Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
 
 
  29
  30#include "xhci.h"
 
  31
  32#define DRIVER_AUTHOR "Sarah Sharp"
  33#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  34
  35/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  36static int link_quirk;
  37module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  38MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  39
 
 
 
 
  40/* TODO: copied from ehci-hcd.c - can this be refactored? */
  41/*
  42 * handshake - spin reading hc until handshake completes or fails
  43 * @ptr: address of hc register to be read
  44 * @mask: bits to look at in result of read
  45 * @done: value of those bits when handshake succeeds
  46 * @usec: timeout in microseconds
  47 *
  48 * Returns negative errno, or zero on success
  49 *
  50 * Success happens when the "mask" bits have the specified value (hardware
  51 * handshake done).  There are two failure modes:  "usec" have passed (major
  52 * hardware flakeout), or the register reads as all-ones (hardware removed).
  53 */
  54static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  55		      u32 mask, u32 done, int usec)
  56{
  57	u32	result;
  58
  59	do {
  60		result = xhci_readl(xhci, ptr);
  61		if (result == ~(u32)0)		/* card removed */
  62			return -ENODEV;
  63		result &= mask;
  64		if (result == done)
  65			return 0;
  66		udelay(1);
  67		usec--;
  68	} while (usec > 0);
  69	return -ETIMEDOUT;
  70}
  71
  72/*
  73 * Disable interrupts and begin the xHCI halting process.
  74 */
  75void xhci_quiesce(struct xhci_hcd *xhci)
  76{
  77	u32 halted;
  78	u32 cmd;
  79	u32 mask;
  80
  81	mask = ~(XHCI_IRQS);
  82	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  83	if (!halted)
  84		mask &= ~CMD_RUN;
  85
  86	cmd = xhci_readl(xhci, &xhci->op_regs->command);
  87	cmd &= mask;
  88	xhci_writel(xhci, cmd, &xhci->op_regs->command);
  89}
  90
  91/*
  92 * Force HC into halt state.
  93 *
  94 * Disable any IRQs and clear the run/stop bit.
  95 * HC will complete any current and actively pipelined transactions, and
  96 * should halt within 16 ms of the run/stop bit being cleared.
  97 * Read HC Halted bit in the status register to see when the HC is finished.
  98 */
  99int xhci_halt(struct xhci_hcd *xhci)
 100{
 101	int ret;
 102	xhci_dbg(xhci, "// Halt the HC\n");
 103	xhci_quiesce(xhci);
 104
 105	ret = handshake(xhci, &xhci->op_regs->status,
 106			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 107	if (!ret)
 108		xhci->xhc_state |= XHCI_STATE_HALTED;
 
 
 
 
 109	return ret;
 110}
 111
 112/*
 113 * Set the run bit and wait for the host to be running.
 114 */
 115static int xhci_start(struct xhci_hcd *xhci)
 116{
 117	u32 temp;
 118	int ret;
 119
 120	temp = xhci_readl(xhci, &xhci->op_regs->command);
 121	temp |= (CMD_RUN);
 122	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
 123			temp);
 124	xhci_writel(xhci, temp, &xhci->op_regs->command);
 125
 126	/*
 127	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 128	 * running.
 129	 */
 130	ret = handshake(xhci, &xhci->op_regs->status,
 131			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 132	if (ret == -ETIMEDOUT)
 133		xhci_err(xhci, "Host took too long to start, "
 134				"waited %u microseconds.\n",
 135				XHCI_MAX_HALT_USEC);
 136	if (!ret)
 137		xhci->xhc_state &= ~XHCI_STATE_HALTED;
 138	return ret;
 139}
 140
 141/*
 142 * Reset a halted HC.
 143 *
 144 * This resets pipelines, timers, counters, state machines, etc.
 145 * Transactions will be terminated immediately, and operational registers
 146 * will be set to their defaults.
 147 */
 148int xhci_reset(struct xhci_hcd *xhci)
 149{
 150	u32 command;
 151	u32 state;
 152	int ret;
 153
 154	state = xhci_readl(xhci, &xhci->op_regs->status);
 155	if ((state & STS_HALT) == 0) {
 156		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 157		return 0;
 158	}
 159
 160	xhci_dbg(xhci, "// Reset the HC\n");
 161	command = xhci_readl(xhci, &xhci->op_regs->command);
 162	command |= CMD_RESET;
 163	xhci_writel(xhci, command, &xhci->op_regs->command);
 164
 165	ret = handshake(xhci, &xhci->op_regs->command,
 166			CMD_RESET, 0, 250 * 1000);
 167	if (ret)
 168		return ret;
 169
 170	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
 
 171	/*
 172	 * xHCI cannot write to any doorbells or operational registers other
 173	 * than status until the "Controller Not Ready" flag is cleared.
 174	 */
 175	return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
 
 
 
 
 
 
 
 
 
 176}
 177
 178/*
 179 * Free IRQs
 180 * free all IRQs request
 181 */
 182static void xhci_free_irq(struct xhci_hcd *xhci)
 183{
 184	int i;
 185	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 186
 187	/* return if using legacy interrupt */
 188	if (xhci_to_hcd(xhci)->irq >= 0)
 189		return;
 190
 191	if (xhci->msix_entries) {
 192		for (i = 0; i < xhci->msix_count; i++)
 193			if (xhci->msix_entries[i].vector)
 194				free_irq(xhci->msix_entries[i].vector,
 195						xhci_to_hcd(xhci));
 196	} else if (pdev->irq >= 0)
 197		free_irq(pdev->irq, xhci_to_hcd(xhci));
 198
 199	return;
 
 
 
 
 200}
 201
 202/*
 203 * Set up MSI
 204 */
 205static int xhci_setup_msi(struct xhci_hcd *xhci)
 206{
 207	int ret;
 208	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 209
 210	ret = pci_enable_msi(pdev);
 211	if (ret) {
 212		xhci_err(xhci, "failed to allocate MSI entry\n");
 
 213		return ret;
 214	}
 215
 216	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
 217				0, "xhci_hcd", xhci_to_hcd(xhci));
 218	if (ret) {
 219		xhci_err(xhci, "disable MSI interrupt\n");
 
 220		pci_disable_msi(pdev);
 221	}
 222
 223	return ret;
 224}
 225
 226/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227 * Set up MSI-X
 228 */
 229static int xhci_setup_msix(struct xhci_hcd *xhci)
 230{
 231	int i, ret = 0;
 232	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 233	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 234
 235	/*
 236	 * calculate number of msi-x vectors supported.
 237	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 238	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 239	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 240	 *   Add additional 1 vector to ensure always available interrupt.
 241	 */
 242	xhci->msix_count = min(num_online_cpus() + 1,
 243				HCS_MAX_INTRS(xhci->hcs_params1));
 244
 245	xhci->msix_entries =
 246		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 247				GFP_KERNEL);
 248	if (!xhci->msix_entries) {
 249		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 250		return -ENOMEM;
 251	}
 252
 253	for (i = 0; i < xhci->msix_count; i++) {
 254		xhci->msix_entries[i].entry = i;
 255		xhci->msix_entries[i].vector = 0;
 256	}
 257
 258	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 259	if (ret) {
 260		xhci_err(xhci, "Failed to enable MSI-X\n");
 
 261		goto free_entries;
 262	}
 263
 264	for (i = 0; i < xhci->msix_count; i++) {
 265		ret = request_irq(xhci->msix_entries[i].vector,
 266				(irq_handler_t)xhci_msi_irq,
 267				0, "xhci_hcd", xhci_to_hcd(xhci));
 268		if (ret)
 269			goto disable_msix;
 270	}
 271
 272	hcd->msix_enabled = 1;
 273	return ret;
 274
 275disable_msix:
 276	xhci_err(xhci, "disable MSI-X interrupt\n");
 277	xhci_free_irq(xhci);
 278	pci_disable_msix(pdev);
 279free_entries:
 280	kfree(xhci->msix_entries);
 281	xhci->msix_entries = NULL;
 282	return ret;
 283}
 284
 285/* Free any IRQs and disable MSI-X */
 286static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 287{
 288	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 289	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 290
 
 
 
 291	xhci_free_irq(xhci);
 292
 293	if (xhci->msix_entries) {
 294		pci_disable_msix(pdev);
 295		kfree(xhci->msix_entries);
 296		xhci->msix_entries = NULL;
 297	} else {
 298		pci_disable_msi(pdev);
 299	}
 300
 301	hcd->msix_enabled = 0;
 302	return;
 303}
 304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305/*
 306 * Initialize memory for HCD and xHC (one-time init).
 307 *
 308 * Program the PAGESIZE register, initialize the device context array, create
 309 * device contexts (?), set up a command ring segment (or two?), create event
 310 * ring (one for now).
 311 */
 312int xhci_init(struct usb_hcd *hcd)
 313{
 314	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 315	int retval = 0;
 316
 317	xhci_dbg(xhci, "xhci_init\n");
 318	spin_lock_init(&xhci->lock);
 319	if (link_quirk) {
 320		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
 
 321		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 322	} else {
 323		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
 
 324	}
 325	retval = xhci_mem_init(xhci, GFP_KERNEL);
 326	xhci_dbg(xhci, "Finished xhci_init\n");
 
 
 
 
 
 
 327
 328	return retval;
 329}
 330
 331/*-------------------------------------------------------------------------*/
 332
 333
 334#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 335static void xhci_event_ring_work(unsigned long arg)
 336{
 337	unsigned long flags;
 338	int temp;
 339	u64 temp_64;
 340	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
 341	int i, j;
 342
 343	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
 344
 345	spin_lock_irqsave(&xhci->lock, flags);
 346	temp = xhci_readl(xhci, &xhci->op_regs->status);
 347	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
 348	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
 349			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 350		xhci_dbg(xhci, "HW died, polling stopped.\n");
 351		spin_unlock_irqrestore(&xhci->lock, flags);
 352		return;
 353	}
 354
 355	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 356	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
 357	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
 358	xhci->error_bitmask = 0;
 359	xhci_dbg(xhci, "Event ring:\n");
 360	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
 361	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 362	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 363	temp_64 &= ~ERST_PTR_MASK;
 364	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 365	xhci_dbg(xhci, "Command ring:\n");
 366	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
 367	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 368	xhci_dbg_cmd_ptrs(xhci);
 369	for (i = 0; i < MAX_HC_SLOTS; ++i) {
 370		if (!xhci->devs[i])
 371			continue;
 372		for (j = 0; j < 31; ++j) {
 373			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
 374		}
 375	}
 376	spin_unlock_irqrestore(&xhci->lock, flags);
 377
 378	if (!xhci->zombie)
 379		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
 380	else
 381		xhci_dbg(xhci, "Quit polling the event ring.\n");
 382}
 383#endif
 384
 385static int xhci_run_finished(struct xhci_hcd *xhci)
 386{
 387	if (xhci_start(xhci)) {
 388		xhci_halt(xhci);
 389		return -ENODEV;
 390	}
 391	xhci->shared_hcd->state = HC_STATE_RUNNING;
 
 392
 393	if (xhci->quirks & XHCI_NEC_HOST)
 394		xhci_ring_cmd_db(xhci);
 395
 396	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
 
 397	return 0;
 398}
 399
 400/*
 401 * Start the HC after it was halted.
 402 *
 403 * This function is called by the USB core when the HC driver is added.
 404 * Its opposite is xhci_stop().
 405 *
 406 * xhci_init() must be called once before this function can be called.
 407 * Reset the HC, enable device slot contexts, program DCBAAP, and
 408 * set command ring pointer and event ring pointer.
 409 *
 410 * Setup MSI-X vectors and enable interrupts.
 411 */
 412int xhci_run(struct usb_hcd *hcd)
 413{
 414	u32 temp;
 415	u64 temp_64;
 416	u32 ret;
 417	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 418	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 419
 420	/* Start the xHCI host controller running only after the USB 2.0 roothub
 421	 * is setup.
 422	 */
 423
 424	hcd->uses_new_polling = 1;
 425	if (!usb_hcd_is_primary_hcd(hcd))
 426		return xhci_run_finished(xhci);
 427
 428	xhci_dbg(xhci, "xhci_run\n");
 429	/* unregister the legacy interrupt */
 430	if (hcd->irq)
 431		free_irq(hcd->irq, hcd);
 432	hcd->irq = -1;
 433
 434	/* Some Fresco Logic host controllers advertise MSI, but fail to
 435	 * generate interrupts.  Don't even try to enable MSI.
 436	 */
 437	if (xhci->quirks & XHCI_BROKEN_MSI)
 438		goto legacy_irq;
 439
 440	ret = xhci_setup_msix(xhci);
 441	if (ret)
 442		/* fall back to msi*/
 443		ret = xhci_setup_msi(xhci);
 444
 445	if (ret) {
 446legacy_irq:
 447		/* fall back to legacy interrupt*/
 448		ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 449					hcd->irq_descr, hcd);
 450		if (ret) {
 451			xhci_err(xhci, "request interrupt %d failed\n",
 452					pdev->irq);
 453			return ret;
 454		}
 455		hcd->irq = pdev->irq;
 456	}
 457
 458#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 459	init_timer(&xhci->event_ring_timer);
 460	xhci->event_ring_timer.data = (unsigned long) xhci;
 461	xhci->event_ring_timer.function = xhci_event_ring_work;
 462	/* Poll the event ring */
 463	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
 464	xhci->zombie = 0;
 465	xhci_dbg(xhci, "Setting event ring polling timer\n");
 466	add_timer(&xhci->event_ring_timer);
 467#endif
 468
 469	xhci_dbg(xhci, "Command ring memory map follows:\n");
 470	xhci_debug_ring(xhci, xhci->cmd_ring);
 471	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 472	xhci_dbg_cmd_ptrs(xhci);
 473
 474	xhci_dbg(xhci, "ERST memory map follows:\n");
 475	xhci_dbg_erst(xhci, &xhci->erst);
 476	xhci_dbg(xhci, "Event ring:\n");
 477	xhci_debug_ring(xhci, xhci->event_ring);
 478	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 479	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 480	temp_64 &= ~ERST_PTR_MASK;
 481	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 
 482
 483	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
 484	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
 
 485	temp &= ~ER_IRQ_INTERVAL_MASK;
 486	temp |= (u32) 160;
 487	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
 488
 489	/* Set the HCD state before we enable the irqs */
 490	temp = xhci_readl(xhci, &xhci->op_regs->command);
 491	temp |= (CMD_EIE);
 492	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
 493			temp);
 494	xhci_writel(xhci, temp, &xhci->op_regs->command);
 495
 496	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 497	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
 
 498			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 499	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
 500			&xhci->ir_set->irq_pending);
 501	xhci_print_ir_set(xhci, 0);
 502
 503	if (xhci->quirks & XHCI_NEC_HOST)
 504		xhci_queue_vendor_command(xhci, 0, 0, 0,
 505				TRB_TYPE(TRB_NEC_GET_FW));
 506
 507	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
 
 508	return 0;
 509}
 510
 511static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 512{
 513	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 514
 515	spin_lock_irq(&xhci->lock);
 516	xhci_halt(xhci);
 517
 518	/* The shared_hcd is going to be deallocated shortly (the USB core only
 519	 * calls this function when allocation fails in usb_add_hcd(), or
 520	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 521	 */
 522	xhci->shared_hcd = NULL;
 523	spin_unlock_irq(&xhci->lock);
 524}
 525
 526/*
 527 * Stop xHCI driver.
 528 *
 529 * This function is called by the USB core when the HC driver is removed.
 530 * Its opposite is xhci_run().
 531 *
 532 * Disable device contexts, disable IRQs, and quiesce the HC.
 533 * Reset the HC, finish any completed transactions, and cleanup memory.
 534 */
 535void xhci_stop(struct usb_hcd *hcd)
 536{
 537	u32 temp;
 538	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 539
 540	if (!usb_hcd_is_primary_hcd(hcd)) {
 541		xhci_only_stop_hcd(xhci->shared_hcd);
 542		return;
 543	}
 544
 545	spin_lock_irq(&xhci->lock);
 546	/* Make sure the xHC is halted for a USB3 roothub
 547	 * (xhci_stop() could be called as part of failed init).
 548	 */
 549	xhci_halt(xhci);
 550	xhci_reset(xhci);
 551	spin_unlock_irq(&xhci->lock);
 552
 553	xhci_cleanup_msix(xhci);
 554
 555#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 556	/* Tell the event ring poll function not to reschedule */
 557	xhci->zombie = 1;
 558	del_timer_sync(&xhci->event_ring_timer);
 559#endif
 
 
 
 560
 561	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 562		usb_amd_dev_put();
 563
 564	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 565	temp = xhci_readl(xhci, &xhci->op_regs->status);
 566	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 567	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 568	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 569			&xhci->ir_set->irq_pending);
 570	xhci_print_ir_set(xhci, 0);
 571
 572	xhci_dbg(xhci, "cleaning up memory\n");
 573	xhci_mem_cleanup(xhci);
 574	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 575		    xhci_readl(xhci, &xhci->op_regs->status));
 
 576}
 577
 578/*
 579 * Shutdown HC (not bus-specific)
 580 *
 581 * This is called when the machine is rebooting or halting.  We assume that the
 582 * machine will be powered off, and the HC's internal state will be reset.
 583 * Don't bother to free memory.
 584 *
 585 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 586 */
 587void xhci_shutdown(struct usb_hcd *hcd)
 588{
 589	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 590
 
 
 
 591	spin_lock_irq(&xhci->lock);
 592	xhci_halt(xhci);
 
 
 
 593	spin_unlock_irq(&xhci->lock);
 594
 595	xhci_cleanup_msix(xhci);
 596
 597	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
 598		    xhci_readl(xhci, &xhci->op_regs->status));
 
 
 
 
 
 599}
 600
 601#ifdef CONFIG_PM
 602static void xhci_save_registers(struct xhci_hcd *xhci)
 603{
 604	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
 605	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
 606	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 607	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
 608	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 609	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
 610	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
 611	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 612	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 
 
 613}
 614
 615static void xhci_restore_registers(struct xhci_hcd *xhci)
 616{
 617	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
 618	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 619	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 620	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
 621	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 622	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
 623	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
 624	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 
 
 
 625}
 626
 627static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 628{
 629	u64	val_64;
 630
 631	/* step 2: initialize command ring buffer */
 632	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 633	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 634		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 635				      xhci->cmd_ring->dequeue) &
 636		 (u64) ~CMD_RING_RSVD_BITS) |
 637		xhci->cmd_ring->cycle_state;
 638	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
 
 639			(long unsigned long) val_64);
 640	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 641}
 642
 643/*
 644 * The whole command ring must be cleared to zero when we suspend the host.
 645 *
 646 * The host doesn't save the command ring pointer in the suspend well, so we
 647 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 648 * aligned, because of the reserved bits in the command ring dequeue pointer
 649 * register.  Therefore, we can't just set the dequeue pointer back in the
 650 * middle of the ring (TRBs are 16-byte aligned).
 651 */
 652static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 653{
 654	struct xhci_ring *ring;
 655	struct xhci_segment *seg;
 656
 657	ring = xhci->cmd_ring;
 658	seg = ring->deq_seg;
 659	do {
 660		memset(seg->trbs, 0, SEGMENT_SIZE);
 
 
 
 661		seg = seg->next;
 662	} while (seg != ring->deq_seg);
 663
 664	/* Reset the software enqueue and dequeue pointers */
 665	ring->deq_seg = ring->first_seg;
 666	ring->dequeue = ring->first_seg->trbs;
 667	ring->enq_seg = ring->deq_seg;
 668	ring->enqueue = ring->dequeue;
 669
 
 670	/*
 671	 * Ring is now zeroed, so the HW should look for change of ownership
 672	 * when the cycle bit is set to 1.
 673	 */
 674	ring->cycle_state = 1;
 675
 676	/*
 677	 * Reset the hardware dequeue pointer.
 678	 * Yes, this will need to be re-written after resume, but we're paranoid
 679	 * and want to make sure the hardware doesn't access bogus memory
 680	 * because, say, the BIOS or an SMI started the host without changing
 681	 * the command ring pointers.
 682	 */
 683	xhci_set_cmd_ring_deq(xhci);
 684}
 685
 686/*
 687 * Stop HC (not bus-specific)
 688 *
 689 * This is called when the machine transition into S3/S4 mode.
 690 *
 691 */
 692int xhci_suspend(struct xhci_hcd *xhci)
 693{
 694	int			rc = 0;
 
 695	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 696	u32			command;
 697	int			i;
 
 
 
 
 
 
 
 
 698
 699	spin_lock_irq(&xhci->lock);
 700	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 701	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 702	/* step 1: stop endpoint */
 703	/* skipped assuming that port suspend has done */
 704
 705	/* step 2: clear Run/Stop bit */
 706	command = xhci_readl(xhci, &xhci->op_regs->command);
 707	command &= ~CMD_RUN;
 708	xhci_writel(xhci, command, &xhci->op_regs->command);
 709	if (handshake(xhci, &xhci->op_regs->status,
 710		      STS_HALT, STS_HALT, 100*100)) {
 
 
 
 
 711		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 712		spin_unlock_irq(&xhci->lock);
 713		return -ETIMEDOUT;
 714	}
 715	xhci_clear_command_ring(xhci);
 716
 717	/* step 3: save registers */
 718	xhci_save_registers(xhci);
 719
 720	/* step 4: set CSS flag */
 721	command = xhci_readl(xhci, &xhci->op_regs->command);
 722	command |= CMD_CSS;
 723	xhci_writel(xhci, command, &xhci->op_regs->command);
 724	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
 725		xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
 
 726		spin_unlock_irq(&xhci->lock);
 727		return -ETIMEDOUT;
 728	}
 729	spin_unlock_irq(&xhci->lock);
 730
 
 
 
 
 
 
 
 
 
 
 
 
 731	/* step 5: remove core well power */
 732	/* synchronize irq when using MSI-X */
 733	if (xhci->msix_entries) {
 734		for (i = 0; i < xhci->msix_count; i++)
 735			synchronize_irq(xhci->msix_entries[i].vector);
 736	}
 737
 738	return rc;
 739}
 740
 741/*
 742 * start xHC (not bus-specific)
 743 *
 744 * This is called when the machine transition from S3/S4 mode.
 745 *
 746 */
 747int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 748{
 749	u32			command, temp = 0;
 750	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 751	struct usb_hcd		*secondary_hcd;
 752	int			retval;
 
 753
 754	/* Wait a bit if either of the roothubs need to settle from the
 755	 * transition into bus suspend.
 756	 */
 757	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 758			time_before(jiffies,
 759				xhci->bus_state[1].next_statechange))
 760		msleep(100);
 761
 
 
 
 762	spin_lock_irq(&xhci->lock);
 763	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 764		hibernated = true;
 765
 766	if (!hibernated) {
 767		/* step 1: restore register */
 768		xhci_restore_registers(xhci);
 769		/* step 2: initialize command ring buffer */
 770		xhci_set_cmd_ring_deq(xhci);
 771		/* step 3: restore state and start state*/
 772		/* step 3: set CRS flag */
 773		command = xhci_readl(xhci, &xhci->op_regs->command);
 774		command |= CMD_CRS;
 775		xhci_writel(xhci, command, &xhci->op_regs->command);
 776		if (handshake(xhci, &xhci->op_regs->status,
 777			      STS_RESTORE, 0, 10*100)) {
 778			xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
 779			spin_unlock_irq(&xhci->lock);
 780			return -ETIMEDOUT;
 781		}
 782		temp = xhci_readl(xhci, &xhci->op_regs->status);
 783	}
 784
 785	/* If restore operation fails, re-initialize the HC during resume */
 786	if ((temp & STS_SRE) || hibernated) {
 
 
 
 
 
 
 
 
 787		/* Let the USB core know _both_ roothubs lost power. */
 788		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 789		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 790
 791		xhci_dbg(xhci, "Stop HCD\n");
 792		xhci_halt(xhci);
 793		xhci_reset(xhci);
 794		spin_unlock_irq(&xhci->lock);
 795		xhci_cleanup_msix(xhci);
 796
 797#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 798		/* Tell the event ring poll function not to reschedule */
 799		xhci->zombie = 1;
 800		del_timer_sync(&xhci->event_ring_timer);
 801#endif
 802
 803		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 804		temp = xhci_readl(xhci, &xhci->op_regs->status);
 805		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 806		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 807		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 808				&xhci->ir_set->irq_pending);
 809		xhci_print_ir_set(xhci, 0);
 810
 811		xhci_dbg(xhci, "cleaning up memory\n");
 812		xhci_mem_cleanup(xhci);
 813		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 814			    xhci_readl(xhci, &xhci->op_regs->status));
 815
 816		/* USB core calls the PCI reinit and start functions twice:
 817		 * first with the primary HCD, and then with the secondary HCD.
 818		 * If we don't do the same, the host will never be started.
 819		 */
 820		if (!usb_hcd_is_primary_hcd(hcd))
 821			secondary_hcd = hcd;
 822		else
 823			secondary_hcd = xhci->shared_hcd;
 824
 825		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
 826		retval = xhci_init(hcd->primary_hcd);
 827		if (retval)
 828			return retval;
 
 
 829		xhci_dbg(xhci, "Start the primary HCD\n");
 830		retval = xhci_run(hcd->primary_hcd);
 831		if (retval)
 832			goto failed_restart;
 833
 834		xhci_dbg(xhci, "Start the secondary HCD\n");
 835		retval = xhci_run(secondary_hcd);
 836		if (!retval) {
 837			set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 838			set_bit(HCD_FLAG_HW_ACCESSIBLE,
 839					&xhci->shared_hcd->flags);
 840		}
 841failed_restart:
 842		hcd->state = HC_STATE_SUSPENDED;
 843		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
 844		return retval;
 845	}
 846
 847	/* step 4: set Run/Stop bit */
 848	command = xhci_readl(xhci, &xhci->op_regs->command);
 849	command |= CMD_RUN;
 850	xhci_writel(xhci, command, &xhci->op_regs->command);
 851	handshake(xhci, &xhci->op_regs->status, STS_HALT,
 852		  0, 250 * 1000);
 853
 854	/* step 5: walk topology and initialize portsc,
 855	 * portpmsc and portli
 856	 */
 857	/* this is done in bus_resume */
 858
 859	/* step 6: restart each of the previously
 860	 * Running endpoints by ringing their doorbells
 861	 */
 862
 863	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 864	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 865
 866	spin_unlock_irq(&xhci->lock);
 867	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868}
 869#endif	/* CONFIG_PM */
 870
 871/*-------------------------------------------------------------------------*/
 872
 873/**
 874 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
 875 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
 876 * value to right shift 1 for the bitmask.
 877 *
 878 * Index  = (epnum * 2) + direction - 1,
 879 * where direction = 0 for OUT, 1 for IN.
 880 * For control endpoints, the IN index is used (OUT index is unused), so
 881 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
 882 */
 883unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
 884{
 885	unsigned int index;
 886	if (usb_endpoint_xfer_control(desc))
 887		index = (unsigned int) (usb_endpoint_num(desc)*2);
 888	else
 889		index = (unsigned int) (usb_endpoint_num(desc)*2) +
 890			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
 891	return index;
 892}
 893
 
 
 
 
 
 
 
 
 
 
 894/* Find the flag for this endpoint (for use in the control context).  Use the
 895 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
 896 * bit 1, etc.
 897 */
 898unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
 899{
 900	return 1 << (xhci_get_endpoint_index(desc) + 1);
 901}
 902
 903/* Find the flag for this endpoint (for use in the control context).  Use the
 904 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
 905 * bit 1, etc.
 906 */
 907unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
 908{
 909	return 1 << (ep_index + 1);
 910}
 911
 912/* Compute the last valid endpoint context index.  Basically, this is the
 913 * endpoint index plus one.  For slot contexts with more than valid endpoint,
 914 * we find the most significant bit set in the added contexts flags.
 915 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
 916 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
 917 */
 918unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
 919{
 920	return fls(added_ctxs) - 1;
 921}
 922
 923/* Returns 1 if the arguments are OK;
 924 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
 925 */
 926static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
 927		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
 928		const char *func) {
 929	struct xhci_hcd	*xhci;
 930	struct xhci_virt_device	*virt_dev;
 931
 932	if (!hcd || (check_ep && !ep) || !udev) {
 933		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
 934				func);
 935		return -EINVAL;
 936	}
 937	if (!udev->parent) {
 938		printk(KERN_DEBUG "xHCI %s called for root hub\n",
 939				func);
 940		return 0;
 941	}
 942
 943	xhci = hcd_to_xhci(hcd);
 944	if (xhci->xhc_state & XHCI_STATE_HALTED)
 945		return -ENODEV;
 946
 947	if (check_virt_dev) {
 948		if (!udev->slot_id || !xhci->devs
 949			|| !xhci->devs[udev->slot_id]) {
 950			printk(KERN_DEBUG "xHCI %s called with unaddressed "
 951						"device\n", func);
 952			return -EINVAL;
 953		}
 954
 955		virt_dev = xhci->devs[udev->slot_id];
 956		if (virt_dev->udev != udev) {
 957			printk(KERN_DEBUG "xHCI %s called with udev and "
 958					  "virt_dev does not match\n", func);
 959			return -EINVAL;
 960		}
 961	}
 962
 
 
 
 963	return 1;
 964}
 965
 966static int xhci_configure_endpoint(struct xhci_hcd *xhci,
 967		struct usb_device *udev, struct xhci_command *command,
 968		bool ctx_change, bool must_succeed);
 969
 970/*
 971 * Full speed devices may have a max packet size greater than 8 bytes, but the
 972 * USB core doesn't know that until it reads the first 8 bytes of the
 973 * descriptor.  If the usb_device's max packet size changes after that point,
 974 * we need to issue an evaluate context command and wait on it.
 975 */
 976static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
 977		unsigned int ep_index, struct urb *urb)
 978{
 979	struct xhci_container_ctx *in_ctx;
 980	struct xhci_container_ctx *out_ctx;
 981	struct xhci_input_control_ctx *ctrl_ctx;
 982	struct xhci_ep_ctx *ep_ctx;
 983	int max_packet_size;
 984	int hw_max_packet_size;
 985	int ret = 0;
 986
 987	out_ctx = xhci->devs[slot_id]->out_ctx;
 988	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
 989	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
 990	max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize);
 991	if (hw_max_packet_size != max_packet_size) {
 992		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
 993		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
 
 
 994				max_packet_size);
 995		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
 
 996				hw_max_packet_size);
 997		xhci_dbg(xhci, "Issuing evaluate context command.\n");
 
 998
 
 
 
 
 
 
 
 
 
 
 
 999		/* Set up the modified control endpoint 0 */
1000		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1001				xhci->devs[slot_id]->out_ctx, ep_index);
1002		in_ctx = xhci->devs[slot_id]->in_ctx;
1003		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1004		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1005		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1006
1007		/* Set up the input context flags for the command */
1008		/* FIXME: This won't work if a non-default control endpoint
1009		 * changes max packet sizes.
1010		 */
1011		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1012		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1013		ctrl_ctx->drop_flags = 0;
1014
1015		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1016		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1017		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1018		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1019
1020		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1021				true, false);
1022
1023		/* Clean up the input context for later use by bandwidth
1024		 * functions.
1025		 */
1026		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1027	}
1028	return ret;
1029}
1030
1031/*
1032 * non-error returns are a promise to giveback() the urb later
1033 * we drop ownership so next owner (or urb unlink) can get it
1034 */
1035int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1036{
1037	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
1038	unsigned long flags;
1039	int ret = 0;
1040	unsigned int slot_id, ep_index;
1041	struct urb_priv	*urb_priv;
1042	int size, i;
1043
1044	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1045					true, true, __func__) <= 0)
1046		return -EINVAL;
1047
1048	slot_id = urb->dev->slot_id;
1049	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1050
1051	if (!HCD_HW_ACCESSIBLE(hcd)) {
1052		if (!in_interrupt())
1053			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1054		ret = -ESHUTDOWN;
1055		goto exit;
1056	}
1057
1058	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1059		size = urb->number_of_packets;
1060	else
1061		size = 1;
1062
1063	urb_priv = kzalloc(sizeof(struct urb_priv) +
1064				  size * sizeof(struct xhci_td *), mem_flags);
1065	if (!urb_priv)
1066		return -ENOMEM;
1067
 
 
 
 
 
 
1068	for (i = 0; i < size; i++) {
1069		urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1070		if (!urb_priv->td[i]) {
1071			urb_priv->length = i;
1072			xhci_urb_free_priv(xhci, urb_priv);
1073			return -ENOMEM;
1074		}
1075	}
1076
1077	urb_priv->length = size;
1078	urb_priv->td_cnt = 0;
1079	urb->hcpriv = urb_priv;
1080
1081	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1082		/* Check to see if the max packet size for the default control
1083		 * endpoint changed during FS device enumeration
1084		 */
1085		if (urb->dev->speed == USB_SPEED_FULL) {
1086			ret = xhci_check_maxpacket(xhci, slot_id,
1087					ep_index, urb);
1088			if (ret < 0) {
1089				xhci_urb_free_priv(xhci, urb_priv);
1090				urb->hcpriv = NULL;
1091				return ret;
1092			}
1093		}
1094
1095		/* We have a spinlock and interrupts disabled, so we must pass
1096		 * atomic context to this function, which may allocate memory.
1097		 */
1098		spin_lock_irqsave(&xhci->lock, flags);
1099		if (xhci->xhc_state & XHCI_STATE_DYING)
1100			goto dying;
1101		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1102				slot_id, ep_index);
1103		if (ret)
1104			goto free_priv;
1105		spin_unlock_irqrestore(&xhci->lock, flags);
1106	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1107		spin_lock_irqsave(&xhci->lock, flags);
1108		if (xhci->xhc_state & XHCI_STATE_DYING)
1109			goto dying;
1110		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1111				EP_GETTING_STREAMS) {
1112			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1113					"is transitioning to using streams.\n");
1114			ret = -EINVAL;
1115		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1116				EP_GETTING_NO_STREAMS) {
1117			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1118					"is transitioning to "
1119					"not having streams.\n");
1120			ret = -EINVAL;
1121		} else {
1122			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1123					slot_id, ep_index);
1124		}
1125		if (ret)
1126			goto free_priv;
1127		spin_unlock_irqrestore(&xhci->lock, flags);
1128	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1129		spin_lock_irqsave(&xhci->lock, flags);
1130		if (xhci->xhc_state & XHCI_STATE_DYING)
1131			goto dying;
1132		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1133				slot_id, ep_index);
1134		if (ret)
1135			goto free_priv;
1136		spin_unlock_irqrestore(&xhci->lock, flags);
1137	} else {
1138		spin_lock_irqsave(&xhci->lock, flags);
1139		if (xhci->xhc_state & XHCI_STATE_DYING)
1140			goto dying;
1141		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1142				slot_id, ep_index);
1143		if (ret)
1144			goto free_priv;
1145		spin_unlock_irqrestore(&xhci->lock, flags);
1146	}
1147exit:
1148	return ret;
1149dying:
1150	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1151			"non-responsive xHCI host.\n",
1152			urb->ep->desc.bEndpointAddress, urb);
1153	ret = -ESHUTDOWN;
1154free_priv:
1155	xhci_urb_free_priv(xhci, urb_priv);
1156	urb->hcpriv = NULL;
1157	spin_unlock_irqrestore(&xhci->lock, flags);
1158	return ret;
1159}
1160
1161/* Get the right ring for the given URB.
1162 * If the endpoint supports streams, boundary check the URB's stream ID.
1163 * If the endpoint doesn't support streams, return the singular endpoint ring.
1164 */
1165static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1166		struct urb *urb)
1167{
1168	unsigned int slot_id;
1169	unsigned int ep_index;
1170	unsigned int stream_id;
1171	struct xhci_virt_ep *ep;
1172
1173	slot_id = urb->dev->slot_id;
1174	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1175	stream_id = urb->stream_id;
1176	ep = &xhci->devs[slot_id]->eps[ep_index];
1177	/* Common case: no streams */
1178	if (!(ep->ep_state & EP_HAS_STREAMS))
1179		return ep->ring;
1180
1181	if (stream_id == 0) {
1182		xhci_warn(xhci,
1183				"WARN: Slot ID %u, ep index %u has streams, "
1184				"but URB has no stream ID.\n",
1185				slot_id, ep_index);
1186		return NULL;
1187	}
1188
1189	if (stream_id < ep->stream_info->num_streams)
1190		return ep->stream_info->stream_rings[stream_id];
1191
1192	xhci_warn(xhci,
1193			"WARN: Slot ID %u, ep index %u has "
1194			"stream IDs 1 to %u allocated, "
1195			"but stream ID %u is requested.\n",
1196			slot_id, ep_index,
1197			ep->stream_info->num_streams - 1,
1198			stream_id);
1199	return NULL;
1200}
1201
1202/*
1203 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1204 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1205 * should pick up where it left off in the TD, unless a Set Transfer Ring
1206 * Dequeue Pointer is issued.
1207 *
1208 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1209 * the ring.  Since the ring is a contiguous structure, they can't be physically
1210 * removed.  Instead, there are two options:
1211 *
1212 *  1) If the HC is in the middle of processing the URB to be canceled, we
1213 *     simply move the ring's dequeue pointer past those TRBs using the Set
1214 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1215 *     when drivers timeout on the last submitted URB and attempt to cancel.
1216 *
1217 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1218 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1219 *     HC will need to invalidate the any TRBs it has cached after the stop
1220 *     endpoint command, as noted in the xHCI 0.95 errata.
1221 *
1222 *  3) The TD may have completed by the time the Stop Endpoint Command
1223 *     completes, so software needs to handle that case too.
1224 *
1225 * This function should protect against the TD enqueueing code ringing the
1226 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1227 * It also needs to account for multiple cancellations on happening at the same
1228 * time for the same endpoint.
1229 *
1230 * Note that this function can be called in any context, or so says
1231 * usb_hcd_unlink_urb()
1232 */
1233int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1234{
1235	unsigned long flags;
1236	int ret, i;
1237	u32 temp;
1238	struct xhci_hcd *xhci;
1239	struct urb_priv	*urb_priv;
1240	struct xhci_td *td;
1241	unsigned int ep_index;
1242	struct xhci_ring *ep_ring;
1243	struct xhci_virt_ep *ep;
1244
1245	xhci = hcd_to_xhci(hcd);
1246	spin_lock_irqsave(&xhci->lock, flags);
1247	/* Make sure the URB hasn't completed or been unlinked already */
1248	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1249	if (ret || !urb->hcpriv)
1250		goto done;
1251	temp = xhci_readl(xhci, &xhci->op_regs->status);
1252	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1253		xhci_dbg(xhci, "HW died, freeing TD.\n");
 
1254		urb_priv = urb->hcpriv;
1255		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1256			td = urb_priv->td[i];
1257			if (!list_empty(&td->td_list))
1258				list_del_init(&td->td_list);
1259			if (!list_empty(&td->cancelled_td_list))
1260				list_del_init(&td->cancelled_td_list);
1261		}
1262
1263		usb_hcd_unlink_urb_from_ep(hcd, urb);
1264		spin_unlock_irqrestore(&xhci->lock, flags);
1265		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1266		xhci_urb_free_priv(xhci, urb_priv);
1267		return ret;
1268	}
1269	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1270			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1271		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1272				"non-responsive xHCI host.\n",
 
1273				urb->ep->desc.bEndpointAddress, urb);
1274		/* Let the stop endpoint command watchdog timer (which set this
1275		 * state) finish cleaning up the endpoint TD lists.  We must
1276		 * have caught it in the middle of dropping a lock and giving
1277		 * back an URB.
1278		 */
1279		goto done;
1280	}
1281
1282	xhci_dbg(xhci, "Cancel URB %p\n", urb);
1283	xhci_dbg(xhci, "Event ring:\n");
1284	xhci_debug_ring(xhci, xhci->event_ring);
1285	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1286	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1287	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1288	if (!ep_ring) {
1289		ret = -EINVAL;
1290		goto done;
1291	}
1292
1293	xhci_dbg(xhci, "Endpoint ring:\n");
1294	xhci_debug_ring(xhci, ep_ring);
1295
1296	urb_priv = urb->hcpriv;
 
 
 
 
 
 
 
 
 
 
1297
1298	for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1299		td = urb_priv->td[i];
1300		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1301	}
1302
1303	/* Queue a stop endpoint command, but only if this is
1304	 * the first cancellation to be handled.
1305	 */
1306	if (!(ep->ep_state & EP_HALT_PENDING)) {
1307		ep->ep_state |= EP_HALT_PENDING;
1308		ep->stop_cmds_pending++;
1309		ep->stop_cmd_timer.expires = jiffies +
1310			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1311		add_timer(&ep->stop_cmd_timer);
1312		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1313		xhci_ring_cmd_db(xhci);
1314	}
1315done:
1316	spin_unlock_irqrestore(&xhci->lock, flags);
1317	return ret;
1318}
1319
1320/* Drop an endpoint from a new bandwidth configuration for this device.
1321 * Only one call to this function is allowed per endpoint before
1322 * check_bandwidth() or reset_bandwidth() must be called.
1323 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1324 * add the endpoint to the schedule with possibly new parameters denoted by a
1325 * different endpoint descriptor in usb_host_endpoint.
1326 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1327 * not allowed.
1328 *
1329 * The USB core will not allow URBs to be queued to an endpoint that is being
1330 * disabled, so there's no need for mutual exclusion to protect
1331 * the xhci->devs[slot_id] structure.
1332 */
1333int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1334		struct usb_host_endpoint *ep)
1335{
1336	struct xhci_hcd *xhci;
1337	struct xhci_container_ctx *in_ctx, *out_ctx;
1338	struct xhci_input_control_ctx *ctrl_ctx;
1339	struct xhci_slot_ctx *slot_ctx;
1340	unsigned int last_ctx;
1341	unsigned int ep_index;
1342	struct xhci_ep_ctx *ep_ctx;
1343	u32 drop_flag;
1344	u32 new_add_flags, new_drop_flags, new_slot_info;
1345	int ret;
1346
1347	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1348	if (ret <= 0)
1349		return ret;
1350	xhci = hcd_to_xhci(hcd);
1351	if (xhci->xhc_state & XHCI_STATE_DYING)
1352		return -ENODEV;
1353
1354	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1355	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1356	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1357		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1358				__func__, drop_flag);
1359		return 0;
1360	}
1361
1362	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1363	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1364	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
 
1365	ep_index = xhci_get_endpoint_index(&ep->desc);
1366	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1367	/* If the HC already knows the endpoint is disabled,
1368	 * or the HCD has noted it is disabled, ignore this request
1369	 */
1370	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1371	     cpu_to_le32(EP_STATE_DISABLED)) ||
1372	    le32_to_cpu(ctrl_ctx->drop_flags) &
1373	    xhci_get_endpoint_flag(&ep->desc)) {
1374		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1375				__func__, ep);
1376		return 0;
1377	}
1378
1379	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1380	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1381
1382	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1383	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1384
1385	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1386	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1387	/* Update the last valid endpoint context, if we deleted the last one */
1388	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1389	    LAST_CTX(last_ctx)) {
1390		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1391		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1392	}
1393	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1394
1395	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1396
1397	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1398			(unsigned int) ep->desc.bEndpointAddress,
1399			udev->slot_id,
1400			(unsigned int) new_drop_flags,
1401			(unsigned int) new_add_flags,
1402			(unsigned int) new_slot_info);
1403	return 0;
1404}
1405
1406/* Add an endpoint to a new possible bandwidth configuration for this device.
1407 * Only one call to this function is allowed per endpoint before
1408 * check_bandwidth() or reset_bandwidth() must be called.
1409 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1410 * add the endpoint to the schedule with possibly new parameters denoted by a
1411 * different endpoint descriptor in usb_host_endpoint.
1412 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1413 * not allowed.
1414 *
1415 * The USB core will not allow URBs to be queued to an endpoint until the
1416 * configuration or alt setting is installed in the device, so there's no need
1417 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1418 */
1419int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1420		struct usb_host_endpoint *ep)
1421{
1422	struct xhci_hcd *xhci;
1423	struct xhci_container_ctx *in_ctx, *out_ctx;
1424	unsigned int ep_index;
1425	struct xhci_ep_ctx *ep_ctx;
1426	struct xhci_slot_ctx *slot_ctx;
1427	struct xhci_input_control_ctx *ctrl_ctx;
1428	u32 added_ctxs;
1429	unsigned int last_ctx;
1430	u32 new_add_flags, new_drop_flags, new_slot_info;
1431	struct xhci_virt_device *virt_dev;
1432	int ret = 0;
1433
1434	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1435	if (ret <= 0) {
1436		/* So we won't queue a reset ep command for a root hub */
1437		ep->hcpriv = NULL;
1438		return ret;
1439	}
1440	xhci = hcd_to_xhci(hcd);
1441	if (xhci->xhc_state & XHCI_STATE_DYING)
1442		return -ENODEV;
1443
1444	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1445	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1446	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1447		/* FIXME when we have to issue an evaluate endpoint command to
1448		 * deal with ep0 max packet size changing once we get the
1449		 * descriptors
1450		 */
1451		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1452				__func__, added_ctxs);
1453		return 0;
1454	}
1455
1456	virt_dev = xhci->devs[udev->slot_id];
1457	in_ctx = virt_dev->in_ctx;
1458	out_ctx = virt_dev->out_ctx;
1459	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1460	ep_index = xhci_get_endpoint_index(&ep->desc);
1461	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
 
 
 
1462
 
1463	/* If this endpoint is already in use, and the upper layers are trying
1464	 * to add it again without dropping it, reject the addition.
1465	 */
1466	if (virt_dev->eps[ep_index].ring &&
1467			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1468				xhci_get_endpoint_flag(&ep->desc))) {
1469		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1470				"without dropping it.\n",
1471				(unsigned int) ep->desc.bEndpointAddress);
1472		return -EINVAL;
1473	}
1474
1475	/* If the HCD has already noted the endpoint is enabled,
1476	 * ignore this request.
1477	 */
1478	if (le32_to_cpu(ctrl_ctx->add_flags) &
1479	    xhci_get_endpoint_flag(&ep->desc)) {
1480		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1481				__func__, ep);
1482		return 0;
1483	}
1484
1485	/*
1486	 * Configuration and alternate setting changes must be done in
1487	 * process context, not interrupt context (or so documenation
1488	 * for usb_set_interface() and usb_set_configuration() claim).
1489	 */
1490	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1491		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1492				__func__, ep->desc.bEndpointAddress);
1493		return -ENOMEM;
1494	}
1495
1496	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1497	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1498
1499	/* If xhci_endpoint_disable() was called for this endpoint, but the
1500	 * xHC hasn't been notified yet through the check_bandwidth() call,
1501	 * this re-adds a new state for the endpoint from the new endpoint
1502	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1503	 * drop flags alone.
1504	 */
1505	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1506
1507	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1508	/* Update the last valid endpoint context, if we just added one past */
1509	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1510	    LAST_CTX(last_ctx)) {
1511		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1512		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1513	}
1514	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1515
1516	/* Store the usb_device pointer for later use */
1517	ep->hcpriv = udev;
1518
1519	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1520			(unsigned int) ep->desc.bEndpointAddress,
1521			udev->slot_id,
1522			(unsigned int) new_drop_flags,
1523			(unsigned int) new_add_flags,
1524			(unsigned int) new_slot_info);
1525	return 0;
1526}
1527
1528static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1529{
1530	struct xhci_input_control_ctx *ctrl_ctx;
1531	struct xhci_ep_ctx *ep_ctx;
1532	struct xhci_slot_ctx *slot_ctx;
1533	int i;
1534
 
 
 
 
 
 
 
1535	/* When a device's add flag and drop flag are zero, any subsequent
1536	 * configure endpoint command will leave that endpoint's state
1537	 * untouched.  Make sure we don't leave any old state in the input
1538	 * endpoint contexts.
1539	 */
1540	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1541	ctrl_ctx->drop_flags = 0;
1542	ctrl_ctx->add_flags = 0;
1543	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1544	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1545	/* Endpoint 0 is always valid */
1546	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1547	for (i = 1; i < 31; ++i) {
1548		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1549		ep_ctx->ep_info = 0;
1550		ep_ctx->ep_info2 = 0;
1551		ep_ctx->deq = 0;
1552		ep_ctx->tx_info = 0;
1553	}
1554}
1555
1556static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1557		struct usb_device *udev, u32 *cmd_status)
1558{
1559	int ret;
1560
1561	switch (*cmd_status) {
1562	case COMP_ENOMEM:
1563		dev_warn(&udev->dev, "Not enough host controller resources "
1564				"for new device state.\n");
1565		ret = -ENOMEM;
1566		/* FIXME: can we allocate more resources for the HC? */
1567		break;
1568	case COMP_BW_ERR:
 
1569		dev_warn(&udev->dev, "Not enough bandwidth "
1570				"for new device state.\n");
1571		ret = -ENOSPC;
1572		/* FIXME: can we go back to the old state? */
1573		break;
1574	case COMP_TRB_ERR:
1575		/* the HCD set up something wrong */
1576		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1577				"add flag = 1, "
1578				"and endpoint is not disabled.\n");
1579		ret = -EINVAL;
1580		break;
1581	case COMP_DEV_ERR:
1582		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1583				"configure command.\n");
1584		ret = -ENODEV;
1585		break;
1586	case COMP_SUCCESS:
1587		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
 
1588		ret = 0;
1589		break;
1590	default:
1591		xhci_err(xhci, "ERROR: unexpected command completion "
1592				"code 0x%x.\n", *cmd_status);
1593		ret = -EINVAL;
1594		break;
1595	}
1596	return ret;
1597}
1598
1599static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1600		struct usb_device *udev, u32 *cmd_status)
1601{
1602	int ret;
1603	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1604
1605	switch (*cmd_status) {
1606	case COMP_EINVAL:
1607		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1608				"context command.\n");
1609		ret = -EINVAL;
1610		break;
1611	case COMP_EBADSLT:
1612		dev_warn(&udev->dev, "WARN: slot not enabled for"
1613				"evaluate context command.\n");
 
 
1614	case COMP_CTX_STATE:
1615		dev_warn(&udev->dev, "WARN: invalid context state for "
1616				"evaluate context command.\n");
1617		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1618		ret = -EINVAL;
1619		break;
1620	case COMP_DEV_ERR:
1621		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1622				"context command.\n");
1623		ret = -ENODEV;
1624		break;
1625	case COMP_MEL_ERR:
1626		/* Max Exit Latency too large error */
1627		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1628		ret = -EINVAL;
1629		break;
1630	case COMP_SUCCESS:
1631		dev_dbg(&udev->dev, "Successful evaluate context command\n");
 
1632		ret = 0;
1633		break;
1634	default:
1635		xhci_err(xhci, "ERROR: unexpected command completion "
1636				"code 0x%x.\n", *cmd_status);
1637		ret = -EINVAL;
1638		break;
1639	}
1640	return ret;
1641}
1642
1643static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1644		struct xhci_container_ctx *in_ctx)
1645{
1646	struct xhci_input_control_ctx *ctrl_ctx;
1647	u32 valid_add_flags;
1648	u32 valid_drop_flags;
1649
1650	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1651	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1652	 * (bit 1).  The default control endpoint is added during the Address
1653	 * Device command and is never removed until the slot is disabled.
1654	 */
1655	valid_add_flags = ctrl_ctx->add_flags >> 2;
1656	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1657
1658	/* Use hweight32 to count the number of ones in the add flags, or
1659	 * number of endpoints added.  Don't count endpoints that are changed
1660	 * (both added and dropped).
1661	 */
1662	return hweight32(valid_add_flags) -
1663		hweight32(valid_add_flags & valid_drop_flags);
1664}
1665
1666static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1667		struct xhci_container_ctx *in_ctx)
1668{
1669	struct xhci_input_control_ctx *ctrl_ctx;
1670	u32 valid_add_flags;
1671	u32 valid_drop_flags;
1672
1673	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1674	valid_add_flags = ctrl_ctx->add_flags >> 2;
1675	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1676
1677	return hweight32(valid_drop_flags) -
1678		hweight32(valid_add_flags & valid_drop_flags);
1679}
1680
1681/*
1682 * We need to reserve the new number of endpoints before the configure endpoint
1683 * command completes.  We can't subtract the dropped endpoints from the number
1684 * of active endpoints until the command completes because we can oversubscribe
1685 * the host in this case:
1686 *
1687 *  - the first configure endpoint command drops more endpoints than it adds
1688 *  - a second configure endpoint command that adds more endpoints is queued
1689 *  - the first configure endpoint command fails, so the config is unchanged
1690 *  - the second command may succeed, even though there isn't enough resources
1691 *
1692 * Must be called with xhci->lock held.
1693 */
1694static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1695		struct xhci_container_ctx *in_ctx)
1696{
1697	u32 added_eps;
1698
1699	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1700	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1701		xhci_dbg(xhci, "Not enough ep ctxs: "
1702				"%u active, need to add %u, limit is %u.\n",
 
1703				xhci->num_active_eps, added_eps,
1704				xhci->limit_active_eps);
1705		return -ENOMEM;
1706	}
1707	xhci->num_active_eps += added_eps;
1708	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
 
1709			xhci->num_active_eps);
1710	return 0;
1711}
1712
1713/*
1714 * The configure endpoint was failed by the xHC for some other reason, so we
1715 * need to revert the resources that failed configuration would have used.
1716 *
1717 * Must be called with xhci->lock held.
1718 */
1719static void xhci_free_host_resources(struct xhci_hcd *xhci,
1720		struct xhci_container_ctx *in_ctx)
1721{
1722	u32 num_failed_eps;
1723
1724	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1725	xhci->num_active_eps -= num_failed_eps;
1726	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
 
1727			num_failed_eps,
1728			xhci->num_active_eps);
1729}
1730
1731/*
1732 * Now that the command has completed, clean up the active endpoint count by
1733 * subtracting out the endpoints that were dropped (but not changed).
1734 *
1735 * Must be called with xhci->lock held.
1736 */
1737static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1738		struct xhci_container_ctx *in_ctx)
1739{
1740	u32 num_dropped_eps;
1741
1742	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1743	xhci->num_active_eps -= num_dropped_eps;
1744	if (num_dropped_eps)
1745		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
 
1746				num_dropped_eps,
1747				xhci->num_active_eps);
1748}
1749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750/* Issue a configure endpoint command or evaluate context command
1751 * and wait for it to finish.
1752 */
1753static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1754		struct usb_device *udev,
1755		struct xhci_command *command,
1756		bool ctx_change, bool must_succeed)
1757{
1758	int ret;
1759	int timeleft;
1760	unsigned long flags;
1761	struct xhci_container_ctx *in_ctx;
 
1762	struct completion *cmd_completion;
1763	u32 *cmd_status;
1764	struct xhci_virt_device *virt_dev;
 
1765
1766	spin_lock_irqsave(&xhci->lock, flags);
1767	virt_dev = xhci->devs[udev->slot_id];
1768	if (command) {
 
1769		in_ctx = command->in_ctx;
1770		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1771				xhci_reserve_host_resources(xhci, in_ctx)) {
1772			spin_unlock_irqrestore(&xhci->lock, flags);
1773			xhci_warn(xhci, "Not enough host resources, "
1774					"active endpoint contexts = %u\n",
1775					xhci->num_active_eps);
1776			return -ENOMEM;
1777		}
 
1778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779		cmd_completion = command->completion;
1780		cmd_status = &command->status;
1781		command->command_trb = xhci->cmd_ring->enqueue;
1782
1783		/* Enqueue pointer can be left pointing to the link TRB,
1784		 * we must handle that
1785		 */
1786		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
1787			command->command_trb =
1788				xhci->cmd_ring->enq_seg->next->trbs;
1789
1790		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1791	} else {
1792		in_ctx = virt_dev->in_ctx;
1793		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1794				xhci_reserve_host_resources(xhci, in_ctx)) {
1795			spin_unlock_irqrestore(&xhci->lock, flags);
1796			xhci_warn(xhci, "Not enough host resources, "
1797					"active endpoint contexts = %u\n",
1798					xhci->num_active_eps);
1799			return -ENOMEM;
1800		}
1801		cmd_completion = &virt_dev->cmd_completion;
1802		cmd_status = &virt_dev->cmd_status;
1803	}
1804	init_completion(cmd_completion);
1805
 
1806	if (!ctx_change)
1807		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1808				udev->slot_id, must_succeed);
1809	else
1810		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1811				udev->slot_id);
1812	if (ret < 0) {
1813		if (command)
1814			list_del(&command->cmd_list);
1815		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
1816			xhci_free_host_resources(xhci, in_ctx);
1817		spin_unlock_irqrestore(&xhci->lock, flags);
1818		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
 
1819		return -ENOMEM;
1820	}
1821	xhci_ring_cmd_db(xhci);
1822	spin_unlock_irqrestore(&xhci->lock, flags);
1823
1824	/* Wait for the configure endpoint command to complete */
1825	timeleft = wait_for_completion_interruptible_timeout(
1826			cmd_completion,
1827			USB_CTRL_SET_TIMEOUT);
1828	if (timeleft <= 0) {
1829		xhci_warn(xhci, "%s while waiting for %s command\n",
1830				timeleft == 0 ? "Timeout" : "Signal",
1831				ctx_change == 0 ?
1832					"configure endpoint" :
1833					"evaluate context");
1834		/* FIXME cancel the configure endpoint command */
 
 
 
1835		return -ETIME;
1836	}
1837
1838	if (!ctx_change)
1839		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
1840	else
1841		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
1842
1843	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
1844		spin_lock_irqsave(&xhci->lock, flags);
1845		/* If the command failed, remove the reserved resources.
1846		 * Otherwise, clean up the estimate to include dropped eps.
1847		 */
1848		if (ret)
1849			xhci_free_host_resources(xhci, in_ctx);
1850		else
1851			xhci_finish_resource_reservation(xhci, in_ctx);
1852		spin_unlock_irqrestore(&xhci->lock, flags);
1853	}
1854	return ret;
1855}
1856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857/* Called after one or more calls to xhci_add_endpoint() or
1858 * xhci_drop_endpoint().  If this call fails, the USB core is expected
1859 * to call xhci_reset_bandwidth().
1860 *
1861 * Since we are in the middle of changing either configuration or
1862 * installing a new alt setting, the USB core won't allow URBs to be
1863 * enqueued for any endpoint on the old config or interface.  Nothing
1864 * else should be touching the xhci->devs[slot_id] structure, so we
1865 * don't need to take the xhci->lock for manipulating that.
1866 */
1867int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1868{
1869	int i;
1870	int ret = 0;
1871	struct xhci_hcd *xhci;
1872	struct xhci_virt_device	*virt_dev;
1873	struct xhci_input_control_ctx *ctrl_ctx;
1874	struct xhci_slot_ctx *slot_ctx;
1875
1876	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1877	if (ret <= 0)
1878		return ret;
1879	xhci = hcd_to_xhci(hcd);
1880	if (xhci->xhc_state & XHCI_STATE_DYING)
1881		return -ENODEV;
1882
1883	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1884	virt_dev = xhci->devs[udev->slot_id];
1885
1886	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1887	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
1888	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1889	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
1890	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
 
 
 
 
 
 
1891	xhci_dbg(xhci, "New Input Control Context:\n");
1892	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1893	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1894		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1895
1896	ret = xhci_configure_endpoint(xhci, udev, NULL,
1897			false, false);
1898	if (ret) {
1899		/* Callee should call reset_bandwidth() */
1900		return ret;
1901	}
1902
1903	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1904	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1905		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1906
1907	/* Free any rings that were dropped, but not changed. */
1908	for (i = 1; i < 31; ++i) {
1909		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
1910		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
1911			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
 
 
1912	}
1913	xhci_zero_in_ctx(xhci, virt_dev);
1914	/*
1915	 * Install any rings for completely new endpoints or changed endpoints,
1916	 * and free or cache any old rings from changed endpoints.
1917	 */
1918	for (i = 1; i < 31; ++i) {
1919		if (!virt_dev->eps[i].new_ring)
1920			continue;
1921		/* Only cache or free the old ring if it exists.
1922		 * It may not if this is the first add of an endpoint.
1923		 */
1924		if (virt_dev->eps[i].ring) {
1925			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1926		}
 
1927		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1928		virt_dev->eps[i].new_ring = NULL;
1929	}
1930
1931	return ret;
1932}
1933
1934void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1935{
1936	struct xhci_hcd *xhci;
1937	struct xhci_virt_device	*virt_dev;
1938	int i, ret;
1939
1940	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1941	if (ret <= 0)
1942		return;
1943	xhci = hcd_to_xhci(hcd);
1944
1945	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1946	virt_dev = xhci->devs[udev->slot_id];
1947	/* Free any rings allocated for added endpoints */
1948	for (i = 0; i < 31; ++i) {
1949		if (virt_dev->eps[i].new_ring) {
1950			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1951			virt_dev->eps[i].new_ring = NULL;
1952		}
1953	}
1954	xhci_zero_in_ctx(xhci, virt_dev);
1955}
1956
1957static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1958		struct xhci_container_ctx *in_ctx,
1959		struct xhci_container_ctx *out_ctx,
 
1960		u32 add_flags, u32 drop_flags)
1961{
1962	struct xhci_input_control_ctx *ctrl_ctx;
1963	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1964	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
1965	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
1966	xhci_slot_copy(xhci, in_ctx, out_ctx);
1967	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1968
1969	xhci_dbg(xhci, "Input Context:\n");
1970	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1971}
1972
1973static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1974		unsigned int slot_id, unsigned int ep_index,
1975		struct xhci_dequeue_state *deq_state)
1976{
 
1977	struct xhci_container_ctx *in_ctx;
1978	struct xhci_ep_ctx *ep_ctx;
1979	u32 added_ctxs;
1980	dma_addr_t addr;
1981
 
 
 
 
 
 
 
 
1982	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1983			xhci->devs[slot_id]->out_ctx, ep_index);
1984	in_ctx = xhci->devs[slot_id]->in_ctx;
1985	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1986	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1987			deq_state->new_deq_ptr);
1988	if (addr == 0) {
1989		xhci_warn(xhci, "WARN Cannot submit config ep after "
1990				"reset ep command\n");
1991		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1992				deq_state->new_deq_seg,
1993				deq_state->new_deq_ptr);
1994		return;
1995	}
1996	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
1997
1998	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1999	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2000			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
 
2001}
2002
2003void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2004		struct usb_device *udev, unsigned int ep_index)
2005{
2006	struct xhci_dequeue_state deq_state;
2007	struct xhci_virt_ep *ep;
2008
2009	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
 
2010	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2011	/* We need to move the HW's dequeue pointer past this TD,
2012	 * or it will attempt to resend it on the next doorbell ring.
2013	 */
2014	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2015			ep_index, ep->stopped_stream, ep->stopped_td,
2016			&deq_state);
2017
2018	/* HW with the reset endpoint quirk will use the saved dequeue state to
2019	 * issue a configure endpoint command later.
2020	 */
2021	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2022		xhci_dbg(xhci, "Queueing new dequeue state\n");
 
2023		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2024				ep_index, ep->stopped_stream, &deq_state);
2025	} else {
2026		/* Better hope no one uses the input context between now and the
2027		 * reset endpoint completion!
2028		 * XXX: No idea how this hardware will react when stream rings
2029		 * are enabled.
2030		 */
2031		xhci_dbg(xhci, "Setting up input context for "
2032				"configure endpoint command\n");
 
2033		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2034				ep_index, &deq_state);
2035	}
2036}
2037
2038/* Deal with stalled endpoints.  The core should have sent the control message
2039 * to clear the halt condition.  However, we need to make the xHCI hardware
2040 * reset its sequence number, since a device will expect a sequence number of
2041 * zero after the halt condition is cleared.
2042 * Context: in_interrupt
2043 */
2044void xhci_endpoint_reset(struct usb_hcd *hcd,
2045		struct usb_host_endpoint *ep)
2046{
2047	struct xhci_hcd *xhci;
2048	struct usb_device *udev;
2049	unsigned int ep_index;
2050	unsigned long flags;
2051	int ret;
2052	struct xhci_virt_ep *virt_ep;
2053
2054	xhci = hcd_to_xhci(hcd);
2055	udev = (struct usb_device *) ep->hcpriv;
2056	/* Called with a root hub endpoint (or an endpoint that wasn't added
2057	 * with xhci_add_endpoint()
2058	 */
2059	if (!ep->hcpriv)
2060		return;
2061	ep_index = xhci_get_endpoint_index(&ep->desc);
2062	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2063	if (!virt_ep->stopped_td) {
2064		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2065				ep->desc.bEndpointAddress);
 
2066		return;
2067	}
2068	if (usb_endpoint_xfer_control(&ep->desc)) {
2069		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
 
2070		return;
2071	}
2072
2073	xhci_dbg(xhci, "Queueing reset endpoint command\n");
 
2074	spin_lock_irqsave(&xhci->lock, flags);
2075	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2076	/*
2077	 * Can't change the ring dequeue pointer until it's transitioned to the
2078	 * stopped state, which is only upon a successful reset endpoint
2079	 * command.  Better hope that last command worked!
2080	 */
2081	if (!ret) {
2082		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2083		kfree(virt_ep->stopped_td);
2084		xhci_ring_cmd_db(xhci);
2085	}
2086	virt_ep->stopped_td = NULL;
2087	virt_ep->stopped_trb = NULL;
2088	virt_ep->stopped_stream = 0;
2089	spin_unlock_irqrestore(&xhci->lock, flags);
2090
2091	if (ret)
2092		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2093}
2094
2095static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2096		struct usb_device *udev, struct usb_host_endpoint *ep,
2097		unsigned int slot_id)
2098{
2099	int ret;
2100	unsigned int ep_index;
2101	unsigned int ep_state;
2102
2103	if (!ep)
2104		return -EINVAL;
2105	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2106	if (ret <= 0)
2107		return -EINVAL;
2108	if (ep->ss_ep_comp.bmAttributes == 0) {
2109		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2110				" descriptor for ep 0x%x does not support streams\n",
2111				ep->desc.bEndpointAddress);
2112		return -EINVAL;
2113	}
2114
2115	ep_index = xhci_get_endpoint_index(&ep->desc);
2116	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2117	if (ep_state & EP_HAS_STREAMS ||
2118			ep_state & EP_GETTING_STREAMS) {
2119		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2120				"already has streams set up.\n",
2121				ep->desc.bEndpointAddress);
2122		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2123				"dynamic stream context array reallocation.\n");
2124		return -EINVAL;
2125	}
2126	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2127		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2128				"endpoint 0x%x; URBs are pending.\n",
2129				ep->desc.bEndpointAddress);
2130		return -EINVAL;
2131	}
2132	return 0;
2133}
2134
2135static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2136		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2137{
2138	unsigned int max_streams;
2139
2140	/* The stream context array size must be a power of two */
2141	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2142	/*
2143	 * Find out how many primary stream array entries the host controller
2144	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2145	 * level page entries), but that's an optional feature for xHCI host
2146	 * controllers. xHCs must support at least 4 stream IDs.
2147	 */
2148	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2149	if (*num_stream_ctxs > max_streams) {
2150		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2151				max_streams);
2152		*num_stream_ctxs = max_streams;
2153		*num_streams = max_streams;
2154	}
2155}
2156
2157/* Returns an error code if one of the endpoint already has streams.
2158 * This does not change any data structures, it only checks and gathers
2159 * information.
2160 */
2161static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2162		struct usb_device *udev,
2163		struct usb_host_endpoint **eps, unsigned int num_eps,
2164		unsigned int *num_streams, u32 *changed_ep_bitmask)
2165{
2166	unsigned int max_streams;
2167	unsigned int endpoint_flag;
2168	int i;
2169	int ret;
2170
2171	for (i = 0; i < num_eps; i++) {
2172		ret = xhci_check_streams_endpoint(xhci, udev,
2173				eps[i], udev->slot_id);
2174		if (ret < 0)
2175			return ret;
2176
2177		max_streams = USB_SS_MAX_STREAMS(
2178				eps[i]->ss_ep_comp.bmAttributes);
2179		if (max_streams < (*num_streams - 1)) {
2180			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2181					eps[i]->desc.bEndpointAddress,
2182					max_streams);
2183			*num_streams = max_streams+1;
2184		}
2185
2186		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2187		if (*changed_ep_bitmask & endpoint_flag)
2188			return -EINVAL;
2189		*changed_ep_bitmask |= endpoint_flag;
2190	}
2191	return 0;
2192}
2193
2194static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2195		struct usb_device *udev,
2196		struct usb_host_endpoint **eps, unsigned int num_eps)
2197{
2198	u32 changed_ep_bitmask = 0;
2199	unsigned int slot_id;
2200	unsigned int ep_index;
2201	unsigned int ep_state;
2202	int i;
2203
2204	slot_id = udev->slot_id;
2205	if (!xhci->devs[slot_id])
2206		return 0;
2207
2208	for (i = 0; i < num_eps; i++) {
2209		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2210		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2211		/* Are streams already being freed for the endpoint? */
2212		if (ep_state & EP_GETTING_NO_STREAMS) {
2213			xhci_warn(xhci, "WARN Can't disable streams for "
2214					"endpoint 0x%x\n, "
2215					"streams are being disabled already.",
2216					eps[i]->desc.bEndpointAddress);
2217			return 0;
2218		}
2219		/* Are there actually any streams to free? */
2220		if (!(ep_state & EP_HAS_STREAMS) &&
2221				!(ep_state & EP_GETTING_STREAMS)) {
2222			xhci_warn(xhci, "WARN Can't disable streams for "
2223					"endpoint 0x%x\n, "
2224					"streams are already disabled!",
2225					eps[i]->desc.bEndpointAddress);
2226			xhci_warn(xhci, "WARN xhci_free_streams() called "
2227					"with non-streams endpoint\n");
2228			return 0;
2229		}
2230		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2231	}
2232	return changed_ep_bitmask;
2233}
2234
2235/*
2236 * The USB device drivers use this function (though the HCD interface in USB
2237 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2238 * coordinate mass storage command queueing across multiple endpoints (basically
2239 * a stream ID == a task ID).
2240 *
2241 * Setting up streams involves allocating the same size stream context array
2242 * for each endpoint and issuing a configure endpoint command for all endpoints.
2243 *
2244 * Don't allow the call to succeed if one endpoint only supports one stream
2245 * (which means it doesn't support streams at all).
2246 *
2247 * Drivers may get less stream IDs than they asked for, if the host controller
2248 * hardware or endpoints claim they can't support the number of requested
2249 * stream IDs.
2250 */
2251int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2252		struct usb_host_endpoint **eps, unsigned int num_eps,
2253		unsigned int num_streams, gfp_t mem_flags)
2254{
2255	int i, ret;
2256	struct xhci_hcd *xhci;
2257	struct xhci_virt_device *vdev;
2258	struct xhci_command *config_cmd;
 
2259	unsigned int ep_index;
2260	unsigned int num_stream_ctxs;
2261	unsigned long flags;
2262	u32 changed_ep_bitmask = 0;
2263
2264	if (!eps)
2265		return -EINVAL;
2266
2267	/* Add one to the number of streams requested to account for
2268	 * stream 0 that is reserved for xHCI usage.
2269	 */
2270	num_streams += 1;
2271	xhci = hcd_to_xhci(hcd);
2272	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2273			num_streams);
2274
 
 
 
 
 
 
2275	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2276	if (!config_cmd) {
2277		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2278		return -ENOMEM;
2279	}
 
 
 
 
 
 
 
2280
2281	/* Check to make sure all endpoints are not already configured for
2282	 * streams.  While we're at it, find the maximum number of streams that
2283	 * all the endpoints will support and check for duplicate endpoints.
2284	 */
2285	spin_lock_irqsave(&xhci->lock, flags);
2286	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2287			num_eps, &num_streams, &changed_ep_bitmask);
2288	if (ret < 0) {
2289		xhci_free_command(xhci, config_cmd);
2290		spin_unlock_irqrestore(&xhci->lock, flags);
2291		return ret;
2292	}
2293	if (num_streams <= 1) {
2294		xhci_warn(xhci, "WARN: endpoints can't handle "
2295				"more than one stream.\n");
2296		xhci_free_command(xhci, config_cmd);
2297		spin_unlock_irqrestore(&xhci->lock, flags);
2298		return -EINVAL;
2299	}
2300	vdev = xhci->devs[udev->slot_id];
2301	/* Mark each endpoint as being in transition, so
2302	 * xhci_urb_enqueue() will reject all URBs.
2303	 */
2304	for (i = 0; i < num_eps; i++) {
2305		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2306		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2307	}
2308	spin_unlock_irqrestore(&xhci->lock, flags);
2309
2310	/* Setup internal data structures and allocate HW data structures for
2311	 * streams (but don't install the HW structures in the input context
2312	 * until we're sure all memory allocation succeeded).
2313	 */
2314	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2315	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2316			num_stream_ctxs, num_streams);
2317
2318	for (i = 0; i < num_eps; i++) {
2319		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2320		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2321				num_stream_ctxs,
2322				num_streams, mem_flags);
2323		if (!vdev->eps[ep_index].stream_info)
2324			goto cleanup;
2325		/* Set maxPstreams in endpoint context and update deq ptr to
2326		 * point to stream context array. FIXME
2327		 */
2328	}
2329
2330	/* Set up the input context for a configure endpoint command. */
2331	for (i = 0; i < num_eps; i++) {
2332		struct xhci_ep_ctx *ep_ctx;
2333
2334		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2335		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2336
2337		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2338				vdev->out_ctx, ep_index);
2339		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2340				vdev->eps[ep_index].stream_info);
2341	}
2342	/* Tell the HW to drop its old copy of the endpoint context info
2343	 * and add the updated copy from the input context.
2344	 */
2345	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2346			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
2347
2348	/* Issue and wait for the configure endpoint command */
2349	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2350			false, false);
2351
2352	/* xHC rejected the configure endpoint command for some reason, so we
2353	 * leave the old ring intact and free our internal streams data
2354	 * structure.
2355	 */
2356	if (ret < 0)
2357		goto cleanup;
2358
2359	spin_lock_irqsave(&xhci->lock, flags);
2360	for (i = 0; i < num_eps; i++) {
2361		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2362		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2363		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2364			 udev->slot_id, ep_index);
2365		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2366	}
2367	xhci_free_command(xhci, config_cmd);
2368	spin_unlock_irqrestore(&xhci->lock, flags);
2369
2370	/* Subtract 1 for stream 0, which drivers can't use */
2371	return num_streams - 1;
2372
2373cleanup:
2374	/* If it didn't work, free the streams! */
2375	for (i = 0; i < num_eps; i++) {
2376		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2377		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2378		vdev->eps[ep_index].stream_info = NULL;
2379		/* FIXME Unset maxPstreams in endpoint context and
2380		 * update deq ptr to point to normal string ring.
2381		 */
2382		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2383		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2384		xhci_endpoint_zero(xhci, vdev, eps[i]);
2385	}
2386	xhci_free_command(xhci, config_cmd);
2387	return -ENOMEM;
2388}
2389
2390/* Transition the endpoint from using streams to being a "normal" endpoint
2391 * without streams.
2392 *
2393 * Modify the endpoint context state, submit a configure endpoint command,
2394 * and free all endpoint rings for streams if that completes successfully.
2395 */
2396int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2397		struct usb_host_endpoint **eps, unsigned int num_eps,
2398		gfp_t mem_flags)
2399{
2400	int i, ret;
2401	struct xhci_hcd *xhci;
2402	struct xhci_virt_device *vdev;
2403	struct xhci_command *command;
 
2404	unsigned int ep_index;
2405	unsigned long flags;
2406	u32 changed_ep_bitmask;
2407
2408	xhci = hcd_to_xhci(hcd);
2409	vdev = xhci->devs[udev->slot_id];
2410
2411	/* Set up a configure endpoint command to remove the streams rings */
2412	spin_lock_irqsave(&xhci->lock, flags);
2413	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2414			udev, eps, num_eps);
2415	if (changed_ep_bitmask == 0) {
2416		spin_unlock_irqrestore(&xhci->lock, flags);
2417		return -EINVAL;
2418	}
2419
2420	/* Use the xhci_command structure from the first endpoint.  We may have
2421	 * allocated too many, but the driver may call xhci_free_streams() for
2422	 * each endpoint it grouped into one call to xhci_alloc_streams().
2423	 */
2424	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2425	command = vdev->eps[ep_index].stream_info->free_streams_command;
 
 
 
 
 
 
 
 
2426	for (i = 0; i < num_eps; i++) {
2427		struct xhci_ep_ctx *ep_ctx;
2428
2429		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2430		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2431		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2432			EP_GETTING_NO_STREAMS;
2433
2434		xhci_endpoint_copy(xhci, command->in_ctx,
2435				vdev->out_ctx, ep_index);
2436		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2437				&vdev->eps[ep_index]);
2438	}
2439	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2440			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
2441	spin_unlock_irqrestore(&xhci->lock, flags);
2442
2443	/* Issue and wait for the configure endpoint command,
2444	 * which must succeed.
2445	 */
2446	ret = xhci_configure_endpoint(xhci, udev, command,
2447			false, true);
2448
2449	/* xHC rejected the configure endpoint command for some reason, so we
2450	 * leave the streams rings intact.
2451	 */
2452	if (ret < 0)
2453		return ret;
2454
2455	spin_lock_irqsave(&xhci->lock, flags);
2456	for (i = 0; i < num_eps; i++) {
2457		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2458		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2459		vdev->eps[ep_index].stream_info = NULL;
2460		/* FIXME Unset maxPstreams in endpoint context and
2461		 * update deq ptr to point to normal string ring.
2462		 */
2463		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2464		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2465	}
2466	spin_unlock_irqrestore(&xhci->lock, flags);
2467
2468	return 0;
2469}
2470
2471/*
2472 * Deletes endpoint resources for endpoints that were active before a Reset
2473 * Device command, or a Disable Slot command.  The Reset Device command leaves
2474 * the control endpoint intact, whereas the Disable Slot command deletes it.
2475 *
2476 * Must be called with xhci->lock held.
2477 */
2478void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
2479	struct xhci_virt_device *virt_dev, bool drop_control_ep)
2480{
2481	int i;
2482	unsigned int num_dropped_eps = 0;
2483	unsigned int drop_flags = 0;
2484
2485	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
2486		if (virt_dev->eps[i].ring) {
2487			drop_flags |= 1 << i;
2488			num_dropped_eps++;
2489		}
2490	}
2491	xhci->num_active_eps -= num_dropped_eps;
2492	if (num_dropped_eps)
2493		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
2494				"%u now active.\n",
 
2495				num_dropped_eps, drop_flags,
2496				xhci->num_active_eps);
2497}
2498
2499/*
2500 * This submits a Reset Device Command, which will set the device state to 0,
2501 * set the device address to 0, and disable all the endpoints except the default
2502 * control endpoint.  The USB core should come back and call
2503 * xhci_address_device(), and then re-set up the configuration.  If this is
2504 * called because of a usb_reset_and_verify_device(), then the old alternate
2505 * settings will be re-installed through the normal bandwidth allocation
2506 * functions.
2507 *
2508 * Wait for the Reset Device command to finish.  Remove all structures
2509 * associated with the endpoints that were disabled.  Clear the input device
2510 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
2511 *
2512 * If the virt_dev to be reset does not exist or does not match the udev,
2513 * it means the device is lost, possibly due to the xHC restore error and
2514 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2515 * re-allocate the device.
2516 */
2517int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2518{
2519	int ret, i;
2520	unsigned long flags;
2521	struct xhci_hcd *xhci;
2522	unsigned int slot_id;
2523	struct xhci_virt_device *virt_dev;
2524	struct xhci_command *reset_device_cmd;
2525	int timeleft;
2526	int last_freed_endpoint;
2527	struct xhci_slot_ctx *slot_ctx;
 
2528
2529	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2530	if (ret <= 0)
2531		return ret;
2532	xhci = hcd_to_xhci(hcd);
2533	slot_id = udev->slot_id;
2534	virt_dev = xhci->devs[slot_id];
2535	if (!virt_dev) {
2536		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2537				"not exist. Re-allocate the device\n", slot_id);
2538		ret = xhci_alloc_dev(hcd, udev);
2539		if (ret == 1)
2540			return 0;
2541		else
2542			return -EINVAL;
2543	}
2544
2545	if (virt_dev->udev != udev) {
2546		/* If the virt_dev and the udev does not match, this virt_dev
2547		 * may belong to another udev.
2548		 * Re-allocate the device.
2549		 */
2550		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2551				"not match the udev. Re-allocate the device\n",
2552				slot_id);
2553		ret = xhci_alloc_dev(hcd, udev);
2554		if (ret == 1)
2555			return 0;
2556		else
2557			return -EINVAL;
2558	}
2559
2560	/* If device is not setup, there is no point in resetting it */
2561	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2562	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
2563						SLOT_STATE_DISABLED)
2564		return 0;
2565
2566	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2567	/* Allocate the command structure that holds the struct completion.
2568	 * Assume we're in process context, since the normal device reset
2569	 * process has to wait for the device anyway.  Storage devices are
2570	 * reset as part of error handling, so use GFP_NOIO instead of
2571	 * GFP_KERNEL.
2572	 */
2573	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2574	if (!reset_device_cmd) {
2575		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2576		return -ENOMEM;
2577	}
2578
2579	/* Attempt to submit the Reset Device command to the command ring */
2580	spin_lock_irqsave(&xhci->lock, flags);
2581	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2582
2583	/* Enqueue pointer can be left pointing to the link TRB,
2584	 * we must handle that
2585	 */
2586	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
2587		reset_device_cmd->command_trb =
2588			xhci->cmd_ring->enq_seg->next->trbs;
2589
2590	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2591	ret = xhci_queue_reset_device(xhci, slot_id);
2592	if (ret) {
2593		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2594		list_del(&reset_device_cmd->cmd_list);
2595		spin_unlock_irqrestore(&xhci->lock, flags);
2596		goto command_cleanup;
2597	}
2598	xhci_ring_cmd_db(xhci);
2599	spin_unlock_irqrestore(&xhci->lock, flags);
2600
2601	/* Wait for the Reset Device command to finish */
2602	timeleft = wait_for_completion_interruptible_timeout(
2603			reset_device_cmd->completion,
2604			USB_CTRL_SET_TIMEOUT);
2605	if (timeleft <= 0) {
2606		xhci_warn(xhci, "%s while waiting for reset device command\n",
2607				timeleft == 0 ? "Timeout" : "Signal");
2608		spin_lock_irqsave(&xhci->lock, flags);
2609		/* The timeout might have raced with the event ring handler, so
2610		 * only delete from the list if the item isn't poisoned.
2611		 */
2612		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2613			list_del(&reset_device_cmd->cmd_list);
2614		spin_unlock_irqrestore(&xhci->lock, flags);
2615		ret = -ETIME;
2616		goto command_cleanup;
2617	}
2618
2619	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2620	 * unless we tried to reset a slot ID that wasn't enabled,
2621	 * or the device wasn't in the addressed or configured state.
2622	 */
2623	ret = reset_device_cmd->status;
2624	switch (ret) {
2625	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2626	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2627		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2628				slot_id,
2629				xhci_get_slot_state(xhci, virt_dev->out_ctx));
2630		xhci_info(xhci, "Not freeing device rings.\n");
2631		/* Don't treat this as an error.  May change my mind later. */
2632		ret = 0;
2633		goto command_cleanup;
2634	case COMP_SUCCESS:
2635		xhci_dbg(xhci, "Successful reset device command.\n");
2636		break;
2637	default:
2638		if (xhci_is_vendor_info_code(xhci, ret))
2639			break;
2640		xhci_warn(xhci, "Unknown completion code %u for "
2641				"reset device command.\n", ret);
2642		ret = -EINVAL;
2643		goto command_cleanup;
2644	}
2645
2646	/* Free up host controller endpoint resources */
2647	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2648		spin_lock_irqsave(&xhci->lock, flags);
2649		/* Don't delete the default control endpoint resources */
2650		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
2651		spin_unlock_irqrestore(&xhci->lock, flags);
2652	}
2653
2654	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
2655	last_freed_endpoint = 1;
2656	for (i = 1; i < 31; ++i) {
2657		struct xhci_virt_ep *ep = &virt_dev->eps[i];
2658
2659		if (ep->ep_state & EP_HAS_STREAMS) {
 
 
2660			xhci_free_stream_info(xhci, ep->stream_info);
2661			ep->stream_info = NULL;
2662			ep->ep_state &= ~EP_HAS_STREAMS;
2663		}
2664
2665		if (ep->ring) {
2666			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2667			last_freed_endpoint = i;
2668		}
 
 
 
 
 
 
 
 
2669	}
 
 
 
2670	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2671	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2672	ret = 0;
2673
2674command_cleanup:
2675	xhci_free_command(xhci, reset_device_cmd);
2676	return ret;
2677}
2678
2679/*
2680 * At this point, the struct usb_device is about to go away, the device has
2681 * disconnected, and all traffic has been stopped and the endpoints have been
2682 * disabled.  Free any HC data structures associated with that device.
2683 */
2684void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2685{
2686	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2687	struct xhci_virt_device *virt_dev;
2688	unsigned long flags;
2689	u32 state;
2690	int i, ret;
2691
 
 
 
 
 
 
 
 
 
 
2692	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2693	/* If the host is halted due to driver unload, we still need to free the
2694	 * device.
2695	 */
2696	if (ret <= 0 && ret != -ENODEV)
2697		return;
2698
2699	virt_dev = xhci->devs[udev->slot_id];
2700
2701	/* Stop any wayward timer functions (which may grab the lock) */
2702	for (i = 0; i < 31; ++i) {
2703		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2704		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2705	}
2706
2707	spin_lock_irqsave(&xhci->lock, flags);
2708	/* Don't disable the slot if the host controller is dead. */
2709	state = xhci_readl(xhci, &xhci->op_regs->status);
2710	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
2711			(xhci->xhc_state & XHCI_STATE_HALTED)) {
2712		xhci_free_virt_device(xhci, udev->slot_id);
2713		spin_unlock_irqrestore(&xhci->lock, flags);
2714		return;
2715	}
2716
2717	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2718		spin_unlock_irqrestore(&xhci->lock, flags);
2719		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2720		return;
2721	}
2722	xhci_ring_cmd_db(xhci);
2723	spin_unlock_irqrestore(&xhci->lock, flags);
2724	/*
2725	 * Event command completion handler will free any data structures
2726	 * associated with the slot.  XXX Can free sleep?
2727	 */
2728}
2729
2730/*
2731 * Checks if we have enough host controller resources for the default control
2732 * endpoint.
2733 *
2734 * Must be called with xhci->lock held.
2735 */
2736static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
2737{
2738	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
2739		xhci_dbg(xhci, "Not enough ep ctxs: "
2740				"%u active, need to add 1, limit is %u.\n",
 
2741				xhci->num_active_eps, xhci->limit_active_eps);
2742		return -ENOMEM;
2743	}
2744	xhci->num_active_eps += 1;
2745	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
 
2746			xhci->num_active_eps);
2747	return 0;
2748}
2749
2750
2751/*
2752 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2753 * timed out, or allocating memory failed.  Returns 1 on success.
2754 */
2755int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2756{
2757	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2758	unsigned long flags;
2759	int timeleft;
2760	int ret;
 
2761
2762	spin_lock_irqsave(&xhci->lock, flags);
 
2763	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2764	if (ret) {
2765		spin_unlock_irqrestore(&xhci->lock, flags);
2766		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2767		return 0;
2768	}
2769	xhci_ring_cmd_db(xhci);
2770	spin_unlock_irqrestore(&xhci->lock, flags);
2771
2772	/* XXX: how much time for xHC slot assignment? */
2773	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2774			USB_CTRL_SET_TIMEOUT);
2775	if (timeleft <= 0) {
2776		xhci_warn(xhci, "%s while waiting for a slot\n",
2777				timeleft == 0 ? "Timeout" : "Signal");
2778		/* FIXME cancel the enable slot request */
2779		return 0;
2780	}
2781
2782	if (!xhci->slot_id) {
2783		xhci_err(xhci, "Error while assigning device slot ID\n");
2784		return 0;
2785	}
2786
2787	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2788		spin_lock_irqsave(&xhci->lock, flags);
2789		ret = xhci_reserve_host_control_ep_resources(xhci);
2790		if (ret) {
2791			spin_unlock_irqrestore(&xhci->lock, flags);
2792			xhci_warn(xhci, "Not enough host resources, "
2793					"active endpoint contexts = %u\n",
2794					xhci->num_active_eps);
2795			goto disable_slot;
2796		}
2797		spin_unlock_irqrestore(&xhci->lock, flags);
2798	}
2799	/* Use GFP_NOIO, since this function can be called from
2800	 * xhci_discover_or_reset_device(), which may be called as part of
2801	 * mass storage driver error handling.
2802	 */
2803	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2804		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2805		goto disable_slot;
2806	}
2807	udev->slot_id = xhci->slot_id;
 
 
 
 
 
 
 
 
 
 
2808	/* Is this a LS or FS device under a HS hub? */
2809	/* Hub or peripherial? */
2810	return 1;
2811
2812disable_slot:
2813	/* Disable slot, if we can do it without mem alloc */
2814	spin_lock_irqsave(&xhci->lock, flags);
2815	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2816		xhci_ring_cmd_db(xhci);
2817	spin_unlock_irqrestore(&xhci->lock, flags);
2818	return 0;
2819}
2820
2821/*
2822 * Issue an Address Device command (which will issue a SetAddress request to
2823 * the device).
2824 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2825 * we should only issue and wait on one address command at the same time.
2826 *
2827 * We add one to the device address issued by the hardware because the USB core
2828 * uses address 1 for the root hubs (even though they're not really devices).
2829 */
2830int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
 
2831{
 
2832	unsigned long flags;
2833	int timeleft;
2834	struct xhci_virt_device *virt_dev;
2835	int ret = 0;
2836	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2837	struct xhci_slot_ctx *slot_ctx;
2838	struct xhci_input_control_ctx *ctrl_ctx;
2839	u64 temp_64;
 
2840
2841	if (!udev->slot_id) {
2842		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
 
2843		return -EINVAL;
2844	}
2845
2846	virt_dev = xhci->devs[udev->slot_id];
2847
2848	if (WARN_ON(!virt_dev)) {
2849		/*
2850		 * In plug/unplug torture test with an NEC controller,
2851		 * a zero-dereference was observed once due to virt_dev = 0.
2852		 * Print useful debug rather than crash if it is observed again!
2853		 */
2854		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
2855			udev->slot_id);
2856		return -EINVAL;
2857	}
2858
2859	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
 
2860	/*
2861	 * If this is the first Set Address since device plug-in or
2862	 * virt_device realloaction after a resume with an xHCI power loss,
2863	 * then set up the slot context.
2864	 */
2865	if (!slot_ctx->dev_info)
2866		xhci_setup_addressable_virt_dev(xhci, udev);
2867	/* Otherwise, update the control endpoint ring enqueue pointer. */
2868	else
2869		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
 
 
 
2870	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2871	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
 
 
2872
2873	spin_lock_irqsave(&xhci->lock, flags);
 
2874	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2875					udev->slot_id);
2876	if (ret) {
2877		spin_unlock_irqrestore(&xhci->lock, flags);
2878		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
2879		return ret;
2880	}
2881	xhci_ring_cmd_db(xhci);
2882	spin_unlock_irqrestore(&xhci->lock, flags);
2883
2884	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2885	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2886			USB_CTRL_SET_TIMEOUT);
2887	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
2888	 * the SetAddress() "recovery interval" required by USB and aborting the
2889	 * command on a timeout.
2890	 */
2891	if (timeleft <= 0) {
2892		xhci_warn(xhci, "%s while waiting for a slot\n",
2893				timeleft == 0 ? "Timeout" : "Signal");
2894		/* FIXME cancel the address device command */
 
 
 
2895		return -ETIME;
2896	}
2897
2898	switch (virt_dev->cmd_status) {
2899	case COMP_CTX_STATE:
2900	case COMP_EBADSLT:
2901		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2902				udev->slot_id);
2903		ret = -EINVAL;
2904		break;
2905	case COMP_TX_ERR:
2906		dev_warn(&udev->dev, "Device not responding to set address.\n");
2907		ret = -EPROTO;
2908		break;
2909	case COMP_DEV_ERR:
2910		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
2911				"device command.\n");
2912		ret = -ENODEV;
2913		break;
2914	case COMP_SUCCESS:
2915		xhci_dbg(xhci, "Successful Address Device command\n");
 
2916		break;
2917	default:
2918		xhci_err(xhci, "ERROR: unexpected command completion "
2919				"code 0x%x.\n", virt_dev->cmd_status);
 
2920		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2921		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
 
2922		ret = -EINVAL;
2923		break;
2924	}
2925	if (ret) {
2926		return ret;
2927	}
2928	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2929	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2930	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2931		 udev->slot_id,
2932		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2933		 (unsigned long long)
2934		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
2935	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
 
 
 
2936			(unsigned long long)virt_dev->out_ctx->dma);
2937	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2938	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
 
 
2939	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2940	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2941	/*
2942	 * USB core uses address 1 for the roothubs, so we add one to the
2943	 * address given back to us by the HC.
2944	 */
2945	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2946	/* Use kernel assigned address for devices; store xHC assigned
2947	 * address locally. */
2948	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
2949		+ 1;
2950	/* Zero the input context control for later use */
2951	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2952	ctrl_ctx->add_flags = 0;
2953	ctrl_ctx->drop_flags = 0;
2954
2955	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
 
 
2956
2957	return 0;
2958}
2959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2960/* Once a hub descriptor is fetched for a device, we need to update the xHC's
2961 * internal data structures for the device.
2962 */
2963int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2964			struct usb_tt *tt, gfp_t mem_flags)
2965{
2966	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2967	struct xhci_virt_device *vdev;
2968	struct xhci_command *config_cmd;
2969	struct xhci_input_control_ctx *ctrl_ctx;
2970	struct xhci_slot_ctx *slot_ctx;
2971	unsigned long flags;
2972	unsigned think_time;
2973	int ret;
2974
2975	/* Ignore root hubs */
2976	if (!hdev->parent)
2977		return 0;
2978
2979	vdev = xhci->devs[hdev->slot_id];
2980	if (!vdev) {
2981		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2982		return -EINVAL;
2983	}
2984	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2985	if (!config_cmd) {
2986		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2987		return -ENOMEM;
2988	}
 
 
 
 
 
 
 
2989
2990	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
 
 
2991	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2992	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2993	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2995	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
2996	if (tt->multi)
2997		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
2998	if (xhci->hci_version > 0x95) {
2999		xhci_dbg(xhci, "xHCI version %x needs hub "
3000				"TT think time and number of ports\n",
3001				(unsigned int) xhci->hci_version);
3002		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3003		/* Set TT think time - convert from ns to FS bit times.
3004		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3005		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3006		 *
3007		 * xHCI 1.0: this field shall be 0 if the device is not a
3008		 * High-spped hub.
3009		 */
3010		think_time = tt->think_time;
3011		if (think_time != 0)
3012			think_time = (think_time / 666) - 1;
3013		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3014			slot_ctx->tt_info |=
3015				cpu_to_le32(TT_THINK_TIME(think_time));
3016	} else {
3017		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3018				"TT think time or number of ports\n",
3019				(unsigned int) xhci->hci_version);
3020	}
3021	slot_ctx->dev_state = 0;
3022	spin_unlock_irqrestore(&xhci->lock, flags);
3023
3024	xhci_dbg(xhci, "Set up %s for hub device.\n",
3025			(xhci->hci_version > 0x95) ?
3026			"configure endpoint" : "evaluate context");
3027	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3028	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3029
3030	/* Issue and wait for the configure endpoint or
3031	 * evaluate context command.
3032	 */
3033	if (xhci->hci_version > 0x95)
3034		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3035				false, false);
3036	else
3037		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3038				true, false);
3039
3040	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3041	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3042
3043	xhci_free_command(xhci, config_cmd);
3044	return ret;
3045}
3046
3047int xhci_get_frame(struct usb_hcd *hcd)
3048{
3049	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3050	/* EHCI mods by the periodic size.  Why? */
3051	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3052}
3053
3054MODULE_DESCRIPTION(DRIVER_DESC);
3055MODULE_AUTHOR(DRIVER_AUTHOR);
3056MODULE_LICENSE("GPL");
3057
3058static int __init xhci_hcd_init(void)
3059{
3060#ifdef CONFIG_PCI
3061	int retval = 0;
3062
3063	retval = xhci_register_pci();
3064
3065	if (retval < 0) {
3066		printk(KERN_DEBUG "Problem registering PCI driver.");
3067		return retval;
3068	}
3069#endif
 
 
 
 
3070	/*
3071	 * Check the compiler generated sizes of structures that must be laid
3072	 * out in specific ways for hardware access.
3073	 */
3074	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3075	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3076	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3077	/* xhci_device_control has eight fields, and also
3078	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3079	 */
3080	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3081	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3082	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3083	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3084	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3085	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3086	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3087	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3088	return 0;
 
 
 
3089}
3090module_init(xhci_hcd_init);
3091
3092static void __exit xhci_hcd_cleanup(void)
3093{
3094#ifdef CONFIG_PCI
3095	xhci_unregister_pci();
3096#endif
3097}
3098module_exit(xhci_hcd_cleanup);
v3.15
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
  30#include <linux/dma-mapping.h>
  31
  32#include "xhci.h"
  33#include "xhci-trace.h"
  34
  35#define DRIVER_AUTHOR "Sarah Sharp"
  36#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  37
  38/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  39static int link_quirk;
  40module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  41MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  42
  43static unsigned int quirks;
  44module_param(quirks, uint, S_IRUGO);
  45MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  46
  47/* TODO: copied from ehci-hcd.c - can this be refactored? */
  48/*
  49 * xhci_handshake - spin reading hc until handshake completes or fails
  50 * @ptr: address of hc register to be read
  51 * @mask: bits to look at in result of read
  52 * @done: value of those bits when handshake succeeds
  53 * @usec: timeout in microseconds
  54 *
  55 * Returns negative errno, or zero on success
  56 *
  57 * Success happens when the "mask" bits have the specified value (hardware
  58 * handshake done).  There are two failure modes:  "usec" have passed (major
  59 * hardware flakeout), or the register reads as all-ones (hardware removed).
  60 */
  61int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  62		      u32 mask, u32 done, int usec)
  63{
  64	u32	result;
  65
  66	do {
  67		result = readl(ptr);
  68		if (result == ~(u32)0)		/* card removed */
  69			return -ENODEV;
  70		result &= mask;
  71		if (result == done)
  72			return 0;
  73		udelay(1);
  74		usec--;
  75	} while (usec > 0);
  76	return -ETIMEDOUT;
  77}
  78
  79/*
  80 * Disable interrupts and begin the xHCI halting process.
  81 */
  82void xhci_quiesce(struct xhci_hcd *xhci)
  83{
  84	u32 halted;
  85	u32 cmd;
  86	u32 mask;
  87
  88	mask = ~(XHCI_IRQS);
  89	halted = readl(&xhci->op_regs->status) & STS_HALT;
  90	if (!halted)
  91		mask &= ~CMD_RUN;
  92
  93	cmd = readl(&xhci->op_regs->command);
  94	cmd &= mask;
  95	writel(cmd, &xhci->op_regs->command);
  96}
  97
  98/*
  99 * Force HC into halt state.
 100 *
 101 * Disable any IRQs and clear the run/stop bit.
 102 * HC will complete any current and actively pipelined transactions, and
 103 * should halt within 16 ms of the run/stop bit being cleared.
 104 * Read HC Halted bit in the status register to see when the HC is finished.
 105 */
 106int xhci_halt(struct xhci_hcd *xhci)
 107{
 108	int ret;
 109	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 110	xhci_quiesce(xhci);
 111
 112	ret = xhci_handshake(xhci, &xhci->op_regs->status,
 113			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 114	if (!ret) {
 115		xhci->xhc_state |= XHCI_STATE_HALTED;
 116		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 117	} else
 118		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 119				XHCI_MAX_HALT_USEC);
 120	return ret;
 121}
 122
 123/*
 124 * Set the run bit and wait for the host to be running.
 125 */
 126static int xhci_start(struct xhci_hcd *xhci)
 127{
 128	u32 temp;
 129	int ret;
 130
 131	temp = readl(&xhci->op_regs->command);
 132	temp |= (CMD_RUN);
 133	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 134			temp);
 135	writel(temp, &xhci->op_regs->command);
 136
 137	/*
 138	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 139	 * running.
 140	 */
 141	ret = xhci_handshake(xhci, &xhci->op_regs->status,
 142			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 143	if (ret == -ETIMEDOUT)
 144		xhci_err(xhci, "Host took too long to start, "
 145				"waited %u microseconds.\n",
 146				XHCI_MAX_HALT_USEC);
 147	if (!ret)
 148		xhci->xhc_state &= ~XHCI_STATE_HALTED;
 149	return ret;
 150}
 151
 152/*
 153 * Reset a halted HC.
 154 *
 155 * This resets pipelines, timers, counters, state machines, etc.
 156 * Transactions will be terminated immediately, and operational registers
 157 * will be set to their defaults.
 158 */
 159int xhci_reset(struct xhci_hcd *xhci)
 160{
 161	u32 command;
 162	u32 state;
 163	int ret, i;
 164
 165	state = readl(&xhci->op_regs->status);
 166	if ((state & STS_HALT) == 0) {
 167		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 168		return 0;
 169	}
 170
 171	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 172	command = readl(&xhci->op_regs->command);
 173	command |= CMD_RESET;
 174	writel(command, &xhci->op_regs->command);
 175
 176	ret = xhci_handshake(xhci, &xhci->op_regs->command,
 177			CMD_RESET, 0, 10 * 1000 * 1000);
 178	if (ret)
 179		return ret;
 180
 181	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 182			 "Wait for controller to be ready for doorbell rings");
 183	/*
 184	 * xHCI cannot write to any doorbells or operational registers other
 185	 * than status until the "Controller Not Ready" flag is cleared.
 186	 */
 187	ret = xhci_handshake(xhci, &xhci->op_regs->status,
 188			STS_CNR, 0, 10 * 1000 * 1000);
 189
 190	for (i = 0; i < 2; ++i) {
 191		xhci->bus_state[i].port_c_suspend = 0;
 192		xhci->bus_state[i].suspended_ports = 0;
 193		xhci->bus_state[i].resuming_ports = 0;
 194	}
 195
 196	return ret;
 197}
 198
 199#ifdef CONFIG_PCI
 200static int xhci_free_msi(struct xhci_hcd *xhci)
 
 
 
 201{
 202	int i;
 
 
 
 
 
 203
 204	if (!xhci->msix_entries)
 205		return -EINVAL;
 
 
 
 
 
 206
 207	for (i = 0; i < xhci->msix_count; i++)
 208		if (xhci->msix_entries[i].vector)
 209			free_irq(xhci->msix_entries[i].vector,
 210					xhci_to_hcd(xhci));
 211	return 0;
 212}
 213
 214/*
 215 * Set up MSI
 216 */
 217static int xhci_setup_msi(struct xhci_hcd *xhci)
 218{
 219	int ret;
 220	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 221
 222	ret = pci_enable_msi(pdev);
 223	if (ret) {
 224		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 225				"failed to allocate MSI entry");
 226		return ret;
 227	}
 228
 229	ret = request_irq(pdev->irq, xhci_msi_irq,
 230				0, "xhci_hcd", xhci_to_hcd(xhci));
 231	if (ret) {
 232		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 233				"disable MSI interrupt");
 234		pci_disable_msi(pdev);
 235	}
 236
 237	return ret;
 238}
 239
 240/*
 241 * Free IRQs
 242 * free all IRQs request
 243 */
 244static void xhci_free_irq(struct xhci_hcd *xhci)
 245{
 246	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 247	int ret;
 248
 249	/* return if using legacy interrupt */
 250	if (xhci_to_hcd(xhci)->irq > 0)
 251		return;
 252
 253	ret = xhci_free_msi(xhci);
 254	if (!ret)
 255		return;
 256	if (pdev->irq > 0)
 257		free_irq(pdev->irq, xhci_to_hcd(xhci));
 258
 259	return;
 260}
 261
 262/*
 263 * Set up MSI-X
 264 */
 265static int xhci_setup_msix(struct xhci_hcd *xhci)
 266{
 267	int i, ret = 0;
 268	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 269	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 270
 271	/*
 272	 * calculate number of msi-x vectors supported.
 273	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 274	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 275	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 276	 *   Add additional 1 vector to ensure always available interrupt.
 277	 */
 278	xhci->msix_count = min(num_online_cpus() + 1,
 279				HCS_MAX_INTRS(xhci->hcs_params1));
 280
 281	xhci->msix_entries =
 282		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 283				GFP_KERNEL);
 284	if (!xhci->msix_entries) {
 285		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 286		return -ENOMEM;
 287	}
 288
 289	for (i = 0; i < xhci->msix_count; i++) {
 290		xhci->msix_entries[i].entry = i;
 291		xhci->msix_entries[i].vector = 0;
 292	}
 293
 294	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 295	if (ret) {
 296		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 297				"Failed to enable MSI-X");
 298		goto free_entries;
 299	}
 300
 301	for (i = 0; i < xhci->msix_count; i++) {
 302		ret = request_irq(xhci->msix_entries[i].vector,
 303				xhci_msi_irq,
 304				0, "xhci_hcd", xhci_to_hcd(xhci));
 305		if (ret)
 306			goto disable_msix;
 307	}
 308
 309	hcd->msix_enabled = 1;
 310	return ret;
 311
 312disable_msix:
 313	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 314	xhci_free_irq(xhci);
 315	pci_disable_msix(pdev);
 316free_entries:
 317	kfree(xhci->msix_entries);
 318	xhci->msix_entries = NULL;
 319	return ret;
 320}
 321
 322/* Free any IRQs and disable MSI-X */
 323static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 324{
 325	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 326	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 327
 328	if (xhci->quirks & XHCI_PLAT)
 329		return;
 330
 331	xhci_free_irq(xhci);
 332
 333	if (xhci->msix_entries) {
 334		pci_disable_msix(pdev);
 335		kfree(xhci->msix_entries);
 336		xhci->msix_entries = NULL;
 337	} else {
 338		pci_disable_msi(pdev);
 339	}
 340
 341	hcd->msix_enabled = 0;
 342	return;
 343}
 344
 345static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 346{
 347	int i;
 348
 349	if (xhci->msix_entries) {
 350		for (i = 0; i < xhci->msix_count; i++)
 351			synchronize_irq(xhci->msix_entries[i].vector);
 352	}
 353}
 354
 355static int xhci_try_enable_msi(struct usb_hcd *hcd)
 356{
 357	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 358	struct pci_dev  *pdev;
 359	int ret;
 360
 361	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 362	if (xhci->quirks & XHCI_PLAT)
 363		return 0;
 364
 365	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 366	/*
 367	 * Some Fresco Logic host controllers advertise MSI, but fail to
 368	 * generate interrupts.  Don't even try to enable MSI.
 369	 */
 370	if (xhci->quirks & XHCI_BROKEN_MSI)
 371		goto legacy_irq;
 372
 373	/* unregister the legacy interrupt */
 374	if (hcd->irq)
 375		free_irq(hcd->irq, hcd);
 376	hcd->irq = 0;
 377
 378	ret = xhci_setup_msix(xhci);
 379	if (ret)
 380		/* fall back to msi*/
 381		ret = xhci_setup_msi(xhci);
 382
 383	if (!ret)
 384		/* hcd->irq is 0, we have MSI */
 385		return 0;
 386
 387	if (!pdev->irq) {
 388		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 389		return -EINVAL;
 390	}
 391
 392 legacy_irq:
 393	if (!strlen(hcd->irq_descr))
 394		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 395			 hcd->driver->description, hcd->self.busnum);
 396
 397	/* fall back to legacy interrupt*/
 398	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 399			hcd->irq_descr, hcd);
 400	if (ret) {
 401		xhci_err(xhci, "request interrupt %d failed\n",
 402				pdev->irq);
 403		return ret;
 404	}
 405	hcd->irq = pdev->irq;
 406	return 0;
 407}
 408
 409#else
 410
 411static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 412{
 413	return 0;
 414}
 415
 416static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 417{
 418}
 419
 420static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 421{
 422}
 423
 424#endif
 425
 426static void compliance_mode_recovery(unsigned long arg)
 427{
 428	struct xhci_hcd *xhci;
 429	struct usb_hcd *hcd;
 430	u32 temp;
 431	int i;
 432
 433	xhci = (struct xhci_hcd *)arg;
 434
 435	for (i = 0; i < xhci->num_usb3_ports; i++) {
 436		temp = readl(xhci->usb3_ports[i]);
 437		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 438			/*
 439			 * Compliance Mode Detected. Letting USB Core
 440			 * handle the Warm Reset
 441			 */
 442			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 443					"Compliance mode detected->port %d",
 444					i + 1);
 445			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 446					"Attempting compliance mode recovery");
 447			hcd = xhci->shared_hcd;
 448
 449			if (hcd->state == HC_STATE_SUSPENDED)
 450				usb_hcd_resume_root_hub(hcd);
 451
 452			usb_hcd_poll_rh_status(hcd);
 453		}
 454	}
 455
 456	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 457		mod_timer(&xhci->comp_mode_recovery_timer,
 458			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 459}
 460
 461/*
 462 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 463 * that causes ports behind that hardware to enter compliance mode sometimes.
 464 * The quirk creates a timer that polls every 2 seconds the link state of
 465 * each host controller's port and recovers it by issuing a Warm reset
 466 * if Compliance mode is detected, otherwise the port will become "dead" (no
 467 * device connections or disconnections will be detected anymore). Becasue no
 468 * status event is generated when entering compliance mode (per xhci spec),
 469 * this quirk is needed on systems that have the failing hardware installed.
 470 */
 471static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 472{
 473	xhci->port_status_u0 = 0;
 474	init_timer(&xhci->comp_mode_recovery_timer);
 475
 476	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
 477	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
 478	xhci->comp_mode_recovery_timer.expires = jiffies +
 479			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 480
 481	set_timer_slack(&xhci->comp_mode_recovery_timer,
 482			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 483	add_timer(&xhci->comp_mode_recovery_timer);
 484	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 485			"Compliance mode recovery timer initialized");
 486}
 487
 488/*
 489 * This function identifies the systems that have installed the SN65LVPE502CP
 490 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 491 * Systems:
 492 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 493 */
 494bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 495{
 496	const char *dmi_product_name, *dmi_sys_vendor;
 497
 498	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 499	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 500	if (!dmi_product_name || !dmi_sys_vendor)
 501		return false;
 502
 503	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 504		return false;
 505
 506	if (strstr(dmi_product_name, "Z420") ||
 507			strstr(dmi_product_name, "Z620") ||
 508			strstr(dmi_product_name, "Z820") ||
 509			strstr(dmi_product_name, "Z1 Workstation"))
 510		return true;
 511
 512	return false;
 513}
 514
 515static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 516{
 517	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 518}
 519
 520
 521/*
 522 * Initialize memory for HCD and xHC (one-time init).
 523 *
 524 * Program the PAGESIZE register, initialize the device context array, create
 525 * device contexts (?), set up a command ring segment (or two?), create event
 526 * ring (one for now).
 527 */
 528int xhci_init(struct usb_hcd *hcd)
 529{
 530	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 531	int retval = 0;
 532
 533	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 534	spin_lock_init(&xhci->lock);
 535	if (xhci->hci_version == 0x95 && link_quirk) {
 536		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 537				"QUIRK: Not clearing Link TRB chain bits.");
 538		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 539	} else {
 540		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 541				"xHCI doesn't need link TRB QUIRK");
 542	}
 543	retval = xhci_mem_init(xhci, GFP_KERNEL);
 544	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 545
 546	/* Initializing Compliance Mode Recovery Data If Needed */
 547	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 548		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 549		compliance_mode_recovery_timer_init(xhci);
 550	}
 551
 552	return retval;
 553}
 554
 555/*-------------------------------------------------------------------------*/
 556
 557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558static int xhci_run_finished(struct xhci_hcd *xhci)
 559{
 560	if (xhci_start(xhci)) {
 561		xhci_halt(xhci);
 562		return -ENODEV;
 563	}
 564	xhci->shared_hcd->state = HC_STATE_RUNNING;
 565	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 566
 567	if (xhci->quirks & XHCI_NEC_HOST)
 568		xhci_ring_cmd_db(xhci);
 569
 570	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 571			"Finished xhci_run for USB3 roothub");
 572	return 0;
 573}
 574
 575/*
 576 * Start the HC after it was halted.
 577 *
 578 * This function is called by the USB core when the HC driver is added.
 579 * Its opposite is xhci_stop().
 580 *
 581 * xhci_init() must be called once before this function can be called.
 582 * Reset the HC, enable device slot contexts, program DCBAAP, and
 583 * set command ring pointer and event ring pointer.
 584 *
 585 * Setup MSI-X vectors and enable interrupts.
 586 */
 587int xhci_run(struct usb_hcd *hcd)
 588{
 589	u32 temp;
 590	u64 temp_64;
 591	int ret;
 592	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 593
 594	/* Start the xHCI host controller running only after the USB 2.0 roothub
 595	 * is setup.
 596	 */
 597
 598	hcd->uses_new_polling = 1;
 599	if (!usb_hcd_is_primary_hcd(hcd))
 600		return xhci_run_finished(xhci);
 601
 602	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 
 
 
 
 603
 604	ret = xhci_try_enable_msi(hcd);
 
 
 
 
 
 
 605	if (ret)
 606		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607
 608	xhci_dbg(xhci, "Command ring memory map follows:\n");
 609	xhci_debug_ring(xhci, xhci->cmd_ring);
 610	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 611	xhci_dbg_cmd_ptrs(xhci);
 612
 613	xhci_dbg(xhci, "ERST memory map follows:\n");
 614	xhci_dbg_erst(xhci, &xhci->erst);
 615	xhci_dbg(xhci, "Event ring:\n");
 616	xhci_debug_ring(xhci, xhci->event_ring);
 617	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 618	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 619	temp_64 &= ~ERST_PTR_MASK;
 620	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 621			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 622
 623	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 624			"// Set the interrupt modulation register");
 625	temp = readl(&xhci->ir_set->irq_control);
 626	temp &= ~ER_IRQ_INTERVAL_MASK;
 627	temp |= (u32) 160;
 628	writel(temp, &xhci->ir_set->irq_control);
 629
 630	/* Set the HCD state before we enable the irqs */
 631	temp = readl(&xhci->op_regs->command);
 632	temp |= (CMD_EIE);
 633	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 634			"// Enable interrupts, cmd = 0x%x.", temp);
 635	writel(temp, &xhci->op_regs->command);
 636
 637	temp = readl(&xhci->ir_set->irq_pending);
 638	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 639			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 640			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 641	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 
 642	xhci_print_ir_set(xhci, 0);
 643
 644	if (xhci->quirks & XHCI_NEC_HOST)
 645		xhci_queue_vendor_command(xhci, 0, 0, 0,
 646				TRB_TYPE(TRB_NEC_GET_FW));
 647
 648	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 649			"Finished xhci_run for USB2 roothub");
 650	return 0;
 651}
 652
 653static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 654{
 655	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 656
 657	spin_lock_irq(&xhci->lock);
 658	xhci_halt(xhci);
 659
 660	/* The shared_hcd is going to be deallocated shortly (the USB core only
 661	 * calls this function when allocation fails in usb_add_hcd(), or
 662	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 663	 */
 664	xhci->shared_hcd = NULL;
 665	spin_unlock_irq(&xhci->lock);
 666}
 667
 668/*
 669 * Stop xHCI driver.
 670 *
 671 * This function is called by the USB core when the HC driver is removed.
 672 * Its opposite is xhci_run().
 673 *
 674 * Disable device contexts, disable IRQs, and quiesce the HC.
 675 * Reset the HC, finish any completed transactions, and cleanup memory.
 676 */
 677void xhci_stop(struct usb_hcd *hcd)
 678{
 679	u32 temp;
 680	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 681
 682	if (!usb_hcd_is_primary_hcd(hcd)) {
 683		xhci_only_stop_hcd(xhci->shared_hcd);
 684		return;
 685	}
 686
 687	spin_lock_irq(&xhci->lock);
 688	/* Make sure the xHC is halted for a USB3 roothub
 689	 * (xhci_stop() could be called as part of failed init).
 690	 */
 691	xhci_halt(xhci);
 692	xhci_reset(xhci);
 693	spin_unlock_irq(&xhci->lock);
 694
 695	xhci_cleanup_msix(xhci);
 696
 697	/* Deleting Compliance Mode Recovery Timer */
 698	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 699			(!(xhci_all_ports_seen_u0(xhci)))) {
 700		del_timer_sync(&xhci->comp_mode_recovery_timer);
 701		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 702				"%s: compliance mode recovery timer deleted",
 703				__func__);
 704	}
 705
 706	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 707		usb_amd_dev_put();
 708
 709	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 710			"// Disabling event ring interrupts");
 711	temp = readl(&xhci->op_regs->status);
 712	writel(temp & ~STS_EINT, &xhci->op_regs->status);
 713	temp = readl(&xhci->ir_set->irq_pending);
 714	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 715	xhci_print_ir_set(xhci, 0);
 716
 717	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 718	xhci_mem_cleanup(xhci);
 719	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 720			"xhci_stop completed - status = %x",
 721			readl(&xhci->op_regs->status));
 722}
 723
 724/*
 725 * Shutdown HC (not bus-specific)
 726 *
 727 * This is called when the machine is rebooting or halting.  We assume that the
 728 * machine will be powered off, and the HC's internal state will be reset.
 729 * Don't bother to free memory.
 730 *
 731 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 732 */
 733void xhci_shutdown(struct usb_hcd *hcd)
 734{
 735	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 736
 737	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 738		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 739
 740	spin_lock_irq(&xhci->lock);
 741	xhci_halt(xhci);
 742	/* Workaround for spurious wakeups at shutdown with HSW */
 743	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 744		xhci_reset(xhci);
 745	spin_unlock_irq(&xhci->lock);
 746
 747	xhci_cleanup_msix(xhci);
 748
 749	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 750			"xhci_shutdown completed - status = %x",
 751			readl(&xhci->op_regs->status));
 752
 753	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 754	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 755		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
 756}
 757
 758#ifdef CONFIG_PM
 759static void xhci_save_registers(struct xhci_hcd *xhci)
 760{
 761	xhci->s3.command = readl(&xhci->op_regs->command);
 762	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 763	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 764	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 765	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 
 
 766	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 767	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 768	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 769	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 770}
 771
 772static void xhci_restore_registers(struct xhci_hcd *xhci)
 773{
 774	writel(xhci->s3.command, &xhci->op_regs->command);
 775	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 776	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 777	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 778	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 
 
 779	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 780	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 781	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 782	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 783}
 784
 785static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 786{
 787	u64	val_64;
 788
 789	/* step 2: initialize command ring buffer */
 790	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 791	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 792		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 793				      xhci->cmd_ring->dequeue) &
 794		 (u64) ~CMD_RING_RSVD_BITS) |
 795		xhci->cmd_ring->cycle_state;
 796	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 797			"// Setting command ring address to 0x%llx",
 798			(long unsigned long) val_64);
 799	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 800}
 801
 802/*
 803 * The whole command ring must be cleared to zero when we suspend the host.
 804 *
 805 * The host doesn't save the command ring pointer in the suspend well, so we
 806 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 807 * aligned, because of the reserved bits in the command ring dequeue pointer
 808 * register.  Therefore, we can't just set the dequeue pointer back in the
 809 * middle of the ring (TRBs are 16-byte aligned).
 810 */
 811static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 812{
 813	struct xhci_ring *ring;
 814	struct xhci_segment *seg;
 815
 816	ring = xhci->cmd_ring;
 817	seg = ring->deq_seg;
 818	do {
 819		memset(seg->trbs, 0,
 820			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 821		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 822			cpu_to_le32(~TRB_CYCLE);
 823		seg = seg->next;
 824	} while (seg != ring->deq_seg);
 825
 826	/* Reset the software enqueue and dequeue pointers */
 827	ring->deq_seg = ring->first_seg;
 828	ring->dequeue = ring->first_seg->trbs;
 829	ring->enq_seg = ring->deq_seg;
 830	ring->enqueue = ring->dequeue;
 831
 832	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 833	/*
 834	 * Ring is now zeroed, so the HW should look for change of ownership
 835	 * when the cycle bit is set to 1.
 836	 */
 837	ring->cycle_state = 1;
 838
 839	/*
 840	 * Reset the hardware dequeue pointer.
 841	 * Yes, this will need to be re-written after resume, but we're paranoid
 842	 * and want to make sure the hardware doesn't access bogus memory
 843	 * because, say, the BIOS or an SMI started the host without changing
 844	 * the command ring pointers.
 845	 */
 846	xhci_set_cmd_ring_deq(xhci);
 847}
 848
 849/*
 850 * Stop HC (not bus-specific)
 851 *
 852 * This is called when the machine transition into S3/S4 mode.
 853 *
 854 */
 855int xhci_suspend(struct xhci_hcd *xhci)
 856{
 857	int			rc = 0;
 858	unsigned int		delay = XHCI_MAX_HALT_USEC;
 859	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 860	u32			command;
 861
 862	if (hcd->state != HC_STATE_SUSPENDED ||
 863			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 864		return -EINVAL;
 865
 866	/* Don't poll the roothubs on bus suspend. */
 867	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 868	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 869	del_timer_sync(&hcd->rh_timer);
 870
 871	spin_lock_irq(&xhci->lock);
 872	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 873	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 874	/* step 1: stop endpoint */
 875	/* skipped assuming that port suspend has done */
 876
 877	/* step 2: clear Run/Stop bit */
 878	command = readl(&xhci->op_regs->command);
 879	command &= ~CMD_RUN;
 880	writel(command, &xhci->op_regs->command);
 881
 882	/* Some chips from Fresco Logic need an extraordinary delay */
 883	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 884
 885	if (xhci_handshake(xhci, &xhci->op_regs->status,
 886		      STS_HALT, STS_HALT, delay)) {
 887		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 888		spin_unlock_irq(&xhci->lock);
 889		return -ETIMEDOUT;
 890	}
 891	xhci_clear_command_ring(xhci);
 892
 893	/* step 3: save registers */
 894	xhci_save_registers(xhci);
 895
 896	/* step 4: set CSS flag */
 897	command = readl(&xhci->op_regs->command);
 898	command |= CMD_CSS;
 899	writel(command, &xhci->op_regs->command);
 900	if (xhci_handshake(xhci, &xhci->op_regs->status,
 901				STS_SAVE, 0, 10 * 1000)) {
 902		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 903		spin_unlock_irq(&xhci->lock);
 904		return -ETIMEDOUT;
 905	}
 906	spin_unlock_irq(&xhci->lock);
 907
 908	/*
 909	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 910	 * is about to be suspended.
 911	 */
 912	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 913			(!(xhci_all_ports_seen_u0(xhci)))) {
 914		del_timer_sync(&xhci->comp_mode_recovery_timer);
 915		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 916				"%s: compliance mode recovery timer deleted",
 917				__func__);
 918	}
 919
 920	/* step 5: remove core well power */
 921	/* synchronize irq when using MSI-X */
 922	xhci_msix_sync_irqs(xhci);
 
 
 
 923
 924	return rc;
 925}
 926
 927/*
 928 * start xHC (not bus-specific)
 929 *
 930 * This is called when the machine transition from S3/S4 mode.
 931 *
 932 */
 933int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 934{
 935	u32			command, temp = 0;
 936	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 937	struct usb_hcd		*secondary_hcd;
 938	int			retval = 0;
 939	bool			comp_timer_running = false;
 940
 941	/* Wait a bit if either of the roothubs need to settle from the
 942	 * transition into bus suspend.
 943	 */
 944	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 945			time_before(jiffies,
 946				xhci->bus_state[1].next_statechange))
 947		msleep(100);
 948
 949	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 950	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 951
 952	spin_lock_irq(&xhci->lock);
 953	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 954		hibernated = true;
 955
 956	if (!hibernated) {
 957		/* step 1: restore register */
 958		xhci_restore_registers(xhci);
 959		/* step 2: initialize command ring buffer */
 960		xhci_set_cmd_ring_deq(xhci);
 961		/* step 3: restore state and start state*/
 962		/* step 3: set CRS flag */
 963		command = readl(&xhci->op_regs->command);
 964		command |= CMD_CRS;
 965		writel(command, &xhci->op_regs->command);
 966		if (xhci_handshake(xhci, &xhci->op_regs->status,
 967			      STS_RESTORE, 0, 10 * 1000)) {
 968			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
 969			spin_unlock_irq(&xhci->lock);
 970			return -ETIMEDOUT;
 971		}
 972		temp = readl(&xhci->op_regs->status);
 973	}
 974
 975	/* If restore operation fails, re-initialize the HC during resume */
 976	if ((temp & STS_SRE) || hibernated) {
 977
 978		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 979				!(xhci_all_ports_seen_u0(xhci))) {
 980			del_timer_sync(&xhci->comp_mode_recovery_timer);
 981			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 982				"Compliance Mode Recovery Timer deleted!");
 983		}
 984
 985		/* Let the USB core know _both_ roothubs lost power. */
 986		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 987		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 988
 989		xhci_dbg(xhci, "Stop HCD\n");
 990		xhci_halt(xhci);
 991		xhci_reset(xhci);
 992		spin_unlock_irq(&xhci->lock);
 993		xhci_cleanup_msix(xhci);
 994
 
 
 
 
 
 
 995		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 996		temp = readl(&xhci->op_regs->status);
 997		writel(temp & ~STS_EINT, &xhci->op_regs->status);
 998		temp = readl(&xhci->ir_set->irq_pending);
 999		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
1000		xhci_print_ir_set(xhci, 0);
1001
1002		xhci_dbg(xhci, "cleaning up memory\n");
1003		xhci_mem_cleanup(xhci);
1004		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1005			    readl(&xhci->op_regs->status));
1006
1007		/* USB core calls the PCI reinit and start functions twice:
1008		 * first with the primary HCD, and then with the secondary HCD.
1009		 * If we don't do the same, the host will never be started.
1010		 */
1011		if (!usb_hcd_is_primary_hcd(hcd))
1012			secondary_hcd = hcd;
1013		else
1014			secondary_hcd = xhci->shared_hcd;
1015
1016		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1017		retval = xhci_init(hcd->primary_hcd);
1018		if (retval)
1019			return retval;
1020		comp_timer_running = true;
1021
1022		xhci_dbg(xhci, "Start the primary HCD\n");
1023		retval = xhci_run(hcd->primary_hcd);
 
 
 
 
 
1024		if (!retval) {
1025			xhci_dbg(xhci, "Start the secondary HCD\n");
1026			retval = xhci_run(secondary_hcd);
 
1027		}
 
1028		hcd->state = HC_STATE_SUSPENDED;
1029		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1030		goto done;
1031	}
1032
1033	/* step 4: set Run/Stop bit */
1034	command = readl(&xhci->op_regs->command);
1035	command |= CMD_RUN;
1036	writel(command, &xhci->op_regs->command);
1037	xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038		  0, 250 * 1000);
1039
1040	/* step 5: walk topology and initialize portsc,
1041	 * portpmsc and portli
1042	 */
1043	/* this is done in bus_resume */
1044
1045	/* step 6: restart each of the previously
1046	 * Running endpoints by ringing their doorbells
1047	 */
1048
 
 
 
1049	spin_unlock_irq(&xhci->lock);
1050
1051 done:
1052	if (retval == 0) {
1053		usb_hcd_resume_root_hub(hcd);
1054		usb_hcd_resume_root_hub(xhci->shared_hcd);
1055	}
1056
1057	/*
1058	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059	 * be re-initialized Always after a system resume. Ports are subject
1060	 * to suffer the Compliance Mode issue again. It doesn't matter if
1061	 * ports have entered previously to U0 before system's suspension.
1062	 */
1063	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1064		compliance_mode_recovery_timer_init(xhci);
1065
1066	/* Re-enable port polling. */
1067	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1068	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1069	usb_hcd_poll_rh_status(hcd);
1070
1071	return retval;
1072}
1073#endif	/* CONFIG_PM */
1074
1075/*-------------------------------------------------------------------------*/
1076
1077/**
1078 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1079 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1080 * value to right shift 1 for the bitmask.
1081 *
1082 * Index  = (epnum * 2) + direction - 1,
1083 * where direction = 0 for OUT, 1 for IN.
1084 * For control endpoints, the IN index is used (OUT index is unused), so
1085 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1086 */
1087unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1088{
1089	unsigned int index;
1090	if (usb_endpoint_xfer_control(desc))
1091		index = (unsigned int) (usb_endpoint_num(desc)*2);
1092	else
1093		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1094			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1095	return index;
1096}
1097
1098/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1099 * address from the XHCI endpoint index.
1100 */
1101unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1102{
1103	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1104	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1105	return direction | number;
1106}
1107
1108/* Find the flag for this endpoint (for use in the control context).  Use the
1109 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1110 * bit 1, etc.
1111 */
1112unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1113{
1114	return 1 << (xhci_get_endpoint_index(desc) + 1);
1115}
1116
1117/* Find the flag for this endpoint (for use in the control context).  Use the
1118 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1119 * bit 1, etc.
1120 */
1121unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1122{
1123	return 1 << (ep_index + 1);
1124}
1125
1126/* Compute the last valid endpoint context index.  Basically, this is the
1127 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1128 * we find the most significant bit set in the added contexts flags.
1129 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1130 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1131 */
1132unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1133{
1134	return fls(added_ctxs) - 1;
1135}
1136
1137/* Returns 1 if the arguments are OK;
1138 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1139 */
1140static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1141		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1142		const char *func) {
1143	struct xhci_hcd	*xhci;
1144	struct xhci_virt_device	*virt_dev;
1145
1146	if (!hcd || (check_ep && !ep) || !udev) {
1147		pr_debug("xHCI %s called with invalid args\n", func);
 
1148		return -EINVAL;
1149	}
1150	if (!udev->parent) {
1151		pr_debug("xHCI %s called for root hub\n", func);
 
1152		return 0;
1153	}
1154
1155	xhci = hcd_to_xhci(hcd);
 
 
 
1156	if (check_virt_dev) {
1157		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1158			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1159					func);
 
1160			return -EINVAL;
1161		}
1162
1163		virt_dev = xhci->devs[udev->slot_id];
1164		if (virt_dev->udev != udev) {
1165			xhci_dbg(xhci, "xHCI %s called with udev and "
1166					  "virt_dev does not match\n", func);
1167			return -EINVAL;
1168		}
1169	}
1170
1171	if (xhci->xhc_state & XHCI_STATE_HALTED)
1172		return -ENODEV;
1173
1174	return 1;
1175}
1176
1177static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1178		struct usb_device *udev, struct xhci_command *command,
1179		bool ctx_change, bool must_succeed);
1180
1181/*
1182 * Full speed devices may have a max packet size greater than 8 bytes, but the
1183 * USB core doesn't know that until it reads the first 8 bytes of the
1184 * descriptor.  If the usb_device's max packet size changes after that point,
1185 * we need to issue an evaluate context command and wait on it.
1186 */
1187static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1188		unsigned int ep_index, struct urb *urb)
1189{
1190	struct xhci_container_ctx *in_ctx;
1191	struct xhci_container_ctx *out_ctx;
1192	struct xhci_input_control_ctx *ctrl_ctx;
1193	struct xhci_ep_ctx *ep_ctx;
1194	int max_packet_size;
1195	int hw_max_packet_size;
1196	int ret = 0;
1197
1198	out_ctx = xhci->devs[slot_id]->out_ctx;
1199	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1201	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1202	if (hw_max_packet_size != max_packet_size) {
1203		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1204				"Max Packet Size for ep 0 changed.");
1205		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1206				"Max packet size in usb_device = %d",
1207				max_packet_size);
1208		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1209				"Max packet size in xHCI HW = %d",
1210				hw_max_packet_size);
1211		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1212				"Issuing evaluate context command.");
1213
1214		/* Set up the input context flags for the command */
1215		/* FIXME: This won't work if a non-default control endpoint
1216		 * changes max packet sizes.
1217		 */
1218		in_ctx = xhci->devs[slot_id]->in_ctx;
1219		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1220		if (!ctrl_ctx) {
1221			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1222					__func__);
1223			return -ENOMEM;
1224		}
1225		/* Set up the modified control endpoint 0 */
1226		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1227				xhci->devs[slot_id]->out_ctx, ep_index);
1228
1229		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1230		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1231		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1232
 
 
 
 
 
1233		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1234		ctrl_ctx->drop_flags = 0;
1235
1236		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1237		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1238		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1239		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1240
1241		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1242				true, false);
1243
1244		/* Clean up the input context for later use by bandwidth
1245		 * functions.
1246		 */
1247		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1248	}
1249	return ret;
1250}
1251
1252/*
1253 * non-error returns are a promise to giveback() the urb later
1254 * we drop ownership so next owner (or urb unlink) can get it
1255 */
1256int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1257{
1258	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1259	struct xhci_td *buffer;
1260	unsigned long flags;
1261	int ret = 0;
1262	unsigned int slot_id, ep_index;
1263	struct urb_priv	*urb_priv;
1264	int size, i;
1265
1266	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1267					true, true, __func__) <= 0)
1268		return -EINVAL;
1269
1270	slot_id = urb->dev->slot_id;
1271	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1272
1273	if (!HCD_HW_ACCESSIBLE(hcd)) {
1274		if (!in_interrupt())
1275			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1276		ret = -ESHUTDOWN;
1277		goto exit;
1278	}
1279
1280	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1281		size = urb->number_of_packets;
1282	else
1283		size = 1;
1284
1285	urb_priv = kzalloc(sizeof(struct urb_priv) +
1286				  size * sizeof(struct xhci_td *), mem_flags);
1287	if (!urb_priv)
1288		return -ENOMEM;
1289
1290	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1291	if (!buffer) {
1292		kfree(urb_priv);
1293		return -ENOMEM;
1294	}
1295
1296	for (i = 0; i < size; i++) {
1297		urb_priv->td[i] = buffer;
1298		buffer++;
 
 
 
 
1299	}
1300
1301	urb_priv->length = size;
1302	urb_priv->td_cnt = 0;
1303	urb->hcpriv = urb_priv;
1304
1305	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1306		/* Check to see if the max packet size for the default control
1307		 * endpoint changed during FS device enumeration
1308		 */
1309		if (urb->dev->speed == USB_SPEED_FULL) {
1310			ret = xhci_check_maxpacket(xhci, slot_id,
1311					ep_index, urb);
1312			if (ret < 0) {
1313				xhci_urb_free_priv(xhci, urb_priv);
1314				urb->hcpriv = NULL;
1315				return ret;
1316			}
1317		}
1318
1319		/* We have a spinlock and interrupts disabled, so we must pass
1320		 * atomic context to this function, which may allocate memory.
1321		 */
1322		spin_lock_irqsave(&xhci->lock, flags);
1323		if (xhci->xhc_state & XHCI_STATE_DYING)
1324			goto dying;
1325		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1326				slot_id, ep_index);
1327		if (ret)
1328			goto free_priv;
1329		spin_unlock_irqrestore(&xhci->lock, flags);
1330	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1331		spin_lock_irqsave(&xhci->lock, flags);
1332		if (xhci->xhc_state & XHCI_STATE_DYING)
1333			goto dying;
1334		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1335				EP_GETTING_STREAMS) {
1336			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1337					"is transitioning to using streams.\n");
1338			ret = -EINVAL;
1339		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1340				EP_GETTING_NO_STREAMS) {
1341			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1342					"is transitioning to "
1343					"not having streams.\n");
1344			ret = -EINVAL;
1345		} else {
1346			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1347					slot_id, ep_index);
1348		}
1349		if (ret)
1350			goto free_priv;
1351		spin_unlock_irqrestore(&xhci->lock, flags);
1352	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1353		spin_lock_irqsave(&xhci->lock, flags);
1354		if (xhci->xhc_state & XHCI_STATE_DYING)
1355			goto dying;
1356		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1357				slot_id, ep_index);
1358		if (ret)
1359			goto free_priv;
1360		spin_unlock_irqrestore(&xhci->lock, flags);
1361	} else {
1362		spin_lock_irqsave(&xhci->lock, flags);
1363		if (xhci->xhc_state & XHCI_STATE_DYING)
1364			goto dying;
1365		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1366				slot_id, ep_index);
1367		if (ret)
1368			goto free_priv;
1369		spin_unlock_irqrestore(&xhci->lock, flags);
1370	}
1371exit:
1372	return ret;
1373dying:
1374	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1375			"non-responsive xHCI host.\n",
1376			urb->ep->desc.bEndpointAddress, urb);
1377	ret = -ESHUTDOWN;
1378free_priv:
1379	xhci_urb_free_priv(xhci, urb_priv);
1380	urb->hcpriv = NULL;
1381	spin_unlock_irqrestore(&xhci->lock, flags);
1382	return ret;
1383}
1384
1385/* Get the right ring for the given URB.
1386 * If the endpoint supports streams, boundary check the URB's stream ID.
1387 * If the endpoint doesn't support streams, return the singular endpoint ring.
1388 */
1389static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1390		struct urb *urb)
1391{
1392	unsigned int slot_id;
1393	unsigned int ep_index;
1394	unsigned int stream_id;
1395	struct xhci_virt_ep *ep;
1396
1397	slot_id = urb->dev->slot_id;
1398	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1399	stream_id = urb->stream_id;
1400	ep = &xhci->devs[slot_id]->eps[ep_index];
1401	/* Common case: no streams */
1402	if (!(ep->ep_state & EP_HAS_STREAMS))
1403		return ep->ring;
1404
1405	if (stream_id == 0) {
1406		xhci_warn(xhci,
1407				"WARN: Slot ID %u, ep index %u has streams, "
1408				"but URB has no stream ID.\n",
1409				slot_id, ep_index);
1410		return NULL;
1411	}
1412
1413	if (stream_id < ep->stream_info->num_streams)
1414		return ep->stream_info->stream_rings[stream_id];
1415
1416	xhci_warn(xhci,
1417			"WARN: Slot ID %u, ep index %u has "
1418			"stream IDs 1 to %u allocated, "
1419			"but stream ID %u is requested.\n",
1420			slot_id, ep_index,
1421			ep->stream_info->num_streams - 1,
1422			stream_id);
1423	return NULL;
1424}
1425
1426/*
1427 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1428 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1429 * should pick up where it left off in the TD, unless a Set Transfer Ring
1430 * Dequeue Pointer is issued.
1431 *
1432 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1433 * the ring.  Since the ring is a contiguous structure, they can't be physically
1434 * removed.  Instead, there are two options:
1435 *
1436 *  1) If the HC is in the middle of processing the URB to be canceled, we
1437 *     simply move the ring's dequeue pointer past those TRBs using the Set
1438 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1439 *     when drivers timeout on the last submitted URB and attempt to cancel.
1440 *
1441 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1442 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1443 *     HC will need to invalidate the any TRBs it has cached after the stop
1444 *     endpoint command, as noted in the xHCI 0.95 errata.
1445 *
1446 *  3) The TD may have completed by the time the Stop Endpoint Command
1447 *     completes, so software needs to handle that case too.
1448 *
1449 * This function should protect against the TD enqueueing code ringing the
1450 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1451 * It also needs to account for multiple cancellations on happening at the same
1452 * time for the same endpoint.
1453 *
1454 * Note that this function can be called in any context, or so says
1455 * usb_hcd_unlink_urb()
1456 */
1457int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1458{
1459	unsigned long flags;
1460	int ret, i;
1461	u32 temp;
1462	struct xhci_hcd *xhci;
1463	struct urb_priv	*urb_priv;
1464	struct xhci_td *td;
1465	unsigned int ep_index;
1466	struct xhci_ring *ep_ring;
1467	struct xhci_virt_ep *ep;
1468
1469	xhci = hcd_to_xhci(hcd);
1470	spin_lock_irqsave(&xhci->lock, flags);
1471	/* Make sure the URB hasn't completed or been unlinked already */
1472	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1473	if (ret || !urb->hcpriv)
1474		goto done;
1475	temp = readl(&xhci->op_regs->status);
1476	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1477		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1478				"HW died, freeing TD.");
1479		urb_priv = urb->hcpriv;
1480		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1481			td = urb_priv->td[i];
1482			if (!list_empty(&td->td_list))
1483				list_del_init(&td->td_list);
1484			if (!list_empty(&td->cancelled_td_list))
1485				list_del_init(&td->cancelled_td_list);
1486		}
1487
1488		usb_hcd_unlink_urb_from_ep(hcd, urb);
1489		spin_unlock_irqrestore(&xhci->lock, flags);
1490		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1491		xhci_urb_free_priv(xhci, urb_priv);
1492		return ret;
1493	}
1494	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1495			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1496		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1497				"Ep 0x%x: URB %p to be canceled on "
1498				"non-responsive xHCI host.",
1499				urb->ep->desc.bEndpointAddress, urb);
1500		/* Let the stop endpoint command watchdog timer (which set this
1501		 * state) finish cleaning up the endpoint TD lists.  We must
1502		 * have caught it in the middle of dropping a lock and giving
1503		 * back an URB.
1504		 */
1505		goto done;
1506	}
1507
 
 
 
1508	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1509	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1510	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1511	if (!ep_ring) {
1512		ret = -EINVAL;
1513		goto done;
1514	}
1515
 
 
 
1516	urb_priv = urb->hcpriv;
1517	i = urb_priv->td_cnt;
1518	if (i < urb_priv->length)
1519		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1520				"Cancel URB %p, dev %s, ep 0x%x, "
1521				"starting at offset 0x%llx",
1522				urb, urb->dev->devpath,
1523				urb->ep->desc.bEndpointAddress,
1524				(unsigned long long) xhci_trb_virt_to_dma(
1525					urb_priv->td[i]->start_seg,
1526					urb_priv->td[i]->first_trb));
1527
1528	for (; i < urb_priv->length; i++) {
1529		td = urb_priv->td[i];
1530		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1531	}
1532
1533	/* Queue a stop endpoint command, but only if this is
1534	 * the first cancellation to be handled.
1535	 */
1536	if (!(ep->ep_state & EP_HALT_PENDING)) {
1537		ep->ep_state |= EP_HALT_PENDING;
1538		ep->stop_cmds_pending++;
1539		ep->stop_cmd_timer.expires = jiffies +
1540			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1541		add_timer(&ep->stop_cmd_timer);
1542		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1543		xhci_ring_cmd_db(xhci);
1544	}
1545done:
1546	spin_unlock_irqrestore(&xhci->lock, flags);
1547	return ret;
1548}
1549
1550/* Drop an endpoint from a new bandwidth configuration for this device.
1551 * Only one call to this function is allowed per endpoint before
1552 * check_bandwidth() or reset_bandwidth() must be called.
1553 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1554 * add the endpoint to the schedule with possibly new parameters denoted by a
1555 * different endpoint descriptor in usb_host_endpoint.
1556 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1557 * not allowed.
1558 *
1559 * The USB core will not allow URBs to be queued to an endpoint that is being
1560 * disabled, so there's no need for mutual exclusion to protect
1561 * the xhci->devs[slot_id] structure.
1562 */
1563int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1564		struct usb_host_endpoint *ep)
1565{
1566	struct xhci_hcd *xhci;
1567	struct xhci_container_ctx *in_ctx, *out_ctx;
1568	struct xhci_input_control_ctx *ctrl_ctx;
1569	struct xhci_slot_ctx *slot_ctx;
1570	unsigned int last_ctx;
1571	unsigned int ep_index;
1572	struct xhci_ep_ctx *ep_ctx;
1573	u32 drop_flag;
1574	u32 new_add_flags, new_drop_flags, new_slot_info;
1575	int ret;
1576
1577	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1578	if (ret <= 0)
1579		return ret;
1580	xhci = hcd_to_xhci(hcd);
1581	if (xhci->xhc_state & XHCI_STATE_DYING)
1582		return -ENODEV;
1583
1584	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1585	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1586	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1587		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1588				__func__, drop_flag);
1589		return 0;
1590	}
1591
1592	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1593	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1594	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1595	if (!ctrl_ctx) {
1596		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1597				__func__);
1598		return 0;
1599	}
1600
1601	ep_index = xhci_get_endpoint_index(&ep->desc);
1602	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603	/* If the HC already knows the endpoint is disabled,
1604	 * or the HCD has noted it is disabled, ignore this request
1605	 */
1606	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1607	     cpu_to_le32(EP_STATE_DISABLED)) ||
1608	    le32_to_cpu(ctrl_ctx->drop_flags) &
1609	    xhci_get_endpoint_flag(&ep->desc)) {
1610		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1611				__func__, ep);
1612		return 0;
1613	}
1614
1615	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1616	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1617
1618	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1619	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1620
1621	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1622	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1623	/* Update the last valid endpoint context, if we deleted the last one */
1624	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1625	    LAST_CTX(last_ctx)) {
1626		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1627		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1628	}
1629	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1630
1631	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1632
1633	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1634			(unsigned int) ep->desc.bEndpointAddress,
1635			udev->slot_id,
1636			(unsigned int) new_drop_flags,
1637			(unsigned int) new_add_flags,
1638			(unsigned int) new_slot_info);
1639	return 0;
1640}
1641
1642/* Add an endpoint to a new possible bandwidth configuration for this device.
1643 * Only one call to this function is allowed per endpoint before
1644 * check_bandwidth() or reset_bandwidth() must be called.
1645 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1646 * add the endpoint to the schedule with possibly new parameters denoted by a
1647 * different endpoint descriptor in usb_host_endpoint.
1648 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1649 * not allowed.
1650 *
1651 * The USB core will not allow URBs to be queued to an endpoint until the
1652 * configuration or alt setting is installed in the device, so there's no need
1653 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1654 */
1655int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1656		struct usb_host_endpoint *ep)
1657{
1658	struct xhci_hcd *xhci;
1659	struct xhci_container_ctx *in_ctx, *out_ctx;
1660	unsigned int ep_index;
 
1661	struct xhci_slot_ctx *slot_ctx;
1662	struct xhci_input_control_ctx *ctrl_ctx;
1663	u32 added_ctxs;
1664	unsigned int last_ctx;
1665	u32 new_add_flags, new_drop_flags, new_slot_info;
1666	struct xhci_virt_device *virt_dev;
1667	int ret = 0;
1668
1669	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1670	if (ret <= 0) {
1671		/* So we won't queue a reset ep command for a root hub */
1672		ep->hcpriv = NULL;
1673		return ret;
1674	}
1675	xhci = hcd_to_xhci(hcd);
1676	if (xhci->xhc_state & XHCI_STATE_DYING)
1677		return -ENODEV;
1678
1679	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1680	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1681	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1682		/* FIXME when we have to issue an evaluate endpoint command to
1683		 * deal with ep0 max packet size changing once we get the
1684		 * descriptors
1685		 */
1686		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1687				__func__, added_ctxs);
1688		return 0;
1689	}
1690
1691	virt_dev = xhci->devs[udev->slot_id];
1692	in_ctx = virt_dev->in_ctx;
1693	out_ctx = virt_dev->out_ctx;
1694	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1695	if (!ctrl_ctx) {
1696		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1697				__func__);
1698		return 0;
1699	}
1700
1701	ep_index = xhci_get_endpoint_index(&ep->desc);
1702	/* If this endpoint is already in use, and the upper layers are trying
1703	 * to add it again without dropping it, reject the addition.
1704	 */
1705	if (virt_dev->eps[ep_index].ring &&
1706			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1707				xhci_get_endpoint_flag(&ep->desc))) {
1708		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1709				"without dropping it.\n",
1710				(unsigned int) ep->desc.bEndpointAddress);
1711		return -EINVAL;
1712	}
1713
1714	/* If the HCD has already noted the endpoint is enabled,
1715	 * ignore this request.
1716	 */
1717	if (le32_to_cpu(ctrl_ctx->add_flags) &
1718	    xhci_get_endpoint_flag(&ep->desc)) {
1719		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1720				__func__, ep);
1721		return 0;
1722	}
1723
1724	/*
1725	 * Configuration and alternate setting changes must be done in
1726	 * process context, not interrupt context (or so documenation
1727	 * for usb_set_interface() and usb_set_configuration() claim).
1728	 */
1729	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1730		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1731				__func__, ep->desc.bEndpointAddress);
1732		return -ENOMEM;
1733	}
1734
1735	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1736	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1737
1738	/* If xhci_endpoint_disable() was called for this endpoint, but the
1739	 * xHC hasn't been notified yet through the check_bandwidth() call,
1740	 * this re-adds a new state for the endpoint from the new endpoint
1741	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1742	 * drop flags alone.
1743	 */
1744	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1745
1746	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1747	/* Update the last valid endpoint context, if we just added one past */
1748	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1749	    LAST_CTX(last_ctx)) {
1750		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1751		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1752	}
1753	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1754
1755	/* Store the usb_device pointer for later use */
1756	ep->hcpriv = udev;
1757
1758	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1759			(unsigned int) ep->desc.bEndpointAddress,
1760			udev->slot_id,
1761			(unsigned int) new_drop_flags,
1762			(unsigned int) new_add_flags,
1763			(unsigned int) new_slot_info);
1764	return 0;
1765}
1766
1767static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1768{
1769	struct xhci_input_control_ctx *ctrl_ctx;
1770	struct xhci_ep_ctx *ep_ctx;
1771	struct xhci_slot_ctx *slot_ctx;
1772	int i;
1773
1774	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1775	if (!ctrl_ctx) {
1776		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1777				__func__);
1778		return;
1779	}
1780
1781	/* When a device's add flag and drop flag are zero, any subsequent
1782	 * configure endpoint command will leave that endpoint's state
1783	 * untouched.  Make sure we don't leave any old state in the input
1784	 * endpoint contexts.
1785	 */
 
1786	ctrl_ctx->drop_flags = 0;
1787	ctrl_ctx->add_flags = 0;
1788	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1789	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1790	/* Endpoint 0 is always valid */
1791	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1792	for (i = 1; i < 31; ++i) {
1793		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1794		ep_ctx->ep_info = 0;
1795		ep_ctx->ep_info2 = 0;
1796		ep_ctx->deq = 0;
1797		ep_ctx->tx_info = 0;
1798	}
1799}
1800
1801static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1802		struct usb_device *udev, u32 *cmd_status)
1803{
1804	int ret;
1805
1806	switch (*cmd_status) {
1807	case COMP_ENOMEM:
1808		dev_warn(&udev->dev, "Not enough host controller resources "
1809				"for new device state.\n");
1810		ret = -ENOMEM;
1811		/* FIXME: can we allocate more resources for the HC? */
1812		break;
1813	case COMP_BW_ERR:
1814	case COMP_2ND_BW_ERR:
1815		dev_warn(&udev->dev, "Not enough bandwidth "
1816				"for new device state.\n");
1817		ret = -ENOSPC;
1818		/* FIXME: can we go back to the old state? */
1819		break;
1820	case COMP_TRB_ERR:
1821		/* the HCD set up something wrong */
1822		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1823				"add flag = 1, "
1824				"and endpoint is not disabled.\n");
1825		ret = -EINVAL;
1826		break;
1827	case COMP_DEV_ERR:
1828		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1829				"configure command.\n");
1830		ret = -ENODEV;
1831		break;
1832	case COMP_SUCCESS:
1833		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1834				"Successful Endpoint Configure command");
1835		ret = 0;
1836		break;
1837	default:
1838		xhci_err(xhci, "ERROR: unexpected command completion "
1839				"code 0x%x.\n", *cmd_status);
1840		ret = -EINVAL;
1841		break;
1842	}
1843	return ret;
1844}
1845
1846static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1847		struct usb_device *udev, u32 *cmd_status)
1848{
1849	int ret;
1850	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1851
1852	switch (*cmd_status) {
1853	case COMP_EINVAL:
1854		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1855				"context command.\n");
1856		ret = -EINVAL;
1857		break;
1858	case COMP_EBADSLT:
1859		dev_warn(&udev->dev, "WARN: slot not enabled for"
1860				"evaluate context command.\n");
1861		ret = -EINVAL;
1862		break;
1863	case COMP_CTX_STATE:
1864		dev_warn(&udev->dev, "WARN: invalid context state for "
1865				"evaluate context command.\n");
1866		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1867		ret = -EINVAL;
1868		break;
1869	case COMP_DEV_ERR:
1870		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1871				"context command.\n");
1872		ret = -ENODEV;
1873		break;
1874	case COMP_MEL_ERR:
1875		/* Max Exit Latency too large error */
1876		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1877		ret = -EINVAL;
1878		break;
1879	case COMP_SUCCESS:
1880		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1881				"Successful evaluate context command");
1882		ret = 0;
1883		break;
1884	default:
1885		xhci_err(xhci, "ERROR: unexpected command completion "
1886				"code 0x%x.\n", *cmd_status);
1887		ret = -EINVAL;
1888		break;
1889	}
1890	return ret;
1891}
1892
1893static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1894		struct xhci_input_control_ctx *ctrl_ctx)
1895{
 
1896	u32 valid_add_flags;
1897	u32 valid_drop_flags;
1898
 
1899	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1900	 * (bit 1).  The default control endpoint is added during the Address
1901	 * Device command and is never removed until the slot is disabled.
1902	 */
1903	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1904	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1905
1906	/* Use hweight32 to count the number of ones in the add flags, or
1907	 * number of endpoints added.  Don't count endpoints that are changed
1908	 * (both added and dropped).
1909	 */
1910	return hweight32(valid_add_flags) -
1911		hweight32(valid_add_flags & valid_drop_flags);
1912}
1913
1914static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1915		struct xhci_input_control_ctx *ctrl_ctx)
1916{
 
1917	u32 valid_add_flags;
1918	u32 valid_drop_flags;
1919
1920	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1921	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
 
1922
1923	return hweight32(valid_drop_flags) -
1924		hweight32(valid_add_flags & valid_drop_flags);
1925}
1926
1927/*
1928 * We need to reserve the new number of endpoints before the configure endpoint
1929 * command completes.  We can't subtract the dropped endpoints from the number
1930 * of active endpoints until the command completes because we can oversubscribe
1931 * the host in this case:
1932 *
1933 *  - the first configure endpoint command drops more endpoints than it adds
1934 *  - a second configure endpoint command that adds more endpoints is queued
1935 *  - the first configure endpoint command fails, so the config is unchanged
1936 *  - the second command may succeed, even though there isn't enough resources
1937 *
1938 * Must be called with xhci->lock held.
1939 */
1940static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1941		struct xhci_input_control_ctx *ctrl_ctx)
1942{
1943	u32 added_eps;
1944
1945	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1946	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1947		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948				"Not enough ep ctxs: "
1949				"%u active, need to add %u, limit is %u.",
1950				xhci->num_active_eps, added_eps,
1951				xhci->limit_active_eps);
1952		return -ENOMEM;
1953	}
1954	xhci->num_active_eps += added_eps;
1955	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1956			"Adding %u ep ctxs, %u now active.", added_eps,
1957			xhci->num_active_eps);
1958	return 0;
1959}
1960
1961/*
1962 * The configure endpoint was failed by the xHC for some other reason, so we
1963 * need to revert the resources that failed configuration would have used.
1964 *
1965 * Must be called with xhci->lock held.
1966 */
1967static void xhci_free_host_resources(struct xhci_hcd *xhci,
1968		struct xhci_input_control_ctx *ctrl_ctx)
1969{
1970	u32 num_failed_eps;
1971
1972	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1973	xhci->num_active_eps -= num_failed_eps;
1974	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1975			"Removing %u failed ep ctxs, %u now active.",
1976			num_failed_eps,
1977			xhci->num_active_eps);
1978}
1979
1980/*
1981 * Now that the command has completed, clean up the active endpoint count by
1982 * subtracting out the endpoints that were dropped (but not changed).
1983 *
1984 * Must be called with xhci->lock held.
1985 */
1986static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1987		struct xhci_input_control_ctx *ctrl_ctx)
1988{
1989	u32 num_dropped_eps;
1990
1991	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1992	xhci->num_active_eps -= num_dropped_eps;
1993	if (num_dropped_eps)
1994		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1995				"Removing %u dropped ep ctxs, %u now active.",
1996				num_dropped_eps,
1997				xhci->num_active_eps);
1998}
1999
2000static unsigned int xhci_get_block_size(struct usb_device *udev)
2001{
2002	switch (udev->speed) {
2003	case USB_SPEED_LOW:
2004	case USB_SPEED_FULL:
2005		return FS_BLOCK;
2006	case USB_SPEED_HIGH:
2007		return HS_BLOCK;
2008	case USB_SPEED_SUPER:
2009		return SS_BLOCK;
2010	case USB_SPEED_UNKNOWN:
2011	case USB_SPEED_WIRELESS:
2012	default:
2013		/* Should never happen */
2014		return 1;
2015	}
2016}
2017
2018static unsigned int
2019xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2020{
2021	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2022		return LS_OVERHEAD;
2023	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2024		return FS_OVERHEAD;
2025	return HS_OVERHEAD;
2026}
2027
2028/* If we are changing a LS/FS device under a HS hub,
2029 * make sure (if we are activating a new TT) that the HS bus has enough
2030 * bandwidth for this new TT.
2031 */
2032static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2033		struct xhci_virt_device *virt_dev,
2034		int old_active_eps)
2035{
2036	struct xhci_interval_bw_table *bw_table;
2037	struct xhci_tt_bw_info *tt_info;
2038
2039	/* Find the bandwidth table for the root port this TT is attached to. */
2040	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2041	tt_info = virt_dev->tt_info;
2042	/* If this TT already had active endpoints, the bandwidth for this TT
2043	 * has already been added.  Removing all periodic endpoints (and thus
2044	 * making the TT enactive) will only decrease the bandwidth used.
2045	 */
2046	if (old_active_eps)
2047		return 0;
2048	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2049		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2050			return -ENOMEM;
2051		return 0;
2052	}
2053	/* Not sure why we would have no new active endpoints...
2054	 *
2055	 * Maybe because of an Evaluate Context change for a hub update or a
2056	 * control endpoint 0 max packet size change?
2057	 * FIXME: skip the bandwidth calculation in that case.
2058	 */
2059	return 0;
2060}
2061
2062static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2063		struct xhci_virt_device *virt_dev)
2064{
2065	unsigned int bw_reserved;
2066
2067	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2068	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2069		return -ENOMEM;
2070
2071	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2072	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2073		return -ENOMEM;
2074
2075	return 0;
2076}
2077
2078/*
2079 * This algorithm is a very conservative estimate of the worst-case scheduling
2080 * scenario for any one interval.  The hardware dynamically schedules the
2081 * packets, so we can't tell which microframe could be the limiting factor in
2082 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2083 *
2084 * Obviously, we can't solve an NP complete problem to find the minimum worst
2085 * case scenario.  Instead, we come up with an estimate that is no less than
2086 * the worst case bandwidth used for any one microframe, but may be an
2087 * over-estimate.
2088 *
2089 * We walk the requirements for each endpoint by interval, starting with the
2090 * smallest interval, and place packets in the schedule where there is only one
2091 * possible way to schedule packets for that interval.  In order to simplify
2092 * this algorithm, we record the largest max packet size for each interval, and
2093 * assume all packets will be that size.
2094 *
2095 * For interval 0, we obviously must schedule all packets for each interval.
2096 * The bandwidth for interval 0 is just the amount of data to be transmitted
2097 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2098 * the number of packets).
2099 *
2100 * For interval 1, we have two possible microframes to schedule those packets
2101 * in.  For this algorithm, if we can schedule the same number of packets for
2102 * each possible scheduling opportunity (each microframe), we will do so.  The
2103 * remaining number of packets will be saved to be transmitted in the gaps in
2104 * the next interval's scheduling sequence.
2105 *
2106 * As we move those remaining packets to be scheduled with interval 2 packets,
2107 * we have to double the number of remaining packets to transmit.  This is
2108 * because the intervals are actually powers of 2, and we would be transmitting
2109 * the previous interval's packets twice in this interval.  We also have to be
2110 * sure that when we look at the largest max packet size for this interval, we
2111 * also look at the largest max packet size for the remaining packets and take
2112 * the greater of the two.
2113 *
2114 * The algorithm continues to evenly distribute packets in each scheduling
2115 * opportunity, and push the remaining packets out, until we get to the last
2116 * interval.  Then those packets and their associated overhead are just added
2117 * to the bandwidth used.
2118 */
2119static int xhci_check_bw_table(struct xhci_hcd *xhci,
2120		struct xhci_virt_device *virt_dev,
2121		int old_active_eps)
2122{
2123	unsigned int bw_reserved;
2124	unsigned int max_bandwidth;
2125	unsigned int bw_used;
2126	unsigned int block_size;
2127	struct xhci_interval_bw_table *bw_table;
2128	unsigned int packet_size = 0;
2129	unsigned int overhead = 0;
2130	unsigned int packets_transmitted = 0;
2131	unsigned int packets_remaining = 0;
2132	unsigned int i;
2133
2134	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2135		return xhci_check_ss_bw(xhci, virt_dev);
2136
2137	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2138		max_bandwidth = HS_BW_LIMIT;
2139		/* Convert percent of bus BW reserved to blocks reserved */
2140		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2141	} else {
2142		max_bandwidth = FS_BW_LIMIT;
2143		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2144	}
2145
2146	bw_table = virt_dev->bw_table;
2147	/* We need to translate the max packet size and max ESIT payloads into
2148	 * the units the hardware uses.
2149	 */
2150	block_size = xhci_get_block_size(virt_dev->udev);
2151
2152	/* If we are manipulating a LS/FS device under a HS hub, double check
2153	 * that the HS bus has enough bandwidth if we are activing a new TT.
2154	 */
2155	if (virt_dev->tt_info) {
2156		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157				"Recalculating BW for rootport %u",
2158				virt_dev->real_port);
2159		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2160			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2161					"newly activated TT.\n");
2162			return -ENOMEM;
2163		}
2164		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165				"Recalculating BW for TT slot %u port %u",
2166				virt_dev->tt_info->slot_id,
2167				virt_dev->tt_info->ttport);
2168	} else {
2169		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2170				"Recalculating BW for rootport %u",
2171				virt_dev->real_port);
2172	}
2173
2174	/* Add in how much bandwidth will be used for interval zero, or the
2175	 * rounded max ESIT payload + number of packets * largest overhead.
2176	 */
2177	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2178		bw_table->interval_bw[0].num_packets *
2179		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2180
2181	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2182		unsigned int bw_added;
2183		unsigned int largest_mps;
2184		unsigned int interval_overhead;
2185
2186		/*
2187		 * How many packets could we transmit in this interval?
2188		 * If packets didn't fit in the previous interval, we will need
2189		 * to transmit that many packets twice within this interval.
2190		 */
2191		packets_remaining = 2 * packets_remaining +
2192			bw_table->interval_bw[i].num_packets;
2193
2194		/* Find the largest max packet size of this or the previous
2195		 * interval.
2196		 */
2197		if (list_empty(&bw_table->interval_bw[i].endpoints))
2198			largest_mps = 0;
2199		else {
2200			struct xhci_virt_ep *virt_ep;
2201			struct list_head *ep_entry;
2202
2203			ep_entry = bw_table->interval_bw[i].endpoints.next;
2204			virt_ep = list_entry(ep_entry,
2205					struct xhci_virt_ep, bw_endpoint_list);
2206			/* Convert to blocks, rounding up */
2207			largest_mps = DIV_ROUND_UP(
2208					virt_ep->bw_info.max_packet_size,
2209					block_size);
2210		}
2211		if (largest_mps > packet_size)
2212			packet_size = largest_mps;
2213
2214		/* Use the larger overhead of this or the previous interval. */
2215		interval_overhead = xhci_get_largest_overhead(
2216				&bw_table->interval_bw[i]);
2217		if (interval_overhead > overhead)
2218			overhead = interval_overhead;
2219
2220		/* How many packets can we evenly distribute across
2221		 * (1 << (i + 1)) possible scheduling opportunities?
2222		 */
2223		packets_transmitted = packets_remaining >> (i + 1);
2224
2225		/* Add in the bandwidth used for those scheduled packets */
2226		bw_added = packets_transmitted * (overhead + packet_size);
2227
2228		/* How many packets do we have remaining to transmit? */
2229		packets_remaining = packets_remaining % (1 << (i + 1));
2230
2231		/* What largest max packet size should those packets have? */
2232		/* If we've transmitted all packets, don't carry over the
2233		 * largest packet size.
2234		 */
2235		if (packets_remaining == 0) {
2236			packet_size = 0;
2237			overhead = 0;
2238		} else if (packets_transmitted > 0) {
2239			/* Otherwise if we do have remaining packets, and we've
2240			 * scheduled some packets in this interval, take the
2241			 * largest max packet size from endpoints with this
2242			 * interval.
2243			 */
2244			packet_size = largest_mps;
2245			overhead = interval_overhead;
2246		}
2247		/* Otherwise carry over packet_size and overhead from the last
2248		 * time we had a remainder.
2249		 */
2250		bw_used += bw_added;
2251		if (bw_used > max_bandwidth) {
2252			xhci_warn(xhci, "Not enough bandwidth. "
2253					"Proposed: %u, Max: %u\n",
2254				bw_used, max_bandwidth);
2255			return -ENOMEM;
2256		}
2257	}
2258	/*
2259	 * Ok, we know we have some packets left over after even-handedly
2260	 * scheduling interval 15.  We don't know which microframes they will
2261	 * fit into, so we over-schedule and say they will be scheduled every
2262	 * microframe.
2263	 */
2264	if (packets_remaining > 0)
2265		bw_used += overhead + packet_size;
2266
2267	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2268		unsigned int port_index = virt_dev->real_port - 1;
2269
2270		/* OK, we're manipulating a HS device attached to a
2271		 * root port bandwidth domain.  Include the number of active TTs
2272		 * in the bandwidth used.
2273		 */
2274		bw_used += TT_HS_OVERHEAD *
2275			xhci->rh_bw[port_index].num_active_tts;
2276	}
2277
2278	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2279		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2280		"Available: %u " "percent",
2281		bw_used, max_bandwidth, bw_reserved,
2282		(max_bandwidth - bw_used - bw_reserved) * 100 /
2283		max_bandwidth);
2284
2285	bw_used += bw_reserved;
2286	if (bw_used > max_bandwidth) {
2287		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2288				bw_used, max_bandwidth);
2289		return -ENOMEM;
2290	}
2291
2292	bw_table->bw_used = bw_used;
2293	return 0;
2294}
2295
2296static bool xhci_is_async_ep(unsigned int ep_type)
2297{
2298	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2299					ep_type != ISOC_IN_EP &&
2300					ep_type != INT_IN_EP);
2301}
2302
2303static bool xhci_is_sync_in_ep(unsigned int ep_type)
2304{
2305	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2306}
2307
2308static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2309{
2310	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2311
2312	if (ep_bw->ep_interval == 0)
2313		return SS_OVERHEAD_BURST +
2314			(ep_bw->mult * ep_bw->num_packets *
2315					(SS_OVERHEAD + mps));
2316	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2317				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2318				1 << ep_bw->ep_interval);
2319
2320}
2321
2322void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2323		struct xhci_bw_info *ep_bw,
2324		struct xhci_interval_bw_table *bw_table,
2325		struct usb_device *udev,
2326		struct xhci_virt_ep *virt_ep,
2327		struct xhci_tt_bw_info *tt_info)
2328{
2329	struct xhci_interval_bw	*interval_bw;
2330	int normalized_interval;
2331
2332	if (xhci_is_async_ep(ep_bw->type))
2333		return;
2334
2335	if (udev->speed == USB_SPEED_SUPER) {
2336		if (xhci_is_sync_in_ep(ep_bw->type))
2337			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2338				xhci_get_ss_bw_consumed(ep_bw);
2339		else
2340			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2341				xhci_get_ss_bw_consumed(ep_bw);
2342		return;
2343	}
2344
2345	/* SuperSpeed endpoints never get added to intervals in the table, so
2346	 * this check is only valid for HS/FS/LS devices.
2347	 */
2348	if (list_empty(&virt_ep->bw_endpoint_list))
2349		return;
2350	/* For LS/FS devices, we need to translate the interval expressed in
2351	 * microframes to frames.
2352	 */
2353	if (udev->speed == USB_SPEED_HIGH)
2354		normalized_interval = ep_bw->ep_interval;
2355	else
2356		normalized_interval = ep_bw->ep_interval - 3;
2357
2358	if (normalized_interval == 0)
2359		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2360	interval_bw = &bw_table->interval_bw[normalized_interval];
2361	interval_bw->num_packets -= ep_bw->num_packets;
2362	switch (udev->speed) {
2363	case USB_SPEED_LOW:
2364		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2365		break;
2366	case USB_SPEED_FULL:
2367		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2368		break;
2369	case USB_SPEED_HIGH:
2370		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2371		break;
2372	case USB_SPEED_SUPER:
2373	case USB_SPEED_UNKNOWN:
2374	case USB_SPEED_WIRELESS:
2375		/* Should never happen because only LS/FS/HS endpoints will get
2376		 * added to the endpoint list.
2377		 */
2378		return;
2379	}
2380	if (tt_info)
2381		tt_info->active_eps -= 1;
2382	list_del_init(&virt_ep->bw_endpoint_list);
2383}
2384
2385static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2386		struct xhci_bw_info *ep_bw,
2387		struct xhci_interval_bw_table *bw_table,
2388		struct usb_device *udev,
2389		struct xhci_virt_ep *virt_ep,
2390		struct xhci_tt_bw_info *tt_info)
2391{
2392	struct xhci_interval_bw	*interval_bw;
2393	struct xhci_virt_ep *smaller_ep;
2394	int normalized_interval;
2395
2396	if (xhci_is_async_ep(ep_bw->type))
2397		return;
2398
2399	if (udev->speed == USB_SPEED_SUPER) {
2400		if (xhci_is_sync_in_ep(ep_bw->type))
2401			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2402				xhci_get_ss_bw_consumed(ep_bw);
2403		else
2404			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2405				xhci_get_ss_bw_consumed(ep_bw);
2406		return;
2407	}
2408
2409	/* For LS/FS devices, we need to translate the interval expressed in
2410	 * microframes to frames.
2411	 */
2412	if (udev->speed == USB_SPEED_HIGH)
2413		normalized_interval = ep_bw->ep_interval;
2414	else
2415		normalized_interval = ep_bw->ep_interval - 3;
2416
2417	if (normalized_interval == 0)
2418		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2419	interval_bw = &bw_table->interval_bw[normalized_interval];
2420	interval_bw->num_packets += ep_bw->num_packets;
2421	switch (udev->speed) {
2422	case USB_SPEED_LOW:
2423		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2424		break;
2425	case USB_SPEED_FULL:
2426		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2427		break;
2428	case USB_SPEED_HIGH:
2429		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2430		break;
2431	case USB_SPEED_SUPER:
2432	case USB_SPEED_UNKNOWN:
2433	case USB_SPEED_WIRELESS:
2434		/* Should never happen because only LS/FS/HS endpoints will get
2435		 * added to the endpoint list.
2436		 */
2437		return;
2438	}
2439
2440	if (tt_info)
2441		tt_info->active_eps += 1;
2442	/* Insert the endpoint into the list, largest max packet size first. */
2443	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2444			bw_endpoint_list) {
2445		if (ep_bw->max_packet_size >=
2446				smaller_ep->bw_info.max_packet_size) {
2447			/* Add the new ep before the smaller endpoint */
2448			list_add_tail(&virt_ep->bw_endpoint_list,
2449					&smaller_ep->bw_endpoint_list);
2450			return;
2451		}
2452	}
2453	/* Add the new endpoint at the end of the list. */
2454	list_add_tail(&virt_ep->bw_endpoint_list,
2455			&interval_bw->endpoints);
2456}
2457
2458void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2459		struct xhci_virt_device *virt_dev,
2460		int old_active_eps)
2461{
2462	struct xhci_root_port_bw_info *rh_bw_info;
2463	if (!virt_dev->tt_info)
2464		return;
2465
2466	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2467	if (old_active_eps == 0 &&
2468				virt_dev->tt_info->active_eps != 0) {
2469		rh_bw_info->num_active_tts += 1;
2470		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2471	} else if (old_active_eps != 0 &&
2472				virt_dev->tt_info->active_eps == 0) {
2473		rh_bw_info->num_active_tts -= 1;
2474		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2475	}
2476}
2477
2478static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2479		struct xhci_virt_device *virt_dev,
2480		struct xhci_container_ctx *in_ctx)
2481{
2482	struct xhci_bw_info ep_bw_info[31];
2483	int i;
2484	struct xhci_input_control_ctx *ctrl_ctx;
2485	int old_active_eps = 0;
2486
2487	if (virt_dev->tt_info)
2488		old_active_eps = virt_dev->tt_info->active_eps;
2489
2490	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2491	if (!ctrl_ctx) {
2492		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2493				__func__);
2494		return -ENOMEM;
2495	}
2496
2497	for (i = 0; i < 31; i++) {
2498		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2499			continue;
2500
2501		/* Make a copy of the BW info in case we need to revert this */
2502		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2503				sizeof(ep_bw_info[i]));
2504		/* Drop the endpoint from the interval table if the endpoint is
2505		 * being dropped or changed.
2506		 */
2507		if (EP_IS_DROPPED(ctrl_ctx, i))
2508			xhci_drop_ep_from_interval_table(xhci,
2509					&virt_dev->eps[i].bw_info,
2510					virt_dev->bw_table,
2511					virt_dev->udev,
2512					&virt_dev->eps[i],
2513					virt_dev->tt_info);
2514	}
2515	/* Overwrite the information stored in the endpoints' bw_info */
2516	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2517	for (i = 0; i < 31; i++) {
2518		/* Add any changed or added endpoints to the interval table */
2519		if (EP_IS_ADDED(ctrl_ctx, i))
2520			xhci_add_ep_to_interval_table(xhci,
2521					&virt_dev->eps[i].bw_info,
2522					virt_dev->bw_table,
2523					virt_dev->udev,
2524					&virt_dev->eps[i],
2525					virt_dev->tt_info);
2526	}
2527
2528	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2529		/* Ok, this fits in the bandwidth we have.
2530		 * Update the number of active TTs.
2531		 */
2532		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2533		return 0;
2534	}
2535
2536	/* We don't have enough bandwidth for this, revert the stored info. */
2537	for (i = 0; i < 31; i++) {
2538		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2539			continue;
2540
2541		/* Drop the new copies of any added or changed endpoints from
2542		 * the interval table.
2543		 */
2544		if (EP_IS_ADDED(ctrl_ctx, i)) {
2545			xhci_drop_ep_from_interval_table(xhci,
2546					&virt_dev->eps[i].bw_info,
2547					virt_dev->bw_table,
2548					virt_dev->udev,
2549					&virt_dev->eps[i],
2550					virt_dev->tt_info);
2551		}
2552		/* Revert the endpoint back to its old information */
2553		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2554				sizeof(ep_bw_info[i]));
2555		/* Add any changed or dropped endpoints back into the table */
2556		if (EP_IS_DROPPED(ctrl_ctx, i))
2557			xhci_add_ep_to_interval_table(xhci,
2558					&virt_dev->eps[i].bw_info,
2559					virt_dev->bw_table,
2560					virt_dev->udev,
2561					&virt_dev->eps[i],
2562					virt_dev->tt_info);
2563	}
2564	return -ENOMEM;
2565}
2566
2567
2568/* Issue a configure endpoint command or evaluate context command
2569 * and wait for it to finish.
2570 */
2571static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2572		struct usb_device *udev,
2573		struct xhci_command *command,
2574		bool ctx_change, bool must_succeed)
2575{
2576	int ret;
2577	int timeleft;
2578	unsigned long flags;
2579	struct xhci_container_ctx *in_ctx;
2580	struct xhci_input_control_ctx *ctrl_ctx;
2581	struct completion *cmd_completion;
2582	u32 *cmd_status;
2583	struct xhci_virt_device *virt_dev;
2584	union xhci_trb *cmd_trb;
2585
2586	spin_lock_irqsave(&xhci->lock, flags);
2587	virt_dev = xhci->devs[udev->slot_id];
2588
2589	if (command)
2590		in_ctx = command->in_ctx;
2591	else
2592		in_ctx = virt_dev->in_ctx;
2593	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2594	if (!ctrl_ctx) {
2595		spin_unlock_irqrestore(&xhci->lock, flags);
2596		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2597				__func__);
2598		return -ENOMEM;
2599	}
2600
2601	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2602			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2603		spin_unlock_irqrestore(&xhci->lock, flags);
2604		xhci_warn(xhci, "Not enough host resources, "
2605				"active endpoint contexts = %u\n",
2606				xhci->num_active_eps);
2607		return -ENOMEM;
2608	}
2609	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2610			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2611		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612			xhci_free_host_resources(xhci, ctrl_ctx);
2613		spin_unlock_irqrestore(&xhci->lock, flags);
2614		xhci_warn(xhci, "Not enough bandwidth\n");
2615		return -ENOMEM;
2616	}
2617
2618	if (command) {
2619		cmd_completion = command->completion;
2620		cmd_status = &command->status;
2621		command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
 
 
 
 
 
 
 
 
2622		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2623	} else {
 
 
 
 
 
 
 
 
 
2624		cmd_completion = &virt_dev->cmd_completion;
2625		cmd_status = &virt_dev->cmd_status;
2626	}
2627	init_completion(cmd_completion);
2628
2629	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2630	if (!ctx_change)
2631		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2632				udev->slot_id, must_succeed);
2633	else
2634		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2635				udev->slot_id, must_succeed);
2636	if (ret < 0) {
2637		if (command)
2638			list_del(&command->cmd_list);
2639		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2640			xhci_free_host_resources(xhci, ctrl_ctx);
2641		spin_unlock_irqrestore(&xhci->lock, flags);
2642		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2643				"FIXME allocate a new ring segment");
2644		return -ENOMEM;
2645	}
2646	xhci_ring_cmd_db(xhci);
2647	spin_unlock_irqrestore(&xhci->lock, flags);
2648
2649	/* Wait for the configure endpoint command to complete */
2650	timeleft = wait_for_completion_interruptible_timeout(
2651			cmd_completion,
2652			XHCI_CMD_DEFAULT_TIMEOUT);
2653	if (timeleft <= 0) {
2654		xhci_warn(xhci, "%s while waiting for %s command\n",
2655				timeleft == 0 ? "Timeout" : "Signal",
2656				ctx_change == 0 ?
2657					"configure endpoint" :
2658					"evaluate context");
2659		/* cancel the configure endpoint command */
2660		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2661		if (ret < 0)
2662			return ret;
2663		return -ETIME;
2664	}
2665
2666	if (!ctx_change)
2667		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2668	else
2669		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2670
2671	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2672		spin_lock_irqsave(&xhci->lock, flags);
2673		/* If the command failed, remove the reserved resources.
2674		 * Otherwise, clean up the estimate to include dropped eps.
2675		 */
2676		if (ret)
2677			xhci_free_host_resources(xhci, ctrl_ctx);
2678		else
2679			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2680		spin_unlock_irqrestore(&xhci->lock, flags);
2681	}
2682	return ret;
2683}
2684
2685static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2686	struct xhci_virt_device *vdev, int i)
2687{
2688	struct xhci_virt_ep *ep = &vdev->eps[i];
2689
2690	if (ep->ep_state & EP_HAS_STREAMS) {
2691		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2692				xhci_get_endpoint_address(i));
2693		xhci_free_stream_info(xhci, ep->stream_info);
2694		ep->stream_info = NULL;
2695		ep->ep_state &= ~EP_HAS_STREAMS;
2696	}
2697}
2698
2699/* Called after one or more calls to xhci_add_endpoint() or
2700 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2701 * to call xhci_reset_bandwidth().
2702 *
2703 * Since we are in the middle of changing either configuration or
2704 * installing a new alt setting, the USB core won't allow URBs to be
2705 * enqueued for any endpoint on the old config or interface.  Nothing
2706 * else should be touching the xhci->devs[slot_id] structure, so we
2707 * don't need to take the xhci->lock for manipulating that.
2708 */
2709int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2710{
2711	int i;
2712	int ret = 0;
2713	struct xhci_hcd *xhci;
2714	struct xhci_virt_device	*virt_dev;
2715	struct xhci_input_control_ctx *ctrl_ctx;
2716	struct xhci_slot_ctx *slot_ctx;
2717
2718	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719	if (ret <= 0)
2720		return ret;
2721	xhci = hcd_to_xhci(hcd);
2722	if (xhci->xhc_state & XHCI_STATE_DYING)
2723		return -ENODEV;
2724
2725	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2726	virt_dev = xhci->devs[udev->slot_id];
2727
2728	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2729	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2730	if (!ctrl_ctx) {
2731		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2732				__func__);
2733		return -ENOMEM;
2734	}
2735	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2736	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2737	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2738
2739	/* Don't issue the command if there's no endpoints to update. */
2740	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2741			ctrl_ctx->drop_flags == 0)
2742		return 0;
2743
2744	xhci_dbg(xhci, "New Input Control Context:\n");
2745	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2746	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2747		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2748
2749	ret = xhci_configure_endpoint(xhci, udev, NULL,
2750			false, false);
2751	if (ret) {
2752		/* Callee should call reset_bandwidth() */
2753		return ret;
2754	}
2755
2756	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2757	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2758		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2759
2760	/* Free any rings that were dropped, but not changed. */
2761	for (i = 1; i < 31; ++i) {
2762		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2763		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2764			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2765			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2766		}
2767	}
2768	xhci_zero_in_ctx(xhci, virt_dev);
2769	/*
2770	 * Install any rings for completely new endpoints or changed endpoints,
2771	 * and free or cache any old rings from changed endpoints.
2772	 */
2773	for (i = 1; i < 31; ++i) {
2774		if (!virt_dev->eps[i].new_ring)
2775			continue;
2776		/* Only cache or free the old ring if it exists.
2777		 * It may not if this is the first add of an endpoint.
2778		 */
2779		if (virt_dev->eps[i].ring) {
2780			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2781		}
2782		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2783		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2784		virt_dev->eps[i].new_ring = NULL;
2785	}
2786
2787	return ret;
2788}
2789
2790void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2791{
2792	struct xhci_hcd *xhci;
2793	struct xhci_virt_device	*virt_dev;
2794	int i, ret;
2795
2796	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2797	if (ret <= 0)
2798		return;
2799	xhci = hcd_to_xhci(hcd);
2800
2801	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2802	virt_dev = xhci->devs[udev->slot_id];
2803	/* Free any rings allocated for added endpoints */
2804	for (i = 0; i < 31; ++i) {
2805		if (virt_dev->eps[i].new_ring) {
2806			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2807			virt_dev->eps[i].new_ring = NULL;
2808		}
2809	}
2810	xhci_zero_in_ctx(xhci, virt_dev);
2811}
2812
2813static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2814		struct xhci_container_ctx *in_ctx,
2815		struct xhci_container_ctx *out_ctx,
2816		struct xhci_input_control_ctx *ctrl_ctx,
2817		u32 add_flags, u32 drop_flags)
2818{
 
 
2819	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2820	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2821	xhci_slot_copy(xhci, in_ctx, out_ctx);
2822	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2823
2824	xhci_dbg(xhci, "Input Context:\n");
2825	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2826}
2827
2828static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2829		unsigned int slot_id, unsigned int ep_index,
2830		struct xhci_dequeue_state *deq_state)
2831{
2832	struct xhci_input_control_ctx *ctrl_ctx;
2833	struct xhci_container_ctx *in_ctx;
2834	struct xhci_ep_ctx *ep_ctx;
2835	u32 added_ctxs;
2836	dma_addr_t addr;
2837
2838	in_ctx = xhci->devs[slot_id]->in_ctx;
2839	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2840	if (!ctrl_ctx) {
2841		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2842				__func__);
2843		return;
2844	}
2845
2846	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2847			xhci->devs[slot_id]->out_ctx, ep_index);
 
2848	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2849	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2850			deq_state->new_deq_ptr);
2851	if (addr == 0) {
2852		xhci_warn(xhci, "WARN Cannot submit config ep after "
2853				"reset ep command\n");
2854		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2855				deq_state->new_deq_seg,
2856				deq_state->new_deq_ptr);
2857		return;
2858	}
2859	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2860
2861	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2862	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2863			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2864			added_ctxs, added_ctxs);
2865}
2866
2867void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2868		struct usb_device *udev, unsigned int ep_index)
2869{
2870	struct xhci_dequeue_state deq_state;
2871	struct xhci_virt_ep *ep;
2872
2873	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2874			"Cleaning up stalled endpoint ring");
2875	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876	/* We need to move the HW's dequeue pointer past this TD,
2877	 * or it will attempt to resend it on the next doorbell ring.
2878	 */
2879	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880			ep_index, ep->stopped_stream, ep->stopped_td,
2881			&deq_state);
2882
2883	/* HW with the reset endpoint quirk will use the saved dequeue state to
2884	 * issue a configure endpoint command later.
2885	 */
2886	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2887		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2888				"Queueing new dequeue state");
2889		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2890				ep_index, ep->stopped_stream, &deq_state);
2891	} else {
2892		/* Better hope no one uses the input context between now and the
2893		 * reset endpoint completion!
2894		 * XXX: No idea how this hardware will react when stream rings
2895		 * are enabled.
2896		 */
2897		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2898				"Setting up input context for "
2899				"configure endpoint command");
2900		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2901				ep_index, &deq_state);
2902	}
2903}
2904
2905/* Deal with stalled endpoints.  The core should have sent the control message
2906 * to clear the halt condition.  However, we need to make the xHCI hardware
2907 * reset its sequence number, since a device will expect a sequence number of
2908 * zero after the halt condition is cleared.
2909 * Context: in_interrupt
2910 */
2911void xhci_endpoint_reset(struct usb_hcd *hcd,
2912		struct usb_host_endpoint *ep)
2913{
2914	struct xhci_hcd *xhci;
2915	struct usb_device *udev;
2916	unsigned int ep_index;
2917	unsigned long flags;
2918	int ret;
2919	struct xhci_virt_ep *virt_ep;
2920
2921	xhci = hcd_to_xhci(hcd);
2922	udev = (struct usb_device *) ep->hcpriv;
2923	/* Called with a root hub endpoint (or an endpoint that wasn't added
2924	 * with xhci_add_endpoint()
2925	 */
2926	if (!ep->hcpriv)
2927		return;
2928	ep_index = xhci_get_endpoint_index(&ep->desc);
2929	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2930	if (!virt_ep->stopped_td) {
2931		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2932			"Endpoint 0x%x not halted, refusing to reset.",
2933			ep->desc.bEndpointAddress);
2934		return;
2935	}
2936	if (usb_endpoint_xfer_control(&ep->desc)) {
2937		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2938				"Control endpoint stall already handled.");
2939		return;
2940	}
2941
2942	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2943			"Queueing reset endpoint command");
2944	spin_lock_irqsave(&xhci->lock, flags);
2945	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2946	/*
2947	 * Can't change the ring dequeue pointer until it's transitioned to the
2948	 * stopped state, which is only upon a successful reset endpoint
2949	 * command.  Better hope that last command worked!
2950	 */
2951	if (!ret) {
2952		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2953		kfree(virt_ep->stopped_td);
2954		xhci_ring_cmd_db(xhci);
2955	}
2956	virt_ep->stopped_td = NULL;
 
2957	virt_ep->stopped_stream = 0;
2958	spin_unlock_irqrestore(&xhci->lock, flags);
2959
2960	if (ret)
2961		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2962}
2963
2964static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2965		struct usb_device *udev, struct usb_host_endpoint *ep,
2966		unsigned int slot_id)
2967{
2968	int ret;
2969	unsigned int ep_index;
2970	unsigned int ep_state;
2971
2972	if (!ep)
2973		return -EINVAL;
2974	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2975	if (ret <= 0)
2976		return -EINVAL;
2977	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2978		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2979				" descriptor for ep 0x%x does not support streams\n",
2980				ep->desc.bEndpointAddress);
2981		return -EINVAL;
2982	}
2983
2984	ep_index = xhci_get_endpoint_index(&ep->desc);
2985	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2986	if (ep_state & EP_HAS_STREAMS ||
2987			ep_state & EP_GETTING_STREAMS) {
2988		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2989				"already has streams set up.\n",
2990				ep->desc.bEndpointAddress);
2991		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2992				"dynamic stream context array reallocation.\n");
2993		return -EINVAL;
2994	}
2995	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2996		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2997				"endpoint 0x%x; URBs are pending.\n",
2998				ep->desc.bEndpointAddress);
2999		return -EINVAL;
3000	}
3001	return 0;
3002}
3003
3004static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3005		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3006{
3007	unsigned int max_streams;
3008
3009	/* The stream context array size must be a power of two */
3010	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3011	/*
3012	 * Find out how many primary stream array entries the host controller
3013	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3014	 * level page entries), but that's an optional feature for xHCI host
3015	 * controllers. xHCs must support at least 4 stream IDs.
3016	 */
3017	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3018	if (*num_stream_ctxs > max_streams) {
3019		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3020				max_streams);
3021		*num_stream_ctxs = max_streams;
3022		*num_streams = max_streams;
3023	}
3024}
3025
3026/* Returns an error code if one of the endpoint already has streams.
3027 * This does not change any data structures, it only checks and gathers
3028 * information.
3029 */
3030static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3031		struct usb_device *udev,
3032		struct usb_host_endpoint **eps, unsigned int num_eps,
3033		unsigned int *num_streams, u32 *changed_ep_bitmask)
3034{
3035	unsigned int max_streams;
3036	unsigned int endpoint_flag;
3037	int i;
3038	int ret;
3039
3040	for (i = 0; i < num_eps; i++) {
3041		ret = xhci_check_streams_endpoint(xhci, udev,
3042				eps[i], udev->slot_id);
3043		if (ret < 0)
3044			return ret;
3045
3046		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
 
3047		if (max_streams < (*num_streams - 1)) {
3048			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3049					eps[i]->desc.bEndpointAddress,
3050					max_streams);
3051			*num_streams = max_streams+1;
3052		}
3053
3054		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3055		if (*changed_ep_bitmask & endpoint_flag)
3056			return -EINVAL;
3057		*changed_ep_bitmask |= endpoint_flag;
3058	}
3059	return 0;
3060}
3061
3062static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3063		struct usb_device *udev,
3064		struct usb_host_endpoint **eps, unsigned int num_eps)
3065{
3066	u32 changed_ep_bitmask = 0;
3067	unsigned int slot_id;
3068	unsigned int ep_index;
3069	unsigned int ep_state;
3070	int i;
3071
3072	slot_id = udev->slot_id;
3073	if (!xhci->devs[slot_id])
3074		return 0;
3075
3076	for (i = 0; i < num_eps; i++) {
3077		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3078		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3079		/* Are streams already being freed for the endpoint? */
3080		if (ep_state & EP_GETTING_NO_STREAMS) {
3081			xhci_warn(xhci, "WARN Can't disable streams for "
3082					"endpoint 0x%x, "
3083					"streams are being disabled already\n",
3084					eps[i]->desc.bEndpointAddress);
3085			return 0;
3086		}
3087		/* Are there actually any streams to free? */
3088		if (!(ep_state & EP_HAS_STREAMS) &&
3089				!(ep_state & EP_GETTING_STREAMS)) {
3090			xhci_warn(xhci, "WARN Can't disable streams for "
3091					"endpoint 0x%x, "
3092					"streams are already disabled!\n",
3093					eps[i]->desc.bEndpointAddress);
3094			xhci_warn(xhci, "WARN xhci_free_streams() called "
3095					"with non-streams endpoint\n");
3096			return 0;
3097		}
3098		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3099	}
3100	return changed_ep_bitmask;
3101}
3102
3103/*
3104 * The USB device drivers use this function (though the HCD interface in USB
3105 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3106 * coordinate mass storage command queueing across multiple endpoints (basically
3107 * a stream ID == a task ID).
3108 *
3109 * Setting up streams involves allocating the same size stream context array
3110 * for each endpoint and issuing a configure endpoint command for all endpoints.
3111 *
3112 * Don't allow the call to succeed if one endpoint only supports one stream
3113 * (which means it doesn't support streams at all).
3114 *
3115 * Drivers may get less stream IDs than they asked for, if the host controller
3116 * hardware or endpoints claim they can't support the number of requested
3117 * stream IDs.
3118 */
3119int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3120		struct usb_host_endpoint **eps, unsigned int num_eps,
3121		unsigned int num_streams, gfp_t mem_flags)
3122{
3123	int i, ret;
3124	struct xhci_hcd *xhci;
3125	struct xhci_virt_device *vdev;
3126	struct xhci_command *config_cmd;
3127	struct xhci_input_control_ctx *ctrl_ctx;
3128	unsigned int ep_index;
3129	unsigned int num_stream_ctxs;
3130	unsigned long flags;
3131	u32 changed_ep_bitmask = 0;
3132
3133	if (!eps)
3134		return -EINVAL;
3135
3136	/* Add one to the number of streams requested to account for
3137	 * stream 0 that is reserved for xHCI usage.
3138	 */
3139	num_streams += 1;
3140	xhci = hcd_to_xhci(hcd);
3141	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3142			num_streams);
3143
3144	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3145	if (HCC_MAX_PSA(xhci->hcc_params) < 4) {
3146		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3147		return -ENOSYS;
3148	}
3149
3150	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3151	if (!config_cmd) {
3152		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3153		return -ENOMEM;
3154	}
3155	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3156	if (!ctrl_ctx) {
3157		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3158				__func__);
3159		xhci_free_command(xhci, config_cmd);
3160		return -ENOMEM;
3161	}
3162
3163	/* Check to make sure all endpoints are not already configured for
3164	 * streams.  While we're at it, find the maximum number of streams that
3165	 * all the endpoints will support and check for duplicate endpoints.
3166	 */
3167	spin_lock_irqsave(&xhci->lock, flags);
3168	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3169			num_eps, &num_streams, &changed_ep_bitmask);
3170	if (ret < 0) {
3171		xhci_free_command(xhci, config_cmd);
3172		spin_unlock_irqrestore(&xhci->lock, flags);
3173		return ret;
3174	}
3175	if (num_streams <= 1) {
3176		xhci_warn(xhci, "WARN: endpoints can't handle "
3177				"more than one stream.\n");
3178		xhci_free_command(xhci, config_cmd);
3179		spin_unlock_irqrestore(&xhci->lock, flags);
3180		return -EINVAL;
3181	}
3182	vdev = xhci->devs[udev->slot_id];
3183	/* Mark each endpoint as being in transition, so
3184	 * xhci_urb_enqueue() will reject all URBs.
3185	 */
3186	for (i = 0; i < num_eps; i++) {
3187		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3188		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3189	}
3190	spin_unlock_irqrestore(&xhci->lock, flags);
3191
3192	/* Setup internal data structures and allocate HW data structures for
3193	 * streams (but don't install the HW structures in the input context
3194	 * until we're sure all memory allocation succeeded).
3195	 */
3196	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3197	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3198			num_stream_ctxs, num_streams);
3199
3200	for (i = 0; i < num_eps; i++) {
3201		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3203				num_stream_ctxs,
3204				num_streams, mem_flags);
3205		if (!vdev->eps[ep_index].stream_info)
3206			goto cleanup;
3207		/* Set maxPstreams in endpoint context and update deq ptr to
3208		 * point to stream context array. FIXME
3209		 */
3210	}
3211
3212	/* Set up the input context for a configure endpoint command. */
3213	for (i = 0; i < num_eps; i++) {
3214		struct xhci_ep_ctx *ep_ctx;
3215
3216		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3217		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3218
3219		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3220				vdev->out_ctx, ep_index);
3221		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3222				vdev->eps[ep_index].stream_info);
3223	}
3224	/* Tell the HW to drop its old copy of the endpoint context info
3225	 * and add the updated copy from the input context.
3226	 */
3227	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3228			vdev->out_ctx, ctrl_ctx,
3229			changed_ep_bitmask, changed_ep_bitmask);
3230
3231	/* Issue and wait for the configure endpoint command */
3232	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3233			false, false);
3234
3235	/* xHC rejected the configure endpoint command for some reason, so we
3236	 * leave the old ring intact and free our internal streams data
3237	 * structure.
3238	 */
3239	if (ret < 0)
3240		goto cleanup;
3241
3242	spin_lock_irqsave(&xhci->lock, flags);
3243	for (i = 0; i < num_eps; i++) {
3244		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3245		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3246		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3247			 udev->slot_id, ep_index);
3248		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3249	}
3250	xhci_free_command(xhci, config_cmd);
3251	spin_unlock_irqrestore(&xhci->lock, flags);
3252
3253	/* Subtract 1 for stream 0, which drivers can't use */
3254	return num_streams - 1;
3255
3256cleanup:
3257	/* If it didn't work, free the streams! */
3258	for (i = 0; i < num_eps; i++) {
3259		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3260		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3261		vdev->eps[ep_index].stream_info = NULL;
3262		/* FIXME Unset maxPstreams in endpoint context and
3263		 * update deq ptr to point to normal string ring.
3264		 */
3265		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3266		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3267		xhci_endpoint_zero(xhci, vdev, eps[i]);
3268	}
3269	xhci_free_command(xhci, config_cmd);
3270	return -ENOMEM;
3271}
3272
3273/* Transition the endpoint from using streams to being a "normal" endpoint
3274 * without streams.
3275 *
3276 * Modify the endpoint context state, submit a configure endpoint command,
3277 * and free all endpoint rings for streams if that completes successfully.
3278 */
3279int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3280		struct usb_host_endpoint **eps, unsigned int num_eps,
3281		gfp_t mem_flags)
3282{
3283	int i, ret;
3284	struct xhci_hcd *xhci;
3285	struct xhci_virt_device *vdev;
3286	struct xhci_command *command;
3287	struct xhci_input_control_ctx *ctrl_ctx;
3288	unsigned int ep_index;
3289	unsigned long flags;
3290	u32 changed_ep_bitmask;
3291
3292	xhci = hcd_to_xhci(hcd);
3293	vdev = xhci->devs[udev->slot_id];
3294
3295	/* Set up a configure endpoint command to remove the streams rings */
3296	spin_lock_irqsave(&xhci->lock, flags);
3297	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3298			udev, eps, num_eps);
3299	if (changed_ep_bitmask == 0) {
3300		spin_unlock_irqrestore(&xhci->lock, flags);
3301		return -EINVAL;
3302	}
3303
3304	/* Use the xhci_command structure from the first endpoint.  We may have
3305	 * allocated too many, but the driver may call xhci_free_streams() for
3306	 * each endpoint it grouped into one call to xhci_alloc_streams().
3307	 */
3308	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3309	command = vdev->eps[ep_index].stream_info->free_streams_command;
3310	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3311	if (!ctrl_ctx) {
3312		spin_unlock_irqrestore(&xhci->lock, flags);
3313		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3314				__func__);
3315		return -EINVAL;
3316	}
3317
3318	for (i = 0; i < num_eps; i++) {
3319		struct xhci_ep_ctx *ep_ctx;
3320
3321		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3322		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3323		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3324			EP_GETTING_NO_STREAMS;
3325
3326		xhci_endpoint_copy(xhci, command->in_ctx,
3327				vdev->out_ctx, ep_index);
3328		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3329				&vdev->eps[ep_index]);
3330	}
3331	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3332			vdev->out_ctx, ctrl_ctx,
3333			changed_ep_bitmask, changed_ep_bitmask);
3334	spin_unlock_irqrestore(&xhci->lock, flags);
3335
3336	/* Issue and wait for the configure endpoint command,
3337	 * which must succeed.
3338	 */
3339	ret = xhci_configure_endpoint(xhci, udev, command,
3340			false, true);
3341
3342	/* xHC rejected the configure endpoint command for some reason, so we
3343	 * leave the streams rings intact.
3344	 */
3345	if (ret < 0)
3346		return ret;
3347
3348	spin_lock_irqsave(&xhci->lock, flags);
3349	for (i = 0; i < num_eps; i++) {
3350		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3351		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3352		vdev->eps[ep_index].stream_info = NULL;
3353		/* FIXME Unset maxPstreams in endpoint context and
3354		 * update deq ptr to point to normal string ring.
3355		 */
3356		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3357		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3358	}
3359	spin_unlock_irqrestore(&xhci->lock, flags);
3360
3361	return 0;
3362}
3363
3364/*
3365 * Deletes endpoint resources for endpoints that were active before a Reset
3366 * Device command, or a Disable Slot command.  The Reset Device command leaves
3367 * the control endpoint intact, whereas the Disable Slot command deletes it.
3368 *
3369 * Must be called with xhci->lock held.
3370 */
3371void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3372	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3373{
3374	int i;
3375	unsigned int num_dropped_eps = 0;
3376	unsigned int drop_flags = 0;
3377
3378	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3379		if (virt_dev->eps[i].ring) {
3380			drop_flags |= 1 << i;
3381			num_dropped_eps++;
3382		}
3383	}
3384	xhci->num_active_eps -= num_dropped_eps;
3385	if (num_dropped_eps)
3386		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3387				"Dropped %u ep ctxs, flags = 0x%x, "
3388				"%u now active.",
3389				num_dropped_eps, drop_flags,
3390				xhci->num_active_eps);
3391}
3392
3393/*
3394 * This submits a Reset Device Command, which will set the device state to 0,
3395 * set the device address to 0, and disable all the endpoints except the default
3396 * control endpoint.  The USB core should come back and call
3397 * xhci_address_device(), and then re-set up the configuration.  If this is
3398 * called because of a usb_reset_and_verify_device(), then the old alternate
3399 * settings will be re-installed through the normal bandwidth allocation
3400 * functions.
3401 *
3402 * Wait for the Reset Device command to finish.  Remove all structures
3403 * associated with the endpoints that were disabled.  Clear the input device
3404 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3405 *
3406 * If the virt_dev to be reset does not exist or does not match the udev,
3407 * it means the device is lost, possibly due to the xHC restore error and
3408 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3409 * re-allocate the device.
3410 */
3411int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3412{
3413	int ret, i;
3414	unsigned long flags;
3415	struct xhci_hcd *xhci;
3416	unsigned int slot_id;
3417	struct xhci_virt_device *virt_dev;
3418	struct xhci_command *reset_device_cmd;
3419	int timeleft;
3420	int last_freed_endpoint;
3421	struct xhci_slot_ctx *slot_ctx;
3422	int old_active_eps = 0;
3423
3424	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3425	if (ret <= 0)
3426		return ret;
3427	xhci = hcd_to_xhci(hcd);
3428	slot_id = udev->slot_id;
3429	virt_dev = xhci->devs[slot_id];
3430	if (!virt_dev) {
3431		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3432				"not exist. Re-allocate the device\n", slot_id);
3433		ret = xhci_alloc_dev(hcd, udev);
3434		if (ret == 1)
3435			return 0;
3436		else
3437			return -EINVAL;
3438	}
3439
3440	if (virt_dev->udev != udev) {
3441		/* If the virt_dev and the udev does not match, this virt_dev
3442		 * may belong to another udev.
3443		 * Re-allocate the device.
3444		 */
3445		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3446				"not match the udev. Re-allocate the device\n",
3447				slot_id);
3448		ret = xhci_alloc_dev(hcd, udev);
3449		if (ret == 1)
3450			return 0;
3451		else
3452			return -EINVAL;
3453	}
3454
3455	/* If device is not setup, there is no point in resetting it */
3456	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3457	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3458						SLOT_STATE_DISABLED)
3459		return 0;
3460
3461	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3462	/* Allocate the command structure that holds the struct completion.
3463	 * Assume we're in process context, since the normal device reset
3464	 * process has to wait for the device anyway.  Storage devices are
3465	 * reset as part of error handling, so use GFP_NOIO instead of
3466	 * GFP_KERNEL.
3467	 */
3468	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3469	if (!reset_device_cmd) {
3470		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3471		return -ENOMEM;
3472	}
3473
3474	/* Attempt to submit the Reset Device command to the command ring */
3475	spin_lock_irqsave(&xhci->lock, flags);
3476	reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
 
 
 
 
 
 
 
3477
3478	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3479	ret = xhci_queue_reset_device(xhci, slot_id);
3480	if (ret) {
3481		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3482		list_del(&reset_device_cmd->cmd_list);
3483		spin_unlock_irqrestore(&xhci->lock, flags);
3484		goto command_cleanup;
3485	}
3486	xhci_ring_cmd_db(xhci);
3487	spin_unlock_irqrestore(&xhci->lock, flags);
3488
3489	/* Wait for the Reset Device command to finish */
3490	timeleft = wait_for_completion_interruptible_timeout(
3491			reset_device_cmd->completion,
3492			XHCI_CMD_DEFAULT_TIMEOUT);
3493	if (timeleft <= 0) {
3494		xhci_warn(xhci, "%s while waiting for reset device command\n",
3495				timeleft == 0 ? "Timeout" : "Signal");
3496		spin_lock_irqsave(&xhci->lock, flags);
3497		/* The timeout might have raced with the event ring handler, so
3498		 * only delete from the list if the item isn't poisoned.
3499		 */
3500		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3501			list_del(&reset_device_cmd->cmd_list);
3502		spin_unlock_irqrestore(&xhci->lock, flags);
3503		ret = -ETIME;
3504		goto command_cleanup;
3505	}
3506
3507	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3508	 * unless we tried to reset a slot ID that wasn't enabled,
3509	 * or the device wasn't in the addressed or configured state.
3510	 */
3511	ret = reset_device_cmd->status;
3512	switch (ret) {
3513	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3514	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3515		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3516				slot_id,
3517				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3518		xhci_dbg(xhci, "Not freeing device rings.\n");
3519		/* Don't treat this as an error.  May change my mind later. */
3520		ret = 0;
3521		goto command_cleanup;
3522	case COMP_SUCCESS:
3523		xhci_dbg(xhci, "Successful reset device command.\n");
3524		break;
3525	default:
3526		if (xhci_is_vendor_info_code(xhci, ret))
3527			break;
3528		xhci_warn(xhci, "Unknown completion code %u for "
3529				"reset device command.\n", ret);
3530		ret = -EINVAL;
3531		goto command_cleanup;
3532	}
3533
3534	/* Free up host controller endpoint resources */
3535	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3536		spin_lock_irqsave(&xhci->lock, flags);
3537		/* Don't delete the default control endpoint resources */
3538		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3539		spin_unlock_irqrestore(&xhci->lock, flags);
3540	}
3541
3542	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3543	last_freed_endpoint = 1;
3544	for (i = 1; i < 31; ++i) {
3545		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3546
3547		if (ep->ep_state & EP_HAS_STREAMS) {
3548			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3549					xhci_get_endpoint_address(i));
3550			xhci_free_stream_info(xhci, ep->stream_info);
3551			ep->stream_info = NULL;
3552			ep->ep_state &= ~EP_HAS_STREAMS;
3553		}
3554
3555		if (ep->ring) {
3556			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3557			last_freed_endpoint = i;
3558		}
3559		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3560			xhci_drop_ep_from_interval_table(xhci,
3561					&virt_dev->eps[i].bw_info,
3562					virt_dev->bw_table,
3563					udev,
3564					&virt_dev->eps[i],
3565					virt_dev->tt_info);
3566		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3567	}
3568	/* If necessary, update the number of active TTs on this root port */
3569	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3570
3571	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3572	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3573	ret = 0;
3574
3575command_cleanup:
3576	xhci_free_command(xhci, reset_device_cmd);
3577	return ret;
3578}
3579
3580/*
3581 * At this point, the struct usb_device is about to go away, the device has
3582 * disconnected, and all traffic has been stopped and the endpoints have been
3583 * disabled.  Free any HC data structures associated with that device.
3584 */
3585void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3586{
3587	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3588	struct xhci_virt_device *virt_dev;
3589	unsigned long flags;
3590	u32 state;
3591	int i, ret;
3592
3593#ifndef CONFIG_USB_DEFAULT_PERSIST
3594	/*
3595	 * We called pm_runtime_get_noresume when the device was attached.
3596	 * Decrement the counter here to allow controller to runtime suspend
3597	 * if no devices remain.
3598	 */
3599	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3600		pm_runtime_put_noidle(hcd->self.controller);
3601#endif
3602
3603	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3604	/* If the host is halted due to driver unload, we still need to free the
3605	 * device.
3606	 */
3607	if (ret <= 0 && ret != -ENODEV)
3608		return;
3609
3610	virt_dev = xhci->devs[udev->slot_id];
3611
3612	/* Stop any wayward timer functions (which may grab the lock) */
3613	for (i = 0; i < 31; ++i) {
3614		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3615		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3616	}
3617
3618	spin_lock_irqsave(&xhci->lock, flags);
3619	/* Don't disable the slot if the host controller is dead. */
3620	state = readl(&xhci->op_regs->status);
3621	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3622			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3623		xhci_free_virt_device(xhci, udev->slot_id);
3624		spin_unlock_irqrestore(&xhci->lock, flags);
3625		return;
3626	}
3627
3628	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3629		spin_unlock_irqrestore(&xhci->lock, flags);
3630		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3631		return;
3632	}
3633	xhci_ring_cmd_db(xhci);
3634	spin_unlock_irqrestore(&xhci->lock, flags);
3635	/*
3636	 * Event command completion handler will free any data structures
3637	 * associated with the slot.  XXX Can free sleep?
3638	 */
3639}
3640
3641/*
3642 * Checks if we have enough host controller resources for the default control
3643 * endpoint.
3644 *
3645 * Must be called with xhci->lock held.
3646 */
3647static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3648{
3649	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3650		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3651				"Not enough ep ctxs: "
3652				"%u active, need to add 1, limit is %u.",
3653				xhci->num_active_eps, xhci->limit_active_eps);
3654		return -ENOMEM;
3655	}
3656	xhci->num_active_eps += 1;
3657	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3658			"Adding 1 ep ctx, %u now active.",
3659			xhci->num_active_eps);
3660	return 0;
3661}
3662
3663
3664/*
3665 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3666 * timed out, or allocating memory failed.  Returns 1 on success.
3667 */
3668int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3669{
3670	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3671	unsigned long flags;
3672	int timeleft;
3673	int ret;
3674	union xhci_trb *cmd_trb;
3675
3676	spin_lock_irqsave(&xhci->lock, flags);
3677	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3678	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3679	if (ret) {
3680		spin_unlock_irqrestore(&xhci->lock, flags);
3681		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3682		return 0;
3683	}
3684	xhci_ring_cmd_db(xhci);
3685	spin_unlock_irqrestore(&xhci->lock, flags);
3686
3687	/* XXX: how much time for xHC slot assignment? */
3688	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3689			XHCI_CMD_DEFAULT_TIMEOUT);
3690	if (timeleft <= 0) {
3691		xhci_warn(xhci, "%s while waiting for a slot\n",
3692				timeleft == 0 ? "Timeout" : "Signal");
3693		/* cancel the enable slot request */
3694		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3695	}
3696
3697	if (!xhci->slot_id) {
3698		xhci_err(xhci, "Error while assigning device slot ID\n");
3699		return 0;
3700	}
3701
3702	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3703		spin_lock_irqsave(&xhci->lock, flags);
3704		ret = xhci_reserve_host_control_ep_resources(xhci);
3705		if (ret) {
3706			spin_unlock_irqrestore(&xhci->lock, flags);
3707			xhci_warn(xhci, "Not enough host resources, "
3708					"active endpoint contexts = %u\n",
3709					xhci->num_active_eps);
3710			goto disable_slot;
3711		}
3712		spin_unlock_irqrestore(&xhci->lock, flags);
3713	}
3714	/* Use GFP_NOIO, since this function can be called from
3715	 * xhci_discover_or_reset_device(), which may be called as part of
3716	 * mass storage driver error handling.
3717	 */
3718	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3719		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3720		goto disable_slot;
3721	}
3722	udev->slot_id = xhci->slot_id;
3723
3724#ifndef CONFIG_USB_DEFAULT_PERSIST
3725	/*
3726	 * If resetting upon resume, we can't put the controller into runtime
3727	 * suspend if there is a device attached.
3728	 */
3729	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3730		pm_runtime_get_noresume(hcd->self.controller);
3731#endif
3732
3733	/* Is this a LS or FS device under a HS hub? */
3734	/* Hub or peripherial? */
3735	return 1;
3736
3737disable_slot:
3738	/* Disable slot, if we can do it without mem alloc */
3739	spin_lock_irqsave(&xhci->lock, flags);
3740	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3741		xhci_ring_cmd_db(xhci);
3742	spin_unlock_irqrestore(&xhci->lock, flags);
3743	return 0;
3744}
3745
3746/*
3747 * Issue an Address Device command and optionally send a corresponding
3748 * SetAddress request to the device.
3749 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3750 * we should only issue and wait on one address command at the same time.
 
 
 
3751 */
3752static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3753			     enum xhci_setup_dev setup)
3754{
3755	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3756	unsigned long flags;
3757	int timeleft;
3758	struct xhci_virt_device *virt_dev;
3759	int ret = 0;
3760	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3761	struct xhci_slot_ctx *slot_ctx;
3762	struct xhci_input_control_ctx *ctrl_ctx;
3763	u64 temp_64;
3764	union xhci_trb *cmd_trb;
3765
3766	if (!udev->slot_id) {
3767		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3768				"Bad Slot ID %d", udev->slot_id);
3769		return -EINVAL;
3770	}
3771
3772	virt_dev = xhci->devs[udev->slot_id];
3773
3774	if (WARN_ON(!virt_dev)) {
3775		/*
3776		 * In plug/unplug torture test with an NEC controller,
3777		 * a zero-dereference was observed once due to virt_dev = 0.
3778		 * Print useful debug rather than crash if it is observed again!
3779		 */
3780		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3781			udev->slot_id);
3782		return -EINVAL;
3783	}
3784
3785	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3786	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3787	if (!ctrl_ctx) {
3788		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3789				__func__);
3790		return -EINVAL;
3791	}
3792	/*
3793	 * If this is the first Set Address since device plug-in or
3794	 * virt_device realloaction after a resume with an xHCI power loss,
3795	 * then set up the slot context.
3796	 */
3797	if (!slot_ctx->dev_info)
3798		xhci_setup_addressable_virt_dev(xhci, udev);
3799	/* Otherwise, update the control endpoint ring enqueue pointer. */
3800	else
3801		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3802	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3803	ctrl_ctx->drop_flags = 0;
3804
3805	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3806	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3807	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3808				le32_to_cpu(slot_ctx->dev_info) >> 27);
3809
3810	spin_lock_irqsave(&xhci->lock, flags);
3811	cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3812	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3813					udev->slot_id, setup);
3814	if (ret) {
3815		spin_unlock_irqrestore(&xhci->lock, flags);
3816		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3817				"FIXME: allocate a command ring segment");
3818		return ret;
3819	}
3820	xhci_ring_cmd_db(xhci);
3821	spin_unlock_irqrestore(&xhci->lock, flags);
3822
3823	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3824	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3825			XHCI_CMD_DEFAULT_TIMEOUT);
3826	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3827	 * the SetAddress() "recovery interval" required by USB and aborting the
3828	 * command on a timeout.
3829	 */
3830	if (timeleft <= 0) {
3831		xhci_warn(xhci, "%s while waiting for setup %s command\n",
3832			  timeleft == 0 ? "Timeout" : "Signal", act);
3833		/* cancel the address device command */
3834		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3835		if (ret < 0)
3836			return ret;
3837		return -ETIME;
3838	}
3839
3840	switch (virt_dev->cmd_status) {
3841	case COMP_CTX_STATE:
3842	case COMP_EBADSLT:
3843		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3844			 act, udev->slot_id);
3845		ret = -EINVAL;
3846		break;
3847	case COMP_TX_ERR:
3848		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3849		ret = -EPROTO;
3850		break;
3851	case COMP_DEV_ERR:
3852		dev_warn(&udev->dev,
3853			 "ERROR: Incompatible device for setup %s command\n", act);
3854		ret = -ENODEV;
3855		break;
3856	case COMP_SUCCESS:
3857		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858			       "Successful setup %s command", act);
3859		break;
3860	default:
3861		xhci_err(xhci,
3862			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3863			 act, virt_dev->cmd_status);
3864		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3865		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3866		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3867		ret = -EINVAL;
3868		break;
3869	}
3870	if (ret) {
3871		return ret;
3872	}
3873	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3874	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875			"Op regs DCBAA ptr = %#016llx", temp_64);
3876	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3877		"Slot ID %d dcbaa entry @%p = %#016llx",
3878		udev->slot_id,
3879		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3880		(unsigned long long)
3881		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3882	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3883			"Output Context DMA address = %#08llx",
3884			(unsigned long long)virt_dev->out_ctx->dma);
3885	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3886	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3887	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3888				le32_to_cpu(slot_ctx->dev_info) >> 27);
3889	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3890	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3891	/*
3892	 * USB core uses address 1 for the roothubs, so we add one to the
3893	 * address given back to us by the HC.
3894	 */
3895	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3896	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3897				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
3898	/* Zero the input context control for later use */
 
3899	ctrl_ctx->add_flags = 0;
3900	ctrl_ctx->drop_flags = 0;
3901
3902	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3903		       "Internal device address = %d",
3904		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3905
3906	return 0;
3907}
3908
3909int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3910{
3911	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3912}
3913
3914int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3915{
3916	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3917}
3918
3919/*
3920 * Transfer the port index into real index in the HW port status
3921 * registers. Caculate offset between the port's PORTSC register
3922 * and port status base. Divide the number of per port register
3923 * to get the real index. The raw port number bases 1.
3924 */
3925int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3926{
3927	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3928	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3929	__le32 __iomem *addr;
3930	int raw_port;
3931
3932	if (hcd->speed != HCD_USB3)
3933		addr = xhci->usb2_ports[port1 - 1];
3934	else
3935		addr = xhci->usb3_ports[port1 - 1];
3936
3937	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3938	return raw_port;
3939}
3940
3941/*
3942 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3943 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3944 */
3945static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3946			struct usb_device *udev, u16 max_exit_latency)
3947{
3948	struct xhci_virt_device *virt_dev;
3949	struct xhci_command *command;
3950	struct xhci_input_control_ctx *ctrl_ctx;
3951	struct xhci_slot_ctx *slot_ctx;
3952	unsigned long flags;
3953	int ret;
3954
3955	spin_lock_irqsave(&xhci->lock, flags);
3956	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3957		spin_unlock_irqrestore(&xhci->lock, flags);
3958		return 0;
3959	}
3960
3961	/* Attempt to issue an Evaluate Context command to change the MEL. */
3962	virt_dev = xhci->devs[udev->slot_id];
3963	command = xhci->lpm_command;
3964	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3965	if (!ctrl_ctx) {
3966		spin_unlock_irqrestore(&xhci->lock, flags);
3967		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3968				__func__);
3969		return -ENOMEM;
3970	}
3971
3972	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3973	spin_unlock_irqrestore(&xhci->lock, flags);
3974
3975	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3976	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3977	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3978	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3979
3980	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3981			"Set up evaluate context for LPM MEL change.");
3982	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3983	xhci_dbg_ctx(xhci, command->in_ctx, 0);
3984
3985	/* Issue and wait for the evaluate context command. */
3986	ret = xhci_configure_endpoint(xhci, udev, command,
3987			true, true);
3988	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3989	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3990
3991	if (!ret) {
3992		spin_lock_irqsave(&xhci->lock, flags);
3993		virt_dev->current_mel = max_exit_latency;
3994		spin_unlock_irqrestore(&xhci->lock, flags);
3995	}
3996	return ret;
3997}
3998
3999#ifdef CONFIG_PM_RUNTIME
4000
4001/* BESL to HIRD Encoding array for USB2 LPM */
4002static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4003	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4004
4005/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4006static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4007					struct usb_device *udev)
4008{
4009	int u2del, besl, besl_host;
4010	int besl_device = 0;
4011	u32 field;
4012
4013	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4014	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4015
4016	if (field & USB_BESL_SUPPORT) {
4017		for (besl_host = 0; besl_host < 16; besl_host++) {
4018			if (xhci_besl_encoding[besl_host] >= u2del)
4019				break;
4020		}
4021		/* Use baseline BESL value as default */
4022		if (field & USB_BESL_BASELINE_VALID)
4023			besl_device = USB_GET_BESL_BASELINE(field);
4024		else if (field & USB_BESL_DEEP_VALID)
4025			besl_device = USB_GET_BESL_DEEP(field);
4026	} else {
4027		if (u2del <= 50)
4028			besl_host = 0;
4029		else
4030			besl_host = (u2del - 51) / 75 + 1;
4031	}
4032
4033	besl = besl_host + besl_device;
4034	if (besl > 15)
4035		besl = 15;
4036
4037	return besl;
4038}
4039
4040/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4041static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4042{
4043	u32 field;
4044	int l1;
4045	int besld = 0;
4046	int hirdm = 0;
4047
4048	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4049
4050	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4051	l1 = udev->l1_params.timeout / 256;
4052
4053	/* device has preferred BESLD */
4054	if (field & USB_BESL_DEEP_VALID) {
4055		besld = USB_GET_BESL_DEEP(field);
4056		hirdm = 1;
4057	}
4058
4059	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4060}
4061
4062int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4063			struct usb_device *udev, int enable)
4064{
4065	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4066	__le32 __iomem	**port_array;
4067	__le32 __iomem	*pm_addr, *hlpm_addr;
4068	u32		pm_val, hlpm_val, field;
4069	unsigned int	port_num;
4070	unsigned long	flags;
4071	int		hird, exit_latency;
4072	int		ret;
4073
4074	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4075			!udev->lpm_capable)
4076		return -EPERM;
4077
4078	if (!udev->parent || udev->parent->parent ||
4079			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4080		return -EPERM;
4081
4082	if (udev->usb2_hw_lpm_capable != 1)
4083		return -EPERM;
4084
4085	spin_lock_irqsave(&xhci->lock, flags);
4086
4087	port_array = xhci->usb2_ports;
4088	port_num = udev->portnum - 1;
4089	pm_addr = port_array[port_num] + PORTPMSC;
4090	pm_val = readl(pm_addr);
4091	hlpm_addr = port_array[port_num] + PORTHLPMC;
4092	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4093
4094	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4095			enable ? "enable" : "disable", port_num);
4096
4097	if (enable) {
4098		/* Host supports BESL timeout instead of HIRD */
4099		if (udev->usb2_hw_lpm_besl_capable) {
4100			/* if device doesn't have a preferred BESL value use a
4101			 * default one which works with mixed HIRD and BESL
4102			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4103			 */
4104			if ((field & USB_BESL_SUPPORT) &&
4105			    (field & USB_BESL_BASELINE_VALID))
4106				hird = USB_GET_BESL_BASELINE(field);
4107			else
4108				hird = udev->l1_params.besl;
4109
4110			exit_latency = xhci_besl_encoding[hird];
4111			spin_unlock_irqrestore(&xhci->lock, flags);
4112
4113			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4114			 * input context for link powermanagement evaluate
4115			 * context commands. It is protected by hcd->bandwidth
4116			 * mutex and is shared by all devices. We need to set
4117			 * the max ext latency in USB 2 BESL LPM as well, so
4118			 * use the same mutex and xhci_change_max_exit_latency()
4119			 */
4120			mutex_lock(hcd->bandwidth_mutex);
4121			ret = xhci_change_max_exit_latency(xhci, udev,
4122							   exit_latency);
4123			mutex_unlock(hcd->bandwidth_mutex);
4124
4125			if (ret < 0)
4126				return ret;
4127			spin_lock_irqsave(&xhci->lock, flags);
4128
4129			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4130			writel(hlpm_val, hlpm_addr);
4131			/* flush write */
4132			readl(hlpm_addr);
4133		} else {
4134			hird = xhci_calculate_hird_besl(xhci, udev);
4135		}
4136
4137		pm_val &= ~PORT_HIRD_MASK;
4138		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4139		writel(pm_val, pm_addr);
4140		pm_val = readl(pm_addr);
4141		pm_val |= PORT_HLE;
4142		writel(pm_val, pm_addr);
4143		/* flush write */
4144		readl(pm_addr);
4145	} else {
4146		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4147		writel(pm_val, pm_addr);
4148		/* flush write */
4149		readl(pm_addr);
4150		if (udev->usb2_hw_lpm_besl_capable) {
4151			spin_unlock_irqrestore(&xhci->lock, flags);
4152			mutex_lock(hcd->bandwidth_mutex);
4153			xhci_change_max_exit_latency(xhci, udev, 0);
4154			mutex_unlock(hcd->bandwidth_mutex);
4155			return 0;
4156		}
4157	}
4158
4159	spin_unlock_irqrestore(&xhci->lock, flags);
4160	return 0;
4161}
4162
4163/* check if a usb2 port supports a given extened capability protocol
4164 * only USB2 ports extended protocol capability values are cached.
4165 * Return 1 if capability is supported
4166 */
4167static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4168					   unsigned capability)
4169{
4170	u32 port_offset, port_count;
4171	int i;
4172
4173	for (i = 0; i < xhci->num_ext_caps; i++) {
4174		if (xhci->ext_caps[i] & capability) {
4175			/* port offsets starts at 1 */
4176			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4177			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4178			if (port >= port_offset &&
4179			    port < port_offset + port_count)
4180				return 1;
4181		}
4182	}
4183	return 0;
4184}
4185
4186int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4187{
4188	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4189	int		portnum = udev->portnum - 1;
4190
4191	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4192			!udev->lpm_capable)
4193		return 0;
4194
4195	/* we only support lpm for non-hub device connected to root hub yet */
4196	if (!udev->parent || udev->parent->parent ||
4197			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4198		return 0;
4199
4200	if (xhci->hw_lpm_support == 1 &&
4201			xhci_check_usb2_port_capability(
4202				xhci, portnum, XHCI_HLC)) {
4203		udev->usb2_hw_lpm_capable = 1;
4204		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4205		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4206		if (xhci_check_usb2_port_capability(xhci, portnum,
4207					XHCI_BLC))
4208			udev->usb2_hw_lpm_besl_capable = 1;
4209	}
4210
4211	return 0;
4212}
4213
4214#else
4215
4216int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4217				struct usb_device *udev, int enable)
4218{
4219	return 0;
4220}
4221
4222int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4223{
4224	return 0;
4225}
4226
4227#endif /* CONFIG_PM_RUNTIME */
4228
4229/*---------------------- USB 3.0 Link PM functions ------------------------*/
4230
4231#ifdef CONFIG_PM
4232/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4233static unsigned long long xhci_service_interval_to_ns(
4234		struct usb_endpoint_descriptor *desc)
4235{
4236	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4237}
4238
4239static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4240		enum usb3_link_state state)
4241{
4242	unsigned long long sel;
4243	unsigned long long pel;
4244	unsigned int max_sel_pel;
4245	char *state_name;
4246
4247	switch (state) {
4248	case USB3_LPM_U1:
4249		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4250		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4251		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4252		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4253		state_name = "U1";
4254		break;
4255	case USB3_LPM_U2:
4256		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4257		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4258		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4259		state_name = "U2";
4260		break;
4261	default:
4262		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4263				__func__);
4264		return USB3_LPM_DISABLED;
4265	}
4266
4267	if (sel <= max_sel_pel && pel <= max_sel_pel)
4268		return USB3_LPM_DEVICE_INITIATED;
4269
4270	if (sel > max_sel_pel)
4271		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4272				"due to long SEL %llu ms\n",
4273				state_name, sel);
4274	else
4275		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4276				"due to long PEL %llu ms\n",
4277				state_name, pel);
4278	return USB3_LPM_DISABLED;
4279}
4280
4281/* Returns the hub-encoded U1 timeout value.
4282 * The U1 timeout should be the maximum of the following values:
4283 *  - For control endpoints, U1 system exit latency (SEL) * 3
4284 *  - For bulk endpoints, U1 SEL * 5
4285 *  - For interrupt endpoints:
4286 *    - Notification EPs, U1 SEL * 3
4287 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4288 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4289 */
4290static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4291		struct usb_endpoint_descriptor *desc)
4292{
4293	unsigned long long timeout_ns;
4294	int ep_type;
4295	int intr_type;
4296
4297	ep_type = usb_endpoint_type(desc);
4298	switch (ep_type) {
4299	case USB_ENDPOINT_XFER_CONTROL:
4300		timeout_ns = udev->u1_params.sel * 3;
4301		break;
4302	case USB_ENDPOINT_XFER_BULK:
4303		timeout_ns = udev->u1_params.sel * 5;
4304		break;
4305	case USB_ENDPOINT_XFER_INT:
4306		intr_type = usb_endpoint_interrupt_type(desc);
4307		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4308			timeout_ns = udev->u1_params.sel * 3;
4309			break;
4310		}
4311		/* Otherwise the calculation is the same as isoc eps */
4312	case USB_ENDPOINT_XFER_ISOC:
4313		timeout_ns = xhci_service_interval_to_ns(desc);
4314		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4315		if (timeout_ns < udev->u1_params.sel * 2)
4316			timeout_ns = udev->u1_params.sel * 2;
4317		break;
4318	default:
4319		return 0;
4320	}
4321
4322	/* The U1 timeout is encoded in 1us intervals. */
4323	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4324	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4325	if (timeout_ns == USB3_LPM_DISABLED)
4326		timeout_ns++;
4327
4328	/* If the necessary timeout value is bigger than what we can set in the
4329	 * USB 3.0 hub, we have to disable hub-initiated U1.
4330	 */
4331	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4332		return timeout_ns;
4333	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4334			"due to long timeout %llu ms\n", timeout_ns);
4335	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4336}
4337
4338/* Returns the hub-encoded U2 timeout value.
4339 * The U2 timeout should be the maximum of:
4340 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4341 *  - largest bInterval of any active periodic endpoint (to avoid going
4342 *    into lower power link states between intervals).
4343 *  - the U2 Exit Latency of the device
4344 */
4345static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4346		struct usb_endpoint_descriptor *desc)
4347{
4348	unsigned long long timeout_ns;
4349	unsigned long long u2_del_ns;
4350
4351	timeout_ns = 10 * 1000 * 1000;
4352
4353	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4354			(xhci_service_interval_to_ns(desc) > timeout_ns))
4355		timeout_ns = xhci_service_interval_to_ns(desc);
4356
4357	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4358	if (u2_del_ns > timeout_ns)
4359		timeout_ns = u2_del_ns;
4360
4361	/* The U2 timeout is encoded in 256us intervals */
4362	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4363	/* If the necessary timeout value is bigger than what we can set in the
4364	 * USB 3.0 hub, we have to disable hub-initiated U2.
4365	 */
4366	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4367		return timeout_ns;
4368	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4369			"due to long timeout %llu ms\n", timeout_ns);
4370	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4371}
4372
4373static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4374		struct usb_device *udev,
4375		struct usb_endpoint_descriptor *desc,
4376		enum usb3_link_state state,
4377		u16 *timeout)
4378{
4379	if (state == USB3_LPM_U1) {
4380		if (xhci->quirks & XHCI_INTEL_HOST)
4381			return xhci_calculate_intel_u1_timeout(udev, desc);
4382	} else {
4383		if (xhci->quirks & XHCI_INTEL_HOST)
4384			return xhci_calculate_intel_u2_timeout(udev, desc);
4385	}
4386
4387	return USB3_LPM_DISABLED;
4388}
4389
4390static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4391		struct usb_device *udev,
4392		struct usb_endpoint_descriptor *desc,
4393		enum usb3_link_state state,
4394		u16 *timeout)
4395{
4396	u16 alt_timeout;
4397
4398	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4399		desc, state, timeout);
4400
4401	/* If we found we can't enable hub-initiated LPM, or
4402	 * the U1 or U2 exit latency was too high to allow
4403	 * device-initiated LPM as well, just stop searching.
4404	 */
4405	if (alt_timeout == USB3_LPM_DISABLED ||
4406			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4407		*timeout = alt_timeout;
4408		return -E2BIG;
4409	}
4410	if (alt_timeout > *timeout)
4411		*timeout = alt_timeout;
4412	return 0;
4413}
4414
4415static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4416		struct usb_device *udev,
4417		struct usb_host_interface *alt,
4418		enum usb3_link_state state,
4419		u16 *timeout)
4420{
4421	int j;
4422
4423	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4424		if (xhci_update_timeout_for_endpoint(xhci, udev,
4425					&alt->endpoint[j].desc, state, timeout))
4426			return -E2BIG;
4427		continue;
4428	}
4429	return 0;
4430}
4431
4432static int xhci_check_intel_tier_policy(struct usb_device *udev,
4433		enum usb3_link_state state)
4434{
4435	struct usb_device *parent;
4436	unsigned int num_hubs;
4437
4438	if (state == USB3_LPM_U2)
4439		return 0;
4440
4441	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4442	for (parent = udev->parent, num_hubs = 0; parent->parent;
4443			parent = parent->parent)
4444		num_hubs++;
4445
4446	if (num_hubs < 2)
4447		return 0;
4448
4449	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4450			" below second-tier hub.\n");
4451	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4452			"to decrease power consumption.\n");
4453	return -E2BIG;
4454}
4455
4456static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4457		struct usb_device *udev,
4458		enum usb3_link_state state)
4459{
4460	if (xhci->quirks & XHCI_INTEL_HOST)
4461		return xhci_check_intel_tier_policy(udev, state);
4462	return -EINVAL;
4463}
4464
4465/* Returns the U1 or U2 timeout that should be enabled.
4466 * If the tier check or timeout setting functions return with a non-zero exit
4467 * code, that means the timeout value has been finalized and we shouldn't look
4468 * at any more endpoints.
4469 */
4470static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4471			struct usb_device *udev, enum usb3_link_state state)
4472{
4473	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4474	struct usb_host_config *config;
4475	char *state_name;
4476	int i;
4477	u16 timeout = USB3_LPM_DISABLED;
4478
4479	if (state == USB3_LPM_U1)
4480		state_name = "U1";
4481	else if (state == USB3_LPM_U2)
4482		state_name = "U2";
4483	else {
4484		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4485				state);
4486		return timeout;
4487	}
4488
4489	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4490		return timeout;
4491
4492	/* Gather some information about the currently installed configuration
4493	 * and alternate interface settings.
4494	 */
4495	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4496			state, &timeout))
4497		return timeout;
4498
4499	config = udev->actconfig;
4500	if (!config)
4501		return timeout;
4502
4503	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4504		struct usb_driver *driver;
4505		struct usb_interface *intf = config->interface[i];
4506
4507		if (!intf)
4508			continue;
4509
4510		/* Check if any currently bound drivers want hub-initiated LPM
4511		 * disabled.
4512		 */
4513		if (intf->dev.driver) {
4514			driver = to_usb_driver(intf->dev.driver);
4515			if (driver && driver->disable_hub_initiated_lpm) {
4516				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4517						"at request of driver %s\n",
4518						state_name, driver->name);
4519				return xhci_get_timeout_no_hub_lpm(udev, state);
4520			}
4521		}
4522
4523		/* Not sure how this could happen... */
4524		if (!intf->cur_altsetting)
4525			continue;
4526
4527		if (xhci_update_timeout_for_interface(xhci, udev,
4528					intf->cur_altsetting,
4529					state, &timeout))
4530			return timeout;
4531	}
4532	return timeout;
4533}
4534
4535static int calculate_max_exit_latency(struct usb_device *udev,
4536		enum usb3_link_state state_changed,
4537		u16 hub_encoded_timeout)
4538{
4539	unsigned long long u1_mel_us = 0;
4540	unsigned long long u2_mel_us = 0;
4541	unsigned long long mel_us = 0;
4542	bool disabling_u1;
4543	bool disabling_u2;
4544	bool enabling_u1;
4545	bool enabling_u2;
4546
4547	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4548			hub_encoded_timeout == USB3_LPM_DISABLED);
4549	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4550			hub_encoded_timeout == USB3_LPM_DISABLED);
4551
4552	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4553			hub_encoded_timeout != USB3_LPM_DISABLED);
4554	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4555			hub_encoded_timeout != USB3_LPM_DISABLED);
4556
4557	/* If U1 was already enabled and we're not disabling it,
4558	 * or we're going to enable U1, account for the U1 max exit latency.
4559	 */
4560	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4561			enabling_u1)
4562		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4563	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4564			enabling_u2)
4565		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4566
4567	if (u1_mel_us > u2_mel_us)
4568		mel_us = u1_mel_us;
4569	else
4570		mel_us = u2_mel_us;
4571	/* xHCI host controller max exit latency field is only 16 bits wide. */
4572	if (mel_us > MAX_EXIT) {
4573		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4574				"is too big.\n", mel_us);
4575		return -E2BIG;
4576	}
4577	return mel_us;
4578}
4579
4580/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4581int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4582			struct usb_device *udev, enum usb3_link_state state)
4583{
4584	struct xhci_hcd	*xhci;
4585	u16 hub_encoded_timeout;
4586	int mel;
4587	int ret;
4588
4589	xhci = hcd_to_xhci(hcd);
4590	/* The LPM timeout values are pretty host-controller specific, so don't
4591	 * enable hub-initiated timeouts unless the vendor has provided
4592	 * information about their timeout algorithm.
4593	 */
4594	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4595			!xhci->devs[udev->slot_id])
4596		return USB3_LPM_DISABLED;
4597
4598	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4599	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4600	if (mel < 0) {
4601		/* Max Exit Latency is too big, disable LPM. */
4602		hub_encoded_timeout = USB3_LPM_DISABLED;
4603		mel = 0;
4604	}
4605
4606	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4607	if (ret)
4608		return ret;
4609	return hub_encoded_timeout;
4610}
4611
4612int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4613			struct usb_device *udev, enum usb3_link_state state)
4614{
4615	struct xhci_hcd	*xhci;
4616	u16 mel;
4617	int ret;
4618
4619	xhci = hcd_to_xhci(hcd);
4620	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4621			!xhci->devs[udev->slot_id])
4622		return 0;
4623
4624	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4625	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4626	if (ret)
4627		return ret;
4628	return 0;
4629}
4630#else /* CONFIG_PM */
4631
4632int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4633			struct usb_device *udev, enum usb3_link_state state)
4634{
4635	return USB3_LPM_DISABLED;
4636}
4637
4638int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639			struct usb_device *udev, enum usb3_link_state state)
4640{
4641	return 0;
4642}
4643#endif	/* CONFIG_PM */
4644
4645/*-------------------------------------------------------------------------*/
4646
4647/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4648 * internal data structures for the device.
4649 */
4650int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4651			struct usb_tt *tt, gfp_t mem_flags)
4652{
4653	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4654	struct xhci_virt_device *vdev;
4655	struct xhci_command *config_cmd;
4656	struct xhci_input_control_ctx *ctrl_ctx;
4657	struct xhci_slot_ctx *slot_ctx;
4658	unsigned long flags;
4659	unsigned think_time;
4660	int ret;
4661
4662	/* Ignore root hubs */
4663	if (!hdev->parent)
4664		return 0;
4665
4666	vdev = xhci->devs[hdev->slot_id];
4667	if (!vdev) {
4668		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4669		return -EINVAL;
4670	}
4671	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4672	if (!config_cmd) {
4673		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4674		return -ENOMEM;
4675	}
4676	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4677	if (!ctrl_ctx) {
4678		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4679				__func__);
4680		xhci_free_command(xhci, config_cmd);
4681		return -ENOMEM;
4682	}
4683
4684	spin_lock_irqsave(&xhci->lock, flags);
4685	if (hdev->speed == USB_SPEED_HIGH &&
4686			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4687		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4688		xhci_free_command(xhci, config_cmd);
4689		spin_unlock_irqrestore(&xhci->lock, flags);
4690		return -ENOMEM;
4691	}
4692
4693	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
 
4694	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4695	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4696	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4697	if (tt->multi)
4698		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4699	if (xhci->hci_version > 0x95) {
4700		xhci_dbg(xhci, "xHCI version %x needs hub "
4701				"TT think time and number of ports\n",
4702				(unsigned int) xhci->hci_version);
4703		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4704		/* Set TT think time - convert from ns to FS bit times.
4705		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4706		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4707		 *
4708		 * xHCI 1.0: this field shall be 0 if the device is not a
4709		 * High-spped hub.
4710		 */
4711		think_time = tt->think_time;
4712		if (think_time != 0)
4713			think_time = (think_time / 666) - 1;
4714		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4715			slot_ctx->tt_info |=
4716				cpu_to_le32(TT_THINK_TIME(think_time));
4717	} else {
4718		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4719				"TT think time or number of ports\n",
4720				(unsigned int) xhci->hci_version);
4721	}
4722	slot_ctx->dev_state = 0;
4723	spin_unlock_irqrestore(&xhci->lock, flags);
4724
4725	xhci_dbg(xhci, "Set up %s for hub device.\n",
4726			(xhci->hci_version > 0x95) ?
4727			"configure endpoint" : "evaluate context");
4728	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4729	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4730
4731	/* Issue and wait for the configure endpoint or
4732	 * evaluate context command.
4733	 */
4734	if (xhci->hci_version > 0x95)
4735		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4736				false, false);
4737	else
4738		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4739				true, false);
4740
4741	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4742	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4743
4744	xhci_free_command(xhci, config_cmd);
4745	return ret;
4746}
4747
4748int xhci_get_frame(struct usb_hcd *hcd)
4749{
4750	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4751	/* EHCI mods by the periodic size.  Why? */
4752	return readl(&xhci->run_regs->microframe_index) >> 3;
4753}
4754
4755int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4756{
4757	struct xhci_hcd		*xhci;
4758	struct device		*dev = hcd->self.controller;
4759	int			retval;
4760
4761	/* Accept arbitrarily long scatter-gather lists */
4762	hcd->self.sg_tablesize = ~0;
4763
4764	/* support to build packet from discontinuous buffers */
4765	hcd->self.no_sg_constraint = 1;
4766
4767	/* XHCI controllers don't stop the ep queue on short packets :| */
4768	hcd->self.no_stop_on_short = 1;
4769
4770	if (usb_hcd_is_primary_hcd(hcd)) {
4771		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4772		if (!xhci)
4773			return -ENOMEM;
4774		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4775		xhci->main_hcd = hcd;
4776		/* Mark the first roothub as being USB 2.0.
4777		 * The xHCI driver will register the USB 3.0 roothub.
4778		 */
4779		hcd->speed = HCD_USB2;
4780		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4781		/*
4782		 * USB 2.0 roothub under xHCI has an integrated TT,
4783		 * (rate matching hub) as opposed to having an OHCI/UHCI
4784		 * companion controller.
4785		 */
4786		hcd->has_tt = 1;
4787	} else {
4788		/* xHCI private pointer was set in xhci_pci_probe for the second
4789		 * registered roothub.
4790		 */
4791		return 0;
4792	}
4793
4794	xhci->cap_regs = hcd->regs;
4795	xhci->op_regs = hcd->regs +
4796		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4797	xhci->run_regs = hcd->regs +
4798		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4799	/* Cache read-only capability registers */
4800	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4801	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4802	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4803	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4804	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4805	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4806	xhci_print_registers(xhci);
4807
4808	xhci->quirks = quirks;
4809
4810	get_quirks(dev, xhci);
4811
4812	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4813	 * success event after a short transfer. This quirk will ignore such
4814	 * spurious event.
4815	 */
4816	if (xhci->hci_version > 0x96)
4817		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4818
4819	/* Make sure the HC is halted. */
4820	retval = xhci_halt(xhci);
4821	if (retval)
4822		goto error;
4823
4824	xhci_dbg(xhci, "Resetting HCD\n");
4825	/* Reset the internal HC memory state and registers. */
4826	retval = xhci_reset(xhci);
4827	if (retval)
4828		goto error;
4829	xhci_dbg(xhci, "Reset complete\n");
4830
4831	/* Set dma_mask and coherent_dma_mask to 64-bits,
4832	 * if xHC supports 64-bit addressing */
4833	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4834			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4835		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4836		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4837	}
4838
4839	xhci_dbg(xhci, "Calling HCD init\n");
4840	/* Initialize HCD and host controller data structures. */
4841	retval = xhci_init(hcd);
4842	if (retval)
4843		goto error;
4844	xhci_dbg(xhci, "Called HCD init\n");
4845	return 0;
4846error:
4847	kfree(xhci);
4848	return retval;
4849}
4850
4851MODULE_DESCRIPTION(DRIVER_DESC);
4852MODULE_AUTHOR(DRIVER_AUTHOR);
4853MODULE_LICENSE("GPL");
4854
4855static int __init xhci_hcd_init(void)
4856{
4857	int retval;
 
4858
4859	retval = xhci_register_pci();
 
4860	if (retval < 0) {
4861		pr_debug("Problem registering PCI driver.\n");
4862		return retval;
4863	}
4864	retval = xhci_register_plat();
4865	if (retval < 0) {
4866		pr_debug("Problem registering platform driver.\n");
4867		goto unreg_pci;
4868	}
4869	/*
4870	 * Check the compiler generated sizes of structures that must be laid
4871	 * out in specific ways for hardware access.
4872	 */
4873	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4874	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4875	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4876	/* xhci_device_control has eight fields, and also
4877	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4878	 */
4879	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4880	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4881	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4882	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4883	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4884	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4885	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
 
4886	return 0;
4887unreg_pci:
4888	xhci_unregister_pci();
4889	return retval;
4890}
4891module_init(xhci_hcd_init);
4892
4893static void __exit xhci_hcd_cleanup(void)
4894{
 
4895	xhci_unregister_pci();
4896	xhci_unregister_plat();
4897}
4898module_exit(xhci_hcd_cleanup);