Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Hardware monitoring driver for PMBus devices
   3 *
   4 * Copyright (c) 2010, 2011 Ericsson AB.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
 
 
  21#include <linux/kernel.h>
 
  22#include <linux/module.h>
  23#include <linux/init.h>
  24#include <linux/err.h>
  25#include <linux/slab.h>
  26#include <linux/i2c.h>
  27#include <linux/hwmon.h>
  28#include <linux/hwmon-sysfs.h>
  29#include <linux/delay.h>
  30#include <linux/i2c/pmbus.h>
 
 
 
  31#include "pmbus.h"
  32
  33/*
  34 * Constants needed to determine number of sensors, booleans, and labels.
  35 */
  36#define PMBUS_MAX_INPUT_SENSORS		22	/* 10*volt, 7*curr, 5*power */
  37#define PMBUS_VOUT_SENSORS_PER_PAGE	9	/* input, min, max, lcrit,
  38						   crit, lowest, highest, avg,
  39						   reset */
  40#define PMBUS_IOUT_SENSORS_PER_PAGE	8	/* input, min, max, crit,
  41						   lowest, highest, avg,
  42						   reset */
  43#define PMBUS_POUT_SENSORS_PER_PAGE	4	/* input, cap, max, crit */
  44#define PMBUS_MAX_SENSORS_PER_FAN	1	/* input */
  45#define PMBUS_MAX_SENSORS_PER_TEMP	8	/* input, min, max, lcrit,
  46						   crit, lowest, highest,
  47						   reset */
  48
  49#define PMBUS_MAX_INPUT_BOOLEANS	7	/* v: min_alarm, max_alarm,
  50						   lcrit_alarm, crit_alarm;
  51						   c: alarm, crit_alarm;
  52						   p: crit_alarm */
  53#define PMBUS_VOUT_BOOLEANS_PER_PAGE	4	/* min_alarm, max_alarm,
  54						   lcrit_alarm, crit_alarm */
  55#define PMBUS_IOUT_BOOLEANS_PER_PAGE	3	/* alarm, lcrit_alarm,
  56						   crit_alarm */
  57#define PMBUS_POUT_BOOLEANS_PER_PAGE	2	/* alarm, crit_alarm */
  58#define PMBUS_MAX_BOOLEANS_PER_FAN	2	/* alarm, fault */
  59#define PMBUS_MAX_BOOLEANS_PER_TEMP	4	/* min_alarm, max_alarm,
  60						   lcrit_alarm, crit_alarm */
  61
  62#define PMBUS_MAX_INPUT_LABELS		4	/* vin, vcap, iin, pin */
  63
  64/*
  65 * status, status_vout, status_iout, status_fans, status_fan34, and status_temp
  66 * are paged. status_input is unpaged.
  67 */
  68#define PB_NUM_STATUS_REG	(PMBUS_PAGES * 6 + 1)
  69
  70/*
  71 * Index into status register array, per status register group
  72 */
  73#define PB_STATUS_BASE		0
  74#define PB_STATUS_VOUT_BASE	(PB_STATUS_BASE + PMBUS_PAGES)
  75#define PB_STATUS_IOUT_BASE	(PB_STATUS_VOUT_BASE + PMBUS_PAGES)
  76#define PB_STATUS_FAN_BASE	(PB_STATUS_IOUT_BASE + PMBUS_PAGES)
  77#define PB_STATUS_FAN34_BASE	(PB_STATUS_FAN_BASE + PMBUS_PAGES)
  78#define PB_STATUS_INPUT_BASE	(PB_STATUS_FAN34_BASE + PMBUS_PAGES)
  79#define PB_STATUS_TEMP_BASE	(PB_STATUS_INPUT_BASE + 1)
  80
  81#define PMBUS_NAME_SIZE		24
  82
  83struct pmbus_sensor {
 
  84	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
  85	struct sensor_device_attribute attribute;
  86	u8 page;		/* page number */
 
  87	u16 reg;		/* register */
  88	enum pmbus_sensor_classes class;	/* sensor class */
  89	bool update;		/* runtime sensor update needed */
 
  90	int data;		/* Sensor data.
  91				   Negative if there was a read error */
  92};
 
 
  93
  94struct pmbus_boolean {
  95	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
  96	struct sensor_device_attribute attribute;
 
 
  97};
 
 
  98
  99struct pmbus_label {
 100	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
 101	struct sensor_device_attribute attribute;
 102	char label[PMBUS_NAME_SIZE];	/* label */
 103};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105struct pmbus_data {
 
 106	struct device *hwmon_dev;
 
 107
 108	u32 flags;		/* from platform data */
 109
 110	int exponent;		/* linear mode: exponent for output voltages */
 
 
 
 111
 112	const struct pmbus_driver_info *info;
 113
 114	int max_attributes;
 115	int num_attributes;
 116	struct attribute **attributes;
 117	struct attribute_group group;
 
 
 118
 119	/*
 120	 * Sensors cover both sensor and limit registers.
 121	 */
 122	int max_sensors;
 123	int num_sensors;
 124	struct pmbus_sensor *sensors;
 125	/*
 126	 * Booleans are used for alarms.
 127	 * Values are determined from status registers.
 128	 */
 129	int max_booleans;
 130	int num_booleans;
 131	struct pmbus_boolean *booleans;
 132	/*
 133	 * Labels are used to map generic names (e.g., "in1")
 134	 * to PMBus specific names (e.g., "vin" or "vout1").
 135	 */
 136	int max_labels;
 137	int num_labels;
 138	struct pmbus_label *labels;
 139
 140	struct mutex update_lock;
 141	bool valid;
 142	unsigned long last_updated;	/* in jiffies */
 143
 144	/*
 145	 * A single status register covers multiple attributes,
 146	 * so we keep them all together.
 147	 */
 148	u8 status[PB_NUM_STATUS_REG];
 149
 150	u8 currpage;
 
 
 
 151};
 152
 153int pmbus_set_page(struct i2c_client *client, u8 page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154{
 155	struct pmbus_data *data = i2c_get_clientdata(client);
 156	int rv = 0;
 157	int newpage;
 158
 159	if (page != data->currpage) {
 160		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
 161		newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
 162		if (newpage != page)
 163			rv = -EINVAL;
 164		else
 165			data->currpage = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166	}
 167	return rv;
 168}
 169EXPORT_SYMBOL_GPL(pmbus_set_page);
 170
 171int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 
 172{
 
 
 
 
 
 
 
 
 
 
 
 
 
 173	int rv;
 174
 175	if (page >= 0) {
 176		rv = pmbus_set_page(client, page);
 
 
 
 
 
 
 
 
 
 
 
 
 177		if (rv < 0)
 178			return rv;
 
 
 
 179	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180
 181	return i2c_smbus_write_byte(client, value);
 
 
 
 
 
 
 
 
 
 
 
 
 182}
 183EXPORT_SYMBOL_GPL(pmbus_write_byte);
 184
 185/*
 186 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
 187 * a device specific mapping funcion exists and calls it if necessary.
 188 */
 189static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 190{
 191	struct pmbus_data *data = i2c_get_clientdata(client);
 192	const struct pmbus_driver_info *info = data->info;
 193	int status;
 194
 195	if (info->write_byte) {
 196		status = info->write_byte(client, page, value);
 197		if (status != -ENODATA)
 198			return status;
 199	}
 200	return pmbus_write_byte(client, page, value);
 201}
 202
 203int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
 
 204{
 205	int rv;
 206
 207	rv = pmbus_set_page(client, page);
 208	if (rv < 0)
 209		return rv;
 210
 211	return i2c_smbus_write_word_data(client, reg, word);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212}
 213EXPORT_SYMBOL_GPL(pmbus_write_word_data);
 214
 215/*
 216 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
 217 * a device specific mapping function exists and calls it if necessary.
 218 */
 219static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
 220				  u16 word)
 221{
 222	struct pmbus_data *data = i2c_get_clientdata(client);
 223	const struct pmbus_driver_info *info = data->info;
 224	int status;
 225
 226	if (info->write_word_data) {
 227		status = info->write_word_data(client, page, reg, word);
 228		if (status != -ENODATA)
 229			return status;
 230	}
 
 231	if (reg >= PMBUS_VIRT_BASE)
 232		return -EINVAL;
 
 233	return pmbus_write_word_data(client, page, reg, word);
 234}
 235
 236int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
 
 
 
 
 237{
 238	int rv;
 239
 240	rv = pmbus_set_page(client, page);
 241	if (rv < 0)
 242		return rv;
 243
 244	return i2c_smbus_read_word_data(client, reg);
 
 
 
 
 
 245}
 246EXPORT_SYMBOL_GPL(pmbus_read_word_data);
 247
 248/*
 249 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
 250 * a device specific mapping function exists and calls it if necessary.
 251 */
 252static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
 253{
 254	struct pmbus_data *data = i2c_get_clientdata(client);
 255	const struct pmbus_driver_info *info = data->info;
 256	int status;
 257
 258	if (info->read_word_data) {
 259		status = info->read_word_data(client, page, reg);
 260		if (status != -ENODATA)
 261			return status;
 262	}
 263	if (reg >= PMBUS_VIRT_BASE)
 264		return -EINVAL;
 265	return pmbus_read_word_data(client, page, reg);
 266}
 267
 268int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
 
 269{
 
 270	int rv;
 
 271
 272	if (page >= 0) {
 273		rv = pmbus_set_page(client, page);
 
 
 
 
 
 
 
 274		if (rv < 0)
 275			return rv;
 276	}
 277
 278	return i2c_smbus_read_byte_data(client, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279}
 280EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
 281
 282/*
 283 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
 284 * a device specific mapping function exists and calls it if necessary.
 285 */
 286static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
 
 287{
 288	struct pmbus_data *data = i2c_get_clientdata(client);
 289	const struct pmbus_driver_info *info = data->info;
 290	int status;
 291
 292	if (info->read_byte_data) {
 293		status = info->read_byte_data(client, page, reg);
 294		if (status != -ENODATA)
 295			return status;
 296	}
 297	return pmbus_read_byte_data(client, page, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299
 300static void pmbus_clear_fault_page(struct i2c_client *client, int page)
 301{
 302	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
 303}
 304
 305void pmbus_clear_faults(struct i2c_client *client)
 306{
 307	struct pmbus_data *data = i2c_get_clientdata(client);
 308	int i;
 309
 310	for (i = 0; i < data->info->pages; i++)
 311		pmbus_clear_fault_page(client, i);
 312}
 313EXPORT_SYMBOL_GPL(pmbus_clear_faults);
 314
 315static int pmbus_check_status_cml(struct i2c_client *client)
 316{
 
 317	int status, status2;
 318
 319	status = pmbus_read_byte_data(client, -1, PMBUS_STATUS_BYTE);
 320	if (status < 0 || (status & PB_STATUS_CML)) {
 321		status2 = pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
 322		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
 323			return -EINVAL;
 324	}
 325	return 0;
 326}
 327
 328bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
 
 
 
 329{
 330	int rv;
 331	struct pmbus_data *data = i2c_get_clientdata(client);
 332
 333	rv = _pmbus_read_byte_data(client, page, reg);
 334	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 335		rv = pmbus_check_status_cml(client);
 336	pmbus_clear_fault_page(client, -1);
 
 
 
 337	return rv >= 0;
 338}
 339EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340
 341bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
 342{
 
 
 
 
 
 
 
 343	int rv;
 344	struct pmbus_data *data = i2c_get_clientdata(client);
 
 345
 346	rv = _pmbus_read_word_data(client, page, reg);
 347	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 348		rv = pmbus_check_status_cml(client);
 
 
 349	pmbus_clear_fault_page(client, -1);
 350	return rv >= 0;
 351}
 352EXPORT_SYMBOL_GPL(pmbus_check_word_register);
 353
 354const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
 355{
 356	struct pmbus_data *data = i2c_get_clientdata(client);
 357
 358	return data->info;
 359}
 360EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
 361
 362static struct pmbus_data *pmbus_update_device(struct device *dev)
 363{
 364	struct i2c_client *client = to_i2c_client(dev);
 365	struct pmbus_data *data = i2c_get_clientdata(client);
 366	const struct pmbus_driver_info *info = data->info;
 367
 368	mutex_lock(&data->update_lock);
 369	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
 370		int i;
 
 
 
 
 
 
 
 
 
 371
 372		for (i = 0; i < info->pages; i++)
 373			data->status[PB_STATUS_BASE + i]
 374			    = pmbus_read_byte_data(client, i,
 375						   PMBUS_STATUS_BYTE);
 376		for (i = 0; i < info->pages; i++) {
 377			if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT))
 378				continue;
 379			data->status[PB_STATUS_VOUT_BASE + i]
 380			  = _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT);
 381		}
 382		for (i = 0; i < info->pages; i++) {
 383			if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT))
 384				continue;
 385			data->status[PB_STATUS_IOUT_BASE + i]
 386			  = _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT);
 387		}
 388		for (i = 0; i < info->pages; i++) {
 389			if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP))
 390				continue;
 391			data->status[PB_STATUS_TEMP_BASE + i]
 392			  = _pmbus_read_byte_data(client, i,
 393						  PMBUS_STATUS_TEMPERATURE);
 394		}
 395		for (i = 0; i < info->pages; i++) {
 396			if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12))
 397				continue;
 398			data->status[PB_STATUS_FAN_BASE + i]
 399			  = _pmbus_read_byte_data(client, i,
 400						  PMBUS_STATUS_FAN_12);
 401		}
 402
 403		for (i = 0; i < info->pages; i++) {
 404			if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34))
 405				continue;
 406			data->status[PB_STATUS_FAN34_BASE + i]
 407			  = _pmbus_read_byte_data(client, i,
 408						  PMBUS_STATUS_FAN_34);
 409		}
 410
 411		if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
 412			data->status[PB_STATUS_INPUT_BASE]
 413			  = _pmbus_read_byte_data(client, 0,
 414						  PMBUS_STATUS_INPUT);
 415
 416		for (i = 0; i < data->num_sensors; i++) {
 417			struct pmbus_sensor *sensor = &data->sensors[i];
 418
 419			if (!data->valid || sensor->update)
 420				sensor->data
 421				    = _pmbus_read_word_data(client,
 422							    sensor->page,
 423							    sensor->reg);
 424		}
 425		pmbus_clear_faults(client);
 426		data->last_updated = jiffies;
 427		data->valid = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	}
 429	mutex_unlock(&data->update_lock);
 430	return data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431}
 432
 433/*
 434 * Convert linear sensor values to milli- or micro-units
 435 * depending on sensor type.
 436 */
 437static long pmbus_reg2data_linear(struct pmbus_data *data,
 438				  struct pmbus_sensor *sensor)
 439{
 440	s16 exponent;
 441	s32 mantissa;
 442	long val;
 443
 444	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
 445		exponent = data->exponent;
 446		mantissa = (u16) sensor->data;
 447	} else {				/* LINEAR11 */
 448		exponent = (sensor->data >> 11) & 0x001f;
 449		mantissa = sensor->data & 0x07ff;
 450
 451		if (exponent > 0x0f)
 452			exponent |= 0xffe0;	/* sign extend exponent */
 453		if (mantissa > 0x03ff)
 454			mantissa |= 0xfffff800;	/* sign extend mantissa */
 455	}
 456
 457	val = mantissa;
 458
 459	/* scale result to milli-units for all sensors except fans */
 460	if (sensor->class != PSC_FAN)
 461		val = val * 1000L;
 462
 463	/* scale result to micro-units for power sensors */
 464	if (sensor->class == PSC_POWER)
 465		val = val * 1000L;
 466
 467	if (exponent >= 0)
 468		val <<= exponent;
 469	else
 470		val >>= -exponent;
 471
 472	return val;
 473}
 474
 475/*
 476 * Convert direct sensor values to milli- or micro-units
 477 * depending on sensor type.
 478 */
 479static long pmbus_reg2data_direct(struct pmbus_data *data,
 480				  struct pmbus_sensor *sensor)
 481{
 482	long val = (s16) sensor->data;
 483	long m, b, R;
 484
 485	m = data->info->m[sensor->class];
 486	b = data->info->b[sensor->class];
 487	R = data->info->R[sensor->class];
 488
 489	if (m == 0)
 490		return 0;
 491
 492	/* X = 1/m * (Y * 10^-R - b) */
 493	R = -R;
 494	/* scale result to milli-units for everything but fans */
 495	if (sensor->class != PSC_FAN) {
 496		R += 3;
 497		b *= 1000;
 498	}
 499
 500	/* scale result to micro-units for power sensors */
 501	if (sensor->class == PSC_POWER) {
 502		R += 3;
 503		b *= 1000;
 504	}
 505
 506	while (R > 0) {
 507		val *= 10;
 508		R--;
 509	}
 510	while (R < 0) {
 511		val = DIV_ROUND_CLOSEST(val, 10);
 512		R++;
 513	}
 514
 515	return (val - b) / m;
 
 516}
 517
 518/*
 519 * Convert VID sensor values to milli- or micro-units
 520 * depending on sensor type.
 521 * We currently only support VR11.
 522 */
 523static long pmbus_reg2data_vid(struct pmbus_data *data,
 524			       struct pmbus_sensor *sensor)
 525{
 526	long val = sensor->data;
 
 527
 528	if (val < 0x02 || val > 0xb2)
 529		return 0;
 530	return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531}
 532
 533static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
 534{
 535	long val;
 
 
 
 536
 537	switch (data->info->format[sensor->class]) {
 538	case direct:
 539		val = pmbus_reg2data_direct(data, sensor);
 540		break;
 541	case vid:
 542		val = pmbus_reg2data_vid(data, sensor);
 543		break;
 
 
 
 544	case linear:
 545	default:
 546		val = pmbus_reg2data_linear(data, sensor);
 547		break;
 548	}
 549	return val;
 550}
 551
 552#define MAX_MANTISSA	(1023 * 1000)
 553#define MIN_MANTISSA	(511 * 1000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554
 555static u16 pmbus_data2reg_linear(struct pmbus_data *data,
 556				 enum pmbus_sensor_classes class, long val)
 557{
 558	s16 exponent = 0, mantissa;
 559	bool negative = false;
 560
 561	/* simple case */
 562	if (val == 0)
 563		return 0;
 564
 565	if (class == PSC_VOLTAGE_OUT) {
 566		/* LINEAR16 does not support negative voltages */
 567		if (val < 0)
 568			return 0;
 569
 570		/*
 571		 * For a static exponents, we don't have a choice
 572		 * but to adjust the value to it.
 573		 */
 574		if (data->exponent < 0)
 575			val <<= -data->exponent;
 576		else
 577			val >>= data->exponent;
 578		val = DIV_ROUND_CLOSEST(val, 1000);
 579		return val & 0xffff;
 580	}
 581
 582	if (val < 0) {
 583		negative = true;
 584		val = -val;
 585	}
 586
 587	/* Power is in uW. Convert to mW before converting. */
 588	if (class == PSC_POWER)
 589		val = DIV_ROUND_CLOSEST(val, 1000L);
 590
 591	/*
 592	 * For simplicity, convert fan data to milli-units
 593	 * before calculating the exponent.
 594	 */
 595	if (class == PSC_FAN)
 596		val = val * 1000;
 597
 598	/* Reduce large mantissa until it fits into 10 bit */
 599	while (val >= MAX_MANTISSA && exponent < 15) {
 600		exponent++;
 601		val >>= 1;
 602	}
 603	/* Increase small mantissa to improve precision */
 604	while (val < MIN_MANTISSA && exponent > -15) {
 605		exponent--;
 606		val <<= 1;
 607	}
 608
 609	/* Convert mantissa from milli-units to units */
 610	mantissa = DIV_ROUND_CLOSEST(val, 1000);
 611
 612	/* Ensure that resulting number is within range */
 613	if (mantissa > 0x3ff)
 614		mantissa = 0x3ff;
 615
 616	/* restore sign */
 617	if (negative)
 618		mantissa = -mantissa;
 619
 620	/* Convert to 5 bit exponent, 11 bit mantissa */
 621	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
 622}
 623
 624static u16 pmbus_data2reg_direct(struct pmbus_data *data,
 625				 enum pmbus_sensor_classes class, long val)
 626{
 627	long m, b, R;
 
 628
 629	m = data->info->m[class];
 630	b = data->info->b[class];
 631	R = data->info->R[class];
 632
 633	/* Power is in uW. Adjust R and b. */
 634	if (class == PSC_POWER) {
 635		R -= 3;
 636		b *= 1000;
 637	}
 638
 639	/* Calculate Y = (m * X + b) * 10^R */
 640	if (class != PSC_FAN) {
 641		R -= 3;		/* Adjust R and b for data in milli-units */
 642		b *= 1000;
 643	}
 644	val = val * m + b;
 645
 646	while (R > 0) {
 647		val *= 10;
 648		R--;
 649	}
 650	while (R < 0) {
 651		val = DIV_ROUND_CLOSEST(val, 10);
 652		R++;
 653	}
 654
 655	return val;
 656}
 657
 658static u16 pmbus_data2reg_vid(struct pmbus_data *data,
 659			      enum pmbus_sensor_classes class, long val)
 660{
 661	val = SENSORS_LIMIT(val, 500, 1600);
 662
 663	return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
 664}
 665
 666static u16 pmbus_data2reg(struct pmbus_data *data,
 667			  enum pmbus_sensor_classes class, long val)
 668{
 669	u16 regval;
 670
 671	switch (data->info->format[class]) {
 
 
 
 672	case direct:
 673		regval = pmbus_data2reg_direct(data, class, val);
 674		break;
 675	case vid:
 676		regval = pmbus_data2reg_vid(data, class, val);
 
 
 
 677		break;
 678	case linear:
 679	default:
 680		regval = pmbus_data2reg_linear(data, class, val);
 681		break;
 682	}
 683	return regval;
 684}
 685
 686/*
 687 * Return boolean calculated from converted data.
 688 * <index> defines a status register index and mask, and optionally
 689 * two sensor indexes.
 690 * The upper half-word references the two sensors,
 691 * two sensor indices.
 692 * The upper half-word references the two optional sensors,
 693 * the lower half word references status register and mask.
 694 * The function returns true if (status[reg] & mask) is true and,
 695 * if specified, if v1 >= v2.
 696 * To determine if an object exceeds upper limits, specify <v, limit>.
 697 * To determine if an object exceeds lower limits, specify <limit, v>.
 698 *
 699 * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of
 700 * index are set. s1 and s2 (the sensor index values) are zero in this case.
 701 * The function returns true if (status[reg] & mask) is true.
 702 *
 703 * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against
 704 * a specified limit has to be performed to determine the boolean result.
 
 
 
 705 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
 706 * sensor values referenced by sensor indices s1 and s2).
 707 *
 708 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
 709 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
 710 *
 711 * If a negative value is stored in any of the referenced registers, this value
 712 * reflects an error code which will be returned.
 713 */
 714static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val)
 
 715{
 716	u8 s1 = (index >> 24) & 0xff;
 717	u8 s2 = (index >> 16) & 0xff;
 718	u8 reg = (index >> 8) & 0xff;
 719	u8 mask = index & 0xff;
 720	int status;
 721	u8 regval;
 
 
 722
 723	status = data->status[reg];
 724	if (status < 0)
 725		return status;
 
 
 
 
 
 
 
 
 726
 727	regval = status & mask;
 728	if (!s1 && !s2)
 729		*val = !!regval;
 730	else {
 731		long v1, v2;
 732		struct pmbus_sensor *sensor1, *sensor2;
 733
 734		sensor1 = &data->sensors[s1];
 735		if (sensor1->data < 0)
 736			return sensor1->data;
 737		sensor2 = &data->sensors[s2];
 738		if (sensor2->data < 0)
 739			return sensor2->data;
 740
 741		v1 = pmbus_reg2data(data, sensor1);
 742		v2 = pmbus_reg2data(data, sensor2);
 743		*val = !!(regval && v1 >= v2);
 744	}
 745	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746}
 747
 748static ssize_t pmbus_show_boolean(struct device *dev,
 749				  struct device_attribute *da, char *buf)
 750{
 751	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 752	struct pmbus_data *data = pmbus_update_device(dev);
 
 753	int val;
 754	int err;
 755
 756	err = pmbus_get_boolean(data, attr->index, &val);
 757	if (err)
 758		return err;
 759	return snprintf(buf, PAGE_SIZE, "%d\n", val);
 760}
 761
 762static ssize_t pmbus_show_sensor(struct device *dev,
 763				 struct device_attribute *da, char *buf)
 764{
 765	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 766	struct pmbus_data *data = pmbus_update_device(dev);
 767	struct pmbus_sensor *sensor;
 
 768
 769	sensor = &data->sensors[attr->index];
 
 770	if (sensor->data < 0)
 771		return sensor->data;
 772
 773	return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
 
 
 774}
 775
 776static ssize_t pmbus_set_sensor(struct device *dev,
 777				struct device_attribute *devattr,
 778				const char *buf, size_t count)
 779{
 780	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
 781	struct i2c_client *client = to_i2c_client(dev);
 782	struct pmbus_data *data = i2c_get_clientdata(client);
 783	struct pmbus_sensor *sensor = &data->sensors[attr->index];
 784	ssize_t rv = count;
 785	long val = 0;
 786	int ret;
 787	u16 regval;
 788
 789	if (strict_strtol(buf, 10, &val) < 0)
 790		return -EINVAL;
 791
 792	mutex_lock(&data->update_lock);
 793	regval = pmbus_data2reg(data, sensor->class, val);
 794	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
 795	if (ret < 0)
 796		rv = ret;
 797	else
 798		data->sensors[attr->index].data = regval;
 799	mutex_unlock(&data->update_lock);
 800	return rv;
 801}
 802
 803static ssize_t pmbus_show_label(struct device *dev,
 804				struct device_attribute *da, char *buf)
 805{
 806	struct i2c_client *client = to_i2c_client(dev);
 807	struct pmbus_data *data = i2c_get_clientdata(client);
 808	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 809
 810	return snprintf(buf, PAGE_SIZE, "%s\n",
 811			data->labels[attr->index].label);
 812}
 813
 814#define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set)	\
 815do {									\
 816	struct sensor_device_attribute *a				\
 817	    = &data->_type##s[data->num_##_type##s].attribute;		\
 818	BUG_ON(data->num_attributes >= data->max_attributes);		\
 819	sysfs_attr_init(&a->dev_attr.attr);				\
 820	a->dev_attr.attr.name = _name;					\
 821	a->dev_attr.attr.mode = _mode;					\
 822	a->dev_attr.show = _show;					\
 823	a->dev_attr.store = _set;					\
 824	a->index = _idx;						\
 825	data->attributes[data->num_attributes] = &a->dev_attr.attr;	\
 826	data->num_attributes++;						\
 827} while (0)
 828
 829#define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx)			\
 830	PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type,		\
 831		       pmbus_show_##_type,  NULL)
 832
 833#define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx)			\
 834	PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type,	\
 835		       pmbus_show_##_type, pmbus_set_##_type)
 836
 837static void pmbus_add_boolean(struct pmbus_data *data,
 838			      const char *name, const char *type, int seq,
 839			      int idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840{
 841	struct pmbus_boolean *boolean;
 
 842
 843	BUG_ON(data->num_booleans >= data->max_booleans);
 
 
 
 
 
 844
 845	boolean = &data->booleans[data->num_booleans];
 846
 847	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
 848		 name, seq, type);
 849	PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx);
 850	data->num_booleans++;
 
 
 
 
 851}
 852
 853static void pmbus_add_boolean_reg(struct pmbus_data *data,
 854				  const char *name, const char *type,
 855				  int seq, int reg, int bit)
 
 
 
 
 856{
 857	pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858}
 859
 860static void pmbus_add_boolean_cmp(struct pmbus_data *data,
 861				  const char *name, const char *type,
 862				  int seq, int i1, int i2, int reg, int mask)
 
 
 
 863{
 864	pmbus_add_boolean(data, name, type, seq,
 865			  (i1 << 24) | (i2 << 16) | (reg << 8) | mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866}
 867
 868static void pmbus_add_sensor(struct pmbus_data *data,
 869			     const char *name, const char *type, int seq,
 870			     int page, int reg, enum pmbus_sensor_classes class,
 871			     bool update, bool readonly)
 
 
 
 872{
 873	struct pmbus_sensor *sensor;
 
 
 
 
 
 
 
 
 
 
 
 
 
 874
 875	BUG_ON(data->num_sensors >= data->max_sensors);
 
 876
 877	sensor = &data->sensors[data->num_sensors];
 878	snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
 879		 name, seq, type);
 880	sensor->page = page;
 
 881	sensor->reg = reg;
 882	sensor->class = class;
 883	sensor->update = update;
 884	if (readonly)
 885		PMBUS_ADD_GET_ATTR(data, sensor->name, sensor,
 886				   data->num_sensors);
 887	else
 888		PMBUS_ADD_SET_ATTR(data, sensor->name, sensor,
 889				   data->num_sensors);
 890	data->num_sensors++;
 891}
 892
 893static void pmbus_add_label(struct pmbus_data *data,
 894			    const char *name, int seq,
 895			    const char *lstring, int index)
 896{
 897	struct pmbus_label *label;
 898
 899	BUG_ON(data->num_labels >= data->max_labels);
 
 900
 901	label = &data->labels[data->num_labels];
 902	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
 903	if (!index)
 904		strncpy(label->label, lstring, sizeof(label->label) - 1);
 905	else
 906		snprintf(label->label, sizeof(label->label), "%s%d", lstring,
 907			 index);
 908
 909	PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels);
 910	data->num_labels++;
 911}
 912
 913/*
 914 * Determine maximum number of sensors, booleans, and labels.
 915 * To keep things simple, only make a rough high estimate.
 916 */
 917static void pmbus_find_max_attr(struct i2c_client *client,
 918				struct pmbus_data *data)
 919{
 920	const struct pmbus_driver_info *info = data->info;
 921	int page, max_sensors, max_booleans, max_labels;
 922
 923	max_sensors = PMBUS_MAX_INPUT_SENSORS;
 924	max_booleans = PMBUS_MAX_INPUT_BOOLEANS;
 925	max_labels = PMBUS_MAX_INPUT_LABELS;
 926
 927	for (page = 0; page < info->pages; page++) {
 928		if (info->func[page] & PMBUS_HAVE_VOUT) {
 929			max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE;
 930			max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE;
 931			max_labels++;
 932		}
 933		if (info->func[page] & PMBUS_HAVE_IOUT) {
 934			max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE;
 935			max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE;
 936			max_labels++;
 937		}
 938		if (info->func[page] & PMBUS_HAVE_POUT) {
 939			max_sensors += PMBUS_POUT_SENSORS_PER_PAGE;
 940			max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE;
 941			max_labels++;
 942		}
 943		if (info->func[page] & PMBUS_HAVE_FAN12) {
 944			max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
 945			max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
 946		}
 947		if (info->func[page] & PMBUS_HAVE_FAN34) {
 948			max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
 949			max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
 950		}
 951		if (info->func[page] & PMBUS_HAVE_TEMP) {
 952			max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
 953			max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
 954		}
 955		if (info->func[page] & PMBUS_HAVE_TEMP2) {
 956			max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
 957			max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
 958		}
 959		if (info->func[page] & PMBUS_HAVE_TEMP3) {
 960			max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
 961			max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
 962		}
 963	}
 964	data->max_sensors = max_sensors;
 965	data->max_booleans = max_booleans;
 966	data->max_labels = max_labels;
 967	data->max_attributes = max_sensors + max_booleans + max_labels;
 968}
 969
 970/*
 971 * Search for attributes. Allocate sensors, booleans, and labels as needed.
 972 */
 973
 974/*
 975 * The pmbus_limit_attr structure describes a single limit attribute
 976 * and its associated alarm attribute.
 977 */
 978struct pmbus_limit_attr {
 979	u16 reg;		/* Limit register */
 
 980	bool update;		/* True if register needs updates */
 981	bool low;		/* True if low limit; for limits with compare
 982				   functions only */
 983	const char *attr;	/* Attribute name */
 984	const char *alarm;	/* Alarm attribute name */
 985	u32 sbit;		/* Alarm attribute status bit */
 986};
 987
 988/*
 989 * The pmbus_sensor_attr structure describes one sensor attribute. This
 990 * description includes a reference to the associated limit attributes.
 991 */
 992struct pmbus_sensor_attr {
 993	u8 reg;				/* sensor register */
 
 
 994	enum pmbus_sensor_classes class;/* sensor class */
 995	const char *label;		/* sensor label */
 996	bool paged;			/* true if paged sensor */
 997	bool update;			/* true if update needed */
 998	bool compare;			/* true if compare function needed */
 999	u32 func;			/* sensor mask */
1000	u32 sfunc;			/* sensor status mask */
1001	int sbase;			/* status base register */
1002	u32 gbit;			/* generic status bit */
1003	const struct pmbus_limit_attr *limit;/* limit registers */
1004	int nlimit;			/* # of limit registers */
1005};
1006
1007/*
1008 * Add a set of limit attributes and, if supported, the associated
1009 * alarm attributes.
 
 
1010 */
1011static bool pmbus_add_limit_attrs(struct i2c_client *client,
1012				  struct pmbus_data *data,
1013				  const struct pmbus_driver_info *info,
1014				  const char *name, int index, int page,
1015				  int cbase,
1016				  const struct pmbus_sensor_attr *attr)
1017{
1018	const struct pmbus_limit_attr *l = attr->limit;
1019	int nlimit = attr->nlimit;
1020	bool have_alarm = false;
1021	int i, cindex;
 
1022
1023	for (i = 0; i < nlimit; i++) {
1024		if (pmbus_check_word_register(client, page, l->reg)) {
1025			cindex = data->num_sensors;
1026			pmbus_add_sensor(data, name, l->attr, index, page,
1027					 l->reg, attr->class,
1028					 attr->update || l->update,
1029					 false);
 
1030			if (l->sbit && (info->func[page] & attr->sfunc)) {
1031				if (attr->compare) {
1032					pmbus_add_boolean_cmp(data, name,
1033						l->alarm, index,
1034						l->low ? cindex : cbase,
1035						l->low ? cbase : cindex,
1036						attr->sbase + page, l->sbit);
1037				} else {
1038					pmbus_add_boolean_reg(data, name,
1039						l->alarm, index,
1040						attr->sbase + page, l->sbit);
1041				}
1042				have_alarm = true;
1043			}
1044		}
1045		l++;
1046	}
1047	return have_alarm;
1048}
1049
1050static void pmbus_add_sensor_attrs_one(struct i2c_client *client,
1051				       struct pmbus_data *data,
1052				       const struct pmbus_driver_info *info,
1053				       const char *name,
1054				       int index, int page,
1055				       const struct pmbus_sensor_attr *attr)
1056{
1057	bool have_alarm;
1058	int cbase = data->num_sensors;
1059
1060	if (attr->label)
1061		pmbus_add_label(data, name, index, attr->label,
1062				attr->paged ? page + 1 : 0);
1063	pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1064			 attr->class, true, true);
1065	if (attr->sfunc) {
1066		have_alarm = pmbus_add_limit_attrs(client, data, info, name,
1067						   index, page, cbase, attr);
 
 
 
 
 
 
 
 
 
 
1068		/*
1069		 * Add generic alarm attribute only if there are no individual
1070		 * alarm attributes, if there is a global alarm bit, and if
1071		 * the generic status register for this page is accessible.
 
1072		 */
1073		if (!have_alarm && attr->gbit &&
1074		    pmbus_check_byte_register(client, page, PMBUS_STATUS_BYTE))
1075			pmbus_add_boolean_reg(data, name, "alarm", index,
1076					      PB_STATUS_BASE + page,
1077					      attr->gbit);
 
 
 
 
 
1078	}
 
1079}
1080
1081static void pmbus_add_sensor_attrs(struct i2c_client *client,
1082				   struct pmbus_data *data,
1083				   const char *name,
1084				   const struct pmbus_sensor_attr *attrs,
1085				   int nattrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086{
1087	const struct pmbus_driver_info *info = data->info;
1088	int index, i;
 
1089
1090	index = 1;
1091	for (i = 0; i < nattrs; i++) {
1092		int page, pages;
 
1093
1094		pages = attrs->paged ? info->pages : 1;
1095		for (page = 0; page < pages; page++) {
1096			if (!(info->func[page] & attrs->func))
1097				continue;
1098			pmbus_add_sensor_attrs_one(client, data, info, name,
1099						   index, page, attrs);
1100			index++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101		}
1102		attrs++;
1103	}
 
1104}
1105
1106static const struct pmbus_limit_attr vin_limit_attrs[] = {
1107	{
1108		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1109		.attr = "min",
1110		.alarm = "min_alarm",
1111		.sbit = PB_VOLTAGE_UV_WARNING,
1112	}, {
1113		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1114		.attr = "lcrit",
1115		.alarm = "lcrit_alarm",
1116		.sbit = PB_VOLTAGE_UV_FAULT,
1117	}, {
1118		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1119		.attr = "max",
1120		.alarm = "max_alarm",
1121		.sbit = PB_VOLTAGE_OV_WARNING,
1122	}, {
1123		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1124		.attr = "crit",
1125		.alarm = "crit_alarm",
1126		.sbit = PB_VOLTAGE_OV_FAULT,
1127	}, {
1128		.reg = PMBUS_VIRT_READ_VIN_AVG,
1129		.update = true,
1130		.attr = "average",
1131	}, {
1132		.reg = PMBUS_VIRT_READ_VIN_MIN,
1133		.update = true,
1134		.attr = "lowest",
1135	}, {
1136		.reg = PMBUS_VIRT_READ_VIN_MAX,
1137		.update = true,
1138		.attr = "highest",
1139	}, {
1140		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1141		.attr = "reset_history",
 
 
 
 
 
 
1142	},
1143};
1144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145static const struct pmbus_limit_attr vout_limit_attrs[] = {
1146	{
1147		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1148		.attr = "min",
1149		.alarm = "min_alarm",
1150		.sbit = PB_VOLTAGE_UV_WARNING,
1151	}, {
1152		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1153		.attr = "lcrit",
1154		.alarm = "lcrit_alarm",
1155		.sbit = PB_VOLTAGE_UV_FAULT,
1156	}, {
1157		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1158		.attr = "max",
1159		.alarm = "max_alarm",
1160		.sbit = PB_VOLTAGE_OV_WARNING,
1161	}, {
1162		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1163		.attr = "crit",
1164		.alarm = "crit_alarm",
1165		.sbit = PB_VOLTAGE_OV_FAULT,
1166	}, {
1167		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1168		.update = true,
1169		.attr = "average",
1170	}, {
1171		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1172		.update = true,
1173		.attr = "lowest",
1174	}, {
1175		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1176		.update = true,
1177		.attr = "highest",
1178	}, {
1179		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1180		.attr = "reset_history",
1181	}
 
 
 
 
 
 
1182};
1183
1184static const struct pmbus_sensor_attr voltage_attributes[] = {
1185	{
1186		.reg = PMBUS_READ_VIN,
1187		.class = PSC_VOLTAGE_IN,
1188		.label = "vin",
1189		.func = PMBUS_HAVE_VIN,
1190		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1191		.sbase = PB_STATUS_INPUT_BASE,
1192		.gbit = PB_STATUS_VIN_UV,
1193		.limit = vin_limit_attrs,
1194		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1195	}, {
 
 
 
 
 
 
 
 
 
1196		.reg = PMBUS_READ_VCAP,
1197		.class = PSC_VOLTAGE_IN,
1198		.label = "vcap",
1199		.func = PMBUS_HAVE_VCAP,
1200	}, {
1201		.reg = PMBUS_READ_VOUT,
1202		.class = PSC_VOLTAGE_OUT,
1203		.label = "vout",
1204		.paged = true,
1205		.func = PMBUS_HAVE_VOUT,
1206		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1207		.sbase = PB_STATUS_VOUT_BASE,
1208		.gbit = PB_STATUS_VOUT_OV,
1209		.limit = vout_limit_attrs,
1210		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1211	}
1212};
1213
1214/* Current attributes */
1215
1216static const struct pmbus_limit_attr iin_limit_attrs[] = {
1217	{
1218		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1219		.attr = "max",
1220		.alarm = "max_alarm",
1221		.sbit = PB_IIN_OC_WARNING,
1222	}, {
1223		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1224		.attr = "crit",
1225		.alarm = "crit_alarm",
1226		.sbit = PB_IIN_OC_FAULT,
1227	}, {
1228		.reg = PMBUS_VIRT_READ_IIN_AVG,
1229		.update = true,
1230		.attr = "average",
1231	}, {
1232		.reg = PMBUS_VIRT_READ_IIN_MIN,
1233		.update = true,
1234		.attr = "lowest",
1235	}, {
1236		.reg = PMBUS_VIRT_READ_IIN_MAX,
1237		.update = true,
1238		.attr = "highest",
1239	}, {
1240		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1241		.attr = "reset_history",
1242	}
 
 
 
1243};
1244
1245static const struct pmbus_limit_attr iout_limit_attrs[] = {
1246	{
1247		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1248		.attr = "max",
1249		.alarm = "max_alarm",
1250		.sbit = PB_IOUT_OC_WARNING,
1251	}, {
1252		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1253		.attr = "lcrit",
1254		.alarm = "lcrit_alarm",
1255		.sbit = PB_IOUT_UC_FAULT,
1256	}, {
1257		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1258		.attr = "crit",
1259		.alarm = "crit_alarm",
1260		.sbit = PB_IOUT_OC_FAULT,
1261	}, {
1262		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1263		.update = true,
1264		.attr = "average",
1265	}, {
1266		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1267		.update = true,
1268		.attr = "lowest",
1269	}, {
1270		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1271		.update = true,
1272		.attr = "highest",
1273	}, {
1274		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1275		.attr = "reset_history",
1276	}
 
 
 
1277};
1278
1279static const struct pmbus_sensor_attr current_attributes[] = {
1280	{
1281		.reg = PMBUS_READ_IIN,
1282		.class = PSC_CURRENT_IN,
1283		.label = "iin",
1284		.func = PMBUS_HAVE_IIN,
1285		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1286		.sbase = PB_STATUS_INPUT_BASE,
 
1287		.limit = iin_limit_attrs,
1288		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1289	}, {
1290		.reg = PMBUS_READ_IOUT,
1291		.class = PSC_CURRENT_OUT,
1292		.label = "iout",
1293		.paged = true,
1294		.func = PMBUS_HAVE_IOUT,
1295		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1296		.sbase = PB_STATUS_IOUT_BASE,
1297		.gbit = PB_STATUS_IOUT_OC,
1298		.limit = iout_limit_attrs,
1299		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1300	}
1301};
1302
1303/* Power attributes */
1304
1305static const struct pmbus_limit_attr pin_limit_attrs[] = {
1306	{
1307		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1308		.attr = "max",
1309		.alarm = "alarm",
1310		.sbit = PB_PIN_OP_WARNING,
1311	}, {
1312		.reg = PMBUS_VIRT_READ_PIN_AVG,
1313		.update = true,
1314		.attr = "average",
1315	}, {
 
 
 
 
1316		.reg = PMBUS_VIRT_READ_PIN_MAX,
1317		.update = true,
1318		.attr = "input_highest",
1319	}, {
1320		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1321		.attr = "reset_history",
1322	}
 
 
 
1323};
1324
1325static const struct pmbus_limit_attr pout_limit_attrs[] = {
1326	{
1327		.reg = PMBUS_POUT_MAX,
1328		.attr = "cap",
1329		.alarm = "cap_alarm",
1330		.sbit = PB_POWER_LIMITING,
1331	}, {
1332		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1333		.attr = "max",
1334		.alarm = "max_alarm",
1335		.sbit = PB_POUT_OP_WARNING,
1336	}, {
1337		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1338		.attr = "crit",
1339		.alarm = "crit_alarm",
1340		.sbit = PB_POUT_OP_FAULT,
1341	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342};
1343
1344static const struct pmbus_sensor_attr power_attributes[] = {
1345	{
1346		.reg = PMBUS_READ_PIN,
1347		.class = PSC_POWER,
1348		.label = "pin",
1349		.func = PMBUS_HAVE_PIN,
1350		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1351		.sbase = PB_STATUS_INPUT_BASE,
 
1352		.limit = pin_limit_attrs,
1353		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1354	}, {
1355		.reg = PMBUS_READ_POUT,
1356		.class = PSC_POWER,
1357		.label = "pout",
1358		.paged = true,
1359		.func = PMBUS_HAVE_POUT,
1360		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1361		.sbase = PB_STATUS_IOUT_BASE,
1362		.limit = pout_limit_attrs,
1363		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1364	}
1365};
1366
1367/* Temperature atributes */
1368
1369static const struct pmbus_limit_attr temp_limit_attrs[] = {
1370	{
1371		.reg = PMBUS_UT_WARN_LIMIT,
1372		.low = true,
1373		.attr = "min",
1374		.alarm = "min_alarm",
1375		.sbit = PB_TEMP_UT_WARNING,
1376	}, {
1377		.reg = PMBUS_UT_FAULT_LIMIT,
1378		.low = true,
1379		.attr = "lcrit",
1380		.alarm = "lcrit_alarm",
1381		.sbit = PB_TEMP_UT_FAULT,
1382	}, {
1383		.reg = PMBUS_OT_WARN_LIMIT,
1384		.attr = "max",
1385		.alarm = "max_alarm",
1386		.sbit = PB_TEMP_OT_WARNING,
1387	}, {
1388		.reg = PMBUS_OT_FAULT_LIMIT,
1389		.attr = "crit",
1390		.alarm = "crit_alarm",
1391		.sbit = PB_TEMP_OT_FAULT,
1392	}, {
1393		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1394		.attr = "lowest",
1395	}, {
 
 
 
1396		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1397		.attr = "highest",
1398	}, {
1399		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1400		.attr = "reset_history",
1401	}
 
 
 
1402};
1403
1404static const struct pmbus_limit_attr temp_limit_attrs23[] = {
1405	{
1406		.reg = PMBUS_UT_WARN_LIMIT,
1407		.low = true,
1408		.attr = "min",
1409		.alarm = "min_alarm",
1410		.sbit = PB_TEMP_UT_WARNING,
1411	}, {
1412		.reg = PMBUS_UT_FAULT_LIMIT,
1413		.low = true,
1414		.attr = "lcrit",
1415		.alarm = "lcrit_alarm",
1416		.sbit = PB_TEMP_UT_FAULT,
1417	}, {
1418		.reg = PMBUS_OT_WARN_LIMIT,
1419		.attr = "max",
1420		.alarm = "max_alarm",
1421		.sbit = PB_TEMP_OT_WARNING,
1422	}, {
1423		.reg = PMBUS_OT_FAULT_LIMIT,
1424		.attr = "crit",
1425		.alarm = "crit_alarm",
1426		.sbit = PB_TEMP_OT_FAULT,
1427	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428};
1429
1430static const struct pmbus_sensor_attr temp_attributes[] = {
1431	{
1432		.reg = PMBUS_READ_TEMPERATURE_1,
1433		.class = PSC_TEMPERATURE,
1434		.paged = true,
1435		.update = true,
1436		.compare = true,
1437		.func = PMBUS_HAVE_TEMP,
1438		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1439		.sbase = PB_STATUS_TEMP_BASE,
1440		.gbit = PB_STATUS_TEMPERATURE,
1441		.limit = temp_limit_attrs,
1442		.nlimit = ARRAY_SIZE(temp_limit_attrs),
1443	}, {
1444		.reg = PMBUS_READ_TEMPERATURE_2,
1445		.class = PSC_TEMPERATURE,
1446		.paged = true,
1447		.update = true,
1448		.compare = true,
1449		.func = PMBUS_HAVE_TEMP2,
1450		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1451		.sbase = PB_STATUS_TEMP_BASE,
1452		.gbit = PB_STATUS_TEMPERATURE,
1453		.limit = temp_limit_attrs23,
1454		.nlimit = ARRAY_SIZE(temp_limit_attrs23),
1455	}, {
1456		.reg = PMBUS_READ_TEMPERATURE_3,
1457		.class = PSC_TEMPERATURE,
1458		.paged = true,
1459		.update = true,
1460		.compare = true,
1461		.func = PMBUS_HAVE_TEMP3,
1462		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1463		.sbase = PB_STATUS_TEMP_BASE,
1464		.gbit = PB_STATUS_TEMPERATURE,
1465		.limit = temp_limit_attrs23,
1466		.nlimit = ARRAY_SIZE(temp_limit_attrs23),
1467	}
1468};
1469
1470static const int pmbus_fan_registers[] = {
1471	PMBUS_READ_FAN_SPEED_1,
1472	PMBUS_READ_FAN_SPEED_2,
1473	PMBUS_READ_FAN_SPEED_3,
1474	PMBUS_READ_FAN_SPEED_4
1475};
1476
1477static const int pmbus_fan_config_registers[] = {
1478	PMBUS_FAN_CONFIG_12,
1479	PMBUS_FAN_CONFIG_12,
1480	PMBUS_FAN_CONFIG_34,
1481	PMBUS_FAN_CONFIG_34
1482};
1483
1484static const int pmbus_fan_status_registers[] = {
1485	PMBUS_STATUS_FAN_12,
1486	PMBUS_STATUS_FAN_12,
1487	PMBUS_STATUS_FAN_34,
1488	PMBUS_STATUS_FAN_34
1489};
1490
1491static const u32 pmbus_fan_flags[] = {
1492	PMBUS_HAVE_FAN12,
1493	PMBUS_HAVE_FAN12,
1494	PMBUS_HAVE_FAN34,
1495	PMBUS_HAVE_FAN34
1496};
1497
1498static const u32 pmbus_fan_status_flags[] = {
1499	PMBUS_HAVE_STATUS_FAN12,
1500	PMBUS_HAVE_STATUS_FAN12,
1501	PMBUS_HAVE_STATUS_FAN34,
1502	PMBUS_HAVE_STATUS_FAN34
1503};
1504
1505/* Fans */
1506static void pmbus_add_fan_attributes(struct i2c_client *client,
1507				     struct pmbus_data *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508{
1509	const struct pmbus_driver_info *info = data->info;
1510	int index = 1;
1511	int page;
 
1512
1513	for (page = 0; page < info->pages; page++) {
1514		int f;
1515
1516		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1517			int regval;
1518
1519			if (!(info->func[page] & pmbus_fan_flags[f]))
1520				break;
1521
1522			if (!pmbus_check_word_register(client, page,
1523						       pmbus_fan_registers[f]))
1524				break;
1525
1526			/*
1527			 * Skip fan if not installed.
1528			 * Each fan configuration register covers multiple fans,
1529			 * so we have to do some magic.
1530			 */
1531			regval = _pmbus_read_byte_data(client, page,
1532				pmbus_fan_config_registers[f]);
1533			if (regval < 0 ||
1534			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1535				continue;
1536
1537			pmbus_add_sensor(data, "fan", "input", index, page,
1538					 pmbus_fan_registers[f], PSC_FAN, true,
1539					 true);
 
 
 
 
 
 
 
 
 
 
1540
1541			/*
1542			 * Each fan status register covers multiple fans,
1543			 * so we have to do some magic.
1544			 */
1545			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1546			    pmbus_check_byte_register(client,
1547					page, pmbus_fan_status_registers[f])) {
1548				int base;
1549
1550				if (f > 1)	/* fan 3, 4 */
1551					base = PB_STATUS_FAN34_BASE + page;
1552				else
1553					base = PB_STATUS_FAN_BASE + page;
1554				pmbus_add_boolean_reg(data, "fan", "alarm",
1555					index, base,
1556					PB_FAN_FAN1_WARNING >> (f & 1));
1557				pmbus_add_boolean_reg(data, "fan", "fault",
1558					index, base,
 
 
1559					PB_FAN_FAN1_FAULT >> (f & 1));
 
 
1560			}
1561			index++;
1562		}
1563	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564}
1565
1566static void pmbus_find_attributes(struct i2c_client *client,
1567				  struct pmbus_data *data)
1568{
 
 
1569	/* Voltage sensors */
1570	pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1571			       ARRAY_SIZE(voltage_attributes));
 
 
1572
1573	/* Current sensors */
1574	pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1575			       ARRAY_SIZE(current_attributes));
 
 
1576
1577	/* Power sensors */
1578	pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1579			       ARRAY_SIZE(power_attributes));
 
 
1580
1581	/* Temperature sensors */
1582	pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1583			       ARRAY_SIZE(temp_attributes));
 
 
1584
1585	/* Fans */
1586	pmbus_add_fan_attributes(client, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1587}
1588
1589/*
1590 * Identify chip parameters.
1591 * This function is called for all chips.
1592 */
1593static int pmbus_identify_common(struct i2c_client *client,
1594				 struct pmbus_data *data)
1595{
1596	int vout_mode = -1, exponent;
1597
1598	if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
1599		vout_mode = pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
 
1600	if (vout_mode >= 0 && vout_mode != 0xff) {
1601		/*
1602		 * Not all chips support the VOUT_MODE command,
1603		 * so a failure to read it is not an error.
1604		 */
1605		switch (vout_mode >> 5) {
1606		case 0:	/* linear mode      */
1607			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1608				return -ENODEV;
1609
1610			exponent = vout_mode & 0x1f;
1611			/* and sign-extend it */
1612			if (exponent & 0x10)
1613				exponent |= ~0x1f;
1614			data->exponent = exponent;
1615			break;
1616		case 1: /* VID mode         */
1617			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1618				return -ENODEV;
1619			break;
1620		case 2:	/* direct mode      */
1621			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1622				return -ENODEV;
1623			break;
 
 
 
 
1624		default:
1625			return -ENODEV;
1626		}
1627	}
1628
1629	/* Determine maximum number of sensors, booleans, and labels */
1630	pmbus_find_max_attr(client, data);
1631	pmbus_clear_fault_page(client, 0);
1632	return 0;
1633}
1634
1635int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1636		   struct pmbus_driver_info *info)
1637{
1638	const struct pmbus_platform_data *pdata = client->dev.platform_data;
1639	struct pmbus_data *data;
1640	int ret;
1641
1642	if (!info) {
1643		dev_err(&client->dev, "Missing chip information");
1644		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645	}
1646
1647	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1648				     | I2C_FUNC_SMBUS_BYTE_DATA
1649				     | I2C_FUNC_SMBUS_WORD_DATA))
1650		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
1651
1652	data = kzalloc(sizeof(*data), GFP_KERNEL);
1653	if (!data) {
1654		dev_err(&client->dev, "No memory to allocate driver data\n");
1655		return -ENOMEM;
 
 
1656	}
1657
1658	i2c_set_clientdata(client, data);
1659	mutex_init(&data->update_lock);
 
 
 
 
 
1660
1661	/* Bail out if PMBus status register does not exist. */
1662	if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) {
1663		dev_err(&client->dev, "PMBus status register not found\n");
1664		ret = -ENODEV;
1665		goto out_data;
1666	}
1667
1668	if (pdata)
1669		data->flags = pdata->flags;
1670	data->info = info;
1671
1672	pmbus_clear_faults(client);
 
 
 
1673
1674	if (info->identify) {
1675		ret = (*info->identify)(client, info);
1676		if (ret < 0) {
1677			dev_err(&client->dev, "Chip identification failed\n");
1678			goto out_data;
1679		}
1680	}
1681
1682	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1683		dev_err(&client->dev, "Bad number of PMBus pages: %d\n",
1684			info->pages);
1685		ret = -EINVAL;
1686		goto out_data;
1687	}
1688
1689	ret = pmbus_identify_common(client, data);
1690	if (ret < 0) {
1691		dev_err(&client->dev, "Failed to identify chip capabilities\n");
1692		goto out_data;
 
 
1693	}
1694
1695	ret = -ENOMEM;
1696	data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors,
1697				GFP_KERNEL);
1698	if (!data->sensors) {
1699		dev_err(&client->dev, "No memory to allocate sensor data\n");
1700		goto out_data;
 
 
1701	}
1702
1703	data->booleans = kzalloc(sizeof(struct pmbus_boolean)
1704				 * data->max_booleans, GFP_KERNEL);
1705	if (!data->booleans) {
1706		dev_err(&client->dev, "No memory to allocate boolean data\n");
1707		goto out_sensors;
 
 
 
 
 
 
 
1708	}
1709
1710	data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711			       GFP_KERNEL);
1712	if (!data->labels) {
1713		dev_err(&client->dev, "No memory to allocate label data\n");
1714		goto out_booleans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715	}
1716
1717	data->attributes = kzalloc(sizeof(struct attribute *)
1718				   * data->max_attributes, GFP_KERNEL);
1719	if (!data->attributes) {
1720		dev_err(&client->dev, "No memory to allocate attribute data\n");
1721		goto out_labels;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1722	}
1723
1724	pmbus_find_attributes(client, data);
 
 
 
 
 
 
1725
1726	/*
1727	 * If there are no attributes, something is wrong.
1728	 * Bail out instead of trying to register nothing.
1729	 */
1730	if (!data->num_attributes) {
1731		dev_err(&client->dev, "No attributes found\n");
1732		ret = -ENODEV;
1733		goto out_attributes;
1734	}
1735
1736	/* Register sysfs hooks */
1737	data->group.attrs = data->attributes;
1738	ret = sysfs_create_group(&client->dev.kobj, &data->group);
1739	if (ret) {
1740		dev_err(&client->dev, "Failed to create sysfs entries\n");
1741		goto out_attributes;
1742	}
1743	data->hwmon_dev = hwmon_device_register(&client->dev);
 
1744	if (IS_ERR(data->hwmon_dev)) {
1745		ret = PTR_ERR(data->hwmon_dev);
1746		dev_err(&client->dev, "Failed to register hwmon device\n");
1747		goto out_hwmon_device_register;
1748	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1749	return 0;
 
 
1750
1751out_hwmon_device_register:
1752	sysfs_remove_group(&client->dev.kobj, &data->group);
1753out_attributes:
1754	kfree(data->attributes);
1755out_labels:
1756	kfree(data->labels);
1757out_booleans:
1758	kfree(data->booleans);
1759out_sensors:
1760	kfree(data->sensors);
1761out_data:
1762	kfree(data);
1763	return ret;
1764}
1765EXPORT_SYMBOL_GPL(pmbus_do_probe);
1766
1767int pmbus_do_remove(struct i2c_client *client)
1768{
1769	struct pmbus_data *data = i2c_get_clientdata(client);
1770	hwmon_device_unregister(data->hwmon_dev);
1771	sysfs_remove_group(&client->dev.kobj, &data->group);
1772	kfree(data->attributes);
1773	kfree(data->labels);
1774	kfree(data->booleans);
1775	kfree(data->sensors);
1776	kfree(data);
 
 
 
 
 
 
 
 
 
 
 
 
1777	return 0;
1778}
1779EXPORT_SYMBOL_GPL(pmbus_do_remove);
 
 
 
 
 
 
 
1780
1781MODULE_AUTHOR("Guenter Roeck");
1782MODULE_DESCRIPTION("PMBus core driver");
1783MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Hardware monitoring driver for PMBus devices
   4 *
   5 * Copyright (c) 2010, 2011 Ericsson AB.
   6 * Copyright (c) 2012 Guenter Roeck
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/debugfs.h>
  10#include <linux/delay.h>
  11#include <linux/kernel.h>
  12#include <linux/math64.h>
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/i2c.h>
  18#include <linux/hwmon.h>
  19#include <linux/hwmon-sysfs.h>
  20#include <linux/pmbus.h>
  21#include <linux/regulator/driver.h>
  22#include <linux/regulator/machine.h>
  23#include <linux/of.h>
  24#include <linux/thermal.h>
  25#include "pmbus.h"
  26
  27/*
  28 * Number of additional attribute pointers to allocate
  29 * with each call to krealloc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  30 */
  31#define PMBUS_ATTR_ALLOC_SIZE	32
 
 
 
 
 
 
 
 
 
 
 
 
  32#define PMBUS_NAME_SIZE		24
  33
  34struct pmbus_sensor {
  35	struct pmbus_sensor *next;
  36	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
  37	struct device_attribute attribute;
  38	u8 page;		/* page number */
  39	u8 phase;		/* phase number, 0xff for all phases */
  40	u16 reg;		/* register */
  41	enum pmbus_sensor_classes class;	/* sensor class */
  42	bool update;		/* runtime sensor update needed */
  43	bool convert;		/* Whether or not to apply linear/vid/direct */
  44	int data;		/* Sensor data.
  45				   Negative if there was a read error */
  46};
  47#define to_pmbus_sensor(_attr) \
  48	container_of(_attr, struct pmbus_sensor, attribute)
  49
  50struct pmbus_boolean {
  51	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
  52	struct sensor_device_attribute attribute;
  53	struct pmbus_sensor *s1;
  54	struct pmbus_sensor *s2;
  55};
  56#define to_pmbus_boolean(_attr) \
  57	container_of(_attr, struct pmbus_boolean, attribute)
  58
  59struct pmbus_label {
  60	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
  61	struct device_attribute attribute;
  62	char label[PMBUS_NAME_SIZE];	/* label */
  63};
  64#define to_pmbus_label(_attr) \
  65	container_of(_attr, struct pmbus_label, attribute)
  66
  67/* Macros for converting between sensor index and register/page/status mask */
  68
  69#define PB_STATUS_MASK	0xffff
  70#define PB_REG_SHIFT	16
  71#define PB_REG_MASK	0x3ff
  72#define PB_PAGE_SHIFT	26
  73#define PB_PAGE_MASK	0x3f
  74
  75#define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
  76						 ((reg) << PB_REG_SHIFT) | (mask))
  77
  78#define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
  79#define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
  80#define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
  81
  82struct pmbus_data {
  83	struct device *dev;
  84	struct device *hwmon_dev;
  85	struct regulator_dev **rdevs;
  86
  87	u32 flags;		/* from platform data */
  88
  89	u8 revision;	/* The PMBus revision the device is compliant with */
  90
  91	int exponent[PMBUS_PAGES];
  92				/* linear mode: exponent for output voltages */
  93
  94	const struct pmbus_driver_info *info;
  95
  96	int max_attributes;
  97	int num_attributes;
 
  98	struct attribute_group group;
  99	const struct attribute_group **groups;
 100	struct dentry *debugfs;		/* debugfs device directory */
 101
 
 
 
 
 
 102	struct pmbus_sensor *sensors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103
 104	struct mutex update_lock;
 
 
 105
 106	bool has_status_word;		/* device uses STATUS_WORD register */
 107	int (*read_status)(struct i2c_client *client, int page);
 108
 109	s16 currpage;	/* current page, -1 for unknown/unset */
 110	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
 111
 112	int vout_low[PMBUS_PAGES];	/* voltage low margin */
 113	int vout_high[PMBUS_PAGES];	/* voltage high margin */
 114	ktime_t write_time;		/* Last SMBUS write timestamp */
 115	ktime_t access_time;		/* Last SMBUS access timestamp */
 116};
 117
 118struct pmbus_debugfs_entry {
 119	struct i2c_client *client;
 120	u8 page;
 121	u8 reg;
 122};
 123
 124static const int pmbus_fan_rpm_mask[] = {
 125	PB_FAN_1_RPM,
 126	PB_FAN_2_RPM,
 127	PB_FAN_1_RPM,
 128	PB_FAN_2_RPM,
 129};
 130
 131static const int pmbus_fan_config_registers[] = {
 132	PMBUS_FAN_CONFIG_12,
 133	PMBUS_FAN_CONFIG_12,
 134	PMBUS_FAN_CONFIG_34,
 135	PMBUS_FAN_CONFIG_34
 136};
 137
 138static const int pmbus_fan_command_registers[] = {
 139	PMBUS_FAN_COMMAND_1,
 140	PMBUS_FAN_COMMAND_2,
 141	PMBUS_FAN_COMMAND_3,
 142	PMBUS_FAN_COMMAND_4,
 143};
 144
 145void pmbus_clear_cache(struct i2c_client *client)
 146{
 147	struct pmbus_data *data = i2c_get_clientdata(client);
 148	struct pmbus_sensor *sensor;
 
 149
 150	for (sensor = data->sensors; sensor; sensor = sensor->next)
 151		sensor->data = -ENODATA;
 152}
 153EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, "PMBUS");
 154
 155void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
 156{
 157	struct pmbus_data *data = i2c_get_clientdata(client);
 158	struct pmbus_sensor *sensor;
 159
 160	for (sensor = data->sensors; sensor; sensor = sensor->next)
 161		if (sensor->reg == reg)
 162			sensor->update = update;
 163}
 164EXPORT_SYMBOL_NS_GPL(pmbus_set_update, "PMBUS");
 165
 166/* Some chips need a delay between accesses. */
 167static void pmbus_wait(struct i2c_client *client)
 168{
 169	struct pmbus_data *data = i2c_get_clientdata(client);
 170	const struct pmbus_driver_info *info = data->info;
 171	s64 delta;
 172
 173	if (info->access_delay) {
 174		delta = ktime_us_delta(ktime_get(), data->access_time);
 175
 176		if (delta < info->access_delay)
 177			fsleep(info->access_delay - delta);
 178	} else if (info->write_delay) {
 179		delta = ktime_us_delta(ktime_get(), data->write_time);
 180
 181		if (delta < info->write_delay)
 182			fsleep(info->write_delay - delta);
 183	}
 
 184}
 
 185
 186/* Sets the last accessed timestamp for pmbus_wait */
 187static void pmbus_update_ts(struct i2c_client *client, bool write_op)
 188{
 189	struct pmbus_data *data = i2c_get_clientdata(client);
 190	const struct pmbus_driver_info *info = data->info;
 191
 192	if (info->access_delay) {
 193		data->access_time = ktime_get();
 194	} else if (info->write_delay && write_op) {
 195		data->write_time = ktime_get();
 196	}
 197}
 198
 199int pmbus_set_page(struct i2c_client *client, int page, int phase)
 200{
 201	struct pmbus_data *data = i2c_get_clientdata(client);
 202	int rv;
 203
 204	if (page < 0)
 205		return 0;
 206
 207	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
 208	    data->info->pages > 1 && page != data->currpage) {
 209		pmbus_wait(client);
 210		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
 211		pmbus_update_ts(client, true);
 212		if (rv < 0)
 213			return rv;
 214
 215		pmbus_wait(client);
 216		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
 217		pmbus_update_ts(client, false);
 218		if (rv < 0)
 219			return rv;
 220
 221		if (rv != page)
 222			return -EIO;
 223	}
 224	data->currpage = page;
 225
 226	if (data->info->phases[page] && data->currphase != phase &&
 227	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
 228		pmbus_wait(client);
 229		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
 230					       phase);
 231		pmbus_update_ts(client, true);
 232		if (rv)
 233			return rv;
 234	}
 235	data->currphase = phase;
 236
 237	return 0;
 238}
 239EXPORT_SYMBOL_NS_GPL(pmbus_set_page, "PMBUS");
 240
 241int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 242{
 243	int rv;
 244
 245	rv = pmbus_set_page(client, page, 0xff);
 246	if (rv < 0)
 247		return rv;
 248
 249	pmbus_wait(client);
 250	rv = i2c_smbus_write_byte(client, value);
 251	pmbus_update_ts(client, true);
 252
 253	return rv;
 254}
 255EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, "PMBUS");
 256
 257/*
 258 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
 259 * a device specific mapping function exists and calls it if necessary.
 260 */
 261static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 262{
 263	struct pmbus_data *data = i2c_get_clientdata(client);
 264	const struct pmbus_driver_info *info = data->info;
 265	int status;
 266
 267	if (info->write_byte) {
 268		status = info->write_byte(client, page, value);
 269		if (status != -ENODATA)
 270			return status;
 271	}
 272	return pmbus_write_byte(client, page, value);
 273}
 274
 275int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
 276			  u16 word)
 277{
 278	int rv;
 279
 280	rv = pmbus_set_page(client, page, 0xff);
 281	if (rv < 0)
 282		return rv;
 283
 284	pmbus_wait(client);
 285	rv = i2c_smbus_write_word_data(client, reg, word);
 286	pmbus_update_ts(client, true);
 287
 288	return rv;
 289}
 290EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, "PMBUS");
 291
 292
 293static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
 294				u16 word)
 295{
 296	int bit;
 297	int id;
 298	int rv;
 299
 300	switch (reg) {
 301	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
 302		id = reg - PMBUS_VIRT_FAN_TARGET_1;
 303		bit = pmbus_fan_rpm_mask[id];
 304		rv = pmbus_update_fan(client, page, id, bit, bit, word);
 305		break;
 306	default:
 307		rv = -ENXIO;
 308		break;
 309	}
 310
 311	return rv;
 312}
 
 313
 314/*
 315 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
 316 * a device specific mapping function exists and calls it if necessary.
 317 */
 318static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
 319				  u16 word)
 320{
 321	struct pmbus_data *data = i2c_get_clientdata(client);
 322	const struct pmbus_driver_info *info = data->info;
 323	int status;
 324
 325	if (info->write_word_data) {
 326		status = info->write_word_data(client, page, reg, word);
 327		if (status != -ENODATA)
 328			return status;
 329	}
 330
 331	if (reg >= PMBUS_VIRT_BASE)
 332		return pmbus_write_virt_reg(client, page, reg, word);
 333
 334	return pmbus_write_word_data(client, page, reg, word);
 335}
 336
 337/*
 338 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
 339 * a device specific mapping function exists and calls it if necessary.
 340 */
 341static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
 342{
 343	struct pmbus_data *data = i2c_get_clientdata(client);
 344	const struct pmbus_driver_info *info = data->info;
 345	int status;
 
 
 346
 347	if (info->write_byte_data) {
 348		status = info->write_byte_data(client, page, reg, value);
 349		if (status != -ENODATA)
 350			return status;
 351	}
 352	return pmbus_write_byte_data(client, page, reg, value);
 353}
 
 354
 355/*
 356 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
 357 * a device specific mapping function exists and calls it if necessary.
 358 */
 359static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
 360{
 361	struct pmbus_data *data = i2c_get_clientdata(client);
 362	const struct pmbus_driver_info *info = data->info;
 363	int status;
 364
 365	if (info->read_byte_data) {
 366		status = info->read_byte_data(client, page, reg);
 367		if (status != -ENODATA)
 368			return status;
 369	}
 370	return pmbus_read_byte_data(client, page, reg);
 
 
 371}
 372
 373int pmbus_update_fan(struct i2c_client *client, int page, int id,
 374		     u8 config, u8 mask, u16 command)
 375{
 376	int from;
 377	int rv;
 378	u8 to;
 379
 380	from = _pmbus_read_byte_data(client, page,
 381				    pmbus_fan_config_registers[id]);
 382	if (from < 0)
 383		return from;
 384
 385	to = (from & ~mask) | (config & mask);
 386	if (to != from) {
 387		rv = _pmbus_write_byte_data(client, page,
 388					   pmbus_fan_config_registers[id], to);
 389		if (rv < 0)
 390			return rv;
 391	}
 392
 393	return _pmbus_write_word_data(client, page,
 394				      pmbus_fan_command_registers[id], command);
 395}
 396EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, "PMBUS");
 397
 398int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
 399{
 400	int rv;
 401
 402	rv = pmbus_set_page(client, page, phase);
 403	if (rv < 0)
 404		return rv;
 405
 406	pmbus_wait(client);
 407	rv = i2c_smbus_read_word_data(client, reg);
 408	pmbus_update_ts(client, false);
 409
 410	return rv;
 411}
 412EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, "PMBUS");
 413
 414static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
 415{
 416	int rv;
 417	int id;
 418
 419	switch (reg) {
 420	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
 421		id = reg - PMBUS_VIRT_FAN_TARGET_1;
 422		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
 423		break;
 424	default:
 425		rv = -ENXIO;
 426		break;
 427	}
 428
 429	return rv;
 430}
 
 431
 432/*
 433 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
 434 * a device specific mapping function exists and calls it if necessary.
 435 */
 436static int _pmbus_read_word_data(struct i2c_client *client, int page,
 437				 int phase, int reg)
 438{
 439	struct pmbus_data *data = i2c_get_clientdata(client);
 440	const struct pmbus_driver_info *info = data->info;
 441	int status;
 442
 443	if (info->read_word_data) {
 444		status = info->read_word_data(client, page, phase, reg);
 445		if (status != -ENODATA)
 446			return status;
 447	}
 448
 449	if (reg >= PMBUS_VIRT_BASE)
 450		return pmbus_read_virt_reg(client, page, reg);
 451
 452	return pmbus_read_word_data(client, page, phase, reg);
 453}
 454
 455/* Same as above, but without phase parameter, for use in check functions */
 456static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
 457{
 458	return _pmbus_read_word_data(client, page, 0xff, reg);
 459}
 460
 461int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
 462{
 463	int rv;
 464
 465	rv = pmbus_set_page(client, page, 0xff);
 466	if (rv < 0)
 467		return rv;
 468
 469	pmbus_wait(client);
 470	rv = i2c_smbus_read_byte_data(client, reg);
 471	pmbus_update_ts(client, false);
 472
 473	return rv;
 474}
 475EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, "PMBUS");
 476
 477int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
 478{
 479	int rv;
 480
 481	rv = pmbus_set_page(client, page, 0xff);
 482	if (rv < 0)
 483		return rv;
 484
 485	pmbus_wait(client);
 486	rv = i2c_smbus_write_byte_data(client, reg, value);
 487	pmbus_update_ts(client, true);
 488
 489	return rv;
 490}
 491EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, "PMBUS");
 492
 493int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
 494			   u8 mask, u8 value)
 495{
 496	unsigned int tmp;
 497	int rv;
 498
 499	rv = _pmbus_read_byte_data(client, page, reg);
 500	if (rv < 0)
 501		return rv;
 502
 503	tmp = (rv & ~mask) | (value & mask);
 504
 505	if (tmp != rv)
 506		rv = _pmbus_write_byte_data(client, page, reg, tmp);
 507
 508	return rv;
 509}
 510EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, "PMBUS");
 511
 512static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
 513				 char *data_buf)
 514{
 515	int rv;
 516
 517	rv = pmbus_set_page(client, page, 0xff);
 518	if (rv < 0)
 519		return rv;
 520
 521	pmbus_wait(client);
 522	rv = i2c_smbus_read_block_data(client, reg, data_buf);
 523	pmbus_update_ts(client, false);
 524
 525	return rv;
 526}
 527
 528static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
 529					      int reg)
 530{
 531	struct pmbus_sensor *sensor;
 532
 533	for (sensor = data->sensors; sensor; sensor = sensor->next) {
 534		if (sensor->page == page && sensor->reg == reg)
 535			return sensor;
 536	}
 537
 538	return ERR_PTR(-EINVAL);
 539}
 540
 541static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
 542			      enum pmbus_fan_mode mode,
 543			      bool from_cache)
 544{
 545	struct pmbus_data *data = i2c_get_clientdata(client);
 546	bool want_rpm, have_rpm;
 547	struct pmbus_sensor *s;
 548	int config;
 549	int reg;
 550
 551	want_rpm = (mode == rpm);
 552
 553	if (from_cache) {
 554		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
 555		s = pmbus_find_sensor(data, page, reg + id);
 556		if (IS_ERR(s))
 557			return PTR_ERR(s);
 558
 559		return s->data;
 560	}
 561
 562	config = _pmbus_read_byte_data(client, page,
 563				      pmbus_fan_config_registers[id]);
 564	if (config < 0)
 565		return config;
 566
 567	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
 568	if (want_rpm == have_rpm)
 569		return pmbus_read_word_data(client, page, 0xff,
 570					    pmbus_fan_command_registers[id]);
 571
 572	/* Can't sensibly map between RPM and PWM, just return zero */
 573	return 0;
 574}
 575
 576int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
 577			      enum pmbus_fan_mode mode)
 578{
 579	return pmbus_get_fan_rate(client, page, id, mode, false);
 580}
 581EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, "PMBUS");
 582
 583int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
 584			      enum pmbus_fan_mode mode)
 585{
 586	return pmbus_get_fan_rate(client, page, id, mode, true);
 587}
 588EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, "PMBUS");
 589
 590static void pmbus_clear_fault_page(struct i2c_client *client, int page)
 591{
 592	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
 593}
 594
 595void pmbus_clear_faults(struct i2c_client *client)
 596{
 597	struct pmbus_data *data = i2c_get_clientdata(client);
 598	int i;
 599
 600	for (i = 0; i < data->info->pages; i++)
 601		pmbus_clear_fault_page(client, i);
 602}
 603EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, "PMBUS");
 604
 605static int pmbus_check_status_cml(struct i2c_client *client)
 606{
 607	struct pmbus_data *data = i2c_get_clientdata(client);
 608	int status, status2;
 609
 610	status = data->read_status(client, -1);
 611	if (status < 0 || (status & PB_STATUS_CML)) {
 612		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
 613		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
 614			return -EIO;
 615	}
 616	return 0;
 617}
 618
 619static bool pmbus_check_register(struct i2c_client *client,
 620				 int (*func)(struct i2c_client *client,
 621					     int page, int reg),
 622				 int page, int reg)
 623{
 624	int rv;
 625	struct pmbus_data *data = i2c_get_clientdata(client);
 626
 627	rv = func(client, page, reg);
 628	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 629		rv = pmbus_check_status_cml(client);
 630	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
 631		data->read_status(client, -1);
 632	if (reg < PMBUS_VIRT_BASE)
 633		pmbus_clear_fault_page(client, -1);
 634	return rv >= 0;
 635}
 636
 637static bool pmbus_check_status_register(struct i2c_client *client, int page)
 638{
 639	int status;
 640	struct pmbus_data *data = i2c_get_clientdata(client);
 641
 642	status = data->read_status(client, page);
 643	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
 644	    (status & PB_STATUS_CML)) {
 645		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
 646		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
 647			status = -EIO;
 648	}
 649
 650	pmbus_clear_fault_page(client, -1);
 651	return status >= 0;
 652}
 653
 654bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
 655{
 656	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
 657}
 658EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, "PMBUS");
 659
 660bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
 661{
 662	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
 663}
 664EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, "PMBUS");
 665
 666static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
 667						      int page, int reg)
 668{
 669	int rv;
 670	struct pmbus_data *data = i2c_get_clientdata(client);
 671	char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
 672
 673	rv = pmbus_read_block_data(client, page, reg, data_buf);
 674	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 675		rv = pmbus_check_status_cml(client);
 676	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
 677		data->read_status(client, -1);
 678	pmbus_clear_fault_page(client, -1);
 679	return rv >= 0;
 680}
 
 681
 682const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
 683{
 684	struct pmbus_data *data = i2c_get_clientdata(client);
 685
 686	return data->info;
 687}
 688EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, "PMBUS");
 689
 690static int pmbus_get_status(struct i2c_client *client, int page, int reg)
 691{
 
 692	struct pmbus_data *data = i2c_get_clientdata(client);
 693	int status;
 694
 695	switch (reg) {
 696	case PMBUS_STATUS_WORD:
 697		status = data->read_status(client, page);
 698		break;
 699	default:
 700		status = _pmbus_read_byte_data(client, page, reg);
 701		break;
 702	}
 703	if (status < 0)
 704		pmbus_clear_faults(client);
 705	return status;
 706}
 707
 708static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
 709{
 710	if (sensor->data < 0 || sensor->update)
 711		sensor->data = _pmbus_read_word_data(client, sensor->page,
 712						     sensor->phase, sensor->reg);
 713}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714
 715/*
 716 * Convert ieee754 sensor values to milli- or micro-units
 717 * depending on sensor type.
 718 *
 719 * ieee754 data format:
 720 *	bit 15:		sign
 721 *	bit 10..14:	exponent
 722 *	bit 0..9:	mantissa
 723 * exponent=0:
 724 *	v=(−1)^signbit * 2^(−14) * 0.significantbits
 725 * exponent=1..30:
 726 *	v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
 727 * exponent=31:
 728 *	v=NaN
 729 *
 730 * Add the number mantissa bits into the calculations for simplicity.
 731 * To do that, add '10' to the exponent. By doing that, we can just add
 732 * 0x400 to normal values and get the expected result.
 733 */
 734static long pmbus_reg2data_ieee754(struct pmbus_data *data,
 735				   struct pmbus_sensor *sensor)
 736{
 737	int exponent;
 738	bool sign;
 739	long val;
 740
 741	/* only support half precision for now */
 742	sign = sensor->data & 0x8000;
 743	exponent = (sensor->data >> 10) & 0x1f;
 744	val = sensor->data & 0x3ff;
 745
 746	if (exponent == 0) {			/* subnormal */
 747		exponent = -(14 + 10);
 748	} else if (exponent ==  0x1f) {		/* NaN, convert to min/max */
 749		exponent = 0;
 750		val = 65504;
 751	} else {
 752		exponent -= (15 + 10);		/* normal */
 753		val |= 0x400;
 754	}
 755
 756	/* scale result to milli-units for all sensors except fans */
 757	if (sensor->class != PSC_FAN)
 758		val = val * 1000L;
 759
 760	/* scale result to micro-units for power sensors */
 761	if (sensor->class == PSC_POWER)
 762		val = val * 1000L;
 763
 764	if (exponent >= 0)
 765		val <<= exponent;
 766	else
 767		val >>= -exponent;
 768
 769	if (sign)
 770		val = -val;
 771
 772	return val;
 773}
 774
 775/*
 776 * Convert linear sensor values to milli- or micro-units
 777 * depending on sensor type.
 778 */
 779static s64 pmbus_reg2data_linear(struct pmbus_data *data,
 780				 struct pmbus_sensor *sensor)
 781{
 782	s16 exponent;
 783	s32 mantissa;
 784	s64 val;
 785
 786	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
 787		exponent = data->exponent[sensor->page];
 788		mantissa = (u16) sensor->data;
 789	} else {				/* LINEAR11 */
 790		exponent = ((s16)sensor->data) >> 11;
 791		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
 
 
 
 
 
 792	}
 793
 794	val = mantissa;
 795
 796	/* scale result to milli-units for all sensors except fans */
 797	if (sensor->class != PSC_FAN)
 798		val = val * 1000LL;
 799
 800	/* scale result to micro-units for power sensors */
 801	if (sensor->class == PSC_POWER)
 802		val = val * 1000LL;
 803
 804	if (exponent >= 0)
 805		val <<= exponent;
 806	else
 807		val >>= -exponent;
 808
 809	return val;
 810}
 811
 812/*
 813 * Convert direct sensor values to milli- or micro-units
 814 * depending on sensor type.
 815 */
 816static s64 pmbus_reg2data_direct(struct pmbus_data *data,
 817				 struct pmbus_sensor *sensor)
 818{
 819	s64 b, val = (s16)sensor->data;
 820	s32 m, R;
 821
 822	m = data->info->m[sensor->class];
 823	b = data->info->b[sensor->class];
 824	R = data->info->R[sensor->class];
 825
 826	if (m == 0)
 827		return 0;
 828
 829	/* X = 1/m * (Y * 10^-R - b) */
 830	R = -R;
 831	/* scale result to milli-units for everything but fans */
 832	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
 833		R += 3;
 834		b *= 1000;
 835	}
 836
 837	/* scale result to micro-units for power sensors */
 838	if (sensor->class == PSC_POWER) {
 839		R += 3;
 840		b *= 1000;
 841	}
 842
 843	while (R > 0) {
 844		val *= 10;
 845		R--;
 846	}
 847	while (R < 0) {
 848		val = div_s64(val + 5LL, 10L);  /* round closest */
 849		R++;
 850	}
 851
 852	val = div_s64(val - b, m);
 853	return val;
 854}
 855
 856/*
 857 * Convert VID sensor values to milli- or micro-units
 858 * depending on sensor type.
 
 859 */
 860static s64 pmbus_reg2data_vid(struct pmbus_data *data,
 861			      struct pmbus_sensor *sensor)
 862{
 863	long val = sensor->data;
 864	long rv = 0;
 865
 866	switch (data->info->vrm_version[sensor->page]) {
 867	case vr11:
 868		if (val >= 0x02 && val <= 0xb2)
 869			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
 870		break;
 871	case vr12:
 872		if (val >= 0x01)
 873			rv = 250 + (val - 1) * 5;
 874		break;
 875	case vr13:
 876		if (val >= 0x01)
 877			rv = 500 + (val - 1) * 10;
 878		break;
 879	case imvp9:
 880		if (val >= 0x01)
 881			rv = 200 + (val - 1) * 10;
 882		break;
 883	case amd625mv:
 884		if (val >= 0x0 && val <= 0xd8)
 885			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
 886		break;
 887	}
 888	return rv;
 889}
 890
 891static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
 892{
 893	s64 val;
 894
 895	if (!sensor->convert)
 896		return sensor->data;
 897
 898	switch (data->info->format[sensor->class]) {
 899	case direct:
 900		val = pmbus_reg2data_direct(data, sensor);
 901		break;
 902	case vid:
 903		val = pmbus_reg2data_vid(data, sensor);
 904		break;
 905	case ieee754:
 906		val = pmbus_reg2data_ieee754(data, sensor);
 907		break;
 908	case linear:
 909	default:
 910		val = pmbus_reg2data_linear(data, sensor);
 911		break;
 912	}
 913	return val;
 914}
 915
 916#define MAX_IEEE_MANTISSA	(0x7ff * 1000)
 917#define MIN_IEEE_MANTISSA	(0x400 * 1000)
 918
 919static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
 920				  struct pmbus_sensor *sensor, long val)
 921{
 922	u16 exponent = (15 + 10);
 923	long mantissa;
 924	u16 sign = 0;
 925
 926	/* simple case */
 927	if (val == 0)
 928		return 0;
 929
 930	if (val < 0) {
 931		sign = 0x8000;
 932		val = -val;
 933	}
 934
 935	/* Power is in uW. Convert to mW before converting. */
 936	if (sensor->class == PSC_POWER)
 937		val = DIV_ROUND_CLOSEST(val, 1000L);
 938
 939	/*
 940	 * For simplicity, convert fan data to milli-units
 941	 * before calculating the exponent.
 942	 */
 943	if (sensor->class == PSC_FAN)
 944		val = val * 1000;
 945
 946	/* Reduce large mantissa until it fits into 10 bit */
 947	while (val > MAX_IEEE_MANTISSA && exponent < 30) {
 948		exponent++;
 949		val >>= 1;
 950	}
 951	/*
 952	 * Increase small mantissa to generate valid 'normal'
 953	 * number
 954	 */
 955	while (val < MIN_IEEE_MANTISSA && exponent > 1) {
 956		exponent--;
 957		val <<= 1;
 958	}
 959
 960	/* Convert mantissa from milli-units to units */
 961	mantissa = DIV_ROUND_CLOSEST(val, 1000);
 962
 963	/*
 964	 * Ensure that the resulting number is within range.
 965	 * Valid range is 0x400..0x7ff, where bit 10 reflects
 966	 * the implied high bit in normalized ieee754 numbers.
 967	 * Set the range to 0x400..0x7ff to reflect this.
 968	 * The upper bit is then removed by the mask against
 969	 * 0x3ff in the final assignment.
 970	 */
 971	if (mantissa > 0x7ff)
 972		mantissa = 0x7ff;
 973	else if (mantissa < 0x400)
 974		mantissa = 0x400;
 975
 976	/* Convert to sign, 5 bit exponent, 10 bit mantissa */
 977	return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
 978}
 979
 980#define MAX_LIN_MANTISSA	(1023 * 1000)
 981#define MIN_LIN_MANTISSA	(511 * 1000)
 982
 983static u16 pmbus_data2reg_linear(struct pmbus_data *data,
 984				 struct pmbus_sensor *sensor, s64 val)
 985{
 986	s16 exponent = 0, mantissa;
 987	bool negative = false;
 988
 989	/* simple case */
 990	if (val == 0)
 991		return 0;
 992
 993	if (sensor->class == PSC_VOLTAGE_OUT) {
 994		/* LINEAR16 does not support negative voltages */
 995		if (val < 0)
 996			return 0;
 997
 998		/*
 999		 * For a static exponents, we don't have a choice
1000		 * but to adjust the value to it.
1001		 */
1002		if (data->exponent[sensor->page] < 0)
1003			val <<= -data->exponent[sensor->page];
1004		else
1005			val >>= data->exponent[sensor->page];
1006		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1007		return clamp_val(val, 0, 0xffff);
1008	}
1009
1010	if (val < 0) {
1011		negative = true;
1012		val = -val;
1013	}
1014
1015	/* Power is in uW. Convert to mW before converting. */
1016	if (sensor->class == PSC_POWER)
1017		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
1018
1019	/*
1020	 * For simplicity, convert fan data to milli-units
1021	 * before calculating the exponent.
1022	 */
1023	if (sensor->class == PSC_FAN)
1024		val = val * 1000LL;
1025
1026	/* Reduce large mantissa until it fits into 10 bit */
1027	while (val >= MAX_LIN_MANTISSA && exponent < 15) {
1028		exponent++;
1029		val >>= 1;
1030	}
1031	/* Increase small mantissa to improve precision */
1032	while (val < MIN_LIN_MANTISSA && exponent > -15) {
1033		exponent--;
1034		val <<= 1;
1035	}
1036
1037	/* Convert mantissa from milli-units to units */
1038	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
 
 
 
 
1039
1040	/* restore sign */
1041	if (negative)
1042		mantissa = -mantissa;
1043
1044	/* Convert to 5 bit exponent, 11 bit mantissa */
1045	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
1046}
1047
1048static u16 pmbus_data2reg_direct(struct pmbus_data *data,
1049				 struct pmbus_sensor *sensor, s64 val)
1050{
1051	s64 b;
1052	s32 m, R;
1053
1054	m = data->info->m[sensor->class];
1055	b = data->info->b[sensor->class];
1056	R = data->info->R[sensor->class];
1057
1058	/* Power is in uW. Adjust R and b. */
1059	if (sensor->class == PSC_POWER) {
1060		R -= 3;
1061		b *= 1000;
1062	}
1063
1064	/* Calculate Y = (m * X + b) * 10^R */
1065	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1066		R -= 3;		/* Adjust R and b for data in milli-units */
1067		b *= 1000;
1068	}
1069	val = val * m + b;
1070
1071	while (R > 0) {
1072		val *= 10;
1073		R--;
1074	}
1075	while (R < 0) {
1076		val = div_s64(val + 5LL, 10L);  /* round closest */
1077		R++;
1078	}
1079
1080	return (u16)clamp_val(val, S16_MIN, S16_MAX);
1081}
1082
1083static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1084			      struct pmbus_sensor *sensor, s64 val)
1085{
1086	val = clamp_val(val, 500, 1600);
1087
1088	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1089}
1090
1091static u16 pmbus_data2reg(struct pmbus_data *data,
1092			  struct pmbus_sensor *sensor, s64 val)
1093{
1094	u16 regval;
1095
1096	if (!sensor->convert)
1097		return val;
1098
1099	switch (data->info->format[sensor->class]) {
1100	case direct:
1101		regval = pmbus_data2reg_direct(data, sensor, val);
1102		break;
1103	case vid:
1104		regval = pmbus_data2reg_vid(data, sensor, val);
1105		break;
1106	case ieee754:
1107		regval = pmbus_data2reg_ieee754(data, sensor, val);
1108		break;
1109	case linear:
1110	default:
1111		regval = pmbus_data2reg_linear(data, sensor, val);
1112		break;
1113	}
1114	return regval;
1115}
1116
1117/*
1118 * Return boolean calculated from converted data.
1119 * <index> defines a status register index and mask.
1120 * The mask is in the lower 8 bits, the register index is in bits 8..23.
 
 
 
 
 
 
 
 
1121 *
1122 * The associated pmbus_boolean structure contains optional pointers to two
1123 * sensor attributes. If specified, those attributes are compared against each
1124 * other to determine if a limit has been exceeded.
1125 *
1126 * If the sensor attribute pointers are NULL, the function returns true if
1127 * (status[reg] & mask) is true.
1128 *
1129 * If sensor attribute pointers are provided, a comparison against a specified
1130 * limit has to be performed to determine the boolean result.
1131 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1132 * sensor values referenced by sensor attribute pointers s1 and s2).
1133 *
1134 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1135 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1136 *
1137 * If a negative value is stored in any of the referenced registers, this value
1138 * reflects an error code which will be returned.
1139 */
1140static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1141			     int index)
1142{
1143	struct pmbus_data *data = i2c_get_clientdata(client);
1144	struct pmbus_sensor *s1 = b->s1;
1145	struct pmbus_sensor *s2 = b->s2;
1146	u16 mask = pb_index_to_mask(index);
1147	u8 page = pb_index_to_page(index);
1148	u16 reg = pb_index_to_reg(index);
1149	int ret, status;
1150	u16 regval;
1151
1152	mutex_lock(&data->update_lock);
1153	status = pmbus_get_status(client, page, reg);
1154	if (status < 0) {
1155		ret = status;
1156		goto unlock;
1157	}
1158
1159	if (s1)
1160		pmbus_update_sensor_data(client, s1);
1161	if (s2)
1162		pmbus_update_sensor_data(client, s2);
1163
1164	regval = status & mask;
1165	if (regval) {
1166		if (data->revision >= PMBUS_REV_12) {
1167			ret = _pmbus_write_byte_data(client, page, reg, regval);
1168			if (ret)
1169				goto unlock;
1170		} else {
1171			pmbus_clear_fault_page(client, page);
1172		}
1173
 
 
 
 
 
 
 
1174	}
1175	if (s1 && s2) {
1176		s64 v1, v2;
1177
1178		if (s1->data < 0) {
1179			ret = s1->data;
1180			goto unlock;
1181		}
1182		if (s2->data < 0) {
1183			ret = s2->data;
1184			goto unlock;
1185		}
1186
1187		v1 = pmbus_reg2data(data, s1);
1188		v2 = pmbus_reg2data(data, s2);
1189		ret = !!(regval && v1 >= v2);
1190	} else {
1191		ret = !!regval;
1192	}
1193unlock:
1194	mutex_unlock(&data->update_lock);
1195	return ret;
1196}
1197
1198static ssize_t pmbus_show_boolean(struct device *dev,
1199				  struct device_attribute *da, char *buf)
1200{
1201	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1202	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1203	struct i2c_client *client = to_i2c_client(dev->parent);
1204	int val;
 
1205
1206	val = pmbus_get_boolean(client, boolean, attr->index);
1207	if (val < 0)
1208		return val;
1209	return sysfs_emit(buf, "%d\n", val);
1210}
1211
1212static ssize_t pmbus_show_sensor(struct device *dev,
1213				 struct device_attribute *devattr, char *buf)
1214{
1215	struct i2c_client *client = to_i2c_client(dev->parent);
1216	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1217	struct pmbus_data *data = i2c_get_clientdata(client);
1218	ssize_t ret;
1219
1220	mutex_lock(&data->update_lock);
1221	pmbus_update_sensor_data(client, sensor);
1222	if (sensor->data < 0)
1223		ret = sensor->data;
1224	else
1225		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1226	mutex_unlock(&data->update_lock);
1227	return ret;
1228}
1229
1230static ssize_t pmbus_set_sensor(struct device *dev,
1231				struct device_attribute *devattr,
1232				const char *buf, size_t count)
1233{
1234	struct i2c_client *client = to_i2c_client(dev->parent);
 
1235	struct pmbus_data *data = i2c_get_clientdata(client);
1236	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1237	ssize_t rv = count;
1238	s64 val;
1239	int ret;
1240	u16 regval;
1241
1242	if (kstrtos64(buf, 10, &val) < 0)
1243		return -EINVAL;
1244
1245	mutex_lock(&data->update_lock);
1246	regval = pmbus_data2reg(data, sensor, val);
1247	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1248	if (ret < 0)
1249		rv = ret;
1250	else
1251		sensor->data = -ENODATA;
1252	mutex_unlock(&data->update_lock);
1253	return rv;
1254}
1255
1256static ssize_t pmbus_show_label(struct device *dev,
1257				struct device_attribute *da, char *buf)
1258{
1259	struct pmbus_label *label = to_pmbus_label(da);
 
 
1260
1261	return sysfs_emit(buf, "%s\n", label->label);
 
1262}
1263
1264static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1265{
1266	if (data->num_attributes >= data->max_attributes - 1) {
1267		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1268		void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1269						      new_max_attrs, sizeof(void *),
1270						      GFP_KERNEL);
1271		if (!new_attrs)
1272			return -ENOMEM;
1273		data->group.attrs = new_attrs;
1274		data->max_attributes = new_max_attrs;
1275	}
1276
1277	data->group.attrs[data->num_attributes++] = attr;
1278	data->group.attrs[data->num_attributes] = NULL;
1279	return 0;
1280}
1281
1282static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1283				const char *name,
1284				umode_t mode,
1285				ssize_t (*show)(struct device *dev,
1286						struct device_attribute *attr,
1287						char *buf),
1288				ssize_t (*store)(struct device *dev,
1289						 struct device_attribute *attr,
1290						 const char *buf, size_t count))
1291{
1292	sysfs_attr_init(&dev_attr->attr);
1293	dev_attr->attr.name = name;
1294	dev_attr->attr.mode = mode;
1295	dev_attr->show = show;
1296	dev_attr->store = store;
1297}
1298
1299static void pmbus_attr_init(struct sensor_device_attribute *a,
1300			    const char *name,
1301			    umode_t mode,
1302			    ssize_t (*show)(struct device *dev,
1303					    struct device_attribute *attr,
1304					    char *buf),
1305			    ssize_t (*store)(struct device *dev,
1306					     struct device_attribute *attr,
1307					     const char *buf, size_t count),
1308			    int idx)
1309{
1310	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1311	a->index = idx;
1312}
1313
1314static int pmbus_add_boolean(struct pmbus_data *data,
1315			     const char *name, const char *type, int seq,
1316			     struct pmbus_sensor *s1,
1317			     struct pmbus_sensor *s2,
1318			     u8 page, u16 reg, u16 mask)
1319{
1320	struct pmbus_boolean *boolean;
1321	struct sensor_device_attribute *a;
1322
1323	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1324		return -EINVAL;
1325
1326	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1327	if (!boolean)
1328		return -ENOMEM;
1329
1330	a = &boolean->attribute;
1331
1332	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1333		 name, seq, type);
1334	boolean->s1 = s1;
1335	boolean->s2 = s2;
1336	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1337			pb_reg_to_index(page, reg, mask));
1338
1339	return pmbus_add_attribute(data, &a->dev_attr.attr);
1340}
1341
1342/* of thermal for pmbus temperature sensors */
1343struct pmbus_thermal_data {
1344	struct pmbus_data *pmbus_data;
1345	struct pmbus_sensor *sensor;
1346};
1347
1348static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1349{
1350	struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1351	struct pmbus_sensor *sensor = tdata->sensor;
1352	struct pmbus_data *pmbus_data = tdata->pmbus_data;
1353	struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1354	struct device *dev = pmbus_data->hwmon_dev;
1355	int ret = 0;
1356
1357	if (!dev) {
1358		/* May not even get to hwmon yet */
1359		*temp = 0;
1360		return 0;
1361	}
1362
1363	mutex_lock(&pmbus_data->update_lock);
1364	pmbus_update_sensor_data(client, sensor);
1365	if (sensor->data < 0)
1366		ret = sensor->data;
1367	else
1368		*temp = (int)pmbus_reg2data(pmbus_data, sensor);
1369	mutex_unlock(&pmbus_data->update_lock);
1370
1371	return ret;
1372}
1373
1374static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1375	.get_temp = pmbus_thermal_get_temp,
1376};
1377
1378static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1379				    struct pmbus_sensor *sensor, int index)
1380{
1381	struct device *dev = pmbus_data->dev;
1382	struct pmbus_thermal_data *tdata;
1383	struct thermal_zone_device *tzd;
1384
1385	tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1386	if (!tdata)
1387		return -ENOMEM;
1388
1389	tdata->sensor = sensor;
1390	tdata->pmbus_data = pmbus_data;
1391
1392	tzd = devm_thermal_of_zone_register(dev, index, tdata,
1393					    &pmbus_thermal_ops);
1394	/*
1395	 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1396	 * so ignore that error but forward any other error.
1397	 */
1398	if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1399		return PTR_ERR(tzd);
1400
1401	return 0;
1402}
1403
1404static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1405					     const char *name, const char *type,
1406					     int seq, int page, int phase,
1407					     int reg,
1408					     enum pmbus_sensor_classes class,
1409					     bool update, bool readonly,
1410					     bool convert)
1411{
1412	struct pmbus_sensor *sensor;
1413	struct device_attribute *a;
1414
1415	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1416	if (!sensor)
1417		return NULL;
1418	a = &sensor->attribute;
1419
1420	if (type)
1421		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1422			 name, seq, type);
1423	else
1424		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1425			 name, seq);
1426
1427	if (data->flags & PMBUS_WRITE_PROTECTED)
1428		readonly = true;
1429
 
 
 
1430	sensor->page = page;
1431	sensor->phase = phase;
1432	sensor->reg = reg;
1433	sensor->class = class;
1434	sensor->update = update;
1435	sensor->convert = convert;
1436	sensor->data = -ENODATA;
1437	pmbus_dev_attr_init(a, sensor->name,
1438			    readonly ? 0444 : 0644,
1439			    pmbus_show_sensor, pmbus_set_sensor);
 
 
 
1440
1441	if (pmbus_add_attribute(data, &a->attr))
1442		return NULL;
 
 
 
1443
1444	sensor->next = data->sensors;
1445	data->sensors = sensor;
1446
1447	/* temperature sensors with _input values are registered with thermal */
1448	if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1449		pmbus_thermal_add_sensor(data, sensor, seq);
 
 
 
 
1450
1451	return sensor;
 
1452}
1453
1454static int pmbus_add_label(struct pmbus_data *data,
1455			   const char *name, int seq,
1456			   const char *lstring, int index, int phase)
 
 
 
1457{
1458	struct pmbus_label *label;
1459	struct device_attribute *a;
1460
1461	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1462	if (!label)
1463		return -ENOMEM;
1464
1465	a = &label->attribute;
1466
1467	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1468	if (!index) {
1469		if (phase == 0xff)
1470			strncpy(label->label, lstring,
1471				sizeof(label->label) - 1);
1472		else
1473			snprintf(label->label, sizeof(label->label), "%s.%d",
1474				 lstring, phase);
1475	} else {
1476		if (phase == 0xff)
1477			snprintf(label->label, sizeof(label->label), "%s%d",
1478				 lstring, index);
1479		else
1480			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1481				 lstring, index, phase);
1482	}
1483
1484	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1485	return pmbus_add_attribute(data, &a->attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486}
1487
1488/*
1489 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1490 */
1491
1492/*
1493 * The pmbus_limit_attr structure describes a single limit attribute
1494 * and its associated alarm attribute.
1495 */
1496struct pmbus_limit_attr {
1497	u16 reg;		/* Limit register */
1498	u16 sbit;		/* Alarm attribute status bit */
1499	bool update;		/* True if register needs updates */
1500	bool low;		/* True if low limit; for limits with compare
1501				   functions only */
1502	const char *attr;	/* Attribute name */
1503	const char *alarm;	/* Alarm attribute name */
 
1504};
1505
1506/*
1507 * The pmbus_sensor_attr structure describes one sensor attribute. This
1508 * description includes a reference to the associated limit attributes.
1509 */
1510struct pmbus_sensor_attr {
1511	u16 reg;			/* sensor register */
1512	u16 gbit;			/* generic status bit */
1513	u8 nlimit;			/* # of limit registers */
1514	enum pmbus_sensor_classes class;/* sensor class */
1515	const char *label;		/* sensor label */
1516	bool paged;			/* true if paged sensor */
1517	bool update;			/* true if update needed */
1518	bool compare;			/* true if compare function needed */
1519	u32 func;			/* sensor mask */
1520	u32 sfunc;			/* sensor status mask */
1521	int sreg;			/* status register */
 
1522	const struct pmbus_limit_attr *limit;/* limit registers */
 
1523};
1524
1525/*
1526 * Add a set of limit attributes and, if supported, the associated
1527 * alarm attributes.
1528 * returns 0 if no alarm register found, 1 if an alarm register was found,
1529 * < 0 on errors.
1530 */
1531static int pmbus_add_limit_attrs(struct i2c_client *client,
1532				 struct pmbus_data *data,
1533				 const struct pmbus_driver_info *info,
1534				 const char *name, int index, int page,
1535				 struct pmbus_sensor *base,
1536				 const struct pmbus_sensor_attr *attr)
1537{
1538	const struct pmbus_limit_attr *l = attr->limit;
1539	int nlimit = attr->nlimit;
1540	int have_alarm = 0;
1541	int i, ret;
1542	struct pmbus_sensor *curr;
1543
1544	for (i = 0; i < nlimit; i++) {
1545		if (pmbus_check_word_register(client, page, l->reg)) {
1546			curr = pmbus_add_sensor(data, name, l->attr, index,
1547						page, 0xff, l->reg, attr->class,
1548						attr->update || l->update,
1549						false, true);
1550			if (!curr)
1551				return -ENOMEM;
1552			if (l->sbit && (info->func[page] & attr->sfunc)) {
1553				ret = pmbus_add_boolean(data, name,
1554					l->alarm, index,
1555					attr->compare ?  l->low ? curr : base
1556						      : NULL,
1557					attr->compare ? l->low ? base : curr
1558						      : NULL,
1559					page, attr->sreg, l->sbit);
1560				if (ret)
1561					return ret;
1562				have_alarm = 1;
 
 
1563			}
1564		}
1565		l++;
1566	}
1567	return have_alarm;
1568}
1569
1570static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1571				      struct pmbus_data *data,
1572				      const struct pmbus_driver_info *info,
1573				      const char *name,
1574				      int index, int page, int phase,
1575				      const struct pmbus_sensor_attr *attr,
1576				      bool paged)
1577{
1578	struct pmbus_sensor *base;
1579	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1580	int ret;
1581
1582	if (attr->label) {
1583		ret = pmbus_add_label(data, name, index, attr->label,
1584				      paged ? page + 1 : 0, phase);
1585		if (ret)
1586			return ret;
1587	}
1588	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1589				attr->reg, attr->class, true, true, true);
1590	if (!base)
1591		return -ENOMEM;
1592	/* No limit and alarm attributes for phase specific sensors */
1593	if (attr->sfunc && phase == 0xff) {
1594		ret = pmbus_add_limit_attrs(client, data, info, name,
1595					    index, page, base, attr);
1596		if (ret < 0)
1597			return ret;
1598		/*
1599		 * Add generic alarm attribute only if there are no individual
1600		 * alarm attributes, if there is a global alarm bit, and if
1601		 * the generic status register (word or byte, depending on
1602		 * which global bit is set) for this page is accessible.
1603		 */
1604		if (!ret && attr->gbit &&
1605		    (!upper || data->has_status_word) &&
1606		    pmbus_check_status_register(client, page)) {
1607			ret = pmbus_add_boolean(data, name, "alarm", index,
1608						NULL, NULL,
1609						page, PMBUS_STATUS_WORD,
1610						attr->gbit);
1611			if (ret)
1612				return ret;
1613		}
1614	}
1615	return 0;
1616}
1617
1618static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1619				  const struct pmbus_sensor_attr *attr)
1620{
1621	int p;
1622
1623	if (attr->paged)
1624		return true;
1625
1626	/*
1627	 * Some attributes may be present on more than one page despite
1628	 * not being marked with the paged attribute. If that is the case,
1629	 * then treat the sensor as being paged and add the page suffix to the
1630	 * attribute name.
1631	 * We don't just add the paged attribute to all such attributes, in
1632	 * order to maintain the un-suffixed labels in the case where the
1633	 * attribute is only on page 0.
1634	 */
1635	for (p = 1; p < info->pages; p++) {
1636		if (info->func[p] & attr->func)
1637			return true;
1638	}
1639	return false;
1640}
1641
1642static int pmbus_add_sensor_attrs(struct i2c_client *client,
1643				  struct pmbus_data *data,
1644				  const char *name,
1645				  const struct pmbus_sensor_attr *attrs,
1646				  int nattrs)
1647{
1648	const struct pmbus_driver_info *info = data->info;
1649	int index, i;
1650	int ret;
1651
1652	index = 1;
1653	for (i = 0; i < nattrs; i++) {
1654		int page, pages;
1655		bool paged = pmbus_sensor_is_paged(info, attrs);
1656
1657		pages = paged ? info->pages : 1;
1658		for (page = 0; page < pages; page++) {
1659			if (info->func[page] & attrs->func) {
1660				ret = pmbus_add_sensor_attrs_one(client, data, info,
1661								 name, index, page,
1662								 0xff, attrs, paged);
1663				if (ret)
1664					return ret;
1665				index++;
1666			}
1667			if (info->phases[page]) {
1668				int phase;
1669
1670				for (phase = 0; phase < info->phases[page];
1671				     phase++) {
1672					if (!(info->pfunc[phase] & attrs->func))
1673						continue;
1674					ret = pmbus_add_sensor_attrs_one(client,
1675						data, info, name, index, page,
1676						phase, attrs, paged);
1677					if (ret)
1678						return ret;
1679					index++;
1680				}
1681			}
1682		}
1683		attrs++;
1684	}
1685	return 0;
1686}
1687
1688static const struct pmbus_limit_attr vin_limit_attrs[] = {
1689	{
1690		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1691		.attr = "min",
1692		.alarm = "min_alarm",
1693		.sbit = PB_VOLTAGE_UV_WARNING,
1694	}, {
1695		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1696		.attr = "lcrit",
1697		.alarm = "lcrit_alarm",
1698		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1699	}, {
1700		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1701		.attr = "max",
1702		.alarm = "max_alarm",
1703		.sbit = PB_VOLTAGE_OV_WARNING,
1704	}, {
1705		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1706		.attr = "crit",
1707		.alarm = "crit_alarm",
1708		.sbit = PB_VOLTAGE_OV_FAULT,
1709	}, {
1710		.reg = PMBUS_VIRT_READ_VIN_AVG,
1711		.update = true,
1712		.attr = "average",
1713	}, {
1714		.reg = PMBUS_VIRT_READ_VIN_MIN,
1715		.update = true,
1716		.attr = "lowest",
1717	}, {
1718		.reg = PMBUS_VIRT_READ_VIN_MAX,
1719		.update = true,
1720		.attr = "highest",
1721	}, {
1722		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1723		.attr = "reset_history",
1724	}, {
1725		.reg = PMBUS_MFR_VIN_MIN,
1726		.attr = "rated_min",
1727	}, {
1728		.reg = PMBUS_MFR_VIN_MAX,
1729		.attr = "rated_max",
1730	},
1731};
1732
1733static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1734	{
1735		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1736		.attr = "min",
1737		.alarm = "min_alarm",
1738		.sbit = PB_VOLTAGE_UV_WARNING,
1739	}, {
1740		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1741		.attr = "lcrit",
1742		.alarm = "lcrit_alarm",
1743		.sbit = PB_VOLTAGE_UV_FAULT,
1744	}, {
1745		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1746		.attr = "max",
1747		.alarm = "max_alarm",
1748		.sbit = PB_VOLTAGE_OV_WARNING,
1749	}, {
1750		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1751		.attr = "crit",
1752		.alarm = "crit_alarm",
1753		.sbit = PB_VOLTAGE_OV_FAULT,
1754	}
1755};
1756
1757static const struct pmbus_limit_attr vout_limit_attrs[] = {
1758	{
1759		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1760		.attr = "min",
1761		.alarm = "min_alarm",
1762		.sbit = PB_VOLTAGE_UV_WARNING,
1763	}, {
1764		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1765		.attr = "lcrit",
1766		.alarm = "lcrit_alarm",
1767		.sbit = PB_VOLTAGE_UV_FAULT,
1768	}, {
1769		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1770		.attr = "max",
1771		.alarm = "max_alarm",
1772		.sbit = PB_VOLTAGE_OV_WARNING,
1773	}, {
1774		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1775		.attr = "crit",
1776		.alarm = "crit_alarm",
1777		.sbit = PB_VOLTAGE_OV_FAULT,
1778	}, {
1779		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1780		.update = true,
1781		.attr = "average",
1782	}, {
1783		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1784		.update = true,
1785		.attr = "lowest",
1786	}, {
1787		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1788		.update = true,
1789		.attr = "highest",
1790	}, {
1791		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1792		.attr = "reset_history",
1793	}, {
1794		.reg = PMBUS_MFR_VOUT_MIN,
1795		.attr = "rated_min",
1796	}, {
1797		.reg = PMBUS_MFR_VOUT_MAX,
1798		.attr = "rated_max",
1799	},
1800};
1801
1802static const struct pmbus_sensor_attr voltage_attributes[] = {
1803	{
1804		.reg = PMBUS_READ_VIN,
1805		.class = PSC_VOLTAGE_IN,
1806		.label = "vin",
1807		.func = PMBUS_HAVE_VIN,
1808		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1809		.sreg = PMBUS_STATUS_INPUT,
1810		.gbit = PB_STATUS_VIN_UV,
1811		.limit = vin_limit_attrs,
1812		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1813	}, {
1814		.reg = PMBUS_VIRT_READ_VMON,
1815		.class = PSC_VOLTAGE_IN,
1816		.label = "vmon",
1817		.func = PMBUS_HAVE_VMON,
1818		.sfunc = PMBUS_HAVE_STATUS_VMON,
1819		.sreg = PMBUS_VIRT_STATUS_VMON,
1820		.limit = vmon_limit_attrs,
1821		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1822	}, {
1823		.reg = PMBUS_READ_VCAP,
1824		.class = PSC_VOLTAGE_IN,
1825		.label = "vcap",
1826		.func = PMBUS_HAVE_VCAP,
1827	}, {
1828		.reg = PMBUS_READ_VOUT,
1829		.class = PSC_VOLTAGE_OUT,
1830		.label = "vout",
1831		.paged = true,
1832		.func = PMBUS_HAVE_VOUT,
1833		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1834		.sreg = PMBUS_STATUS_VOUT,
1835		.gbit = PB_STATUS_VOUT_OV,
1836		.limit = vout_limit_attrs,
1837		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1838	}
1839};
1840
1841/* Current attributes */
1842
1843static const struct pmbus_limit_attr iin_limit_attrs[] = {
1844	{
1845		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1846		.attr = "max",
1847		.alarm = "max_alarm",
1848		.sbit = PB_IIN_OC_WARNING,
1849	}, {
1850		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1851		.attr = "crit",
1852		.alarm = "crit_alarm",
1853		.sbit = PB_IIN_OC_FAULT,
1854	}, {
1855		.reg = PMBUS_VIRT_READ_IIN_AVG,
1856		.update = true,
1857		.attr = "average",
1858	}, {
1859		.reg = PMBUS_VIRT_READ_IIN_MIN,
1860		.update = true,
1861		.attr = "lowest",
1862	}, {
1863		.reg = PMBUS_VIRT_READ_IIN_MAX,
1864		.update = true,
1865		.attr = "highest",
1866	}, {
1867		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1868		.attr = "reset_history",
1869	}, {
1870		.reg = PMBUS_MFR_IIN_MAX,
1871		.attr = "rated_max",
1872	},
1873};
1874
1875static const struct pmbus_limit_attr iout_limit_attrs[] = {
1876	{
1877		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1878		.attr = "max",
1879		.alarm = "max_alarm",
1880		.sbit = PB_IOUT_OC_WARNING,
1881	}, {
1882		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1883		.attr = "lcrit",
1884		.alarm = "lcrit_alarm",
1885		.sbit = PB_IOUT_UC_FAULT,
1886	}, {
1887		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1888		.attr = "crit",
1889		.alarm = "crit_alarm",
1890		.sbit = PB_IOUT_OC_FAULT,
1891	}, {
1892		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1893		.update = true,
1894		.attr = "average",
1895	}, {
1896		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1897		.update = true,
1898		.attr = "lowest",
1899	}, {
1900		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1901		.update = true,
1902		.attr = "highest",
1903	}, {
1904		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1905		.attr = "reset_history",
1906	}, {
1907		.reg = PMBUS_MFR_IOUT_MAX,
1908		.attr = "rated_max",
1909	},
1910};
1911
1912static const struct pmbus_sensor_attr current_attributes[] = {
1913	{
1914		.reg = PMBUS_READ_IIN,
1915		.class = PSC_CURRENT_IN,
1916		.label = "iin",
1917		.func = PMBUS_HAVE_IIN,
1918		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1919		.sreg = PMBUS_STATUS_INPUT,
1920		.gbit = PB_STATUS_INPUT,
1921		.limit = iin_limit_attrs,
1922		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1923	}, {
1924		.reg = PMBUS_READ_IOUT,
1925		.class = PSC_CURRENT_OUT,
1926		.label = "iout",
1927		.paged = true,
1928		.func = PMBUS_HAVE_IOUT,
1929		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1930		.sreg = PMBUS_STATUS_IOUT,
1931		.gbit = PB_STATUS_IOUT_OC,
1932		.limit = iout_limit_attrs,
1933		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1934	}
1935};
1936
1937/* Power attributes */
1938
1939static const struct pmbus_limit_attr pin_limit_attrs[] = {
1940	{
1941		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1942		.attr = "max",
1943		.alarm = "alarm",
1944		.sbit = PB_PIN_OP_WARNING,
1945	}, {
1946		.reg = PMBUS_VIRT_READ_PIN_AVG,
1947		.update = true,
1948		.attr = "average",
1949	}, {
1950		.reg = PMBUS_VIRT_READ_PIN_MIN,
1951		.update = true,
1952		.attr = "input_lowest",
1953	}, {
1954		.reg = PMBUS_VIRT_READ_PIN_MAX,
1955		.update = true,
1956		.attr = "input_highest",
1957	}, {
1958		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1959		.attr = "reset_history",
1960	}, {
1961		.reg = PMBUS_MFR_PIN_MAX,
1962		.attr = "rated_max",
1963	},
1964};
1965
1966static const struct pmbus_limit_attr pout_limit_attrs[] = {
1967	{
1968		.reg = PMBUS_POUT_MAX,
1969		.attr = "cap",
1970		.alarm = "cap_alarm",
1971		.sbit = PB_POWER_LIMITING,
1972	}, {
1973		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1974		.attr = "max",
1975		.alarm = "max_alarm",
1976		.sbit = PB_POUT_OP_WARNING,
1977	}, {
1978		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1979		.attr = "crit",
1980		.alarm = "crit_alarm",
1981		.sbit = PB_POUT_OP_FAULT,
1982	}, {
1983		.reg = PMBUS_VIRT_READ_POUT_AVG,
1984		.update = true,
1985		.attr = "average",
1986	}, {
1987		.reg = PMBUS_VIRT_READ_POUT_MIN,
1988		.update = true,
1989		.attr = "input_lowest",
1990	}, {
1991		.reg = PMBUS_VIRT_READ_POUT_MAX,
1992		.update = true,
1993		.attr = "input_highest",
1994	}, {
1995		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1996		.attr = "reset_history",
1997	}, {
1998		.reg = PMBUS_MFR_POUT_MAX,
1999		.attr = "rated_max",
2000	},
2001};
2002
2003static const struct pmbus_sensor_attr power_attributes[] = {
2004	{
2005		.reg = PMBUS_READ_PIN,
2006		.class = PSC_POWER,
2007		.label = "pin",
2008		.func = PMBUS_HAVE_PIN,
2009		.sfunc = PMBUS_HAVE_STATUS_INPUT,
2010		.sreg = PMBUS_STATUS_INPUT,
2011		.gbit = PB_STATUS_INPUT,
2012		.limit = pin_limit_attrs,
2013		.nlimit = ARRAY_SIZE(pin_limit_attrs),
2014	}, {
2015		.reg = PMBUS_READ_POUT,
2016		.class = PSC_POWER,
2017		.label = "pout",
2018		.paged = true,
2019		.func = PMBUS_HAVE_POUT,
2020		.sfunc = PMBUS_HAVE_STATUS_IOUT,
2021		.sreg = PMBUS_STATUS_IOUT,
2022		.limit = pout_limit_attrs,
2023		.nlimit = ARRAY_SIZE(pout_limit_attrs),
2024	}
2025};
2026
2027/* Temperature atributes */
2028
2029static const struct pmbus_limit_attr temp_limit_attrs[] = {
2030	{
2031		.reg = PMBUS_UT_WARN_LIMIT,
2032		.low = true,
2033		.attr = "min",
2034		.alarm = "min_alarm",
2035		.sbit = PB_TEMP_UT_WARNING,
2036	}, {
2037		.reg = PMBUS_UT_FAULT_LIMIT,
2038		.low = true,
2039		.attr = "lcrit",
2040		.alarm = "lcrit_alarm",
2041		.sbit = PB_TEMP_UT_FAULT,
2042	}, {
2043		.reg = PMBUS_OT_WARN_LIMIT,
2044		.attr = "max",
2045		.alarm = "max_alarm",
2046		.sbit = PB_TEMP_OT_WARNING,
2047	}, {
2048		.reg = PMBUS_OT_FAULT_LIMIT,
2049		.attr = "crit",
2050		.alarm = "crit_alarm",
2051		.sbit = PB_TEMP_OT_FAULT,
2052	}, {
2053		.reg = PMBUS_VIRT_READ_TEMP_MIN,
2054		.attr = "lowest",
2055	}, {
2056		.reg = PMBUS_VIRT_READ_TEMP_AVG,
2057		.attr = "average",
2058	}, {
2059		.reg = PMBUS_VIRT_READ_TEMP_MAX,
2060		.attr = "highest",
2061	}, {
2062		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
2063		.attr = "reset_history",
2064	}, {
2065		.reg = PMBUS_MFR_MAX_TEMP_1,
2066		.attr = "rated_max",
2067	},
2068};
2069
2070static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2071	{
2072		.reg = PMBUS_UT_WARN_LIMIT,
2073		.low = true,
2074		.attr = "min",
2075		.alarm = "min_alarm",
2076		.sbit = PB_TEMP_UT_WARNING,
2077	}, {
2078		.reg = PMBUS_UT_FAULT_LIMIT,
2079		.low = true,
2080		.attr = "lcrit",
2081		.alarm = "lcrit_alarm",
2082		.sbit = PB_TEMP_UT_FAULT,
2083	}, {
2084		.reg = PMBUS_OT_WARN_LIMIT,
2085		.attr = "max",
2086		.alarm = "max_alarm",
2087		.sbit = PB_TEMP_OT_WARNING,
2088	}, {
2089		.reg = PMBUS_OT_FAULT_LIMIT,
2090		.attr = "crit",
2091		.alarm = "crit_alarm",
2092		.sbit = PB_TEMP_OT_FAULT,
2093	}, {
2094		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
2095		.attr = "lowest",
2096	}, {
2097		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
2098		.attr = "average",
2099	}, {
2100		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
2101		.attr = "highest",
2102	}, {
2103		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2104		.attr = "reset_history",
2105	}, {
2106		.reg = PMBUS_MFR_MAX_TEMP_2,
2107		.attr = "rated_max",
2108	},
2109};
2110
2111static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2112	{
2113		.reg = PMBUS_UT_WARN_LIMIT,
2114		.low = true,
2115		.attr = "min",
2116		.alarm = "min_alarm",
2117		.sbit = PB_TEMP_UT_WARNING,
2118	}, {
2119		.reg = PMBUS_UT_FAULT_LIMIT,
2120		.low = true,
2121		.attr = "lcrit",
2122		.alarm = "lcrit_alarm",
2123		.sbit = PB_TEMP_UT_FAULT,
2124	}, {
2125		.reg = PMBUS_OT_WARN_LIMIT,
2126		.attr = "max",
2127		.alarm = "max_alarm",
2128		.sbit = PB_TEMP_OT_WARNING,
2129	}, {
2130		.reg = PMBUS_OT_FAULT_LIMIT,
2131		.attr = "crit",
2132		.alarm = "crit_alarm",
2133		.sbit = PB_TEMP_OT_FAULT,
2134	}, {
2135		.reg = PMBUS_MFR_MAX_TEMP_3,
2136		.attr = "rated_max",
2137	},
2138};
2139
2140static const struct pmbus_sensor_attr temp_attributes[] = {
2141	{
2142		.reg = PMBUS_READ_TEMPERATURE_1,
2143		.class = PSC_TEMPERATURE,
2144		.paged = true,
2145		.update = true,
2146		.compare = true,
2147		.func = PMBUS_HAVE_TEMP,
2148		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2149		.sreg = PMBUS_STATUS_TEMPERATURE,
2150		.gbit = PB_STATUS_TEMPERATURE,
2151		.limit = temp_limit_attrs,
2152		.nlimit = ARRAY_SIZE(temp_limit_attrs),
2153	}, {
2154		.reg = PMBUS_READ_TEMPERATURE_2,
2155		.class = PSC_TEMPERATURE,
2156		.paged = true,
2157		.update = true,
2158		.compare = true,
2159		.func = PMBUS_HAVE_TEMP2,
2160		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2161		.sreg = PMBUS_STATUS_TEMPERATURE,
2162		.gbit = PB_STATUS_TEMPERATURE,
2163		.limit = temp_limit_attrs2,
2164		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
2165	}, {
2166		.reg = PMBUS_READ_TEMPERATURE_3,
2167		.class = PSC_TEMPERATURE,
2168		.paged = true,
2169		.update = true,
2170		.compare = true,
2171		.func = PMBUS_HAVE_TEMP3,
2172		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2173		.sreg = PMBUS_STATUS_TEMPERATURE,
2174		.gbit = PB_STATUS_TEMPERATURE,
2175		.limit = temp_limit_attrs3,
2176		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
2177	}
2178};
2179
2180static const int pmbus_fan_registers[] = {
2181	PMBUS_READ_FAN_SPEED_1,
2182	PMBUS_READ_FAN_SPEED_2,
2183	PMBUS_READ_FAN_SPEED_3,
2184	PMBUS_READ_FAN_SPEED_4
2185};
2186
 
 
 
 
 
 
 
2187static const int pmbus_fan_status_registers[] = {
2188	PMBUS_STATUS_FAN_12,
2189	PMBUS_STATUS_FAN_12,
2190	PMBUS_STATUS_FAN_34,
2191	PMBUS_STATUS_FAN_34
2192};
2193
2194static const u32 pmbus_fan_flags[] = {
2195	PMBUS_HAVE_FAN12,
2196	PMBUS_HAVE_FAN12,
2197	PMBUS_HAVE_FAN34,
2198	PMBUS_HAVE_FAN34
2199};
2200
2201static const u32 pmbus_fan_status_flags[] = {
2202	PMBUS_HAVE_STATUS_FAN12,
2203	PMBUS_HAVE_STATUS_FAN12,
2204	PMBUS_HAVE_STATUS_FAN34,
2205	PMBUS_HAVE_STATUS_FAN34
2206};
2207
2208/* Fans */
2209
2210/* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
2211static int pmbus_add_fan_ctrl(struct i2c_client *client,
2212		struct pmbus_data *data, int index, int page, int id,
2213		u8 config)
2214{
2215	struct pmbus_sensor *sensor;
2216
2217	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2218				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2219				  false, false, true);
2220
2221	if (!sensor)
2222		return -ENOMEM;
2223
2224	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2225			(data->info->func[page] & PMBUS_HAVE_PWM34)))
2226		return 0;
2227
2228	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2229				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2230				  false, false, true);
2231
2232	if (!sensor)
2233		return -ENOMEM;
2234
2235	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2236				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2237				  true, false, false);
2238
2239	if (!sensor)
2240		return -ENOMEM;
2241
2242	return 0;
2243}
2244
2245static int pmbus_add_fan_attributes(struct i2c_client *client,
2246				    struct pmbus_data *data)
2247{
2248	const struct pmbus_driver_info *info = data->info;
2249	int index = 1;
2250	int page;
2251	int ret;
2252
2253	for (page = 0; page < info->pages; page++) {
2254		int f;
2255
2256		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2257			int regval;
2258
2259			if (!(info->func[page] & pmbus_fan_flags[f]))
2260				break;
2261
2262			if (!pmbus_check_word_register(client, page,
2263						       pmbus_fan_registers[f]))
2264				break;
2265
2266			/*
2267			 * Skip fan if not installed.
2268			 * Each fan configuration register covers multiple fans,
2269			 * so we have to do some magic.
2270			 */
2271			regval = _pmbus_read_byte_data(client, page,
2272				pmbus_fan_config_registers[f]);
2273			if (regval < 0 ||
2274			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2275				continue;
2276
2277			if (pmbus_add_sensor(data, "fan", "input", index,
2278					     page, 0xff, pmbus_fan_registers[f],
2279					     PSC_FAN, true, true, true) == NULL)
2280				return -ENOMEM;
2281
2282			/* Fan control */
2283			if (pmbus_check_word_register(client, page,
2284					pmbus_fan_command_registers[f])) {
2285				ret = pmbus_add_fan_ctrl(client, data, index,
2286							 page, f, regval);
2287				if (ret < 0)
2288					return ret;
2289			}
2290
2291			/*
2292			 * Each fan status register covers multiple fans,
2293			 * so we have to do some magic.
2294			 */
2295			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2296			    pmbus_check_byte_register(client,
2297					page, pmbus_fan_status_registers[f])) {
2298				int reg;
2299
2300				if (f > 1)	/* fan 3, 4 */
2301					reg = PMBUS_STATUS_FAN_34;
2302				else
2303					reg = PMBUS_STATUS_FAN_12;
2304				ret = pmbus_add_boolean(data, "fan",
2305					"alarm", index, NULL, NULL, page, reg,
2306					PB_FAN_FAN1_WARNING >> (f & 1));
2307				if (ret)
2308					return ret;
2309				ret = pmbus_add_boolean(data, "fan",
2310					"fault", index, NULL, NULL, page, reg,
2311					PB_FAN_FAN1_FAULT >> (f & 1));
2312				if (ret)
2313					return ret;
2314			}
2315			index++;
2316		}
2317	}
2318	return 0;
2319}
2320
2321struct pmbus_samples_attr {
2322	int reg;
2323	char *name;
2324};
2325
2326struct pmbus_samples_reg {
2327	int page;
2328	struct pmbus_samples_attr *attr;
2329	struct device_attribute dev_attr;
2330};
2331
2332static struct pmbus_samples_attr pmbus_samples_registers[] = {
2333	{
2334		.reg = PMBUS_VIRT_SAMPLES,
2335		.name = "samples",
2336	}, {
2337		.reg = PMBUS_VIRT_IN_SAMPLES,
2338		.name = "in_samples",
2339	}, {
2340		.reg = PMBUS_VIRT_CURR_SAMPLES,
2341		.name = "curr_samples",
2342	}, {
2343		.reg = PMBUS_VIRT_POWER_SAMPLES,
2344		.name = "power_samples",
2345	}, {
2346		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2347		.name = "temp_samples",
2348	}
2349};
2350
2351#define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2352
2353static ssize_t pmbus_show_samples(struct device *dev,
2354				  struct device_attribute *devattr, char *buf)
2355{
2356	int val;
2357	struct i2c_client *client = to_i2c_client(dev->parent);
2358	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2359	struct pmbus_data *data = i2c_get_clientdata(client);
2360
2361	mutex_lock(&data->update_lock);
2362	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2363	mutex_unlock(&data->update_lock);
2364	if (val < 0)
2365		return val;
2366
2367	return sysfs_emit(buf, "%d\n", val);
2368}
2369
2370static ssize_t pmbus_set_samples(struct device *dev,
2371				 struct device_attribute *devattr,
2372				 const char *buf, size_t count)
2373{
2374	int ret;
2375	long val;
2376	struct i2c_client *client = to_i2c_client(dev->parent);
2377	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2378	struct pmbus_data *data = i2c_get_clientdata(client);
2379
2380	if (kstrtol(buf, 0, &val) < 0)
2381		return -EINVAL;
2382
2383	mutex_lock(&data->update_lock);
2384	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2385	mutex_unlock(&data->update_lock);
2386
2387	return ret ? : count;
2388}
2389
2390static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2391				  struct pmbus_samples_attr *attr)
2392{
2393	struct pmbus_samples_reg *reg;
2394
2395	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2396	if (!reg)
2397		return -ENOMEM;
2398
2399	reg->attr = attr;
2400	reg->page = page;
2401
2402	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2403			    pmbus_show_samples, pmbus_set_samples);
2404
2405	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2406}
2407
2408static int pmbus_add_samples_attributes(struct i2c_client *client,
2409					struct pmbus_data *data)
2410{
2411	const struct pmbus_driver_info *info = data->info;
2412	int s;
2413
2414	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2415		return 0;
2416
2417	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2418		struct pmbus_samples_attr *attr;
2419		int ret;
2420
2421		attr = &pmbus_samples_registers[s];
2422		if (!pmbus_check_word_register(client, 0, attr->reg))
2423			continue;
2424
2425		ret = pmbus_add_samples_attr(data, 0, attr);
2426		if (ret)
2427			return ret;
2428	}
2429
2430	return 0;
2431}
2432
2433static int pmbus_find_attributes(struct i2c_client *client,
2434				 struct pmbus_data *data)
2435{
2436	int ret;
2437
2438	/* Voltage sensors */
2439	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2440				     ARRAY_SIZE(voltage_attributes));
2441	if (ret)
2442		return ret;
2443
2444	/* Current sensors */
2445	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2446				     ARRAY_SIZE(current_attributes));
2447	if (ret)
2448		return ret;
2449
2450	/* Power sensors */
2451	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2452				     ARRAY_SIZE(power_attributes));
2453	if (ret)
2454		return ret;
2455
2456	/* Temperature sensors */
2457	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2458				     ARRAY_SIZE(temp_attributes));
2459	if (ret)
2460		return ret;
2461
2462	/* Fans */
2463	ret = pmbus_add_fan_attributes(client, data);
2464	if (ret)
2465		return ret;
2466
2467	ret = pmbus_add_samples_attributes(client, data);
2468	return ret;
2469}
2470
2471/*
2472 * The pmbus_class_attr_map structure maps one sensor class to
2473 * it's corresponding sensor attributes array.
2474 */
2475struct pmbus_class_attr_map {
2476	enum pmbus_sensor_classes class;
2477	int nattr;
2478	const struct pmbus_sensor_attr *attr;
2479};
2480
2481static const struct pmbus_class_attr_map class_attr_map[] = {
2482	{
2483		.class = PSC_VOLTAGE_IN,
2484		.attr = voltage_attributes,
2485		.nattr = ARRAY_SIZE(voltage_attributes),
2486	}, {
2487		.class = PSC_VOLTAGE_OUT,
2488		.attr = voltage_attributes,
2489		.nattr = ARRAY_SIZE(voltage_attributes),
2490	}, {
2491		.class = PSC_CURRENT_IN,
2492		.attr = current_attributes,
2493		.nattr = ARRAY_SIZE(current_attributes),
2494	}, {
2495		.class = PSC_CURRENT_OUT,
2496		.attr = current_attributes,
2497		.nattr = ARRAY_SIZE(current_attributes),
2498	}, {
2499		.class = PSC_POWER,
2500		.attr = power_attributes,
2501		.nattr = ARRAY_SIZE(power_attributes),
2502	}, {
2503		.class = PSC_TEMPERATURE,
2504		.attr = temp_attributes,
2505		.nattr = ARRAY_SIZE(temp_attributes),
2506	}
2507};
2508
2509/*
2510 * Read the coefficients for direct mode.
2511 */
2512static int pmbus_read_coefficients(struct i2c_client *client,
2513				   struct pmbus_driver_info *info,
2514				   const struct pmbus_sensor_attr *attr)
2515{
2516	int rv;
2517	union i2c_smbus_data data;
2518	enum pmbus_sensor_classes class = attr->class;
2519	s8 R;
2520	s16 m, b;
2521
2522	data.block[0] = 2;
2523	data.block[1] = attr->reg;
2524	data.block[2] = 0x01;
2525
2526	pmbus_wait(client);
2527	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2528			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2529			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2530	pmbus_update_ts(client, true);
2531
2532	if (rv < 0)
2533		return rv;
2534
2535	if (data.block[0] != 5)
2536		return -EIO;
2537
2538	m = data.block[1] | (data.block[2] << 8);
2539	b = data.block[3] | (data.block[4] << 8);
2540	R = data.block[5];
2541	info->m[class] = m;
2542	info->b[class] = b;
2543	info->R[class] = R;
2544
2545	return rv;
2546}
2547
2548static int pmbus_init_coefficients(struct i2c_client *client,
2549				   struct pmbus_driver_info *info)
2550{
2551	int i, n, ret = -EINVAL;
2552	const struct pmbus_class_attr_map *map;
2553	const struct pmbus_sensor_attr *attr;
2554
2555	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2556		map = &class_attr_map[i];
2557		if (info->format[map->class] != direct)
2558			continue;
2559		for (n = 0; n < map->nattr; n++) {
2560			attr = &map->attr[n];
2561			if (map->class != attr->class)
2562				continue;
2563			ret = pmbus_read_coefficients(client, info, attr);
2564			if (ret >= 0)
2565				break;
2566		}
2567		if (ret < 0) {
2568			dev_err(&client->dev,
2569				"No coefficients found for sensor class %d\n",
2570				map->class);
2571			return -EINVAL;
2572		}
2573	}
2574
2575	return 0;
2576}
2577
2578/*
2579 * Identify chip parameters.
2580 * This function is called for all chips.
2581 */
2582static int pmbus_identify_common(struct i2c_client *client,
2583				 struct pmbus_data *data, int page)
2584{
2585	int vout_mode = -1;
2586
2587	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2588		vout_mode = _pmbus_read_byte_data(client, page,
2589						  PMBUS_VOUT_MODE);
2590	if (vout_mode >= 0 && vout_mode != 0xff) {
2591		/*
2592		 * Not all chips support the VOUT_MODE command,
2593		 * so a failure to read it is not an error.
2594		 */
2595		switch (vout_mode >> 5) {
2596		case 0:	/* linear mode      */
2597			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2598				return -ENODEV;
2599
2600			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
 
 
 
 
2601			break;
2602		case 1: /* VID mode         */
2603			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2604				return -ENODEV;
2605			break;
2606		case 2:	/* direct mode      */
2607			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2608				return -ENODEV;
2609			break;
2610		case 3:	/* ieee 754 half precision */
2611			if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2612				return -ENODEV;
2613			break;
2614		default:
2615			return -ENODEV;
2616		}
2617	}
2618
 
 
 
2619	return 0;
2620}
2621
2622static int pmbus_read_status_byte(struct i2c_client *client, int page)
 
2623{
2624	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2625}
 
2626
2627static int pmbus_read_status_word(struct i2c_client *client, int page)
2628{
2629	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2630}
2631
2632/* PEC attribute support */
2633
2634static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2635			char *buf)
2636{
2637	struct i2c_client *client = to_i2c_client(dev);
2638
2639	return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2640}
2641
2642static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2643			 const char *buf, size_t count)
2644{
2645	struct i2c_client *client = to_i2c_client(dev);
2646	bool enable;
2647	int err;
2648
2649	err = kstrtobool(buf, &enable);
2650	if (err < 0)
2651		return err;
2652
2653	if (enable)
2654		client->flags |= I2C_CLIENT_PEC;
2655	else
2656		client->flags &= ~I2C_CLIENT_PEC;
2657
2658	return count;
2659}
2660
2661static DEVICE_ATTR_RW(pec);
2662
2663static void pmbus_remove_pec(void *dev)
2664{
2665	device_remove_file(dev, &dev_attr_pec);
2666}
2667
2668static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2669			     struct pmbus_driver_info *info)
2670{
2671	struct device *dev = &client->dev;
2672	int page, ret;
2673
2674	/*
2675	 * Figure out if PEC is enabled before accessing any other register.
2676	 * Make sure PEC is disabled, will be enabled later if needed.
2677	 */
2678	client->flags &= ~I2C_CLIENT_PEC;
2679
2680	/* Enable PEC if the controller and bus supports it */
2681	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2682		pmbus_wait(client);
2683		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2684		pmbus_update_ts(client, false);
2685
2686		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2687			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2688				client->flags |= I2C_CLIENT_PEC;
2689		}
2690	}
2691
2692	/*
2693	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2694	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2695	 * Bail out if both registers are not supported.
2696	 */
2697	data->read_status = pmbus_read_status_word;
2698	pmbus_wait(client);
2699	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2700	pmbus_update_ts(client, false);
2701
2702	if (ret < 0 || ret == 0xffff) {
2703		data->read_status = pmbus_read_status_byte;
2704		pmbus_wait(client);
2705		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2706		pmbus_update_ts(client, false);
2707
2708		if (ret < 0 || ret == 0xff) {
2709			dev_err(dev, "PMBus status register not found\n");
2710			return -ENODEV;
2711		}
2712	} else {
2713		data->has_status_word = true;
2714	}
2715
2716	/*
2717	 * Check if the chip is write protected. If it is, we can not clear
2718	 * faults, and we should not try it. Also, in that case, writes into
2719	 * limit registers need to be disabled.
2720	 */
2721	if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2722		ret = _pmbus_read_byte_data(client, -1, PMBUS_WRITE_PROTECT);
2723
2724		if (ret > 0 && (ret & PB_WP_ANY))
2725			data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
 
 
 
2726	}
2727
2728	ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION);
2729	if (ret >= 0)
2730		data->revision = ret;
2731
2732	if (data->info->pages)
2733		pmbus_clear_faults(client);
2734	else
2735		pmbus_clear_fault_page(client, -1);
2736
2737	if (info->identify) {
2738		ret = (*info->identify)(client, info);
2739		if (ret < 0) {
2740			dev_err(dev, "Chip identification failed\n");
2741			return ret;
2742		}
2743	}
2744
2745	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2746		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2747		return -ENODEV;
 
 
2748	}
2749
2750	for (page = 0; page < info->pages; page++) {
2751		ret = pmbus_identify_common(client, data, page);
2752		if (ret < 0) {
2753			dev_err(dev, "Failed to identify chip capabilities\n");
2754			return ret;
2755		}
2756	}
2757
2758	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2759		if (!i2c_check_functionality(client->adapter,
2760					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2761			return -ENODEV;
2762
2763		ret = pmbus_init_coefficients(client, info);
2764		if (ret < 0)
2765			return ret;
2766	}
2767
2768	if (client->flags & I2C_CLIENT_PEC) {
2769		/*
2770		 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2771		 * chip support PEC. Add 'pec' attribute to client device to let
2772		 * the user control it.
2773		 */
2774		ret = device_create_file(dev, &dev_attr_pec);
2775		if (ret)
2776			return ret;
2777		ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2778		if (ret)
2779			return ret;
2780	}
2781
2782	return 0;
2783}
2784
2785/* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2786struct pmbus_status_assoc {
2787	int pflag, rflag, eflag;
2788};
2789
2790/* PMBus->regulator bit mappings for a PMBus status register */
2791struct pmbus_status_category {
2792	int func;
2793	int reg;
2794	const struct pmbus_status_assoc *bits; /* zero-terminated */
2795};
2796
2797static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2798	{
2799		.func = PMBUS_HAVE_STATUS_VOUT,
2800		.reg = PMBUS_STATUS_VOUT,
2801		.bits = (const struct pmbus_status_assoc[]) {
2802			{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2803			REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2804			{ PB_VOLTAGE_UV_FAULT,   REGULATOR_ERROR_UNDER_VOLTAGE,
2805			REGULATOR_EVENT_UNDER_VOLTAGE },
2806			{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2807			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2808			{ PB_VOLTAGE_OV_FAULT,   REGULATOR_ERROR_REGULATION_OUT,
2809			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2810			{ },
2811		},
2812	}, {
2813		.func = PMBUS_HAVE_STATUS_IOUT,
2814		.reg = PMBUS_STATUS_IOUT,
2815		.bits = (const struct pmbus_status_assoc[]) {
2816			{ PB_IOUT_OC_WARNING,   REGULATOR_ERROR_OVER_CURRENT_WARN,
2817			REGULATOR_EVENT_OVER_CURRENT_WARN },
2818			{ PB_IOUT_OC_FAULT,     REGULATOR_ERROR_OVER_CURRENT,
2819			REGULATOR_EVENT_OVER_CURRENT },
2820			{ PB_IOUT_OC_LV_FAULT,  REGULATOR_ERROR_OVER_CURRENT,
2821			REGULATOR_EVENT_OVER_CURRENT },
2822			{ },
2823		},
2824	}, {
2825		.func = PMBUS_HAVE_STATUS_TEMP,
2826		.reg = PMBUS_STATUS_TEMPERATURE,
2827		.bits = (const struct pmbus_status_assoc[]) {
2828			{ PB_TEMP_OT_WARNING,    REGULATOR_ERROR_OVER_TEMP_WARN,
2829			REGULATOR_EVENT_OVER_TEMP_WARN },
2830			{ PB_TEMP_OT_FAULT,      REGULATOR_ERROR_OVER_TEMP,
2831			REGULATOR_EVENT_OVER_TEMP },
2832			{ },
2833		},
2834	},
2835};
2836
2837static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2838{
2839	int ret;
2840
2841	ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2842
2843	if (ret < 0)
2844		return ret;
2845
2846	return !!(ret & PB_OPERATION_CONTROL_ON);
2847}
2848
2849static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2850{
2851	struct pmbus_data *data = i2c_get_clientdata(client);
2852	int ret;
2853
2854	mutex_lock(&data->update_lock);
2855	ret = _pmbus_is_enabled(client, page);
2856	mutex_unlock(&data->update_lock);
2857
2858	return ret;
2859}
2860
2861#define to_dev_attr(_dev_attr) \
2862	container_of(_dev_attr, struct device_attribute, attr)
2863
2864static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2865{
2866	int i;
2867
2868	for (i = 0; i < data->num_attributes; i++) {
2869		struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2870		struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2871		int index = attr->index;
2872		u16 smask = pb_index_to_mask(index);
2873		u8 spage = pb_index_to_page(index);
2874		u16 sreg = pb_index_to_reg(index);
2875
2876		if (reg == sreg && page == spage && (smask & flags)) {
2877			dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2878			sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2879			kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2880			flags &= ~smask;
2881		}
2882
2883		if (!flags)
2884			break;
2885	}
2886}
2887
2888static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2889			   unsigned int *event, bool notify)
2890{
2891	int i, status;
2892	const struct pmbus_status_category *cat;
2893	const struct pmbus_status_assoc *bit;
2894	struct device *dev = data->dev;
2895	struct i2c_client *client = to_i2c_client(dev);
2896	int func = data->info->func[page];
2897
2898	*flags = 0;
2899	*event = 0;
2900
2901	for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2902		cat = &pmbus_status_flag_map[i];
2903		if (!(func & cat->func))
2904			continue;
2905
2906		status = _pmbus_read_byte_data(client, page, cat->reg);
2907		if (status < 0)
2908			return status;
2909
2910		for (bit = cat->bits; bit->pflag; bit++)
2911			if (status & bit->pflag) {
2912				*flags |= bit->rflag;
2913				*event |= bit->eflag;
2914			}
2915
2916		if (notify && status)
2917			pmbus_notify(data, page, cat->reg, status);
2918
2919	}
2920
2921	/*
2922	 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2923	 * bits.  Some of the other bits are tempting (especially for cases
2924	 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2925	 * functionality), but there's an unfortunate ambiguity in that
2926	 * they're defined as indicating a fault *or* a warning, so we can't
2927	 * easily determine whether to report REGULATOR_ERROR_<foo> or
2928	 * REGULATOR_ERROR_<foo>_WARN.
2929	 */
2930	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2931	if (status < 0)
2932		return status;
2933
2934	if (_pmbus_is_enabled(client, page)) {
2935		if (status & PB_STATUS_OFF) {
2936			*flags |= REGULATOR_ERROR_FAIL;
2937			*event |= REGULATOR_EVENT_FAIL;
2938		}
2939
2940		if (status & PB_STATUS_POWER_GOOD_N) {
2941			*flags |= REGULATOR_ERROR_REGULATION_OUT;
2942			*event |= REGULATOR_EVENT_REGULATION_OUT;
2943		}
2944	}
2945	/*
2946	 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2947	 * defined strictly as fault indicators (not warnings).
2948	 */
2949	if (status & PB_STATUS_IOUT_OC) {
2950		*flags |= REGULATOR_ERROR_OVER_CURRENT;
2951		*event |= REGULATOR_EVENT_OVER_CURRENT;
2952	}
2953	if (status & PB_STATUS_VOUT_OV) {
2954		*flags |= REGULATOR_ERROR_REGULATION_OUT;
2955		*event |= REGULATOR_EVENT_FAIL;
2956	}
2957
2958	/*
2959	 * If we haven't discovered any thermal faults or warnings via
2960	 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2961	 * a (conservative) best-effort interpretation.
2962	 */
2963	if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2964	    (status & PB_STATUS_TEMPERATURE)) {
2965		*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2966		*event |= REGULATOR_EVENT_OVER_TEMP_WARN;
2967	}
2968
2969
2970	return 0;
2971}
2972
2973static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2974					  unsigned int *event, bool notify)
2975{
2976	int ret;
2977
2978	mutex_lock(&data->update_lock);
2979	ret = _pmbus_get_flags(data, page, flags, event, notify);
2980	mutex_unlock(&data->update_lock);
2981
2982	return ret;
2983}
2984
2985#if IS_ENABLED(CONFIG_REGULATOR)
2986static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2987{
2988	struct device *dev = rdev_get_dev(rdev);
2989	struct i2c_client *client = to_i2c_client(dev->parent);
2990
2991	return pmbus_is_enabled(client, rdev_get_id(rdev));
2992}
2993
2994static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2995{
2996	struct device *dev = rdev_get_dev(rdev);
2997	struct i2c_client *client = to_i2c_client(dev->parent);
2998	struct pmbus_data *data = i2c_get_clientdata(client);
2999	u8 page = rdev_get_id(rdev);
3000	int ret;
3001
3002	mutex_lock(&data->update_lock);
3003	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
3004				     PB_OPERATION_CONTROL_ON,
3005				     enable ? PB_OPERATION_CONTROL_ON : 0);
3006	mutex_unlock(&data->update_lock);
3007
3008	return ret;
3009}
3010
3011static int pmbus_regulator_enable(struct regulator_dev *rdev)
3012{
3013	return _pmbus_regulator_on_off(rdev, 1);
3014}
3015
3016static int pmbus_regulator_disable(struct regulator_dev *rdev)
3017{
3018	return _pmbus_regulator_on_off(rdev, 0);
3019}
3020
3021static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
3022{
3023	struct device *dev = rdev_get_dev(rdev);
3024	struct i2c_client *client = to_i2c_client(dev->parent);
3025	struct pmbus_data *data = i2c_get_clientdata(client);
3026	int event;
3027
3028	return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
3029}
3030
3031static int pmbus_regulator_get_status(struct regulator_dev *rdev)
3032{
3033	struct device *dev = rdev_get_dev(rdev);
3034	struct i2c_client *client = to_i2c_client(dev->parent);
3035	struct pmbus_data *data = i2c_get_clientdata(client);
3036	u8 page = rdev_get_id(rdev);
3037	int status, ret;
3038	int event;
3039
3040	mutex_lock(&data->update_lock);
3041	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
3042	if (status < 0) {
3043		ret = status;
3044		goto unlock;
3045	}
3046
3047	if (status & PB_STATUS_OFF) {
3048		ret = REGULATOR_STATUS_OFF;
3049		goto unlock;
3050	}
3051
3052	/* If regulator is ON & reports power good then return ON */
3053	if (!(status & PB_STATUS_POWER_GOOD_N)) {
3054		ret = REGULATOR_STATUS_ON;
3055		goto unlock;
3056	}
3057
3058	ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
3059	if (ret)
3060		goto unlock;
3061
3062	if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
3063	   REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
3064		ret = REGULATOR_STATUS_ERROR;
3065		goto unlock;
3066	}
3067
3068	ret = REGULATOR_STATUS_UNDEFINED;
3069
3070unlock:
3071	mutex_unlock(&data->update_lock);
3072	return ret;
3073}
3074
3075static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
3076{
3077	struct pmbus_data *data = i2c_get_clientdata(client);
3078	struct pmbus_sensor s = {
3079		.page = page,
3080		.class = PSC_VOLTAGE_OUT,
3081		.convert = true,
3082		.data = -1,
3083	};
3084
3085	if (data->vout_low[page] < 0) {
3086		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3087			s.data = _pmbus_read_word_data(client, page, 0xff,
3088						       PMBUS_MFR_VOUT_MIN);
3089		if (s.data < 0) {
3090			s.data = _pmbus_read_word_data(client, page, 0xff,
3091						       PMBUS_VOUT_MARGIN_LOW);
3092			if (s.data < 0)
3093				return s.data;
3094		}
3095		data->vout_low[page] = pmbus_reg2data(data, &s);
3096	}
3097
3098	return data->vout_low[page];
3099}
3100
3101static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3102{
3103	struct pmbus_data *data = i2c_get_clientdata(client);
3104	struct pmbus_sensor s = {
3105		.page = page,
3106		.class = PSC_VOLTAGE_OUT,
3107		.convert = true,
3108		.data = -1,
3109	};
3110
3111	if (data->vout_high[page] < 0) {
3112		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3113			s.data = _pmbus_read_word_data(client, page, 0xff,
3114						       PMBUS_MFR_VOUT_MAX);
3115		if (s.data < 0) {
3116			s.data = _pmbus_read_word_data(client, page, 0xff,
3117						       PMBUS_VOUT_MARGIN_HIGH);
3118			if (s.data < 0)
3119				return s.data;
3120		}
3121		data->vout_high[page] = pmbus_reg2data(data, &s);
3122	}
3123
3124	return data->vout_high[page];
3125}
3126
3127static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3128{
3129	struct device *dev = rdev_get_dev(rdev);
3130	struct i2c_client *client = to_i2c_client(dev->parent);
3131	struct pmbus_data *data = i2c_get_clientdata(client);
3132	struct pmbus_sensor s = {
3133		.page = rdev_get_id(rdev),
3134		.class = PSC_VOLTAGE_OUT,
3135		.convert = true,
3136	};
3137
3138	s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3139	if (s.data < 0)
3140		return s.data;
3141
3142	return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3143}
3144
3145static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3146				       int max_uv, unsigned int *selector)
3147{
3148	struct device *dev = rdev_get_dev(rdev);
3149	struct i2c_client *client = to_i2c_client(dev->parent);
3150	struct pmbus_data *data = i2c_get_clientdata(client);
3151	struct pmbus_sensor s = {
3152		.page = rdev_get_id(rdev),
3153		.class = PSC_VOLTAGE_OUT,
3154		.convert = true,
3155		.data = -1,
3156	};
3157	int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3158	int low, high;
3159
3160	*selector = 0;
3161
3162	low = pmbus_regulator_get_low_margin(client, s.page);
3163	if (low < 0)
3164		return low;
3165
3166	high = pmbus_regulator_get_high_margin(client, s.page);
3167	if (high < 0)
3168		return high;
3169
3170	/* Make sure we are within margins */
3171	if (low > val)
3172		val = low;
3173	if (high < val)
3174		val = high;
3175
3176	val = pmbus_data2reg(data, &s, val);
3177
3178	return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3179}
3180
3181static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3182					 unsigned int selector)
3183{
3184	struct device *dev = rdev_get_dev(rdev);
3185	struct i2c_client *client = to_i2c_client(dev->parent);
3186	int val, low, high;
3187
3188	if (selector >= rdev->desc->n_voltages ||
3189	    selector < rdev->desc->linear_min_sel)
3190		return -EINVAL;
3191
3192	selector -= rdev->desc->linear_min_sel;
3193	val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3194				(rdev->desc->uV_step * selector), 1000); /* convert to mV */
3195
3196	low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3197	if (low < 0)
3198		return low;
3199
3200	high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3201	if (high < 0)
3202		return high;
3203
3204	if (val >= low && val <= high)
3205		return val * 1000; /* unit is uV */
3206
3207	return 0;
3208}
3209
3210const struct regulator_ops pmbus_regulator_ops = {
3211	.enable = pmbus_regulator_enable,
3212	.disable = pmbus_regulator_disable,
3213	.is_enabled = pmbus_regulator_is_enabled,
3214	.get_error_flags = pmbus_regulator_get_error_flags,
3215	.get_status = pmbus_regulator_get_status,
3216	.get_voltage = pmbus_regulator_get_voltage,
3217	.set_voltage = pmbus_regulator_set_voltage,
3218	.list_voltage = pmbus_regulator_list_voltage,
3219};
3220EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, "PMBUS");
3221
3222static int pmbus_regulator_register(struct pmbus_data *data)
3223{
3224	struct device *dev = data->dev;
3225	const struct pmbus_driver_info *info = data->info;
3226	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3227	int i;
3228
3229	data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3230				   GFP_KERNEL);
3231	if (!data->rdevs)
3232		return -ENOMEM;
3233
3234	for (i = 0; i < info->num_regulators; i++) {
3235		struct regulator_config config = { };
3236
3237		config.dev = dev;
3238		config.driver_data = data;
3239
3240		if (pdata && pdata->reg_init_data)
3241			config.init_data = &pdata->reg_init_data[i];
3242
3243		data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3244							 &config);
3245		if (IS_ERR(data->rdevs[i]))
3246			return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3247					     "Failed to register %s regulator\n",
3248					     info->reg_desc[i].name);
3249	}
3250
3251	return 0;
3252}
3253
3254static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3255{
3256		int j;
3257
3258		for (j = 0; j < data->info->num_regulators; j++) {
3259			if (page == rdev_get_id(data->rdevs[j])) {
3260				regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3261				break;
3262			}
3263		}
3264		return 0;
3265}
3266#else
3267static int pmbus_regulator_register(struct pmbus_data *data)
3268{
3269	return 0;
3270}
3271
3272static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3273{
3274		return 0;
3275}
3276#endif
3277
3278static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3279{
3280	int ret;
3281
3282	ret = _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3283
3284	/*
3285	 * Clear fault systematically in case writing PMBUS_SMBALERT_MASK
3286	 * is not supported by the chip.
3287	 */
3288	pmbus_clear_fault_page(client, page);
3289
3290	return ret;
3291}
3292
3293static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3294{
3295	struct pmbus_data *data = pdata;
3296	struct i2c_client *client = to_i2c_client(data->dev);
3297
3298	int i, status, event;
3299	mutex_lock(&data->update_lock);
3300	for (i = 0; i < data->info->pages; i++) {
3301		_pmbus_get_flags(data, i, &status, &event, true);
3302
3303		if (event)
3304			pmbus_regulator_notify(data, i, event);
3305	}
3306
3307	pmbus_clear_faults(client);
3308	mutex_unlock(&data->update_lock);
3309
3310	return IRQ_HANDLED;
3311}
3312
3313static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3314{
3315	struct device *dev = &client->dev;
3316	const struct pmbus_status_category *cat;
3317	const struct pmbus_status_assoc *bit;
3318	int i, j, err, func;
3319	u8 mask;
3320
3321	static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3322					 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3323					 PMBUS_STATUS_FAN_34};
3324
3325	if (!client->irq)
3326		return 0;
3327
3328	for (i = 0; i < data->info->pages; i++) {
3329		func = data->info->func[i];
3330
3331		for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3332			cat = &pmbus_status_flag_map[j];
3333			if (!(func & cat->func))
3334				continue;
3335			mask = 0;
3336			for (bit = cat->bits; bit->pflag; bit++)
3337				mask |= bit->pflag;
3338
3339			err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3340			if (err)
3341				dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3342					     cat->reg);
3343		}
3344
3345		for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3346			pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3347	}
3348
3349	/* Register notifiers */
3350	err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3351					IRQF_ONESHOT, "pmbus-irq", data);
3352	if (err) {
3353		dev_err(dev, "failed to request an irq %d\n", err);
3354		return err;
3355	}
3356
3357	return 0;
3358}
3359
3360static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
3361
3362#if IS_ENABLED(CONFIG_DEBUG_FS)
3363static int pmbus_debugfs_get(void *data, u64 *val)
3364{
3365	int rc;
3366	struct pmbus_debugfs_entry *entry = data;
3367	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3368
3369	rc = mutex_lock_interruptible(&pdata->update_lock);
3370	if (rc)
3371		return rc;
3372	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3373	mutex_unlock(&pdata->update_lock);
3374	if (rc < 0)
3375		return rc;
3376
3377	*val = rc;
3378
3379	return 0;
3380}
3381DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3382			 "0x%02llx\n");
3383
3384static int pmbus_debugfs_get_status(void *data, u64 *val)
3385{
3386	int rc;
3387	struct pmbus_debugfs_entry *entry = data;
3388	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3389
3390	rc = mutex_lock_interruptible(&pdata->update_lock);
3391	if (rc)
3392		return rc;
3393	rc = pdata->read_status(entry->client, entry->page);
3394	mutex_unlock(&pdata->update_lock);
3395	if (rc < 0)
3396		return rc;
3397
3398	*val = rc;
3399
3400	return 0;
3401}
3402DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3403			 NULL, "0x%04llx\n");
3404
3405static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3406				       size_t count, loff_t *ppos)
3407{
3408	int rc;
3409	struct pmbus_debugfs_entry *entry = file->private_data;
3410	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3411	char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3412
3413	rc = mutex_lock_interruptible(&pdata->update_lock);
3414	if (rc)
3415		return rc;
3416	rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3417				   data);
3418	mutex_unlock(&pdata->update_lock);
3419	if (rc < 0)
3420		return rc;
3421
3422	/* Add newline at the end of a read data */
3423	data[rc] = '\n';
3424
3425	/* Include newline into the length */
3426	rc += 1;
3427
3428	return simple_read_from_buffer(buf, count, ppos, data, rc);
3429}
3430
3431static const struct file_operations pmbus_debugfs_ops_mfr = {
3432	.llseek = noop_llseek,
3433	.read = pmbus_debugfs_mfr_read,
3434	.write = NULL,
3435	.open = simple_open,
3436};
3437
3438static void pmbus_remove_debugfs(void *data)
3439{
3440	struct dentry *entry = data;
3441
3442	debugfs_remove_recursive(entry);
3443}
3444
3445static int pmbus_init_debugfs(struct i2c_client *client,
3446			      struct pmbus_data *data)
3447{
3448	int i, idx = 0;
3449	char name[PMBUS_NAME_SIZE];
3450	struct pmbus_debugfs_entry *entries;
3451
3452	if (!pmbus_debugfs_dir)
3453		return -ENODEV;
3454
3455	/*
3456	 * Create the debugfs directory for this device. Use the hwmon device
3457	 * name to avoid conflicts (hwmon numbers are globally unique).
3458	 */
3459	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3460					   pmbus_debugfs_dir);
3461	if (IS_ERR_OR_NULL(data->debugfs)) {
3462		data->debugfs = NULL;
3463		return -ENODEV;
3464	}
3465
3466	/*
3467	 * Allocate the max possible entries we need.
3468	 * 6 entries device-specific
3469	 * 10 entries page-specific
3470	 */
3471	entries = devm_kcalloc(data->dev,
3472			       6 + data->info->pages * 10, sizeof(*entries),
3473			       GFP_KERNEL);
3474	if (!entries)
3475		return -ENOMEM;
3476
3477	/*
3478	 * Add device-specific entries.
3479	 * Please note that the PMBUS standard allows all registers to be
3480	 * page-specific.
3481	 * To reduce the number of debugfs entries for devices with many pages
3482	 * assume that values of the following registers are the same for all
3483	 * pages and report values only for page 0.
3484	 */
3485	if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3486		entries[idx].client = client;
3487		entries[idx].page = 0;
3488		entries[idx].reg = PMBUS_MFR_ID;
3489		debugfs_create_file("mfr_id", 0444, data->debugfs,
3490				    &entries[idx++],
3491				    &pmbus_debugfs_ops_mfr);
3492	}
3493
3494	if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3495		entries[idx].client = client;
3496		entries[idx].page = 0;
3497		entries[idx].reg = PMBUS_MFR_MODEL;
3498		debugfs_create_file("mfr_model", 0444, data->debugfs,
3499				    &entries[idx++],
3500				    &pmbus_debugfs_ops_mfr);
3501	}
3502
3503	if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3504		entries[idx].client = client;
3505		entries[idx].page = 0;
3506		entries[idx].reg = PMBUS_MFR_REVISION;
3507		debugfs_create_file("mfr_revision", 0444, data->debugfs,
3508				    &entries[idx++],
3509				    &pmbus_debugfs_ops_mfr);
3510	}
3511
3512	if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3513		entries[idx].client = client;
3514		entries[idx].page = 0;
3515		entries[idx].reg = PMBUS_MFR_LOCATION;
3516		debugfs_create_file("mfr_location", 0444, data->debugfs,
3517				    &entries[idx++],
3518				    &pmbus_debugfs_ops_mfr);
3519	}
3520
3521	if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3522		entries[idx].client = client;
3523		entries[idx].page = 0;
3524		entries[idx].reg = PMBUS_MFR_DATE;
3525		debugfs_create_file("mfr_date", 0444, data->debugfs,
3526				    &entries[idx++],
3527				    &pmbus_debugfs_ops_mfr);
3528	}
3529
3530	if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3531		entries[idx].client = client;
3532		entries[idx].page = 0;
3533		entries[idx].reg = PMBUS_MFR_SERIAL;
3534		debugfs_create_file("mfr_serial", 0444, data->debugfs,
3535				    &entries[idx++],
3536				    &pmbus_debugfs_ops_mfr);
3537	}
3538
3539	/* Add page specific entries */
3540	for (i = 0; i < data->info->pages; ++i) {
3541		/* Check accessibility of status register if it's not page 0 */
3542		if (!i || pmbus_check_status_register(client, i)) {
3543			/* No need to set reg as we have special read op. */
3544			entries[idx].client = client;
3545			entries[idx].page = i;
3546			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3547			debugfs_create_file(name, 0444, data->debugfs,
3548					    &entries[idx++],
3549					    &pmbus_debugfs_ops_status);
3550		}
3551
3552		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3553			entries[idx].client = client;
3554			entries[idx].page = i;
3555			entries[idx].reg = PMBUS_STATUS_VOUT;
3556			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3557			debugfs_create_file(name, 0444, data->debugfs,
3558					    &entries[idx++],
3559					    &pmbus_debugfs_ops);
3560		}
3561
3562		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3563			entries[idx].client = client;
3564			entries[idx].page = i;
3565			entries[idx].reg = PMBUS_STATUS_IOUT;
3566			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3567			debugfs_create_file(name, 0444, data->debugfs,
3568					    &entries[idx++],
3569					    &pmbus_debugfs_ops);
3570		}
3571
3572		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3573			entries[idx].client = client;
3574			entries[idx].page = i;
3575			entries[idx].reg = PMBUS_STATUS_INPUT;
3576			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3577			debugfs_create_file(name, 0444, data->debugfs,
3578					    &entries[idx++],
3579					    &pmbus_debugfs_ops);
3580		}
3581
3582		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3583			entries[idx].client = client;
3584			entries[idx].page = i;
3585			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3586			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3587			debugfs_create_file(name, 0444, data->debugfs,
3588					    &entries[idx++],
3589					    &pmbus_debugfs_ops);
3590		}
3591
3592		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3593			entries[idx].client = client;
3594			entries[idx].page = i;
3595			entries[idx].reg = PMBUS_STATUS_CML;
3596			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3597			debugfs_create_file(name, 0444, data->debugfs,
3598					    &entries[idx++],
3599					    &pmbus_debugfs_ops);
3600		}
3601
3602		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3603			entries[idx].client = client;
3604			entries[idx].page = i;
3605			entries[idx].reg = PMBUS_STATUS_OTHER;
3606			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3607			debugfs_create_file(name, 0444, data->debugfs,
3608					    &entries[idx++],
3609					    &pmbus_debugfs_ops);
3610		}
3611
3612		if (pmbus_check_byte_register(client, i,
3613					      PMBUS_STATUS_MFR_SPECIFIC)) {
3614			entries[idx].client = client;
3615			entries[idx].page = i;
3616			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3617			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3618			debugfs_create_file(name, 0444, data->debugfs,
3619					    &entries[idx++],
3620					    &pmbus_debugfs_ops);
3621		}
3622
3623		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3624			entries[idx].client = client;
3625			entries[idx].page = i;
3626			entries[idx].reg = PMBUS_STATUS_FAN_12;
3627			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3628			debugfs_create_file(name, 0444, data->debugfs,
3629					    &entries[idx++],
3630					    &pmbus_debugfs_ops);
3631		}
3632
3633		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3634			entries[idx].client = client;
3635			entries[idx].page = i;
3636			entries[idx].reg = PMBUS_STATUS_FAN_34;
3637			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3638			debugfs_create_file(name, 0444, data->debugfs,
3639					    &entries[idx++],
3640					    &pmbus_debugfs_ops);
3641		}
3642	}
3643
3644	return devm_add_action_or_reset(data->dev,
3645					pmbus_remove_debugfs, data->debugfs);
3646}
3647#else
3648static int pmbus_init_debugfs(struct i2c_client *client,
3649			      struct pmbus_data *data)
3650{
3651	return 0;
3652}
3653#endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
3654
3655int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3656{
3657	struct device *dev = &client->dev;
3658	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3659	struct pmbus_data *data;
3660	size_t groups_num = 0;
3661	int ret;
3662	int i;
3663	char *name;
3664
3665	if (!info)
3666		return -ENODEV;
3667
3668	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3669				     | I2C_FUNC_SMBUS_BYTE_DATA
3670				     | I2C_FUNC_SMBUS_WORD_DATA))
3671		return -ENODEV;
3672
3673	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3674	if (!data)
3675		return -ENOMEM;
3676
3677	if (info->groups)
3678		while (info->groups[groups_num])
3679			groups_num++;
3680
3681	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3682				    GFP_KERNEL);
3683	if (!data->groups)
3684		return -ENOMEM;
3685
3686	i2c_set_clientdata(client, data);
3687	mutex_init(&data->update_lock);
3688	data->dev = dev;
3689
3690	if (pdata)
3691		data->flags = pdata->flags;
3692	data->info = info;
3693	data->currpage = -1;
3694	data->currphase = -1;
3695
3696	for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3697		data->vout_low[i] = -1;
3698		data->vout_high[i] = -1;
3699	}
3700
3701	ret = pmbus_init_common(client, data, info);
3702	if (ret < 0)
3703		return ret;
3704
3705	ret = pmbus_find_attributes(client, data);
3706	if (ret)
3707		return ret;
3708
3709	/*
3710	 * If there are no attributes, something is wrong.
3711	 * Bail out instead of trying to register nothing.
3712	 */
3713	if (!data->num_attributes) {
3714		dev_err(dev, "No attributes found\n");
3715		return -ENODEV;
 
3716	}
3717
3718	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3719	if (!name)
3720		return -ENOMEM;
3721	strreplace(name, '-', '_');
3722
3723	data->groups[0] = &data->group;
3724	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3725	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3726					name, data, data->groups);
3727	if (IS_ERR(data->hwmon_dev)) {
3728		dev_err(dev, "Failed to register hwmon device\n");
3729		return PTR_ERR(data->hwmon_dev);
 
3730	}
3731
3732	ret = pmbus_regulator_register(data);
3733	if (ret)
3734		return ret;
3735
3736	ret = pmbus_irq_setup(client, data);
3737	if (ret)
3738		return ret;
3739
3740	ret = pmbus_init_debugfs(client, data);
3741	if (ret)
3742		dev_warn(dev, "Failed to register debugfs\n");
3743
3744	return 0;
3745}
3746EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, "PMBUS");
3747
3748struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3749{
3750	struct pmbus_data *data = i2c_get_clientdata(client);
3751
3752	return data->debugfs;
 
 
 
 
 
 
 
 
3753}
3754EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, "PMBUS");
3755
3756int pmbus_lock_interruptible(struct i2c_client *client)
3757{
3758	struct pmbus_data *data = i2c_get_clientdata(client);
3759
3760	return mutex_lock_interruptible(&data->update_lock);
3761}
3762EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, "PMBUS");
3763
3764void pmbus_unlock(struct i2c_client *client)
3765{
3766	struct pmbus_data *data = i2c_get_clientdata(client);
3767
3768	mutex_unlock(&data->update_lock);
3769}
3770EXPORT_SYMBOL_NS_GPL(pmbus_unlock, "PMBUS");
3771
3772static int __init pmbus_core_init(void)
3773{
3774	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3775	if (IS_ERR(pmbus_debugfs_dir))
3776		pmbus_debugfs_dir = NULL;
3777
3778	return 0;
3779}
3780
3781static void __exit pmbus_core_exit(void)
3782{
3783	debugfs_remove_recursive(pmbus_debugfs_dir);
3784}
3785
3786module_init(pmbus_core_init);
3787module_exit(pmbus_core_exit);
3788
3789MODULE_AUTHOR("Guenter Roeck");
3790MODULE_DESCRIPTION("PMBus core driver");
3791MODULE_LICENSE("GPL");