Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 *
   6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
   7 * rights reserved.
   8 *
   9 * Redistribution and use in source and binary forms, with or without
  10 * modification, are permitted provided that the following conditions
  11 * are met:
  12 * 1. Redistributions of source code must retain the above copyright
  13 *    notice, and the entire permission notice in its entirety,
  14 *    including the disclaimer of warranties.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. The name of the author may not be used to endorse or promote
  19 *    products derived from this software without specific prior
  20 *    written permission.
  21 *
  22 * ALTERNATIVELY, this product may be distributed under the terms of
  23 * the GNU General Public License, in which case the provisions of the GPL are
  24 * required INSTEAD OF the above restrictions.  (This clause is
  25 * necessary due to a potential bad interaction between the GPL and
  26 * the restrictions contained in a BSD-style copyright.)
  27 *
  28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 */
  41
  42/*
  43 * (now, with legal B.S. out of the way.....)
  44 *
  45 * This routine gathers environmental noise from device drivers, etc.,
  46 * and returns good random numbers, suitable for cryptographic use.
  47 * Besides the obvious cryptographic uses, these numbers are also good
  48 * for seeding TCP sequence numbers, and other places where it is
  49 * desirable to have numbers which are not only random, but hard to
  50 * predict by an attacker.
  51 *
  52 * Theory of operation
  53 * ===================
  54 *
  55 * Computers are very predictable devices.  Hence it is extremely hard
  56 * to produce truly random numbers on a computer --- as opposed to
  57 * pseudo-random numbers, which can easily generated by using a
  58 * algorithm.  Unfortunately, it is very easy for attackers to guess
  59 * the sequence of pseudo-random number generators, and for some
  60 * applications this is not acceptable.  So instead, we must try to
  61 * gather "environmental noise" from the computer's environment, which
  62 * must be hard for outside attackers to observe, and use that to
  63 * generate random numbers.  In a Unix environment, this is best done
  64 * from inside the kernel.
  65 *
  66 * Sources of randomness from the environment include inter-keyboard
  67 * timings, inter-interrupt timings from some interrupts, and other
  68 * events which are both (a) non-deterministic and (b) hard for an
  69 * outside observer to measure.  Randomness from these sources are
  70 * added to an "entropy pool", which is mixed using a CRC-like function.
  71 * This is not cryptographically strong, but it is adequate assuming
  72 * the randomness is not chosen maliciously, and it is fast enough that
  73 * the overhead of doing it on every interrupt is very reasonable.
  74 * As random bytes are mixed into the entropy pool, the routines keep
  75 * an *estimate* of how many bits of randomness have been stored into
  76 * the random number generator's internal state.
  77 *
  78 * When random bytes are desired, they are obtained by taking the SHA
  79 * hash of the contents of the "entropy pool".  The SHA hash avoids
  80 * exposing the internal state of the entropy pool.  It is believed to
  81 * be computationally infeasible to derive any useful information
  82 * about the input of SHA from its output.  Even if it is possible to
  83 * analyze SHA in some clever way, as long as the amount of data
  84 * returned from the generator is less than the inherent entropy in
  85 * the pool, the output data is totally unpredictable.  For this
  86 * reason, the routine decreases its internal estimate of how many
  87 * bits of "true randomness" are contained in the entropy pool as it
  88 * outputs random numbers.
  89 *
  90 * If this estimate goes to zero, the routine can still generate
  91 * random numbers; however, an attacker may (at least in theory) be
  92 * able to infer the future output of the generator from prior
  93 * outputs.  This requires successful cryptanalysis of SHA, which is
  94 * not believed to be feasible, but there is a remote possibility.
  95 * Nonetheless, these numbers should be useful for the vast majority
  96 * of purposes.
  97 *
  98 * Exported interfaces ---- output
  99 * ===============================
 100 *
 101 * There are three exported interfaces; the first is one designed to
 102 * be used from within the kernel:
 103 *
 104 * 	void get_random_bytes(void *buf, int nbytes);
 105 *
 106 * This interface will return the requested number of random bytes,
 107 * and place it in the requested buffer.
 108 *
 109 * The two other interfaces are two character devices /dev/random and
 110 * /dev/urandom.  /dev/random is suitable for use when very high
 111 * quality randomness is desired (for example, for key generation or
 112 * one-time pads), as it will only return a maximum of the number of
 113 * bits of randomness (as estimated by the random number generator)
 114 * contained in the entropy pool.
 115 *
 116 * The /dev/urandom device does not have this limit, and will return
 117 * as many bytes as are requested.  As more and more random bytes are
 118 * requested without giving time for the entropy pool to recharge,
 119 * this will result in random numbers that are merely cryptographically
 120 * strong.  For many applications, however, this is acceptable.
 121 *
 122 * Exported interfaces ---- input
 123 * ==============================
 124 *
 125 * The current exported interfaces for gathering environmental noise
 126 * from the devices are:
 127 *
 
 128 * 	void add_input_randomness(unsigned int type, unsigned int code,
 129 *                                unsigned int value);
 130 * 	void add_interrupt_randomness(int irq);
 131 * 	void add_disk_randomness(struct gendisk *disk);
 132 *
 
 
 
 
 
 
 
 
 133 * add_input_randomness() uses the input layer interrupt timing, as well as
 134 * the event type information from the hardware.
 135 *
 136 * add_interrupt_randomness() uses the inter-interrupt timing as random
 137 * inputs to the entropy pool.  Note that not all interrupts are good
 138 * sources of randomness!  For example, the timer interrupts is not a
 139 * good choice, because the periodicity of the interrupts is too
 140 * regular, and hence predictable to an attacker.  Network Interface
 141 * Controller interrupts are a better measure, since the timing of the
 142 * NIC interrupts are more unpredictable.
 143 *
 144 * add_disk_randomness() uses what amounts to the seek time of block
 145 * layer request events, on a per-disk_devt basis, as input to the
 146 * entropy pool. Note that high-speed solid state drives with very low
 147 * seek times do not make for good sources of entropy, as their seek
 148 * times are usually fairly consistent.
 149 *
 150 * All of these routines try to estimate how many bits of randomness a
 151 * particular randomness source.  They do this by keeping track of the
 152 * first and second order deltas of the event timings.
 153 *
 154 * Ensuring unpredictability at system startup
 155 * ============================================
 156 *
 157 * When any operating system starts up, it will go through a sequence
 158 * of actions that are fairly predictable by an adversary, especially
 159 * if the start-up does not involve interaction with a human operator.
 160 * This reduces the actual number of bits of unpredictability in the
 161 * entropy pool below the value in entropy_count.  In order to
 162 * counteract this effect, it helps to carry information in the
 163 * entropy pool across shut-downs and start-ups.  To do this, put the
 164 * following lines an appropriate script which is run during the boot
 165 * sequence:
 166 *
 167 *	echo "Initializing random number generator..."
 168 *	random_seed=/var/run/random-seed
 169 *	# Carry a random seed from start-up to start-up
 170 *	# Load and then save the whole entropy pool
 171 *	if [ -f $random_seed ]; then
 172 *		cat $random_seed >/dev/urandom
 173 *	else
 174 *		touch $random_seed
 175 *	fi
 176 *	chmod 600 $random_seed
 177 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 178 *
 179 * and the following lines in an appropriate script which is run as
 180 * the system is shutdown:
 181 *
 182 *	# Carry a random seed from shut-down to start-up
 183 *	# Save the whole entropy pool
 184 *	echo "Saving random seed..."
 185 *	random_seed=/var/run/random-seed
 186 *	touch $random_seed
 187 *	chmod 600 $random_seed
 188 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 189 *
 190 * For example, on most modern systems using the System V init
 191 * scripts, such code fragments would be found in
 192 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 193 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 194 *
 195 * Effectively, these commands cause the contents of the entropy pool
 196 * to be saved at shut-down time and reloaded into the entropy pool at
 197 * start-up.  (The 'dd' in the addition to the bootup script is to
 198 * make sure that /etc/random-seed is different for every start-up,
 199 * even if the system crashes without executing rc.0.)  Even with
 200 * complete knowledge of the start-up activities, predicting the state
 201 * of the entropy pool requires knowledge of the previous history of
 202 * the system.
 203 *
 204 * Configuring the /dev/random driver under Linux
 205 * ==============================================
 206 *
 207 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 208 * the /dev/mem major number (#1).  So if your system does not have
 209 * /dev/random and /dev/urandom created already, they can be created
 210 * by using the commands:
 211 *
 212 * 	mknod /dev/random c 1 8
 213 * 	mknod /dev/urandom c 1 9
 214 *
 215 * Acknowledgements:
 216 * =================
 217 *
 218 * Ideas for constructing this random number generator were derived
 219 * from Pretty Good Privacy's random number generator, and from private
 220 * discussions with Phil Karn.  Colin Plumb provided a faster random
 221 * number generator, which speed up the mixing function of the entropy
 222 * pool, taken from PGPfone.  Dale Worley has also contributed many
 223 * useful ideas and suggestions to improve this driver.
 224 *
 225 * Any flaws in the design are solely my responsibility, and should
 226 * not be attributed to the Phil, Colin, or any of authors of PGP.
 227 *
 228 * Further background information on this topic may be obtained from
 229 * RFC 1750, "Randomness Recommendations for Security", by Donald
 230 * Eastlake, Steve Crocker, and Jeff Schiller.
 231 */
 232
 233#include <linux/utsname.h>
 234#include <linux/module.h>
 235#include <linux/kernel.h>
 236#include <linux/major.h>
 237#include <linux/string.h>
 238#include <linux/fcntl.h>
 239#include <linux/slab.h>
 240#include <linux/random.h>
 241#include <linux/poll.h>
 242#include <linux/init.h>
 243#include <linux/fs.h>
 244#include <linux/genhd.h>
 245#include <linux/interrupt.h>
 246#include <linux/mm.h>
 247#include <linux/spinlock.h>
 248#include <linux/percpu.h>
 249#include <linux/cryptohash.h>
 250#include <linux/fips.h>
 251
 252#ifdef CONFIG_GENERIC_HARDIRQS
 253# include <linux/irq.h>
 254#endif
 255
 256#include <asm/processor.h>
 257#include <asm/uaccess.h>
 258#include <asm/irq.h>
 
 259#include <asm/io.h>
 260
 
 
 
 261/*
 262 * Configuration information
 263 */
 264#define INPUT_POOL_WORDS 128
 265#define OUTPUT_POOL_WORDS 32
 266#define SEC_XFER_SIZE 512
 267#define EXTRACT_SIZE 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268
 269/*
 270 * The minimum number of bits of entropy before we wake up a read on
 271 * /dev/random.  Should be enough to do a significant reseed.
 272 */
 273static int random_read_wakeup_thresh = 64;
 274
 275/*
 276 * If the entropy count falls under this number of bits, then we
 277 * should wake up processes which are selecting or polling on write
 278 * access to /dev/random.
 279 */
 280static int random_write_wakeup_thresh = 128;
 281
 282/*
 283 * When the input pool goes over trickle_thresh, start dropping most
 284 * samples to avoid wasting CPU time and reduce lock contention.
 
 285 */
 286
 287static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
 288
 289static DEFINE_PER_CPU(int, trickle_count);
 290
 291/*
 292 * A pool of size .poolwords is stirred with a primitive polynomial
 293 * of degree .poolwords over GF(2).  The taps for various sizes are
 294 * defined below.  They are chosen to be evenly spaced (minimum RMS
 295 * distance from evenly spaced; the numbers in the comments are a
 296 * scaled squared error sum) except for the last tap, which is 1 to
 297 * get the twisting happening as fast as possible.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298 */
 299static struct poolinfo {
 300	int poolwords;
 
 301	int tap1, tap2, tap3, tap4, tap5;
 302} poolinfo_table[] = {
 303	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
 304	{ 128,	103,	76,	51,	25,	1 },
 305	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
 306	{ 32,	26,	20,	14,	7,	1 },
 
 
 307#if 0
 308	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 309	{ 2048,	1638,	1231,	819,	411,	1 },
 310
 311	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 312	{ 1024,	817,	615,	412,	204,	1 },
 313
 314	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 315	{ 1024,	819,	616,	410,	207,	2 },
 316
 317	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 318	{ 512,	411,	308,	208,	104,	1 },
 319
 320	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 321	{ 512,	409,	307,	206,	102,	2 },
 322	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 323	{ 512,	409,	309,	205,	103,	2 },
 324
 325	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 326	{ 256,	205,	155,	101,	52,	1 },
 327
 328	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 329	{ 128,	103,	78,	51,	27,	2 },
 330
 331	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 332	{ 64,	52,	39,	26,	14,	1 },
 333#endif
 334};
 335
 336#define POOLBITS	poolwords*32
 337#define POOLBYTES	poolwords*4
 338
 339/*
 340 * For the purposes of better mixing, we use the CRC-32 polynomial as
 341 * well to make a twisted Generalized Feedback Shift Reigster
 342 *
 343 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
 344 * Transactions on Modeling and Computer Simulation 2(3):179-194.
 345 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
 346 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
 347 *
 348 * Thanks to Colin Plumb for suggesting this.
 349 *
 350 * We have not analyzed the resultant polynomial to prove it primitive;
 351 * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
 352 * of a random large-degree polynomial over GF(2) are more than large enough
 353 * that periodicity is not a concern.
 354 *
 355 * The input hash is much less sensitive than the output hash.  All
 356 * that we want of it is that it be a good non-cryptographic hash;
 357 * i.e. it not produce collisions when fed "random" data of the sort
 358 * we expect to see.  As long as the pool state differs for different
 359 * inputs, we have preserved the input entropy and done a good job.
 360 * The fact that an intelligent attacker can construct inputs that
 361 * will produce controlled alterations to the pool's state is not
 362 * important because we don't consider such inputs to contribute any
 363 * randomness.  The only property we need with respect to them is that
 364 * the attacker can't increase his/her knowledge of the pool's state.
 365 * Since all additions are reversible (knowing the final state and the
 366 * input, you can reconstruct the initial state), if an attacker has
 367 * any uncertainty about the initial state, he/she can only shuffle
 368 * that uncertainty about, but never cause any collisions (which would
 369 * decrease the uncertainty).
 370 *
 371 * The chosen system lets the state of the pool be (essentially) the input
 372 * modulo the generator polymnomial.  Now, for random primitive polynomials,
 373 * this is a universal class of hash functions, meaning that the chance
 374 * of a collision is limited by the attacker's knowledge of the generator
 375 * polynomail, so if it is chosen at random, an attacker can never force
 376 * a collision.  Here, we use a fixed polynomial, but we *can* assume that
 377 * ###--> it is unknown to the processes generating the input entropy. <-###
 378 * Because of this important property, this is a good, collision-resistant
 379 * hash; hash collisions will occur no more often than chance.
 380 */
 381
 382/*
 383 * Static global variables
 384 */
 385static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 386static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 387static struct fasync_struct *fasync;
 388
 389#if 0
 390static int debug;
 391module_param(debug, bool, 0644);
 392#define DEBUG_ENT(fmt, arg...) do { \
 393	if (debug) \
 394		printk(KERN_DEBUG "random %04d %04d %04d: " \
 395		fmt,\
 396		input_pool.entropy_count,\
 397		blocking_pool.entropy_count,\
 398		nonblocking_pool.entropy_count,\
 399		## arg); } while (0)
 400#else
 401#define DEBUG_ENT(fmt, arg...) do {} while (0)
 402#endif
 403
 404/**********************************************************************
 405 *
 406 * OS independent entropy store.   Here are the functions which handle
 407 * storing entropy in an entropy pool.
 408 *
 409 **********************************************************************/
 410
 411struct entropy_store;
 412struct entropy_store {
 413	/* read-only data: */
 414	struct poolinfo *poolinfo;
 415	__u32 *pool;
 416	const char *name;
 417	struct entropy_store *pull;
 418	int limit;
 419
 420	/* read-write data: */
 
 421	spinlock_t lock;
 422	unsigned add_ptr;
 
 423	int entropy_count;
 424	int input_rotate;
 
 
 
 425	__u8 last_data[EXTRACT_SIZE];
 426};
 427
 
 428static __u32 input_pool_data[INPUT_POOL_WORDS];
 429static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
 430static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
 431
 432static struct entropy_store input_pool = {
 433	.poolinfo = &poolinfo_table[0],
 434	.name = "input",
 435	.limit = 1,
 436	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
 437	.pool = input_pool_data
 438};
 439
 440static struct entropy_store blocking_pool = {
 441	.poolinfo = &poolinfo_table[1],
 442	.name = "blocking",
 443	.limit = 1,
 444	.pull = &input_pool,
 445	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
 446	.pool = blocking_pool_data
 
 
 447};
 448
 449static struct entropy_store nonblocking_pool = {
 450	.poolinfo = &poolinfo_table[1],
 451	.name = "nonblocking",
 452	.pull = &input_pool,
 453	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
 454	.pool = nonblocking_pool_data
 
 
 455};
 456
 
 
 
 
 457/*
 458 * This function adds bytes into the entropy "pool".  It does not
 459 * update the entropy estimate.  The caller should call
 460 * credit_entropy_bits if this is appropriate.
 461 *
 462 * The pool is stirred with a primitive polynomial of the appropriate
 463 * degree, and then twisted.  We twist by three bits at a time because
 464 * it's cheap to do so and helps slightly in the expected case where
 465 * the entropy is concentrated in the low-order bits.
 466 */
 467static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
 468				   int nbytes, __u8 out[64])
 469{
 470	static __u32 const twist_table[8] = {
 471		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 472		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 473	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
 474	int input_rotate;
 475	int wordmask = r->poolinfo->poolwords - 1;
 476	const char *bytes = in;
 477	__u32 w;
 478	unsigned long flags;
 479
 480	/* Taps are constant, so we can load them without holding r->lock.  */
 481	tap1 = r->poolinfo->tap1;
 482	tap2 = r->poolinfo->tap2;
 483	tap3 = r->poolinfo->tap3;
 484	tap4 = r->poolinfo->tap4;
 485	tap5 = r->poolinfo->tap5;
 486
 487	spin_lock_irqsave(&r->lock, flags);
 488	input_rotate = r->input_rotate;
 489	i = r->add_ptr;
 490
 491	/* mix one byte at a time to simplify size handling and churn faster */
 492	while (nbytes--) {
 493		w = rol32(*bytes++, input_rotate & 31);
 494		i = (i - 1) & wordmask;
 495
 496		/* XOR in the various taps */
 497		w ^= r->pool[i];
 498		w ^= r->pool[(i + tap1) & wordmask];
 499		w ^= r->pool[(i + tap2) & wordmask];
 500		w ^= r->pool[(i + tap3) & wordmask];
 501		w ^= r->pool[(i + tap4) & wordmask];
 502		w ^= r->pool[(i + tap5) & wordmask];
 503
 504		/* Mix the result back in with a twist */
 505		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 506
 507		/*
 508		 * Normally, we add 7 bits of rotation to the pool.
 509		 * At the beginning of the pool, add an extra 7 bits
 510		 * rotation, so that successive passes spread the
 511		 * input bits across the pool evenly.
 512		 */
 513		input_rotate += i ? 7 : 14;
 514	}
 515
 516	r->input_rotate = input_rotate;
 517	r->add_ptr = i;
 
 518
 519	if (out)
 520		for (j = 0; j < 16; j++)
 521			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
 
 522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523	spin_unlock_irqrestore(&r->lock, flags);
 524}
 525
 526static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 527{
 528       mix_pool_bytes_extract(r, in, bytes, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529}
 530
 531/*
 532 * Credit (or debit) the entropy store with n bits of entropy
 
 
 533 */
 534static void credit_entropy_bits(struct entropy_store *r, int nbits)
 535{
 536	unsigned long flags;
 537	int entropy_count;
 
 538
 539	if (!nbits)
 540		return;
 541
 542	spin_lock_irqsave(&r->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543
 544	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
 545	entropy_count = r->entropy_count;
 546	entropy_count += nbits;
 547	if (entropy_count < 0) {
 548		DEBUG_ENT("negative entropy/overflow\n");
 
 
 549		entropy_count = 0;
 550	} else if (entropy_count > r->poolinfo->POOLBITS)
 551		entropy_count = r->poolinfo->POOLBITS;
 552	r->entropy_count = entropy_count;
 553
 554	/* should we wake readers? */
 555	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
 556		wake_up_interruptible(&random_read_wait);
 557		kill_fasync(&fasync, SIGIO, POLL_IN);
 
 
 
 
 
 558	}
 559	spin_unlock_irqrestore(&r->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560}
 561
 562/*********************************************************************
 563 *
 564 * Entropy input management
 565 *
 566 *********************************************************************/
 567
 568/* There is one of these per entropy source */
 569struct timer_rand_state {
 570	cycles_t last_time;
 571	long last_delta, last_delta2;
 572	unsigned dont_count_entropy:1;
 573};
 574
 575#ifndef CONFIG_GENERIC_HARDIRQS
 576
 577static struct timer_rand_state *irq_timer_state[NR_IRQS];
 578
 579static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
 580{
 581	return irq_timer_state[irq];
 582}
 583
 584static void set_timer_rand_state(unsigned int irq,
 585				 struct timer_rand_state *state)
 586{
 587	irq_timer_state[irq] = state;
 588}
 589
 590#else
 591
 592static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
 593{
 594	struct irq_desc *desc;
 595
 596	desc = irq_to_desc(irq);
 597
 598	return desc->timer_rand_state;
 599}
 600
 601static void set_timer_rand_state(unsigned int irq,
 602				 struct timer_rand_state *state)
 603{
 604	struct irq_desc *desc;
 605
 606	desc = irq_to_desc(irq);
 607
 608	desc->timer_rand_state = state;
 
 
 
 
 
 
 
 
 
 609}
 610#endif
 611
 612static struct timer_rand_state input_timer_state;
 613
 614/*
 615 * This function adds entropy to the entropy "pool" by using timing
 616 * delays.  It uses the timer_rand_state structure to make an estimate
 617 * of how many bits of entropy this call has added to the pool.
 618 *
 619 * The number "num" is also added to the pool - it should somehow describe
 620 * the type of event which just happened.  This is currently 0-255 for
 621 * keyboard scan codes, and 256 upwards for interrupts.
 622 *
 623 */
 624static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 625{
 
 626	struct {
 627		cycles_t cycles;
 628		long jiffies;
 
 629		unsigned num;
 630	} sample;
 631	long delta, delta2, delta3;
 632
 633	preempt_disable();
 634	/* if over the trickle threshold, use only 1 in 4096 samples */
 635	if (input_pool.entropy_count > trickle_thresh &&
 636	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
 637		goto out;
 638
 639	sample.jiffies = jiffies;
 640	sample.cycles = get_cycles();
 641	sample.num = num;
 642	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
 
 643
 644	/*
 645	 * Calculate number of bits of randomness we probably added.
 646	 * We take into account the first, second and third-order deltas
 647	 * in order to make our estimate.
 648	 */
 649
 650	if (!state->dont_count_entropy) {
 651		delta = sample.jiffies - state->last_time;
 652		state->last_time = sample.jiffies;
 653
 654		delta2 = delta - state->last_delta;
 655		state->last_delta = delta;
 656
 657		delta3 = delta2 - state->last_delta2;
 658		state->last_delta2 = delta2;
 659
 660		if (delta < 0)
 661			delta = -delta;
 662		if (delta2 < 0)
 663			delta2 = -delta2;
 664		if (delta3 < 0)
 665			delta3 = -delta3;
 666		if (delta > delta2)
 667			delta = delta2;
 668		if (delta > delta3)
 669			delta = delta3;
 670
 671		/*
 672		 * delta is now minimum absolute delta.
 673		 * Round down by 1 bit on general principles,
 674		 * and limit entropy entimate to 12 bits.
 675		 */
 676		credit_entropy_bits(&input_pool,
 677				    min_t(int, fls(delta>>1), 11));
 678	}
 679out:
 680	preempt_enable();
 681}
 682
 683void add_input_randomness(unsigned int type, unsigned int code,
 684				 unsigned int value)
 685{
 686	static unsigned char last_value;
 687
 688	/* ignore autorepeat and the like */
 689	if (value == last_value)
 690		return;
 691
 692	DEBUG_ENT("input event\n");
 693	last_value = value;
 694	add_timer_randomness(&input_timer_state,
 695			     (type << 4) ^ code ^ (code >> 4) ^ value);
 
 696}
 697EXPORT_SYMBOL_GPL(add_input_randomness);
 698
 699void add_interrupt_randomness(int irq)
 
 
 700{
 701	struct timer_rand_state *state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702
 703	state = get_timer_rand_state(irq);
 704
 705	if (state == NULL)
 706		return;
 707
 708	DEBUG_ENT("irq event %d\n", irq);
 709	add_timer_randomness(state, 0x100 + irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710}
 711
 712#ifdef CONFIG_BLOCK
 713void add_disk_randomness(struct gendisk *disk)
 714{
 715	if (!disk || !disk->random)
 716		return;
 717	/* first major is 1, so we get >= 0x200 here */
 718	DEBUG_ENT("disk event %d:%d\n",
 719		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
 720
 721	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 
 722}
 723#endif
 724
 725/*********************************************************************
 726 *
 727 * Entropy extraction routines
 728 *
 729 *********************************************************************/
 730
 731static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 732			       size_t nbytes, int min, int rsvd);
 733
 734/*
 735 * This utility inline function is responsible for transferring entropy
 736 * from the primary pool to the secondary extraction pool. We make
 737 * sure we pull enough for a 'catastrophic reseed'.
 738 */
 
 739static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 740{
 741	__u32 tmp[OUTPUT_POOL_WORDS];
 742
 743	if (r->pull && r->entropy_count < nbytes * 8 &&
 744	    r->entropy_count < r->poolinfo->POOLBITS) {
 745		/* If we're limited, always leave two wakeup worth's BITS */
 746		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
 747		int bytes = nbytes;
 748
 749		/* pull at least as many as BYTES as wakeup BITS */
 750		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
 751		/* but never more than the buffer size */
 752		bytes = min_t(int, bytes, sizeof(tmp));
 753
 754		DEBUG_ENT("going to reseed %s with %d bits "
 755			  "(%d of %d requested)\n",
 756			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
 757
 758		bytes = extract_entropy(r->pull, tmp, bytes,
 759					random_read_wakeup_thresh / 8, rsvd);
 760		mix_pool_bytes(r, tmp, bytes);
 761		credit_entropy_bits(r, bytes*8);
 762	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763}
 764
 765/*
 766 * These functions extracts randomness from the "entropy pool", and
 767 * returns it in a buffer.
 768 *
 769 * The min parameter specifies the minimum amount we can pull before
 770 * failing to avoid races that defeat catastrophic reseeding while the
 771 * reserved parameter indicates how much entropy we must leave in the
 772 * pool after each pull to avoid starving other readers.
 773 *
 774 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
 775 */
 
 
 
 
 
 
 
 
 
 776
 
 
 
 
 777static size_t account(struct entropy_store *r, size_t nbytes, int min,
 778		      int reserved)
 779{
 780	unsigned long flags;
 
 
 781
 782	/* Hold lock while accounting */
 783	spin_lock_irqsave(&r->lock, flags);
 784
 785	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
 786	DEBUG_ENT("trying to extract %d bits from %s\n",
 787		  nbytes * 8, r->name);
 788
 789	/* Can we pull enough? */
 790	if (r->entropy_count / 8 < min + reserved) {
 791		nbytes = 0;
 792	} else {
 793		/* If limited, never pull more than available */
 794		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
 795			nbytes = r->entropy_count/8 - reserved;
 796
 797		if (r->entropy_count / 8 >= nbytes + reserved)
 798			r->entropy_count -= nbytes*8;
 799		else
 800			r->entropy_count = reserved;
 801
 802		if (r->entropy_count < random_write_wakeup_thresh) {
 803			wake_up_interruptible(&random_write_wait);
 804			kill_fasync(&fasync, SIGIO, POLL_OUT);
 805		}
 
 
 
 
 
 
 806	}
 807
 808	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
 809		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
 810
 811	spin_unlock_irqrestore(&r->lock, flags);
 812
 813	return nbytes;
 814}
 815
 
 
 
 
 
 
 816static void extract_buf(struct entropy_store *r, __u8 *out)
 817{
 818	int i;
 819	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
 
 
 
 
 820	__u8 extract[64];
 
 
 
 
 
 
 
 
 
 
 
 
 
 821
 822	/* Generate a hash across the pool, 16 words (512 bits) at a time */
 823	sha_init(hash);
 824	for (i = 0; i < r->poolinfo->poolwords; i += 16)
 825		sha_transform(hash, (__u8 *)(r->pool + i), workspace);
 826
 827	/*
 828	 * We mix the hash back into the pool to prevent backtracking
 829	 * attacks (where the attacker knows the state of the pool
 830	 * plus the current outputs, and attempts to find previous
 831	 * ouputs), unless the hash function can be inverted. By
 832	 * mixing at least a SHA1 worth of hash data back, we make
 833	 * brute-forcing the feedback as hard as brute-forcing the
 834	 * hash.
 835	 */
 836	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
 
 837
 838	/*
 839	 * To avoid duplicates, we atomically extract a portion of the
 840	 * pool while mixing, and hash one final time.
 841	 */
 842	sha_transform(hash, extract, workspace);
 843	memset(extract, 0, sizeof(extract));
 844	memset(workspace, 0, sizeof(workspace));
 845
 846	/*
 847	 * In case the hash function has some recognizable output
 848	 * pattern, we fold it in half. Thus, we always feed back
 849	 * twice as much data as we output.
 850	 */
 851	hash[0] ^= hash[3];
 852	hash[1] ^= hash[4];
 853	hash[2] ^= rol32(hash[2], 16);
 854	memcpy(out, hash, EXTRACT_SIZE);
 855	memset(hash, 0, sizeof(hash));
 
 856}
 857
 
 
 
 
 
 
 
 
 
 858static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 859			       size_t nbytes, int min, int reserved)
 860{
 861	ssize_t ret = 0, i;
 862	__u8 tmp[EXTRACT_SIZE];
 863	unsigned long flags;
 864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865	xfer_secondary_pool(r, nbytes);
 866	nbytes = account(r, nbytes, min, reserved);
 867
 868	while (nbytes) {
 869		extract_buf(r, tmp);
 870
 871		if (fips_enabled) {
 872			spin_lock_irqsave(&r->lock, flags);
 873			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
 874				panic("Hardware RNG duplicated output!\n");
 875			memcpy(r->last_data, tmp, EXTRACT_SIZE);
 876			spin_unlock_irqrestore(&r->lock, flags);
 877		}
 878		i = min_t(int, nbytes, EXTRACT_SIZE);
 879		memcpy(buf, tmp, i);
 880		nbytes -= i;
 881		buf += i;
 882		ret += i;
 883	}
 884
 885	/* Wipe data just returned from memory */
 886	memset(tmp, 0, sizeof(tmp));
 887
 888	return ret;
 889}
 890
 
 
 
 
 891static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
 892				    size_t nbytes)
 893{
 894	ssize_t ret = 0, i;
 895	__u8 tmp[EXTRACT_SIZE];
 896
 
 897	xfer_secondary_pool(r, nbytes);
 898	nbytes = account(r, nbytes, 0, 0);
 899
 900	while (nbytes) {
 901		if (need_resched()) {
 902			if (signal_pending(current)) {
 903				if (ret == 0)
 904					ret = -ERESTARTSYS;
 905				break;
 906			}
 907			schedule();
 908		}
 909
 910		extract_buf(r, tmp);
 911		i = min_t(int, nbytes, EXTRACT_SIZE);
 912		if (copy_to_user(buf, tmp, i)) {
 913			ret = -EFAULT;
 914			break;
 915		}
 916
 917		nbytes -= i;
 918		buf += i;
 919		ret += i;
 920	}
 921
 922	/* Wipe data just returned from memory */
 923	memset(tmp, 0, sizeof(tmp));
 924
 925	return ret;
 926}
 927
 928/*
 929 * This function is the exported kernel interface.  It returns some
 930 * number of good random numbers, suitable for seeding TCP sequence
 931 * numbers, etc.
 
 
 932 */
 933void get_random_bytes(void *buf, int nbytes)
 934{
 
 
 
 
 
 
 
 
 935	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
 936}
 937EXPORT_SYMBOL(get_random_bytes);
 938
 939/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940 * init_std_data - initialize pool with system data
 941 *
 942 * @r: pool to initialize
 943 *
 944 * This function clears the pool's entropy count and mixes some system
 945 * data into the pool to prepare it for use. The pool is not cleared
 946 * as that can only decrease the entropy in the pool.
 947 */
 948static void init_std_data(struct entropy_store *r)
 949{
 950	ktime_t now;
 951	unsigned long flags;
 952
 953	spin_lock_irqsave(&r->lock, flags);
 954	r->entropy_count = 0;
 955	spin_unlock_irqrestore(&r->lock, flags);
 956
 957	now = ktime_get_real();
 958	mix_pool_bytes(r, &now, sizeof(now));
 959	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
 
 
 
 
 
 
 960}
 961
 
 
 
 
 
 
 
 
 
 
 962static int rand_initialize(void)
 963{
 964	init_std_data(&input_pool);
 965	init_std_data(&blocking_pool);
 966	init_std_data(&nonblocking_pool);
 967	return 0;
 968}
 969module_init(rand_initialize);
 970
 971void rand_initialize_irq(int irq)
 972{
 973	struct timer_rand_state *state;
 974
 975	state = get_timer_rand_state(irq);
 976
 977	if (state)
 978		return;
 979
 980	/*
 981	 * If kzalloc returns null, we just won't use that entropy
 982	 * source.
 983	 */
 984	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 985	if (state)
 986		set_timer_rand_state(irq, state);
 987}
 988
 989#ifdef CONFIG_BLOCK
 990void rand_initialize_disk(struct gendisk *disk)
 991{
 992	struct timer_rand_state *state;
 993
 994	/*
 995	 * If kzalloc returns null, we just won't use that entropy
 996	 * source.
 997	 */
 998	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
 999	if (state)
 
1000		disk->random = state;
 
1001}
1002#endif
1003
1004static ssize_t
1005random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
 
 
 
 
 
1006{
1007	ssize_t n, retval = 0, count = 0;
 
 
 
1008
1009	if (nbytes == 0)
1010		return 0;
1011
1012	while (nbytes > 0) {
1013		n = nbytes;
1014		if (n > SEC_XFER_SIZE)
1015			n = SEC_XFER_SIZE;
1016
1017		DEBUG_ENT("reading %d bits\n", n*8);
1018
1019		n = extract_entropy_user(&blocking_pool, buf, n);
 
1020
1021		DEBUG_ENT("read got %d bits (%d still needed)\n",
1022			  n*8, (nbytes-n)*8);
 
1023
1024		if (n == 0) {
1025			if (file->f_flags & O_NONBLOCK) {
1026				retval = -EAGAIN;
1027				break;
1028			}
1029
1030			DEBUG_ENT("sleeping?\n");
 
 
 
1031
1032			wait_event_interruptible(random_read_wait,
1033				input_pool.entropy_count >=
1034						 random_read_wakeup_thresh);
1035
1036			DEBUG_ENT("awake\n");
 
 
 
 
 
 
 
 
 
1037
1038			if (signal_pending(current)) {
1039				retval = -ERESTARTSYS;
1040				break;
1041			}
1042
 
 
1043			continue;
1044		}
1045
1046		if (n < 0) {
1047			retval = n;
1048			break;
1049		}
1050		count += n;
1051		buf += n;
1052		nbytes -= n;
1053		break;		/* This break makes the device work */
1054				/* like a named pipe */
1055	}
1056
1057	return (count ? count : retval);
 
 
 
 
 
1058}
1059
1060static ssize_t
1061urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1062{
1063	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
 
 
 
 
 
 
 
 
 
 
 
1064}
1065
1066static unsigned int
1067random_poll(struct file *file, poll_table * wait)
1068{
1069	unsigned int mask;
1070
1071	poll_wait(file, &random_read_wait, wait);
1072	poll_wait(file, &random_write_wait, wait);
1073	mask = 0;
1074	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1075		mask |= POLLIN | POLLRDNORM;
1076	if (input_pool.entropy_count < random_write_wakeup_thresh)
1077		mask |= POLLOUT | POLLWRNORM;
1078	return mask;
1079}
1080
1081static int
1082write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1083{
1084	size_t bytes;
1085	__u32 buf[16];
1086	const char __user *p = buffer;
1087
1088	while (count > 0) {
1089		bytes = min(count, sizeof(buf));
1090		if (copy_from_user(&buf, p, bytes))
1091			return -EFAULT;
1092
1093		count -= bytes;
1094		p += bytes;
1095
1096		mix_pool_bytes(r, buf, bytes);
1097		cond_resched();
1098	}
1099
1100	return 0;
1101}
1102
1103static ssize_t random_write(struct file *file, const char __user *buffer,
1104			    size_t count, loff_t *ppos)
1105{
1106	size_t ret;
1107
1108	ret = write_pool(&blocking_pool, buffer, count);
1109	if (ret)
1110		return ret;
1111	ret = write_pool(&nonblocking_pool, buffer, count);
1112	if (ret)
1113		return ret;
1114
1115	return (ssize_t)count;
1116}
1117
1118static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1119{
1120	int size, ent_count;
1121	int __user *p = (int __user *)arg;
1122	int retval;
1123
1124	switch (cmd) {
1125	case RNDGETENTCNT:
1126		/* inherently racy, no point locking */
1127		if (put_user(input_pool.entropy_count, p))
 
1128			return -EFAULT;
1129		return 0;
1130	case RNDADDTOENTCNT:
1131		if (!capable(CAP_SYS_ADMIN))
1132			return -EPERM;
1133		if (get_user(ent_count, p))
1134			return -EFAULT;
1135		credit_entropy_bits(&input_pool, ent_count);
1136		return 0;
1137	case RNDADDENTROPY:
1138		if (!capable(CAP_SYS_ADMIN))
1139			return -EPERM;
1140		if (get_user(ent_count, p++))
1141			return -EFAULT;
1142		if (ent_count < 0)
1143			return -EINVAL;
1144		if (get_user(size, p++))
1145			return -EFAULT;
1146		retval = write_pool(&input_pool, (const char __user *)p,
1147				    size);
1148		if (retval < 0)
1149			return retval;
1150		credit_entropy_bits(&input_pool, ent_count);
1151		return 0;
1152	case RNDZAPENTCNT:
1153	case RNDCLEARPOOL:
1154		/* Clear the entropy pool counters. */
 
 
 
1155		if (!capable(CAP_SYS_ADMIN))
1156			return -EPERM;
1157		rand_initialize();
 
 
1158		return 0;
1159	default:
1160		return -EINVAL;
1161	}
1162}
1163
1164static int random_fasync(int fd, struct file *filp, int on)
1165{
1166	return fasync_helper(fd, filp, on, &fasync);
1167}
1168
1169const struct file_operations random_fops = {
1170	.read  = random_read,
1171	.write = random_write,
1172	.poll  = random_poll,
1173	.unlocked_ioctl = random_ioctl,
1174	.fasync = random_fasync,
1175	.llseek = noop_llseek,
1176};
1177
1178const struct file_operations urandom_fops = {
1179	.read  = urandom_read,
1180	.write = random_write,
1181	.unlocked_ioctl = random_ioctl,
1182	.fasync = random_fasync,
1183	.llseek = noop_llseek,
1184};
1185
1186/***************************************************************
1187 * Random UUID interface
1188 *
1189 * Used here for a Boot ID, but can be useful for other kernel
1190 * drivers.
1191 ***************************************************************/
1192
1193/*
1194 * Generate random UUID
1195 */
1196void generate_random_uuid(unsigned char uuid_out[16])
1197{
1198	get_random_bytes(uuid_out, 16);
1199	/* Set UUID version to 4 --- truly random generation */
1200	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1201	/* Set the UUID variant to DCE */
1202	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1203}
1204EXPORT_SYMBOL(generate_random_uuid);
1205
1206/********************************************************************
1207 *
1208 * Sysctl interface
1209 *
1210 ********************************************************************/
1211
1212#ifdef CONFIG_SYSCTL
1213
1214#include <linux/sysctl.h>
1215
1216static int min_read_thresh = 8, min_write_thresh;
1217static int max_read_thresh = INPUT_POOL_WORDS * 32;
1218static int max_write_thresh = INPUT_POOL_WORDS * 32;
1219static char sysctl_bootid[16];
1220
1221/*
1222 * These functions is used to return both the bootid UUID, and random
1223 * UUID.  The difference is in whether table->data is NULL; if it is,
1224 * then a new UUID is generated and returned to the user.
1225 *
1226 * If the user accesses this via the proc interface, it will be returned
1227 * as an ASCII string in the standard UUID format.  If accesses via the
1228 * sysctl system call, it is returned as 16 bytes of binary data.
1229 */
1230static int proc_do_uuid(ctl_table *table, int write,
1231			void __user *buffer, size_t *lenp, loff_t *ppos)
1232{
1233	ctl_table fake_table;
1234	unsigned char buf[64], tmp_uuid[16], *uuid;
1235
1236	uuid = table->data;
1237	if (!uuid) {
1238		uuid = tmp_uuid;
1239		uuid[8] = 0;
1240	}
1241	if (uuid[8] == 0)
1242		generate_random_uuid(uuid);
 
 
 
 
 
 
 
 
1243
1244	sprintf(buf, "%pU", uuid);
1245
1246	fake_table.data = buf;
1247	fake_table.maxlen = sizeof(buf);
1248
1249	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1250}
1251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1253ctl_table random_table[] = {
 
1254	{
1255		.procname	= "poolsize",
1256		.data		= &sysctl_poolsize,
1257		.maxlen		= sizeof(int),
1258		.mode		= 0444,
1259		.proc_handler	= proc_dointvec,
1260	},
1261	{
1262		.procname	= "entropy_avail",
1263		.maxlen		= sizeof(int),
1264		.mode		= 0444,
1265		.proc_handler	= proc_dointvec,
1266		.data		= &input_pool.entropy_count,
1267	},
1268	{
1269		.procname	= "read_wakeup_threshold",
1270		.data		= &random_read_wakeup_thresh,
1271		.maxlen		= sizeof(int),
1272		.mode		= 0644,
1273		.proc_handler	= proc_dointvec_minmax,
1274		.extra1		= &min_read_thresh,
1275		.extra2		= &max_read_thresh,
1276	},
1277	{
1278		.procname	= "write_wakeup_threshold",
1279		.data		= &random_write_wakeup_thresh,
1280		.maxlen		= sizeof(int),
1281		.mode		= 0644,
1282		.proc_handler	= proc_dointvec_minmax,
1283		.extra1		= &min_write_thresh,
1284		.extra2		= &max_write_thresh,
1285	},
1286	{
 
 
 
 
 
 
 
1287		.procname	= "boot_id",
1288		.data		= &sysctl_bootid,
1289		.maxlen		= 16,
1290		.mode		= 0444,
1291		.proc_handler	= proc_do_uuid,
1292	},
1293	{
1294		.procname	= "uuid",
1295		.maxlen		= 16,
1296		.mode		= 0444,
1297		.proc_handler	= proc_do_uuid,
1298	},
1299	{ }
1300};
1301#endif 	/* CONFIG_SYSCTL */
1302
1303static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1304
1305static int __init random_int_secret_init(void)
1306{
1307	get_random_bytes(random_int_secret, sizeof(random_int_secret));
1308	return 0;
1309}
1310late_initcall(random_int_secret_init);
1311
1312/*
1313 * Get a random word for internal kernel use only. Similar to urandom but
1314 * with the goal of minimal entropy pool depletion. As a result, the random
1315 * value is not cryptographically secure but for several uses the cost of
1316 * depleting entropy is too high
1317 */
1318DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1319unsigned int get_random_int(void)
1320{
1321	__u32 *hash = get_cpu_var(get_random_int_hash);
1322	unsigned int ret;
1323
1324	hash[0] += current->pid + jiffies + get_cycles();
 
 
 
 
 
1325	md5_transform(hash, random_int_secret);
1326	ret = hash[0];
1327	put_cpu_var(get_random_int_hash);
1328
1329	return ret;
1330}
 
1331
1332/*
1333 * randomize_range() returns a start address such that
1334 *
1335 *    [...... <range> .....]
1336 *  start                  end
1337 *
1338 * a <range> with size "len" starting at the return value is inside in the
1339 * area defined by [start, end], but is otherwise randomized.
1340 */
1341unsigned long
1342randomize_range(unsigned long start, unsigned long end, unsigned long len)
1343{
1344	unsigned long range = end - len - start;
1345
1346	if (end <= start + len)
1347		return 0;
1348	return PAGE_ALIGN(get_random_int() % range + start);
1349}
v3.15
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 *
   6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
   7 * rights reserved.
   8 *
   9 * Redistribution and use in source and binary forms, with or without
  10 * modification, are permitted provided that the following conditions
  11 * are met:
  12 * 1. Redistributions of source code must retain the above copyright
  13 *    notice, and the entire permission notice in its entirety,
  14 *    including the disclaimer of warranties.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. The name of the author may not be used to endorse or promote
  19 *    products derived from this software without specific prior
  20 *    written permission.
  21 *
  22 * ALTERNATIVELY, this product may be distributed under the terms of
  23 * the GNU General Public License, in which case the provisions of the GPL are
  24 * required INSTEAD OF the above restrictions.  (This clause is
  25 * necessary due to a potential bad interaction between the GPL and
  26 * the restrictions contained in a BSD-style copyright.)
  27 *
  28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 */
  41
  42/*
  43 * (now, with legal B.S. out of the way.....)
  44 *
  45 * This routine gathers environmental noise from device drivers, etc.,
  46 * and returns good random numbers, suitable for cryptographic use.
  47 * Besides the obvious cryptographic uses, these numbers are also good
  48 * for seeding TCP sequence numbers, and other places where it is
  49 * desirable to have numbers which are not only random, but hard to
  50 * predict by an attacker.
  51 *
  52 * Theory of operation
  53 * ===================
  54 *
  55 * Computers are very predictable devices.  Hence it is extremely hard
  56 * to produce truly random numbers on a computer --- as opposed to
  57 * pseudo-random numbers, which can easily generated by using a
  58 * algorithm.  Unfortunately, it is very easy for attackers to guess
  59 * the sequence of pseudo-random number generators, and for some
  60 * applications this is not acceptable.  So instead, we must try to
  61 * gather "environmental noise" from the computer's environment, which
  62 * must be hard for outside attackers to observe, and use that to
  63 * generate random numbers.  In a Unix environment, this is best done
  64 * from inside the kernel.
  65 *
  66 * Sources of randomness from the environment include inter-keyboard
  67 * timings, inter-interrupt timings from some interrupts, and other
  68 * events which are both (a) non-deterministic and (b) hard for an
  69 * outside observer to measure.  Randomness from these sources are
  70 * added to an "entropy pool", which is mixed using a CRC-like function.
  71 * This is not cryptographically strong, but it is adequate assuming
  72 * the randomness is not chosen maliciously, and it is fast enough that
  73 * the overhead of doing it on every interrupt is very reasonable.
  74 * As random bytes are mixed into the entropy pool, the routines keep
  75 * an *estimate* of how many bits of randomness have been stored into
  76 * the random number generator's internal state.
  77 *
  78 * When random bytes are desired, they are obtained by taking the SHA
  79 * hash of the contents of the "entropy pool".  The SHA hash avoids
  80 * exposing the internal state of the entropy pool.  It is believed to
  81 * be computationally infeasible to derive any useful information
  82 * about the input of SHA from its output.  Even if it is possible to
  83 * analyze SHA in some clever way, as long as the amount of data
  84 * returned from the generator is less than the inherent entropy in
  85 * the pool, the output data is totally unpredictable.  For this
  86 * reason, the routine decreases its internal estimate of how many
  87 * bits of "true randomness" are contained in the entropy pool as it
  88 * outputs random numbers.
  89 *
  90 * If this estimate goes to zero, the routine can still generate
  91 * random numbers; however, an attacker may (at least in theory) be
  92 * able to infer the future output of the generator from prior
  93 * outputs.  This requires successful cryptanalysis of SHA, which is
  94 * not believed to be feasible, but there is a remote possibility.
  95 * Nonetheless, these numbers should be useful for the vast majority
  96 * of purposes.
  97 *
  98 * Exported interfaces ---- output
  99 * ===============================
 100 *
 101 * There are three exported interfaces; the first is one designed to
 102 * be used from within the kernel:
 103 *
 104 * 	void get_random_bytes(void *buf, int nbytes);
 105 *
 106 * This interface will return the requested number of random bytes,
 107 * and place it in the requested buffer.
 108 *
 109 * The two other interfaces are two character devices /dev/random and
 110 * /dev/urandom.  /dev/random is suitable for use when very high
 111 * quality randomness is desired (for example, for key generation or
 112 * one-time pads), as it will only return a maximum of the number of
 113 * bits of randomness (as estimated by the random number generator)
 114 * contained in the entropy pool.
 115 *
 116 * The /dev/urandom device does not have this limit, and will return
 117 * as many bytes as are requested.  As more and more random bytes are
 118 * requested without giving time for the entropy pool to recharge,
 119 * this will result in random numbers that are merely cryptographically
 120 * strong.  For many applications, however, this is acceptable.
 121 *
 122 * Exported interfaces ---- input
 123 * ==============================
 124 *
 125 * The current exported interfaces for gathering environmental noise
 126 * from the devices are:
 127 *
 128 *	void add_device_randomness(const void *buf, unsigned int size);
 129 * 	void add_input_randomness(unsigned int type, unsigned int code,
 130 *                                unsigned int value);
 131 *	void add_interrupt_randomness(int irq, int irq_flags);
 132 * 	void add_disk_randomness(struct gendisk *disk);
 133 *
 134 * add_device_randomness() is for adding data to the random pool that
 135 * is likely to differ between two devices (or possibly even per boot).
 136 * This would be things like MAC addresses or serial numbers, or the
 137 * read-out of the RTC. This does *not* add any actual entropy to the
 138 * pool, but it initializes the pool to different values for devices
 139 * that might otherwise be identical and have very little entropy
 140 * available to them (particularly common in the embedded world).
 141 *
 142 * add_input_randomness() uses the input layer interrupt timing, as well as
 143 * the event type information from the hardware.
 144 *
 145 * add_interrupt_randomness() uses the interrupt timing as random
 146 * inputs to the entropy pool. Using the cycle counters and the irq source
 147 * as inputs, it feeds the randomness roughly once a second.
 
 
 
 
 148 *
 149 * add_disk_randomness() uses what amounts to the seek time of block
 150 * layer request events, on a per-disk_devt basis, as input to the
 151 * entropy pool. Note that high-speed solid state drives with very low
 152 * seek times do not make for good sources of entropy, as their seek
 153 * times are usually fairly consistent.
 154 *
 155 * All of these routines try to estimate how many bits of randomness a
 156 * particular randomness source.  They do this by keeping track of the
 157 * first and second order deltas of the event timings.
 158 *
 159 * Ensuring unpredictability at system startup
 160 * ============================================
 161 *
 162 * When any operating system starts up, it will go through a sequence
 163 * of actions that are fairly predictable by an adversary, especially
 164 * if the start-up does not involve interaction with a human operator.
 165 * This reduces the actual number of bits of unpredictability in the
 166 * entropy pool below the value in entropy_count.  In order to
 167 * counteract this effect, it helps to carry information in the
 168 * entropy pool across shut-downs and start-ups.  To do this, put the
 169 * following lines an appropriate script which is run during the boot
 170 * sequence:
 171 *
 172 *	echo "Initializing random number generator..."
 173 *	random_seed=/var/run/random-seed
 174 *	# Carry a random seed from start-up to start-up
 175 *	# Load and then save the whole entropy pool
 176 *	if [ -f $random_seed ]; then
 177 *		cat $random_seed >/dev/urandom
 178 *	else
 179 *		touch $random_seed
 180 *	fi
 181 *	chmod 600 $random_seed
 182 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 183 *
 184 * and the following lines in an appropriate script which is run as
 185 * the system is shutdown:
 186 *
 187 *	# Carry a random seed from shut-down to start-up
 188 *	# Save the whole entropy pool
 189 *	echo "Saving random seed..."
 190 *	random_seed=/var/run/random-seed
 191 *	touch $random_seed
 192 *	chmod 600 $random_seed
 193 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 194 *
 195 * For example, on most modern systems using the System V init
 196 * scripts, such code fragments would be found in
 197 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 199 *
 200 * Effectively, these commands cause the contents of the entropy pool
 201 * to be saved at shut-down time and reloaded into the entropy pool at
 202 * start-up.  (The 'dd' in the addition to the bootup script is to
 203 * make sure that /etc/random-seed is different for every start-up,
 204 * even if the system crashes without executing rc.0.)  Even with
 205 * complete knowledge of the start-up activities, predicting the state
 206 * of the entropy pool requires knowledge of the previous history of
 207 * the system.
 208 *
 209 * Configuring the /dev/random driver under Linux
 210 * ==============================================
 211 *
 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 213 * the /dev/mem major number (#1).  So if your system does not have
 214 * /dev/random and /dev/urandom created already, they can be created
 215 * by using the commands:
 216 *
 217 * 	mknod /dev/random c 1 8
 218 * 	mknod /dev/urandom c 1 9
 219 *
 220 * Acknowledgements:
 221 * =================
 222 *
 223 * Ideas for constructing this random number generator were derived
 224 * from Pretty Good Privacy's random number generator, and from private
 225 * discussions with Phil Karn.  Colin Plumb provided a faster random
 226 * number generator, which speed up the mixing function of the entropy
 227 * pool, taken from PGPfone.  Dale Worley has also contributed many
 228 * useful ideas and suggestions to improve this driver.
 229 *
 230 * Any flaws in the design are solely my responsibility, and should
 231 * not be attributed to the Phil, Colin, or any of authors of PGP.
 232 *
 233 * Further background information on this topic may be obtained from
 234 * RFC 1750, "Randomness Recommendations for Security", by Donald
 235 * Eastlake, Steve Crocker, and Jeff Schiller.
 236 */
 237
 238#include <linux/utsname.h>
 239#include <linux/module.h>
 240#include <linux/kernel.h>
 241#include <linux/major.h>
 242#include <linux/string.h>
 243#include <linux/fcntl.h>
 244#include <linux/slab.h>
 245#include <linux/random.h>
 246#include <linux/poll.h>
 247#include <linux/init.h>
 248#include <linux/fs.h>
 249#include <linux/genhd.h>
 250#include <linux/interrupt.h>
 251#include <linux/mm.h>
 252#include <linux/spinlock.h>
 253#include <linux/percpu.h>
 254#include <linux/cryptohash.h>
 255#include <linux/fips.h>
 256#include <linux/ptrace.h>
 257#include <linux/kmemcheck.h>
 258#include <linux/workqueue.h>
 259#include <linux/irq.h>
 260
 261#include <asm/processor.h>
 262#include <asm/uaccess.h>
 263#include <asm/irq.h>
 264#include <asm/irq_regs.h>
 265#include <asm/io.h>
 266
 267#define CREATE_TRACE_POINTS
 268#include <trace/events/random.h>
 269
 270/*
 271 * Configuration information
 272 */
 273#define INPUT_POOL_SHIFT	12
 274#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
 275#define OUTPUT_POOL_SHIFT	10
 276#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
 277#define SEC_XFER_SIZE		512
 278#define EXTRACT_SIZE		10
 279
 280#define DEBUG_RANDOM_BOOT 0
 281
 282#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 283
 284/*
 285 * To allow fractional bits to be tracked, the entropy_count field is
 286 * denominated in units of 1/8th bits.
 287 *
 288 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
 289 * credit_entropy_bits() needs to be 64 bits wide.
 290 */
 291#define ENTROPY_SHIFT 3
 292#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 293
 294/*
 295 * The minimum number of bits of entropy before we wake up a read on
 296 * /dev/random.  Should be enough to do a significant reseed.
 297 */
 298static int random_read_wakeup_bits = 64;
 299
 300/*
 301 * If the entropy count falls under this number of bits, then we
 302 * should wake up processes which are selecting or polling on write
 303 * access to /dev/random.
 304 */
 305static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 306
 307/*
 308 * The minimum number of seconds between urandom pool reseeding.  We
 309 * do this to limit the amount of entropy that can be drained from the
 310 * input pool even if there are heavy demands on /dev/urandom.
 311 */
 312static int random_min_urandom_seed = 60;
 
 
 
 313
 314/*
 315 * Originally, we used a primitive polynomial of degree .poolwords
 316 * over GF(2).  The taps for various sizes are defined below.  They
 317 * were chosen to be evenly spaced except for the last tap, which is 1
 318 * to get the twisting happening as fast as possible.
 319 *
 320 * For the purposes of better mixing, we use the CRC-32 polynomial as
 321 * well to make a (modified) twisted Generalized Feedback Shift
 322 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 323 * generators.  ACM Transactions on Modeling and Computer Simulation
 324 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 325 * GFSR generators II.  ACM Transactions on Modeling and Computer
 326 * Simulation 4:254-266)
 327 *
 328 * Thanks to Colin Plumb for suggesting this.
 329 *
 330 * The mixing operation is much less sensitive than the output hash,
 331 * where we use SHA-1.  All that we want of mixing operation is that
 332 * it be a good non-cryptographic hash; i.e. it not produce collisions
 333 * when fed "random" data of the sort we expect to see.  As long as
 334 * the pool state differs for different inputs, we have preserved the
 335 * input entropy and done a good job.  The fact that an intelligent
 336 * attacker can construct inputs that will produce controlled
 337 * alterations to the pool's state is not important because we don't
 338 * consider such inputs to contribute any randomness.  The only
 339 * property we need with respect to them is that the attacker can't
 340 * increase his/her knowledge of the pool's state.  Since all
 341 * additions are reversible (knowing the final state and the input,
 342 * you can reconstruct the initial state), if an attacker has any
 343 * uncertainty about the initial state, he/she can only shuffle that
 344 * uncertainty about, but never cause any collisions (which would
 345 * decrease the uncertainty).
 346 *
 347 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 348 * Videau in their paper, "The Linux Pseudorandom Number Generator
 349 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 350 * paper, they point out that we are not using a true Twisted GFSR,
 351 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 352 * is, with only three taps, instead of the six that we are using).
 353 * As a result, the resulting polynomial is neither primitive nor
 354 * irreducible, and hence does not have a maximal period over
 355 * GF(2**32).  They suggest a slight change to the generator
 356 * polynomial which improves the resulting TGFSR polynomial to be
 357 * irreducible, which we have made here.
 358 */
 359static struct poolinfo {
 360	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
 361#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
 362	int tap1, tap2, tap3, tap4, tap5;
 363} poolinfo_table[] = {
 364	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 365	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 366	{ S(128),	104,	76,	51,	25,	1 },
 367	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
 368	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
 369	{ S(32),	26,	19,	14,	7,	1 },
 370#if 0
 371	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 372	{ S(2048),	1638,	1231,	819,	411,	1 },
 373
 374	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 375	{ S(1024),	817,	615,	412,	204,	1 },
 376
 377	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 378	{ S(1024),	819,	616,	410,	207,	2 },
 379
 380	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 381	{ S(512),	411,	308,	208,	104,	1 },
 382
 383	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 384	{ S(512),	409,	307,	206,	102,	2 },
 385	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 386	{ S(512),	409,	309,	205,	103,	2 },
 387
 388	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 389	{ S(256),	205,	155,	101,	52,	1 },
 390
 391	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 392	{ S(128),	103,	78,	51,	27,	2 },
 393
 394	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 395	{ S(64),	52,	39,	26,	14,	1 },
 396#endif
 397};
 398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399/*
 400 * Static global variables
 401 */
 402static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 403static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 404static struct fasync_struct *fasync;
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406/**********************************************************************
 407 *
 408 * OS independent entropy store.   Here are the functions which handle
 409 * storing entropy in an entropy pool.
 410 *
 411 **********************************************************************/
 412
 413struct entropy_store;
 414struct entropy_store {
 415	/* read-only data: */
 416	const struct poolinfo *poolinfo;
 417	__u32 *pool;
 418	const char *name;
 419	struct entropy_store *pull;
 420	struct work_struct push_work;
 421
 422	/* read-write data: */
 423	unsigned long last_pulled;
 424	spinlock_t lock;
 425	unsigned short add_ptr;
 426	unsigned short input_rotate;
 427	int entropy_count;
 428	int entropy_total;
 429	unsigned int initialized:1;
 430	unsigned int limit:1;
 431	unsigned int last_data_init:1;
 432	__u8 last_data[EXTRACT_SIZE];
 433};
 434
 435static void push_to_pool(struct work_struct *work);
 436static __u32 input_pool_data[INPUT_POOL_WORDS];
 437static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
 438static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
 439
 440static struct entropy_store input_pool = {
 441	.poolinfo = &poolinfo_table[0],
 442	.name = "input",
 443	.limit = 1,
 444	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 445	.pool = input_pool_data
 446};
 447
 448static struct entropy_store blocking_pool = {
 449	.poolinfo = &poolinfo_table[1],
 450	.name = "blocking",
 451	.limit = 1,
 452	.pull = &input_pool,
 453	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
 454	.pool = blocking_pool_data,
 455	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
 456					push_to_pool),
 457};
 458
 459static struct entropy_store nonblocking_pool = {
 460	.poolinfo = &poolinfo_table[1],
 461	.name = "nonblocking",
 462	.pull = &input_pool,
 463	.lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
 464	.pool = nonblocking_pool_data,
 465	.push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
 466					push_to_pool),
 467};
 468
 469static __u32 const twist_table[8] = {
 470	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 471	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 472
 473/*
 474 * This function adds bytes into the entropy "pool".  It does not
 475 * update the entropy estimate.  The caller should call
 476 * credit_entropy_bits if this is appropriate.
 477 *
 478 * The pool is stirred with a primitive polynomial of the appropriate
 479 * degree, and then twisted.  We twist by three bits at a time because
 480 * it's cheap to do so and helps slightly in the expected case where
 481 * the entropy is concentrated in the low-order bits.
 482 */
 483static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 484			    int nbytes, __u8 out[64])
 485{
 
 
 
 486	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
 487	int input_rotate;
 488	int wordmask = r->poolinfo->poolwords - 1;
 489	const char *bytes = in;
 490	__u32 w;
 
 491
 
 492	tap1 = r->poolinfo->tap1;
 493	tap2 = r->poolinfo->tap2;
 494	tap3 = r->poolinfo->tap3;
 495	tap4 = r->poolinfo->tap4;
 496	tap5 = r->poolinfo->tap5;
 497
 498	smp_rmb();
 499	input_rotate = ACCESS_ONCE(r->input_rotate);
 500	i = ACCESS_ONCE(r->add_ptr);
 501
 502	/* mix one byte at a time to simplify size handling and churn faster */
 503	while (nbytes--) {
 504		w = rol32(*bytes++, input_rotate);
 505		i = (i - 1) & wordmask;
 506
 507		/* XOR in the various taps */
 508		w ^= r->pool[i];
 509		w ^= r->pool[(i + tap1) & wordmask];
 510		w ^= r->pool[(i + tap2) & wordmask];
 511		w ^= r->pool[(i + tap3) & wordmask];
 512		w ^= r->pool[(i + tap4) & wordmask];
 513		w ^= r->pool[(i + tap5) & wordmask];
 514
 515		/* Mix the result back in with a twist */
 516		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 517
 518		/*
 519		 * Normally, we add 7 bits of rotation to the pool.
 520		 * At the beginning of the pool, add an extra 7 bits
 521		 * rotation, so that successive passes spread the
 522		 * input bits across the pool evenly.
 523		 */
 524		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 525	}
 526
 527	ACCESS_ONCE(r->input_rotate) = input_rotate;
 528	ACCESS_ONCE(r->add_ptr) = i;
 529	smp_wmb();
 530
 531	if (out)
 532		for (j = 0; j < 16; j++)
 533			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
 534}
 535
 536static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 537			     int nbytes, __u8 out[64])
 538{
 539	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 540	_mix_pool_bytes(r, in, nbytes, out);
 541}
 542
 543static void mix_pool_bytes(struct entropy_store *r, const void *in,
 544			   int nbytes, __u8 out[64])
 545{
 546	unsigned long flags;
 547
 548	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 549	spin_lock_irqsave(&r->lock, flags);
 550	_mix_pool_bytes(r, in, nbytes, out);
 551	spin_unlock_irqrestore(&r->lock, flags);
 552}
 553
 554struct fast_pool {
 555	__u32		pool[4];
 556	unsigned long	last;
 557	unsigned short	count;
 558	unsigned char	rotate;
 559	unsigned char	last_timer_intr;
 560};
 561
 562/*
 563 * This is a fast mixing routine used by the interrupt randomness
 564 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 565 * locks that might be needed are taken by the caller.
 566 */
 567static void fast_mix(struct fast_pool *f, __u32 input[4])
 568{
 569	__u32		w;
 570	unsigned	input_rotate = f->rotate;
 571
 572	w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
 573	f->pool[0] = (w >> 3) ^ twist_table[w & 7];
 574	input_rotate = (input_rotate + 14) & 31;
 575	w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
 576	f->pool[1] = (w >> 3) ^ twist_table[w & 7];
 577	input_rotate = (input_rotate + 7) & 31;
 578	w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
 579	f->pool[2] = (w >> 3) ^ twist_table[w & 7];
 580	input_rotate = (input_rotate + 7) & 31;
 581	w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
 582	f->pool[3] = (w >> 3) ^ twist_table[w & 7];
 583	input_rotate = (input_rotate + 7) & 31;
 584
 585	f->rotate = input_rotate;
 586	f->count++;
 587}
 588
 589/*
 590 * Credit (or debit) the entropy store with n bits of entropy.
 591 * Use credit_entropy_bits_safe() if the value comes from userspace
 592 * or otherwise should be checked for extreme values.
 593 */
 594static void credit_entropy_bits(struct entropy_store *r, int nbits)
 595{
 596	int entropy_count, orig;
 597	const int pool_size = r->poolinfo->poolfracbits;
 598	int nfrac = nbits << ENTROPY_SHIFT;
 599
 600	if (!nbits)
 601		return;
 602
 603retry:
 604	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
 605	if (nfrac < 0) {
 606		/* Debit */
 607		entropy_count += nfrac;
 608	} else {
 609		/*
 610		 * Credit: we have to account for the possibility of
 611		 * overwriting already present entropy.	 Even in the
 612		 * ideal case of pure Shannon entropy, new contributions
 613		 * approach the full value asymptotically:
 614		 *
 615		 * entropy <- entropy + (pool_size - entropy) *
 616		 *	(1 - exp(-add_entropy/pool_size))
 617		 *
 618		 * For add_entropy <= pool_size/2 then
 619		 * (1 - exp(-add_entropy/pool_size)) >=
 620		 *    (add_entropy/pool_size)*0.7869...
 621		 * so we can approximate the exponential with
 622		 * 3/4*add_entropy/pool_size and still be on the
 623		 * safe side by adding at most pool_size/2 at a time.
 624		 *
 625		 * The use of pool_size-2 in the while statement is to
 626		 * prevent rounding artifacts from making the loop
 627		 * arbitrarily long; this limits the loop to log2(pool_size)*2
 628		 * turns no matter how large nbits is.
 629		 */
 630		int pnfrac = nfrac;
 631		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 632		/* The +2 corresponds to the /4 in the denominator */
 633
 634		do {
 635			unsigned int anfrac = min(pnfrac, pool_size/2);
 636			unsigned int add =
 637				((pool_size - entropy_count)*anfrac*3) >> s;
 638
 639			entropy_count += add;
 640			pnfrac -= anfrac;
 641		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
 642	}
 643
 
 
 
 644	if (entropy_count < 0) {
 645		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
 646			r->name, entropy_count);
 647		WARN_ON(1);
 648		entropy_count = 0;
 649	} else if (entropy_count > pool_size)
 650		entropy_count = pool_size;
 651	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 652		goto retry;
 653
 654	r->entropy_total += nbits;
 655	if (!r->initialized && r->entropy_total > 128) {
 656		r->initialized = 1;
 657		r->entropy_total = 0;
 658		if (r == &nonblocking_pool) {
 659			prandom_reseed_late();
 660			pr_notice("random: %s pool is initialized\n", r->name);
 661		}
 662	}
 663
 664	trace_credit_entropy_bits(r->name, nbits,
 665				  entropy_count >> ENTROPY_SHIFT,
 666				  r->entropy_total, _RET_IP_);
 667
 668	if (r == &input_pool) {
 669		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 670
 671		/* should we wake readers? */
 672		if (entropy_bits >= random_read_wakeup_bits) {
 673			wake_up_interruptible(&random_read_wait);
 674			kill_fasync(&fasync, SIGIO, POLL_IN);
 675		}
 676		/* If the input pool is getting full, send some
 677		 * entropy to the two output pools, flipping back and
 678		 * forth between them, until the output pools are 75%
 679		 * full.
 680		 */
 681		if (entropy_bits > random_write_wakeup_bits &&
 682		    r->initialized &&
 683		    r->entropy_total >= 2*random_read_wakeup_bits) {
 684			static struct entropy_store *last = &blocking_pool;
 685			struct entropy_store *other = &blocking_pool;
 686
 687			if (last == &blocking_pool)
 688				other = &nonblocking_pool;
 689			if (other->entropy_count <=
 690			    3 * other->poolinfo->poolfracbits / 4)
 691				last = other;
 692			if (last->entropy_count <=
 693			    3 * last->poolinfo->poolfracbits / 4) {
 694				schedule_work(&last->push_work);
 695				r->entropy_total = 0;
 696			}
 697		}
 698	}
 699}
 700
 701static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 702{
 703	const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
 704
 705	/* Cap the value to avoid overflows */
 706	nbits = min(nbits,  nbits_max);
 707	nbits = max(nbits, -nbits_max);
 708
 709	credit_entropy_bits(r, nbits);
 710}
 711
 712/*********************************************************************
 713 *
 714 * Entropy input management
 715 *
 716 *********************************************************************/
 717
 718/* There is one of these per entropy source */
 719struct timer_rand_state {
 720	cycles_t last_time;
 721	long last_delta, last_delta2;
 722	unsigned dont_count_entropy:1;
 723};
 724
 725#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
 
 
 
 
 
 
 
 726
 727/*
 728 * Add device- or boot-specific data to the input and nonblocking
 729 * pools to help initialize them to unique values.
 730 *
 731 * None of this adds any entropy, it is meant to avoid the
 732 * problem of the nonblocking pool having similar initial state
 733 * across largely identical devices.
 734 */
 735void add_device_randomness(const void *buf, unsigned int size)
 
 
 
 
 
 
 
 
 
 
 736{
 737	unsigned long time = random_get_entropy() ^ jiffies;
 738	unsigned long flags;
 
 739
 740	trace_add_device_randomness(size, _RET_IP_);
 741	spin_lock_irqsave(&input_pool.lock, flags);
 742	_mix_pool_bytes(&input_pool, buf, size, NULL);
 743	_mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
 744	spin_unlock_irqrestore(&input_pool.lock, flags);
 745
 746	spin_lock_irqsave(&nonblocking_pool.lock, flags);
 747	_mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
 748	_mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
 749	spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
 750}
 751EXPORT_SYMBOL(add_device_randomness);
 752
 753static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
 754
 755/*
 756 * This function adds entropy to the entropy "pool" by using timing
 757 * delays.  It uses the timer_rand_state structure to make an estimate
 758 * of how many bits of entropy this call has added to the pool.
 759 *
 760 * The number "num" is also added to the pool - it should somehow describe
 761 * the type of event which just happened.  This is currently 0-255 for
 762 * keyboard scan codes, and 256 upwards for interrupts.
 763 *
 764 */
 765static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 766{
 767	struct entropy_store	*r;
 768	struct {
 
 769		long jiffies;
 770		unsigned cycles;
 771		unsigned num;
 772	} sample;
 773	long delta, delta2, delta3;
 774
 775	preempt_disable();
 
 
 
 
 776
 777	sample.jiffies = jiffies;
 778	sample.cycles = random_get_entropy();
 779	sample.num = num;
 780	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
 781	mix_pool_bytes(r, &sample, sizeof(sample), NULL);
 782
 783	/*
 784	 * Calculate number of bits of randomness we probably added.
 785	 * We take into account the first, second and third-order deltas
 786	 * in order to make our estimate.
 787	 */
 788
 789	if (!state->dont_count_entropy) {
 790		delta = sample.jiffies - state->last_time;
 791		state->last_time = sample.jiffies;
 792
 793		delta2 = delta - state->last_delta;
 794		state->last_delta = delta;
 795
 796		delta3 = delta2 - state->last_delta2;
 797		state->last_delta2 = delta2;
 798
 799		if (delta < 0)
 800			delta = -delta;
 801		if (delta2 < 0)
 802			delta2 = -delta2;
 803		if (delta3 < 0)
 804			delta3 = -delta3;
 805		if (delta > delta2)
 806			delta = delta2;
 807		if (delta > delta3)
 808			delta = delta3;
 809
 810		/*
 811		 * delta is now minimum absolute delta.
 812		 * Round down by 1 bit on general principles,
 813		 * and limit entropy entimate to 12 bits.
 814		 */
 815		credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
 
 816	}
 
 817	preempt_enable();
 818}
 819
 820void add_input_randomness(unsigned int type, unsigned int code,
 821				 unsigned int value)
 822{
 823	static unsigned char last_value;
 824
 825	/* ignore autorepeat and the like */
 826	if (value == last_value)
 827		return;
 828
 
 829	last_value = value;
 830	add_timer_randomness(&input_timer_state,
 831			     (type << 4) ^ code ^ (code >> 4) ^ value);
 832	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
 833}
 834EXPORT_SYMBOL_GPL(add_input_randomness);
 835
 836static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
 837
 838void add_interrupt_randomness(int irq, int irq_flags)
 839{
 840	struct entropy_store	*r;
 841	struct fast_pool	*fast_pool = &__get_cpu_var(irq_randomness);
 842	struct pt_regs		*regs = get_irq_regs();
 843	unsigned long		now = jiffies;
 844	cycles_t		cycles = random_get_entropy();
 845	__u32			input[4], c_high, j_high;
 846	__u64			ip;
 847	unsigned long		seed;
 848	int			credit;
 849
 850	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
 851	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
 852	input[0] = cycles ^ j_high ^ irq;
 853	input[1] = now ^ c_high;
 854	ip = regs ? instruction_pointer(regs) : _RET_IP_;
 855	input[2] = ip;
 856	input[3] = ip >> 32;
 857
 858	fast_mix(fast_pool, input);
 859
 860	if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
 861		return;
 862
 863	fast_pool->last = now;
 864
 865	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
 866	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
 867
 868	/*
 869	 * If we don't have a valid cycle counter, and we see
 870	 * back-to-back timer interrupts, then skip giving credit for
 871	 * any entropy, otherwise credit 1 bit.
 872	 */
 873	credit = 1;
 874	if (cycles == 0) {
 875		if (irq_flags & __IRQF_TIMER) {
 876			if (fast_pool->last_timer_intr)
 877				credit = 0;
 878			fast_pool->last_timer_intr = 1;
 879		} else
 880			fast_pool->last_timer_intr = 0;
 881	}
 882
 883	/*
 884	 * If we have architectural seed generator, produce a seed and
 885	 * add it to the pool.  For the sake of paranoia count it as
 886	 * 50% entropic.
 887	 */
 888	if (arch_get_random_seed_long(&seed)) {
 889		__mix_pool_bytes(r, &seed, sizeof(seed), NULL);
 890		credit += sizeof(seed) * 4;
 891	}
 892
 893	credit_entropy_bits(r, credit);
 894}
 895
 896#ifdef CONFIG_BLOCK
 897void add_disk_randomness(struct gendisk *disk)
 898{
 899	if (!disk || !disk->random)
 900		return;
 901	/* first major is 1, so we get >= 0x200 here */
 
 
 
 902	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 903	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
 904}
 905#endif
 906
 907/*********************************************************************
 908 *
 909 * Entropy extraction routines
 910 *
 911 *********************************************************************/
 912
 913static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 914			       size_t nbytes, int min, int rsvd);
 915
 916/*
 917 * This utility inline function is responsible for transferring entropy
 918 * from the primary pool to the secondary extraction pool. We make
 919 * sure we pull enough for a 'catastrophic reseed'.
 920 */
 921static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
 922static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 923{
 924	if (r->limit == 0 && random_min_urandom_seed) {
 925		unsigned long now = jiffies;
 
 
 
 
 
 926
 927		if (time_before(now,
 928				r->last_pulled + random_min_urandom_seed * HZ))
 929			return;
 930		r->last_pulled = now;
 
 
 
 
 
 
 
 
 
 931	}
 932	if (r->pull &&
 933	    r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
 934	    r->entropy_count < r->poolinfo->poolfracbits)
 935		_xfer_secondary_pool(r, nbytes);
 936}
 937
 938static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 939{
 940	__u32	tmp[OUTPUT_POOL_WORDS];
 941
 942	/* For /dev/random's pool, always leave two wakeups' worth */
 943	int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
 944	int bytes = nbytes;
 945
 946	/* pull at least as much as a wakeup */
 947	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
 948	/* but never more than the buffer size */
 949	bytes = min_t(int, bytes, sizeof(tmp));
 950
 951	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
 952				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
 953	bytes = extract_entropy(r->pull, tmp, bytes,
 954				random_read_wakeup_bits / 8, rsvd_bytes);
 955	mix_pool_bytes(r, tmp, bytes, NULL);
 956	credit_entropy_bits(r, bytes*8);
 957}
 958
 959/*
 960 * Used as a workqueue function so that when the input pool is getting
 961 * full, we can "spill over" some entropy to the output pools.  That
 962 * way the output pools can store some of the excess entropy instead
 963 * of letting it go to waste.
 
 
 
 
 
 964 */
 965static void push_to_pool(struct work_struct *work)
 966{
 967	struct entropy_store *r = container_of(work, struct entropy_store,
 968					      push_work);
 969	BUG_ON(!r);
 970	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
 971	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
 972			   r->pull->entropy_count >> ENTROPY_SHIFT);
 973}
 974
 975/*
 976 * This function decides how many bytes to actually take from the
 977 * given pool, and also debits the entropy count accordingly.
 978 */
 979static size_t account(struct entropy_store *r, size_t nbytes, int min,
 980		      int reserved)
 981{
 982	int have_bytes;
 983	int entropy_count, orig;
 984	size_t ibytes;
 985
 986	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
 
 
 
 
 
 987
 988	/* Can we pull enough? */
 989retry:
 990	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
 991	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
 992	ibytes = nbytes;
 993	/* If limited, never pull more than available */
 994	if (r->limit)
 995		ibytes = min_t(size_t, ibytes, have_bytes - reserved);
 996	if (ibytes < min)
 997		ibytes = 0;
 998	if (have_bytes >= ibytes + reserved)
 999		entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
1000	else
1001		entropy_count = reserved << (ENTROPY_SHIFT + 3);
1002
1003	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1004		goto retry;
1005
1006	trace_debit_entropy(r->name, 8 * ibytes);
1007	if (ibytes &&
1008	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1009		wake_up_interruptible(&random_write_wait);
1010		kill_fasync(&fasync, SIGIO, POLL_OUT);
1011	}
1012
1013	return ibytes;
 
 
 
 
 
1014}
1015
1016/*
1017 * This function does the actual extraction for extract_entropy and
1018 * extract_entropy_user.
1019 *
1020 * Note: we assume that .poolwords is a multiple of 16 words.
1021 */
1022static void extract_buf(struct entropy_store *r, __u8 *out)
1023{
1024	int i;
1025	union {
1026		__u32 w[5];
1027		unsigned long l[LONGS(20)];
1028	} hash;
1029	__u32 workspace[SHA_WORKSPACE_WORDS];
1030	__u8 extract[64];
1031	unsigned long flags;
1032
1033	/*
1034	 * If we have an architectural hardware random number
1035	 * generator, use it for SHA's initial vector
1036	 */
1037	sha_init(hash.w);
1038	for (i = 0; i < LONGS(20); i++) {
1039		unsigned long v;
1040		if (!arch_get_random_long(&v))
1041			break;
1042		hash.l[i] = v;
1043	}
1044
1045	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1046	spin_lock_irqsave(&r->lock, flags);
1047	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1048		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1049
1050	/*
1051	 * We mix the hash back into the pool to prevent backtracking
1052	 * attacks (where the attacker knows the state of the pool
1053	 * plus the current outputs, and attempts to find previous
1054	 * ouputs), unless the hash function can be inverted. By
1055	 * mixing at least a SHA1 worth of hash data back, we make
1056	 * brute-forcing the feedback as hard as brute-forcing the
1057	 * hash.
1058	 */
1059	__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
1060	spin_unlock_irqrestore(&r->lock, flags);
1061
1062	/*
1063	 * To avoid duplicates, we atomically extract a portion of the
1064	 * pool while mixing, and hash one final time.
1065	 */
1066	sha_transform(hash.w, extract, workspace);
1067	memset(extract, 0, sizeof(extract));
1068	memset(workspace, 0, sizeof(workspace));
1069
1070	/*
1071	 * In case the hash function has some recognizable output
1072	 * pattern, we fold it in half. Thus, we always feed back
1073	 * twice as much data as we output.
1074	 */
1075	hash.w[0] ^= hash.w[3];
1076	hash.w[1] ^= hash.w[4];
1077	hash.w[2] ^= rol32(hash.w[2], 16);
1078
1079	memcpy(out, &hash, EXTRACT_SIZE);
1080	memset(&hash, 0, sizeof(hash));
1081}
1082
1083/*
1084 * This function extracts randomness from the "entropy pool", and
1085 * returns it in a buffer.
1086 *
1087 * The min parameter specifies the minimum amount we can pull before
1088 * failing to avoid races that defeat catastrophic reseeding while the
1089 * reserved parameter indicates how much entropy we must leave in the
1090 * pool after each pull to avoid starving other readers.
1091 */
1092static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1093				 size_t nbytes, int min, int reserved)
1094{
1095	ssize_t ret = 0, i;
1096	__u8 tmp[EXTRACT_SIZE];
1097	unsigned long flags;
1098
1099	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1100	if (fips_enabled) {
1101		spin_lock_irqsave(&r->lock, flags);
1102		if (!r->last_data_init) {
1103			r->last_data_init = 1;
1104			spin_unlock_irqrestore(&r->lock, flags);
1105			trace_extract_entropy(r->name, EXTRACT_SIZE,
1106					      ENTROPY_BITS(r), _RET_IP_);
1107			xfer_secondary_pool(r, EXTRACT_SIZE);
1108			extract_buf(r, tmp);
1109			spin_lock_irqsave(&r->lock, flags);
1110			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1111		}
1112		spin_unlock_irqrestore(&r->lock, flags);
1113	}
1114
1115	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1116	xfer_secondary_pool(r, nbytes);
1117	nbytes = account(r, nbytes, min, reserved);
1118
1119	while (nbytes) {
1120		extract_buf(r, tmp);
1121
1122		if (fips_enabled) {
1123			spin_lock_irqsave(&r->lock, flags);
1124			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1125				panic("Hardware RNG duplicated output!\n");
1126			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1127			spin_unlock_irqrestore(&r->lock, flags);
1128		}
1129		i = min_t(int, nbytes, EXTRACT_SIZE);
1130		memcpy(buf, tmp, i);
1131		nbytes -= i;
1132		buf += i;
1133		ret += i;
1134	}
1135
1136	/* Wipe data just returned from memory */
1137	memset(tmp, 0, sizeof(tmp));
1138
1139	return ret;
1140}
1141
1142/*
1143 * This function extracts randomness from the "entropy pool", and
1144 * returns it in a userspace buffer.
1145 */
1146static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1147				    size_t nbytes)
1148{
1149	ssize_t ret = 0, i;
1150	__u8 tmp[EXTRACT_SIZE];
1151
1152	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1153	xfer_secondary_pool(r, nbytes);
1154	nbytes = account(r, nbytes, 0, 0);
1155
1156	while (nbytes) {
1157		if (need_resched()) {
1158			if (signal_pending(current)) {
1159				if (ret == 0)
1160					ret = -ERESTARTSYS;
1161				break;
1162			}
1163			schedule();
1164		}
1165
1166		extract_buf(r, tmp);
1167		i = min_t(int, nbytes, EXTRACT_SIZE);
1168		if (copy_to_user(buf, tmp, i)) {
1169			ret = -EFAULT;
1170			break;
1171		}
1172
1173		nbytes -= i;
1174		buf += i;
1175		ret += i;
1176	}
1177
1178	/* Wipe data just returned from memory */
1179	memset(tmp, 0, sizeof(tmp));
1180
1181	return ret;
1182}
1183
1184/*
1185 * This function is the exported kernel interface.  It returns some
1186 * number of good random numbers, suitable for key generation, seeding
1187 * TCP sequence numbers, etc.  It does not rely on the hardware random
1188 * number generator.  For random bytes direct from the hardware RNG
1189 * (when available), use get_random_bytes_arch().
1190 */
1191void get_random_bytes(void *buf, int nbytes)
1192{
1193#if DEBUG_RANDOM_BOOT > 0
1194	if (unlikely(nonblocking_pool.initialized == 0))
1195		printk(KERN_NOTICE "random: %pF get_random_bytes called "
1196		       "with %d bits of entropy available\n",
1197		       (void *) _RET_IP_,
1198		       nonblocking_pool.entropy_total);
1199#endif
1200	trace_get_random_bytes(nbytes, _RET_IP_);
1201	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1202}
1203EXPORT_SYMBOL(get_random_bytes);
1204
1205/*
1206 * This function will use the architecture-specific hardware random
1207 * number generator if it is available.  The arch-specific hw RNG will
1208 * almost certainly be faster than what we can do in software, but it
1209 * is impossible to verify that it is implemented securely (as
1210 * opposed, to, say, the AES encryption of a sequence number using a
1211 * key known by the NSA).  So it's useful if we need the speed, but
1212 * only if we're willing to trust the hardware manufacturer not to
1213 * have put in a back door.
1214 */
1215void get_random_bytes_arch(void *buf, int nbytes)
1216{
1217	char *p = buf;
1218
1219	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1220	while (nbytes) {
1221		unsigned long v;
1222		int chunk = min(nbytes, (int)sizeof(unsigned long));
1223
1224		if (!arch_get_random_long(&v))
1225			break;
1226		
1227		memcpy(p, &v, chunk);
1228		p += chunk;
1229		nbytes -= chunk;
1230	}
1231
1232	if (nbytes)
1233		extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1234}
1235EXPORT_SYMBOL(get_random_bytes_arch);
1236
1237
1238/*
1239 * init_std_data - initialize pool with system data
1240 *
1241 * @r: pool to initialize
1242 *
1243 * This function clears the pool's entropy count and mixes some system
1244 * data into the pool to prepare it for use. The pool is not cleared
1245 * as that can only decrease the entropy in the pool.
1246 */
1247static void init_std_data(struct entropy_store *r)
1248{
1249	int i;
1250	ktime_t now = ktime_get_real();
1251	unsigned long rv;
 
 
 
1252
1253	r->last_pulled = jiffies;
1254	mix_pool_bytes(r, &now, sizeof(now), NULL);
1255	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1256		if (!arch_get_random_seed_long(&rv) &&
1257		    !arch_get_random_long(&rv))
1258			rv = random_get_entropy();
1259		mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1260	}
1261	mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1262}
1263
1264/*
1265 * Note that setup_arch() may call add_device_randomness()
1266 * long before we get here. This allows seeding of the pools
1267 * with some platform dependent data very early in the boot
1268 * process. But it limits our options here. We must use
1269 * statically allocated structures that already have all
1270 * initializations complete at compile time. We should also
1271 * take care not to overwrite the precious per platform data
1272 * we were given.
1273 */
1274static int rand_initialize(void)
1275{
1276	init_std_data(&input_pool);
1277	init_std_data(&blocking_pool);
1278	init_std_data(&nonblocking_pool);
1279	return 0;
1280}
1281early_initcall(rand_initialize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282
1283#ifdef CONFIG_BLOCK
1284void rand_initialize_disk(struct gendisk *disk)
1285{
1286	struct timer_rand_state *state;
1287
1288	/*
1289	 * If kzalloc returns null, we just won't use that entropy
1290	 * source.
1291	 */
1292	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1293	if (state) {
1294		state->last_time = INITIAL_JIFFIES;
1295		disk->random = state;
1296	}
1297}
1298#endif
1299
1300/*
1301 * Attempt an emergency refill using arch_get_random_seed_long().
1302 *
1303 * As with add_interrupt_randomness() be paranoid and only
1304 * credit the output as 50% entropic.
1305 */
1306static int arch_random_refill(void)
1307{
1308	const unsigned int nlongs = 64;	/* Arbitrary number */
1309	unsigned int n = 0;
1310	unsigned int i;
1311	unsigned long buf[nlongs];
1312
1313	if (!arch_has_random_seed())
1314		return 0;
1315
1316	for (i = 0; i < nlongs; i++) {
1317		if (arch_get_random_seed_long(&buf[n]))
1318			n++;
1319	}
 
 
1320
1321	if (n) {
1322		unsigned int rand_bytes = n * sizeof(unsigned long);
1323
1324		mix_pool_bytes(&input_pool, buf, rand_bytes, NULL);
1325		credit_entropy_bits(&input_pool, rand_bytes*4);
1326	}
1327
1328	return n;
1329}
 
 
 
1330
1331static ssize_t
1332random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1333{
1334	ssize_t n;
1335
1336	if (nbytes == 0)
1337		return 0;
 
1338
1339	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1340	while (1) {
1341		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1342		if (n < 0)
1343			return n;
1344		trace_random_read(n*8, (nbytes-n)*8,
1345				  ENTROPY_BITS(&blocking_pool),
1346				  ENTROPY_BITS(&input_pool));
1347		if (n > 0)
1348			return n;
1349
1350		/* Pool is (near) empty.  Maybe wait and retry. */
 
 
 
1351
1352		/* First try an emergency refill */
1353		if (arch_random_refill())
1354			continue;
 
1355
1356		if (file->f_flags & O_NONBLOCK)
1357			return -EAGAIN;
 
 
 
 
 
 
 
 
1358
1359		wait_event_interruptible(random_read_wait,
1360			ENTROPY_BITS(&input_pool) >=
1361			random_read_wakeup_bits);
1362		if (signal_pending(current))
1363			return -ERESTARTSYS;
1364	}
1365}
1366
1367static ssize_t
1368urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1369{
1370	int ret;
1371
1372	if (unlikely(nonblocking_pool.initialized == 0))
1373		printk_once(KERN_NOTICE "random: %s urandom read "
1374			    "with %d bits of entropy available\n",
1375			    current->comm, nonblocking_pool.entropy_total);
1376
1377	ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1378
1379	trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1380			   ENTROPY_BITS(&input_pool));
1381	return ret;
1382}
1383
1384static unsigned int
1385random_poll(struct file *file, poll_table * wait)
1386{
1387	unsigned int mask;
1388
1389	poll_wait(file, &random_read_wait, wait);
1390	poll_wait(file, &random_write_wait, wait);
1391	mask = 0;
1392	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1393		mask |= POLLIN | POLLRDNORM;
1394	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1395		mask |= POLLOUT | POLLWRNORM;
1396	return mask;
1397}
1398
1399static int
1400write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1401{
1402	size_t bytes;
1403	__u32 buf[16];
1404	const char __user *p = buffer;
1405
1406	while (count > 0) {
1407		bytes = min(count, sizeof(buf));
1408		if (copy_from_user(&buf, p, bytes))
1409			return -EFAULT;
1410
1411		count -= bytes;
1412		p += bytes;
1413
1414		mix_pool_bytes(r, buf, bytes, NULL);
1415		cond_resched();
1416	}
1417
1418	return 0;
1419}
1420
1421static ssize_t random_write(struct file *file, const char __user *buffer,
1422			    size_t count, loff_t *ppos)
1423{
1424	size_t ret;
1425
1426	ret = write_pool(&blocking_pool, buffer, count);
1427	if (ret)
1428		return ret;
1429	ret = write_pool(&nonblocking_pool, buffer, count);
1430	if (ret)
1431		return ret;
1432
1433	return (ssize_t)count;
1434}
1435
1436static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1437{
1438	int size, ent_count;
1439	int __user *p = (int __user *)arg;
1440	int retval;
1441
1442	switch (cmd) {
1443	case RNDGETENTCNT:
1444		/* inherently racy, no point locking */
1445		ent_count = ENTROPY_BITS(&input_pool);
1446		if (put_user(ent_count, p))
1447			return -EFAULT;
1448		return 0;
1449	case RNDADDTOENTCNT:
1450		if (!capable(CAP_SYS_ADMIN))
1451			return -EPERM;
1452		if (get_user(ent_count, p))
1453			return -EFAULT;
1454		credit_entropy_bits_safe(&input_pool, ent_count);
1455		return 0;
1456	case RNDADDENTROPY:
1457		if (!capable(CAP_SYS_ADMIN))
1458			return -EPERM;
1459		if (get_user(ent_count, p++))
1460			return -EFAULT;
1461		if (ent_count < 0)
1462			return -EINVAL;
1463		if (get_user(size, p++))
1464			return -EFAULT;
1465		retval = write_pool(&input_pool, (const char __user *)p,
1466				    size);
1467		if (retval < 0)
1468			return retval;
1469		credit_entropy_bits_safe(&input_pool, ent_count);
1470		return 0;
1471	case RNDZAPENTCNT:
1472	case RNDCLEARPOOL:
1473		/*
1474		 * Clear the entropy pool counters. We no longer clear
1475		 * the entropy pool, as that's silly.
1476		 */
1477		if (!capable(CAP_SYS_ADMIN))
1478			return -EPERM;
1479		input_pool.entropy_count = 0;
1480		nonblocking_pool.entropy_count = 0;
1481		blocking_pool.entropy_count = 0;
1482		return 0;
1483	default:
1484		return -EINVAL;
1485	}
1486}
1487
1488static int random_fasync(int fd, struct file *filp, int on)
1489{
1490	return fasync_helper(fd, filp, on, &fasync);
1491}
1492
1493const struct file_operations random_fops = {
1494	.read  = random_read,
1495	.write = random_write,
1496	.poll  = random_poll,
1497	.unlocked_ioctl = random_ioctl,
1498	.fasync = random_fasync,
1499	.llseek = noop_llseek,
1500};
1501
1502const struct file_operations urandom_fops = {
1503	.read  = urandom_read,
1504	.write = random_write,
1505	.unlocked_ioctl = random_ioctl,
1506	.fasync = random_fasync,
1507	.llseek = noop_llseek,
1508};
1509
1510/***************************************************************
1511 * Random UUID interface
1512 *
1513 * Used here for a Boot ID, but can be useful for other kernel
1514 * drivers.
1515 ***************************************************************/
1516
1517/*
1518 * Generate random UUID
1519 */
1520void generate_random_uuid(unsigned char uuid_out[16])
1521{
1522	get_random_bytes(uuid_out, 16);
1523	/* Set UUID version to 4 --- truly random generation */
1524	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1525	/* Set the UUID variant to DCE */
1526	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1527}
1528EXPORT_SYMBOL(generate_random_uuid);
1529
1530/********************************************************************
1531 *
1532 * Sysctl interface
1533 *
1534 ********************************************************************/
1535
1536#ifdef CONFIG_SYSCTL
1537
1538#include <linux/sysctl.h>
1539
1540static int min_read_thresh = 8, min_write_thresh;
1541static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1542static int max_write_thresh = INPUT_POOL_WORDS * 32;
1543static char sysctl_bootid[16];
1544
1545/*
1546 * This function is used to return both the bootid UUID, and random
1547 * UUID.  The difference is in whether table->data is NULL; if it is,
1548 * then a new UUID is generated and returned to the user.
1549 *
1550 * If the user accesses this via the proc interface, the UUID will be
1551 * returned as an ASCII string in the standard UUID format; if via the
1552 * sysctl system call, as 16 bytes of binary data.
1553 */
1554static int proc_do_uuid(struct ctl_table *table, int write,
1555			void __user *buffer, size_t *lenp, loff_t *ppos)
1556{
1557	struct ctl_table fake_table;
1558	unsigned char buf[64], tmp_uuid[16], *uuid;
1559
1560	uuid = table->data;
1561	if (!uuid) {
1562		uuid = tmp_uuid;
 
 
 
1563		generate_random_uuid(uuid);
1564	} else {
1565		static DEFINE_SPINLOCK(bootid_spinlock);
1566
1567		spin_lock(&bootid_spinlock);
1568		if (!uuid[8])
1569			generate_random_uuid(uuid);
1570		spin_unlock(&bootid_spinlock);
1571	}
1572
1573	sprintf(buf, "%pU", uuid);
1574
1575	fake_table.data = buf;
1576	fake_table.maxlen = sizeof(buf);
1577
1578	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1579}
1580
1581/*
1582 * Return entropy available scaled to integral bits
1583 */
1584static int proc_do_entropy(ctl_table *table, int write,
1585			   void __user *buffer, size_t *lenp, loff_t *ppos)
1586{
1587	ctl_table fake_table;
1588	int entropy_count;
1589
1590	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1591
1592	fake_table.data = &entropy_count;
1593	fake_table.maxlen = sizeof(entropy_count);
1594
1595	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1596}
1597
1598static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1599extern struct ctl_table random_table[];
1600struct ctl_table random_table[] = {
1601	{
1602		.procname	= "poolsize",
1603		.data		= &sysctl_poolsize,
1604		.maxlen		= sizeof(int),
1605		.mode		= 0444,
1606		.proc_handler	= proc_dointvec,
1607	},
1608	{
1609		.procname	= "entropy_avail",
1610		.maxlen		= sizeof(int),
1611		.mode		= 0444,
1612		.proc_handler	= proc_do_entropy,
1613		.data		= &input_pool.entropy_count,
1614	},
1615	{
1616		.procname	= "read_wakeup_threshold",
1617		.data		= &random_read_wakeup_bits,
1618		.maxlen		= sizeof(int),
1619		.mode		= 0644,
1620		.proc_handler	= proc_dointvec_minmax,
1621		.extra1		= &min_read_thresh,
1622		.extra2		= &max_read_thresh,
1623	},
1624	{
1625		.procname	= "write_wakeup_threshold",
1626		.data		= &random_write_wakeup_bits,
1627		.maxlen		= sizeof(int),
1628		.mode		= 0644,
1629		.proc_handler	= proc_dointvec_minmax,
1630		.extra1		= &min_write_thresh,
1631		.extra2		= &max_write_thresh,
1632	},
1633	{
1634		.procname	= "urandom_min_reseed_secs",
1635		.data		= &random_min_urandom_seed,
1636		.maxlen		= sizeof(int),
1637		.mode		= 0644,
1638		.proc_handler	= proc_dointvec,
1639	},
1640	{
1641		.procname	= "boot_id",
1642		.data		= &sysctl_bootid,
1643		.maxlen		= 16,
1644		.mode		= 0444,
1645		.proc_handler	= proc_do_uuid,
1646	},
1647	{
1648		.procname	= "uuid",
1649		.maxlen		= 16,
1650		.mode		= 0444,
1651		.proc_handler	= proc_do_uuid,
1652	},
1653	{ }
1654};
1655#endif 	/* CONFIG_SYSCTL */
1656
1657static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1658
1659int random_int_secret_init(void)
1660{
1661	get_random_bytes(random_int_secret, sizeof(random_int_secret));
1662	return 0;
1663}
 
1664
1665/*
1666 * Get a random word for internal kernel use only. Similar to urandom but
1667 * with the goal of minimal entropy pool depletion. As a result, the random
1668 * value is not cryptographically secure but for several uses the cost of
1669 * depleting entropy is too high
1670 */
1671static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1672unsigned int get_random_int(void)
1673{
1674	__u32 *hash;
1675	unsigned int ret;
1676
1677	if (arch_get_random_int(&ret))
1678		return ret;
1679
1680	hash = get_cpu_var(get_random_int_hash);
1681
1682	hash[0] += current->pid + jiffies + random_get_entropy();
1683	md5_transform(hash, random_int_secret);
1684	ret = hash[0];
1685	put_cpu_var(get_random_int_hash);
1686
1687	return ret;
1688}
1689EXPORT_SYMBOL(get_random_int);
1690
1691/*
1692 * randomize_range() returns a start address such that
1693 *
1694 *    [...... <range> .....]
1695 *  start                  end
1696 *
1697 * a <range> with size "len" starting at the return value is inside in the
1698 * area defined by [start, end], but is otherwise randomized.
1699 */
1700unsigned long
1701randomize_range(unsigned long start, unsigned long end, unsigned long len)
1702{
1703	unsigned long range = end - len - start;
1704
1705	if (end <= start + len)
1706		return 0;
1707	return PAGE_ALIGN(get_random_int() % range + start);
1708}