Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Hardware monitoring driver for PMBus devices
   3 *
   4 * Copyright (c) 2010, 2011 Ericsson AB.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
 
  21#include <linux/kernel.h>
 
  22#include <linux/module.h>
  23#include <linux/init.h>
  24#include <linux/err.h>
  25#include <linux/slab.h>
  26#include <linux/i2c.h>
  27#include <linux/hwmon.h>
  28#include <linux/hwmon-sysfs.h>
  29#include <linux/delay.h>
  30#include <linux/i2c/pmbus.h>
 
 
 
  31#include "pmbus.h"
  32
  33/*
  34 * Constants needed to determine number of sensors, booleans, and labels.
  35 */
  36#define PMBUS_MAX_INPUT_SENSORS		22	/* 10*volt, 7*curr, 5*power */
  37#define PMBUS_VOUT_SENSORS_PER_PAGE	9	/* input, min, max, lcrit,
  38						   crit, lowest, highest, avg,
  39						   reset */
  40#define PMBUS_IOUT_SENSORS_PER_PAGE	8	/* input, min, max, crit,
  41						   lowest, highest, avg,
  42						   reset */
  43#define PMBUS_POUT_SENSORS_PER_PAGE	4	/* input, cap, max, crit */
  44#define PMBUS_MAX_SENSORS_PER_FAN	1	/* input */
  45#define PMBUS_MAX_SENSORS_PER_TEMP	8	/* input, min, max, lcrit,
  46						   crit, lowest, highest,
  47						   reset */
  48
  49#define PMBUS_MAX_INPUT_BOOLEANS	7	/* v: min_alarm, max_alarm,
  50						   lcrit_alarm, crit_alarm;
  51						   c: alarm, crit_alarm;
  52						   p: crit_alarm */
  53#define PMBUS_VOUT_BOOLEANS_PER_PAGE	4	/* min_alarm, max_alarm,
  54						   lcrit_alarm, crit_alarm */
  55#define PMBUS_IOUT_BOOLEANS_PER_PAGE	3	/* alarm, lcrit_alarm,
  56						   crit_alarm */
  57#define PMBUS_POUT_BOOLEANS_PER_PAGE	2	/* alarm, crit_alarm */
  58#define PMBUS_MAX_BOOLEANS_PER_FAN	2	/* alarm, fault */
  59#define PMBUS_MAX_BOOLEANS_PER_TEMP	4	/* min_alarm, max_alarm,
  60						   lcrit_alarm, crit_alarm */
  61
  62#define PMBUS_MAX_INPUT_LABELS		4	/* vin, vcap, iin, pin */
  63
  64/*
  65 * status, status_vout, status_iout, status_fans, status_fan34, and status_temp
  66 * are paged. status_input is unpaged.
  67 */
  68#define PB_NUM_STATUS_REG	(PMBUS_PAGES * 6 + 1)
  69
  70/*
  71 * Index into status register array, per status register group
  72 */
  73#define PB_STATUS_BASE		0
  74#define PB_STATUS_VOUT_BASE	(PB_STATUS_BASE + PMBUS_PAGES)
  75#define PB_STATUS_IOUT_BASE	(PB_STATUS_VOUT_BASE + PMBUS_PAGES)
  76#define PB_STATUS_FAN_BASE	(PB_STATUS_IOUT_BASE + PMBUS_PAGES)
  77#define PB_STATUS_FAN34_BASE	(PB_STATUS_FAN_BASE + PMBUS_PAGES)
  78#define PB_STATUS_INPUT_BASE	(PB_STATUS_FAN34_BASE + PMBUS_PAGES)
  79#define PB_STATUS_TEMP_BASE	(PB_STATUS_INPUT_BASE + 1)
  80
  81#define PMBUS_NAME_SIZE		24
  82
  83struct pmbus_sensor {
 
  84	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
  85	struct sensor_device_attribute attribute;
  86	u8 page;		/* page number */
 
  87	u16 reg;		/* register */
  88	enum pmbus_sensor_classes class;	/* sensor class */
  89	bool update;		/* runtime sensor update needed */
 
  90	int data;		/* Sensor data.
  91				   Negative if there was a read error */
  92};
 
 
  93
  94struct pmbus_boolean {
  95	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
  96	struct sensor_device_attribute attribute;
 
 
  97};
 
 
  98
  99struct pmbus_label {
 100	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
 101	struct sensor_device_attribute attribute;
 102	char label[PMBUS_NAME_SIZE];	/* label */
 103};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105struct pmbus_data {
 
 106	struct device *hwmon_dev;
 107
 108	u32 flags;		/* from platform data */
 109
 110	int exponent;		/* linear mode: exponent for output voltages */
 
 111
 112	const struct pmbus_driver_info *info;
 113
 114	int max_attributes;
 115	int num_attributes;
 116	struct attribute **attributes;
 117	struct attribute_group group;
 
 
 118
 119	/*
 120	 * Sensors cover both sensor and limit registers.
 121	 */
 122	int max_sensors;
 123	int num_sensors;
 124	struct pmbus_sensor *sensors;
 125	/*
 126	 * Booleans are used for alarms.
 127	 * Values are determined from status registers.
 128	 */
 129	int max_booleans;
 130	int num_booleans;
 131	struct pmbus_boolean *booleans;
 132	/*
 133	 * Labels are used to map generic names (e.g., "in1")
 134	 * to PMBus specific names (e.g., "vin" or "vout1").
 135	 */
 136	int max_labels;
 137	int num_labels;
 138	struct pmbus_label *labels;
 139
 140	struct mutex update_lock;
 141	bool valid;
 142	unsigned long last_updated;	/* in jiffies */
 143
 144	/*
 145	 * A single status register covers multiple attributes,
 146	 * so we keep them all together.
 147	 */
 148	u8 status[PB_NUM_STATUS_REG];
 149
 150	u8 currpage;
 
 151};
 152
 153int pmbus_set_page(struct i2c_client *client, u8 page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154{
 155	struct pmbus_data *data = i2c_get_clientdata(client);
 156	int rv = 0;
 157	int newpage;
 158
 159	if (page != data->currpage) {
 160		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
 161		newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
 162		if (newpage != page)
 163			rv = -EINVAL;
 164		else
 165			data->currpage = page;
 166	}
 167	return rv;
 168}
 169EXPORT_SYMBOL_GPL(pmbus_set_page);
 170
 171int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 172{
 
 
 
 
 
 
 
 
 
 
 
 
 173	int rv;
 174
 175	if (page >= 0) {
 176		rv = pmbus_set_page(client, page);
 
 
 
 
 
 
 
 
 177		if (rv < 0)
 178			return rv;
 
 
 
 
 
 
 
 
 
 
 
 
 179	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 180
 181	return i2c_smbus_write_byte(client, value);
 182}
 183EXPORT_SYMBOL_GPL(pmbus_write_byte);
 184
 185/*
 186 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
 187 * a device specific mapping funcion exists and calls it if necessary.
 188 */
 189static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 190{
 191	struct pmbus_data *data = i2c_get_clientdata(client);
 192	const struct pmbus_driver_info *info = data->info;
 193	int status;
 194
 195	if (info->write_byte) {
 196		status = info->write_byte(client, page, value);
 197		if (status != -ENODATA)
 198			return status;
 199	}
 200	return pmbus_write_byte(client, page, value);
 201}
 202
 203int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
 
 204{
 205	int rv;
 206
 207	rv = pmbus_set_page(client, page);
 208	if (rv < 0)
 209		return rv;
 210
 211	return i2c_smbus_write_word_data(client, reg, word);
 212}
 213EXPORT_SYMBOL_GPL(pmbus_write_word_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214
 215/*
 216 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
 217 * a device specific mapping function exists and calls it if necessary.
 218 */
 219static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
 220				  u16 word)
 221{
 222	struct pmbus_data *data = i2c_get_clientdata(client);
 223	const struct pmbus_driver_info *info = data->info;
 224	int status;
 225
 226	if (info->write_word_data) {
 227		status = info->write_word_data(client, page, reg, word);
 228		if (status != -ENODATA)
 229			return status;
 230	}
 
 231	if (reg >= PMBUS_VIRT_BASE)
 232		return -EINVAL;
 
 233	return pmbus_write_word_data(client, page, reg, word);
 234}
 235
 236int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
 
 
 
 
 237{
 238	int rv;
 239
 240	rv = pmbus_set_page(client, page);
 241	if (rv < 0)
 242		return rv;
 243
 244	return i2c_smbus_read_word_data(client, reg);
 
 
 
 
 
 245}
 246EXPORT_SYMBOL_GPL(pmbus_read_word_data);
 247
 248/*
 249 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
 250 * a device specific mapping function exists and calls it if necessary.
 251 */
 252static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
 253{
 254	struct pmbus_data *data = i2c_get_clientdata(client);
 255	const struct pmbus_driver_info *info = data->info;
 256	int status;
 257
 258	if (info->read_word_data) {
 259		status = info->read_word_data(client, page, reg);
 260		if (status != -ENODATA)
 261			return status;
 262	}
 263	if (reg >= PMBUS_VIRT_BASE)
 264		return -EINVAL;
 265	return pmbus_read_word_data(client, page, reg);
 266}
 267
 268int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
 
 269{
 
 270	int rv;
 
 271
 272	if (page >= 0) {
 273		rv = pmbus_set_page(client, page);
 
 
 
 
 
 
 
 274		if (rv < 0)
 275			return rv;
 276	}
 277
 278	return i2c_smbus_read_byte_data(client, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279}
 280EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
 281
 282/*
 283 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
 284 * a device specific mapping function exists and calls it if necessary.
 285 */
 286static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
 
 287{
 288	struct pmbus_data *data = i2c_get_clientdata(client);
 289	const struct pmbus_driver_info *info = data->info;
 290	int status;
 291
 292	if (info->read_byte_data) {
 293		status = info->read_byte_data(client, page, reg);
 294		if (status != -ENODATA)
 295			return status;
 296	}
 297	return pmbus_read_byte_data(client, page, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298}
 299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300static void pmbus_clear_fault_page(struct i2c_client *client, int page)
 301{
 302	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
 303}
 304
 305void pmbus_clear_faults(struct i2c_client *client)
 306{
 307	struct pmbus_data *data = i2c_get_clientdata(client);
 308	int i;
 309
 310	for (i = 0; i < data->info->pages; i++)
 311		pmbus_clear_fault_page(client, i);
 312}
 313EXPORT_SYMBOL_GPL(pmbus_clear_faults);
 314
 315static int pmbus_check_status_cml(struct i2c_client *client)
 316{
 
 317	int status, status2;
 318
 319	status = pmbus_read_byte_data(client, -1, PMBUS_STATUS_BYTE);
 320	if (status < 0 || (status & PB_STATUS_CML)) {
 321		status2 = pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
 322		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
 323			return -EINVAL;
 324	}
 325	return 0;
 326}
 327
 328bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
 
 
 
 329{
 330	int rv;
 331	struct pmbus_data *data = i2c_get_clientdata(client);
 332
 333	rv = _pmbus_read_byte_data(client, page, reg);
 334	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 335		rv = pmbus_check_status_cml(client);
 
 
 336	pmbus_clear_fault_page(client, -1);
 337	return rv >= 0;
 338}
 339EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340
 341bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
 342{
 
 
 
 
 
 
 
 343	int rv;
 344	struct pmbus_data *data = i2c_get_clientdata(client);
 
 345
 346	rv = _pmbus_read_word_data(client, page, reg);
 347	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 348		rv = pmbus_check_status_cml(client);
 
 
 349	pmbus_clear_fault_page(client, -1);
 350	return rv >= 0;
 351}
 352EXPORT_SYMBOL_GPL(pmbus_check_word_register);
 353
 354const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
 355{
 356	struct pmbus_data *data = i2c_get_clientdata(client);
 357
 358	return data->info;
 359}
 360EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
 361
 362static struct pmbus_data *pmbus_update_device(struct device *dev)
 363{
 364	struct i2c_client *client = to_i2c_client(dev);
 365	struct pmbus_data *data = i2c_get_clientdata(client);
 366	const struct pmbus_driver_info *info = data->info;
 367
 368	mutex_lock(&data->update_lock);
 369	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
 370		int i;
 
 
 
 
 
 
 
 
 
 371
 372		for (i = 0; i < info->pages; i++)
 373			data->status[PB_STATUS_BASE + i]
 374			    = pmbus_read_byte_data(client, i,
 375						   PMBUS_STATUS_BYTE);
 376		for (i = 0; i < info->pages; i++) {
 377			if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT))
 378				continue;
 379			data->status[PB_STATUS_VOUT_BASE + i]
 380			  = _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT);
 381		}
 382		for (i = 0; i < info->pages; i++) {
 383			if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT))
 384				continue;
 385			data->status[PB_STATUS_IOUT_BASE + i]
 386			  = _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT);
 387		}
 388		for (i = 0; i < info->pages; i++) {
 389			if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP))
 390				continue;
 391			data->status[PB_STATUS_TEMP_BASE + i]
 392			  = _pmbus_read_byte_data(client, i,
 393						  PMBUS_STATUS_TEMPERATURE);
 394		}
 395		for (i = 0; i < info->pages; i++) {
 396			if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12))
 397				continue;
 398			data->status[PB_STATUS_FAN_BASE + i]
 399			  = _pmbus_read_byte_data(client, i,
 400						  PMBUS_STATUS_FAN_12);
 401		}
 402
 403		for (i = 0; i < info->pages; i++) {
 404			if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34))
 405				continue;
 406			data->status[PB_STATUS_FAN34_BASE + i]
 407			  = _pmbus_read_byte_data(client, i,
 408						  PMBUS_STATUS_FAN_34);
 409		}
 410
 411		if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
 412			data->status[PB_STATUS_INPUT_BASE]
 413			  = _pmbus_read_byte_data(client, 0,
 414						  PMBUS_STATUS_INPUT);
 415
 416		for (i = 0; i < data->num_sensors; i++) {
 417			struct pmbus_sensor *sensor = &data->sensors[i];
 418
 419			if (!data->valid || sensor->update)
 420				sensor->data
 421				    = _pmbus_read_word_data(client,
 422							    sensor->page,
 423							    sensor->reg);
 424		}
 425		pmbus_clear_faults(client);
 426		data->last_updated = jiffies;
 427		data->valid = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	}
 429	mutex_unlock(&data->update_lock);
 430	return data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431}
 432
 433/*
 434 * Convert linear sensor values to milli- or micro-units
 435 * depending on sensor type.
 436 */
 437static long pmbus_reg2data_linear(struct pmbus_data *data,
 438				  struct pmbus_sensor *sensor)
 439{
 440	s16 exponent;
 441	s32 mantissa;
 442	long val;
 443
 444	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
 445		exponent = data->exponent;
 446		mantissa = (u16) sensor->data;
 447	} else {				/* LINEAR11 */
 448		exponent = (sensor->data >> 11) & 0x001f;
 449		mantissa = sensor->data & 0x07ff;
 450
 451		if (exponent > 0x0f)
 452			exponent |= 0xffe0;	/* sign extend exponent */
 453		if (mantissa > 0x03ff)
 454			mantissa |= 0xfffff800;	/* sign extend mantissa */
 455	}
 456
 457	val = mantissa;
 458
 459	/* scale result to milli-units for all sensors except fans */
 460	if (sensor->class != PSC_FAN)
 461		val = val * 1000L;
 462
 463	/* scale result to micro-units for power sensors */
 464	if (sensor->class == PSC_POWER)
 465		val = val * 1000L;
 466
 467	if (exponent >= 0)
 468		val <<= exponent;
 469	else
 470		val >>= -exponent;
 471
 472	return val;
 473}
 474
 475/*
 476 * Convert direct sensor values to milli- or micro-units
 477 * depending on sensor type.
 478 */
 479static long pmbus_reg2data_direct(struct pmbus_data *data,
 480				  struct pmbus_sensor *sensor)
 481{
 482	long val = (s16) sensor->data;
 483	long m, b, R;
 484
 485	m = data->info->m[sensor->class];
 486	b = data->info->b[sensor->class];
 487	R = data->info->R[sensor->class];
 488
 489	if (m == 0)
 490		return 0;
 491
 492	/* X = 1/m * (Y * 10^-R - b) */
 493	R = -R;
 494	/* scale result to milli-units for everything but fans */
 495	if (sensor->class != PSC_FAN) {
 496		R += 3;
 497		b *= 1000;
 498	}
 499
 500	/* scale result to micro-units for power sensors */
 501	if (sensor->class == PSC_POWER) {
 502		R += 3;
 503		b *= 1000;
 504	}
 505
 506	while (R > 0) {
 507		val *= 10;
 508		R--;
 509	}
 510	while (R < 0) {
 511		val = DIV_ROUND_CLOSEST(val, 10);
 512		R++;
 513	}
 514
 515	return (val - b) / m;
 
 516}
 517
 518/*
 519 * Convert VID sensor values to milli- or micro-units
 520 * depending on sensor type.
 521 * We currently only support VR11.
 522 */
 523static long pmbus_reg2data_vid(struct pmbus_data *data,
 524			       struct pmbus_sensor *sensor)
 525{
 526	long val = sensor->data;
 
 527
 528	if (val < 0x02 || val > 0xb2)
 529		return 0;
 530	return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531}
 532
 533static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
 534{
 535	long val;
 
 
 
 536
 537	switch (data->info->format[sensor->class]) {
 538	case direct:
 539		val = pmbus_reg2data_direct(data, sensor);
 540		break;
 541	case vid:
 542		val = pmbus_reg2data_vid(data, sensor);
 543		break;
 
 
 
 544	case linear:
 545	default:
 546		val = pmbus_reg2data_linear(data, sensor);
 547		break;
 548	}
 549	return val;
 550}
 551
 552#define MAX_MANTISSA	(1023 * 1000)
 553#define MIN_MANTISSA	(511 * 1000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554
 555static u16 pmbus_data2reg_linear(struct pmbus_data *data,
 556				 enum pmbus_sensor_classes class, long val)
 557{
 558	s16 exponent = 0, mantissa;
 559	bool negative = false;
 560
 561	/* simple case */
 562	if (val == 0)
 563		return 0;
 564
 565	if (class == PSC_VOLTAGE_OUT) {
 566		/* LINEAR16 does not support negative voltages */
 567		if (val < 0)
 568			return 0;
 569
 570		/*
 571		 * For a static exponents, we don't have a choice
 572		 * but to adjust the value to it.
 573		 */
 574		if (data->exponent < 0)
 575			val <<= -data->exponent;
 576		else
 577			val >>= data->exponent;
 578		val = DIV_ROUND_CLOSEST(val, 1000);
 579		return val & 0xffff;
 580	}
 581
 582	if (val < 0) {
 583		negative = true;
 584		val = -val;
 585	}
 586
 587	/* Power is in uW. Convert to mW before converting. */
 588	if (class == PSC_POWER)
 589		val = DIV_ROUND_CLOSEST(val, 1000L);
 590
 591	/*
 592	 * For simplicity, convert fan data to milli-units
 593	 * before calculating the exponent.
 594	 */
 595	if (class == PSC_FAN)
 596		val = val * 1000;
 597
 598	/* Reduce large mantissa until it fits into 10 bit */
 599	while (val >= MAX_MANTISSA && exponent < 15) {
 600		exponent++;
 601		val >>= 1;
 602	}
 603	/* Increase small mantissa to improve precision */
 604	while (val < MIN_MANTISSA && exponent > -15) {
 605		exponent--;
 606		val <<= 1;
 607	}
 608
 609	/* Convert mantissa from milli-units to units */
 610	mantissa = DIV_ROUND_CLOSEST(val, 1000);
 611
 612	/* Ensure that resulting number is within range */
 613	if (mantissa > 0x3ff)
 614		mantissa = 0x3ff;
 615
 616	/* restore sign */
 617	if (negative)
 618		mantissa = -mantissa;
 619
 620	/* Convert to 5 bit exponent, 11 bit mantissa */
 621	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
 622}
 623
 624static u16 pmbus_data2reg_direct(struct pmbus_data *data,
 625				 enum pmbus_sensor_classes class, long val)
 626{
 627	long m, b, R;
 
 628
 629	m = data->info->m[class];
 630	b = data->info->b[class];
 631	R = data->info->R[class];
 632
 633	/* Power is in uW. Adjust R and b. */
 634	if (class == PSC_POWER) {
 635		R -= 3;
 636		b *= 1000;
 637	}
 638
 639	/* Calculate Y = (m * X + b) * 10^R */
 640	if (class != PSC_FAN) {
 641		R -= 3;		/* Adjust R and b for data in milli-units */
 642		b *= 1000;
 643	}
 644	val = val * m + b;
 645
 646	while (R > 0) {
 647		val *= 10;
 648		R--;
 649	}
 650	while (R < 0) {
 651		val = DIV_ROUND_CLOSEST(val, 10);
 652		R++;
 653	}
 654
 655	return val;
 656}
 657
 658static u16 pmbus_data2reg_vid(struct pmbus_data *data,
 659			      enum pmbus_sensor_classes class, long val)
 660{
 661	val = SENSORS_LIMIT(val, 500, 1600);
 662
 663	return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
 664}
 665
 666static u16 pmbus_data2reg(struct pmbus_data *data,
 667			  enum pmbus_sensor_classes class, long val)
 668{
 669	u16 regval;
 670
 671	switch (data->info->format[class]) {
 
 
 
 672	case direct:
 673		regval = pmbus_data2reg_direct(data, class, val);
 674		break;
 675	case vid:
 676		regval = pmbus_data2reg_vid(data, class, val);
 
 
 
 677		break;
 678	case linear:
 679	default:
 680		regval = pmbus_data2reg_linear(data, class, val);
 681		break;
 682	}
 683	return regval;
 684}
 685
 686/*
 687 * Return boolean calculated from converted data.
 688 * <index> defines a status register index and mask, and optionally
 689 * two sensor indexes.
 690 * The upper half-word references the two sensors,
 691 * two sensor indices.
 692 * The upper half-word references the two optional sensors,
 693 * the lower half word references status register and mask.
 694 * The function returns true if (status[reg] & mask) is true and,
 695 * if specified, if v1 >= v2.
 696 * To determine if an object exceeds upper limits, specify <v, limit>.
 697 * To determine if an object exceeds lower limits, specify <limit, v>.
 698 *
 699 * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of
 700 * index are set. s1 and s2 (the sensor index values) are zero in this case.
 701 * The function returns true if (status[reg] & mask) is true.
 702 *
 703 * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against
 704 * a specified limit has to be performed to determine the boolean result.
 705 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
 706 * sensor values referenced by sensor indices s1 and s2).
 707 *
 708 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
 709 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
 710 *
 711 * If a negative value is stored in any of the referenced registers, this value
 712 * reflects an error code which will be returned.
 713 */
 714static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val)
 
 715{
 716	u8 s1 = (index >> 24) & 0xff;
 717	u8 s2 = (index >> 16) & 0xff;
 718	u8 reg = (index >> 8) & 0xff;
 719	u8 mask = index & 0xff;
 720	int status;
 721	u8 regval;
 
 
 722
 723	status = data->status[reg];
 724	if (status < 0)
 725		return status;
 
 
 
 
 
 
 
 
 726
 727	regval = status & mask;
 728	if (!s1 && !s2)
 729		*val = !!regval;
 730	else {
 731		long v1, v2;
 732		struct pmbus_sensor *sensor1, *sensor2;
 733
 734		sensor1 = &data->sensors[s1];
 735		if (sensor1->data < 0)
 736			return sensor1->data;
 737		sensor2 = &data->sensors[s2];
 738		if (sensor2->data < 0)
 739			return sensor2->data;
 740
 741		v1 = pmbus_reg2data(data, sensor1);
 742		v2 = pmbus_reg2data(data, sensor2);
 743		*val = !!(regval && v1 >= v2);
 
 
 
 
 
 
 744	}
 745	return 0;
 
 
 746}
 747
 748static ssize_t pmbus_show_boolean(struct device *dev,
 749				  struct device_attribute *da, char *buf)
 750{
 751	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 752	struct pmbus_data *data = pmbus_update_device(dev);
 
 753	int val;
 754	int err;
 755
 756	err = pmbus_get_boolean(data, attr->index, &val);
 757	if (err)
 758		return err;
 759	return snprintf(buf, PAGE_SIZE, "%d\n", val);
 760}
 761
 762static ssize_t pmbus_show_sensor(struct device *dev,
 763				 struct device_attribute *da, char *buf)
 764{
 765	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 766	struct pmbus_data *data = pmbus_update_device(dev);
 767	struct pmbus_sensor *sensor;
 
 768
 769	sensor = &data->sensors[attr->index];
 
 770	if (sensor->data < 0)
 771		return sensor->data;
 772
 773	return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
 
 
 774}
 775
 776static ssize_t pmbus_set_sensor(struct device *dev,
 777				struct device_attribute *devattr,
 778				const char *buf, size_t count)
 779{
 780	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
 781	struct i2c_client *client = to_i2c_client(dev);
 782	struct pmbus_data *data = i2c_get_clientdata(client);
 783	struct pmbus_sensor *sensor = &data->sensors[attr->index];
 784	ssize_t rv = count;
 785	long val = 0;
 786	int ret;
 787	u16 regval;
 788
 789	if (strict_strtol(buf, 10, &val) < 0)
 790		return -EINVAL;
 791
 792	mutex_lock(&data->update_lock);
 793	regval = pmbus_data2reg(data, sensor->class, val);
 794	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
 795	if (ret < 0)
 796		rv = ret;
 797	else
 798		data->sensors[attr->index].data = regval;
 799	mutex_unlock(&data->update_lock);
 800	return rv;
 801}
 802
 803static ssize_t pmbus_show_label(struct device *dev,
 804				struct device_attribute *da, char *buf)
 805{
 806	struct i2c_client *client = to_i2c_client(dev);
 807	struct pmbus_data *data = i2c_get_clientdata(client);
 808	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 809
 810	return snprintf(buf, PAGE_SIZE, "%s\n",
 811			data->labels[attr->index].label);
 812}
 813
 814#define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set)	\
 815do {									\
 816	struct sensor_device_attribute *a				\
 817	    = &data->_type##s[data->num_##_type##s].attribute;		\
 818	BUG_ON(data->num_attributes >= data->max_attributes);		\
 819	sysfs_attr_init(&a->dev_attr.attr);				\
 820	a->dev_attr.attr.name = _name;					\
 821	a->dev_attr.attr.mode = _mode;					\
 822	a->dev_attr.show = _show;					\
 823	a->dev_attr.store = _set;					\
 824	a->index = _idx;						\
 825	data->attributes[data->num_attributes] = &a->dev_attr.attr;	\
 826	data->num_attributes++;						\
 827} while (0)
 828
 829#define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx)			\
 830	PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type,		\
 831		       pmbus_show_##_type,  NULL)
 832
 833#define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx)			\
 834	PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type,	\
 835		       pmbus_show_##_type, pmbus_set_##_type)
 836
 837static void pmbus_add_boolean(struct pmbus_data *data,
 838			      const char *name, const char *type, int seq,
 839			      int idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840{
 841	struct pmbus_boolean *boolean;
 
 
 
 
 842
 843	BUG_ON(data->num_booleans >= data->max_booleans);
 
 
 844
 845	boolean = &data->booleans[data->num_booleans];
 846
 847	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
 848		 name, seq, type);
 849	PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx);
 850	data->num_booleans++;
 
 
 
 
 851}
 852
 853static void pmbus_add_boolean_reg(struct pmbus_data *data,
 854				  const char *name, const char *type,
 855				  int seq, int reg, int bit)
 
 
 
 
 856{
 857	pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858}
 859
 860static void pmbus_add_boolean_cmp(struct pmbus_data *data,
 861				  const char *name, const char *type,
 862				  int seq, int i1, int i2, int reg, int mask)
 
 
 
 863{
 864	pmbus_add_boolean(data, name, type, seq,
 865			  (i1 << 24) | (i2 << 16) | (reg << 8) | mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866}
 867
 868static void pmbus_add_sensor(struct pmbus_data *data,
 869			     const char *name, const char *type, int seq,
 870			     int page, int reg, enum pmbus_sensor_classes class,
 871			     bool update, bool readonly)
 
 
 
 872{
 873	struct pmbus_sensor *sensor;
 
 
 
 
 
 
 
 
 
 
 
 
 
 874
 875	BUG_ON(data->num_sensors >= data->max_sensors);
 
 876
 877	sensor = &data->sensors[data->num_sensors];
 878	snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
 879		 name, seq, type);
 880	sensor->page = page;
 
 881	sensor->reg = reg;
 882	sensor->class = class;
 883	sensor->update = update;
 884	if (readonly)
 885		PMBUS_ADD_GET_ATTR(data, sensor->name, sensor,
 886				   data->num_sensors);
 887	else
 888		PMBUS_ADD_SET_ATTR(data, sensor->name, sensor,
 889				   data->num_sensors);
 890	data->num_sensors++;
 891}
 892
 893static void pmbus_add_label(struct pmbus_data *data,
 894			    const char *name, int seq,
 895			    const char *lstring, int index)
 896{
 897	struct pmbus_label *label;
 898
 899	BUG_ON(data->num_labels >= data->max_labels);
 
 900
 901	label = &data->labels[data->num_labels];
 902	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
 903	if (!index)
 904		strncpy(label->label, lstring, sizeof(label->label) - 1);
 905	else
 906		snprintf(label->label, sizeof(label->label), "%s%d", lstring,
 907			 index);
 908
 909	PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels);
 910	data->num_labels++;
 911}
 912
 913/*
 914 * Determine maximum number of sensors, booleans, and labels.
 915 * To keep things simple, only make a rough high estimate.
 916 */
 917static void pmbus_find_max_attr(struct i2c_client *client,
 918				struct pmbus_data *data)
 919{
 920	const struct pmbus_driver_info *info = data->info;
 921	int page, max_sensors, max_booleans, max_labels;
 922
 923	max_sensors = PMBUS_MAX_INPUT_SENSORS;
 924	max_booleans = PMBUS_MAX_INPUT_BOOLEANS;
 925	max_labels = PMBUS_MAX_INPUT_LABELS;
 926
 927	for (page = 0; page < info->pages; page++) {
 928		if (info->func[page] & PMBUS_HAVE_VOUT) {
 929			max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE;
 930			max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE;
 931			max_labels++;
 932		}
 933		if (info->func[page] & PMBUS_HAVE_IOUT) {
 934			max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE;
 935			max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE;
 936			max_labels++;
 937		}
 938		if (info->func[page] & PMBUS_HAVE_POUT) {
 939			max_sensors += PMBUS_POUT_SENSORS_PER_PAGE;
 940			max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE;
 941			max_labels++;
 942		}
 943		if (info->func[page] & PMBUS_HAVE_FAN12) {
 944			max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
 945			max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
 946		}
 947		if (info->func[page] & PMBUS_HAVE_FAN34) {
 948			max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
 949			max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
 950		}
 951		if (info->func[page] & PMBUS_HAVE_TEMP) {
 952			max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
 953			max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
 954		}
 955		if (info->func[page] & PMBUS_HAVE_TEMP2) {
 956			max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
 957			max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
 958		}
 959		if (info->func[page] & PMBUS_HAVE_TEMP3) {
 960			max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
 961			max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
 962		}
 963	}
 964	data->max_sensors = max_sensors;
 965	data->max_booleans = max_booleans;
 966	data->max_labels = max_labels;
 967	data->max_attributes = max_sensors + max_booleans + max_labels;
 968}
 969
 970/*
 971 * Search for attributes. Allocate sensors, booleans, and labels as needed.
 972 */
 973
 974/*
 975 * The pmbus_limit_attr structure describes a single limit attribute
 976 * and its associated alarm attribute.
 977 */
 978struct pmbus_limit_attr {
 979	u16 reg;		/* Limit register */
 
 980	bool update;		/* True if register needs updates */
 981	bool low;		/* True if low limit; for limits with compare
 982				   functions only */
 983	const char *attr;	/* Attribute name */
 984	const char *alarm;	/* Alarm attribute name */
 985	u32 sbit;		/* Alarm attribute status bit */
 986};
 987
 988/*
 989 * The pmbus_sensor_attr structure describes one sensor attribute. This
 990 * description includes a reference to the associated limit attributes.
 991 */
 992struct pmbus_sensor_attr {
 993	u8 reg;				/* sensor register */
 
 
 994	enum pmbus_sensor_classes class;/* sensor class */
 995	const char *label;		/* sensor label */
 996	bool paged;			/* true if paged sensor */
 997	bool update;			/* true if update needed */
 998	bool compare;			/* true if compare function needed */
 999	u32 func;			/* sensor mask */
1000	u32 sfunc;			/* sensor status mask */
1001	int sbase;			/* status base register */
1002	u32 gbit;			/* generic status bit */
1003	const struct pmbus_limit_attr *limit;/* limit registers */
1004	int nlimit;			/* # of limit registers */
1005};
1006
1007/*
1008 * Add a set of limit attributes and, if supported, the associated
1009 * alarm attributes.
 
 
1010 */
1011static bool pmbus_add_limit_attrs(struct i2c_client *client,
1012				  struct pmbus_data *data,
1013				  const struct pmbus_driver_info *info,
1014				  const char *name, int index, int page,
1015				  int cbase,
1016				  const struct pmbus_sensor_attr *attr)
1017{
1018	const struct pmbus_limit_attr *l = attr->limit;
1019	int nlimit = attr->nlimit;
1020	bool have_alarm = false;
1021	int i, cindex;
 
1022
1023	for (i = 0; i < nlimit; i++) {
1024		if (pmbus_check_word_register(client, page, l->reg)) {
1025			cindex = data->num_sensors;
1026			pmbus_add_sensor(data, name, l->attr, index, page,
1027					 l->reg, attr->class,
1028					 attr->update || l->update,
1029					 false);
 
1030			if (l->sbit && (info->func[page] & attr->sfunc)) {
1031				if (attr->compare) {
1032					pmbus_add_boolean_cmp(data, name,
1033						l->alarm, index,
1034						l->low ? cindex : cbase,
1035						l->low ? cbase : cindex,
1036						attr->sbase + page, l->sbit);
1037				} else {
1038					pmbus_add_boolean_reg(data, name,
1039						l->alarm, index,
1040						attr->sbase + page, l->sbit);
1041				}
1042				have_alarm = true;
1043			}
1044		}
1045		l++;
1046	}
1047	return have_alarm;
1048}
1049
1050static void pmbus_add_sensor_attrs_one(struct i2c_client *client,
1051				       struct pmbus_data *data,
1052				       const struct pmbus_driver_info *info,
1053				       const char *name,
1054				       int index, int page,
1055				       const struct pmbus_sensor_attr *attr)
1056{
1057	bool have_alarm;
1058	int cbase = data->num_sensors;
1059
1060	if (attr->label)
1061		pmbus_add_label(data, name, index, attr->label,
1062				attr->paged ? page + 1 : 0);
1063	pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1064			 attr->class, true, true);
1065	if (attr->sfunc) {
1066		have_alarm = pmbus_add_limit_attrs(client, data, info, name,
1067						   index, page, cbase, attr);
 
 
 
 
 
 
 
 
 
 
1068		/*
1069		 * Add generic alarm attribute only if there are no individual
1070		 * alarm attributes, if there is a global alarm bit, and if
1071		 * the generic status register for this page is accessible.
 
1072		 */
1073		if (!have_alarm && attr->gbit &&
1074		    pmbus_check_byte_register(client, page, PMBUS_STATUS_BYTE))
1075			pmbus_add_boolean_reg(data, name, "alarm", index,
1076					      PB_STATUS_BASE + page,
1077					      attr->gbit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078	}
 
1079}
1080
1081static void pmbus_add_sensor_attrs(struct i2c_client *client,
1082				   struct pmbus_data *data,
1083				   const char *name,
1084				   const struct pmbus_sensor_attr *attrs,
1085				   int nattrs)
1086{
1087	const struct pmbus_driver_info *info = data->info;
1088	int index, i;
 
1089
1090	index = 1;
1091	for (i = 0; i < nattrs; i++) {
1092		int page, pages;
 
1093
1094		pages = attrs->paged ? info->pages : 1;
1095		for (page = 0; page < pages; page++) {
1096			if (!(info->func[page] & attrs->func))
1097				continue;
1098			pmbus_add_sensor_attrs_one(client, data, info, name,
1099						   index, page, attrs);
1100			index++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101		}
1102		attrs++;
1103	}
 
1104}
1105
1106static const struct pmbus_limit_attr vin_limit_attrs[] = {
1107	{
1108		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1109		.attr = "min",
1110		.alarm = "min_alarm",
1111		.sbit = PB_VOLTAGE_UV_WARNING,
1112	}, {
1113		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1114		.attr = "lcrit",
1115		.alarm = "lcrit_alarm",
1116		.sbit = PB_VOLTAGE_UV_FAULT,
1117	}, {
1118		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1119		.attr = "max",
1120		.alarm = "max_alarm",
1121		.sbit = PB_VOLTAGE_OV_WARNING,
1122	}, {
1123		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1124		.attr = "crit",
1125		.alarm = "crit_alarm",
1126		.sbit = PB_VOLTAGE_OV_FAULT,
1127	}, {
1128		.reg = PMBUS_VIRT_READ_VIN_AVG,
1129		.update = true,
1130		.attr = "average",
1131	}, {
1132		.reg = PMBUS_VIRT_READ_VIN_MIN,
1133		.update = true,
1134		.attr = "lowest",
1135	}, {
1136		.reg = PMBUS_VIRT_READ_VIN_MAX,
1137		.update = true,
1138		.attr = "highest",
1139	}, {
1140		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1141		.attr = "reset_history",
 
 
 
 
 
 
1142	},
1143};
1144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145static const struct pmbus_limit_attr vout_limit_attrs[] = {
1146	{
1147		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1148		.attr = "min",
1149		.alarm = "min_alarm",
1150		.sbit = PB_VOLTAGE_UV_WARNING,
1151	}, {
1152		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1153		.attr = "lcrit",
1154		.alarm = "lcrit_alarm",
1155		.sbit = PB_VOLTAGE_UV_FAULT,
1156	}, {
1157		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1158		.attr = "max",
1159		.alarm = "max_alarm",
1160		.sbit = PB_VOLTAGE_OV_WARNING,
1161	}, {
1162		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1163		.attr = "crit",
1164		.alarm = "crit_alarm",
1165		.sbit = PB_VOLTAGE_OV_FAULT,
1166	}, {
1167		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1168		.update = true,
1169		.attr = "average",
1170	}, {
1171		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1172		.update = true,
1173		.attr = "lowest",
1174	}, {
1175		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1176		.update = true,
1177		.attr = "highest",
1178	}, {
1179		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1180		.attr = "reset_history",
1181	}
 
 
 
 
 
 
1182};
1183
1184static const struct pmbus_sensor_attr voltage_attributes[] = {
1185	{
1186		.reg = PMBUS_READ_VIN,
1187		.class = PSC_VOLTAGE_IN,
1188		.label = "vin",
1189		.func = PMBUS_HAVE_VIN,
1190		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1191		.sbase = PB_STATUS_INPUT_BASE,
1192		.gbit = PB_STATUS_VIN_UV,
1193		.limit = vin_limit_attrs,
1194		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1195	}, {
 
 
 
 
 
 
 
 
 
1196		.reg = PMBUS_READ_VCAP,
1197		.class = PSC_VOLTAGE_IN,
1198		.label = "vcap",
1199		.func = PMBUS_HAVE_VCAP,
1200	}, {
1201		.reg = PMBUS_READ_VOUT,
1202		.class = PSC_VOLTAGE_OUT,
1203		.label = "vout",
1204		.paged = true,
1205		.func = PMBUS_HAVE_VOUT,
1206		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1207		.sbase = PB_STATUS_VOUT_BASE,
1208		.gbit = PB_STATUS_VOUT_OV,
1209		.limit = vout_limit_attrs,
1210		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1211	}
1212};
1213
1214/* Current attributes */
1215
1216static const struct pmbus_limit_attr iin_limit_attrs[] = {
1217	{
1218		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1219		.attr = "max",
1220		.alarm = "max_alarm",
1221		.sbit = PB_IIN_OC_WARNING,
1222	}, {
1223		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1224		.attr = "crit",
1225		.alarm = "crit_alarm",
1226		.sbit = PB_IIN_OC_FAULT,
1227	}, {
1228		.reg = PMBUS_VIRT_READ_IIN_AVG,
1229		.update = true,
1230		.attr = "average",
1231	}, {
1232		.reg = PMBUS_VIRT_READ_IIN_MIN,
1233		.update = true,
1234		.attr = "lowest",
1235	}, {
1236		.reg = PMBUS_VIRT_READ_IIN_MAX,
1237		.update = true,
1238		.attr = "highest",
1239	}, {
1240		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1241		.attr = "reset_history",
1242	}
 
 
 
1243};
1244
1245static const struct pmbus_limit_attr iout_limit_attrs[] = {
1246	{
1247		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1248		.attr = "max",
1249		.alarm = "max_alarm",
1250		.sbit = PB_IOUT_OC_WARNING,
1251	}, {
1252		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1253		.attr = "lcrit",
1254		.alarm = "lcrit_alarm",
1255		.sbit = PB_IOUT_UC_FAULT,
1256	}, {
1257		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1258		.attr = "crit",
1259		.alarm = "crit_alarm",
1260		.sbit = PB_IOUT_OC_FAULT,
1261	}, {
1262		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1263		.update = true,
1264		.attr = "average",
1265	}, {
1266		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1267		.update = true,
1268		.attr = "lowest",
1269	}, {
1270		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1271		.update = true,
1272		.attr = "highest",
1273	}, {
1274		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1275		.attr = "reset_history",
1276	}
 
 
 
1277};
1278
1279static const struct pmbus_sensor_attr current_attributes[] = {
1280	{
1281		.reg = PMBUS_READ_IIN,
1282		.class = PSC_CURRENT_IN,
1283		.label = "iin",
1284		.func = PMBUS_HAVE_IIN,
1285		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1286		.sbase = PB_STATUS_INPUT_BASE,
 
1287		.limit = iin_limit_attrs,
1288		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1289	}, {
1290		.reg = PMBUS_READ_IOUT,
1291		.class = PSC_CURRENT_OUT,
1292		.label = "iout",
1293		.paged = true,
1294		.func = PMBUS_HAVE_IOUT,
1295		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1296		.sbase = PB_STATUS_IOUT_BASE,
1297		.gbit = PB_STATUS_IOUT_OC,
1298		.limit = iout_limit_attrs,
1299		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1300	}
1301};
1302
1303/* Power attributes */
1304
1305static const struct pmbus_limit_attr pin_limit_attrs[] = {
1306	{
1307		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1308		.attr = "max",
1309		.alarm = "alarm",
1310		.sbit = PB_PIN_OP_WARNING,
1311	}, {
1312		.reg = PMBUS_VIRT_READ_PIN_AVG,
1313		.update = true,
1314		.attr = "average",
1315	}, {
 
 
 
 
1316		.reg = PMBUS_VIRT_READ_PIN_MAX,
1317		.update = true,
1318		.attr = "input_highest",
1319	}, {
1320		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1321		.attr = "reset_history",
1322	}
 
 
 
1323};
1324
1325static const struct pmbus_limit_attr pout_limit_attrs[] = {
1326	{
1327		.reg = PMBUS_POUT_MAX,
1328		.attr = "cap",
1329		.alarm = "cap_alarm",
1330		.sbit = PB_POWER_LIMITING,
1331	}, {
1332		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1333		.attr = "max",
1334		.alarm = "max_alarm",
1335		.sbit = PB_POUT_OP_WARNING,
1336	}, {
1337		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1338		.attr = "crit",
1339		.alarm = "crit_alarm",
1340		.sbit = PB_POUT_OP_FAULT,
1341	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342};
1343
1344static const struct pmbus_sensor_attr power_attributes[] = {
1345	{
1346		.reg = PMBUS_READ_PIN,
1347		.class = PSC_POWER,
1348		.label = "pin",
1349		.func = PMBUS_HAVE_PIN,
1350		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1351		.sbase = PB_STATUS_INPUT_BASE,
 
1352		.limit = pin_limit_attrs,
1353		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1354	}, {
1355		.reg = PMBUS_READ_POUT,
1356		.class = PSC_POWER,
1357		.label = "pout",
1358		.paged = true,
1359		.func = PMBUS_HAVE_POUT,
1360		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1361		.sbase = PB_STATUS_IOUT_BASE,
1362		.limit = pout_limit_attrs,
1363		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1364	}
1365};
1366
1367/* Temperature atributes */
1368
1369static const struct pmbus_limit_attr temp_limit_attrs[] = {
1370	{
1371		.reg = PMBUS_UT_WARN_LIMIT,
1372		.low = true,
1373		.attr = "min",
1374		.alarm = "min_alarm",
1375		.sbit = PB_TEMP_UT_WARNING,
1376	}, {
1377		.reg = PMBUS_UT_FAULT_LIMIT,
1378		.low = true,
1379		.attr = "lcrit",
1380		.alarm = "lcrit_alarm",
1381		.sbit = PB_TEMP_UT_FAULT,
1382	}, {
1383		.reg = PMBUS_OT_WARN_LIMIT,
1384		.attr = "max",
1385		.alarm = "max_alarm",
1386		.sbit = PB_TEMP_OT_WARNING,
1387	}, {
1388		.reg = PMBUS_OT_FAULT_LIMIT,
1389		.attr = "crit",
1390		.alarm = "crit_alarm",
1391		.sbit = PB_TEMP_OT_FAULT,
1392	}, {
1393		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1394		.attr = "lowest",
1395	}, {
 
 
 
1396		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1397		.attr = "highest",
1398	}, {
1399		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1400		.attr = "reset_history",
1401	}
 
 
 
1402};
1403
1404static const struct pmbus_limit_attr temp_limit_attrs23[] = {
1405	{
1406		.reg = PMBUS_UT_WARN_LIMIT,
1407		.low = true,
1408		.attr = "min",
1409		.alarm = "min_alarm",
1410		.sbit = PB_TEMP_UT_WARNING,
1411	}, {
1412		.reg = PMBUS_UT_FAULT_LIMIT,
1413		.low = true,
1414		.attr = "lcrit",
1415		.alarm = "lcrit_alarm",
1416		.sbit = PB_TEMP_UT_FAULT,
1417	}, {
1418		.reg = PMBUS_OT_WARN_LIMIT,
1419		.attr = "max",
1420		.alarm = "max_alarm",
1421		.sbit = PB_TEMP_OT_WARNING,
1422	}, {
1423		.reg = PMBUS_OT_FAULT_LIMIT,
1424		.attr = "crit",
1425		.alarm = "crit_alarm",
1426		.sbit = PB_TEMP_OT_FAULT,
1427	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428};
1429
1430static const struct pmbus_sensor_attr temp_attributes[] = {
1431	{
1432		.reg = PMBUS_READ_TEMPERATURE_1,
1433		.class = PSC_TEMPERATURE,
1434		.paged = true,
1435		.update = true,
1436		.compare = true,
1437		.func = PMBUS_HAVE_TEMP,
1438		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1439		.sbase = PB_STATUS_TEMP_BASE,
1440		.gbit = PB_STATUS_TEMPERATURE,
1441		.limit = temp_limit_attrs,
1442		.nlimit = ARRAY_SIZE(temp_limit_attrs),
1443	}, {
1444		.reg = PMBUS_READ_TEMPERATURE_2,
1445		.class = PSC_TEMPERATURE,
1446		.paged = true,
1447		.update = true,
1448		.compare = true,
1449		.func = PMBUS_HAVE_TEMP2,
1450		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1451		.sbase = PB_STATUS_TEMP_BASE,
1452		.gbit = PB_STATUS_TEMPERATURE,
1453		.limit = temp_limit_attrs23,
1454		.nlimit = ARRAY_SIZE(temp_limit_attrs23),
1455	}, {
1456		.reg = PMBUS_READ_TEMPERATURE_3,
1457		.class = PSC_TEMPERATURE,
1458		.paged = true,
1459		.update = true,
1460		.compare = true,
1461		.func = PMBUS_HAVE_TEMP3,
1462		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1463		.sbase = PB_STATUS_TEMP_BASE,
1464		.gbit = PB_STATUS_TEMPERATURE,
1465		.limit = temp_limit_attrs23,
1466		.nlimit = ARRAY_SIZE(temp_limit_attrs23),
1467	}
1468};
1469
1470static const int pmbus_fan_registers[] = {
1471	PMBUS_READ_FAN_SPEED_1,
1472	PMBUS_READ_FAN_SPEED_2,
1473	PMBUS_READ_FAN_SPEED_3,
1474	PMBUS_READ_FAN_SPEED_4
1475};
1476
1477static const int pmbus_fan_config_registers[] = {
1478	PMBUS_FAN_CONFIG_12,
1479	PMBUS_FAN_CONFIG_12,
1480	PMBUS_FAN_CONFIG_34,
1481	PMBUS_FAN_CONFIG_34
1482};
1483
1484static const int pmbus_fan_status_registers[] = {
1485	PMBUS_STATUS_FAN_12,
1486	PMBUS_STATUS_FAN_12,
1487	PMBUS_STATUS_FAN_34,
1488	PMBUS_STATUS_FAN_34
1489};
1490
1491static const u32 pmbus_fan_flags[] = {
1492	PMBUS_HAVE_FAN12,
1493	PMBUS_HAVE_FAN12,
1494	PMBUS_HAVE_FAN34,
1495	PMBUS_HAVE_FAN34
1496};
1497
1498static const u32 pmbus_fan_status_flags[] = {
1499	PMBUS_HAVE_STATUS_FAN12,
1500	PMBUS_HAVE_STATUS_FAN12,
1501	PMBUS_HAVE_STATUS_FAN34,
1502	PMBUS_HAVE_STATUS_FAN34
1503};
1504
1505/* Fans */
1506static void pmbus_add_fan_attributes(struct i2c_client *client,
1507				     struct pmbus_data *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508{
1509	const struct pmbus_driver_info *info = data->info;
1510	int index = 1;
1511	int page;
 
1512
1513	for (page = 0; page < info->pages; page++) {
1514		int f;
1515
1516		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1517			int regval;
1518
1519			if (!(info->func[page] & pmbus_fan_flags[f]))
1520				break;
1521
1522			if (!pmbus_check_word_register(client, page,
1523						       pmbus_fan_registers[f]))
1524				break;
1525
1526			/*
1527			 * Skip fan if not installed.
1528			 * Each fan configuration register covers multiple fans,
1529			 * so we have to do some magic.
1530			 */
1531			regval = _pmbus_read_byte_data(client, page,
1532				pmbus_fan_config_registers[f]);
1533			if (regval < 0 ||
1534			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1535				continue;
1536
1537			pmbus_add_sensor(data, "fan", "input", index, page,
1538					 pmbus_fan_registers[f], PSC_FAN, true,
1539					 true);
 
 
 
 
 
 
 
 
 
 
1540
1541			/*
1542			 * Each fan status register covers multiple fans,
1543			 * so we have to do some magic.
1544			 */
1545			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1546			    pmbus_check_byte_register(client,
1547					page, pmbus_fan_status_registers[f])) {
1548				int base;
1549
1550				if (f > 1)	/* fan 3, 4 */
1551					base = PB_STATUS_FAN34_BASE + page;
1552				else
1553					base = PB_STATUS_FAN_BASE + page;
1554				pmbus_add_boolean_reg(data, "fan", "alarm",
1555					index, base,
1556					PB_FAN_FAN1_WARNING >> (f & 1));
1557				pmbus_add_boolean_reg(data, "fan", "fault",
1558					index, base,
 
 
1559					PB_FAN_FAN1_FAULT >> (f & 1));
 
 
1560			}
1561			index++;
1562		}
1563	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564}
1565
1566static void pmbus_find_attributes(struct i2c_client *client,
1567				  struct pmbus_data *data)
1568{
 
 
1569	/* Voltage sensors */
1570	pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1571			       ARRAY_SIZE(voltage_attributes));
 
 
1572
1573	/* Current sensors */
1574	pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1575			       ARRAY_SIZE(current_attributes));
 
 
1576
1577	/* Power sensors */
1578	pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1579			       ARRAY_SIZE(power_attributes));
 
 
1580
1581	/* Temperature sensors */
1582	pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1583			       ARRAY_SIZE(temp_attributes));
 
 
1584
1585	/* Fans */
1586	pmbus_add_fan_attributes(client, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1587}
1588
1589/*
1590 * Identify chip parameters.
1591 * This function is called for all chips.
1592 */
1593static int pmbus_identify_common(struct i2c_client *client,
1594				 struct pmbus_data *data)
1595{
1596	int vout_mode = -1, exponent;
1597
1598	if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
1599		vout_mode = pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
 
1600	if (vout_mode >= 0 && vout_mode != 0xff) {
1601		/*
1602		 * Not all chips support the VOUT_MODE command,
1603		 * so a failure to read it is not an error.
1604		 */
1605		switch (vout_mode >> 5) {
1606		case 0:	/* linear mode      */
1607			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1608				return -ENODEV;
1609
1610			exponent = vout_mode & 0x1f;
1611			/* and sign-extend it */
1612			if (exponent & 0x10)
1613				exponent |= ~0x1f;
1614			data->exponent = exponent;
1615			break;
1616		case 1: /* VID mode         */
1617			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1618				return -ENODEV;
1619			break;
1620		case 2:	/* direct mode      */
1621			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1622				return -ENODEV;
1623			break;
 
 
 
 
1624		default:
1625			return -ENODEV;
1626		}
1627	}
1628
1629	/* Determine maximum number of sensors, booleans, and labels */
1630	pmbus_find_max_attr(client, data);
1631	pmbus_clear_fault_page(client, 0);
1632	return 0;
1633}
1634
1635int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1636		   struct pmbus_driver_info *info)
1637{
1638	const struct pmbus_platform_data *pdata = client->dev.platform_data;
1639	struct pmbus_data *data;
1640	int ret;
1641
1642	if (!info) {
1643		dev_err(&client->dev, "Missing chip information");
1644		return -ENODEV;
1645	}
1646
1647	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1648				     | I2C_FUNC_SMBUS_BYTE_DATA
1649				     | I2C_FUNC_SMBUS_WORD_DATA))
1650		return -ENODEV;
1651
1652	data = kzalloc(sizeof(*data), GFP_KERNEL);
1653	if (!data) {
1654		dev_err(&client->dev, "No memory to allocate driver data\n");
1655		return -ENOMEM;
1656	}
1657
1658	i2c_set_clientdata(client, data);
1659	mutex_init(&data->update_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660
1661	/* Bail out if PMBus status register does not exist. */
1662	if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) {
1663		dev_err(&client->dev, "PMBus status register not found\n");
1664		ret = -ENODEV;
1665		goto out_data;
 
 
 
 
 
 
 
 
1666	}
1667
1668	if (pdata)
1669		data->flags = pdata->flags;
1670	data->info = info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671
1672	pmbus_clear_faults(client);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673
1674	if (info->identify) {
1675		ret = (*info->identify)(client, info);
1676		if (ret < 0) {
1677			dev_err(&client->dev, "Chip identification failed\n");
1678			goto out_data;
1679		}
1680	}
1681
1682	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1683		dev_err(&client->dev, "Bad number of PMBus pages: %d\n",
1684			info->pages);
1685		ret = -EINVAL;
1686		goto out_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687	}
1688
1689	ret = pmbus_identify_common(client, data);
1690	if (ret < 0) {
1691		dev_err(&client->dev, "Failed to identify chip capabilities\n");
1692		goto out_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693	}
1694
1695	ret = -ENOMEM;
1696	data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors,
1697				GFP_KERNEL);
1698	if (!data->sensors) {
1699		dev_err(&client->dev, "No memory to allocate sensor data\n");
1700		goto out_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701	}
1702
1703	data->booleans = kzalloc(sizeof(struct pmbus_boolean)
1704				 * data->max_booleans, GFP_KERNEL);
1705	if (!data->booleans) {
1706		dev_err(&client->dev, "No memory to allocate boolean data\n");
1707		goto out_sensors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708	}
1709
1710	data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels,
 
 
 
 
 
 
1711			       GFP_KERNEL);
1712	if (!data->labels) {
1713		dev_err(&client->dev, "No memory to allocate label data\n");
1714		goto out_booleans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715	}
1716
1717	data->attributes = kzalloc(sizeof(struct attribute *)
1718				   * data->max_attributes, GFP_KERNEL);
1719	if (!data->attributes) {
1720		dev_err(&client->dev, "No memory to allocate attribute data\n");
1721		goto out_labels;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1722	}
1723
1724	pmbus_find_attributes(client, data);
 
 
 
 
 
 
1725
1726	/*
1727	 * If there are no attributes, something is wrong.
1728	 * Bail out instead of trying to register nothing.
1729	 */
1730	if (!data->num_attributes) {
1731		dev_err(&client->dev, "No attributes found\n");
1732		ret = -ENODEV;
1733		goto out_attributes;
1734	}
1735
1736	/* Register sysfs hooks */
1737	data->group.attrs = data->attributes;
1738	ret = sysfs_create_group(&client->dev.kobj, &data->group);
1739	if (ret) {
1740		dev_err(&client->dev, "Failed to create sysfs entries\n");
1741		goto out_attributes;
1742	}
1743	data->hwmon_dev = hwmon_device_register(&client->dev);
 
1744	if (IS_ERR(data->hwmon_dev)) {
1745		ret = PTR_ERR(data->hwmon_dev);
1746		dev_err(&client->dev, "Failed to register hwmon device\n");
1747		goto out_hwmon_device_register;
1748	}
1749	return 0;
1750
1751out_hwmon_device_register:
1752	sysfs_remove_group(&client->dev.kobj, &data->group);
1753out_attributes:
1754	kfree(data->attributes);
1755out_labels:
1756	kfree(data->labels);
1757out_booleans:
1758	kfree(data->booleans);
1759out_sensors:
1760	kfree(data->sensors);
1761out_data:
1762	kfree(data);
1763	return ret;
1764}
1765EXPORT_SYMBOL_GPL(pmbus_do_probe);
1766
1767int pmbus_do_remove(struct i2c_client *client)
1768{
1769	struct pmbus_data *data = i2c_get_clientdata(client);
1770	hwmon_device_unregister(data->hwmon_dev);
1771	sysfs_remove_group(&client->dev.kobj, &data->group);
1772	kfree(data->attributes);
1773	kfree(data->labels);
1774	kfree(data->booleans);
1775	kfree(data->sensors);
1776	kfree(data);
 
 
 
 
1777	return 0;
1778}
1779EXPORT_SYMBOL_GPL(pmbus_do_remove);
 
 
 
 
 
 
 
1780
1781MODULE_AUTHOR("Guenter Roeck");
1782MODULE_DESCRIPTION("PMBus core driver");
1783MODULE_LICENSE("GPL");
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Hardware monitoring driver for PMBus devices
   4 *
   5 * Copyright (c) 2010, 2011 Ericsson AB.
   6 * Copyright (c) 2012 Guenter Roeck
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/debugfs.h>
  10#include <linux/kernel.h>
  11#include <linux/math64.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/err.h>
  15#include <linux/slab.h>
  16#include <linux/i2c.h>
  17#include <linux/hwmon.h>
  18#include <linux/hwmon-sysfs.h>
  19#include <linux/pmbus.h>
  20#include <linux/regulator/driver.h>
  21#include <linux/regulator/machine.h>
  22#include <linux/of.h>
  23#include <linux/thermal.h>
  24#include "pmbus.h"
  25
  26/*
  27 * Number of additional attribute pointers to allocate
  28 * with each call to krealloc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29 */
  30#define PMBUS_ATTR_ALLOC_SIZE	32
 
 
 
 
 
 
 
  31#define PMBUS_NAME_SIZE		24
  32
  33struct pmbus_sensor {
  34	struct pmbus_sensor *next;
  35	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
  36	struct device_attribute attribute;
  37	u8 page;		/* page number */
  38	u8 phase;		/* phase number, 0xff for all phases */
  39	u16 reg;		/* register */
  40	enum pmbus_sensor_classes class;	/* sensor class */
  41	bool update;		/* runtime sensor update needed */
  42	bool convert;		/* Whether or not to apply linear/vid/direct */
  43	int data;		/* Sensor data.
  44				   Negative if there was a read error */
  45};
  46#define to_pmbus_sensor(_attr) \
  47	container_of(_attr, struct pmbus_sensor, attribute)
  48
  49struct pmbus_boolean {
  50	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
  51	struct sensor_device_attribute attribute;
  52	struct pmbus_sensor *s1;
  53	struct pmbus_sensor *s2;
  54};
  55#define to_pmbus_boolean(_attr) \
  56	container_of(_attr, struct pmbus_boolean, attribute)
  57
  58struct pmbus_label {
  59	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
  60	struct device_attribute attribute;
  61	char label[PMBUS_NAME_SIZE];	/* label */
  62};
  63#define to_pmbus_label(_attr) \
  64	container_of(_attr, struct pmbus_label, attribute)
  65
  66/* Macros for converting between sensor index and register/page/status mask */
  67
  68#define PB_STATUS_MASK	0xffff
  69#define PB_REG_SHIFT	16
  70#define PB_REG_MASK	0x3ff
  71#define PB_PAGE_SHIFT	26
  72#define PB_PAGE_MASK	0x3f
  73
  74#define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
  75						 ((reg) << PB_REG_SHIFT) | (mask))
  76
  77#define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
  78#define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
  79#define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
  80
  81struct pmbus_data {
  82	struct device *dev;
  83	struct device *hwmon_dev;
  84
  85	u32 flags;		/* from platform data */
  86
  87	int exponent[PMBUS_PAGES];
  88				/* linear mode: exponent for output voltages */
  89
  90	const struct pmbus_driver_info *info;
  91
  92	int max_attributes;
  93	int num_attributes;
 
  94	struct attribute_group group;
  95	const struct attribute_group **groups;
  96	struct dentry *debugfs;		/* debugfs device directory */
  97
 
 
 
 
 
  98	struct pmbus_sensor *sensors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  99
 100	struct mutex update_lock;
 
 
 101
 102	bool has_status_word;		/* device uses STATUS_WORD register */
 103	int (*read_status)(struct i2c_client *client, int page);
 104
 105	s16 currpage;	/* current page, -1 for unknown/unset */
 106	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
 107
 108	int vout_low[PMBUS_PAGES];	/* voltage low margin */
 109	int vout_high[PMBUS_PAGES];	/* voltage high margin */
 110};
 111
 112struct pmbus_debugfs_entry {
 113	struct i2c_client *client;
 114	u8 page;
 115	u8 reg;
 116};
 117
 118static const int pmbus_fan_rpm_mask[] = {
 119	PB_FAN_1_RPM,
 120	PB_FAN_2_RPM,
 121	PB_FAN_1_RPM,
 122	PB_FAN_2_RPM,
 123};
 124
 125static const int pmbus_fan_config_registers[] = {
 126	PMBUS_FAN_CONFIG_12,
 127	PMBUS_FAN_CONFIG_12,
 128	PMBUS_FAN_CONFIG_34,
 129	PMBUS_FAN_CONFIG_34
 130};
 131
 132static const int pmbus_fan_command_registers[] = {
 133	PMBUS_FAN_COMMAND_1,
 134	PMBUS_FAN_COMMAND_2,
 135	PMBUS_FAN_COMMAND_3,
 136	PMBUS_FAN_COMMAND_4,
 137};
 138
 139void pmbus_clear_cache(struct i2c_client *client)
 140{
 141	struct pmbus_data *data = i2c_get_clientdata(client);
 142	struct pmbus_sensor *sensor;
 
 143
 144	for (sensor = data->sensors; sensor; sensor = sensor->next)
 145		sensor->data = -ENODATA;
 
 
 
 
 
 
 
 146}
 147EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
 148
 149void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
 150{
 151	struct pmbus_data *data = i2c_get_clientdata(client);
 152	struct pmbus_sensor *sensor;
 153
 154	for (sensor = data->sensors; sensor; sensor = sensor->next)
 155		if (sensor->reg == reg)
 156			sensor->update = update;
 157}
 158EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
 159
 160int pmbus_set_page(struct i2c_client *client, int page, int phase)
 161{
 162	struct pmbus_data *data = i2c_get_clientdata(client);
 163	int rv;
 164
 165	if (page < 0)
 166		return 0;
 167
 168	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
 169	    data->info->pages > 1 && page != data->currpage) {
 170		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
 171		if (rv < 0)
 172			return rv;
 173
 174		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
 175		if (rv < 0)
 176			return rv;
 177
 178		if (rv != page)
 179			return -EIO;
 180	}
 181	data->currpage = page;
 182
 183	if (data->info->phases[page] && data->currphase != phase &&
 184	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
 185		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
 186					       phase);
 187		if (rv)
 188			return rv;
 189	}
 190	data->currphase = phase;
 191
 192	return 0;
 193}
 194EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
 195
 196int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 197{
 198	int rv;
 199
 200	rv = pmbus_set_page(client, page, 0xff);
 201	if (rv < 0)
 202		return rv;
 203
 204	return i2c_smbus_write_byte(client, value);
 205}
 206EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
 207
 208/*
 209 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
 210 * a device specific mapping function exists and calls it if necessary.
 211 */
 212static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 213{
 214	struct pmbus_data *data = i2c_get_clientdata(client);
 215	const struct pmbus_driver_info *info = data->info;
 216	int status;
 217
 218	if (info->write_byte) {
 219		status = info->write_byte(client, page, value);
 220		if (status != -ENODATA)
 221			return status;
 222	}
 223	return pmbus_write_byte(client, page, value);
 224}
 225
 226int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
 227			  u16 word)
 228{
 229	int rv;
 230
 231	rv = pmbus_set_page(client, page, 0xff);
 232	if (rv < 0)
 233		return rv;
 234
 235	return i2c_smbus_write_word_data(client, reg, word);
 236}
 237EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
 238
 239
 240static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
 241				u16 word)
 242{
 243	int bit;
 244	int id;
 245	int rv;
 246
 247	switch (reg) {
 248	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
 249		id = reg - PMBUS_VIRT_FAN_TARGET_1;
 250		bit = pmbus_fan_rpm_mask[id];
 251		rv = pmbus_update_fan(client, page, id, bit, bit, word);
 252		break;
 253	default:
 254		rv = -ENXIO;
 255		break;
 256	}
 257
 258	return rv;
 259}
 260
 261/*
 262 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
 263 * a device specific mapping function exists and calls it if necessary.
 264 */
 265static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
 266				  u16 word)
 267{
 268	struct pmbus_data *data = i2c_get_clientdata(client);
 269	const struct pmbus_driver_info *info = data->info;
 270	int status;
 271
 272	if (info->write_word_data) {
 273		status = info->write_word_data(client, page, reg, word);
 274		if (status != -ENODATA)
 275			return status;
 276	}
 277
 278	if (reg >= PMBUS_VIRT_BASE)
 279		return pmbus_write_virt_reg(client, page, reg, word);
 280
 281	return pmbus_write_word_data(client, page, reg, word);
 282}
 283
 284/*
 285 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
 286 * a device specific mapping function exists and calls it if necessary.
 287 */
 288static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
 289{
 290	struct pmbus_data *data = i2c_get_clientdata(client);
 291	const struct pmbus_driver_info *info = data->info;
 292	int status;
 
 
 293
 294	if (info->write_byte_data) {
 295		status = info->write_byte_data(client, page, reg, value);
 296		if (status != -ENODATA)
 297			return status;
 298	}
 299	return pmbus_write_byte_data(client, page, reg, value);
 300}
 
 301
 302/*
 303 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
 304 * a device specific mapping function exists and calls it if necessary.
 305 */
 306static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
 307{
 308	struct pmbus_data *data = i2c_get_clientdata(client);
 309	const struct pmbus_driver_info *info = data->info;
 310	int status;
 311
 312	if (info->read_byte_data) {
 313		status = info->read_byte_data(client, page, reg);
 314		if (status != -ENODATA)
 315			return status;
 316	}
 317	return pmbus_read_byte_data(client, page, reg);
 
 
 318}
 319
 320int pmbus_update_fan(struct i2c_client *client, int page, int id,
 321		     u8 config, u8 mask, u16 command)
 322{
 323	int from;
 324	int rv;
 325	u8 to;
 326
 327	from = _pmbus_read_byte_data(client, page,
 328				    pmbus_fan_config_registers[id]);
 329	if (from < 0)
 330		return from;
 331
 332	to = (from & ~mask) | (config & mask);
 333	if (to != from) {
 334		rv = _pmbus_write_byte_data(client, page,
 335					   pmbus_fan_config_registers[id], to);
 336		if (rv < 0)
 337			return rv;
 338	}
 339
 340	return _pmbus_write_word_data(client, page,
 341				      pmbus_fan_command_registers[id], command);
 342}
 343EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
 344
 345int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
 346{
 347	int rv;
 348
 349	rv = pmbus_set_page(client, page, phase);
 350	if (rv < 0)
 351		return rv;
 352
 353	return i2c_smbus_read_word_data(client, reg);
 354}
 355EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
 356
 357static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
 358{
 359	int rv;
 360	int id;
 361
 362	switch (reg) {
 363	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
 364		id = reg - PMBUS_VIRT_FAN_TARGET_1;
 365		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
 366		break;
 367	default:
 368		rv = -ENXIO;
 369		break;
 370	}
 371
 372	return rv;
 373}
 
 374
 375/*
 376 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
 377 * a device specific mapping function exists and calls it if necessary.
 378 */
 379static int _pmbus_read_word_data(struct i2c_client *client, int page,
 380				 int phase, int reg)
 381{
 382	struct pmbus_data *data = i2c_get_clientdata(client);
 383	const struct pmbus_driver_info *info = data->info;
 384	int status;
 385
 386	if (info->read_word_data) {
 387		status = info->read_word_data(client, page, phase, reg);
 388		if (status != -ENODATA)
 389			return status;
 390	}
 391
 392	if (reg >= PMBUS_VIRT_BASE)
 393		return pmbus_read_virt_reg(client, page, reg);
 394
 395	return pmbus_read_word_data(client, page, phase, reg);
 396}
 397
 398/* Same as above, but without phase parameter, for use in check functions */
 399static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
 400{
 401	return _pmbus_read_word_data(client, page, 0xff, reg);
 402}
 403
 404int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
 405{
 406	int rv;
 407
 408	rv = pmbus_set_page(client, page, 0xff);
 409	if (rv < 0)
 410		return rv;
 411
 412	return i2c_smbus_read_byte_data(client, reg);
 413}
 414EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
 415
 416int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
 417{
 418	int rv;
 419
 420	rv = pmbus_set_page(client, page, 0xff);
 421	if (rv < 0)
 422		return rv;
 423
 424	return i2c_smbus_write_byte_data(client, reg, value);
 425}
 426EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
 427
 428int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
 429			   u8 mask, u8 value)
 430{
 431	unsigned int tmp;
 432	int rv;
 433
 434	rv = _pmbus_read_byte_data(client, page, reg);
 435	if (rv < 0)
 436		return rv;
 437
 438	tmp = (rv & ~mask) | (value & mask);
 439
 440	if (tmp != rv)
 441		rv = _pmbus_write_byte_data(client, page, reg, tmp);
 442
 443	return rv;
 444}
 445EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
 446
 447static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
 448				 char *data_buf)
 449{
 450	int rv;
 451
 452	rv = pmbus_set_page(client, page, 0xff);
 453	if (rv < 0)
 454		return rv;
 455
 456	return i2c_smbus_read_block_data(client, reg, data_buf);
 457}
 458
 459static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
 460					      int reg)
 461{
 462	struct pmbus_sensor *sensor;
 463
 464	for (sensor = data->sensors; sensor; sensor = sensor->next) {
 465		if (sensor->page == page && sensor->reg == reg)
 466			return sensor;
 467	}
 468
 469	return ERR_PTR(-EINVAL);
 470}
 471
 472static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
 473			      enum pmbus_fan_mode mode,
 474			      bool from_cache)
 475{
 476	struct pmbus_data *data = i2c_get_clientdata(client);
 477	bool want_rpm, have_rpm;
 478	struct pmbus_sensor *s;
 479	int config;
 480	int reg;
 481
 482	want_rpm = (mode == rpm);
 483
 484	if (from_cache) {
 485		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
 486		s = pmbus_find_sensor(data, page, reg + id);
 487		if (IS_ERR(s))
 488			return PTR_ERR(s);
 489
 490		return s->data;
 491	}
 492
 493	config = _pmbus_read_byte_data(client, page,
 494				      pmbus_fan_config_registers[id]);
 495	if (config < 0)
 496		return config;
 497
 498	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
 499	if (want_rpm == have_rpm)
 500		return pmbus_read_word_data(client, page, 0xff,
 501					    pmbus_fan_command_registers[id]);
 502
 503	/* Can't sensibly map between RPM and PWM, just return zero */
 504	return 0;
 505}
 506
 507int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
 508			      enum pmbus_fan_mode mode)
 509{
 510	return pmbus_get_fan_rate(client, page, id, mode, false);
 511}
 512EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
 513
 514int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
 515			      enum pmbus_fan_mode mode)
 516{
 517	return pmbus_get_fan_rate(client, page, id, mode, true);
 518}
 519EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
 520
 521static void pmbus_clear_fault_page(struct i2c_client *client, int page)
 522{
 523	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
 524}
 525
 526void pmbus_clear_faults(struct i2c_client *client)
 527{
 528	struct pmbus_data *data = i2c_get_clientdata(client);
 529	int i;
 530
 531	for (i = 0; i < data->info->pages; i++)
 532		pmbus_clear_fault_page(client, i);
 533}
 534EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
 535
 536static int pmbus_check_status_cml(struct i2c_client *client)
 537{
 538	struct pmbus_data *data = i2c_get_clientdata(client);
 539	int status, status2;
 540
 541	status = data->read_status(client, -1);
 542	if (status < 0 || (status & PB_STATUS_CML)) {
 543		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
 544		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
 545			return -EIO;
 546	}
 547	return 0;
 548}
 549
 550static bool pmbus_check_register(struct i2c_client *client,
 551				 int (*func)(struct i2c_client *client,
 552					     int page, int reg),
 553				 int page, int reg)
 554{
 555	int rv;
 556	struct pmbus_data *data = i2c_get_clientdata(client);
 557
 558	rv = func(client, page, reg);
 559	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 560		rv = pmbus_check_status_cml(client);
 561	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
 562		data->read_status(client, -1);
 563	pmbus_clear_fault_page(client, -1);
 564	return rv >= 0;
 565}
 566
 567static bool pmbus_check_status_register(struct i2c_client *client, int page)
 568{
 569	int status;
 570	struct pmbus_data *data = i2c_get_clientdata(client);
 571
 572	status = data->read_status(client, page);
 573	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
 574	    (status & PB_STATUS_CML)) {
 575		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
 576		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
 577			status = -EIO;
 578	}
 579
 580	pmbus_clear_fault_page(client, -1);
 581	return status >= 0;
 582}
 583
 584bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
 585{
 586	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
 587}
 588EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
 589
 590bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
 591{
 592	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
 593}
 594EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
 595
 596static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
 597						      int page, int reg)
 598{
 599	int rv;
 600	struct pmbus_data *data = i2c_get_clientdata(client);
 601	char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
 602
 603	rv = pmbus_read_block_data(client, page, reg, data_buf);
 604	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 605		rv = pmbus_check_status_cml(client);
 606	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
 607		data->read_status(client, -1);
 608	pmbus_clear_fault_page(client, -1);
 609	return rv >= 0;
 610}
 
 611
 612const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
 613{
 614	struct pmbus_data *data = i2c_get_clientdata(client);
 615
 616	return data->info;
 617}
 618EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
 619
 620static int pmbus_get_status(struct i2c_client *client, int page, int reg)
 621{
 
 622	struct pmbus_data *data = i2c_get_clientdata(client);
 623	int status;
 624
 625	switch (reg) {
 626	case PMBUS_STATUS_WORD:
 627		status = data->read_status(client, page);
 628		break;
 629	default:
 630		status = _pmbus_read_byte_data(client, page, reg);
 631		break;
 632	}
 633	if (status < 0)
 634		pmbus_clear_faults(client);
 635	return status;
 636}
 637
 638static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
 639{
 640	if (sensor->data < 0 || sensor->update)
 641		sensor->data = _pmbus_read_word_data(client, sensor->page,
 642						     sensor->phase, sensor->reg);
 643}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644
 645/*
 646 * Convert ieee754 sensor values to milli- or micro-units
 647 * depending on sensor type.
 648 *
 649 * ieee754 data format:
 650 *	bit 15:		sign
 651 *	bit 10..14:	exponent
 652 *	bit 0..9:	mantissa
 653 * exponent=0:
 654 *	v=(−1)^signbit * 2^(−14) * 0.significantbits
 655 * exponent=1..30:
 656 *	v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
 657 * exponent=31:
 658 *	v=NaN
 659 *
 660 * Add the number mantissa bits into the calculations for simplicity.
 661 * To do that, add '10' to the exponent. By doing that, we can just add
 662 * 0x400 to normal values and get the expected result.
 663 */
 664static long pmbus_reg2data_ieee754(struct pmbus_data *data,
 665				   struct pmbus_sensor *sensor)
 666{
 667	int exponent;
 668	bool sign;
 669	long val;
 670
 671	/* only support half precision for now */
 672	sign = sensor->data & 0x8000;
 673	exponent = (sensor->data >> 10) & 0x1f;
 674	val = sensor->data & 0x3ff;
 675
 676	if (exponent == 0) {			/* subnormal */
 677		exponent = -(14 + 10);
 678	} else if (exponent ==  0x1f) {		/* NaN, convert to min/max */
 679		exponent = 0;
 680		val = 65504;
 681	} else {
 682		exponent -= (15 + 10);		/* normal */
 683		val |= 0x400;
 684	}
 685
 686	/* scale result to milli-units for all sensors except fans */
 687	if (sensor->class != PSC_FAN)
 688		val = val * 1000L;
 689
 690	/* scale result to micro-units for power sensors */
 691	if (sensor->class == PSC_POWER)
 692		val = val * 1000L;
 693
 694	if (exponent >= 0)
 695		val <<= exponent;
 696	else
 697		val >>= -exponent;
 698
 699	if (sign)
 700		val = -val;
 701
 702	return val;
 703}
 704
 705/*
 706 * Convert linear sensor values to milli- or micro-units
 707 * depending on sensor type.
 708 */
 709static s64 pmbus_reg2data_linear(struct pmbus_data *data,
 710				 struct pmbus_sensor *sensor)
 711{
 712	s16 exponent;
 713	s32 mantissa;
 714	s64 val;
 715
 716	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
 717		exponent = data->exponent[sensor->page];
 718		mantissa = (u16) sensor->data;
 719	} else {				/* LINEAR11 */
 720		exponent = ((s16)sensor->data) >> 11;
 721		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
 
 
 
 
 
 722	}
 723
 724	val = mantissa;
 725
 726	/* scale result to milli-units for all sensors except fans */
 727	if (sensor->class != PSC_FAN)
 728		val = val * 1000LL;
 729
 730	/* scale result to micro-units for power sensors */
 731	if (sensor->class == PSC_POWER)
 732		val = val * 1000LL;
 733
 734	if (exponent >= 0)
 735		val <<= exponent;
 736	else
 737		val >>= -exponent;
 738
 739	return val;
 740}
 741
 742/*
 743 * Convert direct sensor values to milli- or micro-units
 744 * depending on sensor type.
 745 */
 746static s64 pmbus_reg2data_direct(struct pmbus_data *data,
 747				 struct pmbus_sensor *sensor)
 748{
 749	s64 b, val = (s16)sensor->data;
 750	s32 m, R;
 751
 752	m = data->info->m[sensor->class];
 753	b = data->info->b[sensor->class];
 754	R = data->info->R[sensor->class];
 755
 756	if (m == 0)
 757		return 0;
 758
 759	/* X = 1/m * (Y * 10^-R - b) */
 760	R = -R;
 761	/* scale result to milli-units for everything but fans */
 762	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
 763		R += 3;
 764		b *= 1000;
 765	}
 766
 767	/* scale result to micro-units for power sensors */
 768	if (sensor->class == PSC_POWER) {
 769		R += 3;
 770		b *= 1000;
 771	}
 772
 773	while (R > 0) {
 774		val *= 10;
 775		R--;
 776	}
 777	while (R < 0) {
 778		val = div_s64(val + 5LL, 10L);  /* round closest */
 779		R++;
 780	}
 781
 782	val = div_s64(val - b, m);
 783	return val;
 784}
 785
 786/*
 787 * Convert VID sensor values to milli- or micro-units
 788 * depending on sensor type.
 
 789 */
 790static s64 pmbus_reg2data_vid(struct pmbus_data *data,
 791			      struct pmbus_sensor *sensor)
 792{
 793	long val = sensor->data;
 794	long rv = 0;
 795
 796	switch (data->info->vrm_version[sensor->page]) {
 797	case vr11:
 798		if (val >= 0x02 && val <= 0xb2)
 799			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
 800		break;
 801	case vr12:
 802		if (val >= 0x01)
 803			rv = 250 + (val - 1) * 5;
 804		break;
 805	case vr13:
 806		if (val >= 0x01)
 807			rv = 500 + (val - 1) * 10;
 808		break;
 809	case imvp9:
 810		if (val >= 0x01)
 811			rv = 200 + (val - 1) * 10;
 812		break;
 813	case amd625mv:
 814		if (val >= 0x0 && val <= 0xd8)
 815			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
 816		break;
 817	}
 818	return rv;
 819}
 820
 821static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
 822{
 823	s64 val;
 824
 825	if (!sensor->convert)
 826		return sensor->data;
 827
 828	switch (data->info->format[sensor->class]) {
 829	case direct:
 830		val = pmbus_reg2data_direct(data, sensor);
 831		break;
 832	case vid:
 833		val = pmbus_reg2data_vid(data, sensor);
 834		break;
 835	case ieee754:
 836		val = pmbus_reg2data_ieee754(data, sensor);
 837		break;
 838	case linear:
 839	default:
 840		val = pmbus_reg2data_linear(data, sensor);
 841		break;
 842	}
 843	return val;
 844}
 845
 846#define MAX_IEEE_MANTISSA	(0x7ff * 1000)
 847#define MIN_IEEE_MANTISSA	(0x400 * 1000)
 848
 849static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
 850				  struct pmbus_sensor *sensor, long val)
 851{
 852	u16 exponent = (15 + 10);
 853	long mantissa;
 854	u16 sign = 0;
 855
 856	/* simple case */
 857	if (val == 0)
 858		return 0;
 859
 860	if (val < 0) {
 861		sign = 0x8000;
 862		val = -val;
 863	}
 864
 865	/* Power is in uW. Convert to mW before converting. */
 866	if (sensor->class == PSC_POWER)
 867		val = DIV_ROUND_CLOSEST(val, 1000L);
 868
 869	/*
 870	 * For simplicity, convert fan data to milli-units
 871	 * before calculating the exponent.
 872	 */
 873	if (sensor->class == PSC_FAN)
 874		val = val * 1000;
 875
 876	/* Reduce large mantissa until it fits into 10 bit */
 877	while (val > MAX_IEEE_MANTISSA && exponent < 30) {
 878		exponent++;
 879		val >>= 1;
 880	}
 881	/*
 882	 * Increase small mantissa to generate valid 'normal'
 883	 * number
 884	 */
 885	while (val < MIN_IEEE_MANTISSA && exponent > 1) {
 886		exponent--;
 887		val <<= 1;
 888	}
 889
 890	/* Convert mantissa from milli-units to units */
 891	mantissa = DIV_ROUND_CLOSEST(val, 1000);
 892
 893	/*
 894	 * Ensure that the resulting number is within range.
 895	 * Valid range is 0x400..0x7ff, where bit 10 reflects
 896	 * the implied high bit in normalized ieee754 numbers.
 897	 * Set the range to 0x400..0x7ff to reflect this.
 898	 * The upper bit is then removed by the mask against
 899	 * 0x3ff in the final assignment.
 900	 */
 901	if (mantissa > 0x7ff)
 902		mantissa = 0x7ff;
 903	else if (mantissa < 0x400)
 904		mantissa = 0x400;
 905
 906	/* Convert to sign, 5 bit exponent, 10 bit mantissa */
 907	return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
 908}
 909
 910#define MAX_LIN_MANTISSA	(1023 * 1000)
 911#define MIN_LIN_MANTISSA	(511 * 1000)
 912
 913static u16 pmbus_data2reg_linear(struct pmbus_data *data,
 914				 struct pmbus_sensor *sensor, s64 val)
 915{
 916	s16 exponent = 0, mantissa;
 917	bool negative = false;
 918
 919	/* simple case */
 920	if (val == 0)
 921		return 0;
 922
 923	if (sensor->class == PSC_VOLTAGE_OUT) {
 924		/* LINEAR16 does not support negative voltages */
 925		if (val < 0)
 926			return 0;
 927
 928		/*
 929		 * For a static exponents, we don't have a choice
 930		 * but to adjust the value to it.
 931		 */
 932		if (data->exponent[sensor->page] < 0)
 933			val <<= -data->exponent[sensor->page];
 934		else
 935			val >>= data->exponent[sensor->page];
 936		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
 937		return clamp_val(val, 0, 0xffff);
 938	}
 939
 940	if (val < 0) {
 941		negative = true;
 942		val = -val;
 943	}
 944
 945	/* Power is in uW. Convert to mW before converting. */
 946	if (sensor->class == PSC_POWER)
 947		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
 948
 949	/*
 950	 * For simplicity, convert fan data to milli-units
 951	 * before calculating the exponent.
 952	 */
 953	if (sensor->class == PSC_FAN)
 954		val = val * 1000LL;
 955
 956	/* Reduce large mantissa until it fits into 10 bit */
 957	while (val >= MAX_LIN_MANTISSA && exponent < 15) {
 958		exponent++;
 959		val >>= 1;
 960	}
 961	/* Increase small mantissa to improve precision */
 962	while (val < MIN_LIN_MANTISSA && exponent > -15) {
 963		exponent--;
 964		val <<= 1;
 965	}
 966
 967	/* Convert mantissa from milli-units to units */
 968	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
 
 
 
 
 969
 970	/* restore sign */
 971	if (negative)
 972		mantissa = -mantissa;
 973
 974	/* Convert to 5 bit exponent, 11 bit mantissa */
 975	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
 976}
 977
 978static u16 pmbus_data2reg_direct(struct pmbus_data *data,
 979				 struct pmbus_sensor *sensor, s64 val)
 980{
 981	s64 b;
 982	s32 m, R;
 983
 984	m = data->info->m[sensor->class];
 985	b = data->info->b[sensor->class];
 986	R = data->info->R[sensor->class];
 987
 988	/* Power is in uW. Adjust R and b. */
 989	if (sensor->class == PSC_POWER) {
 990		R -= 3;
 991		b *= 1000;
 992	}
 993
 994	/* Calculate Y = (m * X + b) * 10^R */
 995	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
 996		R -= 3;		/* Adjust R and b for data in milli-units */
 997		b *= 1000;
 998	}
 999	val = val * m + b;
1000
1001	while (R > 0) {
1002		val *= 10;
1003		R--;
1004	}
1005	while (R < 0) {
1006		val = div_s64(val + 5LL, 10L);  /* round closest */
1007		R++;
1008	}
1009
1010	return (u16)clamp_val(val, S16_MIN, S16_MAX);
1011}
1012
1013static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1014			      struct pmbus_sensor *sensor, s64 val)
1015{
1016	val = clamp_val(val, 500, 1600);
1017
1018	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1019}
1020
1021static u16 pmbus_data2reg(struct pmbus_data *data,
1022			  struct pmbus_sensor *sensor, s64 val)
1023{
1024	u16 regval;
1025
1026	if (!sensor->convert)
1027		return val;
1028
1029	switch (data->info->format[sensor->class]) {
1030	case direct:
1031		regval = pmbus_data2reg_direct(data, sensor, val);
1032		break;
1033	case vid:
1034		regval = pmbus_data2reg_vid(data, sensor, val);
1035		break;
1036	case ieee754:
1037		regval = pmbus_data2reg_ieee754(data, sensor, val);
1038		break;
1039	case linear:
1040	default:
1041		regval = pmbus_data2reg_linear(data, sensor, val);
1042		break;
1043	}
1044	return regval;
1045}
1046
1047/*
1048 * Return boolean calculated from converted data.
1049 * <index> defines a status register index and mask.
1050 * The mask is in the lower 8 bits, the register index is in bits 8..23.
1051 *
1052 * The associated pmbus_boolean structure contains optional pointers to two
1053 * sensor attributes. If specified, those attributes are compared against each
1054 * other to determine if a limit has been exceeded.
 
 
 
 
1055 *
1056 * If the sensor attribute pointers are NULL, the function returns true if
1057 * (status[reg] & mask) is true.
 
1058 *
1059 * If sensor attribute pointers are provided, a comparison against a specified
1060 * limit has to be performed to determine the boolean result.
1061 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1062 * sensor values referenced by sensor attribute pointers s1 and s2).
1063 *
1064 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1065 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1066 *
1067 * If a negative value is stored in any of the referenced registers, this value
1068 * reflects an error code which will be returned.
1069 */
1070static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1071			     int index)
1072{
1073	struct pmbus_data *data = i2c_get_clientdata(client);
1074	struct pmbus_sensor *s1 = b->s1;
1075	struct pmbus_sensor *s2 = b->s2;
1076	u16 mask = pb_index_to_mask(index);
1077	u8 page = pb_index_to_page(index);
1078	u16 reg = pb_index_to_reg(index);
1079	int ret, status;
1080	u16 regval;
1081
1082	mutex_lock(&data->update_lock);
1083	status = pmbus_get_status(client, page, reg);
1084	if (status < 0) {
1085		ret = status;
1086		goto unlock;
1087	}
1088
1089	if (s1)
1090		pmbus_update_sensor_data(client, s1);
1091	if (s2)
1092		pmbus_update_sensor_data(client, s2);
1093
1094	regval = status & mask;
1095	if (regval) {
1096		ret = _pmbus_write_byte_data(client, page, reg, regval);
1097		if (ret)
1098			goto unlock;
1099	}
1100	if (s1 && s2) {
1101		s64 v1, v2;
1102
1103		if (s1->data < 0) {
1104			ret = s1->data;
1105			goto unlock;
1106		}
1107		if (s2->data < 0) {
1108			ret = s2->data;
1109			goto unlock;
1110		}
1111
1112		v1 = pmbus_reg2data(data, s1);
1113		v2 = pmbus_reg2data(data, s2);
1114		ret = !!(regval && v1 >= v2);
1115	} else {
1116		ret = !!regval;
1117	}
1118unlock:
1119	mutex_unlock(&data->update_lock);
1120	return ret;
1121}
1122
1123static ssize_t pmbus_show_boolean(struct device *dev,
1124				  struct device_attribute *da, char *buf)
1125{
1126	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1127	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1128	struct i2c_client *client = to_i2c_client(dev->parent);
1129	int val;
 
1130
1131	val = pmbus_get_boolean(client, boolean, attr->index);
1132	if (val < 0)
1133		return val;
1134	return sysfs_emit(buf, "%d\n", val);
1135}
1136
1137static ssize_t pmbus_show_sensor(struct device *dev,
1138				 struct device_attribute *devattr, char *buf)
1139{
1140	struct i2c_client *client = to_i2c_client(dev->parent);
1141	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1142	struct pmbus_data *data = i2c_get_clientdata(client);
1143	ssize_t ret;
1144
1145	mutex_lock(&data->update_lock);
1146	pmbus_update_sensor_data(client, sensor);
1147	if (sensor->data < 0)
1148		ret = sensor->data;
1149	else
1150		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1151	mutex_unlock(&data->update_lock);
1152	return ret;
1153}
1154
1155static ssize_t pmbus_set_sensor(struct device *dev,
1156				struct device_attribute *devattr,
1157				const char *buf, size_t count)
1158{
1159	struct i2c_client *client = to_i2c_client(dev->parent);
 
1160	struct pmbus_data *data = i2c_get_clientdata(client);
1161	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1162	ssize_t rv = count;
1163	s64 val;
1164	int ret;
1165	u16 regval;
1166
1167	if (kstrtos64(buf, 10, &val) < 0)
1168		return -EINVAL;
1169
1170	mutex_lock(&data->update_lock);
1171	regval = pmbus_data2reg(data, sensor, val);
1172	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1173	if (ret < 0)
1174		rv = ret;
1175	else
1176		sensor->data = -ENODATA;
1177	mutex_unlock(&data->update_lock);
1178	return rv;
1179}
1180
1181static ssize_t pmbus_show_label(struct device *dev,
1182				struct device_attribute *da, char *buf)
1183{
1184	struct pmbus_label *label = to_pmbus_label(da);
 
 
1185
1186	return sysfs_emit(buf, "%s\n", label->label);
 
1187}
1188
1189static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1190{
1191	if (data->num_attributes >= data->max_attributes - 1) {
1192		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1193		void *new_attrs = devm_krealloc(data->dev, data->group.attrs,
1194						new_max_attrs * sizeof(void *),
1195						GFP_KERNEL);
1196		if (!new_attrs)
1197			return -ENOMEM;
1198		data->group.attrs = new_attrs;
1199		data->max_attributes = new_max_attrs;
1200	}
1201
1202	data->group.attrs[data->num_attributes++] = attr;
1203	data->group.attrs[data->num_attributes] = NULL;
1204	return 0;
1205}
1206
1207static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1208				const char *name,
1209				umode_t mode,
1210				ssize_t (*show)(struct device *dev,
1211						struct device_attribute *attr,
1212						char *buf),
1213				ssize_t (*store)(struct device *dev,
1214						 struct device_attribute *attr,
1215						 const char *buf, size_t count))
1216{
1217	sysfs_attr_init(&dev_attr->attr);
1218	dev_attr->attr.name = name;
1219	dev_attr->attr.mode = mode;
1220	dev_attr->show = show;
1221	dev_attr->store = store;
1222}
1223
1224static void pmbus_attr_init(struct sensor_device_attribute *a,
1225			    const char *name,
1226			    umode_t mode,
1227			    ssize_t (*show)(struct device *dev,
1228					    struct device_attribute *attr,
1229					    char *buf),
1230			    ssize_t (*store)(struct device *dev,
1231					     struct device_attribute *attr,
1232					     const char *buf, size_t count),
1233			    int idx)
1234{
1235	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1236	a->index = idx;
1237}
1238
1239static int pmbus_add_boolean(struct pmbus_data *data,
1240			     const char *name, const char *type, int seq,
1241			     struct pmbus_sensor *s1,
1242			     struct pmbus_sensor *s2,
1243			     u8 page, u16 reg, u16 mask)
1244{
1245	struct pmbus_boolean *boolean;
1246	struct sensor_device_attribute *a;
1247
1248	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1249		return -EINVAL;
1250
1251	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1252	if (!boolean)
1253		return -ENOMEM;
1254
1255	a = &boolean->attribute;
1256
1257	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1258		 name, seq, type);
1259	boolean->s1 = s1;
1260	boolean->s2 = s2;
1261	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1262			pb_reg_to_index(page, reg, mask));
1263
1264	return pmbus_add_attribute(data, &a->dev_attr.attr);
1265}
1266
1267/* of thermal for pmbus temperature sensors */
1268struct pmbus_thermal_data {
1269	struct pmbus_data *pmbus_data;
1270	struct pmbus_sensor *sensor;
1271};
1272
1273static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1274{
1275	struct pmbus_thermal_data *tdata = tz->devdata;
1276	struct pmbus_sensor *sensor = tdata->sensor;
1277	struct pmbus_data *pmbus_data = tdata->pmbus_data;
1278	struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1279	struct device *dev = pmbus_data->hwmon_dev;
1280	int ret = 0;
1281
1282	if (!dev) {
1283		/* May not even get to hwmon yet */
1284		*temp = 0;
1285		return 0;
1286	}
1287
1288	mutex_lock(&pmbus_data->update_lock);
1289	pmbus_update_sensor_data(client, sensor);
1290	if (sensor->data < 0)
1291		ret = sensor->data;
1292	else
1293		*temp = (int)pmbus_reg2data(pmbus_data, sensor);
1294	mutex_unlock(&pmbus_data->update_lock);
1295
1296	return ret;
1297}
1298
1299static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1300	.get_temp = pmbus_thermal_get_temp,
1301};
1302
1303static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1304				    struct pmbus_sensor *sensor, int index)
1305{
1306	struct device *dev = pmbus_data->dev;
1307	struct pmbus_thermal_data *tdata;
1308	struct thermal_zone_device *tzd;
1309
1310	tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1311	if (!tdata)
1312		return -ENOMEM;
1313
1314	tdata->sensor = sensor;
1315	tdata->pmbus_data = pmbus_data;
1316
1317	tzd = devm_thermal_of_zone_register(dev, index, tdata,
1318					    &pmbus_thermal_ops);
1319	/*
1320	 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1321	 * so ignore that error but forward any other error.
1322	 */
1323	if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1324		return PTR_ERR(tzd);
1325
1326	return 0;
1327}
1328
1329static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1330					     const char *name, const char *type,
1331					     int seq, int page, int phase,
1332					     int reg,
1333					     enum pmbus_sensor_classes class,
1334					     bool update, bool readonly,
1335					     bool convert)
1336{
1337	struct pmbus_sensor *sensor;
1338	struct device_attribute *a;
1339
1340	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1341	if (!sensor)
1342		return NULL;
1343	a = &sensor->attribute;
1344
1345	if (type)
1346		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1347			 name, seq, type);
1348	else
1349		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1350			 name, seq);
1351
1352	if (data->flags & PMBUS_WRITE_PROTECTED)
1353		readonly = true;
1354
 
 
 
1355	sensor->page = page;
1356	sensor->phase = phase;
1357	sensor->reg = reg;
1358	sensor->class = class;
1359	sensor->update = update;
1360	sensor->convert = convert;
1361	sensor->data = -ENODATA;
1362	pmbus_dev_attr_init(a, sensor->name,
1363			    readonly ? 0444 : 0644,
1364			    pmbus_show_sensor, pmbus_set_sensor);
 
 
 
1365
1366	if (pmbus_add_attribute(data, &a->attr))
1367		return NULL;
 
 
 
1368
1369	sensor->next = data->sensors;
1370	data->sensors = sensor;
1371
1372	/* temperature sensors with _input values are registered with thermal */
1373	if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1374		pmbus_thermal_add_sensor(data, sensor, seq);
 
 
 
 
1375
1376	return sensor;
 
1377}
1378
1379static int pmbus_add_label(struct pmbus_data *data,
1380			   const char *name, int seq,
1381			   const char *lstring, int index, int phase)
 
 
 
1382{
1383	struct pmbus_label *label;
1384	struct device_attribute *a;
1385
1386	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1387	if (!label)
1388		return -ENOMEM;
1389
1390	a = &label->attribute;
1391
1392	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1393	if (!index) {
1394		if (phase == 0xff)
1395			strncpy(label->label, lstring,
1396				sizeof(label->label) - 1);
1397		else
1398			snprintf(label->label, sizeof(label->label), "%s.%d",
1399				 lstring, phase);
1400	} else {
1401		if (phase == 0xff)
1402			snprintf(label->label, sizeof(label->label), "%s%d",
1403				 lstring, index);
1404		else
1405			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1406				 lstring, index, phase);
1407	}
1408
1409	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1410	return pmbus_add_attribute(data, &a->attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1411}
1412
1413/*
1414 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1415 */
1416
1417/*
1418 * The pmbus_limit_attr structure describes a single limit attribute
1419 * and its associated alarm attribute.
1420 */
1421struct pmbus_limit_attr {
1422	u16 reg;		/* Limit register */
1423	u16 sbit;		/* Alarm attribute status bit */
1424	bool update;		/* True if register needs updates */
1425	bool low;		/* True if low limit; for limits with compare
1426				   functions only */
1427	const char *attr;	/* Attribute name */
1428	const char *alarm;	/* Alarm attribute name */
 
1429};
1430
1431/*
1432 * The pmbus_sensor_attr structure describes one sensor attribute. This
1433 * description includes a reference to the associated limit attributes.
1434 */
1435struct pmbus_sensor_attr {
1436	u16 reg;			/* sensor register */
1437	u16 gbit;			/* generic status bit */
1438	u8 nlimit;			/* # of limit registers */
1439	enum pmbus_sensor_classes class;/* sensor class */
1440	const char *label;		/* sensor label */
1441	bool paged;			/* true if paged sensor */
1442	bool update;			/* true if update needed */
1443	bool compare;			/* true if compare function needed */
1444	u32 func;			/* sensor mask */
1445	u32 sfunc;			/* sensor status mask */
1446	int sreg;			/* status register */
 
1447	const struct pmbus_limit_attr *limit;/* limit registers */
 
1448};
1449
1450/*
1451 * Add a set of limit attributes and, if supported, the associated
1452 * alarm attributes.
1453 * returns 0 if no alarm register found, 1 if an alarm register was found,
1454 * < 0 on errors.
1455 */
1456static int pmbus_add_limit_attrs(struct i2c_client *client,
1457				 struct pmbus_data *data,
1458				 const struct pmbus_driver_info *info,
1459				 const char *name, int index, int page,
1460				 struct pmbus_sensor *base,
1461				 const struct pmbus_sensor_attr *attr)
1462{
1463	const struct pmbus_limit_attr *l = attr->limit;
1464	int nlimit = attr->nlimit;
1465	int have_alarm = 0;
1466	int i, ret;
1467	struct pmbus_sensor *curr;
1468
1469	for (i = 0; i < nlimit; i++) {
1470		if (pmbus_check_word_register(client, page, l->reg)) {
1471			curr = pmbus_add_sensor(data, name, l->attr, index,
1472						page, 0xff, l->reg, attr->class,
1473						attr->update || l->update,
1474						false, true);
1475			if (!curr)
1476				return -ENOMEM;
1477			if (l->sbit && (info->func[page] & attr->sfunc)) {
1478				ret = pmbus_add_boolean(data, name,
1479					l->alarm, index,
1480					attr->compare ?  l->low ? curr : base
1481						      : NULL,
1482					attr->compare ? l->low ? base : curr
1483						      : NULL,
1484					page, attr->sreg, l->sbit);
1485				if (ret)
1486					return ret;
1487				have_alarm = 1;
 
 
1488			}
1489		}
1490		l++;
1491	}
1492	return have_alarm;
1493}
1494
1495static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1496				      struct pmbus_data *data,
1497				      const struct pmbus_driver_info *info,
1498				      const char *name,
1499				      int index, int page, int phase,
1500				      const struct pmbus_sensor_attr *attr,
1501				      bool paged)
1502{
1503	struct pmbus_sensor *base;
1504	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1505	int ret;
1506
1507	if (attr->label) {
1508		ret = pmbus_add_label(data, name, index, attr->label,
1509				      paged ? page + 1 : 0, phase);
1510		if (ret)
1511			return ret;
1512	}
1513	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1514				attr->reg, attr->class, true, true, true);
1515	if (!base)
1516		return -ENOMEM;
1517	/* No limit and alarm attributes for phase specific sensors */
1518	if (attr->sfunc && phase == 0xff) {
1519		ret = pmbus_add_limit_attrs(client, data, info, name,
1520					    index, page, base, attr);
1521		if (ret < 0)
1522			return ret;
1523		/*
1524		 * Add generic alarm attribute only if there are no individual
1525		 * alarm attributes, if there is a global alarm bit, and if
1526		 * the generic status register (word or byte, depending on
1527		 * which global bit is set) for this page is accessible.
1528		 */
1529		if (!ret && attr->gbit &&
1530		    (!upper || data->has_status_word) &&
1531		    pmbus_check_status_register(client, page)) {
1532			ret = pmbus_add_boolean(data, name, "alarm", index,
1533						NULL, NULL,
1534						page, PMBUS_STATUS_WORD,
1535						attr->gbit);
1536			if (ret)
1537				return ret;
1538		}
1539	}
1540	return 0;
1541}
1542
1543static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1544				  const struct pmbus_sensor_attr *attr)
1545{
1546	int p;
1547
1548	if (attr->paged)
1549		return true;
1550
1551	/*
1552	 * Some attributes may be present on more than one page despite
1553	 * not being marked with the paged attribute. If that is the case,
1554	 * then treat the sensor as being paged and add the page suffix to the
1555	 * attribute name.
1556	 * We don't just add the paged attribute to all such attributes, in
1557	 * order to maintain the un-suffixed labels in the case where the
1558	 * attribute is only on page 0.
1559	 */
1560	for (p = 1; p < info->pages; p++) {
1561		if (info->func[p] & attr->func)
1562			return true;
1563	}
1564	return false;
1565}
1566
1567static int pmbus_add_sensor_attrs(struct i2c_client *client,
1568				  struct pmbus_data *data,
1569				  const char *name,
1570				  const struct pmbus_sensor_attr *attrs,
1571				  int nattrs)
1572{
1573	const struct pmbus_driver_info *info = data->info;
1574	int index, i;
1575	int ret;
1576
1577	index = 1;
1578	for (i = 0; i < nattrs; i++) {
1579		int page, pages;
1580		bool paged = pmbus_sensor_is_paged(info, attrs);
1581
1582		pages = paged ? info->pages : 1;
1583		for (page = 0; page < pages; page++) {
1584			if (info->func[page] & attrs->func) {
1585				ret = pmbus_add_sensor_attrs_one(client, data, info,
1586								 name, index, page,
1587								 0xff, attrs, paged);
1588				if (ret)
1589					return ret;
1590				index++;
1591			}
1592			if (info->phases[page]) {
1593				int phase;
1594
1595				for (phase = 0; phase < info->phases[page];
1596				     phase++) {
1597					if (!(info->pfunc[phase] & attrs->func))
1598						continue;
1599					ret = pmbus_add_sensor_attrs_one(client,
1600						data, info, name, index, page,
1601						phase, attrs, paged);
1602					if (ret)
1603						return ret;
1604					index++;
1605				}
1606			}
1607		}
1608		attrs++;
1609	}
1610	return 0;
1611}
1612
1613static const struct pmbus_limit_attr vin_limit_attrs[] = {
1614	{
1615		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1616		.attr = "min",
1617		.alarm = "min_alarm",
1618		.sbit = PB_VOLTAGE_UV_WARNING,
1619	}, {
1620		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1621		.attr = "lcrit",
1622		.alarm = "lcrit_alarm",
1623		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1624	}, {
1625		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1626		.attr = "max",
1627		.alarm = "max_alarm",
1628		.sbit = PB_VOLTAGE_OV_WARNING,
1629	}, {
1630		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1631		.attr = "crit",
1632		.alarm = "crit_alarm",
1633		.sbit = PB_VOLTAGE_OV_FAULT,
1634	}, {
1635		.reg = PMBUS_VIRT_READ_VIN_AVG,
1636		.update = true,
1637		.attr = "average",
1638	}, {
1639		.reg = PMBUS_VIRT_READ_VIN_MIN,
1640		.update = true,
1641		.attr = "lowest",
1642	}, {
1643		.reg = PMBUS_VIRT_READ_VIN_MAX,
1644		.update = true,
1645		.attr = "highest",
1646	}, {
1647		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1648		.attr = "reset_history",
1649	}, {
1650		.reg = PMBUS_MFR_VIN_MIN,
1651		.attr = "rated_min",
1652	}, {
1653		.reg = PMBUS_MFR_VIN_MAX,
1654		.attr = "rated_max",
1655	},
1656};
1657
1658static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1659	{
1660		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1661		.attr = "min",
1662		.alarm = "min_alarm",
1663		.sbit = PB_VOLTAGE_UV_WARNING,
1664	}, {
1665		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1666		.attr = "lcrit",
1667		.alarm = "lcrit_alarm",
1668		.sbit = PB_VOLTAGE_UV_FAULT,
1669	}, {
1670		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1671		.attr = "max",
1672		.alarm = "max_alarm",
1673		.sbit = PB_VOLTAGE_OV_WARNING,
1674	}, {
1675		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1676		.attr = "crit",
1677		.alarm = "crit_alarm",
1678		.sbit = PB_VOLTAGE_OV_FAULT,
1679	}
1680};
1681
1682static const struct pmbus_limit_attr vout_limit_attrs[] = {
1683	{
1684		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1685		.attr = "min",
1686		.alarm = "min_alarm",
1687		.sbit = PB_VOLTAGE_UV_WARNING,
1688	}, {
1689		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1690		.attr = "lcrit",
1691		.alarm = "lcrit_alarm",
1692		.sbit = PB_VOLTAGE_UV_FAULT,
1693	}, {
1694		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1695		.attr = "max",
1696		.alarm = "max_alarm",
1697		.sbit = PB_VOLTAGE_OV_WARNING,
1698	}, {
1699		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1700		.attr = "crit",
1701		.alarm = "crit_alarm",
1702		.sbit = PB_VOLTAGE_OV_FAULT,
1703	}, {
1704		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1705		.update = true,
1706		.attr = "average",
1707	}, {
1708		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1709		.update = true,
1710		.attr = "lowest",
1711	}, {
1712		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1713		.update = true,
1714		.attr = "highest",
1715	}, {
1716		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1717		.attr = "reset_history",
1718	}, {
1719		.reg = PMBUS_MFR_VOUT_MIN,
1720		.attr = "rated_min",
1721	}, {
1722		.reg = PMBUS_MFR_VOUT_MAX,
1723		.attr = "rated_max",
1724	},
1725};
1726
1727static const struct pmbus_sensor_attr voltage_attributes[] = {
1728	{
1729		.reg = PMBUS_READ_VIN,
1730		.class = PSC_VOLTAGE_IN,
1731		.label = "vin",
1732		.func = PMBUS_HAVE_VIN,
1733		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1734		.sreg = PMBUS_STATUS_INPUT,
1735		.gbit = PB_STATUS_VIN_UV,
1736		.limit = vin_limit_attrs,
1737		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1738	}, {
1739		.reg = PMBUS_VIRT_READ_VMON,
1740		.class = PSC_VOLTAGE_IN,
1741		.label = "vmon",
1742		.func = PMBUS_HAVE_VMON,
1743		.sfunc = PMBUS_HAVE_STATUS_VMON,
1744		.sreg = PMBUS_VIRT_STATUS_VMON,
1745		.limit = vmon_limit_attrs,
1746		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1747	}, {
1748		.reg = PMBUS_READ_VCAP,
1749		.class = PSC_VOLTAGE_IN,
1750		.label = "vcap",
1751		.func = PMBUS_HAVE_VCAP,
1752	}, {
1753		.reg = PMBUS_READ_VOUT,
1754		.class = PSC_VOLTAGE_OUT,
1755		.label = "vout",
1756		.paged = true,
1757		.func = PMBUS_HAVE_VOUT,
1758		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1759		.sreg = PMBUS_STATUS_VOUT,
1760		.gbit = PB_STATUS_VOUT_OV,
1761		.limit = vout_limit_attrs,
1762		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1763	}
1764};
1765
1766/* Current attributes */
1767
1768static const struct pmbus_limit_attr iin_limit_attrs[] = {
1769	{
1770		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1771		.attr = "max",
1772		.alarm = "max_alarm",
1773		.sbit = PB_IIN_OC_WARNING,
1774	}, {
1775		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1776		.attr = "crit",
1777		.alarm = "crit_alarm",
1778		.sbit = PB_IIN_OC_FAULT,
1779	}, {
1780		.reg = PMBUS_VIRT_READ_IIN_AVG,
1781		.update = true,
1782		.attr = "average",
1783	}, {
1784		.reg = PMBUS_VIRT_READ_IIN_MIN,
1785		.update = true,
1786		.attr = "lowest",
1787	}, {
1788		.reg = PMBUS_VIRT_READ_IIN_MAX,
1789		.update = true,
1790		.attr = "highest",
1791	}, {
1792		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1793		.attr = "reset_history",
1794	}, {
1795		.reg = PMBUS_MFR_IIN_MAX,
1796		.attr = "rated_max",
1797	},
1798};
1799
1800static const struct pmbus_limit_attr iout_limit_attrs[] = {
1801	{
1802		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1803		.attr = "max",
1804		.alarm = "max_alarm",
1805		.sbit = PB_IOUT_OC_WARNING,
1806	}, {
1807		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1808		.attr = "lcrit",
1809		.alarm = "lcrit_alarm",
1810		.sbit = PB_IOUT_UC_FAULT,
1811	}, {
1812		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1813		.attr = "crit",
1814		.alarm = "crit_alarm",
1815		.sbit = PB_IOUT_OC_FAULT,
1816	}, {
1817		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1818		.update = true,
1819		.attr = "average",
1820	}, {
1821		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1822		.update = true,
1823		.attr = "lowest",
1824	}, {
1825		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1826		.update = true,
1827		.attr = "highest",
1828	}, {
1829		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1830		.attr = "reset_history",
1831	}, {
1832		.reg = PMBUS_MFR_IOUT_MAX,
1833		.attr = "rated_max",
1834	},
1835};
1836
1837static const struct pmbus_sensor_attr current_attributes[] = {
1838	{
1839		.reg = PMBUS_READ_IIN,
1840		.class = PSC_CURRENT_IN,
1841		.label = "iin",
1842		.func = PMBUS_HAVE_IIN,
1843		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1844		.sreg = PMBUS_STATUS_INPUT,
1845		.gbit = PB_STATUS_INPUT,
1846		.limit = iin_limit_attrs,
1847		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1848	}, {
1849		.reg = PMBUS_READ_IOUT,
1850		.class = PSC_CURRENT_OUT,
1851		.label = "iout",
1852		.paged = true,
1853		.func = PMBUS_HAVE_IOUT,
1854		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1855		.sreg = PMBUS_STATUS_IOUT,
1856		.gbit = PB_STATUS_IOUT_OC,
1857		.limit = iout_limit_attrs,
1858		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1859	}
1860};
1861
1862/* Power attributes */
1863
1864static const struct pmbus_limit_attr pin_limit_attrs[] = {
1865	{
1866		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1867		.attr = "max",
1868		.alarm = "alarm",
1869		.sbit = PB_PIN_OP_WARNING,
1870	}, {
1871		.reg = PMBUS_VIRT_READ_PIN_AVG,
1872		.update = true,
1873		.attr = "average",
1874	}, {
1875		.reg = PMBUS_VIRT_READ_PIN_MIN,
1876		.update = true,
1877		.attr = "input_lowest",
1878	}, {
1879		.reg = PMBUS_VIRT_READ_PIN_MAX,
1880		.update = true,
1881		.attr = "input_highest",
1882	}, {
1883		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1884		.attr = "reset_history",
1885	}, {
1886		.reg = PMBUS_MFR_PIN_MAX,
1887		.attr = "rated_max",
1888	},
1889};
1890
1891static const struct pmbus_limit_attr pout_limit_attrs[] = {
1892	{
1893		.reg = PMBUS_POUT_MAX,
1894		.attr = "cap",
1895		.alarm = "cap_alarm",
1896		.sbit = PB_POWER_LIMITING,
1897	}, {
1898		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1899		.attr = "max",
1900		.alarm = "max_alarm",
1901		.sbit = PB_POUT_OP_WARNING,
1902	}, {
1903		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1904		.attr = "crit",
1905		.alarm = "crit_alarm",
1906		.sbit = PB_POUT_OP_FAULT,
1907	}, {
1908		.reg = PMBUS_VIRT_READ_POUT_AVG,
1909		.update = true,
1910		.attr = "average",
1911	}, {
1912		.reg = PMBUS_VIRT_READ_POUT_MIN,
1913		.update = true,
1914		.attr = "input_lowest",
1915	}, {
1916		.reg = PMBUS_VIRT_READ_POUT_MAX,
1917		.update = true,
1918		.attr = "input_highest",
1919	}, {
1920		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1921		.attr = "reset_history",
1922	}, {
1923		.reg = PMBUS_MFR_POUT_MAX,
1924		.attr = "rated_max",
1925	},
1926};
1927
1928static const struct pmbus_sensor_attr power_attributes[] = {
1929	{
1930		.reg = PMBUS_READ_PIN,
1931		.class = PSC_POWER,
1932		.label = "pin",
1933		.func = PMBUS_HAVE_PIN,
1934		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1935		.sreg = PMBUS_STATUS_INPUT,
1936		.gbit = PB_STATUS_INPUT,
1937		.limit = pin_limit_attrs,
1938		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1939	}, {
1940		.reg = PMBUS_READ_POUT,
1941		.class = PSC_POWER,
1942		.label = "pout",
1943		.paged = true,
1944		.func = PMBUS_HAVE_POUT,
1945		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1946		.sreg = PMBUS_STATUS_IOUT,
1947		.limit = pout_limit_attrs,
1948		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1949	}
1950};
1951
1952/* Temperature atributes */
1953
1954static const struct pmbus_limit_attr temp_limit_attrs[] = {
1955	{
1956		.reg = PMBUS_UT_WARN_LIMIT,
1957		.low = true,
1958		.attr = "min",
1959		.alarm = "min_alarm",
1960		.sbit = PB_TEMP_UT_WARNING,
1961	}, {
1962		.reg = PMBUS_UT_FAULT_LIMIT,
1963		.low = true,
1964		.attr = "lcrit",
1965		.alarm = "lcrit_alarm",
1966		.sbit = PB_TEMP_UT_FAULT,
1967	}, {
1968		.reg = PMBUS_OT_WARN_LIMIT,
1969		.attr = "max",
1970		.alarm = "max_alarm",
1971		.sbit = PB_TEMP_OT_WARNING,
1972	}, {
1973		.reg = PMBUS_OT_FAULT_LIMIT,
1974		.attr = "crit",
1975		.alarm = "crit_alarm",
1976		.sbit = PB_TEMP_OT_FAULT,
1977	}, {
1978		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1979		.attr = "lowest",
1980	}, {
1981		.reg = PMBUS_VIRT_READ_TEMP_AVG,
1982		.attr = "average",
1983	}, {
1984		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1985		.attr = "highest",
1986	}, {
1987		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1988		.attr = "reset_history",
1989	}, {
1990		.reg = PMBUS_MFR_MAX_TEMP_1,
1991		.attr = "rated_max",
1992	},
1993};
1994
1995static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1996	{
1997		.reg = PMBUS_UT_WARN_LIMIT,
1998		.low = true,
1999		.attr = "min",
2000		.alarm = "min_alarm",
2001		.sbit = PB_TEMP_UT_WARNING,
2002	}, {
2003		.reg = PMBUS_UT_FAULT_LIMIT,
2004		.low = true,
2005		.attr = "lcrit",
2006		.alarm = "lcrit_alarm",
2007		.sbit = PB_TEMP_UT_FAULT,
2008	}, {
2009		.reg = PMBUS_OT_WARN_LIMIT,
2010		.attr = "max",
2011		.alarm = "max_alarm",
2012		.sbit = PB_TEMP_OT_WARNING,
2013	}, {
2014		.reg = PMBUS_OT_FAULT_LIMIT,
2015		.attr = "crit",
2016		.alarm = "crit_alarm",
2017		.sbit = PB_TEMP_OT_FAULT,
2018	}, {
2019		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
2020		.attr = "lowest",
2021	}, {
2022		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
2023		.attr = "average",
2024	}, {
2025		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
2026		.attr = "highest",
2027	}, {
2028		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2029		.attr = "reset_history",
2030	}, {
2031		.reg = PMBUS_MFR_MAX_TEMP_2,
2032		.attr = "rated_max",
2033	},
2034};
2035
2036static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2037	{
2038		.reg = PMBUS_UT_WARN_LIMIT,
2039		.low = true,
2040		.attr = "min",
2041		.alarm = "min_alarm",
2042		.sbit = PB_TEMP_UT_WARNING,
2043	}, {
2044		.reg = PMBUS_UT_FAULT_LIMIT,
2045		.low = true,
2046		.attr = "lcrit",
2047		.alarm = "lcrit_alarm",
2048		.sbit = PB_TEMP_UT_FAULT,
2049	}, {
2050		.reg = PMBUS_OT_WARN_LIMIT,
2051		.attr = "max",
2052		.alarm = "max_alarm",
2053		.sbit = PB_TEMP_OT_WARNING,
2054	}, {
2055		.reg = PMBUS_OT_FAULT_LIMIT,
2056		.attr = "crit",
2057		.alarm = "crit_alarm",
2058		.sbit = PB_TEMP_OT_FAULT,
2059	}, {
2060		.reg = PMBUS_MFR_MAX_TEMP_3,
2061		.attr = "rated_max",
2062	},
2063};
2064
2065static const struct pmbus_sensor_attr temp_attributes[] = {
2066	{
2067		.reg = PMBUS_READ_TEMPERATURE_1,
2068		.class = PSC_TEMPERATURE,
2069		.paged = true,
2070		.update = true,
2071		.compare = true,
2072		.func = PMBUS_HAVE_TEMP,
2073		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2074		.sreg = PMBUS_STATUS_TEMPERATURE,
2075		.gbit = PB_STATUS_TEMPERATURE,
2076		.limit = temp_limit_attrs,
2077		.nlimit = ARRAY_SIZE(temp_limit_attrs),
2078	}, {
2079		.reg = PMBUS_READ_TEMPERATURE_2,
2080		.class = PSC_TEMPERATURE,
2081		.paged = true,
2082		.update = true,
2083		.compare = true,
2084		.func = PMBUS_HAVE_TEMP2,
2085		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2086		.sreg = PMBUS_STATUS_TEMPERATURE,
2087		.gbit = PB_STATUS_TEMPERATURE,
2088		.limit = temp_limit_attrs2,
2089		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
2090	}, {
2091		.reg = PMBUS_READ_TEMPERATURE_3,
2092		.class = PSC_TEMPERATURE,
2093		.paged = true,
2094		.update = true,
2095		.compare = true,
2096		.func = PMBUS_HAVE_TEMP3,
2097		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2098		.sreg = PMBUS_STATUS_TEMPERATURE,
2099		.gbit = PB_STATUS_TEMPERATURE,
2100		.limit = temp_limit_attrs3,
2101		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
2102	}
2103};
2104
2105static const int pmbus_fan_registers[] = {
2106	PMBUS_READ_FAN_SPEED_1,
2107	PMBUS_READ_FAN_SPEED_2,
2108	PMBUS_READ_FAN_SPEED_3,
2109	PMBUS_READ_FAN_SPEED_4
2110};
2111
 
 
 
 
 
 
 
2112static const int pmbus_fan_status_registers[] = {
2113	PMBUS_STATUS_FAN_12,
2114	PMBUS_STATUS_FAN_12,
2115	PMBUS_STATUS_FAN_34,
2116	PMBUS_STATUS_FAN_34
2117};
2118
2119static const u32 pmbus_fan_flags[] = {
2120	PMBUS_HAVE_FAN12,
2121	PMBUS_HAVE_FAN12,
2122	PMBUS_HAVE_FAN34,
2123	PMBUS_HAVE_FAN34
2124};
2125
2126static const u32 pmbus_fan_status_flags[] = {
2127	PMBUS_HAVE_STATUS_FAN12,
2128	PMBUS_HAVE_STATUS_FAN12,
2129	PMBUS_HAVE_STATUS_FAN34,
2130	PMBUS_HAVE_STATUS_FAN34
2131};
2132
2133/* Fans */
2134
2135/* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
2136static int pmbus_add_fan_ctrl(struct i2c_client *client,
2137		struct pmbus_data *data, int index, int page, int id,
2138		u8 config)
2139{
2140	struct pmbus_sensor *sensor;
2141
2142	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2143				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2144				  false, false, true);
2145
2146	if (!sensor)
2147		return -ENOMEM;
2148
2149	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2150			(data->info->func[page] & PMBUS_HAVE_PWM34)))
2151		return 0;
2152
2153	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2154				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2155				  false, false, true);
2156
2157	if (!sensor)
2158		return -ENOMEM;
2159
2160	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2161				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2162				  true, false, false);
2163
2164	if (!sensor)
2165		return -ENOMEM;
2166
2167	return 0;
2168}
2169
2170static int pmbus_add_fan_attributes(struct i2c_client *client,
2171				    struct pmbus_data *data)
2172{
2173	const struct pmbus_driver_info *info = data->info;
2174	int index = 1;
2175	int page;
2176	int ret;
2177
2178	for (page = 0; page < info->pages; page++) {
2179		int f;
2180
2181		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2182			int regval;
2183
2184			if (!(info->func[page] & pmbus_fan_flags[f]))
2185				break;
2186
2187			if (!pmbus_check_word_register(client, page,
2188						       pmbus_fan_registers[f]))
2189				break;
2190
2191			/*
2192			 * Skip fan if not installed.
2193			 * Each fan configuration register covers multiple fans,
2194			 * so we have to do some magic.
2195			 */
2196			regval = _pmbus_read_byte_data(client, page,
2197				pmbus_fan_config_registers[f]);
2198			if (regval < 0 ||
2199			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2200				continue;
2201
2202			if (pmbus_add_sensor(data, "fan", "input", index,
2203					     page, 0xff, pmbus_fan_registers[f],
2204					     PSC_FAN, true, true, true) == NULL)
2205				return -ENOMEM;
2206
2207			/* Fan control */
2208			if (pmbus_check_word_register(client, page,
2209					pmbus_fan_command_registers[f])) {
2210				ret = pmbus_add_fan_ctrl(client, data, index,
2211							 page, f, regval);
2212				if (ret < 0)
2213					return ret;
2214			}
2215
2216			/*
2217			 * Each fan status register covers multiple fans,
2218			 * so we have to do some magic.
2219			 */
2220			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2221			    pmbus_check_byte_register(client,
2222					page, pmbus_fan_status_registers[f])) {
2223				int reg;
2224
2225				if (f > 1)	/* fan 3, 4 */
2226					reg = PMBUS_STATUS_FAN_34;
2227				else
2228					reg = PMBUS_STATUS_FAN_12;
2229				ret = pmbus_add_boolean(data, "fan",
2230					"alarm", index, NULL, NULL, page, reg,
2231					PB_FAN_FAN1_WARNING >> (f & 1));
2232				if (ret)
2233					return ret;
2234				ret = pmbus_add_boolean(data, "fan",
2235					"fault", index, NULL, NULL, page, reg,
2236					PB_FAN_FAN1_FAULT >> (f & 1));
2237				if (ret)
2238					return ret;
2239			}
2240			index++;
2241		}
2242	}
2243	return 0;
2244}
2245
2246struct pmbus_samples_attr {
2247	int reg;
2248	char *name;
2249};
2250
2251struct pmbus_samples_reg {
2252	int page;
2253	struct pmbus_samples_attr *attr;
2254	struct device_attribute dev_attr;
2255};
2256
2257static struct pmbus_samples_attr pmbus_samples_registers[] = {
2258	{
2259		.reg = PMBUS_VIRT_SAMPLES,
2260		.name = "samples",
2261	}, {
2262		.reg = PMBUS_VIRT_IN_SAMPLES,
2263		.name = "in_samples",
2264	}, {
2265		.reg = PMBUS_VIRT_CURR_SAMPLES,
2266		.name = "curr_samples",
2267	}, {
2268		.reg = PMBUS_VIRT_POWER_SAMPLES,
2269		.name = "power_samples",
2270	}, {
2271		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2272		.name = "temp_samples",
2273	}
2274};
2275
2276#define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2277
2278static ssize_t pmbus_show_samples(struct device *dev,
2279				  struct device_attribute *devattr, char *buf)
2280{
2281	int val;
2282	struct i2c_client *client = to_i2c_client(dev->parent);
2283	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2284	struct pmbus_data *data = i2c_get_clientdata(client);
2285
2286	mutex_lock(&data->update_lock);
2287	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2288	mutex_unlock(&data->update_lock);
2289	if (val < 0)
2290		return val;
2291
2292	return sysfs_emit(buf, "%d\n", val);
2293}
2294
2295static ssize_t pmbus_set_samples(struct device *dev,
2296				 struct device_attribute *devattr,
2297				 const char *buf, size_t count)
2298{
2299	int ret;
2300	long val;
2301	struct i2c_client *client = to_i2c_client(dev->parent);
2302	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2303	struct pmbus_data *data = i2c_get_clientdata(client);
2304
2305	if (kstrtol(buf, 0, &val) < 0)
2306		return -EINVAL;
2307
2308	mutex_lock(&data->update_lock);
2309	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2310	mutex_unlock(&data->update_lock);
2311
2312	return ret ? : count;
2313}
2314
2315static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2316				  struct pmbus_samples_attr *attr)
2317{
2318	struct pmbus_samples_reg *reg;
2319
2320	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2321	if (!reg)
2322		return -ENOMEM;
2323
2324	reg->attr = attr;
2325	reg->page = page;
2326
2327	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2328			    pmbus_show_samples, pmbus_set_samples);
2329
2330	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2331}
2332
2333static int pmbus_add_samples_attributes(struct i2c_client *client,
2334					struct pmbus_data *data)
2335{
2336	const struct pmbus_driver_info *info = data->info;
2337	int s;
2338
2339	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2340		return 0;
2341
2342	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2343		struct pmbus_samples_attr *attr;
2344		int ret;
2345
2346		attr = &pmbus_samples_registers[s];
2347		if (!pmbus_check_word_register(client, 0, attr->reg))
2348			continue;
2349
2350		ret = pmbus_add_samples_attr(data, 0, attr);
2351		if (ret)
2352			return ret;
2353	}
2354
2355	return 0;
2356}
2357
2358static int pmbus_find_attributes(struct i2c_client *client,
2359				 struct pmbus_data *data)
2360{
2361	int ret;
2362
2363	/* Voltage sensors */
2364	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2365				     ARRAY_SIZE(voltage_attributes));
2366	if (ret)
2367		return ret;
2368
2369	/* Current sensors */
2370	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2371				     ARRAY_SIZE(current_attributes));
2372	if (ret)
2373		return ret;
2374
2375	/* Power sensors */
2376	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2377				     ARRAY_SIZE(power_attributes));
2378	if (ret)
2379		return ret;
2380
2381	/* Temperature sensors */
2382	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2383				     ARRAY_SIZE(temp_attributes));
2384	if (ret)
2385		return ret;
2386
2387	/* Fans */
2388	ret = pmbus_add_fan_attributes(client, data);
2389	if (ret)
2390		return ret;
2391
2392	ret = pmbus_add_samples_attributes(client, data);
2393	return ret;
2394}
2395
2396/*
2397 * The pmbus_class_attr_map structure maps one sensor class to
2398 * it's corresponding sensor attributes array.
2399 */
2400struct pmbus_class_attr_map {
2401	enum pmbus_sensor_classes class;
2402	int nattr;
2403	const struct pmbus_sensor_attr *attr;
2404};
2405
2406static const struct pmbus_class_attr_map class_attr_map[] = {
2407	{
2408		.class = PSC_VOLTAGE_IN,
2409		.attr = voltage_attributes,
2410		.nattr = ARRAY_SIZE(voltage_attributes),
2411	}, {
2412		.class = PSC_VOLTAGE_OUT,
2413		.attr = voltage_attributes,
2414		.nattr = ARRAY_SIZE(voltage_attributes),
2415	}, {
2416		.class = PSC_CURRENT_IN,
2417		.attr = current_attributes,
2418		.nattr = ARRAY_SIZE(current_attributes),
2419	}, {
2420		.class = PSC_CURRENT_OUT,
2421		.attr = current_attributes,
2422		.nattr = ARRAY_SIZE(current_attributes),
2423	}, {
2424		.class = PSC_POWER,
2425		.attr = power_attributes,
2426		.nattr = ARRAY_SIZE(power_attributes),
2427	}, {
2428		.class = PSC_TEMPERATURE,
2429		.attr = temp_attributes,
2430		.nattr = ARRAY_SIZE(temp_attributes),
2431	}
2432};
2433
2434/*
2435 * Read the coefficients for direct mode.
2436 */
2437static int pmbus_read_coefficients(struct i2c_client *client,
2438				   struct pmbus_driver_info *info,
2439				   const struct pmbus_sensor_attr *attr)
2440{
2441	int rv;
2442	union i2c_smbus_data data;
2443	enum pmbus_sensor_classes class = attr->class;
2444	s8 R;
2445	s16 m, b;
2446
2447	data.block[0] = 2;
2448	data.block[1] = attr->reg;
2449	data.block[2] = 0x01;
2450
2451	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2452			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2453			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2454
2455	if (rv < 0)
2456		return rv;
2457
2458	if (data.block[0] != 5)
2459		return -EIO;
2460
2461	m = data.block[1] | (data.block[2] << 8);
2462	b = data.block[3] | (data.block[4] << 8);
2463	R = data.block[5];
2464	info->m[class] = m;
2465	info->b[class] = b;
2466	info->R[class] = R;
2467
2468	return rv;
2469}
2470
2471static int pmbus_init_coefficients(struct i2c_client *client,
2472				   struct pmbus_driver_info *info)
2473{
2474	int i, n, ret = -EINVAL;
2475	const struct pmbus_class_attr_map *map;
2476	const struct pmbus_sensor_attr *attr;
2477
2478	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2479		map = &class_attr_map[i];
2480		if (info->format[map->class] != direct)
2481			continue;
2482		for (n = 0; n < map->nattr; n++) {
2483			attr = &map->attr[n];
2484			if (map->class != attr->class)
2485				continue;
2486			ret = pmbus_read_coefficients(client, info, attr);
2487			if (ret >= 0)
2488				break;
2489		}
2490		if (ret < 0) {
2491			dev_err(&client->dev,
2492				"No coefficients found for sensor class %d\n",
2493				map->class);
2494			return -EINVAL;
2495		}
2496	}
2497
2498	return 0;
2499}
2500
2501/*
2502 * Identify chip parameters.
2503 * This function is called for all chips.
2504 */
2505static int pmbus_identify_common(struct i2c_client *client,
2506				 struct pmbus_data *data, int page)
2507{
2508	int vout_mode = -1;
2509
2510	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2511		vout_mode = _pmbus_read_byte_data(client, page,
2512						  PMBUS_VOUT_MODE);
2513	if (vout_mode >= 0 && vout_mode != 0xff) {
2514		/*
2515		 * Not all chips support the VOUT_MODE command,
2516		 * so a failure to read it is not an error.
2517		 */
2518		switch (vout_mode >> 5) {
2519		case 0:	/* linear mode      */
2520			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2521				return -ENODEV;
2522
2523			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
 
 
 
 
2524			break;
2525		case 1: /* VID mode         */
2526			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2527				return -ENODEV;
2528			break;
2529		case 2:	/* direct mode      */
2530			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2531				return -ENODEV;
2532			break;
2533		case 3:	/* ieee 754 half precision */
2534			if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2535				return -ENODEV;
2536			break;
2537		default:
2538			return -ENODEV;
2539		}
2540	}
2541
2542	pmbus_clear_fault_page(client, page);
 
 
2543	return 0;
2544}
2545
2546static int pmbus_read_status_byte(struct i2c_client *client, int page)
 
2547{
2548	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2549}
 
2550
2551static int pmbus_read_status_word(struct i2c_client *client, int page)
2552{
2553	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2554}
2555
2556/* PEC attribute support */
 
 
 
2557
2558static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2559			char *buf)
2560{
2561	struct i2c_client *client = to_i2c_client(dev);
 
2562
2563	return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2564}
2565
2566static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2567			 const char *buf, size_t count)
2568{
2569	struct i2c_client *client = to_i2c_client(dev);
2570	bool enable;
2571	int err;
2572
2573	err = kstrtobool(buf, &enable);
2574	if (err < 0)
2575		return err;
2576
2577	if (enable)
2578		client->flags |= I2C_CLIENT_PEC;
2579	else
2580		client->flags &= ~I2C_CLIENT_PEC;
2581
2582	return count;
2583}
2584
2585static DEVICE_ATTR_RW(pec);
2586
2587static void pmbus_remove_pec(void *dev)
2588{
2589	device_remove_file(dev, &dev_attr_pec);
2590}
2591
2592static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2593			     struct pmbus_driver_info *info)
2594{
2595	struct device *dev = &client->dev;
2596	int page, ret;
2597
2598	/*
2599	 * Figure out if PEC is enabled before accessing any other register.
2600	 * Make sure PEC is disabled, will be enabled later if needed.
2601	 */
2602	client->flags &= ~I2C_CLIENT_PEC;
2603
2604	/* Enable PEC if the controller and bus supports it */
2605	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2606		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2607		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2608			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2609				client->flags |= I2C_CLIENT_PEC;
2610		}
2611	}
2612
2613	/*
2614	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2615	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2616	 * Bail out if both registers are not supported.
2617	 */
2618	data->read_status = pmbus_read_status_word;
2619	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2620	if (ret < 0 || ret == 0xffff) {
2621		data->read_status = pmbus_read_status_byte;
2622		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2623		if (ret < 0 || ret == 0xff) {
2624			dev_err(dev, "PMBus status register not found\n");
2625			return -ENODEV;
2626		}
2627	} else {
2628		data->has_status_word = true;
2629	}
2630
2631	/*
2632	 * Check if the chip is write protected. If it is, we can not clear
2633	 * faults, and we should not try it. Also, in that case, writes into
2634	 * limit registers need to be disabled.
2635	 */
2636	if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2637		ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2638		if (ret > 0 && (ret & PB_WP_ANY))
2639			data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2640	}
2641
2642	if (data->info->pages)
2643		pmbus_clear_faults(client);
2644	else
2645		pmbus_clear_fault_page(client, -1);
2646
2647	if (info->identify) {
2648		ret = (*info->identify)(client, info);
2649		if (ret < 0) {
2650			dev_err(dev, "Chip identification failed\n");
2651			return ret;
2652		}
2653	}
2654
2655	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2656		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2657		return -ENODEV;
2658	}
2659
2660	for (page = 0; page < info->pages; page++) {
2661		ret = pmbus_identify_common(client, data, page);
2662		if (ret < 0) {
2663			dev_err(dev, "Failed to identify chip capabilities\n");
2664			return ret;
2665		}
2666	}
2667
2668	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2669		if (!i2c_check_functionality(client->adapter,
2670					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2671			return -ENODEV;
2672
2673		ret = pmbus_init_coefficients(client, info);
2674		if (ret < 0)
2675			return ret;
2676	}
2677
2678	if (client->flags & I2C_CLIENT_PEC) {
2679		/*
2680		 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2681		 * chip support PEC. Add 'pec' attribute to client device to let
2682		 * the user control it.
2683		 */
2684		ret = device_create_file(dev, &dev_attr_pec);
2685		if (ret)
2686			return ret;
2687		ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2688		if (ret)
2689			return ret;
2690	}
2691
2692	return 0;
2693}
2694
2695#if IS_ENABLED(CONFIG_REGULATOR)
2696static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2697{
2698	struct device *dev = rdev_get_dev(rdev);
2699	struct i2c_client *client = to_i2c_client(dev->parent);
2700	struct pmbus_data *data = i2c_get_clientdata(client);
2701	u8 page = rdev_get_id(rdev);
2702	int ret;
2703
2704	mutex_lock(&data->update_lock);
2705	ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2706	mutex_unlock(&data->update_lock);
2707
2708	if (ret < 0)
2709		return ret;
2710
2711	return !!(ret & PB_OPERATION_CONTROL_ON);
2712}
2713
2714static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2715{
2716	struct device *dev = rdev_get_dev(rdev);
2717	struct i2c_client *client = to_i2c_client(dev->parent);
2718	struct pmbus_data *data = i2c_get_clientdata(client);
2719	u8 page = rdev_get_id(rdev);
2720	int ret;
2721
2722	mutex_lock(&data->update_lock);
2723	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2724				     PB_OPERATION_CONTROL_ON,
2725				     enable ? PB_OPERATION_CONTROL_ON : 0);
2726	mutex_unlock(&data->update_lock);
2727
2728	return ret;
2729}
2730
2731static int pmbus_regulator_enable(struct regulator_dev *rdev)
2732{
2733	return _pmbus_regulator_on_off(rdev, 1);
2734}
2735
2736static int pmbus_regulator_disable(struct regulator_dev *rdev)
2737{
2738	return _pmbus_regulator_on_off(rdev, 0);
2739}
2740
2741/* A PMBus status flag and the corresponding REGULATOR_ERROR_* flag */
2742struct pmbus_regulator_status_assoc {
2743	int pflag, rflag;
2744};
2745
2746/* PMBus->regulator bit mappings for a PMBus status register */
2747struct pmbus_regulator_status_category {
2748	int func;
2749	int reg;
2750	const struct pmbus_regulator_status_assoc *bits; /* zero-terminated */
2751};
2752
2753static const struct pmbus_regulator_status_category pmbus_regulator_flag_map[] = {
2754	{
2755		.func = PMBUS_HAVE_STATUS_VOUT,
2756		.reg = PMBUS_STATUS_VOUT,
2757		.bits = (const struct pmbus_regulator_status_assoc[]) {
2758			{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN },
2759			{ PB_VOLTAGE_UV_FAULT,   REGULATOR_ERROR_UNDER_VOLTAGE },
2760			{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN },
2761			{ PB_VOLTAGE_OV_FAULT,   REGULATOR_ERROR_REGULATION_OUT },
2762			{ },
2763		},
2764	}, {
2765		.func = PMBUS_HAVE_STATUS_IOUT,
2766		.reg = PMBUS_STATUS_IOUT,
2767		.bits = (const struct pmbus_regulator_status_assoc[]) {
2768			{ PB_IOUT_OC_WARNING,    REGULATOR_ERROR_OVER_CURRENT_WARN },
2769			{ PB_IOUT_OC_FAULT,      REGULATOR_ERROR_OVER_CURRENT },
2770			{ PB_IOUT_OC_LV_FAULT,   REGULATOR_ERROR_OVER_CURRENT },
2771			{ },
2772		},
2773	}, {
2774		.func = PMBUS_HAVE_STATUS_TEMP,
2775		.reg = PMBUS_STATUS_TEMPERATURE,
2776		.bits = (const struct pmbus_regulator_status_assoc[]) {
2777			{ PB_TEMP_OT_WARNING,    REGULATOR_ERROR_OVER_TEMP_WARN },
2778			{ PB_TEMP_OT_FAULT,      REGULATOR_ERROR_OVER_TEMP },
2779			{ },
2780		},
2781	},
2782};
2783
2784static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
2785{
2786	int i, status;
2787	const struct pmbus_regulator_status_category *cat;
2788	const struct pmbus_regulator_status_assoc *bit;
2789	struct device *dev = rdev_get_dev(rdev);
2790	struct i2c_client *client = to_i2c_client(dev->parent);
2791	struct pmbus_data *data = i2c_get_clientdata(client);
2792	u8 page = rdev_get_id(rdev);
2793	int func = data->info->func[page];
2794
2795	*flags = 0;
2796
2797	mutex_lock(&data->update_lock);
2798
2799	for (i = 0; i < ARRAY_SIZE(pmbus_regulator_flag_map); i++) {
2800		cat = &pmbus_regulator_flag_map[i];
2801		if (!(func & cat->func))
2802			continue;
2803
2804		status = _pmbus_read_byte_data(client, page, cat->reg);
2805		if (status < 0) {
2806			mutex_unlock(&data->update_lock);
2807			return status;
2808		}
2809
2810		for (bit = cat->bits; bit->pflag; bit++) {
2811			if (status & bit->pflag)
2812				*flags |= bit->rflag;
2813		}
2814	}
2815
2816	/*
2817	 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2818	 * bits.  Some of the other bits are tempting (especially for cases
2819	 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2820	 * functionality), but there's an unfortunate ambiguity in that
2821	 * they're defined as indicating a fault *or* a warning, so we can't
2822	 * easily determine whether to report REGULATOR_ERROR_<foo> or
2823	 * REGULATOR_ERROR_<foo>_WARN.
2824	 */
2825	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2826	mutex_unlock(&data->update_lock);
2827	if (status < 0)
2828		return status;
2829
2830	if (pmbus_regulator_is_enabled(rdev)) {
2831		if (status & PB_STATUS_OFF)
2832			*flags |= REGULATOR_ERROR_FAIL;
2833
2834		if (status & PB_STATUS_POWER_GOOD_N)
2835			*flags |= REGULATOR_ERROR_REGULATION_OUT;
2836	}
2837	/*
2838	 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2839	 * defined strictly as fault indicators (not warnings).
2840	 */
2841	if (status & PB_STATUS_IOUT_OC)
2842		*flags |= REGULATOR_ERROR_OVER_CURRENT;
2843	if (status & PB_STATUS_VOUT_OV)
2844		*flags |= REGULATOR_ERROR_REGULATION_OUT;
2845
2846	/*
2847	 * If we haven't discovered any thermal faults or warnings via
2848	 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2849	 * a (conservative) best-effort interpretation.
2850	 */
2851	if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2852	    (status & PB_STATUS_TEMPERATURE))
2853		*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2854
2855	return 0;
2856}
2857
2858static int pmbus_regulator_get_status(struct regulator_dev *rdev)
2859{
2860	struct device *dev = rdev_get_dev(rdev);
2861	struct i2c_client *client = to_i2c_client(dev->parent);
2862	struct pmbus_data *data = i2c_get_clientdata(client);
2863	u8 page = rdev_get_id(rdev);
2864	int status, ret;
2865
2866	mutex_lock(&data->update_lock);
2867	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2868	if (status < 0) {
2869		ret = status;
2870		goto unlock;
2871	}
2872
2873	if (status & PB_STATUS_OFF) {
2874		ret = REGULATOR_STATUS_OFF;
2875		goto unlock;
2876	}
2877
2878	/* If regulator is ON & reports power good then return ON */
2879	if (!(status & PB_STATUS_POWER_GOOD_N)) {
2880		ret = REGULATOR_STATUS_ON;
2881		goto unlock;
2882	}
2883
2884	ret = pmbus_regulator_get_error_flags(rdev, &status);
2885	if (ret)
2886		goto unlock;
2887
2888	if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
2889	   REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
2890		ret = REGULATOR_STATUS_ERROR;
2891		goto unlock;
2892	}
2893
2894	ret = REGULATOR_STATUS_UNDEFINED;
2895
2896unlock:
2897	mutex_unlock(&data->update_lock);
2898	return ret;
2899}
2900
2901static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
2902{
2903	struct pmbus_data *data = i2c_get_clientdata(client);
2904	struct pmbus_sensor s = {
2905		.page = page,
2906		.class = PSC_VOLTAGE_OUT,
2907		.convert = true,
2908		.data = -1,
2909	};
2910
2911	if (data->vout_low[page] < 0) {
2912		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
2913			s.data = _pmbus_read_word_data(client, page, 0xff,
2914						       PMBUS_MFR_VOUT_MIN);
2915		if (s.data < 0) {
2916			s.data = _pmbus_read_word_data(client, page, 0xff,
2917						       PMBUS_VOUT_MARGIN_LOW);
2918			if (s.data < 0)
2919				return s.data;
2920		}
2921		data->vout_low[page] = pmbus_reg2data(data, &s);
2922	}
2923
2924	return data->vout_low[page];
2925}
2926
2927static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
2928{
2929	struct pmbus_data *data = i2c_get_clientdata(client);
2930	struct pmbus_sensor s = {
2931		.page = page,
2932		.class = PSC_VOLTAGE_OUT,
2933		.convert = true,
2934		.data = -1,
2935	};
2936
2937	if (data->vout_high[page] < 0) {
2938		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
2939			s.data = _pmbus_read_word_data(client, page, 0xff,
2940						       PMBUS_MFR_VOUT_MAX);
2941		if (s.data < 0) {
2942			s.data = _pmbus_read_word_data(client, page, 0xff,
2943						       PMBUS_VOUT_MARGIN_HIGH);
2944			if (s.data < 0)
2945				return s.data;
2946		}
2947		data->vout_high[page] = pmbus_reg2data(data, &s);
2948	}
2949
2950	return data->vout_high[page];
2951}
2952
2953static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
2954{
2955	struct device *dev = rdev_get_dev(rdev);
2956	struct i2c_client *client = to_i2c_client(dev->parent);
2957	struct pmbus_data *data = i2c_get_clientdata(client);
2958	struct pmbus_sensor s = {
2959		.page = rdev_get_id(rdev),
2960		.class = PSC_VOLTAGE_OUT,
2961		.convert = true,
2962	};
2963
2964	s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
2965	if (s.data < 0)
2966		return s.data;
2967
2968	return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
2969}
2970
2971static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
2972				       int max_uv, unsigned int *selector)
2973{
2974	struct device *dev = rdev_get_dev(rdev);
2975	struct i2c_client *client = to_i2c_client(dev->parent);
2976	struct pmbus_data *data = i2c_get_clientdata(client);
2977	struct pmbus_sensor s = {
2978		.page = rdev_get_id(rdev),
2979		.class = PSC_VOLTAGE_OUT,
2980		.convert = true,
2981		.data = -1,
2982	};
2983	int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
2984	int low, high;
2985
2986	*selector = 0;
2987
2988	low = pmbus_regulator_get_low_margin(client, s.page);
2989	if (low < 0)
2990		return low;
2991
2992	high = pmbus_regulator_get_high_margin(client, s.page);
2993	if (high < 0)
2994		return high;
2995
2996	/* Make sure we are within margins */
2997	if (low > val)
2998		val = low;
2999	if (high < val)
3000		val = high;
3001
3002	val = pmbus_data2reg(data, &s, val);
3003
3004	return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3005}
3006
3007static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3008					 unsigned int selector)
3009{
3010	struct device *dev = rdev_get_dev(rdev);
3011	struct i2c_client *client = to_i2c_client(dev->parent);
3012	int val, low, high;
3013
3014	if (selector >= rdev->desc->n_voltages ||
3015	    selector < rdev->desc->linear_min_sel)
3016		return -EINVAL;
3017
3018	selector -= rdev->desc->linear_min_sel;
3019	val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3020				(rdev->desc->uV_step * selector), 1000); /* convert to mV */
3021
3022	low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3023	if (low < 0)
3024		return low;
3025
3026	high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3027	if (high < 0)
3028		return high;
3029
3030	if (val >= low && val <= high)
3031		return val * 1000; /* unit is uV */
3032
3033	return 0;
3034}
3035
3036const struct regulator_ops pmbus_regulator_ops = {
3037	.enable = pmbus_regulator_enable,
3038	.disable = pmbus_regulator_disable,
3039	.is_enabled = pmbus_regulator_is_enabled,
3040	.get_error_flags = pmbus_regulator_get_error_flags,
3041	.get_status = pmbus_regulator_get_status,
3042	.get_voltage = pmbus_regulator_get_voltage,
3043	.set_voltage = pmbus_regulator_set_voltage,
3044	.list_voltage = pmbus_regulator_list_voltage,
3045};
3046EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
3047
3048static int pmbus_regulator_register(struct pmbus_data *data)
3049{
3050	struct device *dev = data->dev;
3051	const struct pmbus_driver_info *info = data->info;
3052	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3053	struct regulator_dev *rdev;
3054	int i;
3055
3056	for (i = 0; i < info->num_regulators; i++) {
3057		struct regulator_config config = { };
3058
3059		config.dev = dev;
3060		config.driver_data = data;
3061
3062		if (pdata && pdata->reg_init_data)
3063			config.init_data = &pdata->reg_init_data[i];
3064
3065		rdev = devm_regulator_register(dev, &info->reg_desc[i],
3066					       &config);
3067		if (IS_ERR(rdev))
3068			return dev_err_probe(dev, PTR_ERR(rdev),
3069					     "Failed to register %s regulator\n",
3070					     info->reg_desc[i].name);
3071	}
3072
3073	return 0;
3074}
3075#else
3076static int pmbus_regulator_register(struct pmbus_data *data)
3077{
3078	return 0;
3079}
3080#endif
3081
3082static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
3083
3084#if IS_ENABLED(CONFIG_DEBUG_FS)
3085static int pmbus_debugfs_get(void *data, u64 *val)
3086{
3087	int rc;
3088	struct pmbus_debugfs_entry *entry = data;
3089
3090	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3091	if (rc < 0)
3092		return rc;
3093
3094	*val = rc;
3095
3096	return 0;
3097}
3098DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3099			 "0x%02llx\n");
3100
3101static int pmbus_debugfs_get_status(void *data, u64 *val)
3102{
3103	int rc;
3104	struct pmbus_debugfs_entry *entry = data;
3105	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3106
3107	rc = pdata->read_status(entry->client, entry->page);
3108	if (rc < 0)
3109		return rc;
3110
3111	*val = rc;
3112
3113	return 0;
3114}
3115DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3116			 NULL, "0x%04llx\n");
3117
3118static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3119				       size_t count, loff_t *ppos)
3120{
3121	int rc;
3122	struct pmbus_debugfs_entry *entry = file->private_data;
3123	char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3124
3125	rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3126				   data);
3127	if (rc < 0)
3128		return rc;
3129
3130	/* Add newline at the end of a read data */
3131	data[rc] = '\n';
3132
3133	/* Include newline into the length */
3134	rc += 1;
3135
3136	return simple_read_from_buffer(buf, count, ppos, data, rc);
3137}
3138
3139static const struct file_operations pmbus_debugfs_ops_mfr = {
3140	.llseek = noop_llseek,
3141	.read = pmbus_debugfs_mfr_read,
3142	.write = NULL,
3143	.open = simple_open,
3144};
3145
3146static void pmbus_remove_debugfs(void *data)
3147{
3148	struct dentry *entry = data;
3149
3150	debugfs_remove_recursive(entry);
3151}
3152
3153static int pmbus_init_debugfs(struct i2c_client *client,
3154			      struct pmbus_data *data)
3155{
3156	int i, idx = 0;
3157	char name[PMBUS_NAME_SIZE];
3158	struct pmbus_debugfs_entry *entries;
3159
3160	if (!pmbus_debugfs_dir)
3161		return -ENODEV;
3162
3163	/*
3164	 * Create the debugfs directory for this device. Use the hwmon device
3165	 * name to avoid conflicts (hwmon numbers are globally unique).
3166	 */
3167	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3168					   pmbus_debugfs_dir);
3169	if (IS_ERR_OR_NULL(data->debugfs)) {
3170		data->debugfs = NULL;
3171		return -ENODEV;
3172	}
3173
3174	/*
3175	 * Allocate the max possible entries we need.
3176	 * 6 entries device-specific
3177	 * 10 entries page-specific
3178	 */
3179	entries = devm_kcalloc(data->dev,
3180			       6 + data->info->pages * 10, sizeof(*entries),
3181			       GFP_KERNEL);
3182	if (!entries)
3183		return -ENOMEM;
3184
3185	/*
3186	 * Add device-specific entries.
3187	 * Please note that the PMBUS standard allows all registers to be
3188	 * page-specific.
3189	 * To reduce the number of debugfs entries for devices with many pages
3190	 * assume that values of the following registers are the same for all
3191	 * pages and report values only for page 0.
3192	 */
3193	if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3194		entries[idx].client = client;
3195		entries[idx].page = 0;
3196		entries[idx].reg = PMBUS_MFR_ID;
3197		debugfs_create_file("mfr_id", 0444, data->debugfs,
3198				    &entries[idx++],
3199				    &pmbus_debugfs_ops_mfr);
3200	}
3201
3202	if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3203		entries[idx].client = client;
3204		entries[idx].page = 0;
3205		entries[idx].reg = PMBUS_MFR_MODEL;
3206		debugfs_create_file("mfr_model", 0444, data->debugfs,
3207				    &entries[idx++],
3208				    &pmbus_debugfs_ops_mfr);
3209	}
3210
3211	if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3212		entries[idx].client = client;
3213		entries[idx].page = 0;
3214		entries[idx].reg = PMBUS_MFR_REVISION;
3215		debugfs_create_file("mfr_revision", 0444, data->debugfs,
3216				    &entries[idx++],
3217				    &pmbus_debugfs_ops_mfr);
3218	}
3219
3220	if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3221		entries[idx].client = client;
3222		entries[idx].page = 0;
3223		entries[idx].reg = PMBUS_MFR_LOCATION;
3224		debugfs_create_file("mfr_location", 0444, data->debugfs,
3225				    &entries[idx++],
3226				    &pmbus_debugfs_ops_mfr);
3227	}
3228
3229	if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3230		entries[idx].client = client;
3231		entries[idx].page = 0;
3232		entries[idx].reg = PMBUS_MFR_DATE;
3233		debugfs_create_file("mfr_date", 0444, data->debugfs,
3234				    &entries[idx++],
3235				    &pmbus_debugfs_ops_mfr);
3236	}
3237
3238	if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3239		entries[idx].client = client;
3240		entries[idx].page = 0;
3241		entries[idx].reg = PMBUS_MFR_SERIAL;
3242		debugfs_create_file("mfr_serial", 0444, data->debugfs,
3243				    &entries[idx++],
3244				    &pmbus_debugfs_ops_mfr);
3245	}
3246
3247	/* Add page specific entries */
3248	for (i = 0; i < data->info->pages; ++i) {
3249		/* Check accessibility of status register if it's not page 0 */
3250		if (!i || pmbus_check_status_register(client, i)) {
3251			/* No need to set reg as we have special read op. */
3252			entries[idx].client = client;
3253			entries[idx].page = i;
3254			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3255			debugfs_create_file(name, 0444, data->debugfs,
3256					    &entries[idx++],
3257					    &pmbus_debugfs_ops_status);
3258		}
3259
3260		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3261			entries[idx].client = client;
3262			entries[idx].page = i;
3263			entries[idx].reg = PMBUS_STATUS_VOUT;
3264			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3265			debugfs_create_file(name, 0444, data->debugfs,
3266					    &entries[idx++],
3267					    &pmbus_debugfs_ops);
3268		}
3269
3270		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3271			entries[idx].client = client;
3272			entries[idx].page = i;
3273			entries[idx].reg = PMBUS_STATUS_IOUT;
3274			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3275			debugfs_create_file(name, 0444, data->debugfs,
3276					    &entries[idx++],
3277					    &pmbus_debugfs_ops);
3278		}
3279
3280		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3281			entries[idx].client = client;
3282			entries[idx].page = i;
3283			entries[idx].reg = PMBUS_STATUS_INPUT;
3284			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3285			debugfs_create_file(name, 0444, data->debugfs,
3286					    &entries[idx++],
3287					    &pmbus_debugfs_ops);
3288		}
3289
3290		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3291			entries[idx].client = client;
3292			entries[idx].page = i;
3293			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3294			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3295			debugfs_create_file(name, 0444, data->debugfs,
3296					    &entries[idx++],
3297					    &pmbus_debugfs_ops);
3298		}
3299
3300		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3301			entries[idx].client = client;
3302			entries[idx].page = i;
3303			entries[idx].reg = PMBUS_STATUS_CML;
3304			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3305			debugfs_create_file(name, 0444, data->debugfs,
3306					    &entries[idx++],
3307					    &pmbus_debugfs_ops);
3308		}
3309
3310		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3311			entries[idx].client = client;
3312			entries[idx].page = i;
3313			entries[idx].reg = PMBUS_STATUS_OTHER;
3314			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3315			debugfs_create_file(name, 0444, data->debugfs,
3316					    &entries[idx++],
3317					    &pmbus_debugfs_ops);
3318		}
3319
3320		if (pmbus_check_byte_register(client, i,
3321					      PMBUS_STATUS_MFR_SPECIFIC)) {
3322			entries[idx].client = client;
3323			entries[idx].page = i;
3324			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3325			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3326			debugfs_create_file(name, 0444, data->debugfs,
3327					    &entries[idx++],
3328					    &pmbus_debugfs_ops);
3329		}
3330
3331		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3332			entries[idx].client = client;
3333			entries[idx].page = i;
3334			entries[idx].reg = PMBUS_STATUS_FAN_12;
3335			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3336			debugfs_create_file(name, 0444, data->debugfs,
3337					    &entries[idx++],
3338					    &pmbus_debugfs_ops);
3339		}
3340
3341		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3342			entries[idx].client = client;
3343			entries[idx].page = i;
3344			entries[idx].reg = PMBUS_STATUS_FAN_34;
3345			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3346			debugfs_create_file(name, 0444, data->debugfs,
3347					    &entries[idx++],
3348					    &pmbus_debugfs_ops);
3349		}
3350	}
3351
3352	return devm_add_action_or_reset(data->dev,
3353					pmbus_remove_debugfs, data->debugfs);
3354}
3355#else
3356static int pmbus_init_debugfs(struct i2c_client *client,
3357			      struct pmbus_data *data)
3358{
3359	return 0;
3360}
3361#endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
3362
3363int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3364{
3365	struct device *dev = &client->dev;
3366	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3367	struct pmbus_data *data;
3368	size_t groups_num = 0;
3369	int ret;
3370	int i;
3371	char *name;
3372
3373	if (!info)
3374		return -ENODEV;
3375
3376	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3377				     | I2C_FUNC_SMBUS_BYTE_DATA
3378				     | I2C_FUNC_SMBUS_WORD_DATA))
3379		return -ENODEV;
3380
3381	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3382	if (!data)
3383		return -ENOMEM;
3384
3385	if (info->groups)
3386		while (info->groups[groups_num])
3387			groups_num++;
3388
3389	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3390				    GFP_KERNEL);
3391	if (!data->groups)
3392		return -ENOMEM;
3393
3394	i2c_set_clientdata(client, data);
3395	mutex_init(&data->update_lock);
3396	data->dev = dev;
3397
3398	if (pdata)
3399		data->flags = pdata->flags;
3400	data->info = info;
3401	data->currpage = -1;
3402	data->currphase = -1;
3403
3404	for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3405		data->vout_low[i] = -1;
3406		data->vout_high[i] = -1;
3407	}
3408
3409	ret = pmbus_init_common(client, data, info);
3410	if (ret < 0)
3411		return ret;
3412
3413	ret = pmbus_find_attributes(client, data);
3414	if (ret)
3415		return ret;
3416
3417	/*
3418	 * If there are no attributes, something is wrong.
3419	 * Bail out instead of trying to register nothing.
3420	 */
3421	if (!data->num_attributes) {
3422		dev_err(dev, "No attributes found\n");
3423		return -ENODEV;
 
3424	}
3425
3426	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3427	if (!name)
3428		return -ENOMEM;
3429	strreplace(name, '-', '_');
3430
3431	data->groups[0] = &data->group;
3432	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3433	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3434					name, data, data->groups);
3435	if (IS_ERR(data->hwmon_dev)) {
3436		dev_err(dev, "Failed to register hwmon device\n");
3437		return PTR_ERR(data->hwmon_dev);
 
3438	}
 
3439
3440	ret = pmbus_regulator_register(data);
3441	if (ret)
3442		return ret;
3443
3444	ret = pmbus_init_debugfs(client, data);
3445	if (ret)
3446		dev_warn(dev, "Failed to register debugfs\n");
3447
3448	return 0;
 
 
 
 
3449}
3450EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
3451
3452struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3453{
3454	struct pmbus_data *data = i2c_get_clientdata(client);
3455
3456	return data->debugfs;
3457}
3458EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
3459
3460static int __init pmbus_core_init(void)
3461{
3462	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3463	if (IS_ERR(pmbus_debugfs_dir))
3464		pmbus_debugfs_dir = NULL;
3465
3466	return 0;
3467}
3468
3469static void __exit pmbus_core_exit(void)
3470{
3471	debugfs_remove_recursive(pmbus_debugfs_dir);
3472}
3473
3474module_init(pmbus_core_init);
3475module_exit(pmbus_core_exit);
3476
3477MODULE_AUTHOR("Guenter Roeck");
3478MODULE_DESCRIPTION("PMBus core driver");
3479MODULE_LICENSE("GPL");