Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 *		IPv4 specific functions
   9 *
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 *
  18 *	This program is free software; you can redistribute it and/or
  19 *      modify it under the terms of the GNU General Public License
  20 *      as published by the Free Software Foundation; either version
  21 *      2 of the License, or (at your option) any later version.
  22 */
  23
  24/*
  25 * Changes:
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *					This code is dedicated to John Dyson.
  28 *		David S. Miller :	Change semantics of established hash,
  29 *					half is devoted to TIME_WAIT sockets
  30 *					and the rest go in the other half.
  31 *		Andi Kleen :		Add support for syncookies and fixed
  32 *					some bugs: ip options weren't passed to
  33 *					the TCP layer, missed a check for an
  34 *					ACK bit.
  35 *		Andi Kleen :		Implemented fast path mtu discovery.
  36 *	     				Fixed many serious bugs in the
  37 *					request_sock handling and moved
  38 *					most of it into the af independent code.
  39 *					Added tail drop and some other bugfixes.
  40 *					Added new listen semantics.
  41 *		Mike McLagan	:	Routing by source
  42 *	Juan Jose Ciarlante:		ip_dynaddr bits
  43 *		Andi Kleen:		various fixes.
  44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  45 *					coma.
  46 *	Andi Kleen		:	Fix new listen.
  47 *	Andi Kleen		:	Fix accept error reporting.
  48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  50 *					a single port at the same time.
  51 */
  52
 
  53
  54#include <linux/bottom_half.h>
  55#include <linux/types.h>
  56#include <linux/fcntl.h>
  57#include <linux/module.h>
  58#include <linux/random.h>
  59#include <linux/cache.h>
  60#include <linux/jhash.h>
  61#include <linux/init.h>
  62#include <linux/times.h>
  63#include <linux/slab.h>
 
  64
  65#include <net/net_namespace.h>
  66#include <net/icmp.h>
  67#include <net/inet_hashtables.h>
  68#include <net/tcp.h>
  69#include <net/transp_v6.h>
  70#include <net/ipv6.h>
  71#include <net/inet_common.h>
  72#include <net/timewait_sock.h>
  73#include <net/xfrm.h>
  74#include <net/netdma.h>
  75#include <net/secure_seq.h>
 
  76
  77#include <linux/inet.h>
  78#include <linux/ipv6.h>
  79#include <linux/stddef.h>
  80#include <linux/proc_fs.h>
  81#include <linux/seq_file.h>
 
 
  82
  83#include <linux/crypto.h>
  84#include <linux/scatterlist.h>
  85
  86int sysctl_tcp_tw_reuse __read_mostly;
  87int sysctl_tcp_low_latency __read_mostly;
  88EXPORT_SYMBOL(sysctl_tcp_low_latency);
  89
  90
  91#ifdef CONFIG_TCP_MD5SIG
  92static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
  93						   __be32 addr);
  94static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
  95			       __be32 daddr, __be32 saddr, struct tcphdr *th);
  96#else
  97static inline
  98struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
  99{
 100	return NULL;
 101}
 102#endif
 103
 104struct inet_hashinfo tcp_hashinfo;
 105EXPORT_SYMBOL(tcp_hashinfo);
 106
 107static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
 
 
 108{
 109	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
 110					  ip_hdr(skb)->saddr,
 111					  tcp_hdr(skb)->dest,
 112					  tcp_hdr(skb)->source);
 
 
 
 
 
 113}
 114
 115int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 116{
 
 
 117	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 118	struct tcp_sock *tp = tcp_sk(sk);
 119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120	/* With PAWS, it is safe from the viewpoint
 121	   of data integrity. Even without PAWS it is safe provided sequence
 122	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 123
 124	   Actually, the idea is close to VJ's one, only timestamp cache is
 125	   held not per host, but per port pair and TW bucket is used as state
 126	   holder.
 127
 128	   If TW bucket has been already destroyed we fall back to VJ's scheme
 129	   and use initial timestamp retrieved from peer table.
 130	 */
 131	if (tcptw->tw_ts_recent_stamp &&
 132	    (twp == NULL || (sysctl_tcp_tw_reuse &&
 133			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
 134		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
 135		if (tp->write_seq == 0)
 136			tp->write_seq = 1;
 137		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 138		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 139		sock_hold(sktw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140		return 1;
 141	}
 142
 143	return 0;
 144}
 145EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147/* This will initiate an outgoing connection. */
 148int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 149{
 150	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 
 151	struct inet_sock *inet = inet_sk(sk);
 152	struct tcp_sock *tp = tcp_sk(sk);
 
 
 153	__be16 orig_sport, orig_dport;
 154	__be32 daddr, nexthop;
 155	struct flowi4 *fl4;
 156	struct rtable *rt;
 157	int err;
 158	struct ip_options_rcu *inet_opt;
 159
 160	if (addr_len < sizeof(struct sockaddr_in))
 161		return -EINVAL;
 162
 163	if (usin->sin_family != AF_INET)
 164		return -EAFNOSUPPORT;
 165
 166	nexthop = daddr = usin->sin_addr.s_addr;
 167	inet_opt = rcu_dereference_protected(inet->inet_opt,
 168					     sock_owned_by_user(sk));
 169	if (inet_opt && inet_opt->opt.srr) {
 170		if (!daddr)
 171			return -EINVAL;
 172		nexthop = inet_opt->opt.faddr;
 173	}
 174
 175	orig_sport = inet->inet_sport;
 176	orig_dport = usin->sin_port;
 177	fl4 = &inet->cork.fl.u.ip4;
 178	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 179			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 180			      IPPROTO_TCP,
 181			      orig_sport, orig_dport, sk, true);
 182	if (IS_ERR(rt)) {
 183		err = PTR_ERR(rt);
 184		if (err == -ENETUNREACH)
 185			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 186		return err;
 187	}
 188
 189	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 190		ip_rt_put(rt);
 191		return -ENETUNREACH;
 192	}
 193
 194	if (!inet_opt || !inet_opt->opt.srr)
 195		daddr = fl4->daddr;
 196
 197	if (!inet->inet_saddr)
 198		inet->inet_saddr = fl4->saddr;
 199	inet->inet_rcv_saddr = inet->inet_saddr;
 
 
 
 
 
 
 
 
 200
 201	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 202		/* Reset inherited state */
 203		tp->rx_opt.ts_recent	   = 0;
 204		tp->rx_opt.ts_recent_stamp = 0;
 205		tp->write_seq		   = 0;
 206	}
 207
 208	if (tcp_death_row.sysctl_tw_recycle &&
 209	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
 210		struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
 211		/*
 212		 * VJ's idea. We save last timestamp seen from
 213		 * the destination in peer table, when entering state
 214		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
 215		 * when trying new connection.
 216		 */
 217		if (peer) {
 218			inet_peer_refcheck(peer);
 219			if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
 220				tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
 221				tp->rx_opt.ts_recent = peer->tcp_ts;
 222			}
 223		}
 224	}
 225
 226	inet->inet_dport = usin->sin_port;
 227	inet->inet_daddr = daddr;
 228
 229	inet_csk(sk)->icsk_ext_hdr_len = 0;
 230	if (inet_opt)
 231		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 232
 233	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 234
 235	/* Socket identity is still unknown (sport may be zero).
 236	 * However we set state to SYN-SENT and not releasing socket
 237	 * lock select source port, enter ourselves into the hash tables and
 238	 * complete initialization after this.
 239	 */
 240	tcp_set_state(sk, TCP_SYN_SENT);
 241	err = inet_hash_connect(&tcp_death_row, sk);
 242	if (err)
 243		goto failure;
 244
 
 
 245	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 246			       inet->inet_sport, inet->inet_dport, sk);
 247	if (IS_ERR(rt)) {
 248		err = PTR_ERR(rt);
 249		rt = NULL;
 250		goto failure;
 251	}
 
 252	/* OK, now commit destination to socket.  */
 253	sk->sk_gso_type = SKB_GSO_TCPV4;
 254	sk_setup_caps(sk, &rt->dst);
 
 255
 256	if (!tp->write_seq)
 257		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
 258							   inet->inet_daddr,
 259							   inet->inet_sport,
 260							   usin->sin_port);
 
 
 
 
 
 
 
 
 261
 262	inet->inet_id = tp->write_seq ^ jiffies;
 
 
 
 263
 264	err = tcp_connect(sk);
 265	rt = NULL;
 266	if (err)
 267		goto failure;
 268
 269	return 0;
 270
 271failure:
 272	/*
 273	 * This unhashes the socket and releases the local port,
 274	 * if necessary.
 275	 */
 276	tcp_set_state(sk, TCP_CLOSE);
 
 277	ip_rt_put(rt);
 278	sk->sk_route_caps = 0;
 279	inet->inet_dport = 0;
 280	return err;
 281}
 282EXPORT_SYMBOL(tcp_v4_connect);
 283
 284/*
 285 * This routine does path mtu discovery as defined in RFC1191.
 
 
 286 */
 287static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
 288{
 289	struct dst_entry *dst;
 290	struct inet_sock *inet = inet_sk(sk);
 
 
 291
 292	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
 293	 * send out by Linux are always <576bytes so they should go through
 294	 * unfragmented).
 295	 */
 296	if (sk->sk_state == TCP_LISTEN)
 297		return;
 298
 299	/* We don't check in the destentry if pmtu discovery is forbidden
 300	 * on this route. We just assume that no packet_to_big packets
 301	 * are send back when pmtu discovery is not active.
 302	 * There is a small race when the user changes this flag in the
 303	 * route, but I think that's acceptable.
 304	 */
 305	if ((dst = __sk_dst_check(sk, 0)) == NULL)
 306		return;
 307
 308	dst->ops->update_pmtu(dst, mtu);
 309
 310	/* Something is about to be wrong... Remember soft error
 311	 * for the case, if this connection will not able to recover.
 312	 */
 313	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 314		sk->sk_err_soft = EMSGSIZE;
 315
 316	mtu = dst_mtu(dst);
 317
 318	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 
 319	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 320		tcp_sync_mss(sk, mtu);
 321
 322		/* Resend the TCP packet because it's
 323		 * clear that the old packet has been
 324		 * dropped. This is the new "fast" path mtu
 325		 * discovery.
 326		 */
 327		tcp_simple_retransmit(sk);
 328	} /* else let the usual retransmit timer handle it */
 329}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330
 331/*
 332 * This routine is called by the ICMP module when it gets some
 333 * sort of error condition.  If err < 0 then the socket should
 334 * be closed and the error returned to the user.  If err > 0
 335 * it's just the icmp type << 8 | icmp code.  After adjustment
 336 * header points to the first 8 bytes of the tcp header.  We need
 337 * to find the appropriate port.
 338 *
 339 * The locking strategy used here is very "optimistic". When
 340 * someone else accesses the socket the ICMP is just dropped
 341 * and for some paths there is no check at all.
 342 * A more general error queue to queue errors for later handling
 343 * is probably better.
 344 *
 345 */
 346
 347void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
 348{
 349	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
 350	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
 351	struct inet_connection_sock *icsk;
 352	struct tcp_sock *tp;
 353	struct inet_sock *inet;
 354	const int type = icmp_hdr(icmp_skb)->type;
 355	const int code = icmp_hdr(icmp_skb)->code;
 356	struct sock *sk;
 357	struct sk_buff *skb;
 358	__u32 seq;
 359	__u32 remaining;
 360	int err;
 361	struct net *net = dev_net(icmp_skb->dev);
 362
 363	if (icmp_skb->len < (iph->ihl << 2) + 8) {
 364		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 365		return;
 366	}
 367
 368	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
 369			iph->saddr, th->source, inet_iif(icmp_skb));
 
 370	if (!sk) {
 371		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 372		return;
 373	}
 374	if (sk->sk_state == TCP_TIME_WAIT) {
 
 
 375		inet_twsk_put(inet_twsk(sk));
 376		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377	}
 378
 379	bh_lock_sock(sk);
 380	/* If too many ICMPs get dropped on busy
 381	 * servers this needs to be solved differently.
 
 
 382	 */
 383	if (sock_owned_by_user(sk))
 384		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
 385
 
 386	if (sk->sk_state == TCP_CLOSE)
 387		goto out;
 388
 389	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 390		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 391		goto out;
 
 
 
 392	}
 393
 394	icsk = inet_csk(sk);
 395	tp = tcp_sk(sk);
 396	seq = ntohl(th->seq);
 
 
 397	if (sk->sk_state != TCP_LISTEN &&
 398	    !between(seq, tp->snd_una, tp->snd_nxt)) {
 399		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 400		goto out;
 401	}
 402
 403	switch (type) {
 
 
 
 
 404	case ICMP_SOURCE_QUENCH:
 405		/* Just silently ignore these. */
 406		goto out;
 407	case ICMP_PARAMETERPROB:
 408		err = EPROTO;
 409		break;
 410	case ICMP_DEST_UNREACH:
 411		if (code > NR_ICMP_UNREACH)
 412			goto out;
 413
 414		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 415			if (!sock_owned_by_user(sk))
 416				do_pmtu_discovery(sk, iph, info);
 
 
 
 
 
 
 
 
 
 
 
 
 417			goto out;
 418		}
 419
 420		err = icmp_err_convert[code].errno;
 421		/* check if icmp_skb allows revert of backoff
 422		 * (see draft-zimmermann-tcp-lcd) */
 423		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
 424			break;
 425		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 426		    !icsk->icsk_backoff)
 427			break;
 428
 429		if (sock_owned_by_user(sk))
 430			break;
 431
 432		icsk->icsk_backoff--;
 433		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
 434			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
 435		tcp_bound_rto(sk);
 436
 437		skb = tcp_write_queue_head(sk);
 438		BUG_ON(!skb);
 439
 440		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
 441				tcp_time_stamp - TCP_SKB_CB(skb)->when);
 442
 443		if (remaining) {
 444			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 445						  remaining, TCP_RTO_MAX);
 446		} else {
 447			/* RTO revert clocked out retransmission.
 448			 * Will retransmit now */
 449			tcp_retransmit_timer(sk);
 450		}
 451
 452		break;
 453	case ICMP_TIME_EXCEEDED:
 454		err = EHOSTUNREACH;
 455		break;
 456	default:
 457		goto out;
 458	}
 459
 460	switch (sk->sk_state) {
 461		struct request_sock *req, **prev;
 462	case TCP_LISTEN:
 463		if (sock_owned_by_user(sk))
 464			goto out;
 465
 466		req = inet_csk_search_req(sk, &prev, th->dest,
 467					  iph->daddr, iph->saddr);
 468		if (!req)
 469			goto out;
 470
 471		/* ICMPs are not backlogged, hence we cannot get
 472		   an established socket here.
 473		 */
 474		WARN_ON(req->sk);
 
 475
 476		if (seq != tcp_rsk(req)->snt_isn) {
 477			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 478			goto out;
 479		}
 480
 481		/*
 482		 * Still in SYN_RECV, just remove it silently.
 483		 * There is no good way to pass the error to the newly
 484		 * created socket, and POSIX does not want network
 485		 * errors returned from accept().
 486		 */
 487		inet_csk_reqsk_queue_drop(sk, req, prev);
 488		goto out;
 489
 490	case TCP_SYN_SENT:
 491	case TCP_SYN_RECV:  /* Cannot happen.
 492			       It can f.e. if SYNs crossed.
 493			     */
 494		if (!sock_owned_by_user(sk)) {
 495			sk->sk_err = err;
 496
 497			sk->sk_error_report(sk);
 498
 499			tcp_done(sk);
 500		} else {
 501			sk->sk_err_soft = err;
 502		}
 503		goto out;
 504	}
 505
 506	/* If we've already connected we will keep trying
 507	 * until we time out, or the user gives up.
 508	 *
 509	 * rfc1122 4.2.3.9 allows to consider as hard errors
 510	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 511	 * but it is obsoleted by pmtu discovery).
 512	 *
 513	 * Note, that in modern internet, where routing is unreliable
 514	 * and in each dark corner broken firewalls sit, sending random
 515	 * errors ordered by their masters even this two messages finally lose
 516	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 517	 *
 518	 * Now we are in compliance with RFCs.
 519	 *							--ANK (980905)
 520	 */
 521
 522	inet = inet_sk(sk);
 523	if (!sock_owned_by_user(sk) && inet->recverr) {
 524		sk->sk_err = err;
 525		sk->sk_error_report(sk);
 526	} else	{ /* Only an error on timeout */
 527		sk->sk_err_soft = err;
 528	}
 529
 530out:
 531	bh_unlock_sock(sk);
 532	sock_put(sk);
 
 533}
 534
 535static void __tcp_v4_send_check(struct sk_buff *skb,
 536				__be32 saddr, __be32 daddr)
 537{
 538	struct tcphdr *th = tcp_hdr(skb);
 539
 540	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 541		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 542		skb->csum_start = skb_transport_header(skb) - skb->head;
 543		skb->csum_offset = offsetof(struct tcphdr, check);
 544	} else {
 545		th->check = tcp_v4_check(skb->len, saddr, daddr,
 546					 csum_partial(th,
 547						      th->doff << 2,
 548						      skb->csum));
 549	}
 550}
 551
 552/* This routine computes an IPv4 TCP checksum. */
 553void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 554{
 555	struct inet_sock *inet = inet_sk(sk);
 556
 557	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 558}
 559EXPORT_SYMBOL(tcp_v4_send_check);
 560
 561int tcp_v4_gso_send_check(struct sk_buff *skb)
 562{
 563	const struct iphdr *iph;
 564	struct tcphdr *th;
 565
 566	if (!pskb_may_pull(skb, sizeof(*th)))
 567		return -EINVAL;
 568
 569	iph = ip_hdr(skb);
 570	th = tcp_hdr(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571
 572	th->check = 0;
 573	skb->ip_summed = CHECKSUM_PARTIAL;
 574	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
 575	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576}
 577
 578/*
 579 *	This routine will send an RST to the other tcp.
 580 *
 581 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 582 *		      for reset.
 583 *	Answer: if a packet caused RST, it is not for a socket
 584 *		existing in our system, if it is matched to a socket,
 585 *		it is just duplicate segment or bug in other side's TCP.
 586 *		So that we build reply only basing on parameters
 587 *		arrived with segment.
 588 *	Exception: precedence violation. We do not implement it in any case.
 589 */
 590
 591static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
 592{
 593	struct tcphdr *th = tcp_hdr(skb);
 594	struct {
 595		struct tcphdr th;
 596#ifdef CONFIG_TCP_MD5SIG
 597		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
 598#endif
 599	} rep;
 
 
 600	struct ip_reply_arg arg;
 601#ifdef CONFIG_TCP_MD5SIG
 602	struct tcp_md5sig_key *key;
 
 
 
 603#endif
 
 
 604	struct net *net;
 
 605
 606	/* Never send a reset in response to a reset. */
 607	if (th->rst)
 608		return;
 609
 610	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
 
 
 
 611		return;
 612
 613	/* Swap the send and the receive. */
 614	memset(&rep, 0, sizeof(rep));
 615	rep.th.dest   = th->source;
 616	rep.th.source = th->dest;
 617	rep.th.doff   = sizeof(struct tcphdr) / 4;
 618	rep.th.rst    = 1;
 619
 620	if (th->ack) {
 621		rep.th.seq = th->ack_seq;
 622	} else {
 623		rep.th.ack = 1;
 624		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 625				       skb->len - (th->doff << 2));
 626	}
 627
 628	memset(&arg, 0, sizeof(arg));
 629	arg.iov[0].iov_base = (unsigned char *)&rep;
 630	arg.iov[0].iov_len  = sizeof(rep.th);
 631
 
 
 
 
 
 
 
 
 
 632#ifdef CONFIG_TCP_MD5SIG
 633	key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634	if (key) {
 635		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 636				   (TCPOPT_NOP << 16) |
 637				   (TCPOPT_MD5SIG << 8) |
 638				   TCPOLEN_MD5SIG);
 639		/* Update length and the length the header thinks exists */
 640		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 641		rep.th.doff = arg.iov[0].iov_len / 4;
 642
 643		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 644				     key, ip_hdr(skb)->saddr,
 645				     ip_hdr(skb)->daddr, &rep.th);
 646	}
 647#endif
 
 
 
 
 
 
 
 
 
 
 
 648	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 649				      ip_hdr(skb)->saddr, /* XXX */
 650				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 651	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 652	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 653
 654	net = dev_net(skb_dst(skb)->dev);
 655	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 656		      &arg, arg.iov[0].iov_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657
 658	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 659	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
 
 
 660}
 661
 662/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 663   outside socket context is ugly, certainly. What can I do?
 664 */
 665
 666static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
 667			    u32 win, u32 ts, int oif,
 668			    struct tcp_md5sig_key *key,
 669			    int reply_flags)
 
 670{
 671	struct tcphdr *th = tcp_hdr(skb);
 672	struct {
 673		struct tcphdr th;
 674		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 675#ifdef CONFIG_TCP_MD5SIG
 676			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 677#endif
 678			];
 679	} rep;
 
 680	struct ip_reply_arg arg;
 681	struct net *net = dev_net(skb_dst(skb)->dev);
 
 682
 683	memset(&rep.th, 0, sizeof(struct tcphdr));
 684	memset(&arg, 0, sizeof(arg));
 685
 686	arg.iov[0].iov_base = (unsigned char *)&rep;
 687	arg.iov[0].iov_len  = sizeof(rep.th);
 688	if (ts) {
 689		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 690				   (TCPOPT_TIMESTAMP << 8) |
 691				   TCPOLEN_TIMESTAMP);
 692		rep.opt[1] = htonl(tcp_time_stamp);
 693		rep.opt[2] = htonl(ts);
 694		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 695	}
 696
 697	/* Swap the send and the receive. */
 698	rep.th.dest    = th->source;
 699	rep.th.source  = th->dest;
 700	rep.th.doff    = arg.iov[0].iov_len / 4;
 701	rep.th.seq     = htonl(seq);
 702	rep.th.ack_seq = htonl(ack);
 703	rep.th.ack     = 1;
 704	rep.th.window  = htons(win);
 705
 706#ifdef CONFIG_TCP_MD5SIG
 707	if (key) {
 708		int offset = (ts) ? 3 : 0;
 709
 710		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 711					  (TCPOPT_NOP << 16) |
 712					  (TCPOPT_MD5SIG << 8) |
 713					  TCPOLEN_MD5SIG);
 714		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 715		rep.th.doff = arg.iov[0].iov_len/4;
 716
 717		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 718				    key, ip_hdr(skb)->saddr,
 719				    ip_hdr(skb)->daddr, &rep.th);
 720	}
 721#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722	arg.flags = reply_flags;
 723	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 724				      ip_hdr(skb)->saddr, /* XXX */
 725				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 726	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 727	if (oif)
 728		arg.bound_dev_if = oif;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729
 730	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 731		      &arg, arg.iov[0].iov_len);
 732
 733	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 734}
 735
 736static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 737{
 738	struct inet_timewait_sock *tw = inet_twsk(sk);
 739	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740
 741	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 
 743			tcptw->tw_ts_recent,
 744			tw->tw_bound_dev_if,
 745			tcp_twsk_md5_key(tcptw),
 746			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
 747			);
 748
 749	inet_twsk_put(tw);
 750}
 751
 752static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
 753				  struct request_sock *req)
 754{
 755	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
 756			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
 757			req->ts_recent,
 758			0,
 759			tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
 760			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761}
 762
 763/*
 764 *	Send a SYN-ACK after having received a SYN.
 765 *	This still operates on a request_sock only, not on a big
 766 *	socket.
 767 */
 768static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
 
 769			      struct request_sock *req,
 770			      struct request_values *rvp)
 
 
 771{
 772	const struct inet_request_sock *ireq = inet_rsk(req);
 773	struct flowi4 fl4;
 774	int err = -1;
 775	struct sk_buff * skb;
 
 776
 777	/* First, grab a route. */
 778	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 779		return -1;
 780
 781	skb = tcp_make_synack(sk, dst, req, rvp);
 782
 783	if (skb) {
 784		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
 
 
 785
 786		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
 787					    ireq->rmt_addr,
 788					    ireq->opt);
 
 
 
 
 
 
 
 
 
 
 
 789		err = net_xmit_eval(err);
 790	}
 791
 792	dst_release(dst);
 793	return err;
 794}
 795
 796static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
 797			      struct request_values *rvp)
 798{
 799	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
 800	return tcp_v4_send_synack(sk, NULL, req, rvp);
 801}
 802
 803/*
 804 *	IPv4 request_sock destructor.
 805 */
 806static void tcp_v4_reqsk_destructor(struct request_sock *req)
 807{
 808	kfree(inet_rsk(req)->opt);
 809}
 810
 
 811/*
 812 * Return 1 if a syncookie should be sent
 
 
 813 */
 814int tcp_syn_flood_action(struct sock *sk,
 815			 const struct sk_buff *skb,
 816			 const char *proto)
 817{
 818	const char *msg = "Dropping request";
 819	int want_cookie = 0;
 820	struct listen_sock *lopt;
 821
 
 
 822
 
 
 
 
 823
 824#ifdef CONFIG_SYN_COOKIES
 825	if (sysctl_tcp_syncookies) {
 826		msg = "Sending cookies";
 827		want_cookie = 1;
 828		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
 829	} else
 830#endif
 831		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
 832
 833	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
 834	if (!lopt->synflood_warned) {
 835		lopt->synflood_warned = 1;
 836		pr_info("%s: Possible SYN flooding on port %d. %s. "
 837			" Check SNMP counters.\n",
 838			proto, ntohs(tcp_hdr(skb)->dest), msg);
 839	}
 840	return want_cookie;
 841}
 842EXPORT_SYMBOL(tcp_syn_flood_action);
 843
 844/*
 845 * Save and compile IPv4 options into the request_sock if needed.
 846 */
 847static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
 848						  struct sk_buff *skb)
 849{
 850	const struct ip_options *opt = &(IPCB(skb)->opt);
 851	struct ip_options_rcu *dopt = NULL;
 852
 853	if (opt && opt->optlen) {
 854		int opt_size = sizeof(*dopt) + opt->optlen;
 
 
 
 
 
 
 
 855
 856		dopt = kmalloc(opt_size, GFP_ATOMIC);
 857		if (dopt) {
 858			if (ip_options_echo(&dopt->opt, skb)) {
 859				kfree(dopt);
 860				dopt = NULL;
 861			}
 
 
 
 
 
 
 
 
 
 
 
 
 862		}
 
 
 
 863	}
 864	return dopt;
 865}
 
 866
 867#ifdef CONFIG_TCP_MD5SIG
 868/*
 869 * RFC2385 MD5 checksumming requires a mapping of
 870 * IP address->MD5 Key.
 871 * We need to maintain these in the sk structure.
 872 */
 873
 874/* Find the Key structure for an address.  */
 875static struct tcp_md5sig_key *
 876			tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
 877{
 878	struct tcp_sock *tp = tcp_sk(sk);
 879	int i;
 
 
 880
 881	if (!tp->md5sig_info || !tp->md5sig_info->entries4)
 
 
 
 882		return NULL;
 883	for (i = 0; i < tp->md5sig_info->entries4; i++) {
 884		if (tp->md5sig_info->keys4[i].addr == addr)
 885			return &tp->md5sig_info->keys4[i].base;
 
 
 
 
 
 
 
 
 
 
 
 
 886	}
 887	return NULL;
 888}
 889
 890struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
 891					 struct sock *addr_sk)
 892{
 893	return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
 
 
 
 
 
 
 894}
 895EXPORT_SYMBOL(tcp_v4_md5_lookup);
 896
 897static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
 898						      struct request_sock *req)
 899{
 900	return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
 
 
 
 
 
 
 
 
 
 
 901}
 902
 903/* This can be called on a newly created socket, from other files */
 904int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
 905		      u8 *newkey, u8 newkeylen)
 
 906{
 907	/* Add Key to the list */
 908	struct tcp_md5sig_key *key;
 909	struct tcp_sock *tp = tcp_sk(sk);
 910	struct tcp4_md5sig_key *keys;
 911
 912	key = tcp_v4_md5_do_lookup(sk, addr);
 913	if (key) {
 914		/* Pre-existing entry - just update that one. */
 915		kfree(key->key);
 916		key->key = newkey;
 917		key->keylen = newkeylen;
 918	} else {
 919		struct tcp_md5sig_info *md5sig;
 
 920
 921		if (!tp->md5sig_info) {
 922			tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
 923						  GFP_ATOMIC);
 924			if (!tp->md5sig_info) {
 925				kfree(newkey);
 926				return -ENOMEM;
 927			}
 928			sk_nocaps_add(sk, NETIF_F_GSO_MASK);
 929		}
 930
 931		md5sig = tp->md5sig_info;
 932		if (md5sig->entries4 == 0 &&
 933		    tcp_alloc_md5sig_pool(sk) == NULL) {
 934			kfree(newkey);
 935			return -ENOMEM;
 936		}
 937
 938		if (md5sig->alloced4 == md5sig->entries4) {
 939			keys = kmalloc((sizeof(*keys) *
 940					(md5sig->entries4 + 1)), GFP_ATOMIC);
 941			if (!keys) {
 942				kfree(newkey);
 943				if (md5sig->entries4 == 0)
 944					tcp_free_md5sig_pool();
 945				return -ENOMEM;
 946			}
 947
 948			if (md5sig->entries4)
 949				memcpy(keys, md5sig->keys4,
 950				       sizeof(*keys) * md5sig->entries4);
 951
 952			/* Free old key list, and reference new one */
 953			kfree(md5sig->keys4);
 954			md5sig->keys4 = keys;
 955			md5sig->alloced4++;
 956		}
 957		md5sig->entries4++;
 958		md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
 959		md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
 960		md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
 961	}
 962	return 0;
 963}
 964EXPORT_SYMBOL(tcp_v4_md5_do_add);
 965
 966static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
 967			       u8 *newkey, u8 newkeylen)
 
 968{
 969	return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
 970				 newkey, newkeylen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971}
 
 972
 973int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
 
 
 974{
 975	struct tcp_sock *tp = tcp_sk(sk);
 976	int i;
 977
 978	for (i = 0; i < tp->md5sig_info->entries4; i++) {
 979		if (tp->md5sig_info->keys4[i].addr == addr) {
 980			/* Free the key */
 981			kfree(tp->md5sig_info->keys4[i].base.key);
 982			tp->md5sig_info->entries4--;
 983
 984			if (tp->md5sig_info->entries4 == 0) {
 985				kfree(tp->md5sig_info->keys4);
 986				tp->md5sig_info->keys4 = NULL;
 987				tp->md5sig_info->alloced4 = 0;
 988				tcp_free_md5sig_pool();
 989			} else if (tp->md5sig_info->entries4 != i) {
 990				/* Need to do some manipulation */
 991				memmove(&tp->md5sig_info->keys4[i],
 992					&tp->md5sig_info->keys4[i+1],
 993					(tp->md5sig_info->entries4 - i) *
 994					 sizeof(struct tcp4_md5sig_key));
 995			}
 996			return 0;
 997		}
 998	}
 999	return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000}
1001EXPORT_SYMBOL(tcp_v4_md5_do_del);
1002
1003static void tcp_v4_clear_md5_list(struct sock *sk)
1004{
1005	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
1006
1007	/* Free each key, then the set of key keys,
1008	 * the crypto element, and then decrement our
1009	 * hold on the last resort crypto.
1010	 */
1011	if (tp->md5sig_info->entries4) {
1012		int i;
1013		for (i = 0; i < tp->md5sig_info->entries4; i++)
1014			kfree(tp->md5sig_info->keys4[i].base.key);
1015		tp->md5sig_info->entries4 = 0;
1016		tcp_free_md5sig_pool();
1017	}
1018	if (tp->md5sig_info->keys4) {
1019		kfree(tp->md5sig_info->keys4);
1020		tp->md5sig_info->keys4 = NULL;
1021		tp->md5sig_info->alloced4  = 0;
1022	}
1023}
1024
1025static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1026				 int optlen)
1027{
1028	struct tcp_md5sig cmd;
1029	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1030	u8 *newkey;
 
 
 
 
1031
1032	if (optlen < sizeof(cmd))
1033		return -EINVAL;
1034
1035	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1036		return -EFAULT;
1037
1038	if (sin->sin_family != AF_INET)
1039		return -EINVAL;
1040
1041	if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1042		if (!tcp_sk(sk)->md5sig_info)
1043			return -ENOENT;
1044		return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
 
 
 
 
1045	}
1046
1047	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1048		return -EINVAL;
 
 
 
 
 
 
1049
1050	if (!tcp_sk(sk)->md5sig_info) {
1051		struct tcp_sock *tp = tcp_sk(sk);
1052		struct tcp_md5sig_info *p;
1053
1054		p = kzalloc(sizeof(*p), sk->sk_allocation);
1055		if (!p)
 
 
1056			return -EINVAL;
1057
1058		tp->md5sig_info = p;
1059		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1060	}
1061
1062	newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1063	if (!newkey)
1064		return -ENOMEM;
1065	return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1066				 newkey, cmd.tcpm_keylen);
 
 
 
 
 
 
 
 
 
 
 
1067}
1068
1069static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1070					__be32 daddr, __be32 saddr, int nbytes)
 
1071{
1072	struct tcp4_pseudohdr *bp;
1073	struct scatterlist sg;
 
1074
1075	bp = &hp->md5_blk.ip4;
1076
1077	/*
1078	 * 1. the TCP pseudo-header (in the order: source IP address,
1079	 * destination IP address, zero-padded protocol number, and
1080	 * segment length)
1081	 */
1082	bp->saddr = saddr;
1083	bp->daddr = daddr;
1084	bp->pad = 0;
1085	bp->protocol = IPPROTO_TCP;
1086	bp->len = cpu_to_be16(nbytes);
1087
1088	sg_init_one(&sg, bp, sizeof(*bp));
1089	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
 
 
 
 
 
 
1090}
1091
1092static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1093			       __be32 daddr, __be32 saddr, struct tcphdr *th)
1094{
1095	struct tcp_md5sig_pool *hp;
1096	struct hash_desc *desc;
1097
1098	hp = tcp_get_md5sig_pool();
1099	if (!hp)
1100		goto clear_hash_noput;
1101	desc = &hp->md5_desc;
1102
1103	if (crypto_hash_init(desc))
1104		goto clear_hash;
1105	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1106		goto clear_hash;
1107	if (tcp_md5_hash_header(hp, th))
1108		goto clear_hash;
1109	if (tcp_md5_hash_key(hp, key))
1110		goto clear_hash;
1111	if (crypto_hash_final(desc, md5_hash))
1112		goto clear_hash;
1113
1114	tcp_put_md5sig_pool();
1115	return 0;
1116
1117clear_hash:
1118	tcp_put_md5sig_pool();
1119clear_hash_noput:
1120	memset(md5_hash, 0, 16);
1121	return 1;
1122}
1123
1124int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1125			struct sock *sk, struct request_sock *req,
1126			struct sk_buff *skb)
1127{
1128	struct tcp_md5sig_pool *hp;
1129	struct hash_desc *desc;
1130	struct tcphdr *th = tcp_hdr(skb);
1131	__be32 saddr, daddr;
1132
1133	if (sk) {
1134		saddr = inet_sk(sk)->inet_saddr;
1135		daddr = inet_sk(sk)->inet_daddr;
1136	} else if (req) {
1137		saddr = inet_rsk(req)->loc_addr;
1138		daddr = inet_rsk(req)->rmt_addr;
1139	} else {
1140		const struct iphdr *iph = ip_hdr(skb);
1141		saddr = iph->saddr;
1142		daddr = iph->daddr;
1143	}
1144
1145	hp = tcp_get_md5sig_pool();
1146	if (!hp)
1147		goto clear_hash_noput;
1148	desc = &hp->md5_desc;
1149
1150	if (crypto_hash_init(desc))
1151		goto clear_hash;
1152
1153	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1154		goto clear_hash;
1155	if (tcp_md5_hash_header(hp, th))
1156		goto clear_hash;
1157	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1158		goto clear_hash;
1159	if (tcp_md5_hash_key(hp, key))
1160		goto clear_hash;
1161	if (crypto_hash_final(desc, md5_hash))
 
1162		goto clear_hash;
1163
1164	tcp_put_md5sig_pool();
1165	return 0;
1166
1167clear_hash:
1168	tcp_put_md5sig_pool();
1169clear_hash_noput:
1170	memset(md5_hash, 0, 16);
1171	return 1;
1172}
1173EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1174
1175static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1176{
1177	/*
1178	 * This gets called for each TCP segment that arrives
1179	 * so we want to be efficient.
1180	 * We have 3 drop cases:
1181	 * o No MD5 hash and one expected.
1182	 * o MD5 hash and we're not expecting one.
1183	 * o MD5 hash and its wrong.
1184	 */
1185	__u8 *hash_location = NULL;
1186	struct tcp_md5sig_key *hash_expected;
1187	const struct iphdr *iph = ip_hdr(skb);
1188	struct tcphdr *th = tcp_hdr(skb);
1189	int genhash;
1190	unsigned char newhash[16];
1191
1192	hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1193	hash_location = tcp_parse_md5sig_option(th);
 
 
 
 
1194
1195	/* We've parsed the options - do we have a hash? */
1196	if (!hash_expected && !hash_location)
1197		return 0;
 
1198
1199	if (hash_expected && !hash_location) {
1200		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1201		return 1;
1202	}
 
 
1203
1204	if (!hash_expected && hash_location) {
1205		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1206		return 1;
1207	}
1208
1209	/* Okay, so this is hash_expected and hash_location -
1210	 * so we need to calculate the checksum.
1211	 */
1212	genhash = tcp_v4_md5_hash_skb(newhash,
1213				      hash_expected,
1214				      NULL, NULL, skb);
1215
1216	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1217		if (net_ratelimit()) {
1218			printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1219			       &iph->saddr, ntohs(th->source),
1220			       &iph->daddr, ntohs(th->dest),
1221			       genhash ? " tcp_v4_calc_md5_hash failed" : "");
1222		}
1223		return 1;
1224	}
1225	return 0;
1226}
1227
1228#endif
1229
1230struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1231	.family		=	PF_INET,
1232	.obj_size	=	sizeof(struct tcp_request_sock),
1233	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1234	.send_ack	=	tcp_v4_reqsk_send_ack,
1235	.destructor	=	tcp_v4_reqsk_destructor,
1236	.send_reset	=	tcp_v4_send_reset,
1237	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1238};
1239
 
 
1240#ifdef CONFIG_TCP_MD5SIG
1241static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1242	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1243	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1244};
1245#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
1246
1247int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1248{
1249	struct tcp_extend_values tmp_ext;
1250	struct tcp_options_received tmp_opt;
1251	u8 *hash_location;
1252	struct request_sock *req;
1253	struct inet_request_sock *ireq;
1254	struct tcp_sock *tp = tcp_sk(sk);
1255	struct dst_entry *dst = NULL;
1256	__be32 saddr = ip_hdr(skb)->saddr;
1257	__be32 daddr = ip_hdr(skb)->daddr;
1258	__u32 isn = TCP_SKB_CB(skb)->when;
1259	int want_cookie = 0;
1260
1261	/* Never answer to SYNs send to broadcast or multicast */
1262	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1263		goto drop;
1264
1265	/* TW buckets are converted to open requests without
1266	 * limitations, they conserve resources and peer is
1267	 * evidently real one.
1268	 */
1269	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1270		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1271		if (!want_cookie)
1272			goto drop;
1273	}
1274
1275	/* Accept backlog is full. If we have already queued enough
1276	 * of warm entries in syn queue, drop request. It is better than
1277	 * clogging syn queue with openreqs with exponentially increasing
1278	 * timeout.
1279	 */
1280	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1281		goto drop;
1282
1283	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1284	if (!req)
1285		goto drop;
1286
1287#ifdef CONFIG_TCP_MD5SIG
1288	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1289#endif
1290
1291	tcp_clear_options(&tmp_opt);
1292	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1293	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1294	tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1295
1296	if (tmp_opt.cookie_plus > 0 &&
1297	    tmp_opt.saw_tstamp &&
1298	    !tp->rx_opt.cookie_out_never &&
1299	    (sysctl_tcp_cookie_size > 0 ||
1300	     (tp->cookie_values != NULL &&
1301	      tp->cookie_values->cookie_desired > 0))) {
1302		u8 *c;
1303		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1304		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1305
1306		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1307			goto drop_and_release;
1308
1309		/* Secret recipe starts with IP addresses */
1310		*mess++ ^= (__force u32)daddr;
1311		*mess++ ^= (__force u32)saddr;
1312
1313		/* plus variable length Initiator Cookie */
1314		c = (u8 *)mess;
1315		while (l-- > 0)
1316			*c++ ^= *hash_location++;
1317
1318		want_cookie = 0;	/* not our kind of cookie */
1319		tmp_ext.cookie_out_never = 0; /* false */
1320		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1321	} else if (!tp->rx_opt.cookie_in_always) {
1322		/* redundant indications, but ensure initialization. */
1323		tmp_ext.cookie_out_never = 1; /* true */
1324		tmp_ext.cookie_plus = 0;
1325	} else {
1326		goto drop_and_release;
1327	}
1328	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1329
1330	if (want_cookie && !tmp_opt.saw_tstamp)
1331		tcp_clear_options(&tmp_opt);
1332
1333	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1334	tcp_openreq_init(req, &tmp_opt, skb);
1335
1336	ireq = inet_rsk(req);
1337	ireq->loc_addr = daddr;
1338	ireq->rmt_addr = saddr;
1339	ireq->no_srccheck = inet_sk(sk)->transparent;
1340	ireq->opt = tcp_v4_save_options(sk, skb);
1341
1342	if (security_inet_conn_request(sk, skb, req))
1343		goto drop_and_free;
1344
1345	if (!want_cookie || tmp_opt.tstamp_ok)
1346		TCP_ECN_create_request(req, tcp_hdr(skb));
1347
1348	if (want_cookie) {
1349		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1350		req->cookie_ts = tmp_opt.tstamp_ok;
1351	} else if (!isn) {
1352		struct inet_peer *peer = NULL;
1353		struct flowi4 fl4;
1354
1355		/* VJ's idea. We save last timestamp seen
1356		 * from the destination in peer table, when entering
1357		 * state TIME-WAIT, and check against it before
1358		 * accepting new connection request.
1359		 *
1360		 * If "isn" is not zero, this request hit alive
1361		 * timewait bucket, so that all the necessary checks
1362		 * are made in the function processing timewait state.
1363		 */
1364		if (tmp_opt.saw_tstamp &&
1365		    tcp_death_row.sysctl_tw_recycle &&
1366		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1367		    fl4.daddr == saddr &&
1368		    (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1369			inet_peer_refcheck(peer);
1370			if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1371			    (s32)(peer->tcp_ts - req->ts_recent) >
1372							TCP_PAWS_WINDOW) {
1373				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1374				goto drop_and_release;
1375			}
1376		}
1377		/* Kill the following clause, if you dislike this way. */
1378		else if (!sysctl_tcp_syncookies &&
1379			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1380			  (sysctl_max_syn_backlog >> 2)) &&
1381			 (!peer || !peer->tcp_ts_stamp) &&
1382			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1383			/* Without syncookies last quarter of
1384			 * backlog is filled with destinations,
1385			 * proven to be alive.
1386			 * It means that we continue to communicate
1387			 * to destinations, already remembered
1388			 * to the moment of synflood.
1389			 */
1390			LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1391				       &saddr, ntohs(tcp_hdr(skb)->source));
1392			goto drop_and_release;
1393		}
1394
1395		isn = tcp_v4_init_sequence(skb);
1396	}
1397	tcp_rsk(req)->snt_isn = isn;
1398	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1399
1400	if (tcp_v4_send_synack(sk, dst, req,
1401			       (struct request_values *)&tmp_ext) ||
1402	    want_cookie)
1403		goto drop_and_free;
1404
1405	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1406	return 0;
1407
1408drop_and_release:
1409	dst_release(dst);
1410drop_and_free:
1411	reqsk_free(req);
1412drop:
 
1413	return 0;
1414}
1415EXPORT_SYMBOL(tcp_v4_conn_request);
1416
1417
1418/*
1419 * The three way handshake has completed - we got a valid synack -
1420 * now create the new socket.
1421 */
1422struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1423				  struct request_sock *req,
1424				  struct dst_entry *dst)
 
 
1425{
1426	struct inet_request_sock *ireq;
 
1427	struct inet_sock *newinet;
1428	struct tcp_sock *newtp;
1429	struct sock *newsk;
1430#ifdef CONFIG_TCP_MD5SIG
 
1431	struct tcp_md5sig_key *key;
 
1432#endif
1433	struct ip_options_rcu *inet_opt;
1434
1435	if (sk_acceptq_is_full(sk))
1436		goto exit_overflow;
1437
1438	newsk = tcp_create_openreq_child(sk, req, skb);
1439	if (!newsk)
1440		goto exit_nonewsk;
1441
1442	newsk->sk_gso_type = SKB_GSO_TCPV4;
 
1443
1444	newtp		      = tcp_sk(newsk);
1445	newinet		      = inet_sk(newsk);
1446	ireq		      = inet_rsk(req);
1447	newinet->inet_daddr   = ireq->rmt_addr;
1448	newinet->inet_rcv_saddr = ireq->loc_addr;
1449	newinet->inet_saddr	      = ireq->loc_addr;
1450	inet_opt	      = ireq->opt;
1451	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1452	ireq->opt	      = NULL;
1453	newinet->mc_index     = inet_iif(skb);
1454	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
 
1455	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1456	if (inet_opt)
1457		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1458	newinet->inet_id = newtp->write_seq ^ jiffies;
1459
1460	if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1461		goto put_and_exit;
 
 
 
1462
 
 
 
 
 
 
 
1463	sk_setup_caps(newsk, dst);
1464
1465	tcp_mtup_init(newsk);
 
1466	tcp_sync_mss(newsk, dst_mtu(dst));
1467	newtp->advmss = dst_metric_advmss(dst);
1468	if (tcp_sk(sk)->rx_opt.user_mss &&
1469	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1470		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1471
1472	tcp_initialize_rcv_mss(newsk);
1473	if (tcp_rsk(req)->snt_synack)
1474		tcp_valid_rtt_meas(newsk,
1475		    tcp_time_stamp - tcp_rsk(req)->snt_synack);
1476	newtp->total_retrans = req->retrans;
1477
1478#ifdef CONFIG_TCP_MD5SIG
 
1479	/* Copy over the MD5 key from the original socket */
1480	key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1481	if (key != NULL) {
1482		/*
1483		 * We're using one, so create a matching key
1484		 * on the newsk structure. If we fail to get
1485		 * memory, then we end up not copying the key
1486		 * across. Shucks.
1487		 */
1488		char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1489		if (newkey != NULL)
1490			tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1491					  newkey, key->keylen);
1492		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1493	}
1494#endif
 
 
 
 
1495
1496	if (__inet_inherit_port(sk, newsk) < 0)
1497		goto put_and_exit;
1498	__inet_hash_nolisten(newsk, NULL);
 
 
 
 
 
 
1499
 
 
 
 
 
 
 
 
 
1500	return newsk;
1501
1502exit_overflow:
1503	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1504exit_nonewsk:
1505	dst_release(dst);
1506exit:
1507	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1508	return NULL;
1509put_and_exit:
1510	sock_put(newsk);
 
 
1511	goto exit;
1512}
1513EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1514
1515static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1516{
1517	struct tcphdr *th = tcp_hdr(skb);
1518	const struct iphdr *iph = ip_hdr(skb);
1519	struct sock *nsk;
1520	struct request_sock **prev;
1521	/* Find possible connection requests. */
1522	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1523						       iph->saddr, iph->daddr);
1524	if (req)
1525		return tcp_check_req(sk, skb, req, prev);
1526
1527	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1528			th->source, iph->daddr, th->dest, inet_iif(skb));
1529
1530	if (nsk) {
1531		if (nsk->sk_state != TCP_TIME_WAIT) {
1532			bh_lock_sock(nsk);
1533			return nsk;
1534		}
1535		inet_twsk_put(inet_twsk(nsk));
1536		return NULL;
1537	}
1538
1539#ifdef CONFIG_SYN_COOKIES
 
 
1540	if (!th->syn)
1541		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1542#endif
1543	return sk;
1544}
1545
1546static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
 
1547{
1548	const struct iphdr *iph = ip_hdr(skb);
1549
1550	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1551		if (!tcp_v4_check(skb->len, iph->saddr,
1552				  iph->daddr, skb->csum)) {
1553			skb->ip_summed = CHECKSUM_UNNECESSARY;
1554			return 0;
1555		}
1556	}
1557
1558	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1559				       skb->len, IPPROTO_TCP, 0);
1560
1561	if (skb->len <= 76) {
1562		return __skb_checksum_complete(skb);
1563	}
1564	return 0;
 
1565}
1566
1567
 
1568/* The socket must have it's spinlock held when we get
1569 * here.
1570 *
1571 * We have a potential double-lock case here, so even when
1572 * doing backlog processing we use the BH locking scheme.
1573 * This is because we cannot sleep with the original spinlock
1574 * held.
1575 */
1576int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1577{
 
1578	struct sock *rsk;
1579#ifdef CONFIG_TCP_MD5SIG
1580	/*
1581	 * We really want to reject the packet as early as possible
1582	 * if:
1583	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1584	 *  o There is an MD5 option and we're not expecting one
1585	 */
1586	if (tcp_v4_inbound_md5_hash(sk, skb))
1587		goto discard;
1588#endif
1589
1590	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1591		sock_rps_save_rxhash(sk, skb->rxhash);
1592		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1593			rsk = sk;
1594			goto reset;
 
 
 
 
 
 
 
 
 
 
1595		}
 
1596		return 0;
1597	}
1598
1599	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1600		goto csum_err;
1601
1602	if (sk->sk_state == TCP_LISTEN) {
1603		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1604		if (!nsk)
1605			goto discard;
1606
 
 
1607		if (nsk != sk) {
1608			sock_rps_save_rxhash(nsk, skb->rxhash);
1609			if (tcp_child_process(sk, nsk, skb)) {
1610				rsk = nsk;
1611				goto reset;
1612			}
1613			return 0;
1614		}
1615	} else
1616		sock_rps_save_rxhash(sk, skb->rxhash);
1617
1618	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
 
1619		rsk = sk;
1620		goto reset;
1621	}
1622	return 0;
1623
1624reset:
1625	tcp_v4_send_reset(rsk, skb);
1626discard:
1627	kfree_skb(skb);
1628	/* Be careful here. If this function gets more complicated and
1629	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1630	 * might be destroyed here. This current version compiles correctly,
1631	 * but you have been warned.
1632	 */
1633	return 0;
1634
1635csum_err:
1636	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
 
 
1637	goto discard;
1638}
1639EXPORT_SYMBOL(tcp_v4_do_rcv);
1640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641/*
1642 *	From tcp_input.c
1643 */
1644
1645int tcp_v4_rcv(struct sk_buff *skb)
1646{
 
 
 
 
1647	const struct iphdr *iph;
1648	struct tcphdr *th;
 
1649	struct sock *sk;
1650	int ret;
1651	struct net *net = dev_net(skb->dev);
1652
 
1653	if (skb->pkt_type != PACKET_HOST)
1654		goto discard_it;
1655
1656	/* Count it even if it's bad */
1657	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1658
1659	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1660		goto discard_it;
1661
1662	th = tcp_hdr(skb);
1663
1664	if (th->doff < sizeof(struct tcphdr) / 4)
 
1665		goto bad_packet;
 
1666	if (!pskb_may_pull(skb, th->doff * 4))
1667		goto discard_it;
1668
1669	/* An explanation is required here, I think.
1670	 * Packet length and doff are validated by header prediction,
1671	 * provided case of th->doff==0 is eliminated.
1672	 * So, we defer the checks. */
1673	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1674		goto bad_packet;
1675
1676	th = tcp_hdr(skb);
1677	iph = ip_hdr(skb);
1678	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1679	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1680				    skb->len - th->doff * 4);
1681	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1682	TCP_SKB_CB(skb)->when	 = 0;
1683	TCP_SKB_CB(skb)->flags	 = iph->tos;
1684	TCP_SKB_CB(skb)->sacked	 = 0;
1685
1686	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
 
 
 
 
 
1687	if (!sk)
1688		goto no_tcp_socket;
1689
1690process:
1691	if (sk->sk_state == TCP_TIME_WAIT)
1692		goto do_time_wait;
1693
1694	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1695		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696		goto discard_and_relse;
1697	}
1698
1699	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
 
1700		goto discard_and_relse;
1701	nf_reset(skb);
1702
1703	if (sk_filter(sk, skb))
 
 
 
1704		goto discard_and_relse;
 
 
 
 
1705
1706	skb->dev = NULL;
1707
 
 
 
 
 
 
 
1708	bh_lock_sock_nested(sk);
 
1709	ret = 0;
1710	if (!sock_owned_by_user(sk)) {
1711#ifdef CONFIG_NET_DMA
1712		struct tcp_sock *tp = tcp_sk(sk);
1713		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1714			tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1715		if (tp->ucopy.dma_chan)
1716			ret = tcp_v4_do_rcv(sk, skb);
1717		else
1718#endif
1719		{
1720			if (!tcp_prequeue(sk, skb))
1721				ret = tcp_v4_do_rcv(sk, skb);
1722		}
1723	} else if (unlikely(sk_add_backlog(sk, skb))) {
1724		bh_unlock_sock(sk);
1725		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1726		goto discard_and_relse;
1727	}
1728	bh_unlock_sock(sk);
1729
1730	sock_put(sk);
 
 
1731
1732	return ret;
1733
1734no_tcp_socket:
 
1735	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1736		goto discard_it;
1737
1738	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
 
 
 
 
 
 
1739bad_packet:
1740		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1741	} else {
1742		tcp_v4_send_reset(NULL, skb);
1743	}
1744
1745discard_it:
 
1746	/* Discard frame. */
1747	kfree_skb(skb);
1748	return 0;
1749
1750discard_and_relse:
1751	sock_put(sk);
 
 
1752	goto discard_it;
1753
1754do_time_wait:
1755	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 
1756		inet_twsk_put(inet_twsk(sk));
1757		goto discard_it;
1758	}
1759
1760	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1761		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
 
1762		inet_twsk_put(inet_twsk(sk));
1763		goto discard_it;
1764	}
1765	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1766	case TCP_TW_SYN: {
1767		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1768							&tcp_hashinfo,
 
 
1769							iph->daddr, th->dest,
1770							inet_iif(skb));
 
1771		if (sk2) {
1772			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1773			inet_twsk_put(inet_twsk(sk));
1774			sk = sk2;
 
 
1775			goto process;
1776		}
1777		/* Fall through to ACK */
1778	}
 
 
1779	case TCP_TW_ACK:
1780		tcp_v4_timewait_ack(sk, skb);
1781		break;
1782	case TCP_TW_RST:
1783		goto no_tcp_socket;
 
 
1784	case TCP_TW_SUCCESS:;
1785	}
1786	goto discard_it;
1787}
1788
1789struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1790{
1791	struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1792	struct inet_sock *inet = inet_sk(sk);
1793	struct inet_peer *peer;
1794
1795	if (!rt ||
1796	    inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1797		peer = inet_getpeer_v4(inet->inet_daddr, 1);
1798		*release_it = true;
1799	} else {
1800		if (!rt->peer)
1801			rt_bind_peer(rt, inet->inet_daddr, 1);
1802		peer = rt->peer;
1803		*release_it = false;
1804	}
1805
1806	return peer;
1807}
1808EXPORT_SYMBOL(tcp_v4_get_peer);
1809
1810void *tcp_v4_tw_get_peer(struct sock *sk)
1811{
1812	struct inet_timewait_sock *tw = inet_twsk(sk);
1813
1814	return inet_getpeer_v4(tw->tw_daddr, 1);
1815}
1816EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1817
1818static struct timewait_sock_ops tcp_timewait_sock_ops = {
1819	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1820	.twsk_unique	= tcp_twsk_unique,
1821	.twsk_destructor= tcp_twsk_destructor,
1822	.twsk_getpeer	= tcp_v4_tw_get_peer,
1823};
1824
 
 
 
 
 
 
 
 
 
 
 
1825const struct inet_connection_sock_af_ops ipv4_specific = {
1826	.queue_xmit	   = ip_queue_xmit,
1827	.send_check	   = tcp_v4_send_check,
1828	.rebuild_header	   = inet_sk_rebuild_header,
 
1829	.conn_request	   = tcp_v4_conn_request,
1830	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1831	.get_peer	   = tcp_v4_get_peer,
1832	.net_header_len	   = sizeof(struct iphdr),
1833	.setsockopt	   = ip_setsockopt,
1834	.getsockopt	   = ip_getsockopt,
1835	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1836	.sockaddr_len	   = sizeof(struct sockaddr_in),
1837	.bind_conflict	   = inet_csk_bind_conflict,
1838#ifdef CONFIG_COMPAT
1839	.compat_setsockopt = compat_ip_setsockopt,
1840	.compat_getsockopt = compat_ip_getsockopt,
1841#endif
1842};
1843EXPORT_SYMBOL(ipv4_specific);
1844
1845#ifdef CONFIG_TCP_MD5SIG
1846static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
 
1847	.md5_lookup		= tcp_v4_md5_lookup,
1848	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1849	.md5_add		= tcp_v4_md5_add_func,
1850	.md5_parse		= tcp_v4_parse_md5_keys,
 
 
 
 
 
 
 
1851};
1852#endif
1853
1854/* NOTE: A lot of things set to zero explicitly by call to
1855 *       sk_alloc() so need not be done here.
1856 */
1857static int tcp_v4_init_sock(struct sock *sk)
1858{
1859	struct inet_connection_sock *icsk = inet_csk(sk);
1860	struct tcp_sock *tp = tcp_sk(sk);
1861
1862	skb_queue_head_init(&tp->out_of_order_queue);
1863	tcp_init_xmit_timers(sk);
1864	tcp_prequeue_init(tp);
1865
1866	icsk->icsk_rto = TCP_TIMEOUT_INIT;
1867	tp->mdev = TCP_TIMEOUT_INIT;
1868
1869	/* So many TCP implementations out there (incorrectly) count the
1870	 * initial SYN frame in their delayed-ACK and congestion control
1871	 * algorithms that we must have the following bandaid to talk
1872	 * efficiently to them.  -DaveM
1873	 */
1874	tp->snd_cwnd = TCP_INIT_CWND;
1875
1876	/* See draft-stevens-tcpca-spec-01 for discussion of the
1877	 * initialization of these values.
1878	 */
1879	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1880	tp->snd_cwnd_clamp = ~0;
1881	tp->mss_cache = TCP_MSS_DEFAULT;
1882
1883	tp->reordering = sysctl_tcp_reordering;
1884	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1885
1886	sk->sk_state = TCP_CLOSE;
1887
1888	sk->sk_write_space = sk_stream_write_space;
1889	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1890
1891	icsk->icsk_af_ops = &ipv4_specific;
1892	icsk->icsk_sync_mss = tcp_sync_mss;
1893#ifdef CONFIG_TCP_MD5SIG
1894	tp->af_specific = &tcp_sock_ipv4_specific;
1895#endif
1896
1897	/* TCP Cookie Transactions */
1898	if (sysctl_tcp_cookie_size > 0) {
1899		/* Default, cookies without s_data_payload. */
1900		tp->cookie_values =
1901			kzalloc(sizeof(*tp->cookie_values),
1902				sk->sk_allocation);
1903		if (tp->cookie_values != NULL)
1904			kref_init(&tp->cookie_values->kref);
1905	}
1906	/* Presumed zeroed, in order of appearance:
1907	 *	cookie_in_always, cookie_out_never,
1908	 *	s_data_constant, s_data_in, s_data_out
1909	 */
1910	sk->sk_sndbuf = sysctl_tcp_wmem[1];
1911	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1912
1913	local_bh_disable();
1914	percpu_counter_inc(&tcp_sockets_allocated);
1915	local_bh_enable();
 
1916
1917	return 0;
 
 
 
1918}
 
1919
1920void tcp_v4_destroy_sock(struct sock *sk)
1921{
1922	struct tcp_sock *tp = tcp_sk(sk);
1923
 
 
1924	tcp_clear_xmit_timers(sk);
1925
1926	tcp_cleanup_congestion_control(sk);
1927
 
 
1928	/* Cleanup up the write buffer. */
1929	tcp_write_queue_purge(sk);
1930
 
 
 
1931	/* Cleans up our, hopefully empty, out_of_order_queue. */
1932	__skb_queue_purge(&tp->out_of_order_queue);
1933
1934#ifdef CONFIG_TCP_MD5SIG
1935	/* Clean up the MD5 key list, if any */
1936	if (tp->md5sig_info) {
1937		tcp_v4_clear_md5_list(sk);
1938		kfree(tp->md5sig_info);
1939		tp->md5sig_info = NULL;
1940	}
1941#endif
1942
1943#ifdef CONFIG_NET_DMA
1944	/* Cleans up our sk_async_wait_queue */
1945	__skb_queue_purge(&sk->sk_async_wait_queue);
 
 
1946#endif
1947
1948	/* Clean prequeue, it must be empty really */
1949	__skb_queue_purge(&tp->ucopy.prequeue);
1950
1951	/* Clean up a referenced TCP bind bucket. */
1952	if (inet_csk(sk)->icsk_bind_hash)
1953		inet_put_port(sk);
1954
1955	/*
1956	 * If sendmsg cached page exists, toss it.
1957	 */
1958	if (sk->sk_sndmsg_page) {
1959		__free_page(sk->sk_sndmsg_page);
1960		sk->sk_sndmsg_page = NULL;
1961	}
1962
1963	/* TCP Cookie Transactions */
1964	if (tp->cookie_values != NULL) {
1965		kref_put(&tp->cookie_values->kref,
1966			 tcp_cookie_values_release);
1967		tp->cookie_values = NULL;
1968	}
1969
1970	percpu_counter_dec(&tcp_sockets_allocated);
1971}
1972EXPORT_SYMBOL(tcp_v4_destroy_sock);
1973
1974#ifdef CONFIG_PROC_FS
1975/* Proc filesystem TCP sock list dumping. */
1976
1977static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
 
 
1978{
1979	return hlist_nulls_empty(head) ? NULL :
1980		list_entry(head->first, struct inet_timewait_sock, tw_node);
 
 
 
1981}
1982
1983static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
 
 
 
1984{
1985	return !is_a_nulls(tw->tw_node.next) ?
1986		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987}
1988
1989/*
1990 * Get next listener socket follow cur.  If cur is NULL, get first socket
1991 * starting from bucket given in st->bucket; when st->bucket is zero the
1992 * very first socket in the hash table is returned.
1993 */
1994static void *listening_get_next(struct seq_file *seq, void *cur)
1995{
1996	struct inet_connection_sock *icsk;
 
1997	struct hlist_nulls_node *node;
 
1998	struct sock *sk = cur;
1999	struct inet_listen_hashbucket *ilb;
2000	struct tcp_iter_state *st = seq->private;
2001	struct net *net = seq_file_net(seq);
2002
2003	if (!sk) {
2004		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2005		spin_lock_bh(&ilb->lock);
2006		sk = sk_nulls_head(&ilb->head);
2007		st->offset = 0;
2008		goto get_sk;
2009	}
2010	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2011	++st->num;
2012	++st->offset;
2013
2014	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2015		struct request_sock *req = cur;
2016
2017		icsk = inet_csk(st->syn_wait_sk);
2018		req = req->dl_next;
2019		while (1) {
2020			while (req) {
2021				if (req->rsk_ops->family == st->family) {
2022					cur = req;
2023					goto out;
2024				}
2025				req = req->dl_next;
2026			}
2027			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2028				break;
2029get_req:
2030			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2031		}
2032		sk	  = sk_nulls_next(st->syn_wait_sk);
2033		st->state = TCP_SEQ_STATE_LISTENING;
2034		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2035	} else {
2036		icsk = inet_csk(sk);
2037		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2038		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2039			goto start_req;
2040		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2041		sk = sk_nulls_next(sk);
2042	}
2043get_sk:
2044	sk_nulls_for_each_from(sk, node) {
2045		if (!net_eq(sock_net(sk), net))
2046			continue;
2047		if (sk->sk_family == st->family) {
2048			cur = sk;
2049			goto out;
2050		}
2051		icsk = inet_csk(sk);
2052		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2053		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2054start_req:
2055			st->uid		= sock_i_uid(sk);
2056			st->syn_wait_sk = sk;
2057			st->state	= TCP_SEQ_STATE_OPENREQ;
2058			st->sbucket	= 0;
2059			goto get_req;
2060		}
2061		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2062	}
2063	spin_unlock_bh(&ilb->lock);
2064	st->offset = 0;
2065	if (++st->bucket < INET_LHTABLE_SIZE) {
2066		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2067		spin_lock_bh(&ilb->lock);
2068		sk = sk_nulls_head(&ilb->head);
2069		goto get_sk;
2070	}
2071	cur = NULL;
2072out:
2073	return cur;
2074}
2075
2076static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2077{
2078	struct tcp_iter_state *st = seq->private;
2079	void *rc;
2080
2081	st->bucket = 0;
2082	st->offset = 0;
2083	rc = listening_get_next(seq, NULL);
2084
2085	while (rc && *pos) {
2086		rc = listening_get_next(seq, rc);
2087		--*pos;
2088	}
2089	return rc;
2090}
2091
2092static inline int empty_bucket(struct tcp_iter_state *st)
 
2093{
2094	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2095		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2096}
2097
2098/*
2099 * Get first established socket starting from bucket given in st->bucket.
2100 * If st->bucket is zero, the very first socket in the hash is returned.
2101 */
2102static void *established_get_first(struct seq_file *seq)
2103{
 
2104	struct tcp_iter_state *st = seq->private;
2105	struct net *net = seq_file_net(seq);
2106	void *rc = NULL;
2107
2108	st->offset = 0;
2109	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2110		struct sock *sk;
2111		struct hlist_nulls_node *node;
2112		struct inet_timewait_sock *tw;
2113		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
 
2114
2115		/* Lockless fast path for the common case of empty buckets */
2116		if (empty_bucket(st))
2117			continue;
2118
2119		spin_lock_bh(lock);
2120		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2121			if (sk->sk_family != st->family ||
2122			    !net_eq(sock_net(sk), net)) {
2123				continue;
2124			}
2125			rc = sk;
2126			goto out;
2127		}
2128		st->state = TCP_SEQ_STATE_TIME_WAIT;
2129		inet_twsk_for_each(tw, node,
2130				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2131			if (tw->tw_family != st->family ||
2132			    !net_eq(twsk_net(tw), net)) {
2133				continue;
2134			}
2135			rc = tw;
2136			goto out;
2137		}
2138		spin_unlock_bh(lock);
2139		st->state = TCP_SEQ_STATE_ESTABLISHED;
2140	}
2141out:
2142	return rc;
2143}
2144
2145static void *established_get_next(struct seq_file *seq, void *cur)
2146{
2147	struct sock *sk = cur;
2148	struct inet_timewait_sock *tw;
2149	struct hlist_nulls_node *node;
2150	struct tcp_iter_state *st = seq->private;
2151	struct net *net = seq_file_net(seq);
 
2152
2153	++st->num;
2154	++st->offset;
2155
2156	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2157		tw = cur;
2158		tw = tw_next(tw);
2159get_tw:
2160		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2161			tw = tw_next(tw);
2162		}
2163		if (tw) {
2164			cur = tw;
2165			goto out;
2166		}
2167		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2168		st->state = TCP_SEQ_STATE_ESTABLISHED;
2169
2170		/* Look for next non empty bucket */
2171		st->offset = 0;
2172		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2173				empty_bucket(st))
2174			;
2175		if (st->bucket > tcp_hashinfo.ehash_mask)
2176			return NULL;
2177
2178		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2179		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2180	} else
2181		sk = sk_nulls_next(sk);
2182
2183	sk_nulls_for_each_from(sk, node) {
2184		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2185			goto found;
2186	}
2187
2188	st->state = TCP_SEQ_STATE_TIME_WAIT;
2189	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2190	goto get_tw;
2191found:
2192	cur = sk;
2193out:
2194	return cur;
2195}
2196
2197static void *established_get_idx(struct seq_file *seq, loff_t pos)
2198{
2199	struct tcp_iter_state *st = seq->private;
2200	void *rc;
2201
2202	st->bucket = 0;
2203	rc = established_get_first(seq);
2204
2205	while (rc && pos) {
2206		rc = established_get_next(seq, rc);
2207		--pos;
2208	}
2209	return rc;
2210}
2211
2212static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2213{
2214	void *rc;
2215	struct tcp_iter_state *st = seq->private;
2216
2217	st->state = TCP_SEQ_STATE_LISTENING;
2218	rc	  = listening_get_idx(seq, &pos);
2219
2220	if (!rc) {
2221		st->state = TCP_SEQ_STATE_ESTABLISHED;
2222		rc	  = established_get_idx(seq, pos);
2223	}
2224
2225	return rc;
2226}
2227
2228static void *tcp_seek_last_pos(struct seq_file *seq)
2229{
 
2230	struct tcp_iter_state *st = seq->private;
 
2231	int offset = st->offset;
2232	int orig_num = st->num;
2233	void *rc = NULL;
2234
2235	switch (st->state) {
2236	case TCP_SEQ_STATE_OPENREQ:
2237	case TCP_SEQ_STATE_LISTENING:
2238		if (st->bucket >= INET_LHTABLE_SIZE)
2239			break;
2240		st->state = TCP_SEQ_STATE_LISTENING;
2241		rc = listening_get_next(seq, NULL);
2242		while (offset-- && rc)
2243			rc = listening_get_next(seq, rc);
2244		if (rc)
2245			break;
2246		st->bucket = 0;
2247		/* Fallthrough */
2248	case TCP_SEQ_STATE_ESTABLISHED:
2249	case TCP_SEQ_STATE_TIME_WAIT:
2250		st->state = TCP_SEQ_STATE_ESTABLISHED;
2251		if (st->bucket > tcp_hashinfo.ehash_mask)
 
 
2252			break;
2253		rc = established_get_first(seq);
2254		while (offset-- && rc)
2255			rc = established_get_next(seq, rc);
2256	}
2257
2258	st->num = orig_num;
2259
2260	return rc;
2261}
2262
2263static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2264{
2265	struct tcp_iter_state *st = seq->private;
2266	void *rc;
2267
2268	if (*pos && *pos == st->last_pos) {
2269		rc = tcp_seek_last_pos(seq);
2270		if (rc)
2271			goto out;
2272	}
2273
2274	st->state = TCP_SEQ_STATE_LISTENING;
2275	st->num = 0;
2276	st->bucket = 0;
2277	st->offset = 0;
2278	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2279
2280out:
2281	st->last_pos = *pos;
2282	return rc;
2283}
 
2284
2285static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2286{
2287	struct tcp_iter_state *st = seq->private;
2288	void *rc = NULL;
2289
2290	if (v == SEQ_START_TOKEN) {
2291		rc = tcp_get_idx(seq, 0);
2292		goto out;
2293	}
2294
2295	switch (st->state) {
2296	case TCP_SEQ_STATE_OPENREQ:
2297	case TCP_SEQ_STATE_LISTENING:
2298		rc = listening_get_next(seq, v);
2299		if (!rc) {
2300			st->state = TCP_SEQ_STATE_ESTABLISHED;
2301			st->bucket = 0;
2302			st->offset = 0;
2303			rc	  = established_get_first(seq);
2304		}
2305		break;
2306	case TCP_SEQ_STATE_ESTABLISHED:
2307	case TCP_SEQ_STATE_TIME_WAIT:
2308		rc = established_get_next(seq, v);
2309		break;
2310	}
2311out:
2312	++*pos;
2313	st->last_pos = *pos;
2314	return rc;
2315}
 
2316
2317static void tcp_seq_stop(struct seq_file *seq, void *v)
2318{
 
2319	struct tcp_iter_state *st = seq->private;
2320
2321	switch (st->state) {
2322	case TCP_SEQ_STATE_OPENREQ:
2323		if (v) {
2324			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2325			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2326		}
2327	case TCP_SEQ_STATE_LISTENING:
2328		if (v != SEQ_START_TOKEN)
2329			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2330		break;
2331	case TCP_SEQ_STATE_TIME_WAIT:
2332	case TCP_SEQ_STATE_ESTABLISHED:
2333		if (v)
2334			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2335		break;
2336	}
2337}
 
2338
2339static int tcp_seq_open(struct inode *inode, struct file *file)
2340{
2341	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2342	struct tcp_iter_state *s;
2343	int err;
2344
2345	err = seq_open_net(inode, file, &afinfo->seq_ops,
2346			  sizeof(struct tcp_iter_state));
2347	if (err < 0)
2348		return err;
2349
2350	s = ((struct seq_file *)file->private_data)->private;
2351	s->family		= afinfo->family;
2352	s->last_pos 		= 0;
2353	return 0;
2354}
2355
2356int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2357{
2358	int rc = 0;
2359	struct proc_dir_entry *p;
2360
2361	afinfo->seq_fops.open		= tcp_seq_open;
2362	afinfo->seq_fops.read		= seq_read;
2363	afinfo->seq_fops.llseek		= seq_lseek;
2364	afinfo->seq_fops.release	= seq_release_net;
2365
2366	afinfo->seq_ops.start		= tcp_seq_start;
2367	afinfo->seq_ops.next		= tcp_seq_next;
2368	afinfo->seq_ops.stop		= tcp_seq_stop;
2369
2370	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2371			     &afinfo->seq_fops, afinfo);
2372	if (!p)
2373		rc = -ENOMEM;
2374	return rc;
2375}
2376EXPORT_SYMBOL(tcp_proc_register);
2377
2378void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2379{
2380	proc_net_remove(net, afinfo->name);
2381}
2382EXPORT_SYMBOL(tcp_proc_unregister);
2383
2384static void get_openreq4(struct sock *sk, struct request_sock *req,
2385			 struct seq_file *f, int i, int uid, int *len)
2386{
2387	const struct inet_request_sock *ireq = inet_rsk(req);
2388	int ttd = req->expires - jiffies;
2389
2390	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2391		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2392		i,
2393		ireq->loc_addr,
2394		ntohs(inet_sk(sk)->inet_sport),
2395		ireq->rmt_addr,
2396		ntohs(ireq->rmt_port),
2397		TCP_SYN_RECV,
2398		0, 0, /* could print option size, but that is af dependent. */
2399		1,    /* timers active (only the expire timer) */
2400		jiffies_to_clock_t(ttd),
2401		req->retrans,
2402		uid,
 
2403		0,  /* non standard timer */
2404		0, /* open_requests have no inode */
2405		atomic_read(&sk->sk_refcnt),
2406		req,
2407		len);
2408}
2409
2410static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2411{
2412	int timer_active;
2413	unsigned long timer_expires;
2414	struct tcp_sock *tp = tcp_sk(sk);
2415	const struct inet_connection_sock *icsk = inet_csk(sk);
2416	struct inet_sock *inet = inet_sk(sk);
 
2417	__be32 dest = inet->inet_daddr;
2418	__be32 src = inet->inet_rcv_saddr;
2419	__u16 destp = ntohs(inet->inet_dport);
2420	__u16 srcp = ntohs(inet->inet_sport);
2421	int rx_queue;
 
2422
2423	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
 
 
2424		timer_active	= 1;
2425		timer_expires	= icsk->icsk_timeout;
2426	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2427		timer_active	= 4;
2428		timer_expires	= icsk->icsk_timeout;
2429	} else if (timer_pending(&sk->sk_timer)) {
2430		timer_active	= 2;
2431		timer_expires	= sk->sk_timer.expires;
2432	} else {
2433		timer_active	= 0;
2434		timer_expires = jiffies;
2435	}
2436
2437	if (sk->sk_state == TCP_LISTEN)
2438		rx_queue = sk->sk_ack_backlog;
 
2439	else
2440		/*
2441		 * because we dont lock socket, we might find a transient negative value
2442		 */
2443		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
 
2444
2445	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2446			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2447		i, src, srcp, dest, destp, sk->sk_state,
2448		tp->write_seq - tp->snd_una,
2449		rx_queue,
2450		timer_active,
2451		jiffies_to_clock_t(timer_expires - jiffies),
2452		icsk->icsk_retransmits,
2453		sock_i_uid(sk),
2454		icsk->icsk_probes_out,
2455		sock_i_ino(sk),
2456		atomic_read(&sk->sk_refcnt), sk,
2457		jiffies_to_clock_t(icsk->icsk_rto),
2458		jiffies_to_clock_t(icsk->icsk_ack.ato),
2459		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2460		tp->snd_cwnd,
2461		tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2462		len);
 
2463}
2464
2465static void get_timewait4_sock(struct inet_timewait_sock *tw,
2466			       struct seq_file *f, int i, int *len)
2467{
 
2468	__be32 dest, src;
2469	__u16 destp, srcp;
2470	int ttd = tw->tw_ttd - jiffies;
2471
2472	if (ttd < 0)
2473		ttd = 0;
2474
2475	dest  = tw->tw_daddr;
2476	src   = tw->tw_rcv_saddr;
2477	destp = ntohs(tw->tw_dport);
2478	srcp  = ntohs(tw->tw_sport);
2479
2480	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2481		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2482		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2483		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2484		atomic_read(&tw->tw_refcnt), tw, len);
2485}
2486
2487#define TMPSZ 150
2488
2489static int tcp4_seq_show(struct seq_file *seq, void *v)
2490{
2491	struct tcp_iter_state *st;
2492	int len;
2493
 
2494	if (v == SEQ_START_TOKEN) {
2495		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2496			   "  sl  local_address rem_address   st tx_queue "
2497			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2498			   "inode");
2499		goto out;
2500	}
2501	st = seq->private;
2502
2503	switch (st->state) {
2504	case TCP_SEQ_STATE_LISTENING:
2505	case TCP_SEQ_STATE_ESTABLISHED:
2506		get_tcp4_sock(v, seq, st->num, &len);
2507		break;
2508	case TCP_SEQ_STATE_OPENREQ:
2509		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2510		break;
2511	case TCP_SEQ_STATE_TIME_WAIT:
2512		get_timewait4_sock(v, seq, st->num, &len);
2513		break;
2514	}
2515	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2516out:
 
2517	return 0;
2518}
2519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2520static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2521	.name		= "tcp",
2522	.family		= AF_INET,
2523	.seq_fops	= {
2524		.owner		= THIS_MODULE,
2525	},
2526	.seq_ops	= {
2527		.show		= tcp4_seq_show,
2528	},
2529};
2530
2531static int __net_init tcp4_proc_init_net(struct net *net)
2532{
2533	return tcp_proc_register(net, &tcp4_seq_afinfo);
 
 
 
2534}
2535
2536static void __net_exit tcp4_proc_exit_net(struct net *net)
2537{
2538	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2539}
2540
2541static struct pernet_operations tcp4_net_ops = {
2542	.init = tcp4_proc_init_net,
2543	.exit = tcp4_proc_exit_net,
2544};
2545
2546int __init tcp4_proc_init(void)
2547{
2548	return register_pernet_subsys(&tcp4_net_ops);
2549}
2550
2551void tcp4_proc_exit(void)
2552{
2553	unregister_pernet_subsys(&tcp4_net_ops);
2554}
2555#endif /* CONFIG_PROC_FS */
2556
2557struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2558{
2559	const struct iphdr *iph = skb_gro_network_header(skb);
2560
2561	switch (skb->ip_summed) {
2562	case CHECKSUM_COMPLETE:
2563		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2564				  skb->csum)) {
2565			skb->ip_summed = CHECKSUM_UNNECESSARY;
2566			break;
2567		}
2568
2569		/* fall through */
2570	case CHECKSUM_NONE:
2571		NAPI_GRO_CB(skb)->flush = 1;
2572		return NULL;
2573	}
2574
2575	return tcp_gro_receive(head, skb);
2576}
2577
2578int tcp4_gro_complete(struct sk_buff *skb)
2579{
2580	const struct iphdr *iph = ip_hdr(skb);
2581	struct tcphdr *th = tcp_hdr(skb);
 
2582
2583	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2584				  iph->saddr, iph->daddr, 0);
2585	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2586
2587	return tcp_gro_complete(skb);
2588}
 
2589
2590struct proto tcp_prot = {
2591	.name			= "TCP",
2592	.owner			= THIS_MODULE,
2593	.close			= tcp_close,
 
2594	.connect		= tcp_v4_connect,
2595	.disconnect		= tcp_disconnect,
2596	.accept			= inet_csk_accept,
2597	.ioctl			= tcp_ioctl,
2598	.init			= tcp_v4_init_sock,
2599	.destroy		= tcp_v4_destroy_sock,
2600	.shutdown		= tcp_shutdown,
2601	.setsockopt		= tcp_setsockopt,
2602	.getsockopt		= tcp_getsockopt,
 
 
2603	.recvmsg		= tcp_recvmsg,
2604	.sendmsg		= tcp_sendmsg,
2605	.sendpage		= tcp_sendpage,
2606	.backlog_rcv		= tcp_v4_do_rcv,
 
2607	.hash			= inet_hash,
2608	.unhash			= inet_unhash,
2609	.get_port		= inet_csk_get_port,
 
 
 
 
2610	.enter_memory_pressure	= tcp_enter_memory_pressure,
 
 
2611	.sockets_allocated	= &tcp_sockets_allocated,
2612	.orphan_count		= &tcp_orphan_count,
 
2613	.memory_allocated	= &tcp_memory_allocated,
 
 
2614	.memory_pressure	= &tcp_memory_pressure,
2615	.sysctl_mem		= sysctl_tcp_mem,
2616	.sysctl_wmem		= sysctl_tcp_wmem,
2617	.sysctl_rmem		= sysctl_tcp_rmem,
2618	.max_header		= MAX_TCP_HEADER,
2619	.obj_size		= sizeof(struct tcp_sock),
2620	.slab_flags		= SLAB_DESTROY_BY_RCU,
2621	.twsk_prot		= &tcp_timewait_sock_ops,
2622	.rsk_prot		= &tcp_request_sock_ops,
2623	.h.hashinfo		= &tcp_hashinfo,
2624	.no_autobind		= true,
2625#ifdef CONFIG_COMPAT
2626	.compat_setsockopt	= compat_tcp_setsockopt,
2627	.compat_getsockopt	= compat_tcp_getsockopt,
2628#endif
2629};
2630EXPORT_SYMBOL(tcp_prot);
2631
2632
2633static int __net_init tcp_sk_init(struct net *net)
2634{
2635	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2636				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637}
2638
2639static void __net_exit tcp_sk_exit(struct net *net)
2640{
2641	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642}
2643
2644static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2645{
2646	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
 
 
 
 
 
 
 
 
2647}
2648
2649static struct pernet_operations __net_initdata tcp_sk_ops = {
2650       .init	   = tcp_sk_init,
2651       .exit	   = tcp_sk_exit,
2652       .exit_batch = tcp_sk_exit_batch,
2653};
2654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2655void __init tcp_v4_init(void)
2656{
2657	inet_hashinfo_init(&tcp_hashinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658	if (register_pernet_subsys(&tcp_sk_ops))
2659		panic("Failed to create the TCP control socket.\n");
 
 
 
 
2660}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 *		IPv4 specific functions
  10 *
 
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
 
 
 
 
 
  17 */
  18
  19/*
  20 * Changes:
  21 *		David S. Miller	:	New socket lookup architecture.
  22 *					This code is dedicated to John Dyson.
  23 *		David S. Miller :	Change semantics of established hash,
  24 *					half is devoted to TIME_WAIT sockets
  25 *					and the rest go in the other half.
  26 *		Andi Kleen :		Add support for syncookies and fixed
  27 *					some bugs: ip options weren't passed to
  28 *					the TCP layer, missed a check for an
  29 *					ACK bit.
  30 *		Andi Kleen :		Implemented fast path mtu discovery.
  31 *	     				Fixed many serious bugs in the
  32 *					request_sock handling and moved
  33 *					most of it into the af independent code.
  34 *					Added tail drop and some other bugfixes.
  35 *					Added new listen semantics.
  36 *		Mike McLagan	:	Routing by source
  37 *	Juan Jose Ciarlante:		ip_dynaddr bits
  38 *		Andi Kleen:		various fixes.
  39 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  40 *					coma.
  41 *	Andi Kleen		:	Fix new listen.
  42 *	Andi Kleen		:	Fix accept error reporting.
  43 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  44 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  45 *					a single port at the same time.
  46 */
  47
  48#define pr_fmt(fmt) "TCP: " fmt
  49
  50#include <linux/bottom_half.h>
  51#include <linux/types.h>
  52#include <linux/fcntl.h>
  53#include <linux/module.h>
  54#include <linux/random.h>
  55#include <linux/cache.h>
  56#include <linux/jhash.h>
  57#include <linux/init.h>
  58#include <linux/times.h>
  59#include <linux/slab.h>
  60#include <linux/sched.h>
  61
  62#include <net/net_namespace.h>
  63#include <net/icmp.h>
  64#include <net/inet_hashtables.h>
  65#include <net/tcp.h>
  66#include <net/transp_v6.h>
  67#include <net/ipv6.h>
  68#include <net/inet_common.h>
  69#include <net/timewait_sock.h>
  70#include <net/xfrm.h>
 
  71#include <net/secure_seq.h>
  72#include <net/busy_poll.h>
  73
  74#include <linux/inet.h>
  75#include <linux/ipv6.h>
  76#include <linux/stddef.h>
  77#include <linux/proc_fs.h>
  78#include <linux/seq_file.h>
  79#include <linux/inetdevice.h>
  80#include <linux/btf_ids.h>
  81
  82#include <crypto/hash.h>
  83#include <linux/scatterlist.h>
  84
  85#include <trace/events/tcp.h>
 
 
 
  86
  87#ifdef CONFIG_TCP_MD5SIG
  88static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  89			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
 
 
 
 
 
 
 
 
  90#endif
  91
  92struct inet_hashinfo tcp_hashinfo;
  93EXPORT_SYMBOL(tcp_hashinfo);
  94
  95static DEFINE_PER_CPU(struct sock *, ipv4_tcp_sk);
  96
  97static u32 tcp_v4_init_seq(const struct sk_buff *skb)
  98{
  99	return secure_tcp_seq(ip_hdr(skb)->daddr,
 100			      ip_hdr(skb)->saddr,
 101			      tcp_hdr(skb)->dest,
 102			      tcp_hdr(skb)->source);
 103}
 104
 105static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
 106{
 107	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
 108}
 109
 110int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 111{
 112	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
 113	const struct inet_timewait_sock *tw = inet_twsk(sktw);
 114	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 115	struct tcp_sock *tp = tcp_sk(sk);
 116
 117	if (reuse == 2) {
 118		/* Still does not detect *everything* that goes through
 119		 * lo, since we require a loopback src or dst address
 120		 * or direct binding to 'lo' interface.
 121		 */
 122		bool loopback = false;
 123		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
 124			loopback = true;
 125#if IS_ENABLED(CONFIG_IPV6)
 126		if (tw->tw_family == AF_INET6) {
 127			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
 128			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
 129			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
 130			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
 131				loopback = true;
 132		} else
 133#endif
 134		{
 135			if (ipv4_is_loopback(tw->tw_daddr) ||
 136			    ipv4_is_loopback(tw->tw_rcv_saddr))
 137				loopback = true;
 138		}
 139		if (!loopback)
 140			reuse = 0;
 141	}
 142
 143	/* With PAWS, it is safe from the viewpoint
 144	   of data integrity. Even without PAWS it is safe provided sequence
 145	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 146
 147	   Actually, the idea is close to VJ's one, only timestamp cache is
 148	   held not per host, but per port pair and TW bucket is used as state
 149	   holder.
 150
 151	   If TW bucket has been already destroyed we fall back to VJ's scheme
 152	   and use initial timestamp retrieved from peer table.
 153	 */
 154	if (tcptw->tw_ts_recent_stamp &&
 155	    (!twp || (reuse && time_after32(ktime_get_seconds(),
 156					    tcptw->tw_ts_recent_stamp)))) {
 157		/* inet_twsk_hashdance() sets sk_refcnt after putting twsk
 158		 * and releasing the bucket lock.
 159		 */
 160		if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
 161			return 0;
 162
 163		/* In case of repair and re-using TIME-WAIT sockets we still
 164		 * want to be sure that it is safe as above but honor the
 165		 * sequence numbers and time stamps set as part of the repair
 166		 * process.
 167		 *
 168		 * Without this check re-using a TIME-WAIT socket with TCP
 169		 * repair would accumulate a -1 on the repair assigned
 170		 * sequence number. The first time it is reused the sequence
 171		 * is -1, the second time -2, etc. This fixes that issue
 172		 * without appearing to create any others.
 173		 */
 174		if (likely(!tp->repair)) {
 175			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
 176
 177			if (!seq)
 178				seq = 1;
 179			WRITE_ONCE(tp->write_seq, seq);
 180			tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 181			tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 182		}
 183
 184		return 1;
 185	}
 186
 187	return 0;
 188}
 189EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 190
 191static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
 192			      int addr_len)
 193{
 194	/* This check is replicated from tcp_v4_connect() and intended to
 195	 * prevent BPF program called below from accessing bytes that are out
 196	 * of the bound specified by user in addr_len.
 197	 */
 198	if (addr_len < sizeof(struct sockaddr_in))
 199		return -EINVAL;
 200
 201	sock_owned_by_me(sk);
 202
 203	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
 204}
 205
 206/* This will initiate an outgoing connection. */
 207int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 208{
 209	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 210	struct inet_timewait_death_row *tcp_death_row;
 211	struct inet_sock *inet = inet_sk(sk);
 212	struct tcp_sock *tp = tcp_sk(sk);
 213	struct ip_options_rcu *inet_opt;
 214	struct net *net = sock_net(sk);
 215	__be16 orig_sport, orig_dport;
 216	__be32 daddr, nexthop;
 217	struct flowi4 *fl4;
 218	struct rtable *rt;
 219	int err;
 
 220
 221	if (addr_len < sizeof(struct sockaddr_in))
 222		return -EINVAL;
 223
 224	if (usin->sin_family != AF_INET)
 225		return -EAFNOSUPPORT;
 226
 227	nexthop = daddr = usin->sin_addr.s_addr;
 228	inet_opt = rcu_dereference_protected(inet->inet_opt,
 229					     lockdep_sock_is_held(sk));
 230	if (inet_opt && inet_opt->opt.srr) {
 231		if (!daddr)
 232			return -EINVAL;
 233		nexthop = inet_opt->opt.faddr;
 234	}
 235
 236	orig_sport = inet->inet_sport;
 237	orig_dport = usin->sin_port;
 238	fl4 = &inet->cork.fl.u.ip4;
 239	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 240			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
 241			      orig_dport, sk);
 
 242	if (IS_ERR(rt)) {
 243		err = PTR_ERR(rt);
 244		if (err == -ENETUNREACH)
 245			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 246		return err;
 247	}
 248
 249	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 250		ip_rt_put(rt);
 251		return -ENETUNREACH;
 252	}
 253
 254	if (!inet_opt || !inet_opt->opt.srr)
 255		daddr = fl4->daddr;
 256
 257	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 258
 259	if (!inet->inet_saddr) {
 260		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
 261		if (err) {
 262			ip_rt_put(rt);
 263			return err;
 264		}
 265	} else {
 266		sk_rcv_saddr_set(sk, inet->inet_saddr);
 267	}
 268
 269	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 270		/* Reset inherited state */
 271		tp->rx_opt.ts_recent	   = 0;
 272		tp->rx_opt.ts_recent_stamp = 0;
 273		if (likely(!tp->repair))
 274			WRITE_ONCE(tp->write_seq, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275	}
 276
 277	inet->inet_dport = usin->sin_port;
 278	sk_daddr_set(sk, daddr);
 279
 280	inet_csk(sk)->icsk_ext_hdr_len = 0;
 281	if (inet_opt)
 282		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 283
 284	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 285
 286	/* Socket identity is still unknown (sport may be zero).
 287	 * However we set state to SYN-SENT and not releasing socket
 288	 * lock select source port, enter ourselves into the hash tables and
 289	 * complete initialization after this.
 290	 */
 291	tcp_set_state(sk, TCP_SYN_SENT);
 292	err = inet_hash_connect(tcp_death_row, sk);
 293	if (err)
 294		goto failure;
 295
 296	sk_set_txhash(sk);
 297
 298	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 299			       inet->inet_sport, inet->inet_dport, sk);
 300	if (IS_ERR(rt)) {
 301		err = PTR_ERR(rt);
 302		rt = NULL;
 303		goto failure;
 304	}
 305	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
 306	/* OK, now commit destination to socket.  */
 307	sk->sk_gso_type = SKB_GSO_TCPV4;
 308	sk_setup_caps(sk, &rt->dst);
 309	rt = NULL;
 310
 311	if (likely(!tp->repair)) {
 312		if (!tp->write_seq)
 313			WRITE_ONCE(tp->write_seq,
 314				   secure_tcp_seq(inet->inet_saddr,
 315						  inet->inet_daddr,
 316						  inet->inet_sport,
 317						  usin->sin_port));
 318		WRITE_ONCE(tp->tsoffset,
 319			   secure_tcp_ts_off(net, inet->inet_saddr,
 320					     inet->inet_daddr));
 321	}
 322
 323	atomic_set(&inet->inet_id, get_random_u16());
 324
 325	if (tcp_fastopen_defer_connect(sk, &err))
 326		return err;
 327	if (err)
 328		goto failure;
 329
 330	err = tcp_connect(sk);
 331
 332	if (err)
 333		goto failure;
 334
 335	return 0;
 336
 337failure:
 338	/*
 339	 * This unhashes the socket and releases the local port,
 340	 * if necessary.
 341	 */
 342	tcp_set_state(sk, TCP_CLOSE);
 343	inet_bhash2_reset_saddr(sk);
 344	ip_rt_put(rt);
 345	sk->sk_route_caps = 0;
 346	inet->inet_dport = 0;
 347	return err;
 348}
 349EXPORT_SYMBOL(tcp_v4_connect);
 350
 351/*
 352 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 353 * It can be called through tcp_release_cb() if socket was owned by user
 354 * at the time tcp_v4_err() was called to handle ICMP message.
 355 */
 356void tcp_v4_mtu_reduced(struct sock *sk)
 357{
 
 358	struct inet_sock *inet = inet_sk(sk);
 359	struct dst_entry *dst;
 360	u32 mtu;
 361
 362	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
 
 
 
 
 363		return;
 364	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
 365	dst = inet_csk_update_pmtu(sk, mtu);
 366	if (!dst)
 
 
 
 
 
 367		return;
 368
 
 
 369	/* Something is about to be wrong... Remember soft error
 370	 * for the case, if this connection will not able to recover.
 371	 */
 372	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 373		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
 374
 375	mtu = dst_mtu(dst);
 376
 377	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 378	    ip_sk_accept_pmtu(sk) &&
 379	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 380		tcp_sync_mss(sk, mtu);
 381
 382		/* Resend the TCP packet because it's
 383		 * clear that the old packet has been
 384		 * dropped. This is the new "fast" path mtu
 385		 * discovery.
 386		 */
 387		tcp_simple_retransmit(sk);
 388	} /* else let the usual retransmit timer handle it */
 389}
 390EXPORT_SYMBOL(tcp_v4_mtu_reduced);
 391
 392static void do_redirect(struct sk_buff *skb, struct sock *sk)
 393{
 394	struct dst_entry *dst = __sk_dst_check(sk, 0);
 395
 396	if (dst)
 397		dst->ops->redirect(dst, sk, skb);
 398}
 399
 400
 401/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
 402void tcp_req_err(struct sock *sk, u32 seq, bool abort)
 403{
 404	struct request_sock *req = inet_reqsk(sk);
 405	struct net *net = sock_net(sk);
 406
 407	/* ICMPs are not backlogged, hence we cannot get
 408	 * an established socket here.
 409	 */
 410	if (seq != tcp_rsk(req)->snt_isn) {
 411		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 412	} else if (abort) {
 413		/*
 414		 * Still in SYN_RECV, just remove it silently.
 415		 * There is no good way to pass the error to the newly
 416		 * created socket, and POSIX does not want network
 417		 * errors returned from accept().
 418		 */
 419		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
 420		tcp_listendrop(req->rsk_listener);
 421	}
 422	reqsk_put(req);
 423}
 424EXPORT_SYMBOL(tcp_req_err);
 425
 426/* TCP-LD (RFC 6069) logic */
 427void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
 428{
 429	struct inet_connection_sock *icsk = inet_csk(sk);
 430	struct tcp_sock *tp = tcp_sk(sk);
 431	struct sk_buff *skb;
 432	s32 remaining;
 433	u32 delta_us;
 434
 435	if (sock_owned_by_user(sk))
 436		return;
 437
 438	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 439	    !icsk->icsk_backoff)
 440		return;
 441
 442	skb = tcp_rtx_queue_head(sk);
 443	if (WARN_ON_ONCE(!skb))
 444		return;
 445
 446	icsk->icsk_backoff--;
 447	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
 448	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
 449
 450	tcp_mstamp_refresh(tp);
 451	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
 452	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
 453
 454	if (remaining > 0) {
 455		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 456					  remaining, TCP_RTO_MAX);
 457	} else {
 458		/* RTO revert clocked out retransmission.
 459		 * Will retransmit now.
 460		 */
 461		tcp_retransmit_timer(sk);
 462	}
 463}
 464EXPORT_SYMBOL(tcp_ld_RTO_revert);
 465
 466/*
 467 * This routine is called by the ICMP module when it gets some
 468 * sort of error condition.  If err < 0 then the socket should
 469 * be closed and the error returned to the user.  If err > 0
 470 * it's just the icmp type << 8 | icmp code.  After adjustment
 471 * header points to the first 8 bytes of the tcp header.  We need
 472 * to find the appropriate port.
 473 *
 474 * The locking strategy used here is very "optimistic". When
 475 * someone else accesses the socket the ICMP is just dropped
 476 * and for some paths there is no check at all.
 477 * A more general error queue to queue errors for later handling
 478 * is probably better.
 479 *
 480 */
 481
 482int tcp_v4_err(struct sk_buff *skb, u32 info)
 483{
 484	const struct iphdr *iph = (const struct iphdr *)skb->data;
 485	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
 
 486	struct tcp_sock *tp;
 487	const int type = icmp_hdr(skb)->type;
 488	const int code = icmp_hdr(skb)->code;
 
 489	struct sock *sk;
 490	struct request_sock *fastopen;
 491	u32 seq, snd_una;
 
 492	int err;
 493	struct net *net = dev_net(skb->dev);
 
 
 
 
 
 494
 495	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
 496				       iph->daddr, th->dest, iph->saddr,
 497				       ntohs(th->source), inet_iif(skb), 0);
 498	if (!sk) {
 499		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 500		return -ENOENT;
 501	}
 502	if (sk->sk_state == TCP_TIME_WAIT) {
 503		/* To increase the counter of ignored icmps for TCP-AO */
 504		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
 505		inet_twsk_put(inet_twsk(sk));
 506		return 0;
 507	}
 508	seq = ntohl(th->seq);
 509	if (sk->sk_state == TCP_NEW_SYN_RECV) {
 510		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
 511				     type == ICMP_TIME_EXCEEDED ||
 512				     (type == ICMP_DEST_UNREACH &&
 513				      (code == ICMP_NET_UNREACH ||
 514				       code == ICMP_HOST_UNREACH)));
 515		return 0;
 516	}
 517
 518	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
 519		sock_put(sk);
 520		return 0;
 521	}
 522
 523	bh_lock_sock(sk);
 524	/* If too many ICMPs get dropped on busy
 525	 * servers this needs to be solved differently.
 526	 * We do take care of PMTU discovery (RFC1191) special case :
 527	 * we can receive locally generated ICMP messages while socket is held.
 528	 */
 529	if (sock_owned_by_user(sk)) {
 530		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 531			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 532	}
 533	if (sk->sk_state == TCP_CLOSE)
 534		goto out;
 535
 536	if (static_branch_unlikely(&ip4_min_ttl)) {
 537		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
 538		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
 539			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
 540			goto out;
 541		}
 542	}
 543
 
 544	tp = tcp_sk(sk);
 545	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
 546	fastopen = rcu_dereference(tp->fastopen_rsk);
 547	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
 548	if (sk->sk_state != TCP_LISTEN &&
 549	    !between(seq, snd_una, tp->snd_nxt)) {
 550		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 551		goto out;
 552	}
 553
 554	switch (type) {
 555	case ICMP_REDIRECT:
 556		if (!sock_owned_by_user(sk))
 557			do_redirect(skb, sk);
 558		goto out;
 559	case ICMP_SOURCE_QUENCH:
 560		/* Just silently ignore these. */
 561		goto out;
 562	case ICMP_PARAMETERPROB:
 563		err = EPROTO;
 564		break;
 565	case ICMP_DEST_UNREACH:
 566		if (code > NR_ICMP_UNREACH)
 567			goto out;
 568
 569		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 570			/* We are not interested in TCP_LISTEN and open_requests
 571			 * (SYN-ACKs send out by Linux are always <576bytes so
 572			 * they should go through unfragmented).
 573			 */
 574			if (sk->sk_state == TCP_LISTEN)
 575				goto out;
 576
 577			WRITE_ONCE(tp->mtu_info, info);
 578			if (!sock_owned_by_user(sk)) {
 579				tcp_v4_mtu_reduced(sk);
 580			} else {
 581				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
 582					sock_hold(sk);
 583			}
 584			goto out;
 585		}
 586
 587		err = icmp_err_convert[code].errno;
 588		/* check if this ICMP message allows revert of backoff.
 589		 * (see RFC 6069)
 590		 */
 591		if (!fastopen &&
 592		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
 593			tcp_ld_RTO_revert(sk, seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594		break;
 595	case ICMP_TIME_EXCEEDED:
 596		err = EHOSTUNREACH;
 597		break;
 598	default:
 599		goto out;
 600	}
 601
 602	switch (sk->sk_state) {
 603	case TCP_SYN_SENT:
 604	case TCP_SYN_RECV:
 605		/* Only in fast or simultaneous open. If a fast open socket is
 606		 * already accepted it is treated as a connected one below.
 
 
 
 
 
 
 
 
 607		 */
 608		if (fastopen && !fastopen->sk)
 609			break;
 610
 611		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
 
 
 
 612
 
 
 
 
 
 
 
 
 
 
 
 
 
 613		if (!sock_owned_by_user(sk)) {
 614			WRITE_ONCE(sk->sk_err, err);
 615
 616			sk_error_report(sk);
 617
 618			tcp_done(sk);
 619		} else {
 620			WRITE_ONCE(sk->sk_err_soft, err);
 621		}
 622		goto out;
 623	}
 624
 625	/* If we've already connected we will keep trying
 626	 * until we time out, or the user gives up.
 627	 *
 628	 * rfc1122 4.2.3.9 allows to consider as hard errors
 629	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 630	 * but it is obsoleted by pmtu discovery).
 631	 *
 632	 * Note, that in modern internet, where routing is unreliable
 633	 * and in each dark corner broken firewalls sit, sending random
 634	 * errors ordered by their masters even this two messages finally lose
 635	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 636	 *
 637	 * Now we are in compliance with RFCs.
 638	 *							--ANK (980905)
 639	 */
 640
 641	if (!sock_owned_by_user(sk) &&
 642	    inet_test_bit(RECVERR, sk)) {
 643		WRITE_ONCE(sk->sk_err, err);
 644		sk_error_report(sk);
 645	} else	{ /* Only an error on timeout */
 646		WRITE_ONCE(sk->sk_err_soft, err);
 647	}
 648
 649out:
 650	bh_unlock_sock(sk);
 651	sock_put(sk);
 652	return 0;
 653}
 654
 655void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 
 656{
 657	struct tcphdr *th = tcp_hdr(skb);
 658
 659	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 660	skb->csum_start = skb_transport_header(skb) - skb->head;
 661	skb->csum_offset = offsetof(struct tcphdr, check);
 
 
 
 
 
 
 
 662}
 663
 664/* This routine computes an IPv4 TCP checksum. */
 665void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 666{
 667	const struct inet_sock *inet = inet_sk(sk);
 668
 669	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 670}
 671EXPORT_SYMBOL(tcp_v4_send_check);
 672
 673#define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
 
 
 
 
 
 
 674
 675static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
 676				 const struct tcp_ao_hdr *aoh,
 677				 struct ip_reply_arg *arg, struct tcphdr *reply,
 678				 __be32 reply_options[REPLY_OPTIONS_LEN])
 679{
 680#ifdef CONFIG_TCP_AO
 681	int sdif = tcp_v4_sdif(skb);
 682	int dif = inet_iif(skb);
 683	int l3index = sdif ? dif : 0;
 684	bool allocated_traffic_key;
 685	struct tcp_ao_key *key;
 686	char *traffic_key;
 687	bool drop = true;
 688	u32 ao_sne = 0;
 689	u8 keyid;
 690
 691	rcu_read_lock();
 692	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
 693				 &key, &traffic_key, &allocated_traffic_key,
 694				 &keyid, &ao_sne))
 695		goto out;
 696
 697	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
 698				 (aoh->rnext_keyid << 8) | keyid);
 699	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
 700	reply->doff = arg->iov[0].iov_len / 4;
 701
 702	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
 703			    key, traffic_key,
 704			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
 705			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
 706			    reply, ao_sne))
 707		goto out;
 708	drop = false;
 709out:
 710	rcu_read_unlock();
 711	if (allocated_traffic_key)
 712		kfree(traffic_key);
 713	return drop;
 714#else
 715	return true;
 716#endif
 717}
 718
 719/*
 720 *	This routine will send an RST to the other tcp.
 721 *
 722 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 723 *		      for reset.
 724 *	Answer: if a packet caused RST, it is not for a socket
 725 *		existing in our system, if it is matched to a socket,
 726 *		it is just duplicate segment or bug in other side's TCP.
 727 *		So that we build reply only basing on parameters
 728 *		arrived with segment.
 729 *	Exception: precedence violation. We do not implement it in any case.
 730 */
 731
 732static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb)
 733{
 734	const struct tcphdr *th = tcp_hdr(skb);
 735	struct {
 736		struct tcphdr th;
 737		__be32 opt[REPLY_OPTIONS_LEN];
 
 
 738	} rep;
 739	const __u8 *md5_hash_location = NULL;
 740	const struct tcp_ao_hdr *aoh;
 741	struct ip_reply_arg arg;
 742#ifdef CONFIG_TCP_MD5SIG
 743	struct tcp_md5sig_key *key = NULL;
 744	unsigned char newhash[16];
 745	struct sock *sk1 = NULL;
 746	int genhash;
 747#endif
 748	u64 transmit_time = 0;
 749	struct sock *ctl_sk;
 750	struct net *net;
 751	u32 txhash = 0;
 752
 753	/* Never send a reset in response to a reset. */
 754	if (th->rst)
 755		return;
 756
 757	/* If sk not NULL, it means we did a successful lookup and incoming
 758	 * route had to be correct. prequeue might have dropped our dst.
 759	 */
 760	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
 761		return;
 762
 763	/* Swap the send and the receive. */
 764	memset(&rep, 0, sizeof(rep));
 765	rep.th.dest   = th->source;
 766	rep.th.source = th->dest;
 767	rep.th.doff   = sizeof(struct tcphdr) / 4;
 768	rep.th.rst    = 1;
 769
 770	if (th->ack) {
 771		rep.th.seq = th->ack_seq;
 772	} else {
 773		rep.th.ack = 1;
 774		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 775				       skb->len - (th->doff << 2));
 776	}
 777
 778	memset(&arg, 0, sizeof(arg));
 779	arg.iov[0].iov_base = (unsigned char *)&rep;
 780	arg.iov[0].iov_len  = sizeof(rep.th);
 781
 782	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
 783
 784	/* Invalid TCP option size or twice included auth */
 785	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
 786		return;
 787
 788	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
 789		return;
 790
 791#ifdef CONFIG_TCP_MD5SIG
 792	rcu_read_lock();
 793	if (sk && sk_fullsock(sk)) {
 794		const union tcp_md5_addr *addr;
 795		int l3index;
 796
 797		/* sdif set, means packet ingressed via a device
 798		 * in an L3 domain and inet_iif is set to it.
 799		 */
 800		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
 801		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 802		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
 803	} else if (md5_hash_location) {
 804		const union tcp_md5_addr *addr;
 805		int sdif = tcp_v4_sdif(skb);
 806		int dif = inet_iif(skb);
 807		int l3index;
 808
 809		/*
 810		 * active side is lost. Try to find listening socket through
 811		 * source port, and then find md5 key through listening socket.
 812		 * we are not loose security here:
 813		 * Incoming packet is checked with md5 hash with finding key,
 814		 * no RST generated if md5 hash doesn't match.
 815		 */
 816		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
 817					     NULL, 0, ip_hdr(skb)->saddr,
 818					     th->source, ip_hdr(skb)->daddr,
 819					     ntohs(th->source), dif, sdif);
 820		/* don't send rst if it can't find key */
 821		if (!sk1)
 822			goto out;
 823
 824		/* sdif set, means packet ingressed via a device
 825		 * in an L3 domain and dif is set to it.
 826		 */
 827		l3index = sdif ? dif : 0;
 828		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 829		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
 830		if (!key)
 831			goto out;
 832
 833
 834		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
 835		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
 836			goto out;
 837
 838	}
 839
 840	if (key) {
 841		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 842				   (TCPOPT_NOP << 16) |
 843				   (TCPOPT_MD5SIG << 8) |
 844				   TCPOLEN_MD5SIG);
 845		/* Update length and the length the header thinks exists */
 846		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 847		rep.th.doff = arg.iov[0].iov_len / 4;
 848
 849		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 850				     key, ip_hdr(skb)->saddr,
 851				     ip_hdr(skb)->daddr, &rep.th);
 852	}
 853#endif
 854	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
 855	if (rep.opt[0] == 0) {
 856		__be32 mrst = mptcp_reset_option(skb);
 857
 858		if (mrst) {
 859			rep.opt[0] = mrst;
 860			arg.iov[0].iov_len += sizeof(mrst);
 861			rep.th.doff = arg.iov[0].iov_len / 4;
 862		}
 863	}
 864
 865	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 866				      ip_hdr(skb)->saddr, /* XXX */
 867				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 868	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 869	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 870
 871	/* When socket is gone, all binding information is lost.
 872	 * routing might fail in this case. No choice here, if we choose to force
 873	 * input interface, we will misroute in case of asymmetric route.
 874	 */
 875	if (sk) {
 876		arg.bound_dev_if = sk->sk_bound_dev_if;
 877		if (sk_fullsock(sk))
 878			trace_tcp_send_reset(sk, skb);
 879	}
 880
 881	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
 882		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
 883
 884	arg.tos = ip_hdr(skb)->tos;
 885	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
 886	local_bh_disable();
 887	ctl_sk = this_cpu_read(ipv4_tcp_sk);
 888	sock_net_set(ctl_sk, net);
 889	if (sk) {
 890		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
 891				   inet_twsk(sk)->tw_mark : sk->sk_mark;
 892		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
 893				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
 894		transmit_time = tcp_transmit_time(sk);
 895		xfrm_sk_clone_policy(ctl_sk, sk);
 896		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
 897			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
 898	} else {
 899		ctl_sk->sk_mark = 0;
 900		ctl_sk->sk_priority = 0;
 901	}
 902	ip_send_unicast_reply(ctl_sk,
 903			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 904			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 905			      &arg, arg.iov[0].iov_len,
 906			      transmit_time, txhash);
 907
 908	xfrm_sk_free_policy(ctl_sk);
 909	sock_net_set(ctl_sk, &init_net);
 910	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
 911	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
 912	local_bh_enable();
 913
 914#ifdef CONFIG_TCP_MD5SIG
 915out:
 916	rcu_read_unlock();
 917#endif
 918}
 919
 920/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 921   outside socket context is ugly, certainly. What can I do?
 922 */
 923
 924static void tcp_v4_send_ack(const struct sock *sk,
 925			    struct sk_buff *skb, u32 seq, u32 ack,
 926			    u32 win, u32 tsval, u32 tsecr, int oif,
 927			    struct tcp_key *key,
 928			    int reply_flags, u8 tos, u32 txhash)
 929{
 930	const struct tcphdr *th = tcp_hdr(skb);
 931	struct {
 932		struct tcphdr th;
 933		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
 
 
 
 
 934	} rep;
 935	struct net *net = sock_net(sk);
 936	struct ip_reply_arg arg;
 937	struct sock *ctl_sk;
 938	u64 transmit_time;
 939
 940	memset(&rep.th, 0, sizeof(struct tcphdr));
 941	memset(&arg, 0, sizeof(arg));
 942
 943	arg.iov[0].iov_base = (unsigned char *)&rep;
 944	arg.iov[0].iov_len  = sizeof(rep.th);
 945	if (tsecr) {
 946		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 947				   (TCPOPT_TIMESTAMP << 8) |
 948				   TCPOLEN_TIMESTAMP);
 949		rep.opt[1] = htonl(tsval);
 950		rep.opt[2] = htonl(tsecr);
 951		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 952	}
 953
 954	/* Swap the send and the receive. */
 955	rep.th.dest    = th->source;
 956	rep.th.source  = th->dest;
 957	rep.th.doff    = arg.iov[0].iov_len / 4;
 958	rep.th.seq     = htonl(seq);
 959	rep.th.ack_seq = htonl(ack);
 960	rep.th.ack     = 1;
 961	rep.th.window  = htons(win);
 962
 963#ifdef CONFIG_TCP_MD5SIG
 964	if (tcp_key_is_md5(key)) {
 965		int offset = (tsecr) ? 3 : 0;
 966
 967		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 968					  (TCPOPT_NOP << 16) |
 969					  (TCPOPT_MD5SIG << 8) |
 970					  TCPOLEN_MD5SIG);
 971		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 972		rep.th.doff = arg.iov[0].iov_len/4;
 973
 974		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 975				    key->md5_key, ip_hdr(skb)->saddr,
 976				    ip_hdr(skb)->daddr, &rep.th);
 977	}
 978#endif
 979#ifdef CONFIG_TCP_AO
 980	if (tcp_key_is_ao(key)) {
 981		int offset = (tsecr) ? 3 : 0;
 982
 983		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
 984					  (tcp_ao_len(key->ao_key) << 16) |
 985					  (key->ao_key->sndid << 8) |
 986					  key->rcv_next);
 987		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
 988		rep.th.doff = arg.iov[0].iov_len / 4;
 989
 990		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
 991				key->ao_key, key->traffic_key,
 992				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
 993				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
 994				&rep.th, key->sne);
 995	}
 996#endif
 997	arg.flags = reply_flags;
 998	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 999				      ip_hdr(skb)->saddr, /* XXX */
1000				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
1001	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1002	if (oif)
1003		arg.bound_dev_if = oif;
1004	arg.tos = tos;
1005	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1006	local_bh_disable();
1007	ctl_sk = this_cpu_read(ipv4_tcp_sk);
1008	sock_net_set(ctl_sk, net);
1009	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1010			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1011	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1012			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1013	transmit_time = tcp_transmit_time(sk);
1014	ip_send_unicast_reply(ctl_sk,
1015			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1016			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1017			      &arg, arg.iov[0].iov_len,
1018			      transmit_time, txhash);
1019
1020	sock_net_set(ctl_sk, &init_net);
1021	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1022	local_bh_enable();
 
1023}
1024
1025static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1026{
1027	struct inet_timewait_sock *tw = inet_twsk(sk);
1028	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1029	struct tcp_key key = {};
1030#ifdef CONFIG_TCP_AO
1031	struct tcp_ao_info *ao_info;
1032
1033	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1034		/* FIXME: the segment to-be-acked is not verified yet */
1035		ao_info = rcu_dereference(tcptw->ao_info);
1036		if (ao_info) {
1037			const struct tcp_ao_hdr *aoh;
1038
1039			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1040				inet_twsk_put(tw);
1041				return;
1042			}
1043
1044			if (aoh)
1045				key.ao_key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1);
1046		}
1047	}
1048	if (key.ao_key) {
1049		struct tcp_ao_key *rnext_key;
1050
1051		key.traffic_key = snd_other_key(key.ao_key);
1052		key.sne = READ_ONCE(ao_info->snd_sne);
1053		rnext_key = READ_ONCE(ao_info->rnext_key);
1054		key.rcv_next = rnext_key->rcvid;
1055		key.type = TCP_KEY_AO;
1056#else
1057	if (0) {
1058#endif
1059#ifdef CONFIG_TCP_MD5SIG
1060	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1061		key.md5_key = tcp_twsk_md5_key(tcptw);
1062		if (key.md5_key)
1063			key.type = TCP_KEY_MD5;
1064#endif
1065	}
1066
1067	tcp_v4_send_ack(sk, skb,
1068			tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
1069			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1070			tcp_tw_tsval(tcptw),
1071			tcptw->tw_ts_recent,
1072			tw->tw_bound_dev_if, &key,
1073			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1074			tw->tw_tos,
1075			tw->tw_txhash);
1076
1077	inet_twsk_put(tw);
1078}
1079
1080static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1081				  struct request_sock *req)
1082{
1083	struct tcp_key key = {};
1084
1085	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1086	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1087	 */
1088	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1089					     tcp_sk(sk)->snd_nxt;
1090
1091#ifdef CONFIG_TCP_AO
1092	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1093	    tcp_rsk_used_ao(req)) {
1094		const union tcp_md5_addr *addr;
1095		const struct tcp_ao_hdr *aoh;
1096		int l3index;
1097
1098		/* Invalid TCP option size or twice included auth */
1099		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1100			return;
1101		if (!aoh)
1102			return;
1103
1104		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1105		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1106		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1107					      aoh->rnext_keyid, -1);
1108		if (unlikely(!key.ao_key)) {
1109			/* Send ACK with any matching MKT for the peer */
1110			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1111			/* Matching key disappeared (user removed the key?)
1112			 * let the handshake timeout.
1113			 */
1114			if (!key.ao_key) {
1115				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1116						     addr,
1117						     ntohs(tcp_hdr(skb)->source),
1118						     &ip_hdr(skb)->daddr,
1119						     ntohs(tcp_hdr(skb)->dest));
1120				return;
1121			}
1122		}
1123		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1124		if (!key.traffic_key)
1125			return;
1126
1127		key.type = TCP_KEY_AO;
1128		key.rcv_next = aoh->keyid;
1129		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1130#else
1131	if (0) {
1132#endif
1133#ifdef CONFIG_TCP_MD5SIG
1134	} else if (static_branch_unlikely(&tcp_md5_needed.key)) {
1135		const union tcp_md5_addr *addr;
1136		int l3index;
1137
1138		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1139		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1140		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1141		if (key.md5_key)
1142			key.type = TCP_KEY_MD5;
1143#endif
1144	}
1145
1146	/* RFC 7323 2.3
1147	 * The window field (SEG.WND) of every outgoing segment, with the
1148	 * exception of <SYN> segments, MUST be right-shifted by
1149	 * Rcv.Wind.Shift bits:
1150	 */
1151	tcp_v4_send_ack(sk, skb, seq,
1152			tcp_rsk(req)->rcv_nxt,
1153			req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale,
1154			tcp_rsk_tsval(tcp_rsk(req)),
1155			READ_ONCE(req->ts_recent),
1156			0, &key,
1157			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1158			ip_hdr(skb)->tos,
1159			READ_ONCE(tcp_rsk(req)->txhash));
1160	if (tcp_key_is_ao(&key))
1161		kfree(key.traffic_key);
1162}
1163
1164/*
1165 *	Send a SYN-ACK after having received a SYN.
1166 *	This still operates on a request_sock only, not on a big
1167 *	socket.
1168 */
1169static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1170			      struct flowi *fl,
1171			      struct request_sock *req,
1172			      struct tcp_fastopen_cookie *foc,
1173			      enum tcp_synack_type synack_type,
1174			      struct sk_buff *syn_skb)
1175{
1176	const struct inet_request_sock *ireq = inet_rsk(req);
1177	struct flowi4 fl4;
1178	int err = -1;
1179	struct sk_buff *skb;
1180	u8 tos;
1181
1182	/* First, grab a route. */
1183	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1184		return -1;
1185
1186	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1187
1188	if (skb) {
1189		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1190
1191		tos = READ_ONCE(inet_sk(sk)->tos);
1192
1193		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1194			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1195			      (tos & INET_ECN_MASK);
1196
1197		if (!INET_ECN_is_capable(tos) &&
1198		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1199			tos |= INET_ECN_ECT_0;
1200
1201		rcu_read_lock();
1202		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1203					    ireq->ir_rmt_addr,
1204					    rcu_dereference(ireq->ireq_opt),
1205					    tos);
1206		rcu_read_unlock();
1207		err = net_xmit_eval(err);
1208	}
1209
 
1210	return err;
1211}
1212
 
 
 
 
 
 
 
1213/*
1214 *	IPv4 request_sock destructor.
1215 */
1216static void tcp_v4_reqsk_destructor(struct request_sock *req)
1217{
1218	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1219}
1220
1221#ifdef CONFIG_TCP_MD5SIG
1222/*
1223 * RFC2385 MD5 checksumming requires a mapping of
1224 * IP address->MD5 Key.
1225 * We need to maintain these in the sk structure.
1226 */
 
 
 
 
 
 
 
1227
1228DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1229EXPORT_SYMBOL(tcp_md5_needed);
1230
1231static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1232{
1233	if (!old)
1234		return true;
1235
1236	/* l3index always overrides non-l3index */
1237	if (old->l3index && new->l3index == 0)
1238		return false;
1239	if (old->l3index == 0 && new->l3index)
1240		return true;
 
 
 
1241
1242	return old->prefixlen < new->prefixlen;
 
 
 
 
 
 
 
1243}
 
1244
1245/* Find the Key structure for an address.  */
1246struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1247					   const union tcp_md5_addr *addr,
1248					   int family, bool any_l3index)
 
1249{
1250	const struct tcp_sock *tp = tcp_sk(sk);
1251	struct tcp_md5sig_key *key;
1252	const struct tcp_md5sig_info *md5sig;
1253	__be32 mask;
1254	struct tcp_md5sig_key *best_match = NULL;
1255	bool match;
1256
1257	/* caller either holds rcu_read_lock() or socket lock */
1258	md5sig = rcu_dereference_check(tp->md5sig_info,
1259				       lockdep_sock_is_held(sk));
1260	if (!md5sig)
1261		return NULL;
1262
1263	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1264				 lockdep_sock_is_held(sk)) {
1265		if (key->family != family)
1266			continue;
1267		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1268		    key->l3index != l3index)
1269			continue;
1270		if (family == AF_INET) {
1271			mask = inet_make_mask(key->prefixlen);
1272			match = (key->addr.a4.s_addr & mask) ==
1273				(addr->a4.s_addr & mask);
1274#if IS_ENABLED(CONFIG_IPV6)
1275		} else if (family == AF_INET6) {
1276			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1277						  key->prefixlen);
1278#endif
1279		} else {
1280			match = false;
1281		}
1282
1283		if (match && better_md5_match(best_match, key))
1284			best_match = key;
1285	}
1286	return best_match;
1287}
1288EXPORT_SYMBOL(__tcp_md5_do_lookup);
1289
1290static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1291						      const union tcp_md5_addr *addr,
1292						      int family, u8 prefixlen,
1293						      int l3index, u8 flags)
 
 
 
 
 
 
1294{
1295	const struct tcp_sock *tp = tcp_sk(sk);
1296	struct tcp_md5sig_key *key;
1297	unsigned int size = sizeof(struct in_addr);
1298	const struct tcp_md5sig_info *md5sig;
1299
1300	/* caller either holds rcu_read_lock() or socket lock */
1301	md5sig = rcu_dereference_check(tp->md5sig_info,
1302				       lockdep_sock_is_held(sk));
1303	if (!md5sig)
1304		return NULL;
1305#if IS_ENABLED(CONFIG_IPV6)
1306	if (family == AF_INET6)
1307		size = sizeof(struct in6_addr);
1308#endif
1309	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1310				 lockdep_sock_is_held(sk)) {
1311		if (key->family != family)
1312			continue;
1313		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1314			continue;
1315		if (key->l3index != l3index)
1316			continue;
1317		if (!memcmp(&key->addr, addr, size) &&
1318		    key->prefixlen == prefixlen)
1319			return key;
1320	}
1321	return NULL;
1322}
1323
1324struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1325					 const struct sock *addr_sk)
1326{
1327	const union tcp_md5_addr *addr;
1328	int l3index;
1329
1330	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1331						 addr_sk->sk_bound_dev_if);
1332	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1333	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1334}
1335EXPORT_SYMBOL(tcp_v4_md5_lookup);
1336
1337static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
 
1338{
1339	struct tcp_sock *tp = tcp_sk(sk);
1340	struct tcp_md5sig_info *md5sig;
1341
1342	md5sig = kmalloc(sizeof(*md5sig), gfp);
1343	if (!md5sig)
1344		return -ENOMEM;
1345
1346	sk_gso_disable(sk);
1347	INIT_HLIST_HEAD(&md5sig->head);
1348	rcu_assign_pointer(tp->md5sig_info, md5sig);
1349	return 0;
1350}
1351
1352/* This can be called on a newly created socket, from other files */
1353static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1354			    int family, u8 prefixlen, int l3index, u8 flags,
1355			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1356{
1357	/* Add Key to the list */
1358	struct tcp_md5sig_key *key;
1359	struct tcp_sock *tp = tcp_sk(sk);
1360	struct tcp_md5sig_info *md5sig;
1361
1362	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1363	if (key) {
1364		/* Pre-existing entry - just update that one.
1365		 * Note that the key might be used concurrently.
1366		 * data_race() is telling kcsan that we do not care of
1367		 * key mismatches, since changing MD5 key on live flows
1368		 * can lead to packet drops.
1369		 */
1370		data_race(memcpy(key->key, newkey, newkeylen));
1371
1372		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1373		 * Also note that a reader could catch new key->keylen value
1374		 * but old key->key[], this is the reason we use __GFP_ZERO
1375		 * at sock_kmalloc() time below these lines.
1376		 */
1377		WRITE_ONCE(key->keylen, newkeylen);
 
 
 
1378
1379		return 0;
1380	}
 
 
 
 
1381
1382	md5sig = rcu_dereference_protected(tp->md5sig_info,
1383					   lockdep_sock_is_held(sk));
 
 
 
 
 
 
 
1384
1385	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1386	if (!key)
1387		return -ENOMEM;
1388
1389	memcpy(key->key, newkey, newkeylen);
1390	key->keylen = newkeylen;
1391	key->family = family;
1392	key->prefixlen = prefixlen;
1393	key->l3index = l3index;
1394	key->flags = flags;
1395	memcpy(&key->addr, addr,
1396	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1397								 sizeof(struct in_addr));
1398	hlist_add_head_rcu(&key->node, &md5sig->head);
1399	return 0;
1400}
 
1401
1402int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1403		   int family, u8 prefixlen, int l3index, u8 flags,
1404		   const u8 *newkey, u8 newkeylen)
1405{
1406	struct tcp_sock *tp = tcp_sk(sk);
1407
1408	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1409		if (tcp_md5_alloc_sigpool())
1410			return -ENOMEM;
1411
1412		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1413			tcp_md5_release_sigpool();
1414			return -ENOMEM;
1415		}
1416
1417		if (!static_branch_inc(&tcp_md5_needed.key)) {
1418			struct tcp_md5sig_info *md5sig;
1419
1420			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1421			rcu_assign_pointer(tp->md5sig_info, NULL);
1422			kfree_rcu(md5sig, rcu);
1423			tcp_md5_release_sigpool();
1424			return -EUSERS;
1425		}
1426	}
1427
1428	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1429				newkey, newkeylen, GFP_KERNEL);
1430}
1431EXPORT_SYMBOL(tcp_md5_do_add);
1432
1433int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1434		     int family, u8 prefixlen, int l3index,
1435		     struct tcp_md5sig_key *key)
1436{
1437	struct tcp_sock *tp = tcp_sk(sk);
 
1438
1439	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1440		tcp_md5_add_sigpool();
1441
1442		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1443			tcp_md5_release_sigpool();
1444			return -ENOMEM;
1445		}
1446
1447		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1448			struct tcp_md5sig_info *md5sig;
1449
1450			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1451			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1452			rcu_assign_pointer(tp->md5sig_info, NULL);
1453			kfree_rcu(md5sig, rcu);
1454			tcp_md5_release_sigpool();
1455			return -EUSERS;
 
 
1456		}
1457	}
1458
1459	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1460				key->flags, key->key, key->keylen,
1461				sk_gfp_mask(sk, GFP_ATOMIC));
1462}
1463EXPORT_SYMBOL(tcp_md5_key_copy);
1464
1465int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1466		   u8 prefixlen, int l3index, u8 flags)
1467{
1468	struct tcp_md5sig_key *key;
1469
1470	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1471	if (!key)
1472		return -ENOENT;
1473	hlist_del_rcu(&key->node);
1474	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1475	kfree_rcu(key, rcu);
1476	return 0;
1477}
1478EXPORT_SYMBOL(tcp_md5_do_del);
1479
1480void tcp_clear_md5_list(struct sock *sk)
1481{
1482	struct tcp_sock *tp = tcp_sk(sk);
1483	struct tcp_md5sig_key *key;
1484	struct hlist_node *n;
1485	struct tcp_md5sig_info *md5sig;
1486
1487	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1488
1489	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1490		hlist_del_rcu(&key->node);
1491		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1492		kfree_rcu(key, rcu);
 
 
 
 
 
 
 
 
 
 
 
1493	}
1494}
1495
1496static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1497				 sockptr_t optval, int optlen)
1498{
1499	struct tcp_md5sig cmd;
1500	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1501	const union tcp_md5_addr *addr;
1502	u8 prefixlen = 32;
1503	int l3index = 0;
1504	bool l3flag;
1505	u8 flags;
1506
1507	if (optlen < sizeof(cmd))
1508		return -EINVAL;
1509
1510	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1511		return -EFAULT;
1512
1513	if (sin->sin_family != AF_INET)
1514		return -EINVAL;
1515
1516	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1517	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1518
1519	if (optname == TCP_MD5SIG_EXT &&
1520	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1521		prefixlen = cmd.tcpm_prefixlen;
1522		if (prefixlen > 32)
1523			return -EINVAL;
1524	}
1525
1526	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1527	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1528		struct net_device *dev;
1529
1530		rcu_read_lock();
1531		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1532		if (dev && netif_is_l3_master(dev))
1533			l3index = dev->ifindex;
1534
1535		rcu_read_unlock();
 
 
1536
1537		/* ok to reference set/not set outside of rcu;
1538		 * right now device MUST be an L3 master
1539		 */
1540		if (!dev || !l3index)
1541			return -EINVAL;
 
 
 
1542	}
1543
1544	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1545
1546	if (!cmd.tcpm_keylen)
1547		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1548
1549	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1550		return -EINVAL;
1551
1552	/* Don't allow keys for peers that have a matching TCP-AO key.
1553	 * See the comment in tcp_ao_add_cmd()
1554	 */
1555	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1556		return -EKEYREJECTED;
1557
1558	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1559			      cmd.tcpm_key, cmd.tcpm_keylen);
1560}
1561
1562static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1563				   __be32 daddr, __be32 saddr,
1564				   const struct tcphdr *th, int nbytes)
1565{
1566	struct tcp4_pseudohdr *bp;
1567	struct scatterlist sg;
1568	struct tcphdr *_th;
1569
1570	bp = hp->scratch;
 
 
 
 
 
 
1571	bp->saddr = saddr;
1572	bp->daddr = daddr;
1573	bp->pad = 0;
1574	bp->protocol = IPPROTO_TCP;
1575	bp->len = cpu_to_be16(nbytes);
1576
1577	_th = (struct tcphdr *)(bp + 1);
1578	memcpy(_th, th, sizeof(*th));
1579	_th->check = 0;
1580
1581	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1582	ahash_request_set_crypt(hp->req, &sg, NULL,
1583				sizeof(*bp) + sizeof(*th));
1584	return crypto_ahash_update(hp->req);
1585}
1586
1587static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1588			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1589{
1590	struct tcp_sigpool hp;
 
1591
1592	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1593		goto clear_hash_nostart;
 
 
1594
1595	if (crypto_ahash_init(hp.req))
1596		goto clear_hash;
1597	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1598		goto clear_hash;
1599	if (tcp_md5_hash_key(&hp, key))
1600		goto clear_hash;
1601	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1602	if (crypto_ahash_final(hp.req))
 
1603		goto clear_hash;
1604
1605	tcp_sigpool_end(&hp);
1606	return 0;
1607
1608clear_hash:
1609	tcp_sigpool_end(&hp);
1610clear_hash_nostart:
1611	memset(md5_hash, 0, 16);
1612	return 1;
1613}
1614
1615int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1616			const struct sock *sk,
1617			const struct sk_buff *skb)
1618{
1619	const struct tcphdr *th = tcp_hdr(skb);
1620	struct tcp_sigpool hp;
 
1621	__be32 saddr, daddr;
1622
1623	if (sk) { /* valid for establish/request sockets */
1624		saddr = sk->sk_rcv_saddr;
1625		daddr = sk->sk_daddr;
 
 
 
1626	} else {
1627		const struct iphdr *iph = ip_hdr(skb);
1628		saddr = iph->saddr;
1629		daddr = iph->daddr;
1630	}
1631
1632	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1633		goto clear_hash_nostart;
 
 
1634
1635	if (crypto_ahash_init(hp.req))
1636		goto clear_hash;
1637
1638	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
 
 
1639		goto clear_hash;
1640	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1641		goto clear_hash;
1642	if (tcp_md5_hash_key(&hp, key))
1643		goto clear_hash;
1644	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1645	if (crypto_ahash_final(hp.req))
1646		goto clear_hash;
1647
1648	tcp_sigpool_end(&hp);
1649	return 0;
1650
1651clear_hash:
1652	tcp_sigpool_end(&hp);
1653clear_hash_nostart:
1654	memset(md5_hash, 0, 16);
1655	return 1;
1656}
1657EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1658
1659#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660
1661static void tcp_v4_init_req(struct request_sock *req,
1662			    const struct sock *sk_listener,
1663			    struct sk_buff *skb)
1664{
1665	struct inet_request_sock *ireq = inet_rsk(req);
1666	struct net *net = sock_net(sk_listener);
1667
1668	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1669	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1670	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1671}
1672
1673static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1674					  struct sk_buff *skb,
1675					  struct flowi *fl,
1676					  struct request_sock *req)
1677{
1678	tcp_v4_init_req(req, sk, skb);
1679
1680	if (security_inet_conn_request(sk, skb, req))
1681		return NULL;
 
 
1682
1683	return inet_csk_route_req(sk, &fl->u.ip4, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684}
1685
 
 
1686struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1687	.family		=	PF_INET,
1688	.obj_size	=	sizeof(struct tcp_request_sock),
1689	.rtx_syn_ack	=	tcp_rtx_synack,
1690	.send_ack	=	tcp_v4_reqsk_send_ack,
1691	.destructor	=	tcp_v4_reqsk_destructor,
1692	.send_reset	=	tcp_v4_send_reset,
1693	.syn_ack_timeout =	tcp_syn_ack_timeout,
1694};
1695
1696const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1697	.mss_clamp	=	TCP_MSS_DEFAULT,
1698#ifdef CONFIG_TCP_MD5SIG
1699	.req_md5_lookup	=	tcp_v4_md5_lookup,
 
1700	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
 
1701#endif
1702#ifdef CONFIG_TCP_AO
1703	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1704	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1705	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1706#endif
1707#ifdef CONFIG_SYN_COOKIES
1708	.cookie_init_seq =	cookie_v4_init_sequence,
1709#endif
1710	.route_req	=	tcp_v4_route_req,
1711	.init_seq	=	tcp_v4_init_seq,
1712	.init_ts_off	=	tcp_v4_init_ts_off,
1713	.send_synack	=	tcp_v4_send_synack,
1714};
1715
1716int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1717{
 
 
 
 
 
 
 
 
 
 
 
 
1718	/* Never answer to SYNs send to broadcast or multicast */
1719	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1720		goto drop;
1721
1722	return tcp_conn_request(&tcp_request_sock_ops,
1723				&tcp_request_sock_ipv4_ops, sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725drop:
1726	tcp_listendrop(sk);
1727	return 0;
1728}
1729EXPORT_SYMBOL(tcp_v4_conn_request);
1730
1731
1732/*
1733 * The three way handshake has completed - we got a valid synack -
1734 * now create the new socket.
1735 */
1736struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1737				  struct request_sock *req,
1738				  struct dst_entry *dst,
1739				  struct request_sock *req_unhash,
1740				  bool *own_req)
1741{
1742	struct inet_request_sock *ireq;
1743	bool found_dup_sk = false;
1744	struct inet_sock *newinet;
1745	struct tcp_sock *newtp;
1746	struct sock *newsk;
1747#ifdef CONFIG_TCP_MD5SIG
1748	const union tcp_md5_addr *addr;
1749	struct tcp_md5sig_key *key;
1750	int l3index;
1751#endif
1752	struct ip_options_rcu *inet_opt;
1753
1754	if (sk_acceptq_is_full(sk))
1755		goto exit_overflow;
1756
1757	newsk = tcp_create_openreq_child(sk, req, skb);
1758	if (!newsk)
1759		goto exit_nonewsk;
1760
1761	newsk->sk_gso_type = SKB_GSO_TCPV4;
1762	inet_sk_rx_dst_set(newsk, skb);
1763
1764	newtp		      = tcp_sk(newsk);
1765	newinet		      = inet_sk(newsk);
1766	ireq		      = inet_rsk(req);
1767	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1768	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1769	newsk->sk_bound_dev_if = ireq->ir_iif;
1770	newinet->inet_saddr   = ireq->ir_loc_addr;
1771	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1772	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1773	newinet->mc_index     = inet_iif(skb);
1774	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1775	newinet->rcv_tos      = ip_hdr(skb)->tos;
1776	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1777	if (inet_opt)
1778		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1779	atomic_set(&newinet->inet_id, get_random_u16());
1780
1781	/* Set ToS of the new socket based upon the value of incoming SYN.
1782	 * ECT bits are set later in tcp_init_transfer().
1783	 */
1784	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1785		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1786
1787	if (!dst) {
1788		dst = inet_csk_route_child_sock(sk, newsk, req);
1789		if (!dst)
1790			goto put_and_exit;
1791	} else {
1792		/* syncookie case : see end of cookie_v4_check() */
1793	}
1794	sk_setup_caps(newsk, dst);
1795
1796	tcp_ca_openreq_child(newsk, dst);
1797
1798	tcp_sync_mss(newsk, dst_mtu(dst));
1799	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
 
 
 
1800
1801	tcp_initialize_rcv_mss(newsk);
 
 
 
 
1802
1803#ifdef CONFIG_TCP_MD5SIG
1804	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1805	/* Copy over the MD5 key from the original socket */
1806	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1807	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1808	if (key && !tcp_rsk_used_ao(req)) {
1809		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1810			goto put_and_exit;
1811		sk_gso_disable(newsk);
 
 
 
 
 
 
 
1812	}
1813#endif
1814#ifdef CONFIG_TCP_AO
1815	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1816		goto put_and_exit; /* OOM, release back memory */
1817#endif
1818
1819	if (__inet_inherit_port(sk, newsk) < 0)
1820		goto put_and_exit;
1821	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1822				       &found_dup_sk);
1823	if (likely(*own_req)) {
1824		tcp_move_syn(newtp, req);
1825		ireq->ireq_opt = NULL;
1826	} else {
1827		newinet->inet_opt = NULL;
1828
1829		if (!req_unhash && found_dup_sk) {
1830			/* This code path should only be executed in the
1831			 * syncookie case only
1832			 */
1833			bh_unlock_sock(newsk);
1834			sock_put(newsk);
1835			newsk = NULL;
1836		}
1837	}
1838	return newsk;
1839
1840exit_overflow:
1841	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1842exit_nonewsk:
1843	dst_release(dst);
1844exit:
1845	tcp_listendrop(sk);
1846	return NULL;
1847put_and_exit:
1848	newinet->inet_opt = NULL;
1849	inet_csk_prepare_forced_close(newsk);
1850	tcp_done(newsk);
1851	goto exit;
1852}
1853EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1854
1855static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1856{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857#ifdef CONFIG_SYN_COOKIES
1858	const struct tcphdr *th = tcp_hdr(skb);
1859
1860	if (!th->syn)
1861		sk = cookie_v4_check(sk, skb);
1862#endif
1863	return sk;
1864}
1865
1866u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1867			 struct tcphdr *th, u32 *cookie)
1868{
1869	u16 mss = 0;
1870#ifdef CONFIG_SYN_COOKIES
1871	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1872				    &tcp_request_sock_ipv4_ops, sk, th);
1873	if (mss) {
1874		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1875		tcp_synq_overflow(sk);
 
 
 
 
 
 
 
 
1876	}
1877#endif
1878	return mss;
1879}
1880
1881INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1882							   u32));
1883/* The socket must have it's spinlock held when we get
1884 * here, unless it is a TCP_LISTEN socket.
1885 *
1886 * We have a potential double-lock case here, so even when
1887 * doing backlog processing we use the BH locking scheme.
1888 * This is because we cannot sleep with the original spinlock
1889 * held.
1890 */
1891int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1892{
1893	enum skb_drop_reason reason;
1894	struct sock *rsk;
 
 
 
 
 
 
 
 
 
 
1895
1896	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1897		struct dst_entry *dst;
1898
1899		dst = rcu_dereference_protected(sk->sk_rx_dst,
1900						lockdep_sock_is_held(sk));
1901
1902		sock_rps_save_rxhash(sk, skb);
1903		sk_mark_napi_id(sk, skb);
1904		if (dst) {
1905			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1906			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1907					     dst, 0)) {
1908				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1909				dst_release(dst);
1910			}
1911		}
1912		tcp_rcv_established(sk, skb);
1913		return 0;
1914	}
1915
1916	if (tcp_checksum_complete(skb))
1917		goto csum_err;
1918
1919	if (sk->sk_state == TCP_LISTEN) {
1920		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
 
 
1921
1922		if (!nsk)
1923			return 0;
1924		if (nsk != sk) {
1925			reason = tcp_child_process(sk, nsk, skb);
1926			if (reason) {
1927				rsk = nsk;
1928				goto reset;
1929			}
1930			return 0;
1931		}
1932	} else
1933		sock_rps_save_rxhash(sk, skb);
1934
1935	reason = tcp_rcv_state_process(sk, skb);
1936	if (reason) {
1937		rsk = sk;
1938		goto reset;
1939	}
1940	return 0;
1941
1942reset:
1943	tcp_v4_send_reset(rsk, skb);
1944discard:
1945	kfree_skb_reason(skb, reason);
1946	/* Be careful here. If this function gets more complicated and
1947	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1948	 * might be destroyed here. This current version compiles correctly,
1949	 * but you have been warned.
1950	 */
1951	return 0;
1952
1953csum_err:
1954	reason = SKB_DROP_REASON_TCP_CSUM;
1955	trace_tcp_bad_csum(skb);
1956	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1957	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1958	goto discard;
1959}
1960EXPORT_SYMBOL(tcp_v4_do_rcv);
1961
1962int tcp_v4_early_demux(struct sk_buff *skb)
1963{
1964	struct net *net = dev_net(skb->dev);
1965	const struct iphdr *iph;
1966	const struct tcphdr *th;
1967	struct sock *sk;
1968
1969	if (skb->pkt_type != PACKET_HOST)
1970		return 0;
1971
1972	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1973		return 0;
1974
1975	iph = ip_hdr(skb);
1976	th = tcp_hdr(skb);
1977
1978	if (th->doff < sizeof(struct tcphdr) / 4)
1979		return 0;
1980
1981	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1982				       iph->saddr, th->source,
1983				       iph->daddr, ntohs(th->dest),
1984				       skb->skb_iif, inet_sdif(skb));
1985	if (sk) {
1986		skb->sk = sk;
1987		skb->destructor = sock_edemux;
1988		if (sk_fullsock(sk)) {
1989			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1990
1991			if (dst)
1992				dst = dst_check(dst, 0);
1993			if (dst &&
1994			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1995				skb_dst_set_noref(skb, dst);
1996		}
1997	}
1998	return 0;
1999}
2000
2001bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
2002		     enum skb_drop_reason *reason)
2003{
2004	u32 tail_gso_size, tail_gso_segs;
2005	struct skb_shared_info *shinfo;
2006	const struct tcphdr *th;
2007	struct tcphdr *thtail;
2008	struct sk_buff *tail;
2009	unsigned int hdrlen;
2010	bool fragstolen;
2011	u32 gso_segs;
2012	u32 gso_size;
2013	u64 limit;
2014	int delta;
2015
2016	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2017	 * we can fix skb->truesize to its real value to avoid future drops.
2018	 * This is valid because skb is not yet charged to the socket.
2019	 * It has been noticed pure SACK packets were sometimes dropped
2020	 * (if cooked by drivers without copybreak feature).
2021	 */
2022	skb_condense(skb);
2023
2024	skb_dst_drop(skb);
2025
2026	if (unlikely(tcp_checksum_complete(skb))) {
2027		bh_unlock_sock(sk);
2028		trace_tcp_bad_csum(skb);
2029		*reason = SKB_DROP_REASON_TCP_CSUM;
2030		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2031		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2032		return true;
2033	}
2034
2035	/* Attempt coalescing to last skb in backlog, even if we are
2036	 * above the limits.
2037	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2038	 */
2039	th = (const struct tcphdr *)skb->data;
2040	hdrlen = th->doff * 4;
2041
2042	tail = sk->sk_backlog.tail;
2043	if (!tail)
2044		goto no_coalesce;
2045	thtail = (struct tcphdr *)tail->data;
2046
2047	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2048	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2049	    ((TCP_SKB_CB(tail)->tcp_flags |
2050	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2051	    !((TCP_SKB_CB(tail)->tcp_flags &
2052	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2053	    ((TCP_SKB_CB(tail)->tcp_flags ^
2054	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2055#ifdef CONFIG_TLS_DEVICE
2056	    tail->decrypted != skb->decrypted ||
2057#endif
2058	    !mptcp_skb_can_collapse(tail, skb) ||
2059	    thtail->doff != th->doff ||
2060	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2061		goto no_coalesce;
2062
2063	__skb_pull(skb, hdrlen);
2064
2065	shinfo = skb_shinfo(skb);
2066	gso_size = shinfo->gso_size ?: skb->len;
2067	gso_segs = shinfo->gso_segs ?: 1;
2068
2069	shinfo = skb_shinfo(tail);
2070	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2071	tail_gso_segs = shinfo->gso_segs ?: 1;
2072
2073	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2074		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2075
2076		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2077			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2078			thtail->window = th->window;
2079		}
2080
2081		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2082		 * thtail->fin, so that the fast path in tcp_rcv_established()
2083		 * is not entered if we append a packet with a FIN.
2084		 * SYN, RST, URG are not present.
2085		 * ACK is set on both packets.
2086		 * PSH : we do not really care in TCP stack,
2087		 *       at least for 'GRO' packets.
2088		 */
2089		thtail->fin |= th->fin;
2090		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2091
2092		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2093			TCP_SKB_CB(tail)->has_rxtstamp = true;
2094			tail->tstamp = skb->tstamp;
2095			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2096		}
2097
2098		/* Not as strict as GRO. We only need to carry mss max value */
2099		shinfo->gso_size = max(gso_size, tail_gso_size);
2100		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2101
2102		sk->sk_backlog.len += delta;
2103		__NET_INC_STATS(sock_net(sk),
2104				LINUX_MIB_TCPBACKLOGCOALESCE);
2105		kfree_skb_partial(skb, fragstolen);
2106		return false;
2107	}
2108	__skb_push(skb, hdrlen);
2109
2110no_coalesce:
2111	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2112	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2113	 * sk_rcvbuf in normal conditions.
2114	 */
2115	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2116
2117	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2118
2119	/* Only socket owner can try to collapse/prune rx queues
2120	 * to reduce memory overhead, so add a little headroom here.
2121	 * Few sockets backlog are possibly concurrently non empty.
2122	 */
2123	limit += 64 * 1024;
2124
2125	limit = min_t(u64, limit, UINT_MAX);
2126
2127	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2128		bh_unlock_sock(sk);
2129		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2130		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2131		return true;
2132	}
2133	return false;
2134}
2135EXPORT_SYMBOL(tcp_add_backlog);
2136
2137int tcp_filter(struct sock *sk, struct sk_buff *skb)
2138{
2139	struct tcphdr *th = (struct tcphdr *)skb->data;
2140
2141	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2142}
2143EXPORT_SYMBOL(tcp_filter);
2144
2145static void tcp_v4_restore_cb(struct sk_buff *skb)
2146{
2147	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2148		sizeof(struct inet_skb_parm));
2149}
2150
2151static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2152			   const struct tcphdr *th)
2153{
2154	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2155	 * barrier() makes sure compiler wont play fool^Waliasing games.
2156	 */
2157	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2158		sizeof(struct inet_skb_parm));
2159	barrier();
2160
2161	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2162	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2163				    skb->len - th->doff * 4);
2164	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2165	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2166	TCP_SKB_CB(skb)->tcp_tw_isn = 0;
2167	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2168	TCP_SKB_CB(skb)->sacked	 = 0;
2169	TCP_SKB_CB(skb)->has_rxtstamp =
2170			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2171}
2172
2173/*
2174 *	From tcp_input.c
2175 */
2176
2177int tcp_v4_rcv(struct sk_buff *skb)
2178{
2179	struct net *net = dev_net(skb->dev);
2180	enum skb_drop_reason drop_reason;
2181	int sdif = inet_sdif(skb);
2182	int dif = inet_iif(skb);
2183	const struct iphdr *iph;
2184	const struct tcphdr *th;
2185	bool refcounted;
2186	struct sock *sk;
2187	int ret;
 
2188
2189	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2190	if (skb->pkt_type != PACKET_HOST)
2191		goto discard_it;
2192
2193	/* Count it even if it's bad */
2194	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2195
2196	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2197		goto discard_it;
2198
2199	th = (const struct tcphdr *)skb->data;
2200
2201	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2202		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2203		goto bad_packet;
2204	}
2205	if (!pskb_may_pull(skb, th->doff * 4))
2206		goto discard_it;
2207
2208	/* An explanation is required here, I think.
2209	 * Packet length and doff are validated by header prediction,
2210	 * provided case of th->doff==0 is eliminated.
2211	 * So, we defer the checks. */
 
 
2212
2213	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2214		goto csum_error;
 
 
 
 
 
 
 
2215
2216	th = (const struct tcphdr *)skb->data;
2217	iph = ip_hdr(skb);
2218lookup:
2219	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2220			       skb, __tcp_hdrlen(th), th->source,
2221			       th->dest, sdif, &refcounted);
2222	if (!sk)
2223		goto no_tcp_socket;
2224
2225process:
2226	if (sk->sk_state == TCP_TIME_WAIT)
2227		goto do_time_wait;
2228
2229	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2230		struct request_sock *req = inet_reqsk(sk);
2231		bool req_stolen = false;
2232		struct sock *nsk;
2233
2234		sk = req->rsk_listener;
2235		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2236			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2237		else
2238			drop_reason = tcp_inbound_hash(sk, req, skb,
2239						       &iph->saddr, &iph->daddr,
2240						       AF_INET, dif, sdif);
2241		if (unlikely(drop_reason)) {
2242			sk_drops_add(sk, skb);
2243			reqsk_put(req);
2244			goto discard_it;
2245		}
2246		if (tcp_checksum_complete(skb)) {
2247			reqsk_put(req);
2248			goto csum_error;
2249		}
2250		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2251			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2252			if (!nsk) {
2253				inet_csk_reqsk_queue_drop_and_put(sk, req);
2254				goto lookup;
2255			}
2256			sk = nsk;
2257			/* reuseport_migrate_sock() has already held one sk_refcnt
2258			 * before returning.
2259			 */
2260		} else {
2261			/* We own a reference on the listener, increase it again
2262			 * as we might lose it too soon.
2263			 */
2264			sock_hold(sk);
2265		}
2266		refcounted = true;
2267		nsk = NULL;
2268		if (!tcp_filter(sk, skb)) {
2269			th = (const struct tcphdr *)skb->data;
2270			iph = ip_hdr(skb);
2271			tcp_v4_fill_cb(skb, iph, th);
2272			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2273		} else {
2274			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2275		}
2276		if (!nsk) {
2277			reqsk_put(req);
2278			if (req_stolen) {
2279				/* Another cpu got exclusive access to req
2280				 * and created a full blown socket.
2281				 * Try to feed this packet to this socket
2282				 * instead of discarding it.
2283				 */
2284				tcp_v4_restore_cb(skb);
2285				sock_put(sk);
2286				goto lookup;
2287			}
2288			goto discard_and_relse;
2289		}
2290		nf_reset_ct(skb);
2291		if (nsk == sk) {
2292			reqsk_put(req);
2293			tcp_v4_restore_cb(skb);
2294		} else {
2295			drop_reason = tcp_child_process(sk, nsk, skb);
2296			if (drop_reason) {
2297				tcp_v4_send_reset(nsk, skb);
2298				goto discard_and_relse;
2299			}
2300			sock_put(sk);
2301			return 0;
2302		}
2303	}
2304
2305	if (static_branch_unlikely(&ip4_min_ttl)) {
2306		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2307		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2308			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2309			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2310			goto discard_and_relse;
2311		}
2312	}
2313
2314	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2315		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2316		goto discard_and_relse;
2317	}
2318
2319	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2320				       AF_INET, dif, sdif);
2321	if (drop_reason)
2322		goto discard_and_relse;
 
2323
2324	nf_reset_ct(skb);
2325
2326	if (tcp_filter(sk, skb)) {
2327		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2328		goto discard_and_relse;
2329	}
2330	th = (const struct tcphdr *)skb->data;
2331	iph = ip_hdr(skb);
2332	tcp_v4_fill_cb(skb, iph, th);
2333
2334	skb->dev = NULL;
2335
2336	if (sk->sk_state == TCP_LISTEN) {
2337		ret = tcp_v4_do_rcv(sk, skb);
2338		goto put_and_return;
2339	}
2340
2341	sk_incoming_cpu_update(sk);
2342
2343	bh_lock_sock_nested(sk);
2344	tcp_segs_in(tcp_sk(sk), skb);
2345	ret = 0;
2346	if (!sock_owned_by_user(sk)) {
2347		ret = tcp_v4_do_rcv(sk, skb);
2348	} else {
2349		if (tcp_add_backlog(sk, skb, &drop_reason))
2350			goto discard_and_relse;
 
 
 
 
 
 
 
 
 
 
 
 
2351	}
2352	bh_unlock_sock(sk);
2353
2354put_and_return:
2355	if (refcounted)
2356		sock_put(sk);
2357
2358	return ret;
2359
2360no_tcp_socket:
2361	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2362	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2363		goto discard_it;
2364
2365	tcp_v4_fill_cb(skb, iph, th);
2366
2367	if (tcp_checksum_complete(skb)) {
2368csum_error:
2369		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2370		trace_tcp_bad_csum(skb);
2371		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2372bad_packet:
2373		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2374	} else {
2375		tcp_v4_send_reset(NULL, skb);
2376	}
2377
2378discard_it:
2379	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2380	/* Discard frame. */
2381	kfree_skb_reason(skb, drop_reason);
2382	return 0;
2383
2384discard_and_relse:
2385	sk_drops_add(sk, skb);
2386	if (refcounted)
2387		sock_put(sk);
2388	goto discard_it;
2389
2390do_time_wait:
2391	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2392		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2393		inet_twsk_put(inet_twsk(sk));
2394		goto discard_it;
2395	}
2396
2397	tcp_v4_fill_cb(skb, iph, th);
2398
2399	if (tcp_checksum_complete(skb)) {
2400		inet_twsk_put(inet_twsk(sk));
2401		goto csum_error;
2402	}
2403	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2404	case TCP_TW_SYN: {
2405		struct sock *sk2 = inet_lookup_listener(net,
2406							net->ipv4.tcp_death_row.hashinfo,
2407							skb, __tcp_hdrlen(th),
2408							iph->saddr, th->source,
2409							iph->daddr, th->dest,
2410							inet_iif(skb),
2411							sdif);
2412		if (sk2) {
2413			inet_twsk_deschedule_put(inet_twsk(sk));
 
2414			sk = sk2;
2415			tcp_v4_restore_cb(skb);
2416			refcounted = false;
2417			goto process;
2418		}
 
2419	}
2420		/* to ACK */
2421		fallthrough;
2422	case TCP_TW_ACK:
2423		tcp_v4_timewait_ack(sk, skb);
2424		break;
2425	case TCP_TW_RST:
2426		tcp_v4_send_reset(sk, skb);
2427		inet_twsk_deschedule_put(inet_twsk(sk));
2428		goto discard_it;
2429	case TCP_TW_SUCCESS:;
2430	}
2431	goto discard_it;
2432}
2433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434static struct timewait_sock_ops tcp_timewait_sock_ops = {
2435	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2436	.twsk_unique	= tcp_twsk_unique,
2437	.twsk_destructor= tcp_twsk_destructor,
 
2438};
2439
2440void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2441{
2442	struct dst_entry *dst = skb_dst(skb);
2443
2444	if (dst && dst_hold_safe(dst)) {
2445		rcu_assign_pointer(sk->sk_rx_dst, dst);
2446		sk->sk_rx_dst_ifindex = skb->skb_iif;
2447	}
2448}
2449EXPORT_SYMBOL(inet_sk_rx_dst_set);
2450
2451const struct inet_connection_sock_af_ops ipv4_specific = {
2452	.queue_xmit	   = ip_queue_xmit,
2453	.send_check	   = tcp_v4_send_check,
2454	.rebuild_header	   = inet_sk_rebuild_header,
2455	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2456	.conn_request	   = tcp_v4_conn_request,
2457	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
 
2458	.net_header_len	   = sizeof(struct iphdr),
2459	.setsockopt	   = ip_setsockopt,
2460	.getsockopt	   = ip_getsockopt,
2461	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2462	.sockaddr_len	   = sizeof(struct sockaddr_in),
2463	.mtu_reduced	   = tcp_v4_mtu_reduced,
 
 
 
 
2464};
2465EXPORT_SYMBOL(ipv4_specific);
2466
2467#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2468static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2469#ifdef CONFIG_TCP_MD5SIG
2470	.md5_lookup		= tcp_v4_md5_lookup,
2471	.calc_md5_hash		= tcp_v4_md5_hash_skb,
 
2472	.md5_parse		= tcp_v4_parse_md5_keys,
2473#endif
2474#ifdef CONFIG_TCP_AO
2475	.ao_lookup		= tcp_v4_ao_lookup,
2476	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2477	.ao_parse		= tcp_v4_parse_ao,
2478	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2479#endif
2480};
2481#endif
2482
2483/* NOTE: A lot of things set to zero explicitly by call to
2484 *       sk_alloc() so need not be done here.
2485 */
2486static int tcp_v4_init_sock(struct sock *sk)
2487{
2488	struct inet_connection_sock *icsk = inet_csk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2489
2490	tcp_init_sock(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
2491
2492	icsk->icsk_af_ops = &ipv4_specific;
2493
2494#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2495	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2496#endif
2497
2498	return 0;
2499}
 
 
 
 
 
 
 
 
 
 
 
 
 
2500
2501#ifdef CONFIG_TCP_MD5SIG
2502static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2503{
2504	struct tcp_md5sig_info *md5sig;
2505
2506	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2507	kfree(md5sig);
2508	static_branch_slow_dec_deferred(&tcp_md5_needed);
2509	tcp_md5_release_sigpool();
2510}
2511#endif
2512
2513void tcp_v4_destroy_sock(struct sock *sk)
2514{
2515	struct tcp_sock *tp = tcp_sk(sk);
2516
2517	trace_tcp_destroy_sock(sk);
2518
2519	tcp_clear_xmit_timers(sk);
2520
2521	tcp_cleanup_congestion_control(sk);
2522
2523	tcp_cleanup_ulp(sk);
2524
2525	/* Cleanup up the write buffer. */
2526	tcp_write_queue_purge(sk);
2527
2528	/* Check if we want to disable active TFO */
2529	tcp_fastopen_active_disable_ofo_check(sk);
2530
2531	/* Cleans up our, hopefully empty, out_of_order_queue. */
2532	skb_rbtree_purge(&tp->out_of_order_queue);
2533
2534#ifdef CONFIG_TCP_MD5SIG
2535	/* Clean up the MD5 key list, if any */
2536	if (tp->md5sig_info) {
2537		struct tcp_md5sig_info *md5sig;
 
 
 
 
2538
2539		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2540		tcp_clear_md5_list(sk);
2541		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2542		rcu_assign_pointer(tp->md5sig_info, NULL);
2543	}
2544#endif
2545	tcp_ao_destroy_sock(sk, false);
 
 
2546
2547	/* Clean up a referenced TCP bind bucket. */
2548	if (inet_csk(sk)->icsk_bind_hash)
2549		inet_put_port(sk);
2550
2551	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
 
 
 
 
 
 
2552
2553	/* If socket is aborted during connect operation */
2554	tcp_free_fastopen_req(tp);
2555	tcp_fastopen_destroy_cipher(sk);
2556	tcp_saved_syn_free(tp);
 
 
2557
2558	sk_sockets_allocated_dec(sk);
2559}
2560EXPORT_SYMBOL(tcp_v4_destroy_sock);
2561
2562#ifdef CONFIG_PROC_FS
2563/* Proc filesystem TCP sock list dumping. */
2564
2565static unsigned short seq_file_family(const struct seq_file *seq);
2566
2567static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2568{
2569	unsigned short family = seq_file_family(seq);
2570
2571	/* AF_UNSPEC is used as a match all */
2572	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2573		net_eq(sock_net(sk), seq_file_net(seq)));
2574}
2575
2576/* Find a non empty bucket (starting from st->bucket)
2577 * and return the first sk from it.
2578 */
2579static void *listening_get_first(struct seq_file *seq)
2580{
2581	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2582	struct tcp_iter_state *st = seq->private;
2583
2584	st->offset = 0;
2585	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2586		struct inet_listen_hashbucket *ilb2;
2587		struct hlist_nulls_node *node;
2588		struct sock *sk;
2589
2590		ilb2 = &hinfo->lhash2[st->bucket];
2591		if (hlist_nulls_empty(&ilb2->nulls_head))
2592			continue;
2593
2594		spin_lock(&ilb2->lock);
2595		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2596			if (seq_sk_match(seq, sk))
2597				return sk;
2598		}
2599		spin_unlock(&ilb2->lock);
2600	}
2601
2602	return NULL;
2603}
2604
2605/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2606 * If "cur" is the last one in the st->bucket,
2607 * call listening_get_first() to return the first sk of the next
2608 * non empty bucket.
2609 */
2610static void *listening_get_next(struct seq_file *seq, void *cur)
2611{
2612	struct tcp_iter_state *st = seq->private;
2613	struct inet_listen_hashbucket *ilb2;
2614	struct hlist_nulls_node *node;
2615	struct inet_hashinfo *hinfo;
2616	struct sock *sk = cur;
 
 
 
2617
 
 
 
 
 
 
 
 
2618	++st->num;
2619	++st->offset;
2620
2621	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622	sk_nulls_for_each_from(sk, node) {
2623		if (seq_sk_match(seq, sk))
2624			return sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625	}
2626
2627	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2628	ilb2 = &hinfo->lhash2[st->bucket];
2629	spin_unlock(&ilb2->lock);
2630	++st->bucket;
2631	return listening_get_first(seq);
 
 
 
 
 
2632}
2633
2634static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2635{
2636	struct tcp_iter_state *st = seq->private;
2637	void *rc;
2638
2639	st->bucket = 0;
2640	st->offset = 0;
2641	rc = listening_get_first(seq);
2642
2643	while (rc && *pos) {
2644		rc = listening_get_next(seq, rc);
2645		--*pos;
2646	}
2647	return rc;
2648}
2649
2650static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2651				const struct tcp_iter_state *st)
2652{
2653	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
 
2654}
2655
2656/*
2657 * Get first established socket starting from bucket given in st->bucket.
2658 * If st->bucket is zero, the very first socket in the hash is returned.
2659 */
2660static void *established_get_first(struct seq_file *seq)
2661{
2662	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2663	struct tcp_iter_state *st = seq->private;
 
 
2664
2665	st->offset = 0;
2666	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2667		struct sock *sk;
2668		struct hlist_nulls_node *node;
2669		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2670
2671		cond_resched();
2672
2673		/* Lockless fast path for the common case of empty buckets */
2674		if (empty_bucket(hinfo, st))
2675			continue;
2676
2677		spin_lock_bh(lock);
2678		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2679			if (seq_sk_match(seq, sk))
2680				return sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2681		}
2682		spin_unlock_bh(lock);
 
2683	}
2684
2685	return NULL;
2686}
2687
2688static void *established_get_next(struct seq_file *seq, void *cur)
2689{
2690	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
 
 
2691	struct tcp_iter_state *st = seq->private;
2692	struct hlist_nulls_node *node;
2693	struct sock *sk = cur;
2694
2695	++st->num;
2696	++st->offset;
2697
2698	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699
2700	sk_nulls_for_each_from(sk, node) {
2701		if (seq_sk_match(seq, sk))
2702			return sk;
2703	}
2704
2705	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2706	++st->bucket;
2707	return established_get_first(seq);
 
 
 
 
2708}
2709
2710static void *established_get_idx(struct seq_file *seq, loff_t pos)
2711{
2712	struct tcp_iter_state *st = seq->private;
2713	void *rc;
2714
2715	st->bucket = 0;
2716	rc = established_get_first(seq);
2717
2718	while (rc && pos) {
2719		rc = established_get_next(seq, rc);
2720		--pos;
2721	}
2722	return rc;
2723}
2724
2725static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2726{
2727	void *rc;
2728	struct tcp_iter_state *st = seq->private;
2729
2730	st->state = TCP_SEQ_STATE_LISTENING;
2731	rc	  = listening_get_idx(seq, &pos);
2732
2733	if (!rc) {
2734		st->state = TCP_SEQ_STATE_ESTABLISHED;
2735		rc	  = established_get_idx(seq, pos);
2736	}
2737
2738	return rc;
2739}
2740
2741static void *tcp_seek_last_pos(struct seq_file *seq)
2742{
2743	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2744	struct tcp_iter_state *st = seq->private;
2745	int bucket = st->bucket;
2746	int offset = st->offset;
2747	int orig_num = st->num;
2748	void *rc = NULL;
2749
2750	switch (st->state) {
 
2751	case TCP_SEQ_STATE_LISTENING:
2752		if (st->bucket > hinfo->lhash2_mask)
2753			break;
2754		rc = listening_get_first(seq);
2755		while (offset-- && rc && bucket == st->bucket)
 
2756			rc = listening_get_next(seq, rc);
2757		if (rc)
2758			break;
2759		st->bucket = 0;
 
 
 
2760		st->state = TCP_SEQ_STATE_ESTABLISHED;
2761		fallthrough;
2762	case TCP_SEQ_STATE_ESTABLISHED:
2763		if (st->bucket > hinfo->ehash_mask)
2764			break;
2765		rc = established_get_first(seq);
2766		while (offset-- && rc && bucket == st->bucket)
2767			rc = established_get_next(seq, rc);
2768	}
2769
2770	st->num = orig_num;
2771
2772	return rc;
2773}
2774
2775void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2776{
2777	struct tcp_iter_state *st = seq->private;
2778	void *rc;
2779
2780	if (*pos && *pos == st->last_pos) {
2781		rc = tcp_seek_last_pos(seq);
2782		if (rc)
2783			goto out;
2784	}
2785
2786	st->state = TCP_SEQ_STATE_LISTENING;
2787	st->num = 0;
2788	st->bucket = 0;
2789	st->offset = 0;
2790	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2791
2792out:
2793	st->last_pos = *pos;
2794	return rc;
2795}
2796EXPORT_SYMBOL(tcp_seq_start);
2797
2798void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2799{
2800	struct tcp_iter_state *st = seq->private;
2801	void *rc = NULL;
2802
2803	if (v == SEQ_START_TOKEN) {
2804		rc = tcp_get_idx(seq, 0);
2805		goto out;
2806	}
2807
2808	switch (st->state) {
 
2809	case TCP_SEQ_STATE_LISTENING:
2810		rc = listening_get_next(seq, v);
2811		if (!rc) {
2812			st->state = TCP_SEQ_STATE_ESTABLISHED;
2813			st->bucket = 0;
2814			st->offset = 0;
2815			rc	  = established_get_first(seq);
2816		}
2817		break;
2818	case TCP_SEQ_STATE_ESTABLISHED:
 
2819		rc = established_get_next(seq, v);
2820		break;
2821	}
2822out:
2823	++*pos;
2824	st->last_pos = *pos;
2825	return rc;
2826}
2827EXPORT_SYMBOL(tcp_seq_next);
2828
2829void tcp_seq_stop(struct seq_file *seq, void *v)
2830{
2831	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2832	struct tcp_iter_state *st = seq->private;
2833
2834	switch (st->state) {
 
 
 
 
 
2835	case TCP_SEQ_STATE_LISTENING:
2836		if (v != SEQ_START_TOKEN)
2837			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2838		break;
 
2839	case TCP_SEQ_STATE_ESTABLISHED:
2840		if (v)
2841			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2842		break;
2843	}
2844}
2845EXPORT_SYMBOL(tcp_seq_stop);
2846
2847static void get_openreq4(const struct request_sock *req,
2848			 struct seq_file *f, int i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2849{
2850	const struct inet_request_sock *ireq = inet_rsk(req);
2851	long delta = req->rsk_timer.expires - jiffies;
2852
2853	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2854		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2855		i,
2856		ireq->ir_loc_addr,
2857		ireq->ir_num,
2858		ireq->ir_rmt_addr,
2859		ntohs(ireq->ir_rmt_port),
2860		TCP_SYN_RECV,
2861		0, 0, /* could print option size, but that is af dependent. */
2862		1,    /* timers active (only the expire timer) */
2863		jiffies_delta_to_clock_t(delta),
2864		req->num_timeout,
2865		from_kuid_munged(seq_user_ns(f),
2866				 sock_i_uid(req->rsk_listener)),
2867		0,  /* non standard timer */
2868		0, /* open_requests have no inode */
2869		0,
2870		req);
 
2871}
2872
2873static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2874{
2875	int timer_active;
2876	unsigned long timer_expires;
2877	const struct tcp_sock *tp = tcp_sk(sk);
2878	const struct inet_connection_sock *icsk = inet_csk(sk);
2879	const struct inet_sock *inet = inet_sk(sk);
2880	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2881	__be32 dest = inet->inet_daddr;
2882	__be32 src = inet->inet_rcv_saddr;
2883	__u16 destp = ntohs(inet->inet_dport);
2884	__u16 srcp = ntohs(inet->inet_sport);
2885	int rx_queue;
2886	int state;
2887
2888	if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2889	    icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2890	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2891		timer_active	= 1;
2892		timer_expires	= icsk->icsk_timeout;
2893	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2894		timer_active	= 4;
2895		timer_expires	= icsk->icsk_timeout;
2896	} else if (timer_pending(&sk->sk_timer)) {
2897		timer_active	= 2;
2898		timer_expires	= sk->sk_timer.expires;
2899	} else {
2900		timer_active	= 0;
2901		timer_expires = jiffies;
2902	}
2903
2904	state = inet_sk_state_load(sk);
2905	if (state == TCP_LISTEN)
2906		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2907	else
2908		/* Because we don't lock the socket,
2909		 * we might find a transient negative value.
2910		 */
2911		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2912				      READ_ONCE(tp->copied_seq), 0);
2913
2914	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2915			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2916		i, src, srcp, dest, destp, state,
2917		READ_ONCE(tp->write_seq) - tp->snd_una,
2918		rx_queue,
2919		timer_active,
2920		jiffies_delta_to_clock_t(timer_expires - jiffies),
2921		icsk->icsk_retransmits,
2922		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2923		icsk->icsk_probes_out,
2924		sock_i_ino(sk),
2925		refcount_read(&sk->sk_refcnt), sk,
2926		jiffies_to_clock_t(icsk->icsk_rto),
2927		jiffies_to_clock_t(icsk->icsk_ack.ato),
2928		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2929		tcp_snd_cwnd(tp),
2930		state == TCP_LISTEN ?
2931		    fastopenq->max_qlen :
2932		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2933}
2934
2935static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2936			       struct seq_file *f, int i)
2937{
2938	long delta = tw->tw_timer.expires - jiffies;
2939	__be32 dest, src;
2940	__u16 destp, srcp;
 
 
 
 
2941
2942	dest  = tw->tw_daddr;
2943	src   = tw->tw_rcv_saddr;
2944	destp = ntohs(tw->tw_dport);
2945	srcp  = ntohs(tw->tw_sport);
2946
2947	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2948		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2949		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2950		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2951		refcount_read(&tw->tw_refcnt), tw);
2952}
2953
2954#define TMPSZ 150
2955
2956static int tcp4_seq_show(struct seq_file *seq, void *v)
2957{
2958	struct tcp_iter_state *st;
2959	struct sock *sk = v;
2960
2961	seq_setwidth(seq, TMPSZ - 1);
2962	if (v == SEQ_START_TOKEN) {
2963		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
 
2964			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2965			   "inode");
2966		goto out;
2967	}
2968	st = seq->private;
2969
2970	if (sk->sk_state == TCP_TIME_WAIT)
2971		get_timewait4_sock(v, seq, st->num);
2972	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2973		get_openreq4(v, seq, st->num);
2974	else
2975		get_tcp4_sock(v, seq, st->num);
 
 
 
 
 
 
 
2976out:
2977	seq_pad(seq, '\n');
2978	return 0;
2979}
2980
2981#ifdef CONFIG_BPF_SYSCALL
2982struct bpf_tcp_iter_state {
2983	struct tcp_iter_state state;
2984	unsigned int cur_sk;
2985	unsigned int end_sk;
2986	unsigned int max_sk;
2987	struct sock **batch;
2988	bool st_bucket_done;
2989};
2990
2991struct bpf_iter__tcp {
2992	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2993	__bpf_md_ptr(struct sock_common *, sk_common);
2994	uid_t uid __aligned(8);
2995};
2996
2997static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
2998			     struct sock_common *sk_common, uid_t uid)
2999{
3000	struct bpf_iter__tcp ctx;
3001
3002	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3003	ctx.meta = meta;
3004	ctx.sk_common = sk_common;
3005	ctx.uid = uid;
3006	return bpf_iter_run_prog(prog, &ctx);
3007}
3008
3009static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
3010{
3011	while (iter->cur_sk < iter->end_sk)
3012		sock_gen_put(iter->batch[iter->cur_sk++]);
3013}
3014
3015static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3016				      unsigned int new_batch_sz)
3017{
3018	struct sock **new_batch;
3019
3020	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3021			     GFP_USER | __GFP_NOWARN);
3022	if (!new_batch)
3023		return -ENOMEM;
3024
3025	bpf_iter_tcp_put_batch(iter);
3026	kvfree(iter->batch);
3027	iter->batch = new_batch;
3028	iter->max_sk = new_batch_sz;
3029
3030	return 0;
3031}
3032
3033static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3034						 struct sock *start_sk)
3035{
3036	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3037	struct bpf_tcp_iter_state *iter = seq->private;
3038	struct tcp_iter_state *st = &iter->state;
3039	struct hlist_nulls_node *node;
3040	unsigned int expected = 1;
3041	struct sock *sk;
3042
3043	sock_hold(start_sk);
3044	iter->batch[iter->end_sk++] = start_sk;
3045
3046	sk = sk_nulls_next(start_sk);
3047	sk_nulls_for_each_from(sk, node) {
3048		if (seq_sk_match(seq, sk)) {
3049			if (iter->end_sk < iter->max_sk) {
3050				sock_hold(sk);
3051				iter->batch[iter->end_sk++] = sk;
3052			}
3053			expected++;
3054		}
3055	}
3056	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3057
3058	return expected;
3059}
3060
3061static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3062						   struct sock *start_sk)
3063{
3064	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3065	struct bpf_tcp_iter_state *iter = seq->private;
3066	struct tcp_iter_state *st = &iter->state;
3067	struct hlist_nulls_node *node;
3068	unsigned int expected = 1;
3069	struct sock *sk;
3070
3071	sock_hold(start_sk);
3072	iter->batch[iter->end_sk++] = start_sk;
3073
3074	sk = sk_nulls_next(start_sk);
3075	sk_nulls_for_each_from(sk, node) {
3076		if (seq_sk_match(seq, sk)) {
3077			if (iter->end_sk < iter->max_sk) {
3078				sock_hold(sk);
3079				iter->batch[iter->end_sk++] = sk;
3080			}
3081			expected++;
3082		}
3083	}
3084	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3085
3086	return expected;
3087}
3088
3089static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3090{
3091	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3092	struct bpf_tcp_iter_state *iter = seq->private;
3093	struct tcp_iter_state *st = &iter->state;
3094	unsigned int expected;
3095	bool resized = false;
3096	struct sock *sk;
3097
3098	/* The st->bucket is done.  Directly advance to the next
3099	 * bucket instead of having the tcp_seek_last_pos() to skip
3100	 * one by one in the current bucket and eventually find out
3101	 * it has to advance to the next bucket.
3102	 */
3103	if (iter->st_bucket_done) {
3104		st->offset = 0;
3105		st->bucket++;
3106		if (st->state == TCP_SEQ_STATE_LISTENING &&
3107		    st->bucket > hinfo->lhash2_mask) {
3108			st->state = TCP_SEQ_STATE_ESTABLISHED;
3109			st->bucket = 0;
3110		}
3111	}
3112
3113again:
3114	/* Get a new batch */
3115	iter->cur_sk = 0;
3116	iter->end_sk = 0;
3117	iter->st_bucket_done = false;
3118
3119	sk = tcp_seek_last_pos(seq);
3120	if (!sk)
3121		return NULL; /* Done */
3122
3123	if (st->state == TCP_SEQ_STATE_LISTENING)
3124		expected = bpf_iter_tcp_listening_batch(seq, sk);
3125	else
3126		expected = bpf_iter_tcp_established_batch(seq, sk);
3127
3128	if (iter->end_sk == expected) {
3129		iter->st_bucket_done = true;
3130		return sk;
3131	}
3132
3133	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3134		resized = true;
3135		goto again;
3136	}
3137
3138	return sk;
3139}
3140
3141static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3142{
3143	/* bpf iter does not support lseek, so it always
3144	 * continue from where it was stop()-ped.
3145	 */
3146	if (*pos)
3147		return bpf_iter_tcp_batch(seq);
3148
3149	return SEQ_START_TOKEN;
3150}
3151
3152static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3153{
3154	struct bpf_tcp_iter_state *iter = seq->private;
3155	struct tcp_iter_state *st = &iter->state;
3156	struct sock *sk;
3157
3158	/* Whenever seq_next() is called, the iter->cur_sk is
3159	 * done with seq_show(), so advance to the next sk in
3160	 * the batch.
3161	 */
3162	if (iter->cur_sk < iter->end_sk) {
3163		/* Keeping st->num consistent in tcp_iter_state.
3164		 * bpf_iter_tcp does not use st->num.
3165		 * meta.seq_num is used instead.
3166		 */
3167		st->num++;
3168		/* Move st->offset to the next sk in the bucket such that
3169		 * the future start() will resume at st->offset in
3170		 * st->bucket.  See tcp_seek_last_pos().
3171		 */
3172		st->offset++;
3173		sock_gen_put(iter->batch[iter->cur_sk++]);
3174	}
3175
3176	if (iter->cur_sk < iter->end_sk)
3177		sk = iter->batch[iter->cur_sk];
3178	else
3179		sk = bpf_iter_tcp_batch(seq);
3180
3181	++*pos;
3182	/* Keeping st->last_pos consistent in tcp_iter_state.
3183	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3184	 */
3185	st->last_pos = *pos;
3186	return sk;
3187}
3188
3189static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3190{
3191	struct bpf_iter_meta meta;
3192	struct bpf_prog *prog;
3193	struct sock *sk = v;
3194	uid_t uid;
3195	int ret;
3196
3197	if (v == SEQ_START_TOKEN)
3198		return 0;
3199
3200	if (sk_fullsock(sk))
3201		lock_sock(sk);
3202
3203	if (unlikely(sk_unhashed(sk))) {
3204		ret = SEQ_SKIP;
3205		goto unlock;
3206	}
3207
3208	if (sk->sk_state == TCP_TIME_WAIT) {
3209		uid = 0;
3210	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3211		const struct request_sock *req = v;
3212
3213		uid = from_kuid_munged(seq_user_ns(seq),
3214				       sock_i_uid(req->rsk_listener));
3215	} else {
3216		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3217	}
3218
3219	meta.seq = seq;
3220	prog = bpf_iter_get_info(&meta, false);
3221	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3222
3223unlock:
3224	if (sk_fullsock(sk))
3225		release_sock(sk);
3226	return ret;
3227
3228}
3229
3230static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3231{
3232	struct bpf_tcp_iter_state *iter = seq->private;
3233	struct bpf_iter_meta meta;
3234	struct bpf_prog *prog;
3235
3236	if (!v) {
3237		meta.seq = seq;
3238		prog = bpf_iter_get_info(&meta, true);
3239		if (prog)
3240			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3241	}
3242
3243	if (iter->cur_sk < iter->end_sk) {
3244		bpf_iter_tcp_put_batch(iter);
3245		iter->st_bucket_done = false;
3246	}
3247}
3248
3249static const struct seq_operations bpf_iter_tcp_seq_ops = {
3250	.show		= bpf_iter_tcp_seq_show,
3251	.start		= bpf_iter_tcp_seq_start,
3252	.next		= bpf_iter_tcp_seq_next,
3253	.stop		= bpf_iter_tcp_seq_stop,
3254};
3255#endif
3256static unsigned short seq_file_family(const struct seq_file *seq)
3257{
3258	const struct tcp_seq_afinfo *afinfo;
3259
3260#ifdef CONFIG_BPF_SYSCALL
3261	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3262	if (seq->op == &bpf_iter_tcp_seq_ops)
3263		return AF_UNSPEC;
3264#endif
3265
3266	/* Iterated from proc fs */
3267	afinfo = pde_data(file_inode(seq->file));
3268	return afinfo->family;
3269}
3270
3271static const struct seq_operations tcp4_seq_ops = {
3272	.show		= tcp4_seq_show,
3273	.start		= tcp_seq_start,
3274	.next		= tcp_seq_next,
3275	.stop		= tcp_seq_stop,
3276};
3277
3278static struct tcp_seq_afinfo tcp4_seq_afinfo = {
 
3279	.family		= AF_INET,
 
 
 
 
 
 
3280};
3281
3282static int __net_init tcp4_proc_init_net(struct net *net)
3283{
3284	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3285			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3286		return -ENOMEM;
3287	return 0;
3288}
3289
3290static void __net_exit tcp4_proc_exit_net(struct net *net)
3291{
3292	remove_proc_entry("tcp", net->proc_net);
3293}
3294
3295static struct pernet_operations tcp4_net_ops = {
3296	.init = tcp4_proc_init_net,
3297	.exit = tcp4_proc_exit_net,
3298};
3299
3300int __init tcp4_proc_init(void)
3301{
3302	return register_pernet_subsys(&tcp4_net_ops);
3303}
3304
3305void tcp4_proc_exit(void)
3306{
3307	unregister_pernet_subsys(&tcp4_net_ops);
3308}
3309#endif /* CONFIG_PROC_FS */
3310
3311/* @wake is one when sk_stream_write_space() calls us.
3312 * This sends EPOLLOUT only if notsent_bytes is half the limit.
3313 * This mimics the strategy used in sock_def_write_space().
3314 */
3315bool tcp_stream_memory_free(const struct sock *sk, int wake)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3316{
3317	const struct tcp_sock *tp = tcp_sk(sk);
3318	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3319			    READ_ONCE(tp->snd_nxt);
3320
3321	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
 
 
 
 
3322}
3323EXPORT_SYMBOL(tcp_stream_memory_free);
3324
3325struct proto tcp_prot = {
3326	.name			= "TCP",
3327	.owner			= THIS_MODULE,
3328	.close			= tcp_close,
3329	.pre_connect		= tcp_v4_pre_connect,
3330	.connect		= tcp_v4_connect,
3331	.disconnect		= tcp_disconnect,
3332	.accept			= inet_csk_accept,
3333	.ioctl			= tcp_ioctl,
3334	.init			= tcp_v4_init_sock,
3335	.destroy		= tcp_v4_destroy_sock,
3336	.shutdown		= tcp_shutdown,
3337	.setsockopt		= tcp_setsockopt,
3338	.getsockopt		= tcp_getsockopt,
3339	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3340	.keepalive		= tcp_set_keepalive,
3341	.recvmsg		= tcp_recvmsg,
3342	.sendmsg		= tcp_sendmsg,
3343	.splice_eof		= tcp_splice_eof,
3344	.backlog_rcv		= tcp_v4_do_rcv,
3345	.release_cb		= tcp_release_cb,
3346	.hash			= inet_hash,
3347	.unhash			= inet_unhash,
3348	.get_port		= inet_csk_get_port,
3349	.put_port		= inet_put_port,
3350#ifdef CONFIG_BPF_SYSCALL
3351	.psock_update_sk_prot	= tcp_bpf_update_proto,
3352#endif
3353	.enter_memory_pressure	= tcp_enter_memory_pressure,
3354	.leave_memory_pressure	= tcp_leave_memory_pressure,
3355	.stream_memory_free	= tcp_stream_memory_free,
3356	.sockets_allocated	= &tcp_sockets_allocated,
3357	.orphan_count		= &tcp_orphan_count,
3358
3359	.memory_allocated	= &tcp_memory_allocated,
3360	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3361
3362	.memory_pressure	= &tcp_memory_pressure,
3363	.sysctl_mem		= sysctl_tcp_mem,
3364	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3365	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3366	.max_header		= MAX_TCP_HEADER,
3367	.obj_size		= sizeof(struct tcp_sock),
3368	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3369	.twsk_prot		= &tcp_timewait_sock_ops,
3370	.rsk_prot		= &tcp_request_sock_ops,
3371	.h.hashinfo		= NULL,
3372	.no_autobind		= true,
3373	.diag_destroy		= tcp_abort,
 
 
 
3374};
3375EXPORT_SYMBOL(tcp_prot);
3376
3377static void __net_exit tcp_sk_exit(struct net *net)
 
3378{
3379	if (net->ipv4.tcp_congestion_control)
3380		bpf_module_put(net->ipv4.tcp_congestion_control,
3381			       net->ipv4.tcp_congestion_control->owner);
3382}
3383
3384static void __net_init tcp_set_hashinfo(struct net *net)
3385{
3386	struct inet_hashinfo *hinfo;
3387	unsigned int ehash_entries;
3388	struct net *old_net;
3389
3390	if (net_eq(net, &init_net))
3391		goto fallback;
3392
3393	old_net = current->nsproxy->net_ns;
3394	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3395	if (!ehash_entries)
3396		goto fallback;
3397
3398	ehash_entries = roundup_pow_of_two(ehash_entries);
3399	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3400	if (!hinfo) {
3401		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3402			"for a netns, fallback to the global one\n",
3403			ehash_entries);
3404fallback:
3405		hinfo = &tcp_hashinfo;
3406		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3407	}
3408
3409	net->ipv4.tcp_death_row.hashinfo = hinfo;
3410	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3411	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3412}
3413
3414static int __net_init tcp_sk_init(struct net *net)
3415{
3416	net->ipv4.sysctl_tcp_ecn = 2;
3417	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3418
3419	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3420	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3421	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3422	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3423	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3424
3425	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3426	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3427	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3428
3429	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3430	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3431	net->ipv4.sysctl_tcp_syncookies = 1;
3432	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3433	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3434	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3435	net->ipv4.sysctl_tcp_orphan_retries = 0;
3436	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3437	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3438	net->ipv4.sysctl_tcp_tw_reuse = 2;
3439	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3440
3441	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3442	tcp_set_hashinfo(net);
3443
3444	net->ipv4.sysctl_tcp_sack = 1;
3445	net->ipv4.sysctl_tcp_window_scaling = 1;
3446	net->ipv4.sysctl_tcp_timestamps = 1;
3447	net->ipv4.sysctl_tcp_early_retrans = 3;
3448	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3449	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3450	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3451	net->ipv4.sysctl_tcp_max_reordering = 300;
3452	net->ipv4.sysctl_tcp_dsack = 1;
3453	net->ipv4.sysctl_tcp_app_win = 31;
3454	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3455	net->ipv4.sysctl_tcp_frto = 2;
3456	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3457	/* This limits the percentage of the congestion window which we
3458	 * will allow a single TSO frame to consume.  Building TSO frames
3459	 * which are too large can cause TCP streams to be bursty.
3460	 */
3461	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3462	/* Default TSQ limit of 16 TSO segments */
3463	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3464
3465	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3466	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3467
3468	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3469	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3470	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3471	net->ipv4.sysctl_tcp_autocorking = 1;
3472	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3473	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3474	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3475	if (net != &init_net) {
3476		memcpy(net->ipv4.sysctl_tcp_rmem,
3477		       init_net.ipv4.sysctl_tcp_rmem,
3478		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3479		memcpy(net->ipv4.sysctl_tcp_wmem,
3480		       init_net.ipv4.sysctl_tcp_wmem,
3481		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3482	}
3483	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3484	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3485	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3486	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3487	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3488	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3489	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3490
3491	/* Set default values for PLB */
3492	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3493	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3494	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3495	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3496	/* Default congestion threshold for PLB to mark a round is 50% */
3497	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3498
3499	/* Reno is always built in */
3500	if (!net_eq(net, &init_net) &&
3501	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3502			       init_net.ipv4.tcp_congestion_control->owner))
3503		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3504	else
3505		net->ipv4.tcp_congestion_control = &tcp_reno;
3506
3507	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3508	net->ipv4.sysctl_tcp_shrink_window = 0;
3509
3510	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3511
3512	return 0;
3513}
3514
3515static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3516{
3517	struct net *net;
3518
3519	tcp_twsk_purge(net_exit_list, AF_INET);
3520
3521	list_for_each_entry(net, net_exit_list, exit_list) {
3522		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3523		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3524		tcp_fastopen_ctx_destroy(net);
3525	}
3526}
3527
3528static struct pernet_operations __net_initdata tcp_sk_ops = {
3529       .init	   = tcp_sk_init,
3530       .exit	   = tcp_sk_exit,
3531       .exit_batch = tcp_sk_exit_batch,
3532};
3533
3534#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3535DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3536		     struct sock_common *sk_common, uid_t uid)
3537
3538#define INIT_BATCH_SZ 16
3539
3540static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3541{
3542	struct bpf_tcp_iter_state *iter = priv_data;
3543	int err;
3544
3545	err = bpf_iter_init_seq_net(priv_data, aux);
3546	if (err)
3547		return err;
3548
3549	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3550	if (err) {
3551		bpf_iter_fini_seq_net(priv_data);
3552		return err;
3553	}
3554
3555	return 0;
3556}
3557
3558static void bpf_iter_fini_tcp(void *priv_data)
3559{
3560	struct bpf_tcp_iter_state *iter = priv_data;
3561
3562	bpf_iter_fini_seq_net(priv_data);
3563	kvfree(iter->batch);
3564}
3565
3566static const struct bpf_iter_seq_info tcp_seq_info = {
3567	.seq_ops		= &bpf_iter_tcp_seq_ops,
3568	.init_seq_private	= bpf_iter_init_tcp,
3569	.fini_seq_private	= bpf_iter_fini_tcp,
3570	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3571};
3572
3573static const struct bpf_func_proto *
3574bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3575			    const struct bpf_prog *prog)
3576{
3577	switch (func_id) {
3578	case BPF_FUNC_setsockopt:
3579		return &bpf_sk_setsockopt_proto;
3580	case BPF_FUNC_getsockopt:
3581		return &bpf_sk_getsockopt_proto;
3582	default:
3583		return NULL;
3584	}
3585}
3586
3587static struct bpf_iter_reg tcp_reg_info = {
3588	.target			= "tcp",
3589	.ctx_arg_info_size	= 1,
3590	.ctx_arg_info		= {
3591		{ offsetof(struct bpf_iter__tcp, sk_common),
3592		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3593	},
3594	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3595	.seq_info		= &tcp_seq_info,
3596};
3597
3598static void __init bpf_iter_register(void)
3599{
3600	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3601	if (bpf_iter_reg_target(&tcp_reg_info))
3602		pr_warn("Warning: could not register bpf iterator tcp\n");
3603}
3604
3605#endif
3606
3607void __init tcp_v4_init(void)
3608{
3609	int cpu, res;
3610
3611	for_each_possible_cpu(cpu) {
3612		struct sock *sk;
3613
3614		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3615					   IPPROTO_TCP, &init_net);
3616		if (res)
3617			panic("Failed to create the TCP control socket.\n");
3618		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3619
3620		/* Please enforce IP_DF and IPID==0 for RST and
3621		 * ACK sent in SYN-RECV and TIME-WAIT state.
3622		 */
3623		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3624
3625		per_cpu(ipv4_tcp_sk, cpu) = sk;
3626	}
3627	if (register_pernet_subsys(&tcp_sk_ops))
3628		panic("Failed to create the TCP control socket.\n");
3629
3630#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3631	bpf_iter_register();
3632#endif
3633}