Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Hardware monitoring driver for PMBus devices
   3 *
   4 * Copyright (c) 2010, 2011 Ericsson AB.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
 
  21#include <linux/kernel.h>
 
  22#include <linux/module.h>
  23#include <linux/init.h>
  24#include <linux/err.h>
  25#include <linux/slab.h>
  26#include <linux/i2c.h>
  27#include <linux/hwmon.h>
  28#include <linux/hwmon-sysfs.h>
  29#include <linux/delay.h>
  30#include <linux/i2c/pmbus.h>
 
 
 
  31#include "pmbus.h"
  32
  33/*
  34 * Constants needed to determine number of sensors, booleans, and labels.
  35 */
  36#define PMBUS_MAX_INPUT_SENSORS		22	/* 10*volt, 7*curr, 5*power */
  37#define PMBUS_VOUT_SENSORS_PER_PAGE	9	/* input, min, max, lcrit,
  38						   crit, lowest, highest, avg,
  39						   reset */
  40#define PMBUS_IOUT_SENSORS_PER_PAGE	8	/* input, min, max, crit,
  41						   lowest, highest, avg,
  42						   reset */
  43#define PMBUS_POUT_SENSORS_PER_PAGE	4	/* input, cap, max, crit */
  44#define PMBUS_MAX_SENSORS_PER_FAN	1	/* input */
  45#define PMBUS_MAX_SENSORS_PER_TEMP	8	/* input, min, max, lcrit,
  46						   crit, lowest, highest,
  47						   reset */
  48
  49#define PMBUS_MAX_INPUT_BOOLEANS	7	/* v: min_alarm, max_alarm,
  50						   lcrit_alarm, crit_alarm;
  51						   c: alarm, crit_alarm;
  52						   p: crit_alarm */
  53#define PMBUS_VOUT_BOOLEANS_PER_PAGE	4	/* min_alarm, max_alarm,
  54						   lcrit_alarm, crit_alarm */
  55#define PMBUS_IOUT_BOOLEANS_PER_PAGE	3	/* alarm, lcrit_alarm,
  56						   crit_alarm */
  57#define PMBUS_POUT_BOOLEANS_PER_PAGE	2	/* alarm, crit_alarm */
  58#define PMBUS_MAX_BOOLEANS_PER_FAN	2	/* alarm, fault */
  59#define PMBUS_MAX_BOOLEANS_PER_TEMP	4	/* min_alarm, max_alarm,
  60						   lcrit_alarm, crit_alarm */
  61
  62#define PMBUS_MAX_INPUT_LABELS		4	/* vin, vcap, iin, pin */
  63
  64/*
  65 * status, status_vout, status_iout, status_fans, status_fan34, and status_temp
  66 * are paged. status_input is unpaged.
  67 */
  68#define PB_NUM_STATUS_REG	(PMBUS_PAGES * 6 + 1)
  69
  70/*
  71 * Index into status register array, per status register group
  72 */
  73#define PB_STATUS_BASE		0
  74#define PB_STATUS_VOUT_BASE	(PB_STATUS_BASE + PMBUS_PAGES)
  75#define PB_STATUS_IOUT_BASE	(PB_STATUS_VOUT_BASE + PMBUS_PAGES)
  76#define PB_STATUS_FAN_BASE	(PB_STATUS_IOUT_BASE + PMBUS_PAGES)
  77#define PB_STATUS_FAN34_BASE	(PB_STATUS_FAN_BASE + PMBUS_PAGES)
  78#define PB_STATUS_INPUT_BASE	(PB_STATUS_FAN34_BASE + PMBUS_PAGES)
  79#define PB_STATUS_TEMP_BASE	(PB_STATUS_INPUT_BASE + 1)
  80
  81#define PMBUS_NAME_SIZE		24
  82
  83struct pmbus_sensor {
 
  84	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
  85	struct sensor_device_attribute attribute;
  86	u8 page;		/* page number */
 
  87	u16 reg;		/* register */
  88	enum pmbus_sensor_classes class;	/* sensor class */
  89	bool update;		/* runtime sensor update needed */
 
  90	int data;		/* Sensor data.
  91				   Negative if there was a read error */
  92};
 
 
  93
  94struct pmbus_boolean {
  95	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
  96	struct sensor_device_attribute attribute;
 
 
  97};
 
 
  98
  99struct pmbus_label {
 100	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
 101	struct sensor_device_attribute attribute;
 102	char label[PMBUS_NAME_SIZE];	/* label */
 103};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105struct pmbus_data {
 
 106	struct device *hwmon_dev;
 
 107
 108	u32 flags;		/* from platform data */
 109
 110	int exponent;		/* linear mode: exponent for output voltages */
 
 111
 112	const struct pmbus_driver_info *info;
 113
 114	int max_attributes;
 115	int num_attributes;
 116	struct attribute **attributes;
 117	struct attribute_group group;
 
 
 118
 119	/*
 120	 * Sensors cover both sensor and limit registers.
 121	 */
 122	int max_sensors;
 123	int num_sensors;
 124	struct pmbus_sensor *sensors;
 125	/*
 126	 * Booleans are used for alarms.
 127	 * Values are determined from status registers.
 128	 */
 129	int max_booleans;
 130	int num_booleans;
 131	struct pmbus_boolean *booleans;
 132	/*
 133	 * Labels are used to map generic names (e.g., "in1")
 134	 * to PMBus specific names (e.g., "vin" or "vout1").
 135	 */
 136	int max_labels;
 137	int num_labels;
 138	struct pmbus_label *labels;
 139
 140	struct mutex update_lock;
 141	bool valid;
 142	unsigned long last_updated;	/* in jiffies */
 143
 144	/*
 145	 * A single status register covers multiple attributes,
 146	 * so we keep them all together.
 147	 */
 148	u8 status[PB_NUM_STATUS_REG];
 149
 150	u8 currpage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151};
 152
 153int pmbus_set_page(struct i2c_client *client, u8 page)
 
 
 
 
 
 
 
 154{
 155	struct pmbus_data *data = i2c_get_clientdata(client);
 156	int rv = 0;
 157	int newpage;
 158
 159	if (page != data->currpage) {
 160		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
 161		newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
 162		if (newpage != page)
 163			rv = -EINVAL;
 164		else
 165			data->currpage = page;
 166	}
 167	return rv;
 168}
 169EXPORT_SYMBOL_GPL(pmbus_set_page);
 170
 171int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 172{
 
 
 
 
 
 
 
 
 
 
 
 
 173	int rv;
 174
 175	if (page >= 0) {
 176		rv = pmbus_set_page(client, page);
 
 
 
 
 177		if (rv < 0)
 178			return rv;
 
 
 
 
 
 
 
 179	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180
 181	return i2c_smbus_write_byte(client, value);
 182}
 183EXPORT_SYMBOL_GPL(pmbus_write_byte);
 184
 185/*
 186 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
 187 * a device specific mapping funcion exists and calls it if necessary.
 188 */
 189static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 190{
 191	struct pmbus_data *data = i2c_get_clientdata(client);
 192	const struct pmbus_driver_info *info = data->info;
 193	int status;
 194
 195	if (info->write_byte) {
 196		status = info->write_byte(client, page, value);
 197		if (status != -ENODATA)
 198			return status;
 199	}
 200	return pmbus_write_byte(client, page, value);
 201}
 202
 203int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
 
 204{
 205	int rv;
 206
 207	rv = pmbus_set_page(client, page);
 208	if (rv < 0)
 209		return rv;
 210
 211	return i2c_smbus_write_word_data(client, reg, word);
 212}
 213EXPORT_SYMBOL_GPL(pmbus_write_word_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214
 215/*
 216 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
 217 * a device specific mapping function exists and calls it if necessary.
 218 */
 219static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
 220				  u16 word)
 221{
 222	struct pmbus_data *data = i2c_get_clientdata(client);
 223	const struct pmbus_driver_info *info = data->info;
 224	int status;
 225
 226	if (info->write_word_data) {
 227		status = info->write_word_data(client, page, reg, word);
 228		if (status != -ENODATA)
 229			return status;
 230	}
 
 231	if (reg >= PMBUS_VIRT_BASE)
 232		return -EINVAL;
 
 233	return pmbus_write_word_data(client, page, reg, word);
 234}
 235
 236int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
 
 
 
 
 237{
 238	int rv;
 239
 240	rv = pmbus_set_page(client, page);
 241	if (rv < 0)
 242		return rv;
 243
 244	return i2c_smbus_read_word_data(client, reg);
 
 
 
 
 
 245}
 246EXPORT_SYMBOL_GPL(pmbus_read_word_data);
 247
 248/*
 249 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
 250 * a device specific mapping function exists and calls it if necessary.
 251 */
 252static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
 253{
 254	struct pmbus_data *data = i2c_get_clientdata(client);
 255	const struct pmbus_driver_info *info = data->info;
 256	int status;
 257
 258	if (info->read_word_data) {
 259		status = info->read_word_data(client, page, reg);
 260		if (status != -ENODATA)
 261			return status;
 262	}
 263	if (reg >= PMBUS_VIRT_BASE)
 264		return -EINVAL;
 265	return pmbus_read_word_data(client, page, reg);
 266}
 267
 268int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
 
 269{
 
 270	int rv;
 
 271
 272	if (page >= 0) {
 273		rv = pmbus_set_page(client, page);
 
 
 
 
 
 
 
 274		if (rv < 0)
 275			return rv;
 276	}
 277
 278	return i2c_smbus_read_byte_data(client, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279}
 280EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
 281
 282/*
 283 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
 284 * a device specific mapping function exists and calls it if necessary.
 285 */
 286static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
 
 287{
 288	struct pmbus_data *data = i2c_get_clientdata(client);
 289	const struct pmbus_driver_info *info = data->info;
 290	int status;
 291
 292	if (info->read_byte_data) {
 293		status = info->read_byte_data(client, page, reg);
 294		if (status != -ENODATA)
 295			return status;
 296	}
 297	return pmbus_read_byte_data(client, page, reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299
 300static void pmbus_clear_fault_page(struct i2c_client *client, int page)
 301{
 302	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
 303}
 304
 305void pmbus_clear_faults(struct i2c_client *client)
 306{
 307	struct pmbus_data *data = i2c_get_clientdata(client);
 308	int i;
 309
 310	for (i = 0; i < data->info->pages; i++)
 311		pmbus_clear_fault_page(client, i);
 312}
 313EXPORT_SYMBOL_GPL(pmbus_clear_faults);
 314
 315static int pmbus_check_status_cml(struct i2c_client *client)
 316{
 
 317	int status, status2;
 318
 319	status = pmbus_read_byte_data(client, -1, PMBUS_STATUS_BYTE);
 320	if (status < 0 || (status & PB_STATUS_CML)) {
 321		status2 = pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
 322		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
 323			return -EINVAL;
 324	}
 325	return 0;
 326}
 327
 328bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
 
 
 
 329{
 330	int rv;
 331	struct pmbus_data *data = i2c_get_clientdata(client);
 332
 333	rv = _pmbus_read_byte_data(client, page, reg);
 334	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 335		rv = pmbus_check_status_cml(client);
 336	pmbus_clear_fault_page(client, -1);
 
 
 
 337	return rv >= 0;
 338}
 339EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340
 341bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
 342{
 
 
 
 
 
 
 
 343	int rv;
 344	struct pmbus_data *data = i2c_get_clientdata(client);
 
 345
 346	rv = _pmbus_read_word_data(client, page, reg);
 347	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 348		rv = pmbus_check_status_cml(client);
 
 
 349	pmbus_clear_fault_page(client, -1);
 350	return rv >= 0;
 351}
 352EXPORT_SYMBOL_GPL(pmbus_check_word_register);
 353
 354const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
 355{
 356	struct pmbus_data *data = i2c_get_clientdata(client);
 357
 358	return data->info;
 359}
 360EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
 361
 362static struct pmbus_data *pmbus_update_device(struct device *dev)
 363{
 364	struct i2c_client *client = to_i2c_client(dev);
 365	struct pmbus_data *data = i2c_get_clientdata(client);
 366	const struct pmbus_driver_info *info = data->info;
 367
 368	mutex_lock(&data->update_lock);
 369	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
 370		int i;
 
 
 
 
 
 
 
 
 
 371
 372		for (i = 0; i < info->pages; i++)
 373			data->status[PB_STATUS_BASE + i]
 374			    = pmbus_read_byte_data(client, i,
 375						   PMBUS_STATUS_BYTE);
 376		for (i = 0; i < info->pages; i++) {
 377			if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT))
 378				continue;
 379			data->status[PB_STATUS_VOUT_BASE + i]
 380			  = _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT);
 381		}
 382		for (i = 0; i < info->pages; i++) {
 383			if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT))
 384				continue;
 385			data->status[PB_STATUS_IOUT_BASE + i]
 386			  = _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT);
 387		}
 388		for (i = 0; i < info->pages; i++) {
 389			if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP))
 390				continue;
 391			data->status[PB_STATUS_TEMP_BASE + i]
 392			  = _pmbus_read_byte_data(client, i,
 393						  PMBUS_STATUS_TEMPERATURE);
 394		}
 395		for (i = 0; i < info->pages; i++) {
 396			if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12))
 397				continue;
 398			data->status[PB_STATUS_FAN_BASE + i]
 399			  = _pmbus_read_byte_data(client, i,
 400						  PMBUS_STATUS_FAN_12);
 401		}
 402
 403		for (i = 0; i < info->pages; i++) {
 404			if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34))
 405				continue;
 406			data->status[PB_STATUS_FAN34_BASE + i]
 407			  = _pmbus_read_byte_data(client, i,
 408						  PMBUS_STATUS_FAN_34);
 409		}
 410
 411		if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
 412			data->status[PB_STATUS_INPUT_BASE]
 413			  = _pmbus_read_byte_data(client, 0,
 414						  PMBUS_STATUS_INPUT);
 415
 416		for (i = 0; i < data->num_sensors; i++) {
 417			struct pmbus_sensor *sensor = &data->sensors[i];
 418
 419			if (!data->valid || sensor->update)
 420				sensor->data
 421				    = _pmbus_read_word_data(client,
 422							    sensor->page,
 423							    sensor->reg);
 424		}
 425		pmbus_clear_faults(client);
 426		data->last_updated = jiffies;
 427		data->valid = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	}
 429	mutex_unlock(&data->update_lock);
 430	return data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431}
 432
 433/*
 434 * Convert linear sensor values to milli- or micro-units
 435 * depending on sensor type.
 436 */
 437static long pmbus_reg2data_linear(struct pmbus_data *data,
 438				  struct pmbus_sensor *sensor)
 439{
 440	s16 exponent;
 441	s32 mantissa;
 442	long val;
 443
 444	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
 445		exponent = data->exponent;
 446		mantissa = (u16) sensor->data;
 447	} else {				/* LINEAR11 */
 448		exponent = (sensor->data >> 11) & 0x001f;
 449		mantissa = sensor->data & 0x07ff;
 450
 451		if (exponent > 0x0f)
 452			exponent |= 0xffe0;	/* sign extend exponent */
 453		if (mantissa > 0x03ff)
 454			mantissa |= 0xfffff800;	/* sign extend mantissa */
 455	}
 456
 457	val = mantissa;
 458
 459	/* scale result to milli-units for all sensors except fans */
 460	if (sensor->class != PSC_FAN)
 461		val = val * 1000L;
 462
 463	/* scale result to micro-units for power sensors */
 464	if (sensor->class == PSC_POWER)
 465		val = val * 1000L;
 466
 467	if (exponent >= 0)
 468		val <<= exponent;
 469	else
 470		val >>= -exponent;
 471
 472	return val;
 473}
 474
 475/*
 476 * Convert direct sensor values to milli- or micro-units
 477 * depending on sensor type.
 478 */
 479static long pmbus_reg2data_direct(struct pmbus_data *data,
 480				  struct pmbus_sensor *sensor)
 481{
 482	long val = (s16) sensor->data;
 483	long m, b, R;
 484
 485	m = data->info->m[sensor->class];
 486	b = data->info->b[sensor->class];
 487	R = data->info->R[sensor->class];
 488
 489	if (m == 0)
 490		return 0;
 491
 492	/* X = 1/m * (Y * 10^-R - b) */
 493	R = -R;
 494	/* scale result to milli-units for everything but fans */
 495	if (sensor->class != PSC_FAN) {
 496		R += 3;
 497		b *= 1000;
 498	}
 499
 500	/* scale result to micro-units for power sensors */
 501	if (sensor->class == PSC_POWER) {
 502		R += 3;
 503		b *= 1000;
 504	}
 505
 506	while (R > 0) {
 507		val *= 10;
 508		R--;
 509	}
 510	while (R < 0) {
 511		val = DIV_ROUND_CLOSEST(val, 10);
 512		R++;
 513	}
 514
 515	return (val - b) / m;
 
 516}
 517
 518/*
 519 * Convert VID sensor values to milli- or micro-units
 520 * depending on sensor type.
 521 * We currently only support VR11.
 522 */
 523static long pmbus_reg2data_vid(struct pmbus_data *data,
 524			       struct pmbus_sensor *sensor)
 525{
 526	long val = sensor->data;
 
 527
 528	if (val < 0x02 || val > 0xb2)
 529		return 0;
 530	return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531}
 532
 533static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
 534{
 535	long val;
 
 
 
 536
 537	switch (data->info->format[sensor->class]) {
 538	case direct:
 539		val = pmbus_reg2data_direct(data, sensor);
 540		break;
 541	case vid:
 542		val = pmbus_reg2data_vid(data, sensor);
 543		break;
 
 
 
 544	case linear:
 545	default:
 546		val = pmbus_reg2data_linear(data, sensor);
 547		break;
 548	}
 549	return val;
 550}
 551
 552#define MAX_MANTISSA	(1023 * 1000)
 553#define MIN_MANTISSA	(511 * 1000)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554
 555static u16 pmbus_data2reg_linear(struct pmbus_data *data,
 556				 enum pmbus_sensor_classes class, long val)
 557{
 558	s16 exponent = 0, mantissa;
 559	bool negative = false;
 560
 561	/* simple case */
 562	if (val == 0)
 563		return 0;
 564
 565	if (class == PSC_VOLTAGE_OUT) {
 566		/* LINEAR16 does not support negative voltages */
 567		if (val < 0)
 568			return 0;
 569
 570		/*
 571		 * For a static exponents, we don't have a choice
 572		 * but to adjust the value to it.
 573		 */
 574		if (data->exponent < 0)
 575			val <<= -data->exponent;
 576		else
 577			val >>= data->exponent;
 578		val = DIV_ROUND_CLOSEST(val, 1000);
 579		return val & 0xffff;
 580	}
 581
 582	if (val < 0) {
 583		negative = true;
 584		val = -val;
 585	}
 586
 587	/* Power is in uW. Convert to mW before converting. */
 588	if (class == PSC_POWER)
 589		val = DIV_ROUND_CLOSEST(val, 1000L);
 590
 591	/*
 592	 * For simplicity, convert fan data to milli-units
 593	 * before calculating the exponent.
 594	 */
 595	if (class == PSC_FAN)
 596		val = val * 1000;
 597
 598	/* Reduce large mantissa until it fits into 10 bit */
 599	while (val >= MAX_MANTISSA && exponent < 15) {
 600		exponent++;
 601		val >>= 1;
 602	}
 603	/* Increase small mantissa to improve precision */
 604	while (val < MIN_MANTISSA && exponent > -15) {
 605		exponent--;
 606		val <<= 1;
 607	}
 608
 609	/* Convert mantissa from milli-units to units */
 610	mantissa = DIV_ROUND_CLOSEST(val, 1000);
 611
 612	/* Ensure that resulting number is within range */
 613	if (mantissa > 0x3ff)
 614		mantissa = 0x3ff;
 615
 616	/* restore sign */
 617	if (negative)
 618		mantissa = -mantissa;
 619
 620	/* Convert to 5 bit exponent, 11 bit mantissa */
 621	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
 622}
 623
 624static u16 pmbus_data2reg_direct(struct pmbus_data *data,
 625				 enum pmbus_sensor_classes class, long val)
 626{
 627	long m, b, R;
 
 628
 629	m = data->info->m[class];
 630	b = data->info->b[class];
 631	R = data->info->R[class];
 632
 633	/* Power is in uW. Adjust R and b. */
 634	if (class == PSC_POWER) {
 635		R -= 3;
 636		b *= 1000;
 637	}
 638
 639	/* Calculate Y = (m * X + b) * 10^R */
 640	if (class != PSC_FAN) {
 641		R -= 3;		/* Adjust R and b for data in milli-units */
 642		b *= 1000;
 643	}
 644	val = val * m + b;
 645
 646	while (R > 0) {
 647		val *= 10;
 648		R--;
 649	}
 650	while (R < 0) {
 651		val = DIV_ROUND_CLOSEST(val, 10);
 652		R++;
 653	}
 654
 655	return val;
 656}
 657
 658static u16 pmbus_data2reg_vid(struct pmbus_data *data,
 659			      enum pmbus_sensor_classes class, long val)
 660{
 661	val = SENSORS_LIMIT(val, 500, 1600);
 662
 663	return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
 664}
 665
 666static u16 pmbus_data2reg(struct pmbus_data *data,
 667			  enum pmbus_sensor_classes class, long val)
 668{
 669	u16 regval;
 670
 671	switch (data->info->format[class]) {
 
 
 
 672	case direct:
 673		regval = pmbus_data2reg_direct(data, class, val);
 674		break;
 675	case vid:
 676		regval = pmbus_data2reg_vid(data, class, val);
 
 
 
 677		break;
 678	case linear:
 679	default:
 680		regval = pmbus_data2reg_linear(data, class, val);
 681		break;
 682	}
 683	return regval;
 684}
 685
 686/*
 687 * Return boolean calculated from converted data.
 688 * <index> defines a status register index and mask, and optionally
 689 * two sensor indexes.
 690 * The upper half-word references the two sensors,
 691 * two sensor indices.
 692 * The upper half-word references the two optional sensors,
 693 * the lower half word references status register and mask.
 694 * The function returns true if (status[reg] & mask) is true and,
 695 * if specified, if v1 >= v2.
 696 * To determine if an object exceeds upper limits, specify <v, limit>.
 697 * To determine if an object exceeds lower limits, specify <limit, v>.
 698 *
 699 * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of
 700 * index are set. s1 and s2 (the sensor index values) are zero in this case.
 701 * The function returns true if (status[reg] & mask) is true.
 702 *
 703 * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against
 704 * a specified limit has to be performed to determine the boolean result.
 705 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
 706 * sensor values referenced by sensor indices s1 and s2).
 707 *
 708 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
 709 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
 710 *
 711 * If a negative value is stored in any of the referenced registers, this value
 712 * reflects an error code which will be returned.
 713 */
 714static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val)
 
 715{
 716	u8 s1 = (index >> 24) & 0xff;
 717	u8 s2 = (index >> 16) & 0xff;
 718	u8 reg = (index >> 8) & 0xff;
 719	u8 mask = index & 0xff;
 720	int status;
 721	u8 regval;
 
 
 722
 723	status = data->status[reg];
 724	if (status < 0)
 725		return status;
 
 
 
 
 
 
 
 
 726
 727	regval = status & mask;
 728	if (!s1 && !s2)
 729		*val = !!regval;
 730	else {
 731		long v1, v2;
 732		struct pmbus_sensor *sensor1, *sensor2;
 733
 734		sensor1 = &data->sensors[s1];
 735		if (sensor1->data < 0)
 736			return sensor1->data;
 737		sensor2 = &data->sensors[s2];
 738		if (sensor2->data < 0)
 739			return sensor2->data;
 740
 741		v1 = pmbus_reg2data(data, sensor1);
 742		v2 = pmbus_reg2data(data, sensor2);
 743		*val = !!(regval && v1 >= v2);
 
 
 
 
 
 
 744	}
 745	return 0;
 
 
 746}
 747
 748static ssize_t pmbus_show_boolean(struct device *dev,
 749				  struct device_attribute *da, char *buf)
 750{
 751	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 752	struct pmbus_data *data = pmbus_update_device(dev);
 
 753	int val;
 754	int err;
 755
 756	err = pmbus_get_boolean(data, attr->index, &val);
 757	if (err)
 758		return err;
 759	return snprintf(buf, PAGE_SIZE, "%d\n", val);
 760}
 761
 762static ssize_t pmbus_show_sensor(struct device *dev,
 763				 struct device_attribute *da, char *buf)
 764{
 765	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 766	struct pmbus_data *data = pmbus_update_device(dev);
 767	struct pmbus_sensor *sensor;
 
 768
 769	sensor = &data->sensors[attr->index];
 
 770	if (sensor->data < 0)
 771		return sensor->data;
 772
 773	return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
 
 
 774}
 775
 776static ssize_t pmbus_set_sensor(struct device *dev,
 777				struct device_attribute *devattr,
 778				const char *buf, size_t count)
 779{
 780	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
 781	struct i2c_client *client = to_i2c_client(dev);
 782	struct pmbus_data *data = i2c_get_clientdata(client);
 783	struct pmbus_sensor *sensor = &data->sensors[attr->index];
 784	ssize_t rv = count;
 785	long val = 0;
 786	int ret;
 787	u16 regval;
 788
 789	if (strict_strtol(buf, 10, &val) < 0)
 790		return -EINVAL;
 791
 792	mutex_lock(&data->update_lock);
 793	regval = pmbus_data2reg(data, sensor->class, val);
 794	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
 795	if (ret < 0)
 796		rv = ret;
 797	else
 798		data->sensors[attr->index].data = regval;
 799	mutex_unlock(&data->update_lock);
 800	return rv;
 801}
 802
 803static ssize_t pmbus_show_label(struct device *dev,
 804				struct device_attribute *da, char *buf)
 805{
 806	struct i2c_client *client = to_i2c_client(dev);
 807	struct pmbus_data *data = i2c_get_clientdata(client);
 808	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
 809
 810	return snprintf(buf, PAGE_SIZE, "%s\n",
 811			data->labels[attr->index].label);
 812}
 813
 814#define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set)	\
 815do {									\
 816	struct sensor_device_attribute *a				\
 817	    = &data->_type##s[data->num_##_type##s].attribute;		\
 818	BUG_ON(data->num_attributes >= data->max_attributes);		\
 819	sysfs_attr_init(&a->dev_attr.attr);				\
 820	a->dev_attr.attr.name = _name;					\
 821	a->dev_attr.attr.mode = _mode;					\
 822	a->dev_attr.show = _show;					\
 823	a->dev_attr.store = _set;					\
 824	a->index = _idx;						\
 825	data->attributes[data->num_attributes] = &a->dev_attr.attr;	\
 826	data->num_attributes++;						\
 827} while (0)
 828
 829#define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx)			\
 830	PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type,		\
 831		       pmbus_show_##_type,  NULL)
 832
 833#define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx)			\
 834	PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type,	\
 835		       pmbus_show_##_type, pmbus_set_##_type)
 836
 837static void pmbus_add_boolean(struct pmbus_data *data,
 838			      const char *name, const char *type, int seq,
 839			      int idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840{
 841	struct pmbus_boolean *boolean;
 
 
 
 
 842
 843	BUG_ON(data->num_booleans >= data->max_booleans);
 
 
 844
 845	boolean = &data->booleans[data->num_booleans];
 846
 847	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
 848		 name, seq, type);
 849	PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx);
 850	data->num_booleans++;
 
 
 
 
 851}
 852
 853static void pmbus_add_boolean_reg(struct pmbus_data *data,
 854				  const char *name, const char *type,
 855				  int seq, int reg, int bit)
 
 
 
 
 856{
 857	pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858}
 859
 860static void pmbus_add_boolean_cmp(struct pmbus_data *data,
 861				  const char *name, const char *type,
 862				  int seq, int i1, int i2, int reg, int mask)
 
 
 
 863{
 864	pmbus_add_boolean(data, name, type, seq,
 865			  (i1 << 24) | (i2 << 16) | (reg << 8) | mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866}
 867
 868static void pmbus_add_sensor(struct pmbus_data *data,
 869			     const char *name, const char *type, int seq,
 870			     int page, int reg, enum pmbus_sensor_classes class,
 871			     bool update, bool readonly)
 
 
 
 872{
 873	struct pmbus_sensor *sensor;
 
 874
 875	BUG_ON(data->num_sensors >= data->max_sensors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 876
 877	sensor = &data->sensors[data->num_sensors];
 878	snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
 879		 name, seq, type);
 880	sensor->page = page;
 
 881	sensor->reg = reg;
 882	sensor->class = class;
 883	sensor->update = update;
 884	if (readonly)
 885		PMBUS_ADD_GET_ATTR(data, sensor->name, sensor,
 886				   data->num_sensors);
 887	else
 888		PMBUS_ADD_SET_ATTR(data, sensor->name, sensor,
 889				   data->num_sensors);
 890	data->num_sensors++;
 891}
 892
 893static void pmbus_add_label(struct pmbus_data *data,
 894			    const char *name, int seq,
 895			    const char *lstring, int index)
 896{
 897	struct pmbus_label *label;
 898
 899	BUG_ON(data->num_labels >= data->max_labels);
 
 900
 901	label = &data->labels[data->num_labels];
 902	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
 903	if (!index)
 904		strncpy(label->label, lstring, sizeof(label->label) - 1);
 905	else
 906		snprintf(label->label, sizeof(label->label), "%s%d", lstring,
 907			 index);
 908
 909	PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels);
 910	data->num_labels++;
 911}
 912
 913/*
 914 * Determine maximum number of sensors, booleans, and labels.
 915 * To keep things simple, only make a rough high estimate.
 916 */
 917static void pmbus_find_max_attr(struct i2c_client *client,
 918				struct pmbus_data *data)
 919{
 920	const struct pmbus_driver_info *info = data->info;
 921	int page, max_sensors, max_booleans, max_labels;
 922
 923	max_sensors = PMBUS_MAX_INPUT_SENSORS;
 924	max_booleans = PMBUS_MAX_INPUT_BOOLEANS;
 925	max_labels = PMBUS_MAX_INPUT_LABELS;
 926
 927	for (page = 0; page < info->pages; page++) {
 928		if (info->func[page] & PMBUS_HAVE_VOUT) {
 929			max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE;
 930			max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE;
 931			max_labels++;
 932		}
 933		if (info->func[page] & PMBUS_HAVE_IOUT) {
 934			max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE;
 935			max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE;
 936			max_labels++;
 937		}
 938		if (info->func[page] & PMBUS_HAVE_POUT) {
 939			max_sensors += PMBUS_POUT_SENSORS_PER_PAGE;
 940			max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE;
 941			max_labels++;
 942		}
 943		if (info->func[page] & PMBUS_HAVE_FAN12) {
 944			max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
 945			max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
 946		}
 947		if (info->func[page] & PMBUS_HAVE_FAN34) {
 948			max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
 949			max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
 950		}
 951		if (info->func[page] & PMBUS_HAVE_TEMP) {
 952			max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
 953			max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
 954		}
 955		if (info->func[page] & PMBUS_HAVE_TEMP2) {
 956			max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
 957			max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
 958		}
 959		if (info->func[page] & PMBUS_HAVE_TEMP3) {
 960			max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
 961			max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
 962		}
 963	}
 964	data->max_sensors = max_sensors;
 965	data->max_booleans = max_booleans;
 966	data->max_labels = max_labels;
 967	data->max_attributes = max_sensors + max_booleans + max_labels;
 968}
 969
 970/*
 971 * Search for attributes. Allocate sensors, booleans, and labels as needed.
 972 */
 973
 974/*
 975 * The pmbus_limit_attr structure describes a single limit attribute
 976 * and its associated alarm attribute.
 977 */
 978struct pmbus_limit_attr {
 979	u16 reg;		/* Limit register */
 
 980	bool update;		/* True if register needs updates */
 981	bool low;		/* True if low limit; for limits with compare
 982				   functions only */
 983	const char *attr;	/* Attribute name */
 984	const char *alarm;	/* Alarm attribute name */
 985	u32 sbit;		/* Alarm attribute status bit */
 986};
 987
 988/*
 989 * The pmbus_sensor_attr structure describes one sensor attribute. This
 990 * description includes a reference to the associated limit attributes.
 991 */
 992struct pmbus_sensor_attr {
 993	u8 reg;				/* sensor register */
 
 
 994	enum pmbus_sensor_classes class;/* sensor class */
 995	const char *label;		/* sensor label */
 996	bool paged;			/* true if paged sensor */
 997	bool update;			/* true if update needed */
 998	bool compare;			/* true if compare function needed */
 999	u32 func;			/* sensor mask */
1000	u32 sfunc;			/* sensor status mask */
1001	int sbase;			/* status base register */
1002	u32 gbit;			/* generic status bit */
1003	const struct pmbus_limit_attr *limit;/* limit registers */
1004	int nlimit;			/* # of limit registers */
1005};
1006
1007/*
1008 * Add a set of limit attributes and, if supported, the associated
1009 * alarm attributes.
 
 
1010 */
1011static bool pmbus_add_limit_attrs(struct i2c_client *client,
1012				  struct pmbus_data *data,
1013				  const struct pmbus_driver_info *info,
1014				  const char *name, int index, int page,
1015				  int cbase,
1016				  const struct pmbus_sensor_attr *attr)
1017{
1018	const struct pmbus_limit_attr *l = attr->limit;
1019	int nlimit = attr->nlimit;
1020	bool have_alarm = false;
1021	int i, cindex;
 
1022
1023	for (i = 0; i < nlimit; i++) {
1024		if (pmbus_check_word_register(client, page, l->reg)) {
1025			cindex = data->num_sensors;
1026			pmbus_add_sensor(data, name, l->attr, index, page,
1027					 l->reg, attr->class,
1028					 attr->update || l->update,
1029					 false);
 
1030			if (l->sbit && (info->func[page] & attr->sfunc)) {
1031				if (attr->compare) {
1032					pmbus_add_boolean_cmp(data, name,
1033						l->alarm, index,
1034						l->low ? cindex : cbase,
1035						l->low ? cbase : cindex,
1036						attr->sbase + page, l->sbit);
1037				} else {
1038					pmbus_add_boolean_reg(data, name,
1039						l->alarm, index,
1040						attr->sbase + page, l->sbit);
1041				}
1042				have_alarm = true;
1043			}
1044		}
1045		l++;
1046	}
1047	return have_alarm;
1048}
1049
1050static void pmbus_add_sensor_attrs_one(struct i2c_client *client,
1051				       struct pmbus_data *data,
1052				       const struct pmbus_driver_info *info,
1053				       const char *name,
1054				       int index, int page,
1055				       const struct pmbus_sensor_attr *attr)
1056{
1057	bool have_alarm;
1058	int cbase = data->num_sensors;
1059
1060	if (attr->label)
1061		pmbus_add_label(data, name, index, attr->label,
1062				attr->paged ? page + 1 : 0);
1063	pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1064			 attr->class, true, true);
1065	if (attr->sfunc) {
1066		have_alarm = pmbus_add_limit_attrs(client, data, info, name,
1067						   index, page, cbase, attr);
 
 
 
 
 
 
 
 
 
 
1068		/*
1069		 * Add generic alarm attribute only if there are no individual
1070		 * alarm attributes, if there is a global alarm bit, and if
1071		 * the generic status register for this page is accessible.
 
1072		 */
1073		if (!have_alarm && attr->gbit &&
1074		    pmbus_check_byte_register(client, page, PMBUS_STATUS_BYTE))
1075			pmbus_add_boolean_reg(data, name, "alarm", index,
1076					      PB_STATUS_BASE + page,
1077					      attr->gbit);
 
 
 
 
 
1078	}
 
1079}
1080
1081static void pmbus_add_sensor_attrs(struct i2c_client *client,
1082				   struct pmbus_data *data,
1083				   const char *name,
1084				   const struct pmbus_sensor_attr *attrs,
1085				   int nattrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086{
1087	const struct pmbus_driver_info *info = data->info;
1088	int index, i;
 
1089
1090	index = 1;
1091	for (i = 0; i < nattrs; i++) {
1092		int page, pages;
 
1093
1094		pages = attrs->paged ? info->pages : 1;
1095		for (page = 0; page < pages; page++) {
1096			if (!(info->func[page] & attrs->func))
1097				continue;
1098			pmbus_add_sensor_attrs_one(client, data, info, name,
1099						   index, page, attrs);
1100			index++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101		}
1102		attrs++;
1103	}
 
1104}
1105
1106static const struct pmbus_limit_attr vin_limit_attrs[] = {
1107	{
1108		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1109		.attr = "min",
1110		.alarm = "min_alarm",
1111		.sbit = PB_VOLTAGE_UV_WARNING,
1112	}, {
1113		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1114		.attr = "lcrit",
1115		.alarm = "lcrit_alarm",
1116		.sbit = PB_VOLTAGE_UV_FAULT,
1117	}, {
1118		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1119		.attr = "max",
1120		.alarm = "max_alarm",
1121		.sbit = PB_VOLTAGE_OV_WARNING,
1122	}, {
1123		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1124		.attr = "crit",
1125		.alarm = "crit_alarm",
1126		.sbit = PB_VOLTAGE_OV_FAULT,
1127	}, {
1128		.reg = PMBUS_VIRT_READ_VIN_AVG,
1129		.update = true,
1130		.attr = "average",
1131	}, {
1132		.reg = PMBUS_VIRT_READ_VIN_MIN,
1133		.update = true,
1134		.attr = "lowest",
1135	}, {
1136		.reg = PMBUS_VIRT_READ_VIN_MAX,
1137		.update = true,
1138		.attr = "highest",
1139	}, {
1140		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1141		.attr = "reset_history",
 
 
 
 
 
 
1142	},
1143};
1144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145static const struct pmbus_limit_attr vout_limit_attrs[] = {
1146	{
1147		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1148		.attr = "min",
1149		.alarm = "min_alarm",
1150		.sbit = PB_VOLTAGE_UV_WARNING,
1151	}, {
1152		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1153		.attr = "lcrit",
1154		.alarm = "lcrit_alarm",
1155		.sbit = PB_VOLTAGE_UV_FAULT,
1156	}, {
1157		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1158		.attr = "max",
1159		.alarm = "max_alarm",
1160		.sbit = PB_VOLTAGE_OV_WARNING,
1161	}, {
1162		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1163		.attr = "crit",
1164		.alarm = "crit_alarm",
1165		.sbit = PB_VOLTAGE_OV_FAULT,
1166	}, {
1167		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1168		.update = true,
1169		.attr = "average",
1170	}, {
1171		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1172		.update = true,
1173		.attr = "lowest",
1174	}, {
1175		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1176		.update = true,
1177		.attr = "highest",
1178	}, {
1179		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1180		.attr = "reset_history",
1181	}
 
 
 
 
 
 
1182};
1183
1184static const struct pmbus_sensor_attr voltage_attributes[] = {
1185	{
1186		.reg = PMBUS_READ_VIN,
1187		.class = PSC_VOLTAGE_IN,
1188		.label = "vin",
1189		.func = PMBUS_HAVE_VIN,
1190		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1191		.sbase = PB_STATUS_INPUT_BASE,
1192		.gbit = PB_STATUS_VIN_UV,
1193		.limit = vin_limit_attrs,
1194		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1195	}, {
 
 
 
 
 
 
 
 
 
1196		.reg = PMBUS_READ_VCAP,
1197		.class = PSC_VOLTAGE_IN,
1198		.label = "vcap",
1199		.func = PMBUS_HAVE_VCAP,
1200	}, {
1201		.reg = PMBUS_READ_VOUT,
1202		.class = PSC_VOLTAGE_OUT,
1203		.label = "vout",
1204		.paged = true,
1205		.func = PMBUS_HAVE_VOUT,
1206		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1207		.sbase = PB_STATUS_VOUT_BASE,
1208		.gbit = PB_STATUS_VOUT_OV,
1209		.limit = vout_limit_attrs,
1210		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1211	}
1212};
1213
1214/* Current attributes */
1215
1216static const struct pmbus_limit_attr iin_limit_attrs[] = {
1217	{
1218		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1219		.attr = "max",
1220		.alarm = "max_alarm",
1221		.sbit = PB_IIN_OC_WARNING,
1222	}, {
1223		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1224		.attr = "crit",
1225		.alarm = "crit_alarm",
1226		.sbit = PB_IIN_OC_FAULT,
1227	}, {
1228		.reg = PMBUS_VIRT_READ_IIN_AVG,
1229		.update = true,
1230		.attr = "average",
1231	}, {
1232		.reg = PMBUS_VIRT_READ_IIN_MIN,
1233		.update = true,
1234		.attr = "lowest",
1235	}, {
1236		.reg = PMBUS_VIRT_READ_IIN_MAX,
1237		.update = true,
1238		.attr = "highest",
1239	}, {
1240		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1241		.attr = "reset_history",
1242	}
 
 
 
1243};
1244
1245static const struct pmbus_limit_attr iout_limit_attrs[] = {
1246	{
1247		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1248		.attr = "max",
1249		.alarm = "max_alarm",
1250		.sbit = PB_IOUT_OC_WARNING,
1251	}, {
1252		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1253		.attr = "lcrit",
1254		.alarm = "lcrit_alarm",
1255		.sbit = PB_IOUT_UC_FAULT,
1256	}, {
1257		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1258		.attr = "crit",
1259		.alarm = "crit_alarm",
1260		.sbit = PB_IOUT_OC_FAULT,
1261	}, {
1262		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1263		.update = true,
1264		.attr = "average",
1265	}, {
1266		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1267		.update = true,
1268		.attr = "lowest",
1269	}, {
1270		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1271		.update = true,
1272		.attr = "highest",
1273	}, {
1274		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1275		.attr = "reset_history",
1276	}
 
 
 
1277};
1278
1279static const struct pmbus_sensor_attr current_attributes[] = {
1280	{
1281		.reg = PMBUS_READ_IIN,
1282		.class = PSC_CURRENT_IN,
1283		.label = "iin",
1284		.func = PMBUS_HAVE_IIN,
1285		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1286		.sbase = PB_STATUS_INPUT_BASE,
 
1287		.limit = iin_limit_attrs,
1288		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1289	}, {
1290		.reg = PMBUS_READ_IOUT,
1291		.class = PSC_CURRENT_OUT,
1292		.label = "iout",
1293		.paged = true,
1294		.func = PMBUS_HAVE_IOUT,
1295		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1296		.sbase = PB_STATUS_IOUT_BASE,
1297		.gbit = PB_STATUS_IOUT_OC,
1298		.limit = iout_limit_attrs,
1299		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1300	}
1301};
1302
1303/* Power attributes */
1304
1305static const struct pmbus_limit_attr pin_limit_attrs[] = {
1306	{
1307		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1308		.attr = "max",
1309		.alarm = "alarm",
1310		.sbit = PB_PIN_OP_WARNING,
1311	}, {
1312		.reg = PMBUS_VIRT_READ_PIN_AVG,
1313		.update = true,
1314		.attr = "average",
1315	}, {
 
 
 
 
1316		.reg = PMBUS_VIRT_READ_PIN_MAX,
1317		.update = true,
1318		.attr = "input_highest",
1319	}, {
1320		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1321		.attr = "reset_history",
1322	}
 
 
 
1323};
1324
1325static const struct pmbus_limit_attr pout_limit_attrs[] = {
1326	{
1327		.reg = PMBUS_POUT_MAX,
1328		.attr = "cap",
1329		.alarm = "cap_alarm",
1330		.sbit = PB_POWER_LIMITING,
1331	}, {
1332		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1333		.attr = "max",
1334		.alarm = "max_alarm",
1335		.sbit = PB_POUT_OP_WARNING,
1336	}, {
1337		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1338		.attr = "crit",
1339		.alarm = "crit_alarm",
1340		.sbit = PB_POUT_OP_FAULT,
1341	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342};
1343
1344static const struct pmbus_sensor_attr power_attributes[] = {
1345	{
1346		.reg = PMBUS_READ_PIN,
1347		.class = PSC_POWER,
1348		.label = "pin",
1349		.func = PMBUS_HAVE_PIN,
1350		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1351		.sbase = PB_STATUS_INPUT_BASE,
 
1352		.limit = pin_limit_attrs,
1353		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1354	}, {
1355		.reg = PMBUS_READ_POUT,
1356		.class = PSC_POWER,
1357		.label = "pout",
1358		.paged = true,
1359		.func = PMBUS_HAVE_POUT,
1360		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1361		.sbase = PB_STATUS_IOUT_BASE,
1362		.limit = pout_limit_attrs,
1363		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1364	}
1365};
1366
1367/* Temperature atributes */
1368
1369static const struct pmbus_limit_attr temp_limit_attrs[] = {
1370	{
1371		.reg = PMBUS_UT_WARN_LIMIT,
1372		.low = true,
1373		.attr = "min",
1374		.alarm = "min_alarm",
1375		.sbit = PB_TEMP_UT_WARNING,
1376	}, {
1377		.reg = PMBUS_UT_FAULT_LIMIT,
1378		.low = true,
1379		.attr = "lcrit",
1380		.alarm = "lcrit_alarm",
1381		.sbit = PB_TEMP_UT_FAULT,
1382	}, {
1383		.reg = PMBUS_OT_WARN_LIMIT,
1384		.attr = "max",
1385		.alarm = "max_alarm",
1386		.sbit = PB_TEMP_OT_WARNING,
1387	}, {
1388		.reg = PMBUS_OT_FAULT_LIMIT,
1389		.attr = "crit",
1390		.alarm = "crit_alarm",
1391		.sbit = PB_TEMP_OT_FAULT,
1392	}, {
1393		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1394		.attr = "lowest",
1395	}, {
 
 
 
1396		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1397		.attr = "highest",
1398	}, {
1399		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1400		.attr = "reset_history",
1401	}
 
 
 
1402};
1403
1404static const struct pmbus_limit_attr temp_limit_attrs23[] = {
1405	{
1406		.reg = PMBUS_UT_WARN_LIMIT,
1407		.low = true,
1408		.attr = "min",
1409		.alarm = "min_alarm",
1410		.sbit = PB_TEMP_UT_WARNING,
1411	}, {
1412		.reg = PMBUS_UT_FAULT_LIMIT,
1413		.low = true,
1414		.attr = "lcrit",
1415		.alarm = "lcrit_alarm",
1416		.sbit = PB_TEMP_UT_FAULT,
1417	}, {
1418		.reg = PMBUS_OT_WARN_LIMIT,
1419		.attr = "max",
1420		.alarm = "max_alarm",
1421		.sbit = PB_TEMP_OT_WARNING,
1422	}, {
1423		.reg = PMBUS_OT_FAULT_LIMIT,
1424		.attr = "crit",
1425		.alarm = "crit_alarm",
1426		.sbit = PB_TEMP_OT_FAULT,
1427	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428};
1429
1430static const struct pmbus_sensor_attr temp_attributes[] = {
1431	{
1432		.reg = PMBUS_READ_TEMPERATURE_1,
1433		.class = PSC_TEMPERATURE,
1434		.paged = true,
1435		.update = true,
1436		.compare = true,
1437		.func = PMBUS_HAVE_TEMP,
1438		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1439		.sbase = PB_STATUS_TEMP_BASE,
1440		.gbit = PB_STATUS_TEMPERATURE,
1441		.limit = temp_limit_attrs,
1442		.nlimit = ARRAY_SIZE(temp_limit_attrs),
1443	}, {
1444		.reg = PMBUS_READ_TEMPERATURE_2,
1445		.class = PSC_TEMPERATURE,
1446		.paged = true,
1447		.update = true,
1448		.compare = true,
1449		.func = PMBUS_HAVE_TEMP2,
1450		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1451		.sbase = PB_STATUS_TEMP_BASE,
1452		.gbit = PB_STATUS_TEMPERATURE,
1453		.limit = temp_limit_attrs23,
1454		.nlimit = ARRAY_SIZE(temp_limit_attrs23),
1455	}, {
1456		.reg = PMBUS_READ_TEMPERATURE_3,
1457		.class = PSC_TEMPERATURE,
1458		.paged = true,
1459		.update = true,
1460		.compare = true,
1461		.func = PMBUS_HAVE_TEMP3,
1462		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1463		.sbase = PB_STATUS_TEMP_BASE,
1464		.gbit = PB_STATUS_TEMPERATURE,
1465		.limit = temp_limit_attrs23,
1466		.nlimit = ARRAY_SIZE(temp_limit_attrs23),
1467	}
1468};
1469
1470static const int pmbus_fan_registers[] = {
1471	PMBUS_READ_FAN_SPEED_1,
1472	PMBUS_READ_FAN_SPEED_2,
1473	PMBUS_READ_FAN_SPEED_3,
1474	PMBUS_READ_FAN_SPEED_4
1475};
1476
1477static const int pmbus_fan_config_registers[] = {
1478	PMBUS_FAN_CONFIG_12,
1479	PMBUS_FAN_CONFIG_12,
1480	PMBUS_FAN_CONFIG_34,
1481	PMBUS_FAN_CONFIG_34
1482};
1483
1484static const int pmbus_fan_status_registers[] = {
1485	PMBUS_STATUS_FAN_12,
1486	PMBUS_STATUS_FAN_12,
1487	PMBUS_STATUS_FAN_34,
1488	PMBUS_STATUS_FAN_34
1489};
1490
1491static const u32 pmbus_fan_flags[] = {
1492	PMBUS_HAVE_FAN12,
1493	PMBUS_HAVE_FAN12,
1494	PMBUS_HAVE_FAN34,
1495	PMBUS_HAVE_FAN34
1496};
1497
1498static const u32 pmbus_fan_status_flags[] = {
1499	PMBUS_HAVE_STATUS_FAN12,
1500	PMBUS_HAVE_STATUS_FAN12,
1501	PMBUS_HAVE_STATUS_FAN34,
1502	PMBUS_HAVE_STATUS_FAN34
1503};
1504
1505/* Fans */
1506static void pmbus_add_fan_attributes(struct i2c_client *client,
1507				     struct pmbus_data *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508{
1509	const struct pmbus_driver_info *info = data->info;
1510	int index = 1;
1511	int page;
 
1512
1513	for (page = 0; page < info->pages; page++) {
1514		int f;
1515
1516		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1517			int regval;
1518
1519			if (!(info->func[page] & pmbus_fan_flags[f]))
1520				break;
1521
1522			if (!pmbus_check_word_register(client, page,
1523						       pmbus_fan_registers[f]))
1524				break;
1525
1526			/*
1527			 * Skip fan if not installed.
1528			 * Each fan configuration register covers multiple fans,
1529			 * so we have to do some magic.
1530			 */
1531			regval = _pmbus_read_byte_data(client, page,
1532				pmbus_fan_config_registers[f]);
1533			if (regval < 0 ||
1534			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1535				continue;
1536
1537			pmbus_add_sensor(data, "fan", "input", index, page,
1538					 pmbus_fan_registers[f], PSC_FAN, true,
1539					 true);
 
 
 
 
 
 
 
 
 
 
1540
1541			/*
1542			 * Each fan status register covers multiple fans,
1543			 * so we have to do some magic.
1544			 */
1545			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1546			    pmbus_check_byte_register(client,
1547					page, pmbus_fan_status_registers[f])) {
1548				int base;
1549
1550				if (f > 1)	/* fan 3, 4 */
1551					base = PB_STATUS_FAN34_BASE + page;
1552				else
1553					base = PB_STATUS_FAN_BASE + page;
1554				pmbus_add_boolean_reg(data, "fan", "alarm",
1555					index, base,
1556					PB_FAN_FAN1_WARNING >> (f & 1));
1557				pmbus_add_boolean_reg(data, "fan", "fault",
1558					index, base,
 
 
1559					PB_FAN_FAN1_FAULT >> (f & 1));
 
 
1560			}
1561			index++;
1562		}
1563	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1564}
1565
1566static void pmbus_find_attributes(struct i2c_client *client,
1567				  struct pmbus_data *data)
1568{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569	/* Voltage sensors */
1570	pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1571			       ARRAY_SIZE(voltage_attributes));
 
 
1572
1573	/* Current sensors */
1574	pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1575			       ARRAY_SIZE(current_attributes));
 
 
1576
1577	/* Power sensors */
1578	pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1579			       ARRAY_SIZE(power_attributes));
 
 
1580
1581	/* Temperature sensors */
1582	pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1583			       ARRAY_SIZE(temp_attributes));
 
 
1584
1585	/* Fans */
1586	pmbus_add_fan_attributes(client, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1587}
1588
1589/*
1590 * Identify chip parameters.
1591 * This function is called for all chips.
1592 */
1593static int pmbus_identify_common(struct i2c_client *client,
1594				 struct pmbus_data *data)
1595{
1596	int vout_mode = -1, exponent;
1597
1598	if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
1599		vout_mode = pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
 
1600	if (vout_mode >= 0 && vout_mode != 0xff) {
1601		/*
1602		 * Not all chips support the VOUT_MODE command,
1603		 * so a failure to read it is not an error.
1604		 */
1605		switch (vout_mode >> 5) {
1606		case 0:	/* linear mode      */
1607			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1608				return -ENODEV;
1609
1610			exponent = vout_mode & 0x1f;
1611			/* and sign-extend it */
1612			if (exponent & 0x10)
1613				exponent |= ~0x1f;
1614			data->exponent = exponent;
1615			break;
1616		case 1: /* VID mode         */
1617			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1618				return -ENODEV;
1619			break;
1620		case 2:	/* direct mode      */
1621			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1622				return -ENODEV;
1623			break;
 
 
 
 
1624		default:
1625			return -ENODEV;
1626		}
1627	}
1628
1629	/* Determine maximum number of sensors, booleans, and labels */
1630	pmbus_find_max_attr(client, data);
1631	pmbus_clear_fault_page(client, 0);
1632	return 0;
1633}
1634
1635int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1636		   struct pmbus_driver_info *info)
1637{
1638	const struct pmbus_platform_data *pdata = client->dev.platform_data;
1639	struct pmbus_data *data;
1640	int ret;
1641
1642	if (!info) {
1643		dev_err(&client->dev, "Missing chip information");
1644		return -ENODEV;
1645	}
1646
1647	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1648				     | I2C_FUNC_SMBUS_BYTE_DATA
1649				     | I2C_FUNC_SMBUS_WORD_DATA))
1650		return -ENODEV;
1651
1652	data = kzalloc(sizeof(*data), GFP_KERNEL);
1653	if (!data) {
1654		dev_err(&client->dev, "No memory to allocate driver data\n");
1655		return -ENOMEM;
1656	}
1657
1658	i2c_set_clientdata(client, data);
1659	mutex_init(&data->update_lock);
1660
1661	/* Bail out if PMBus status register does not exist. */
1662	if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) {
1663		dev_err(&client->dev, "PMBus status register not found\n");
1664		ret = -ENODEV;
1665		goto out_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666	}
1667
1668	if (pdata)
1669		data->flags = pdata->flags;
1670	data->info = info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671
1672	pmbus_clear_faults(client);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673
1674	if (info->identify) {
1675		ret = (*info->identify)(client, info);
1676		if (ret < 0) {
1677			dev_err(&client->dev, "Chip identification failed\n");
1678			goto out_data;
1679		}
1680	}
1681
1682	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1683		dev_err(&client->dev, "Bad number of PMBus pages: %d\n",
1684			info->pages);
1685		ret = -EINVAL;
1686		goto out_data;
1687	}
1688
1689	ret = pmbus_identify_common(client, data);
1690	if (ret < 0) {
1691		dev_err(&client->dev, "Failed to identify chip capabilities\n");
1692		goto out_data;
 
 
1693	}
1694
1695	ret = -ENOMEM;
1696	data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors,
1697				GFP_KERNEL);
1698	if (!data->sensors) {
1699		dev_err(&client->dev, "No memory to allocate sensor data\n");
1700		goto out_data;
 
 
1701	}
1702
1703	data->booleans = kzalloc(sizeof(struct pmbus_boolean)
1704				 * data->max_booleans, GFP_KERNEL);
1705	if (!data->booleans) {
1706		dev_err(&client->dev, "No memory to allocate boolean data\n");
1707		goto out_sensors;
 
 
 
 
 
 
 
1708	}
1709
1710	data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1711			       GFP_KERNEL);
1712	if (!data->labels) {
1713		dev_err(&client->dev, "No memory to allocate label data\n");
1714		goto out_booleans;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715	}
1716
1717	data->attributes = kzalloc(sizeof(struct attribute *)
1718				   * data->max_attributes, GFP_KERNEL);
1719	if (!data->attributes) {
1720		dev_err(&client->dev, "No memory to allocate attribute data\n");
1721		goto out_labels;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1722	}
1723
1724	pmbus_find_attributes(client, data);
 
 
 
 
 
 
1725
1726	/*
1727	 * If there are no attributes, something is wrong.
1728	 * Bail out instead of trying to register nothing.
1729	 */
1730	if (!data->num_attributes) {
1731		dev_err(&client->dev, "No attributes found\n");
1732		ret = -ENODEV;
1733		goto out_attributes;
1734	}
1735
1736	/* Register sysfs hooks */
1737	data->group.attrs = data->attributes;
1738	ret = sysfs_create_group(&client->dev.kobj, &data->group);
1739	if (ret) {
1740		dev_err(&client->dev, "Failed to create sysfs entries\n");
1741		goto out_attributes;
1742	}
1743	data->hwmon_dev = hwmon_device_register(&client->dev);
 
1744	if (IS_ERR(data->hwmon_dev)) {
1745		ret = PTR_ERR(data->hwmon_dev);
1746		dev_err(&client->dev, "Failed to register hwmon device\n");
1747		goto out_hwmon_device_register;
1748	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1749	return 0;
 
 
1750
1751out_hwmon_device_register:
1752	sysfs_remove_group(&client->dev.kobj, &data->group);
1753out_attributes:
1754	kfree(data->attributes);
1755out_labels:
1756	kfree(data->labels);
1757out_booleans:
1758	kfree(data->booleans);
1759out_sensors:
1760	kfree(data->sensors);
1761out_data:
1762	kfree(data);
1763	return ret;
1764}
1765EXPORT_SYMBOL_GPL(pmbus_do_probe);
1766
1767int pmbus_do_remove(struct i2c_client *client)
1768{
1769	struct pmbus_data *data = i2c_get_clientdata(client);
1770	hwmon_device_unregister(data->hwmon_dev);
1771	sysfs_remove_group(&client->dev.kobj, &data->group);
1772	kfree(data->attributes);
1773	kfree(data->labels);
1774	kfree(data->booleans);
1775	kfree(data->sensors);
1776	kfree(data);
 
 
 
 
 
 
 
 
 
 
 
 
1777	return 0;
1778}
1779EXPORT_SYMBOL_GPL(pmbus_do_remove);
 
 
 
 
 
 
 
1780
1781MODULE_AUTHOR("Guenter Roeck");
1782MODULE_DESCRIPTION("PMBus core driver");
1783MODULE_LICENSE("GPL");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Hardware monitoring driver for PMBus devices
   4 *
   5 * Copyright (c) 2010, 2011 Ericsson AB.
   6 * Copyright (c) 2012 Guenter Roeck
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/debugfs.h>
  10#include <linux/kernel.h>
  11#include <linux/math64.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/err.h>
  15#include <linux/slab.h>
  16#include <linux/i2c.h>
  17#include <linux/hwmon.h>
  18#include <linux/hwmon-sysfs.h>
  19#include <linux/pmbus.h>
  20#include <linux/regulator/driver.h>
  21#include <linux/regulator/machine.h>
  22#include <linux/of.h>
  23#include <linux/thermal.h>
  24#include "pmbus.h"
  25
  26/*
  27 * Number of additional attribute pointers to allocate
  28 * with each call to krealloc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29 */
  30#define PMBUS_ATTR_ALLOC_SIZE	32
 
 
 
 
 
 
 
  31#define PMBUS_NAME_SIZE		24
  32
  33struct pmbus_sensor {
  34	struct pmbus_sensor *next;
  35	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
  36	struct device_attribute attribute;
  37	u8 page;		/* page number */
  38	u8 phase;		/* phase number, 0xff for all phases */
  39	u16 reg;		/* register */
  40	enum pmbus_sensor_classes class;	/* sensor class */
  41	bool update;		/* runtime sensor update needed */
  42	bool convert;		/* Whether or not to apply linear/vid/direct */
  43	int data;		/* Sensor data.
  44				   Negative if there was a read error */
  45};
  46#define to_pmbus_sensor(_attr) \
  47	container_of(_attr, struct pmbus_sensor, attribute)
  48
  49struct pmbus_boolean {
  50	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
  51	struct sensor_device_attribute attribute;
  52	struct pmbus_sensor *s1;
  53	struct pmbus_sensor *s2;
  54};
  55#define to_pmbus_boolean(_attr) \
  56	container_of(_attr, struct pmbus_boolean, attribute)
  57
  58struct pmbus_label {
  59	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
  60	struct device_attribute attribute;
  61	char label[PMBUS_NAME_SIZE];	/* label */
  62};
  63#define to_pmbus_label(_attr) \
  64	container_of(_attr, struct pmbus_label, attribute)
  65
  66/* Macros for converting between sensor index and register/page/status mask */
  67
  68#define PB_STATUS_MASK	0xffff
  69#define PB_REG_SHIFT	16
  70#define PB_REG_MASK	0x3ff
  71#define PB_PAGE_SHIFT	26
  72#define PB_PAGE_MASK	0x3f
  73
  74#define pb_reg_to_index(page, reg, mask)	(((page) << PB_PAGE_SHIFT) | \
  75						 ((reg) << PB_REG_SHIFT) | (mask))
  76
  77#define pb_index_to_page(index)			(((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
  78#define pb_index_to_reg(index)			(((index) >> PB_REG_SHIFT) & PB_REG_MASK)
  79#define pb_index_to_mask(index)			((index) & PB_STATUS_MASK)
  80
  81struct pmbus_data {
  82	struct device *dev;
  83	struct device *hwmon_dev;
  84	struct regulator_dev **rdevs;
  85
  86	u32 flags;		/* from platform data */
  87
  88	int exponent[PMBUS_PAGES];
  89				/* linear mode: exponent for output voltages */
  90
  91	const struct pmbus_driver_info *info;
  92
  93	int max_attributes;
  94	int num_attributes;
 
  95	struct attribute_group group;
  96	const struct attribute_group **groups;
  97	struct dentry *debugfs;		/* debugfs device directory */
  98
 
 
 
 
 
  99	struct pmbus_sensor *sensors;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100
 101	struct mutex update_lock;
 
 
 102
 103	bool has_status_word;		/* device uses STATUS_WORD register */
 104	int (*read_status)(struct i2c_client *client, int page);
 
 
 
 105
 106	s16 currpage;	/* current page, -1 for unknown/unset */
 107	s16 currphase;	/* current phase, 0xff for all, -1 for unknown/unset */
 108
 109	int vout_low[PMBUS_PAGES];	/* voltage low margin */
 110	int vout_high[PMBUS_PAGES];	/* voltage high margin */
 111};
 112
 113struct pmbus_debugfs_entry {
 114	struct i2c_client *client;
 115	u8 page;
 116	u8 reg;
 117};
 118
 119static const int pmbus_fan_rpm_mask[] = {
 120	PB_FAN_1_RPM,
 121	PB_FAN_2_RPM,
 122	PB_FAN_1_RPM,
 123	PB_FAN_2_RPM,
 124};
 125
 126static const int pmbus_fan_config_registers[] = {
 127	PMBUS_FAN_CONFIG_12,
 128	PMBUS_FAN_CONFIG_12,
 129	PMBUS_FAN_CONFIG_34,
 130	PMBUS_FAN_CONFIG_34
 131};
 132
 133static const int pmbus_fan_command_registers[] = {
 134	PMBUS_FAN_COMMAND_1,
 135	PMBUS_FAN_COMMAND_2,
 136	PMBUS_FAN_COMMAND_3,
 137	PMBUS_FAN_COMMAND_4,
 138};
 139
 140void pmbus_clear_cache(struct i2c_client *client)
 141{
 142	struct pmbus_data *data = i2c_get_clientdata(client);
 143	struct pmbus_sensor *sensor;
 
 144
 145	for (sensor = data->sensors; sensor; sensor = sensor->next)
 146		sensor->data = -ENODATA;
 
 
 
 
 
 
 
 147}
 148EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
 149
 150void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
 151{
 152	struct pmbus_data *data = i2c_get_clientdata(client);
 153	struct pmbus_sensor *sensor;
 154
 155	for (sensor = data->sensors; sensor; sensor = sensor->next)
 156		if (sensor->reg == reg)
 157			sensor->update = update;
 158}
 159EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
 160
 161int pmbus_set_page(struct i2c_client *client, int page, int phase)
 162{
 163	struct pmbus_data *data = i2c_get_clientdata(client);
 164	int rv;
 165
 166	if (page < 0)
 167		return 0;
 168
 169	if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
 170	    data->info->pages > 1 && page != data->currpage) {
 171		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
 172		if (rv < 0)
 173			return rv;
 174
 175		rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
 176		if (rv < 0)
 177			return rv;
 178
 179		if (rv != page)
 180			return -EIO;
 181	}
 182	data->currpage = page;
 183
 184	if (data->info->phases[page] && data->currphase != phase &&
 185	    !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
 186		rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
 187					       phase);
 188		if (rv)
 189			return rv;
 190	}
 191	data->currphase = phase;
 192
 193	return 0;
 194}
 195EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
 196
 197int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 198{
 199	int rv;
 200
 201	rv = pmbus_set_page(client, page, 0xff);
 202	if (rv < 0)
 203		return rv;
 204
 205	return i2c_smbus_write_byte(client, value);
 206}
 207EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
 208
 209/*
 210 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
 211 * a device specific mapping function exists and calls it if necessary.
 212 */
 213static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
 214{
 215	struct pmbus_data *data = i2c_get_clientdata(client);
 216	const struct pmbus_driver_info *info = data->info;
 217	int status;
 218
 219	if (info->write_byte) {
 220		status = info->write_byte(client, page, value);
 221		if (status != -ENODATA)
 222			return status;
 223	}
 224	return pmbus_write_byte(client, page, value);
 225}
 226
 227int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
 228			  u16 word)
 229{
 230	int rv;
 231
 232	rv = pmbus_set_page(client, page, 0xff);
 233	if (rv < 0)
 234		return rv;
 235
 236	return i2c_smbus_write_word_data(client, reg, word);
 237}
 238EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
 239
 240
 241static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
 242				u16 word)
 243{
 244	int bit;
 245	int id;
 246	int rv;
 247
 248	switch (reg) {
 249	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
 250		id = reg - PMBUS_VIRT_FAN_TARGET_1;
 251		bit = pmbus_fan_rpm_mask[id];
 252		rv = pmbus_update_fan(client, page, id, bit, bit, word);
 253		break;
 254	default:
 255		rv = -ENXIO;
 256		break;
 257	}
 258
 259	return rv;
 260}
 261
 262/*
 263 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
 264 * a device specific mapping function exists and calls it if necessary.
 265 */
 266static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
 267				  u16 word)
 268{
 269	struct pmbus_data *data = i2c_get_clientdata(client);
 270	const struct pmbus_driver_info *info = data->info;
 271	int status;
 272
 273	if (info->write_word_data) {
 274		status = info->write_word_data(client, page, reg, word);
 275		if (status != -ENODATA)
 276			return status;
 277	}
 278
 279	if (reg >= PMBUS_VIRT_BASE)
 280		return pmbus_write_virt_reg(client, page, reg, word);
 281
 282	return pmbus_write_word_data(client, page, reg, word);
 283}
 284
 285/*
 286 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
 287 * a device specific mapping function exists and calls it if necessary.
 288 */
 289static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
 290{
 291	struct pmbus_data *data = i2c_get_clientdata(client);
 292	const struct pmbus_driver_info *info = data->info;
 293	int status;
 
 
 294
 295	if (info->write_byte_data) {
 296		status = info->write_byte_data(client, page, reg, value);
 297		if (status != -ENODATA)
 298			return status;
 299	}
 300	return pmbus_write_byte_data(client, page, reg, value);
 301}
 
 302
 303/*
 304 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
 305 * a device specific mapping function exists and calls it if necessary.
 306 */
 307static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
 308{
 309	struct pmbus_data *data = i2c_get_clientdata(client);
 310	const struct pmbus_driver_info *info = data->info;
 311	int status;
 312
 313	if (info->read_byte_data) {
 314		status = info->read_byte_data(client, page, reg);
 315		if (status != -ENODATA)
 316			return status;
 317	}
 318	return pmbus_read_byte_data(client, page, reg);
 
 
 319}
 320
 321int pmbus_update_fan(struct i2c_client *client, int page, int id,
 322		     u8 config, u8 mask, u16 command)
 323{
 324	int from;
 325	int rv;
 326	u8 to;
 327
 328	from = _pmbus_read_byte_data(client, page,
 329				    pmbus_fan_config_registers[id]);
 330	if (from < 0)
 331		return from;
 332
 333	to = (from & ~mask) | (config & mask);
 334	if (to != from) {
 335		rv = _pmbus_write_byte_data(client, page,
 336					   pmbus_fan_config_registers[id], to);
 337		if (rv < 0)
 338			return rv;
 339	}
 340
 341	return _pmbus_write_word_data(client, page,
 342				      pmbus_fan_command_registers[id], command);
 343}
 344EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
 345
 346int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
 347{
 348	int rv;
 349
 350	rv = pmbus_set_page(client, page, phase);
 351	if (rv < 0)
 352		return rv;
 353
 354	return i2c_smbus_read_word_data(client, reg);
 355}
 356EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
 357
 358static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
 359{
 360	int rv;
 361	int id;
 362
 363	switch (reg) {
 364	case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
 365		id = reg - PMBUS_VIRT_FAN_TARGET_1;
 366		rv = pmbus_get_fan_rate_device(client, page, id, rpm);
 367		break;
 368	default:
 369		rv = -ENXIO;
 370		break;
 371	}
 372
 373	return rv;
 374}
 
 375
 376/*
 377 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
 378 * a device specific mapping function exists and calls it if necessary.
 379 */
 380static int _pmbus_read_word_data(struct i2c_client *client, int page,
 381				 int phase, int reg)
 382{
 383	struct pmbus_data *data = i2c_get_clientdata(client);
 384	const struct pmbus_driver_info *info = data->info;
 385	int status;
 386
 387	if (info->read_word_data) {
 388		status = info->read_word_data(client, page, phase, reg);
 389		if (status != -ENODATA)
 390			return status;
 391	}
 392
 393	if (reg >= PMBUS_VIRT_BASE)
 394		return pmbus_read_virt_reg(client, page, reg);
 395
 396	return pmbus_read_word_data(client, page, phase, reg);
 397}
 398
 399/* Same as above, but without phase parameter, for use in check functions */
 400static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
 401{
 402	return _pmbus_read_word_data(client, page, 0xff, reg);
 403}
 404
 405int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
 406{
 407	int rv;
 408
 409	rv = pmbus_set_page(client, page, 0xff);
 410	if (rv < 0)
 411		return rv;
 412
 413	return i2c_smbus_read_byte_data(client, reg);
 414}
 415EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
 416
 417int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
 418{
 419	int rv;
 420
 421	rv = pmbus_set_page(client, page, 0xff);
 422	if (rv < 0)
 423		return rv;
 424
 425	return i2c_smbus_write_byte_data(client, reg, value);
 426}
 427EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
 428
 429int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
 430			   u8 mask, u8 value)
 431{
 432	unsigned int tmp;
 433	int rv;
 434
 435	rv = _pmbus_read_byte_data(client, page, reg);
 436	if (rv < 0)
 437		return rv;
 438
 439	tmp = (rv & ~mask) | (value & mask);
 440
 441	if (tmp != rv)
 442		rv = _pmbus_write_byte_data(client, page, reg, tmp);
 443
 444	return rv;
 445}
 446EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
 447
 448static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
 449				 char *data_buf)
 450{
 451	int rv;
 452
 453	rv = pmbus_set_page(client, page, 0xff);
 454	if (rv < 0)
 455		return rv;
 456
 457	return i2c_smbus_read_block_data(client, reg, data_buf);
 458}
 459
 460static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
 461					      int reg)
 462{
 463	struct pmbus_sensor *sensor;
 464
 465	for (sensor = data->sensors; sensor; sensor = sensor->next) {
 466		if (sensor->page == page && sensor->reg == reg)
 467			return sensor;
 468	}
 469
 470	return ERR_PTR(-EINVAL);
 471}
 472
 473static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
 474			      enum pmbus_fan_mode mode,
 475			      bool from_cache)
 476{
 477	struct pmbus_data *data = i2c_get_clientdata(client);
 478	bool want_rpm, have_rpm;
 479	struct pmbus_sensor *s;
 480	int config;
 481	int reg;
 482
 483	want_rpm = (mode == rpm);
 484
 485	if (from_cache) {
 486		reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
 487		s = pmbus_find_sensor(data, page, reg + id);
 488		if (IS_ERR(s))
 489			return PTR_ERR(s);
 490
 491		return s->data;
 492	}
 493
 494	config = _pmbus_read_byte_data(client, page,
 495				      pmbus_fan_config_registers[id]);
 496	if (config < 0)
 497		return config;
 498
 499	have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
 500	if (want_rpm == have_rpm)
 501		return pmbus_read_word_data(client, page, 0xff,
 502					    pmbus_fan_command_registers[id]);
 503
 504	/* Can't sensibly map between RPM and PWM, just return zero */
 505	return 0;
 506}
 507
 508int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
 509			      enum pmbus_fan_mode mode)
 510{
 511	return pmbus_get_fan_rate(client, page, id, mode, false);
 512}
 513EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
 514
 515int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
 516			      enum pmbus_fan_mode mode)
 517{
 518	return pmbus_get_fan_rate(client, page, id, mode, true);
 519}
 520EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
 521
 522static void pmbus_clear_fault_page(struct i2c_client *client, int page)
 523{
 524	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
 525}
 526
 527void pmbus_clear_faults(struct i2c_client *client)
 528{
 529	struct pmbus_data *data = i2c_get_clientdata(client);
 530	int i;
 531
 532	for (i = 0; i < data->info->pages; i++)
 533		pmbus_clear_fault_page(client, i);
 534}
 535EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
 536
 537static int pmbus_check_status_cml(struct i2c_client *client)
 538{
 539	struct pmbus_data *data = i2c_get_clientdata(client);
 540	int status, status2;
 541
 542	status = data->read_status(client, -1);
 543	if (status < 0 || (status & PB_STATUS_CML)) {
 544		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
 545		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
 546			return -EIO;
 547	}
 548	return 0;
 549}
 550
 551static bool pmbus_check_register(struct i2c_client *client,
 552				 int (*func)(struct i2c_client *client,
 553					     int page, int reg),
 554				 int page, int reg)
 555{
 556	int rv;
 557	struct pmbus_data *data = i2c_get_clientdata(client);
 558
 559	rv = func(client, page, reg);
 560	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 561		rv = pmbus_check_status_cml(client);
 562	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
 563		data->read_status(client, -1);
 564	if (reg < PMBUS_VIRT_BASE)
 565		pmbus_clear_fault_page(client, -1);
 566	return rv >= 0;
 567}
 568
 569static bool pmbus_check_status_register(struct i2c_client *client, int page)
 570{
 571	int status;
 572	struct pmbus_data *data = i2c_get_clientdata(client);
 573
 574	status = data->read_status(client, page);
 575	if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
 576	    (status & PB_STATUS_CML)) {
 577		status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
 578		if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
 579			status = -EIO;
 580	}
 581
 582	pmbus_clear_fault_page(client, -1);
 583	return status >= 0;
 584}
 585
 586bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
 587{
 588	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
 589}
 590EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
 591
 592bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
 593{
 594	return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
 595}
 596EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
 597
 598static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
 599						      int page, int reg)
 600{
 601	int rv;
 602	struct pmbus_data *data = i2c_get_clientdata(client);
 603	char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
 604
 605	rv = pmbus_read_block_data(client, page, reg, data_buf);
 606	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
 607		rv = pmbus_check_status_cml(client);
 608	if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
 609		data->read_status(client, -1);
 610	pmbus_clear_fault_page(client, -1);
 611	return rv >= 0;
 612}
 
 613
 614const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
 615{
 616	struct pmbus_data *data = i2c_get_clientdata(client);
 617
 618	return data->info;
 619}
 620EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
 621
 622static int pmbus_get_status(struct i2c_client *client, int page, int reg)
 623{
 
 624	struct pmbus_data *data = i2c_get_clientdata(client);
 625	int status;
 626
 627	switch (reg) {
 628	case PMBUS_STATUS_WORD:
 629		status = data->read_status(client, page);
 630		break;
 631	default:
 632		status = _pmbus_read_byte_data(client, page, reg);
 633		break;
 634	}
 635	if (status < 0)
 636		pmbus_clear_faults(client);
 637	return status;
 638}
 639
 640static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
 641{
 642	if (sensor->data < 0 || sensor->update)
 643		sensor->data = _pmbus_read_word_data(client, sensor->page,
 644						     sensor->phase, sensor->reg);
 645}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646
 647/*
 648 * Convert ieee754 sensor values to milli- or micro-units
 649 * depending on sensor type.
 650 *
 651 * ieee754 data format:
 652 *	bit 15:		sign
 653 *	bit 10..14:	exponent
 654 *	bit 0..9:	mantissa
 655 * exponent=0:
 656 *	v=(−1)^signbit * 2^(−14) * 0.significantbits
 657 * exponent=1..30:
 658 *	v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
 659 * exponent=31:
 660 *	v=NaN
 661 *
 662 * Add the number mantissa bits into the calculations for simplicity.
 663 * To do that, add '10' to the exponent. By doing that, we can just add
 664 * 0x400 to normal values and get the expected result.
 665 */
 666static long pmbus_reg2data_ieee754(struct pmbus_data *data,
 667				   struct pmbus_sensor *sensor)
 668{
 669	int exponent;
 670	bool sign;
 671	long val;
 672
 673	/* only support half precision for now */
 674	sign = sensor->data & 0x8000;
 675	exponent = (sensor->data >> 10) & 0x1f;
 676	val = sensor->data & 0x3ff;
 677
 678	if (exponent == 0) {			/* subnormal */
 679		exponent = -(14 + 10);
 680	} else if (exponent ==  0x1f) {		/* NaN, convert to min/max */
 681		exponent = 0;
 682		val = 65504;
 683	} else {
 684		exponent -= (15 + 10);		/* normal */
 685		val |= 0x400;
 686	}
 687
 688	/* scale result to milli-units for all sensors except fans */
 689	if (sensor->class != PSC_FAN)
 690		val = val * 1000L;
 691
 692	/* scale result to micro-units for power sensors */
 693	if (sensor->class == PSC_POWER)
 694		val = val * 1000L;
 695
 696	if (exponent >= 0)
 697		val <<= exponent;
 698	else
 699		val >>= -exponent;
 700
 701	if (sign)
 702		val = -val;
 703
 704	return val;
 705}
 706
 707/*
 708 * Convert linear sensor values to milli- or micro-units
 709 * depending on sensor type.
 710 */
 711static s64 pmbus_reg2data_linear(struct pmbus_data *data,
 712				 struct pmbus_sensor *sensor)
 713{
 714	s16 exponent;
 715	s32 mantissa;
 716	s64 val;
 717
 718	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
 719		exponent = data->exponent[sensor->page];
 720		mantissa = (u16) sensor->data;
 721	} else {				/* LINEAR11 */
 722		exponent = ((s16)sensor->data) >> 11;
 723		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
 
 
 
 
 
 724	}
 725
 726	val = mantissa;
 727
 728	/* scale result to milli-units for all sensors except fans */
 729	if (sensor->class != PSC_FAN)
 730		val = val * 1000LL;
 731
 732	/* scale result to micro-units for power sensors */
 733	if (sensor->class == PSC_POWER)
 734		val = val * 1000LL;
 735
 736	if (exponent >= 0)
 737		val <<= exponent;
 738	else
 739		val >>= -exponent;
 740
 741	return val;
 742}
 743
 744/*
 745 * Convert direct sensor values to milli- or micro-units
 746 * depending on sensor type.
 747 */
 748static s64 pmbus_reg2data_direct(struct pmbus_data *data,
 749				 struct pmbus_sensor *sensor)
 750{
 751	s64 b, val = (s16)sensor->data;
 752	s32 m, R;
 753
 754	m = data->info->m[sensor->class];
 755	b = data->info->b[sensor->class];
 756	R = data->info->R[sensor->class];
 757
 758	if (m == 0)
 759		return 0;
 760
 761	/* X = 1/m * (Y * 10^-R - b) */
 762	R = -R;
 763	/* scale result to milli-units for everything but fans */
 764	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
 765		R += 3;
 766		b *= 1000;
 767	}
 768
 769	/* scale result to micro-units for power sensors */
 770	if (sensor->class == PSC_POWER) {
 771		R += 3;
 772		b *= 1000;
 773	}
 774
 775	while (R > 0) {
 776		val *= 10;
 777		R--;
 778	}
 779	while (R < 0) {
 780		val = div_s64(val + 5LL, 10L);  /* round closest */
 781		R++;
 782	}
 783
 784	val = div_s64(val - b, m);
 785	return val;
 786}
 787
 788/*
 789 * Convert VID sensor values to milli- or micro-units
 790 * depending on sensor type.
 
 791 */
 792static s64 pmbus_reg2data_vid(struct pmbus_data *data,
 793			      struct pmbus_sensor *sensor)
 794{
 795	long val = sensor->data;
 796	long rv = 0;
 797
 798	switch (data->info->vrm_version[sensor->page]) {
 799	case vr11:
 800		if (val >= 0x02 && val <= 0xb2)
 801			rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
 802		break;
 803	case vr12:
 804		if (val >= 0x01)
 805			rv = 250 + (val - 1) * 5;
 806		break;
 807	case vr13:
 808		if (val >= 0x01)
 809			rv = 500 + (val - 1) * 10;
 810		break;
 811	case imvp9:
 812		if (val >= 0x01)
 813			rv = 200 + (val - 1) * 10;
 814		break;
 815	case amd625mv:
 816		if (val >= 0x0 && val <= 0xd8)
 817			rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
 818		break;
 819	}
 820	return rv;
 821}
 822
 823static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
 824{
 825	s64 val;
 826
 827	if (!sensor->convert)
 828		return sensor->data;
 829
 830	switch (data->info->format[sensor->class]) {
 831	case direct:
 832		val = pmbus_reg2data_direct(data, sensor);
 833		break;
 834	case vid:
 835		val = pmbus_reg2data_vid(data, sensor);
 836		break;
 837	case ieee754:
 838		val = pmbus_reg2data_ieee754(data, sensor);
 839		break;
 840	case linear:
 841	default:
 842		val = pmbus_reg2data_linear(data, sensor);
 843		break;
 844	}
 845	return val;
 846}
 847
 848#define MAX_IEEE_MANTISSA	(0x7ff * 1000)
 849#define MIN_IEEE_MANTISSA	(0x400 * 1000)
 850
 851static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
 852				  struct pmbus_sensor *sensor, long val)
 853{
 854	u16 exponent = (15 + 10);
 855	long mantissa;
 856	u16 sign = 0;
 857
 858	/* simple case */
 859	if (val == 0)
 860		return 0;
 861
 862	if (val < 0) {
 863		sign = 0x8000;
 864		val = -val;
 865	}
 866
 867	/* Power is in uW. Convert to mW before converting. */
 868	if (sensor->class == PSC_POWER)
 869		val = DIV_ROUND_CLOSEST(val, 1000L);
 870
 871	/*
 872	 * For simplicity, convert fan data to milli-units
 873	 * before calculating the exponent.
 874	 */
 875	if (sensor->class == PSC_FAN)
 876		val = val * 1000;
 877
 878	/* Reduce large mantissa until it fits into 10 bit */
 879	while (val > MAX_IEEE_MANTISSA && exponent < 30) {
 880		exponent++;
 881		val >>= 1;
 882	}
 883	/*
 884	 * Increase small mantissa to generate valid 'normal'
 885	 * number
 886	 */
 887	while (val < MIN_IEEE_MANTISSA && exponent > 1) {
 888		exponent--;
 889		val <<= 1;
 890	}
 891
 892	/* Convert mantissa from milli-units to units */
 893	mantissa = DIV_ROUND_CLOSEST(val, 1000);
 894
 895	/*
 896	 * Ensure that the resulting number is within range.
 897	 * Valid range is 0x400..0x7ff, where bit 10 reflects
 898	 * the implied high bit in normalized ieee754 numbers.
 899	 * Set the range to 0x400..0x7ff to reflect this.
 900	 * The upper bit is then removed by the mask against
 901	 * 0x3ff in the final assignment.
 902	 */
 903	if (mantissa > 0x7ff)
 904		mantissa = 0x7ff;
 905	else if (mantissa < 0x400)
 906		mantissa = 0x400;
 907
 908	/* Convert to sign, 5 bit exponent, 10 bit mantissa */
 909	return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
 910}
 911
 912#define MAX_LIN_MANTISSA	(1023 * 1000)
 913#define MIN_LIN_MANTISSA	(511 * 1000)
 914
 915static u16 pmbus_data2reg_linear(struct pmbus_data *data,
 916				 struct pmbus_sensor *sensor, s64 val)
 917{
 918	s16 exponent = 0, mantissa;
 919	bool negative = false;
 920
 921	/* simple case */
 922	if (val == 0)
 923		return 0;
 924
 925	if (sensor->class == PSC_VOLTAGE_OUT) {
 926		/* LINEAR16 does not support negative voltages */
 927		if (val < 0)
 928			return 0;
 929
 930		/*
 931		 * For a static exponents, we don't have a choice
 932		 * but to adjust the value to it.
 933		 */
 934		if (data->exponent[sensor->page] < 0)
 935			val <<= -data->exponent[sensor->page];
 936		else
 937			val >>= data->exponent[sensor->page];
 938		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
 939		return clamp_val(val, 0, 0xffff);
 940	}
 941
 942	if (val < 0) {
 943		negative = true;
 944		val = -val;
 945	}
 946
 947	/* Power is in uW. Convert to mW before converting. */
 948	if (sensor->class == PSC_POWER)
 949		val = DIV_ROUND_CLOSEST_ULL(val, 1000);
 950
 951	/*
 952	 * For simplicity, convert fan data to milli-units
 953	 * before calculating the exponent.
 954	 */
 955	if (sensor->class == PSC_FAN)
 956		val = val * 1000LL;
 957
 958	/* Reduce large mantissa until it fits into 10 bit */
 959	while (val >= MAX_LIN_MANTISSA && exponent < 15) {
 960		exponent++;
 961		val >>= 1;
 962	}
 963	/* Increase small mantissa to improve precision */
 964	while (val < MIN_LIN_MANTISSA && exponent > -15) {
 965		exponent--;
 966		val <<= 1;
 967	}
 968
 969	/* Convert mantissa from milli-units to units */
 970	mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
 
 
 
 
 971
 972	/* restore sign */
 973	if (negative)
 974		mantissa = -mantissa;
 975
 976	/* Convert to 5 bit exponent, 11 bit mantissa */
 977	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
 978}
 979
 980static u16 pmbus_data2reg_direct(struct pmbus_data *data,
 981				 struct pmbus_sensor *sensor, s64 val)
 982{
 983	s64 b;
 984	s32 m, R;
 985
 986	m = data->info->m[sensor->class];
 987	b = data->info->b[sensor->class];
 988	R = data->info->R[sensor->class];
 989
 990	/* Power is in uW. Adjust R and b. */
 991	if (sensor->class == PSC_POWER) {
 992		R -= 3;
 993		b *= 1000;
 994	}
 995
 996	/* Calculate Y = (m * X + b) * 10^R */
 997	if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
 998		R -= 3;		/* Adjust R and b for data in milli-units */
 999		b *= 1000;
1000	}
1001	val = val * m + b;
1002
1003	while (R > 0) {
1004		val *= 10;
1005		R--;
1006	}
1007	while (R < 0) {
1008		val = div_s64(val + 5LL, 10L);  /* round closest */
1009		R++;
1010	}
1011
1012	return (u16)clamp_val(val, S16_MIN, S16_MAX);
1013}
1014
1015static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1016			      struct pmbus_sensor *sensor, s64 val)
1017{
1018	val = clamp_val(val, 500, 1600);
1019
1020	return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1021}
1022
1023static u16 pmbus_data2reg(struct pmbus_data *data,
1024			  struct pmbus_sensor *sensor, s64 val)
1025{
1026	u16 regval;
1027
1028	if (!sensor->convert)
1029		return val;
1030
1031	switch (data->info->format[sensor->class]) {
1032	case direct:
1033		regval = pmbus_data2reg_direct(data, sensor, val);
1034		break;
1035	case vid:
1036		regval = pmbus_data2reg_vid(data, sensor, val);
1037		break;
1038	case ieee754:
1039		regval = pmbus_data2reg_ieee754(data, sensor, val);
1040		break;
1041	case linear:
1042	default:
1043		regval = pmbus_data2reg_linear(data, sensor, val);
1044		break;
1045	}
1046	return regval;
1047}
1048
1049/*
1050 * Return boolean calculated from converted data.
1051 * <index> defines a status register index and mask.
1052 * The mask is in the lower 8 bits, the register index is in bits 8..23.
1053 *
1054 * The associated pmbus_boolean structure contains optional pointers to two
1055 * sensor attributes. If specified, those attributes are compared against each
1056 * other to determine if a limit has been exceeded.
 
 
 
 
1057 *
1058 * If the sensor attribute pointers are NULL, the function returns true if
1059 * (status[reg] & mask) is true.
 
1060 *
1061 * If sensor attribute pointers are provided, a comparison against a specified
1062 * limit has to be performed to determine the boolean result.
1063 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1064 * sensor values referenced by sensor attribute pointers s1 and s2).
1065 *
1066 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1067 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1068 *
1069 * If a negative value is stored in any of the referenced registers, this value
1070 * reflects an error code which will be returned.
1071 */
1072static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1073			     int index)
1074{
1075	struct pmbus_data *data = i2c_get_clientdata(client);
1076	struct pmbus_sensor *s1 = b->s1;
1077	struct pmbus_sensor *s2 = b->s2;
1078	u16 mask = pb_index_to_mask(index);
1079	u8 page = pb_index_to_page(index);
1080	u16 reg = pb_index_to_reg(index);
1081	int ret, status;
1082	u16 regval;
1083
1084	mutex_lock(&data->update_lock);
1085	status = pmbus_get_status(client, page, reg);
1086	if (status < 0) {
1087		ret = status;
1088		goto unlock;
1089	}
1090
1091	if (s1)
1092		pmbus_update_sensor_data(client, s1);
1093	if (s2)
1094		pmbus_update_sensor_data(client, s2);
1095
1096	regval = status & mask;
1097	if (regval) {
1098		ret = _pmbus_write_byte_data(client, page, reg, regval);
1099		if (ret)
1100			goto unlock;
1101	}
1102	if (s1 && s2) {
1103		s64 v1, v2;
1104
1105		if (s1->data < 0) {
1106			ret = s1->data;
1107			goto unlock;
1108		}
1109		if (s2->data < 0) {
1110			ret = s2->data;
1111			goto unlock;
1112		}
1113
1114		v1 = pmbus_reg2data(data, s1);
1115		v2 = pmbus_reg2data(data, s2);
1116		ret = !!(regval && v1 >= v2);
1117	} else {
1118		ret = !!regval;
1119	}
1120unlock:
1121	mutex_unlock(&data->update_lock);
1122	return ret;
1123}
1124
1125static ssize_t pmbus_show_boolean(struct device *dev,
1126				  struct device_attribute *da, char *buf)
1127{
1128	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1129	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1130	struct i2c_client *client = to_i2c_client(dev->parent);
1131	int val;
 
1132
1133	val = pmbus_get_boolean(client, boolean, attr->index);
1134	if (val < 0)
1135		return val;
1136	return sysfs_emit(buf, "%d\n", val);
1137}
1138
1139static ssize_t pmbus_show_sensor(struct device *dev,
1140				 struct device_attribute *devattr, char *buf)
1141{
1142	struct i2c_client *client = to_i2c_client(dev->parent);
1143	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1144	struct pmbus_data *data = i2c_get_clientdata(client);
1145	ssize_t ret;
1146
1147	mutex_lock(&data->update_lock);
1148	pmbus_update_sensor_data(client, sensor);
1149	if (sensor->data < 0)
1150		ret = sensor->data;
1151	else
1152		ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1153	mutex_unlock(&data->update_lock);
1154	return ret;
1155}
1156
1157static ssize_t pmbus_set_sensor(struct device *dev,
1158				struct device_attribute *devattr,
1159				const char *buf, size_t count)
1160{
1161	struct i2c_client *client = to_i2c_client(dev->parent);
 
1162	struct pmbus_data *data = i2c_get_clientdata(client);
1163	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1164	ssize_t rv = count;
1165	s64 val;
1166	int ret;
1167	u16 regval;
1168
1169	if (kstrtos64(buf, 10, &val) < 0)
1170		return -EINVAL;
1171
1172	mutex_lock(&data->update_lock);
1173	regval = pmbus_data2reg(data, sensor, val);
1174	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1175	if (ret < 0)
1176		rv = ret;
1177	else
1178		sensor->data = -ENODATA;
1179	mutex_unlock(&data->update_lock);
1180	return rv;
1181}
1182
1183static ssize_t pmbus_show_label(struct device *dev,
1184				struct device_attribute *da, char *buf)
1185{
1186	struct pmbus_label *label = to_pmbus_label(da);
 
 
1187
1188	return sysfs_emit(buf, "%s\n", label->label);
 
1189}
1190
1191static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1192{
1193	if (data->num_attributes >= data->max_attributes - 1) {
1194		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1195		void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1196						      new_max_attrs, sizeof(void *),
1197						      GFP_KERNEL);
1198		if (!new_attrs)
1199			return -ENOMEM;
1200		data->group.attrs = new_attrs;
1201		data->max_attributes = new_max_attrs;
1202	}
1203
1204	data->group.attrs[data->num_attributes++] = attr;
1205	data->group.attrs[data->num_attributes] = NULL;
1206	return 0;
1207}
1208
1209static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1210				const char *name,
1211				umode_t mode,
1212				ssize_t (*show)(struct device *dev,
1213						struct device_attribute *attr,
1214						char *buf),
1215				ssize_t (*store)(struct device *dev,
1216						 struct device_attribute *attr,
1217						 const char *buf, size_t count))
1218{
1219	sysfs_attr_init(&dev_attr->attr);
1220	dev_attr->attr.name = name;
1221	dev_attr->attr.mode = mode;
1222	dev_attr->show = show;
1223	dev_attr->store = store;
1224}
1225
1226static void pmbus_attr_init(struct sensor_device_attribute *a,
1227			    const char *name,
1228			    umode_t mode,
1229			    ssize_t (*show)(struct device *dev,
1230					    struct device_attribute *attr,
1231					    char *buf),
1232			    ssize_t (*store)(struct device *dev,
1233					     struct device_attribute *attr,
1234					     const char *buf, size_t count),
1235			    int idx)
1236{
1237	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1238	a->index = idx;
1239}
1240
1241static int pmbus_add_boolean(struct pmbus_data *data,
1242			     const char *name, const char *type, int seq,
1243			     struct pmbus_sensor *s1,
1244			     struct pmbus_sensor *s2,
1245			     u8 page, u16 reg, u16 mask)
1246{
1247	struct pmbus_boolean *boolean;
1248	struct sensor_device_attribute *a;
1249
1250	if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1251		return -EINVAL;
1252
1253	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1254	if (!boolean)
1255		return -ENOMEM;
1256
1257	a = &boolean->attribute;
1258
1259	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1260		 name, seq, type);
1261	boolean->s1 = s1;
1262	boolean->s2 = s2;
1263	pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1264			pb_reg_to_index(page, reg, mask));
1265
1266	return pmbus_add_attribute(data, &a->dev_attr.attr);
1267}
1268
1269/* of thermal for pmbus temperature sensors */
1270struct pmbus_thermal_data {
1271	struct pmbus_data *pmbus_data;
1272	struct pmbus_sensor *sensor;
1273};
1274
1275static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1276{
1277	struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1278	struct pmbus_sensor *sensor = tdata->sensor;
1279	struct pmbus_data *pmbus_data = tdata->pmbus_data;
1280	struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1281	struct device *dev = pmbus_data->hwmon_dev;
1282	int ret = 0;
1283
1284	if (!dev) {
1285		/* May not even get to hwmon yet */
1286		*temp = 0;
1287		return 0;
1288	}
1289
1290	mutex_lock(&pmbus_data->update_lock);
1291	pmbus_update_sensor_data(client, sensor);
1292	if (sensor->data < 0)
1293		ret = sensor->data;
1294	else
1295		*temp = (int)pmbus_reg2data(pmbus_data, sensor);
1296	mutex_unlock(&pmbus_data->update_lock);
1297
1298	return ret;
1299}
1300
1301static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1302	.get_temp = pmbus_thermal_get_temp,
1303};
1304
1305static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1306				    struct pmbus_sensor *sensor, int index)
1307{
1308	struct device *dev = pmbus_data->dev;
1309	struct pmbus_thermal_data *tdata;
1310	struct thermal_zone_device *tzd;
1311
1312	tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1313	if (!tdata)
1314		return -ENOMEM;
1315
1316	tdata->sensor = sensor;
1317	tdata->pmbus_data = pmbus_data;
1318
1319	tzd = devm_thermal_of_zone_register(dev, index, tdata,
1320					    &pmbus_thermal_ops);
1321	/*
1322	 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1323	 * so ignore that error but forward any other error.
1324	 */
1325	if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1326		return PTR_ERR(tzd);
1327
1328	return 0;
1329}
1330
1331static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1332					     const char *name, const char *type,
1333					     int seq, int page, int phase,
1334					     int reg,
1335					     enum pmbus_sensor_classes class,
1336					     bool update, bool readonly,
1337					     bool convert)
1338{
1339	struct pmbus_sensor *sensor;
1340	struct device_attribute *a;
1341
1342	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1343	if (!sensor)
1344		return NULL;
1345	a = &sensor->attribute;
1346
1347	if (type)
1348		snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1349			 name, seq, type);
1350	else
1351		snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1352			 name, seq);
1353
1354	if (data->flags & PMBUS_WRITE_PROTECTED)
1355		readonly = true;
1356
 
 
 
1357	sensor->page = page;
1358	sensor->phase = phase;
1359	sensor->reg = reg;
1360	sensor->class = class;
1361	sensor->update = update;
1362	sensor->convert = convert;
1363	sensor->data = -ENODATA;
1364	pmbus_dev_attr_init(a, sensor->name,
1365			    readonly ? 0444 : 0644,
1366			    pmbus_show_sensor, pmbus_set_sensor);
 
 
 
1367
1368	if (pmbus_add_attribute(data, &a->attr))
1369		return NULL;
 
 
 
1370
1371	sensor->next = data->sensors;
1372	data->sensors = sensor;
1373
1374	/* temperature sensors with _input values are registered with thermal */
1375	if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1376		pmbus_thermal_add_sensor(data, sensor, seq);
 
 
 
 
1377
1378	return sensor;
 
1379}
1380
1381static int pmbus_add_label(struct pmbus_data *data,
1382			   const char *name, int seq,
1383			   const char *lstring, int index, int phase)
 
 
 
1384{
1385	struct pmbus_label *label;
1386	struct device_attribute *a;
1387
1388	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1389	if (!label)
1390		return -ENOMEM;
1391
1392	a = &label->attribute;
1393
1394	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1395	if (!index) {
1396		if (phase == 0xff)
1397			strncpy(label->label, lstring,
1398				sizeof(label->label) - 1);
1399		else
1400			snprintf(label->label, sizeof(label->label), "%s.%d",
1401				 lstring, phase);
1402	} else {
1403		if (phase == 0xff)
1404			snprintf(label->label, sizeof(label->label), "%s%d",
1405				 lstring, index);
1406		else
1407			snprintf(label->label, sizeof(label->label), "%s%d.%d",
1408				 lstring, index, phase);
1409	}
1410
1411	pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1412	return pmbus_add_attribute(data, &a->attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413}
1414
1415/*
1416 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1417 */
1418
1419/*
1420 * The pmbus_limit_attr structure describes a single limit attribute
1421 * and its associated alarm attribute.
1422 */
1423struct pmbus_limit_attr {
1424	u16 reg;		/* Limit register */
1425	u16 sbit;		/* Alarm attribute status bit */
1426	bool update;		/* True if register needs updates */
1427	bool low;		/* True if low limit; for limits with compare
1428				   functions only */
1429	const char *attr;	/* Attribute name */
1430	const char *alarm;	/* Alarm attribute name */
 
1431};
1432
1433/*
1434 * The pmbus_sensor_attr structure describes one sensor attribute. This
1435 * description includes a reference to the associated limit attributes.
1436 */
1437struct pmbus_sensor_attr {
1438	u16 reg;			/* sensor register */
1439	u16 gbit;			/* generic status bit */
1440	u8 nlimit;			/* # of limit registers */
1441	enum pmbus_sensor_classes class;/* sensor class */
1442	const char *label;		/* sensor label */
1443	bool paged;			/* true if paged sensor */
1444	bool update;			/* true if update needed */
1445	bool compare;			/* true if compare function needed */
1446	u32 func;			/* sensor mask */
1447	u32 sfunc;			/* sensor status mask */
1448	int sreg;			/* status register */
 
1449	const struct pmbus_limit_attr *limit;/* limit registers */
 
1450};
1451
1452/*
1453 * Add a set of limit attributes and, if supported, the associated
1454 * alarm attributes.
1455 * returns 0 if no alarm register found, 1 if an alarm register was found,
1456 * < 0 on errors.
1457 */
1458static int pmbus_add_limit_attrs(struct i2c_client *client,
1459				 struct pmbus_data *data,
1460				 const struct pmbus_driver_info *info,
1461				 const char *name, int index, int page,
1462				 struct pmbus_sensor *base,
1463				 const struct pmbus_sensor_attr *attr)
1464{
1465	const struct pmbus_limit_attr *l = attr->limit;
1466	int nlimit = attr->nlimit;
1467	int have_alarm = 0;
1468	int i, ret;
1469	struct pmbus_sensor *curr;
1470
1471	for (i = 0; i < nlimit; i++) {
1472		if (pmbus_check_word_register(client, page, l->reg)) {
1473			curr = pmbus_add_sensor(data, name, l->attr, index,
1474						page, 0xff, l->reg, attr->class,
1475						attr->update || l->update,
1476						false, true);
1477			if (!curr)
1478				return -ENOMEM;
1479			if (l->sbit && (info->func[page] & attr->sfunc)) {
1480				ret = pmbus_add_boolean(data, name,
1481					l->alarm, index,
1482					attr->compare ?  l->low ? curr : base
1483						      : NULL,
1484					attr->compare ? l->low ? base : curr
1485						      : NULL,
1486					page, attr->sreg, l->sbit);
1487				if (ret)
1488					return ret;
1489				have_alarm = 1;
 
 
1490			}
1491		}
1492		l++;
1493	}
1494	return have_alarm;
1495}
1496
1497static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1498				      struct pmbus_data *data,
1499				      const struct pmbus_driver_info *info,
1500				      const char *name,
1501				      int index, int page, int phase,
1502				      const struct pmbus_sensor_attr *attr,
1503				      bool paged)
1504{
1505	struct pmbus_sensor *base;
1506	bool upper = !!(attr->gbit & 0xff00);	/* need to check STATUS_WORD */
1507	int ret;
1508
1509	if (attr->label) {
1510		ret = pmbus_add_label(data, name, index, attr->label,
1511				      paged ? page + 1 : 0, phase);
1512		if (ret)
1513			return ret;
1514	}
1515	base = pmbus_add_sensor(data, name, "input", index, page, phase,
1516				attr->reg, attr->class, true, true, true);
1517	if (!base)
1518		return -ENOMEM;
1519	/* No limit and alarm attributes for phase specific sensors */
1520	if (attr->sfunc && phase == 0xff) {
1521		ret = pmbus_add_limit_attrs(client, data, info, name,
1522					    index, page, base, attr);
1523		if (ret < 0)
1524			return ret;
1525		/*
1526		 * Add generic alarm attribute only if there are no individual
1527		 * alarm attributes, if there is a global alarm bit, and if
1528		 * the generic status register (word or byte, depending on
1529		 * which global bit is set) for this page is accessible.
1530		 */
1531		if (!ret && attr->gbit &&
1532		    (!upper || data->has_status_word) &&
1533		    pmbus_check_status_register(client, page)) {
1534			ret = pmbus_add_boolean(data, name, "alarm", index,
1535						NULL, NULL,
1536						page, PMBUS_STATUS_WORD,
1537						attr->gbit);
1538			if (ret)
1539				return ret;
1540		}
1541	}
1542	return 0;
1543}
1544
1545static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1546				  const struct pmbus_sensor_attr *attr)
1547{
1548	int p;
1549
1550	if (attr->paged)
1551		return true;
1552
1553	/*
1554	 * Some attributes may be present on more than one page despite
1555	 * not being marked with the paged attribute. If that is the case,
1556	 * then treat the sensor as being paged and add the page suffix to the
1557	 * attribute name.
1558	 * We don't just add the paged attribute to all such attributes, in
1559	 * order to maintain the un-suffixed labels in the case where the
1560	 * attribute is only on page 0.
1561	 */
1562	for (p = 1; p < info->pages; p++) {
1563		if (info->func[p] & attr->func)
1564			return true;
1565	}
1566	return false;
1567}
1568
1569static int pmbus_add_sensor_attrs(struct i2c_client *client,
1570				  struct pmbus_data *data,
1571				  const char *name,
1572				  const struct pmbus_sensor_attr *attrs,
1573				  int nattrs)
1574{
1575	const struct pmbus_driver_info *info = data->info;
1576	int index, i;
1577	int ret;
1578
1579	index = 1;
1580	for (i = 0; i < nattrs; i++) {
1581		int page, pages;
1582		bool paged = pmbus_sensor_is_paged(info, attrs);
1583
1584		pages = paged ? info->pages : 1;
1585		for (page = 0; page < pages; page++) {
1586			if (info->func[page] & attrs->func) {
1587				ret = pmbus_add_sensor_attrs_one(client, data, info,
1588								 name, index, page,
1589								 0xff, attrs, paged);
1590				if (ret)
1591					return ret;
1592				index++;
1593			}
1594			if (info->phases[page]) {
1595				int phase;
1596
1597				for (phase = 0; phase < info->phases[page];
1598				     phase++) {
1599					if (!(info->pfunc[phase] & attrs->func))
1600						continue;
1601					ret = pmbus_add_sensor_attrs_one(client,
1602						data, info, name, index, page,
1603						phase, attrs, paged);
1604					if (ret)
1605						return ret;
1606					index++;
1607				}
1608			}
1609		}
1610		attrs++;
1611	}
1612	return 0;
1613}
1614
1615static const struct pmbus_limit_attr vin_limit_attrs[] = {
1616	{
1617		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1618		.attr = "min",
1619		.alarm = "min_alarm",
1620		.sbit = PB_VOLTAGE_UV_WARNING,
1621	}, {
1622		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1623		.attr = "lcrit",
1624		.alarm = "lcrit_alarm",
1625		.sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1626	}, {
1627		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1628		.attr = "max",
1629		.alarm = "max_alarm",
1630		.sbit = PB_VOLTAGE_OV_WARNING,
1631	}, {
1632		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1633		.attr = "crit",
1634		.alarm = "crit_alarm",
1635		.sbit = PB_VOLTAGE_OV_FAULT,
1636	}, {
1637		.reg = PMBUS_VIRT_READ_VIN_AVG,
1638		.update = true,
1639		.attr = "average",
1640	}, {
1641		.reg = PMBUS_VIRT_READ_VIN_MIN,
1642		.update = true,
1643		.attr = "lowest",
1644	}, {
1645		.reg = PMBUS_VIRT_READ_VIN_MAX,
1646		.update = true,
1647		.attr = "highest",
1648	}, {
1649		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1650		.attr = "reset_history",
1651	}, {
1652		.reg = PMBUS_MFR_VIN_MIN,
1653		.attr = "rated_min",
1654	}, {
1655		.reg = PMBUS_MFR_VIN_MAX,
1656		.attr = "rated_max",
1657	},
1658};
1659
1660static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1661	{
1662		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1663		.attr = "min",
1664		.alarm = "min_alarm",
1665		.sbit = PB_VOLTAGE_UV_WARNING,
1666	}, {
1667		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1668		.attr = "lcrit",
1669		.alarm = "lcrit_alarm",
1670		.sbit = PB_VOLTAGE_UV_FAULT,
1671	}, {
1672		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1673		.attr = "max",
1674		.alarm = "max_alarm",
1675		.sbit = PB_VOLTAGE_OV_WARNING,
1676	}, {
1677		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1678		.attr = "crit",
1679		.alarm = "crit_alarm",
1680		.sbit = PB_VOLTAGE_OV_FAULT,
1681	}
1682};
1683
1684static const struct pmbus_limit_attr vout_limit_attrs[] = {
1685	{
1686		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1687		.attr = "min",
1688		.alarm = "min_alarm",
1689		.sbit = PB_VOLTAGE_UV_WARNING,
1690	}, {
1691		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1692		.attr = "lcrit",
1693		.alarm = "lcrit_alarm",
1694		.sbit = PB_VOLTAGE_UV_FAULT,
1695	}, {
1696		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1697		.attr = "max",
1698		.alarm = "max_alarm",
1699		.sbit = PB_VOLTAGE_OV_WARNING,
1700	}, {
1701		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1702		.attr = "crit",
1703		.alarm = "crit_alarm",
1704		.sbit = PB_VOLTAGE_OV_FAULT,
1705	}, {
1706		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1707		.update = true,
1708		.attr = "average",
1709	}, {
1710		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1711		.update = true,
1712		.attr = "lowest",
1713	}, {
1714		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1715		.update = true,
1716		.attr = "highest",
1717	}, {
1718		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1719		.attr = "reset_history",
1720	}, {
1721		.reg = PMBUS_MFR_VOUT_MIN,
1722		.attr = "rated_min",
1723	}, {
1724		.reg = PMBUS_MFR_VOUT_MAX,
1725		.attr = "rated_max",
1726	},
1727};
1728
1729static const struct pmbus_sensor_attr voltage_attributes[] = {
1730	{
1731		.reg = PMBUS_READ_VIN,
1732		.class = PSC_VOLTAGE_IN,
1733		.label = "vin",
1734		.func = PMBUS_HAVE_VIN,
1735		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1736		.sreg = PMBUS_STATUS_INPUT,
1737		.gbit = PB_STATUS_VIN_UV,
1738		.limit = vin_limit_attrs,
1739		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1740	}, {
1741		.reg = PMBUS_VIRT_READ_VMON,
1742		.class = PSC_VOLTAGE_IN,
1743		.label = "vmon",
1744		.func = PMBUS_HAVE_VMON,
1745		.sfunc = PMBUS_HAVE_STATUS_VMON,
1746		.sreg = PMBUS_VIRT_STATUS_VMON,
1747		.limit = vmon_limit_attrs,
1748		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1749	}, {
1750		.reg = PMBUS_READ_VCAP,
1751		.class = PSC_VOLTAGE_IN,
1752		.label = "vcap",
1753		.func = PMBUS_HAVE_VCAP,
1754	}, {
1755		.reg = PMBUS_READ_VOUT,
1756		.class = PSC_VOLTAGE_OUT,
1757		.label = "vout",
1758		.paged = true,
1759		.func = PMBUS_HAVE_VOUT,
1760		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1761		.sreg = PMBUS_STATUS_VOUT,
1762		.gbit = PB_STATUS_VOUT_OV,
1763		.limit = vout_limit_attrs,
1764		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1765	}
1766};
1767
1768/* Current attributes */
1769
1770static const struct pmbus_limit_attr iin_limit_attrs[] = {
1771	{
1772		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1773		.attr = "max",
1774		.alarm = "max_alarm",
1775		.sbit = PB_IIN_OC_WARNING,
1776	}, {
1777		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1778		.attr = "crit",
1779		.alarm = "crit_alarm",
1780		.sbit = PB_IIN_OC_FAULT,
1781	}, {
1782		.reg = PMBUS_VIRT_READ_IIN_AVG,
1783		.update = true,
1784		.attr = "average",
1785	}, {
1786		.reg = PMBUS_VIRT_READ_IIN_MIN,
1787		.update = true,
1788		.attr = "lowest",
1789	}, {
1790		.reg = PMBUS_VIRT_READ_IIN_MAX,
1791		.update = true,
1792		.attr = "highest",
1793	}, {
1794		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1795		.attr = "reset_history",
1796	}, {
1797		.reg = PMBUS_MFR_IIN_MAX,
1798		.attr = "rated_max",
1799	},
1800};
1801
1802static const struct pmbus_limit_attr iout_limit_attrs[] = {
1803	{
1804		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1805		.attr = "max",
1806		.alarm = "max_alarm",
1807		.sbit = PB_IOUT_OC_WARNING,
1808	}, {
1809		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1810		.attr = "lcrit",
1811		.alarm = "lcrit_alarm",
1812		.sbit = PB_IOUT_UC_FAULT,
1813	}, {
1814		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1815		.attr = "crit",
1816		.alarm = "crit_alarm",
1817		.sbit = PB_IOUT_OC_FAULT,
1818	}, {
1819		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1820		.update = true,
1821		.attr = "average",
1822	}, {
1823		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1824		.update = true,
1825		.attr = "lowest",
1826	}, {
1827		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1828		.update = true,
1829		.attr = "highest",
1830	}, {
1831		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1832		.attr = "reset_history",
1833	}, {
1834		.reg = PMBUS_MFR_IOUT_MAX,
1835		.attr = "rated_max",
1836	},
1837};
1838
1839static const struct pmbus_sensor_attr current_attributes[] = {
1840	{
1841		.reg = PMBUS_READ_IIN,
1842		.class = PSC_CURRENT_IN,
1843		.label = "iin",
1844		.func = PMBUS_HAVE_IIN,
1845		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1846		.sreg = PMBUS_STATUS_INPUT,
1847		.gbit = PB_STATUS_INPUT,
1848		.limit = iin_limit_attrs,
1849		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1850	}, {
1851		.reg = PMBUS_READ_IOUT,
1852		.class = PSC_CURRENT_OUT,
1853		.label = "iout",
1854		.paged = true,
1855		.func = PMBUS_HAVE_IOUT,
1856		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1857		.sreg = PMBUS_STATUS_IOUT,
1858		.gbit = PB_STATUS_IOUT_OC,
1859		.limit = iout_limit_attrs,
1860		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1861	}
1862};
1863
1864/* Power attributes */
1865
1866static const struct pmbus_limit_attr pin_limit_attrs[] = {
1867	{
1868		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1869		.attr = "max",
1870		.alarm = "alarm",
1871		.sbit = PB_PIN_OP_WARNING,
1872	}, {
1873		.reg = PMBUS_VIRT_READ_PIN_AVG,
1874		.update = true,
1875		.attr = "average",
1876	}, {
1877		.reg = PMBUS_VIRT_READ_PIN_MIN,
1878		.update = true,
1879		.attr = "input_lowest",
1880	}, {
1881		.reg = PMBUS_VIRT_READ_PIN_MAX,
1882		.update = true,
1883		.attr = "input_highest",
1884	}, {
1885		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1886		.attr = "reset_history",
1887	}, {
1888		.reg = PMBUS_MFR_PIN_MAX,
1889		.attr = "rated_max",
1890	},
1891};
1892
1893static const struct pmbus_limit_attr pout_limit_attrs[] = {
1894	{
1895		.reg = PMBUS_POUT_MAX,
1896		.attr = "cap",
1897		.alarm = "cap_alarm",
1898		.sbit = PB_POWER_LIMITING,
1899	}, {
1900		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1901		.attr = "max",
1902		.alarm = "max_alarm",
1903		.sbit = PB_POUT_OP_WARNING,
1904	}, {
1905		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1906		.attr = "crit",
1907		.alarm = "crit_alarm",
1908		.sbit = PB_POUT_OP_FAULT,
1909	}, {
1910		.reg = PMBUS_VIRT_READ_POUT_AVG,
1911		.update = true,
1912		.attr = "average",
1913	}, {
1914		.reg = PMBUS_VIRT_READ_POUT_MIN,
1915		.update = true,
1916		.attr = "input_lowest",
1917	}, {
1918		.reg = PMBUS_VIRT_READ_POUT_MAX,
1919		.update = true,
1920		.attr = "input_highest",
1921	}, {
1922		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1923		.attr = "reset_history",
1924	}, {
1925		.reg = PMBUS_MFR_POUT_MAX,
1926		.attr = "rated_max",
1927	},
1928};
1929
1930static const struct pmbus_sensor_attr power_attributes[] = {
1931	{
1932		.reg = PMBUS_READ_PIN,
1933		.class = PSC_POWER,
1934		.label = "pin",
1935		.func = PMBUS_HAVE_PIN,
1936		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1937		.sreg = PMBUS_STATUS_INPUT,
1938		.gbit = PB_STATUS_INPUT,
1939		.limit = pin_limit_attrs,
1940		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1941	}, {
1942		.reg = PMBUS_READ_POUT,
1943		.class = PSC_POWER,
1944		.label = "pout",
1945		.paged = true,
1946		.func = PMBUS_HAVE_POUT,
1947		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1948		.sreg = PMBUS_STATUS_IOUT,
1949		.limit = pout_limit_attrs,
1950		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1951	}
1952};
1953
1954/* Temperature atributes */
1955
1956static const struct pmbus_limit_attr temp_limit_attrs[] = {
1957	{
1958		.reg = PMBUS_UT_WARN_LIMIT,
1959		.low = true,
1960		.attr = "min",
1961		.alarm = "min_alarm",
1962		.sbit = PB_TEMP_UT_WARNING,
1963	}, {
1964		.reg = PMBUS_UT_FAULT_LIMIT,
1965		.low = true,
1966		.attr = "lcrit",
1967		.alarm = "lcrit_alarm",
1968		.sbit = PB_TEMP_UT_FAULT,
1969	}, {
1970		.reg = PMBUS_OT_WARN_LIMIT,
1971		.attr = "max",
1972		.alarm = "max_alarm",
1973		.sbit = PB_TEMP_OT_WARNING,
1974	}, {
1975		.reg = PMBUS_OT_FAULT_LIMIT,
1976		.attr = "crit",
1977		.alarm = "crit_alarm",
1978		.sbit = PB_TEMP_OT_FAULT,
1979	}, {
1980		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1981		.attr = "lowest",
1982	}, {
1983		.reg = PMBUS_VIRT_READ_TEMP_AVG,
1984		.attr = "average",
1985	}, {
1986		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1987		.attr = "highest",
1988	}, {
1989		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1990		.attr = "reset_history",
1991	}, {
1992		.reg = PMBUS_MFR_MAX_TEMP_1,
1993		.attr = "rated_max",
1994	},
1995};
1996
1997static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1998	{
1999		.reg = PMBUS_UT_WARN_LIMIT,
2000		.low = true,
2001		.attr = "min",
2002		.alarm = "min_alarm",
2003		.sbit = PB_TEMP_UT_WARNING,
2004	}, {
2005		.reg = PMBUS_UT_FAULT_LIMIT,
2006		.low = true,
2007		.attr = "lcrit",
2008		.alarm = "lcrit_alarm",
2009		.sbit = PB_TEMP_UT_FAULT,
2010	}, {
2011		.reg = PMBUS_OT_WARN_LIMIT,
2012		.attr = "max",
2013		.alarm = "max_alarm",
2014		.sbit = PB_TEMP_OT_WARNING,
2015	}, {
2016		.reg = PMBUS_OT_FAULT_LIMIT,
2017		.attr = "crit",
2018		.alarm = "crit_alarm",
2019		.sbit = PB_TEMP_OT_FAULT,
2020	}, {
2021		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
2022		.attr = "lowest",
2023	}, {
2024		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
2025		.attr = "average",
2026	}, {
2027		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
2028		.attr = "highest",
2029	}, {
2030		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2031		.attr = "reset_history",
2032	}, {
2033		.reg = PMBUS_MFR_MAX_TEMP_2,
2034		.attr = "rated_max",
2035	},
2036};
2037
2038static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2039	{
2040		.reg = PMBUS_UT_WARN_LIMIT,
2041		.low = true,
2042		.attr = "min",
2043		.alarm = "min_alarm",
2044		.sbit = PB_TEMP_UT_WARNING,
2045	}, {
2046		.reg = PMBUS_UT_FAULT_LIMIT,
2047		.low = true,
2048		.attr = "lcrit",
2049		.alarm = "lcrit_alarm",
2050		.sbit = PB_TEMP_UT_FAULT,
2051	}, {
2052		.reg = PMBUS_OT_WARN_LIMIT,
2053		.attr = "max",
2054		.alarm = "max_alarm",
2055		.sbit = PB_TEMP_OT_WARNING,
2056	}, {
2057		.reg = PMBUS_OT_FAULT_LIMIT,
2058		.attr = "crit",
2059		.alarm = "crit_alarm",
2060		.sbit = PB_TEMP_OT_FAULT,
2061	}, {
2062		.reg = PMBUS_MFR_MAX_TEMP_3,
2063		.attr = "rated_max",
2064	},
2065};
2066
2067static const struct pmbus_sensor_attr temp_attributes[] = {
2068	{
2069		.reg = PMBUS_READ_TEMPERATURE_1,
2070		.class = PSC_TEMPERATURE,
2071		.paged = true,
2072		.update = true,
2073		.compare = true,
2074		.func = PMBUS_HAVE_TEMP,
2075		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2076		.sreg = PMBUS_STATUS_TEMPERATURE,
2077		.gbit = PB_STATUS_TEMPERATURE,
2078		.limit = temp_limit_attrs,
2079		.nlimit = ARRAY_SIZE(temp_limit_attrs),
2080	}, {
2081		.reg = PMBUS_READ_TEMPERATURE_2,
2082		.class = PSC_TEMPERATURE,
2083		.paged = true,
2084		.update = true,
2085		.compare = true,
2086		.func = PMBUS_HAVE_TEMP2,
2087		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2088		.sreg = PMBUS_STATUS_TEMPERATURE,
2089		.gbit = PB_STATUS_TEMPERATURE,
2090		.limit = temp_limit_attrs2,
2091		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
2092	}, {
2093		.reg = PMBUS_READ_TEMPERATURE_3,
2094		.class = PSC_TEMPERATURE,
2095		.paged = true,
2096		.update = true,
2097		.compare = true,
2098		.func = PMBUS_HAVE_TEMP3,
2099		.sfunc = PMBUS_HAVE_STATUS_TEMP,
2100		.sreg = PMBUS_STATUS_TEMPERATURE,
2101		.gbit = PB_STATUS_TEMPERATURE,
2102		.limit = temp_limit_attrs3,
2103		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
2104	}
2105};
2106
2107static const int pmbus_fan_registers[] = {
2108	PMBUS_READ_FAN_SPEED_1,
2109	PMBUS_READ_FAN_SPEED_2,
2110	PMBUS_READ_FAN_SPEED_3,
2111	PMBUS_READ_FAN_SPEED_4
2112};
2113
 
 
 
 
 
 
 
2114static const int pmbus_fan_status_registers[] = {
2115	PMBUS_STATUS_FAN_12,
2116	PMBUS_STATUS_FAN_12,
2117	PMBUS_STATUS_FAN_34,
2118	PMBUS_STATUS_FAN_34
2119};
2120
2121static const u32 pmbus_fan_flags[] = {
2122	PMBUS_HAVE_FAN12,
2123	PMBUS_HAVE_FAN12,
2124	PMBUS_HAVE_FAN34,
2125	PMBUS_HAVE_FAN34
2126};
2127
2128static const u32 pmbus_fan_status_flags[] = {
2129	PMBUS_HAVE_STATUS_FAN12,
2130	PMBUS_HAVE_STATUS_FAN12,
2131	PMBUS_HAVE_STATUS_FAN34,
2132	PMBUS_HAVE_STATUS_FAN34
2133};
2134
2135/* Fans */
2136
2137/* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
2138static int pmbus_add_fan_ctrl(struct i2c_client *client,
2139		struct pmbus_data *data, int index, int page, int id,
2140		u8 config)
2141{
2142	struct pmbus_sensor *sensor;
2143
2144	sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2145				  0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2146				  false, false, true);
2147
2148	if (!sensor)
2149		return -ENOMEM;
2150
2151	if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2152			(data->info->func[page] & PMBUS_HAVE_PWM34)))
2153		return 0;
2154
2155	sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2156				  0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2157				  false, false, true);
2158
2159	if (!sensor)
2160		return -ENOMEM;
2161
2162	sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2163				  0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2164				  true, false, false);
2165
2166	if (!sensor)
2167		return -ENOMEM;
2168
2169	return 0;
2170}
2171
2172static int pmbus_add_fan_attributes(struct i2c_client *client,
2173				    struct pmbus_data *data)
2174{
2175	const struct pmbus_driver_info *info = data->info;
2176	int index = 1;
2177	int page;
2178	int ret;
2179
2180	for (page = 0; page < info->pages; page++) {
2181		int f;
2182
2183		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2184			int regval;
2185
2186			if (!(info->func[page] & pmbus_fan_flags[f]))
2187				break;
2188
2189			if (!pmbus_check_word_register(client, page,
2190						       pmbus_fan_registers[f]))
2191				break;
2192
2193			/*
2194			 * Skip fan if not installed.
2195			 * Each fan configuration register covers multiple fans,
2196			 * so we have to do some magic.
2197			 */
2198			regval = _pmbus_read_byte_data(client, page,
2199				pmbus_fan_config_registers[f]);
2200			if (regval < 0 ||
2201			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2202				continue;
2203
2204			if (pmbus_add_sensor(data, "fan", "input", index,
2205					     page, 0xff, pmbus_fan_registers[f],
2206					     PSC_FAN, true, true, true) == NULL)
2207				return -ENOMEM;
2208
2209			/* Fan control */
2210			if (pmbus_check_word_register(client, page,
2211					pmbus_fan_command_registers[f])) {
2212				ret = pmbus_add_fan_ctrl(client, data, index,
2213							 page, f, regval);
2214				if (ret < 0)
2215					return ret;
2216			}
2217
2218			/*
2219			 * Each fan status register covers multiple fans,
2220			 * so we have to do some magic.
2221			 */
2222			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2223			    pmbus_check_byte_register(client,
2224					page, pmbus_fan_status_registers[f])) {
2225				int reg;
2226
2227				if (f > 1)	/* fan 3, 4 */
2228					reg = PMBUS_STATUS_FAN_34;
2229				else
2230					reg = PMBUS_STATUS_FAN_12;
2231				ret = pmbus_add_boolean(data, "fan",
2232					"alarm", index, NULL, NULL, page, reg,
2233					PB_FAN_FAN1_WARNING >> (f & 1));
2234				if (ret)
2235					return ret;
2236				ret = pmbus_add_boolean(data, "fan",
2237					"fault", index, NULL, NULL, page, reg,
2238					PB_FAN_FAN1_FAULT >> (f & 1));
2239				if (ret)
2240					return ret;
2241			}
2242			index++;
2243		}
2244	}
2245	return 0;
2246}
2247
2248struct pmbus_samples_attr {
2249	int reg;
2250	char *name;
2251};
2252
2253struct pmbus_samples_reg {
2254	int page;
2255	struct pmbus_samples_attr *attr;
2256	struct device_attribute dev_attr;
2257};
2258
2259static struct pmbus_samples_attr pmbus_samples_registers[] = {
2260	{
2261		.reg = PMBUS_VIRT_SAMPLES,
2262		.name = "samples",
2263	}, {
2264		.reg = PMBUS_VIRT_IN_SAMPLES,
2265		.name = "in_samples",
2266	}, {
2267		.reg = PMBUS_VIRT_CURR_SAMPLES,
2268		.name = "curr_samples",
2269	}, {
2270		.reg = PMBUS_VIRT_POWER_SAMPLES,
2271		.name = "power_samples",
2272	}, {
2273		.reg = PMBUS_VIRT_TEMP_SAMPLES,
2274		.name = "temp_samples",
2275	}
2276};
2277
2278#define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2279
2280static ssize_t pmbus_show_samples(struct device *dev,
2281				  struct device_attribute *devattr, char *buf)
2282{
2283	int val;
2284	struct i2c_client *client = to_i2c_client(dev->parent);
2285	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2286	struct pmbus_data *data = i2c_get_clientdata(client);
2287
2288	mutex_lock(&data->update_lock);
2289	val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2290	mutex_unlock(&data->update_lock);
2291	if (val < 0)
2292		return val;
2293
2294	return sysfs_emit(buf, "%d\n", val);
2295}
2296
2297static ssize_t pmbus_set_samples(struct device *dev,
2298				 struct device_attribute *devattr,
2299				 const char *buf, size_t count)
2300{
2301	int ret;
2302	long val;
2303	struct i2c_client *client = to_i2c_client(dev->parent);
2304	struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2305	struct pmbus_data *data = i2c_get_clientdata(client);
2306
2307	if (kstrtol(buf, 0, &val) < 0)
2308		return -EINVAL;
2309
2310	mutex_lock(&data->update_lock);
2311	ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2312	mutex_unlock(&data->update_lock);
2313
2314	return ret ? : count;
2315}
2316
2317static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2318				  struct pmbus_samples_attr *attr)
2319{
2320	struct pmbus_samples_reg *reg;
2321
2322	reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2323	if (!reg)
2324		return -ENOMEM;
2325
2326	reg->attr = attr;
2327	reg->page = page;
2328
2329	pmbus_dev_attr_init(&reg->dev_attr, attr->name, 0644,
2330			    pmbus_show_samples, pmbus_set_samples);
2331
2332	return pmbus_add_attribute(data, &reg->dev_attr.attr);
2333}
2334
2335static int pmbus_add_samples_attributes(struct i2c_client *client,
2336					struct pmbus_data *data)
2337{
2338	const struct pmbus_driver_info *info = data->info;
2339	int s;
2340
2341	if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2342		return 0;
2343
2344	for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2345		struct pmbus_samples_attr *attr;
2346		int ret;
2347
2348		attr = &pmbus_samples_registers[s];
2349		if (!pmbus_check_word_register(client, 0, attr->reg))
2350			continue;
2351
2352		ret = pmbus_add_samples_attr(data, 0, attr);
2353		if (ret)
2354			return ret;
2355	}
2356
2357	return 0;
2358}
2359
2360static int pmbus_find_attributes(struct i2c_client *client,
2361				 struct pmbus_data *data)
2362{
2363	int ret;
2364
2365	/* Voltage sensors */
2366	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2367				     ARRAY_SIZE(voltage_attributes));
2368	if (ret)
2369		return ret;
2370
2371	/* Current sensors */
2372	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2373				     ARRAY_SIZE(current_attributes));
2374	if (ret)
2375		return ret;
2376
2377	/* Power sensors */
2378	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2379				     ARRAY_SIZE(power_attributes));
2380	if (ret)
2381		return ret;
2382
2383	/* Temperature sensors */
2384	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2385				     ARRAY_SIZE(temp_attributes));
2386	if (ret)
2387		return ret;
2388
2389	/* Fans */
2390	ret = pmbus_add_fan_attributes(client, data);
2391	if (ret)
2392		return ret;
2393
2394	ret = pmbus_add_samples_attributes(client, data);
2395	return ret;
2396}
2397
2398/*
2399 * The pmbus_class_attr_map structure maps one sensor class to
2400 * it's corresponding sensor attributes array.
2401 */
2402struct pmbus_class_attr_map {
2403	enum pmbus_sensor_classes class;
2404	int nattr;
2405	const struct pmbus_sensor_attr *attr;
2406};
2407
2408static const struct pmbus_class_attr_map class_attr_map[] = {
2409	{
2410		.class = PSC_VOLTAGE_IN,
2411		.attr = voltage_attributes,
2412		.nattr = ARRAY_SIZE(voltage_attributes),
2413	}, {
2414		.class = PSC_VOLTAGE_OUT,
2415		.attr = voltage_attributes,
2416		.nattr = ARRAY_SIZE(voltage_attributes),
2417	}, {
2418		.class = PSC_CURRENT_IN,
2419		.attr = current_attributes,
2420		.nattr = ARRAY_SIZE(current_attributes),
2421	}, {
2422		.class = PSC_CURRENT_OUT,
2423		.attr = current_attributes,
2424		.nattr = ARRAY_SIZE(current_attributes),
2425	}, {
2426		.class = PSC_POWER,
2427		.attr = power_attributes,
2428		.nattr = ARRAY_SIZE(power_attributes),
2429	}, {
2430		.class = PSC_TEMPERATURE,
2431		.attr = temp_attributes,
2432		.nattr = ARRAY_SIZE(temp_attributes),
2433	}
2434};
2435
2436/*
2437 * Read the coefficients for direct mode.
2438 */
2439static int pmbus_read_coefficients(struct i2c_client *client,
2440				   struct pmbus_driver_info *info,
2441				   const struct pmbus_sensor_attr *attr)
2442{
2443	int rv;
2444	union i2c_smbus_data data;
2445	enum pmbus_sensor_classes class = attr->class;
2446	s8 R;
2447	s16 m, b;
2448
2449	data.block[0] = 2;
2450	data.block[1] = attr->reg;
2451	data.block[2] = 0x01;
2452
2453	rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2454			    I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2455			    I2C_SMBUS_BLOCK_PROC_CALL, &data);
2456
2457	if (rv < 0)
2458		return rv;
2459
2460	if (data.block[0] != 5)
2461		return -EIO;
2462
2463	m = data.block[1] | (data.block[2] << 8);
2464	b = data.block[3] | (data.block[4] << 8);
2465	R = data.block[5];
2466	info->m[class] = m;
2467	info->b[class] = b;
2468	info->R[class] = R;
2469
2470	return rv;
2471}
2472
2473static int pmbus_init_coefficients(struct i2c_client *client,
2474				   struct pmbus_driver_info *info)
2475{
2476	int i, n, ret = -EINVAL;
2477	const struct pmbus_class_attr_map *map;
2478	const struct pmbus_sensor_attr *attr;
2479
2480	for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2481		map = &class_attr_map[i];
2482		if (info->format[map->class] != direct)
2483			continue;
2484		for (n = 0; n < map->nattr; n++) {
2485			attr = &map->attr[n];
2486			if (map->class != attr->class)
2487				continue;
2488			ret = pmbus_read_coefficients(client, info, attr);
2489			if (ret >= 0)
2490				break;
2491		}
2492		if (ret < 0) {
2493			dev_err(&client->dev,
2494				"No coefficients found for sensor class %d\n",
2495				map->class);
2496			return -EINVAL;
2497		}
2498	}
2499
2500	return 0;
2501}
2502
2503/*
2504 * Identify chip parameters.
2505 * This function is called for all chips.
2506 */
2507static int pmbus_identify_common(struct i2c_client *client,
2508				 struct pmbus_data *data, int page)
2509{
2510	int vout_mode = -1;
2511
2512	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2513		vout_mode = _pmbus_read_byte_data(client, page,
2514						  PMBUS_VOUT_MODE);
2515	if (vout_mode >= 0 && vout_mode != 0xff) {
2516		/*
2517		 * Not all chips support the VOUT_MODE command,
2518		 * so a failure to read it is not an error.
2519		 */
2520		switch (vout_mode >> 5) {
2521		case 0:	/* linear mode      */
2522			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2523				return -ENODEV;
2524
2525			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
 
 
 
 
2526			break;
2527		case 1: /* VID mode         */
2528			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2529				return -ENODEV;
2530			break;
2531		case 2:	/* direct mode      */
2532			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2533				return -ENODEV;
2534			break;
2535		case 3:	/* ieee 754 half precision */
2536			if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2537				return -ENODEV;
2538			break;
2539		default:
2540			return -ENODEV;
2541		}
2542	}
2543
 
 
 
2544	return 0;
2545}
2546
2547static int pmbus_read_status_byte(struct i2c_client *client, int page)
 
2548{
2549	return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2550}
 
2551
2552static int pmbus_read_status_word(struct i2c_client *client, int page)
2553{
2554	return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2555}
2556
2557/* PEC attribute support */
 
 
 
2558
2559static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2560			char *buf)
2561{
2562	struct i2c_client *client = to_i2c_client(dev);
 
2563
2564	return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2565}
2566
2567static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2568			 const char *buf, size_t count)
2569{
2570	struct i2c_client *client = to_i2c_client(dev);
2571	bool enable;
2572	int err;
2573
2574	err = kstrtobool(buf, &enable);
2575	if (err < 0)
2576		return err;
2577
2578	if (enable)
2579		client->flags |= I2C_CLIENT_PEC;
2580	else
2581		client->flags &= ~I2C_CLIENT_PEC;
2582
2583	return count;
2584}
2585
2586static DEVICE_ATTR_RW(pec);
2587
2588static void pmbus_remove_pec(void *dev)
2589{
2590	device_remove_file(dev, &dev_attr_pec);
2591}
2592
2593static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2594			     struct pmbus_driver_info *info)
2595{
2596	struct device *dev = &client->dev;
2597	int page, ret;
2598
2599	/*
2600	 * Figure out if PEC is enabled before accessing any other register.
2601	 * Make sure PEC is disabled, will be enabled later if needed.
2602	 */
2603	client->flags &= ~I2C_CLIENT_PEC;
2604
2605	/* Enable PEC if the controller and bus supports it */
2606	if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2607		ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2608		if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2609			if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2610				client->flags |= I2C_CLIENT_PEC;
2611		}
2612	}
2613
2614	/*
2615	 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2616	 * to use PMBUS_STATUS_BYTE instead if that is the case.
2617	 * Bail out if both registers are not supported.
2618	 */
2619	data->read_status = pmbus_read_status_word;
2620	ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2621	if (ret < 0 || ret == 0xffff) {
2622		data->read_status = pmbus_read_status_byte;
2623		ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2624		if (ret < 0 || ret == 0xff) {
2625			dev_err(dev, "PMBus status register not found\n");
2626			return -ENODEV;
2627		}
2628	} else {
2629		data->has_status_word = true;
2630	}
2631
2632	/*
2633	 * Check if the chip is write protected. If it is, we can not clear
2634	 * faults, and we should not try it. Also, in that case, writes into
2635	 * limit registers need to be disabled.
2636	 */
2637	if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2638		ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2639		if (ret > 0 && (ret & PB_WP_ANY))
2640			data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2641	}
2642
2643	if (data->info->pages)
2644		pmbus_clear_faults(client);
2645	else
2646		pmbus_clear_fault_page(client, -1);
2647
2648	if (info->identify) {
2649		ret = (*info->identify)(client, info);
2650		if (ret < 0) {
2651			dev_err(dev, "Chip identification failed\n");
2652			return ret;
2653		}
2654	}
2655
2656	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2657		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2658		return -ENODEV;
 
 
2659	}
2660
2661	for (page = 0; page < info->pages; page++) {
2662		ret = pmbus_identify_common(client, data, page);
2663		if (ret < 0) {
2664			dev_err(dev, "Failed to identify chip capabilities\n");
2665			return ret;
2666		}
2667	}
2668
2669	if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2670		if (!i2c_check_functionality(client->adapter,
2671					     I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2672			return -ENODEV;
2673
2674		ret = pmbus_init_coefficients(client, info);
2675		if (ret < 0)
2676			return ret;
2677	}
2678
2679	if (client->flags & I2C_CLIENT_PEC) {
2680		/*
2681		 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2682		 * chip support PEC. Add 'pec' attribute to client device to let
2683		 * the user control it.
2684		 */
2685		ret = device_create_file(dev, &dev_attr_pec);
2686		if (ret)
2687			return ret;
2688		ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2689		if (ret)
2690			return ret;
2691	}
2692
2693	return 0;
2694}
2695
2696/* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2697struct pmbus_status_assoc {
2698	int pflag, rflag, eflag;
2699};
2700
2701/* PMBus->regulator bit mappings for a PMBus status register */
2702struct pmbus_status_category {
2703	int func;
2704	int reg;
2705	const struct pmbus_status_assoc *bits; /* zero-terminated */
2706};
2707
2708static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2709	{
2710		.func = PMBUS_HAVE_STATUS_VOUT,
2711		.reg = PMBUS_STATUS_VOUT,
2712		.bits = (const struct pmbus_status_assoc[]) {
2713			{ PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2714			REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2715			{ PB_VOLTAGE_UV_FAULT,   REGULATOR_ERROR_UNDER_VOLTAGE,
2716			REGULATOR_EVENT_UNDER_VOLTAGE },
2717			{ PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2718			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2719			{ PB_VOLTAGE_OV_FAULT,   REGULATOR_ERROR_REGULATION_OUT,
2720			REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2721			{ },
2722		},
2723	}, {
2724		.func = PMBUS_HAVE_STATUS_IOUT,
2725		.reg = PMBUS_STATUS_IOUT,
2726		.bits = (const struct pmbus_status_assoc[]) {
2727			{ PB_IOUT_OC_WARNING,   REGULATOR_ERROR_OVER_CURRENT_WARN,
2728			REGULATOR_EVENT_OVER_CURRENT_WARN },
2729			{ PB_IOUT_OC_FAULT,     REGULATOR_ERROR_OVER_CURRENT,
2730			REGULATOR_EVENT_OVER_CURRENT },
2731			{ PB_IOUT_OC_LV_FAULT,  REGULATOR_ERROR_OVER_CURRENT,
2732			REGULATOR_EVENT_OVER_CURRENT },
2733			{ },
2734		},
2735	}, {
2736		.func = PMBUS_HAVE_STATUS_TEMP,
2737		.reg = PMBUS_STATUS_TEMPERATURE,
2738		.bits = (const struct pmbus_status_assoc[]) {
2739			{ PB_TEMP_OT_WARNING,    REGULATOR_ERROR_OVER_TEMP_WARN,
2740			REGULATOR_EVENT_OVER_TEMP_WARN },
2741			{ PB_TEMP_OT_FAULT,      REGULATOR_ERROR_OVER_TEMP,
2742			REGULATOR_EVENT_OVER_TEMP },
2743			{ },
2744		},
2745	},
2746};
2747
2748static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2749{
2750	int ret;
2751
2752	ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2753
2754	if (ret < 0)
2755		return ret;
2756
2757	return !!(ret & PB_OPERATION_CONTROL_ON);
2758}
2759
2760static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2761{
2762	struct pmbus_data *data = i2c_get_clientdata(client);
2763	int ret;
2764
2765	mutex_lock(&data->update_lock);
2766	ret = _pmbus_is_enabled(client, page);
2767	mutex_unlock(&data->update_lock);
2768
2769	return ret;
2770}
2771
2772#define to_dev_attr(_dev_attr) \
2773	container_of(_dev_attr, struct device_attribute, attr)
2774
2775static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2776{
2777	int i;
2778
2779	for (i = 0; i < data->num_attributes; i++) {
2780		struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2781		struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2782		int index = attr->index;
2783		u16 smask = pb_index_to_mask(index);
2784		u8 spage = pb_index_to_page(index);
2785		u16 sreg = pb_index_to_reg(index);
2786
2787		if (reg == sreg && page == spage && (smask & flags)) {
2788			dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2789			sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2790			kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2791			flags &= ~smask;
2792		}
2793
2794		if (!flags)
2795			break;
2796	}
2797}
2798
2799static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2800			   unsigned int *event, bool notify)
2801{
2802	int i, status;
2803	const struct pmbus_status_category *cat;
2804	const struct pmbus_status_assoc *bit;
2805	struct device *dev = data->dev;
2806	struct i2c_client *client = to_i2c_client(dev);
2807	int func = data->info->func[page];
2808
2809	*flags = 0;
2810	*event = 0;
2811
2812	for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2813		cat = &pmbus_status_flag_map[i];
2814		if (!(func & cat->func))
2815			continue;
2816
2817		status = _pmbus_read_byte_data(client, page, cat->reg);
2818		if (status < 0)
2819			return status;
2820
2821		for (bit = cat->bits; bit->pflag; bit++)
2822			if (status & bit->pflag) {
2823				*flags |= bit->rflag;
2824				*event |= bit->eflag;
2825			}
2826
2827		if (notify && status)
2828			pmbus_notify(data, page, cat->reg, status);
2829
2830	}
2831
2832	/*
2833	 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2834	 * bits.  Some of the other bits are tempting (especially for cases
2835	 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2836	 * functionality), but there's an unfortunate ambiguity in that
2837	 * they're defined as indicating a fault *or* a warning, so we can't
2838	 * easily determine whether to report REGULATOR_ERROR_<foo> or
2839	 * REGULATOR_ERROR_<foo>_WARN.
2840	 */
2841	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2842	if (status < 0)
2843		return status;
2844
2845	if (_pmbus_is_enabled(client, page)) {
2846		if (status & PB_STATUS_OFF) {
2847			*flags |= REGULATOR_ERROR_FAIL;
2848			*event |= REGULATOR_EVENT_FAIL;
2849		}
2850
2851		if (status & PB_STATUS_POWER_GOOD_N) {
2852			*flags |= REGULATOR_ERROR_REGULATION_OUT;
2853			*event |= REGULATOR_EVENT_REGULATION_OUT;
2854		}
2855	}
2856	/*
2857	 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2858	 * defined strictly as fault indicators (not warnings).
2859	 */
2860	if (status & PB_STATUS_IOUT_OC) {
2861		*flags |= REGULATOR_ERROR_OVER_CURRENT;
2862		*event |= REGULATOR_EVENT_OVER_CURRENT;
2863	}
2864	if (status & PB_STATUS_VOUT_OV) {
2865		*flags |= REGULATOR_ERROR_REGULATION_OUT;
2866		*event |= REGULATOR_EVENT_FAIL;
2867	}
2868
2869	/*
2870	 * If we haven't discovered any thermal faults or warnings via
2871	 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2872	 * a (conservative) best-effort interpretation.
2873	 */
2874	if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2875	    (status & PB_STATUS_TEMPERATURE)) {
2876		*flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2877		*event |= REGULATOR_EVENT_OVER_TEMP_WARN;
2878	}
2879
2880
2881	return 0;
2882}
2883
2884static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2885					  unsigned int *event, bool notify)
2886{
2887	int ret;
2888
2889	mutex_lock(&data->update_lock);
2890	ret = _pmbus_get_flags(data, page, flags, event, notify);
2891	mutex_unlock(&data->update_lock);
2892
2893	return ret;
2894}
2895
2896#if IS_ENABLED(CONFIG_REGULATOR)
2897static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2898{
2899	struct device *dev = rdev_get_dev(rdev);
2900	struct i2c_client *client = to_i2c_client(dev->parent);
2901
2902	return pmbus_is_enabled(client, rdev_get_id(rdev));
2903}
2904
2905static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2906{
2907	struct device *dev = rdev_get_dev(rdev);
2908	struct i2c_client *client = to_i2c_client(dev->parent);
2909	struct pmbus_data *data = i2c_get_clientdata(client);
2910	u8 page = rdev_get_id(rdev);
2911	int ret;
2912
2913	mutex_lock(&data->update_lock);
2914	ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2915				     PB_OPERATION_CONTROL_ON,
2916				     enable ? PB_OPERATION_CONTROL_ON : 0);
2917	mutex_unlock(&data->update_lock);
2918
2919	return ret;
2920}
2921
2922static int pmbus_regulator_enable(struct regulator_dev *rdev)
2923{
2924	return _pmbus_regulator_on_off(rdev, 1);
2925}
2926
2927static int pmbus_regulator_disable(struct regulator_dev *rdev)
2928{
2929	return _pmbus_regulator_on_off(rdev, 0);
2930}
2931
2932static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
2933{
2934	struct device *dev = rdev_get_dev(rdev);
2935	struct i2c_client *client = to_i2c_client(dev->parent);
2936	struct pmbus_data *data = i2c_get_clientdata(client);
2937	int event;
2938
2939	return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
2940}
2941
2942static int pmbus_regulator_get_status(struct regulator_dev *rdev)
2943{
2944	struct device *dev = rdev_get_dev(rdev);
2945	struct i2c_client *client = to_i2c_client(dev->parent);
2946	struct pmbus_data *data = i2c_get_clientdata(client);
2947	u8 page = rdev_get_id(rdev);
2948	int status, ret;
2949	int event;
2950
2951	mutex_lock(&data->update_lock);
2952	status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2953	if (status < 0) {
2954		ret = status;
2955		goto unlock;
2956	}
2957
2958	if (status & PB_STATUS_OFF) {
2959		ret = REGULATOR_STATUS_OFF;
2960		goto unlock;
2961	}
2962
2963	/* If regulator is ON & reports power good then return ON */
2964	if (!(status & PB_STATUS_POWER_GOOD_N)) {
2965		ret = REGULATOR_STATUS_ON;
2966		goto unlock;
2967	}
2968
2969	ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
2970	if (ret)
2971		goto unlock;
2972
2973	if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
2974	   REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
2975		ret = REGULATOR_STATUS_ERROR;
2976		goto unlock;
2977	}
2978
2979	ret = REGULATOR_STATUS_UNDEFINED;
2980
2981unlock:
2982	mutex_unlock(&data->update_lock);
2983	return ret;
2984}
2985
2986static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
2987{
2988	struct pmbus_data *data = i2c_get_clientdata(client);
2989	struct pmbus_sensor s = {
2990		.page = page,
2991		.class = PSC_VOLTAGE_OUT,
2992		.convert = true,
2993		.data = -1,
2994	};
2995
2996	if (data->vout_low[page] < 0) {
2997		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
2998			s.data = _pmbus_read_word_data(client, page, 0xff,
2999						       PMBUS_MFR_VOUT_MIN);
3000		if (s.data < 0) {
3001			s.data = _pmbus_read_word_data(client, page, 0xff,
3002						       PMBUS_VOUT_MARGIN_LOW);
3003			if (s.data < 0)
3004				return s.data;
3005		}
3006		data->vout_low[page] = pmbus_reg2data(data, &s);
3007	}
3008
3009	return data->vout_low[page];
3010}
3011
3012static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3013{
3014	struct pmbus_data *data = i2c_get_clientdata(client);
3015	struct pmbus_sensor s = {
3016		.page = page,
3017		.class = PSC_VOLTAGE_OUT,
3018		.convert = true,
3019		.data = -1,
3020	};
3021
3022	if (data->vout_high[page] < 0) {
3023		if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3024			s.data = _pmbus_read_word_data(client, page, 0xff,
3025						       PMBUS_MFR_VOUT_MAX);
3026		if (s.data < 0) {
3027			s.data = _pmbus_read_word_data(client, page, 0xff,
3028						       PMBUS_VOUT_MARGIN_HIGH);
3029			if (s.data < 0)
3030				return s.data;
3031		}
3032		data->vout_high[page] = pmbus_reg2data(data, &s);
3033	}
3034
3035	return data->vout_high[page];
3036}
3037
3038static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3039{
3040	struct device *dev = rdev_get_dev(rdev);
3041	struct i2c_client *client = to_i2c_client(dev->parent);
3042	struct pmbus_data *data = i2c_get_clientdata(client);
3043	struct pmbus_sensor s = {
3044		.page = rdev_get_id(rdev),
3045		.class = PSC_VOLTAGE_OUT,
3046		.convert = true,
3047	};
3048
3049	s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3050	if (s.data < 0)
3051		return s.data;
3052
3053	return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3054}
3055
3056static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3057				       int max_uv, unsigned int *selector)
3058{
3059	struct device *dev = rdev_get_dev(rdev);
3060	struct i2c_client *client = to_i2c_client(dev->parent);
3061	struct pmbus_data *data = i2c_get_clientdata(client);
3062	struct pmbus_sensor s = {
3063		.page = rdev_get_id(rdev),
3064		.class = PSC_VOLTAGE_OUT,
3065		.convert = true,
3066		.data = -1,
3067	};
3068	int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3069	int low, high;
3070
3071	*selector = 0;
3072
3073	low = pmbus_regulator_get_low_margin(client, s.page);
3074	if (low < 0)
3075		return low;
3076
3077	high = pmbus_regulator_get_high_margin(client, s.page);
3078	if (high < 0)
3079		return high;
3080
3081	/* Make sure we are within margins */
3082	if (low > val)
3083		val = low;
3084	if (high < val)
3085		val = high;
3086
3087	val = pmbus_data2reg(data, &s, val);
3088
3089	return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3090}
3091
3092static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3093					 unsigned int selector)
3094{
3095	struct device *dev = rdev_get_dev(rdev);
3096	struct i2c_client *client = to_i2c_client(dev->parent);
3097	int val, low, high;
3098
3099	if (selector >= rdev->desc->n_voltages ||
3100	    selector < rdev->desc->linear_min_sel)
3101		return -EINVAL;
3102
3103	selector -= rdev->desc->linear_min_sel;
3104	val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3105				(rdev->desc->uV_step * selector), 1000); /* convert to mV */
3106
3107	low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3108	if (low < 0)
3109		return low;
3110
3111	high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3112	if (high < 0)
3113		return high;
3114
3115	if (val >= low && val <= high)
3116		return val * 1000; /* unit is uV */
3117
3118	return 0;
3119}
3120
3121const struct regulator_ops pmbus_regulator_ops = {
3122	.enable = pmbus_regulator_enable,
3123	.disable = pmbus_regulator_disable,
3124	.is_enabled = pmbus_regulator_is_enabled,
3125	.get_error_flags = pmbus_regulator_get_error_flags,
3126	.get_status = pmbus_regulator_get_status,
3127	.get_voltage = pmbus_regulator_get_voltage,
3128	.set_voltage = pmbus_regulator_set_voltage,
3129	.list_voltage = pmbus_regulator_list_voltage,
3130};
3131EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
3132
3133static int pmbus_regulator_register(struct pmbus_data *data)
3134{
3135	struct device *dev = data->dev;
3136	const struct pmbus_driver_info *info = data->info;
3137	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3138	int i;
3139
3140	data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3141				   GFP_KERNEL);
3142	if (!data->rdevs)
3143		return -ENOMEM;
3144
3145	for (i = 0; i < info->num_regulators; i++) {
3146		struct regulator_config config = { };
3147
3148		config.dev = dev;
3149		config.driver_data = data;
3150
3151		if (pdata && pdata->reg_init_data)
3152			config.init_data = &pdata->reg_init_data[i];
3153
3154		data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3155							 &config);
3156		if (IS_ERR(data->rdevs[i]))
3157			return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3158					     "Failed to register %s regulator\n",
3159					     info->reg_desc[i].name);
3160	}
3161
3162	return 0;
3163}
3164
3165static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3166{
3167		int j;
3168
3169		for (j = 0; j < data->info->num_regulators; j++) {
3170			if (page == rdev_get_id(data->rdevs[j])) {
3171				regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3172				break;
3173			}
3174		}
3175		return 0;
3176}
3177#else
3178static int pmbus_regulator_register(struct pmbus_data *data)
3179{
3180	return 0;
3181}
3182
3183static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3184{
3185		return 0;
3186}
3187#endif
3188
3189static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3190{
3191	return pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3192}
3193
3194static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3195{
3196	struct pmbus_data *data = pdata;
3197	struct i2c_client *client = to_i2c_client(data->dev);
3198
3199	int i, status, event;
3200	mutex_lock(&data->update_lock);
3201	for (i = 0; i < data->info->pages; i++) {
3202		_pmbus_get_flags(data, i, &status, &event, true);
3203
3204		if (event)
3205			pmbus_regulator_notify(data, i, event);
3206	}
3207
3208	pmbus_clear_faults(client);
3209	mutex_unlock(&data->update_lock);
3210
3211	return IRQ_HANDLED;
3212}
3213
3214static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3215{
3216	struct device *dev = &client->dev;
3217	const struct pmbus_status_category *cat;
3218	const struct pmbus_status_assoc *bit;
3219	int i, j, err, func;
3220	u8 mask;
3221
3222	static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3223					 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3224					 PMBUS_STATUS_FAN_34};
3225
3226	if (!client->irq)
3227		return 0;
3228
3229	for (i = 0; i < data->info->pages; i++) {
3230		func = data->info->func[i];
3231
3232		for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3233			cat = &pmbus_status_flag_map[j];
3234			if (!(func & cat->func))
3235				continue;
3236			mask = 0;
3237			for (bit = cat->bits; bit->pflag; bit++)
3238				mask |= bit->pflag;
3239
3240			err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3241			if (err)
3242				dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3243					     cat->reg);
3244		}
3245
3246		for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3247			pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3248	}
3249
3250	/* Register notifiers */
3251	err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3252					IRQF_ONESHOT, "pmbus-irq", data);
3253	if (err) {
3254		dev_err(dev, "failed to request an irq %d\n", err);
3255		return err;
3256	}
3257
3258	return 0;
3259}
3260
3261static struct dentry *pmbus_debugfs_dir;	/* pmbus debugfs directory */
3262
3263#if IS_ENABLED(CONFIG_DEBUG_FS)
3264static int pmbus_debugfs_get(void *data, u64 *val)
3265{
3266	int rc;
3267	struct pmbus_debugfs_entry *entry = data;
3268	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3269
3270	rc = mutex_lock_interruptible(&pdata->update_lock);
3271	if (rc)
3272		return rc;
3273	rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3274	mutex_unlock(&pdata->update_lock);
3275	if (rc < 0)
3276		return rc;
3277
3278	*val = rc;
3279
3280	return 0;
3281}
3282DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3283			 "0x%02llx\n");
3284
3285static int pmbus_debugfs_get_status(void *data, u64 *val)
3286{
3287	int rc;
3288	struct pmbus_debugfs_entry *entry = data;
3289	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3290
3291	rc = mutex_lock_interruptible(&pdata->update_lock);
3292	if (rc)
3293		return rc;
3294	rc = pdata->read_status(entry->client, entry->page);
3295	mutex_unlock(&pdata->update_lock);
3296	if (rc < 0)
3297		return rc;
3298
3299	*val = rc;
3300
3301	return 0;
3302}
3303DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3304			 NULL, "0x%04llx\n");
3305
3306static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3307				       size_t count, loff_t *ppos)
3308{
3309	int rc;
3310	struct pmbus_debugfs_entry *entry = file->private_data;
3311	struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3312	char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3313
3314	rc = mutex_lock_interruptible(&pdata->update_lock);
3315	if (rc)
3316		return rc;
3317	rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3318				   data);
3319	mutex_unlock(&pdata->update_lock);
3320	if (rc < 0)
3321		return rc;
3322
3323	/* Add newline at the end of a read data */
3324	data[rc] = '\n';
3325
3326	/* Include newline into the length */
3327	rc += 1;
3328
3329	return simple_read_from_buffer(buf, count, ppos, data, rc);
3330}
3331
3332static const struct file_operations pmbus_debugfs_ops_mfr = {
3333	.llseek = noop_llseek,
3334	.read = pmbus_debugfs_mfr_read,
3335	.write = NULL,
3336	.open = simple_open,
3337};
3338
3339static void pmbus_remove_debugfs(void *data)
3340{
3341	struct dentry *entry = data;
3342
3343	debugfs_remove_recursive(entry);
3344}
3345
3346static int pmbus_init_debugfs(struct i2c_client *client,
3347			      struct pmbus_data *data)
3348{
3349	int i, idx = 0;
3350	char name[PMBUS_NAME_SIZE];
3351	struct pmbus_debugfs_entry *entries;
3352
3353	if (!pmbus_debugfs_dir)
3354		return -ENODEV;
3355
3356	/*
3357	 * Create the debugfs directory for this device. Use the hwmon device
3358	 * name to avoid conflicts (hwmon numbers are globally unique).
3359	 */
3360	data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3361					   pmbus_debugfs_dir);
3362	if (IS_ERR_OR_NULL(data->debugfs)) {
3363		data->debugfs = NULL;
3364		return -ENODEV;
3365	}
3366
3367	/*
3368	 * Allocate the max possible entries we need.
3369	 * 6 entries device-specific
3370	 * 10 entries page-specific
3371	 */
3372	entries = devm_kcalloc(data->dev,
3373			       6 + data->info->pages * 10, sizeof(*entries),
3374			       GFP_KERNEL);
3375	if (!entries)
3376		return -ENOMEM;
3377
3378	/*
3379	 * Add device-specific entries.
3380	 * Please note that the PMBUS standard allows all registers to be
3381	 * page-specific.
3382	 * To reduce the number of debugfs entries for devices with many pages
3383	 * assume that values of the following registers are the same for all
3384	 * pages and report values only for page 0.
3385	 */
3386	if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3387		entries[idx].client = client;
3388		entries[idx].page = 0;
3389		entries[idx].reg = PMBUS_MFR_ID;
3390		debugfs_create_file("mfr_id", 0444, data->debugfs,
3391				    &entries[idx++],
3392				    &pmbus_debugfs_ops_mfr);
3393	}
3394
3395	if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3396		entries[idx].client = client;
3397		entries[idx].page = 0;
3398		entries[idx].reg = PMBUS_MFR_MODEL;
3399		debugfs_create_file("mfr_model", 0444, data->debugfs,
3400				    &entries[idx++],
3401				    &pmbus_debugfs_ops_mfr);
3402	}
3403
3404	if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3405		entries[idx].client = client;
3406		entries[idx].page = 0;
3407		entries[idx].reg = PMBUS_MFR_REVISION;
3408		debugfs_create_file("mfr_revision", 0444, data->debugfs,
3409				    &entries[idx++],
3410				    &pmbus_debugfs_ops_mfr);
3411	}
3412
3413	if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3414		entries[idx].client = client;
3415		entries[idx].page = 0;
3416		entries[idx].reg = PMBUS_MFR_LOCATION;
3417		debugfs_create_file("mfr_location", 0444, data->debugfs,
3418				    &entries[idx++],
3419				    &pmbus_debugfs_ops_mfr);
3420	}
3421
3422	if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3423		entries[idx].client = client;
3424		entries[idx].page = 0;
3425		entries[idx].reg = PMBUS_MFR_DATE;
3426		debugfs_create_file("mfr_date", 0444, data->debugfs,
3427				    &entries[idx++],
3428				    &pmbus_debugfs_ops_mfr);
3429	}
3430
3431	if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3432		entries[idx].client = client;
3433		entries[idx].page = 0;
3434		entries[idx].reg = PMBUS_MFR_SERIAL;
3435		debugfs_create_file("mfr_serial", 0444, data->debugfs,
3436				    &entries[idx++],
3437				    &pmbus_debugfs_ops_mfr);
3438	}
3439
3440	/* Add page specific entries */
3441	for (i = 0; i < data->info->pages; ++i) {
3442		/* Check accessibility of status register if it's not page 0 */
3443		if (!i || pmbus_check_status_register(client, i)) {
3444			/* No need to set reg as we have special read op. */
3445			entries[idx].client = client;
3446			entries[idx].page = i;
3447			scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3448			debugfs_create_file(name, 0444, data->debugfs,
3449					    &entries[idx++],
3450					    &pmbus_debugfs_ops_status);
3451		}
3452
3453		if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3454			entries[idx].client = client;
3455			entries[idx].page = i;
3456			entries[idx].reg = PMBUS_STATUS_VOUT;
3457			scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3458			debugfs_create_file(name, 0444, data->debugfs,
3459					    &entries[idx++],
3460					    &pmbus_debugfs_ops);
3461		}
3462
3463		if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3464			entries[idx].client = client;
3465			entries[idx].page = i;
3466			entries[idx].reg = PMBUS_STATUS_IOUT;
3467			scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3468			debugfs_create_file(name, 0444, data->debugfs,
3469					    &entries[idx++],
3470					    &pmbus_debugfs_ops);
3471		}
3472
3473		if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3474			entries[idx].client = client;
3475			entries[idx].page = i;
3476			entries[idx].reg = PMBUS_STATUS_INPUT;
3477			scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3478			debugfs_create_file(name, 0444, data->debugfs,
3479					    &entries[idx++],
3480					    &pmbus_debugfs_ops);
3481		}
3482
3483		if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3484			entries[idx].client = client;
3485			entries[idx].page = i;
3486			entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3487			scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3488			debugfs_create_file(name, 0444, data->debugfs,
3489					    &entries[idx++],
3490					    &pmbus_debugfs_ops);
3491		}
3492
3493		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3494			entries[idx].client = client;
3495			entries[idx].page = i;
3496			entries[idx].reg = PMBUS_STATUS_CML;
3497			scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3498			debugfs_create_file(name, 0444, data->debugfs,
3499					    &entries[idx++],
3500					    &pmbus_debugfs_ops);
3501		}
3502
3503		if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3504			entries[idx].client = client;
3505			entries[idx].page = i;
3506			entries[idx].reg = PMBUS_STATUS_OTHER;
3507			scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3508			debugfs_create_file(name, 0444, data->debugfs,
3509					    &entries[idx++],
3510					    &pmbus_debugfs_ops);
3511		}
3512
3513		if (pmbus_check_byte_register(client, i,
3514					      PMBUS_STATUS_MFR_SPECIFIC)) {
3515			entries[idx].client = client;
3516			entries[idx].page = i;
3517			entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3518			scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3519			debugfs_create_file(name, 0444, data->debugfs,
3520					    &entries[idx++],
3521					    &pmbus_debugfs_ops);
3522		}
3523
3524		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3525			entries[idx].client = client;
3526			entries[idx].page = i;
3527			entries[idx].reg = PMBUS_STATUS_FAN_12;
3528			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3529			debugfs_create_file(name, 0444, data->debugfs,
3530					    &entries[idx++],
3531					    &pmbus_debugfs_ops);
3532		}
3533
3534		if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3535			entries[idx].client = client;
3536			entries[idx].page = i;
3537			entries[idx].reg = PMBUS_STATUS_FAN_34;
3538			scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3539			debugfs_create_file(name, 0444, data->debugfs,
3540					    &entries[idx++],
3541					    &pmbus_debugfs_ops);
3542		}
3543	}
3544
3545	return devm_add_action_or_reset(data->dev,
3546					pmbus_remove_debugfs, data->debugfs);
3547}
3548#else
3549static int pmbus_init_debugfs(struct i2c_client *client,
3550			      struct pmbus_data *data)
3551{
3552	return 0;
3553}
3554#endif	/* IS_ENABLED(CONFIG_DEBUG_FS) */
3555
3556int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3557{
3558	struct device *dev = &client->dev;
3559	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3560	struct pmbus_data *data;
3561	size_t groups_num = 0;
3562	int ret;
3563	int i;
3564	char *name;
3565
3566	if (!info)
3567		return -ENODEV;
3568
3569	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3570				     | I2C_FUNC_SMBUS_BYTE_DATA
3571				     | I2C_FUNC_SMBUS_WORD_DATA))
3572		return -ENODEV;
3573
3574	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3575	if (!data)
3576		return -ENOMEM;
3577
3578	if (info->groups)
3579		while (info->groups[groups_num])
3580			groups_num++;
3581
3582	data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3583				    GFP_KERNEL);
3584	if (!data->groups)
3585		return -ENOMEM;
3586
3587	i2c_set_clientdata(client, data);
3588	mutex_init(&data->update_lock);
3589	data->dev = dev;
3590
3591	if (pdata)
3592		data->flags = pdata->flags;
3593	data->info = info;
3594	data->currpage = -1;
3595	data->currphase = -1;
3596
3597	for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3598		data->vout_low[i] = -1;
3599		data->vout_high[i] = -1;
3600	}
3601
3602	ret = pmbus_init_common(client, data, info);
3603	if (ret < 0)
3604		return ret;
3605
3606	ret = pmbus_find_attributes(client, data);
3607	if (ret)
3608		return ret;
3609
3610	/*
3611	 * If there are no attributes, something is wrong.
3612	 * Bail out instead of trying to register nothing.
3613	 */
3614	if (!data->num_attributes) {
3615		dev_err(dev, "No attributes found\n");
3616		return -ENODEV;
 
3617	}
3618
3619	name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3620	if (!name)
3621		return -ENOMEM;
3622	strreplace(name, '-', '_');
3623
3624	data->groups[0] = &data->group;
3625	memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3626	data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3627					name, data, data->groups);
3628	if (IS_ERR(data->hwmon_dev)) {
3629		dev_err(dev, "Failed to register hwmon device\n");
3630		return PTR_ERR(data->hwmon_dev);
 
3631	}
3632
3633	ret = pmbus_regulator_register(data);
3634	if (ret)
3635		return ret;
3636
3637	ret = pmbus_irq_setup(client, data);
3638	if (ret)
3639		return ret;
3640
3641	ret = pmbus_init_debugfs(client, data);
3642	if (ret)
3643		dev_warn(dev, "Failed to register debugfs\n");
3644
3645	return 0;
3646}
3647EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
3648
3649struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3650{
3651	struct pmbus_data *data = i2c_get_clientdata(client);
3652
3653	return data->debugfs;
 
 
 
 
 
 
 
 
3654}
3655EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
3656
3657int pmbus_lock_interruptible(struct i2c_client *client)
3658{
3659	struct pmbus_data *data = i2c_get_clientdata(client);
3660
3661	return mutex_lock_interruptible(&data->update_lock);
3662}
3663EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS);
3664
3665void pmbus_unlock(struct i2c_client *client)
3666{
3667	struct pmbus_data *data = i2c_get_clientdata(client);
3668
3669	mutex_unlock(&data->update_lock);
3670}
3671EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS);
3672
3673static int __init pmbus_core_init(void)
3674{
3675	pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3676	if (IS_ERR(pmbus_debugfs_dir))
3677		pmbus_debugfs_dir = NULL;
3678
3679	return 0;
3680}
3681
3682static void __exit pmbus_core_exit(void)
3683{
3684	debugfs_remove_recursive(pmbus_debugfs_dir);
3685}
3686
3687module_init(pmbus_core_init);
3688module_exit(pmbus_core_exit);
3689
3690MODULE_AUTHOR("Guenter Roeck");
3691MODULE_DESCRIPTION("PMBus core driver");
3692MODULE_LICENSE("GPL");