Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * random.c -- A strong random number generator
   3 *
 
 
 
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 *
   6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
   7 * rights reserved.
   8 *
   9 * Redistribution and use in source and binary forms, with or without
  10 * modification, are permitted provided that the following conditions
  11 * are met:
  12 * 1. Redistributions of source code must retain the above copyright
  13 *    notice, and the entire permission notice in its entirety,
  14 *    including the disclaimer of warranties.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. The name of the author may not be used to endorse or promote
  19 *    products derived from this software without specific prior
  20 *    written permission.
  21 *
  22 * ALTERNATIVELY, this product may be distributed under the terms of
  23 * the GNU General Public License, in which case the provisions of the GPL are
  24 * required INSTEAD OF the above restrictions.  (This clause is
  25 * necessary due to a potential bad interaction between the GPL and
  26 * the restrictions contained in a BSD-style copyright.)
  27 *
  28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 */
  41
  42/*
  43 * (now, with legal B.S. out of the way.....)
  44 *
  45 * This routine gathers environmental noise from device drivers, etc.,
  46 * and returns good random numbers, suitable for cryptographic use.
  47 * Besides the obvious cryptographic uses, these numbers are also good
  48 * for seeding TCP sequence numbers, and other places where it is
  49 * desirable to have numbers which are not only random, but hard to
  50 * predict by an attacker.
  51 *
  52 * Theory of operation
  53 * ===================
  54 *
  55 * Computers are very predictable devices.  Hence it is extremely hard
  56 * to produce truly random numbers on a computer --- as opposed to
  57 * pseudo-random numbers, which can easily generated by using a
  58 * algorithm.  Unfortunately, it is very easy for attackers to guess
  59 * the sequence of pseudo-random number generators, and for some
  60 * applications this is not acceptable.  So instead, we must try to
  61 * gather "environmental noise" from the computer's environment, which
  62 * must be hard for outside attackers to observe, and use that to
  63 * generate random numbers.  In a Unix environment, this is best done
  64 * from inside the kernel.
  65 *
  66 * Sources of randomness from the environment include inter-keyboard
  67 * timings, inter-interrupt timings from some interrupts, and other
  68 * events which are both (a) non-deterministic and (b) hard for an
  69 * outside observer to measure.  Randomness from these sources are
  70 * added to an "entropy pool", which is mixed using a CRC-like function.
  71 * This is not cryptographically strong, but it is adequate assuming
  72 * the randomness is not chosen maliciously, and it is fast enough that
  73 * the overhead of doing it on every interrupt is very reasonable.
  74 * As random bytes are mixed into the entropy pool, the routines keep
  75 * an *estimate* of how many bits of randomness have been stored into
  76 * the random number generator's internal state.
  77 *
  78 * When random bytes are desired, they are obtained by taking the SHA
  79 * hash of the contents of the "entropy pool".  The SHA hash avoids
  80 * exposing the internal state of the entropy pool.  It is believed to
  81 * be computationally infeasible to derive any useful information
  82 * about the input of SHA from its output.  Even if it is possible to
  83 * analyze SHA in some clever way, as long as the amount of data
  84 * returned from the generator is less than the inherent entropy in
  85 * the pool, the output data is totally unpredictable.  For this
  86 * reason, the routine decreases its internal estimate of how many
  87 * bits of "true randomness" are contained in the entropy pool as it
  88 * outputs random numbers.
  89 *
  90 * If this estimate goes to zero, the routine can still generate
  91 * random numbers; however, an attacker may (at least in theory) be
  92 * able to infer the future output of the generator from prior
  93 * outputs.  This requires successful cryptanalysis of SHA, which is
  94 * not believed to be feasible, but there is a remote possibility.
  95 * Nonetheless, these numbers should be useful for the vast majority
  96 * of purposes.
  97 *
  98 * Exported interfaces ---- output
  99 * ===============================
 100 *
 101 * There are three exported interfaces; the first is one designed to
 102 * be used from within the kernel:
 103 *
 104 * 	void get_random_bytes(void *buf, int nbytes);
 105 *
 106 * This interface will return the requested number of random bytes,
 107 * and place it in the requested buffer.
 108 *
 109 * The two other interfaces are two character devices /dev/random and
 110 * /dev/urandom.  /dev/random is suitable for use when very high
 111 * quality randomness is desired (for example, for key generation or
 112 * one-time pads), as it will only return a maximum of the number of
 113 * bits of randomness (as estimated by the random number generator)
 114 * contained in the entropy pool.
 115 *
 116 * The /dev/urandom device does not have this limit, and will return
 117 * as many bytes as are requested.  As more and more random bytes are
 118 * requested without giving time for the entropy pool to recharge,
 119 * this will result in random numbers that are merely cryptographically
 120 * strong.  For many applications, however, this is acceptable.
 121 *
 122 * Exported interfaces ---- input
 123 * ==============================
 124 *
 125 * The current exported interfaces for gathering environmental noise
 126 * from the devices are:
 127 *
 
 128 * 	void add_input_randomness(unsigned int type, unsigned int code,
 129 *                                unsigned int value);
 130 * 	void add_interrupt_randomness(int irq);
 131 * 	void add_disk_randomness(struct gendisk *disk);
 132 *
 
 
 
 
 
 
 
 
 133 * add_input_randomness() uses the input layer interrupt timing, as well as
 134 * the event type information from the hardware.
 135 *
 136 * add_interrupt_randomness() uses the inter-interrupt timing as random
 137 * inputs to the entropy pool.  Note that not all interrupts are good
 138 * sources of randomness!  For example, the timer interrupts is not a
 139 * good choice, because the periodicity of the interrupts is too
 140 * regular, and hence predictable to an attacker.  Network Interface
 141 * Controller interrupts are a better measure, since the timing of the
 142 * NIC interrupts are more unpredictable.
 143 *
 144 * add_disk_randomness() uses what amounts to the seek time of block
 145 * layer request events, on a per-disk_devt basis, as input to the
 146 * entropy pool. Note that high-speed solid state drives with very low
 147 * seek times do not make for good sources of entropy, as their seek
 148 * times are usually fairly consistent.
 149 *
 150 * All of these routines try to estimate how many bits of randomness a
 151 * particular randomness source.  They do this by keeping track of the
 152 * first and second order deltas of the event timings.
 153 *
 154 * Ensuring unpredictability at system startup
 155 * ============================================
 156 *
 157 * When any operating system starts up, it will go through a sequence
 158 * of actions that are fairly predictable by an adversary, especially
 159 * if the start-up does not involve interaction with a human operator.
 160 * This reduces the actual number of bits of unpredictability in the
 161 * entropy pool below the value in entropy_count.  In order to
 162 * counteract this effect, it helps to carry information in the
 163 * entropy pool across shut-downs and start-ups.  To do this, put the
 164 * following lines an appropriate script which is run during the boot
 165 * sequence:
 166 *
 167 *	echo "Initializing random number generator..."
 168 *	random_seed=/var/run/random-seed
 169 *	# Carry a random seed from start-up to start-up
 170 *	# Load and then save the whole entropy pool
 171 *	if [ -f $random_seed ]; then
 172 *		cat $random_seed >/dev/urandom
 173 *	else
 174 *		touch $random_seed
 175 *	fi
 176 *	chmod 600 $random_seed
 177 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 178 *
 179 * and the following lines in an appropriate script which is run as
 180 * the system is shutdown:
 181 *
 182 *	# Carry a random seed from shut-down to start-up
 183 *	# Save the whole entropy pool
 184 *	echo "Saving random seed..."
 185 *	random_seed=/var/run/random-seed
 186 *	touch $random_seed
 187 *	chmod 600 $random_seed
 188 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 189 *
 190 * For example, on most modern systems using the System V init
 191 * scripts, such code fragments would be found in
 192 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 193 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 194 *
 195 * Effectively, these commands cause the contents of the entropy pool
 196 * to be saved at shut-down time and reloaded into the entropy pool at
 197 * start-up.  (The 'dd' in the addition to the bootup script is to
 198 * make sure that /etc/random-seed is different for every start-up,
 199 * even if the system crashes without executing rc.0.)  Even with
 200 * complete knowledge of the start-up activities, predicting the state
 201 * of the entropy pool requires knowledge of the previous history of
 202 * the system.
 203 *
 204 * Configuring the /dev/random driver under Linux
 205 * ==============================================
 206 *
 207 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 208 * the /dev/mem major number (#1).  So if your system does not have
 209 * /dev/random and /dev/urandom created already, they can be created
 210 * by using the commands:
 211 *
 212 * 	mknod /dev/random c 1 8
 213 * 	mknod /dev/urandom c 1 9
 214 *
 215 * Acknowledgements:
 216 * =================
 217 *
 218 * Ideas for constructing this random number generator were derived
 219 * from Pretty Good Privacy's random number generator, and from private
 220 * discussions with Phil Karn.  Colin Plumb provided a faster random
 221 * number generator, which speed up the mixing function of the entropy
 222 * pool, taken from PGPfone.  Dale Worley has also contributed many
 223 * useful ideas and suggestions to improve this driver.
 224 *
 225 * Any flaws in the design are solely my responsibility, and should
 226 * not be attributed to the Phil, Colin, or any of authors of PGP.
 227 *
 228 * Further background information on this topic may be obtained from
 229 * RFC 1750, "Randomness Recommendations for Security", by Donald
 230 * Eastlake, Steve Crocker, and Jeff Schiller.
 231 */
 232
 233#include <linux/utsname.h>
 234#include <linux/module.h>
 235#include <linux/kernel.h>
 236#include <linux/major.h>
 237#include <linux/string.h>
 238#include <linux/fcntl.h>
 239#include <linux/slab.h>
 240#include <linux/random.h>
 241#include <linux/poll.h>
 242#include <linux/init.h>
 243#include <linux/fs.h>
 244#include <linux/genhd.h>
 245#include <linux/interrupt.h>
 246#include <linux/mm.h>
 
 247#include <linux/spinlock.h>
 
 248#include <linux/percpu.h>
 249#include <linux/cryptohash.h>
 250#include <linux/fips.h>
 251
 252#ifdef CONFIG_GENERIC_HARDIRQS
 253# include <linux/irq.h>
 254#endif
 
 
 
 
 255
 256#include <asm/processor.h>
 257#include <asm/uaccess.h>
 258#include <asm/irq.h>
 
 259#include <asm/io.h>
 260
 
 
 
 
 
 261/*
 262 * Configuration information
 263 */
 264#define INPUT_POOL_WORDS 128
 265#define OUTPUT_POOL_WORDS 32
 266#define SEC_XFER_SIZE 512
 267#define EXTRACT_SIZE 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268
 269/*
 270 * The minimum number of bits of entropy before we wake up a read on
 271 * /dev/random.  Should be enough to do a significant reseed.
 272 */
 273static int random_read_wakeup_thresh = 64;
 274
 275/*
 276 * If the entropy count falls under this number of bits, then we
 277 * should wake up processes which are selecting or polling on write
 278 * access to /dev/random.
 279 */
 280static int random_write_wakeup_thresh = 128;
 281
 282/*
 283 * When the input pool goes over trickle_thresh, start dropping most
 284 * samples to avoid wasting CPU time and reduce lock contention.
 285 */
 286
 287static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
 288
 289static DEFINE_PER_CPU(int, trickle_count);
 290
 291/*
 292 * A pool of size .poolwords is stirred with a primitive polynomial
 293 * of degree .poolwords over GF(2).  The taps for various sizes are
 294 * defined below.  They are chosen to be evenly spaced (minimum RMS
 295 * distance from evenly spaced; the numbers in the comments are a
 296 * scaled squared error sum) except for the last tap, which is 1 to
 297 * get the twisting happening as fast as possible.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298 */
 299static struct poolinfo {
 300	int poolwords;
 
 301	int tap1, tap2, tap3, tap4, tap5;
 302} poolinfo_table[] = {
 303	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
 304	{ 128,	103,	76,	51,	25,	1 },
 305	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
 306	{ 32,	26,	20,	14,	7,	1 },
 
 
 307#if 0
 308	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 309	{ 2048,	1638,	1231,	819,	411,	1 },
 310
 311	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 312	{ 1024,	817,	615,	412,	204,	1 },
 313
 314	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 315	{ 1024,	819,	616,	410,	207,	2 },
 316
 317	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 318	{ 512,	411,	308,	208,	104,	1 },
 319
 320	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 321	{ 512,	409,	307,	206,	102,	2 },
 322	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 323	{ 512,	409,	309,	205,	103,	2 },
 324
 325	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 326	{ 256,	205,	155,	101,	52,	1 },
 327
 328	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 329	{ 128,	103,	78,	51,	27,	2 },
 330
 331	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 332	{ 64,	52,	39,	26,	14,	1 },
 333#endif
 334};
 335
 336#define POOLBITS	poolwords*32
 337#define POOLBYTES	poolwords*4
 338
 339/*
 340 * For the purposes of better mixing, we use the CRC-32 polynomial as
 341 * well to make a twisted Generalized Feedback Shift Reigster
 342 *
 343 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
 344 * Transactions on Modeling and Computer Simulation 2(3):179-194.
 345 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
 346 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
 347 *
 348 * Thanks to Colin Plumb for suggesting this.
 349 *
 350 * We have not analyzed the resultant polynomial to prove it primitive;
 351 * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
 352 * of a random large-degree polynomial over GF(2) are more than large enough
 353 * that periodicity is not a concern.
 354 *
 355 * The input hash is much less sensitive than the output hash.  All
 356 * that we want of it is that it be a good non-cryptographic hash;
 357 * i.e. it not produce collisions when fed "random" data of the sort
 358 * we expect to see.  As long as the pool state differs for different
 359 * inputs, we have preserved the input entropy and done a good job.
 360 * The fact that an intelligent attacker can construct inputs that
 361 * will produce controlled alterations to the pool's state is not
 362 * important because we don't consider such inputs to contribute any
 363 * randomness.  The only property we need with respect to them is that
 364 * the attacker can't increase his/her knowledge of the pool's state.
 365 * Since all additions are reversible (knowing the final state and the
 366 * input, you can reconstruct the initial state), if an attacker has
 367 * any uncertainty about the initial state, he/she can only shuffle
 368 * that uncertainty about, but never cause any collisions (which would
 369 * decrease the uncertainty).
 370 *
 371 * The chosen system lets the state of the pool be (essentially) the input
 372 * modulo the generator polymnomial.  Now, for random primitive polynomials,
 373 * this is a universal class of hash functions, meaning that the chance
 374 * of a collision is limited by the attacker's knowledge of the generator
 375 * polynomail, so if it is chosen at random, an attacker can never force
 376 * a collision.  Here, we use a fixed polynomial, but we *can* assume that
 377 * ###--> it is unknown to the processes generating the input entropy. <-###
 378 * Because of this important property, this is a good, collision-resistant
 379 * hash; hash collisions will occur no more often than chance.
 380 */
 381
 382/*
 383 * Static global variables
 384 */
 385static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 386static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 387static struct fasync_struct *fasync;
 388
 389#if 0
 390static int debug;
 391module_param(debug, bool, 0644);
 392#define DEBUG_ENT(fmt, arg...) do { \
 393	if (debug) \
 394		printk(KERN_DEBUG "random %04d %04d %04d: " \
 395		fmt,\
 396		input_pool.entropy_count,\
 397		blocking_pool.entropy_count,\
 398		nonblocking_pool.entropy_count,\
 399		## arg); } while (0)
 400#else
 401#define DEBUG_ENT(fmt, arg...) do {} while (0)
 402#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 403
 404/**********************************************************************
 405 *
 406 * OS independent entropy store.   Here are the functions which handle
 407 * storing entropy in an entropy pool.
 408 *
 409 **********************************************************************/
 410
 411struct entropy_store;
 412struct entropy_store {
 413	/* read-only data: */
 414	struct poolinfo *poolinfo;
 415	__u32 *pool;
 416	const char *name;
 417	struct entropy_store *pull;
 418	int limit;
 419
 420	/* read-write data: */
 
 421	spinlock_t lock;
 422	unsigned add_ptr;
 
 423	int entropy_count;
 424	int input_rotate;
 
 
 425	__u8 last_data[EXTRACT_SIZE];
 426};
 427
 428static __u32 input_pool_data[INPUT_POOL_WORDS];
 429static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
 430static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
 
 
 
 
 
 
 431
 432static struct entropy_store input_pool = {
 433	.poolinfo = &poolinfo_table[0],
 434	.name = "input",
 435	.limit = 1,
 436	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
 437	.pool = input_pool_data
 438};
 439
 440static struct entropy_store blocking_pool = {
 441	.poolinfo = &poolinfo_table[1],
 442	.name = "blocking",
 443	.limit = 1,
 444	.pull = &input_pool,
 445	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
 446	.pool = blocking_pool_data
 
 
 447};
 448
 449static struct entropy_store nonblocking_pool = {
 450	.poolinfo = &poolinfo_table[1],
 451	.name = "nonblocking",
 452	.pull = &input_pool,
 453	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
 454	.pool = nonblocking_pool_data
 455};
 456
 457/*
 458 * This function adds bytes into the entropy "pool".  It does not
 459 * update the entropy estimate.  The caller should call
 460 * credit_entropy_bits if this is appropriate.
 461 *
 462 * The pool is stirred with a primitive polynomial of the appropriate
 463 * degree, and then twisted.  We twist by three bits at a time because
 464 * it's cheap to do so and helps slightly in the expected case where
 465 * the entropy is concentrated in the low-order bits.
 466 */
 467static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
 468				   int nbytes, __u8 out[64])
 469{
 470	static __u32 const twist_table[8] = {
 471		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 472		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 473	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
 474	int input_rotate;
 475	int wordmask = r->poolinfo->poolwords - 1;
 476	const char *bytes = in;
 477	__u32 w;
 478	unsigned long flags;
 479
 480	/* Taps are constant, so we can load them without holding r->lock.  */
 481	tap1 = r->poolinfo->tap1;
 482	tap2 = r->poolinfo->tap2;
 483	tap3 = r->poolinfo->tap3;
 484	tap4 = r->poolinfo->tap4;
 485	tap5 = r->poolinfo->tap5;
 486
 487	spin_lock_irqsave(&r->lock, flags);
 488	input_rotate = r->input_rotate;
 489	i = r->add_ptr;
 490
 491	/* mix one byte at a time to simplify size handling and churn faster */
 492	while (nbytes--) {
 493		w = rol32(*bytes++, input_rotate & 31);
 494		i = (i - 1) & wordmask;
 495
 496		/* XOR in the various taps */
 497		w ^= r->pool[i];
 498		w ^= r->pool[(i + tap1) & wordmask];
 499		w ^= r->pool[(i + tap2) & wordmask];
 500		w ^= r->pool[(i + tap3) & wordmask];
 501		w ^= r->pool[(i + tap4) & wordmask];
 502		w ^= r->pool[(i + tap5) & wordmask];
 503
 504		/* Mix the result back in with a twist */
 505		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 506
 507		/*
 508		 * Normally, we add 7 bits of rotation to the pool.
 509		 * At the beginning of the pool, add an extra 7 bits
 510		 * rotation, so that successive passes spread the
 511		 * input bits across the pool evenly.
 512		 */
 513		input_rotate += i ? 7 : 14;
 514	}
 515
 516	r->input_rotate = input_rotate;
 517	r->add_ptr = i;
 
 
 
 
 
 
 
 
 518
 519	if (out)
 520		for (j = 0; j < 16; j++)
 521			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
 
 522
 
 
 
 523	spin_unlock_irqrestore(&r->lock, flags);
 524}
 525
 526static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527{
 528       mix_pool_bytes_extract(r, in, bytes, NULL);
 
 
 
 
 
 
 
 
 
 
 
 529}
 530
 531/*
 532 * Credit (or debit) the entropy store with n bits of entropy
 
 
 533 */
 534static void credit_entropy_bits(struct entropy_store *r, int nbits)
 535{
 536	unsigned long flags;
 537	int entropy_count;
 
 538
 539	if (!nbits)
 540		return;
 541
 542	spin_lock_irqsave(&r->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543
 544	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
 545	entropy_count = r->entropy_count;
 546	entropy_count += nbits;
 547	if (entropy_count < 0) {
 548		DEBUG_ENT("negative entropy/overflow\n");
 549		entropy_count = 0;
 550	} else if (entropy_count > r->poolinfo->POOLBITS)
 551		entropy_count = r->poolinfo->POOLBITS;
 552	r->entropy_count = entropy_count;
 553
 554	/* should we wake readers? */
 555	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
 556		wake_up_interruptible(&random_read_wait);
 557		kill_fasync(&fasync, SIGIO, POLL_IN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558	}
 559	spin_unlock_irqrestore(&r->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 560}
 561
 562/*********************************************************************
 563 *
 564 * Entropy input management
 565 *
 566 *********************************************************************/
 567
 568/* There is one of these per entropy source */
 569struct timer_rand_state {
 570	cycles_t last_time;
 571	long last_delta, last_delta2;
 572	unsigned dont_count_entropy:1;
 573};
 574
 575#ifndef CONFIG_GENERIC_HARDIRQS
 576
 577static struct timer_rand_state *irq_timer_state[NR_IRQS];
 
 
 
 
 
 
 
 
 578
 579static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
 
 
 580{
 581	return irq_timer_state[irq];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582}
 583
 584static void set_timer_rand_state(unsigned int irq,
 585				 struct timer_rand_state *state)
 586{
 587	irq_timer_state[irq] = state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588}
 589
 
 
 
 
 
 
 590#else
 
 
 591
 592static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
 
 
 
 
 593{
 594	struct irq_desc *desc;
 
 595
 596	desc = irq_to_desc(irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597
 598	return desc->timer_rand_state;
 
 
 
 
 
 
 
 
 
 
 599}
 600
 601static void set_timer_rand_state(unsigned int irq,
 602				 struct timer_rand_state *state)
 603{
 604	struct irq_desc *desc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605
 606	desc = irq_to_desc(irq);
 
 
 
 607
 608	desc->timer_rand_state = state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611
 612static struct timer_rand_state input_timer_state;
 
 
 
 
 
 
 
 
 613
 614/*
 615 * This function adds entropy to the entropy "pool" by using timing
 616 * delays.  It uses the timer_rand_state structure to make an estimate
 617 * of how many bits of entropy this call has added to the pool.
 618 *
 619 * The number "num" is also added to the pool - it should somehow describe
 620 * the type of event which just happened.  This is currently 0-255 for
 621 * keyboard scan codes, and 256 upwards for interrupts.
 622 *
 623 */
 624static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 625{
 
 626	struct {
 627		cycles_t cycles;
 628		long jiffies;
 
 629		unsigned num;
 630	} sample;
 631	long delta, delta2, delta3;
 632
 633	preempt_disable();
 634	/* if over the trickle threshold, use only 1 in 4096 samples */
 635	if (input_pool.entropy_count > trickle_thresh &&
 636	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
 637		goto out;
 638
 639	sample.jiffies = jiffies;
 640	sample.cycles = get_cycles();
 641	sample.num = num;
 642	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
 
 643
 644	/*
 645	 * Calculate number of bits of randomness we probably added.
 646	 * We take into account the first, second and third-order deltas
 647	 * in order to make our estimate.
 648	 */
 
 
 649
 650	if (!state->dont_count_entropy) {
 651		delta = sample.jiffies - state->last_time;
 652		state->last_time = sample.jiffies;
 653
 654		delta2 = delta - state->last_delta;
 655		state->last_delta = delta;
 656
 657		delta3 = delta2 - state->last_delta2;
 658		state->last_delta2 = delta2;
 659
 660		if (delta < 0)
 661			delta = -delta;
 662		if (delta2 < 0)
 663			delta2 = -delta2;
 664		if (delta3 < 0)
 665			delta3 = -delta3;
 666		if (delta > delta2)
 667			delta = delta2;
 668		if (delta > delta3)
 669			delta = delta3;
 
 
 
 670
 671		/*
 672		 * delta is now minimum absolute delta.
 673		 * Round down by 1 bit on general principles,
 674		 * and limit entropy entimate to 12 bits.
 675		 */
 676		credit_entropy_bits(&input_pool,
 677				    min_t(int, fls(delta>>1), 11));
 678	}
 679out:
 680	preempt_enable();
 681}
 682
 683void add_input_randomness(unsigned int type, unsigned int code,
 684				 unsigned int value)
 685{
 686	static unsigned char last_value;
 687
 688	/* ignore autorepeat and the like */
 689	if (value == last_value)
 690		return;
 691
 692	DEBUG_ENT("input event\n");
 693	last_value = value;
 694	add_timer_randomness(&input_timer_state,
 695			     (type << 4) ^ code ^ (code >> 4) ^ value);
 
 696}
 697EXPORT_SYMBOL_GPL(add_input_randomness);
 698
 699void add_interrupt_randomness(int irq)
 
 
 
 
 
 
 
 
 700{
 701	struct timer_rand_state *state;
 702
 703	state = get_timer_rand_state(irq);
 
 
 
 
 
 
 
 
 
 704
 705	if (state == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706		return;
 707
 708	DEBUG_ENT("irq event %d\n", irq);
 709	add_timer_randomness(state, 0x100 + irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710}
 
 711
 712#ifdef CONFIG_BLOCK
 713void add_disk_randomness(struct gendisk *disk)
 714{
 715	if (!disk || !disk->random)
 716		return;
 717	/* first major is 1, so we get >= 0x200 here */
 718	DEBUG_ENT("disk event %d:%d\n",
 719		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
 720
 721	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 
 722}
 
 723#endif
 724
 725/*********************************************************************
 726 *
 727 * Entropy extraction routines
 728 *
 729 *********************************************************************/
 730
 731static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 732			       size_t nbytes, int min, int rsvd);
 733
 734/*
 735 * This utility inline function is responsible for transferring entropy
 736 * from the primary pool to the secondary extraction pool. We make
 737 * sure we pull enough for a 'catastrophic reseed'.
 738 */
 
 739static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 740{
 741	__u32 tmp[OUTPUT_POOL_WORDS];
 
 
 
 
 
 
 742
 743	if (r->pull && r->entropy_count < nbytes * 8 &&
 744	    r->entropy_count < r->poolinfo->POOLBITS) {
 745		/* If we're limited, always leave two wakeup worth's BITS */
 746		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
 747		int bytes = nbytes;
 748
 749		/* pull at least as many as BYTES as wakeup BITS */
 750		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
 751		/* but never more than the buffer size */
 752		bytes = min_t(int, bytes, sizeof(tmp));
 753
 754		DEBUG_ENT("going to reseed %s with %d bits "
 755			  "(%d of %d requested)\n",
 756			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
 
 757
 758		bytes = extract_entropy(r->pull, tmp, bytes,
 759					random_read_wakeup_thresh / 8, rsvd);
 760		mix_pool_bytes(r, tmp, bytes);
 761		credit_entropy_bits(r, bytes*8);
 762	}
 
 763}
 764
 765/*
 766 * These functions extracts randomness from the "entropy pool", and
 767 * returns it in a buffer.
 768 *
 769 * The min parameter specifies the minimum amount we can pull before
 770 * failing to avoid races that defeat catastrophic reseeding while the
 771 * reserved parameter indicates how much entropy we must leave in the
 772 * pool after each pull to avoid starving other readers.
 773 *
 774 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
 775 */
 
 
 
 
 
 
 
 
 
 776
 
 
 
 
 777static size_t account(struct entropy_store *r, size_t nbytes, int min,
 778		      int reserved)
 779{
 780	unsigned long flags;
 
 781
 782	/* Hold lock while accounting */
 783	spin_lock_irqsave(&r->lock, flags);
 784
 785	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
 786	DEBUG_ENT("trying to extract %d bits from %s\n",
 787		  nbytes * 8, r->name);
 788
 789	/* Can we pull enough? */
 790	if (r->entropy_count / 8 < min + reserved) {
 791		nbytes = 0;
 792	} else {
 793		/* If limited, never pull more than available */
 794		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
 795			nbytes = r->entropy_count/8 - reserved;
 796
 797		if (r->entropy_count / 8 >= nbytes + reserved)
 798			r->entropy_count -= nbytes*8;
 799		else
 800			r->entropy_count = reserved;
 801
 802		if (r->entropy_count < random_write_wakeup_thresh) {
 803			wake_up_interruptible(&random_write_wait);
 804			kill_fasync(&fasync, SIGIO, POLL_OUT);
 805		}
 
 806	}
 
 
 
 
 
 807
 808	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
 809		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
 810
 811	spin_unlock_irqrestore(&r->lock, flags);
 
 
 
 
 
 812
 813	return nbytes;
 814}
 815
 
 
 
 
 
 
 816static void extract_buf(struct entropy_store *r, __u8 *out)
 817{
 818	int i;
 819	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
 820	__u8 extract[64];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821
 822	/* Generate a hash across the pool, 16 words (512 bits) at a time */
 823	sha_init(hash);
 824	for (i = 0; i < r->poolinfo->poolwords; i += 16)
 825		sha_transform(hash, (__u8 *)(r->pool + i), workspace);
 826
 827	/*
 828	 * We mix the hash back into the pool to prevent backtracking
 829	 * attacks (where the attacker knows the state of the pool
 830	 * plus the current outputs, and attempts to find previous
 831	 * ouputs), unless the hash function can be inverted. By
 832	 * mixing at least a SHA1 worth of hash data back, we make
 833	 * brute-forcing the feedback as hard as brute-forcing the
 834	 * hash.
 835	 */
 836	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
 
 837
 838	/*
 839	 * To avoid duplicates, we atomically extract a portion of the
 840	 * pool while mixing, and hash one final time.
 841	 */
 842	sha_transform(hash, extract, workspace);
 843	memset(extract, 0, sizeof(extract));
 844	memset(workspace, 0, sizeof(workspace));
 845
 846	/*
 847	 * In case the hash function has some recognizable output
 848	 * pattern, we fold it in half. Thus, we always feed back
 849	 * twice as much data as we output.
 850	 */
 851	hash[0] ^= hash[3];
 852	hash[1] ^= hash[4];
 853	hash[2] ^= rol32(hash[2], 16);
 854	memcpy(out, hash, EXTRACT_SIZE);
 855	memset(hash, 0, sizeof(hash));
 
 856}
 857
 858static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 859			       size_t nbytes, int min, int reserved)
 860{
 861	ssize_t ret = 0, i;
 862	__u8 tmp[EXTRACT_SIZE];
 863	unsigned long flags;
 864
 865	xfer_secondary_pool(r, nbytes);
 866	nbytes = account(r, nbytes, min, reserved);
 867
 868	while (nbytes) {
 869		extract_buf(r, tmp);
 870
 871		if (fips_enabled) {
 872			spin_lock_irqsave(&r->lock, flags);
 873			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
 874				panic("Hardware RNG duplicated output!\n");
 875			memcpy(r->last_data, tmp, EXTRACT_SIZE);
 876			spin_unlock_irqrestore(&r->lock, flags);
 877		}
 878		i = min_t(int, nbytes, EXTRACT_SIZE);
 879		memcpy(buf, tmp, i);
 880		nbytes -= i;
 881		buf += i;
 882		ret += i;
 883	}
 884
 885	/* Wipe data just returned from memory */
 886	memset(tmp, 0, sizeof(tmp));
 887
 888	return ret;
 889}
 890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
 892				    size_t nbytes)
 893{
 894	ssize_t ret = 0, i;
 895	__u8 tmp[EXTRACT_SIZE];
 
 896
 
 897	xfer_secondary_pool(r, nbytes);
 898	nbytes = account(r, nbytes, 0, 0);
 899
 900	while (nbytes) {
 901		if (need_resched()) {
 902			if (signal_pending(current)) {
 903				if (ret == 0)
 904					ret = -ERESTARTSYS;
 905				break;
 906			}
 907			schedule();
 908		}
 909
 910		extract_buf(r, tmp);
 911		i = min_t(int, nbytes, EXTRACT_SIZE);
 912		if (copy_to_user(buf, tmp, i)) {
 913			ret = -EFAULT;
 914			break;
 915		}
 916
 917		nbytes -= i;
 918		buf += i;
 919		ret += i;
 920	}
 921
 922	/* Wipe data just returned from memory */
 923	memset(tmp, 0, sizeof(tmp));
 924
 925	return ret;
 926}
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928/*
 929 * This function is the exported kernel interface.  It returns some
 930 * number of good random numbers, suitable for seeding TCP sequence
 931 * numbers, etc.
 
 
 
 
 
 932 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933void get_random_bytes(void *buf, int nbytes)
 934{
 935	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
 
 
 
 936}
 937EXPORT_SYMBOL(get_random_bytes);
 938
 939/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940 * init_std_data - initialize pool with system data
 941 *
 942 * @r: pool to initialize
 943 *
 944 * This function clears the pool's entropy count and mixes some system
 945 * data into the pool to prepare it for use. The pool is not cleared
 946 * as that can only decrease the entropy in the pool.
 947 */
 948static void init_std_data(struct entropy_store *r)
 949{
 950	ktime_t now;
 951	unsigned long flags;
 952
 953	spin_lock_irqsave(&r->lock, flags);
 954	r->entropy_count = 0;
 955	spin_unlock_irqrestore(&r->lock, flags);
 956
 957	now = ktime_get_real();
 958	mix_pool_bytes(r, &now, sizeof(now));
 
 
 
 
 
 
 959	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
 960}
 961
 
 
 
 
 
 
 
 
 
 
 962static int rand_initialize(void)
 963{
 964	init_std_data(&input_pool);
 965	init_std_data(&blocking_pool);
 966	init_std_data(&nonblocking_pool);
 
 
 
 
 
 967	return 0;
 968}
 969module_init(rand_initialize);
 970
 971void rand_initialize_irq(int irq)
 972{
 973	struct timer_rand_state *state;
 974
 975	state = get_timer_rand_state(irq);
 976
 977	if (state)
 978		return;
 979
 980	/*
 981	 * If kzalloc returns null, we just won't use that entropy
 982	 * source.
 983	 */
 984	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 985	if (state)
 986		set_timer_rand_state(irq, state);
 987}
 988
 989#ifdef CONFIG_BLOCK
 990void rand_initialize_disk(struct gendisk *disk)
 991{
 992	struct timer_rand_state *state;
 993
 994	/*
 995	 * If kzalloc returns null, we just won't use that entropy
 996	 * source.
 997	 */
 998	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 999	if (state)
 
1000		disk->random = state;
 
1001}
1002#endif
1003
1004static ssize_t
1005random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1006{
1007	ssize_t n, retval = 0, count = 0;
1008
1009	if (nbytes == 0)
1010		return 0;
1011
1012	while (nbytes > 0) {
1013		n = nbytes;
1014		if (n > SEC_XFER_SIZE)
1015			n = SEC_XFER_SIZE;
1016
1017		DEBUG_ENT("reading %d bits\n", n*8);
1018
1019		n = extract_entropy_user(&blocking_pool, buf, n);
1020
1021		DEBUG_ENT("read got %d bits (%d still needed)\n",
1022			  n*8, (nbytes-n)*8);
1023
1024		if (n == 0) {
1025			if (file->f_flags & O_NONBLOCK) {
1026				retval = -EAGAIN;
1027				break;
1028			}
1029
1030			DEBUG_ENT("sleeping?\n");
1031
1032			wait_event_interruptible(random_read_wait,
1033				input_pool.entropy_count >=
1034						 random_read_wakeup_thresh);
1035
1036			DEBUG_ENT("awake\n");
1037
1038			if (signal_pending(current)) {
1039				retval = -ERESTARTSYS;
1040				break;
1041			}
1042
1043			continue;
1044		}
1045
1046		if (n < 0) {
1047			retval = n;
1048			break;
1049		}
1050		count += n;
1051		buf += n;
1052		nbytes -= n;
1053		break;		/* This break makes the device work */
1054				/* like a named pipe */
1055	}
 
1056
1057	return (count ? count : retval);
 
 
 
1058}
1059
1060static ssize_t
1061urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1062{
1063	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064}
1065
1066static unsigned int
1067random_poll(struct file *file, poll_table * wait)
1068{
1069	unsigned int mask;
1070
1071	poll_wait(file, &random_read_wait, wait);
1072	poll_wait(file, &random_write_wait, wait);
1073	mask = 0;
1074	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1075		mask |= POLLIN | POLLRDNORM;
1076	if (input_pool.entropy_count < random_write_wakeup_thresh)
1077		mask |= POLLOUT | POLLWRNORM;
1078	return mask;
1079}
1080
1081static int
1082write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1083{
1084	size_t bytes;
1085	__u32 buf[16];
1086	const char __user *p = buffer;
1087
1088	while (count > 0) {
1089		bytes = min(count, sizeof(buf));
1090		if (copy_from_user(&buf, p, bytes))
1091			return -EFAULT;
1092
1093		count -= bytes;
1094		p += bytes;
1095
1096		mix_pool_bytes(r, buf, bytes);
1097		cond_resched();
1098	}
1099
1100	return 0;
1101}
1102
1103static ssize_t random_write(struct file *file, const char __user *buffer,
1104			    size_t count, loff_t *ppos)
1105{
1106	size_t ret;
1107
1108	ret = write_pool(&blocking_pool, buffer, count);
1109	if (ret)
1110		return ret;
1111	ret = write_pool(&nonblocking_pool, buffer, count);
1112	if (ret)
1113		return ret;
1114
1115	return (ssize_t)count;
1116}
1117
1118static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1119{
1120	int size, ent_count;
1121	int __user *p = (int __user *)arg;
1122	int retval;
1123
1124	switch (cmd) {
1125	case RNDGETENTCNT:
1126		/* inherently racy, no point locking */
1127		if (put_user(input_pool.entropy_count, p))
 
1128			return -EFAULT;
1129		return 0;
1130	case RNDADDTOENTCNT:
1131		if (!capable(CAP_SYS_ADMIN))
1132			return -EPERM;
1133		if (get_user(ent_count, p))
1134			return -EFAULT;
1135		credit_entropy_bits(&input_pool, ent_count);
1136		return 0;
1137	case RNDADDENTROPY:
1138		if (!capable(CAP_SYS_ADMIN))
1139			return -EPERM;
1140		if (get_user(ent_count, p++))
1141			return -EFAULT;
1142		if (ent_count < 0)
1143			return -EINVAL;
1144		if (get_user(size, p++))
1145			return -EFAULT;
1146		retval = write_pool(&input_pool, (const char __user *)p,
1147				    size);
1148		if (retval < 0)
1149			return retval;
1150		credit_entropy_bits(&input_pool, ent_count);
1151		return 0;
1152	case RNDZAPENTCNT:
1153	case RNDCLEARPOOL:
1154		/* Clear the entropy pool counters. */
 
 
 
1155		if (!capable(CAP_SYS_ADMIN))
1156			return -EPERM;
1157		rand_initialize();
 
 
 
 
 
 
 
 
 
1158		return 0;
1159	default:
1160		return -EINVAL;
1161	}
1162}
1163
1164static int random_fasync(int fd, struct file *filp, int on)
1165{
1166	return fasync_helper(fd, filp, on, &fasync);
1167}
1168
1169const struct file_operations random_fops = {
1170	.read  = random_read,
1171	.write = random_write,
1172	.poll  = random_poll,
1173	.unlocked_ioctl = random_ioctl,
1174	.fasync = random_fasync,
1175	.llseek = noop_llseek,
1176};
1177
1178const struct file_operations urandom_fops = {
1179	.read  = urandom_read,
1180	.write = random_write,
1181	.unlocked_ioctl = random_ioctl,
1182	.fasync = random_fasync,
1183	.llseek = noop_llseek,
1184};
1185
1186/***************************************************************
1187 * Random UUID interface
1188 *
1189 * Used here for a Boot ID, but can be useful for other kernel
1190 * drivers.
1191 ***************************************************************/
1192
1193/*
1194 * Generate random UUID
1195 */
1196void generate_random_uuid(unsigned char uuid_out[16])
1197{
1198	get_random_bytes(uuid_out, 16);
1199	/* Set UUID version to 4 --- truly random generation */
1200	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1201	/* Set the UUID variant to DCE */
1202	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203}
1204EXPORT_SYMBOL(generate_random_uuid);
1205
1206/********************************************************************
1207 *
1208 * Sysctl interface
1209 *
1210 ********************************************************************/
1211
1212#ifdef CONFIG_SYSCTL
1213
1214#include <linux/sysctl.h>
1215
1216static int min_read_thresh = 8, min_write_thresh;
1217static int max_read_thresh = INPUT_POOL_WORDS * 32;
1218static int max_write_thresh = INPUT_POOL_WORDS * 32;
 
1219static char sysctl_bootid[16];
1220
1221/*
1222 * These functions is used to return both the bootid UUID, and random
1223 * UUID.  The difference is in whether table->data is NULL; if it is,
1224 * then a new UUID is generated and returned to the user.
1225 *
1226 * If the user accesses this via the proc interface, it will be returned
1227 * as an ASCII string in the standard UUID format.  If accesses via the
1228 * sysctl system call, it is returned as 16 bytes of binary data.
1229 */
1230static int proc_do_uuid(ctl_table *table, int write,
1231			void __user *buffer, size_t *lenp, loff_t *ppos)
1232{
1233	ctl_table fake_table;
1234	unsigned char buf[64], tmp_uuid[16], *uuid;
1235
1236	uuid = table->data;
1237	if (!uuid) {
1238		uuid = tmp_uuid;
1239		uuid[8] = 0;
1240	}
1241	if (uuid[8] == 0)
1242		generate_random_uuid(uuid);
 
 
 
 
 
 
 
 
1243
1244	sprintf(buf, "%pU", uuid);
1245
1246	fake_table.data = buf;
1247	fake_table.maxlen = sizeof(buf);
1248
1249	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1250}
1251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1253ctl_table random_table[] = {
 
1254	{
1255		.procname	= "poolsize",
1256		.data		= &sysctl_poolsize,
1257		.maxlen		= sizeof(int),
1258		.mode		= 0444,
1259		.proc_handler	= proc_dointvec,
1260	},
1261	{
1262		.procname	= "entropy_avail",
1263		.maxlen		= sizeof(int),
1264		.mode		= 0444,
1265		.proc_handler	= proc_dointvec,
1266		.data		= &input_pool.entropy_count,
1267	},
1268	{
1269		.procname	= "read_wakeup_threshold",
1270		.data		= &random_read_wakeup_thresh,
1271		.maxlen		= sizeof(int),
1272		.mode		= 0644,
1273		.proc_handler	= proc_dointvec_minmax,
1274		.extra1		= &min_read_thresh,
1275		.extra2		= &max_read_thresh,
1276	},
1277	{
1278		.procname	= "write_wakeup_threshold",
1279		.data		= &random_write_wakeup_thresh,
1280		.maxlen		= sizeof(int),
1281		.mode		= 0644,
1282		.proc_handler	= proc_dointvec_minmax,
1283		.extra1		= &min_write_thresh,
1284		.extra2		= &max_write_thresh,
1285	},
1286	{
 
 
 
 
 
 
 
1287		.procname	= "boot_id",
1288		.data		= &sysctl_bootid,
1289		.maxlen		= 16,
1290		.mode		= 0444,
1291		.proc_handler	= proc_do_uuid,
1292	},
1293	{
1294		.procname	= "uuid",
1295		.maxlen		= 16,
1296		.mode		= 0444,
1297		.proc_handler	= proc_do_uuid,
1298	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299	{ }
1300};
1301#endif 	/* CONFIG_SYSCTL */
1302
1303static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
 
 
 
 
 
 
 
1304
1305static int __init random_int_secret_init(void)
 
 
 
 
 
 
 
 
 
1306{
1307	get_random_bytes(random_int_secret, sizeof(random_int_secret));
1308	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309}
1310late_initcall(random_int_secret_init);
1311
1312/*
1313 * Get a random word for internal kernel use only. Similar to urandom but
1314 * with the goal of minimal entropy pool depletion. As a result, the random
1315 * value is not cryptographically secure but for several uses the cost of
1316 * depleting entropy is too high
1317 */
1318DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1319unsigned int get_random_int(void)
1320{
1321	__u32 *hash = get_cpu_var(get_random_int_hash);
1322	unsigned int ret;
 
 
 
 
 
 
1323
1324	hash[0] += current->pid + jiffies + get_cycles();
1325	md5_transform(hash, random_int_secret);
1326	ret = hash[0];
1327	put_cpu_var(get_random_int_hash);
1328
 
 
 
 
 
 
 
 
 
 
 
 
1329	return ret;
1330}
 
1331
1332/*
1333 * randomize_range() returns a start address such that
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334 *
1335 *    [...... <range> .....]
1336 *  start                  end
1337 *
1338 * a <range> with size "len" starting at the return value is inside in the
1339 * area defined by [start, end], but is otherwise randomized.
 
 
 
1340 */
1341unsigned long
1342randomize_range(unsigned long start, unsigned long end, unsigned long len)
1343{
1344	unsigned long range = end - len - start;
 
 
 
1345
1346	if (end <= start + len)
1347		return 0;
1348	return PAGE_ALIGN(get_random_int() % range + start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349}
v4.17
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
   5 * Rights Reserved.
   6 *
   7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   8 *
   9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
  10 * rights reserved.
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 */
  44
  45/*
  46 * (now, with legal B.S. out of the way.....)
  47 *
  48 * This routine gathers environmental noise from device drivers, etc.,
  49 * and returns good random numbers, suitable for cryptographic use.
  50 * Besides the obvious cryptographic uses, these numbers are also good
  51 * for seeding TCP sequence numbers, and other places where it is
  52 * desirable to have numbers which are not only random, but hard to
  53 * predict by an attacker.
  54 *
  55 * Theory of operation
  56 * ===================
  57 *
  58 * Computers are very predictable devices.  Hence it is extremely hard
  59 * to produce truly random numbers on a computer --- as opposed to
  60 * pseudo-random numbers, which can easily generated by using a
  61 * algorithm.  Unfortunately, it is very easy for attackers to guess
  62 * the sequence of pseudo-random number generators, and for some
  63 * applications this is not acceptable.  So instead, we must try to
  64 * gather "environmental noise" from the computer's environment, which
  65 * must be hard for outside attackers to observe, and use that to
  66 * generate random numbers.  In a Unix environment, this is best done
  67 * from inside the kernel.
  68 *
  69 * Sources of randomness from the environment include inter-keyboard
  70 * timings, inter-interrupt timings from some interrupts, and other
  71 * events which are both (a) non-deterministic and (b) hard for an
  72 * outside observer to measure.  Randomness from these sources are
  73 * added to an "entropy pool", which is mixed using a CRC-like function.
  74 * This is not cryptographically strong, but it is adequate assuming
  75 * the randomness is not chosen maliciously, and it is fast enough that
  76 * the overhead of doing it on every interrupt is very reasonable.
  77 * As random bytes are mixed into the entropy pool, the routines keep
  78 * an *estimate* of how many bits of randomness have been stored into
  79 * the random number generator's internal state.
  80 *
  81 * When random bytes are desired, they are obtained by taking the SHA
  82 * hash of the contents of the "entropy pool".  The SHA hash avoids
  83 * exposing the internal state of the entropy pool.  It is believed to
  84 * be computationally infeasible to derive any useful information
  85 * about the input of SHA from its output.  Even if it is possible to
  86 * analyze SHA in some clever way, as long as the amount of data
  87 * returned from the generator is less than the inherent entropy in
  88 * the pool, the output data is totally unpredictable.  For this
  89 * reason, the routine decreases its internal estimate of how many
  90 * bits of "true randomness" are contained in the entropy pool as it
  91 * outputs random numbers.
  92 *
  93 * If this estimate goes to zero, the routine can still generate
  94 * random numbers; however, an attacker may (at least in theory) be
  95 * able to infer the future output of the generator from prior
  96 * outputs.  This requires successful cryptanalysis of SHA, which is
  97 * not believed to be feasible, but there is a remote possibility.
  98 * Nonetheless, these numbers should be useful for the vast majority
  99 * of purposes.
 100 *
 101 * Exported interfaces ---- output
 102 * ===============================
 103 *
 104 * There are three exported interfaces; the first is one designed to
 105 * be used from within the kernel:
 106 *
 107 * 	void get_random_bytes(void *buf, int nbytes);
 108 *
 109 * This interface will return the requested number of random bytes,
 110 * and place it in the requested buffer.
 111 *
 112 * The two other interfaces are two character devices /dev/random and
 113 * /dev/urandom.  /dev/random is suitable for use when very high
 114 * quality randomness is desired (for example, for key generation or
 115 * one-time pads), as it will only return a maximum of the number of
 116 * bits of randomness (as estimated by the random number generator)
 117 * contained in the entropy pool.
 118 *
 119 * The /dev/urandom device does not have this limit, and will return
 120 * as many bytes as are requested.  As more and more random bytes are
 121 * requested without giving time for the entropy pool to recharge,
 122 * this will result in random numbers that are merely cryptographically
 123 * strong.  For many applications, however, this is acceptable.
 124 *
 125 * Exported interfaces ---- input
 126 * ==============================
 127 *
 128 * The current exported interfaces for gathering environmental noise
 129 * from the devices are:
 130 *
 131 *	void add_device_randomness(const void *buf, unsigned int size);
 132 * 	void add_input_randomness(unsigned int type, unsigned int code,
 133 *                                unsigned int value);
 134 *	void add_interrupt_randomness(int irq, int irq_flags);
 135 * 	void add_disk_randomness(struct gendisk *disk);
 136 *
 137 * add_device_randomness() is for adding data to the random pool that
 138 * is likely to differ between two devices (or possibly even per boot).
 139 * This would be things like MAC addresses or serial numbers, or the
 140 * read-out of the RTC. This does *not* add any actual entropy to the
 141 * pool, but it initializes the pool to different values for devices
 142 * that might otherwise be identical and have very little entropy
 143 * available to them (particularly common in the embedded world).
 144 *
 145 * add_input_randomness() uses the input layer interrupt timing, as well as
 146 * the event type information from the hardware.
 147 *
 148 * add_interrupt_randomness() uses the interrupt timing as random
 149 * inputs to the entropy pool. Using the cycle counters and the irq source
 150 * as inputs, it feeds the randomness roughly once a second.
 
 
 
 
 151 *
 152 * add_disk_randomness() uses what amounts to the seek time of block
 153 * layer request events, on a per-disk_devt basis, as input to the
 154 * entropy pool. Note that high-speed solid state drives with very low
 155 * seek times do not make for good sources of entropy, as their seek
 156 * times are usually fairly consistent.
 157 *
 158 * All of these routines try to estimate how many bits of randomness a
 159 * particular randomness source.  They do this by keeping track of the
 160 * first and second order deltas of the event timings.
 161 *
 162 * Ensuring unpredictability at system startup
 163 * ============================================
 164 *
 165 * When any operating system starts up, it will go through a sequence
 166 * of actions that are fairly predictable by an adversary, especially
 167 * if the start-up does not involve interaction with a human operator.
 168 * This reduces the actual number of bits of unpredictability in the
 169 * entropy pool below the value in entropy_count.  In order to
 170 * counteract this effect, it helps to carry information in the
 171 * entropy pool across shut-downs and start-ups.  To do this, put the
 172 * following lines an appropriate script which is run during the boot
 173 * sequence:
 174 *
 175 *	echo "Initializing random number generator..."
 176 *	random_seed=/var/run/random-seed
 177 *	# Carry a random seed from start-up to start-up
 178 *	# Load and then save the whole entropy pool
 179 *	if [ -f $random_seed ]; then
 180 *		cat $random_seed >/dev/urandom
 181 *	else
 182 *		touch $random_seed
 183 *	fi
 184 *	chmod 600 $random_seed
 185 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 186 *
 187 * and the following lines in an appropriate script which is run as
 188 * the system is shutdown:
 189 *
 190 *	# Carry a random seed from shut-down to start-up
 191 *	# Save the whole entropy pool
 192 *	echo "Saving random seed..."
 193 *	random_seed=/var/run/random-seed
 194 *	touch $random_seed
 195 *	chmod 600 $random_seed
 196 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 197 *
 198 * For example, on most modern systems using the System V init
 199 * scripts, such code fragments would be found in
 200 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 202 *
 203 * Effectively, these commands cause the contents of the entropy pool
 204 * to be saved at shut-down time and reloaded into the entropy pool at
 205 * start-up.  (The 'dd' in the addition to the bootup script is to
 206 * make sure that /etc/random-seed is different for every start-up,
 207 * even if the system crashes without executing rc.0.)  Even with
 208 * complete knowledge of the start-up activities, predicting the state
 209 * of the entropy pool requires knowledge of the previous history of
 210 * the system.
 211 *
 212 * Configuring the /dev/random driver under Linux
 213 * ==============================================
 214 *
 215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 216 * the /dev/mem major number (#1).  So if your system does not have
 217 * /dev/random and /dev/urandom created already, they can be created
 218 * by using the commands:
 219 *
 220 * 	mknod /dev/random c 1 8
 221 * 	mknod /dev/urandom c 1 9
 222 *
 223 * Acknowledgements:
 224 * =================
 225 *
 226 * Ideas for constructing this random number generator were derived
 227 * from Pretty Good Privacy's random number generator, and from private
 228 * discussions with Phil Karn.  Colin Plumb provided a faster random
 229 * number generator, which speed up the mixing function of the entropy
 230 * pool, taken from PGPfone.  Dale Worley has also contributed many
 231 * useful ideas and suggestions to improve this driver.
 232 *
 233 * Any flaws in the design are solely my responsibility, and should
 234 * not be attributed to the Phil, Colin, or any of authors of PGP.
 235 *
 236 * Further background information on this topic may be obtained from
 237 * RFC 1750, "Randomness Recommendations for Security", by Donald
 238 * Eastlake, Steve Crocker, and Jeff Schiller.
 239 */
 240
 241#include <linux/utsname.h>
 242#include <linux/module.h>
 243#include <linux/kernel.h>
 244#include <linux/major.h>
 245#include <linux/string.h>
 246#include <linux/fcntl.h>
 247#include <linux/slab.h>
 248#include <linux/random.h>
 249#include <linux/poll.h>
 250#include <linux/init.h>
 251#include <linux/fs.h>
 252#include <linux/genhd.h>
 253#include <linux/interrupt.h>
 254#include <linux/mm.h>
 255#include <linux/nodemask.h>
 256#include <linux/spinlock.h>
 257#include <linux/kthread.h>
 258#include <linux/percpu.h>
 259#include <linux/cryptohash.h>
 260#include <linux/fips.h>
 261#include <linux/ptrace.h>
 262#include <linux/workqueue.h>
 263#include <linux/irq.h>
 264#include <linux/ratelimit.h>
 265#include <linux/syscalls.h>
 266#include <linux/completion.h>
 267#include <linux/uuid.h>
 268#include <crypto/chacha20.h>
 269
 270#include <asm/processor.h>
 271#include <linux/uaccess.h>
 272#include <asm/irq.h>
 273#include <asm/irq_regs.h>
 274#include <asm/io.h>
 275
 276#define CREATE_TRACE_POINTS
 277#include <trace/events/random.h>
 278
 279/* #define ADD_INTERRUPT_BENCH */
 280
 281/*
 282 * Configuration information
 283 */
 284#define INPUT_POOL_SHIFT	12
 285#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
 286#define OUTPUT_POOL_SHIFT	10
 287#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
 288#define SEC_XFER_SIZE		512
 289#define EXTRACT_SIZE		10
 290
 291
 292#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 293
 294/*
 295 * To allow fractional bits to be tracked, the entropy_count field is
 296 * denominated in units of 1/8th bits.
 297 *
 298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
 299 * credit_entropy_bits() needs to be 64 bits wide.
 300 */
 301#define ENTROPY_SHIFT 3
 302#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 303
 304/*
 305 * The minimum number of bits of entropy before we wake up a read on
 306 * /dev/random.  Should be enough to do a significant reseed.
 307 */
 308static int random_read_wakeup_bits = 64;
 309
 310/*
 311 * If the entropy count falls under this number of bits, then we
 312 * should wake up processes which are selecting or polling on write
 313 * access to /dev/random.
 314 */
 315static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 
 
 
 
 
 
 
 
 
 316
 317/*
 318 * Originally, we used a primitive polynomial of degree .poolwords
 319 * over GF(2).  The taps for various sizes are defined below.  They
 320 * were chosen to be evenly spaced except for the last tap, which is 1
 321 * to get the twisting happening as fast as possible.
 322 *
 323 * For the purposes of better mixing, we use the CRC-32 polynomial as
 324 * well to make a (modified) twisted Generalized Feedback Shift
 325 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 326 * generators.  ACM Transactions on Modeling and Computer Simulation
 327 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 328 * GFSR generators II.  ACM Transactions on Modeling and Computer
 329 * Simulation 4:254-266)
 330 *
 331 * Thanks to Colin Plumb for suggesting this.
 332 *
 333 * The mixing operation is much less sensitive than the output hash,
 334 * where we use SHA-1.  All that we want of mixing operation is that
 335 * it be a good non-cryptographic hash; i.e. it not produce collisions
 336 * when fed "random" data of the sort we expect to see.  As long as
 337 * the pool state differs for different inputs, we have preserved the
 338 * input entropy and done a good job.  The fact that an intelligent
 339 * attacker can construct inputs that will produce controlled
 340 * alterations to the pool's state is not important because we don't
 341 * consider such inputs to contribute any randomness.  The only
 342 * property we need with respect to them is that the attacker can't
 343 * increase his/her knowledge of the pool's state.  Since all
 344 * additions are reversible (knowing the final state and the input,
 345 * you can reconstruct the initial state), if an attacker has any
 346 * uncertainty about the initial state, he/she can only shuffle that
 347 * uncertainty about, but never cause any collisions (which would
 348 * decrease the uncertainty).
 349 *
 350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 351 * Videau in their paper, "The Linux Pseudorandom Number Generator
 352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 353 * paper, they point out that we are not using a true Twisted GFSR,
 354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 355 * is, with only three taps, instead of the six that we are using).
 356 * As a result, the resulting polynomial is neither primitive nor
 357 * irreducible, and hence does not have a maximal period over
 358 * GF(2**32).  They suggest a slight change to the generator
 359 * polynomial which improves the resulting TGFSR polynomial to be
 360 * irreducible, which we have made here.
 361 */
 362static struct poolinfo {
 363	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
 364#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
 365	int tap1, tap2, tap3, tap4, tap5;
 366} poolinfo_table[] = {
 367	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 368	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 369	{ S(128),	104,	76,	51,	25,	1 },
 370	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
 371	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
 372	{ S(32),	26,	19,	14,	7,	1 },
 373#if 0
 374	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 375	{ S(2048),	1638,	1231,	819,	411,	1 },
 376
 377	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 378	{ S(1024),	817,	615,	412,	204,	1 },
 379
 380	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 381	{ S(1024),	819,	616,	410,	207,	2 },
 382
 383	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 384	{ S(512),	411,	308,	208,	104,	1 },
 385
 386	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 387	{ S(512),	409,	307,	206,	102,	2 },
 388	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 389	{ S(512),	409,	309,	205,	103,	2 },
 390
 391	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 392	{ S(256),	205,	155,	101,	52,	1 },
 393
 394	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 395	{ S(128),	103,	78,	51,	27,	2 },
 396
 397	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 398	{ S(64),	52,	39,	26,	14,	1 },
 399#endif
 400};
 401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402/*
 403 * Static global variables
 404 */
 405static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 406static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 407static struct fasync_struct *fasync;
 408
 409static DEFINE_SPINLOCK(random_ready_list_lock);
 410static LIST_HEAD(random_ready_list);
 411
 412struct crng_state {
 413	__u32		state[16];
 414	unsigned long	init_time;
 415	spinlock_t	lock;
 416};
 417
 418struct crng_state primary_crng = {
 419	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
 420};
 421
 422/*
 423 * crng_init =  0 --> Uninitialized
 424 *		1 --> Initialized
 425 *		2 --> Initialized from input_pool
 426 *
 427 * crng_init is protected by primary_crng->lock, and only increases
 428 * its value (from 0->1->2).
 429 */
 430static int crng_init = 0;
 431#define crng_ready() (likely(crng_init > 1))
 432static int crng_init_cnt = 0;
 433static unsigned long crng_global_init_time = 0;
 434#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
 435static void _extract_crng(struct crng_state *crng,
 436			  __u32 out[CHACHA20_BLOCK_WORDS]);
 437static void _crng_backtrack_protect(struct crng_state *crng,
 438				    __u32 tmp[CHACHA20_BLOCK_WORDS], int used);
 439static void process_random_ready_list(void);
 440static void _get_random_bytes(void *buf, int nbytes);
 441
 442static struct ratelimit_state unseeded_warning =
 443	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
 444static struct ratelimit_state urandom_warning =
 445	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
 446
 447static int ratelimit_disable __read_mostly;
 448
 449module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 450MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 451
 452/**********************************************************************
 453 *
 454 * OS independent entropy store.   Here are the functions which handle
 455 * storing entropy in an entropy pool.
 456 *
 457 **********************************************************************/
 458
 459struct entropy_store;
 460struct entropy_store {
 461	/* read-only data: */
 462	const struct poolinfo *poolinfo;
 463	__u32 *pool;
 464	const char *name;
 465	struct entropy_store *pull;
 466	struct work_struct push_work;
 467
 468	/* read-write data: */
 469	unsigned long last_pulled;
 470	spinlock_t lock;
 471	unsigned short add_ptr;
 472	unsigned short input_rotate;
 473	int entropy_count;
 474	int entropy_total;
 475	unsigned int initialized:1;
 476	unsigned int last_data_init:1;
 477	__u8 last_data[EXTRACT_SIZE];
 478};
 479
 480static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 481			       size_t nbytes, int min, int rsvd);
 482static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
 483				size_t nbytes, int fips);
 484
 485static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
 486static void push_to_pool(struct work_struct *work);
 487static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
 488static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
 489
 490static struct entropy_store input_pool = {
 491	.poolinfo = &poolinfo_table[0],
 492	.name = "input",
 493	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 
 494	.pool = input_pool_data
 495};
 496
 497static struct entropy_store blocking_pool = {
 498	.poolinfo = &poolinfo_table[1],
 499	.name = "blocking",
 
 500	.pull = &input_pool,
 501	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
 502	.pool = blocking_pool_data,
 503	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
 504					push_to_pool),
 505};
 506
 507static __u32 const twist_table[8] = {
 508	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 509	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 
 
 
 
 510
 511/*
 512 * This function adds bytes into the entropy "pool".  It does not
 513 * update the entropy estimate.  The caller should call
 514 * credit_entropy_bits if this is appropriate.
 515 *
 516 * The pool is stirred with a primitive polynomial of the appropriate
 517 * degree, and then twisted.  We twist by three bits at a time because
 518 * it's cheap to do so and helps slightly in the expected case where
 519 * the entropy is concentrated in the low-order bits.
 520 */
 521static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 522			    int nbytes)
 523{
 524	unsigned long i, tap1, tap2, tap3, tap4, tap5;
 
 
 
 525	int input_rotate;
 526	int wordmask = r->poolinfo->poolwords - 1;
 527	const char *bytes = in;
 528	__u32 w;
 
 529
 
 530	tap1 = r->poolinfo->tap1;
 531	tap2 = r->poolinfo->tap2;
 532	tap3 = r->poolinfo->tap3;
 533	tap4 = r->poolinfo->tap4;
 534	tap5 = r->poolinfo->tap5;
 535
 
 536	input_rotate = r->input_rotate;
 537	i = r->add_ptr;
 538
 539	/* mix one byte at a time to simplify size handling and churn faster */
 540	while (nbytes--) {
 541		w = rol32(*bytes++, input_rotate);
 542		i = (i - 1) & wordmask;
 543
 544		/* XOR in the various taps */
 545		w ^= r->pool[i];
 546		w ^= r->pool[(i + tap1) & wordmask];
 547		w ^= r->pool[(i + tap2) & wordmask];
 548		w ^= r->pool[(i + tap3) & wordmask];
 549		w ^= r->pool[(i + tap4) & wordmask];
 550		w ^= r->pool[(i + tap5) & wordmask];
 551
 552		/* Mix the result back in with a twist */
 553		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 554
 555		/*
 556		 * Normally, we add 7 bits of rotation to the pool.
 557		 * At the beginning of the pool, add an extra 7 bits
 558		 * rotation, so that successive passes spread the
 559		 * input bits across the pool evenly.
 560		 */
 561		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 562	}
 563
 564	r->input_rotate = input_rotate;
 565	r->add_ptr = i;
 566}
 567
 568static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 569			     int nbytes)
 570{
 571	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 572	_mix_pool_bytes(r, in, nbytes);
 573}
 574
 575static void mix_pool_bytes(struct entropy_store *r, const void *in,
 576			   int nbytes)
 577{
 578	unsigned long flags;
 579
 580	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 581	spin_lock_irqsave(&r->lock, flags);
 582	_mix_pool_bytes(r, in, nbytes);
 583	spin_unlock_irqrestore(&r->lock, flags);
 584}
 585
 586struct fast_pool {
 587	__u32		pool[4];
 588	unsigned long	last;
 589	unsigned short	reg_idx;
 590	unsigned char	count;
 591};
 592
 593/*
 594 * This is a fast mixing routine used by the interrupt randomness
 595 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 596 * locks that might be needed are taken by the caller.
 597 */
 598static void fast_mix(struct fast_pool *f)
 599{
 600	__u32 a = f->pool[0],	b = f->pool[1];
 601	__u32 c = f->pool[2],	d = f->pool[3];
 602
 603	a += b;			c += d;
 604	b = rol32(b, 6);	d = rol32(d, 27);
 605	d ^= a;			b ^= c;
 606
 607	a += b;			c += d;
 608	b = rol32(b, 16);	d = rol32(d, 14);
 609	d ^= a;			b ^= c;
 610
 611	a += b;			c += d;
 612	b = rol32(b, 6);	d = rol32(d, 27);
 613	d ^= a;			b ^= c;
 614
 615	a += b;			c += d;
 616	b = rol32(b, 16);	d = rol32(d, 14);
 617	d ^= a;			b ^= c;
 618
 619	f->pool[0] = a;  f->pool[1] = b;
 620	f->pool[2] = c;  f->pool[3] = d;
 621	f->count++;
 622}
 623
 624static void process_random_ready_list(void)
 625{
 626	unsigned long flags;
 627	struct random_ready_callback *rdy, *tmp;
 628
 629	spin_lock_irqsave(&random_ready_list_lock, flags);
 630	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 631		struct module *owner = rdy->owner;
 632
 633		list_del_init(&rdy->list);
 634		rdy->func(rdy);
 635		module_put(owner);
 636	}
 637	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 638}
 639
 640/*
 641 * Credit (or debit) the entropy store with n bits of entropy.
 642 * Use credit_entropy_bits_safe() if the value comes from userspace
 643 * or otherwise should be checked for extreme values.
 644 */
 645static void credit_entropy_bits(struct entropy_store *r, int nbits)
 646{
 647	int entropy_count, orig;
 648	const int pool_size = r->poolinfo->poolfracbits;
 649	int nfrac = nbits << ENTROPY_SHIFT;
 650
 651	if (!nbits)
 652		return;
 653
 654retry:
 655	entropy_count = orig = READ_ONCE(r->entropy_count);
 656	if (nfrac < 0) {
 657		/* Debit */
 658		entropy_count += nfrac;
 659	} else {
 660		/*
 661		 * Credit: we have to account for the possibility of
 662		 * overwriting already present entropy.	 Even in the
 663		 * ideal case of pure Shannon entropy, new contributions
 664		 * approach the full value asymptotically:
 665		 *
 666		 * entropy <- entropy + (pool_size - entropy) *
 667		 *	(1 - exp(-add_entropy/pool_size))
 668		 *
 669		 * For add_entropy <= pool_size/2 then
 670		 * (1 - exp(-add_entropy/pool_size)) >=
 671		 *    (add_entropy/pool_size)*0.7869...
 672		 * so we can approximate the exponential with
 673		 * 3/4*add_entropy/pool_size and still be on the
 674		 * safe side by adding at most pool_size/2 at a time.
 675		 *
 676		 * The use of pool_size-2 in the while statement is to
 677		 * prevent rounding artifacts from making the loop
 678		 * arbitrarily long; this limits the loop to log2(pool_size)*2
 679		 * turns no matter how large nbits is.
 680		 */
 681		int pnfrac = nfrac;
 682		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 683		/* The +2 corresponds to the /4 in the denominator */
 684
 685		do {
 686			unsigned int anfrac = min(pnfrac, pool_size/2);
 687			unsigned int add =
 688				((pool_size - entropy_count)*anfrac*3) >> s;
 689
 690			entropy_count += add;
 691			pnfrac -= anfrac;
 692		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
 693	}
 694
 695	if (unlikely(entropy_count < 0)) {
 696		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
 697			r->name, entropy_count);
 698		WARN_ON(1);
 
 699		entropy_count = 0;
 700	} else if (entropy_count > pool_size)
 701		entropy_count = pool_size;
 702	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 703		goto retry;
 704
 705	r->entropy_total += nbits;
 706	if (!r->initialized && r->entropy_total > 128) {
 707		r->initialized = 1;
 708		r->entropy_total = 0;
 709	}
 710
 711	trace_credit_entropy_bits(r->name, nbits,
 712				  entropy_count >> ENTROPY_SHIFT,
 713				  r->entropy_total, _RET_IP_);
 714
 715	if (r == &input_pool) {
 716		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 717
 718		if (crng_init < 2 && entropy_bits >= 128) {
 719			crng_reseed(&primary_crng, r);
 720			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
 721		}
 722
 723		/* should we wake readers? */
 724		if (entropy_bits >= random_read_wakeup_bits &&
 725		    wq_has_sleeper(&random_read_wait)) {
 726			wake_up_interruptible(&random_read_wait);
 727			kill_fasync(&fasync, SIGIO, POLL_IN);
 728		}
 729		/* If the input pool is getting full, send some
 730		 * entropy to the blocking pool until it is 75% full.
 731		 */
 732		if (entropy_bits > random_write_wakeup_bits &&
 733		    r->initialized &&
 734		    r->entropy_total >= 2*random_read_wakeup_bits) {
 735			struct entropy_store *other = &blocking_pool;
 736
 737			if (other->entropy_count <=
 738			    3 * other->poolinfo->poolfracbits / 4) {
 739				schedule_work(&other->push_work);
 740				r->entropy_total = 0;
 741			}
 742		}
 743	}
 744}
 745
 746static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 747{
 748	const int nbits_max = r->poolinfo->poolwords * 32;
 749
 750	if (nbits < 0)
 751		return -EINVAL;
 752
 753	/* Cap the value to avoid overflows */
 754	nbits = min(nbits,  nbits_max);
 755
 756	credit_entropy_bits(r, nbits);
 757	return 0;
 758}
 759
 760/*********************************************************************
 761 *
 762 * CRNG using CHACHA20
 763 *
 764 *********************************************************************/
 765
 766#define CRNG_RESEED_INTERVAL (300*HZ)
 
 
 
 
 
 767
 768static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
 769
 770#ifdef CONFIG_NUMA
 771/*
 772 * Hack to deal with crazy userspace progams when they are all trying
 773 * to access /dev/urandom in parallel.  The programs are almost
 774 * certainly doing something terribly wrong, but we'll work around
 775 * their brain damage.
 776 */
 777static struct crng_state **crng_node_pool __read_mostly;
 778#endif
 779
 780static void invalidate_batched_entropy(void);
 781
 782static void crng_initialize(struct crng_state *crng)
 783{
 784	int		i;
 785	unsigned long	rv;
 786
 787	memcpy(&crng->state[0], "expand 32-byte k", 16);
 788	if (crng == &primary_crng)
 789		_extract_entropy(&input_pool, &crng->state[4],
 790				 sizeof(__u32) * 12, 0);
 791	else
 792		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
 793	for (i = 4; i < 16; i++) {
 794		if (!arch_get_random_seed_long(&rv) &&
 795		    !arch_get_random_long(&rv))
 796			rv = random_get_entropy();
 797		crng->state[i] ^= rv;
 798	}
 799	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 800}
 801
 802#ifdef CONFIG_NUMA
 803static void do_numa_crng_init(struct work_struct *work)
 804{
 805	int i;
 806	struct crng_state *crng;
 807	struct crng_state **pool;
 808
 809	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
 810	for_each_online_node(i) {
 811		crng = kmalloc_node(sizeof(struct crng_state),
 812				    GFP_KERNEL | __GFP_NOFAIL, i);
 813		spin_lock_init(&crng->lock);
 814		crng_initialize(crng);
 815		pool[i] = crng;
 816	}
 817	mb();
 818	if (cmpxchg(&crng_node_pool, NULL, pool)) {
 819		for_each_node(i)
 820			kfree(pool[i]);
 821		kfree(pool);
 822	}
 823}
 824
 825static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
 826
 827static void numa_crng_init(void)
 828{
 829	schedule_work(&numa_crng_init_work);
 830}
 831#else
 832static void numa_crng_init(void) {}
 833#endif
 834
 835/*
 836 * crng_fast_load() can be called by code in the interrupt service
 837 * path.  So we can't afford to dilly-dally.
 838 */
 839static int crng_fast_load(const char *cp, size_t len)
 840{
 841	unsigned long flags;
 842	char *p;
 843
 844	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 845		return 0;
 846	if (crng_init != 0) {
 847		spin_unlock_irqrestore(&primary_crng.lock, flags);
 848		return 0;
 849	}
 850	p = (unsigned char *) &primary_crng.state[4];
 851	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
 852		p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
 853		cp++; crng_init_cnt++; len--;
 854	}
 855	spin_unlock_irqrestore(&primary_crng.lock, flags);
 856	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
 857		invalidate_batched_entropy();
 858		crng_init = 1;
 859		wake_up_interruptible(&crng_init_wait);
 860		pr_notice("random: fast init done\n");
 861	}
 862	return 1;
 863}
 864
 865/*
 866 * crng_slow_load() is called by add_device_randomness, which has two
 867 * attributes.  (1) We can't trust the buffer passed to it is
 868 * guaranteed to be unpredictable (so it might not have any entropy at
 869 * all), and (2) it doesn't have the performance constraints of
 870 * crng_fast_load().
 871 *
 872 * So we do something more comprehensive which is guaranteed to touch
 873 * all of the primary_crng's state, and which uses a LFSR with a
 874 * period of 255 as part of the mixing algorithm.  Finally, we do
 875 * *not* advance crng_init_cnt since buffer we may get may be something
 876 * like a fixed DMI table (for example), which might very well be
 877 * unique to the machine, but is otherwise unvarying.
 878 */
 879static int crng_slow_load(const char *cp, size_t len)
 880{
 881	unsigned long		flags;
 882	static unsigned char	lfsr = 1;
 883	unsigned char		tmp;
 884	unsigned		i, max = CHACHA20_KEY_SIZE;
 885	const char *		src_buf = cp;
 886	char *			dest_buf = (char *) &primary_crng.state[4];
 887
 888	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 889		return 0;
 890	if (crng_init != 0) {
 891		spin_unlock_irqrestore(&primary_crng.lock, flags);
 892		return 0;
 893	}
 894	if (len > max)
 895		max = len;
 896
 897	for (i = 0; i < max ; i++) {
 898		tmp = lfsr;
 899		lfsr >>= 1;
 900		if (tmp & 1)
 901			lfsr ^= 0xE1;
 902		tmp = dest_buf[i % CHACHA20_KEY_SIZE];
 903		dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
 904		lfsr += (tmp << 3) | (tmp >> 5);
 905	}
 906	spin_unlock_irqrestore(&primary_crng.lock, flags);
 907	return 1;
 908}
 909
 910static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
 
 911{
 912	unsigned long	flags;
 913	int		i, num;
 914	union {
 915		__u32	block[CHACHA20_BLOCK_WORDS];
 916		__u32	key[8];
 917	} buf;
 918
 919	if (r) {
 920		num = extract_entropy(r, &buf, 32, 16, 0);
 921		if (num == 0)
 922			return;
 923	} else {
 924		_extract_crng(&primary_crng, buf.block);
 925		_crng_backtrack_protect(&primary_crng, buf.block,
 926					CHACHA20_KEY_SIZE);
 927	}
 928	spin_lock_irqsave(&crng->lock, flags);
 929	for (i = 0; i < 8; i++) {
 930		unsigned long	rv;
 931		if (!arch_get_random_seed_long(&rv) &&
 932		    !arch_get_random_long(&rv))
 933			rv = random_get_entropy();
 934		crng->state[i+4] ^= buf.key[i] ^ rv;
 935	}
 936	memzero_explicit(&buf, sizeof(buf));
 937	crng->init_time = jiffies;
 938	spin_unlock_irqrestore(&crng->lock, flags);
 939	if (crng == &primary_crng && crng_init < 2) {
 940		invalidate_batched_entropy();
 941		numa_crng_init();
 942		crng_init = 2;
 943		process_random_ready_list();
 944		wake_up_interruptible(&crng_init_wait);
 945		pr_notice("random: crng init done\n");
 946		if (unseeded_warning.missed) {
 947			pr_notice("random: %d get_random_xx warning(s) missed "
 948				  "due to ratelimiting\n",
 949				  unseeded_warning.missed);
 950			unseeded_warning.missed = 0;
 951		}
 952		if (urandom_warning.missed) {
 953			pr_notice("random: %d urandom warning(s) missed "
 954				  "due to ratelimiting\n",
 955				  urandom_warning.missed);
 956			urandom_warning.missed = 0;
 957		}
 958	}
 959}
 960
 961static void _extract_crng(struct crng_state *crng,
 962			  __u32 out[CHACHA20_BLOCK_WORDS])
 963{
 964	unsigned long v, flags;
 965
 966	if (crng_ready() &&
 967	    (time_after(crng_global_init_time, crng->init_time) ||
 968	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
 969		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
 970	spin_lock_irqsave(&crng->lock, flags);
 971	if (arch_get_random_long(&v))
 972		crng->state[14] ^= v;
 973	chacha20_block(&crng->state[0], out);
 974	if (crng->state[12] == 0)
 975		crng->state[13]++;
 976	spin_unlock_irqrestore(&crng->lock, flags);
 977}
 978
 979static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])
 980{
 981	struct crng_state *crng = NULL;
 982
 983#ifdef CONFIG_NUMA
 984	if (crng_node_pool)
 985		crng = crng_node_pool[numa_node_id()];
 986	if (crng == NULL)
 987#endif
 988		crng = &primary_crng;
 989	_extract_crng(crng, out);
 990}
 991
 992/*
 993 * Use the leftover bytes from the CRNG block output (if there is
 994 * enough) to mutate the CRNG key to provide backtracking protection.
 995 */
 996static void _crng_backtrack_protect(struct crng_state *crng,
 997				    __u32 tmp[CHACHA20_BLOCK_WORDS], int used)
 998{
 999	unsigned long	flags;
1000	__u32		*s, *d;
1001	int		i;
1002
1003	used = round_up(used, sizeof(__u32));
1004	if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1005		extract_crng(tmp);
1006		used = 0;
1007	}
1008	spin_lock_irqsave(&crng->lock, flags);
1009	s = &tmp[used / sizeof(__u32)];
1010	d = &crng->state[4];
1011	for (i=0; i < 8; i++)
1012		*d++ ^= *s++;
1013	spin_unlock_irqrestore(&crng->lock, flags);
1014}
1015
1016static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used)
1017{
1018	struct crng_state *crng = NULL;
1019
1020#ifdef CONFIG_NUMA
1021	if (crng_node_pool)
1022		crng = crng_node_pool[numa_node_id()];
1023	if (crng == NULL)
1024#endif
1025		crng = &primary_crng;
1026	_crng_backtrack_protect(crng, tmp, used);
1027}
1028
1029static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1030{
1031	ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
1032	__u32 tmp[CHACHA20_BLOCK_WORDS];
1033	int large_request = (nbytes > 256);
1034
1035	while (nbytes) {
1036		if (large_request && need_resched()) {
1037			if (signal_pending(current)) {
1038				if (ret == 0)
1039					ret = -ERESTARTSYS;
1040				break;
1041			}
1042			schedule();
1043		}
1044
1045		extract_crng(tmp);
1046		i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1047		if (copy_to_user(buf, tmp, i)) {
1048			ret = -EFAULT;
1049			break;
1050		}
1051
1052		nbytes -= i;
1053		buf += i;
1054		ret += i;
1055	}
1056	crng_backtrack_protect(tmp, i);
1057
1058	/* Wipe data just written to memory */
1059	memzero_explicit(tmp, sizeof(tmp));
1060
1061	return ret;
1062}
1063
1064
1065/*********************************************************************
1066 *
1067 * Entropy input management
1068 *
1069 *********************************************************************/
1070
1071/* There is one of these per entropy source */
1072struct timer_rand_state {
1073	cycles_t last_time;
1074	long last_delta, last_delta2;
1075};
1076
1077#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1078
1079/*
1080 * Add device- or boot-specific data to the input pool to help
1081 * initialize it.
1082 *
1083 * None of this adds any entropy; it is meant to avoid the problem of
1084 * the entropy pool having similar initial state across largely
1085 * identical devices.
1086 */
1087void add_device_randomness(const void *buf, unsigned int size)
1088{
1089	unsigned long time = random_get_entropy() ^ jiffies;
1090	unsigned long flags;
1091
1092	if (!crng_ready() && size)
1093		crng_slow_load(buf, size);
1094
1095	trace_add_device_randomness(size, _RET_IP_);
1096	spin_lock_irqsave(&input_pool.lock, flags);
1097	_mix_pool_bytes(&input_pool, buf, size);
1098	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1099	spin_unlock_irqrestore(&input_pool.lock, flags);
1100}
1101EXPORT_SYMBOL(add_device_randomness);
1102
1103static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1104
1105/*
1106 * This function adds entropy to the entropy "pool" by using timing
1107 * delays.  It uses the timer_rand_state structure to make an estimate
1108 * of how many bits of entropy this call has added to the pool.
1109 *
1110 * The number "num" is also added to the pool - it should somehow describe
1111 * the type of event which just happened.  This is currently 0-255 for
1112 * keyboard scan codes, and 256 upwards for interrupts.
1113 *
1114 */
1115static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1116{
1117	struct entropy_store	*r;
1118	struct {
 
1119		long jiffies;
1120		unsigned cycles;
1121		unsigned num;
1122	} sample;
1123	long delta, delta2, delta3;
1124
1125	preempt_disable();
 
 
 
 
1126
1127	sample.jiffies = jiffies;
1128	sample.cycles = random_get_entropy();
1129	sample.num = num;
1130	r = &input_pool;
1131	mix_pool_bytes(r, &sample, sizeof(sample));
1132
1133	/*
1134	 * Calculate number of bits of randomness we probably added.
1135	 * We take into account the first, second and third-order deltas
1136	 * in order to make our estimate.
1137	 */
1138	delta = sample.jiffies - state->last_time;
1139	state->last_time = sample.jiffies;
1140
1141	delta2 = delta - state->last_delta;
1142	state->last_delta = delta;
1143
1144	delta3 = delta2 - state->last_delta2;
1145	state->last_delta2 = delta2;
1146
1147	if (delta < 0)
1148		delta = -delta;
1149	if (delta2 < 0)
1150		delta2 = -delta2;
1151	if (delta3 < 0)
1152		delta3 = -delta3;
1153	if (delta > delta2)
1154		delta = delta2;
1155	if (delta > delta3)
1156		delta = delta3;
1157
1158	/*
1159	 * delta is now minimum absolute delta.
1160	 * Round down by 1 bit on general principles,
1161	 * and limit entropy entimate to 12 bits.
1162	 */
1163	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1164
 
 
 
 
 
 
 
 
 
1165	preempt_enable();
1166}
1167
1168void add_input_randomness(unsigned int type, unsigned int code,
1169				 unsigned int value)
1170{
1171	static unsigned char last_value;
1172
1173	/* ignore autorepeat and the like */
1174	if (value == last_value)
1175		return;
1176
 
1177	last_value = value;
1178	add_timer_randomness(&input_timer_state,
1179			     (type << 4) ^ code ^ (code >> 4) ^ value);
1180	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1181}
1182EXPORT_SYMBOL_GPL(add_input_randomness);
1183
1184static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1185
1186#ifdef ADD_INTERRUPT_BENCH
1187static unsigned long avg_cycles, avg_deviation;
1188
1189#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1190#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1191
1192static void add_interrupt_bench(cycles_t start)
1193{
1194        long delta = random_get_entropy() - start;
1195
1196        /* Use a weighted moving average */
1197        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1198        avg_cycles += delta;
1199        /* And average deviation */
1200        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1201        avg_deviation += delta;
1202}
1203#else
1204#define add_interrupt_bench(x)
1205#endif
1206
1207static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1208{
1209	__u32 *ptr = (__u32 *) regs;
1210	unsigned int idx;
1211
1212	if (regs == NULL)
1213		return 0;
1214	idx = READ_ONCE(f->reg_idx);
1215	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1216		idx = 0;
1217	ptr += idx++;
1218	WRITE_ONCE(f->reg_idx, idx);
1219	return *ptr;
1220}
1221
1222void add_interrupt_randomness(int irq, int irq_flags)
1223{
1224	struct entropy_store	*r;
1225	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1226	struct pt_regs		*regs = get_irq_regs();
1227	unsigned long		now = jiffies;
1228	cycles_t		cycles = random_get_entropy();
1229	__u32			c_high, j_high;
1230	__u64			ip;
1231	unsigned long		seed;
1232	int			credit = 0;
1233
1234	if (cycles == 0)
1235		cycles = get_reg(fast_pool, regs);
1236	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1237	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1238	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1239	fast_pool->pool[1] ^= now ^ c_high;
1240	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1241	fast_pool->pool[2] ^= ip;
1242	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1243		get_reg(fast_pool, regs);
1244
1245	fast_mix(fast_pool);
1246	add_interrupt_bench(cycles);
1247
1248	if (unlikely(crng_init == 0)) {
1249		if ((fast_pool->count >= 64) &&
1250		    crng_fast_load((char *) fast_pool->pool,
1251				   sizeof(fast_pool->pool))) {
1252			fast_pool->count = 0;
1253			fast_pool->last = now;
1254		}
1255		return;
1256	}
1257
1258	if ((fast_pool->count < 64) &&
1259	    !time_after(now, fast_pool->last + HZ))
1260		return;
1261
1262	r = &input_pool;
1263	if (!spin_trylock(&r->lock))
1264		return;
1265
1266	fast_pool->last = now;
1267	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1268
1269	/*
1270	 * If we have architectural seed generator, produce a seed and
1271	 * add it to the pool.  For the sake of paranoia don't let the
1272	 * architectural seed generator dominate the input from the
1273	 * interrupt noise.
1274	 */
1275	if (arch_get_random_seed_long(&seed)) {
1276		__mix_pool_bytes(r, &seed, sizeof(seed));
1277		credit = 1;
1278	}
1279	spin_unlock(&r->lock);
1280
1281	fast_pool->count = 0;
1282
1283	/* award one bit for the contents of the fast pool */
1284	credit_entropy_bits(r, credit + 1);
1285}
1286EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1287
1288#ifdef CONFIG_BLOCK
1289void add_disk_randomness(struct gendisk *disk)
1290{
1291	if (!disk || !disk->random)
1292		return;
1293	/* first major is 1, so we get >= 0x200 here */
 
 
 
1294	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1295	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1296}
1297EXPORT_SYMBOL_GPL(add_disk_randomness);
1298#endif
1299
1300/*********************************************************************
1301 *
1302 * Entropy extraction routines
1303 *
1304 *********************************************************************/
1305
 
 
 
1306/*
1307 * This utility inline function is responsible for transferring entropy
1308 * from the primary pool to the secondary extraction pool. We make
1309 * sure we pull enough for a 'catastrophic reseed'.
1310 */
1311static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1312static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1313{
1314	if (!r->pull ||
1315	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1316	    r->entropy_count > r->poolinfo->poolfracbits)
1317		return;
1318
1319	_xfer_secondary_pool(r, nbytes);
1320}
1321
1322static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1323{
1324	__u32	tmp[OUTPUT_POOL_WORDS];
 
 
1325
1326	int bytes = nbytes;
 
 
 
1327
1328	/* pull at least as much as a wakeup */
1329	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1330	/* but never more than the buffer size */
1331	bytes = min_t(int, bytes, sizeof(tmp));
1332
1333	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1334				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1335	bytes = extract_entropy(r->pull, tmp, bytes,
1336				random_read_wakeup_bits / 8, 0);
1337	mix_pool_bytes(r, tmp, bytes);
1338	credit_entropy_bits(r, bytes*8);
1339}
1340
1341/*
1342 * Used as a workqueue function so that when the input pool is getting
1343 * full, we can "spill over" some entropy to the output pools.  That
1344 * way the output pools can store some of the excess entropy instead
1345 * of letting it go to waste.
 
 
 
 
 
1346 */
1347static void push_to_pool(struct work_struct *work)
1348{
1349	struct entropy_store *r = container_of(work, struct entropy_store,
1350					      push_work);
1351	BUG_ON(!r);
1352	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1353	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1354			   r->pull->entropy_count >> ENTROPY_SHIFT);
1355}
1356
1357/*
1358 * This function decides how many bytes to actually take from the
1359 * given pool, and also debits the entropy count accordingly.
1360 */
1361static size_t account(struct entropy_store *r, size_t nbytes, int min,
1362		      int reserved)
1363{
1364	int entropy_count, orig, have_bytes;
1365	size_t ibytes, nfrac;
1366
1367	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
 
 
 
 
 
1368
1369	/* Can we pull enough? */
1370retry:
1371	entropy_count = orig = READ_ONCE(r->entropy_count);
1372	ibytes = nbytes;
1373	/* never pull more than available */
1374	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1375
1376	if ((have_bytes -= reserved) < 0)
1377		have_bytes = 0;
1378	ibytes = min_t(size_t, ibytes, have_bytes);
1379	if (ibytes < min)
1380		ibytes = 0;
1381
1382	if (unlikely(entropy_count < 0)) {
1383		pr_warn("random: negative entropy count: pool %s count %d\n",
1384			r->name, entropy_count);
1385		WARN_ON(1);
1386		entropy_count = 0;
1387	}
1388	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1389	if ((size_t) entropy_count > nfrac)
1390		entropy_count -= nfrac;
1391	else
1392		entropy_count = 0;
1393
1394	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1395		goto retry;
1396
1397	trace_debit_entropy(r->name, 8 * ibytes);
1398	if (ibytes &&
1399	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1400		wake_up_interruptible(&random_write_wait);
1401		kill_fasync(&fasync, SIGIO, POLL_OUT);
1402	}
1403
1404	return ibytes;
1405}
1406
1407/*
1408 * This function does the actual extraction for extract_entropy and
1409 * extract_entropy_user.
1410 *
1411 * Note: we assume that .poolwords is a multiple of 16 words.
1412 */
1413static void extract_buf(struct entropy_store *r, __u8 *out)
1414{
1415	int i;
1416	union {
1417		__u32 w[5];
1418		unsigned long l[LONGS(20)];
1419	} hash;
1420	__u32 workspace[SHA_WORKSPACE_WORDS];
1421	unsigned long flags;
1422
1423	/*
1424	 * If we have an architectural hardware random number
1425	 * generator, use it for SHA's initial vector
1426	 */
1427	sha_init(hash.w);
1428	for (i = 0; i < LONGS(20); i++) {
1429		unsigned long v;
1430		if (!arch_get_random_long(&v))
1431			break;
1432		hash.l[i] = v;
1433	}
1434
1435	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1436	spin_lock_irqsave(&r->lock, flags);
1437	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1438		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1439
1440	/*
1441	 * We mix the hash back into the pool to prevent backtracking
1442	 * attacks (where the attacker knows the state of the pool
1443	 * plus the current outputs, and attempts to find previous
1444	 * ouputs), unless the hash function can be inverted. By
1445	 * mixing at least a SHA1 worth of hash data back, we make
1446	 * brute-forcing the feedback as hard as brute-forcing the
1447	 * hash.
1448	 */
1449	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1450	spin_unlock_irqrestore(&r->lock, flags);
1451
1452	memzero_explicit(workspace, sizeof(workspace));
 
 
 
 
 
 
1453
1454	/*
1455	 * In case the hash function has some recognizable output
1456	 * pattern, we fold it in half. Thus, we always feed back
1457	 * twice as much data as we output.
1458	 */
1459	hash.w[0] ^= hash.w[3];
1460	hash.w[1] ^= hash.w[4];
1461	hash.w[2] ^= rol32(hash.w[2], 16);
1462
1463	memcpy(out, &hash, EXTRACT_SIZE);
1464	memzero_explicit(&hash, sizeof(hash));
1465}
1466
1467static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1468				size_t nbytes, int fips)
1469{
1470	ssize_t ret = 0, i;
1471	__u8 tmp[EXTRACT_SIZE];
1472	unsigned long flags;
1473
 
 
 
1474	while (nbytes) {
1475		extract_buf(r, tmp);
1476
1477		if (fips) {
1478			spin_lock_irqsave(&r->lock, flags);
1479			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1480				panic("Hardware RNG duplicated output!\n");
1481			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1482			spin_unlock_irqrestore(&r->lock, flags);
1483		}
1484		i = min_t(int, nbytes, EXTRACT_SIZE);
1485		memcpy(buf, tmp, i);
1486		nbytes -= i;
1487		buf += i;
1488		ret += i;
1489	}
1490
1491	/* Wipe data just returned from memory */
1492	memzero_explicit(tmp, sizeof(tmp));
1493
1494	return ret;
1495}
1496
1497/*
1498 * This function extracts randomness from the "entropy pool", and
1499 * returns it in a buffer.
1500 *
1501 * The min parameter specifies the minimum amount we can pull before
1502 * failing to avoid races that defeat catastrophic reseeding while the
1503 * reserved parameter indicates how much entropy we must leave in the
1504 * pool after each pull to avoid starving other readers.
1505 */
1506static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1507				 size_t nbytes, int min, int reserved)
1508{
1509	__u8 tmp[EXTRACT_SIZE];
1510	unsigned long flags;
1511
1512	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1513	if (fips_enabled) {
1514		spin_lock_irqsave(&r->lock, flags);
1515		if (!r->last_data_init) {
1516			r->last_data_init = 1;
1517			spin_unlock_irqrestore(&r->lock, flags);
1518			trace_extract_entropy(r->name, EXTRACT_SIZE,
1519					      ENTROPY_BITS(r), _RET_IP_);
1520			xfer_secondary_pool(r, EXTRACT_SIZE);
1521			extract_buf(r, tmp);
1522			spin_lock_irqsave(&r->lock, flags);
1523			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1524		}
1525		spin_unlock_irqrestore(&r->lock, flags);
1526	}
1527
1528	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1529	xfer_secondary_pool(r, nbytes);
1530	nbytes = account(r, nbytes, min, reserved);
1531
1532	return _extract_entropy(r, buf, nbytes, fips_enabled);
1533}
1534
1535/*
1536 * This function extracts randomness from the "entropy pool", and
1537 * returns it in a userspace buffer.
1538 */
1539static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1540				    size_t nbytes)
1541{
1542	ssize_t ret = 0, i;
1543	__u8 tmp[EXTRACT_SIZE];
1544	int large_request = (nbytes > 256);
1545
1546	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1547	xfer_secondary_pool(r, nbytes);
1548	nbytes = account(r, nbytes, 0, 0);
1549
1550	while (nbytes) {
1551		if (large_request && need_resched()) {
1552			if (signal_pending(current)) {
1553				if (ret == 0)
1554					ret = -ERESTARTSYS;
1555				break;
1556			}
1557			schedule();
1558		}
1559
1560		extract_buf(r, tmp);
1561		i = min_t(int, nbytes, EXTRACT_SIZE);
1562		if (copy_to_user(buf, tmp, i)) {
1563			ret = -EFAULT;
1564			break;
1565		}
1566
1567		nbytes -= i;
1568		buf += i;
1569		ret += i;
1570	}
1571
1572	/* Wipe data just returned from memory */
1573	memzero_explicit(tmp, sizeof(tmp));
1574
1575	return ret;
1576}
1577
1578#define warn_unseeded_randomness(previous) \
1579	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1580
1581static void _warn_unseeded_randomness(const char *func_name, void *caller,
1582				      void **previous)
1583{
1584#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1585	const bool print_once = false;
1586#else
1587	static bool print_once __read_mostly;
1588#endif
1589
1590	if (print_once ||
1591	    crng_ready() ||
1592	    (previous && (caller == READ_ONCE(*previous))))
1593		return;
1594	WRITE_ONCE(*previous, caller);
1595#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1596	print_once = true;
1597#endif
1598	if (__ratelimit(&unseeded_warning))
1599		pr_notice("random: %s called from %pS with crng_init=%d\n",
1600			  func_name, caller, crng_init);
1601}
1602
1603/*
1604 * This function is the exported kernel interface.  It returns some
1605 * number of good random numbers, suitable for key generation, seeding
1606 * TCP sequence numbers, etc.  It does not rely on the hardware random
1607 * number generator.  For random bytes direct from the hardware RNG
1608 * (when available), use get_random_bytes_arch(). In order to ensure
1609 * that the randomness provided by this function is okay, the function
1610 * wait_for_random_bytes() should be called and return 0 at least once
1611 * at any point prior.
1612 */
1613static void _get_random_bytes(void *buf, int nbytes)
1614{
1615	__u32 tmp[CHACHA20_BLOCK_WORDS];
1616
1617	trace_get_random_bytes(nbytes, _RET_IP_);
1618
1619	while (nbytes >= CHACHA20_BLOCK_SIZE) {
1620		extract_crng(buf);
1621		buf += CHACHA20_BLOCK_SIZE;
1622		nbytes -= CHACHA20_BLOCK_SIZE;
1623	}
1624
1625	if (nbytes > 0) {
1626		extract_crng(tmp);
1627		memcpy(buf, tmp, nbytes);
1628		crng_backtrack_protect(tmp, nbytes);
1629	} else
1630		crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1631	memzero_explicit(tmp, sizeof(tmp));
1632}
1633
1634void get_random_bytes(void *buf, int nbytes)
1635{
1636	static void *previous;
1637
1638	warn_unseeded_randomness(&previous);
1639	_get_random_bytes(buf, nbytes);
1640}
1641EXPORT_SYMBOL(get_random_bytes);
1642
1643/*
1644 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1645 * cryptographically secure random numbers. This applies to: the /dev/urandom
1646 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1647 * family of functions. Using any of these functions without first calling
1648 * this function forfeits the guarantee of security.
1649 *
1650 * Returns: 0 if the urandom pool has been seeded.
1651 *          -ERESTARTSYS if the function was interrupted by a signal.
1652 */
1653int wait_for_random_bytes(void)
1654{
1655	if (likely(crng_ready()))
1656		return 0;
1657	return wait_event_interruptible(crng_init_wait, crng_ready());
1658}
1659EXPORT_SYMBOL(wait_for_random_bytes);
1660
1661/*
1662 * Add a callback function that will be invoked when the nonblocking
1663 * pool is initialised.
1664 *
1665 * returns: 0 if callback is successfully added
1666 *	    -EALREADY if pool is already initialised (callback not called)
1667 *	    -ENOENT if module for callback is not alive
1668 */
1669int add_random_ready_callback(struct random_ready_callback *rdy)
1670{
1671	struct module *owner;
1672	unsigned long flags;
1673	int err = -EALREADY;
1674
1675	if (crng_ready())
1676		return err;
1677
1678	owner = rdy->owner;
1679	if (!try_module_get(owner))
1680		return -ENOENT;
1681
1682	spin_lock_irqsave(&random_ready_list_lock, flags);
1683	if (crng_ready())
1684		goto out;
1685
1686	owner = NULL;
1687
1688	list_add(&rdy->list, &random_ready_list);
1689	err = 0;
1690
1691out:
1692	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1693
1694	module_put(owner);
1695
1696	return err;
1697}
1698EXPORT_SYMBOL(add_random_ready_callback);
1699
1700/*
1701 * Delete a previously registered readiness callback function.
1702 */
1703void del_random_ready_callback(struct random_ready_callback *rdy)
1704{
1705	unsigned long flags;
1706	struct module *owner = NULL;
1707
1708	spin_lock_irqsave(&random_ready_list_lock, flags);
1709	if (!list_empty(&rdy->list)) {
1710		list_del_init(&rdy->list);
1711		owner = rdy->owner;
1712	}
1713	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1714
1715	module_put(owner);
1716}
1717EXPORT_SYMBOL(del_random_ready_callback);
1718
1719/*
1720 * This function will use the architecture-specific hardware random
1721 * number generator if it is available.  The arch-specific hw RNG will
1722 * almost certainly be faster than what we can do in software, but it
1723 * is impossible to verify that it is implemented securely (as
1724 * opposed, to, say, the AES encryption of a sequence number using a
1725 * key known by the NSA).  So it's useful if we need the speed, but
1726 * only if we're willing to trust the hardware manufacturer not to
1727 * have put in a back door.
1728 */
1729void get_random_bytes_arch(void *buf, int nbytes)
1730{
1731	char *p = buf;
1732
1733	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1734	while (nbytes) {
1735		unsigned long v;
1736		int chunk = min(nbytes, (int)sizeof(unsigned long));
1737
1738		if (!arch_get_random_long(&v))
1739			break;
1740		
1741		memcpy(p, &v, chunk);
1742		p += chunk;
1743		nbytes -= chunk;
1744	}
1745
1746	if (nbytes)
1747		get_random_bytes(p, nbytes);
1748}
1749EXPORT_SYMBOL(get_random_bytes_arch);
1750
1751
1752/*
1753 * init_std_data - initialize pool with system data
1754 *
1755 * @r: pool to initialize
1756 *
1757 * This function clears the pool's entropy count and mixes some system
1758 * data into the pool to prepare it for use. The pool is not cleared
1759 * as that can only decrease the entropy in the pool.
1760 */
1761static void init_std_data(struct entropy_store *r)
1762{
1763	int i;
1764	ktime_t now = ktime_get_real();
1765	unsigned long rv;
 
 
 
1766
1767	r->last_pulled = jiffies;
1768	mix_pool_bytes(r, &now, sizeof(now));
1769	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1770		if (!arch_get_random_seed_long(&rv) &&
1771		    !arch_get_random_long(&rv))
1772			rv = random_get_entropy();
1773		mix_pool_bytes(r, &rv, sizeof(rv));
1774	}
1775	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1776}
1777
1778/*
1779 * Note that setup_arch() may call add_device_randomness()
1780 * long before we get here. This allows seeding of the pools
1781 * with some platform dependent data very early in the boot
1782 * process. But it limits our options here. We must use
1783 * statically allocated structures that already have all
1784 * initializations complete at compile time. We should also
1785 * take care not to overwrite the precious per platform data
1786 * we were given.
1787 */
1788static int rand_initialize(void)
1789{
1790	init_std_data(&input_pool);
1791	init_std_data(&blocking_pool);
1792	crng_initialize(&primary_crng);
1793	crng_global_init_time = jiffies;
1794	if (ratelimit_disable) {
1795		urandom_warning.interval = 0;
1796		unseeded_warning.interval = 0;
1797	}
1798	return 0;
1799}
1800early_initcall(rand_initialize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1801
1802#ifdef CONFIG_BLOCK
1803void rand_initialize_disk(struct gendisk *disk)
1804{
1805	struct timer_rand_state *state;
1806
1807	/*
1808	 * If kzalloc returns null, we just won't use that entropy
1809	 * source.
1810	 */
1811	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1812	if (state) {
1813		state->last_time = INITIAL_JIFFIES;
1814		disk->random = state;
1815	}
1816}
1817#endif
1818
1819static ssize_t
1820_random_read(int nonblock, char __user *buf, size_t nbytes)
1821{
1822	ssize_t n;
1823
1824	if (nbytes == 0)
1825		return 0;
1826
1827	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1828	while (1) {
1829		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1830		if (n < 0)
1831			return n;
1832		trace_random_read(n*8, (nbytes-n)*8,
1833				  ENTROPY_BITS(&blocking_pool),
1834				  ENTROPY_BITS(&input_pool));
1835		if (n > 0)
1836			return n;
1837
1838		/* Pool is (near) empty.  Maybe wait and retry. */
1839		if (nonblock)
1840			return -EAGAIN;
1841
1842		wait_event_interruptible(random_read_wait,
1843			ENTROPY_BITS(&input_pool) >=
1844			random_read_wakeup_bits);
1845		if (signal_pending(current))
1846			return -ERESTARTSYS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847	}
1848}
1849
1850static ssize_t
1851random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1852{
1853	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1854}
1855
1856static ssize_t
1857urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1858{
1859	unsigned long flags;
1860	static int maxwarn = 10;
1861	int ret;
1862
1863	if (!crng_ready() && maxwarn > 0) {
1864		maxwarn--;
1865		if (__ratelimit(&urandom_warning))
1866			printk(KERN_NOTICE "random: %s: uninitialized "
1867			       "urandom read (%zd bytes read)\n",
1868			       current->comm, nbytes);
1869		spin_lock_irqsave(&primary_crng.lock, flags);
1870		crng_init_cnt = 0;
1871		spin_unlock_irqrestore(&primary_crng.lock, flags);
1872	}
1873	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1874	ret = extract_crng_user(buf, nbytes);
1875	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1876	return ret;
1877}
1878
1879static __poll_t
1880random_poll(struct file *file, poll_table * wait)
1881{
1882	__poll_t mask;
1883
1884	poll_wait(file, &random_read_wait, wait);
1885	poll_wait(file, &random_write_wait, wait);
1886	mask = 0;
1887	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1888		mask |= EPOLLIN | EPOLLRDNORM;
1889	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1890		mask |= EPOLLOUT | EPOLLWRNORM;
1891	return mask;
1892}
1893
1894static int
1895write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1896{
1897	size_t bytes;
1898	__u32 buf[16];
1899	const char __user *p = buffer;
1900
1901	while (count > 0) {
1902		bytes = min(count, sizeof(buf));
1903		if (copy_from_user(&buf, p, bytes))
1904			return -EFAULT;
1905
1906		count -= bytes;
1907		p += bytes;
1908
1909		mix_pool_bytes(r, buf, bytes);
1910		cond_resched();
1911	}
1912
1913	return 0;
1914}
1915
1916static ssize_t random_write(struct file *file, const char __user *buffer,
1917			    size_t count, loff_t *ppos)
1918{
1919	size_t ret;
1920
1921	ret = write_pool(&input_pool, buffer, count);
 
 
 
1922	if (ret)
1923		return ret;
1924
1925	return (ssize_t)count;
1926}
1927
1928static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1929{
1930	int size, ent_count;
1931	int __user *p = (int __user *)arg;
1932	int retval;
1933
1934	switch (cmd) {
1935	case RNDGETENTCNT:
1936		/* inherently racy, no point locking */
1937		ent_count = ENTROPY_BITS(&input_pool);
1938		if (put_user(ent_count, p))
1939			return -EFAULT;
1940		return 0;
1941	case RNDADDTOENTCNT:
1942		if (!capable(CAP_SYS_ADMIN))
1943			return -EPERM;
1944		if (get_user(ent_count, p))
1945			return -EFAULT;
1946		return credit_entropy_bits_safe(&input_pool, ent_count);
 
1947	case RNDADDENTROPY:
1948		if (!capable(CAP_SYS_ADMIN))
1949			return -EPERM;
1950		if (get_user(ent_count, p++))
1951			return -EFAULT;
1952		if (ent_count < 0)
1953			return -EINVAL;
1954		if (get_user(size, p++))
1955			return -EFAULT;
1956		retval = write_pool(&input_pool, (const char __user *)p,
1957				    size);
1958		if (retval < 0)
1959			return retval;
1960		return credit_entropy_bits_safe(&input_pool, ent_count);
 
1961	case RNDZAPENTCNT:
1962	case RNDCLEARPOOL:
1963		/*
1964		 * Clear the entropy pool counters. We no longer clear
1965		 * the entropy pool, as that's silly.
1966		 */
1967		if (!capable(CAP_SYS_ADMIN))
1968			return -EPERM;
1969		input_pool.entropy_count = 0;
1970		blocking_pool.entropy_count = 0;
1971		return 0;
1972	case RNDRESEEDCRNG:
1973		if (!capable(CAP_SYS_ADMIN))
1974			return -EPERM;
1975		if (crng_init < 2)
1976			return -ENODATA;
1977		crng_reseed(&primary_crng, NULL);
1978		crng_global_init_time = jiffies - 1;
1979		return 0;
1980	default:
1981		return -EINVAL;
1982	}
1983}
1984
1985static int random_fasync(int fd, struct file *filp, int on)
1986{
1987	return fasync_helper(fd, filp, on, &fasync);
1988}
1989
1990const struct file_operations random_fops = {
1991	.read  = random_read,
1992	.write = random_write,
1993	.poll  = random_poll,
1994	.unlocked_ioctl = random_ioctl,
1995	.fasync = random_fasync,
1996	.llseek = noop_llseek,
1997};
1998
1999const struct file_operations urandom_fops = {
2000	.read  = urandom_read,
2001	.write = random_write,
2002	.unlocked_ioctl = random_ioctl,
2003	.fasync = random_fasync,
2004	.llseek = noop_llseek,
2005};
2006
2007SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2008		unsigned int, flags)
 
 
 
 
 
 
 
 
 
2009{
2010	int ret;
2011
2012	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2013		return -EINVAL;
2014
2015	if (count > INT_MAX)
2016		count = INT_MAX;
2017
2018	if (flags & GRND_RANDOM)
2019		return _random_read(flags & GRND_NONBLOCK, buf, count);
2020
2021	if (!crng_ready()) {
2022		if (flags & GRND_NONBLOCK)
2023			return -EAGAIN;
2024		ret = wait_for_random_bytes();
2025		if (unlikely(ret))
2026			return ret;
2027	}
2028	return urandom_read(NULL, buf, count, NULL);
2029}
 
2030
2031/********************************************************************
2032 *
2033 * Sysctl interface
2034 *
2035 ********************************************************************/
2036
2037#ifdef CONFIG_SYSCTL
2038
2039#include <linux/sysctl.h>
2040
2041static int min_read_thresh = 8, min_write_thresh;
2042static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2043static int max_write_thresh = INPUT_POOL_WORDS * 32;
2044static int random_min_urandom_seed = 60;
2045static char sysctl_bootid[16];
2046
2047/*
2048 * This function is used to return both the bootid UUID, and random
2049 * UUID.  The difference is in whether table->data is NULL; if it is,
2050 * then a new UUID is generated and returned to the user.
2051 *
2052 * If the user accesses this via the proc interface, the UUID will be
2053 * returned as an ASCII string in the standard UUID format; if via the
2054 * sysctl system call, as 16 bytes of binary data.
2055 */
2056static int proc_do_uuid(struct ctl_table *table, int write,
2057			void __user *buffer, size_t *lenp, loff_t *ppos)
2058{
2059	struct ctl_table fake_table;
2060	unsigned char buf[64], tmp_uuid[16], *uuid;
2061
2062	uuid = table->data;
2063	if (!uuid) {
2064		uuid = tmp_uuid;
 
 
 
2065		generate_random_uuid(uuid);
2066	} else {
2067		static DEFINE_SPINLOCK(bootid_spinlock);
2068
2069		spin_lock(&bootid_spinlock);
2070		if (!uuid[8])
2071			generate_random_uuid(uuid);
2072		spin_unlock(&bootid_spinlock);
2073	}
2074
2075	sprintf(buf, "%pU", uuid);
2076
2077	fake_table.data = buf;
2078	fake_table.maxlen = sizeof(buf);
2079
2080	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2081}
2082
2083/*
2084 * Return entropy available scaled to integral bits
2085 */
2086static int proc_do_entropy(struct ctl_table *table, int write,
2087			   void __user *buffer, size_t *lenp, loff_t *ppos)
2088{
2089	struct ctl_table fake_table;
2090	int entropy_count;
2091
2092	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2093
2094	fake_table.data = &entropy_count;
2095	fake_table.maxlen = sizeof(entropy_count);
2096
2097	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2098}
2099
2100static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2101extern struct ctl_table random_table[];
2102struct ctl_table random_table[] = {
2103	{
2104		.procname	= "poolsize",
2105		.data		= &sysctl_poolsize,
2106		.maxlen		= sizeof(int),
2107		.mode		= 0444,
2108		.proc_handler	= proc_dointvec,
2109	},
2110	{
2111		.procname	= "entropy_avail",
2112		.maxlen		= sizeof(int),
2113		.mode		= 0444,
2114		.proc_handler	= proc_do_entropy,
2115		.data		= &input_pool.entropy_count,
2116	},
2117	{
2118		.procname	= "read_wakeup_threshold",
2119		.data		= &random_read_wakeup_bits,
2120		.maxlen		= sizeof(int),
2121		.mode		= 0644,
2122		.proc_handler	= proc_dointvec_minmax,
2123		.extra1		= &min_read_thresh,
2124		.extra2		= &max_read_thresh,
2125	},
2126	{
2127		.procname	= "write_wakeup_threshold",
2128		.data		= &random_write_wakeup_bits,
2129		.maxlen		= sizeof(int),
2130		.mode		= 0644,
2131		.proc_handler	= proc_dointvec_minmax,
2132		.extra1		= &min_write_thresh,
2133		.extra2		= &max_write_thresh,
2134	},
2135	{
2136		.procname	= "urandom_min_reseed_secs",
2137		.data		= &random_min_urandom_seed,
2138		.maxlen		= sizeof(int),
2139		.mode		= 0644,
2140		.proc_handler	= proc_dointvec,
2141	},
2142	{
2143		.procname	= "boot_id",
2144		.data		= &sysctl_bootid,
2145		.maxlen		= 16,
2146		.mode		= 0444,
2147		.proc_handler	= proc_do_uuid,
2148	},
2149	{
2150		.procname	= "uuid",
2151		.maxlen		= 16,
2152		.mode		= 0444,
2153		.proc_handler	= proc_do_uuid,
2154	},
2155#ifdef ADD_INTERRUPT_BENCH
2156	{
2157		.procname	= "add_interrupt_avg_cycles",
2158		.data		= &avg_cycles,
2159		.maxlen		= sizeof(avg_cycles),
2160		.mode		= 0444,
2161		.proc_handler	= proc_doulongvec_minmax,
2162	},
2163	{
2164		.procname	= "add_interrupt_avg_deviation",
2165		.data		= &avg_deviation,
2166		.maxlen		= sizeof(avg_deviation),
2167		.mode		= 0444,
2168		.proc_handler	= proc_doulongvec_minmax,
2169	},
2170#endif
2171	{ }
2172};
2173#endif 	/* CONFIG_SYSCTL */
2174
2175struct batched_entropy {
2176	union {
2177		u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2178		u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2179	};
2180	unsigned int position;
2181};
2182static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2183
2184/*
2185 * Get a random word for internal kernel use only. The quality of the random
2186 * number is either as good as RDRAND or as good as /dev/urandom, with the
2187 * goal of being quite fast and not depleting entropy. In order to ensure
2188 * that the randomness provided by this function is okay, the function
2189 * wait_for_random_bytes() should be called and return 0 at least once
2190 * at any point prior.
2191 */
2192static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2193u64 get_random_u64(void)
2194{
2195	u64 ret;
2196	bool use_lock;
2197	unsigned long flags = 0;
2198	struct batched_entropy *batch;
2199	static void *previous;
2200
2201#if BITS_PER_LONG == 64
2202	if (arch_get_random_long((unsigned long *)&ret))
2203		return ret;
2204#else
2205	if (arch_get_random_long((unsigned long *)&ret) &&
2206	    arch_get_random_long((unsigned long *)&ret + 1))
2207	    return ret;
2208#endif
2209
2210	warn_unseeded_randomness(&previous);
2211
2212	use_lock = READ_ONCE(crng_init) < 2;
2213	batch = &get_cpu_var(batched_entropy_u64);
2214	if (use_lock)
2215		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2216	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2217		extract_crng((__u32 *)batch->entropy_u64);
2218		batch->position = 0;
2219	}
2220	ret = batch->entropy_u64[batch->position++];
2221	if (use_lock)
2222		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2223	put_cpu_var(batched_entropy_u64);
2224	return ret;
2225}
2226EXPORT_SYMBOL(get_random_u64);
2227
2228static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2229u32 get_random_u32(void)
 
 
 
 
 
 
2230{
2231	u32 ret;
2232	bool use_lock;
2233	unsigned long flags = 0;
2234	struct batched_entropy *batch;
2235	static void *previous;
2236
2237	if (arch_get_random_int(&ret))
2238		return ret;
2239
2240	warn_unseeded_randomness(&previous);
 
 
 
2241
2242	use_lock = READ_ONCE(crng_init) < 2;
2243	batch = &get_cpu_var(batched_entropy_u32);
2244	if (use_lock)
2245		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2246	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2247		extract_crng(batch->entropy_u32);
2248		batch->position = 0;
2249	}
2250	ret = batch->entropy_u32[batch->position++];
2251	if (use_lock)
2252		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2253	put_cpu_var(batched_entropy_u32);
2254	return ret;
2255}
2256EXPORT_SYMBOL(get_random_u32);
2257
2258/* It's important to invalidate all potential batched entropy that might
2259 * be stored before the crng is initialized, which we can do lazily by
2260 * simply resetting the counter to zero so that it's re-extracted on the
2261 * next usage. */
2262static void invalidate_batched_entropy(void)
2263{
2264	int cpu;
2265	unsigned long flags;
2266
2267	write_lock_irqsave(&batched_entropy_reset_lock, flags);
2268	for_each_possible_cpu (cpu) {
2269		per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2270		per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2271	}
2272	write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2273}
2274
2275/**
2276 * randomize_page - Generate a random, page aligned address
2277 * @start:	The smallest acceptable address the caller will take.
2278 * @range:	The size of the area, starting at @start, within which the
2279 *		random address must fall.
2280 *
2281 * If @start + @range would overflow, @range is capped.
 
2282 *
2283 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2284 * @start was already page aligned.  We now align it regardless.
2285 *
2286 * Return: A page aligned address within [start, start + range).  On error,
2287 * @start is returned.
2288 */
2289unsigned long
2290randomize_page(unsigned long start, unsigned long range)
2291{
2292	if (!PAGE_ALIGNED(start)) {
2293		range -= PAGE_ALIGN(start) - start;
2294		start = PAGE_ALIGN(start);
2295	}
2296
2297	if (start > ULONG_MAX - range)
2298		range = ULONG_MAX - start;
2299
2300	range >>= PAGE_SHIFT;
2301
2302	if (range == 0)
2303		return start;
2304
2305	return start + (get_random_long() % range << PAGE_SHIFT);
2306}
2307
2308/* Interface for in-kernel drivers of true hardware RNGs.
2309 * Those devices may produce endless random bits and will be throttled
2310 * when our pool is full.
2311 */
2312void add_hwgenerator_randomness(const char *buffer, size_t count,
2313				size_t entropy)
2314{
2315	struct entropy_store *poolp = &input_pool;
2316
2317	if (unlikely(crng_init == 0)) {
2318		crng_fast_load(buffer, count);
2319		return;
2320	}
2321
2322	/* Suspend writing if we're above the trickle threshold.
2323	 * We'll be woken up again once below random_write_wakeup_thresh,
2324	 * or when the calling thread is about to terminate.
2325	 */
2326	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2327			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2328	mix_pool_bytes(poolp, buffer, count);
2329	credit_entropy_bits(poolp, entropy);
2330}
2331EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);