Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 *		IPv4 specific functions
   9 *
  10 *
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
  17 *
  18 *	This program is free software; you can redistribute it and/or
  19 *      modify it under the terms of the GNU General Public License
  20 *      as published by the Free Software Foundation; either version
  21 *      2 of the License, or (at your option) any later version.
  22 */
  23
  24/*
  25 * Changes:
  26 *		David S. Miller	:	New socket lookup architecture.
  27 *					This code is dedicated to John Dyson.
  28 *		David S. Miller :	Change semantics of established hash,
  29 *					half is devoted to TIME_WAIT sockets
  30 *					and the rest go in the other half.
  31 *		Andi Kleen :		Add support for syncookies and fixed
  32 *					some bugs: ip options weren't passed to
  33 *					the TCP layer, missed a check for an
  34 *					ACK bit.
  35 *		Andi Kleen :		Implemented fast path mtu discovery.
  36 *	     				Fixed many serious bugs in the
  37 *					request_sock handling and moved
  38 *					most of it into the af independent code.
  39 *					Added tail drop and some other bugfixes.
  40 *					Added new listen semantics.
  41 *		Mike McLagan	:	Routing by source
  42 *	Juan Jose Ciarlante:		ip_dynaddr bits
  43 *		Andi Kleen:		various fixes.
  44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  45 *					coma.
  46 *	Andi Kleen		:	Fix new listen.
  47 *	Andi Kleen		:	Fix accept error reporting.
  48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  50 *					a single port at the same time.
  51 */
  52
 
  53
  54#include <linux/bottom_half.h>
  55#include <linux/types.h>
  56#include <linux/fcntl.h>
  57#include <linux/module.h>
  58#include <linux/random.h>
  59#include <linux/cache.h>
  60#include <linux/jhash.h>
  61#include <linux/init.h>
  62#include <linux/times.h>
  63#include <linux/slab.h>
 
  64
  65#include <net/net_namespace.h>
  66#include <net/icmp.h>
  67#include <net/inet_hashtables.h>
  68#include <net/tcp.h>
  69#include <net/transp_v6.h>
  70#include <net/ipv6.h>
  71#include <net/inet_common.h>
  72#include <net/timewait_sock.h>
  73#include <net/xfrm.h>
  74#include <net/netdma.h>
  75#include <net/secure_seq.h>
 
 
  76
  77#include <linux/inet.h>
  78#include <linux/ipv6.h>
  79#include <linux/stddef.h>
  80#include <linux/proc_fs.h>
  81#include <linux/seq_file.h>
 
 
 
  82
  83#include <linux/crypto.h>
  84#include <linux/scatterlist.h>
  85
  86int sysctl_tcp_tw_reuse __read_mostly;
  87int sysctl_tcp_low_latency __read_mostly;
  88EXPORT_SYMBOL(sysctl_tcp_low_latency);
  89
  90
  91#ifdef CONFIG_TCP_MD5SIG
  92static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
  93						   __be32 addr);
  94static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
  95			       __be32 daddr, __be32 saddr, struct tcphdr *th);
  96#else
  97static inline
  98struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
  99{
 100	return NULL;
 101}
 102#endif
 103
 104struct inet_hashinfo tcp_hashinfo;
 105EXPORT_SYMBOL(tcp_hashinfo);
 106
 107static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
 
 
 
 
 
 
 108{
 109	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
 110					  ip_hdr(skb)->saddr,
 111					  tcp_hdr(skb)->dest,
 112					  tcp_hdr(skb)->source);
 
 
 
 
 
 113}
 114
 115int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 116{
 
 
 117	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 118	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119
 120	/* With PAWS, it is safe from the viewpoint
 121	   of data integrity. Even without PAWS it is safe provided sequence
 122	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 123
 124	   Actually, the idea is close to VJ's one, only timestamp cache is
 125	   held not per host, but per port pair and TW bucket is used as state
 126	   holder.
 127
 128	   If TW bucket has been already destroyed we fall back to VJ's scheme
 129	   and use initial timestamp retrieved from peer table.
 130	 */
 131	if (tcptw->tw_ts_recent_stamp &&
 132	    (twp == NULL || (sysctl_tcp_tw_reuse &&
 133			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
 134		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
 135		if (tp->write_seq == 0)
 136			tp->write_seq = 1;
 137		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
 138		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
 139		sock_hold(sktw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140		return 1;
 141	}
 142
 143	return 0;
 144}
 145EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147/* This will initiate an outgoing connection. */
 148int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 149{
 150	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 
 151	struct inet_sock *inet = inet_sk(sk);
 152	struct tcp_sock *tp = tcp_sk(sk);
 
 
 153	__be16 orig_sport, orig_dport;
 154	__be32 daddr, nexthop;
 155	struct flowi4 *fl4;
 156	struct rtable *rt;
 157	int err;
 158	struct ip_options_rcu *inet_opt;
 159
 160	if (addr_len < sizeof(struct sockaddr_in))
 161		return -EINVAL;
 162
 163	if (usin->sin_family != AF_INET)
 164		return -EAFNOSUPPORT;
 165
 166	nexthop = daddr = usin->sin_addr.s_addr;
 167	inet_opt = rcu_dereference_protected(inet->inet_opt,
 168					     sock_owned_by_user(sk));
 169	if (inet_opt && inet_opt->opt.srr) {
 170		if (!daddr)
 171			return -EINVAL;
 172		nexthop = inet_opt->opt.faddr;
 173	}
 174
 175	orig_sport = inet->inet_sport;
 176	orig_dport = usin->sin_port;
 177	fl4 = &inet->cork.fl.u.ip4;
 178	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 179			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
 180			      IPPROTO_TCP,
 181			      orig_sport, orig_dport, sk, true);
 182	if (IS_ERR(rt)) {
 183		err = PTR_ERR(rt);
 184		if (err == -ENETUNREACH)
 185			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
 186		return err;
 187	}
 188
 189	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 190		ip_rt_put(rt);
 191		return -ENETUNREACH;
 192	}
 193
 194	if (!inet_opt || !inet_opt->opt.srr)
 195		daddr = fl4->daddr;
 196
 197	if (!inet->inet_saddr)
 198		inet->inet_saddr = fl4->saddr;
 199	inet->inet_rcv_saddr = inet->inet_saddr;
 
 
 
 
 
 
 
 
 200
 201	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 202		/* Reset inherited state */
 203		tp->rx_opt.ts_recent	   = 0;
 204		tp->rx_opt.ts_recent_stamp = 0;
 205		tp->write_seq		   = 0;
 206	}
 207
 208	if (tcp_death_row.sysctl_tw_recycle &&
 209	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
 210		struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
 211		/*
 212		 * VJ's idea. We save last timestamp seen from
 213		 * the destination in peer table, when entering state
 214		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
 215		 * when trying new connection.
 216		 */
 217		if (peer) {
 218			inet_peer_refcheck(peer);
 219			if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
 220				tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
 221				tp->rx_opt.ts_recent = peer->tcp_ts;
 222			}
 223		}
 224	}
 225
 226	inet->inet_dport = usin->sin_port;
 227	inet->inet_daddr = daddr;
 228
 229	inet_csk(sk)->icsk_ext_hdr_len = 0;
 230	if (inet_opt)
 231		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 232
 233	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 234
 235	/* Socket identity is still unknown (sport may be zero).
 236	 * However we set state to SYN-SENT and not releasing socket
 237	 * lock select source port, enter ourselves into the hash tables and
 238	 * complete initialization after this.
 239	 */
 240	tcp_set_state(sk, TCP_SYN_SENT);
 241	err = inet_hash_connect(&tcp_death_row, sk);
 242	if (err)
 243		goto failure;
 244
 
 
 245	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 246			       inet->inet_sport, inet->inet_dport, sk);
 247	if (IS_ERR(rt)) {
 248		err = PTR_ERR(rt);
 249		rt = NULL;
 250		goto failure;
 251	}
 
 252	/* OK, now commit destination to socket.  */
 253	sk->sk_gso_type = SKB_GSO_TCPV4;
 254	sk_setup_caps(sk, &rt->dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 255
 256	if (!tp->write_seq)
 257		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
 258							   inet->inet_daddr,
 259							   inet->inet_sport,
 260							   usin->sin_port);
 261
 262	inet->inet_id = tp->write_seq ^ jiffies;
 
 
 
 263
 264	err = tcp_connect(sk);
 265	rt = NULL;
 266	if (err)
 267		goto failure;
 268
 269	return 0;
 270
 271failure:
 272	/*
 273	 * This unhashes the socket and releases the local port,
 274	 * if necessary.
 275	 */
 276	tcp_set_state(sk, TCP_CLOSE);
 
 277	ip_rt_put(rt);
 278	sk->sk_route_caps = 0;
 279	inet->inet_dport = 0;
 280	return err;
 281}
 282EXPORT_SYMBOL(tcp_v4_connect);
 283
 284/*
 285 * This routine does path mtu discovery as defined in RFC1191.
 
 
 286 */
 287static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
 288{
 289	struct dst_entry *dst;
 290	struct inet_sock *inet = inet_sk(sk);
 
 
 291
 292	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
 293	 * send out by Linux are always <576bytes so they should go through
 294	 * unfragmented).
 295	 */
 296	if (sk->sk_state == TCP_LISTEN)
 297		return;
 298
 299	/* We don't check in the destentry if pmtu discovery is forbidden
 300	 * on this route. We just assume that no packet_to_big packets
 301	 * are send back when pmtu discovery is not active.
 302	 * There is a small race when the user changes this flag in the
 303	 * route, but I think that's acceptable.
 304	 */
 305	if ((dst = __sk_dst_check(sk, 0)) == NULL)
 306		return;
 307
 308	dst->ops->update_pmtu(dst, mtu);
 309
 310	/* Something is about to be wrong... Remember soft error
 311	 * for the case, if this connection will not able to recover.
 312	 */
 313	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 314		sk->sk_err_soft = EMSGSIZE;
 315
 316	mtu = dst_mtu(dst);
 317
 318	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 
 319	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 320		tcp_sync_mss(sk, mtu);
 321
 322		/* Resend the TCP packet because it's
 323		 * clear that the old packet has been
 324		 * dropped. This is the new "fast" path mtu
 325		 * discovery.
 326		 */
 327		tcp_simple_retransmit(sk);
 328	} /* else let the usual retransmit timer handle it */
 329}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330
 331/*
 332 * This routine is called by the ICMP module when it gets some
 333 * sort of error condition.  If err < 0 then the socket should
 334 * be closed and the error returned to the user.  If err > 0
 335 * it's just the icmp type << 8 | icmp code.  After adjustment
 336 * header points to the first 8 bytes of the tcp header.  We need
 337 * to find the appropriate port.
 338 *
 339 * The locking strategy used here is very "optimistic". When
 340 * someone else accesses the socket the ICMP is just dropped
 341 * and for some paths there is no check at all.
 342 * A more general error queue to queue errors for later handling
 343 * is probably better.
 344 *
 345 */
 346
 347void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
 348{
 349	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
 350	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
 351	struct inet_connection_sock *icsk;
 352	struct tcp_sock *tp;
 353	struct inet_sock *inet;
 354	const int type = icmp_hdr(icmp_skb)->type;
 355	const int code = icmp_hdr(icmp_skb)->code;
 356	struct sock *sk;
 357	struct sk_buff *skb;
 358	__u32 seq;
 359	__u32 remaining;
 360	int err;
 361	struct net *net = dev_net(icmp_skb->dev);
 362
 363	if (icmp_skb->len < (iph->ihl << 2) + 8) {
 364		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 365		return;
 366	}
 367
 368	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
 369			iph->saddr, th->source, inet_iif(icmp_skb));
 
 370	if (!sk) {
 371		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
 372		return;
 373	}
 374	if (sk->sk_state == TCP_TIME_WAIT) {
 
 
 375		inet_twsk_put(inet_twsk(sk));
 376		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377	}
 378
 379	bh_lock_sock(sk);
 380	/* If too many ICMPs get dropped on busy
 381	 * servers this needs to be solved differently.
 
 
 382	 */
 383	if (sock_owned_by_user(sk))
 384		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
 385
 
 386	if (sk->sk_state == TCP_CLOSE)
 387		goto out;
 388
 389	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
 390		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 391		goto out;
 
 
 
 392	}
 393
 394	icsk = inet_csk(sk);
 395	tp = tcp_sk(sk);
 396	seq = ntohl(th->seq);
 
 
 397	if (sk->sk_state != TCP_LISTEN &&
 398	    !between(seq, tp->snd_una, tp->snd_nxt)) {
 399		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 400		goto out;
 401	}
 402
 403	switch (type) {
 
 
 
 
 404	case ICMP_SOURCE_QUENCH:
 405		/* Just silently ignore these. */
 406		goto out;
 407	case ICMP_PARAMETERPROB:
 408		err = EPROTO;
 409		break;
 410	case ICMP_DEST_UNREACH:
 411		if (code > NR_ICMP_UNREACH)
 412			goto out;
 413
 414		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 415			if (!sock_owned_by_user(sk))
 416				do_pmtu_discovery(sk, iph, info);
 
 
 
 
 
 
 
 
 
 
 
 
 417			goto out;
 418		}
 419
 420		err = icmp_err_convert[code].errno;
 421		/* check if icmp_skb allows revert of backoff
 422		 * (see draft-zimmermann-tcp-lcd) */
 423		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
 424			break;
 425		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 426		    !icsk->icsk_backoff)
 427			break;
 428
 429		if (sock_owned_by_user(sk))
 430			break;
 431
 432		icsk->icsk_backoff--;
 433		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
 434			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
 435		tcp_bound_rto(sk);
 436
 437		skb = tcp_write_queue_head(sk);
 438		BUG_ON(!skb);
 439
 440		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
 441				tcp_time_stamp - TCP_SKB_CB(skb)->when);
 442
 443		if (remaining) {
 444			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 445						  remaining, TCP_RTO_MAX);
 446		} else {
 447			/* RTO revert clocked out retransmission.
 448			 * Will retransmit now */
 449			tcp_retransmit_timer(sk);
 450		}
 451
 452		break;
 453	case ICMP_TIME_EXCEEDED:
 454		err = EHOSTUNREACH;
 455		break;
 456	default:
 457		goto out;
 458	}
 459
 460	switch (sk->sk_state) {
 461		struct request_sock *req, **prev;
 462	case TCP_LISTEN:
 463		if (sock_owned_by_user(sk))
 464			goto out;
 465
 466		req = inet_csk_search_req(sk, &prev, th->dest,
 467					  iph->daddr, iph->saddr);
 468		if (!req)
 469			goto out;
 470
 471		/* ICMPs are not backlogged, hence we cannot get
 472		   an established socket here.
 473		 */
 474		WARN_ON(req->sk);
 475
 476		if (seq != tcp_rsk(req)->snt_isn) {
 477			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
 478			goto out;
 479		}
 480
 481		/*
 482		 * Still in SYN_RECV, just remove it silently.
 483		 * There is no good way to pass the error to the newly
 484		 * created socket, and POSIX does not want network
 485		 * errors returned from accept().
 486		 */
 487		inet_csk_reqsk_queue_drop(sk, req, prev);
 488		goto out;
 489
 490	case TCP_SYN_SENT:
 491	case TCP_SYN_RECV:  /* Cannot happen.
 492			       It can f.e. if SYNs crossed.
 493			     */
 494		if (!sock_owned_by_user(sk)) {
 495			sk->sk_err = err;
 
 496
 497			sk->sk_error_report(sk);
 498
 499			tcp_done(sk);
 500		} else {
 501			sk->sk_err_soft = err;
 502		}
 503		goto out;
 504	}
 505
 506	/* If we've already connected we will keep trying
 507	 * until we time out, or the user gives up.
 508	 *
 509	 * rfc1122 4.2.3.9 allows to consider as hard errors
 510	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 511	 * but it is obsoleted by pmtu discovery).
 512	 *
 513	 * Note, that in modern internet, where routing is unreliable
 514	 * and in each dark corner broken firewalls sit, sending random
 515	 * errors ordered by their masters even this two messages finally lose
 516	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 517	 *
 518	 * Now we are in compliance with RFCs.
 519	 *							--ANK (980905)
 520	 */
 521
 522	inet = inet_sk(sk);
 523	if (!sock_owned_by_user(sk) && inet->recverr) {
 524		sk->sk_err = err;
 525		sk->sk_error_report(sk);
 526	} else	{ /* Only an error on timeout */
 527		sk->sk_err_soft = err;
 528	}
 529
 530out:
 531	bh_unlock_sock(sk);
 532	sock_put(sk);
 
 533}
 534
 535static void __tcp_v4_send_check(struct sk_buff *skb,
 536				__be32 saddr, __be32 daddr)
 537{
 538	struct tcphdr *th = tcp_hdr(skb);
 539
 540	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 541		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 542		skb->csum_start = skb_transport_header(skb) - skb->head;
 543		skb->csum_offset = offsetof(struct tcphdr, check);
 544	} else {
 545		th->check = tcp_v4_check(skb->len, saddr, daddr,
 546					 csum_partial(th,
 547						      th->doff << 2,
 548						      skb->csum));
 549	}
 550}
 551
 552/* This routine computes an IPv4 TCP checksum. */
 553void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 554{
 555	struct inet_sock *inet = inet_sk(sk);
 556
 557	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 558}
 559EXPORT_SYMBOL(tcp_v4_send_check);
 560
 561int tcp_v4_gso_send_check(struct sk_buff *skb)
 562{
 563	const struct iphdr *iph;
 564	struct tcphdr *th;
 565
 566	if (!pskb_may_pull(skb, sizeof(*th)))
 567		return -EINVAL;
 568
 569	iph = ip_hdr(skb);
 570	th = tcp_hdr(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571
 572	th->check = 0;
 573	skb->ip_summed = CHECKSUM_PARTIAL;
 574	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
 575	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576}
 577
 578/*
 579 *	This routine will send an RST to the other tcp.
 580 *
 581 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 582 *		      for reset.
 583 *	Answer: if a packet caused RST, it is not for a socket
 584 *		existing in our system, if it is matched to a socket,
 585 *		it is just duplicate segment or bug in other side's TCP.
 586 *		So that we build reply only basing on parameters
 587 *		arrived with segment.
 588 *	Exception: precedence violation. We do not implement it in any case.
 589 */
 590
 591static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
 
 592{
 593	struct tcphdr *th = tcp_hdr(skb);
 594	struct {
 595		struct tcphdr th;
 596#ifdef CONFIG_TCP_MD5SIG
 597		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
 598#endif
 599	} rep;
 
 
 600	struct ip_reply_arg arg;
 601#ifdef CONFIG_TCP_MD5SIG
 602	struct tcp_md5sig_key *key;
 
 
 
 603#endif
 
 
 604	struct net *net;
 
 605
 606	/* Never send a reset in response to a reset. */
 607	if (th->rst)
 608		return;
 609
 610	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
 
 
 
 611		return;
 612
 613	/* Swap the send and the receive. */
 614	memset(&rep, 0, sizeof(rep));
 615	rep.th.dest   = th->source;
 616	rep.th.source = th->dest;
 617	rep.th.doff   = sizeof(struct tcphdr) / 4;
 618	rep.th.rst    = 1;
 619
 620	if (th->ack) {
 621		rep.th.seq = th->ack_seq;
 622	} else {
 623		rep.th.ack = 1;
 624		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 625				       skb->len - (th->doff << 2));
 626	}
 627
 628	memset(&arg, 0, sizeof(arg));
 629	arg.iov[0].iov_base = (unsigned char *)&rep;
 630	arg.iov[0].iov_len  = sizeof(rep.th);
 631
 
 
 
 
 
 
 
 
 
 632#ifdef CONFIG_TCP_MD5SIG
 633	key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634	if (key) {
 635		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 636				   (TCPOPT_NOP << 16) |
 637				   (TCPOPT_MD5SIG << 8) |
 638				   TCPOLEN_MD5SIG);
 639		/* Update length and the length the header thinks exists */
 640		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 641		rep.th.doff = arg.iov[0].iov_len / 4;
 642
 643		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 644				     key, ip_hdr(skb)->saddr,
 645				     ip_hdr(skb)->daddr, &rep.th);
 646	}
 647#endif
 
 
 
 
 
 
 
 
 
 
 
 648	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 649				      ip_hdr(skb)->saddr, /* XXX */
 650				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 651	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 652	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 
 
 
 
 
 
 
 653
 654	net = dev_net(skb_dst(skb)->dev);
 655	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 656		      &arg, arg.iov[0].iov_len);
 657
 658	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 659	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660}
 661
 662/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 663   outside socket context is ugly, certainly. What can I do?
 664 */
 665
 666static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
 667			    u32 win, u32 ts, int oif,
 668			    struct tcp_md5sig_key *key,
 669			    int reply_flags)
 
 670{
 671	struct tcphdr *th = tcp_hdr(skb);
 672	struct {
 673		struct tcphdr th;
 674		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
 675#ifdef CONFIG_TCP_MD5SIG
 676			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
 677#endif
 678			];
 679	} rep;
 
 680	struct ip_reply_arg arg;
 681	struct net *net = dev_net(skb_dst(skb)->dev);
 
 682
 683	memset(&rep.th, 0, sizeof(struct tcphdr));
 684	memset(&arg, 0, sizeof(arg));
 685
 686	arg.iov[0].iov_base = (unsigned char *)&rep;
 687	arg.iov[0].iov_len  = sizeof(rep.th);
 688	if (ts) {
 689		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 690				   (TCPOPT_TIMESTAMP << 8) |
 691				   TCPOLEN_TIMESTAMP);
 692		rep.opt[1] = htonl(tcp_time_stamp);
 693		rep.opt[2] = htonl(ts);
 694		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 695	}
 696
 697	/* Swap the send and the receive. */
 698	rep.th.dest    = th->source;
 699	rep.th.source  = th->dest;
 700	rep.th.doff    = arg.iov[0].iov_len / 4;
 701	rep.th.seq     = htonl(seq);
 702	rep.th.ack_seq = htonl(ack);
 703	rep.th.ack     = 1;
 704	rep.th.window  = htons(win);
 705
 706#ifdef CONFIG_TCP_MD5SIG
 707	if (key) {
 708		int offset = (ts) ? 3 : 0;
 709
 710		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 711					  (TCPOPT_NOP << 16) |
 712					  (TCPOPT_MD5SIG << 8) |
 713					  TCPOLEN_MD5SIG);
 714		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 715		rep.th.doff = arg.iov[0].iov_len/4;
 716
 717		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 718				    key, ip_hdr(skb)->saddr,
 719				    ip_hdr(skb)->daddr, &rep.th);
 720	}
 721#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722	arg.flags = reply_flags;
 723	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 724				      ip_hdr(skb)->saddr, /* XXX */
 725				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 726	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 727	if (oif)
 728		arg.bound_dev_if = oif;
 729
 730	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
 731		      &arg, arg.iov[0].iov_len);
 732
 733	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734}
 735
 736static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
 737{
 738	struct inet_timewait_sock *tw = inet_twsk(sk);
 739	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740
 741	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
 
 742			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
 743			tcptw->tw_ts_recent,
 744			tw->tw_bound_dev_if,
 745			tcp_twsk_md5_key(tcptw),
 746			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
 747			);
 
 748
 749	inet_twsk_put(tw);
 750}
 751
 752static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
 753				  struct request_sock *req)
 754{
 755	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
 756			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
 757			req->ts_recent,
 758			0,
 759			tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
 760			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761}
 762
 763/*
 764 *	Send a SYN-ACK after having received a SYN.
 765 *	This still operates on a request_sock only, not on a big
 766 *	socket.
 767 */
 768static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
 
 769			      struct request_sock *req,
 770			      struct request_values *rvp)
 
 
 771{
 772	const struct inet_request_sock *ireq = inet_rsk(req);
 773	struct flowi4 fl4;
 774	int err = -1;
 775	struct sk_buff * skb;
 
 776
 777	/* First, grab a route. */
 778	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
 779		return -1;
 780
 781	skb = tcp_make_synack(sk, dst, req, rvp);
 782
 783	if (skb) {
 784		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
 
 
 785
 786		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
 787					    ireq->rmt_addr,
 788					    ireq->opt);
 
 
 
 
 
 
 
 
 
 
 
 789		err = net_xmit_eval(err);
 790	}
 791
 792	dst_release(dst);
 793	return err;
 794}
 795
 796static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
 797			      struct request_values *rvp)
 798{
 799	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
 800	return tcp_v4_send_synack(sk, NULL, req, rvp);
 801}
 802
 803/*
 804 *	IPv4 request_sock destructor.
 805 */
 806static void tcp_v4_reqsk_destructor(struct request_sock *req)
 807{
 808	kfree(inet_rsk(req)->opt);
 809}
 810
 
 811/*
 812 * Return 1 if a syncookie should be sent
 
 
 813 */
 814int tcp_syn_flood_action(struct sock *sk,
 815			 const struct sk_buff *skb,
 816			 const char *proto)
 817{
 818	const char *msg = "Dropping request";
 819	int want_cookie = 0;
 820	struct listen_sock *lopt;
 821
 
 
 822
 
 
 
 
 823
 824#ifdef CONFIG_SYN_COOKIES
 825	if (sysctl_tcp_syncookies) {
 826		msg = "Sending cookies";
 827		want_cookie = 1;
 828		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
 829	} else
 830#endif
 831		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
 832
 833	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
 834	if (!lopt->synflood_warned) {
 835		lopt->synflood_warned = 1;
 836		pr_info("%s: Possible SYN flooding on port %d. %s. "
 837			" Check SNMP counters.\n",
 838			proto, ntohs(tcp_hdr(skb)->dest), msg);
 839	}
 840	return want_cookie;
 841}
 842EXPORT_SYMBOL(tcp_syn_flood_action);
 843
 844/*
 845 * Save and compile IPv4 options into the request_sock if needed.
 846 */
 847static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
 848						  struct sk_buff *skb)
 849{
 850	const struct ip_options *opt = &(IPCB(skb)->opt);
 851	struct ip_options_rcu *dopt = NULL;
 852
 853	if (opt && opt->optlen) {
 854		int opt_size = sizeof(*dopt) + opt->optlen;
 
 
 
 
 
 
 
 855
 856		dopt = kmalloc(opt_size, GFP_ATOMIC);
 857		if (dopt) {
 858			if (ip_options_echo(&dopt->opt, skb)) {
 859				kfree(dopt);
 860				dopt = NULL;
 861			}
 
 
 
 
 
 
 
 
 
 
 
 
 862		}
 
 
 
 863	}
 864	return dopt;
 865}
 
 866
 867#ifdef CONFIG_TCP_MD5SIG
 868/*
 869 * RFC2385 MD5 checksumming requires a mapping of
 870 * IP address->MD5 Key.
 871 * We need to maintain these in the sk structure.
 872 */
 873
 874/* Find the Key structure for an address.  */
 875static struct tcp_md5sig_key *
 876			tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
 877{
 878	struct tcp_sock *tp = tcp_sk(sk);
 879	int i;
 
 
 880
 881	if (!tp->md5sig_info || !tp->md5sig_info->entries4)
 
 
 
 882		return NULL;
 883	for (i = 0; i < tp->md5sig_info->entries4; i++) {
 884		if (tp->md5sig_info->keys4[i].addr == addr)
 885			return &tp->md5sig_info->keys4[i].base;
 
 
 
 
 
 
 
 
 
 
 
 
 886	}
 887	return NULL;
 888}
 889
 890struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
 891					 struct sock *addr_sk)
 892{
 893	return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
 
 
 
 
 
 
 894}
 895EXPORT_SYMBOL(tcp_v4_md5_lookup);
 896
 897static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
 898						      struct request_sock *req)
 899{
 900	return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
 
 
 
 
 
 
 
 
 
 
 901}
 902
 903/* This can be called on a newly created socket, from other files */
 904int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
 905		      u8 *newkey, u8 newkeylen)
 
 906{
 907	/* Add Key to the list */
 908	struct tcp_md5sig_key *key;
 909	struct tcp_sock *tp = tcp_sk(sk);
 910	struct tcp4_md5sig_key *keys;
 911
 912	key = tcp_v4_md5_do_lookup(sk, addr);
 913	if (key) {
 914		/* Pre-existing entry - just update that one. */
 915		kfree(key->key);
 916		key->key = newkey;
 917		key->keylen = newkeylen;
 918	} else {
 919		struct tcp_md5sig_info *md5sig;
 
 920
 921		if (!tp->md5sig_info) {
 922			tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
 923						  GFP_ATOMIC);
 924			if (!tp->md5sig_info) {
 925				kfree(newkey);
 926				return -ENOMEM;
 927			}
 928			sk_nocaps_add(sk, NETIF_F_GSO_MASK);
 929		}
 930
 931		md5sig = tp->md5sig_info;
 932		if (md5sig->entries4 == 0 &&
 933		    tcp_alloc_md5sig_pool(sk) == NULL) {
 934			kfree(newkey);
 935			return -ENOMEM;
 936		}
 937
 938		if (md5sig->alloced4 == md5sig->entries4) {
 939			keys = kmalloc((sizeof(*keys) *
 940					(md5sig->entries4 + 1)), GFP_ATOMIC);
 941			if (!keys) {
 942				kfree(newkey);
 943				if (md5sig->entries4 == 0)
 944					tcp_free_md5sig_pool();
 945				return -ENOMEM;
 946			}
 947
 948			if (md5sig->entries4)
 949				memcpy(keys, md5sig->keys4,
 950				       sizeof(*keys) * md5sig->entries4);
 951
 952			/* Free old key list, and reference new one */
 953			kfree(md5sig->keys4);
 954			md5sig->keys4 = keys;
 955			md5sig->alloced4++;
 956		}
 957		md5sig->entries4++;
 958		md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
 959		md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
 960		md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
 961	}
 962	return 0;
 963}
 964EXPORT_SYMBOL(tcp_v4_md5_do_add);
 965
 966static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
 967			       u8 *newkey, u8 newkeylen)
 
 968{
 969	return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
 970				 newkey, newkeylen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971}
 
 972
 973int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
 
 
 974{
 975	struct tcp_sock *tp = tcp_sk(sk);
 976	int i;
 977
 978	for (i = 0; i < tp->md5sig_info->entries4; i++) {
 979		if (tp->md5sig_info->keys4[i].addr == addr) {
 980			/* Free the key */
 981			kfree(tp->md5sig_info->keys4[i].base.key);
 982			tp->md5sig_info->entries4--;
 983
 984			if (tp->md5sig_info->entries4 == 0) {
 985				kfree(tp->md5sig_info->keys4);
 986				tp->md5sig_info->keys4 = NULL;
 987				tp->md5sig_info->alloced4 = 0;
 988				tcp_free_md5sig_pool();
 989			} else if (tp->md5sig_info->entries4 != i) {
 990				/* Need to do some manipulation */
 991				memmove(&tp->md5sig_info->keys4[i],
 992					&tp->md5sig_info->keys4[i+1],
 993					(tp->md5sig_info->entries4 - i) *
 994					 sizeof(struct tcp4_md5sig_key));
 995			}
 996			return 0;
 997		}
 998	}
 999	return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000}
1001EXPORT_SYMBOL(tcp_v4_md5_do_del);
1002
1003static void tcp_v4_clear_md5_list(struct sock *sk)
1004{
1005	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
1006
1007	/* Free each key, then the set of key keys,
1008	 * the crypto element, and then decrement our
1009	 * hold on the last resort crypto.
1010	 */
1011	if (tp->md5sig_info->entries4) {
1012		int i;
1013		for (i = 0; i < tp->md5sig_info->entries4; i++)
1014			kfree(tp->md5sig_info->keys4[i].base.key);
1015		tp->md5sig_info->entries4 = 0;
1016		tcp_free_md5sig_pool();
1017	}
1018	if (tp->md5sig_info->keys4) {
1019		kfree(tp->md5sig_info->keys4);
1020		tp->md5sig_info->keys4 = NULL;
1021		tp->md5sig_info->alloced4  = 0;
1022	}
1023}
1024
1025static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1026				 int optlen)
1027{
1028	struct tcp_md5sig cmd;
1029	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1030	u8 *newkey;
 
 
 
 
1031
1032	if (optlen < sizeof(cmd))
1033		return -EINVAL;
1034
1035	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1036		return -EFAULT;
1037
1038	if (sin->sin_family != AF_INET)
1039		return -EINVAL;
1040
1041	if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1042		if (!tcp_sk(sk)->md5sig_info)
1043			return -ENOENT;
1044		return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
 
 
 
 
1045	}
1046
1047	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1048		return -EINVAL;
 
 
 
 
 
 
1049
1050	if (!tcp_sk(sk)->md5sig_info) {
1051		struct tcp_sock *tp = tcp_sk(sk);
1052		struct tcp_md5sig_info *p;
1053
1054		p = kzalloc(sizeof(*p), sk->sk_allocation);
1055		if (!p)
 
 
1056			return -EINVAL;
1057
1058		tp->md5sig_info = p;
1059		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1060	}
1061
1062	newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1063	if (!newkey)
1064		return -ENOMEM;
1065	return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1066				 newkey, cmd.tcpm_keylen);
 
 
 
 
 
 
 
 
 
 
 
1067}
1068
1069static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1070					__be32 daddr, __be32 saddr, int nbytes)
 
1071{
1072	struct tcp4_pseudohdr *bp;
1073	struct scatterlist sg;
 
1074
1075	bp = &hp->md5_blk.ip4;
1076
1077	/*
1078	 * 1. the TCP pseudo-header (in the order: source IP address,
1079	 * destination IP address, zero-padded protocol number, and
1080	 * segment length)
1081	 */
1082	bp->saddr = saddr;
1083	bp->daddr = daddr;
1084	bp->pad = 0;
1085	bp->protocol = IPPROTO_TCP;
1086	bp->len = cpu_to_be16(nbytes);
1087
1088	sg_init_one(&sg, bp, sizeof(*bp));
1089	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
 
 
 
 
 
 
1090}
1091
1092static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1093			       __be32 daddr, __be32 saddr, struct tcphdr *th)
1094{
1095	struct tcp_md5sig_pool *hp;
1096	struct hash_desc *desc;
1097
1098	hp = tcp_get_md5sig_pool();
1099	if (!hp)
1100		goto clear_hash_noput;
1101	desc = &hp->md5_desc;
1102
1103	if (crypto_hash_init(desc))
1104		goto clear_hash;
1105	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1106		goto clear_hash;
1107	if (tcp_md5_hash_header(hp, th))
1108		goto clear_hash;
1109	if (tcp_md5_hash_key(hp, key))
1110		goto clear_hash;
1111	if (crypto_hash_final(desc, md5_hash))
1112		goto clear_hash;
1113
1114	tcp_put_md5sig_pool();
1115	return 0;
1116
1117clear_hash:
1118	tcp_put_md5sig_pool();
1119clear_hash_noput:
1120	memset(md5_hash, 0, 16);
1121	return 1;
1122}
1123
1124int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1125			struct sock *sk, struct request_sock *req,
1126			struct sk_buff *skb)
1127{
1128	struct tcp_md5sig_pool *hp;
1129	struct hash_desc *desc;
1130	struct tcphdr *th = tcp_hdr(skb);
1131	__be32 saddr, daddr;
1132
1133	if (sk) {
1134		saddr = inet_sk(sk)->inet_saddr;
1135		daddr = inet_sk(sk)->inet_daddr;
1136	} else if (req) {
1137		saddr = inet_rsk(req)->loc_addr;
1138		daddr = inet_rsk(req)->rmt_addr;
1139	} else {
1140		const struct iphdr *iph = ip_hdr(skb);
1141		saddr = iph->saddr;
1142		daddr = iph->daddr;
1143	}
1144
1145	hp = tcp_get_md5sig_pool();
1146	if (!hp)
1147		goto clear_hash_noput;
1148	desc = &hp->md5_desc;
1149
1150	if (crypto_hash_init(desc))
1151		goto clear_hash;
1152
1153	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1154		goto clear_hash;
1155	if (tcp_md5_hash_header(hp, th))
1156		goto clear_hash;
1157	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1158		goto clear_hash;
1159	if (tcp_md5_hash_key(hp, key))
1160		goto clear_hash;
1161	if (crypto_hash_final(desc, md5_hash))
 
1162		goto clear_hash;
1163
1164	tcp_put_md5sig_pool();
1165	return 0;
1166
1167clear_hash:
1168	tcp_put_md5sig_pool();
1169clear_hash_noput:
1170	memset(md5_hash, 0, 16);
1171	return 1;
1172}
1173EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1174
1175static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1176{
1177	/*
1178	 * This gets called for each TCP segment that arrives
1179	 * so we want to be efficient.
1180	 * We have 3 drop cases:
1181	 * o No MD5 hash and one expected.
1182	 * o MD5 hash and we're not expecting one.
1183	 * o MD5 hash and its wrong.
1184	 */
1185	__u8 *hash_location = NULL;
1186	struct tcp_md5sig_key *hash_expected;
1187	const struct iphdr *iph = ip_hdr(skb);
1188	struct tcphdr *th = tcp_hdr(skb);
1189	int genhash;
1190	unsigned char newhash[16];
1191
1192	hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1193	hash_location = tcp_parse_md5sig_option(th);
 
 
 
 
1194
1195	/* We've parsed the options - do we have a hash? */
1196	if (!hash_expected && !hash_location)
1197		return 0;
 
1198
1199	if (hash_expected && !hash_location) {
1200		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1201		return 1;
1202	}
 
 
 
1203
1204	if (!hash_expected && hash_location) {
1205		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1206		return 1;
1207	}
1208
1209	/* Okay, so this is hash_expected and hash_location -
1210	 * so we need to calculate the checksum.
1211	 */
1212	genhash = tcp_v4_md5_hash_skb(newhash,
1213				      hash_expected,
1214				      NULL, NULL, skb);
1215
1216	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1217		if (net_ratelimit()) {
1218			printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1219			       &iph->saddr, ntohs(th->source),
1220			       &iph->daddr, ntohs(th->dest),
1221			       genhash ? " tcp_v4_calc_md5_hash failed" : "");
1222		}
1223		return 1;
1224	}
1225	return 0;
1226}
1227
1228#endif
1229
1230struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1231	.family		=	PF_INET,
1232	.obj_size	=	sizeof(struct tcp_request_sock),
1233	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1234	.send_ack	=	tcp_v4_reqsk_send_ack,
1235	.destructor	=	tcp_v4_reqsk_destructor,
1236	.send_reset	=	tcp_v4_send_reset,
1237	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1238};
1239
 
 
1240#ifdef CONFIG_TCP_MD5SIG
1241static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1242	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1243	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1244};
1245#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
1246
1247int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1248{
1249	struct tcp_extend_values tmp_ext;
1250	struct tcp_options_received tmp_opt;
1251	u8 *hash_location;
1252	struct request_sock *req;
1253	struct inet_request_sock *ireq;
1254	struct tcp_sock *tp = tcp_sk(sk);
1255	struct dst_entry *dst = NULL;
1256	__be32 saddr = ip_hdr(skb)->saddr;
1257	__be32 daddr = ip_hdr(skb)->daddr;
1258	__u32 isn = TCP_SKB_CB(skb)->when;
1259	int want_cookie = 0;
1260
1261	/* Never answer to SYNs send to broadcast or multicast */
1262	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1263		goto drop;
1264
1265	/* TW buckets are converted to open requests without
1266	 * limitations, they conserve resources and peer is
1267	 * evidently real one.
1268	 */
1269	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1270		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1271		if (!want_cookie)
1272			goto drop;
1273	}
1274
1275	/* Accept backlog is full. If we have already queued enough
1276	 * of warm entries in syn queue, drop request. It is better than
1277	 * clogging syn queue with openreqs with exponentially increasing
1278	 * timeout.
1279	 */
1280	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1281		goto drop;
1282
1283	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1284	if (!req)
1285		goto drop;
1286
1287#ifdef CONFIG_TCP_MD5SIG
1288	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1289#endif
1290
1291	tcp_clear_options(&tmp_opt);
1292	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1293	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1294	tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1295
1296	if (tmp_opt.cookie_plus > 0 &&
1297	    tmp_opt.saw_tstamp &&
1298	    !tp->rx_opt.cookie_out_never &&
1299	    (sysctl_tcp_cookie_size > 0 ||
1300	     (tp->cookie_values != NULL &&
1301	      tp->cookie_values->cookie_desired > 0))) {
1302		u8 *c;
1303		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1304		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1305
1306		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1307			goto drop_and_release;
1308
1309		/* Secret recipe starts with IP addresses */
1310		*mess++ ^= (__force u32)daddr;
1311		*mess++ ^= (__force u32)saddr;
1312
1313		/* plus variable length Initiator Cookie */
1314		c = (u8 *)mess;
1315		while (l-- > 0)
1316			*c++ ^= *hash_location++;
1317
1318		want_cookie = 0;	/* not our kind of cookie */
1319		tmp_ext.cookie_out_never = 0; /* false */
1320		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1321	} else if (!tp->rx_opt.cookie_in_always) {
1322		/* redundant indications, but ensure initialization. */
1323		tmp_ext.cookie_out_never = 1; /* true */
1324		tmp_ext.cookie_plus = 0;
1325	} else {
1326		goto drop_and_release;
1327	}
1328	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1329
1330	if (want_cookie && !tmp_opt.saw_tstamp)
1331		tcp_clear_options(&tmp_opt);
1332
1333	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1334	tcp_openreq_init(req, &tmp_opt, skb);
1335
1336	ireq = inet_rsk(req);
1337	ireq->loc_addr = daddr;
1338	ireq->rmt_addr = saddr;
1339	ireq->no_srccheck = inet_sk(sk)->transparent;
1340	ireq->opt = tcp_v4_save_options(sk, skb);
1341
1342	if (security_inet_conn_request(sk, skb, req))
1343		goto drop_and_free;
1344
1345	if (!want_cookie || tmp_opt.tstamp_ok)
1346		TCP_ECN_create_request(req, tcp_hdr(skb));
1347
1348	if (want_cookie) {
1349		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1350		req->cookie_ts = tmp_opt.tstamp_ok;
1351	} else if (!isn) {
1352		struct inet_peer *peer = NULL;
1353		struct flowi4 fl4;
1354
1355		/* VJ's idea. We save last timestamp seen
1356		 * from the destination in peer table, when entering
1357		 * state TIME-WAIT, and check against it before
1358		 * accepting new connection request.
1359		 *
1360		 * If "isn" is not zero, this request hit alive
1361		 * timewait bucket, so that all the necessary checks
1362		 * are made in the function processing timewait state.
1363		 */
1364		if (tmp_opt.saw_tstamp &&
1365		    tcp_death_row.sysctl_tw_recycle &&
1366		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1367		    fl4.daddr == saddr &&
1368		    (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1369			inet_peer_refcheck(peer);
1370			if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1371			    (s32)(peer->tcp_ts - req->ts_recent) >
1372							TCP_PAWS_WINDOW) {
1373				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1374				goto drop_and_release;
1375			}
1376		}
1377		/* Kill the following clause, if you dislike this way. */
1378		else if (!sysctl_tcp_syncookies &&
1379			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1380			  (sysctl_max_syn_backlog >> 2)) &&
1381			 (!peer || !peer->tcp_ts_stamp) &&
1382			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1383			/* Without syncookies last quarter of
1384			 * backlog is filled with destinations,
1385			 * proven to be alive.
1386			 * It means that we continue to communicate
1387			 * to destinations, already remembered
1388			 * to the moment of synflood.
1389			 */
1390			LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1391				       &saddr, ntohs(tcp_hdr(skb)->source));
1392			goto drop_and_release;
1393		}
1394
1395		isn = tcp_v4_init_sequence(skb);
1396	}
1397	tcp_rsk(req)->snt_isn = isn;
1398	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1399
1400	if (tcp_v4_send_synack(sk, dst, req,
1401			       (struct request_values *)&tmp_ext) ||
1402	    want_cookie)
1403		goto drop_and_free;
1404
1405	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1406	return 0;
1407
1408drop_and_release:
1409	dst_release(dst);
1410drop_and_free:
1411	reqsk_free(req);
1412drop:
 
1413	return 0;
1414}
1415EXPORT_SYMBOL(tcp_v4_conn_request);
1416
1417
1418/*
1419 * The three way handshake has completed - we got a valid synack -
1420 * now create the new socket.
1421 */
1422struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1423				  struct request_sock *req,
1424				  struct dst_entry *dst)
 
 
1425{
1426	struct inet_request_sock *ireq;
 
1427	struct inet_sock *newinet;
1428	struct tcp_sock *newtp;
1429	struct sock *newsk;
1430#ifdef CONFIG_TCP_MD5SIG
 
1431	struct tcp_md5sig_key *key;
 
1432#endif
1433	struct ip_options_rcu *inet_opt;
1434
1435	if (sk_acceptq_is_full(sk))
1436		goto exit_overflow;
1437
1438	newsk = tcp_create_openreq_child(sk, req, skb);
1439	if (!newsk)
1440		goto exit_nonewsk;
1441
1442	newsk->sk_gso_type = SKB_GSO_TCPV4;
 
1443
1444	newtp		      = tcp_sk(newsk);
1445	newinet		      = inet_sk(newsk);
1446	ireq		      = inet_rsk(req);
1447	newinet->inet_daddr   = ireq->rmt_addr;
1448	newinet->inet_rcv_saddr = ireq->loc_addr;
1449	newinet->inet_saddr	      = ireq->loc_addr;
1450	inet_opt	      = ireq->opt;
1451	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1452	ireq->opt	      = NULL;
1453	newinet->mc_index     = inet_iif(skb);
1454	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
 
1455	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1456	if (inet_opt)
1457		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1458	newinet->inet_id = newtp->write_seq ^ jiffies;
1459
1460	if (!dst && (dst = inet_csk_route_child_sock(sk, newsk, req)) == NULL)
1461		goto put_and_exit;
 
 
 
1462
 
 
 
 
 
 
 
1463	sk_setup_caps(newsk, dst);
1464
1465	tcp_mtup_init(newsk);
 
1466	tcp_sync_mss(newsk, dst_mtu(dst));
1467	newtp->advmss = dst_metric_advmss(dst);
1468	if (tcp_sk(sk)->rx_opt.user_mss &&
1469	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1470		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1471
1472	tcp_initialize_rcv_mss(newsk);
1473	if (tcp_rsk(req)->snt_synack)
1474		tcp_valid_rtt_meas(newsk,
1475		    tcp_time_stamp - tcp_rsk(req)->snt_synack);
1476	newtp->total_retrans = req->retrans;
1477
1478#ifdef CONFIG_TCP_MD5SIG
 
1479	/* Copy over the MD5 key from the original socket */
1480	key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1481	if (key != NULL) {
1482		/*
1483		 * We're using one, so create a matching key
1484		 * on the newsk structure. If we fail to get
1485		 * memory, then we end up not copying the key
1486		 * across. Shucks.
1487		 */
1488		char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1489		if (newkey != NULL)
1490			tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1491					  newkey, key->keylen);
1492		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1493	}
1494#endif
 
 
 
 
1495
1496	if (__inet_inherit_port(sk, newsk) < 0)
1497		goto put_and_exit;
1498	__inet_hash_nolisten(newsk, NULL);
 
 
 
 
 
 
1499
 
 
 
 
 
 
 
 
 
1500	return newsk;
1501
1502exit_overflow:
1503	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1504exit_nonewsk:
1505	dst_release(dst);
1506exit:
1507	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1508	return NULL;
1509put_and_exit:
1510	sock_put(newsk);
 
 
1511	goto exit;
1512}
1513EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1514
1515static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1516{
1517	struct tcphdr *th = tcp_hdr(skb);
1518	const struct iphdr *iph = ip_hdr(skb);
1519	struct sock *nsk;
1520	struct request_sock **prev;
1521	/* Find possible connection requests. */
1522	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1523						       iph->saddr, iph->daddr);
1524	if (req)
1525		return tcp_check_req(sk, skb, req, prev);
1526
1527	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1528			th->source, iph->daddr, th->dest, inet_iif(skb));
1529
1530	if (nsk) {
1531		if (nsk->sk_state != TCP_TIME_WAIT) {
1532			bh_lock_sock(nsk);
1533			return nsk;
1534		}
1535		inet_twsk_put(inet_twsk(nsk));
1536		return NULL;
1537	}
1538
1539#ifdef CONFIG_SYN_COOKIES
 
 
1540	if (!th->syn)
1541		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1542#endif
1543	return sk;
1544}
1545
1546static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
 
1547{
1548	const struct iphdr *iph = ip_hdr(skb);
1549
1550	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1551		if (!tcp_v4_check(skb->len, iph->saddr,
1552				  iph->daddr, skb->csum)) {
1553			skb->ip_summed = CHECKSUM_UNNECESSARY;
1554			return 0;
1555		}
1556	}
1557
1558	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1559				       skb->len, IPPROTO_TCP, 0);
1560
1561	if (skb->len <= 76) {
1562		return __skb_checksum_complete(skb);
1563	}
1564	return 0;
 
1565}
1566
1567
 
1568/* The socket must have it's spinlock held when we get
1569 * here.
1570 *
1571 * We have a potential double-lock case here, so even when
1572 * doing backlog processing we use the BH locking scheme.
1573 * This is because we cannot sleep with the original spinlock
1574 * held.
1575 */
1576int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1577{
 
1578	struct sock *rsk;
1579#ifdef CONFIG_TCP_MD5SIG
1580	/*
1581	 * We really want to reject the packet as early as possible
1582	 * if:
1583	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1584	 *  o There is an MD5 option and we're not expecting one
1585	 */
1586	if (tcp_v4_inbound_md5_hash(sk, skb))
1587		goto discard;
1588#endif
1589
1590	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1591		sock_rps_save_rxhash(sk, skb->rxhash);
1592		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1593			rsk = sk;
1594			goto reset;
 
 
 
 
 
 
 
 
 
 
1595		}
 
1596		return 0;
1597	}
1598
1599	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1600		goto csum_err;
1601
1602	if (sk->sk_state == TCP_LISTEN) {
1603		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1604		if (!nsk)
1605			goto discard;
1606
 
 
1607		if (nsk != sk) {
1608			sock_rps_save_rxhash(nsk, skb->rxhash);
1609			if (tcp_child_process(sk, nsk, skb)) {
1610				rsk = nsk;
1611				goto reset;
1612			}
1613			return 0;
1614		}
1615	} else
1616		sock_rps_save_rxhash(sk, skb->rxhash);
1617
1618	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
 
1619		rsk = sk;
1620		goto reset;
1621	}
1622	return 0;
1623
1624reset:
1625	tcp_v4_send_reset(rsk, skb);
1626discard:
1627	kfree_skb(skb);
1628	/* Be careful here. If this function gets more complicated and
1629	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1630	 * might be destroyed here. This current version compiles correctly,
1631	 * but you have been warned.
1632	 */
1633	return 0;
1634
1635csum_err:
1636	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
 
 
 
1637	goto discard;
1638}
1639EXPORT_SYMBOL(tcp_v4_do_rcv);
1640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641/*
1642 *	From tcp_input.c
1643 */
1644
1645int tcp_v4_rcv(struct sk_buff *skb)
1646{
 
 
 
 
1647	const struct iphdr *iph;
1648	struct tcphdr *th;
1649	struct sock *sk;
 
1650	int ret;
1651	struct net *net = dev_net(skb->dev);
1652
 
1653	if (skb->pkt_type != PACKET_HOST)
1654		goto discard_it;
1655
1656	/* Count it even if it's bad */
1657	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1658
1659	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1660		goto discard_it;
1661
1662	th = tcp_hdr(skb);
1663
1664	if (th->doff < sizeof(struct tcphdr) / 4)
 
1665		goto bad_packet;
 
1666	if (!pskb_may_pull(skb, th->doff * 4))
1667		goto discard_it;
1668
1669	/* An explanation is required here, I think.
1670	 * Packet length and doff are validated by header prediction,
1671	 * provided case of th->doff==0 is eliminated.
1672	 * So, we defer the checks. */
1673	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1674		goto bad_packet;
1675
1676	th = tcp_hdr(skb);
1677	iph = ip_hdr(skb);
1678	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1679	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1680				    skb->len - th->doff * 4);
1681	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1682	TCP_SKB_CB(skb)->when	 = 0;
1683	TCP_SKB_CB(skb)->flags	 = iph->tos;
1684	TCP_SKB_CB(skb)->sacked	 = 0;
1685
1686	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
 
 
 
 
 
1687	if (!sk)
1688		goto no_tcp_socket;
1689
1690process:
1691	if (sk->sk_state == TCP_TIME_WAIT)
1692		goto do_time_wait;
1693
1694	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1695		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696		goto discard_and_relse;
1697	}
1698
1699	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
 
1700		goto discard_and_relse;
1701	nf_reset(skb);
1702
1703	if (sk_filter(sk, skb))
 
 
 
1704		goto discard_and_relse;
 
 
 
 
1705
1706	skb->dev = NULL;
1707
 
 
 
 
 
 
 
1708	bh_lock_sock_nested(sk);
 
1709	ret = 0;
1710	if (!sock_owned_by_user(sk)) {
1711#ifdef CONFIG_NET_DMA
1712		struct tcp_sock *tp = tcp_sk(sk);
1713		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1714			tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1715		if (tp->ucopy.dma_chan)
1716			ret = tcp_v4_do_rcv(sk, skb);
1717		else
1718#endif
1719		{
1720			if (!tcp_prequeue(sk, skb))
1721				ret = tcp_v4_do_rcv(sk, skb);
1722		}
1723	} else if (unlikely(sk_add_backlog(sk, skb))) {
1724		bh_unlock_sock(sk);
1725		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1726		goto discard_and_relse;
1727	}
1728	bh_unlock_sock(sk);
1729
1730	sock_put(sk);
 
 
1731
1732	return ret;
1733
1734no_tcp_socket:
 
1735	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1736		goto discard_it;
1737
1738	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
 
 
 
 
 
 
1739bad_packet:
1740		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1741	} else {
1742		tcp_v4_send_reset(NULL, skb);
1743	}
1744
1745discard_it:
 
1746	/* Discard frame. */
1747	kfree_skb(skb);
1748	return 0;
1749
1750discard_and_relse:
1751	sock_put(sk);
 
 
1752	goto discard_it;
1753
1754do_time_wait:
1755	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
 
1756		inet_twsk_put(inet_twsk(sk));
1757		goto discard_it;
1758	}
1759
1760	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1761		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
 
1762		inet_twsk_put(inet_twsk(sk));
1763		goto discard_it;
1764	}
1765	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1766	case TCP_TW_SYN: {
1767		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1768							&tcp_hashinfo,
 
 
1769							iph->daddr, th->dest,
1770							inet_iif(skb));
 
1771		if (sk2) {
1772			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1773			inet_twsk_put(inet_twsk(sk));
1774			sk = sk2;
 
 
 
1775			goto process;
1776		}
1777		/* Fall through to ACK */
1778	}
 
 
1779	case TCP_TW_ACK:
1780		tcp_v4_timewait_ack(sk, skb);
1781		break;
1782	case TCP_TW_RST:
1783		goto no_tcp_socket;
 
 
1784	case TCP_TW_SUCCESS:;
1785	}
1786	goto discard_it;
1787}
1788
1789struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1790{
1791	struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1792	struct inet_sock *inet = inet_sk(sk);
1793	struct inet_peer *peer;
1794
1795	if (!rt ||
1796	    inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1797		peer = inet_getpeer_v4(inet->inet_daddr, 1);
1798		*release_it = true;
1799	} else {
1800		if (!rt->peer)
1801			rt_bind_peer(rt, inet->inet_daddr, 1);
1802		peer = rt->peer;
1803		*release_it = false;
1804	}
1805
1806	return peer;
1807}
1808EXPORT_SYMBOL(tcp_v4_get_peer);
1809
1810void *tcp_v4_tw_get_peer(struct sock *sk)
1811{
1812	struct inet_timewait_sock *tw = inet_twsk(sk);
1813
1814	return inet_getpeer_v4(tw->tw_daddr, 1);
1815}
1816EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1817
1818static struct timewait_sock_ops tcp_timewait_sock_ops = {
1819	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1820	.twsk_unique	= tcp_twsk_unique,
1821	.twsk_destructor= tcp_twsk_destructor,
1822	.twsk_getpeer	= tcp_v4_tw_get_peer,
1823};
1824
 
 
 
 
 
 
 
 
 
 
 
1825const struct inet_connection_sock_af_ops ipv4_specific = {
1826	.queue_xmit	   = ip_queue_xmit,
1827	.send_check	   = tcp_v4_send_check,
1828	.rebuild_header	   = inet_sk_rebuild_header,
 
1829	.conn_request	   = tcp_v4_conn_request,
1830	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1831	.get_peer	   = tcp_v4_get_peer,
1832	.net_header_len	   = sizeof(struct iphdr),
1833	.setsockopt	   = ip_setsockopt,
1834	.getsockopt	   = ip_getsockopt,
1835	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1836	.sockaddr_len	   = sizeof(struct sockaddr_in),
1837	.bind_conflict	   = inet_csk_bind_conflict,
1838#ifdef CONFIG_COMPAT
1839	.compat_setsockopt = compat_ip_setsockopt,
1840	.compat_getsockopt = compat_ip_getsockopt,
1841#endif
1842};
1843EXPORT_SYMBOL(ipv4_specific);
1844
1845#ifdef CONFIG_TCP_MD5SIG
1846static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
 
1847	.md5_lookup		= tcp_v4_md5_lookup,
1848	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1849	.md5_add		= tcp_v4_md5_add_func,
1850	.md5_parse		= tcp_v4_parse_md5_keys,
 
 
 
 
 
 
 
1851};
1852#endif
1853
1854/* NOTE: A lot of things set to zero explicitly by call to
1855 *       sk_alloc() so need not be done here.
1856 */
1857static int tcp_v4_init_sock(struct sock *sk)
1858{
1859	struct inet_connection_sock *icsk = inet_csk(sk);
1860	struct tcp_sock *tp = tcp_sk(sk);
1861
1862	skb_queue_head_init(&tp->out_of_order_queue);
1863	tcp_init_xmit_timers(sk);
1864	tcp_prequeue_init(tp);
1865
1866	icsk->icsk_rto = TCP_TIMEOUT_INIT;
1867	tp->mdev = TCP_TIMEOUT_INIT;
1868
1869	/* So many TCP implementations out there (incorrectly) count the
1870	 * initial SYN frame in their delayed-ACK and congestion control
1871	 * algorithms that we must have the following bandaid to talk
1872	 * efficiently to them.  -DaveM
1873	 */
1874	tp->snd_cwnd = TCP_INIT_CWND;
1875
1876	/* See draft-stevens-tcpca-spec-01 for discussion of the
1877	 * initialization of these values.
1878	 */
1879	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1880	tp->snd_cwnd_clamp = ~0;
1881	tp->mss_cache = TCP_MSS_DEFAULT;
1882
1883	tp->reordering = sysctl_tcp_reordering;
1884	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1885
1886	sk->sk_state = TCP_CLOSE;
 
 
1887
1888	sk->sk_write_space = sk_stream_write_space;
1889	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1890
1891	icsk->icsk_af_ops = &ipv4_specific;
1892	icsk->icsk_sync_mss = tcp_sync_mss;
1893#ifdef CONFIG_TCP_MD5SIG
1894	tp->af_specific = &tcp_sock_ipv4_specific;
1895#endif
 
1896
1897	/* TCP Cookie Transactions */
1898	if (sysctl_tcp_cookie_size > 0) {
1899		/* Default, cookies without s_data_payload. */
1900		tp->cookie_values =
1901			kzalloc(sizeof(*tp->cookie_values),
1902				sk->sk_allocation);
1903		if (tp->cookie_values != NULL)
1904			kref_init(&tp->cookie_values->kref);
1905	}
1906	/* Presumed zeroed, in order of appearance:
1907	 *	cookie_in_always, cookie_out_never,
1908	 *	s_data_constant, s_data_in, s_data_out
1909	 */
1910	sk->sk_sndbuf = sysctl_tcp_wmem[1];
1911	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1912
1913	local_bh_disable();
1914	percpu_counter_inc(&tcp_sockets_allocated);
1915	local_bh_enable();
 
 
1916
1917	return 0;
 
 
1918}
1919
1920void tcp_v4_destroy_sock(struct sock *sk)
1921{
1922	struct tcp_sock *tp = tcp_sk(sk);
1923
 
 
 
 
 
 
1924	tcp_clear_xmit_timers(sk);
1925
1926	tcp_cleanup_congestion_control(sk);
1927
 
 
1928	/* Cleanup up the write buffer. */
1929	tcp_write_queue_purge(sk);
1930
 
 
 
1931	/* Cleans up our, hopefully empty, out_of_order_queue. */
1932	__skb_queue_purge(&tp->out_of_order_queue);
1933
1934#ifdef CONFIG_TCP_MD5SIG
1935	/* Clean up the MD5 key list, if any */
1936	if (tp->md5sig_info) {
1937		tcp_v4_clear_md5_list(sk);
1938		kfree(tp->md5sig_info);
1939		tp->md5sig_info = NULL;
1940	}
1941#endif
1942
1943#ifdef CONFIG_NET_DMA
1944	/* Cleans up our sk_async_wait_queue */
1945	__skb_queue_purge(&sk->sk_async_wait_queue);
 
 
1946#endif
1947
1948	/* Clean prequeue, it must be empty really */
1949	__skb_queue_purge(&tp->ucopy.prequeue);
1950
1951	/* Clean up a referenced TCP bind bucket. */
1952	if (inet_csk(sk)->icsk_bind_hash)
1953		inet_put_port(sk);
1954
1955	/*
1956	 * If sendmsg cached page exists, toss it.
1957	 */
1958	if (sk->sk_sndmsg_page) {
1959		__free_page(sk->sk_sndmsg_page);
1960		sk->sk_sndmsg_page = NULL;
1961	}
1962
1963	/* TCP Cookie Transactions */
1964	if (tp->cookie_values != NULL) {
1965		kref_put(&tp->cookie_values->kref,
1966			 tcp_cookie_values_release);
1967		tp->cookie_values = NULL;
1968	}
1969
1970	percpu_counter_dec(&tcp_sockets_allocated);
1971}
1972EXPORT_SYMBOL(tcp_v4_destroy_sock);
1973
1974#ifdef CONFIG_PROC_FS
1975/* Proc filesystem TCP sock list dumping. */
1976
1977static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
 
 
1978{
1979	return hlist_nulls_empty(head) ? NULL :
1980		list_entry(head->first, struct inet_timewait_sock, tw_node);
 
 
 
1981}
1982
1983static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
 
 
 
1984{
1985	return !is_a_nulls(tw->tw_node.next) ?
1986		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987}
1988
1989/*
1990 * Get next listener socket follow cur.  If cur is NULL, get first socket
1991 * starting from bucket given in st->bucket; when st->bucket is zero the
1992 * very first socket in the hash table is returned.
1993 */
1994static void *listening_get_next(struct seq_file *seq, void *cur)
1995{
1996	struct inet_connection_sock *icsk;
 
1997	struct hlist_nulls_node *node;
 
1998	struct sock *sk = cur;
1999	struct inet_listen_hashbucket *ilb;
2000	struct tcp_iter_state *st = seq->private;
2001	struct net *net = seq_file_net(seq);
2002
2003	if (!sk) {
2004		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2005		spin_lock_bh(&ilb->lock);
2006		sk = sk_nulls_head(&ilb->head);
2007		st->offset = 0;
2008		goto get_sk;
2009	}
2010	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2011	++st->num;
2012	++st->offset;
2013
2014	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2015		struct request_sock *req = cur;
2016
2017		icsk = inet_csk(st->syn_wait_sk);
2018		req = req->dl_next;
2019		while (1) {
2020			while (req) {
2021				if (req->rsk_ops->family == st->family) {
2022					cur = req;
2023					goto out;
2024				}
2025				req = req->dl_next;
2026			}
2027			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2028				break;
2029get_req:
2030			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2031		}
2032		sk	  = sk_nulls_next(st->syn_wait_sk);
2033		st->state = TCP_SEQ_STATE_LISTENING;
2034		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2035	} else {
2036		icsk = inet_csk(sk);
2037		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2038		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2039			goto start_req;
2040		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2041		sk = sk_nulls_next(sk);
2042	}
2043get_sk:
2044	sk_nulls_for_each_from(sk, node) {
2045		if (!net_eq(sock_net(sk), net))
2046			continue;
2047		if (sk->sk_family == st->family) {
2048			cur = sk;
2049			goto out;
2050		}
2051		icsk = inet_csk(sk);
2052		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2053		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2054start_req:
2055			st->uid		= sock_i_uid(sk);
2056			st->syn_wait_sk = sk;
2057			st->state	= TCP_SEQ_STATE_OPENREQ;
2058			st->sbucket	= 0;
2059			goto get_req;
2060		}
2061		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2062	}
2063	spin_unlock_bh(&ilb->lock);
2064	st->offset = 0;
2065	if (++st->bucket < INET_LHTABLE_SIZE) {
2066		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2067		spin_lock_bh(&ilb->lock);
2068		sk = sk_nulls_head(&ilb->head);
2069		goto get_sk;
2070	}
2071	cur = NULL;
2072out:
2073	return cur;
 
 
 
2074}
2075
2076static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2077{
2078	struct tcp_iter_state *st = seq->private;
2079	void *rc;
2080
2081	st->bucket = 0;
2082	st->offset = 0;
2083	rc = listening_get_next(seq, NULL);
2084
2085	while (rc && *pos) {
2086		rc = listening_get_next(seq, rc);
2087		--*pos;
2088	}
2089	return rc;
2090}
2091
2092static inline int empty_bucket(struct tcp_iter_state *st)
 
2093{
2094	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2095		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2096}
2097
2098/*
2099 * Get first established socket starting from bucket given in st->bucket.
2100 * If st->bucket is zero, the very first socket in the hash is returned.
2101 */
2102static void *established_get_first(struct seq_file *seq)
2103{
 
2104	struct tcp_iter_state *st = seq->private;
2105	struct net *net = seq_file_net(seq);
2106	void *rc = NULL;
2107
2108	st->offset = 0;
2109	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2110		struct sock *sk;
2111		struct hlist_nulls_node *node;
2112		struct inet_timewait_sock *tw;
2113		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
 
2114
2115		/* Lockless fast path for the common case of empty buckets */
2116		if (empty_bucket(st))
2117			continue;
2118
2119		spin_lock_bh(lock);
2120		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2121			if (sk->sk_family != st->family ||
2122			    !net_eq(sock_net(sk), net)) {
2123				continue;
2124			}
2125			rc = sk;
2126			goto out;
2127		}
2128		st->state = TCP_SEQ_STATE_TIME_WAIT;
2129		inet_twsk_for_each(tw, node,
2130				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2131			if (tw->tw_family != st->family ||
2132			    !net_eq(twsk_net(tw), net)) {
2133				continue;
2134			}
2135			rc = tw;
2136			goto out;
2137		}
2138		spin_unlock_bh(lock);
2139		st->state = TCP_SEQ_STATE_ESTABLISHED;
2140	}
2141out:
2142	return rc;
2143}
2144
2145static void *established_get_next(struct seq_file *seq, void *cur)
2146{
2147	struct sock *sk = cur;
2148	struct inet_timewait_sock *tw;
2149	struct hlist_nulls_node *node;
2150	struct tcp_iter_state *st = seq->private;
2151	struct net *net = seq_file_net(seq);
 
2152
2153	++st->num;
2154	++st->offset;
2155
2156	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2157		tw = cur;
2158		tw = tw_next(tw);
2159get_tw:
2160		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2161			tw = tw_next(tw);
2162		}
2163		if (tw) {
2164			cur = tw;
2165			goto out;
2166		}
2167		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2168		st->state = TCP_SEQ_STATE_ESTABLISHED;
2169
2170		/* Look for next non empty bucket */
2171		st->offset = 0;
2172		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2173				empty_bucket(st))
2174			;
2175		if (st->bucket > tcp_hashinfo.ehash_mask)
2176			return NULL;
2177
2178		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2179		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2180	} else
2181		sk = sk_nulls_next(sk);
2182
2183	sk_nulls_for_each_from(sk, node) {
2184		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2185			goto found;
2186	}
2187
2188	st->state = TCP_SEQ_STATE_TIME_WAIT;
2189	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2190	goto get_tw;
2191found:
2192	cur = sk;
2193out:
2194	return cur;
2195}
2196
2197static void *established_get_idx(struct seq_file *seq, loff_t pos)
2198{
2199	struct tcp_iter_state *st = seq->private;
2200	void *rc;
2201
2202	st->bucket = 0;
2203	rc = established_get_first(seq);
2204
2205	while (rc && pos) {
2206		rc = established_get_next(seq, rc);
2207		--pos;
2208	}
2209	return rc;
2210}
2211
2212static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2213{
2214	void *rc;
2215	struct tcp_iter_state *st = seq->private;
2216
2217	st->state = TCP_SEQ_STATE_LISTENING;
2218	rc	  = listening_get_idx(seq, &pos);
2219
2220	if (!rc) {
2221		st->state = TCP_SEQ_STATE_ESTABLISHED;
2222		rc	  = established_get_idx(seq, pos);
2223	}
2224
2225	return rc;
2226}
2227
2228static void *tcp_seek_last_pos(struct seq_file *seq)
2229{
 
2230	struct tcp_iter_state *st = seq->private;
 
2231	int offset = st->offset;
2232	int orig_num = st->num;
2233	void *rc = NULL;
2234
2235	switch (st->state) {
2236	case TCP_SEQ_STATE_OPENREQ:
2237	case TCP_SEQ_STATE_LISTENING:
2238		if (st->bucket >= INET_LHTABLE_SIZE)
2239			break;
2240		st->state = TCP_SEQ_STATE_LISTENING;
2241		rc = listening_get_next(seq, NULL);
2242		while (offset-- && rc)
2243			rc = listening_get_next(seq, rc);
2244		if (rc)
2245			break;
2246		st->bucket = 0;
2247		/* Fallthrough */
2248	case TCP_SEQ_STATE_ESTABLISHED:
2249	case TCP_SEQ_STATE_TIME_WAIT:
2250		st->state = TCP_SEQ_STATE_ESTABLISHED;
2251		if (st->bucket > tcp_hashinfo.ehash_mask)
 
 
2252			break;
2253		rc = established_get_first(seq);
2254		while (offset-- && rc)
2255			rc = established_get_next(seq, rc);
2256	}
2257
2258	st->num = orig_num;
2259
2260	return rc;
2261}
2262
2263static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2264{
2265	struct tcp_iter_state *st = seq->private;
2266	void *rc;
2267
2268	if (*pos && *pos == st->last_pos) {
2269		rc = tcp_seek_last_pos(seq);
2270		if (rc)
2271			goto out;
2272	}
2273
2274	st->state = TCP_SEQ_STATE_LISTENING;
2275	st->num = 0;
2276	st->bucket = 0;
2277	st->offset = 0;
2278	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2279
2280out:
2281	st->last_pos = *pos;
2282	return rc;
2283}
 
2284
2285static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2286{
2287	struct tcp_iter_state *st = seq->private;
2288	void *rc = NULL;
2289
2290	if (v == SEQ_START_TOKEN) {
2291		rc = tcp_get_idx(seq, 0);
2292		goto out;
2293	}
2294
2295	switch (st->state) {
2296	case TCP_SEQ_STATE_OPENREQ:
2297	case TCP_SEQ_STATE_LISTENING:
2298		rc = listening_get_next(seq, v);
2299		if (!rc) {
2300			st->state = TCP_SEQ_STATE_ESTABLISHED;
2301			st->bucket = 0;
2302			st->offset = 0;
2303			rc	  = established_get_first(seq);
2304		}
2305		break;
2306	case TCP_SEQ_STATE_ESTABLISHED:
2307	case TCP_SEQ_STATE_TIME_WAIT:
2308		rc = established_get_next(seq, v);
2309		break;
2310	}
2311out:
2312	++*pos;
2313	st->last_pos = *pos;
2314	return rc;
2315}
 
2316
2317static void tcp_seq_stop(struct seq_file *seq, void *v)
2318{
 
2319	struct tcp_iter_state *st = seq->private;
2320
2321	switch (st->state) {
2322	case TCP_SEQ_STATE_OPENREQ:
2323		if (v) {
2324			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2325			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2326		}
2327	case TCP_SEQ_STATE_LISTENING:
2328		if (v != SEQ_START_TOKEN)
2329			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2330		break;
2331	case TCP_SEQ_STATE_TIME_WAIT:
2332	case TCP_SEQ_STATE_ESTABLISHED:
2333		if (v)
2334			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2335		break;
2336	}
2337}
 
2338
2339static int tcp_seq_open(struct inode *inode, struct file *file)
2340{
2341	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2342	struct tcp_iter_state *s;
2343	int err;
2344
2345	err = seq_open_net(inode, file, &afinfo->seq_ops,
2346			  sizeof(struct tcp_iter_state));
2347	if (err < 0)
2348		return err;
2349
2350	s = ((struct seq_file *)file->private_data)->private;
2351	s->family		= afinfo->family;
2352	s->last_pos 		= 0;
2353	return 0;
2354}
2355
2356int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2357{
2358	int rc = 0;
2359	struct proc_dir_entry *p;
2360
2361	afinfo->seq_fops.open		= tcp_seq_open;
2362	afinfo->seq_fops.read		= seq_read;
2363	afinfo->seq_fops.llseek		= seq_lseek;
2364	afinfo->seq_fops.release	= seq_release_net;
2365
2366	afinfo->seq_ops.start		= tcp_seq_start;
2367	afinfo->seq_ops.next		= tcp_seq_next;
2368	afinfo->seq_ops.stop		= tcp_seq_stop;
2369
2370	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2371			     &afinfo->seq_fops, afinfo);
2372	if (!p)
2373		rc = -ENOMEM;
2374	return rc;
2375}
2376EXPORT_SYMBOL(tcp_proc_register);
2377
2378void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2379{
2380	proc_net_remove(net, afinfo->name);
2381}
2382EXPORT_SYMBOL(tcp_proc_unregister);
2383
2384static void get_openreq4(struct sock *sk, struct request_sock *req,
2385			 struct seq_file *f, int i, int uid, int *len)
2386{
2387	const struct inet_request_sock *ireq = inet_rsk(req);
2388	int ttd = req->expires - jiffies;
2389
2390	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2391		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2392		i,
2393		ireq->loc_addr,
2394		ntohs(inet_sk(sk)->inet_sport),
2395		ireq->rmt_addr,
2396		ntohs(ireq->rmt_port),
2397		TCP_SYN_RECV,
2398		0, 0, /* could print option size, but that is af dependent. */
2399		1,    /* timers active (only the expire timer) */
2400		jiffies_to_clock_t(ttd),
2401		req->retrans,
2402		uid,
 
2403		0,  /* non standard timer */
2404		0, /* open_requests have no inode */
2405		atomic_read(&sk->sk_refcnt),
2406		req,
2407		len);
2408}
2409
2410static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2411{
2412	int timer_active;
2413	unsigned long timer_expires;
2414	struct tcp_sock *tp = tcp_sk(sk);
2415	const struct inet_connection_sock *icsk = inet_csk(sk);
2416	struct inet_sock *inet = inet_sk(sk);
 
2417	__be32 dest = inet->inet_daddr;
2418	__be32 src = inet->inet_rcv_saddr;
2419	__u16 destp = ntohs(inet->inet_dport);
2420	__u16 srcp = ntohs(inet->inet_sport);
 
2421	int rx_queue;
 
2422
2423	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
 
 
 
2424		timer_active	= 1;
2425		timer_expires	= icsk->icsk_timeout;
2426	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2427		timer_active	= 4;
2428		timer_expires	= icsk->icsk_timeout;
2429	} else if (timer_pending(&sk->sk_timer)) {
2430		timer_active	= 2;
2431		timer_expires	= sk->sk_timer.expires;
2432	} else {
2433		timer_active	= 0;
2434		timer_expires = jiffies;
2435	}
2436
2437	if (sk->sk_state == TCP_LISTEN)
2438		rx_queue = sk->sk_ack_backlog;
 
2439	else
2440		/*
2441		 * because we dont lock socket, we might find a transient negative value
2442		 */
2443		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
 
2444
2445	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2446			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2447		i, src, srcp, dest, destp, sk->sk_state,
2448		tp->write_seq - tp->snd_una,
2449		rx_queue,
2450		timer_active,
2451		jiffies_to_clock_t(timer_expires - jiffies),
2452		icsk->icsk_retransmits,
2453		sock_i_uid(sk),
2454		icsk->icsk_probes_out,
2455		sock_i_ino(sk),
2456		atomic_read(&sk->sk_refcnt), sk,
2457		jiffies_to_clock_t(icsk->icsk_rto),
2458		jiffies_to_clock_t(icsk->icsk_ack.ato),
2459		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2460		tp->snd_cwnd,
2461		tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2462		len);
 
2463}
2464
2465static void get_timewait4_sock(struct inet_timewait_sock *tw,
2466			       struct seq_file *f, int i, int *len)
2467{
 
2468	__be32 dest, src;
2469	__u16 destp, srcp;
2470	int ttd = tw->tw_ttd - jiffies;
2471
2472	if (ttd < 0)
2473		ttd = 0;
2474
2475	dest  = tw->tw_daddr;
2476	src   = tw->tw_rcv_saddr;
2477	destp = ntohs(tw->tw_dport);
2478	srcp  = ntohs(tw->tw_sport);
2479
2480	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2481		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2482		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2483		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2484		atomic_read(&tw->tw_refcnt), tw, len);
2485}
2486
2487#define TMPSZ 150
2488
2489static int tcp4_seq_show(struct seq_file *seq, void *v)
2490{
2491	struct tcp_iter_state *st;
2492	int len;
2493
 
2494	if (v == SEQ_START_TOKEN) {
2495		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2496			   "  sl  local_address rem_address   st tx_queue "
2497			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2498			   "inode");
2499		goto out;
2500	}
2501	st = seq->private;
2502
2503	switch (st->state) {
2504	case TCP_SEQ_STATE_LISTENING:
2505	case TCP_SEQ_STATE_ESTABLISHED:
2506		get_tcp4_sock(v, seq, st->num, &len);
2507		break;
2508	case TCP_SEQ_STATE_OPENREQ:
2509		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2510		break;
2511	case TCP_SEQ_STATE_TIME_WAIT:
2512		get_timewait4_sock(v, seq, st->num, &len);
2513		break;
2514	}
2515	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2516out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2517	return 0;
2518}
2519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2520static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2521	.name		= "tcp",
2522	.family		= AF_INET,
2523	.seq_fops	= {
2524		.owner		= THIS_MODULE,
2525	},
2526	.seq_ops	= {
2527		.show		= tcp4_seq_show,
2528	},
2529};
2530
2531static int __net_init tcp4_proc_init_net(struct net *net)
2532{
2533	return tcp_proc_register(net, &tcp4_seq_afinfo);
 
 
 
2534}
2535
2536static void __net_exit tcp4_proc_exit_net(struct net *net)
2537{
2538	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2539}
2540
2541static struct pernet_operations tcp4_net_ops = {
2542	.init = tcp4_proc_init_net,
2543	.exit = tcp4_proc_exit_net,
2544};
2545
2546int __init tcp4_proc_init(void)
2547{
2548	return register_pernet_subsys(&tcp4_net_ops);
2549}
2550
2551void tcp4_proc_exit(void)
2552{
2553	unregister_pernet_subsys(&tcp4_net_ops);
2554}
2555#endif /* CONFIG_PROC_FS */
2556
2557struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2558{
2559	const struct iphdr *iph = skb_gro_network_header(skb);
2560
2561	switch (skb->ip_summed) {
2562	case CHECKSUM_COMPLETE:
2563		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2564				  skb->csum)) {
2565			skb->ip_summed = CHECKSUM_UNNECESSARY;
2566			break;
2567		}
2568
2569		/* fall through */
2570	case CHECKSUM_NONE:
2571		NAPI_GRO_CB(skb)->flush = 1;
2572		return NULL;
2573	}
2574
2575	return tcp_gro_receive(head, skb);
2576}
2577
2578int tcp4_gro_complete(struct sk_buff *skb)
2579{
2580	const struct iphdr *iph = ip_hdr(skb);
2581	struct tcphdr *th = tcp_hdr(skb);
2582
2583	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2584				  iph->saddr, iph->daddr, 0);
2585	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2586
2587	return tcp_gro_complete(skb);
2588}
 
2589
2590struct proto tcp_prot = {
2591	.name			= "TCP",
2592	.owner			= THIS_MODULE,
2593	.close			= tcp_close,
 
2594	.connect		= tcp_v4_connect,
2595	.disconnect		= tcp_disconnect,
2596	.accept			= inet_csk_accept,
2597	.ioctl			= tcp_ioctl,
2598	.init			= tcp_v4_init_sock,
2599	.destroy		= tcp_v4_destroy_sock,
2600	.shutdown		= tcp_shutdown,
2601	.setsockopt		= tcp_setsockopt,
2602	.getsockopt		= tcp_getsockopt,
 
 
2603	.recvmsg		= tcp_recvmsg,
2604	.sendmsg		= tcp_sendmsg,
2605	.sendpage		= tcp_sendpage,
2606	.backlog_rcv		= tcp_v4_do_rcv,
 
2607	.hash			= inet_hash,
2608	.unhash			= inet_unhash,
2609	.get_port		= inet_csk_get_port,
 
 
 
 
2610	.enter_memory_pressure	= tcp_enter_memory_pressure,
 
 
2611	.sockets_allocated	= &tcp_sockets_allocated,
2612	.orphan_count		= &tcp_orphan_count,
 
2613	.memory_allocated	= &tcp_memory_allocated,
 
 
2614	.memory_pressure	= &tcp_memory_pressure,
2615	.sysctl_mem		= sysctl_tcp_mem,
2616	.sysctl_wmem		= sysctl_tcp_wmem,
2617	.sysctl_rmem		= sysctl_tcp_rmem,
2618	.max_header		= MAX_TCP_HEADER,
2619	.obj_size		= sizeof(struct tcp_sock),
2620	.slab_flags		= SLAB_DESTROY_BY_RCU,
2621	.twsk_prot		= &tcp_timewait_sock_ops,
2622	.rsk_prot		= &tcp_request_sock_ops,
2623	.h.hashinfo		= &tcp_hashinfo,
2624	.no_autobind		= true,
2625#ifdef CONFIG_COMPAT
2626	.compat_setsockopt	= compat_tcp_setsockopt,
2627	.compat_getsockopt	= compat_tcp_getsockopt,
2628#endif
2629};
2630EXPORT_SYMBOL(tcp_prot);
2631
2632
2633static int __net_init tcp_sk_init(struct net *net)
2634{
2635	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2636				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637}
2638
2639static void __net_exit tcp_sk_exit(struct net *net)
2640{
2641	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642}
2643
2644static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2645{
2646	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2647}
2648
2649static struct pernet_operations __net_initdata tcp_sk_ops = {
2650       .init	   = tcp_sk_init,
2651       .exit	   = tcp_sk_exit,
2652       .exit_batch = tcp_sk_exit_batch,
2653};
2654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2655void __init tcp_v4_init(void)
2656{
2657	inet_hashinfo_init(&tcp_hashinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658	if (register_pernet_subsys(&tcp_sk_ops))
2659		panic("Failed to create the TCP control socket.\n");
 
 
 
 
2660}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 *		IPv4 specific functions
  10 *
 
  11 *		code split from:
  12 *		linux/ipv4/tcp.c
  13 *		linux/ipv4/tcp_input.c
  14 *		linux/ipv4/tcp_output.c
  15 *
  16 *		See tcp.c for author information
 
 
 
 
 
  17 */
  18
  19/*
  20 * Changes:
  21 *		David S. Miller	:	New socket lookup architecture.
  22 *					This code is dedicated to John Dyson.
  23 *		David S. Miller :	Change semantics of established hash,
  24 *					half is devoted to TIME_WAIT sockets
  25 *					and the rest go in the other half.
  26 *		Andi Kleen :		Add support for syncookies and fixed
  27 *					some bugs: ip options weren't passed to
  28 *					the TCP layer, missed a check for an
  29 *					ACK bit.
  30 *		Andi Kleen :		Implemented fast path mtu discovery.
  31 *	     				Fixed many serious bugs in the
  32 *					request_sock handling and moved
  33 *					most of it into the af independent code.
  34 *					Added tail drop and some other bugfixes.
  35 *					Added new listen semantics.
  36 *		Mike McLagan	:	Routing by source
  37 *	Juan Jose Ciarlante:		ip_dynaddr bits
  38 *		Andi Kleen:		various fixes.
  39 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
  40 *					coma.
  41 *	Andi Kleen		:	Fix new listen.
  42 *	Andi Kleen		:	Fix accept error reporting.
  43 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  44 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
  45 *					a single port at the same time.
  46 */
  47
  48#define pr_fmt(fmt) "TCP: " fmt
  49
  50#include <linux/bottom_half.h>
  51#include <linux/types.h>
  52#include <linux/fcntl.h>
  53#include <linux/module.h>
  54#include <linux/random.h>
  55#include <linux/cache.h>
  56#include <linux/jhash.h>
  57#include <linux/init.h>
  58#include <linux/times.h>
  59#include <linux/slab.h>
  60#include <linux/sched.h>
  61
  62#include <net/net_namespace.h>
  63#include <net/icmp.h>
  64#include <net/inet_hashtables.h>
  65#include <net/tcp.h>
  66#include <net/transp_v6.h>
  67#include <net/ipv6.h>
  68#include <net/inet_common.h>
  69#include <net/timewait_sock.h>
  70#include <net/xfrm.h>
 
  71#include <net/secure_seq.h>
  72#include <net/busy_poll.h>
  73#include <net/rstreason.h>
  74
  75#include <linux/inet.h>
  76#include <linux/ipv6.h>
  77#include <linux/stddef.h>
  78#include <linux/proc_fs.h>
  79#include <linux/seq_file.h>
  80#include <linux/inetdevice.h>
  81#include <linux/btf_ids.h>
  82#include <linux/skbuff_ref.h>
  83
  84#include <crypto/hash.h>
  85#include <linux/scatterlist.h>
  86
  87#include <trace/events/tcp.h>
 
 
 
  88
  89#ifdef CONFIG_TCP_MD5SIG
  90static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
  91			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
 
 
 
 
 
 
 
 
  92#endif
  93
  94struct inet_hashinfo tcp_hashinfo;
  95EXPORT_SYMBOL(tcp_hashinfo);
  96
  97static DEFINE_PER_CPU(struct sock_bh_locked, ipv4_tcp_sk) = {
  98	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
  99};
 100
 101static DEFINE_MUTEX(tcp_exit_batch_mutex);
 102
 103static u32 tcp_v4_init_seq(const struct sk_buff *skb)
 104{
 105	return secure_tcp_seq(ip_hdr(skb)->daddr,
 106			      ip_hdr(skb)->saddr,
 107			      tcp_hdr(skb)->dest,
 108			      tcp_hdr(skb)->source);
 109}
 110
 111static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb)
 112{
 113	return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr);
 114}
 115
 116int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
 117{
 118	int reuse = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tw_reuse);
 119	const struct inet_timewait_sock *tw = inet_twsk(sktw);
 120	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
 121	struct tcp_sock *tp = tcp_sk(sk);
 122	int ts_recent_stamp;
 123
 124	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2)
 125		reuse = 0;
 126
 127	if (reuse == 2) {
 128		/* Still does not detect *everything* that goes through
 129		 * lo, since we require a loopback src or dst address
 130		 * or direct binding to 'lo' interface.
 131		 */
 132		bool loopback = false;
 133		if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX)
 134			loopback = true;
 135#if IS_ENABLED(CONFIG_IPV6)
 136		if (tw->tw_family == AF_INET6) {
 137			if (ipv6_addr_loopback(&tw->tw_v6_daddr) ||
 138			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) ||
 139			    ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) ||
 140			    ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr))
 141				loopback = true;
 142		} else
 143#endif
 144		{
 145			if (ipv4_is_loopback(tw->tw_daddr) ||
 146			    ipv4_is_loopback(tw->tw_rcv_saddr))
 147				loopback = true;
 148		}
 149		if (!loopback)
 150			reuse = 0;
 151	}
 152
 153	/* With PAWS, it is safe from the viewpoint
 154	   of data integrity. Even without PAWS it is safe provided sequence
 155	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
 156
 157	   Actually, the idea is close to VJ's one, only timestamp cache is
 158	   held not per host, but per port pair and TW bucket is used as state
 159	   holder.
 160
 161	   If TW bucket has been already destroyed we fall back to VJ's scheme
 162	   and use initial timestamp retrieved from peer table.
 163	 */
 164	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
 165	if (ts_recent_stamp &&
 166	    (!twp || (reuse && time_after32(ktime_get_seconds(),
 167					    ts_recent_stamp)))) {
 168		/* inet_twsk_hashdance_schedule() sets sk_refcnt after putting twsk
 169		 * and releasing the bucket lock.
 170		 */
 171		if (unlikely(!refcount_inc_not_zero(&sktw->sk_refcnt)))
 172			return 0;
 173
 174		/* In case of repair and re-using TIME-WAIT sockets we still
 175		 * want to be sure that it is safe as above but honor the
 176		 * sequence numbers and time stamps set as part of the repair
 177		 * process.
 178		 *
 179		 * Without this check re-using a TIME-WAIT socket with TCP
 180		 * repair would accumulate a -1 on the repair assigned
 181		 * sequence number. The first time it is reused the sequence
 182		 * is -1, the second time -2, etc. This fixes that issue
 183		 * without appearing to create any others.
 184		 */
 185		if (likely(!tp->repair)) {
 186			u32 seq = tcptw->tw_snd_nxt + 65535 + 2;
 187
 188			if (!seq)
 189				seq = 1;
 190			WRITE_ONCE(tp->write_seq, seq);
 191			tp->rx_opt.ts_recent	   = READ_ONCE(tcptw->tw_ts_recent);
 192			tp->rx_opt.ts_recent_stamp = ts_recent_stamp;
 193		}
 194
 195		return 1;
 196	}
 197
 198	return 0;
 199}
 200EXPORT_SYMBOL_GPL(tcp_twsk_unique);
 201
 202static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr,
 203			      int addr_len)
 204{
 205	/* This check is replicated from tcp_v4_connect() and intended to
 206	 * prevent BPF program called below from accessing bytes that are out
 207	 * of the bound specified by user in addr_len.
 208	 */
 209	if (addr_len < sizeof(struct sockaddr_in))
 210		return -EINVAL;
 211
 212	sock_owned_by_me(sk);
 213
 214	return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr, &addr_len);
 215}
 216
 217/* This will initiate an outgoing connection. */
 218int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
 219{
 220	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
 221	struct inet_timewait_death_row *tcp_death_row;
 222	struct inet_sock *inet = inet_sk(sk);
 223	struct tcp_sock *tp = tcp_sk(sk);
 224	struct ip_options_rcu *inet_opt;
 225	struct net *net = sock_net(sk);
 226	__be16 orig_sport, orig_dport;
 227	__be32 daddr, nexthop;
 228	struct flowi4 *fl4;
 229	struct rtable *rt;
 230	int err;
 
 231
 232	if (addr_len < sizeof(struct sockaddr_in))
 233		return -EINVAL;
 234
 235	if (usin->sin_family != AF_INET)
 236		return -EAFNOSUPPORT;
 237
 238	nexthop = daddr = usin->sin_addr.s_addr;
 239	inet_opt = rcu_dereference_protected(inet->inet_opt,
 240					     lockdep_sock_is_held(sk));
 241	if (inet_opt && inet_opt->opt.srr) {
 242		if (!daddr)
 243			return -EINVAL;
 244		nexthop = inet_opt->opt.faddr;
 245	}
 246
 247	orig_sport = inet->inet_sport;
 248	orig_dport = usin->sin_port;
 249	fl4 = &inet->cork.fl.u.ip4;
 250	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
 251			      sk->sk_bound_dev_if, IPPROTO_TCP, orig_sport,
 252			      orig_dport, sk);
 
 253	if (IS_ERR(rt)) {
 254		err = PTR_ERR(rt);
 255		if (err == -ENETUNREACH)
 256			IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
 257		return err;
 258	}
 259
 260	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
 261		ip_rt_put(rt);
 262		return -ENETUNREACH;
 263	}
 264
 265	if (!inet_opt || !inet_opt->opt.srr)
 266		daddr = fl4->daddr;
 267
 268	tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 269
 270	if (!inet->inet_saddr) {
 271		err = inet_bhash2_update_saddr(sk,  &fl4->saddr, AF_INET);
 272		if (err) {
 273			ip_rt_put(rt);
 274			return err;
 275		}
 276	} else {
 277		sk_rcv_saddr_set(sk, inet->inet_saddr);
 278	}
 279
 280	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
 281		/* Reset inherited state */
 282		tp->rx_opt.ts_recent	   = 0;
 283		tp->rx_opt.ts_recent_stamp = 0;
 284		if (likely(!tp->repair))
 285			WRITE_ONCE(tp->write_seq, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286	}
 287
 288	inet->inet_dport = usin->sin_port;
 289	sk_daddr_set(sk, daddr);
 290
 291	inet_csk(sk)->icsk_ext_hdr_len = 0;
 292	if (inet_opt)
 293		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
 294
 295	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
 296
 297	/* Socket identity is still unknown (sport may be zero).
 298	 * However we set state to SYN-SENT and not releasing socket
 299	 * lock select source port, enter ourselves into the hash tables and
 300	 * complete initialization after this.
 301	 */
 302	tcp_set_state(sk, TCP_SYN_SENT);
 303	err = inet_hash_connect(tcp_death_row, sk);
 304	if (err)
 305		goto failure;
 306
 307	sk_set_txhash(sk);
 308
 309	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
 310			       inet->inet_sport, inet->inet_dport, sk);
 311	if (IS_ERR(rt)) {
 312		err = PTR_ERR(rt);
 313		rt = NULL;
 314		goto failure;
 315	}
 316	tp->tcp_usec_ts = dst_tcp_usec_ts(&rt->dst);
 317	/* OK, now commit destination to socket.  */
 318	sk->sk_gso_type = SKB_GSO_TCPV4;
 319	sk_setup_caps(sk, &rt->dst);
 320	rt = NULL;
 321
 322	if (likely(!tp->repair)) {
 323		if (!tp->write_seq)
 324			WRITE_ONCE(tp->write_seq,
 325				   secure_tcp_seq(inet->inet_saddr,
 326						  inet->inet_daddr,
 327						  inet->inet_sport,
 328						  usin->sin_port));
 329		WRITE_ONCE(tp->tsoffset,
 330			   secure_tcp_ts_off(net, inet->inet_saddr,
 331					     inet->inet_daddr));
 332	}
 333
 334	atomic_set(&inet->inet_id, get_random_u16());
 
 
 
 
 335
 336	if (tcp_fastopen_defer_connect(sk, &err))
 337		return err;
 338	if (err)
 339		goto failure;
 340
 341	err = tcp_connect(sk);
 342
 343	if (err)
 344		goto failure;
 345
 346	return 0;
 347
 348failure:
 349	/*
 350	 * This unhashes the socket and releases the local port,
 351	 * if necessary.
 352	 */
 353	tcp_set_state(sk, TCP_CLOSE);
 354	inet_bhash2_reset_saddr(sk);
 355	ip_rt_put(rt);
 356	sk->sk_route_caps = 0;
 357	inet->inet_dport = 0;
 358	return err;
 359}
 360EXPORT_SYMBOL(tcp_v4_connect);
 361
 362/*
 363 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
 364 * It can be called through tcp_release_cb() if socket was owned by user
 365 * at the time tcp_v4_err() was called to handle ICMP message.
 366 */
 367void tcp_v4_mtu_reduced(struct sock *sk)
 368{
 
 369	struct inet_sock *inet = inet_sk(sk);
 370	struct dst_entry *dst;
 371	u32 mtu;
 372
 373	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
 
 
 
 
 374		return;
 375	mtu = READ_ONCE(tcp_sk(sk)->mtu_info);
 376	dst = inet_csk_update_pmtu(sk, mtu);
 377	if (!dst)
 
 
 
 
 
 378		return;
 379
 
 
 380	/* Something is about to be wrong... Remember soft error
 381	 * for the case, if this connection will not able to recover.
 382	 */
 383	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
 384		WRITE_ONCE(sk->sk_err_soft, EMSGSIZE);
 385
 386	mtu = dst_mtu(dst);
 387
 388	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
 389	    ip_sk_accept_pmtu(sk) &&
 390	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
 391		tcp_sync_mss(sk, mtu);
 392
 393		/* Resend the TCP packet because it's
 394		 * clear that the old packet has been
 395		 * dropped. This is the new "fast" path mtu
 396		 * discovery.
 397		 */
 398		tcp_simple_retransmit(sk);
 399	} /* else let the usual retransmit timer handle it */
 400}
 401EXPORT_SYMBOL(tcp_v4_mtu_reduced);
 402
 403static void do_redirect(struct sk_buff *skb, struct sock *sk)
 404{
 405	struct dst_entry *dst = __sk_dst_check(sk, 0);
 406
 407	if (dst)
 408		dst->ops->redirect(dst, sk, skb);
 409}
 410
 411
 412/* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */
 413void tcp_req_err(struct sock *sk, u32 seq, bool abort)
 414{
 415	struct request_sock *req = inet_reqsk(sk);
 416	struct net *net = sock_net(sk);
 417
 418	/* ICMPs are not backlogged, hence we cannot get
 419	 * an established socket here.
 420	 */
 421	if (seq != tcp_rsk(req)->snt_isn) {
 422		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 423	} else if (abort) {
 424		/*
 425		 * Still in SYN_RECV, just remove it silently.
 426		 * There is no good way to pass the error to the newly
 427		 * created socket, and POSIX does not want network
 428		 * errors returned from accept().
 429		 */
 430		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
 431		tcp_listendrop(req->rsk_listener);
 432	}
 433	reqsk_put(req);
 434}
 435EXPORT_SYMBOL(tcp_req_err);
 436
 437/* TCP-LD (RFC 6069) logic */
 438void tcp_ld_RTO_revert(struct sock *sk, u32 seq)
 439{
 440	struct inet_connection_sock *icsk = inet_csk(sk);
 441	struct tcp_sock *tp = tcp_sk(sk);
 442	struct sk_buff *skb;
 443	s32 remaining;
 444	u32 delta_us;
 445
 446	if (sock_owned_by_user(sk))
 447		return;
 448
 449	if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
 450	    !icsk->icsk_backoff)
 451		return;
 452
 453	skb = tcp_rtx_queue_head(sk);
 454	if (WARN_ON_ONCE(!skb))
 455		return;
 456
 457	icsk->icsk_backoff--;
 458	icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT;
 459	icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
 460
 461	tcp_mstamp_refresh(tp);
 462	delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb));
 463	remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us);
 464
 465	if (remaining > 0) {
 466		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
 467					  remaining, TCP_RTO_MAX);
 468	} else {
 469		/* RTO revert clocked out retransmission.
 470		 * Will retransmit now.
 471		 */
 472		tcp_retransmit_timer(sk);
 473	}
 474}
 475EXPORT_SYMBOL(tcp_ld_RTO_revert);
 476
 477/*
 478 * This routine is called by the ICMP module when it gets some
 479 * sort of error condition.  If err < 0 then the socket should
 480 * be closed and the error returned to the user.  If err > 0
 481 * it's just the icmp type << 8 | icmp code.  After adjustment
 482 * header points to the first 8 bytes of the tcp header.  We need
 483 * to find the appropriate port.
 484 *
 485 * The locking strategy used here is very "optimistic". When
 486 * someone else accesses the socket the ICMP is just dropped
 487 * and for some paths there is no check at all.
 488 * A more general error queue to queue errors for later handling
 489 * is probably better.
 490 *
 491 */
 492
 493int tcp_v4_err(struct sk_buff *skb, u32 info)
 494{
 495	const struct iphdr *iph = (const struct iphdr *)skb->data;
 496	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
 
 497	struct tcp_sock *tp;
 498	const int type = icmp_hdr(skb)->type;
 499	const int code = icmp_hdr(skb)->code;
 
 500	struct sock *sk;
 501	struct request_sock *fastopen;
 502	u32 seq, snd_una;
 
 503	int err;
 504	struct net *net = dev_net(skb->dev);
 
 
 
 
 
 505
 506	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
 507				       iph->daddr, th->dest, iph->saddr,
 508				       ntohs(th->source), inet_iif(skb), 0);
 509	if (!sk) {
 510		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 511		return -ENOENT;
 512	}
 513	if (sk->sk_state == TCP_TIME_WAIT) {
 514		/* To increase the counter of ignored icmps for TCP-AO */
 515		tcp_ao_ignore_icmp(sk, AF_INET, type, code);
 516		inet_twsk_put(inet_twsk(sk));
 517		return 0;
 518	}
 519	seq = ntohl(th->seq);
 520	if (sk->sk_state == TCP_NEW_SYN_RECV) {
 521		tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB ||
 522				     type == ICMP_TIME_EXCEEDED ||
 523				     (type == ICMP_DEST_UNREACH &&
 524				      (code == ICMP_NET_UNREACH ||
 525				       code == ICMP_HOST_UNREACH)));
 526		return 0;
 527	}
 528
 529	if (tcp_ao_ignore_icmp(sk, AF_INET, type, code)) {
 530		sock_put(sk);
 531		return 0;
 532	}
 533
 534	bh_lock_sock(sk);
 535	/* If too many ICMPs get dropped on busy
 536	 * servers this needs to be solved differently.
 537	 * We do take care of PMTU discovery (RFC1191) special case :
 538	 * we can receive locally generated ICMP messages while socket is held.
 539	 */
 540	if (sock_owned_by_user(sk)) {
 541		if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
 542			__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 543	}
 544	if (sk->sk_state == TCP_CLOSE)
 545		goto out;
 546
 547	if (static_branch_unlikely(&ip4_min_ttl)) {
 548		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
 549		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
 550			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
 551			goto out;
 552		}
 553	}
 554
 
 555	tp = tcp_sk(sk);
 556	/* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
 557	fastopen = rcu_dereference(tp->fastopen_rsk);
 558	snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
 559	if (sk->sk_state != TCP_LISTEN &&
 560	    !between(seq, snd_una, tp->snd_nxt)) {
 561		__NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS);
 562		goto out;
 563	}
 564
 565	switch (type) {
 566	case ICMP_REDIRECT:
 567		if (!sock_owned_by_user(sk))
 568			do_redirect(skb, sk);
 569		goto out;
 570	case ICMP_SOURCE_QUENCH:
 571		/* Just silently ignore these. */
 572		goto out;
 573	case ICMP_PARAMETERPROB:
 574		err = EPROTO;
 575		break;
 576	case ICMP_DEST_UNREACH:
 577		if (code > NR_ICMP_UNREACH)
 578			goto out;
 579
 580		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
 581			/* We are not interested in TCP_LISTEN and open_requests
 582			 * (SYN-ACKs send out by Linux are always <576bytes so
 583			 * they should go through unfragmented).
 584			 */
 585			if (sk->sk_state == TCP_LISTEN)
 586				goto out;
 587
 588			WRITE_ONCE(tp->mtu_info, info);
 589			if (!sock_owned_by_user(sk)) {
 590				tcp_v4_mtu_reduced(sk);
 591			} else {
 592				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags))
 593					sock_hold(sk);
 594			}
 595			goto out;
 596		}
 597
 598		err = icmp_err_convert[code].errno;
 599		/* check if this ICMP message allows revert of backoff.
 600		 * (see RFC 6069)
 601		 */
 602		if (!fastopen &&
 603		    (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH))
 604			tcp_ld_RTO_revert(sk, seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605		break;
 606	case ICMP_TIME_EXCEEDED:
 607		err = EHOSTUNREACH;
 608		break;
 609	default:
 610		goto out;
 611	}
 612
 613	switch (sk->sk_state) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614	case TCP_SYN_SENT:
 615	case TCP_SYN_RECV:
 616		/* Only in fast or simultaneous open. If a fast open socket is
 617		 * already accepted it is treated as a connected one below.
 618		 */
 619		if (fastopen && !fastopen->sk)
 620			break;
 621
 622		ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th);
 623
 624		if (!sock_owned_by_user(sk))
 625			tcp_done_with_error(sk, err);
 626		else
 627			WRITE_ONCE(sk->sk_err_soft, err);
 628		goto out;
 629	}
 630
 631	/* If we've already connected we will keep trying
 632	 * until we time out, or the user gives up.
 633	 *
 634	 * rfc1122 4.2.3.9 allows to consider as hard errors
 635	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
 636	 * but it is obsoleted by pmtu discovery).
 637	 *
 638	 * Note, that in modern internet, where routing is unreliable
 639	 * and in each dark corner broken firewalls sit, sending random
 640	 * errors ordered by their masters even this two messages finally lose
 641	 * their original sense (even Linux sends invalid PORT_UNREACHs)
 642	 *
 643	 * Now we are in compliance with RFCs.
 644	 *							--ANK (980905)
 645	 */
 646
 647	if (!sock_owned_by_user(sk) &&
 648	    inet_test_bit(RECVERR, sk)) {
 649		WRITE_ONCE(sk->sk_err, err);
 650		sk_error_report(sk);
 651	} else	{ /* Only an error on timeout */
 652		WRITE_ONCE(sk->sk_err_soft, err);
 653	}
 654
 655out:
 656	bh_unlock_sock(sk);
 657	sock_put(sk);
 658	return 0;
 659}
 660
 661void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
 
 662{
 663	struct tcphdr *th = tcp_hdr(skb);
 664
 665	th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
 666	skb->csum_start = skb_transport_header(skb) - skb->head;
 667	skb->csum_offset = offsetof(struct tcphdr, check);
 
 
 
 
 
 
 
 668}
 669
 670/* This routine computes an IPv4 TCP checksum. */
 671void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
 672{
 673	const struct inet_sock *inet = inet_sk(sk);
 674
 675	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
 676}
 677EXPORT_SYMBOL(tcp_v4_send_check);
 678
 679#define REPLY_OPTIONS_LEN      (MAX_TCP_OPTION_SPACE / sizeof(__be32))
 
 
 
 
 
 
 680
 681static bool tcp_v4_ao_sign_reset(const struct sock *sk, struct sk_buff *skb,
 682				 const struct tcp_ao_hdr *aoh,
 683				 struct ip_reply_arg *arg, struct tcphdr *reply,
 684				 __be32 reply_options[REPLY_OPTIONS_LEN])
 685{
 686#ifdef CONFIG_TCP_AO
 687	int sdif = tcp_v4_sdif(skb);
 688	int dif = inet_iif(skb);
 689	int l3index = sdif ? dif : 0;
 690	bool allocated_traffic_key;
 691	struct tcp_ao_key *key;
 692	char *traffic_key;
 693	bool drop = true;
 694	u32 ao_sne = 0;
 695	u8 keyid;
 696
 697	rcu_read_lock();
 698	if (tcp_ao_prepare_reset(sk, skb, aoh, l3index, ntohl(reply->seq),
 699				 &key, &traffic_key, &allocated_traffic_key,
 700				 &keyid, &ao_sne))
 701		goto out;
 702
 703	reply_options[0] = htonl((TCPOPT_AO << 24) | (tcp_ao_len(key) << 16) |
 704				 (aoh->rnext_keyid << 8) | keyid);
 705	arg->iov[0].iov_len += tcp_ao_len_aligned(key);
 706	reply->doff = arg->iov[0].iov_len / 4;
 707
 708	if (tcp_ao_hash_hdr(AF_INET, (char *)&reply_options[1],
 709			    key, traffic_key,
 710			    (union tcp_ao_addr *)&ip_hdr(skb)->saddr,
 711			    (union tcp_ao_addr *)&ip_hdr(skb)->daddr,
 712			    reply, ao_sne))
 713		goto out;
 714	drop = false;
 715out:
 716	rcu_read_unlock();
 717	if (allocated_traffic_key)
 718		kfree(traffic_key);
 719	return drop;
 720#else
 721	return true;
 722#endif
 723}
 724
 725/*
 726 *	This routine will send an RST to the other tcp.
 727 *
 728 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
 729 *		      for reset.
 730 *	Answer: if a packet caused RST, it is not for a socket
 731 *		existing in our system, if it is matched to a socket,
 732 *		it is just duplicate segment or bug in other side's TCP.
 733 *		So that we build reply only basing on parameters
 734 *		arrived with segment.
 735 *	Exception: precedence violation. We do not implement it in any case.
 736 */
 737
 738static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb,
 739			      enum sk_rst_reason reason)
 740{
 741	const struct tcphdr *th = tcp_hdr(skb);
 742	struct {
 743		struct tcphdr th;
 744		__be32 opt[REPLY_OPTIONS_LEN];
 
 
 745	} rep;
 746	const __u8 *md5_hash_location = NULL;
 747	const struct tcp_ao_hdr *aoh;
 748	struct ip_reply_arg arg;
 749#ifdef CONFIG_TCP_MD5SIG
 750	struct tcp_md5sig_key *key = NULL;
 751	unsigned char newhash[16];
 752	struct sock *sk1 = NULL;
 753	int genhash;
 754#endif
 755	u64 transmit_time = 0;
 756	struct sock *ctl_sk;
 757	struct net *net;
 758	u32 txhash = 0;
 759
 760	/* Never send a reset in response to a reset. */
 761	if (th->rst)
 762		return;
 763
 764	/* If sk not NULL, it means we did a successful lookup and incoming
 765	 * route had to be correct. prequeue might have dropped our dst.
 766	 */
 767	if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL)
 768		return;
 769
 770	/* Swap the send and the receive. */
 771	memset(&rep, 0, sizeof(rep));
 772	rep.th.dest   = th->source;
 773	rep.th.source = th->dest;
 774	rep.th.doff   = sizeof(struct tcphdr) / 4;
 775	rep.th.rst    = 1;
 776
 777	if (th->ack) {
 778		rep.th.seq = th->ack_seq;
 779	} else {
 780		rep.th.ack = 1;
 781		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
 782				       skb->len - (th->doff << 2));
 783	}
 784
 785	memset(&arg, 0, sizeof(arg));
 786	arg.iov[0].iov_base = (unsigned char *)&rep;
 787	arg.iov[0].iov_len  = sizeof(rep.th);
 788
 789	net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev);
 790
 791	/* Invalid TCP option size or twice included auth */
 792	if (tcp_parse_auth_options(tcp_hdr(skb), &md5_hash_location, &aoh))
 793		return;
 794
 795	if (aoh && tcp_v4_ao_sign_reset(sk, skb, aoh, &arg, &rep.th, rep.opt))
 796		return;
 797
 798#ifdef CONFIG_TCP_MD5SIG
 799	rcu_read_lock();
 800	if (sk && sk_fullsock(sk)) {
 801		const union tcp_md5_addr *addr;
 802		int l3index;
 803
 804		/* sdif set, means packet ingressed via a device
 805		 * in an L3 domain and inet_iif is set to it.
 806		 */
 807		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
 808		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 809		key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
 810	} else if (md5_hash_location) {
 811		const union tcp_md5_addr *addr;
 812		int sdif = tcp_v4_sdif(skb);
 813		int dif = inet_iif(skb);
 814		int l3index;
 815
 816		/*
 817		 * active side is lost. Try to find listening socket through
 818		 * source port, and then find md5 key through listening socket.
 819		 * we are not loose security here:
 820		 * Incoming packet is checked with md5 hash with finding key,
 821		 * no RST generated if md5 hash doesn't match.
 822		 */
 823		sk1 = __inet_lookup_listener(net, net->ipv4.tcp_death_row.hashinfo,
 824					     NULL, 0, ip_hdr(skb)->saddr,
 825					     th->source, ip_hdr(skb)->daddr,
 826					     ntohs(th->source), dif, sdif);
 827		/* don't send rst if it can't find key */
 828		if (!sk1)
 829			goto out;
 830
 831		/* sdif set, means packet ingressed via a device
 832		 * in an L3 domain and dif is set to it.
 833		 */
 834		l3index = sdif ? dif : 0;
 835		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
 836		key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET);
 837		if (!key)
 838			goto out;
 839
 840
 841		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
 842		if (genhash || memcmp(md5_hash_location, newhash, 16) != 0)
 843			goto out;
 844
 845	}
 846
 847	if (key) {
 848		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
 849				   (TCPOPT_NOP << 16) |
 850				   (TCPOPT_MD5SIG << 8) |
 851				   TCPOLEN_MD5SIG);
 852		/* Update length and the length the header thinks exists */
 853		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 854		rep.th.doff = arg.iov[0].iov_len / 4;
 855
 856		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
 857				     key, ip_hdr(skb)->saddr,
 858				     ip_hdr(skb)->daddr, &rep.th);
 859	}
 860#endif
 861	/* Can't co-exist with TCPMD5, hence check rep.opt[0] */
 862	if (rep.opt[0] == 0) {
 863		__be32 mrst = mptcp_reset_option(skb);
 864
 865		if (mrst) {
 866			rep.opt[0] = mrst;
 867			arg.iov[0].iov_len += sizeof(mrst);
 868			rep.th.doff = arg.iov[0].iov_len / 4;
 869		}
 870	}
 871
 872	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
 873				      ip_hdr(skb)->saddr, /* XXX */
 874				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
 875	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
 876	arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0;
 877
 878	/* When socket is gone, all binding information is lost.
 879	 * routing might fail in this case. No choice here, if we choose to force
 880	 * input interface, we will misroute in case of asymmetric route.
 881	 */
 882	if (sk)
 883		arg.bound_dev_if = sk->sk_bound_dev_if;
 884
 885	trace_tcp_send_reset(sk, skb, reason);
 
 
 886
 887	BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) !=
 888		     offsetof(struct inet_timewait_sock, tw_bound_dev_if));
 889
 890	arg.tos = ip_hdr(skb)->tos;
 891	arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL);
 892	local_bh_disable();
 893	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
 894	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
 895
 896	sock_net_set(ctl_sk, net);
 897	if (sk) {
 898		ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
 899				   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
 900		ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
 901				   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
 902		transmit_time = tcp_transmit_time(sk);
 903		xfrm_sk_clone_policy(ctl_sk, sk);
 904		txhash = (sk->sk_state == TCP_TIME_WAIT) ?
 905			 inet_twsk(sk)->tw_txhash : sk->sk_txhash;
 906	} else {
 907		ctl_sk->sk_mark = 0;
 908		ctl_sk->sk_priority = 0;
 909	}
 910	ip_send_unicast_reply(ctl_sk, sk,
 911			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
 912			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
 913			      &arg, arg.iov[0].iov_len,
 914			      transmit_time, txhash);
 915
 916	xfrm_sk_free_policy(ctl_sk);
 917	sock_net_set(ctl_sk, &init_net);
 918	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
 919	__TCP_INC_STATS(net, TCP_MIB_OUTRSTS);
 920	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
 921	local_bh_enable();
 922
 923#ifdef CONFIG_TCP_MD5SIG
 924out:
 925	rcu_read_unlock();
 926#endif
 927}
 928
 929/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
 930   outside socket context is ugly, certainly. What can I do?
 931 */
 932
 933static void tcp_v4_send_ack(const struct sock *sk,
 934			    struct sk_buff *skb, u32 seq, u32 ack,
 935			    u32 win, u32 tsval, u32 tsecr, int oif,
 936			    struct tcp_key *key,
 937			    int reply_flags, u8 tos, u32 txhash)
 938{
 939	const struct tcphdr *th = tcp_hdr(skb);
 940	struct {
 941		struct tcphdr th;
 942		__be32 opt[(MAX_TCP_OPTION_SPACE  >> 2)];
 
 
 
 
 943	} rep;
 944	struct net *net = sock_net(sk);
 945	struct ip_reply_arg arg;
 946	struct sock *ctl_sk;
 947	u64 transmit_time;
 948
 949	memset(&rep.th, 0, sizeof(struct tcphdr));
 950	memset(&arg, 0, sizeof(arg));
 951
 952	arg.iov[0].iov_base = (unsigned char *)&rep;
 953	arg.iov[0].iov_len  = sizeof(rep.th);
 954	if (tsecr) {
 955		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 956				   (TCPOPT_TIMESTAMP << 8) |
 957				   TCPOLEN_TIMESTAMP);
 958		rep.opt[1] = htonl(tsval);
 959		rep.opt[2] = htonl(tsecr);
 960		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
 961	}
 962
 963	/* Swap the send and the receive. */
 964	rep.th.dest    = th->source;
 965	rep.th.source  = th->dest;
 966	rep.th.doff    = arg.iov[0].iov_len / 4;
 967	rep.th.seq     = htonl(seq);
 968	rep.th.ack_seq = htonl(ack);
 969	rep.th.ack     = 1;
 970	rep.th.window  = htons(win);
 971
 972#ifdef CONFIG_TCP_MD5SIG
 973	if (tcp_key_is_md5(key)) {
 974		int offset = (tsecr) ? 3 : 0;
 975
 976		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
 977					  (TCPOPT_NOP << 16) |
 978					  (TCPOPT_MD5SIG << 8) |
 979					  TCPOLEN_MD5SIG);
 980		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
 981		rep.th.doff = arg.iov[0].iov_len/4;
 982
 983		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
 984				    key->md5_key, ip_hdr(skb)->saddr,
 985				    ip_hdr(skb)->daddr, &rep.th);
 986	}
 987#endif
 988#ifdef CONFIG_TCP_AO
 989	if (tcp_key_is_ao(key)) {
 990		int offset = (tsecr) ? 3 : 0;
 991
 992		rep.opt[offset++] = htonl((TCPOPT_AO << 24) |
 993					  (tcp_ao_len(key->ao_key) << 16) |
 994					  (key->ao_key->sndid << 8) |
 995					  key->rcv_next);
 996		arg.iov[0].iov_len += tcp_ao_len_aligned(key->ao_key);
 997		rep.th.doff = arg.iov[0].iov_len / 4;
 998
 999		tcp_ao_hash_hdr(AF_INET, (char *)&rep.opt[offset],
1000				key->ao_key, key->traffic_key,
1001				(union tcp_ao_addr *)&ip_hdr(skb)->saddr,
1002				(union tcp_ao_addr *)&ip_hdr(skb)->daddr,
1003				&rep.th, key->sne);
1004	}
1005#endif
1006	arg.flags = reply_flags;
1007	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
1008				      ip_hdr(skb)->saddr, /* XXX */
1009				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
1010	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1011	if (oif)
1012		arg.bound_dev_if = oif;
1013	arg.tos = tos;
1014	arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL);
1015	local_bh_disable();
1016	local_lock_nested_bh(&ipv4_tcp_sk.bh_lock);
1017	ctl_sk = this_cpu_read(ipv4_tcp_sk.sock);
1018	sock_net_set(ctl_sk, net);
1019	ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ?
1020			   inet_twsk(sk)->tw_mark : READ_ONCE(sk->sk_mark);
1021	ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ?
1022			   inet_twsk(sk)->tw_priority : READ_ONCE(sk->sk_priority);
1023	transmit_time = tcp_transmit_time(sk);
1024	ip_send_unicast_reply(ctl_sk, sk,
1025			      skb, &TCP_SKB_CB(skb)->header.h4.opt,
1026			      ip_hdr(skb)->saddr, ip_hdr(skb)->daddr,
1027			      &arg, arg.iov[0].iov_len,
1028			      transmit_time, txhash);
1029
1030	sock_net_set(ctl_sk, &init_net);
1031	__TCP_INC_STATS(net, TCP_MIB_OUTSEGS);
1032	local_unlock_nested_bh(&ipv4_tcp_sk.bh_lock);
1033	local_bh_enable();
1034}
1035
1036static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1037{
1038	struct inet_timewait_sock *tw = inet_twsk(sk);
1039	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
1040	struct tcp_key key = {};
1041#ifdef CONFIG_TCP_AO
1042	struct tcp_ao_info *ao_info;
1043
1044	if (static_branch_unlikely(&tcp_ao_needed.key)) {
1045		/* FIXME: the segment to-be-acked is not verified yet */
1046		ao_info = rcu_dereference(tcptw->ao_info);
1047		if (ao_info) {
1048			const struct tcp_ao_hdr *aoh;
1049
1050			if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) {
1051				inet_twsk_put(tw);
1052				return;
1053			}
1054
1055			if (aoh)
1056				key.ao_key = tcp_ao_established_key(sk, ao_info,
1057								    aoh->rnext_keyid, -1);
1058		}
1059	}
1060	if (key.ao_key) {
1061		struct tcp_ao_key *rnext_key;
1062
1063		key.traffic_key = snd_other_key(key.ao_key);
1064		key.sne = READ_ONCE(ao_info->snd_sne);
1065		rnext_key = READ_ONCE(ao_info->rnext_key);
1066		key.rcv_next = rnext_key->rcvid;
1067		key.type = TCP_KEY_AO;
1068#else
1069	if (0) {
1070#endif
1071	} else if (static_branch_tcp_md5()) {
1072		key.md5_key = tcp_twsk_md5_key(tcptw);
1073		if (key.md5_key)
1074			key.type = TCP_KEY_MD5;
1075	}
1076
1077	tcp_v4_send_ack(sk, skb,
1078			tcptw->tw_snd_nxt, READ_ONCE(tcptw->tw_rcv_nxt),
1079			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
1080			tcp_tw_tsval(tcptw),
1081			READ_ONCE(tcptw->tw_ts_recent),
1082			tw->tw_bound_dev_if, &key,
1083			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
1084			tw->tw_tos,
1085			tw->tw_txhash);
1086
1087	inet_twsk_put(tw);
1088}
1089
1090static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb,
1091				  struct request_sock *req)
1092{
1093	struct tcp_key key = {};
1094
1095	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
1096	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
1097	 */
1098	u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 :
1099					     tcp_sk(sk)->snd_nxt;
1100
1101#ifdef CONFIG_TCP_AO
1102	if (static_branch_unlikely(&tcp_ao_needed.key) &&
1103	    tcp_rsk_used_ao(req)) {
1104		const union tcp_md5_addr *addr;
1105		const struct tcp_ao_hdr *aoh;
1106		int l3index;
1107
1108		/* Invalid TCP option size or twice included auth */
1109		if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
1110			return;
1111		if (!aoh)
1112			return;
1113
1114		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1115		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1116		key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET,
1117					      aoh->rnext_keyid, -1);
1118		if (unlikely(!key.ao_key)) {
1119			/* Send ACK with any matching MKT for the peer */
1120			key.ao_key = tcp_ao_do_lookup(sk, l3index, addr, AF_INET, -1, -1);
1121			/* Matching key disappeared (user removed the key?)
1122			 * let the handshake timeout.
1123			 */
1124			if (!key.ao_key) {
1125				net_info_ratelimited("TCP-AO key for (%pI4, %d)->(%pI4, %d) suddenly disappeared, won't ACK new connection\n",
1126						     addr,
1127						     ntohs(tcp_hdr(skb)->source),
1128						     &ip_hdr(skb)->daddr,
1129						     ntohs(tcp_hdr(skb)->dest));
1130				return;
1131			}
1132		}
1133		key.traffic_key = kmalloc(tcp_ao_digest_size(key.ao_key), GFP_ATOMIC);
1134		if (!key.traffic_key)
1135			return;
1136
1137		key.type = TCP_KEY_AO;
1138		key.rcv_next = aoh->keyid;
1139		tcp_v4_ao_calc_key_rsk(key.ao_key, key.traffic_key, req);
1140#else
1141	if (0) {
1142#endif
1143	} else if (static_branch_tcp_md5()) {
1144		const union tcp_md5_addr *addr;
1145		int l3index;
1146
1147		addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr;
1148		l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0;
1149		key.md5_key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1150		if (key.md5_key)
1151			key.type = TCP_KEY_MD5;
1152	}
1153
1154	tcp_v4_send_ack(sk, skb, seq,
1155			tcp_rsk(req)->rcv_nxt,
1156			tcp_synack_window(req) >> inet_rsk(req)->rcv_wscale,
1157			tcp_rsk_tsval(tcp_rsk(req)),
1158			READ_ONCE(req->ts_recent),
1159			0, &key,
1160			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
1161			ip_hdr(skb)->tos,
1162			READ_ONCE(tcp_rsk(req)->txhash));
1163	if (tcp_key_is_ao(&key))
1164		kfree(key.traffic_key);
1165}
1166
1167/*
1168 *	Send a SYN-ACK after having received a SYN.
1169 *	This still operates on a request_sock only, not on a big
1170 *	socket.
1171 */
1172static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
1173			      struct flowi *fl,
1174			      struct request_sock *req,
1175			      struct tcp_fastopen_cookie *foc,
1176			      enum tcp_synack_type synack_type,
1177			      struct sk_buff *syn_skb)
1178{
1179	const struct inet_request_sock *ireq = inet_rsk(req);
1180	struct flowi4 fl4;
1181	int err = -1;
1182	struct sk_buff *skb;
1183	u8 tos;
1184
1185	/* First, grab a route. */
1186	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
1187		return -1;
1188
1189	skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb);
1190
1191	if (skb) {
1192		__tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
1193
1194		tos = READ_ONCE(inet_sk(sk)->tos);
1195
1196		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1197			tos = (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) |
1198			      (tos & INET_ECN_MASK);
1199
1200		if (!INET_ECN_is_capable(tos) &&
1201		    tcp_bpf_ca_needs_ecn((struct sock *)req))
1202			tos |= INET_ECN_ECT_0;
1203
1204		rcu_read_lock();
1205		err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
1206					    ireq->ir_rmt_addr,
1207					    rcu_dereference(ireq->ireq_opt),
1208					    tos);
1209		rcu_read_unlock();
1210		err = net_xmit_eval(err);
1211	}
1212
 
1213	return err;
1214}
1215
 
 
 
 
 
 
 
1216/*
1217 *	IPv4 request_sock destructor.
1218 */
1219static void tcp_v4_reqsk_destructor(struct request_sock *req)
1220{
1221	kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
1222}
1223
1224#ifdef CONFIG_TCP_MD5SIG
1225/*
1226 * RFC2385 MD5 checksumming requires a mapping of
1227 * IP address->MD5 Key.
1228 * We need to maintain these in the sk structure.
1229 */
 
 
 
 
 
 
 
1230
1231DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_md5_needed, HZ);
1232EXPORT_SYMBOL(tcp_md5_needed);
1233
1234static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new)
1235{
1236	if (!old)
1237		return true;
1238
1239	/* l3index always overrides non-l3index */
1240	if (old->l3index && new->l3index == 0)
1241		return false;
1242	if (old->l3index == 0 && new->l3index)
1243		return true;
 
 
 
1244
1245	return old->prefixlen < new->prefixlen;
 
 
 
 
 
 
 
1246}
 
1247
1248/* Find the Key structure for an address.  */
1249struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1250					   const union tcp_md5_addr *addr,
1251					   int family, bool any_l3index)
 
1252{
1253	const struct tcp_sock *tp = tcp_sk(sk);
1254	struct tcp_md5sig_key *key;
1255	const struct tcp_md5sig_info *md5sig;
1256	__be32 mask;
1257	struct tcp_md5sig_key *best_match = NULL;
1258	bool match;
1259
1260	/* caller either holds rcu_read_lock() or socket lock */
1261	md5sig = rcu_dereference_check(tp->md5sig_info,
1262				       lockdep_sock_is_held(sk));
1263	if (!md5sig)
1264		return NULL;
1265
1266	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1267				 lockdep_sock_is_held(sk)) {
1268		if (key->family != family)
1269			continue;
1270		if (!any_l3index && key->flags & TCP_MD5SIG_FLAG_IFINDEX &&
1271		    key->l3index != l3index)
1272			continue;
1273		if (family == AF_INET) {
1274			mask = inet_make_mask(key->prefixlen);
1275			match = (key->addr.a4.s_addr & mask) ==
1276				(addr->a4.s_addr & mask);
1277#if IS_ENABLED(CONFIG_IPV6)
1278		} else if (family == AF_INET6) {
1279			match = ipv6_prefix_equal(&key->addr.a6, &addr->a6,
1280						  key->prefixlen);
1281#endif
1282		} else {
1283			match = false;
1284		}
1285
1286		if (match && better_md5_match(best_match, key))
1287			best_match = key;
1288	}
1289	return best_match;
1290}
1291EXPORT_SYMBOL(__tcp_md5_do_lookup);
1292
1293static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk,
1294						      const union tcp_md5_addr *addr,
1295						      int family, u8 prefixlen,
1296						      int l3index, u8 flags)
 
 
 
 
 
 
1297{
1298	const struct tcp_sock *tp = tcp_sk(sk);
1299	struct tcp_md5sig_key *key;
1300	unsigned int size = sizeof(struct in_addr);
1301	const struct tcp_md5sig_info *md5sig;
1302
1303	/* caller either holds rcu_read_lock() or socket lock */
1304	md5sig = rcu_dereference_check(tp->md5sig_info,
1305				       lockdep_sock_is_held(sk));
1306	if (!md5sig)
1307		return NULL;
1308#if IS_ENABLED(CONFIG_IPV6)
1309	if (family == AF_INET6)
1310		size = sizeof(struct in6_addr);
1311#endif
1312	hlist_for_each_entry_rcu(key, &md5sig->head, node,
1313				 lockdep_sock_is_held(sk)) {
1314		if (key->family != family)
1315			continue;
1316		if ((key->flags & TCP_MD5SIG_FLAG_IFINDEX) != (flags & TCP_MD5SIG_FLAG_IFINDEX))
1317			continue;
1318		if (key->l3index != l3index)
1319			continue;
1320		if (!memcmp(&key->addr, addr, size) &&
1321		    key->prefixlen == prefixlen)
1322			return key;
1323	}
1324	return NULL;
1325}
1326
1327struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1328					 const struct sock *addr_sk)
1329{
1330	const union tcp_md5_addr *addr;
1331	int l3index;
1332
1333	l3index = l3mdev_master_ifindex_by_index(sock_net(sk),
1334						 addr_sk->sk_bound_dev_if);
1335	addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr;
1336	return tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1337}
1338EXPORT_SYMBOL(tcp_v4_md5_lookup);
1339
1340static int tcp_md5sig_info_add(struct sock *sk, gfp_t gfp)
 
1341{
1342	struct tcp_sock *tp = tcp_sk(sk);
1343	struct tcp_md5sig_info *md5sig;
1344
1345	md5sig = kmalloc(sizeof(*md5sig), gfp);
1346	if (!md5sig)
1347		return -ENOMEM;
1348
1349	sk_gso_disable(sk);
1350	INIT_HLIST_HEAD(&md5sig->head);
1351	rcu_assign_pointer(tp->md5sig_info, md5sig);
1352	return 0;
1353}
1354
1355/* This can be called on a newly created socket, from other files */
1356static int __tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1357			    int family, u8 prefixlen, int l3index, u8 flags,
1358			    const u8 *newkey, u8 newkeylen, gfp_t gfp)
1359{
1360	/* Add Key to the list */
1361	struct tcp_md5sig_key *key;
1362	struct tcp_sock *tp = tcp_sk(sk);
1363	struct tcp_md5sig_info *md5sig;
1364
1365	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1366	if (key) {
1367		/* Pre-existing entry - just update that one.
1368		 * Note that the key might be used concurrently.
1369		 * data_race() is telling kcsan that we do not care of
1370		 * key mismatches, since changing MD5 key on live flows
1371		 * can lead to packet drops.
1372		 */
1373		data_race(memcpy(key->key, newkey, newkeylen));
1374
1375		/* Pairs with READ_ONCE() in tcp_md5_hash_key().
1376		 * Also note that a reader could catch new key->keylen value
1377		 * but old key->key[], this is the reason we use __GFP_ZERO
1378		 * at sock_kmalloc() time below these lines.
1379		 */
1380		WRITE_ONCE(key->keylen, newkeylen);
 
 
 
1381
1382		return 0;
1383	}
 
 
 
 
1384
1385	md5sig = rcu_dereference_protected(tp->md5sig_info,
1386					   lockdep_sock_is_held(sk));
 
 
 
 
 
 
 
1387
1388	key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO);
1389	if (!key)
1390		return -ENOMEM;
1391
1392	memcpy(key->key, newkey, newkeylen);
1393	key->keylen = newkeylen;
1394	key->family = family;
1395	key->prefixlen = prefixlen;
1396	key->l3index = l3index;
1397	key->flags = flags;
1398	memcpy(&key->addr, addr,
1399	       (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) ? sizeof(struct in6_addr) :
1400								 sizeof(struct in_addr));
1401	hlist_add_head_rcu(&key->node, &md5sig->head);
1402	return 0;
1403}
 
1404
1405int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1406		   int family, u8 prefixlen, int l3index, u8 flags,
1407		   const u8 *newkey, u8 newkeylen)
1408{
1409	struct tcp_sock *tp = tcp_sk(sk);
1410
1411	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1412		if (tcp_md5_alloc_sigpool())
1413			return -ENOMEM;
1414
1415		if (tcp_md5sig_info_add(sk, GFP_KERNEL)) {
1416			tcp_md5_release_sigpool();
1417			return -ENOMEM;
1418		}
1419
1420		if (!static_branch_inc(&tcp_md5_needed.key)) {
1421			struct tcp_md5sig_info *md5sig;
1422
1423			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1424			rcu_assign_pointer(tp->md5sig_info, NULL);
1425			kfree_rcu(md5sig, rcu);
1426			tcp_md5_release_sigpool();
1427			return -EUSERS;
1428		}
1429	}
1430
1431	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index, flags,
1432				newkey, newkeylen, GFP_KERNEL);
1433}
1434EXPORT_SYMBOL(tcp_md5_do_add);
1435
1436int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1437		     int family, u8 prefixlen, int l3index,
1438		     struct tcp_md5sig_key *key)
1439{
1440	struct tcp_sock *tp = tcp_sk(sk);
 
1441
1442	if (!rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk))) {
1443		tcp_md5_add_sigpool();
1444
1445		if (tcp_md5sig_info_add(sk, sk_gfp_mask(sk, GFP_ATOMIC))) {
1446			tcp_md5_release_sigpool();
1447			return -ENOMEM;
1448		}
1449
1450		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key)) {
1451			struct tcp_md5sig_info *md5sig;
1452
1453			md5sig = rcu_dereference_protected(tp->md5sig_info, lockdep_sock_is_held(sk));
1454			net_warn_ratelimited("Too many TCP-MD5 keys in the system\n");
1455			rcu_assign_pointer(tp->md5sig_info, NULL);
1456			kfree_rcu(md5sig, rcu);
1457			tcp_md5_release_sigpool();
1458			return -EUSERS;
 
 
1459		}
1460	}
1461
1462	return __tcp_md5_do_add(sk, addr, family, prefixlen, l3index,
1463				key->flags, key->key, key->keylen,
1464				sk_gfp_mask(sk, GFP_ATOMIC));
1465}
1466EXPORT_SYMBOL(tcp_md5_key_copy);
1467
1468int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family,
1469		   u8 prefixlen, int l3index, u8 flags)
1470{
1471	struct tcp_md5sig_key *key;
1472
1473	key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index, flags);
1474	if (!key)
1475		return -ENOENT;
1476	hlist_del_rcu(&key->node);
1477	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1478	kfree_rcu(key, rcu);
1479	return 0;
1480}
1481EXPORT_SYMBOL(tcp_md5_do_del);
1482
1483void tcp_clear_md5_list(struct sock *sk)
1484{
1485	struct tcp_sock *tp = tcp_sk(sk);
1486	struct tcp_md5sig_key *key;
1487	struct hlist_node *n;
1488	struct tcp_md5sig_info *md5sig;
1489
1490	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1491
1492	hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1493		hlist_del_rcu(&key->node);
1494		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1495		kfree_rcu(key, rcu);
 
 
 
 
 
 
 
 
 
1496	}
1497}
1498
1499static int tcp_v4_parse_md5_keys(struct sock *sk, int optname,
1500				 sockptr_t optval, int optlen)
1501{
1502	struct tcp_md5sig cmd;
1503	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1504	const union tcp_md5_addr *addr;
1505	u8 prefixlen = 32;
1506	int l3index = 0;
1507	bool l3flag;
1508	u8 flags;
1509
1510	if (optlen < sizeof(cmd))
1511		return -EINVAL;
1512
1513	if (copy_from_sockptr(&cmd, optval, sizeof(cmd)))
1514		return -EFAULT;
1515
1516	if (sin->sin_family != AF_INET)
1517		return -EINVAL;
1518
1519	flags = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1520	l3flag = cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX;
1521
1522	if (optname == TCP_MD5SIG_EXT &&
1523	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) {
1524		prefixlen = cmd.tcpm_prefixlen;
1525		if (prefixlen > 32)
1526			return -EINVAL;
1527	}
1528
1529	if (optname == TCP_MD5SIG_EXT && cmd.tcpm_ifindex &&
1530	    cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) {
1531		struct net_device *dev;
1532
1533		rcu_read_lock();
1534		dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex);
1535		if (dev && netif_is_l3_master(dev))
1536			l3index = dev->ifindex;
1537
1538		rcu_read_unlock();
 
 
1539
1540		/* ok to reference set/not set outside of rcu;
1541		 * right now device MUST be an L3 master
1542		 */
1543		if (!dev || !l3index)
1544			return -EINVAL;
 
 
 
1545	}
1546
1547	addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr;
1548
1549	if (!cmd.tcpm_keylen)
1550		return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index, flags);
1551
1552	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1553		return -EINVAL;
1554
1555	/* Don't allow keys for peers that have a matching TCP-AO key.
1556	 * See the comment in tcp_ao_add_cmd()
1557	 */
1558	if (tcp_ao_required(sk, addr, AF_INET, l3flag ? l3index : -1, false))
1559		return -EKEYREJECTED;
1560
1561	return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, flags,
1562			      cmd.tcpm_key, cmd.tcpm_keylen);
1563}
1564
1565static int tcp_v4_md5_hash_headers(struct tcp_sigpool *hp,
1566				   __be32 daddr, __be32 saddr,
1567				   const struct tcphdr *th, int nbytes)
1568{
1569	struct tcp4_pseudohdr *bp;
1570	struct scatterlist sg;
1571	struct tcphdr *_th;
1572
1573	bp = hp->scratch;
 
 
 
 
 
 
1574	bp->saddr = saddr;
1575	bp->daddr = daddr;
1576	bp->pad = 0;
1577	bp->protocol = IPPROTO_TCP;
1578	bp->len = cpu_to_be16(nbytes);
1579
1580	_th = (struct tcphdr *)(bp + 1);
1581	memcpy(_th, th, sizeof(*th));
1582	_th->check = 0;
1583
1584	sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th));
1585	ahash_request_set_crypt(hp->req, &sg, NULL,
1586				sizeof(*bp) + sizeof(*th));
1587	return crypto_ahash_update(hp->req);
1588}
1589
1590static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1591			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1592{
1593	struct tcp_sigpool hp;
 
1594
1595	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1596		goto clear_hash_nostart;
 
 
1597
1598	if (crypto_ahash_init(hp.req))
1599		goto clear_hash;
1600	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, th->doff << 2))
1601		goto clear_hash;
1602	if (tcp_md5_hash_key(&hp, key))
1603		goto clear_hash;
1604	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1605	if (crypto_ahash_final(hp.req))
 
1606		goto clear_hash;
1607
1608	tcp_sigpool_end(&hp);
1609	return 0;
1610
1611clear_hash:
1612	tcp_sigpool_end(&hp);
1613clear_hash_nostart:
1614	memset(md5_hash, 0, 16);
1615	return 1;
1616}
1617
1618int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1619			const struct sock *sk,
1620			const struct sk_buff *skb)
1621{
1622	const struct tcphdr *th = tcp_hdr(skb);
1623	struct tcp_sigpool hp;
 
1624	__be32 saddr, daddr;
1625
1626	if (sk) { /* valid for establish/request sockets */
1627		saddr = sk->sk_rcv_saddr;
1628		daddr = sk->sk_daddr;
 
 
 
1629	} else {
1630		const struct iphdr *iph = ip_hdr(skb);
1631		saddr = iph->saddr;
1632		daddr = iph->daddr;
1633	}
1634
1635	if (tcp_sigpool_start(tcp_md5_sigpool_id, &hp))
1636		goto clear_hash_nostart;
 
 
1637
1638	if (crypto_ahash_init(hp.req))
1639		goto clear_hash;
1640
1641	if (tcp_v4_md5_hash_headers(&hp, daddr, saddr, th, skb->len))
 
 
1642		goto clear_hash;
1643	if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2))
1644		goto clear_hash;
1645	if (tcp_md5_hash_key(&hp, key))
1646		goto clear_hash;
1647	ahash_request_set_crypt(hp.req, NULL, md5_hash, 0);
1648	if (crypto_ahash_final(hp.req))
1649		goto clear_hash;
1650
1651	tcp_sigpool_end(&hp);
1652	return 0;
1653
1654clear_hash:
1655	tcp_sigpool_end(&hp);
1656clear_hash_nostart:
1657	memset(md5_hash, 0, 16);
1658	return 1;
1659}
1660EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1661
1662#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663
1664static void tcp_v4_init_req(struct request_sock *req,
1665			    const struct sock *sk_listener,
1666			    struct sk_buff *skb)
1667{
1668	struct inet_request_sock *ireq = inet_rsk(req);
1669	struct net *net = sock_net(sk_listener);
1670
1671	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
1672	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
1673	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb));
1674}
1675
1676static struct dst_entry *tcp_v4_route_req(const struct sock *sk,
1677					  struct sk_buff *skb,
1678					  struct flowi *fl,
1679					  struct request_sock *req,
1680					  u32 tw_isn)
1681{
1682	tcp_v4_init_req(req, sk, skb);
1683
1684	if (security_inet_conn_request(sk, skb, req))
1685		return NULL;
 
 
1686
1687	return inet_csk_route_req(sk, &fl->u.ip4, req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688}
1689
 
 
1690struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1691	.family		=	PF_INET,
1692	.obj_size	=	sizeof(struct tcp_request_sock),
1693	.rtx_syn_ack	=	tcp_rtx_synack,
1694	.send_ack	=	tcp_v4_reqsk_send_ack,
1695	.destructor	=	tcp_v4_reqsk_destructor,
1696	.send_reset	=	tcp_v4_send_reset,
1697	.syn_ack_timeout =	tcp_syn_ack_timeout,
1698};
1699
1700const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1701	.mss_clamp	=	TCP_MSS_DEFAULT,
1702#ifdef CONFIG_TCP_MD5SIG
1703	.req_md5_lookup	=	tcp_v4_md5_lookup,
 
1704	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
 
1705#endif
1706#ifdef CONFIG_TCP_AO
1707	.ao_lookup	=	tcp_v4_ao_lookup_rsk,
1708	.ao_calc_key	=	tcp_v4_ao_calc_key_rsk,
1709	.ao_synack_hash	=	tcp_v4_ao_synack_hash,
1710#endif
1711#ifdef CONFIG_SYN_COOKIES
1712	.cookie_init_seq =	cookie_v4_init_sequence,
1713#endif
1714	.route_req	=	tcp_v4_route_req,
1715	.init_seq	=	tcp_v4_init_seq,
1716	.init_ts_off	=	tcp_v4_init_ts_off,
1717	.send_synack	=	tcp_v4_send_synack,
1718};
1719
1720int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1721{
 
 
 
 
 
 
 
 
 
 
 
 
1722	/* Never answer to SYNs send to broadcast or multicast */
1723	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1724		goto drop;
1725
1726	return tcp_conn_request(&tcp_request_sock_ops,
1727				&tcp_request_sock_ipv4_ops, sk, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1728
 
 
 
 
 
 
 
1729drop:
1730	tcp_listendrop(sk);
1731	return 0;
1732}
1733EXPORT_SYMBOL(tcp_v4_conn_request);
1734
1735
1736/*
1737 * The three way handshake has completed - we got a valid synack -
1738 * now create the new socket.
1739 */
1740struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
1741				  struct request_sock *req,
1742				  struct dst_entry *dst,
1743				  struct request_sock *req_unhash,
1744				  bool *own_req)
1745{
1746	struct inet_request_sock *ireq;
1747	bool found_dup_sk = false;
1748	struct inet_sock *newinet;
1749	struct tcp_sock *newtp;
1750	struct sock *newsk;
1751#ifdef CONFIG_TCP_MD5SIG
1752	const union tcp_md5_addr *addr;
1753	struct tcp_md5sig_key *key;
1754	int l3index;
1755#endif
1756	struct ip_options_rcu *inet_opt;
1757
1758	if (sk_acceptq_is_full(sk))
1759		goto exit_overflow;
1760
1761	newsk = tcp_create_openreq_child(sk, req, skb);
1762	if (!newsk)
1763		goto exit_nonewsk;
1764
1765	newsk->sk_gso_type = SKB_GSO_TCPV4;
1766	inet_sk_rx_dst_set(newsk, skb);
1767
1768	newtp		      = tcp_sk(newsk);
1769	newinet		      = inet_sk(newsk);
1770	ireq		      = inet_rsk(req);
1771	sk_daddr_set(newsk, ireq->ir_rmt_addr);
1772	sk_rcv_saddr_set(newsk, ireq->ir_loc_addr);
1773	newsk->sk_bound_dev_if = ireq->ir_iif;
1774	newinet->inet_saddr   = ireq->ir_loc_addr;
1775	inet_opt	      = rcu_dereference(ireq->ireq_opt);
1776	RCU_INIT_POINTER(newinet->inet_opt, inet_opt);
1777	newinet->mc_index     = inet_iif(skb);
1778	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1779	newinet->rcv_tos      = ip_hdr(skb)->tos;
1780	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1781	if (inet_opt)
1782		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1783	atomic_set(&newinet->inet_id, get_random_u16());
1784
1785	/* Set ToS of the new socket based upon the value of incoming SYN.
1786	 * ECT bits are set later in tcp_init_transfer().
1787	 */
1788	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reflect_tos))
1789		newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK;
1790
1791	if (!dst) {
1792		dst = inet_csk_route_child_sock(sk, newsk, req);
1793		if (!dst)
1794			goto put_and_exit;
1795	} else {
1796		/* syncookie case : see end of cookie_v4_check() */
1797	}
1798	sk_setup_caps(newsk, dst);
1799
1800	tcp_ca_openreq_child(newsk, dst);
1801
1802	tcp_sync_mss(newsk, dst_mtu(dst));
1803	newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst));
 
 
 
1804
1805	tcp_initialize_rcv_mss(newsk);
 
 
 
 
1806
1807#ifdef CONFIG_TCP_MD5SIG
1808	l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif);
1809	/* Copy over the MD5 key from the original socket */
1810	addr = (union tcp_md5_addr *)&newinet->inet_daddr;
1811	key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET);
1812	if (key && !tcp_rsk_used_ao(req)) {
1813		if (tcp_md5_key_copy(newsk, addr, AF_INET, 32, l3index, key))
1814			goto put_and_exit;
1815		sk_gso_disable(newsk);
 
 
 
 
 
 
 
1816	}
1817#endif
1818#ifdef CONFIG_TCP_AO
1819	if (tcp_ao_copy_all_matching(sk, newsk, req, skb, AF_INET))
1820		goto put_and_exit; /* OOM, release back memory */
1821#endif
1822
1823	if (__inet_inherit_port(sk, newsk) < 0)
1824		goto put_and_exit;
1825	*own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash),
1826				       &found_dup_sk);
1827	if (likely(*own_req)) {
1828		tcp_move_syn(newtp, req);
1829		ireq->ireq_opt = NULL;
1830	} else {
1831		newinet->inet_opt = NULL;
1832
1833		if (!req_unhash && found_dup_sk) {
1834			/* This code path should only be executed in the
1835			 * syncookie case only
1836			 */
1837			bh_unlock_sock(newsk);
1838			sock_put(newsk);
1839			newsk = NULL;
1840		}
1841	}
1842	return newsk;
1843
1844exit_overflow:
1845	NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1846exit_nonewsk:
1847	dst_release(dst);
1848exit:
1849	tcp_listendrop(sk);
1850	return NULL;
1851put_and_exit:
1852	newinet->inet_opt = NULL;
1853	inet_csk_prepare_forced_close(newsk);
1854	tcp_done(newsk);
1855	goto exit;
1856}
1857EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1858
1859static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb)
1860{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861#ifdef CONFIG_SYN_COOKIES
1862	const struct tcphdr *th = tcp_hdr(skb);
1863
1864	if (!th->syn)
1865		sk = cookie_v4_check(sk, skb);
1866#endif
1867	return sk;
1868}
1869
1870u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
1871			 struct tcphdr *th, u32 *cookie)
1872{
1873	u16 mss = 0;
1874#ifdef CONFIG_SYN_COOKIES
1875	mss = tcp_get_syncookie_mss(&tcp_request_sock_ops,
1876				    &tcp_request_sock_ipv4_ops, sk, th);
1877	if (mss) {
1878		*cookie = __cookie_v4_init_sequence(iph, th, &mss);
1879		tcp_synq_overflow(sk);
 
 
 
 
 
 
 
 
1880	}
1881#endif
1882	return mss;
1883}
1884
1885INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
1886							   u32));
1887/* The socket must have it's spinlock held when we get
1888 * here, unless it is a TCP_LISTEN socket.
1889 *
1890 * We have a potential double-lock case here, so even when
1891 * doing backlog processing we use the BH locking scheme.
1892 * This is because we cannot sleep with the original spinlock
1893 * held.
1894 */
1895int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1896{
1897	enum skb_drop_reason reason;
1898	struct sock *rsk;
 
 
 
 
 
 
 
 
 
 
1899
1900	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1901		struct dst_entry *dst;
1902
1903		dst = rcu_dereference_protected(sk->sk_rx_dst,
1904						lockdep_sock_is_held(sk));
1905
1906		sock_rps_save_rxhash(sk, skb);
1907		sk_mark_napi_id(sk, skb);
1908		if (dst) {
1909			if (sk->sk_rx_dst_ifindex != skb->skb_iif ||
1910			    !INDIRECT_CALL_1(dst->ops->check, ipv4_dst_check,
1911					     dst, 0)) {
1912				RCU_INIT_POINTER(sk->sk_rx_dst, NULL);
1913				dst_release(dst);
1914			}
1915		}
1916		tcp_rcv_established(sk, skb);
1917		return 0;
1918	}
1919
1920	if (tcp_checksum_complete(skb))
1921		goto csum_err;
1922
1923	if (sk->sk_state == TCP_LISTEN) {
1924		struct sock *nsk = tcp_v4_cookie_check(sk, skb);
 
 
1925
1926		if (!nsk)
1927			return 0;
1928		if (nsk != sk) {
1929			reason = tcp_child_process(sk, nsk, skb);
1930			if (reason) {
1931				rsk = nsk;
1932				goto reset;
1933			}
1934			return 0;
1935		}
1936	} else
1937		sock_rps_save_rxhash(sk, skb);
1938
1939	reason = tcp_rcv_state_process(sk, skb);
1940	if (reason) {
1941		rsk = sk;
1942		goto reset;
1943	}
1944	return 0;
1945
1946reset:
1947	tcp_v4_send_reset(rsk, skb, sk_rst_convert_drop_reason(reason));
1948discard:
1949	sk_skb_reason_drop(sk, skb, reason);
1950	/* Be careful here. If this function gets more complicated and
1951	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1952	 * might be destroyed here. This current version compiles correctly,
1953	 * but you have been warned.
1954	 */
1955	return 0;
1956
1957csum_err:
1958	reason = SKB_DROP_REASON_TCP_CSUM;
1959	trace_tcp_bad_csum(skb);
1960	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
1961	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
1962	goto discard;
1963}
1964EXPORT_SYMBOL(tcp_v4_do_rcv);
1965
1966int tcp_v4_early_demux(struct sk_buff *skb)
1967{
1968	struct net *net = dev_net(skb->dev);
1969	const struct iphdr *iph;
1970	const struct tcphdr *th;
1971	struct sock *sk;
1972
1973	if (skb->pkt_type != PACKET_HOST)
1974		return 0;
1975
1976	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1977		return 0;
1978
1979	iph = ip_hdr(skb);
1980	th = tcp_hdr(skb);
1981
1982	if (th->doff < sizeof(struct tcphdr) / 4)
1983		return 0;
1984
1985	sk = __inet_lookup_established(net, net->ipv4.tcp_death_row.hashinfo,
1986				       iph->saddr, th->source,
1987				       iph->daddr, ntohs(th->dest),
1988				       skb->skb_iif, inet_sdif(skb));
1989	if (sk) {
1990		skb->sk = sk;
1991		skb->destructor = sock_edemux;
1992		if (sk_fullsock(sk)) {
1993			struct dst_entry *dst = rcu_dereference(sk->sk_rx_dst);
1994
1995			if (dst)
1996				dst = dst_check(dst, 0);
1997			if (dst &&
1998			    sk->sk_rx_dst_ifindex == skb->skb_iif)
1999				skb_dst_set_noref(skb, dst);
2000		}
2001	}
2002	return 0;
2003}
2004
2005bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
2006		     enum skb_drop_reason *reason)
2007{
2008	u32 tail_gso_size, tail_gso_segs;
2009	struct skb_shared_info *shinfo;
2010	const struct tcphdr *th;
2011	struct tcphdr *thtail;
2012	struct sk_buff *tail;
2013	unsigned int hdrlen;
2014	bool fragstolen;
2015	u32 gso_segs;
2016	u32 gso_size;
2017	u64 limit;
2018	int delta;
2019
2020	/* In case all data was pulled from skb frags (in __pskb_pull_tail()),
2021	 * we can fix skb->truesize to its real value to avoid future drops.
2022	 * This is valid because skb is not yet charged to the socket.
2023	 * It has been noticed pure SACK packets were sometimes dropped
2024	 * (if cooked by drivers without copybreak feature).
2025	 */
2026	skb_condense(skb);
2027
2028	tcp_cleanup_skb(skb);
2029
2030	if (unlikely(tcp_checksum_complete(skb))) {
2031		bh_unlock_sock(sk);
2032		trace_tcp_bad_csum(skb);
2033		*reason = SKB_DROP_REASON_TCP_CSUM;
2034		__TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
2035		__TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
2036		return true;
2037	}
2038
2039	/* Attempt coalescing to last skb in backlog, even if we are
2040	 * above the limits.
2041	 * This is okay because skb capacity is limited to MAX_SKB_FRAGS.
2042	 */
2043	th = (const struct tcphdr *)skb->data;
2044	hdrlen = th->doff * 4;
2045
2046	tail = sk->sk_backlog.tail;
2047	if (!tail)
2048		goto no_coalesce;
2049	thtail = (struct tcphdr *)tail->data;
2050
2051	if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq ||
2052	    TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield ||
2053	    ((TCP_SKB_CB(tail)->tcp_flags |
2054	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) ||
2055	    !((TCP_SKB_CB(tail)->tcp_flags &
2056	      TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) ||
2057	    ((TCP_SKB_CB(tail)->tcp_flags ^
2058	      TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) ||
2059	    !tcp_skb_can_collapse_rx(tail, skb) ||
2060	    thtail->doff != th->doff ||
2061	    memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th)))
2062		goto no_coalesce;
2063
2064	__skb_pull(skb, hdrlen);
2065
2066	shinfo = skb_shinfo(skb);
2067	gso_size = shinfo->gso_size ?: skb->len;
2068	gso_segs = shinfo->gso_segs ?: 1;
2069
2070	shinfo = skb_shinfo(tail);
2071	tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen);
2072	tail_gso_segs = shinfo->gso_segs ?: 1;
2073
2074	if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
2075		TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq;
2076
2077		if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) {
2078			TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
2079			thtail->window = th->window;
2080		}
2081
2082		/* We have to update both TCP_SKB_CB(tail)->tcp_flags and
2083		 * thtail->fin, so that the fast path in tcp_rcv_established()
2084		 * is not entered if we append a packet with a FIN.
2085		 * SYN, RST, URG are not present.
2086		 * ACK is set on both packets.
2087		 * PSH : we do not really care in TCP stack,
2088		 *       at least for 'GRO' packets.
2089		 */
2090		thtail->fin |= th->fin;
2091		TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2092
2093		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2094			TCP_SKB_CB(tail)->has_rxtstamp = true;
2095			tail->tstamp = skb->tstamp;
2096			skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
2097		}
2098
2099		/* Not as strict as GRO. We only need to carry mss max value */
2100		shinfo->gso_size = max(gso_size, tail_gso_size);
2101		shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF);
2102
2103		sk->sk_backlog.len += delta;
2104		__NET_INC_STATS(sock_net(sk),
2105				LINUX_MIB_TCPBACKLOGCOALESCE);
2106		kfree_skb_partial(skb, fragstolen);
2107		return false;
2108	}
2109	__skb_push(skb, hdrlen);
2110
2111no_coalesce:
2112	/* sk->sk_backlog.len is reset only at the end of __release_sock().
2113	 * Both sk->sk_backlog.len and sk->sk_rmem_alloc could reach
2114	 * sk_rcvbuf in normal conditions.
2115	 */
2116	limit = ((u64)READ_ONCE(sk->sk_rcvbuf)) << 1;
2117
2118	limit += ((u32)READ_ONCE(sk->sk_sndbuf)) >> 1;
2119
2120	/* Only socket owner can try to collapse/prune rx queues
2121	 * to reduce memory overhead, so add a little headroom here.
2122	 * Few sockets backlog are possibly concurrently non empty.
2123	 */
2124	limit += 64 * 1024;
2125
2126	limit = min_t(u64, limit, UINT_MAX);
2127
2128	if (unlikely(sk_add_backlog(sk, skb, limit))) {
2129		bh_unlock_sock(sk);
2130		*reason = SKB_DROP_REASON_SOCKET_BACKLOG;
2131		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP);
2132		return true;
2133	}
2134	return false;
2135}
2136EXPORT_SYMBOL(tcp_add_backlog);
2137
2138int tcp_filter(struct sock *sk, struct sk_buff *skb)
2139{
2140	struct tcphdr *th = (struct tcphdr *)skb->data;
2141
2142	return sk_filter_trim_cap(sk, skb, th->doff * 4);
2143}
2144EXPORT_SYMBOL(tcp_filter);
2145
2146static void tcp_v4_restore_cb(struct sk_buff *skb)
2147{
2148	memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4,
2149		sizeof(struct inet_skb_parm));
2150}
2151
2152static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph,
2153			   const struct tcphdr *th)
2154{
2155	/* This is tricky : We move IPCB at its correct location into TCP_SKB_CB()
2156	 * barrier() makes sure compiler wont play fool^Waliasing games.
2157	 */
2158	memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb),
2159		sizeof(struct inet_skb_parm));
2160	barrier();
2161
2162	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
2163	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
2164				    skb->len - th->doff * 4);
2165	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
2166	TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th);
2167	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2168	TCP_SKB_CB(skb)->sacked	 = 0;
2169	TCP_SKB_CB(skb)->has_rxtstamp =
2170			skb->tstamp || skb_hwtstamps(skb)->hwtstamp;
2171}
2172
2173/*
2174 *	From tcp_input.c
2175 */
2176
2177int tcp_v4_rcv(struct sk_buff *skb)
2178{
2179	struct net *net = dev_net(skb->dev);
2180	enum skb_drop_reason drop_reason;
2181	int sdif = inet_sdif(skb);
2182	int dif = inet_iif(skb);
2183	const struct iphdr *iph;
2184	const struct tcphdr *th;
2185	struct sock *sk = NULL;
2186	bool refcounted;
2187	int ret;
2188	u32 isn;
2189
2190	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2191	if (skb->pkt_type != PACKET_HOST)
2192		goto discard_it;
2193
2194	/* Count it even if it's bad */
2195	__TCP_INC_STATS(net, TCP_MIB_INSEGS);
2196
2197	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
2198		goto discard_it;
2199
2200	th = (const struct tcphdr *)skb->data;
2201
2202	if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) {
2203		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2204		goto bad_packet;
2205	}
2206	if (!pskb_may_pull(skb, th->doff * 4))
2207		goto discard_it;
2208
2209	/* An explanation is required here, I think.
2210	 * Packet length and doff are validated by header prediction,
2211	 * provided case of th->doff==0 is eliminated.
2212	 * So, we defer the checks. */
 
 
2213
2214	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
2215		goto csum_error;
 
 
 
 
 
 
 
2216
2217	th = (const struct tcphdr *)skb->data;
2218	iph = ip_hdr(skb);
2219lookup:
2220	sk = __inet_lookup_skb(net->ipv4.tcp_death_row.hashinfo,
2221			       skb, __tcp_hdrlen(th), th->source,
2222			       th->dest, sdif, &refcounted);
2223	if (!sk)
2224		goto no_tcp_socket;
2225
 
2226	if (sk->sk_state == TCP_TIME_WAIT)
2227		goto do_time_wait;
2228
2229	if (sk->sk_state == TCP_NEW_SYN_RECV) {
2230		struct request_sock *req = inet_reqsk(sk);
2231		bool req_stolen = false;
2232		struct sock *nsk;
2233
2234		sk = req->rsk_listener;
2235		if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2236			drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2237		else
2238			drop_reason = tcp_inbound_hash(sk, req, skb,
2239						       &iph->saddr, &iph->daddr,
2240						       AF_INET, dif, sdif);
2241		if (unlikely(drop_reason)) {
2242			sk_drops_add(sk, skb);
2243			reqsk_put(req);
2244			goto discard_it;
2245		}
2246		if (tcp_checksum_complete(skb)) {
2247			reqsk_put(req);
2248			goto csum_error;
2249		}
2250		if (unlikely(sk->sk_state != TCP_LISTEN)) {
2251			nsk = reuseport_migrate_sock(sk, req_to_sk(req), skb);
2252			if (!nsk) {
2253				inet_csk_reqsk_queue_drop_and_put(sk, req);
2254				goto lookup;
2255			}
2256			sk = nsk;
2257			/* reuseport_migrate_sock() has already held one sk_refcnt
2258			 * before returning.
2259			 */
2260		} else {
2261			/* We own a reference on the listener, increase it again
2262			 * as we might lose it too soon.
2263			 */
2264			sock_hold(sk);
2265		}
2266		refcounted = true;
2267		nsk = NULL;
2268		if (!tcp_filter(sk, skb)) {
2269			th = (const struct tcphdr *)skb->data;
2270			iph = ip_hdr(skb);
2271			tcp_v4_fill_cb(skb, iph, th);
2272			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
2273		} else {
2274			drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2275		}
2276		if (!nsk) {
2277			reqsk_put(req);
2278			if (req_stolen) {
2279				/* Another cpu got exclusive access to req
2280				 * and created a full blown socket.
2281				 * Try to feed this packet to this socket
2282				 * instead of discarding it.
2283				 */
2284				tcp_v4_restore_cb(skb);
2285				sock_put(sk);
2286				goto lookup;
2287			}
2288			goto discard_and_relse;
2289		}
2290		nf_reset_ct(skb);
2291		if (nsk == sk) {
2292			reqsk_put(req);
2293			tcp_v4_restore_cb(skb);
2294		} else {
2295			drop_reason = tcp_child_process(sk, nsk, skb);
2296			if (drop_reason) {
2297				enum sk_rst_reason rst_reason;
2298
2299				rst_reason = sk_rst_convert_drop_reason(drop_reason);
2300				tcp_v4_send_reset(nsk, skb, rst_reason);
2301				goto discard_and_relse;
2302			}
2303			sock_put(sk);
2304			return 0;
2305		}
2306	}
2307
2308process:
2309	if (static_branch_unlikely(&ip4_min_ttl)) {
2310		/* min_ttl can be changed concurrently from do_ip_setsockopt() */
2311		if (unlikely(iph->ttl < READ_ONCE(inet_sk(sk)->min_ttl))) {
2312			__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
2313			drop_reason = SKB_DROP_REASON_TCP_MINTTL;
2314			goto discard_and_relse;
2315		}
2316	}
2317
2318	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2319		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2320		goto discard_and_relse;
2321	}
2322
2323	drop_reason = tcp_inbound_hash(sk, NULL, skb, &iph->saddr, &iph->daddr,
2324				       AF_INET, dif, sdif);
2325	if (drop_reason)
2326		goto discard_and_relse;
 
2327
2328	nf_reset_ct(skb);
2329
2330	if (tcp_filter(sk, skb)) {
2331		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2332		goto discard_and_relse;
2333	}
2334	th = (const struct tcphdr *)skb->data;
2335	iph = ip_hdr(skb);
2336	tcp_v4_fill_cb(skb, iph, th);
2337
2338	skb->dev = NULL;
2339
2340	if (sk->sk_state == TCP_LISTEN) {
2341		ret = tcp_v4_do_rcv(sk, skb);
2342		goto put_and_return;
2343	}
2344
2345	sk_incoming_cpu_update(sk);
2346
2347	bh_lock_sock_nested(sk);
2348	tcp_segs_in(tcp_sk(sk), skb);
2349	ret = 0;
2350	if (!sock_owned_by_user(sk)) {
2351		ret = tcp_v4_do_rcv(sk, skb);
2352	} else {
2353		if (tcp_add_backlog(sk, skb, &drop_reason))
2354			goto discard_and_relse;
 
 
 
 
 
 
 
 
 
 
 
 
2355	}
2356	bh_unlock_sock(sk);
2357
2358put_and_return:
2359	if (refcounted)
2360		sock_put(sk);
2361
2362	return ret;
2363
2364no_tcp_socket:
2365	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2366	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2367		goto discard_it;
2368
2369	tcp_v4_fill_cb(skb, iph, th);
2370
2371	if (tcp_checksum_complete(skb)) {
2372csum_error:
2373		drop_reason = SKB_DROP_REASON_TCP_CSUM;
2374		trace_tcp_bad_csum(skb);
2375		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
2376bad_packet:
2377		__TCP_INC_STATS(net, TCP_MIB_INERRS);
2378	} else {
2379		tcp_v4_send_reset(NULL, skb, sk_rst_convert_drop_reason(drop_reason));
2380	}
2381
2382discard_it:
2383	SKB_DR_OR(drop_reason, NOT_SPECIFIED);
2384	/* Discard frame. */
2385	sk_skb_reason_drop(sk, skb, drop_reason);
2386	return 0;
2387
2388discard_and_relse:
2389	sk_drops_add(sk, skb);
2390	if (refcounted)
2391		sock_put(sk);
2392	goto discard_it;
2393
2394do_time_wait:
2395	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2396		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2397		inet_twsk_put(inet_twsk(sk));
2398		goto discard_it;
2399	}
2400
2401	tcp_v4_fill_cb(skb, iph, th);
2402
2403	if (tcp_checksum_complete(skb)) {
2404		inet_twsk_put(inet_twsk(sk));
2405		goto csum_error;
2406	}
2407	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th, &isn)) {
2408	case TCP_TW_SYN: {
2409		struct sock *sk2 = inet_lookup_listener(net,
2410							net->ipv4.tcp_death_row.hashinfo,
2411							skb, __tcp_hdrlen(th),
2412							iph->saddr, th->source,
2413							iph->daddr, th->dest,
2414							inet_iif(skb),
2415							sdif);
2416		if (sk2) {
2417			inet_twsk_deschedule_put(inet_twsk(sk));
 
2418			sk = sk2;
2419			tcp_v4_restore_cb(skb);
2420			refcounted = false;
2421			__this_cpu_write(tcp_tw_isn, isn);
2422			goto process;
2423		}
 
2424	}
2425		/* to ACK */
2426		fallthrough;
2427	case TCP_TW_ACK:
2428		tcp_v4_timewait_ack(sk, skb);
2429		break;
2430	case TCP_TW_RST:
2431		tcp_v4_send_reset(sk, skb, SK_RST_REASON_TCP_TIMEWAIT_SOCKET);
2432		inet_twsk_deschedule_put(inet_twsk(sk));
2433		goto discard_it;
2434	case TCP_TW_SUCCESS:;
2435	}
2436	goto discard_it;
2437}
2438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439static struct timewait_sock_ops tcp_timewait_sock_ops = {
2440	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
 
2441	.twsk_destructor= tcp_twsk_destructor,
 
2442};
2443
2444void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2445{
2446	struct dst_entry *dst = skb_dst(skb);
2447
2448	if (dst && dst_hold_safe(dst)) {
2449		rcu_assign_pointer(sk->sk_rx_dst, dst);
2450		sk->sk_rx_dst_ifindex = skb->skb_iif;
2451	}
2452}
2453EXPORT_SYMBOL(inet_sk_rx_dst_set);
2454
2455const struct inet_connection_sock_af_ops ipv4_specific = {
2456	.queue_xmit	   = ip_queue_xmit,
2457	.send_check	   = tcp_v4_send_check,
2458	.rebuild_header	   = inet_sk_rebuild_header,
2459	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2460	.conn_request	   = tcp_v4_conn_request,
2461	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
 
2462	.net_header_len	   = sizeof(struct iphdr),
2463	.setsockopt	   = ip_setsockopt,
2464	.getsockopt	   = ip_getsockopt,
2465	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2466	.sockaddr_len	   = sizeof(struct sockaddr_in),
2467	.mtu_reduced	   = tcp_v4_mtu_reduced,
 
 
 
 
2468};
2469EXPORT_SYMBOL(ipv4_specific);
2470
2471#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2472static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2473#ifdef CONFIG_TCP_MD5SIG
2474	.md5_lookup		= tcp_v4_md5_lookup,
2475	.calc_md5_hash		= tcp_v4_md5_hash_skb,
 
2476	.md5_parse		= tcp_v4_parse_md5_keys,
2477#endif
2478#ifdef CONFIG_TCP_AO
2479	.ao_lookup		= tcp_v4_ao_lookup,
2480	.calc_ao_hash		= tcp_v4_ao_hash_skb,
2481	.ao_parse		= tcp_v4_parse_ao,
2482	.ao_calc_key_sk		= tcp_v4_ao_calc_key_sk,
2483#endif
2484};
2485#endif
2486
2487/* NOTE: A lot of things set to zero explicitly by call to
2488 *       sk_alloc() so need not be done here.
2489 */
2490static int tcp_v4_init_sock(struct sock *sk)
2491{
2492	struct inet_connection_sock *icsk = inet_csk(sk);
 
 
 
 
 
2493
2494	tcp_init_sock(sk);
 
2495
2496	icsk->icsk_af_ops = &ipv4_specific;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497
2498#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
2499	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2500#endif
2501
2502	return 0;
2503}
2504
 
 
2505#ifdef CONFIG_TCP_MD5SIG
2506static void tcp_md5sig_info_free_rcu(struct rcu_head *head)
2507{
2508	struct tcp_md5sig_info *md5sig;
2509
2510	md5sig = container_of(head, struct tcp_md5sig_info, rcu);
2511	kfree(md5sig);
2512	static_branch_slow_dec_deferred(&tcp_md5_needed);
2513	tcp_md5_release_sigpool();
2514}
2515#endif
 
 
 
 
 
 
 
 
 
2516
2517static void tcp_release_user_frags(struct sock *sk)
2518{
2519#ifdef CONFIG_PAGE_POOL
2520	unsigned long index;
2521	void *netmem;
2522
2523	xa_for_each(&sk->sk_user_frags, index, netmem)
2524		WARN_ON_ONCE(!napi_pp_put_page((__force netmem_ref)netmem));
2525#endif
2526}
2527
2528void tcp_v4_destroy_sock(struct sock *sk)
2529{
2530	struct tcp_sock *tp = tcp_sk(sk);
2531
2532	tcp_release_user_frags(sk);
2533
2534	xa_destroy(&sk->sk_user_frags);
2535
2536	trace_tcp_destroy_sock(sk);
2537
2538	tcp_clear_xmit_timers(sk);
2539
2540	tcp_cleanup_congestion_control(sk);
2541
2542	tcp_cleanup_ulp(sk);
2543
2544	/* Cleanup up the write buffer. */
2545	tcp_write_queue_purge(sk);
2546
2547	/* Check if we want to disable active TFO */
2548	tcp_fastopen_active_disable_ofo_check(sk);
2549
2550	/* Cleans up our, hopefully empty, out_of_order_queue. */
2551	skb_rbtree_purge(&tp->out_of_order_queue);
2552
2553#ifdef CONFIG_TCP_MD5SIG
2554	/* Clean up the MD5 key list, if any */
2555	if (tp->md5sig_info) {
2556		struct tcp_md5sig_info *md5sig;
 
 
 
 
2557
2558		md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
2559		tcp_clear_md5_list(sk);
2560		call_rcu(&md5sig->rcu, tcp_md5sig_info_free_rcu);
2561		rcu_assign_pointer(tp->md5sig_info, NULL);
2562	}
2563#endif
2564	tcp_ao_destroy_sock(sk, false);
 
 
2565
2566	/* Clean up a referenced TCP bind bucket. */
2567	if (inet_csk(sk)->icsk_bind_hash)
2568		inet_put_port(sk);
2569
2570	BUG_ON(rcu_access_pointer(tp->fastopen_rsk));
 
 
 
 
 
 
2571
2572	/* If socket is aborted during connect operation */
2573	tcp_free_fastopen_req(tp);
2574	tcp_fastopen_destroy_cipher(sk);
2575	tcp_saved_syn_free(tp);
 
 
2576
2577	sk_sockets_allocated_dec(sk);
2578}
2579EXPORT_SYMBOL(tcp_v4_destroy_sock);
2580
2581#ifdef CONFIG_PROC_FS
2582/* Proc filesystem TCP sock list dumping. */
2583
2584static unsigned short seq_file_family(const struct seq_file *seq);
2585
2586static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2587{
2588	unsigned short family = seq_file_family(seq);
2589
2590	/* AF_UNSPEC is used as a match all */
2591	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2592		net_eq(sock_net(sk), seq_file_net(seq)));
2593}
2594
2595/* Find a non empty bucket (starting from st->bucket)
2596 * and return the first sk from it.
2597 */
2598static void *listening_get_first(struct seq_file *seq)
2599{
2600	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2601	struct tcp_iter_state *st = seq->private;
2602
2603	st->offset = 0;
2604	for (; st->bucket <= hinfo->lhash2_mask; st->bucket++) {
2605		struct inet_listen_hashbucket *ilb2;
2606		struct hlist_nulls_node *node;
2607		struct sock *sk;
2608
2609		ilb2 = &hinfo->lhash2[st->bucket];
2610		if (hlist_nulls_empty(&ilb2->nulls_head))
2611			continue;
2612
2613		spin_lock(&ilb2->lock);
2614		sk_nulls_for_each(sk, node, &ilb2->nulls_head) {
2615			if (seq_sk_match(seq, sk))
2616				return sk;
2617		}
2618		spin_unlock(&ilb2->lock);
2619	}
2620
2621	return NULL;
2622}
2623
2624/* Find the next sk of "cur" within the same bucket (i.e. st->bucket).
2625 * If "cur" is the last one in the st->bucket,
2626 * call listening_get_first() to return the first sk of the next
2627 * non empty bucket.
2628 */
2629static void *listening_get_next(struct seq_file *seq, void *cur)
2630{
2631	struct tcp_iter_state *st = seq->private;
2632	struct inet_listen_hashbucket *ilb2;
2633	struct hlist_nulls_node *node;
2634	struct inet_hashinfo *hinfo;
2635	struct sock *sk = cur;
 
 
 
2636
 
 
 
 
 
 
 
 
2637	++st->num;
2638	++st->offset;
2639
2640	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2641	sk_nulls_for_each_from(sk, node) {
2642		if (seq_sk_match(seq, sk))
2643			return sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2644	}
2645
2646	hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2647	ilb2 = &hinfo->lhash2[st->bucket];
2648	spin_unlock(&ilb2->lock);
2649	++st->bucket;
2650	return listening_get_first(seq);
2651}
2652
2653static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2654{
2655	struct tcp_iter_state *st = seq->private;
2656	void *rc;
2657
2658	st->bucket = 0;
2659	st->offset = 0;
2660	rc = listening_get_first(seq);
2661
2662	while (rc && *pos) {
2663		rc = listening_get_next(seq, rc);
2664		--*pos;
2665	}
2666	return rc;
2667}
2668
2669static inline bool empty_bucket(struct inet_hashinfo *hinfo,
2670				const struct tcp_iter_state *st)
2671{
2672	return hlist_nulls_empty(&hinfo->ehash[st->bucket].chain);
 
2673}
2674
2675/*
2676 * Get first established socket starting from bucket given in st->bucket.
2677 * If st->bucket is zero, the very first socket in the hash is returned.
2678 */
2679static void *established_get_first(struct seq_file *seq)
2680{
2681	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2682	struct tcp_iter_state *st = seq->private;
 
 
2683
2684	st->offset = 0;
2685	for (; st->bucket <= hinfo->ehash_mask; ++st->bucket) {
2686		struct sock *sk;
2687		struct hlist_nulls_node *node;
2688		spinlock_t *lock = inet_ehash_lockp(hinfo, st->bucket);
2689
2690		cond_resched();
2691
2692		/* Lockless fast path for the common case of empty buckets */
2693		if (empty_bucket(hinfo, st))
2694			continue;
2695
2696		spin_lock_bh(lock);
2697		sk_nulls_for_each(sk, node, &hinfo->ehash[st->bucket].chain) {
2698			if (seq_sk_match(seq, sk))
2699				return sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2700		}
2701		spin_unlock_bh(lock);
 
2702	}
2703
2704	return NULL;
2705}
2706
2707static void *established_get_next(struct seq_file *seq, void *cur)
2708{
2709	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
 
 
2710	struct tcp_iter_state *st = seq->private;
2711	struct hlist_nulls_node *node;
2712	struct sock *sk = cur;
2713
2714	++st->num;
2715	++st->offset;
2716
2717	sk = sk_nulls_next(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718
2719	sk_nulls_for_each_from(sk, node) {
2720		if (seq_sk_match(seq, sk))
2721			return sk;
2722	}
2723
2724	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2725	++st->bucket;
2726	return established_get_first(seq);
 
 
 
 
2727}
2728
2729static void *established_get_idx(struct seq_file *seq, loff_t pos)
2730{
2731	struct tcp_iter_state *st = seq->private;
2732	void *rc;
2733
2734	st->bucket = 0;
2735	rc = established_get_first(seq);
2736
2737	while (rc && pos) {
2738		rc = established_get_next(seq, rc);
2739		--pos;
2740	}
2741	return rc;
2742}
2743
2744static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2745{
2746	void *rc;
2747	struct tcp_iter_state *st = seq->private;
2748
2749	st->state = TCP_SEQ_STATE_LISTENING;
2750	rc	  = listening_get_idx(seq, &pos);
2751
2752	if (!rc) {
2753		st->state = TCP_SEQ_STATE_ESTABLISHED;
2754		rc	  = established_get_idx(seq, pos);
2755	}
2756
2757	return rc;
2758}
2759
2760static void *tcp_seek_last_pos(struct seq_file *seq)
2761{
2762	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2763	struct tcp_iter_state *st = seq->private;
2764	int bucket = st->bucket;
2765	int offset = st->offset;
2766	int orig_num = st->num;
2767	void *rc = NULL;
2768
2769	switch (st->state) {
 
2770	case TCP_SEQ_STATE_LISTENING:
2771		if (st->bucket > hinfo->lhash2_mask)
2772			break;
2773		rc = listening_get_first(seq);
2774		while (offset-- && rc && bucket == st->bucket)
 
2775			rc = listening_get_next(seq, rc);
2776		if (rc)
2777			break;
2778		st->bucket = 0;
 
 
 
2779		st->state = TCP_SEQ_STATE_ESTABLISHED;
2780		fallthrough;
2781	case TCP_SEQ_STATE_ESTABLISHED:
2782		if (st->bucket > hinfo->ehash_mask)
2783			break;
2784		rc = established_get_first(seq);
2785		while (offset-- && rc && bucket == st->bucket)
2786			rc = established_get_next(seq, rc);
2787	}
2788
2789	st->num = orig_num;
2790
2791	return rc;
2792}
2793
2794void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2795{
2796	struct tcp_iter_state *st = seq->private;
2797	void *rc;
2798
2799	if (*pos && *pos == st->last_pos) {
2800		rc = tcp_seek_last_pos(seq);
2801		if (rc)
2802			goto out;
2803	}
2804
2805	st->state = TCP_SEQ_STATE_LISTENING;
2806	st->num = 0;
2807	st->bucket = 0;
2808	st->offset = 0;
2809	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2810
2811out:
2812	st->last_pos = *pos;
2813	return rc;
2814}
2815EXPORT_SYMBOL(tcp_seq_start);
2816
2817void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2818{
2819	struct tcp_iter_state *st = seq->private;
2820	void *rc = NULL;
2821
2822	if (v == SEQ_START_TOKEN) {
2823		rc = tcp_get_idx(seq, 0);
2824		goto out;
2825	}
2826
2827	switch (st->state) {
 
2828	case TCP_SEQ_STATE_LISTENING:
2829		rc = listening_get_next(seq, v);
2830		if (!rc) {
2831			st->state = TCP_SEQ_STATE_ESTABLISHED;
2832			st->bucket = 0;
2833			st->offset = 0;
2834			rc	  = established_get_first(seq);
2835		}
2836		break;
2837	case TCP_SEQ_STATE_ESTABLISHED:
 
2838		rc = established_get_next(seq, v);
2839		break;
2840	}
2841out:
2842	++*pos;
2843	st->last_pos = *pos;
2844	return rc;
2845}
2846EXPORT_SYMBOL(tcp_seq_next);
2847
2848void tcp_seq_stop(struct seq_file *seq, void *v)
2849{
2850	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
2851	struct tcp_iter_state *st = seq->private;
2852
2853	switch (st->state) {
 
 
 
 
 
2854	case TCP_SEQ_STATE_LISTENING:
2855		if (v != SEQ_START_TOKEN)
2856			spin_unlock(&hinfo->lhash2[st->bucket].lock);
2857		break;
 
2858	case TCP_SEQ_STATE_ESTABLISHED:
2859		if (v)
2860			spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
2861		break;
2862	}
2863}
2864EXPORT_SYMBOL(tcp_seq_stop);
2865
2866static void get_openreq4(const struct request_sock *req,
2867			 struct seq_file *f, int i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2868{
2869	const struct inet_request_sock *ireq = inet_rsk(req);
2870	long delta = req->rsk_timer.expires - jiffies;
2871
2872	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2873		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2874		i,
2875		ireq->ir_loc_addr,
2876		ireq->ir_num,
2877		ireq->ir_rmt_addr,
2878		ntohs(ireq->ir_rmt_port),
2879		TCP_SYN_RECV,
2880		0, 0, /* could print option size, but that is af dependent. */
2881		1,    /* timers active (only the expire timer) */
2882		jiffies_delta_to_clock_t(delta),
2883		req->num_timeout,
2884		from_kuid_munged(seq_user_ns(f),
2885				 sock_i_uid(req->rsk_listener)),
2886		0,  /* non standard timer */
2887		0, /* open_requests have no inode */
2888		0,
2889		req);
 
2890}
2891
2892static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2893{
2894	int timer_active;
2895	unsigned long timer_expires;
2896	const struct tcp_sock *tp = tcp_sk(sk);
2897	const struct inet_connection_sock *icsk = inet_csk(sk);
2898	const struct inet_sock *inet = inet_sk(sk);
2899	const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq;
2900	__be32 dest = inet->inet_daddr;
2901	__be32 src = inet->inet_rcv_saddr;
2902	__u16 destp = ntohs(inet->inet_dport);
2903	__u16 srcp = ntohs(inet->inet_sport);
2904	u8 icsk_pending;
2905	int rx_queue;
2906	int state;
2907
2908	icsk_pending = smp_load_acquire(&icsk->icsk_pending);
2909	if (icsk_pending == ICSK_TIME_RETRANS ||
2910	    icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2911	    icsk_pending == ICSK_TIME_LOSS_PROBE) {
2912		timer_active	= 1;
2913		timer_expires	= icsk->icsk_timeout;
2914	} else if (icsk_pending == ICSK_TIME_PROBE0) {
2915		timer_active	= 4;
2916		timer_expires	= icsk->icsk_timeout;
2917	} else if (timer_pending(&sk->sk_timer)) {
2918		timer_active	= 2;
2919		timer_expires	= sk->sk_timer.expires;
2920	} else {
2921		timer_active	= 0;
2922		timer_expires = jiffies;
2923	}
2924
2925	state = inet_sk_state_load(sk);
2926	if (state == TCP_LISTEN)
2927		rx_queue = READ_ONCE(sk->sk_ack_backlog);
2928	else
2929		/* Because we don't lock the socket,
2930		 * we might find a transient negative value.
2931		 */
2932		rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) -
2933				      READ_ONCE(tp->copied_seq), 0);
2934
2935	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2936			"%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2937		i, src, srcp, dest, destp, state,
2938		READ_ONCE(tp->write_seq) - tp->snd_una,
2939		rx_queue,
2940		timer_active,
2941		jiffies_delta_to_clock_t(timer_expires - jiffies),
2942		icsk->icsk_retransmits,
2943		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2944		icsk->icsk_probes_out,
2945		sock_i_ino(sk),
2946		refcount_read(&sk->sk_refcnt), sk,
2947		jiffies_to_clock_t(icsk->icsk_rto),
2948		jiffies_to_clock_t(icsk->icsk_ack.ato),
2949		(icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk),
2950		tcp_snd_cwnd(tp),
2951		state == TCP_LISTEN ?
2952		    fastopenq->max_qlen :
2953		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2954}
2955
2956static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2957			       struct seq_file *f, int i)
2958{
2959	long delta = tw->tw_timer.expires - jiffies;
2960	__be32 dest, src;
2961	__u16 destp, srcp;
 
 
 
 
2962
2963	dest  = tw->tw_daddr;
2964	src   = tw->tw_rcv_saddr;
2965	destp = ntohs(tw->tw_dport);
2966	srcp  = ntohs(tw->tw_sport);
2967
2968	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2969		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2970		i, src, srcp, dest, destp, READ_ONCE(tw->tw_substate), 0, 0,
2971		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2972		refcount_read(&tw->tw_refcnt), tw);
2973}
2974
2975#define TMPSZ 150
2976
2977static int tcp4_seq_show(struct seq_file *seq, void *v)
2978{
2979	struct tcp_iter_state *st;
2980	struct sock *sk = v;
2981
2982	seq_setwidth(seq, TMPSZ - 1);
2983	if (v == SEQ_START_TOKEN) {
2984		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
 
2985			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2986			   "inode");
2987		goto out;
2988	}
2989	st = seq->private;
2990
2991	if (sk->sk_state == TCP_TIME_WAIT)
2992		get_timewait4_sock(v, seq, st->num);
2993	else if (sk->sk_state == TCP_NEW_SYN_RECV)
2994		get_openreq4(v, seq, st->num);
2995	else
2996		get_tcp4_sock(v, seq, st->num);
 
 
 
 
 
 
 
2997out:
2998	seq_pad(seq, '\n');
2999	return 0;
3000}
3001
3002#ifdef CONFIG_BPF_SYSCALL
3003struct bpf_tcp_iter_state {
3004	struct tcp_iter_state state;
3005	unsigned int cur_sk;
3006	unsigned int end_sk;
3007	unsigned int max_sk;
3008	struct sock **batch;
3009	bool st_bucket_done;
3010};
3011
3012struct bpf_iter__tcp {
3013	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3014	__bpf_md_ptr(struct sock_common *, sk_common);
3015	uid_t uid __aligned(8);
3016};
3017
3018static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3019			     struct sock_common *sk_common, uid_t uid)
3020{
3021	struct bpf_iter__tcp ctx;
3022
3023	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3024	ctx.meta = meta;
3025	ctx.sk_common = sk_common;
3026	ctx.uid = uid;
3027	return bpf_iter_run_prog(prog, &ctx);
3028}
3029
3030static void bpf_iter_tcp_put_batch(struct bpf_tcp_iter_state *iter)
3031{
3032	while (iter->cur_sk < iter->end_sk)
3033		sock_gen_put(iter->batch[iter->cur_sk++]);
3034}
3035
3036static int bpf_iter_tcp_realloc_batch(struct bpf_tcp_iter_state *iter,
3037				      unsigned int new_batch_sz)
3038{
3039	struct sock **new_batch;
3040
3041	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3042			     GFP_USER | __GFP_NOWARN);
3043	if (!new_batch)
3044		return -ENOMEM;
3045
3046	bpf_iter_tcp_put_batch(iter);
3047	kvfree(iter->batch);
3048	iter->batch = new_batch;
3049	iter->max_sk = new_batch_sz;
3050
3051	return 0;
3052}
3053
3054static unsigned int bpf_iter_tcp_listening_batch(struct seq_file *seq,
3055						 struct sock *start_sk)
3056{
3057	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3058	struct bpf_tcp_iter_state *iter = seq->private;
3059	struct tcp_iter_state *st = &iter->state;
3060	struct hlist_nulls_node *node;
3061	unsigned int expected = 1;
3062	struct sock *sk;
3063
3064	sock_hold(start_sk);
3065	iter->batch[iter->end_sk++] = start_sk;
3066
3067	sk = sk_nulls_next(start_sk);
3068	sk_nulls_for_each_from(sk, node) {
3069		if (seq_sk_match(seq, sk)) {
3070			if (iter->end_sk < iter->max_sk) {
3071				sock_hold(sk);
3072				iter->batch[iter->end_sk++] = sk;
3073			}
3074			expected++;
3075		}
3076	}
3077	spin_unlock(&hinfo->lhash2[st->bucket].lock);
3078
3079	return expected;
3080}
3081
3082static unsigned int bpf_iter_tcp_established_batch(struct seq_file *seq,
3083						   struct sock *start_sk)
3084{
3085	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3086	struct bpf_tcp_iter_state *iter = seq->private;
3087	struct tcp_iter_state *st = &iter->state;
3088	struct hlist_nulls_node *node;
3089	unsigned int expected = 1;
3090	struct sock *sk;
3091
3092	sock_hold(start_sk);
3093	iter->batch[iter->end_sk++] = start_sk;
3094
3095	sk = sk_nulls_next(start_sk);
3096	sk_nulls_for_each_from(sk, node) {
3097		if (seq_sk_match(seq, sk)) {
3098			if (iter->end_sk < iter->max_sk) {
3099				sock_hold(sk);
3100				iter->batch[iter->end_sk++] = sk;
3101			}
3102			expected++;
3103		}
3104	}
3105	spin_unlock_bh(inet_ehash_lockp(hinfo, st->bucket));
3106
3107	return expected;
3108}
3109
3110static struct sock *bpf_iter_tcp_batch(struct seq_file *seq)
3111{
3112	struct inet_hashinfo *hinfo = seq_file_net(seq)->ipv4.tcp_death_row.hashinfo;
3113	struct bpf_tcp_iter_state *iter = seq->private;
3114	struct tcp_iter_state *st = &iter->state;
3115	unsigned int expected;
3116	bool resized = false;
3117	struct sock *sk;
3118
3119	/* The st->bucket is done.  Directly advance to the next
3120	 * bucket instead of having the tcp_seek_last_pos() to skip
3121	 * one by one in the current bucket and eventually find out
3122	 * it has to advance to the next bucket.
3123	 */
3124	if (iter->st_bucket_done) {
3125		st->offset = 0;
3126		st->bucket++;
3127		if (st->state == TCP_SEQ_STATE_LISTENING &&
3128		    st->bucket > hinfo->lhash2_mask) {
3129			st->state = TCP_SEQ_STATE_ESTABLISHED;
3130			st->bucket = 0;
3131		}
3132	}
3133
3134again:
3135	/* Get a new batch */
3136	iter->cur_sk = 0;
3137	iter->end_sk = 0;
3138	iter->st_bucket_done = false;
3139
3140	sk = tcp_seek_last_pos(seq);
3141	if (!sk)
3142		return NULL; /* Done */
3143
3144	if (st->state == TCP_SEQ_STATE_LISTENING)
3145		expected = bpf_iter_tcp_listening_batch(seq, sk);
3146	else
3147		expected = bpf_iter_tcp_established_batch(seq, sk);
3148
3149	if (iter->end_sk == expected) {
3150		iter->st_bucket_done = true;
3151		return sk;
3152	}
3153
3154	if (!resized && !bpf_iter_tcp_realloc_batch(iter, expected * 3 / 2)) {
3155		resized = true;
3156		goto again;
3157	}
3158
3159	return sk;
3160}
3161
3162static void *bpf_iter_tcp_seq_start(struct seq_file *seq, loff_t *pos)
3163{
3164	/* bpf iter does not support lseek, so it always
3165	 * continue from where it was stop()-ped.
3166	 */
3167	if (*pos)
3168		return bpf_iter_tcp_batch(seq);
3169
3170	return SEQ_START_TOKEN;
3171}
3172
3173static void *bpf_iter_tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3174{
3175	struct bpf_tcp_iter_state *iter = seq->private;
3176	struct tcp_iter_state *st = &iter->state;
3177	struct sock *sk;
3178
3179	/* Whenever seq_next() is called, the iter->cur_sk is
3180	 * done with seq_show(), so advance to the next sk in
3181	 * the batch.
3182	 */
3183	if (iter->cur_sk < iter->end_sk) {
3184		/* Keeping st->num consistent in tcp_iter_state.
3185		 * bpf_iter_tcp does not use st->num.
3186		 * meta.seq_num is used instead.
3187		 */
3188		st->num++;
3189		/* Move st->offset to the next sk in the bucket such that
3190		 * the future start() will resume at st->offset in
3191		 * st->bucket.  See tcp_seek_last_pos().
3192		 */
3193		st->offset++;
3194		sock_gen_put(iter->batch[iter->cur_sk++]);
3195	}
3196
3197	if (iter->cur_sk < iter->end_sk)
3198		sk = iter->batch[iter->cur_sk];
3199	else
3200		sk = bpf_iter_tcp_batch(seq);
3201
3202	++*pos;
3203	/* Keeping st->last_pos consistent in tcp_iter_state.
3204	 * bpf iter does not do lseek, so st->last_pos always equals to *pos.
3205	 */
3206	st->last_pos = *pos;
3207	return sk;
3208}
3209
3210static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v)
3211{
3212	struct bpf_iter_meta meta;
3213	struct bpf_prog *prog;
3214	struct sock *sk = v;
3215	uid_t uid;
3216	int ret;
3217
3218	if (v == SEQ_START_TOKEN)
3219		return 0;
3220
3221	if (sk_fullsock(sk))
3222		lock_sock(sk);
3223
3224	if (unlikely(sk_unhashed(sk))) {
3225		ret = SEQ_SKIP;
3226		goto unlock;
3227	}
3228
3229	if (sk->sk_state == TCP_TIME_WAIT) {
3230		uid = 0;
3231	} else if (sk->sk_state == TCP_NEW_SYN_RECV) {
3232		const struct request_sock *req = v;
3233
3234		uid = from_kuid_munged(seq_user_ns(seq),
3235				       sock_i_uid(req->rsk_listener));
3236	} else {
3237		uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3238	}
3239
3240	meta.seq = seq;
3241	prog = bpf_iter_get_info(&meta, false);
3242	ret = tcp_prog_seq_show(prog, &meta, v, uid);
3243
3244unlock:
3245	if (sk_fullsock(sk))
3246		release_sock(sk);
3247	return ret;
3248
3249}
3250
3251static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v)
3252{
3253	struct bpf_tcp_iter_state *iter = seq->private;
3254	struct bpf_iter_meta meta;
3255	struct bpf_prog *prog;
3256
3257	if (!v) {
3258		meta.seq = seq;
3259		prog = bpf_iter_get_info(&meta, true);
3260		if (prog)
3261			(void)tcp_prog_seq_show(prog, &meta, v, 0);
3262	}
3263
3264	if (iter->cur_sk < iter->end_sk) {
3265		bpf_iter_tcp_put_batch(iter);
3266		iter->st_bucket_done = false;
3267	}
3268}
3269
3270static const struct seq_operations bpf_iter_tcp_seq_ops = {
3271	.show		= bpf_iter_tcp_seq_show,
3272	.start		= bpf_iter_tcp_seq_start,
3273	.next		= bpf_iter_tcp_seq_next,
3274	.stop		= bpf_iter_tcp_seq_stop,
3275};
3276#endif
3277static unsigned short seq_file_family(const struct seq_file *seq)
3278{
3279	const struct tcp_seq_afinfo *afinfo;
3280
3281#ifdef CONFIG_BPF_SYSCALL
3282	/* Iterated from bpf_iter.  Let the bpf prog to filter instead. */
3283	if (seq->op == &bpf_iter_tcp_seq_ops)
3284		return AF_UNSPEC;
3285#endif
3286
3287	/* Iterated from proc fs */
3288	afinfo = pde_data(file_inode(seq->file));
3289	return afinfo->family;
3290}
3291
3292static const struct seq_operations tcp4_seq_ops = {
3293	.show		= tcp4_seq_show,
3294	.start		= tcp_seq_start,
3295	.next		= tcp_seq_next,
3296	.stop		= tcp_seq_stop,
3297};
3298
3299static struct tcp_seq_afinfo tcp4_seq_afinfo = {
 
3300	.family		= AF_INET,
 
 
 
 
 
 
3301};
3302
3303static int __net_init tcp4_proc_init_net(struct net *net)
3304{
3305	if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops,
3306			sizeof(struct tcp_iter_state), &tcp4_seq_afinfo))
3307		return -ENOMEM;
3308	return 0;
3309}
3310
3311static void __net_exit tcp4_proc_exit_net(struct net *net)
3312{
3313	remove_proc_entry("tcp", net->proc_net);
3314}
3315
3316static struct pernet_operations tcp4_net_ops = {
3317	.init = tcp4_proc_init_net,
3318	.exit = tcp4_proc_exit_net,
3319};
3320
3321int __init tcp4_proc_init(void)
3322{
3323	return register_pernet_subsys(&tcp4_net_ops);
3324}
3325
3326void tcp4_proc_exit(void)
3327{
3328	unregister_pernet_subsys(&tcp4_net_ops);
3329}
3330#endif /* CONFIG_PROC_FS */
3331
3332/* @wake is one when sk_stream_write_space() calls us.
3333 * This sends EPOLLOUT only if notsent_bytes is half the limit.
3334 * This mimics the strategy used in sock_def_write_space().
3335 */
3336bool tcp_stream_memory_free(const struct sock *sk, int wake)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3337{
3338	const struct tcp_sock *tp = tcp_sk(sk);
3339	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
3340			    READ_ONCE(tp->snd_nxt);
 
 
 
3341
3342	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
3343}
3344EXPORT_SYMBOL(tcp_stream_memory_free);
3345
3346struct proto tcp_prot = {
3347	.name			= "TCP",
3348	.owner			= THIS_MODULE,
3349	.close			= tcp_close,
3350	.pre_connect		= tcp_v4_pre_connect,
3351	.connect		= tcp_v4_connect,
3352	.disconnect		= tcp_disconnect,
3353	.accept			= inet_csk_accept,
3354	.ioctl			= tcp_ioctl,
3355	.init			= tcp_v4_init_sock,
3356	.destroy		= tcp_v4_destroy_sock,
3357	.shutdown		= tcp_shutdown,
3358	.setsockopt		= tcp_setsockopt,
3359	.getsockopt		= tcp_getsockopt,
3360	.bpf_bypass_getsockopt	= tcp_bpf_bypass_getsockopt,
3361	.keepalive		= tcp_set_keepalive,
3362	.recvmsg		= tcp_recvmsg,
3363	.sendmsg		= tcp_sendmsg,
3364	.splice_eof		= tcp_splice_eof,
3365	.backlog_rcv		= tcp_v4_do_rcv,
3366	.release_cb		= tcp_release_cb,
3367	.hash			= inet_hash,
3368	.unhash			= inet_unhash,
3369	.get_port		= inet_csk_get_port,
3370	.put_port		= inet_put_port,
3371#ifdef CONFIG_BPF_SYSCALL
3372	.psock_update_sk_prot	= tcp_bpf_update_proto,
3373#endif
3374	.enter_memory_pressure	= tcp_enter_memory_pressure,
3375	.leave_memory_pressure	= tcp_leave_memory_pressure,
3376	.stream_memory_free	= tcp_stream_memory_free,
3377	.sockets_allocated	= &tcp_sockets_allocated,
3378	.orphan_count		= &tcp_orphan_count,
3379
3380	.memory_allocated	= &tcp_memory_allocated,
3381	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3382
3383	.memory_pressure	= &tcp_memory_pressure,
3384	.sysctl_mem		= sysctl_tcp_mem,
3385	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3386	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3387	.max_header		= MAX_TCP_HEADER,
3388	.obj_size		= sizeof(struct tcp_sock),
3389	.slab_flags		= SLAB_TYPESAFE_BY_RCU,
3390	.twsk_prot		= &tcp_timewait_sock_ops,
3391	.rsk_prot		= &tcp_request_sock_ops,
3392	.h.hashinfo		= NULL,
3393	.no_autobind		= true,
3394	.diag_destroy		= tcp_abort,
 
 
 
3395};
3396EXPORT_SYMBOL(tcp_prot);
3397
3398static void __net_exit tcp_sk_exit(struct net *net)
 
3399{
3400	if (net->ipv4.tcp_congestion_control)
3401		bpf_module_put(net->ipv4.tcp_congestion_control,
3402			       net->ipv4.tcp_congestion_control->owner);
3403}
3404
3405static void __net_init tcp_set_hashinfo(struct net *net)
3406{
3407	struct inet_hashinfo *hinfo;
3408	unsigned int ehash_entries;
3409	struct net *old_net;
3410
3411	if (net_eq(net, &init_net))
3412		goto fallback;
3413
3414	old_net = current->nsproxy->net_ns;
3415	ehash_entries = READ_ONCE(old_net->ipv4.sysctl_tcp_child_ehash_entries);
3416	if (!ehash_entries)
3417		goto fallback;
3418
3419	ehash_entries = roundup_pow_of_two(ehash_entries);
3420	hinfo = inet_pernet_hashinfo_alloc(&tcp_hashinfo, ehash_entries);
3421	if (!hinfo) {
3422		pr_warn("Failed to allocate TCP ehash (entries: %u) "
3423			"for a netns, fallback to the global one\n",
3424			ehash_entries);
3425fallback:
3426		hinfo = &tcp_hashinfo;
3427		ehash_entries = tcp_hashinfo.ehash_mask + 1;
3428	}
3429
3430	net->ipv4.tcp_death_row.hashinfo = hinfo;
3431	net->ipv4.tcp_death_row.sysctl_max_tw_buckets = ehash_entries / 2;
3432	net->ipv4.sysctl_max_syn_backlog = max(128U, ehash_entries / 128);
3433}
3434
3435static int __net_init tcp_sk_init(struct net *net)
3436{
3437	net->ipv4.sysctl_tcp_ecn = 2;
3438	net->ipv4.sysctl_tcp_ecn_fallback = 1;
3439
3440	net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS;
3441	net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS;
3442	net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD;
3443	net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL;
3444	net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS;
3445
3446	net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME;
3447	net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES;
3448	net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL;
3449
3450	net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES;
3451	net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES;
3452	net->ipv4.sysctl_tcp_syncookies = 1;
3453	net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
3454	net->ipv4.sysctl_tcp_retries1 = TCP_RETR1;
3455	net->ipv4.sysctl_tcp_retries2 = TCP_RETR2;
3456	net->ipv4.sysctl_tcp_orphan_retries = 0;
3457	net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT;
3458	net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX;
3459	net->ipv4.sysctl_tcp_tw_reuse = 2;
3460	net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1;
3461
3462	refcount_set(&net->ipv4.tcp_death_row.tw_refcount, 1);
3463	tcp_set_hashinfo(net);
3464
3465	net->ipv4.sysctl_tcp_sack = 1;
3466	net->ipv4.sysctl_tcp_window_scaling = 1;
3467	net->ipv4.sysctl_tcp_timestamps = 1;
3468	net->ipv4.sysctl_tcp_early_retrans = 3;
3469	net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION;
3470	net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior.  */
3471	net->ipv4.sysctl_tcp_retrans_collapse = 1;
3472	net->ipv4.sysctl_tcp_max_reordering = 300;
3473	net->ipv4.sysctl_tcp_dsack = 1;
3474	net->ipv4.sysctl_tcp_app_win = 31;
3475	net->ipv4.sysctl_tcp_adv_win_scale = 1;
3476	net->ipv4.sysctl_tcp_frto = 2;
3477	net->ipv4.sysctl_tcp_moderate_rcvbuf = 1;
3478	/* This limits the percentage of the congestion window which we
3479	 * will allow a single TSO frame to consume.  Building TSO frames
3480	 * which are too large can cause TCP streams to be bursty.
3481	 */
3482	net->ipv4.sysctl_tcp_tso_win_divisor = 3;
3483	/* Default TSQ limit of 16 TSO segments */
3484	net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536;
3485
3486	/* rfc5961 challenge ack rate limiting, per net-ns, disabled by default. */
3487	net->ipv4.sysctl_tcp_challenge_ack_limit = INT_MAX;
3488
3489	net->ipv4.sysctl_tcp_min_tso_segs = 2;
3490	net->ipv4.sysctl_tcp_tso_rtt_log = 9;  /* 2^9 = 512 usec */
3491	net->ipv4.sysctl_tcp_min_rtt_wlen = 300;
3492	net->ipv4.sysctl_tcp_autocorking = 1;
3493	net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2;
3494	net->ipv4.sysctl_tcp_pacing_ss_ratio = 200;
3495	net->ipv4.sysctl_tcp_pacing_ca_ratio = 120;
3496	if (net != &init_net) {
3497		memcpy(net->ipv4.sysctl_tcp_rmem,
3498		       init_net.ipv4.sysctl_tcp_rmem,
3499		       sizeof(init_net.ipv4.sysctl_tcp_rmem));
3500		memcpy(net->ipv4.sysctl_tcp_wmem,
3501		       init_net.ipv4.sysctl_tcp_wmem,
3502		       sizeof(init_net.ipv4.sysctl_tcp_wmem));
3503	}
3504	net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC;
3505	net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC;
3506	net->ipv4.sysctl_tcp_comp_sack_nr = 44;
3507	net->ipv4.sysctl_tcp_backlog_ack_defer = 1;
3508	net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE;
3509	net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0;
3510	atomic_set(&net->ipv4.tfo_active_disable_times, 0);
3511
3512	/* Set default values for PLB */
3513	net->ipv4.sysctl_tcp_plb_enabled = 0; /* Disabled by default */
3514	net->ipv4.sysctl_tcp_plb_idle_rehash_rounds = 3;
3515	net->ipv4.sysctl_tcp_plb_rehash_rounds = 12;
3516	net->ipv4.sysctl_tcp_plb_suspend_rto_sec = 60;
3517	/* Default congestion threshold for PLB to mark a round is 50% */
3518	net->ipv4.sysctl_tcp_plb_cong_thresh = (1 << TCP_PLB_SCALE) / 2;
3519
3520	/* Reno is always built in */
3521	if (!net_eq(net, &init_net) &&
3522	    bpf_try_module_get(init_net.ipv4.tcp_congestion_control,
3523			       init_net.ipv4.tcp_congestion_control->owner))
3524		net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control;
3525	else
3526		net->ipv4.tcp_congestion_control = &tcp_reno;
3527
3528	net->ipv4.sysctl_tcp_syn_linear_timeouts = 4;
3529	net->ipv4.sysctl_tcp_shrink_window = 0;
3530
3531	net->ipv4.sysctl_tcp_pingpong_thresh = 1;
3532	net->ipv4.sysctl_tcp_rto_min_us = jiffies_to_usecs(TCP_RTO_MIN);
3533
3534	return 0;
3535}
3536
3537static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
3538{
3539	struct net *net;
3540
3541	/* make sure concurrent calls to tcp_sk_exit_batch from net_cleanup_work
3542	 * and failed setup_net error unwinding path are serialized.
3543	 *
3544	 * tcp_twsk_purge() handles twsk in any dead netns, not just those in
3545	 * net_exit_list, the thread that dismantles a particular twsk must
3546	 * do so without other thread progressing to refcount_dec_and_test() of
3547	 * tcp_death_row.tw_refcount.
3548	 */
3549	mutex_lock(&tcp_exit_batch_mutex);
3550
3551	tcp_twsk_purge(net_exit_list);
3552
3553	list_for_each_entry(net, net_exit_list, exit_list) {
3554		inet_pernet_hashinfo_free(net->ipv4.tcp_death_row.hashinfo);
3555		WARN_ON_ONCE(!refcount_dec_and_test(&net->ipv4.tcp_death_row.tw_refcount));
3556		tcp_fastopen_ctx_destroy(net);
3557	}
3558
3559	mutex_unlock(&tcp_exit_batch_mutex);
3560}
3561
3562static struct pernet_operations __net_initdata tcp_sk_ops = {
3563       .init	   = tcp_sk_init,
3564       .exit	   = tcp_sk_exit,
3565       .exit_batch = tcp_sk_exit_batch,
3566};
3567
3568#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3569DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta,
3570		     struct sock_common *sk_common, uid_t uid)
3571
3572#define INIT_BATCH_SZ 16
3573
3574static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux)
3575{
3576	struct bpf_tcp_iter_state *iter = priv_data;
3577	int err;
3578
3579	err = bpf_iter_init_seq_net(priv_data, aux);
3580	if (err)
3581		return err;
3582
3583	err = bpf_iter_tcp_realloc_batch(iter, INIT_BATCH_SZ);
3584	if (err) {
3585		bpf_iter_fini_seq_net(priv_data);
3586		return err;
3587	}
3588
3589	return 0;
3590}
3591
3592static void bpf_iter_fini_tcp(void *priv_data)
3593{
3594	struct bpf_tcp_iter_state *iter = priv_data;
3595
3596	bpf_iter_fini_seq_net(priv_data);
3597	kvfree(iter->batch);
3598}
3599
3600static const struct bpf_iter_seq_info tcp_seq_info = {
3601	.seq_ops		= &bpf_iter_tcp_seq_ops,
3602	.init_seq_private	= bpf_iter_init_tcp,
3603	.fini_seq_private	= bpf_iter_fini_tcp,
3604	.seq_priv_size		= sizeof(struct bpf_tcp_iter_state),
3605};
3606
3607static const struct bpf_func_proto *
3608bpf_iter_tcp_get_func_proto(enum bpf_func_id func_id,
3609			    const struct bpf_prog *prog)
3610{
3611	switch (func_id) {
3612	case BPF_FUNC_setsockopt:
3613		return &bpf_sk_setsockopt_proto;
3614	case BPF_FUNC_getsockopt:
3615		return &bpf_sk_getsockopt_proto;
3616	default:
3617		return NULL;
3618	}
3619}
3620
3621static struct bpf_iter_reg tcp_reg_info = {
3622	.target			= "tcp",
3623	.ctx_arg_info_size	= 1,
3624	.ctx_arg_info		= {
3625		{ offsetof(struct bpf_iter__tcp, sk_common),
3626		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3627	},
3628	.get_func_proto		= bpf_iter_tcp_get_func_proto,
3629	.seq_info		= &tcp_seq_info,
3630};
3631
3632static void __init bpf_iter_register(void)
3633{
3634	tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON];
3635	if (bpf_iter_reg_target(&tcp_reg_info))
3636		pr_warn("Warning: could not register bpf iterator tcp\n");
3637}
3638
3639#endif
3640
3641void __init tcp_v4_init(void)
3642{
3643	int cpu, res;
3644
3645	for_each_possible_cpu(cpu) {
3646		struct sock *sk;
3647
3648		res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW,
3649					   IPPROTO_TCP, &init_net);
3650		if (res)
3651			panic("Failed to create the TCP control socket.\n");
3652		sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
3653
3654		/* Please enforce IP_DF and IPID==0 for RST and
3655		 * ACK sent in SYN-RECV and TIME-WAIT state.
3656		 */
3657		inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO;
3658
3659		sk->sk_clockid = CLOCK_MONOTONIC;
3660
3661		per_cpu(ipv4_tcp_sk.sock, cpu) = sk;
3662	}
3663	if (register_pernet_subsys(&tcp_sk_ops))
3664		panic("Failed to create the TCP control socket.\n");
3665
3666#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3667	bpf_iter_register();
3668#endif
3669}