Linux Audio

Check our new training course

Loading...
   1#include <linux/mm.h>
   2#include <linux/hugetlb.h>
   3#include <linux/huge_mm.h>
   4#include <linux/mount.h>
   5#include <linux/seq_file.h>
   6#include <linux/highmem.h>
   7#include <linux/ptrace.h>
   8#include <linux/slab.h>
   9#include <linux/pagemap.h>
  10#include <linux/mempolicy.h>
  11#include <linux/rmap.h>
  12#include <linux/swap.h>
  13#include <linux/swapops.h>
  14
  15#include <asm/elf.h>
  16#include <asm/uaccess.h>
  17#include <asm/tlbflush.h>
  18#include "internal.h"
  19
  20void task_mem(struct seq_file *m, struct mm_struct *mm)
  21{
  22	unsigned long data, text, lib, swap;
  23	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  24
  25	/*
  26	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  27	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  28	 * collector of these hiwater stats must therefore get total_vm
  29	 * and rss too, which will usually be the higher.  Barriers? not
  30	 * worth the effort, such snapshots can always be inconsistent.
  31	 */
  32	hiwater_vm = total_vm = mm->total_vm;
  33	if (hiwater_vm < mm->hiwater_vm)
  34		hiwater_vm = mm->hiwater_vm;
  35	hiwater_rss = total_rss = get_mm_rss(mm);
  36	if (hiwater_rss < mm->hiwater_rss)
  37		hiwater_rss = mm->hiwater_rss;
  38
  39	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  40	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  41	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  42	swap = get_mm_counter(mm, MM_SWAPENTS);
  43	seq_printf(m,
  44		"VmPeak:\t%8lu kB\n"
  45		"VmSize:\t%8lu kB\n"
  46		"VmLck:\t%8lu kB\n"
  47		"VmPin:\t%8lu kB\n"
  48		"VmHWM:\t%8lu kB\n"
  49		"VmRSS:\t%8lu kB\n"
  50		"VmData:\t%8lu kB\n"
  51		"VmStk:\t%8lu kB\n"
  52		"VmExe:\t%8lu kB\n"
  53		"VmLib:\t%8lu kB\n"
  54		"VmPTE:\t%8lu kB\n"
  55		"VmSwap:\t%8lu kB\n",
  56		hiwater_vm << (PAGE_SHIFT-10),
  57		(total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
  58		mm->locked_vm << (PAGE_SHIFT-10),
  59		mm->pinned_vm << (PAGE_SHIFT-10),
  60		hiwater_rss << (PAGE_SHIFT-10),
  61		total_rss << (PAGE_SHIFT-10),
  62		data << (PAGE_SHIFT-10),
  63		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  64		(PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  65		swap << (PAGE_SHIFT-10));
  66}
  67
  68unsigned long task_vsize(struct mm_struct *mm)
  69{
  70	return PAGE_SIZE * mm->total_vm;
  71}
  72
  73unsigned long task_statm(struct mm_struct *mm,
  74			 unsigned long *shared, unsigned long *text,
  75			 unsigned long *data, unsigned long *resident)
  76{
  77	*shared = get_mm_counter(mm, MM_FILEPAGES);
  78	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  79								>> PAGE_SHIFT;
  80	*data = mm->total_vm - mm->shared_vm;
  81	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  82	return mm->total_vm;
  83}
  84
  85static void pad_len_spaces(struct seq_file *m, int len)
  86{
  87	len = 25 + sizeof(void*) * 6 - len;
  88	if (len < 1)
  89		len = 1;
  90	seq_printf(m, "%*c", len, ' ');
  91}
  92
  93static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  94{
  95	if (vma && vma != priv->tail_vma) {
  96		struct mm_struct *mm = vma->vm_mm;
  97		up_read(&mm->mmap_sem);
  98		mmput(mm);
  99	}
 100}
 101
 102static void *m_start(struct seq_file *m, loff_t *pos)
 103{
 104	struct proc_maps_private *priv = m->private;
 105	unsigned long last_addr = m->version;
 106	struct mm_struct *mm;
 107	struct vm_area_struct *vma, *tail_vma = NULL;
 108	loff_t l = *pos;
 109
 110	/* Clear the per syscall fields in priv */
 111	priv->task = NULL;
 112	priv->tail_vma = NULL;
 113
 114	/*
 115	 * We remember last_addr rather than next_addr to hit with
 116	 * mmap_cache most of the time. We have zero last_addr at
 117	 * the beginning and also after lseek. We will have -1 last_addr
 118	 * after the end of the vmas.
 119	 */
 120
 121	if (last_addr == -1UL)
 122		return NULL;
 123
 124	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
 125	if (!priv->task)
 126		return ERR_PTR(-ESRCH);
 127
 128	mm = mm_access(priv->task, PTRACE_MODE_READ);
 129	if (!mm || IS_ERR(mm))
 130		return mm;
 131	down_read(&mm->mmap_sem);
 132
 133	tail_vma = get_gate_vma(priv->task->mm);
 134	priv->tail_vma = tail_vma;
 135
 136	/* Start with last addr hint */
 137	vma = find_vma(mm, last_addr);
 138	if (last_addr && vma) {
 139		vma = vma->vm_next;
 140		goto out;
 141	}
 142
 143	/*
 144	 * Check the vma index is within the range and do
 145	 * sequential scan until m_index.
 146	 */
 147	vma = NULL;
 148	if ((unsigned long)l < mm->map_count) {
 149		vma = mm->mmap;
 150		while (l-- && vma)
 151			vma = vma->vm_next;
 152		goto out;
 153	}
 154
 155	if (l != mm->map_count)
 156		tail_vma = NULL; /* After gate vma */
 157
 158out:
 159	if (vma)
 160		return vma;
 161
 162	/* End of vmas has been reached */
 163	m->version = (tail_vma != NULL)? 0: -1UL;
 164	up_read(&mm->mmap_sem);
 165	mmput(mm);
 166	return tail_vma;
 167}
 168
 169static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 170{
 171	struct proc_maps_private *priv = m->private;
 172	struct vm_area_struct *vma = v;
 173	struct vm_area_struct *tail_vma = priv->tail_vma;
 174
 175	(*pos)++;
 176	if (vma && (vma != tail_vma) && vma->vm_next)
 177		return vma->vm_next;
 178	vma_stop(priv, vma);
 179	return (vma != tail_vma)? tail_vma: NULL;
 180}
 181
 182static void m_stop(struct seq_file *m, void *v)
 183{
 184	struct proc_maps_private *priv = m->private;
 185	struct vm_area_struct *vma = v;
 186
 187	if (!IS_ERR(vma))
 188		vma_stop(priv, vma);
 189	if (priv->task)
 190		put_task_struct(priv->task);
 191}
 192
 193static int do_maps_open(struct inode *inode, struct file *file,
 194			const struct seq_operations *ops)
 195{
 196	struct proc_maps_private *priv;
 197	int ret = -ENOMEM;
 198	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 199	if (priv) {
 200		priv->pid = proc_pid(inode);
 201		ret = seq_open(file, ops);
 202		if (!ret) {
 203			struct seq_file *m = file->private_data;
 204			m->private = priv;
 205		} else {
 206			kfree(priv);
 207		}
 208	}
 209	return ret;
 210}
 211
 212static void
 213show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
 214{
 215	struct mm_struct *mm = vma->vm_mm;
 216	struct file *file = vma->vm_file;
 217	struct proc_maps_private *priv = m->private;
 218	struct task_struct *task = priv->task;
 219	vm_flags_t flags = vma->vm_flags;
 220	unsigned long ino = 0;
 221	unsigned long long pgoff = 0;
 222	unsigned long start, end;
 223	dev_t dev = 0;
 224	int len;
 225	const char *name = NULL;
 226
 227	if (file) {
 228		struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
 229		dev = inode->i_sb->s_dev;
 230		ino = inode->i_ino;
 231		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 232	}
 233
 234	/* We don't show the stack guard page in /proc/maps */
 235	start = vma->vm_start;
 236	if (stack_guard_page_start(vma, start))
 237		start += PAGE_SIZE;
 238	end = vma->vm_end;
 239	if (stack_guard_page_end(vma, end))
 240		end -= PAGE_SIZE;
 241
 242	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
 243			start,
 244			end,
 245			flags & VM_READ ? 'r' : '-',
 246			flags & VM_WRITE ? 'w' : '-',
 247			flags & VM_EXEC ? 'x' : '-',
 248			flags & VM_MAYSHARE ? 's' : 'p',
 249			pgoff,
 250			MAJOR(dev), MINOR(dev), ino, &len);
 251
 252	/*
 253	 * Print the dentry name for named mappings, and a
 254	 * special [heap] marker for the heap:
 255	 */
 256	if (file) {
 257		pad_len_spaces(m, len);
 258		seq_path(m, &file->f_path, "\n");
 259		goto done;
 260	}
 261
 262	name = arch_vma_name(vma);
 263	if (!name) {
 264		pid_t tid;
 265
 266		if (!mm) {
 267			name = "[vdso]";
 268			goto done;
 269		}
 270
 271		if (vma->vm_start <= mm->brk &&
 272		    vma->vm_end >= mm->start_brk) {
 273			name = "[heap]";
 274			goto done;
 275		}
 276
 277		tid = vm_is_stack(task, vma, is_pid);
 278
 279		if (tid != 0) {
 280			/*
 281			 * Thread stack in /proc/PID/task/TID/maps or
 282			 * the main process stack.
 283			 */
 284			if (!is_pid || (vma->vm_start <= mm->start_stack &&
 285			    vma->vm_end >= mm->start_stack)) {
 286				name = "[stack]";
 287			} else {
 288				/* Thread stack in /proc/PID/maps */
 289				pad_len_spaces(m, len);
 290				seq_printf(m, "[stack:%d]", tid);
 291			}
 292		}
 293	}
 294
 295done:
 296	if (name) {
 297		pad_len_spaces(m, len);
 298		seq_puts(m, name);
 299	}
 300	seq_putc(m, '\n');
 301}
 302
 303static int show_map(struct seq_file *m, void *v, int is_pid)
 304{
 305	struct vm_area_struct *vma = v;
 306	struct proc_maps_private *priv = m->private;
 307	struct task_struct *task = priv->task;
 308
 309	show_map_vma(m, vma, is_pid);
 310
 311	if (m->count < m->size)  /* vma is copied successfully */
 312		m->version = (vma != get_gate_vma(task->mm))
 313			? vma->vm_start : 0;
 314	return 0;
 315}
 316
 317static int show_pid_map(struct seq_file *m, void *v)
 318{
 319	return show_map(m, v, 1);
 320}
 321
 322static int show_tid_map(struct seq_file *m, void *v)
 323{
 324	return show_map(m, v, 0);
 325}
 326
 327static const struct seq_operations proc_pid_maps_op = {
 328	.start	= m_start,
 329	.next	= m_next,
 330	.stop	= m_stop,
 331	.show	= show_pid_map
 332};
 333
 334static const struct seq_operations proc_tid_maps_op = {
 335	.start	= m_start,
 336	.next	= m_next,
 337	.stop	= m_stop,
 338	.show	= show_tid_map
 339};
 340
 341static int pid_maps_open(struct inode *inode, struct file *file)
 342{
 343	return do_maps_open(inode, file, &proc_pid_maps_op);
 344}
 345
 346static int tid_maps_open(struct inode *inode, struct file *file)
 347{
 348	return do_maps_open(inode, file, &proc_tid_maps_op);
 349}
 350
 351const struct file_operations proc_pid_maps_operations = {
 352	.open		= pid_maps_open,
 353	.read		= seq_read,
 354	.llseek		= seq_lseek,
 355	.release	= seq_release_private,
 356};
 357
 358const struct file_operations proc_tid_maps_operations = {
 359	.open		= tid_maps_open,
 360	.read		= seq_read,
 361	.llseek		= seq_lseek,
 362	.release	= seq_release_private,
 363};
 364
 365/*
 366 * Proportional Set Size(PSS): my share of RSS.
 367 *
 368 * PSS of a process is the count of pages it has in memory, where each
 369 * page is divided by the number of processes sharing it.  So if a
 370 * process has 1000 pages all to itself, and 1000 shared with one other
 371 * process, its PSS will be 1500.
 372 *
 373 * To keep (accumulated) division errors low, we adopt a 64bit
 374 * fixed-point pss counter to minimize division errors. So (pss >>
 375 * PSS_SHIFT) would be the real byte count.
 376 *
 377 * A shift of 12 before division means (assuming 4K page size):
 378 * 	- 1M 3-user-pages add up to 8KB errors;
 379 * 	- supports mapcount up to 2^24, or 16M;
 380 * 	- supports PSS up to 2^52 bytes, or 4PB.
 381 */
 382#define PSS_SHIFT 12
 383
 384#ifdef CONFIG_PROC_PAGE_MONITOR
 385struct mem_size_stats {
 386	struct vm_area_struct *vma;
 387	unsigned long resident;
 388	unsigned long shared_clean;
 389	unsigned long shared_dirty;
 390	unsigned long private_clean;
 391	unsigned long private_dirty;
 392	unsigned long referenced;
 393	unsigned long anonymous;
 394	unsigned long anonymous_thp;
 395	unsigned long swap;
 396	unsigned long nonlinear;
 397	u64 pss;
 398};
 399
 400
 401static void smaps_pte_entry(pte_t ptent, unsigned long addr,
 402		unsigned long ptent_size, struct mm_walk *walk)
 403{
 404	struct mem_size_stats *mss = walk->private;
 405	struct vm_area_struct *vma = mss->vma;
 406	pgoff_t pgoff = linear_page_index(vma, addr);
 407	struct page *page = NULL;
 408	int mapcount;
 409
 410	if (pte_present(ptent)) {
 411		page = vm_normal_page(vma, addr, ptent);
 412	} else if (is_swap_pte(ptent)) {
 413		swp_entry_t swpent = pte_to_swp_entry(ptent);
 414
 415		if (!non_swap_entry(swpent))
 416			mss->swap += ptent_size;
 417		else if (is_migration_entry(swpent))
 418			page = migration_entry_to_page(swpent);
 419	} else if (pte_file(ptent)) {
 420		if (pte_to_pgoff(ptent) != pgoff)
 421			mss->nonlinear += ptent_size;
 422	}
 423
 424	if (!page)
 425		return;
 426
 427	if (PageAnon(page))
 428		mss->anonymous += ptent_size;
 429
 430	if (page->index != pgoff)
 431		mss->nonlinear += ptent_size;
 432
 433	mss->resident += ptent_size;
 434	/* Accumulate the size in pages that have been accessed. */
 435	if (pte_young(ptent) || PageReferenced(page))
 436		mss->referenced += ptent_size;
 437	mapcount = page_mapcount(page);
 438	if (mapcount >= 2) {
 439		if (pte_dirty(ptent) || PageDirty(page))
 440			mss->shared_dirty += ptent_size;
 441		else
 442			mss->shared_clean += ptent_size;
 443		mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
 444	} else {
 445		if (pte_dirty(ptent) || PageDirty(page))
 446			mss->private_dirty += ptent_size;
 447		else
 448			mss->private_clean += ptent_size;
 449		mss->pss += (ptent_size << PSS_SHIFT);
 450	}
 451}
 452
 453static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 454			   struct mm_walk *walk)
 455{
 456	struct mem_size_stats *mss = walk->private;
 457	struct vm_area_struct *vma = mss->vma;
 458	pte_t *pte;
 459	spinlock_t *ptl;
 460
 461	if (pmd_trans_huge_lock(pmd, vma) == 1) {
 462		smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
 463		spin_unlock(&walk->mm->page_table_lock);
 464		mss->anonymous_thp += HPAGE_PMD_SIZE;
 465		return 0;
 466	}
 467
 468	if (pmd_trans_unstable(pmd))
 469		return 0;
 470	/*
 471	 * The mmap_sem held all the way back in m_start() is what
 472	 * keeps khugepaged out of here and from collapsing things
 473	 * in here.
 474	 */
 475	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 476	for (; addr != end; pte++, addr += PAGE_SIZE)
 477		smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
 478	pte_unmap_unlock(pte - 1, ptl);
 479	cond_resched();
 480	return 0;
 481}
 482
 483static int show_smap(struct seq_file *m, void *v, int is_pid)
 484{
 485	struct proc_maps_private *priv = m->private;
 486	struct task_struct *task = priv->task;
 487	struct vm_area_struct *vma = v;
 488	struct mem_size_stats mss;
 489	struct mm_walk smaps_walk = {
 490		.pmd_entry = smaps_pte_range,
 491		.mm = vma->vm_mm,
 492		.private = &mss,
 493	};
 494
 495	memset(&mss, 0, sizeof mss);
 496	mss.vma = vma;
 497	/* mmap_sem is held in m_start */
 498	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
 499		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
 500
 501	show_map_vma(m, vma, is_pid);
 502
 503	seq_printf(m,
 504		   "Size:           %8lu kB\n"
 505		   "Rss:            %8lu kB\n"
 506		   "Pss:            %8lu kB\n"
 507		   "Shared_Clean:   %8lu kB\n"
 508		   "Shared_Dirty:   %8lu kB\n"
 509		   "Private_Clean:  %8lu kB\n"
 510		   "Private_Dirty:  %8lu kB\n"
 511		   "Referenced:     %8lu kB\n"
 512		   "Anonymous:      %8lu kB\n"
 513		   "AnonHugePages:  %8lu kB\n"
 514		   "Swap:           %8lu kB\n"
 515		   "KernelPageSize: %8lu kB\n"
 516		   "MMUPageSize:    %8lu kB\n"
 517		   "Locked:         %8lu kB\n",
 518		   (vma->vm_end - vma->vm_start) >> 10,
 519		   mss.resident >> 10,
 520		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
 521		   mss.shared_clean  >> 10,
 522		   mss.shared_dirty  >> 10,
 523		   mss.private_clean >> 10,
 524		   mss.private_dirty >> 10,
 525		   mss.referenced >> 10,
 526		   mss.anonymous >> 10,
 527		   mss.anonymous_thp >> 10,
 528		   mss.swap >> 10,
 529		   vma_kernel_pagesize(vma) >> 10,
 530		   vma_mmu_pagesize(vma) >> 10,
 531		   (vma->vm_flags & VM_LOCKED) ?
 532			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
 533
 534	if (vma->vm_flags & VM_NONLINEAR)
 535		seq_printf(m, "Nonlinear:      %8lu kB\n",
 536				mss.nonlinear >> 10);
 537
 538	if (m->count < m->size)  /* vma is copied successfully */
 539		m->version = (vma != get_gate_vma(task->mm))
 540			? vma->vm_start : 0;
 541	return 0;
 542}
 543
 544static int show_pid_smap(struct seq_file *m, void *v)
 545{
 546	return show_smap(m, v, 1);
 547}
 548
 549static int show_tid_smap(struct seq_file *m, void *v)
 550{
 551	return show_smap(m, v, 0);
 552}
 553
 554static const struct seq_operations proc_pid_smaps_op = {
 555	.start	= m_start,
 556	.next	= m_next,
 557	.stop	= m_stop,
 558	.show	= show_pid_smap
 559};
 560
 561static const struct seq_operations proc_tid_smaps_op = {
 562	.start	= m_start,
 563	.next	= m_next,
 564	.stop	= m_stop,
 565	.show	= show_tid_smap
 566};
 567
 568static int pid_smaps_open(struct inode *inode, struct file *file)
 569{
 570	return do_maps_open(inode, file, &proc_pid_smaps_op);
 571}
 572
 573static int tid_smaps_open(struct inode *inode, struct file *file)
 574{
 575	return do_maps_open(inode, file, &proc_tid_smaps_op);
 576}
 577
 578const struct file_operations proc_pid_smaps_operations = {
 579	.open		= pid_smaps_open,
 580	.read		= seq_read,
 581	.llseek		= seq_lseek,
 582	.release	= seq_release_private,
 583};
 584
 585const struct file_operations proc_tid_smaps_operations = {
 586	.open		= tid_smaps_open,
 587	.read		= seq_read,
 588	.llseek		= seq_lseek,
 589	.release	= seq_release_private,
 590};
 591
 592static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
 593				unsigned long end, struct mm_walk *walk)
 594{
 595	struct vm_area_struct *vma = walk->private;
 596	pte_t *pte, ptent;
 597	spinlock_t *ptl;
 598	struct page *page;
 599
 600	split_huge_page_pmd(walk->mm, pmd);
 601	if (pmd_trans_unstable(pmd))
 602		return 0;
 603
 604	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 605	for (; addr != end; pte++, addr += PAGE_SIZE) {
 606		ptent = *pte;
 607		if (!pte_present(ptent))
 608			continue;
 609
 610		page = vm_normal_page(vma, addr, ptent);
 611		if (!page)
 612			continue;
 613
 614		/* Clear accessed and referenced bits. */
 615		ptep_test_and_clear_young(vma, addr, pte);
 616		ClearPageReferenced(page);
 617	}
 618	pte_unmap_unlock(pte - 1, ptl);
 619	cond_resched();
 620	return 0;
 621}
 622
 623#define CLEAR_REFS_ALL 1
 624#define CLEAR_REFS_ANON 2
 625#define CLEAR_REFS_MAPPED 3
 626
 627static ssize_t clear_refs_write(struct file *file, const char __user *buf,
 628				size_t count, loff_t *ppos)
 629{
 630	struct task_struct *task;
 631	char buffer[PROC_NUMBUF];
 632	struct mm_struct *mm;
 633	struct vm_area_struct *vma;
 634	int type;
 635	int rv;
 636
 637	memset(buffer, 0, sizeof(buffer));
 638	if (count > sizeof(buffer) - 1)
 639		count = sizeof(buffer) - 1;
 640	if (copy_from_user(buffer, buf, count))
 641		return -EFAULT;
 642	rv = kstrtoint(strstrip(buffer), 10, &type);
 643	if (rv < 0)
 644		return rv;
 645	if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
 646		return -EINVAL;
 647	task = get_proc_task(file->f_path.dentry->d_inode);
 648	if (!task)
 649		return -ESRCH;
 650	mm = get_task_mm(task);
 651	if (mm) {
 652		struct mm_walk clear_refs_walk = {
 653			.pmd_entry = clear_refs_pte_range,
 654			.mm = mm,
 655		};
 656		down_read(&mm->mmap_sem);
 657		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 658			clear_refs_walk.private = vma;
 659			if (is_vm_hugetlb_page(vma))
 660				continue;
 661			/*
 662			 * Writing 1 to /proc/pid/clear_refs affects all pages.
 663			 *
 664			 * Writing 2 to /proc/pid/clear_refs only affects
 665			 * Anonymous pages.
 666			 *
 667			 * Writing 3 to /proc/pid/clear_refs only affects file
 668			 * mapped pages.
 669			 */
 670			if (type == CLEAR_REFS_ANON && vma->vm_file)
 671				continue;
 672			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
 673				continue;
 674			walk_page_range(vma->vm_start, vma->vm_end,
 675					&clear_refs_walk);
 676		}
 677		flush_tlb_mm(mm);
 678		up_read(&mm->mmap_sem);
 679		mmput(mm);
 680	}
 681	put_task_struct(task);
 682
 683	return count;
 684}
 685
 686const struct file_operations proc_clear_refs_operations = {
 687	.write		= clear_refs_write,
 688	.llseek		= noop_llseek,
 689};
 690
 691typedef struct {
 692	u64 pme;
 693} pagemap_entry_t;
 694
 695struct pagemapread {
 696	int pos, len;
 697	pagemap_entry_t *buffer;
 698};
 699
 700#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
 701#define PAGEMAP_WALK_MASK	(PMD_MASK)
 702
 703#define PM_ENTRY_BYTES      sizeof(u64)
 704#define PM_STATUS_BITS      3
 705#define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
 706#define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
 707#define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
 708#define PM_PSHIFT_BITS      6
 709#define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
 710#define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
 711#define PM_PSHIFT(x)        (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
 712#define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
 713#define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
 714
 715#define PM_PRESENT          PM_STATUS(4LL)
 716#define PM_SWAP             PM_STATUS(2LL)
 717#define PM_FILE             PM_STATUS(1LL)
 718#define PM_NOT_PRESENT      PM_PSHIFT(PAGE_SHIFT)
 719#define PM_END_OF_BUFFER    1
 720
 721static inline pagemap_entry_t make_pme(u64 val)
 722{
 723	return (pagemap_entry_t) { .pme = val };
 724}
 725
 726static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
 727			  struct pagemapread *pm)
 728{
 729	pm->buffer[pm->pos++] = *pme;
 730	if (pm->pos >= pm->len)
 731		return PM_END_OF_BUFFER;
 732	return 0;
 733}
 734
 735static int pagemap_pte_hole(unsigned long start, unsigned long end,
 736				struct mm_walk *walk)
 737{
 738	struct pagemapread *pm = walk->private;
 739	unsigned long addr;
 740	int err = 0;
 741	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
 742
 743	for (addr = start; addr < end; addr += PAGE_SIZE) {
 744		err = add_to_pagemap(addr, &pme, pm);
 745		if (err)
 746			break;
 747	}
 748	return err;
 749}
 750
 751static void pte_to_pagemap_entry(pagemap_entry_t *pme,
 752		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
 753{
 754	u64 frame, flags;
 755	struct page *page = NULL;
 756
 757	if (pte_present(pte)) {
 758		frame = pte_pfn(pte);
 759		flags = PM_PRESENT;
 760		page = vm_normal_page(vma, addr, pte);
 761	} else if (is_swap_pte(pte)) {
 762		swp_entry_t entry = pte_to_swp_entry(pte);
 763
 764		frame = swp_type(entry) |
 765			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
 766		flags = PM_SWAP;
 767		if (is_migration_entry(entry))
 768			page = migration_entry_to_page(entry);
 769	} else {
 770		*pme = make_pme(PM_NOT_PRESENT);
 771		return;
 772	}
 773
 774	if (page && !PageAnon(page))
 775		flags |= PM_FILE;
 776
 777	*pme = make_pme(PM_PFRAME(frame) | PM_PSHIFT(PAGE_SHIFT) | flags);
 778}
 779
 780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 781static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
 782					pmd_t pmd, int offset)
 783{
 784	/*
 785	 * Currently pmd for thp is always present because thp can not be
 786	 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
 787	 * This if-check is just to prepare for future implementation.
 788	 */
 789	if (pmd_present(pmd))
 790		*pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
 791				| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
 792	else
 793		*pme = make_pme(PM_NOT_PRESENT);
 794}
 795#else
 796static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
 797						pmd_t pmd, int offset)
 798{
 799}
 800#endif
 801
 802static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 803			     struct mm_walk *walk)
 804{
 805	struct vm_area_struct *vma;
 806	struct pagemapread *pm = walk->private;
 807	pte_t *pte;
 808	int err = 0;
 809	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
 810
 811	/* find the first VMA at or above 'addr' */
 812	vma = find_vma(walk->mm, addr);
 813	if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
 814		for (; addr != end; addr += PAGE_SIZE) {
 815			unsigned long offset;
 816
 817			offset = (addr & ~PAGEMAP_WALK_MASK) >>
 818					PAGE_SHIFT;
 819			thp_pmd_to_pagemap_entry(&pme, *pmd, offset);
 820			err = add_to_pagemap(addr, &pme, pm);
 821			if (err)
 822				break;
 823		}
 824		spin_unlock(&walk->mm->page_table_lock);
 825		return err;
 826	}
 827
 828	if (pmd_trans_unstable(pmd))
 829		return 0;
 830	for (; addr != end; addr += PAGE_SIZE) {
 831
 832		/* check to see if we've left 'vma' behind
 833		 * and need a new, higher one */
 834		if (vma && (addr >= vma->vm_end)) {
 835			vma = find_vma(walk->mm, addr);
 836			pme = make_pme(PM_NOT_PRESENT);
 837		}
 838
 839		/* check that 'vma' actually covers this address,
 840		 * and that it isn't a huge page vma */
 841		if (vma && (vma->vm_start <= addr) &&
 842		    !is_vm_hugetlb_page(vma)) {
 843			pte = pte_offset_map(pmd, addr);
 844			pte_to_pagemap_entry(&pme, vma, addr, *pte);
 845			/* unmap before userspace copy */
 846			pte_unmap(pte);
 847		}
 848		err = add_to_pagemap(addr, &pme, pm);
 849		if (err)
 850			return err;
 851	}
 852
 853	cond_resched();
 854
 855	return err;
 856}
 857
 858#ifdef CONFIG_HUGETLB_PAGE
 859static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme,
 860					pte_t pte, int offset)
 861{
 862	if (pte_present(pte))
 863		*pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
 864				| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
 865	else
 866		*pme = make_pme(PM_NOT_PRESENT);
 867}
 868
 869/* This function walks within one hugetlb entry in the single call */
 870static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
 871				 unsigned long addr, unsigned long end,
 872				 struct mm_walk *walk)
 873{
 874	struct pagemapread *pm = walk->private;
 875	int err = 0;
 876	pagemap_entry_t pme;
 877
 878	for (; addr != end; addr += PAGE_SIZE) {
 879		int offset = (addr & ~hmask) >> PAGE_SHIFT;
 880		huge_pte_to_pagemap_entry(&pme, *pte, offset);
 881		err = add_to_pagemap(addr, &pme, pm);
 882		if (err)
 883			return err;
 884	}
 885
 886	cond_resched();
 887
 888	return err;
 889}
 890#endif /* HUGETLB_PAGE */
 891
 892/*
 893 * /proc/pid/pagemap - an array mapping virtual pages to pfns
 894 *
 895 * For each page in the address space, this file contains one 64-bit entry
 896 * consisting of the following:
 897 *
 898 * Bits 0-54  page frame number (PFN) if present
 899 * Bits 0-4   swap type if swapped
 900 * Bits 5-54  swap offset if swapped
 901 * Bits 55-60 page shift (page size = 1<<page shift)
 902 * Bit  61    page is file-page or shared-anon
 903 * Bit  62    page swapped
 904 * Bit  63    page present
 905 *
 906 * If the page is not present but in swap, then the PFN contains an
 907 * encoding of the swap file number and the page's offset into the
 908 * swap. Unmapped pages return a null PFN. This allows determining
 909 * precisely which pages are mapped (or in swap) and comparing mapped
 910 * pages between processes.
 911 *
 912 * Efficient users of this interface will use /proc/pid/maps to
 913 * determine which areas of memory are actually mapped and llseek to
 914 * skip over unmapped regions.
 915 */
 916static ssize_t pagemap_read(struct file *file, char __user *buf,
 917			    size_t count, loff_t *ppos)
 918{
 919	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 920	struct mm_struct *mm;
 921	struct pagemapread pm;
 922	int ret = -ESRCH;
 923	struct mm_walk pagemap_walk = {};
 924	unsigned long src;
 925	unsigned long svpfn;
 926	unsigned long start_vaddr;
 927	unsigned long end_vaddr;
 928	int copied = 0;
 929
 930	if (!task)
 931		goto out;
 932
 933	ret = -EINVAL;
 934	/* file position must be aligned */
 935	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
 936		goto out_task;
 937
 938	ret = 0;
 939	if (!count)
 940		goto out_task;
 941
 942	pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
 943	pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
 944	ret = -ENOMEM;
 945	if (!pm.buffer)
 946		goto out_task;
 947
 948	mm = mm_access(task, PTRACE_MODE_READ);
 949	ret = PTR_ERR(mm);
 950	if (!mm || IS_ERR(mm))
 951		goto out_free;
 952
 953	pagemap_walk.pmd_entry = pagemap_pte_range;
 954	pagemap_walk.pte_hole = pagemap_pte_hole;
 955#ifdef CONFIG_HUGETLB_PAGE
 956	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
 957#endif
 958	pagemap_walk.mm = mm;
 959	pagemap_walk.private = &pm;
 960
 961	src = *ppos;
 962	svpfn = src / PM_ENTRY_BYTES;
 963	start_vaddr = svpfn << PAGE_SHIFT;
 964	end_vaddr = TASK_SIZE_OF(task);
 965
 966	/* watch out for wraparound */
 967	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
 968		start_vaddr = end_vaddr;
 969
 970	/*
 971	 * The odds are that this will stop walking way
 972	 * before end_vaddr, because the length of the
 973	 * user buffer is tracked in "pm", and the walk
 974	 * will stop when we hit the end of the buffer.
 975	 */
 976	ret = 0;
 977	while (count && (start_vaddr < end_vaddr)) {
 978		int len;
 979		unsigned long end;
 980
 981		pm.pos = 0;
 982		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
 983		/* overflow ? */
 984		if (end < start_vaddr || end > end_vaddr)
 985			end = end_vaddr;
 986		down_read(&mm->mmap_sem);
 987		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
 988		up_read(&mm->mmap_sem);
 989		start_vaddr = end;
 990
 991		len = min(count, PM_ENTRY_BYTES * pm.pos);
 992		if (copy_to_user(buf, pm.buffer, len)) {
 993			ret = -EFAULT;
 994			goto out_mm;
 995		}
 996		copied += len;
 997		buf += len;
 998		count -= len;
 999	}
1000	*ppos += copied;
1001	if (!ret || ret == PM_END_OF_BUFFER)
1002		ret = copied;
1003
1004out_mm:
1005	mmput(mm);
1006out_free:
1007	kfree(pm.buffer);
1008out_task:
1009	put_task_struct(task);
1010out:
1011	return ret;
1012}
1013
1014const struct file_operations proc_pagemap_operations = {
1015	.llseek		= mem_lseek, /* borrow this */
1016	.read		= pagemap_read,
1017};
1018#endif /* CONFIG_PROC_PAGE_MONITOR */
1019
1020#ifdef CONFIG_NUMA
1021
1022struct numa_maps {
1023	struct vm_area_struct *vma;
1024	unsigned long pages;
1025	unsigned long anon;
1026	unsigned long active;
1027	unsigned long writeback;
1028	unsigned long mapcount_max;
1029	unsigned long dirty;
1030	unsigned long swapcache;
1031	unsigned long node[MAX_NUMNODES];
1032};
1033
1034struct numa_maps_private {
1035	struct proc_maps_private proc_maps;
1036	struct numa_maps md;
1037};
1038
1039static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1040			unsigned long nr_pages)
1041{
1042	int count = page_mapcount(page);
1043
1044	md->pages += nr_pages;
1045	if (pte_dirty || PageDirty(page))
1046		md->dirty += nr_pages;
1047
1048	if (PageSwapCache(page))
1049		md->swapcache += nr_pages;
1050
1051	if (PageActive(page) || PageUnevictable(page))
1052		md->active += nr_pages;
1053
1054	if (PageWriteback(page))
1055		md->writeback += nr_pages;
1056
1057	if (PageAnon(page))
1058		md->anon += nr_pages;
1059
1060	if (count > md->mapcount_max)
1061		md->mapcount_max = count;
1062
1063	md->node[page_to_nid(page)] += nr_pages;
1064}
1065
1066static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1067		unsigned long addr)
1068{
1069	struct page *page;
1070	int nid;
1071
1072	if (!pte_present(pte))
1073		return NULL;
1074
1075	page = vm_normal_page(vma, addr, pte);
1076	if (!page)
1077		return NULL;
1078
1079	if (PageReserved(page))
1080		return NULL;
1081
1082	nid = page_to_nid(page);
1083	if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
1084		return NULL;
1085
1086	return page;
1087}
1088
1089static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1090		unsigned long end, struct mm_walk *walk)
1091{
1092	struct numa_maps *md;
1093	spinlock_t *ptl;
1094	pte_t *orig_pte;
1095	pte_t *pte;
1096
1097	md = walk->private;
1098
1099	if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
1100		pte_t huge_pte = *(pte_t *)pmd;
1101		struct page *page;
1102
1103		page = can_gather_numa_stats(huge_pte, md->vma, addr);
1104		if (page)
1105			gather_stats(page, md, pte_dirty(huge_pte),
1106				     HPAGE_PMD_SIZE/PAGE_SIZE);
1107		spin_unlock(&walk->mm->page_table_lock);
1108		return 0;
1109	}
1110
1111	if (pmd_trans_unstable(pmd))
1112		return 0;
1113	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1114	do {
1115		struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1116		if (!page)
1117			continue;
1118		gather_stats(page, md, pte_dirty(*pte), 1);
1119
1120	} while (pte++, addr += PAGE_SIZE, addr != end);
1121	pte_unmap_unlock(orig_pte, ptl);
1122	return 0;
1123}
1124#ifdef CONFIG_HUGETLB_PAGE
1125static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1126		unsigned long addr, unsigned long end, struct mm_walk *walk)
1127{
1128	struct numa_maps *md;
1129	struct page *page;
1130
1131	if (pte_none(*pte))
1132		return 0;
1133
1134	page = pte_page(*pte);
1135	if (!page)
1136		return 0;
1137
1138	md = walk->private;
1139	gather_stats(page, md, pte_dirty(*pte), 1);
1140	return 0;
1141}
1142
1143#else
1144static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1145		unsigned long addr, unsigned long end, struct mm_walk *walk)
1146{
1147	return 0;
1148}
1149#endif
1150
1151/*
1152 * Display pages allocated per node and memory policy via /proc.
1153 */
1154static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1155{
1156	struct numa_maps_private *numa_priv = m->private;
1157	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1158	struct vm_area_struct *vma = v;
1159	struct numa_maps *md = &numa_priv->md;
1160	struct file *file = vma->vm_file;
1161	struct mm_struct *mm = vma->vm_mm;
1162	struct mm_walk walk = {};
1163	struct mempolicy *pol;
1164	int n;
1165	char buffer[50];
1166
1167	if (!mm)
1168		return 0;
1169
1170	/* Ensure we start with an empty set of numa_maps statistics. */
1171	memset(md, 0, sizeof(*md));
1172
1173	md->vma = vma;
1174
1175	walk.hugetlb_entry = gather_hugetbl_stats;
1176	walk.pmd_entry = gather_pte_stats;
1177	walk.private = md;
1178	walk.mm = mm;
1179
1180	pol = get_vma_policy(proc_priv->task, vma, vma->vm_start);
1181	mpol_to_str(buffer, sizeof(buffer), pol, 0);
1182	mpol_cond_put(pol);
1183
1184	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1185
1186	if (file) {
1187		seq_printf(m, " file=");
1188		seq_path(m, &file->f_path, "\n\t= ");
1189	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1190		seq_printf(m, " heap");
1191	} else {
1192		pid_t tid = vm_is_stack(proc_priv->task, vma, is_pid);
1193		if (tid != 0) {
1194			/*
1195			 * Thread stack in /proc/PID/task/TID/maps or
1196			 * the main process stack.
1197			 */
1198			if (!is_pid || (vma->vm_start <= mm->start_stack &&
1199			    vma->vm_end >= mm->start_stack))
1200				seq_printf(m, " stack");
1201			else
1202				seq_printf(m, " stack:%d", tid);
1203		}
1204	}
1205
1206	if (is_vm_hugetlb_page(vma))
1207		seq_printf(m, " huge");
1208
1209	walk_page_range(vma->vm_start, vma->vm_end, &walk);
1210
1211	if (!md->pages)
1212		goto out;
1213
1214	if (md->anon)
1215		seq_printf(m, " anon=%lu", md->anon);
1216
1217	if (md->dirty)
1218		seq_printf(m, " dirty=%lu", md->dirty);
1219
1220	if (md->pages != md->anon && md->pages != md->dirty)
1221		seq_printf(m, " mapped=%lu", md->pages);
1222
1223	if (md->mapcount_max > 1)
1224		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1225
1226	if (md->swapcache)
1227		seq_printf(m, " swapcache=%lu", md->swapcache);
1228
1229	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1230		seq_printf(m, " active=%lu", md->active);
1231
1232	if (md->writeback)
1233		seq_printf(m, " writeback=%lu", md->writeback);
1234
1235	for_each_node_state(n, N_HIGH_MEMORY)
1236		if (md->node[n])
1237			seq_printf(m, " N%d=%lu", n, md->node[n]);
1238out:
1239	seq_putc(m, '\n');
1240
1241	if (m->count < m->size)
1242		m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1243	return 0;
1244}
1245
1246static int show_pid_numa_map(struct seq_file *m, void *v)
1247{
1248	return show_numa_map(m, v, 1);
1249}
1250
1251static int show_tid_numa_map(struct seq_file *m, void *v)
1252{
1253	return show_numa_map(m, v, 0);
1254}
1255
1256static const struct seq_operations proc_pid_numa_maps_op = {
1257	.start  = m_start,
1258	.next   = m_next,
1259	.stop   = m_stop,
1260	.show   = show_pid_numa_map,
1261};
1262
1263static const struct seq_operations proc_tid_numa_maps_op = {
1264	.start  = m_start,
1265	.next   = m_next,
1266	.stop   = m_stop,
1267	.show   = show_tid_numa_map,
1268};
1269
1270static int numa_maps_open(struct inode *inode, struct file *file,
1271			  const struct seq_operations *ops)
1272{
1273	struct numa_maps_private *priv;
1274	int ret = -ENOMEM;
1275	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1276	if (priv) {
1277		priv->proc_maps.pid = proc_pid(inode);
1278		ret = seq_open(file, ops);
1279		if (!ret) {
1280			struct seq_file *m = file->private_data;
1281			m->private = priv;
1282		} else {
1283			kfree(priv);
1284		}
1285	}
1286	return ret;
1287}
1288
1289static int pid_numa_maps_open(struct inode *inode, struct file *file)
1290{
1291	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1292}
1293
1294static int tid_numa_maps_open(struct inode *inode, struct file *file)
1295{
1296	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1297}
1298
1299const struct file_operations proc_pid_numa_maps_operations = {
1300	.open		= pid_numa_maps_open,
1301	.read		= seq_read,
1302	.llseek		= seq_lseek,
1303	.release	= seq_release_private,
1304};
1305
1306const struct file_operations proc_tid_numa_maps_operations = {
1307	.open		= tid_numa_maps_open,
1308	.read		= seq_read,
1309	.llseek		= seq_lseek,
1310	.release	= seq_release_private,
1311};
1312#endif /* CONFIG_NUMA */