Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 *		IPv4 specific functions
   9 *
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 *
  18 *	This program is free software; you can redistribute it and/or
  19 *      modify it under the terms of the GNU General Public License
  20 *      as published by the Free Software Foundation; either version
  21 *      2 of the License, or (at your option) any later version.
  22 */
  23
  24/*
  25 * Changes:
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *					This code is dedicated to John Dyson.
  28 *		David S. Miller :	Change semantics of established hash,
  29 *					half is devoted to TIME_WAIT sockets
  30 *					and the rest go in the other half.
  31 *		Andi Kleen :		Add support for syncookies and fixed
  32 *					some bugs: ip options weren't passed to
  33 *					the TCP layer, missed a check for an
  34 *					ACK bit.
  35 *		Andi Kleen :		Implemented fast path mtu discovery.
  36 *	     				Fixed many serious bugs in the
  37 *					request_sock handling and moved
  38 *					most of it into the af independent code.
  39 *					Added tail drop and some other bugfixes.
  40 *					Added new listen semantics.
  41 *		Mike McLagan	:	Routing by source
  42 *	Juan Jose Ciarlante:		ip_dynaddr bits
  43 *		Andi Kleen:		various fixes.
  44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  45 *					coma.
  46 *	Andi Kleen		:	Fix new listen.
  47 *	Andi Kleen		:	Fix accept error reporting.
  48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  50 *					a single port at the same time.
  51 */
  52
 
  53
  54#include <linux/bottom_half.h>
  55#include <linux/types.h>
  56#include <linux/fcntl.h>
  57#include <linux/module.h>
  58#include <linux/random.h>
  59#include <linux/cache.h>
  60#include <linux/jhash.h>
  61#include <linux/init.h>
  62#include <linux/times.h>
  63#include <linux/slab.h>
 
  64
  65#include <net/net_namespace.h>
  66#include <net/icmp.h>
  67#include <net/inet_hashtables.h>
  68#include <net/tcp.h>
  69#include <net/transp_v6.h>
  70#include <net/ipv6.h>
  71#include <net/inet_common.h>
  72#include <net/timewait_sock.h>
  73#include <net/xfrm.h>
  74#include <net/netdma.h>
  75#include <net/secure_seq.h>
 
  76
  77#include <linux/inet.h>
  78#include <linux/ipv6.h>
  79#include <linux/stddef.h>
  80#include <linux/proc_fs.h>
  81#include <linux/seq_file.h>
 
 
  82
  83#include <linux/crypto.h>
  84#include <linux/scatterlist.h>
  85
  86int sysctl_tcp_tw_reuse __read_mostly;
  87int sysctl_tcp_low_latency __read_mostly;
  88EXPORT_SYMBOL(sysctl_tcp_low_latency);
  89
  90
  91#ifdef CONFIG_TCP_MD5SIG
  92static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
  93						   __be32 addr);
  94static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
  95			       __be32 daddr, __be32 saddr, struct tcphdr *th);
  96#else
  97static inline
  98struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
  99{
 100	return NULL;
 101}
 102#endif
 103
 104struct inet_hashinfo tcp_hashinfo;
 105EXPORT_SYMBOL(tcp_hashinfo);
 106
 107static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
 
 
 108{
 109	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
 110					  ip_hdr(skb)->saddr,
 111					  tcp_hdr(skb)->dest,
 112					  tcp_hdr(skb)->source);
 
 
 
 
 
 113}
 114
 115int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 116{
 
 
 117	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 118	struct tcp_sock *tp = tcp_sk(sk);
 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120	/* With PAWS, it is safe from the viewpoint
 121	   of data integrity. Even without PAWS it is safe provided sequence
 122	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 123
 124	   Actually, the idea is close to VJ's one, only timestamp cache is
 125	   held not per host, but per port pair and TW bucket is used as state
 126	   holder.
 127
 128	   If TW bucket has been already destroyed we fall back to VJ's scheme
 129	   and use initial timestamp retrieved from peer table.
 130	 */
 131	if (tcptw->tw_ts_recent_stamp &&
 132	    (twp == NULL || (sysctl_tcp_tw_reuse &&
 133			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
 134		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
 135		if (tp->write_seq == 0)
 136			tp->write_seq = 1;
 137		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 138		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139		sock_hold(sktw);
 140		return 1;
 141	}
 142
 143	return 0;
 144}
 145EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147/* This will initiate an outgoing connection. */
 148int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 149{
 150	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 
 151	struct inet_sock *inet = inet_sk(sk);
 152	struct tcp_sock *tp = tcp_sk(sk);
 
 
 153	__be16 orig_sport, orig_dport;
 154	__be32 daddr, nexthop;
 155	struct flowi4 *fl4;
 156	struct rtable *rt;
 157	int err;
 158	struct ip_options_rcu *inet_opt;
 159
 160	if (addr_len < sizeof(struct sockaddr_in))
 161		return -EINVAL;
 162
 163	if (usin->sin_family != AF_INET)
 164		return -EAFNOSUPPORT;
 165
 166	nexthop = daddr = usin->sin_addr.s_addr;
 167	inet_opt = rcu_dereference_protected(inet->inet_opt,
 168					     sock_owned_by_user(sk));
 169	if (inet_opt && inet_opt->opt.srr) {
 170		if (!daddr)
 171			return -EINVAL;
 172		nexthop = inet_opt->opt.faddr;
 173	}
 174
 175	orig_sport = inet->inet_sport;
 176	orig_dport = usin->sin_port;
 177	fl4 = &inet->cork.fl.u.ip4;
 178	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 179			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 180			      IPPROTO_TCP,
 181			      orig_sport, orig_dport, sk, true);
 182	if (IS_ERR(rt)) {
 183		err = PTR_ERR(rt);
 184		if (err == -ENETUNREACH)
 185			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 186		return err;
 187	}
 188
 189	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 190		ip_rt_put(rt);
 191		return -ENETUNREACH;
 192	}
 193
 194	if (!inet_opt || !inet_opt->opt.srr)
 195		daddr = fl4->daddr;
 196
 197	if (!inet->inet_saddr)
 198		inet->inet_saddr = fl4->saddr;
 199	inet->inet_rcv_saddr = inet->inet_saddr;
 
 
 
 
 
 
 
 
 200
 201	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 202		/* Reset inherited state */
 203		tp->rx_opt.ts_recent	   = 0;
 204		tp->rx_opt.ts_recent_stamp = 0;
 205		tp->write_seq		   = 0;
 206	}
 207
 208	if (tcp_death_row.sysctl_tw_recycle &&
 209	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
 210		struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
 211		/*
 212		 * VJ's idea. We save last timestamp seen from
 213		 * the destination in peer table, when entering state
 214		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
 215		 * when trying new connection.
 216		 */
 217		if (peer) {
 218			inet_peer_refcheck(peer);
 219			if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
 220				tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
 221				tp->rx_opt.ts_recent = peer->tcp_ts;
 222			}
 223		}
 224	}
 225
 226	inet->inet_dport = usin->sin_port;
 227	inet->inet_daddr = daddr;
 228
 229	inet_csk(sk)->icsk_ext_hdr_len = 0;
 230	if (inet_opt)
 231		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 232
 233	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 234
 235	/* Socket identity is still unknown (sport may be zero).
 236	 * However we set state to SYN-SENT and not releasing socket
 237	 * lock select source port, enter ourselves into the hash tables and
 238	 * complete initialization after this.
 239	 */
 240	tcp_set_state(sk, TCP_SYN_SENT);
 241	err = inet_hash_connect(&tcp_death_row, sk);
 242	if (err)
 243		goto failure;
 244
 
 
 245	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 246			       inet->inet_sport, inet->inet_dport, sk);
 247	if (IS_ERR(rt)) {
 248		err = PTR_ERR(rt);
 249		rt = NULL;
 250		goto failure;
 251	}
 
 252	/* OK, now commit destination to socket.  */
 253	sk->sk_gso_type = SKB_GSO_TCPV4;
 254	sk_setup_caps(sk, &rt->dst);
 
 255
 256	if (!tp->write_seq)
 257		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
 258							   inet->inet_daddr,
 259							   inet->inet_sport,
 260							   usin->sin_port);
 
 
 
 
 
 
 261
 262	inet->inet_id = tp->write_seq ^ jiffies;
 
 
 
 
 
 263
 264	err = tcp_connect(sk);
 265	rt = NULL;
 266	if (err)
 267		goto failure;
 268
 269	return 0;
 270
 271failure:
 272	/*
 273	 * This unhashes the socket and releases the local port,
 274	 * if necessary.
 275	 */
 276	tcp_set_state(sk, TCP_CLOSE);
 
 277	ip_rt_put(rt);
 278	sk->sk_route_caps = 0;
 279	inet->inet_dport = 0;
 280	return err;
 281}
 282EXPORT_SYMBOL(tcp_v4_connect);
 283
 284/*
 285 * This routine does path mtu discovery as defined in RFC1191.
 
 
 286 */
 287static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
 288{
 289	struct dst_entry *dst;
 290	struct inet_sock *inet = inet_sk(sk);
 
 
 291
 292	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
 293	 * send out by Linux are always <576bytes so they should go through
 294	 * unfragmented).
 295	 */
 296	if (sk->sk_state == TCP_LISTEN)
 297		return;
 298
 299	/* We don't check in the destentry if pmtu discovery is forbidden
 300	 * on this route. We just assume that no packet_to_big packets
 301	 * are send back when pmtu discovery is not active.
 302	 * There is a small race when the user changes this flag in the
 303	 * route, but I think that's acceptable.
 304	 */
 305	if ((dst = __sk_dst_check(sk, 0)) == NULL)
 306		return;
 307
 308	dst->ops->update_pmtu(dst, mtu);
 309
 310	/* Something is about to be wrong... Remember soft error
 311	 * for the case, if this connection will not able to recover.
 312	 */
 313	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 314		sk->sk_err_soft = EMSGSIZE;
 315
 316	mtu = dst_mtu(dst);
 317
 318	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 
 319	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 320		tcp_sync_mss(sk, mtu);
 321
 322		/* Resend the TCP packet because it's
 323		 * clear that the old packet has been
 324		 * dropped. This is the new "fast" path mtu
 325		 * discovery.
 326		 */
 327		tcp_simple_retransmit(sk);
 328	} /* else let the usual retransmit timer handle it */
 329}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330
 331/*
 332 * This routine is called by the ICMP module when it gets some
 333 * sort of error condition.  If err < 0 then the socket should
 334 * be closed and the error returned to the user.  If err > 0
 335 * it's just the icmp type << 8 | icmp code.  After adjustment
 336 * header points to the first 8 bytes of the tcp header.  We need
 337 * to find the appropriate port.
 338 *
 339 * The locking strategy used here is very "optimistic". When
 340 * someone else accesses the socket the ICMP is just dropped
 341 * and for some paths there is no check at all.
 342 * A more general error queue to queue errors for later handling
 343 * is probably better.
 344 *
 345 */
 346
 347void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
 348{
 349	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
 350	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
 351	struct inet_connection_sock *icsk;
 352	struct tcp_sock *tp;
 353	struct inet_sock *inet;
 354	const int type = icmp_hdr(icmp_skb)->type;
 355	const int code = icmp_hdr(icmp_skb)->code;
 356	struct sock *sk;
 357	struct sk_buff *skb;
 358	__u32 seq;
 359	__u32 remaining;
 360	int err;
 361	struct net *net = dev_net(icmp_skb->dev);
 362
 363	if (icmp_skb->len < (iph->ihl << 2) + 8) {
 364		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 365		return;
 366	}
 367
 368	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
 369			iph->saddr, th->source, inet_iif(icmp_skb));
 
 370	if (!sk) {
 371		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 372		return;
 373	}
 374	if (sk->sk_state == TCP_TIME_WAIT) {
 
 
 375		inet_twsk_put(inet_twsk(sk));
 376		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377	}
 378
 379	bh_lock_sock(sk);
 380	/* If too many ICMPs get dropped on busy
 381	 * servers this needs to be solved differently.
 
 
 382	 */
 383	if (sock_owned_by_user(sk))
 384		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
 385
 
 386	if (sk->sk_state == TCP_CLOSE)
 387		goto out;
 388
 389	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 390		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 391		goto out;
 
 
 
 392	}
 393
 394	icsk = inet_csk(sk);
 395	tp = tcp_sk(sk);
 396	seq = ntohl(th->seq);
 
 
 397	if (sk->sk_state != TCP_LISTEN &&
 398	    !between(seq, tp->snd_una, tp->snd_nxt)) {
 399		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 400		goto out;
 401	}
 402
 403	switch (type) {
 
 
 
 
 404	case ICMP_SOURCE_QUENCH:
 405		/* Just silently ignore these. */
 406		goto out;
 407	case ICMP_PARAMETERPROB:
 408		err = EPROTO;
 409		break;
 410	case ICMP_DEST_UNREACH:
 411		if (code > NR_ICMP_UNREACH)
 412			goto out;
 413
 414		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 415			if (!sock_owned_by_user(sk))
 416				do_pmtu_discovery(sk, iph, info);
 
 
 
 
 
 
 
 
 
 
 
 
 417			goto out;
 418		}
 419
 420		err = icmp_err_convert[code].errno;
 421		/* check if icmp_skb allows revert of backoff
 422		 * (see draft-zimmermann-tcp-lcd) */
 423		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
 424			break;
 425		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 426		    !icsk->icsk_backoff)
 427			break;
 428
 429		if (sock_owned_by_user(sk))
 430			break;
 431
 432		icsk->icsk_backoff--;
 433		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
 434			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
 435		tcp_bound_rto(sk);
 436
 437		skb = tcp_write_queue_head(sk);
 438		BUG_ON(!skb);
 439
 440		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
 441				tcp_time_stamp - TCP_SKB_CB(skb)->when);
 442
 443		if (remaining) {
 444			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 445						  remaining, TCP_RTO_MAX);
 446		} else {
 447			/* RTO revert clocked out retransmission.
 448			 * Will retransmit now */
 449			tcp_retransmit_timer(sk);
 450		}
 451
 452		break;
 453	case ICMP_TIME_EXCEEDED:
 454		err = EHOSTUNREACH;
 455		break;
 456	default:
 457		goto out;
 458	}
 459
 460	switch (sk->sk_state) {
 461		struct request_sock *req, **prev;
 462	case TCP_LISTEN:
 463		if (sock_owned_by_user(sk))
 464			goto out;
 465
 466		req = inet_csk_search_req(sk, &prev, th->dest,
 467					  iph->daddr, iph->saddr);
 468		if (!req)
 469			goto out;
 470
 471		/* ICMPs are not backlogged, hence we cannot get
 472		   an established socket here.
 473		 */
 474		WARN_ON(req->sk);
 475
 476		if (seq != tcp_rsk(req)->snt_isn) {
 477			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 478			goto out;
 479		}
 480
 481		/*
 482		 * Still in SYN_RECV, just remove it silently.
 483		 * There is no good way to pass the error to the newly
 484		 * created socket, and POSIX does not want network
 485		 * errors returned from accept().
 486		 */
 487		inet_csk_reqsk_queue_drop(sk, req, prev);
 488		goto out;
 489
 490	case TCP_SYN_SENT:
 491	case TCP_SYN_RECV:  /* Cannot happen.
 492			       It can f.e. if SYNs crossed.
 493			     */
 494		if (!sock_owned_by_user(sk)) {
 495			sk->sk_err = err;
 496
 497			sk->sk_error_report(sk);
 498
 499			tcp_done(sk);
 500		} else {
 501			sk->sk_err_soft = err;
 502		}
 503		goto out;
 504	}
 505
 506	/* If we've already connected we will keep trying
 507	 * until we time out, or the user gives up.
 508	 *
 509	 * rfc1122 4.2.3.9 allows to consider as hard errors
 510	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 511	 * but it is obsoleted by pmtu discovery).
 512	 *
 513	 * Note, that in modern internet, where routing is unreliable
 514	 * and in each dark corner broken firewalls sit, sending random
 515	 * errors ordered by their masters even this two messages finally lose
 516	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 517	 *
 518	 * Now we are in compliance with RFCs.
 519	 *							--ANK (980905)
 520	 */
 521
 522	inet = inet_sk(sk);
 523	if (!sock_owned_by_user(sk) && inet->recverr) {
 524		sk->sk_err = err;
 525		sk->sk_error_report(sk);
 526	} else	{ /* Only an error on timeout */
 527		sk->sk_err_soft = err;
 528	}
 529
 530out:
 531	bh_unlock_sock(sk);
 532	sock_put(sk);
 
 533}
 534
 535static void __tcp_v4_send_check(struct sk_buff *skb,
 536				__be32 saddr, __be32 daddr)
 537{
 538	struct tcphdr *th = tcp_hdr(skb);
 539
 540	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 541		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 542		skb->csum_start = skb_transport_header(skb) - skb->head;
 543		skb->csum_offset = offsetof(struct tcphdr, check);
 544	} else {
 545		th->check = tcp_v4_check(skb->len, saddr, daddr,
 546					 csum_partial(th,
 547						      th->doff << 2,
 548						      skb->csum));
 549	}
 550}
 551
 552/* This routine computes an IPv4 TCP checksum. */
 553void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 554{
 555	struct inet_sock *inet = inet_sk(sk);
 556
 557	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 558}
 559EXPORT_SYMBOL(tcp_v4_send_check);
 560
 561int tcp_v4_gso_send_check(struct sk_buff *skb)
 562{
 563	const struct iphdr *iph;
 564	struct tcphdr *th;
 565
 566	if (!pskb_may_pull(skb, sizeof(*th)))
 567		return -EINVAL;
 568
 569	iph = ip_hdr(skb);
 570	th = tcp_hdr(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571
 572	th->check = 0;
 573	skb->ip_summed = CHECKSUM_PARTIAL;
 574	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
 575	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576}
 577
 578/*
 579 *	This routine will send an RST to the other tcp.
 580 *
 581 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 582 *		      for reset.
 583 *	Answer: if a packet caused RST, it is not for a socket
 584 *		existing in our system, if it is matched to a socket,
 585 *		it is just duplicate segment or bug in other side's TCP.
 586 *		So that we build reply only basing on parameters
 587 *		arrived with segment.
 588 *	Exception: precedence violation. We do not implement it in any case.
 589 */
 590
 591static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
 592{
 593	struct tcphdr *th = tcp_hdr(skb);
 594	struct {
 595		struct tcphdr th;
 596#ifdef CONFIG_TCP_MD5SIG
 597		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
 598#endif
 599	} rep;
 
 
 600	struct ip_reply_arg arg;
 601#ifdef CONFIG_TCP_MD5SIG
 602	struct tcp_md5sig_key *key;
 
 
 
 603#endif
 
 
 604	struct net *net;
 
 605
 606	/* Never send a reset in response to a reset. */
 607	if (th->rst)
 608		return;
 609
 610	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
 
 
 
 611		return;
 612
 613	/* Swap the send and the receive. */
 614	memset(&rep, 0, sizeof(rep));
 615	rep.th.dest   = th->source;
 616	rep.th.source = th->dest;
 617	rep.th.doff   = sizeof(struct tcphdr) / 4;
 618	rep.th.rst    = 1;
 619
 620	if (th->ack) {
 621		rep.th.seq = th->ack_seq;
 622	} else {
 623		rep.th.ack = 1;
 624		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 625				       skb->len - (th->doff << 2));
 626	}
 627
 628	memset(&arg, 0, sizeof(arg));
 629	arg.iov[0].iov_base = (unsigned char *)&rep;
 630	arg.iov[0].iov_len  = sizeof(rep.th);
 631
 
 
 
 
 
 
 
 
 
 632#ifdef CONFIG_TCP_MD5SIG
 633	key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634	if (key) {
 635		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 636				   (TCPOPT_NOP << 16) |
 637				   (TCPOPT_MD5SIG << 8) |
 638				   TCPOLEN_MD5SIG);
 639		/* Update length and the length the header thinks exists */
 640		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 641		rep.th.doff = arg.iov[0].iov_len / 4;
 642
 643		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 644				     key, ip_hdr(skb)->saddr,
 645				     ip_hdr(skb)->daddr, &rep.th);
 646	}
 647#endif
 
 
 
 
 
 
 
 
 
 
 
 648	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 649				      ip_hdr(skb)->saddr, /* XXX */
 650				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 651	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 652	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 653
 654	net = dev_net(skb_dst(skb)->dev);
 655	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 656		      &arg, arg.iov[0].iov_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657
 658	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 659	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
 
 
 660}
 661
 662/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 663   outside socket context is ugly, certainly. What can I do?
 664 */
 665
 666static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
 667			    u32 win, u32 ts, int oif,
 668			    struct tcp_md5sig_key *key,
 669			    int reply_flags)
 
 670{
 671	struct tcphdr *th = tcp_hdr(skb);
 672	struct {
 673		struct tcphdr th;
 674		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 675#ifdef CONFIG_TCP_MD5SIG
 676			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 677#endif
 678			];
 679	} rep;
 
 680	struct ip_reply_arg arg;
 681	struct net *net = dev_net(skb_dst(skb)->dev);
 
 682
 683	memset(&rep.th, 0, sizeof(struct tcphdr));
 684	memset(&arg, 0, sizeof(arg));
 685
 686	arg.iov[0].iov_base = (unsigned char *)&rep;
 687	arg.iov[0].iov_len  = sizeof(rep.th);
 688	if (ts) {
 689		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 690				   (TCPOPT_TIMESTAMP << 8) |
 691				   TCPOLEN_TIMESTAMP);
 692		rep.opt[1] = htonl(tcp_time_stamp);
 693		rep.opt[2] = htonl(ts);
 694		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 695	}
 696
 697	/* Swap the send and the receive. */
 698	rep.th.dest    = th->source;
 699	rep.th.source  = th->dest;
 700	rep.th.doff    = arg.iov[0].iov_len / 4;
 701	rep.th.seq     = htonl(seq);
 702	rep.th.ack_seq = htonl(ack);
 703	rep.th.ack     = 1;
 704	rep.th.window  = htons(win);
 705
 706#ifdef CONFIG_TCP_MD5SIG
 707	if (key) {
 708		int offset = (ts) ? 3 : 0;
 709
 710		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 711					  (TCPOPT_NOP << 16) |
 712					  (TCPOPT_MD5SIG << 8) |
 713					  TCPOLEN_MD5SIG);
 714		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 715		rep.th.doff = arg.iov[0].iov_len/4;
 716
 717		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 718				    key, ip_hdr(skb)->saddr,
 719				    ip_hdr(skb)->daddr, &rep.th);
 720	}
 721#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722	arg.flags = reply_flags;
 723	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 724				      ip_hdr(skb)->saddr, /* XXX */
 725				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 726	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 727	if (oif)
 728		arg.bound_dev_if = oif;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729
 730	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 731		      &arg, arg.iov[0].iov_len);
 732
 733	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 734}
 735
 736static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 737{
 738	struct inet_timewait_sock *tw = inet_twsk(sk);
 739	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740
 741	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 
 742			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 
 743			tcptw->tw_ts_recent,
 744			tw->tw_bound_dev_if,
 745			tcp_twsk_md5_key(tcptw),
 746			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
 747			);
 748
 749	inet_twsk_put(tw);
 750}
 751
 752static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
 753				  struct request_sock *req)
 754{
 755	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
 756			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
 757			req->ts_recent,
 758			0,
 759			tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
 760			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761}
 762
 763/*
 764 *	Send a SYN-ACK after having received a SYN.
 765 *	This still operates on a request_sock only, not on a big
 766 *	socket.
 767 */
 768static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
 
 769			      struct request_sock *req,
 770			      struct request_values *rvp)
 
 
 771{
 772	const struct inet_request_sock *ireq = inet_rsk(req);
 773	struct flowi4 fl4;
 774	int err = -1;
 775	struct sk_buff * skb;
 
 776
 777	/* First, grab a route. */
 778	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 779		return -1;
 780
 781	skb = tcp_make_synack(sk, dst, req, rvp);
 782
 783	if (skb) {
 784		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
 785
 786		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
 787					    ireq->rmt_addr,
 788					    ireq->opt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 789		err = net_xmit_eval(err);
 790	}
 791
 792	dst_release(dst);
 793	return err;
 794}
 795
 796static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
 797			      struct request_values *rvp)
 798{
 799	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
 800	return tcp_v4_send_synack(sk, NULL, req, rvp);
 801}
 802
 803/*
 804 *	IPv4 request_sock destructor.
 805 */
 806static void tcp_v4_reqsk_destructor(struct request_sock *req)
 807{
 808	kfree(inet_rsk(req)->opt);
 809}
 810
 
 811/*
 812 * Return 1 if a syncookie should be sent
 
 
 813 */
 814int tcp_syn_flood_action(struct sock *sk,
 815			 const struct sk_buff *skb,
 816			 const char *proto)
 817{
 818	const char *msg = "Dropping request";
 819	int want_cookie = 0;
 820	struct listen_sock *lopt;
 821
 
 
 822
 
 
 
 
 823
 824#ifdef CONFIG_SYN_COOKIES
 825	if (sysctl_tcp_syncookies) {
 826		msg = "Sending cookies";
 827		want_cookie = 1;
 828		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
 829	} else
 830#endif
 831		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
 832
 833	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
 834	if (!lopt->synflood_warned) {
 835		lopt->synflood_warned = 1;
 836		pr_info("%s: Possible SYN flooding on port %d. %s. "
 837			" Check SNMP counters.\n",
 838			proto, ntohs(tcp_hdr(skb)->dest), msg);
 839	}
 840	return want_cookie;
 841}
 842EXPORT_SYMBOL(tcp_syn_flood_action);
 843
 844/*
 845 * Save and compile IPv4 options into the request_sock if needed.
 846 */
 847static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
 848						  struct sk_buff *skb)
 849{
 850	const struct ip_options *opt = &(IPCB(skb)->opt);
 851	struct ip_options_rcu *dopt = NULL;
 852
 853	if (opt && opt->optlen) {
 854		int opt_size = sizeof(*dopt) + opt->optlen;
 
 
 
 
 
 
 
 855
 856		dopt = kmalloc(opt_size, GFP_ATOMIC);
 857		if (dopt) {
 858			if (ip_options_echo(&dopt->opt, skb)) {
 859				kfree(dopt);
 860				dopt = NULL;
 861			}
 
 
 
 
 
 
 
 
 
 
 
 
 862		}
 
 
 
 863	}
 864	return dopt;
 865}
 
 866
 867#ifdef CONFIG_TCP_MD5SIG
 868/*
 869 * RFC2385 MD5 checksumming requires a mapping of
 870 * IP address->MD5 Key.
 871 * We need to maintain these in the sk structure.
 872 */
 873
 874/* Find the Key structure for an address.  */
 875static struct tcp_md5sig_key *
 876			tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
 877{
 878	struct tcp_sock *tp = tcp_sk(sk);
 879	int i;
 
 
 880
 881	if (!tp->md5sig_info || !tp->md5sig_info->entries4)
 
 
 
 882		return NULL;
 883	for (i = 0; i < tp->md5sig_info->entries4; i++) {
 884		if (tp->md5sig_info->keys4[i].addr == addr)
 885			return &tp->md5sig_info->keys4[i].base;
 
 
 
 
 
 
 
 
 
 
 
 
 886	}
 887	return NULL;
 888}
 889
 890struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
 891					 struct sock *addr_sk)
 892{
 893	return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
 
 
 
 
 
 
 894}
 895EXPORT_SYMBOL(tcp_v4_md5_lookup);
 896
 897static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
 898						      struct request_sock *req)
 899{
 900	return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
 
 
 
 
 
 
 
 
 
 
 901}
 902
 903/* This can be called on a newly created socket, from other files */
 904int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
 905		      u8 *newkey, u8 newkeylen)
 
 906{
 907	/* Add Key to the list */
 908	struct tcp_md5sig_key *key;
 909	struct tcp_sock *tp = tcp_sk(sk);
 910	struct tcp4_md5sig_key *keys;
 911
 912	key = tcp_v4_md5_do_lookup(sk, addr);
 913	if (key) {
 914		/* Pre-existing entry - just update that one. */
 915		kfree(key->key);
 916		key->key = newkey;
 917		key->keylen = newkeylen;
 918	} else {
 919		struct tcp_md5sig_info *md5sig;
 
 920
 921		if (!tp->md5sig_info) {
 922			tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
 923						  GFP_ATOMIC);
 924			if (!tp->md5sig_info) {
 925				kfree(newkey);
 926				return -ENOMEM;
 927			}
 928			sk_nocaps_add(sk, NETIF_F_GSO_MASK);
 929		}
 930
 931		md5sig = tp->md5sig_info;
 932		if (md5sig->entries4 == 0 &&
 933		    tcp_alloc_md5sig_pool(sk) == NULL) {
 934			kfree(newkey);
 935			return -ENOMEM;
 936		}
 937
 938		if (md5sig->alloced4 == md5sig->entries4) {
 939			keys = kmalloc((sizeof(*keys) *
 940					(md5sig->entries4 + 1)), GFP_ATOMIC);
 941			if (!keys) {
 942				kfree(newkey);
 943				if (md5sig->entries4 == 0)
 944					tcp_free_md5sig_pool();
 945				return -ENOMEM;
 946			}
 947
 948			if (md5sig->entries4)
 949				memcpy(keys, md5sig->keys4,
 950				       sizeof(*keys) * md5sig->entries4);
 951
 952			/* Free old key list, and reference new one */
 953			kfree(md5sig->keys4);
 954			md5sig->keys4 = keys;
 955			md5sig->alloced4++;
 956		}
 957		md5sig->entries4++;
 958		md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
 959		md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
 960		md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
 961	}
 962	return 0;
 963}
 964EXPORT_SYMBOL(tcp_v4_md5_do_add);
 965
 966static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
 967			       u8 *newkey, u8 newkeylen)
 
 968{
 969	return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
 970				 newkey, newkeylen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971}
 
 972
 973int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
 
 
 974{
 975	struct tcp_sock *tp = tcp_sk(sk);
 976	int i;
 977
 978	for (i = 0; i < tp->md5sig_info->entries4; i++) {
 979		if (tp->md5sig_info->keys4[i].addr == addr) {
 980			/* Free the key */
 981			kfree(tp->md5sig_info->keys4[i].base.key);
 982			tp->md5sig_info->entries4--;
 983
 984			if (tp->md5sig_info->entries4 == 0) {
 985				kfree(tp->md5sig_info->keys4);
 986				tp->md5sig_info->keys4 = NULL;
 987				tp->md5sig_info->alloced4 = 0;
 988				tcp_free_md5sig_pool();
 989			} else if (tp->md5sig_info->entries4 != i) {
 990				/* Need to do some manipulation */
 991				memmove(&tp->md5sig_info->keys4[i],
 992					&tp->md5sig_info->keys4[i+1],
 993					(tp->md5sig_info->entries4 - i) *
 994					 sizeof(struct tcp4_md5sig_key));
 995			}
 996			return 0;
 997		}
 998	}
 999	return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000}
1001EXPORT_SYMBOL(tcp_v4_md5_do_del);
1002
1003static void tcp_v4_clear_md5_list(struct sock *sk)
1004{
1005	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
1006
1007	/* Free each key, then the set of key keys,
1008	 * the crypto element, and then decrement our
1009	 * hold on the last resort crypto.
1010	 */
1011	if (tp->md5sig_info->entries4) {
1012		int i;
1013		for (i = 0; i < tp->md5sig_info->entries4; i++)
1014			kfree(tp->md5sig_info->keys4[i].base.key);
1015		tp->md5sig_info->entries4 = 0;
1016		tcp_free_md5sig_pool();
1017	}
1018	if (tp->md5sig_info->keys4) {
1019		kfree(tp->md5sig_info->keys4);
1020		tp->md5sig_info->keys4 = NULL;
1021		tp->md5sig_info->alloced4  = 0;
1022	}
1023}
1024
1025static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1026				 int optlen)
1027{
1028	struct tcp_md5sig cmd;
1029	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1030	u8 *newkey;
 
 
 
 
1031
1032	if (optlen < sizeof(cmd))
1033		return -EINVAL;
1034
1035	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1036		return -EFAULT;
1037
1038	if (sin->sin_family != AF_INET)
1039		return -EINVAL;
1040
1041	if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1042		if (!tcp_sk(sk)->md5sig_info)
1043			return -ENOENT;
1044		return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
 
 
 
 
1045	}
1046
1047	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1048		return -EINVAL;
 
 
 
 
 
 
1049
1050	if (!tcp_sk(sk)->md5sig_info) {
1051		struct tcp_sock *tp = tcp_sk(sk);
1052		struct tcp_md5sig_info *p;
1053
1054		p = kzalloc(sizeof(*p), sk->sk_allocation);
1055		if (!p)
 
 
1056			return -EINVAL;
1057
1058		tp->md5sig_info = p;
1059		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1060	}
1061
1062	newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1063	if (!newkey)
1064		return -ENOMEM;
1065	return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1066				 newkey, cmd.tcpm_keylen);
 
 
 
 
 
 
 
 
 
 
 
1067}
1068
1069static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1070					__be32 daddr, __be32 saddr, int nbytes)
 
1071{
1072	struct tcp4_pseudohdr *bp;
1073	struct scatterlist sg;
 
1074
1075	bp = &hp->md5_blk.ip4;
1076
1077	/*
1078	 * 1. the TCP pseudo-header (in the order: source IP address,
1079	 * destination IP address, zero-padded protocol number, and
1080	 * segment length)
1081	 */
1082	bp->saddr = saddr;
1083	bp->daddr = daddr;
1084	bp->pad = 0;
1085	bp->protocol = IPPROTO_TCP;
1086	bp->len = cpu_to_be16(nbytes);
1087
1088	sg_init_one(&sg, bp, sizeof(*bp));
1089	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
 
 
 
 
 
 
1090}
1091
1092static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1093			       __be32 daddr, __be32 saddr, struct tcphdr *th)
1094{
1095	struct tcp_md5sig_pool *hp;
1096	struct hash_desc *desc;
1097
1098	hp = tcp_get_md5sig_pool();
1099	if (!hp)
1100		goto clear_hash_noput;
1101	desc = &hp->md5_desc;
1102
1103	if (crypto_hash_init(desc))
1104		goto clear_hash;
1105	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1106		goto clear_hash;
1107	if (tcp_md5_hash_header(hp, th))
1108		goto clear_hash;
1109	if (tcp_md5_hash_key(hp, key))
1110		goto clear_hash;
1111	if (crypto_hash_final(desc, md5_hash))
 
1112		goto clear_hash;
1113
1114	tcp_put_md5sig_pool();
1115	return 0;
1116
1117clear_hash:
1118	tcp_put_md5sig_pool();
1119clear_hash_noput:
1120	memset(md5_hash, 0, 16);
1121	return 1;
1122}
1123
1124int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1125			struct sock *sk, struct request_sock *req,
1126			struct sk_buff *skb)
1127{
1128	struct tcp_md5sig_pool *hp;
1129	struct hash_desc *desc;
1130	struct tcphdr *th = tcp_hdr(skb);
1131	__be32 saddr, daddr;
1132
1133	if (sk) {
1134		saddr = inet_sk(sk)->inet_saddr;
1135		daddr = inet_sk(sk)->inet_daddr;
1136	} else if (req) {
1137		saddr = inet_rsk(req)->loc_addr;
1138		daddr = inet_rsk(req)->rmt_addr;
1139	} else {
1140		const struct iphdr *iph = ip_hdr(skb);
1141		saddr = iph->saddr;
1142		daddr = iph->daddr;
1143	}
1144
1145	hp = tcp_get_md5sig_pool();
1146	if (!hp)
1147		goto clear_hash_noput;
1148	desc = &hp->md5_desc;
1149
1150	if (crypto_hash_init(desc))
1151		goto clear_hash;
1152
1153	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1154		goto clear_hash;
1155	if (tcp_md5_hash_header(hp, th))
1156		goto clear_hash;
1157	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1158		goto clear_hash;
1159	if (tcp_md5_hash_key(hp, key))
1160		goto clear_hash;
1161	if (crypto_hash_final(desc, md5_hash))
1162		goto clear_hash;
1163
1164	tcp_put_md5sig_pool();
1165	return 0;
1166
1167clear_hash:
1168	tcp_put_md5sig_pool();
1169clear_hash_noput:
1170	memset(md5_hash, 0, 16);
1171	return 1;
1172}
1173EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1174
1175static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1176{
1177	/*
1178	 * This gets called for each TCP segment that arrives
1179	 * so we want to be efficient.
1180	 * We have 3 drop cases:
1181	 * o No MD5 hash and one expected.
1182	 * o MD5 hash and we're not expecting one.
1183	 * o MD5 hash and its wrong.
1184	 */
1185	__u8 *hash_location = NULL;
1186	struct tcp_md5sig_key *hash_expected;
1187	const struct iphdr *iph = ip_hdr(skb);
1188	struct tcphdr *th = tcp_hdr(skb);
1189	int genhash;
1190	unsigned char newhash[16];
1191
1192	hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1193	hash_location = tcp_parse_md5sig_option(th);
 
 
 
 
1194
1195	/* We've parsed the options - do we have a hash? */
1196	if (!hash_expected && !hash_location)
1197		return 0;
 
1198
1199	if (hash_expected && !hash_location) {
1200		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1201		return 1;
1202	}
 
 
1203
1204	if (!hash_expected && hash_location) {
1205		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1206		return 1;
1207	}
1208
1209	/* Okay, so this is hash_expected and hash_location -
1210	 * so we need to calculate the checksum.
1211	 */
1212	genhash = tcp_v4_md5_hash_skb(newhash,
1213				      hash_expected,
1214				      NULL, NULL, skb);
1215
1216	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1217		if (net_ratelimit()) {
1218			printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1219			       &iph->saddr, ntohs(th->source),
1220			       &iph->daddr, ntohs(th->dest),
1221			       genhash ? " tcp_v4_calc_md5_hash failed" : "");
1222		}
1223		return 1;
1224	}
1225	return 0;
1226}
1227
1228#endif
1229
1230struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1231	.family		=	PF_INET,
1232	.obj_size	=	sizeof(struct tcp_request_sock),
1233	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1234	.send_ack	=	tcp_v4_reqsk_send_ack,
1235	.destructor	=	tcp_v4_reqsk_destructor,
1236	.send_reset	=	tcp_v4_send_reset,
1237	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1238};
1239
 
 
1240#ifdef CONFIG_TCP_MD5SIG
1241static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1242	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1243	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1244};
1245#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
1246
1247int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1248{
1249	struct tcp_extend_values tmp_ext;
1250	struct tcp_options_received tmp_opt;
1251	u8 *hash_location;
1252	struct request_sock *req;
1253	struct inet_request_sock *ireq;
1254	struct tcp_sock *tp = tcp_sk(sk);
1255	struct dst_entry *dst = NULL;
1256	__be32 saddr = ip_hdr(skb)->saddr;
1257	__be32 daddr = ip_hdr(skb)->daddr;
1258	__u32 isn = TCP_SKB_CB(skb)->when;
1259	int want_cookie = 0;
1260
1261	/* Never answer to SYNs send to broadcast or multicast */
1262	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1263		goto drop;
1264
1265	/* TW buckets are converted to open requests without
1266	 * limitations, they conserve resources and peer is
1267	 * evidently real one.
1268	 */
1269	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1270		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1271		if (!want_cookie)
1272			goto drop;
1273	}
1274
1275	/* Accept backlog is full. If we have already queued enough
1276	 * of warm entries in syn queue, drop request. It is better than
1277	 * clogging syn queue with openreqs with exponentially increasing
1278	 * timeout.
1279	 */
1280	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1281		goto drop;
1282
1283	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1284	if (!req)
1285		goto drop;
1286
1287#ifdef CONFIG_TCP_MD5SIG
1288	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1289#endif
1290
1291	tcp_clear_options(&tmp_opt);
1292	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1293	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1294	tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1295
1296	if (tmp_opt.cookie_plus > 0 &&
1297	    tmp_opt.saw_tstamp &&
1298	    !tp->rx_opt.cookie_out_never &&
1299	    (sysctl_tcp_cookie_size > 0 ||
1300	     (tp->cookie_values != NULL &&
1301	      tp->cookie_values->cookie_desired > 0))) {
1302		u8 *c;
1303		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1304		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1305
1306		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1307			goto drop_and_release;
1308
1309		/* Secret recipe starts with IP addresses */
1310		*mess++ ^= (__force u32)daddr;
1311		*mess++ ^= (__force u32)saddr;
1312
1313		/* plus variable length Initiator Cookie */
1314		c = (u8 *)mess;
1315		while (l-- > 0)
1316			*c++ ^= *hash_location++;
1317
1318		want_cookie = 0;	/* not our kind of cookie */
1319		tmp_ext.cookie_out_never = 0; /* false */
1320		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1321	} else if (!tp->rx_opt.cookie_in_always) {
1322		/* redundant indications, but ensure initialization. */
1323		tmp_ext.cookie_out_never = 1; /* true */
1324		tmp_ext.cookie_plus = 0;
1325	} else {
1326		goto drop_and_release;
1327	}
1328	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1329
1330	if (want_cookie && !tmp_opt.saw_tstamp)
1331		tcp_clear_options(&tmp_opt);
1332
1333	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1334	tcp_openreq_init(req, &tmp_opt, skb);
1335
1336	ireq = inet_rsk(req);
1337	ireq->loc_addr = daddr;
1338	ireq->rmt_addr = saddr;
1339	ireq->no_srccheck = inet_sk(sk)->transparent;
1340	ireq->opt = tcp_v4_save_options(sk, skb);
1341
1342	if (security_inet_conn_request(sk, skb, req))
1343		goto drop_and_free;
1344
1345	if (!want_cookie || tmp_opt.tstamp_ok)
1346		TCP_ECN_create_request(req, tcp_hdr(skb));
1347
1348	if (want_cookie) {
1349		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1350		req->cookie_ts = tmp_opt.tstamp_ok;
1351	} else if (!isn) {
1352		struct inet_peer *peer = NULL;
1353		struct flowi4 fl4;
1354
1355		/* VJ's idea. We save last timestamp seen
1356		 * from the destination in peer table, when entering
1357		 * state TIME-WAIT, and check against it before
1358		 * accepting new connection request.
1359		 *
1360		 * If "isn" is not zero, this request hit alive
1361		 * timewait bucket, so that all the necessary checks
1362		 * are made in the function processing timewait state.
1363		 */
1364		if (tmp_opt.saw_tstamp &&
1365		    tcp_death_row.sysctl_tw_recycle &&
1366		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1367		    fl4.daddr == saddr &&
1368		    (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1369			inet_peer_refcheck(peer);
1370			if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1371			    (s32)(peer->tcp_ts - req->ts_recent) >
1372							TCP_PAWS_WINDOW) {
1373				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1374				goto drop_and_release;
1375			}
1376		}
1377		/* Kill the following clause, if you dislike this way. */
1378		else if (!sysctl_tcp_syncookies &&
1379			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1380			  (sysctl_max_syn_backlog >> 2)) &&
1381			 (!peer || !peer->tcp_ts_stamp) &&
1382			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1383			/* Without syncookies last quarter of
1384			 * backlog is filled with destinations,
1385			 * proven to be alive.
1386			 * It means that we continue to communicate
1387			 * to destinations, already remembered
1388			 * to the moment of synflood.
1389			 */
1390			LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1391				       &saddr, ntohs(tcp_hdr(skb)->source));
1392			goto drop_and_release;
1393		}
1394
1395		isn = tcp_v4_init_sequence(skb);
1396	}
1397	tcp_rsk(req)->snt_isn = isn;
1398	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1399
1400	if (tcp_v4_send_synack(sk, dst, req,
1401			       (struct request_values *)&tmp_ext) ||
1402	    want_cookie)
1403		goto drop_and_free;
1404
1405	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1406	return 0;
1407
1408drop_and_release:
1409	dst_release(dst);
1410drop_and_free:
1411	reqsk_free(req);
1412drop:
 
1413	return 0;
1414}
1415EXPORT_SYMBOL(tcp_v4_conn_request);
1416
1417
1418/*
1419 * The three way handshake has completed - we got a valid synack -
1420 * now create the new socket.
1421 */
1422struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1423				  struct request_sock *req,
1424				  struct dst_entry *dst)
 
 
1425{
1426	struct inet_request_sock *ireq;
 
1427	struct inet_sock *newinet;
1428	struct tcp_sock *newtp;
1429	struct sock *newsk;
1430#ifdef CONFIG_TCP_MD5SIG
 
1431	struct tcp_md5sig_key *key;
 
1432#endif
1433	struct ip_options_rcu *inet_opt;
1434
1435	if (sk_acceptq_is_full(sk))
1436		goto exit_overflow;
1437
1438	newsk = tcp_create_openreq_child(sk, req, skb);
1439	if (!newsk)
1440		goto exit_nonewsk;
1441
1442	newsk->sk_gso_type = SKB_GSO_TCPV4;
 
1443
1444	newtp		      = tcp_sk(newsk);
1445	newinet		      = inet_sk(newsk);
1446	ireq		      = inet_rsk(req);
1447	newinet->inet_daddr   = ireq->rmt_addr;
1448	newinet->inet_rcv_saddr = ireq->loc_addr;
1449	newinet->inet_saddr	      = ireq->loc_addr;
1450	inet_opt	      = ireq->opt;
1451	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1452	ireq->opt	      = NULL;
1453	newinet->mc_index     = inet_iif(skb);
1454	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
 
1455	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1456	if (inet_opt)
1457		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1458	newinet->inet_id = newtp->write_seq ^ jiffies;
1459
1460	if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1461		goto put_and_exit;
 
 
 
1462
 
 
 
 
 
 
 
1463	sk_setup_caps(newsk, dst);
1464
1465	tcp_mtup_init(newsk);
 
1466	tcp_sync_mss(newsk, dst_mtu(dst));
1467	newtp->advmss = dst_metric_advmss(dst);
1468	if (tcp_sk(sk)->rx_opt.user_mss &&
1469	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1470		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1471
1472	tcp_initialize_rcv_mss(newsk);
1473	if (tcp_rsk(req)->snt_synack)
1474		tcp_valid_rtt_meas(newsk,
1475		    tcp_time_stamp - tcp_rsk(req)->snt_synack);
1476	newtp->total_retrans = req->retrans;
1477
1478#ifdef CONFIG_TCP_MD5SIG
 
1479	/* Copy over the MD5 key from the original socket */
1480	key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1481	if (key != NULL) {
1482		/*
1483		 * We're using one, so create a matching key
1484		 * on the newsk structure. If we fail to get
1485		 * memory, then we end up not copying the key
1486		 * across. Shucks.
1487		 */
1488		char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1489		if (newkey != NULL)
1490			tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1491					  newkey, key->keylen);
1492		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1493	}
1494#endif
 
 
 
 
1495
1496	if (__inet_inherit_port(sk, newsk) < 0)
1497		goto put_and_exit;
1498	__inet_hash_nolisten(newsk, NULL);
 
 
 
 
 
 
1499
 
 
 
 
 
 
 
 
 
1500	return newsk;
1501
1502exit_overflow:
1503	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1504exit_nonewsk:
1505	dst_release(dst);
1506exit:
1507	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1508	return NULL;
1509put_and_exit:
1510	sock_put(newsk);
 
 
1511	goto exit;
1512}
1513EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1514
1515static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1516{
1517	struct tcphdr *th = tcp_hdr(skb);
1518	const struct iphdr *iph = ip_hdr(skb);
1519	struct sock *nsk;
1520	struct request_sock **prev;
1521	/* Find possible connection requests. */
1522	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1523						       iph->saddr, iph->daddr);
1524	if (req)
1525		return tcp_check_req(sk, skb, req, prev);
1526
1527	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1528			th->source, iph->daddr, th->dest, inet_iif(skb));
1529
1530	if (nsk) {
1531		if (nsk->sk_state != TCP_TIME_WAIT) {
1532			bh_lock_sock(nsk);
1533			return nsk;
1534		}
1535		inet_twsk_put(inet_twsk(nsk));
1536		return NULL;
1537	}
1538
1539#ifdef CONFIG_SYN_COOKIES
 
 
1540	if (!th->syn)
1541		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1542#endif
1543	return sk;
1544}
1545
1546static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
 
1547{
1548	const struct iphdr *iph = ip_hdr(skb);
1549
1550	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1551		if (!tcp_v4_check(skb->len, iph->saddr,
1552				  iph->daddr, skb->csum)) {
1553			skb->ip_summed = CHECKSUM_UNNECESSARY;
1554			return 0;
1555		}
1556	}
1557
1558	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1559				       skb->len, IPPROTO_TCP, 0);
1560
1561	if (skb->len <= 76) {
1562		return __skb_checksum_complete(skb);
1563	}
1564	return 0;
 
1565}
1566
1567
 
1568/* The socket must have it's spinlock held when we get
1569 * here.
1570 *
1571 * We have a potential double-lock case here, so even when
1572 * doing backlog processing we use the BH locking scheme.
1573 * This is because we cannot sleep with the original spinlock
1574 * held.
1575 */
1576int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1577{
 
1578	struct sock *rsk;
1579#ifdef CONFIG_TCP_MD5SIG
1580	/*
1581	 * We really want to reject the packet as early as possible
1582	 * if:
1583	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1584	 *  o There is an MD5 option and we're not expecting one
1585	 */
1586	if (tcp_v4_inbound_md5_hash(sk, skb))
1587		goto discard;
1588#endif
1589
1590	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1591		sock_rps_save_rxhash(sk, skb->rxhash);
1592		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1593			rsk = sk;
1594			goto reset;
 
 
 
 
 
 
 
 
 
 
1595		}
 
1596		return 0;
1597	}
1598
1599	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
 
1600		goto csum_err;
1601
1602	if (sk->sk_state == TCP_LISTEN) {
1603		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
 
1604		if (!nsk)
1605			goto discard;
1606
1607		if (nsk != sk) {
1608			sock_rps_save_rxhash(nsk, skb->rxhash);
1609			if (tcp_child_process(sk, nsk, skb)) {
1610				rsk = nsk;
1611				goto reset;
1612			}
1613			return 0;
1614		}
1615	} else
1616		sock_rps_save_rxhash(sk, skb->rxhash);
1617
1618	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1619		rsk = sk;
1620		goto reset;
1621	}
1622	return 0;
1623
1624reset:
1625	tcp_v4_send_reset(rsk, skb);
1626discard:
1627	kfree_skb(skb);
1628	/* Be careful here. If this function gets more complicated and
1629	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1630	 * might be destroyed here. This current version compiles correctly,
1631	 * but you have been warned.
1632	 */
1633	return 0;
1634
1635csum_err:
1636	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
 
 
1637	goto discard;
1638}
1639EXPORT_SYMBOL(tcp_v4_do_rcv);
1640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641/*
1642 *	From tcp_input.c
1643 */
1644
1645int tcp_v4_rcv(struct sk_buff *skb)
1646{
 
 
 
 
1647	const struct iphdr *iph;
1648	struct tcphdr *th;
 
1649	struct sock *sk;
1650	int ret;
1651	struct net *net = dev_net(skb->dev);
1652
 
1653	if (skb->pkt_type != PACKET_HOST)
1654		goto discard_it;
1655
1656	/* Count it even if it's bad */
1657	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1658
1659	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1660		goto discard_it;
1661
1662	th = tcp_hdr(skb);
1663
1664	if (th->doff < sizeof(struct tcphdr) / 4)
 
1665		goto bad_packet;
 
1666	if (!pskb_may_pull(skb, th->doff * 4))
1667		goto discard_it;
1668
1669	/* An explanation is required here, I think.
1670	 * Packet length and doff are validated by header prediction,
1671	 * provided case of th->doff==0 is eliminated.
1672	 * So, we defer the checks. */
1673	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1674		goto bad_packet;
1675
1676	th = tcp_hdr(skb);
1677	iph = ip_hdr(skb);
1678	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1679	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1680				    skb->len - th->doff * 4);
1681	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1682	TCP_SKB_CB(skb)->when	 = 0;
1683	TCP_SKB_CB(skb)->flags	 = iph->tos;
1684	TCP_SKB_CB(skb)->sacked	 = 0;
1685
1686	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
 
 
 
 
 
1687	if (!sk)
1688		goto no_tcp_socket;
1689
1690process:
1691	if (sk->sk_state == TCP_TIME_WAIT)
1692		goto do_time_wait;
1693
1694	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1695		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696		goto discard_and_relse;
1697	}
1698
1699	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
 
1700		goto discard_and_relse;
1701	nf_reset(skb);
1702
1703	if (sk_filter(sk, skb))
 
 
 
1704		goto discard_and_relse;
 
 
 
 
1705
1706	skb->dev = NULL;
1707
 
 
 
 
 
 
 
1708	bh_lock_sock_nested(sk);
 
1709	ret = 0;
1710	if (!sock_owned_by_user(sk)) {
1711#ifdef CONFIG_NET_DMA
1712		struct tcp_sock *tp = tcp_sk(sk);
1713		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1714			tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1715		if (tp->ucopy.dma_chan)
1716			ret = tcp_v4_do_rcv(sk, skb);
1717		else
1718#endif
1719		{
1720			if (!tcp_prequeue(sk, skb))
1721				ret = tcp_v4_do_rcv(sk, skb);
1722		}
1723	} else if (unlikely(sk_add_backlog(sk, skb))) {
1724		bh_unlock_sock(sk);
1725		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1726		goto discard_and_relse;
1727	}
1728	bh_unlock_sock(sk);
1729
1730	sock_put(sk);
 
 
1731
1732	return ret;
1733
1734no_tcp_socket:
 
1735	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1736		goto discard_it;
1737
1738	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
 
 
 
 
 
 
1739bad_packet:
1740		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1741	} else {
1742		tcp_v4_send_reset(NULL, skb);
1743	}
1744
1745discard_it:
 
1746	/* Discard frame. */
1747	kfree_skb(skb);
1748	return 0;
1749
1750discard_and_relse:
1751	sock_put(sk);
 
 
1752	goto discard_it;
1753
1754do_time_wait:
1755	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 
1756		inet_twsk_put(inet_twsk(sk));
1757		goto discard_it;
1758	}
1759
1760	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1761		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
 
1762		inet_twsk_put(inet_twsk(sk));
1763		goto discard_it;
1764	}
1765	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1766	case TCP_TW_SYN: {
1767		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1768							&tcp_hashinfo,
 
 
1769							iph->daddr, th->dest,
1770							inet_iif(skb));
 
1771		if (sk2) {
1772			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1773			inet_twsk_put(inet_twsk(sk));
1774			sk = sk2;
 
 
1775			goto process;
1776		}
1777		/* Fall through to ACK */
1778	}
 
 
1779	case TCP_TW_ACK:
1780		tcp_v4_timewait_ack(sk, skb);
1781		break;
1782	case TCP_TW_RST:
1783		goto no_tcp_socket;
 
 
1784	case TCP_TW_SUCCESS:;
1785	}
1786	goto discard_it;
1787}
1788
1789struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1790{
1791	struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1792	struct inet_sock *inet = inet_sk(sk);
1793	struct inet_peer *peer;
1794
1795	if (!rt ||
1796	    inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1797		peer = inet_getpeer_v4(inet->inet_daddr, 1);
1798		*release_it = true;
1799	} else {
1800		if (!rt->peer)
1801			rt_bind_peer(rt, inet->inet_daddr, 1);
1802		peer = rt->peer;
1803		*release_it = false;
1804	}
1805
1806	return peer;
1807}
1808EXPORT_SYMBOL(tcp_v4_get_peer);
1809
1810void *tcp_v4_tw_get_peer(struct sock *sk)
1811{
1812	struct inet_timewait_sock *tw = inet_twsk(sk);
1813
1814	return inet_getpeer_v4(tw->tw_daddr, 1);
1815}
1816EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1817
1818static struct timewait_sock_ops tcp_timewait_sock_ops = {
1819	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1820	.twsk_unique	= tcp_twsk_unique,
1821	.twsk_destructor= tcp_twsk_destructor,
1822	.twsk_getpeer	= tcp_v4_tw_get_peer,
1823};
1824
 
 
 
 
 
 
 
 
 
 
 
1825const struct inet_connection_sock_af_ops ipv4_specific = {
1826	.queue_xmit	   = ip_queue_xmit,
1827	.send_check	   = tcp_v4_send_check,
1828	.rebuild_header	   = inet_sk_rebuild_header,
 
1829	.conn_request	   = tcp_v4_conn_request,
1830	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1831	.get_peer	   = tcp_v4_get_peer,
1832	.net_header_len	   = sizeof(struct iphdr),
1833	.setsockopt	   = ip_setsockopt,
1834	.getsockopt	   = ip_getsockopt,
1835	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1836	.sockaddr_len	   = sizeof(struct sockaddr_in),
1837	.bind_conflict	   = inet_csk_bind_conflict,
1838#ifdef CONFIG_COMPAT
1839	.compat_setsockopt = compat_ip_setsockopt,
1840	.compat_getsockopt = compat_ip_getsockopt,
1841#endif
1842};
1843EXPORT_SYMBOL(ipv4_specific);
1844
1845#ifdef CONFIG_TCP_MD5SIG
1846static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
 
1847	.md5_lookup		= tcp_v4_md5_lookup,
1848	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1849	.md5_add		= tcp_v4_md5_add_func,
1850	.md5_parse		= tcp_v4_parse_md5_keys,
 
 
 
 
 
 
 
1851};
1852#endif
1853
1854/* NOTE: A lot of things set to zero explicitly by call to
1855 *       sk_alloc() so need not be done here.
1856 */
1857static int tcp_v4_init_sock(struct sock *sk)
1858{
1859	struct inet_connection_sock *icsk = inet_csk(sk);
1860	struct tcp_sock *tp = tcp_sk(sk);
1861
1862	skb_queue_head_init(&tp->out_of_order_queue);
1863	tcp_init_xmit_timers(sk);
1864	tcp_prequeue_init(tp);
1865
1866	icsk->icsk_rto = TCP_TIMEOUT_INIT;
1867	tp->mdev = TCP_TIMEOUT_INIT;
1868
1869	/* So many TCP implementations out there (incorrectly) count the
1870	 * initial SYN frame in their delayed-ACK and congestion control
1871	 * algorithms that we must have the following bandaid to talk
1872	 * efficiently to them.  -DaveM
1873	 */
1874	tp->snd_cwnd = TCP_INIT_CWND;
1875
1876	/* See draft-stevens-tcpca-spec-01 for discussion of the
1877	 * initialization of these values.
1878	 */
1879	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1880	tp->snd_cwnd_clamp = ~0;
1881	tp->mss_cache = TCP_MSS_DEFAULT;
1882
1883	tp->reordering = sysctl_tcp_reordering;
1884	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1885
1886	sk->sk_state = TCP_CLOSE;
1887
1888	sk->sk_write_space = sk_stream_write_space;
1889	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1890
1891	icsk->icsk_af_ops = &ipv4_specific;
1892	icsk->icsk_sync_mss = tcp_sync_mss;
1893#ifdef CONFIG_TCP_MD5SIG
1894	tp->af_specific = &tcp_sock_ipv4_specific;
1895#endif
1896
1897	/* TCP Cookie Transactions */
1898	if (sysctl_tcp_cookie_size > 0) {
1899		/* Default, cookies without s_data_payload. */
1900		tp->cookie_values =
1901			kzalloc(sizeof(*tp->cookie_values),
1902				sk->sk_allocation);
1903		if (tp->cookie_values != NULL)
1904			kref_init(&tp->cookie_values->kref);
1905	}
1906	/* Presumed zeroed, in order of appearance:
1907	 *	cookie_in_always, cookie_out_never,
1908	 *	s_data_constant, s_data_in, s_data_out
1909	 */
1910	sk->sk_sndbuf = sysctl_tcp_wmem[1];
1911	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1912
1913	local_bh_disable();
1914	percpu_counter_inc(&tcp_sockets_allocated);
1915	local_bh_enable();
 
1916
1917	return 0;
 
 
 
1918}
 
1919
1920void tcp_v4_destroy_sock(struct sock *sk)
1921{
1922	struct tcp_sock *tp = tcp_sk(sk);
1923
 
 
1924	tcp_clear_xmit_timers(sk);
1925
1926	tcp_cleanup_congestion_control(sk);
1927
 
 
1928	/* Cleanup up the write buffer. */
1929	tcp_write_queue_purge(sk);
1930
 
 
 
1931	/* Cleans up our, hopefully empty, out_of_order_queue. */
1932	__skb_queue_purge(&tp->out_of_order_queue);
1933
1934#ifdef CONFIG_TCP_MD5SIG
1935	/* Clean up the MD5 key list, if any */
1936	if (tp->md5sig_info) {
1937		tcp_v4_clear_md5_list(sk);
1938		kfree(tp->md5sig_info);
1939		tp->md5sig_info = NULL;
1940	}
1941#endif
1942
1943#ifdef CONFIG_NET_DMA
1944	/* Cleans up our sk_async_wait_queue */
1945	__skb_queue_purge(&sk->sk_async_wait_queue);
 
 
1946#endif
1947
1948	/* Clean prequeue, it must be empty really */
1949	__skb_queue_purge(&tp->ucopy.prequeue);
1950
1951	/* Clean up a referenced TCP bind bucket. */
1952	if (inet_csk(sk)->icsk_bind_hash)
1953		inet_put_port(sk);
1954
1955	/*
1956	 * If sendmsg cached page exists, toss it.
1957	 */
1958	if (sk->sk_sndmsg_page) {
1959		__free_page(sk->sk_sndmsg_page);
1960		sk->sk_sndmsg_page = NULL;
1961	}
1962
1963	/* TCP Cookie Transactions */
1964	if (tp->cookie_values != NULL) {
1965		kref_put(&tp->cookie_values->kref,
1966			 tcp_cookie_values_release);
1967		tp->cookie_values = NULL;
1968	}
1969
1970	percpu_counter_dec(&tcp_sockets_allocated);
1971}
1972EXPORT_SYMBOL(tcp_v4_destroy_sock);
1973
1974#ifdef CONFIG_PROC_FS
1975/* Proc filesystem TCP sock list dumping. */
1976
1977static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
 
 
1978{
1979	return hlist_nulls_empty(head) ? NULL :
1980		list_entry(head->first, struct inet_timewait_sock, tw_node);
 
 
 
1981}
1982
1983static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
 
 
 
1984{
1985	return !is_a_nulls(tw->tw_node.next) ?
1986		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987}
1988
1989/*
1990 * Get next listener socket follow cur.  If cur is NULL, get first socket
1991 * starting from bucket given in st->bucket; when st->bucket is zero the
1992 * very first socket in the hash table is returned.
1993 */
1994static void *listening_get_next(struct seq_file *seq, void *cur)
1995{
1996	struct inet_connection_sock *icsk;
 
1997	struct hlist_nulls_node *node;
 
1998	struct sock *sk = cur;
1999	struct inet_listen_hashbucket *ilb;
2000	struct tcp_iter_state *st = seq->private;
2001	struct net *net = seq_file_net(seq);
2002
2003	if (!sk) {
2004		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2005		spin_lock_bh(&ilb->lock);
2006		sk = sk_nulls_head(&ilb->head);
2007		st->offset = 0;
2008		goto get_sk;
2009	}
2010	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2011	++st->num;
2012	++st->offset;
2013
2014	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2015		struct request_sock *req = cur;
2016
2017		icsk = inet_csk(st->syn_wait_sk);
2018		req = req->dl_next;
2019		while (1) {
2020			while (req) {
2021				if (req->rsk_ops->family == st->family) {
2022					cur = req;
2023					goto out;
2024				}
2025				req = req->dl_next;
2026			}
2027			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2028				break;
2029get_req:
2030			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2031		}
2032		sk	  = sk_nulls_next(st->syn_wait_sk);
2033		st->state = TCP_SEQ_STATE_LISTENING;
2034		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2035	} else {
2036		icsk = inet_csk(sk);
2037		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2038		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2039			goto start_req;
2040		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2041		sk = sk_nulls_next(sk);
2042	}
2043get_sk:
2044	sk_nulls_for_each_from(sk, node) {
2045		if (!net_eq(sock_net(sk), net))
2046			continue;
2047		if (sk->sk_family == st->family) {
2048			cur = sk;
2049			goto out;
2050		}
2051		icsk = inet_csk(sk);
2052		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2053		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2054start_req:
2055			st->uid		= sock_i_uid(sk);
2056			st->syn_wait_sk = sk;
2057			st->state	= TCP_SEQ_STATE_OPENREQ;
2058			st->sbucket	= 0;
2059			goto get_req;
2060		}
2061		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2062	}
2063	spin_unlock_bh(&ilb->lock);
2064	st->offset = 0;
2065	if (++st->bucket < INET_LHTABLE_SIZE) {
2066		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2067		spin_lock_bh(&ilb->lock);
2068		sk = sk_nulls_head(&ilb->head);
2069		goto get_sk;
2070	}
2071	cur = NULL;
2072out:
2073	return cur;
 
 
 
2074}
2075
2076static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2077{
2078	struct tcp_iter_state *st = seq->private;
2079	void *rc;
2080
2081	st->bucket = 0;
2082	st->offset = 0;
2083	rc = listening_get_next(seq, NULL);
2084
2085	while (rc && *pos) {
2086		rc = listening_get_next(seq, rc);
2087		--*pos;
2088	}
2089	return rc;
2090}
2091
2092static inline int empty_bucket(struct tcp_iter_state *st)
 
2093{
2094	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2095		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2096}
2097
2098/*
2099 * Get first established socket starting from bucket given in st->bucket.
2100 * If st->bucket is zero, the very first socket in the hash is returned.
2101 */
2102static void *established_get_first(struct seq_file *seq)
2103{
 
2104	struct tcp_iter_state *st = seq->private;
2105	struct net *net = seq_file_net(seq);
2106	void *rc = NULL;
2107
2108	st->offset = 0;
2109	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2110		struct sock *sk;
2111		struct hlist_nulls_node *node;
2112		struct inet_timewait_sock *tw;
2113		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
 
2114
2115		/* Lockless fast path for the common case of empty buckets */
2116		if (empty_bucket(st))
2117			continue;
2118
2119		spin_lock_bh(lock);
2120		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2121			if (sk->sk_family != st->family ||
2122			    !net_eq(sock_net(sk), net)) {
2123				continue;
2124			}
2125			rc = sk;
2126			goto out;
2127		}
2128		st->state = TCP_SEQ_STATE_TIME_WAIT;
2129		inet_twsk_for_each(tw, node,
2130				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2131			if (tw->tw_family != st->family ||
2132			    !net_eq(twsk_net(tw), net)) {
2133				continue;
2134			}
2135			rc = tw;
2136			goto out;
2137		}
2138		spin_unlock_bh(lock);
2139		st->state = TCP_SEQ_STATE_ESTABLISHED;
2140	}
2141out:
2142	return rc;
2143}
2144
2145static void *established_get_next(struct seq_file *seq, void *cur)
2146{
2147	struct sock *sk = cur;
2148	struct inet_timewait_sock *tw;
2149	struct hlist_nulls_node *node;
2150	struct tcp_iter_state *st = seq->private;
2151	struct net *net = seq_file_net(seq);
 
2152
2153	++st->num;
2154	++st->offset;
2155
2156	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2157		tw = cur;
2158		tw = tw_next(tw);
2159get_tw:
2160		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2161			tw = tw_next(tw);
2162		}
2163		if (tw) {
2164			cur = tw;
2165			goto out;
2166		}
2167		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2168		st->state = TCP_SEQ_STATE_ESTABLISHED;
2169
2170		/* Look for next non empty bucket */
2171		st->offset = 0;
2172		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2173				empty_bucket(st))
2174			;
2175		if (st->bucket > tcp_hashinfo.ehash_mask)
2176			return NULL;
2177
2178		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2179		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2180	} else
2181		sk = sk_nulls_next(sk);
2182
2183	sk_nulls_for_each_from(sk, node) {
2184		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2185			goto found;
2186	}
2187
2188	st->state = TCP_SEQ_STATE_TIME_WAIT;
2189	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2190	goto get_tw;
2191found:
2192	cur = sk;
2193out:
2194	return cur;
2195}
2196
2197static void *established_get_idx(struct seq_file *seq, loff_t pos)
2198{
2199	struct tcp_iter_state *st = seq->private;
2200	void *rc;
2201
2202	st->bucket = 0;
2203	rc = established_get_first(seq);
2204
2205	while (rc && pos) {
2206		rc = established_get_next(seq, rc);
2207		--pos;
2208	}
2209	return rc;
2210}
2211
2212static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2213{
2214	void *rc;
2215	struct tcp_iter_state *st = seq->private;
2216
2217	st->state = TCP_SEQ_STATE_LISTENING;
2218	rc	  = listening_get_idx(seq, &pos);
2219
2220	if (!rc) {
2221		st->state = TCP_SEQ_STATE_ESTABLISHED;
2222		rc	  = established_get_idx(seq, pos);
2223	}
2224
2225	return rc;
2226}
2227
2228static void *tcp_seek_last_pos(struct seq_file *seq)
2229{
 
2230	struct tcp_iter_state *st = seq->private;
 
2231	int offset = st->offset;
2232	int orig_num = st->num;
2233	void *rc = NULL;
2234
2235	switch (st->state) {
2236	case TCP_SEQ_STATE_OPENREQ:
2237	case TCP_SEQ_STATE_LISTENING:
2238		if (st->bucket >= INET_LHTABLE_SIZE)
2239			break;
2240		st->state = TCP_SEQ_STATE_LISTENING;
2241		rc = listening_get_next(seq, NULL);
2242		while (offset-- && rc)
2243			rc = listening_get_next(seq, rc);
2244		if (rc)
2245			break;
2246		st->bucket = 0;
2247		/* Fallthrough */
2248	case TCP_SEQ_STATE_ESTABLISHED:
2249	case TCP_SEQ_STATE_TIME_WAIT:
2250		st->state = TCP_SEQ_STATE_ESTABLISHED;
2251		if (st->bucket > tcp_hashinfo.ehash_mask)
 
 
2252			break;
2253		rc = established_get_first(seq);
2254		while (offset-- && rc)
2255			rc = established_get_next(seq, rc);
2256	}
2257
2258	st->num = orig_num;
2259
2260	return rc;
2261}
2262
2263static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2264{
2265	struct tcp_iter_state *st = seq->private;
2266	void *rc;
2267
2268	if (*pos && *pos == st->last_pos) {
2269		rc = tcp_seek_last_pos(seq);
2270		if (rc)
2271			goto out;
2272	}
2273
2274	st->state = TCP_SEQ_STATE_LISTENING;
2275	st->num = 0;
2276	st->bucket = 0;
2277	st->offset = 0;
2278	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2279
2280out:
2281	st->last_pos = *pos;
2282	return rc;
2283}
 
2284
2285static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2286{
2287	struct tcp_iter_state *st = seq->private;
2288	void *rc = NULL;
2289
2290	if (v == SEQ_START_TOKEN) {
2291		rc = tcp_get_idx(seq, 0);
2292		goto out;
2293	}
2294
2295	switch (st->state) {
2296	case TCP_SEQ_STATE_OPENREQ:
2297	case TCP_SEQ_STATE_LISTENING:
2298		rc = listening_get_next(seq, v);
2299		if (!rc) {
2300			st->state = TCP_SEQ_STATE_ESTABLISHED;
2301			st->bucket = 0;
2302			st->offset = 0;
2303			rc	  = established_get_first(seq);
2304		}
2305		break;
2306	case TCP_SEQ_STATE_ESTABLISHED:
2307	case TCP_SEQ_STATE_TIME_WAIT:
2308		rc = established_get_next(seq, v);
2309		break;
2310	}
2311out:
2312	++*pos;
2313	st->last_pos = *pos;
2314	return rc;
2315}
 
2316
2317static void tcp_seq_stop(struct seq_file *seq, void *v)
2318{
 
2319	struct tcp_iter_state *st = seq->private;
2320
2321	switch (st->state) {
2322	case TCP_SEQ_STATE_OPENREQ:
2323		if (v) {
2324			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2325			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2326		}
2327	case TCP_SEQ_STATE_LISTENING:
2328		if (v != SEQ_START_TOKEN)
2329			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2330		break;
2331	case TCP_SEQ_STATE_TIME_WAIT:
2332	case TCP_SEQ_STATE_ESTABLISHED:
2333		if (v)
2334			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2335		break;
2336	}
2337}
 
2338
2339static int tcp_seq_open(struct inode *inode, struct file *file)
2340{
2341	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2342	struct tcp_iter_state *s;
2343	int err;
2344
2345	err = seq_open_net(inode, file, &afinfo->seq_ops,
2346			  sizeof(struct tcp_iter_state));
2347	if (err < 0)
2348		return err;
2349
2350	s = ((struct seq_file *)file->private_data)->private;
2351	s->family		= afinfo->family;
2352	s->last_pos 		= 0;
2353	return 0;
2354}
2355
2356int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2357{
2358	int rc = 0;
2359	struct proc_dir_entry *p;
2360
2361	afinfo->seq_fops.open		= tcp_seq_open;
2362	afinfo->seq_fops.read		= seq_read;
2363	afinfo->seq_fops.llseek		= seq_lseek;
2364	afinfo->seq_fops.release	= seq_release_net;
2365
2366	afinfo->seq_ops.start		= tcp_seq_start;
2367	afinfo->seq_ops.next		= tcp_seq_next;
2368	afinfo->seq_ops.stop		= tcp_seq_stop;
2369
2370	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2371			     &afinfo->seq_fops, afinfo);
2372	if (!p)
2373		rc = -ENOMEM;
2374	return rc;
2375}
2376EXPORT_SYMBOL(tcp_proc_register);
2377
2378void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2379{
2380	proc_net_remove(net, afinfo->name);
2381}
2382EXPORT_SYMBOL(tcp_proc_unregister);
2383
2384static void get_openreq4(struct sock *sk, struct request_sock *req,
2385			 struct seq_file *f, int i, int uid, int *len)
2386{
2387	const struct inet_request_sock *ireq = inet_rsk(req);
2388	int ttd = req->expires - jiffies;
2389
2390	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2391		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2392		i,
2393		ireq->loc_addr,
2394		ntohs(inet_sk(sk)->inet_sport),
2395		ireq->rmt_addr,
2396		ntohs(ireq->rmt_port),
2397		TCP_SYN_RECV,
2398		0, 0, /* could print option size, but that is af dependent. */
2399		1,    /* timers active (only the expire timer) */
2400		jiffies_to_clock_t(ttd),
2401		req->retrans,
2402		uid,
 
2403		0,  /* non standard timer */
2404		0, /* open_requests have no inode */
2405		atomic_read(&sk->sk_refcnt),
2406		req,
2407		len);
2408}
2409
2410static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2411{
2412	int timer_active;
2413	unsigned long timer_expires;
2414	struct tcp_sock *tp = tcp_sk(sk);
2415	const struct inet_connection_sock *icsk = inet_csk(sk);
2416	struct inet_sock *inet = inet_sk(sk);
 
2417	__be32 dest = inet->inet_daddr;
2418	__be32 src = inet->inet_rcv_saddr;
2419	__u16 destp = ntohs(inet->inet_dport);
2420	__u16 srcp = ntohs(inet->inet_sport);
2421	int rx_queue;
 
2422
2423	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
 
 
2424		timer_active	= 1;
2425		timer_expires	= icsk->icsk_timeout;
2426	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2427		timer_active	= 4;
2428		timer_expires	= icsk->icsk_timeout;
2429	} else if (timer_pending(&sk->sk_timer)) {
2430		timer_active	= 2;
2431		timer_expires	= sk->sk_timer.expires;
2432	} else {
2433		timer_active	= 0;
2434		timer_expires = jiffies;
2435	}
2436
2437	if (sk->sk_state == TCP_LISTEN)
2438		rx_queue = sk->sk_ack_backlog;
 
2439	else
2440		/*
2441		 * because we dont lock socket, we might find a transient negative value
2442		 */
2443		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
 
2444
2445	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2446			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2447		i, src, srcp, dest, destp, sk->sk_state,
2448		tp->write_seq - tp->snd_una,
2449		rx_queue,
2450		timer_active,
2451		jiffies_to_clock_t(timer_expires - jiffies),
2452		icsk->icsk_retransmits,
2453		sock_i_uid(sk),
2454		icsk->icsk_probes_out,
2455		sock_i_ino(sk),
2456		atomic_read(&sk->sk_refcnt), sk,
2457		jiffies_to_clock_t(icsk->icsk_rto),
2458		jiffies_to_clock_t(icsk->icsk_ack.ato),
2459		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2460		tp->snd_cwnd,
2461		tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2462		len);
 
2463}
2464
2465static void get_timewait4_sock(struct inet_timewait_sock *tw,
2466			       struct seq_file *f, int i, int *len)
2467{
 
2468	__be32 dest, src;
2469	__u16 destp, srcp;
2470	int ttd = tw->tw_ttd - jiffies;
2471
2472	if (ttd < 0)
2473		ttd = 0;
2474
2475	dest  = tw->tw_daddr;
2476	src   = tw->tw_rcv_saddr;
2477	destp = ntohs(tw->tw_dport);
2478	srcp  = ntohs(tw->tw_sport);
2479
2480	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2481		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2482		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2483		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2484		atomic_read(&tw->tw_refcnt), tw, len);
2485}
2486
2487#define TMPSZ 150
2488
2489static int tcp4_seq_show(struct seq_file *seq, void *v)
2490{
2491	struct tcp_iter_state *st;
2492	int len;
2493
 
2494	if (v == SEQ_START_TOKEN) {
2495		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2496			   "  sl  local_address rem_address   st tx_queue "
2497			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2498			   "inode");
2499		goto out;
2500	}
2501	st = seq->private;
2502
2503	switch (st->state) {
2504	case TCP_SEQ_STATE_LISTENING:
2505	case TCP_SEQ_STATE_ESTABLISHED:
2506		get_tcp4_sock(v, seq, st->num, &len);
2507		break;
2508	case TCP_SEQ_STATE_OPENREQ:
2509		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2510		break;
2511	case TCP_SEQ_STATE_TIME_WAIT:
2512		get_timewait4_sock(v, seq, st->num, &len);
2513		break;
2514	}
2515	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2516out:
 
2517	return 0;
2518}
2519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2520static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2521	.name		= "tcp",
2522	.family		= AF_INET,
2523	.seq_fops	= {
2524		.owner		= THIS_MODULE,
2525	},
2526	.seq_ops	= {
2527		.show		= tcp4_seq_show,
2528	},
2529};
2530
2531static int __net_init tcp4_proc_init_net(struct net *net)
2532{
2533	return tcp_proc_register(net, &tcp4_seq_afinfo);
 
 
 
2534}
2535
2536static void __net_exit tcp4_proc_exit_net(struct net *net)
2537{
2538	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2539}
2540
2541static struct pernet_operations tcp4_net_ops = {
2542	.init = tcp4_proc_init_net,
2543	.exit = tcp4_proc_exit_net,
2544};
2545
2546int __init tcp4_proc_init(void)
2547{
2548	return register_pernet_subsys(&tcp4_net_ops);
2549}
2550
2551void tcp4_proc_exit(void)
2552{
2553	unregister_pernet_subsys(&tcp4_net_ops);
2554}
2555#endif /* CONFIG_PROC_FS */
2556
2557struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2558{
2559	const struct iphdr *iph = skb_gro_network_header(skb);
2560
2561	switch (skb->ip_summed) {
2562	case CHECKSUM_COMPLETE:
2563		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2564				  skb->csum)) {
2565			skb->ip_summed = CHECKSUM_UNNECESSARY;
2566			break;
2567		}
2568
2569		/* fall through */
2570	case CHECKSUM_NONE:
2571		NAPI_GRO_CB(skb)->flush = 1;
2572		return NULL;
2573	}
2574
2575	return tcp_gro_receive(head, skb);
2576}
2577
2578int tcp4_gro_complete(struct sk_buff *skb)
2579{
2580	const struct iphdr *iph = ip_hdr(skb);
2581	struct tcphdr *th = tcp_hdr(skb);
 
2582
2583	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2584				  iph->saddr, iph->daddr, 0);
2585	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2586
2587	return tcp_gro_complete(skb);
2588}
 
2589
2590struct proto tcp_prot = {
2591	.name			= "TCP",
2592	.owner			= THIS_MODULE,
2593	.close			= tcp_close,
 
2594	.connect		= tcp_v4_connect,
2595	.disconnect		= tcp_disconnect,
2596	.accept			= inet_csk_accept,
2597	.ioctl			= tcp_ioctl,
2598	.init			= tcp_v4_init_sock,
2599	.destroy		= tcp_v4_destroy_sock,
2600	.shutdown		= tcp_shutdown,
2601	.setsockopt		= tcp_setsockopt,
2602	.getsockopt		= tcp_getsockopt,
 
 
2603	.recvmsg		= tcp_recvmsg,
2604	.sendmsg		= tcp_sendmsg,
2605	.sendpage		= tcp_sendpage,
2606	.backlog_rcv		= tcp_v4_do_rcv,
 
2607	.hash			= inet_hash,
2608	.unhash			= inet_unhash,
2609	.get_port		= inet_csk_get_port,
 
 
 
 
2610	.enter_memory_pressure	= tcp_enter_memory_pressure,
 
 
2611	.sockets_allocated	= &tcp_sockets_allocated,
2612	.orphan_count		= &tcp_orphan_count,
 
2613	.memory_allocated	= &tcp_memory_allocated,
 
 
2614	.memory_pressure	= &tcp_memory_pressure,
2615	.sysctl_mem		= sysctl_tcp_mem,
2616	.sysctl_wmem		= sysctl_tcp_wmem,
2617	.sysctl_rmem		= sysctl_tcp_rmem,
2618	.max_header		= MAX_TCP_HEADER,
2619	.obj_size		= sizeof(struct tcp_sock),
2620	.slab_flags		= SLAB_DESTROY_BY_RCU,
2621	.twsk_prot		= &tcp_timewait_sock_ops,
2622	.rsk_prot		= &tcp_request_sock_ops,
2623	.h.hashinfo		= &tcp_hashinfo,
2624	.no_autobind		= true,
2625#ifdef CONFIG_COMPAT
2626	.compat_setsockopt	= compat_tcp_setsockopt,
2627	.compat_getsockopt	= compat_tcp_getsockopt,
2628#endif
2629};
2630EXPORT_SYMBOL(tcp_prot);
2631
2632
2633static int __net_init tcp_sk_init(struct net *net)
2634{
2635	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2636				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637}
2638
2639static void __net_exit tcp_sk_exit(struct net *net)
2640{
2641	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642}
2643
2644static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2645{
2646	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
 
 
 
 
 
 
 
 
2647}
2648
2649static struct pernet_operations __net_initdata tcp_sk_ops = {
2650       .init	   = tcp_sk_init,
2651       .exit	   = tcp_sk_exit,
2652       .exit_batch = tcp_sk_exit_batch,
2653};
2654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2655void __init tcp_v4_init(void)
2656{
2657	inet_hashinfo_init(&tcp_hashinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658	if (register_pernet_subsys(&tcp_sk_ops))
2659		panic("Failed to create the TCP control socket.\n");
 
 
 
 
2660}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 *		IPv4 specific functions
  10 *
 
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
 
 
 
 
 
  17 */
  18
  19/*
  20 * Changes:
  21 *		David S. Miller	:	New socket lookup architecture.
  22 *					This code is dedicated to John Dyson.
  23 *		David S. Miller :	Change semantics of established hash,
  24 *					half is devoted to TIME_WAIT sockets
  25 *					and the rest go in the other half.
  26 *		Andi Kleen :		Add support for syncookies and fixed
  27 *					some bugs: ip options weren't passed to
  28 *					the TCP layer, missed a check for an
  29 *					ACK bit.
  30 *		Andi Kleen :		Implemented fast path mtu discovery.
  31 *	     				Fixed many serious bugs in the
  32 *					request_sock handling and moved
  33 *					most of it into the af independent code.
  34 *					Added tail drop and some other bugfixes.
  35 *					Added new listen semantics.
  36 *		Mike McLagan	:	Routing by source
  37 *	Juan Jose Ciarlante:		ip_dynaddr bits
  38 *		Andi Kleen:		various fixes.
  39 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  40 *					coma.
  41 *	Andi Kleen		:	Fix new listen.
  42 *	Andi Kleen		:	Fix accept error reporting.
  43 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  44 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  45 *					a single port at the same time.
  46 */
  47
  48#define pr_fmt(fmt) "TCP: " fmt
  49
  50#include <linux/bottom_half.h>
  51#include <linux/types.h>
  52#include <linux/fcntl.h>
  53#include <linux/module.h>
  54#include <linux/random.h>
  55#include <linux/cache.h>
  56#include <linux/jhash.h>
  57#include <linux/init.h>
  58#include <linux/times.h>
  59#include <linux/slab.h>
  60#include <linux/sched.h>
  61
  62#include <net/net_namespace.h>
  63#include <net/icmp.h>
  64#include <net/inet_hashtables.h>
  65#include <net/tcp.h>
  66#include <net/transp_v6.h>
  67#include <net/ipv6.h>
  68#include <net/inet_common.h>
  69#include <net/timewait_sock.h>
  70#include <net/xfrm.h>
 
  71#include <net/secure_seq.h>
  72#include <net/busy_poll.h>
  73
  74#include <linux/inet.h>
  75#include <linux/ipv6.h>
  76#include <linux/stddef.h>
  77#include <linux/proc_fs.h>
  78#include <linux/seq_file.h>
  79#include <linux/inetdevice.h>
  80#include <linux/btf_ids.h>
  81
  82#include <crypto/hash.h>
  83#include <linux/scatterlist.h>
  84
  85#include <trace/events/tcp.h>
 
 
 
  86
  87#ifdef CONFIG_TCP_MD5SIG
  88static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  89			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
 
 
 
 
 
 
 
 
  90#endif
  91
  92struct inet_hashinfo tcp_hashinfo;
  93EXPORT_SYMBOL(tcp_hashinfo);
  94
  95static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
  96
  97static u32 tcp_v4_init_seq(const struct sk_buff *skb)
  98{
  99	return secure_tcp_seq(ip_hdr(skb)->daddr,
 100			      ip_hdr(skb)->saddr,
 101			      tcp_hdr(skb)->dest,
 102			      tcp_hdr(skb)->source);
 103}
 104
 105static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
 106{
 107	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
 108}
 109
 110int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 111{
 112	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
 113	const struct inet_timewait_sock *tw = inet_twsk(sktw);
 114	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 115	struct tcp_sock *tp = tcp_sk(sk);
 116
 117	if (reuse == 2) {
 118		/* Still does not detect *everything* that goes through
 119		 * lo, since we require a loopback src or dst address
 120		 * or direct binding to 'lo' interface.
 121		 */
 122		bool loopback = false;
 123		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
 124			loopback = true;
 125#if IS_ENABLED(CONFIG_IPV6)
 126		if (tw->tw_family == AF_INET6) {
 127			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
 128			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
 129			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
 130			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
 131				loopback = true;
 132		} else
 133#endif
 134		{
 135			if (ipv4_is_loopback(tw->tw_daddr) ||
 136			    ipv4_is_loopback(tw->tw_rcv_saddr))
 137				loopback = true;
 138		}
 139		if (!loopback)
 140			reuse = 0;
 141	}
 142
 143	/* With PAWS, it is safe from the viewpoint
 144	   of data integrity. Even without PAWS it is safe provided sequence
 145	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 146
 147	   Actually, the idea is close to VJ's one, only timestamp cache is
 148	   held not per host, but per port pair and TW bucket is used as state
 149	   holder.
 150
 151	   If TW bucket has been already destroyed we fall back to VJ's scheme
 152	   and use initial timestamp retrieved from peer table.
 153	 */
 154	if (tcptw->tw_ts_recent_stamp &&
 155	    (!twp || (reuse && time_after32(ktime_get_seconds(),
 156					    tcptw->tw_ts_recent_stamp)))) {
 157		/* In case of repair and re-using TIME-WAIT sockets we still
 158		 * want to be sure that it is safe as above but honor the
 159		 * sequence numbers and time stamps set as part of the repair
 160		 * process.
 161		 *
 162		 * Without this check re-using a TIME-WAIT socket with TCP
 163		 * repair would accumulate a -1 on the repair assigned
 164		 * sequence number. The first time it is reused the sequence
 165		 * is -1, the second time -2, etc. This fixes that issue
 166		 * without appearing to create any others.
 167		 */
 168		if (likely(!tp->repair)) {
 169			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
 170
 171			if (!seq)
 172				seq = 1;
 173			WRITE_ONCE(tp->write_seq, seq);
 174			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 175			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 176		}
 177		sock_hold(sktw);
 178		return 1;
 179	}
 180
 181	return 0;
 182}
 183EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 184
 185static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
 186			      int addr_len)
 187{
 188	/* This check is replicated from tcp_v4_connect() and intended to
 189	 * prevent BPF program called below from accessing bytes that are out
 190	 * of the bound specified by user in addr_len.
 191	 */
 192	if (addr_len < sizeof(struct sockaddr_in))
 193		return -EINVAL;
 194
 195	sock_owned_by_me(sk);
 196
 197	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
 198}
 199
 200/* This will initiate an outgoing connection. */
 201int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 202{
 203	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 204	struct inet_timewait_death_row *tcp_death_row;
 205	struct inet_sock *inet = inet_sk(sk);
 206	struct tcp_sock *tp = tcp_sk(sk);
 207	struct ip_options_rcu *inet_opt;
 208	struct net *net = sock_net(sk);
 209	__be16 orig_sport, orig_dport;
 210	__be32 daddr, nexthop;
 211	struct flowi4 *fl4;
 212	struct rtable *rt;
 213	int err;
 
 214
 215	if (addr_len < sizeof(struct sockaddr_in))
 216		return -EINVAL;
 217
 218	if (usin->sin_family != AF_INET)
 219		return -EAFNOSUPPORT;
 220
 221	nexthop = daddr = usin->sin_addr.s_addr;
 222	inet_opt = rcu_dereference_protected(inet->inet_opt,
 223					     lockdep_sock_is_held(sk));
 224	if (inet_opt && inet_opt->opt.srr) {
 225		if (!daddr)
 226			return -EINVAL;
 227		nexthop = inet_opt->opt.faddr;
 228	}
 229
 230	orig_sport = inet->inet_sport;
 231	orig_dport = usin->sin_port;
 232	fl4 = &inet->cork.fl.u.ip4;
 233	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 234			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
 235			      orig_dport, sk);
 
 236	if (IS_ERR(rt)) {
 237		err = PTR_ERR(rt);
 238		if (err == -ENETUNREACH)
 239			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 240		return err;
 241	}
 242
 243	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 244		ip_rt_put(rt);
 245		return -ENETUNREACH;
 246	}
 247
 248	if (!inet_opt || !inet_opt->opt.srr)
 249		daddr = fl4->daddr;
 250
 251	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 252
 253	if (!inet->inet_saddr) {
 254		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
 255		if (err) {
 256			ip_rt_put(rt);
 257			return err;
 258		}
 259	} else {
 260		sk_rcv_saddr_set(sk, inet->inet_saddr);
 261	}
 262
 263	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 264		/* Reset inherited state */
 265		tp->rx_opt.ts_recent	   = 0;
 266		tp->rx_opt.ts_recent_stamp = 0;
 267		if (likely(!tp->repair))
 268			WRITE_ONCE(tp->write_seq, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269	}
 270
 271	inet->inet_dport = usin->sin_port;
 272	sk_daddr_set(sk, daddr);
 273
 274	inet_csk(sk)->icsk_ext_hdr_len = 0;
 275	if (inet_opt)
 276		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 277
 278	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 279
 280	/* Socket identity is still unknown (sport may be zero).
 281	 * However we set state to SYN-SENT and not releasing socket
 282	 * lock select source port, enter ourselves into the hash tables and
 283	 * complete initialization after this.
 284	 */
 285	tcp_set_state(sk, TCP_SYN_SENT);
 286	err = inet_hash_connect(tcp_death_row, sk);
 287	if (err)
 288		goto failure;
 289
 290	sk_set_txhash(sk);
 291
 292	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 293			       inet->inet_sport, inet->inet_dport, sk);
 294	if (IS_ERR(rt)) {
 295		err = PTR_ERR(rt);
 296		rt = NULL;
 297		goto failure;
 298	}
 299	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
 300	/* OK, now commit destination to socket.  */
 301	sk->sk_gso_type = SKB_GSO_TCPV4;
 302	sk_setup_caps(sk, &rt->dst);
 303	rt = NULL;
 304
 305	if (likely(!tp->repair)) {
 306		if (!tp->write_seq)
 307			WRITE_ONCE(tp->write_seq,
 308				   secure_tcp_seq(inet->inet_saddr,
 309						  inet->inet_daddr,
 310						  inet->inet_sport,
 311						  usin->sin_port));
 312		WRITE_ONCE(tp->tsoffset,
 313			   secure_tcp_ts_off(net, inet->inet_saddr,
 314					     inet->inet_daddr));
 315	}
 316
 317	atomic_set(&inet->inet_id, get_random_u16());
 318
 319	if (tcp_fastopen_defer_connect(sk, &err))
 320		return err;
 321	if (err)
 322		goto failure;
 323
 324	err = tcp_connect(sk);
 325
 326	if (err)
 327		goto failure;
 328
 329	return 0;
 330
 331failure:
 332	/*
 333	 * This unhashes the socket and releases the local port,
 334	 * if necessary.
 335	 */
 336	tcp_set_state(sk, TCP_CLOSE);
 337	inet_bhash2_reset_saddr(sk);
 338	ip_rt_put(rt);
 339	sk->sk_route_caps = 0;
 340	inet->inet_dport = 0;
 341	return err;
 342}
 343EXPORT_SYMBOL(tcp_v4_connect);
 344
 345/*
 346 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 347 * It can be called through tcp_release_cb() if socket was owned by user
 348 * at the time tcp_v4_err() was called to handle ICMP message.
 349 */
 350void tcp_v4_mtu_reduced(struct sock *sk)
 351{
 
 352	struct inet_sock *inet = inet_sk(sk);
 353	struct dst_entry *dst;
 354	u32 mtu;
 355
 356	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
 
 
 
 
 357		return;
 358	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
 359	dst = inet_csk_update_pmtu(sk, mtu);
 360	if (!dst)
 
 
 
 
 
 361		return;
 362
 
 
 363	/* Something is about to be wrong... Remember soft error
 364	 * for the case, if this connection will not able to recover.
 365	 */
 366	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 367		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
 368
 369	mtu = dst_mtu(dst);
 370
 371	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 372	    ip_sk_accept_pmtu(sk) &&
 373	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 374		tcp_sync_mss(sk, mtu);
 375
 376		/* Resend the TCP packet because it's
 377		 * clear that the old packet has been
 378		 * dropped. This is the new "fast" path mtu
 379		 * discovery.
 380		 */
 381		tcp_simple_retransmit(sk);
 382	} /* else let the usual retransmit timer handle it */
 383}
 384EXPORT_SYMBOL(tcp_v4_mtu_reduced);
 385
 386static void do_redirect(struct sk_buff *skb, struct sock *sk)
 387{
 388	struct dst_entry *dst = __sk_dst_check(sk, 0);
 389
 390	if (dst)
 391		dst->ops->redirect(dst, sk, skb);
 392}
 393
 394
 395/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
 396void tcp_req_err(struct sock *sk, u32 seq, bool abort)
 397{
 398	struct request_sock *req = inet_reqsk(sk);
 399	struct net *net = sock_net(sk);
 400
 401	/* ICMPs are not backlogged, hence we cannot get
 402	 * an established socket here.
 403	 */
 404	if (seq != tcp_rsk(req)->snt_isn) {
 405		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 406	} else if (abort) {
 407		/*
 408		 * Still in SYN_RECV, just remove it silently.
 409		 * There is no good way to pass the error to the newly
 410		 * created socket, and POSIX does not want network
 411		 * errors returned from accept().
 412		 */
 413		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
 414		tcp_listendrop(req->rsk_listener);
 415	}
 416	reqsk_put(req);
 417}
 418EXPORT_SYMBOL(tcp_req_err);
 419
 420/* TCP-LD (RFC 6069) logic */
 421void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
 422{
 423	struct inet_connection_sock *icsk = inet_csk(sk);
 424	struct tcp_sock *tp = tcp_sk(sk);
 425	struct sk_buff *skb;
 426	s32 remaining;
 427	u32 delta_us;
 428
 429	if (sock_owned_by_user(sk))
 430		return;
 431
 432	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 433	    !icsk->icsk_backoff)
 434		return;
 435
 436	skb = tcp_rtx_queue_head(sk);
 437	if (WARN_ON_ONCE(!skb))
 438		return;
 439
 440	icsk->icsk_backoff--;
 441	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
 442	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
 443
 444	tcp_mstamp_refresh(tp);
 445	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
 446	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
 447
 448	if (remaining > 0) {
 449		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 450					  remaining, TCP_RTO_MAX);
 451	} else {
 452		/* RTO revert clocked out retransmission.
 453		 * Will retransmit now.
 454		 */
 455		tcp_retransmit_timer(sk);
 456	}
 457}
 458EXPORT_SYMBOL(tcp_ld_RTO_revert);
 459
 460/*
 461 * This routine is called by the ICMP module when it gets some
 462 * sort of error condition.  If err < 0 then the socket should
 463 * be closed and the error returned to the user.  If err > 0
 464 * it's just the icmp type << 8 | icmp code.  After adjustment
 465 * header points to the first 8 bytes of the tcp header.  We need
 466 * to find the appropriate port.
 467 *
 468 * The locking strategy used here is very "optimistic". When
 469 * someone else accesses the socket the ICMP is just dropped
 470 * and for some paths there is no check at all.
 471 * A more general error queue to queue errors for later handling
 472 * is probably better.
 473 *
 474 */
 475
 476int tcp_v4_err(struct sk_buff *skb, u32 info)
 477{
 478	const struct iphdr *iph = (const struct iphdr *)skb->data;
 479	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
 
 480	struct tcp_sock *tp;
 481	const int type = icmp_hdr(skb)->type;
 482	const int code = icmp_hdr(skb)->code;
 
 483	struct sock *sk;
 484	struct request_sock *fastopen;
 485	u32 seq, snd_una;
 
 486	int err;
 487	struct net *net = dev_net(skb->dev);
 
 
 
 
 
 488
 489	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
 490				       iph->daddr, th->dest, iph->saddr,
 491				       ntohs(th->source), inet_iif(skb), 0);
 492	if (!sk) {
 493		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 494		return -ENOENT;
 495	}
 496	if (sk->sk_state == TCP_TIME_WAIT) {
 497		/* To increase the counter of ignored icmps for TCP-AO */
 498		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
 499		inet_twsk_put(inet_twsk(sk));
 500		return 0;
 501	}
 502	seq = ntohl(th->seq);
 503	if (sk->sk_state == TCP_NEW_SYN_RECV) {
 504		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
 505				     type == ICMP_TIME_EXCEEDED ||
 506				     (type == ICMP_DEST_UNREACH &&
 507				      (code == ICMP_NET_UNREACH ||
 508				       code == ICMP_HOST_UNREACH)));
 509		return 0;
 510	}
 511
 512	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
 513		sock_put(sk);
 514		return 0;
 515	}
 516
 517	bh_lock_sock(sk);
 518	/* If too many ICMPs get dropped on busy
 519	 * servers this needs to be solved differently.
 520	 * We do take care of PMTU discovery (RFC1191) special case :
 521	 * we can receive locally generated ICMP messages while socket is held.
 522	 */
 523	if (sock_owned_by_user(sk)) {
 524		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 525			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 526	}
 527	if (sk->sk_state == TCP_CLOSE)
 528		goto out;
 529
 530	if (static_branch_unlikely(&ip4_min_ttl)) {
 531		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
 532		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
 533			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
 534			goto out;
 535		}
 536	}
 537
 
 538	tp = tcp_sk(sk);
 539	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
 540	fastopen = rcu_dereference(tp->fastopen_rsk);
 541	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
 542	if (sk->sk_state != TCP_LISTEN &&
 543	    !between(seq, snd_una, tp->snd_nxt)) {
 544		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 545		goto out;
 546	}
 547
 548	switch (type) {
 549	case ICMP_REDIRECT:
 550		if (!sock_owned_by_user(sk))
 551			do_redirect(skb, sk);
 552		goto out;
 553	case ICMP_SOURCE_QUENCH:
 554		/* Just silently ignore these. */
 555		goto out;
 556	case ICMP_PARAMETERPROB:
 557		err = EPROTO;
 558		break;
 559	case ICMP_DEST_UNREACH:
 560		if (code > NR_ICMP_UNREACH)
 561			goto out;
 562
 563		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 564			/* We are not interested in TCP_LISTEN and open_requests
 565			 * (SYN-ACKs send out by Linux are always <576bytes so
 566			 * they should go through unfragmented).
 567			 */
 568			if (sk->sk_state == TCP_LISTEN)
 569				goto out;
 570
 571			WRITE_ONCE(tp->mtu_info, info);
 572			if (!sock_owned_by_user(sk)) {
 573				tcp_v4_mtu_reduced(sk);
 574			} else {
 575				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
 576					sock_hold(sk);
 577			}
 578			goto out;
 579		}
 580
 581		err = icmp_err_convert[code].errno;
 582		/* check if this ICMP message allows revert of backoff.
 583		 * (see RFC 6069)
 584		 */
 585		if (!fastopen &&
 586		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
 587			tcp_ld_RTO_revert(sk, seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588		break;
 589	case ICMP_TIME_EXCEEDED:
 590		err = EHOSTUNREACH;
 591		break;
 592	default:
 593		goto out;
 594	}
 595
 596	switch (sk->sk_state) {
 597	case TCP_SYN_SENT:
 598	case TCP_SYN_RECV:
 599		/* Only in fast or simultaneous open. If a fast open socket is
 600		 * already accepted it is treated as a connected one below.
 
 
 
 
 
 
 
 
 601		 */
 602		if (fastopen && !fastopen->sk)
 603			break;
 
 
 
 
 604
 605		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
 
 
 
 
 
 
 
 606
 
 
 
 
 607		if (!sock_owned_by_user(sk)) {
 608			WRITE_ONCE(sk->sk_err, err);
 609
 610			sk_error_report(sk);
 611
 612			tcp_done(sk);
 613		} else {
 614			WRITE_ONCE(sk->sk_err_soft, err);
 615		}
 616		goto out;
 617	}
 618
 619	/* If we've already connected we will keep trying
 620	 * until we time out, or the user gives up.
 621	 *
 622	 * rfc1122 4.2.3.9 allows to consider as hard errors
 623	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 624	 * but it is obsoleted by pmtu discovery).
 625	 *
 626	 * Note, that in modern internet, where routing is unreliable
 627	 * and in each dark corner broken firewalls sit, sending random
 628	 * errors ordered by their masters even this two messages finally lose
 629	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 630	 *
 631	 * Now we are in compliance with RFCs.
 632	 *							--ANK (980905)
 633	 */
 634
 635	if (!sock_owned_by_user(sk) &&
 636	    inet_test_bit(RECVERR, sk)) {
 637		WRITE_ONCE(sk->sk_err, err);
 638		sk_error_report(sk);
 639	} else	{ /* Only an error on timeout */
 640		WRITE_ONCE(sk->sk_err_soft, err);
 641	}
 642
 643out:
 644	bh_unlock_sock(sk);
 645	sock_put(sk);
 646	return 0;
 647}
 648
 649void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 
 650{
 651	struct tcphdr *th = tcp_hdr(skb);
 652
 653	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 654	skb->csum_start = skb_transport_header(skb) - skb->head;
 655	skb->csum_offset = offsetof(struct tcphdr, check);
 
 
 
 
 
 
 
 656}
 657
 658/* This routine computes an IPv4 TCP checksum. */
 659void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 660{
 661	const struct inet_sock *inet = inet_sk(sk);
 662
 663	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 664}
 665EXPORT_SYMBOL(tcp_v4_send_check);
 666
 667#define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
 
 
 
 
 
 
 668
 669static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
 670				 const struct tcp_ao_hdr *aoh,
 671				 struct ip_reply_arg *arg, struct tcphdr *reply,
 672				 __be32 reply_options[REPLY_OPTIONS_LEN])
 673{
 674#ifdef CONFIG_TCP_AO
 675	int sdif = tcp_v4_sdif(skb);
 676	int dif = inet_iif(skb);
 677	int l3index = sdif ? dif : 0;
 678	bool allocated_traffic_key;
 679	struct tcp_ao_key *key;
 680	char *traffic_key;
 681	bool drop = true;
 682	u32 ao_sne = 0;
 683	u8 keyid;
 684
 685	rcu_read_lock();
 686	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
 687				 &key, &traffic_key, &allocated_traffic_key,
 688				 &keyid, &ao_sne))
 689		goto out;
 690
 691	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
 692				 (aoh->rnext_keyid << 8) | keyid);
 693	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
 694	reply->doff = arg->iov[0].iov_len / 4;
 695
 696	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
 697			    key, traffic_key,
 698			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
 699			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
 700			    reply, ao_sne))
 701		goto out;
 702	drop = false;
 703out:
 704	rcu_read_unlock();
 705	if (allocated_traffic_key)
 706		kfree(traffic_key);
 707	return drop;
 708#else
 709	return true;
 710#endif
 711}
 712
 713/*
 714 *	This routine will send an RST to the other tcp.
 715 *
 716 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 717 *		      for reset.
 718 *	Answer: if a packet caused RST, it is not for a socket
 719 *		existing in our system, if it is matched to a socket,
 720 *		it is just duplicate segment or bug in other side's TCP.
 721 *		So that we build reply only basing on parameters
 722 *		arrived with segment.
 723 *	Exception: precedence violation. We do not implement it in any case.
 724 */
 725
 726static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
 727{
 728	const struct tcphdr *th = tcp_hdr(skb);
 729	struct {
 730		struct tcphdr th;
 731		__be32 opt[REPLY_OPTIONS_LEN];
 
 
 732	} rep;
 733	const __u8 *md5_hash_location = NULL;
 734	const struct tcp_ao_hdr *aoh;
 735	struct ip_reply_arg arg;
 736#ifdef CONFIG_TCP_MD5SIG
 737	struct tcp_md5sig_key *key = NULL;
 738	unsigned char newhash[16];
 739	struct sock *sk1 = NULL;
 740	int genhash;
 741#endif
 742	u64 transmit_time = 0;
 743	struct sock *ctl_sk;
 744	struct net *net;
 745	u32 txhash = 0;
 746
 747	/* Never send a reset in response to a reset. */
 748	if (th->rst)
 749		return;
 750
 751	/* If sk not NULL, it means we did a successful lookup and incoming
 752	 * route had to be correct. prequeue might have dropped our dst.
 753	 */
 754	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
 755		return;
 756
 757	/* Swap the send and the receive. */
 758	memset(&rep, 0, sizeof(rep));
 759	rep.th.dest   = th->source;
 760	rep.th.source = th->dest;
 761	rep.th.doff   = sizeof(struct tcphdr) / 4;
 762	rep.th.rst    = 1;
 763
 764	if (th->ack) {
 765		rep.th.seq = th->ack_seq;
 766	} else {
 767		rep.th.ack = 1;
 768		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 769				       skb->len - (th->doff << 2));
 770	}
 771
 772	memset(&arg, 0, sizeof(arg));
 773	arg.iov[0].iov_base = (unsigned char *)&rep;
 774	arg.iov[0].iov_len  = sizeof(rep.th);
 775
 776	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
 777
 778	/* Invalid TCP option size or twice included auth */
 779	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
 780		return;
 781
 782	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
 783		return;
 784
 785#ifdef CONFIG_TCP_MD5SIG
 786	rcu_read_lock();
 787	if (sk && sk_fullsock(sk)) {
 788		const union tcp_md5_addr *addr;
 789		int l3index;
 790
 791		/* sdif set, means packet ingressed via a device
 792		 * in an L3 domain and inet_iif is set to it.
 793		 */
 794		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
 795		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 796		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
 797	} else if (md5_hash_location) {
 798		const union tcp_md5_addr *addr;
 799		int sdif = tcp_v4_sdif(skb);
 800		int dif = inet_iif(skb);
 801		int l3index;
 802
 803		/*
 804		 * active side is lost. Try to find listening socket through
 805		 * source port, and then find md5 key through listening socket.
 806		 * we are not loose security here:
 807		 * Incoming packet is checked with md5 hash with finding key,
 808		 * no RST generated if md5 hash doesn't match.
 809		 */
 810		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
 811					     NULL, 0, ip_hdr(skb)->saddr,
 812					     th->source, ip_hdr(skb)->daddr,
 813					     ntohs(th->source), dif, sdif);
 814		/* don't send rst if it can't find key */
 815		if (!sk1)
 816			goto out;
 817
 818		/* sdif set, means packet ingressed via a device
 819		 * in an L3 domain and dif is set to it.
 820		 */
 821		l3index = sdif ? dif : 0;
 822		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 823		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
 824		if (!key)
 825			goto out;
 826
 827
 828		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
 829		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
 830			goto out;
 831
 832	}
 833
 834	if (key) {
 835		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 836				   (TCPOPT_NOP << 16) |
 837				   (TCPOPT_MD5SIG << 8) |
 838				   TCPOLEN_MD5SIG);
 839		/* Update length and the length the header thinks exists */
 840		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 841		rep.th.doff = arg.iov[0].iov_len / 4;
 842
 843		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 844				     key, ip_hdr(skb)->saddr,
 845				     ip_hdr(skb)->daddr, &rep.th);
 846	}
 847#endif
 848	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
 849	if (rep.opt[0] == 0) {
 850		__be32 mrst = mptcp_reset_option(skb);
 851
 852		if (mrst) {
 853			rep.opt[0] = mrst;
 854			arg.iov[0].iov_len += sizeof(mrst);
 855			rep.th.doff = arg.iov[0].iov_len / 4;
 856		}
 857	}
 858
 859	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 860				      ip_hdr(skb)->saddr, /* XXX */
 861				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 862	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 863	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 864
 865	/* When socket is gone, all binding information is lost.
 866	 * routing might fail in this case. No choice here, if we choose to force
 867	 * input interface, we will misroute in case of asymmetric route.
 868	 */
 869	if (sk) {
 870		arg.bound_dev_if = sk->sk_bound_dev_if;
 871		if (sk_fullsock(sk))
 872			trace_tcp_send_reset(sk, skb);
 873	}
 874
 875	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
 876		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
 877
 878	arg.tos = ip_hdr(skb)->tos;
 879	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
 880	local_bh_disable();
 881	ctl_sk = this_cpu_read(ipv4_tcp_sk);
 882	sock_net_set(ctl_sk, net);
 883	if (sk) {
 884		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
 885				   inet_twsk(sk)->tw_mark : sk->sk_mark;
 886		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
 887				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
 888		transmit_time = tcp_transmit_time(sk);
 889		xfrm_sk_clone_policy(ctl_sk, sk);
 890		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
 891			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
 892	} else {
 893		ctl_sk->sk_mark = 0;
 894		ctl_sk->sk_priority = 0;
 895	}
 896	ip_send_unicast_reply(ctl_sk,
 897			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 898			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 899			      &arg, arg.iov[0].iov_len,
 900			      transmit_time, txhash);
 901
 902	xfrm_sk_free_policy(ctl_sk);
 903	sock_net_set(ctl_sk, &init_net);
 904	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
 905	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
 906	local_bh_enable();
 907
 908#ifdef CONFIG_TCP_MD5SIG
 909out:
 910	rcu_read_unlock();
 911#endif
 912}
 913
 914/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 915   outside socket context is ugly, certainly. What can I do?
 916 */
 917
 918static void tcp_v4_send_ack(const struct sock *sk,
 919			    struct sk_buff *skb, u32 seq, u32 ack,
 920			    u32 win, u32 tsval, u32 tsecr, int oif,
 921			    struct tcp_key *key,
 922			    int reply_flags, u8 tos, u32 txhash)
 923{
 924	const struct tcphdr *th = tcp_hdr(skb);
 925	struct {
 926		struct tcphdr th;
 927		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
 
 
 
 
 928	} rep;
 929	struct net *net = sock_net(sk);
 930	struct ip_reply_arg arg;
 931	struct sock *ctl_sk;
 932	u64 transmit_time;
 933
 934	memset(&rep.th, 0, sizeof(struct tcphdr));
 935	memset(&arg, 0, sizeof(arg));
 936
 937	arg.iov[0].iov_base = (unsigned char *)&rep;
 938	arg.iov[0].iov_len  = sizeof(rep.th);
 939	if (tsecr) {
 940		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 941				   (TCPOPT_TIMESTAMP << 8) |
 942				   TCPOLEN_TIMESTAMP);
 943		rep.opt[1] = htonl(tsval);
 944		rep.opt[2] = htonl(tsecr);
 945		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 946	}
 947
 948	/* Swap the send and the receive. */
 949	rep.th.dest    = th->source;
 950	rep.th.source  = th->dest;
 951	rep.th.doff    = arg.iov[0].iov_len / 4;
 952	rep.th.seq     = htonl(seq);
 953	rep.th.ack_seq = htonl(ack);
 954	rep.th.ack     = 1;
 955	rep.th.window  = htons(win);
 956
 957#ifdef CONFIG_TCP_MD5SIG
 958	if (tcp_key_is_md5(key)) {
 959		int offset = (tsecr) ? 3 : 0;
 960
 961		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 962					  (TCPOPT_NOP << 16) |
 963					  (TCPOPT_MD5SIG << 8) |
 964					  TCPOLEN_MD5SIG);
 965		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 966		rep.th.doff = arg.iov[0].iov_len/4;
 967
 968		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 969				    key->md5_key, ip_hdr(skb)->saddr,
 970				    ip_hdr(skb)->daddr, &rep.th);
 971	}
 972#endif
 973#ifdef CONFIG_TCP_AO
 974	if (tcp_key_is_ao(key)) {
 975		int offset = (tsecr) ? 3 : 0;
 976
 977		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
 978					  (tcp_ao_len(key->ao_key) << 16) |
 979					  (key->ao_key->sndid << 8) |
 980					  key->rcv_next);
 981		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
 982		rep.th.doff = arg.iov[0].iov_len / 4;
 983
 984		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
 985				key->ao_key, key->traffic_key,
 986				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
 987				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
 988				&rep.th, key->sne);
 989	}
 990#endif
 991	arg.flags = reply_flags;
 992	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 993				      ip_hdr(skb)->saddr, /* XXX */
 994				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 995	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 996	if (oif)
 997		arg.bound_dev_if = oif;
 998	arg.tos = tos;
 999	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1000	local_bh_disable();
1001	ctl_sk = this_cpu_read(ipv4_tcp_sk);
1002	sock_net_set(ctl_sk, net);
1003	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1004			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1005	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1006			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1007	transmit_time = tcp_transmit_time(sk);
1008	ip_send_unicast_reply(ctl_sk,
1009			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1010			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1011			      &arg, arg.iov[0].iov_len,
1012			      transmit_time, txhash);
1013
1014	sock_net_set(ctl_sk, &init_net);
1015	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1016	local_bh_enable();
 
1017}
1018
1019static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1020{
1021	struct inet_timewait_sock *tw = inet_twsk(sk);
1022	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1023	struct tcp_key key = {};
1024#ifdef CONFIG_TCP_AO
1025	struct tcp_ao_info *ao_info;
1026
1027	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1028		/* FIXME: the segment to-be-acked is not verified yet */
1029		ao_info = rcu_dereference(tcptw->ao_info);
1030		if (ao_info) {
1031			const struct tcp_ao_hdr *aoh;
1032
1033			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1034				inet_twsk_put(tw);
1035				return;
1036			}
1037
1038			if (aoh)
1039				key.ao_key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1);
1040		}
1041	}
1042	if (key.ao_key) {
1043		struct tcp_ao_key *rnext_key;
1044
1045		key.traffic_key = snd_other_key(key.ao_key);
1046		key.sne = READ_ONCE(ao_info->snd_sne);
1047		rnext_key = READ_ONCE(ao_info->rnext_key);
1048		key.rcv_next = rnext_key->rcvid;
1049		key.type = TCP_KEY_AO;
1050#else
1051	if (0) {
1052#endif
1053#ifdef CONFIG_TCP_MD5SIG
1054	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1055		key.md5_key = tcp_twsk_md5_key(tcptw);
1056		if (key.md5_key)
1057			key.type = TCP_KEY_MD5;
1058#endif
1059	}
1060
1061	tcp_v4_send_ack(sk, skb,
1062			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
1063			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1064			tcp_tw_tsval(tcptw),
1065			tcptw->tw_ts_recent,
1066			tw->tw_bound_dev_if, &key,
1067			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1068			tw->tw_tos,
1069			tw->tw_txhash);
1070
1071	inet_twsk_put(tw);
1072}
1073
1074static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1075				  struct request_sock *req)
1076{
1077	struct tcp_key key = {};
1078
1079	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1080	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1081	 */
1082	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1083					     tcp_sk(sk)->snd_nxt;
1084
1085#ifdef CONFIG_TCP_AO
1086	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1087	    tcp_rsk_used_ao(req)) {
1088		const union tcp_md5_addr *addr;
1089		const struct tcp_ao_hdr *aoh;
1090		int l3index;
1091
1092		/* Invalid TCP option size or twice included auth */
1093		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1094			return;
1095		if (!aoh)
1096			return;
1097
1098		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1099		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1100		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1101					      aoh->rnext_keyid, -1);
1102		if (unlikely(!key.ao_key)) {
1103			/* Send ACK with any matching MKT for the peer */
1104			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1105			/* Matching key disappeared (user removed the key?)
1106			 * let the handshake timeout.
1107			 */
1108			if (!key.ao_key) {
1109				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1110						     addr,
1111						     ntohs(tcp_hdr(skb)->source),
1112						     &ip_hdr(skb)->daddr,
1113						     ntohs(tcp_hdr(skb)->dest));
1114				return;
1115			}
1116		}
1117		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1118		if (!key.traffic_key)
1119			return;
1120
1121		key.type = TCP_KEY_AO;
1122		key.rcv_next = aoh->keyid;
1123		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1124#else
1125	if (0) {
1126#endif
1127#ifdef CONFIG_TCP_MD5SIG
1128	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1129		const union tcp_md5_addr *addr;
1130		int l3index;
1131
1132		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1133		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1134		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1135		if (key.md5_key)
1136			key.type = TCP_KEY_MD5;
1137#endif
1138	}
1139
1140	/* RFC 7323 2.3
1141	 * The window field (SEG.WND) of every outgoing segment, with the
1142	 * exception of <SYN> segments, MUST be right-shifted by
1143	 * Rcv.Wind.Shift bits:
1144	 */
1145	tcp_v4_send_ack(sk, skb, seq,
1146			tcp_rsk(req)->rcv_nxt,
1147			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
1148			tcp_rsk_tsval(tcp_rsk(req)),
1149			READ_ONCE(req->ts_recent),
1150			0, &key,
1151			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1152			ip_hdr(skb)->tos,
1153			READ_ONCE(tcp_rsk(req)->txhash));
1154	if (tcp_key_is_ao(&key))
1155		kfree(key.traffic_key);
1156}
1157
1158/*
1159 *	Send a SYN-ACK after having received a SYN.
1160 *	This still operates on a request_sock only, not on a big
1161 *	socket.
1162 */
1163static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1164			      struct flowi *fl,
1165			      struct request_sock *req,
1166			      struct tcp_fastopen_cookie *foc,
1167			      enum tcp_synack_type synack_type,
1168			      struct sk_buff *syn_skb)
1169{
1170	const struct inet_request_sock *ireq = inet_rsk(req);
1171	struct flowi4 fl4;
1172	int err = -1;
1173	struct sk_buff *skb;
1174	u8 tos;
1175
1176	/* First, grab a route. */
1177	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1178		return -1;
1179
1180	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1181
1182	if (skb) {
1183		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1184
1185		tos = READ_ONCE(inet_sk(sk)->tos);
1186
1187		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1188			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1189			      (tos & INET_ECN_MASK);
1190
1191		if (!INET_ECN_is_capable(tos) &&
1192		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1193			tos |= INET_ECN_ECT_0;
1194
1195		rcu_read_lock();
1196		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1197					    ireq->ir_rmt_addr,
1198					    rcu_dereference(ireq->ireq_opt),
1199					    tos);
1200		rcu_read_unlock();
1201		err = net_xmit_eval(err);
1202	}
1203
 
1204	return err;
1205}
1206
 
 
 
 
 
 
 
1207/*
1208 *	IPv4 request_sock destructor.
1209 */
1210static void tcp_v4_reqsk_destructor(struct request_sock *req)
1211{
1212	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1213}
1214
1215#ifdef CONFIG_TCP_MD5SIG
1216/*
1217 * RFC2385 MD5 checksumming requires a mapping of
1218 * IP address->MD5 Key.
1219 * We need to maintain these in the sk structure.
1220 */
 
 
 
 
 
 
 
1221
1222DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1223EXPORT_SYMBOL(tcp_md5_needed);
1224
1225static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1226{
1227	if (!old)
1228		return true;
1229
1230	/* l3index always overrides non-l3index */
1231	if (old->l3index && new->l3index == 0)
1232		return false;
1233	if (old->l3index == 0 && new->l3index)
1234		return true;
 
 
 
1235
1236	return old->prefixlen < new->prefixlen;
 
 
 
 
 
 
 
1237}
 
1238
1239/* Find the Key structure for an address.  */
1240struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1241					   const union tcp_md5_addr *addr,
1242					   int family, bool any_l3index)
 
1243{
1244	const struct tcp_sock *tp = tcp_sk(sk);
1245	struct tcp_md5sig_key *key;
1246	const struct tcp_md5sig_info *md5sig;
1247	__be32 mask;
1248	struct tcp_md5sig_key *best_match = NULL;
1249	bool match;
1250
1251	/* caller either holds rcu_read_lock() or socket lock */
1252	md5sig = rcu_dereference_check(tp->md5sig_info,
1253				       lockdep_sock_is_held(sk));
1254	if (!md5sig)
1255		return NULL;
1256
1257	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1258				 lockdep_sock_is_held(sk)) {
1259		if (key->family != family)
1260			continue;
1261		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1262		    key->l3index != l3index)
1263			continue;
1264		if (family == AF_INET) {
1265			mask = inet_make_mask(key->prefixlen);
1266			match = (key->addr.a4.s_addr & mask) ==
1267				(addr->a4.s_addr & mask);
1268#if IS_ENABLED(CONFIG_IPV6)
1269		} else if (family == AF_INET6) {
1270			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1271						  key->prefixlen);
1272#endif
1273		} else {
1274			match = false;
1275		}
1276
1277		if (match && better_md5_match(best_match, key))
1278			best_match = key;
1279	}
1280	return best_match;
1281}
1282EXPORT_SYMBOL(__tcp_md5_do_lookup);
1283
1284static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1285						      const union tcp_md5_addr *addr,
1286						      int family, u8 prefixlen,
1287						      int l3index, u8 flags)
 
 
 
 
 
 
1288{
1289	const struct tcp_sock *tp = tcp_sk(sk);
1290	struct tcp_md5sig_key *key;
1291	unsigned int size = sizeof(struct in_addr);
1292	const struct tcp_md5sig_info *md5sig;
1293
1294	/* caller either holds rcu_read_lock() or socket lock */
1295	md5sig = rcu_dereference_check(tp->md5sig_info,
1296				       lockdep_sock_is_held(sk));
1297	if (!md5sig)
1298		return NULL;
1299#if IS_ENABLED(CONFIG_IPV6)
1300	if (family == AF_INET6)
1301		size = sizeof(struct in6_addr);
1302#endif
1303	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1304				 lockdep_sock_is_held(sk)) {
1305		if (key->family != family)
1306			continue;
1307		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1308			continue;
1309		if (key->l3index != l3index)
1310			continue;
1311		if (!memcmp(&key->addr, addr, size) &&
1312		    key->prefixlen == prefixlen)
1313			return key;
1314	}
1315	return NULL;
1316}
1317
1318struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1319					 const struct sock *addr_sk)
1320{
1321	const union tcp_md5_addr *addr;
1322	int l3index;
1323
1324	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1325						 addr_sk->sk_bound_dev_if);
1326	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1327	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1328}
1329EXPORT_SYMBOL(tcp_v4_md5_lookup);
1330
1331static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
 
1332{
1333	struct tcp_sock *tp = tcp_sk(sk);
1334	struct tcp_md5sig_info *md5sig;
1335
1336	md5sig = kmalloc(sizeof(*md5sig), gfp);
1337	if (!md5sig)
1338		return -ENOMEM;
1339
1340	sk_gso_disable(sk);
1341	INIT_HLIST_HEAD(&md5sig->head);
1342	rcu_assign_pointer(tp->md5sig_info, md5sig);
1343	return 0;
1344}
1345
1346/* This can be called on a newly created socket, from other files */
1347static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1348			    int family, u8 prefixlen, int l3index, u8 flags,
1349			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1350{
1351	/* Add Key to the list */
1352	struct tcp_md5sig_key *key;
1353	struct tcp_sock *tp = tcp_sk(sk);
1354	struct tcp_md5sig_info *md5sig;
1355
1356	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1357	if (key) {
1358		/* Pre-existing entry - just update that one.
1359		 * Note that the key might be used concurrently.
1360		 * data_race() is telling kcsan that we do not care of
1361		 * key mismatches, since changing MD5 key on live flows
1362		 * can lead to packet drops.
1363		 */
1364		data_race(memcpy(key->key, newkey, newkeylen));
1365
1366		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1367		 * Also note that a reader could catch new key->keylen value
1368		 * but old key->key[], this is the reason we use __GFP_ZERO
1369		 * at sock_kmalloc() time below these lines.
1370		 */
1371		WRITE_ONCE(key->keylen, newkeylen);
 
 
 
1372
1373		return 0;
1374	}
 
 
 
 
1375
1376	md5sig = rcu_dereference_protected(tp->md5sig_info,
1377					   lockdep_sock_is_held(sk));
 
 
 
 
 
 
 
1378
1379	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1380	if (!key)
1381		return -ENOMEM;
1382
1383	memcpy(key->key, newkey, newkeylen);
1384	key->keylen = newkeylen;
1385	key->family = family;
1386	key->prefixlen = prefixlen;
1387	key->l3index = l3index;
1388	key->flags = flags;
1389	memcpy(&key->addr, addr,
1390	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1391								 sizeof(struct in_addr));
1392	hlist_add_head_rcu(&key->node, &md5sig->head);
1393	return 0;
1394}
 
1395
1396int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1397		   int family, u8 prefixlen, int l3index, u8 flags,
1398		   const u8 *newkey, u8 newkeylen)
1399{
1400	struct tcp_sock *tp = tcp_sk(sk);
1401
1402	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1403		if (tcp_md5_alloc_sigpool())
1404			return -ENOMEM;
1405
1406		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1407			tcp_md5_release_sigpool();
1408			return -ENOMEM;
1409		}
1410
1411		if (!static_branch_inc(&tcp_md5_needed.key)) {
1412			struct tcp_md5sig_info *md5sig;
1413
1414			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1415			rcu_assign_pointer(tp->md5sig_info, NULL);
1416			kfree_rcu(md5sig, rcu);
1417			tcp_md5_release_sigpool();
1418			return -EUSERS;
1419		}
1420	}
1421
1422	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1423				newkey, newkeylen, GFP_KERNEL);
1424}
1425EXPORT_SYMBOL(tcp_md5_do_add);
1426
1427int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1428		     int family, u8 prefixlen, int l3index,
1429		     struct tcp_md5sig_key *key)
1430{
1431	struct tcp_sock *tp = tcp_sk(sk);
 
1432
1433	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1434		tcp_md5_add_sigpool();
1435
1436		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1437			tcp_md5_release_sigpool();
1438			return -ENOMEM;
1439		}
1440
1441		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1442			struct tcp_md5sig_info *md5sig;
1443
1444			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1445			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1446			rcu_assign_pointer(tp->md5sig_info, NULL);
1447			kfree_rcu(md5sig, rcu);
1448			tcp_md5_release_sigpool();
1449			return -EUSERS;
 
 
1450		}
1451	}
1452
1453	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1454				key->flags, key->key, key->keylen,
1455				sk_gfp_mask(sk, GFP_ATOMIC));
1456}
1457EXPORT_SYMBOL(tcp_md5_key_copy);
1458
1459int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1460		   u8 prefixlen, int l3index, u8 flags)
1461{
1462	struct tcp_md5sig_key *key;
1463
1464	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1465	if (!key)
1466		return -ENOENT;
1467	hlist_del_rcu(&key->node);
1468	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1469	kfree_rcu(key, rcu);
1470	return 0;
1471}
1472EXPORT_SYMBOL(tcp_md5_do_del);
1473
1474void tcp_clear_md5_list(struct sock *sk)
1475{
1476	struct tcp_sock *tp = tcp_sk(sk);
1477	struct tcp_md5sig_key *key;
1478	struct hlist_node *n;
1479	struct tcp_md5sig_info *md5sig;
1480
1481	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1482
1483	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1484		hlist_del_rcu(&key->node);
1485		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1486		kfree_rcu(key, rcu);
 
 
 
 
 
 
 
 
 
 
 
1487	}
1488}
1489
1490static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1491				 sockptr_t optval, int optlen)
1492{
1493	struct tcp_md5sig cmd;
1494	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1495	const union tcp_md5_addr *addr;
1496	u8 prefixlen = 32;
1497	int l3index = 0;
1498	bool l3flag;
1499	u8 flags;
1500
1501	if (optlen < sizeof(cmd))
1502		return -EINVAL;
1503
1504	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1505		return -EFAULT;
1506
1507	if (sin->sin_family != AF_INET)
1508		return -EINVAL;
1509
1510	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1511	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1512
1513	if (optname == TCP_MD5SIG_EXT &&
1514	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1515		prefixlen = cmd.tcpm_prefixlen;
1516		if (prefixlen > 32)
1517			return -EINVAL;
1518	}
1519
1520	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1521	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1522		struct net_device *dev;
1523
1524		rcu_read_lock();
1525		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1526		if (dev && netif_is_l3_master(dev))
1527			l3index = dev->ifindex;
1528
1529		rcu_read_unlock();
 
 
1530
1531		/* ok to reference set/not set outside of rcu;
1532		 * right now device MUST be an L3 master
1533		 */
1534		if (!dev || !l3index)
1535			return -EINVAL;
 
 
 
1536	}
1537
1538	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1539
1540	if (!cmd.tcpm_keylen)
1541		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1542
1543	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1544		return -EINVAL;
1545
1546	/* Don't allow keys for peers that have a matching TCP-AO key.
1547	 * See the comment in tcp_ao_add_cmd()
1548	 */
1549	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1550		return -EKEYREJECTED;
1551
1552	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1553			      cmd.tcpm_key, cmd.tcpm_keylen);
1554}
1555
1556static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1557				   __be32 daddr, __be32 saddr,
1558				   const struct tcphdr *th, int nbytes)
1559{
1560	struct tcp4_pseudohdr *bp;
1561	struct scatterlist sg;
1562	struct tcphdr *_th;
1563
1564	bp = hp->scratch;
 
 
 
 
 
 
1565	bp->saddr = saddr;
1566	bp->daddr = daddr;
1567	bp->pad = 0;
1568	bp->protocol = IPPROTO_TCP;
1569	bp->len = cpu_to_be16(nbytes);
1570
1571	_th = (struct tcphdr *)(bp + 1);
1572	memcpy(_th, th, sizeof(*th));
1573	_th->check = 0;
1574
1575	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1576	ahash_request_set_crypt(hp->req, &sg, NULL,
1577				sizeof(*bp) + sizeof(*th));
1578	return crypto_ahash_update(hp->req);
1579}
1580
1581static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1582			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1583{
1584	struct tcp_sigpool hp;
 
1585
1586	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1587		goto clear_hash_nostart;
 
 
1588
1589	if (crypto_ahash_init(hp.req))
 
 
1590		goto clear_hash;
1591	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1592		goto clear_hash;
1593	if (tcp_md5_hash_key(&hp, key))
1594		goto clear_hash;
1595	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1596	if (crypto_ahash_final(hp.req))
1597		goto clear_hash;
1598
1599	tcp_sigpool_end(&hp);
1600	return 0;
1601
1602clear_hash:
1603	tcp_sigpool_end(&hp);
1604clear_hash_nostart:
1605	memset(md5_hash, 0, 16);
1606	return 1;
1607}
1608
1609int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1610			const struct sock *sk,
1611			const struct sk_buff *skb)
1612{
1613	const struct tcphdr *th = tcp_hdr(skb);
1614	struct tcp_sigpool hp;
 
1615	__be32 saddr, daddr;
1616
1617	if (sk) { /* valid for establish/request sockets */
1618		saddr = sk->sk_rcv_saddr;
1619		daddr = sk->sk_daddr;
 
 
 
1620	} else {
1621		const struct iphdr *iph = ip_hdr(skb);
1622		saddr = iph->saddr;
1623		daddr = iph->daddr;
1624	}
1625
1626	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1627		goto clear_hash_nostart;
 
 
1628
1629	if (crypto_ahash_init(hp.req))
1630		goto clear_hash;
1631
1632	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
1633		goto clear_hash;
1634	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1635		goto clear_hash;
1636	if (tcp_md5_hash_key(&hp, key))
1637		goto clear_hash;
1638	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1639	if (crypto_ahash_final(hp.req))
 
1640		goto clear_hash;
1641
1642	tcp_sigpool_end(&hp);
1643	return 0;
1644
1645clear_hash:
1646	tcp_sigpool_end(&hp);
1647clear_hash_nostart:
1648	memset(md5_hash, 0, 16);
1649	return 1;
1650}
1651EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1652
1653#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655static void tcp_v4_init_req(struct request_sock *req,
1656			    const struct sock *sk_listener,
1657			    struct sk_buff *skb)
1658{
1659	struct inet_request_sock *ireq = inet_rsk(req);
1660	struct net *net = sock_net(sk_listener);
1661
1662	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1663	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1664	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1665}
1666
1667static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1668					  struct sk_buff *skb,
1669					  struct flowi *fl,
1670					  struct request_sock *req)
1671{
1672	tcp_v4_init_req(req, sk, skb);
1673
1674	if (security_inet_conn_request(sk, skb, req))
1675		return NULL;
 
 
1676
1677	return inet_csk_route_req(sk, &fl->u.ip4, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678}
1679
 
 
1680struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1681	.family		=	PF_INET,
1682	.obj_size	=	sizeof(struct tcp_request_sock),
1683	.rtx_syn_ack	=	tcp_rtx_synack,
1684	.send_ack	=	tcp_v4_reqsk_send_ack,
1685	.destructor	=	tcp_v4_reqsk_destructor,
1686	.send_reset	=	tcp_v4_send_reset,
1687	.syn_ack_timeout =	tcp_syn_ack_timeout,
1688};
1689
1690const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1691	.mss_clamp	=	TCP_MSS_DEFAULT,
1692#ifdef CONFIG_TCP_MD5SIG
1693	.req_md5_lookup	=	tcp_v4_md5_lookup,
 
1694	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
 
1695#endif
1696#ifdef CONFIG_TCP_AO
1697	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1698	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1699	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1700#endif
1701#ifdef CONFIG_SYN_COOKIES
1702	.cookie_init_seq =	cookie_v4_init_sequence,
1703#endif
1704	.route_req	=	tcp_v4_route_req,
1705	.init_seq	=	tcp_v4_init_seq,
1706	.init_ts_off	=	tcp_v4_init_ts_off,
1707	.send_synack	=	tcp_v4_send_synack,
1708};
1709
1710int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1711{
 
 
 
 
 
 
 
 
 
 
 
 
1712	/* Never answer to SYNs send to broadcast or multicast */
1713	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1714		goto drop;
1715
1716	return tcp_conn_request(&tcp_request_sock_ops,
1717				&tcp_request_sock_ipv4_ops, sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718
 
 
 
 
1719drop:
1720	tcp_listendrop(sk);
1721	return 0;
1722}
1723EXPORT_SYMBOL(tcp_v4_conn_request);
1724
1725
1726/*
1727 * The three way handshake has completed - we got a valid synack -
1728 * now create the new socket.
1729 */
1730struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1731				  struct request_sock *req,
1732				  struct dst_entry *dst,
1733				  struct request_sock *req_unhash,
1734				  bool *own_req)
1735{
1736	struct inet_request_sock *ireq;
1737	bool found_dup_sk = false;
1738	struct inet_sock *newinet;
1739	struct tcp_sock *newtp;
1740	struct sock *newsk;
1741#ifdef CONFIG_TCP_MD5SIG
1742	const union tcp_md5_addr *addr;
1743	struct tcp_md5sig_key *key;
1744	int l3index;
1745#endif
1746	struct ip_options_rcu *inet_opt;
1747
1748	if (sk_acceptq_is_full(sk))
1749		goto exit_overflow;
1750
1751	newsk = tcp_create_openreq_child(sk, req, skb);
1752	if (!newsk)
1753		goto exit_nonewsk;
1754
1755	newsk->sk_gso_type = SKB_GSO_TCPV4;
1756	inet_sk_rx_dst_set(newsk, skb);
1757
1758	newtp		      = tcp_sk(newsk);
1759	newinet		      = inet_sk(newsk);
1760	ireq		      = inet_rsk(req);
1761	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1762	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1763	newsk->sk_bound_dev_if = ireq->ir_iif;
1764	newinet->inet_saddr   = ireq->ir_loc_addr;
1765	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1766	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1767	newinet->mc_index     = inet_iif(skb);
1768	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1769	newinet->rcv_tos      = ip_hdr(skb)->tos;
1770	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1771	if (inet_opt)
1772		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1773	atomic_set(&newinet->inet_id, get_random_u16());
1774
1775	/* Set ToS of the new socket based upon the value of incoming SYN.
1776	 * ECT bits are set later in tcp_init_transfer().
1777	 */
1778	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1779		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1780
1781	if (!dst) {
1782		dst = inet_csk_route_child_sock(sk, newsk, req);
1783		if (!dst)
1784			goto put_and_exit;
1785	} else {
1786		/* syncookie case : see end of cookie_v4_check() */
1787	}
1788	sk_setup_caps(newsk, dst);
1789
1790	tcp_ca_openreq_child(newsk, dst);
1791
1792	tcp_sync_mss(newsk, dst_mtu(dst));
1793	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
 
 
 
1794
1795	tcp_initialize_rcv_mss(newsk);
 
 
 
 
1796
1797#ifdef CONFIG_TCP_MD5SIG
1798	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1799	/* Copy over the MD5 key from the original socket */
1800	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1801	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1802	if (key && !tcp_rsk_used_ao(req)) {
1803		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1804			goto put_and_exit;
1805		sk_gso_disable(newsk);
 
 
 
 
 
 
 
1806	}
1807#endif
1808#ifdef CONFIG_TCP_AO
1809	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1810		goto put_and_exit; /* OOM, release back memory */
1811#endif
1812
1813	if (__inet_inherit_port(sk, newsk) < 0)
1814		goto put_and_exit;
1815	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1816				       &found_dup_sk);
1817	if (likely(*own_req)) {
1818		tcp_move_syn(newtp, req);
1819		ireq->ireq_opt = NULL;
1820	} else {
1821		newinet->inet_opt = NULL;
1822
1823		if (!req_unhash && found_dup_sk) {
1824			/* This code path should only be executed in the
1825			 * syncookie case only
1826			 */
1827			bh_unlock_sock(newsk);
1828			sock_put(newsk);
1829			newsk = NULL;
1830		}
1831	}
1832	return newsk;
1833
1834exit_overflow:
1835	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1836exit_nonewsk:
1837	dst_release(dst);
1838exit:
1839	tcp_listendrop(sk);
1840	return NULL;
1841put_and_exit:
1842	newinet->inet_opt = NULL;
1843	inet_csk_prepare_forced_close(newsk);
1844	tcp_done(newsk);
1845	goto exit;
1846}
1847EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1848
1849static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1850{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1851#ifdef CONFIG_SYN_COOKIES
1852	const struct tcphdr *th = tcp_hdr(skb);
1853
1854	if (!th->syn)
1855		sk = cookie_v4_check(sk, skb);
1856#endif
1857	return sk;
1858}
1859
1860u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1861			 struct tcphdr *th, u32 *cookie)
1862{
1863	u16 mss = 0;
1864#ifdef CONFIG_SYN_COOKIES
1865	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1866				    &tcp_request_sock_ipv4_ops, sk, th);
1867	if (mss) {
1868		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1869		tcp_synq_overflow(sk);
 
 
 
 
 
 
 
 
1870	}
1871#endif
1872	return mss;
1873}
1874
1875INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1876							   u32));
1877/* The socket must have it's spinlock held when we get
1878 * here, unless it is a TCP_LISTEN socket.
1879 *
1880 * We have a potential double-lock case here, so even when
1881 * doing backlog processing we use the BH locking scheme.
1882 * This is because we cannot sleep with the original spinlock
1883 * held.
1884 */
1885int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1886{
1887	enum skb_drop_reason reason;
1888	struct sock *rsk;
 
 
 
 
 
 
 
 
 
 
1889
1890	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1891		struct dst_entry *dst;
1892
1893		dst = rcu_dereference_protected(sk->sk_rx_dst,
1894						lockdep_sock_is_held(sk));
1895
1896		sock_rps_save_rxhash(sk, skb);
1897		sk_mark_napi_id(sk, skb);
1898		if (dst) {
1899			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1900			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1901					     dst, 0)) {
1902				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1903				dst_release(dst);
1904			}
1905		}
1906		tcp_rcv_established(sk, skb);
1907		return 0;
1908	}
1909
1910	reason = SKB_DROP_REASON_NOT_SPECIFIED;
1911	if (tcp_checksum_complete(skb))
1912		goto csum_err;
1913
1914	if (sk->sk_state == TCP_LISTEN) {
1915		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
1916
1917		if (!nsk)
1918			goto discard;
 
1919		if (nsk != sk) {
 
1920			if (tcp_child_process(sk, nsk, skb)) {
1921				rsk = nsk;
1922				goto reset;
1923			}
1924			return 0;
1925		}
1926	} else
1927		sock_rps_save_rxhash(sk, skb);
1928
1929	if (tcp_rcv_state_process(sk, skb)) {
1930		rsk = sk;
1931		goto reset;
1932	}
1933	return 0;
1934
1935reset:
1936	tcp_v4_send_reset(rsk, skb);
1937discard:
1938	kfree_skb_reason(skb, reason);
1939	/* Be careful here. If this function gets more complicated and
1940	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1941	 * might be destroyed here. This current version compiles correctly,
1942	 * but you have been warned.
1943	 */
1944	return 0;
1945
1946csum_err:
1947	reason = SKB_DROP_REASON_TCP_CSUM;
1948	trace_tcp_bad_csum(skb);
1949	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1950	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1951	goto discard;
1952}
1953EXPORT_SYMBOL(tcp_v4_do_rcv);
1954
1955int tcp_v4_early_demux(struct sk_buff *skb)
1956{
1957	struct net *net = dev_net(skb->dev);
1958	const struct iphdr *iph;
1959	const struct tcphdr *th;
1960	struct sock *sk;
1961
1962	if (skb->pkt_type != PACKET_HOST)
1963		return 0;
1964
1965	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1966		return 0;
1967
1968	iph = ip_hdr(skb);
1969	th = tcp_hdr(skb);
1970
1971	if (th->doff < sizeof(struct tcphdr) / 4)
1972		return 0;
1973
1974	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1975				       iph->saddr, th->source,
1976				       iph->daddr, ntohs(th->dest),
1977				       skb->skb_iif, inet_sdif(skb));
1978	if (sk) {
1979		skb->sk = sk;
1980		skb->destructor = sock_edemux;
1981		if (sk_fullsock(sk)) {
1982			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1983
1984			if (dst)
1985				dst = dst_check(dst, 0);
1986			if (dst &&
1987			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1988				skb_dst_set_noref(skb, dst);
1989		}
1990	}
1991	return 0;
1992}
1993
1994bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1995		     enum skb_drop_reason *reason)
1996{
1997	u32 limit, tail_gso_size, tail_gso_segs;
1998	struct skb_shared_info *shinfo;
1999	const struct tcphdr *th;
2000	struct tcphdr *thtail;
2001	struct sk_buff *tail;
2002	unsigned int hdrlen;
2003	bool fragstolen;
2004	u32 gso_segs;
2005	u32 gso_size;
2006	int delta;
2007
2008	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2009	 * we can fix skb->truesize to its real value to avoid future drops.
2010	 * This is valid because skb is not yet charged to the socket.
2011	 * It has been noticed pure SACK packets were sometimes dropped
2012	 * (if cooked by drivers without copybreak feature).
2013	 */
2014	skb_condense(skb);
2015
2016	skb_dst_drop(skb);
2017
2018	if (unlikely(tcp_checksum_complete(skb))) {
2019		bh_unlock_sock(sk);
2020		trace_tcp_bad_csum(skb);
2021		*reason = SKB_DROP_REASON_TCP_CSUM;
2022		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2023		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2024		return true;
2025	}
2026
2027	/* Attempt coalescing to last skb in backlog, even if we are
2028	 * above the limits.
2029	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2030	 */
2031	th = (const struct tcphdr *)skb->data;
2032	hdrlen = th->doff * 4;
2033
2034	tail = sk->sk_backlog.tail;
2035	if (!tail)
2036		goto no_coalesce;
2037	thtail = (struct tcphdr *)tail->data;
2038
2039	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2040	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2041	    ((TCP_SKB_CB(tail)->tcp_flags |
2042	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2043	    !((TCP_SKB_CB(tail)->tcp_flags &
2044	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2045	    ((TCP_SKB_CB(tail)->tcp_flags ^
2046	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2047#ifdef CONFIG_TLS_DEVICE
2048	    tail->decrypted != skb->decrypted ||
2049#endif
2050	    !mptcp_skb_can_collapse(tail, skb) ||
2051	    thtail->doff != th->doff ||
2052	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2053		goto no_coalesce;
2054
2055	__skb_pull(skb, hdrlen);
2056
2057	shinfo = skb_shinfo(skb);
2058	gso_size = shinfo->gso_size ?: skb->len;
2059	gso_segs = shinfo->gso_segs ?: 1;
2060
2061	shinfo = skb_shinfo(tail);
2062	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2063	tail_gso_segs = shinfo->gso_segs ?: 1;
2064
2065	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2066		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2067
2068		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2069			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2070			thtail->window = th->window;
2071		}
2072
2073		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2074		 * thtail->fin, so that the fast path in tcp_rcv_established()
2075		 * is not entered if we append a packet with a FIN.
2076		 * SYN, RST, URG are not present.
2077		 * ACK is set on both packets.
2078		 * PSH : we do not really care in TCP stack,
2079		 *       at least for 'GRO' packets.
2080		 */
2081		thtail->fin |= th->fin;
2082		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2083
2084		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2085			TCP_SKB_CB(tail)->has_rxtstamp = true;
2086			tail->tstamp = skb->tstamp;
2087			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2088		}
2089
2090		/* Not as strict as GRO. We only need to carry mss max value */
2091		shinfo->gso_size = max(gso_size, tail_gso_size);
2092		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2093
2094		sk->sk_backlog.len += delta;
2095		__NET_INC_STATS(sock_net(sk),
2096				LINUX_MIB_TCPBACKLOGCOALESCE);
2097		kfree_skb_partial(skb, fragstolen);
2098		return false;
2099	}
2100	__skb_push(skb, hdrlen);
2101
2102no_coalesce:
2103	limit = (u32)READ_ONCE(sk->sk_rcvbuf) + (u32)(READ_ONCE(sk->sk_sndbuf) >> 1);
2104
2105	/* Only socket owner can try to collapse/prune rx queues
2106	 * to reduce memory overhead, so add a little headroom here.
2107	 * Few sockets backlog are possibly concurrently non empty.
2108	 */
2109	limit += 64 * 1024;
2110
2111	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2112		bh_unlock_sock(sk);
2113		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2114		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2115		return true;
2116	}
2117	return false;
2118}
2119EXPORT_SYMBOL(tcp_add_backlog);
2120
2121int tcp_filter(struct sock *sk, struct sk_buff *skb)
2122{
2123	struct tcphdr *th = (struct tcphdr *)skb->data;
2124
2125	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2126}
2127EXPORT_SYMBOL(tcp_filter);
2128
2129static void tcp_v4_restore_cb(struct sk_buff *skb)
2130{
2131	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2132		sizeof(struct inet_skb_parm));
2133}
2134
2135static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2136			   const struct tcphdr *th)
2137{
2138	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2139	 * barrier() makes sure compiler wont play fool^Waliasing games.
2140	 */
2141	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2142		sizeof(struct inet_skb_parm));
2143	barrier();
2144
2145	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2146	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2147				    skb->len - th->doff * 4);
2148	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2149	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2150	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
2151	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2152	TCP_SKB_CB(skb)->sacked	 = 0;
2153	TCP_SKB_CB(skb)->has_rxtstamp =
2154			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2155}
2156
2157/*
2158 *	From tcp_input.c
2159 */
2160
2161int tcp_v4_rcv(struct sk_buff *skb)
2162{
2163	struct net *net = dev_net(skb->dev);
2164	enum skb_drop_reason drop_reason;
2165	int sdif = inet_sdif(skb);
2166	int dif = inet_iif(skb);
2167	const struct iphdr *iph;
2168	const struct tcphdr *th;
2169	bool refcounted;
2170	struct sock *sk;
2171	int ret;
 
2172
2173	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2174	if (skb->pkt_type != PACKET_HOST)
2175		goto discard_it;
2176
2177	/* Count it even if it's bad */
2178	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2179
2180	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2181		goto discard_it;
2182
2183	th = (const struct tcphdr *)skb->data;
2184
2185	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2186		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2187		goto bad_packet;
2188	}
2189	if (!pskb_may_pull(skb, th->doff * 4))
2190		goto discard_it;
2191
2192	/* An explanation is required here, I think.
2193	 * Packet length and doff are validated by header prediction,
2194	 * provided case of th->doff==0 is eliminated.
2195	 * So, we defer the checks. */
 
 
2196
2197	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2198		goto csum_error;
 
 
 
 
 
 
 
2199
2200	th = (const struct tcphdr *)skb->data;
2201	iph = ip_hdr(skb);
2202lookup:
2203	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2204			       skb, __tcp_hdrlen(th), th->source,
2205			       th->dest, sdif, &refcounted);
2206	if (!sk)
2207		goto no_tcp_socket;
2208
2209process:
2210	if (sk->sk_state == TCP_TIME_WAIT)
2211		goto do_time_wait;
2212
2213	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2214		struct request_sock *req = inet_reqsk(sk);
2215		bool req_stolen = false;
2216		struct sock *nsk;
2217
2218		sk = req->rsk_listener;
2219		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2220			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2221		else
2222			drop_reason = tcp_inbound_hash(sk, req, skb,
2223						       &iph->saddr, &iph->daddr,
2224						       AF_INET, dif, sdif);
2225		if (unlikely(drop_reason)) {
2226			sk_drops_add(sk, skb);
2227			reqsk_put(req);
2228			goto discard_it;
2229		}
2230		if (tcp_checksum_complete(skb)) {
2231			reqsk_put(req);
2232			goto csum_error;
2233		}
2234		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2235			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2236			if (!nsk) {
2237				inet_csk_reqsk_queue_drop_and_put(sk, req);
2238				goto lookup;
2239			}
2240			sk = nsk;
2241			/* reuseport_migrate_sock() has already held one sk_refcnt
2242			 * before returning.
2243			 */
2244		} else {
2245			/* We own a reference on the listener, increase it again
2246			 * as we might lose it too soon.
2247			 */
2248			sock_hold(sk);
2249		}
2250		refcounted = true;
2251		nsk = NULL;
2252		if (!tcp_filter(sk, skb)) {
2253			th = (const struct tcphdr *)skb->data;
2254			iph = ip_hdr(skb);
2255			tcp_v4_fill_cb(skb, iph, th);
2256			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2257		} else {
2258			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2259		}
2260		if (!nsk) {
2261			reqsk_put(req);
2262			if (req_stolen) {
2263				/* Another cpu got exclusive access to req
2264				 * and created a full blown socket.
2265				 * Try to feed this packet to this socket
2266				 * instead of discarding it.
2267				 */
2268				tcp_v4_restore_cb(skb);
2269				sock_put(sk);
2270				goto lookup;
2271			}
2272			goto discard_and_relse;
2273		}
2274		nf_reset_ct(skb);
2275		if (nsk == sk) {
2276			reqsk_put(req);
2277			tcp_v4_restore_cb(skb);
2278		} else if (tcp_child_process(sk, nsk, skb)) {
2279			tcp_v4_send_reset(nsk, skb);
2280			goto discard_and_relse;
2281		} else {
2282			sock_put(sk);
2283			return 0;
2284		}
2285	}
2286
2287	if (static_branch_unlikely(&ip4_min_ttl)) {
2288		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2289		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2290			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2291			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2292			goto discard_and_relse;
2293		}
2294	}
2295
2296	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2297		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2298		goto discard_and_relse;
2299	}
2300
2301	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2302				       AF_INET, dif, sdif);
2303	if (drop_reason)
2304		goto discard_and_relse;
 
2305
2306	nf_reset_ct(skb);
2307
2308	if (tcp_filter(sk, skb)) {
2309		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2310		goto discard_and_relse;
2311	}
2312	th = (const struct tcphdr *)skb->data;
2313	iph = ip_hdr(skb);
2314	tcp_v4_fill_cb(skb, iph, th);
2315
2316	skb->dev = NULL;
2317
2318	if (sk->sk_state == TCP_LISTEN) {
2319		ret = tcp_v4_do_rcv(sk, skb);
2320		goto put_and_return;
2321	}
2322
2323	sk_incoming_cpu_update(sk);
2324
2325	bh_lock_sock_nested(sk);
2326	tcp_segs_in(tcp_sk(sk), skb);
2327	ret = 0;
2328	if (!sock_owned_by_user(sk)) {
2329		ret = tcp_v4_do_rcv(sk, skb);
2330	} else {
2331		if (tcp_add_backlog(sk, skb, &drop_reason))
2332			goto discard_and_relse;
 
 
 
 
 
 
 
 
 
 
 
 
2333	}
2334	bh_unlock_sock(sk);
2335
2336put_and_return:
2337	if (refcounted)
2338		sock_put(sk);
2339
2340	return ret;
2341
2342no_tcp_socket:
2343	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2344	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2345		goto discard_it;
2346
2347	tcp_v4_fill_cb(skb, iph, th);
2348
2349	if (tcp_checksum_complete(skb)) {
2350csum_error:
2351		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2352		trace_tcp_bad_csum(skb);
2353		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2354bad_packet:
2355		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2356	} else {
2357		tcp_v4_send_reset(NULL, skb);
2358	}
2359
2360discard_it:
2361	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2362	/* Discard frame. */
2363	kfree_skb_reason(skb, drop_reason);
2364	return 0;
2365
2366discard_and_relse:
2367	sk_drops_add(sk, skb);
2368	if (refcounted)
2369		sock_put(sk);
2370	goto discard_it;
2371
2372do_time_wait:
2373	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2374		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2375		inet_twsk_put(inet_twsk(sk));
2376		goto discard_it;
2377	}
2378
2379	tcp_v4_fill_cb(skb, iph, th);
2380
2381	if (tcp_checksum_complete(skb)) {
2382		inet_twsk_put(inet_twsk(sk));
2383		goto csum_error;
2384	}
2385	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2386	case TCP_TW_SYN: {
2387		struct sock *sk2 = inet_lookup_listener(net,
2388							net->ipv4.tcp_death_row.hashinfo,
2389							skb, __tcp_hdrlen(th),
2390							iph->saddr, th->source,
2391							iph->daddr, th->dest,
2392							inet_iif(skb),
2393							sdif);
2394		if (sk2) {
2395			inet_twsk_deschedule_put(inet_twsk(sk));
 
2396			sk = sk2;
2397			tcp_v4_restore_cb(skb);
2398			refcounted = false;
2399			goto process;
2400		}
 
2401	}
2402		/* to ACK */
2403		fallthrough;
2404	case TCP_TW_ACK:
2405		tcp_v4_timewait_ack(sk, skb);
2406		break;
2407	case TCP_TW_RST:
2408		tcp_v4_send_reset(sk, skb);
2409		inet_twsk_deschedule_put(inet_twsk(sk));
2410		goto discard_it;
2411	case TCP_TW_SUCCESS:;
2412	}
2413	goto discard_it;
2414}
2415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2416static struct timewait_sock_ops tcp_timewait_sock_ops = {
2417	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2418	.twsk_unique	= tcp_twsk_unique,
2419	.twsk_destructor= tcp_twsk_destructor,
 
2420};
2421
2422void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2423{
2424	struct dst_entry *dst = skb_dst(skb);
2425
2426	if (dst && dst_hold_safe(dst)) {
2427		rcu_assign_pointer(sk->sk_rx_dst, dst);
2428		sk->sk_rx_dst_ifindex = skb->skb_iif;
2429	}
2430}
2431EXPORT_SYMBOL(inet_sk_rx_dst_set);
2432
2433const struct inet_connection_sock_af_ops ipv4_specific = {
2434	.queue_xmit	   = ip_queue_xmit,
2435	.send_check	   = tcp_v4_send_check,
2436	.rebuild_header	   = inet_sk_rebuild_header,
2437	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2438	.conn_request	   = tcp_v4_conn_request,
2439	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
 
2440	.net_header_len	   = sizeof(struct iphdr),
2441	.setsockopt	   = ip_setsockopt,
2442	.getsockopt	   = ip_getsockopt,
2443	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2444	.sockaddr_len	   = sizeof(struct sockaddr_in),
2445	.mtu_reduced	   = tcp_v4_mtu_reduced,
 
 
 
 
2446};
2447EXPORT_SYMBOL(ipv4_specific);
2448
2449#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2450static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2451#ifdef CONFIG_TCP_MD5SIG
2452	.md5_lookup		= tcp_v4_md5_lookup,
2453	.calc_md5_hash		= tcp_v4_md5_hash_skb,
 
2454	.md5_parse		= tcp_v4_parse_md5_keys,
2455#endif
2456#ifdef CONFIG_TCP_AO
2457	.ao_lookup		= tcp_v4_ao_lookup,
2458	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2459	.ao_parse		= tcp_v4_parse_ao,
2460	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2461#endif
2462};
2463#endif
2464
2465/* NOTE: A lot of things set to zero explicitly by call to
2466 *       sk_alloc() so need not be done here.
2467 */
2468static int tcp_v4_init_sock(struct sock *sk)
2469{
2470	struct inet_connection_sock *icsk = inet_csk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2471
2472	tcp_init_sock(sk);
 
 
 
2473
2474	icsk->icsk_af_ops = &ipv4_specific;
2475
2476#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2477	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2478#endif
2479
2480	return 0;
2481}
 
 
 
 
 
 
 
 
 
 
 
 
 
2482
2483#ifdef CONFIG_TCP_MD5SIG
2484static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2485{
2486	struct tcp_md5sig_info *md5sig;
2487
2488	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2489	kfree(md5sig);
2490	static_branch_slow_dec_deferred(&tcp_md5_needed);
2491	tcp_md5_release_sigpool();
2492}
2493#endif
2494
2495void tcp_v4_destroy_sock(struct sock *sk)
2496{
2497	struct tcp_sock *tp = tcp_sk(sk);
2498
2499	trace_tcp_destroy_sock(sk);
2500
2501	tcp_clear_xmit_timers(sk);
2502
2503	tcp_cleanup_congestion_control(sk);
2504
2505	tcp_cleanup_ulp(sk);
2506
2507	/* Cleanup up the write buffer. */
2508	tcp_write_queue_purge(sk);
2509
2510	/* Check if we want to disable active TFO */
2511	tcp_fastopen_active_disable_ofo_check(sk);
2512
2513	/* Cleans up our, hopefully empty, out_of_order_queue. */
2514	skb_rbtree_purge(&tp->out_of_order_queue);
2515
2516#ifdef CONFIG_TCP_MD5SIG
2517	/* Clean up the MD5 key list, if any */
2518	if (tp->md5sig_info) {
2519		struct tcp_md5sig_info *md5sig;
 
 
 
 
2520
2521		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2522		tcp_clear_md5_list(sk);
2523		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2524		rcu_assign_pointer(tp->md5sig_info, NULL);
2525	}
2526#endif
2527	tcp_ao_destroy_sock(sk, false);
 
 
2528
2529	/* Clean up a referenced TCP bind bucket. */
2530	if (inet_csk(sk)->icsk_bind_hash)
2531		inet_put_port(sk);
2532
2533	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
 
 
 
 
 
 
2534
2535	/* If socket is aborted during connect operation */
2536	tcp_free_fastopen_req(tp);
2537	tcp_fastopen_destroy_cipher(sk);
2538	tcp_saved_syn_free(tp);
 
 
2539
2540	sk_sockets_allocated_dec(sk);
2541}
2542EXPORT_SYMBOL(tcp_v4_destroy_sock);
2543
2544#ifdef CONFIG_PROC_FS
2545/* Proc filesystem TCP sock list dumping. */
2546
2547static unsigned short seq_file_family(const struct seq_file *seq);
2548
2549static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2550{
2551	unsigned short family = seq_file_family(seq);
2552
2553	/* AF_UNSPEC is used as a match all */
2554	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2555		net_eq(sock_net(sk), seq_file_net(seq)));
2556}
2557
2558/* Find a non empty bucket (starting from st->bucket)
2559 * and return the first sk from it.
2560 */
2561static void *listening_get_first(struct seq_file *seq)
2562{
2563	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2564	struct tcp_iter_state *st = seq->private;
2565
2566	st->offset = 0;
2567	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2568		struct inet_listen_hashbucket *ilb2;
2569		struct hlist_nulls_node *node;
2570		struct sock *sk;
2571
2572		ilb2 = &hinfo->lhash2[st->bucket];
2573		if (hlist_nulls_empty(&ilb2->nulls_head))
2574			continue;
2575
2576		spin_lock(&ilb2->lock);
2577		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2578			if (seq_sk_match(seq, sk))
2579				return sk;
2580		}
2581		spin_unlock(&ilb2->lock);
2582	}
2583
2584	return NULL;
2585}
2586
2587/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2588 * If "cur" is the last one in the st->bucket,
2589 * call listening_get_first() to return the first sk of the next
2590 * non empty bucket.
2591 */
2592static void *listening_get_next(struct seq_file *seq, void *cur)
2593{
2594	struct tcp_iter_state *st = seq->private;
2595	struct inet_listen_hashbucket *ilb2;
2596	struct hlist_nulls_node *node;
2597	struct inet_hashinfo *hinfo;
2598	struct sock *sk = cur;
 
 
 
2599
 
 
 
 
 
 
 
 
2600	++st->num;
2601	++st->offset;
2602
2603	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2604	sk_nulls_for_each_from(sk, node) {
2605		if (seq_sk_match(seq, sk))
2606			return sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2607	}
2608
2609	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2610	ilb2 = &hinfo->lhash2[st->bucket];
2611	spin_unlock(&ilb2->lock);
2612	++st->bucket;
2613	return listening_get_first(seq);
2614}
2615
2616static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2617{
2618	struct tcp_iter_state *st = seq->private;
2619	void *rc;
2620
2621	st->bucket = 0;
2622	st->offset = 0;
2623	rc = listening_get_first(seq);
2624
2625	while (rc && *pos) {
2626		rc = listening_get_next(seq, rc);
2627		--*pos;
2628	}
2629	return rc;
2630}
2631
2632static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2633				const struct tcp_iter_state *st)
2634{
2635	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
 
2636}
2637
2638/*
2639 * Get first established socket starting from bucket given in st->bucket.
2640 * If st->bucket is zero, the very first socket in the hash is returned.
2641 */
2642static void *established_get_first(struct seq_file *seq)
2643{
2644	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2645	struct tcp_iter_state *st = seq->private;
 
 
2646
2647	st->offset = 0;
2648	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2649		struct sock *sk;
2650		struct hlist_nulls_node *node;
2651		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2652
2653		cond_resched();
2654
2655		/* Lockless fast path for the common case of empty buckets */
2656		if (empty_bucket(hinfo, st))
2657			continue;
2658
2659		spin_lock_bh(lock);
2660		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2661			if (seq_sk_match(seq, sk))
2662				return sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663		}
2664		spin_unlock_bh(lock);
 
2665	}
2666
2667	return NULL;
2668}
2669
2670static void *established_get_next(struct seq_file *seq, void *cur)
2671{
2672	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
 
 
2673	struct tcp_iter_state *st = seq->private;
2674	struct hlist_nulls_node *node;
2675	struct sock *sk = cur;
2676
2677	++st->num;
2678	++st->offset;
2679
2680	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681
2682	sk_nulls_for_each_from(sk, node) {
2683		if (seq_sk_match(seq, sk))
2684			return sk;
2685	}
2686
2687	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2688	++st->bucket;
2689	return established_get_first(seq);
 
 
 
 
2690}
2691
2692static void *established_get_idx(struct seq_file *seq, loff_t pos)
2693{
2694	struct tcp_iter_state *st = seq->private;
2695	void *rc;
2696
2697	st->bucket = 0;
2698	rc = established_get_first(seq);
2699
2700	while (rc && pos) {
2701		rc = established_get_next(seq, rc);
2702		--pos;
2703	}
2704	return rc;
2705}
2706
2707static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2708{
2709	void *rc;
2710	struct tcp_iter_state *st = seq->private;
2711
2712	st->state = TCP_SEQ_STATE_LISTENING;
2713	rc	  = listening_get_idx(seq, &pos);
2714
2715	if (!rc) {
2716		st->state = TCP_SEQ_STATE_ESTABLISHED;
2717		rc	  = established_get_idx(seq, pos);
2718	}
2719
2720	return rc;
2721}
2722
2723static void *tcp_seek_last_pos(struct seq_file *seq)
2724{
2725	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2726	struct tcp_iter_state *st = seq->private;
2727	int bucket = st->bucket;
2728	int offset = st->offset;
2729	int orig_num = st->num;
2730	void *rc = NULL;
2731
2732	switch (st->state) {
 
2733	case TCP_SEQ_STATE_LISTENING:
2734		if (st->bucket > hinfo->lhash2_mask)
2735			break;
2736		rc = listening_get_first(seq);
2737		while (offset-- && rc && bucket == st->bucket)
 
2738			rc = listening_get_next(seq, rc);
2739		if (rc)
2740			break;
2741		st->bucket = 0;
 
 
 
2742		st->state = TCP_SEQ_STATE_ESTABLISHED;
2743		fallthrough;
2744	case TCP_SEQ_STATE_ESTABLISHED:
2745		if (st->bucket > hinfo->ehash_mask)
2746			break;
2747		rc = established_get_first(seq);
2748		while (offset-- && rc && bucket == st->bucket)
2749			rc = established_get_next(seq, rc);
2750	}
2751
2752	st->num = orig_num;
2753
2754	return rc;
2755}
2756
2757void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2758{
2759	struct tcp_iter_state *st = seq->private;
2760	void *rc;
2761
2762	if (*pos && *pos == st->last_pos) {
2763		rc = tcp_seek_last_pos(seq);
2764		if (rc)
2765			goto out;
2766	}
2767
2768	st->state = TCP_SEQ_STATE_LISTENING;
2769	st->num = 0;
2770	st->bucket = 0;
2771	st->offset = 0;
2772	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2773
2774out:
2775	st->last_pos = *pos;
2776	return rc;
2777}
2778EXPORT_SYMBOL(tcp_seq_start);
2779
2780void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2781{
2782	struct tcp_iter_state *st = seq->private;
2783	void *rc = NULL;
2784
2785	if (v == SEQ_START_TOKEN) {
2786		rc = tcp_get_idx(seq, 0);
2787		goto out;
2788	}
2789
2790	switch (st->state) {
 
2791	case TCP_SEQ_STATE_LISTENING:
2792		rc = listening_get_next(seq, v);
2793		if (!rc) {
2794			st->state = TCP_SEQ_STATE_ESTABLISHED;
2795			st->bucket = 0;
2796			st->offset = 0;
2797			rc	  = established_get_first(seq);
2798		}
2799		break;
2800	case TCP_SEQ_STATE_ESTABLISHED:
 
2801		rc = established_get_next(seq, v);
2802		break;
2803	}
2804out:
2805	++*pos;
2806	st->last_pos = *pos;
2807	return rc;
2808}
2809EXPORT_SYMBOL(tcp_seq_next);
2810
2811void tcp_seq_stop(struct seq_file *seq, void *v)
2812{
2813	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2814	struct tcp_iter_state *st = seq->private;
2815
2816	switch (st->state) {
 
 
 
 
 
2817	case TCP_SEQ_STATE_LISTENING:
2818		if (v != SEQ_START_TOKEN)
2819			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2820		break;
 
2821	case TCP_SEQ_STATE_ESTABLISHED:
2822		if (v)
2823			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2824		break;
2825	}
2826}
2827EXPORT_SYMBOL(tcp_seq_stop);
2828
2829static void get_openreq4(const struct request_sock *req,
2830			 struct seq_file *f, int i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2831{
2832	const struct inet_request_sock *ireq = inet_rsk(req);
2833	long delta = req->rsk_timer.expires - jiffies;
2834
2835	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2836		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2837		i,
2838		ireq->ir_loc_addr,
2839		ireq->ir_num,
2840		ireq->ir_rmt_addr,
2841		ntohs(ireq->ir_rmt_port),
2842		TCP_SYN_RECV,
2843		0, 0, /* could print option size, but that is af dependent. */
2844		1,    /* timers active (only the expire timer) */
2845		jiffies_delta_to_clock_t(delta),
2846		req->num_timeout,
2847		from_kuid_munged(seq_user_ns(f),
2848				 sock_i_uid(req->rsk_listener)),
2849		0,  /* non standard timer */
2850		0, /* open_requests have no inode */
2851		0,
2852		req);
 
2853}
2854
2855static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2856{
2857	int timer_active;
2858	unsigned long timer_expires;
2859	const struct tcp_sock *tp = tcp_sk(sk);
2860	const struct inet_connection_sock *icsk = inet_csk(sk);
2861	const struct inet_sock *inet = inet_sk(sk);
2862	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2863	__be32 dest = inet->inet_daddr;
2864	__be32 src = inet->inet_rcv_saddr;
2865	__u16 destp = ntohs(inet->inet_dport);
2866	__u16 srcp = ntohs(inet->inet_sport);
2867	int rx_queue;
2868	int state;
2869
2870	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2871	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2872	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2873		timer_active	= 1;
2874		timer_expires	= icsk->icsk_timeout;
2875	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2876		timer_active	= 4;
2877		timer_expires	= icsk->icsk_timeout;
2878	} else if (timer_pending(&sk->sk_timer)) {
2879		timer_active	= 2;
2880		timer_expires	= sk->sk_timer.expires;
2881	} else {
2882		timer_active	= 0;
2883		timer_expires = jiffies;
2884	}
2885
2886	state = inet_sk_state_load(sk);
2887	if (state == TCP_LISTEN)
2888		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2889	else
2890		/* Because we don't lock the socket,
2891		 * we might find a transient negative value.
2892		 */
2893		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2894				      READ_ONCE(tp->copied_seq), 0);
2895
2896	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2897			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2898		i, src, srcp, dest, destp, state,
2899		READ_ONCE(tp->write_seq) - tp->snd_una,
2900		rx_queue,
2901		timer_active,
2902		jiffies_delta_to_clock_t(timer_expires - jiffies),
2903		icsk->icsk_retransmits,
2904		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2905		icsk->icsk_probes_out,
2906		sock_i_ino(sk),
2907		refcount_read(&sk->sk_refcnt), sk,
2908		jiffies_to_clock_t(icsk->icsk_rto),
2909		jiffies_to_clock_t(icsk->icsk_ack.ato),
2910		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2911		tcp_snd_cwnd(tp),
2912		state == TCP_LISTEN ?
2913		    fastopenq->max_qlen :
2914		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2915}
2916
2917static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2918			       struct seq_file *f, int i)
2919{
2920	long delta = tw->tw_timer.expires - jiffies;
2921	__be32 dest, src;
2922	__u16 destp, srcp;
 
 
 
 
2923
2924	dest  = tw->tw_daddr;
2925	src   = tw->tw_rcv_saddr;
2926	destp = ntohs(tw->tw_dport);
2927	srcp  = ntohs(tw->tw_sport);
2928
2929	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2930		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2931		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2932		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2933		refcount_read(&tw->tw_refcnt), tw);
2934}
2935
2936#define TMPSZ 150
2937
2938static int tcp4_seq_show(struct seq_file *seq, void *v)
2939{
2940	struct tcp_iter_state *st;
2941	struct sock *sk = v;
2942
2943	seq_setwidth(seq, TMPSZ - 1);
2944	if (v == SEQ_START_TOKEN) {
2945		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
 
2946			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2947			   "inode");
2948		goto out;
2949	}
2950	st = seq->private;
2951
2952	if (sk->sk_state == TCP_TIME_WAIT)
2953		get_timewait4_sock(v, seq, st->num);
2954	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2955		get_openreq4(v, seq, st->num);
2956	else
2957		get_tcp4_sock(v, seq, st->num);
 
 
 
 
 
 
 
2958out:
2959	seq_pad(seq, '\n');
2960	return 0;
2961}
2962
2963#ifdef CONFIG_BPF_SYSCALL
2964struct bpf_tcp_iter_state {
2965	struct tcp_iter_state state;
2966	unsigned int cur_sk;
2967	unsigned int end_sk;
2968	unsigned int max_sk;
2969	struct sock **batch;
2970	bool st_bucket_done;
2971};
2972
2973struct bpf_iter__tcp {
2974	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2975	__bpf_md_ptr(struct sock_common *, sk_common);
2976	uid_t uid __aligned(8);
2977};
2978
2979static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2980			     struct sock_common *sk_common, uid_t uid)
2981{
2982	struct bpf_iter__tcp ctx;
2983
2984	meta->seq_num--;  /* skip SEQ_START_TOKEN */
2985	ctx.meta = meta;
2986	ctx.sk_common = sk_common;
2987	ctx.uid = uid;
2988	return bpf_iter_run_prog(prog, &ctx);
2989}
2990
2991static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
2992{
2993	while (iter->cur_sk < iter->end_sk)
2994		sock_gen_put(iter->batch[iter->cur_sk++]);
2995}
2996
2997static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
2998				      unsigned int new_batch_sz)
2999{
3000	struct sock **new_batch;
3001
3002	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3003			     GFP_USER | __GFP_NOWARN);
3004	if (!new_batch)
3005		return -ENOMEM;
3006
3007	bpf_iter_tcp_put_batch(iter);
3008	kvfree(iter->batch);
3009	iter->batch = new_batch;
3010	iter->max_sk = new_batch_sz;
3011
3012	return 0;
3013}
3014
3015static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3016						 struct sock *start_sk)
3017{
3018	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3019	struct bpf_tcp_iter_state *iter = seq->private;
3020	struct tcp_iter_state *st = &iter->state;
3021	struct hlist_nulls_node *node;
3022	unsigned int expected = 1;
3023	struct sock *sk;
3024
3025	sock_hold(start_sk);
3026	iter->batch[iter->end_sk++] = start_sk;
3027
3028	sk = sk_nulls_next(start_sk);
3029	sk_nulls_for_each_from(sk, node) {
3030		if (seq_sk_match(seq, sk)) {
3031			if (iter->end_sk < iter->max_sk) {
3032				sock_hold(sk);
3033				iter->batch[iter->end_sk++] = sk;
3034			}
3035			expected++;
3036		}
3037	}
3038	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3039
3040	return expected;
3041}
3042
3043static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3044						   struct sock *start_sk)
3045{
3046	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3047	struct bpf_tcp_iter_state *iter = seq->private;
3048	struct tcp_iter_state *st = &iter->state;
3049	struct hlist_nulls_node *node;
3050	unsigned int expected = 1;
3051	struct sock *sk;
3052
3053	sock_hold(start_sk);
3054	iter->batch[iter->end_sk++] = start_sk;
3055
3056	sk = sk_nulls_next(start_sk);
3057	sk_nulls_for_each_from(sk, node) {
3058		if (seq_sk_match(seq, sk)) {
3059			if (iter->end_sk < iter->max_sk) {
3060				sock_hold(sk);
3061				iter->batch[iter->end_sk++] = sk;
3062			}
3063			expected++;
3064		}
3065	}
3066	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3067
3068	return expected;
3069}
3070
3071static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3072{
3073	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3074	struct bpf_tcp_iter_state *iter = seq->private;
3075	struct tcp_iter_state *st = &iter->state;
3076	unsigned int expected;
3077	bool resized = false;
3078	struct sock *sk;
3079
3080	/* The st->bucket is done.  Directly advance to the next
3081	 * bucket instead of having the tcp_seek_last_pos() to skip
3082	 * one by one in the current bucket and eventually find out
3083	 * it has to advance to the next bucket.
3084	 */
3085	if (iter->st_bucket_done) {
3086		st->offset = 0;
3087		st->bucket++;
3088		if (st->state == TCP_SEQ_STATE_LISTENING &&
3089		    st->bucket > hinfo->lhash2_mask) {
3090			st->state = TCP_SEQ_STATE_ESTABLISHED;
3091			st->bucket = 0;
3092		}
3093	}
3094
3095again:
3096	/* Get a new batch */
3097	iter->cur_sk = 0;
3098	iter->end_sk = 0;
3099	iter->st_bucket_done = false;
3100
3101	sk = tcp_seek_last_pos(seq);
3102	if (!sk)
3103		return NULL; /* Done */
3104
3105	if (st->state == TCP_SEQ_STATE_LISTENING)
3106		expected = bpf_iter_tcp_listening_batch(seq, sk);
3107	else
3108		expected = bpf_iter_tcp_established_batch(seq, sk);
3109
3110	if (iter->end_sk == expected) {
3111		iter->st_bucket_done = true;
3112		return sk;
3113	}
3114
3115	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3116		resized = true;
3117		goto again;
3118	}
3119
3120	return sk;
3121}
3122
3123static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3124{
3125	/* bpf iter does not support lseek, so it always
3126	 * continue from where it was stop()-ped.
3127	 */
3128	if (*pos)
3129		return bpf_iter_tcp_batch(seq);
3130
3131	return SEQ_START_TOKEN;
3132}
3133
3134static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3135{
3136	struct bpf_tcp_iter_state *iter = seq->private;
3137	struct tcp_iter_state *st = &iter->state;
3138	struct sock *sk;
3139
3140	/* Whenever seq_next() is called, the iter->cur_sk is
3141	 * done with seq_show(), so advance to the next sk in
3142	 * the batch.
3143	 */
3144	if (iter->cur_sk < iter->end_sk) {
3145		/* Keeping st->num consistent in tcp_iter_state.
3146		 * bpf_iter_tcp does not use st->num.
3147		 * meta.seq_num is used instead.
3148		 */
3149		st->num++;
3150		/* Move st->offset to the next sk in the bucket such that
3151		 * the future start() will resume at st->offset in
3152		 * st->bucket.  See tcp_seek_last_pos().
3153		 */
3154		st->offset++;
3155		sock_gen_put(iter->batch[iter->cur_sk++]);
3156	}
3157
3158	if (iter->cur_sk < iter->end_sk)
3159		sk = iter->batch[iter->cur_sk];
3160	else
3161		sk = bpf_iter_tcp_batch(seq);
3162
3163	++*pos;
3164	/* Keeping st->last_pos consistent in tcp_iter_state.
3165	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3166	 */
3167	st->last_pos = *pos;
3168	return sk;
3169}
3170
3171static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3172{
3173	struct bpf_iter_meta meta;
3174	struct bpf_prog *prog;
3175	struct sock *sk = v;
3176	uid_t uid;
3177	int ret;
3178
3179	if (v == SEQ_START_TOKEN)
3180		return 0;
3181
3182	if (sk_fullsock(sk))
3183		lock_sock(sk);
3184
3185	if (unlikely(sk_unhashed(sk))) {
3186		ret = SEQ_SKIP;
3187		goto unlock;
3188	}
3189
3190	if (sk->sk_state == TCP_TIME_WAIT) {
3191		uid = 0;
3192	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3193		const struct request_sock *req = v;
3194
3195		uid = from_kuid_munged(seq_user_ns(seq),
3196				       sock_i_uid(req->rsk_listener));
3197	} else {
3198		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3199	}
3200
3201	meta.seq = seq;
3202	prog = bpf_iter_get_info(&meta, false);
3203	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3204
3205unlock:
3206	if (sk_fullsock(sk))
3207		release_sock(sk);
3208	return ret;
3209
3210}
3211
3212static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3213{
3214	struct bpf_tcp_iter_state *iter = seq->private;
3215	struct bpf_iter_meta meta;
3216	struct bpf_prog *prog;
3217
3218	if (!v) {
3219		meta.seq = seq;
3220		prog = bpf_iter_get_info(&meta, true);
3221		if (prog)
3222			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3223	}
3224
3225	if (iter->cur_sk < iter->end_sk) {
3226		bpf_iter_tcp_put_batch(iter);
3227		iter->st_bucket_done = false;
3228	}
3229}
3230
3231static const struct seq_operations bpf_iter_tcp_seq_ops = {
3232	.show		= bpf_iter_tcp_seq_show,
3233	.start		= bpf_iter_tcp_seq_start,
3234	.next		= bpf_iter_tcp_seq_next,
3235	.stop		= bpf_iter_tcp_seq_stop,
3236};
3237#endif
3238static unsigned short seq_file_family(const struct seq_file *seq)
3239{
3240	const struct tcp_seq_afinfo *afinfo;
3241
3242#ifdef CONFIG_BPF_SYSCALL
3243	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3244	if (seq->op == &bpf_iter_tcp_seq_ops)
3245		return AF_UNSPEC;
3246#endif
3247
3248	/* Iterated from proc fs */
3249	afinfo = pde_data(file_inode(seq->file));
3250	return afinfo->family;
3251}
3252
3253static const struct seq_operations tcp4_seq_ops = {
3254	.show		= tcp4_seq_show,
3255	.start		= tcp_seq_start,
3256	.next		= tcp_seq_next,
3257	.stop		= tcp_seq_stop,
3258};
3259
3260static struct tcp_seq_afinfo tcp4_seq_afinfo = {
 
3261	.family		= AF_INET,
 
 
 
 
 
 
3262};
3263
3264static int __net_init tcp4_proc_init_net(struct net *net)
3265{
3266	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3267			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3268		return -ENOMEM;
3269	return 0;
3270}
3271
3272static void __net_exit tcp4_proc_exit_net(struct net *net)
3273{
3274	remove_proc_entry("tcp", net->proc_net);
3275}
3276
3277static struct pernet_operations tcp4_net_ops = {
3278	.init = tcp4_proc_init_net,
3279	.exit = tcp4_proc_exit_net,
3280};
3281
3282int __init tcp4_proc_init(void)
3283{
3284	return register_pernet_subsys(&tcp4_net_ops);
3285}
3286
3287void tcp4_proc_exit(void)
3288{
3289	unregister_pernet_subsys(&tcp4_net_ops);
3290}
3291#endif /* CONFIG_PROC_FS */
3292
3293/* @wake is one when sk_stream_write_space() calls us.
3294 * This sends EPOLLOUT only if notsent_bytes is half the limit.
3295 * This mimics the strategy used in sock_def_write_space().
3296 */
3297bool tcp_stream_memory_free(const struct sock *sk, int wake)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3298{
3299	const struct tcp_sock *tp = tcp_sk(sk);
3300	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3301			    READ_ONCE(tp->snd_nxt);
3302
3303	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
 
 
 
 
3304}
3305EXPORT_SYMBOL(tcp_stream_memory_free);
3306
3307struct proto tcp_prot = {
3308	.name			= "TCP",
3309	.owner			= THIS_MODULE,
3310	.close			= tcp_close,
3311	.pre_connect		= tcp_v4_pre_connect,
3312	.connect		= tcp_v4_connect,
3313	.disconnect		= tcp_disconnect,
3314	.accept			= inet_csk_accept,
3315	.ioctl			= tcp_ioctl,
3316	.init			= tcp_v4_init_sock,
3317	.destroy		= tcp_v4_destroy_sock,
3318	.shutdown		= tcp_shutdown,
3319	.setsockopt		= tcp_setsockopt,
3320	.getsockopt		= tcp_getsockopt,
3321	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3322	.keepalive		= tcp_set_keepalive,
3323	.recvmsg		= tcp_recvmsg,
3324	.sendmsg		= tcp_sendmsg,
3325	.splice_eof		= tcp_splice_eof,
3326	.backlog_rcv		= tcp_v4_do_rcv,
3327	.release_cb		= tcp_release_cb,
3328	.hash			= inet_hash,
3329	.unhash			= inet_unhash,
3330	.get_port		= inet_csk_get_port,
3331	.put_port		= inet_put_port,
3332#ifdef CONFIG_BPF_SYSCALL
3333	.psock_update_sk_prot	= tcp_bpf_update_proto,
3334#endif
3335	.enter_memory_pressure	= tcp_enter_memory_pressure,
3336	.leave_memory_pressure	= tcp_leave_memory_pressure,
3337	.stream_memory_free	= tcp_stream_memory_free,
3338	.sockets_allocated	= &tcp_sockets_allocated,
3339	.orphan_count		= &tcp_orphan_count,
3340
3341	.memory_allocated	= &tcp_memory_allocated,
3342	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3343
3344	.memory_pressure	= &tcp_memory_pressure,
3345	.sysctl_mem		= sysctl_tcp_mem,
3346	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3347	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3348	.max_header		= MAX_TCP_HEADER,
3349	.obj_size		= sizeof(struct tcp_sock),
3350	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3351	.twsk_prot		= &tcp_timewait_sock_ops,
3352	.rsk_prot		= &tcp_request_sock_ops,
3353	.h.hashinfo		= NULL,
3354	.no_autobind		= true,
3355	.diag_destroy		= tcp_abort,
 
 
 
3356};
3357EXPORT_SYMBOL(tcp_prot);
3358
3359static void __net_exit tcp_sk_exit(struct net *net)
 
3360{
3361	if (net->ipv4.tcp_congestion_control)
3362		bpf_module_put(net->ipv4.tcp_congestion_control,
3363			       net->ipv4.tcp_congestion_control->owner);
3364}
3365
3366static void __net_init tcp_set_hashinfo(struct net *net)
3367{
3368	struct inet_hashinfo *hinfo;
3369	unsigned int ehash_entries;
3370	struct net *old_net;
3371
3372	if (net_eq(net, &init_net))
3373		goto fallback;
3374
3375	old_net = current->nsproxy->net_ns;
3376	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3377	if (!ehash_entries)
3378		goto fallback;
3379
3380	ehash_entries = roundup_pow_of_two(ehash_entries);
3381	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3382	if (!hinfo) {
3383		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3384			"for a netns, fallback to the global one\n",
3385			ehash_entries);
3386fallback:
3387		hinfo = &tcp_hashinfo;
3388		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3389	}
3390
3391	net->ipv4.tcp_death_row.hashinfo = hinfo;
3392	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3393	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3394}
3395
3396static int __net_init tcp_sk_init(struct net *net)
3397{
3398	net->ipv4.sysctl_tcp_ecn = 2;
3399	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3400
3401	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3402	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3403	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3404	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3405	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3406
3407	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3408	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3409	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3410
3411	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3412	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3413	net->ipv4.sysctl_tcp_syncookies = 1;
3414	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3415	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3416	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3417	net->ipv4.sysctl_tcp_orphan_retries = 0;
3418	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3419	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3420	net->ipv4.sysctl_tcp_tw_reuse = 2;
3421	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3422
3423	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3424	tcp_set_hashinfo(net);
3425
3426	net->ipv4.sysctl_tcp_sack = 1;
3427	net->ipv4.sysctl_tcp_window_scaling = 1;
3428	net->ipv4.sysctl_tcp_timestamps = 1;
3429	net->ipv4.sysctl_tcp_early_retrans = 3;
3430	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3431	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3432	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3433	net->ipv4.sysctl_tcp_max_reordering = 300;
3434	net->ipv4.sysctl_tcp_dsack = 1;
3435	net->ipv4.sysctl_tcp_app_win = 31;
3436	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3437	net->ipv4.sysctl_tcp_frto = 2;
3438	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3439	/* This limits the percentage of the congestion window which we
3440	 * will allow a single TSO frame to consume.  Building TSO frames
3441	 * which are too large can cause TCP streams to be bursty.
3442	 */
3443	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3444	/* Default TSQ limit of 16 TSO segments */
3445	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3446
3447	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3448	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3449
3450	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3451	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3452	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3453	net->ipv4.sysctl_tcp_autocorking = 1;
3454	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3455	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3456	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3457	if (net != &init_net) {
3458		memcpy(net->ipv4.sysctl_tcp_rmem,
3459		       init_net.ipv4.sysctl_tcp_rmem,
3460		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3461		memcpy(net->ipv4.sysctl_tcp_wmem,
3462		       init_net.ipv4.sysctl_tcp_wmem,
3463		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3464	}
3465	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3466	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3467	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3468	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3469	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3470	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3471	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3472
3473	/* Set default values for PLB */
3474	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3475	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3476	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3477	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3478	/* Default congestion threshold for PLB to mark a round is 50% */
3479	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3480
3481	/* Reno is always built in */
3482	if (!net_eq(net, &init_net) &&
3483	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3484			       init_net.ipv4.tcp_congestion_control->owner))
3485		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3486	else
3487		net->ipv4.tcp_congestion_control = &tcp_reno;
3488
3489	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3490	net->ipv4.sysctl_tcp_shrink_window = 0;
3491
3492	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3493
3494	return 0;
3495}
3496
3497static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3498{
3499	struct net *net;
3500
3501	tcp_twsk_purge(net_exit_list, AF_INET);
3502
3503	list_for_each_entry(net, net_exit_list, exit_list) {
3504		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3505		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3506		tcp_fastopen_ctx_destroy(net);
3507	}
3508}
3509
3510static struct pernet_operations __net_initdata tcp_sk_ops = {
3511       .init	   = tcp_sk_init,
3512       .exit	   = tcp_sk_exit,
3513       .exit_batch = tcp_sk_exit_batch,
3514};
3515
3516#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3517DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3518		     struct sock_common *sk_common, uid_t uid)
3519
3520#define INIT_BATCH_SZ 16
3521
3522static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3523{
3524	struct bpf_tcp_iter_state *iter = priv_data;
3525	int err;
3526
3527	err = bpf_iter_init_seq_net(priv_data, aux);
3528	if (err)
3529		return err;
3530
3531	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3532	if (err) {
3533		bpf_iter_fini_seq_net(priv_data);
3534		return err;
3535	}
3536
3537	return 0;
3538}
3539
3540static void bpf_iter_fini_tcp(void *priv_data)
3541{
3542	struct bpf_tcp_iter_state *iter = priv_data;
3543
3544	bpf_iter_fini_seq_net(priv_data);
3545	kvfree(iter->batch);
3546}
3547
3548static const struct bpf_iter_seq_info tcp_seq_info = {
3549	.seq_ops		= &bpf_iter_tcp_seq_ops,
3550	.init_seq_private	= bpf_iter_init_tcp,
3551	.fini_seq_private	= bpf_iter_fini_tcp,
3552	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3553};
3554
3555static const struct bpf_func_proto *
3556bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3557			    const struct bpf_prog *prog)
3558{
3559	switch (func_id) {
3560	case BPF_FUNC_setsockopt:
3561		return &bpf_sk_setsockopt_proto;
3562	case BPF_FUNC_getsockopt:
3563		return &bpf_sk_getsockopt_proto;
3564	default:
3565		return NULL;
3566	}
3567}
3568
3569static struct bpf_iter_reg tcp_reg_info = {
3570	.target			= "tcp",
3571	.ctx_arg_info_size	= 1,
3572	.ctx_arg_info		= {
3573		{ offsetof(struct bpf_iter__tcp, sk_common),
3574		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3575	},
3576	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3577	.seq_info		= &tcp_seq_info,
3578};
3579
3580static void __init bpf_iter_register(void)
3581{
3582	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3583	if (bpf_iter_reg_target(&tcp_reg_info))
3584		pr_warn("Warning: could not register bpf iterator tcp\n");
3585}
3586
3587#endif
3588
3589void __init tcp_v4_init(void)
3590{
3591	int cpu, res;
3592
3593	for_each_possible_cpu(cpu) {
3594		struct sock *sk;
3595
3596		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3597					   IPPROTO_TCP, &init_net);
3598		if (res)
3599			panic("Failed to create the TCP control socket.\n");
3600		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3601
3602		/* Please enforce IP_DF and IPID==0 for RST and
3603		 * ACK sent in SYN-RECV and TIME-WAIT state.
3604		 */
3605		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3606
3607		per_cpu(ipv4_tcp_sk, cpu) = sk;
3608	}
3609	if (register_pernet_subsys(&tcp_sk_ops))
3610		panic("Failed to create the TCP control socket.\n");
3611
3612#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3613	bpf_iter_register();
3614#endif
3615}