Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/pagewalk.h>
3#include <linux/mm_inline.h>
4#include <linux/hugetlb.h>
5#include <linux/huge_mm.h>
6#include <linux/mount.h>
7#include <linux/ksm.h>
8#include <linux/seq_file.h>
9#include <linux/highmem.h>
10#include <linux/ptrace.h>
11#include <linux/slab.h>
12#include <linux/pagemap.h>
13#include <linux/mempolicy.h>
14#include <linux/rmap.h>
15#include <linux/swap.h>
16#include <linux/sched/mm.h>
17#include <linux/swapops.h>
18#include <linux/mmu_notifier.h>
19#include <linux/page_idle.h>
20#include <linux/shmem_fs.h>
21#include <linux/uaccess.h>
22#include <linux/pkeys.h>
23#include <linux/minmax.h>
24#include <linux/overflow.h>
25
26#include <asm/elf.h>
27#include <asm/tlb.h>
28#include <asm/tlbflush.h>
29#include "internal.h"
30
31#define SEQ_PUT_DEC(str, val) \
32 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
33void task_mem(struct seq_file *m, struct mm_struct *mm)
34{
35 unsigned long text, lib, swap, anon, file, shmem;
36 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
37
38 anon = get_mm_counter(mm, MM_ANONPAGES);
39 file = get_mm_counter(mm, MM_FILEPAGES);
40 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
41
42 /*
43 * Note: to minimize their overhead, mm maintains hiwater_vm and
44 * hiwater_rss only when about to *lower* total_vm or rss. Any
45 * collector of these hiwater stats must therefore get total_vm
46 * and rss too, which will usually be the higher. Barriers? not
47 * worth the effort, such snapshots can always be inconsistent.
48 */
49 hiwater_vm = total_vm = mm->total_vm;
50 if (hiwater_vm < mm->hiwater_vm)
51 hiwater_vm = mm->hiwater_vm;
52 hiwater_rss = total_rss = anon + file + shmem;
53 if (hiwater_rss < mm->hiwater_rss)
54 hiwater_rss = mm->hiwater_rss;
55
56 /* split executable areas between text and lib */
57 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
58 text = min(text, mm->exec_vm << PAGE_SHIFT);
59 lib = (mm->exec_vm << PAGE_SHIFT) - text;
60
61 swap = get_mm_counter(mm, MM_SWAPENTS);
62 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
63 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
64 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
65 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
66 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
67 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
68 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
69 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
70 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
71 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
72 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
73 seq_put_decimal_ull_width(m,
74 " kB\nVmExe:\t", text >> 10, 8);
75 seq_put_decimal_ull_width(m,
76 " kB\nVmLib:\t", lib >> 10, 8);
77 seq_put_decimal_ull_width(m,
78 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
79 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
80 seq_puts(m, " kB\n");
81 hugetlb_report_usage(m, mm);
82}
83#undef SEQ_PUT_DEC
84
85unsigned long task_vsize(struct mm_struct *mm)
86{
87 return PAGE_SIZE * mm->total_vm;
88}
89
90unsigned long task_statm(struct mm_struct *mm,
91 unsigned long *shared, unsigned long *text,
92 unsigned long *data, unsigned long *resident)
93{
94 *shared = get_mm_counter(mm, MM_FILEPAGES) +
95 get_mm_counter(mm, MM_SHMEMPAGES);
96 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
97 >> PAGE_SHIFT;
98 *data = mm->data_vm + mm->stack_vm;
99 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
100 return mm->total_vm;
101}
102
103#ifdef CONFIG_NUMA
104/*
105 * Save get_task_policy() for show_numa_map().
106 */
107static void hold_task_mempolicy(struct proc_maps_private *priv)
108{
109 struct task_struct *task = priv->task;
110
111 task_lock(task);
112 priv->task_mempolicy = get_task_policy(task);
113 mpol_get(priv->task_mempolicy);
114 task_unlock(task);
115}
116static void release_task_mempolicy(struct proc_maps_private *priv)
117{
118 mpol_put(priv->task_mempolicy);
119}
120#else
121static void hold_task_mempolicy(struct proc_maps_private *priv)
122{
123}
124static void release_task_mempolicy(struct proc_maps_private *priv)
125{
126}
127#endif
128
129static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
130 loff_t *ppos)
131{
132 struct vm_area_struct *vma = vma_next(&priv->iter);
133
134 if (vma) {
135 *ppos = vma->vm_start;
136 } else {
137 *ppos = -2UL;
138 vma = get_gate_vma(priv->mm);
139 }
140
141 return vma;
142}
143
144static void *m_start(struct seq_file *m, loff_t *ppos)
145{
146 struct proc_maps_private *priv = m->private;
147 unsigned long last_addr = *ppos;
148 struct mm_struct *mm;
149
150 /* See m_next(). Zero at the start or after lseek. */
151 if (last_addr == -1UL)
152 return NULL;
153
154 priv->task = get_proc_task(priv->inode);
155 if (!priv->task)
156 return ERR_PTR(-ESRCH);
157
158 mm = priv->mm;
159 if (!mm || !mmget_not_zero(mm)) {
160 put_task_struct(priv->task);
161 priv->task = NULL;
162 return NULL;
163 }
164
165 if (mmap_read_lock_killable(mm)) {
166 mmput(mm);
167 put_task_struct(priv->task);
168 priv->task = NULL;
169 return ERR_PTR(-EINTR);
170 }
171
172 vma_iter_init(&priv->iter, mm, last_addr);
173 hold_task_mempolicy(priv);
174 if (last_addr == -2UL)
175 return get_gate_vma(mm);
176
177 return proc_get_vma(priv, ppos);
178}
179
180static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
181{
182 if (*ppos == -2UL) {
183 *ppos = -1UL;
184 return NULL;
185 }
186 return proc_get_vma(m->private, ppos);
187}
188
189static void m_stop(struct seq_file *m, void *v)
190{
191 struct proc_maps_private *priv = m->private;
192 struct mm_struct *mm = priv->mm;
193
194 if (!priv->task)
195 return;
196
197 release_task_mempolicy(priv);
198 mmap_read_unlock(mm);
199 mmput(mm);
200 put_task_struct(priv->task);
201 priv->task = NULL;
202}
203
204static int proc_maps_open(struct inode *inode, struct file *file,
205 const struct seq_operations *ops, int psize)
206{
207 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
208
209 if (!priv)
210 return -ENOMEM;
211
212 priv->inode = inode;
213 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
214 if (IS_ERR(priv->mm)) {
215 int err = PTR_ERR(priv->mm);
216
217 seq_release_private(inode, file);
218 return err;
219 }
220
221 return 0;
222}
223
224static int proc_map_release(struct inode *inode, struct file *file)
225{
226 struct seq_file *seq = file->private_data;
227 struct proc_maps_private *priv = seq->private;
228
229 if (priv->mm)
230 mmdrop(priv->mm);
231
232 return seq_release_private(inode, file);
233}
234
235static int do_maps_open(struct inode *inode, struct file *file,
236 const struct seq_operations *ops)
237{
238 return proc_maps_open(inode, file, ops,
239 sizeof(struct proc_maps_private));
240}
241
242static void show_vma_header_prefix(struct seq_file *m,
243 unsigned long start, unsigned long end,
244 vm_flags_t flags, unsigned long long pgoff,
245 dev_t dev, unsigned long ino)
246{
247 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
248 seq_put_hex_ll(m, NULL, start, 8);
249 seq_put_hex_ll(m, "-", end, 8);
250 seq_putc(m, ' ');
251 seq_putc(m, flags & VM_READ ? 'r' : '-');
252 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
253 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
254 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
255 seq_put_hex_ll(m, " ", pgoff, 8);
256 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
257 seq_put_hex_ll(m, ":", MINOR(dev), 2);
258 seq_put_decimal_ull(m, " ", ino);
259 seq_putc(m, ' ');
260}
261
262static void
263show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
264{
265 struct anon_vma_name *anon_name = NULL;
266 struct mm_struct *mm = vma->vm_mm;
267 struct file *file = vma->vm_file;
268 vm_flags_t flags = vma->vm_flags;
269 unsigned long ino = 0;
270 unsigned long long pgoff = 0;
271 unsigned long start, end;
272 dev_t dev = 0;
273 const char *name = NULL;
274
275 if (file) {
276 const struct inode *inode = file_user_inode(vma->vm_file);
277
278 dev = inode->i_sb->s_dev;
279 ino = inode->i_ino;
280 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
281 }
282
283 start = vma->vm_start;
284 end = vma->vm_end;
285 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
286 if (mm)
287 anon_name = anon_vma_name(vma);
288
289 /*
290 * Print the dentry name for named mappings, and a
291 * special [heap] marker for the heap:
292 */
293 if (file) {
294 seq_pad(m, ' ');
295 /*
296 * If user named this anon shared memory via
297 * prctl(PR_SET_VMA ..., use the provided name.
298 */
299 if (anon_name)
300 seq_printf(m, "[anon_shmem:%s]", anon_name->name);
301 else
302 seq_path(m, file_user_path(file), "\n");
303 goto done;
304 }
305
306 if (vma->vm_ops && vma->vm_ops->name) {
307 name = vma->vm_ops->name(vma);
308 if (name)
309 goto done;
310 }
311
312 name = arch_vma_name(vma);
313 if (!name) {
314 if (!mm) {
315 name = "[vdso]";
316 goto done;
317 }
318
319 if (vma_is_initial_heap(vma)) {
320 name = "[heap]";
321 goto done;
322 }
323
324 if (vma_is_initial_stack(vma)) {
325 name = "[stack]";
326 goto done;
327 }
328
329 if (anon_name) {
330 seq_pad(m, ' ');
331 seq_printf(m, "[anon:%s]", anon_name->name);
332 }
333 }
334
335done:
336 if (name) {
337 seq_pad(m, ' ');
338 seq_puts(m, name);
339 }
340 seq_putc(m, '\n');
341}
342
343static int show_map(struct seq_file *m, void *v)
344{
345 show_map_vma(m, v);
346 return 0;
347}
348
349static const struct seq_operations proc_pid_maps_op = {
350 .start = m_start,
351 .next = m_next,
352 .stop = m_stop,
353 .show = show_map
354};
355
356static int pid_maps_open(struct inode *inode, struct file *file)
357{
358 return do_maps_open(inode, file, &proc_pid_maps_op);
359}
360
361const struct file_operations proc_pid_maps_operations = {
362 .open = pid_maps_open,
363 .read = seq_read,
364 .llseek = seq_lseek,
365 .release = proc_map_release,
366};
367
368/*
369 * Proportional Set Size(PSS): my share of RSS.
370 *
371 * PSS of a process is the count of pages it has in memory, where each
372 * page is divided by the number of processes sharing it. So if a
373 * process has 1000 pages all to itself, and 1000 shared with one other
374 * process, its PSS will be 1500.
375 *
376 * To keep (accumulated) division errors low, we adopt a 64bit
377 * fixed-point pss counter to minimize division errors. So (pss >>
378 * PSS_SHIFT) would be the real byte count.
379 *
380 * A shift of 12 before division means (assuming 4K page size):
381 * - 1M 3-user-pages add up to 8KB errors;
382 * - supports mapcount up to 2^24, or 16M;
383 * - supports PSS up to 2^52 bytes, or 4PB.
384 */
385#define PSS_SHIFT 12
386
387#ifdef CONFIG_PROC_PAGE_MONITOR
388struct mem_size_stats {
389 unsigned long resident;
390 unsigned long shared_clean;
391 unsigned long shared_dirty;
392 unsigned long private_clean;
393 unsigned long private_dirty;
394 unsigned long referenced;
395 unsigned long anonymous;
396 unsigned long lazyfree;
397 unsigned long anonymous_thp;
398 unsigned long shmem_thp;
399 unsigned long file_thp;
400 unsigned long swap;
401 unsigned long shared_hugetlb;
402 unsigned long private_hugetlb;
403 unsigned long ksm;
404 u64 pss;
405 u64 pss_anon;
406 u64 pss_file;
407 u64 pss_shmem;
408 u64 pss_dirty;
409 u64 pss_locked;
410 u64 swap_pss;
411};
412
413static void smaps_page_accumulate(struct mem_size_stats *mss,
414 struct page *page, unsigned long size, unsigned long pss,
415 bool dirty, bool locked, bool private)
416{
417 mss->pss += pss;
418
419 if (PageAnon(page))
420 mss->pss_anon += pss;
421 else if (PageSwapBacked(page))
422 mss->pss_shmem += pss;
423 else
424 mss->pss_file += pss;
425
426 if (locked)
427 mss->pss_locked += pss;
428
429 if (dirty || PageDirty(page)) {
430 mss->pss_dirty += pss;
431 if (private)
432 mss->private_dirty += size;
433 else
434 mss->shared_dirty += size;
435 } else {
436 if (private)
437 mss->private_clean += size;
438 else
439 mss->shared_clean += size;
440 }
441}
442
443static void smaps_account(struct mem_size_stats *mss, struct page *page,
444 bool compound, bool young, bool dirty, bool locked,
445 bool migration)
446{
447 int i, nr = compound ? compound_nr(page) : 1;
448 unsigned long size = nr * PAGE_SIZE;
449
450 /*
451 * First accumulate quantities that depend only on |size| and the type
452 * of the compound page.
453 */
454 if (PageAnon(page)) {
455 mss->anonymous += size;
456 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
457 mss->lazyfree += size;
458 }
459
460 if (PageKsm(page))
461 mss->ksm += size;
462
463 mss->resident += size;
464 /* Accumulate the size in pages that have been accessed. */
465 if (young || page_is_young(page) || PageReferenced(page))
466 mss->referenced += size;
467
468 /*
469 * Then accumulate quantities that may depend on sharing, or that may
470 * differ page-by-page.
471 *
472 * page_count(page) == 1 guarantees the page is mapped exactly once.
473 * If any subpage of the compound page mapped with PTE it would elevate
474 * page_count().
475 *
476 * The page_mapcount() is called to get a snapshot of the mapcount.
477 * Without holding the page lock this snapshot can be slightly wrong as
478 * we cannot always read the mapcount atomically. It is not safe to
479 * call page_mapcount() even with PTL held if the page is not mapped,
480 * especially for migration entries. Treat regular migration entries
481 * as mapcount == 1.
482 */
483 if ((page_count(page) == 1) || migration) {
484 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
485 locked, true);
486 return;
487 }
488 for (i = 0; i < nr; i++, page++) {
489 int mapcount = page_mapcount(page);
490 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
491 if (mapcount >= 2)
492 pss /= mapcount;
493 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
494 mapcount < 2);
495 }
496}
497
498#ifdef CONFIG_SHMEM
499static int smaps_pte_hole(unsigned long addr, unsigned long end,
500 __always_unused int depth, struct mm_walk *walk)
501{
502 struct mem_size_stats *mss = walk->private;
503 struct vm_area_struct *vma = walk->vma;
504
505 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
506 linear_page_index(vma, addr),
507 linear_page_index(vma, end));
508
509 return 0;
510}
511#else
512#define smaps_pte_hole NULL
513#endif /* CONFIG_SHMEM */
514
515static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
516{
517#ifdef CONFIG_SHMEM
518 if (walk->ops->pte_hole) {
519 /* depth is not used */
520 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
521 }
522#endif
523}
524
525static void smaps_pte_entry(pte_t *pte, unsigned long addr,
526 struct mm_walk *walk)
527{
528 struct mem_size_stats *mss = walk->private;
529 struct vm_area_struct *vma = walk->vma;
530 bool locked = !!(vma->vm_flags & VM_LOCKED);
531 struct page *page = NULL;
532 bool migration = false, young = false, dirty = false;
533 pte_t ptent = ptep_get(pte);
534
535 if (pte_present(ptent)) {
536 page = vm_normal_page(vma, addr, ptent);
537 young = pte_young(ptent);
538 dirty = pte_dirty(ptent);
539 } else if (is_swap_pte(ptent)) {
540 swp_entry_t swpent = pte_to_swp_entry(ptent);
541
542 if (!non_swap_entry(swpent)) {
543 int mapcount;
544
545 mss->swap += PAGE_SIZE;
546 mapcount = swp_swapcount(swpent);
547 if (mapcount >= 2) {
548 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
549
550 do_div(pss_delta, mapcount);
551 mss->swap_pss += pss_delta;
552 } else {
553 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
554 }
555 } else if (is_pfn_swap_entry(swpent)) {
556 if (is_migration_entry(swpent))
557 migration = true;
558 page = pfn_swap_entry_to_page(swpent);
559 }
560 } else {
561 smaps_pte_hole_lookup(addr, walk);
562 return;
563 }
564
565 if (!page)
566 return;
567
568 smaps_account(mss, page, false, young, dirty, locked, migration);
569}
570
571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
572static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
573 struct mm_walk *walk)
574{
575 struct mem_size_stats *mss = walk->private;
576 struct vm_area_struct *vma = walk->vma;
577 bool locked = !!(vma->vm_flags & VM_LOCKED);
578 struct page *page = NULL;
579 bool migration = false;
580
581 if (pmd_present(*pmd)) {
582 page = vm_normal_page_pmd(vma, addr, *pmd);
583 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
584 swp_entry_t entry = pmd_to_swp_entry(*pmd);
585
586 if (is_migration_entry(entry)) {
587 migration = true;
588 page = pfn_swap_entry_to_page(entry);
589 }
590 }
591 if (IS_ERR_OR_NULL(page))
592 return;
593 if (PageAnon(page))
594 mss->anonymous_thp += HPAGE_PMD_SIZE;
595 else if (PageSwapBacked(page))
596 mss->shmem_thp += HPAGE_PMD_SIZE;
597 else if (is_zone_device_page(page))
598 /* pass */;
599 else
600 mss->file_thp += HPAGE_PMD_SIZE;
601
602 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
603 locked, migration);
604}
605#else
606static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
607 struct mm_walk *walk)
608{
609}
610#endif
611
612static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
613 struct mm_walk *walk)
614{
615 struct vm_area_struct *vma = walk->vma;
616 pte_t *pte;
617 spinlock_t *ptl;
618
619 ptl = pmd_trans_huge_lock(pmd, vma);
620 if (ptl) {
621 smaps_pmd_entry(pmd, addr, walk);
622 spin_unlock(ptl);
623 goto out;
624 }
625
626 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
627 if (!pte) {
628 walk->action = ACTION_AGAIN;
629 return 0;
630 }
631 for (; addr != end; pte++, addr += PAGE_SIZE)
632 smaps_pte_entry(pte, addr, walk);
633 pte_unmap_unlock(pte - 1, ptl);
634out:
635 cond_resched();
636 return 0;
637}
638
639static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
640{
641 /*
642 * Don't forget to update Documentation/ on changes.
643 */
644 static const char mnemonics[BITS_PER_LONG][2] = {
645 /*
646 * In case if we meet a flag we don't know about.
647 */
648 [0 ... (BITS_PER_LONG-1)] = "??",
649
650 [ilog2(VM_READ)] = "rd",
651 [ilog2(VM_WRITE)] = "wr",
652 [ilog2(VM_EXEC)] = "ex",
653 [ilog2(VM_SHARED)] = "sh",
654 [ilog2(VM_MAYREAD)] = "mr",
655 [ilog2(VM_MAYWRITE)] = "mw",
656 [ilog2(VM_MAYEXEC)] = "me",
657 [ilog2(VM_MAYSHARE)] = "ms",
658 [ilog2(VM_GROWSDOWN)] = "gd",
659 [ilog2(VM_PFNMAP)] = "pf",
660 [ilog2(VM_LOCKED)] = "lo",
661 [ilog2(VM_IO)] = "io",
662 [ilog2(VM_SEQ_READ)] = "sr",
663 [ilog2(VM_RAND_READ)] = "rr",
664 [ilog2(VM_DONTCOPY)] = "dc",
665 [ilog2(VM_DONTEXPAND)] = "de",
666 [ilog2(VM_LOCKONFAULT)] = "lf",
667 [ilog2(VM_ACCOUNT)] = "ac",
668 [ilog2(VM_NORESERVE)] = "nr",
669 [ilog2(VM_HUGETLB)] = "ht",
670 [ilog2(VM_SYNC)] = "sf",
671 [ilog2(VM_ARCH_1)] = "ar",
672 [ilog2(VM_WIPEONFORK)] = "wf",
673 [ilog2(VM_DONTDUMP)] = "dd",
674#ifdef CONFIG_ARM64_BTI
675 [ilog2(VM_ARM64_BTI)] = "bt",
676#endif
677#ifdef CONFIG_MEM_SOFT_DIRTY
678 [ilog2(VM_SOFTDIRTY)] = "sd",
679#endif
680 [ilog2(VM_MIXEDMAP)] = "mm",
681 [ilog2(VM_HUGEPAGE)] = "hg",
682 [ilog2(VM_NOHUGEPAGE)] = "nh",
683 [ilog2(VM_MERGEABLE)] = "mg",
684 [ilog2(VM_UFFD_MISSING)]= "um",
685 [ilog2(VM_UFFD_WP)] = "uw",
686#ifdef CONFIG_ARM64_MTE
687 [ilog2(VM_MTE)] = "mt",
688 [ilog2(VM_MTE_ALLOWED)] = "",
689#endif
690#ifdef CONFIG_ARCH_HAS_PKEYS
691 /* These come out via ProtectionKey: */
692 [ilog2(VM_PKEY_BIT0)] = "",
693 [ilog2(VM_PKEY_BIT1)] = "",
694 [ilog2(VM_PKEY_BIT2)] = "",
695 [ilog2(VM_PKEY_BIT3)] = "",
696#if VM_PKEY_BIT4
697 [ilog2(VM_PKEY_BIT4)] = "",
698#endif
699#endif /* CONFIG_ARCH_HAS_PKEYS */
700#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
701 [ilog2(VM_UFFD_MINOR)] = "ui",
702#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
703#ifdef CONFIG_X86_USER_SHADOW_STACK
704 [ilog2(VM_SHADOW_STACK)] = "ss",
705#endif
706 };
707 size_t i;
708
709 seq_puts(m, "VmFlags: ");
710 for (i = 0; i < BITS_PER_LONG; i++) {
711 if (!mnemonics[i][0])
712 continue;
713 if (vma->vm_flags & (1UL << i)) {
714 seq_putc(m, mnemonics[i][0]);
715 seq_putc(m, mnemonics[i][1]);
716 seq_putc(m, ' ');
717 }
718 }
719 seq_putc(m, '\n');
720}
721
722#ifdef CONFIG_HUGETLB_PAGE
723static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
724 unsigned long addr, unsigned long end,
725 struct mm_walk *walk)
726{
727 struct mem_size_stats *mss = walk->private;
728 struct vm_area_struct *vma = walk->vma;
729 struct page *page = NULL;
730 pte_t ptent = ptep_get(pte);
731
732 if (pte_present(ptent)) {
733 page = vm_normal_page(vma, addr, ptent);
734 } else if (is_swap_pte(ptent)) {
735 swp_entry_t swpent = pte_to_swp_entry(ptent);
736
737 if (is_pfn_swap_entry(swpent))
738 page = pfn_swap_entry_to_page(swpent);
739 }
740 if (page) {
741 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
742 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
743 else
744 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
745 }
746 return 0;
747}
748#else
749#define smaps_hugetlb_range NULL
750#endif /* HUGETLB_PAGE */
751
752static const struct mm_walk_ops smaps_walk_ops = {
753 .pmd_entry = smaps_pte_range,
754 .hugetlb_entry = smaps_hugetlb_range,
755 .walk_lock = PGWALK_RDLOCK,
756};
757
758static const struct mm_walk_ops smaps_shmem_walk_ops = {
759 .pmd_entry = smaps_pte_range,
760 .hugetlb_entry = smaps_hugetlb_range,
761 .pte_hole = smaps_pte_hole,
762 .walk_lock = PGWALK_RDLOCK,
763};
764
765/*
766 * Gather mem stats from @vma with the indicated beginning
767 * address @start, and keep them in @mss.
768 *
769 * Use vm_start of @vma as the beginning address if @start is 0.
770 */
771static void smap_gather_stats(struct vm_area_struct *vma,
772 struct mem_size_stats *mss, unsigned long start)
773{
774 const struct mm_walk_ops *ops = &smaps_walk_ops;
775
776 /* Invalid start */
777 if (start >= vma->vm_end)
778 return;
779
780 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
781 /*
782 * For shared or readonly shmem mappings we know that all
783 * swapped out pages belong to the shmem object, and we can
784 * obtain the swap value much more efficiently. For private
785 * writable mappings, we might have COW pages that are
786 * not affected by the parent swapped out pages of the shmem
787 * object, so we have to distinguish them during the page walk.
788 * Unless we know that the shmem object (or the part mapped by
789 * our VMA) has no swapped out pages at all.
790 */
791 unsigned long shmem_swapped = shmem_swap_usage(vma);
792
793 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
794 !(vma->vm_flags & VM_WRITE))) {
795 mss->swap += shmem_swapped;
796 } else {
797 ops = &smaps_shmem_walk_ops;
798 }
799 }
800
801 /* mmap_lock is held in m_start */
802 if (!start)
803 walk_page_vma(vma, ops, mss);
804 else
805 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
806}
807
808#define SEQ_PUT_DEC(str, val) \
809 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
810
811/* Show the contents common for smaps and smaps_rollup */
812static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
813 bool rollup_mode)
814{
815 SEQ_PUT_DEC("Rss: ", mss->resident);
816 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
817 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT);
818 if (rollup_mode) {
819 /*
820 * These are meaningful only for smaps_rollup, otherwise two of
821 * them are zero, and the other one is the same as Pss.
822 */
823 SEQ_PUT_DEC(" kB\nPss_Anon: ",
824 mss->pss_anon >> PSS_SHIFT);
825 SEQ_PUT_DEC(" kB\nPss_File: ",
826 mss->pss_file >> PSS_SHIFT);
827 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
828 mss->pss_shmem >> PSS_SHIFT);
829 }
830 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
831 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
832 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
833 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
834 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
835 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
836 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm);
837 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
838 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
839 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
840 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
841 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
842 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
843 mss->private_hugetlb >> 10, 7);
844 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
845 SEQ_PUT_DEC(" kB\nSwapPss: ",
846 mss->swap_pss >> PSS_SHIFT);
847 SEQ_PUT_DEC(" kB\nLocked: ",
848 mss->pss_locked >> PSS_SHIFT);
849 seq_puts(m, " kB\n");
850}
851
852static int show_smap(struct seq_file *m, void *v)
853{
854 struct vm_area_struct *vma = v;
855 struct mem_size_stats mss = {};
856
857 smap_gather_stats(vma, &mss, 0);
858
859 show_map_vma(m, vma);
860
861 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
862 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
863 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
864 seq_puts(m, " kB\n");
865
866 __show_smap(m, &mss, false);
867
868 seq_printf(m, "THPeligible: %8u\n",
869 !!thp_vma_allowable_orders(vma, vma->vm_flags, true, false,
870 true, THP_ORDERS_ALL));
871
872 if (arch_pkeys_enabled())
873 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
874 show_smap_vma_flags(m, vma);
875
876 return 0;
877}
878
879static int show_smaps_rollup(struct seq_file *m, void *v)
880{
881 struct proc_maps_private *priv = m->private;
882 struct mem_size_stats mss = {};
883 struct mm_struct *mm = priv->mm;
884 struct vm_area_struct *vma;
885 unsigned long vma_start = 0, last_vma_end = 0;
886 int ret = 0;
887 VMA_ITERATOR(vmi, mm, 0);
888
889 priv->task = get_proc_task(priv->inode);
890 if (!priv->task)
891 return -ESRCH;
892
893 if (!mm || !mmget_not_zero(mm)) {
894 ret = -ESRCH;
895 goto out_put_task;
896 }
897
898 ret = mmap_read_lock_killable(mm);
899 if (ret)
900 goto out_put_mm;
901
902 hold_task_mempolicy(priv);
903 vma = vma_next(&vmi);
904
905 if (unlikely(!vma))
906 goto empty_set;
907
908 vma_start = vma->vm_start;
909 do {
910 smap_gather_stats(vma, &mss, 0);
911 last_vma_end = vma->vm_end;
912
913 /*
914 * Release mmap_lock temporarily if someone wants to
915 * access it for write request.
916 */
917 if (mmap_lock_is_contended(mm)) {
918 vma_iter_invalidate(&vmi);
919 mmap_read_unlock(mm);
920 ret = mmap_read_lock_killable(mm);
921 if (ret) {
922 release_task_mempolicy(priv);
923 goto out_put_mm;
924 }
925
926 /*
927 * After dropping the lock, there are four cases to
928 * consider. See the following example for explanation.
929 *
930 * +------+------+-----------+
931 * | VMA1 | VMA2 | VMA3 |
932 * +------+------+-----------+
933 * | | | |
934 * 4k 8k 16k 400k
935 *
936 * Suppose we drop the lock after reading VMA2 due to
937 * contention, then we get:
938 *
939 * last_vma_end = 16k
940 *
941 * 1) VMA2 is freed, but VMA3 exists:
942 *
943 * vma_next(vmi) will return VMA3.
944 * In this case, just continue from VMA3.
945 *
946 * 2) VMA2 still exists:
947 *
948 * vma_next(vmi) will return VMA3.
949 * In this case, just continue from VMA3.
950 *
951 * 3) No more VMAs can be found:
952 *
953 * vma_next(vmi) will return NULL.
954 * No more things to do, just break.
955 *
956 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
957 *
958 * vma_next(vmi) will return VMA' whose range
959 * contains last_vma_end.
960 * Iterate VMA' from last_vma_end.
961 */
962 vma = vma_next(&vmi);
963 /* Case 3 above */
964 if (!vma)
965 break;
966
967 /* Case 1 and 2 above */
968 if (vma->vm_start >= last_vma_end)
969 continue;
970
971 /* Case 4 above */
972 if (vma->vm_end > last_vma_end)
973 smap_gather_stats(vma, &mss, last_vma_end);
974 }
975 } for_each_vma(vmi, vma);
976
977empty_set:
978 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
979 seq_pad(m, ' ');
980 seq_puts(m, "[rollup]\n");
981
982 __show_smap(m, &mss, true);
983
984 release_task_mempolicy(priv);
985 mmap_read_unlock(mm);
986
987out_put_mm:
988 mmput(mm);
989out_put_task:
990 put_task_struct(priv->task);
991 priv->task = NULL;
992
993 return ret;
994}
995#undef SEQ_PUT_DEC
996
997static const struct seq_operations proc_pid_smaps_op = {
998 .start = m_start,
999 .next = m_next,
1000 .stop = m_stop,
1001 .show = show_smap
1002};
1003
1004static int pid_smaps_open(struct inode *inode, struct file *file)
1005{
1006 return do_maps_open(inode, file, &proc_pid_smaps_op);
1007}
1008
1009static int smaps_rollup_open(struct inode *inode, struct file *file)
1010{
1011 int ret;
1012 struct proc_maps_private *priv;
1013
1014 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1015 if (!priv)
1016 return -ENOMEM;
1017
1018 ret = single_open(file, show_smaps_rollup, priv);
1019 if (ret)
1020 goto out_free;
1021
1022 priv->inode = inode;
1023 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1024 if (IS_ERR(priv->mm)) {
1025 ret = PTR_ERR(priv->mm);
1026
1027 single_release(inode, file);
1028 goto out_free;
1029 }
1030
1031 return 0;
1032
1033out_free:
1034 kfree(priv);
1035 return ret;
1036}
1037
1038static int smaps_rollup_release(struct inode *inode, struct file *file)
1039{
1040 struct seq_file *seq = file->private_data;
1041 struct proc_maps_private *priv = seq->private;
1042
1043 if (priv->mm)
1044 mmdrop(priv->mm);
1045
1046 kfree(priv);
1047 return single_release(inode, file);
1048}
1049
1050const struct file_operations proc_pid_smaps_operations = {
1051 .open = pid_smaps_open,
1052 .read = seq_read,
1053 .llseek = seq_lseek,
1054 .release = proc_map_release,
1055};
1056
1057const struct file_operations proc_pid_smaps_rollup_operations = {
1058 .open = smaps_rollup_open,
1059 .read = seq_read,
1060 .llseek = seq_lseek,
1061 .release = smaps_rollup_release,
1062};
1063
1064enum clear_refs_types {
1065 CLEAR_REFS_ALL = 1,
1066 CLEAR_REFS_ANON,
1067 CLEAR_REFS_MAPPED,
1068 CLEAR_REFS_SOFT_DIRTY,
1069 CLEAR_REFS_MM_HIWATER_RSS,
1070 CLEAR_REFS_LAST,
1071};
1072
1073struct clear_refs_private {
1074 enum clear_refs_types type;
1075};
1076
1077#ifdef CONFIG_MEM_SOFT_DIRTY
1078
1079static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1080{
1081 struct page *page;
1082
1083 if (!pte_write(pte))
1084 return false;
1085 if (!is_cow_mapping(vma->vm_flags))
1086 return false;
1087 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1088 return false;
1089 page = vm_normal_page(vma, addr, pte);
1090 if (!page)
1091 return false;
1092 return page_maybe_dma_pinned(page);
1093}
1094
1095static inline void clear_soft_dirty(struct vm_area_struct *vma,
1096 unsigned long addr, pte_t *pte)
1097{
1098 /*
1099 * The soft-dirty tracker uses #PF-s to catch writes
1100 * to pages, so write-protect the pte as well. See the
1101 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1102 * of how soft-dirty works.
1103 */
1104 pte_t ptent = ptep_get(pte);
1105
1106 if (pte_present(ptent)) {
1107 pte_t old_pte;
1108
1109 if (pte_is_pinned(vma, addr, ptent))
1110 return;
1111 old_pte = ptep_modify_prot_start(vma, addr, pte);
1112 ptent = pte_wrprotect(old_pte);
1113 ptent = pte_clear_soft_dirty(ptent);
1114 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1115 } else if (is_swap_pte(ptent)) {
1116 ptent = pte_swp_clear_soft_dirty(ptent);
1117 set_pte_at(vma->vm_mm, addr, pte, ptent);
1118 }
1119}
1120#else
1121static inline void clear_soft_dirty(struct vm_area_struct *vma,
1122 unsigned long addr, pte_t *pte)
1123{
1124}
1125#endif
1126
1127#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1128static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1129 unsigned long addr, pmd_t *pmdp)
1130{
1131 pmd_t old, pmd = *pmdp;
1132
1133 if (pmd_present(pmd)) {
1134 /* See comment in change_huge_pmd() */
1135 old = pmdp_invalidate(vma, addr, pmdp);
1136 if (pmd_dirty(old))
1137 pmd = pmd_mkdirty(pmd);
1138 if (pmd_young(old))
1139 pmd = pmd_mkyoung(pmd);
1140
1141 pmd = pmd_wrprotect(pmd);
1142 pmd = pmd_clear_soft_dirty(pmd);
1143
1144 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1145 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1146 pmd = pmd_swp_clear_soft_dirty(pmd);
1147 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1148 }
1149}
1150#else
1151static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1152 unsigned long addr, pmd_t *pmdp)
1153{
1154}
1155#endif
1156
1157static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1158 unsigned long end, struct mm_walk *walk)
1159{
1160 struct clear_refs_private *cp = walk->private;
1161 struct vm_area_struct *vma = walk->vma;
1162 pte_t *pte, ptent;
1163 spinlock_t *ptl;
1164 struct page *page;
1165
1166 ptl = pmd_trans_huge_lock(pmd, vma);
1167 if (ptl) {
1168 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1169 clear_soft_dirty_pmd(vma, addr, pmd);
1170 goto out;
1171 }
1172
1173 if (!pmd_present(*pmd))
1174 goto out;
1175
1176 page = pmd_page(*pmd);
1177
1178 /* Clear accessed and referenced bits. */
1179 pmdp_test_and_clear_young(vma, addr, pmd);
1180 test_and_clear_page_young(page);
1181 ClearPageReferenced(page);
1182out:
1183 spin_unlock(ptl);
1184 return 0;
1185 }
1186
1187 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1188 if (!pte) {
1189 walk->action = ACTION_AGAIN;
1190 return 0;
1191 }
1192 for (; addr != end; pte++, addr += PAGE_SIZE) {
1193 ptent = ptep_get(pte);
1194
1195 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1196 clear_soft_dirty(vma, addr, pte);
1197 continue;
1198 }
1199
1200 if (!pte_present(ptent))
1201 continue;
1202
1203 page = vm_normal_page(vma, addr, ptent);
1204 if (!page)
1205 continue;
1206
1207 /* Clear accessed and referenced bits. */
1208 ptep_test_and_clear_young(vma, addr, pte);
1209 test_and_clear_page_young(page);
1210 ClearPageReferenced(page);
1211 }
1212 pte_unmap_unlock(pte - 1, ptl);
1213 cond_resched();
1214 return 0;
1215}
1216
1217static int clear_refs_test_walk(unsigned long start, unsigned long end,
1218 struct mm_walk *walk)
1219{
1220 struct clear_refs_private *cp = walk->private;
1221 struct vm_area_struct *vma = walk->vma;
1222
1223 if (vma->vm_flags & VM_PFNMAP)
1224 return 1;
1225
1226 /*
1227 * Writing 1 to /proc/pid/clear_refs affects all pages.
1228 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1229 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1230 * Writing 4 to /proc/pid/clear_refs affects all pages.
1231 */
1232 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1233 return 1;
1234 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1235 return 1;
1236 return 0;
1237}
1238
1239static const struct mm_walk_ops clear_refs_walk_ops = {
1240 .pmd_entry = clear_refs_pte_range,
1241 .test_walk = clear_refs_test_walk,
1242 .walk_lock = PGWALK_WRLOCK,
1243};
1244
1245static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1246 size_t count, loff_t *ppos)
1247{
1248 struct task_struct *task;
1249 char buffer[PROC_NUMBUF] = {};
1250 struct mm_struct *mm;
1251 struct vm_area_struct *vma;
1252 enum clear_refs_types type;
1253 int itype;
1254 int rv;
1255
1256 if (count > sizeof(buffer) - 1)
1257 count = sizeof(buffer) - 1;
1258 if (copy_from_user(buffer, buf, count))
1259 return -EFAULT;
1260 rv = kstrtoint(strstrip(buffer), 10, &itype);
1261 if (rv < 0)
1262 return rv;
1263 type = (enum clear_refs_types)itype;
1264 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1265 return -EINVAL;
1266
1267 task = get_proc_task(file_inode(file));
1268 if (!task)
1269 return -ESRCH;
1270 mm = get_task_mm(task);
1271 if (mm) {
1272 VMA_ITERATOR(vmi, mm, 0);
1273 struct mmu_notifier_range range;
1274 struct clear_refs_private cp = {
1275 .type = type,
1276 };
1277
1278 if (mmap_write_lock_killable(mm)) {
1279 count = -EINTR;
1280 goto out_mm;
1281 }
1282 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1283 /*
1284 * Writing 5 to /proc/pid/clear_refs resets the peak
1285 * resident set size to this mm's current rss value.
1286 */
1287 reset_mm_hiwater_rss(mm);
1288 goto out_unlock;
1289 }
1290
1291 if (type == CLEAR_REFS_SOFT_DIRTY) {
1292 for_each_vma(vmi, vma) {
1293 if (!(vma->vm_flags & VM_SOFTDIRTY))
1294 continue;
1295 vm_flags_clear(vma, VM_SOFTDIRTY);
1296 vma_set_page_prot(vma);
1297 }
1298
1299 inc_tlb_flush_pending(mm);
1300 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1301 0, mm, 0, -1UL);
1302 mmu_notifier_invalidate_range_start(&range);
1303 }
1304 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1305 if (type == CLEAR_REFS_SOFT_DIRTY) {
1306 mmu_notifier_invalidate_range_end(&range);
1307 flush_tlb_mm(mm);
1308 dec_tlb_flush_pending(mm);
1309 }
1310out_unlock:
1311 mmap_write_unlock(mm);
1312out_mm:
1313 mmput(mm);
1314 }
1315 put_task_struct(task);
1316
1317 return count;
1318}
1319
1320const struct file_operations proc_clear_refs_operations = {
1321 .write = clear_refs_write,
1322 .llseek = noop_llseek,
1323};
1324
1325typedef struct {
1326 u64 pme;
1327} pagemap_entry_t;
1328
1329struct pagemapread {
1330 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1331 pagemap_entry_t *buffer;
1332 bool show_pfn;
1333};
1334
1335#define PAGEMAP_WALK_SIZE (PMD_SIZE)
1336#define PAGEMAP_WALK_MASK (PMD_MASK)
1337
1338#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1339#define PM_PFRAME_BITS 55
1340#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1341#define PM_SOFT_DIRTY BIT_ULL(55)
1342#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1343#define PM_UFFD_WP BIT_ULL(57)
1344#define PM_FILE BIT_ULL(61)
1345#define PM_SWAP BIT_ULL(62)
1346#define PM_PRESENT BIT_ULL(63)
1347
1348#define PM_END_OF_BUFFER 1
1349
1350static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1351{
1352 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1353}
1354
1355static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1356{
1357 pm->buffer[pm->pos++] = *pme;
1358 if (pm->pos >= pm->len)
1359 return PM_END_OF_BUFFER;
1360 return 0;
1361}
1362
1363static int pagemap_pte_hole(unsigned long start, unsigned long end,
1364 __always_unused int depth, struct mm_walk *walk)
1365{
1366 struct pagemapread *pm = walk->private;
1367 unsigned long addr = start;
1368 int err = 0;
1369
1370 while (addr < end) {
1371 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1372 pagemap_entry_t pme = make_pme(0, 0);
1373 /* End of address space hole, which we mark as non-present. */
1374 unsigned long hole_end;
1375
1376 if (vma)
1377 hole_end = min(end, vma->vm_start);
1378 else
1379 hole_end = end;
1380
1381 for (; addr < hole_end; addr += PAGE_SIZE) {
1382 err = add_to_pagemap(&pme, pm);
1383 if (err)
1384 goto out;
1385 }
1386
1387 if (!vma)
1388 break;
1389
1390 /* Addresses in the VMA. */
1391 if (vma->vm_flags & VM_SOFTDIRTY)
1392 pme = make_pme(0, PM_SOFT_DIRTY);
1393 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1394 err = add_to_pagemap(&pme, pm);
1395 if (err)
1396 goto out;
1397 }
1398 }
1399out:
1400 return err;
1401}
1402
1403static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1404 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1405{
1406 u64 frame = 0, flags = 0;
1407 struct page *page = NULL;
1408 bool migration = false;
1409
1410 if (pte_present(pte)) {
1411 if (pm->show_pfn)
1412 frame = pte_pfn(pte);
1413 flags |= PM_PRESENT;
1414 page = vm_normal_page(vma, addr, pte);
1415 if (pte_soft_dirty(pte))
1416 flags |= PM_SOFT_DIRTY;
1417 if (pte_uffd_wp(pte))
1418 flags |= PM_UFFD_WP;
1419 } else if (is_swap_pte(pte)) {
1420 swp_entry_t entry;
1421 if (pte_swp_soft_dirty(pte))
1422 flags |= PM_SOFT_DIRTY;
1423 if (pte_swp_uffd_wp(pte))
1424 flags |= PM_UFFD_WP;
1425 entry = pte_to_swp_entry(pte);
1426 if (pm->show_pfn) {
1427 pgoff_t offset;
1428 /*
1429 * For PFN swap offsets, keeping the offset field
1430 * to be PFN only to be compatible with old smaps.
1431 */
1432 if (is_pfn_swap_entry(entry))
1433 offset = swp_offset_pfn(entry);
1434 else
1435 offset = swp_offset(entry);
1436 frame = swp_type(entry) |
1437 (offset << MAX_SWAPFILES_SHIFT);
1438 }
1439 flags |= PM_SWAP;
1440 migration = is_migration_entry(entry);
1441 if (is_pfn_swap_entry(entry))
1442 page = pfn_swap_entry_to_page(entry);
1443 if (pte_marker_entry_uffd_wp(entry))
1444 flags |= PM_UFFD_WP;
1445 }
1446
1447 if (page && !PageAnon(page))
1448 flags |= PM_FILE;
1449 if (page && !migration && page_mapcount(page) == 1)
1450 flags |= PM_MMAP_EXCLUSIVE;
1451 if (vma->vm_flags & VM_SOFTDIRTY)
1452 flags |= PM_SOFT_DIRTY;
1453
1454 return make_pme(frame, flags);
1455}
1456
1457static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1458 struct mm_walk *walk)
1459{
1460 struct vm_area_struct *vma = walk->vma;
1461 struct pagemapread *pm = walk->private;
1462 spinlock_t *ptl;
1463 pte_t *pte, *orig_pte;
1464 int err = 0;
1465#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1466 bool migration = false;
1467
1468 ptl = pmd_trans_huge_lock(pmdp, vma);
1469 if (ptl) {
1470 u64 flags = 0, frame = 0;
1471 pmd_t pmd = *pmdp;
1472 struct page *page = NULL;
1473
1474 if (vma->vm_flags & VM_SOFTDIRTY)
1475 flags |= PM_SOFT_DIRTY;
1476
1477 if (pmd_present(pmd)) {
1478 page = pmd_page(pmd);
1479
1480 flags |= PM_PRESENT;
1481 if (pmd_soft_dirty(pmd))
1482 flags |= PM_SOFT_DIRTY;
1483 if (pmd_uffd_wp(pmd))
1484 flags |= PM_UFFD_WP;
1485 if (pm->show_pfn)
1486 frame = pmd_pfn(pmd) +
1487 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1488 }
1489#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1490 else if (is_swap_pmd(pmd)) {
1491 swp_entry_t entry = pmd_to_swp_entry(pmd);
1492 unsigned long offset;
1493
1494 if (pm->show_pfn) {
1495 if (is_pfn_swap_entry(entry))
1496 offset = swp_offset_pfn(entry);
1497 else
1498 offset = swp_offset(entry);
1499 offset = offset +
1500 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1501 frame = swp_type(entry) |
1502 (offset << MAX_SWAPFILES_SHIFT);
1503 }
1504 flags |= PM_SWAP;
1505 if (pmd_swp_soft_dirty(pmd))
1506 flags |= PM_SOFT_DIRTY;
1507 if (pmd_swp_uffd_wp(pmd))
1508 flags |= PM_UFFD_WP;
1509 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1510 migration = is_migration_entry(entry);
1511 page = pfn_swap_entry_to_page(entry);
1512 }
1513#endif
1514
1515 if (page && !migration && page_mapcount(page) == 1)
1516 flags |= PM_MMAP_EXCLUSIVE;
1517
1518 for (; addr != end; addr += PAGE_SIZE) {
1519 pagemap_entry_t pme = make_pme(frame, flags);
1520
1521 err = add_to_pagemap(&pme, pm);
1522 if (err)
1523 break;
1524 if (pm->show_pfn) {
1525 if (flags & PM_PRESENT)
1526 frame++;
1527 else if (flags & PM_SWAP)
1528 frame += (1 << MAX_SWAPFILES_SHIFT);
1529 }
1530 }
1531 spin_unlock(ptl);
1532 return err;
1533 }
1534#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1535
1536 /*
1537 * We can assume that @vma always points to a valid one and @end never
1538 * goes beyond vma->vm_end.
1539 */
1540 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1541 if (!pte) {
1542 walk->action = ACTION_AGAIN;
1543 return err;
1544 }
1545 for (; addr < end; pte++, addr += PAGE_SIZE) {
1546 pagemap_entry_t pme;
1547
1548 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1549 err = add_to_pagemap(&pme, pm);
1550 if (err)
1551 break;
1552 }
1553 pte_unmap_unlock(orig_pte, ptl);
1554
1555 cond_resched();
1556
1557 return err;
1558}
1559
1560#ifdef CONFIG_HUGETLB_PAGE
1561/* This function walks within one hugetlb entry in the single call */
1562static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1563 unsigned long addr, unsigned long end,
1564 struct mm_walk *walk)
1565{
1566 struct pagemapread *pm = walk->private;
1567 struct vm_area_struct *vma = walk->vma;
1568 u64 flags = 0, frame = 0;
1569 int err = 0;
1570 pte_t pte;
1571
1572 if (vma->vm_flags & VM_SOFTDIRTY)
1573 flags |= PM_SOFT_DIRTY;
1574
1575 pte = huge_ptep_get(ptep);
1576 if (pte_present(pte)) {
1577 struct page *page = pte_page(pte);
1578
1579 if (!PageAnon(page))
1580 flags |= PM_FILE;
1581
1582 if (page_mapcount(page) == 1)
1583 flags |= PM_MMAP_EXCLUSIVE;
1584
1585 if (huge_pte_uffd_wp(pte))
1586 flags |= PM_UFFD_WP;
1587
1588 flags |= PM_PRESENT;
1589 if (pm->show_pfn)
1590 frame = pte_pfn(pte) +
1591 ((addr & ~hmask) >> PAGE_SHIFT);
1592 } else if (pte_swp_uffd_wp_any(pte)) {
1593 flags |= PM_UFFD_WP;
1594 }
1595
1596 for (; addr != end; addr += PAGE_SIZE) {
1597 pagemap_entry_t pme = make_pme(frame, flags);
1598
1599 err = add_to_pagemap(&pme, pm);
1600 if (err)
1601 return err;
1602 if (pm->show_pfn && (flags & PM_PRESENT))
1603 frame++;
1604 }
1605
1606 cond_resched();
1607
1608 return err;
1609}
1610#else
1611#define pagemap_hugetlb_range NULL
1612#endif /* HUGETLB_PAGE */
1613
1614static const struct mm_walk_ops pagemap_ops = {
1615 .pmd_entry = pagemap_pmd_range,
1616 .pte_hole = pagemap_pte_hole,
1617 .hugetlb_entry = pagemap_hugetlb_range,
1618 .walk_lock = PGWALK_RDLOCK,
1619};
1620
1621/*
1622 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1623 *
1624 * For each page in the address space, this file contains one 64-bit entry
1625 * consisting of the following:
1626 *
1627 * Bits 0-54 page frame number (PFN) if present
1628 * Bits 0-4 swap type if swapped
1629 * Bits 5-54 swap offset if swapped
1630 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1631 * Bit 56 page exclusively mapped
1632 * Bit 57 pte is uffd-wp write-protected
1633 * Bits 58-60 zero
1634 * Bit 61 page is file-page or shared-anon
1635 * Bit 62 page swapped
1636 * Bit 63 page present
1637 *
1638 * If the page is not present but in swap, then the PFN contains an
1639 * encoding of the swap file number and the page's offset into the
1640 * swap. Unmapped pages return a null PFN. This allows determining
1641 * precisely which pages are mapped (or in swap) and comparing mapped
1642 * pages between processes.
1643 *
1644 * Efficient users of this interface will use /proc/pid/maps to
1645 * determine which areas of memory are actually mapped and llseek to
1646 * skip over unmapped regions.
1647 */
1648static ssize_t pagemap_read(struct file *file, char __user *buf,
1649 size_t count, loff_t *ppos)
1650{
1651 struct mm_struct *mm = file->private_data;
1652 struct pagemapread pm;
1653 unsigned long src;
1654 unsigned long svpfn;
1655 unsigned long start_vaddr;
1656 unsigned long end_vaddr;
1657 int ret = 0, copied = 0;
1658
1659 if (!mm || !mmget_not_zero(mm))
1660 goto out;
1661
1662 ret = -EINVAL;
1663 /* file position must be aligned */
1664 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1665 goto out_mm;
1666
1667 ret = 0;
1668 if (!count)
1669 goto out_mm;
1670
1671 /* do not disclose physical addresses: attack vector */
1672 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1673
1674 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1675 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1676 ret = -ENOMEM;
1677 if (!pm.buffer)
1678 goto out_mm;
1679
1680 src = *ppos;
1681 svpfn = src / PM_ENTRY_BYTES;
1682 end_vaddr = mm->task_size;
1683
1684 /* watch out for wraparound */
1685 start_vaddr = end_vaddr;
1686 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1687 unsigned long end;
1688
1689 ret = mmap_read_lock_killable(mm);
1690 if (ret)
1691 goto out_free;
1692 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1693 mmap_read_unlock(mm);
1694
1695 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1696 if (end >= start_vaddr && end < mm->task_size)
1697 end_vaddr = end;
1698 }
1699
1700 /* Ensure the address is inside the task */
1701 if (start_vaddr > mm->task_size)
1702 start_vaddr = end_vaddr;
1703
1704 ret = 0;
1705 while (count && (start_vaddr < end_vaddr)) {
1706 int len;
1707 unsigned long end;
1708
1709 pm.pos = 0;
1710 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1711 /* overflow ? */
1712 if (end < start_vaddr || end > end_vaddr)
1713 end = end_vaddr;
1714 ret = mmap_read_lock_killable(mm);
1715 if (ret)
1716 goto out_free;
1717 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1718 mmap_read_unlock(mm);
1719 start_vaddr = end;
1720
1721 len = min(count, PM_ENTRY_BYTES * pm.pos);
1722 if (copy_to_user(buf, pm.buffer, len)) {
1723 ret = -EFAULT;
1724 goto out_free;
1725 }
1726 copied += len;
1727 buf += len;
1728 count -= len;
1729 }
1730 *ppos += copied;
1731 if (!ret || ret == PM_END_OF_BUFFER)
1732 ret = copied;
1733
1734out_free:
1735 kfree(pm.buffer);
1736out_mm:
1737 mmput(mm);
1738out:
1739 return ret;
1740}
1741
1742static int pagemap_open(struct inode *inode, struct file *file)
1743{
1744 struct mm_struct *mm;
1745
1746 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1747 if (IS_ERR(mm))
1748 return PTR_ERR(mm);
1749 file->private_data = mm;
1750 return 0;
1751}
1752
1753static int pagemap_release(struct inode *inode, struct file *file)
1754{
1755 struct mm_struct *mm = file->private_data;
1756
1757 if (mm)
1758 mmdrop(mm);
1759 return 0;
1760}
1761
1762#define PM_SCAN_CATEGORIES (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN | \
1763 PAGE_IS_FILE | PAGE_IS_PRESENT | \
1764 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO | \
1765 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
1766#define PM_SCAN_FLAGS (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
1767
1768struct pagemap_scan_private {
1769 struct pm_scan_arg arg;
1770 unsigned long masks_of_interest, cur_vma_category;
1771 struct page_region *vec_buf;
1772 unsigned long vec_buf_len, vec_buf_index, found_pages;
1773 struct page_region __user *vec_out;
1774};
1775
1776static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
1777 struct vm_area_struct *vma,
1778 unsigned long addr, pte_t pte)
1779{
1780 unsigned long categories = 0;
1781
1782 if (pte_present(pte)) {
1783 struct page *page;
1784
1785 categories |= PAGE_IS_PRESENT;
1786 if (!pte_uffd_wp(pte))
1787 categories |= PAGE_IS_WRITTEN;
1788
1789 if (p->masks_of_interest & PAGE_IS_FILE) {
1790 page = vm_normal_page(vma, addr, pte);
1791 if (page && !PageAnon(page))
1792 categories |= PAGE_IS_FILE;
1793 }
1794
1795 if (is_zero_pfn(pte_pfn(pte)))
1796 categories |= PAGE_IS_PFNZERO;
1797 if (pte_soft_dirty(pte))
1798 categories |= PAGE_IS_SOFT_DIRTY;
1799 } else if (is_swap_pte(pte)) {
1800 swp_entry_t swp;
1801
1802 categories |= PAGE_IS_SWAPPED;
1803 if (!pte_swp_uffd_wp_any(pte))
1804 categories |= PAGE_IS_WRITTEN;
1805
1806 if (p->masks_of_interest & PAGE_IS_FILE) {
1807 swp = pte_to_swp_entry(pte);
1808 if (is_pfn_swap_entry(swp) &&
1809 !folio_test_anon(pfn_swap_entry_folio(swp)))
1810 categories |= PAGE_IS_FILE;
1811 }
1812 if (pte_swp_soft_dirty(pte))
1813 categories |= PAGE_IS_SOFT_DIRTY;
1814 }
1815
1816 return categories;
1817}
1818
1819static void make_uffd_wp_pte(struct vm_area_struct *vma,
1820 unsigned long addr, pte_t *pte, pte_t ptent)
1821{
1822 if (pte_present(ptent)) {
1823 pte_t old_pte;
1824
1825 old_pte = ptep_modify_prot_start(vma, addr, pte);
1826 ptent = pte_mkuffd_wp(old_pte);
1827 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1828 } else if (is_swap_pte(ptent)) {
1829 ptent = pte_swp_mkuffd_wp(ptent);
1830 set_pte_at(vma->vm_mm, addr, pte, ptent);
1831 } else {
1832 set_pte_at(vma->vm_mm, addr, pte,
1833 make_pte_marker(PTE_MARKER_UFFD_WP));
1834 }
1835}
1836
1837#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1838static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
1839 struct vm_area_struct *vma,
1840 unsigned long addr, pmd_t pmd)
1841{
1842 unsigned long categories = PAGE_IS_HUGE;
1843
1844 if (pmd_present(pmd)) {
1845 struct page *page;
1846
1847 categories |= PAGE_IS_PRESENT;
1848 if (!pmd_uffd_wp(pmd))
1849 categories |= PAGE_IS_WRITTEN;
1850
1851 if (p->masks_of_interest & PAGE_IS_FILE) {
1852 page = vm_normal_page_pmd(vma, addr, pmd);
1853 if (page && !PageAnon(page))
1854 categories |= PAGE_IS_FILE;
1855 }
1856
1857 if (is_zero_pfn(pmd_pfn(pmd)))
1858 categories |= PAGE_IS_PFNZERO;
1859 if (pmd_soft_dirty(pmd))
1860 categories |= PAGE_IS_SOFT_DIRTY;
1861 } else if (is_swap_pmd(pmd)) {
1862 swp_entry_t swp;
1863
1864 categories |= PAGE_IS_SWAPPED;
1865 if (!pmd_swp_uffd_wp(pmd))
1866 categories |= PAGE_IS_WRITTEN;
1867 if (pmd_swp_soft_dirty(pmd))
1868 categories |= PAGE_IS_SOFT_DIRTY;
1869
1870 if (p->masks_of_interest & PAGE_IS_FILE) {
1871 swp = pmd_to_swp_entry(pmd);
1872 if (is_pfn_swap_entry(swp) &&
1873 !folio_test_anon(pfn_swap_entry_folio(swp)))
1874 categories |= PAGE_IS_FILE;
1875 }
1876 }
1877
1878 return categories;
1879}
1880
1881static void make_uffd_wp_pmd(struct vm_area_struct *vma,
1882 unsigned long addr, pmd_t *pmdp)
1883{
1884 pmd_t old, pmd = *pmdp;
1885
1886 if (pmd_present(pmd)) {
1887 old = pmdp_invalidate_ad(vma, addr, pmdp);
1888 pmd = pmd_mkuffd_wp(old);
1889 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1890 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1891 pmd = pmd_swp_mkuffd_wp(pmd);
1892 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1893 }
1894}
1895#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1896
1897#ifdef CONFIG_HUGETLB_PAGE
1898static unsigned long pagemap_hugetlb_category(pte_t pte)
1899{
1900 unsigned long categories = PAGE_IS_HUGE;
1901
1902 /*
1903 * According to pagemap_hugetlb_range(), file-backed HugeTLB
1904 * page cannot be swapped. So PAGE_IS_FILE is not checked for
1905 * swapped pages.
1906 */
1907 if (pte_present(pte)) {
1908 categories |= PAGE_IS_PRESENT;
1909 if (!huge_pte_uffd_wp(pte))
1910 categories |= PAGE_IS_WRITTEN;
1911 if (!PageAnon(pte_page(pte)))
1912 categories |= PAGE_IS_FILE;
1913 if (is_zero_pfn(pte_pfn(pte)))
1914 categories |= PAGE_IS_PFNZERO;
1915 if (pte_soft_dirty(pte))
1916 categories |= PAGE_IS_SOFT_DIRTY;
1917 } else if (is_swap_pte(pte)) {
1918 categories |= PAGE_IS_SWAPPED;
1919 if (!pte_swp_uffd_wp_any(pte))
1920 categories |= PAGE_IS_WRITTEN;
1921 if (pte_swp_soft_dirty(pte))
1922 categories |= PAGE_IS_SOFT_DIRTY;
1923 }
1924
1925 return categories;
1926}
1927
1928static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
1929 unsigned long addr, pte_t *ptep,
1930 pte_t ptent)
1931{
1932 unsigned long psize;
1933
1934 if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
1935 return;
1936
1937 psize = huge_page_size(hstate_vma(vma));
1938
1939 if (is_hugetlb_entry_migration(ptent))
1940 set_huge_pte_at(vma->vm_mm, addr, ptep,
1941 pte_swp_mkuffd_wp(ptent), psize);
1942 else if (!huge_pte_none(ptent))
1943 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
1944 huge_pte_mkuffd_wp(ptent));
1945 else
1946 set_huge_pte_at(vma->vm_mm, addr, ptep,
1947 make_pte_marker(PTE_MARKER_UFFD_WP), psize);
1948}
1949#endif /* CONFIG_HUGETLB_PAGE */
1950
1951#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1952static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
1953 unsigned long addr, unsigned long end)
1954{
1955 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
1956
1957 if (cur_buf->start != addr)
1958 cur_buf->end = addr;
1959 else
1960 cur_buf->start = cur_buf->end = 0;
1961
1962 p->found_pages -= (end - addr) / PAGE_SIZE;
1963}
1964#endif
1965
1966static bool pagemap_scan_is_interesting_page(unsigned long categories,
1967 const struct pagemap_scan_private *p)
1968{
1969 categories ^= p->arg.category_inverted;
1970 if ((categories & p->arg.category_mask) != p->arg.category_mask)
1971 return false;
1972 if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
1973 return false;
1974
1975 return true;
1976}
1977
1978static bool pagemap_scan_is_interesting_vma(unsigned long categories,
1979 const struct pagemap_scan_private *p)
1980{
1981 unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
1982
1983 categories ^= p->arg.category_inverted;
1984 if ((categories & required) != required)
1985 return false;
1986
1987 return true;
1988}
1989
1990static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
1991 struct mm_walk *walk)
1992{
1993 struct pagemap_scan_private *p = walk->private;
1994 struct vm_area_struct *vma = walk->vma;
1995 unsigned long vma_category = 0;
1996 bool wp_allowed = userfaultfd_wp_async(vma) &&
1997 userfaultfd_wp_use_markers(vma);
1998
1999 if (!wp_allowed) {
2000 /* User requested explicit failure over wp-async capability */
2001 if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2002 return -EPERM;
2003 /*
2004 * User requires wr-protect, and allows silently skipping
2005 * unsupported vmas.
2006 */
2007 if (p->arg.flags & PM_SCAN_WP_MATCHING)
2008 return 1;
2009 /*
2010 * Then the request doesn't involve wr-protects at all,
2011 * fall through to the rest checks, and allow vma walk.
2012 */
2013 }
2014
2015 if (vma->vm_flags & VM_PFNMAP)
2016 return 1;
2017
2018 if (wp_allowed)
2019 vma_category |= PAGE_IS_WPALLOWED;
2020
2021 if (vma->vm_flags & VM_SOFTDIRTY)
2022 vma_category |= PAGE_IS_SOFT_DIRTY;
2023
2024 if (!pagemap_scan_is_interesting_vma(vma_category, p))
2025 return 1;
2026
2027 p->cur_vma_category = vma_category;
2028
2029 return 0;
2030}
2031
2032static bool pagemap_scan_push_range(unsigned long categories,
2033 struct pagemap_scan_private *p,
2034 unsigned long addr, unsigned long end)
2035{
2036 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2037
2038 /*
2039 * When there is no output buffer provided at all, the sentinel values
2040 * won't match here. There is no other way for `cur_buf->end` to be
2041 * non-zero other than it being non-empty.
2042 */
2043 if (addr == cur_buf->end && categories == cur_buf->categories) {
2044 cur_buf->end = end;
2045 return true;
2046 }
2047
2048 if (cur_buf->end) {
2049 if (p->vec_buf_index >= p->vec_buf_len - 1)
2050 return false;
2051
2052 cur_buf = &p->vec_buf[++p->vec_buf_index];
2053 }
2054
2055 cur_buf->start = addr;
2056 cur_buf->end = end;
2057 cur_buf->categories = categories;
2058
2059 return true;
2060}
2061
2062static int pagemap_scan_output(unsigned long categories,
2063 struct pagemap_scan_private *p,
2064 unsigned long addr, unsigned long *end)
2065{
2066 unsigned long n_pages, total_pages;
2067 int ret = 0;
2068
2069 if (!p->vec_buf)
2070 return 0;
2071
2072 categories &= p->arg.return_mask;
2073
2074 n_pages = (*end - addr) / PAGE_SIZE;
2075 if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2076 total_pages > p->arg.max_pages) {
2077 size_t n_too_much = total_pages - p->arg.max_pages;
2078 *end -= n_too_much * PAGE_SIZE;
2079 n_pages -= n_too_much;
2080 ret = -ENOSPC;
2081 }
2082
2083 if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2084 *end = addr;
2085 n_pages = 0;
2086 ret = -ENOSPC;
2087 }
2088
2089 p->found_pages += n_pages;
2090 if (ret)
2091 p->arg.walk_end = *end;
2092
2093 return ret;
2094}
2095
2096static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2097 unsigned long end, struct mm_walk *walk)
2098{
2099#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2100 struct pagemap_scan_private *p = walk->private;
2101 struct vm_area_struct *vma = walk->vma;
2102 unsigned long categories;
2103 spinlock_t *ptl;
2104 int ret = 0;
2105
2106 ptl = pmd_trans_huge_lock(pmd, vma);
2107 if (!ptl)
2108 return -ENOENT;
2109
2110 categories = p->cur_vma_category |
2111 pagemap_thp_category(p, vma, start, *pmd);
2112
2113 if (!pagemap_scan_is_interesting_page(categories, p))
2114 goto out_unlock;
2115
2116 ret = pagemap_scan_output(categories, p, start, &end);
2117 if (start == end)
2118 goto out_unlock;
2119
2120 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2121 goto out_unlock;
2122 if (~categories & PAGE_IS_WRITTEN)
2123 goto out_unlock;
2124
2125 /*
2126 * Break huge page into small pages if the WP operation
2127 * needs to be performed on a portion of the huge page.
2128 */
2129 if (end != start + HPAGE_SIZE) {
2130 spin_unlock(ptl);
2131 split_huge_pmd(vma, pmd, start);
2132 pagemap_scan_backout_range(p, start, end);
2133 /* Report as if there was no THP */
2134 return -ENOENT;
2135 }
2136
2137 make_uffd_wp_pmd(vma, start, pmd);
2138 flush_tlb_range(vma, start, end);
2139out_unlock:
2140 spin_unlock(ptl);
2141 return ret;
2142#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2143 return -ENOENT;
2144#endif
2145}
2146
2147static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2148 unsigned long end, struct mm_walk *walk)
2149{
2150 struct pagemap_scan_private *p = walk->private;
2151 struct vm_area_struct *vma = walk->vma;
2152 unsigned long addr, flush_end = 0;
2153 pte_t *pte, *start_pte;
2154 spinlock_t *ptl;
2155 int ret;
2156
2157 arch_enter_lazy_mmu_mode();
2158
2159 ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2160 if (ret != -ENOENT) {
2161 arch_leave_lazy_mmu_mode();
2162 return ret;
2163 }
2164
2165 ret = 0;
2166 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2167 if (!pte) {
2168 arch_leave_lazy_mmu_mode();
2169 walk->action = ACTION_AGAIN;
2170 return 0;
2171 }
2172
2173 if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2174 /* Fast path for performing exclusive WP */
2175 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2176 pte_t ptent = ptep_get(pte);
2177
2178 if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2179 pte_swp_uffd_wp_any(ptent))
2180 continue;
2181 make_uffd_wp_pte(vma, addr, pte, ptent);
2182 if (!flush_end)
2183 start = addr;
2184 flush_end = addr + PAGE_SIZE;
2185 }
2186 goto flush_and_return;
2187 }
2188
2189 if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2190 p->arg.category_mask == PAGE_IS_WRITTEN &&
2191 p->arg.return_mask == PAGE_IS_WRITTEN) {
2192 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2193 unsigned long next = addr + PAGE_SIZE;
2194 pte_t ptent = ptep_get(pte);
2195
2196 if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2197 pte_swp_uffd_wp_any(ptent))
2198 continue;
2199 ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2200 p, addr, &next);
2201 if (next == addr)
2202 break;
2203 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2204 continue;
2205 make_uffd_wp_pte(vma, addr, pte, ptent);
2206 if (!flush_end)
2207 start = addr;
2208 flush_end = next;
2209 }
2210 goto flush_and_return;
2211 }
2212
2213 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2214 pte_t ptent = ptep_get(pte);
2215 unsigned long categories = p->cur_vma_category |
2216 pagemap_page_category(p, vma, addr, ptent);
2217 unsigned long next = addr + PAGE_SIZE;
2218
2219 if (!pagemap_scan_is_interesting_page(categories, p))
2220 continue;
2221
2222 ret = pagemap_scan_output(categories, p, addr, &next);
2223 if (next == addr)
2224 break;
2225
2226 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2227 continue;
2228 if (~categories & PAGE_IS_WRITTEN)
2229 continue;
2230
2231 make_uffd_wp_pte(vma, addr, pte, ptent);
2232 if (!flush_end)
2233 start = addr;
2234 flush_end = next;
2235 }
2236
2237flush_and_return:
2238 if (flush_end)
2239 flush_tlb_range(vma, start, addr);
2240
2241 pte_unmap_unlock(start_pte, ptl);
2242 arch_leave_lazy_mmu_mode();
2243
2244 cond_resched();
2245 return ret;
2246}
2247
2248#ifdef CONFIG_HUGETLB_PAGE
2249static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2250 unsigned long start, unsigned long end,
2251 struct mm_walk *walk)
2252{
2253 struct pagemap_scan_private *p = walk->private;
2254 struct vm_area_struct *vma = walk->vma;
2255 unsigned long categories;
2256 spinlock_t *ptl;
2257 int ret = 0;
2258 pte_t pte;
2259
2260 if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2261 /* Go the short route when not write-protecting pages. */
2262
2263 pte = huge_ptep_get(ptep);
2264 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2265
2266 if (!pagemap_scan_is_interesting_page(categories, p))
2267 return 0;
2268
2269 return pagemap_scan_output(categories, p, start, &end);
2270 }
2271
2272 i_mmap_lock_write(vma->vm_file->f_mapping);
2273 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2274
2275 pte = huge_ptep_get(ptep);
2276 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2277
2278 if (!pagemap_scan_is_interesting_page(categories, p))
2279 goto out_unlock;
2280
2281 ret = pagemap_scan_output(categories, p, start, &end);
2282 if (start == end)
2283 goto out_unlock;
2284
2285 if (~categories & PAGE_IS_WRITTEN)
2286 goto out_unlock;
2287
2288 if (end != start + HPAGE_SIZE) {
2289 /* Partial HugeTLB page WP isn't possible. */
2290 pagemap_scan_backout_range(p, start, end);
2291 p->arg.walk_end = start;
2292 ret = 0;
2293 goto out_unlock;
2294 }
2295
2296 make_uffd_wp_huge_pte(vma, start, ptep, pte);
2297 flush_hugetlb_tlb_range(vma, start, end);
2298
2299out_unlock:
2300 spin_unlock(ptl);
2301 i_mmap_unlock_write(vma->vm_file->f_mapping);
2302
2303 return ret;
2304}
2305#else
2306#define pagemap_scan_hugetlb_entry NULL
2307#endif
2308
2309static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2310 int depth, struct mm_walk *walk)
2311{
2312 struct pagemap_scan_private *p = walk->private;
2313 struct vm_area_struct *vma = walk->vma;
2314 int ret, err;
2315
2316 if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2317 return 0;
2318
2319 ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2320 if (addr == end)
2321 return ret;
2322
2323 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2324 return ret;
2325
2326 err = uffd_wp_range(vma, addr, end - addr, true);
2327 if (err < 0)
2328 ret = err;
2329
2330 return ret;
2331}
2332
2333static const struct mm_walk_ops pagemap_scan_ops = {
2334 .test_walk = pagemap_scan_test_walk,
2335 .pmd_entry = pagemap_scan_pmd_entry,
2336 .pte_hole = pagemap_scan_pte_hole,
2337 .hugetlb_entry = pagemap_scan_hugetlb_entry,
2338};
2339
2340static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2341 unsigned long uarg)
2342{
2343 if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2344 return -EFAULT;
2345
2346 if (arg->size != sizeof(struct pm_scan_arg))
2347 return -EINVAL;
2348
2349 /* Validate requested features */
2350 if (arg->flags & ~PM_SCAN_FLAGS)
2351 return -EINVAL;
2352 if ((arg->category_inverted | arg->category_mask |
2353 arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2354 return -EINVAL;
2355
2356 arg->start = untagged_addr((unsigned long)arg->start);
2357 arg->end = untagged_addr((unsigned long)arg->end);
2358 arg->vec = untagged_addr((unsigned long)arg->vec);
2359
2360 /* Validate memory pointers */
2361 if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2362 return -EINVAL;
2363 if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2364 return -EFAULT;
2365 if (!arg->vec && arg->vec_len)
2366 return -EINVAL;
2367 if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2368 arg->vec_len * sizeof(struct page_region)))
2369 return -EFAULT;
2370
2371 /* Fixup default values */
2372 arg->end = ALIGN(arg->end, PAGE_SIZE);
2373 arg->walk_end = 0;
2374 if (!arg->max_pages)
2375 arg->max_pages = ULONG_MAX;
2376
2377 return 0;
2378}
2379
2380static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2381 unsigned long uargl)
2382{
2383 struct pm_scan_arg __user *uarg = (void __user *)uargl;
2384
2385 if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2386 return -EFAULT;
2387
2388 return 0;
2389}
2390
2391static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2392{
2393 if (!p->arg.vec_len)
2394 return 0;
2395
2396 p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2397 p->arg.vec_len);
2398 p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2399 GFP_KERNEL);
2400 if (!p->vec_buf)
2401 return -ENOMEM;
2402
2403 p->vec_buf->start = p->vec_buf->end = 0;
2404 p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2405
2406 return 0;
2407}
2408
2409static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2410{
2411 const struct page_region *buf = p->vec_buf;
2412 long n = p->vec_buf_index;
2413
2414 if (!p->vec_buf)
2415 return 0;
2416
2417 if (buf[n].end != buf[n].start)
2418 n++;
2419
2420 if (!n)
2421 return 0;
2422
2423 if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2424 return -EFAULT;
2425
2426 p->arg.vec_len -= n;
2427 p->vec_out += n;
2428
2429 p->vec_buf_index = 0;
2430 p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2431 p->vec_buf->start = p->vec_buf->end = 0;
2432
2433 return n;
2434}
2435
2436static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2437{
2438 struct pagemap_scan_private p = {0};
2439 unsigned long walk_start;
2440 size_t n_ranges_out = 0;
2441 int ret;
2442
2443 ret = pagemap_scan_get_args(&p.arg, uarg);
2444 if (ret)
2445 return ret;
2446
2447 p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2448 p.arg.return_mask;
2449 ret = pagemap_scan_init_bounce_buffer(&p);
2450 if (ret)
2451 return ret;
2452
2453 for (walk_start = p.arg.start; walk_start < p.arg.end;
2454 walk_start = p.arg.walk_end) {
2455 struct mmu_notifier_range range;
2456 long n_out;
2457
2458 if (fatal_signal_pending(current)) {
2459 ret = -EINTR;
2460 break;
2461 }
2462
2463 ret = mmap_read_lock_killable(mm);
2464 if (ret)
2465 break;
2466
2467 /* Protection change for the range is going to happen. */
2468 if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2469 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2470 mm, walk_start, p.arg.end);
2471 mmu_notifier_invalidate_range_start(&range);
2472 }
2473
2474 ret = walk_page_range(mm, walk_start, p.arg.end,
2475 &pagemap_scan_ops, &p);
2476
2477 if (p.arg.flags & PM_SCAN_WP_MATCHING)
2478 mmu_notifier_invalidate_range_end(&range);
2479
2480 mmap_read_unlock(mm);
2481
2482 n_out = pagemap_scan_flush_buffer(&p);
2483 if (n_out < 0)
2484 ret = n_out;
2485 else
2486 n_ranges_out += n_out;
2487
2488 if (ret != -ENOSPC)
2489 break;
2490
2491 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2492 break;
2493 }
2494
2495 /* ENOSPC signifies early stop (buffer full) from the walk. */
2496 if (!ret || ret == -ENOSPC)
2497 ret = n_ranges_out;
2498
2499 /* The walk_end isn't set when ret is zero */
2500 if (!p.arg.walk_end)
2501 p.arg.walk_end = p.arg.end;
2502 if (pagemap_scan_writeback_args(&p.arg, uarg))
2503 ret = -EFAULT;
2504
2505 kfree(p.vec_buf);
2506 return ret;
2507}
2508
2509static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2510 unsigned long arg)
2511{
2512 struct mm_struct *mm = file->private_data;
2513
2514 switch (cmd) {
2515 case PAGEMAP_SCAN:
2516 return do_pagemap_scan(mm, arg);
2517
2518 default:
2519 return -EINVAL;
2520 }
2521}
2522
2523const struct file_operations proc_pagemap_operations = {
2524 .llseek = mem_lseek, /* borrow this */
2525 .read = pagemap_read,
2526 .open = pagemap_open,
2527 .release = pagemap_release,
2528 .unlocked_ioctl = do_pagemap_cmd,
2529 .compat_ioctl = do_pagemap_cmd,
2530};
2531#endif /* CONFIG_PROC_PAGE_MONITOR */
2532
2533#ifdef CONFIG_NUMA
2534
2535struct numa_maps {
2536 unsigned long pages;
2537 unsigned long anon;
2538 unsigned long active;
2539 unsigned long writeback;
2540 unsigned long mapcount_max;
2541 unsigned long dirty;
2542 unsigned long swapcache;
2543 unsigned long node[MAX_NUMNODES];
2544};
2545
2546struct numa_maps_private {
2547 struct proc_maps_private proc_maps;
2548 struct numa_maps md;
2549};
2550
2551static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2552 unsigned long nr_pages)
2553{
2554 int count = page_mapcount(page);
2555
2556 md->pages += nr_pages;
2557 if (pte_dirty || PageDirty(page))
2558 md->dirty += nr_pages;
2559
2560 if (PageSwapCache(page))
2561 md->swapcache += nr_pages;
2562
2563 if (PageActive(page) || PageUnevictable(page))
2564 md->active += nr_pages;
2565
2566 if (PageWriteback(page))
2567 md->writeback += nr_pages;
2568
2569 if (PageAnon(page))
2570 md->anon += nr_pages;
2571
2572 if (count > md->mapcount_max)
2573 md->mapcount_max = count;
2574
2575 md->node[page_to_nid(page)] += nr_pages;
2576}
2577
2578static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2579 unsigned long addr)
2580{
2581 struct page *page;
2582 int nid;
2583
2584 if (!pte_present(pte))
2585 return NULL;
2586
2587 page = vm_normal_page(vma, addr, pte);
2588 if (!page || is_zone_device_page(page))
2589 return NULL;
2590
2591 if (PageReserved(page))
2592 return NULL;
2593
2594 nid = page_to_nid(page);
2595 if (!node_isset(nid, node_states[N_MEMORY]))
2596 return NULL;
2597
2598 return page;
2599}
2600
2601#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2602static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2603 struct vm_area_struct *vma,
2604 unsigned long addr)
2605{
2606 struct page *page;
2607 int nid;
2608
2609 if (!pmd_present(pmd))
2610 return NULL;
2611
2612 page = vm_normal_page_pmd(vma, addr, pmd);
2613 if (!page)
2614 return NULL;
2615
2616 if (PageReserved(page))
2617 return NULL;
2618
2619 nid = page_to_nid(page);
2620 if (!node_isset(nid, node_states[N_MEMORY]))
2621 return NULL;
2622
2623 return page;
2624}
2625#endif
2626
2627static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2628 unsigned long end, struct mm_walk *walk)
2629{
2630 struct numa_maps *md = walk->private;
2631 struct vm_area_struct *vma = walk->vma;
2632 spinlock_t *ptl;
2633 pte_t *orig_pte;
2634 pte_t *pte;
2635
2636#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2637 ptl = pmd_trans_huge_lock(pmd, vma);
2638 if (ptl) {
2639 struct page *page;
2640
2641 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2642 if (page)
2643 gather_stats(page, md, pmd_dirty(*pmd),
2644 HPAGE_PMD_SIZE/PAGE_SIZE);
2645 spin_unlock(ptl);
2646 return 0;
2647 }
2648#endif
2649 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2650 if (!pte) {
2651 walk->action = ACTION_AGAIN;
2652 return 0;
2653 }
2654 do {
2655 pte_t ptent = ptep_get(pte);
2656 struct page *page = can_gather_numa_stats(ptent, vma, addr);
2657 if (!page)
2658 continue;
2659 gather_stats(page, md, pte_dirty(ptent), 1);
2660
2661 } while (pte++, addr += PAGE_SIZE, addr != end);
2662 pte_unmap_unlock(orig_pte, ptl);
2663 cond_resched();
2664 return 0;
2665}
2666#ifdef CONFIG_HUGETLB_PAGE
2667static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2668 unsigned long addr, unsigned long end, struct mm_walk *walk)
2669{
2670 pte_t huge_pte = huge_ptep_get(pte);
2671 struct numa_maps *md;
2672 struct page *page;
2673
2674 if (!pte_present(huge_pte))
2675 return 0;
2676
2677 page = pte_page(huge_pte);
2678
2679 md = walk->private;
2680 gather_stats(page, md, pte_dirty(huge_pte), 1);
2681 return 0;
2682}
2683
2684#else
2685static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2686 unsigned long addr, unsigned long end, struct mm_walk *walk)
2687{
2688 return 0;
2689}
2690#endif
2691
2692static const struct mm_walk_ops show_numa_ops = {
2693 .hugetlb_entry = gather_hugetlb_stats,
2694 .pmd_entry = gather_pte_stats,
2695 .walk_lock = PGWALK_RDLOCK,
2696};
2697
2698/*
2699 * Display pages allocated per node and memory policy via /proc.
2700 */
2701static int show_numa_map(struct seq_file *m, void *v)
2702{
2703 struct numa_maps_private *numa_priv = m->private;
2704 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2705 struct vm_area_struct *vma = v;
2706 struct numa_maps *md = &numa_priv->md;
2707 struct file *file = vma->vm_file;
2708 struct mm_struct *mm = vma->vm_mm;
2709 char buffer[64];
2710 struct mempolicy *pol;
2711 pgoff_t ilx;
2712 int nid;
2713
2714 if (!mm)
2715 return 0;
2716
2717 /* Ensure we start with an empty set of numa_maps statistics. */
2718 memset(md, 0, sizeof(*md));
2719
2720 pol = __get_vma_policy(vma, vma->vm_start, &ilx);
2721 if (pol) {
2722 mpol_to_str(buffer, sizeof(buffer), pol);
2723 mpol_cond_put(pol);
2724 } else {
2725 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
2726 }
2727
2728 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2729
2730 if (file) {
2731 seq_puts(m, " file=");
2732 seq_path(m, file_user_path(file), "\n\t= ");
2733 } else if (vma_is_initial_heap(vma)) {
2734 seq_puts(m, " heap");
2735 } else if (vma_is_initial_stack(vma)) {
2736 seq_puts(m, " stack");
2737 }
2738
2739 if (is_vm_hugetlb_page(vma))
2740 seq_puts(m, " huge");
2741
2742 /* mmap_lock is held by m_start */
2743 walk_page_vma(vma, &show_numa_ops, md);
2744
2745 if (!md->pages)
2746 goto out;
2747
2748 if (md->anon)
2749 seq_printf(m, " anon=%lu", md->anon);
2750
2751 if (md->dirty)
2752 seq_printf(m, " dirty=%lu", md->dirty);
2753
2754 if (md->pages != md->anon && md->pages != md->dirty)
2755 seq_printf(m, " mapped=%lu", md->pages);
2756
2757 if (md->mapcount_max > 1)
2758 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2759
2760 if (md->swapcache)
2761 seq_printf(m, " swapcache=%lu", md->swapcache);
2762
2763 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2764 seq_printf(m, " active=%lu", md->active);
2765
2766 if (md->writeback)
2767 seq_printf(m, " writeback=%lu", md->writeback);
2768
2769 for_each_node_state(nid, N_MEMORY)
2770 if (md->node[nid])
2771 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2772
2773 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2774out:
2775 seq_putc(m, '\n');
2776 return 0;
2777}
2778
2779static const struct seq_operations proc_pid_numa_maps_op = {
2780 .start = m_start,
2781 .next = m_next,
2782 .stop = m_stop,
2783 .show = show_numa_map,
2784};
2785
2786static int pid_numa_maps_open(struct inode *inode, struct file *file)
2787{
2788 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2789 sizeof(struct numa_maps_private));
2790}
2791
2792const struct file_operations proc_pid_numa_maps_operations = {
2793 .open = pid_numa_maps_open,
2794 .read = seq_read,
2795 .llseek = seq_lseek,
2796 .release = proc_map_release,
2797};
2798
2799#endif /* CONFIG_NUMA */
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/pagewalk.h>
3#include <linux/vmacache.h>
4#include <linux/hugetlb.h>
5#include <linux/huge_mm.h>
6#include <linux/mount.h>
7#include <linux/seq_file.h>
8#include <linux/highmem.h>
9#include <linux/ptrace.h>
10#include <linux/slab.h>
11#include <linux/pagemap.h>
12#include <linux/mempolicy.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/sched/mm.h>
16#include <linux/swapops.h>
17#include <linux/mmu_notifier.h>
18#include <linux/page_idle.h>
19#include <linux/shmem_fs.h>
20#include <linux/uaccess.h>
21#include <linux/pkeys.h>
22
23#include <asm/elf.h>
24#include <asm/tlb.h>
25#include <asm/tlbflush.h>
26#include "internal.h"
27
28#define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30void task_mem(struct seq_file *m, struct mm_struct *mm)
31{
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39 /*
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
45 */
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
52
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
79}
80#undef SEQ_PUT_DEC
81
82unsigned long task_vsize(struct mm_struct *mm)
83{
84 return PAGE_SIZE * mm->total_vm;
85}
86
87unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
90{
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
98}
99
100#ifdef CONFIG_NUMA
101/*
102 * Save get_task_policy() for show_numa_map().
103 */
104static void hold_task_mempolicy(struct proc_maps_private *priv)
105{
106 struct task_struct *task = priv->task;
107
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
112}
113static void release_task_mempolicy(struct proc_maps_private *priv)
114{
115 mpol_put(priv->task_mempolicy);
116}
117#else
118static void hold_task_mempolicy(struct proc_maps_private *priv)
119{
120}
121static void release_task_mempolicy(struct proc_maps_private *priv)
122{
123}
124#endif
125
126static void *m_start(struct seq_file *m, loff_t *ppos)
127{
128 struct proc_maps_private *priv = m->private;
129 unsigned long last_addr = *ppos;
130 struct mm_struct *mm;
131 struct vm_area_struct *vma;
132
133 /* See m_next(). Zero at the start or after lseek. */
134 if (last_addr == -1UL)
135 return NULL;
136
137 priv->task = get_proc_task(priv->inode);
138 if (!priv->task)
139 return ERR_PTR(-ESRCH);
140
141 mm = priv->mm;
142 if (!mm || !mmget_not_zero(mm)) {
143 put_task_struct(priv->task);
144 priv->task = NULL;
145 return NULL;
146 }
147
148 if (mmap_read_lock_killable(mm)) {
149 mmput(mm);
150 put_task_struct(priv->task);
151 priv->task = NULL;
152 return ERR_PTR(-EINTR);
153 }
154
155 hold_task_mempolicy(priv);
156 priv->tail_vma = get_gate_vma(mm);
157
158 vma = find_vma(mm, last_addr);
159 if (vma)
160 return vma;
161
162 return priv->tail_vma;
163}
164
165static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166{
167 struct proc_maps_private *priv = m->private;
168 struct vm_area_struct *next, *vma = v;
169
170 if (vma == priv->tail_vma)
171 next = NULL;
172 else if (vma->vm_next)
173 next = vma->vm_next;
174 else
175 next = priv->tail_vma;
176
177 *ppos = next ? next->vm_start : -1UL;
178
179 return next;
180}
181
182static void m_stop(struct seq_file *m, void *v)
183{
184 struct proc_maps_private *priv = m->private;
185 struct mm_struct *mm = priv->mm;
186
187 if (!priv->task)
188 return;
189
190 release_task_mempolicy(priv);
191 mmap_read_unlock(mm);
192 mmput(mm);
193 put_task_struct(priv->task);
194 priv->task = NULL;
195}
196
197static int proc_maps_open(struct inode *inode, struct file *file,
198 const struct seq_operations *ops, int psize)
199{
200 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201
202 if (!priv)
203 return -ENOMEM;
204
205 priv->inode = inode;
206 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207 if (IS_ERR(priv->mm)) {
208 int err = PTR_ERR(priv->mm);
209
210 seq_release_private(inode, file);
211 return err;
212 }
213
214 return 0;
215}
216
217static int proc_map_release(struct inode *inode, struct file *file)
218{
219 struct seq_file *seq = file->private_data;
220 struct proc_maps_private *priv = seq->private;
221
222 if (priv->mm)
223 mmdrop(priv->mm);
224
225 return seq_release_private(inode, file);
226}
227
228static int do_maps_open(struct inode *inode, struct file *file,
229 const struct seq_operations *ops)
230{
231 return proc_maps_open(inode, file, ops,
232 sizeof(struct proc_maps_private));
233}
234
235/*
236 * Indicate if the VMA is a stack for the given task; for
237 * /proc/PID/maps that is the stack of the main task.
238 */
239static int is_stack(struct vm_area_struct *vma)
240{
241 /*
242 * We make no effort to guess what a given thread considers to be
243 * its "stack". It's not even well-defined for programs written
244 * languages like Go.
245 */
246 return vma->vm_start <= vma->vm_mm->start_stack &&
247 vma->vm_end >= vma->vm_mm->start_stack;
248}
249
250static void show_vma_header_prefix(struct seq_file *m,
251 unsigned long start, unsigned long end,
252 vm_flags_t flags, unsigned long long pgoff,
253 dev_t dev, unsigned long ino)
254{
255 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256 seq_put_hex_ll(m, NULL, start, 8);
257 seq_put_hex_ll(m, "-", end, 8);
258 seq_putc(m, ' ');
259 seq_putc(m, flags & VM_READ ? 'r' : '-');
260 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263 seq_put_hex_ll(m, " ", pgoff, 8);
264 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265 seq_put_hex_ll(m, ":", MINOR(dev), 2);
266 seq_put_decimal_ull(m, " ", ino);
267 seq_putc(m, ' ');
268}
269
270static void
271show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272{
273 struct mm_struct *mm = vma->vm_mm;
274 struct file *file = vma->vm_file;
275 vm_flags_t flags = vma->vm_flags;
276 unsigned long ino = 0;
277 unsigned long long pgoff = 0;
278 unsigned long start, end;
279 dev_t dev = 0;
280 const char *name = NULL;
281
282 if (file) {
283 struct inode *inode = file_inode(vma->vm_file);
284 dev = inode->i_sb->s_dev;
285 ino = inode->i_ino;
286 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287 }
288
289 start = vma->vm_start;
290 end = vma->vm_end;
291 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292
293 /*
294 * Print the dentry name for named mappings, and a
295 * special [heap] marker for the heap:
296 */
297 if (file) {
298 seq_pad(m, ' ');
299 seq_file_path(m, file, "\n");
300 goto done;
301 }
302
303 if (vma->vm_ops && vma->vm_ops->name) {
304 name = vma->vm_ops->name(vma);
305 if (name)
306 goto done;
307 }
308
309 name = arch_vma_name(vma);
310 if (!name) {
311 if (!mm) {
312 name = "[vdso]";
313 goto done;
314 }
315
316 if (vma->vm_start <= mm->brk &&
317 vma->vm_end >= mm->start_brk) {
318 name = "[heap]";
319 goto done;
320 }
321
322 if (is_stack(vma))
323 name = "[stack]";
324 }
325
326done:
327 if (name) {
328 seq_pad(m, ' ');
329 seq_puts(m, name);
330 }
331 seq_putc(m, '\n');
332}
333
334static int show_map(struct seq_file *m, void *v)
335{
336 show_map_vma(m, v);
337 return 0;
338}
339
340static const struct seq_operations proc_pid_maps_op = {
341 .start = m_start,
342 .next = m_next,
343 .stop = m_stop,
344 .show = show_map
345};
346
347static int pid_maps_open(struct inode *inode, struct file *file)
348{
349 return do_maps_open(inode, file, &proc_pid_maps_op);
350}
351
352const struct file_operations proc_pid_maps_operations = {
353 .open = pid_maps_open,
354 .read = seq_read,
355 .llseek = seq_lseek,
356 .release = proc_map_release,
357};
358
359/*
360 * Proportional Set Size(PSS): my share of RSS.
361 *
362 * PSS of a process is the count of pages it has in memory, where each
363 * page is divided by the number of processes sharing it. So if a
364 * process has 1000 pages all to itself, and 1000 shared with one other
365 * process, its PSS will be 1500.
366 *
367 * To keep (accumulated) division errors low, we adopt a 64bit
368 * fixed-point pss counter to minimize division errors. So (pss >>
369 * PSS_SHIFT) would be the real byte count.
370 *
371 * A shift of 12 before division means (assuming 4K page size):
372 * - 1M 3-user-pages add up to 8KB errors;
373 * - supports mapcount up to 2^24, or 16M;
374 * - supports PSS up to 2^52 bytes, or 4PB.
375 */
376#define PSS_SHIFT 12
377
378#ifdef CONFIG_PROC_PAGE_MONITOR
379struct mem_size_stats {
380 unsigned long resident;
381 unsigned long shared_clean;
382 unsigned long shared_dirty;
383 unsigned long private_clean;
384 unsigned long private_dirty;
385 unsigned long referenced;
386 unsigned long anonymous;
387 unsigned long lazyfree;
388 unsigned long anonymous_thp;
389 unsigned long shmem_thp;
390 unsigned long file_thp;
391 unsigned long swap;
392 unsigned long shared_hugetlb;
393 unsigned long private_hugetlb;
394 u64 pss;
395 u64 pss_anon;
396 u64 pss_file;
397 u64 pss_shmem;
398 u64 pss_locked;
399 u64 swap_pss;
400 bool check_shmem_swap;
401};
402
403static void smaps_page_accumulate(struct mem_size_stats *mss,
404 struct page *page, unsigned long size, unsigned long pss,
405 bool dirty, bool locked, bool private)
406{
407 mss->pss += pss;
408
409 if (PageAnon(page))
410 mss->pss_anon += pss;
411 else if (PageSwapBacked(page))
412 mss->pss_shmem += pss;
413 else
414 mss->pss_file += pss;
415
416 if (locked)
417 mss->pss_locked += pss;
418
419 if (dirty || PageDirty(page)) {
420 if (private)
421 mss->private_dirty += size;
422 else
423 mss->shared_dirty += size;
424 } else {
425 if (private)
426 mss->private_clean += size;
427 else
428 mss->shared_clean += size;
429 }
430}
431
432static void smaps_account(struct mem_size_stats *mss, struct page *page,
433 bool compound, bool young, bool dirty, bool locked)
434{
435 int i, nr = compound ? compound_nr(page) : 1;
436 unsigned long size = nr * PAGE_SIZE;
437
438 /*
439 * First accumulate quantities that depend only on |size| and the type
440 * of the compound page.
441 */
442 if (PageAnon(page)) {
443 mss->anonymous += size;
444 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445 mss->lazyfree += size;
446 }
447
448 mss->resident += size;
449 /* Accumulate the size in pages that have been accessed. */
450 if (young || page_is_young(page) || PageReferenced(page))
451 mss->referenced += size;
452
453 /*
454 * Then accumulate quantities that may depend on sharing, or that may
455 * differ page-by-page.
456 *
457 * page_count(page) == 1 guarantees the page is mapped exactly once.
458 * If any subpage of the compound page mapped with PTE it would elevate
459 * page_count().
460 */
461 if (page_count(page) == 1) {
462 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463 locked, true);
464 return;
465 }
466 for (i = 0; i < nr; i++, page++) {
467 int mapcount = page_mapcount(page);
468 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469 if (mapcount >= 2)
470 pss /= mapcount;
471 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472 mapcount < 2);
473 }
474}
475
476#ifdef CONFIG_SHMEM
477static int smaps_pte_hole(unsigned long addr, unsigned long end,
478 __always_unused int depth, struct mm_walk *walk)
479{
480 struct mem_size_stats *mss = walk->private;
481
482 mss->swap += shmem_partial_swap_usage(
483 walk->vma->vm_file->f_mapping, addr, end);
484
485 return 0;
486}
487#else
488#define smaps_pte_hole NULL
489#endif /* CONFIG_SHMEM */
490
491static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492 struct mm_walk *walk)
493{
494 struct mem_size_stats *mss = walk->private;
495 struct vm_area_struct *vma = walk->vma;
496 bool locked = !!(vma->vm_flags & VM_LOCKED);
497 struct page *page = NULL;
498
499 if (pte_present(*pte)) {
500 page = vm_normal_page(vma, addr, *pte);
501 } else if (is_swap_pte(*pte)) {
502 swp_entry_t swpent = pte_to_swp_entry(*pte);
503
504 if (!non_swap_entry(swpent)) {
505 int mapcount;
506
507 mss->swap += PAGE_SIZE;
508 mapcount = swp_swapcount(swpent);
509 if (mapcount >= 2) {
510 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511
512 do_div(pss_delta, mapcount);
513 mss->swap_pss += pss_delta;
514 } else {
515 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516 }
517 } else if (is_pfn_swap_entry(swpent))
518 page = pfn_swap_entry_to_page(swpent);
519 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
520 && pte_none(*pte))) {
521 page = xa_load(&vma->vm_file->f_mapping->i_pages,
522 linear_page_index(vma, addr));
523 if (xa_is_value(page))
524 mss->swap += PAGE_SIZE;
525 return;
526 }
527
528 if (!page)
529 return;
530
531 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
532}
533
534#ifdef CONFIG_TRANSPARENT_HUGEPAGE
535static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
536 struct mm_walk *walk)
537{
538 struct mem_size_stats *mss = walk->private;
539 struct vm_area_struct *vma = walk->vma;
540 bool locked = !!(vma->vm_flags & VM_LOCKED);
541 struct page *page = NULL;
542
543 if (pmd_present(*pmd)) {
544 /* FOLL_DUMP will return -EFAULT on huge zero page */
545 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
546 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
547 swp_entry_t entry = pmd_to_swp_entry(*pmd);
548
549 if (is_migration_entry(entry))
550 page = pfn_swap_entry_to_page(entry);
551 }
552 if (IS_ERR_OR_NULL(page))
553 return;
554 if (PageAnon(page))
555 mss->anonymous_thp += HPAGE_PMD_SIZE;
556 else if (PageSwapBacked(page))
557 mss->shmem_thp += HPAGE_PMD_SIZE;
558 else if (is_zone_device_page(page))
559 /* pass */;
560 else
561 mss->file_thp += HPAGE_PMD_SIZE;
562 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
563}
564#else
565static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
566 struct mm_walk *walk)
567{
568}
569#endif
570
571static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
572 struct mm_walk *walk)
573{
574 struct vm_area_struct *vma = walk->vma;
575 pte_t *pte;
576 spinlock_t *ptl;
577
578 ptl = pmd_trans_huge_lock(pmd, vma);
579 if (ptl) {
580 smaps_pmd_entry(pmd, addr, walk);
581 spin_unlock(ptl);
582 goto out;
583 }
584
585 if (pmd_trans_unstable(pmd))
586 goto out;
587 /*
588 * The mmap_lock held all the way back in m_start() is what
589 * keeps khugepaged out of here and from collapsing things
590 * in here.
591 */
592 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
593 for (; addr != end; pte++, addr += PAGE_SIZE)
594 smaps_pte_entry(pte, addr, walk);
595 pte_unmap_unlock(pte - 1, ptl);
596out:
597 cond_resched();
598 return 0;
599}
600
601static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
602{
603 /*
604 * Don't forget to update Documentation/ on changes.
605 */
606 static const char mnemonics[BITS_PER_LONG][2] = {
607 /*
608 * In case if we meet a flag we don't know about.
609 */
610 [0 ... (BITS_PER_LONG-1)] = "??",
611
612 [ilog2(VM_READ)] = "rd",
613 [ilog2(VM_WRITE)] = "wr",
614 [ilog2(VM_EXEC)] = "ex",
615 [ilog2(VM_SHARED)] = "sh",
616 [ilog2(VM_MAYREAD)] = "mr",
617 [ilog2(VM_MAYWRITE)] = "mw",
618 [ilog2(VM_MAYEXEC)] = "me",
619 [ilog2(VM_MAYSHARE)] = "ms",
620 [ilog2(VM_GROWSDOWN)] = "gd",
621 [ilog2(VM_PFNMAP)] = "pf",
622 [ilog2(VM_DENYWRITE)] = "dw",
623 [ilog2(VM_LOCKED)] = "lo",
624 [ilog2(VM_IO)] = "io",
625 [ilog2(VM_SEQ_READ)] = "sr",
626 [ilog2(VM_RAND_READ)] = "rr",
627 [ilog2(VM_DONTCOPY)] = "dc",
628 [ilog2(VM_DONTEXPAND)] = "de",
629 [ilog2(VM_ACCOUNT)] = "ac",
630 [ilog2(VM_NORESERVE)] = "nr",
631 [ilog2(VM_HUGETLB)] = "ht",
632 [ilog2(VM_SYNC)] = "sf",
633 [ilog2(VM_ARCH_1)] = "ar",
634 [ilog2(VM_WIPEONFORK)] = "wf",
635 [ilog2(VM_DONTDUMP)] = "dd",
636#ifdef CONFIG_ARM64_BTI
637 [ilog2(VM_ARM64_BTI)] = "bt",
638#endif
639#ifdef CONFIG_MEM_SOFT_DIRTY
640 [ilog2(VM_SOFTDIRTY)] = "sd",
641#endif
642 [ilog2(VM_MIXEDMAP)] = "mm",
643 [ilog2(VM_HUGEPAGE)] = "hg",
644 [ilog2(VM_NOHUGEPAGE)] = "nh",
645 [ilog2(VM_MERGEABLE)] = "mg",
646 [ilog2(VM_UFFD_MISSING)]= "um",
647 [ilog2(VM_UFFD_WP)] = "uw",
648#ifdef CONFIG_ARM64_MTE
649 [ilog2(VM_MTE)] = "mt",
650 [ilog2(VM_MTE_ALLOWED)] = "",
651#endif
652#ifdef CONFIG_ARCH_HAS_PKEYS
653 /* These come out via ProtectionKey: */
654 [ilog2(VM_PKEY_BIT0)] = "",
655 [ilog2(VM_PKEY_BIT1)] = "",
656 [ilog2(VM_PKEY_BIT2)] = "",
657 [ilog2(VM_PKEY_BIT3)] = "",
658#if VM_PKEY_BIT4
659 [ilog2(VM_PKEY_BIT4)] = "",
660#endif
661#endif /* CONFIG_ARCH_HAS_PKEYS */
662#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
663 [ilog2(VM_UFFD_MINOR)] = "ui",
664#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
665 };
666 size_t i;
667
668 seq_puts(m, "VmFlags: ");
669 for (i = 0; i < BITS_PER_LONG; i++) {
670 if (!mnemonics[i][0])
671 continue;
672 if (vma->vm_flags & (1UL << i)) {
673 seq_putc(m, mnemonics[i][0]);
674 seq_putc(m, mnemonics[i][1]);
675 seq_putc(m, ' ');
676 }
677 }
678 seq_putc(m, '\n');
679}
680
681#ifdef CONFIG_HUGETLB_PAGE
682static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
683 unsigned long addr, unsigned long end,
684 struct mm_walk *walk)
685{
686 struct mem_size_stats *mss = walk->private;
687 struct vm_area_struct *vma = walk->vma;
688 struct page *page = NULL;
689
690 if (pte_present(*pte)) {
691 page = vm_normal_page(vma, addr, *pte);
692 } else if (is_swap_pte(*pte)) {
693 swp_entry_t swpent = pte_to_swp_entry(*pte);
694
695 if (is_pfn_swap_entry(swpent))
696 page = pfn_swap_entry_to_page(swpent);
697 }
698 if (page) {
699 int mapcount = page_mapcount(page);
700
701 if (mapcount >= 2)
702 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
703 else
704 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
705 }
706 return 0;
707}
708#else
709#define smaps_hugetlb_range NULL
710#endif /* HUGETLB_PAGE */
711
712static const struct mm_walk_ops smaps_walk_ops = {
713 .pmd_entry = smaps_pte_range,
714 .hugetlb_entry = smaps_hugetlb_range,
715};
716
717static const struct mm_walk_ops smaps_shmem_walk_ops = {
718 .pmd_entry = smaps_pte_range,
719 .hugetlb_entry = smaps_hugetlb_range,
720 .pte_hole = smaps_pte_hole,
721};
722
723/*
724 * Gather mem stats from @vma with the indicated beginning
725 * address @start, and keep them in @mss.
726 *
727 * Use vm_start of @vma as the beginning address if @start is 0.
728 */
729static void smap_gather_stats(struct vm_area_struct *vma,
730 struct mem_size_stats *mss, unsigned long start)
731{
732 const struct mm_walk_ops *ops = &smaps_walk_ops;
733
734 /* Invalid start */
735 if (start >= vma->vm_end)
736 return;
737
738#ifdef CONFIG_SHMEM
739 /* In case of smaps_rollup, reset the value from previous vma */
740 mss->check_shmem_swap = false;
741 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
742 /*
743 * For shared or readonly shmem mappings we know that all
744 * swapped out pages belong to the shmem object, and we can
745 * obtain the swap value much more efficiently. For private
746 * writable mappings, we might have COW pages that are
747 * not affected by the parent swapped out pages of the shmem
748 * object, so we have to distinguish them during the page walk.
749 * Unless we know that the shmem object (or the part mapped by
750 * our VMA) has no swapped out pages at all.
751 */
752 unsigned long shmem_swapped = shmem_swap_usage(vma);
753
754 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
755 !(vma->vm_flags & VM_WRITE))) {
756 mss->swap += shmem_swapped;
757 } else {
758 mss->check_shmem_swap = true;
759 ops = &smaps_shmem_walk_ops;
760 }
761 }
762#endif
763 /* mmap_lock is held in m_start */
764 if (!start)
765 walk_page_vma(vma, ops, mss);
766 else
767 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
768}
769
770#define SEQ_PUT_DEC(str, val) \
771 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
772
773/* Show the contents common for smaps and smaps_rollup */
774static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
775 bool rollup_mode)
776{
777 SEQ_PUT_DEC("Rss: ", mss->resident);
778 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
779 if (rollup_mode) {
780 /*
781 * These are meaningful only for smaps_rollup, otherwise two of
782 * them are zero, and the other one is the same as Pss.
783 */
784 SEQ_PUT_DEC(" kB\nPss_Anon: ",
785 mss->pss_anon >> PSS_SHIFT);
786 SEQ_PUT_DEC(" kB\nPss_File: ",
787 mss->pss_file >> PSS_SHIFT);
788 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
789 mss->pss_shmem >> PSS_SHIFT);
790 }
791 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
792 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
793 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
794 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
795 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
796 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
797 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
798 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
799 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
800 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
801 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
802 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
803 mss->private_hugetlb >> 10, 7);
804 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
805 SEQ_PUT_DEC(" kB\nSwapPss: ",
806 mss->swap_pss >> PSS_SHIFT);
807 SEQ_PUT_DEC(" kB\nLocked: ",
808 mss->pss_locked >> PSS_SHIFT);
809 seq_puts(m, " kB\n");
810}
811
812static int show_smap(struct seq_file *m, void *v)
813{
814 struct vm_area_struct *vma = v;
815 struct mem_size_stats mss;
816
817 memset(&mss, 0, sizeof(mss));
818
819 smap_gather_stats(vma, &mss, 0);
820
821 show_map_vma(m, vma);
822
823 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
824 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
825 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
826 seq_puts(m, " kB\n");
827
828 __show_smap(m, &mss, false);
829
830 seq_printf(m, "THPeligible: %d\n",
831 transparent_hugepage_active(vma));
832
833 if (arch_pkeys_enabled())
834 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
835 show_smap_vma_flags(m, vma);
836
837 return 0;
838}
839
840static int show_smaps_rollup(struct seq_file *m, void *v)
841{
842 struct proc_maps_private *priv = m->private;
843 struct mem_size_stats mss;
844 struct mm_struct *mm;
845 struct vm_area_struct *vma;
846 unsigned long last_vma_end = 0;
847 int ret = 0;
848
849 priv->task = get_proc_task(priv->inode);
850 if (!priv->task)
851 return -ESRCH;
852
853 mm = priv->mm;
854 if (!mm || !mmget_not_zero(mm)) {
855 ret = -ESRCH;
856 goto out_put_task;
857 }
858
859 memset(&mss, 0, sizeof(mss));
860
861 ret = mmap_read_lock_killable(mm);
862 if (ret)
863 goto out_put_mm;
864
865 hold_task_mempolicy(priv);
866
867 for (vma = priv->mm->mmap; vma;) {
868 smap_gather_stats(vma, &mss, 0);
869 last_vma_end = vma->vm_end;
870
871 /*
872 * Release mmap_lock temporarily if someone wants to
873 * access it for write request.
874 */
875 if (mmap_lock_is_contended(mm)) {
876 mmap_read_unlock(mm);
877 ret = mmap_read_lock_killable(mm);
878 if (ret) {
879 release_task_mempolicy(priv);
880 goto out_put_mm;
881 }
882
883 /*
884 * After dropping the lock, there are four cases to
885 * consider. See the following example for explanation.
886 *
887 * +------+------+-----------+
888 * | VMA1 | VMA2 | VMA3 |
889 * +------+------+-----------+
890 * | | | |
891 * 4k 8k 16k 400k
892 *
893 * Suppose we drop the lock after reading VMA2 due to
894 * contention, then we get:
895 *
896 * last_vma_end = 16k
897 *
898 * 1) VMA2 is freed, but VMA3 exists:
899 *
900 * find_vma(mm, 16k - 1) will return VMA3.
901 * In this case, just continue from VMA3.
902 *
903 * 2) VMA2 still exists:
904 *
905 * find_vma(mm, 16k - 1) will return VMA2.
906 * Iterate the loop like the original one.
907 *
908 * 3) No more VMAs can be found:
909 *
910 * find_vma(mm, 16k - 1) will return NULL.
911 * No more things to do, just break.
912 *
913 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
914 *
915 * find_vma(mm, 16k - 1) will return VMA' whose range
916 * contains last_vma_end.
917 * Iterate VMA' from last_vma_end.
918 */
919 vma = find_vma(mm, last_vma_end - 1);
920 /* Case 3 above */
921 if (!vma)
922 break;
923
924 /* Case 1 above */
925 if (vma->vm_start >= last_vma_end)
926 continue;
927
928 /* Case 4 above */
929 if (vma->vm_end > last_vma_end)
930 smap_gather_stats(vma, &mss, last_vma_end);
931 }
932 /* Case 2 above */
933 vma = vma->vm_next;
934 }
935
936 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
937 last_vma_end, 0, 0, 0, 0);
938 seq_pad(m, ' ');
939 seq_puts(m, "[rollup]\n");
940
941 __show_smap(m, &mss, true);
942
943 release_task_mempolicy(priv);
944 mmap_read_unlock(mm);
945
946out_put_mm:
947 mmput(mm);
948out_put_task:
949 put_task_struct(priv->task);
950 priv->task = NULL;
951
952 return ret;
953}
954#undef SEQ_PUT_DEC
955
956static const struct seq_operations proc_pid_smaps_op = {
957 .start = m_start,
958 .next = m_next,
959 .stop = m_stop,
960 .show = show_smap
961};
962
963static int pid_smaps_open(struct inode *inode, struct file *file)
964{
965 return do_maps_open(inode, file, &proc_pid_smaps_op);
966}
967
968static int smaps_rollup_open(struct inode *inode, struct file *file)
969{
970 int ret;
971 struct proc_maps_private *priv;
972
973 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
974 if (!priv)
975 return -ENOMEM;
976
977 ret = single_open(file, show_smaps_rollup, priv);
978 if (ret)
979 goto out_free;
980
981 priv->inode = inode;
982 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
983 if (IS_ERR(priv->mm)) {
984 ret = PTR_ERR(priv->mm);
985
986 single_release(inode, file);
987 goto out_free;
988 }
989
990 return 0;
991
992out_free:
993 kfree(priv);
994 return ret;
995}
996
997static int smaps_rollup_release(struct inode *inode, struct file *file)
998{
999 struct seq_file *seq = file->private_data;
1000 struct proc_maps_private *priv = seq->private;
1001
1002 if (priv->mm)
1003 mmdrop(priv->mm);
1004
1005 kfree(priv);
1006 return single_release(inode, file);
1007}
1008
1009const struct file_operations proc_pid_smaps_operations = {
1010 .open = pid_smaps_open,
1011 .read = seq_read,
1012 .llseek = seq_lseek,
1013 .release = proc_map_release,
1014};
1015
1016const struct file_operations proc_pid_smaps_rollup_operations = {
1017 .open = smaps_rollup_open,
1018 .read = seq_read,
1019 .llseek = seq_lseek,
1020 .release = smaps_rollup_release,
1021};
1022
1023enum clear_refs_types {
1024 CLEAR_REFS_ALL = 1,
1025 CLEAR_REFS_ANON,
1026 CLEAR_REFS_MAPPED,
1027 CLEAR_REFS_SOFT_DIRTY,
1028 CLEAR_REFS_MM_HIWATER_RSS,
1029 CLEAR_REFS_LAST,
1030};
1031
1032struct clear_refs_private {
1033 enum clear_refs_types type;
1034};
1035
1036#ifdef CONFIG_MEM_SOFT_DIRTY
1037
1038static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1039{
1040 struct page *page;
1041
1042 if (!pte_write(pte))
1043 return false;
1044 if (!is_cow_mapping(vma->vm_flags))
1045 return false;
1046 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1047 return false;
1048 page = vm_normal_page(vma, addr, pte);
1049 if (!page)
1050 return false;
1051 return page_maybe_dma_pinned(page);
1052}
1053
1054static inline void clear_soft_dirty(struct vm_area_struct *vma,
1055 unsigned long addr, pte_t *pte)
1056{
1057 /*
1058 * The soft-dirty tracker uses #PF-s to catch writes
1059 * to pages, so write-protect the pte as well. See the
1060 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1061 * of how soft-dirty works.
1062 */
1063 pte_t ptent = *pte;
1064
1065 if (pte_present(ptent)) {
1066 pte_t old_pte;
1067
1068 if (pte_is_pinned(vma, addr, ptent))
1069 return;
1070 old_pte = ptep_modify_prot_start(vma, addr, pte);
1071 ptent = pte_wrprotect(old_pte);
1072 ptent = pte_clear_soft_dirty(ptent);
1073 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1074 } else if (is_swap_pte(ptent)) {
1075 ptent = pte_swp_clear_soft_dirty(ptent);
1076 set_pte_at(vma->vm_mm, addr, pte, ptent);
1077 }
1078}
1079#else
1080static inline void clear_soft_dirty(struct vm_area_struct *vma,
1081 unsigned long addr, pte_t *pte)
1082{
1083}
1084#endif
1085
1086#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1087static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1088 unsigned long addr, pmd_t *pmdp)
1089{
1090 pmd_t old, pmd = *pmdp;
1091
1092 if (pmd_present(pmd)) {
1093 /* See comment in change_huge_pmd() */
1094 old = pmdp_invalidate(vma, addr, pmdp);
1095 if (pmd_dirty(old))
1096 pmd = pmd_mkdirty(pmd);
1097 if (pmd_young(old))
1098 pmd = pmd_mkyoung(pmd);
1099
1100 pmd = pmd_wrprotect(pmd);
1101 pmd = pmd_clear_soft_dirty(pmd);
1102
1103 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1104 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1105 pmd = pmd_swp_clear_soft_dirty(pmd);
1106 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1107 }
1108}
1109#else
1110static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1111 unsigned long addr, pmd_t *pmdp)
1112{
1113}
1114#endif
1115
1116static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1117 unsigned long end, struct mm_walk *walk)
1118{
1119 struct clear_refs_private *cp = walk->private;
1120 struct vm_area_struct *vma = walk->vma;
1121 pte_t *pte, ptent;
1122 spinlock_t *ptl;
1123 struct page *page;
1124
1125 ptl = pmd_trans_huge_lock(pmd, vma);
1126 if (ptl) {
1127 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1128 clear_soft_dirty_pmd(vma, addr, pmd);
1129 goto out;
1130 }
1131
1132 if (!pmd_present(*pmd))
1133 goto out;
1134
1135 page = pmd_page(*pmd);
1136
1137 /* Clear accessed and referenced bits. */
1138 pmdp_test_and_clear_young(vma, addr, pmd);
1139 test_and_clear_page_young(page);
1140 ClearPageReferenced(page);
1141out:
1142 spin_unlock(ptl);
1143 return 0;
1144 }
1145
1146 if (pmd_trans_unstable(pmd))
1147 return 0;
1148
1149 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1150 for (; addr != end; pte++, addr += PAGE_SIZE) {
1151 ptent = *pte;
1152
1153 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1154 clear_soft_dirty(vma, addr, pte);
1155 continue;
1156 }
1157
1158 if (!pte_present(ptent))
1159 continue;
1160
1161 page = vm_normal_page(vma, addr, ptent);
1162 if (!page)
1163 continue;
1164
1165 /* Clear accessed and referenced bits. */
1166 ptep_test_and_clear_young(vma, addr, pte);
1167 test_and_clear_page_young(page);
1168 ClearPageReferenced(page);
1169 }
1170 pte_unmap_unlock(pte - 1, ptl);
1171 cond_resched();
1172 return 0;
1173}
1174
1175static int clear_refs_test_walk(unsigned long start, unsigned long end,
1176 struct mm_walk *walk)
1177{
1178 struct clear_refs_private *cp = walk->private;
1179 struct vm_area_struct *vma = walk->vma;
1180
1181 if (vma->vm_flags & VM_PFNMAP)
1182 return 1;
1183
1184 /*
1185 * Writing 1 to /proc/pid/clear_refs affects all pages.
1186 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1187 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1188 * Writing 4 to /proc/pid/clear_refs affects all pages.
1189 */
1190 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1191 return 1;
1192 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1193 return 1;
1194 return 0;
1195}
1196
1197static const struct mm_walk_ops clear_refs_walk_ops = {
1198 .pmd_entry = clear_refs_pte_range,
1199 .test_walk = clear_refs_test_walk,
1200};
1201
1202static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1203 size_t count, loff_t *ppos)
1204{
1205 struct task_struct *task;
1206 char buffer[PROC_NUMBUF];
1207 struct mm_struct *mm;
1208 struct vm_area_struct *vma;
1209 enum clear_refs_types type;
1210 int itype;
1211 int rv;
1212
1213 memset(buffer, 0, sizeof(buffer));
1214 if (count > sizeof(buffer) - 1)
1215 count = sizeof(buffer) - 1;
1216 if (copy_from_user(buffer, buf, count))
1217 return -EFAULT;
1218 rv = kstrtoint(strstrip(buffer), 10, &itype);
1219 if (rv < 0)
1220 return rv;
1221 type = (enum clear_refs_types)itype;
1222 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1223 return -EINVAL;
1224
1225 task = get_proc_task(file_inode(file));
1226 if (!task)
1227 return -ESRCH;
1228 mm = get_task_mm(task);
1229 if (mm) {
1230 struct mmu_notifier_range range;
1231 struct clear_refs_private cp = {
1232 .type = type,
1233 };
1234
1235 if (mmap_write_lock_killable(mm)) {
1236 count = -EINTR;
1237 goto out_mm;
1238 }
1239 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1240 /*
1241 * Writing 5 to /proc/pid/clear_refs resets the peak
1242 * resident set size to this mm's current rss value.
1243 */
1244 reset_mm_hiwater_rss(mm);
1245 goto out_unlock;
1246 }
1247
1248 if (type == CLEAR_REFS_SOFT_DIRTY) {
1249 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1250 if (!(vma->vm_flags & VM_SOFTDIRTY))
1251 continue;
1252 vma->vm_flags &= ~VM_SOFTDIRTY;
1253 vma_set_page_prot(vma);
1254 }
1255
1256 inc_tlb_flush_pending(mm);
1257 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1258 0, NULL, mm, 0, -1UL);
1259 mmu_notifier_invalidate_range_start(&range);
1260 }
1261 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1262 &cp);
1263 if (type == CLEAR_REFS_SOFT_DIRTY) {
1264 mmu_notifier_invalidate_range_end(&range);
1265 flush_tlb_mm(mm);
1266 dec_tlb_flush_pending(mm);
1267 }
1268out_unlock:
1269 mmap_write_unlock(mm);
1270out_mm:
1271 mmput(mm);
1272 }
1273 put_task_struct(task);
1274
1275 return count;
1276}
1277
1278const struct file_operations proc_clear_refs_operations = {
1279 .write = clear_refs_write,
1280 .llseek = noop_llseek,
1281};
1282
1283typedef struct {
1284 u64 pme;
1285} pagemap_entry_t;
1286
1287struct pagemapread {
1288 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1289 pagemap_entry_t *buffer;
1290 bool show_pfn;
1291};
1292
1293#define PAGEMAP_WALK_SIZE (PMD_SIZE)
1294#define PAGEMAP_WALK_MASK (PMD_MASK)
1295
1296#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1297#define PM_PFRAME_BITS 55
1298#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1299#define PM_SOFT_DIRTY BIT_ULL(55)
1300#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1301#define PM_UFFD_WP BIT_ULL(57)
1302#define PM_FILE BIT_ULL(61)
1303#define PM_SWAP BIT_ULL(62)
1304#define PM_PRESENT BIT_ULL(63)
1305
1306#define PM_END_OF_BUFFER 1
1307
1308static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1309{
1310 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1311}
1312
1313static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1314 struct pagemapread *pm)
1315{
1316 pm->buffer[pm->pos++] = *pme;
1317 if (pm->pos >= pm->len)
1318 return PM_END_OF_BUFFER;
1319 return 0;
1320}
1321
1322static int pagemap_pte_hole(unsigned long start, unsigned long end,
1323 __always_unused int depth, struct mm_walk *walk)
1324{
1325 struct pagemapread *pm = walk->private;
1326 unsigned long addr = start;
1327 int err = 0;
1328
1329 while (addr < end) {
1330 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1331 pagemap_entry_t pme = make_pme(0, 0);
1332 /* End of address space hole, which we mark as non-present. */
1333 unsigned long hole_end;
1334
1335 if (vma)
1336 hole_end = min(end, vma->vm_start);
1337 else
1338 hole_end = end;
1339
1340 for (; addr < hole_end; addr += PAGE_SIZE) {
1341 err = add_to_pagemap(addr, &pme, pm);
1342 if (err)
1343 goto out;
1344 }
1345
1346 if (!vma)
1347 break;
1348
1349 /* Addresses in the VMA. */
1350 if (vma->vm_flags & VM_SOFTDIRTY)
1351 pme = make_pme(0, PM_SOFT_DIRTY);
1352 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1353 err = add_to_pagemap(addr, &pme, pm);
1354 if (err)
1355 goto out;
1356 }
1357 }
1358out:
1359 return err;
1360}
1361
1362static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1363 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1364{
1365 u64 frame = 0, flags = 0;
1366 struct page *page = NULL;
1367
1368 if (pte_present(pte)) {
1369 if (pm->show_pfn)
1370 frame = pte_pfn(pte);
1371 flags |= PM_PRESENT;
1372 page = vm_normal_page(vma, addr, pte);
1373 if (pte_soft_dirty(pte))
1374 flags |= PM_SOFT_DIRTY;
1375 if (pte_uffd_wp(pte))
1376 flags |= PM_UFFD_WP;
1377 } else if (is_swap_pte(pte)) {
1378 swp_entry_t entry;
1379 if (pte_swp_soft_dirty(pte))
1380 flags |= PM_SOFT_DIRTY;
1381 if (pte_swp_uffd_wp(pte))
1382 flags |= PM_UFFD_WP;
1383 entry = pte_to_swp_entry(pte);
1384 if (pm->show_pfn)
1385 frame = swp_type(entry) |
1386 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1387 flags |= PM_SWAP;
1388 if (is_pfn_swap_entry(entry))
1389 page = pfn_swap_entry_to_page(entry);
1390 }
1391
1392 if (page && !PageAnon(page))
1393 flags |= PM_FILE;
1394 if (page && page_mapcount(page) == 1)
1395 flags |= PM_MMAP_EXCLUSIVE;
1396 if (vma->vm_flags & VM_SOFTDIRTY)
1397 flags |= PM_SOFT_DIRTY;
1398
1399 return make_pme(frame, flags);
1400}
1401
1402static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1403 struct mm_walk *walk)
1404{
1405 struct vm_area_struct *vma = walk->vma;
1406 struct pagemapread *pm = walk->private;
1407 spinlock_t *ptl;
1408 pte_t *pte, *orig_pte;
1409 int err = 0;
1410
1411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 ptl = pmd_trans_huge_lock(pmdp, vma);
1413 if (ptl) {
1414 u64 flags = 0, frame = 0;
1415 pmd_t pmd = *pmdp;
1416 struct page *page = NULL;
1417
1418 if (vma->vm_flags & VM_SOFTDIRTY)
1419 flags |= PM_SOFT_DIRTY;
1420
1421 if (pmd_present(pmd)) {
1422 page = pmd_page(pmd);
1423
1424 flags |= PM_PRESENT;
1425 if (pmd_soft_dirty(pmd))
1426 flags |= PM_SOFT_DIRTY;
1427 if (pmd_uffd_wp(pmd))
1428 flags |= PM_UFFD_WP;
1429 if (pm->show_pfn)
1430 frame = pmd_pfn(pmd) +
1431 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1432 }
1433#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1434 else if (is_swap_pmd(pmd)) {
1435 swp_entry_t entry = pmd_to_swp_entry(pmd);
1436 unsigned long offset;
1437
1438 if (pm->show_pfn) {
1439 offset = swp_offset(entry) +
1440 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1441 frame = swp_type(entry) |
1442 (offset << MAX_SWAPFILES_SHIFT);
1443 }
1444 flags |= PM_SWAP;
1445 if (pmd_swp_soft_dirty(pmd))
1446 flags |= PM_SOFT_DIRTY;
1447 if (pmd_swp_uffd_wp(pmd))
1448 flags |= PM_UFFD_WP;
1449 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1450 page = pfn_swap_entry_to_page(entry);
1451 }
1452#endif
1453
1454 if (page && page_mapcount(page) == 1)
1455 flags |= PM_MMAP_EXCLUSIVE;
1456
1457 for (; addr != end; addr += PAGE_SIZE) {
1458 pagemap_entry_t pme = make_pme(frame, flags);
1459
1460 err = add_to_pagemap(addr, &pme, pm);
1461 if (err)
1462 break;
1463 if (pm->show_pfn) {
1464 if (flags & PM_PRESENT)
1465 frame++;
1466 else if (flags & PM_SWAP)
1467 frame += (1 << MAX_SWAPFILES_SHIFT);
1468 }
1469 }
1470 spin_unlock(ptl);
1471 return err;
1472 }
1473
1474 if (pmd_trans_unstable(pmdp))
1475 return 0;
1476#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1477
1478 /*
1479 * We can assume that @vma always points to a valid one and @end never
1480 * goes beyond vma->vm_end.
1481 */
1482 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1483 for (; addr < end; pte++, addr += PAGE_SIZE) {
1484 pagemap_entry_t pme;
1485
1486 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1487 err = add_to_pagemap(addr, &pme, pm);
1488 if (err)
1489 break;
1490 }
1491 pte_unmap_unlock(orig_pte, ptl);
1492
1493 cond_resched();
1494
1495 return err;
1496}
1497
1498#ifdef CONFIG_HUGETLB_PAGE
1499/* This function walks within one hugetlb entry in the single call */
1500static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1501 unsigned long addr, unsigned long end,
1502 struct mm_walk *walk)
1503{
1504 struct pagemapread *pm = walk->private;
1505 struct vm_area_struct *vma = walk->vma;
1506 u64 flags = 0, frame = 0;
1507 int err = 0;
1508 pte_t pte;
1509
1510 if (vma->vm_flags & VM_SOFTDIRTY)
1511 flags |= PM_SOFT_DIRTY;
1512
1513 pte = huge_ptep_get(ptep);
1514 if (pte_present(pte)) {
1515 struct page *page = pte_page(pte);
1516
1517 if (!PageAnon(page))
1518 flags |= PM_FILE;
1519
1520 if (page_mapcount(page) == 1)
1521 flags |= PM_MMAP_EXCLUSIVE;
1522
1523 flags |= PM_PRESENT;
1524 if (pm->show_pfn)
1525 frame = pte_pfn(pte) +
1526 ((addr & ~hmask) >> PAGE_SHIFT);
1527 }
1528
1529 for (; addr != end; addr += PAGE_SIZE) {
1530 pagemap_entry_t pme = make_pme(frame, flags);
1531
1532 err = add_to_pagemap(addr, &pme, pm);
1533 if (err)
1534 return err;
1535 if (pm->show_pfn && (flags & PM_PRESENT))
1536 frame++;
1537 }
1538
1539 cond_resched();
1540
1541 return err;
1542}
1543#else
1544#define pagemap_hugetlb_range NULL
1545#endif /* HUGETLB_PAGE */
1546
1547static const struct mm_walk_ops pagemap_ops = {
1548 .pmd_entry = pagemap_pmd_range,
1549 .pte_hole = pagemap_pte_hole,
1550 .hugetlb_entry = pagemap_hugetlb_range,
1551};
1552
1553/*
1554 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1555 *
1556 * For each page in the address space, this file contains one 64-bit entry
1557 * consisting of the following:
1558 *
1559 * Bits 0-54 page frame number (PFN) if present
1560 * Bits 0-4 swap type if swapped
1561 * Bits 5-54 swap offset if swapped
1562 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1563 * Bit 56 page exclusively mapped
1564 * Bits 57-60 zero
1565 * Bit 61 page is file-page or shared-anon
1566 * Bit 62 page swapped
1567 * Bit 63 page present
1568 *
1569 * If the page is not present but in swap, then the PFN contains an
1570 * encoding of the swap file number and the page's offset into the
1571 * swap. Unmapped pages return a null PFN. This allows determining
1572 * precisely which pages are mapped (or in swap) and comparing mapped
1573 * pages between processes.
1574 *
1575 * Efficient users of this interface will use /proc/pid/maps to
1576 * determine which areas of memory are actually mapped and llseek to
1577 * skip over unmapped regions.
1578 */
1579static ssize_t pagemap_read(struct file *file, char __user *buf,
1580 size_t count, loff_t *ppos)
1581{
1582 struct mm_struct *mm = file->private_data;
1583 struct pagemapread pm;
1584 unsigned long src;
1585 unsigned long svpfn;
1586 unsigned long start_vaddr;
1587 unsigned long end_vaddr;
1588 int ret = 0, copied = 0;
1589
1590 if (!mm || !mmget_not_zero(mm))
1591 goto out;
1592
1593 ret = -EINVAL;
1594 /* file position must be aligned */
1595 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1596 goto out_mm;
1597
1598 ret = 0;
1599 if (!count)
1600 goto out_mm;
1601
1602 /* do not disclose physical addresses: attack vector */
1603 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1604
1605 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1606 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1607 ret = -ENOMEM;
1608 if (!pm.buffer)
1609 goto out_mm;
1610
1611 src = *ppos;
1612 svpfn = src / PM_ENTRY_BYTES;
1613 end_vaddr = mm->task_size;
1614
1615 /* watch out for wraparound */
1616 start_vaddr = end_vaddr;
1617 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1618 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1619
1620 /* Ensure the address is inside the task */
1621 if (start_vaddr > mm->task_size)
1622 start_vaddr = end_vaddr;
1623
1624 /*
1625 * The odds are that this will stop walking way
1626 * before end_vaddr, because the length of the
1627 * user buffer is tracked in "pm", and the walk
1628 * will stop when we hit the end of the buffer.
1629 */
1630 ret = 0;
1631 while (count && (start_vaddr < end_vaddr)) {
1632 int len;
1633 unsigned long end;
1634
1635 pm.pos = 0;
1636 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1637 /* overflow ? */
1638 if (end < start_vaddr || end > end_vaddr)
1639 end = end_vaddr;
1640 ret = mmap_read_lock_killable(mm);
1641 if (ret)
1642 goto out_free;
1643 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1644 mmap_read_unlock(mm);
1645 start_vaddr = end;
1646
1647 len = min(count, PM_ENTRY_BYTES * pm.pos);
1648 if (copy_to_user(buf, pm.buffer, len)) {
1649 ret = -EFAULT;
1650 goto out_free;
1651 }
1652 copied += len;
1653 buf += len;
1654 count -= len;
1655 }
1656 *ppos += copied;
1657 if (!ret || ret == PM_END_OF_BUFFER)
1658 ret = copied;
1659
1660out_free:
1661 kfree(pm.buffer);
1662out_mm:
1663 mmput(mm);
1664out:
1665 return ret;
1666}
1667
1668static int pagemap_open(struct inode *inode, struct file *file)
1669{
1670 struct mm_struct *mm;
1671
1672 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1673 if (IS_ERR(mm))
1674 return PTR_ERR(mm);
1675 file->private_data = mm;
1676 return 0;
1677}
1678
1679static int pagemap_release(struct inode *inode, struct file *file)
1680{
1681 struct mm_struct *mm = file->private_data;
1682
1683 if (mm)
1684 mmdrop(mm);
1685 return 0;
1686}
1687
1688const struct file_operations proc_pagemap_operations = {
1689 .llseek = mem_lseek, /* borrow this */
1690 .read = pagemap_read,
1691 .open = pagemap_open,
1692 .release = pagemap_release,
1693};
1694#endif /* CONFIG_PROC_PAGE_MONITOR */
1695
1696#ifdef CONFIG_NUMA
1697
1698struct numa_maps {
1699 unsigned long pages;
1700 unsigned long anon;
1701 unsigned long active;
1702 unsigned long writeback;
1703 unsigned long mapcount_max;
1704 unsigned long dirty;
1705 unsigned long swapcache;
1706 unsigned long node[MAX_NUMNODES];
1707};
1708
1709struct numa_maps_private {
1710 struct proc_maps_private proc_maps;
1711 struct numa_maps md;
1712};
1713
1714static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1715 unsigned long nr_pages)
1716{
1717 int count = page_mapcount(page);
1718
1719 md->pages += nr_pages;
1720 if (pte_dirty || PageDirty(page))
1721 md->dirty += nr_pages;
1722
1723 if (PageSwapCache(page))
1724 md->swapcache += nr_pages;
1725
1726 if (PageActive(page) || PageUnevictable(page))
1727 md->active += nr_pages;
1728
1729 if (PageWriteback(page))
1730 md->writeback += nr_pages;
1731
1732 if (PageAnon(page))
1733 md->anon += nr_pages;
1734
1735 if (count > md->mapcount_max)
1736 md->mapcount_max = count;
1737
1738 md->node[page_to_nid(page)] += nr_pages;
1739}
1740
1741static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1742 unsigned long addr)
1743{
1744 struct page *page;
1745 int nid;
1746
1747 if (!pte_present(pte))
1748 return NULL;
1749
1750 page = vm_normal_page(vma, addr, pte);
1751 if (!page)
1752 return NULL;
1753
1754 if (PageReserved(page))
1755 return NULL;
1756
1757 nid = page_to_nid(page);
1758 if (!node_isset(nid, node_states[N_MEMORY]))
1759 return NULL;
1760
1761 return page;
1762}
1763
1764#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1765static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1766 struct vm_area_struct *vma,
1767 unsigned long addr)
1768{
1769 struct page *page;
1770 int nid;
1771
1772 if (!pmd_present(pmd))
1773 return NULL;
1774
1775 page = vm_normal_page_pmd(vma, addr, pmd);
1776 if (!page)
1777 return NULL;
1778
1779 if (PageReserved(page))
1780 return NULL;
1781
1782 nid = page_to_nid(page);
1783 if (!node_isset(nid, node_states[N_MEMORY]))
1784 return NULL;
1785
1786 return page;
1787}
1788#endif
1789
1790static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1791 unsigned long end, struct mm_walk *walk)
1792{
1793 struct numa_maps *md = walk->private;
1794 struct vm_area_struct *vma = walk->vma;
1795 spinlock_t *ptl;
1796 pte_t *orig_pte;
1797 pte_t *pte;
1798
1799#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1800 ptl = pmd_trans_huge_lock(pmd, vma);
1801 if (ptl) {
1802 struct page *page;
1803
1804 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1805 if (page)
1806 gather_stats(page, md, pmd_dirty(*pmd),
1807 HPAGE_PMD_SIZE/PAGE_SIZE);
1808 spin_unlock(ptl);
1809 return 0;
1810 }
1811
1812 if (pmd_trans_unstable(pmd))
1813 return 0;
1814#endif
1815 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1816 do {
1817 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1818 if (!page)
1819 continue;
1820 gather_stats(page, md, pte_dirty(*pte), 1);
1821
1822 } while (pte++, addr += PAGE_SIZE, addr != end);
1823 pte_unmap_unlock(orig_pte, ptl);
1824 cond_resched();
1825 return 0;
1826}
1827#ifdef CONFIG_HUGETLB_PAGE
1828static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1829 unsigned long addr, unsigned long end, struct mm_walk *walk)
1830{
1831 pte_t huge_pte = huge_ptep_get(pte);
1832 struct numa_maps *md;
1833 struct page *page;
1834
1835 if (!pte_present(huge_pte))
1836 return 0;
1837
1838 page = pte_page(huge_pte);
1839 if (!page)
1840 return 0;
1841
1842 md = walk->private;
1843 gather_stats(page, md, pte_dirty(huge_pte), 1);
1844 return 0;
1845}
1846
1847#else
1848static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1849 unsigned long addr, unsigned long end, struct mm_walk *walk)
1850{
1851 return 0;
1852}
1853#endif
1854
1855static const struct mm_walk_ops show_numa_ops = {
1856 .hugetlb_entry = gather_hugetlb_stats,
1857 .pmd_entry = gather_pte_stats,
1858};
1859
1860/*
1861 * Display pages allocated per node and memory policy via /proc.
1862 */
1863static int show_numa_map(struct seq_file *m, void *v)
1864{
1865 struct numa_maps_private *numa_priv = m->private;
1866 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1867 struct vm_area_struct *vma = v;
1868 struct numa_maps *md = &numa_priv->md;
1869 struct file *file = vma->vm_file;
1870 struct mm_struct *mm = vma->vm_mm;
1871 struct mempolicy *pol;
1872 char buffer[64];
1873 int nid;
1874
1875 if (!mm)
1876 return 0;
1877
1878 /* Ensure we start with an empty set of numa_maps statistics. */
1879 memset(md, 0, sizeof(*md));
1880
1881 pol = __get_vma_policy(vma, vma->vm_start);
1882 if (pol) {
1883 mpol_to_str(buffer, sizeof(buffer), pol);
1884 mpol_cond_put(pol);
1885 } else {
1886 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1887 }
1888
1889 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1890
1891 if (file) {
1892 seq_puts(m, " file=");
1893 seq_file_path(m, file, "\n\t= ");
1894 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1895 seq_puts(m, " heap");
1896 } else if (is_stack(vma)) {
1897 seq_puts(m, " stack");
1898 }
1899
1900 if (is_vm_hugetlb_page(vma))
1901 seq_puts(m, " huge");
1902
1903 /* mmap_lock is held by m_start */
1904 walk_page_vma(vma, &show_numa_ops, md);
1905
1906 if (!md->pages)
1907 goto out;
1908
1909 if (md->anon)
1910 seq_printf(m, " anon=%lu", md->anon);
1911
1912 if (md->dirty)
1913 seq_printf(m, " dirty=%lu", md->dirty);
1914
1915 if (md->pages != md->anon && md->pages != md->dirty)
1916 seq_printf(m, " mapped=%lu", md->pages);
1917
1918 if (md->mapcount_max > 1)
1919 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1920
1921 if (md->swapcache)
1922 seq_printf(m, " swapcache=%lu", md->swapcache);
1923
1924 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1925 seq_printf(m, " active=%lu", md->active);
1926
1927 if (md->writeback)
1928 seq_printf(m, " writeback=%lu", md->writeback);
1929
1930 for_each_node_state(nid, N_MEMORY)
1931 if (md->node[nid])
1932 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1933
1934 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1935out:
1936 seq_putc(m, '\n');
1937 return 0;
1938}
1939
1940static const struct seq_operations proc_pid_numa_maps_op = {
1941 .start = m_start,
1942 .next = m_next,
1943 .stop = m_stop,
1944 .show = show_numa_map,
1945};
1946
1947static int pid_numa_maps_open(struct inode *inode, struct file *file)
1948{
1949 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1950 sizeof(struct numa_maps_private));
1951}
1952
1953const struct file_operations proc_pid_numa_maps_operations = {
1954 .open = pid_numa_maps_open,
1955 .read = seq_read,
1956 .llseek = seq_lseek,
1957 .release = proc_map_release,
1958};
1959
1960#endif /* CONFIG_NUMA */