Loading...
1/*
2 * Hardware monitoring driver for PMBus devices
3 *
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/err.h>
25#include <linux/slab.h>
26#include <linux/i2c.h>
27#include <linux/hwmon.h>
28#include <linux/hwmon-sysfs.h>
29#include <linux/delay.h>
30#include <linux/i2c/pmbus.h>
31#include "pmbus.h"
32
33/*
34 * Constants needed to determine number of sensors, booleans, and labels.
35 */
36#define PMBUS_MAX_INPUT_SENSORS 22 /* 10*volt, 7*curr, 5*power */
37#define PMBUS_VOUT_SENSORS_PER_PAGE 9 /* input, min, max, lcrit,
38 crit, lowest, highest, avg,
39 reset */
40#define PMBUS_IOUT_SENSORS_PER_PAGE 8 /* input, min, max, crit,
41 lowest, highest, avg,
42 reset */
43#define PMBUS_POUT_SENSORS_PER_PAGE 4 /* input, cap, max, crit */
44#define PMBUS_MAX_SENSORS_PER_FAN 1 /* input */
45#define PMBUS_MAX_SENSORS_PER_TEMP 8 /* input, min, max, lcrit,
46 crit, lowest, highest,
47 reset */
48
49#define PMBUS_MAX_INPUT_BOOLEANS 7 /* v: min_alarm, max_alarm,
50 lcrit_alarm, crit_alarm;
51 c: alarm, crit_alarm;
52 p: crit_alarm */
53#define PMBUS_VOUT_BOOLEANS_PER_PAGE 4 /* min_alarm, max_alarm,
54 lcrit_alarm, crit_alarm */
55#define PMBUS_IOUT_BOOLEANS_PER_PAGE 3 /* alarm, lcrit_alarm,
56 crit_alarm */
57#define PMBUS_POUT_BOOLEANS_PER_PAGE 2 /* alarm, crit_alarm */
58#define PMBUS_MAX_BOOLEANS_PER_FAN 2 /* alarm, fault */
59#define PMBUS_MAX_BOOLEANS_PER_TEMP 4 /* min_alarm, max_alarm,
60 lcrit_alarm, crit_alarm */
61
62#define PMBUS_MAX_INPUT_LABELS 4 /* vin, vcap, iin, pin */
63
64/*
65 * status, status_vout, status_iout, status_fans, status_fan34, and status_temp
66 * are paged. status_input is unpaged.
67 */
68#define PB_NUM_STATUS_REG (PMBUS_PAGES * 6 + 1)
69
70/*
71 * Index into status register array, per status register group
72 */
73#define PB_STATUS_BASE 0
74#define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
75#define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
76#define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
77#define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
78#define PB_STATUS_INPUT_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
79#define PB_STATUS_TEMP_BASE (PB_STATUS_INPUT_BASE + 1)
80
81#define PMBUS_NAME_SIZE 24
82
83struct pmbus_sensor {
84 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
85 struct sensor_device_attribute attribute;
86 u8 page; /* page number */
87 u16 reg; /* register */
88 enum pmbus_sensor_classes class; /* sensor class */
89 bool update; /* runtime sensor update needed */
90 int data; /* Sensor data.
91 Negative if there was a read error */
92};
93
94struct pmbus_boolean {
95 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
96 struct sensor_device_attribute attribute;
97};
98
99struct pmbus_label {
100 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
101 struct sensor_device_attribute attribute;
102 char label[PMBUS_NAME_SIZE]; /* label */
103};
104
105struct pmbus_data {
106 struct device *hwmon_dev;
107
108 u32 flags; /* from platform data */
109
110 int exponent; /* linear mode: exponent for output voltages */
111
112 const struct pmbus_driver_info *info;
113
114 int max_attributes;
115 int num_attributes;
116 struct attribute **attributes;
117 struct attribute_group group;
118
119 /*
120 * Sensors cover both sensor and limit registers.
121 */
122 int max_sensors;
123 int num_sensors;
124 struct pmbus_sensor *sensors;
125 /*
126 * Booleans are used for alarms.
127 * Values are determined from status registers.
128 */
129 int max_booleans;
130 int num_booleans;
131 struct pmbus_boolean *booleans;
132 /*
133 * Labels are used to map generic names (e.g., "in1")
134 * to PMBus specific names (e.g., "vin" or "vout1").
135 */
136 int max_labels;
137 int num_labels;
138 struct pmbus_label *labels;
139
140 struct mutex update_lock;
141 bool valid;
142 unsigned long last_updated; /* in jiffies */
143
144 /*
145 * A single status register covers multiple attributes,
146 * so we keep them all together.
147 */
148 u8 status[PB_NUM_STATUS_REG];
149
150 u8 currpage;
151};
152
153int pmbus_set_page(struct i2c_client *client, u8 page)
154{
155 struct pmbus_data *data = i2c_get_clientdata(client);
156 int rv = 0;
157 int newpage;
158
159 if (page != data->currpage) {
160 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
161 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
162 if (newpage != page)
163 rv = -EINVAL;
164 else
165 data->currpage = page;
166 }
167 return rv;
168}
169EXPORT_SYMBOL_GPL(pmbus_set_page);
170
171int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
172{
173 int rv;
174
175 if (page >= 0) {
176 rv = pmbus_set_page(client, page);
177 if (rv < 0)
178 return rv;
179 }
180
181 return i2c_smbus_write_byte(client, value);
182}
183EXPORT_SYMBOL_GPL(pmbus_write_byte);
184
185/*
186 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
187 * a device specific mapping funcion exists and calls it if necessary.
188 */
189static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
190{
191 struct pmbus_data *data = i2c_get_clientdata(client);
192 const struct pmbus_driver_info *info = data->info;
193 int status;
194
195 if (info->write_byte) {
196 status = info->write_byte(client, page, value);
197 if (status != -ENODATA)
198 return status;
199 }
200 return pmbus_write_byte(client, page, value);
201}
202
203int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
204{
205 int rv;
206
207 rv = pmbus_set_page(client, page);
208 if (rv < 0)
209 return rv;
210
211 return i2c_smbus_write_word_data(client, reg, word);
212}
213EXPORT_SYMBOL_GPL(pmbus_write_word_data);
214
215/*
216 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
217 * a device specific mapping function exists and calls it if necessary.
218 */
219static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
220 u16 word)
221{
222 struct pmbus_data *data = i2c_get_clientdata(client);
223 const struct pmbus_driver_info *info = data->info;
224 int status;
225
226 if (info->write_word_data) {
227 status = info->write_word_data(client, page, reg, word);
228 if (status != -ENODATA)
229 return status;
230 }
231 if (reg >= PMBUS_VIRT_BASE)
232 return -EINVAL;
233 return pmbus_write_word_data(client, page, reg, word);
234}
235
236int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
237{
238 int rv;
239
240 rv = pmbus_set_page(client, page);
241 if (rv < 0)
242 return rv;
243
244 return i2c_smbus_read_word_data(client, reg);
245}
246EXPORT_SYMBOL_GPL(pmbus_read_word_data);
247
248/*
249 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
250 * a device specific mapping function exists and calls it if necessary.
251 */
252static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
253{
254 struct pmbus_data *data = i2c_get_clientdata(client);
255 const struct pmbus_driver_info *info = data->info;
256 int status;
257
258 if (info->read_word_data) {
259 status = info->read_word_data(client, page, reg);
260 if (status != -ENODATA)
261 return status;
262 }
263 if (reg >= PMBUS_VIRT_BASE)
264 return -EINVAL;
265 return pmbus_read_word_data(client, page, reg);
266}
267
268int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
269{
270 int rv;
271
272 if (page >= 0) {
273 rv = pmbus_set_page(client, page);
274 if (rv < 0)
275 return rv;
276 }
277
278 return i2c_smbus_read_byte_data(client, reg);
279}
280EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
281
282/*
283 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
284 * a device specific mapping function exists and calls it if necessary.
285 */
286static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
287{
288 struct pmbus_data *data = i2c_get_clientdata(client);
289 const struct pmbus_driver_info *info = data->info;
290 int status;
291
292 if (info->read_byte_data) {
293 status = info->read_byte_data(client, page, reg);
294 if (status != -ENODATA)
295 return status;
296 }
297 return pmbus_read_byte_data(client, page, reg);
298}
299
300static void pmbus_clear_fault_page(struct i2c_client *client, int page)
301{
302 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
303}
304
305void pmbus_clear_faults(struct i2c_client *client)
306{
307 struct pmbus_data *data = i2c_get_clientdata(client);
308 int i;
309
310 for (i = 0; i < data->info->pages; i++)
311 pmbus_clear_fault_page(client, i);
312}
313EXPORT_SYMBOL_GPL(pmbus_clear_faults);
314
315static int pmbus_check_status_cml(struct i2c_client *client)
316{
317 int status, status2;
318
319 status = pmbus_read_byte_data(client, -1, PMBUS_STATUS_BYTE);
320 if (status < 0 || (status & PB_STATUS_CML)) {
321 status2 = pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
322 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
323 return -EINVAL;
324 }
325 return 0;
326}
327
328bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
329{
330 int rv;
331 struct pmbus_data *data = i2c_get_clientdata(client);
332
333 rv = _pmbus_read_byte_data(client, page, reg);
334 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
335 rv = pmbus_check_status_cml(client);
336 pmbus_clear_fault_page(client, -1);
337 return rv >= 0;
338}
339EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
340
341bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
342{
343 int rv;
344 struct pmbus_data *data = i2c_get_clientdata(client);
345
346 rv = _pmbus_read_word_data(client, page, reg);
347 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
348 rv = pmbus_check_status_cml(client);
349 pmbus_clear_fault_page(client, -1);
350 return rv >= 0;
351}
352EXPORT_SYMBOL_GPL(pmbus_check_word_register);
353
354const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
355{
356 struct pmbus_data *data = i2c_get_clientdata(client);
357
358 return data->info;
359}
360EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
361
362static struct pmbus_data *pmbus_update_device(struct device *dev)
363{
364 struct i2c_client *client = to_i2c_client(dev);
365 struct pmbus_data *data = i2c_get_clientdata(client);
366 const struct pmbus_driver_info *info = data->info;
367
368 mutex_lock(&data->update_lock);
369 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
370 int i;
371
372 for (i = 0; i < info->pages; i++)
373 data->status[PB_STATUS_BASE + i]
374 = pmbus_read_byte_data(client, i,
375 PMBUS_STATUS_BYTE);
376 for (i = 0; i < info->pages; i++) {
377 if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT))
378 continue;
379 data->status[PB_STATUS_VOUT_BASE + i]
380 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT);
381 }
382 for (i = 0; i < info->pages; i++) {
383 if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT))
384 continue;
385 data->status[PB_STATUS_IOUT_BASE + i]
386 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT);
387 }
388 for (i = 0; i < info->pages; i++) {
389 if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP))
390 continue;
391 data->status[PB_STATUS_TEMP_BASE + i]
392 = _pmbus_read_byte_data(client, i,
393 PMBUS_STATUS_TEMPERATURE);
394 }
395 for (i = 0; i < info->pages; i++) {
396 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12))
397 continue;
398 data->status[PB_STATUS_FAN_BASE + i]
399 = _pmbus_read_byte_data(client, i,
400 PMBUS_STATUS_FAN_12);
401 }
402
403 for (i = 0; i < info->pages; i++) {
404 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34))
405 continue;
406 data->status[PB_STATUS_FAN34_BASE + i]
407 = _pmbus_read_byte_data(client, i,
408 PMBUS_STATUS_FAN_34);
409 }
410
411 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
412 data->status[PB_STATUS_INPUT_BASE]
413 = _pmbus_read_byte_data(client, 0,
414 PMBUS_STATUS_INPUT);
415
416 for (i = 0; i < data->num_sensors; i++) {
417 struct pmbus_sensor *sensor = &data->sensors[i];
418
419 if (!data->valid || sensor->update)
420 sensor->data
421 = _pmbus_read_word_data(client,
422 sensor->page,
423 sensor->reg);
424 }
425 pmbus_clear_faults(client);
426 data->last_updated = jiffies;
427 data->valid = 1;
428 }
429 mutex_unlock(&data->update_lock);
430 return data;
431}
432
433/*
434 * Convert linear sensor values to milli- or micro-units
435 * depending on sensor type.
436 */
437static long pmbus_reg2data_linear(struct pmbus_data *data,
438 struct pmbus_sensor *sensor)
439{
440 s16 exponent;
441 s32 mantissa;
442 long val;
443
444 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
445 exponent = data->exponent;
446 mantissa = (u16) sensor->data;
447 } else { /* LINEAR11 */
448 exponent = (sensor->data >> 11) & 0x001f;
449 mantissa = sensor->data & 0x07ff;
450
451 if (exponent > 0x0f)
452 exponent |= 0xffe0; /* sign extend exponent */
453 if (mantissa > 0x03ff)
454 mantissa |= 0xfffff800; /* sign extend mantissa */
455 }
456
457 val = mantissa;
458
459 /* scale result to milli-units for all sensors except fans */
460 if (sensor->class != PSC_FAN)
461 val = val * 1000L;
462
463 /* scale result to micro-units for power sensors */
464 if (sensor->class == PSC_POWER)
465 val = val * 1000L;
466
467 if (exponent >= 0)
468 val <<= exponent;
469 else
470 val >>= -exponent;
471
472 return val;
473}
474
475/*
476 * Convert direct sensor values to milli- or micro-units
477 * depending on sensor type.
478 */
479static long pmbus_reg2data_direct(struct pmbus_data *data,
480 struct pmbus_sensor *sensor)
481{
482 long val = (s16) sensor->data;
483 long m, b, R;
484
485 m = data->info->m[sensor->class];
486 b = data->info->b[sensor->class];
487 R = data->info->R[sensor->class];
488
489 if (m == 0)
490 return 0;
491
492 /* X = 1/m * (Y * 10^-R - b) */
493 R = -R;
494 /* scale result to milli-units for everything but fans */
495 if (sensor->class != PSC_FAN) {
496 R += 3;
497 b *= 1000;
498 }
499
500 /* scale result to micro-units for power sensors */
501 if (sensor->class == PSC_POWER) {
502 R += 3;
503 b *= 1000;
504 }
505
506 while (R > 0) {
507 val *= 10;
508 R--;
509 }
510 while (R < 0) {
511 val = DIV_ROUND_CLOSEST(val, 10);
512 R++;
513 }
514
515 return (val - b) / m;
516}
517
518/*
519 * Convert VID sensor values to milli- or micro-units
520 * depending on sensor type.
521 * We currently only support VR11.
522 */
523static long pmbus_reg2data_vid(struct pmbus_data *data,
524 struct pmbus_sensor *sensor)
525{
526 long val = sensor->data;
527
528 if (val < 0x02 || val > 0xb2)
529 return 0;
530 return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
531}
532
533static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
534{
535 long val;
536
537 switch (data->info->format[sensor->class]) {
538 case direct:
539 val = pmbus_reg2data_direct(data, sensor);
540 break;
541 case vid:
542 val = pmbus_reg2data_vid(data, sensor);
543 break;
544 case linear:
545 default:
546 val = pmbus_reg2data_linear(data, sensor);
547 break;
548 }
549 return val;
550}
551
552#define MAX_MANTISSA (1023 * 1000)
553#define MIN_MANTISSA (511 * 1000)
554
555static u16 pmbus_data2reg_linear(struct pmbus_data *data,
556 enum pmbus_sensor_classes class, long val)
557{
558 s16 exponent = 0, mantissa;
559 bool negative = false;
560
561 /* simple case */
562 if (val == 0)
563 return 0;
564
565 if (class == PSC_VOLTAGE_OUT) {
566 /* LINEAR16 does not support negative voltages */
567 if (val < 0)
568 return 0;
569
570 /*
571 * For a static exponents, we don't have a choice
572 * but to adjust the value to it.
573 */
574 if (data->exponent < 0)
575 val <<= -data->exponent;
576 else
577 val >>= data->exponent;
578 val = DIV_ROUND_CLOSEST(val, 1000);
579 return val & 0xffff;
580 }
581
582 if (val < 0) {
583 negative = true;
584 val = -val;
585 }
586
587 /* Power is in uW. Convert to mW before converting. */
588 if (class == PSC_POWER)
589 val = DIV_ROUND_CLOSEST(val, 1000L);
590
591 /*
592 * For simplicity, convert fan data to milli-units
593 * before calculating the exponent.
594 */
595 if (class == PSC_FAN)
596 val = val * 1000;
597
598 /* Reduce large mantissa until it fits into 10 bit */
599 while (val >= MAX_MANTISSA && exponent < 15) {
600 exponent++;
601 val >>= 1;
602 }
603 /* Increase small mantissa to improve precision */
604 while (val < MIN_MANTISSA && exponent > -15) {
605 exponent--;
606 val <<= 1;
607 }
608
609 /* Convert mantissa from milli-units to units */
610 mantissa = DIV_ROUND_CLOSEST(val, 1000);
611
612 /* Ensure that resulting number is within range */
613 if (mantissa > 0x3ff)
614 mantissa = 0x3ff;
615
616 /* restore sign */
617 if (negative)
618 mantissa = -mantissa;
619
620 /* Convert to 5 bit exponent, 11 bit mantissa */
621 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
622}
623
624static u16 pmbus_data2reg_direct(struct pmbus_data *data,
625 enum pmbus_sensor_classes class, long val)
626{
627 long m, b, R;
628
629 m = data->info->m[class];
630 b = data->info->b[class];
631 R = data->info->R[class];
632
633 /* Power is in uW. Adjust R and b. */
634 if (class == PSC_POWER) {
635 R -= 3;
636 b *= 1000;
637 }
638
639 /* Calculate Y = (m * X + b) * 10^R */
640 if (class != PSC_FAN) {
641 R -= 3; /* Adjust R and b for data in milli-units */
642 b *= 1000;
643 }
644 val = val * m + b;
645
646 while (R > 0) {
647 val *= 10;
648 R--;
649 }
650 while (R < 0) {
651 val = DIV_ROUND_CLOSEST(val, 10);
652 R++;
653 }
654
655 return val;
656}
657
658static u16 pmbus_data2reg_vid(struct pmbus_data *data,
659 enum pmbus_sensor_classes class, long val)
660{
661 val = SENSORS_LIMIT(val, 500, 1600);
662
663 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
664}
665
666static u16 pmbus_data2reg(struct pmbus_data *data,
667 enum pmbus_sensor_classes class, long val)
668{
669 u16 regval;
670
671 switch (data->info->format[class]) {
672 case direct:
673 regval = pmbus_data2reg_direct(data, class, val);
674 break;
675 case vid:
676 regval = pmbus_data2reg_vid(data, class, val);
677 break;
678 case linear:
679 default:
680 regval = pmbus_data2reg_linear(data, class, val);
681 break;
682 }
683 return regval;
684}
685
686/*
687 * Return boolean calculated from converted data.
688 * <index> defines a status register index and mask, and optionally
689 * two sensor indexes.
690 * The upper half-word references the two sensors,
691 * two sensor indices.
692 * The upper half-word references the two optional sensors,
693 * the lower half word references status register and mask.
694 * The function returns true if (status[reg] & mask) is true and,
695 * if specified, if v1 >= v2.
696 * To determine if an object exceeds upper limits, specify <v, limit>.
697 * To determine if an object exceeds lower limits, specify <limit, v>.
698 *
699 * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of
700 * index are set. s1 and s2 (the sensor index values) are zero in this case.
701 * The function returns true if (status[reg] & mask) is true.
702 *
703 * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against
704 * a specified limit has to be performed to determine the boolean result.
705 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
706 * sensor values referenced by sensor indices s1 and s2).
707 *
708 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
709 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
710 *
711 * If a negative value is stored in any of the referenced registers, this value
712 * reflects an error code which will be returned.
713 */
714static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val)
715{
716 u8 s1 = (index >> 24) & 0xff;
717 u8 s2 = (index >> 16) & 0xff;
718 u8 reg = (index >> 8) & 0xff;
719 u8 mask = index & 0xff;
720 int status;
721 u8 regval;
722
723 status = data->status[reg];
724 if (status < 0)
725 return status;
726
727 regval = status & mask;
728 if (!s1 && !s2)
729 *val = !!regval;
730 else {
731 long v1, v2;
732 struct pmbus_sensor *sensor1, *sensor2;
733
734 sensor1 = &data->sensors[s1];
735 if (sensor1->data < 0)
736 return sensor1->data;
737 sensor2 = &data->sensors[s2];
738 if (sensor2->data < 0)
739 return sensor2->data;
740
741 v1 = pmbus_reg2data(data, sensor1);
742 v2 = pmbus_reg2data(data, sensor2);
743 *val = !!(regval && v1 >= v2);
744 }
745 return 0;
746}
747
748static ssize_t pmbus_show_boolean(struct device *dev,
749 struct device_attribute *da, char *buf)
750{
751 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
752 struct pmbus_data *data = pmbus_update_device(dev);
753 int val;
754 int err;
755
756 err = pmbus_get_boolean(data, attr->index, &val);
757 if (err)
758 return err;
759 return snprintf(buf, PAGE_SIZE, "%d\n", val);
760}
761
762static ssize_t pmbus_show_sensor(struct device *dev,
763 struct device_attribute *da, char *buf)
764{
765 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
766 struct pmbus_data *data = pmbus_update_device(dev);
767 struct pmbus_sensor *sensor;
768
769 sensor = &data->sensors[attr->index];
770 if (sensor->data < 0)
771 return sensor->data;
772
773 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
774}
775
776static ssize_t pmbus_set_sensor(struct device *dev,
777 struct device_attribute *devattr,
778 const char *buf, size_t count)
779{
780 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
781 struct i2c_client *client = to_i2c_client(dev);
782 struct pmbus_data *data = i2c_get_clientdata(client);
783 struct pmbus_sensor *sensor = &data->sensors[attr->index];
784 ssize_t rv = count;
785 long val = 0;
786 int ret;
787 u16 regval;
788
789 if (strict_strtol(buf, 10, &val) < 0)
790 return -EINVAL;
791
792 mutex_lock(&data->update_lock);
793 regval = pmbus_data2reg(data, sensor->class, val);
794 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
795 if (ret < 0)
796 rv = ret;
797 else
798 data->sensors[attr->index].data = regval;
799 mutex_unlock(&data->update_lock);
800 return rv;
801}
802
803static ssize_t pmbus_show_label(struct device *dev,
804 struct device_attribute *da, char *buf)
805{
806 struct i2c_client *client = to_i2c_client(dev);
807 struct pmbus_data *data = i2c_get_clientdata(client);
808 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
809
810 return snprintf(buf, PAGE_SIZE, "%s\n",
811 data->labels[attr->index].label);
812}
813
814#define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set) \
815do { \
816 struct sensor_device_attribute *a \
817 = &data->_type##s[data->num_##_type##s].attribute; \
818 BUG_ON(data->num_attributes >= data->max_attributes); \
819 sysfs_attr_init(&a->dev_attr.attr); \
820 a->dev_attr.attr.name = _name; \
821 a->dev_attr.attr.mode = _mode; \
822 a->dev_attr.show = _show; \
823 a->dev_attr.store = _set; \
824 a->index = _idx; \
825 data->attributes[data->num_attributes] = &a->dev_attr.attr; \
826 data->num_attributes++; \
827} while (0)
828
829#define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx) \
830 PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type, \
831 pmbus_show_##_type, NULL)
832
833#define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx) \
834 PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type, \
835 pmbus_show_##_type, pmbus_set_##_type)
836
837static void pmbus_add_boolean(struct pmbus_data *data,
838 const char *name, const char *type, int seq,
839 int idx)
840{
841 struct pmbus_boolean *boolean;
842
843 BUG_ON(data->num_booleans >= data->max_booleans);
844
845 boolean = &data->booleans[data->num_booleans];
846
847 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
848 name, seq, type);
849 PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx);
850 data->num_booleans++;
851}
852
853static void pmbus_add_boolean_reg(struct pmbus_data *data,
854 const char *name, const char *type,
855 int seq, int reg, int bit)
856{
857 pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit);
858}
859
860static void pmbus_add_boolean_cmp(struct pmbus_data *data,
861 const char *name, const char *type,
862 int seq, int i1, int i2, int reg, int mask)
863{
864 pmbus_add_boolean(data, name, type, seq,
865 (i1 << 24) | (i2 << 16) | (reg << 8) | mask);
866}
867
868static void pmbus_add_sensor(struct pmbus_data *data,
869 const char *name, const char *type, int seq,
870 int page, int reg, enum pmbus_sensor_classes class,
871 bool update, bool readonly)
872{
873 struct pmbus_sensor *sensor;
874
875 BUG_ON(data->num_sensors >= data->max_sensors);
876
877 sensor = &data->sensors[data->num_sensors];
878 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
879 name, seq, type);
880 sensor->page = page;
881 sensor->reg = reg;
882 sensor->class = class;
883 sensor->update = update;
884 if (readonly)
885 PMBUS_ADD_GET_ATTR(data, sensor->name, sensor,
886 data->num_sensors);
887 else
888 PMBUS_ADD_SET_ATTR(data, sensor->name, sensor,
889 data->num_sensors);
890 data->num_sensors++;
891}
892
893static void pmbus_add_label(struct pmbus_data *data,
894 const char *name, int seq,
895 const char *lstring, int index)
896{
897 struct pmbus_label *label;
898
899 BUG_ON(data->num_labels >= data->max_labels);
900
901 label = &data->labels[data->num_labels];
902 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
903 if (!index)
904 strncpy(label->label, lstring, sizeof(label->label) - 1);
905 else
906 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
907 index);
908
909 PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels);
910 data->num_labels++;
911}
912
913/*
914 * Determine maximum number of sensors, booleans, and labels.
915 * To keep things simple, only make a rough high estimate.
916 */
917static void pmbus_find_max_attr(struct i2c_client *client,
918 struct pmbus_data *data)
919{
920 const struct pmbus_driver_info *info = data->info;
921 int page, max_sensors, max_booleans, max_labels;
922
923 max_sensors = PMBUS_MAX_INPUT_SENSORS;
924 max_booleans = PMBUS_MAX_INPUT_BOOLEANS;
925 max_labels = PMBUS_MAX_INPUT_LABELS;
926
927 for (page = 0; page < info->pages; page++) {
928 if (info->func[page] & PMBUS_HAVE_VOUT) {
929 max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE;
930 max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE;
931 max_labels++;
932 }
933 if (info->func[page] & PMBUS_HAVE_IOUT) {
934 max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE;
935 max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE;
936 max_labels++;
937 }
938 if (info->func[page] & PMBUS_HAVE_POUT) {
939 max_sensors += PMBUS_POUT_SENSORS_PER_PAGE;
940 max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE;
941 max_labels++;
942 }
943 if (info->func[page] & PMBUS_HAVE_FAN12) {
944 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
945 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
946 }
947 if (info->func[page] & PMBUS_HAVE_FAN34) {
948 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
949 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
950 }
951 if (info->func[page] & PMBUS_HAVE_TEMP) {
952 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
953 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
954 }
955 if (info->func[page] & PMBUS_HAVE_TEMP2) {
956 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
957 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
958 }
959 if (info->func[page] & PMBUS_HAVE_TEMP3) {
960 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
961 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
962 }
963 }
964 data->max_sensors = max_sensors;
965 data->max_booleans = max_booleans;
966 data->max_labels = max_labels;
967 data->max_attributes = max_sensors + max_booleans + max_labels;
968}
969
970/*
971 * Search for attributes. Allocate sensors, booleans, and labels as needed.
972 */
973
974/*
975 * The pmbus_limit_attr structure describes a single limit attribute
976 * and its associated alarm attribute.
977 */
978struct pmbus_limit_attr {
979 u16 reg; /* Limit register */
980 bool update; /* True if register needs updates */
981 bool low; /* True if low limit; for limits with compare
982 functions only */
983 const char *attr; /* Attribute name */
984 const char *alarm; /* Alarm attribute name */
985 u32 sbit; /* Alarm attribute status bit */
986};
987
988/*
989 * The pmbus_sensor_attr structure describes one sensor attribute. This
990 * description includes a reference to the associated limit attributes.
991 */
992struct pmbus_sensor_attr {
993 u8 reg; /* sensor register */
994 enum pmbus_sensor_classes class;/* sensor class */
995 const char *label; /* sensor label */
996 bool paged; /* true if paged sensor */
997 bool update; /* true if update needed */
998 bool compare; /* true if compare function needed */
999 u32 func; /* sensor mask */
1000 u32 sfunc; /* sensor status mask */
1001 int sbase; /* status base register */
1002 u32 gbit; /* generic status bit */
1003 const struct pmbus_limit_attr *limit;/* limit registers */
1004 int nlimit; /* # of limit registers */
1005};
1006
1007/*
1008 * Add a set of limit attributes and, if supported, the associated
1009 * alarm attributes.
1010 */
1011static bool pmbus_add_limit_attrs(struct i2c_client *client,
1012 struct pmbus_data *data,
1013 const struct pmbus_driver_info *info,
1014 const char *name, int index, int page,
1015 int cbase,
1016 const struct pmbus_sensor_attr *attr)
1017{
1018 const struct pmbus_limit_attr *l = attr->limit;
1019 int nlimit = attr->nlimit;
1020 bool have_alarm = false;
1021 int i, cindex;
1022
1023 for (i = 0; i < nlimit; i++) {
1024 if (pmbus_check_word_register(client, page, l->reg)) {
1025 cindex = data->num_sensors;
1026 pmbus_add_sensor(data, name, l->attr, index, page,
1027 l->reg, attr->class,
1028 attr->update || l->update,
1029 false);
1030 if (l->sbit && (info->func[page] & attr->sfunc)) {
1031 if (attr->compare) {
1032 pmbus_add_boolean_cmp(data, name,
1033 l->alarm, index,
1034 l->low ? cindex : cbase,
1035 l->low ? cbase : cindex,
1036 attr->sbase + page, l->sbit);
1037 } else {
1038 pmbus_add_boolean_reg(data, name,
1039 l->alarm, index,
1040 attr->sbase + page, l->sbit);
1041 }
1042 have_alarm = true;
1043 }
1044 }
1045 l++;
1046 }
1047 return have_alarm;
1048}
1049
1050static void pmbus_add_sensor_attrs_one(struct i2c_client *client,
1051 struct pmbus_data *data,
1052 const struct pmbus_driver_info *info,
1053 const char *name,
1054 int index, int page,
1055 const struct pmbus_sensor_attr *attr)
1056{
1057 bool have_alarm;
1058 int cbase = data->num_sensors;
1059
1060 if (attr->label)
1061 pmbus_add_label(data, name, index, attr->label,
1062 attr->paged ? page + 1 : 0);
1063 pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1064 attr->class, true, true);
1065 if (attr->sfunc) {
1066 have_alarm = pmbus_add_limit_attrs(client, data, info, name,
1067 index, page, cbase, attr);
1068 /*
1069 * Add generic alarm attribute only if there are no individual
1070 * alarm attributes, if there is a global alarm bit, and if
1071 * the generic status register for this page is accessible.
1072 */
1073 if (!have_alarm && attr->gbit &&
1074 pmbus_check_byte_register(client, page, PMBUS_STATUS_BYTE))
1075 pmbus_add_boolean_reg(data, name, "alarm", index,
1076 PB_STATUS_BASE + page,
1077 attr->gbit);
1078 }
1079}
1080
1081static void pmbus_add_sensor_attrs(struct i2c_client *client,
1082 struct pmbus_data *data,
1083 const char *name,
1084 const struct pmbus_sensor_attr *attrs,
1085 int nattrs)
1086{
1087 const struct pmbus_driver_info *info = data->info;
1088 int index, i;
1089
1090 index = 1;
1091 for (i = 0; i < nattrs; i++) {
1092 int page, pages;
1093
1094 pages = attrs->paged ? info->pages : 1;
1095 for (page = 0; page < pages; page++) {
1096 if (!(info->func[page] & attrs->func))
1097 continue;
1098 pmbus_add_sensor_attrs_one(client, data, info, name,
1099 index, page, attrs);
1100 index++;
1101 }
1102 attrs++;
1103 }
1104}
1105
1106static const struct pmbus_limit_attr vin_limit_attrs[] = {
1107 {
1108 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1109 .attr = "min",
1110 .alarm = "min_alarm",
1111 .sbit = PB_VOLTAGE_UV_WARNING,
1112 }, {
1113 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1114 .attr = "lcrit",
1115 .alarm = "lcrit_alarm",
1116 .sbit = PB_VOLTAGE_UV_FAULT,
1117 }, {
1118 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1119 .attr = "max",
1120 .alarm = "max_alarm",
1121 .sbit = PB_VOLTAGE_OV_WARNING,
1122 }, {
1123 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1124 .attr = "crit",
1125 .alarm = "crit_alarm",
1126 .sbit = PB_VOLTAGE_OV_FAULT,
1127 }, {
1128 .reg = PMBUS_VIRT_READ_VIN_AVG,
1129 .update = true,
1130 .attr = "average",
1131 }, {
1132 .reg = PMBUS_VIRT_READ_VIN_MIN,
1133 .update = true,
1134 .attr = "lowest",
1135 }, {
1136 .reg = PMBUS_VIRT_READ_VIN_MAX,
1137 .update = true,
1138 .attr = "highest",
1139 }, {
1140 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1141 .attr = "reset_history",
1142 },
1143};
1144
1145static const struct pmbus_limit_attr vout_limit_attrs[] = {
1146 {
1147 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1148 .attr = "min",
1149 .alarm = "min_alarm",
1150 .sbit = PB_VOLTAGE_UV_WARNING,
1151 }, {
1152 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1153 .attr = "lcrit",
1154 .alarm = "lcrit_alarm",
1155 .sbit = PB_VOLTAGE_UV_FAULT,
1156 }, {
1157 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1158 .attr = "max",
1159 .alarm = "max_alarm",
1160 .sbit = PB_VOLTAGE_OV_WARNING,
1161 }, {
1162 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1163 .attr = "crit",
1164 .alarm = "crit_alarm",
1165 .sbit = PB_VOLTAGE_OV_FAULT,
1166 }, {
1167 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1168 .update = true,
1169 .attr = "average",
1170 }, {
1171 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1172 .update = true,
1173 .attr = "lowest",
1174 }, {
1175 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1176 .update = true,
1177 .attr = "highest",
1178 }, {
1179 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1180 .attr = "reset_history",
1181 }
1182};
1183
1184static const struct pmbus_sensor_attr voltage_attributes[] = {
1185 {
1186 .reg = PMBUS_READ_VIN,
1187 .class = PSC_VOLTAGE_IN,
1188 .label = "vin",
1189 .func = PMBUS_HAVE_VIN,
1190 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1191 .sbase = PB_STATUS_INPUT_BASE,
1192 .gbit = PB_STATUS_VIN_UV,
1193 .limit = vin_limit_attrs,
1194 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1195 }, {
1196 .reg = PMBUS_READ_VCAP,
1197 .class = PSC_VOLTAGE_IN,
1198 .label = "vcap",
1199 .func = PMBUS_HAVE_VCAP,
1200 }, {
1201 .reg = PMBUS_READ_VOUT,
1202 .class = PSC_VOLTAGE_OUT,
1203 .label = "vout",
1204 .paged = true,
1205 .func = PMBUS_HAVE_VOUT,
1206 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1207 .sbase = PB_STATUS_VOUT_BASE,
1208 .gbit = PB_STATUS_VOUT_OV,
1209 .limit = vout_limit_attrs,
1210 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1211 }
1212};
1213
1214/* Current attributes */
1215
1216static const struct pmbus_limit_attr iin_limit_attrs[] = {
1217 {
1218 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1219 .attr = "max",
1220 .alarm = "max_alarm",
1221 .sbit = PB_IIN_OC_WARNING,
1222 }, {
1223 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1224 .attr = "crit",
1225 .alarm = "crit_alarm",
1226 .sbit = PB_IIN_OC_FAULT,
1227 }, {
1228 .reg = PMBUS_VIRT_READ_IIN_AVG,
1229 .update = true,
1230 .attr = "average",
1231 }, {
1232 .reg = PMBUS_VIRT_READ_IIN_MIN,
1233 .update = true,
1234 .attr = "lowest",
1235 }, {
1236 .reg = PMBUS_VIRT_READ_IIN_MAX,
1237 .update = true,
1238 .attr = "highest",
1239 }, {
1240 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1241 .attr = "reset_history",
1242 }
1243};
1244
1245static const struct pmbus_limit_attr iout_limit_attrs[] = {
1246 {
1247 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1248 .attr = "max",
1249 .alarm = "max_alarm",
1250 .sbit = PB_IOUT_OC_WARNING,
1251 }, {
1252 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1253 .attr = "lcrit",
1254 .alarm = "lcrit_alarm",
1255 .sbit = PB_IOUT_UC_FAULT,
1256 }, {
1257 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1258 .attr = "crit",
1259 .alarm = "crit_alarm",
1260 .sbit = PB_IOUT_OC_FAULT,
1261 }, {
1262 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1263 .update = true,
1264 .attr = "average",
1265 }, {
1266 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1267 .update = true,
1268 .attr = "lowest",
1269 }, {
1270 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1271 .update = true,
1272 .attr = "highest",
1273 }, {
1274 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1275 .attr = "reset_history",
1276 }
1277};
1278
1279static const struct pmbus_sensor_attr current_attributes[] = {
1280 {
1281 .reg = PMBUS_READ_IIN,
1282 .class = PSC_CURRENT_IN,
1283 .label = "iin",
1284 .func = PMBUS_HAVE_IIN,
1285 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1286 .sbase = PB_STATUS_INPUT_BASE,
1287 .limit = iin_limit_attrs,
1288 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1289 }, {
1290 .reg = PMBUS_READ_IOUT,
1291 .class = PSC_CURRENT_OUT,
1292 .label = "iout",
1293 .paged = true,
1294 .func = PMBUS_HAVE_IOUT,
1295 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1296 .sbase = PB_STATUS_IOUT_BASE,
1297 .gbit = PB_STATUS_IOUT_OC,
1298 .limit = iout_limit_attrs,
1299 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1300 }
1301};
1302
1303/* Power attributes */
1304
1305static const struct pmbus_limit_attr pin_limit_attrs[] = {
1306 {
1307 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1308 .attr = "max",
1309 .alarm = "alarm",
1310 .sbit = PB_PIN_OP_WARNING,
1311 }, {
1312 .reg = PMBUS_VIRT_READ_PIN_AVG,
1313 .update = true,
1314 .attr = "average",
1315 }, {
1316 .reg = PMBUS_VIRT_READ_PIN_MAX,
1317 .update = true,
1318 .attr = "input_highest",
1319 }, {
1320 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1321 .attr = "reset_history",
1322 }
1323};
1324
1325static const struct pmbus_limit_attr pout_limit_attrs[] = {
1326 {
1327 .reg = PMBUS_POUT_MAX,
1328 .attr = "cap",
1329 .alarm = "cap_alarm",
1330 .sbit = PB_POWER_LIMITING,
1331 }, {
1332 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1333 .attr = "max",
1334 .alarm = "max_alarm",
1335 .sbit = PB_POUT_OP_WARNING,
1336 }, {
1337 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1338 .attr = "crit",
1339 .alarm = "crit_alarm",
1340 .sbit = PB_POUT_OP_FAULT,
1341 }
1342};
1343
1344static const struct pmbus_sensor_attr power_attributes[] = {
1345 {
1346 .reg = PMBUS_READ_PIN,
1347 .class = PSC_POWER,
1348 .label = "pin",
1349 .func = PMBUS_HAVE_PIN,
1350 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1351 .sbase = PB_STATUS_INPUT_BASE,
1352 .limit = pin_limit_attrs,
1353 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1354 }, {
1355 .reg = PMBUS_READ_POUT,
1356 .class = PSC_POWER,
1357 .label = "pout",
1358 .paged = true,
1359 .func = PMBUS_HAVE_POUT,
1360 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1361 .sbase = PB_STATUS_IOUT_BASE,
1362 .limit = pout_limit_attrs,
1363 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1364 }
1365};
1366
1367/* Temperature atributes */
1368
1369static const struct pmbus_limit_attr temp_limit_attrs[] = {
1370 {
1371 .reg = PMBUS_UT_WARN_LIMIT,
1372 .low = true,
1373 .attr = "min",
1374 .alarm = "min_alarm",
1375 .sbit = PB_TEMP_UT_WARNING,
1376 }, {
1377 .reg = PMBUS_UT_FAULT_LIMIT,
1378 .low = true,
1379 .attr = "lcrit",
1380 .alarm = "lcrit_alarm",
1381 .sbit = PB_TEMP_UT_FAULT,
1382 }, {
1383 .reg = PMBUS_OT_WARN_LIMIT,
1384 .attr = "max",
1385 .alarm = "max_alarm",
1386 .sbit = PB_TEMP_OT_WARNING,
1387 }, {
1388 .reg = PMBUS_OT_FAULT_LIMIT,
1389 .attr = "crit",
1390 .alarm = "crit_alarm",
1391 .sbit = PB_TEMP_OT_FAULT,
1392 }, {
1393 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1394 .attr = "lowest",
1395 }, {
1396 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1397 .attr = "highest",
1398 }, {
1399 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1400 .attr = "reset_history",
1401 }
1402};
1403
1404static const struct pmbus_limit_attr temp_limit_attrs23[] = {
1405 {
1406 .reg = PMBUS_UT_WARN_LIMIT,
1407 .low = true,
1408 .attr = "min",
1409 .alarm = "min_alarm",
1410 .sbit = PB_TEMP_UT_WARNING,
1411 }, {
1412 .reg = PMBUS_UT_FAULT_LIMIT,
1413 .low = true,
1414 .attr = "lcrit",
1415 .alarm = "lcrit_alarm",
1416 .sbit = PB_TEMP_UT_FAULT,
1417 }, {
1418 .reg = PMBUS_OT_WARN_LIMIT,
1419 .attr = "max",
1420 .alarm = "max_alarm",
1421 .sbit = PB_TEMP_OT_WARNING,
1422 }, {
1423 .reg = PMBUS_OT_FAULT_LIMIT,
1424 .attr = "crit",
1425 .alarm = "crit_alarm",
1426 .sbit = PB_TEMP_OT_FAULT,
1427 }
1428};
1429
1430static const struct pmbus_sensor_attr temp_attributes[] = {
1431 {
1432 .reg = PMBUS_READ_TEMPERATURE_1,
1433 .class = PSC_TEMPERATURE,
1434 .paged = true,
1435 .update = true,
1436 .compare = true,
1437 .func = PMBUS_HAVE_TEMP,
1438 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1439 .sbase = PB_STATUS_TEMP_BASE,
1440 .gbit = PB_STATUS_TEMPERATURE,
1441 .limit = temp_limit_attrs,
1442 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1443 }, {
1444 .reg = PMBUS_READ_TEMPERATURE_2,
1445 .class = PSC_TEMPERATURE,
1446 .paged = true,
1447 .update = true,
1448 .compare = true,
1449 .func = PMBUS_HAVE_TEMP2,
1450 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1451 .sbase = PB_STATUS_TEMP_BASE,
1452 .gbit = PB_STATUS_TEMPERATURE,
1453 .limit = temp_limit_attrs23,
1454 .nlimit = ARRAY_SIZE(temp_limit_attrs23),
1455 }, {
1456 .reg = PMBUS_READ_TEMPERATURE_3,
1457 .class = PSC_TEMPERATURE,
1458 .paged = true,
1459 .update = true,
1460 .compare = true,
1461 .func = PMBUS_HAVE_TEMP3,
1462 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1463 .sbase = PB_STATUS_TEMP_BASE,
1464 .gbit = PB_STATUS_TEMPERATURE,
1465 .limit = temp_limit_attrs23,
1466 .nlimit = ARRAY_SIZE(temp_limit_attrs23),
1467 }
1468};
1469
1470static const int pmbus_fan_registers[] = {
1471 PMBUS_READ_FAN_SPEED_1,
1472 PMBUS_READ_FAN_SPEED_2,
1473 PMBUS_READ_FAN_SPEED_3,
1474 PMBUS_READ_FAN_SPEED_4
1475};
1476
1477static const int pmbus_fan_config_registers[] = {
1478 PMBUS_FAN_CONFIG_12,
1479 PMBUS_FAN_CONFIG_12,
1480 PMBUS_FAN_CONFIG_34,
1481 PMBUS_FAN_CONFIG_34
1482};
1483
1484static const int pmbus_fan_status_registers[] = {
1485 PMBUS_STATUS_FAN_12,
1486 PMBUS_STATUS_FAN_12,
1487 PMBUS_STATUS_FAN_34,
1488 PMBUS_STATUS_FAN_34
1489};
1490
1491static const u32 pmbus_fan_flags[] = {
1492 PMBUS_HAVE_FAN12,
1493 PMBUS_HAVE_FAN12,
1494 PMBUS_HAVE_FAN34,
1495 PMBUS_HAVE_FAN34
1496};
1497
1498static const u32 pmbus_fan_status_flags[] = {
1499 PMBUS_HAVE_STATUS_FAN12,
1500 PMBUS_HAVE_STATUS_FAN12,
1501 PMBUS_HAVE_STATUS_FAN34,
1502 PMBUS_HAVE_STATUS_FAN34
1503};
1504
1505/* Fans */
1506static void pmbus_add_fan_attributes(struct i2c_client *client,
1507 struct pmbus_data *data)
1508{
1509 const struct pmbus_driver_info *info = data->info;
1510 int index = 1;
1511 int page;
1512
1513 for (page = 0; page < info->pages; page++) {
1514 int f;
1515
1516 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1517 int regval;
1518
1519 if (!(info->func[page] & pmbus_fan_flags[f]))
1520 break;
1521
1522 if (!pmbus_check_word_register(client, page,
1523 pmbus_fan_registers[f]))
1524 break;
1525
1526 /*
1527 * Skip fan if not installed.
1528 * Each fan configuration register covers multiple fans,
1529 * so we have to do some magic.
1530 */
1531 regval = _pmbus_read_byte_data(client, page,
1532 pmbus_fan_config_registers[f]);
1533 if (regval < 0 ||
1534 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1535 continue;
1536
1537 pmbus_add_sensor(data, "fan", "input", index, page,
1538 pmbus_fan_registers[f], PSC_FAN, true,
1539 true);
1540
1541 /*
1542 * Each fan status register covers multiple fans,
1543 * so we have to do some magic.
1544 */
1545 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1546 pmbus_check_byte_register(client,
1547 page, pmbus_fan_status_registers[f])) {
1548 int base;
1549
1550 if (f > 1) /* fan 3, 4 */
1551 base = PB_STATUS_FAN34_BASE + page;
1552 else
1553 base = PB_STATUS_FAN_BASE + page;
1554 pmbus_add_boolean_reg(data, "fan", "alarm",
1555 index, base,
1556 PB_FAN_FAN1_WARNING >> (f & 1));
1557 pmbus_add_boolean_reg(data, "fan", "fault",
1558 index, base,
1559 PB_FAN_FAN1_FAULT >> (f & 1));
1560 }
1561 index++;
1562 }
1563 }
1564}
1565
1566static void pmbus_find_attributes(struct i2c_client *client,
1567 struct pmbus_data *data)
1568{
1569 /* Voltage sensors */
1570 pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1571 ARRAY_SIZE(voltage_attributes));
1572
1573 /* Current sensors */
1574 pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1575 ARRAY_SIZE(current_attributes));
1576
1577 /* Power sensors */
1578 pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1579 ARRAY_SIZE(power_attributes));
1580
1581 /* Temperature sensors */
1582 pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1583 ARRAY_SIZE(temp_attributes));
1584
1585 /* Fans */
1586 pmbus_add_fan_attributes(client, data);
1587}
1588
1589/*
1590 * Identify chip parameters.
1591 * This function is called for all chips.
1592 */
1593static int pmbus_identify_common(struct i2c_client *client,
1594 struct pmbus_data *data)
1595{
1596 int vout_mode = -1, exponent;
1597
1598 if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
1599 vout_mode = pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
1600 if (vout_mode >= 0 && vout_mode != 0xff) {
1601 /*
1602 * Not all chips support the VOUT_MODE command,
1603 * so a failure to read it is not an error.
1604 */
1605 switch (vout_mode >> 5) {
1606 case 0: /* linear mode */
1607 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1608 return -ENODEV;
1609
1610 exponent = vout_mode & 0x1f;
1611 /* and sign-extend it */
1612 if (exponent & 0x10)
1613 exponent |= ~0x1f;
1614 data->exponent = exponent;
1615 break;
1616 case 1: /* VID mode */
1617 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1618 return -ENODEV;
1619 break;
1620 case 2: /* direct mode */
1621 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1622 return -ENODEV;
1623 break;
1624 default:
1625 return -ENODEV;
1626 }
1627 }
1628
1629 /* Determine maximum number of sensors, booleans, and labels */
1630 pmbus_find_max_attr(client, data);
1631 pmbus_clear_fault_page(client, 0);
1632 return 0;
1633}
1634
1635int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1636 struct pmbus_driver_info *info)
1637{
1638 const struct pmbus_platform_data *pdata = client->dev.platform_data;
1639 struct pmbus_data *data;
1640 int ret;
1641
1642 if (!info) {
1643 dev_err(&client->dev, "Missing chip information");
1644 return -ENODEV;
1645 }
1646
1647 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1648 | I2C_FUNC_SMBUS_BYTE_DATA
1649 | I2C_FUNC_SMBUS_WORD_DATA))
1650 return -ENODEV;
1651
1652 data = kzalloc(sizeof(*data), GFP_KERNEL);
1653 if (!data) {
1654 dev_err(&client->dev, "No memory to allocate driver data\n");
1655 return -ENOMEM;
1656 }
1657
1658 i2c_set_clientdata(client, data);
1659 mutex_init(&data->update_lock);
1660
1661 /* Bail out if PMBus status register does not exist. */
1662 if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) {
1663 dev_err(&client->dev, "PMBus status register not found\n");
1664 ret = -ENODEV;
1665 goto out_data;
1666 }
1667
1668 if (pdata)
1669 data->flags = pdata->flags;
1670 data->info = info;
1671
1672 pmbus_clear_faults(client);
1673
1674 if (info->identify) {
1675 ret = (*info->identify)(client, info);
1676 if (ret < 0) {
1677 dev_err(&client->dev, "Chip identification failed\n");
1678 goto out_data;
1679 }
1680 }
1681
1682 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1683 dev_err(&client->dev, "Bad number of PMBus pages: %d\n",
1684 info->pages);
1685 ret = -EINVAL;
1686 goto out_data;
1687 }
1688
1689 ret = pmbus_identify_common(client, data);
1690 if (ret < 0) {
1691 dev_err(&client->dev, "Failed to identify chip capabilities\n");
1692 goto out_data;
1693 }
1694
1695 ret = -ENOMEM;
1696 data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors,
1697 GFP_KERNEL);
1698 if (!data->sensors) {
1699 dev_err(&client->dev, "No memory to allocate sensor data\n");
1700 goto out_data;
1701 }
1702
1703 data->booleans = kzalloc(sizeof(struct pmbus_boolean)
1704 * data->max_booleans, GFP_KERNEL);
1705 if (!data->booleans) {
1706 dev_err(&client->dev, "No memory to allocate boolean data\n");
1707 goto out_sensors;
1708 }
1709
1710 data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels,
1711 GFP_KERNEL);
1712 if (!data->labels) {
1713 dev_err(&client->dev, "No memory to allocate label data\n");
1714 goto out_booleans;
1715 }
1716
1717 data->attributes = kzalloc(sizeof(struct attribute *)
1718 * data->max_attributes, GFP_KERNEL);
1719 if (!data->attributes) {
1720 dev_err(&client->dev, "No memory to allocate attribute data\n");
1721 goto out_labels;
1722 }
1723
1724 pmbus_find_attributes(client, data);
1725
1726 /*
1727 * If there are no attributes, something is wrong.
1728 * Bail out instead of trying to register nothing.
1729 */
1730 if (!data->num_attributes) {
1731 dev_err(&client->dev, "No attributes found\n");
1732 ret = -ENODEV;
1733 goto out_attributes;
1734 }
1735
1736 /* Register sysfs hooks */
1737 data->group.attrs = data->attributes;
1738 ret = sysfs_create_group(&client->dev.kobj, &data->group);
1739 if (ret) {
1740 dev_err(&client->dev, "Failed to create sysfs entries\n");
1741 goto out_attributes;
1742 }
1743 data->hwmon_dev = hwmon_device_register(&client->dev);
1744 if (IS_ERR(data->hwmon_dev)) {
1745 ret = PTR_ERR(data->hwmon_dev);
1746 dev_err(&client->dev, "Failed to register hwmon device\n");
1747 goto out_hwmon_device_register;
1748 }
1749 return 0;
1750
1751out_hwmon_device_register:
1752 sysfs_remove_group(&client->dev.kobj, &data->group);
1753out_attributes:
1754 kfree(data->attributes);
1755out_labels:
1756 kfree(data->labels);
1757out_booleans:
1758 kfree(data->booleans);
1759out_sensors:
1760 kfree(data->sensors);
1761out_data:
1762 kfree(data);
1763 return ret;
1764}
1765EXPORT_SYMBOL_GPL(pmbus_do_probe);
1766
1767int pmbus_do_remove(struct i2c_client *client)
1768{
1769 struct pmbus_data *data = i2c_get_clientdata(client);
1770 hwmon_device_unregister(data->hwmon_dev);
1771 sysfs_remove_group(&client->dev.kobj, &data->group);
1772 kfree(data->attributes);
1773 kfree(data->labels);
1774 kfree(data->booleans);
1775 kfree(data->sensors);
1776 kfree(data);
1777 return 0;
1778}
1779EXPORT_SYMBOL_GPL(pmbus_do_remove);
1780
1781MODULE_AUTHOR("Guenter Roeck");
1782MODULE_DESCRIPTION("PMBus core driver");
1783MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Hardware monitoring driver for PMBus devices
4 *
5 * Copyright (c) 2010, 2011 Ericsson AB.
6 * Copyright (c) 2012 Guenter Roeck
7 */
8
9#include <linux/debugfs.h>
10#include <linux/delay.h>
11#include <linux/kernel.h>
12#include <linux/math64.h>
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/i2c.h>
18#include <linux/hwmon.h>
19#include <linux/hwmon-sysfs.h>
20#include <linux/pmbus.h>
21#include <linux/regulator/driver.h>
22#include <linux/regulator/machine.h>
23#include <linux/of.h>
24#include <linux/thermal.h>
25#include "pmbus.h"
26
27/*
28 * Number of additional attribute pointers to allocate
29 * with each call to krealloc
30 */
31#define PMBUS_ATTR_ALLOC_SIZE 32
32#define PMBUS_NAME_SIZE 24
33
34struct pmbus_sensor {
35 struct pmbus_sensor *next;
36 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
37 struct device_attribute attribute;
38 u8 page; /* page number */
39 u8 phase; /* phase number, 0xff for all phases */
40 u16 reg; /* register */
41 enum pmbus_sensor_classes class; /* sensor class */
42 bool update; /* runtime sensor update needed */
43 bool convert; /* Whether or not to apply linear/vid/direct */
44 int data; /* Sensor data.
45 Negative if there was a read error */
46};
47#define to_pmbus_sensor(_attr) \
48 container_of(_attr, struct pmbus_sensor, attribute)
49
50struct pmbus_boolean {
51 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
52 struct sensor_device_attribute attribute;
53 struct pmbus_sensor *s1;
54 struct pmbus_sensor *s2;
55};
56#define to_pmbus_boolean(_attr) \
57 container_of(_attr, struct pmbus_boolean, attribute)
58
59struct pmbus_label {
60 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
61 struct device_attribute attribute;
62 char label[PMBUS_NAME_SIZE]; /* label */
63};
64#define to_pmbus_label(_attr) \
65 container_of(_attr, struct pmbus_label, attribute)
66
67/* Macros for converting between sensor index and register/page/status mask */
68
69#define PB_STATUS_MASK 0xffff
70#define PB_REG_SHIFT 16
71#define PB_REG_MASK 0x3ff
72#define PB_PAGE_SHIFT 26
73#define PB_PAGE_MASK 0x3f
74
75#define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
76 ((reg) << PB_REG_SHIFT) | (mask))
77
78#define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
79#define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
80#define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
81
82struct pmbus_data {
83 struct device *dev;
84 struct device *hwmon_dev;
85 struct regulator_dev **rdevs;
86
87 u32 flags; /* from platform data */
88
89 u8 revision; /* The PMBus revision the device is compliant with */
90
91 int exponent[PMBUS_PAGES];
92 /* linear mode: exponent for output voltages */
93
94 const struct pmbus_driver_info *info;
95
96 int max_attributes;
97 int num_attributes;
98 struct attribute_group group;
99 const struct attribute_group **groups;
100 struct dentry *debugfs; /* debugfs device directory */
101
102 struct pmbus_sensor *sensors;
103
104 struct mutex update_lock;
105
106 bool has_status_word; /* device uses STATUS_WORD register */
107 int (*read_status)(struct i2c_client *client, int page);
108
109 s16 currpage; /* current page, -1 for unknown/unset */
110 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
111
112 int vout_low[PMBUS_PAGES]; /* voltage low margin */
113 int vout_high[PMBUS_PAGES]; /* voltage high margin */
114 ktime_t write_time; /* Last SMBUS write timestamp */
115 ktime_t access_time; /* Last SMBUS access timestamp */
116};
117
118struct pmbus_debugfs_entry {
119 struct i2c_client *client;
120 u8 page;
121 u8 reg;
122};
123
124static const int pmbus_fan_rpm_mask[] = {
125 PB_FAN_1_RPM,
126 PB_FAN_2_RPM,
127 PB_FAN_1_RPM,
128 PB_FAN_2_RPM,
129};
130
131static const int pmbus_fan_config_registers[] = {
132 PMBUS_FAN_CONFIG_12,
133 PMBUS_FAN_CONFIG_12,
134 PMBUS_FAN_CONFIG_34,
135 PMBUS_FAN_CONFIG_34
136};
137
138static const int pmbus_fan_command_registers[] = {
139 PMBUS_FAN_COMMAND_1,
140 PMBUS_FAN_COMMAND_2,
141 PMBUS_FAN_COMMAND_3,
142 PMBUS_FAN_COMMAND_4,
143};
144
145void pmbus_clear_cache(struct i2c_client *client)
146{
147 struct pmbus_data *data = i2c_get_clientdata(client);
148 struct pmbus_sensor *sensor;
149
150 for (sensor = data->sensors; sensor; sensor = sensor->next)
151 sensor->data = -ENODATA;
152}
153EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, "PMBUS");
154
155void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
156{
157 struct pmbus_data *data = i2c_get_clientdata(client);
158 struct pmbus_sensor *sensor;
159
160 for (sensor = data->sensors; sensor; sensor = sensor->next)
161 if (sensor->reg == reg)
162 sensor->update = update;
163}
164EXPORT_SYMBOL_NS_GPL(pmbus_set_update, "PMBUS");
165
166/* Some chips need a delay between accesses. */
167static void pmbus_wait(struct i2c_client *client)
168{
169 struct pmbus_data *data = i2c_get_clientdata(client);
170 const struct pmbus_driver_info *info = data->info;
171 s64 delta;
172
173 if (info->access_delay) {
174 delta = ktime_us_delta(ktime_get(), data->access_time);
175
176 if (delta < info->access_delay)
177 fsleep(info->access_delay - delta);
178 } else if (info->write_delay) {
179 delta = ktime_us_delta(ktime_get(), data->write_time);
180
181 if (delta < info->write_delay)
182 fsleep(info->write_delay - delta);
183 }
184}
185
186/* Sets the last accessed timestamp for pmbus_wait */
187static void pmbus_update_ts(struct i2c_client *client, bool write_op)
188{
189 struct pmbus_data *data = i2c_get_clientdata(client);
190 const struct pmbus_driver_info *info = data->info;
191
192 if (info->access_delay) {
193 data->access_time = ktime_get();
194 } else if (info->write_delay && write_op) {
195 data->write_time = ktime_get();
196 }
197}
198
199int pmbus_set_page(struct i2c_client *client, int page, int phase)
200{
201 struct pmbus_data *data = i2c_get_clientdata(client);
202 int rv;
203
204 if (page < 0)
205 return 0;
206
207 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
208 data->info->pages > 1 && page != data->currpage) {
209 pmbus_wait(client);
210 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
211 pmbus_update_ts(client, true);
212 if (rv < 0)
213 return rv;
214
215 pmbus_wait(client);
216 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
217 pmbus_update_ts(client, false);
218 if (rv < 0)
219 return rv;
220
221 if (rv != page)
222 return -EIO;
223 }
224 data->currpage = page;
225
226 if (data->info->phases[page] && data->currphase != phase &&
227 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
228 pmbus_wait(client);
229 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
230 phase);
231 pmbus_update_ts(client, true);
232 if (rv)
233 return rv;
234 }
235 data->currphase = phase;
236
237 return 0;
238}
239EXPORT_SYMBOL_NS_GPL(pmbus_set_page, "PMBUS");
240
241int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
242{
243 int rv;
244
245 rv = pmbus_set_page(client, page, 0xff);
246 if (rv < 0)
247 return rv;
248
249 pmbus_wait(client);
250 rv = i2c_smbus_write_byte(client, value);
251 pmbus_update_ts(client, true);
252
253 return rv;
254}
255EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, "PMBUS");
256
257/*
258 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
259 * a device specific mapping function exists and calls it if necessary.
260 */
261static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
262{
263 struct pmbus_data *data = i2c_get_clientdata(client);
264 const struct pmbus_driver_info *info = data->info;
265 int status;
266
267 if (info->write_byte) {
268 status = info->write_byte(client, page, value);
269 if (status != -ENODATA)
270 return status;
271 }
272 return pmbus_write_byte(client, page, value);
273}
274
275int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
276 u16 word)
277{
278 int rv;
279
280 rv = pmbus_set_page(client, page, 0xff);
281 if (rv < 0)
282 return rv;
283
284 pmbus_wait(client);
285 rv = i2c_smbus_write_word_data(client, reg, word);
286 pmbus_update_ts(client, true);
287
288 return rv;
289}
290EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, "PMBUS");
291
292
293static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
294 u16 word)
295{
296 int bit;
297 int id;
298 int rv;
299
300 switch (reg) {
301 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
302 id = reg - PMBUS_VIRT_FAN_TARGET_1;
303 bit = pmbus_fan_rpm_mask[id];
304 rv = pmbus_update_fan(client, page, id, bit, bit, word);
305 break;
306 default:
307 rv = -ENXIO;
308 break;
309 }
310
311 return rv;
312}
313
314/*
315 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
316 * a device specific mapping function exists and calls it if necessary.
317 */
318static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
319 u16 word)
320{
321 struct pmbus_data *data = i2c_get_clientdata(client);
322 const struct pmbus_driver_info *info = data->info;
323 int status;
324
325 if (info->write_word_data) {
326 status = info->write_word_data(client, page, reg, word);
327 if (status != -ENODATA)
328 return status;
329 }
330
331 if (reg >= PMBUS_VIRT_BASE)
332 return pmbus_write_virt_reg(client, page, reg, word);
333
334 return pmbus_write_word_data(client, page, reg, word);
335}
336
337/*
338 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
339 * a device specific mapping function exists and calls it if necessary.
340 */
341static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
342{
343 struct pmbus_data *data = i2c_get_clientdata(client);
344 const struct pmbus_driver_info *info = data->info;
345 int status;
346
347 if (info->write_byte_data) {
348 status = info->write_byte_data(client, page, reg, value);
349 if (status != -ENODATA)
350 return status;
351 }
352 return pmbus_write_byte_data(client, page, reg, value);
353}
354
355/*
356 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
357 * a device specific mapping function exists and calls it if necessary.
358 */
359static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
360{
361 struct pmbus_data *data = i2c_get_clientdata(client);
362 const struct pmbus_driver_info *info = data->info;
363 int status;
364
365 if (info->read_byte_data) {
366 status = info->read_byte_data(client, page, reg);
367 if (status != -ENODATA)
368 return status;
369 }
370 return pmbus_read_byte_data(client, page, reg);
371}
372
373int pmbus_update_fan(struct i2c_client *client, int page, int id,
374 u8 config, u8 mask, u16 command)
375{
376 int from;
377 int rv;
378 u8 to;
379
380 from = _pmbus_read_byte_data(client, page,
381 pmbus_fan_config_registers[id]);
382 if (from < 0)
383 return from;
384
385 to = (from & ~mask) | (config & mask);
386 if (to != from) {
387 rv = _pmbus_write_byte_data(client, page,
388 pmbus_fan_config_registers[id], to);
389 if (rv < 0)
390 return rv;
391 }
392
393 return _pmbus_write_word_data(client, page,
394 pmbus_fan_command_registers[id], command);
395}
396EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, "PMBUS");
397
398int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
399{
400 int rv;
401
402 rv = pmbus_set_page(client, page, phase);
403 if (rv < 0)
404 return rv;
405
406 pmbus_wait(client);
407 rv = i2c_smbus_read_word_data(client, reg);
408 pmbus_update_ts(client, false);
409
410 return rv;
411}
412EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, "PMBUS");
413
414static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
415{
416 int rv;
417 int id;
418
419 switch (reg) {
420 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
421 id = reg - PMBUS_VIRT_FAN_TARGET_1;
422 rv = pmbus_get_fan_rate_device(client, page, id, rpm);
423 break;
424 default:
425 rv = -ENXIO;
426 break;
427 }
428
429 return rv;
430}
431
432/*
433 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
434 * a device specific mapping function exists and calls it if necessary.
435 */
436static int _pmbus_read_word_data(struct i2c_client *client, int page,
437 int phase, int reg)
438{
439 struct pmbus_data *data = i2c_get_clientdata(client);
440 const struct pmbus_driver_info *info = data->info;
441 int status;
442
443 if (info->read_word_data) {
444 status = info->read_word_data(client, page, phase, reg);
445 if (status != -ENODATA)
446 return status;
447 }
448
449 if (reg >= PMBUS_VIRT_BASE)
450 return pmbus_read_virt_reg(client, page, reg);
451
452 return pmbus_read_word_data(client, page, phase, reg);
453}
454
455/* Same as above, but without phase parameter, for use in check functions */
456static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
457{
458 return _pmbus_read_word_data(client, page, 0xff, reg);
459}
460
461int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
462{
463 int rv;
464
465 rv = pmbus_set_page(client, page, 0xff);
466 if (rv < 0)
467 return rv;
468
469 pmbus_wait(client);
470 rv = i2c_smbus_read_byte_data(client, reg);
471 pmbus_update_ts(client, false);
472
473 return rv;
474}
475EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, "PMBUS");
476
477int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
478{
479 int rv;
480
481 rv = pmbus_set_page(client, page, 0xff);
482 if (rv < 0)
483 return rv;
484
485 pmbus_wait(client);
486 rv = i2c_smbus_write_byte_data(client, reg, value);
487 pmbus_update_ts(client, true);
488
489 return rv;
490}
491EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, "PMBUS");
492
493int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
494 u8 mask, u8 value)
495{
496 unsigned int tmp;
497 int rv;
498
499 rv = _pmbus_read_byte_data(client, page, reg);
500 if (rv < 0)
501 return rv;
502
503 tmp = (rv & ~mask) | (value & mask);
504
505 if (tmp != rv)
506 rv = _pmbus_write_byte_data(client, page, reg, tmp);
507
508 return rv;
509}
510EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, "PMBUS");
511
512static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
513 char *data_buf)
514{
515 int rv;
516
517 rv = pmbus_set_page(client, page, 0xff);
518 if (rv < 0)
519 return rv;
520
521 pmbus_wait(client);
522 rv = i2c_smbus_read_block_data(client, reg, data_buf);
523 pmbus_update_ts(client, false);
524
525 return rv;
526}
527
528static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
529 int reg)
530{
531 struct pmbus_sensor *sensor;
532
533 for (sensor = data->sensors; sensor; sensor = sensor->next) {
534 if (sensor->page == page && sensor->reg == reg)
535 return sensor;
536 }
537
538 return ERR_PTR(-EINVAL);
539}
540
541static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
542 enum pmbus_fan_mode mode,
543 bool from_cache)
544{
545 struct pmbus_data *data = i2c_get_clientdata(client);
546 bool want_rpm, have_rpm;
547 struct pmbus_sensor *s;
548 int config;
549 int reg;
550
551 want_rpm = (mode == rpm);
552
553 if (from_cache) {
554 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
555 s = pmbus_find_sensor(data, page, reg + id);
556 if (IS_ERR(s))
557 return PTR_ERR(s);
558
559 return s->data;
560 }
561
562 config = _pmbus_read_byte_data(client, page,
563 pmbus_fan_config_registers[id]);
564 if (config < 0)
565 return config;
566
567 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
568 if (want_rpm == have_rpm)
569 return pmbus_read_word_data(client, page, 0xff,
570 pmbus_fan_command_registers[id]);
571
572 /* Can't sensibly map between RPM and PWM, just return zero */
573 return 0;
574}
575
576int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
577 enum pmbus_fan_mode mode)
578{
579 return pmbus_get_fan_rate(client, page, id, mode, false);
580}
581EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, "PMBUS");
582
583int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
584 enum pmbus_fan_mode mode)
585{
586 return pmbus_get_fan_rate(client, page, id, mode, true);
587}
588EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, "PMBUS");
589
590static void pmbus_clear_fault_page(struct i2c_client *client, int page)
591{
592 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
593}
594
595void pmbus_clear_faults(struct i2c_client *client)
596{
597 struct pmbus_data *data = i2c_get_clientdata(client);
598 int i;
599
600 for (i = 0; i < data->info->pages; i++)
601 pmbus_clear_fault_page(client, i);
602}
603EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, "PMBUS");
604
605static int pmbus_check_status_cml(struct i2c_client *client)
606{
607 struct pmbus_data *data = i2c_get_clientdata(client);
608 int status, status2;
609
610 status = data->read_status(client, -1);
611 if (status < 0 || (status & PB_STATUS_CML)) {
612 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
613 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
614 return -EIO;
615 }
616 return 0;
617}
618
619static bool pmbus_check_register(struct i2c_client *client,
620 int (*func)(struct i2c_client *client,
621 int page, int reg),
622 int page, int reg)
623{
624 int rv;
625 struct pmbus_data *data = i2c_get_clientdata(client);
626
627 rv = func(client, page, reg);
628 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
629 rv = pmbus_check_status_cml(client);
630 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
631 data->read_status(client, -1);
632 if (reg < PMBUS_VIRT_BASE)
633 pmbus_clear_fault_page(client, -1);
634 return rv >= 0;
635}
636
637static bool pmbus_check_status_register(struct i2c_client *client, int page)
638{
639 int status;
640 struct pmbus_data *data = i2c_get_clientdata(client);
641
642 status = data->read_status(client, page);
643 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
644 (status & PB_STATUS_CML)) {
645 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
646 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
647 status = -EIO;
648 }
649
650 pmbus_clear_fault_page(client, -1);
651 return status >= 0;
652}
653
654bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
655{
656 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
657}
658EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, "PMBUS");
659
660bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
661{
662 return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
663}
664EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, "PMBUS");
665
666static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
667 int page, int reg)
668{
669 int rv;
670 struct pmbus_data *data = i2c_get_clientdata(client);
671 char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
672
673 rv = pmbus_read_block_data(client, page, reg, data_buf);
674 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
675 rv = pmbus_check_status_cml(client);
676 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
677 data->read_status(client, -1);
678 pmbus_clear_fault_page(client, -1);
679 return rv >= 0;
680}
681
682const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
683{
684 struct pmbus_data *data = i2c_get_clientdata(client);
685
686 return data->info;
687}
688EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, "PMBUS");
689
690static int pmbus_get_status(struct i2c_client *client, int page, int reg)
691{
692 struct pmbus_data *data = i2c_get_clientdata(client);
693 int status;
694
695 switch (reg) {
696 case PMBUS_STATUS_WORD:
697 status = data->read_status(client, page);
698 break;
699 default:
700 status = _pmbus_read_byte_data(client, page, reg);
701 break;
702 }
703 if (status < 0)
704 pmbus_clear_faults(client);
705 return status;
706}
707
708static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
709{
710 if (sensor->data < 0 || sensor->update)
711 sensor->data = _pmbus_read_word_data(client, sensor->page,
712 sensor->phase, sensor->reg);
713}
714
715/*
716 * Convert ieee754 sensor values to milli- or micro-units
717 * depending on sensor type.
718 *
719 * ieee754 data format:
720 * bit 15: sign
721 * bit 10..14: exponent
722 * bit 0..9: mantissa
723 * exponent=0:
724 * v=(−1)^signbit * 2^(−14) * 0.significantbits
725 * exponent=1..30:
726 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
727 * exponent=31:
728 * v=NaN
729 *
730 * Add the number mantissa bits into the calculations for simplicity.
731 * To do that, add '10' to the exponent. By doing that, we can just add
732 * 0x400 to normal values and get the expected result.
733 */
734static long pmbus_reg2data_ieee754(struct pmbus_data *data,
735 struct pmbus_sensor *sensor)
736{
737 int exponent;
738 bool sign;
739 long val;
740
741 /* only support half precision for now */
742 sign = sensor->data & 0x8000;
743 exponent = (sensor->data >> 10) & 0x1f;
744 val = sensor->data & 0x3ff;
745
746 if (exponent == 0) { /* subnormal */
747 exponent = -(14 + 10);
748 } else if (exponent == 0x1f) { /* NaN, convert to min/max */
749 exponent = 0;
750 val = 65504;
751 } else {
752 exponent -= (15 + 10); /* normal */
753 val |= 0x400;
754 }
755
756 /* scale result to milli-units for all sensors except fans */
757 if (sensor->class != PSC_FAN)
758 val = val * 1000L;
759
760 /* scale result to micro-units for power sensors */
761 if (sensor->class == PSC_POWER)
762 val = val * 1000L;
763
764 if (exponent >= 0)
765 val <<= exponent;
766 else
767 val >>= -exponent;
768
769 if (sign)
770 val = -val;
771
772 return val;
773}
774
775/*
776 * Convert linear sensor values to milli- or micro-units
777 * depending on sensor type.
778 */
779static s64 pmbus_reg2data_linear(struct pmbus_data *data,
780 struct pmbus_sensor *sensor)
781{
782 s16 exponent;
783 s32 mantissa;
784 s64 val;
785
786 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
787 exponent = data->exponent[sensor->page];
788 mantissa = (u16) sensor->data;
789 } else { /* LINEAR11 */
790 exponent = ((s16)sensor->data) >> 11;
791 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
792 }
793
794 val = mantissa;
795
796 /* scale result to milli-units for all sensors except fans */
797 if (sensor->class != PSC_FAN)
798 val = val * 1000LL;
799
800 /* scale result to micro-units for power sensors */
801 if (sensor->class == PSC_POWER)
802 val = val * 1000LL;
803
804 if (exponent >= 0)
805 val <<= exponent;
806 else
807 val >>= -exponent;
808
809 return val;
810}
811
812/*
813 * Convert direct sensor values to milli- or micro-units
814 * depending on sensor type.
815 */
816static s64 pmbus_reg2data_direct(struct pmbus_data *data,
817 struct pmbus_sensor *sensor)
818{
819 s64 b, val = (s16)sensor->data;
820 s32 m, R;
821
822 m = data->info->m[sensor->class];
823 b = data->info->b[sensor->class];
824 R = data->info->R[sensor->class];
825
826 if (m == 0)
827 return 0;
828
829 /* X = 1/m * (Y * 10^-R - b) */
830 R = -R;
831 /* scale result to milli-units for everything but fans */
832 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
833 R += 3;
834 b *= 1000;
835 }
836
837 /* scale result to micro-units for power sensors */
838 if (sensor->class == PSC_POWER) {
839 R += 3;
840 b *= 1000;
841 }
842
843 while (R > 0) {
844 val *= 10;
845 R--;
846 }
847 while (R < 0) {
848 val = div_s64(val + 5LL, 10L); /* round closest */
849 R++;
850 }
851
852 val = div_s64(val - b, m);
853 return val;
854}
855
856/*
857 * Convert VID sensor values to milli- or micro-units
858 * depending on sensor type.
859 */
860static s64 pmbus_reg2data_vid(struct pmbus_data *data,
861 struct pmbus_sensor *sensor)
862{
863 long val = sensor->data;
864 long rv = 0;
865
866 switch (data->info->vrm_version[sensor->page]) {
867 case vr11:
868 if (val >= 0x02 && val <= 0xb2)
869 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
870 break;
871 case vr12:
872 if (val >= 0x01)
873 rv = 250 + (val - 1) * 5;
874 break;
875 case vr13:
876 if (val >= 0x01)
877 rv = 500 + (val - 1) * 10;
878 break;
879 case imvp9:
880 if (val >= 0x01)
881 rv = 200 + (val - 1) * 10;
882 break;
883 case amd625mv:
884 if (val >= 0x0 && val <= 0xd8)
885 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
886 break;
887 }
888 return rv;
889}
890
891static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
892{
893 s64 val;
894
895 if (!sensor->convert)
896 return sensor->data;
897
898 switch (data->info->format[sensor->class]) {
899 case direct:
900 val = pmbus_reg2data_direct(data, sensor);
901 break;
902 case vid:
903 val = pmbus_reg2data_vid(data, sensor);
904 break;
905 case ieee754:
906 val = pmbus_reg2data_ieee754(data, sensor);
907 break;
908 case linear:
909 default:
910 val = pmbus_reg2data_linear(data, sensor);
911 break;
912 }
913 return val;
914}
915
916#define MAX_IEEE_MANTISSA (0x7ff * 1000)
917#define MIN_IEEE_MANTISSA (0x400 * 1000)
918
919static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
920 struct pmbus_sensor *sensor, long val)
921{
922 u16 exponent = (15 + 10);
923 long mantissa;
924 u16 sign = 0;
925
926 /* simple case */
927 if (val == 0)
928 return 0;
929
930 if (val < 0) {
931 sign = 0x8000;
932 val = -val;
933 }
934
935 /* Power is in uW. Convert to mW before converting. */
936 if (sensor->class == PSC_POWER)
937 val = DIV_ROUND_CLOSEST(val, 1000L);
938
939 /*
940 * For simplicity, convert fan data to milli-units
941 * before calculating the exponent.
942 */
943 if (sensor->class == PSC_FAN)
944 val = val * 1000;
945
946 /* Reduce large mantissa until it fits into 10 bit */
947 while (val > MAX_IEEE_MANTISSA && exponent < 30) {
948 exponent++;
949 val >>= 1;
950 }
951 /*
952 * Increase small mantissa to generate valid 'normal'
953 * number
954 */
955 while (val < MIN_IEEE_MANTISSA && exponent > 1) {
956 exponent--;
957 val <<= 1;
958 }
959
960 /* Convert mantissa from milli-units to units */
961 mantissa = DIV_ROUND_CLOSEST(val, 1000);
962
963 /*
964 * Ensure that the resulting number is within range.
965 * Valid range is 0x400..0x7ff, where bit 10 reflects
966 * the implied high bit in normalized ieee754 numbers.
967 * Set the range to 0x400..0x7ff to reflect this.
968 * The upper bit is then removed by the mask against
969 * 0x3ff in the final assignment.
970 */
971 if (mantissa > 0x7ff)
972 mantissa = 0x7ff;
973 else if (mantissa < 0x400)
974 mantissa = 0x400;
975
976 /* Convert to sign, 5 bit exponent, 10 bit mantissa */
977 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
978}
979
980#define MAX_LIN_MANTISSA (1023 * 1000)
981#define MIN_LIN_MANTISSA (511 * 1000)
982
983static u16 pmbus_data2reg_linear(struct pmbus_data *data,
984 struct pmbus_sensor *sensor, s64 val)
985{
986 s16 exponent = 0, mantissa;
987 bool negative = false;
988
989 /* simple case */
990 if (val == 0)
991 return 0;
992
993 if (sensor->class == PSC_VOLTAGE_OUT) {
994 /* LINEAR16 does not support negative voltages */
995 if (val < 0)
996 return 0;
997
998 /*
999 * For a static exponents, we don't have a choice
1000 * but to adjust the value to it.
1001 */
1002 if (data->exponent[sensor->page] < 0)
1003 val <<= -data->exponent[sensor->page];
1004 else
1005 val >>= data->exponent[sensor->page];
1006 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1007 return clamp_val(val, 0, 0xffff);
1008 }
1009
1010 if (val < 0) {
1011 negative = true;
1012 val = -val;
1013 }
1014
1015 /* Power is in uW. Convert to mW before converting. */
1016 if (sensor->class == PSC_POWER)
1017 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1018
1019 /*
1020 * For simplicity, convert fan data to milli-units
1021 * before calculating the exponent.
1022 */
1023 if (sensor->class == PSC_FAN)
1024 val = val * 1000LL;
1025
1026 /* Reduce large mantissa until it fits into 10 bit */
1027 while (val >= MAX_LIN_MANTISSA && exponent < 15) {
1028 exponent++;
1029 val >>= 1;
1030 }
1031 /* Increase small mantissa to improve precision */
1032 while (val < MIN_LIN_MANTISSA && exponent > -15) {
1033 exponent--;
1034 val <<= 1;
1035 }
1036
1037 /* Convert mantissa from milli-units to units */
1038 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
1039
1040 /* restore sign */
1041 if (negative)
1042 mantissa = -mantissa;
1043
1044 /* Convert to 5 bit exponent, 11 bit mantissa */
1045 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
1046}
1047
1048static u16 pmbus_data2reg_direct(struct pmbus_data *data,
1049 struct pmbus_sensor *sensor, s64 val)
1050{
1051 s64 b;
1052 s32 m, R;
1053
1054 m = data->info->m[sensor->class];
1055 b = data->info->b[sensor->class];
1056 R = data->info->R[sensor->class];
1057
1058 /* Power is in uW. Adjust R and b. */
1059 if (sensor->class == PSC_POWER) {
1060 R -= 3;
1061 b *= 1000;
1062 }
1063
1064 /* Calculate Y = (m * X + b) * 10^R */
1065 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1066 R -= 3; /* Adjust R and b for data in milli-units */
1067 b *= 1000;
1068 }
1069 val = val * m + b;
1070
1071 while (R > 0) {
1072 val *= 10;
1073 R--;
1074 }
1075 while (R < 0) {
1076 val = div_s64(val + 5LL, 10L); /* round closest */
1077 R++;
1078 }
1079
1080 return (u16)clamp_val(val, S16_MIN, S16_MAX);
1081}
1082
1083static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1084 struct pmbus_sensor *sensor, s64 val)
1085{
1086 val = clamp_val(val, 500, 1600);
1087
1088 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1089}
1090
1091static u16 pmbus_data2reg(struct pmbus_data *data,
1092 struct pmbus_sensor *sensor, s64 val)
1093{
1094 u16 regval;
1095
1096 if (!sensor->convert)
1097 return val;
1098
1099 switch (data->info->format[sensor->class]) {
1100 case direct:
1101 regval = pmbus_data2reg_direct(data, sensor, val);
1102 break;
1103 case vid:
1104 regval = pmbus_data2reg_vid(data, sensor, val);
1105 break;
1106 case ieee754:
1107 regval = pmbus_data2reg_ieee754(data, sensor, val);
1108 break;
1109 case linear:
1110 default:
1111 regval = pmbus_data2reg_linear(data, sensor, val);
1112 break;
1113 }
1114 return regval;
1115}
1116
1117/*
1118 * Return boolean calculated from converted data.
1119 * <index> defines a status register index and mask.
1120 * The mask is in the lower 8 bits, the register index is in bits 8..23.
1121 *
1122 * The associated pmbus_boolean structure contains optional pointers to two
1123 * sensor attributes. If specified, those attributes are compared against each
1124 * other to determine if a limit has been exceeded.
1125 *
1126 * If the sensor attribute pointers are NULL, the function returns true if
1127 * (status[reg] & mask) is true.
1128 *
1129 * If sensor attribute pointers are provided, a comparison against a specified
1130 * limit has to be performed to determine the boolean result.
1131 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1132 * sensor values referenced by sensor attribute pointers s1 and s2).
1133 *
1134 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1135 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1136 *
1137 * If a negative value is stored in any of the referenced registers, this value
1138 * reflects an error code which will be returned.
1139 */
1140static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1141 int index)
1142{
1143 struct pmbus_data *data = i2c_get_clientdata(client);
1144 struct pmbus_sensor *s1 = b->s1;
1145 struct pmbus_sensor *s2 = b->s2;
1146 u16 mask = pb_index_to_mask(index);
1147 u8 page = pb_index_to_page(index);
1148 u16 reg = pb_index_to_reg(index);
1149 int ret, status;
1150 u16 regval;
1151
1152 mutex_lock(&data->update_lock);
1153 status = pmbus_get_status(client, page, reg);
1154 if (status < 0) {
1155 ret = status;
1156 goto unlock;
1157 }
1158
1159 if (s1)
1160 pmbus_update_sensor_data(client, s1);
1161 if (s2)
1162 pmbus_update_sensor_data(client, s2);
1163
1164 regval = status & mask;
1165 if (regval) {
1166 if (data->revision >= PMBUS_REV_12) {
1167 ret = _pmbus_write_byte_data(client, page, reg, regval);
1168 if (ret)
1169 goto unlock;
1170 } else {
1171 pmbus_clear_fault_page(client, page);
1172 }
1173
1174 }
1175 if (s1 && s2) {
1176 s64 v1, v2;
1177
1178 if (s1->data < 0) {
1179 ret = s1->data;
1180 goto unlock;
1181 }
1182 if (s2->data < 0) {
1183 ret = s2->data;
1184 goto unlock;
1185 }
1186
1187 v1 = pmbus_reg2data(data, s1);
1188 v2 = pmbus_reg2data(data, s2);
1189 ret = !!(regval && v1 >= v2);
1190 } else {
1191 ret = !!regval;
1192 }
1193unlock:
1194 mutex_unlock(&data->update_lock);
1195 return ret;
1196}
1197
1198static ssize_t pmbus_show_boolean(struct device *dev,
1199 struct device_attribute *da, char *buf)
1200{
1201 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1202 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1203 struct i2c_client *client = to_i2c_client(dev->parent);
1204 int val;
1205
1206 val = pmbus_get_boolean(client, boolean, attr->index);
1207 if (val < 0)
1208 return val;
1209 return sysfs_emit(buf, "%d\n", val);
1210}
1211
1212static ssize_t pmbus_show_sensor(struct device *dev,
1213 struct device_attribute *devattr, char *buf)
1214{
1215 struct i2c_client *client = to_i2c_client(dev->parent);
1216 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1217 struct pmbus_data *data = i2c_get_clientdata(client);
1218 ssize_t ret;
1219
1220 mutex_lock(&data->update_lock);
1221 pmbus_update_sensor_data(client, sensor);
1222 if (sensor->data < 0)
1223 ret = sensor->data;
1224 else
1225 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1226 mutex_unlock(&data->update_lock);
1227 return ret;
1228}
1229
1230static ssize_t pmbus_set_sensor(struct device *dev,
1231 struct device_attribute *devattr,
1232 const char *buf, size_t count)
1233{
1234 struct i2c_client *client = to_i2c_client(dev->parent);
1235 struct pmbus_data *data = i2c_get_clientdata(client);
1236 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1237 ssize_t rv = count;
1238 s64 val;
1239 int ret;
1240 u16 regval;
1241
1242 if (kstrtos64(buf, 10, &val) < 0)
1243 return -EINVAL;
1244
1245 mutex_lock(&data->update_lock);
1246 regval = pmbus_data2reg(data, sensor, val);
1247 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1248 if (ret < 0)
1249 rv = ret;
1250 else
1251 sensor->data = -ENODATA;
1252 mutex_unlock(&data->update_lock);
1253 return rv;
1254}
1255
1256static ssize_t pmbus_show_label(struct device *dev,
1257 struct device_attribute *da, char *buf)
1258{
1259 struct pmbus_label *label = to_pmbus_label(da);
1260
1261 return sysfs_emit(buf, "%s\n", label->label);
1262}
1263
1264static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1265{
1266 if (data->num_attributes >= data->max_attributes - 1) {
1267 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1268 void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1269 new_max_attrs, sizeof(void *),
1270 GFP_KERNEL);
1271 if (!new_attrs)
1272 return -ENOMEM;
1273 data->group.attrs = new_attrs;
1274 data->max_attributes = new_max_attrs;
1275 }
1276
1277 data->group.attrs[data->num_attributes++] = attr;
1278 data->group.attrs[data->num_attributes] = NULL;
1279 return 0;
1280}
1281
1282static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1283 const char *name,
1284 umode_t mode,
1285 ssize_t (*show)(struct device *dev,
1286 struct device_attribute *attr,
1287 char *buf),
1288 ssize_t (*store)(struct device *dev,
1289 struct device_attribute *attr,
1290 const char *buf, size_t count))
1291{
1292 sysfs_attr_init(&dev_attr->attr);
1293 dev_attr->attr.name = name;
1294 dev_attr->attr.mode = mode;
1295 dev_attr->show = show;
1296 dev_attr->store = store;
1297}
1298
1299static void pmbus_attr_init(struct sensor_device_attribute *a,
1300 const char *name,
1301 umode_t mode,
1302 ssize_t (*show)(struct device *dev,
1303 struct device_attribute *attr,
1304 char *buf),
1305 ssize_t (*store)(struct device *dev,
1306 struct device_attribute *attr,
1307 const char *buf, size_t count),
1308 int idx)
1309{
1310 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1311 a->index = idx;
1312}
1313
1314static int pmbus_add_boolean(struct pmbus_data *data,
1315 const char *name, const char *type, int seq,
1316 struct pmbus_sensor *s1,
1317 struct pmbus_sensor *s2,
1318 u8 page, u16 reg, u16 mask)
1319{
1320 struct pmbus_boolean *boolean;
1321 struct sensor_device_attribute *a;
1322
1323 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1324 return -EINVAL;
1325
1326 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1327 if (!boolean)
1328 return -ENOMEM;
1329
1330 a = &boolean->attribute;
1331
1332 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1333 name, seq, type);
1334 boolean->s1 = s1;
1335 boolean->s2 = s2;
1336 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1337 pb_reg_to_index(page, reg, mask));
1338
1339 return pmbus_add_attribute(data, &a->dev_attr.attr);
1340}
1341
1342/* of thermal for pmbus temperature sensors */
1343struct pmbus_thermal_data {
1344 struct pmbus_data *pmbus_data;
1345 struct pmbus_sensor *sensor;
1346};
1347
1348static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1349{
1350 struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1351 struct pmbus_sensor *sensor = tdata->sensor;
1352 struct pmbus_data *pmbus_data = tdata->pmbus_data;
1353 struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1354 struct device *dev = pmbus_data->hwmon_dev;
1355 int ret = 0;
1356
1357 if (!dev) {
1358 /* May not even get to hwmon yet */
1359 *temp = 0;
1360 return 0;
1361 }
1362
1363 mutex_lock(&pmbus_data->update_lock);
1364 pmbus_update_sensor_data(client, sensor);
1365 if (sensor->data < 0)
1366 ret = sensor->data;
1367 else
1368 *temp = (int)pmbus_reg2data(pmbus_data, sensor);
1369 mutex_unlock(&pmbus_data->update_lock);
1370
1371 return ret;
1372}
1373
1374static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1375 .get_temp = pmbus_thermal_get_temp,
1376};
1377
1378static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1379 struct pmbus_sensor *sensor, int index)
1380{
1381 struct device *dev = pmbus_data->dev;
1382 struct pmbus_thermal_data *tdata;
1383 struct thermal_zone_device *tzd;
1384
1385 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1386 if (!tdata)
1387 return -ENOMEM;
1388
1389 tdata->sensor = sensor;
1390 tdata->pmbus_data = pmbus_data;
1391
1392 tzd = devm_thermal_of_zone_register(dev, index, tdata,
1393 &pmbus_thermal_ops);
1394 /*
1395 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1396 * so ignore that error but forward any other error.
1397 */
1398 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1399 return PTR_ERR(tzd);
1400
1401 return 0;
1402}
1403
1404static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1405 const char *name, const char *type,
1406 int seq, int page, int phase,
1407 int reg,
1408 enum pmbus_sensor_classes class,
1409 bool update, bool readonly,
1410 bool convert)
1411{
1412 struct pmbus_sensor *sensor;
1413 struct device_attribute *a;
1414
1415 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1416 if (!sensor)
1417 return NULL;
1418 a = &sensor->attribute;
1419
1420 if (type)
1421 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1422 name, seq, type);
1423 else
1424 snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1425 name, seq);
1426
1427 if (data->flags & PMBUS_WRITE_PROTECTED)
1428 readonly = true;
1429
1430 sensor->page = page;
1431 sensor->phase = phase;
1432 sensor->reg = reg;
1433 sensor->class = class;
1434 sensor->update = update;
1435 sensor->convert = convert;
1436 sensor->data = -ENODATA;
1437 pmbus_dev_attr_init(a, sensor->name,
1438 readonly ? 0444 : 0644,
1439 pmbus_show_sensor, pmbus_set_sensor);
1440
1441 if (pmbus_add_attribute(data, &a->attr))
1442 return NULL;
1443
1444 sensor->next = data->sensors;
1445 data->sensors = sensor;
1446
1447 /* temperature sensors with _input values are registered with thermal */
1448 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1449 pmbus_thermal_add_sensor(data, sensor, seq);
1450
1451 return sensor;
1452}
1453
1454static int pmbus_add_label(struct pmbus_data *data,
1455 const char *name, int seq,
1456 const char *lstring, int index, int phase)
1457{
1458 struct pmbus_label *label;
1459 struct device_attribute *a;
1460
1461 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1462 if (!label)
1463 return -ENOMEM;
1464
1465 a = &label->attribute;
1466
1467 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1468 if (!index) {
1469 if (phase == 0xff)
1470 strncpy(label->label, lstring,
1471 sizeof(label->label) - 1);
1472 else
1473 snprintf(label->label, sizeof(label->label), "%s.%d",
1474 lstring, phase);
1475 } else {
1476 if (phase == 0xff)
1477 snprintf(label->label, sizeof(label->label), "%s%d",
1478 lstring, index);
1479 else
1480 snprintf(label->label, sizeof(label->label), "%s%d.%d",
1481 lstring, index, phase);
1482 }
1483
1484 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1485 return pmbus_add_attribute(data, &a->attr);
1486}
1487
1488/*
1489 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1490 */
1491
1492/*
1493 * The pmbus_limit_attr structure describes a single limit attribute
1494 * and its associated alarm attribute.
1495 */
1496struct pmbus_limit_attr {
1497 u16 reg; /* Limit register */
1498 u16 sbit; /* Alarm attribute status bit */
1499 bool update; /* True if register needs updates */
1500 bool low; /* True if low limit; for limits with compare
1501 functions only */
1502 const char *attr; /* Attribute name */
1503 const char *alarm; /* Alarm attribute name */
1504};
1505
1506/*
1507 * The pmbus_sensor_attr structure describes one sensor attribute. This
1508 * description includes a reference to the associated limit attributes.
1509 */
1510struct pmbus_sensor_attr {
1511 u16 reg; /* sensor register */
1512 u16 gbit; /* generic status bit */
1513 u8 nlimit; /* # of limit registers */
1514 enum pmbus_sensor_classes class;/* sensor class */
1515 const char *label; /* sensor label */
1516 bool paged; /* true if paged sensor */
1517 bool update; /* true if update needed */
1518 bool compare; /* true if compare function needed */
1519 u32 func; /* sensor mask */
1520 u32 sfunc; /* sensor status mask */
1521 int sreg; /* status register */
1522 const struct pmbus_limit_attr *limit;/* limit registers */
1523};
1524
1525/*
1526 * Add a set of limit attributes and, if supported, the associated
1527 * alarm attributes.
1528 * returns 0 if no alarm register found, 1 if an alarm register was found,
1529 * < 0 on errors.
1530 */
1531static int pmbus_add_limit_attrs(struct i2c_client *client,
1532 struct pmbus_data *data,
1533 const struct pmbus_driver_info *info,
1534 const char *name, int index, int page,
1535 struct pmbus_sensor *base,
1536 const struct pmbus_sensor_attr *attr)
1537{
1538 const struct pmbus_limit_attr *l = attr->limit;
1539 int nlimit = attr->nlimit;
1540 int have_alarm = 0;
1541 int i, ret;
1542 struct pmbus_sensor *curr;
1543
1544 for (i = 0; i < nlimit; i++) {
1545 if (pmbus_check_word_register(client, page, l->reg)) {
1546 curr = pmbus_add_sensor(data, name, l->attr, index,
1547 page, 0xff, l->reg, attr->class,
1548 attr->update || l->update,
1549 false, true);
1550 if (!curr)
1551 return -ENOMEM;
1552 if (l->sbit && (info->func[page] & attr->sfunc)) {
1553 ret = pmbus_add_boolean(data, name,
1554 l->alarm, index,
1555 attr->compare ? l->low ? curr : base
1556 : NULL,
1557 attr->compare ? l->low ? base : curr
1558 : NULL,
1559 page, attr->sreg, l->sbit);
1560 if (ret)
1561 return ret;
1562 have_alarm = 1;
1563 }
1564 }
1565 l++;
1566 }
1567 return have_alarm;
1568}
1569
1570static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1571 struct pmbus_data *data,
1572 const struct pmbus_driver_info *info,
1573 const char *name,
1574 int index, int page, int phase,
1575 const struct pmbus_sensor_attr *attr,
1576 bool paged)
1577{
1578 struct pmbus_sensor *base;
1579 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1580 int ret;
1581
1582 if (attr->label) {
1583 ret = pmbus_add_label(data, name, index, attr->label,
1584 paged ? page + 1 : 0, phase);
1585 if (ret)
1586 return ret;
1587 }
1588 base = pmbus_add_sensor(data, name, "input", index, page, phase,
1589 attr->reg, attr->class, true, true, true);
1590 if (!base)
1591 return -ENOMEM;
1592 /* No limit and alarm attributes for phase specific sensors */
1593 if (attr->sfunc && phase == 0xff) {
1594 ret = pmbus_add_limit_attrs(client, data, info, name,
1595 index, page, base, attr);
1596 if (ret < 0)
1597 return ret;
1598 /*
1599 * Add generic alarm attribute only if there are no individual
1600 * alarm attributes, if there is a global alarm bit, and if
1601 * the generic status register (word or byte, depending on
1602 * which global bit is set) for this page is accessible.
1603 */
1604 if (!ret && attr->gbit &&
1605 (!upper || data->has_status_word) &&
1606 pmbus_check_status_register(client, page)) {
1607 ret = pmbus_add_boolean(data, name, "alarm", index,
1608 NULL, NULL,
1609 page, PMBUS_STATUS_WORD,
1610 attr->gbit);
1611 if (ret)
1612 return ret;
1613 }
1614 }
1615 return 0;
1616}
1617
1618static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1619 const struct pmbus_sensor_attr *attr)
1620{
1621 int p;
1622
1623 if (attr->paged)
1624 return true;
1625
1626 /*
1627 * Some attributes may be present on more than one page despite
1628 * not being marked with the paged attribute. If that is the case,
1629 * then treat the sensor as being paged and add the page suffix to the
1630 * attribute name.
1631 * We don't just add the paged attribute to all such attributes, in
1632 * order to maintain the un-suffixed labels in the case where the
1633 * attribute is only on page 0.
1634 */
1635 for (p = 1; p < info->pages; p++) {
1636 if (info->func[p] & attr->func)
1637 return true;
1638 }
1639 return false;
1640}
1641
1642static int pmbus_add_sensor_attrs(struct i2c_client *client,
1643 struct pmbus_data *data,
1644 const char *name,
1645 const struct pmbus_sensor_attr *attrs,
1646 int nattrs)
1647{
1648 const struct pmbus_driver_info *info = data->info;
1649 int index, i;
1650 int ret;
1651
1652 index = 1;
1653 for (i = 0; i < nattrs; i++) {
1654 int page, pages;
1655 bool paged = pmbus_sensor_is_paged(info, attrs);
1656
1657 pages = paged ? info->pages : 1;
1658 for (page = 0; page < pages; page++) {
1659 if (info->func[page] & attrs->func) {
1660 ret = pmbus_add_sensor_attrs_one(client, data, info,
1661 name, index, page,
1662 0xff, attrs, paged);
1663 if (ret)
1664 return ret;
1665 index++;
1666 }
1667 if (info->phases[page]) {
1668 int phase;
1669
1670 for (phase = 0; phase < info->phases[page];
1671 phase++) {
1672 if (!(info->pfunc[phase] & attrs->func))
1673 continue;
1674 ret = pmbus_add_sensor_attrs_one(client,
1675 data, info, name, index, page,
1676 phase, attrs, paged);
1677 if (ret)
1678 return ret;
1679 index++;
1680 }
1681 }
1682 }
1683 attrs++;
1684 }
1685 return 0;
1686}
1687
1688static const struct pmbus_limit_attr vin_limit_attrs[] = {
1689 {
1690 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1691 .attr = "min",
1692 .alarm = "min_alarm",
1693 .sbit = PB_VOLTAGE_UV_WARNING,
1694 }, {
1695 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1696 .attr = "lcrit",
1697 .alarm = "lcrit_alarm",
1698 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1699 }, {
1700 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1701 .attr = "max",
1702 .alarm = "max_alarm",
1703 .sbit = PB_VOLTAGE_OV_WARNING,
1704 }, {
1705 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1706 .attr = "crit",
1707 .alarm = "crit_alarm",
1708 .sbit = PB_VOLTAGE_OV_FAULT,
1709 }, {
1710 .reg = PMBUS_VIRT_READ_VIN_AVG,
1711 .update = true,
1712 .attr = "average",
1713 }, {
1714 .reg = PMBUS_VIRT_READ_VIN_MIN,
1715 .update = true,
1716 .attr = "lowest",
1717 }, {
1718 .reg = PMBUS_VIRT_READ_VIN_MAX,
1719 .update = true,
1720 .attr = "highest",
1721 }, {
1722 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1723 .attr = "reset_history",
1724 }, {
1725 .reg = PMBUS_MFR_VIN_MIN,
1726 .attr = "rated_min",
1727 }, {
1728 .reg = PMBUS_MFR_VIN_MAX,
1729 .attr = "rated_max",
1730 },
1731};
1732
1733static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1734 {
1735 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1736 .attr = "min",
1737 .alarm = "min_alarm",
1738 .sbit = PB_VOLTAGE_UV_WARNING,
1739 }, {
1740 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1741 .attr = "lcrit",
1742 .alarm = "lcrit_alarm",
1743 .sbit = PB_VOLTAGE_UV_FAULT,
1744 }, {
1745 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1746 .attr = "max",
1747 .alarm = "max_alarm",
1748 .sbit = PB_VOLTAGE_OV_WARNING,
1749 }, {
1750 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1751 .attr = "crit",
1752 .alarm = "crit_alarm",
1753 .sbit = PB_VOLTAGE_OV_FAULT,
1754 }
1755};
1756
1757static const struct pmbus_limit_attr vout_limit_attrs[] = {
1758 {
1759 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1760 .attr = "min",
1761 .alarm = "min_alarm",
1762 .sbit = PB_VOLTAGE_UV_WARNING,
1763 }, {
1764 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1765 .attr = "lcrit",
1766 .alarm = "lcrit_alarm",
1767 .sbit = PB_VOLTAGE_UV_FAULT,
1768 }, {
1769 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1770 .attr = "max",
1771 .alarm = "max_alarm",
1772 .sbit = PB_VOLTAGE_OV_WARNING,
1773 }, {
1774 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1775 .attr = "crit",
1776 .alarm = "crit_alarm",
1777 .sbit = PB_VOLTAGE_OV_FAULT,
1778 }, {
1779 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1780 .update = true,
1781 .attr = "average",
1782 }, {
1783 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1784 .update = true,
1785 .attr = "lowest",
1786 }, {
1787 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1788 .update = true,
1789 .attr = "highest",
1790 }, {
1791 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1792 .attr = "reset_history",
1793 }, {
1794 .reg = PMBUS_MFR_VOUT_MIN,
1795 .attr = "rated_min",
1796 }, {
1797 .reg = PMBUS_MFR_VOUT_MAX,
1798 .attr = "rated_max",
1799 },
1800};
1801
1802static const struct pmbus_sensor_attr voltage_attributes[] = {
1803 {
1804 .reg = PMBUS_READ_VIN,
1805 .class = PSC_VOLTAGE_IN,
1806 .label = "vin",
1807 .func = PMBUS_HAVE_VIN,
1808 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1809 .sreg = PMBUS_STATUS_INPUT,
1810 .gbit = PB_STATUS_VIN_UV,
1811 .limit = vin_limit_attrs,
1812 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1813 }, {
1814 .reg = PMBUS_VIRT_READ_VMON,
1815 .class = PSC_VOLTAGE_IN,
1816 .label = "vmon",
1817 .func = PMBUS_HAVE_VMON,
1818 .sfunc = PMBUS_HAVE_STATUS_VMON,
1819 .sreg = PMBUS_VIRT_STATUS_VMON,
1820 .limit = vmon_limit_attrs,
1821 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1822 }, {
1823 .reg = PMBUS_READ_VCAP,
1824 .class = PSC_VOLTAGE_IN,
1825 .label = "vcap",
1826 .func = PMBUS_HAVE_VCAP,
1827 }, {
1828 .reg = PMBUS_READ_VOUT,
1829 .class = PSC_VOLTAGE_OUT,
1830 .label = "vout",
1831 .paged = true,
1832 .func = PMBUS_HAVE_VOUT,
1833 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1834 .sreg = PMBUS_STATUS_VOUT,
1835 .gbit = PB_STATUS_VOUT_OV,
1836 .limit = vout_limit_attrs,
1837 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1838 }
1839};
1840
1841/* Current attributes */
1842
1843static const struct pmbus_limit_attr iin_limit_attrs[] = {
1844 {
1845 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1846 .attr = "max",
1847 .alarm = "max_alarm",
1848 .sbit = PB_IIN_OC_WARNING,
1849 }, {
1850 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1851 .attr = "crit",
1852 .alarm = "crit_alarm",
1853 .sbit = PB_IIN_OC_FAULT,
1854 }, {
1855 .reg = PMBUS_VIRT_READ_IIN_AVG,
1856 .update = true,
1857 .attr = "average",
1858 }, {
1859 .reg = PMBUS_VIRT_READ_IIN_MIN,
1860 .update = true,
1861 .attr = "lowest",
1862 }, {
1863 .reg = PMBUS_VIRT_READ_IIN_MAX,
1864 .update = true,
1865 .attr = "highest",
1866 }, {
1867 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1868 .attr = "reset_history",
1869 }, {
1870 .reg = PMBUS_MFR_IIN_MAX,
1871 .attr = "rated_max",
1872 },
1873};
1874
1875static const struct pmbus_limit_attr iout_limit_attrs[] = {
1876 {
1877 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1878 .attr = "max",
1879 .alarm = "max_alarm",
1880 .sbit = PB_IOUT_OC_WARNING,
1881 }, {
1882 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1883 .attr = "lcrit",
1884 .alarm = "lcrit_alarm",
1885 .sbit = PB_IOUT_UC_FAULT,
1886 }, {
1887 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1888 .attr = "crit",
1889 .alarm = "crit_alarm",
1890 .sbit = PB_IOUT_OC_FAULT,
1891 }, {
1892 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1893 .update = true,
1894 .attr = "average",
1895 }, {
1896 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1897 .update = true,
1898 .attr = "lowest",
1899 }, {
1900 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1901 .update = true,
1902 .attr = "highest",
1903 }, {
1904 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1905 .attr = "reset_history",
1906 }, {
1907 .reg = PMBUS_MFR_IOUT_MAX,
1908 .attr = "rated_max",
1909 },
1910};
1911
1912static const struct pmbus_sensor_attr current_attributes[] = {
1913 {
1914 .reg = PMBUS_READ_IIN,
1915 .class = PSC_CURRENT_IN,
1916 .label = "iin",
1917 .func = PMBUS_HAVE_IIN,
1918 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1919 .sreg = PMBUS_STATUS_INPUT,
1920 .gbit = PB_STATUS_INPUT,
1921 .limit = iin_limit_attrs,
1922 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1923 }, {
1924 .reg = PMBUS_READ_IOUT,
1925 .class = PSC_CURRENT_OUT,
1926 .label = "iout",
1927 .paged = true,
1928 .func = PMBUS_HAVE_IOUT,
1929 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1930 .sreg = PMBUS_STATUS_IOUT,
1931 .gbit = PB_STATUS_IOUT_OC,
1932 .limit = iout_limit_attrs,
1933 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1934 }
1935};
1936
1937/* Power attributes */
1938
1939static const struct pmbus_limit_attr pin_limit_attrs[] = {
1940 {
1941 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1942 .attr = "max",
1943 .alarm = "alarm",
1944 .sbit = PB_PIN_OP_WARNING,
1945 }, {
1946 .reg = PMBUS_VIRT_READ_PIN_AVG,
1947 .update = true,
1948 .attr = "average",
1949 }, {
1950 .reg = PMBUS_VIRT_READ_PIN_MIN,
1951 .update = true,
1952 .attr = "input_lowest",
1953 }, {
1954 .reg = PMBUS_VIRT_READ_PIN_MAX,
1955 .update = true,
1956 .attr = "input_highest",
1957 }, {
1958 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1959 .attr = "reset_history",
1960 }, {
1961 .reg = PMBUS_MFR_PIN_MAX,
1962 .attr = "rated_max",
1963 },
1964};
1965
1966static const struct pmbus_limit_attr pout_limit_attrs[] = {
1967 {
1968 .reg = PMBUS_POUT_MAX,
1969 .attr = "cap",
1970 .alarm = "cap_alarm",
1971 .sbit = PB_POWER_LIMITING,
1972 }, {
1973 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1974 .attr = "max",
1975 .alarm = "max_alarm",
1976 .sbit = PB_POUT_OP_WARNING,
1977 }, {
1978 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1979 .attr = "crit",
1980 .alarm = "crit_alarm",
1981 .sbit = PB_POUT_OP_FAULT,
1982 }, {
1983 .reg = PMBUS_VIRT_READ_POUT_AVG,
1984 .update = true,
1985 .attr = "average",
1986 }, {
1987 .reg = PMBUS_VIRT_READ_POUT_MIN,
1988 .update = true,
1989 .attr = "input_lowest",
1990 }, {
1991 .reg = PMBUS_VIRT_READ_POUT_MAX,
1992 .update = true,
1993 .attr = "input_highest",
1994 }, {
1995 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1996 .attr = "reset_history",
1997 }, {
1998 .reg = PMBUS_MFR_POUT_MAX,
1999 .attr = "rated_max",
2000 },
2001};
2002
2003static const struct pmbus_sensor_attr power_attributes[] = {
2004 {
2005 .reg = PMBUS_READ_PIN,
2006 .class = PSC_POWER,
2007 .label = "pin",
2008 .func = PMBUS_HAVE_PIN,
2009 .sfunc = PMBUS_HAVE_STATUS_INPUT,
2010 .sreg = PMBUS_STATUS_INPUT,
2011 .gbit = PB_STATUS_INPUT,
2012 .limit = pin_limit_attrs,
2013 .nlimit = ARRAY_SIZE(pin_limit_attrs),
2014 }, {
2015 .reg = PMBUS_READ_POUT,
2016 .class = PSC_POWER,
2017 .label = "pout",
2018 .paged = true,
2019 .func = PMBUS_HAVE_POUT,
2020 .sfunc = PMBUS_HAVE_STATUS_IOUT,
2021 .sreg = PMBUS_STATUS_IOUT,
2022 .limit = pout_limit_attrs,
2023 .nlimit = ARRAY_SIZE(pout_limit_attrs),
2024 }
2025};
2026
2027/* Temperature atributes */
2028
2029static const struct pmbus_limit_attr temp_limit_attrs[] = {
2030 {
2031 .reg = PMBUS_UT_WARN_LIMIT,
2032 .low = true,
2033 .attr = "min",
2034 .alarm = "min_alarm",
2035 .sbit = PB_TEMP_UT_WARNING,
2036 }, {
2037 .reg = PMBUS_UT_FAULT_LIMIT,
2038 .low = true,
2039 .attr = "lcrit",
2040 .alarm = "lcrit_alarm",
2041 .sbit = PB_TEMP_UT_FAULT,
2042 }, {
2043 .reg = PMBUS_OT_WARN_LIMIT,
2044 .attr = "max",
2045 .alarm = "max_alarm",
2046 .sbit = PB_TEMP_OT_WARNING,
2047 }, {
2048 .reg = PMBUS_OT_FAULT_LIMIT,
2049 .attr = "crit",
2050 .alarm = "crit_alarm",
2051 .sbit = PB_TEMP_OT_FAULT,
2052 }, {
2053 .reg = PMBUS_VIRT_READ_TEMP_MIN,
2054 .attr = "lowest",
2055 }, {
2056 .reg = PMBUS_VIRT_READ_TEMP_AVG,
2057 .attr = "average",
2058 }, {
2059 .reg = PMBUS_VIRT_READ_TEMP_MAX,
2060 .attr = "highest",
2061 }, {
2062 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2063 .attr = "reset_history",
2064 }, {
2065 .reg = PMBUS_MFR_MAX_TEMP_1,
2066 .attr = "rated_max",
2067 },
2068};
2069
2070static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2071 {
2072 .reg = PMBUS_UT_WARN_LIMIT,
2073 .low = true,
2074 .attr = "min",
2075 .alarm = "min_alarm",
2076 .sbit = PB_TEMP_UT_WARNING,
2077 }, {
2078 .reg = PMBUS_UT_FAULT_LIMIT,
2079 .low = true,
2080 .attr = "lcrit",
2081 .alarm = "lcrit_alarm",
2082 .sbit = PB_TEMP_UT_FAULT,
2083 }, {
2084 .reg = PMBUS_OT_WARN_LIMIT,
2085 .attr = "max",
2086 .alarm = "max_alarm",
2087 .sbit = PB_TEMP_OT_WARNING,
2088 }, {
2089 .reg = PMBUS_OT_FAULT_LIMIT,
2090 .attr = "crit",
2091 .alarm = "crit_alarm",
2092 .sbit = PB_TEMP_OT_FAULT,
2093 }, {
2094 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
2095 .attr = "lowest",
2096 }, {
2097 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
2098 .attr = "average",
2099 }, {
2100 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
2101 .attr = "highest",
2102 }, {
2103 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2104 .attr = "reset_history",
2105 }, {
2106 .reg = PMBUS_MFR_MAX_TEMP_2,
2107 .attr = "rated_max",
2108 },
2109};
2110
2111static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2112 {
2113 .reg = PMBUS_UT_WARN_LIMIT,
2114 .low = true,
2115 .attr = "min",
2116 .alarm = "min_alarm",
2117 .sbit = PB_TEMP_UT_WARNING,
2118 }, {
2119 .reg = PMBUS_UT_FAULT_LIMIT,
2120 .low = true,
2121 .attr = "lcrit",
2122 .alarm = "lcrit_alarm",
2123 .sbit = PB_TEMP_UT_FAULT,
2124 }, {
2125 .reg = PMBUS_OT_WARN_LIMIT,
2126 .attr = "max",
2127 .alarm = "max_alarm",
2128 .sbit = PB_TEMP_OT_WARNING,
2129 }, {
2130 .reg = PMBUS_OT_FAULT_LIMIT,
2131 .attr = "crit",
2132 .alarm = "crit_alarm",
2133 .sbit = PB_TEMP_OT_FAULT,
2134 }, {
2135 .reg = PMBUS_MFR_MAX_TEMP_3,
2136 .attr = "rated_max",
2137 },
2138};
2139
2140static const struct pmbus_sensor_attr temp_attributes[] = {
2141 {
2142 .reg = PMBUS_READ_TEMPERATURE_1,
2143 .class = PSC_TEMPERATURE,
2144 .paged = true,
2145 .update = true,
2146 .compare = true,
2147 .func = PMBUS_HAVE_TEMP,
2148 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2149 .sreg = PMBUS_STATUS_TEMPERATURE,
2150 .gbit = PB_STATUS_TEMPERATURE,
2151 .limit = temp_limit_attrs,
2152 .nlimit = ARRAY_SIZE(temp_limit_attrs),
2153 }, {
2154 .reg = PMBUS_READ_TEMPERATURE_2,
2155 .class = PSC_TEMPERATURE,
2156 .paged = true,
2157 .update = true,
2158 .compare = true,
2159 .func = PMBUS_HAVE_TEMP2,
2160 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2161 .sreg = PMBUS_STATUS_TEMPERATURE,
2162 .gbit = PB_STATUS_TEMPERATURE,
2163 .limit = temp_limit_attrs2,
2164 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
2165 }, {
2166 .reg = PMBUS_READ_TEMPERATURE_3,
2167 .class = PSC_TEMPERATURE,
2168 .paged = true,
2169 .update = true,
2170 .compare = true,
2171 .func = PMBUS_HAVE_TEMP3,
2172 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2173 .sreg = PMBUS_STATUS_TEMPERATURE,
2174 .gbit = PB_STATUS_TEMPERATURE,
2175 .limit = temp_limit_attrs3,
2176 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
2177 }
2178};
2179
2180static const int pmbus_fan_registers[] = {
2181 PMBUS_READ_FAN_SPEED_1,
2182 PMBUS_READ_FAN_SPEED_2,
2183 PMBUS_READ_FAN_SPEED_3,
2184 PMBUS_READ_FAN_SPEED_4
2185};
2186
2187static const int pmbus_fan_status_registers[] = {
2188 PMBUS_STATUS_FAN_12,
2189 PMBUS_STATUS_FAN_12,
2190 PMBUS_STATUS_FAN_34,
2191 PMBUS_STATUS_FAN_34
2192};
2193
2194static const u32 pmbus_fan_flags[] = {
2195 PMBUS_HAVE_FAN12,
2196 PMBUS_HAVE_FAN12,
2197 PMBUS_HAVE_FAN34,
2198 PMBUS_HAVE_FAN34
2199};
2200
2201static const u32 pmbus_fan_status_flags[] = {
2202 PMBUS_HAVE_STATUS_FAN12,
2203 PMBUS_HAVE_STATUS_FAN12,
2204 PMBUS_HAVE_STATUS_FAN34,
2205 PMBUS_HAVE_STATUS_FAN34
2206};
2207
2208/* Fans */
2209
2210/* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
2211static int pmbus_add_fan_ctrl(struct i2c_client *client,
2212 struct pmbus_data *data, int index, int page, int id,
2213 u8 config)
2214{
2215 struct pmbus_sensor *sensor;
2216
2217 sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2218 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2219 false, false, true);
2220
2221 if (!sensor)
2222 return -ENOMEM;
2223
2224 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2225 (data->info->func[page] & PMBUS_HAVE_PWM34)))
2226 return 0;
2227
2228 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2229 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2230 false, false, true);
2231
2232 if (!sensor)
2233 return -ENOMEM;
2234
2235 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2236 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2237 true, false, false);
2238
2239 if (!sensor)
2240 return -ENOMEM;
2241
2242 return 0;
2243}
2244
2245static int pmbus_add_fan_attributes(struct i2c_client *client,
2246 struct pmbus_data *data)
2247{
2248 const struct pmbus_driver_info *info = data->info;
2249 int index = 1;
2250 int page;
2251 int ret;
2252
2253 for (page = 0; page < info->pages; page++) {
2254 int f;
2255
2256 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2257 int regval;
2258
2259 if (!(info->func[page] & pmbus_fan_flags[f]))
2260 break;
2261
2262 if (!pmbus_check_word_register(client, page,
2263 pmbus_fan_registers[f]))
2264 break;
2265
2266 /*
2267 * Skip fan if not installed.
2268 * Each fan configuration register covers multiple fans,
2269 * so we have to do some magic.
2270 */
2271 regval = _pmbus_read_byte_data(client, page,
2272 pmbus_fan_config_registers[f]);
2273 if (regval < 0 ||
2274 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2275 continue;
2276
2277 if (pmbus_add_sensor(data, "fan", "input", index,
2278 page, 0xff, pmbus_fan_registers[f],
2279 PSC_FAN, true, true, true) == NULL)
2280 return -ENOMEM;
2281
2282 /* Fan control */
2283 if (pmbus_check_word_register(client, page,
2284 pmbus_fan_command_registers[f])) {
2285 ret = pmbus_add_fan_ctrl(client, data, index,
2286 page, f, regval);
2287 if (ret < 0)
2288 return ret;
2289 }
2290
2291 /*
2292 * Each fan status register covers multiple fans,
2293 * so we have to do some magic.
2294 */
2295 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2296 pmbus_check_byte_register(client,
2297 page, pmbus_fan_status_registers[f])) {
2298 int reg;
2299
2300 if (f > 1) /* fan 3, 4 */
2301 reg = PMBUS_STATUS_FAN_34;
2302 else
2303 reg = PMBUS_STATUS_FAN_12;
2304 ret = pmbus_add_boolean(data, "fan",
2305 "alarm", index, NULL, NULL, page, reg,
2306 PB_FAN_FAN1_WARNING >> (f & 1));
2307 if (ret)
2308 return ret;
2309 ret = pmbus_add_boolean(data, "fan",
2310 "fault", index, NULL, NULL, page, reg,
2311 PB_FAN_FAN1_FAULT >> (f & 1));
2312 if (ret)
2313 return ret;
2314 }
2315 index++;
2316 }
2317 }
2318 return 0;
2319}
2320
2321struct pmbus_samples_attr {
2322 int reg;
2323 char *name;
2324};
2325
2326struct pmbus_samples_reg {
2327 int page;
2328 struct pmbus_samples_attr *attr;
2329 struct device_attribute dev_attr;
2330};
2331
2332static struct pmbus_samples_attr pmbus_samples_registers[] = {
2333 {
2334 .reg = PMBUS_VIRT_SAMPLES,
2335 .name = "samples",
2336 }, {
2337 .reg = PMBUS_VIRT_IN_SAMPLES,
2338 .name = "in_samples",
2339 }, {
2340 .reg = PMBUS_VIRT_CURR_SAMPLES,
2341 .name = "curr_samples",
2342 }, {
2343 .reg = PMBUS_VIRT_POWER_SAMPLES,
2344 .name = "power_samples",
2345 }, {
2346 .reg = PMBUS_VIRT_TEMP_SAMPLES,
2347 .name = "temp_samples",
2348 }
2349};
2350
2351#define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2352
2353static ssize_t pmbus_show_samples(struct device *dev,
2354 struct device_attribute *devattr, char *buf)
2355{
2356 int val;
2357 struct i2c_client *client = to_i2c_client(dev->parent);
2358 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2359 struct pmbus_data *data = i2c_get_clientdata(client);
2360
2361 mutex_lock(&data->update_lock);
2362 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2363 mutex_unlock(&data->update_lock);
2364 if (val < 0)
2365 return val;
2366
2367 return sysfs_emit(buf, "%d\n", val);
2368}
2369
2370static ssize_t pmbus_set_samples(struct device *dev,
2371 struct device_attribute *devattr,
2372 const char *buf, size_t count)
2373{
2374 int ret;
2375 long val;
2376 struct i2c_client *client = to_i2c_client(dev->parent);
2377 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2378 struct pmbus_data *data = i2c_get_clientdata(client);
2379
2380 if (kstrtol(buf, 0, &val) < 0)
2381 return -EINVAL;
2382
2383 mutex_lock(&data->update_lock);
2384 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2385 mutex_unlock(&data->update_lock);
2386
2387 return ret ? : count;
2388}
2389
2390static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2391 struct pmbus_samples_attr *attr)
2392{
2393 struct pmbus_samples_reg *reg;
2394
2395 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2396 if (!reg)
2397 return -ENOMEM;
2398
2399 reg->attr = attr;
2400 reg->page = page;
2401
2402 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644,
2403 pmbus_show_samples, pmbus_set_samples);
2404
2405 return pmbus_add_attribute(data, ®->dev_attr.attr);
2406}
2407
2408static int pmbus_add_samples_attributes(struct i2c_client *client,
2409 struct pmbus_data *data)
2410{
2411 const struct pmbus_driver_info *info = data->info;
2412 int s;
2413
2414 if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2415 return 0;
2416
2417 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2418 struct pmbus_samples_attr *attr;
2419 int ret;
2420
2421 attr = &pmbus_samples_registers[s];
2422 if (!pmbus_check_word_register(client, 0, attr->reg))
2423 continue;
2424
2425 ret = pmbus_add_samples_attr(data, 0, attr);
2426 if (ret)
2427 return ret;
2428 }
2429
2430 return 0;
2431}
2432
2433static int pmbus_find_attributes(struct i2c_client *client,
2434 struct pmbus_data *data)
2435{
2436 int ret;
2437
2438 /* Voltage sensors */
2439 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2440 ARRAY_SIZE(voltage_attributes));
2441 if (ret)
2442 return ret;
2443
2444 /* Current sensors */
2445 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2446 ARRAY_SIZE(current_attributes));
2447 if (ret)
2448 return ret;
2449
2450 /* Power sensors */
2451 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2452 ARRAY_SIZE(power_attributes));
2453 if (ret)
2454 return ret;
2455
2456 /* Temperature sensors */
2457 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2458 ARRAY_SIZE(temp_attributes));
2459 if (ret)
2460 return ret;
2461
2462 /* Fans */
2463 ret = pmbus_add_fan_attributes(client, data);
2464 if (ret)
2465 return ret;
2466
2467 ret = pmbus_add_samples_attributes(client, data);
2468 return ret;
2469}
2470
2471/*
2472 * The pmbus_class_attr_map structure maps one sensor class to
2473 * it's corresponding sensor attributes array.
2474 */
2475struct pmbus_class_attr_map {
2476 enum pmbus_sensor_classes class;
2477 int nattr;
2478 const struct pmbus_sensor_attr *attr;
2479};
2480
2481static const struct pmbus_class_attr_map class_attr_map[] = {
2482 {
2483 .class = PSC_VOLTAGE_IN,
2484 .attr = voltage_attributes,
2485 .nattr = ARRAY_SIZE(voltage_attributes),
2486 }, {
2487 .class = PSC_VOLTAGE_OUT,
2488 .attr = voltage_attributes,
2489 .nattr = ARRAY_SIZE(voltage_attributes),
2490 }, {
2491 .class = PSC_CURRENT_IN,
2492 .attr = current_attributes,
2493 .nattr = ARRAY_SIZE(current_attributes),
2494 }, {
2495 .class = PSC_CURRENT_OUT,
2496 .attr = current_attributes,
2497 .nattr = ARRAY_SIZE(current_attributes),
2498 }, {
2499 .class = PSC_POWER,
2500 .attr = power_attributes,
2501 .nattr = ARRAY_SIZE(power_attributes),
2502 }, {
2503 .class = PSC_TEMPERATURE,
2504 .attr = temp_attributes,
2505 .nattr = ARRAY_SIZE(temp_attributes),
2506 }
2507};
2508
2509/*
2510 * Read the coefficients for direct mode.
2511 */
2512static int pmbus_read_coefficients(struct i2c_client *client,
2513 struct pmbus_driver_info *info,
2514 const struct pmbus_sensor_attr *attr)
2515{
2516 int rv;
2517 union i2c_smbus_data data;
2518 enum pmbus_sensor_classes class = attr->class;
2519 s8 R;
2520 s16 m, b;
2521
2522 data.block[0] = 2;
2523 data.block[1] = attr->reg;
2524 data.block[2] = 0x01;
2525
2526 pmbus_wait(client);
2527 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2528 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2529 I2C_SMBUS_BLOCK_PROC_CALL, &data);
2530 pmbus_update_ts(client, true);
2531
2532 if (rv < 0)
2533 return rv;
2534
2535 if (data.block[0] != 5)
2536 return -EIO;
2537
2538 m = data.block[1] | (data.block[2] << 8);
2539 b = data.block[3] | (data.block[4] << 8);
2540 R = data.block[5];
2541 info->m[class] = m;
2542 info->b[class] = b;
2543 info->R[class] = R;
2544
2545 return rv;
2546}
2547
2548static int pmbus_init_coefficients(struct i2c_client *client,
2549 struct pmbus_driver_info *info)
2550{
2551 int i, n, ret = -EINVAL;
2552 const struct pmbus_class_attr_map *map;
2553 const struct pmbus_sensor_attr *attr;
2554
2555 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2556 map = &class_attr_map[i];
2557 if (info->format[map->class] != direct)
2558 continue;
2559 for (n = 0; n < map->nattr; n++) {
2560 attr = &map->attr[n];
2561 if (map->class != attr->class)
2562 continue;
2563 ret = pmbus_read_coefficients(client, info, attr);
2564 if (ret >= 0)
2565 break;
2566 }
2567 if (ret < 0) {
2568 dev_err(&client->dev,
2569 "No coefficients found for sensor class %d\n",
2570 map->class);
2571 return -EINVAL;
2572 }
2573 }
2574
2575 return 0;
2576}
2577
2578/*
2579 * Identify chip parameters.
2580 * This function is called for all chips.
2581 */
2582static int pmbus_identify_common(struct i2c_client *client,
2583 struct pmbus_data *data, int page)
2584{
2585 int vout_mode = -1;
2586
2587 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2588 vout_mode = _pmbus_read_byte_data(client, page,
2589 PMBUS_VOUT_MODE);
2590 if (vout_mode >= 0 && vout_mode != 0xff) {
2591 /*
2592 * Not all chips support the VOUT_MODE command,
2593 * so a failure to read it is not an error.
2594 */
2595 switch (vout_mode >> 5) {
2596 case 0: /* linear mode */
2597 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2598 return -ENODEV;
2599
2600 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2601 break;
2602 case 1: /* VID mode */
2603 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2604 return -ENODEV;
2605 break;
2606 case 2: /* direct mode */
2607 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2608 return -ENODEV;
2609 break;
2610 case 3: /* ieee 754 half precision */
2611 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2612 return -ENODEV;
2613 break;
2614 default:
2615 return -ENODEV;
2616 }
2617 }
2618
2619 return 0;
2620}
2621
2622static int pmbus_read_status_byte(struct i2c_client *client, int page)
2623{
2624 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2625}
2626
2627static int pmbus_read_status_word(struct i2c_client *client, int page)
2628{
2629 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2630}
2631
2632/* PEC attribute support */
2633
2634static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2635 char *buf)
2636{
2637 struct i2c_client *client = to_i2c_client(dev);
2638
2639 return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2640}
2641
2642static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2643 const char *buf, size_t count)
2644{
2645 struct i2c_client *client = to_i2c_client(dev);
2646 bool enable;
2647 int err;
2648
2649 err = kstrtobool(buf, &enable);
2650 if (err < 0)
2651 return err;
2652
2653 if (enable)
2654 client->flags |= I2C_CLIENT_PEC;
2655 else
2656 client->flags &= ~I2C_CLIENT_PEC;
2657
2658 return count;
2659}
2660
2661static DEVICE_ATTR_RW(pec);
2662
2663static void pmbus_remove_pec(void *dev)
2664{
2665 device_remove_file(dev, &dev_attr_pec);
2666}
2667
2668static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2669 struct pmbus_driver_info *info)
2670{
2671 struct device *dev = &client->dev;
2672 int page, ret;
2673
2674 /*
2675 * Figure out if PEC is enabled before accessing any other register.
2676 * Make sure PEC is disabled, will be enabled later if needed.
2677 */
2678 client->flags &= ~I2C_CLIENT_PEC;
2679
2680 /* Enable PEC if the controller and bus supports it */
2681 if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2682 pmbus_wait(client);
2683 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2684 pmbus_update_ts(client, false);
2685
2686 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2687 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2688 client->flags |= I2C_CLIENT_PEC;
2689 }
2690 }
2691
2692 /*
2693 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2694 * to use PMBUS_STATUS_BYTE instead if that is the case.
2695 * Bail out if both registers are not supported.
2696 */
2697 data->read_status = pmbus_read_status_word;
2698 pmbus_wait(client);
2699 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2700 pmbus_update_ts(client, false);
2701
2702 if (ret < 0 || ret == 0xffff) {
2703 data->read_status = pmbus_read_status_byte;
2704 pmbus_wait(client);
2705 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2706 pmbus_update_ts(client, false);
2707
2708 if (ret < 0 || ret == 0xff) {
2709 dev_err(dev, "PMBus status register not found\n");
2710 return -ENODEV;
2711 }
2712 } else {
2713 data->has_status_word = true;
2714 }
2715
2716 /*
2717 * Check if the chip is write protected. If it is, we can not clear
2718 * faults, and we should not try it. Also, in that case, writes into
2719 * limit registers need to be disabled.
2720 */
2721 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2722 ret = _pmbus_read_byte_data(client, -1, PMBUS_WRITE_PROTECT);
2723
2724 if (ret > 0 && (ret & PB_WP_ANY))
2725 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2726 }
2727
2728 ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION);
2729 if (ret >= 0)
2730 data->revision = ret;
2731
2732 if (data->info->pages)
2733 pmbus_clear_faults(client);
2734 else
2735 pmbus_clear_fault_page(client, -1);
2736
2737 if (info->identify) {
2738 ret = (*info->identify)(client, info);
2739 if (ret < 0) {
2740 dev_err(dev, "Chip identification failed\n");
2741 return ret;
2742 }
2743 }
2744
2745 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2746 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2747 return -ENODEV;
2748 }
2749
2750 for (page = 0; page < info->pages; page++) {
2751 ret = pmbus_identify_common(client, data, page);
2752 if (ret < 0) {
2753 dev_err(dev, "Failed to identify chip capabilities\n");
2754 return ret;
2755 }
2756 }
2757
2758 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2759 if (!i2c_check_functionality(client->adapter,
2760 I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2761 return -ENODEV;
2762
2763 ret = pmbus_init_coefficients(client, info);
2764 if (ret < 0)
2765 return ret;
2766 }
2767
2768 if (client->flags & I2C_CLIENT_PEC) {
2769 /*
2770 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2771 * chip support PEC. Add 'pec' attribute to client device to let
2772 * the user control it.
2773 */
2774 ret = device_create_file(dev, &dev_attr_pec);
2775 if (ret)
2776 return ret;
2777 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2778 if (ret)
2779 return ret;
2780 }
2781
2782 return 0;
2783}
2784
2785/* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2786struct pmbus_status_assoc {
2787 int pflag, rflag, eflag;
2788};
2789
2790/* PMBus->regulator bit mappings for a PMBus status register */
2791struct pmbus_status_category {
2792 int func;
2793 int reg;
2794 const struct pmbus_status_assoc *bits; /* zero-terminated */
2795};
2796
2797static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2798 {
2799 .func = PMBUS_HAVE_STATUS_VOUT,
2800 .reg = PMBUS_STATUS_VOUT,
2801 .bits = (const struct pmbus_status_assoc[]) {
2802 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2803 REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2804 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE,
2805 REGULATOR_EVENT_UNDER_VOLTAGE },
2806 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2807 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2808 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT,
2809 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2810 { },
2811 },
2812 }, {
2813 .func = PMBUS_HAVE_STATUS_IOUT,
2814 .reg = PMBUS_STATUS_IOUT,
2815 .bits = (const struct pmbus_status_assoc[]) {
2816 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN,
2817 REGULATOR_EVENT_OVER_CURRENT_WARN },
2818 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2819 REGULATOR_EVENT_OVER_CURRENT },
2820 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2821 REGULATOR_EVENT_OVER_CURRENT },
2822 { },
2823 },
2824 }, {
2825 .func = PMBUS_HAVE_STATUS_TEMP,
2826 .reg = PMBUS_STATUS_TEMPERATURE,
2827 .bits = (const struct pmbus_status_assoc[]) {
2828 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN,
2829 REGULATOR_EVENT_OVER_TEMP_WARN },
2830 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP,
2831 REGULATOR_EVENT_OVER_TEMP },
2832 { },
2833 },
2834 },
2835};
2836
2837static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2838{
2839 int ret;
2840
2841 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2842
2843 if (ret < 0)
2844 return ret;
2845
2846 return !!(ret & PB_OPERATION_CONTROL_ON);
2847}
2848
2849static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2850{
2851 struct pmbus_data *data = i2c_get_clientdata(client);
2852 int ret;
2853
2854 mutex_lock(&data->update_lock);
2855 ret = _pmbus_is_enabled(client, page);
2856 mutex_unlock(&data->update_lock);
2857
2858 return ret;
2859}
2860
2861#define to_dev_attr(_dev_attr) \
2862 container_of(_dev_attr, struct device_attribute, attr)
2863
2864static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2865{
2866 int i;
2867
2868 for (i = 0; i < data->num_attributes; i++) {
2869 struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2870 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2871 int index = attr->index;
2872 u16 smask = pb_index_to_mask(index);
2873 u8 spage = pb_index_to_page(index);
2874 u16 sreg = pb_index_to_reg(index);
2875
2876 if (reg == sreg && page == spage && (smask & flags)) {
2877 dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2878 sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2879 kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2880 flags &= ~smask;
2881 }
2882
2883 if (!flags)
2884 break;
2885 }
2886}
2887
2888static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2889 unsigned int *event, bool notify)
2890{
2891 int i, status;
2892 const struct pmbus_status_category *cat;
2893 const struct pmbus_status_assoc *bit;
2894 struct device *dev = data->dev;
2895 struct i2c_client *client = to_i2c_client(dev);
2896 int func = data->info->func[page];
2897
2898 *flags = 0;
2899 *event = 0;
2900
2901 for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2902 cat = &pmbus_status_flag_map[i];
2903 if (!(func & cat->func))
2904 continue;
2905
2906 status = _pmbus_read_byte_data(client, page, cat->reg);
2907 if (status < 0)
2908 return status;
2909
2910 for (bit = cat->bits; bit->pflag; bit++)
2911 if (status & bit->pflag) {
2912 *flags |= bit->rflag;
2913 *event |= bit->eflag;
2914 }
2915
2916 if (notify && status)
2917 pmbus_notify(data, page, cat->reg, status);
2918
2919 }
2920
2921 /*
2922 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2923 * bits. Some of the other bits are tempting (especially for cases
2924 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2925 * functionality), but there's an unfortunate ambiguity in that
2926 * they're defined as indicating a fault *or* a warning, so we can't
2927 * easily determine whether to report REGULATOR_ERROR_<foo> or
2928 * REGULATOR_ERROR_<foo>_WARN.
2929 */
2930 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2931 if (status < 0)
2932 return status;
2933
2934 if (_pmbus_is_enabled(client, page)) {
2935 if (status & PB_STATUS_OFF) {
2936 *flags |= REGULATOR_ERROR_FAIL;
2937 *event |= REGULATOR_EVENT_FAIL;
2938 }
2939
2940 if (status & PB_STATUS_POWER_GOOD_N) {
2941 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2942 *event |= REGULATOR_EVENT_REGULATION_OUT;
2943 }
2944 }
2945 /*
2946 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2947 * defined strictly as fault indicators (not warnings).
2948 */
2949 if (status & PB_STATUS_IOUT_OC) {
2950 *flags |= REGULATOR_ERROR_OVER_CURRENT;
2951 *event |= REGULATOR_EVENT_OVER_CURRENT;
2952 }
2953 if (status & PB_STATUS_VOUT_OV) {
2954 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2955 *event |= REGULATOR_EVENT_FAIL;
2956 }
2957
2958 /*
2959 * If we haven't discovered any thermal faults or warnings via
2960 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2961 * a (conservative) best-effort interpretation.
2962 */
2963 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2964 (status & PB_STATUS_TEMPERATURE)) {
2965 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2966 *event |= REGULATOR_EVENT_OVER_TEMP_WARN;
2967 }
2968
2969
2970 return 0;
2971}
2972
2973static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2974 unsigned int *event, bool notify)
2975{
2976 int ret;
2977
2978 mutex_lock(&data->update_lock);
2979 ret = _pmbus_get_flags(data, page, flags, event, notify);
2980 mutex_unlock(&data->update_lock);
2981
2982 return ret;
2983}
2984
2985#if IS_ENABLED(CONFIG_REGULATOR)
2986static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2987{
2988 struct device *dev = rdev_get_dev(rdev);
2989 struct i2c_client *client = to_i2c_client(dev->parent);
2990
2991 return pmbus_is_enabled(client, rdev_get_id(rdev));
2992}
2993
2994static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2995{
2996 struct device *dev = rdev_get_dev(rdev);
2997 struct i2c_client *client = to_i2c_client(dev->parent);
2998 struct pmbus_data *data = i2c_get_clientdata(client);
2999 u8 page = rdev_get_id(rdev);
3000 int ret;
3001
3002 mutex_lock(&data->update_lock);
3003 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
3004 PB_OPERATION_CONTROL_ON,
3005 enable ? PB_OPERATION_CONTROL_ON : 0);
3006 mutex_unlock(&data->update_lock);
3007
3008 return ret;
3009}
3010
3011static int pmbus_regulator_enable(struct regulator_dev *rdev)
3012{
3013 return _pmbus_regulator_on_off(rdev, 1);
3014}
3015
3016static int pmbus_regulator_disable(struct regulator_dev *rdev)
3017{
3018 return _pmbus_regulator_on_off(rdev, 0);
3019}
3020
3021static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
3022{
3023 struct device *dev = rdev_get_dev(rdev);
3024 struct i2c_client *client = to_i2c_client(dev->parent);
3025 struct pmbus_data *data = i2c_get_clientdata(client);
3026 int event;
3027
3028 return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
3029}
3030
3031static int pmbus_regulator_get_status(struct regulator_dev *rdev)
3032{
3033 struct device *dev = rdev_get_dev(rdev);
3034 struct i2c_client *client = to_i2c_client(dev->parent);
3035 struct pmbus_data *data = i2c_get_clientdata(client);
3036 u8 page = rdev_get_id(rdev);
3037 int status, ret;
3038 int event;
3039
3040 mutex_lock(&data->update_lock);
3041 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
3042 if (status < 0) {
3043 ret = status;
3044 goto unlock;
3045 }
3046
3047 if (status & PB_STATUS_OFF) {
3048 ret = REGULATOR_STATUS_OFF;
3049 goto unlock;
3050 }
3051
3052 /* If regulator is ON & reports power good then return ON */
3053 if (!(status & PB_STATUS_POWER_GOOD_N)) {
3054 ret = REGULATOR_STATUS_ON;
3055 goto unlock;
3056 }
3057
3058 ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
3059 if (ret)
3060 goto unlock;
3061
3062 if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
3063 REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
3064 ret = REGULATOR_STATUS_ERROR;
3065 goto unlock;
3066 }
3067
3068 ret = REGULATOR_STATUS_UNDEFINED;
3069
3070unlock:
3071 mutex_unlock(&data->update_lock);
3072 return ret;
3073}
3074
3075static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
3076{
3077 struct pmbus_data *data = i2c_get_clientdata(client);
3078 struct pmbus_sensor s = {
3079 .page = page,
3080 .class = PSC_VOLTAGE_OUT,
3081 .convert = true,
3082 .data = -1,
3083 };
3084
3085 if (data->vout_low[page] < 0) {
3086 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3087 s.data = _pmbus_read_word_data(client, page, 0xff,
3088 PMBUS_MFR_VOUT_MIN);
3089 if (s.data < 0) {
3090 s.data = _pmbus_read_word_data(client, page, 0xff,
3091 PMBUS_VOUT_MARGIN_LOW);
3092 if (s.data < 0)
3093 return s.data;
3094 }
3095 data->vout_low[page] = pmbus_reg2data(data, &s);
3096 }
3097
3098 return data->vout_low[page];
3099}
3100
3101static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3102{
3103 struct pmbus_data *data = i2c_get_clientdata(client);
3104 struct pmbus_sensor s = {
3105 .page = page,
3106 .class = PSC_VOLTAGE_OUT,
3107 .convert = true,
3108 .data = -1,
3109 };
3110
3111 if (data->vout_high[page] < 0) {
3112 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3113 s.data = _pmbus_read_word_data(client, page, 0xff,
3114 PMBUS_MFR_VOUT_MAX);
3115 if (s.data < 0) {
3116 s.data = _pmbus_read_word_data(client, page, 0xff,
3117 PMBUS_VOUT_MARGIN_HIGH);
3118 if (s.data < 0)
3119 return s.data;
3120 }
3121 data->vout_high[page] = pmbus_reg2data(data, &s);
3122 }
3123
3124 return data->vout_high[page];
3125}
3126
3127static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3128{
3129 struct device *dev = rdev_get_dev(rdev);
3130 struct i2c_client *client = to_i2c_client(dev->parent);
3131 struct pmbus_data *data = i2c_get_clientdata(client);
3132 struct pmbus_sensor s = {
3133 .page = rdev_get_id(rdev),
3134 .class = PSC_VOLTAGE_OUT,
3135 .convert = true,
3136 };
3137
3138 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3139 if (s.data < 0)
3140 return s.data;
3141
3142 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3143}
3144
3145static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3146 int max_uv, unsigned int *selector)
3147{
3148 struct device *dev = rdev_get_dev(rdev);
3149 struct i2c_client *client = to_i2c_client(dev->parent);
3150 struct pmbus_data *data = i2c_get_clientdata(client);
3151 struct pmbus_sensor s = {
3152 .page = rdev_get_id(rdev),
3153 .class = PSC_VOLTAGE_OUT,
3154 .convert = true,
3155 .data = -1,
3156 };
3157 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3158 int low, high;
3159
3160 *selector = 0;
3161
3162 low = pmbus_regulator_get_low_margin(client, s.page);
3163 if (low < 0)
3164 return low;
3165
3166 high = pmbus_regulator_get_high_margin(client, s.page);
3167 if (high < 0)
3168 return high;
3169
3170 /* Make sure we are within margins */
3171 if (low > val)
3172 val = low;
3173 if (high < val)
3174 val = high;
3175
3176 val = pmbus_data2reg(data, &s, val);
3177
3178 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3179}
3180
3181static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3182 unsigned int selector)
3183{
3184 struct device *dev = rdev_get_dev(rdev);
3185 struct i2c_client *client = to_i2c_client(dev->parent);
3186 int val, low, high;
3187
3188 if (selector >= rdev->desc->n_voltages ||
3189 selector < rdev->desc->linear_min_sel)
3190 return -EINVAL;
3191
3192 selector -= rdev->desc->linear_min_sel;
3193 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3194 (rdev->desc->uV_step * selector), 1000); /* convert to mV */
3195
3196 low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3197 if (low < 0)
3198 return low;
3199
3200 high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3201 if (high < 0)
3202 return high;
3203
3204 if (val >= low && val <= high)
3205 return val * 1000; /* unit is uV */
3206
3207 return 0;
3208}
3209
3210const struct regulator_ops pmbus_regulator_ops = {
3211 .enable = pmbus_regulator_enable,
3212 .disable = pmbus_regulator_disable,
3213 .is_enabled = pmbus_regulator_is_enabled,
3214 .get_error_flags = pmbus_regulator_get_error_flags,
3215 .get_status = pmbus_regulator_get_status,
3216 .get_voltage = pmbus_regulator_get_voltage,
3217 .set_voltage = pmbus_regulator_set_voltage,
3218 .list_voltage = pmbus_regulator_list_voltage,
3219};
3220EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, "PMBUS");
3221
3222static int pmbus_regulator_register(struct pmbus_data *data)
3223{
3224 struct device *dev = data->dev;
3225 const struct pmbus_driver_info *info = data->info;
3226 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3227 int i;
3228
3229 data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3230 GFP_KERNEL);
3231 if (!data->rdevs)
3232 return -ENOMEM;
3233
3234 for (i = 0; i < info->num_regulators; i++) {
3235 struct regulator_config config = { };
3236
3237 config.dev = dev;
3238 config.driver_data = data;
3239
3240 if (pdata && pdata->reg_init_data)
3241 config.init_data = &pdata->reg_init_data[i];
3242
3243 data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3244 &config);
3245 if (IS_ERR(data->rdevs[i]))
3246 return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3247 "Failed to register %s regulator\n",
3248 info->reg_desc[i].name);
3249 }
3250
3251 return 0;
3252}
3253
3254static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3255{
3256 int j;
3257
3258 for (j = 0; j < data->info->num_regulators; j++) {
3259 if (page == rdev_get_id(data->rdevs[j])) {
3260 regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3261 break;
3262 }
3263 }
3264 return 0;
3265}
3266#else
3267static int pmbus_regulator_register(struct pmbus_data *data)
3268{
3269 return 0;
3270}
3271
3272static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3273{
3274 return 0;
3275}
3276#endif
3277
3278static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3279{
3280 int ret;
3281
3282 ret = _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3283
3284 /*
3285 * Clear fault systematically in case writing PMBUS_SMBALERT_MASK
3286 * is not supported by the chip.
3287 */
3288 pmbus_clear_fault_page(client, page);
3289
3290 return ret;
3291}
3292
3293static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3294{
3295 struct pmbus_data *data = pdata;
3296 struct i2c_client *client = to_i2c_client(data->dev);
3297
3298 int i, status, event;
3299 mutex_lock(&data->update_lock);
3300 for (i = 0; i < data->info->pages; i++) {
3301 _pmbus_get_flags(data, i, &status, &event, true);
3302
3303 if (event)
3304 pmbus_regulator_notify(data, i, event);
3305 }
3306
3307 pmbus_clear_faults(client);
3308 mutex_unlock(&data->update_lock);
3309
3310 return IRQ_HANDLED;
3311}
3312
3313static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3314{
3315 struct device *dev = &client->dev;
3316 const struct pmbus_status_category *cat;
3317 const struct pmbus_status_assoc *bit;
3318 int i, j, err, func;
3319 u8 mask;
3320
3321 static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3322 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3323 PMBUS_STATUS_FAN_34};
3324
3325 if (!client->irq)
3326 return 0;
3327
3328 for (i = 0; i < data->info->pages; i++) {
3329 func = data->info->func[i];
3330
3331 for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3332 cat = &pmbus_status_flag_map[j];
3333 if (!(func & cat->func))
3334 continue;
3335 mask = 0;
3336 for (bit = cat->bits; bit->pflag; bit++)
3337 mask |= bit->pflag;
3338
3339 err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3340 if (err)
3341 dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3342 cat->reg);
3343 }
3344
3345 for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3346 pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3347 }
3348
3349 /* Register notifiers */
3350 err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3351 IRQF_ONESHOT, "pmbus-irq", data);
3352 if (err) {
3353 dev_err(dev, "failed to request an irq %d\n", err);
3354 return err;
3355 }
3356
3357 return 0;
3358}
3359
3360static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
3361
3362#if IS_ENABLED(CONFIG_DEBUG_FS)
3363static int pmbus_debugfs_get(void *data, u64 *val)
3364{
3365 int rc;
3366 struct pmbus_debugfs_entry *entry = data;
3367 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3368
3369 rc = mutex_lock_interruptible(&pdata->update_lock);
3370 if (rc)
3371 return rc;
3372 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3373 mutex_unlock(&pdata->update_lock);
3374 if (rc < 0)
3375 return rc;
3376
3377 *val = rc;
3378
3379 return 0;
3380}
3381DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3382 "0x%02llx\n");
3383
3384static int pmbus_debugfs_get_status(void *data, u64 *val)
3385{
3386 int rc;
3387 struct pmbus_debugfs_entry *entry = data;
3388 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3389
3390 rc = mutex_lock_interruptible(&pdata->update_lock);
3391 if (rc)
3392 return rc;
3393 rc = pdata->read_status(entry->client, entry->page);
3394 mutex_unlock(&pdata->update_lock);
3395 if (rc < 0)
3396 return rc;
3397
3398 *val = rc;
3399
3400 return 0;
3401}
3402DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3403 NULL, "0x%04llx\n");
3404
3405static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3406 size_t count, loff_t *ppos)
3407{
3408 int rc;
3409 struct pmbus_debugfs_entry *entry = file->private_data;
3410 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3411 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3412
3413 rc = mutex_lock_interruptible(&pdata->update_lock);
3414 if (rc)
3415 return rc;
3416 rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3417 data);
3418 mutex_unlock(&pdata->update_lock);
3419 if (rc < 0)
3420 return rc;
3421
3422 /* Add newline at the end of a read data */
3423 data[rc] = '\n';
3424
3425 /* Include newline into the length */
3426 rc += 1;
3427
3428 return simple_read_from_buffer(buf, count, ppos, data, rc);
3429}
3430
3431static const struct file_operations pmbus_debugfs_ops_mfr = {
3432 .llseek = noop_llseek,
3433 .read = pmbus_debugfs_mfr_read,
3434 .write = NULL,
3435 .open = simple_open,
3436};
3437
3438static void pmbus_remove_debugfs(void *data)
3439{
3440 struct dentry *entry = data;
3441
3442 debugfs_remove_recursive(entry);
3443}
3444
3445static int pmbus_init_debugfs(struct i2c_client *client,
3446 struct pmbus_data *data)
3447{
3448 int i, idx = 0;
3449 char name[PMBUS_NAME_SIZE];
3450 struct pmbus_debugfs_entry *entries;
3451
3452 if (!pmbus_debugfs_dir)
3453 return -ENODEV;
3454
3455 /*
3456 * Create the debugfs directory for this device. Use the hwmon device
3457 * name to avoid conflicts (hwmon numbers are globally unique).
3458 */
3459 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3460 pmbus_debugfs_dir);
3461 if (IS_ERR_OR_NULL(data->debugfs)) {
3462 data->debugfs = NULL;
3463 return -ENODEV;
3464 }
3465
3466 /*
3467 * Allocate the max possible entries we need.
3468 * 6 entries device-specific
3469 * 10 entries page-specific
3470 */
3471 entries = devm_kcalloc(data->dev,
3472 6 + data->info->pages * 10, sizeof(*entries),
3473 GFP_KERNEL);
3474 if (!entries)
3475 return -ENOMEM;
3476
3477 /*
3478 * Add device-specific entries.
3479 * Please note that the PMBUS standard allows all registers to be
3480 * page-specific.
3481 * To reduce the number of debugfs entries for devices with many pages
3482 * assume that values of the following registers are the same for all
3483 * pages and report values only for page 0.
3484 */
3485 if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3486 entries[idx].client = client;
3487 entries[idx].page = 0;
3488 entries[idx].reg = PMBUS_MFR_ID;
3489 debugfs_create_file("mfr_id", 0444, data->debugfs,
3490 &entries[idx++],
3491 &pmbus_debugfs_ops_mfr);
3492 }
3493
3494 if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3495 entries[idx].client = client;
3496 entries[idx].page = 0;
3497 entries[idx].reg = PMBUS_MFR_MODEL;
3498 debugfs_create_file("mfr_model", 0444, data->debugfs,
3499 &entries[idx++],
3500 &pmbus_debugfs_ops_mfr);
3501 }
3502
3503 if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3504 entries[idx].client = client;
3505 entries[idx].page = 0;
3506 entries[idx].reg = PMBUS_MFR_REVISION;
3507 debugfs_create_file("mfr_revision", 0444, data->debugfs,
3508 &entries[idx++],
3509 &pmbus_debugfs_ops_mfr);
3510 }
3511
3512 if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3513 entries[idx].client = client;
3514 entries[idx].page = 0;
3515 entries[idx].reg = PMBUS_MFR_LOCATION;
3516 debugfs_create_file("mfr_location", 0444, data->debugfs,
3517 &entries[idx++],
3518 &pmbus_debugfs_ops_mfr);
3519 }
3520
3521 if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3522 entries[idx].client = client;
3523 entries[idx].page = 0;
3524 entries[idx].reg = PMBUS_MFR_DATE;
3525 debugfs_create_file("mfr_date", 0444, data->debugfs,
3526 &entries[idx++],
3527 &pmbus_debugfs_ops_mfr);
3528 }
3529
3530 if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3531 entries[idx].client = client;
3532 entries[idx].page = 0;
3533 entries[idx].reg = PMBUS_MFR_SERIAL;
3534 debugfs_create_file("mfr_serial", 0444, data->debugfs,
3535 &entries[idx++],
3536 &pmbus_debugfs_ops_mfr);
3537 }
3538
3539 /* Add page specific entries */
3540 for (i = 0; i < data->info->pages; ++i) {
3541 /* Check accessibility of status register if it's not page 0 */
3542 if (!i || pmbus_check_status_register(client, i)) {
3543 /* No need to set reg as we have special read op. */
3544 entries[idx].client = client;
3545 entries[idx].page = i;
3546 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3547 debugfs_create_file(name, 0444, data->debugfs,
3548 &entries[idx++],
3549 &pmbus_debugfs_ops_status);
3550 }
3551
3552 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3553 entries[idx].client = client;
3554 entries[idx].page = i;
3555 entries[idx].reg = PMBUS_STATUS_VOUT;
3556 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3557 debugfs_create_file(name, 0444, data->debugfs,
3558 &entries[idx++],
3559 &pmbus_debugfs_ops);
3560 }
3561
3562 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3563 entries[idx].client = client;
3564 entries[idx].page = i;
3565 entries[idx].reg = PMBUS_STATUS_IOUT;
3566 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3567 debugfs_create_file(name, 0444, data->debugfs,
3568 &entries[idx++],
3569 &pmbus_debugfs_ops);
3570 }
3571
3572 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3573 entries[idx].client = client;
3574 entries[idx].page = i;
3575 entries[idx].reg = PMBUS_STATUS_INPUT;
3576 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3577 debugfs_create_file(name, 0444, data->debugfs,
3578 &entries[idx++],
3579 &pmbus_debugfs_ops);
3580 }
3581
3582 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3583 entries[idx].client = client;
3584 entries[idx].page = i;
3585 entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3586 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3587 debugfs_create_file(name, 0444, data->debugfs,
3588 &entries[idx++],
3589 &pmbus_debugfs_ops);
3590 }
3591
3592 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3593 entries[idx].client = client;
3594 entries[idx].page = i;
3595 entries[idx].reg = PMBUS_STATUS_CML;
3596 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3597 debugfs_create_file(name, 0444, data->debugfs,
3598 &entries[idx++],
3599 &pmbus_debugfs_ops);
3600 }
3601
3602 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3603 entries[idx].client = client;
3604 entries[idx].page = i;
3605 entries[idx].reg = PMBUS_STATUS_OTHER;
3606 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3607 debugfs_create_file(name, 0444, data->debugfs,
3608 &entries[idx++],
3609 &pmbus_debugfs_ops);
3610 }
3611
3612 if (pmbus_check_byte_register(client, i,
3613 PMBUS_STATUS_MFR_SPECIFIC)) {
3614 entries[idx].client = client;
3615 entries[idx].page = i;
3616 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3617 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3618 debugfs_create_file(name, 0444, data->debugfs,
3619 &entries[idx++],
3620 &pmbus_debugfs_ops);
3621 }
3622
3623 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3624 entries[idx].client = client;
3625 entries[idx].page = i;
3626 entries[idx].reg = PMBUS_STATUS_FAN_12;
3627 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3628 debugfs_create_file(name, 0444, data->debugfs,
3629 &entries[idx++],
3630 &pmbus_debugfs_ops);
3631 }
3632
3633 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3634 entries[idx].client = client;
3635 entries[idx].page = i;
3636 entries[idx].reg = PMBUS_STATUS_FAN_34;
3637 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3638 debugfs_create_file(name, 0444, data->debugfs,
3639 &entries[idx++],
3640 &pmbus_debugfs_ops);
3641 }
3642 }
3643
3644 return devm_add_action_or_reset(data->dev,
3645 pmbus_remove_debugfs, data->debugfs);
3646}
3647#else
3648static int pmbus_init_debugfs(struct i2c_client *client,
3649 struct pmbus_data *data)
3650{
3651 return 0;
3652}
3653#endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
3654
3655int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3656{
3657 struct device *dev = &client->dev;
3658 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3659 struct pmbus_data *data;
3660 size_t groups_num = 0;
3661 int ret;
3662 int i;
3663 char *name;
3664
3665 if (!info)
3666 return -ENODEV;
3667
3668 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3669 | I2C_FUNC_SMBUS_BYTE_DATA
3670 | I2C_FUNC_SMBUS_WORD_DATA))
3671 return -ENODEV;
3672
3673 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3674 if (!data)
3675 return -ENOMEM;
3676
3677 if (info->groups)
3678 while (info->groups[groups_num])
3679 groups_num++;
3680
3681 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3682 GFP_KERNEL);
3683 if (!data->groups)
3684 return -ENOMEM;
3685
3686 i2c_set_clientdata(client, data);
3687 mutex_init(&data->update_lock);
3688 data->dev = dev;
3689
3690 if (pdata)
3691 data->flags = pdata->flags;
3692 data->info = info;
3693 data->currpage = -1;
3694 data->currphase = -1;
3695
3696 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3697 data->vout_low[i] = -1;
3698 data->vout_high[i] = -1;
3699 }
3700
3701 ret = pmbus_init_common(client, data, info);
3702 if (ret < 0)
3703 return ret;
3704
3705 ret = pmbus_find_attributes(client, data);
3706 if (ret)
3707 return ret;
3708
3709 /*
3710 * If there are no attributes, something is wrong.
3711 * Bail out instead of trying to register nothing.
3712 */
3713 if (!data->num_attributes) {
3714 dev_err(dev, "No attributes found\n");
3715 return -ENODEV;
3716 }
3717
3718 name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3719 if (!name)
3720 return -ENOMEM;
3721 strreplace(name, '-', '_');
3722
3723 data->groups[0] = &data->group;
3724 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3725 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3726 name, data, data->groups);
3727 if (IS_ERR(data->hwmon_dev)) {
3728 dev_err(dev, "Failed to register hwmon device\n");
3729 return PTR_ERR(data->hwmon_dev);
3730 }
3731
3732 ret = pmbus_regulator_register(data);
3733 if (ret)
3734 return ret;
3735
3736 ret = pmbus_irq_setup(client, data);
3737 if (ret)
3738 return ret;
3739
3740 ret = pmbus_init_debugfs(client, data);
3741 if (ret)
3742 dev_warn(dev, "Failed to register debugfs\n");
3743
3744 return 0;
3745}
3746EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, "PMBUS");
3747
3748struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3749{
3750 struct pmbus_data *data = i2c_get_clientdata(client);
3751
3752 return data->debugfs;
3753}
3754EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, "PMBUS");
3755
3756int pmbus_lock_interruptible(struct i2c_client *client)
3757{
3758 struct pmbus_data *data = i2c_get_clientdata(client);
3759
3760 return mutex_lock_interruptible(&data->update_lock);
3761}
3762EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, "PMBUS");
3763
3764void pmbus_unlock(struct i2c_client *client)
3765{
3766 struct pmbus_data *data = i2c_get_clientdata(client);
3767
3768 mutex_unlock(&data->update_lock);
3769}
3770EXPORT_SYMBOL_NS_GPL(pmbus_unlock, "PMBUS");
3771
3772static int __init pmbus_core_init(void)
3773{
3774 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3775 if (IS_ERR(pmbus_debugfs_dir))
3776 pmbus_debugfs_dir = NULL;
3777
3778 return 0;
3779}
3780
3781static void __exit pmbus_core_exit(void)
3782{
3783 debugfs_remove_recursive(pmbus_debugfs_dir);
3784}
3785
3786module_init(pmbus_core_init);
3787module_exit(pmbus_core_exit);
3788
3789MODULE_AUTHOR("Guenter Roeck");
3790MODULE_DESCRIPTION("PMBus core driver");
3791MODULE_LICENSE("GPL");