Loading...
1/*
2 * Hardware monitoring driver for PMBus devices
3 *
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/kernel.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/err.h>
25#include <linux/slab.h>
26#include <linux/i2c.h>
27#include <linux/hwmon.h>
28#include <linux/hwmon-sysfs.h>
29#include <linux/delay.h>
30#include <linux/i2c/pmbus.h>
31#include "pmbus.h"
32
33/*
34 * Constants needed to determine number of sensors, booleans, and labels.
35 */
36#define PMBUS_MAX_INPUT_SENSORS 22 /* 10*volt, 7*curr, 5*power */
37#define PMBUS_VOUT_SENSORS_PER_PAGE 9 /* input, min, max, lcrit,
38 crit, lowest, highest, avg,
39 reset */
40#define PMBUS_IOUT_SENSORS_PER_PAGE 8 /* input, min, max, crit,
41 lowest, highest, avg,
42 reset */
43#define PMBUS_POUT_SENSORS_PER_PAGE 4 /* input, cap, max, crit */
44#define PMBUS_MAX_SENSORS_PER_FAN 1 /* input */
45#define PMBUS_MAX_SENSORS_PER_TEMP 8 /* input, min, max, lcrit,
46 crit, lowest, highest,
47 reset */
48
49#define PMBUS_MAX_INPUT_BOOLEANS 7 /* v: min_alarm, max_alarm,
50 lcrit_alarm, crit_alarm;
51 c: alarm, crit_alarm;
52 p: crit_alarm */
53#define PMBUS_VOUT_BOOLEANS_PER_PAGE 4 /* min_alarm, max_alarm,
54 lcrit_alarm, crit_alarm */
55#define PMBUS_IOUT_BOOLEANS_PER_PAGE 3 /* alarm, lcrit_alarm,
56 crit_alarm */
57#define PMBUS_POUT_BOOLEANS_PER_PAGE 2 /* alarm, crit_alarm */
58#define PMBUS_MAX_BOOLEANS_PER_FAN 2 /* alarm, fault */
59#define PMBUS_MAX_BOOLEANS_PER_TEMP 4 /* min_alarm, max_alarm,
60 lcrit_alarm, crit_alarm */
61
62#define PMBUS_MAX_INPUT_LABELS 4 /* vin, vcap, iin, pin */
63
64/*
65 * status, status_vout, status_iout, status_fans, status_fan34, and status_temp
66 * are paged. status_input is unpaged.
67 */
68#define PB_NUM_STATUS_REG (PMBUS_PAGES * 6 + 1)
69
70/*
71 * Index into status register array, per status register group
72 */
73#define PB_STATUS_BASE 0
74#define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
75#define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
76#define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
77#define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
78#define PB_STATUS_INPUT_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
79#define PB_STATUS_TEMP_BASE (PB_STATUS_INPUT_BASE + 1)
80
81#define PMBUS_NAME_SIZE 24
82
83struct pmbus_sensor {
84 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
85 struct sensor_device_attribute attribute;
86 u8 page; /* page number */
87 u16 reg; /* register */
88 enum pmbus_sensor_classes class; /* sensor class */
89 bool update; /* runtime sensor update needed */
90 int data; /* Sensor data.
91 Negative if there was a read error */
92};
93
94struct pmbus_boolean {
95 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
96 struct sensor_device_attribute attribute;
97};
98
99struct pmbus_label {
100 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
101 struct sensor_device_attribute attribute;
102 char label[PMBUS_NAME_SIZE]; /* label */
103};
104
105struct pmbus_data {
106 struct device *hwmon_dev;
107
108 u32 flags; /* from platform data */
109
110 int exponent; /* linear mode: exponent for output voltages */
111
112 const struct pmbus_driver_info *info;
113
114 int max_attributes;
115 int num_attributes;
116 struct attribute **attributes;
117 struct attribute_group group;
118
119 /*
120 * Sensors cover both sensor and limit registers.
121 */
122 int max_sensors;
123 int num_sensors;
124 struct pmbus_sensor *sensors;
125 /*
126 * Booleans are used for alarms.
127 * Values are determined from status registers.
128 */
129 int max_booleans;
130 int num_booleans;
131 struct pmbus_boolean *booleans;
132 /*
133 * Labels are used to map generic names (e.g., "in1")
134 * to PMBus specific names (e.g., "vin" or "vout1").
135 */
136 int max_labels;
137 int num_labels;
138 struct pmbus_label *labels;
139
140 struct mutex update_lock;
141 bool valid;
142 unsigned long last_updated; /* in jiffies */
143
144 /*
145 * A single status register covers multiple attributes,
146 * so we keep them all together.
147 */
148 u8 status[PB_NUM_STATUS_REG];
149
150 u8 currpage;
151};
152
153int pmbus_set_page(struct i2c_client *client, u8 page)
154{
155 struct pmbus_data *data = i2c_get_clientdata(client);
156 int rv = 0;
157 int newpage;
158
159 if (page != data->currpage) {
160 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
161 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
162 if (newpage != page)
163 rv = -EINVAL;
164 else
165 data->currpage = page;
166 }
167 return rv;
168}
169EXPORT_SYMBOL_GPL(pmbus_set_page);
170
171int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
172{
173 int rv;
174
175 if (page >= 0) {
176 rv = pmbus_set_page(client, page);
177 if (rv < 0)
178 return rv;
179 }
180
181 return i2c_smbus_write_byte(client, value);
182}
183EXPORT_SYMBOL_GPL(pmbus_write_byte);
184
185/*
186 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
187 * a device specific mapping funcion exists and calls it if necessary.
188 */
189static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
190{
191 struct pmbus_data *data = i2c_get_clientdata(client);
192 const struct pmbus_driver_info *info = data->info;
193 int status;
194
195 if (info->write_byte) {
196 status = info->write_byte(client, page, value);
197 if (status != -ENODATA)
198 return status;
199 }
200 return pmbus_write_byte(client, page, value);
201}
202
203int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
204{
205 int rv;
206
207 rv = pmbus_set_page(client, page);
208 if (rv < 0)
209 return rv;
210
211 return i2c_smbus_write_word_data(client, reg, word);
212}
213EXPORT_SYMBOL_GPL(pmbus_write_word_data);
214
215/*
216 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
217 * a device specific mapping function exists and calls it if necessary.
218 */
219static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
220 u16 word)
221{
222 struct pmbus_data *data = i2c_get_clientdata(client);
223 const struct pmbus_driver_info *info = data->info;
224 int status;
225
226 if (info->write_word_data) {
227 status = info->write_word_data(client, page, reg, word);
228 if (status != -ENODATA)
229 return status;
230 }
231 if (reg >= PMBUS_VIRT_BASE)
232 return -EINVAL;
233 return pmbus_write_word_data(client, page, reg, word);
234}
235
236int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
237{
238 int rv;
239
240 rv = pmbus_set_page(client, page);
241 if (rv < 0)
242 return rv;
243
244 return i2c_smbus_read_word_data(client, reg);
245}
246EXPORT_SYMBOL_GPL(pmbus_read_word_data);
247
248/*
249 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
250 * a device specific mapping function exists and calls it if necessary.
251 */
252static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
253{
254 struct pmbus_data *data = i2c_get_clientdata(client);
255 const struct pmbus_driver_info *info = data->info;
256 int status;
257
258 if (info->read_word_data) {
259 status = info->read_word_data(client, page, reg);
260 if (status != -ENODATA)
261 return status;
262 }
263 if (reg >= PMBUS_VIRT_BASE)
264 return -EINVAL;
265 return pmbus_read_word_data(client, page, reg);
266}
267
268int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
269{
270 int rv;
271
272 if (page >= 0) {
273 rv = pmbus_set_page(client, page);
274 if (rv < 0)
275 return rv;
276 }
277
278 return i2c_smbus_read_byte_data(client, reg);
279}
280EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
281
282/*
283 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
284 * a device specific mapping function exists and calls it if necessary.
285 */
286static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
287{
288 struct pmbus_data *data = i2c_get_clientdata(client);
289 const struct pmbus_driver_info *info = data->info;
290 int status;
291
292 if (info->read_byte_data) {
293 status = info->read_byte_data(client, page, reg);
294 if (status != -ENODATA)
295 return status;
296 }
297 return pmbus_read_byte_data(client, page, reg);
298}
299
300static void pmbus_clear_fault_page(struct i2c_client *client, int page)
301{
302 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
303}
304
305void pmbus_clear_faults(struct i2c_client *client)
306{
307 struct pmbus_data *data = i2c_get_clientdata(client);
308 int i;
309
310 for (i = 0; i < data->info->pages; i++)
311 pmbus_clear_fault_page(client, i);
312}
313EXPORT_SYMBOL_GPL(pmbus_clear_faults);
314
315static int pmbus_check_status_cml(struct i2c_client *client)
316{
317 int status, status2;
318
319 status = pmbus_read_byte_data(client, -1, PMBUS_STATUS_BYTE);
320 if (status < 0 || (status & PB_STATUS_CML)) {
321 status2 = pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
322 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
323 return -EINVAL;
324 }
325 return 0;
326}
327
328bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
329{
330 int rv;
331 struct pmbus_data *data = i2c_get_clientdata(client);
332
333 rv = _pmbus_read_byte_data(client, page, reg);
334 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
335 rv = pmbus_check_status_cml(client);
336 pmbus_clear_fault_page(client, -1);
337 return rv >= 0;
338}
339EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
340
341bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
342{
343 int rv;
344 struct pmbus_data *data = i2c_get_clientdata(client);
345
346 rv = _pmbus_read_word_data(client, page, reg);
347 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
348 rv = pmbus_check_status_cml(client);
349 pmbus_clear_fault_page(client, -1);
350 return rv >= 0;
351}
352EXPORT_SYMBOL_GPL(pmbus_check_word_register);
353
354const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
355{
356 struct pmbus_data *data = i2c_get_clientdata(client);
357
358 return data->info;
359}
360EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
361
362static struct pmbus_data *pmbus_update_device(struct device *dev)
363{
364 struct i2c_client *client = to_i2c_client(dev);
365 struct pmbus_data *data = i2c_get_clientdata(client);
366 const struct pmbus_driver_info *info = data->info;
367
368 mutex_lock(&data->update_lock);
369 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
370 int i;
371
372 for (i = 0; i < info->pages; i++)
373 data->status[PB_STATUS_BASE + i]
374 = pmbus_read_byte_data(client, i,
375 PMBUS_STATUS_BYTE);
376 for (i = 0; i < info->pages; i++) {
377 if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT))
378 continue;
379 data->status[PB_STATUS_VOUT_BASE + i]
380 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT);
381 }
382 for (i = 0; i < info->pages; i++) {
383 if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT))
384 continue;
385 data->status[PB_STATUS_IOUT_BASE + i]
386 = _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT);
387 }
388 for (i = 0; i < info->pages; i++) {
389 if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP))
390 continue;
391 data->status[PB_STATUS_TEMP_BASE + i]
392 = _pmbus_read_byte_data(client, i,
393 PMBUS_STATUS_TEMPERATURE);
394 }
395 for (i = 0; i < info->pages; i++) {
396 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12))
397 continue;
398 data->status[PB_STATUS_FAN_BASE + i]
399 = _pmbus_read_byte_data(client, i,
400 PMBUS_STATUS_FAN_12);
401 }
402
403 for (i = 0; i < info->pages; i++) {
404 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34))
405 continue;
406 data->status[PB_STATUS_FAN34_BASE + i]
407 = _pmbus_read_byte_data(client, i,
408 PMBUS_STATUS_FAN_34);
409 }
410
411 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
412 data->status[PB_STATUS_INPUT_BASE]
413 = _pmbus_read_byte_data(client, 0,
414 PMBUS_STATUS_INPUT);
415
416 for (i = 0; i < data->num_sensors; i++) {
417 struct pmbus_sensor *sensor = &data->sensors[i];
418
419 if (!data->valid || sensor->update)
420 sensor->data
421 = _pmbus_read_word_data(client,
422 sensor->page,
423 sensor->reg);
424 }
425 pmbus_clear_faults(client);
426 data->last_updated = jiffies;
427 data->valid = 1;
428 }
429 mutex_unlock(&data->update_lock);
430 return data;
431}
432
433/*
434 * Convert linear sensor values to milli- or micro-units
435 * depending on sensor type.
436 */
437static long pmbus_reg2data_linear(struct pmbus_data *data,
438 struct pmbus_sensor *sensor)
439{
440 s16 exponent;
441 s32 mantissa;
442 long val;
443
444 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
445 exponent = data->exponent;
446 mantissa = (u16) sensor->data;
447 } else { /* LINEAR11 */
448 exponent = (sensor->data >> 11) & 0x001f;
449 mantissa = sensor->data & 0x07ff;
450
451 if (exponent > 0x0f)
452 exponent |= 0xffe0; /* sign extend exponent */
453 if (mantissa > 0x03ff)
454 mantissa |= 0xfffff800; /* sign extend mantissa */
455 }
456
457 val = mantissa;
458
459 /* scale result to milli-units for all sensors except fans */
460 if (sensor->class != PSC_FAN)
461 val = val * 1000L;
462
463 /* scale result to micro-units for power sensors */
464 if (sensor->class == PSC_POWER)
465 val = val * 1000L;
466
467 if (exponent >= 0)
468 val <<= exponent;
469 else
470 val >>= -exponent;
471
472 return val;
473}
474
475/*
476 * Convert direct sensor values to milli- or micro-units
477 * depending on sensor type.
478 */
479static long pmbus_reg2data_direct(struct pmbus_data *data,
480 struct pmbus_sensor *sensor)
481{
482 long val = (s16) sensor->data;
483 long m, b, R;
484
485 m = data->info->m[sensor->class];
486 b = data->info->b[sensor->class];
487 R = data->info->R[sensor->class];
488
489 if (m == 0)
490 return 0;
491
492 /* X = 1/m * (Y * 10^-R - b) */
493 R = -R;
494 /* scale result to milli-units for everything but fans */
495 if (sensor->class != PSC_FAN) {
496 R += 3;
497 b *= 1000;
498 }
499
500 /* scale result to micro-units for power sensors */
501 if (sensor->class == PSC_POWER) {
502 R += 3;
503 b *= 1000;
504 }
505
506 while (R > 0) {
507 val *= 10;
508 R--;
509 }
510 while (R < 0) {
511 val = DIV_ROUND_CLOSEST(val, 10);
512 R++;
513 }
514
515 return (val - b) / m;
516}
517
518/*
519 * Convert VID sensor values to milli- or micro-units
520 * depending on sensor type.
521 * We currently only support VR11.
522 */
523static long pmbus_reg2data_vid(struct pmbus_data *data,
524 struct pmbus_sensor *sensor)
525{
526 long val = sensor->data;
527
528 if (val < 0x02 || val > 0xb2)
529 return 0;
530 return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
531}
532
533static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
534{
535 long val;
536
537 switch (data->info->format[sensor->class]) {
538 case direct:
539 val = pmbus_reg2data_direct(data, sensor);
540 break;
541 case vid:
542 val = pmbus_reg2data_vid(data, sensor);
543 break;
544 case linear:
545 default:
546 val = pmbus_reg2data_linear(data, sensor);
547 break;
548 }
549 return val;
550}
551
552#define MAX_MANTISSA (1023 * 1000)
553#define MIN_MANTISSA (511 * 1000)
554
555static u16 pmbus_data2reg_linear(struct pmbus_data *data,
556 enum pmbus_sensor_classes class, long val)
557{
558 s16 exponent = 0, mantissa;
559 bool negative = false;
560
561 /* simple case */
562 if (val == 0)
563 return 0;
564
565 if (class == PSC_VOLTAGE_OUT) {
566 /* LINEAR16 does not support negative voltages */
567 if (val < 0)
568 return 0;
569
570 /*
571 * For a static exponents, we don't have a choice
572 * but to adjust the value to it.
573 */
574 if (data->exponent < 0)
575 val <<= -data->exponent;
576 else
577 val >>= data->exponent;
578 val = DIV_ROUND_CLOSEST(val, 1000);
579 return val & 0xffff;
580 }
581
582 if (val < 0) {
583 negative = true;
584 val = -val;
585 }
586
587 /* Power is in uW. Convert to mW before converting. */
588 if (class == PSC_POWER)
589 val = DIV_ROUND_CLOSEST(val, 1000L);
590
591 /*
592 * For simplicity, convert fan data to milli-units
593 * before calculating the exponent.
594 */
595 if (class == PSC_FAN)
596 val = val * 1000;
597
598 /* Reduce large mantissa until it fits into 10 bit */
599 while (val >= MAX_MANTISSA && exponent < 15) {
600 exponent++;
601 val >>= 1;
602 }
603 /* Increase small mantissa to improve precision */
604 while (val < MIN_MANTISSA && exponent > -15) {
605 exponent--;
606 val <<= 1;
607 }
608
609 /* Convert mantissa from milli-units to units */
610 mantissa = DIV_ROUND_CLOSEST(val, 1000);
611
612 /* Ensure that resulting number is within range */
613 if (mantissa > 0x3ff)
614 mantissa = 0x3ff;
615
616 /* restore sign */
617 if (negative)
618 mantissa = -mantissa;
619
620 /* Convert to 5 bit exponent, 11 bit mantissa */
621 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
622}
623
624static u16 pmbus_data2reg_direct(struct pmbus_data *data,
625 enum pmbus_sensor_classes class, long val)
626{
627 long m, b, R;
628
629 m = data->info->m[class];
630 b = data->info->b[class];
631 R = data->info->R[class];
632
633 /* Power is in uW. Adjust R and b. */
634 if (class == PSC_POWER) {
635 R -= 3;
636 b *= 1000;
637 }
638
639 /* Calculate Y = (m * X + b) * 10^R */
640 if (class != PSC_FAN) {
641 R -= 3; /* Adjust R and b for data in milli-units */
642 b *= 1000;
643 }
644 val = val * m + b;
645
646 while (R > 0) {
647 val *= 10;
648 R--;
649 }
650 while (R < 0) {
651 val = DIV_ROUND_CLOSEST(val, 10);
652 R++;
653 }
654
655 return val;
656}
657
658static u16 pmbus_data2reg_vid(struct pmbus_data *data,
659 enum pmbus_sensor_classes class, long val)
660{
661 val = SENSORS_LIMIT(val, 500, 1600);
662
663 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
664}
665
666static u16 pmbus_data2reg(struct pmbus_data *data,
667 enum pmbus_sensor_classes class, long val)
668{
669 u16 regval;
670
671 switch (data->info->format[class]) {
672 case direct:
673 regval = pmbus_data2reg_direct(data, class, val);
674 break;
675 case vid:
676 regval = pmbus_data2reg_vid(data, class, val);
677 break;
678 case linear:
679 default:
680 regval = pmbus_data2reg_linear(data, class, val);
681 break;
682 }
683 return regval;
684}
685
686/*
687 * Return boolean calculated from converted data.
688 * <index> defines a status register index and mask, and optionally
689 * two sensor indexes.
690 * The upper half-word references the two sensors,
691 * two sensor indices.
692 * The upper half-word references the two optional sensors,
693 * the lower half word references status register and mask.
694 * The function returns true if (status[reg] & mask) is true and,
695 * if specified, if v1 >= v2.
696 * To determine if an object exceeds upper limits, specify <v, limit>.
697 * To determine if an object exceeds lower limits, specify <limit, v>.
698 *
699 * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of
700 * index are set. s1 and s2 (the sensor index values) are zero in this case.
701 * The function returns true if (status[reg] & mask) is true.
702 *
703 * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against
704 * a specified limit has to be performed to determine the boolean result.
705 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
706 * sensor values referenced by sensor indices s1 and s2).
707 *
708 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
709 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
710 *
711 * If a negative value is stored in any of the referenced registers, this value
712 * reflects an error code which will be returned.
713 */
714static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val)
715{
716 u8 s1 = (index >> 24) & 0xff;
717 u8 s2 = (index >> 16) & 0xff;
718 u8 reg = (index >> 8) & 0xff;
719 u8 mask = index & 0xff;
720 int status;
721 u8 regval;
722
723 status = data->status[reg];
724 if (status < 0)
725 return status;
726
727 regval = status & mask;
728 if (!s1 && !s2)
729 *val = !!regval;
730 else {
731 long v1, v2;
732 struct pmbus_sensor *sensor1, *sensor2;
733
734 sensor1 = &data->sensors[s1];
735 if (sensor1->data < 0)
736 return sensor1->data;
737 sensor2 = &data->sensors[s2];
738 if (sensor2->data < 0)
739 return sensor2->data;
740
741 v1 = pmbus_reg2data(data, sensor1);
742 v2 = pmbus_reg2data(data, sensor2);
743 *val = !!(regval && v1 >= v2);
744 }
745 return 0;
746}
747
748static ssize_t pmbus_show_boolean(struct device *dev,
749 struct device_attribute *da, char *buf)
750{
751 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
752 struct pmbus_data *data = pmbus_update_device(dev);
753 int val;
754 int err;
755
756 err = pmbus_get_boolean(data, attr->index, &val);
757 if (err)
758 return err;
759 return snprintf(buf, PAGE_SIZE, "%d\n", val);
760}
761
762static ssize_t pmbus_show_sensor(struct device *dev,
763 struct device_attribute *da, char *buf)
764{
765 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
766 struct pmbus_data *data = pmbus_update_device(dev);
767 struct pmbus_sensor *sensor;
768
769 sensor = &data->sensors[attr->index];
770 if (sensor->data < 0)
771 return sensor->data;
772
773 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
774}
775
776static ssize_t pmbus_set_sensor(struct device *dev,
777 struct device_attribute *devattr,
778 const char *buf, size_t count)
779{
780 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
781 struct i2c_client *client = to_i2c_client(dev);
782 struct pmbus_data *data = i2c_get_clientdata(client);
783 struct pmbus_sensor *sensor = &data->sensors[attr->index];
784 ssize_t rv = count;
785 long val = 0;
786 int ret;
787 u16 regval;
788
789 if (strict_strtol(buf, 10, &val) < 0)
790 return -EINVAL;
791
792 mutex_lock(&data->update_lock);
793 regval = pmbus_data2reg(data, sensor->class, val);
794 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
795 if (ret < 0)
796 rv = ret;
797 else
798 data->sensors[attr->index].data = regval;
799 mutex_unlock(&data->update_lock);
800 return rv;
801}
802
803static ssize_t pmbus_show_label(struct device *dev,
804 struct device_attribute *da, char *buf)
805{
806 struct i2c_client *client = to_i2c_client(dev);
807 struct pmbus_data *data = i2c_get_clientdata(client);
808 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
809
810 return snprintf(buf, PAGE_SIZE, "%s\n",
811 data->labels[attr->index].label);
812}
813
814#define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set) \
815do { \
816 struct sensor_device_attribute *a \
817 = &data->_type##s[data->num_##_type##s].attribute; \
818 BUG_ON(data->num_attributes >= data->max_attributes); \
819 sysfs_attr_init(&a->dev_attr.attr); \
820 a->dev_attr.attr.name = _name; \
821 a->dev_attr.attr.mode = _mode; \
822 a->dev_attr.show = _show; \
823 a->dev_attr.store = _set; \
824 a->index = _idx; \
825 data->attributes[data->num_attributes] = &a->dev_attr.attr; \
826 data->num_attributes++; \
827} while (0)
828
829#define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx) \
830 PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type, \
831 pmbus_show_##_type, NULL)
832
833#define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx) \
834 PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type, \
835 pmbus_show_##_type, pmbus_set_##_type)
836
837static void pmbus_add_boolean(struct pmbus_data *data,
838 const char *name, const char *type, int seq,
839 int idx)
840{
841 struct pmbus_boolean *boolean;
842
843 BUG_ON(data->num_booleans >= data->max_booleans);
844
845 boolean = &data->booleans[data->num_booleans];
846
847 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
848 name, seq, type);
849 PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx);
850 data->num_booleans++;
851}
852
853static void pmbus_add_boolean_reg(struct pmbus_data *data,
854 const char *name, const char *type,
855 int seq, int reg, int bit)
856{
857 pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit);
858}
859
860static void pmbus_add_boolean_cmp(struct pmbus_data *data,
861 const char *name, const char *type,
862 int seq, int i1, int i2, int reg, int mask)
863{
864 pmbus_add_boolean(data, name, type, seq,
865 (i1 << 24) | (i2 << 16) | (reg << 8) | mask);
866}
867
868static void pmbus_add_sensor(struct pmbus_data *data,
869 const char *name, const char *type, int seq,
870 int page, int reg, enum pmbus_sensor_classes class,
871 bool update, bool readonly)
872{
873 struct pmbus_sensor *sensor;
874
875 BUG_ON(data->num_sensors >= data->max_sensors);
876
877 sensor = &data->sensors[data->num_sensors];
878 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
879 name, seq, type);
880 sensor->page = page;
881 sensor->reg = reg;
882 sensor->class = class;
883 sensor->update = update;
884 if (readonly)
885 PMBUS_ADD_GET_ATTR(data, sensor->name, sensor,
886 data->num_sensors);
887 else
888 PMBUS_ADD_SET_ATTR(data, sensor->name, sensor,
889 data->num_sensors);
890 data->num_sensors++;
891}
892
893static void pmbus_add_label(struct pmbus_data *data,
894 const char *name, int seq,
895 const char *lstring, int index)
896{
897 struct pmbus_label *label;
898
899 BUG_ON(data->num_labels >= data->max_labels);
900
901 label = &data->labels[data->num_labels];
902 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
903 if (!index)
904 strncpy(label->label, lstring, sizeof(label->label) - 1);
905 else
906 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
907 index);
908
909 PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels);
910 data->num_labels++;
911}
912
913/*
914 * Determine maximum number of sensors, booleans, and labels.
915 * To keep things simple, only make a rough high estimate.
916 */
917static void pmbus_find_max_attr(struct i2c_client *client,
918 struct pmbus_data *data)
919{
920 const struct pmbus_driver_info *info = data->info;
921 int page, max_sensors, max_booleans, max_labels;
922
923 max_sensors = PMBUS_MAX_INPUT_SENSORS;
924 max_booleans = PMBUS_MAX_INPUT_BOOLEANS;
925 max_labels = PMBUS_MAX_INPUT_LABELS;
926
927 for (page = 0; page < info->pages; page++) {
928 if (info->func[page] & PMBUS_HAVE_VOUT) {
929 max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE;
930 max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE;
931 max_labels++;
932 }
933 if (info->func[page] & PMBUS_HAVE_IOUT) {
934 max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE;
935 max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE;
936 max_labels++;
937 }
938 if (info->func[page] & PMBUS_HAVE_POUT) {
939 max_sensors += PMBUS_POUT_SENSORS_PER_PAGE;
940 max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE;
941 max_labels++;
942 }
943 if (info->func[page] & PMBUS_HAVE_FAN12) {
944 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
945 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
946 }
947 if (info->func[page] & PMBUS_HAVE_FAN34) {
948 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
949 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
950 }
951 if (info->func[page] & PMBUS_HAVE_TEMP) {
952 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
953 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
954 }
955 if (info->func[page] & PMBUS_HAVE_TEMP2) {
956 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
957 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
958 }
959 if (info->func[page] & PMBUS_HAVE_TEMP3) {
960 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
961 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
962 }
963 }
964 data->max_sensors = max_sensors;
965 data->max_booleans = max_booleans;
966 data->max_labels = max_labels;
967 data->max_attributes = max_sensors + max_booleans + max_labels;
968}
969
970/*
971 * Search for attributes. Allocate sensors, booleans, and labels as needed.
972 */
973
974/*
975 * The pmbus_limit_attr structure describes a single limit attribute
976 * and its associated alarm attribute.
977 */
978struct pmbus_limit_attr {
979 u16 reg; /* Limit register */
980 bool update; /* True if register needs updates */
981 bool low; /* True if low limit; for limits with compare
982 functions only */
983 const char *attr; /* Attribute name */
984 const char *alarm; /* Alarm attribute name */
985 u32 sbit; /* Alarm attribute status bit */
986};
987
988/*
989 * The pmbus_sensor_attr structure describes one sensor attribute. This
990 * description includes a reference to the associated limit attributes.
991 */
992struct pmbus_sensor_attr {
993 u8 reg; /* sensor register */
994 enum pmbus_sensor_classes class;/* sensor class */
995 const char *label; /* sensor label */
996 bool paged; /* true if paged sensor */
997 bool update; /* true if update needed */
998 bool compare; /* true if compare function needed */
999 u32 func; /* sensor mask */
1000 u32 sfunc; /* sensor status mask */
1001 int sbase; /* status base register */
1002 u32 gbit; /* generic status bit */
1003 const struct pmbus_limit_attr *limit;/* limit registers */
1004 int nlimit; /* # of limit registers */
1005};
1006
1007/*
1008 * Add a set of limit attributes and, if supported, the associated
1009 * alarm attributes.
1010 */
1011static bool pmbus_add_limit_attrs(struct i2c_client *client,
1012 struct pmbus_data *data,
1013 const struct pmbus_driver_info *info,
1014 const char *name, int index, int page,
1015 int cbase,
1016 const struct pmbus_sensor_attr *attr)
1017{
1018 const struct pmbus_limit_attr *l = attr->limit;
1019 int nlimit = attr->nlimit;
1020 bool have_alarm = false;
1021 int i, cindex;
1022
1023 for (i = 0; i < nlimit; i++) {
1024 if (pmbus_check_word_register(client, page, l->reg)) {
1025 cindex = data->num_sensors;
1026 pmbus_add_sensor(data, name, l->attr, index, page,
1027 l->reg, attr->class,
1028 attr->update || l->update,
1029 false);
1030 if (l->sbit && (info->func[page] & attr->sfunc)) {
1031 if (attr->compare) {
1032 pmbus_add_boolean_cmp(data, name,
1033 l->alarm, index,
1034 l->low ? cindex : cbase,
1035 l->low ? cbase : cindex,
1036 attr->sbase + page, l->sbit);
1037 } else {
1038 pmbus_add_boolean_reg(data, name,
1039 l->alarm, index,
1040 attr->sbase + page, l->sbit);
1041 }
1042 have_alarm = true;
1043 }
1044 }
1045 l++;
1046 }
1047 return have_alarm;
1048}
1049
1050static void pmbus_add_sensor_attrs_one(struct i2c_client *client,
1051 struct pmbus_data *data,
1052 const struct pmbus_driver_info *info,
1053 const char *name,
1054 int index, int page,
1055 const struct pmbus_sensor_attr *attr)
1056{
1057 bool have_alarm;
1058 int cbase = data->num_sensors;
1059
1060 if (attr->label)
1061 pmbus_add_label(data, name, index, attr->label,
1062 attr->paged ? page + 1 : 0);
1063 pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1064 attr->class, true, true);
1065 if (attr->sfunc) {
1066 have_alarm = pmbus_add_limit_attrs(client, data, info, name,
1067 index, page, cbase, attr);
1068 /*
1069 * Add generic alarm attribute only if there are no individual
1070 * alarm attributes, if there is a global alarm bit, and if
1071 * the generic status register for this page is accessible.
1072 */
1073 if (!have_alarm && attr->gbit &&
1074 pmbus_check_byte_register(client, page, PMBUS_STATUS_BYTE))
1075 pmbus_add_boolean_reg(data, name, "alarm", index,
1076 PB_STATUS_BASE + page,
1077 attr->gbit);
1078 }
1079}
1080
1081static void pmbus_add_sensor_attrs(struct i2c_client *client,
1082 struct pmbus_data *data,
1083 const char *name,
1084 const struct pmbus_sensor_attr *attrs,
1085 int nattrs)
1086{
1087 const struct pmbus_driver_info *info = data->info;
1088 int index, i;
1089
1090 index = 1;
1091 for (i = 0; i < nattrs; i++) {
1092 int page, pages;
1093
1094 pages = attrs->paged ? info->pages : 1;
1095 for (page = 0; page < pages; page++) {
1096 if (!(info->func[page] & attrs->func))
1097 continue;
1098 pmbus_add_sensor_attrs_one(client, data, info, name,
1099 index, page, attrs);
1100 index++;
1101 }
1102 attrs++;
1103 }
1104}
1105
1106static const struct pmbus_limit_attr vin_limit_attrs[] = {
1107 {
1108 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1109 .attr = "min",
1110 .alarm = "min_alarm",
1111 .sbit = PB_VOLTAGE_UV_WARNING,
1112 }, {
1113 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1114 .attr = "lcrit",
1115 .alarm = "lcrit_alarm",
1116 .sbit = PB_VOLTAGE_UV_FAULT,
1117 }, {
1118 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1119 .attr = "max",
1120 .alarm = "max_alarm",
1121 .sbit = PB_VOLTAGE_OV_WARNING,
1122 }, {
1123 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1124 .attr = "crit",
1125 .alarm = "crit_alarm",
1126 .sbit = PB_VOLTAGE_OV_FAULT,
1127 }, {
1128 .reg = PMBUS_VIRT_READ_VIN_AVG,
1129 .update = true,
1130 .attr = "average",
1131 }, {
1132 .reg = PMBUS_VIRT_READ_VIN_MIN,
1133 .update = true,
1134 .attr = "lowest",
1135 }, {
1136 .reg = PMBUS_VIRT_READ_VIN_MAX,
1137 .update = true,
1138 .attr = "highest",
1139 }, {
1140 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1141 .attr = "reset_history",
1142 },
1143};
1144
1145static const struct pmbus_limit_attr vout_limit_attrs[] = {
1146 {
1147 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1148 .attr = "min",
1149 .alarm = "min_alarm",
1150 .sbit = PB_VOLTAGE_UV_WARNING,
1151 }, {
1152 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1153 .attr = "lcrit",
1154 .alarm = "lcrit_alarm",
1155 .sbit = PB_VOLTAGE_UV_FAULT,
1156 }, {
1157 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1158 .attr = "max",
1159 .alarm = "max_alarm",
1160 .sbit = PB_VOLTAGE_OV_WARNING,
1161 }, {
1162 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1163 .attr = "crit",
1164 .alarm = "crit_alarm",
1165 .sbit = PB_VOLTAGE_OV_FAULT,
1166 }, {
1167 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1168 .update = true,
1169 .attr = "average",
1170 }, {
1171 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1172 .update = true,
1173 .attr = "lowest",
1174 }, {
1175 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1176 .update = true,
1177 .attr = "highest",
1178 }, {
1179 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1180 .attr = "reset_history",
1181 }
1182};
1183
1184static const struct pmbus_sensor_attr voltage_attributes[] = {
1185 {
1186 .reg = PMBUS_READ_VIN,
1187 .class = PSC_VOLTAGE_IN,
1188 .label = "vin",
1189 .func = PMBUS_HAVE_VIN,
1190 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1191 .sbase = PB_STATUS_INPUT_BASE,
1192 .gbit = PB_STATUS_VIN_UV,
1193 .limit = vin_limit_attrs,
1194 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1195 }, {
1196 .reg = PMBUS_READ_VCAP,
1197 .class = PSC_VOLTAGE_IN,
1198 .label = "vcap",
1199 .func = PMBUS_HAVE_VCAP,
1200 }, {
1201 .reg = PMBUS_READ_VOUT,
1202 .class = PSC_VOLTAGE_OUT,
1203 .label = "vout",
1204 .paged = true,
1205 .func = PMBUS_HAVE_VOUT,
1206 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1207 .sbase = PB_STATUS_VOUT_BASE,
1208 .gbit = PB_STATUS_VOUT_OV,
1209 .limit = vout_limit_attrs,
1210 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1211 }
1212};
1213
1214/* Current attributes */
1215
1216static const struct pmbus_limit_attr iin_limit_attrs[] = {
1217 {
1218 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1219 .attr = "max",
1220 .alarm = "max_alarm",
1221 .sbit = PB_IIN_OC_WARNING,
1222 }, {
1223 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1224 .attr = "crit",
1225 .alarm = "crit_alarm",
1226 .sbit = PB_IIN_OC_FAULT,
1227 }, {
1228 .reg = PMBUS_VIRT_READ_IIN_AVG,
1229 .update = true,
1230 .attr = "average",
1231 }, {
1232 .reg = PMBUS_VIRT_READ_IIN_MIN,
1233 .update = true,
1234 .attr = "lowest",
1235 }, {
1236 .reg = PMBUS_VIRT_READ_IIN_MAX,
1237 .update = true,
1238 .attr = "highest",
1239 }, {
1240 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1241 .attr = "reset_history",
1242 }
1243};
1244
1245static const struct pmbus_limit_attr iout_limit_attrs[] = {
1246 {
1247 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1248 .attr = "max",
1249 .alarm = "max_alarm",
1250 .sbit = PB_IOUT_OC_WARNING,
1251 }, {
1252 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1253 .attr = "lcrit",
1254 .alarm = "lcrit_alarm",
1255 .sbit = PB_IOUT_UC_FAULT,
1256 }, {
1257 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1258 .attr = "crit",
1259 .alarm = "crit_alarm",
1260 .sbit = PB_IOUT_OC_FAULT,
1261 }, {
1262 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1263 .update = true,
1264 .attr = "average",
1265 }, {
1266 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1267 .update = true,
1268 .attr = "lowest",
1269 }, {
1270 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1271 .update = true,
1272 .attr = "highest",
1273 }, {
1274 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1275 .attr = "reset_history",
1276 }
1277};
1278
1279static const struct pmbus_sensor_attr current_attributes[] = {
1280 {
1281 .reg = PMBUS_READ_IIN,
1282 .class = PSC_CURRENT_IN,
1283 .label = "iin",
1284 .func = PMBUS_HAVE_IIN,
1285 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1286 .sbase = PB_STATUS_INPUT_BASE,
1287 .limit = iin_limit_attrs,
1288 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1289 }, {
1290 .reg = PMBUS_READ_IOUT,
1291 .class = PSC_CURRENT_OUT,
1292 .label = "iout",
1293 .paged = true,
1294 .func = PMBUS_HAVE_IOUT,
1295 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1296 .sbase = PB_STATUS_IOUT_BASE,
1297 .gbit = PB_STATUS_IOUT_OC,
1298 .limit = iout_limit_attrs,
1299 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1300 }
1301};
1302
1303/* Power attributes */
1304
1305static const struct pmbus_limit_attr pin_limit_attrs[] = {
1306 {
1307 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1308 .attr = "max",
1309 .alarm = "alarm",
1310 .sbit = PB_PIN_OP_WARNING,
1311 }, {
1312 .reg = PMBUS_VIRT_READ_PIN_AVG,
1313 .update = true,
1314 .attr = "average",
1315 }, {
1316 .reg = PMBUS_VIRT_READ_PIN_MAX,
1317 .update = true,
1318 .attr = "input_highest",
1319 }, {
1320 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1321 .attr = "reset_history",
1322 }
1323};
1324
1325static const struct pmbus_limit_attr pout_limit_attrs[] = {
1326 {
1327 .reg = PMBUS_POUT_MAX,
1328 .attr = "cap",
1329 .alarm = "cap_alarm",
1330 .sbit = PB_POWER_LIMITING,
1331 }, {
1332 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1333 .attr = "max",
1334 .alarm = "max_alarm",
1335 .sbit = PB_POUT_OP_WARNING,
1336 }, {
1337 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1338 .attr = "crit",
1339 .alarm = "crit_alarm",
1340 .sbit = PB_POUT_OP_FAULT,
1341 }
1342};
1343
1344static const struct pmbus_sensor_attr power_attributes[] = {
1345 {
1346 .reg = PMBUS_READ_PIN,
1347 .class = PSC_POWER,
1348 .label = "pin",
1349 .func = PMBUS_HAVE_PIN,
1350 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1351 .sbase = PB_STATUS_INPUT_BASE,
1352 .limit = pin_limit_attrs,
1353 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1354 }, {
1355 .reg = PMBUS_READ_POUT,
1356 .class = PSC_POWER,
1357 .label = "pout",
1358 .paged = true,
1359 .func = PMBUS_HAVE_POUT,
1360 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1361 .sbase = PB_STATUS_IOUT_BASE,
1362 .limit = pout_limit_attrs,
1363 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1364 }
1365};
1366
1367/* Temperature atributes */
1368
1369static const struct pmbus_limit_attr temp_limit_attrs[] = {
1370 {
1371 .reg = PMBUS_UT_WARN_LIMIT,
1372 .low = true,
1373 .attr = "min",
1374 .alarm = "min_alarm",
1375 .sbit = PB_TEMP_UT_WARNING,
1376 }, {
1377 .reg = PMBUS_UT_FAULT_LIMIT,
1378 .low = true,
1379 .attr = "lcrit",
1380 .alarm = "lcrit_alarm",
1381 .sbit = PB_TEMP_UT_FAULT,
1382 }, {
1383 .reg = PMBUS_OT_WARN_LIMIT,
1384 .attr = "max",
1385 .alarm = "max_alarm",
1386 .sbit = PB_TEMP_OT_WARNING,
1387 }, {
1388 .reg = PMBUS_OT_FAULT_LIMIT,
1389 .attr = "crit",
1390 .alarm = "crit_alarm",
1391 .sbit = PB_TEMP_OT_FAULT,
1392 }, {
1393 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1394 .attr = "lowest",
1395 }, {
1396 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1397 .attr = "highest",
1398 }, {
1399 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1400 .attr = "reset_history",
1401 }
1402};
1403
1404static const struct pmbus_limit_attr temp_limit_attrs23[] = {
1405 {
1406 .reg = PMBUS_UT_WARN_LIMIT,
1407 .low = true,
1408 .attr = "min",
1409 .alarm = "min_alarm",
1410 .sbit = PB_TEMP_UT_WARNING,
1411 }, {
1412 .reg = PMBUS_UT_FAULT_LIMIT,
1413 .low = true,
1414 .attr = "lcrit",
1415 .alarm = "lcrit_alarm",
1416 .sbit = PB_TEMP_UT_FAULT,
1417 }, {
1418 .reg = PMBUS_OT_WARN_LIMIT,
1419 .attr = "max",
1420 .alarm = "max_alarm",
1421 .sbit = PB_TEMP_OT_WARNING,
1422 }, {
1423 .reg = PMBUS_OT_FAULT_LIMIT,
1424 .attr = "crit",
1425 .alarm = "crit_alarm",
1426 .sbit = PB_TEMP_OT_FAULT,
1427 }
1428};
1429
1430static const struct pmbus_sensor_attr temp_attributes[] = {
1431 {
1432 .reg = PMBUS_READ_TEMPERATURE_1,
1433 .class = PSC_TEMPERATURE,
1434 .paged = true,
1435 .update = true,
1436 .compare = true,
1437 .func = PMBUS_HAVE_TEMP,
1438 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1439 .sbase = PB_STATUS_TEMP_BASE,
1440 .gbit = PB_STATUS_TEMPERATURE,
1441 .limit = temp_limit_attrs,
1442 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1443 }, {
1444 .reg = PMBUS_READ_TEMPERATURE_2,
1445 .class = PSC_TEMPERATURE,
1446 .paged = true,
1447 .update = true,
1448 .compare = true,
1449 .func = PMBUS_HAVE_TEMP2,
1450 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1451 .sbase = PB_STATUS_TEMP_BASE,
1452 .gbit = PB_STATUS_TEMPERATURE,
1453 .limit = temp_limit_attrs23,
1454 .nlimit = ARRAY_SIZE(temp_limit_attrs23),
1455 }, {
1456 .reg = PMBUS_READ_TEMPERATURE_3,
1457 .class = PSC_TEMPERATURE,
1458 .paged = true,
1459 .update = true,
1460 .compare = true,
1461 .func = PMBUS_HAVE_TEMP3,
1462 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1463 .sbase = PB_STATUS_TEMP_BASE,
1464 .gbit = PB_STATUS_TEMPERATURE,
1465 .limit = temp_limit_attrs23,
1466 .nlimit = ARRAY_SIZE(temp_limit_attrs23),
1467 }
1468};
1469
1470static const int pmbus_fan_registers[] = {
1471 PMBUS_READ_FAN_SPEED_1,
1472 PMBUS_READ_FAN_SPEED_2,
1473 PMBUS_READ_FAN_SPEED_3,
1474 PMBUS_READ_FAN_SPEED_4
1475};
1476
1477static const int pmbus_fan_config_registers[] = {
1478 PMBUS_FAN_CONFIG_12,
1479 PMBUS_FAN_CONFIG_12,
1480 PMBUS_FAN_CONFIG_34,
1481 PMBUS_FAN_CONFIG_34
1482};
1483
1484static const int pmbus_fan_status_registers[] = {
1485 PMBUS_STATUS_FAN_12,
1486 PMBUS_STATUS_FAN_12,
1487 PMBUS_STATUS_FAN_34,
1488 PMBUS_STATUS_FAN_34
1489};
1490
1491static const u32 pmbus_fan_flags[] = {
1492 PMBUS_HAVE_FAN12,
1493 PMBUS_HAVE_FAN12,
1494 PMBUS_HAVE_FAN34,
1495 PMBUS_HAVE_FAN34
1496};
1497
1498static const u32 pmbus_fan_status_flags[] = {
1499 PMBUS_HAVE_STATUS_FAN12,
1500 PMBUS_HAVE_STATUS_FAN12,
1501 PMBUS_HAVE_STATUS_FAN34,
1502 PMBUS_HAVE_STATUS_FAN34
1503};
1504
1505/* Fans */
1506static void pmbus_add_fan_attributes(struct i2c_client *client,
1507 struct pmbus_data *data)
1508{
1509 const struct pmbus_driver_info *info = data->info;
1510 int index = 1;
1511 int page;
1512
1513 for (page = 0; page < info->pages; page++) {
1514 int f;
1515
1516 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1517 int regval;
1518
1519 if (!(info->func[page] & pmbus_fan_flags[f]))
1520 break;
1521
1522 if (!pmbus_check_word_register(client, page,
1523 pmbus_fan_registers[f]))
1524 break;
1525
1526 /*
1527 * Skip fan if not installed.
1528 * Each fan configuration register covers multiple fans,
1529 * so we have to do some magic.
1530 */
1531 regval = _pmbus_read_byte_data(client, page,
1532 pmbus_fan_config_registers[f]);
1533 if (regval < 0 ||
1534 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1535 continue;
1536
1537 pmbus_add_sensor(data, "fan", "input", index, page,
1538 pmbus_fan_registers[f], PSC_FAN, true,
1539 true);
1540
1541 /*
1542 * Each fan status register covers multiple fans,
1543 * so we have to do some magic.
1544 */
1545 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1546 pmbus_check_byte_register(client,
1547 page, pmbus_fan_status_registers[f])) {
1548 int base;
1549
1550 if (f > 1) /* fan 3, 4 */
1551 base = PB_STATUS_FAN34_BASE + page;
1552 else
1553 base = PB_STATUS_FAN_BASE + page;
1554 pmbus_add_boolean_reg(data, "fan", "alarm",
1555 index, base,
1556 PB_FAN_FAN1_WARNING >> (f & 1));
1557 pmbus_add_boolean_reg(data, "fan", "fault",
1558 index, base,
1559 PB_FAN_FAN1_FAULT >> (f & 1));
1560 }
1561 index++;
1562 }
1563 }
1564}
1565
1566static void pmbus_find_attributes(struct i2c_client *client,
1567 struct pmbus_data *data)
1568{
1569 /* Voltage sensors */
1570 pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1571 ARRAY_SIZE(voltage_attributes));
1572
1573 /* Current sensors */
1574 pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1575 ARRAY_SIZE(current_attributes));
1576
1577 /* Power sensors */
1578 pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1579 ARRAY_SIZE(power_attributes));
1580
1581 /* Temperature sensors */
1582 pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1583 ARRAY_SIZE(temp_attributes));
1584
1585 /* Fans */
1586 pmbus_add_fan_attributes(client, data);
1587}
1588
1589/*
1590 * Identify chip parameters.
1591 * This function is called for all chips.
1592 */
1593static int pmbus_identify_common(struct i2c_client *client,
1594 struct pmbus_data *data)
1595{
1596 int vout_mode = -1, exponent;
1597
1598 if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
1599 vout_mode = pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
1600 if (vout_mode >= 0 && vout_mode != 0xff) {
1601 /*
1602 * Not all chips support the VOUT_MODE command,
1603 * so a failure to read it is not an error.
1604 */
1605 switch (vout_mode >> 5) {
1606 case 0: /* linear mode */
1607 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1608 return -ENODEV;
1609
1610 exponent = vout_mode & 0x1f;
1611 /* and sign-extend it */
1612 if (exponent & 0x10)
1613 exponent |= ~0x1f;
1614 data->exponent = exponent;
1615 break;
1616 case 1: /* VID mode */
1617 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1618 return -ENODEV;
1619 break;
1620 case 2: /* direct mode */
1621 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1622 return -ENODEV;
1623 break;
1624 default:
1625 return -ENODEV;
1626 }
1627 }
1628
1629 /* Determine maximum number of sensors, booleans, and labels */
1630 pmbus_find_max_attr(client, data);
1631 pmbus_clear_fault_page(client, 0);
1632 return 0;
1633}
1634
1635int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1636 struct pmbus_driver_info *info)
1637{
1638 const struct pmbus_platform_data *pdata = client->dev.platform_data;
1639 struct pmbus_data *data;
1640 int ret;
1641
1642 if (!info) {
1643 dev_err(&client->dev, "Missing chip information");
1644 return -ENODEV;
1645 }
1646
1647 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1648 | I2C_FUNC_SMBUS_BYTE_DATA
1649 | I2C_FUNC_SMBUS_WORD_DATA))
1650 return -ENODEV;
1651
1652 data = kzalloc(sizeof(*data), GFP_KERNEL);
1653 if (!data) {
1654 dev_err(&client->dev, "No memory to allocate driver data\n");
1655 return -ENOMEM;
1656 }
1657
1658 i2c_set_clientdata(client, data);
1659 mutex_init(&data->update_lock);
1660
1661 /* Bail out if PMBus status register does not exist. */
1662 if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) {
1663 dev_err(&client->dev, "PMBus status register not found\n");
1664 ret = -ENODEV;
1665 goto out_data;
1666 }
1667
1668 if (pdata)
1669 data->flags = pdata->flags;
1670 data->info = info;
1671
1672 pmbus_clear_faults(client);
1673
1674 if (info->identify) {
1675 ret = (*info->identify)(client, info);
1676 if (ret < 0) {
1677 dev_err(&client->dev, "Chip identification failed\n");
1678 goto out_data;
1679 }
1680 }
1681
1682 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1683 dev_err(&client->dev, "Bad number of PMBus pages: %d\n",
1684 info->pages);
1685 ret = -EINVAL;
1686 goto out_data;
1687 }
1688
1689 ret = pmbus_identify_common(client, data);
1690 if (ret < 0) {
1691 dev_err(&client->dev, "Failed to identify chip capabilities\n");
1692 goto out_data;
1693 }
1694
1695 ret = -ENOMEM;
1696 data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors,
1697 GFP_KERNEL);
1698 if (!data->sensors) {
1699 dev_err(&client->dev, "No memory to allocate sensor data\n");
1700 goto out_data;
1701 }
1702
1703 data->booleans = kzalloc(sizeof(struct pmbus_boolean)
1704 * data->max_booleans, GFP_KERNEL);
1705 if (!data->booleans) {
1706 dev_err(&client->dev, "No memory to allocate boolean data\n");
1707 goto out_sensors;
1708 }
1709
1710 data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels,
1711 GFP_KERNEL);
1712 if (!data->labels) {
1713 dev_err(&client->dev, "No memory to allocate label data\n");
1714 goto out_booleans;
1715 }
1716
1717 data->attributes = kzalloc(sizeof(struct attribute *)
1718 * data->max_attributes, GFP_KERNEL);
1719 if (!data->attributes) {
1720 dev_err(&client->dev, "No memory to allocate attribute data\n");
1721 goto out_labels;
1722 }
1723
1724 pmbus_find_attributes(client, data);
1725
1726 /*
1727 * If there are no attributes, something is wrong.
1728 * Bail out instead of trying to register nothing.
1729 */
1730 if (!data->num_attributes) {
1731 dev_err(&client->dev, "No attributes found\n");
1732 ret = -ENODEV;
1733 goto out_attributes;
1734 }
1735
1736 /* Register sysfs hooks */
1737 data->group.attrs = data->attributes;
1738 ret = sysfs_create_group(&client->dev.kobj, &data->group);
1739 if (ret) {
1740 dev_err(&client->dev, "Failed to create sysfs entries\n");
1741 goto out_attributes;
1742 }
1743 data->hwmon_dev = hwmon_device_register(&client->dev);
1744 if (IS_ERR(data->hwmon_dev)) {
1745 ret = PTR_ERR(data->hwmon_dev);
1746 dev_err(&client->dev, "Failed to register hwmon device\n");
1747 goto out_hwmon_device_register;
1748 }
1749 return 0;
1750
1751out_hwmon_device_register:
1752 sysfs_remove_group(&client->dev.kobj, &data->group);
1753out_attributes:
1754 kfree(data->attributes);
1755out_labels:
1756 kfree(data->labels);
1757out_booleans:
1758 kfree(data->booleans);
1759out_sensors:
1760 kfree(data->sensors);
1761out_data:
1762 kfree(data);
1763 return ret;
1764}
1765EXPORT_SYMBOL_GPL(pmbus_do_probe);
1766
1767int pmbus_do_remove(struct i2c_client *client)
1768{
1769 struct pmbus_data *data = i2c_get_clientdata(client);
1770 hwmon_device_unregister(data->hwmon_dev);
1771 sysfs_remove_group(&client->dev.kobj, &data->group);
1772 kfree(data->attributes);
1773 kfree(data->labels);
1774 kfree(data->booleans);
1775 kfree(data->sensors);
1776 kfree(data);
1777 return 0;
1778}
1779EXPORT_SYMBOL_GPL(pmbus_do_remove);
1780
1781MODULE_AUTHOR("Guenter Roeck");
1782MODULE_DESCRIPTION("PMBus core driver");
1783MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Hardware monitoring driver for PMBus devices
4 *
5 * Copyright (c) 2010, 2011 Ericsson AB.
6 * Copyright (c) 2012 Guenter Roeck
7 */
8
9#include <linux/debugfs.h>
10#include <linux/kernel.h>
11#include <linux/math64.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/err.h>
15#include <linux/slab.h>
16#include <linux/i2c.h>
17#include <linux/hwmon.h>
18#include <linux/hwmon-sysfs.h>
19#include <linux/pmbus.h>
20#include <linux/regulator/driver.h>
21#include <linux/regulator/machine.h>
22#include <linux/of.h>
23#include <linux/thermal.h>
24#include "pmbus.h"
25
26/*
27 * Number of additional attribute pointers to allocate
28 * with each call to krealloc
29 */
30#define PMBUS_ATTR_ALLOC_SIZE 32
31#define PMBUS_NAME_SIZE 24
32
33struct pmbus_sensor {
34 struct pmbus_sensor *next;
35 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
36 struct device_attribute attribute;
37 u8 page; /* page number */
38 u8 phase; /* phase number, 0xff for all phases */
39 u16 reg; /* register */
40 enum pmbus_sensor_classes class; /* sensor class */
41 bool update; /* runtime sensor update needed */
42 bool convert; /* Whether or not to apply linear/vid/direct */
43 int data; /* Sensor data.
44 Negative if there was a read error */
45};
46#define to_pmbus_sensor(_attr) \
47 container_of(_attr, struct pmbus_sensor, attribute)
48
49struct pmbus_boolean {
50 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
51 struct sensor_device_attribute attribute;
52 struct pmbus_sensor *s1;
53 struct pmbus_sensor *s2;
54};
55#define to_pmbus_boolean(_attr) \
56 container_of(_attr, struct pmbus_boolean, attribute)
57
58struct pmbus_label {
59 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
60 struct device_attribute attribute;
61 char label[PMBUS_NAME_SIZE]; /* label */
62};
63#define to_pmbus_label(_attr) \
64 container_of(_attr, struct pmbus_label, attribute)
65
66/* Macros for converting between sensor index and register/page/status mask */
67
68#define PB_STATUS_MASK 0xffff
69#define PB_REG_SHIFT 16
70#define PB_REG_MASK 0x3ff
71#define PB_PAGE_SHIFT 26
72#define PB_PAGE_MASK 0x3f
73
74#define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
75 ((reg) << PB_REG_SHIFT) | (mask))
76
77#define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
78#define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
79#define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
80
81struct pmbus_data {
82 struct device *dev;
83 struct device *hwmon_dev;
84
85 u32 flags; /* from platform data */
86
87 int exponent[PMBUS_PAGES];
88 /* linear mode: exponent for output voltages */
89
90 const struct pmbus_driver_info *info;
91
92 int max_attributes;
93 int num_attributes;
94 struct attribute_group group;
95 const struct attribute_group **groups;
96 struct dentry *debugfs; /* debugfs device directory */
97
98 struct pmbus_sensor *sensors;
99
100 struct mutex update_lock;
101
102 bool has_status_word; /* device uses STATUS_WORD register */
103 int (*read_status)(struct i2c_client *client, int page);
104
105 s16 currpage; /* current page, -1 for unknown/unset */
106 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
107
108 int vout_low[PMBUS_PAGES]; /* voltage low margin */
109 int vout_high[PMBUS_PAGES]; /* voltage high margin */
110};
111
112struct pmbus_debugfs_entry {
113 struct i2c_client *client;
114 u8 page;
115 u8 reg;
116};
117
118static const int pmbus_fan_rpm_mask[] = {
119 PB_FAN_1_RPM,
120 PB_FAN_2_RPM,
121 PB_FAN_1_RPM,
122 PB_FAN_2_RPM,
123};
124
125static const int pmbus_fan_config_registers[] = {
126 PMBUS_FAN_CONFIG_12,
127 PMBUS_FAN_CONFIG_12,
128 PMBUS_FAN_CONFIG_34,
129 PMBUS_FAN_CONFIG_34
130};
131
132static const int pmbus_fan_command_registers[] = {
133 PMBUS_FAN_COMMAND_1,
134 PMBUS_FAN_COMMAND_2,
135 PMBUS_FAN_COMMAND_3,
136 PMBUS_FAN_COMMAND_4,
137};
138
139void pmbus_clear_cache(struct i2c_client *client)
140{
141 struct pmbus_data *data = i2c_get_clientdata(client);
142 struct pmbus_sensor *sensor;
143
144 for (sensor = data->sensors; sensor; sensor = sensor->next)
145 sensor->data = -ENODATA;
146}
147EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
148
149void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
150{
151 struct pmbus_data *data = i2c_get_clientdata(client);
152 struct pmbus_sensor *sensor;
153
154 for (sensor = data->sensors; sensor; sensor = sensor->next)
155 if (sensor->reg == reg)
156 sensor->update = update;
157}
158EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
159
160int pmbus_set_page(struct i2c_client *client, int page, int phase)
161{
162 struct pmbus_data *data = i2c_get_clientdata(client);
163 int rv;
164
165 if (page < 0)
166 return 0;
167
168 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
169 data->info->pages > 1 && page != data->currpage) {
170 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
171 if (rv < 0)
172 return rv;
173
174 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
175 if (rv < 0)
176 return rv;
177
178 if (rv != page)
179 return -EIO;
180 }
181 data->currpage = page;
182
183 if (data->info->phases[page] && data->currphase != phase &&
184 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
185 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
186 phase);
187 if (rv)
188 return rv;
189 }
190 data->currphase = phase;
191
192 return 0;
193}
194EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
195
196int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
197{
198 int rv;
199
200 rv = pmbus_set_page(client, page, 0xff);
201 if (rv < 0)
202 return rv;
203
204 return i2c_smbus_write_byte(client, value);
205}
206EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
207
208/*
209 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
210 * a device specific mapping function exists and calls it if necessary.
211 */
212static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
213{
214 struct pmbus_data *data = i2c_get_clientdata(client);
215 const struct pmbus_driver_info *info = data->info;
216 int status;
217
218 if (info->write_byte) {
219 status = info->write_byte(client, page, value);
220 if (status != -ENODATA)
221 return status;
222 }
223 return pmbus_write_byte(client, page, value);
224}
225
226int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
227 u16 word)
228{
229 int rv;
230
231 rv = pmbus_set_page(client, page, 0xff);
232 if (rv < 0)
233 return rv;
234
235 return i2c_smbus_write_word_data(client, reg, word);
236}
237EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
238
239
240static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
241 u16 word)
242{
243 int bit;
244 int id;
245 int rv;
246
247 switch (reg) {
248 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
249 id = reg - PMBUS_VIRT_FAN_TARGET_1;
250 bit = pmbus_fan_rpm_mask[id];
251 rv = pmbus_update_fan(client, page, id, bit, bit, word);
252 break;
253 default:
254 rv = -ENXIO;
255 break;
256 }
257
258 return rv;
259}
260
261/*
262 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
263 * a device specific mapping function exists and calls it if necessary.
264 */
265static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
266 u16 word)
267{
268 struct pmbus_data *data = i2c_get_clientdata(client);
269 const struct pmbus_driver_info *info = data->info;
270 int status;
271
272 if (info->write_word_data) {
273 status = info->write_word_data(client, page, reg, word);
274 if (status != -ENODATA)
275 return status;
276 }
277
278 if (reg >= PMBUS_VIRT_BASE)
279 return pmbus_write_virt_reg(client, page, reg, word);
280
281 return pmbus_write_word_data(client, page, reg, word);
282}
283
284/*
285 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
286 * a device specific mapping function exists and calls it if necessary.
287 */
288static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
289{
290 struct pmbus_data *data = i2c_get_clientdata(client);
291 const struct pmbus_driver_info *info = data->info;
292 int status;
293
294 if (info->write_byte_data) {
295 status = info->write_byte_data(client, page, reg, value);
296 if (status != -ENODATA)
297 return status;
298 }
299 return pmbus_write_byte_data(client, page, reg, value);
300}
301
302/*
303 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
304 * a device specific mapping function exists and calls it if necessary.
305 */
306static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
307{
308 struct pmbus_data *data = i2c_get_clientdata(client);
309 const struct pmbus_driver_info *info = data->info;
310 int status;
311
312 if (info->read_byte_data) {
313 status = info->read_byte_data(client, page, reg);
314 if (status != -ENODATA)
315 return status;
316 }
317 return pmbus_read_byte_data(client, page, reg);
318}
319
320int pmbus_update_fan(struct i2c_client *client, int page, int id,
321 u8 config, u8 mask, u16 command)
322{
323 int from;
324 int rv;
325 u8 to;
326
327 from = _pmbus_read_byte_data(client, page,
328 pmbus_fan_config_registers[id]);
329 if (from < 0)
330 return from;
331
332 to = (from & ~mask) | (config & mask);
333 if (to != from) {
334 rv = _pmbus_write_byte_data(client, page,
335 pmbus_fan_config_registers[id], to);
336 if (rv < 0)
337 return rv;
338 }
339
340 return _pmbus_write_word_data(client, page,
341 pmbus_fan_command_registers[id], command);
342}
343EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
344
345int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
346{
347 int rv;
348
349 rv = pmbus_set_page(client, page, phase);
350 if (rv < 0)
351 return rv;
352
353 return i2c_smbus_read_word_data(client, reg);
354}
355EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
356
357static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
358{
359 int rv;
360 int id;
361
362 switch (reg) {
363 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
364 id = reg - PMBUS_VIRT_FAN_TARGET_1;
365 rv = pmbus_get_fan_rate_device(client, page, id, rpm);
366 break;
367 default:
368 rv = -ENXIO;
369 break;
370 }
371
372 return rv;
373}
374
375/*
376 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
377 * a device specific mapping function exists and calls it if necessary.
378 */
379static int _pmbus_read_word_data(struct i2c_client *client, int page,
380 int phase, int reg)
381{
382 struct pmbus_data *data = i2c_get_clientdata(client);
383 const struct pmbus_driver_info *info = data->info;
384 int status;
385
386 if (info->read_word_data) {
387 status = info->read_word_data(client, page, phase, reg);
388 if (status != -ENODATA)
389 return status;
390 }
391
392 if (reg >= PMBUS_VIRT_BASE)
393 return pmbus_read_virt_reg(client, page, reg);
394
395 return pmbus_read_word_data(client, page, phase, reg);
396}
397
398/* Same as above, but without phase parameter, for use in check functions */
399static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
400{
401 return _pmbus_read_word_data(client, page, 0xff, reg);
402}
403
404int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
405{
406 int rv;
407
408 rv = pmbus_set_page(client, page, 0xff);
409 if (rv < 0)
410 return rv;
411
412 return i2c_smbus_read_byte_data(client, reg);
413}
414EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
415
416int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
417{
418 int rv;
419
420 rv = pmbus_set_page(client, page, 0xff);
421 if (rv < 0)
422 return rv;
423
424 return i2c_smbus_write_byte_data(client, reg, value);
425}
426EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
427
428int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
429 u8 mask, u8 value)
430{
431 unsigned int tmp;
432 int rv;
433
434 rv = _pmbus_read_byte_data(client, page, reg);
435 if (rv < 0)
436 return rv;
437
438 tmp = (rv & ~mask) | (value & mask);
439
440 if (tmp != rv)
441 rv = _pmbus_write_byte_data(client, page, reg, tmp);
442
443 return rv;
444}
445EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
446
447static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
448 char *data_buf)
449{
450 int rv;
451
452 rv = pmbus_set_page(client, page, 0xff);
453 if (rv < 0)
454 return rv;
455
456 return i2c_smbus_read_block_data(client, reg, data_buf);
457}
458
459static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
460 int reg)
461{
462 struct pmbus_sensor *sensor;
463
464 for (sensor = data->sensors; sensor; sensor = sensor->next) {
465 if (sensor->page == page && sensor->reg == reg)
466 return sensor;
467 }
468
469 return ERR_PTR(-EINVAL);
470}
471
472static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
473 enum pmbus_fan_mode mode,
474 bool from_cache)
475{
476 struct pmbus_data *data = i2c_get_clientdata(client);
477 bool want_rpm, have_rpm;
478 struct pmbus_sensor *s;
479 int config;
480 int reg;
481
482 want_rpm = (mode == rpm);
483
484 if (from_cache) {
485 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
486 s = pmbus_find_sensor(data, page, reg + id);
487 if (IS_ERR(s))
488 return PTR_ERR(s);
489
490 return s->data;
491 }
492
493 config = _pmbus_read_byte_data(client, page,
494 pmbus_fan_config_registers[id]);
495 if (config < 0)
496 return config;
497
498 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
499 if (want_rpm == have_rpm)
500 return pmbus_read_word_data(client, page, 0xff,
501 pmbus_fan_command_registers[id]);
502
503 /* Can't sensibly map between RPM and PWM, just return zero */
504 return 0;
505}
506
507int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
508 enum pmbus_fan_mode mode)
509{
510 return pmbus_get_fan_rate(client, page, id, mode, false);
511}
512EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
513
514int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
515 enum pmbus_fan_mode mode)
516{
517 return pmbus_get_fan_rate(client, page, id, mode, true);
518}
519EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
520
521static void pmbus_clear_fault_page(struct i2c_client *client, int page)
522{
523 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
524}
525
526void pmbus_clear_faults(struct i2c_client *client)
527{
528 struct pmbus_data *data = i2c_get_clientdata(client);
529 int i;
530
531 for (i = 0; i < data->info->pages; i++)
532 pmbus_clear_fault_page(client, i);
533}
534EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
535
536static int pmbus_check_status_cml(struct i2c_client *client)
537{
538 struct pmbus_data *data = i2c_get_clientdata(client);
539 int status, status2;
540
541 status = data->read_status(client, -1);
542 if (status < 0 || (status & PB_STATUS_CML)) {
543 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
544 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
545 return -EIO;
546 }
547 return 0;
548}
549
550static bool pmbus_check_register(struct i2c_client *client,
551 int (*func)(struct i2c_client *client,
552 int page, int reg),
553 int page, int reg)
554{
555 int rv;
556 struct pmbus_data *data = i2c_get_clientdata(client);
557
558 rv = func(client, page, reg);
559 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
560 rv = pmbus_check_status_cml(client);
561 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
562 data->read_status(client, -1);
563 pmbus_clear_fault_page(client, -1);
564 return rv >= 0;
565}
566
567static bool pmbus_check_status_register(struct i2c_client *client, int page)
568{
569 int status;
570 struct pmbus_data *data = i2c_get_clientdata(client);
571
572 status = data->read_status(client, page);
573 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
574 (status & PB_STATUS_CML)) {
575 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
576 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
577 status = -EIO;
578 }
579
580 pmbus_clear_fault_page(client, -1);
581 return status >= 0;
582}
583
584bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
585{
586 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
587}
588EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
589
590bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
591{
592 return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
593}
594EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
595
596static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
597 int page, int reg)
598{
599 int rv;
600 struct pmbus_data *data = i2c_get_clientdata(client);
601 char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
602
603 rv = pmbus_read_block_data(client, page, reg, data_buf);
604 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
605 rv = pmbus_check_status_cml(client);
606 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
607 data->read_status(client, -1);
608 pmbus_clear_fault_page(client, -1);
609 return rv >= 0;
610}
611
612const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
613{
614 struct pmbus_data *data = i2c_get_clientdata(client);
615
616 return data->info;
617}
618EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
619
620static int pmbus_get_status(struct i2c_client *client, int page, int reg)
621{
622 struct pmbus_data *data = i2c_get_clientdata(client);
623 int status;
624
625 switch (reg) {
626 case PMBUS_STATUS_WORD:
627 status = data->read_status(client, page);
628 break;
629 default:
630 status = _pmbus_read_byte_data(client, page, reg);
631 break;
632 }
633 if (status < 0)
634 pmbus_clear_faults(client);
635 return status;
636}
637
638static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
639{
640 if (sensor->data < 0 || sensor->update)
641 sensor->data = _pmbus_read_word_data(client, sensor->page,
642 sensor->phase, sensor->reg);
643}
644
645/*
646 * Convert ieee754 sensor values to milli- or micro-units
647 * depending on sensor type.
648 *
649 * ieee754 data format:
650 * bit 15: sign
651 * bit 10..14: exponent
652 * bit 0..9: mantissa
653 * exponent=0:
654 * v=(−1)^signbit * 2^(−14) * 0.significantbits
655 * exponent=1..30:
656 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
657 * exponent=31:
658 * v=NaN
659 *
660 * Add the number mantissa bits into the calculations for simplicity.
661 * To do that, add '10' to the exponent. By doing that, we can just add
662 * 0x400 to normal values and get the expected result.
663 */
664static long pmbus_reg2data_ieee754(struct pmbus_data *data,
665 struct pmbus_sensor *sensor)
666{
667 int exponent;
668 bool sign;
669 long val;
670
671 /* only support half precision for now */
672 sign = sensor->data & 0x8000;
673 exponent = (sensor->data >> 10) & 0x1f;
674 val = sensor->data & 0x3ff;
675
676 if (exponent == 0) { /* subnormal */
677 exponent = -(14 + 10);
678 } else if (exponent == 0x1f) { /* NaN, convert to min/max */
679 exponent = 0;
680 val = 65504;
681 } else {
682 exponent -= (15 + 10); /* normal */
683 val |= 0x400;
684 }
685
686 /* scale result to milli-units for all sensors except fans */
687 if (sensor->class != PSC_FAN)
688 val = val * 1000L;
689
690 /* scale result to micro-units for power sensors */
691 if (sensor->class == PSC_POWER)
692 val = val * 1000L;
693
694 if (exponent >= 0)
695 val <<= exponent;
696 else
697 val >>= -exponent;
698
699 if (sign)
700 val = -val;
701
702 return val;
703}
704
705/*
706 * Convert linear sensor values to milli- or micro-units
707 * depending on sensor type.
708 */
709static s64 pmbus_reg2data_linear(struct pmbus_data *data,
710 struct pmbus_sensor *sensor)
711{
712 s16 exponent;
713 s32 mantissa;
714 s64 val;
715
716 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
717 exponent = data->exponent[sensor->page];
718 mantissa = (u16) sensor->data;
719 } else { /* LINEAR11 */
720 exponent = ((s16)sensor->data) >> 11;
721 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
722 }
723
724 val = mantissa;
725
726 /* scale result to milli-units for all sensors except fans */
727 if (sensor->class != PSC_FAN)
728 val = val * 1000LL;
729
730 /* scale result to micro-units for power sensors */
731 if (sensor->class == PSC_POWER)
732 val = val * 1000LL;
733
734 if (exponent >= 0)
735 val <<= exponent;
736 else
737 val >>= -exponent;
738
739 return val;
740}
741
742/*
743 * Convert direct sensor values to milli- or micro-units
744 * depending on sensor type.
745 */
746static s64 pmbus_reg2data_direct(struct pmbus_data *data,
747 struct pmbus_sensor *sensor)
748{
749 s64 b, val = (s16)sensor->data;
750 s32 m, R;
751
752 m = data->info->m[sensor->class];
753 b = data->info->b[sensor->class];
754 R = data->info->R[sensor->class];
755
756 if (m == 0)
757 return 0;
758
759 /* X = 1/m * (Y * 10^-R - b) */
760 R = -R;
761 /* scale result to milli-units for everything but fans */
762 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
763 R += 3;
764 b *= 1000;
765 }
766
767 /* scale result to micro-units for power sensors */
768 if (sensor->class == PSC_POWER) {
769 R += 3;
770 b *= 1000;
771 }
772
773 while (R > 0) {
774 val *= 10;
775 R--;
776 }
777 while (R < 0) {
778 val = div_s64(val + 5LL, 10L); /* round closest */
779 R++;
780 }
781
782 val = div_s64(val - b, m);
783 return val;
784}
785
786/*
787 * Convert VID sensor values to milli- or micro-units
788 * depending on sensor type.
789 */
790static s64 pmbus_reg2data_vid(struct pmbus_data *data,
791 struct pmbus_sensor *sensor)
792{
793 long val = sensor->data;
794 long rv = 0;
795
796 switch (data->info->vrm_version[sensor->page]) {
797 case vr11:
798 if (val >= 0x02 && val <= 0xb2)
799 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
800 break;
801 case vr12:
802 if (val >= 0x01)
803 rv = 250 + (val - 1) * 5;
804 break;
805 case vr13:
806 if (val >= 0x01)
807 rv = 500 + (val - 1) * 10;
808 break;
809 case imvp9:
810 if (val >= 0x01)
811 rv = 200 + (val - 1) * 10;
812 break;
813 case amd625mv:
814 if (val >= 0x0 && val <= 0xd8)
815 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
816 break;
817 }
818 return rv;
819}
820
821static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
822{
823 s64 val;
824
825 if (!sensor->convert)
826 return sensor->data;
827
828 switch (data->info->format[sensor->class]) {
829 case direct:
830 val = pmbus_reg2data_direct(data, sensor);
831 break;
832 case vid:
833 val = pmbus_reg2data_vid(data, sensor);
834 break;
835 case ieee754:
836 val = pmbus_reg2data_ieee754(data, sensor);
837 break;
838 case linear:
839 default:
840 val = pmbus_reg2data_linear(data, sensor);
841 break;
842 }
843 return val;
844}
845
846#define MAX_IEEE_MANTISSA (0x7ff * 1000)
847#define MIN_IEEE_MANTISSA (0x400 * 1000)
848
849static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
850 struct pmbus_sensor *sensor, long val)
851{
852 u16 exponent = (15 + 10);
853 long mantissa;
854 u16 sign = 0;
855
856 /* simple case */
857 if (val == 0)
858 return 0;
859
860 if (val < 0) {
861 sign = 0x8000;
862 val = -val;
863 }
864
865 /* Power is in uW. Convert to mW before converting. */
866 if (sensor->class == PSC_POWER)
867 val = DIV_ROUND_CLOSEST(val, 1000L);
868
869 /*
870 * For simplicity, convert fan data to milli-units
871 * before calculating the exponent.
872 */
873 if (sensor->class == PSC_FAN)
874 val = val * 1000;
875
876 /* Reduce large mantissa until it fits into 10 bit */
877 while (val > MAX_IEEE_MANTISSA && exponent < 30) {
878 exponent++;
879 val >>= 1;
880 }
881 /*
882 * Increase small mantissa to generate valid 'normal'
883 * number
884 */
885 while (val < MIN_IEEE_MANTISSA && exponent > 1) {
886 exponent--;
887 val <<= 1;
888 }
889
890 /* Convert mantissa from milli-units to units */
891 mantissa = DIV_ROUND_CLOSEST(val, 1000);
892
893 /*
894 * Ensure that the resulting number is within range.
895 * Valid range is 0x400..0x7ff, where bit 10 reflects
896 * the implied high bit in normalized ieee754 numbers.
897 * Set the range to 0x400..0x7ff to reflect this.
898 * The upper bit is then removed by the mask against
899 * 0x3ff in the final assignment.
900 */
901 if (mantissa > 0x7ff)
902 mantissa = 0x7ff;
903 else if (mantissa < 0x400)
904 mantissa = 0x400;
905
906 /* Convert to sign, 5 bit exponent, 10 bit mantissa */
907 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
908}
909
910#define MAX_LIN_MANTISSA (1023 * 1000)
911#define MIN_LIN_MANTISSA (511 * 1000)
912
913static u16 pmbus_data2reg_linear(struct pmbus_data *data,
914 struct pmbus_sensor *sensor, s64 val)
915{
916 s16 exponent = 0, mantissa;
917 bool negative = false;
918
919 /* simple case */
920 if (val == 0)
921 return 0;
922
923 if (sensor->class == PSC_VOLTAGE_OUT) {
924 /* LINEAR16 does not support negative voltages */
925 if (val < 0)
926 return 0;
927
928 /*
929 * For a static exponents, we don't have a choice
930 * but to adjust the value to it.
931 */
932 if (data->exponent[sensor->page] < 0)
933 val <<= -data->exponent[sensor->page];
934 else
935 val >>= data->exponent[sensor->page];
936 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
937 return clamp_val(val, 0, 0xffff);
938 }
939
940 if (val < 0) {
941 negative = true;
942 val = -val;
943 }
944
945 /* Power is in uW. Convert to mW before converting. */
946 if (sensor->class == PSC_POWER)
947 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
948
949 /*
950 * For simplicity, convert fan data to milli-units
951 * before calculating the exponent.
952 */
953 if (sensor->class == PSC_FAN)
954 val = val * 1000LL;
955
956 /* Reduce large mantissa until it fits into 10 bit */
957 while (val >= MAX_LIN_MANTISSA && exponent < 15) {
958 exponent++;
959 val >>= 1;
960 }
961 /* Increase small mantissa to improve precision */
962 while (val < MIN_LIN_MANTISSA && exponent > -15) {
963 exponent--;
964 val <<= 1;
965 }
966
967 /* Convert mantissa from milli-units to units */
968 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
969
970 /* restore sign */
971 if (negative)
972 mantissa = -mantissa;
973
974 /* Convert to 5 bit exponent, 11 bit mantissa */
975 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
976}
977
978static u16 pmbus_data2reg_direct(struct pmbus_data *data,
979 struct pmbus_sensor *sensor, s64 val)
980{
981 s64 b;
982 s32 m, R;
983
984 m = data->info->m[sensor->class];
985 b = data->info->b[sensor->class];
986 R = data->info->R[sensor->class];
987
988 /* Power is in uW. Adjust R and b. */
989 if (sensor->class == PSC_POWER) {
990 R -= 3;
991 b *= 1000;
992 }
993
994 /* Calculate Y = (m * X + b) * 10^R */
995 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
996 R -= 3; /* Adjust R and b for data in milli-units */
997 b *= 1000;
998 }
999 val = val * m + b;
1000
1001 while (R > 0) {
1002 val *= 10;
1003 R--;
1004 }
1005 while (R < 0) {
1006 val = div_s64(val + 5LL, 10L); /* round closest */
1007 R++;
1008 }
1009
1010 return (u16)clamp_val(val, S16_MIN, S16_MAX);
1011}
1012
1013static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1014 struct pmbus_sensor *sensor, s64 val)
1015{
1016 val = clamp_val(val, 500, 1600);
1017
1018 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1019}
1020
1021static u16 pmbus_data2reg(struct pmbus_data *data,
1022 struct pmbus_sensor *sensor, s64 val)
1023{
1024 u16 regval;
1025
1026 if (!sensor->convert)
1027 return val;
1028
1029 switch (data->info->format[sensor->class]) {
1030 case direct:
1031 regval = pmbus_data2reg_direct(data, sensor, val);
1032 break;
1033 case vid:
1034 regval = pmbus_data2reg_vid(data, sensor, val);
1035 break;
1036 case ieee754:
1037 regval = pmbus_data2reg_ieee754(data, sensor, val);
1038 break;
1039 case linear:
1040 default:
1041 regval = pmbus_data2reg_linear(data, sensor, val);
1042 break;
1043 }
1044 return regval;
1045}
1046
1047/*
1048 * Return boolean calculated from converted data.
1049 * <index> defines a status register index and mask.
1050 * The mask is in the lower 8 bits, the register index is in bits 8..23.
1051 *
1052 * The associated pmbus_boolean structure contains optional pointers to two
1053 * sensor attributes. If specified, those attributes are compared against each
1054 * other to determine if a limit has been exceeded.
1055 *
1056 * If the sensor attribute pointers are NULL, the function returns true if
1057 * (status[reg] & mask) is true.
1058 *
1059 * If sensor attribute pointers are provided, a comparison against a specified
1060 * limit has to be performed to determine the boolean result.
1061 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1062 * sensor values referenced by sensor attribute pointers s1 and s2).
1063 *
1064 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1065 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1066 *
1067 * If a negative value is stored in any of the referenced registers, this value
1068 * reflects an error code which will be returned.
1069 */
1070static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1071 int index)
1072{
1073 struct pmbus_data *data = i2c_get_clientdata(client);
1074 struct pmbus_sensor *s1 = b->s1;
1075 struct pmbus_sensor *s2 = b->s2;
1076 u16 mask = pb_index_to_mask(index);
1077 u8 page = pb_index_to_page(index);
1078 u16 reg = pb_index_to_reg(index);
1079 int ret, status;
1080 u16 regval;
1081
1082 mutex_lock(&data->update_lock);
1083 status = pmbus_get_status(client, page, reg);
1084 if (status < 0) {
1085 ret = status;
1086 goto unlock;
1087 }
1088
1089 if (s1)
1090 pmbus_update_sensor_data(client, s1);
1091 if (s2)
1092 pmbus_update_sensor_data(client, s2);
1093
1094 regval = status & mask;
1095 if (regval) {
1096 ret = _pmbus_write_byte_data(client, page, reg, regval);
1097 if (ret)
1098 goto unlock;
1099 }
1100 if (s1 && s2) {
1101 s64 v1, v2;
1102
1103 if (s1->data < 0) {
1104 ret = s1->data;
1105 goto unlock;
1106 }
1107 if (s2->data < 0) {
1108 ret = s2->data;
1109 goto unlock;
1110 }
1111
1112 v1 = pmbus_reg2data(data, s1);
1113 v2 = pmbus_reg2data(data, s2);
1114 ret = !!(regval && v1 >= v2);
1115 } else {
1116 ret = !!regval;
1117 }
1118unlock:
1119 mutex_unlock(&data->update_lock);
1120 return ret;
1121}
1122
1123static ssize_t pmbus_show_boolean(struct device *dev,
1124 struct device_attribute *da, char *buf)
1125{
1126 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1127 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1128 struct i2c_client *client = to_i2c_client(dev->parent);
1129 int val;
1130
1131 val = pmbus_get_boolean(client, boolean, attr->index);
1132 if (val < 0)
1133 return val;
1134 return sysfs_emit(buf, "%d\n", val);
1135}
1136
1137static ssize_t pmbus_show_sensor(struct device *dev,
1138 struct device_attribute *devattr, char *buf)
1139{
1140 struct i2c_client *client = to_i2c_client(dev->parent);
1141 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1142 struct pmbus_data *data = i2c_get_clientdata(client);
1143 ssize_t ret;
1144
1145 mutex_lock(&data->update_lock);
1146 pmbus_update_sensor_data(client, sensor);
1147 if (sensor->data < 0)
1148 ret = sensor->data;
1149 else
1150 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1151 mutex_unlock(&data->update_lock);
1152 return ret;
1153}
1154
1155static ssize_t pmbus_set_sensor(struct device *dev,
1156 struct device_attribute *devattr,
1157 const char *buf, size_t count)
1158{
1159 struct i2c_client *client = to_i2c_client(dev->parent);
1160 struct pmbus_data *data = i2c_get_clientdata(client);
1161 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1162 ssize_t rv = count;
1163 s64 val;
1164 int ret;
1165 u16 regval;
1166
1167 if (kstrtos64(buf, 10, &val) < 0)
1168 return -EINVAL;
1169
1170 mutex_lock(&data->update_lock);
1171 regval = pmbus_data2reg(data, sensor, val);
1172 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1173 if (ret < 0)
1174 rv = ret;
1175 else
1176 sensor->data = -ENODATA;
1177 mutex_unlock(&data->update_lock);
1178 return rv;
1179}
1180
1181static ssize_t pmbus_show_label(struct device *dev,
1182 struct device_attribute *da, char *buf)
1183{
1184 struct pmbus_label *label = to_pmbus_label(da);
1185
1186 return sysfs_emit(buf, "%s\n", label->label);
1187}
1188
1189static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1190{
1191 if (data->num_attributes >= data->max_attributes - 1) {
1192 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1193 void *new_attrs = devm_krealloc(data->dev, data->group.attrs,
1194 new_max_attrs * sizeof(void *),
1195 GFP_KERNEL);
1196 if (!new_attrs)
1197 return -ENOMEM;
1198 data->group.attrs = new_attrs;
1199 data->max_attributes = new_max_attrs;
1200 }
1201
1202 data->group.attrs[data->num_attributes++] = attr;
1203 data->group.attrs[data->num_attributes] = NULL;
1204 return 0;
1205}
1206
1207static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1208 const char *name,
1209 umode_t mode,
1210 ssize_t (*show)(struct device *dev,
1211 struct device_attribute *attr,
1212 char *buf),
1213 ssize_t (*store)(struct device *dev,
1214 struct device_attribute *attr,
1215 const char *buf, size_t count))
1216{
1217 sysfs_attr_init(&dev_attr->attr);
1218 dev_attr->attr.name = name;
1219 dev_attr->attr.mode = mode;
1220 dev_attr->show = show;
1221 dev_attr->store = store;
1222}
1223
1224static void pmbus_attr_init(struct sensor_device_attribute *a,
1225 const char *name,
1226 umode_t mode,
1227 ssize_t (*show)(struct device *dev,
1228 struct device_attribute *attr,
1229 char *buf),
1230 ssize_t (*store)(struct device *dev,
1231 struct device_attribute *attr,
1232 const char *buf, size_t count),
1233 int idx)
1234{
1235 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1236 a->index = idx;
1237}
1238
1239static int pmbus_add_boolean(struct pmbus_data *data,
1240 const char *name, const char *type, int seq,
1241 struct pmbus_sensor *s1,
1242 struct pmbus_sensor *s2,
1243 u8 page, u16 reg, u16 mask)
1244{
1245 struct pmbus_boolean *boolean;
1246 struct sensor_device_attribute *a;
1247
1248 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1249 return -EINVAL;
1250
1251 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1252 if (!boolean)
1253 return -ENOMEM;
1254
1255 a = &boolean->attribute;
1256
1257 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1258 name, seq, type);
1259 boolean->s1 = s1;
1260 boolean->s2 = s2;
1261 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1262 pb_reg_to_index(page, reg, mask));
1263
1264 return pmbus_add_attribute(data, &a->dev_attr.attr);
1265}
1266
1267/* of thermal for pmbus temperature sensors */
1268struct pmbus_thermal_data {
1269 struct pmbus_data *pmbus_data;
1270 struct pmbus_sensor *sensor;
1271};
1272
1273static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1274{
1275 struct pmbus_thermal_data *tdata = tz->devdata;
1276 struct pmbus_sensor *sensor = tdata->sensor;
1277 struct pmbus_data *pmbus_data = tdata->pmbus_data;
1278 struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1279 struct device *dev = pmbus_data->hwmon_dev;
1280 int ret = 0;
1281
1282 if (!dev) {
1283 /* May not even get to hwmon yet */
1284 *temp = 0;
1285 return 0;
1286 }
1287
1288 mutex_lock(&pmbus_data->update_lock);
1289 pmbus_update_sensor_data(client, sensor);
1290 if (sensor->data < 0)
1291 ret = sensor->data;
1292 else
1293 *temp = (int)pmbus_reg2data(pmbus_data, sensor);
1294 mutex_unlock(&pmbus_data->update_lock);
1295
1296 return ret;
1297}
1298
1299static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1300 .get_temp = pmbus_thermal_get_temp,
1301};
1302
1303static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1304 struct pmbus_sensor *sensor, int index)
1305{
1306 struct device *dev = pmbus_data->dev;
1307 struct pmbus_thermal_data *tdata;
1308 struct thermal_zone_device *tzd;
1309
1310 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1311 if (!tdata)
1312 return -ENOMEM;
1313
1314 tdata->sensor = sensor;
1315 tdata->pmbus_data = pmbus_data;
1316
1317 tzd = devm_thermal_of_zone_register(dev, index, tdata,
1318 &pmbus_thermal_ops);
1319 /*
1320 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1321 * so ignore that error but forward any other error.
1322 */
1323 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1324 return PTR_ERR(tzd);
1325
1326 return 0;
1327}
1328
1329static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1330 const char *name, const char *type,
1331 int seq, int page, int phase,
1332 int reg,
1333 enum pmbus_sensor_classes class,
1334 bool update, bool readonly,
1335 bool convert)
1336{
1337 struct pmbus_sensor *sensor;
1338 struct device_attribute *a;
1339
1340 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1341 if (!sensor)
1342 return NULL;
1343 a = &sensor->attribute;
1344
1345 if (type)
1346 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1347 name, seq, type);
1348 else
1349 snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1350 name, seq);
1351
1352 if (data->flags & PMBUS_WRITE_PROTECTED)
1353 readonly = true;
1354
1355 sensor->page = page;
1356 sensor->phase = phase;
1357 sensor->reg = reg;
1358 sensor->class = class;
1359 sensor->update = update;
1360 sensor->convert = convert;
1361 sensor->data = -ENODATA;
1362 pmbus_dev_attr_init(a, sensor->name,
1363 readonly ? 0444 : 0644,
1364 pmbus_show_sensor, pmbus_set_sensor);
1365
1366 if (pmbus_add_attribute(data, &a->attr))
1367 return NULL;
1368
1369 sensor->next = data->sensors;
1370 data->sensors = sensor;
1371
1372 /* temperature sensors with _input values are registered with thermal */
1373 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1374 pmbus_thermal_add_sensor(data, sensor, seq);
1375
1376 return sensor;
1377}
1378
1379static int pmbus_add_label(struct pmbus_data *data,
1380 const char *name, int seq,
1381 const char *lstring, int index, int phase)
1382{
1383 struct pmbus_label *label;
1384 struct device_attribute *a;
1385
1386 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1387 if (!label)
1388 return -ENOMEM;
1389
1390 a = &label->attribute;
1391
1392 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1393 if (!index) {
1394 if (phase == 0xff)
1395 strncpy(label->label, lstring,
1396 sizeof(label->label) - 1);
1397 else
1398 snprintf(label->label, sizeof(label->label), "%s.%d",
1399 lstring, phase);
1400 } else {
1401 if (phase == 0xff)
1402 snprintf(label->label, sizeof(label->label), "%s%d",
1403 lstring, index);
1404 else
1405 snprintf(label->label, sizeof(label->label), "%s%d.%d",
1406 lstring, index, phase);
1407 }
1408
1409 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1410 return pmbus_add_attribute(data, &a->attr);
1411}
1412
1413/*
1414 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1415 */
1416
1417/*
1418 * The pmbus_limit_attr structure describes a single limit attribute
1419 * and its associated alarm attribute.
1420 */
1421struct pmbus_limit_attr {
1422 u16 reg; /* Limit register */
1423 u16 sbit; /* Alarm attribute status bit */
1424 bool update; /* True if register needs updates */
1425 bool low; /* True if low limit; for limits with compare
1426 functions only */
1427 const char *attr; /* Attribute name */
1428 const char *alarm; /* Alarm attribute name */
1429};
1430
1431/*
1432 * The pmbus_sensor_attr structure describes one sensor attribute. This
1433 * description includes a reference to the associated limit attributes.
1434 */
1435struct pmbus_sensor_attr {
1436 u16 reg; /* sensor register */
1437 u16 gbit; /* generic status bit */
1438 u8 nlimit; /* # of limit registers */
1439 enum pmbus_sensor_classes class;/* sensor class */
1440 const char *label; /* sensor label */
1441 bool paged; /* true if paged sensor */
1442 bool update; /* true if update needed */
1443 bool compare; /* true if compare function needed */
1444 u32 func; /* sensor mask */
1445 u32 sfunc; /* sensor status mask */
1446 int sreg; /* status register */
1447 const struct pmbus_limit_attr *limit;/* limit registers */
1448};
1449
1450/*
1451 * Add a set of limit attributes and, if supported, the associated
1452 * alarm attributes.
1453 * returns 0 if no alarm register found, 1 if an alarm register was found,
1454 * < 0 on errors.
1455 */
1456static int pmbus_add_limit_attrs(struct i2c_client *client,
1457 struct pmbus_data *data,
1458 const struct pmbus_driver_info *info,
1459 const char *name, int index, int page,
1460 struct pmbus_sensor *base,
1461 const struct pmbus_sensor_attr *attr)
1462{
1463 const struct pmbus_limit_attr *l = attr->limit;
1464 int nlimit = attr->nlimit;
1465 int have_alarm = 0;
1466 int i, ret;
1467 struct pmbus_sensor *curr;
1468
1469 for (i = 0; i < nlimit; i++) {
1470 if (pmbus_check_word_register(client, page, l->reg)) {
1471 curr = pmbus_add_sensor(data, name, l->attr, index,
1472 page, 0xff, l->reg, attr->class,
1473 attr->update || l->update,
1474 false, true);
1475 if (!curr)
1476 return -ENOMEM;
1477 if (l->sbit && (info->func[page] & attr->sfunc)) {
1478 ret = pmbus_add_boolean(data, name,
1479 l->alarm, index,
1480 attr->compare ? l->low ? curr : base
1481 : NULL,
1482 attr->compare ? l->low ? base : curr
1483 : NULL,
1484 page, attr->sreg, l->sbit);
1485 if (ret)
1486 return ret;
1487 have_alarm = 1;
1488 }
1489 }
1490 l++;
1491 }
1492 return have_alarm;
1493}
1494
1495static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1496 struct pmbus_data *data,
1497 const struct pmbus_driver_info *info,
1498 const char *name,
1499 int index, int page, int phase,
1500 const struct pmbus_sensor_attr *attr,
1501 bool paged)
1502{
1503 struct pmbus_sensor *base;
1504 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1505 int ret;
1506
1507 if (attr->label) {
1508 ret = pmbus_add_label(data, name, index, attr->label,
1509 paged ? page + 1 : 0, phase);
1510 if (ret)
1511 return ret;
1512 }
1513 base = pmbus_add_sensor(data, name, "input", index, page, phase,
1514 attr->reg, attr->class, true, true, true);
1515 if (!base)
1516 return -ENOMEM;
1517 /* No limit and alarm attributes for phase specific sensors */
1518 if (attr->sfunc && phase == 0xff) {
1519 ret = pmbus_add_limit_attrs(client, data, info, name,
1520 index, page, base, attr);
1521 if (ret < 0)
1522 return ret;
1523 /*
1524 * Add generic alarm attribute only if there are no individual
1525 * alarm attributes, if there is a global alarm bit, and if
1526 * the generic status register (word or byte, depending on
1527 * which global bit is set) for this page is accessible.
1528 */
1529 if (!ret && attr->gbit &&
1530 (!upper || data->has_status_word) &&
1531 pmbus_check_status_register(client, page)) {
1532 ret = pmbus_add_boolean(data, name, "alarm", index,
1533 NULL, NULL,
1534 page, PMBUS_STATUS_WORD,
1535 attr->gbit);
1536 if (ret)
1537 return ret;
1538 }
1539 }
1540 return 0;
1541}
1542
1543static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1544 const struct pmbus_sensor_attr *attr)
1545{
1546 int p;
1547
1548 if (attr->paged)
1549 return true;
1550
1551 /*
1552 * Some attributes may be present on more than one page despite
1553 * not being marked with the paged attribute. If that is the case,
1554 * then treat the sensor as being paged and add the page suffix to the
1555 * attribute name.
1556 * We don't just add the paged attribute to all such attributes, in
1557 * order to maintain the un-suffixed labels in the case where the
1558 * attribute is only on page 0.
1559 */
1560 for (p = 1; p < info->pages; p++) {
1561 if (info->func[p] & attr->func)
1562 return true;
1563 }
1564 return false;
1565}
1566
1567static int pmbus_add_sensor_attrs(struct i2c_client *client,
1568 struct pmbus_data *data,
1569 const char *name,
1570 const struct pmbus_sensor_attr *attrs,
1571 int nattrs)
1572{
1573 const struct pmbus_driver_info *info = data->info;
1574 int index, i;
1575 int ret;
1576
1577 index = 1;
1578 for (i = 0; i < nattrs; i++) {
1579 int page, pages;
1580 bool paged = pmbus_sensor_is_paged(info, attrs);
1581
1582 pages = paged ? info->pages : 1;
1583 for (page = 0; page < pages; page++) {
1584 if (info->func[page] & attrs->func) {
1585 ret = pmbus_add_sensor_attrs_one(client, data, info,
1586 name, index, page,
1587 0xff, attrs, paged);
1588 if (ret)
1589 return ret;
1590 index++;
1591 }
1592 if (info->phases[page]) {
1593 int phase;
1594
1595 for (phase = 0; phase < info->phases[page];
1596 phase++) {
1597 if (!(info->pfunc[phase] & attrs->func))
1598 continue;
1599 ret = pmbus_add_sensor_attrs_one(client,
1600 data, info, name, index, page,
1601 phase, attrs, paged);
1602 if (ret)
1603 return ret;
1604 index++;
1605 }
1606 }
1607 }
1608 attrs++;
1609 }
1610 return 0;
1611}
1612
1613static const struct pmbus_limit_attr vin_limit_attrs[] = {
1614 {
1615 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1616 .attr = "min",
1617 .alarm = "min_alarm",
1618 .sbit = PB_VOLTAGE_UV_WARNING,
1619 }, {
1620 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1621 .attr = "lcrit",
1622 .alarm = "lcrit_alarm",
1623 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1624 }, {
1625 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1626 .attr = "max",
1627 .alarm = "max_alarm",
1628 .sbit = PB_VOLTAGE_OV_WARNING,
1629 }, {
1630 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1631 .attr = "crit",
1632 .alarm = "crit_alarm",
1633 .sbit = PB_VOLTAGE_OV_FAULT,
1634 }, {
1635 .reg = PMBUS_VIRT_READ_VIN_AVG,
1636 .update = true,
1637 .attr = "average",
1638 }, {
1639 .reg = PMBUS_VIRT_READ_VIN_MIN,
1640 .update = true,
1641 .attr = "lowest",
1642 }, {
1643 .reg = PMBUS_VIRT_READ_VIN_MAX,
1644 .update = true,
1645 .attr = "highest",
1646 }, {
1647 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1648 .attr = "reset_history",
1649 }, {
1650 .reg = PMBUS_MFR_VIN_MIN,
1651 .attr = "rated_min",
1652 }, {
1653 .reg = PMBUS_MFR_VIN_MAX,
1654 .attr = "rated_max",
1655 },
1656};
1657
1658static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1659 {
1660 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1661 .attr = "min",
1662 .alarm = "min_alarm",
1663 .sbit = PB_VOLTAGE_UV_WARNING,
1664 }, {
1665 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1666 .attr = "lcrit",
1667 .alarm = "lcrit_alarm",
1668 .sbit = PB_VOLTAGE_UV_FAULT,
1669 }, {
1670 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1671 .attr = "max",
1672 .alarm = "max_alarm",
1673 .sbit = PB_VOLTAGE_OV_WARNING,
1674 }, {
1675 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1676 .attr = "crit",
1677 .alarm = "crit_alarm",
1678 .sbit = PB_VOLTAGE_OV_FAULT,
1679 }
1680};
1681
1682static const struct pmbus_limit_attr vout_limit_attrs[] = {
1683 {
1684 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1685 .attr = "min",
1686 .alarm = "min_alarm",
1687 .sbit = PB_VOLTAGE_UV_WARNING,
1688 }, {
1689 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1690 .attr = "lcrit",
1691 .alarm = "lcrit_alarm",
1692 .sbit = PB_VOLTAGE_UV_FAULT,
1693 }, {
1694 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1695 .attr = "max",
1696 .alarm = "max_alarm",
1697 .sbit = PB_VOLTAGE_OV_WARNING,
1698 }, {
1699 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1700 .attr = "crit",
1701 .alarm = "crit_alarm",
1702 .sbit = PB_VOLTAGE_OV_FAULT,
1703 }, {
1704 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1705 .update = true,
1706 .attr = "average",
1707 }, {
1708 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1709 .update = true,
1710 .attr = "lowest",
1711 }, {
1712 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1713 .update = true,
1714 .attr = "highest",
1715 }, {
1716 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1717 .attr = "reset_history",
1718 }, {
1719 .reg = PMBUS_MFR_VOUT_MIN,
1720 .attr = "rated_min",
1721 }, {
1722 .reg = PMBUS_MFR_VOUT_MAX,
1723 .attr = "rated_max",
1724 },
1725};
1726
1727static const struct pmbus_sensor_attr voltage_attributes[] = {
1728 {
1729 .reg = PMBUS_READ_VIN,
1730 .class = PSC_VOLTAGE_IN,
1731 .label = "vin",
1732 .func = PMBUS_HAVE_VIN,
1733 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1734 .sreg = PMBUS_STATUS_INPUT,
1735 .gbit = PB_STATUS_VIN_UV,
1736 .limit = vin_limit_attrs,
1737 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1738 }, {
1739 .reg = PMBUS_VIRT_READ_VMON,
1740 .class = PSC_VOLTAGE_IN,
1741 .label = "vmon",
1742 .func = PMBUS_HAVE_VMON,
1743 .sfunc = PMBUS_HAVE_STATUS_VMON,
1744 .sreg = PMBUS_VIRT_STATUS_VMON,
1745 .limit = vmon_limit_attrs,
1746 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1747 }, {
1748 .reg = PMBUS_READ_VCAP,
1749 .class = PSC_VOLTAGE_IN,
1750 .label = "vcap",
1751 .func = PMBUS_HAVE_VCAP,
1752 }, {
1753 .reg = PMBUS_READ_VOUT,
1754 .class = PSC_VOLTAGE_OUT,
1755 .label = "vout",
1756 .paged = true,
1757 .func = PMBUS_HAVE_VOUT,
1758 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1759 .sreg = PMBUS_STATUS_VOUT,
1760 .gbit = PB_STATUS_VOUT_OV,
1761 .limit = vout_limit_attrs,
1762 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1763 }
1764};
1765
1766/* Current attributes */
1767
1768static const struct pmbus_limit_attr iin_limit_attrs[] = {
1769 {
1770 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1771 .attr = "max",
1772 .alarm = "max_alarm",
1773 .sbit = PB_IIN_OC_WARNING,
1774 }, {
1775 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1776 .attr = "crit",
1777 .alarm = "crit_alarm",
1778 .sbit = PB_IIN_OC_FAULT,
1779 }, {
1780 .reg = PMBUS_VIRT_READ_IIN_AVG,
1781 .update = true,
1782 .attr = "average",
1783 }, {
1784 .reg = PMBUS_VIRT_READ_IIN_MIN,
1785 .update = true,
1786 .attr = "lowest",
1787 }, {
1788 .reg = PMBUS_VIRT_READ_IIN_MAX,
1789 .update = true,
1790 .attr = "highest",
1791 }, {
1792 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1793 .attr = "reset_history",
1794 }, {
1795 .reg = PMBUS_MFR_IIN_MAX,
1796 .attr = "rated_max",
1797 },
1798};
1799
1800static const struct pmbus_limit_attr iout_limit_attrs[] = {
1801 {
1802 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1803 .attr = "max",
1804 .alarm = "max_alarm",
1805 .sbit = PB_IOUT_OC_WARNING,
1806 }, {
1807 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1808 .attr = "lcrit",
1809 .alarm = "lcrit_alarm",
1810 .sbit = PB_IOUT_UC_FAULT,
1811 }, {
1812 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1813 .attr = "crit",
1814 .alarm = "crit_alarm",
1815 .sbit = PB_IOUT_OC_FAULT,
1816 }, {
1817 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1818 .update = true,
1819 .attr = "average",
1820 }, {
1821 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1822 .update = true,
1823 .attr = "lowest",
1824 }, {
1825 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1826 .update = true,
1827 .attr = "highest",
1828 }, {
1829 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1830 .attr = "reset_history",
1831 }, {
1832 .reg = PMBUS_MFR_IOUT_MAX,
1833 .attr = "rated_max",
1834 },
1835};
1836
1837static const struct pmbus_sensor_attr current_attributes[] = {
1838 {
1839 .reg = PMBUS_READ_IIN,
1840 .class = PSC_CURRENT_IN,
1841 .label = "iin",
1842 .func = PMBUS_HAVE_IIN,
1843 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1844 .sreg = PMBUS_STATUS_INPUT,
1845 .gbit = PB_STATUS_INPUT,
1846 .limit = iin_limit_attrs,
1847 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1848 }, {
1849 .reg = PMBUS_READ_IOUT,
1850 .class = PSC_CURRENT_OUT,
1851 .label = "iout",
1852 .paged = true,
1853 .func = PMBUS_HAVE_IOUT,
1854 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1855 .sreg = PMBUS_STATUS_IOUT,
1856 .gbit = PB_STATUS_IOUT_OC,
1857 .limit = iout_limit_attrs,
1858 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1859 }
1860};
1861
1862/* Power attributes */
1863
1864static const struct pmbus_limit_attr pin_limit_attrs[] = {
1865 {
1866 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1867 .attr = "max",
1868 .alarm = "alarm",
1869 .sbit = PB_PIN_OP_WARNING,
1870 }, {
1871 .reg = PMBUS_VIRT_READ_PIN_AVG,
1872 .update = true,
1873 .attr = "average",
1874 }, {
1875 .reg = PMBUS_VIRT_READ_PIN_MIN,
1876 .update = true,
1877 .attr = "input_lowest",
1878 }, {
1879 .reg = PMBUS_VIRT_READ_PIN_MAX,
1880 .update = true,
1881 .attr = "input_highest",
1882 }, {
1883 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1884 .attr = "reset_history",
1885 }, {
1886 .reg = PMBUS_MFR_PIN_MAX,
1887 .attr = "rated_max",
1888 },
1889};
1890
1891static const struct pmbus_limit_attr pout_limit_attrs[] = {
1892 {
1893 .reg = PMBUS_POUT_MAX,
1894 .attr = "cap",
1895 .alarm = "cap_alarm",
1896 .sbit = PB_POWER_LIMITING,
1897 }, {
1898 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1899 .attr = "max",
1900 .alarm = "max_alarm",
1901 .sbit = PB_POUT_OP_WARNING,
1902 }, {
1903 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1904 .attr = "crit",
1905 .alarm = "crit_alarm",
1906 .sbit = PB_POUT_OP_FAULT,
1907 }, {
1908 .reg = PMBUS_VIRT_READ_POUT_AVG,
1909 .update = true,
1910 .attr = "average",
1911 }, {
1912 .reg = PMBUS_VIRT_READ_POUT_MIN,
1913 .update = true,
1914 .attr = "input_lowest",
1915 }, {
1916 .reg = PMBUS_VIRT_READ_POUT_MAX,
1917 .update = true,
1918 .attr = "input_highest",
1919 }, {
1920 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1921 .attr = "reset_history",
1922 }, {
1923 .reg = PMBUS_MFR_POUT_MAX,
1924 .attr = "rated_max",
1925 },
1926};
1927
1928static const struct pmbus_sensor_attr power_attributes[] = {
1929 {
1930 .reg = PMBUS_READ_PIN,
1931 .class = PSC_POWER,
1932 .label = "pin",
1933 .func = PMBUS_HAVE_PIN,
1934 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1935 .sreg = PMBUS_STATUS_INPUT,
1936 .gbit = PB_STATUS_INPUT,
1937 .limit = pin_limit_attrs,
1938 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1939 }, {
1940 .reg = PMBUS_READ_POUT,
1941 .class = PSC_POWER,
1942 .label = "pout",
1943 .paged = true,
1944 .func = PMBUS_HAVE_POUT,
1945 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1946 .sreg = PMBUS_STATUS_IOUT,
1947 .limit = pout_limit_attrs,
1948 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1949 }
1950};
1951
1952/* Temperature atributes */
1953
1954static const struct pmbus_limit_attr temp_limit_attrs[] = {
1955 {
1956 .reg = PMBUS_UT_WARN_LIMIT,
1957 .low = true,
1958 .attr = "min",
1959 .alarm = "min_alarm",
1960 .sbit = PB_TEMP_UT_WARNING,
1961 }, {
1962 .reg = PMBUS_UT_FAULT_LIMIT,
1963 .low = true,
1964 .attr = "lcrit",
1965 .alarm = "lcrit_alarm",
1966 .sbit = PB_TEMP_UT_FAULT,
1967 }, {
1968 .reg = PMBUS_OT_WARN_LIMIT,
1969 .attr = "max",
1970 .alarm = "max_alarm",
1971 .sbit = PB_TEMP_OT_WARNING,
1972 }, {
1973 .reg = PMBUS_OT_FAULT_LIMIT,
1974 .attr = "crit",
1975 .alarm = "crit_alarm",
1976 .sbit = PB_TEMP_OT_FAULT,
1977 }, {
1978 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1979 .attr = "lowest",
1980 }, {
1981 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1982 .attr = "average",
1983 }, {
1984 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1985 .attr = "highest",
1986 }, {
1987 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1988 .attr = "reset_history",
1989 }, {
1990 .reg = PMBUS_MFR_MAX_TEMP_1,
1991 .attr = "rated_max",
1992 },
1993};
1994
1995static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1996 {
1997 .reg = PMBUS_UT_WARN_LIMIT,
1998 .low = true,
1999 .attr = "min",
2000 .alarm = "min_alarm",
2001 .sbit = PB_TEMP_UT_WARNING,
2002 }, {
2003 .reg = PMBUS_UT_FAULT_LIMIT,
2004 .low = true,
2005 .attr = "lcrit",
2006 .alarm = "lcrit_alarm",
2007 .sbit = PB_TEMP_UT_FAULT,
2008 }, {
2009 .reg = PMBUS_OT_WARN_LIMIT,
2010 .attr = "max",
2011 .alarm = "max_alarm",
2012 .sbit = PB_TEMP_OT_WARNING,
2013 }, {
2014 .reg = PMBUS_OT_FAULT_LIMIT,
2015 .attr = "crit",
2016 .alarm = "crit_alarm",
2017 .sbit = PB_TEMP_OT_FAULT,
2018 }, {
2019 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
2020 .attr = "lowest",
2021 }, {
2022 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
2023 .attr = "average",
2024 }, {
2025 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
2026 .attr = "highest",
2027 }, {
2028 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2029 .attr = "reset_history",
2030 }, {
2031 .reg = PMBUS_MFR_MAX_TEMP_2,
2032 .attr = "rated_max",
2033 },
2034};
2035
2036static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2037 {
2038 .reg = PMBUS_UT_WARN_LIMIT,
2039 .low = true,
2040 .attr = "min",
2041 .alarm = "min_alarm",
2042 .sbit = PB_TEMP_UT_WARNING,
2043 }, {
2044 .reg = PMBUS_UT_FAULT_LIMIT,
2045 .low = true,
2046 .attr = "lcrit",
2047 .alarm = "lcrit_alarm",
2048 .sbit = PB_TEMP_UT_FAULT,
2049 }, {
2050 .reg = PMBUS_OT_WARN_LIMIT,
2051 .attr = "max",
2052 .alarm = "max_alarm",
2053 .sbit = PB_TEMP_OT_WARNING,
2054 }, {
2055 .reg = PMBUS_OT_FAULT_LIMIT,
2056 .attr = "crit",
2057 .alarm = "crit_alarm",
2058 .sbit = PB_TEMP_OT_FAULT,
2059 }, {
2060 .reg = PMBUS_MFR_MAX_TEMP_3,
2061 .attr = "rated_max",
2062 },
2063};
2064
2065static const struct pmbus_sensor_attr temp_attributes[] = {
2066 {
2067 .reg = PMBUS_READ_TEMPERATURE_1,
2068 .class = PSC_TEMPERATURE,
2069 .paged = true,
2070 .update = true,
2071 .compare = true,
2072 .func = PMBUS_HAVE_TEMP,
2073 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2074 .sreg = PMBUS_STATUS_TEMPERATURE,
2075 .gbit = PB_STATUS_TEMPERATURE,
2076 .limit = temp_limit_attrs,
2077 .nlimit = ARRAY_SIZE(temp_limit_attrs),
2078 }, {
2079 .reg = PMBUS_READ_TEMPERATURE_2,
2080 .class = PSC_TEMPERATURE,
2081 .paged = true,
2082 .update = true,
2083 .compare = true,
2084 .func = PMBUS_HAVE_TEMP2,
2085 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2086 .sreg = PMBUS_STATUS_TEMPERATURE,
2087 .gbit = PB_STATUS_TEMPERATURE,
2088 .limit = temp_limit_attrs2,
2089 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
2090 }, {
2091 .reg = PMBUS_READ_TEMPERATURE_3,
2092 .class = PSC_TEMPERATURE,
2093 .paged = true,
2094 .update = true,
2095 .compare = true,
2096 .func = PMBUS_HAVE_TEMP3,
2097 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2098 .sreg = PMBUS_STATUS_TEMPERATURE,
2099 .gbit = PB_STATUS_TEMPERATURE,
2100 .limit = temp_limit_attrs3,
2101 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
2102 }
2103};
2104
2105static const int pmbus_fan_registers[] = {
2106 PMBUS_READ_FAN_SPEED_1,
2107 PMBUS_READ_FAN_SPEED_2,
2108 PMBUS_READ_FAN_SPEED_3,
2109 PMBUS_READ_FAN_SPEED_4
2110};
2111
2112static const int pmbus_fan_status_registers[] = {
2113 PMBUS_STATUS_FAN_12,
2114 PMBUS_STATUS_FAN_12,
2115 PMBUS_STATUS_FAN_34,
2116 PMBUS_STATUS_FAN_34
2117};
2118
2119static const u32 pmbus_fan_flags[] = {
2120 PMBUS_HAVE_FAN12,
2121 PMBUS_HAVE_FAN12,
2122 PMBUS_HAVE_FAN34,
2123 PMBUS_HAVE_FAN34
2124};
2125
2126static const u32 pmbus_fan_status_flags[] = {
2127 PMBUS_HAVE_STATUS_FAN12,
2128 PMBUS_HAVE_STATUS_FAN12,
2129 PMBUS_HAVE_STATUS_FAN34,
2130 PMBUS_HAVE_STATUS_FAN34
2131};
2132
2133/* Fans */
2134
2135/* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
2136static int pmbus_add_fan_ctrl(struct i2c_client *client,
2137 struct pmbus_data *data, int index, int page, int id,
2138 u8 config)
2139{
2140 struct pmbus_sensor *sensor;
2141
2142 sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2143 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2144 false, false, true);
2145
2146 if (!sensor)
2147 return -ENOMEM;
2148
2149 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2150 (data->info->func[page] & PMBUS_HAVE_PWM34)))
2151 return 0;
2152
2153 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2154 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2155 false, false, true);
2156
2157 if (!sensor)
2158 return -ENOMEM;
2159
2160 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2161 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2162 true, false, false);
2163
2164 if (!sensor)
2165 return -ENOMEM;
2166
2167 return 0;
2168}
2169
2170static int pmbus_add_fan_attributes(struct i2c_client *client,
2171 struct pmbus_data *data)
2172{
2173 const struct pmbus_driver_info *info = data->info;
2174 int index = 1;
2175 int page;
2176 int ret;
2177
2178 for (page = 0; page < info->pages; page++) {
2179 int f;
2180
2181 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2182 int regval;
2183
2184 if (!(info->func[page] & pmbus_fan_flags[f]))
2185 break;
2186
2187 if (!pmbus_check_word_register(client, page,
2188 pmbus_fan_registers[f]))
2189 break;
2190
2191 /*
2192 * Skip fan if not installed.
2193 * Each fan configuration register covers multiple fans,
2194 * so we have to do some magic.
2195 */
2196 regval = _pmbus_read_byte_data(client, page,
2197 pmbus_fan_config_registers[f]);
2198 if (regval < 0 ||
2199 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2200 continue;
2201
2202 if (pmbus_add_sensor(data, "fan", "input", index,
2203 page, 0xff, pmbus_fan_registers[f],
2204 PSC_FAN, true, true, true) == NULL)
2205 return -ENOMEM;
2206
2207 /* Fan control */
2208 if (pmbus_check_word_register(client, page,
2209 pmbus_fan_command_registers[f])) {
2210 ret = pmbus_add_fan_ctrl(client, data, index,
2211 page, f, regval);
2212 if (ret < 0)
2213 return ret;
2214 }
2215
2216 /*
2217 * Each fan status register covers multiple fans,
2218 * so we have to do some magic.
2219 */
2220 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2221 pmbus_check_byte_register(client,
2222 page, pmbus_fan_status_registers[f])) {
2223 int reg;
2224
2225 if (f > 1) /* fan 3, 4 */
2226 reg = PMBUS_STATUS_FAN_34;
2227 else
2228 reg = PMBUS_STATUS_FAN_12;
2229 ret = pmbus_add_boolean(data, "fan",
2230 "alarm", index, NULL, NULL, page, reg,
2231 PB_FAN_FAN1_WARNING >> (f & 1));
2232 if (ret)
2233 return ret;
2234 ret = pmbus_add_boolean(data, "fan",
2235 "fault", index, NULL, NULL, page, reg,
2236 PB_FAN_FAN1_FAULT >> (f & 1));
2237 if (ret)
2238 return ret;
2239 }
2240 index++;
2241 }
2242 }
2243 return 0;
2244}
2245
2246struct pmbus_samples_attr {
2247 int reg;
2248 char *name;
2249};
2250
2251struct pmbus_samples_reg {
2252 int page;
2253 struct pmbus_samples_attr *attr;
2254 struct device_attribute dev_attr;
2255};
2256
2257static struct pmbus_samples_attr pmbus_samples_registers[] = {
2258 {
2259 .reg = PMBUS_VIRT_SAMPLES,
2260 .name = "samples",
2261 }, {
2262 .reg = PMBUS_VIRT_IN_SAMPLES,
2263 .name = "in_samples",
2264 }, {
2265 .reg = PMBUS_VIRT_CURR_SAMPLES,
2266 .name = "curr_samples",
2267 }, {
2268 .reg = PMBUS_VIRT_POWER_SAMPLES,
2269 .name = "power_samples",
2270 }, {
2271 .reg = PMBUS_VIRT_TEMP_SAMPLES,
2272 .name = "temp_samples",
2273 }
2274};
2275
2276#define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2277
2278static ssize_t pmbus_show_samples(struct device *dev,
2279 struct device_attribute *devattr, char *buf)
2280{
2281 int val;
2282 struct i2c_client *client = to_i2c_client(dev->parent);
2283 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2284 struct pmbus_data *data = i2c_get_clientdata(client);
2285
2286 mutex_lock(&data->update_lock);
2287 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2288 mutex_unlock(&data->update_lock);
2289 if (val < 0)
2290 return val;
2291
2292 return sysfs_emit(buf, "%d\n", val);
2293}
2294
2295static ssize_t pmbus_set_samples(struct device *dev,
2296 struct device_attribute *devattr,
2297 const char *buf, size_t count)
2298{
2299 int ret;
2300 long val;
2301 struct i2c_client *client = to_i2c_client(dev->parent);
2302 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2303 struct pmbus_data *data = i2c_get_clientdata(client);
2304
2305 if (kstrtol(buf, 0, &val) < 0)
2306 return -EINVAL;
2307
2308 mutex_lock(&data->update_lock);
2309 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2310 mutex_unlock(&data->update_lock);
2311
2312 return ret ? : count;
2313}
2314
2315static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2316 struct pmbus_samples_attr *attr)
2317{
2318 struct pmbus_samples_reg *reg;
2319
2320 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2321 if (!reg)
2322 return -ENOMEM;
2323
2324 reg->attr = attr;
2325 reg->page = page;
2326
2327 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644,
2328 pmbus_show_samples, pmbus_set_samples);
2329
2330 return pmbus_add_attribute(data, ®->dev_attr.attr);
2331}
2332
2333static int pmbus_add_samples_attributes(struct i2c_client *client,
2334 struct pmbus_data *data)
2335{
2336 const struct pmbus_driver_info *info = data->info;
2337 int s;
2338
2339 if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2340 return 0;
2341
2342 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2343 struct pmbus_samples_attr *attr;
2344 int ret;
2345
2346 attr = &pmbus_samples_registers[s];
2347 if (!pmbus_check_word_register(client, 0, attr->reg))
2348 continue;
2349
2350 ret = pmbus_add_samples_attr(data, 0, attr);
2351 if (ret)
2352 return ret;
2353 }
2354
2355 return 0;
2356}
2357
2358static int pmbus_find_attributes(struct i2c_client *client,
2359 struct pmbus_data *data)
2360{
2361 int ret;
2362
2363 /* Voltage sensors */
2364 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2365 ARRAY_SIZE(voltage_attributes));
2366 if (ret)
2367 return ret;
2368
2369 /* Current sensors */
2370 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2371 ARRAY_SIZE(current_attributes));
2372 if (ret)
2373 return ret;
2374
2375 /* Power sensors */
2376 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2377 ARRAY_SIZE(power_attributes));
2378 if (ret)
2379 return ret;
2380
2381 /* Temperature sensors */
2382 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2383 ARRAY_SIZE(temp_attributes));
2384 if (ret)
2385 return ret;
2386
2387 /* Fans */
2388 ret = pmbus_add_fan_attributes(client, data);
2389 if (ret)
2390 return ret;
2391
2392 ret = pmbus_add_samples_attributes(client, data);
2393 return ret;
2394}
2395
2396/*
2397 * The pmbus_class_attr_map structure maps one sensor class to
2398 * it's corresponding sensor attributes array.
2399 */
2400struct pmbus_class_attr_map {
2401 enum pmbus_sensor_classes class;
2402 int nattr;
2403 const struct pmbus_sensor_attr *attr;
2404};
2405
2406static const struct pmbus_class_attr_map class_attr_map[] = {
2407 {
2408 .class = PSC_VOLTAGE_IN,
2409 .attr = voltage_attributes,
2410 .nattr = ARRAY_SIZE(voltage_attributes),
2411 }, {
2412 .class = PSC_VOLTAGE_OUT,
2413 .attr = voltage_attributes,
2414 .nattr = ARRAY_SIZE(voltage_attributes),
2415 }, {
2416 .class = PSC_CURRENT_IN,
2417 .attr = current_attributes,
2418 .nattr = ARRAY_SIZE(current_attributes),
2419 }, {
2420 .class = PSC_CURRENT_OUT,
2421 .attr = current_attributes,
2422 .nattr = ARRAY_SIZE(current_attributes),
2423 }, {
2424 .class = PSC_POWER,
2425 .attr = power_attributes,
2426 .nattr = ARRAY_SIZE(power_attributes),
2427 }, {
2428 .class = PSC_TEMPERATURE,
2429 .attr = temp_attributes,
2430 .nattr = ARRAY_SIZE(temp_attributes),
2431 }
2432};
2433
2434/*
2435 * Read the coefficients for direct mode.
2436 */
2437static int pmbus_read_coefficients(struct i2c_client *client,
2438 struct pmbus_driver_info *info,
2439 const struct pmbus_sensor_attr *attr)
2440{
2441 int rv;
2442 union i2c_smbus_data data;
2443 enum pmbus_sensor_classes class = attr->class;
2444 s8 R;
2445 s16 m, b;
2446
2447 data.block[0] = 2;
2448 data.block[1] = attr->reg;
2449 data.block[2] = 0x01;
2450
2451 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2452 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2453 I2C_SMBUS_BLOCK_PROC_CALL, &data);
2454
2455 if (rv < 0)
2456 return rv;
2457
2458 if (data.block[0] != 5)
2459 return -EIO;
2460
2461 m = data.block[1] | (data.block[2] << 8);
2462 b = data.block[3] | (data.block[4] << 8);
2463 R = data.block[5];
2464 info->m[class] = m;
2465 info->b[class] = b;
2466 info->R[class] = R;
2467
2468 return rv;
2469}
2470
2471static int pmbus_init_coefficients(struct i2c_client *client,
2472 struct pmbus_driver_info *info)
2473{
2474 int i, n, ret = -EINVAL;
2475 const struct pmbus_class_attr_map *map;
2476 const struct pmbus_sensor_attr *attr;
2477
2478 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2479 map = &class_attr_map[i];
2480 if (info->format[map->class] != direct)
2481 continue;
2482 for (n = 0; n < map->nattr; n++) {
2483 attr = &map->attr[n];
2484 if (map->class != attr->class)
2485 continue;
2486 ret = pmbus_read_coefficients(client, info, attr);
2487 if (ret >= 0)
2488 break;
2489 }
2490 if (ret < 0) {
2491 dev_err(&client->dev,
2492 "No coefficients found for sensor class %d\n",
2493 map->class);
2494 return -EINVAL;
2495 }
2496 }
2497
2498 return 0;
2499}
2500
2501/*
2502 * Identify chip parameters.
2503 * This function is called for all chips.
2504 */
2505static int pmbus_identify_common(struct i2c_client *client,
2506 struct pmbus_data *data, int page)
2507{
2508 int vout_mode = -1;
2509
2510 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2511 vout_mode = _pmbus_read_byte_data(client, page,
2512 PMBUS_VOUT_MODE);
2513 if (vout_mode >= 0 && vout_mode != 0xff) {
2514 /*
2515 * Not all chips support the VOUT_MODE command,
2516 * so a failure to read it is not an error.
2517 */
2518 switch (vout_mode >> 5) {
2519 case 0: /* linear mode */
2520 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2521 return -ENODEV;
2522
2523 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2524 break;
2525 case 1: /* VID mode */
2526 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2527 return -ENODEV;
2528 break;
2529 case 2: /* direct mode */
2530 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2531 return -ENODEV;
2532 break;
2533 case 3: /* ieee 754 half precision */
2534 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2535 return -ENODEV;
2536 break;
2537 default:
2538 return -ENODEV;
2539 }
2540 }
2541
2542 pmbus_clear_fault_page(client, page);
2543 return 0;
2544}
2545
2546static int pmbus_read_status_byte(struct i2c_client *client, int page)
2547{
2548 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2549}
2550
2551static int pmbus_read_status_word(struct i2c_client *client, int page)
2552{
2553 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2554}
2555
2556/* PEC attribute support */
2557
2558static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2559 char *buf)
2560{
2561 struct i2c_client *client = to_i2c_client(dev);
2562
2563 return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2564}
2565
2566static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2567 const char *buf, size_t count)
2568{
2569 struct i2c_client *client = to_i2c_client(dev);
2570 bool enable;
2571 int err;
2572
2573 err = kstrtobool(buf, &enable);
2574 if (err < 0)
2575 return err;
2576
2577 if (enable)
2578 client->flags |= I2C_CLIENT_PEC;
2579 else
2580 client->flags &= ~I2C_CLIENT_PEC;
2581
2582 return count;
2583}
2584
2585static DEVICE_ATTR_RW(pec);
2586
2587static void pmbus_remove_pec(void *dev)
2588{
2589 device_remove_file(dev, &dev_attr_pec);
2590}
2591
2592static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2593 struct pmbus_driver_info *info)
2594{
2595 struct device *dev = &client->dev;
2596 int page, ret;
2597
2598 /*
2599 * Figure out if PEC is enabled before accessing any other register.
2600 * Make sure PEC is disabled, will be enabled later if needed.
2601 */
2602 client->flags &= ~I2C_CLIENT_PEC;
2603
2604 /* Enable PEC if the controller and bus supports it */
2605 if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2606 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2607 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2608 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2609 client->flags |= I2C_CLIENT_PEC;
2610 }
2611 }
2612
2613 /*
2614 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2615 * to use PMBUS_STATUS_BYTE instead if that is the case.
2616 * Bail out if both registers are not supported.
2617 */
2618 data->read_status = pmbus_read_status_word;
2619 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2620 if (ret < 0 || ret == 0xffff) {
2621 data->read_status = pmbus_read_status_byte;
2622 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2623 if (ret < 0 || ret == 0xff) {
2624 dev_err(dev, "PMBus status register not found\n");
2625 return -ENODEV;
2626 }
2627 } else {
2628 data->has_status_word = true;
2629 }
2630
2631 /*
2632 * Check if the chip is write protected. If it is, we can not clear
2633 * faults, and we should not try it. Also, in that case, writes into
2634 * limit registers need to be disabled.
2635 */
2636 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2637 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2638 if (ret > 0 && (ret & PB_WP_ANY))
2639 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2640 }
2641
2642 if (data->info->pages)
2643 pmbus_clear_faults(client);
2644 else
2645 pmbus_clear_fault_page(client, -1);
2646
2647 if (info->identify) {
2648 ret = (*info->identify)(client, info);
2649 if (ret < 0) {
2650 dev_err(dev, "Chip identification failed\n");
2651 return ret;
2652 }
2653 }
2654
2655 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2656 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2657 return -ENODEV;
2658 }
2659
2660 for (page = 0; page < info->pages; page++) {
2661 ret = pmbus_identify_common(client, data, page);
2662 if (ret < 0) {
2663 dev_err(dev, "Failed to identify chip capabilities\n");
2664 return ret;
2665 }
2666 }
2667
2668 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2669 if (!i2c_check_functionality(client->adapter,
2670 I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2671 return -ENODEV;
2672
2673 ret = pmbus_init_coefficients(client, info);
2674 if (ret < 0)
2675 return ret;
2676 }
2677
2678 if (client->flags & I2C_CLIENT_PEC) {
2679 /*
2680 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2681 * chip support PEC. Add 'pec' attribute to client device to let
2682 * the user control it.
2683 */
2684 ret = device_create_file(dev, &dev_attr_pec);
2685 if (ret)
2686 return ret;
2687 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2688 if (ret)
2689 return ret;
2690 }
2691
2692 return 0;
2693}
2694
2695#if IS_ENABLED(CONFIG_REGULATOR)
2696static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2697{
2698 struct device *dev = rdev_get_dev(rdev);
2699 struct i2c_client *client = to_i2c_client(dev->parent);
2700 struct pmbus_data *data = i2c_get_clientdata(client);
2701 u8 page = rdev_get_id(rdev);
2702 int ret;
2703
2704 mutex_lock(&data->update_lock);
2705 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2706 mutex_unlock(&data->update_lock);
2707
2708 if (ret < 0)
2709 return ret;
2710
2711 return !!(ret & PB_OPERATION_CONTROL_ON);
2712}
2713
2714static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2715{
2716 struct device *dev = rdev_get_dev(rdev);
2717 struct i2c_client *client = to_i2c_client(dev->parent);
2718 struct pmbus_data *data = i2c_get_clientdata(client);
2719 u8 page = rdev_get_id(rdev);
2720 int ret;
2721
2722 mutex_lock(&data->update_lock);
2723 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2724 PB_OPERATION_CONTROL_ON,
2725 enable ? PB_OPERATION_CONTROL_ON : 0);
2726 mutex_unlock(&data->update_lock);
2727
2728 return ret;
2729}
2730
2731static int pmbus_regulator_enable(struct regulator_dev *rdev)
2732{
2733 return _pmbus_regulator_on_off(rdev, 1);
2734}
2735
2736static int pmbus_regulator_disable(struct regulator_dev *rdev)
2737{
2738 return _pmbus_regulator_on_off(rdev, 0);
2739}
2740
2741/* A PMBus status flag and the corresponding REGULATOR_ERROR_* flag */
2742struct pmbus_regulator_status_assoc {
2743 int pflag, rflag;
2744};
2745
2746/* PMBus->regulator bit mappings for a PMBus status register */
2747struct pmbus_regulator_status_category {
2748 int func;
2749 int reg;
2750 const struct pmbus_regulator_status_assoc *bits; /* zero-terminated */
2751};
2752
2753static const struct pmbus_regulator_status_category pmbus_regulator_flag_map[] = {
2754 {
2755 .func = PMBUS_HAVE_STATUS_VOUT,
2756 .reg = PMBUS_STATUS_VOUT,
2757 .bits = (const struct pmbus_regulator_status_assoc[]) {
2758 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN },
2759 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE },
2760 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN },
2761 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT },
2762 { },
2763 },
2764 }, {
2765 .func = PMBUS_HAVE_STATUS_IOUT,
2766 .reg = PMBUS_STATUS_IOUT,
2767 .bits = (const struct pmbus_regulator_status_assoc[]) {
2768 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN },
2769 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT },
2770 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT },
2771 { },
2772 },
2773 }, {
2774 .func = PMBUS_HAVE_STATUS_TEMP,
2775 .reg = PMBUS_STATUS_TEMPERATURE,
2776 .bits = (const struct pmbus_regulator_status_assoc[]) {
2777 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN },
2778 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP },
2779 { },
2780 },
2781 },
2782};
2783
2784static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
2785{
2786 int i, status;
2787 const struct pmbus_regulator_status_category *cat;
2788 const struct pmbus_regulator_status_assoc *bit;
2789 struct device *dev = rdev_get_dev(rdev);
2790 struct i2c_client *client = to_i2c_client(dev->parent);
2791 struct pmbus_data *data = i2c_get_clientdata(client);
2792 u8 page = rdev_get_id(rdev);
2793 int func = data->info->func[page];
2794
2795 *flags = 0;
2796
2797 mutex_lock(&data->update_lock);
2798
2799 for (i = 0; i < ARRAY_SIZE(pmbus_regulator_flag_map); i++) {
2800 cat = &pmbus_regulator_flag_map[i];
2801 if (!(func & cat->func))
2802 continue;
2803
2804 status = _pmbus_read_byte_data(client, page, cat->reg);
2805 if (status < 0) {
2806 mutex_unlock(&data->update_lock);
2807 return status;
2808 }
2809
2810 for (bit = cat->bits; bit->pflag; bit++) {
2811 if (status & bit->pflag)
2812 *flags |= bit->rflag;
2813 }
2814 }
2815
2816 /*
2817 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2818 * bits. Some of the other bits are tempting (especially for cases
2819 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2820 * functionality), but there's an unfortunate ambiguity in that
2821 * they're defined as indicating a fault *or* a warning, so we can't
2822 * easily determine whether to report REGULATOR_ERROR_<foo> or
2823 * REGULATOR_ERROR_<foo>_WARN.
2824 */
2825 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2826 mutex_unlock(&data->update_lock);
2827 if (status < 0)
2828 return status;
2829
2830 if (pmbus_regulator_is_enabled(rdev)) {
2831 if (status & PB_STATUS_OFF)
2832 *flags |= REGULATOR_ERROR_FAIL;
2833
2834 if (status & PB_STATUS_POWER_GOOD_N)
2835 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2836 }
2837 /*
2838 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2839 * defined strictly as fault indicators (not warnings).
2840 */
2841 if (status & PB_STATUS_IOUT_OC)
2842 *flags |= REGULATOR_ERROR_OVER_CURRENT;
2843 if (status & PB_STATUS_VOUT_OV)
2844 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2845
2846 /*
2847 * If we haven't discovered any thermal faults or warnings via
2848 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2849 * a (conservative) best-effort interpretation.
2850 */
2851 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2852 (status & PB_STATUS_TEMPERATURE))
2853 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2854
2855 return 0;
2856}
2857
2858static int pmbus_regulator_get_status(struct regulator_dev *rdev)
2859{
2860 struct device *dev = rdev_get_dev(rdev);
2861 struct i2c_client *client = to_i2c_client(dev->parent);
2862 struct pmbus_data *data = i2c_get_clientdata(client);
2863 u8 page = rdev_get_id(rdev);
2864 int status, ret;
2865
2866 mutex_lock(&data->update_lock);
2867 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2868 if (status < 0) {
2869 ret = status;
2870 goto unlock;
2871 }
2872
2873 if (status & PB_STATUS_OFF) {
2874 ret = REGULATOR_STATUS_OFF;
2875 goto unlock;
2876 }
2877
2878 /* If regulator is ON & reports power good then return ON */
2879 if (!(status & PB_STATUS_POWER_GOOD_N)) {
2880 ret = REGULATOR_STATUS_ON;
2881 goto unlock;
2882 }
2883
2884 ret = pmbus_regulator_get_error_flags(rdev, &status);
2885 if (ret)
2886 goto unlock;
2887
2888 if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
2889 REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
2890 ret = REGULATOR_STATUS_ERROR;
2891 goto unlock;
2892 }
2893
2894 ret = REGULATOR_STATUS_UNDEFINED;
2895
2896unlock:
2897 mutex_unlock(&data->update_lock);
2898 return ret;
2899}
2900
2901static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
2902{
2903 struct pmbus_data *data = i2c_get_clientdata(client);
2904 struct pmbus_sensor s = {
2905 .page = page,
2906 .class = PSC_VOLTAGE_OUT,
2907 .convert = true,
2908 .data = -1,
2909 };
2910
2911 if (data->vout_low[page] < 0) {
2912 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
2913 s.data = _pmbus_read_word_data(client, page, 0xff,
2914 PMBUS_MFR_VOUT_MIN);
2915 if (s.data < 0) {
2916 s.data = _pmbus_read_word_data(client, page, 0xff,
2917 PMBUS_VOUT_MARGIN_LOW);
2918 if (s.data < 0)
2919 return s.data;
2920 }
2921 data->vout_low[page] = pmbus_reg2data(data, &s);
2922 }
2923
2924 return data->vout_low[page];
2925}
2926
2927static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
2928{
2929 struct pmbus_data *data = i2c_get_clientdata(client);
2930 struct pmbus_sensor s = {
2931 .page = page,
2932 .class = PSC_VOLTAGE_OUT,
2933 .convert = true,
2934 .data = -1,
2935 };
2936
2937 if (data->vout_high[page] < 0) {
2938 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
2939 s.data = _pmbus_read_word_data(client, page, 0xff,
2940 PMBUS_MFR_VOUT_MAX);
2941 if (s.data < 0) {
2942 s.data = _pmbus_read_word_data(client, page, 0xff,
2943 PMBUS_VOUT_MARGIN_HIGH);
2944 if (s.data < 0)
2945 return s.data;
2946 }
2947 data->vout_high[page] = pmbus_reg2data(data, &s);
2948 }
2949
2950 return data->vout_high[page];
2951}
2952
2953static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
2954{
2955 struct device *dev = rdev_get_dev(rdev);
2956 struct i2c_client *client = to_i2c_client(dev->parent);
2957 struct pmbus_data *data = i2c_get_clientdata(client);
2958 struct pmbus_sensor s = {
2959 .page = rdev_get_id(rdev),
2960 .class = PSC_VOLTAGE_OUT,
2961 .convert = true,
2962 };
2963
2964 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
2965 if (s.data < 0)
2966 return s.data;
2967
2968 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
2969}
2970
2971static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
2972 int max_uv, unsigned int *selector)
2973{
2974 struct device *dev = rdev_get_dev(rdev);
2975 struct i2c_client *client = to_i2c_client(dev->parent);
2976 struct pmbus_data *data = i2c_get_clientdata(client);
2977 struct pmbus_sensor s = {
2978 .page = rdev_get_id(rdev),
2979 .class = PSC_VOLTAGE_OUT,
2980 .convert = true,
2981 .data = -1,
2982 };
2983 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
2984 int low, high;
2985
2986 *selector = 0;
2987
2988 low = pmbus_regulator_get_low_margin(client, s.page);
2989 if (low < 0)
2990 return low;
2991
2992 high = pmbus_regulator_get_high_margin(client, s.page);
2993 if (high < 0)
2994 return high;
2995
2996 /* Make sure we are within margins */
2997 if (low > val)
2998 val = low;
2999 if (high < val)
3000 val = high;
3001
3002 val = pmbus_data2reg(data, &s, val);
3003
3004 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3005}
3006
3007static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3008 unsigned int selector)
3009{
3010 struct device *dev = rdev_get_dev(rdev);
3011 struct i2c_client *client = to_i2c_client(dev->parent);
3012 int val, low, high;
3013
3014 if (selector >= rdev->desc->n_voltages ||
3015 selector < rdev->desc->linear_min_sel)
3016 return -EINVAL;
3017
3018 selector -= rdev->desc->linear_min_sel;
3019 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3020 (rdev->desc->uV_step * selector), 1000); /* convert to mV */
3021
3022 low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3023 if (low < 0)
3024 return low;
3025
3026 high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3027 if (high < 0)
3028 return high;
3029
3030 if (val >= low && val <= high)
3031 return val * 1000; /* unit is uV */
3032
3033 return 0;
3034}
3035
3036const struct regulator_ops pmbus_regulator_ops = {
3037 .enable = pmbus_regulator_enable,
3038 .disable = pmbus_regulator_disable,
3039 .is_enabled = pmbus_regulator_is_enabled,
3040 .get_error_flags = pmbus_regulator_get_error_flags,
3041 .get_status = pmbus_regulator_get_status,
3042 .get_voltage = pmbus_regulator_get_voltage,
3043 .set_voltage = pmbus_regulator_set_voltage,
3044 .list_voltage = pmbus_regulator_list_voltage,
3045};
3046EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
3047
3048static int pmbus_regulator_register(struct pmbus_data *data)
3049{
3050 struct device *dev = data->dev;
3051 const struct pmbus_driver_info *info = data->info;
3052 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3053 struct regulator_dev *rdev;
3054 int i;
3055
3056 for (i = 0; i < info->num_regulators; i++) {
3057 struct regulator_config config = { };
3058
3059 config.dev = dev;
3060 config.driver_data = data;
3061
3062 if (pdata && pdata->reg_init_data)
3063 config.init_data = &pdata->reg_init_data[i];
3064
3065 rdev = devm_regulator_register(dev, &info->reg_desc[i],
3066 &config);
3067 if (IS_ERR(rdev))
3068 return dev_err_probe(dev, PTR_ERR(rdev),
3069 "Failed to register %s regulator\n",
3070 info->reg_desc[i].name);
3071 }
3072
3073 return 0;
3074}
3075#else
3076static int pmbus_regulator_register(struct pmbus_data *data)
3077{
3078 return 0;
3079}
3080#endif
3081
3082static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
3083
3084#if IS_ENABLED(CONFIG_DEBUG_FS)
3085static int pmbus_debugfs_get(void *data, u64 *val)
3086{
3087 int rc;
3088 struct pmbus_debugfs_entry *entry = data;
3089
3090 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3091 if (rc < 0)
3092 return rc;
3093
3094 *val = rc;
3095
3096 return 0;
3097}
3098DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3099 "0x%02llx\n");
3100
3101static int pmbus_debugfs_get_status(void *data, u64 *val)
3102{
3103 int rc;
3104 struct pmbus_debugfs_entry *entry = data;
3105 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3106
3107 rc = pdata->read_status(entry->client, entry->page);
3108 if (rc < 0)
3109 return rc;
3110
3111 *val = rc;
3112
3113 return 0;
3114}
3115DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3116 NULL, "0x%04llx\n");
3117
3118static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3119 size_t count, loff_t *ppos)
3120{
3121 int rc;
3122 struct pmbus_debugfs_entry *entry = file->private_data;
3123 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3124
3125 rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3126 data);
3127 if (rc < 0)
3128 return rc;
3129
3130 /* Add newline at the end of a read data */
3131 data[rc] = '\n';
3132
3133 /* Include newline into the length */
3134 rc += 1;
3135
3136 return simple_read_from_buffer(buf, count, ppos, data, rc);
3137}
3138
3139static const struct file_operations pmbus_debugfs_ops_mfr = {
3140 .llseek = noop_llseek,
3141 .read = pmbus_debugfs_mfr_read,
3142 .write = NULL,
3143 .open = simple_open,
3144};
3145
3146static void pmbus_remove_debugfs(void *data)
3147{
3148 struct dentry *entry = data;
3149
3150 debugfs_remove_recursive(entry);
3151}
3152
3153static int pmbus_init_debugfs(struct i2c_client *client,
3154 struct pmbus_data *data)
3155{
3156 int i, idx = 0;
3157 char name[PMBUS_NAME_SIZE];
3158 struct pmbus_debugfs_entry *entries;
3159
3160 if (!pmbus_debugfs_dir)
3161 return -ENODEV;
3162
3163 /*
3164 * Create the debugfs directory for this device. Use the hwmon device
3165 * name to avoid conflicts (hwmon numbers are globally unique).
3166 */
3167 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3168 pmbus_debugfs_dir);
3169 if (IS_ERR_OR_NULL(data->debugfs)) {
3170 data->debugfs = NULL;
3171 return -ENODEV;
3172 }
3173
3174 /*
3175 * Allocate the max possible entries we need.
3176 * 6 entries device-specific
3177 * 10 entries page-specific
3178 */
3179 entries = devm_kcalloc(data->dev,
3180 6 + data->info->pages * 10, sizeof(*entries),
3181 GFP_KERNEL);
3182 if (!entries)
3183 return -ENOMEM;
3184
3185 /*
3186 * Add device-specific entries.
3187 * Please note that the PMBUS standard allows all registers to be
3188 * page-specific.
3189 * To reduce the number of debugfs entries for devices with many pages
3190 * assume that values of the following registers are the same for all
3191 * pages and report values only for page 0.
3192 */
3193 if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3194 entries[idx].client = client;
3195 entries[idx].page = 0;
3196 entries[idx].reg = PMBUS_MFR_ID;
3197 debugfs_create_file("mfr_id", 0444, data->debugfs,
3198 &entries[idx++],
3199 &pmbus_debugfs_ops_mfr);
3200 }
3201
3202 if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3203 entries[idx].client = client;
3204 entries[idx].page = 0;
3205 entries[idx].reg = PMBUS_MFR_MODEL;
3206 debugfs_create_file("mfr_model", 0444, data->debugfs,
3207 &entries[idx++],
3208 &pmbus_debugfs_ops_mfr);
3209 }
3210
3211 if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3212 entries[idx].client = client;
3213 entries[idx].page = 0;
3214 entries[idx].reg = PMBUS_MFR_REVISION;
3215 debugfs_create_file("mfr_revision", 0444, data->debugfs,
3216 &entries[idx++],
3217 &pmbus_debugfs_ops_mfr);
3218 }
3219
3220 if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3221 entries[idx].client = client;
3222 entries[idx].page = 0;
3223 entries[idx].reg = PMBUS_MFR_LOCATION;
3224 debugfs_create_file("mfr_location", 0444, data->debugfs,
3225 &entries[idx++],
3226 &pmbus_debugfs_ops_mfr);
3227 }
3228
3229 if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3230 entries[idx].client = client;
3231 entries[idx].page = 0;
3232 entries[idx].reg = PMBUS_MFR_DATE;
3233 debugfs_create_file("mfr_date", 0444, data->debugfs,
3234 &entries[idx++],
3235 &pmbus_debugfs_ops_mfr);
3236 }
3237
3238 if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3239 entries[idx].client = client;
3240 entries[idx].page = 0;
3241 entries[idx].reg = PMBUS_MFR_SERIAL;
3242 debugfs_create_file("mfr_serial", 0444, data->debugfs,
3243 &entries[idx++],
3244 &pmbus_debugfs_ops_mfr);
3245 }
3246
3247 /* Add page specific entries */
3248 for (i = 0; i < data->info->pages; ++i) {
3249 /* Check accessibility of status register if it's not page 0 */
3250 if (!i || pmbus_check_status_register(client, i)) {
3251 /* No need to set reg as we have special read op. */
3252 entries[idx].client = client;
3253 entries[idx].page = i;
3254 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3255 debugfs_create_file(name, 0444, data->debugfs,
3256 &entries[idx++],
3257 &pmbus_debugfs_ops_status);
3258 }
3259
3260 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3261 entries[idx].client = client;
3262 entries[idx].page = i;
3263 entries[idx].reg = PMBUS_STATUS_VOUT;
3264 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3265 debugfs_create_file(name, 0444, data->debugfs,
3266 &entries[idx++],
3267 &pmbus_debugfs_ops);
3268 }
3269
3270 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3271 entries[idx].client = client;
3272 entries[idx].page = i;
3273 entries[idx].reg = PMBUS_STATUS_IOUT;
3274 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3275 debugfs_create_file(name, 0444, data->debugfs,
3276 &entries[idx++],
3277 &pmbus_debugfs_ops);
3278 }
3279
3280 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3281 entries[idx].client = client;
3282 entries[idx].page = i;
3283 entries[idx].reg = PMBUS_STATUS_INPUT;
3284 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3285 debugfs_create_file(name, 0444, data->debugfs,
3286 &entries[idx++],
3287 &pmbus_debugfs_ops);
3288 }
3289
3290 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3291 entries[idx].client = client;
3292 entries[idx].page = i;
3293 entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3294 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3295 debugfs_create_file(name, 0444, data->debugfs,
3296 &entries[idx++],
3297 &pmbus_debugfs_ops);
3298 }
3299
3300 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3301 entries[idx].client = client;
3302 entries[idx].page = i;
3303 entries[idx].reg = PMBUS_STATUS_CML;
3304 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3305 debugfs_create_file(name, 0444, data->debugfs,
3306 &entries[idx++],
3307 &pmbus_debugfs_ops);
3308 }
3309
3310 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3311 entries[idx].client = client;
3312 entries[idx].page = i;
3313 entries[idx].reg = PMBUS_STATUS_OTHER;
3314 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3315 debugfs_create_file(name, 0444, data->debugfs,
3316 &entries[idx++],
3317 &pmbus_debugfs_ops);
3318 }
3319
3320 if (pmbus_check_byte_register(client, i,
3321 PMBUS_STATUS_MFR_SPECIFIC)) {
3322 entries[idx].client = client;
3323 entries[idx].page = i;
3324 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3325 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3326 debugfs_create_file(name, 0444, data->debugfs,
3327 &entries[idx++],
3328 &pmbus_debugfs_ops);
3329 }
3330
3331 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3332 entries[idx].client = client;
3333 entries[idx].page = i;
3334 entries[idx].reg = PMBUS_STATUS_FAN_12;
3335 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3336 debugfs_create_file(name, 0444, data->debugfs,
3337 &entries[idx++],
3338 &pmbus_debugfs_ops);
3339 }
3340
3341 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3342 entries[idx].client = client;
3343 entries[idx].page = i;
3344 entries[idx].reg = PMBUS_STATUS_FAN_34;
3345 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3346 debugfs_create_file(name, 0444, data->debugfs,
3347 &entries[idx++],
3348 &pmbus_debugfs_ops);
3349 }
3350 }
3351
3352 return devm_add_action_or_reset(data->dev,
3353 pmbus_remove_debugfs, data->debugfs);
3354}
3355#else
3356static int pmbus_init_debugfs(struct i2c_client *client,
3357 struct pmbus_data *data)
3358{
3359 return 0;
3360}
3361#endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
3362
3363int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3364{
3365 struct device *dev = &client->dev;
3366 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3367 struct pmbus_data *data;
3368 size_t groups_num = 0;
3369 int ret;
3370 int i;
3371 char *name;
3372
3373 if (!info)
3374 return -ENODEV;
3375
3376 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3377 | I2C_FUNC_SMBUS_BYTE_DATA
3378 | I2C_FUNC_SMBUS_WORD_DATA))
3379 return -ENODEV;
3380
3381 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3382 if (!data)
3383 return -ENOMEM;
3384
3385 if (info->groups)
3386 while (info->groups[groups_num])
3387 groups_num++;
3388
3389 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3390 GFP_KERNEL);
3391 if (!data->groups)
3392 return -ENOMEM;
3393
3394 i2c_set_clientdata(client, data);
3395 mutex_init(&data->update_lock);
3396 data->dev = dev;
3397
3398 if (pdata)
3399 data->flags = pdata->flags;
3400 data->info = info;
3401 data->currpage = -1;
3402 data->currphase = -1;
3403
3404 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3405 data->vout_low[i] = -1;
3406 data->vout_high[i] = -1;
3407 }
3408
3409 ret = pmbus_init_common(client, data, info);
3410 if (ret < 0)
3411 return ret;
3412
3413 ret = pmbus_find_attributes(client, data);
3414 if (ret)
3415 return ret;
3416
3417 /*
3418 * If there are no attributes, something is wrong.
3419 * Bail out instead of trying to register nothing.
3420 */
3421 if (!data->num_attributes) {
3422 dev_err(dev, "No attributes found\n");
3423 return -ENODEV;
3424 }
3425
3426 name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3427 if (!name)
3428 return -ENOMEM;
3429 strreplace(name, '-', '_');
3430
3431 data->groups[0] = &data->group;
3432 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3433 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3434 name, data, data->groups);
3435 if (IS_ERR(data->hwmon_dev)) {
3436 dev_err(dev, "Failed to register hwmon device\n");
3437 return PTR_ERR(data->hwmon_dev);
3438 }
3439
3440 ret = pmbus_regulator_register(data);
3441 if (ret)
3442 return ret;
3443
3444 ret = pmbus_init_debugfs(client, data);
3445 if (ret)
3446 dev_warn(dev, "Failed to register debugfs\n");
3447
3448 return 0;
3449}
3450EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
3451
3452struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3453{
3454 struct pmbus_data *data = i2c_get_clientdata(client);
3455
3456 return data->debugfs;
3457}
3458EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
3459
3460static int __init pmbus_core_init(void)
3461{
3462 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3463 if (IS_ERR(pmbus_debugfs_dir))
3464 pmbus_debugfs_dir = NULL;
3465
3466 return 0;
3467}
3468
3469static void __exit pmbus_core_exit(void)
3470{
3471 debugfs_remove_recursive(pmbus_debugfs_dir);
3472}
3473
3474module_init(pmbus_core_init);
3475module_exit(pmbus_core_exit);
3476
3477MODULE_AUTHOR("Guenter Roeck");
3478MODULE_DESCRIPTION("PMBus core driver");
3479MODULE_LICENSE("GPL");