Loading...
1/*
2 * Hardware monitoring driver for PMBus devices
3 *
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/err.h>
25#include <linux/slab.h>
26#include <linux/i2c.h>
27#include <linux/hwmon.h>
28#include <linux/hwmon-sysfs.h>
29#include <linux/delay.h>
30#include <linux/i2c/pmbus.h>
31#include "pmbus.h"
32
33/*
34 * Constants needed to determine number of sensors, booleans, and labels.
35 */
36#define PMBUS_MAX_INPUT_SENSORS 22 /* 10*volt, 7*curr, 5*power */
37#define PMBUS_VOUT_SENSORS_PER_PAGE 9 /* input, min, max, lcrit,
38 crit, lowest, highest, avg,
39 reset */
40#define PMBUS_IOUT_SENSORS_PER_PAGE 8 /* input, min, max, crit,
41 lowest, highest, avg,
42 reset */
43#define PMBUS_POUT_SENSORS_PER_PAGE 4 /* input, cap, max, crit */
44#define PMBUS_MAX_SENSORS_PER_FAN 1 /* input */
45#define PMBUS_MAX_SENSORS_PER_TEMP 8 /* input, min, max, lcrit,
46 crit, lowest, highest,
47 reset */
48
49#define PMBUS_MAX_INPUT_BOOLEANS 7 /* v: min_alarm, max_alarm,
50 lcrit_alarm, crit_alarm;
51 c: alarm, crit_alarm;
52 p: crit_alarm */
53#define PMBUS_VOUT_BOOLEANS_PER_PAGE 4 /* min_alarm, max_alarm,
54 lcrit_alarm, crit_alarm */
55#define PMBUS_IOUT_BOOLEANS_PER_PAGE 3 /* alarm, lcrit_alarm,
56 crit_alarm */
57#define PMBUS_POUT_BOOLEANS_PER_PAGE 2 /* alarm, crit_alarm */
58#define PMBUS_MAX_BOOLEANS_PER_FAN 2 /* alarm, fault */
59#define PMBUS_MAX_BOOLEANS_PER_TEMP 4 /* min_alarm, max_alarm,
60 lcrit_alarm, crit_alarm */
61
62#define PMBUS_MAX_INPUT_LABELS 4 /* vin, vcap, iin, pin */
63
64/*
65 * status, status_vout, status_iout, status_fans, status_fan34, and status_temp
66 * are paged. status_input is unpaged.
67 */
68#define PB_NUM_STATUS_REG (PMBUS_PAGES * 6 + 1)
69
70/*
71 * Index into status register array, per status register group
72 */
73#define PB_STATUS_BASE 0
74#define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
75#define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
76#define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
77#define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
78#define PB_STATUS_INPUT_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
79#define PB_STATUS_TEMP_BASE (PB_STATUS_INPUT_BASE + 1)
80
81#define PMBUS_NAME_SIZE 24
82
83struct pmbus_sensor {
84 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
85 struct sensor_device_attribute attribute;
86 u8 page; /* page number */
87 u16 reg; /* register */
88 enum pmbus_sensor_classes class; /* sensor class */
89 bool update; /* runtime sensor update needed */
90 int data; /* Sensor data.
91 Negative if there was a read error */
92};
93
94struct pmbus_boolean {
95 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
96 struct sensor_device_attribute attribute;
97};
98
99struct pmbus_label {
100 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
101 struct sensor_device_attribute attribute;
102 char label[PMBUS_NAME_SIZE]; /* label */
103};
104
105struct pmbus_data {
106 struct device *hwmon_dev;
107
108 u32 flags; /* from platform data */
109
110 int exponent; /* linear mode: exponent for output voltages */
111
112 const struct pmbus_driver_info *info;
113
114 int max_attributes;
115 int num_attributes;
116 struct attribute **attributes;
117 struct attribute_group group;
118
119 /*
120 * Sensors cover both sensor and limit registers.
121 */
122 int max_sensors;
123 int num_sensors;
124 struct pmbus_sensor *sensors;
125 /*
126 * Booleans are used for alarms.
127 * Values are determined from status registers.
128 */
129 int max_booleans;
130 int num_booleans;
131 struct pmbus_boolean *booleans;
132 /*
133 * Labels are used to map generic names (e.g., "in1")
134 * to PMBus specific names (e.g., "vin" or "vout1").
135 */
136 int max_labels;
137 int num_labels;
138 struct pmbus_label *labels;
139
140 struct mutex update_lock;
141 bool valid;
142 unsigned long last_updated; /* in jiffies */
143
144 /*
145 * A single status register covers multiple attributes,
146 * so we keep them all together.
147 */
148 u8 status[PB_NUM_STATUS_REG];
149
150 u8 currpage;
151};
152
153int pmbus_set_page(struct i2c_client *client, u8 page)
154{
155 struct pmbus_data *data = i2c_get_clientdata(client);
156 int rv = 0;
157 int newpage;
158
159 if (page != data->currpage) {
160 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
161 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
162 if (newpage != page)
163 rv = -EINVAL;
164 else
165 data->currpage = page;
166 }
167 return rv;
168}
169EXPORT_SYMBOL_GPL(pmbus_set_page);
170
171int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
172{
173 int rv;
174
175 if (page >= 0) {
176 rv = pmbus_set_page(client, page);
177 if (rv < 0)
178 return rv;
179 }
180
181 return i2c_smbus_write_byte(client, value);
182}
183EXPORT_SYMBOL_GPL(pmbus_write_byte);
184
185/*
186 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
187 * a device specific mapping funcion exists and calls it if necessary.
188 */
189static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
190{
191 struct pmbus_data *data = i2c_get_clientdata(client);
192 const struct pmbus_driver_info *info = data->info;
193 int status;
194
195 if (info->write_byte) {
196 status = info->write_byte(client, page, value);
197 if (status != -ENODATA)
198 return status;
199 }
200 return pmbus_write_byte(client, page, value);
201}
202
203int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
204{
205 int rv;
206
207 rv = pmbus_set_page(client, page);
208 if (rv < 0)
209 return rv;
210
211 return i2c_smbus_write_word_data(client, reg, word);
212}
213EXPORT_SYMBOL_GPL(pmbus_write_word_data);
214
215/*
216 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
217 * a device specific mapping function exists and calls it if necessary.
218 */
219static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
220 u16 word)
221{
222 struct pmbus_data *data = i2c_get_clientdata(client);
223 const struct pmbus_driver_info *info = data->info;
224 int status;
225
226 if (info->write_word_data) {
227 status = info->write_word_data(client, page, reg, word);
228 if (status != -ENODATA)
229 return status;
230 }
231 if (reg >= PMBUS_VIRT_BASE)
232 return -EINVAL;
233 return pmbus_write_word_data(client, page, reg, word);
234}
235
236int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
237{
238 int rv;
239
240 rv = pmbus_set_page(client, page);
241 if (rv < 0)
242 return rv;
243
244 return i2c_smbus_read_word_data(client, reg);
245}
246EXPORT_SYMBOL_GPL(pmbus_read_word_data);
247
248/*
249 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
250 * a device specific mapping function exists and calls it if necessary.
251 */
252static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
253{
254 struct pmbus_data *data = i2c_get_clientdata(client);
255 const struct pmbus_driver_info *info = data->info;
256 int status;
257
258 if (info->read_word_data) {
259 status = info->read_word_data(client, page, reg);
260 if (status != -ENODATA)
261 return status;
262 }
263 if (reg >= PMBUS_VIRT_BASE)
264 return -EINVAL;
265 return pmbus_read_word_data(client, page, reg);
266}
267
268int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
269{
270 int rv;
271
272 if (page >= 0) {
273 rv = pmbus_set_page(client, page);
274 if (rv < 0)
275 return rv;
276 }
277
278 return i2c_smbus_read_byte_data(client, reg);
279}
280EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
281
282/*
283 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
284 * a device specific mapping function exists and calls it if necessary.
285 */
286static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
287{
288 struct pmbus_data *data = i2c_get_clientdata(client);
289 const struct pmbus_driver_info *info = data->info;
290 int status;
291
292 if (info->read_byte_data) {
293 status = info->read_byte_data(client, page, reg);
294 if (status != -ENODATA)
295 return status;
296 }
297 return pmbus_read_byte_data(client, page, reg);
298}
299
300static void pmbus_clear_fault_page(struct i2c_client *client, int page)
301{
302 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
303}
304
305void pmbus_clear_faults(struct i2c_client *client)
306{
307 struct pmbus_data *data = i2c_get_clientdata(client);
308 int i;
309
310 for (i = 0; i < data->info->pages; i++)
311 pmbus_clear_fault_page(client, i);
312}
313EXPORT_SYMBOL_GPL(pmbus_clear_faults);
314
315static int pmbus_check_status_cml(struct i2c_client *client)
316{
317 int status, status2;
318
319 status = pmbus_read_byte_data(client, -1, PMBUS_STATUS_BYTE);
320 if (status < 0 || (status & PB_STATUS_CML)) {
321 status2 = pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
322 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
323 return -EINVAL;
324 }
325 return 0;
326}
327
328bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
329{
330 int rv;
331 struct pmbus_data *data = i2c_get_clientdata(client);
332
333 rv = _pmbus_read_byte_data(client, page, reg);
334 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
335 rv = pmbus_check_status_cml(client);
336 pmbus_clear_fault_page(client, -1);
337 return rv >= 0;
338}
339EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
340
341bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
342{
343 int rv;
344 struct pmbus_data *data = i2c_get_clientdata(client);
345
346 rv = _pmbus_read_word_data(client, page, reg);
347 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
348 rv = pmbus_check_status_cml(client);
349 pmbus_clear_fault_page(client, -1);
350 return rv >= 0;
351}
352EXPORT_SYMBOL_GPL(pmbus_check_word_register);
353
354const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
355{
356 struct pmbus_data *data = i2c_get_clientdata(client);
357
358 return data->info;
359}
360EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
361
362static struct pmbus_data *pmbus_update_device(struct device *dev)
363{
364 struct i2c_client *client = to_i2c_client(dev);
365 struct pmbus_data *data = i2c_get_clientdata(client);
366 const struct pmbus_driver_info *info = data->info;
367
368 mutex_lock(&data->update_lock);
369 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
370 int i;
371
372 for (i = 0; i < info->pages; i++)
373 data->status[PB_STATUS_BASE + i]
374 = pmbus_read_byte_data(client, i,
375 PMBUS_STATUS_BYTE);
376 for (i = 0; i < info->pages; i++) {
377 if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT))
378 continue;
379 data->status[PB_STATUS_VOUT_BASE + i]
380 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT);
381 }
382 for (i = 0; i < info->pages; i++) {
383 if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT))
384 continue;
385 data->status[PB_STATUS_IOUT_BASE + i]
386 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT);
387 }
388 for (i = 0; i < info->pages; i++) {
389 if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP))
390 continue;
391 data->status[PB_STATUS_TEMP_BASE + i]
392 = _pmbus_read_byte_data(client, i,
393 PMBUS_STATUS_TEMPERATURE);
394 }
395 for (i = 0; i < info->pages; i++) {
396 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12))
397 continue;
398 data->status[PB_STATUS_FAN_BASE + i]
399 = _pmbus_read_byte_data(client, i,
400 PMBUS_STATUS_FAN_12);
401 }
402
403 for (i = 0; i < info->pages; i++) {
404 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34))
405 continue;
406 data->status[PB_STATUS_FAN34_BASE + i]
407 = _pmbus_read_byte_data(client, i,
408 PMBUS_STATUS_FAN_34);
409 }
410
411 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
412 data->status[PB_STATUS_INPUT_BASE]
413 = _pmbus_read_byte_data(client, 0,
414 PMBUS_STATUS_INPUT);
415
416 for (i = 0; i < data->num_sensors; i++) {
417 struct pmbus_sensor *sensor = &data->sensors[i];
418
419 if (!data->valid || sensor->update)
420 sensor->data
421 = _pmbus_read_word_data(client,
422 sensor->page,
423 sensor->reg);
424 }
425 pmbus_clear_faults(client);
426 data->last_updated = jiffies;
427 data->valid = 1;
428 }
429 mutex_unlock(&data->update_lock);
430 return data;
431}
432
433/*
434 * Convert linear sensor values to milli- or micro-units
435 * depending on sensor type.
436 */
437static long pmbus_reg2data_linear(struct pmbus_data *data,
438 struct pmbus_sensor *sensor)
439{
440 s16 exponent;
441 s32 mantissa;
442 long val;
443
444 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
445 exponent = data->exponent;
446 mantissa = (u16) sensor->data;
447 } else { /* LINEAR11 */
448 exponent = (sensor->data >> 11) & 0x001f;
449 mantissa = sensor->data & 0x07ff;
450
451 if (exponent > 0x0f)
452 exponent |= 0xffe0; /* sign extend exponent */
453 if (mantissa > 0x03ff)
454 mantissa |= 0xfffff800; /* sign extend mantissa */
455 }
456
457 val = mantissa;
458
459 /* scale result to milli-units for all sensors except fans */
460 if (sensor->class != PSC_FAN)
461 val = val * 1000L;
462
463 /* scale result to micro-units for power sensors */
464 if (sensor->class == PSC_POWER)
465 val = val * 1000L;
466
467 if (exponent >= 0)
468 val <<= exponent;
469 else
470 val >>= -exponent;
471
472 return val;
473}
474
475/*
476 * Convert direct sensor values to milli- or micro-units
477 * depending on sensor type.
478 */
479static long pmbus_reg2data_direct(struct pmbus_data *data,
480 struct pmbus_sensor *sensor)
481{
482 long val = (s16) sensor->data;
483 long m, b, R;
484
485 m = data->info->m[sensor->class];
486 b = data->info->b[sensor->class];
487 R = data->info->R[sensor->class];
488
489 if (m == 0)
490 return 0;
491
492 /* X = 1/m * (Y * 10^-R - b) */
493 R = -R;
494 /* scale result to milli-units for everything but fans */
495 if (sensor->class != PSC_FAN) {
496 R += 3;
497 b *= 1000;
498 }
499
500 /* scale result to micro-units for power sensors */
501 if (sensor->class == PSC_POWER) {
502 R += 3;
503 b *= 1000;
504 }
505
506 while (R > 0) {
507 val *= 10;
508 R--;
509 }
510 while (R < 0) {
511 val = DIV_ROUND_CLOSEST(val, 10);
512 R++;
513 }
514
515 return (val - b) / m;
516}
517
518/*
519 * Convert VID sensor values to milli- or micro-units
520 * depending on sensor type.
521 * We currently only support VR11.
522 */
523static long pmbus_reg2data_vid(struct pmbus_data *data,
524 struct pmbus_sensor *sensor)
525{
526 long val = sensor->data;
527
528 if (val < 0x02 || val > 0xb2)
529 return 0;
530 return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
531}
532
533static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
534{
535 long val;
536
537 switch (data->info->format[sensor->class]) {
538 case direct:
539 val = pmbus_reg2data_direct(data, sensor);
540 break;
541 case vid:
542 val = pmbus_reg2data_vid(data, sensor);
543 break;
544 case linear:
545 default:
546 val = pmbus_reg2data_linear(data, sensor);
547 break;
548 }
549 return val;
550}
551
552#define MAX_MANTISSA (1023 * 1000)
553#define MIN_MANTISSA (511 * 1000)
554
555static u16 pmbus_data2reg_linear(struct pmbus_data *data,
556 enum pmbus_sensor_classes class, long val)
557{
558 s16 exponent = 0, mantissa;
559 bool negative = false;
560
561 /* simple case */
562 if (val == 0)
563 return 0;
564
565 if (class == PSC_VOLTAGE_OUT) {
566 /* LINEAR16 does not support negative voltages */
567 if (val < 0)
568 return 0;
569
570 /*
571 * For a static exponents, we don't have a choice
572 * but to adjust the value to it.
573 */
574 if (data->exponent < 0)
575 val <<= -data->exponent;
576 else
577 val >>= data->exponent;
578 val = DIV_ROUND_CLOSEST(val, 1000);
579 return val & 0xffff;
580 }
581
582 if (val < 0) {
583 negative = true;
584 val = -val;
585 }
586
587 /* Power is in uW. Convert to mW before converting. */
588 if (class == PSC_POWER)
589 val = DIV_ROUND_CLOSEST(val, 1000L);
590
591 /*
592 * For simplicity, convert fan data to milli-units
593 * before calculating the exponent.
594 */
595 if (class == PSC_FAN)
596 val = val * 1000;
597
598 /* Reduce large mantissa until it fits into 10 bit */
599 while (val >= MAX_MANTISSA && exponent < 15) {
600 exponent++;
601 val >>= 1;
602 }
603 /* Increase small mantissa to improve precision */
604 while (val < MIN_MANTISSA && exponent > -15) {
605 exponent--;
606 val <<= 1;
607 }
608
609 /* Convert mantissa from milli-units to units */
610 mantissa = DIV_ROUND_CLOSEST(val, 1000);
611
612 /* Ensure that resulting number is within range */
613 if (mantissa > 0x3ff)
614 mantissa = 0x3ff;
615
616 /* restore sign */
617 if (negative)
618 mantissa = -mantissa;
619
620 /* Convert to 5 bit exponent, 11 bit mantissa */
621 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
622}
623
624static u16 pmbus_data2reg_direct(struct pmbus_data *data,
625 enum pmbus_sensor_classes class, long val)
626{
627 long m, b, R;
628
629 m = data->info->m[class];
630 b = data->info->b[class];
631 R = data->info->R[class];
632
633 /* Power is in uW. Adjust R and b. */
634 if (class == PSC_POWER) {
635 R -= 3;
636 b *= 1000;
637 }
638
639 /* Calculate Y = (m * X + b) * 10^R */
640 if (class != PSC_FAN) {
641 R -= 3; /* Adjust R and b for data in milli-units */
642 b *= 1000;
643 }
644 val = val * m + b;
645
646 while (R > 0) {
647 val *= 10;
648 R--;
649 }
650 while (R < 0) {
651 val = DIV_ROUND_CLOSEST(val, 10);
652 R++;
653 }
654
655 return val;
656}
657
658static u16 pmbus_data2reg_vid(struct pmbus_data *data,
659 enum pmbus_sensor_classes class, long val)
660{
661 val = SENSORS_LIMIT(val, 500, 1600);
662
663 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
664}
665
666static u16 pmbus_data2reg(struct pmbus_data *data,
667 enum pmbus_sensor_classes class, long val)
668{
669 u16 regval;
670
671 switch (data->info->format[class]) {
672 case direct:
673 regval = pmbus_data2reg_direct(data, class, val);
674 break;
675 case vid:
676 regval = pmbus_data2reg_vid(data, class, val);
677 break;
678 case linear:
679 default:
680 regval = pmbus_data2reg_linear(data, class, val);
681 break;
682 }
683 return regval;
684}
685
686/*
687 * Return boolean calculated from converted data.
688 * <index> defines a status register index and mask, and optionally
689 * two sensor indexes.
690 * The upper half-word references the two sensors,
691 * two sensor indices.
692 * The upper half-word references the two optional sensors,
693 * the lower half word references status register and mask.
694 * The function returns true if (status[reg] & mask) is true and,
695 * if specified, if v1 >= v2.
696 * To determine if an object exceeds upper limits, specify <v, limit>.
697 * To determine if an object exceeds lower limits, specify <limit, v>.
698 *
699 * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of
700 * index are set. s1 and s2 (the sensor index values) are zero in this case.
701 * The function returns true if (status[reg] & mask) is true.
702 *
703 * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against
704 * a specified limit has to be performed to determine the boolean result.
705 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
706 * sensor values referenced by sensor indices s1 and s2).
707 *
708 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
709 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
710 *
711 * If a negative value is stored in any of the referenced registers, this value
712 * reflects an error code which will be returned.
713 */
714static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val)
715{
716 u8 s1 = (index >> 24) & 0xff;
717 u8 s2 = (index >> 16) & 0xff;
718 u8 reg = (index >> 8) & 0xff;
719 u8 mask = index & 0xff;
720 int status;
721 u8 regval;
722
723 status = data->status[reg];
724 if (status < 0)
725 return status;
726
727 regval = status & mask;
728 if (!s1 && !s2)
729 *val = !!regval;
730 else {
731 long v1, v2;
732 struct pmbus_sensor *sensor1, *sensor2;
733
734 sensor1 = &data->sensors[s1];
735 if (sensor1->data < 0)
736 return sensor1->data;
737 sensor2 = &data->sensors[s2];
738 if (sensor2->data < 0)
739 return sensor2->data;
740
741 v1 = pmbus_reg2data(data, sensor1);
742 v2 = pmbus_reg2data(data, sensor2);
743 *val = !!(regval && v1 >= v2);
744 }
745 return 0;
746}
747
748static ssize_t pmbus_show_boolean(struct device *dev,
749 struct device_attribute *da, char *buf)
750{
751 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
752 struct pmbus_data *data = pmbus_update_device(dev);
753 int val;
754 int err;
755
756 err = pmbus_get_boolean(data, attr->index, &val);
757 if (err)
758 return err;
759 return snprintf(buf, PAGE_SIZE, "%d\n", val);
760}
761
762static ssize_t pmbus_show_sensor(struct device *dev,
763 struct device_attribute *da, char *buf)
764{
765 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
766 struct pmbus_data *data = pmbus_update_device(dev);
767 struct pmbus_sensor *sensor;
768
769 sensor = &data->sensors[attr->index];
770 if (sensor->data < 0)
771 return sensor->data;
772
773 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
774}
775
776static ssize_t pmbus_set_sensor(struct device *dev,
777 struct device_attribute *devattr,
778 const char *buf, size_t count)
779{
780 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
781 struct i2c_client *client = to_i2c_client(dev);
782 struct pmbus_data *data = i2c_get_clientdata(client);
783 struct pmbus_sensor *sensor = &data->sensors[attr->index];
784 ssize_t rv = count;
785 long val = 0;
786 int ret;
787 u16 regval;
788
789 if (strict_strtol(buf, 10, &val) < 0)
790 return -EINVAL;
791
792 mutex_lock(&data->update_lock);
793 regval = pmbus_data2reg(data, sensor->class, val);
794 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
795 if (ret < 0)
796 rv = ret;
797 else
798 data->sensors[attr->index].data = regval;
799 mutex_unlock(&data->update_lock);
800 return rv;
801}
802
803static ssize_t pmbus_show_label(struct device *dev,
804 struct device_attribute *da, char *buf)
805{
806 struct i2c_client *client = to_i2c_client(dev);
807 struct pmbus_data *data = i2c_get_clientdata(client);
808 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
809
810 return snprintf(buf, PAGE_SIZE, "%s\n",
811 data->labels[attr->index].label);
812}
813
814#define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set) \
815do { \
816 struct sensor_device_attribute *a \
817 = &data->_type##s[data->num_##_type##s].attribute; \
818 BUG_ON(data->num_attributes >= data->max_attributes); \
819 sysfs_attr_init(&a->dev_attr.attr); \
820 a->dev_attr.attr.name = _name; \
821 a->dev_attr.attr.mode = _mode; \
822 a->dev_attr.show = _show; \
823 a->dev_attr.store = _set; \
824 a->index = _idx; \
825 data->attributes[data->num_attributes] = &a->dev_attr.attr; \
826 data->num_attributes++; \
827} while (0)
828
829#define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx) \
830 PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type, \
831 pmbus_show_##_type, NULL)
832
833#define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx) \
834 PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type, \
835 pmbus_show_##_type, pmbus_set_##_type)
836
837static void pmbus_add_boolean(struct pmbus_data *data,
838 const char *name, const char *type, int seq,
839 int idx)
840{
841 struct pmbus_boolean *boolean;
842
843 BUG_ON(data->num_booleans >= data->max_booleans);
844
845 boolean = &data->booleans[data->num_booleans];
846
847 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
848 name, seq, type);
849 PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx);
850 data->num_booleans++;
851}
852
853static void pmbus_add_boolean_reg(struct pmbus_data *data,
854 const char *name, const char *type,
855 int seq, int reg, int bit)
856{
857 pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit);
858}
859
860static void pmbus_add_boolean_cmp(struct pmbus_data *data,
861 const char *name, const char *type,
862 int seq, int i1, int i2, int reg, int mask)
863{
864 pmbus_add_boolean(data, name, type, seq,
865 (i1 << 24) | (i2 << 16) | (reg << 8) | mask);
866}
867
868static void pmbus_add_sensor(struct pmbus_data *data,
869 const char *name, const char *type, int seq,
870 int page, int reg, enum pmbus_sensor_classes class,
871 bool update, bool readonly)
872{
873 struct pmbus_sensor *sensor;
874
875 BUG_ON(data->num_sensors >= data->max_sensors);
876
877 sensor = &data->sensors[data->num_sensors];
878 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
879 name, seq, type);
880 sensor->page = page;
881 sensor->reg = reg;
882 sensor->class = class;
883 sensor->update = update;
884 if (readonly)
885 PMBUS_ADD_GET_ATTR(data, sensor->name, sensor,
886 data->num_sensors);
887 else
888 PMBUS_ADD_SET_ATTR(data, sensor->name, sensor,
889 data->num_sensors);
890 data->num_sensors++;
891}
892
893static void pmbus_add_label(struct pmbus_data *data,
894 const char *name, int seq,
895 const char *lstring, int index)
896{
897 struct pmbus_label *label;
898
899 BUG_ON(data->num_labels >= data->max_labels);
900
901 label = &data->labels[data->num_labels];
902 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
903 if (!index)
904 strncpy(label->label, lstring, sizeof(label->label) - 1);
905 else
906 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
907 index);
908
909 PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels);
910 data->num_labels++;
911}
912
913/*
914 * Determine maximum number of sensors, booleans, and labels.
915 * To keep things simple, only make a rough high estimate.
916 */
917static void pmbus_find_max_attr(struct i2c_client *client,
918 struct pmbus_data *data)
919{
920 const struct pmbus_driver_info *info = data->info;
921 int page, max_sensors, max_booleans, max_labels;
922
923 max_sensors = PMBUS_MAX_INPUT_SENSORS;
924 max_booleans = PMBUS_MAX_INPUT_BOOLEANS;
925 max_labels = PMBUS_MAX_INPUT_LABELS;
926
927 for (page = 0; page < info->pages; page++) {
928 if (info->func[page] & PMBUS_HAVE_VOUT) {
929 max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE;
930 max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE;
931 max_labels++;
932 }
933 if (info->func[page] & PMBUS_HAVE_IOUT) {
934 max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE;
935 max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE;
936 max_labels++;
937 }
938 if (info->func[page] & PMBUS_HAVE_POUT) {
939 max_sensors += PMBUS_POUT_SENSORS_PER_PAGE;
940 max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE;
941 max_labels++;
942 }
943 if (info->func[page] & PMBUS_HAVE_FAN12) {
944 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
945 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
946 }
947 if (info->func[page] & PMBUS_HAVE_FAN34) {
948 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
949 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
950 }
951 if (info->func[page] & PMBUS_HAVE_TEMP) {
952 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
953 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
954 }
955 if (info->func[page] & PMBUS_HAVE_TEMP2) {
956 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
957 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
958 }
959 if (info->func[page] & PMBUS_HAVE_TEMP3) {
960 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
961 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
962 }
963 }
964 data->max_sensors = max_sensors;
965 data->max_booleans = max_booleans;
966 data->max_labels = max_labels;
967 data->max_attributes = max_sensors + max_booleans + max_labels;
968}
969
970/*
971 * Search for attributes. Allocate sensors, booleans, and labels as needed.
972 */
973
974/*
975 * The pmbus_limit_attr structure describes a single limit attribute
976 * and its associated alarm attribute.
977 */
978struct pmbus_limit_attr {
979 u16 reg; /* Limit register */
980 bool update; /* True if register needs updates */
981 bool low; /* True if low limit; for limits with compare
982 functions only */
983 const char *attr; /* Attribute name */
984 const char *alarm; /* Alarm attribute name */
985 u32 sbit; /* Alarm attribute status bit */
986};
987
988/*
989 * The pmbus_sensor_attr structure describes one sensor attribute. This
990 * description includes a reference to the associated limit attributes.
991 */
992struct pmbus_sensor_attr {
993 u8 reg; /* sensor register */
994 enum pmbus_sensor_classes class;/* sensor class */
995 const char *label; /* sensor label */
996 bool paged; /* true if paged sensor */
997 bool update; /* true if update needed */
998 bool compare; /* true if compare function needed */
999 u32 func; /* sensor mask */
1000 u32 sfunc; /* sensor status mask */
1001 int sbase; /* status base register */
1002 u32 gbit; /* generic status bit */
1003 const struct pmbus_limit_attr *limit;/* limit registers */
1004 int nlimit; /* # of limit registers */
1005};
1006
1007/*
1008 * Add a set of limit attributes and, if supported, the associated
1009 * alarm attributes.
1010 */
1011static bool pmbus_add_limit_attrs(struct i2c_client *client,
1012 struct pmbus_data *data,
1013 const struct pmbus_driver_info *info,
1014 const char *name, int index, int page,
1015 int cbase,
1016 const struct pmbus_sensor_attr *attr)
1017{
1018 const struct pmbus_limit_attr *l = attr->limit;
1019 int nlimit = attr->nlimit;
1020 bool have_alarm = false;
1021 int i, cindex;
1022
1023 for (i = 0; i < nlimit; i++) {
1024 if (pmbus_check_word_register(client, page, l->reg)) {
1025 cindex = data->num_sensors;
1026 pmbus_add_sensor(data, name, l->attr, index, page,
1027 l->reg, attr->class,
1028 attr->update || l->update,
1029 false);
1030 if (l->sbit && (info->func[page] & attr->sfunc)) {
1031 if (attr->compare) {
1032 pmbus_add_boolean_cmp(data, name,
1033 l->alarm, index,
1034 l->low ? cindex : cbase,
1035 l->low ? cbase : cindex,
1036 attr->sbase + page, l->sbit);
1037 } else {
1038 pmbus_add_boolean_reg(data, name,
1039 l->alarm, index,
1040 attr->sbase + page, l->sbit);
1041 }
1042 have_alarm = true;
1043 }
1044 }
1045 l++;
1046 }
1047 return have_alarm;
1048}
1049
1050static void pmbus_add_sensor_attrs_one(struct i2c_client *client,
1051 struct pmbus_data *data,
1052 const struct pmbus_driver_info *info,
1053 const char *name,
1054 int index, int page,
1055 const struct pmbus_sensor_attr *attr)
1056{
1057 bool have_alarm;
1058 int cbase = data->num_sensors;
1059
1060 if (attr->label)
1061 pmbus_add_label(data, name, index, attr->label,
1062 attr->paged ? page + 1 : 0);
1063 pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1064 attr->class, true, true);
1065 if (attr->sfunc) {
1066 have_alarm = pmbus_add_limit_attrs(client, data, info, name,
1067 index, page, cbase, attr);
1068 /*
1069 * Add generic alarm attribute only if there are no individual
1070 * alarm attributes, if there is a global alarm bit, and if
1071 * the generic status register for this page is accessible.
1072 */
1073 if (!have_alarm && attr->gbit &&
1074 pmbus_check_byte_register(client, page, PMBUS_STATUS_BYTE))
1075 pmbus_add_boolean_reg(data, name, "alarm", index,
1076 PB_STATUS_BASE + page,
1077 attr->gbit);
1078 }
1079}
1080
1081static void pmbus_add_sensor_attrs(struct i2c_client *client,
1082 struct pmbus_data *data,
1083 const char *name,
1084 const struct pmbus_sensor_attr *attrs,
1085 int nattrs)
1086{
1087 const struct pmbus_driver_info *info = data->info;
1088 int index, i;
1089
1090 index = 1;
1091 for (i = 0; i < nattrs; i++) {
1092 int page, pages;
1093
1094 pages = attrs->paged ? info->pages : 1;
1095 for (page = 0; page < pages; page++) {
1096 if (!(info->func[page] & attrs->func))
1097 continue;
1098 pmbus_add_sensor_attrs_one(client, data, info, name,
1099 index, page, attrs);
1100 index++;
1101 }
1102 attrs++;
1103 }
1104}
1105
1106static const struct pmbus_limit_attr vin_limit_attrs[] = {
1107 {
1108 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1109 .attr = "min",
1110 .alarm = "min_alarm",
1111 .sbit = PB_VOLTAGE_UV_WARNING,
1112 }, {
1113 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1114 .attr = "lcrit",
1115 .alarm = "lcrit_alarm",
1116 .sbit = PB_VOLTAGE_UV_FAULT,
1117 }, {
1118 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1119 .attr = "max",
1120 .alarm = "max_alarm",
1121 .sbit = PB_VOLTAGE_OV_WARNING,
1122 }, {
1123 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1124 .attr = "crit",
1125 .alarm = "crit_alarm",
1126 .sbit = PB_VOLTAGE_OV_FAULT,
1127 }, {
1128 .reg = PMBUS_VIRT_READ_VIN_AVG,
1129 .update = true,
1130 .attr = "average",
1131 }, {
1132 .reg = PMBUS_VIRT_READ_VIN_MIN,
1133 .update = true,
1134 .attr = "lowest",
1135 }, {
1136 .reg = PMBUS_VIRT_READ_VIN_MAX,
1137 .update = true,
1138 .attr = "highest",
1139 }, {
1140 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1141 .attr = "reset_history",
1142 },
1143};
1144
1145static const struct pmbus_limit_attr vout_limit_attrs[] = {
1146 {
1147 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1148 .attr = "min",
1149 .alarm = "min_alarm",
1150 .sbit = PB_VOLTAGE_UV_WARNING,
1151 }, {
1152 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1153 .attr = "lcrit",
1154 .alarm = "lcrit_alarm",
1155 .sbit = PB_VOLTAGE_UV_FAULT,
1156 }, {
1157 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1158 .attr = "max",
1159 .alarm = "max_alarm",
1160 .sbit = PB_VOLTAGE_OV_WARNING,
1161 }, {
1162 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1163 .attr = "crit",
1164 .alarm = "crit_alarm",
1165 .sbit = PB_VOLTAGE_OV_FAULT,
1166 }, {
1167 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1168 .update = true,
1169 .attr = "average",
1170 }, {
1171 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1172 .update = true,
1173 .attr = "lowest",
1174 }, {
1175 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1176 .update = true,
1177 .attr = "highest",
1178 }, {
1179 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1180 .attr = "reset_history",
1181 }
1182};
1183
1184static const struct pmbus_sensor_attr voltage_attributes[] = {
1185 {
1186 .reg = PMBUS_READ_VIN,
1187 .class = PSC_VOLTAGE_IN,
1188 .label = "vin",
1189 .func = PMBUS_HAVE_VIN,
1190 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1191 .sbase = PB_STATUS_INPUT_BASE,
1192 .gbit = PB_STATUS_VIN_UV,
1193 .limit = vin_limit_attrs,
1194 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1195 }, {
1196 .reg = PMBUS_READ_VCAP,
1197 .class = PSC_VOLTAGE_IN,
1198 .label = "vcap",
1199 .func = PMBUS_HAVE_VCAP,
1200 }, {
1201 .reg = PMBUS_READ_VOUT,
1202 .class = PSC_VOLTAGE_OUT,
1203 .label = "vout",
1204 .paged = true,
1205 .func = PMBUS_HAVE_VOUT,
1206 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1207 .sbase = PB_STATUS_VOUT_BASE,
1208 .gbit = PB_STATUS_VOUT_OV,
1209 .limit = vout_limit_attrs,
1210 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1211 }
1212};
1213
1214/* Current attributes */
1215
1216static const struct pmbus_limit_attr iin_limit_attrs[] = {
1217 {
1218 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1219 .attr = "max",
1220 .alarm = "max_alarm",
1221 .sbit = PB_IIN_OC_WARNING,
1222 }, {
1223 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1224 .attr = "crit",
1225 .alarm = "crit_alarm",
1226 .sbit = PB_IIN_OC_FAULT,
1227 }, {
1228 .reg = PMBUS_VIRT_READ_IIN_AVG,
1229 .update = true,
1230 .attr = "average",
1231 }, {
1232 .reg = PMBUS_VIRT_READ_IIN_MIN,
1233 .update = true,
1234 .attr = "lowest",
1235 }, {
1236 .reg = PMBUS_VIRT_READ_IIN_MAX,
1237 .update = true,
1238 .attr = "highest",
1239 }, {
1240 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1241 .attr = "reset_history",
1242 }
1243};
1244
1245static const struct pmbus_limit_attr iout_limit_attrs[] = {
1246 {
1247 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1248 .attr = "max",
1249 .alarm = "max_alarm",
1250 .sbit = PB_IOUT_OC_WARNING,
1251 }, {
1252 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1253 .attr = "lcrit",
1254 .alarm = "lcrit_alarm",
1255 .sbit = PB_IOUT_UC_FAULT,
1256 }, {
1257 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1258 .attr = "crit",
1259 .alarm = "crit_alarm",
1260 .sbit = PB_IOUT_OC_FAULT,
1261 }, {
1262 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1263 .update = true,
1264 .attr = "average",
1265 }, {
1266 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1267 .update = true,
1268 .attr = "lowest",
1269 }, {
1270 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1271 .update = true,
1272 .attr = "highest",
1273 }, {
1274 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1275 .attr = "reset_history",
1276 }
1277};
1278
1279static const struct pmbus_sensor_attr current_attributes[] = {
1280 {
1281 .reg = PMBUS_READ_IIN,
1282 .class = PSC_CURRENT_IN,
1283 .label = "iin",
1284 .func = PMBUS_HAVE_IIN,
1285 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1286 .sbase = PB_STATUS_INPUT_BASE,
1287 .limit = iin_limit_attrs,
1288 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1289 }, {
1290 .reg = PMBUS_READ_IOUT,
1291 .class = PSC_CURRENT_OUT,
1292 .label = "iout",
1293 .paged = true,
1294 .func = PMBUS_HAVE_IOUT,
1295 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1296 .sbase = PB_STATUS_IOUT_BASE,
1297 .gbit = PB_STATUS_IOUT_OC,
1298 .limit = iout_limit_attrs,
1299 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1300 }
1301};
1302
1303/* Power attributes */
1304
1305static const struct pmbus_limit_attr pin_limit_attrs[] = {
1306 {
1307 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1308 .attr = "max",
1309 .alarm = "alarm",
1310 .sbit = PB_PIN_OP_WARNING,
1311 }, {
1312 .reg = PMBUS_VIRT_READ_PIN_AVG,
1313 .update = true,
1314 .attr = "average",
1315 }, {
1316 .reg = PMBUS_VIRT_READ_PIN_MAX,
1317 .update = true,
1318 .attr = "input_highest",
1319 }, {
1320 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1321 .attr = "reset_history",
1322 }
1323};
1324
1325static const struct pmbus_limit_attr pout_limit_attrs[] = {
1326 {
1327 .reg = PMBUS_POUT_MAX,
1328 .attr = "cap",
1329 .alarm = "cap_alarm",
1330 .sbit = PB_POWER_LIMITING,
1331 }, {
1332 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1333 .attr = "max",
1334 .alarm = "max_alarm",
1335 .sbit = PB_POUT_OP_WARNING,
1336 }, {
1337 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1338 .attr = "crit",
1339 .alarm = "crit_alarm",
1340 .sbit = PB_POUT_OP_FAULT,
1341 }
1342};
1343
1344static const struct pmbus_sensor_attr power_attributes[] = {
1345 {
1346 .reg = PMBUS_READ_PIN,
1347 .class = PSC_POWER,
1348 .label = "pin",
1349 .func = PMBUS_HAVE_PIN,
1350 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1351 .sbase = PB_STATUS_INPUT_BASE,
1352 .limit = pin_limit_attrs,
1353 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1354 }, {
1355 .reg = PMBUS_READ_POUT,
1356 .class = PSC_POWER,
1357 .label = "pout",
1358 .paged = true,
1359 .func = PMBUS_HAVE_POUT,
1360 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1361 .sbase = PB_STATUS_IOUT_BASE,
1362 .limit = pout_limit_attrs,
1363 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1364 }
1365};
1366
1367/* Temperature atributes */
1368
1369static const struct pmbus_limit_attr temp_limit_attrs[] = {
1370 {
1371 .reg = PMBUS_UT_WARN_LIMIT,
1372 .low = true,
1373 .attr = "min",
1374 .alarm = "min_alarm",
1375 .sbit = PB_TEMP_UT_WARNING,
1376 }, {
1377 .reg = PMBUS_UT_FAULT_LIMIT,
1378 .low = true,
1379 .attr = "lcrit",
1380 .alarm = "lcrit_alarm",
1381 .sbit = PB_TEMP_UT_FAULT,
1382 }, {
1383 .reg = PMBUS_OT_WARN_LIMIT,
1384 .attr = "max",
1385 .alarm = "max_alarm",
1386 .sbit = PB_TEMP_OT_WARNING,
1387 }, {
1388 .reg = PMBUS_OT_FAULT_LIMIT,
1389 .attr = "crit",
1390 .alarm = "crit_alarm",
1391 .sbit = PB_TEMP_OT_FAULT,
1392 }, {
1393 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1394 .attr = "lowest",
1395 }, {
1396 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1397 .attr = "highest",
1398 }, {
1399 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1400 .attr = "reset_history",
1401 }
1402};
1403
1404static const struct pmbus_limit_attr temp_limit_attrs23[] = {
1405 {
1406 .reg = PMBUS_UT_WARN_LIMIT,
1407 .low = true,
1408 .attr = "min",
1409 .alarm = "min_alarm",
1410 .sbit = PB_TEMP_UT_WARNING,
1411 }, {
1412 .reg = PMBUS_UT_FAULT_LIMIT,
1413 .low = true,
1414 .attr = "lcrit",
1415 .alarm = "lcrit_alarm",
1416 .sbit = PB_TEMP_UT_FAULT,
1417 }, {
1418 .reg = PMBUS_OT_WARN_LIMIT,
1419 .attr = "max",
1420 .alarm = "max_alarm",
1421 .sbit = PB_TEMP_OT_WARNING,
1422 }, {
1423 .reg = PMBUS_OT_FAULT_LIMIT,
1424 .attr = "crit",
1425 .alarm = "crit_alarm",
1426 .sbit = PB_TEMP_OT_FAULT,
1427 }
1428};
1429
1430static const struct pmbus_sensor_attr temp_attributes[] = {
1431 {
1432 .reg = PMBUS_READ_TEMPERATURE_1,
1433 .class = PSC_TEMPERATURE,
1434 .paged = true,
1435 .update = true,
1436 .compare = true,
1437 .func = PMBUS_HAVE_TEMP,
1438 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1439 .sbase = PB_STATUS_TEMP_BASE,
1440 .gbit = PB_STATUS_TEMPERATURE,
1441 .limit = temp_limit_attrs,
1442 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1443 }, {
1444 .reg = PMBUS_READ_TEMPERATURE_2,
1445 .class = PSC_TEMPERATURE,
1446 .paged = true,
1447 .update = true,
1448 .compare = true,
1449 .func = PMBUS_HAVE_TEMP2,
1450 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1451 .sbase = PB_STATUS_TEMP_BASE,
1452 .gbit = PB_STATUS_TEMPERATURE,
1453 .limit = temp_limit_attrs23,
1454 .nlimit = ARRAY_SIZE(temp_limit_attrs23),
1455 }, {
1456 .reg = PMBUS_READ_TEMPERATURE_3,
1457 .class = PSC_TEMPERATURE,
1458 .paged = true,
1459 .update = true,
1460 .compare = true,
1461 .func = PMBUS_HAVE_TEMP3,
1462 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1463 .sbase = PB_STATUS_TEMP_BASE,
1464 .gbit = PB_STATUS_TEMPERATURE,
1465 .limit = temp_limit_attrs23,
1466 .nlimit = ARRAY_SIZE(temp_limit_attrs23),
1467 }
1468};
1469
1470static const int pmbus_fan_registers[] = {
1471 PMBUS_READ_FAN_SPEED_1,
1472 PMBUS_READ_FAN_SPEED_2,
1473 PMBUS_READ_FAN_SPEED_3,
1474 PMBUS_READ_FAN_SPEED_4
1475};
1476
1477static const int pmbus_fan_config_registers[] = {
1478 PMBUS_FAN_CONFIG_12,
1479 PMBUS_FAN_CONFIG_12,
1480 PMBUS_FAN_CONFIG_34,
1481 PMBUS_FAN_CONFIG_34
1482};
1483
1484static const int pmbus_fan_status_registers[] = {
1485 PMBUS_STATUS_FAN_12,
1486 PMBUS_STATUS_FAN_12,
1487 PMBUS_STATUS_FAN_34,
1488 PMBUS_STATUS_FAN_34
1489};
1490
1491static const u32 pmbus_fan_flags[] = {
1492 PMBUS_HAVE_FAN12,
1493 PMBUS_HAVE_FAN12,
1494 PMBUS_HAVE_FAN34,
1495 PMBUS_HAVE_FAN34
1496};
1497
1498static const u32 pmbus_fan_status_flags[] = {
1499 PMBUS_HAVE_STATUS_FAN12,
1500 PMBUS_HAVE_STATUS_FAN12,
1501 PMBUS_HAVE_STATUS_FAN34,
1502 PMBUS_HAVE_STATUS_FAN34
1503};
1504
1505/* Fans */
1506static void pmbus_add_fan_attributes(struct i2c_client *client,
1507 struct pmbus_data *data)
1508{
1509 const struct pmbus_driver_info *info = data->info;
1510 int index = 1;
1511 int page;
1512
1513 for (page = 0; page < info->pages; page++) {
1514 int f;
1515
1516 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1517 int regval;
1518
1519 if (!(info->func[page] & pmbus_fan_flags[f]))
1520 break;
1521
1522 if (!pmbus_check_word_register(client, page,
1523 pmbus_fan_registers[f]))
1524 break;
1525
1526 /*
1527 * Skip fan if not installed.
1528 * Each fan configuration register covers multiple fans,
1529 * so we have to do some magic.
1530 */
1531 regval = _pmbus_read_byte_data(client, page,
1532 pmbus_fan_config_registers[f]);
1533 if (regval < 0 ||
1534 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1535 continue;
1536
1537 pmbus_add_sensor(data, "fan", "input", index, page,
1538 pmbus_fan_registers[f], PSC_FAN, true,
1539 true);
1540
1541 /*
1542 * Each fan status register covers multiple fans,
1543 * so we have to do some magic.
1544 */
1545 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1546 pmbus_check_byte_register(client,
1547 page, pmbus_fan_status_registers[f])) {
1548 int base;
1549
1550 if (f > 1) /* fan 3, 4 */
1551 base = PB_STATUS_FAN34_BASE + page;
1552 else
1553 base = PB_STATUS_FAN_BASE + page;
1554 pmbus_add_boolean_reg(data, "fan", "alarm",
1555 index, base,
1556 PB_FAN_FAN1_WARNING >> (f & 1));
1557 pmbus_add_boolean_reg(data, "fan", "fault",
1558 index, base,
1559 PB_FAN_FAN1_FAULT >> (f & 1));
1560 }
1561 index++;
1562 }
1563 }
1564}
1565
1566static void pmbus_find_attributes(struct i2c_client *client,
1567 struct pmbus_data *data)
1568{
1569 /* Voltage sensors */
1570 pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1571 ARRAY_SIZE(voltage_attributes));
1572
1573 /* Current sensors */
1574 pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1575 ARRAY_SIZE(current_attributes));
1576
1577 /* Power sensors */
1578 pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1579 ARRAY_SIZE(power_attributes));
1580
1581 /* Temperature sensors */
1582 pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1583 ARRAY_SIZE(temp_attributes));
1584
1585 /* Fans */
1586 pmbus_add_fan_attributes(client, data);
1587}
1588
1589/*
1590 * Identify chip parameters.
1591 * This function is called for all chips.
1592 */
1593static int pmbus_identify_common(struct i2c_client *client,
1594 struct pmbus_data *data)
1595{
1596 int vout_mode = -1, exponent;
1597
1598 if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
1599 vout_mode = pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
1600 if (vout_mode >= 0 && vout_mode != 0xff) {
1601 /*
1602 * Not all chips support the VOUT_MODE command,
1603 * so a failure to read it is not an error.
1604 */
1605 switch (vout_mode >> 5) {
1606 case 0: /* linear mode */
1607 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1608 return -ENODEV;
1609
1610 exponent = vout_mode & 0x1f;
1611 /* and sign-extend it */
1612 if (exponent & 0x10)
1613 exponent |= ~0x1f;
1614 data->exponent = exponent;
1615 break;
1616 case 1: /* VID mode */
1617 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1618 return -ENODEV;
1619 break;
1620 case 2: /* direct mode */
1621 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1622 return -ENODEV;
1623 break;
1624 default:
1625 return -ENODEV;
1626 }
1627 }
1628
1629 /* Determine maximum number of sensors, booleans, and labels */
1630 pmbus_find_max_attr(client, data);
1631 pmbus_clear_fault_page(client, 0);
1632 return 0;
1633}
1634
1635int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1636 struct pmbus_driver_info *info)
1637{
1638 const struct pmbus_platform_data *pdata = client->dev.platform_data;
1639 struct pmbus_data *data;
1640 int ret;
1641
1642 if (!info) {
1643 dev_err(&client->dev, "Missing chip information");
1644 return -ENODEV;
1645 }
1646
1647 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1648 | I2C_FUNC_SMBUS_BYTE_DATA
1649 | I2C_FUNC_SMBUS_WORD_DATA))
1650 return -ENODEV;
1651
1652 data = kzalloc(sizeof(*data), GFP_KERNEL);
1653 if (!data) {
1654 dev_err(&client->dev, "No memory to allocate driver data\n");
1655 return -ENOMEM;
1656 }
1657
1658 i2c_set_clientdata(client, data);
1659 mutex_init(&data->update_lock);
1660
1661 /* Bail out if PMBus status register does not exist. */
1662 if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) {
1663 dev_err(&client->dev, "PMBus status register not found\n");
1664 ret = -ENODEV;
1665 goto out_data;
1666 }
1667
1668 if (pdata)
1669 data->flags = pdata->flags;
1670 data->info = info;
1671
1672 pmbus_clear_faults(client);
1673
1674 if (info->identify) {
1675 ret = (*info->identify)(client, info);
1676 if (ret < 0) {
1677 dev_err(&client->dev, "Chip identification failed\n");
1678 goto out_data;
1679 }
1680 }
1681
1682 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1683 dev_err(&client->dev, "Bad number of PMBus pages: %d\n",
1684 info->pages);
1685 ret = -EINVAL;
1686 goto out_data;
1687 }
1688
1689 ret = pmbus_identify_common(client, data);
1690 if (ret < 0) {
1691 dev_err(&client->dev, "Failed to identify chip capabilities\n");
1692 goto out_data;
1693 }
1694
1695 ret = -ENOMEM;
1696 data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors,
1697 GFP_KERNEL);
1698 if (!data->sensors) {
1699 dev_err(&client->dev, "No memory to allocate sensor data\n");
1700 goto out_data;
1701 }
1702
1703 data->booleans = kzalloc(sizeof(struct pmbus_boolean)
1704 * data->max_booleans, GFP_KERNEL);
1705 if (!data->booleans) {
1706 dev_err(&client->dev, "No memory to allocate boolean data\n");
1707 goto out_sensors;
1708 }
1709
1710 data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels,
1711 GFP_KERNEL);
1712 if (!data->labels) {
1713 dev_err(&client->dev, "No memory to allocate label data\n");
1714 goto out_booleans;
1715 }
1716
1717 data->attributes = kzalloc(sizeof(struct attribute *)
1718 * data->max_attributes, GFP_KERNEL);
1719 if (!data->attributes) {
1720 dev_err(&client->dev, "No memory to allocate attribute data\n");
1721 goto out_labels;
1722 }
1723
1724 pmbus_find_attributes(client, data);
1725
1726 /*
1727 * If there are no attributes, something is wrong.
1728 * Bail out instead of trying to register nothing.
1729 */
1730 if (!data->num_attributes) {
1731 dev_err(&client->dev, "No attributes found\n");
1732 ret = -ENODEV;
1733 goto out_attributes;
1734 }
1735
1736 /* Register sysfs hooks */
1737 data->group.attrs = data->attributes;
1738 ret = sysfs_create_group(&client->dev.kobj, &data->group);
1739 if (ret) {
1740 dev_err(&client->dev, "Failed to create sysfs entries\n");
1741 goto out_attributes;
1742 }
1743 data->hwmon_dev = hwmon_device_register(&client->dev);
1744 if (IS_ERR(data->hwmon_dev)) {
1745 ret = PTR_ERR(data->hwmon_dev);
1746 dev_err(&client->dev, "Failed to register hwmon device\n");
1747 goto out_hwmon_device_register;
1748 }
1749 return 0;
1750
1751out_hwmon_device_register:
1752 sysfs_remove_group(&client->dev.kobj, &data->group);
1753out_attributes:
1754 kfree(data->attributes);
1755out_labels:
1756 kfree(data->labels);
1757out_booleans:
1758 kfree(data->booleans);
1759out_sensors:
1760 kfree(data->sensors);
1761out_data:
1762 kfree(data);
1763 return ret;
1764}
1765EXPORT_SYMBOL_GPL(pmbus_do_probe);
1766
1767int pmbus_do_remove(struct i2c_client *client)
1768{
1769 struct pmbus_data *data = i2c_get_clientdata(client);
1770 hwmon_device_unregister(data->hwmon_dev);
1771 sysfs_remove_group(&client->dev.kobj, &data->group);
1772 kfree(data->attributes);
1773 kfree(data->labels);
1774 kfree(data->booleans);
1775 kfree(data->sensors);
1776 kfree(data);
1777 return 0;
1778}
1779EXPORT_SYMBOL_GPL(pmbus_do_remove);
1780
1781MODULE_AUTHOR("Guenter Roeck");
1782MODULE_DESCRIPTION("PMBus core driver");
1783MODULE_LICENSE("GPL");
1/*
2 * Hardware monitoring driver for PMBus devices
3 *
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/err.h>
25#include <linux/slab.h>
26#include <linux/i2c.h>
27#include <linux/hwmon.h>
28#include <linux/hwmon-sysfs.h>
29#include <linux/delay.h>
30#include <linux/i2c/pmbus.h>
31#include "pmbus.h"
32
33/*
34 * Constants needed to determine number of sensors, booleans, and labels.
35 */
36#define PMBUS_MAX_INPUT_SENSORS 22 /* 10*volt, 7*curr, 5*power */
37#define PMBUS_VOUT_SENSORS_PER_PAGE 9 /* input, min, max, lcrit,
38 crit, lowest, highest, avg,
39 reset */
40#define PMBUS_IOUT_SENSORS_PER_PAGE 8 /* input, min, max, crit,
41 lowest, highest, avg,
42 reset */
43#define PMBUS_POUT_SENSORS_PER_PAGE 7 /* input, cap, max, crit,
44 * highest, avg, reset
45 */
46#define PMBUS_MAX_SENSORS_PER_FAN 1 /* input */
47#define PMBUS_MAX_SENSORS_PER_TEMP 9 /* input, min, max, lcrit,
48 * crit, lowest, highest, avg,
49 * reset
50 */
51
52#define PMBUS_MAX_INPUT_BOOLEANS 7 /* v: min_alarm, max_alarm,
53 lcrit_alarm, crit_alarm;
54 c: alarm, crit_alarm;
55 p: crit_alarm */
56#define PMBUS_VOUT_BOOLEANS_PER_PAGE 4 /* min_alarm, max_alarm,
57 lcrit_alarm, crit_alarm */
58#define PMBUS_IOUT_BOOLEANS_PER_PAGE 3 /* alarm, lcrit_alarm,
59 crit_alarm */
60#define PMBUS_POUT_BOOLEANS_PER_PAGE 3 /* cap_alarm, alarm, crit_alarm
61 */
62#define PMBUS_MAX_BOOLEANS_PER_FAN 2 /* alarm, fault */
63#define PMBUS_MAX_BOOLEANS_PER_TEMP 4 /* min_alarm, max_alarm,
64 lcrit_alarm, crit_alarm */
65
66#define PMBUS_MAX_INPUT_LABELS 4 /* vin, vcap, iin, pin */
67
68/*
69 * status, status_vout, status_iout, status_fans, status_fan34, and status_temp
70 * are paged. status_input is unpaged.
71 */
72#define PB_NUM_STATUS_REG (PMBUS_PAGES * 6 + 1)
73
74/*
75 * Index into status register array, per status register group
76 */
77#define PB_STATUS_BASE 0
78#define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
79#define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
80#define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
81#define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
82#define PB_STATUS_INPUT_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
83#define PB_STATUS_TEMP_BASE (PB_STATUS_INPUT_BASE + 1)
84
85#define PMBUS_NAME_SIZE 24
86
87struct pmbus_sensor {
88 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
89 struct sensor_device_attribute attribute;
90 u8 page; /* page number */
91 u16 reg; /* register */
92 enum pmbus_sensor_classes class; /* sensor class */
93 bool update; /* runtime sensor update needed */
94 int data; /* Sensor data.
95 Negative if there was a read error */
96};
97
98struct pmbus_boolean {
99 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
100 struct sensor_device_attribute attribute;
101};
102
103struct pmbus_label {
104 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
105 struct sensor_device_attribute attribute;
106 char label[PMBUS_NAME_SIZE]; /* label */
107};
108
109struct pmbus_data {
110 struct device *hwmon_dev;
111
112 u32 flags; /* from platform data */
113
114 int exponent; /* linear mode: exponent for output voltages */
115
116 const struct pmbus_driver_info *info;
117
118 int max_attributes;
119 int num_attributes;
120 struct attribute **attributes;
121 struct attribute_group group;
122
123 /*
124 * Sensors cover both sensor and limit registers.
125 */
126 int max_sensors;
127 int num_sensors;
128 struct pmbus_sensor *sensors;
129 /*
130 * Booleans are used for alarms.
131 * Values are determined from status registers.
132 */
133 int max_booleans;
134 int num_booleans;
135 struct pmbus_boolean *booleans;
136 /*
137 * Labels are used to map generic names (e.g., "in1")
138 * to PMBus specific names (e.g., "vin" or "vout1").
139 */
140 int max_labels;
141 int num_labels;
142 struct pmbus_label *labels;
143
144 struct mutex update_lock;
145 bool valid;
146 unsigned long last_updated; /* in jiffies */
147
148 /*
149 * A single status register covers multiple attributes,
150 * so we keep them all together.
151 */
152 u8 status[PB_NUM_STATUS_REG];
153
154 u8 currpage;
155};
156
157int pmbus_set_page(struct i2c_client *client, u8 page)
158{
159 struct pmbus_data *data = i2c_get_clientdata(client);
160 int rv = 0;
161 int newpage;
162
163 if (page != data->currpage) {
164 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
165 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
166 if (newpage != page)
167 rv = -EIO;
168 else
169 data->currpage = page;
170 }
171 return rv;
172}
173EXPORT_SYMBOL_GPL(pmbus_set_page);
174
175int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
176{
177 int rv;
178
179 if (page >= 0) {
180 rv = pmbus_set_page(client, page);
181 if (rv < 0)
182 return rv;
183 }
184
185 return i2c_smbus_write_byte(client, value);
186}
187EXPORT_SYMBOL_GPL(pmbus_write_byte);
188
189/*
190 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
191 * a device specific mapping funcion exists and calls it if necessary.
192 */
193static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
194{
195 struct pmbus_data *data = i2c_get_clientdata(client);
196 const struct pmbus_driver_info *info = data->info;
197 int status;
198
199 if (info->write_byte) {
200 status = info->write_byte(client, page, value);
201 if (status != -ENODATA)
202 return status;
203 }
204 return pmbus_write_byte(client, page, value);
205}
206
207int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
208{
209 int rv;
210
211 rv = pmbus_set_page(client, page);
212 if (rv < 0)
213 return rv;
214
215 return i2c_smbus_write_word_data(client, reg, word);
216}
217EXPORT_SYMBOL_GPL(pmbus_write_word_data);
218
219/*
220 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
221 * a device specific mapping function exists and calls it if necessary.
222 */
223static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
224 u16 word)
225{
226 struct pmbus_data *data = i2c_get_clientdata(client);
227 const struct pmbus_driver_info *info = data->info;
228 int status;
229
230 if (info->write_word_data) {
231 status = info->write_word_data(client, page, reg, word);
232 if (status != -ENODATA)
233 return status;
234 }
235 if (reg >= PMBUS_VIRT_BASE)
236 return -ENXIO;
237 return pmbus_write_word_data(client, page, reg, word);
238}
239
240int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
241{
242 int rv;
243
244 rv = pmbus_set_page(client, page);
245 if (rv < 0)
246 return rv;
247
248 return i2c_smbus_read_word_data(client, reg);
249}
250EXPORT_SYMBOL_GPL(pmbus_read_word_data);
251
252/*
253 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
254 * a device specific mapping function exists and calls it if necessary.
255 */
256static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
257{
258 struct pmbus_data *data = i2c_get_clientdata(client);
259 const struct pmbus_driver_info *info = data->info;
260 int status;
261
262 if (info->read_word_data) {
263 status = info->read_word_data(client, page, reg);
264 if (status != -ENODATA)
265 return status;
266 }
267 if (reg >= PMBUS_VIRT_BASE)
268 return -ENXIO;
269 return pmbus_read_word_data(client, page, reg);
270}
271
272int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
273{
274 int rv;
275
276 if (page >= 0) {
277 rv = pmbus_set_page(client, page);
278 if (rv < 0)
279 return rv;
280 }
281
282 return i2c_smbus_read_byte_data(client, reg);
283}
284EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
285
286/*
287 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
288 * a device specific mapping function exists and calls it if necessary.
289 */
290static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
291{
292 struct pmbus_data *data = i2c_get_clientdata(client);
293 const struct pmbus_driver_info *info = data->info;
294 int status;
295
296 if (info->read_byte_data) {
297 status = info->read_byte_data(client, page, reg);
298 if (status != -ENODATA)
299 return status;
300 }
301 return pmbus_read_byte_data(client, page, reg);
302}
303
304static void pmbus_clear_fault_page(struct i2c_client *client, int page)
305{
306 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
307}
308
309void pmbus_clear_faults(struct i2c_client *client)
310{
311 struct pmbus_data *data = i2c_get_clientdata(client);
312 int i;
313
314 for (i = 0; i < data->info->pages; i++)
315 pmbus_clear_fault_page(client, i);
316}
317EXPORT_SYMBOL_GPL(pmbus_clear_faults);
318
319static int pmbus_check_status_cml(struct i2c_client *client)
320{
321 int status, status2;
322
323 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_BYTE);
324 if (status < 0 || (status & PB_STATUS_CML)) {
325 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
326 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
327 return -EIO;
328 }
329 return 0;
330}
331
332bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
333{
334 int rv;
335 struct pmbus_data *data = i2c_get_clientdata(client);
336
337 rv = _pmbus_read_byte_data(client, page, reg);
338 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
339 rv = pmbus_check_status_cml(client);
340 pmbus_clear_fault_page(client, -1);
341 return rv >= 0;
342}
343EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
344
345bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
346{
347 int rv;
348 struct pmbus_data *data = i2c_get_clientdata(client);
349
350 rv = _pmbus_read_word_data(client, page, reg);
351 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
352 rv = pmbus_check_status_cml(client);
353 pmbus_clear_fault_page(client, -1);
354 return rv >= 0;
355}
356EXPORT_SYMBOL_GPL(pmbus_check_word_register);
357
358const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
359{
360 struct pmbus_data *data = i2c_get_clientdata(client);
361
362 return data->info;
363}
364EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
365
366static struct pmbus_data *pmbus_update_device(struct device *dev)
367{
368 struct i2c_client *client = to_i2c_client(dev);
369 struct pmbus_data *data = i2c_get_clientdata(client);
370 const struct pmbus_driver_info *info = data->info;
371
372 mutex_lock(&data->update_lock);
373 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
374 int i;
375
376 for (i = 0; i < info->pages; i++)
377 data->status[PB_STATUS_BASE + i]
378 = _pmbus_read_byte_data(client, i,
379 PMBUS_STATUS_BYTE);
380 for (i = 0; i < info->pages; i++) {
381 if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT))
382 continue;
383 data->status[PB_STATUS_VOUT_BASE + i]
384 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT);
385 }
386 for (i = 0; i < info->pages; i++) {
387 if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT))
388 continue;
389 data->status[PB_STATUS_IOUT_BASE + i]
390 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT);
391 }
392 for (i = 0; i < info->pages; i++) {
393 if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP))
394 continue;
395 data->status[PB_STATUS_TEMP_BASE + i]
396 = _pmbus_read_byte_data(client, i,
397 PMBUS_STATUS_TEMPERATURE);
398 }
399 for (i = 0; i < info->pages; i++) {
400 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12))
401 continue;
402 data->status[PB_STATUS_FAN_BASE + i]
403 = _pmbus_read_byte_data(client, i,
404 PMBUS_STATUS_FAN_12);
405 }
406
407 for (i = 0; i < info->pages; i++) {
408 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34))
409 continue;
410 data->status[PB_STATUS_FAN34_BASE + i]
411 = _pmbus_read_byte_data(client, i,
412 PMBUS_STATUS_FAN_34);
413 }
414
415 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
416 data->status[PB_STATUS_INPUT_BASE]
417 = _pmbus_read_byte_data(client, 0,
418 PMBUS_STATUS_INPUT);
419
420 for (i = 0; i < data->num_sensors; i++) {
421 struct pmbus_sensor *sensor = &data->sensors[i];
422
423 if (!data->valid || sensor->update)
424 sensor->data
425 = _pmbus_read_word_data(client,
426 sensor->page,
427 sensor->reg);
428 }
429 pmbus_clear_faults(client);
430 data->last_updated = jiffies;
431 data->valid = 1;
432 }
433 mutex_unlock(&data->update_lock);
434 return data;
435}
436
437/*
438 * Convert linear sensor values to milli- or micro-units
439 * depending on sensor type.
440 */
441static long pmbus_reg2data_linear(struct pmbus_data *data,
442 struct pmbus_sensor *sensor)
443{
444 s16 exponent;
445 s32 mantissa;
446 long val;
447
448 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
449 exponent = data->exponent;
450 mantissa = (u16) sensor->data;
451 } else { /* LINEAR11 */
452 exponent = ((s16)sensor->data) >> 11;
453 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
454 }
455
456 val = mantissa;
457
458 /* scale result to milli-units for all sensors except fans */
459 if (sensor->class != PSC_FAN)
460 val = val * 1000L;
461
462 /* scale result to micro-units for power sensors */
463 if (sensor->class == PSC_POWER)
464 val = val * 1000L;
465
466 if (exponent >= 0)
467 val <<= exponent;
468 else
469 val >>= -exponent;
470
471 return val;
472}
473
474/*
475 * Convert direct sensor values to milli- or micro-units
476 * depending on sensor type.
477 */
478static long pmbus_reg2data_direct(struct pmbus_data *data,
479 struct pmbus_sensor *sensor)
480{
481 long val = (s16) sensor->data;
482 long m, b, R;
483
484 m = data->info->m[sensor->class];
485 b = data->info->b[sensor->class];
486 R = data->info->R[sensor->class];
487
488 if (m == 0)
489 return 0;
490
491 /* X = 1/m * (Y * 10^-R - b) */
492 R = -R;
493 /* scale result to milli-units for everything but fans */
494 if (sensor->class != PSC_FAN) {
495 R += 3;
496 b *= 1000;
497 }
498
499 /* scale result to micro-units for power sensors */
500 if (sensor->class == PSC_POWER) {
501 R += 3;
502 b *= 1000;
503 }
504
505 while (R > 0) {
506 val *= 10;
507 R--;
508 }
509 while (R < 0) {
510 val = DIV_ROUND_CLOSEST(val, 10);
511 R++;
512 }
513
514 return (val - b) / m;
515}
516
517/*
518 * Convert VID sensor values to milli- or micro-units
519 * depending on sensor type.
520 * We currently only support VR11.
521 */
522static long pmbus_reg2data_vid(struct pmbus_data *data,
523 struct pmbus_sensor *sensor)
524{
525 long val = sensor->data;
526
527 if (val < 0x02 || val > 0xb2)
528 return 0;
529 return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
530}
531
532static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
533{
534 long val;
535
536 switch (data->info->format[sensor->class]) {
537 case direct:
538 val = pmbus_reg2data_direct(data, sensor);
539 break;
540 case vid:
541 val = pmbus_reg2data_vid(data, sensor);
542 break;
543 case linear:
544 default:
545 val = pmbus_reg2data_linear(data, sensor);
546 break;
547 }
548 return val;
549}
550
551#define MAX_MANTISSA (1023 * 1000)
552#define MIN_MANTISSA (511 * 1000)
553
554static u16 pmbus_data2reg_linear(struct pmbus_data *data,
555 enum pmbus_sensor_classes class, long val)
556{
557 s16 exponent = 0, mantissa;
558 bool negative = false;
559
560 /* simple case */
561 if (val == 0)
562 return 0;
563
564 if (class == PSC_VOLTAGE_OUT) {
565 /* LINEAR16 does not support negative voltages */
566 if (val < 0)
567 return 0;
568
569 /*
570 * For a static exponents, we don't have a choice
571 * but to adjust the value to it.
572 */
573 if (data->exponent < 0)
574 val <<= -data->exponent;
575 else
576 val >>= data->exponent;
577 val = DIV_ROUND_CLOSEST(val, 1000);
578 return val & 0xffff;
579 }
580
581 if (val < 0) {
582 negative = true;
583 val = -val;
584 }
585
586 /* Power is in uW. Convert to mW before converting. */
587 if (class == PSC_POWER)
588 val = DIV_ROUND_CLOSEST(val, 1000L);
589
590 /*
591 * For simplicity, convert fan data to milli-units
592 * before calculating the exponent.
593 */
594 if (class == PSC_FAN)
595 val = val * 1000;
596
597 /* Reduce large mantissa until it fits into 10 bit */
598 while (val >= MAX_MANTISSA && exponent < 15) {
599 exponent++;
600 val >>= 1;
601 }
602 /* Increase small mantissa to improve precision */
603 while (val < MIN_MANTISSA && exponent > -15) {
604 exponent--;
605 val <<= 1;
606 }
607
608 /* Convert mantissa from milli-units to units */
609 mantissa = DIV_ROUND_CLOSEST(val, 1000);
610
611 /* Ensure that resulting number is within range */
612 if (mantissa > 0x3ff)
613 mantissa = 0x3ff;
614
615 /* restore sign */
616 if (negative)
617 mantissa = -mantissa;
618
619 /* Convert to 5 bit exponent, 11 bit mantissa */
620 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
621}
622
623static u16 pmbus_data2reg_direct(struct pmbus_data *data,
624 enum pmbus_sensor_classes class, long val)
625{
626 long m, b, R;
627
628 m = data->info->m[class];
629 b = data->info->b[class];
630 R = data->info->R[class];
631
632 /* Power is in uW. Adjust R and b. */
633 if (class == PSC_POWER) {
634 R -= 3;
635 b *= 1000;
636 }
637
638 /* Calculate Y = (m * X + b) * 10^R */
639 if (class != PSC_FAN) {
640 R -= 3; /* Adjust R and b for data in milli-units */
641 b *= 1000;
642 }
643 val = val * m + b;
644
645 while (R > 0) {
646 val *= 10;
647 R--;
648 }
649 while (R < 0) {
650 val = DIV_ROUND_CLOSEST(val, 10);
651 R++;
652 }
653
654 return val;
655}
656
657static u16 pmbus_data2reg_vid(struct pmbus_data *data,
658 enum pmbus_sensor_classes class, long val)
659{
660 val = SENSORS_LIMIT(val, 500, 1600);
661
662 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
663}
664
665static u16 pmbus_data2reg(struct pmbus_data *data,
666 enum pmbus_sensor_classes class, long val)
667{
668 u16 regval;
669
670 switch (data->info->format[class]) {
671 case direct:
672 regval = pmbus_data2reg_direct(data, class, val);
673 break;
674 case vid:
675 regval = pmbus_data2reg_vid(data, class, val);
676 break;
677 case linear:
678 default:
679 regval = pmbus_data2reg_linear(data, class, val);
680 break;
681 }
682 return regval;
683}
684
685/*
686 * Return boolean calculated from converted data.
687 * <index> defines a status register index and mask, and optionally
688 * two sensor indexes.
689 * The upper half-word references the two sensors,
690 * two sensor indices.
691 * The upper half-word references the two optional sensors,
692 * the lower half word references status register and mask.
693 * The function returns true if (status[reg] & mask) is true and,
694 * if specified, if v1 >= v2.
695 * To determine if an object exceeds upper limits, specify <v, limit>.
696 * To determine if an object exceeds lower limits, specify <limit, v>.
697 *
698 * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of
699 * index are set. s1 and s2 (the sensor index values) are zero in this case.
700 * The function returns true if (status[reg] & mask) is true.
701 *
702 * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against
703 * a specified limit has to be performed to determine the boolean result.
704 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
705 * sensor values referenced by sensor indices s1 and s2).
706 *
707 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
708 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
709 *
710 * If a negative value is stored in any of the referenced registers, this value
711 * reflects an error code which will be returned.
712 */
713static int pmbus_get_boolean(struct pmbus_data *data, int index)
714{
715 u8 s1 = (index >> 24) & 0xff;
716 u8 s2 = (index >> 16) & 0xff;
717 u8 reg = (index >> 8) & 0xff;
718 u8 mask = index & 0xff;
719 int ret, status;
720 u8 regval;
721
722 status = data->status[reg];
723 if (status < 0)
724 return status;
725
726 regval = status & mask;
727 if (!s1 && !s2)
728 ret = !!regval;
729 else {
730 long v1, v2;
731 struct pmbus_sensor *sensor1, *sensor2;
732
733 sensor1 = &data->sensors[s1];
734 if (sensor1->data < 0)
735 return sensor1->data;
736 sensor2 = &data->sensors[s2];
737 if (sensor2->data < 0)
738 return sensor2->data;
739
740 v1 = pmbus_reg2data(data, sensor1);
741 v2 = pmbus_reg2data(data, sensor2);
742 ret = !!(regval && v1 >= v2);
743 }
744 return ret;
745}
746
747static ssize_t pmbus_show_boolean(struct device *dev,
748 struct device_attribute *da, char *buf)
749{
750 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
751 struct pmbus_data *data = pmbus_update_device(dev);
752 int val;
753
754 val = pmbus_get_boolean(data, attr->index);
755 if (val < 0)
756 return val;
757 return snprintf(buf, PAGE_SIZE, "%d\n", val);
758}
759
760static ssize_t pmbus_show_sensor(struct device *dev,
761 struct device_attribute *da, char *buf)
762{
763 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
764 struct pmbus_data *data = pmbus_update_device(dev);
765 struct pmbus_sensor *sensor;
766
767 sensor = &data->sensors[attr->index];
768 if (sensor->data < 0)
769 return sensor->data;
770
771 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
772}
773
774static ssize_t pmbus_set_sensor(struct device *dev,
775 struct device_attribute *devattr,
776 const char *buf, size_t count)
777{
778 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
779 struct i2c_client *client = to_i2c_client(dev);
780 struct pmbus_data *data = i2c_get_clientdata(client);
781 struct pmbus_sensor *sensor = &data->sensors[attr->index];
782 ssize_t rv = count;
783 long val = 0;
784 int ret;
785 u16 regval;
786
787 if (kstrtol(buf, 10, &val) < 0)
788 return -EINVAL;
789
790 mutex_lock(&data->update_lock);
791 regval = pmbus_data2reg(data, sensor->class, val);
792 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
793 if (ret < 0)
794 rv = ret;
795 else
796 data->sensors[attr->index].data = regval;
797 mutex_unlock(&data->update_lock);
798 return rv;
799}
800
801static ssize_t pmbus_show_label(struct device *dev,
802 struct device_attribute *da, char *buf)
803{
804 struct i2c_client *client = to_i2c_client(dev);
805 struct pmbus_data *data = i2c_get_clientdata(client);
806 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
807
808 return snprintf(buf, PAGE_SIZE, "%s\n",
809 data->labels[attr->index].label);
810}
811
812#define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set) \
813do { \
814 struct sensor_device_attribute *a \
815 = &data->_type##s[data->num_##_type##s].attribute; \
816 BUG_ON(data->num_attributes >= data->max_attributes); \
817 sysfs_attr_init(&a->dev_attr.attr); \
818 a->dev_attr.attr.name = _name; \
819 a->dev_attr.attr.mode = _mode; \
820 a->dev_attr.show = _show; \
821 a->dev_attr.store = _set; \
822 a->index = _idx; \
823 data->attributes[data->num_attributes] = &a->dev_attr.attr; \
824 data->num_attributes++; \
825} while (0)
826
827#define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx) \
828 PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type, \
829 pmbus_show_##_type, NULL)
830
831#define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx) \
832 PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type, \
833 pmbus_show_##_type, pmbus_set_##_type)
834
835static void pmbus_add_boolean(struct pmbus_data *data,
836 const char *name, const char *type, int seq,
837 int idx)
838{
839 struct pmbus_boolean *boolean;
840
841 BUG_ON(data->num_booleans >= data->max_booleans);
842
843 boolean = &data->booleans[data->num_booleans];
844
845 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
846 name, seq, type);
847 PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx);
848 data->num_booleans++;
849}
850
851static void pmbus_add_boolean_reg(struct pmbus_data *data,
852 const char *name, const char *type,
853 int seq, int reg, int bit)
854{
855 pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit);
856}
857
858static void pmbus_add_boolean_cmp(struct pmbus_data *data,
859 const char *name, const char *type,
860 int seq, int i1, int i2, int reg, int mask)
861{
862 pmbus_add_boolean(data, name, type, seq,
863 (i1 << 24) | (i2 << 16) | (reg << 8) | mask);
864}
865
866static void pmbus_add_sensor(struct pmbus_data *data,
867 const char *name, const char *type, int seq,
868 int page, int reg, enum pmbus_sensor_classes class,
869 bool update, bool readonly)
870{
871 struct pmbus_sensor *sensor;
872
873 BUG_ON(data->num_sensors >= data->max_sensors);
874
875 sensor = &data->sensors[data->num_sensors];
876 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
877 name, seq, type);
878 sensor->page = page;
879 sensor->reg = reg;
880 sensor->class = class;
881 sensor->update = update;
882 if (readonly)
883 PMBUS_ADD_GET_ATTR(data, sensor->name, sensor,
884 data->num_sensors);
885 else
886 PMBUS_ADD_SET_ATTR(data, sensor->name, sensor,
887 data->num_sensors);
888 data->num_sensors++;
889}
890
891static void pmbus_add_label(struct pmbus_data *data,
892 const char *name, int seq,
893 const char *lstring, int index)
894{
895 struct pmbus_label *label;
896
897 BUG_ON(data->num_labels >= data->max_labels);
898
899 label = &data->labels[data->num_labels];
900 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
901 if (!index)
902 strncpy(label->label, lstring, sizeof(label->label) - 1);
903 else
904 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
905 index);
906
907 PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels);
908 data->num_labels++;
909}
910
911/*
912 * Determine maximum number of sensors, booleans, and labels.
913 * To keep things simple, only make a rough high estimate.
914 */
915static void pmbus_find_max_attr(struct i2c_client *client,
916 struct pmbus_data *data)
917{
918 const struct pmbus_driver_info *info = data->info;
919 int page, max_sensors, max_booleans, max_labels;
920
921 max_sensors = PMBUS_MAX_INPUT_SENSORS;
922 max_booleans = PMBUS_MAX_INPUT_BOOLEANS;
923 max_labels = PMBUS_MAX_INPUT_LABELS;
924
925 for (page = 0; page < info->pages; page++) {
926 if (info->func[page] & PMBUS_HAVE_VOUT) {
927 max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE;
928 max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE;
929 max_labels++;
930 }
931 if (info->func[page] & PMBUS_HAVE_IOUT) {
932 max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE;
933 max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE;
934 max_labels++;
935 }
936 if (info->func[page] & PMBUS_HAVE_POUT) {
937 max_sensors += PMBUS_POUT_SENSORS_PER_PAGE;
938 max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE;
939 max_labels++;
940 }
941 if (info->func[page] & PMBUS_HAVE_FAN12) {
942 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
943 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
944 }
945 if (info->func[page] & PMBUS_HAVE_FAN34) {
946 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
947 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
948 }
949 if (info->func[page] & PMBUS_HAVE_TEMP) {
950 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
951 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
952 }
953 if (info->func[page] & PMBUS_HAVE_TEMP2) {
954 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
955 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
956 }
957 if (info->func[page] & PMBUS_HAVE_TEMP3) {
958 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
959 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
960 }
961 }
962 data->max_sensors = max_sensors;
963 data->max_booleans = max_booleans;
964 data->max_labels = max_labels;
965 data->max_attributes = max_sensors + max_booleans + max_labels;
966}
967
968/*
969 * Search for attributes. Allocate sensors, booleans, and labels as needed.
970 */
971
972/*
973 * The pmbus_limit_attr structure describes a single limit attribute
974 * and its associated alarm attribute.
975 */
976struct pmbus_limit_attr {
977 u16 reg; /* Limit register */
978 bool update; /* True if register needs updates */
979 bool low; /* True if low limit; for limits with compare
980 functions only */
981 const char *attr; /* Attribute name */
982 const char *alarm; /* Alarm attribute name */
983 u32 sbit; /* Alarm attribute status bit */
984};
985
986/*
987 * The pmbus_sensor_attr structure describes one sensor attribute. This
988 * description includes a reference to the associated limit attributes.
989 */
990struct pmbus_sensor_attr {
991 u8 reg; /* sensor register */
992 enum pmbus_sensor_classes class;/* sensor class */
993 const char *label; /* sensor label */
994 bool paged; /* true if paged sensor */
995 bool update; /* true if update needed */
996 bool compare; /* true if compare function needed */
997 u32 func; /* sensor mask */
998 u32 sfunc; /* sensor status mask */
999 int sbase; /* status base register */
1000 u32 gbit; /* generic status bit */
1001 const struct pmbus_limit_attr *limit;/* limit registers */
1002 int nlimit; /* # of limit registers */
1003};
1004
1005/*
1006 * Add a set of limit attributes and, if supported, the associated
1007 * alarm attributes.
1008 */
1009static bool pmbus_add_limit_attrs(struct i2c_client *client,
1010 struct pmbus_data *data,
1011 const struct pmbus_driver_info *info,
1012 const char *name, int index, int page,
1013 int cbase,
1014 const struct pmbus_sensor_attr *attr)
1015{
1016 const struct pmbus_limit_attr *l = attr->limit;
1017 int nlimit = attr->nlimit;
1018 bool have_alarm = false;
1019 int i, cindex;
1020
1021 for (i = 0; i < nlimit; i++) {
1022 if (pmbus_check_word_register(client, page, l->reg)) {
1023 cindex = data->num_sensors;
1024 pmbus_add_sensor(data, name, l->attr, index, page,
1025 l->reg, attr->class,
1026 attr->update || l->update,
1027 false);
1028 if (l->sbit && (info->func[page] & attr->sfunc)) {
1029 if (attr->compare) {
1030 pmbus_add_boolean_cmp(data, name,
1031 l->alarm, index,
1032 l->low ? cindex : cbase,
1033 l->low ? cbase : cindex,
1034 attr->sbase + page, l->sbit);
1035 } else {
1036 pmbus_add_boolean_reg(data, name,
1037 l->alarm, index,
1038 attr->sbase + page, l->sbit);
1039 }
1040 have_alarm = true;
1041 }
1042 }
1043 l++;
1044 }
1045 return have_alarm;
1046}
1047
1048static void pmbus_add_sensor_attrs_one(struct i2c_client *client,
1049 struct pmbus_data *data,
1050 const struct pmbus_driver_info *info,
1051 const char *name,
1052 int index, int page,
1053 const struct pmbus_sensor_attr *attr)
1054{
1055 bool have_alarm;
1056 int cbase = data->num_sensors;
1057
1058 if (attr->label)
1059 pmbus_add_label(data, name, index, attr->label,
1060 attr->paged ? page + 1 : 0);
1061 pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1062 attr->class, true, true);
1063 if (attr->sfunc) {
1064 have_alarm = pmbus_add_limit_attrs(client, data, info, name,
1065 index, page, cbase, attr);
1066 /*
1067 * Add generic alarm attribute only if there are no individual
1068 * alarm attributes, if there is a global alarm bit, and if
1069 * the generic status register for this page is accessible.
1070 */
1071 if (!have_alarm && attr->gbit &&
1072 pmbus_check_byte_register(client, page, PMBUS_STATUS_BYTE))
1073 pmbus_add_boolean_reg(data, name, "alarm", index,
1074 PB_STATUS_BASE + page,
1075 attr->gbit);
1076 }
1077}
1078
1079static void pmbus_add_sensor_attrs(struct i2c_client *client,
1080 struct pmbus_data *data,
1081 const char *name,
1082 const struct pmbus_sensor_attr *attrs,
1083 int nattrs)
1084{
1085 const struct pmbus_driver_info *info = data->info;
1086 int index, i;
1087
1088 index = 1;
1089 for (i = 0; i < nattrs; i++) {
1090 int page, pages;
1091
1092 pages = attrs->paged ? info->pages : 1;
1093 for (page = 0; page < pages; page++) {
1094 if (!(info->func[page] & attrs->func))
1095 continue;
1096 pmbus_add_sensor_attrs_one(client, data, info, name,
1097 index, page, attrs);
1098 index++;
1099 }
1100 attrs++;
1101 }
1102}
1103
1104static const struct pmbus_limit_attr vin_limit_attrs[] = {
1105 {
1106 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1107 .attr = "min",
1108 .alarm = "min_alarm",
1109 .sbit = PB_VOLTAGE_UV_WARNING,
1110 }, {
1111 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1112 .attr = "lcrit",
1113 .alarm = "lcrit_alarm",
1114 .sbit = PB_VOLTAGE_UV_FAULT,
1115 }, {
1116 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1117 .attr = "max",
1118 .alarm = "max_alarm",
1119 .sbit = PB_VOLTAGE_OV_WARNING,
1120 }, {
1121 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1122 .attr = "crit",
1123 .alarm = "crit_alarm",
1124 .sbit = PB_VOLTAGE_OV_FAULT,
1125 }, {
1126 .reg = PMBUS_VIRT_READ_VIN_AVG,
1127 .update = true,
1128 .attr = "average",
1129 }, {
1130 .reg = PMBUS_VIRT_READ_VIN_MIN,
1131 .update = true,
1132 .attr = "lowest",
1133 }, {
1134 .reg = PMBUS_VIRT_READ_VIN_MAX,
1135 .update = true,
1136 .attr = "highest",
1137 }, {
1138 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1139 .attr = "reset_history",
1140 },
1141};
1142
1143static const struct pmbus_limit_attr vout_limit_attrs[] = {
1144 {
1145 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1146 .attr = "min",
1147 .alarm = "min_alarm",
1148 .sbit = PB_VOLTAGE_UV_WARNING,
1149 }, {
1150 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1151 .attr = "lcrit",
1152 .alarm = "lcrit_alarm",
1153 .sbit = PB_VOLTAGE_UV_FAULT,
1154 }, {
1155 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1156 .attr = "max",
1157 .alarm = "max_alarm",
1158 .sbit = PB_VOLTAGE_OV_WARNING,
1159 }, {
1160 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1161 .attr = "crit",
1162 .alarm = "crit_alarm",
1163 .sbit = PB_VOLTAGE_OV_FAULT,
1164 }, {
1165 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1166 .update = true,
1167 .attr = "average",
1168 }, {
1169 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1170 .update = true,
1171 .attr = "lowest",
1172 }, {
1173 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1174 .update = true,
1175 .attr = "highest",
1176 }, {
1177 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1178 .attr = "reset_history",
1179 }
1180};
1181
1182static const struct pmbus_sensor_attr voltage_attributes[] = {
1183 {
1184 .reg = PMBUS_READ_VIN,
1185 .class = PSC_VOLTAGE_IN,
1186 .label = "vin",
1187 .func = PMBUS_HAVE_VIN,
1188 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1189 .sbase = PB_STATUS_INPUT_BASE,
1190 .gbit = PB_STATUS_VIN_UV,
1191 .limit = vin_limit_attrs,
1192 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1193 }, {
1194 .reg = PMBUS_READ_VCAP,
1195 .class = PSC_VOLTAGE_IN,
1196 .label = "vcap",
1197 .func = PMBUS_HAVE_VCAP,
1198 }, {
1199 .reg = PMBUS_READ_VOUT,
1200 .class = PSC_VOLTAGE_OUT,
1201 .label = "vout",
1202 .paged = true,
1203 .func = PMBUS_HAVE_VOUT,
1204 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1205 .sbase = PB_STATUS_VOUT_BASE,
1206 .gbit = PB_STATUS_VOUT_OV,
1207 .limit = vout_limit_attrs,
1208 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1209 }
1210};
1211
1212/* Current attributes */
1213
1214static const struct pmbus_limit_attr iin_limit_attrs[] = {
1215 {
1216 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1217 .attr = "max",
1218 .alarm = "max_alarm",
1219 .sbit = PB_IIN_OC_WARNING,
1220 }, {
1221 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1222 .attr = "crit",
1223 .alarm = "crit_alarm",
1224 .sbit = PB_IIN_OC_FAULT,
1225 }, {
1226 .reg = PMBUS_VIRT_READ_IIN_AVG,
1227 .update = true,
1228 .attr = "average",
1229 }, {
1230 .reg = PMBUS_VIRT_READ_IIN_MIN,
1231 .update = true,
1232 .attr = "lowest",
1233 }, {
1234 .reg = PMBUS_VIRT_READ_IIN_MAX,
1235 .update = true,
1236 .attr = "highest",
1237 }, {
1238 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1239 .attr = "reset_history",
1240 }
1241};
1242
1243static const struct pmbus_limit_attr iout_limit_attrs[] = {
1244 {
1245 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1246 .attr = "max",
1247 .alarm = "max_alarm",
1248 .sbit = PB_IOUT_OC_WARNING,
1249 }, {
1250 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1251 .attr = "lcrit",
1252 .alarm = "lcrit_alarm",
1253 .sbit = PB_IOUT_UC_FAULT,
1254 }, {
1255 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1256 .attr = "crit",
1257 .alarm = "crit_alarm",
1258 .sbit = PB_IOUT_OC_FAULT,
1259 }, {
1260 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1261 .update = true,
1262 .attr = "average",
1263 }, {
1264 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1265 .update = true,
1266 .attr = "lowest",
1267 }, {
1268 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1269 .update = true,
1270 .attr = "highest",
1271 }, {
1272 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1273 .attr = "reset_history",
1274 }
1275};
1276
1277static const struct pmbus_sensor_attr current_attributes[] = {
1278 {
1279 .reg = PMBUS_READ_IIN,
1280 .class = PSC_CURRENT_IN,
1281 .label = "iin",
1282 .func = PMBUS_HAVE_IIN,
1283 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1284 .sbase = PB_STATUS_INPUT_BASE,
1285 .limit = iin_limit_attrs,
1286 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1287 }, {
1288 .reg = PMBUS_READ_IOUT,
1289 .class = PSC_CURRENT_OUT,
1290 .label = "iout",
1291 .paged = true,
1292 .func = PMBUS_HAVE_IOUT,
1293 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1294 .sbase = PB_STATUS_IOUT_BASE,
1295 .gbit = PB_STATUS_IOUT_OC,
1296 .limit = iout_limit_attrs,
1297 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1298 }
1299};
1300
1301/* Power attributes */
1302
1303static const struct pmbus_limit_attr pin_limit_attrs[] = {
1304 {
1305 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1306 .attr = "max",
1307 .alarm = "alarm",
1308 .sbit = PB_PIN_OP_WARNING,
1309 }, {
1310 .reg = PMBUS_VIRT_READ_PIN_AVG,
1311 .update = true,
1312 .attr = "average",
1313 }, {
1314 .reg = PMBUS_VIRT_READ_PIN_MAX,
1315 .update = true,
1316 .attr = "input_highest",
1317 }, {
1318 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1319 .attr = "reset_history",
1320 }
1321};
1322
1323static const struct pmbus_limit_attr pout_limit_attrs[] = {
1324 {
1325 .reg = PMBUS_POUT_MAX,
1326 .attr = "cap",
1327 .alarm = "cap_alarm",
1328 .sbit = PB_POWER_LIMITING,
1329 }, {
1330 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1331 .attr = "max",
1332 .alarm = "max_alarm",
1333 .sbit = PB_POUT_OP_WARNING,
1334 }, {
1335 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1336 .attr = "crit",
1337 .alarm = "crit_alarm",
1338 .sbit = PB_POUT_OP_FAULT,
1339 }, {
1340 .reg = PMBUS_VIRT_READ_POUT_AVG,
1341 .update = true,
1342 .attr = "average",
1343 }, {
1344 .reg = PMBUS_VIRT_READ_POUT_MAX,
1345 .update = true,
1346 .attr = "input_highest",
1347 }, {
1348 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1349 .attr = "reset_history",
1350 }
1351};
1352
1353static const struct pmbus_sensor_attr power_attributes[] = {
1354 {
1355 .reg = PMBUS_READ_PIN,
1356 .class = PSC_POWER,
1357 .label = "pin",
1358 .func = PMBUS_HAVE_PIN,
1359 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1360 .sbase = PB_STATUS_INPUT_BASE,
1361 .limit = pin_limit_attrs,
1362 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1363 }, {
1364 .reg = PMBUS_READ_POUT,
1365 .class = PSC_POWER,
1366 .label = "pout",
1367 .paged = true,
1368 .func = PMBUS_HAVE_POUT,
1369 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1370 .sbase = PB_STATUS_IOUT_BASE,
1371 .limit = pout_limit_attrs,
1372 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1373 }
1374};
1375
1376/* Temperature atributes */
1377
1378static const struct pmbus_limit_attr temp_limit_attrs[] = {
1379 {
1380 .reg = PMBUS_UT_WARN_LIMIT,
1381 .low = true,
1382 .attr = "min",
1383 .alarm = "min_alarm",
1384 .sbit = PB_TEMP_UT_WARNING,
1385 }, {
1386 .reg = PMBUS_UT_FAULT_LIMIT,
1387 .low = true,
1388 .attr = "lcrit",
1389 .alarm = "lcrit_alarm",
1390 .sbit = PB_TEMP_UT_FAULT,
1391 }, {
1392 .reg = PMBUS_OT_WARN_LIMIT,
1393 .attr = "max",
1394 .alarm = "max_alarm",
1395 .sbit = PB_TEMP_OT_WARNING,
1396 }, {
1397 .reg = PMBUS_OT_FAULT_LIMIT,
1398 .attr = "crit",
1399 .alarm = "crit_alarm",
1400 .sbit = PB_TEMP_OT_FAULT,
1401 }, {
1402 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1403 .attr = "lowest",
1404 }, {
1405 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1406 .attr = "average",
1407 }, {
1408 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1409 .attr = "highest",
1410 }, {
1411 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1412 .attr = "reset_history",
1413 }
1414};
1415
1416static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1417 {
1418 .reg = PMBUS_UT_WARN_LIMIT,
1419 .low = true,
1420 .attr = "min",
1421 .alarm = "min_alarm",
1422 .sbit = PB_TEMP_UT_WARNING,
1423 }, {
1424 .reg = PMBUS_UT_FAULT_LIMIT,
1425 .low = true,
1426 .attr = "lcrit",
1427 .alarm = "lcrit_alarm",
1428 .sbit = PB_TEMP_UT_FAULT,
1429 }, {
1430 .reg = PMBUS_OT_WARN_LIMIT,
1431 .attr = "max",
1432 .alarm = "max_alarm",
1433 .sbit = PB_TEMP_OT_WARNING,
1434 }, {
1435 .reg = PMBUS_OT_FAULT_LIMIT,
1436 .attr = "crit",
1437 .alarm = "crit_alarm",
1438 .sbit = PB_TEMP_OT_FAULT,
1439 }, {
1440 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
1441 .attr = "lowest",
1442 }, {
1443 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
1444 .attr = "average",
1445 }, {
1446 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
1447 .attr = "highest",
1448 }, {
1449 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1450 .attr = "reset_history",
1451 }
1452};
1453
1454static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1455 {
1456 .reg = PMBUS_UT_WARN_LIMIT,
1457 .low = true,
1458 .attr = "min",
1459 .alarm = "min_alarm",
1460 .sbit = PB_TEMP_UT_WARNING,
1461 }, {
1462 .reg = PMBUS_UT_FAULT_LIMIT,
1463 .low = true,
1464 .attr = "lcrit",
1465 .alarm = "lcrit_alarm",
1466 .sbit = PB_TEMP_UT_FAULT,
1467 }, {
1468 .reg = PMBUS_OT_WARN_LIMIT,
1469 .attr = "max",
1470 .alarm = "max_alarm",
1471 .sbit = PB_TEMP_OT_WARNING,
1472 }, {
1473 .reg = PMBUS_OT_FAULT_LIMIT,
1474 .attr = "crit",
1475 .alarm = "crit_alarm",
1476 .sbit = PB_TEMP_OT_FAULT,
1477 }
1478};
1479
1480static const struct pmbus_sensor_attr temp_attributes[] = {
1481 {
1482 .reg = PMBUS_READ_TEMPERATURE_1,
1483 .class = PSC_TEMPERATURE,
1484 .paged = true,
1485 .update = true,
1486 .compare = true,
1487 .func = PMBUS_HAVE_TEMP,
1488 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1489 .sbase = PB_STATUS_TEMP_BASE,
1490 .gbit = PB_STATUS_TEMPERATURE,
1491 .limit = temp_limit_attrs,
1492 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1493 }, {
1494 .reg = PMBUS_READ_TEMPERATURE_2,
1495 .class = PSC_TEMPERATURE,
1496 .paged = true,
1497 .update = true,
1498 .compare = true,
1499 .func = PMBUS_HAVE_TEMP2,
1500 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1501 .sbase = PB_STATUS_TEMP_BASE,
1502 .gbit = PB_STATUS_TEMPERATURE,
1503 .limit = temp_limit_attrs2,
1504 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
1505 }, {
1506 .reg = PMBUS_READ_TEMPERATURE_3,
1507 .class = PSC_TEMPERATURE,
1508 .paged = true,
1509 .update = true,
1510 .compare = true,
1511 .func = PMBUS_HAVE_TEMP3,
1512 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1513 .sbase = PB_STATUS_TEMP_BASE,
1514 .gbit = PB_STATUS_TEMPERATURE,
1515 .limit = temp_limit_attrs3,
1516 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
1517 }
1518};
1519
1520static const int pmbus_fan_registers[] = {
1521 PMBUS_READ_FAN_SPEED_1,
1522 PMBUS_READ_FAN_SPEED_2,
1523 PMBUS_READ_FAN_SPEED_3,
1524 PMBUS_READ_FAN_SPEED_4
1525};
1526
1527static const int pmbus_fan_config_registers[] = {
1528 PMBUS_FAN_CONFIG_12,
1529 PMBUS_FAN_CONFIG_12,
1530 PMBUS_FAN_CONFIG_34,
1531 PMBUS_FAN_CONFIG_34
1532};
1533
1534static const int pmbus_fan_status_registers[] = {
1535 PMBUS_STATUS_FAN_12,
1536 PMBUS_STATUS_FAN_12,
1537 PMBUS_STATUS_FAN_34,
1538 PMBUS_STATUS_FAN_34
1539};
1540
1541static const u32 pmbus_fan_flags[] = {
1542 PMBUS_HAVE_FAN12,
1543 PMBUS_HAVE_FAN12,
1544 PMBUS_HAVE_FAN34,
1545 PMBUS_HAVE_FAN34
1546};
1547
1548static const u32 pmbus_fan_status_flags[] = {
1549 PMBUS_HAVE_STATUS_FAN12,
1550 PMBUS_HAVE_STATUS_FAN12,
1551 PMBUS_HAVE_STATUS_FAN34,
1552 PMBUS_HAVE_STATUS_FAN34
1553};
1554
1555/* Fans */
1556static void pmbus_add_fan_attributes(struct i2c_client *client,
1557 struct pmbus_data *data)
1558{
1559 const struct pmbus_driver_info *info = data->info;
1560 int index = 1;
1561 int page;
1562
1563 for (page = 0; page < info->pages; page++) {
1564 int f;
1565
1566 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1567 int regval;
1568
1569 if (!(info->func[page] & pmbus_fan_flags[f]))
1570 break;
1571
1572 if (!pmbus_check_word_register(client, page,
1573 pmbus_fan_registers[f]))
1574 break;
1575
1576 /*
1577 * Skip fan if not installed.
1578 * Each fan configuration register covers multiple fans,
1579 * so we have to do some magic.
1580 */
1581 regval = _pmbus_read_byte_data(client, page,
1582 pmbus_fan_config_registers[f]);
1583 if (regval < 0 ||
1584 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1585 continue;
1586
1587 pmbus_add_sensor(data, "fan", "input", index, page,
1588 pmbus_fan_registers[f], PSC_FAN, true,
1589 true);
1590
1591 /*
1592 * Each fan status register covers multiple fans,
1593 * so we have to do some magic.
1594 */
1595 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1596 pmbus_check_byte_register(client,
1597 page, pmbus_fan_status_registers[f])) {
1598 int base;
1599
1600 if (f > 1) /* fan 3, 4 */
1601 base = PB_STATUS_FAN34_BASE + page;
1602 else
1603 base = PB_STATUS_FAN_BASE + page;
1604 pmbus_add_boolean_reg(data, "fan", "alarm",
1605 index, base,
1606 PB_FAN_FAN1_WARNING >> (f & 1));
1607 pmbus_add_boolean_reg(data, "fan", "fault",
1608 index, base,
1609 PB_FAN_FAN1_FAULT >> (f & 1));
1610 }
1611 index++;
1612 }
1613 }
1614}
1615
1616static void pmbus_find_attributes(struct i2c_client *client,
1617 struct pmbus_data *data)
1618{
1619 /* Voltage sensors */
1620 pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1621 ARRAY_SIZE(voltage_attributes));
1622
1623 /* Current sensors */
1624 pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1625 ARRAY_SIZE(current_attributes));
1626
1627 /* Power sensors */
1628 pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1629 ARRAY_SIZE(power_attributes));
1630
1631 /* Temperature sensors */
1632 pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1633 ARRAY_SIZE(temp_attributes));
1634
1635 /* Fans */
1636 pmbus_add_fan_attributes(client, data);
1637}
1638
1639/*
1640 * Identify chip parameters.
1641 * This function is called for all chips.
1642 */
1643static int pmbus_identify_common(struct i2c_client *client,
1644 struct pmbus_data *data)
1645{
1646 int vout_mode = -1;
1647
1648 if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
1649 vout_mode = _pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
1650 if (vout_mode >= 0 && vout_mode != 0xff) {
1651 /*
1652 * Not all chips support the VOUT_MODE command,
1653 * so a failure to read it is not an error.
1654 */
1655 switch (vout_mode >> 5) {
1656 case 0: /* linear mode */
1657 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1658 return -ENODEV;
1659
1660 data->exponent = ((s8)(vout_mode << 3)) >> 3;
1661 break;
1662 case 1: /* VID mode */
1663 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1664 return -ENODEV;
1665 break;
1666 case 2: /* direct mode */
1667 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1668 return -ENODEV;
1669 break;
1670 default:
1671 return -ENODEV;
1672 }
1673 }
1674
1675 /* Determine maximum number of sensors, booleans, and labels */
1676 pmbus_find_max_attr(client, data);
1677 pmbus_clear_fault_page(client, 0);
1678 return 0;
1679}
1680
1681int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1682 struct pmbus_driver_info *info)
1683{
1684 const struct pmbus_platform_data *pdata = client->dev.platform_data;
1685 struct pmbus_data *data;
1686 int ret;
1687
1688 if (!info) {
1689 dev_err(&client->dev, "Missing chip information");
1690 return -ENODEV;
1691 }
1692
1693 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1694 | I2C_FUNC_SMBUS_BYTE_DATA
1695 | I2C_FUNC_SMBUS_WORD_DATA))
1696 return -ENODEV;
1697
1698 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1699 if (!data) {
1700 dev_err(&client->dev, "No memory to allocate driver data\n");
1701 return -ENOMEM;
1702 }
1703
1704 i2c_set_clientdata(client, data);
1705 mutex_init(&data->update_lock);
1706
1707 /* Bail out if PMBus status register does not exist. */
1708 if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) {
1709 dev_err(&client->dev, "PMBus status register not found\n");
1710 return -ENODEV;
1711 }
1712
1713 if (pdata)
1714 data->flags = pdata->flags;
1715 data->info = info;
1716
1717 pmbus_clear_faults(client);
1718
1719 if (info->identify) {
1720 ret = (*info->identify)(client, info);
1721 if (ret < 0) {
1722 dev_err(&client->dev, "Chip identification failed\n");
1723 return ret;
1724 }
1725 }
1726
1727 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1728 dev_err(&client->dev, "Bad number of PMBus pages: %d\n",
1729 info->pages);
1730 return -ENODEV;
1731 }
1732
1733 ret = pmbus_identify_common(client, data);
1734 if (ret < 0) {
1735 dev_err(&client->dev, "Failed to identify chip capabilities\n");
1736 return ret;
1737 }
1738
1739 ret = -ENOMEM;
1740 data->sensors = devm_kzalloc(&client->dev, sizeof(struct pmbus_sensor)
1741 * data->max_sensors, GFP_KERNEL);
1742 if (!data->sensors) {
1743 dev_err(&client->dev, "No memory to allocate sensor data\n");
1744 return -ENOMEM;
1745 }
1746
1747 data->booleans = devm_kzalloc(&client->dev, sizeof(struct pmbus_boolean)
1748 * data->max_booleans, GFP_KERNEL);
1749 if (!data->booleans) {
1750 dev_err(&client->dev, "No memory to allocate boolean data\n");
1751 return -ENOMEM;
1752 }
1753
1754 data->labels = devm_kzalloc(&client->dev, sizeof(struct pmbus_label)
1755 * data->max_labels, GFP_KERNEL);
1756 if (!data->labels) {
1757 dev_err(&client->dev, "No memory to allocate label data\n");
1758 return -ENOMEM;
1759 }
1760
1761 data->attributes = devm_kzalloc(&client->dev, sizeof(struct attribute *)
1762 * data->max_attributes, GFP_KERNEL);
1763 if (!data->attributes) {
1764 dev_err(&client->dev, "No memory to allocate attribute data\n");
1765 return -ENOMEM;
1766 }
1767
1768 pmbus_find_attributes(client, data);
1769
1770 /*
1771 * If there are no attributes, something is wrong.
1772 * Bail out instead of trying to register nothing.
1773 */
1774 if (!data->num_attributes) {
1775 dev_err(&client->dev, "No attributes found\n");
1776 return -ENODEV;
1777 }
1778
1779 /* Register sysfs hooks */
1780 data->group.attrs = data->attributes;
1781 ret = sysfs_create_group(&client->dev.kobj, &data->group);
1782 if (ret) {
1783 dev_err(&client->dev, "Failed to create sysfs entries\n");
1784 return ret;
1785 }
1786 data->hwmon_dev = hwmon_device_register(&client->dev);
1787 if (IS_ERR(data->hwmon_dev)) {
1788 ret = PTR_ERR(data->hwmon_dev);
1789 dev_err(&client->dev, "Failed to register hwmon device\n");
1790 goto out_hwmon_device_register;
1791 }
1792 return 0;
1793
1794out_hwmon_device_register:
1795 sysfs_remove_group(&client->dev.kobj, &data->group);
1796 return ret;
1797}
1798EXPORT_SYMBOL_GPL(pmbus_do_probe);
1799
1800int pmbus_do_remove(struct i2c_client *client)
1801{
1802 struct pmbus_data *data = i2c_get_clientdata(client);
1803 hwmon_device_unregister(data->hwmon_dev);
1804 sysfs_remove_group(&client->dev.kobj, &data->group);
1805 return 0;
1806}
1807EXPORT_SYMBOL_GPL(pmbus_do_remove);
1808
1809MODULE_AUTHOR("Guenter Roeck");
1810MODULE_DESCRIPTION("PMBus core driver");
1811MODULE_LICENSE("GPL");