Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
 
   5 *
   6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
   7 * rights reserved.
   8 *
   9 * Redistribution and use in source and binary forms, with or without
  10 * modification, are permitted provided that the following conditions
  11 * are met:
  12 * 1. Redistributions of source code must retain the above copyright
  13 *    notice, and the entire permission notice in its entirety,
  14 *    including the disclaimer of warranties.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. The name of the author may not be used to endorse or promote
  19 *    products derived from this software without specific prior
  20 *    written permission.
  21 *
  22 * ALTERNATIVELY, this product may be distributed under the terms of
  23 * the GNU General Public License, in which case the provisions of the GPL are
  24 * required INSTEAD OF the above restrictions.  (This clause is
  25 * necessary due to a potential bad interaction between the GPL and
  26 * the restrictions contained in a BSD-style copyright.)
  27 *
  28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 */
  41
  42/*
  43 * (now, with legal B.S. out of the way.....)
  44 *
  45 * This routine gathers environmental noise from device drivers, etc.,
  46 * and returns good random numbers, suitable for cryptographic use.
  47 * Besides the obvious cryptographic uses, these numbers are also good
  48 * for seeding TCP sequence numbers, and other places where it is
  49 * desirable to have numbers which are not only random, but hard to
  50 * predict by an attacker.
  51 *
  52 * Theory of operation
  53 * ===================
  54 *
  55 * Computers are very predictable devices.  Hence it is extremely hard
  56 * to produce truly random numbers on a computer --- as opposed to
  57 * pseudo-random numbers, which can easily generated by using a
  58 * algorithm.  Unfortunately, it is very easy for attackers to guess
  59 * the sequence of pseudo-random number generators, and for some
  60 * applications this is not acceptable.  So instead, we must try to
  61 * gather "environmental noise" from the computer's environment, which
  62 * must be hard for outside attackers to observe, and use that to
  63 * generate random numbers.  In a Unix environment, this is best done
  64 * from inside the kernel.
  65 *
  66 * Sources of randomness from the environment include inter-keyboard
  67 * timings, inter-interrupt timings from some interrupts, and other
  68 * events which are both (a) non-deterministic and (b) hard for an
  69 * outside observer to measure.  Randomness from these sources are
  70 * added to an "entropy pool", which is mixed using a CRC-like function.
  71 * This is not cryptographically strong, but it is adequate assuming
  72 * the randomness is not chosen maliciously, and it is fast enough that
  73 * the overhead of doing it on every interrupt is very reasonable.
  74 * As random bytes are mixed into the entropy pool, the routines keep
  75 * an *estimate* of how many bits of randomness have been stored into
  76 * the random number generator's internal state.
  77 *
  78 * When random bytes are desired, they are obtained by taking the SHA
  79 * hash of the contents of the "entropy pool".  The SHA hash avoids
  80 * exposing the internal state of the entropy pool.  It is believed to
  81 * be computationally infeasible to derive any useful information
  82 * about the input of SHA from its output.  Even if it is possible to
  83 * analyze SHA in some clever way, as long as the amount of data
  84 * returned from the generator is less than the inherent entropy in
  85 * the pool, the output data is totally unpredictable.  For this
  86 * reason, the routine decreases its internal estimate of how many
  87 * bits of "true randomness" are contained in the entropy pool as it
  88 * outputs random numbers.
  89 *
  90 * If this estimate goes to zero, the routine can still generate
  91 * random numbers; however, an attacker may (at least in theory) be
  92 * able to infer the future output of the generator from prior
  93 * outputs.  This requires successful cryptanalysis of SHA, which is
  94 * not believed to be feasible, but there is a remote possibility.
  95 * Nonetheless, these numbers should be useful for the vast majority
  96 * of purposes.
  97 *
  98 * Exported interfaces ---- output
  99 * ===============================
 100 *
 101 * There are three exported interfaces; the first is one designed to
 102 * be used from within the kernel:
 103 *
 104 * 	void get_random_bytes(void *buf, int nbytes);
 105 *
 106 * This interface will return the requested number of random bytes,
 107 * and place it in the requested buffer.
 108 *
 109 * The two other interfaces are two character devices /dev/random and
 110 * /dev/urandom.  /dev/random is suitable for use when very high
 111 * quality randomness is desired (for example, for key generation or
 112 * one-time pads), as it will only return a maximum of the number of
 113 * bits of randomness (as estimated by the random number generator)
 114 * contained in the entropy pool.
 115 *
 116 * The /dev/urandom device does not have this limit, and will return
 117 * as many bytes as are requested.  As more and more random bytes are
 118 * requested without giving time for the entropy pool to recharge,
 119 * this will result in random numbers that are merely cryptographically
 120 * strong.  For many applications, however, this is acceptable.
 121 *
 122 * Exported interfaces ---- input
 123 * ==============================
 124 *
 125 * The current exported interfaces for gathering environmental noise
 126 * from the devices are:
 127 *
 128 * 	void add_input_randomness(unsigned int type, unsigned int code,
 129 *                                unsigned int value);
 130 * 	void add_interrupt_randomness(int irq);
 131 * 	void add_disk_randomness(struct gendisk *disk);
 132 *
 133 * add_input_randomness() uses the input layer interrupt timing, as well as
 134 * the event type information from the hardware.
 135 *
 136 * add_interrupt_randomness() uses the inter-interrupt timing as random
 137 * inputs to the entropy pool.  Note that not all interrupts are good
 138 * sources of randomness!  For example, the timer interrupts is not a
 139 * good choice, because the periodicity of the interrupts is too
 140 * regular, and hence predictable to an attacker.  Network Interface
 141 * Controller interrupts are a better measure, since the timing of the
 142 * NIC interrupts are more unpredictable.
 143 *
 144 * add_disk_randomness() uses what amounts to the seek time of block
 145 * layer request events, on a per-disk_devt basis, as input to the
 146 * entropy pool. Note that high-speed solid state drives with very low
 147 * seek times do not make for good sources of entropy, as their seek
 148 * times are usually fairly consistent.
 149 *
 150 * All of these routines try to estimate how many bits of randomness a
 151 * particular randomness source.  They do this by keeping track of the
 152 * first and second order deltas of the event timings.
 153 *
 154 * Ensuring unpredictability at system startup
 155 * ============================================
 156 *
 157 * When any operating system starts up, it will go through a sequence
 158 * of actions that are fairly predictable by an adversary, especially
 159 * if the start-up does not involve interaction with a human operator.
 160 * This reduces the actual number of bits of unpredictability in the
 161 * entropy pool below the value in entropy_count.  In order to
 162 * counteract this effect, it helps to carry information in the
 163 * entropy pool across shut-downs and start-ups.  To do this, put the
 164 * following lines an appropriate script which is run during the boot
 165 * sequence:
 166 *
 167 *	echo "Initializing random number generator..."
 168 *	random_seed=/var/run/random-seed
 169 *	# Carry a random seed from start-up to start-up
 170 *	# Load and then save the whole entropy pool
 171 *	if [ -f $random_seed ]; then
 172 *		cat $random_seed >/dev/urandom
 173 *	else
 174 *		touch $random_seed
 175 *	fi
 176 *	chmod 600 $random_seed
 177 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 178 *
 179 * and the following lines in an appropriate script which is run as
 180 * the system is shutdown:
 181 *
 182 *	# Carry a random seed from shut-down to start-up
 183 *	# Save the whole entropy pool
 184 *	echo "Saving random seed..."
 185 *	random_seed=/var/run/random-seed
 186 *	touch $random_seed
 187 *	chmod 600 $random_seed
 188 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 189 *
 190 * For example, on most modern systems using the System V init
 191 * scripts, such code fragments would be found in
 192 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 193 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 194 *
 195 * Effectively, these commands cause the contents of the entropy pool
 196 * to be saved at shut-down time and reloaded into the entropy pool at
 197 * start-up.  (The 'dd' in the addition to the bootup script is to
 198 * make sure that /etc/random-seed is different for every start-up,
 199 * even if the system crashes without executing rc.0.)  Even with
 200 * complete knowledge of the start-up activities, predicting the state
 201 * of the entropy pool requires knowledge of the previous history of
 202 * the system.
 203 *
 204 * Configuring the /dev/random driver under Linux
 205 * ==============================================
 206 *
 207 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 208 * the /dev/mem major number (#1).  So if your system does not have
 209 * /dev/random and /dev/urandom created already, they can be created
 210 * by using the commands:
 211 *
 212 * 	mknod /dev/random c 1 8
 213 * 	mknod /dev/urandom c 1 9
 214 *
 215 * Acknowledgements:
 216 * =================
 217 *
 218 * Ideas for constructing this random number generator were derived
 219 * from Pretty Good Privacy's random number generator, and from private
 220 * discussions with Phil Karn.  Colin Plumb provided a faster random
 221 * number generator, which speed up the mixing function of the entropy
 222 * pool, taken from PGPfone.  Dale Worley has also contributed many
 223 * useful ideas and suggestions to improve this driver.
 224 *
 225 * Any flaws in the design are solely my responsibility, and should
 226 * not be attributed to the Phil, Colin, or any of authors of PGP.
 227 *
 228 * Further background information on this topic may be obtained from
 229 * RFC 1750, "Randomness Recommendations for Security", by Donald
 230 * Eastlake, Steve Crocker, and Jeff Schiller.
 231 */
 232
 
 
 233#include <linux/utsname.h>
 234#include <linux/module.h>
 235#include <linux/kernel.h>
 236#include <linux/major.h>
 237#include <linux/string.h>
 238#include <linux/fcntl.h>
 239#include <linux/slab.h>
 240#include <linux/random.h>
 241#include <linux/poll.h>
 242#include <linux/init.h>
 243#include <linux/fs.h>
 244#include <linux/genhd.h>
 245#include <linux/interrupt.h>
 246#include <linux/mm.h>
 
 247#include <linux/spinlock.h>
 
 248#include <linux/percpu.h>
 249#include <linux/cryptohash.h>
 250#include <linux/fips.h>
 251
 252#ifdef CONFIG_GENERIC_HARDIRQS
 253# include <linux/irq.h>
 
 
 
 
 
 
 
 
 
 
 
 
 254#endif
 255
 256#include <asm/processor.h>
 257#include <asm/uaccess.h>
 258#include <asm/irq.h>
 
 259#include <asm/io.h>
 260
 261/*
 262 * Configuration information
 263 */
 264#define INPUT_POOL_WORDS 128
 265#define OUTPUT_POOL_WORDS 32
 266#define SEC_XFER_SIZE 512
 267#define EXTRACT_SIZE 10
 
 
 268
 269/*
 270 * The minimum number of bits of entropy before we wake up a read on
 271 * /dev/random.  Should be enough to do a significant reseed.
 272 */
 273static int random_read_wakeup_thresh = 64;
 
 
 
 
 
 
 
 
 
 
 274
 275/*
 276 * If the entropy count falls under this number of bits, then we
 277 * should wake up processes which are selecting or polling on write
 278 * access to /dev/random.
 279 */
 280static int random_write_wakeup_thresh = 128;
 
 281
 282/*
 283 * When the input pool goes over trickle_thresh, start dropping most
 284 * samples to avoid wasting CPU time and reduce lock contention.
 
 
 
 
 
 285 */
 
 
 
 
 
 286
 287static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
 
 
 
 288
 289static DEFINE_PER_CPU(int, trickle_count);
 
 290
 291/*
 292 * A pool of size .poolwords is stirred with a primitive polynomial
 293 * of degree .poolwords over GF(2).  The taps for various sizes are
 294 * defined below.  They are chosen to be evenly spaced (minimum RMS
 295 * distance from evenly spaced; the numbers in the comments are a
 296 * scaled squared error sum) except for the last tap, which is 1 to
 297 * get the twisting happening as fast as possible.
 
 
 298 */
 299static struct poolinfo {
 300	int poolwords;
 301	int tap1, tap2, tap3, tap4, tap5;
 302} poolinfo_table[] = {
 303	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
 304	{ 128,	103,	76,	51,	25,	1 },
 305	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
 306	{ 32,	26,	20,	14,	7,	1 },
 307#if 0
 308	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 309	{ 2048,	1638,	1231,	819,	411,	1 },
 310
 311	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 312	{ 1024,	817,	615,	412,	204,	1 },
 313
 314	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 315	{ 1024,	819,	616,	410,	207,	2 },
 316
 317	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 318	{ 512,	411,	308,	208,	104,	1 },
 319
 320	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 321	{ 512,	409,	307,	206,	102,	2 },
 322	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 323	{ 512,	409,	309,	205,	103,	2 },
 324
 325	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 326	{ 256,	205,	155,	101,	52,	1 },
 327
 328	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 329	{ 128,	103,	78,	51,	27,	2 },
 330
 331	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 332	{ 64,	52,	39,	26,	14,	1 },
 333#endif
 334};
 335
 336#define POOLBITS	poolwords*32
 337#define POOLBYTES	poolwords*4
 
 
 
 
 
 
 338
 339/*
 340 * For the purposes of better mixing, we use the CRC-32 polynomial as
 341 * well to make a twisted Generalized Feedback Shift Reigster
 342 *
 343 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
 344 * Transactions on Modeling and Computer Simulation 2(3):179-194.
 345 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
 346 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
 347 *
 348 * Thanks to Colin Plumb for suggesting this.
 349 *
 350 * We have not analyzed the resultant polynomial to prove it primitive;
 351 * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
 352 * of a random large-degree polynomial over GF(2) are more than large enough
 353 * that periodicity is not a concern.
 354 *
 355 * The input hash is much less sensitive than the output hash.  All
 356 * that we want of it is that it be a good non-cryptographic hash;
 357 * i.e. it not produce collisions when fed "random" data of the sort
 358 * we expect to see.  As long as the pool state differs for different
 359 * inputs, we have preserved the input entropy and done a good job.
 360 * The fact that an intelligent attacker can construct inputs that
 361 * will produce controlled alterations to the pool's state is not
 362 * important because we don't consider such inputs to contribute any
 363 * randomness.  The only property we need with respect to them is that
 364 * the attacker can't increase his/her knowledge of the pool's state.
 365 * Since all additions are reversible (knowing the final state and the
 366 * input, you can reconstruct the initial state), if an attacker has
 367 * any uncertainty about the initial state, he/she can only shuffle
 368 * that uncertainty about, but never cause any collisions (which would
 369 * decrease the uncertainty).
 370 *
 371 * The chosen system lets the state of the pool be (essentially) the input
 372 * modulo the generator polymnomial.  Now, for random primitive polynomials,
 373 * this is a universal class of hash functions, meaning that the chance
 374 * of a collision is limited by the attacker's knowledge of the generator
 375 * polynomail, so if it is chosen at random, an attacker can never force
 376 * a collision.  Here, we use a fixed polynomial, but we *can* assume that
 377 * ###--> it is unknown to the processes generating the input entropy. <-###
 378 * Because of this important property, this is a good, collision-resistant
 379 * hash; hash collisions will occur no more often than chance.
 380 */
 
 
 
 
 381
 382/*
 383 * Static global variables
 384 */
 385static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 386static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 387static struct fasync_struct *fasync;
 
 
 388
 389#if 0
 390static int debug;
 391module_param(debug, bool, 0644);
 392#define DEBUG_ENT(fmt, arg...) do { \
 393	if (debug) \
 394		printk(KERN_DEBUG "random %04d %04d %04d: " \
 395		fmt,\
 396		input_pool.entropy_count,\
 397		blocking_pool.entropy_count,\
 398		nonblocking_pool.entropy_count,\
 399		## arg); } while (0)
 400#else
 401#define DEBUG_ENT(fmt, arg...) do {} while (0)
 402#endif
 403
 404/**********************************************************************
 
 405 *
 406 * OS independent entropy store.   Here are the functions which handle
 407 * storing entropy in an entropy pool.
 408 *
 409 **********************************************************************/
 410
 411struct entropy_store;
 412struct entropy_store {
 413	/* read-only data: */
 414	struct poolinfo *poolinfo;
 415	__u32 *pool;
 416	const char *name;
 417	struct entropy_store *pull;
 418	int limit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 419
 420	/* read-write data: */
 421	spinlock_t lock;
 422	unsigned add_ptr;
 423	int entropy_count;
 424	int input_rotate;
 425	__u8 last_data[EXTRACT_SIZE];
 426};
 427
 428static __u32 input_pool_data[INPUT_POOL_WORDS];
 429static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
 430static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
 431
 432static struct entropy_store input_pool = {
 433	.poolinfo = &poolinfo_table[0],
 434	.name = "input",
 435	.limit = 1,
 436	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
 437	.pool = input_pool_data
 438};
 439
 440static struct entropy_store blocking_pool = {
 441	.poolinfo = &poolinfo_table[1],
 442	.name = "blocking",
 443	.limit = 1,
 444	.pull = &input_pool,
 445	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
 446	.pool = blocking_pool_data
 447};
 448
 449static struct entropy_store nonblocking_pool = {
 450	.poolinfo = &poolinfo_table[1],
 451	.name = "nonblocking",
 452	.pull = &input_pool,
 453	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
 454	.pool = nonblocking_pool_data
 455};
 456
 457/*
 458 * This function adds bytes into the entropy "pool".  It does not
 459 * update the entropy estimate.  The caller should call
 460 * credit_entropy_bits if this is appropriate.
 461 *
 462 * The pool is stirred with a primitive polynomial of the appropriate
 463 * degree, and then twisted.  We twist by three bits at a time because
 464 * it's cheap to do so and helps slightly in the expected case where
 465 * the entropy is concentrated in the low-order bits.
 466 */
 467static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
 468				   int nbytes, __u8 out[64])
 469{
 470	static __u32 const twist_table[8] = {
 471		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 472		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 473	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
 474	int input_rotate;
 475	int wordmask = r->poolinfo->poolwords - 1;
 476	const char *bytes = in;
 477	__u32 w;
 478	unsigned long flags;
 479
 480	/* Taps are constant, so we can load them without holding r->lock.  */
 481	tap1 = r->poolinfo->tap1;
 482	tap2 = r->poolinfo->tap2;
 483	tap3 = r->poolinfo->tap3;
 484	tap4 = r->poolinfo->tap4;
 485	tap5 = r->poolinfo->tap5;
 486
 487	spin_lock_irqsave(&r->lock, flags);
 488	input_rotate = r->input_rotate;
 489	i = r->add_ptr;
 490
 491	/* mix one byte at a time to simplify size handling and churn faster */
 492	while (nbytes--) {
 493		w = rol32(*bytes++, input_rotate & 31);
 494		i = (i - 1) & wordmask;
 495
 496		/* XOR in the various taps */
 497		w ^= r->pool[i];
 498		w ^= r->pool[(i + tap1) & wordmask];
 499		w ^= r->pool[(i + tap2) & wordmask];
 500		w ^= r->pool[(i + tap3) & wordmask];
 501		w ^= r->pool[(i + tap4) & wordmask];
 502		w ^= r->pool[(i + tap5) & wordmask];
 503
 504		/* Mix the result back in with a twist */
 505		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 506
 507		/*
 508		 * Normally, we add 7 bits of rotation to the pool.
 509		 * At the beginning of the pool, add an extra 7 bits
 510		 * rotation, so that successive passes spread the
 511		 * input bits across the pool evenly.
 512		 */
 513		input_rotate += i ? 7 : 14;
 514	}
 515
 516	r->input_rotate = input_rotate;
 517	r->add_ptr = i;
 
 518
 519	if (out)
 520		for (j = 0; j < 16; j++)
 521			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
 522
 523	spin_unlock_irqrestore(&r->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524}
 525
 526static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
 527{
 528       mix_pool_bytes_extract(r, in, bytes, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529}
 530
 531/*
 532 * Credit (or debit) the entropy store with n bits of entropy
 
 
 533 */
 534static void credit_entropy_bits(struct entropy_store *r, int nbits)
 
 535{
 536	unsigned long flags;
 537	int entropy_count;
 538
 539	if (!nbits)
 540		return;
 541
 542	spin_lock_irqsave(&r->lock, flags);
 
 
 
 
 
 
 
 543
 544	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
 545	entropy_count = r->entropy_count;
 546	entropy_count += nbits;
 547	if (entropy_count < 0) {
 548		DEBUG_ENT("negative entropy/overflow\n");
 549		entropy_count = 0;
 550	} else if (entropy_count > r->poolinfo->POOLBITS)
 551		entropy_count = r->poolinfo->POOLBITS;
 552	r->entropy_count = entropy_count;
 553
 554	/* should we wake readers? */
 555	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
 556		wake_up_interruptible(&random_read_wait);
 557		kill_fasync(&fasync, SIGIO, POLL_IN);
 558	}
 559	spin_unlock_irqrestore(&r->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560}
 561
 562/*********************************************************************
 563 *
 564 * Entropy input management
 565 *
 566 *********************************************************************/
 567
 568/* There is one of these per entropy source */
 569struct timer_rand_state {
 570	cycles_t last_time;
 571	long last_delta, last_delta2;
 572	unsigned dont_count_entropy:1;
 573};
 574
 575#ifndef CONFIG_GENERIC_HARDIRQS
 
 
 
 
 
 
 
 
 
 
 
 576
 577static struct timer_rand_state *irq_timer_state[NR_IRQS];
 
 
 
 
 
 578
 579static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
 580{
 581	return irq_timer_state[irq];
 582}
 583
 584static void set_timer_rand_state(unsigned int irq,
 585				 struct timer_rand_state *state)
 
 
 
 
 
 
 586{
 587	irq_timer_state[irq] = state;
 
 588}
 
 589
 590#else
 591
 592static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
 593{
 594	struct irq_desc *desc;
 
 
 595
 596	desc = irq_to_desc(irq);
 
 597
 598	return desc->timer_rand_state;
 599}
 
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601static void set_timer_rand_state(unsigned int irq,
 602				 struct timer_rand_state *state)
 603{
 604	struct irq_desc *desc;
 
 
 
 
 
 605
 606	desc = irq_to_desc(irq);
 
 
 
 
 
 
 607
 608	desc->timer_rand_state = state;
 
 
 
 609}
 610#endif
 611
 612static struct timer_rand_state input_timer_state;
 613
 614/*
 615 * This function adds entropy to the entropy "pool" by using timing
 616 * delays.  It uses the timer_rand_state structure to make an estimate
 617 * of how many bits of entropy this call has added to the pool.
 618 *
 619 * The number "num" is also added to the pool - it should somehow describe
 620 * the type of event which just happened.  This is currently 0-255 for
 621 * keyboard scan codes, and 256 upwards for interrupts.
 622 *
 623 */
 624static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 625{
 626	struct {
 627		cycles_t cycles;
 628		long jiffies;
 629		unsigned num;
 630	} sample;
 631	long delta, delta2, delta3;
 632
 633	preempt_disable();
 634	/* if over the trickle threshold, use only 1 in 4096 samples */
 635	if (input_pool.entropy_count > trickle_thresh &&
 636	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
 637		goto out;
 638
 639	sample.jiffies = jiffies;
 640	sample.cycles = get_cycles();
 641	sample.num = num;
 642	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643
 
 
 644	/*
 645	 * Calculate number of bits of randomness we probably added.
 646	 * We take into account the first, second and third-order deltas
 647	 * in order to make our estimate.
 
 
 
 
 648	 */
 
 
 649
 650	if (!state->dont_count_entropy) {
 651		delta = sample.jiffies - state->last_time;
 652		state->last_time = sample.jiffies;
 653
 654		delta2 = delta - state->last_delta;
 655		state->last_delta = delta;
 656
 657		delta3 = delta2 - state->last_delta2;
 658		state->last_delta2 = delta2;
 659
 660		if (delta < 0)
 661			delta = -delta;
 662		if (delta2 < 0)
 663			delta2 = -delta2;
 664		if (delta3 < 0)
 665			delta3 = -delta3;
 666		if (delta > delta2)
 667			delta = delta2;
 668		if (delta > delta3)
 669			delta = delta3;
 670
 671		/*
 672		 * delta is now minimum absolute delta.
 673		 * Round down by 1 bit on general principles,
 674		 * and limit entropy entimate to 12 bits.
 675		 */
 676		credit_entropy_bits(&input_pool,
 677				    min_t(int, fls(delta>>1), 11));
 678	}
 679out:
 680	preempt_enable();
 681}
 
 682
 683void add_input_randomness(unsigned int type, unsigned int code,
 684				 unsigned int value)
 
 
 
 
 685{
 686	static unsigned char last_value;
 
 
 
 
 
 
 
 
 
 
 
 
 687
 688	/* ignore autorepeat and the like */
 689	if (value == last_value)
 690		return;
 691
 692	DEBUG_ENT("input event\n");
 693	last_value = value;
 694	add_timer_randomness(&input_timer_state,
 695			     (type << 4) ^ code ^ (code >> 4) ^ value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696}
 697EXPORT_SYMBOL_GPL(add_input_randomness);
 698
 699void add_interrupt_randomness(int irq)
 
 
 
 
 
 700{
 701	struct timer_rand_state *state;
 702
 703	state = get_timer_rand_state(irq);
 
 
 
 704
 705	if (state == NULL)
 706		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707
 708	DEBUG_ENT("irq event %d\n", irq);
 709	add_timer_randomness(state, 0x100 + irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710}
 711
 712#ifdef CONFIG_BLOCK
 713void add_disk_randomness(struct gendisk *disk)
 
 714{
 715	if (!disk || !disk->random)
 
 
 
 
 716		return;
 717	/* first major is 1, so we get >= 0x200 here */
 718	DEBUG_ENT("disk event %d:%d\n",
 719		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
 720
 721	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 722}
 
 
 
 
 
 
 
 
 
 
 
 
 723#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724
 725/*********************************************************************
 
 726 *
 727 * Entropy extraction routines
 728 *
 729 *********************************************************************/
 730
 731static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 732			       size_t nbytes, int min, int rsvd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733
 734/*
 735 * This utility inline function is responsible for transferring entropy
 736 * from the primary pool to the secondary extraction pool. We make
 737 * sure we pull enough for a 'catastrophic reseed'.
 738 */
 739static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 740{
 741	__u32 tmp[OUTPUT_POOL_WORDS];
 742
 743	if (r->pull && r->entropy_count < nbytes * 8 &&
 744	    r->entropy_count < r->poolinfo->POOLBITS) {
 745		/* If we're limited, always leave two wakeup worth's BITS */
 746		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
 747		int bytes = nbytes;
 
 748
 749		/* pull at least as many as BYTES as wakeup BITS */
 750		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
 751		/* but never more than the buffer size */
 752		bytes = min_t(int, bytes, sizeof(tmp));
 753
 754		DEBUG_ENT("going to reseed %s with %d bits "
 755			  "(%d of %d requested)\n",
 756			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
 
 
 757
 758		bytes = extract_entropy(r->pull, tmp, bytes,
 759					random_read_wakeup_thresh / 8, rsvd);
 760		mix_pool_bytes(r, tmp, bytes);
 761		credit_entropy_bits(r, bytes*8);
 
 
 
 
 
 
 
 762	}
 
 763}
 764
 
 
 765/*
 766 * These functions extracts randomness from the "entropy pool", and
 767 * returns it in a buffer.
 768 *
 769 * The min parameter specifies the minimum amount we can pull before
 770 * failing to avoid races that defeat catastrophic reseeding while the
 771 * reserved parameter indicates how much entropy we must leave in the
 772 * pool after each pull to avoid starving other readers.
 773 *
 774 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
 775 */
 776
 777static size_t account(struct entropy_store *r, size_t nbytes, int min,
 778		      int reserved)
 779{
 780	unsigned long flags;
 781
 782	/* Hold lock while accounting */
 783	spin_lock_irqsave(&r->lock, flags);
 784
 785	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
 786	DEBUG_ENT("trying to extract %d bits from %s\n",
 787		  nbytes * 8, r->name);
 788
 789	/* Can we pull enough? */
 790	if (r->entropy_count / 8 < min + reserved) {
 791		nbytes = 0;
 792	} else {
 793		/* If limited, never pull more than available */
 794		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
 795			nbytes = r->entropy_count/8 - reserved;
 796
 797		if (r->entropy_count / 8 >= nbytes + reserved)
 798			r->entropy_count -= nbytes*8;
 799		else
 800			r->entropy_count = reserved;
 801
 802		if (r->entropy_count < random_write_wakeup_thresh) {
 803			wake_up_interruptible(&random_write_wait);
 804			kill_fasync(&fasync, SIGIO, POLL_OUT);
 
 
 
 805		}
 
 
 
 
 
 
 
 
 806	}
 807
 808	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
 809		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
 810
 811	spin_unlock_irqrestore(&r->lock, flags);
 812
 813	return nbytes;
 
 
 814}
 815
 816static void extract_buf(struct entropy_store *r, __u8 *out)
 
 
 
 
 817{
 818	int i;
 819	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
 820	__u8 extract[64];
 821
 822	/* Generate a hash across the pool, 16 words (512 bits) at a time */
 823	sha_init(hash);
 824	for (i = 0; i < r->poolinfo->poolwords; i += 16)
 825		sha_transform(hash, (__u8 *)(r->pool + i), workspace);
 826
 827	/*
 828	 * We mix the hash back into the pool to prevent backtracking
 829	 * attacks (where the attacker knows the state of the pool
 830	 * plus the current outputs, and attempts to find previous
 831	 * ouputs), unless the hash function can be inverted. By
 832	 * mixing at least a SHA1 worth of hash data back, we make
 833	 * brute-forcing the feedback as hard as brute-forcing the
 834	 * hash.
 835	 */
 836	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
 
 837
 838	/*
 839	 * To avoid duplicates, we atomically extract a portion of the
 840	 * pool while mixing, and hash one final time.
 841	 */
 842	sha_transform(hash, extract, workspace);
 843	memset(extract, 0, sizeof(extract));
 844	memset(workspace, 0, sizeof(workspace));
 845
 846	/*
 847	 * In case the hash function has some recognizable output
 848	 * pattern, we fold it in half. Thus, we always feed back
 849	 * twice as much data as we output.
 850	 */
 851	hash[0] ^= hash[3];
 852	hash[1] ^= hash[4];
 853	hash[2] ^= rol32(hash[2], 16);
 854	memcpy(out, hash, EXTRACT_SIZE);
 855	memset(hash, 0, sizeof(hash));
 856}
 857
 858static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 859			       size_t nbytes, int min, int reserved)
 
 
 
 
 
 
 
 860{
 861	ssize_t ret = 0, i;
 862	__u8 tmp[EXTRACT_SIZE];
 863	unsigned long flags;
 864
 865	xfer_secondary_pool(r, nbytes);
 866	nbytes = account(r, nbytes, min, reserved);
 867
 868	while (nbytes) {
 869		extract_buf(r, tmp);
 870
 871		if (fips_enabled) {
 872			spin_lock_irqsave(&r->lock, flags);
 873			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
 874				panic("Hardware RNG duplicated output!\n");
 875			memcpy(r->last_data, tmp, EXTRACT_SIZE);
 876			spin_unlock_irqrestore(&r->lock, flags);
 877		}
 878		i = min_t(int, nbytes, EXTRACT_SIZE);
 879		memcpy(buf, tmp, i);
 880		nbytes -= i;
 881		buf += i;
 882		ret += i;
 883	}
 884
 885	/* Wipe data just returned from memory */
 886	memset(tmp, 0, sizeof(tmp));
 887
 888	return ret;
 889}
 
 890
 891static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
 892				    size_t nbytes)
 
 
 
 
 893{
 894	ssize_t ret = 0, i;
 895	__u8 tmp[EXTRACT_SIZE];
 896
 897	xfer_secondary_pool(r, nbytes);
 898	nbytes = account(r, nbytes, 0, 0);
 
 
 
 
 
 
 899
 900	while (nbytes) {
 901		if (need_resched()) {
 902			if (signal_pending(current)) {
 903				if (ret == 0)
 904					ret = -ERESTARTSYS;
 905				break;
 906			}
 907			schedule();
 908		}
 
 909
 910		extract_buf(r, tmp);
 911		i = min_t(int, nbytes, EXTRACT_SIZE);
 912		if (copy_to_user(buf, tmp, i)) {
 913			ret = -EFAULT;
 914			break;
 915		}
 916
 917		nbytes -= i;
 918		buf += i;
 919		ret += i;
 
 
 
 
 
 
 
 
 920	}
 
 
 
 
 
 921
 922	/* Wipe data just returned from memory */
 923	memset(tmp, 0, sizeof(tmp));
 
 
 
 924
 925	return ret;
 
 
 926}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927
 928/*
 929 * This function is the exported kernel interface.  It returns some
 930 * number of good random numbers, suitable for seeding TCP sequence
 931 * numbers, etc.
 
 932 */
 933void get_random_bytes(void *buf, int nbytes)
 934{
 935	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
 
 
 
 
 
 936}
 937EXPORT_SYMBOL(get_random_bytes);
 938
 
 939/*
 940 * init_std_data - initialize pool with system data
 941 *
 942 * @r: pool to initialize
 943 *
 944 * This function clears the pool's entropy count and mixes some system
 945 * data into the pool to prepare it for use. The pool is not cleared
 946 * as that can only decrease the entropy in the pool.
 947 */
 948static void init_std_data(struct entropy_store *r)
 949{
 950	ktime_t now;
 951	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952
 953	spin_lock_irqsave(&r->lock, flags);
 954	r->entropy_count = 0;
 955	spin_unlock_irqrestore(&r->lock, flags);
 
 
 
 956
 957	now = ktime_get_real();
 958	mix_pool_bytes(r, &now, sizeof(now));
 959	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
 
 
 
 
 
 
 
 
 
 
 
 960}
 961
 962static int rand_initialize(void)
 963{
 964	init_std_data(&input_pool);
 965	init_std_data(&blocking_pool);
 966	init_std_data(&nonblocking_pool);
 967	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968}
 969module_init(rand_initialize);
 970
 971void rand_initialize_irq(int irq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 972{
 973	struct timer_rand_state *state;
 
 
 974
 975	state = get_timer_rand_state(irq);
 
 
 
 
 
 
 
 
 
 
 
 976
 977	if (state)
 978		return;
 979
 980	/*
 981	 * If kzalloc returns null, we just won't use that entropy
 982	 * source.
 
 983	 */
 984	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 985	if (state)
 986		set_timer_rand_state(irq, state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987}
 
 988
 989#ifdef CONFIG_BLOCK
 990void rand_initialize_disk(struct gendisk *disk)
 
 
 
 
 
 
 
 
 
 991{
 992	struct timer_rand_state *state;
 993
 994	/*
 995	 * If kzalloc returns null, we just won't use that entropy
 996	 * source.
 997	 */
 998	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 999	if (state)
 
1000		disk->random = state;
 
1001}
1002#endif
1003
1004static ssize_t
1005random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006{
1007	ssize_t n, retval = 0, count = 0;
 
1008
1009	if (nbytes == 0)
1010		return 0;
 
 
1011
1012	while (nbytes > 0) {
1013		n = nbytes;
1014		if (n > SEC_XFER_SIZE)
1015			n = SEC_XFER_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016
1017		DEBUG_ENT("reading %d bits\n", n*8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018
1019		n = extract_entropy_user(&blocking_pool, buf, n);
 
 
 
 
 
1020
1021		DEBUG_ENT("read got %d bits (%d still needed)\n",
1022			  n*8, (nbytes-n)*8);
1023
1024		if (n == 0) {
1025			if (file->f_flags & O_NONBLOCK) {
1026				retval = -EAGAIN;
1027				break;
1028			}
1029
1030			DEBUG_ENT("sleeping?\n");
 
 
 
 
 
 
1031
1032			wait_event_interruptible(random_read_wait,
1033				input_pool.entropy_count >=
1034						 random_read_wakeup_thresh);
1035
1036			DEBUG_ENT("awake\n");
1037
1038			if (signal_pending(current)) {
1039				retval = -ERESTARTSYS;
1040				break;
1041			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042
1043			continue;
1044		}
 
 
1045
1046		if (n < 0) {
1047			retval = n;
1048			break;
1049		}
1050		count += n;
1051		buf += n;
1052		nbytes -= n;
1053		break;		/* This break makes the device work */
1054				/* like a named pipe */
 
 
 
 
 
 
 
1055	}
1056
1057	return (count ? count : retval);
 
 
 
1058}
1059
1060static ssize_t
1061urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1062{
1063	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
 
1064}
1065
1066static unsigned int
1067random_poll(struct file *file, poll_table * wait)
1068{
1069	unsigned int mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
1071	poll_wait(file, &random_read_wait, wait);
1072	poll_wait(file, &random_write_wait, wait);
1073	mask = 0;
1074	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1075		mask |= POLLIN | POLLRDNORM;
1076	if (input_pool.entropy_count < random_write_wakeup_thresh)
1077		mask |= POLLOUT | POLLWRNORM;
1078	return mask;
1079}
1080
1081static int
1082write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1083{
1084	size_t bytes;
1085	__u32 buf[16];
1086	const char __user *p = buffer;
1087
1088	while (count > 0) {
1089		bytes = min(count, sizeof(buf));
1090		if (copy_from_user(&buf, p, bytes))
1091			return -EFAULT;
1092
1093		count -= bytes;
1094		p += bytes;
 
 
 
 
1095
1096		mix_pool_bytes(r, buf, bytes);
1097		cond_resched();
 
 
 
 
 
 
1098	}
1099
1100	return 0;
1101}
1102
1103static ssize_t random_write(struct file *file, const char __user *buffer,
1104			    size_t count, loff_t *ppos)
1105{
1106	size_t ret;
1107
1108	ret = write_pool(&blocking_pool, buffer, count);
1109	if (ret)
1110		return ret;
1111	ret = write_pool(&nonblocking_pool, buffer, count);
1112	if (ret)
1113		return ret;
1114
1115	return (ssize_t)count;
 
 
 
1116}
1117
1118static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1119{
1120	int size, ent_count;
1121	int __user *p = (int __user *)arg;
1122	int retval;
1123
1124	switch (cmd) {
1125	case RNDGETENTCNT:
1126		/* inherently racy, no point locking */
1127		if (put_user(input_pool.entropy_count, p))
1128			return -EFAULT;
1129		return 0;
1130	case RNDADDTOENTCNT:
1131		if (!capable(CAP_SYS_ADMIN))
1132			return -EPERM;
1133		if (get_user(ent_count, p))
1134			return -EFAULT;
1135		credit_entropy_bits(&input_pool, ent_count);
 
 
1136		return 0;
1137	case RNDADDENTROPY:
 
 
 
 
1138		if (!capable(CAP_SYS_ADMIN))
1139			return -EPERM;
1140		if (get_user(ent_count, p++))
1141			return -EFAULT;
1142		if (ent_count < 0)
1143			return -EINVAL;
1144		if (get_user(size, p++))
 
 
 
 
 
 
 
 
 
1145			return -EFAULT;
1146		retval = write_pool(&input_pool, (const char __user *)p,
1147				    size);
1148		if (retval < 0)
1149			return retval;
1150		credit_entropy_bits(&input_pool, ent_count);
1151		return 0;
 
1152	case RNDZAPENTCNT:
1153	case RNDCLEARPOOL:
1154		/* Clear the entropy pool counters. */
 
 
 
 
1155		if (!capable(CAP_SYS_ADMIN))
1156			return -EPERM;
1157		rand_initialize();
 
 
1158		return 0;
1159	default:
1160		return -EINVAL;
1161	}
1162}
1163
1164static int random_fasync(int fd, struct file *filp, int on)
1165{
1166	return fasync_helper(fd, filp, on, &fasync);
1167}
1168
1169const struct file_operations random_fops = {
1170	.read  = random_read,
1171	.write = random_write,
1172	.poll  = random_poll,
1173	.unlocked_ioctl = random_ioctl,
 
1174	.fasync = random_fasync,
1175	.llseek = noop_llseek,
 
 
1176};
1177
1178const struct file_operations urandom_fops = {
1179	.read  = urandom_read,
1180	.write = random_write,
1181	.unlocked_ioctl = random_ioctl,
 
1182	.fasync = random_fasync,
1183	.llseek = noop_llseek,
 
 
1184};
1185
1186/***************************************************************
1187 * Random UUID interface
1188 *
1189 * Used here for a Boot ID, but can be useful for other kernel
1190 * drivers.
1191 ***************************************************************/
1192
1193/*
1194 * Generate random UUID
1195 */
1196void generate_random_uuid(unsigned char uuid_out[16])
1197{
1198	get_random_bytes(uuid_out, 16);
1199	/* Set UUID version to 4 --- truly random generation */
1200	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1201	/* Set the UUID variant to DCE */
1202	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1203}
1204EXPORT_SYMBOL(generate_random_uuid);
1205
1206/********************************************************************
1207 *
1208 * Sysctl interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209 *
1210 ********************************************************************/
1211
1212#ifdef CONFIG_SYSCTL
1213
1214#include <linux/sysctl.h>
1215
1216static int min_read_thresh = 8, min_write_thresh;
1217static int max_read_thresh = INPUT_POOL_WORDS * 32;
1218static int max_write_thresh = INPUT_POOL_WORDS * 32;
1219static char sysctl_bootid[16];
1220
1221/*
1222 * These functions is used to return both the bootid UUID, and random
1223 * UUID.  The difference is in whether table->data is NULL; if it is,
1224 * then a new UUID is generated and returned to the user.
1225 *
1226 * If the user accesses this via the proc interface, it will be returned
1227 * as an ASCII string in the standard UUID format.  If accesses via the
1228 * sysctl system call, it is returned as 16 bytes of binary data.
1229 */
1230static int proc_do_uuid(ctl_table *table, int write,
1231			void __user *buffer, size_t *lenp, loff_t *ppos)
1232{
1233	ctl_table fake_table;
1234	unsigned char buf[64], tmp_uuid[16], *uuid;
 
 
 
 
 
 
 
1235
1236	uuid = table->data;
1237	if (!uuid) {
1238		uuid = tmp_uuid;
1239		uuid[8] = 0;
1240	}
1241	if (uuid[8] == 0)
1242		generate_random_uuid(uuid);
 
 
1243
1244	sprintf(buf, "%pU", uuid);
 
 
 
 
1245
1246	fake_table.data = buf;
1247	fake_table.maxlen = sizeof(buf);
 
1248
1249	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
 
 
 
 
1250}
1251
1252static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1253ctl_table random_table[] = {
1254	{
1255		.procname	= "poolsize",
1256		.data		= &sysctl_poolsize,
1257		.maxlen		= sizeof(int),
1258		.mode		= 0444,
1259		.proc_handler	= proc_dointvec,
1260	},
1261	{
1262		.procname	= "entropy_avail",
 
1263		.maxlen		= sizeof(int),
1264		.mode		= 0444,
1265		.proc_handler	= proc_dointvec,
1266		.data		= &input_pool.entropy_count,
1267	},
1268	{
1269		.procname	= "read_wakeup_threshold",
1270		.data		= &random_read_wakeup_thresh,
1271		.maxlen		= sizeof(int),
1272		.mode		= 0644,
1273		.proc_handler	= proc_dointvec_minmax,
1274		.extra1		= &min_read_thresh,
1275		.extra2		= &max_read_thresh,
1276	},
1277	{
1278		.procname	= "write_wakeup_threshold",
1279		.data		= &random_write_wakeup_thresh,
1280		.maxlen		= sizeof(int),
1281		.mode		= 0644,
1282		.proc_handler	= proc_dointvec_minmax,
1283		.extra1		= &min_write_thresh,
1284		.extra2		= &max_write_thresh,
1285	},
1286	{
1287		.procname	= "boot_id",
1288		.data		= &sysctl_bootid,
1289		.maxlen		= 16,
1290		.mode		= 0444,
1291		.proc_handler	= proc_do_uuid,
1292	},
1293	{
1294		.procname	= "uuid",
1295		.maxlen		= 16,
1296		.mode		= 0444,
1297		.proc_handler	= proc_do_uuid,
1298	},
1299	{ }
1300};
1301#endif 	/* CONFIG_SYSCTL */
1302
1303static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1304
1305static int __init random_int_secret_init(void)
1306{
1307	get_random_bytes(random_int_secret, sizeof(random_int_secret));
1308	return 0;
1309}
1310late_initcall(random_int_secret_init);
1311
1312/*
1313 * Get a random word for internal kernel use only. Similar to urandom but
1314 * with the goal of minimal entropy pool depletion. As a result, the random
1315 * value is not cryptographically secure but for several uses the cost of
1316 * depleting entropy is too high
1317 */
1318DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1319unsigned int get_random_int(void)
1320{
1321	__u32 *hash = get_cpu_var(get_random_int_hash);
1322	unsigned int ret;
1323
1324	hash[0] += current->pid + jiffies + get_cycles();
1325	md5_transform(hash, random_int_secret);
1326	ret = hash[0];
1327	put_cpu_var(get_random_int_hash);
1328
1329	return ret;
1330}
1331
1332/*
1333 * randomize_range() returns a start address such that
1334 *
1335 *    [...... <range> .....]
1336 *  start                  end
1337 *
1338 * a <range> with size "len" starting at the return value is inside in the
1339 * area defined by [start, end], but is otherwise randomized.
1340 */
1341unsigned long
1342randomize_range(unsigned long start, unsigned long end, unsigned long len)
1343{
1344	unsigned long range = end - len - start;
1345
1346	if (end <= start + len)
1347		return 0;
1348	return PAGE_ALIGN(get_random_int() % range + start);
1349}
v6.13.7
   1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
   2/*
   3 * Copyright (C) 2017-2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
   6 *
   7 * This driver produces cryptographically secure pseudorandom data. It is divided
   8 * into roughly six sections, each with a section header:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 *
  10 *   - Initialization and readiness waiting.
  11 *   - Fast key erasure RNG, the "crng".
  12 *   - Entropy accumulation and extraction routines.
  13 *   - Entropy collection routines.
  14 *   - Userspace reader/writer interfaces.
  15 *   - Sysctl interface.
  16 *
  17 * The high level overview is that there is one input pool, into which
  18 * various pieces of data are hashed. Prior to initialization, some of that
  19 * data is then "credited" as having a certain number of bits of entropy.
  20 * When enough bits of entropy are available, the hash is finalized and
  21 * handed as a key to a stream cipher that expands it indefinitely for
  22 * various consumers. This key is periodically refreshed as the various
  23 * entropy collectors, described below, add data to the input pool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/utsname.h>
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/major.h>
  32#include <linux/string.h>
  33#include <linux/fcntl.h>
  34#include <linux/slab.h>
  35#include <linux/random.h>
  36#include <linux/poll.h>
  37#include <linux/init.h>
  38#include <linux/fs.h>
  39#include <linux/blkdev.h>
  40#include <linux/interrupt.h>
  41#include <linux/mm.h>
  42#include <linux/nodemask.h>
  43#include <linux/spinlock.h>
  44#include <linux/kthread.h>
  45#include <linux/percpu.h>
  46#include <linux/ptrace.h>
  47#include <linux/workqueue.h>
  48#include <linux/irq.h>
  49#include <linux/ratelimit.h>
  50#include <linux/syscalls.h>
  51#include <linux/completion.h>
  52#include <linux/uuid.h>
  53#include <linux/uaccess.h>
  54#include <linux/suspend.h>
  55#include <linux/siphash.h>
  56#include <linux/sched/isolation.h>
  57#include <crypto/chacha.h>
  58#include <crypto/blake2s.h>
  59#ifdef CONFIG_VDSO_GETRANDOM
  60#include <vdso/getrandom.h>
  61#include <vdso/datapage.h>
  62#include <vdso/vsyscall.h>
  63#endif
  64#include <asm/archrandom.h>
  65#include <asm/processor.h>
 
  66#include <asm/irq.h>
  67#include <asm/irq_regs.h>
  68#include <asm/io.h>
  69
  70/*********************************************************************
  71 *
  72 * Initialization and readiness waiting.
  73 *
  74 * Much of the RNG infrastructure is devoted to various dependencies
  75 * being able to wait until the RNG has collected enough entropy and
  76 * is ready for safe consumption.
  77 *
  78 *********************************************************************/
  79
  80/*
  81 * crng_init is protected by base_crng->lock, and only increases
  82 * its value (from empty->early->ready).
  83 */
  84static enum {
  85	CRNG_EMPTY = 0, /* Little to no entropy collected */
  86	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
  87	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
  88} crng_init __read_mostly = CRNG_EMPTY;
  89static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
  90#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
  91/* Various types of waiters for crng_init->CRNG_READY transition. */
  92static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  93static struct fasync_struct *fasync;
  94static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
  95
  96/* Control how we warn userspace. */
  97static struct ratelimit_state urandom_warning =
  98	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
  99static int ratelimit_disable __read_mostly =
 100	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
 101module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 102MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 103
 104/*
 105 * Returns whether or not the input pool has been seeded and thus guaranteed
 106 * to supply cryptographically secure random numbers. This applies to: the
 107 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
 108 * u16,u32,u64,long} family of functions.
 109 *
 110 * Returns: true if the input pool has been seeded.
 111 *          false if the input pool has not been seeded.
 112 */
 113bool rng_is_initialized(void)
 114{
 115	return crng_ready();
 116}
 117EXPORT_SYMBOL(rng_is_initialized);
 118
 119static void __cold crng_set_ready(struct work_struct *work)
 120{
 121	static_branch_enable(&crng_is_ready);
 122}
 123
 124/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
 125static void try_to_generate_entropy(void);
 126
 127/*
 128 * Wait for the input pool to be seeded and thus guaranteed to supply
 129 * cryptographically secure random numbers. This applies to: the /dev/urandom
 130 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
 131 * long} family of functions. Using any of these functions without first
 132 * calling this function forfeits the guarantee of security.
 133 *
 134 * Returns: 0 if the input pool has been seeded.
 135 *          -ERESTARTSYS if the function was interrupted by a signal.
 136 */
 137int wait_for_random_bytes(void)
 138{
 139	while (!crng_ready()) {
 140		int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141
 142		try_to_generate_entropy();
 143		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
 144		if (ret)
 145			return ret > 0 ? 0 : ret;
 146	}
 147	return 0;
 148}
 149EXPORT_SYMBOL(wait_for_random_bytes);
 150
 151/*
 152 * Add a callback function that will be invoked when the crng is initialised,
 153 * or immediately if it already has been. Only use this is you are absolutely
 154 * sure it is required. Most users should instead be able to test
 155 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156 */
 157int __cold execute_with_initialized_rng(struct notifier_block *nb)
 158{
 159	unsigned long flags;
 160	int ret = 0;
 161
 162	spin_lock_irqsave(&random_ready_notifier.lock, flags);
 163	if (crng_ready())
 164		nb->notifier_call(nb, 0, NULL);
 165	else
 166		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
 167	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
 168	return ret;
 169}
 170
 171#define warn_unseeded_randomness() \
 172	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
 173		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
 174				__func__, (void *)_RET_IP_, crng_init)
 
 
 
 
 
 
 
 
 
 
 175
 176
 177/*********************************************************************
 178 *
 179 * Fast key erasure RNG, the "crng".
 
 180 *
 181 * These functions expand entropy from the entropy extractor into
 182 * long streams for external consumption using the "fast key erasure"
 183 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
 184 *
 185 * There are a few exported interfaces for use by other drivers:
 186 *
 187 *	void get_random_bytes(void *buf, size_t len)
 188 *	u8 get_random_u8()
 189 *	u16 get_random_u16()
 190 *	u32 get_random_u32()
 191 *	u32 get_random_u32_below(u32 ceil)
 192 *	u32 get_random_u32_above(u32 floor)
 193 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
 194 *	u64 get_random_u64()
 195 *	unsigned long get_random_long()
 196 *
 197 * These interfaces will return the requested number of random bytes
 198 * into the given buffer or as a return value. This is equivalent to
 199 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 200 * functions may be higher performance for one-off random integers,
 201 * because they do a bit of buffering and do not invoke reseeding
 202 * until the buffer is emptied.
 203 *
 204 *********************************************************************/
 205
 206enum {
 207	CRNG_RESEED_START_INTERVAL = HZ,
 208	CRNG_RESEED_INTERVAL = 60 * HZ
 
 
 
 209};
 210
 211static struct {
 212	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
 213	unsigned long generation;
 214	spinlock_t lock;
 215} base_crng = {
 216	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
 
 
 
 
 217};
 218
 219struct crng {
 220	u8 key[CHACHA_KEY_SIZE];
 221	unsigned long generation;
 222	local_lock_t lock;
 
 
 
 223};
 224
 225static DEFINE_PER_CPU(struct crng, crngs) = {
 226	.generation = ULONG_MAX,
 227	.lock = INIT_LOCAL_LOCK(crngs.lock),
 
 
 
 228};
 229
 230/*
 231 * Return the interval until the next reseeding, which is normally
 232 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
 233 * proportional to the uptime.
 234 */
 235static unsigned int crng_reseed_interval(void)
 236{
 237	static bool early_boot = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238
 239	if (unlikely(READ_ONCE(early_boot))) {
 240		time64_t uptime = ktime_get_seconds();
 241		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
 242			WRITE_ONCE(early_boot, false);
 243		else
 244			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
 245				     (unsigned int)uptime / 2 * HZ);
 246	}
 247	return CRNG_RESEED_INTERVAL;
 248}
 
 
 
 
 
 
 
 
 
 
 
 
 
 249
 250/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
 251static void extract_entropy(void *buf, size_t len);
 252
 253/* This extracts a new crng key from the input pool. */
 254static void crng_reseed(struct work_struct *work)
 255{
 256	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
 257	unsigned long flags;
 258	unsigned long next_gen;
 259	u8 key[CHACHA_KEY_SIZE];
 
 260
 261	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
 262	if (likely(system_unbound_wq))
 263		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
 264
 265	extract_entropy(key, sizeof(key));
 
 
 266
 267	/*
 268	 * We copy the new key into the base_crng, overwriting the old one,
 269	 * and update the generation counter. We avoid hitting ULONG_MAX,
 270	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
 271	 * forces new CPUs that come online to always initialize.
 272	 */
 273	spin_lock_irqsave(&base_crng.lock, flags);
 274	memcpy(base_crng.key, key, sizeof(base_crng.key));
 275	next_gen = base_crng.generation + 1;
 276	if (next_gen == ULONG_MAX)
 277		++next_gen;
 278	WRITE_ONCE(base_crng.generation, next_gen);
 279#ifdef CONFIG_VDSO_GETRANDOM
 280	/* base_crng.generation's invalid value is ULONG_MAX, while
 281	 * _vdso_rng_data.generation's invalid value is 0, so add one to the
 282	 * former to arrive at the latter. Use smp_store_release so that this
 283	 * is ordered with the write above to base_crng.generation. Pairs with
 284	 * the smp_rmb() before the syscall in the vDSO code.
 285	 *
 286	 * Cast to unsigned long for 32-bit architectures, since atomic 64-bit
 287	 * operations are not supported on those architectures. This is safe
 288	 * because base_crng.generation is a 32-bit value. On big-endian
 289	 * architectures it will be stored in the upper 32 bits, but that's okay
 290	 * because the vDSO side only checks whether the value changed, without
 291	 * actually using or interpreting the value.
 292	 */
 293	smp_store_release((unsigned long *)&__arch_get_k_vdso_rng_data()->generation, next_gen + 1);
 294#endif
 295	if (!static_branch_likely(&crng_is_ready))
 296		crng_init = CRNG_READY;
 297	spin_unlock_irqrestore(&base_crng.lock, flags);
 298	memzero_explicit(key, sizeof(key));
 299}
 300
 301/*
 302 * This generates a ChaCha block using the provided key, and then
 303 * immediately overwrites that key with half the block. It returns
 304 * the resultant ChaCha state to the user, along with the second
 305 * half of the block containing 32 bytes of random data that may
 306 * be used; random_data_len may not be greater than 32.
 307 *
 308 * The returned ChaCha state contains within it a copy of the old
 309 * key value, at index 4, so the state should always be zeroed out
 310 * immediately after using in order to maintain forward secrecy.
 311 * If the state cannot be erased in a timely manner, then it is
 312 * safer to set the random_data parameter to &chacha_state[4] so
 313 * that this function overwrites it before returning.
 314 */
 315static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
 316				  u32 chacha_state[CHACHA_STATE_WORDS],
 317				  u8 *random_data, size_t random_data_len)
 318{
 319	u8 first_block[CHACHA_BLOCK_SIZE];
 320
 321	BUG_ON(random_data_len > 32);
 322
 323	chacha_init_consts(chacha_state);
 324	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
 325	memset(&chacha_state[12], 0, sizeof(u32) * 4);
 326	chacha20_block(chacha_state, first_block);
 327
 328	memcpy(key, first_block, CHACHA_KEY_SIZE);
 329	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
 330	memzero_explicit(first_block, sizeof(first_block));
 331}
 332
 333/*
 334 * This function returns a ChaCha state that you may use for generating
 335 * random data. It also returns up to 32 bytes on its own of random data
 336 * that may be used; random_data_len may not be greater than 32.
 337 */
 338static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
 339			    u8 *random_data, size_t random_data_len)
 340{
 341	unsigned long flags;
 342	struct crng *crng;
 343
 344	BUG_ON(random_data_len > 32);
 
 345
 346	/*
 347	 * For the fast path, we check whether we're ready, unlocked first, and
 348	 * then re-check once locked later. In the case where we're really not
 349	 * ready, we do fast key erasure with the base_crng directly, extracting
 350	 * when crng_init is CRNG_EMPTY.
 351	 */
 352	if (!crng_ready()) {
 353		bool ready;
 354
 355		spin_lock_irqsave(&base_crng.lock, flags);
 356		ready = crng_ready();
 357		if (!ready) {
 358			if (crng_init == CRNG_EMPTY)
 359				extract_entropy(base_crng.key, sizeof(base_crng.key));
 360			crng_fast_key_erasure(base_crng.key, chacha_state,
 361					      random_data, random_data_len);
 362		}
 363		spin_unlock_irqrestore(&base_crng.lock, flags);
 364		if (!ready)
 365			return;
 
 
 
 366	}
 367
 368	local_lock_irqsave(&crngs.lock, flags);
 369	crng = raw_cpu_ptr(&crngs);
 370
 371	/*
 372	 * If our per-cpu crng is older than the base_crng, then it means
 373	 * somebody reseeded the base_crng. In that case, we do fast key
 374	 * erasure on the base_crng, and use its output as the new key
 375	 * for our per-cpu crng. This brings us up to date with base_crng.
 376	 */
 377	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
 378		spin_lock(&base_crng.lock);
 379		crng_fast_key_erasure(base_crng.key, chacha_state,
 380				      crng->key, sizeof(crng->key));
 381		crng->generation = base_crng.generation;
 382		spin_unlock(&base_crng.lock);
 383	}
 384
 385	/*
 386	 * Finally, when we've made it this far, our per-cpu crng has an up
 387	 * to date key, and we can do fast key erasure with it to produce
 388	 * some random data and a ChaCha state for the caller. All other
 389	 * branches of this function are "unlikely", so most of the time we
 390	 * should wind up here immediately.
 391	 */
 392	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
 393	local_unlock_irqrestore(&crngs.lock, flags);
 394}
 395
 396static void _get_random_bytes(void *buf, size_t len)
 397{
 398	u32 chacha_state[CHACHA_STATE_WORDS];
 399	u8 tmp[CHACHA_BLOCK_SIZE];
 400	size_t first_block_len;
 401
 402	if (!len)
 403		return;
 
 
 
 
 404
 405	first_block_len = min_t(size_t, 32, len);
 406	crng_make_state(chacha_state, buf, first_block_len);
 407	len -= first_block_len;
 408	buf += first_block_len;
 409
 410	while (len) {
 411		if (len < CHACHA_BLOCK_SIZE) {
 412			chacha20_block(chacha_state, tmp);
 413			memcpy(buf, tmp, len);
 414			memzero_explicit(tmp, sizeof(tmp));
 415			break;
 416		}
 417
 418		chacha20_block(chacha_state, buf);
 419		if (unlikely(chacha_state[12] == 0))
 420			++chacha_state[13];
 421		len -= CHACHA_BLOCK_SIZE;
 422		buf += CHACHA_BLOCK_SIZE;
 423	}
 424
 425	memzero_explicit(chacha_state, sizeof(chacha_state));
 
 
 426}
 427
 428/*
 429 * This returns random bytes in arbitrary quantities. The quality of the
 430 * random bytes is good as /dev/urandom. In order to ensure that the
 431 * randomness provided by this function is okay, the function
 432 * wait_for_random_bytes() should be called and return 0 at least once
 433 * at any point prior.
 434 */
 435void get_random_bytes(void *buf, size_t len)
 436{
 437	warn_unseeded_randomness();
 438	_get_random_bytes(buf, len);
 439}
 440EXPORT_SYMBOL(get_random_bytes);
 441
 442static ssize_t get_random_bytes_user(struct iov_iter *iter)
 
 
 443{
 444	u32 chacha_state[CHACHA_STATE_WORDS];
 445	u8 block[CHACHA_BLOCK_SIZE];
 446	size_t ret = 0, copied;
 447
 448	if (unlikely(!iov_iter_count(iter)))
 449		return 0;
 450
 451	/*
 452	 * Immediately overwrite the ChaCha key at index 4 with random
 453	 * bytes, in case userspace causes copy_to_iter() below to sleep
 454	 * forever, so that we still retain forward secrecy in that case.
 455	 */
 456	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
 457	/*
 458	 * However, if we're doing a read of len <= 32, we don't need to
 459	 * use chacha_state after, so we can simply return those bytes to
 460	 * the user directly.
 461	 */
 462	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
 463		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
 464		goto out_zero_chacha;
 465	}
 466
 467	for (;;) {
 468		chacha20_block(chacha_state, block);
 469		if (unlikely(chacha_state[12] == 0))
 470			++chacha_state[13];
 471
 472		copied = copy_to_iter(block, sizeof(block), iter);
 473		ret += copied;
 474		if (!iov_iter_count(iter) || copied != sizeof(block))
 475			break;
 476
 477		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
 478		if (ret % PAGE_SIZE == 0) {
 479			if (signal_pending(current))
 480				break;
 481			cond_resched();
 482		}
 483	}
 484
 485	memzero_explicit(block, sizeof(block));
 486out_zero_chacha:
 487	memzero_explicit(chacha_state, sizeof(chacha_state));
 488	return ret ? ret : -EFAULT;
 489}
 
 
 
 490
 491/*
 492 * Batched entropy returns random integers. The quality of the random
 493 * number is good as /dev/urandom. In order to ensure that the randomness
 494 * provided by this function is okay, the function wait_for_random_bytes()
 495 * should be called and return 0 at least once at any point prior.
 
 
 
 
 496 */
 
 
 
 
 
 
 
 
 497
 498#define DEFINE_BATCHED_ENTROPY(type)						\
 499struct batch_ ##type {								\
 500	/*									\
 501	 * We make this 1.5x a ChaCha block, so that we get the			\
 502	 * remaining 32 bytes from fast key erasure, plus one full		\
 503	 * block from the detached ChaCha state. We can increase		\
 504	 * the size of this later if needed so long as we keep the		\
 505	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
 506	 */									\
 507	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
 508	local_lock_t lock;							\
 509	unsigned long generation;						\
 510	unsigned int position;							\
 511};										\
 512										\
 513static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
 514	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
 515	.position = UINT_MAX							\
 516};										\
 517										\
 518type get_random_ ##type(void)							\
 519{										\
 520	type ret;								\
 521	unsigned long flags;							\
 522	struct batch_ ##type *batch;						\
 523	unsigned long next_gen;							\
 524										\
 525	warn_unseeded_randomness();						\
 526										\
 527	if  (!crng_ready()) {							\
 528		_get_random_bytes(&ret, sizeof(ret));				\
 529		return ret;							\
 530	}									\
 531										\
 532	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
 533	batch = raw_cpu_ptr(&batched_entropy_##type);				\
 534										\
 535	next_gen = READ_ONCE(base_crng.generation);				\
 536	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
 537	    next_gen != batch->generation) {					\
 538		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
 539		batch->position = 0;						\
 540		batch->generation = next_gen;					\
 541	}									\
 542										\
 543	ret = batch->entropy[batch->position];					\
 544	batch->entropy[batch->position] = 0;					\
 545	++batch->position;							\
 546	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
 547	return ret;								\
 548}										\
 549EXPORT_SYMBOL(get_random_ ##type);
 550
 551DEFINE_BATCHED_ENTROPY(u8)
 552DEFINE_BATCHED_ENTROPY(u16)
 553DEFINE_BATCHED_ENTROPY(u32)
 554DEFINE_BATCHED_ENTROPY(u64)
 555
 556u32 __get_random_u32_below(u32 ceil)
 557{
 558	/*
 559	 * This is the slow path for variable ceil. It is still fast, most of
 560	 * the time, by doing traditional reciprocal multiplication and
 561	 * opportunistically comparing the lower half to ceil itself, before
 562	 * falling back to computing a larger bound, and then rejecting samples
 563	 * whose lower half would indicate a range indivisible by ceil. The use
 564	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
 565	 * in 32-bits.
 566	 */
 567	u32 rand = get_random_u32();
 568	u64 mult;
 569
 570	/*
 571	 * This function is technically undefined for ceil == 0, and in fact
 572	 * for the non-underscored constant version in the header, we build bug
 573	 * on that. But for the non-constant case, it's convenient to have that
 574	 * evaluate to being a straight call to get_random_u32(), so that
 575	 * get_random_u32_inclusive() can work over its whole range without
 576	 * undefined behavior.
 577	 */
 578	if (unlikely(!ceil))
 579		return rand;
 
 
 
 
 
 
 
 
 
 
 580
 581	mult = (u64)ceil * rand;
 582	if (unlikely((u32)mult < ceil)) {
 583		u32 bound = -ceil % ceil;
 584		while (unlikely((u32)mult < bound))
 585			mult = (u64)ceil * get_random_u32();
 
 
 586	}
 587	return mult >> 32;
 
 588}
 589EXPORT_SYMBOL(__get_random_u32_below);
 590
 591#ifdef CONFIG_SMP
 592/*
 593 * This function is called when the CPU is coming up, with entry
 594 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 595 */
 596int __cold random_prepare_cpu(unsigned int cpu)
 597{
 598	/*
 599	 * When the cpu comes back online, immediately invalidate both
 600	 * the per-cpu crng and all batches, so that we serve fresh
 601	 * randomness.
 602	 */
 603	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
 604	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
 605	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
 606	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
 607	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
 608	return 0;
 609}
 610#endif
 611
 
 
 
 612
 613/**********************************************************************
 614 *
 615 * Entropy accumulation and extraction routines.
 616 *
 617 * Callers may add entropy via:
 618 *
 619 *     static void mix_pool_bytes(const void *buf, size_t len)
 620 *
 621 * After which, if added entropy should be credited:
 622 *
 623 *     static void credit_init_bits(size_t bits)
 624 *
 625 * Finally, extract entropy via:
 626 *
 627 *     static void extract_entropy(void *buf, size_t len)
 628 *
 629 **********************************************************************/
 630
 631enum {
 632	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
 633	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
 634	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
 635};
 636
 637static struct {
 638	struct blake2s_state hash;
 639	spinlock_t lock;
 640	unsigned int init_bits;
 641} input_pool = {
 642	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
 643		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
 644		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
 645	.hash.outlen = BLAKE2S_HASH_SIZE,
 646	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 647};
 648
 649static void _mix_pool_bytes(const void *buf, size_t len)
 650{
 651	blake2s_update(&input_pool.hash, buf, len);
 652}
 
 653
 654/*
 655 * This function adds bytes into the input pool. It does not
 656 * update the initialization bit counter; the caller should call
 657 * credit_init_bits if this is appropriate.
 658 */
 659static void mix_pool_bytes(const void *buf, size_t len)
 660{
 661	unsigned long flags;
 662
 663	spin_lock_irqsave(&input_pool.lock, flags);
 664	_mix_pool_bytes(buf, len);
 665	spin_unlock_irqrestore(&input_pool.lock, flags);
 666}
 667
 668/*
 669 * This is an HKDF-like construction for using the hashed collected entropy
 670 * as a PRF key, that's then expanded block-by-block.
 671 */
 672static void extract_entropy(void *buf, size_t len)
 673{
 674	unsigned long flags;
 675	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
 676	struct {
 677		unsigned long rdseed[32 / sizeof(long)];
 678		size_t counter;
 679	} block;
 680	size_t i, longs;
 681
 682	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
 683		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 684		if (longs) {
 685			i += longs;
 686			continue;
 687		}
 688		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 689		if (longs) {
 690			i += longs;
 691			continue;
 692		}
 693		block.rdseed[i++] = random_get_entropy();
 694	}
 695
 696	spin_lock_irqsave(&input_pool.lock, flags);
 697
 698	/* seed = HASHPRF(last_key, entropy_input) */
 699	blake2s_final(&input_pool.hash, seed);
 700
 701	/* next_key = HASHPRF(seed, RDSEED || 0) */
 702	block.counter = 0;
 703	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
 704	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
 705
 706	spin_unlock_irqrestore(&input_pool.lock, flags);
 707	memzero_explicit(next_key, sizeof(next_key));
 708
 709	while (len) {
 710		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
 711		/* output = HASHPRF(seed, RDSEED || ++counter) */
 712		++block.counter;
 713		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
 714		len -= i;
 715		buf += i;
 716	}
 717
 718	memzero_explicit(seed, sizeof(seed));
 719	memzero_explicit(&block, sizeof(block));
 720}
 721
 722#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
 723
 724static void __cold _credit_init_bits(size_t bits)
 725{
 726	static DECLARE_WORK(set_ready, crng_set_ready);
 727	unsigned int new, orig, add;
 728	unsigned long flags;
 729
 730	if (!bits)
 731		return;
 
 
 
 732
 733	add = min_t(size_t, bits, POOL_BITS);
 734
 735	orig = READ_ONCE(input_pool.init_bits);
 736	do {
 737		new = min_t(unsigned int, POOL_BITS, orig + add);
 738	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
 739
 740	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
 741		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
 742		if (static_key_initialized && system_unbound_wq)
 743			queue_work(system_unbound_wq, &set_ready);
 744		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
 745#ifdef CONFIG_VDSO_GETRANDOM
 746		WRITE_ONCE(__arch_get_k_vdso_rng_data()->is_ready, true);
 747#endif
 748		wake_up_interruptible(&crng_init_wait);
 749		kill_fasync(&fasync, SIGIO, POLL_IN);
 750		pr_notice("crng init done\n");
 751		if (urandom_warning.missed)
 752			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
 753				  urandom_warning.missed);
 754	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
 755		spin_lock_irqsave(&base_crng.lock, flags);
 756		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
 757		if (crng_init == CRNG_EMPTY) {
 758			extract_entropy(base_crng.key, sizeof(base_crng.key));
 759			crng_init = CRNG_EARLY;
 760		}
 761		spin_unlock_irqrestore(&base_crng.lock, flags);
 762	}
 763}
 764
 765
 766/**********************************************************************
 767 *
 768 * Entropy collection routines.
 769 *
 770 * The following exported functions are used for pushing entropy into
 771 * the above entropy accumulation routines:
 772 *
 773 *	void add_device_randomness(const void *buf, size_t len);
 774 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
 775 *	void add_bootloader_randomness(const void *buf, size_t len);
 776 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
 777 *	void add_interrupt_randomness(int irq);
 778 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
 779 *	void add_disk_randomness(struct gendisk *disk);
 780 *
 781 * add_device_randomness() adds data to the input pool that
 782 * is likely to differ between two devices (or possibly even per boot).
 783 * This would be things like MAC addresses or serial numbers, or the
 784 * read-out of the RTC. This does *not* credit any actual entropy to
 785 * the pool, but it initializes the pool to different values for devices
 786 * that might otherwise be identical and have very little entropy
 787 * available to them (particularly common in the embedded world).
 788 *
 789 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 790 * entropy as specified by the caller. If the entropy pool is full it will
 791 * block until more entropy is needed.
 792 *
 793 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 794 * and device tree, and credits its input depending on whether or not the
 795 * command line option 'random.trust_bootloader'.
 796 *
 797 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 798 * representing the current instance of a VM to the pool, without crediting,
 799 * and then force-reseeds the crng so that it takes effect immediately.
 800 *
 801 * add_interrupt_randomness() uses the interrupt timing as random
 802 * inputs to the entropy pool. Using the cycle counters and the irq source
 803 * as inputs, it feeds the input pool roughly once a second or after 64
 804 * interrupts, crediting 1 bit of entropy for whichever comes first.
 805 *
 806 * add_input_randomness() uses the input layer interrupt timing, as well
 807 * as the event type information from the hardware.
 808 *
 809 * add_disk_randomness() uses what amounts to the seek time of block
 810 * layer request events, on a per-disk_devt basis, as input to the
 811 * entropy pool. Note that high-speed solid state drives with very low
 812 * seek times do not make for good sources of entropy, as their seek
 813 * times are usually fairly consistent.
 814 *
 815 * The last two routines try to estimate how many bits of entropy
 816 * to credit. They do this by keeping track of the first and second
 817 * order deltas of the event timings.
 818 *
 819 **********************************************************************/
 820
 821static bool trust_cpu __initdata = true;
 822static bool trust_bootloader __initdata = true;
 823static int __init parse_trust_cpu(char *arg)
 
 
 
 824{
 825	return kstrtobool(arg, &trust_cpu);
 826}
 827static int __init parse_trust_bootloader(char *arg)
 828{
 829	return kstrtobool(arg, &trust_bootloader);
 830}
 831early_param("random.trust_cpu", parse_trust_cpu);
 832early_param("random.trust_bootloader", parse_trust_bootloader);
 833
 834static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
 835{
 836	unsigned long flags, entropy = random_get_entropy();
 
 837
 838	/*
 839	 * Encode a representation of how long the system has been suspended,
 840	 * in a way that is distinct from prior system suspends.
 841	 */
 842	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
 843
 844	spin_lock_irqsave(&input_pool.lock, flags);
 845	_mix_pool_bytes(&action, sizeof(action));
 846	_mix_pool_bytes(stamps, sizeof(stamps));
 847	_mix_pool_bytes(&entropy, sizeof(entropy));
 848	spin_unlock_irqrestore(&input_pool.lock, flags);
 849
 850	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
 851	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
 852	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
 853		crng_reseed(NULL);
 854		pr_notice("crng reseeded on system resumption\n");
 855	}
 856	return 0;
 857}
 858
 859static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
 860
 861/*
 862 * This is called extremely early, before time keeping functionality is
 863 * available, but arch randomness is. Interrupts are not yet enabled.
 
 
 
 
 
 
 
 864 */
 865void __init random_init_early(const char *command_line)
 
 
 866{
 867	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
 868	size_t i, longs, arch_bits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869
 870#if defined(LATENT_ENTROPY_PLUGIN)
 871	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
 872	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
 873#endif
 874
 875	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
 876		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
 877		if (longs) {
 878			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 879			i += longs;
 880			continue;
 881		}
 882		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
 883		if (longs) {
 884			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 885			i += longs;
 886			continue;
 887		}
 888		arch_bits -= sizeof(*entropy) * 8;
 889		++i;
 890	}
 891
 892	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
 893	_mix_pool_bytes(command_line, strlen(command_line));
 894
 895	/* Reseed if already seeded by earlier phases. */
 896	if (crng_ready())
 897		crng_reseed(NULL);
 898	else if (trust_cpu)
 899		_credit_init_bits(arch_bits);
 900}
 901
 902/*
 903 * This is called a little bit after the prior function, and now there is
 904 * access to timestamps counters. Interrupts are not yet enabled.
 905 */
 906void __init random_init(void)
 907{
 908	unsigned long entropy = random_get_entropy();
 909	ktime_t now = ktime_get_real();
 
 910
 911	_mix_pool_bytes(&now, sizeof(now));
 912	_mix_pool_bytes(&entropy, sizeof(entropy));
 913	add_latent_entropy();
 
 914
 915	/*
 916	 * If we were initialized by the cpu or bootloader before jump labels
 917	 * or workqueues are initialized, then we should enable the static
 918	 * branch here, where it's guaranteed that these have been initialized.
 
 
 
 
 919	 */
 920	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
 921		crng_set_ready(NULL);
 922
 923	/* Reseed if already seeded by earlier phases. */
 924	if (crng_ready())
 925		crng_reseed(NULL);
 
 
 
 
 926
 927	WARN_ON(register_pm_notifier(&pm_notifier));
 928
 929	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
 930		       "entropy collection will consequently suffer.");
 
 
 
 
 
 
 931}
 932
 933/*
 934 * Add device- or boot-specific data to the input pool to help
 935 * initialize it.
 936 *
 937 * None of this adds any entropy; it is meant to avoid the problem of
 938 * the entropy pool having similar initial state across largely
 939 * identical devices.
 940 */
 941void add_device_randomness(const void *buf, size_t len)
 942{
 943	unsigned long entropy = random_get_entropy();
 
 944	unsigned long flags;
 945
 946	spin_lock_irqsave(&input_pool.lock, flags);
 947	_mix_pool_bytes(&entropy, sizeof(entropy));
 948	_mix_pool_bytes(buf, len);
 949	spin_unlock_irqrestore(&input_pool.lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950}
 951EXPORT_SYMBOL(add_device_randomness);
 952
 953/*
 954 * Interface for in-kernel drivers of true hardware RNGs. Those devices
 955 * may produce endless random bits, so this function will sleep for
 956 * some amount of time after, if the sleep_after parameter is true.
 957 */
 958void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
 959{
 960	mix_pool_bytes(buf, len);
 961	credit_init_bits(entropy);
 962
 963	/*
 964	 * Throttle writing to once every reseed interval, unless we're not yet
 965	 * initialized or no entropy is credited.
 966	 */
 967	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
 968		schedule_timeout_interruptible(crng_reseed_interval());
 969}
 970EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
 971
 972/*
 973 * Handle random seed passed by bootloader, and credit it depending
 974 * on the command line option 'random.trust_bootloader'.
 975 */
 976void __init add_bootloader_randomness(const void *buf, size_t len)
 977{
 978	mix_pool_bytes(buf, len);
 979	if (trust_bootloader)
 980		credit_init_bits(len * 8);
 981}
 982
 983#if IS_ENABLED(CONFIG_VMGENID)
 984static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
 
 
 
 
 985
 986/*
 987 * Handle a new unique VM ID, which is unique, not secret, so we
 988 * don't credit it, but we do immediately force a reseed after so
 989 * that it's used by the crng posthaste.
 990 */
 991void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
 992{
 993	add_device_randomness(unique_vm_id, len);
 994	if (crng_ready()) {
 995		crng_reseed(NULL);
 996		pr_notice("crng reseeded due to virtual machine fork\n");
 997	}
 998	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
 999}
1000#if IS_MODULE(CONFIG_VMGENID)
1001EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1002#endif
1003
1004int __cold register_random_vmfork_notifier(struct notifier_block *nb)
1005{
1006	return blocking_notifier_chain_register(&vmfork_chain, nb);
1007}
1008EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
1009
1010int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
1011{
1012	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
1013}
1014EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1015#endif
1016
1017struct fast_pool {
1018	unsigned long pool[4];
1019	unsigned long last;
1020	unsigned int count;
1021	struct timer_list mix;
1022};
1023
1024static void mix_interrupt_randomness(struct timer_list *work);
1025
1026static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1027#ifdef CONFIG_64BIT
1028#define FASTMIX_PERM SIPHASH_PERMUTATION
1029	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1030#else
1031#define FASTMIX_PERM HSIPHASH_PERMUTATION
1032	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1033#endif
1034	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1035};
1036
1037/*
1038 * This is [Half]SipHash-1-x, starting from an empty key. Because
1039 * the key is fixed, it assumes that its inputs are non-malicious,
1040 * and therefore this has no security on its own. s represents the
1041 * four-word SipHash state, while v represents a two-word input.
1042 */
1043static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1044{
1045	s[3] ^= v1;
1046	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1047	s[0] ^= v1;
1048	s[3] ^= v2;
1049	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1050	s[0] ^= v2;
1051}
 
1052
1053#ifdef CONFIG_SMP
1054/*
1055 * This function is called when the CPU has just come online, with
1056 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 
 
 
 
 
1057 */
1058int __cold random_online_cpu(unsigned int cpu)
1059{
1060	/*
1061	 * During CPU shutdown and before CPU onlining, add_interrupt_
1062	 * randomness() may schedule mix_interrupt_randomness(), and
1063	 * set the MIX_INFLIGHT flag. However, because the worker can
1064	 * be scheduled on a different CPU during this period, that
1065	 * flag will never be cleared. For that reason, we zero out
1066	 * the flag here, which runs just after workqueues are onlined
1067	 * for the CPU again. This also has the effect of setting the
1068	 * irq randomness count to zero so that new accumulated irqs
1069	 * are fresh.
1070	 */
1071	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1072	return 0;
1073}
1074#endif
1075
1076static void mix_interrupt_randomness(struct timer_list *work)
1077{
1078	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1079	/*
1080	 * The size of the copied stack pool is explicitly 2 longs so that we
1081	 * only ever ingest half of the siphash output each time, retaining
1082	 * the other half as the next "key" that carries over. The entropy is
1083	 * supposed to be sufficiently dispersed between bits so on average
1084	 * we don't wind up "losing" some.
1085	 */
1086	unsigned long pool[2];
1087	unsigned int count;
1088
1089	/* Check to see if we're running on the wrong CPU due to hotplug. */
1090	local_irq_disable();
1091	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1092		local_irq_enable();
1093		return;
1094	}
1095
1096	/*
1097	 * Copy the pool to the stack so that the mixer always has a
1098	 * consistent view, before we reenable irqs again.
1099	 */
1100	memcpy(pool, fast_pool->pool, sizeof(pool));
1101	count = fast_pool->count;
1102	fast_pool->count = 0;
1103	fast_pool->last = jiffies;
1104	local_irq_enable();
1105
1106	mix_pool_bytes(pool, sizeof(pool));
1107	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1108
1109	memzero_explicit(pool, sizeof(pool));
1110}
1111
1112void add_interrupt_randomness(int irq)
1113{
1114	enum { MIX_INFLIGHT = 1U << 31 };
1115	unsigned long entropy = random_get_entropy();
1116	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1117	struct pt_regs *regs = get_irq_regs();
1118	unsigned int new_count;
1119
1120	fast_mix(fast_pool->pool, entropy,
1121		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1122	new_count = ++fast_pool->count;
1123
1124	if (new_count & MIX_INFLIGHT)
1125		return;
1126
1127	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1128		return;
1129
1130	fast_pool->count |= MIX_INFLIGHT;
1131	if (!timer_pending(&fast_pool->mix)) {
1132		fast_pool->mix.expires = jiffies;
1133		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1134	}
1135}
1136EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1137
1138/* There is one of these per entropy source */
1139struct timer_rand_state {
1140	unsigned long last_time;
1141	long last_delta, last_delta2;
1142};
1143
1144/*
1145 * This function adds entropy to the entropy "pool" by using timing
1146 * delays. It uses the timer_rand_state structure to make an estimate
1147 * of how many bits of entropy this call has added to the pool. The
1148 * value "num" is also added to the pool; it should somehow describe
1149 * the type of event that just happened.
1150 */
1151static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1152{
1153	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1154	long delta, delta2, delta3;
1155	unsigned int bits;
1156
1157	/*
1158	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1159	 * sometime after, so mix into the fast pool.
1160	 */
1161	if (in_hardirq()) {
1162		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1163	} else {
1164		spin_lock_irqsave(&input_pool.lock, flags);
1165		_mix_pool_bytes(&entropy, sizeof(entropy));
1166		_mix_pool_bytes(&num, sizeof(num));
1167		spin_unlock_irqrestore(&input_pool.lock, flags);
1168	}
1169
1170	if (crng_ready())
1171		return;
1172
1173	/*
1174	 * Calculate number of bits of randomness we probably added.
1175	 * We take into account the first, second and third-order deltas
1176	 * in order to make our estimate.
1177	 */
1178	delta = now - READ_ONCE(state->last_time);
1179	WRITE_ONCE(state->last_time, now);
1180
1181	delta2 = delta - READ_ONCE(state->last_delta);
1182	WRITE_ONCE(state->last_delta, delta);
1183
1184	delta3 = delta2 - READ_ONCE(state->last_delta2);
1185	WRITE_ONCE(state->last_delta2, delta2);
1186
1187	if (delta < 0)
1188		delta = -delta;
1189	if (delta2 < 0)
1190		delta2 = -delta2;
1191	if (delta3 < 0)
1192		delta3 = -delta3;
1193	if (delta > delta2)
1194		delta = delta2;
1195	if (delta > delta3)
1196		delta = delta3;
1197
1198	/*
1199	 * delta is now minimum absolute delta. Round down by 1 bit
1200	 * on general principles, and limit entropy estimate to 11 bits.
1201	 */
1202	bits = min(fls(delta >> 1), 11);
1203
1204	/*
1205	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1206	 * will run after this, which uses a different crediting scheme of 1 bit
1207	 * per every 64 interrupts. In order to let that function do accounting
1208	 * close to the one in this function, we credit a full 64/64 bit per bit,
1209	 * and then subtract one to account for the extra one added.
1210	 */
1211	if (in_hardirq())
1212		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1213	else
1214		_credit_init_bits(bits);
1215}
1216
1217void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1218{
1219	static unsigned char last_value;
1220	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1221
1222	/* Ignore autorepeat and the like. */
1223	if (value == last_value)
1224		return;
1225
1226	last_value = value;
1227	add_timer_randomness(&input_timer_state,
1228			     (type << 4) ^ code ^ (code >> 4) ^ value);
1229}
1230EXPORT_SYMBOL_GPL(add_input_randomness);
1231
1232#ifdef CONFIG_BLOCK
1233void add_disk_randomness(struct gendisk *disk)
1234{
1235	if (!disk || !disk->random)
1236		return;
1237	/* First major is 1, so we get >= 0x200 here. */
1238	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1239}
1240EXPORT_SYMBOL_GPL(add_disk_randomness);
1241
1242void __cold rand_initialize_disk(struct gendisk *disk)
1243{
1244	struct timer_rand_state *state;
1245
1246	/*
1247	 * If kzalloc returns null, we just won't use that entropy
1248	 * source.
1249	 */
1250	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1251	if (state) {
1252		state->last_time = INITIAL_JIFFIES;
1253		disk->random = state;
1254	}
1255}
1256#endif
1257
1258struct entropy_timer_state {
1259	unsigned long entropy;
1260	struct timer_list timer;
1261	atomic_t samples;
1262	unsigned int samples_per_bit;
1263};
1264
1265/*
1266 * Each time the timer fires, we expect that we got an unpredictable jump in
1267 * the cycle counter. Even if the timer is running on another CPU, the timer
1268 * activity will be touching the stack of the CPU that is generating entropy.
1269 *
1270 * Note that we don't re-arm the timer in the timer itself - we are happy to be
1271 * scheduled away, since that just makes the load more complex, but we do not
1272 * want the timer to keep ticking unless the entropy loop is running.
1273 *
1274 * So the re-arming always happens in the entropy loop itself.
1275 */
1276static void __cold entropy_timer(struct timer_list *timer)
1277{
1278	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1279	unsigned long entropy = random_get_entropy();
1280
1281	mix_pool_bytes(&entropy, sizeof(entropy));
1282	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1283		credit_init_bits(1);
1284}
1285
1286/*
1287 * If we have an actual cycle counter, see if we can generate enough entropy
1288 * with timing noise.
1289 */
1290static void __cold try_to_generate_entropy(void)
1291{
1292	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1293	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1294	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1295	unsigned int i, num_different = 0;
1296	unsigned long last = random_get_entropy();
1297	int cpu = -1;
1298
1299	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1300		stack->entropy = random_get_entropy();
1301		if (stack->entropy != last)
1302			++num_different;
1303		last = stack->entropy;
1304	}
1305	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1306	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1307		return;
1308
1309	atomic_set(&stack->samples, 0);
1310	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1311	while (!crng_ready() && !signal_pending(current)) {
1312		/*
1313		 * Check !timer_pending() and then ensure that any previous callback has finished
1314		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1315		 */
1316		if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1317			struct cpumask timer_cpus;
1318			unsigned int num_cpus;
1319
1320			/*
1321			 * Preemption must be disabled here, both to read the current CPU number
1322			 * and to avoid scheduling a timer on a dead CPU.
1323			 */
1324			preempt_disable();
1325
1326			/* Only schedule callbacks on timer CPUs that are online. */
1327			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1328			num_cpus = cpumask_weight(&timer_cpus);
1329			/* In very bizarre case of misconfiguration, fallback to all online. */
1330			if (unlikely(num_cpus == 0)) {
1331				timer_cpus = *cpu_online_mask;
1332				num_cpus = cpumask_weight(&timer_cpus);
1333			}
1334
1335			/* Basic CPU round-robin, which avoids the current CPU. */
1336			do {
1337				cpu = cpumask_next(cpu, &timer_cpus);
1338				if (cpu >= nr_cpu_ids)
1339					cpu = cpumask_first(&timer_cpus);
1340			} while (cpu == smp_processor_id() && num_cpus > 1);
1341
1342			/* Expiring the timer at `jiffies` means it's the next tick. */
1343			stack->timer.expires = jiffies;
1344
1345			add_timer_on(&stack->timer, cpu);
 
 
 
 
1346
1347			preempt_enable();
1348		}
1349		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1350		schedule();
1351		stack->entropy = random_get_entropy();
1352	}
1353	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1354
1355	del_timer_sync(&stack->timer);
1356	destroy_timer_on_stack(&stack->timer);
1357}
1358
 
1359
1360/**********************************************************************
1361 *
1362 * Userspace reader/writer interfaces.
1363 *
1364 * getrandom(2) is the primary modern interface into the RNG and should
1365 * be used in preference to anything else.
1366 *
1367 * Reading from /dev/random has the same functionality as calling
1368 * getrandom(2) with flags=0. In earlier versions, however, it had
1369 * vastly different semantics and should therefore be avoided, to
1370 * prevent backwards compatibility issues.
1371 *
1372 * Reading from /dev/urandom has the same functionality as calling
1373 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1374 * waiting for the RNG to be ready, it should not be used.
1375 *
1376 * Writing to either /dev/random or /dev/urandom adds entropy to
1377 * the input pool but does not credit it.
1378 *
1379 * Polling on /dev/random indicates when the RNG is initialized, on
1380 * the read side, and when it wants new entropy, on the write side.
1381 *
1382 * Both /dev/random and /dev/urandom have the same set of ioctls for
1383 * adding entropy, getting the entropy count, zeroing the count, and
1384 * reseeding the crng.
1385 *
1386 **********************************************************************/
1387
1388SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1389{
1390	struct iov_iter iter;
1391	int ret;
1392
1393	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1394		return -EINVAL;
1395
1396	/*
1397	 * Requesting insecure and blocking randomness at the same time makes
1398	 * no sense.
1399	 */
1400	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1401		return -EINVAL;
1402
1403	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1404		if (flags & GRND_NONBLOCK)
1405			return -EAGAIN;
1406		ret = wait_for_random_bytes();
1407		if (unlikely(ret))
1408			return ret;
1409	}
1410
1411	ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1412	if (unlikely(ret))
1413		return ret;
1414	return get_random_bytes_user(&iter);
1415}
1416
1417static __poll_t random_poll(struct file *file, poll_table *wait)
 
1418{
1419	poll_wait(file, &crng_init_wait, wait);
1420	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1421}
1422
1423static ssize_t write_pool_user(struct iov_iter *iter)
 
1424{
1425	u8 block[BLAKE2S_BLOCK_SIZE];
1426	ssize_t ret = 0;
1427	size_t copied;
1428
1429	if (unlikely(!iov_iter_count(iter)))
1430		return 0;
1431
1432	for (;;) {
1433		copied = copy_from_iter(block, sizeof(block), iter);
1434		ret += copied;
1435		mix_pool_bytes(block, copied);
1436		if (!iov_iter_count(iter) || copied != sizeof(block))
1437			break;
1438
1439		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1440		if (ret % PAGE_SIZE == 0) {
1441			if (signal_pending(current))
1442				break;
1443			cond_resched();
1444		}
1445	}
1446
1447	memzero_explicit(block, sizeof(block));
1448	return ret ? ret : -EFAULT;
 
 
 
 
 
 
1449}
1450
1451static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1452{
1453	return write_pool_user(iter);
1454}
 
1455
1456static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1457{
1458	static int maxwarn = 10;
 
1459
1460	/*
1461	 * Opportunistically attempt to initialize the RNG on platforms that
1462	 * have fast cycle counters, but don't (for now) require it to succeed.
1463	 */
1464	if (!crng_ready())
1465		try_to_generate_entropy();
1466
1467	if (!crng_ready()) {
1468		if (!ratelimit_disable && maxwarn <= 0)
1469			++urandom_warning.missed;
1470		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1471			--maxwarn;
1472			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1473				  current->comm, iov_iter_count(iter));
1474		}
1475	}
1476
1477	return get_random_bytes_user(iter);
1478}
1479
1480static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1481{
1482	int ret;
1483
1484	if (!crng_ready() &&
1485	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1486	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1487		return -EAGAIN;
 
 
1488
1489	ret = wait_for_random_bytes();
1490	if (ret != 0)
1491		return ret;
1492	return get_random_bytes_user(iter);
1493}
1494
1495static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1496{
 
1497	int __user *p = (int __user *)arg;
1498	int ent_count;
1499
1500	switch (cmd) {
1501	case RNDGETENTCNT:
1502		/* Inherently racy, no point locking. */
1503		if (put_user(input_pool.init_bits, p))
1504			return -EFAULT;
1505		return 0;
1506	case RNDADDTOENTCNT:
1507		if (!capable(CAP_SYS_ADMIN))
1508			return -EPERM;
1509		if (get_user(ent_count, p))
1510			return -EFAULT;
1511		if (ent_count < 0)
1512			return -EINVAL;
1513		credit_init_bits(ent_count);
1514		return 0;
1515	case RNDADDENTROPY: {
1516		struct iov_iter iter;
1517		ssize_t ret;
1518		int len;
1519
1520		if (!capable(CAP_SYS_ADMIN))
1521			return -EPERM;
1522		if (get_user(ent_count, p++))
1523			return -EFAULT;
1524		if (ent_count < 0)
1525			return -EINVAL;
1526		if (get_user(len, p++))
1527			return -EFAULT;
1528		ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1529		if (unlikely(ret))
1530			return ret;
1531		ret = write_pool_user(&iter);
1532		if (unlikely(ret < 0))
1533			return ret;
1534		/* Since we're crediting, enforce that it was all written into the pool. */
1535		if (unlikely(ret != len))
1536			return -EFAULT;
1537		credit_init_bits(ent_count);
 
 
 
 
1538		return 0;
1539	}
1540	case RNDZAPENTCNT:
1541	case RNDCLEARPOOL:
1542		/* No longer has any effect. */
1543		if (!capable(CAP_SYS_ADMIN))
1544			return -EPERM;
1545		return 0;
1546	case RNDRESEEDCRNG:
1547		if (!capable(CAP_SYS_ADMIN))
1548			return -EPERM;
1549		if (!crng_ready())
1550			return -ENODATA;
1551		crng_reseed(NULL);
1552		return 0;
1553	default:
1554		return -EINVAL;
1555	}
1556}
1557
1558static int random_fasync(int fd, struct file *filp, int on)
1559{
1560	return fasync_helper(fd, filp, on, &fasync);
1561}
1562
1563const struct file_operations random_fops = {
1564	.read_iter = random_read_iter,
1565	.write_iter = random_write_iter,
1566	.poll = random_poll,
1567	.unlocked_ioctl = random_ioctl,
1568	.compat_ioctl = compat_ptr_ioctl,
1569	.fasync = random_fasync,
1570	.llseek = noop_llseek,
1571	.splice_read = copy_splice_read,
1572	.splice_write = iter_file_splice_write,
1573};
1574
1575const struct file_operations urandom_fops = {
1576	.read_iter = urandom_read_iter,
1577	.write_iter = random_write_iter,
1578	.unlocked_ioctl = random_ioctl,
1579	.compat_ioctl = compat_ptr_ioctl,
1580	.fasync = random_fasync,
1581	.llseek = noop_llseek,
1582	.splice_read = copy_splice_read,
1583	.splice_write = iter_file_splice_write,
1584};
1585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586
1587/********************************************************************
1588 *
1589 * Sysctl interface.
1590 *
1591 * These are partly unused legacy knobs with dummy values to not break
1592 * userspace and partly still useful things. They are usually accessible
1593 * in /proc/sys/kernel/random/ and are as follows:
1594 *
1595 * - boot_id - a UUID representing the current boot.
1596 *
1597 * - uuid - a random UUID, different each time the file is read.
1598 *
1599 * - poolsize - the number of bits of entropy that the input pool can
1600 *   hold, tied to the POOL_BITS constant.
1601 *
1602 * - entropy_avail - the number of bits of entropy currently in the
1603 *   input pool. Always <= poolsize.
1604 *
1605 * - write_wakeup_threshold - the amount of entropy in the input pool
1606 *   below which write polls to /dev/random will unblock, requesting
1607 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1608 *   to avoid breaking old userspaces, but writing to it does not
1609 *   change any behavior of the RNG.
1610 *
1611 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1612 *   It is writable to avoid breaking old userspaces, but writing
1613 *   to it does not change any behavior of the RNG.
1614 *
1615 ********************************************************************/
1616
1617#ifdef CONFIG_SYSCTL
1618
1619#include <linux/sysctl.h>
1620
1621static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1622static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1623static int sysctl_poolsize = POOL_BITS;
1624static u8 sysctl_bootid[UUID_SIZE];
1625
1626/*
1627 * This function is used to return both the bootid UUID, and random
1628 * UUID. The difference is in whether table->data is NULL; if it is,
1629 * then a new UUID is generated and returned to the user.
 
 
 
 
1630 */
1631static int proc_do_uuid(const struct ctl_table *table, int write, void *buf,
1632			size_t *lenp, loff_t *ppos)
1633{
1634	u8 tmp_uuid[UUID_SIZE], *uuid;
1635	char uuid_string[UUID_STRING_LEN + 1];
1636	struct ctl_table fake_table = {
1637		.data = uuid_string,
1638		.maxlen = UUID_STRING_LEN
1639	};
1640
1641	if (write)
1642		return -EPERM;
1643
1644	uuid = table->data;
1645	if (!uuid) {
1646		uuid = tmp_uuid;
 
 
 
1647		generate_random_uuid(uuid);
1648	} else {
1649		static DEFINE_SPINLOCK(bootid_spinlock);
1650
1651		spin_lock(&bootid_spinlock);
1652		if (!uuid[8])
1653			generate_random_uuid(uuid);
1654		spin_unlock(&bootid_spinlock);
1655	}
1656
1657	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1658	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1659}
1660
1661/* The same as proc_dointvec, but writes don't change anything. */
1662static int proc_do_rointvec(const struct ctl_table *table, int write, void *buf,
1663			    size_t *lenp, loff_t *ppos)
1664{
1665	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1666}
1667
1668static struct ctl_table random_table[] = {
 
1669	{
1670		.procname	= "poolsize",
1671		.data		= &sysctl_poolsize,
1672		.maxlen		= sizeof(int),
1673		.mode		= 0444,
1674		.proc_handler	= proc_dointvec,
1675	},
1676	{
1677		.procname	= "entropy_avail",
1678		.data		= &input_pool.init_bits,
1679		.maxlen		= sizeof(int),
1680		.mode		= 0444,
1681		.proc_handler	= proc_dointvec,
 
1682	},
1683	{
1684		.procname	= "write_wakeup_threshold",
1685		.data		= &sysctl_random_write_wakeup_bits,
1686		.maxlen		= sizeof(int),
1687		.mode		= 0644,
1688		.proc_handler	= proc_do_rointvec,
 
 
1689	},
1690	{
1691		.procname	= "urandom_min_reseed_secs",
1692		.data		= &sysctl_random_min_urandom_seed,
1693		.maxlen		= sizeof(int),
1694		.mode		= 0644,
1695		.proc_handler	= proc_do_rointvec,
 
 
1696	},
1697	{
1698		.procname	= "boot_id",
1699		.data		= &sysctl_bootid,
 
1700		.mode		= 0444,
1701		.proc_handler	= proc_do_uuid,
1702	},
1703	{
1704		.procname	= "uuid",
 
1705		.mode		= 0444,
1706		.proc_handler	= proc_do_uuid,
1707	},
 
1708};
 
 
 
 
 
 
 
 
 
 
1709
1710/*
1711 * random_init() is called before sysctl_init(),
1712 * so we cannot call register_sysctl_init() in random_init()
 
 
1713 */
1714static int __init random_sysctls_init(void)
 
1715{
1716	register_sysctl_init("kernel/random", random_table);
1717	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718}
1719device_initcall(random_sysctls_init);
1720#endif