Loading...
1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_input_randomness(unsigned int type, unsigned int code,
129 * unsigned int value);
130 * void add_interrupt_randomness(int irq);
131 * void add_disk_randomness(struct gendisk *disk);
132 *
133 * add_input_randomness() uses the input layer interrupt timing, as well as
134 * the event type information from the hardware.
135 *
136 * add_interrupt_randomness() uses the inter-interrupt timing as random
137 * inputs to the entropy pool. Note that not all interrupts are good
138 * sources of randomness! For example, the timer interrupts is not a
139 * good choice, because the periodicity of the interrupts is too
140 * regular, and hence predictable to an attacker. Network Interface
141 * Controller interrupts are a better measure, since the timing of the
142 * NIC interrupts are more unpredictable.
143 *
144 * add_disk_randomness() uses what amounts to the seek time of block
145 * layer request events, on a per-disk_devt basis, as input to the
146 * entropy pool. Note that high-speed solid state drives with very low
147 * seek times do not make for good sources of entropy, as their seek
148 * times are usually fairly consistent.
149 *
150 * All of these routines try to estimate how many bits of randomness a
151 * particular randomness source. They do this by keeping track of the
152 * first and second order deltas of the event timings.
153 *
154 * Ensuring unpredictability at system startup
155 * ============================================
156 *
157 * When any operating system starts up, it will go through a sequence
158 * of actions that are fairly predictable by an adversary, especially
159 * if the start-up does not involve interaction with a human operator.
160 * This reduces the actual number of bits of unpredictability in the
161 * entropy pool below the value in entropy_count. In order to
162 * counteract this effect, it helps to carry information in the
163 * entropy pool across shut-downs and start-ups. To do this, put the
164 * following lines an appropriate script which is run during the boot
165 * sequence:
166 *
167 * echo "Initializing random number generator..."
168 * random_seed=/var/run/random-seed
169 * # Carry a random seed from start-up to start-up
170 * # Load and then save the whole entropy pool
171 * if [ -f $random_seed ]; then
172 * cat $random_seed >/dev/urandom
173 * else
174 * touch $random_seed
175 * fi
176 * chmod 600 $random_seed
177 * dd if=/dev/urandom of=$random_seed count=1 bs=512
178 *
179 * and the following lines in an appropriate script which is run as
180 * the system is shutdown:
181 *
182 * # Carry a random seed from shut-down to start-up
183 * # Save the whole entropy pool
184 * echo "Saving random seed..."
185 * random_seed=/var/run/random-seed
186 * touch $random_seed
187 * chmod 600 $random_seed
188 * dd if=/dev/urandom of=$random_seed count=1 bs=512
189 *
190 * For example, on most modern systems using the System V init
191 * scripts, such code fragments would be found in
192 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
193 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
194 *
195 * Effectively, these commands cause the contents of the entropy pool
196 * to be saved at shut-down time and reloaded into the entropy pool at
197 * start-up. (The 'dd' in the addition to the bootup script is to
198 * make sure that /etc/random-seed is different for every start-up,
199 * even if the system crashes without executing rc.0.) Even with
200 * complete knowledge of the start-up activities, predicting the state
201 * of the entropy pool requires knowledge of the previous history of
202 * the system.
203 *
204 * Configuring the /dev/random driver under Linux
205 * ==============================================
206 *
207 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
208 * the /dev/mem major number (#1). So if your system does not have
209 * /dev/random and /dev/urandom created already, they can be created
210 * by using the commands:
211 *
212 * mknod /dev/random c 1 8
213 * mknod /dev/urandom c 1 9
214 *
215 * Acknowledgements:
216 * =================
217 *
218 * Ideas for constructing this random number generator were derived
219 * from Pretty Good Privacy's random number generator, and from private
220 * discussions with Phil Karn. Colin Plumb provided a faster random
221 * number generator, which speed up the mixing function of the entropy
222 * pool, taken from PGPfone. Dale Worley has also contributed many
223 * useful ideas and suggestions to improve this driver.
224 *
225 * Any flaws in the design are solely my responsibility, and should
226 * not be attributed to the Phil, Colin, or any of authors of PGP.
227 *
228 * Further background information on this topic may be obtained from
229 * RFC 1750, "Randomness Recommendations for Security", by Donald
230 * Eastlake, Steve Crocker, and Jeff Schiller.
231 */
232
233#include <linux/utsname.h>
234#include <linux/module.h>
235#include <linux/kernel.h>
236#include <linux/major.h>
237#include <linux/string.h>
238#include <linux/fcntl.h>
239#include <linux/slab.h>
240#include <linux/random.h>
241#include <linux/poll.h>
242#include <linux/init.h>
243#include <linux/fs.h>
244#include <linux/genhd.h>
245#include <linux/interrupt.h>
246#include <linux/mm.h>
247#include <linux/spinlock.h>
248#include <linux/percpu.h>
249#include <linux/cryptohash.h>
250#include <linux/fips.h>
251
252#ifdef CONFIG_GENERIC_HARDIRQS
253# include <linux/irq.h>
254#endif
255
256#include <asm/processor.h>
257#include <asm/uaccess.h>
258#include <asm/irq.h>
259#include <asm/io.h>
260
261/*
262 * Configuration information
263 */
264#define INPUT_POOL_WORDS 128
265#define OUTPUT_POOL_WORDS 32
266#define SEC_XFER_SIZE 512
267#define EXTRACT_SIZE 10
268
269/*
270 * The minimum number of bits of entropy before we wake up a read on
271 * /dev/random. Should be enough to do a significant reseed.
272 */
273static int random_read_wakeup_thresh = 64;
274
275/*
276 * If the entropy count falls under this number of bits, then we
277 * should wake up processes which are selecting or polling on write
278 * access to /dev/random.
279 */
280static int random_write_wakeup_thresh = 128;
281
282/*
283 * When the input pool goes over trickle_thresh, start dropping most
284 * samples to avoid wasting CPU time and reduce lock contention.
285 */
286
287static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
288
289static DEFINE_PER_CPU(int, trickle_count);
290
291/*
292 * A pool of size .poolwords is stirred with a primitive polynomial
293 * of degree .poolwords over GF(2). The taps for various sizes are
294 * defined below. They are chosen to be evenly spaced (minimum RMS
295 * distance from evenly spaced; the numbers in the comments are a
296 * scaled squared error sum) except for the last tap, which is 1 to
297 * get the twisting happening as fast as possible.
298 */
299static struct poolinfo {
300 int poolwords;
301 int tap1, tap2, tap3, tap4, tap5;
302} poolinfo_table[] = {
303 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
304 { 128, 103, 76, 51, 25, 1 },
305 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
306 { 32, 26, 20, 14, 7, 1 },
307#if 0
308 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
309 { 2048, 1638, 1231, 819, 411, 1 },
310
311 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
312 { 1024, 817, 615, 412, 204, 1 },
313
314 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
315 { 1024, 819, 616, 410, 207, 2 },
316
317 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
318 { 512, 411, 308, 208, 104, 1 },
319
320 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
321 { 512, 409, 307, 206, 102, 2 },
322 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
323 { 512, 409, 309, 205, 103, 2 },
324
325 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
326 { 256, 205, 155, 101, 52, 1 },
327
328 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
329 { 128, 103, 78, 51, 27, 2 },
330
331 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
332 { 64, 52, 39, 26, 14, 1 },
333#endif
334};
335
336#define POOLBITS poolwords*32
337#define POOLBYTES poolwords*4
338
339/*
340 * For the purposes of better mixing, we use the CRC-32 polynomial as
341 * well to make a twisted Generalized Feedback Shift Reigster
342 *
343 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
344 * Transactions on Modeling and Computer Simulation 2(3):179-194.
345 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
346 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
347 *
348 * Thanks to Colin Plumb for suggesting this.
349 *
350 * We have not analyzed the resultant polynomial to prove it primitive;
351 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
352 * of a random large-degree polynomial over GF(2) are more than large enough
353 * that periodicity is not a concern.
354 *
355 * The input hash is much less sensitive than the output hash. All
356 * that we want of it is that it be a good non-cryptographic hash;
357 * i.e. it not produce collisions when fed "random" data of the sort
358 * we expect to see. As long as the pool state differs for different
359 * inputs, we have preserved the input entropy and done a good job.
360 * The fact that an intelligent attacker can construct inputs that
361 * will produce controlled alterations to the pool's state is not
362 * important because we don't consider such inputs to contribute any
363 * randomness. The only property we need with respect to them is that
364 * the attacker can't increase his/her knowledge of the pool's state.
365 * Since all additions are reversible (knowing the final state and the
366 * input, you can reconstruct the initial state), if an attacker has
367 * any uncertainty about the initial state, he/she can only shuffle
368 * that uncertainty about, but never cause any collisions (which would
369 * decrease the uncertainty).
370 *
371 * The chosen system lets the state of the pool be (essentially) the input
372 * modulo the generator polymnomial. Now, for random primitive polynomials,
373 * this is a universal class of hash functions, meaning that the chance
374 * of a collision is limited by the attacker's knowledge of the generator
375 * polynomail, so if it is chosen at random, an attacker can never force
376 * a collision. Here, we use a fixed polynomial, but we *can* assume that
377 * ###--> it is unknown to the processes generating the input entropy. <-###
378 * Because of this important property, this is a good, collision-resistant
379 * hash; hash collisions will occur no more often than chance.
380 */
381
382/*
383 * Static global variables
384 */
385static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
386static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
387static struct fasync_struct *fasync;
388
389#if 0
390static int debug;
391module_param(debug, bool, 0644);
392#define DEBUG_ENT(fmt, arg...) do { \
393 if (debug) \
394 printk(KERN_DEBUG "random %04d %04d %04d: " \
395 fmt,\
396 input_pool.entropy_count,\
397 blocking_pool.entropy_count,\
398 nonblocking_pool.entropy_count,\
399 ## arg); } while (0)
400#else
401#define DEBUG_ENT(fmt, arg...) do {} while (0)
402#endif
403
404/**********************************************************************
405 *
406 * OS independent entropy store. Here are the functions which handle
407 * storing entropy in an entropy pool.
408 *
409 **********************************************************************/
410
411struct entropy_store;
412struct entropy_store {
413 /* read-only data: */
414 struct poolinfo *poolinfo;
415 __u32 *pool;
416 const char *name;
417 struct entropy_store *pull;
418 int limit;
419
420 /* read-write data: */
421 spinlock_t lock;
422 unsigned add_ptr;
423 int entropy_count;
424 int input_rotate;
425 __u8 last_data[EXTRACT_SIZE];
426};
427
428static __u32 input_pool_data[INPUT_POOL_WORDS];
429static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
430static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
431
432static struct entropy_store input_pool = {
433 .poolinfo = &poolinfo_table[0],
434 .name = "input",
435 .limit = 1,
436 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
437 .pool = input_pool_data
438};
439
440static struct entropy_store blocking_pool = {
441 .poolinfo = &poolinfo_table[1],
442 .name = "blocking",
443 .limit = 1,
444 .pull = &input_pool,
445 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
446 .pool = blocking_pool_data
447};
448
449static struct entropy_store nonblocking_pool = {
450 .poolinfo = &poolinfo_table[1],
451 .name = "nonblocking",
452 .pull = &input_pool,
453 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
454 .pool = nonblocking_pool_data
455};
456
457/*
458 * This function adds bytes into the entropy "pool". It does not
459 * update the entropy estimate. The caller should call
460 * credit_entropy_bits if this is appropriate.
461 *
462 * The pool is stirred with a primitive polynomial of the appropriate
463 * degree, and then twisted. We twist by three bits at a time because
464 * it's cheap to do so and helps slightly in the expected case where
465 * the entropy is concentrated in the low-order bits.
466 */
467static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
468 int nbytes, __u8 out[64])
469{
470 static __u32 const twist_table[8] = {
471 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
472 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
473 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
474 int input_rotate;
475 int wordmask = r->poolinfo->poolwords - 1;
476 const char *bytes = in;
477 __u32 w;
478 unsigned long flags;
479
480 /* Taps are constant, so we can load them without holding r->lock. */
481 tap1 = r->poolinfo->tap1;
482 tap2 = r->poolinfo->tap2;
483 tap3 = r->poolinfo->tap3;
484 tap4 = r->poolinfo->tap4;
485 tap5 = r->poolinfo->tap5;
486
487 spin_lock_irqsave(&r->lock, flags);
488 input_rotate = r->input_rotate;
489 i = r->add_ptr;
490
491 /* mix one byte at a time to simplify size handling and churn faster */
492 while (nbytes--) {
493 w = rol32(*bytes++, input_rotate & 31);
494 i = (i - 1) & wordmask;
495
496 /* XOR in the various taps */
497 w ^= r->pool[i];
498 w ^= r->pool[(i + tap1) & wordmask];
499 w ^= r->pool[(i + tap2) & wordmask];
500 w ^= r->pool[(i + tap3) & wordmask];
501 w ^= r->pool[(i + tap4) & wordmask];
502 w ^= r->pool[(i + tap5) & wordmask];
503
504 /* Mix the result back in with a twist */
505 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
506
507 /*
508 * Normally, we add 7 bits of rotation to the pool.
509 * At the beginning of the pool, add an extra 7 bits
510 * rotation, so that successive passes spread the
511 * input bits across the pool evenly.
512 */
513 input_rotate += i ? 7 : 14;
514 }
515
516 r->input_rotate = input_rotate;
517 r->add_ptr = i;
518
519 if (out)
520 for (j = 0; j < 16; j++)
521 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
522
523 spin_unlock_irqrestore(&r->lock, flags);
524}
525
526static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
527{
528 mix_pool_bytes_extract(r, in, bytes, NULL);
529}
530
531/*
532 * Credit (or debit) the entropy store with n bits of entropy
533 */
534static void credit_entropy_bits(struct entropy_store *r, int nbits)
535{
536 unsigned long flags;
537 int entropy_count;
538
539 if (!nbits)
540 return;
541
542 spin_lock_irqsave(&r->lock, flags);
543
544 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
545 entropy_count = r->entropy_count;
546 entropy_count += nbits;
547 if (entropy_count < 0) {
548 DEBUG_ENT("negative entropy/overflow\n");
549 entropy_count = 0;
550 } else if (entropy_count > r->poolinfo->POOLBITS)
551 entropy_count = r->poolinfo->POOLBITS;
552 r->entropy_count = entropy_count;
553
554 /* should we wake readers? */
555 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
556 wake_up_interruptible(&random_read_wait);
557 kill_fasync(&fasync, SIGIO, POLL_IN);
558 }
559 spin_unlock_irqrestore(&r->lock, flags);
560}
561
562/*********************************************************************
563 *
564 * Entropy input management
565 *
566 *********************************************************************/
567
568/* There is one of these per entropy source */
569struct timer_rand_state {
570 cycles_t last_time;
571 long last_delta, last_delta2;
572 unsigned dont_count_entropy:1;
573};
574
575#ifndef CONFIG_GENERIC_HARDIRQS
576
577static struct timer_rand_state *irq_timer_state[NR_IRQS];
578
579static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
580{
581 return irq_timer_state[irq];
582}
583
584static void set_timer_rand_state(unsigned int irq,
585 struct timer_rand_state *state)
586{
587 irq_timer_state[irq] = state;
588}
589
590#else
591
592static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
593{
594 struct irq_desc *desc;
595
596 desc = irq_to_desc(irq);
597
598 return desc->timer_rand_state;
599}
600
601static void set_timer_rand_state(unsigned int irq,
602 struct timer_rand_state *state)
603{
604 struct irq_desc *desc;
605
606 desc = irq_to_desc(irq);
607
608 desc->timer_rand_state = state;
609}
610#endif
611
612static struct timer_rand_state input_timer_state;
613
614/*
615 * This function adds entropy to the entropy "pool" by using timing
616 * delays. It uses the timer_rand_state structure to make an estimate
617 * of how many bits of entropy this call has added to the pool.
618 *
619 * The number "num" is also added to the pool - it should somehow describe
620 * the type of event which just happened. This is currently 0-255 for
621 * keyboard scan codes, and 256 upwards for interrupts.
622 *
623 */
624static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
625{
626 struct {
627 cycles_t cycles;
628 long jiffies;
629 unsigned num;
630 } sample;
631 long delta, delta2, delta3;
632
633 preempt_disable();
634 /* if over the trickle threshold, use only 1 in 4096 samples */
635 if (input_pool.entropy_count > trickle_thresh &&
636 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
637 goto out;
638
639 sample.jiffies = jiffies;
640 sample.cycles = get_cycles();
641 sample.num = num;
642 mix_pool_bytes(&input_pool, &sample, sizeof(sample));
643
644 /*
645 * Calculate number of bits of randomness we probably added.
646 * We take into account the first, second and third-order deltas
647 * in order to make our estimate.
648 */
649
650 if (!state->dont_count_entropy) {
651 delta = sample.jiffies - state->last_time;
652 state->last_time = sample.jiffies;
653
654 delta2 = delta - state->last_delta;
655 state->last_delta = delta;
656
657 delta3 = delta2 - state->last_delta2;
658 state->last_delta2 = delta2;
659
660 if (delta < 0)
661 delta = -delta;
662 if (delta2 < 0)
663 delta2 = -delta2;
664 if (delta3 < 0)
665 delta3 = -delta3;
666 if (delta > delta2)
667 delta = delta2;
668 if (delta > delta3)
669 delta = delta3;
670
671 /*
672 * delta is now minimum absolute delta.
673 * Round down by 1 bit on general principles,
674 * and limit entropy entimate to 12 bits.
675 */
676 credit_entropy_bits(&input_pool,
677 min_t(int, fls(delta>>1), 11));
678 }
679out:
680 preempt_enable();
681}
682
683void add_input_randomness(unsigned int type, unsigned int code,
684 unsigned int value)
685{
686 static unsigned char last_value;
687
688 /* ignore autorepeat and the like */
689 if (value == last_value)
690 return;
691
692 DEBUG_ENT("input event\n");
693 last_value = value;
694 add_timer_randomness(&input_timer_state,
695 (type << 4) ^ code ^ (code >> 4) ^ value);
696}
697EXPORT_SYMBOL_GPL(add_input_randomness);
698
699void add_interrupt_randomness(int irq)
700{
701 struct timer_rand_state *state;
702
703 state = get_timer_rand_state(irq);
704
705 if (state == NULL)
706 return;
707
708 DEBUG_ENT("irq event %d\n", irq);
709 add_timer_randomness(state, 0x100 + irq);
710}
711
712#ifdef CONFIG_BLOCK
713void add_disk_randomness(struct gendisk *disk)
714{
715 if (!disk || !disk->random)
716 return;
717 /* first major is 1, so we get >= 0x200 here */
718 DEBUG_ENT("disk event %d:%d\n",
719 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
720
721 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
722}
723#endif
724
725/*********************************************************************
726 *
727 * Entropy extraction routines
728 *
729 *********************************************************************/
730
731static ssize_t extract_entropy(struct entropy_store *r, void *buf,
732 size_t nbytes, int min, int rsvd);
733
734/*
735 * This utility inline function is responsible for transferring entropy
736 * from the primary pool to the secondary extraction pool. We make
737 * sure we pull enough for a 'catastrophic reseed'.
738 */
739static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
740{
741 __u32 tmp[OUTPUT_POOL_WORDS];
742
743 if (r->pull && r->entropy_count < nbytes * 8 &&
744 r->entropy_count < r->poolinfo->POOLBITS) {
745 /* If we're limited, always leave two wakeup worth's BITS */
746 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
747 int bytes = nbytes;
748
749 /* pull at least as many as BYTES as wakeup BITS */
750 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
751 /* but never more than the buffer size */
752 bytes = min_t(int, bytes, sizeof(tmp));
753
754 DEBUG_ENT("going to reseed %s with %d bits "
755 "(%d of %d requested)\n",
756 r->name, bytes * 8, nbytes * 8, r->entropy_count);
757
758 bytes = extract_entropy(r->pull, tmp, bytes,
759 random_read_wakeup_thresh / 8, rsvd);
760 mix_pool_bytes(r, tmp, bytes);
761 credit_entropy_bits(r, bytes*8);
762 }
763}
764
765/*
766 * These functions extracts randomness from the "entropy pool", and
767 * returns it in a buffer.
768 *
769 * The min parameter specifies the minimum amount we can pull before
770 * failing to avoid races that defeat catastrophic reseeding while the
771 * reserved parameter indicates how much entropy we must leave in the
772 * pool after each pull to avoid starving other readers.
773 *
774 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
775 */
776
777static size_t account(struct entropy_store *r, size_t nbytes, int min,
778 int reserved)
779{
780 unsigned long flags;
781
782 /* Hold lock while accounting */
783 spin_lock_irqsave(&r->lock, flags);
784
785 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
786 DEBUG_ENT("trying to extract %d bits from %s\n",
787 nbytes * 8, r->name);
788
789 /* Can we pull enough? */
790 if (r->entropy_count / 8 < min + reserved) {
791 nbytes = 0;
792 } else {
793 /* If limited, never pull more than available */
794 if (r->limit && nbytes + reserved >= r->entropy_count / 8)
795 nbytes = r->entropy_count/8 - reserved;
796
797 if (r->entropy_count / 8 >= nbytes + reserved)
798 r->entropy_count -= nbytes*8;
799 else
800 r->entropy_count = reserved;
801
802 if (r->entropy_count < random_write_wakeup_thresh) {
803 wake_up_interruptible(&random_write_wait);
804 kill_fasync(&fasync, SIGIO, POLL_OUT);
805 }
806 }
807
808 DEBUG_ENT("debiting %d entropy credits from %s%s\n",
809 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
810
811 spin_unlock_irqrestore(&r->lock, flags);
812
813 return nbytes;
814}
815
816static void extract_buf(struct entropy_store *r, __u8 *out)
817{
818 int i;
819 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
820 __u8 extract[64];
821
822 /* Generate a hash across the pool, 16 words (512 bits) at a time */
823 sha_init(hash);
824 for (i = 0; i < r->poolinfo->poolwords; i += 16)
825 sha_transform(hash, (__u8 *)(r->pool + i), workspace);
826
827 /*
828 * We mix the hash back into the pool to prevent backtracking
829 * attacks (where the attacker knows the state of the pool
830 * plus the current outputs, and attempts to find previous
831 * ouputs), unless the hash function can be inverted. By
832 * mixing at least a SHA1 worth of hash data back, we make
833 * brute-forcing the feedback as hard as brute-forcing the
834 * hash.
835 */
836 mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
837
838 /*
839 * To avoid duplicates, we atomically extract a portion of the
840 * pool while mixing, and hash one final time.
841 */
842 sha_transform(hash, extract, workspace);
843 memset(extract, 0, sizeof(extract));
844 memset(workspace, 0, sizeof(workspace));
845
846 /*
847 * In case the hash function has some recognizable output
848 * pattern, we fold it in half. Thus, we always feed back
849 * twice as much data as we output.
850 */
851 hash[0] ^= hash[3];
852 hash[1] ^= hash[4];
853 hash[2] ^= rol32(hash[2], 16);
854 memcpy(out, hash, EXTRACT_SIZE);
855 memset(hash, 0, sizeof(hash));
856}
857
858static ssize_t extract_entropy(struct entropy_store *r, void *buf,
859 size_t nbytes, int min, int reserved)
860{
861 ssize_t ret = 0, i;
862 __u8 tmp[EXTRACT_SIZE];
863 unsigned long flags;
864
865 xfer_secondary_pool(r, nbytes);
866 nbytes = account(r, nbytes, min, reserved);
867
868 while (nbytes) {
869 extract_buf(r, tmp);
870
871 if (fips_enabled) {
872 spin_lock_irqsave(&r->lock, flags);
873 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
874 panic("Hardware RNG duplicated output!\n");
875 memcpy(r->last_data, tmp, EXTRACT_SIZE);
876 spin_unlock_irqrestore(&r->lock, flags);
877 }
878 i = min_t(int, nbytes, EXTRACT_SIZE);
879 memcpy(buf, tmp, i);
880 nbytes -= i;
881 buf += i;
882 ret += i;
883 }
884
885 /* Wipe data just returned from memory */
886 memset(tmp, 0, sizeof(tmp));
887
888 return ret;
889}
890
891static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
892 size_t nbytes)
893{
894 ssize_t ret = 0, i;
895 __u8 tmp[EXTRACT_SIZE];
896
897 xfer_secondary_pool(r, nbytes);
898 nbytes = account(r, nbytes, 0, 0);
899
900 while (nbytes) {
901 if (need_resched()) {
902 if (signal_pending(current)) {
903 if (ret == 0)
904 ret = -ERESTARTSYS;
905 break;
906 }
907 schedule();
908 }
909
910 extract_buf(r, tmp);
911 i = min_t(int, nbytes, EXTRACT_SIZE);
912 if (copy_to_user(buf, tmp, i)) {
913 ret = -EFAULT;
914 break;
915 }
916
917 nbytes -= i;
918 buf += i;
919 ret += i;
920 }
921
922 /* Wipe data just returned from memory */
923 memset(tmp, 0, sizeof(tmp));
924
925 return ret;
926}
927
928/*
929 * This function is the exported kernel interface. It returns some
930 * number of good random numbers, suitable for seeding TCP sequence
931 * numbers, etc.
932 */
933void get_random_bytes(void *buf, int nbytes)
934{
935 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
936}
937EXPORT_SYMBOL(get_random_bytes);
938
939/*
940 * init_std_data - initialize pool with system data
941 *
942 * @r: pool to initialize
943 *
944 * This function clears the pool's entropy count and mixes some system
945 * data into the pool to prepare it for use. The pool is not cleared
946 * as that can only decrease the entropy in the pool.
947 */
948static void init_std_data(struct entropy_store *r)
949{
950 ktime_t now;
951 unsigned long flags;
952
953 spin_lock_irqsave(&r->lock, flags);
954 r->entropy_count = 0;
955 spin_unlock_irqrestore(&r->lock, flags);
956
957 now = ktime_get_real();
958 mix_pool_bytes(r, &now, sizeof(now));
959 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
960}
961
962static int rand_initialize(void)
963{
964 init_std_data(&input_pool);
965 init_std_data(&blocking_pool);
966 init_std_data(&nonblocking_pool);
967 return 0;
968}
969module_init(rand_initialize);
970
971void rand_initialize_irq(int irq)
972{
973 struct timer_rand_state *state;
974
975 state = get_timer_rand_state(irq);
976
977 if (state)
978 return;
979
980 /*
981 * If kzalloc returns null, we just won't use that entropy
982 * source.
983 */
984 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
985 if (state)
986 set_timer_rand_state(irq, state);
987}
988
989#ifdef CONFIG_BLOCK
990void rand_initialize_disk(struct gendisk *disk)
991{
992 struct timer_rand_state *state;
993
994 /*
995 * If kzalloc returns null, we just won't use that entropy
996 * source.
997 */
998 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
999 if (state)
1000 disk->random = state;
1001}
1002#endif
1003
1004static ssize_t
1005random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1006{
1007 ssize_t n, retval = 0, count = 0;
1008
1009 if (nbytes == 0)
1010 return 0;
1011
1012 while (nbytes > 0) {
1013 n = nbytes;
1014 if (n > SEC_XFER_SIZE)
1015 n = SEC_XFER_SIZE;
1016
1017 DEBUG_ENT("reading %d bits\n", n*8);
1018
1019 n = extract_entropy_user(&blocking_pool, buf, n);
1020
1021 DEBUG_ENT("read got %d bits (%d still needed)\n",
1022 n*8, (nbytes-n)*8);
1023
1024 if (n == 0) {
1025 if (file->f_flags & O_NONBLOCK) {
1026 retval = -EAGAIN;
1027 break;
1028 }
1029
1030 DEBUG_ENT("sleeping?\n");
1031
1032 wait_event_interruptible(random_read_wait,
1033 input_pool.entropy_count >=
1034 random_read_wakeup_thresh);
1035
1036 DEBUG_ENT("awake\n");
1037
1038 if (signal_pending(current)) {
1039 retval = -ERESTARTSYS;
1040 break;
1041 }
1042
1043 continue;
1044 }
1045
1046 if (n < 0) {
1047 retval = n;
1048 break;
1049 }
1050 count += n;
1051 buf += n;
1052 nbytes -= n;
1053 break; /* This break makes the device work */
1054 /* like a named pipe */
1055 }
1056
1057 return (count ? count : retval);
1058}
1059
1060static ssize_t
1061urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1062{
1063 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1064}
1065
1066static unsigned int
1067random_poll(struct file *file, poll_table * wait)
1068{
1069 unsigned int mask;
1070
1071 poll_wait(file, &random_read_wait, wait);
1072 poll_wait(file, &random_write_wait, wait);
1073 mask = 0;
1074 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1075 mask |= POLLIN | POLLRDNORM;
1076 if (input_pool.entropy_count < random_write_wakeup_thresh)
1077 mask |= POLLOUT | POLLWRNORM;
1078 return mask;
1079}
1080
1081static int
1082write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1083{
1084 size_t bytes;
1085 __u32 buf[16];
1086 const char __user *p = buffer;
1087
1088 while (count > 0) {
1089 bytes = min(count, sizeof(buf));
1090 if (copy_from_user(&buf, p, bytes))
1091 return -EFAULT;
1092
1093 count -= bytes;
1094 p += bytes;
1095
1096 mix_pool_bytes(r, buf, bytes);
1097 cond_resched();
1098 }
1099
1100 return 0;
1101}
1102
1103static ssize_t random_write(struct file *file, const char __user *buffer,
1104 size_t count, loff_t *ppos)
1105{
1106 size_t ret;
1107
1108 ret = write_pool(&blocking_pool, buffer, count);
1109 if (ret)
1110 return ret;
1111 ret = write_pool(&nonblocking_pool, buffer, count);
1112 if (ret)
1113 return ret;
1114
1115 return (ssize_t)count;
1116}
1117
1118static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1119{
1120 int size, ent_count;
1121 int __user *p = (int __user *)arg;
1122 int retval;
1123
1124 switch (cmd) {
1125 case RNDGETENTCNT:
1126 /* inherently racy, no point locking */
1127 if (put_user(input_pool.entropy_count, p))
1128 return -EFAULT;
1129 return 0;
1130 case RNDADDTOENTCNT:
1131 if (!capable(CAP_SYS_ADMIN))
1132 return -EPERM;
1133 if (get_user(ent_count, p))
1134 return -EFAULT;
1135 credit_entropy_bits(&input_pool, ent_count);
1136 return 0;
1137 case RNDADDENTROPY:
1138 if (!capable(CAP_SYS_ADMIN))
1139 return -EPERM;
1140 if (get_user(ent_count, p++))
1141 return -EFAULT;
1142 if (ent_count < 0)
1143 return -EINVAL;
1144 if (get_user(size, p++))
1145 return -EFAULT;
1146 retval = write_pool(&input_pool, (const char __user *)p,
1147 size);
1148 if (retval < 0)
1149 return retval;
1150 credit_entropy_bits(&input_pool, ent_count);
1151 return 0;
1152 case RNDZAPENTCNT:
1153 case RNDCLEARPOOL:
1154 /* Clear the entropy pool counters. */
1155 if (!capable(CAP_SYS_ADMIN))
1156 return -EPERM;
1157 rand_initialize();
1158 return 0;
1159 default:
1160 return -EINVAL;
1161 }
1162}
1163
1164static int random_fasync(int fd, struct file *filp, int on)
1165{
1166 return fasync_helper(fd, filp, on, &fasync);
1167}
1168
1169const struct file_operations random_fops = {
1170 .read = random_read,
1171 .write = random_write,
1172 .poll = random_poll,
1173 .unlocked_ioctl = random_ioctl,
1174 .fasync = random_fasync,
1175 .llseek = noop_llseek,
1176};
1177
1178const struct file_operations urandom_fops = {
1179 .read = urandom_read,
1180 .write = random_write,
1181 .unlocked_ioctl = random_ioctl,
1182 .fasync = random_fasync,
1183 .llseek = noop_llseek,
1184};
1185
1186/***************************************************************
1187 * Random UUID interface
1188 *
1189 * Used here for a Boot ID, but can be useful for other kernel
1190 * drivers.
1191 ***************************************************************/
1192
1193/*
1194 * Generate random UUID
1195 */
1196void generate_random_uuid(unsigned char uuid_out[16])
1197{
1198 get_random_bytes(uuid_out, 16);
1199 /* Set UUID version to 4 --- truly random generation */
1200 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1201 /* Set the UUID variant to DCE */
1202 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1203}
1204EXPORT_SYMBOL(generate_random_uuid);
1205
1206/********************************************************************
1207 *
1208 * Sysctl interface
1209 *
1210 ********************************************************************/
1211
1212#ifdef CONFIG_SYSCTL
1213
1214#include <linux/sysctl.h>
1215
1216static int min_read_thresh = 8, min_write_thresh;
1217static int max_read_thresh = INPUT_POOL_WORDS * 32;
1218static int max_write_thresh = INPUT_POOL_WORDS * 32;
1219static char sysctl_bootid[16];
1220
1221/*
1222 * These functions is used to return both the bootid UUID, and random
1223 * UUID. The difference is in whether table->data is NULL; if it is,
1224 * then a new UUID is generated and returned to the user.
1225 *
1226 * If the user accesses this via the proc interface, it will be returned
1227 * as an ASCII string in the standard UUID format. If accesses via the
1228 * sysctl system call, it is returned as 16 bytes of binary data.
1229 */
1230static int proc_do_uuid(ctl_table *table, int write,
1231 void __user *buffer, size_t *lenp, loff_t *ppos)
1232{
1233 ctl_table fake_table;
1234 unsigned char buf[64], tmp_uuid[16], *uuid;
1235
1236 uuid = table->data;
1237 if (!uuid) {
1238 uuid = tmp_uuid;
1239 uuid[8] = 0;
1240 }
1241 if (uuid[8] == 0)
1242 generate_random_uuid(uuid);
1243
1244 sprintf(buf, "%pU", uuid);
1245
1246 fake_table.data = buf;
1247 fake_table.maxlen = sizeof(buf);
1248
1249 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1250}
1251
1252static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1253ctl_table random_table[] = {
1254 {
1255 .procname = "poolsize",
1256 .data = &sysctl_poolsize,
1257 .maxlen = sizeof(int),
1258 .mode = 0444,
1259 .proc_handler = proc_dointvec,
1260 },
1261 {
1262 .procname = "entropy_avail",
1263 .maxlen = sizeof(int),
1264 .mode = 0444,
1265 .proc_handler = proc_dointvec,
1266 .data = &input_pool.entropy_count,
1267 },
1268 {
1269 .procname = "read_wakeup_threshold",
1270 .data = &random_read_wakeup_thresh,
1271 .maxlen = sizeof(int),
1272 .mode = 0644,
1273 .proc_handler = proc_dointvec_minmax,
1274 .extra1 = &min_read_thresh,
1275 .extra2 = &max_read_thresh,
1276 },
1277 {
1278 .procname = "write_wakeup_threshold",
1279 .data = &random_write_wakeup_thresh,
1280 .maxlen = sizeof(int),
1281 .mode = 0644,
1282 .proc_handler = proc_dointvec_minmax,
1283 .extra1 = &min_write_thresh,
1284 .extra2 = &max_write_thresh,
1285 },
1286 {
1287 .procname = "boot_id",
1288 .data = &sysctl_bootid,
1289 .maxlen = 16,
1290 .mode = 0444,
1291 .proc_handler = proc_do_uuid,
1292 },
1293 {
1294 .procname = "uuid",
1295 .maxlen = 16,
1296 .mode = 0444,
1297 .proc_handler = proc_do_uuid,
1298 },
1299 { }
1300};
1301#endif /* CONFIG_SYSCTL */
1302
1303static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1304
1305static int __init random_int_secret_init(void)
1306{
1307 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1308 return 0;
1309}
1310late_initcall(random_int_secret_init);
1311
1312/*
1313 * Get a random word for internal kernel use only. Similar to urandom but
1314 * with the goal of minimal entropy pool depletion. As a result, the random
1315 * value is not cryptographically secure but for several uses the cost of
1316 * depleting entropy is too high
1317 */
1318DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1319unsigned int get_random_int(void)
1320{
1321 __u32 *hash = get_cpu_var(get_random_int_hash);
1322 unsigned int ret;
1323
1324 hash[0] += current->pid + jiffies + get_cycles();
1325 md5_transform(hash, random_int_secret);
1326 ret = hash[0];
1327 put_cpu_var(get_random_int_hash);
1328
1329 return ret;
1330}
1331
1332/*
1333 * randomize_range() returns a start address such that
1334 *
1335 * [...... <range> .....]
1336 * start end
1337 *
1338 * a <range> with size "len" starting at the return value is inside in the
1339 * area defined by [start, end], but is otherwise randomized.
1340 */
1341unsigned long
1342randomize_range(unsigned long start, unsigned long end, unsigned long len)
1343{
1344 unsigned long range = end - len - start;
1345
1346 if (end <= start + len)
1347 return 0;
1348 return PAGE_ALIGN(get_random_int() % range + start);
1349}
1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
133 *
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
251#include <linux/mm.h>
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
255#include <linux/fips.h>
256#include <linux/ptrace.h>
257#include <linux/kmemcheck.h>
258
259#ifdef CONFIG_GENERIC_HARDIRQS
260# include <linux/irq.h>
261#endif
262
263#include <asm/processor.h>
264#include <asm/uaccess.h>
265#include <asm/irq.h>
266#include <asm/irq_regs.h>
267#include <asm/io.h>
268
269#define CREATE_TRACE_POINTS
270#include <trace/events/random.h>
271
272/*
273 * Configuration information
274 */
275#define INPUT_POOL_WORDS 128
276#define OUTPUT_POOL_WORDS 32
277#define SEC_XFER_SIZE 512
278#define EXTRACT_SIZE 10
279
280#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
281
282/*
283 * The minimum number of bits of entropy before we wake up a read on
284 * /dev/random. Should be enough to do a significant reseed.
285 */
286static int random_read_wakeup_thresh = 64;
287
288/*
289 * If the entropy count falls under this number of bits, then we
290 * should wake up processes which are selecting or polling on write
291 * access to /dev/random.
292 */
293static int random_write_wakeup_thresh = 128;
294
295/*
296 * When the input pool goes over trickle_thresh, start dropping most
297 * samples to avoid wasting CPU time and reduce lock contention.
298 */
299
300static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
301
302static DEFINE_PER_CPU(int, trickle_count);
303
304/*
305 * A pool of size .poolwords is stirred with a primitive polynomial
306 * of degree .poolwords over GF(2). The taps for various sizes are
307 * defined below. They are chosen to be evenly spaced (minimum RMS
308 * distance from evenly spaced; the numbers in the comments are a
309 * scaled squared error sum) except for the last tap, which is 1 to
310 * get the twisting happening as fast as possible.
311 */
312static struct poolinfo {
313 int poolwords;
314 int tap1, tap2, tap3, tap4, tap5;
315} poolinfo_table[] = {
316 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
317 { 128, 103, 76, 51, 25, 1 },
318 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
319 { 32, 26, 20, 14, 7, 1 },
320#if 0
321 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
322 { 2048, 1638, 1231, 819, 411, 1 },
323
324 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
325 { 1024, 817, 615, 412, 204, 1 },
326
327 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
328 { 1024, 819, 616, 410, 207, 2 },
329
330 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
331 { 512, 411, 308, 208, 104, 1 },
332
333 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
334 { 512, 409, 307, 206, 102, 2 },
335 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
336 { 512, 409, 309, 205, 103, 2 },
337
338 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
339 { 256, 205, 155, 101, 52, 1 },
340
341 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
342 { 128, 103, 78, 51, 27, 2 },
343
344 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
345 { 64, 52, 39, 26, 14, 1 },
346#endif
347};
348
349#define POOLBITS poolwords*32
350#define POOLBYTES poolwords*4
351
352/*
353 * For the purposes of better mixing, we use the CRC-32 polynomial as
354 * well to make a twisted Generalized Feedback Shift Reigster
355 *
356 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
357 * Transactions on Modeling and Computer Simulation 2(3):179-194.
358 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
359 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
360 *
361 * Thanks to Colin Plumb for suggesting this.
362 *
363 * We have not analyzed the resultant polynomial to prove it primitive;
364 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
365 * of a random large-degree polynomial over GF(2) are more than large enough
366 * that periodicity is not a concern.
367 *
368 * The input hash is much less sensitive than the output hash. All
369 * that we want of it is that it be a good non-cryptographic hash;
370 * i.e. it not produce collisions when fed "random" data of the sort
371 * we expect to see. As long as the pool state differs for different
372 * inputs, we have preserved the input entropy and done a good job.
373 * The fact that an intelligent attacker can construct inputs that
374 * will produce controlled alterations to the pool's state is not
375 * important because we don't consider such inputs to contribute any
376 * randomness. The only property we need with respect to them is that
377 * the attacker can't increase his/her knowledge of the pool's state.
378 * Since all additions are reversible (knowing the final state and the
379 * input, you can reconstruct the initial state), if an attacker has
380 * any uncertainty about the initial state, he/she can only shuffle
381 * that uncertainty about, but never cause any collisions (which would
382 * decrease the uncertainty).
383 *
384 * The chosen system lets the state of the pool be (essentially) the input
385 * modulo the generator polymnomial. Now, for random primitive polynomials,
386 * this is a universal class of hash functions, meaning that the chance
387 * of a collision is limited by the attacker's knowledge of the generator
388 * polynomail, so if it is chosen at random, an attacker can never force
389 * a collision. Here, we use a fixed polynomial, but we *can* assume that
390 * ###--> it is unknown to the processes generating the input entropy. <-###
391 * Because of this important property, this is a good, collision-resistant
392 * hash; hash collisions will occur no more often than chance.
393 */
394
395/*
396 * Static global variables
397 */
398static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
399static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
400static struct fasync_struct *fasync;
401
402#if 0
403static bool debug;
404module_param(debug, bool, 0644);
405#define DEBUG_ENT(fmt, arg...) do { \
406 if (debug) \
407 printk(KERN_DEBUG "random %04d %04d %04d: " \
408 fmt,\
409 input_pool.entropy_count,\
410 blocking_pool.entropy_count,\
411 nonblocking_pool.entropy_count,\
412 ## arg); } while (0)
413#else
414#define DEBUG_ENT(fmt, arg...) do {} while (0)
415#endif
416
417/**********************************************************************
418 *
419 * OS independent entropy store. Here are the functions which handle
420 * storing entropy in an entropy pool.
421 *
422 **********************************************************************/
423
424struct entropy_store;
425struct entropy_store {
426 /* read-only data: */
427 struct poolinfo *poolinfo;
428 __u32 *pool;
429 const char *name;
430 struct entropy_store *pull;
431 int limit;
432
433 /* read-write data: */
434 spinlock_t lock;
435 unsigned add_ptr;
436 unsigned input_rotate;
437 int entropy_count;
438 int entropy_total;
439 unsigned int initialized:1;
440 __u8 last_data[EXTRACT_SIZE];
441};
442
443static __u32 input_pool_data[INPUT_POOL_WORDS];
444static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
445static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
446
447static struct entropy_store input_pool = {
448 .poolinfo = &poolinfo_table[0],
449 .name = "input",
450 .limit = 1,
451 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
452 .pool = input_pool_data
453};
454
455static struct entropy_store blocking_pool = {
456 .poolinfo = &poolinfo_table[1],
457 .name = "blocking",
458 .limit = 1,
459 .pull = &input_pool,
460 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
461 .pool = blocking_pool_data
462};
463
464static struct entropy_store nonblocking_pool = {
465 .poolinfo = &poolinfo_table[1],
466 .name = "nonblocking",
467 .pull = &input_pool,
468 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
469 .pool = nonblocking_pool_data
470};
471
472static __u32 const twist_table[8] = {
473 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
474 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
475
476/*
477 * This function adds bytes into the entropy "pool". It does not
478 * update the entropy estimate. The caller should call
479 * credit_entropy_bits if this is appropriate.
480 *
481 * The pool is stirred with a primitive polynomial of the appropriate
482 * degree, and then twisted. We twist by three bits at a time because
483 * it's cheap to do so and helps slightly in the expected case where
484 * the entropy is concentrated in the low-order bits.
485 */
486static void _mix_pool_bytes(struct entropy_store *r, const void *in,
487 int nbytes, __u8 out[64])
488{
489 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
490 int input_rotate;
491 int wordmask = r->poolinfo->poolwords - 1;
492 const char *bytes = in;
493 __u32 w;
494
495 tap1 = r->poolinfo->tap1;
496 tap2 = r->poolinfo->tap2;
497 tap3 = r->poolinfo->tap3;
498 tap4 = r->poolinfo->tap4;
499 tap5 = r->poolinfo->tap5;
500
501 smp_rmb();
502 input_rotate = ACCESS_ONCE(r->input_rotate);
503 i = ACCESS_ONCE(r->add_ptr);
504
505 /* mix one byte at a time to simplify size handling and churn faster */
506 while (nbytes--) {
507 w = rol32(*bytes++, input_rotate & 31);
508 i = (i - 1) & wordmask;
509
510 /* XOR in the various taps */
511 w ^= r->pool[i];
512 w ^= r->pool[(i + tap1) & wordmask];
513 w ^= r->pool[(i + tap2) & wordmask];
514 w ^= r->pool[(i + tap3) & wordmask];
515 w ^= r->pool[(i + tap4) & wordmask];
516 w ^= r->pool[(i + tap5) & wordmask];
517
518 /* Mix the result back in with a twist */
519 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
520
521 /*
522 * Normally, we add 7 bits of rotation to the pool.
523 * At the beginning of the pool, add an extra 7 bits
524 * rotation, so that successive passes spread the
525 * input bits across the pool evenly.
526 */
527 input_rotate += i ? 7 : 14;
528 }
529
530 ACCESS_ONCE(r->input_rotate) = input_rotate;
531 ACCESS_ONCE(r->add_ptr) = i;
532 smp_wmb();
533
534 if (out)
535 for (j = 0; j < 16; j++)
536 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
537}
538
539static void __mix_pool_bytes(struct entropy_store *r, const void *in,
540 int nbytes, __u8 out[64])
541{
542 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
543 _mix_pool_bytes(r, in, nbytes, out);
544}
545
546static void mix_pool_bytes(struct entropy_store *r, const void *in,
547 int nbytes, __u8 out[64])
548{
549 unsigned long flags;
550
551 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
552 spin_lock_irqsave(&r->lock, flags);
553 _mix_pool_bytes(r, in, nbytes, out);
554 spin_unlock_irqrestore(&r->lock, flags);
555}
556
557struct fast_pool {
558 __u32 pool[4];
559 unsigned long last;
560 unsigned short count;
561 unsigned char rotate;
562 unsigned char last_timer_intr;
563};
564
565/*
566 * This is a fast mixing routine used by the interrupt randomness
567 * collector. It's hardcoded for an 128 bit pool and assumes that any
568 * locks that might be needed are taken by the caller.
569 */
570static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
571{
572 const char *bytes = in;
573 __u32 w;
574 unsigned i = f->count;
575 unsigned input_rotate = f->rotate;
576
577 while (nbytes--) {
578 w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
579 f->pool[(i + 1) & 3];
580 f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
581 input_rotate += (i++ & 3) ? 7 : 14;
582 }
583 f->count = i;
584 f->rotate = input_rotate;
585}
586
587/*
588 * Credit (or debit) the entropy store with n bits of entropy
589 */
590static void credit_entropy_bits(struct entropy_store *r, int nbits)
591{
592 int entropy_count, orig;
593
594 if (!nbits)
595 return;
596
597 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
598retry:
599 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
600 entropy_count += nbits;
601
602 if (entropy_count < 0) {
603 DEBUG_ENT("negative entropy/overflow\n");
604 entropy_count = 0;
605 } else if (entropy_count > r->poolinfo->POOLBITS)
606 entropy_count = r->poolinfo->POOLBITS;
607 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
608 goto retry;
609
610 if (!r->initialized && nbits > 0) {
611 r->entropy_total += nbits;
612 if (r->entropy_total > 128)
613 r->initialized = 1;
614 }
615
616 trace_credit_entropy_bits(r->name, nbits, entropy_count,
617 r->entropy_total, _RET_IP_);
618
619 /* should we wake readers? */
620 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
621 wake_up_interruptible(&random_read_wait);
622 kill_fasync(&fasync, SIGIO, POLL_IN);
623 }
624}
625
626/*********************************************************************
627 *
628 * Entropy input management
629 *
630 *********************************************************************/
631
632/* There is one of these per entropy source */
633struct timer_rand_state {
634 cycles_t last_time;
635 long last_delta, last_delta2;
636 unsigned dont_count_entropy:1;
637};
638
639/*
640 * Add device- or boot-specific data to the input and nonblocking
641 * pools to help initialize them to unique values.
642 *
643 * None of this adds any entropy, it is meant to avoid the
644 * problem of the nonblocking pool having similar initial state
645 * across largely identical devices.
646 */
647void add_device_randomness(const void *buf, unsigned int size)
648{
649 unsigned long time = get_cycles() ^ jiffies;
650
651 mix_pool_bytes(&input_pool, buf, size, NULL);
652 mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
653 mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
654 mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
655}
656EXPORT_SYMBOL(add_device_randomness);
657
658static struct timer_rand_state input_timer_state;
659
660/*
661 * This function adds entropy to the entropy "pool" by using timing
662 * delays. It uses the timer_rand_state structure to make an estimate
663 * of how many bits of entropy this call has added to the pool.
664 *
665 * The number "num" is also added to the pool - it should somehow describe
666 * the type of event which just happened. This is currently 0-255 for
667 * keyboard scan codes, and 256 upwards for interrupts.
668 *
669 */
670static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
671{
672 struct {
673 long jiffies;
674 unsigned cycles;
675 unsigned num;
676 } sample;
677 long delta, delta2, delta3;
678
679 preempt_disable();
680 /* if over the trickle threshold, use only 1 in 4096 samples */
681 if (input_pool.entropy_count > trickle_thresh &&
682 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
683 goto out;
684
685 sample.jiffies = jiffies;
686 sample.cycles = get_cycles();
687 sample.num = num;
688 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
689
690 /*
691 * Calculate number of bits of randomness we probably added.
692 * We take into account the first, second and third-order deltas
693 * in order to make our estimate.
694 */
695
696 if (!state->dont_count_entropy) {
697 delta = sample.jiffies - state->last_time;
698 state->last_time = sample.jiffies;
699
700 delta2 = delta - state->last_delta;
701 state->last_delta = delta;
702
703 delta3 = delta2 - state->last_delta2;
704 state->last_delta2 = delta2;
705
706 if (delta < 0)
707 delta = -delta;
708 if (delta2 < 0)
709 delta2 = -delta2;
710 if (delta3 < 0)
711 delta3 = -delta3;
712 if (delta > delta2)
713 delta = delta2;
714 if (delta > delta3)
715 delta = delta3;
716
717 /*
718 * delta is now minimum absolute delta.
719 * Round down by 1 bit on general principles,
720 * and limit entropy entimate to 12 bits.
721 */
722 credit_entropy_bits(&input_pool,
723 min_t(int, fls(delta>>1), 11));
724 }
725out:
726 preempt_enable();
727}
728
729void add_input_randomness(unsigned int type, unsigned int code,
730 unsigned int value)
731{
732 static unsigned char last_value;
733
734 /* ignore autorepeat and the like */
735 if (value == last_value)
736 return;
737
738 DEBUG_ENT("input event\n");
739 last_value = value;
740 add_timer_randomness(&input_timer_state,
741 (type << 4) ^ code ^ (code >> 4) ^ value);
742}
743EXPORT_SYMBOL_GPL(add_input_randomness);
744
745static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
746
747void add_interrupt_randomness(int irq, int irq_flags)
748{
749 struct entropy_store *r;
750 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
751 struct pt_regs *regs = get_irq_regs();
752 unsigned long now = jiffies;
753 __u32 input[4], cycles = get_cycles();
754
755 input[0] = cycles ^ jiffies;
756 input[1] = irq;
757 if (regs) {
758 __u64 ip = instruction_pointer(regs);
759 input[2] = ip;
760 input[3] = ip >> 32;
761 }
762
763 fast_mix(fast_pool, input, sizeof(input));
764
765 if ((fast_pool->count & 1023) &&
766 !time_after(now, fast_pool->last + HZ))
767 return;
768
769 fast_pool->last = now;
770
771 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
772 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
773 /*
774 * If we don't have a valid cycle counter, and we see
775 * back-to-back timer interrupts, then skip giving credit for
776 * any entropy.
777 */
778 if (cycles == 0) {
779 if (irq_flags & __IRQF_TIMER) {
780 if (fast_pool->last_timer_intr)
781 return;
782 fast_pool->last_timer_intr = 1;
783 } else
784 fast_pool->last_timer_intr = 0;
785 }
786 credit_entropy_bits(r, 1);
787}
788
789#ifdef CONFIG_BLOCK
790void add_disk_randomness(struct gendisk *disk)
791{
792 if (!disk || !disk->random)
793 return;
794 /* first major is 1, so we get >= 0x200 here */
795 DEBUG_ENT("disk event %d:%d\n",
796 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
797
798 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
799}
800#endif
801
802/*********************************************************************
803 *
804 * Entropy extraction routines
805 *
806 *********************************************************************/
807
808static ssize_t extract_entropy(struct entropy_store *r, void *buf,
809 size_t nbytes, int min, int rsvd);
810
811/*
812 * This utility inline function is responsible for transferring entropy
813 * from the primary pool to the secondary extraction pool. We make
814 * sure we pull enough for a 'catastrophic reseed'.
815 */
816static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
817{
818 __u32 tmp[OUTPUT_POOL_WORDS];
819
820 if (r->pull && r->entropy_count < nbytes * 8 &&
821 r->entropy_count < r->poolinfo->POOLBITS) {
822 /* If we're limited, always leave two wakeup worth's BITS */
823 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
824 int bytes = nbytes;
825
826 /* pull at least as many as BYTES as wakeup BITS */
827 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
828 /* but never more than the buffer size */
829 bytes = min_t(int, bytes, sizeof(tmp));
830
831 DEBUG_ENT("going to reseed %s with %d bits "
832 "(%d of %d requested)\n",
833 r->name, bytes * 8, nbytes * 8, r->entropy_count);
834
835 bytes = extract_entropy(r->pull, tmp, bytes,
836 random_read_wakeup_thresh / 8, rsvd);
837 mix_pool_bytes(r, tmp, bytes, NULL);
838 credit_entropy_bits(r, bytes*8);
839 }
840}
841
842/*
843 * These functions extracts randomness from the "entropy pool", and
844 * returns it in a buffer.
845 *
846 * The min parameter specifies the minimum amount we can pull before
847 * failing to avoid races that defeat catastrophic reseeding while the
848 * reserved parameter indicates how much entropy we must leave in the
849 * pool after each pull to avoid starving other readers.
850 *
851 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
852 */
853
854static size_t account(struct entropy_store *r, size_t nbytes, int min,
855 int reserved)
856{
857 unsigned long flags;
858
859 /* Hold lock while accounting */
860 spin_lock_irqsave(&r->lock, flags);
861
862 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
863 DEBUG_ENT("trying to extract %d bits from %s\n",
864 nbytes * 8, r->name);
865
866 /* Can we pull enough? */
867 if (r->entropy_count / 8 < min + reserved) {
868 nbytes = 0;
869 } else {
870 /* If limited, never pull more than available */
871 if (r->limit && nbytes + reserved >= r->entropy_count / 8)
872 nbytes = r->entropy_count/8 - reserved;
873
874 if (r->entropy_count / 8 >= nbytes + reserved)
875 r->entropy_count -= nbytes*8;
876 else
877 r->entropy_count = reserved;
878
879 if (r->entropy_count < random_write_wakeup_thresh) {
880 wake_up_interruptible(&random_write_wait);
881 kill_fasync(&fasync, SIGIO, POLL_OUT);
882 }
883 }
884
885 DEBUG_ENT("debiting %d entropy credits from %s%s\n",
886 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
887
888 spin_unlock_irqrestore(&r->lock, flags);
889
890 return nbytes;
891}
892
893static void extract_buf(struct entropy_store *r, __u8 *out)
894{
895 int i;
896 union {
897 __u32 w[5];
898 unsigned long l[LONGS(EXTRACT_SIZE)];
899 } hash;
900 __u32 workspace[SHA_WORKSPACE_WORDS];
901 __u8 extract[64];
902 unsigned long flags;
903
904 /* Generate a hash across the pool, 16 words (512 bits) at a time */
905 sha_init(hash.w);
906 spin_lock_irqsave(&r->lock, flags);
907 for (i = 0; i < r->poolinfo->poolwords; i += 16)
908 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
909
910 /*
911 * We mix the hash back into the pool to prevent backtracking
912 * attacks (where the attacker knows the state of the pool
913 * plus the current outputs, and attempts to find previous
914 * ouputs), unless the hash function can be inverted. By
915 * mixing at least a SHA1 worth of hash data back, we make
916 * brute-forcing the feedback as hard as brute-forcing the
917 * hash.
918 */
919 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
920 spin_unlock_irqrestore(&r->lock, flags);
921
922 /*
923 * To avoid duplicates, we atomically extract a portion of the
924 * pool while mixing, and hash one final time.
925 */
926 sha_transform(hash.w, extract, workspace);
927 memset(extract, 0, sizeof(extract));
928 memset(workspace, 0, sizeof(workspace));
929
930 /*
931 * In case the hash function has some recognizable output
932 * pattern, we fold it in half. Thus, we always feed back
933 * twice as much data as we output.
934 */
935 hash.w[0] ^= hash.w[3];
936 hash.w[1] ^= hash.w[4];
937 hash.w[2] ^= rol32(hash.w[2], 16);
938
939 /*
940 * If we have a architectural hardware random number
941 * generator, mix that in, too.
942 */
943 for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
944 unsigned long v;
945 if (!arch_get_random_long(&v))
946 break;
947 hash.l[i] ^= v;
948 }
949
950 memcpy(out, &hash, EXTRACT_SIZE);
951 memset(&hash, 0, sizeof(hash));
952}
953
954static ssize_t extract_entropy(struct entropy_store *r, void *buf,
955 size_t nbytes, int min, int reserved)
956{
957 ssize_t ret = 0, i;
958 __u8 tmp[EXTRACT_SIZE];
959
960 trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
961 xfer_secondary_pool(r, nbytes);
962 nbytes = account(r, nbytes, min, reserved);
963
964 while (nbytes) {
965 extract_buf(r, tmp);
966
967 if (fips_enabled) {
968 unsigned long flags;
969
970 spin_lock_irqsave(&r->lock, flags);
971 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
972 panic("Hardware RNG duplicated output!\n");
973 memcpy(r->last_data, tmp, EXTRACT_SIZE);
974 spin_unlock_irqrestore(&r->lock, flags);
975 }
976 i = min_t(int, nbytes, EXTRACT_SIZE);
977 memcpy(buf, tmp, i);
978 nbytes -= i;
979 buf += i;
980 ret += i;
981 }
982
983 /* Wipe data just returned from memory */
984 memset(tmp, 0, sizeof(tmp));
985
986 return ret;
987}
988
989static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
990 size_t nbytes)
991{
992 ssize_t ret = 0, i;
993 __u8 tmp[EXTRACT_SIZE];
994
995 trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
996 xfer_secondary_pool(r, nbytes);
997 nbytes = account(r, nbytes, 0, 0);
998
999 while (nbytes) {
1000 if (need_resched()) {
1001 if (signal_pending(current)) {
1002 if (ret == 0)
1003 ret = -ERESTARTSYS;
1004 break;
1005 }
1006 schedule();
1007 }
1008
1009 extract_buf(r, tmp);
1010 i = min_t(int, nbytes, EXTRACT_SIZE);
1011 if (copy_to_user(buf, tmp, i)) {
1012 ret = -EFAULT;
1013 break;
1014 }
1015
1016 nbytes -= i;
1017 buf += i;
1018 ret += i;
1019 }
1020
1021 /* Wipe data just returned from memory */
1022 memset(tmp, 0, sizeof(tmp));
1023
1024 return ret;
1025}
1026
1027/*
1028 * This function is the exported kernel interface. It returns some
1029 * number of good random numbers, suitable for key generation, seeding
1030 * TCP sequence numbers, etc. It does not use the hw random number
1031 * generator, if available; use get_random_bytes_arch() for that.
1032 */
1033void get_random_bytes(void *buf, int nbytes)
1034{
1035 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1036}
1037EXPORT_SYMBOL(get_random_bytes);
1038
1039/*
1040 * This function will use the architecture-specific hardware random
1041 * number generator if it is available. The arch-specific hw RNG will
1042 * almost certainly be faster than what we can do in software, but it
1043 * is impossible to verify that it is implemented securely (as
1044 * opposed, to, say, the AES encryption of a sequence number using a
1045 * key known by the NSA). So it's useful if we need the speed, but
1046 * only if we're willing to trust the hardware manufacturer not to
1047 * have put in a back door.
1048 */
1049void get_random_bytes_arch(void *buf, int nbytes)
1050{
1051 char *p = buf;
1052
1053 trace_get_random_bytes(nbytes, _RET_IP_);
1054 while (nbytes) {
1055 unsigned long v;
1056 int chunk = min(nbytes, (int)sizeof(unsigned long));
1057
1058 if (!arch_get_random_long(&v))
1059 break;
1060
1061 memcpy(p, &v, chunk);
1062 p += chunk;
1063 nbytes -= chunk;
1064 }
1065
1066 if (nbytes)
1067 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1068}
1069EXPORT_SYMBOL(get_random_bytes_arch);
1070
1071
1072/*
1073 * init_std_data - initialize pool with system data
1074 *
1075 * @r: pool to initialize
1076 *
1077 * This function clears the pool's entropy count and mixes some system
1078 * data into the pool to prepare it for use. The pool is not cleared
1079 * as that can only decrease the entropy in the pool.
1080 */
1081static void init_std_data(struct entropy_store *r)
1082{
1083 int i;
1084 ktime_t now = ktime_get_real();
1085 unsigned long rv;
1086
1087 r->entropy_count = 0;
1088 r->entropy_total = 0;
1089 mix_pool_bytes(r, &now, sizeof(now), NULL);
1090 for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
1091 if (!arch_get_random_long(&rv))
1092 break;
1093 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1094 }
1095 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1096}
1097
1098/*
1099 * Note that setup_arch() may call add_device_randomness()
1100 * long before we get here. This allows seeding of the pools
1101 * with some platform dependent data very early in the boot
1102 * process. But it limits our options here. We must use
1103 * statically allocated structures that already have all
1104 * initializations complete at compile time. We should also
1105 * take care not to overwrite the precious per platform data
1106 * we were given.
1107 */
1108static int rand_initialize(void)
1109{
1110 init_std_data(&input_pool);
1111 init_std_data(&blocking_pool);
1112 init_std_data(&nonblocking_pool);
1113 return 0;
1114}
1115module_init(rand_initialize);
1116
1117#ifdef CONFIG_BLOCK
1118void rand_initialize_disk(struct gendisk *disk)
1119{
1120 struct timer_rand_state *state;
1121
1122 /*
1123 * If kzalloc returns null, we just won't use that entropy
1124 * source.
1125 */
1126 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1127 if (state)
1128 disk->random = state;
1129}
1130#endif
1131
1132static ssize_t
1133random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1134{
1135 ssize_t n, retval = 0, count = 0;
1136
1137 if (nbytes == 0)
1138 return 0;
1139
1140 while (nbytes > 0) {
1141 n = nbytes;
1142 if (n > SEC_XFER_SIZE)
1143 n = SEC_XFER_SIZE;
1144
1145 DEBUG_ENT("reading %d bits\n", n*8);
1146
1147 n = extract_entropy_user(&blocking_pool, buf, n);
1148
1149 DEBUG_ENT("read got %d bits (%d still needed)\n",
1150 n*8, (nbytes-n)*8);
1151
1152 if (n == 0) {
1153 if (file->f_flags & O_NONBLOCK) {
1154 retval = -EAGAIN;
1155 break;
1156 }
1157
1158 DEBUG_ENT("sleeping?\n");
1159
1160 wait_event_interruptible(random_read_wait,
1161 input_pool.entropy_count >=
1162 random_read_wakeup_thresh);
1163
1164 DEBUG_ENT("awake\n");
1165
1166 if (signal_pending(current)) {
1167 retval = -ERESTARTSYS;
1168 break;
1169 }
1170
1171 continue;
1172 }
1173
1174 if (n < 0) {
1175 retval = n;
1176 break;
1177 }
1178 count += n;
1179 buf += n;
1180 nbytes -= n;
1181 break; /* This break makes the device work */
1182 /* like a named pipe */
1183 }
1184
1185 return (count ? count : retval);
1186}
1187
1188static ssize_t
1189urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1190{
1191 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1192}
1193
1194static unsigned int
1195random_poll(struct file *file, poll_table * wait)
1196{
1197 unsigned int mask;
1198
1199 poll_wait(file, &random_read_wait, wait);
1200 poll_wait(file, &random_write_wait, wait);
1201 mask = 0;
1202 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1203 mask |= POLLIN | POLLRDNORM;
1204 if (input_pool.entropy_count < random_write_wakeup_thresh)
1205 mask |= POLLOUT | POLLWRNORM;
1206 return mask;
1207}
1208
1209static int
1210write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1211{
1212 size_t bytes;
1213 __u32 buf[16];
1214 const char __user *p = buffer;
1215
1216 while (count > 0) {
1217 bytes = min(count, sizeof(buf));
1218 if (copy_from_user(&buf, p, bytes))
1219 return -EFAULT;
1220
1221 count -= bytes;
1222 p += bytes;
1223
1224 mix_pool_bytes(r, buf, bytes, NULL);
1225 cond_resched();
1226 }
1227
1228 return 0;
1229}
1230
1231static ssize_t random_write(struct file *file, const char __user *buffer,
1232 size_t count, loff_t *ppos)
1233{
1234 size_t ret;
1235
1236 ret = write_pool(&blocking_pool, buffer, count);
1237 if (ret)
1238 return ret;
1239 ret = write_pool(&nonblocking_pool, buffer, count);
1240 if (ret)
1241 return ret;
1242
1243 return (ssize_t)count;
1244}
1245
1246static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1247{
1248 int size, ent_count;
1249 int __user *p = (int __user *)arg;
1250 int retval;
1251
1252 switch (cmd) {
1253 case RNDGETENTCNT:
1254 /* inherently racy, no point locking */
1255 if (put_user(input_pool.entropy_count, p))
1256 return -EFAULT;
1257 return 0;
1258 case RNDADDTOENTCNT:
1259 if (!capable(CAP_SYS_ADMIN))
1260 return -EPERM;
1261 if (get_user(ent_count, p))
1262 return -EFAULT;
1263 credit_entropy_bits(&input_pool, ent_count);
1264 return 0;
1265 case RNDADDENTROPY:
1266 if (!capable(CAP_SYS_ADMIN))
1267 return -EPERM;
1268 if (get_user(ent_count, p++))
1269 return -EFAULT;
1270 if (ent_count < 0)
1271 return -EINVAL;
1272 if (get_user(size, p++))
1273 return -EFAULT;
1274 retval = write_pool(&input_pool, (const char __user *)p,
1275 size);
1276 if (retval < 0)
1277 return retval;
1278 credit_entropy_bits(&input_pool, ent_count);
1279 return 0;
1280 case RNDZAPENTCNT:
1281 case RNDCLEARPOOL:
1282 /* Clear the entropy pool counters. */
1283 if (!capable(CAP_SYS_ADMIN))
1284 return -EPERM;
1285 rand_initialize();
1286 return 0;
1287 default:
1288 return -EINVAL;
1289 }
1290}
1291
1292static int random_fasync(int fd, struct file *filp, int on)
1293{
1294 return fasync_helper(fd, filp, on, &fasync);
1295}
1296
1297const struct file_operations random_fops = {
1298 .read = random_read,
1299 .write = random_write,
1300 .poll = random_poll,
1301 .unlocked_ioctl = random_ioctl,
1302 .fasync = random_fasync,
1303 .llseek = noop_llseek,
1304};
1305
1306const struct file_operations urandom_fops = {
1307 .read = urandom_read,
1308 .write = random_write,
1309 .unlocked_ioctl = random_ioctl,
1310 .fasync = random_fasync,
1311 .llseek = noop_llseek,
1312};
1313
1314/***************************************************************
1315 * Random UUID interface
1316 *
1317 * Used here for a Boot ID, but can be useful for other kernel
1318 * drivers.
1319 ***************************************************************/
1320
1321/*
1322 * Generate random UUID
1323 */
1324void generate_random_uuid(unsigned char uuid_out[16])
1325{
1326 get_random_bytes(uuid_out, 16);
1327 /* Set UUID version to 4 --- truly random generation */
1328 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1329 /* Set the UUID variant to DCE */
1330 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1331}
1332EXPORT_SYMBOL(generate_random_uuid);
1333
1334/********************************************************************
1335 *
1336 * Sysctl interface
1337 *
1338 ********************************************************************/
1339
1340#ifdef CONFIG_SYSCTL
1341
1342#include <linux/sysctl.h>
1343
1344static int min_read_thresh = 8, min_write_thresh;
1345static int max_read_thresh = INPUT_POOL_WORDS * 32;
1346static int max_write_thresh = INPUT_POOL_WORDS * 32;
1347static char sysctl_bootid[16];
1348
1349/*
1350 * These functions is used to return both the bootid UUID, and random
1351 * UUID. The difference is in whether table->data is NULL; if it is,
1352 * then a new UUID is generated and returned to the user.
1353 *
1354 * If the user accesses this via the proc interface, it will be returned
1355 * as an ASCII string in the standard UUID format. If accesses via the
1356 * sysctl system call, it is returned as 16 bytes of binary data.
1357 */
1358static int proc_do_uuid(ctl_table *table, int write,
1359 void __user *buffer, size_t *lenp, loff_t *ppos)
1360{
1361 ctl_table fake_table;
1362 unsigned char buf[64], tmp_uuid[16], *uuid;
1363
1364 uuid = table->data;
1365 if (!uuid) {
1366 uuid = tmp_uuid;
1367 generate_random_uuid(uuid);
1368 } else {
1369 static DEFINE_SPINLOCK(bootid_spinlock);
1370
1371 spin_lock(&bootid_spinlock);
1372 if (!uuid[8])
1373 generate_random_uuid(uuid);
1374 spin_unlock(&bootid_spinlock);
1375 }
1376
1377 sprintf(buf, "%pU", uuid);
1378
1379 fake_table.data = buf;
1380 fake_table.maxlen = sizeof(buf);
1381
1382 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1383}
1384
1385static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1386ctl_table random_table[] = {
1387 {
1388 .procname = "poolsize",
1389 .data = &sysctl_poolsize,
1390 .maxlen = sizeof(int),
1391 .mode = 0444,
1392 .proc_handler = proc_dointvec,
1393 },
1394 {
1395 .procname = "entropy_avail",
1396 .maxlen = sizeof(int),
1397 .mode = 0444,
1398 .proc_handler = proc_dointvec,
1399 .data = &input_pool.entropy_count,
1400 },
1401 {
1402 .procname = "read_wakeup_threshold",
1403 .data = &random_read_wakeup_thresh,
1404 .maxlen = sizeof(int),
1405 .mode = 0644,
1406 .proc_handler = proc_dointvec_minmax,
1407 .extra1 = &min_read_thresh,
1408 .extra2 = &max_read_thresh,
1409 },
1410 {
1411 .procname = "write_wakeup_threshold",
1412 .data = &random_write_wakeup_thresh,
1413 .maxlen = sizeof(int),
1414 .mode = 0644,
1415 .proc_handler = proc_dointvec_minmax,
1416 .extra1 = &min_write_thresh,
1417 .extra2 = &max_write_thresh,
1418 },
1419 {
1420 .procname = "boot_id",
1421 .data = &sysctl_bootid,
1422 .maxlen = 16,
1423 .mode = 0444,
1424 .proc_handler = proc_do_uuid,
1425 },
1426 {
1427 .procname = "uuid",
1428 .maxlen = 16,
1429 .mode = 0444,
1430 .proc_handler = proc_do_uuid,
1431 },
1432 { }
1433};
1434#endif /* CONFIG_SYSCTL */
1435
1436static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1437
1438static int __init random_int_secret_init(void)
1439{
1440 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1441 return 0;
1442}
1443late_initcall(random_int_secret_init);
1444
1445/*
1446 * Get a random word for internal kernel use only. Similar to urandom but
1447 * with the goal of minimal entropy pool depletion. As a result, the random
1448 * value is not cryptographically secure but for several uses the cost of
1449 * depleting entropy is too high
1450 */
1451DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1452unsigned int get_random_int(void)
1453{
1454 __u32 *hash;
1455 unsigned int ret;
1456
1457 if (arch_get_random_int(&ret))
1458 return ret;
1459
1460 hash = get_cpu_var(get_random_int_hash);
1461
1462 hash[0] += current->pid + jiffies + get_cycles();
1463 md5_transform(hash, random_int_secret);
1464 ret = hash[0];
1465 put_cpu_var(get_random_int_hash);
1466
1467 return ret;
1468}
1469
1470/*
1471 * randomize_range() returns a start address such that
1472 *
1473 * [...... <range> .....]
1474 * start end
1475 *
1476 * a <range> with size "len" starting at the return value is inside in the
1477 * area defined by [start, end], but is otherwise randomized.
1478 */
1479unsigned long
1480randomize_range(unsigned long start, unsigned long end, unsigned long len)
1481{
1482 unsigned long range = end - len - start;
1483
1484 if (end <= start + len)
1485 return 0;
1486 return PAGE_ALIGN(get_random_int() % range + start);
1487}