Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
  32#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  33#define SUPPORT_SYSRQ
  34#endif
  35
  36#include <linux/module.h>
  37#include <linux/ioport.h>
  38#include <linux/init.h>
  39#include <linux/console.h>
  40#include <linux/sysrq.h>
  41#include <linux/device.h>
  42#include <linux/tty.h>
  43#include <linux/tty_flip.h>
  44#include <linux/serial_core.h>
  45#include <linux/serial.h>
  46#include <linux/amba/bus.h>
  47#include <linux/amba/serial.h>
  48#include <linux/clk.h>
  49#include <linux/slab.h>
  50#include <linux/dmaengine.h>
  51#include <linux/dma-mapping.h>
  52#include <linux/scatterlist.h>
  53#include <linux/delay.h>
 
 
  54
  55#include <asm/io.h>
  56#include <asm/sizes.h>
  57
  58#define UART_NR			14
  59
  60#define SERIAL_AMBA_MAJOR	204
  61#define SERIAL_AMBA_MINOR	64
  62#define SERIAL_AMBA_NR		UART_NR
  63
  64#define AMBA_ISR_PASS_LIMIT	256
  65
  66#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  67#define UART_DUMMY_DR_RX	(1 << 16)
  68
  69
  70#define UART_WA_SAVE_NR 14
  71
  72static void pl011_lockup_wa(unsigned long data);
  73static const u32 uart_wa_reg[UART_WA_SAVE_NR] = {
  74	ST_UART011_DMAWM,
  75	ST_UART011_TIMEOUT,
  76	ST_UART011_LCRH_RX,
  77	UART011_IBRD,
  78	UART011_FBRD,
  79	ST_UART011_LCRH_TX,
  80	UART011_IFLS,
  81	ST_UART011_XFCR,
  82	ST_UART011_XON1,
  83	ST_UART011_XON2,
  84	ST_UART011_XOFF1,
  85	ST_UART011_XOFF2,
  86	UART011_CR,
  87	UART011_IMSC
  88};
  89
  90static u32 uart_wa_regdata[UART_WA_SAVE_NR];
  91static DECLARE_TASKLET(pl011_lockup_tlet, pl011_lockup_wa, 0);
  92
  93/* There is by now at least one vendor with differing details, so handle it */
  94struct vendor_data {
  95	unsigned int		ifls;
  96	unsigned int		fifosize;
  97	unsigned int		lcrh_tx;
  98	unsigned int		lcrh_rx;
  99	bool			oversampling;
 100	bool			interrupt_may_hang;   /* vendor-specific */
 101	bool			dma_threshold;
 
 102};
 103
 104static struct vendor_data vendor_arm = {
 105	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 106	.fifosize		= 16,
 107	.lcrh_tx		= UART011_LCRH,
 108	.lcrh_rx		= UART011_LCRH,
 109	.oversampling		= false,
 110	.dma_threshold		= false,
 
 111};
 112
 113static struct vendor_data vendor_st = {
 114	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 115	.fifosize		= 64,
 116	.lcrh_tx		= ST_UART011_LCRH_TX,
 117	.lcrh_rx		= ST_UART011_LCRH_RX,
 118	.oversampling		= true,
 119	.interrupt_may_hang	= true,
 120	.dma_threshold		= true,
 
 121};
 122
 123static struct uart_amba_port *amba_ports[UART_NR];
 124
 125/* Deals with DMA transactions */
 126
 127struct pl011_sgbuf {
 128	struct scatterlist sg;
 129	char *buf;
 130};
 131
 132struct pl011_dmarx_data {
 133	struct dma_chan		*chan;
 134	struct completion	complete;
 135	bool			use_buf_b;
 136	struct pl011_sgbuf	sgbuf_a;
 137	struct pl011_sgbuf	sgbuf_b;
 138	dma_cookie_t		cookie;
 139	bool			running;
 140};
 141
 142struct pl011_dmatx_data {
 143	struct dma_chan		*chan;
 144	struct scatterlist	sg;
 145	char			*buf;
 146	bool			queued;
 147};
 148
 149/*
 150 * We wrap our port structure around the generic uart_port.
 151 */
 152struct uart_amba_port {
 153	struct uart_port	port;
 154	struct clk		*clk;
 
 
 
 
 155	const struct vendor_data *vendor;
 156	unsigned int		dmacr;		/* dma control reg */
 157	unsigned int		im;		/* interrupt mask */
 158	unsigned int		old_status;
 159	unsigned int		fifosize;	/* vendor-specific */
 160	unsigned int		lcrh_tx;	/* vendor-specific */
 161	unsigned int		lcrh_rx;	/* vendor-specific */
 
 162	bool			autorts;
 163	char			type[12];
 164	bool			interrupt_may_hang; /* vendor-specific */
 165#ifdef CONFIG_DMA_ENGINE
 166	/* DMA stuff */
 167	bool			using_tx_dma;
 168	bool			using_rx_dma;
 169	struct pl011_dmarx_data dmarx;
 170	struct pl011_dmatx_data	dmatx;
 171#endif
 172};
 173
 174/*
 175 * Reads up to 256 characters from the FIFO or until it's empty and
 176 * inserts them into the TTY layer. Returns the number of characters
 177 * read from the FIFO.
 178 */
 179static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 180{
 181	u16 status, ch;
 182	unsigned int flag, max_count = 256;
 183	int fifotaken = 0;
 184
 185	while (max_count--) {
 186		status = readw(uap->port.membase + UART01x_FR);
 187		if (status & UART01x_FR_RXFE)
 188			break;
 189
 190		/* Take chars from the FIFO and update status */
 191		ch = readw(uap->port.membase + UART01x_DR) |
 192			UART_DUMMY_DR_RX;
 193		flag = TTY_NORMAL;
 194		uap->port.icount.rx++;
 195		fifotaken++;
 196
 197		if (unlikely(ch & UART_DR_ERROR)) {
 198			if (ch & UART011_DR_BE) {
 199				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 200				uap->port.icount.brk++;
 201				if (uart_handle_break(&uap->port))
 202					continue;
 203			} else if (ch & UART011_DR_PE)
 204				uap->port.icount.parity++;
 205			else if (ch & UART011_DR_FE)
 206				uap->port.icount.frame++;
 207			if (ch & UART011_DR_OE)
 208				uap->port.icount.overrun++;
 209
 210			ch &= uap->port.read_status_mask;
 211
 212			if (ch & UART011_DR_BE)
 213				flag = TTY_BREAK;
 214			else if (ch & UART011_DR_PE)
 215				flag = TTY_PARITY;
 216			else if (ch & UART011_DR_FE)
 217				flag = TTY_FRAME;
 218		}
 219
 220		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 221			continue;
 222
 223		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 224	}
 225
 226	return fifotaken;
 227}
 228
 229
 230/*
 231 * All the DMA operation mode stuff goes inside this ifdef.
 232 * This assumes that you have a generic DMA device interface,
 233 * no custom DMA interfaces are supported.
 234 */
 235#ifdef CONFIG_DMA_ENGINE
 236
 237#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 238
 239static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 240	enum dma_data_direction dir)
 241{
 242	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 243	if (!sg->buf)
 244		return -ENOMEM;
 245
 246	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
 247
 248	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
 249		kfree(sg->buf);
 250		return -EINVAL;
 251	}
 252	return 0;
 253}
 254
 255static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 256	enum dma_data_direction dir)
 257{
 258	if (sg->buf) {
 259		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
 260		kfree(sg->buf);
 261	}
 262}
 263
 264static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
 265{
 266	/* DMA is the sole user of the platform data right now */
 267	struct amba_pl011_data *plat = uap->port.dev->platform_data;
 268	struct dma_slave_config tx_conf = {
 269		.dst_addr = uap->port.mapbase + UART01x_DR,
 270		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 271		.direction = DMA_TO_DEVICE,
 272		.dst_maxburst = uap->fifosize >> 1,
 
 273	};
 274	struct dma_chan *chan;
 275	dma_cap_mask_t mask;
 276
 277	/* We need platform data */
 278	if (!plat || !plat->dma_filter) {
 279		dev_info(uap->port.dev, "no DMA platform data\n");
 280		return;
 281	}
 282
 283	/* Try to acquire a generic DMA engine slave TX channel */
 284	dma_cap_zero(mask);
 285	dma_cap_set(DMA_SLAVE, mask);
 286
 287	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
 288	if (!chan) {
 289		dev_err(uap->port.dev, "no TX DMA channel!\n");
 290		return;
 291	}
 292
 293	dmaengine_slave_config(chan, &tx_conf);
 294	uap->dmatx.chan = chan;
 295
 296	dev_info(uap->port.dev, "DMA channel TX %s\n",
 297		 dma_chan_name(uap->dmatx.chan));
 298
 299	/* Optionally make use of an RX channel as well */
 300	if (plat->dma_rx_param) {
 301		struct dma_slave_config rx_conf = {
 302			.src_addr = uap->port.mapbase + UART01x_DR,
 303			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 304			.direction = DMA_FROM_DEVICE,
 305			.src_maxburst = uap->fifosize >> 1,
 
 306		};
 307
 308		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 309		if (!chan) {
 310			dev_err(uap->port.dev, "no RX DMA channel!\n");
 311			return;
 312		}
 313
 314		dmaengine_slave_config(chan, &rx_conf);
 315		uap->dmarx.chan = chan;
 316
 317		dev_info(uap->port.dev, "DMA channel RX %s\n",
 318			 dma_chan_name(uap->dmarx.chan));
 319	}
 320}
 321
 322#ifndef MODULE
 323/*
 324 * Stack up the UARTs and let the above initcall be done at device
 325 * initcall time, because the serial driver is called as an arch
 326 * initcall, and at this time the DMA subsystem is not yet registered.
 327 * At this point the driver will switch over to using DMA where desired.
 328 */
 329struct dma_uap {
 330	struct list_head node;
 331	struct uart_amba_port *uap;
 332};
 333
 334static LIST_HEAD(pl011_dma_uarts);
 335
 336static int __init pl011_dma_initcall(void)
 337{
 338	struct list_head *node, *tmp;
 339
 340	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
 341		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
 342		pl011_dma_probe_initcall(dmau->uap);
 343		list_del(node);
 344		kfree(dmau);
 345	}
 346	return 0;
 347}
 348
 349device_initcall(pl011_dma_initcall);
 350
 351static void pl011_dma_probe(struct uart_amba_port *uap)
 352{
 353	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
 354	if (dmau) {
 355		dmau->uap = uap;
 356		list_add_tail(&dmau->node, &pl011_dma_uarts);
 357	}
 358}
 359#else
 360static void pl011_dma_probe(struct uart_amba_port *uap)
 361{
 362	pl011_dma_probe_initcall(uap);
 363}
 364#endif
 365
 366static void pl011_dma_remove(struct uart_amba_port *uap)
 367{
 368	/* TODO: remove the initcall if it has not yet executed */
 369	if (uap->dmatx.chan)
 370		dma_release_channel(uap->dmatx.chan);
 371	if (uap->dmarx.chan)
 372		dma_release_channel(uap->dmarx.chan);
 373}
 374
 375/* Forward declare this for the refill routine */
 376static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 377
 378/*
 379 * The current DMA TX buffer has been sent.
 380 * Try to queue up another DMA buffer.
 381 */
 382static void pl011_dma_tx_callback(void *data)
 383{
 384	struct uart_amba_port *uap = data;
 385	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 386	unsigned long flags;
 387	u16 dmacr;
 388
 389	spin_lock_irqsave(&uap->port.lock, flags);
 390	if (uap->dmatx.queued)
 391		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 392			     DMA_TO_DEVICE);
 393
 394	dmacr = uap->dmacr;
 395	uap->dmacr = dmacr & ~UART011_TXDMAE;
 396	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 397
 398	/*
 399	 * If TX DMA was disabled, it means that we've stopped the DMA for
 400	 * some reason (eg, XOFF received, or we want to send an X-char.)
 401	 *
 402	 * Note: we need to be careful here of a potential race between DMA
 403	 * and the rest of the driver - if the driver disables TX DMA while
 404	 * a TX buffer completing, we must update the tx queued status to
 405	 * get further refills (hence we check dmacr).
 406	 */
 407	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 408	    uart_circ_empty(&uap->port.state->xmit)) {
 409		uap->dmatx.queued = false;
 410		spin_unlock_irqrestore(&uap->port.lock, flags);
 411		return;
 412	}
 413
 414	if (pl011_dma_tx_refill(uap) <= 0) {
 415		/*
 416		 * We didn't queue a DMA buffer for some reason, but we
 417		 * have data pending to be sent.  Re-enable the TX IRQ.
 418		 */
 419		uap->im |= UART011_TXIM;
 420		writew(uap->im, uap->port.membase + UART011_IMSC);
 421	}
 422	spin_unlock_irqrestore(&uap->port.lock, flags);
 423}
 424
 425/*
 426 * Try to refill the TX DMA buffer.
 427 * Locking: called with port lock held and IRQs disabled.
 428 * Returns:
 429 *   1 if we queued up a TX DMA buffer.
 430 *   0 if we didn't want to handle this by DMA
 431 *  <0 on error
 432 */
 433static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 434{
 435	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 436	struct dma_chan *chan = dmatx->chan;
 437	struct dma_device *dma_dev = chan->device;
 438	struct dma_async_tx_descriptor *desc;
 439	struct circ_buf *xmit = &uap->port.state->xmit;
 440	unsigned int count;
 441
 442	/*
 443	 * Try to avoid the overhead involved in using DMA if the
 444	 * transaction fits in the first half of the FIFO, by using
 445	 * the standard interrupt handling.  This ensures that we
 446	 * issue a uart_write_wakeup() at the appropriate time.
 447	 */
 448	count = uart_circ_chars_pending(xmit);
 449	if (count < (uap->fifosize >> 1)) {
 450		uap->dmatx.queued = false;
 451		return 0;
 452	}
 453
 454	/*
 455	 * Bodge: don't send the last character by DMA, as this
 456	 * will prevent XON from notifying us to restart DMA.
 457	 */
 458	count -= 1;
 459
 460	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 461	if (count > PL011_DMA_BUFFER_SIZE)
 462		count = PL011_DMA_BUFFER_SIZE;
 463
 464	if (xmit->tail < xmit->head)
 465		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 466	else {
 467		size_t first = UART_XMIT_SIZE - xmit->tail;
 468		size_t second = xmit->head;
 469
 470		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 471		if (second)
 472			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 473	}
 474
 475	dmatx->sg.length = count;
 476
 477	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 478		uap->dmatx.queued = false;
 479		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 480		return -EBUSY;
 481	}
 482
 483	desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE,
 484					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 485	if (!desc) {
 486		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 487		uap->dmatx.queued = false;
 488		/*
 489		 * If DMA cannot be used right now, we complete this
 490		 * transaction via IRQ and let the TTY layer retry.
 491		 */
 492		dev_dbg(uap->port.dev, "TX DMA busy\n");
 493		return -EBUSY;
 494	}
 495
 496	/* Some data to go along to the callback */
 497	desc->callback = pl011_dma_tx_callback;
 498	desc->callback_param = uap;
 499
 500	/* All errors should happen at prepare time */
 501	dmaengine_submit(desc);
 502
 503	/* Fire the DMA transaction */
 504	dma_dev->device_issue_pending(chan);
 505
 506	uap->dmacr |= UART011_TXDMAE;
 507	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 508	uap->dmatx.queued = true;
 509
 510	/*
 511	 * Now we know that DMA will fire, so advance the ring buffer
 512	 * with the stuff we just dispatched.
 513	 */
 514	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 515	uap->port.icount.tx += count;
 516
 517	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 518		uart_write_wakeup(&uap->port);
 519
 520	return 1;
 521}
 522
 523/*
 524 * We received a transmit interrupt without a pending X-char but with
 525 * pending characters.
 526 * Locking: called with port lock held and IRQs disabled.
 527 * Returns:
 528 *   false if we want to use PIO to transmit
 529 *   true if we queued a DMA buffer
 530 */
 531static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 532{
 533	if (!uap->using_tx_dma)
 534		return false;
 535
 536	/*
 537	 * If we already have a TX buffer queued, but received a
 538	 * TX interrupt, it will be because we've just sent an X-char.
 539	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 540	 */
 541	if (uap->dmatx.queued) {
 542		uap->dmacr |= UART011_TXDMAE;
 543		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 544		uap->im &= ~UART011_TXIM;
 545		writew(uap->im, uap->port.membase + UART011_IMSC);
 546		return true;
 547	}
 548
 549	/*
 550	 * We don't have a TX buffer queued, so try to queue one.
 551	 * If we successfully queued a buffer, mask the TX IRQ.
 552	 */
 553	if (pl011_dma_tx_refill(uap) > 0) {
 554		uap->im &= ~UART011_TXIM;
 555		writew(uap->im, uap->port.membase + UART011_IMSC);
 556		return true;
 557	}
 558	return false;
 559}
 560
 561/*
 562 * Stop the DMA transmit (eg, due to received XOFF).
 563 * Locking: called with port lock held and IRQs disabled.
 564 */
 565static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 566{
 567	if (uap->dmatx.queued) {
 568		uap->dmacr &= ~UART011_TXDMAE;
 569		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 570	}
 571}
 572
 573/*
 574 * Try to start a DMA transmit, or in the case of an XON/OFF
 575 * character queued for send, try to get that character out ASAP.
 576 * Locking: called with port lock held and IRQs disabled.
 577 * Returns:
 578 *   false if we want the TX IRQ to be enabled
 579 *   true if we have a buffer queued
 580 */
 581static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 582{
 583	u16 dmacr;
 584
 585	if (!uap->using_tx_dma)
 586		return false;
 587
 588	if (!uap->port.x_char) {
 589		/* no X-char, try to push chars out in DMA mode */
 590		bool ret = true;
 591
 592		if (!uap->dmatx.queued) {
 593			if (pl011_dma_tx_refill(uap) > 0) {
 594				uap->im &= ~UART011_TXIM;
 595				ret = true;
 596			} else {
 597				uap->im |= UART011_TXIM;
 598				ret = false;
 599			}
 600			writew(uap->im, uap->port.membase + UART011_IMSC);
 601		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 602			uap->dmacr |= UART011_TXDMAE;
 603			writew(uap->dmacr,
 604				       uap->port.membase + UART011_DMACR);
 605		}
 606		return ret;
 607	}
 608
 609	/*
 610	 * We have an X-char to send.  Disable DMA to prevent it loading
 611	 * the TX fifo, and then see if we can stuff it into the FIFO.
 612	 */
 613	dmacr = uap->dmacr;
 614	uap->dmacr &= ~UART011_TXDMAE;
 615	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 616
 617	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
 618		/*
 619		 * No space in the FIFO, so enable the transmit interrupt
 620		 * so we know when there is space.  Note that once we've
 621		 * loaded the character, we should just re-enable DMA.
 622		 */
 623		return false;
 624	}
 625
 626	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
 627	uap->port.icount.tx++;
 628	uap->port.x_char = 0;
 629
 630	/* Success - restore the DMA state */
 631	uap->dmacr = dmacr;
 632	writew(dmacr, uap->port.membase + UART011_DMACR);
 633
 634	return true;
 635}
 636
 637/*
 638 * Flush the transmit buffer.
 639 * Locking: called with port lock held and IRQs disabled.
 640 */
 641static void pl011_dma_flush_buffer(struct uart_port *port)
 642{
 643	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 644
 645	if (!uap->using_tx_dma)
 646		return;
 647
 648	/* Avoid deadlock with the DMA engine callback */
 649	spin_unlock(&uap->port.lock);
 650	dmaengine_terminate_all(uap->dmatx.chan);
 651	spin_lock(&uap->port.lock);
 652	if (uap->dmatx.queued) {
 653		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 654			     DMA_TO_DEVICE);
 655		uap->dmatx.queued = false;
 656		uap->dmacr &= ~UART011_TXDMAE;
 657		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 658	}
 659}
 660
 661static void pl011_dma_rx_callback(void *data);
 662
 663static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 664{
 665	struct dma_chan *rxchan = uap->dmarx.chan;
 666	struct dma_device *dma_dev;
 667	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 668	struct dma_async_tx_descriptor *desc;
 669	struct pl011_sgbuf *sgbuf;
 670
 671	if (!rxchan)
 672		return -EIO;
 673
 674	/* Start the RX DMA job */
 675	sgbuf = uap->dmarx.use_buf_b ?
 676		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 677	dma_dev = rxchan->device;
 678	desc = rxchan->device->device_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 679					DMA_FROM_DEVICE,
 680					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 681	/*
 682	 * If the DMA engine is busy and cannot prepare a
 683	 * channel, no big deal, the driver will fall back
 684	 * to interrupt mode as a result of this error code.
 685	 */
 686	if (!desc) {
 687		uap->dmarx.running = false;
 688		dmaengine_terminate_all(rxchan);
 689		return -EBUSY;
 690	}
 691
 692	/* Some data to go along to the callback */
 693	desc->callback = pl011_dma_rx_callback;
 694	desc->callback_param = uap;
 695	dmarx->cookie = dmaengine_submit(desc);
 696	dma_async_issue_pending(rxchan);
 697
 698	uap->dmacr |= UART011_RXDMAE;
 699	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 700	uap->dmarx.running = true;
 701
 702	uap->im &= ~UART011_RXIM;
 703	writew(uap->im, uap->port.membase + UART011_IMSC);
 704
 705	return 0;
 706}
 707
 708/*
 709 * This is called when either the DMA job is complete, or
 710 * the FIFO timeout interrupt occurred. This must be called
 711 * with the port spinlock uap->port.lock held.
 712 */
 713static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 714			       u32 pending, bool use_buf_b,
 715			       bool readfifo)
 716{
 717	struct tty_struct *tty = uap->port.state->port.tty;
 718	struct pl011_sgbuf *sgbuf = use_buf_b ?
 719		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 720	struct device *dev = uap->dmarx.chan->device->dev;
 721	int dma_count = 0;
 722	u32 fifotaken = 0; /* only used for vdbg() */
 723
 724	/* Pick everything from the DMA first */
 725	if (pending) {
 726		/* Sync in buffer */
 727		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 728
 729		/*
 730		 * First take all chars in the DMA pipe, then look in the FIFO.
 731		 * Note that tty_insert_flip_buf() tries to take as many chars
 732		 * as it can.
 733		 */
 734		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
 735						   sgbuf->buf, pending);
 736
 737		/* Return buffer to device */
 738		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 739
 740		uap->port.icount.rx += dma_count;
 741		if (dma_count < pending)
 742			dev_warn(uap->port.dev,
 743				 "couldn't insert all characters (TTY is full?)\n");
 744	}
 745
 746	/*
 747	 * Only continue with trying to read the FIFO if all DMA chars have
 748	 * been taken first.
 749	 */
 750	if (dma_count == pending && readfifo) {
 751		/* Clear any error flags */
 752		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
 753		       uap->port.membase + UART011_ICR);
 754
 755		/*
 756		 * If we read all the DMA'd characters, and we had an
 757		 * incomplete buffer, that could be due to an rx error, or
 758		 * maybe we just timed out. Read any pending chars and check
 759		 * the error status.
 760		 *
 761		 * Error conditions will only occur in the FIFO, these will
 762		 * trigger an immediate interrupt and stop the DMA job, so we
 763		 * will always find the error in the FIFO, never in the DMA
 764		 * buffer.
 765		 */
 766		fifotaken = pl011_fifo_to_tty(uap);
 767	}
 768
 769	spin_unlock(&uap->port.lock);
 770	dev_vdbg(uap->port.dev,
 771		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 772		 dma_count, fifotaken);
 773	tty_flip_buffer_push(tty);
 774	spin_lock(&uap->port.lock);
 775}
 776
 777static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 778{
 779	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 780	struct dma_chan *rxchan = dmarx->chan;
 781	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 782		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 783	size_t pending;
 784	struct dma_tx_state state;
 785	enum dma_status dmastat;
 786
 787	/*
 788	 * Pause the transfer so we can trust the current counter,
 789	 * do this before we pause the PL011 block, else we may
 790	 * overflow the FIFO.
 791	 */
 792	if (dmaengine_pause(rxchan))
 793		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 794	dmastat = rxchan->device->device_tx_status(rxchan,
 795						   dmarx->cookie, &state);
 796	if (dmastat != DMA_PAUSED)
 797		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 798
 799	/* Disable RX DMA - incoming data will wait in the FIFO */
 800	uap->dmacr &= ~UART011_RXDMAE;
 801	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 802	uap->dmarx.running = false;
 803
 804	pending = sgbuf->sg.length - state.residue;
 805	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 806	/* Then we terminate the transfer - we now know our residue */
 807	dmaengine_terminate_all(rxchan);
 808
 809	/*
 810	 * This will take the chars we have so far and insert
 811	 * into the framework.
 812	 */
 813	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 814
 815	/* Switch buffer & re-trigger DMA job */
 816	dmarx->use_buf_b = !dmarx->use_buf_b;
 817	if (pl011_dma_rx_trigger_dma(uap)) {
 818		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 819			"fall back to interrupt mode\n");
 820		uap->im |= UART011_RXIM;
 821		writew(uap->im, uap->port.membase + UART011_IMSC);
 822	}
 823}
 824
 825static void pl011_dma_rx_callback(void *data)
 826{
 827	struct uart_amba_port *uap = data;
 828	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 
 829	bool lastbuf = dmarx->use_buf_b;
 
 
 
 
 830	int ret;
 831
 832	/*
 833	 * This completion interrupt occurs typically when the
 834	 * RX buffer is totally stuffed but no timeout has yet
 835	 * occurred. When that happens, we just want the RX
 836	 * routine to flush out the secondary DMA buffer while
 837	 * we immediately trigger the next DMA job.
 838	 */
 839	spin_lock_irq(&uap->port.lock);
 
 
 
 
 
 
 
 
 
 
 840	uap->dmarx.running = false;
 841	dmarx->use_buf_b = !lastbuf;
 842	ret = pl011_dma_rx_trigger_dma(uap);
 843
 844	pl011_dma_rx_chars(uap, PL011_DMA_BUFFER_SIZE, lastbuf, false);
 845	spin_unlock_irq(&uap->port.lock);
 846	/*
 847	 * Do this check after we picked the DMA chars so we don't
 848	 * get some IRQ immediately from RX.
 849	 */
 850	if (ret) {
 851		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 852			"fall back to interrupt mode\n");
 853		uap->im |= UART011_RXIM;
 854		writew(uap->im, uap->port.membase + UART011_IMSC);
 855	}
 856}
 857
 858/*
 859 * Stop accepting received characters, when we're shutting down or
 860 * suspending this port.
 861 * Locking: called with port lock held and IRQs disabled.
 862 */
 863static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
 864{
 865	/* FIXME.  Just disable the DMA enable */
 866	uap->dmacr &= ~UART011_RXDMAE;
 867	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 868}
 869
 870static void pl011_dma_startup(struct uart_amba_port *uap)
 871{
 872	int ret;
 873
 874	if (!uap->dmatx.chan)
 875		return;
 876
 877	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 878	if (!uap->dmatx.buf) {
 879		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
 880		uap->port.fifosize = uap->fifosize;
 881		return;
 882	}
 883
 884	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
 885
 886	/* The DMA buffer is now the FIFO the TTY subsystem can use */
 887	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
 888	uap->using_tx_dma = true;
 889
 890	if (!uap->dmarx.chan)
 891		goto skip_rx;
 892
 893	/* Allocate and map DMA RX buffers */
 894	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 895			       DMA_FROM_DEVICE);
 896	if (ret) {
 897		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 898			"RX buffer A", ret);
 899		goto skip_rx;
 900	}
 901
 902	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
 903			       DMA_FROM_DEVICE);
 904	if (ret) {
 905		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 906			"RX buffer B", ret);
 907		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 908				 DMA_FROM_DEVICE);
 909		goto skip_rx;
 910	}
 911
 912	uap->using_rx_dma = true;
 913
 914skip_rx:
 915	/* Turn on DMA error (RX/TX will be enabled on demand) */
 916	uap->dmacr |= UART011_DMAONERR;
 917	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 918
 919	/*
 920	 * ST Micro variants has some specific dma burst threshold
 921	 * compensation. Set this to 16 bytes, so burst will only
 922	 * be issued above/below 16 bytes.
 923	 */
 924	if (uap->vendor->dma_threshold)
 925		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
 926			       uap->port.membase + ST_UART011_DMAWM);
 927
 928	if (uap->using_rx_dma) {
 929		if (pl011_dma_rx_trigger_dma(uap))
 930			dev_dbg(uap->port.dev, "could not trigger initial "
 931				"RX DMA job, fall back to interrupt mode\n");
 932	}
 933}
 934
 935static void pl011_dma_shutdown(struct uart_amba_port *uap)
 936{
 937	if (!(uap->using_tx_dma || uap->using_rx_dma))
 938		return;
 939
 940	/* Disable RX and TX DMA */
 941	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
 942		barrier();
 943
 944	spin_lock_irq(&uap->port.lock);
 945	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
 946	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 947	spin_unlock_irq(&uap->port.lock);
 948
 949	if (uap->using_tx_dma) {
 950		/* In theory, this should already be done by pl011_dma_flush_buffer */
 951		dmaengine_terminate_all(uap->dmatx.chan);
 952		if (uap->dmatx.queued) {
 953			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 954				     DMA_TO_DEVICE);
 955			uap->dmatx.queued = false;
 956		}
 957
 958		kfree(uap->dmatx.buf);
 959		uap->using_tx_dma = false;
 960	}
 961
 962	if (uap->using_rx_dma) {
 963		dmaengine_terminate_all(uap->dmarx.chan);
 964		/* Clean up the RX DMA */
 965		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
 966		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
 967		uap->using_rx_dma = false;
 968	}
 969}
 970
 971static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
 972{
 973	return uap->using_rx_dma;
 974}
 975
 976static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
 977{
 978	return uap->using_rx_dma && uap->dmarx.running;
 979}
 980
 981
 982#else
 983/* Blank functions if the DMA engine is not available */
 984static inline void pl011_dma_probe(struct uart_amba_port *uap)
 985{
 986}
 987
 988static inline void pl011_dma_remove(struct uart_amba_port *uap)
 989{
 990}
 991
 992static inline void pl011_dma_startup(struct uart_amba_port *uap)
 993{
 994}
 995
 996static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
 997{
 998}
 999
1000static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1001{
1002	return false;
1003}
1004
1005static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1006{
1007}
1008
1009static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1010{
1011	return false;
1012}
1013
1014static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1015{
1016}
1017
1018static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1019{
1020}
1021
1022static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1023{
1024	return -EIO;
1025}
1026
1027static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1028{
1029	return false;
1030}
1031
1032static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1033{
1034	return false;
1035}
1036
1037#define pl011_dma_flush_buffer	NULL
1038#endif
1039
1040
1041/*
1042 * pl011_lockup_wa
1043 * This workaround aims to break the deadlock situation
1044 * when after long transfer over uart in hardware flow
1045 * control, uart interrupt registers cannot be cleared.
1046 * Hence uart transfer gets blocked.
1047 *
1048 * It is seen that during such deadlock condition ICR
1049 * don't get cleared even on multiple write. This leads
1050 * pass_counter to decrease and finally reach zero. This
1051 * can be taken as trigger point to run this UART_BT_WA.
1052 *
1053 */
1054static void pl011_lockup_wa(unsigned long data)
1055{
1056	struct uart_amba_port *uap = amba_ports[0];
1057	void __iomem *base = uap->port.membase;
1058	struct circ_buf *xmit = &uap->port.state->xmit;
1059	struct tty_struct *tty = uap->port.state->port.tty;
1060	int buf_empty_retries = 200;
1061	int loop;
1062
1063	/* Stop HCI layer from submitting data for tx */
1064	tty->hw_stopped = 1;
1065	while (!uart_circ_empty(xmit)) {
1066		if (buf_empty_retries-- == 0)
1067			break;
1068		udelay(100);
1069	}
1070
1071	/* Backup registers */
1072	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1073		uart_wa_regdata[loop] = readl(base + uart_wa_reg[loop]);
1074
1075	/* Disable UART so that FIFO data is flushed out */
1076	writew(0x00, uap->port.membase + UART011_CR);
1077
1078	/* Soft reset UART module */
1079	if (uap->port.dev->platform_data) {
1080		struct amba_pl011_data *plat;
1081
1082		plat = uap->port.dev->platform_data;
1083		if (plat->reset)
1084			plat->reset();
1085	}
1086
1087	/* Restore registers */
1088	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1089		writew(uart_wa_regdata[loop] ,
1090				uap->port.membase + uart_wa_reg[loop]);
1091
1092	/* Initialise the old status of the modem signals */
1093	uap->old_status = readw(uap->port.membase + UART01x_FR) &
1094		UART01x_FR_MODEM_ANY;
1095
1096	if (readl(base + UART011_MIS) & 0x2)
1097		printk(KERN_EMERG "UART_BT_WA: ***FAILED***\n");
1098
1099	/* Start Tx/Rx */
1100	tty->hw_stopped = 0;
1101}
1102
1103static void pl011_stop_tx(struct uart_port *port)
1104{
1105	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1106
1107	uap->im &= ~UART011_TXIM;
1108	writew(uap->im, uap->port.membase + UART011_IMSC);
1109	pl011_dma_tx_stop(uap);
1110}
1111
1112static void pl011_start_tx(struct uart_port *port)
1113{
1114	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1115
1116	if (!pl011_dma_tx_start(uap)) {
1117		uap->im |= UART011_TXIM;
1118		writew(uap->im, uap->port.membase + UART011_IMSC);
1119	}
1120}
1121
1122static void pl011_stop_rx(struct uart_port *port)
1123{
1124	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1125
1126	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1127		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1128	writew(uap->im, uap->port.membase + UART011_IMSC);
1129
1130	pl011_dma_rx_stop(uap);
1131}
1132
1133static void pl011_enable_ms(struct uart_port *port)
1134{
1135	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1136
1137	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1138	writew(uap->im, uap->port.membase + UART011_IMSC);
1139}
1140
1141static void pl011_rx_chars(struct uart_amba_port *uap)
1142{
1143	struct tty_struct *tty = uap->port.state->port.tty;
1144
1145	pl011_fifo_to_tty(uap);
1146
1147	spin_unlock(&uap->port.lock);
1148	tty_flip_buffer_push(tty);
1149	/*
1150	 * If we were temporarily out of DMA mode for a while,
1151	 * attempt to switch back to DMA mode again.
1152	 */
1153	if (pl011_dma_rx_available(uap)) {
1154		if (pl011_dma_rx_trigger_dma(uap)) {
1155			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1156				"fall back to interrupt mode again\n");
1157			uap->im |= UART011_RXIM;
1158		} else
1159			uap->im &= ~UART011_RXIM;
1160		writew(uap->im, uap->port.membase + UART011_IMSC);
1161	}
1162	spin_lock(&uap->port.lock);
1163}
1164
1165static void pl011_tx_chars(struct uart_amba_port *uap)
1166{
1167	struct circ_buf *xmit = &uap->port.state->xmit;
1168	int count;
1169
1170	if (uap->port.x_char) {
1171		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1172		uap->port.icount.tx++;
1173		uap->port.x_char = 0;
1174		return;
1175	}
1176	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1177		pl011_stop_tx(&uap->port);
1178		return;
1179	}
1180
1181	/* If we are using DMA mode, try to send some characters. */
1182	if (pl011_dma_tx_irq(uap))
1183		return;
1184
1185	count = uap->fifosize >> 1;
1186	do {
1187		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1188		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1189		uap->port.icount.tx++;
1190		if (uart_circ_empty(xmit))
1191			break;
1192	} while (--count > 0);
1193
1194	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1195		uart_write_wakeup(&uap->port);
1196
1197	if (uart_circ_empty(xmit))
1198		pl011_stop_tx(&uap->port);
1199}
1200
1201static void pl011_modem_status(struct uart_amba_port *uap)
1202{
1203	unsigned int status, delta;
1204
1205	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1206
1207	delta = status ^ uap->old_status;
1208	uap->old_status = status;
1209
1210	if (!delta)
1211		return;
1212
1213	if (delta & UART01x_FR_DCD)
1214		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1215
1216	if (delta & UART01x_FR_DSR)
1217		uap->port.icount.dsr++;
1218
1219	if (delta & UART01x_FR_CTS)
1220		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1221
1222	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1223}
1224
1225static irqreturn_t pl011_int(int irq, void *dev_id)
1226{
1227	struct uart_amba_port *uap = dev_id;
1228	unsigned long flags;
1229	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1230	int handled = 0;
 
1231
1232	spin_lock_irqsave(&uap->port.lock, flags);
1233
1234	status = readw(uap->port.membase + UART011_MIS);
1235	if (status) {
1236		do {
 
 
 
 
 
 
 
 
 
 
 
 
 
1237			writew(status & ~(UART011_TXIS|UART011_RTIS|
1238					  UART011_RXIS),
1239			       uap->port.membase + UART011_ICR);
1240
1241			if (status & (UART011_RTIS|UART011_RXIS)) {
1242				if (pl011_dma_rx_running(uap))
1243					pl011_dma_rx_irq(uap);
1244				else
1245					pl011_rx_chars(uap);
1246			}
1247			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1248				      UART011_CTSMIS|UART011_RIMIS))
1249				pl011_modem_status(uap);
1250			if (status & UART011_TXIS)
1251				pl011_tx_chars(uap);
1252
1253			if (pass_counter-- == 0) {
1254				if (uap->interrupt_may_hang)
1255					tasklet_schedule(&pl011_lockup_tlet);
1256				break;
1257			}
1258
1259			status = readw(uap->port.membase + UART011_MIS);
1260		} while (status != 0);
1261		handled = 1;
1262	}
1263
1264	spin_unlock_irqrestore(&uap->port.lock, flags);
1265
1266	return IRQ_RETVAL(handled);
1267}
1268
1269static unsigned int pl01x_tx_empty(struct uart_port *port)
1270{
1271	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1272	unsigned int status = readw(uap->port.membase + UART01x_FR);
1273	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1274}
1275
1276static unsigned int pl01x_get_mctrl(struct uart_port *port)
1277{
1278	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1279	unsigned int result = 0;
1280	unsigned int status = readw(uap->port.membase + UART01x_FR);
1281
1282#define TIOCMBIT(uartbit, tiocmbit)	\
1283	if (status & uartbit)		\
1284		result |= tiocmbit
1285
1286	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1287	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1288	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1289	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1290#undef TIOCMBIT
1291	return result;
1292}
1293
1294static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1295{
1296	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1297	unsigned int cr;
1298
1299	cr = readw(uap->port.membase + UART011_CR);
1300
1301#define	TIOCMBIT(tiocmbit, uartbit)		\
1302	if (mctrl & tiocmbit)		\
1303		cr |= uartbit;		\
1304	else				\
1305		cr &= ~uartbit
1306
1307	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1308	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1309	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1310	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1311	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1312
1313	if (uap->autorts) {
1314		/* We need to disable auto-RTS if we want to turn RTS off */
1315		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1316	}
1317#undef TIOCMBIT
1318
1319	writew(cr, uap->port.membase + UART011_CR);
1320}
1321
1322static void pl011_break_ctl(struct uart_port *port, int break_state)
1323{
1324	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1325	unsigned long flags;
1326	unsigned int lcr_h;
1327
1328	spin_lock_irqsave(&uap->port.lock, flags);
1329	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1330	if (break_state == -1)
1331		lcr_h |= UART01x_LCRH_BRK;
1332	else
1333		lcr_h &= ~UART01x_LCRH_BRK;
1334	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1335	spin_unlock_irqrestore(&uap->port.lock, flags);
1336}
1337
1338#ifdef CONFIG_CONSOLE_POLL
1339static int pl010_get_poll_char(struct uart_port *port)
1340{
1341	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1342	unsigned int status;
1343
1344	status = readw(uap->port.membase + UART01x_FR);
1345	if (status & UART01x_FR_RXFE)
1346		return NO_POLL_CHAR;
1347
1348	return readw(uap->port.membase + UART01x_DR);
1349}
1350
1351static void pl010_put_poll_char(struct uart_port *port,
1352			 unsigned char ch)
1353{
1354	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1355
1356	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1357		barrier();
1358
1359	writew(ch, uap->port.membase + UART01x_DR);
1360}
1361
1362#endif /* CONFIG_CONSOLE_POLL */
1363
1364static int pl011_startup(struct uart_port *port)
1365{
1366	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1367	unsigned int cr;
1368	int retval;
1369
 
 
 
 
 
 
 
 
 
 
 
 
1370	/*
1371	 * Try to enable the clock producer.
1372	 */
1373	retval = clk_enable(uap->clk);
1374	if (retval)
1375		goto out;
1376
1377	uap->port.uartclk = clk_get_rate(uap->clk);
1378
 
 
 
 
1379	/*
1380	 * Allocate the IRQ
1381	 */
1382	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1383	if (retval)
1384		goto clk_dis;
1385
1386	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1387
1388	/*
1389	 * Provoke TX FIFO interrupt into asserting.
1390	 */
1391	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1392	writew(cr, uap->port.membase + UART011_CR);
1393	writew(0, uap->port.membase + UART011_FBRD);
1394	writew(1, uap->port.membase + UART011_IBRD);
1395	writew(0, uap->port.membase + uap->lcrh_rx);
1396	if (uap->lcrh_tx != uap->lcrh_rx) {
1397		int i;
1398		/*
1399		 * Wait 10 PCLKs before writing LCRH_TX register,
1400		 * to get this delay write read only register 10 times
1401		 */
1402		for (i = 0; i < 10; ++i)
1403			writew(0xff, uap->port.membase + UART011_MIS);
1404		writew(0, uap->port.membase + uap->lcrh_tx);
1405	}
1406	writew(0, uap->port.membase + UART01x_DR);
1407	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1408		barrier();
1409
1410	cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
 
 
1411	writew(cr, uap->port.membase + UART011_CR);
1412
1413	/* Clear pending error interrupts */
1414	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
1415	       uap->port.membase + UART011_ICR);
1416
1417	/*
1418	 * initialise the old status of the modem signals
1419	 */
1420	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1421
1422	/* Startup DMA */
1423	pl011_dma_startup(uap);
1424
1425	/*
1426	 * Finally, enable interrupts, only timeouts when using DMA
1427	 * if initial RX DMA job failed, start in interrupt mode
1428	 * as well.
1429	 */
1430	spin_lock_irq(&uap->port.lock);
 
 
 
1431	uap->im = UART011_RTIM;
1432	if (!pl011_dma_rx_running(uap))
1433		uap->im |= UART011_RXIM;
1434	writew(uap->im, uap->port.membase + UART011_IMSC);
1435	spin_unlock_irq(&uap->port.lock);
1436
1437	if (uap->port.dev->platform_data) {
1438		struct amba_pl011_data *plat;
1439
1440		plat = uap->port.dev->platform_data;
1441		if (plat->init)
1442			plat->init();
1443	}
1444
1445	return 0;
1446
1447 clk_dis:
1448	clk_disable(uap->clk);
 
 
1449 out:
1450	return retval;
1451}
1452
1453static void pl011_shutdown_channel(struct uart_amba_port *uap,
1454					unsigned int lcrh)
1455{
1456      unsigned long val;
1457
1458      val = readw(uap->port.membase + lcrh);
1459      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1460      writew(val, uap->port.membase + lcrh);
1461}
1462
1463static void pl011_shutdown(struct uart_port *port)
1464{
1465	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 
 
1466
1467	/*
1468	 * disable all interrupts
1469	 */
1470	spin_lock_irq(&uap->port.lock);
1471	uap->im = 0;
1472	writew(uap->im, uap->port.membase + UART011_IMSC);
1473	writew(0xffff, uap->port.membase + UART011_ICR);
1474	spin_unlock_irq(&uap->port.lock);
1475
1476	pl011_dma_shutdown(uap);
1477
1478	/*
1479	 * Free the interrupt
1480	 */
1481	free_irq(uap->port.irq, uap);
1482
1483	/*
1484	 * disable the port
 
 
 
1485	 */
1486	uap->autorts = false;
1487	writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR);
 
 
 
 
1488
1489	/*
1490	 * disable break condition and fifos
1491	 */
1492	pl011_shutdown_channel(uap, uap->lcrh_rx);
1493	if (uap->lcrh_rx != uap->lcrh_tx)
1494		pl011_shutdown_channel(uap, uap->lcrh_tx);
1495
1496	/*
1497	 * Shut down the clock producer
1498	 */
1499	clk_disable(uap->clk);
 
 
 
 
 
 
 
 
 
1500
1501	if (uap->port.dev->platform_data) {
1502		struct amba_pl011_data *plat;
1503
1504		plat = uap->port.dev->platform_data;
1505		if (plat->exit)
1506			plat->exit();
1507	}
1508
1509}
1510
1511static void
1512pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1513		     struct ktermios *old)
1514{
1515	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1516	unsigned int lcr_h, old_cr;
1517	unsigned long flags;
1518	unsigned int baud, quot, clkdiv;
1519
1520	if (uap->vendor->oversampling)
1521		clkdiv = 8;
1522	else
1523		clkdiv = 16;
1524
1525	/*
1526	 * Ask the core to calculate the divisor for us.
1527	 */
1528	baud = uart_get_baud_rate(port, termios, old, 0,
1529				  port->uartclk / clkdiv);
1530
1531	if (baud > port->uartclk/16)
1532		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1533	else
1534		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1535
1536	switch (termios->c_cflag & CSIZE) {
1537	case CS5:
1538		lcr_h = UART01x_LCRH_WLEN_5;
1539		break;
1540	case CS6:
1541		lcr_h = UART01x_LCRH_WLEN_6;
1542		break;
1543	case CS7:
1544		lcr_h = UART01x_LCRH_WLEN_7;
1545		break;
1546	default: // CS8
1547		lcr_h = UART01x_LCRH_WLEN_8;
1548		break;
1549	}
1550	if (termios->c_cflag & CSTOPB)
1551		lcr_h |= UART01x_LCRH_STP2;
1552	if (termios->c_cflag & PARENB) {
1553		lcr_h |= UART01x_LCRH_PEN;
1554		if (!(termios->c_cflag & PARODD))
1555			lcr_h |= UART01x_LCRH_EPS;
1556	}
1557	if (uap->fifosize > 1)
1558		lcr_h |= UART01x_LCRH_FEN;
1559
1560	spin_lock_irqsave(&port->lock, flags);
1561
1562	/*
1563	 * Update the per-port timeout.
1564	 */
1565	uart_update_timeout(port, termios->c_cflag, baud);
1566
1567	port->read_status_mask = UART011_DR_OE | 255;
1568	if (termios->c_iflag & INPCK)
1569		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1570	if (termios->c_iflag & (BRKINT | PARMRK))
1571		port->read_status_mask |= UART011_DR_BE;
1572
1573	/*
1574	 * Characters to ignore
1575	 */
1576	port->ignore_status_mask = 0;
1577	if (termios->c_iflag & IGNPAR)
1578		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1579	if (termios->c_iflag & IGNBRK) {
1580		port->ignore_status_mask |= UART011_DR_BE;
1581		/*
1582		 * If we're ignoring parity and break indicators,
1583		 * ignore overruns too (for real raw support).
1584		 */
1585		if (termios->c_iflag & IGNPAR)
1586			port->ignore_status_mask |= UART011_DR_OE;
1587	}
1588
1589	/*
1590	 * Ignore all characters if CREAD is not set.
1591	 */
1592	if ((termios->c_cflag & CREAD) == 0)
1593		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1594
1595	if (UART_ENABLE_MS(port, termios->c_cflag))
1596		pl011_enable_ms(port);
1597
1598	/* first, disable everything */
1599	old_cr = readw(port->membase + UART011_CR);
1600	writew(0, port->membase + UART011_CR);
1601
1602	if (termios->c_cflag & CRTSCTS) {
1603		if (old_cr & UART011_CR_RTS)
1604			old_cr |= UART011_CR_RTSEN;
1605
1606		old_cr |= UART011_CR_CTSEN;
1607		uap->autorts = true;
1608	} else {
1609		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1610		uap->autorts = false;
1611	}
1612
1613	if (uap->vendor->oversampling) {
1614		if (baud > port->uartclk / 16)
1615			old_cr |= ST_UART011_CR_OVSFACT;
1616		else
1617			old_cr &= ~ST_UART011_CR_OVSFACT;
1618	}
1619
 
 
 
 
 
 
 
 
 
 
 
 
1620	/* Set baud rate */
1621	writew(quot & 0x3f, port->membase + UART011_FBRD);
1622	writew(quot >> 6, port->membase + UART011_IBRD);
1623
1624	/*
1625	 * ----------v----------v----------v----------v-----
1626	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
 
1627	 * ----------^----------^----------^----------^-----
1628	 */
1629	writew(lcr_h, port->membase + uap->lcrh_rx);
1630	if (uap->lcrh_rx != uap->lcrh_tx) {
1631		int i;
1632		/*
1633		 * Wait 10 PCLKs before writing LCRH_TX register,
1634		 * to get this delay write read only register 10 times
1635		 */
1636		for (i = 0; i < 10; ++i)
1637			writew(0xff, uap->port.membase + UART011_MIS);
1638		writew(lcr_h, port->membase + uap->lcrh_tx);
1639	}
1640	writew(old_cr, port->membase + UART011_CR);
1641
1642	spin_unlock_irqrestore(&port->lock, flags);
1643}
1644
1645static const char *pl011_type(struct uart_port *port)
1646{
1647	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1648	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1649}
1650
1651/*
1652 * Release the memory region(s) being used by 'port'
1653 */
1654static void pl010_release_port(struct uart_port *port)
1655{
1656	release_mem_region(port->mapbase, SZ_4K);
1657}
1658
1659/*
1660 * Request the memory region(s) being used by 'port'
1661 */
1662static int pl010_request_port(struct uart_port *port)
1663{
1664	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1665			!= NULL ? 0 : -EBUSY;
1666}
1667
1668/*
1669 * Configure/autoconfigure the port.
1670 */
1671static void pl010_config_port(struct uart_port *port, int flags)
1672{
1673	if (flags & UART_CONFIG_TYPE) {
1674		port->type = PORT_AMBA;
1675		pl010_request_port(port);
1676	}
1677}
1678
1679/*
1680 * verify the new serial_struct (for TIOCSSERIAL).
1681 */
1682static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1683{
1684	int ret = 0;
1685	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1686		ret = -EINVAL;
1687	if (ser->irq < 0 || ser->irq >= nr_irqs)
1688		ret = -EINVAL;
1689	if (ser->baud_base < 9600)
1690		ret = -EINVAL;
1691	return ret;
1692}
1693
1694static struct uart_ops amba_pl011_pops = {
1695	.tx_empty	= pl01x_tx_empty,
1696	.set_mctrl	= pl011_set_mctrl,
1697	.get_mctrl	= pl01x_get_mctrl,
1698	.stop_tx	= pl011_stop_tx,
1699	.start_tx	= pl011_start_tx,
1700	.stop_rx	= pl011_stop_rx,
1701	.enable_ms	= pl011_enable_ms,
1702	.break_ctl	= pl011_break_ctl,
1703	.startup	= pl011_startup,
1704	.shutdown	= pl011_shutdown,
1705	.flush_buffer	= pl011_dma_flush_buffer,
1706	.set_termios	= pl011_set_termios,
1707	.type		= pl011_type,
1708	.release_port	= pl010_release_port,
1709	.request_port	= pl010_request_port,
1710	.config_port	= pl010_config_port,
1711	.verify_port	= pl010_verify_port,
1712#ifdef CONFIG_CONSOLE_POLL
1713	.poll_get_char = pl010_get_poll_char,
1714	.poll_put_char = pl010_put_poll_char,
1715#endif
1716};
1717
1718static struct uart_amba_port *amba_ports[UART_NR];
1719
1720#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1721
1722static void pl011_console_putchar(struct uart_port *port, int ch)
1723{
1724	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1725
1726	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1727		barrier();
1728	writew(ch, uap->port.membase + UART01x_DR);
1729}
1730
1731static void
1732pl011_console_write(struct console *co, const char *s, unsigned int count)
1733{
1734	struct uart_amba_port *uap = amba_ports[co->index];
1735	unsigned int status, old_cr, new_cr;
 
 
1736
1737	clk_enable(uap->clk);
1738
 
 
 
 
 
 
 
 
1739	/*
1740	 *	First save the CR then disable the interrupts
1741	 */
1742	old_cr = readw(uap->port.membase + UART011_CR);
1743	new_cr = old_cr & ~UART011_CR_CTSEN;
1744	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1745	writew(new_cr, uap->port.membase + UART011_CR);
1746
1747	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1748
1749	/*
1750	 *	Finally, wait for transmitter to become empty
1751	 *	and restore the TCR
1752	 */
1753	do {
1754		status = readw(uap->port.membase + UART01x_FR);
1755	} while (status & UART01x_FR_BUSY);
1756	writew(old_cr, uap->port.membase + UART011_CR);
1757
 
 
 
 
1758	clk_disable(uap->clk);
1759}
1760
1761static void __init
1762pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1763			     int *parity, int *bits)
1764{
1765	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1766		unsigned int lcr_h, ibrd, fbrd;
1767
1768		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1769
1770		*parity = 'n';
1771		if (lcr_h & UART01x_LCRH_PEN) {
1772			if (lcr_h & UART01x_LCRH_EPS)
1773				*parity = 'e';
1774			else
1775				*parity = 'o';
1776		}
1777
1778		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1779			*bits = 7;
1780		else
1781			*bits = 8;
1782
1783		ibrd = readw(uap->port.membase + UART011_IBRD);
1784		fbrd = readw(uap->port.membase + UART011_FBRD);
1785
1786		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1787
1788		if (uap->vendor->oversampling) {
1789			if (readw(uap->port.membase + UART011_CR)
1790				  & ST_UART011_CR_OVSFACT)
1791				*baud *= 2;
1792		}
1793	}
1794}
1795
1796static int __init pl011_console_setup(struct console *co, char *options)
1797{
1798	struct uart_amba_port *uap;
1799	int baud = 38400;
1800	int bits = 8;
1801	int parity = 'n';
1802	int flow = 'n';
 
1803
1804	/*
1805	 * Check whether an invalid uart number has been specified, and
1806	 * if so, search for the first available port that does have
1807	 * console support.
1808	 */
1809	if (co->index >= UART_NR)
1810		co->index = 0;
1811	uap = amba_ports[co->index];
1812	if (!uap)
1813		return -ENODEV;
1814
 
 
 
 
 
 
 
 
 
 
 
 
1815	if (uap->port.dev->platform_data) {
1816		struct amba_pl011_data *plat;
1817
1818		plat = uap->port.dev->platform_data;
1819		if (plat->init)
1820			plat->init();
1821	}
1822
1823	uap->port.uartclk = clk_get_rate(uap->clk);
1824
1825	if (options)
1826		uart_parse_options(options, &baud, &parity, &bits, &flow);
1827	else
1828		pl011_console_get_options(uap, &baud, &parity, &bits);
1829
1830	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1831}
1832
1833static struct uart_driver amba_reg;
1834static struct console amba_console = {
1835	.name		= "ttyAMA",
1836	.write		= pl011_console_write,
1837	.device		= uart_console_device,
1838	.setup		= pl011_console_setup,
1839	.flags		= CON_PRINTBUFFER,
1840	.index		= -1,
1841	.data		= &amba_reg,
1842};
1843
1844#define AMBA_CONSOLE	(&amba_console)
1845#else
1846#define AMBA_CONSOLE	NULL
1847#endif
1848
1849static struct uart_driver amba_reg = {
1850	.owner			= THIS_MODULE,
1851	.driver_name		= "ttyAMA",
1852	.dev_name		= "ttyAMA",
1853	.major			= SERIAL_AMBA_MAJOR,
1854	.minor			= SERIAL_AMBA_MINOR,
1855	.nr			= UART_NR,
1856	.cons			= AMBA_CONSOLE,
1857};
1858
1859static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1860{
1861	struct uart_amba_port *uap;
1862	struct vendor_data *vendor = id->data;
1863	void __iomem *base;
1864	int i, ret;
1865
1866	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1867		if (amba_ports[i] == NULL)
1868			break;
1869
1870	if (i == ARRAY_SIZE(amba_ports)) {
1871		ret = -EBUSY;
1872		goto out;
1873	}
1874
1875	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1876	if (uap == NULL) {
1877		ret = -ENOMEM;
1878		goto out;
1879	}
1880
1881	base = ioremap(dev->res.start, resource_size(&dev->res));
1882	if (!base) {
1883		ret = -ENOMEM;
1884		goto free;
1885	}
1886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887	uap->clk = clk_get(&dev->dev, NULL);
1888	if (IS_ERR(uap->clk)) {
1889		ret = PTR_ERR(uap->clk);
1890		goto unmap;
1891	}
1892
1893	uap->vendor = vendor;
1894	uap->lcrh_rx = vendor->lcrh_rx;
1895	uap->lcrh_tx = vendor->lcrh_tx;
 
1896	uap->fifosize = vendor->fifosize;
1897	uap->interrupt_may_hang = vendor->interrupt_may_hang;
1898	uap->port.dev = &dev->dev;
1899	uap->port.mapbase = dev->res.start;
1900	uap->port.membase = base;
1901	uap->port.iotype = UPIO_MEM;
1902	uap->port.irq = dev->irq[0];
1903	uap->port.fifosize = uap->fifosize;
1904	uap->port.ops = &amba_pl011_pops;
1905	uap->port.flags = UPF_BOOT_AUTOCONF;
1906	uap->port.line = i;
1907	pl011_dma_probe(uap);
1908
 
 
 
 
1909	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1910
1911	amba_ports[i] = uap;
1912
1913	amba_set_drvdata(dev, uap);
1914	ret = uart_add_one_port(&amba_reg, &uap->port);
1915	if (ret) {
1916		amba_set_drvdata(dev, NULL);
1917		amba_ports[i] = NULL;
1918		pl011_dma_remove(uap);
1919		clk_put(uap->clk);
1920 unmap:
1921		iounmap(base);
1922 free:
1923		kfree(uap);
1924	}
1925 out:
1926	return ret;
1927}
1928
1929static int pl011_remove(struct amba_device *dev)
1930{
1931	struct uart_amba_port *uap = amba_get_drvdata(dev);
1932	int i;
1933
1934	amba_set_drvdata(dev, NULL);
1935
1936	uart_remove_one_port(&amba_reg, &uap->port);
1937
1938	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1939		if (amba_ports[i] == uap)
1940			amba_ports[i] = NULL;
1941
1942	pl011_dma_remove(uap);
1943	iounmap(uap->port.membase);
1944	clk_put(uap->clk);
1945	kfree(uap);
1946	return 0;
1947}
1948
1949#ifdef CONFIG_PM
1950static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1951{
1952	struct uart_amba_port *uap = amba_get_drvdata(dev);
1953
1954	if (!uap)
1955		return -EINVAL;
1956
1957	return uart_suspend_port(&amba_reg, &uap->port);
1958}
1959
1960static int pl011_resume(struct amba_device *dev)
1961{
1962	struct uart_amba_port *uap = amba_get_drvdata(dev);
1963
1964	if (!uap)
1965		return -EINVAL;
1966
1967	return uart_resume_port(&amba_reg, &uap->port);
1968}
1969#endif
1970
1971static struct amba_id pl011_ids[] = {
1972	{
1973		.id	= 0x00041011,
1974		.mask	= 0x000fffff,
1975		.data	= &vendor_arm,
1976	},
1977	{
1978		.id	= 0x00380802,
1979		.mask	= 0x00ffffff,
1980		.data	= &vendor_st,
1981	},
1982	{ 0, 0 },
1983};
 
 
1984
1985static struct amba_driver pl011_driver = {
1986	.drv = {
1987		.name	= "uart-pl011",
1988	},
1989	.id_table	= pl011_ids,
1990	.probe		= pl011_probe,
1991	.remove		= pl011_remove,
1992#ifdef CONFIG_PM
1993	.suspend	= pl011_suspend,
1994	.resume		= pl011_resume,
1995#endif
1996};
1997
1998static int __init pl011_init(void)
1999{
2000	int ret;
2001	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2002
2003	ret = uart_register_driver(&amba_reg);
2004	if (ret == 0) {
2005		ret = amba_driver_register(&pl011_driver);
2006		if (ret)
2007			uart_unregister_driver(&amba_reg);
2008	}
2009	return ret;
2010}
2011
2012static void __exit pl011_exit(void)
2013{
2014	amba_driver_unregister(&pl011_driver);
2015	uart_unregister_driver(&amba_reg);
2016}
2017
2018/*
2019 * While this can be a module, if builtin it's most likely the console
2020 * So let's leave module_exit but move module_init to an earlier place
2021 */
2022arch_initcall(pl011_init);
2023module_exit(pl011_exit);
2024
2025MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2026MODULE_DESCRIPTION("ARM AMBA serial port driver");
2027MODULE_LICENSE("GPL");
v3.5.6
   1/*
   2 *  Driver for AMBA serial ports
   3 *
   4 *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   5 *
   6 *  Copyright 1999 ARM Limited
   7 *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   8 *  Copyright (C) 2010 ST-Ericsson SA
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; either version 2 of the License, or
  13 * (at your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23 *
  24 * This is a generic driver for ARM AMBA-type serial ports.  They
  25 * have a lot of 16550-like features, but are not register compatible.
  26 * Note that although they do have CTS, DCD and DSR inputs, they do
  27 * not have an RI input, nor do they have DTR or RTS outputs.  If
  28 * required, these have to be supplied via some other means (eg, GPIO)
  29 * and hooked into this driver.
  30 */
  31
  32#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  33#define SUPPORT_SYSRQ
  34#endif
  35
  36#include <linux/module.h>
  37#include <linux/ioport.h>
  38#include <linux/init.h>
  39#include <linux/console.h>
  40#include <linux/sysrq.h>
  41#include <linux/device.h>
  42#include <linux/tty.h>
  43#include <linux/tty_flip.h>
  44#include <linux/serial_core.h>
  45#include <linux/serial.h>
  46#include <linux/amba/bus.h>
  47#include <linux/amba/serial.h>
  48#include <linux/clk.h>
  49#include <linux/slab.h>
  50#include <linux/dmaengine.h>
  51#include <linux/dma-mapping.h>
  52#include <linux/scatterlist.h>
  53#include <linux/delay.h>
  54#include <linux/types.h>
  55#include <linux/pinctrl/consumer.h>
  56
  57#include <asm/io.h>
  58#include <asm/sizes.h>
  59
  60#define UART_NR			14
  61
  62#define SERIAL_AMBA_MAJOR	204
  63#define SERIAL_AMBA_MINOR	64
  64#define SERIAL_AMBA_NR		UART_NR
  65
  66#define AMBA_ISR_PASS_LIMIT	256
  67
  68#define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  69#define UART_DUMMY_DR_RX	(1 << 16)
  70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71/* There is by now at least one vendor with differing details, so handle it */
  72struct vendor_data {
  73	unsigned int		ifls;
  74	unsigned int		fifosize;
  75	unsigned int		lcrh_tx;
  76	unsigned int		lcrh_rx;
  77	bool			oversampling;
  78	bool			interrupt_may_hang;   /* vendor-specific */
  79	bool			dma_threshold;
  80	bool			cts_event_workaround;
  81};
  82
  83static struct vendor_data vendor_arm = {
  84	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
  85	.fifosize		= 16,
  86	.lcrh_tx		= UART011_LCRH,
  87	.lcrh_rx		= UART011_LCRH,
  88	.oversampling		= false,
  89	.dma_threshold		= false,
  90	.cts_event_workaround	= false,
  91};
  92
  93static struct vendor_data vendor_st = {
  94	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
  95	.fifosize		= 64,
  96	.lcrh_tx		= ST_UART011_LCRH_TX,
  97	.lcrh_rx		= ST_UART011_LCRH_RX,
  98	.oversampling		= true,
  99	.interrupt_may_hang	= true,
 100	.dma_threshold		= true,
 101	.cts_event_workaround	= true,
 102};
 103
 104static struct uart_amba_port *amba_ports[UART_NR];
 105
 106/* Deals with DMA transactions */
 107
 108struct pl011_sgbuf {
 109	struct scatterlist sg;
 110	char *buf;
 111};
 112
 113struct pl011_dmarx_data {
 114	struct dma_chan		*chan;
 115	struct completion	complete;
 116	bool			use_buf_b;
 117	struct pl011_sgbuf	sgbuf_a;
 118	struct pl011_sgbuf	sgbuf_b;
 119	dma_cookie_t		cookie;
 120	bool			running;
 121};
 122
 123struct pl011_dmatx_data {
 124	struct dma_chan		*chan;
 125	struct scatterlist	sg;
 126	char			*buf;
 127	bool			queued;
 128};
 129
 130/*
 131 * We wrap our port structure around the generic uart_port.
 132 */
 133struct uart_amba_port {
 134	struct uart_port	port;
 135	struct clk		*clk;
 136	/* Two optional pin states - default & sleep */
 137	struct pinctrl		*pinctrl;
 138	struct pinctrl_state	*pins_default;
 139	struct pinctrl_state	*pins_sleep;
 140	const struct vendor_data *vendor;
 141	unsigned int		dmacr;		/* dma control reg */
 142	unsigned int		im;		/* interrupt mask */
 143	unsigned int		old_status;
 144	unsigned int		fifosize;	/* vendor-specific */
 145	unsigned int		lcrh_tx;	/* vendor-specific */
 146	unsigned int		lcrh_rx;	/* vendor-specific */
 147	unsigned int		old_cr;		/* state during shutdown */
 148	bool			autorts;
 149	char			type[12];
 150	bool			interrupt_may_hang; /* vendor-specific */
 151#ifdef CONFIG_DMA_ENGINE
 152	/* DMA stuff */
 153	bool			using_tx_dma;
 154	bool			using_rx_dma;
 155	struct pl011_dmarx_data dmarx;
 156	struct pl011_dmatx_data	dmatx;
 157#endif
 158};
 159
 160/*
 161 * Reads up to 256 characters from the FIFO or until it's empty and
 162 * inserts them into the TTY layer. Returns the number of characters
 163 * read from the FIFO.
 164 */
 165static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 166{
 167	u16 status, ch;
 168	unsigned int flag, max_count = 256;
 169	int fifotaken = 0;
 170
 171	while (max_count--) {
 172		status = readw(uap->port.membase + UART01x_FR);
 173		if (status & UART01x_FR_RXFE)
 174			break;
 175
 176		/* Take chars from the FIFO and update status */
 177		ch = readw(uap->port.membase + UART01x_DR) |
 178			UART_DUMMY_DR_RX;
 179		flag = TTY_NORMAL;
 180		uap->port.icount.rx++;
 181		fifotaken++;
 182
 183		if (unlikely(ch & UART_DR_ERROR)) {
 184			if (ch & UART011_DR_BE) {
 185				ch &= ~(UART011_DR_FE | UART011_DR_PE);
 186				uap->port.icount.brk++;
 187				if (uart_handle_break(&uap->port))
 188					continue;
 189			} else if (ch & UART011_DR_PE)
 190				uap->port.icount.parity++;
 191			else if (ch & UART011_DR_FE)
 192				uap->port.icount.frame++;
 193			if (ch & UART011_DR_OE)
 194				uap->port.icount.overrun++;
 195
 196			ch &= uap->port.read_status_mask;
 197
 198			if (ch & UART011_DR_BE)
 199				flag = TTY_BREAK;
 200			else if (ch & UART011_DR_PE)
 201				flag = TTY_PARITY;
 202			else if (ch & UART011_DR_FE)
 203				flag = TTY_FRAME;
 204		}
 205
 206		if (uart_handle_sysrq_char(&uap->port, ch & 255))
 207			continue;
 208
 209		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 210	}
 211
 212	return fifotaken;
 213}
 214
 215
 216/*
 217 * All the DMA operation mode stuff goes inside this ifdef.
 218 * This assumes that you have a generic DMA device interface,
 219 * no custom DMA interfaces are supported.
 220 */
 221#ifdef CONFIG_DMA_ENGINE
 222
 223#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 224
 225static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 226	enum dma_data_direction dir)
 227{
 228	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 229	if (!sg->buf)
 230		return -ENOMEM;
 231
 232	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
 233
 234	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
 235		kfree(sg->buf);
 236		return -EINVAL;
 237	}
 238	return 0;
 239}
 240
 241static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 242	enum dma_data_direction dir)
 243{
 244	if (sg->buf) {
 245		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
 246		kfree(sg->buf);
 247	}
 248}
 249
 250static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
 251{
 252	/* DMA is the sole user of the platform data right now */
 253	struct amba_pl011_data *plat = uap->port.dev->platform_data;
 254	struct dma_slave_config tx_conf = {
 255		.dst_addr = uap->port.mapbase + UART01x_DR,
 256		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 257		.direction = DMA_MEM_TO_DEV,
 258		.dst_maxburst = uap->fifosize >> 1,
 259		.device_fc = false,
 260	};
 261	struct dma_chan *chan;
 262	dma_cap_mask_t mask;
 263
 264	/* We need platform data */
 265	if (!plat || !plat->dma_filter) {
 266		dev_info(uap->port.dev, "no DMA platform data\n");
 267		return;
 268	}
 269
 270	/* Try to acquire a generic DMA engine slave TX channel */
 271	dma_cap_zero(mask);
 272	dma_cap_set(DMA_SLAVE, mask);
 273
 274	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
 275	if (!chan) {
 276		dev_err(uap->port.dev, "no TX DMA channel!\n");
 277		return;
 278	}
 279
 280	dmaengine_slave_config(chan, &tx_conf);
 281	uap->dmatx.chan = chan;
 282
 283	dev_info(uap->port.dev, "DMA channel TX %s\n",
 284		 dma_chan_name(uap->dmatx.chan));
 285
 286	/* Optionally make use of an RX channel as well */
 287	if (plat->dma_rx_param) {
 288		struct dma_slave_config rx_conf = {
 289			.src_addr = uap->port.mapbase + UART01x_DR,
 290			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 291			.direction = DMA_DEV_TO_MEM,
 292			.src_maxburst = uap->fifosize >> 1,
 293			.device_fc = false,
 294		};
 295
 296		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 297		if (!chan) {
 298			dev_err(uap->port.dev, "no RX DMA channel!\n");
 299			return;
 300		}
 301
 302		dmaengine_slave_config(chan, &rx_conf);
 303		uap->dmarx.chan = chan;
 304
 305		dev_info(uap->port.dev, "DMA channel RX %s\n",
 306			 dma_chan_name(uap->dmarx.chan));
 307	}
 308}
 309
 310#ifndef MODULE
 311/*
 312 * Stack up the UARTs and let the above initcall be done at device
 313 * initcall time, because the serial driver is called as an arch
 314 * initcall, and at this time the DMA subsystem is not yet registered.
 315 * At this point the driver will switch over to using DMA where desired.
 316 */
 317struct dma_uap {
 318	struct list_head node;
 319	struct uart_amba_port *uap;
 320};
 321
 322static LIST_HEAD(pl011_dma_uarts);
 323
 324static int __init pl011_dma_initcall(void)
 325{
 326	struct list_head *node, *tmp;
 327
 328	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
 329		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
 330		pl011_dma_probe_initcall(dmau->uap);
 331		list_del(node);
 332		kfree(dmau);
 333	}
 334	return 0;
 335}
 336
 337device_initcall(pl011_dma_initcall);
 338
 339static void pl011_dma_probe(struct uart_amba_port *uap)
 340{
 341	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
 342	if (dmau) {
 343		dmau->uap = uap;
 344		list_add_tail(&dmau->node, &pl011_dma_uarts);
 345	}
 346}
 347#else
 348static void pl011_dma_probe(struct uart_amba_port *uap)
 349{
 350	pl011_dma_probe_initcall(uap);
 351}
 352#endif
 353
 354static void pl011_dma_remove(struct uart_amba_port *uap)
 355{
 356	/* TODO: remove the initcall if it has not yet executed */
 357	if (uap->dmatx.chan)
 358		dma_release_channel(uap->dmatx.chan);
 359	if (uap->dmarx.chan)
 360		dma_release_channel(uap->dmarx.chan);
 361}
 362
 363/* Forward declare this for the refill routine */
 364static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 365
 366/*
 367 * The current DMA TX buffer has been sent.
 368 * Try to queue up another DMA buffer.
 369 */
 370static void pl011_dma_tx_callback(void *data)
 371{
 372	struct uart_amba_port *uap = data;
 373	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 374	unsigned long flags;
 375	u16 dmacr;
 376
 377	spin_lock_irqsave(&uap->port.lock, flags);
 378	if (uap->dmatx.queued)
 379		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 380			     DMA_TO_DEVICE);
 381
 382	dmacr = uap->dmacr;
 383	uap->dmacr = dmacr & ~UART011_TXDMAE;
 384	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 385
 386	/*
 387	 * If TX DMA was disabled, it means that we've stopped the DMA for
 388	 * some reason (eg, XOFF received, or we want to send an X-char.)
 389	 *
 390	 * Note: we need to be careful here of a potential race between DMA
 391	 * and the rest of the driver - if the driver disables TX DMA while
 392	 * a TX buffer completing, we must update the tx queued status to
 393	 * get further refills (hence we check dmacr).
 394	 */
 395	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 396	    uart_circ_empty(&uap->port.state->xmit)) {
 397		uap->dmatx.queued = false;
 398		spin_unlock_irqrestore(&uap->port.lock, flags);
 399		return;
 400	}
 401
 402	if (pl011_dma_tx_refill(uap) <= 0) {
 403		/*
 404		 * We didn't queue a DMA buffer for some reason, but we
 405		 * have data pending to be sent.  Re-enable the TX IRQ.
 406		 */
 407		uap->im |= UART011_TXIM;
 408		writew(uap->im, uap->port.membase + UART011_IMSC);
 409	}
 410	spin_unlock_irqrestore(&uap->port.lock, flags);
 411}
 412
 413/*
 414 * Try to refill the TX DMA buffer.
 415 * Locking: called with port lock held and IRQs disabled.
 416 * Returns:
 417 *   1 if we queued up a TX DMA buffer.
 418 *   0 if we didn't want to handle this by DMA
 419 *  <0 on error
 420 */
 421static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 422{
 423	struct pl011_dmatx_data *dmatx = &uap->dmatx;
 424	struct dma_chan *chan = dmatx->chan;
 425	struct dma_device *dma_dev = chan->device;
 426	struct dma_async_tx_descriptor *desc;
 427	struct circ_buf *xmit = &uap->port.state->xmit;
 428	unsigned int count;
 429
 430	/*
 431	 * Try to avoid the overhead involved in using DMA if the
 432	 * transaction fits in the first half of the FIFO, by using
 433	 * the standard interrupt handling.  This ensures that we
 434	 * issue a uart_write_wakeup() at the appropriate time.
 435	 */
 436	count = uart_circ_chars_pending(xmit);
 437	if (count < (uap->fifosize >> 1)) {
 438		uap->dmatx.queued = false;
 439		return 0;
 440	}
 441
 442	/*
 443	 * Bodge: don't send the last character by DMA, as this
 444	 * will prevent XON from notifying us to restart DMA.
 445	 */
 446	count -= 1;
 447
 448	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 449	if (count > PL011_DMA_BUFFER_SIZE)
 450		count = PL011_DMA_BUFFER_SIZE;
 451
 452	if (xmit->tail < xmit->head)
 453		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 454	else {
 455		size_t first = UART_XMIT_SIZE - xmit->tail;
 456		size_t second = xmit->head;
 457
 458		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 459		if (second)
 460			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 461	}
 462
 463	dmatx->sg.length = count;
 464
 465	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 466		uap->dmatx.queued = false;
 467		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 468		return -EBUSY;
 469	}
 470
 471	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 472					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 473	if (!desc) {
 474		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 475		uap->dmatx.queued = false;
 476		/*
 477		 * If DMA cannot be used right now, we complete this
 478		 * transaction via IRQ and let the TTY layer retry.
 479		 */
 480		dev_dbg(uap->port.dev, "TX DMA busy\n");
 481		return -EBUSY;
 482	}
 483
 484	/* Some data to go along to the callback */
 485	desc->callback = pl011_dma_tx_callback;
 486	desc->callback_param = uap;
 487
 488	/* All errors should happen at prepare time */
 489	dmaengine_submit(desc);
 490
 491	/* Fire the DMA transaction */
 492	dma_dev->device_issue_pending(chan);
 493
 494	uap->dmacr |= UART011_TXDMAE;
 495	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 496	uap->dmatx.queued = true;
 497
 498	/*
 499	 * Now we know that DMA will fire, so advance the ring buffer
 500	 * with the stuff we just dispatched.
 501	 */
 502	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 503	uap->port.icount.tx += count;
 504
 505	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 506		uart_write_wakeup(&uap->port);
 507
 508	return 1;
 509}
 510
 511/*
 512 * We received a transmit interrupt without a pending X-char but with
 513 * pending characters.
 514 * Locking: called with port lock held and IRQs disabled.
 515 * Returns:
 516 *   false if we want to use PIO to transmit
 517 *   true if we queued a DMA buffer
 518 */
 519static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 520{
 521	if (!uap->using_tx_dma)
 522		return false;
 523
 524	/*
 525	 * If we already have a TX buffer queued, but received a
 526	 * TX interrupt, it will be because we've just sent an X-char.
 527	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 528	 */
 529	if (uap->dmatx.queued) {
 530		uap->dmacr |= UART011_TXDMAE;
 531		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 532		uap->im &= ~UART011_TXIM;
 533		writew(uap->im, uap->port.membase + UART011_IMSC);
 534		return true;
 535	}
 536
 537	/*
 538	 * We don't have a TX buffer queued, so try to queue one.
 539	 * If we successfully queued a buffer, mask the TX IRQ.
 540	 */
 541	if (pl011_dma_tx_refill(uap) > 0) {
 542		uap->im &= ~UART011_TXIM;
 543		writew(uap->im, uap->port.membase + UART011_IMSC);
 544		return true;
 545	}
 546	return false;
 547}
 548
 549/*
 550 * Stop the DMA transmit (eg, due to received XOFF).
 551 * Locking: called with port lock held and IRQs disabled.
 552 */
 553static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 554{
 555	if (uap->dmatx.queued) {
 556		uap->dmacr &= ~UART011_TXDMAE;
 557		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 558	}
 559}
 560
 561/*
 562 * Try to start a DMA transmit, or in the case of an XON/OFF
 563 * character queued for send, try to get that character out ASAP.
 564 * Locking: called with port lock held and IRQs disabled.
 565 * Returns:
 566 *   false if we want the TX IRQ to be enabled
 567 *   true if we have a buffer queued
 568 */
 569static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 570{
 571	u16 dmacr;
 572
 573	if (!uap->using_tx_dma)
 574		return false;
 575
 576	if (!uap->port.x_char) {
 577		/* no X-char, try to push chars out in DMA mode */
 578		bool ret = true;
 579
 580		if (!uap->dmatx.queued) {
 581			if (pl011_dma_tx_refill(uap) > 0) {
 582				uap->im &= ~UART011_TXIM;
 583				ret = true;
 584			} else {
 585				uap->im |= UART011_TXIM;
 586				ret = false;
 587			}
 588			writew(uap->im, uap->port.membase + UART011_IMSC);
 589		} else if (!(uap->dmacr & UART011_TXDMAE)) {
 590			uap->dmacr |= UART011_TXDMAE;
 591			writew(uap->dmacr,
 592				       uap->port.membase + UART011_DMACR);
 593		}
 594		return ret;
 595	}
 596
 597	/*
 598	 * We have an X-char to send.  Disable DMA to prevent it loading
 599	 * the TX fifo, and then see if we can stuff it into the FIFO.
 600	 */
 601	dmacr = uap->dmacr;
 602	uap->dmacr &= ~UART011_TXDMAE;
 603	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 604
 605	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
 606		/*
 607		 * No space in the FIFO, so enable the transmit interrupt
 608		 * so we know when there is space.  Note that once we've
 609		 * loaded the character, we should just re-enable DMA.
 610		 */
 611		return false;
 612	}
 613
 614	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
 615	uap->port.icount.tx++;
 616	uap->port.x_char = 0;
 617
 618	/* Success - restore the DMA state */
 619	uap->dmacr = dmacr;
 620	writew(dmacr, uap->port.membase + UART011_DMACR);
 621
 622	return true;
 623}
 624
 625/*
 626 * Flush the transmit buffer.
 627 * Locking: called with port lock held and IRQs disabled.
 628 */
 629static void pl011_dma_flush_buffer(struct uart_port *port)
 630{
 631	struct uart_amba_port *uap = (struct uart_amba_port *)port;
 632
 633	if (!uap->using_tx_dma)
 634		return;
 635
 636	/* Avoid deadlock with the DMA engine callback */
 637	spin_unlock(&uap->port.lock);
 638	dmaengine_terminate_all(uap->dmatx.chan);
 639	spin_lock(&uap->port.lock);
 640	if (uap->dmatx.queued) {
 641		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 642			     DMA_TO_DEVICE);
 643		uap->dmatx.queued = false;
 644		uap->dmacr &= ~UART011_TXDMAE;
 645		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 646	}
 647}
 648
 649static void pl011_dma_rx_callback(void *data);
 650
 651static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 652{
 653	struct dma_chan *rxchan = uap->dmarx.chan;
 
 654	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 655	struct dma_async_tx_descriptor *desc;
 656	struct pl011_sgbuf *sgbuf;
 657
 658	if (!rxchan)
 659		return -EIO;
 660
 661	/* Start the RX DMA job */
 662	sgbuf = uap->dmarx.use_buf_b ?
 663		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 664	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 665					DMA_DEV_TO_MEM,
 
 666					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 667	/*
 668	 * If the DMA engine is busy and cannot prepare a
 669	 * channel, no big deal, the driver will fall back
 670	 * to interrupt mode as a result of this error code.
 671	 */
 672	if (!desc) {
 673		uap->dmarx.running = false;
 674		dmaengine_terminate_all(rxchan);
 675		return -EBUSY;
 676	}
 677
 678	/* Some data to go along to the callback */
 679	desc->callback = pl011_dma_rx_callback;
 680	desc->callback_param = uap;
 681	dmarx->cookie = dmaengine_submit(desc);
 682	dma_async_issue_pending(rxchan);
 683
 684	uap->dmacr |= UART011_RXDMAE;
 685	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 686	uap->dmarx.running = true;
 687
 688	uap->im &= ~UART011_RXIM;
 689	writew(uap->im, uap->port.membase + UART011_IMSC);
 690
 691	return 0;
 692}
 693
 694/*
 695 * This is called when either the DMA job is complete, or
 696 * the FIFO timeout interrupt occurred. This must be called
 697 * with the port spinlock uap->port.lock held.
 698 */
 699static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 700			       u32 pending, bool use_buf_b,
 701			       bool readfifo)
 702{
 703	struct tty_struct *tty = uap->port.state->port.tty;
 704	struct pl011_sgbuf *sgbuf = use_buf_b ?
 705		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 706	struct device *dev = uap->dmarx.chan->device->dev;
 707	int dma_count = 0;
 708	u32 fifotaken = 0; /* only used for vdbg() */
 709
 710	/* Pick everything from the DMA first */
 711	if (pending) {
 712		/* Sync in buffer */
 713		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 714
 715		/*
 716		 * First take all chars in the DMA pipe, then look in the FIFO.
 717		 * Note that tty_insert_flip_buf() tries to take as many chars
 718		 * as it can.
 719		 */
 720		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
 721						   sgbuf->buf, pending);
 722
 723		/* Return buffer to device */
 724		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
 725
 726		uap->port.icount.rx += dma_count;
 727		if (dma_count < pending)
 728			dev_warn(uap->port.dev,
 729				 "couldn't insert all characters (TTY is full?)\n");
 730	}
 731
 732	/*
 733	 * Only continue with trying to read the FIFO if all DMA chars have
 734	 * been taken first.
 735	 */
 736	if (dma_count == pending && readfifo) {
 737		/* Clear any error flags */
 738		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
 739		       uap->port.membase + UART011_ICR);
 740
 741		/*
 742		 * If we read all the DMA'd characters, and we had an
 743		 * incomplete buffer, that could be due to an rx error, or
 744		 * maybe we just timed out. Read any pending chars and check
 745		 * the error status.
 746		 *
 747		 * Error conditions will only occur in the FIFO, these will
 748		 * trigger an immediate interrupt and stop the DMA job, so we
 749		 * will always find the error in the FIFO, never in the DMA
 750		 * buffer.
 751		 */
 752		fifotaken = pl011_fifo_to_tty(uap);
 753	}
 754
 755	spin_unlock(&uap->port.lock);
 756	dev_vdbg(uap->port.dev,
 757		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 758		 dma_count, fifotaken);
 759	tty_flip_buffer_push(tty);
 760	spin_lock(&uap->port.lock);
 761}
 762
 763static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 764{
 765	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 766	struct dma_chan *rxchan = dmarx->chan;
 767	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 768		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 769	size_t pending;
 770	struct dma_tx_state state;
 771	enum dma_status dmastat;
 772
 773	/*
 774	 * Pause the transfer so we can trust the current counter,
 775	 * do this before we pause the PL011 block, else we may
 776	 * overflow the FIFO.
 777	 */
 778	if (dmaengine_pause(rxchan))
 779		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 780	dmastat = rxchan->device->device_tx_status(rxchan,
 781						   dmarx->cookie, &state);
 782	if (dmastat != DMA_PAUSED)
 783		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 784
 785	/* Disable RX DMA - incoming data will wait in the FIFO */
 786	uap->dmacr &= ~UART011_RXDMAE;
 787	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 788	uap->dmarx.running = false;
 789
 790	pending = sgbuf->sg.length - state.residue;
 791	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 792	/* Then we terminate the transfer - we now know our residue */
 793	dmaengine_terminate_all(rxchan);
 794
 795	/*
 796	 * This will take the chars we have so far and insert
 797	 * into the framework.
 798	 */
 799	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 800
 801	/* Switch buffer & re-trigger DMA job */
 802	dmarx->use_buf_b = !dmarx->use_buf_b;
 803	if (pl011_dma_rx_trigger_dma(uap)) {
 804		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 805			"fall back to interrupt mode\n");
 806		uap->im |= UART011_RXIM;
 807		writew(uap->im, uap->port.membase + UART011_IMSC);
 808	}
 809}
 810
 811static void pl011_dma_rx_callback(void *data)
 812{
 813	struct uart_amba_port *uap = data;
 814	struct pl011_dmarx_data *dmarx = &uap->dmarx;
 815	struct dma_chan *rxchan = dmarx->chan;
 816	bool lastbuf = dmarx->use_buf_b;
 817	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 818		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
 819	size_t pending;
 820	struct dma_tx_state state;
 821	int ret;
 822
 823	/*
 824	 * This completion interrupt occurs typically when the
 825	 * RX buffer is totally stuffed but no timeout has yet
 826	 * occurred. When that happens, we just want the RX
 827	 * routine to flush out the secondary DMA buffer while
 828	 * we immediately trigger the next DMA job.
 829	 */
 830	spin_lock_irq(&uap->port.lock);
 831	/*
 832	 * Rx data can be taken by the UART interrupts during
 833	 * the DMA irq handler. So we check the residue here.
 834	 */
 835	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
 836	pending = sgbuf->sg.length - state.residue;
 837	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 838	/* Then we terminate the transfer - we now know our residue */
 839	dmaengine_terminate_all(rxchan);
 840
 841	uap->dmarx.running = false;
 842	dmarx->use_buf_b = !lastbuf;
 843	ret = pl011_dma_rx_trigger_dma(uap);
 844
 845	pl011_dma_rx_chars(uap, pending, lastbuf, false);
 846	spin_unlock_irq(&uap->port.lock);
 847	/*
 848	 * Do this check after we picked the DMA chars so we don't
 849	 * get some IRQ immediately from RX.
 850	 */
 851	if (ret) {
 852		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 853			"fall back to interrupt mode\n");
 854		uap->im |= UART011_RXIM;
 855		writew(uap->im, uap->port.membase + UART011_IMSC);
 856	}
 857}
 858
 859/*
 860 * Stop accepting received characters, when we're shutting down or
 861 * suspending this port.
 862 * Locking: called with port lock held and IRQs disabled.
 863 */
 864static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
 865{
 866	/* FIXME.  Just disable the DMA enable */
 867	uap->dmacr &= ~UART011_RXDMAE;
 868	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 869}
 870
 871static void pl011_dma_startup(struct uart_amba_port *uap)
 872{
 873	int ret;
 874
 875	if (!uap->dmatx.chan)
 876		return;
 877
 878	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
 879	if (!uap->dmatx.buf) {
 880		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
 881		uap->port.fifosize = uap->fifosize;
 882		return;
 883	}
 884
 885	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
 886
 887	/* The DMA buffer is now the FIFO the TTY subsystem can use */
 888	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
 889	uap->using_tx_dma = true;
 890
 891	if (!uap->dmarx.chan)
 892		goto skip_rx;
 893
 894	/* Allocate and map DMA RX buffers */
 895	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 896			       DMA_FROM_DEVICE);
 897	if (ret) {
 898		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 899			"RX buffer A", ret);
 900		goto skip_rx;
 901	}
 902
 903	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
 904			       DMA_FROM_DEVICE);
 905	if (ret) {
 906		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
 907			"RX buffer B", ret);
 908		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
 909				 DMA_FROM_DEVICE);
 910		goto skip_rx;
 911	}
 912
 913	uap->using_rx_dma = true;
 914
 915skip_rx:
 916	/* Turn on DMA error (RX/TX will be enabled on demand) */
 917	uap->dmacr |= UART011_DMAONERR;
 918	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 919
 920	/*
 921	 * ST Micro variants has some specific dma burst threshold
 922	 * compensation. Set this to 16 bytes, so burst will only
 923	 * be issued above/below 16 bytes.
 924	 */
 925	if (uap->vendor->dma_threshold)
 926		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
 927			       uap->port.membase + ST_UART011_DMAWM);
 928
 929	if (uap->using_rx_dma) {
 930		if (pl011_dma_rx_trigger_dma(uap))
 931			dev_dbg(uap->port.dev, "could not trigger initial "
 932				"RX DMA job, fall back to interrupt mode\n");
 933	}
 934}
 935
 936static void pl011_dma_shutdown(struct uart_amba_port *uap)
 937{
 938	if (!(uap->using_tx_dma || uap->using_rx_dma))
 939		return;
 940
 941	/* Disable RX and TX DMA */
 942	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
 943		barrier();
 944
 945	spin_lock_irq(&uap->port.lock);
 946	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
 947	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
 948	spin_unlock_irq(&uap->port.lock);
 949
 950	if (uap->using_tx_dma) {
 951		/* In theory, this should already be done by pl011_dma_flush_buffer */
 952		dmaengine_terminate_all(uap->dmatx.chan);
 953		if (uap->dmatx.queued) {
 954			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 955				     DMA_TO_DEVICE);
 956			uap->dmatx.queued = false;
 957		}
 958
 959		kfree(uap->dmatx.buf);
 960		uap->using_tx_dma = false;
 961	}
 962
 963	if (uap->using_rx_dma) {
 964		dmaengine_terminate_all(uap->dmarx.chan);
 965		/* Clean up the RX DMA */
 966		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
 967		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
 968		uap->using_rx_dma = false;
 969	}
 970}
 971
 972static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
 973{
 974	return uap->using_rx_dma;
 975}
 976
 977static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
 978{
 979	return uap->using_rx_dma && uap->dmarx.running;
 980}
 981
 982
 983#else
 984/* Blank functions if the DMA engine is not available */
 985static inline void pl011_dma_probe(struct uart_amba_port *uap)
 986{
 987}
 988
 989static inline void pl011_dma_remove(struct uart_amba_port *uap)
 990{
 991}
 992
 993static inline void pl011_dma_startup(struct uart_amba_port *uap)
 994{
 995}
 996
 997static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
 998{
 999}
1000
1001static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1002{
1003	return false;
1004}
1005
1006static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1007{
1008}
1009
1010static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1011{
1012	return false;
1013}
1014
1015static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1016{
1017}
1018
1019static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1020{
1021}
1022
1023static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1024{
1025	return -EIO;
1026}
1027
1028static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1029{
1030	return false;
1031}
1032
1033static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1034{
1035	return false;
1036}
1037
1038#define pl011_dma_flush_buffer	NULL
1039#endif
1040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041static void pl011_stop_tx(struct uart_port *port)
1042{
1043	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1044
1045	uap->im &= ~UART011_TXIM;
1046	writew(uap->im, uap->port.membase + UART011_IMSC);
1047	pl011_dma_tx_stop(uap);
1048}
1049
1050static void pl011_start_tx(struct uart_port *port)
1051{
1052	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1053
1054	if (!pl011_dma_tx_start(uap)) {
1055		uap->im |= UART011_TXIM;
1056		writew(uap->im, uap->port.membase + UART011_IMSC);
1057	}
1058}
1059
1060static void pl011_stop_rx(struct uart_port *port)
1061{
1062	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1063
1064	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1065		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1066	writew(uap->im, uap->port.membase + UART011_IMSC);
1067
1068	pl011_dma_rx_stop(uap);
1069}
1070
1071static void pl011_enable_ms(struct uart_port *port)
1072{
1073	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1074
1075	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1076	writew(uap->im, uap->port.membase + UART011_IMSC);
1077}
1078
1079static void pl011_rx_chars(struct uart_amba_port *uap)
1080{
1081	struct tty_struct *tty = uap->port.state->port.tty;
1082
1083	pl011_fifo_to_tty(uap);
1084
1085	spin_unlock(&uap->port.lock);
1086	tty_flip_buffer_push(tty);
1087	/*
1088	 * If we were temporarily out of DMA mode for a while,
1089	 * attempt to switch back to DMA mode again.
1090	 */
1091	if (pl011_dma_rx_available(uap)) {
1092		if (pl011_dma_rx_trigger_dma(uap)) {
1093			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1094				"fall back to interrupt mode again\n");
1095			uap->im |= UART011_RXIM;
1096		} else
1097			uap->im &= ~UART011_RXIM;
1098		writew(uap->im, uap->port.membase + UART011_IMSC);
1099	}
1100	spin_lock(&uap->port.lock);
1101}
1102
1103static void pl011_tx_chars(struct uart_amba_port *uap)
1104{
1105	struct circ_buf *xmit = &uap->port.state->xmit;
1106	int count;
1107
1108	if (uap->port.x_char) {
1109		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1110		uap->port.icount.tx++;
1111		uap->port.x_char = 0;
1112		return;
1113	}
1114	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1115		pl011_stop_tx(&uap->port);
1116		return;
1117	}
1118
1119	/* If we are using DMA mode, try to send some characters. */
1120	if (pl011_dma_tx_irq(uap))
1121		return;
1122
1123	count = uap->fifosize >> 1;
1124	do {
1125		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1126		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1127		uap->port.icount.tx++;
1128		if (uart_circ_empty(xmit))
1129			break;
1130	} while (--count > 0);
1131
1132	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1133		uart_write_wakeup(&uap->port);
1134
1135	if (uart_circ_empty(xmit))
1136		pl011_stop_tx(&uap->port);
1137}
1138
1139static void pl011_modem_status(struct uart_amba_port *uap)
1140{
1141	unsigned int status, delta;
1142
1143	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1144
1145	delta = status ^ uap->old_status;
1146	uap->old_status = status;
1147
1148	if (!delta)
1149		return;
1150
1151	if (delta & UART01x_FR_DCD)
1152		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1153
1154	if (delta & UART01x_FR_DSR)
1155		uap->port.icount.dsr++;
1156
1157	if (delta & UART01x_FR_CTS)
1158		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1159
1160	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1161}
1162
1163static irqreturn_t pl011_int(int irq, void *dev_id)
1164{
1165	struct uart_amba_port *uap = dev_id;
1166	unsigned long flags;
1167	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1168	int handled = 0;
1169	unsigned int dummy_read;
1170
1171	spin_lock_irqsave(&uap->port.lock, flags);
1172
1173	status = readw(uap->port.membase + UART011_MIS);
1174	if (status) {
1175		do {
1176			if (uap->vendor->cts_event_workaround) {
1177				/* workaround to make sure that all bits are unlocked.. */
1178				writew(0x00, uap->port.membase + UART011_ICR);
1179
1180				/*
1181				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1182				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1183				 * so add 2 dummy reads
1184				 */
1185				dummy_read = readw(uap->port.membase + UART011_ICR);
1186				dummy_read = readw(uap->port.membase + UART011_ICR);
1187			}
1188
1189			writew(status & ~(UART011_TXIS|UART011_RTIS|
1190					  UART011_RXIS),
1191			       uap->port.membase + UART011_ICR);
1192
1193			if (status & (UART011_RTIS|UART011_RXIS)) {
1194				if (pl011_dma_rx_running(uap))
1195					pl011_dma_rx_irq(uap);
1196				else
1197					pl011_rx_chars(uap);
1198			}
1199			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1200				      UART011_CTSMIS|UART011_RIMIS))
1201				pl011_modem_status(uap);
1202			if (status & UART011_TXIS)
1203				pl011_tx_chars(uap);
1204
1205			if (pass_counter-- == 0)
 
 
1206				break;
 
1207
1208			status = readw(uap->port.membase + UART011_MIS);
1209		} while (status != 0);
1210		handled = 1;
1211	}
1212
1213	spin_unlock_irqrestore(&uap->port.lock, flags);
1214
1215	return IRQ_RETVAL(handled);
1216}
1217
1218static unsigned int pl01x_tx_empty(struct uart_port *port)
1219{
1220	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1221	unsigned int status = readw(uap->port.membase + UART01x_FR);
1222	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1223}
1224
1225static unsigned int pl01x_get_mctrl(struct uart_port *port)
1226{
1227	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1228	unsigned int result = 0;
1229	unsigned int status = readw(uap->port.membase + UART01x_FR);
1230
1231#define TIOCMBIT(uartbit, tiocmbit)	\
1232	if (status & uartbit)		\
1233		result |= tiocmbit
1234
1235	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1236	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1237	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1238	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1239#undef TIOCMBIT
1240	return result;
1241}
1242
1243static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1244{
1245	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1246	unsigned int cr;
1247
1248	cr = readw(uap->port.membase + UART011_CR);
1249
1250#define	TIOCMBIT(tiocmbit, uartbit)		\
1251	if (mctrl & tiocmbit)		\
1252		cr |= uartbit;		\
1253	else				\
1254		cr &= ~uartbit
1255
1256	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1257	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1258	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1259	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1260	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1261
1262	if (uap->autorts) {
1263		/* We need to disable auto-RTS if we want to turn RTS off */
1264		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1265	}
1266#undef TIOCMBIT
1267
1268	writew(cr, uap->port.membase + UART011_CR);
1269}
1270
1271static void pl011_break_ctl(struct uart_port *port, int break_state)
1272{
1273	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1274	unsigned long flags;
1275	unsigned int lcr_h;
1276
1277	spin_lock_irqsave(&uap->port.lock, flags);
1278	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1279	if (break_state == -1)
1280		lcr_h |= UART01x_LCRH_BRK;
1281	else
1282		lcr_h &= ~UART01x_LCRH_BRK;
1283	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1284	spin_unlock_irqrestore(&uap->port.lock, flags);
1285}
1286
1287#ifdef CONFIG_CONSOLE_POLL
1288static int pl010_get_poll_char(struct uart_port *port)
1289{
1290	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1291	unsigned int status;
1292
1293	status = readw(uap->port.membase + UART01x_FR);
1294	if (status & UART01x_FR_RXFE)
1295		return NO_POLL_CHAR;
1296
1297	return readw(uap->port.membase + UART01x_DR);
1298}
1299
1300static void pl010_put_poll_char(struct uart_port *port,
1301			 unsigned char ch)
1302{
1303	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1304
1305	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1306		barrier();
1307
1308	writew(ch, uap->port.membase + UART01x_DR);
1309}
1310
1311#endif /* CONFIG_CONSOLE_POLL */
1312
1313static int pl011_startup(struct uart_port *port)
1314{
1315	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1316	unsigned int cr;
1317	int retval;
1318
1319	/* Optionaly enable pins to be muxed in and configured */
1320	if (!IS_ERR(uap->pins_default)) {
1321		retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1322		if (retval)
1323			dev_err(port->dev,
1324				"could not set default pins\n");
1325	}
1326
1327	retval = clk_prepare(uap->clk);
1328	if (retval)
1329		goto out;
1330
1331	/*
1332	 * Try to enable the clock producer.
1333	 */
1334	retval = clk_enable(uap->clk);
1335	if (retval)
1336		goto clk_unprep;
1337
1338	uap->port.uartclk = clk_get_rate(uap->clk);
1339
1340	/* Clear pending error and receive interrupts */
1341	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1342	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1343
1344	/*
1345	 * Allocate the IRQ
1346	 */
1347	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1348	if (retval)
1349		goto clk_dis;
1350
1351	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1352
1353	/*
1354	 * Provoke TX FIFO interrupt into asserting.
1355	 */
1356	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1357	writew(cr, uap->port.membase + UART011_CR);
1358	writew(0, uap->port.membase + UART011_FBRD);
1359	writew(1, uap->port.membase + UART011_IBRD);
1360	writew(0, uap->port.membase + uap->lcrh_rx);
1361	if (uap->lcrh_tx != uap->lcrh_rx) {
1362		int i;
1363		/*
1364		 * Wait 10 PCLKs before writing LCRH_TX register,
1365		 * to get this delay write read only register 10 times
1366		 */
1367		for (i = 0; i < 10; ++i)
1368			writew(0xff, uap->port.membase + UART011_MIS);
1369		writew(0, uap->port.membase + uap->lcrh_tx);
1370	}
1371	writew(0, uap->port.membase + UART01x_DR);
1372	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1373		barrier();
1374
1375	/* restore RTS and DTR */
1376	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1377	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1378	writew(cr, uap->port.membase + UART011_CR);
1379
 
 
 
 
1380	/*
1381	 * initialise the old status of the modem signals
1382	 */
1383	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1384
1385	/* Startup DMA */
1386	pl011_dma_startup(uap);
1387
1388	/*
1389	 * Finally, enable interrupts, only timeouts when using DMA
1390	 * if initial RX DMA job failed, start in interrupt mode
1391	 * as well.
1392	 */
1393	spin_lock_irq(&uap->port.lock);
1394	/* Clear out any spuriously appearing RX interrupts */
1395	 writew(UART011_RTIS | UART011_RXIS,
1396		uap->port.membase + UART011_ICR);
1397	uap->im = UART011_RTIM;
1398	if (!pl011_dma_rx_running(uap))
1399		uap->im |= UART011_RXIM;
1400	writew(uap->im, uap->port.membase + UART011_IMSC);
1401	spin_unlock_irq(&uap->port.lock);
1402
1403	if (uap->port.dev->platform_data) {
1404		struct amba_pl011_data *plat;
1405
1406		plat = uap->port.dev->platform_data;
1407		if (plat->init)
1408			plat->init();
1409	}
1410
1411	return 0;
1412
1413 clk_dis:
1414	clk_disable(uap->clk);
1415 clk_unprep:
1416	clk_unprepare(uap->clk);
1417 out:
1418	return retval;
1419}
1420
1421static void pl011_shutdown_channel(struct uart_amba_port *uap,
1422					unsigned int lcrh)
1423{
1424      unsigned long val;
1425
1426      val = readw(uap->port.membase + lcrh);
1427      val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1428      writew(val, uap->port.membase + lcrh);
1429}
1430
1431static void pl011_shutdown(struct uart_port *port)
1432{
1433	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1434	unsigned int cr;
1435	int retval;
1436
1437	/*
1438	 * disable all interrupts
1439	 */
1440	spin_lock_irq(&uap->port.lock);
1441	uap->im = 0;
1442	writew(uap->im, uap->port.membase + UART011_IMSC);
1443	writew(0xffff, uap->port.membase + UART011_ICR);
1444	spin_unlock_irq(&uap->port.lock);
1445
1446	pl011_dma_shutdown(uap);
1447
1448	/*
1449	 * Free the interrupt
1450	 */
1451	free_irq(uap->port.irq, uap);
1452
1453	/*
1454	 * disable the port
1455	 * disable the port. It should not disable RTS and DTR.
1456	 * Also RTS and DTR state should be preserved to restore
1457	 * it during startup().
1458	 */
1459	uap->autorts = false;
1460	cr = readw(uap->port.membase + UART011_CR);
1461	uap->old_cr = cr;
1462	cr &= UART011_CR_RTS | UART011_CR_DTR;
1463	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1464	writew(cr, uap->port.membase + UART011_CR);
1465
1466	/*
1467	 * disable break condition and fifos
1468	 */
1469	pl011_shutdown_channel(uap, uap->lcrh_rx);
1470	if (uap->lcrh_rx != uap->lcrh_tx)
1471		pl011_shutdown_channel(uap, uap->lcrh_tx);
1472
1473	/*
1474	 * Shut down the clock producer
1475	 */
1476	clk_disable(uap->clk);
1477	clk_unprepare(uap->clk);
1478	/* Optionally let pins go into sleep states */
1479	if (!IS_ERR(uap->pins_sleep)) {
1480		retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
1481		if (retval)
1482			dev_err(port->dev,
1483				"could not set pins to sleep state\n");
1484	}
1485
1486
1487	if (uap->port.dev->platform_data) {
1488		struct amba_pl011_data *plat;
1489
1490		plat = uap->port.dev->platform_data;
1491		if (plat->exit)
1492			plat->exit();
1493	}
1494
1495}
1496
1497static void
1498pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1499		     struct ktermios *old)
1500{
1501	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1502	unsigned int lcr_h, old_cr;
1503	unsigned long flags;
1504	unsigned int baud, quot, clkdiv;
1505
1506	if (uap->vendor->oversampling)
1507		clkdiv = 8;
1508	else
1509		clkdiv = 16;
1510
1511	/*
1512	 * Ask the core to calculate the divisor for us.
1513	 */
1514	baud = uart_get_baud_rate(port, termios, old, 0,
1515				  port->uartclk / clkdiv);
1516
1517	if (baud > port->uartclk/16)
1518		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1519	else
1520		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1521
1522	switch (termios->c_cflag & CSIZE) {
1523	case CS5:
1524		lcr_h = UART01x_LCRH_WLEN_5;
1525		break;
1526	case CS6:
1527		lcr_h = UART01x_LCRH_WLEN_6;
1528		break;
1529	case CS7:
1530		lcr_h = UART01x_LCRH_WLEN_7;
1531		break;
1532	default: // CS8
1533		lcr_h = UART01x_LCRH_WLEN_8;
1534		break;
1535	}
1536	if (termios->c_cflag & CSTOPB)
1537		lcr_h |= UART01x_LCRH_STP2;
1538	if (termios->c_cflag & PARENB) {
1539		lcr_h |= UART01x_LCRH_PEN;
1540		if (!(termios->c_cflag & PARODD))
1541			lcr_h |= UART01x_LCRH_EPS;
1542	}
1543	if (uap->fifosize > 1)
1544		lcr_h |= UART01x_LCRH_FEN;
1545
1546	spin_lock_irqsave(&port->lock, flags);
1547
1548	/*
1549	 * Update the per-port timeout.
1550	 */
1551	uart_update_timeout(port, termios->c_cflag, baud);
1552
1553	port->read_status_mask = UART011_DR_OE | 255;
1554	if (termios->c_iflag & INPCK)
1555		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1556	if (termios->c_iflag & (BRKINT | PARMRK))
1557		port->read_status_mask |= UART011_DR_BE;
1558
1559	/*
1560	 * Characters to ignore
1561	 */
1562	port->ignore_status_mask = 0;
1563	if (termios->c_iflag & IGNPAR)
1564		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1565	if (termios->c_iflag & IGNBRK) {
1566		port->ignore_status_mask |= UART011_DR_BE;
1567		/*
1568		 * If we're ignoring parity and break indicators,
1569		 * ignore overruns too (for real raw support).
1570		 */
1571		if (termios->c_iflag & IGNPAR)
1572			port->ignore_status_mask |= UART011_DR_OE;
1573	}
1574
1575	/*
1576	 * Ignore all characters if CREAD is not set.
1577	 */
1578	if ((termios->c_cflag & CREAD) == 0)
1579		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1580
1581	if (UART_ENABLE_MS(port, termios->c_cflag))
1582		pl011_enable_ms(port);
1583
1584	/* first, disable everything */
1585	old_cr = readw(port->membase + UART011_CR);
1586	writew(0, port->membase + UART011_CR);
1587
1588	if (termios->c_cflag & CRTSCTS) {
1589		if (old_cr & UART011_CR_RTS)
1590			old_cr |= UART011_CR_RTSEN;
1591
1592		old_cr |= UART011_CR_CTSEN;
1593		uap->autorts = true;
1594	} else {
1595		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1596		uap->autorts = false;
1597	}
1598
1599	if (uap->vendor->oversampling) {
1600		if (baud > port->uartclk / 16)
1601			old_cr |= ST_UART011_CR_OVSFACT;
1602		else
1603			old_cr &= ~ST_UART011_CR_OVSFACT;
1604	}
1605
1606	/*
1607	 * Workaround for the ST Micro oversampling variants to
1608	 * increase the bitrate slightly, by lowering the divisor,
1609	 * to avoid delayed sampling of start bit at high speeds,
1610	 * else we see data corruption.
1611	 */
1612	if (uap->vendor->oversampling) {
1613		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1614			quot -= 1;
1615		else if ((baud > 3250000) && (quot > 2))
1616			quot -= 2;
1617	}
1618	/* Set baud rate */
1619	writew(quot & 0x3f, port->membase + UART011_FBRD);
1620	writew(quot >> 6, port->membase + UART011_IBRD);
1621
1622	/*
1623	 * ----------v----------v----------v----------v-----
1624	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1625	 * UART011_FBRD & UART011_IBRD.
1626	 * ----------^----------^----------^----------^-----
1627	 */
1628	writew(lcr_h, port->membase + uap->lcrh_rx);
1629	if (uap->lcrh_rx != uap->lcrh_tx) {
1630		int i;
1631		/*
1632		 * Wait 10 PCLKs before writing LCRH_TX register,
1633		 * to get this delay write read only register 10 times
1634		 */
1635		for (i = 0; i < 10; ++i)
1636			writew(0xff, uap->port.membase + UART011_MIS);
1637		writew(lcr_h, port->membase + uap->lcrh_tx);
1638	}
1639	writew(old_cr, port->membase + UART011_CR);
1640
1641	spin_unlock_irqrestore(&port->lock, flags);
1642}
1643
1644static const char *pl011_type(struct uart_port *port)
1645{
1646	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1647	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1648}
1649
1650/*
1651 * Release the memory region(s) being used by 'port'
1652 */
1653static void pl010_release_port(struct uart_port *port)
1654{
1655	release_mem_region(port->mapbase, SZ_4K);
1656}
1657
1658/*
1659 * Request the memory region(s) being used by 'port'
1660 */
1661static int pl010_request_port(struct uart_port *port)
1662{
1663	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1664			!= NULL ? 0 : -EBUSY;
1665}
1666
1667/*
1668 * Configure/autoconfigure the port.
1669 */
1670static void pl010_config_port(struct uart_port *port, int flags)
1671{
1672	if (flags & UART_CONFIG_TYPE) {
1673		port->type = PORT_AMBA;
1674		pl010_request_port(port);
1675	}
1676}
1677
1678/*
1679 * verify the new serial_struct (for TIOCSSERIAL).
1680 */
1681static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1682{
1683	int ret = 0;
1684	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1685		ret = -EINVAL;
1686	if (ser->irq < 0 || ser->irq >= nr_irqs)
1687		ret = -EINVAL;
1688	if (ser->baud_base < 9600)
1689		ret = -EINVAL;
1690	return ret;
1691}
1692
1693static struct uart_ops amba_pl011_pops = {
1694	.tx_empty	= pl01x_tx_empty,
1695	.set_mctrl	= pl011_set_mctrl,
1696	.get_mctrl	= pl01x_get_mctrl,
1697	.stop_tx	= pl011_stop_tx,
1698	.start_tx	= pl011_start_tx,
1699	.stop_rx	= pl011_stop_rx,
1700	.enable_ms	= pl011_enable_ms,
1701	.break_ctl	= pl011_break_ctl,
1702	.startup	= pl011_startup,
1703	.shutdown	= pl011_shutdown,
1704	.flush_buffer	= pl011_dma_flush_buffer,
1705	.set_termios	= pl011_set_termios,
1706	.type		= pl011_type,
1707	.release_port	= pl010_release_port,
1708	.request_port	= pl010_request_port,
1709	.config_port	= pl010_config_port,
1710	.verify_port	= pl010_verify_port,
1711#ifdef CONFIG_CONSOLE_POLL
1712	.poll_get_char = pl010_get_poll_char,
1713	.poll_put_char = pl010_put_poll_char,
1714#endif
1715};
1716
1717static struct uart_amba_port *amba_ports[UART_NR];
1718
1719#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1720
1721static void pl011_console_putchar(struct uart_port *port, int ch)
1722{
1723	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1724
1725	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1726		barrier();
1727	writew(ch, uap->port.membase + UART01x_DR);
1728}
1729
1730static void
1731pl011_console_write(struct console *co, const char *s, unsigned int count)
1732{
1733	struct uart_amba_port *uap = amba_ports[co->index];
1734	unsigned int status, old_cr, new_cr;
1735	unsigned long flags;
1736	int locked = 1;
1737
1738	clk_enable(uap->clk);
1739
1740	local_irq_save(flags);
1741	if (uap->port.sysrq)
1742		locked = 0;
1743	else if (oops_in_progress)
1744		locked = spin_trylock(&uap->port.lock);
1745	else
1746		spin_lock(&uap->port.lock);
1747
1748	/*
1749	 *	First save the CR then disable the interrupts
1750	 */
1751	old_cr = readw(uap->port.membase + UART011_CR);
1752	new_cr = old_cr & ~UART011_CR_CTSEN;
1753	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1754	writew(new_cr, uap->port.membase + UART011_CR);
1755
1756	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1757
1758	/*
1759	 *	Finally, wait for transmitter to become empty
1760	 *	and restore the TCR
1761	 */
1762	do {
1763		status = readw(uap->port.membase + UART01x_FR);
1764	} while (status & UART01x_FR_BUSY);
1765	writew(old_cr, uap->port.membase + UART011_CR);
1766
1767	if (locked)
1768		spin_unlock(&uap->port.lock);
1769	local_irq_restore(flags);
1770
1771	clk_disable(uap->clk);
1772}
1773
1774static void __init
1775pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1776			     int *parity, int *bits)
1777{
1778	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1779		unsigned int lcr_h, ibrd, fbrd;
1780
1781		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1782
1783		*parity = 'n';
1784		if (lcr_h & UART01x_LCRH_PEN) {
1785			if (lcr_h & UART01x_LCRH_EPS)
1786				*parity = 'e';
1787			else
1788				*parity = 'o';
1789		}
1790
1791		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1792			*bits = 7;
1793		else
1794			*bits = 8;
1795
1796		ibrd = readw(uap->port.membase + UART011_IBRD);
1797		fbrd = readw(uap->port.membase + UART011_FBRD);
1798
1799		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1800
1801		if (uap->vendor->oversampling) {
1802			if (readw(uap->port.membase + UART011_CR)
1803				  & ST_UART011_CR_OVSFACT)
1804				*baud *= 2;
1805		}
1806	}
1807}
1808
1809static int __init pl011_console_setup(struct console *co, char *options)
1810{
1811	struct uart_amba_port *uap;
1812	int baud = 38400;
1813	int bits = 8;
1814	int parity = 'n';
1815	int flow = 'n';
1816	int ret;
1817
1818	/*
1819	 * Check whether an invalid uart number has been specified, and
1820	 * if so, search for the first available port that does have
1821	 * console support.
1822	 */
1823	if (co->index >= UART_NR)
1824		co->index = 0;
1825	uap = amba_ports[co->index];
1826	if (!uap)
1827		return -ENODEV;
1828
1829	/* Allow pins to be muxed in and configured */
1830	if (!IS_ERR(uap->pins_default)) {
1831		ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1832		if (ret)
1833			dev_err(uap->port.dev,
1834				"could not set default pins\n");
1835	}
1836
1837	ret = clk_prepare(uap->clk);
1838	if (ret)
1839		return ret;
1840
1841	if (uap->port.dev->platform_data) {
1842		struct amba_pl011_data *plat;
1843
1844		plat = uap->port.dev->platform_data;
1845		if (plat->init)
1846			plat->init();
1847	}
1848
1849	uap->port.uartclk = clk_get_rate(uap->clk);
1850
1851	if (options)
1852		uart_parse_options(options, &baud, &parity, &bits, &flow);
1853	else
1854		pl011_console_get_options(uap, &baud, &parity, &bits);
1855
1856	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1857}
1858
1859static struct uart_driver amba_reg;
1860static struct console amba_console = {
1861	.name		= "ttyAMA",
1862	.write		= pl011_console_write,
1863	.device		= uart_console_device,
1864	.setup		= pl011_console_setup,
1865	.flags		= CON_PRINTBUFFER,
1866	.index		= -1,
1867	.data		= &amba_reg,
1868};
1869
1870#define AMBA_CONSOLE	(&amba_console)
1871#else
1872#define AMBA_CONSOLE	NULL
1873#endif
1874
1875static struct uart_driver amba_reg = {
1876	.owner			= THIS_MODULE,
1877	.driver_name		= "ttyAMA",
1878	.dev_name		= "ttyAMA",
1879	.major			= SERIAL_AMBA_MAJOR,
1880	.minor			= SERIAL_AMBA_MINOR,
1881	.nr			= UART_NR,
1882	.cons			= AMBA_CONSOLE,
1883};
1884
1885static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1886{
1887	struct uart_amba_port *uap;
1888	struct vendor_data *vendor = id->data;
1889	void __iomem *base;
1890	int i, ret;
1891
1892	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1893		if (amba_ports[i] == NULL)
1894			break;
1895
1896	if (i == ARRAY_SIZE(amba_ports)) {
1897		ret = -EBUSY;
1898		goto out;
1899	}
1900
1901	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1902	if (uap == NULL) {
1903		ret = -ENOMEM;
1904		goto out;
1905	}
1906
1907	base = ioremap(dev->res.start, resource_size(&dev->res));
1908	if (!base) {
1909		ret = -ENOMEM;
1910		goto free;
1911	}
1912
1913	uap->pinctrl = devm_pinctrl_get(&dev->dev);
1914	if (IS_ERR(uap->pinctrl)) {
1915		ret = PTR_ERR(uap->pinctrl);
1916		goto unmap;
1917	}
1918	uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
1919						 PINCTRL_STATE_DEFAULT);
1920	if (IS_ERR(uap->pins_default))
1921		dev_err(&dev->dev, "could not get default pinstate\n");
1922
1923	uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
1924					       PINCTRL_STATE_SLEEP);
1925	if (IS_ERR(uap->pins_sleep))
1926		dev_dbg(&dev->dev, "could not get sleep pinstate\n");
1927
1928	uap->clk = clk_get(&dev->dev, NULL);
1929	if (IS_ERR(uap->clk)) {
1930		ret = PTR_ERR(uap->clk);
1931		goto unmap;
1932	}
1933
1934	uap->vendor = vendor;
1935	uap->lcrh_rx = vendor->lcrh_rx;
1936	uap->lcrh_tx = vendor->lcrh_tx;
1937	uap->old_cr = 0;
1938	uap->fifosize = vendor->fifosize;
1939	uap->interrupt_may_hang = vendor->interrupt_may_hang;
1940	uap->port.dev = &dev->dev;
1941	uap->port.mapbase = dev->res.start;
1942	uap->port.membase = base;
1943	uap->port.iotype = UPIO_MEM;
1944	uap->port.irq = dev->irq[0];
1945	uap->port.fifosize = uap->fifosize;
1946	uap->port.ops = &amba_pl011_pops;
1947	uap->port.flags = UPF_BOOT_AUTOCONF;
1948	uap->port.line = i;
1949	pl011_dma_probe(uap);
1950
1951	/* Ensure interrupts from this UART are masked and cleared */
1952	writew(0, uap->port.membase + UART011_IMSC);
1953	writew(0xffff, uap->port.membase + UART011_ICR);
1954
1955	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1956
1957	amba_ports[i] = uap;
1958
1959	amba_set_drvdata(dev, uap);
1960	ret = uart_add_one_port(&amba_reg, &uap->port);
1961	if (ret) {
1962		amba_set_drvdata(dev, NULL);
1963		amba_ports[i] = NULL;
1964		pl011_dma_remove(uap);
1965		clk_put(uap->clk);
1966 unmap:
1967		iounmap(base);
1968 free:
1969		kfree(uap);
1970	}
1971 out:
1972	return ret;
1973}
1974
1975static int pl011_remove(struct amba_device *dev)
1976{
1977	struct uart_amba_port *uap = amba_get_drvdata(dev);
1978	int i;
1979
1980	amba_set_drvdata(dev, NULL);
1981
1982	uart_remove_one_port(&amba_reg, &uap->port);
1983
1984	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1985		if (amba_ports[i] == uap)
1986			amba_ports[i] = NULL;
1987
1988	pl011_dma_remove(uap);
1989	iounmap(uap->port.membase);
1990	clk_put(uap->clk);
1991	kfree(uap);
1992	return 0;
1993}
1994
1995#ifdef CONFIG_PM
1996static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1997{
1998	struct uart_amba_port *uap = amba_get_drvdata(dev);
1999
2000	if (!uap)
2001		return -EINVAL;
2002
2003	return uart_suspend_port(&amba_reg, &uap->port);
2004}
2005
2006static int pl011_resume(struct amba_device *dev)
2007{
2008	struct uart_amba_port *uap = amba_get_drvdata(dev);
2009
2010	if (!uap)
2011		return -EINVAL;
2012
2013	return uart_resume_port(&amba_reg, &uap->port);
2014}
2015#endif
2016
2017static struct amba_id pl011_ids[] = {
2018	{
2019		.id	= 0x00041011,
2020		.mask	= 0x000fffff,
2021		.data	= &vendor_arm,
2022	},
2023	{
2024		.id	= 0x00380802,
2025		.mask	= 0x00ffffff,
2026		.data	= &vendor_st,
2027	},
2028	{ 0, 0 },
2029};
2030
2031MODULE_DEVICE_TABLE(amba, pl011_ids);
2032
2033static struct amba_driver pl011_driver = {
2034	.drv = {
2035		.name	= "uart-pl011",
2036	},
2037	.id_table	= pl011_ids,
2038	.probe		= pl011_probe,
2039	.remove		= pl011_remove,
2040#ifdef CONFIG_PM
2041	.suspend	= pl011_suspend,
2042	.resume		= pl011_resume,
2043#endif
2044};
2045
2046static int __init pl011_init(void)
2047{
2048	int ret;
2049	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2050
2051	ret = uart_register_driver(&amba_reg);
2052	if (ret == 0) {
2053		ret = amba_driver_register(&pl011_driver);
2054		if (ret)
2055			uart_unregister_driver(&amba_reg);
2056	}
2057	return ret;
2058}
2059
2060static void __exit pl011_exit(void)
2061{
2062	amba_driver_unregister(&pl011_driver);
2063	uart_unregister_driver(&amba_reg);
2064}
2065
2066/*
2067 * While this can be a module, if builtin it's most likely the console
2068 * So let's leave module_exit but move module_init to an earlier place
2069 */
2070arch_initcall(pl011_init);
2071module_exit(pl011_exit);
2072
2073MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2074MODULE_DESCRIPTION("ARM AMBA serial port driver");
2075MODULE_LICENSE("GPL");