016 return -ENOMEM;
1017 }
1018
1019 memcpy(key->key, newkey, newkeylen);
1020 key->keylen = newkeylen;
1021 key->family = family;
1022 memcpy(&key->addr, addr,
1023 (family == AF_INET6) ? sizeof(struct in6_addr) :
1024 sizeof(struct in_addr));
1025 hlist_add_head_rcu(&key->node, &md5sig->head);
1026 return 0;
1027}
1028EXPORT_SYMBOL(tcp_md5_do_add);
1029
1030int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1031{
1032 struct tcp_sock *tp = tcp_sk(sk);
1033 struct tcp_md5sig_key *key;
1034 struct tcp_md5sig_info *md5sig;
1035
1036 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1037 if (!key)
1038 return -ENOENT;
1039 hlist_del_rcu(&key->node);
1040 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1041 kfree_rcu(key, rcu);
1042 md5sig = rcu_dereference_protected(tp->md5sig_info,
1043 sock_owned_by_user(sk));
1044 if (hlist_empty(&md5sig->head))
1045 tcp_free_md5sig_pool();
1046 return 0;
1047}
1048EXPORT_SYMBOL(tcp_md5_do_del);
1049
1050void tcp_clear_md5_list(struct sock *sk)
1051{
1052 struct tcp_sock *tp = tcp_sk(sk);
1053 struct tcp_md5sig_key *key;
1054 struct hlist_node *pos, *n;
1055 struct tcp_md5sig_info *md5sig;
1056
1057 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1058
1059 if (!hlist_empty(&md5sig->head))
1060 tcp_free_md5sig_pool();
1061 hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1062 hlist_del_rcu(&key->node);
1063 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064 kfree_rcu(key, rcu);
1065 }
1066}
1067
1068static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1069 int optlen)
1070{
1071 struct tcp_md5sig cmd;
1072 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1073
1074 if (optlen < sizeof(cmd))
1075 return -EINVAL;
1076
1077 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1078 return -EFAULT;
1079
1080 if (sin->sin_family != AF_INET)
1081 return -EINVAL;
1082
1083 if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1084 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1085 AF_INET);
1086
1087 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1088 return -EINVAL;
1089
1090 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1091 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1092 GFP_KERNEL);
1093}
1094
1095static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1096 __be32 daddr, __be32 saddr, int nbytes)
1097{
1098 struct tcp4_pseudohdr *bp;
1099 struct scatterlist sg;
1100
1101 bp = &hp->md5_blk.ip4;
1102
1103 /*
1104 * 1. the TCP pseudo-header (in the order: source IP address,
1105 * destination IP address, zero-padded protocol number, and
1106 * segment length)
1107 */
1108 bp->saddr = saddr;
1109 bp->daddr = daddr;
1110 bp->pad = 0;
1111 bp->protocol = IPPROTO_TCP;
1112 bp->len = cpu_to_be16(nbytes);
1113
1114 sg_init_one(&sg, bp, sizeof(*bp));
1115 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1116}
1117
1118static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1119 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1120{
1121 struct tcp_md5sig_pool *hp;
1122 struct hash_desc *desc;
1123
1124 hp = tcp_get_md5sig_pool();
1125 if (!hp)
1126 goto clear_hash_noput;
1127 desc = &hp->md5_desc;
1128
1129 if (crypto_hash_init(desc))
1130 goto clear_hash;
1131 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1132 goto clear_hash;
1133 if (tcp_md5_hash_header(hp, th))
1134 goto clear_hash;
1135 if (tcp_md5_hash_key(hp, key))
1136 goto clear_hash;
1137 if (crypto_hash_final(desc, md5_hash))
1138 goto clear_hash;
1139
1140 tcp_put_md5sig_pool();
1141 return 0;
1142
1143clear_hash:
1144 tcp_put_md5sig_pool();
1145clear_hash_noput:
1146 memset(md5_hash, 0, 16);
1147 return 1;
1148}
1149
1150int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1151 const struct sock *sk, const struct request_sock *req,
1152 const struct sk_buff *skb)
1153{
1154 struct tcp_md5sig_pool *hp;
1155 struct hash_desc *desc;
1156 const struct tcphdr *th = tcp_hdr(skb);
1157 __be32 saddr, daddr;
1158
1159 if (sk) {
1160 saddr = inet_sk(sk)->inet_saddr;
1161 daddr = inet_sk(sk)->inet_daddr;
1162 } else if (req) {
1163 saddr = inet_rsk(req)->loc_addr;
1164 daddr = inet_rsk(req)->rmt_addr;
1165 } else {
1166 const struct iphdr *iph = ip_hdr(skb);
1167 saddr = iph->saddr;
1168 daddr = iph->daddr;
1169 }
1170
1171 hp = tcp_get_md5sig_pool();
1172 if (!hp)
1173 goto clear_hash_noput;
1174 desc = &hp->md5_desc;
1175
1176 if (crypto_hash_init(desc))
1177 goto clear_hash;
1178
1179 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1180 goto clear_hash;
1181 if (tcp_md5_hash_header(hp, th))
1182 goto clear_hash;
1183 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1184 goto clear_hash;
1185 if (tcp_md5_hash_key(hp, key))
1186 goto clear_hash;
1187 if (crypto_hash_final(desc, md5_hash))
1188 goto clear_hash;
1189
1190 tcp_put_md5sig_pool();
1191 return 0;
1192
1193clear_hash:
1194 tcp_put_md5sig_pool();
1195clear_hash_noput:
1196 memset(md5_hash, 0, 16);
1197 return 1;
1198}
1199EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1200
1201static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1202{
1203 /*
1204 * This gets called for each TCP segment that arrives
1205 * so we want to be efficient.
1206 * We have 3 drop cases:
1207 * o No MD5 hash and one expected.
1208 * o MD5 hash and we're not expecting one.
1209 * o MD5 hash and its wrong.
1210 */
1211 const __u8 *hash_location = NULL;
1212 struct tcp_md5sig_key *hash_expected;
1213 const struct iphdr *iph = ip_hdr(skb);
1214 const struct tcphdr *th = tcp_hdr(skb);
1215 int genhash;
1216 unsigned char newhash[16];
1217
1218 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1219 AF_INET);
1220 hash_location = tcp_parse_md5sig_option(th);
1221
1222 /* We've parsed the options - do we have a hash? */
1223 if (!hash_expected && !hash_location)
1224 return false;
1225
1226 if (hash_expected && !hash_location) {
1227 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1228 return true;
1229 }
1230
1231 if (!hash_expected && hash_location) {
1232 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1233 return true;
1234 }
1235
1236 /* Okay, so this is hash_expected and hash_location -
1237 * so we need to calculate the checksum.
1238 */
1239 genhash = tcp_v4_md5_hash_skb(newhash,
1240 hash_expected,
1241 NULL, NULL, skb);
1242
1243 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1244 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1245 &iph->saddr, ntohs(th->source),
1246 &iph->daddr, ntohs(th->dest),
1247 genhash ? " tcp_v4_calc_md5_hash failed"
1248 : "");
1249 return true;
1250 }
1251 return false;
1252}
1253
1254#endif
1255
1256struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1257 .family = PF_INET,
1258 .obj_size = sizeof(struct tcp_request_sock),
1259 .rtx_syn_ack = tcp_v4_rtx_synack,
1260 .send_ack = tcp_v4_reqsk_send_ack,
1261 .destructor = tcp_v4_reqsk_destructor,
1262 .send_reset = tcp_v4_send_reset,
1263 .syn_ack_timeout = tcp_syn_ack_timeout,
1264};
1265
1266#ifdef CONFIG_TCP_MD5SIG
1267static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1268 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1269 .calc_md5_hash = tcp_v4_md5_hash_skb,
1270};
1271#endif
1272
1273int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1274{
1275 struct tcp_extend_values tmp_ext;
1276 struct tcp_options_received tmp_opt;
1277 const u8 *hash_location;
1278 struct request_sock *req;
1279 struct inet_request_sock *ireq;
1280 struct tcp_sock *tp = tcp_sk(sk);
1281 struct dst_entry *dst = NULL;
1282 __be32 saddr = ip_hdr(skb)->saddr;
1283 __be32 daddr = ip_hdr(skb)->daddr;
1284 __u32 isn = TCP_SKB_CB(skb)->when;
1285 bool want_cookie = false;
1286
1287 /* Never answer to SYNs send to broadcast or multicast */
1288 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1289 goto drop;
1290
1291 /* TW buckets are converted to open requests without
1292 * limitations, they conserve resources and peer is
1293 * evidently real one.
1294 */
1295 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1296 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1297 if (!want_cookie)
1298 goto drop;
1299 }
1300
1301 /* Accept backlog is full. If we have already queued enough
1302 * of warm entries in syn queue, drop request. It is better than
1303 * clogging syn queue with openreqs with exponentially increasing
1304 * timeout.
1305 */
1306 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1307 goto drop;
1308
1309 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1310 if (!req)
1311 goto drop;
1312
1313#ifdef CONFIG_TCP_MD5SIG
1314 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1315#endif
1316
1317 tcp_clear_options(&tmp_opt);
1318 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1319 tmp_opt.user_mss = tp->rx_opt.user_mss;
1320 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1321
1322 if (tmp_opt.cookie_plus > 0 &&
1323 tmp_opt.saw_tstamp &&
1324 !tp->rx_opt.cookie_out_never &&
1325 (sysctl_tcp_cookie_size > 0 ||
1326 (tp->cookie_values != NULL &&
1327 tp->cookie_values->cookie_desired > 0))) {
1328 u8 *c;
1329 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1330 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1331
1332 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1333 goto drop_and_release;
1334
1335 /* Secret recipe starts with IP addresses */
1336 *mess++ ^= (__force u32)daddr;
1337 *mess++ ^= (__force u32)saddr;
1338
1339 /* plus variable length Initiator Cookie */
1340 c = (u8 *)mess;
1341 while (l-- > 0)
1342 *c++ ^= *hash_location++;
1343
1344 want_cookie = false; /* not our kind of cookie */
1345 tmp_ext.cookie_out_never = 0; /* false */
1346 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1347 } else if (!tp->rx_opt.cookie_in_always) {
1348 /* redundant indications, but ensure initialization. */
1349 tmp_ext.cookie_out_never = 1; /* true */
1350 tmp_ext.cookie_plus = 0;
1351 } else {
1352 goto drop_and_release;
1353 }
1354 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1355
1356 if (want_cookie && !tmp_opt.saw_tstamp)
1357 tcp_clear_options(&tmp_opt);
1358
1359 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1360 tcp_openreq_init(req, &tmp_opt, skb);
1361
1362 ireq = inet_rsk(req);
1363 ireq->loc_addr = daddr;
1364 ireq->rmt_addr = saddr;
1365 ireq->no_srccheck = inet_sk(sk)->transparent;
1366 ireq->opt = tcp_v4_save_options(sk, skb);
1367
1368 if (security_inet_conn_request(sk, skb, req))
1369 goto drop_and_free;
1370
1371 if (!want_cookie || tmp_opt.tstamp_ok)
1372 TCP_ECN_create_request(req, skb);
1373
1374 if (want_cookie) {
1375 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1376 req->cookie_ts = tmp_opt.tstamp_ok;
1377 } else if (!isn) {
1378 struct inet_peer *peer = NULL;
1379 struct flowi4 fl4;
1380
1381 /* VJ's idea. We save last timestamp seen
1382 * from the destination in peer table, when entering
1383 * state TIME-WAIT, and check against it before
1384 * accepting new connection request.
1385 *
1386 * If "isn" is not zero, this request hit alive
1387 * timewait bucket, so that all the necessary checks
1388 * are made in the function processing timewait state.
1389 */
1390 if (tmp_opt.saw_tstamp &&
1391 tcp_death_row.sysctl_tw_recycle &&
1392 (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1393 fl4.daddr == saddr &&
1394 (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1395 inet_peer_refcheck(peer);
1396 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1397 (s32)(peer->tcp_ts - req->ts_recent) >
1398 TCP_PAWS_WINDOW) {
1399 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1400 goto drop_and_release;
1401 }
1402 }
1403 /* Kill the following clause, if you dislike this way. */
1404 else if (!sysctl_tcp_syncookies &&
1405 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1406 (sysctl_max_syn_backlog >> 2)) &&
1407 (!peer || !peer->tcp_ts_stamp) &&
1408 (!dst || !dst_metric(dst, RTAX_RTT))) {
1409 /* Without syncookies last quarter of
1410 * backlog is filled with destinations,
1411 * proven to be alive.
1412 * It means that we continue to communicate
1413 * to destinations, already remembered
1414 * to the moment of synflood.
1415 */
1416 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1417 &saddr, ntohs(tcp_hdr(skb)->source));
1418 goto drop_and_release;
1419 }
1420
1421 isn = tcp_v4_init_sequence(skb);
1422 }
1423 tcp_rsk(req)->snt_isn = isn;
1424 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1425
1426 if (tcp_v4_send_synack(sk, dst, req,
1427 (struct request_values *)&tmp_ext,
1428 skb_get_queue_mapping(skb)) ||
1429 want_cookie)
1430 goto drop_and_free;
1431
1432 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1433 return 0;
1434
1435drop_and_release:
1436 dst_release(dst);
1437drop_and_free:
1438 reqsk_free(req);
1439drop:
1440 return 0;
1441}
1442EXPORT_SYMBOL(tcp_v4_conn_request);
1443
1444
1445/*
1446 * The three way handshake has completed - we got a valid synack -
1447 * now create the new socket.
1448 */
1449struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1450 struct request_sock *req,
1451 struct dst_entry *dst)
1452{
1453 struct inet_request_sock *ireq;
1454 struct inet_sock *newinet;
1455 struct tcp_sock *newtp;
1456 struct sock *newsk;
1457#ifdef CONFIG_TCP_MD5SIG
1458 struct tcp_md5sig_key *key;
1459#endif
1460 struct ip_options_rcu *inet_opt;
1461
1462 if (sk_acceptq_is_full(sk))
1463 goto exit_overflow;
1464
1465 newsk = tcp_create_openreq_child(sk, req, skb);
1466 if (!newsk)
1467 goto exit_nonewsk;
1468
1469 newsk->sk_gso_type = SKB_GSO_TCPV4;
1470
1471 newtp = tcp_sk(newsk);
1472 newinet = inet_sk(newsk);
1473 ireq = inet_rsk(req);
1474 newinet->inet_daddr = ireq->rmt_addr;
1475 newinet->inet_rcv_saddr = ireq->loc_addr;
1476 newinet->inet_saddr = ireq->loc_addr;
1477 inet_opt = ireq->opt;
1478 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1479 ireq->opt = NULL;
1480 newinet->mc_index = inet_iif(skb);
1481 newinet->mc_ttl = ip_hdr(skb)->ttl;
1482 newinet->rcv_tos = ip_hdr(skb)->tos;
1483 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1484 if (inet_opt)
1485 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1486 newinet->inet_id = newtp->write_seq ^ jiffies;
1487
1488 if (!dst) {
1489 dst = inet_csk_route_child_sock(sk, newsk, req);
1490 if (!dst)
1491 goto put_and_exit;
1492 } else {
1493 /* syncookie case : see end of cookie_v4_check() */
1494 }
1495 sk_setup_caps(newsk, dst);
1496
1497 tcp_mtup_init(newsk);
1498 tcp_sync_mss(newsk, dst_mtu(dst));
1499 newtp->advmss = dst_metric_advmss(dst);
1500 if (tcp_sk(sk)->rx_opt.user_mss &&
1501 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1502 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1503
1504 tcp_initialize_rcv_mss(newsk);
1505 if (tcp_rsk(req)->snt_synack)
1506 tcp_valid_rtt_meas(newsk,
1507 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1508 newtp->total_retrans = req->retrans;
1509
1510#ifdef CONFIG_TCP_MD5SIG
1511 /* Copy over the MD5 key from the original socket */
1512 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1513 AF_INET);
1514 if (key != NULL) {
1515 /*
1516 * We're using one, so create a matching key
1517 * on the newsk structure. If we fail to get
1518 * memory, then we end up not copying the key
1519 * across. Shucks.
1520 */
1521 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1522 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1523 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1524 }
1525#endif
1526
1527 if (__inet_inherit_port(sk, newsk) < 0)
1528 goto put_and_exit;
1529 __inet_hash_nolisten(newsk, NULL);
1530
1531 return newsk;
1532
1533exit_overflow:
1534 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1535exit_nonewsk:
1536 dst_release(dst);
1537exit:
1538 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1539 return NULL;
1540put_and_exit:
1541 tcp_clear_xmit_timers(newsk);
1542 tcp_cleanup_congestion_control(newsk);
1543 bh_unlock_sock(newsk);
1544 sock_put(newsk);
1545 goto exit;
1546}
1547EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1548
1549static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1550{
1551 struct tcphdr *th = tcp_hdr(skb);
1552 const struct iphdr *iph = ip_hdr(skb);
1553 struct sock *nsk;
1554 struct request_sock **prev;
1555 /* Find possible connection requests. */
1556 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1557 iph->saddr, iph->daddr);
1558 if (req)
1559 return tcp_check_req(sk, skb, req, prev);
1560
1561 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1562 th->source, iph->daddr, th->dest, inet_iif(skb));
1563
1564 if (nsk) {
1565 if (nsk->sk_state != TCP_TIME_WAIT) {
1566 bh_lock_sock(nsk);
1567 return nsk;
1568 }
1569 inet_twsk_put(inet_twsk(nsk));
1570 return NULL;
1571 }
1572
1573#ifdef CONFIG_SYN_COOKIES
1574 if (!th->syn)
1575 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1576#endif
1577 return sk;
1578}
1579
1580static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1581{
1582 const struct iphdr *iph = ip_hdr(skb);
1583
1584 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1585 if (!tcp_v4_check(skb->len, iph->saddr,
1586 iph->daddr, skb->csum)) {
1587 skb->ip_summed = CHECKSUM_UNNECESSARY;
1588 return 0;
1589 }
1590 }
1591
1592 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1593 skb->len, IPPROTO_TCP, 0);
1594
1595 if (skb->len <= 76) {
1596 return __skb_checksum_complete(skb);
1597 }
1598 return 0;
1599}
1600
1601
1602/* The socket must have it's spinlock held when we get
1603 * here.
1604 *
1605 * We have a potential double-lock case here, so even when
1606 * doing backlog processing we use the BH locking scheme.
1607 * This is because we cannot sleep with the original spinlock
1608 * held.
1609 */
1610int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1611{
1612 struct sock *rsk;
1613#ifdef CONFIG_TCP_MD5SIG
1614 /*
1615 * We really want to reject the packet as early as possible
1616 * if:
1617 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1618 * o There is an MD5 option and we're not expecting one
1619 */
1620 if (tcp_v4_inbound_md5_hash(sk, skb))
1621 goto discard;
1622#endif
1623
1624 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1625 sock_rps_save_rxhash(sk, skb);
1626 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1627 rsk = sk;
1628 goto reset;
1629 }
1630 return 0;
1631 }
1632
1633 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1634 goto csum_err;
1635
1636 if (sk->sk_state == TCP_LISTEN) {
1637 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1638 if (!nsk)
1639 goto discard;
1640
1641 if (nsk != sk) {
1642 sock_rps_save_rxhash(nsk, skb);
1643 if (tcp_child_process(sk, nsk, skb)) {
1644 rsk = nsk;
1645 goto reset;
1646 }
1647 return 0;
1648 }
1649 } else
1650 sock_rps_save_rxhash(sk, skb);
1651
1652 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1653 rsk = sk;
1654 goto reset;
1655 }
1656 return 0;
1657
1658reset:
1659 tcp_v4_send_reset(rsk, skb);
1660discard:
1661 kfree_skb(skb);
1662 /* Be careful here. If this function gets more complicated and
1663 * gcc suffers from register pressure on the x86, sk (in %ebx)
1664 * might be destroyed here. This current version compiles correctly,
1665 * but you have been warned.
1666 */
1667 return 0;
1668
1669csum_err:
1670 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1671 goto discard;
1672}
1673EXPORT_SYMBOL(tcp_v4_do_rcv);
1674
1675/*
1676 * From tcp_input.c
1677 */
1678
1679int tcp_v4_rcv(struct sk_buff *skb)
1680{
1681 const struct iphdr *iph;
1682 const struct tcphdr *th;
1683 struct sock *sk;
1684 int ret;
1685 struct net *net = dev_net(skb->dev);
1686
1687 if (skb->pkt_type != PACKET_HOST)
1688 goto discard_it;
1689
1690 /* Count it even if it's bad */
1691 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1692
1693 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1694 goto discard_it;
1695
1696 th = tcp_hdr(skb);
1697
1698 if (th->doff < sizeof(struct tcphdr) / 4)
1699 goto bad_packet;
1700 if (!pskb_may_pull(skb, th->doff * 4))
1701 goto discard_it;
1702
1703 /* An explanation is required here, I think.
1704 * Packet length and doff are validated by header prediction,
1705 * provided case of th->doff==0 is eliminated.
1706 * So, we defer the checks. */
1707 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1708 goto bad_packet;
1709
1710 th = tcp_hdr(skb);
1711 iph = ip_hdr(skb);
1712 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1713 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1714 skb->len - th->doff * 4);
1715 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1716 TCP_SKB_CB(skb)->when = 0;
1717 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1718 TCP_SKB_CB(skb)->sacked = 0;
1719
1720 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1721 if (!sk)
1722 goto no_tcp_socket;
1723
1724process:
1725 if (sk->sk_state == TCP_TIME_WAIT)
1726 goto do_time_wait;
1727
1728 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1729 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1730 goto discard_and_relse;
1731 }
1732
1733 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1734 goto discard_and_relse;
1735 nf_reset(skb);
1736
1737 if (sk_filter(sk, skb))
1738 goto discard_and_relse;
1739
1740 skb->dev = NULL;
1741
1742 bh_lock_sock_nested(sk);
1743 ret = 0;
1744 if (!sock_owned_by_user(sk)) {
1745#ifdef CONFIG_NET_DMA
1746 struct tcp_sock *tp = tcp_sk(sk);
1747 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1748 tp->ucopy.dma_chan = net_dma_find_channel();
1749 if (tp->ucopy.dma_chan)
1750 ret = tcp_v4_do_rcv(sk, skb);
1751 else
1752#endif
1753 {
1754 if (!tcp_prequeue(sk, skb))
1755 ret = tcp_v4_do_rcv(sk, skb);
1756 }
1757 } else if (unlikely(sk_add_backlog(sk, skb,
1758 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1759 bh_unlock_sock(sk);
1760 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1761 goto discard_and_relse;
1762 }
1763 bh_unlock_sock(sk);
1764
1765 sock_put(sk);
1766
1767 return ret;
1768
1769no_tcp_socket:
1770 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1771 goto discard_it;
1772
1773 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1774bad_packet:
1775 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1776 } else {
1777 tcp_v4_send_reset(NULL, skb);
1778 }
1779
1780discard_it:
1781 /* Discard frame. */
1782 kfree_skb(skb);
1783 return 0;
1784
1785discard_and_relse:
1786 sock_put(sk);
1787 goto discard_it;
1788
1789do_time_wait:
1790 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1791 inet_twsk_put(inet_twsk(sk));
1792 goto discard_it;
1793 }
1794
1795 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1796 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1797 inet_twsk_put(inet_twsk(sk));
1798 goto discard_it;
1799 }
1800 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1801 case TCP_TW_SYN: {
1802 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1803 &tcp_hashinfo,
1804 iph->daddr, th->dest,
1805 inet_iif(skb));
1806 if (sk2) {
1807 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1808 inet_twsk_put(inet_twsk(sk));
1809 sk = sk2;
1810 goto process;
1811 }
1812 /* Fall through to ACK */
1813 }
1814 case TCP_TW_ACK:
1815 tcp_v4_timewait_ack(sk, skb);
1816 break;
1817 case TCP_TW_RST:
1818 goto no_tcp_socket;
1819 case TCP_TW_SUCCESS:;
1820 }
1821 goto discard_it;
1822}
1823
1824struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1825{
1826 struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1827 struct inet_sock *inet = inet_sk(sk);
1828 struct inet_peer *peer;
1829
1830 if (!rt ||
1831 inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1832 peer = inet_getpeer_v4(inet->inet_daddr, 1);
1833 *release_it = true;
1834 } else {
1835 if (!rt->peer)
1836 rt_bind_peer(rt, inet->inet_daddr, 1);
1837 peer = rt->peer;
1838 *release_it = false;
1839 }
1840
1841 return peer;
1842}
1843EXPORT_SYMBOL(tcp_v4_get_peer);
1844
1845void *tcp_v4_tw_get_peer(struct sock *sk)
1846{
1847 const struct inet_timewait_sock *tw = inet_twsk(sk);
1848
1849 return inet_getpeer_v4(tw->tw_daddr, 1);
1850}
1851EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1852
1853static struct timewait_sock_ops tcp_timewait_sock_ops = {
1854 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1855 .twsk_unique = tcp_twsk_unique,
1856 .twsk_destructor= tcp_twsk_destructor,
1857 .twsk_getpeer = tcp_v4_tw_get_peer,
1858};
1859
1860const struct inet_connection_sock_af_ops ipv4_specific = {
1861 .queue_xmit = ip_queue_xmit,
1862 .send_check = tcp_v4_send_check,
1863 .rebuild_header = inet_sk_rebuild_header,
1864 .conn_request = tcp_v4_conn_request,
1865 .syn_recv_sock = tcp_v4_syn_recv_sock,
1866 .get_peer = tcp_v4_get_peer,
1867 .net_header_len = sizeof(struct iphdr),
1868 .setsockopt = ip_setsockopt,
1869 .getsockopt = ip_getsockopt,
1870 .addr2sockaddr = inet_csk_addr2sockaddr,
1871 .sockaddr_len = sizeof(struct sockaddr_in),
1872 .bind_conflict = inet_csk_bind_conflict,
1873#ifdef CONFIG_COMPAT
1874 .compat_setsockopt = compat_ip_setsockopt,
1875 .compat_getsockopt = compat_ip_getsockopt,
1876#endif
1877};
1878EXPORT_SYMBOL(ipv4_specific);
1879
1880#ifdef CONFIG_TCP_MD5SIG
1881static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1882 .md5_lookup = tcp_v4_md5_lookup,
1883 .calc_md5_hash = tcp_v4_md5_hash_skb,
1884 .md5_parse = tcp_v4_parse_md5_keys,
1885};
1886#endif
1887
1888/* NOTE: A lot of things set to zero explicitly by call to
1889 * sk_alloc() so need not be done here.
1890 */
1891static int tcp_v4_init_sock(struct sock *sk)
1892{
1893 struct inet_connection_sock *icsk = inet_csk(sk);
1894
1895 tcp_init_sock(sk);
1896
1897 icsk->icsk_af_ops = &ipv4_specific;
1898
1899#ifdef CONFIG_TCP_MD5SIG
1900 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1901#endif
1902
1903 return 0;
1904}
1905
1906void tcp_v4_destroy_sock(struct sock *sk)
1907{
1908 struct tcp_sock *tp = tcp_sk(sk);
1909
1910 tcp_clear_xmit_timers(sk);
1911
1912 tcp_cleanup_congestion_control(sk);
1913
1914 /* Cleanup up the write buffer. */
1915 tcp_write_queue_purge(sk);
1916
1917 /* Cleans up our, hopefully empty, out_of_order_queue. */
1918 __skb_queue_purge(&tp->out_of_order_queue);
1919
1920#ifdef CONFIG_TCP_MD5SIG
1921 /* Clean up the MD5 key list, if any */
1922 if (tp->md5sig_info) {
1923 tcp_clear_md5_list(sk);
1924 kfree_rcu(tp->md5sig_info, rcu);
1925 tp->md5sig_info = NULL;
1926 }
1927#endif
1928
1929#ifdef CONFIG_NET_DMA
1930 /* Cleans up our sk_async_wait_queue */
1931 __skb_queue_purge(&sk->sk_async_wait_queue);
1932#endif
1933
1934 /* Clean prequeue, it must be empty really */
1935 __skb_queue_purge(&tp->ucopy.prequeue);
1936
1937 /* Clean up a referenced TCP bind bucket. */
1938 if (inet_csk(sk)->icsk_bind_hash)
1939 inet_put_port(sk);
1940
1941 /*
1942 * If sendmsg cached page exists, toss it.
1943 */
1944 if (sk->sk_sndmsg_page) {
1945 __free_page(sk->sk_sndmsg_page);
1946 sk->sk_sndmsg_page = NULL;
1947 }
1948
1949 /* TCP Cookie Transactions */
1950 if (tp->cookie_values != NULL) {
1951 kref_put(&tp->cookie_values->kref,
1952 tcp_cookie_values_release);
1953 tp->cookie_values = NULL;
1954 }
1955
1956 sk_sockets_allocated_dec(sk);
1957 sock_release_memcg(sk);
1958}
1959EXPORT_SYMBOL(tcp_v4_destroy_sock);
1960
1961#ifdef CONFIG_PROC_FS
1962/* Proc filesystem TCP sock list dumping. */
1963
1964static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1965{
1966 return hlist_nulls_empty(head) ? NULL :
1967 list_entry(head->first, struct inet_timewait_sock, tw_node);
1968}
1969
1970static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1971{
1972 return !is_a_nulls(tw->tw_node.next) ?
1973 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1974}
1975
1976/*
1977 * Get next listener socket follow cur. If cur is NULL, get first socket
1978 * starting from bucket given in st->bucket; when st->bucket is zero the
1979 * very first socket in the hash table is returned.
1980 */
1981static void *listening_get_next(struct seq_file *seq, void *cur)
1982{
1983 struct inet_connection_sock *icsk;
1984 struct hlist_nulls_node *node;
1985 struct sock *sk = cur;
1986 struct inet_listen_hashbucket *ilb;
1987 struct tcp_iter_state *st = seq->private;
1988 struct net *net = seq_file_net(seq);
1989
1990 if (!sk) {
1991 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1992 spin_lock_bh(&ilb->lock);
1993 sk = sk_nulls_head(&ilb->head);
1994 st->offset = 0;
1995 goto get_sk;
1996 }
1997 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1998 ++st->num;
1999 ++st->offset;
2000
2001 if (st->state == TCP_SEQ_STATE_OPENREQ) {
2002 struct request_sock *req = cur;
2003
2004 icsk = inet_csk(st->syn_wait_sk);
2005 req = req->dl_next;
2006 while (1) {
2007 while (req) {
2008 if (req->rsk_ops->family == st->family) {
2009 cur = req;
2010 goto out;
2011 }
2012 req = req->dl_next;
2013 }
2014 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2015 break;
2016get_req:
2017 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2018 }
2019 sk = sk_nulls_next(st->syn_wait_sk);
2020 st->state = TCP_SEQ_STATE_LISTENING;
2021 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022 } else {
2023 icsk = inet_csk(sk);
2024 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2026 goto start_req;
2027 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2028 sk = sk_nulls_next(sk);
2029 }
2030get_sk:
2031 sk_nulls_for_each_from(sk, node) {
2032 if (!net_eq(sock_net(sk), net))
2033 continue;
2034 if (sk->sk_family == st->family) {
2035 cur = sk;
2036 goto out;
2037 }
2038 icsk = inet_csk(sk);
2039 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2040 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2041start_req:
2042 st->uid = sock_i_uid(sk);
2043 st->syn_wait_sk = sk;
2044 st->state = TCP_SEQ_STATE_OPENREQ;
2045 st->sbucket = 0;
2046 goto get_req;
2047 }
2048 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2049 }
2050 spin_unlock_bh(&ilb->lock);
2051 st->offset = 0;
2052 if (++st->bucket < INET_LHTABLE_SIZE) {
2053 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2054 spin_lock_bh(&ilb->lock);
2055 sk = sk_nulls_head(&ilb->head);
2056 goto get_sk;
2057 }
2058 cur = NULL;
2059out:
2060 return cur;
2061}
2062
2063static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2064{
2065 struct tcp_iter_state *st = seq->private;
2066 void *rc;
2067
2068 st->bucket = 0;
2069 st->offset = 0;
2070 rc = listening_get_next(seq, NULL);
2071
2072 while (rc && *pos) {
2073 rc = listening_get_next(seq, rc);
2074 --*pos;
2075 }
2076 return rc;
2077}
2078
2079static inline bool empty_bucket(struct tcp_iter_state *st)
2080{
2081 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2082 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2083}
2084
2085/*
2086 * Get first established socket starting from bucket given in st->bucket.
2087 * If st->bucket is zero, the very first socket in the hash is returned.
2088 */
2089static void *established_get_first(struct seq_file *seq)
2090{
2091 struct tcp_iter_state *st = seq->private;
2092 struct net *net = seq_file_net(seq);
2093 void *rc = NULL;
2094
2095 st->offset = 0;
2096 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2097 struct sock *sk;
2098 struct hlist_nulls_node *node;
2099 struct inet_timewait_sock *tw;
2100 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2101
2102 /* Lockless fast path for the common case of empty buckets */
2103 if (empty_bucket(st))
2104 continue;
2105
2106 spin_lock_bh(lock);
2107 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2108 if (sk->sk_family != st->family ||
2109 !net_eq(sock_net(sk), net)) {
2110 continue;
2111 }
2112 rc = sk;
2113 goto out;
2114 }
2115 st->state = TCP_SEQ_STATE_TIME_WAIT;
2116 inet_twsk_for_each(tw, node,
2117 &tcp_hashinfo.ehash[st->bucket].twchain) {
2118 if (tw->tw_family != st->family ||
2119 !net_eq(twsk_net(tw), net)) {
2120 continue;
2121 }
2122 rc = tw;
2123 goto out;
2124 }
2125 spin_unlock_bh(lock);
2126 st->state = TCP_SEQ_STATE_ESTABLISHED;
2127 }
2128out:
2129 return rc;
2130}
2131
2132static void *established_get_next(struct seq_file *seq, void *cur)
2133{
2134 struct sock *sk = cur;
2135 struct inet_timewait_sock *tw;
2136 struct hlist_nulls_node *node;
2137 struct tcp_iter_state *st = seq->private;
2138 struct net *net = seq_file_net(seq);
2139
2140 ++st->num;
2141 ++st->offset;
2142
2143 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2144 tw = cur;
2145 tw = tw_next(tw);
2146get_tw:
2147 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2148 tw = tw_next(tw);
2149 }
2150 if (tw) {
2151 cur = tw;
2152 goto out;
2153 }
2154 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2155 st->state = TCP_SEQ_STATE_ESTABLISHED;
2156
2157 /* Look for next non empty bucket */
2158 st->offset = 0;
2159 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2160 empty_bucket(st))
2161 ;
2162 if (st->bucket > tcp_hashinfo.ehash_mask)
2163 return NULL;
2164
2165 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2166 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2167 } else
2168 sk = sk_nulls_next(sk);
2169
2170 sk_nulls_for_each_from(sk, node) {
2171 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2172 goto found;
2173 }
2174
2175 st->state = TCP_SEQ_STATE_TIME_WAIT;
2176 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2177 goto get_tw;
2178found:
2179 cur = sk;
2180out:
2181 return cur;
2182}
2183
2184static void *established_get_idx(struct seq_file *seq, loff_t pos)
2185{
2186 struct tcp_iter_state *st = seq->private;
2187 void *rc;
2188
2189 st->bucket = 0;
2190 rc = established_get_first(seq);
2191
2192 while (rc && pos) {
2193 rc = established_get_next(seq, rc);
2194 --pos;
2195 }
2196 return rc;
2197}
2198
2199static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2200{
2201 void *rc;
2202 struct tcp_iter_state *st = seq->private;
2203
2204 st->state = TCP_SEQ_STATE_LISTENING;
2205 rc = listening_get_idx(seq, &pos);
2206
2207 if (!rc) {
2208 st->state = TCP_SEQ_STATE_ESTABLISHED;
2209 rc = established_get_idx(seq, pos);
2210 }
2211
2212 return rc;
2213}
2214
2215static void *tcp_seek_last_pos(struct seq_file *seq)
2216{
2217 struct tcp_iter_state *st = seq->private;
2218 int offset = st->offset;
2219 int orig_num = st->num;
2220 void *rc = NULL;
2221
2222 switch (st->state) {
2223 case TCP_SEQ_STATE_OPENREQ:
2224 case TCP_SEQ_STATE_LISTENING:
2225 if (st->bucket >= INET_LHTABLE_SIZE)
2226 break;
2227 st->state = TCP_SEQ_STATE_LISTENING;
2228 rc = listening_get_next(seq, NULL);
2229 while (offset-- && rc)
2230 rc = listening_get_next(seq, rc);
2231 if (rc)
2232 break;
2233 st->bucket = 0;
2234 /* Fallthrough */
2235 case TCP_SEQ_STATE_ESTABLISHED:
2236 case TCP_SEQ_STATE_TIME_WAIT:
2237 st->state = TCP_SEQ_STATE_ESTABLISHED;
2238 if (st->bucket > tcp_hashinfo.ehash_mask)
2239 break;
2240 rc = established_get_first(seq);
2241 while (offset-- && rc)
2242 rc = established_get_next(seq, rc);
2243 }
2244
2245 st->num = orig_num;
2246
2247 return rc;
2248}
2249
2250static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2251{
2252 struct tcp_iter_state *st = seq->private;
2253 void *rc;
2254
2255 if (*pos && *pos == st->last_pos) {
2256 rc = tcp_seek_last_pos(seq);
2257 if (rc)
2258 goto out;
2259 }
2260
2261 st->state = TCP_SEQ_STATE_LISTENING;
2262 st->num = 0;
2263 st->bucket = 0;
2264 st->offset = 0;
2265 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2266
2267out:
2268 st->last_pos = *pos;
2269 return rc;
2270}
2271
2272static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273{
2274 struct tcp_iter_state *st = seq->private;
2275 void *rc = NULL;
2276
2277 if (v == SEQ_START_TOKEN) {
2278 rc = tcp_get_idx(seq, 0);
2279 goto out;
2280 }
2281
2282 switch (st->state) {
2283 case TCP_SEQ_STATE_OPENREQ:
2284 case TCP_SEQ_STATE_LISTENING:
2285 rc = listening_get_next(seq, v);
2286 if (!rc) {
2287 st->state = TCP_SEQ_STATE_ESTABLISHED;
2288 st->bucket = 0;
2289 st->offset = 0;
2290 rc = established_get_first(seq);
2291 }
2292 break;
2293 case TCP_SEQ_STATE_ESTABLISHED:
2294 case TCP_SEQ_STATE_TIME_WAIT:
2295 rc = established_get_next(seq, v);
2296 break;
2297 }
2298out:
2299 ++*pos;
2300 st->last_pos = *pos;
2301 return rc;
2302}
2303
2304static void tcp_seq_stop(struct seq_file *seq, void *v)
2305{
2306 struct tcp_iter_state *st = seq->private;
2307
2308 switch (st->state) {
2309 case TCP_SEQ_STATE_OPENREQ:
2310 if (v) {
2311 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2312 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2313 }
2314 case TCP_SEQ_STATE_LISTENING:
2315 if (v != SEQ_START_TOKEN)
2316 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2317 break;
2318 case TCP_SEQ_STATE_TIME_WAIT:
2319 case TCP_SEQ_STATE_ESTABLISHED:
2320 if (v)
2321 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2322 break;
2323 }
2324}
2325
2326int tcp_seq_open(struct inode *inode, struct file *file)
2327{
2328 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2329 struct tcp_iter_state *s;
2330 int err;
2331
2332 err = seq_open_net(inode, file, &afinfo->seq_ops,
2333 sizeof(struct tcp_iter_state));
2334 if (err < 0)
2335 return err;
2336
2337 s = ((struct seq_file *)file->private_data)->private;
2338 s->family = afinfo->family;
2339 s->last_pos = 0;
2340 return 0;
2341}
2342EXPORT_SYMBOL(tcp_seq_open);
2343
2344int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2345{
2346 int rc = 0;
2347 struct proc_dir_entry *p;
2348
2349 afinfo->seq_ops.start = tcp_seq_start;
2350 afinfo->seq_ops.next = tcp_seq_next;
2351 afinfo->seq_ops.stop = tcp_seq_stop;
2352
2353 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2354 afinfo->seq_fops, afinfo);
2355 if (!p)
2356 rc = -ENOMEM;
2357 return rc;
2358}
2359EXPORT_SYMBOL(tcp_proc_register);
2360
2361void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2362{
2363 proc_net_remove(net, afinfo->name);
2364}
2365EXPORT_SYMBOL(tcp_proc_unregister);
2366
2367static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2368 struct seq_file *f, int i, int uid, int *len)
2369{
2370 const struct inet_request_sock *ireq = inet_rsk(req);
2371 int ttd = req->expires - jiffies;
2372
2373 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2374 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2375 i,
2376 ireq->loc_addr,
2377 ntohs(inet_sk(sk)->inet_sport),
2378 ireq->rmt_addr,
2379 ntohs(ireq->rmt_port),
2380 TCP_SYN_RECV,
2381 0, 0, /* could print option size, but that is af dependent. */
2382 1, /* timers active (only the expire timer) */
2383 jiffies_to_clock_t(ttd),
2384 req->retrans,
2385 uid,
2386 0, /* non standard timer */
2387 0, /* open_requests have no inode */
2388 atomic_read(&sk->sk_refcnt),
2389 req,
2390 len);
2391}
2392
2393static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2394{
2395 int timer_active;
2396 unsigned long timer_expires;
2397 const struct tcp_sock *tp = tcp_sk(sk);
2398 const struct inet_connection_sock *icsk = inet_csk(sk);
2399 const struct inet_sock *inet = inet_sk(sk);
2400 __be32 dest = inet->inet_daddr;
2401 __be32 src = inet->inet_rcv_saddr;
2402 __u16 destp = ntohs(inet->inet_dport);
2403 __u16 srcp = ntohs(inet->inet_sport);
2404 int rx_queue;
2405
2406 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2407 timer_active = 1;
2408 timer_expires = icsk->icsk_timeout;
2409 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2410 timer_active = 4;
2411 timer_expires = icsk->icsk_timeout;
2412 } else if (timer_pending(&sk->sk_timer)) {
2413 timer_active = 2;
2414 timer_expires = sk->sk_timer.expires;
2415 } else {
2416 timer_active = 0;
2417 timer_expires = jiffies;
2418 }
2419
2420 if (sk->sk_state == TCP_LISTEN)
2421 rx_queue = sk->sk_ack_backlog;
2422 else
2423 /*
2424 * because we dont lock socket, we might find a transient negative value
2425 */
2426 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2427
2428 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2429 "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2430 i, src, srcp, dest, destp, sk->sk_state,
2431 tp->write_seq - tp->snd_una,
2432 rx_queue,
2433 timer_active,
2434 jiffies_to_clock_t(timer_expires - jiffies),
2435 icsk->icsk_retransmits,
2436 sock_i_uid(sk),
2437 icsk->icsk_probes_out,
2438 sock_i_ino(sk),
2439 atomic_read(&sk->sk_refcnt), sk,
2440 jiffies_to_clock_t(icsk->icsk_rto),
2441 jiffies_to_clock_t(icsk->icsk_ack.ato),
2442 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2443 tp->snd_cwnd,
2444 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2445 len);
2446}
2447
2448static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2449 struct seq_file *f, int i, int *len)
2450{
2451 __be32 dest, src;
2452 __u16 destp, srcp;
2453 int ttd = tw->tw_ttd - jiffies;
2454
2455 if (ttd < 0)
2456 ttd = 0;
2457
2458 dest = tw->tw_daddr;
2459 src = tw->tw_rcv_saddr;
2460 destp = ntohs(tw->tw_dport);
2461 srcp = ntohs(tw->tw_sport);
2462
2463 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2464 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2465 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2466 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2467 atomic_read(&tw->tw_refcnt), tw, len);
2468}
2469
2470#define TMPSZ 150
2471
2472static int tcp4_seq_show(struct seq_file *seq, void *v)
2473{
2474 struct tcp_iter_state *st;
2475 int len;
2476
2477 if (v == SEQ_START_TOKEN) {
2478 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2479 " sl local_address rem_address st tx_queue "
2480 "rx_queue tr tm->when retrnsmt uid timeout "
2481 "inode");
2482 goto out;
2483 }
2484 st = seq->private;
2485
2486 switch (st->state) {
2487 case TCP_SEQ_STATE_LISTENING:
2488 case TCP_SEQ_STATE_ESTABLISHED:
2489 get_tcp4_sock(v, seq, st->num, &len);
2490 break;
2491 case TCP_SEQ_STATE_OPENREQ:
2492 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2493 break;
2494 case TCP_SEQ_STATE_TIME_WAIT:
2495 get_timewait4_sock(v, seq, st->num, &len);
2496 break;
2497 }
2498 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2499out:
2500 return 0;
2501}
2502
2503static const struct file_operations tcp_afinfo_seq_fops = {
2504 .owner = THIS_MODULE,
2505 .open = tcp_seq_open,
2506 .read = seq_read,
2507 .llseek = seq_lseek,
2508 .release = seq_release_net
2509};
2510
2511static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2512 .name = "tcp",
2513 .family = AF_INET,
2514 .seq_fops = &tcp_afinfo_seq_fops,
2515 .seq_ops = {
2516 .show = tcp4_seq_show,
2517 },
2518};
2519
2520static int __net_init tcp4_proc_init_net(struct net *net)
2521{
2522 return tcp_proc_register(net, &tcp4_seq_afinfo);
2523}
2524
2525static void __net_exit tcp4_proc_exit_net(struct net *net)
2526{
2527 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2528}
2529
2530static struct pernet_operations tcp4_net_ops = {
2531 .init = tcp4_proc_init_net,
2532 .exit = tcp4_proc_exit_net,
2533};
2534
2535int __init tcp4_proc_init(void)
2536{
2537 return register_pernet_subsys(&tcp4_net_ops);
2538}
2539
2540void tcp4_proc_exit(void)
2541{
2542 unregister_pernet_subsys(&tcp4_net_ops);
2543}
2544#endif /* CONFIG_PROC_FS */
2545
2546struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2547{
2548 const struct iphdr *iph = skb_gro_network_header(skb);
2549
2550 switch (skb->ip_summed) {
2551 case CHECKSUM_COMPLETE:
2552 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2553 skb->csum)) {
2554 skb->ip_summed = CHECKSUM_UNNECESSARY;
2555 break;
2556 }
2557
2558 /* fall through */
2559 case CHECKSUM_NONE:
2560 NAPI_GRO_CB(skb)->flush = 1;
2561 return NULL;
2562 }
2563
2564 return tcp_gro_receive(head, skb);
2565}
2566
2567int tcp4_gro_complete(struct sk_buff *skb)
2568{
2569 const struct iphdr *iph = ip_hdr(skb);
2570 struct tcphdr *th = tcp_hdr(skb);
2571
2572 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2573 iph->saddr, iph->daddr, 0);
2574 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2575
2576 return tcp_gro_complete(skb);
2577}
2578
2579struct proto tcp_prot = {
2580 .name = "TCP",
2581 .owner = THIS_MODULE,
2582 .close = tcp_close,
2583 .connect = tcp_v4_connect,
2584 .disconnect = tcp_disconnect,
2585 .accept = inet_csk_accept,
2586 .ioctl = tcp_ioctl,
2587 .init = tcp_v4_init_sock,
2588 .destroy = tcp_v4_destroy_sock,
2589 .shutdown = tcp_shutdown,
2590 .setsockopt = tcp_setsockopt,
2591 .getsockopt = tcp_getsockopt,
2592 .recvmsg = tcp_recvmsg,
2593 .sendmsg = tcp_sendmsg,
2594 .sendpage = tcp_sendpage,
2595 .backlog_rcv = tcp_v4_do_rcv,
2596 .hash = inet_hash,
2597 .unhash = inet_unhash,
2598 .get_port = inet_csk_get_port,
2599 .enter_memory_pressure = tcp_enter_memory_pressure,
2600 .sockets_allocated = &tcp_sockets_allocated,
2601 .orphan_count = &tcp_orphan_count,
2602 .memory_allocated = &tcp_memory_allocated,
2603 .memory_pressure = &tcp_memory_pressure,
2604 .sysctl_wmem = sysctl_tcp_wmem,
2605 .sysctl_rmem = sysctl_tcp_rmem,
2606 .max_header = MAX_TCP_HEADER,
2607 .obj_size = sizeof(struct tcp_sock),
2608 .slab_flags = SLAB_DESTROY_BY_RCU,
2609 .twsk_prot = &tcp_timewait_sock_ops,
2610 .rsk_prot = &tcp_request_sock_ops,
2611 .h.hashinfo = &tcp_hashinfo,
2612 .no_autobind = true,
2613#ifdef CONFIG_COMPAT
2614 .compat_setsockopt = compat_tcp_setsockopt,
2615 .compat_getsockopt = compat_tcp_getsockopt,
2616#endif
2617#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2618 .init_cgroup = tcp_init_cgroup,
2619 .destroy_cgroup = tcp_destroy_cgroup,
2620 .proto_cgroup = tcp_proto_cgroup,
2621#endif
2622};
2623EXPORT_SYMBOL(tcp_prot);
2624
2625static int __net_init tcp_sk_init(struct net *net)
2626{
2627 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2628 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2629}
2630
2631static void __net_exit tcp_sk_exit(struct net *net)
2632{
2633 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2634}
2635
2636static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2637{
2638 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2639}
2640
2641static struct pernet_operations __net_initdata tcp_sk_ops = {
2642 .init = tcp_sk_init,
2643 .exit = tcp_sk_exit,
2644 .exit_batch = tcp_sk_exit_batch,
2645};
2646
2647void __init tcp_v4_init(void)
2648{
2649 inet_hashinfo_init(&tcp_hashinfo);
2650 if (register_pernet_subsys(&tcp_sk_ops))
2651 panic("Failed to create the TCP control socket.\n");
2652}