Linux Audio

Check our new training course

Loading...
v6.9.4
    1// SPDX-License-Identifier: GPL-2.0
    2/* Copyright(c) 2007 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    3
    4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    5
    6#include <linux/module.h>
    7#include <linux/types.h>
    8#include <linux/init.h>
    9#include <linux/bitops.h>
   10#include <linux/vmalloc.h>
   11#include <linux/pagemap.h>
   12#include <linux/netdevice.h>
   13#include <linux/ipv6.h>
   14#include <linux/slab.h>
   15#include <net/checksum.h>
   16#include <net/ip6_checksum.h>
   17#include <net/pkt_sched.h>
   18#include <net/pkt_cls.h>
   19#include <linux/net_tstamp.h>
   20#include <linux/mii.h>
   21#include <linux/ethtool.h>
   22#include <linux/if.h>
   23#include <linux/if_vlan.h>
   24#include <linux/pci.h>
 
   25#include <linux/delay.h>
   26#include <linux/interrupt.h>
   27#include <linux/ip.h>
   28#include <linux/tcp.h>
   29#include <linux/sctp.h>
   30#include <linux/if_ether.h>
 
   31#include <linux/prefetch.h>
   32#include <linux/bpf.h>
   33#include <linux/bpf_trace.h>
   34#include <linux/pm_runtime.h>
   35#include <linux/etherdevice.h>
   36#ifdef CONFIG_IGB_DCA
   37#include <linux/dca.h>
   38#endif
   39#include <linux/i2c.h>
   40#include "igb.h"
   41
   42enum queue_mode {
   43	QUEUE_MODE_STRICT_PRIORITY,
   44	QUEUE_MODE_STREAM_RESERVATION,
   45};
   46
   47enum tx_queue_prio {
   48	TX_QUEUE_PRIO_HIGH,
   49	TX_QUEUE_PRIO_LOW,
   50};
   51
   52char igb_driver_name[] = "igb";
 
   53static const char igb_driver_string[] =
   54				"Intel(R) Gigabit Ethernet Network Driver";
   55static const char igb_copyright[] =
   56				"Copyright (c) 2007-2014 Intel Corporation.";
   57
   58static const struct e1000_info *igb_info_tbl[] = {
   59	[board_82575] = &e1000_82575_info,
   60};
   61
   62static const struct pci_device_id igb_pci_tbl[] = {
   63	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
   64	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
   65	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
   66	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
   67	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
   68	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
   69	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
   70	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
   71	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
   72	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
   73	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
   74	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
   75	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
   76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
   77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
   78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
   79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
   80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
   81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
   82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
   83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
   84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
   85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
   86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
   87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
   88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
   89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
   90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
   91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
   92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
   93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
   94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
   95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
   96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
   97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
   98	/* required last entry */
   99	{0, }
  100};
  101
  102MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
  103
  104static int igb_setup_all_tx_resources(struct igb_adapter *);
  105static int igb_setup_all_rx_resources(struct igb_adapter *);
  106static void igb_free_all_tx_resources(struct igb_adapter *);
  107static void igb_free_all_rx_resources(struct igb_adapter *);
  108static void igb_setup_mrqc(struct igb_adapter *);
  109static int igb_probe(struct pci_dev *, const struct pci_device_id *);
  110static void igb_remove(struct pci_dev *pdev);
  111static void igb_init_queue_configuration(struct igb_adapter *adapter);
  112static int igb_sw_init(struct igb_adapter *);
  113int igb_open(struct net_device *);
  114int igb_close(struct net_device *);
  115static void igb_configure(struct igb_adapter *);
  116static void igb_configure_tx(struct igb_adapter *);
  117static void igb_configure_rx(struct igb_adapter *);
  118static void igb_clean_all_tx_rings(struct igb_adapter *);
  119static void igb_clean_all_rx_rings(struct igb_adapter *);
  120static void igb_clean_tx_ring(struct igb_ring *);
  121static void igb_clean_rx_ring(struct igb_ring *);
  122static void igb_set_rx_mode(struct net_device *);
  123static void igb_update_phy_info(struct timer_list *);
  124static void igb_watchdog(struct timer_list *);
  125static void igb_watchdog_task(struct work_struct *);
  126static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
  127static void igb_get_stats64(struct net_device *dev,
  128			    struct rtnl_link_stats64 *stats);
  129static int igb_change_mtu(struct net_device *, int);
  130static int igb_set_mac(struct net_device *, void *);
  131static void igb_set_uta(struct igb_adapter *adapter, bool set);
  132static irqreturn_t igb_intr(int irq, void *);
  133static irqreturn_t igb_intr_msi(int irq, void *);
  134static irqreturn_t igb_msix_other(int irq, void *);
  135static irqreturn_t igb_msix_ring(int irq, void *);
  136#ifdef CONFIG_IGB_DCA
  137static void igb_update_dca(struct igb_q_vector *);
  138static void igb_setup_dca(struct igb_adapter *);
  139#endif /* CONFIG_IGB_DCA */
  140static int igb_poll(struct napi_struct *, int);
  141static bool igb_clean_tx_irq(struct igb_q_vector *, int);
  142static int igb_clean_rx_irq(struct igb_q_vector *, int);
  143static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
  144static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
  145static void igb_reset_task(struct work_struct *);
  146static void igb_vlan_mode(struct net_device *netdev,
  147			  netdev_features_t features);
  148static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
  149static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
  150static void igb_restore_vlan(struct igb_adapter *);
  151static void igb_rar_set_index(struct igb_adapter *, u32);
  152static void igb_ping_all_vfs(struct igb_adapter *);
  153static void igb_msg_task(struct igb_adapter *);
  154static void igb_vmm_control(struct igb_adapter *);
  155static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
  156static void igb_flush_mac_table(struct igb_adapter *);
  157static int igb_available_rars(struct igb_adapter *, u8);
  158static void igb_set_default_mac_filter(struct igb_adapter *);
  159static int igb_uc_sync(struct net_device *, const unsigned char *);
  160static int igb_uc_unsync(struct net_device *, const unsigned char *);
  161static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
  162static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
  163static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  164			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
  165static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
  166static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  167				   bool setting);
  168static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
  169				bool setting);
  170static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
  171				 struct ifla_vf_info *ivi);
  172static void igb_check_vf_rate_limit(struct igb_adapter *);
  173static void igb_nfc_filter_exit(struct igb_adapter *adapter);
  174static void igb_nfc_filter_restore(struct igb_adapter *adapter);
  175
  176#ifdef CONFIG_PCI_IOV
  177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
  178static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
 
 
  179#endif
  180
 
 
  181static int igb_suspend(struct device *);
 
  182static int igb_resume(struct device *);
  183static int igb_runtime_suspend(struct device *dev);
  184static int igb_runtime_resume(struct device *dev);
  185static int igb_runtime_idle(struct device *dev);
  186#ifdef CONFIG_PM
  187static const struct dev_pm_ops igb_pm_ops = {
  188	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
  189	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
  190			igb_runtime_idle)
  191};
  192#endif
  193static void igb_shutdown(struct pci_dev *);
  194static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
  195#ifdef CONFIG_IGB_DCA
  196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
  197static struct notifier_block dca_notifier = {
  198	.notifier_call	= igb_notify_dca,
  199	.next		= NULL,
  200	.priority	= 0
  201};
  202#endif
 
 
 
 
  203#ifdef CONFIG_PCI_IOV
  204static unsigned int max_vfs;
  205module_param(max_vfs, uint, 0444);
  206MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
  207#endif /* CONFIG_PCI_IOV */
  208
  209static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
  210		     pci_channel_state_t);
  211static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
  212static void igb_io_resume(struct pci_dev *);
  213
  214static const struct pci_error_handlers igb_err_handler = {
  215	.error_detected = igb_io_error_detected,
  216	.slot_reset = igb_io_slot_reset,
  217	.resume = igb_io_resume,
  218};
  219
  220static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
  221
  222static struct pci_driver igb_driver = {
  223	.name     = igb_driver_name,
  224	.id_table = igb_pci_tbl,
  225	.probe    = igb_probe,
  226	.remove   = igb_remove,
  227#ifdef CONFIG_PM
  228	.driver.pm = &igb_pm_ops,
  229#endif
  230	.shutdown = igb_shutdown,
  231	.sriov_configure = igb_pci_sriov_configure,
  232	.err_handler = &igb_err_handler
  233};
  234
  235MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
  236MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
  237MODULE_LICENSE("GPL v2");
 
  238
  239#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  240static int debug = -1;
  241module_param(debug, int, 0);
  242MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  243
  244struct igb_reg_info {
  245	u32 ofs;
  246	char *name;
  247};
  248
  249static const struct igb_reg_info igb_reg_info_tbl[] = {
  250
  251	/* General Registers */
  252	{E1000_CTRL, "CTRL"},
  253	{E1000_STATUS, "STATUS"},
  254	{E1000_CTRL_EXT, "CTRL_EXT"},
  255
  256	/* Interrupt Registers */
  257	{E1000_ICR, "ICR"},
  258
  259	/* RX Registers */
  260	{E1000_RCTL, "RCTL"},
  261	{E1000_RDLEN(0), "RDLEN"},
  262	{E1000_RDH(0), "RDH"},
  263	{E1000_RDT(0), "RDT"},
  264	{E1000_RXDCTL(0), "RXDCTL"},
  265	{E1000_RDBAL(0), "RDBAL"},
  266	{E1000_RDBAH(0), "RDBAH"},
  267
  268	/* TX Registers */
  269	{E1000_TCTL, "TCTL"},
  270	{E1000_TDBAL(0), "TDBAL"},
  271	{E1000_TDBAH(0), "TDBAH"},
  272	{E1000_TDLEN(0), "TDLEN"},
  273	{E1000_TDH(0), "TDH"},
  274	{E1000_TDT(0), "TDT"},
  275	{E1000_TXDCTL(0), "TXDCTL"},
  276	{E1000_TDFH, "TDFH"},
  277	{E1000_TDFT, "TDFT"},
  278	{E1000_TDFHS, "TDFHS"},
  279	{E1000_TDFPC, "TDFPC"},
  280
  281	/* List Terminator */
  282	{}
  283};
  284
  285/* igb_regdump - register printout routine */
  286static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
  287{
  288	int n = 0;
  289	char rname[16];
  290	u32 regs[8];
  291
  292	switch (reginfo->ofs) {
  293	case E1000_RDLEN(0):
  294		for (n = 0; n < 4; n++)
  295			regs[n] = rd32(E1000_RDLEN(n));
  296		break;
  297	case E1000_RDH(0):
  298		for (n = 0; n < 4; n++)
  299			regs[n] = rd32(E1000_RDH(n));
  300		break;
  301	case E1000_RDT(0):
  302		for (n = 0; n < 4; n++)
  303			regs[n] = rd32(E1000_RDT(n));
  304		break;
  305	case E1000_RXDCTL(0):
  306		for (n = 0; n < 4; n++)
  307			regs[n] = rd32(E1000_RXDCTL(n));
  308		break;
  309	case E1000_RDBAL(0):
  310		for (n = 0; n < 4; n++)
  311			regs[n] = rd32(E1000_RDBAL(n));
  312		break;
  313	case E1000_RDBAH(0):
  314		for (n = 0; n < 4; n++)
  315			regs[n] = rd32(E1000_RDBAH(n));
  316		break;
  317	case E1000_TDBAL(0):
  318		for (n = 0; n < 4; n++)
  319			regs[n] = rd32(E1000_TDBAL(n));
  320		break;
  321	case E1000_TDBAH(0):
  322		for (n = 0; n < 4; n++)
  323			regs[n] = rd32(E1000_TDBAH(n));
  324		break;
  325	case E1000_TDLEN(0):
  326		for (n = 0; n < 4; n++)
  327			regs[n] = rd32(E1000_TDLEN(n));
  328		break;
  329	case E1000_TDH(0):
  330		for (n = 0; n < 4; n++)
  331			regs[n] = rd32(E1000_TDH(n));
  332		break;
  333	case E1000_TDT(0):
  334		for (n = 0; n < 4; n++)
  335			regs[n] = rd32(E1000_TDT(n));
  336		break;
  337	case E1000_TXDCTL(0):
  338		for (n = 0; n < 4; n++)
  339			regs[n] = rd32(E1000_TXDCTL(n));
  340		break;
  341	default:
  342		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
  343		return;
  344	}
  345
  346	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
  347	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
  348		regs[2], regs[3]);
  349}
  350
  351/* igb_dump - Print registers, Tx-rings and Rx-rings */
  352static void igb_dump(struct igb_adapter *adapter)
  353{
  354	struct net_device *netdev = adapter->netdev;
  355	struct e1000_hw *hw = &adapter->hw;
  356	struct igb_reg_info *reginfo;
  357	struct igb_ring *tx_ring;
  358	union e1000_adv_tx_desc *tx_desc;
  359	struct my_u0 { __le64 a; __le64 b; } *u0;
  360	struct igb_ring *rx_ring;
  361	union e1000_adv_rx_desc *rx_desc;
  362	u32 staterr;
  363	u16 i, n;
  364
  365	if (!netif_msg_hw(adapter))
  366		return;
  367
  368	/* Print netdevice Info */
  369	if (netdev) {
  370		dev_info(&adapter->pdev->dev, "Net device Info\n");
  371		pr_info("Device Name     state            trans_start\n");
  372		pr_info("%-15s %016lX %016lX\n", netdev->name,
  373			netdev->state, dev_trans_start(netdev));
  374	}
  375
  376	/* Print Registers */
  377	dev_info(&adapter->pdev->dev, "Register Dump\n");
  378	pr_info(" Register Name   Value\n");
  379	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
  380	     reginfo->name; reginfo++) {
  381		igb_regdump(hw, reginfo);
  382	}
  383
  384	/* Print TX Ring Summary */
  385	if (!netdev || !netif_running(netdev))
  386		goto exit;
  387
  388	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
  389	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
  390	for (n = 0; n < adapter->num_tx_queues; n++) {
  391		struct igb_tx_buffer *buffer_info;
  392		tx_ring = adapter->tx_ring[n];
  393		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
  394		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
  395			n, tx_ring->next_to_use, tx_ring->next_to_clean,
  396			(u64)dma_unmap_addr(buffer_info, dma),
  397			dma_unmap_len(buffer_info, len),
  398			buffer_info->next_to_watch,
  399			(u64)buffer_info->time_stamp);
  400	}
  401
  402	/* Print TX Rings */
  403	if (!netif_msg_tx_done(adapter))
  404		goto rx_ring_summary;
  405
  406	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
  407
  408	/* Transmit Descriptor Formats
  409	 *
  410	 * Advanced Transmit Descriptor
  411	 *   +--------------------------------------------------------------+
  412	 * 0 |         Buffer Address [63:0]                                |
  413	 *   +--------------------------------------------------------------+
  414	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
  415	 *   +--------------------------------------------------------------+
  416	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
  417	 */
  418
  419	for (n = 0; n < adapter->num_tx_queues; n++) {
  420		tx_ring = adapter->tx_ring[n];
  421		pr_info("------------------------------------\n");
  422		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
  423		pr_info("------------------------------------\n");
  424		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
  425
  426		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
  427			const char *next_desc;
  428			struct igb_tx_buffer *buffer_info;
  429			tx_desc = IGB_TX_DESC(tx_ring, i);
  430			buffer_info = &tx_ring->tx_buffer_info[i];
  431			u0 = (struct my_u0 *)tx_desc;
  432			if (i == tx_ring->next_to_use &&
  433			    i == tx_ring->next_to_clean)
  434				next_desc = " NTC/U";
  435			else if (i == tx_ring->next_to_use)
  436				next_desc = " NTU";
  437			else if (i == tx_ring->next_to_clean)
  438				next_desc = " NTC";
  439			else
  440				next_desc = "";
  441
  442			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
  443				i, le64_to_cpu(u0->a),
  444				le64_to_cpu(u0->b),
  445				(u64)dma_unmap_addr(buffer_info, dma),
  446				dma_unmap_len(buffer_info, len),
  447				buffer_info->next_to_watch,
  448				(u64)buffer_info->time_stamp,
  449				buffer_info->skb, next_desc);
  450
  451			if (netif_msg_pktdata(adapter) && buffer_info->skb)
  452				print_hex_dump(KERN_INFO, "",
  453					DUMP_PREFIX_ADDRESS,
  454					16, 1, buffer_info->skb->data,
  455					dma_unmap_len(buffer_info, len),
  456					true);
  457		}
  458	}
  459
  460	/* Print RX Rings Summary */
  461rx_ring_summary:
  462	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
  463	pr_info("Queue [NTU] [NTC]\n");
  464	for (n = 0; n < adapter->num_rx_queues; n++) {
  465		rx_ring = adapter->rx_ring[n];
  466		pr_info(" %5d %5X %5X\n",
  467			n, rx_ring->next_to_use, rx_ring->next_to_clean);
  468	}
  469
  470	/* Print RX Rings */
  471	if (!netif_msg_rx_status(adapter))
  472		goto exit;
  473
  474	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
  475
  476	/* Advanced Receive Descriptor (Read) Format
  477	 *    63                                           1        0
  478	 *    +-----------------------------------------------------+
  479	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
  480	 *    +----------------------------------------------+------+
  481	 *  8 |       Header Buffer Address [63:1]           |  DD  |
  482	 *    +-----------------------------------------------------+
  483	 *
  484	 *
  485	 * Advanced Receive Descriptor (Write-Back) Format
  486	 *
  487	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
  488	 *   +------------------------------------------------------+
  489	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
  490	 *   | Checksum   Ident  |   |           |    | Type | Type |
  491	 *   +------------------------------------------------------+
  492	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
  493	 *   +------------------------------------------------------+
  494	 *   63       48 47    32 31            20 19               0
  495	 */
  496
  497	for (n = 0; n < adapter->num_rx_queues; n++) {
  498		rx_ring = adapter->rx_ring[n];
  499		pr_info("------------------------------------\n");
  500		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
  501		pr_info("------------------------------------\n");
  502		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
  503		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
  504
  505		for (i = 0; i < rx_ring->count; i++) {
  506			const char *next_desc;
  507			struct igb_rx_buffer *buffer_info;
  508			buffer_info = &rx_ring->rx_buffer_info[i];
  509			rx_desc = IGB_RX_DESC(rx_ring, i);
  510			u0 = (struct my_u0 *)rx_desc;
  511			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  512
  513			if (i == rx_ring->next_to_use)
  514				next_desc = " NTU";
  515			else if (i == rx_ring->next_to_clean)
  516				next_desc = " NTC";
  517			else
  518				next_desc = "";
  519
  520			if (staterr & E1000_RXD_STAT_DD) {
  521				/* Descriptor Done */
  522				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
  523					"RWB", i,
  524					le64_to_cpu(u0->a),
  525					le64_to_cpu(u0->b),
  526					next_desc);
  527			} else {
  528				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
  529					"R  ", i,
  530					le64_to_cpu(u0->a),
  531					le64_to_cpu(u0->b),
  532					(u64)buffer_info->dma,
  533					next_desc);
  534
  535				if (netif_msg_pktdata(adapter) &&
  536				    buffer_info->dma && buffer_info->page) {
  537					print_hex_dump(KERN_INFO, "",
  538					  DUMP_PREFIX_ADDRESS,
  539					  16, 1,
  540					  page_address(buffer_info->page) +
  541						      buffer_info->page_offset,
  542					  igb_rx_bufsz(rx_ring), true);
  543				}
  544			}
  545		}
  546	}
  547
  548exit:
  549	return;
  550}
  551
  552/**
  553 *  igb_get_i2c_data - Reads the I2C SDA data bit
  554 *  @data: opaque pointer to adapter struct
 
  555 *
  556 *  Returns the I2C data bit value
  557 **/
  558static int igb_get_i2c_data(void *data)
  559{
  560	struct igb_adapter *adapter = (struct igb_adapter *)data;
  561	struct e1000_hw *hw = &adapter->hw;
  562	s32 i2cctl = rd32(E1000_I2CPARAMS);
  563
  564	return !!(i2cctl & E1000_I2C_DATA_IN);
  565}
  566
  567/**
  568 *  igb_set_i2c_data - Sets the I2C data bit
  569 *  @data: pointer to hardware structure
  570 *  @state: I2C data value (0 or 1) to set
  571 *
  572 *  Sets the I2C data bit
  573 **/
  574static void igb_set_i2c_data(void *data, int state)
  575{
  576	struct igb_adapter *adapter = (struct igb_adapter *)data;
  577	struct e1000_hw *hw = &adapter->hw;
  578	s32 i2cctl = rd32(E1000_I2CPARAMS);
  579
  580	if (state) {
  581		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
  582	} else {
  583		i2cctl &= ~E1000_I2C_DATA_OE_N;
  584		i2cctl &= ~E1000_I2C_DATA_OUT;
  585	}
  586
 
 
  587	wr32(E1000_I2CPARAMS, i2cctl);
  588	wrfl();
 
  589}
  590
  591/**
  592 *  igb_set_i2c_clk - Sets the I2C SCL clock
  593 *  @data: pointer to hardware structure
  594 *  @state: state to set clock
  595 *
  596 *  Sets the I2C clock line to state
  597 **/
  598static void igb_set_i2c_clk(void *data, int state)
  599{
  600	struct igb_adapter *adapter = (struct igb_adapter *)data;
  601	struct e1000_hw *hw = &adapter->hw;
  602	s32 i2cctl = rd32(E1000_I2CPARAMS);
  603
  604	if (state) {
  605		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
 
  606	} else {
  607		i2cctl &= ~E1000_I2C_CLK_OUT;
  608		i2cctl &= ~E1000_I2C_CLK_OE_N;
  609	}
  610	wr32(E1000_I2CPARAMS, i2cctl);
  611	wrfl();
  612}
  613
  614/**
  615 *  igb_get_i2c_clk - Gets the I2C SCL clock state
  616 *  @data: pointer to hardware structure
  617 *
  618 *  Gets the I2C clock state
  619 **/
  620static int igb_get_i2c_clk(void *data)
  621{
  622	struct igb_adapter *adapter = (struct igb_adapter *)data;
  623	struct e1000_hw *hw = &adapter->hw;
  624	s32 i2cctl = rd32(E1000_I2CPARAMS);
  625
  626	return !!(i2cctl & E1000_I2C_CLK_IN);
  627}
  628
  629static const struct i2c_algo_bit_data igb_i2c_algo = {
  630	.setsda		= igb_set_i2c_data,
  631	.setscl		= igb_set_i2c_clk,
  632	.getsda		= igb_get_i2c_data,
  633	.getscl		= igb_get_i2c_clk,
  634	.udelay		= 5,
  635	.timeout	= 20,
  636};
  637
  638/**
  639 *  igb_get_hw_dev - return device
  640 *  @hw: pointer to hardware structure
  641 *
  642 *  used by hardware layer to print debugging information
  643 **/
  644struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
  645{
  646	struct igb_adapter *adapter = hw->back;
  647	return adapter->netdev;
  648}
  649
  650/**
  651 *  igb_init_module - Driver Registration Routine
  652 *
  653 *  igb_init_module is the first routine called when the driver is
  654 *  loaded. All it does is register with the PCI subsystem.
  655 **/
  656static int __init igb_init_module(void)
  657{
  658	int ret;
  659
  660	pr_info("%s\n", igb_driver_string);
 
  661	pr_info("%s\n", igb_copyright);
  662
  663#ifdef CONFIG_IGB_DCA
  664	dca_register_notify(&dca_notifier);
  665#endif
  666	ret = pci_register_driver(&igb_driver);
  667	return ret;
  668}
  669
  670module_init(igb_init_module);
  671
  672/**
  673 *  igb_exit_module - Driver Exit Cleanup Routine
  674 *
  675 *  igb_exit_module is called just before the driver is removed
  676 *  from memory.
  677 **/
  678static void __exit igb_exit_module(void)
  679{
  680#ifdef CONFIG_IGB_DCA
  681	dca_unregister_notify(&dca_notifier);
  682#endif
  683	pci_unregister_driver(&igb_driver);
  684}
  685
  686module_exit(igb_exit_module);
  687
  688#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
  689/**
  690 *  igb_cache_ring_register - Descriptor ring to register mapping
  691 *  @adapter: board private structure to initialize
  692 *
  693 *  Once we know the feature-set enabled for the device, we'll cache
  694 *  the register offset the descriptor ring is assigned to.
  695 **/
  696static void igb_cache_ring_register(struct igb_adapter *adapter)
  697{
  698	int i = 0, j = 0;
  699	u32 rbase_offset = adapter->vfs_allocated_count;
  700
  701	switch (adapter->hw.mac.type) {
  702	case e1000_82576:
  703		/* The queues are allocated for virtualization such that VF 0
  704		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
  705		 * In order to avoid collision we start at the first free queue
  706		 * and continue consuming queues in the same sequence
  707		 */
  708		if (adapter->vfs_allocated_count) {
  709			for (; i < adapter->rss_queues; i++)
  710				adapter->rx_ring[i]->reg_idx = rbase_offset +
  711							       Q_IDX_82576(i);
  712		}
  713		fallthrough;
  714	case e1000_82575:
  715	case e1000_82580:
  716	case e1000_i350:
  717	case e1000_i354:
  718	case e1000_i210:
  719	case e1000_i211:
 
  720	default:
  721		for (; i < adapter->num_rx_queues; i++)
  722			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
  723		for (; j < adapter->num_tx_queues; j++)
  724			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
  725		break;
  726	}
  727}
  728
  729u32 igb_rd32(struct e1000_hw *hw, u32 reg)
  730{
  731	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
  732	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
  733	u32 value = 0;
  734
  735	if (E1000_REMOVED(hw_addr))
  736		return ~value;
  737
  738	value = readl(&hw_addr[reg]);
  739
  740	/* reads should not return all F's */
  741	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
  742		struct net_device *netdev = igb->netdev;
  743		hw->hw_addr = NULL;
  744		netdev_err(netdev, "PCIe link lost\n");
  745		WARN(pci_device_is_present(igb->pdev),
  746		     "igb: Failed to read reg 0x%x!\n", reg);
  747	}
  748
  749	return value;
  750}
  751
  752/**
  753 *  igb_write_ivar - configure ivar for given MSI-X vector
  754 *  @hw: pointer to the HW structure
  755 *  @msix_vector: vector number we are allocating to a given ring
  756 *  @index: row index of IVAR register to write within IVAR table
  757 *  @offset: column offset of in IVAR, should be multiple of 8
  758 *
  759 *  This function is intended to handle the writing of the IVAR register
  760 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
  761 *  each containing an cause allocation for an Rx and Tx ring, and a
  762 *  variable number of rows depending on the number of queues supported.
  763 **/
  764static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
  765			   int index, int offset)
  766{
  767	u32 ivar = array_rd32(E1000_IVAR0, index);
  768
  769	/* clear any bits that are currently set */
  770	ivar &= ~((u32)0xFF << offset);
  771
  772	/* write vector and valid bit */
  773	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
  774
  775	array_wr32(E1000_IVAR0, index, ivar);
  776}
  777
  778#define IGB_N0_QUEUE -1
  779static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
  780{
  781	struct igb_adapter *adapter = q_vector->adapter;
  782	struct e1000_hw *hw = &adapter->hw;
  783	int rx_queue = IGB_N0_QUEUE;
  784	int tx_queue = IGB_N0_QUEUE;
  785	u32 msixbm = 0;
  786
  787	if (q_vector->rx.ring)
  788		rx_queue = q_vector->rx.ring->reg_idx;
  789	if (q_vector->tx.ring)
  790		tx_queue = q_vector->tx.ring->reg_idx;
  791
  792	switch (hw->mac.type) {
  793	case e1000_82575:
  794		/* The 82575 assigns vectors using a bitmask, which matches the
  795		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
  796		 * or more queues to a vector, we write the appropriate bits
  797		 * into the MSIXBM register for that vector.
  798		 */
  799		if (rx_queue > IGB_N0_QUEUE)
  800			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
  801		if (tx_queue > IGB_N0_QUEUE)
  802			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
  803		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
  804			msixbm |= E1000_EIMS_OTHER;
  805		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
  806		q_vector->eims_value = msixbm;
  807		break;
  808	case e1000_82576:
  809		/* 82576 uses a table that essentially consists of 2 columns
  810		 * with 8 rows.  The ordering is column-major so we use the
  811		 * lower 3 bits as the row index, and the 4th bit as the
  812		 * column offset.
  813		 */
  814		if (rx_queue > IGB_N0_QUEUE)
  815			igb_write_ivar(hw, msix_vector,
  816				       rx_queue & 0x7,
  817				       (rx_queue & 0x8) << 1);
  818		if (tx_queue > IGB_N0_QUEUE)
  819			igb_write_ivar(hw, msix_vector,
  820				       tx_queue & 0x7,
  821				       ((tx_queue & 0x8) << 1) + 8);
  822		q_vector->eims_value = BIT(msix_vector);
  823		break;
  824	case e1000_82580:
  825	case e1000_i350:
  826	case e1000_i354:
  827	case e1000_i210:
  828	case e1000_i211:
  829		/* On 82580 and newer adapters the scheme is similar to 82576
  830		 * however instead of ordering column-major we have things
  831		 * ordered row-major.  So we traverse the table by using
  832		 * bit 0 as the column offset, and the remaining bits as the
  833		 * row index.
  834		 */
  835		if (rx_queue > IGB_N0_QUEUE)
  836			igb_write_ivar(hw, msix_vector,
  837				       rx_queue >> 1,
  838				       (rx_queue & 0x1) << 4);
  839		if (tx_queue > IGB_N0_QUEUE)
  840			igb_write_ivar(hw, msix_vector,
  841				       tx_queue >> 1,
  842				       ((tx_queue & 0x1) << 4) + 8);
  843		q_vector->eims_value = BIT(msix_vector);
  844		break;
  845	default:
  846		BUG();
  847		break;
  848	}
  849
  850	/* add q_vector eims value to global eims_enable_mask */
  851	adapter->eims_enable_mask |= q_vector->eims_value;
  852
  853	/* configure q_vector to set itr on first interrupt */
  854	q_vector->set_itr = 1;
  855}
  856
  857/**
  858 *  igb_configure_msix - Configure MSI-X hardware
  859 *  @adapter: board private structure to initialize
  860 *
  861 *  igb_configure_msix sets up the hardware to properly
  862 *  generate MSI-X interrupts.
  863 **/
  864static void igb_configure_msix(struct igb_adapter *adapter)
  865{
  866	u32 tmp;
  867	int i, vector = 0;
  868	struct e1000_hw *hw = &adapter->hw;
  869
  870	adapter->eims_enable_mask = 0;
  871
  872	/* set vector for other causes, i.e. link changes */
  873	switch (hw->mac.type) {
  874	case e1000_82575:
  875		tmp = rd32(E1000_CTRL_EXT);
  876		/* enable MSI-X PBA support*/
  877		tmp |= E1000_CTRL_EXT_PBA_CLR;
  878
  879		/* Auto-Mask interrupts upon ICR read. */
  880		tmp |= E1000_CTRL_EXT_EIAME;
  881		tmp |= E1000_CTRL_EXT_IRCA;
  882
  883		wr32(E1000_CTRL_EXT, tmp);
  884
  885		/* enable msix_other interrupt */
  886		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
  887		adapter->eims_other = E1000_EIMS_OTHER;
  888
  889		break;
  890
  891	case e1000_82576:
  892	case e1000_82580:
  893	case e1000_i350:
  894	case e1000_i354:
  895	case e1000_i210:
  896	case e1000_i211:
  897		/* Turn on MSI-X capability first, or our settings
  898		 * won't stick.  And it will take days to debug.
  899		 */
  900		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
  901		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
  902		     E1000_GPIE_NSICR);
  903
  904		/* enable msix_other interrupt */
  905		adapter->eims_other = BIT(vector);
  906		tmp = (vector++ | E1000_IVAR_VALID) << 8;
  907
  908		wr32(E1000_IVAR_MISC, tmp);
  909		break;
  910	default:
  911		/* do nothing, since nothing else supports MSI-X */
  912		break;
  913	} /* switch (hw->mac.type) */
  914
  915	adapter->eims_enable_mask |= adapter->eims_other;
  916
  917	for (i = 0; i < adapter->num_q_vectors; i++)
  918		igb_assign_vector(adapter->q_vector[i], vector++);
  919
  920	wrfl();
  921}
  922
  923/**
  924 *  igb_request_msix - Initialize MSI-X interrupts
  925 *  @adapter: board private structure to initialize
  926 *
  927 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
  928 *  kernel.
  929 **/
  930static int igb_request_msix(struct igb_adapter *adapter)
  931{
  932	unsigned int num_q_vectors = adapter->num_q_vectors;
  933	struct net_device *netdev = adapter->netdev;
  934	int i, err = 0, vector = 0, free_vector = 0;
  935
  936	err = request_irq(adapter->msix_entries[vector].vector,
  937			  igb_msix_other, 0, netdev->name, adapter);
  938	if (err)
  939		goto err_out;
  940
  941	if (num_q_vectors > MAX_Q_VECTORS) {
  942		num_q_vectors = MAX_Q_VECTORS;
  943		dev_warn(&adapter->pdev->dev,
  944			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
  945			 adapter->num_q_vectors, MAX_Q_VECTORS);
  946	}
  947	for (i = 0; i < num_q_vectors; i++) {
  948		struct igb_q_vector *q_vector = adapter->q_vector[i];
  949
  950		vector++;
  951
  952		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
  953
  954		if (q_vector->rx.ring && q_vector->tx.ring)
  955			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
  956				q_vector->rx.ring->queue_index);
  957		else if (q_vector->tx.ring)
  958			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
  959				q_vector->tx.ring->queue_index);
  960		else if (q_vector->rx.ring)
  961			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
  962				q_vector->rx.ring->queue_index);
  963		else
  964			sprintf(q_vector->name, "%s-unused", netdev->name);
  965
  966		err = request_irq(adapter->msix_entries[vector].vector,
  967				  igb_msix_ring, 0, q_vector->name,
  968				  q_vector);
  969		if (err)
  970			goto err_free;
  971	}
  972
  973	igb_configure_msix(adapter);
  974	return 0;
  975
  976err_free:
  977	/* free already assigned IRQs */
  978	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
  979
  980	vector--;
  981	for (i = 0; i < vector; i++) {
  982		free_irq(adapter->msix_entries[free_vector++].vector,
  983			 adapter->q_vector[i]);
  984	}
  985err_out:
  986	return err;
  987}
  988
  989/**
  990 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
  991 *  @adapter: board private structure to initialize
  992 *  @v_idx: Index of vector to be freed
  993 *
  994 *  This function frees the memory allocated to the q_vector.
  995 **/
  996static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
  997{
  998	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  999
 1000	adapter->q_vector[v_idx] = NULL;
 1001
 1002	/* igb_get_stats64() might access the rings on this vector,
 1003	 * we must wait a grace period before freeing it.
 1004	 */
 1005	if (q_vector)
 1006		kfree_rcu(q_vector, rcu);
 1007}
 1008
 1009/**
 1010 *  igb_reset_q_vector - Reset config for interrupt vector
 1011 *  @adapter: board private structure to initialize
 1012 *  @v_idx: Index of vector to be reset
 1013 *
 1014 *  If NAPI is enabled it will delete any references to the
 1015 *  NAPI struct. This is preparation for igb_free_q_vector.
 1016 **/
 1017static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
 1018{
 1019	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
 1020
 1021	/* Coming from igb_set_interrupt_capability, the vectors are not yet
 1022	 * allocated. So, q_vector is NULL so we should stop here.
 1023	 */
 1024	if (!q_vector)
 1025		return;
 1026
 1027	if (q_vector->tx.ring)
 1028		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
 1029
 1030	if (q_vector->rx.ring)
 1031		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
 1032
 1033	netif_napi_del(&q_vector->napi);
 1034
 1035}
 1036
 1037static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
 1038{
 1039	int v_idx = adapter->num_q_vectors;
 1040
 1041	if (adapter->flags & IGB_FLAG_HAS_MSIX)
 1042		pci_disable_msix(adapter->pdev);
 1043	else if (adapter->flags & IGB_FLAG_HAS_MSI)
 1044		pci_disable_msi(adapter->pdev);
 1045
 1046	while (v_idx--)
 1047		igb_reset_q_vector(adapter, v_idx);
 1048}
 1049
 1050/**
 1051 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 1052 *  @adapter: board private structure to initialize
 1053 *
 1054 *  This function frees the memory allocated to the q_vectors.  In addition if
 1055 *  NAPI is enabled it will delete any references to the NAPI struct prior
 1056 *  to freeing the q_vector.
 1057 **/
 1058static void igb_free_q_vectors(struct igb_adapter *adapter)
 1059{
 1060	int v_idx = adapter->num_q_vectors;
 1061
 1062	adapter->num_tx_queues = 0;
 1063	adapter->num_rx_queues = 0;
 1064	adapter->num_q_vectors = 0;
 1065
 1066	while (v_idx--) {
 1067		igb_reset_q_vector(adapter, v_idx);
 1068		igb_free_q_vector(adapter, v_idx);
 1069	}
 1070}
 1071
 1072/**
 1073 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 1074 *  @adapter: board private structure to initialize
 1075 *
 1076 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 1077 *  MSI-X interrupts allocated.
 1078 */
 1079static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
 1080{
 1081	igb_free_q_vectors(adapter);
 1082	igb_reset_interrupt_capability(adapter);
 1083}
 1084
 1085/**
 1086 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 1087 *  @adapter: board private structure to initialize
 1088 *  @msix: boolean value of MSIX capability
 1089 *
 1090 *  Attempt to configure interrupts using the best available
 1091 *  capabilities of the hardware and kernel.
 1092 **/
 1093static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
 1094{
 1095	int err;
 1096	int numvecs, i;
 1097
 1098	if (!msix)
 1099		goto msi_only;
 1100	adapter->flags |= IGB_FLAG_HAS_MSIX;
 1101
 1102	/* Number of supported queues. */
 1103	adapter->num_rx_queues = adapter->rss_queues;
 1104	if (adapter->vfs_allocated_count)
 1105		adapter->num_tx_queues = 1;
 1106	else
 1107		adapter->num_tx_queues = adapter->rss_queues;
 1108
 1109	/* start with one vector for every Rx queue */
 1110	numvecs = adapter->num_rx_queues;
 1111
 1112	/* if Tx handler is separate add 1 for every Tx queue */
 1113	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
 1114		numvecs += adapter->num_tx_queues;
 1115
 1116	/* store the number of vectors reserved for queues */
 1117	adapter->num_q_vectors = numvecs;
 1118
 1119	/* add 1 vector for link status interrupts */
 1120	numvecs++;
 1121	for (i = 0; i < numvecs; i++)
 1122		adapter->msix_entries[i].entry = i;
 1123
 1124	err = pci_enable_msix_range(adapter->pdev,
 1125				    adapter->msix_entries,
 1126				    numvecs,
 1127				    numvecs);
 1128	if (err > 0)
 1129		return;
 1130
 1131	igb_reset_interrupt_capability(adapter);
 1132
 1133	/* If we can't do MSI-X, try MSI */
 1134msi_only:
 1135	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
 1136#ifdef CONFIG_PCI_IOV
 1137	/* disable SR-IOV for non MSI-X configurations */
 1138	if (adapter->vf_data) {
 1139		struct e1000_hw *hw = &adapter->hw;
 1140		/* disable iov and allow time for transactions to clear */
 1141		pci_disable_sriov(adapter->pdev);
 1142		msleep(500);
 1143
 1144		kfree(adapter->vf_mac_list);
 1145		adapter->vf_mac_list = NULL;
 1146		kfree(adapter->vf_data);
 1147		adapter->vf_data = NULL;
 1148		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
 1149		wrfl();
 1150		msleep(100);
 1151		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
 1152	}
 1153#endif
 1154	adapter->vfs_allocated_count = 0;
 1155	adapter->rss_queues = 1;
 1156	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
 1157	adapter->num_rx_queues = 1;
 1158	adapter->num_tx_queues = 1;
 1159	adapter->num_q_vectors = 1;
 1160	if (!pci_enable_msi(adapter->pdev))
 1161		adapter->flags |= IGB_FLAG_HAS_MSI;
 1162}
 1163
 1164static void igb_add_ring(struct igb_ring *ring,
 1165			 struct igb_ring_container *head)
 1166{
 1167	head->ring = ring;
 1168	head->count++;
 1169}
 1170
 1171/**
 1172 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 1173 *  @adapter: board private structure to initialize
 1174 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 1175 *  @v_idx: index of vector in adapter struct
 1176 *  @txr_count: total number of Tx rings to allocate
 1177 *  @txr_idx: index of first Tx ring to allocate
 1178 *  @rxr_count: total number of Rx rings to allocate
 1179 *  @rxr_idx: index of first Rx ring to allocate
 1180 *
 1181 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
 1182 **/
 1183static int igb_alloc_q_vector(struct igb_adapter *adapter,
 1184			      int v_count, int v_idx,
 1185			      int txr_count, int txr_idx,
 1186			      int rxr_count, int rxr_idx)
 1187{
 1188	struct igb_q_vector *q_vector;
 1189	struct igb_ring *ring;
 1190	int ring_count;
 1191	size_t size;
 1192
 1193	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
 1194	if (txr_count > 1 || rxr_count > 1)
 1195		return -ENOMEM;
 1196
 1197	ring_count = txr_count + rxr_count;
 1198	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
 
 1199
 1200	/* allocate q_vector and rings */
 1201	q_vector = adapter->q_vector[v_idx];
 1202	if (!q_vector) {
 1203		q_vector = kzalloc(size, GFP_KERNEL);
 1204	} else if (size > ksize(q_vector)) {
 1205		struct igb_q_vector *new_q_vector;
 1206
 1207		new_q_vector = kzalloc(size, GFP_KERNEL);
 1208		if (new_q_vector)
 1209			kfree_rcu(q_vector, rcu);
 1210		q_vector = new_q_vector;
 1211	} else {
 1212		memset(q_vector, 0, size);
 1213	}
 1214	if (!q_vector)
 1215		return -ENOMEM;
 1216
 1217	/* initialize NAPI */
 1218	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
 
 1219
 1220	/* tie q_vector and adapter together */
 1221	adapter->q_vector[v_idx] = q_vector;
 1222	q_vector->adapter = adapter;
 1223
 1224	/* initialize work limits */
 1225	q_vector->tx.work_limit = adapter->tx_work_limit;
 1226
 1227	/* initialize ITR configuration */
 1228	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
 1229	q_vector->itr_val = IGB_START_ITR;
 1230
 1231	/* initialize pointer to rings */
 1232	ring = q_vector->ring;
 1233
 1234	/* intialize ITR */
 1235	if (rxr_count) {
 1236		/* rx or rx/tx vector */
 1237		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
 1238			q_vector->itr_val = adapter->rx_itr_setting;
 1239	} else {
 1240		/* tx only vector */
 1241		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
 1242			q_vector->itr_val = adapter->tx_itr_setting;
 1243	}
 1244
 1245	if (txr_count) {
 1246		/* assign generic ring traits */
 1247		ring->dev = &adapter->pdev->dev;
 1248		ring->netdev = adapter->netdev;
 1249
 1250		/* configure backlink on ring */
 1251		ring->q_vector = q_vector;
 1252
 1253		/* update q_vector Tx values */
 1254		igb_add_ring(ring, &q_vector->tx);
 1255
 1256		/* For 82575, context index must be unique per ring. */
 1257		if (adapter->hw.mac.type == e1000_82575)
 1258			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
 1259
 1260		/* apply Tx specific ring traits */
 1261		ring->count = adapter->tx_ring_count;
 1262		ring->queue_index = txr_idx;
 1263
 1264		ring->cbs_enable = false;
 1265		ring->idleslope = 0;
 1266		ring->sendslope = 0;
 1267		ring->hicredit = 0;
 1268		ring->locredit = 0;
 1269
 1270		u64_stats_init(&ring->tx_syncp);
 1271		u64_stats_init(&ring->tx_syncp2);
 1272
 1273		/* assign ring to adapter */
 1274		adapter->tx_ring[txr_idx] = ring;
 1275
 1276		/* push pointer to next ring */
 1277		ring++;
 1278	}
 1279
 1280	if (rxr_count) {
 1281		/* assign generic ring traits */
 1282		ring->dev = &adapter->pdev->dev;
 1283		ring->netdev = adapter->netdev;
 1284
 1285		/* configure backlink on ring */
 1286		ring->q_vector = q_vector;
 1287
 1288		/* update q_vector Rx values */
 1289		igb_add_ring(ring, &q_vector->rx);
 1290
 1291		/* set flag indicating ring supports SCTP checksum offload */
 1292		if (adapter->hw.mac.type >= e1000_82576)
 1293			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
 1294
 1295		/* On i350, i354, i210, and i211, loopback VLAN packets
 1296		 * have the tag byte-swapped.
 1297		 */
 1298		if (adapter->hw.mac.type >= e1000_i350)
 1299			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
 1300
 1301		/* apply Rx specific ring traits */
 1302		ring->count = adapter->rx_ring_count;
 1303		ring->queue_index = rxr_idx;
 1304
 1305		u64_stats_init(&ring->rx_syncp);
 1306
 1307		/* assign ring to adapter */
 1308		adapter->rx_ring[rxr_idx] = ring;
 1309	}
 1310
 1311	return 0;
 1312}
 1313
 1314
 1315/**
 1316 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 1317 *  @adapter: board private structure to initialize
 1318 *
 1319 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 1320 *  return -ENOMEM.
 1321 **/
 1322static int igb_alloc_q_vectors(struct igb_adapter *adapter)
 1323{
 1324	int q_vectors = adapter->num_q_vectors;
 1325	int rxr_remaining = adapter->num_rx_queues;
 1326	int txr_remaining = adapter->num_tx_queues;
 1327	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
 1328	int err;
 1329
 1330	if (q_vectors >= (rxr_remaining + txr_remaining)) {
 1331		for (; rxr_remaining; v_idx++) {
 1332			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
 1333						 0, 0, 1, rxr_idx);
 1334
 1335			if (err)
 1336				goto err_out;
 1337
 1338			/* update counts and index */
 1339			rxr_remaining--;
 1340			rxr_idx++;
 1341		}
 1342	}
 1343
 1344	for (; v_idx < q_vectors; v_idx++) {
 1345		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
 1346		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
 1347
 1348		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
 1349					 tqpv, txr_idx, rqpv, rxr_idx);
 1350
 1351		if (err)
 1352			goto err_out;
 1353
 1354		/* update counts and index */
 1355		rxr_remaining -= rqpv;
 1356		txr_remaining -= tqpv;
 1357		rxr_idx++;
 1358		txr_idx++;
 1359	}
 1360
 1361	return 0;
 1362
 1363err_out:
 1364	adapter->num_tx_queues = 0;
 1365	adapter->num_rx_queues = 0;
 1366	adapter->num_q_vectors = 0;
 1367
 1368	while (v_idx--)
 1369		igb_free_q_vector(adapter, v_idx);
 1370
 1371	return -ENOMEM;
 1372}
 1373
 1374/**
 1375 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 1376 *  @adapter: board private structure to initialize
 1377 *  @msix: boolean value of MSIX capability
 1378 *
 1379 *  This function initializes the interrupts and allocates all of the queues.
 1380 **/
 1381static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
 1382{
 1383	struct pci_dev *pdev = adapter->pdev;
 1384	int err;
 1385
 1386	igb_set_interrupt_capability(adapter, msix);
 1387
 1388	err = igb_alloc_q_vectors(adapter);
 1389	if (err) {
 1390		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
 1391		goto err_alloc_q_vectors;
 1392	}
 1393
 1394	igb_cache_ring_register(adapter);
 1395
 1396	return 0;
 1397
 1398err_alloc_q_vectors:
 1399	igb_reset_interrupt_capability(adapter);
 1400	return err;
 1401}
 1402
 1403/**
 1404 *  igb_request_irq - initialize interrupts
 1405 *  @adapter: board private structure to initialize
 1406 *
 1407 *  Attempts to configure interrupts using the best available
 1408 *  capabilities of the hardware and kernel.
 1409 **/
 1410static int igb_request_irq(struct igb_adapter *adapter)
 1411{
 1412	struct net_device *netdev = adapter->netdev;
 1413	struct pci_dev *pdev = adapter->pdev;
 1414	int err = 0;
 1415
 1416	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1417		err = igb_request_msix(adapter);
 1418		if (!err)
 1419			goto request_done;
 1420		/* fall back to MSI */
 1421		igb_free_all_tx_resources(adapter);
 1422		igb_free_all_rx_resources(adapter);
 1423
 1424		igb_clear_interrupt_scheme(adapter);
 1425		err = igb_init_interrupt_scheme(adapter, false);
 1426		if (err)
 1427			goto request_done;
 1428
 1429		igb_setup_all_tx_resources(adapter);
 1430		igb_setup_all_rx_resources(adapter);
 1431		igb_configure(adapter);
 1432	}
 1433
 1434	igb_assign_vector(adapter->q_vector[0], 0);
 1435
 1436	if (adapter->flags & IGB_FLAG_HAS_MSI) {
 1437		err = request_irq(pdev->irq, igb_intr_msi, 0,
 1438				  netdev->name, adapter);
 1439		if (!err)
 1440			goto request_done;
 1441
 1442		/* fall back to legacy interrupts */
 1443		igb_reset_interrupt_capability(adapter);
 1444		adapter->flags &= ~IGB_FLAG_HAS_MSI;
 1445	}
 1446
 1447	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
 1448			  netdev->name, adapter);
 1449
 1450	if (err)
 1451		dev_err(&pdev->dev, "Error %d getting interrupt\n",
 1452			err);
 1453
 1454request_done:
 1455	return err;
 1456}
 1457
 1458static void igb_free_irq(struct igb_adapter *adapter)
 1459{
 1460	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1461		int vector = 0, i;
 1462
 1463		free_irq(adapter->msix_entries[vector++].vector, adapter);
 1464
 1465		for (i = 0; i < adapter->num_q_vectors; i++)
 1466			free_irq(adapter->msix_entries[vector++].vector,
 1467				 adapter->q_vector[i]);
 1468	} else {
 1469		free_irq(adapter->pdev->irq, adapter);
 1470	}
 1471}
 1472
 1473/**
 1474 *  igb_irq_disable - Mask off interrupt generation on the NIC
 1475 *  @adapter: board private structure
 1476 **/
 1477static void igb_irq_disable(struct igb_adapter *adapter)
 1478{
 1479	struct e1000_hw *hw = &adapter->hw;
 1480
 1481	/* we need to be careful when disabling interrupts.  The VFs are also
 1482	 * mapped into these registers and so clearing the bits can cause
 1483	 * issues on the VF drivers so we only need to clear what we set
 1484	 */
 1485	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1486		u32 regval = rd32(E1000_EIAM);
 1487
 1488		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
 1489		wr32(E1000_EIMC, adapter->eims_enable_mask);
 1490		regval = rd32(E1000_EIAC);
 1491		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
 1492	}
 1493
 1494	wr32(E1000_IAM, 0);
 1495	wr32(E1000_IMC, ~0);
 1496	wrfl();
 1497	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1498		int i;
 1499
 1500		for (i = 0; i < adapter->num_q_vectors; i++)
 1501			synchronize_irq(adapter->msix_entries[i].vector);
 1502	} else {
 1503		synchronize_irq(adapter->pdev->irq);
 1504	}
 1505}
 1506
 1507/**
 1508 *  igb_irq_enable - Enable default interrupt generation settings
 1509 *  @adapter: board private structure
 1510 **/
 1511static void igb_irq_enable(struct igb_adapter *adapter)
 1512{
 1513	struct e1000_hw *hw = &adapter->hw;
 1514
 1515	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1516		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
 1517		u32 regval = rd32(E1000_EIAC);
 1518
 1519		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
 1520		regval = rd32(E1000_EIAM);
 1521		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
 1522		wr32(E1000_EIMS, adapter->eims_enable_mask);
 1523		if (adapter->vfs_allocated_count) {
 1524			wr32(E1000_MBVFIMR, 0xFF);
 1525			ims |= E1000_IMS_VMMB;
 1526		}
 1527		wr32(E1000_IMS, ims);
 1528	} else {
 1529		wr32(E1000_IMS, IMS_ENABLE_MASK |
 1530				E1000_IMS_DRSTA);
 1531		wr32(E1000_IAM, IMS_ENABLE_MASK |
 1532				E1000_IMS_DRSTA);
 1533	}
 1534}
 1535
 1536static void igb_update_mng_vlan(struct igb_adapter *adapter)
 1537{
 1538	struct e1000_hw *hw = &adapter->hw;
 1539	u16 pf_id = adapter->vfs_allocated_count;
 1540	u16 vid = adapter->hw.mng_cookie.vlan_id;
 1541	u16 old_vid = adapter->mng_vlan_id;
 1542
 1543	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
 1544		/* add VID to filter table */
 1545		igb_vfta_set(hw, vid, pf_id, true, true);
 1546		adapter->mng_vlan_id = vid;
 1547	} else {
 1548		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
 1549	}
 1550
 1551	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
 1552	    (vid != old_vid) &&
 1553	    !test_bit(old_vid, adapter->active_vlans)) {
 1554		/* remove VID from filter table */
 1555		igb_vfta_set(hw, vid, pf_id, false, true);
 1556	}
 1557}
 1558
 1559/**
 1560 *  igb_release_hw_control - release control of the h/w to f/w
 1561 *  @adapter: address of board private structure
 1562 *
 1563 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 1564 *  For ASF and Pass Through versions of f/w this means that the
 1565 *  driver is no longer loaded.
 1566 **/
 1567static void igb_release_hw_control(struct igb_adapter *adapter)
 1568{
 1569	struct e1000_hw *hw = &adapter->hw;
 1570	u32 ctrl_ext;
 1571
 1572	/* Let firmware take over control of h/w */
 1573	ctrl_ext = rd32(E1000_CTRL_EXT);
 1574	wr32(E1000_CTRL_EXT,
 1575			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
 1576}
 1577
 1578/**
 1579 *  igb_get_hw_control - get control of the h/w from f/w
 1580 *  @adapter: address of board private structure
 1581 *
 1582 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 1583 *  For ASF and Pass Through versions of f/w this means that
 1584 *  the driver is loaded.
 1585 **/
 1586static void igb_get_hw_control(struct igb_adapter *adapter)
 1587{
 1588	struct e1000_hw *hw = &adapter->hw;
 1589	u32 ctrl_ext;
 1590
 1591	/* Let firmware know the driver has taken over */
 1592	ctrl_ext = rd32(E1000_CTRL_EXT);
 1593	wr32(E1000_CTRL_EXT,
 1594			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
 1595}
 1596
 1597static void enable_fqtss(struct igb_adapter *adapter, bool enable)
 1598{
 1599	struct net_device *netdev = adapter->netdev;
 1600	struct e1000_hw *hw = &adapter->hw;
 1601
 1602	WARN_ON(hw->mac.type != e1000_i210);
 1603
 1604	if (enable)
 1605		adapter->flags |= IGB_FLAG_FQTSS;
 1606	else
 1607		adapter->flags &= ~IGB_FLAG_FQTSS;
 1608
 1609	if (netif_running(netdev))
 1610		schedule_work(&adapter->reset_task);
 1611}
 1612
 1613static bool is_fqtss_enabled(struct igb_adapter *adapter)
 1614{
 1615	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
 1616}
 1617
 1618static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
 1619				   enum tx_queue_prio prio)
 1620{
 1621	u32 val;
 1622
 1623	WARN_ON(hw->mac.type != e1000_i210);
 1624	WARN_ON(queue < 0 || queue > 4);
 1625
 1626	val = rd32(E1000_I210_TXDCTL(queue));
 1627
 1628	if (prio == TX_QUEUE_PRIO_HIGH)
 1629		val |= E1000_TXDCTL_PRIORITY;
 1630	else
 1631		val &= ~E1000_TXDCTL_PRIORITY;
 1632
 1633	wr32(E1000_I210_TXDCTL(queue), val);
 1634}
 1635
 1636static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
 1637{
 1638	u32 val;
 1639
 1640	WARN_ON(hw->mac.type != e1000_i210);
 1641	WARN_ON(queue < 0 || queue > 1);
 1642
 1643	val = rd32(E1000_I210_TQAVCC(queue));
 1644
 1645	if (mode == QUEUE_MODE_STREAM_RESERVATION)
 1646		val |= E1000_TQAVCC_QUEUEMODE;
 1647	else
 1648		val &= ~E1000_TQAVCC_QUEUEMODE;
 1649
 1650	wr32(E1000_I210_TQAVCC(queue), val);
 1651}
 1652
 1653static bool is_any_cbs_enabled(struct igb_adapter *adapter)
 1654{
 1655	int i;
 1656
 1657	for (i = 0; i < adapter->num_tx_queues; i++) {
 1658		if (adapter->tx_ring[i]->cbs_enable)
 1659			return true;
 1660	}
 1661
 1662	return false;
 1663}
 1664
 1665static bool is_any_txtime_enabled(struct igb_adapter *adapter)
 1666{
 1667	int i;
 1668
 1669	for (i = 0; i < adapter->num_tx_queues; i++) {
 1670		if (adapter->tx_ring[i]->launchtime_enable)
 1671			return true;
 1672	}
 1673
 1674	return false;
 1675}
 1676
 1677/**
 1678 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
 1679 *  @adapter: pointer to adapter struct
 1680 *  @queue: queue number
 1681 *
 1682 *  Configure CBS and Launchtime for a given hardware queue.
 1683 *  Parameters are retrieved from the correct Tx ring, so
 1684 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
 1685 *  for setting those correctly prior to this function being called.
 1686 **/
 1687static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
 1688{
 1689	struct net_device *netdev = adapter->netdev;
 1690	struct e1000_hw *hw = &adapter->hw;
 1691	struct igb_ring *ring;
 1692	u32 tqavcc, tqavctrl;
 1693	u16 value;
 1694
 1695	WARN_ON(hw->mac.type != e1000_i210);
 1696	WARN_ON(queue < 0 || queue > 1);
 1697	ring = adapter->tx_ring[queue];
 1698
 1699	/* If any of the Qav features is enabled, configure queues as SR and
 1700	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
 1701	 * as SP.
 1702	 */
 1703	if (ring->cbs_enable || ring->launchtime_enable) {
 1704		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
 1705		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
 1706	} else {
 1707		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
 1708		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
 1709	}
 1710
 1711	/* If CBS is enabled, set DataTranARB and config its parameters. */
 1712	if (ring->cbs_enable || queue == 0) {
 1713		/* i210 does not allow the queue 0 to be in the Strict
 1714		 * Priority mode while the Qav mode is enabled, so,
 1715		 * instead of disabling strict priority mode, we give
 1716		 * queue 0 the maximum of credits possible.
 1717		 *
 1718		 * See section 8.12.19 of the i210 datasheet, "Note:
 1719		 * Queue0 QueueMode must be set to 1b when
 1720		 * TransmitMode is set to Qav."
 1721		 */
 1722		if (queue == 0 && !ring->cbs_enable) {
 1723			/* max "linkspeed" idleslope in kbps */
 1724			ring->idleslope = 1000000;
 1725			ring->hicredit = ETH_FRAME_LEN;
 1726		}
 1727
 1728		/* Always set data transfer arbitration to credit-based
 1729		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
 1730		 * the queues.
 1731		 */
 1732		tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1733		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
 1734		wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1735
 1736		/* According to i210 datasheet section 7.2.7.7, we should set
 1737		 * the 'idleSlope' field from TQAVCC register following the
 1738		 * equation:
 1739		 *
 1740		 * For 100 Mbps link speed:
 1741		 *
 1742		 *     value = BW * 0x7735 * 0.2                          (E1)
 1743		 *
 1744		 * For 1000Mbps link speed:
 1745		 *
 1746		 *     value = BW * 0x7735 * 2                            (E2)
 1747		 *
 1748		 * E1 and E2 can be merged into one equation as shown below.
 1749		 * Note that 'link-speed' is in Mbps.
 1750		 *
 1751		 *     value = BW * 0x7735 * 2 * link-speed
 1752		 *                           --------------               (E3)
 1753		 *                                1000
 1754		 *
 1755		 * 'BW' is the percentage bandwidth out of full link speed
 1756		 * which can be found with the following equation. Note that
 1757		 * idleSlope here is the parameter from this function which
 1758		 * is in kbps.
 1759		 *
 1760		 *     BW =     idleSlope
 1761		 *          -----------------                             (E4)
 1762		 *          link-speed * 1000
 1763		 *
 1764		 * That said, we can come up with a generic equation to
 1765		 * calculate the value we should set it TQAVCC register by
 1766		 * replacing 'BW' in E3 by E4. The resulting equation is:
 1767		 *
 1768		 * value =     idleSlope     * 0x7735 * 2 * link-speed
 1769		 *         -----------------            --------------    (E5)
 1770		 *         link-speed * 1000                 1000
 1771		 *
 1772		 * 'link-speed' is present in both sides of the fraction so
 1773		 * it is canceled out. The final equation is the following:
 1774		 *
 1775		 *     value = idleSlope * 61034
 1776		 *             -----------------                          (E6)
 1777		 *                  1000000
 1778		 *
 1779		 * NOTE: For i210, given the above, we can see that idleslope
 1780		 *       is represented in 16.38431 kbps units by the value at
 1781		 *       the TQAVCC register (1Gbps / 61034), which reduces
 1782		 *       the granularity for idleslope increments.
 1783		 *       For instance, if you want to configure a 2576kbps
 1784		 *       idleslope, the value to be written on the register
 1785		 *       would have to be 157.23. If rounded down, you end
 1786		 *       up with less bandwidth available than originally
 1787		 *       required (~2572 kbps). If rounded up, you end up
 1788		 *       with a higher bandwidth (~2589 kbps). Below the
 1789		 *       approach we take is to always round up the
 1790		 *       calculated value, so the resulting bandwidth might
 1791		 *       be slightly higher for some configurations.
 1792		 */
 1793		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
 1794
 1795		tqavcc = rd32(E1000_I210_TQAVCC(queue));
 1796		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
 1797		tqavcc |= value;
 1798		wr32(E1000_I210_TQAVCC(queue), tqavcc);
 1799
 1800		wr32(E1000_I210_TQAVHC(queue),
 1801		     0x80000000 + ring->hicredit * 0x7735);
 1802	} else {
 1803
 1804		/* Set idleSlope to zero. */
 1805		tqavcc = rd32(E1000_I210_TQAVCC(queue));
 1806		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
 1807		wr32(E1000_I210_TQAVCC(queue), tqavcc);
 1808
 1809		/* Set hiCredit to zero. */
 1810		wr32(E1000_I210_TQAVHC(queue), 0);
 1811
 1812		/* If CBS is not enabled for any queues anymore, then return to
 1813		 * the default state of Data Transmission Arbitration on
 1814		 * TQAVCTRL.
 1815		 */
 1816		if (!is_any_cbs_enabled(adapter)) {
 1817			tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1818			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
 1819			wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1820		}
 1821	}
 1822
 1823	/* If LaunchTime is enabled, set DataTranTIM. */
 1824	if (ring->launchtime_enable) {
 1825		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
 1826		 * for any of the SR queues, and configure fetchtime delta.
 1827		 * XXX NOTE:
 1828		 *     - LaunchTime will be enabled for all SR queues.
 1829		 *     - A fixed offset can be added relative to the launch
 1830		 *       time of all packets if configured at reg LAUNCH_OS0.
 1831		 *       We are keeping it as 0 for now (default value).
 1832		 */
 1833		tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1834		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
 1835		       E1000_TQAVCTRL_FETCHTIME_DELTA;
 1836		wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1837	} else {
 1838		/* If Launchtime is not enabled for any SR queues anymore,
 1839		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
 1840		 * effectively disabling Launchtime.
 1841		 */
 1842		if (!is_any_txtime_enabled(adapter)) {
 1843			tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1844			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
 1845			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
 1846			wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1847		}
 1848	}
 1849
 1850	/* XXX: In i210 controller the sendSlope and loCredit parameters from
 1851	 * CBS are not configurable by software so we don't do any 'controller
 1852	 * configuration' in respect to these parameters.
 1853	 */
 1854
 1855	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
 1856		   ring->cbs_enable ? "enabled" : "disabled",
 1857		   ring->launchtime_enable ? "enabled" : "disabled",
 1858		   queue,
 1859		   ring->idleslope, ring->sendslope,
 1860		   ring->hicredit, ring->locredit);
 1861}
 1862
 1863static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
 1864				  bool enable)
 1865{
 1866	struct igb_ring *ring;
 1867
 1868	if (queue < 0 || queue > adapter->num_tx_queues)
 1869		return -EINVAL;
 1870
 1871	ring = adapter->tx_ring[queue];
 1872	ring->launchtime_enable = enable;
 1873
 1874	return 0;
 1875}
 1876
 1877static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
 1878			       bool enable, int idleslope, int sendslope,
 1879			       int hicredit, int locredit)
 1880{
 1881	struct igb_ring *ring;
 1882
 1883	if (queue < 0 || queue > adapter->num_tx_queues)
 1884		return -EINVAL;
 1885
 1886	ring = adapter->tx_ring[queue];
 1887
 1888	ring->cbs_enable = enable;
 1889	ring->idleslope = idleslope;
 1890	ring->sendslope = sendslope;
 1891	ring->hicredit = hicredit;
 1892	ring->locredit = locredit;
 1893
 1894	return 0;
 1895}
 1896
 1897/**
 1898 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
 1899 *  @adapter: pointer to adapter struct
 1900 *
 1901 *  Configure TQAVCTRL register switching the controller's Tx mode
 1902 *  if FQTSS mode is enabled or disabled. Additionally, will issue
 1903 *  a call to igb_config_tx_modes() per queue so any previously saved
 1904 *  Tx parameters are applied.
 1905 **/
 1906static void igb_setup_tx_mode(struct igb_adapter *adapter)
 1907{
 1908	struct net_device *netdev = adapter->netdev;
 1909	struct e1000_hw *hw = &adapter->hw;
 1910	u32 val;
 1911
 1912	/* Only i210 controller supports changing the transmission mode. */
 1913	if (hw->mac.type != e1000_i210)
 1914		return;
 1915
 1916	if (is_fqtss_enabled(adapter)) {
 1917		int i, max_queue;
 1918
 1919		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
 1920		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
 1921		 * so SP queues wait for SR ones.
 1922		 */
 1923		val = rd32(E1000_I210_TQAVCTRL);
 1924		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
 1925		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
 1926		wr32(E1000_I210_TQAVCTRL, val);
 1927
 1928		/* Configure Tx and Rx packet buffers sizes as described in
 1929		 * i210 datasheet section 7.2.7.7.
 1930		 */
 1931		val = rd32(E1000_TXPBS);
 1932		val &= ~I210_TXPBSIZE_MASK;
 1933		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
 1934			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
 1935		wr32(E1000_TXPBS, val);
 1936
 1937		val = rd32(E1000_RXPBS);
 1938		val &= ~I210_RXPBSIZE_MASK;
 1939		val |= I210_RXPBSIZE_PB_30KB;
 1940		wr32(E1000_RXPBS, val);
 1941
 1942		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
 1943		 * register should not exceed the buffer size programmed in
 1944		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
 1945		 * so according to the datasheet we should set MAX_TPKT_SIZE to
 1946		 * 4kB / 64.
 1947		 *
 1948		 * However, when we do so, no frame from queue 2 and 3 are
 1949		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
 1950		 * or _equal_ to the buffer size programmed in TXPBS. For this
 1951		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
 1952		 */
 1953		val = (4096 - 1) / 64;
 1954		wr32(E1000_I210_DTXMXPKTSZ, val);
 1955
 1956		/* Since FQTSS mode is enabled, apply any CBS configuration
 1957		 * previously set. If no previous CBS configuration has been
 1958		 * done, then the initial configuration is applied, which means
 1959		 * CBS is disabled.
 1960		 */
 1961		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
 1962			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
 1963
 1964		for (i = 0; i < max_queue; i++) {
 1965			igb_config_tx_modes(adapter, i);
 1966		}
 1967	} else {
 1968		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
 1969		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
 1970		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
 1971
 1972		val = rd32(E1000_I210_TQAVCTRL);
 1973		/* According to Section 8.12.21, the other flags we've set when
 1974		 * enabling FQTSS are not relevant when disabling FQTSS so we
 1975		 * don't set they here.
 1976		 */
 1977		val &= ~E1000_TQAVCTRL_XMIT_MODE;
 1978		wr32(E1000_I210_TQAVCTRL, val);
 1979	}
 1980
 1981	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
 1982		   "enabled" : "disabled");
 1983}
 1984
 1985/**
 1986 *  igb_configure - configure the hardware for RX and TX
 1987 *  @adapter: private board structure
 1988 **/
 1989static void igb_configure(struct igb_adapter *adapter)
 1990{
 1991	struct net_device *netdev = adapter->netdev;
 1992	int i;
 1993
 1994	igb_get_hw_control(adapter);
 1995	igb_set_rx_mode(netdev);
 1996	igb_setup_tx_mode(adapter);
 1997
 1998	igb_restore_vlan(adapter);
 1999
 2000	igb_setup_tctl(adapter);
 2001	igb_setup_mrqc(adapter);
 2002	igb_setup_rctl(adapter);
 2003
 2004	igb_nfc_filter_restore(adapter);
 2005	igb_configure_tx(adapter);
 2006	igb_configure_rx(adapter);
 2007
 2008	igb_rx_fifo_flush_82575(&adapter->hw);
 2009
 2010	/* call igb_desc_unused which always leaves
 2011	 * at least 1 descriptor unused to make sure
 2012	 * next_to_use != next_to_clean
 2013	 */
 2014	for (i = 0; i < adapter->num_rx_queues; i++) {
 2015		struct igb_ring *ring = adapter->rx_ring[i];
 2016		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
 2017	}
 2018}
 2019
 2020/**
 2021 *  igb_power_up_link - Power up the phy/serdes link
 2022 *  @adapter: address of board private structure
 2023 **/
 2024void igb_power_up_link(struct igb_adapter *adapter)
 2025{
 2026	igb_reset_phy(&adapter->hw);
 2027
 2028	if (adapter->hw.phy.media_type == e1000_media_type_copper)
 2029		igb_power_up_phy_copper(&adapter->hw);
 2030	else
 2031		igb_power_up_serdes_link_82575(&adapter->hw);
 2032
 2033	igb_setup_link(&adapter->hw);
 2034}
 2035
 2036/**
 2037 *  igb_power_down_link - Power down the phy/serdes link
 2038 *  @adapter: address of board private structure
 2039 */
 2040static void igb_power_down_link(struct igb_adapter *adapter)
 2041{
 2042	if (adapter->hw.phy.media_type == e1000_media_type_copper)
 2043		igb_power_down_phy_copper_82575(&adapter->hw);
 2044	else
 2045		igb_shutdown_serdes_link_82575(&adapter->hw);
 2046}
 2047
 2048/**
 2049 * igb_check_swap_media -  Detect and switch function for Media Auto Sense
 2050 * @adapter: address of the board private structure
 2051 **/
 2052static void igb_check_swap_media(struct igb_adapter *adapter)
 2053{
 2054	struct e1000_hw *hw = &adapter->hw;
 2055	u32 ctrl_ext, connsw;
 2056	bool swap_now = false;
 2057
 2058	ctrl_ext = rd32(E1000_CTRL_EXT);
 2059	connsw = rd32(E1000_CONNSW);
 2060
 2061	/* need to live swap if current media is copper and we have fiber/serdes
 2062	 * to go to.
 2063	 */
 2064
 2065	if ((hw->phy.media_type == e1000_media_type_copper) &&
 2066	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
 2067		swap_now = true;
 2068	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
 2069		   !(connsw & E1000_CONNSW_SERDESD)) {
 2070		/* copper signal takes time to appear */
 2071		if (adapter->copper_tries < 4) {
 2072			adapter->copper_tries++;
 2073			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
 2074			wr32(E1000_CONNSW, connsw);
 2075			return;
 2076		} else {
 2077			adapter->copper_tries = 0;
 2078			if ((connsw & E1000_CONNSW_PHYSD) &&
 2079			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
 2080				swap_now = true;
 2081				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
 2082				wr32(E1000_CONNSW, connsw);
 2083			}
 2084		}
 2085	}
 2086
 2087	if (!swap_now)
 2088		return;
 2089
 2090	switch (hw->phy.media_type) {
 2091	case e1000_media_type_copper:
 2092		netdev_info(adapter->netdev,
 2093			"MAS: changing media to fiber/serdes\n");
 2094		ctrl_ext |=
 2095			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 2096		adapter->flags |= IGB_FLAG_MEDIA_RESET;
 2097		adapter->copper_tries = 0;
 2098		break;
 2099	case e1000_media_type_internal_serdes:
 2100	case e1000_media_type_fiber:
 2101		netdev_info(adapter->netdev,
 2102			"MAS: changing media to copper\n");
 2103		ctrl_ext &=
 2104			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 2105		adapter->flags |= IGB_FLAG_MEDIA_RESET;
 2106		break;
 2107	default:
 2108		/* shouldn't get here during regular operation */
 2109		netdev_err(adapter->netdev,
 2110			"AMS: Invalid media type found, returning\n");
 2111		break;
 2112	}
 2113	wr32(E1000_CTRL_EXT, ctrl_ext);
 2114}
 2115
 2116/**
 2117 *  igb_up - Open the interface and prepare it to handle traffic
 2118 *  @adapter: board private structure
 2119 **/
 2120int igb_up(struct igb_adapter *adapter)
 2121{
 2122	struct e1000_hw *hw = &adapter->hw;
 2123	int i;
 2124
 2125	/* hardware has been reset, we need to reload some things */
 2126	igb_configure(adapter);
 2127
 2128	clear_bit(__IGB_DOWN, &adapter->state);
 2129
 2130	for (i = 0; i < adapter->num_q_vectors; i++)
 2131		napi_enable(&(adapter->q_vector[i]->napi));
 2132
 2133	if (adapter->flags & IGB_FLAG_HAS_MSIX)
 2134		igb_configure_msix(adapter);
 2135	else
 2136		igb_assign_vector(adapter->q_vector[0], 0);
 2137
 2138	/* Clear any pending interrupts. */
 2139	rd32(E1000_TSICR);
 2140	rd32(E1000_ICR);
 2141	igb_irq_enable(adapter);
 2142
 2143	/* notify VFs that reset has been completed */
 2144	if (adapter->vfs_allocated_count) {
 2145		u32 reg_data = rd32(E1000_CTRL_EXT);
 2146
 2147		reg_data |= E1000_CTRL_EXT_PFRSTD;
 2148		wr32(E1000_CTRL_EXT, reg_data);
 2149	}
 2150
 2151	netif_tx_start_all_queues(adapter->netdev);
 2152
 2153	/* start the watchdog. */
 2154	hw->mac.get_link_status = 1;
 2155	schedule_work(&adapter->watchdog_task);
 2156
 2157	if ((adapter->flags & IGB_FLAG_EEE) &&
 2158	    (!hw->dev_spec._82575.eee_disable))
 2159		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
 2160
 2161	return 0;
 2162}
 2163
 2164void igb_down(struct igb_adapter *adapter)
 2165{
 2166	struct net_device *netdev = adapter->netdev;
 2167	struct e1000_hw *hw = &adapter->hw;
 2168	u32 tctl, rctl;
 2169	int i;
 2170
 2171	/* signal that we're down so the interrupt handler does not
 2172	 * reschedule our watchdog timer
 2173	 */
 2174	set_bit(__IGB_DOWN, &adapter->state);
 2175
 2176	/* disable receives in the hardware */
 2177	rctl = rd32(E1000_RCTL);
 2178	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
 2179	/* flush and sleep below */
 2180
 2181	igb_nfc_filter_exit(adapter);
 2182
 2183	netif_carrier_off(netdev);
 2184	netif_tx_stop_all_queues(netdev);
 2185
 2186	/* disable transmits in the hardware */
 2187	tctl = rd32(E1000_TCTL);
 2188	tctl &= ~E1000_TCTL_EN;
 2189	wr32(E1000_TCTL, tctl);
 2190	/* flush both disables and wait for them to finish */
 2191	wrfl();
 2192	usleep_range(10000, 11000);
 2193
 2194	igb_irq_disable(adapter);
 2195
 2196	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 2197
 2198	for (i = 0; i < adapter->num_q_vectors; i++) {
 2199		if (adapter->q_vector[i]) {
 2200			napi_synchronize(&adapter->q_vector[i]->napi);
 2201			napi_disable(&adapter->q_vector[i]->napi);
 2202		}
 2203	}
 2204
 2205	del_timer_sync(&adapter->watchdog_timer);
 2206	del_timer_sync(&adapter->phy_info_timer);
 2207
 2208	/* record the stats before reset*/
 2209	spin_lock(&adapter->stats64_lock);
 2210	igb_update_stats(adapter);
 2211	spin_unlock(&adapter->stats64_lock);
 2212
 2213	adapter->link_speed = 0;
 2214	adapter->link_duplex = 0;
 2215
 2216	if (!pci_channel_offline(adapter->pdev))
 2217		igb_reset(adapter);
 2218
 2219	/* clear VLAN promisc flag so VFTA will be updated if necessary */
 2220	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
 2221
 2222	igb_clean_all_tx_rings(adapter);
 2223	igb_clean_all_rx_rings(adapter);
 2224#ifdef CONFIG_IGB_DCA
 2225
 2226	/* since we reset the hardware DCA settings were cleared */
 2227	igb_setup_dca(adapter);
 2228#endif
 2229}
 2230
 2231void igb_reinit_locked(struct igb_adapter *adapter)
 2232{
 
 2233	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 2234		usleep_range(1000, 2000);
 2235	igb_down(adapter);
 2236	igb_up(adapter);
 2237	clear_bit(__IGB_RESETTING, &adapter->state);
 2238}
 2239
 2240/** igb_enable_mas - Media Autosense re-enable after swap
 2241 *
 2242 * @adapter: adapter struct
 2243 **/
 2244static void igb_enable_mas(struct igb_adapter *adapter)
 2245{
 2246	struct e1000_hw *hw = &adapter->hw;
 2247	u32 connsw = rd32(E1000_CONNSW);
 2248
 2249	/* configure for SerDes media detect */
 2250	if ((hw->phy.media_type == e1000_media_type_copper) &&
 2251	    (!(connsw & E1000_CONNSW_SERDESD))) {
 2252		connsw |= E1000_CONNSW_ENRGSRC;
 2253		connsw |= E1000_CONNSW_AUTOSENSE_EN;
 2254		wr32(E1000_CONNSW, connsw);
 2255		wrfl();
 2256	}
 2257}
 2258
 2259#ifdef CONFIG_IGB_HWMON
 2260/**
 2261 *  igb_set_i2c_bb - Init I2C interface
 2262 *  @hw: pointer to hardware structure
 2263 **/
 2264static void igb_set_i2c_bb(struct e1000_hw *hw)
 2265{
 2266	u32 ctrl_ext;
 2267	s32 i2cctl;
 2268
 2269	ctrl_ext = rd32(E1000_CTRL_EXT);
 2270	ctrl_ext |= E1000_CTRL_I2C_ENA;
 2271	wr32(E1000_CTRL_EXT, ctrl_ext);
 2272	wrfl();
 2273
 2274	i2cctl = rd32(E1000_I2CPARAMS);
 2275	i2cctl |= E1000_I2CBB_EN
 2276		| E1000_I2C_CLK_OE_N
 2277		| E1000_I2C_DATA_OE_N;
 2278	wr32(E1000_I2CPARAMS, i2cctl);
 2279	wrfl();
 2280}
 2281#endif
 2282
 2283void igb_reset(struct igb_adapter *adapter)
 2284{
 2285	struct pci_dev *pdev = adapter->pdev;
 2286	struct e1000_hw *hw = &adapter->hw;
 2287	struct e1000_mac_info *mac = &hw->mac;
 2288	struct e1000_fc_info *fc = &hw->fc;
 2289	u32 pba, hwm;
 2290
 2291	/* Repartition Pba for greater than 9k mtu
 2292	 * To take effect CTRL.RST is required.
 2293	 */
 2294	switch (mac->type) {
 2295	case e1000_i350:
 2296	case e1000_i354:
 2297	case e1000_82580:
 2298		pba = rd32(E1000_RXPBS);
 2299		pba = igb_rxpbs_adjust_82580(pba);
 2300		break;
 2301	case e1000_82576:
 2302		pba = rd32(E1000_RXPBS);
 2303		pba &= E1000_RXPBS_SIZE_MASK_82576;
 2304		break;
 2305	case e1000_82575:
 2306	case e1000_i210:
 2307	case e1000_i211:
 2308	default:
 2309		pba = E1000_PBA_34K;
 2310		break;
 2311	}
 2312
 2313	if (mac->type == e1000_82575) {
 2314		u32 min_rx_space, min_tx_space, needed_tx_space;
 2315
 2316		/* write Rx PBA so that hardware can report correct Tx PBA */
 2317		wr32(E1000_PBA, pba);
 2318
 2319		/* To maintain wire speed transmits, the Tx FIFO should be
 2320		 * large enough to accommodate two full transmit packets,
 2321		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 2322		 * the Rx FIFO should be large enough to accommodate at least
 2323		 * one full receive packet and is similarly rounded up and
 2324		 * expressed in KB.
 2325		 */
 2326		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
 2327
 2328		/* The Tx FIFO also stores 16 bytes of information about the Tx
 2329		 * but don't include Ethernet FCS because hardware appends it.
 2330		 * We only need to round down to the nearest 512 byte block
 2331		 * count since the value we care about is 2 frames, not 1.
 2332		 */
 2333		min_tx_space = adapter->max_frame_size;
 2334		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
 2335		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
 2336
 2337		/* upper 16 bits has Tx packet buffer allocation size in KB */
 2338		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
 2339
 2340		/* If current Tx allocation is less than the min Tx FIFO size,
 2341		 * and the min Tx FIFO size is less than the current Rx FIFO
 2342		 * allocation, take space away from current Rx allocation.
 2343		 */
 2344		if (needed_tx_space < pba) {
 2345			pba -= needed_tx_space;
 2346
 2347			/* if short on Rx space, Rx wins and must trump Tx
 2348			 * adjustment
 2349			 */
 2350			if (pba < min_rx_space)
 2351				pba = min_rx_space;
 2352		}
 2353
 2354		/* adjust PBA for jumbo frames */
 2355		wr32(E1000_PBA, pba);
 2356	}
 2357
 2358	/* flow control settings
 2359	 * The high water mark must be low enough to fit one full frame
 2360	 * after transmitting the pause frame.  As such we must have enough
 2361	 * space to allow for us to complete our current transmit and then
 2362	 * receive the frame that is in progress from the link partner.
 2363	 * Set it to:
 2364	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
 2365	 */
 2366	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
 2367
 2368	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
 2369	fc->low_water = fc->high_water - 16;
 2370	fc->pause_time = 0xFFFF;
 2371	fc->send_xon = 1;
 2372	fc->current_mode = fc->requested_mode;
 2373
 2374	/* disable receive for all VFs and wait one second */
 2375	if (adapter->vfs_allocated_count) {
 2376		int i;
 2377
 2378		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
 2379			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
 2380
 2381		/* ping all the active vfs to let them know we are going down */
 2382		igb_ping_all_vfs(adapter);
 2383
 2384		/* disable transmits and receives */
 2385		wr32(E1000_VFRE, 0);
 2386		wr32(E1000_VFTE, 0);
 2387	}
 2388
 2389	/* Allow time for pending master requests to run */
 2390	hw->mac.ops.reset_hw(hw);
 2391	wr32(E1000_WUC, 0);
 2392
 2393	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 2394		/* need to resetup here after media swap */
 2395		adapter->ei.get_invariants(hw);
 2396		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
 2397	}
 2398	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
 2399	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
 2400		igb_enable_mas(adapter);
 2401	}
 2402	if (hw->mac.ops.init_hw(hw))
 2403		dev_err(&pdev->dev, "Hardware Error\n");
 2404
 2405	/* RAR registers were cleared during init_hw, clear mac table */
 2406	igb_flush_mac_table(adapter);
 2407	__dev_uc_unsync(adapter->netdev, NULL);
 2408
 2409	/* Recover default RAR entry */
 2410	igb_set_default_mac_filter(adapter);
 2411
 2412	/* Flow control settings reset on hardware reset, so guarantee flow
 2413	 * control is off when forcing speed.
 2414	 */
 2415	if (!hw->mac.autoneg)
 2416		igb_force_mac_fc(hw);
 2417
 2418	igb_init_dmac(adapter, pba);
 2419#ifdef CONFIG_IGB_HWMON
 2420	/* Re-initialize the thermal sensor on i350 devices. */
 2421	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 2422		if (mac->type == e1000_i350 && hw->bus.func == 0) {
 2423			/* If present, re-initialize the external thermal sensor
 2424			 * interface.
 2425			 */
 2426			if (adapter->ets)
 2427				igb_set_i2c_bb(hw);
 2428			mac->ops.init_thermal_sensor_thresh(hw);
 2429		}
 2430	}
 2431#endif
 2432	/* Re-establish EEE setting */
 2433	if (hw->phy.media_type == e1000_media_type_copper) {
 2434		switch (mac->type) {
 2435		case e1000_i350:
 2436		case e1000_i210:
 2437		case e1000_i211:
 2438			igb_set_eee_i350(hw, true, true);
 2439			break;
 2440		case e1000_i354:
 2441			igb_set_eee_i354(hw, true, true);
 2442			break;
 2443		default:
 2444			break;
 2445		}
 2446	}
 2447	if (!netif_running(adapter->netdev))
 2448		igb_power_down_link(adapter);
 2449
 2450	igb_update_mng_vlan(adapter);
 2451
 2452	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 2453	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
 2454
 2455	/* Re-enable PTP, where applicable. */
 2456	if (adapter->ptp_flags & IGB_PTP_ENABLED)
 2457		igb_ptp_reset(adapter);
 2458
 2459	igb_get_phy_info(hw);
 2460}
 2461
 2462static netdev_features_t igb_fix_features(struct net_device *netdev,
 2463	netdev_features_t features)
 2464{
 2465	/* Since there is no support for separate Rx/Tx vlan accel
 2466	 * enable/disable make sure Tx flag is always in same state as Rx.
 2467	 */
 2468	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 2469		features |= NETIF_F_HW_VLAN_CTAG_TX;
 2470	else
 2471		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 2472
 2473	return features;
 2474}
 2475
 2476static int igb_set_features(struct net_device *netdev,
 2477	netdev_features_t features)
 2478{
 2479	netdev_features_t changed = netdev->features ^ features;
 2480	struct igb_adapter *adapter = netdev_priv(netdev);
 2481
 2482	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 2483		igb_vlan_mode(netdev, features);
 2484
 2485	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
 2486		return 0;
 2487
 2488	if (!(features & NETIF_F_NTUPLE)) {
 2489		struct hlist_node *node2;
 2490		struct igb_nfc_filter *rule;
 2491
 2492		spin_lock(&adapter->nfc_lock);
 2493		hlist_for_each_entry_safe(rule, node2,
 2494					  &adapter->nfc_filter_list, nfc_node) {
 2495			igb_erase_filter(adapter, rule);
 2496			hlist_del(&rule->nfc_node);
 2497			kfree(rule);
 2498		}
 2499		spin_unlock(&adapter->nfc_lock);
 2500		adapter->nfc_filter_count = 0;
 2501	}
 2502
 2503	netdev->features = features;
 2504
 2505	if (netif_running(netdev))
 2506		igb_reinit_locked(adapter);
 2507	else
 2508		igb_reset(adapter);
 2509
 2510	return 1;
 2511}
 2512
 2513static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
 2514			   struct net_device *dev,
 2515			   const unsigned char *addr, u16 vid,
 2516			   u16 flags,
 2517			   struct netlink_ext_ack *extack)
 2518{
 2519	/* guarantee we can provide a unique filter for the unicast address */
 2520	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
 2521		struct igb_adapter *adapter = netdev_priv(dev);
 
 2522		int vfn = adapter->vfs_allocated_count;
 
 2523
 2524		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
 2525			return -ENOMEM;
 2526	}
 2527
 2528	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
 2529}
 2530
 2531#define IGB_MAX_MAC_HDR_LEN	127
 2532#define IGB_MAX_NETWORK_HDR_LEN	511
 2533
 2534static netdev_features_t
 2535igb_features_check(struct sk_buff *skb, struct net_device *dev,
 2536		   netdev_features_t features)
 2537{
 2538	unsigned int network_hdr_len, mac_hdr_len;
 2539
 2540	/* Make certain the headers can be described by a context descriptor */
 2541	mac_hdr_len = skb_network_offset(skb);
 2542	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
 2543		return features & ~(NETIF_F_HW_CSUM |
 2544				    NETIF_F_SCTP_CRC |
 2545				    NETIF_F_GSO_UDP_L4 |
 2546				    NETIF_F_HW_VLAN_CTAG_TX |
 2547				    NETIF_F_TSO |
 2548				    NETIF_F_TSO6);
 2549
 2550	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
 2551	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
 2552		return features & ~(NETIF_F_HW_CSUM |
 2553				    NETIF_F_SCTP_CRC |
 2554				    NETIF_F_GSO_UDP_L4 |
 2555				    NETIF_F_TSO |
 2556				    NETIF_F_TSO6);
 2557
 2558	/* We can only support IPV4 TSO in tunnels if we can mangle the
 2559	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
 2560	 */
 2561	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
 2562		features &= ~NETIF_F_TSO;
 2563
 2564	return features;
 2565}
 2566
 2567static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
 2568{
 2569	if (!is_fqtss_enabled(adapter)) {
 2570		enable_fqtss(adapter, true);
 2571		return;
 2572	}
 2573
 2574	igb_config_tx_modes(adapter, queue);
 2575
 2576	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
 2577		enable_fqtss(adapter, false);
 2578}
 2579
 2580static int igb_offload_cbs(struct igb_adapter *adapter,
 2581			   struct tc_cbs_qopt_offload *qopt)
 2582{
 2583	struct e1000_hw *hw = &adapter->hw;
 2584	int err;
 2585
 2586	/* CBS offloading is only supported by i210 controller. */
 2587	if (hw->mac.type != e1000_i210)
 2588		return -EOPNOTSUPP;
 2589
 2590	/* CBS offloading is only supported by queue 0 and queue 1. */
 2591	if (qopt->queue < 0 || qopt->queue > 1)
 2592		return -EINVAL;
 2593
 2594	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
 2595				  qopt->idleslope, qopt->sendslope,
 2596				  qopt->hicredit, qopt->locredit);
 2597	if (err)
 2598		return err;
 2599
 2600	igb_offload_apply(adapter, qopt->queue);
 2601
 2602	return 0;
 2603}
 2604
 2605#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
 2606#define VLAN_PRIO_FULL_MASK (0x07)
 2607
 2608static int igb_parse_cls_flower(struct igb_adapter *adapter,
 2609				struct flow_cls_offload *f,
 2610				int traffic_class,
 2611				struct igb_nfc_filter *input)
 2612{
 2613	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
 2614	struct flow_dissector *dissector = rule->match.dissector;
 2615	struct netlink_ext_ack *extack = f->common.extack;
 2616
 2617	if (dissector->used_keys &
 2618	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
 2619	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
 2620	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
 2621	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
 2622		NL_SET_ERR_MSG_MOD(extack,
 2623				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
 2624		return -EOPNOTSUPP;
 2625	}
 2626
 2627	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
 2628		struct flow_match_eth_addrs match;
 2629
 2630		flow_rule_match_eth_addrs(rule, &match);
 2631		if (!is_zero_ether_addr(match.mask->dst)) {
 2632			if (!is_broadcast_ether_addr(match.mask->dst)) {
 2633				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
 2634				return -EINVAL;
 2635			}
 2636
 2637			input->filter.match_flags |=
 2638				IGB_FILTER_FLAG_DST_MAC_ADDR;
 2639			ether_addr_copy(input->filter.dst_addr, match.key->dst);
 2640		}
 2641
 2642		if (!is_zero_ether_addr(match.mask->src)) {
 2643			if (!is_broadcast_ether_addr(match.mask->src)) {
 2644				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
 2645				return -EINVAL;
 2646			}
 2647
 2648			input->filter.match_flags |=
 2649				IGB_FILTER_FLAG_SRC_MAC_ADDR;
 2650			ether_addr_copy(input->filter.src_addr, match.key->src);
 2651		}
 2652	}
 2653
 2654	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
 2655		struct flow_match_basic match;
 2656
 2657		flow_rule_match_basic(rule, &match);
 2658		if (match.mask->n_proto) {
 2659			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
 2660				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
 2661				return -EINVAL;
 2662			}
 2663
 2664			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
 2665			input->filter.etype = match.key->n_proto;
 2666		}
 2667	}
 2668
 2669	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
 2670		struct flow_match_vlan match;
 2671
 2672		flow_rule_match_vlan(rule, &match);
 2673		if (match.mask->vlan_priority) {
 2674			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
 2675				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
 2676				return -EINVAL;
 2677			}
 2678
 2679			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
 2680			input->filter.vlan_tci =
 2681				(__force __be16)match.key->vlan_priority;
 2682		}
 2683	}
 2684
 2685	input->action = traffic_class;
 2686	input->cookie = f->cookie;
 2687
 2688	return 0;
 2689}
 2690
 2691static int igb_configure_clsflower(struct igb_adapter *adapter,
 2692				   struct flow_cls_offload *cls_flower)
 2693{
 2694	struct netlink_ext_ack *extack = cls_flower->common.extack;
 2695	struct igb_nfc_filter *filter, *f;
 2696	int err, tc;
 2697
 2698	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
 2699	if (tc < 0) {
 2700		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
 2701		return -EINVAL;
 2702	}
 2703
 2704	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
 2705	if (!filter)
 2706		return -ENOMEM;
 2707
 2708	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
 2709	if (err < 0)
 2710		goto err_parse;
 2711
 2712	spin_lock(&adapter->nfc_lock);
 2713
 2714	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
 2715		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
 2716			err = -EEXIST;
 2717			NL_SET_ERR_MSG_MOD(extack,
 2718					   "This filter is already set in ethtool");
 2719			goto err_locked;
 2720		}
 2721	}
 2722
 2723	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
 2724		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
 2725			err = -EEXIST;
 2726			NL_SET_ERR_MSG_MOD(extack,
 2727					   "This filter is already set in cls_flower");
 2728			goto err_locked;
 2729		}
 2730	}
 2731
 2732	err = igb_add_filter(adapter, filter);
 2733	if (err < 0) {
 2734		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
 2735		goto err_locked;
 2736	}
 2737
 2738	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
 2739
 2740	spin_unlock(&adapter->nfc_lock);
 2741
 2742	return 0;
 2743
 2744err_locked:
 2745	spin_unlock(&adapter->nfc_lock);
 2746
 2747err_parse:
 2748	kfree(filter);
 2749
 2750	return err;
 2751}
 2752
 2753static int igb_delete_clsflower(struct igb_adapter *adapter,
 2754				struct flow_cls_offload *cls_flower)
 2755{
 2756	struct igb_nfc_filter *filter;
 2757	int err;
 2758
 2759	spin_lock(&adapter->nfc_lock);
 2760
 2761	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
 2762		if (filter->cookie == cls_flower->cookie)
 2763			break;
 2764
 2765	if (!filter) {
 2766		err = -ENOENT;
 2767		goto out;
 2768	}
 2769
 2770	err = igb_erase_filter(adapter, filter);
 2771	if (err < 0)
 2772		goto out;
 2773
 2774	hlist_del(&filter->nfc_node);
 2775	kfree(filter);
 2776
 2777out:
 2778	spin_unlock(&adapter->nfc_lock);
 2779
 2780	return err;
 2781}
 2782
 2783static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
 2784				   struct flow_cls_offload *cls_flower)
 2785{
 2786	switch (cls_flower->command) {
 2787	case FLOW_CLS_REPLACE:
 2788		return igb_configure_clsflower(adapter, cls_flower);
 2789	case FLOW_CLS_DESTROY:
 2790		return igb_delete_clsflower(adapter, cls_flower);
 2791	case FLOW_CLS_STATS:
 2792		return -EOPNOTSUPP;
 2793	default:
 2794		return -EOPNOTSUPP;
 2795	}
 2796}
 2797
 2798static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
 2799				 void *cb_priv)
 2800{
 2801	struct igb_adapter *adapter = cb_priv;
 2802
 2803	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
 2804		return -EOPNOTSUPP;
 2805
 2806	switch (type) {
 2807	case TC_SETUP_CLSFLOWER:
 2808		return igb_setup_tc_cls_flower(adapter, type_data);
 2809
 2810	default:
 2811		return -EOPNOTSUPP;
 2812	}
 2813}
 2814
 2815static int igb_offload_txtime(struct igb_adapter *adapter,
 2816			      struct tc_etf_qopt_offload *qopt)
 2817{
 2818	struct e1000_hw *hw = &adapter->hw;
 2819	int err;
 2820
 2821	/* Launchtime offloading is only supported by i210 controller. */
 2822	if (hw->mac.type != e1000_i210)
 2823		return -EOPNOTSUPP;
 2824
 2825	/* Launchtime offloading is only supported by queues 0 and 1. */
 2826	if (qopt->queue < 0 || qopt->queue > 1)
 2827		return -EINVAL;
 2828
 2829	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
 2830	if (err)
 2831		return err;
 2832
 2833	igb_offload_apply(adapter, qopt->queue);
 2834
 2835	return 0;
 2836}
 2837
 2838static int igb_tc_query_caps(struct igb_adapter *adapter,
 2839			     struct tc_query_caps_base *base)
 2840{
 2841	switch (base->type) {
 2842	case TC_SETUP_QDISC_TAPRIO: {
 2843		struct tc_taprio_caps *caps = base->caps;
 2844
 2845		caps->broken_mqprio = true;
 2846
 2847		return 0;
 2848	}
 2849	default:
 2850		return -EOPNOTSUPP;
 2851	}
 2852}
 2853
 2854static LIST_HEAD(igb_block_cb_list);
 2855
 2856static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
 2857			void *type_data)
 2858{
 2859	struct igb_adapter *adapter = netdev_priv(dev);
 2860
 2861	switch (type) {
 2862	case TC_QUERY_CAPS:
 2863		return igb_tc_query_caps(adapter, type_data);
 2864	case TC_SETUP_QDISC_CBS:
 2865		return igb_offload_cbs(adapter, type_data);
 2866	case TC_SETUP_BLOCK:
 2867		return flow_block_cb_setup_simple(type_data,
 2868						  &igb_block_cb_list,
 2869						  igb_setup_tc_block_cb,
 2870						  adapter, adapter, true);
 2871
 2872	case TC_SETUP_QDISC_ETF:
 2873		return igb_offload_txtime(adapter, type_data);
 2874
 2875	default:
 2876		return -EOPNOTSUPP;
 2877	}
 2878}
 2879
 2880static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
 2881{
 2882	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
 2883	struct igb_adapter *adapter = netdev_priv(dev);
 2884	struct bpf_prog *prog = bpf->prog, *old_prog;
 2885	bool running = netif_running(dev);
 2886	bool need_reset;
 2887
 2888	/* verify igb ring attributes are sufficient for XDP */
 2889	for (i = 0; i < adapter->num_rx_queues; i++) {
 2890		struct igb_ring *ring = adapter->rx_ring[i];
 2891
 2892		if (frame_size > igb_rx_bufsz(ring)) {
 2893			NL_SET_ERR_MSG_MOD(bpf->extack,
 2894					   "The RX buffer size is too small for the frame size");
 2895			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
 2896				    igb_rx_bufsz(ring), frame_size);
 2897			return -EINVAL;
 2898		}
 2899	}
 2900
 2901	old_prog = xchg(&adapter->xdp_prog, prog);
 2902	need_reset = (!!prog != !!old_prog);
 2903
 2904	/* device is up and bpf is added/removed, must setup the RX queues */
 2905	if (need_reset && running) {
 2906		igb_close(dev);
 2907	} else {
 2908		for (i = 0; i < adapter->num_rx_queues; i++)
 2909			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
 2910			    adapter->xdp_prog);
 2911	}
 2912
 2913	if (old_prog)
 2914		bpf_prog_put(old_prog);
 2915
 2916	/* bpf is just replaced, RXQ and MTU are already setup */
 2917	if (!need_reset) {
 2918		return 0;
 2919	} else {
 2920		if (prog)
 2921			xdp_features_set_redirect_target(dev, true);
 2922		else
 2923			xdp_features_clear_redirect_target(dev);
 2924	}
 2925
 2926	if (running)
 2927		igb_open(dev);
 2928
 2929	return 0;
 2930}
 2931
 2932static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
 2933{
 2934	switch (xdp->command) {
 2935	case XDP_SETUP_PROG:
 2936		return igb_xdp_setup(dev, xdp);
 2937	default:
 2938		return -EINVAL;
 2939	}
 2940}
 2941
 2942static void igb_xdp_ring_update_tail(struct igb_ring *ring)
 2943{
 2944	/* Force memory writes to complete before letting h/w know there
 2945	 * are new descriptors to fetch.
 2946	 */
 2947	wmb();
 2948	writel(ring->next_to_use, ring->tail);
 2949}
 2950
 2951static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
 2952{
 2953	unsigned int r_idx = smp_processor_id();
 2954
 2955	if (r_idx >= adapter->num_tx_queues)
 2956		r_idx = r_idx % adapter->num_tx_queues;
 2957
 2958	return adapter->tx_ring[r_idx];
 2959}
 2960
 2961static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
 2962{
 2963	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
 2964	int cpu = smp_processor_id();
 2965	struct igb_ring *tx_ring;
 2966	struct netdev_queue *nq;
 2967	u32 ret;
 2968
 2969	if (unlikely(!xdpf))
 2970		return IGB_XDP_CONSUMED;
 2971
 2972	/* During program transitions its possible adapter->xdp_prog is assigned
 2973	 * but ring has not been configured yet. In this case simply abort xmit.
 2974	 */
 2975	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
 2976	if (unlikely(!tx_ring))
 2977		return IGB_XDP_CONSUMED;
 2978
 2979	nq = txring_txq(tx_ring);
 2980	__netif_tx_lock(nq, cpu);
 2981	/* Avoid transmit queue timeout since we share it with the slow path */
 2982	txq_trans_cond_update(nq);
 2983	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
 2984	__netif_tx_unlock(nq);
 2985
 2986	return ret;
 2987}
 2988
 2989static int igb_xdp_xmit(struct net_device *dev, int n,
 2990			struct xdp_frame **frames, u32 flags)
 2991{
 2992	struct igb_adapter *adapter = netdev_priv(dev);
 2993	int cpu = smp_processor_id();
 2994	struct igb_ring *tx_ring;
 2995	struct netdev_queue *nq;
 2996	int nxmit = 0;
 2997	int i;
 2998
 2999	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
 3000		return -ENETDOWN;
 3001
 3002	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 3003		return -EINVAL;
 3004
 3005	/* During program transitions its possible adapter->xdp_prog is assigned
 3006	 * but ring has not been configured yet. In this case simply abort xmit.
 3007	 */
 3008	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
 3009	if (unlikely(!tx_ring))
 3010		return -ENXIO;
 3011
 3012	nq = txring_txq(tx_ring);
 3013	__netif_tx_lock(nq, cpu);
 3014
 3015	/* Avoid transmit queue timeout since we share it with the slow path */
 3016	txq_trans_cond_update(nq);
 3017
 3018	for (i = 0; i < n; i++) {
 3019		struct xdp_frame *xdpf = frames[i];
 3020		int err;
 3021
 3022		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
 3023		if (err != IGB_XDP_TX)
 3024			break;
 3025		nxmit++;
 3026	}
 3027
 3028	__netif_tx_unlock(nq);
 3029
 3030	if (unlikely(flags & XDP_XMIT_FLUSH))
 3031		igb_xdp_ring_update_tail(tx_ring);
 3032
 3033	return nxmit;
 3034}
 3035
 3036static const struct net_device_ops igb_netdev_ops = {
 3037	.ndo_open		= igb_open,
 3038	.ndo_stop		= igb_close,
 3039	.ndo_start_xmit		= igb_xmit_frame,
 3040	.ndo_get_stats64	= igb_get_stats64,
 3041	.ndo_set_rx_mode	= igb_set_rx_mode,
 3042	.ndo_set_mac_address	= igb_set_mac,
 3043	.ndo_change_mtu		= igb_change_mtu,
 3044	.ndo_eth_ioctl		= igb_ioctl,
 3045	.ndo_tx_timeout		= igb_tx_timeout,
 3046	.ndo_validate_addr	= eth_validate_addr,
 3047	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
 3048	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
 3049	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
 3050	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
 3051	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
 3052	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
 3053	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
 3054	.ndo_get_vf_config	= igb_ndo_get_vf_config,
 
 
 
 3055	.ndo_fix_features	= igb_fix_features,
 3056	.ndo_set_features	= igb_set_features,
 3057	.ndo_fdb_add		= igb_ndo_fdb_add,
 3058	.ndo_features_check	= igb_features_check,
 3059	.ndo_setup_tc		= igb_setup_tc,
 3060	.ndo_bpf		= igb_xdp,
 3061	.ndo_xdp_xmit		= igb_xdp_xmit,
 3062};
 3063
 3064/**
 3065 * igb_set_fw_version - Configure version string for ethtool
 3066 * @adapter: adapter struct
 3067 **/
 3068void igb_set_fw_version(struct igb_adapter *adapter)
 3069{
 3070	struct e1000_hw *hw = &adapter->hw;
 3071	struct e1000_fw_version fw;
 3072
 3073	igb_get_fw_version(hw, &fw);
 3074
 3075	switch (hw->mac.type) {
 3076	case e1000_i210:
 3077	case e1000_i211:
 3078		if (!(igb_get_flash_presence_i210(hw))) {
 3079			snprintf(adapter->fw_version,
 3080				 sizeof(adapter->fw_version),
 3081				 "%2d.%2d-%d",
 3082				 fw.invm_major, fw.invm_minor,
 3083				 fw.invm_img_type);
 3084			break;
 3085		}
 3086		fallthrough;
 3087	default:
 3088		/* if option rom is valid, display its version too */
 3089		if (fw.or_valid) {
 3090			snprintf(adapter->fw_version,
 3091				 sizeof(adapter->fw_version),
 3092				 "%d.%d, 0x%08x, %d.%d.%d",
 3093				 fw.eep_major, fw.eep_minor, fw.etrack_id,
 3094				 fw.or_major, fw.or_build, fw.or_patch);
 3095		/* no option rom */
 3096		} else if (fw.etrack_id != 0X0000) {
 3097			snprintf(adapter->fw_version,
 3098				 sizeof(adapter->fw_version),
 3099				 "%d.%d, 0x%08x",
 3100				 fw.eep_major, fw.eep_minor, fw.etrack_id);
 3101		} else {
 3102			snprintf(adapter->fw_version,
 3103				 sizeof(adapter->fw_version),
 3104				 "%d.%d.%d",
 3105				 fw.eep_major, fw.eep_minor, fw.eep_build);
 3106		}
 3107		break;
 3108	}
 3109}
 3110
 3111/**
 3112 * igb_init_mas - init Media Autosense feature if enabled in the NVM
 3113 *
 3114 * @adapter: adapter struct
 3115 **/
 3116static void igb_init_mas(struct igb_adapter *adapter)
 3117{
 3118	struct e1000_hw *hw = &adapter->hw;
 3119	u16 eeprom_data;
 3120
 3121	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
 3122	switch (hw->bus.func) {
 3123	case E1000_FUNC_0:
 3124		if (eeprom_data & IGB_MAS_ENABLE_0) {
 3125			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3126			netdev_info(adapter->netdev,
 3127				"MAS: Enabling Media Autosense for port %d\n",
 3128				hw->bus.func);
 3129		}
 3130		break;
 3131	case E1000_FUNC_1:
 3132		if (eeprom_data & IGB_MAS_ENABLE_1) {
 3133			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3134			netdev_info(adapter->netdev,
 3135				"MAS: Enabling Media Autosense for port %d\n",
 3136				hw->bus.func);
 3137		}
 3138		break;
 3139	case E1000_FUNC_2:
 3140		if (eeprom_data & IGB_MAS_ENABLE_2) {
 3141			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3142			netdev_info(adapter->netdev,
 3143				"MAS: Enabling Media Autosense for port %d\n",
 3144				hw->bus.func);
 3145		}
 3146		break;
 3147	case E1000_FUNC_3:
 3148		if (eeprom_data & IGB_MAS_ENABLE_3) {
 3149			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3150			netdev_info(adapter->netdev,
 3151				"MAS: Enabling Media Autosense for port %d\n",
 3152				hw->bus.func);
 3153		}
 3154		break;
 3155	default:
 3156		/* Shouldn't get here */
 3157		netdev_err(adapter->netdev,
 3158			"MAS: Invalid port configuration, returning\n");
 3159		break;
 3160	}
 3161}
 3162
 3163/**
 3164 *  igb_init_i2c - Init I2C interface
 3165 *  @adapter: pointer to adapter structure
 3166 **/
 3167static s32 igb_init_i2c(struct igb_adapter *adapter)
 3168{
 3169	s32 status = 0;
 3170
 3171	/* I2C interface supported on i350 devices */
 3172	if (adapter->hw.mac.type != e1000_i350)
 3173		return 0;
 3174
 3175	/* Initialize the i2c bus which is controlled by the registers.
 3176	 * This bus will use the i2c_algo_bit structure that implements
 3177	 * the protocol through toggling of the 4 bits in the register.
 3178	 */
 3179	adapter->i2c_adap.owner = THIS_MODULE;
 3180	adapter->i2c_algo = igb_i2c_algo;
 3181	adapter->i2c_algo.data = adapter;
 3182	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
 3183	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
 3184	strscpy(adapter->i2c_adap.name, "igb BB",
 3185		sizeof(adapter->i2c_adap.name));
 3186	status = i2c_bit_add_bus(&adapter->i2c_adap);
 3187	return status;
 3188}
 3189
 3190/**
 3191 *  igb_probe - Device Initialization Routine
 3192 *  @pdev: PCI device information struct
 3193 *  @ent: entry in igb_pci_tbl
 3194 *
 3195 *  Returns 0 on success, negative on failure
 3196 *
 3197 *  igb_probe initializes an adapter identified by a pci_dev structure.
 3198 *  The OS initialization, configuring of the adapter private structure,
 3199 *  and a hardware reset occur.
 3200 **/
 3201static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 3202{
 3203	struct net_device *netdev;
 3204	struct igb_adapter *adapter;
 3205	struct e1000_hw *hw;
 3206	u16 eeprom_data = 0;
 3207	s32 ret_val;
 3208	static int global_quad_port_a; /* global quad port a indication */
 3209	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
 
 3210	u8 part_str[E1000_PBANUM_LENGTH];
 3211	int err;
 3212
 3213	/* Catch broken hardware that put the wrong VF device ID in
 3214	 * the PCIe SR-IOV capability.
 3215	 */
 3216	if (pdev->is_virtfn) {
 3217		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
 3218			pci_name(pdev), pdev->vendor, pdev->device);
 3219		return -EINVAL;
 3220	}
 3221
 3222	err = pci_enable_device_mem(pdev);
 3223	if (err)
 3224		return err;
 3225
 
 3226	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
 3227	if (err) {
 3228		dev_err(&pdev->dev,
 3229			"No usable DMA configuration, aborting\n");
 3230		goto err_dma;
 
 
 
 
 
 3231	}
 3232
 3233	err = pci_request_mem_regions(pdev, igb_driver_name);
 
 
 3234	if (err)
 3235		goto err_pci_reg;
 3236
 
 
 3237	pci_set_master(pdev);
 3238	pci_save_state(pdev);
 3239
 3240	err = -ENOMEM;
 3241	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
 3242				   IGB_MAX_TX_QUEUES);
 3243	if (!netdev)
 3244		goto err_alloc_etherdev;
 3245
 3246	SET_NETDEV_DEV(netdev, &pdev->dev);
 3247
 3248	pci_set_drvdata(pdev, netdev);
 3249	adapter = netdev_priv(netdev);
 3250	adapter->netdev = netdev;
 3251	adapter->pdev = pdev;
 3252	hw = &adapter->hw;
 3253	hw->back = adapter;
 3254	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 3255
 3256	err = -EIO;
 3257	adapter->io_addr = pci_iomap(pdev, 0, 0);
 3258	if (!adapter->io_addr)
 3259		goto err_ioremap;
 3260	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
 3261	hw->hw_addr = adapter->io_addr;
 3262
 3263	netdev->netdev_ops = &igb_netdev_ops;
 3264	igb_set_ethtool_ops(netdev);
 3265	netdev->watchdog_timeo = 5 * HZ;
 3266
 3267	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
 3268
 3269	netdev->mem_start = pci_resource_start(pdev, 0);
 3270	netdev->mem_end = pci_resource_end(pdev, 0);
 3271
 3272	/* PCI config space info */
 3273	hw->vendor_id = pdev->vendor;
 3274	hw->device_id = pdev->device;
 3275	hw->revision_id = pdev->revision;
 3276	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 3277	hw->subsystem_device_id = pdev->subsystem_device;
 3278
 3279	/* Copy the default MAC, PHY and NVM function pointers */
 3280	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
 3281	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
 3282	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
 3283	/* Initialize skew-specific constants */
 3284	err = ei->get_invariants(hw);
 3285	if (err)
 3286		goto err_sw_init;
 3287
 3288	/* setup the private structure */
 3289	err = igb_sw_init(adapter);
 3290	if (err)
 3291		goto err_sw_init;
 3292
 3293	igb_get_bus_info_pcie(hw);
 3294
 3295	hw->phy.autoneg_wait_to_complete = false;
 3296
 3297	/* Copper options */
 3298	if (hw->phy.media_type == e1000_media_type_copper) {
 3299		hw->phy.mdix = AUTO_ALL_MODES;
 3300		hw->phy.disable_polarity_correction = false;
 3301		hw->phy.ms_type = e1000_ms_hw_default;
 3302	}
 3303
 3304	if (igb_check_reset_block(hw))
 3305		dev_info(&pdev->dev,
 3306			"PHY reset is blocked due to SOL/IDER session.\n");
 3307
 3308	/* features is initialized to 0 in allocation, it might have bits
 3309	 * set by igb_sw_init so we should use an or instead of an
 3310	 * assignment.
 3311	 */
 3312	netdev->features |= NETIF_F_SG |
 3313			    NETIF_F_TSO |
 3314			    NETIF_F_TSO6 |
 3315			    NETIF_F_RXHASH |
 3316			    NETIF_F_RXCSUM |
 3317			    NETIF_F_HW_CSUM;
 
 
 3318
 3319	if (hw->mac.type >= e1000_82576)
 3320		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
 3321
 3322	if (hw->mac.type >= e1000_i350)
 3323		netdev->features |= NETIF_F_HW_TC;
 3324
 3325#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
 3326				  NETIF_F_GSO_GRE_CSUM | \
 3327				  NETIF_F_GSO_IPXIP4 | \
 3328				  NETIF_F_GSO_IPXIP6 | \
 3329				  NETIF_F_GSO_UDP_TUNNEL | \
 3330				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
 3331
 3332	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
 3333	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
 3334
 3335	/* copy netdev features into list of user selectable features */
 3336	netdev->hw_features |= netdev->features |
 3337			       NETIF_F_HW_VLAN_CTAG_RX |
 3338			       NETIF_F_HW_VLAN_CTAG_TX |
 3339			       NETIF_F_RXALL;
 3340
 3341	if (hw->mac.type >= e1000_i350)
 3342		netdev->hw_features |= NETIF_F_NTUPLE;
 3343
 3344	netdev->features |= NETIF_F_HIGHDMA;
 
 3345
 3346	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
 3347	netdev->mpls_features |= NETIF_F_HW_CSUM;
 3348	netdev->hw_enc_features |= netdev->vlan_features;
 
 
 3349
 3350	/* set this bit last since it cannot be part of vlan_features */
 3351	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
 3352			    NETIF_F_HW_VLAN_CTAG_RX |
 3353			    NETIF_F_HW_VLAN_CTAG_TX;
 3354
 3355	netdev->priv_flags |= IFF_SUPP_NOFCS;
 3356
 3357	netdev->priv_flags |= IFF_UNICAST_FLT;
 3358	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
 
 
 3359
 3360	/* MTU range: 68 - 9216 */
 3361	netdev->min_mtu = ETH_MIN_MTU;
 3362	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
 3363
 3364	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
 3365
 3366	/* before reading the NVM, reset the controller to put the device in a
 3367	 * known good starting state
 3368	 */
 3369	hw->mac.ops.reset_hw(hw);
 3370
 3371	/* make sure the NVM is good , i211/i210 parts can have special NVM
 3372	 * that doesn't contain a checksum
 3373	 */
 3374	switch (hw->mac.type) {
 3375	case e1000_i210:
 3376	case e1000_i211:
 3377		if (igb_get_flash_presence_i210(hw)) {
 3378			if (hw->nvm.ops.validate(hw) < 0) {
 3379				dev_err(&pdev->dev,
 3380					"The NVM Checksum Is Not Valid\n");
 3381				err = -EIO;
 3382				goto err_eeprom;
 3383			}
 3384		}
 3385		break;
 3386	default:
 3387		if (hw->nvm.ops.validate(hw) < 0) {
 3388			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
 3389			err = -EIO;
 3390			goto err_eeprom;
 3391		}
 3392		break;
 3393	}
 3394
 3395	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
 3396		/* copy the MAC address out of the NVM */
 3397		if (hw->mac.ops.read_mac_addr(hw))
 3398			dev_err(&pdev->dev, "NVM Read Error\n");
 3399	}
 3400
 3401	eth_hw_addr_set(netdev, hw->mac.addr);
 3402
 3403	if (!is_valid_ether_addr(netdev->dev_addr)) {
 3404		dev_err(&pdev->dev, "Invalid MAC Address\n");
 3405		err = -EIO;
 3406		goto err_eeprom;
 3407	}
 3408
 3409	igb_set_default_mac_filter(adapter);
 3410
 3411	/* get firmware version for ethtool -i */
 3412	igb_set_fw_version(adapter);
 3413
 3414	/* configure RXPBSIZE and TXPBSIZE */
 3415	if (hw->mac.type == e1000_i210) {
 3416		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
 3417		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
 3418	}
 3419
 3420	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
 3421	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
 
 
 3422
 3423	INIT_WORK(&adapter->reset_task, igb_reset_task);
 3424	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
 3425
 3426	/* Initialize link properties that are user-changeable */
 3427	adapter->fc_autoneg = true;
 3428	hw->mac.autoneg = true;
 3429	hw->phy.autoneg_advertised = 0x2f;
 3430
 3431	hw->fc.requested_mode = e1000_fc_default;
 3432	hw->fc.current_mode = e1000_fc_default;
 3433
 3434	igb_validate_mdi_setting(hw);
 3435
 3436	/* By default, support wake on port A */
 3437	if (hw->bus.func == 0)
 3438		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3439
 3440	/* Check the NVM for wake support on non-port A ports */
 3441	if (hw->mac.type >= e1000_82580)
 3442		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
 3443				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
 3444				 &eeprom_data);
 3445	else if (hw->bus.func == 1)
 3446		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
 3447
 3448	if (eeprom_data & IGB_EEPROM_APME)
 3449		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3450
 3451	/* now that we have the eeprom settings, apply the special cases where
 3452	 * the eeprom may be wrong or the board simply won't support wake on
 3453	 * lan on a particular port
 3454	 */
 3455	switch (pdev->device) {
 3456	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 3457		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3458		break;
 3459	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 3460	case E1000_DEV_ID_82576_FIBER:
 3461	case E1000_DEV_ID_82576_SERDES:
 3462		/* Wake events only supported on port A for dual fiber
 3463		 * regardless of eeprom setting
 3464		 */
 3465		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
 3466			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3467		break;
 3468	case E1000_DEV_ID_82576_QUAD_COPPER:
 3469	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 3470		/* if quad port adapter, disable WoL on all but port A */
 3471		if (global_quad_port_a != 0)
 3472			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3473		else
 3474			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
 3475		/* Reset for multiple quad port adapters */
 3476		if (++global_quad_port_a == 4)
 3477			global_quad_port_a = 0;
 3478		break;
 3479	default:
 3480		/* If the device can't wake, don't set software support */
 3481		if (!device_can_wakeup(&adapter->pdev->dev))
 3482			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3483	}
 3484
 3485	/* initialize the wol settings based on the eeprom settings */
 3486	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
 3487		adapter->wol |= E1000_WUFC_MAG;
 3488
 3489	/* Some vendors want WoL disabled by default, but still supported */
 3490	if ((hw->mac.type == e1000_i350) &&
 3491	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
 3492		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3493		adapter->wol = 0;
 3494	}
 3495
 3496	/* Some vendors want the ability to Use the EEPROM setting as
 3497	 * enable/disable only, and not for capability
 3498	 */
 3499	if (((hw->mac.type == e1000_i350) ||
 3500	     (hw->mac.type == e1000_i354)) &&
 3501	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
 3502		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3503		adapter->wol = 0;
 3504	}
 3505	if (hw->mac.type == e1000_i350) {
 3506		if (((pdev->subsystem_device == 0x5001) ||
 3507		     (pdev->subsystem_device == 0x5002)) &&
 3508				(hw->bus.func == 0)) {
 3509			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3510			adapter->wol = 0;
 3511		}
 3512		if (pdev->subsystem_device == 0x1F52)
 3513			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3514	}
 3515
 3516	device_set_wakeup_enable(&adapter->pdev->dev,
 3517				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
 3518
 3519	/* reset the hardware with the new settings */
 3520	igb_reset(adapter);
 3521
 3522	/* Init the I2C interface */
 3523	err = igb_init_i2c(adapter);
 3524	if (err) {
 3525		dev_err(&pdev->dev, "failed to init i2c interface\n");
 3526		goto err_eeprom;
 3527	}
 3528
 3529	/* let the f/w know that the h/w is now under the control of the
 3530	 * driver.
 3531	 */
 3532	igb_get_hw_control(adapter);
 3533
 3534	strcpy(netdev->name, "eth%d");
 3535	err = register_netdev(netdev);
 3536	if (err)
 3537		goto err_register;
 3538
 3539	/* carrier off reporting is important to ethtool even BEFORE open */
 3540	netif_carrier_off(netdev);
 3541
 3542#ifdef CONFIG_IGB_DCA
 3543	if (dca_add_requester(&pdev->dev) == 0) {
 3544		adapter->flags |= IGB_FLAG_DCA_ENABLED;
 3545		dev_info(&pdev->dev, "DCA enabled\n");
 3546		igb_setup_dca(adapter);
 3547	}
 3548
 3549#endif
 3550#ifdef CONFIG_IGB_HWMON
 3551	/* Initialize the thermal sensor on i350 devices. */
 3552	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
 3553		u16 ets_word;
 3554
 3555		/* Read the NVM to determine if this i350 device supports an
 3556		 * external thermal sensor.
 3557		 */
 3558		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
 3559		if (ets_word != 0x0000 && ets_word != 0xFFFF)
 3560			adapter->ets = true;
 3561		else
 3562			adapter->ets = false;
 3563		/* Only enable I2C bit banging if an external thermal
 3564		 * sensor is supported.
 3565		 */
 3566		if (adapter->ets)
 3567			igb_set_i2c_bb(hw);
 3568		hw->mac.ops.init_thermal_sensor_thresh(hw);
 3569		if (igb_sysfs_init(adapter))
 3570			dev_err(&pdev->dev,
 3571				"failed to allocate sysfs resources\n");
 3572	} else {
 3573		adapter->ets = false;
 3574	}
 3575#endif
 3576	/* Check if Media Autosense is enabled */
 3577	adapter->ei = *ei;
 3578	if (hw->dev_spec._82575.mas_capable)
 3579		igb_init_mas(adapter);
 3580
 3581	/* do hw tstamp init after resetting */
 3582	igb_ptp_init(adapter);
 3583
 3584	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
 3585	/* print bus type/speed/width info, not applicable to i354 */
 3586	if (hw->mac.type != e1000_i354) {
 3587		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
 3588			 netdev->name,
 3589			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
 3590			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
 3591			   "unknown"),
 3592			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
 3593			  "Width x4" :
 3594			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
 3595			  "Width x2" :
 3596			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
 3597			  "Width x1" : "unknown"), netdev->dev_addr);
 3598	}
 3599
 3600	if ((hw->mac.type == e1000_82576 &&
 3601	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
 3602	    (hw->mac.type >= e1000_i210 ||
 3603	     igb_get_flash_presence_i210(hw))) {
 3604		ret_val = igb_read_part_string(hw, part_str,
 3605					       E1000_PBANUM_LENGTH);
 3606	} else {
 3607		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
 3608	}
 3609
 3610	if (ret_val)
 3611		strcpy(part_str, "Unknown");
 3612	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
 3613	dev_info(&pdev->dev,
 3614		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
 3615		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
 3616		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
 3617		adapter->num_rx_queues, adapter->num_tx_queues);
 3618	if (hw->phy.media_type == e1000_media_type_copper) {
 3619		switch (hw->mac.type) {
 3620		case e1000_i350:
 3621		case e1000_i210:
 3622		case e1000_i211:
 3623			/* Enable EEE for internal copper PHY devices */
 3624			err = igb_set_eee_i350(hw, true, true);
 3625			if ((!err) &&
 3626			    (!hw->dev_spec._82575.eee_disable)) {
 3627				adapter->eee_advert =
 3628					MDIO_EEE_100TX | MDIO_EEE_1000T;
 3629				adapter->flags |= IGB_FLAG_EEE;
 3630			}
 3631			break;
 3632		case e1000_i354:
 3633			if ((rd32(E1000_CTRL_EXT) &
 3634			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
 3635				err = igb_set_eee_i354(hw, true, true);
 3636				if ((!err) &&
 3637					(!hw->dev_spec._82575.eee_disable)) {
 3638					adapter->eee_advert =
 3639					   MDIO_EEE_100TX | MDIO_EEE_1000T;
 3640					adapter->flags |= IGB_FLAG_EEE;
 3641				}
 3642			}
 3643			break;
 3644		default:
 3645			break;
 3646		}
 3647	}
 3648
 3649	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
 3650
 3651	pm_runtime_put_noidle(&pdev->dev);
 3652	return 0;
 3653
 3654err_register:
 3655	igb_release_hw_control(adapter);
 3656	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
 3657err_eeprom:
 3658	if (!igb_check_reset_block(hw))
 3659		igb_reset_phy(hw);
 3660
 3661	if (hw->flash_address)
 3662		iounmap(hw->flash_address);
 3663err_sw_init:
 3664	kfree(adapter->mac_table);
 3665	kfree(adapter->shadow_vfta);
 3666	igb_clear_interrupt_scheme(adapter);
 3667#ifdef CONFIG_PCI_IOV
 3668	igb_disable_sriov(pdev, false);
 3669#endif
 3670	pci_iounmap(pdev, adapter->io_addr);
 3671err_ioremap:
 3672	free_netdev(netdev);
 3673err_alloc_etherdev:
 3674	pci_release_mem_regions(pdev);
 
 3675err_pci_reg:
 3676err_dma:
 3677	pci_disable_device(pdev);
 3678	return err;
 3679}
 3680
 3681#ifdef CONFIG_PCI_IOV
 3682static int igb_sriov_reinit(struct pci_dev *dev)
 3683{
 3684	struct net_device *netdev = pci_get_drvdata(dev);
 3685	struct igb_adapter *adapter = netdev_priv(netdev);
 3686	struct pci_dev *pdev = adapter->pdev;
 3687
 3688	rtnl_lock();
 3689
 3690	if (netif_running(netdev))
 3691		igb_close(netdev);
 3692	else
 3693		igb_reset(adapter);
 3694
 3695	igb_clear_interrupt_scheme(adapter);
 3696
 3697	igb_init_queue_configuration(adapter);
 3698
 3699	if (igb_init_interrupt_scheme(adapter, true)) {
 3700		rtnl_unlock();
 3701		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 3702		return -ENOMEM;
 3703	}
 3704
 3705	if (netif_running(netdev))
 3706		igb_open(netdev);
 3707
 3708	rtnl_unlock();
 3709
 3710	return 0;
 3711}
 3712
 3713static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
 3714{
 3715	struct net_device *netdev = pci_get_drvdata(pdev);
 3716	struct igb_adapter *adapter = netdev_priv(netdev);
 3717	struct e1000_hw *hw = &adapter->hw;
 3718	unsigned long flags;
 3719
 3720	/* reclaim resources allocated to VFs */
 3721	if (adapter->vf_data) {
 3722		/* disable iov and allow time for transactions to clear */
 3723		if (pci_vfs_assigned(pdev)) {
 3724			dev_warn(&pdev->dev,
 3725				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
 3726			return -EPERM;
 3727		} else {
 3728			pci_disable_sriov(pdev);
 3729			msleep(500);
 3730		}
 3731		spin_lock_irqsave(&adapter->vfs_lock, flags);
 3732		kfree(adapter->vf_mac_list);
 3733		adapter->vf_mac_list = NULL;
 3734		kfree(adapter->vf_data);
 3735		adapter->vf_data = NULL;
 3736		adapter->vfs_allocated_count = 0;
 3737		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
 3738		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
 3739		wrfl();
 3740		msleep(100);
 3741		dev_info(&pdev->dev, "IOV Disabled\n");
 3742
 3743		/* Re-enable DMA Coalescing flag since IOV is turned off */
 3744		adapter->flags |= IGB_FLAG_DMAC;
 3745	}
 3746
 3747	return reinit ? igb_sriov_reinit(pdev) : 0;
 3748}
 3749
 3750static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
 3751{
 3752	struct net_device *netdev = pci_get_drvdata(pdev);
 3753	struct igb_adapter *adapter = netdev_priv(netdev);
 3754	int old_vfs = pci_num_vf(pdev);
 3755	struct vf_mac_filter *mac_list;
 3756	int err = 0;
 3757	int num_vf_mac_filters, i;
 3758
 3759	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
 3760		err = -EPERM;
 3761		goto out;
 3762	}
 3763	if (!num_vfs)
 3764		goto out;
 3765
 3766	if (old_vfs) {
 3767		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
 3768			 old_vfs, max_vfs);
 3769		adapter->vfs_allocated_count = old_vfs;
 3770	} else
 3771		adapter->vfs_allocated_count = num_vfs;
 3772
 3773	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
 3774				sizeof(struct vf_data_storage), GFP_KERNEL);
 3775
 3776	/* if allocation failed then we do not support SR-IOV */
 3777	if (!adapter->vf_data) {
 3778		adapter->vfs_allocated_count = 0;
 
 
 3779		err = -ENOMEM;
 3780		goto out;
 3781	}
 3782
 3783	/* Due to the limited number of RAR entries calculate potential
 3784	 * number of MAC filters available for the VFs. Reserve entries
 3785	 * for PF default MAC, PF MAC filters and at least one RAR entry
 3786	 * for each VF for VF MAC.
 3787	 */
 3788	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
 3789			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
 3790			      adapter->vfs_allocated_count);
 3791
 3792	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
 3793				       sizeof(struct vf_mac_filter),
 3794				       GFP_KERNEL);
 3795
 3796	mac_list = adapter->vf_mac_list;
 3797	INIT_LIST_HEAD(&adapter->vf_macs.l);
 3798
 3799	if (adapter->vf_mac_list) {
 3800		/* Initialize list of VF MAC filters */
 3801		for (i = 0; i < num_vf_mac_filters; i++) {
 3802			mac_list->vf = -1;
 3803			mac_list->free = true;
 3804			list_add(&mac_list->l, &adapter->vf_macs.l);
 3805			mac_list++;
 3806		}
 3807	} else {
 3808		/* If we could not allocate memory for the VF MAC filters
 3809		 * we can continue without this feature but warn user.
 3810		 */
 3811		dev_err(&pdev->dev,
 3812			"Unable to allocate memory for VF MAC filter list\n");
 3813	}
 3814
 3815	dev_info(&pdev->dev, "%d VFs allocated\n",
 3816		 adapter->vfs_allocated_count);
 3817	for (i = 0; i < adapter->vfs_allocated_count; i++)
 3818		igb_vf_configure(adapter, i);
 3819
 3820	/* DMA Coalescing is not supported in IOV mode. */
 3821	adapter->flags &= ~IGB_FLAG_DMAC;
 3822
 3823	if (reinit) {
 3824		err = igb_sriov_reinit(pdev);
 3825		if (err)
 3826			goto err_out;
 3827	}
 3828
 3829	/* only call pci_enable_sriov() if no VFs are allocated already */
 3830	if (!old_vfs) {
 3831		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
 3832		if (err)
 3833			goto err_out;
 3834	}
 3835
 3836	goto out;
 3837
 3838err_out:
 3839	kfree(adapter->vf_mac_list);
 3840	adapter->vf_mac_list = NULL;
 3841	kfree(adapter->vf_data);
 3842	adapter->vf_data = NULL;
 3843	adapter->vfs_allocated_count = 0;
 3844out:
 3845	return err;
 3846}
 3847
 3848#endif
 3849/**
 3850 *  igb_remove_i2c - Cleanup  I2C interface
 3851 *  @adapter: pointer to adapter structure
 3852 **/
 3853static void igb_remove_i2c(struct igb_adapter *adapter)
 3854{
 3855	/* free the adapter bus structure */
 3856	i2c_del_adapter(&adapter->i2c_adap);
 3857}
 3858
 3859/**
 3860 *  igb_remove - Device Removal Routine
 3861 *  @pdev: PCI device information struct
 3862 *
 3863 *  igb_remove is called by the PCI subsystem to alert the driver
 3864 *  that it should release a PCI device.  The could be caused by a
 3865 *  Hot-Plug event, or because the driver is going to be removed from
 3866 *  memory.
 3867 **/
 3868static void igb_remove(struct pci_dev *pdev)
 3869{
 3870	struct net_device *netdev = pci_get_drvdata(pdev);
 3871	struct igb_adapter *adapter = netdev_priv(netdev);
 3872	struct e1000_hw *hw = &adapter->hw;
 3873
 3874	pm_runtime_get_noresume(&pdev->dev);
 3875#ifdef CONFIG_IGB_HWMON
 3876	igb_sysfs_exit(adapter);
 3877#endif
 3878	igb_remove_i2c(adapter);
 3879	igb_ptp_stop(adapter);
 3880	/* The watchdog timer may be rescheduled, so explicitly
 3881	 * disable watchdog from being rescheduled.
 3882	 */
 3883	set_bit(__IGB_DOWN, &adapter->state);
 3884	del_timer_sync(&adapter->watchdog_timer);
 3885	del_timer_sync(&adapter->phy_info_timer);
 3886
 3887	cancel_work_sync(&adapter->reset_task);
 3888	cancel_work_sync(&adapter->watchdog_task);
 3889
 3890#ifdef CONFIG_IGB_DCA
 3891	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
 3892		dev_info(&pdev->dev, "DCA disabled\n");
 3893		dca_remove_requester(&pdev->dev);
 3894		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
 3895		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
 3896	}
 3897#endif
 3898
 3899	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 3900	 * would have already happened in close and is redundant.
 3901	 */
 3902	igb_release_hw_control(adapter);
 3903
 3904#ifdef CONFIG_PCI_IOV
 3905	igb_disable_sriov(pdev, false);
 3906#endif
 3907
 3908	unregister_netdev(netdev);
 3909
 3910	igb_clear_interrupt_scheme(adapter);
 3911
 3912	pci_iounmap(pdev, adapter->io_addr);
 3913	if (hw->flash_address)
 3914		iounmap(hw->flash_address);
 3915	pci_release_mem_regions(pdev);
 
 3916
 3917	kfree(adapter->mac_table);
 3918	kfree(adapter->shadow_vfta);
 3919	free_netdev(netdev);
 3920
 
 
 3921	pci_disable_device(pdev);
 3922}
 3923
 3924/**
 3925 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 3926 *  @adapter: board private structure to initialize
 3927 *
 3928 *  This function initializes the vf specific data storage and then attempts to
 3929 *  allocate the VFs.  The reason for ordering it this way is because it is much
 3930 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 3931 *  the memory for the VFs.
 3932 **/
 3933static void igb_probe_vfs(struct igb_adapter *adapter)
 3934{
 3935#ifdef CONFIG_PCI_IOV
 3936	struct pci_dev *pdev = adapter->pdev;
 3937	struct e1000_hw *hw = &adapter->hw;
 3938
 3939	/* Virtualization features not supported on i210 and 82580 family. */
 3940	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
 3941	    (hw->mac.type == e1000_82580))
 3942		return;
 3943
 3944	/* Of the below we really only want the effect of getting
 3945	 * IGB_FLAG_HAS_MSIX set (if available), without which
 3946	 * igb_enable_sriov() has no effect.
 3947	 */
 3948	igb_set_interrupt_capability(adapter, true);
 3949	igb_reset_interrupt_capability(adapter);
 3950
 3951	pci_sriov_set_totalvfs(pdev, 7);
 3952	igb_enable_sriov(pdev, max_vfs, false);
 3953
 3954#endif /* CONFIG_PCI_IOV */
 3955}
 3956
 3957unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
 3958{
 3959	struct e1000_hw *hw = &adapter->hw;
 3960	unsigned int max_rss_queues;
 3961
 3962	/* Determine the maximum number of RSS queues supported. */
 3963	switch (hw->mac.type) {
 3964	case e1000_i211:
 3965		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
 3966		break;
 3967	case e1000_82575:
 3968	case e1000_i210:
 3969		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
 3970		break;
 3971	case e1000_i350:
 3972		/* I350 cannot do RSS and SR-IOV at the same time */
 3973		if (!!adapter->vfs_allocated_count) {
 3974			max_rss_queues = 1;
 3975			break;
 3976		}
 3977		fallthrough;
 3978	case e1000_82576:
 3979		if (!!adapter->vfs_allocated_count) {
 3980			max_rss_queues = 2;
 3981			break;
 3982		}
 3983		fallthrough;
 3984	case e1000_82580:
 3985	case e1000_i354:
 3986	default:
 3987		max_rss_queues = IGB_MAX_RX_QUEUES;
 3988		break;
 3989	}
 3990
 3991	return max_rss_queues;
 3992}
 3993
 3994static void igb_init_queue_configuration(struct igb_adapter *adapter)
 3995{
 3996	u32 max_rss_queues;
 3997
 3998	max_rss_queues = igb_get_max_rss_queues(adapter);
 3999	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
 4000
 4001	igb_set_flag_queue_pairs(adapter, max_rss_queues);
 4002}
 4003
 4004void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
 4005			      const u32 max_rss_queues)
 4006{
 4007	struct e1000_hw *hw = &adapter->hw;
 4008
 4009	/* Determine if we need to pair queues. */
 4010	switch (hw->mac.type) {
 4011	case e1000_82575:
 4012	case e1000_i211:
 4013		/* Device supports enough interrupts without queue pairing. */
 4014		break;
 4015	case e1000_82576:
 4016	case e1000_82580:
 4017	case e1000_i350:
 4018	case e1000_i354:
 4019	case e1000_i210:
 4020	default:
 4021		/* If rss_queues > half of max_rss_queues, pair the queues in
 4022		 * order to conserve interrupts due to limited supply.
 4023		 */
 4024		if (adapter->rss_queues > (max_rss_queues / 2))
 4025			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
 4026		else
 4027			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
 4028		break;
 4029	}
 4030}
 4031
 4032/**
 4033 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 4034 *  @adapter: board private structure to initialize
 4035 *
 4036 *  igb_sw_init initializes the Adapter private data structure.
 4037 *  Fields are initialized based on PCI device information and
 4038 *  OS network device settings (MTU size).
 4039 **/
 4040static int igb_sw_init(struct igb_adapter *adapter)
 4041{
 4042	struct e1000_hw *hw = &adapter->hw;
 4043	struct net_device *netdev = adapter->netdev;
 4044	struct pci_dev *pdev = adapter->pdev;
 4045
 4046	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
 4047
 4048	/* set default ring sizes */
 4049	adapter->tx_ring_count = IGB_DEFAULT_TXD;
 4050	adapter->rx_ring_count = IGB_DEFAULT_RXD;
 4051
 4052	/* set default ITR values */
 4053	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
 4054	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
 4055
 4056	/* set default work limits */
 4057	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
 4058
 4059	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
 
 4060	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
 4061
 4062	spin_lock_init(&adapter->nfc_lock);
 4063	spin_lock_init(&adapter->stats64_lock);
 4064
 4065	/* init spinlock to avoid concurrency of VF resources */
 4066	spin_lock_init(&adapter->vfs_lock);
 4067#ifdef CONFIG_PCI_IOV
 4068	switch (hw->mac.type) {
 4069	case e1000_82576:
 4070	case e1000_i350:
 4071		if (max_vfs > 7) {
 4072			dev_warn(&pdev->dev,
 4073				 "Maximum of 7 VFs per PF, using max\n");
 4074			max_vfs = adapter->vfs_allocated_count = 7;
 4075		} else
 4076			adapter->vfs_allocated_count = max_vfs;
 4077		if (adapter->vfs_allocated_count)
 4078			dev_warn(&pdev->dev,
 4079				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
 4080		break;
 4081	default:
 4082		break;
 4083	}
 4084#endif /* CONFIG_PCI_IOV */
 4085
 4086	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
 4087	adapter->flags |= IGB_FLAG_HAS_MSIX;
 4088
 4089	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
 4090				     sizeof(struct igb_mac_addr),
 4091				     GFP_KERNEL);
 4092	if (!adapter->mac_table)
 4093		return -ENOMEM;
 4094
 4095	igb_probe_vfs(adapter);
 4096
 4097	igb_init_queue_configuration(adapter);
 4098
 4099	/* Setup and initialize a copy of the hw vlan table array */
 4100	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
 4101				       GFP_KERNEL);
 4102	if (!adapter->shadow_vfta)
 4103		return -ENOMEM;
 4104
 4105	/* This call may decrease the number of queues */
 4106	if (igb_init_interrupt_scheme(adapter, true)) {
 4107		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 4108		return -ENOMEM;
 4109	}
 4110
 4111	/* Explicitly disable IRQ since the NIC can be in any state. */
 4112	igb_irq_disable(adapter);
 4113
 4114	if (hw->mac.type >= e1000_i350)
 4115		adapter->flags &= ~IGB_FLAG_DMAC;
 4116
 4117	set_bit(__IGB_DOWN, &adapter->state);
 4118	return 0;
 4119}
 4120
 4121/**
 4122 *  __igb_open - Called when a network interface is made active
 4123 *  @netdev: network interface device structure
 4124 *  @resuming: indicates whether we are in a resume call
 4125 *
 4126 *  Returns 0 on success, negative value on failure
 4127 *
 4128 *  The open entry point is called when a network interface is made
 4129 *  active by the system (IFF_UP).  At this point all resources needed
 4130 *  for transmit and receive operations are allocated, the interrupt
 4131 *  handler is registered with the OS, the watchdog timer is started,
 4132 *  and the stack is notified that the interface is ready.
 4133 **/
 4134static int __igb_open(struct net_device *netdev, bool resuming)
 4135{
 4136	struct igb_adapter *adapter = netdev_priv(netdev);
 4137	struct e1000_hw *hw = &adapter->hw;
 4138	struct pci_dev *pdev = adapter->pdev;
 4139	int err;
 4140	int i;
 4141
 4142	/* disallow open during test */
 4143	if (test_bit(__IGB_TESTING, &adapter->state)) {
 4144		WARN_ON(resuming);
 4145		return -EBUSY;
 4146	}
 4147
 4148	if (!resuming)
 4149		pm_runtime_get_sync(&pdev->dev);
 4150
 4151	netif_carrier_off(netdev);
 4152
 4153	/* allocate transmit descriptors */
 4154	err = igb_setup_all_tx_resources(adapter);
 4155	if (err)
 4156		goto err_setup_tx;
 4157
 4158	/* allocate receive descriptors */
 4159	err = igb_setup_all_rx_resources(adapter);
 4160	if (err)
 4161		goto err_setup_rx;
 4162
 4163	igb_power_up_link(adapter);
 4164
 4165	/* before we allocate an interrupt, we must be ready to handle it.
 4166	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
 4167	 * as soon as we call pci_request_irq, so we have to setup our
 4168	 * clean_rx handler before we do so.
 4169	 */
 4170	igb_configure(adapter);
 4171
 4172	err = igb_request_irq(adapter);
 4173	if (err)
 4174		goto err_req_irq;
 4175
 4176	/* Notify the stack of the actual queue counts. */
 4177	err = netif_set_real_num_tx_queues(adapter->netdev,
 4178					   adapter->num_tx_queues);
 4179	if (err)
 4180		goto err_set_queues;
 4181
 4182	err = netif_set_real_num_rx_queues(adapter->netdev,
 4183					   adapter->num_rx_queues);
 4184	if (err)
 4185		goto err_set_queues;
 4186
 4187	/* From here on the code is the same as igb_up() */
 4188	clear_bit(__IGB_DOWN, &adapter->state);
 4189
 4190	for (i = 0; i < adapter->num_q_vectors; i++)
 4191		napi_enable(&(adapter->q_vector[i]->napi));
 4192
 4193	/* Clear any pending interrupts. */
 4194	rd32(E1000_TSICR);
 4195	rd32(E1000_ICR);
 4196
 4197	igb_irq_enable(adapter);
 4198
 4199	/* notify VFs that reset has been completed */
 4200	if (adapter->vfs_allocated_count) {
 4201		u32 reg_data = rd32(E1000_CTRL_EXT);
 4202
 4203		reg_data |= E1000_CTRL_EXT_PFRSTD;
 4204		wr32(E1000_CTRL_EXT, reg_data);
 4205	}
 4206
 4207	netif_tx_start_all_queues(netdev);
 4208
 4209	if (!resuming)
 4210		pm_runtime_put(&pdev->dev);
 4211
 4212	/* start the watchdog. */
 4213	hw->mac.get_link_status = 1;
 4214	schedule_work(&adapter->watchdog_task);
 4215
 4216	return 0;
 4217
 4218err_set_queues:
 4219	igb_free_irq(adapter);
 4220err_req_irq:
 4221	igb_release_hw_control(adapter);
 4222	igb_power_down_link(adapter);
 4223	igb_free_all_rx_resources(adapter);
 4224err_setup_rx:
 4225	igb_free_all_tx_resources(adapter);
 4226err_setup_tx:
 4227	igb_reset(adapter);
 4228	if (!resuming)
 4229		pm_runtime_put(&pdev->dev);
 4230
 4231	return err;
 4232}
 4233
 4234int igb_open(struct net_device *netdev)
 4235{
 4236	return __igb_open(netdev, false);
 4237}
 4238
 4239/**
 4240 *  __igb_close - Disables a network interface
 4241 *  @netdev: network interface device structure
 4242 *  @suspending: indicates we are in a suspend call
 4243 *
 4244 *  Returns 0, this is not allowed to fail
 4245 *
 4246 *  The close entry point is called when an interface is de-activated
 4247 *  by the OS.  The hardware is still under the driver's control, but
 4248 *  needs to be disabled.  A global MAC reset is issued to stop the
 4249 *  hardware, and all transmit and receive resources are freed.
 4250 **/
 4251static int __igb_close(struct net_device *netdev, bool suspending)
 4252{
 4253	struct igb_adapter *adapter = netdev_priv(netdev);
 4254	struct pci_dev *pdev = adapter->pdev;
 4255
 4256	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
 4257
 4258	if (!suspending)
 4259		pm_runtime_get_sync(&pdev->dev);
 4260
 4261	igb_down(adapter);
 4262	igb_free_irq(adapter);
 4263
 4264	igb_free_all_tx_resources(adapter);
 4265	igb_free_all_rx_resources(adapter);
 4266
 4267	if (!suspending)
 4268		pm_runtime_put_sync(&pdev->dev);
 4269	return 0;
 4270}
 4271
 4272int igb_close(struct net_device *netdev)
 4273{
 4274	if (netif_device_present(netdev) || netdev->dismantle)
 4275		return __igb_close(netdev, false);
 4276	return 0;
 4277}
 4278
 4279/**
 4280 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 4281 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
 4282 *
 4283 *  Return 0 on success, negative on failure
 4284 **/
 4285int igb_setup_tx_resources(struct igb_ring *tx_ring)
 4286{
 4287	struct device *dev = tx_ring->dev;
 4288	int size;
 4289
 4290	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
 4291
 4292	tx_ring->tx_buffer_info = vmalloc(size);
 4293	if (!tx_ring->tx_buffer_info)
 4294		goto err;
 4295
 4296	/* round up to nearest 4K */
 4297	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 4298	tx_ring->size = ALIGN(tx_ring->size, 4096);
 4299
 4300	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 4301					   &tx_ring->dma, GFP_KERNEL);
 4302	if (!tx_ring->desc)
 4303		goto err;
 4304
 4305	tx_ring->next_to_use = 0;
 4306	tx_ring->next_to_clean = 0;
 4307
 4308	return 0;
 4309
 4310err:
 4311	vfree(tx_ring->tx_buffer_info);
 4312	tx_ring->tx_buffer_info = NULL;
 4313	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
 4314	return -ENOMEM;
 4315}
 4316
 4317/**
 4318 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 4319 *				 (Descriptors) for all queues
 4320 *  @adapter: board private structure
 4321 *
 4322 *  Return 0 on success, negative on failure
 4323 **/
 4324static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
 4325{
 4326	struct pci_dev *pdev = adapter->pdev;
 4327	int i, err = 0;
 4328
 4329	for (i = 0; i < adapter->num_tx_queues; i++) {
 4330		err = igb_setup_tx_resources(adapter->tx_ring[i]);
 4331		if (err) {
 4332			dev_err(&pdev->dev,
 4333				"Allocation for Tx Queue %u failed\n", i);
 4334			for (i--; i >= 0; i--)
 4335				igb_free_tx_resources(adapter->tx_ring[i]);
 4336			break;
 4337		}
 4338	}
 4339
 4340	return err;
 4341}
 4342
 4343/**
 4344 *  igb_setup_tctl - configure the transmit control registers
 4345 *  @adapter: Board private structure
 4346 **/
 4347void igb_setup_tctl(struct igb_adapter *adapter)
 4348{
 4349	struct e1000_hw *hw = &adapter->hw;
 4350	u32 tctl;
 4351
 4352	/* disable queue 0 which is enabled by default on 82575 and 82576 */
 4353	wr32(E1000_TXDCTL(0), 0);
 4354
 4355	/* Program the Transmit Control Register */
 4356	tctl = rd32(E1000_TCTL);
 4357	tctl &= ~E1000_TCTL_CT;
 4358	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
 4359		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
 4360
 4361	igb_config_collision_dist(hw);
 4362
 4363	/* Enable transmits */
 4364	tctl |= E1000_TCTL_EN;
 4365
 4366	wr32(E1000_TCTL, tctl);
 4367}
 4368
 4369/**
 4370 *  igb_configure_tx_ring - Configure transmit ring after Reset
 4371 *  @adapter: board private structure
 4372 *  @ring: tx ring to configure
 4373 *
 4374 *  Configure a transmit ring after a reset.
 4375 **/
 4376void igb_configure_tx_ring(struct igb_adapter *adapter,
 4377			   struct igb_ring *ring)
 4378{
 4379	struct e1000_hw *hw = &adapter->hw;
 4380	u32 txdctl = 0;
 4381	u64 tdba = ring->dma;
 4382	int reg_idx = ring->reg_idx;
 4383
 
 
 
 
 
 4384	wr32(E1000_TDLEN(reg_idx),
 4385	     ring->count * sizeof(union e1000_adv_tx_desc));
 4386	wr32(E1000_TDBAL(reg_idx),
 4387	     tdba & 0x00000000ffffffffULL);
 4388	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
 4389
 4390	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
 4391	wr32(E1000_TDH(reg_idx), 0);
 4392	writel(0, ring->tail);
 4393
 4394	txdctl |= IGB_TX_PTHRESH;
 4395	txdctl |= IGB_TX_HTHRESH << 8;
 4396	txdctl |= IGB_TX_WTHRESH << 16;
 4397
 4398	/* reinitialize tx_buffer_info */
 4399	memset(ring->tx_buffer_info, 0,
 4400	       sizeof(struct igb_tx_buffer) * ring->count);
 4401
 4402	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
 4403	wr32(E1000_TXDCTL(reg_idx), txdctl);
 4404}
 4405
 4406/**
 4407 *  igb_configure_tx - Configure transmit Unit after Reset
 4408 *  @adapter: board private structure
 4409 *
 4410 *  Configure the Tx unit of the MAC after a reset.
 4411 **/
 4412static void igb_configure_tx(struct igb_adapter *adapter)
 4413{
 4414	struct e1000_hw *hw = &adapter->hw;
 4415	int i;
 4416
 4417	/* disable the queues */
 4418	for (i = 0; i < adapter->num_tx_queues; i++)
 4419		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
 4420
 4421	wrfl();
 4422	usleep_range(10000, 20000);
 4423
 4424	for (i = 0; i < adapter->num_tx_queues; i++)
 4425		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
 4426}
 4427
 4428/**
 4429 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 4430 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
 4431 *
 4432 *  Returns 0 on success, negative on failure
 4433 **/
 4434int igb_setup_rx_resources(struct igb_ring *rx_ring)
 4435{
 4436	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
 4437	struct device *dev = rx_ring->dev;
 4438	int size, res;
 4439
 4440	/* XDP RX-queue info */
 4441	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 4442		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4443	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
 4444			       rx_ring->queue_index, 0);
 4445	if (res < 0) {
 4446		dev_err(dev, "Failed to register xdp_rxq index %u\n",
 4447			rx_ring->queue_index);
 4448		return res;
 4449	}
 4450
 4451	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
 4452
 4453	rx_ring->rx_buffer_info = vmalloc(size);
 4454	if (!rx_ring->rx_buffer_info)
 4455		goto err;
 4456
 4457	/* Round up to nearest 4K */
 4458	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
 4459	rx_ring->size = ALIGN(rx_ring->size, 4096);
 4460
 4461	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 4462					   &rx_ring->dma, GFP_KERNEL);
 4463	if (!rx_ring->desc)
 4464		goto err;
 4465
 4466	rx_ring->next_to_alloc = 0;
 4467	rx_ring->next_to_clean = 0;
 4468	rx_ring->next_to_use = 0;
 4469
 4470	rx_ring->xdp_prog = adapter->xdp_prog;
 4471
 4472	return 0;
 4473
 4474err:
 4475	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4476	vfree(rx_ring->rx_buffer_info);
 4477	rx_ring->rx_buffer_info = NULL;
 4478	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
 4479	return -ENOMEM;
 4480}
 4481
 4482/**
 4483 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 4484 *				 (Descriptors) for all queues
 4485 *  @adapter: board private structure
 4486 *
 4487 *  Return 0 on success, negative on failure
 4488 **/
 4489static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
 4490{
 4491	struct pci_dev *pdev = adapter->pdev;
 4492	int i, err = 0;
 4493
 4494	for (i = 0; i < adapter->num_rx_queues; i++) {
 4495		err = igb_setup_rx_resources(adapter->rx_ring[i]);
 4496		if (err) {
 4497			dev_err(&pdev->dev,
 4498				"Allocation for Rx Queue %u failed\n", i);
 4499			for (i--; i >= 0; i--)
 4500				igb_free_rx_resources(adapter->rx_ring[i]);
 4501			break;
 4502		}
 4503	}
 4504
 4505	return err;
 4506}
 4507
 4508/**
 4509 *  igb_setup_mrqc - configure the multiple receive queue control registers
 4510 *  @adapter: Board private structure
 4511 **/
 4512static void igb_setup_mrqc(struct igb_adapter *adapter)
 4513{
 4514	struct e1000_hw *hw = &adapter->hw;
 4515	u32 mrqc, rxcsum;
 4516	u32 j, num_rx_queues;
 4517	u32 rss_key[10];
 4518
 4519	netdev_rss_key_fill(rss_key, sizeof(rss_key));
 4520	for (j = 0; j < 10; j++)
 4521		wr32(E1000_RSSRK(j), rss_key[j]);
 4522
 4523	num_rx_queues = adapter->rss_queues;
 4524
 4525	switch (hw->mac.type) {
 4526	case e1000_82576:
 4527		/* 82576 supports 2 RSS queues for SR-IOV */
 4528		if (adapter->vfs_allocated_count)
 4529			num_rx_queues = 2;
 4530		break;
 4531	default:
 4532		break;
 4533	}
 4534
 4535	if (adapter->rss_indir_tbl_init != num_rx_queues) {
 4536		for (j = 0; j < IGB_RETA_SIZE; j++)
 4537			adapter->rss_indir_tbl[j] =
 4538			(j * num_rx_queues) / IGB_RETA_SIZE;
 4539		adapter->rss_indir_tbl_init = num_rx_queues;
 4540	}
 4541	igb_write_rss_indir_tbl(adapter);
 4542
 4543	/* Disable raw packet checksumming so that RSS hash is placed in
 4544	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
 4545	 * offloads as they are enabled by default
 4546	 */
 4547	rxcsum = rd32(E1000_RXCSUM);
 4548	rxcsum |= E1000_RXCSUM_PCSD;
 4549
 4550	if (adapter->hw.mac.type >= e1000_82576)
 4551		/* Enable Receive Checksum Offload for SCTP */
 4552		rxcsum |= E1000_RXCSUM_CRCOFL;
 4553
 4554	/* Don't need to set TUOFL or IPOFL, they default to 1 */
 4555	wr32(E1000_RXCSUM, rxcsum);
 4556
 4557	/* Generate RSS hash based on packet types, TCP/UDP
 4558	 * port numbers and/or IPv4/v6 src and dst addresses
 4559	 */
 4560	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
 4561	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
 4562	       E1000_MRQC_RSS_FIELD_IPV6 |
 4563	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
 4564	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
 4565
 4566	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
 4567		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
 4568	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
 4569		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
 4570
 4571	/* If VMDq is enabled then we set the appropriate mode for that, else
 4572	 * we default to RSS so that an RSS hash is calculated per packet even
 4573	 * if we are only using one queue
 4574	 */
 4575	if (adapter->vfs_allocated_count) {
 4576		if (hw->mac.type > e1000_82575) {
 4577			/* Set the default pool for the PF's first queue */
 4578			u32 vtctl = rd32(E1000_VT_CTL);
 4579
 4580			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
 4581				   E1000_VT_CTL_DISABLE_DEF_POOL);
 4582			vtctl |= adapter->vfs_allocated_count <<
 4583				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
 4584			wr32(E1000_VT_CTL, vtctl);
 4585		}
 4586		if (adapter->rss_queues > 1)
 4587			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
 4588		else
 4589			mrqc |= E1000_MRQC_ENABLE_VMDQ;
 4590	} else {
 4591		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
 
 4592	}
 4593	igb_vmm_control(adapter);
 4594
 4595	wr32(E1000_MRQC, mrqc);
 4596}
 4597
 4598/**
 4599 *  igb_setup_rctl - configure the receive control registers
 4600 *  @adapter: Board private structure
 4601 **/
 4602void igb_setup_rctl(struct igb_adapter *adapter)
 4603{
 4604	struct e1000_hw *hw = &adapter->hw;
 4605	u32 rctl;
 4606
 4607	rctl = rd32(E1000_RCTL);
 4608
 4609	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 4610	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
 4611
 4612	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
 4613		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
 4614
 4615	/* enable stripping of CRC. It's unlikely this will break BMC
 4616	 * redirection as it did with e1000. Newer features require
 4617	 * that the HW strips the CRC.
 4618	 */
 4619	rctl |= E1000_RCTL_SECRC;
 4620
 4621	/* disable store bad packets and clear size bits. */
 4622	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
 4623
 4624	/* enable LPE to allow for reception of jumbo frames */
 4625	rctl |= E1000_RCTL_LPE;
 4626
 4627	/* disable queue 0 to prevent tail write w/o re-config */
 4628	wr32(E1000_RXDCTL(0), 0);
 4629
 4630	/* Attention!!!  For SR-IOV PF driver operations you must enable
 4631	 * queue drop for all VF and PF queues to prevent head of line blocking
 4632	 * if an un-trusted VF does not provide descriptors to hardware.
 4633	 */
 4634	if (adapter->vfs_allocated_count) {
 4635		/* set all queue drop enable bits */
 4636		wr32(E1000_QDE, ALL_QUEUES);
 4637	}
 4638
 4639	/* This is useful for sniffing bad packets. */
 4640	if (adapter->netdev->features & NETIF_F_RXALL) {
 4641		/* UPE and MPE will be handled by normal PROMISC logic
 4642		 * in e1000e_set_rx_mode
 4643		 */
 4644		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
 4645			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
 4646			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
 4647
 4648		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
 4649			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
 4650		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
 4651		 * and that breaks VLANs.
 4652		 */
 4653	}
 4654
 4655	wr32(E1000_RCTL, rctl);
 4656}
 4657
 4658static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
 4659				   int vfn)
 4660{
 4661	struct e1000_hw *hw = &adapter->hw;
 4662	u32 vmolr;
 4663
 4664	if (size > MAX_JUMBO_FRAME_SIZE)
 4665		size = MAX_JUMBO_FRAME_SIZE;
 4666
 4667	vmolr = rd32(E1000_VMOLR(vfn));
 4668	vmolr &= ~E1000_VMOLR_RLPML_MASK;
 4669	vmolr |= size | E1000_VMOLR_LPE;
 4670	wr32(E1000_VMOLR(vfn), vmolr);
 4671
 4672	return 0;
 4673}
 4674
 4675static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
 4676					 int vfn, bool enable)
 4677{
 4678	struct e1000_hw *hw = &adapter->hw;
 4679	u32 val, reg;
 4680
 4681	if (hw->mac.type < e1000_82576)
 4682		return;
 4683
 4684	if (hw->mac.type == e1000_i350)
 4685		reg = E1000_DVMOLR(vfn);
 4686	else
 4687		reg = E1000_VMOLR(vfn);
 4688
 4689	val = rd32(reg);
 4690	if (enable)
 4691		val |= E1000_VMOLR_STRVLAN;
 4692	else
 4693		val &= ~(E1000_VMOLR_STRVLAN);
 4694	wr32(reg, val);
 4695}
 4696
 4697static inline void igb_set_vmolr(struct igb_adapter *adapter,
 4698				 int vfn, bool aupe)
 4699{
 4700	struct e1000_hw *hw = &adapter->hw;
 4701	u32 vmolr;
 4702
 4703	/* This register exists only on 82576 and newer so if we are older then
 4704	 * we should exit and do nothing
 4705	 */
 4706	if (hw->mac.type < e1000_82576)
 4707		return;
 4708
 4709	vmolr = rd32(E1000_VMOLR(vfn));
 4710	if (aupe)
 4711		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
 4712	else
 4713		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
 4714
 4715	/* clear all bits that might not be set */
 4716	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
 4717
 4718	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
 4719		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
 4720	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
 4721	 * multicast packets
 4722	 */
 4723	if (vfn <= adapter->vfs_allocated_count)
 4724		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
 4725
 4726	wr32(E1000_VMOLR(vfn), vmolr);
 4727}
 4728
 4729/**
 4730 *  igb_setup_srrctl - configure the split and replication receive control
 4731 *                     registers
 4732 *  @adapter: Board private structure
 4733 *  @ring: receive ring to be configured
 4734 **/
 4735void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
 4736{
 4737	struct e1000_hw *hw = &adapter->hw;
 4738	int reg_idx = ring->reg_idx;
 4739	u32 srrctl = 0;
 4740
 4741	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
 4742	if (ring_uses_large_buffer(ring))
 4743		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
 4744	else
 4745		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
 4746	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
 4747	if (hw->mac.type >= e1000_82580)
 4748		srrctl |= E1000_SRRCTL_TIMESTAMP;
 4749	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
 4750	 * queues and rx flow control is disabled
 4751	 */
 4752	if (adapter->vfs_allocated_count ||
 4753	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
 4754	     adapter->num_rx_queues > 1))
 4755		srrctl |= E1000_SRRCTL_DROP_EN;
 4756
 4757	wr32(E1000_SRRCTL(reg_idx), srrctl);
 4758}
 4759
 4760/**
 4761 *  igb_configure_rx_ring - Configure a receive ring after Reset
 4762 *  @adapter: board private structure
 4763 *  @ring: receive ring to be configured
 4764 *
 4765 *  Configure the Rx unit of the MAC after a reset.
 4766 **/
 4767void igb_configure_rx_ring(struct igb_adapter *adapter,
 4768			   struct igb_ring *ring)
 4769{
 4770	struct e1000_hw *hw = &adapter->hw;
 4771	union e1000_adv_rx_desc *rx_desc;
 4772	u64 rdba = ring->dma;
 4773	int reg_idx = ring->reg_idx;
 4774	u32 rxdctl = 0;
 4775
 4776	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
 4777	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 4778					   MEM_TYPE_PAGE_SHARED, NULL));
 4779
 4780	/* disable the queue */
 4781	wr32(E1000_RXDCTL(reg_idx), 0);
 4782
 4783	/* Set DMA base address registers */
 4784	wr32(E1000_RDBAL(reg_idx),
 4785	     rdba & 0x00000000ffffffffULL);
 4786	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
 4787	wr32(E1000_RDLEN(reg_idx),
 4788	     ring->count * sizeof(union e1000_adv_rx_desc));
 4789
 4790	/* initialize head and tail */
 4791	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
 4792	wr32(E1000_RDH(reg_idx), 0);
 4793	writel(0, ring->tail);
 4794
 4795	/* set descriptor configuration */
 4796	igb_setup_srrctl(adapter, ring);
 
 
 
 
 
 
 
 
 
 4797
 4798	/* set filtering for VMDQ pools */
 4799	igb_set_vmolr(adapter, reg_idx & 0x7, true);
 4800
 4801	rxdctl |= IGB_RX_PTHRESH;
 4802	rxdctl |= IGB_RX_HTHRESH << 8;
 4803	rxdctl |= IGB_RX_WTHRESH << 16;
 4804
 4805	/* initialize rx_buffer_info */
 4806	memset(ring->rx_buffer_info, 0,
 4807	       sizeof(struct igb_rx_buffer) * ring->count);
 4808
 4809	/* initialize Rx descriptor 0 */
 4810	rx_desc = IGB_RX_DESC(ring, 0);
 4811	rx_desc->wb.upper.length = 0;
 4812
 4813	/* enable receive descriptor fetching */
 4814	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
 4815	wr32(E1000_RXDCTL(reg_idx), rxdctl);
 4816}
 4817
 4818static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
 4819				  struct igb_ring *rx_ring)
 4820{
 4821#if (PAGE_SIZE < 8192)
 4822	struct e1000_hw *hw = &adapter->hw;
 4823#endif
 4824
 4825	/* set build_skb and buffer size flags */
 4826	clear_ring_build_skb_enabled(rx_ring);
 4827	clear_ring_uses_large_buffer(rx_ring);
 4828
 4829	if (adapter->flags & IGB_FLAG_RX_LEGACY)
 4830		return;
 4831
 4832	set_ring_build_skb_enabled(rx_ring);
 4833
 4834#if (PAGE_SIZE < 8192)
 4835	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
 4836	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
 4837		set_ring_uses_large_buffer(rx_ring);
 4838#endif
 4839}
 4840
 4841/**
 4842 *  igb_configure_rx - Configure receive Unit after Reset
 4843 *  @adapter: board private structure
 4844 *
 4845 *  Configure the Rx unit of the MAC after a reset.
 4846 **/
 4847static void igb_configure_rx(struct igb_adapter *adapter)
 4848{
 4849	int i;
 4850
 4851	/* set the correct pool for the PF default MAC address in entry 0 */
 4852	igb_set_default_mac_filter(adapter);
 
 4853
 4854	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 4855	 * the Base and Length of the Rx Descriptor Ring
 4856	 */
 4857	for (i = 0; i < adapter->num_rx_queues; i++) {
 4858		struct igb_ring *rx_ring = adapter->rx_ring[i];
 4859
 4860		igb_set_rx_buffer_len(adapter, rx_ring);
 4861		igb_configure_rx_ring(adapter, rx_ring);
 4862	}
 4863}
 4864
 4865/**
 4866 *  igb_free_tx_resources - Free Tx Resources per Queue
 4867 *  @tx_ring: Tx descriptor ring for a specific queue
 4868 *
 4869 *  Free all transmit software resources
 4870 **/
 4871void igb_free_tx_resources(struct igb_ring *tx_ring)
 4872{
 4873	igb_clean_tx_ring(tx_ring);
 4874
 4875	vfree(tx_ring->tx_buffer_info);
 4876	tx_ring->tx_buffer_info = NULL;
 4877
 4878	/* if not set, then don't free */
 4879	if (!tx_ring->desc)
 4880		return;
 4881
 4882	dma_free_coherent(tx_ring->dev, tx_ring->size,
 4883			  tx_ring->desc, tx_ring->dma);
 4884
 4885	tx_ring->desc = NULL;
 4886}
 4887
 4888/**
 4889 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 4890 *  @adapter: board private structure
 4891 *
 4892 *  Free all transmit software resources
 4893 **/
 4894static void igb_free_all_tx_resources(struct igb_adapter *adapter)
 4895{
 4896	int i;
 4897
 4898	for (i = 0; i < adapter->num_tx_queues; i++)
 4899		if (adapter->tx_ring[i])
 4900			igb_free_tx_resources(adapter->tx_ring[i]);
 4901}
 4902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4903/**
 4904 *  igb_clean_tx_ring - Free Tx Buffers
 4905 *  @tx_ring: ring to be cleaned
 4906 **/
 4907static void igb_clean_tx_ring(struct igb_ring *tx_ring)
 4908{
 4909	u16 i = tx_ring->next_to_clean;
 4910	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
 4911
 4912	while (i != tx_ring->next_to_use) {
 4913		union e1000_adv_tx_desc *eop_desc, *tx_desc;
 4914
 4915		/* Free all the Tx ring sk_buffs or xdp frames */
 4916		if (tx_buffer->type == IGB_TYPE_SKB)
 4917			dev_kfree_skb_any(tx_buffer->skb);
 4918		else
 4919			xdp_return_frame(tx_buffer->xdpf);
 4920
 4921		/* unmap skb header data */
 4922		dma_unmap_single(tx_ring->dev,
 4923				 dma_unmap_addr(tx_buffer, dma),
 4924				 dma_unmap_len(tx_buffer, len),
 4925				 DMA_TO_DEVICE);
 4926
 4927		/* check for eop_desc to determine the end of the packet */
 4928		eop_desc = tx_buffer->next_to_watch;
 4929		tx_desc = IGB_TX_DESC(tx_ring, i);
 4930
 4931		/* unmap remaining buffers */
 4932		while (tx_desc != eop_desc) {
 4933			tx_buffer++;
 4934			tx_desc++;
 4935			i++;
 4936			if (unlikely(i == tx_ring->count)) {
 4937				i = 0;
 4938				tx_buffer = tx_ring->tx_buffer_info;
 4939				tx_desc = IGB_TX_DESC(tx_ring, 0);
 4940			}
 4941
 4942			/* unmap any remaining paged data */
 4943			if (dma_unmap_len(tx_buffer, len))
 4944				dma_unmap_page(tx_ring->dev,
 4945					       dma_unmap_addr(tx_buffer, dma),
 4946					       dma_unmap_len(tx_buffer, len),
 4947					       DMA_TO_DEVICE);
 4948		}
 4949
 4950		tx_buffer->next_to_watch = NULL;
 4951
 4952		/* move us one more past the eop_desc for start of next pkt */
 4953		tx_buffer++;
 4954		i++;
 4955		if (unlikely(i == tx_ring->count)) {
 4956			i = 0;
 4957			tx_buffer = tx_ring->tx_buffer_info;
 4958		}
 4959	}
 4960
 4961	/* reset BQL for queue */
 4962	netdev_tx_reset_queue(txring_txq(tx_ring));
 4963
 4964	/* reset next_to_use and next_to_clean */
 
 
 
 
 
 4965	tx_ring->next_to_use = 0;
 4966	tx_ring->next_to_clean = 0;
 4967}
 4968
 4969/**
 4970 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 4971 *  @adapter: board private structure
 4972 **/
 4973static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
 4974{
 4975	int i;
 4976
 4977	for (i = 0; i < adapter->num_tx_queues; i++)
 4978		if (adapter->tx_ring[i])
 4979			igb_clean_tx_ring(adapter->tx_ring[i]);
 4980}
 4981
 4982/**
 4983 *  igb_free_rx_resources - Free Rx Resources
 4984 *  @rx_ring: ring to clean the resources from
 4985 *
 4986 *  Free all receive software resources
 4987 **/
 4988void igb_free_rx_resources(struct igb_ring *rx_ring)
 4989{
 4990	igb_clean_rx_ring(rx_ring);
 4991
 4992	rx_ring->xdp_prog = NULL;
 4993	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4994	vfree(rx_ring->rx_buffer_info);
 4995	rx_ring->rx_buffer_info = NULL;
 4996
 4997	/* if not set, then don't free */
 4998	if (!rx_ring->desc)
 4999		return;
 5000
 5001	dma_free_coherent(rx_ring->dev, rx_ring->size,
 5002			  rx_ring->desc, rx_ring->dma);
 5003
 5004	rx_ring->desc = NULL;
 5005}
 5006
 5007/**
 5008 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 5009 *  @adapter: board private structure
 5010 *
 5011 *  Free all receive software resources
 5012 **/
 5013static void igb_free_all_rx_resources(struct igb_adapter *adapter)
 5014{
 5015	int i;
 5016
 5017	for (i = 0; i < adapter->num_rx_queues; i++)
 5018		if (adapter->rx_ring[i])
 5019			igb_free_rx_resources(adapter->rx_ring[i]);
 5020}
 5021
 5022/**
 5023 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 5024 *  @rx_ring: ring to free buffers from
 5025 **/
 5026static void igb_clean_rx_ring(struct igb_ring *rx_ring)
 5027{
 5028	u16 i = rx_ring->next_to_clean;
 
 5029
 5030	dev_kfree_skb(rx_ring->skb);
 
 5031	rx_ring->skb = NULL;
 5032
 
 
 
 5033	/* Free all the Rx ring sk_buffs */
 5034	while (i != rx_ring->next_to_alloc) {
 5035		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
 5036
 5037		/* Invalidate cache lines that may have been written to by
 5038		 * device so that we avoid corrupting memory.
 5039		 */
 5040		dma_sync_single_range_for_cpu(rx_ring->dev,
 5041					      buffer_info->dma,
 5042					      buffer_info->page_offset,
 5043					      igb_rx_bufsz(rx_ring),
 5044					      DMA_FROM_DEVICE);
 5045
 5046		/* free resources associated with mapping */
 5047		dma_unmap_page_attrs(rx_ring->dev,
 5048				     buffer_info->dma,
 5049				     igb_rx_pg_size(rx_ring),
 5050				     DMA_FROM_DEVICE,
 5051				     IGB_RX_DMA_ATTR);
 5052		__page_frag_cache_drain(buffer_info->page,
 5053					buffer_info->pagecnt_bias);
 5054
 5055		i++;
 5056		if (i == rx_ring->count)
 5057			i = 0;
 
 
 
 
 5058	}
 5059
 
 
 
 
 
 
 5060	rx_ring->next_to_alloc = 0;
 5061	rx_ring->next_to_clean = 0;
 5062	rx_ring->next_to_use = 0;
 5063}
 5064
 5065/**
 5066 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 5067 *  @adapter: board private structure
 5068 **/
 5069static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
 5070{
 5071	int i;
 5072
 5073	for (i = 0; i < adapter->num_rx_queues; i++)
 5074		if (adapter->rx_ring[i])
 5075			igb_clean_rx_ring(adapter->rx_ring[i]);
 5076}
 5077
 5078/**
 5079 *  igb_set_mac - Change the Ethernet Address of the NIC
 5080 *  @netdev: network interface device structure
 5081 *  @p: pointer to an address structure
 5082 *
 5083 *  Returns 0 on success, negative on failure
 5084 **/
 5085static int igb_set_mac(struct net_device *netdev, void *p)
 5086{
 5087	struct igb_adapter *adapter = netdev_priv(netdev);
 5088	struct e1000_hw *hw = &adapter->hw;
 5089	struct sockaddr *addr = p;
 5090
 5091	if (!is_valid_ether_addr(addr->sa_data))
 5092		return -EADDRNOTAVAIL;
 5093
 5094	eth_hw_addr_set(netdev, addr->sa_data);
 5095	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
 5096
 5097	/* set the correct pool for the new PF MAC address in entry 0 */
 5098	igb_set_default_mac_filter(adapter);
 
 5099
 5100	return 0;
 5101}
 5102
 5103/**
 5104 *  igb_write_mc_addr_list - write multicast addresses to MTA
 5105 *  @netdev: network interface device structure
 5106 *
 5107 *  Writes multicast address list to the MTA hash table.
 5108 *  Returns: -ENOMEM on failure
 5109 *           0 on no addresses written
 5110 *           X on writing X addresses to MTA
 5111 **/
 5112static int igb_write_mc_addr_list(struct net_device *netdev)
 5113{
 5114	struct igb_adapter *adapter = netdev_priv(netdev);
 5115	struct e1000_hw *hw = &adapter->hw;
 5116	struct netdev_hw_addr *ha;
 5117	u8  *mta_list;
 5118	int i;
 5119
 5120	if (netdev_mc_empty(netdev)) {
 5121		/* nothing to program, so clear mc list */
 5122		igb_update_mc_addr_list(hw, NULL, 0);
 5123		igb_restore_vf_multicasts(adapter);
 5124		return 0;
 5125	}
 5126
 5127	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
 5128	if (!mta_list)
 5129		return -ENOMEM;
 5130
 5131	/* The shared function expects a packed array of only addresses. */
 5132	i = 0;
 5133	netdev_for_each_mc_addr(ha, netdev)
 5134		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
 5135
 5136	igb_update_mc_addr_list(hw, mta_list, i);
 5137	kfree(mta_list);
 5138
 5139	return netdev_mc_count(netdev);
 5140}
 5141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5142static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
 5143{
 5144	struct e1000_hw *hw = &adapter->hw;
 5145	u32 i, pf_id;
 5146
 5147	switch (hw->mac.type) {
 5148	case e1000_i210:
 5149	case e1000_i211:
 5150	case e1000_i350:
 5151		/* VLAN filtering needed for VLAN prio filter */
 5152		if (adapter->netdev->features & NETIF_F_NTUPLE)
 5153			break;
 5154		fallthrough;
 5155	case e1000_82576:
 5156	case e1000_82580:
 5157	case e1000_i354:
 5158		/* VLAN filtering needed for pool filtering */
 5159		if (adapter->vfs_allocated_count)
 5160			break;
 5161		fallthrough;
 5162	default:
 5163		return 1;
 5164	}
 5165
 5166	/* We are already in VLAN promisc, nothing to do */
 5167	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 5168		return 0;
 5169
 5170	if (!adapter->vfs_allocated_count)
 5171		goto set_vfta;
 5172
 5173	/* Add PF to all active pools */
 5174	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 5175
 5176	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
 5177		u32 vlvf = rd32(E1000_VLVF(i));
 5178
 5179		vlvf |= BIT(pf_id);
 5180		wr32(E1000_VLVF(i), vlvf);
 5181	}
 5182
 5183set_vfta:
 5184	/* Set all bits in the VLAN filter table array */
 5185	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
 5186		hw->mac.ops.write_vfta(hw, i, ~0U);
 5187
 5188	/* Set flag so we don't redo unnecessary work */
 5189	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
 5190
 5191	return 0;
 5192}
 5193
 5194#define VFTA_BLOCK_SIZE 8
 5195static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
 5196{
 5197	struct e1000_hw *hw = &adapter->hw;
 5198	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
 5199	u32 vid_start = vfta_offset * 32;
 5200	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
 5201	u32 i, vid, word, bits, pf_id;
 5202
 5203	/* guarantee that we don't scrub out management VLAN */
 5204	vid = adapter->mng_vlan_id;
 5205	if (vid >= vid_start && vid < vid_end)
 5206		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
 5207
 5208	if (!adapter->vfs_allocated_count)
 5209		goto set_vfta;
 5210
 5211	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 5212
 5213	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
 5214		u32 vlvf = rd32(E1000_VLVF(i));
 5215
 5216		/* pull VLAN ID from VLVF */
 5217		vid = vlvf & VLAN_VID_MASK;
 5218
 5219		/* only concern ourselves with a certain range */
 5220		if (vid < vid_start || vid >= vid_end)
 5221			continue;
 5222
 5223		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
 5224			/* record VLAN ID in VFTA */
 5225			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
 5226
 5227			/* if PF is part of this then continue */
 5228			if (test_bit(vid, adapter->active_vlans))
 5229				continue;
 5230		}
 5231
 5232		/* remove PF from the pool */
 5233		bits = ~BIT(pf_id);
 5234		bits &= rd32(E1000_VLVF(i));
 5235		wr32(E1000_VLVF(i), bits);
 5236	}
 5237
 5238set_vfta:
 5239	/* extract values from active_vlans and write back to VFTA */
 5240	for (i = VFTA_BLOCK_SIZE; i--;) {
 5241		vid = (vfta_offset + i) * 32;
 5242		word = vid / BITS_PER_LONG;
 5243		bits = vid % BITS_PER_LONG;
 5244
 5245		vfta[i] |= adapter->active_vlans[word] >> bits;
 5246
 5247		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
 5248	}
 5249}
 5250
 5251static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
 5252{
 5253	u32 i;
 5254
 5255	/* We are not in VLAN promisc, nothing to do */
 5256	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 5257		return;
 5258
 5259	/* Set flag so we don't redo unnecessary work */
 5260	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
 5261
 5262	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
 5263		igb_scrub_vfta(adapter, i);
 5264}
 5265
 5266/**
 5267 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 5268 *  @netdev: network interface device structure
 5269 *
 5270 *  The set_rx_mode entry point is called whenever the unicast or multicast
 5271 *  address lists or the network interface flags are updated.  This routine is
 5272 *  responsible for configuring the hardware for proper unicast, multicast,
 5273 *  promiscuous mode, and all-multi behavior.
 5274 **/
 5275static void igb_set_rx_mode(struct net_device *netdev)
 5276{
 5277	struct igb_adapter *adapter = netdev_priv(netdev);
 5278	struct e1000_hw *hw = &adapter->hw;
 5279	unsigned int vfn = adapter->vfs_allocated_count;
 5280	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
 5281	int count;
 5282
 5283	/* Check for Promiscuous and All Multicast modes */
 5284	if (netdev->flags & IFF_PROMISC) {
 5285		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
 5286		vmolr |= E1000_VMOLR_MPME;
 5287
 5288		/* enable use of UTA filter to force packets to default pool */
 5289		if (hw->mac.type == e1000_82576)
 5290			vmolr |= E1000_VMOLR_ROPE;
 5291	} else {
 5292		if (netdev->flags & IFF_ALLMULTI) {
 5293			rctl |= E1000_RCTL_MPE;
 5294			vmolr |= E1000_VMOLR_MPME;
 5295		} else {
 5296			/* Write addresses to the MTA, if the attempt fails
 5297			 * then we should just turn on promiscuous mode so
 5298			 * that we can at least receive multicast traffic
 5299			 */
 5300			count = igb_write_mc_addr_list(netdev);
 5301			if (count < 0) {
 5302				rctl |= E1000_RCTL_MPE;
 5303				vmolr |= E1000_VMOLR_MPME;
 5304			} else if (count) {
 5305				vmolr |= E1000_VMOLR_ROMPE;
 5306			}
 5307		}
 5308	}
 5309
 5310	/* Write addresses to available RAR registers, if there is not
 5311	 * sufficient space to store all the addresses then enable
 5312	 * unicast promiscuous mode
 5313	 */
 5314	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
 
 5315		rctl |= E1000_RCTL_UPE;
 5316		vmolr |= E1000_VMOLR_ROPE;
 5317	}
 5318
 5319	/* enable VLAN filtering by default */
 5320	rctl |= E1000_RCTL_VFE;
 5321
 5322	/* disable VLAN filtering for modes that require it */
 5323	if ((netdev->flags & IFF_PROMISC) ||
 5324	    (netdev->features & NETIF_F_RXALL)) {
 5325		/* if we fail to set all rules then just clear VFE */
 5326		if (igb_vlan_promisc_enable(adapter))
 5327			rctl &= ~E1000_RCTL_VFE;
 5328	} else {
 5329		igb_vlan_promisc_disable(adapter);
 5330	}
 5331
 5332	/* update state of unicast, multicast, and VLAN filtering modes */
 5333	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
 5334				     E1000_RCTL_VFE);
 5335	wr32(E1000_RCTL, rctl);
 5336
 5337#if (PAGE_SIZE < 8192)
 5338	if (!adapter->vfs_allocated_count) {
 5339		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
 5340			rlpml = IGB_MAX_FRAME_BUILD_SKB;
 5341	}
 5342#endif
 5343	wr32(E1000_RLPML, rlpml);
 5344
 5345	/* In order to support SR-IOV and eventually VMDq it is necessary to set
 5346	 * the VMOLR to enable the appropriate modes.  Without this workaround
 5347	 * we will have issues with VLAN tag stripping not being done for frames
 5348	 * that are only arriving because we are the default pool
 5349	 */
 5350	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
 5351		return;
 5352
 5353	/* set UTA to appropriate mode */
 5354	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
 5355
 5356	vmolr |= rd32(E1000_VMOLR(vfn)) &
 5357		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
 5358
 5359	/* enable Rx jumbo frames, restrict as needed to support build_skb */
 5360	vmolr &= ~E1000_VMOLR_RLPML_MASK;
 5361#if (PAGE_SIZE < 8192)
 5362	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
 5363		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
 5364	else
 5365#endif
 5366		vmolr |= MAX_JUMBO_FRAME_SIZE;
 5367	vmolr |= E1000_VMOLR_LPE;
 5368
 5369	wr32(E1000_VMOLR(vfn), vmolr);
 
 5370
 5371	igb_restore_vf_multicasts(adapter);
 5372}
 5373
 5374static void igb_check_wvbr(struct igb_adapter *adapter)
 5375{
 5376	struct e1000_hw *hw = &adapter->hw;
 5377	u32 wvbr = 0;
 5378
 5379	switch (hw->mac.type) {
 5380	case e1000_82576:
 5381	case e1000_i350:
 5382		wvbr = rd32(E1000_WVBR);
 5383		if (!wvbr)
 5384			return;
 5385		break;
 5386	default:
 5387		break;
 5388	}
 5389
 5390	adapter->wvbr |= wvbr;
 5391}
 5392
 5393#define IGB_STAGGERED_QUEUE_OFFSET 8
 5394
 5395static void igb_spoof_check(struct igb_adapter *adapter)
 5396{
 5397	int j;
 5398
 5399	if (!adapter->wvbr)
 5400		return;
 5401
 5402	for (j = 0; j < adapter->vfs_allocated_count; j++) {
 5403		if (adapter->wvbr & BIT(j) ||
 5404		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
 5405			dev_warn(&adapter->pdev->dev,
 5406				"Spoof event(s) detected on VF %d\n", j);
 5407			adapter->wvbr &=
 5408				~(BIT(j) |
 5409				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
 5410		}
 5411	}
 5412}
 5413
 5414/* Need to wait a few seconds after link up to get diagnostic information from
 5415 * the phy
 5416 */
 5417static void igb_update_phy_info(struct timer_list *t)
 5418{
 5419	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
 5420	igb_get_phy_info(&adapter->hw);
 5421}
 5422
 5423/**
 5424 *  igb_has_link - check shared code for link and determine up/down
 5425 *  @adapter: pointer to driver private info
 5426 **/
 5427bool igb_has_link(struct igb_adapter *adapter)
 5428{
 5429	struct e1000_hw *hw = &adapter->hw;
 5430	bool link_active = false;
 5431
 5432	/* get_link_status is set on LSC (link status) interrupt or
 5433	 * rx sequence error interrupt.  get_link_status will stay
 5434	 * false until the e1000_check_for_link establishes link
 5435	 * for copper adapters ONLY
 5436	 */
 5437	switch (hw->phy.media_type) {
 5438	case e1000_media_type_copper:
 5439		if (!hw->mac.get_link_status)
 5440			return true;
 5441		fallthrough;
 5442	case e1000_media_type_internal_serdes:
 5443		hw->mac.ops.check_for_link(hw);
 5444		link_active = !hw->mac.get_link_status;
 5445		break;
 5446	default:
 5447	case e1000_media_type_unknown:
 5448		break;
 5449	}
 5450
 5451	if (((hw->mac.type == e1000_i210) ||
 5452	     (hw->mac.type == e1000_i211)) &&
 5453	     (hw->phy.id == I210_I_PHY_ID)) {
 5454		if (!netif_carrier_ok(adapter->netdev)) {
 5455			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 5456		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
 5457			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
 5458			adapter->link_check_timeout = jiffies;
 5459		}
 5460	}
 5461
 5462	return link_active;
 5463}
 5464
 5465static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
 5466{
 5467	bool ret = false;
 5468	u32 ctrl_ext, thstat;
 5469
 5470	/* check for thermal sensor event on i350 copper only */
 5471	if (hw->mac.type == e1000_i350) {
 5472		thstat = rd32(E1000_THSTAT);
 5473		ctrl_ext = rd32(E1000_CTRL_EXT);
 5474
 5475		if ((hw->phy.media_type == e1000_media_type_copper) &&
 5476		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
 5477			ret = !!(thstat & event);
 5478	}
 5479
 5480	return ret;
 5481}
 5482
 5483/**
 5484 *  igb_check_lvmmc - check for malformed packets received
 5485 *  and indicated in LVMMC register
 5486 *  @adapter: pointer to adapter
 5487 **/
 5488static void igb_check_lvmmc(struct igb_adapter *adapter)
 5489{
 5490	struct e1000_hw *hw = &adapter->hw;
 5491	u32 lvmmc;
 5492
 5493	lvmmc = rd32(E1000_LVMMC);
 5494	if (lvmmc) {
 5495		if (unlikely(net_ratelimit())) {
 5496			netdev_warn(adapter->netdev,
 5497				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
 5498				    lvmmc);
 5499		}
 5500	}
 5501}
 5502
 5503/**
 5504 *  igb_watchdog - Timer Call-back
 5505 *  @t: pointer to timer_list containing our private info pointer
 5506 **/
 5507static void igb_watchdog(struct timer_list *t)
 5508{
 5509	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
 5510	/* Do the rest outside of interrupt context */
 5511	schedule_work(&adapter->watchdog_task);
 5512}
 5513
 5514static void igb_watchdog_task(struct work_struct *work)
 5515{
 5516	struct igb_adapter *adapter = container_of(work,
 5517						   struct igb_adapter,
 5518						   watchdog_task);
 5519	struct e1000_hw *hw = &adapter->hw;
 5520	struct e1000_phy_info *phy = &hw->phy;
 5521	struct net_device *netdev = adapter->netdev;
 5522	u32 link;
 5523	int i;
 5524	u32 connsw;
 5525	u16 phy_data, retry_count = 20;
 5526
 5527	link = igb_has_link(adapter);
 5528
 5529	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
 5530		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
 5531			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 5532		else
 5533			link = false;
 5534	}
 5535
 5536	/* Force link down if we have fiber to swap to */
 5537	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
 5538		if (hw->phy.media_type == e1000_media_type_copper) {
 5539			connsw = rd32(E1000_CONNSW);
 5540			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
 5541				link = 0;
 5542		}
 5543	}
 5544	if (link) {
 5545		/* Perform a reset if the media type changed. */
 5546		if (hw->dev_spec._82575.media_changed) {
 5547			hw->dev_spec._82575.media_changed = false;
 5548			adapter->flags |= IGB_FLAG_MEDIA_RESET;
 5549			igb_reset(adapter);
 5550		}
 5551		/* Cancel scheduled suspend requests. */
 5552		pm_runtime_resume(netdev->dev.parent);
 5553
 5554		if (!netif_carrier_ok(netdev)) {
 5555			u32 ctrl;
 5556
 5557			hw->mac.ops.get_speed_and_duplex(hw,
 5558							 &adapter->link_speed,
 5559							 &adapter->link_duplex);
 5560
 5561			ctrl = rd32(E1000_CTRL);
 5562			/* Links status message must follow this format */
 5563			netdev_info(netdev,
 5564			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
 5565			       netdev->name,
 5566			       adapter->link_speed,
 5567			       adapter->link_duplex == FULL_DUPLEX ?
 5568			       "Full" : "Half",
 5569			       (ctrl & E1000_CTRL_TFCE) &&
 5570			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
 5571			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
 5572			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
 5573
 5574			/* disable EEE if enabled */
 5575			if ((adapter->flags & IGB_FLAG_EEE) &&
 5576				(adapter->link_duplex == HALF_DUPLEX)) {
 5577				dev_info(&adapter->pdev->dev,
 5578				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
 5579				adapter->hw.dev_spec._82575.eee_disable = true;
 5580				adapter->flags &= ~IGB_FLAG_EEE;
 5581			}
 5582
 5583			/* check if SmartSpeed worked */
 5584			igb_check_downshift(hw);
 5585			if (phy->speed_downgraded)
 5586				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
 5587
 5588			/* check for thermal sensor event */
 5589			if (igb_thermal_sensor_event(hw,
 5590			    E1000_THSTAT_LINK_THROTTLE))
 5591				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
 5592
 5593			/* adjust timeout factor according to speed/duplex */
 5594			adapter->tx_timeout_factor = 1;
 5595			switch (adapter->link_speed) {
 5596			case SPEED_10:
 5597				adapter->tx_timeout_factor = 14;
 5598				break;
 5599			case SPEED_100:
 5600				/* maybe add some timeout factor ? */
 5601				break;
 5602			}
 5603
 5604			if (adapter->link_speed != SPEED_1000 ||
 5605			    !hw->phy.ops.read_reg)
 5606				goto no_wait;
 5607
 5608			/* wait for Remote receiver status OK */
 5609retry_read_status:
 5610			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
 5611					      &phy_data)) {
 5612				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
 5613				    retry_count) {
 5614					msleep(100);
 5615					retry_count--;
 5616					goto retry_read_status;
 5617				} else if (!retry_count) {
 5618					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
 5619				}
 5620			} else {
 5621				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
 5622			}
 5623no_wait:
 5624			netif_carrier_on(netdev);
 5625
 5626			igb_ping_all_vfs(adapter);
 5627			igb_check_vf_rate_limit(adapter);
 5628
 5629			/* link state has changed, schedule phy info update */
 5630			if (!test_bit(__IGB_DOWN, &adapter->state))
 5631				mod_timer(&adapter->phy_info_timer,
 5632					  round_jiffies(jiffies + 2 * HZ));
 5633		}
 5634	} else {
 5635		if (netif_carrier_ok(netdev)) {
 5636			adapter->link_speed = 0;
 5637			adapter->link_duplex = 0;
 5638
 5639			/* check for thermal sensor event */
 5640			if (igb_thermal_sensor_event(hw,
 5641			    E1000_THSTAT_PWR_DOWN)) {
 5642				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
 5643			}
 5644
 5645			/* Links status message must follow this format */
 5646			netdev_info(netdev, "igb: %s NIC Link is Down\n",
 5647			       netdev->name);
 5648			netif_carrier_off(netdev);
 5649
 5650			igb_ping_all_vfs(adapter);
 5651
 5652			/* link state has changed, schedule phy info update */
 5653			if (!test_bit(__IGB_DOWN, &adapter->state))
 5654				mod_timer(&adapter->phy_info_timer,
 5655					  round_jiffies(jiffies + 2 * HZ));
 5656
 5657			/* link is down, time to check for alternate media */
 5658			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
 5659				igb_check_swap_media(adapter);
 5660				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 5661					schedule_work(&adapter->reset_task);
 5662					/* return immediately */
 5663					return;
 5664				}
 5665			}
 5666			pm_schedule_suspend(netdev->dev.parent,
 5667					    MSEC_PER_SEC * 5);
 5668
 5669		/* also check for alternate media here */
 5670		} else if (!netif_carrier_ok(netdev) &&
 5671			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
 5672			igb_check_swap_media(adapter);
 5673			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 5674				schedule_work(&adapter->reset_task);
 5675				/* return immediately */
 5676				return;
 5677			}
 5678		}
 5679	}
 5680
 5681	spin_lock(&adapter->stats64_lock);
 5682	igb_update_stats(adapter);
 5683	spin_unlock(&adapter->stats64_lock);
 5684
 5685	for (i = 0; i < adapter->num_tx_queues; i++) {
 5686		struct igb_ring *tx_ring = adapter->tx_ring[i];
 5687		if (!netif_carrier_ok(netdev)) {
 5688			/* We've lost link, so the controller stops DMA,
 5689			 * but we've got queued Tx work that's never going
 5690			 * to get done, so reset controller to flush Tx.
 5691			 * (Do the reset outside of interrupt context).
 5692			 */
 5693			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
 5694				adapter->tx_timeout_count++;
 5695				schedule_work(&adapter->reset_task);
 5696				/* return immediately since reset is imminent */
 5697				return;
 5698			}
 5699		}
 5700
 5701		/* Force detection of hung controller every watchdog period */
 5702		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
 5703	}
 5704
 5705	/* Cause software interrupt to ensure Rx ring is cleaned */
 5706	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 5707		u32 eics = 0;
 5708
 5709		for (i = 0; i < adapter->num_q_vectors; i++)
 5710			eics |= adapter->q_vector[i]->eims_value;
 5711		wr32(E1000_EICS, eics);
 5712	} else {
 5713		wr32(E1000_ICS, E1000_ICS_RXDMT0);
 5714	}
 5715
 5716	igb_spoof_check(adapter);
 5717	igb_ptp_rx_hang(adapter);
 5718	igb_ptp_tx_hang(adapter);
 5719
 5720	/* Check LVMMC register on i350/i354 only */
 5721	if ((adapter->hw.mac.type == e1000_i350) ||
 5722	    (adapter->hw.mac.type == e1000_i354))
 5723		igb_check_lvmmc(adapter);
 5724
 5725	/* Reset the timer */
 5726	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 5727		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
 5728			mod_timer(&adapter->watchdog_timer,
 5729				  round_jiffies(jiffies +  HZ));
 5730		else
 5731			mod_timer(&adapter->watchdog_timer,
 5732				  round_jiffies(jiffies + 2 * HZ));
 5733	}
 5734}
 5735
 5736enum latency_range {
 5737	lowest_latency = 0,
 5738	low_latency = 1,
 5739	bulk_latency = 2,
 5740	latency_invalid = 255
 5741};
 5742
 5743/**
 5744 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 5745 *  @q_vector: pointer to q_vector
 5746 *
 5747 *  Stores a new ITR value based on strictly on packet size.  This
 5748 *  algorithm is less sophisticated than that used in igb_update_itr,
 5749 *  due to the difficulty of synchronizing statistics across multiple
 5750 *  receive rings.  The divisors and thresholds used by this function
 5751 *  were determined based on theoretical maximum wire speed and testing
 5752 *  data, in order to minimize response time while increasing bulk
 5753 *  throughput.
 5754 *  This functionality is controlled by ethtool's coalescing settings.
 5755 *  NOTE:  This function is called only when operating in a multiqueue
 5756 *         receive environment.
 5757 **/
 5758static void igb_update_ring_itr(struct igb_q_vector *q_vector)
 5759{
 5760	int new_val = q_vector->itr_val;
 5761	int avg_wire_size = 0;
 5762	struct igb_adapter *adapter = q_vector->adapter;
 5763	unsigned int packets;
 5764
 5765	/* For non-gigabit speeds, just fix the interrupt rate at 4000
 5766	 * ints/sec - ITR timer value of 120 ticks.
 5767	 */
 5768	if (adapter->link_speed != SPEED_1000) {
 5769		new_val = IGB_4K_ITR;
 5770		goto set_itr_val;
 5771	}
 5772
 5773	packets = q_vector->rx.total_packets;
 5774	if (packets)
 5775		avg_wire_size = q_vector->rx.total_bytes / packets;
 5776
 5777	packets = q_vector->tx.total_packets;
 5778	if (packets)
 5779		avg_wire_size = max_t(u32, avg_wire_size,
 5780				      q_vector->tx.total_bytes / packets);
 5781
 5782	/* if avg_wire_size isn't set no work was done */
 5783	if (!avg_wire_size)
 5784		goto clear_counts;
 5785
 5786	/* Add 24 bytes to size to account for CRC, preamble, and gap */
 5787	avg_wire_size += 24;
 5788
 5789	/* Don't starve jumbo frames */
 5790	avg_wire_size = min(avg_wire_size, 3000);
 5791
 5792	/* Give a little boost to mid-size frames */
 5793	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
 5794		new_val = avg_wire_size / 3;
 5795	else
 5796		new_val = avg_wire_size / 2;
 5797
 5798	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 5799	if (new_val < IGB_20K_ITR &&
 5800	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
 5801	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
 5802		new_val = IGB_20K_ITR;
 5803
 5804set_itr_val:
 5805	if (new_val != q_vector->itr_val) {
 5806		q_vector->itr_val = new_val;
 5807		q_vector->set_itr = 1;
 5808	}
 5809clear_counts:
 5810	q_vector->rx.total_bytes = 0;
 5811	q_vector->rx.total_packets = 0;
 5812	q_vector->tx.total_bytes = 0;
 5813	q_vector->tx.total_packets = 0;
 5814}
 5815
 5816/**
 5817 *  igb_update_itr - update the dynamic ITR value based on statistics
 5818 *  @q_vector: pointer to q_vector
 5819 *  @ring_container: ring info to update the itr for
 5820 *
 5821 *  Stores a new ITR value based on packets and byte
 5822 *  counts during the last interrupt.  The advantage of per interrupt
 5823 *  computation is faster updates and more accurate ITR for the current
 5824 *  traffic pattern.  Constants in this function were computed
 5825 *  based on theoretical maximum wire speed and thresholds were set based
 5826 *  on testing data as well as attempting to minimize response time
 5827 *  while increasing bulk throughput.
 5828 *  This functionality is controlled by ethtool's coalescing settings.
 5829 *  NOTE:  These calculations are only valid when operating in a single-
 5830 *         queue environment.
 5831 **/
 5832static void igb_update_itr(struct igb_q_vector *q_vector,
 5833			   struct igb_ring_container *ring_container)
 5834{
 5835	unsigned int packets = ring_container->total_packets;
 5836	unsigned int bytes = ring_container->total_bytes;
 5837	u8 itrval = ring_container->itr;
 5838
 5839	/* no packets, exit with status unchanged */
 5840	if (packets == 0)
 5841		return;
 5842
 5843	switch (itrval) {
 5844	case lowest_latency:
 5845		/* handle TSO and jumbo frames */
 5846		if (bytes/packets > 8000)
 5847			itrval = bulk_latency;
 5848		else if ((packets < 5) && (bytes > 512))
 5849			itrval = low_latency;
 5850		break;
 5851	case low_latency:  /* 50 usec aka 20000 ints/s */
 5852		if (bytes > 10000) {
 5853			/* this if handles the TSO accounting */
 5854			if (bytes/packets > 8000)
 5855				itrval = bulk_latency;
 5856			else if ((packets < 10) || ((bytes/packets) > 1200))
 5857				itrval = bulk_latency;
 5858			else if ((packets > 35))
 5859				itrval = lowest_latency;
 5860		} else if (bytes/packets > 2000) {
 5861			itrval = bulk_latency;
 5862		} else if (packets <= 2 && bytes < 512) {
 5863			itrval = lowest_latency;
 5864		}
 5865		break;
 5866	case bulk_latency: /* 250 usec aka 4000 ints/s */
 5867		if (bytes > 25000) {
 5868			if (packets > 35)
 5869				itrval = low_latency;
 5870		} else if (bytes < 1500) {
 5871			itrval = low_latency;
 5872		}
 5873		break;
 5874	}
 5875
 5876	/* clear work counters since we have the values we need */
 5877	ring_container->total_bytes = 0;
 5878	ring_container->total_packets = 0;
 5879
 5880	/* write updated itr to ring container */
 5881	ring_container->itr = itrval;
 5882}
 5883
 5884static void igb_set_itr(struct igb_q_vector *q_vector)
 5885{
 5886	struct igb_adapter *adapter = q_vector->adapter;
 5887	u32 new_itr = q_vector->itr_val;
 5888	u8 current_itr = 0;
 5889
 5890	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
 5891	if (adapter->link_speed != SPEED_1000) {
 5892		current_itr = 0;
 5893		new_itr = IGB_4K_ITR;
 5894		goto set_itr_now;
 5895	}
 5896
 5897	igb_update_itr(q_vector, &q_vector->tx);
 5898	igb_update_itr(q_vector, &q_vector->rx);
 5899
 5900	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
 5901
 5902	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 5903	if (current_itr == lowest_latency &&
 5904	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
 5905	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
 5906		current_itr = low_latency;
 5907
 5908	switch (current_itr) {
 5909	/* counts and packets in update_itr are dependent on these numbers */
 5910	case lowest_latency:
 5911		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
 5912		break;
 5913	case low_latency:
 5914		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
 5915		break;
 5916	case bulk_latency:
 5917		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
 5918		break;
 5919	default:
 5920		break;
 5921	}
 5922
 5923set_itr_now:
 5924	if (new_itr != q_vector->itr_val) {
 5925		/* this attempts to bias the interrupt rate towards Bulk
 5926		 * by adding intermediate steps when interrupt rate is
 5927		 * increasing
 5928		 */
 5929		new_itr = new_itr > q_vector->itr_val ?
 5930			  max((new_itr * q_vector->itr_val) /
 5931			  (new_itr + (q_vector->itr_val >> 2)),
 5932			  new_itr) : new_itr;
 5933		/* Don't write the value here; it resets the adapter's
 5934		 * internal timer, and causes us to delay far longer than
 5935		 * we should between interrupts.  Instead, we write the ITR
 5936		 * value at the beginning of the next interrupt so the timing
 5937		 * ends up being correct.
 5938		 */
 5939		q_vector->itr_val = new_itr;
 5940		q_vector->set_itr = 1;
 5941	}
 5942}
 5943
 5944static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
 5945			    struct igb_tx_buffer *first,
 5946			    u32 vlan_macip_lens, u32 type_tucmd,
 5947			    u32 mss_l4len_idx)
 5948{
 5949	struct e1000_adv_tx_context_desc *context_desc;
 5950	u16 i = tx_ring->next_to_use;
 5951	struct timespec64 ts;
 5952
 5953	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
 5954
 5955	i++;
 5956	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 5957
 5958	/* set bits to identify this as an advanced context descriptor */
 5959	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
 5960
 5961	/* For 82575, context index must be unique per ring. */
 5962	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 5963		mss_l4len_idx |= tx_ring->reg_idx << 4;
 5964
 5965	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
 
 5966	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
 5967	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
 5968
 5969	/* We assume there is always a valid tx time available. Invalid times
 5970	 * should have been handled by the upper layers.
 5971	 */
 5972	if (tx_ring->launchtime_enable) {
 5973		ts = ktime_to_timespec64(first->skb->tstamp);
 5974		skb_txtime_consumed(first->skb);
 5975		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
 5976	} else {
 5977		context_desc->seqnum_seed = 0;
 5978	}
 5979}
 5980
 5981static int igb_tso(struct igb_ring *tx_ring,
 5982		   struct igb_tx_buffer *first,
 5983		   u8 *hdr_len)
 5984{
 5985	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
 5986	struct sk_buff *skb = first->skb;
 5987	union {
 5988		struct iphdr *v4;
 5989		struct ipv6hdr *v6;
 5990		unsigned char *hdr;
 5991	} ip;
 5992	union {
 5993		struct tcphdr *tcp;
 5994		struct udphdr *udp;
 5995		unsigned char *hdr;
 5996	} l4;
 5997	u32 paylen, l4_offset;
 5998	int err;
 5999
 6000	if (skb->ip_summed != CHECKSUM_PARTIAL)
 6001		return 0;
 6002
 6003	if (!skb_is_gso(skb))
 6004		return 0;
 6005
 6006	err = skb_cow_head(skb, 0);
 6007	if (err < 0)
 6008		return err;
 6009
 6010	ip.hdr = skb_network_header(skb);
 6011	l4.hdr = skb_checksum_start(skb);
 6012
 6013	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
 6014	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
 6015		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
 6016
 6017	/* initialize outer IP header fields */
 6018	if (ip.v4->version == 4) {
 6019		unsigned char *csum_start = skb_checksum_start(skb);
 6020		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
 6021
 6022		/* IP header will have to cancel out any data that
 6023		 * is not a part of the outer IP header
 6024		 */
 6025		ip.v4->check = csum_fold(csum_partial(trans_start,
 6026						      csum_start - trans_start,
 6027						      0));
 
 
 6028		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
 6029
 6030		ip.v4->tot_len = 0;
 6031		first->tx_flags |= IGB_TX_FLAGS_TSO |
 6032				   IGB_TX_FLAGS_CSUM |
 6033				   IGB_TX_FLAGS_IPV4;
 6034	} else {
 6035		ip.v6->payload_len = 0;
 
 
 
 6036		first->tx_flags |= IGB_TX_FLAGS_TSO |
 6037				   IGB_TX_FLAGS_CSUM;
 6038	}
 6039
 6040	/* determine offset of inner transport header */
 6041	l4_offset = l4.hdr - skb->data;
 6042
 6043	/* remove payload length from inner checksum */
 6044	paylen = skb->len - l4_offset;
 6045	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
 6046		/* compute length of segmentation header */
 6047		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 6048		csum_replace_by_diff(&l4.tcp->check,
 6049			(__force __wsum)htonl(paylen));
 6050	} else {
 6051		/* compute length of segmentation header */
 6052		*hdr_len = sizeof(*l4.udp) + l4_offset;
 6053		csum_replace_by_diff(&l4.udp->check,
 6054				     (__force __wsum)htonl(paylen));
 6055	}
 6056
 6057	/* update gso size and bytecount with header size */
 6058	first->gso_segs = skb_shinfo(skb)->gso_segs;
 6059	first->bytecount += (first->gso_segs - 1) * *hdr_len;
 6060
 6061	/* MSS L4LEN IDX */
 6062	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
 6063	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
 6064
 6065	/* VLAN MACLEN IPLEN */
 6066	vlan_macip_lens = l4.hdr - ip.hdr;
 6067	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
 6068	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
 6069
 6070	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
 6071			type_tucmd, mss_l4len_idx);
 6072
 6073	return 1;
 6074}
 6075
 
 
 
 
 
 
 
 
 
 6076static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
 6077{
 6078	struct sk_buff *skb = first->skb;
 6079	u32 vlan_macip_lens = 0;
 6080	u32 type_tucmd = 0;
 6081
 6082	if (skb->ip_summed != CHECKSUM_PARTIAL) {
 6083csum_failed:
 6084		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
 6085		    !tx_ring->launchtime_enable)
 6086			return;
 6087		goto no_csum;
 6088	}
 6089
 6090	switch (skb->csum_offset) {
 6091	case offsetof(struct tcphdr, check):
 6092		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
 6093		fallthrough;
 6094	case offsetof(struct udphdr, check):
 6095		break;
 6096	case offsetof(struct sctphdr, checksum):
 6097		/* validate that this is actually an SCTP request */
 6098		if (skb_csum_is_sctp(skb)) {
 
 
 
 6099			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
 6100			break;
 6101		}
 6102		fallthrough;
 6103	default:
 6104		skb_checksum_help(skb);
 6105		goto csum_failed;
 6106	}
 6107
 6108	/* update TX checksum flag */
 6109	first->tx_flags |= IGB_TX_FLAGS_CSUM;
 6110	vlan_macip_lens = skb_checksum_start_offset(skb) -
 6111			  skb_network_offset(skb);
 6112no_csum:
 6113	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
 6114	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
 6115
 6116	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
 6117}
 6118
 6119#define IGB_SET_FLAG(_input, _flag, _result) \
 6120	((_flag <= _result) ? \
 6121	 ((u32)(_input & _flag) * (_result / _flag)) : \
 6122	 ((u32)(_input & _flag) / (_flag / _result)))
 6123
 6124static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
 6125{
 6126	/* set type for advanced descriptor with frame checksum insertion */
 6127	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
 6128		       E1000_ADVTXD_DCMD_DEXT |
 6129		       E1000_ADVTXD_DCMD_IFCS;
 6130
 6131	/* set HW vlan bit if vlan is present */
 6132	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
 6133				 (E1000_ADVTXD_DCMD_VLE));
 6134
 6135	/* set segmentation bits for TSO */
 6136	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
 6137				 (E1000_ADVTXD_DCMD_TSE));
 6138
 6139	/* set timestamp bit if present */
 6140	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
 6141				 (E1000_ADVTXD_MAC_TSTAMP));
 6142
 6143	/* insert frame checksum */
 6144	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
 6145
 6146	return cmd_type;
 6147}
 6148
 6149static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
 6150				 union e1000_adv_tx_desc *tx_desc,
 6151				 u32 tx_flags, unsigned int paylen)
 6152{
 6153	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
 6154
 6155	/* 82575 requires a unique index per ring */
 6156	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 6157		olinfo_status |= tx_ring->reg_idx << 4;
 6158
 6159	/* insert L4 checksum */
 6160	olinfo_status |= IGB_SET_FLAG(tx_flags,
 6161				      IGB_TX_FLAGS_CSUM,
 6162				      (E1000_TXD_POPTS_TXSM << 8));
 6163
 6164	/* insert IPv4 checksum */
 6165	olinfo_status |= IGB_SET_FLAG(tx_flags,
 6166				      IGB_TX_FLAGS_IPV4,
 6167				      (E1000_TXD_POPTS_IXSM << 8));
 6168
 6169	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
 6170}
 6171
 6172static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
 6173{
 6174	struct net_device *netdev = tx_ring->netdev;
 6175
 6176	netif_stop_subqueue(netdev, tx_ring->queue_index);
 6177
 6178	/* Herbert's original patch had:
 6179	 *  smp_mb__after_netif_stop_queue();
 6180	 * but since that doesn't exist yet, just open code it.
 6181	 */
 6182	smp_mb();
 6183
 6184	/* We need to check again in a case another CPU has just
 6185	 * made room available.
 6186	 */
 6187	if (igb_desc_unused(tx_ring) < size)
 6188		return -EBUSY;
 6189
 6190	/* A reprieve! */
 6191	netif_wake_subqueue(netdev, tx_ring->queue_index);
 6192
 6193	u64_stats_update_begin(&tx_ring->tx_syncp2);
 6194	tx_ring->tx_stats.restart_queue2++;
 6195	u64_stats_update_end(&tx_ring->tx_syncp2);
 6196
 6197	return 0;
 6198}
 6199
 6200static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
 6201{
 6202	if (igb_desc_unused(tx_ring) >= size)
 6203		return 0;
 6204	return __igb_maybe_stop_tx(tx_ring, size);
 6205}
 6206
 6207static int igb_tx_map(struct igb_ring *tx_ring,
 6208		      struct igb_tx_buffer *first,
 6209		      const u8 hdr_len)
 6210{
 6211	struct sk_buff *skb = first->skb;
 6212	struct igb_tx_buffer *tx_buffer;
 6213	union e1000_adv_tx_desc *tx_desc;
 6214	skb_frag_t *frag;
 6215	dma_addr_t dma;
 6216	unsigned int data_len, size;
 6217	u32 tx_flags = first->tx_flags;
 6218	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
 6219	u16 i = tx_ring->next_to_use;
 6220
 6221	tx_desc = IGB_TX_DESC(tx_ring, i);
 6222
 6223	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
 6224
 6225	size = skb_headlen(skb);
 6226	data_len = skb->data_len;
 6227
 6228	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
 6229
 6230	tx_buffer = first;
 6231
 6232	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 6233		if (dma_mapping_error(tx_ring->dev, dma))
 6234			goto dma_error;
 6235
 6236		/* record length, and DMA address */
 6237		dma_unmap_len_set(tx_buffer, len, size);
 6238		dma_unmap_addr_set(tx_buffer, dma, dma);
 6239
 6240		tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6241
 6242		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
 6243			tx_desc->read.cmd_type_len =
 6244				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
 6245
 6246			i++;
 6247			tx_desc++;
 6248			if (i == tx_ring->count) {
 6249				tx_desc = IGB_TX_DESC(tx_ring, 0);
 6250				i = 0;
 6251			}
 6252			tx_desc->read.olinfo_status = 0;
 6253
 6254			dma += IGB_MAX_DATA_PER_TXD;
 6255			size -= IGB_MAX_DATA_PER_TXD;
 6256
 6257			tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6258		}
 6259
 6260		if (likely(!data_len))
 6261			break;
 6262
 6263		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
 6264
 6265		i++;
 6266		tx_desc++;
 6267		if (i == tx_ring->count) {
 6268			tx_desc = IGB_TX_DESC(tx_ring, 0);
 6269			i = 0;
 6270		}
 6271		tx_desc->read.olinfo_status = 0;
 6272
 6273		size = skb_frag_size(frag);
 6274		data_len -= size;
 6275
 6276		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
 6277				       size, DMA_TO_DEVICE);
 6278
 6279		tx_buffer = &tx_ring->tx_buffer_info[i];
 6280	}
 6281
 6282	/* write last descriptor with RS and EOP bits */
 6283	cmd_type |= size | IGB_TXD_DCMD;
 6284	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
 6285
 6286	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
 6287
 6288	/* set the timestamp */
 6289	first->time_stamp = jiffies;
 6290
 6291	skb_tx_timestamp(skb);
 6292
 6293	/* Force memory writes to complete before letting h/w know there
 6294	 * are new descriptors to fetch.  (Only applicable for weak-ordered
 6295	 * memory model archs, such as IA-64).
 6296	 *
 6297	 * We also need this memory barrier to make certain all of the
 6298	 * status bits have been updated before next_to_watch is written.
 6299	 */
 6300	dma_wmb();
 6301
 6302	/* set next_to_watch value indicating a packet is present */
 6303	first->next_to_watch = tx_desc;
 6304
 6305	i++;
 6306	if (i == tx_ring->count)
 6307		i = 0;
 6308
 6309	tx_ring->next_to_use = i;
 6310
 6311	/* Make sure there is space in the ring for the next send. */
 6312	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
 6313
 6314	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
 6315		writel(i, tx_ring->tail);
 
 
 
 
 
 6316	}
 6317	return 0;
 6318
 6319dma_error:
 6320	dev_err(tx_ring->dev, "TX DMA map failed\n");
 6321	tx_buffer = &tx_ring->tx_buffer_info[i];
 6322
 6323	/* clear dma mappings for failed tx_buffer_info map */
 6324	while (tx_buffer != first) {
 6325		if (dma_unmap_len(tx_buffer, len))
 6326			dma_unmap_page(tx_ring->dev,
 6327				       dma_unmap_addr(tx_buffer, dma),
 6328				       dma_unmap_len(tx_buffer, len),
 6329				       DMA_TO_DEVICE);
 6330		dma_unmap_len_set(tx_buffer, len, 0);
 6331
 6332		if (i-- == 0)
 6333			i += tx_ring->count;
 6334		tx_buffer = &tx_ring->tx_buffer_info[i];
 6335	}
 6336
 6337	if (dma_unmap_len(tx_buffer, len))
 6338		dma_unmap_single(tx_ring->dev,
 6339				 dma_unmap_addr(tx_buffer, dma),
 6340				 dma_unmap_len(tx_buffer, len),
 6341				 DMA_TO_DEVICE);
 6342	dma_unmap_len_set(tx_buffer, len, 0);
 6343
 6344	dev_kfree_skb_any(tx_buffer->skb);
 6345	tx_buffer->skb = NULL;
 6346
 6347	tx_ring->next_to_use = i;
 6348
 6349	return -1;
 6350}
 6351
 6352int igb_xmit_xdp_ring(struct igb_adapter *adapter,
 6353		      struct igb_ring *tx_ring,
 6354		      struct xdp_frame *xdpf)
 6355{
 6356	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
 6357	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
 6358	u16 count, i, index = tx_ring->next_to_use;
 6359	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
 6360	struct igb_tx_buffer *tx_buffer = tx_head;
 6361	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
 6362	u32 len = xdpf->len, cmd_type, olinfo_status;
 6363	void *data = xdpf->data;
 6364
 6365	count = TXD_USE_COUNT(len);
 6366	for (i = 0; i < nr_frags; i++)
 6367		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
 6368
 6369	if (igb_maybe_stop_tx(tx_ring, count + 3))
 6370		return IGB_XDP_CONSUMED;
 6371
 6372	i = 0;
 6373	/* record the location of the first descriptor for this packet */
 6374	tx_head->bytecount = xdp_get_frame_len(xdpf);
 6375	tx_head->type = IGB_TYPE_XDP;
 6376	tx_head->gso_segs = 1;
 6377	tx_head->xdpf = xdpf;
 6378
 6379	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
 6380	/* 82575 requires a unique index per ring */
 6381	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 6382		olinfo_status |= tx_ring->reg_idx << 4;
 6383	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
 6384
 6385	for (;;) {
 6386		dma_addr_t dma;
 6387
 6388		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
 6389		if (dma_mapping_error(tx_ring->dev, dma))
 6390			goto unmap;
 6391
 6392		/* record length, and DMA address */
 6393		dma_unmap_len_set(tx_buffer, len, len);
 6394		dma_unmap_addr_set(tx_buffer, dma, dma);
 6395
 6396		/* put descriptor type bits */
 6397		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
 6398			   E1000_ADVTXD_DCMD_IFCS | len;
 6399
 6400		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
 6401		tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6402
 6403		tx_buffer->protocol = 0;
 6404
 6405		if (++index == tx_ring->count)
 6406			index = 0;
 6407
 6408		if (i == nr_frags)
 6409			break;
 6410
 6411		tx_buffer = &tx_ring->tx_buffer_info[index];
 6412		tx_desc = IGB_TX_DESC(tx_ring, index);
 6413		tx_desc->read.olinfo_status = 0;
 6414
 6415		data = skb_frag_address(&sinfo->frags[i]);
 6416		len = skb_frag_size(&sinfo->frags[i]);
 6417		i++;
 6418	}
 6419	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
 6420
 6421	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
 6422	/* set the timestamp */
 6423	tx_head->time_stamp = jiffies;
 6424
 6425	/* Avoid any potential race with xdp_xmit and cleanup */
 6426	smp_wmb();
 6427
 6428	/* set next_to_watch value indicating a packet is present */
 6429	tx_head->next_to_watch = tx_desc;
 6430	tx_ring->next_to_use = index;
 6431
 6432	/* Make sure there is space in the ring for the next send. */
 6433	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
 6434
 6435	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
 6436		writel(index, tx_ring->tail);
 6437
 6438	return IGB_XDP_TX;
 6439
 6440unmap:
 6441	for (;;) {
 6442		tx_buffer = &tx_ring->tx_buffer_info[index];
 6443		if (dma_unmap_len(tx_buffer, len))
 6444			dma_unmap_page(tx_ring->dev,
 6445				       dma_unmap_addr(tx_buffer, dma),
 6446				       dma_unmap_len(tx_buffer, len),
 6447				       DMA_TO_DEVICE);
 6448		dma_unmap_len_set(tx_buffer, len, 0);
 6449		if (tx_buffer == tx_head)
 6450			break;
 6451
 6452		if (!index)
 6453			index += tx_ring->count;
 6454		index--;
 6455	}
 6456
 6457	return IGB_XDP_CONSUMED;
 6458}
 6459
 6460netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
 6461				struct igb_ring *tx_ring)
 6462{
 6463	struct igb_tx_buffer *first;
 6464	int tso;
 6465	u32 tx_flags = 0;
 6466	unsigned short f;
 6467	u16 count = TXD_USE_COUNT(skb_headlen(skb));
 6468	__be16 protocol = vlan_get_protocol(skb);
 6469	u8 hdr_len = 0;
 6470
 6471	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
 6472	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
 6473	 *       + 2 desc gap to keep tail from touching head,
 6474	 *       + 1 desc for context descriptor,
 6475	 * otherwise try next time
 6476	 */
 6477	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
 6478		count += TXD_USE_COUNT(skb_frag_size(
 6479						&skb_shinfo(skb)->frags[f]));
 6480
 6481	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
 6482		/* this is a hard error */
 6483		return NETDEV_TX_BUSY;
 6484	}
 6485
 6486	/* record the location of the first descriptor for this packet */
 6487	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
 6488	first->type = IGB_TYPE_SKB;
 6489	first->skb = skb;
 6490	first->bytecount = skb->len;
 6491	first->gso_segs = 1;
 6492
 6493	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
 6494		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
 6495
 6496		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
 6497		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
 6498					   &adapter->state)) {
 6499			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 6500			tx_flags |= IGB_TX_FLAGS_TSTAMP;
 6501
 6502			adapter->ptp_tx_skb = skb_get(skb);
 6503			adapter->ptp_tx_start = jiffies;
 6504			if (adapter->hw.mac.type == e1000_82576)
 6505				schedule_work(&adapter->ptp_tx_work);
 6506		} else {
 6507			adapter->tx_hwtstamp_skipped++;
 6508		}
 6509	}
 6510
 
 
 6511	if (skb_vlan_tag_present(skb)) {
 6512		tx_flags |= IGB_TX_FLAGS_VLAN;
 6513		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
 6514	}
 6515
 6516	/* record initial flags and protocol */
 6517	first->tx_flags = tx_flags;
 6518	first->protocol = protocol;
 6519
 6520	tso = igb_tso(tx_ring, first, &hdr_len);
 6521	if (tso < 0)
 6522		goto out_drop;
 6523	else if (!tso)
 6524		igb_tx_csum(tx_ring, first);
 6525
 6526	if (igb_tx_map(tx_ring, first, hdr_len))
 6527		goto cleanup_tx_tstamp;
 6528
 6529	return NETDEV_TX_OK;
 6530
 6531out_drop:
 6532	dev_kfree_skb_any(first->skb);
 6533	first->skb = NULL;
 6534cleanup_tx_tstamp:
 6535	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
 6536		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
 6537
 6538		dev_kfree_skb_any(adapter->ptp_tx_skb);
 6539		adapter->ptp_tx_skb = NULL;
 6540		if (adapter->hw.mac.type == e1000_82576)
 6541			cancel_work_sync(&adapter->ptp_tx_work);
 6542		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 6543	}
 6544
 6545	return NETDEV_TX_OK;
 6546}
 6547
 6548static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
 6549						    struct sk_buff *skb)
 6550{
 6551	unsigned int r_idx = skb->queue_mapping;
 6552
 6553	if (r_idx >= adapter->num_tx_queues)
 6554		r_idx = r_idx % adapter->num_tx_queues;
 6555
 6556	return adapter->tx_ring[r_idx];
 6557}
 6558
 6559static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
 6560				  struct net_device *netdev)
 6561{
 6562	struct igb_adapter *adapter = netdev_priv(netdev);
 6563
 6564	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
 6565	 * in order to meet this minimum size requirement.
 6566	 */
 6567	if (skb_put_padto(skb, 17))
 6568		return NETDEV_TX_OK;
 6569
 6570	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
 6571}
 6572
 6573/**
 6574 *  igb_tx_timeout - Respond to a Tx Hang
 6575 *  @netdev: network interface device structure
 6576 *  @txqueue: number of the Tx queue that hung (unused)
 6577 **/
 6578static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
 6579{
 6580	struct igb_adapter *adapter = netdev_priv(netdev);
 6581	struct e1000_hw *hw = &adapter->hw;
 6582
 6583	/* Do the reset outside of interrupt context */
 6584	adapter->tx_timeout_count++;
 6585
 6586	if (hw->mac.type >= e1000_82580)
 6587		hw->dev_spec._82575.global_device_reset = true;
 6588
 6589	schedule_work(&adapter->reset_task);
 6590	wr32(E1000_EICS,
 6591	     (adapter->eims_enable_mask & ~adapter->eims_other));
 6592}
 6593
 6594static void igb_reset_task(struct work_struct *work)
 6595{
 6596	struct igb_adapter *adapter;
 6597	adapter = container_of(work, struct igb_adapter, reset_task);
 6598
 6599	rtnl_lock();
 6600	/* If we're already down or resetting, just bail */
 6601	if (test_bit(__IGB_DOWN, &adapter->state) ||
 6602	    test_bit(__IGB_RESETTING, &adapter->state)) {
 6603		rtnl_unlock();
 6604		return;
 6605	}
 6606
 6607	igb_dump(adapter);
 6608	netdev_err(adapter->netdev, "Reset adapter\n");
 6609	igb_reinit_locked(adapter);
 6610	rtnl_unlock();
 6611}
 6612
 6613/**
 6614 *  igb_get_stats64 - Get System Network Statistics
 6615 *  @netdev: network interface device structure
 6616 *  @stats: rtnl_link_stats64 pointer
 6617 **/
 6618static void igb_get_stats64(struct net_device *netdev,
 6619			    struct rtnl_link_stats64 *stats)
 6620{
 6621	struct igb_adapter *adapter = netdev_priv(netdev);
 6622
 6623	spin_lock(&adapter->stats64_lock);
 6624	igb_update_stats(adapter);
 6625	memcpy(stats, &adapter->stats64, sizeof(*stats));
 6626	spin_unlock(&adapter->stats64_lock);
 
 
 6627}
 6628
 6629/**
 6630 *  igb_change_mtu - Change the Maximum Transfer Unit
 6631 *  @netdev: network interface device structure
 6632 *  @new_mtu: new value for maximum frame size
 6633 *
 6634 *  Returns 0 on success, negative on failure
 6635 **/
 6636static int igb_change_mtu(struct net_device *netdev, int new_mtu)
 6637{
 6638	struct igb_adapter *adapter = netdev_priv(netdev);
 6639	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
 6640
 6641	if (adapter->xdp_prog) {
 6642		int i;
 6643
 6644		for (i = 0; i < adapter->num_rx_queues; i++) {
 6645			struct igb_ring *ring = adapter->rx_ring[i];
 
 
 6646
 6647			if (max_frame > igb_rx_bufsz(ring)) {
 6648				netdev_warn(adapter->netdev,
 6649					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
 6650					    max_frame);
 6651				return -EINVAL;
 6652			}
 6653		}
 6654	}
 6655
 6656	/* adjust max frame to be at least the size of a standard frame */
 6657	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
 6658		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
 6659
 6660	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 6661		usleep_range(1000, 2000);
 6662
 6663	/* igb_down has a dependency on max_frame_size */
 6664	adapter->max_frame_size = max_frame;
 6665
 6666	if (netif_running(netdev))
 6667		igb_down(adapter);
 6668
 6669	netdev_dbg(netdev, "changing MTU from %d to %d\n",
 6670		   netdev->mtu, new_mtu);
 6671	netdev->mtu = new_mtu;
 6672
 6673	if (netif_running(netdev))
 6674		igb_up(adapter);
 6675	else
 6676		igb_reset(adapter);
 6677
 6678	clear_bit(__IGB_RESETTING, &adapter->state);
 6679
 6680	return 0;
 6681}
 6682
 6683/**
 6684 *  igb_update_stats - Update the board statistics counters
 6685 *  @adapter: board private structure
 6686 **/
 6687void igb_update_stats(struct igb_adapter *adapter)
 
 6688{
 6689	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
 6690	struct e1000_hw *hw = &adapter->hw;
 6691	struct pci_dev *pdev = adapter->pdev;
 6692	u32 reg, mpc;
 6693	int i;
 6694	u64 bytes, packets;
 6695	unsigned int start;
 6696	u64 _bytes, _packets;
 6697
 6698	/* Prevent stats update while adapter is being reset, or if the pci
 6699	 * connection is down.
 6700	 */
 6701	if (adapter->link_speed == 0)
 6702		return;
 6703	if (pci_channel_offline(pdev))
 6704		return;
 6705
 6706	bytes = 0;
 6707	packets = 0;
 6708
 6709	rcu_read_lock();
 6710	for (i = 0; i < adapter->num_rx_queues; i++) {
 6711		struct igb_ring *ring = adapter->rx_ring[i];
 6712		u32 rqdpc = rd32(E1000_RQDPC(i));
 6713		if (hw->mac.type >= e1000_i210)
 6714			wr32(E1000_RQDPC(i), 0);
 6715
 6716		if (rqdpc) {
 6717			ring->rx_stats.drops += rqdpc;
 6718			net_stats->rx_fifo_errors += rqdpc;
 6719		}
 6720
 6721		do {
 6722			start = u64_stats_fetch_begin(&ring->rx_syncp);
 6723			_bytes = ring->rx_stats.bytes;
 6724			_packets = ring->rx_stats.packets;
 6725		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
 6726		bytes += _bytes;
 6727		packets += _packets;
 6728	}
 6729
 6730	net_stats->rx_bytes = bytes;
 6731	net_stats->rx_packets = packets;
 6732
 6733	bytes = 0;
 6734	packets = 0;
 6735	for (i = 0; i < adapter->num_tx_queues; i++) {
 6736		struct igb_ring *ring = adapter->tx_ring[i];
 6737		do {
 6738			start = u64_stats_fetch_begin(&ring->tx_syncp);
 6739			_bytes = ring->tx_stats.bytes;
 6740			_packets = ring->tx_stats.packets;
 6741		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
 6742		bytes += _bytes;
 6743		packets += _packets;
 6744	}
 6745	net_stats->tx_bytes = bytes;
 6746	net_stats->tx_packets = packets;
 6747	rcu_read_unlock();
 6748
 6749	/* read stats registers */
 6750	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
 6751	adapter->stats.gprc += rd32(E1000_GPRC);
 6752	adapter->stats.gorc += rd32(E1000_GORCL);
 6753	rd32(E1000_GORCH); /* clear GORCL */
 6754	adapter->stats.bprc += rd32(E1000_BPRC);
 6755	adapter->stats.mprc += rd32(E1000_MPRC);
 6756	adapter->stats.roc += rd32(E1000_ROC);
 6757
 6758	adapter->stats.prc64 += rd32(E1000_PRC64);
 6759	adapter->stats.prc127 += rd32(E1000_PRC127);
 6760	adapter->stats.prc255 += rd32(E1000_PRC255);
 6761	adapter->stats.prc511 += rd32(E1000_PRC511);
 6762	adapter->stats.prc1023 += rd32(E1000_PRC1023);
 6763	adapter->stats.prc1522 += rd32(E1000_PRC1522);
 6764	adapter->stats.symerrs += rd32(E1000_SYMERRS);
 6765	adapter->stats.sec += rd32(E1000_SEC);
 6766
 6767	mpc = rd32(E1000_MPC);
 6768	adapter->stats.mpc += mpc;
 6769	net_stats->rx_fifo_errors += mpc;
 6770	adapter->stats.scc += rd32(E1000_SCC);
 6771	adapter->stats.ecol += rd32(E1000_ECOL);
 6772	adapter->stats.mcc += rd32(E1000_MCC);
 6773	adapter->stats.latecol += rd32(E1000_LATECOL);
 6774	adapter->stats.dc += rd32(E1000_DC);
 6775	adapter->stats.rlec += rd32(E1000_RLEC);
 6776	adapter->stats.xonrxc += rd32(E1000_XONRXC);
 6777	adapter->stats.xontxc += rd32(E1000_XONTXC);
 6778	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
 6779	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
 6780	adapter->stats.fcruc += rd32(E1000_FCRUC);
 6781	adapter->stats.gptc += rd32(E1000_GPTC);
 6782	adapter->stats.gotc += rd32(E1000_GOTCL);
 6783	rd32(E1000_GOTCH); /* clear GOTCL */
 6784	adapter->stats.rnbc += rd32(E1000_RNBC);
 6785	adapter->stats.ruc += rd32(E1000_RUC);
 6786	adapter->stats.rfc += rd32(E1000_RFC);
 6787	adapter->stats.rjc += rd32(E1000_RJC);
 6788	adapter->stats.tor += rd32(E1000_TORH);
 6789	adapter->stats.tot += rd32(E1000_TOTH);
 6790	adapter->stats.tpr += rd32(E1000_TPR);
 6791
 6792	adapter->stats.ptc64 += rd32(E1000_PTC64);
 6793	adapter->stats.ptc127 += rd32(E1000_PTC127);
 6794	adapter->stats.ptc255 += rd32(E1000_PTC255);
 6795	adapter->stats.ptc511 += rd32(E1000_PTC511);
 6796	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
 6797	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
 6798
 6799	adapter->stats.mptc += rd32(E1000_MPTC);
 6800	adapter->stats.bptc += rd32(E1000_BPTC);
 6801
 6802	adapter->stats.tpt += rd32(E1000_TPT);
 6803	adapter->stats.colc += rd32(E1000_COLC);
 6804
 6805	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
 6806	/* read internal phy specific stats */
 6807	reg = rd32(E1000_CTRL_EXT);
 6808	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
 6809		adapter->stats.rxerrc += rd32(E1000_RXERRC);
 6810
 6811		/* this stat has invalid values on i210/i211 */
 6812		if ((hw->mac.type != e1000_i210) &&
 6813		    (hw->mac.type != e1000_i211))
 6814			adapter->stats.tncrs += rd32(E1000_TNCRS);
 6815	}
 6816
 6817	adapter->stats.tsctc += rd32(E1000_TSCTC);
 6818	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
 6819
 6820	adapter->stats.iac += rd32(E1000_IAC);
 6821	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
 6822	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
 6823	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
 6824	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
 6825	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
 6826	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
 6827	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
 6828	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
 6829
 6830	/* Fill out the OS statistics structure */
 6831	net_stats->multicast = adapter->stats.mprc;
 6832	net_stats->collisions = adapter->stats.colc;
 6833
 6834	/* Rx Errors */
 6835
 6836	/* RLEC on some newer hardware can be incorrect so build
 6837	 * our own version based on RUC and ROC
 6838	 */
 6839	net_stats->rx_errors = adapter->stats.rxerrc +
 6840		adapter->stats.crcerrs + adapter->stats.algnerrc +
 6841		adapter->stats.ruc + adapter->stats.roc +
 6842		adapter->stats.cexterr;
 6843	net_stats->rx_length_errors = adapter->stats.ruc +
 6844				      adapter->stats.roc;
 6845	net_stats->rx_crc_errors = adapter->stats.crcerrs;
 6846	net_stats->rx_frame_errors = adapter->stats.algnerrc;
 6847	net_stats->rx_missed_errors = adapter->stats.mpc;
 6848
 6849	/* Tx Errors */
 6850	net_stats->tx_errors = adapter->stats.ecol +
 6851			       adapter->stats.latecol;
 6852	net_stats->tx_aborted_errors = adapter->stats.ecol;
 6853	net_stats->tx_window_errors = adapter->stats.latecol;
 6854	net_stats->tx_carrier_errors = adapter->stats.tncrs;
 6855
 6856	/* Tx Dropped needs to be maintained elsewhere */
 6857
 6858	/* Management Stats */
 6859	adapter->stats.mgptc += rd32(E1000_MGTPTC);
 6860	adapter->stats.mgprc += rd32(E1000_MGTPRC);
 6861	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
 6862
 6863	/* OS2BMC Stats */
 6864	reg = rd32(E1000_MANC);
 6865	if (reg & E1000_MANC_EN_BMC2OS) {
 6866		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
 6867		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
 6868		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
 6869		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
 6870	}
 6871}
 6872
 6873static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
 6874{
 6875	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
 6876	struct e1000_hw *hw = &adapter->hw;
 6877	struct timespec64 ts;
 6878	u32 tsauxc;
 6879
 6880	if (pin < 0 || pin >= IGB_N_SDP)
 6881		return;
 6882
 6883	spin_lock(&adapter->tmreg_lock);
 6884
 6885	if (hw->mac.type == e1000_82580 ||
 6886	    hw->mac.type == e1000_i354 ||
 6887	    hw->mac.type == e1000_i350) {
 6888		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
 6889		u32 systiml, systimh, level_mask, level, rem;
 6890		u64 systim, now;
 6891
 6892		/* read systim registers in sequence */
 6893		rd32(E1000_SYSTIMR);
 6894		systiml = rd32(E1000_SYSTIML);
 6895		systimh = rd32(E1000_SYSTIMH);
 6896		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
 6897		now = timecounter_cyc2time(&adapter->tc, systim);
 6898
 6899		if (pin < 2) {
 6900			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
 6901			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
 6902		} else {
 6903			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
 6904			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
 6905		}
 6906
 6907		div_u64_rem(now, ns, &rem);
 6908		systim = systim + (ns - rem);
 6909
 6910		/* synchronize pin level with rising/falling edges */
 6911		div_u64_rem(now, ns << 1, &rem);
 6912		if (rem < ns) {
 6913			/* first half of period */
 6914			if (level == 0) {
 6915				/* output is already low, skip this period */
 6916				systim += ns;
 6917				pr_notice("igb: periodic output on %s missed falling edge\n",
 6918					  adapter->sdp_config[pin].name);
 6919			}
 6920		} else {
 6921			/* second half of period */
 6922			if (level == 1) {
 6923				/* output is already high, skip this period */
 6924				systim += ns;
 6925				pr_notice("igb: periodic output on %s missed rising edge\n",
 6926					  adapter->sdp_config[pin].name);
 6927			}
 6928		}
 6929
 6930		/* for this chip family tv_sec is the upper part of the binary value,
 6931		 * so not seconds
 6932		 */
 6933		ts.tv_nsec = (u32)systim;
 6934		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
 6935	} else {
 6936		ts = timespec64_add(adapter->perout[tsintr_tt].start,
 6937				    adapter->perout[tsintr_tt].period);
 6938	}
 6939
 6940	/* u32 conversion of tv_sec is safe until y2106 */
 6941	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
 6942	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
 6943	tsauxc = rd32(E1000_TSAUXC);
 6944	tsauxc |= TSAUXC_EN_TT0;
 6945	wr32(E1000_TSAUXC, tsauxc);
 6946	adapter->perout[tsintr_tt].start = ts;
 6947
 6948	spin_unlock(&adapter->tmreg_lock);
 6949}
 6950
 6951static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
 6952{
 6953	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
 6954	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
 6955	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
 6956	struct e1000_hw *hw = &adapter->hw;
 6957	struct ptp_clock_event event;
 6958	struct timespec64 ts;
 6959	unsigned long flags;
 6960
 6961	if (pin < 0 || pin >= IGB_N_SDP)
 6962		return;
 6963
 6964	if (hw->mac.type == e1000_82580 ||
 6965	    hw->mac.type == e1000_i354 ||
 6966	    hw->mac.type == e1000_i350) {
 6967		u64 ns = rd32(auxstmpl);
 6968
 6969		ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
 6970		spin_lock_irqsave(&adapter->tmreg_lock, flags);
 6971		ns = timecounter_cyc2time(&adapter->tc, ns);
 6972		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 6973		ts = ns_to_timespec64(ns);
 6974	} else {
 6975		ts.tv_nsec = rd32(auxstmpl);
 6976		ts.tv_sec  = rd32(auxstmph);
 6977	}
 6978
 6979	event.type = PTP_CLOCK_EXTTS;
 6980	event.index = tsintr_tt;
 6981	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 6982	ptp_clock_event(adapter->ptp_clock, &event);
 6983}
 6984
 6985static void igb_tsync_interrupt(struct igb_adapter *adapter)
 6986{
 6987	struct e1000_hw *hw = &adapter->hw;
 6988	u32 tsicr = rd32(E1000_TSICR);
 6989	struct ptp_clock_event event;
 
 
 6990
 6991	if (tsicr & TSINTR_SYS_WRAP) {
 6992		event.type = PTP_CLOCK_PPS;
 6993		if (adapter->ptp_caps.pps)
 6994			ptp_clock_event(adapter->ptp_clock, &event);
 
 
 
 6995	}
 6996
 6997	if (tsicr & E1000_TSICR_TXTS) {
 6998		/* retrieve hardware timestamp */
 6999		schedule_work(&adapter->ptp_tx_work);
 
 7000	}
 7001
 7002	if (tsicr & TSINTR_TT0)
 7003		igb_perout(adapter, 0);
 7004
 7005	if (tsicr & TSINTR_TT1)
 7006		igb_perout(adapter, 1);
 7007
 7008	if (tsicr & TSINTR_AUTT0)
 7009		igb_extts(adapter, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7010
 7011	if (tsicr & TSINTR_AUTT1)
 7012		igb_extts(adapter, 1);
 7013}
 7014
 7015static irqreturn_t igb_msix_other(int irq, void *data)
 7016{
 7017	struct igb_adapter *adapter = data;
 7018	struct e1000_hw *hw = &adapter->hw;
 7019	u32 icr = rd32(E1000_ICR);
 7020	/* reading ICR causes bit 31 of EICR to be cleared */
 7021
 7022	if (icr & E1000_ICR_DRSTA)
 7023		schedule_work(&adapter->reset_task);
 7024
 7025	if (icr & E1000_ICR_DOUTSYNC) {
 7026		/* HW is reporting DMA is out of sync */
 7027		adapter->stats.doosync++;
 7028		/* The DMA Out of Sync is also indication of a spoof event
 7029		 * in IOV mode. Check the Wrong VM Behavior register to
 7030		 * see if it is really a spoof event.
 7031		 */
 7032		igb_check_wvbr(adapter);
 7033	}
 7034
 7035	/* Check for a mailbox event */
 7036	if (icr & E1000_ICR_VMMB)
 7037		igb_msg_task(adapter);
 7038
 7039	if (icr & E1000_ICR_LSC) {
 7040		hw->mac.get_link_status = 1;
 7041		/* guard against interrupt when we're going down */
 7042		if (!test_bit(__IGB_DOWN, &adapter->state))
 7043			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 7044	}
 7045
 7046	if (icr & E1000_ICR_TS)
 7047		igb_tsync_interrupt(adapter);
 7048
 7049	wr32(E1000_EIMS, adapter->eims_other);
 7050
 7051	return IRQ_HANDLED;
 7052}
 7053
 7054static void igb_write_itr(struct igb_q_vector *q_vector)
 7055{
 7056	struct igb_adapter *adapter = q_vector->adapter;
 7057	u32 itr_val = q_vector->itr_val & 0x7FFC;
 7058
 7059	if (!q_vector->set_itr)
 7060		return;
 7061
 7062	if (!itr_val)
 7063		itr_val = 0x4;
 7064
 7065	if (adapter->hw.mac.type == e1000_82575)
 7066		itr_val |= itr_val << 16;
 7067	else
 7068		itr_val |= E1000_EITR_CNT_IGNR;
 7069
 7070	writel(itr_val, q_vector->itr_register);
 7071	q_vector->set_itr = 0;
 7072}
 7073
 7074static irqreturn_t igb_msix_ring(int irq, void *data)
 7075{
 7076	struct igb_q_vector *q_vector = data;
 7077
 7078	/* Write the ITR value calculated from the previous interrupt. */
 7079	igb_write_itr(q_vector);
 7080
 7081	napi_schedule(&q_vector->napi);
 7082
 7083	return IRQ_HANDLED;
 7084}
 7085
 7086#ifdef CONFIG_IGB_DCA
 7087static void igb_update_tx_dca(struct igb_adapter *adapter,
 7088			      struct igb_ring *tx_ring,
 7089			      int cpu)
 7090{
 7091	struct e1000_hw *hw = &adapter->hw;
 7092	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
 7093
 7094	if (hw->mac.type != e1000_82575)
 7095		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
 7096
 7097	/* We can enable relaxed ordering for reads, but not writes when
 7098	 * DCA is enabled.  This is due to a known issue in some chipsets
 7099	 * which will cause the DCA tag to be cleared.
 7100	 */
 7101	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
 7102		  E1000_DCA_TXCTRL_DATA_RRO_EN |
 7103		  E1000_DCA_TXCTRL_DESC_DCA_EN;
 7104
 7105	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
 7106}
 7107
 7108static void igb_update_rx_dca(struct igb_adapter *adapter,
 7109			      struct igb_ring *rx_ring,
 7110			      int cpu)
 7111{
 7112	struct e1000_hw *hw = &adapter->hw;
 7113	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
 7114
 7115	if (hw->mac.type != e1000_82575)
 7116		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
 7117
 7118	/* We can enable relaxed ordering for reads, but not writes when
 7119	 * DCA is enabled.  This is due to a known issue in some chipsets
 7120	 * which will cause the DCA tag to be cleared.
 7121	 */
 7122	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
 7123		  E1000_DCA_RXCTRL_DESC_DCA_EN;
 7124
 7125	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
 7126}
 7127
 7128static void igb_update_dca(struct igb_q_vector *q_vector)
 7129{
 7130	struct igb_adapter *adapter = q_vector->adapter;
 7131	int cpu = get_cpu();
 7132
 7133	if (q_vector->cpu == cpu)
 7134		goto out_no_update;
 7135
 7136	if (q_vector->tx.ring)
 7137		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
 7138
 7139	if (q_vector->rx.ring)
 7140		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
 7141
 7142	q_vector->cpu = cpu;
 7143out_no_update:
 7144	put_cpu();
 7145}
 7146
 7147static void igb_setup_dca(struct igb_adapter *adapter)
 7148{
 7149	struct e1000_hw *hw = &adapter->hw;
 7150	int i;
 7151
 7152	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
 7153		return;
 7154
 7155	/* Always use CB2 mode, difference is masked in the CB driver. */
 7156	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
 7157
 7158	for (i = 0; i < adapter->num_q_vectors; i++) {
 7159		adapter->q_vector[i]->cpu = -1;
 7160		igb_update_dca(adapter->q_vector[i]);
 7161	}
 7162}
 7163
 7164static int __igb_notify_dca(struct device *dev, void *data)
 7165{
 7166	struct net_device *netdev = dev_get_drvdata(dev);
 7167	struct igb_adapter *adapter = netdev_priv(netdev);
 7168	struct pci_dev *pdev = adapter->pdev;
 7169	struct e1000_hw *hw = &adapter->hw;
 7170	unsigned long event = *(unsigned long *)data;
 7171
 7172	switch (event) {
 7173	case DCA_PROVIDER_ADD:
 7174		/* if already enabled, don't do it again */
 7175		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
 7176			break;
 7177		if (dca_add_requester(dev) == 0) {
 7178			adapter->flags |= IGB_FLAG_DCA_ENABLED;
 7179			dev_info(&pdev->dev, "DCA enabled\n");
 7180			igb_setup_dca(adapter);
 7181			break;
 7182		}
 7183		fallthrough; /* since DCA is disabled. */
 7184	case DCA_PROVIDER_REMOVE:
 7185		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
 7186			/* without this a class_device is left
 7187			 * hanging around in the sysfs model
 7188			 */
 7189			dca_remove_requester(dev);
 7190			dev_info(&pdev->dev, "DCA disabled\n");
 7191			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
 7192			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
 7193		}
 7194		break;
 7195	}
 7196
 7197	return 0;
 7198}
 7199
 7200static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
 7201			  void *p)
 7202{
 7203	int ret_val;
 7204
 7205	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
 7206					 __igb_notify_dca);
 7207
 7208	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
 7209}
 7210#endif /* CONFIG_IGB_DCA */
 7211
 7212#ifdef CONFIG_PCI_IOV
 7213static int igb_vf_configure(struct igb_adapter *adapter, int vf)
 7214{
 7215	unsigned char mac_addr[ETH_ALEN];
 7216
 7217	eth_zero_addr(mac_addr);
 7218	igb_set_vf_mac(adapter, vf, mac_addr);
 7219
 7220	/* By default spoof check is enabled for all VFs */
 7221	adapter->vf_data[vf].spoofchk_enabled = true;
 7222
 7223	/* By default VFs are not trusted */
 7224	adapter->vf_data[vf].trusted = false;
 7225
 7226	return 0;
 7227}
 7228
 7229#endif
 7230static void igb_ping_all_vfs(struct igb_adapter *adapter)
 7231{
 7232	struct e1000_hw *hw = &adapter->hw;
 7233	u32 ping;
 7234	int i;
 7235
 7236	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
 7237		ping = E1000_PF_CONTROL_MSG;
 7238		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
 7239			ping |= E1000_VT_MSGTYPE_CTS;
 7240		igb_write_mbx(hw, &ping, 1, i);
 7241	}
 7242}
 7243
 7244static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
 7245{
 7246	struct e1000_hw *hw = &adapter->hw;
 7247	u32 vmolr = rd32(E1000_VMOLR(vf));
 7248	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7249
 7250	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
 7251			    IGB_VF_FLAG_MULTI_PROMISC);
 7252	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
 7253
 7254	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
 7255		vmolr |= E1000_VMOLR_MPME;
 7256		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
 7257		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
 7258	} else {
 7259		/* if we have hashes and we are clearing a multicast promisc
 7260		 * flag we need to write the hashes to the MTA as this step
 7261		 * was previously skipped
 7262		 */
 7263		if (vf_data->num_vf_mc_hashes > 30) {
 7264			vmolr |= E1000_VMOLR_MPME;
 7265		} else if (vf_data->num_vf_mc_hashes) {
 7266			int j;
 7267
 7268			vmolr |= E1000_VMOLR_ROMPE;
 7269			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
 7270				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
 7271		}
 7272	}
 7273
 7274	wr32(E1000_VMOLR(vf), vmolr);
 7275
 7276	/* there are flags left unprocessed, likely not supported */
 7277	if (*msgbuf & E1000_VT_MSGINFO_MASK)
 7278		return -EINVAL;
 7279
 7280	return 0;
 7281}
 7282
 7283static int igb_set_vf_multicasts(struct igb_adapter *adapter,
 7284				  u32 *msgbuf, u32 vf)
 7285{
 7286	int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
 7287	u16 *hash_list = (u16 *)&msgbuf[1];
 7288	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7289	int i;
 7290
 7291	/* salt away the number of multicast addresses assigned
 7292	 * to this VF for later use to restore when the PF multi cast
 7293	 * list changes
 7294	 */
 7295	vf_data->num_vf_mc_hashes = n;
 7296
 7297	/* only up to 30 hash values supported */
 7298	if (n > 30)
 7299		n = 30;
 7300
 7301	/* store the hashes for later use */
 7302	for (i = 0; i < n; i++)
 7303		vf_data->vf_mc_hashes[i] = hash_list[i];
 7304
 7305	/* Flush and reset the mta with the new values */
 7306	igb_set_rx_mode(adapter->netdev);
 7307
 7308	return 0;
 7309}
 7310
 7311static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
 7312{
 7313	struct e1000_hw *hw = &adapter->hw;
 7314	struct vf_data_storage *vf_data;
 7315	int i, j;
 7316
 7317	for (i = 0; i < adapter->vfs_allocated_count; i++) {
 7318		u32 vmolr = rd32(E1000_VMOLR(i));
 7319
 7320		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
 7321
 7322		vf_data = &adapter->vf_data[i];
 7323
 7324		if ((vf_data->num_vf_mc_hashes > 30) ||
 7325		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
 7326			vmolr |= E1000_VMOLR_MPME;
 7327		} else if (vf_data->num_vf_mc_hashes) {
 7328			vmolr |= E1000_VMOLR_ROMPE;
 7329			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
 7330				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
 7331		}
 7332		wr32(E1000_VMOLR(i), vmolr);
 7333	}
 7334}
 7335
 7336static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
 7337{
 7338	struct e1000_hw *hw = &adapter->hw;
 7339	u32 pool_mask, vlvf_mask, i;
 7340
 7341	/* create mask for VF and other pools */
 7342	pool_mask = E1000_VLVF_POOLSEL_MASK;
 7343	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
 7344
 7345	/* drop PF from pool bits */
 7346	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
 7347			     adapter->vfs_allocated_count);
 7348
 7349	/* Find the vlan filter for this id */
 7350	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
 7351		u32 vlvf = rd32(E1000_VLVF(i));
 7352		u32 vfta_mask, vid, vfta;
 7353
 7354		/* remove the vf from the pool */
 7355		if (!(vlvf & vlvf_mask))
 7356			continue;
 7357
 7358		/* clear out bit from VLVF */
 7359		vlvf ^= vlvf_mask;
 7360
 7361		/* if other pools are present, just remove ourselves */
 7362		if (vlvf & pool_mask)
 7363			goto update_vlvfb;
 7364
 7365		/* if PF is present, leave VFTA */
 7366		if (vlvf & E1000_VLVF_POOLSEL_MASK)
 7367			goto update_vlvf;
 7368
 7369		vid = vlvf & E1000_VLVF_VLANID_MASK;
 7370		vfta_mask = BIT(vid % 32);
 7371
 7372		/* clear bit from VFTA */
 7373		vfta = adapter->shadow_vfta[vid / 32];
 7374		if (vfta & vfta_mask)
 7375			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
 7376update_vlvf:
 7377		/* clear pool selection enable */
 7378		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 7379			vlvf &= E1000_VLVF_POOLSEL_MASK;
 7380		else
 7381			vlvf = 0;
 7382update_vlvfb:
 7383		/* clear pool bits */
 7384		wr32(E1000_VLVF(i), vlvf);
 7385	}
 7386}
 7387
 7388static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
 7389{
 7390	u32 vlvf;
 7391	int idx;
 7392
 7393	/* short cut the special case */
 7394	if (vlan == 0)
 7395		return 0;
 7396
 7397	/* Search for the VLAN id in the VLVF entries */
 7398	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
 7399		vlvf = rd32(E1000_VLVF(idx));
 7400		if ((vlvf & VLAN_VID_MASK) == vlan)
 7401			break;
 7402	}
 7403
 7404	return idx;
 7405}
 7406
 7407static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
 7408{
 7409	struct e1000_hw *hw = &adapter->hw;
 7410	u32 bits, pf_id;
 7411	int idx;
 7412
 7413	idx = igb_find_vlvf_entry(hw, vid);
 7414	if (!idx)
 7415		return;
 7416
 7417	/* See if any other pools are set for this VLAN filter
 7418	 * entry other than the PF.
 7419	 */
 7420	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 7421	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
 7422	bits &= rd32(E1000_VLVF(idx));
 7423
 7424	/* Disable the filter so this falls into the default pool. */
 7425	if (!bits) {
 7426		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 7427			wr32(E1000_VLVF(idx), BIT(pf_id));
 7428		else
 7429			wr32(E1000_VLVF(idx), 0);
 7430	}
 7431}
 7432
 7433static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
 7434			   bool add, u32 vf)
 7435{
 7436	int pf_id = adapter->vfs_allocated_count;
 7437	struct e1000_hw *hw = &adapter->hw;
 7438	int err;
 7439
 7440	/* If VLAN overlaps with one the PF is currently monitoring make
 7441	 * sure that we are able to allocate a VLVF entry.  This may be
 7442	 * redundant but it guarantees PF will maintain visibility to
 7443	 * the VLAN.
 7444	 */
 7445	if (add && test_bit(vid, adapter->active_vlans)) {
 7446		err = igb_vfta_set(hw, vid, pf_id, true, false);
 7447		if (err)
 7448			return err;
 7449	}
 7450
 7451	err = igb_vfta_set(hw, vid, vf, add, false);
 7452
 7453	if (add && !err)
 7454		return err;
 7455
 7456	/* If we failed to add the VF VLAN or we are removing the VF VLAN
 7457	 * we may need to drop the PF pool bit in order to allow us to free
 7458	 * up the VLVF resources.
 7459	 */
 7460	if (test_bit(vid, adapter->active_vlans) ||
 7461	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
 7462		igb_update_pf_vlvf(adapter, vid);
 7463
 7464	return err;
 7465}
 7466
 7467static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
 7468{
 7469	struct e1000_hw *hw = &adapter->hw;
 7470
 7471	if (vid)
 7472		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
 7473	else
 7474		wr32(E1000_VMVIR(vf), 0);
 7475}
 7476
 7477static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
 7478				u16 vlan, u8 qos)
 7479{
 7480	int err;
 7481
 7482	err = igb_set_vf_vlan(adapter, vlan, true, vf);
 7483	if (err)
 7484		return err;
 7485
 7486	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
 7487	igb_set_vmolr(adapter, vf, !vlan);
 7488
 7489	/* revoke access to previous VLAN */
 7490	if (vlan != adapter->vf_data[vf].pf_vlan)
 7491		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
 7492				false, vf);
 7493
 7494	adapter->vf_data[vf].pf_vlan = vlan;
 7495	adapter->vf_data[vf].pf_qos = qos;
 7496	igb_set_vf_vlan_strip(adapter, vf, true);
 7497	dev_info(&adapter->pdev->dev,
 7498		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
 7499	if (test_bit(__IGB_DOWN, &adapter->state)) {
 7500		dev_warn(&adapter->pdev->dev,
 7501			 "The VF VLAN has been set, but the PF device is not up.\n");
 7502		dev_warn(&adapter->pdev->dev,
 7503			 "Bring the PF device up before attempting to use the VF device.\n");
 7504	}
 7505
 7506	return err;
 7507}
 7508
 7509static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
 7510{
 7511	/* Restore tagless access via VLAN 0 */
 7512	igb_set_vf_vlan(adapter, 0, true, vf);
 7513
 7514	igb_set_vmvir(adapter, 0, vf);
 7515	igb_set_vmolr(adapter, vf, true);
 7516
 7517	/* Remove any PF assigned VLAN */
 7518	if (adapter->vf_data[vf].pf_vlan)
 7519		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
 7520				false, vf);
 7521
 7522	adapter->vf_data[vf].pf_vlan = 0;
 7523	adapter->vf_data[vf].pf_qos = 0;
 7524	igb_set_vf_vlan_strip(adapter, vf, false);
 7525
 7526	return 0;
 7527}
 7528
 7529static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
 7530			       u16 vlan, u8 qos, __be16 vlan_proto)
 7531{
 7532	struct igb_adapter *adapter = netdev_priv(netdev);
 7533
 7534	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
 7535		return -EINVAL;
 7536
 7537	if (vlan_proto != htons(ETH_P_8021Q))
 7538		return -EPROTONOSUPPORT;
 7539
 7540	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
 7541			       igb_disable_port_vlan(adapter, vf);
 7542}
 7543
 7544static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
 7545{
 7546	int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
 7547	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
 7548	int ret;
 7549
 7550	if (adapter->vf_data[vf].pf_vlan)
 7551		return -1;
 7552
 7553	/* VLAN 0 is a special case, don't allow it to be removed */
 7554	if (!vid && !add)
 7555		return 0;
 7556
 7557	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
 7558	if (!ret)
 7559		igb_set_vf_vlan_strip(adapter, vf, !!vid);
 7560	return ret;
 7561}
 7562
 7563static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
 7564{
 7565	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7566
 7567	/* clear flags - except flag that indicates PF has set the MAC */
 7568	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
 7569	vf_data->last_nack = jiffies;
 7570
 7571	/* reset vlans for device */
 7572	igb_clear_vf_vfta(adapter, vf);
 7573	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
 7574	igb_set_vmvir(adapter, vf_data->pf_vlan |
 7575			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
 7576	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
 7577	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
 7578
 7579	/* reset multicast table array for vf */
 7580	adapter->vf_data[vf].num_vf_mc_hashes = 0;
 7581
 7582	/* Flush and reset the mta with the new values */
 7583	igb_set_rx_mode(adapter->netdev);
 7584}
 7585
 7586static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
 7587{
 7588	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
 7589
 7590	/* clear mac address as we were hotplug removed/added */
 7591	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
 7592		eth_zero_addr(vf_mac);
 7593
 7594	/* process remaining reset events */
 7595	igb_vf_reset(adapter, vf);
 7596}
 7597
 7598static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
 7599{
 7600	struct e1000_hw *hw = &adapter->hw;
 7601	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
 7602	u32 reg, msgbuf[3] = {};
 
 7603	u8 *addr = (u8 *)(&msgbuf[1]);
 7604
 7605	/* process all the same items cleared in a function level reset */
 7606	igb_vf_reset(adapter, vf);
 7607
 7608	/* set vf mac address */
 7609	igb_set_vf_mac(adapter, vf, vf_mac);
 7610
 7611	/* enable transmit and receive for vf */
 7612	reg = rd32(E1000_VFTE);
 7613	wr32(E1000_VFTE, reg | BIT(vf));
 7614	reg = rd32(E1000_VFRE);
 7615	wr32(E1000_VFRE, reg | BIT(vf));
 7616
 7617	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
 7618
 7619	/* reply to reset with ack and vf mac address */
 7620	if (!is_zero_ether_addr(vf_mac)) {
 7621		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
 7622		memcpy(addr, vf_mac, ETH_ALEN);
 7623	} else {
 7624		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
 7625	}
 7626	igb_write_mbx(hw, msgbuf, 3, vf);
 7627}
 7628
 7629static void igb_flush_mac_table(struct igb_adapter *adapter)
 7630{
 7631	struct e1000_hw *hw = &adapter->hw;
 7632	int i;
 7633
 7634	for (i = 0; i < hw->mac.rar_entry_count; i++) {
 7635		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
 7636		eth_zero_addr(adapter->mac_table[i].addr);
 7637		adapter->mac_table[i].queue = 0;
 7638		igb_rar_set_index(adapter, i);
 7639	}
 7640}
 7641
 7642static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
 7643{
 7644	struct e1000_hw *hw = &adapter->hw;
 7645	/* do not count rar entries reserved for VFs MAC addresses */
 7646	int rar_entries = hw->mac.rar_entry_count -
 7647			  adapter->vfs_allocated_count;
 7648	int i, count = 0;
 7649
 7650	for (i = 0; i < rar_entries; i++) {
 7651		/* do not count default entries */
 7652		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
 7653			continue;
 7654
 7655		/* do not count "in use" entries for different queues */
 7656		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
 7657		    (adapter->mac_table[i].queue != queue))
 7658			continue;
 7659
 7660		count++;
 7661	}
 7662
 7663	return count;
 7664}
 7665
 7666/* Set default MAC address for the PF in the first RAR entry */
 7667static void igb_set_default_mac_filter(struct igb_adapter *adapter)
 7668{
 7669	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
 7670
 7671	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
 7672	mac_table->queue = adapter->vfs_allocated_count;
 7673	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
 7674
 7675	igb_rar_set_index(adapter, 0);
 7676}
 7677
 7678/* If the filter to be added and an already existing filter express
 7679 * the same address and address type, it should be possible to only
 7680 * override the other configurations, for example the queue to steer
 7681 * traffic.
 7682 */
 7683static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
 7684				      const u8 *addr, const u8 flags)
 7685{
 7686	if (!(entry->state & IGB_MAC_STATE_IN_USE))
 7687		return true;
 7688
 7689	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
 7690	    (flags & IGB_MAC_STATE_SRC_ADDR))
 7691		return false;
 7692
 7693	if (!ether_addr_equal(addr, entry->addr))
 7694		return false;
 7695
 7696	return true;
 7697}
 7698
 7699/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
 7700 * 'flags' is used to indicate what kind of match is made, match is by
 7701 * default for the destination address, if matching by source address
 7702 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
 7703 */
 7704static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
 7705				    const u8 *addr, const u8 queue,
 7706				    const u8 flags)
 7707{
 7708	struct e1000_hw *hw = &adapter->hw;
 7709	int rar_entries = hw->mac.rar_entry_count -
 7710			  adapter->vfs_allocated_count;
 7711	int i;
 7712
 7713	if (is_zero_ether_addr(addr))
 7714		return -EINVAL;
 7715
 7716	/* Search for the first empty entry in the MAC table.
 7717	 * Do not touch entries at the end of the table reserved for the VF MAC
 7718	 * addresses.
 7719	 */
 7720	for (i = 0; i < rar_entries; i++) {
 7721		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
 7722					       addr, flags))
 7723			continue;
 7724
 7725		ether_addr_copy(adapter->mac_table[i].addr, addr);
 7726		adapter->mac_table[i].queue = queue;
 7727		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
 7728
 7729		igb_rar_set_index(adapter, i);
 7730		return i;
 7731	}
 7732
 7733	return -ENOSPC;
 7734}
 7735
 7736static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
 7737			      const u8 queue)
 7738{
 7739	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
 7740}
 7741
 7742/* Remove a MAC filter for 'addr' directing matching traffic to
 7743 * 'queue', 'flags' is used to indicate what kind of match need to be
 7744 * removed, match is by default for the destination address, if
 7745 * matching by source address is to be removed the flag
 7746 * IGB_MAC_STATE_SRC_ADDR can be used.
 7747 */
 7748static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
 7749				    const u8 *addr, const u8 queue,
 7750				    const u8 flags)
 7751{
 7752	struct e1000_hw *hw = &adapter->hw;
 7753	int rar_entries = hw->mac.rar_entry_count -
 7754			  adapter->vfs_allocated_count;
 7755	int i;
 7756
 7757	if (is_zero_ether_addr(addr))
 7758		return -EINVAL;
 7759
 7760	/* Search for matching entry in the MAC table based on given address
 7761	 * and queue. Do not touch entries at the end of the table reserved
 7762	 * for the VF MAC addresses.
 7763	 */
 7764	for (i = 0; i < rar_entries; i++) {
 7765		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
 7766			continue;
 7767		if ((adapter->mac_table[i].state & flags) != flags)
 7768			continue;
 7769		if (adapter->mac_table[i].queue != queue)
 7770			continue;
 7771		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
 7772			continue;
 7773
 7774		/* When a filter for the default address is "deleted",
 7775		 * we return it to its initial configuration
 7776		 */
 7777		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
 7778			adapter->mac_table[i].state =
 7779				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
 7780			adapter->mac_table[i].queue =
 7781				adapter->vfs_allocated_count;
 7782		} else {
 7783			adapter->mac_table[i].state = 0;
 7784			adapter->mac_table[i].queue = 0;
 7785			eth_zero_addr(adapter->mac_table[i].addr);
 7786		}
 7787
 7788		igb_rar_set_index(adapter, i);
 7789		return 0;
 7790	}
 7791
 7792	return -ENOENT;
 7793}
 7794
 7795static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
 7796			      const u8 queue)
 7797{
 7798	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
 7799}
 7800
 7801int igb_add_mac_steering_filter(struct igb_adapter *adapter,
 7802				const u8 *addr, u8 queue, u8 flags)
 7803{
 7804	struct e1000_hw *hw = &adapter->hw;
 7805
 7806	/* In theory, this should be supported on 82575 as well, but
 7807	 * that part wasn't easily accessible during development.
 7808	 */
 7809	if (hw->mac.type != e1000_i210)
 7810		return -EOPNOTSUPP;
 7811
 7812	return igb_add_mac_filter_flags(adapter, addr, queue,
 7813					IGB_MAC_STATE_QUEUE_STEERING | flags);
 7814}
 7815
 7816int igb_del_mac_steering_filter(struct igb_adapter *adapter,
 7817				const u8 *addr, u8 queue, u8 flags)
 7818{
 7819	return igb_del_mac_filter_flags(adapter, addr, queue,
 7820					IGB_MAC_STATE_QUEUE_STEERING | flags);
 7821}
 7822
 7823static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
 7824{
 7825	struct igb_adapter *adapter = netdev_priv(netdev);
 7826	int ret;
 7827
 7828	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
 7829
 7830	return min_t(int, ret, 0);
 7831}
 7832
 7833static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
 7834{
 7835	struct igb_adapter *adapter = netdev_priv(netdev);
 7836
 7837	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
 7838
 7839	return 0;
 7840}
 7841
 7842static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
 7843				 const u32 info, const u8 *addr)
 7844{
 7845	struct pci_dev *pdev = adapter->pdev;
 7846	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7847	struct vf_mac_filter *entry;
 7848	bool found = false;
 7849	int ret = 0;
 7850
 7851	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
 7852	    !vf_data->trusted) {
 7853		dev_warn(&pdev->dev,
 7854			 "VF %d requested MAC filter but is administratively denied\n",
 7855			  vf);
 7856		return -EINVAL;
 7857	}
 7858	if (!is_valid_ether_addr(addr)) {
 7859		dev_warn(&pdev->dev,
 7860			 "VF %d attempted to set invalid MAC filter\n",
 7861			  vf);
 7862		return -EINVAL;
 7863	}
 7864
 7865	switch (info) {
 7866	case E1000_VF_MAC_FILTER_CLR:
 7867		/* remove all unicast MAC filters related to the current VF */
 7868		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
 7869			if (entry->vf == vf) {
 7870				entry->vf = -1;
 7871				entry->free = true;
 7872				igb_del_mac_filter(adapter, entry->vf_mac, vf);
 7873			}
 7874		}
 7875		break;
 7876	case E1000_VF_MAC_FILTER_ADD:
 7877		/* try to find empty slot in the list */
 7878		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
 7879			if (entry->free) {
 7880				found = true;
 7881				break;
 7882			}
 7883		}
 7884
 7885		if (found) {
 7886			entry->free = false;
 7887			entry->vf = vf;
 7888			ether_addr_copy(entry->vf_mac, addr);
 7889
 7890			ret = igb_add_mac_filter(adapter, addr, vf);
 7891			ret = min_t(int, ret, 0);
 7892		} else {
 7893			ret = -ENOSPC;
 7894		}
 7895
 7896		if (ret == -ENOSPC)
 7897			dev_warn(&pdev->dev,
 7898				 "VF %d has requested MAC filter but there is no space for it\n",
 7899				 vf);
 7900		break;
 7901	default:
 7902		ret = -EINVAL;
 7903		break;
 7904	}
 7905
 7906	return ret;
 7907}
 7908
 7909static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
 7910{
 7911	struct pci_dev *pdev = adapter->pdev;
 7912	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7913	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
 7914
 7915	/* The VF MAC Address is stored in a packed array of bytes
 7916	 * starting at the second 32 bit word of the msg array
 7917	 */
 7918	unsigned char *addr = (unsigned char *)&msg[1];
 7919	int ret = 0;
 7920
 7921	if (!info) {
 7922		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
 7923		    !vf_data->trusted) {
 7924			dev_warn(&pdev->dev,
 7925				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
 7926				 vf);
 7927			return -EINVAL;
 7928		}
 7929
 7930		if (!is_valid_ether_addr(addr)) {
 7931			dev_warn(&pdev->dev,
 7932				 "VF %d attempted to set invalid MAC\n",
 7933				 vf);
 7934			return -EINVAL;
 7935		}
 7936
 7937		ret = igb_set_vf_mac(adapter, vf, addr);
 7938	} else {
 7939		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
 7940	}
 7941
 7942	return ret;
 7943}
 7944
 7945static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
 7946{
 7947	struct e1000_hw *hw = &adapter->hw;
 7948	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7949	u32 msg = E1000_VT_MSGTYPE_NACK;
 7950
 7951	/* if device isn't clear to send it shouldn't be reading either */
 7952	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
 7953	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
 7954		igb_write_mbx(hw, &msg, 1, vf);
 7955		vf_data->last_nack = jiffies;
 7956	}
 7957}
 7958
 7959static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
 7960{
 7961	struct pci_dev *pdev = adapter->pdev;
 7962	u32 msgbuf[E1000_VFMAILBOX_SIZE];
 7963	struct e1000_hw *hw = &adapter->hw;
 7964	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7965	s32 retval;
 7966
 7967	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
 7968
 7969	if (retval) {
 7970		/* if receive failed revoke VF CTS stats and restart init */
 7971		dev_err(&pdev->dev, "Error receiving message from VF\n");
 7972		vf_data->flags &= ~IGB_VF_FLAG_CTS;
 7973		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
 7974			goto unlock;
 7975		goto out;
 7976	}
 7977
 7978	/* this is a message we already processed, do nothing */
 7979	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
 7980		goto unlock;
 7981
 7982	/* until the vf completes a reset it should not be
 7983	 * allowed to start any configuration.
 7984	 */
 7985	if (msgbuf[0] == E1000_VF_RESET) {
 7986		/* unlocks mailbox */
 7987		igb_vf_reset_msg(adapter, vf);
 7988		return;
 7989	}
 7990
 7991	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
 7992		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
 7993			goto unlock;
 7994		retval = -1;
 7995		goto out;
 7996	}
 7997
 7998	switch ((msgbuf[0] & 0xFFFF)) {
 7999	case E1000_VF_SET_MAC_ADDR:
 8000		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
 
 
 
 
 
 
 8001		break;
 8002	case E1000_VF_SET_PROMISC:
 8003		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
 8004		break;
 8005	case E1000_VF_SET_MULTICAST:
 8006		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
 8007		break;
 8008	case E1000_VF_SET_LPE:
 8009		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
 8010		break;
 8011	case E1000_VF_SET_VLAN:
 8012		retval = -1;
 8013		if (vf_data->pf_vlan)
 8014			dev_warn(&pdev->dev,
 8015				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
 8016				 vf);
 8017		else
 8018			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
 8019		break;
 8020	default:
 8021		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
 8022		retval = -1;
 8023		break;
 8024	}
 8025
 8026	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
 8027out:
 8028	/* notify the VF of the results of what it sent us */
 8029	if (retval)
 8030		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
 8031	else
 8032		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
 8033
 8034	/* unlocks mailbox */
 8035	igb_write_mbx(hw, msgbuf, 1, vf);
 8036	return;
 8037
 8038unlock:
 8039	igb_unlock_mbx(hw, vf);
 8040}
 8041
 8042static void igb_msg_task(struct igb_adapter *adapter)
 8043{
 8044	struct e1000_hw *hw = &adapter->hw;
 8045	unsigned long flags;
 8046	u32 vf;
 8047
 8048	spin_lock_irqsave(&adapter->vfs_lock, flags);
 8049	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
 8050		/* process any reset requests */
 8051		if (!igb_check_for_rst(hw, vf))
 8052			igb_vf_reset_event(adapter, vf);
 8053
 8054		/* process any messages pending */
 8055		if (!igb_check_for_msg(hw, vf))
 8056			igb_rcv_msg_from_vf(adapter, vf);
 8057
 8058		/* process any acks */
 8059		if (!igb_check_for_ack(hw, vf))
 8060			igb_rcv_ack_from_vf(adapter, vf);
 8061	}
 8062	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
 8063}
 8064
 8065/**
 8066 *  igb_set_uta - Set unicast filter table address
 8067 *  @adapter: board private structure
 8068 *  @set: boolean indicating if we are setting or clearing bits
 8069 *
 8070 *  The unicast table address is a register array of 32-bit registers.
 8071 *  The table is meant to be used in a way similar to how the MTA is used
 8072 *  however due to certain limitations in the hardware it is necessary to
 8073 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 8074 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
 8075 **/
 8076static void igb_set_uta(struct igb_adapter *adapter, bool set)
 8077{
 8078	struct e1000_hw *hw = &adapter->hw;
 8079	u32 uta = set ? ~0 : 0;
 8080	int i;
 8081
 8082	/* we only need to do this if VMDq is enabled */
 8083	if (!adapter->vfs_allocated_count)
 8084		return;
 8085
 8086	for (i = hw->mac.uta_reg_count; i--;)
 8087		array_wr32(E1000_UTA, i, uta);
 8088}
 8089
 8090/**
 8091 *  igb_intr_msi - Interrupt Handler
 8092 *  @irq: interrupt number
 8093 *  @data: pointer to a network interface device structure
 8094 **/
 8095static irqreturn_t igb_intr_msi(int irq, void *data)
 8096{
 8097	struct igb_adapter *adapter = data;
 8098	struct igb_q_vector *q_vector = adapter->q_vector[0];
 8099	struct e1000_hw *hw = &adapter->hw;
 8100	/* read ICR disables interrupts using IAM */
 8101	u32 icr = rd32(E1000_ICR);
 8102
 8103	igb_write_itr(q_vector);
 8104
 8105	if (icr & E1000_ICR_DRSTA)
 8106		schedule_work(&adapter->reset_task);
 8107
 8108	if (icr & E1000_ICR_DOUTSYNC) {
 8109		/* HW is reporting DMA is out of sync */
 8110		adapter->stats.doosync++;
 8111	}
 8112
 8113	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 8114		hw->mac.get_link_status = 1;
 8115		if (!test_bit(__IGB_DOWN, &adapter->state))
 8116			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 8117	}
 8118
 8119	if (icr & E1000_ICR_TS)
 8120		igb_tsync_interrupt(adapter);
 8121
 8122	napi_schedule(&q_vector->napi);
 8123
 8124	return IRQ_HANDLED;
 8125}
 8126
 8127/**
 8128 *  igb_intr - Legacy Interrupt Handler
 8129 *  @irq: interrupt number
 8130 *  @data: pointer to a network interface device structure
 8131 **/
 8132static irqreturn_t igb_intr(int irq, void *data)
 8133{
 8134	struct igb_adapter *adapter = data;
 8135	struct igb_q_vector *q_vector = adapter->q_vector[0];
 8136	struct e1000_hw *hw = &adapter->hw;
 8137	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
 8138	 * need for the IMC write
 8139	 */
 8140	u32 icr = rd32(E1000_ICR);
 8141
 8142	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
 8143	 * not set, then the adapter didn't send an interrupt
 8144	 */
 8145	if (!(icr & E1000_ICR_INT_ASSERTED))
 8146		return IRQ_NONE;
 8147
 8148	igb_write_itr(q_vector);
 8149
 8150	if (icr & E1000_ICR_DRSTA)
 8151		schedule_work(&adapter->reset_task);
 8152
 8153	if (icr & E1000_ICR_DOUTSYNC) {
 8154		/* HW is reporting DMA is out of sync */
 8155		adapter->stats.doosync++;
 8156	}
 8157
 8158	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 8159		hw->mac.get_link_status = 1;
 8160		/* guard against interrupt when we're going down */
 8161		if (!test_bit(__IGB_DOWN, &adapter->state))
 8162			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 8163	}
 8164
 8165	if (icr & E1000_ICR_TS)
 8166		igb_tsync_interrupt(adapter);
 8167
 8168	napi_schedule(&q_vector->napi);
 8169
 8170	return IRQ_HANDLED;
 8171}
 8172
 8173static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
 8174{
 8175	struct igb_adapter *adapter = q_vector->adapter;
 8176	struct e1000_hw *hw = &adapter->hw;
 8177
 8178	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
 8179	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
 8180		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
 8181			igb_set_itr(q_vector);
 8182		else
 8183			igb_update_ring_itr(q_vector);
 8184	}
 8185
 8186	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 8187		if (adapter->flags & IGB_FLAG_HAS_MSIX)
 8188			wr32(E1000_EIMS, q_vector->eims_value);
 8189		else
 8190			igb_irq_enable(adapter);
 8191	}
 8192}
 8193
 8194/**
 8195 *  igb_poll - NAPI Rx polling callback
 8196 *  @napi: napi polling structure
 8197 *  @budget: count of how many packets we should handle
 8198 **/
 8199static int igb_poll(struct napi_struct *napi, int budget)
 8200{
 8201	struct igb_q_vector *q_vector = container_of(napi,
 8202						     struct igb_q_vector,
 8203						     napi);
 8204	bool clean_complete = true;
 8205	int work_done = 0;
 8206
 8207#ifdef CONFIG_IGB_DCA
 8208	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
 8209		igb_update_dca(q_vector);
 8210#endif
 8211	if (q_vector->tx.ring)
 8212		clean_complete = igb_clean_tx_irq(q_vector, budget);
 8213
 8214	if (q_vector->rx.ring) {
 8215		int cleaned = igb_clean_rx_irq(q_vector, budget);
 8216
 8217		work_done += cleaned;
 8218		if (cleaned >= budget)
 8219			clean_complete = false;
 8220	}
 8221
 8222	/* If all work not completed, return budget and keep polling */
 8223	if (!clean_complete)
 8224		return budget;
 8225
 8226	/* Exit the polling mode, but don't re-enable interrupts if stack might
 8227	 * poll us due to busy-polling
 8228	 */
 8229	if (likely(napi_complete_done(napi, work_done)))
 8230		igb_ring_irq_enable(q_vector);
 8231
 8232	return work_done;
 8233}
 8234
 8235/**
 8236 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 8237 *  @q_vector: pointer to q_vector containing needed info
 8238 *  @napi_budget: Used to determine if we are in netpoll
 8239 *
 8240 *  returns true if ring is completely cleaned
 8241 **/
 8242static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
 8243{
 8244	struct igb_adapter *adapter = q_vector->adapter;
 8245	struct igb_ring *tx_ring = q_vector->tx.ring;
 8246	struct igb_tx_buffer *tx_buffer;
 8247	union e1000_adv_tx_desc *tx_desc;
 8248	unsigned int total_bytes = 0, total_packets = 0;
 8249	unsigned int budget = q_vector->tx.work_limit;
 8250	unsigned int i = tx_ring->next_to_clean;
 8251
 8252	if (test_bit(__IGB_DOWN, &adapter->state))
 8253		return true;
 8254
 8255	tx_buffer = &tx_ring->tx_buffer_info[i];
 8256	tx_desc = IGB_TX_DESC(tx_ring, i);
 8257	i -= tx_ring->count;
 8258
 8259	do {
 8260		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
 8261
 8262		/* if next_to_watch is not set then there is no work pending */
 8263		if (!eop_desc)
 8264			break;
 8265
 8266		/* prevent any other reads prior to eop_desc */
 8267		smp_rmb();
 8268
 8269		/* if DD is not set pending work has not been completed */
 8270		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 8271			break;
 8272
 8273		/* clear next_to_watch to prevent false hangs */
 8274		tx_buffer->next_to_watch = NULL;
 8275
 8276		/* update the statistics for this packet */
 8277		total_bytes += tx_buffer->bytecount;
 8278		total_packets += tx_buffer->gso_segs;
 8279
 8280		/* free the skb */
 8281		if (tx_buffer->type == IGB_TYPE_SKB)
 8282			napi_consume_skb(tx_buffer->skb, napi_budget);
 8283		else
 8284			xdp_return_frame(tx_buffer->xdpf);
 8285
 8286		/* unmap skb header data */
 8287		dma_unmap_single(tx_ring->dev,
 8288				 dma_unmap_addr(tx_buffer, dma),
 8289				 dma_unmap_len(tx_buffer, len),
 8290				 DMA_TO_DEVICE);
 8291
 8292		/* clear tx_buffer data */
 
 8293		dma_unmap_len_set(tx_buffer, len, 0);
 8294
 8295		/* clear last DMA location and unmap remaining buffers */
 8296		while (tx_desc != eop_desc) {
 8297			tx_buffer++;
 8298			tx_desc++;
 8299			i++;
 8300			if (unlikely(!i)) {
 8301				i -= tx_ring->count;
 8302				tx_buffer = tx_ring->tx_buffer_info;
 8303				tx_desc = IGB_TX_DESC(tx_ring, 0);
 8304			}
 8305
 8306			/* unmap any remaining paged data */
 8307			if (dma_unmap_len(tx_buffer, len)) {
 8308				dma_unmap_page(tx_ring->dev,
 8309					       dma_unmap_addr(tx_buffer, dma),
 8310					       dma_unmap_len(tx_buffer, len),
 8311					       DMA_TO_DEVICE);
 8312				dma_unmap_len_set(tx_buffer, len, 0);
 8313			}
 8314		}
 8315
 8316		/* move us one more past the eop_desc for start of next pkt */
 8317		tx_buffer++;
 8318		tx_desc++;
 8319		i++;
 8320		if (unlikely(!i)) {
 8321			i -= tx_ring->count;
 8322			tx_buffer = tx_ring->tx_buffer_info;
 8323			tx_desc = IGB_TX_DESC(tx_ring, 0);
 8324		}
 8325
 8326		/* issue prefetch for next Tx descriptor */
 8327		prefetch(tx_desc);
 8328
 8329		/* update budget accounting */
 8330		budget--;
 8331	} while (likely(budget));
 8332
 8333	netdev_tx_completed_queue(txring_txq(tx_ring),
 8334				  total_packets, total_bytes);
 8335	i += tx_ring->count;
 8336	tx_ring->next_to_clean = i;
 8337	u64_stats_update_begin(&tx_ring->tx_syncp);
 8338	tx_ring->tx_stats.bytes += total_bytes;
 8339	tx_ring->tx_stats.packets += total_packets;
 8340	u64_stats_update_end(&tx_ring->tx_syncp);
 8341	q_vector->tx.total_bytes += total_bytes;
 8342	q_vector->tx.total_packets += total_packets;
 8343
 8344	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
 8345		struct e1000_hw *hw = &adapter->hw;
 8346
 8347		/* Detect a transmit hang in hardware, this serializes the
 8348		 * check with the clearing of time_stamp and movement of i
 8349		 */
 8350		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
 8351		if (tx_buffer->next_to_watch &&
 8352		    time_after(jiffies, tx_buffer->time_stamp +
 8353			       (adapter->tx_timeout_factor * HZ)) &&
 8354		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
 8355
 8356			/* detected Tx unit hang */
 8357			dev_err(tx_ring->dev,
 8358				"Detected Tx Unit Hang\n"
 8359				"  Tx Queue             <%d>\n"
 8360				"  TDH                  <%x>\n"
 8361				"  TDT                  <%x>\n"
 8362				"  next_to_use          <%x>\n"
 8363				"  next_to_clean        <%x>\n"
 8364				"buffer_info[next_to_clean]\n"
 8365				"  time_stamp           <%lx>\n"
 8366				"  next_to_watch        <%p>\n"
 8367				"  jiffies              <%lx>\n"
 8368				"  desc.status          <%x>\n",
 8369				tx_ring->queue_index,
 8370				rd32(E1000_TDH(tx_ring->reg_idx)),
 8371				readl(tx_ring->tail),
 8372				tx_ring->next_to_use,
 8373				tx_ring->next_to_clean,
 8374				tx_buffer->time_stamp,
 8375				tx_buffer->next_to_watch,
 8376				jiffies,
 8377				tx_buffer->next_to_watch->wb.status);
 8378			netif_stop_subqueue(tx_ring->netdev,
 8379					    tx_ring->queue_index);
 8380
 8381			/* we are about to reset, no point in enabling stuff */
 8382			return true;
 8383		}
 8384	}
 8385
 8386#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 8387	if (unlikely(total_packets &&
 8388	    netif_carrier_ok(tx_ring->netdev) &&
 8389	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
 8390		/* Make sure that anybody stopping the queue after this
 8391		 * sees the new next_to_clean.
 8392		 */
 8393		smp_mb();
 8394		if (__netif_subqueue_stopped(tx_ring->netdev,
 8395					     tx_ring->queue_index) &&
 8396		    !(test_bit(__IGB_DOWN, &adapter->state))) {
 8397			netif_wake_subqueue(tx_ring->netdev,
 8398					    tx_ring->queue_index);
 8399
 8400			u64_stats_update_begin(&tx_ring->tx_syncp);
 8401			tx_ring->tx_stats.restart_queue++;
 8402			u64_stats_update_end(&tx_ring->tx_syncp);
 8403		}
 8404	}
 8405
 8406	return !!budget;
 8407}
 8408
 8409/**
 8410 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 8411 *  @rx_ring: rx descriptor ring to store buffers on
 8412 *  @old_buff: donor buffer to have page reused
 8413 *
 8414 *  Synchronizes page for reuse by the adapter
 8415 **/
 8416static void igb_reuse_rx_page(struct igb_ring *rx_ring,
 8417			      struct igb_rx_buffer *old_buff)
 8418{
 8419	struct igb_rx_buffer *new_buff;
 8420	u16 nta = rx_ring->next_to_alloc;
 8421
 8422	new_buff = &rx_ring->rx_buffer_info[nta];
 8423
 8424	/* update, and store next to alloc */
 8425	nta++;
 8426	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 8427
 8428	/* Transfer page from old buffer to new buffer.
 8429	 * Move each member individually to avoid possible store
 8430	 * forwarding stalls.
 8431	 */
 8432	new_buff->dma		= old_buff->dma;
 8433	new_buff->page		= old_buff->page;
 8434	new_buff->page_offset	= old_buff->page_offset;
 8435	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
 8436}
 8437
 8438static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
 8439				  int rx_buf_pgcnt)
 8440{
 8441	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
 8442	struct page *page = rx_buffer->page;
 8443
 8444	/* avoid re-using remote and pfmemalloc pages */
 8445	if (!dev_page_is_reusable(page))
 
 
 
 
 8446		return false;
 8447
 8448#if (PAGE_SIZE < 8192)
 8449	/* if we are only owner of page we can reuse it */
 8450	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
 8451		return false;
 
 
 
 8452#else
 8453#define IGB_LAST_OFFSET \
 8454	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
 8455
 8456	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
 8457		return false;
 8458#endif
 8459
 8460	/* If we have drained the page fragment pool we need to update
 8461	 * the pagecnt_bias and page count so that we fully restock the
 8462	 * number of references the driver holds.
 8463	 */
 8464	if (unlikely(pagecnt_bias == 1)) {
 8465		page_ref_add(page, USHRT_MAX - 1);
 8466		rx_buffer->pagecnt_bias = USHRT_MAX;
 8467	}
 8468
 8469	return true;
 8470}
 8471
 8472/**
 8473 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 8474 *  @rx_ring: rx descriptor ring to transact packets on
 8475 *  @rx_buffer: buffer containing page to add
 
 8476 *  @skb: sk_buff to place the data into
 8477 *  @size: size of buffer to be added
 8478 *
 8479 *  This function will add the data contained in rx_buffer->page to the skb.
 
 
 
 
 
 
 8480 **/
 8481static void igb_add_rx_frag(struct igb_ring *rx_ring,
 8482			    struct igb_rx_buffer *rx_buffer,
 8483			    struct sk_buff *skb,
 8484			    unsigned int size)
 8485{
 
 
 
 8486#if (PAGE_SIZE < 8192)
 8487	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8488#else
 8489	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
 8490				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
 8491				SKB_DATA_ALIGN(size);
 8492#endif
 8493	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
 8494			rx_buffer->page_offset, size, truesize);
 8495#if (PAGE_SIZE < 8192)
 8496	rx_buffer->page_offset ^= truesize;
 8497#else
 8498	rx_buffer->page_offset += truesize;
 8499#endif
 8500}
 8501
 8502static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
 8503					 struct igb_rx_buffer *rx_buffer,
 8504					 struct xdp_buff *xdp,
 8505					 ktime_t timestamp)
 8506{
 8507#if (PAGE_SIZE < 8192)
 8508	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8509#else
 8510	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
 8511					       xdp->data_hard_start);
 8512#endif
 8513	unsigned int size = xdp->data_end - xdp->data;
 8514	unsigned int headlen;
 8515	struct sk_buff *skb;
 8516
 8517	/* prefetch first cache line of first page */
 8518	net_prefetch(xdp->data);
 8519
 8520	/* allocate a skb to store the frags */
 8521	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
 8522	if (unlikely(!skb))
 8523		return NULL;
 8524
 8525	if (timestamp)
 8526		skb_hwtstamps(skb)->hwtstamp = timestamp;
 8527
 8528	/* Determine available headroom for copy */
 8529	headlen = size;
 8530	if (headlen > IGB_RX_HDR_LEN)
 8531		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
 8532
 8533	/* align pull length to size of long to optimize memcpy performance */
 8534	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
 8535
 8536	/* update all of the pointers */
 8537	size -= headlen;
 8538	if (size) {
 8539		skb_add_rx_frag(skb, 0, rx_buffer->page,
 8540				(xdp->data + headlen) - page_address(rx_buffer->page),
 8541				size, truesize);
 8542#if (PAGE_SIZE < 8192)
 8543		rx_buffer->page_offset ^= truesize;
 8544#else
 8545		rx_buffer->page_offset += truesize;
 8546#endif
 8547	} else {
 8548		rx_buffer->pagecnt_bias++;
 8549	}
 8550
 8551	return skb;
 8552}
 8553
 8554static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
 8555				     struct igb_rx_buffer *rx_buffer,
 8556				     struct xdp_buff *xdp,
 8557				     ktime_t timestamp)
 8558{
 8559#if (PAGE_SIZE < 8192)
 8560	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8561#else
 8562	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
 8563				SKB_DATA_ALIGN(xdp->data_end -
 8564					       xdp->data_hard_start);
 8565#endif
 8566	unsigned int metasize = xdp->data - xdp->data_meta;
 8567	struct sk_buff *skb;
 8568
 8569	/* prefetch first cache line of first page */
 8570	net_prefetch(xdp->data_meta);
 8571
 8572	/* build an skb around the page buffer */
 8573	skb = napi_build_skb(xdp->data_hard_start, truesize);
 8574	if (unlikely(!skb))
 8575		return NULL;
 8576
 8577	/* update pointers within the skb to store the data */
 8578	skb_reserve(skb, xdp->data - xdp->data_hard_start);
 8579	__skb_put(skb, xdp->data_end - xdp->data);
 
 8580
 8581	if (metasize)
 8582		skb_metadata_set(skb, metasize);
 8583
 8584	if (timestamp)
 8585		skb_hwtstamps(skb)->hwtstamp = timestamp;
 
 8586
 8587	/* update buffer offset */
 8588#if (PAGE_SIZE < 8192)
 8589	rx_buffer->page_offset ^= truesize;
 8590#else
 8591	rx_buffer->page_offset += truesize;
 8592#endif
 8593
 8594	return skb;
 8595}
 8596
 8597static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
 8598				   struct igb_ring *rx_ring,
 8599				   struct xdp_buff *xdp)
 8600{
 8601	int err, result = IGB_XDP_PASS;
 8602	struct bpf_prog *xdp_prog;
 8603	u32 act;
 8604
 8605	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
 
 
 8606
 8607	if (!xdp_prog)
 8608		goto xdp_out;
 
 
 
 
 
 
 
 8609
 8610	prefetchw(xdp->data_hard_start); /* xdp_frame write */
 
 
 
 
 
 8611
 8612	act = bpf_prog_run_xdp(xdp_prog, xdp);
 8613	switch (act) {
 8614	case XDP_PASS:
 8615		break;
 8616	case XDP_TX:
 8617		result = igb_xdp_xmit_back(adapter, xdp);
 8618		if (result == IGB_XDP_CONSUMED)
 8619			goto out_failure;
 8620		break;
 8621	case XDP_REDIRECT:
 8622		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
 8623		if (err)
 8624			goto out_failure;
 8625		result = IGB_XDP_REDIR;
 8626		break;
 8627	default:
 8628		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
 8629		fallthrough;
 8630	case XDP_ABORTED:
 8631out_failure:
 8632		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 8633		fallthrough;
 8634	case XDP_DROP:
 8635		result = IGB_XDP_CONSUMED;
 8636		break;
 8637	}
 8638xdp_out:
 8639	return ERR_PTR(-result);
 8640}
 8641
 8642static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
 8643					  unsigned int size)
 8644{
 8645	unsigned int truesize;
 
 
 8646
 8647#if (PAGE_SIZE < 8192)
 8648	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
 8649#else
 8650	truesize = ring_uses_build_skb(rx_ring) ?
 8651		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
 8652		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
 8653		SKB_DATA_ALIGN(size);
 8654#endif
 8655	return truesize;
 8656}
 8657
 8658static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
 8659			       struct igb_rx_buffer *rx_buffer,
 8660			       unsigned int size)
 8661{
 8662	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
 8663#if (PAGE_SIZE < 8192)
 8664	rx_buffer->page_offset ^= truesize;
 8665#else
 8666	rx_buffer->page_offset += truesize;
 8667#endif
 8668}
 8669
 8670static inline void igb_rx_checksum(struct igb_ring *ring,
 8671				   union e1000_adv_rx_desc *rx_desc,
 8672				   struct sk_buff *skb)
 8673{
 8674	skb_checksum_none_assert(skb);
 8675
 8676	/* Ignore Checksum bit is set */
 8677	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
 8678		return;
 8679
 8680	/* Rx checksum disabled via ethtool */
 8681	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 8682		return;
 8683
 8684	/* TCP/UDP checksum error bit is set */
 8685	if (igb_test_staterr(rx_desc,
 8686			     E1000_RXDEXT_STATERR_TCPE |
 8687			     E1000_RXDEXT_STATERR_IPE)) {
 8688		/* work around errata with sctp packets where the TCPE aka
 8689		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
 8690		 * packets, (aka let the stack check the crc32c)
 8691		 */
 8692		if (!((skb->len == 60) &&
 8693		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
 8694			u64_stats_update_begin(&ring->rx_syncp);
 8695			ring->rx_stats.csum_err++;
 8696			u64_stats_update_end(&ring->rx_syncp);
 8697		}
 8698		/* let the stack verify checksum errors */
 8699		return;
 8700	}
 8701	/* It must be a TCP or UDP packet with a valid checksum */
 8702	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
 8703				      E1000_RXD_STAT_UDPCS))
 8704		skb->ip_summed = CHECKSUM_UNNECESSARY;
 8705
 8706	dev_dbg(ring->dev, "cksum success: bits %08X\n",
 8707		le32_to_cpu(rx_desc->wb.upper.status_error));
 8708}
 8709
 8710static inline void igb_rx_hash(struct igb_ring *ring,
 8711			       union e1000_adv_rx_desc *rx_desc,
 8712			       struct sk_buff *skb)
 8713{
 8714	if (ring->netdev->features & NETIF_F_RXHASH)
 8715		skb_set_hash(skb,
 8716			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
 8717			     PKT_HASH_TYPE_L3);
 8718}
 8719
 8720/**
 8721 *  igb_is_non_eop - process handling of non-EOP buffers
 8722 *  @rx_ring: Rx ring being processed
 8723 *  @rx_desc: Rx descriptor for current buffer
 
 8724 *
 8725 *  This function updates next to clean.  If the buffer is an EOP buffer
 8726 *  this function exits returning false, otherwise it will place the
 8727 *  sk_buff in the next buffer to be chained and return true indicating
 8728 *  that this is in fact a non-EOP buffer.
 8729 **/
 8730static bool igb_is_non_eop(struct igb_ring *rx_ring,
 8731			   union e1000_adv_rx_desc *rx_desc)
 8732{
 8733	u32 ntc = rx_ring->next_to_clean + 1;
 8734
 8735	/* fetch, update, and store next to clean */
 8736	ntc = (ntc < rx_ring->count) ? ntc : 0;
 8737	rx_ring->next_to_clean = ntc;
 8738
 8739	prefetch(IGB_RX_DESC(rx_ring, ntc));
 8740
 8741	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
 8742		return false;
 8743
 8744	return true;
 8745}
 8746
 8747/**
 8748 *  igb_cleanup_headers - Correct corrupted or empty headers
 8749 *  @rx_ring: rx descriptor ring packet is being transacted on
 8750 *  @rx_desc: pointer to the EOP Rx descriptor
 8751 *  @skb: pointer to current skb being fixed
 8752 *
 8753 *  Address the case where we are pulling data in on pages only
 8754 *  and as such no data is present in the skb header.
 8755 *
 8756 *  In addition if skb is not at least 60 bytes we need to pad it so that
 8757 *  it is large enough to qualify as a valid Ethernet frame.
 8758 *
 8759 *  Returns true if an error was encountered and skb was freed.
 8760 **/
 8761static bool igb_cleanup_headers(struct igb_ring *rx_ring,
 8762				union e1000_adv_rx_desc *rx_desc,
 8763				struct sk_buff *skb)
 8764{
 8765	/* XDP packets use error pointer so abort at this point */
 8766	if (IS_ERR(skb))
 8767		return true;
 8768
 8769	if (unlikely((igb_test_staterr(rx_desc,
 8770				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
 8771		struct net_device *netdev = rx_ring->netdev;
 8772		if (!(netdev->features & NETIF_F_RXALL)) {
 8773			dev_kfree_skb_any(skb);
 8774			return true;
 8775		}
 8776	}
 8777
 8778	/* if eth_skb_pad returns an error the skb was freed */
 8779	if (eth_skb_pad(skb))
 8780		return true;
 8781
 8782	return false;
 8783}
 8784
 8785/**
 8786 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 8787 *  @rx_ring: rx descriptor ring packet is being transacted on
 8788 *  @rx_desc: pointer to the EOP Rx descriptor
 8789 *  @skb: pointer to current skb being populated
 8790 *
 8791 *  This function checks the ring, descriptor, and packet information in
 8792 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 8793 *  other fields within the skb.
 8794 **/
 8795static void igb_process_skb_fields(struct igb_ring *rx_ring,
 8796				   union e1000_adv_rx_desc *rx_desc,
 8797				   struct sk_buff *skb)
 8798{
 8799	struct net_device *dev = rx_ring->netdev;
 8800
 8801	igb_rx_hash(rx_ring, rx_desc, skb);
 8802
 8803	igb_rx_checksum(rx_ring, rx_desc, skb);
 8804
 8805	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
 8806	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
 8807		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
 8808
 8809	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 8810	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
 8811		u16 vid;
 8812
 8813		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
 8814		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
 8815			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
 8816		else
 8817			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
 8818
 8819		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 8820	}
 8821
 8822	skb_record_rx_queue(skb, rx_ring->queue_index);
 8823
 8824	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 8825}
 8826
 8827static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
 8828{
 8829	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
 8830}
 8831
 8832static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
 8833					       const unsigned int size, int *rx_buf_pgcnt)
 8834{
 8835	struct igb_rx_buffer *rx_buffer;
 8836
 8837	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
 8838	*rx_buf_pgcnt =
 8839#if (PAGE_SIZE < 8192)
 8840		page_count(rx_buffer->page);
 8841#else
 8842		0;
 8843#endif
 8844	prefetchw(rx_buffer->page);
 8845
 8846	/* we are reusing so sync this buffer for CPU use */
 8847	dma_sync_single_range_for_cpu(rx_ring->dev,
 8848				      rx_buffer->dma,
 8849				      rx_buffer->page_offset,
 8850				      size,
 8851				      DMA_FROM_DEVICE);
 8852
 8853	rx_buffer->pagecnt_bias--;
 8854
 8855	return rx_buffer;
 8856}
 8857
 8858static void igb_put_rx_buffer(struct igb_ring *rx_ring,
 8859			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
 8860{
 8861	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
 8862		/* hand second half of page back to the ring */
 8863		igb_reuse_rx_page(rx_ring, rx_buffer);
 8864	} else {
 8865		/* We are not reusing the buffer so unmap it and free
 8866		 * any references we are holding to it
 8867		 */
 8868		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
 8869				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
 8870				     IGB_RX_DMA_ATTR);
 8871		__page_frag_cache_drain(rx_buffer->page,
 8872					rx_buffer->pagecnt_bias);
 8873	}
 8874
 8875	/* clear contents of rx_buffer */
 8876	rx_buffer->page = NULL;
 8877}
 8878
 8879static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
 8880{
 8881	struct igb_adapter *adapter = q_vector->adapter;
 8882	struct igb_ring *rx_ring = q_vector->rx.ring;
 8883	struct sk_buff *skb = rx_ring->skb;
 8884	unsigned int total_bytes = 0, total_packets = 0;
 8885	u16 cleaned_count = igb_desc_unused(rx_ring);
 8886	unsigned int xdp_xmit = 0;
 8887	struct xdp_buff xdp;
 8888	u32 frame_sz = 0;
 8889	int rx_buf_pgcnt;
 8890
 8891	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
 8892#if (PAGE_SIZE < 8192)
 8893	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
 8894#endif
 8895	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
 8896
 8897	while (likely(total_packets < budget)) {
 8898		union e1000_adv_rx_desc *rx_desc;
 8899		struct igb_rx_buffer *rx_buffer;
 8900		ktime_t timestamp = 0;
 8901		int pkt_offset = 0;
 8902		unsigned int size;
 8903		void *pktbuf;
 8904
 8905		/* return some buffers to hardware, one at a time is too slow */
 8906		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
 8907			igb_alloc_rx_buffers(rx_ring, cleaned_count);
 8908			cleaned_count = 0;
 8909		}
 8910
 8911		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
 8912		size = le16_to_cpu(rx_desc->wb.upper.length);
 8913		if (!size)
 8914			break;
 8915
 8916		/* This memory barrier is needed to keep us from reading
 8917		 * any other fields out of the rx_desc until we know the
 8918		 * descriptor has been written back
 8919		 */
 8920		dma_rmb();
 8921
 8922		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
 8923		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
 8924
 8925		/* pull rx packet timestamp if available and valid */
 8926		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
 8927			int ts_hdr_len;
 8928
 8929			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
 8930							 pktbuf, &timestamp);
 8931
 8932			pkt_offset += ts_hdr_len;
 8933			size -= ts_hdr_len;
 8934		}
 8935
 8936		/* retrieve a buffer from the ring */
 8937		if (!skb) {
 8938			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
 8939			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
 8940
 8941			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
 8942			xdp_buff_clear_frags_flag(&xdp);
 8943#if (PAGE_SIZE > 4096)
 8944			/* At larger PAGE_SIZE, frame_sz depend on len size */
 8945			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
 8946#endif
 8947			skb = igb_run_xdp(adapter, rx_ring, &xdp);
 8948		}
 8949
 8950		if (IS_ERR(skb)) {
 8951			unsigned int xdp_res = -PTR_ERR(skb);
 8952
 8953			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
 8954				xdp_xmit |= xdp_res;
 8955				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
 8956			} else {
 8957				rx_buffer->pagecnt_bias++;
 8958			}
 8959			total_packets++;
 8960			total_bytes += size;
 8961		} else if (skb)
 8962			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
 8963		else if (ring_uses_build_skb(rx_ring))
 8964			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
 8965					    timestamp);
 8966		else
 8967			skb = igb_construct_skb(rx_ring, rx_buffer,
 8968						&xdp, timestamp);
 8969
 8970		/* exit if we failed to retrieve a buffer */
 8971		if (!skb) {
 8972			rx_ring->rx_stats.alloc_failed++;
 8973			rx_buffer->pagecnt_bias++;
 8974			break;
 8975		}
 8976
 8977		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
 8978		cleaned_count++;
 8979
 8980		/* fetch next buffer in frame if non-eop */
 8981		if (igb_is_non_eop(rx_ring, rx_desc))
 8982			continue;
 8983
 8984		/* verify the packet layout is correct */
 8985		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
 8986			skb = NULL;
 8987			continue;
 8988		}
 8989
 8990		/* probably a little skewed due to removing CRC */
 8991		total_bytes += skb->len;
 8992
 8993		/* populate checksum, timestamp, VLAN, and protocol */
 8994		igb_process_skb_fields(rx_ring, rx_desc, skb);
 8995
 8996		napi_gro_receive(&q_vector->napi, skb);
 8997
 8998		/* reset skb pointer */
 8999		skb = NULL;
 9000
 9001		/* update budget accounting */
 9002		total_packets++;
 9003	}
 9004
 9005	/* place incomplete frames back on ring for completion */
 9006	rx_ring->skb = skb;
 9007
 9008	if (xdp_xmit & IGB_XDP_REDIR)
 9009		xdp_do_flush();
 9010
 9011	if (xdp_xmit & IGB_XDP_TX) {
 9012		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
 9013
 9014		igb_xdp_ring_update_tail(tx_ring);
 9015	}
 9016
 9017	u64_stats_update_begin(&rx_ring->rx_syncp);
 9018	rx_ring->rx_stats.packets += total_packets;
 9019	rx_ring->rx_stats.bytes += total_bytes;
 9020	u64_stats_update_end(&rx_ring->rx_syncp);
 9021	q_vector->rx.total_packets += total_packets;
 9022	q_vector->rx.total_bytes += total_bytes;
 9023
 9024	if (cleaned_count)
 9025		igb_alloc_rx_buffers(rx_ring, cleaned_count);
 9026
 9027	return total_packets;
 9028}
 9029
 9030static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
 9031				  struct igb_rx_buffer *bi)
 9032{
 9033	struct page *page = bi->page;
 9034	dma_addr_t dma;
 9035
 9036	/* since we are recycling buffers we should seldom need to alloc */
 9037	if (likely(page))
 9038		return true;
 9039
 9040	/* alloc new page for storage */
 9041	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
 9042	if (unlikely(!page)) {
 9043		rx_ring->rx_stats.alloc_failed++;
 9044		return false;
 9045	}
 9046
 9047	/* map page for use */
 9048	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 9049				 igb_rx_pg_size(rx_ring),
 9050				 DMA_FROM_DEVICE,
 9051				 IGB_RX_DMA_ATTR);
 9052
 9053	/* if mapping failed free memory back to system since
 9054	 * there isn't much point in holding memory we can't use
 9055	 */
 9056	if (dma_mapping_error(rx_ring->dev, dma)) {
 9057		__free_pages(page, igb_rx_pg_order(rx_ring));
 9058
 9059		rx_ring->rx_stats.alloc_failed++;
 9060		return false;
 9061	}
 9062
 9063	bi->dma = dma;
 9064	bi->page = page;
 9065	bi->page_offset = igb_rx_offset(rx_ring);
 9066	page_ref_add(page, USHRT_MAX - 1);
 9067	bi->pagecnt_bias = USHRT_MAX;
 9068
 9069	return true;
 9070}
 9071
 9072/**
 9073 *  igb_alloc_rx_buffers - Replace used receive buffers
 9074 *  @rx_ring: rx descriptor ring to allocate new receive buffers
 9075 *  @cleaned_count: count of buffers to allocate
 9076 **/
 9077void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
 9078{
 9079	union e1000_adv_rx_desc *rx_desc;
 9080	struct igb_rx_buffer *bi;
 9081	u16 i = rx_ring->next_to_use;
 9082	u16 bufsz;
 9083
 9084	/* nothing to do */
 9085	if (!cleaned_count)
 9086		return;
 9087
 9088	rx_desc = IGB_RX_DESC(rx_ring, i);
 9089	bi = &rx_ring->rx_buffer_info[i];
 9090	i -= rx_ring->count;
 9091
 9092	bufsz = igb_rx_bufsz(rx_ring);
 9093
 9094	do {
 9095		if (!igb_alloc_mapped_page(rx_ring, bi))
 9096			break;
 9097
 9098		/* sync the buffer for use by the device */
 9099		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 9100						 bi->page_offset, bufsz,
 9101						 DMA_FROM_DEVICE);
 9102
 9103		/* Refresh the desc even if buffer_addrs didn't change
 9104		 * because each write-back erases this info.
 9105		 */
 9106		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 9107
 9108		rx_desc++;
 9109		bi++;
 9110		i++;
 9111		if (unlikely(!i)) {
 9112			rx_desc = IGB_RX_DESC(rx_ring, 0);
 9113			bi = rx_ring->rx_buffer_info;
 9114			i -= rx_ring->count;
 9115		}
 9116
 9117		/* clear the length for the next_to_use descriptor */
 9118		rx_desc->wb.upper.length = 0;
 9119
 9120		cleaned_count--;
 9121	} while (cleaned_count);
 9122
 9123	i += rx_ring->count;
 9124
 9125	if (rx_ring->next_to_use != i) {
 9126		/* record the next descriptor to use */
 9127		rx_ring->next_to_use = i;
 9128
 9129		/* update next to alloc since we have filled the ring */
 9130		rx_ring->next_to_alloc = i;
 9131
 9132		/* Force memory writes to complete before letting h/w
 9133		 * know there are new descriptors to fetch.  (Only
 9134		 * applicable for weak-ordered memory model archs,
 9135		 * such as IA-64).
 9136		 */
 9137		dma_wmb();
 9138		writel(i, rx_ring->tail);
 9139	}
 9140}
 9141
 9142/**
 9143 * igb_mii_ioctl -
 9144 * @netdev: pointer to netdev struct
 9145 * @ifr: interface structure
 9146 * @cmd: ioctl command to execute
 9147 **/
 9148static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 9149{
 9150	struct igb_adapter *adapter = netdev_priv(netdev);
 9151	struct mii_ioctl_data *data = if_mii(ifr);
 9152
 9153	if (adapter->hw.phy.media_type != e1000_media_type_copper)
 9154		return -EOPNOTSUPP;
 9155
 9156	switch (cmd) {
 9157	case SIOCGMIIPHY:
 9158		data->phy_id = adapter->hw.phy.addr;
 9159		break;
 9160	case SIOCGMIIREG:
 9161		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
 9162				     &data->val_out))
 9163			return -EIO;
 9164		break;
 9165	case SIOCSMIIREG:
 9166	default:
 9167		return -EOPNOTSUPP;
 9168	}
 9169	return 0;
 9170}
 9171
 9172/**
 9173 * igb_ioctl -
 9174 * @netdev: pointer to netdev struct
 9175 * @ifr: interface structure
 9176 * @cmd: ioctl command to execute
 9177 **/
 9178static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 9179{
 9180	switch (cmd) {
 9181	case SIOCGMIIPHY:
 9182	case SIOCGMIIREG:
 9183	case SIOCSMIIREG:
 9184		return igb_mii_ioctl(netdev, ifr, cmd);
 9185	case SIOCGHWTSTAMP:
 9186		return igb_ptp_get_ts_config(netdev, ifr);
 9187	case SIOCSHWTSTAMP:
 9188		return igb_ptp_set_ts_config(netdev, ifr);
 9189	default:
 9190		return -EOPNOTSUPP;
 9191	}
 9192}
 9193
 9194void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
 9195{
 9196	struct igb_adapter *adapter = hw->back;
 9197
 9198	pci_read_config_word(adapter->pdev, reg, value);
 9199}
 9200
 9201void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
 9202{
 9203	struct igb_adapter *adapter = hw->back;
 9204
 9205	pci_write_config_word(adapter->pdev, reg, *value);
 9206}
 9207
 9208s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
 9209{
 9210	struct igb_adapter *adapter = hw->back;
 9211
 9212	if (pcie_capability_read_word(adapter->pdev, reg, value))
 9213		return -E1000_ERR_CONFIG;
 9214
 9215	return 0;
 9216}
 9217
 9218s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
 9219{
 9220	struct igb_adapter *adapter = hw->back;
 9221
 9222	if (pcie_capability_write_word(adapter->pdev, reg, *value))
 9223		return -E1000_ERR_CONFIG;
 9224
 9225	return 0;
 9226}
 9227
 9228static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
 9229{
 9230	struct igb_adapter *adapter = netdev_priv(netdev);
 9231	struct e1000_hw *hw = &adapter->hw;
 9232	u32 ctrl, rctl;
 9233	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
 9234
 9235	if (enable) {
 9236		/* enable VLAN tag insert/strip */
 9237		ctrl = rd32(E1000_CTRL);
 9238		ctrl |= E1000_CTRL_VME;
 9239		wr32(E1000_CTRL, ctrl);
 9240
 9241		/* Disable CFI check */
 9242		rctl = rd32(E1000_RCTL);
 9243		rctl &= ~E1000_RCTL_CFIEN;
 9244		wr32(E1000_RCTL, rctl);
 9245	} else {
 9246		/* disable VLAN tag insert/strip */
 9247		ctrl = rd32(E1000_CTRL);
 9248		ctrl &= ~E1000_CTRL_VME;
 9249		wr32(E1000_CTRL, ctrl);
 9250	}
 9251
 9252	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
 9253}
 9254
 9255static int igb_vlan_rx_add_vid(struct net_device *netdev,
 9256			       __be16 proto, u16 vid)
 9257{
 9258	struct igb_adapter *adapter = netdev_priv(netdev);
 9259	struct e1000_hw *hw = &adapter->hw;
 9260	int pf_id = adapter->vfs_allocated_count;
 9261
 9262	/* add the filter since PF can receive vlans w/o entry in vlvf */
 9263	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 9264		igb_vfta_set(hw, vid, pf_id, true, !!vid);
 9265
 9266	set_bit(vid, adapter->active_vlans);
 9267
 9268	return 0;
 9269}
 9270
 9271static int igb_vlan_rx_kill_vid(struct net_device *netdev,
 9272				__be16 proto, u16 vid)
 9273{
 9274	struct igb_adapter *adapter = netdev_priv(netdev);
 9275	int pf_id = adapter->vfs_allocated_count;
 9276	struct e1000_hw *hw = &adapter->hw;
 9277
 9278	/* remove VID from filter table */
 9279	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 9280		igb_vfta_set(hw, vid, pf_id, false, true);
 9281
 9282	clear_bit(vid, adapter->active_vlans);
 9283
 9284	return 0;
 9285}
 9286
 9287static void igb_restore_vlan(struct igb_adapter *adapter)
 9288{
 9289	u16 vid = 1;
 9290
 9291	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
 9292	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
 9293
 9294	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
 9295		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
 9296}
 9297
 9298int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
 9299{
 9300	struct pci_dev *pdev = adapter->pdev;
 9301	struct e1000_mac_info *mac = &adapter->hw.mac;
 9302
 9303	mac->autoneg = 0;
 9304
 9305	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 9306	 * for the switch() below to work
 9307	 */
 9308	if ((spd & 1) || (dplx & ~1))
 9309		goto err_inval;
 9310
 9311	/* Fiber NIC's only allow 1000 gbps Full duplex
 9312	 * and 100Mbps Full duplex for 100baseFx sfp
 9313	 */
 9314	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
 9315		switch (spd + dplx) {
 9316		case SPEED_10 + DUPLEX_HALF:
 9317		case SPEED_10 + DUPLEX_FULL:
 9318		case SPEED_100 + DUPLEX_HALF:
 9319			goto err_inval;
 9320		default:
 9321			break;
 9322		}
 9323	}
 9324
 9325	switch (spd + dplx) {
 9326	case SPEED_10 + DUPLEX_HALF:
 9327		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 9328		break;
 9329	case SPEED_10 + DUPLEX_FULL:
 9330		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 9331		break;
 9332	case SPEED_100 + DUPLEX_HALF:
 9333		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 9334		break;
 9335	case SPEED_100 + DUPLEX_FULL:
 9336		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 9337		break;
 9338	case SPEED_1000 + DUPLEX_FULL:
 9339		mac->autoneg = 1;
 9340		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
 9341		break;
 9342	case SPEED_1000 + DUPLEX_HALF: /* not supported */
 9343	default:
 9344		goto err_inval;
 9345	}
 9346
 9347	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 9348	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 9349
 9350	return 0;
 9351
 9352err_inval:
 9353	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
 9354	return -EINVAL;
 9355}
 9356
 9357static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
 9358			  bool runtime)
 9359{
 9360	struct net_device *netdev = pci_get_drvdata(pdev);
 9361	struct igb_adapter *adapter = netdev_priv(netdev);
 9362	struct e1000_hw *hw = &adapter->hw;
 9363	u32 ctrl, rctl, status;
 9364	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
 9365	bool wake;
 
 
 9366
 9367	rtnl_lock();
 9368	netif_device_detach(netdev);
 9369
 9370	if (netif_running(netdev))
 9371		__igb_close(netdev, true);
 9372
 9373	igb_ptp_suspend(adapter);
 9374
 9375	igb_clear_interrupt_scheme(adapter);
 9376	rtnl_unlock();
 
 
 
 
 
 9377
 9378	status = rd32(E1000_STATUS);
 9379	if (status & E1000_STATUS_LU)
 9380		wufc &= ~E1000_WUFC_LNKC;
 9381
 9382	if (wufc) {
 9383		igb_setup_rctl(adapter);
 9384		igb_set_rx_mode(netdev);
 9385
 9386		/* turn on all-multi mode if wake on multicast is enabled */
 9387		if (wufc & E1000_WUFC_MC) {
 9388			rctl = rd32(E1000_RCTL);
 9389			rctl |= E1000_RCTL_MPE;
 9390			wr32(E1000_RCTL, rctl);
 9391		}
 9392
 9393		ctrl = rd32(E1000_CTRL);
 
 
 
 
 9394		ctrl |= E1000_CTRL_ADVD3WUC;
 9395		wr32(E1000_CTRL, ctrl);
 9396
 9397		/* Allow time for pending master requests to run */
 9398		igb_disable_pcie_master(hw);
 9399
 9400		wr32(E1000_WUC, E1000_WUC_PME_EN);
 9401		wr32(E1000_WUFC, wufc);
 9402	} else {
 9403		wr32(E1000_WUC, 0);
 9404		wr32(E1000_WUFC, 0);
 9405	}
 9406
 9407	wake = wufc || adapter->en_mng_pt;
 9408	if (!wake)
 9409		igb_power_down_link(adapter);
 9410	else
 9411		igb_power_up_link(adapter);
 9412
 9413	if (enable_wake)
 9414		*enable_wake = wake;
 9415
 9416	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 9417	 * would have already happened in close and is redundant.
 9418	 */
 9419	igb_release_hw_control(adapter);
 9420
 9421	pci_disable_device(pdev);
 9422
 9423	return 0;
 9424}
 9425
 9426static void igb_deliver_wake_packet(struct net_device *netdev)
 
 
 9427{
 9428	struct igb_adapter *adapter = netdev_priv(netdev);
 9429	struct e1000_hw *hw = &adapter->hw;
 9430	struct sk_buff *skb;
 9431	u32 wupl;
 9432
 9433	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
 9434
 9435	/* WUPM stores only the first 128 bytes of the wake packet.
 9436	 * Read the packet only if we have the whole thing.
 9437	 */
 9438	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
 9439		return;
 9440
 9441	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
 9442	if (!skb)
 9443		return;
 9444
 9445	skb_put(skb, wupl);
 9446
 9447	/* Ensure reads are 32-bit aligned */
 9448	wupl = roundup(wupl, 4);
 9449
 9450	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
 
 
 9451
 9452	skb->protocol = eth_type_trans(skb, netdev);
 9453	netif_rx(skb);
 9454}
 
 
 
 9455
 9456static int __maybe_unused igb_suspend(struct device *dev)
 9457{
 9458	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
 9459}
 
 9460
 9461static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
 9462{
 9463	struct pci_dev *pdev = to_pci_dev(dev);
 9464	struct net_device *netdev = pci_get_drvdata(pdev);
 9465	struct igb_adapter *adapter = netdev_priv(netdev);
 9466	struct e1000_hw *hw = &adapter->hw;
 9467	u32 err, val;
 9468
 9469	pci_set_power_state(pdev, PCI_D0);
 9470	pci_restore_state(pdev);
 9471	pci_save_state(pdev);
 9472
 9473	if (!pci_device_is_present(pdev))
 9474		return -ENODEV;
 9475	err = pci_enable_device_mem(pdev);
 9476	if (err) {
 9477		dev_err(&pdev->dev,
 9478			"igb: Cannot enable PCI device from suspend\n");
 9479		return err;
 9480	}
 9481	pci_set_master(pdev);
 9482
 9483	pci_enable_wake(pdev, PCI_D3hot, 0);
 9484	pci_enable_wake(pdev, PCI_D3cold, 0);
 9485
 9486	if (igb_init_interrupt_scheme(adapter, true)) {
 9487		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 
 9488		return -ENOMEM;
 9489	}
 9490
 9491	igb_reset(adapter);
 9492
 9493	/* let the f/w know that the h/w is now under the control of the
 9494	 * driver.
 9495	 */
 9496	igb_get_hw_control(adapter);
 9497
 9498	val = rd32(E1000_WUS);
 9499	if (val & WAKE_PKT_WUS)
 9500		igb_deliver_wake_packet(netdev);
 9501
 9502	wr32(E1000_WUS, ~0);
 9503
 9504	if (!rpm)
 9505		rtnl_lock();
 9506	if (!err && netif_running(netdev))
 9507		err = __igb_open(netdev, true);
 9508
 9509	if (!err)
 9510		netif_device_attach(netdev);
 9511	if (!rpm)
 9512		rtnl_unlock();
 
 
 
 9513
 9514	return err;
 9515}
 9516
 9517static int __maybe_unused igb_resume(struct device *dev)
 9518{
 9519	return __igb_resume(dev, false);
 9520}
 9521
 9522static int __maybe_unused igb_runtime_idle(struct device *dev)
 9523{
 9524	struct net_device *netdev = dev_get_drvdata(dev);
 
 9525	struct igb_adapter *adapter = netdev_priv(netdev);
 9526
 9527	if (!igb_has_link(adapter))
 9528		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
 9529
 9530	return -EBUSY;
 9531}
 9532
 9533static int __maybe_unused igb_runtime_suspend(struct device *dev)
 9534{
 9535	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9536}
 9537
 9538static int __maybe_unused igb_runtime_resume(struct device *dev)
 9539{
 9540	return __igb_resume(dev, true);
 9541}
 
 9542
 9543static void igb_shutdown(struct pci_dev *pdev)
 9544{
 9545	bool wake;
 9546
 9547	__igb_shutdown(pdev, &wake, 0);
 9548
 9549	if (system_state == SYSTEM_POWER_OFF) {
 9550		pci_wake_from_d3(pdev, wake);
 9551		pci_set_power_state(pdev, PCI_D3hot);
 9552	}
 9553}
 9554
 9555static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
 9556{
 9557#ifdef CONFIG_PCI_IOV
 9558	int err;
 
 
 
 
 9559
 9560	if (num_vfs == 0) {
 9561		return igb_disable_sriov(dev, true);
 9562	} else {
 9563		err = igb_enable_sriov(dev, num_vfs, true);
 9564		return err ? err : num_vfs;
 
 
 
 
 
 
 
 
 
 
 9565	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9566#endif
 9567	return 0;
 9568}
 9569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9570/**
 9571 *  igb_io_error_detected - called when PCI error is detected
 9572 *  @pdev: Pointer to PCI device
 9573 *  @state: The current pci connection state
 9574 *
 9575 *  This function is called after a PCI bus error affecting
 9576 *  this device has been detected.
 9577 **/
 9578static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
 9579					      pci_channel_state_t state)
 9580{
 9581	struct net_device *netdev = pci_get_drvdata(pdev);
 9582	struct igb_adapter *adapter = netdev_priv(netdev);
 9583
 9584	if (state == pci_channel_io_normal) {
 9585		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
 9586		return PCI_ERS_RESULT_CAN_RECOVER;
 9587	}
 9588
 9589	netif_device_detach(netdev);
 9590
 9591	if (state == pci_channel_io_perm_failure)
 9592		return PCI_ERS_RESULT_DISCONNECT;
 9593
 9594	if (netif_running(netdev))
 9595		igb_down(adapter);
 9596	pci_disable_device(pdev);
 9597
 9598	/* Request a slot reset. */
 9599	return PCI_ERS_RESULT_NEED_RESET;
 9600}
 9601
 9602/**
 9603 *  igb_io_slot_reset - called after the pci bus has been reset.
 9604 *  @pdev: Pointer to PCI device
 9605 *
 9606 *  Restart the card from scratch, as if from a cold-boot. Implementation
 9607 *  resembles the first-half of the __igb_resume routine.
 9608 **/
 9609static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
 9610{
 9611	struct net_device *netdev = pci_get_drvdata(pdev);
 9612	struct igb_adapter *adapter = netdev_priv(netdev);
 9613	struct e1000_hw *hw = &adapter->hw;
 9614	pci_ers_result_t result;
 
 9615
 9616	if (pci_enable_device_mem(pdev)) {
 9617		dev_err(&pdev->dev,
 9618			"Cannot re-enable PCI device after reset.\n");
 9619		result = PCI_ERS_RESULT_DISCONNECT;
 9620	} else {
 9621		pci_set_master(pdev);
 9622		pci_restore_state(pdev);
 9623		pci_save_state(pdev);
 9624
 9625		pci_enable_wake(pdev, PCI_D3hot, 0);
 9626		pci_enable_wake(pdev, PCI_D3cold, 0);
 9627
 9628		/* In case of PCI error, adapter lose its HW address
 9629		 * so we should re-assign it here.
 9630		 */
 9631		hw->hw_addr = adapter->io_addr;
 9632
 9633		igb_reset(adapter);
 9634		wr32(E1000_WUS, ~0);
 9635		result = PCI_ERS_RESULT_RECOVERED;
 9636	}
 9637
 
 
 
 
 
 
 
 
 9638	return result;
 9639}
 9640
 9641/**
 9642 *  igb_io_resume - called when traffic can start flowing again.
 9643 *  @pdev: Pointer to PCI device
 9644 *
 9645 *  This callback is called when the error recovery driver tells us that
 9646 *  its OK to resume normal operation. Implementation resembles the
 9647 *  second-half of the __igb_resume routine.
 9648 */
 9649static void igb_io_resume(struct pci_dev *pdev)
 9650{
 9651	struct net_device *netdev = pci_get_drvdata(pdev);
 9652	struct igb_adapter *adapter = netdev_priv(netdev);
 9653
 9654	if (netif_running(netdev)) {
 9655		if (igb_up(adapter)) {
 9656			dev_err(&pdev->dev, "igb_up failed after reset\n");
 9657			return;
 9658		}
 9659	}
 9660
 9661	netif_device_attach(netdev);
 9662
 9663	/* let the f/w know that the h/w is now under the control of the
 9664	 * driver.
 9665	 */
 9666	igb_get_hw_control(adapter);
 9667}
 9668
 9669/**
 9670 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
 9671 *  @adapter: Pointer to adapter structure
 9672 *  @index: Index of the RAR entry which need to be synced with MAC table
 9673 **/
 9674static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
 9675{
 9676	struct e1000_hw *hw = &adapter->hw;
 9677	u32 rar_low, rar_high;
 9678	u8 *addr = adapter->mac_table[index].addr;
 9679
 9680	/* HW expects these to be in network order when they are plugged
 9681	 * into the registers which are little endian.  In order to guarantee
 9682	 * that ordering we need to do an leXX_to_cpup here in order to be
 9683	 * ready for the byteswap that occurs with writel
 9684	 */
 9685	rar_low = le32_to_cpup((__le32 *)(addr));
 9686	rar_high = le16_to_cpup((__le16 *)(addr + 4));
 9687
 9688	/* Indicate to hardware the Address is Valid. */
 9689	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
 9690		if (is_valid_ether_addr(addr))
 9691			rar_high |= E1000_RAH_AV;
 9692
 9693		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
 9694			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
 9695
 9696		switch (hw->mac.type) {
 9697		case e1000_82575:
 9698		case e1000_i210:
 9699			if (adapter->mac_table[index].state &
 9700			    IGB_MAC_STATE_QUEUE_STEERING)
 9701				rar_high |= E1000_RAH_QSEL_ENABLE;
 9702
 9703			rar_high |= E1000_RAH_POOL_1 *
 9704				    adapter->mac_table[index].queue;
 9705			break;
 9706		default:
 9707			rar_high |= E1000_RAH_POOL_1 <<
 9708				    adapter->mac_table[index].queue;
 9709			break;
 9710		}
 9711	}
 9712
 9713	wr32(E1000_RAL(index), rar_low);
 9714	wrfl();
 9715	wr32(E1000_RAH(index), rar_high);
 9716	wrfl();
 9717}
 9718
 9719static int igb_set_vf_mac(struct igb_adapter *adapter,
 9720			  int vf, unsigned char *mac_addr)
 9721{
 9722	struct e1000_hw *hw = &adapter->hw;
 9723	/* VF MAC addresses start at end of receive addresses and moves
 9724	 * towards the first, as a result a collision should not be possible
 9725	 */
 9726	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
 9727	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
 9728
 9729	ether_addr_copy(vf_mac_addr, mac_addr);
 9730	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
 9731	adapter->mac_table[rar_entry].queue = vf;
 9732	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
 9733	igb_rar_set_index(adapter, rar_entry);
 9734
 9735	return 0;
 9736}
 9737
 9738static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
 9739{
 9740	struct igb_adapter *adapter = netdev_priv(netdev);
 9741
 9742	if (vf >= adapter->vfs_allocated_count)
 9743		return -EINVAL;
 9744
 9745	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
 9746	 * flag and allows to overwrite the MAC via VF netdev.  This
 9747	 * is necessary to allow libvirt a way to restore the original
 9748	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
 9749	 * down a VM.
 9750	 */
 9751	if (is_zero_ether_addr(mac)) {
 9752		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
 9753		dev_info(&adapter->pdev->dev,
 9754			 "remove administratively set MAC on VF %d\n",
 9755			 vf);
 9756	} else if (is_valid_ether_addr(mac)) {
 9757		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
 9758		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
 9759			 mac, vf);
 9760		dev_info(&adapter->pdev->dev,
 9761			 "Reload the VF driver to make this change effective.");
 9762		/* Generate additional warning if PF is down */
 9763		if (test_bit(__IGB_DOWN, &adapter->state)) {
 9764			dev_warn(&adapter->pdev->dev,
 9765				 "The VF MAC address has been set, but the PF device is not up.\n");
 9766			dev_warn(&adapter->pdev->dev,
 9767				 "Bring the PF device up before attempting to use the VF device.\n");
 9768		}
 9769	} else {
 9770		return -EINVAL;
 
 
 
 
 
 
 
 
 
 9771	}
 9772	return igb_set_vf_mac(adapter, vf, mac);
 9773}
 9774
 9775static int igb_link_mbps(int internal_link_speed)
 9776{
 9777	switch (internal_link_speed) {
 9778	case SPEED_100:
 9779		return 100;
 9780	case SPEED_1000:
 9781		return 1000;
 9782	default:
 9783		return 0;
 9784	}
 9785}
 9786
 9787static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
 9788				  int link_speed)
 9789{
 9790	int rf_dec, rf_int;
 9791	u32 bcnrc_val;
 9792
 9793	if (tx_rate != 0) {
 9794		/* Calculate the rate factor values to set */
 9795		rf_int = link_speed / tx_rate;
 9796		rf_dec = (link_speed - (rf_int * tx_rate));
 9797		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
 9798			 tx_rate;
 9799
 9800		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
 9801		bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
 
 9802		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
 9803	} else {
 9804		bcnrc_val = 0;
 9805	}
 9806
 9807	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
 9808	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
 9809	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
 9810	 */
 9811	wr32(E1000_RTTBCNRM, 0x14);
 9812	wr32(E1000_RTTBCNRC, bcnrc_val);
 9813}
 9814
 9815static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
 9816{
 9817	int actual_link_speed, i;
 9818	bool reset_rate = false;
 9819
 9820	/* VF TX rate limit was not set or not supported */
 9821	if ((adapter->vf_rate_link_speed == 0) ||
 9822	    (adapter->hw.mac.type != e1000_82576))
 9823		return;
 9824
 9825	actual_link_speed = igb_link_mbps(adapter->link_speed);
 9826	if (actual_link_speed != adapter->vf_rate_link_speed) {
 9827		reset_rate = true;
 9828		adapter->vf_rate_link_speed = 0;
 9829		dev_info(&adapter->pdev->dev,
 9830			 "Link speed has been changed. VF Transmit rate is disabled\n");
 9831	}
 9832
 9833	for (i = 0; i < adapter->vfs_allocated_count; i++) {
 9834		if (reset_rate)
 9835			adapter->vf_data[i].tx_rate = 0;
 9836
 9837		igb_set_vf_rate_limit(&adapter->hw, i,
 9838				      adapter->vf_data[i].tx_rate,
 9839				      actual_link_speed);
 9840	}
 9841}
 9842
 9843static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
 9844			     int min_tx_rate, int max_tx_rate)
 9845{
 9846	struct igb_adapter *adapter = netdev_priv(netdev);
 9847	struct e1000_hw *hw = &adapter->hw;
 9848	int actual_link_speed;
 9849
 9850	if (hw->mac.type != e1000_82576)
 9851		return -EOPNOTSUPP;
 9852
 9853	if (min_tx_rate)
 9854		return -EINVAL;
 9855
 9856	actual_link_speed = igb_link_mbps(adapter->link_speed);
 9857	if ((vf >= adapter->vfs_allocated_count) ||
 9858	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
 9859	    (max_tx_rate < 0) ||
 9860	    (max_tx_rate > actual_link_speed))
 9861		return -EINVAL;
 9862
 9863	adapter->vf_rate_link_speed = actual_link_speed;
 9864	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
 9865	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
 9866
 9867	return 0;
 9868}
 9869
 9870static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 9871				   bool setting)
 9872{
 9873	struct igb_adapter *adapter = netdev_priv(netdev);
 9874	struct e1000_hw *hw = &adapter->hw;
 9875	u32 reg_val, reg_offset;
 9876
 9877	if (!adapter->vfs_allocated_count)
 9878		return -EOPNOTSUPP;
 9879
 9880	if (vf >= adapter->vfs_allocated_count)
 9881		return -EINVAL;
 9882
 9883	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
 9884	reg_val = rd32(reg_offset);
 9885	if (setting)
 9886		reg_val |= (BIT(vf) |
 9887			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
 9888	else
 9889		reg_val &= ~(BIT(vf) |
 9890			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
 9891	wr32(reg_offset, reg_val);
 9892
 9893	adapter->vf_data[vf].spoofchk_enabled = setting;
 9894	return 0;
 9895}
 9896
 9897static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
 9898{
 9899	struct igb_adapter *adapter = netdev_priv(netdev);
 9900
 9901	if (vf >= adapter->vfs_allocated_count)
 9902		return -EINVAL;
 9903	if (adapter->vf_data[vf].trusted == setting)
 9904		return 0;
 9905
 9906	adapter->vf_data[vf].trusted = setting;
 9907
 9908	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
 9909		 vf, setting ? "" : "not ");
 9910	return 0;
 9911}
 9912
 9913static int igb_ndo_get_vf_config(struct net_device *netdev,
 9914				 int vf, struct ifla_vf_info *ivi)
 9915{
 9916	struct igb_adapter *adapter = netdev_priv(netdev);
 9917	if (vf >= adapter->vfs_allocated_count)
 9918		return -EINVAL;
 9919	ivi->vf = vf;
 9920	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
 9921	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
 9922	ivi->min_tx_rate = 0;
 9923	ivi->vlan = adapter->vf_data[vf].pf_vlan;
 9924	ivi->qos = adapter->vf_data[vf].pf_qos;
 9925	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
 9926	ivi->trusted = adapter->vf_data[vf].trusted;
 9927	return 0;
 9928}
 9929
 9930static void igb_vmm_control(struct igb_adapter *adapter)
 9931{
 9932	struct e1000_hw *hw = &adapter->hw;
 9933	u32 reg;
 9934
 9935	switch (hw->mac.type) {
 9936	case e1000_82575:
 9937	case e1000_i210:
 9938	case e1000_i211:
 9939	case e1000_i354:
 9940	default:
 9941		/* replication is not supported for 82575 */
 9942		return;
 9943	case e1000_82576:
 9944		/* notify HW that the MAC is adding vlan tags */
 9945		reg = rd32(E1000_DTXCTL);
 9946		reg |= E1000_DTXCTL_VLAN_ADDED;
 9947		wr32(E1000_DTXCTL, reg);
 9948		fallthrough;
 9949	case e1000_82580:
 9950		/* enable replication vlan tag stripping */
 9951		reg = rd32(E1000_RPLOLR);
 9952		reg |= E1000_RPLOLR_STRVLAN;
 9953		wr32(E1000_RPLOLR, reg);
 9954		fallthrough;
 9955	case e1000_i350:
 9956		/* none of the above registers are supported by i350 */
 9957		break;
 9958	}
 9959
 9960	if (adapter->vfs_allocated_count) {
 9961		igb_vmdq_set_loopback_pf(hw, true);
 9962		igb_vmdq_set_replication_pf(hw, true);
 9963		igb_vmdq_set_anti_spoofing_pf(hw, true,
 9964					      adapter->vfs_allocated_count);
 9965	} else {
 9966		igb_vmdq_set_loopback_pf(hw, false);
 9967		igb_vmdq_set_replication_pf(hw, false);
 9968	}
 9969}
 9970
 9971static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
 9972{
 9973	struct e1000_hw *hw = &adapter->hw;
 9974	u32 dmac_thr;
 9975	u16 hwm;
 9976	u32 reg;
 9977
 9978	if (hw->mac.type > e1000_82580) {
 9979		if (adapter->flags & IGB_FLAG_DMAC) {
 
 
 9980			/* force threshold to 0. */
 9981			wr32(E1000_DMCTXTH, 0);
 9982
 9983			/* DMA Coalescing high water mark needs to be greater
 9984			 * than the Rx threshold. Set hwm to PBA - max frame
 9985			 * size in 16B units, capping it at PBA - 6KB.
 9986			 */
 9987			hwm = 64 * (pba - 6);
 9988			reg = rd32(E1000_FCRTC);
 9989			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
 9990			reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
 
 9991			wr32(E1000_FCRTC, reg);
 9992
 9993			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
 9994			 * frame size, capping it at PBA - 10KB.
 9995			 */
 9996			dmac_thr = pba - 10;
 9997			reg = rd32(E1000_DMACR);
 9998			reg &= ~E1000_DMACR_DMACTHR_MASK;
 9999			reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
 
10000
10001			/* transition to L0x or L1 if available..*/
10002			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10003
10004			/* watchdog timer= +-1000 usec in 32usec intervals */
10005			reg |= (1000 >> 5);
10006
10007			/* Disable BMC-to-OS Watchdog Enable */
10008			if (hw->mac.type != e1000_i354)
10009				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
 
10010			wr32(E1000_DMACR, reg);
10011
10012			/* no lower threshold to disable
10013			 * coalescing(smart fifb)-UTRESH=0
10014			 */
10015			wr32(E1000_DMCRTRH, 0);
10016
10017			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10018
10019			wr32(E1000_DMCTLX, reg);
10020
10021			/* free space in tx packet buffer to wake from
10022			 * DMA coal
10023			 */
10024			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10025			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10026		}
10027
10028		if (hw->mac.type >= e1000_i210 ||
10029		    (adapter->flags & IGB_FLAG_DMAC)) {
 
10030			reg = rd32(E1000_PCIEMISC);
10031			reg |= E1000_PCIEMISC_LX_DECISION;
10032			wr32(E1000_PCIEMISC, reg);
10033		} /* endif adapter->dmac is not disabled */
10034	} else if (hw->mac.type == e1000_82580) {
10035		u32 reg = rd32(E1000_PCIEMISC);
10036
10037		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10038		wr32(E1000_DMACR, 0);
10039	}
10040}
10041
10042/**
10043 *  igb_read_i2c_byte - Reads 8 bit word over I2C
10044 *  @hw: pointer to hardware structure
10045 *  @byte_offset: byte offset to read
10046 *  @dev_addr: device address
10047 *  @data: value read
10048 *
10049 *  Performs byte read operation over I2C interface at
10050 *  a specified device address.
10051 **/
10052s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10053		      u8 dev_addr, u8 *data)
10054{
10055	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10056	struct i2c_client *this_client = adapter->i2c_client;
10057	s32 status;
10058	u16 swfw_mask = 0;
10059
10060	if (!this_client)
10061		return E1000_ERR_I2C;
10062
10063	swfw_mask = E1000_SWFW_PHY0_SM;
10064
10065	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10066		return E1000_ERR_SWFW_SYNC;
10067
10068	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10069	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10070
10071	if (status < 0)
10072		return E1000_ERR_I2C;
10073	else {
10074		*data = status;
10075		return 0;
10076	}
10077}
10078
10079/**
10080 *  igb_write_i2c_byte - Writes 8 bit word over I2C
10081 *  @hw: pointer to hardware structure
10082 *  @byte_offset: byte offset to write
10083 *  @dev_addr: device address
10084 *  @data: value to write
10085 *
10086 *  Performs byte write operation over I2C interface at
10087 *  a specified device address.
10088 **/
10089s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10090		       u8 dev_addr, u8 data)
10091{
10092	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10093	struct i2c_client *this_client = adapter->i2c_client;
10094	s32 status;
10095	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10096
10097	if (!this_client)
10098		return E1000_ERR_I2C;
10099
10100	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10101		return E1000_ERR_SWFW_SYNC;
10102	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10103	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10104
10105	if (status)
10106		return E1000_ERR_I2C;
10107	else
10108		return 0;
10109
10110}
10111
10112int igb_reinit_queues(struct igb_adapter *adapter)
10113{
10114	struct net_device *netdev = adapter->netdev;
10115	struct pci_dev *pdev = adapter->pdev;
10116	int err = 0;
10117
10118	if (netif_running(netdev))
10119		igb_close(netdev);
10120
10121	igb_reset_interrupt_capability(adapter);
10122
10123	if (igb_init_interrupt_scheme(adapter, true)) {
10124		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10125		return -ENOMEM;
10126	}
10127
10128	if (netif_running(netdev))
10129		err = igb_open(netdev);
10130
10131	return err;
10132}
10133
10134static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10135{
10136	struct igb_nfc_filter *rule;
10137
10138	spin_lock(&adapter->nfc_lock);
10139
10140	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10141		igb_erase_filter(adapter, rule);
10142
10143	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10144		igb_erase_filter(adapter, rule);
10145
10146	spin_unlock(&adapter->nfc_lock);
10147}
10148
10149static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10150{
10151	struct igb_nfc_filter *rule;
10152
10153	spin_lock(&adapter->nfc_lock);
10154
10155	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10156		igb_add_filter(adapter, rule);
10157
10158	spin_unlock(&adapter->nfc_lock);
10159}
10160/* igb_main.c */
v4.6
   1/* Intel(R) Gigabit Ethernet Linux driver
   2 * Copyright(c) 2007-2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * The full GNU General Public License is included in this distribution in
  17 * the file called "COPYING".
  18 *
  19 * Contact Information:
  20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22 */
  23
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/module.h>
  27#include <linux/types.h>
  28#include <linux/init.h>
  29#include <linux/bitops.h>
  30#include <linux/vmalloc.h>
  31#include <linux/pagemap.h>
  32#include <linux/netdevice.h>
  33#include <linux/ipv6.h>
  34#include <linux/slab.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
 
 
  37#include <linux/net_tstamp.h>
  38#include <linux/mii.h>
  39#include <linux/ethtool.h>
  40#include <linux/if.h>
  41#include <linux/if_vlan.h>
  42#include <linux/pci.h>
  43#include <linux/pci-aspm.h>
  44#include <linux/delay.h>
  45#include <linux/interrupt.h>
  46#include <linux/ip.h>
  47#include <linux/tcp.h>
  48#include <linux/sctp.h>
  49#include <linux/if_ether.h>
  50#include <linux/aer.h>
  51#include <linux/prefetch.h>
 
 
  52#include <linux/pm_runtime.h>
 
  53#ifdef CONFIG_IGB_DCA
  54#include <linux/dca.h>
  55#endif
  56#include <linux/i2c.h>
  57#include "igb.h"
  58
  59#define MAJ 5
  60#define MIN 3
  61#define BUILD 0
  62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  63__stringify(BUILD) "-k"
 
 
 
 
 
  64char igb_driver_name[] = "igb";
  65char igb_driver_version[] = DRV_VERSION;
  66static const char igb_driver_string[] =
  67				"Intel(R) Gigabit Ethernet Network Driver";
  68static const char igb_copyright[] =
  69				"Copyright (c) 2007-2014 Intel Corporation.";
  70
  71static const struct e1000_info *igb_info_tbl[] = {
  72	[board_82575] = &e1000_82575_info,
  73};
  74
  75static const struct pci_device_id igb_pci_tbl[] = {
  76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
 100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
 101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
 102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
 103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
 104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
 105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
 106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
 107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
 108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
 109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
 110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
 111	/* required last entry */
 112	{0, }
 113};
 114
 115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 116
 117static int igb_setup_all_tx_resources(struct igb_adapter *);
 118static int igb_setup_all_rx_resources(struct igb_adapter *);
 119static void igb_free_all_tx_resources(struct igb_adapter *);
 120static void igb_free_all_rx_resources(struct igb_adapter *);
 121static void igb_setup_mrqc(struct igb_adapter *);
 122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 123static void igb_remove(struct pci_dev *pdev);
 
 124static int igb_sw_init(struct igb_adapter *);
 125int igb_open(struct net_device *);
 126int igb_close(struct net_device *);
 127static void igb_configure(struct igb_adapter *);
 128static void igb_configure_tx(struct igb_adapter *);
 129static void igb_configure_rx(struct igb_adapter *);
 130static void igb_clean_all_tx_rings(struct igb_adapter *);
 131static void igb_clean_all_rx_rings(struct igb_adapter *);
 132static void igb_clean_tx_ring(struct igb_ring *);
 133static void igb_clean_rx_ring(struct igb_ring *);
 134static void igb_set_rx_mode(struct net_device *);
 135static void igb_update_phy_info(unsigned long);
 136static void igb_watchdog(unsigned long);
 137static void igb_watchdog_task(struct work_struct *);
 138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
 140					  struct rtnl_link_stats64 *stats);
 141static int igb_change_mtu(struct net_device *, int);
 142static int igb_set_mac(struct net_device *, void *);
 143static void igb_set_uta(struct igb_adapter *adapter, bool set);
 144static irqreturn_t igb_intr(int irq, void *);
 145static irqreturn_t igb_intr_msi(int irq, void *);
 146static irqreturn_t igb_msix_other(int irq, void *);
 147static irqreturn_t igb_msix_ring(int irq, void *);
 148#ifdef CONFIG_IGB_DCA
 149static void igb_update_dca(struct igb_q_vector *);
 150static void igb_setup_dca(struct igb_adapter *);
 151#endif /* CONFIG_IGB_DCA */
 152static int igb_poll(struct napi_struct *, int);
 153static bool igb_clean_tx_irq(struct igb_q_vector *);
 154static int igb_clean_rx_irq(struct igb_q_vector *, int);
 155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 156static void igb_tx_timeout(struct net_device *);
 157static void igb_reset_task(struct work_struct *);
 158static void igb_vlan_mode(struct net_device *netdev,
 159			  netdev_features_t features);
 160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
 161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
 162static void igb_restore_vlan(struct igb_adapter *);
 163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
 164static void igb_ping_all_vfs(struct igb_adapter *);
 165static void igb_msg_task(struct igb_adapter *);
 166static void igb_vmm_control(struct igb_adapter *);
 167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 
 
 
 
 
 168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 171			       int vf, u16 vlan, u8 qos);
 172static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
 173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 174				   bool setting);
 
 
 175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 176				 struct ifla_vf_info *ivi);
 177static void igb_check_vf_rate_limit(struct igb_adapter *);
 
 
 178
 179#ifdef CONFIG_PCI_IOV
 180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
 182static int igb_disable_sriov(struct pci_dev *dev);
 183static int igb_pci_disable_sriov(struct pci_dev *dev);
 184#endif
 185
 186#ifdef CONFIG_PM
 187#ifdef CONFIG_PM_SLEEP
 188static int igb_suspend(struct device *);
 189#endif
 190static int igb_resume(struct device *);
 191static int igb_runtime_suspend(struct device *dev);
 192static int igb_runtime_resume(struct device *dev);
 193static int igb_runtime_idle(struct device *dev);
 
 194static const struct dev_pm_ops igb_pm_ops = {
 195	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 196	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 197			igb_runtime_idle)
 198};
 199#endif
 200static void igb_shutdown(struct pci_dev *);
 201static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 202#ifdef CONFIG_IGB_DCA
 203static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 204static struct notifier_block dca_notifier = {
 205	.notifier_call	= igb_notify_dca,
 206	.next		= NULL,
 207	.priority	= 0
 208};
 209#endif
 210#ifdef CONFIG_NET_POLL_CONTROLLER
 211/* for netdump / net console */
 212static void igb_netpoll(struct net_device *);
 213#endif
 214#ifdef CONFIG_PCI_IOV
 215static unsigned int max_vfs;
 216module_param(max_vfs, uint, 0);
 217MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
 218#endif /* CONFIG_PCI_IOV */
 219
 220static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 221		     pci_channel_state_t);
 222static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 223static void igb_io_resume(struct pci_dev *);
 224
 225static const struct pci_error_handlers igb_err_handler = {
 226	.error_detected = igb_io_error_detected,
 227	.slot_reset = igb_io_slot_reset,
 228	.resume = igb_io_resume,
 229};
 230
 231static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 232
 233static struct pci_driver igb_driver = {
 234	.name     = igb_driver_name,
 235	.id_table = igb_pci_tbl,
 236	.probe    = igb_probe,
 237	.remove   = igb_remove,
 238#ifdef CONFIG_PM
 239	.driver.pm = &igb_pm_ops,
 240#endif
 241	.shutdown = igb_shutdown,
 242	.sriov_configure = igb_pci_sriov_configure,
 243	.err_handler = &igb_err_handler
 244};
 245
 246MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 247MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 248MODULE_LICENSE("GPL");
 249MODULE_VERSION(DRV_VERSION);
 250
 251#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 252static int debug = -1;
 253module_param(debug, int, 0);
 254MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 255
 256struct igb_reg_info {
 257	u32 ofs;
 258	char *name;
 259};
 260
 261static const struct igb_reg_info igb_reg_info_tbl[] = {
 262
 263	/* General Registers */
 264	{E1000_CTRL, "CTRL"},
 265	{E1000_STATUS, "STATUS"},
 266	{E1000_CTRL_EXT, "CTRL_EXT"},
 267
 268	/* Interrupt Registers */
 269	{E1000_ICR, "ICR"},
 270
 271	/* RX Registers */
 272	{E1000_RCTL, "RCTL"},
 273	{E1000_RDLEN(0), "RDLEN"},
 274	{E1000_RDH(0), "RDH"},
 275	{E1000_RDT(0), "RDT"},
 276	{E1000_RXDCTL(0), "RXDCTL"},
 277	{E1000_RDBAL(0), "RDBAL"},
 278	{E1000_RDBAH(0), "RDBAH"},
 279
 280	/* TX Registers */
 281	{E1000_TCTL, "TCTL"},
 282	{E1000_TDBAL(0), "TDBAL"},
 283	{E1000_TDBAH(0), "TDBAH"},
 284	{E1000_TDLEN(0), "TDLEN"},
 285	{E1000_TDH(0), "TDH"},
 286	{E1000_TDT(0), "TDT"},
 287	{E1000_TXDCTL(0), "TXDCTL"},
 288	{E1000_TDFH, "TDFH"},
 289	{E1000_TDFT, "TDFT"},
 290	{E1000_TDFHS, "TDFHS"},
 291	{E1000_TDFPC, "TDFPC"},
 292
 293	/* List Terminator */
 294	{}
 295};
 296
 297/* igb_regdump - register printout routine */
 298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 299{
 300	int n = 0;
 301	char rname[16];
 302	u32 regs[8];
 303
 304	switch (reginfo->ofs) {
 305	case E1000_RDLEN(0):
 306		for (n = 0; n < 4; n++)
 307			regs[n] = rd32(E1000_RDLEN(n));
 308		break;
 309	case E1000_RDH(0):
 310		for (n = 0; n < 4; n++)
 311			regs[n] = rd32(E1000_RDH(n));
 312		break;
 313	case E1000_RDT(0):
 314		for (n = 0; n < 4; n++)
 315			regs[n] = rd32(E1000_RDT(n));
 316		break;
 317	case E1000_RXDCTL(0):
 318		for (n = 0; n < 4; n++)
 319			regs[n] = rd32(E1000_RXDCTL(n));
 320		break;
 321	case E1000_RDBAL(0):
 322		for (n = 0; n < 4; n++)
 323			regs[n] = rd32(E1000_RDBAL(n));
 324		break;
 325	case E1000_RDBAH(0):
 326		for (n = 0; n < 4; n++)
 327			regs[n] = rd32(E1000_RDBAH(n));
 328		break;
 329	case E1000_TDBAL(0):
 330		for (n = 0; n < 4; n++)
 331			regs[n] = rd32(E1000_RDBAL(n));
 332		break;
 333	case E1000_TDBAH(0):
 334		for (n = 0; n < 4; n++)
 335			regs[n] = rd32(E1000_TDBAH(n));
 336		break;
 337	case E1000_TDLEN(0):
 338		for (n = 0; n < 4; n++)
 339			regs[n] = rd32(E1000_TDLEN(n));
 340		break;
 341	case E1000_TDH(0):
 342		for (n = 0; n < 4; n++)
 343			regs[n] = rd32(E1000_TDH(n));
 344		break;
 345	case E1000_TDT(0):
 346		for (n = 0; n < 4; n++)
 347			regs[n] = rd32(E1000_TDT(n));
 348		break;
 349	case E1000_TXDCTL(0):
 350		for (n = 0; n < 4; n++)
 351			regs[n] = rd32(E1000_TXDCTL(n));
 352		break;
 353	default:
 354		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 355		return;
 356	}
 357
 358	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 359	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 360		regs[2], regs[3]);
 361}
 362
 363/* igb_dump - Print registers, Tx-rings and Rx-rings */
 364static void igb_dump(struct igb_adapter *adapter)
 365{
 366	struct net_device *netdev = adapter->netdev;
 367	struct e1000_hw *hw = &adapter->hw;
 368	struct igb_reg_info *reginfo;
 369	struct igb_ring *tx_ring;
 370	union e1000_adv_tx_desc *tx_desc;
 371	struct my_u0 { u64 a; u64 b; } *u0;
 372	struct igb_ring *rx_ring;
 373	union e1000_adv_rx_desc *rx_desc;
 374	u32 staterr;
 375	u16 i, n;
 376
 377	if (!netif_msg_hw(adapter))
 378		return;
 379
 380	/* Print netdevice Info */
 381	if (netdev) {
 382		dev_info(&adapter->pdev->dev, "Net device Info\n");
 383		pr_info("Device Name     state            trans_start      last_rx\n");
 384		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
 385			netdev->state, netdev->trans_start, netdev->last_rx);
 386	}
 387
 388	/* Print Registers */
 389	dev_info(&adapter->pdev->dev, "Register Dump\n");
 390	pr_info(" Register Name   Value\n");
 391	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 392	     reginfo->name; reginfo++) {
 393		igb_regdump(hw, reginfo);
 394	}
 395
 396	/* Print TX Ring Summary */
 397	if (!netdev || !netif_running(netdev))
 398		goto exit;
 399
 400	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 401	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 402	for (n = 0; n < adapter->num_tx_queues; n++) {
 403		struct igb_tx_buffer *buffer_info;
 404		tx_ring = adapter->tx_ring[n];
 405		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 406		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 407			n, tx_ring->next_to_use, tx_ring->next_to_clean,
 408			(u64)dma_unmap_addr(buffer_info, dma),
 409			dma_unmap_len(buffer_info, len),
 410			buffer_info->next_to_watch,
 411			(u64)buffer_info->time_stamp);
 412	}
 413
 414	/* Print TX Rings */
 415	if (!netif_msg_tx_done(adapter))
 416		goto rx_ring_summary;
 417
 418	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 419
 420	/* Transmit Descriptor Formats
 421	 *
 422	 * Advanced Transmit Descriptor
 423	 *   +--------------------------------------------------------------+
 424	 * 0 |         Buffer Address [63:0]                                |
 425	 *   +--------------------------------------------------------------+
 426	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 427	 *   +--------------------------------------------------------------+
 428	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
 429	 */
 430
 431	for (n = 0; n < adapter->num_tx_queues; n++) {
 432		tx_ring = adapter->tx_ring[n];
 433		pr_info("------------------------------------\n");
 434		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 435		pr_info("------------------------------------\n");
 436		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
 437
 438		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 439			const char *next_desc;
 440			struct igb_tx_buffer *buffer_info;
 441			tx_desc = IGB_TX_DESC(tx_ring, i);
 442			buffer_info = &tx_ring->tx_buffer_info[i];
 443			u0 = (struct my_u0 *)tx_desc;
 444			if (i == tx_ring->next_to_use &&
 445			    i == tx_ring->next_to_clean)
 446				next_desc = " NTC/U";
 447			else if (i == tx_ring->next_to_use)
 448				next_desc = " NTU";
 449			else if (i == tx_ring->next_to_clean)
 450				next_desc = " NTC";
 451			else
 452				next_desc = "";
 453
 454			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
 455				i, le64_to_cpu(u0->a),
 456				le64_to_cpu(u0->b),
 457				(u64)dma_unmap_addr(buffer_info, dma),
 458				dma_unmap_len(buffer_info, len),
 459				buffer_info->next_to_watch,
 460				(u64)buffer_info->time_stamp,
 461				buffer_info->skb, next_desc);
 462
 463			if (netif_msg_pktdata(adapter) && buffer_info->skb)
 464				print_hex_dump(KERN_INFO, "",
 465					DUMP_PREFIX_ADDRESS,
 466					16, 1, buffer_info->skb->data,
 467					dma_unmap_len(buffer_info, len),
 468					true);
 469		}
 470	}
 471
 472	/* Print RX Rings Summary */
 473rx_ring_summary:
 474	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 475	pr_info("Queue [NTU] [NTC]\n");
 476	for (n = 0; n < adapter->num_rx_queues; n++) {
 477		rx_ring = adapter->rx_ring[n];
 478		pr_info(" %5d %5X %5X\n",
 479			n, rx_ring->next_to_use, rx_ring->next_to_clean);
 480	}
 481
 482	/* Print RX Rings */
 483	if (!netif_msg_rx_status(adapter))
 484		goto exit;
 485
 486	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 487
 488	/* Advanced Receive Descriptor (Read) Format
 489	 *    63                                           1        0
 490	 *    +-----------------------------------------------------+
 491	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 492	 *    +----------------------------------------------+------+
 493	 *  8 |       Header Buffer Address [63:1]           |  DD  |
 494	 *    +-----------------------------------------------------+
 495	 *
 496	 *
 497	 * Advanced Receive Descriptor (Write-Back) Format
 498	 *
 499	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
 500	 *   +------------------------------------------------------+
 501	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 502	 *   | Checksum   Ident  |   |           |    | Type | Type |
 503	 *   +------------------------------------------------------+
 504	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 505	 *   +------------------------------------------------------+
 506	 *   63       48 47    32 31            20 19               0
 507	 */
 508
 509	for (n = 0; n < adapter->num_rx_queues; n++) {
 510		rx_ring = adapter->rx_ring[n];
 511		pr_info("------------------------------------\n");
 512		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 513		pr_info("------------------------------------\n");
 514		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 515		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
 516
 517		for (i = 0; i < rx_ring->count; i++) {
 518			const char *next_desc;
 519			struct igb_rx_buffer *buffer_info;
 520			buffer_info = &rx_ring->rx_buffer_info[i];
 521			rx_desc = IGB_RX_DESC(rx_ring, i);
 522			u0 = (struct my_u0 *)rx_desc;
 523			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 524
 525			if (i == rx_ring->next_to_use)
 526				next_desc = " NTU";
 527			else if (i == rx_ring->next_to_clean)
 528				next_desc = " NTC";
 529			else
 530				next_desc = "";
 531
 532			if (staterr & E1000_RXD_STAT_DD) {
 533				/* Descriptor Done */
 534				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 535					"RWB", i,
 536					le64_to_cpu(u0->a),
 537					le64_to_cpu(u0->b),
 538					next_desc);
 539			} else {
 540				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 541					"R  ", i,
 542					le64_to_cpu(u0->a),
 543					le64_to_cpu(u0->b),
 544					(u64)buffer_info->dma,
 545					next_desc);
 546
 547				if (netif_msg_pktdata(adapter) &&
 548				    buffer_info->dma && buffer_info->page) {
 549					print_hex_dump(KERN_INFO, "",
 550					  DUMP_PREFIX_ADDRESS,
 551					  16, 1,
 552					  page_address(buffer_info->page) +
 553						      buffer_info->page_offset,
 554					  IGB_RX_BUFSZ, true);
 555				}
 556			}
 557		}
 558	}
 559
 560exit:
 561	return;
 562}
 563
 564/**
 565 *  igb_get_i2c_data - Reads the I2C SDA data bit
 566 *  @hw: pointer to hardware structure
 567 *  @i2cctl: Current value of I2CCTL register
 568 *
 569 *  Returns the I2C data bit value
 570 **/
 571static int igb_get_i2c_data(void *data)
 572{
 573	struct igb_adapter *adapter = (struct igb_adapter *)data;
 574	struct e1000_hw *hw = &adapter->hw;
 575	s32 i2cctl = rd32(E1000_I2CPARAMS);
 576
 577	return !!(i2cctl & E1000_I2C_DATA_IN);
 578}
 579
 580/**
 581 *  igb_set_i2c_data - Sets the I2C data bit
 582 *  @data: pointer to hardware structure
 583 *  @state: I2C data value (0 or 1) to set
 584 *
 585 *  Sets the I2C data bit
 586 **/
 587static void igb_set_i2c_data(void *data, int state)
 588{
 589	struct igb_adapter *adapter = (struct igb_adapter *)data;
 590	struct e1000_hw *hw = &adapter->hw;
 591	s32 i2cctl = rd32(E1000_I2CPARAMS);
 592
 593	if (state)
 594		i2cctl |= E1000_I2C_DATA_OUT;
 595	else
 
 596		i2cctl &= ~E1000_I2C_DATA_OUT;
 
 597
 598	i2cctl &= ~E1000_I2C_DATA_OE_N;
 599	i2cctl |= E1000_I2C_CLK_OE_N;
 600	wr32(E1000_I2CPARAMS, i2cctl);
 601	wrfl();
 602
 603}
 604
 605/**
 606 *  igb_set_i2c_clk - Sets the I2C SCL clock
 607 *  @data: pointer to hardware structure
 608 *  @state: state to set clock
 609 *
 610 *  Sets the I2C clock line to state
 611 **/
 612static void igb_set_i2c_clk(void *data, int state)
 613{
 614	struct igb_adapter *adapter = (struct igb_adapter *)data;
 615	struct e1000_hw *hw = &adapter->hw;
 616	s32 i2cctl = rd32(E1000_I2CPARAMS);
 617
 618	if (state) {
 619		i2cctl |= E1000_I2C_CLK_OUT;
 620		i2cctl &= ~E1000_I2C_CLK_OE_N;
 621	} else {
 622		i2cctl &= ~E1000_I2C_CLK_OUT;
 623		i2cctl &= ~E1000_I2C_CLK_OE_N;
 624	}
 625	wr32(E1000_I2CPARAMS, i2cctl);
 626	wrfl();
 627}
 628
 629/**
 630 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 631 *  @data: pointer to hardware structure
 632 *
 633 *  Gets the I2C clock state
 634 **/
 635static int igb_get_i2c_clk(void *data)
 636{
 637	struct igb_adapter *adapter = (struct igb_adapter *)data;
 638	struct e1000_hw *hw = &adapter->hw;
 639	s32 i2cctl = rd32(E1000_I2CPARAMS);
 640
 641	return !!(i2cctl & E1000_I2C_CLK_IN);
 642}
 643
 644static const struct i2c_algo_bit_data igb_i2c_algo = {
 645	.setsda		= igb_set_i2c_data,
 646	.setscl		= igb_set_i2c_clk,
 647	.getsda		= igb_get_i2c_data,
 648	.getscl		= igb_get_i2c_clk,
 649	.udelay		= 5,
 650	.timeout	= 20,
 651};
 652
 653/**
 654 *  igb_get_hw_dev - return device
 655 *  @hw: pointer to hardware structure
 656 *
 657 *  used by hardware layer to print debugging information
 658 **/
 659struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 660{
 661	struct igb_adapter *adapter = hw->back;
 662	return adapter->netdev;
 663}
 664
 665/**
 666 *  igb_init_module - Driver Registration Routine
 667 *
 668 *  igb_init_module is the first routine called when the driver is
 669 *  loaded. All it does is register with the PCI subsystem.
 670 **/
 671static int __init igb_init_module(void)
 672{
 673	int ret;
 674
 675	pr_info("%s - version %s\n",
 676	       igb_driver_string, igb_driver_version);
 677	pr_info("%s\n", igb_copyright);
 678
 679#ifdef CONFIG_IGB_DCA
 680	dca_register_notify(&dca_notifier);
 681#endif
 682	ret = pci_register_driver(&igb_driver);
 683	return ret;
 684}
 685
 686module_init(igb_init_module);
 687
 688/**
 689 *  igb_exit_module - Driver Exit Cleanup Routine
 690 *
 691 *  igb_exit_module is called just before the driver is removed
 692 *  from memory.
 693 **/
 694static void __exit igb_exit_module(void)
 695{
 696#ifdef CONFIG_IGB_DCA
 697	dca_unregister_notify(&dca_notifier);
 698#endif
 699	pci_unregister_driver(&igb_driver);
 700}
 701
 702module_exit(igb_exit_module);
 703
 704#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 705/**
 706 *  igb_cache_ring_register - Descriptor ring to register mapping
 707 *  @adapter: board private structure to initialize
 708 *
 709 *  Once we know the feature-set enabled for the device, we'll cache
 710 *  the register offset the descriptor ring is assigned to.
 711 **/
 712static void igb_cache_ring_register(struct igb_adapter *adapter)
 713{
 714	int i = 0, j = 0;
 715	u32 rbase_offset = adapter->vfs_allocated_count;
 716
 717	switch (adapter->hw.mac.type) {
 718	case e1000_82576:
 719		/* The queues are allocated for virtualization such that VF 0
 720		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 721		 * In order to avoid collision we start at the first free queue
 722		 * and continue consuming queues in the same sequence
 723		 */
 724		if (adapter->vfs_allocated_count) {
 725			for (; i < adapter->rss_queues; i++)
 726				adapter->rx_ring[i]->reg_idx = rbase_offset +
 727							       Q_IDX_82576(i);
 728		}
 729		/* Fall through */
 730	case e1000_82575:
 731	case e1000_82580:
 732	case e1000_i350:
 733	case e1000_i354:
 734	case e1000_i210:
 735	case e1000_i211:
 736		/* Fall through */
 737	default:
 738		for (; i < adapter->num_rx_queues; i++)
 739			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 740		for (; j < adapter->num_tx_queues; j++)
 741			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 742		break;
 743	}
 744}
 745
 746u32 igb_rd32(struct e1000_hw *hw, u32 reg)
 747{
 748	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
 749	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
 750	u32 value = 0;
 751
 752	if (E1000_REMOVED(hw_addr))
 753		return ~value;
 754
 755	value = readl(&hw_addr[reg]);
 756
 757	/* reads should not return all F's */
 758	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
 759		struct net_device *netdev = igb->netdev;
 760		hw->hw_addr = NULL;
 761		netif_device_detach(netdev);
 762		netdev_err(netdev, "PCIe link lost, device now detached\n");
 
 763	}
 764
 765	return value;
 766}
 767
 768/**
 769 *  igb_write_ivar - configure ivar for given MSI-X vector
 770 *  @hw: pointer to the HW structure
 771 *  @msix_vector: vector number we are allocating to a given ring
 772 *  @index: row index of IVAR register to write within IVAR table
 773 *  @offset: column offset of in IVAR, should be multiple of 8
 774 *
 775 *  This function is intended to handle the writing of the IVAR register
 776 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 777 *  each containing an cause allocation for an Rx and Tx ring, and a
 778 *  variable number of rows depending on the number of queues supported.
 779 **/
 780static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 781			   int index, int offset)
 782{
 783	u32 ivar = array_rd32(E1000_IVAR0, index);
 784
 785	/* clear any bits that are currently set */
 786	ivar &= ~((u32)0xFF << offset);
 787
 788	/* write vector and valid bit */
 789	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 790
 791	array_wr32(E1000_IVAR0, index, ivar);
 792}
 793
 794#define IGB_N0_QUEUE -1
 795static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 796{
 797	struct igb_adapter *adapter = q_vector->adapter;
 798	struct e1000_hw *hw = &adapter->hw;
 799	int rx_queue = IGB_N0_QUEUE;
 800	int tx_queue = IGB_N0_QUEUE;
 801	u32 msixbm = 0;
 802
 803	if (q_vector->rx.ring)
 804		rx_queue = q_vector->rx.ring->reg_idx;
 805	if (q_vector->tx.ring)
 806		tx_queue = q_vector->tx.ring->reg_idx;
 807
 808	switch (hw->mac.type) {
 809	case e1000_82575:
 810		/* The 82575 assigns vectors using a bitmask, which matches the
 811		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
 812		 * or more queues to a vector, we write the appropriate bits
 813		 * into the MSIXBM register for that vector.
 814		 */
 815		if (rx_queue > IGB_N0_QUEUE)
 816			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 817		if (tx_queue > IGB_N0_QUEUE)
 818			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 819		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
 820			msixbm |= E1000_EIMS_OTHER;
 821		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 822		q_vector->eims_value = msixbm;
 823		break;
 824	case e1000_82576:
 825		/* 82576 uses a table that essentially consists of 2 columns
 826		 * with 8 rows.  The ordering is column-major so we use the
 827		 * lower 3 bits as the row index, and the 4th bit as the
 828		 * column offset.
 829		 */
 830		if (rx_queue > IGB_N0_QUEUE)
 831			igb_write_ivar(hw, msix_vector,
 832				       rx_queue & 0x7,
 833				       (rx_queue & 0x8) << 1);
 834		if (tx_queue > IGB_N0_QUEUE)
 835			igb_write_ivar(hw, msix_vector,
 836				       tx_queue & 0x7,
 837				       ((tx_queue & 0x8) << 1) + 8);
 838		q_vector->eims_value = 1 << msix_vector;
 839		break;
 840	case e1000_82580:
 841	case e1000_i350:
 842	case e1000_i354:
 843	case e1000_i210:
 844	case e1000_i211:
 845		/* On 82580 and newer adapters the scheme is similar to 82576
 846		 * however instead of ordering column-major we have things
 847		 * ordered row-major.  So we traverse the table by using
 848		 * bit 0 as the column offset, and the remaining bits as the
 849		 * row index.
 850		 */
 851		if (rx_queue > IGB_N0_QUEUE)
 852			igb_write_ivar(hw, msix_vector,
 853				       rx_queue >> 1,
 854				       (rx_queue & 0x1) << 4);
 855		if (tx_queue > IGB_N0_QUEUE)
 856			igb_write_ivar(hw, msix_vector,
 857				       tx_queue >> 1,
 858				       ((tx_queue & 0x1) << 4) + 8);
 859		q_vector->eims_value = 1 << msix_vector;
 860		break;
 861	default:
 862		BUG();
 863		break;
 864	}
 865
 866	/* add q_vector eims value to global eims_enable_mask */
 867	adapter->eims_enable_mask |= q_vector->eims_value;
 868
 869	/* configure q_vector to set itr on first interrupt */
 870	q_vector->set_itr = 1;
 871}
 872
 873/**
 874 *  igb_configure_msix - Configure MSI-X hardware
 875 *  @adapter: board private structure to initialize
 876 *
 877 *  igb_configure_msix sets up the hardware to properly
 878 *  generate MSI-X interrupts.
 879 **/
 880static void igb_configure_msix(struct igb_adapter *adapter)
 881{
 882	u32 tmp;
 883	int i, vector = 0;
 884	struct e1000_hw *hw = &adapter->hw;
 885
 886	adapter->eims_enable_mask = 0;
 887
 888	/* set vector for other causes, i.e. link changes */
 889	switch (hw->mac.type) {
 890	case e1000_82575:
 891		tmp = rd32(E1000_CTRL_EXT);
 892		/* enable MSI-X PBA support*/
 893		tmp |= E1000_CTRL_EXT_PBA_CLR;
 894
 895		/* Auto-Mask interrupts upon ICR read. */
 896		tmp |= E1000_CTRL_EXT_EIAME;
 897		tmp |= E1000_CTRL_EXT_IRCA;
 898
 899		wr32(E1000_CTRL_EXT, tmp);
 900
 901		/* enable msix_other interrupt */
 902		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
 903		adapter->eims_other = E1000_EIMS_OTHER;
 904
 905		break;
 906
 907	case e1000_82576:
 908	case e1000_82580:
 909	case e1000_i350:
 910	case e1000_i354:
 911	case e1000_i210:
 912	case e1000_i211:
 913		/* Turn on MSI-X capability first, or our settings
 914		 * won't stick.  And it will take days to debug.
 915		 */
 916		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 917		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
 918		     E1000_GPIE_NSICR);
 919
 920		/* enable msix_other interrupt */
 921		adapter->eims_other = 1 << vector;
 922		tmp = (vector++ | E1000_IVAR_VALID) << 8;
 923
 924		wr32(E1000_IVAR_MISC, tmp);
 925		break;
 926	default:
 927		/* do nothing, since nothing else supports MSI-X */
 928		break;
 929	} /* switch (hw->mac.type) */
 930
 931	adapter->eims_enable_mask |= adapter->eims_other;
 932
 933	for (i = 0; i < adapter->num_q_vectors; i++)
 934		igb_assign_vector(adapter->q_vector[i], vector++);
 935
 936	wrfl();
 937}
 938
 939/**
 940 *  igb_request_msix - Initialize MSI-X interrupts
 941 *  @adapter: board private structure to initialize
 942 *
 943 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 944 *  kernel.
 945 **/
 946static int igb_request_msix(struct igb_adapter *adapter)
 947{
 
 948	struct net_device *netdev = adapter->netdev;
 949	int i, err = 0, vector = 0, free_vector = 0;
 950
 951	err = request_irq(adapter->msix_entries[vector].vector,
 952			  igb_msix_other, 0, netdev->name, adapter);
 953	if (err)
 954		goto err_out;
 955
 956	for (i = 0; i < adapter->num_q_vectors; i++) {
 
 
 
 
 
 
 957		struct igb_q_vector *q_vector = adapter->q_vector[i];
 958
 959		vector++;
 960
 961		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
 962
 963		if (q_vector->rx.ring && q_vector->tx.ring)
 964			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 965				q_vector->rx.ring->queue_index);
 966		else if (q_vector->tx.ring)
 967			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 968				q_vector->tx.ring->queue_index);
 969		else if (q_vector->rx.ring)
 970			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 971				q_vector->rx.ring->queue_index);
 972		else
 973			sprintf(q_vector->name, "%s-unused", netdev->name);
 974
 975		err = request_irq(adapter->msix_entries[vector].vector,
 976				  igb_msix_ring, 0, q_vector->name,
 977				  q_vector);
 978		if (err)
 979			goto err_free;
 980	}
 981
 982	igb_configure_msix(adapter);
 983	return 0;
 984
 985err_free:
 986	/* free already assigned IRQs */
 987	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
 988
 989	vector--;
 990	for (i = 0; i < vector; i++) {
 991		free_irq(adapter->msix_entries[free_vector++].vector,
 992			 adapter->q_vector[i]);
 993	}
 994err_out:
 995	return err;
 996}
 997
 998/**
 999 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1000 *  @adapter: board private structure to initialize
1001 *  @v_idx: Index of vector to be freed
1002 *
1003 *  This function frees the memory allocated to the q_vector.
1004 **/
1005static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006{
1007	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008
1009	adapter->q_vector[v_idx] = NULL;
1010
1011	/* igb_get_stats64() might access the rings on this vector,
1012	 * we must wait a grace period before freeing it.
1013	 */
1014	if (q_vector)
1015		kfree_rcu(q_vector, rcu);
1016}
1017
1018/**
1019 *  igb_reset_q_vector - Reset config for interrupt vector
1020 *  @adapter: board private structure to initialize
1021 *  @v_idx: Index of vector to be reset
1022 *
1023 *  If NAPI is enabled it will delete any references to the
1024 *  NAPI struct. This is preparation for igb_free_q_vector.
1025 **/
1026static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027{
1028	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029
1030	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1031	 * allocated. So, q_vector is NULL so we should stop here.
1032	 */
1033	if (!q_vector)
1034		return;
1035
1036	if (q_vector->tx.ring)
1037		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038
1039	if (q_vector->rx.ring)
1040		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1041
1042	netif_napi_del(&q_vector->napi);
1043
1044}
1045
1046static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047{
1048	int v_idx = adapter->num_q_vectors;
1049
1050	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051		pci_disable_msix(adapter->pdev);
1052	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053		pci_disable_msi(adapter->pdev);
1054
1055	while (v_idx--)
1056		igb_reset_q_vector(adapter, v_idx);
1057}
1058
1059/**
1060 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1061 *  @adapter: board private structure to initialize
1062 *
1063 *  This function frees the memory allocated to the q_vectors.  In addition if
1064 *  NAPI is enabled it will delete any references to the NAPI struct prior
1065 *  to freeing the q_vector.
1066 **/
1067static void igb_free_q_vectors(struct igb_adapter *adapter)
1068{
1069	int v_idx = adapter->num_q_vectors;
1070
1071	adapter->num_tx_queues = 0;
1072	adapter->num_rx_queues = 0;
1073	adapter->num_q_vectors = 0;
1074
1075	while (v_idx--) {
1076		igb_reset_q_vector(adapter, v_idx);
1077		igb_free_q_vector(adapter, v_idx);
1078	}
1079}
1080
1081/**
1082 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083 *  @adapter: board private structure to initialize
1084 *
1085 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1086 *  MSI-X interrupts allocated.
1087 */
1088static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089{
1090	igb_free_q_vectors(adapter);
1091	igb_reset_interrupt_capability(adapter);
1092}
1093
1094/**
1095 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1096 *  @adapter: board private structure to initialize
1097 *  @msix: boolean value of MSIX capability
1098 *
1099 *  Attempt to configure interrupts using the best available
1100 *  capabilities of the hardware and kernel.
1101 **/
1102static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103{
1104	int err;
1105	int numvecs, i;
1106
1107	if (!msix)
1108		goto msi_only;
1109	adapter->flags |= IGB_FLAG_HAS_MSIX;
1110
1111	/* Number of supported queues. */
1112	adapter->num_rx_queues = adapter->rss_queues;
1113	if (adapter->vfs_allocated_count)
1114		adapter->num_tx_queues = 1;
1115	else
1116		adapter->num_tx_queues = adapter->rss_queues;
1117
1118	/* start with one vector for every Rx queue */
1119	numvecs = adapter->num_rx_queues;
1120
1121	/* if Tx handler is separate add 1 for every Tx queue */
1122	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123		numvecs += adapter->num_tx_queues;
1124
1125	/* store the number of vectors reserved for queues */
1126	adapter->num_q_vectors = numvecs;
1127
1128	/* add 1 vector for link status interrupts */
1129	numvecs++;
1130	for (i = 0; i < numvecs; i++)
1131		adapter->msix_entries[i].entry = i;
1132
1133	err = pci_enable_msix_range(adapter->pdev,
1134				    adapter->msix_entries,
1135				    numvecs,
1136				    numvecs);
1137	if (err > 0)
1138		return;
1139
1140	igb_reset_interrupt_capability(adapter);
1141
1142	/* If we can't do MSI-X, try MSI */
1143msi_only:
1144	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145#ifdef CONFIG_PCI_IOV
1146	/* disable SR-IOV for non MSI-X configurations */
1147	if (adapter->vf_data) {
1148		struct e1000_hw *hw = &adapter->hw;
1149		/* disable iov and allow time for transactions to clear */
1150		pci_disable_sriov(adapter->pdev);
1151		msleep(500);
1152
 
 
1153		kfree(adapter->vf_data);
1154		adapter->vf_data = NULL;
1155		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156		wrfl();
1157		msleep(100);
1158		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159	}
1160#endif
1161	adapter->vfs_allocated_count = 0;
1162	adapter->rss_queues = 1;
1163	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164	adapter->num_rx_queues = 1;
1165	adapter->num_tx_queues = 1;
1166	adapter->num_q_vectors = 1;
1167	if (!pci_enable_msi(adapter->pdev))
1168		adapter->flags |= IGB_FLAG_HAS_MSI;
1169}
1170
1171static void igb_add_ring(struct igb_ring *ring,
1172			 struct igb_ring_container *head)
1173{
1174	head->ring = ring;
1175	head->count++;
1176}
1177
1178/**
1179 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180 *  @adapter: board private structure to initialize
1181 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1182 *  @v_idx: index of vector in adapter struct
1183 *  @txr_count: total number of Tx rings to allocate
1184 *  @txr_idx: index of first Tx ring to allocate
1185 *  @rxr_count: total number of Rx rings to allocate
1186 *  @rxr_idx: index of first Rx ring to allocate
1187 *
1188 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1189 **/
1190static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191			      int v_count, int v_idx,
1192			      int txr_count, int txr_idx,
1193			      int rxr_count, int rxr_idx)
1194{
1195	struct igb_q_vector *q_vector;
1196	struct igb_ring *ring;
1197	int ring_count, size;
 
1198
1199	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200	if (txr_count > 1 || rxr_count > 1)
1201		return -ENOMEM;
1202
1203	ring_count = txr_count + rxr_count;
1204	size = sizeof(struct igb_q_vector) +
1205	       (sizeof(struct igb_ring) * ring_count);
1206
1207	/* allocate q_vector and rings */
1208	q_vector = adapter->q_vector[v_idx];
1209	if (!q_vector) {
1210		q_vector = kzalloc(size, GFP_KERNEL);
1211	} else if (size > ksize(q_vector)) {
1212		kfree_rcu(q_vector, rcu);
1213		q_vector = kzalloc(size, GFP_KERNEL);
 
 
 
 
1214	} else {
1215		memset(q_vector, 0, size);
1216	}
1217	if (!q_vector)
1218		return -ENOMEM;
1219
1220	/* initialize NAPI */
1221	netif_napi_add(adapter->netdev, &q_vector->napi,
1222		       igb_poll, 64);
1223
1224	/* tie q_vector and adapter together */
1225	adapter->q_vector[v_idx] = q_vector;
1226	q_vector->adapter = adapter;
1227
1228	/* initialize work limits */
1229	q_vector->tx.work_limit = adapter->tx_work_limit;
1230
1231	/* initialize ITR configuration */
1232	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1233	q_vector->itr_val = IGB_START_ITR;
1234
1235	/* initialize pointer to rings */
1236	ring = q_vector->ring;
1237
1238	/* intialize ITR */
1239	if (rxr_count) {
1240		/* rx or rx/tx vector */
1241		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1242			q_vector->itr_val = adapter->rx_itr_setting;
1243	} else {
1244		/* tx only vector */
1245		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1246			q_vector->itr_val = adapter->tx_itr_setting;
1247	}
1248
1249	if (txr_count) {
1250		/* assign generic ring traits */
1251		ring->dev = &adapter->pdev->dev;
1252		ring->netdev = adapter->netdev;
1253
1254		/* configure backlink on ring */
1255		ring->q_vector = q_vector;
1256
1257		/* update q_vector Tx values */
1258		igb_add_ring(ring, &q_vector->tx);
1259
1260		/* For 82575, context index must be unique per ring. */
1261		if (adapter->hw.mac.type == e1000_82575)
1262			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1263
1264		/* apply Tx specific ring traits */
1265		ring->count = adapter->tx_ring_count;
1266		ring->queue_index = txr_idx;
1267
 
 
 
 
 
 
1268		u64_stats_init(&ring->tx_syncp);
1269		u64_stats_init(&ring->tx_syncp2);
1270
1271		/* assign ring to adapter */
1272		adapter->tx_ring[txr_idx] = ring;
1273
1274		/* push pointer to next ring */
1275		ring++;
1276	}
1277
1278	if (rxr_count) {
1279		/* assign generic ring traits */
1280		ring->dev = &adapter->pdev->dev;
1281		ring->netdev = adapter->netdev;
1282
1283		/* configure backlink on ring */
1284		ring->q_vector = q_vector;
1285
1286		/* update q_vector Rx values */
1287		igb_add_ring(ring, &q_vector->rx);
1288
1289		/* set flag indicating ring supports SCTP checksum offload */
1290		if (adapter->hw.mac.type >= e1000_82576)
1291			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1292
1293		/* On i350, i354, i210, and i211, loopback VLAN packets
1294		 * have the tag byte-swapped.
1295		 */
1296		if (adapter->hw.mac.type >= e1000_i350)
1297			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1298
1299		/* apply Rx specific ring traits */
1300		ring->count = adapter->rx_ring_count;
1301		ring->queue_index = rxr_idx;
1302
1303		u64_stats_init(&ring->rx_syncp);
1304
1305		/* assign ring to adapter */
1306		adapter->rx_ring[rxr_idx] = ring;
1307	}
1308
1309	return 0;
1310}
1311
1312
1313/**
1314 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1315 *  @adapter: board private structure to initialize
1316 *
1317 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1318 *  return -ENOMEM.
1319 **/
1320static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1321{
1322	int q_vectors = adapter->num_q_vectors;
1323	int rxr_remaining = adapter->num_rx_queues;
1324	int txr_remaining = adapter->num_tx_queues;
1325	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1326	int err;
1327
1328	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1329		for (; rxr_remaining; v_idx++) {
1330			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1331						 0, 0, 1, rxr_idx);
1332
1333			if (err)
1334				goto err_out;
1335
1336			/* update counts and index */
1337			rxr_remaining--;
1338			rxr_idx++;
1339		}
1340	}
1341
1342	for (; v_idx < q_vectors; v_idx++) {
1343		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1344		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1345
1346		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1347					 tqpv, txr_idx, rqpv, rxr_idx);
1348
1349		if (err)
1350			goto err_out;
1351
1352		/* update counts and index */
1353		rxr_remaining -= rqpv;
1354		txr_remaining -= tqpv;
1355		rxr_idx++;
1356		txr_idx++;
1357	}
1358
1359	return 0;
1360
1361err_out:
1362	adapter->num_tx_queues = 0;
1363	adapter->num_rx_queues = 0;
1364	adapter->num_q_vectors = 0;
1365
1366	while (v_idx--)
1367		igb_free_q_vector(adapter, v_idx);
1368
1369	return -ENOMEM;
1370}
1371
1372/**
1373 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1374 *  @adapter: board private structure to initialize
1375 *  @msix: boolean value of MSIX capability
1376 *
1377 *  This function initializes the interrupts and allocates all of the queues.
1378 **/
1379static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1380{
1381	struct pci_dev *pdev = adapter->pdev;
1382	int err;
1383
1384	igb_set_interrupt_capability(adapter, msix);
1385
1386	err = igb_alloc_q_vectors(adapter);
1387	if (err) {
1388		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1389		goto err_alloc_q_vectors;
1390	}
1391
1392	igb_cache_ring_register(adapter);
1393
1394	return 0;
1395
1396err_alloc_q_vectors:
1397	igb_reset_interrupt_capability(adapter);
1398	return err;
1399}
1400
1401/**
1402 *  igb_request_irq - initialize interrupts
1403 *  @adapter: board private structure to initialize
1404 *
1405 *  Attempts to configure interrupts using the best available
1406 *  capabilities of the hardware and kernel.
1407 **/
1408static int igb_request_irq(struct igb_adapter *adapter)
1409{
1410	struct net_device *netdev = adapter->netdev;
1411	struct pci_dev *pdev = adapter->pdev;
1412	int err = 0;
1413
1414	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1415		err = igb_request_msix(adapter);
1416		if (!err)
1417			goto request_done;
1418		/* fall back to MSI */
1419		igb_free_all_tx_resources(adapter);
1420		igb_free_all_rx_resources(adapter);
1421
1422		igb_clear_interrupt_scheme(adapter);
1423		err = igb_init_interrupt_scheme(adapter, false);
1424		if (err)
1425			goto request_done;
1426
1427		igb_setup_all_tx_resources(adapter);
1428		igb_setup_all_rx_resources(adapter);
1429		igb_configure(adapter);
1430	}
1431
1432	igb_assign_vector(adapter->q_vector[0], 0);
1433
1434	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1435		err = request_irq(pdev->irq, igb_intr_msi, 0,
1436				  netdev->name, adapter);
1437		if (!err)
1438			goto request_done;
1439
1440		/* fall back to legacy interrupts */
1441		igb_reset_interrupt_capability(adapter);
1442		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1443	}
1444
1445	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1446			  netdev->name, adapter);
1447
1448	if (err)
1449		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1450			err);
1451
1452request_done:
1453	return err;
1454}
1455
1456static void igb_free_irq(struct igb_adapter *adapter)
1457{
1458	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459		int vector = 0, i;
1460
1461		free_irq(adapter->msix_entries[vector++].vector, adapter);
1462
1463		for (i = 0; i < adapter->num_q_vectors; i++)
1464			free_irq(adapter->msix_entries[vector++].vector,
1465				 adapter->q_vector[i]);
1466	} else {
1467		free_irq(adapter->pdev->irq, adapter);
1468	}
1469}
1470
1471/**
1472 *  igb_irq_disable - Mask off interrupt generation on the NIC
1473 *  @adapter: board private structure
1474 **/
1475static void igb_irq_disable(struct igb_adapter *adapter)
1476{
1477	struct e1000_hw *hw = &adapter->hw;
1478
1479	/* we need to be careful when disabling interrupts.  The VFs are also
1480	 * mapped into these registers and so clearing the bits can cause
1481	 * issues on the VF drivers so we only need to clear what we set
1482	 */
1483	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1484		u32 regval = rd32(E1000_EIAM);
1485
1486		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1487		wr32(E1000_EIMC, adapter->eims_enable_mask);
1488		regval = rd32(E1000_EIAC);
1489		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1490	}
1491
1492	wr32(E1000_IAM, 0);
1493	wr32(E1000_IMC, ~0);
1494	wrfl();
1495	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1496		int i;
1497
1498		for (i = 0; i < adapter->num_q_vectors; i++)
1499			synchronize_irq(adapter->msix_entries[i].vector);
1500	} else {
1501		synchronize_irq(adapter->pdev->irq);
1502	}
1503}
1504
1505/**
1506 *  igb_irq_enable - Enable default interrupt generation settings
1507 *  @adapter: board private structure
1508 **/
1509static void igb_irq_enable(struct igb_adapter *adapter)
1510{
1511	struct e1000_hw *hw = &adapter->hw;
1512
1513	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515		u32 regval = rd32(E1000_EIAC);
1516
1517		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1518		regval = rd32(E1000_EIAM);
1519		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1520		wr32(E1000_EIMS, adapter->eims_enable_mask);
1521		if (adapter->vfs_allocated_count) {
1522			wr32(E1000_MBVFIMR, 0xFF);
1523			ims |= E1000_IMS_VMMB;
1524		}
1525		wr32(E1000_IMS, ims);
1526	} else {
1527		wr32(E1000_IMS, IMS_ENABLE_MASK |
1528				E1000_IMS_DRSTA);
1529		wr32(E1000_IAM, IMS_ENABLE_MASK |
1530				E1000_IMS_DRSTA);
1531	}
1532}
1533
1534static void igb_update_mng_vlan(struct igb_adapter *adapter)
1535{
1536	struct e1000_hw *hw = &adapter->hw;
1537	u16 pf_id = adapter->vfs_allocated_count;
1538	u16 vid = adapter->hw.mng_cookie.vlan_id;
1539	u16 old_vid = adapter->mng_vlan_id;
1540
1541	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1542		/* add VID to filter table */
1543		igb_vfta_set(hw, vid, pf_id, true, true);
1544		adapter->mng_vlan_id = vid;
1545	} else {
1546		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1547	}
1548
1549	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1550	    (vid != old_vid) &&
1551	    !test_bit(old_vid, adapter->active_vlans)) {
1552		/* remove VID from filter table */
1553		igb_vfta_set(hw, vid, pf_id, false, true);
1554	}
1555}
1556
1557/**
1558 *  igb_release_hw_control - release control of the h/w to f/w
1559 *  @adapter: address of board private structure
1560 *
1561 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1562 *  For ASF and Pass Through versions of f/w this means that the
1563 *  driver is no longer loaded.
1564 **/
1565static void igb_release_hw_control(struct igb_adapter *adapter)
1566{
1567	struct e1000_hw *hw = &adapter->hw;
1568	u32 ctrl_ext;
1569
1570	/* Let firmware take over control of h/w */
1571	ctrl_ext = rd32(E1000_CTRL_EXT);
1572	wr32(E1000_CTRL_EXT,
1573			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1574}
1575
1576/**
1577 *  igb_get_hw_control - get control of the h/w from f/w
1578 *  @adapter: address of board private structure
1579 *
1580 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1581 *  For ASF and Pass Through versions of f/w this means that
1582 *  the driver is loaded.
1583 **/
1584static void igb_get_hw_control(struct igb_adapter *adapter)
1585{
1586	struct e1000_hw *hw = &adapter->hw;
1587	u32 ctrl_ext;
1588
1589	/* Let firmware know the driver has taken over */
1590	ctrl_ext = rd32(E1000_CTRL_EXT);
1591	wr32(E1000_CTRL_EXT,
1592			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1593}
1594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595/**
1596 *  igb_configure - configure the hardware for RX and TX
1597 *  @adapter: private board structure
1598 **/
1599static void igb_configure(struct igb_adapter *adapter)
1600{
1601	struct net_device *netdev = adapter->netdev;
1602	int i;
1603
1604	igb_get_hw_control(adapter);
1605	igb_set_rx_mode(netdev);
 
1606
1607	igb_restore_vlan(adapter);
1608
1609	igb_setup_tctl(adapter);
1610	igb_setup_mrqc(adapter);
1611	igb_setup_rctl(adapter);
1612
 
1613	igb_configure_tx(adapter);
1614	igb_configure_rx(adapter);
1615
1616	igb_rx_fifo_flush_82575(&adapter->hw);
1617
1618	/* call igb_desc_unused which always leaves
1619	 * at least 1 descriptor unused to make sure
1620	 * next_to_use != next_to_clean
1621	 */
1622	for (i = 0; i < adapter->num_rx_queues; i++) {
1623		struct igb_ring *ring = adapter->rx_ring[i];
1624		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1625	}
1626}
1627
1628/**
1629 *  igb_power_up_link - Power up the phy/serdes link
1630 *  @adapter: address of board private structure
1631 **/
1632void igb_power_up_link(struct igb_adapter *adapter)
1633{
1634	igb_reset_phy(&adapter->hw);
1635
1636	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1637		igb_power_up_phy_copper(&adapter->hw);
1638	else
1639		igb_power_up_serdes_link_82575(&adapter->hw);
1640
1641	igb_setup_link(&adapter->hw);
1642}
1643
1644/**
1645 *  igb_power_down_link - Power down the phy/serdes link
1646 *  @adapter: address of board private structure
1647 */
1648static void igb_power_down_link(struct igb_adapter *adapter)
1649{
1650	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1651		igb_power_down_phy_copper_82575(&adapter->hw);
1652	else
1653		igb_shutdown_serdes_link_82575(&adapter->hw);
1654}
1655
1656/**
1657 * Detect and switch function for Media Auto Sense
1658 * @adapter: address of the board private structure
1659 **/
1660static void igb_check_swap_media(struct igb_adapter *adapter)
1661{
1662	struct e1000_hw *hw = &adapter->hw;
1663	u32 ctrl_ext, connsw;
1664	bool swap_now = false;
1665
1666	ctrl_ext = rd32(E1000_CTRL_EXT);
1667	connsw = rd32(E1000_CONNSW);
1668
1669	/* need to live swap if current media is copper and we have fiber/serdes
1670	 * to go to.
1671	 */
1672
1673	if ((hw->phy.media_type == e1000_media_type_copper) &&
1674	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1675		swap_now = true;
1676	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
 
1677		/* copper signal takes time to appear */
1678		if (adapter->copper_tries < 4) {
1679			adapter->copper_tries++;
1680			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1681			wr32(E1000_CONNSW, connsw);
1682			return;
1683		} else {
1684			adapter->copper_tries = 0;
1685			if ((connsw & E1000_CONNSW_PHYSD) &&
1686			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1687				swap_now = true;
1688				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1689				wr32(E1000_CONNSW, connsw);
1690			}
1691		}
1692	}
1693
1694	if (!swap_now)
1695		return;
1696
1697	switch (hw->phy.media_type) {
1698	case e1000_media_type_copper:
1699		netdev_info(adapter->netdev,
1700			"MAS: changing media to fiber/serdes\n");
1701		ctrl_ext |=
1702			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704		adapter->copper_tries = 0;
1705		break;
1706	case e1000_media_type_internal_serdes:
1707	case e1000_media_type_fiber:
1708		netdev_info(adapter->netdev,
1709			"MAS: changing media to copper\n");
1710		ctrl_ext &=
1711			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1712		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1713		break;
1714	default:
1715		/* shouldn't get here during regular operation */
1716		netdev_err(adapter->netdev,
1717			"AMS: Invalid media type found, returning\n");
1718		break;
1719	}
1720	wr32(E1000_CTRL_EXT, ctrl_ext);
1721}
1722
1723/**
1724 *  igb_up - Open the interface and prepare it to handle traffic
1725 *  @adapter: board private structure
1726 **/
1727int igb_up(struct igb_adapter *adapter)
1728{
1729	struct e1000_hw *hw = &adapter->hw;
1730	int i;
1731
1732	/* hardware has been reset, we need to reload some things */
1733	igb_configure(adapter);
1734
1735	clear_bit(__IGB_DOWN, &adapter->state);
1736
1737	for (i = 0; i < adapter->num_q_vectors; i++)
1738		napi_enable(&(adapter->q_vector[i]->napi));
1739
1740	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1741		igb_configure_msix(adapter);
1742	else
1743		igb_assign_vector(adapter->q_vector[0], 0);
1744
1745	/* Clear any pending interrupts. */
 
1746	rd32(E1000_ICR);
1747	igb_irq_enable(adapter);
1748
1749	/* notify VFs that reset has been completed */
1750	if (adapter->vfs_allocated_count) {
1751		u32 reg_data = rd32(E1000_CTRL_EXT);
1752
1753		reg_data |= E1000_CTRL_EXT_PFRSTD;
1754		wr32(E1000_CTRL_EXT, reg_data);
1755	}
1756
1757	netif_tx_start_all_queues(adapter->netdev);
1758
1759	/* start the watchdog. */
1760	hw->mac.get_link_status = 1;
1761	schedule_work(&adapter->watchdog_task);
1762
1763	if ((adapter->flags & IGB_FLAG_EEE) &&
1764	    (!hw->dev_spec._82575.eee_disable))
1765		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1766
1767	return 0;
1768}
1769
1770void igb_down(struct igb_adapter *adapter)
1771{
1772	struct net_device *netdev = adapter->netdev;
1773	struct e1000_hw *hw = &adapter->hw;
1774	u32 tctl, rctl;
1775	int i;
1776
1777	/* signal that we're down so the interrupt handler does not
1778	 * reschedule our watchdog timer
1779	 */
1780	set_bit(__IGB_DOWN, &adapter->state);
1781
1782	/* disable receives in the hardware */
1783	rctl = rd32(E1000_RCTL);
1784	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1785	/* flush and sleep below */
1786
 
 
1787	netif_carrier_off(netdev);
1788	netif_tx_stop_all_queues(netdev);
1789
1790	/* disable transmits in the hardware */
1791	tctl = rd32(E1000_TCTL);
1792	tctl &= ~E1000_TCTL_EN;
1793	wr32(E1000_TCTL, tctl);
1794	/* flush both disables and wait for them to finish */
1795	wrfl();
1796	usleep_range(10000, 11000);
1797
1798	igb_irq_disable(adapter);
1799
1800	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1801
1802	for (i = 0; i < adapter->num_q_vectors; i++) {
1803		if (adapter->q_vector[i]) {
1804			napi_synchronize(&adapter->q_vector[i]->napi);
1805			napi_disable(&adapter->q_vector[i]->napi);
1806		}
1807	}
1808
1809	del_timer_sync(&adapter->watchdog_timer);
1810	del_timer_sync(&adapter->phy_info_timer);
1811
1812	/* record the stats before reset*/
1813	spin_lock(&adapter->stats64_lock);
1814	igb_update_stats(adapter, &adapter->stats64);
1815	spin_unlock(&adapter->stats64_lock);
1816
1817	adapter->link_speed = 0;
1818	adapter->link_duplex = 0;
1819
1820	if (!pci_channel_offline(adapter->pdev))
1821		igb_reset(adapter);
1822
1823	/* clear VLAN promisc flag so VFTA will be updated if necessary */
1824	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1825
1826	igb_clean_all_tx_rings(adapter);
1827	igb_clean_all_rx_rings(adapter);
1828#ifdef CONFIG_IGB_DCA
1829
1830	/* since we reset the hardware DCA settings were cleared */
1831	igb_setup_dca(adapter);
1832#endif
1833}
1834
1835void igb_reinit_locked(struct igb_adapter *adapter)
1836{
1837	WARN_ON(in_interrupt());
1838	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1839		usleep_range(1000, 2000);
1840	igb_down(adapter);
1841	igb_up(adapter);
1842	clear_bit(__IGB_RESETTING, &adapter->state);
1843}
1844
1845/** igb_enable_mas - Media Autosense re-enable after swap
1846 *
1847 * @adapter: adapter struct
1848 **/
1849static void igb_enable_mas(struct igb_adapter *adapter)
1850{
1851	struct e1000_hw *hw = &adapter->hw;
1852	u32 connsw = rd32(E1000_CONNSW);
1853
1854	/* configure for SerDes media detect */
1855	if ((hw->phy.media_type == e1000_media_type_copper) &&
1856	    (!(connsw & E1000_CONNSW_SERDESD))) {
1857		connsw |= E1000_CONNSW_ENRGSRC;
1858		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1859		wr32(E1000_CONNSW, connsw);
1860		wrfl();
1861	}
1862}
1863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864void igb_reset(struct igb_adapter *adapter)
1865{
1866	struct pci_dev *pdev = adapter->pdev;
1867	struct e1000_hw *hw = &adapter->hw;
1868	struct e1000_mac_info *mac = &hw->mac;
1869	struct e1000_fc_info *fc = &hw->fc;
1870	u32 pba, hwm;
1871
1872	/* Repartition Pba for greater than 9k mtu
1873	 * To take effect CTRL.RST is required.
1874	 */
1875	switch (mac->type) {
1876	case e1000_i350:
1877	case e1000_i354:
1878	case e1000_82580:
1879		pba = rd32(E1000_RXPBS);
1880		pba = igb_rxpbs_adjust_82580(pba);
1881		break;
1882	case e1000_82576:
1883		pba = rd32(E1000_RXPBS);
1884		pba &= E1000_RXPBS_SIZE_MASK_82576;
1885		break;
1886	case e1000_82575:
1887	case e1000_i210:
1888	case e1000_i211:
1889	default:
1890		pba = E1000_PBA_34K;
1891		break;
1892	}
1893
1894	if (mac->type == e1000_82575) {
1895		u32 min_rx_space, min_tx_space, needed_tx_space;
1896
1897		/* write Rx PBA so that hardware can report correct Tx PBA */
1898		wr32(E1000_PBA, pba);
1899
1900		/* To maintain wire speed transmits, the Tx FIFO should be
1901		 * large enough to accommodate two full transmit packets,
1902		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1903		 * the Rx FIFO should be large enough to accommodate at least
1904		 * one full receive packet and is similarly rounded up and
1905		 * expressed in KB.
1906		 */
1907		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1908
1909		/* The Tx FIFO also stores 16 bytes of information about the Tx
1910		 * but don't include Ethernet FCS because hardware appends it.
1911		 * We only need to round down to the nearest 512 byte block
1912		 * count since the value we care about is 2 frames, not 1.
1913		 */
1914		min_tx_space = adapter->max_frame_size;
1915		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1916		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1917
1918		/* upper 16 bits has Tx packet buffer allocation size in KB */
1919		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1920
1921		/* If current Tx allocation is less than the min Tx FIFO size,
1922		 * and the min Tx FIFO size is less than the current Rx FIFO
1923		 * allocation, take space away from current Rx allocation.
1924		 */
1925		if (needed_tx_space < pba) {
1926			pba -= needed_tx_space;
1927
1928			/* if short on Rx space, Rx wins and must trump Tx
1929			 * adjustment
1930			 */
1931			if (pba < min_rx_space)
1932				pba = min_rx_space;
1933		}
1934
1935		/* adjust PBA for jumbo frames */
1936		wr32(E1000_PBA, pba);
1937	}
1938
1939	/* flow control settings
1940	 * The high water mark must be low enough to fit one full frame
1941	 * after transmitting the pause frame.  As such we must have enough
1942	 * space to allow for us to complete our current transmit and then
1943	 * receive the frame that is in progress from the link partner.
1944	 * Set it to:
1945	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1946	 */
1947	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1948
1949	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1950	fc->low_water = fc->high_water - 16;
1951	fc->pause_time = 0xFFFF;
1952	fc->send_xon = 1;
1953	fc->current_mode = fc->requested_mode;
1954
1955	/* disable receive for all VFs and wait one second */
1956	if (adapter->vfs_allocated_count) {
1957		int i;
1958
1959		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1960			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1961
1962		/* ping all the active vfs to let them know we are going down */
1963		igb_ping_all_vfs(adapter);
1964
1965		/* disable transmits and receives */
1966		wr32(E1000_VFRE, 0);
1967		wr32(E1000_VFTE, 0);
1968	}
1969
1970	/* Allow time for pending master requests to run */
1971	hw->mac.ops.reset_hw(hw);
1972	wr32(E1000_WUC, 0);
1973
1974	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1975		/* need to resetup here after media swap */
1976		adapter->ei.get_invariants(hw);
1977		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1978	}
1979	if ((mac->type == e1000_82575) &&
1980	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1981		igb_enable_mas(adapter);
1982	}
1983	if (hw->mac.ops.init_hw(hw))
1984		dev_err(&pdev->dev, "Hardware Error\n");
1985
 
 
 
 
 
 
 
1986	/* Flow control settings reset on hardware reset, so guarantee flow
1987	 * control is off when forcing speed.
1988	 */
1989	if (!hw->mac.autoneg)
1990		igb_force_mac_fc(hw);
1991
1992	igb_init_dmac(adapter, pba);
1993#ifdef CONFIG_IGB_HWMON
1994	/* Re-initialize the thermal sensor on i350 devices. */
1995	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1996		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1997			/* If present, re-initialize the external thermal sensor
1998			 * interface.
1999			 */
2000			if (adapter->ets)
2001				mac->ops.init_thermal_sensor_thresh(hw);
 
2002		}
2003	}
2004#endif
2005	/* Re-establish EEE setting */
2006	if (hw->phy.media_type == e1000_media_type_copper) {
2007		switch (mac->type) {
2008		case e1000_i350:
2009		case e1000_i210:
2010		case e1000_i211:
2011			igb_set_eee_i350(hw, true, true);
2012			break;
2013		case e1000_i354:
2014			igb_set_eee_i354(hw, true, true);
2015			break;
2016		default:
2017			break;
2018		}
2019	}
2020	if (!netif_running(adapter->netdev))
2021		igb_power_down_link(adapter);
2022
2023	igb_update_mng_vlan(adapter);
2024
2025	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2026	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2027
2028	/* Re-enable PTP, where applicable. */
2029	igb_ptp_reset(adapter);
 
2030
2031	igb_get_phy_info(hw);
2032}
2033
2034static netdev_features_t igb_fix_features(struct net_device *netdev,
2035	netdev_features_t features)
2036{
2037	/* Since there is no support for separate Rx/Tx vlan accel
2038	 * enable/disable make sure Tx flag is always in same state as Rx.
2039	 */
2040	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2041		features |= NETIF_F_HW_VLAN_CTAG_TX;
2042	else
2043		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2044
2045	return features;
2046}
2047
2048static int igb_set_features(struct net_device *netdev,
2049	netdev_features_t features)
2050{
2051	netdev_features_t changed = netdev->features ^ features;
2052	struct igb_adapter *adapter = netdev_priv(netdev);
2053
2054	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2055		igb_vlan_mode(netdev, features);
2056
2057	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2058		return 0;
2059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2060	netdev->features = features;
2061
2062	if (netif_running(netdev))
2063		igb_reinit_locked(adapter);
2064	else
2065		igb_reset(adapter);
2066
2067	return 0;
2068}
2069
2070static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2071			   struct net_device *dev,
2072			   const unsigned char *addr, u16 vid,
2073			   u16 flags)
 
2074{
2075	/* guarantee we can provide a unique filter for the unicast address */
2076	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2077		struct igb_adapter *adapter = netdev_priv(dev);
2078		struct e1000_hw *hw = &adapter->hw;
2079		int vfn = adapter->vfs_allocated_count;
2080		int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2081
2082		if (netdev_uc_count(dev) >= rar_entries)
2083			return -ENOMEM;
2084	}
2085
2086	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2087}
2088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089static const struct net_device_ops igb_netdev_ops = {
2090	.ndo_open		= igb_open,
2091	.ndo_stop		= igb_close,
2092	.ndo_start_xmit		= igb_xmit_frame,
2093	.ndo_get_stats64	= igb_get_stats64,
2094	.ndo_set_rx_mode	= igb_set_rx_mode,
2095	.ndo_set_mac_address	= igb_set_mac,
2096	.ndo_change_mtu		= igb_change_mtu,
2097	.ndo_do_ioctl		= igb_ioctl,
2098	.ndo_tx_timeout		= igb_tx_timeout,
2099	.ndo_validate_addr	= eth_validate_addr,
2100	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2101	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2102	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2103	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2104	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2105	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
 
2106	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2107#ifdef CONFIG_NET_POLL_CONTROLLER
2108	.ndo_poll_controller	= igb_netpoll,
2109#endif
2110	.ndo_fix_features	= igb_fix_features,
2111	.ndo_set_features	= igb_set_features,
2112	.ndo_fdb_add		= igb_ndo_fdb_add,
2113	.ndo_features_check	= passthru_features_check,
 
 
 
2114};
2115
2116/**
2117 * igb_set_fw_version - Configure version string for ethtool
2118 * @adapter: adapter struct
2119 **/
2120void igb_set_fw_version(struct igb_adapter *adapter)
2121{
2122	struct e1000_hw *hw = &adapter->hw;
2123	struct e1000_fw_version fw;
2124
2125	igb_get_fw_version(hw, &fw);
2126
2127	switch (hw->mac.type) {
2128	case e1000_i210:
2129	case e1000_i211:
2130		if (!(igb_get_flash_presence_i210(hw))) {
2131			snprintf(adapter->fw_version,
2132				 sizeof(adapter->fw_version),
2133				 "%2d.%2d-%d",
2134				 fw.invm_major, fw.invm_minor,
2135				 fw.invm_img_type);
2136			break;
2137		}
2138		/* fall through */
2139	default:
2140		/* if option is rom valid, display its version too */
2141		if (fw.or_valid) {
2142			snprintf(adapter->fw_version,
2143				 sizeof(adapter->fw_version),
2144				 "%d.%d, 0x%08x, %d.%d.%d",
2145				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2146				 fw.or_major, fw.or_build, fw.or_patch);
2147		/* no option rom */
2148		} else if (fw.etrack_id != 0X0000) {
2149			snprintf(adapter->fw_version,
2150			    sizeof(adapter->fw_version),
2151			    "%d.%d, 0x%08x",
2152			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2153		} else {
2154		snprintf(adapter->fw_version,
2155		    sizeof(adapter->fw_version),
2156		    "%d.%d.%d",
2157		    fw.eep_major, fw.eep_minor, fw.eep_build);
2158		}
2159		break;
2160	}
2161}
2162
2163/**
2164 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2165 *
2166 * @adapter: adapter struct
2167 **/
2168static void igb_init_mas(struct igb_adapter *adapter)
2169{
2170	struct e1000_hw *hw = &adapter->hw;
2171	u16 eeprom_data;
2172
2173	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2174	switch (hw->bus.func) {
2175	case E1000_FUNC_0:
2176		if (eeprom_data & IGB_MAS_ENABLE_0) {
2177			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2178			netdev_info(adapter->netdev,
2179				"MAS: Enabling Media Autosense for port %d\n",
2180				hw->bus.func);
2181		}
2182		break;
2183	case E1000_FUNC_1:
2184		if (eeprom_data & IGB_MAS_ENABLE_1) {
2185			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2186			netdev_info(adapter->netdev,
2187				"MAS: Enabling Media Autosense for port %d\n",
2188				hw->bus.func);
2189		}
2190		break;
2191	case E1000_FUNC_2:
2192		if (eeprom_data & IGB_MAS_ENABLE_2) {
2193			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2194			netdev_info(adapter->netdev,
2195				"MAS: Enabling Media Autosense for port %d\n",
2196				hw->bus.func);
2197		}
2198		break;
2199	case E1000_FUNC_3:
2200		if (eeprom_data & IGB_MAS_ENABLE_3) {
2201			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2202			netdev_info(adapter->netdev,
2203				"MAS: Enabling Media Autosense for port %d\n",
2204				hw->bus.func);
2205		}
2206		break;
2207	default:
2208		/* Shouldn't get here */
2209		netdev_err(adapter->netdev,
2210			"MAS: Invalid port configuration, returning\n");
2211		break;
2212	}
2213}
2214
2215/**
2216 *  igb_init_i2c - Init I2C interface
2217 *  @adapter: pointer to adapter structure
2218 **/
2219static s32 igb_init_i2c(struct igb_adapter *adapter)
2220{
2221	s32 status = 0;
2222
2223	/* I2C interface supported on i350 devices */
2224	if (adapter->hw.mac.type != e1000_i350)
2225		return 0;
2226
2227	/* Initialize the i2c bus which is controlled by the registers.
2228	 * This bus will use the i2c_algo_bit structue that implements
2229	 * the protocol through toggling of the 4 bits in the register.
2230	 */
2231	adapter->i2c_adap.owner = THIS_MODULE;
2232	adapter->i2c_algo = igb_i2c_algo;
2233	adapter->i2c_algo.data = adapter;
2234	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2235	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2236	strlcpy(adapter->i2c_adap.name, "igb BB",
2237		sizeof(adapter->i2c_adap.name));
2238	status = i2c_bit_add_bus(&adapter->i2c_adap);
2239	return status;
2240}
2241
2242/**
2243 *  igb_probe - Device Initialization Routine
2244 *  @pdev: PCI device information struct
2245 *  @ent: entry in igb_pci_tbl
2246 *
2247 *  Returns 0 on success, negative on failure
2248 *
2249 *  igb_probe initializes an adapter identified by a pci_dev structure.
2250 *  The OS initialization, configuring of the adapter private structure,
2251 *  and a hardware reset occur.
2252 **/
2253static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2254{
2255	struct net_device *netdev;
2256	struct igb_adapter *adapter;
2257	struct e1000_hw *hw;
2258	u16 eeprom_data = 0;
2259	s32 ret_val;
2260	static int global_quad_port_a; /* global quad port a indication */
2261	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2262	int err, pci_using_dac;
2263	u8 part_str[E1000_PBANUM_LENGTH];
 
2264
2265	/* Catch broken hardware that put the wrong VF device ID in
2266	 * the PCIe SR-IOV capability.
2267	 */
2268	if (pdev->is_virtfn) {
2269		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2270			pci_name(pdev), pdev->vendor, pdev->device);
2271		return -EINVAL;
2272	}
2273
2274	err = pci_enable_device_mem(pdev);
2275	if (err)
2276		return err;
2277
2278	pci_using_dac = 0;
2279	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2280	if (!err) {
2281		pci_using_dac = 1;
2282	} else {
2283		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2284		if (err) {
2285			dev_err(&pdev->dev,
2286				"No usable DMA configuration, aborting\n");
2287			goto err_dma;
2288		}
2289	}
2290
2291	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2292					   IORESOURCE_MEM),
2293					   igb_driver_name);
2294	if (err)
2295		goto err_pci_reg;
2296
2297	pci_enable_pcie_error_reporting(pdev);
2298
2299	pci_set_master(pdev);
2300	pci_save_state(pdev);
2301
2302	err = -ENOMEM;
2303	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2304				   IGB_MAX_TX_QUEUES);
2305	if (!netdev)
2306		goto err_alloc_etherdev;
2307
2308	SET_NETDEV_DEV(netdev, &pdev->dev);
2309
2310	pci_set_drvdata(pdev, netdev);
2311	adapter = netdev_priv(netdev);
2312	adapter->netdev = netdev;
2313	adapter->pdev = pdev;
2314	hw = &adapter->hw;
2315	hw->back = adapter;
2316	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2317
2318	err = -EIO;
2319	adapter->io_addr = pci_iomap(pdev, 0, 0);
2320	if (!adapter->io_addr)
2321		goto err_ioremap;
2322	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2323	hw->hw_addr = adapter->io_addr;
2324
2325	netdev->netdev_ops = &igb_netdev_ops;
2326	igb_set_ethtool_ops(netdev);
2327	netdev->watchdog_timeo = 5 * HZ;
2328
2329	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2330
2331	netdev->mem_start = pci_resource_start(pdev, 0);
2332	netdev->mem_end = pci_resource_end(pdev, 0);
2333
2334	/* PCI config space info */
2335	hw->vendor_id = pdev->vendor;
2336	hw->device_id = pdev->device;
2337	hw->revision_id = pdev->revision;
2338	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2339	hw->subsystem_device_id = pdev->subsystem_device;
2340
2341	/* Copy the default MAC, PHY and NVM function pointers */
2342	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2343	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2344	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2345	/* Initialize skew-specific constants */
2346	err = ei->get_invariants(hw);
2347	if (err)
2348		goto err_sw_init;
2349
2350	/* setup the private structure */
2351	err = igb_sw_init(adapter);
2352	if (err)
2353		goto err_sw_init;
2354
2355	igb_get_bus_info_pcie(hw);
2356
2357	hw->phy.autoneg_wait_to_complete = false;
2358
2359	/* Copper options */
2360	if (hw->phy.media_type == e1000_media_type_copper) {
2361		hw->phy.mdix = AUTO_ALL_MODES;
2362		hw->phy.disable_polarity_correction = false;
2363		hw->phy.ms_type = e1000_ms_hw_default;
2364	}
2365
2366	if (igb_check_reset_block(hw))
2367		dev_info(&pdev->dev,
2368			"PHY reset is blocked due to SOL/IDER session.\n");
2369
2370	/* features is initialized to 0 in allocation, it might have bits
2371	 * set by igb_sw_init so we should use an or instead of an
2372	 * assignment.
2373	 */
2374	netdev->features |= NETIF_F_SG |
2375			    NETIF_F_TSO |
2376			    NETIF_F_TSO6 |
2377			    NETIF_F_RXHASH |
2378			    NETIF_F_RXCSUM |
2379			    NETIF_F_HW_CSUM |
2380			    NETIF_F_HW_VLAN_CTAG_RX |
2381			    NETIF_F_HW_VLAN_CTAG_TX;
2382
2383	if (hw->mac.type >= e1000_82576)
2384		netdev->features |= NETIF_F_SCTP_CRC;
 
 
 
 
 
 
 
 
 
 
 
 
 
2385
2386	/* copy netdev features into list of user selectable features */
2387	netdev->hw_features |= netdev->features;
2388	netdev->hw_features |= NETIF_F_RXALL;
 
 
2389
2390	if (hw->mac.type >= e1000_i350)
2391		netdev->hw_features |= NETIF_F_NTUPLE;
2392
2393	/* set this bit last since it cannot be part of hw_features */
2394	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2395
2396	netdev->vlan_features |= NETIF_F_SG |
2397				 NETIF_F_TSO |
2398				 NETIF_F_TSO6 |
2399				 NETIF_F_HW_CSUM |
2400				 NETIF_F_SCTP_CRC;
2401
2402	netdev->mpls_features |= NETIF_F_HW_CSUM;
2403	netdev->hw_enc_features |= NETIF_F_HW_CSUM;
 
 
2404
2405	netdev->priv_flags |= IFF_SUPP_NOFCS;
2406
2407	if (pci_using_dac) {
2408		netdev->features |= NETIF_F_HIGHDMA;
2409		netdev->vlan_features |= NETIF_F_HIGHDMA;
2410	}
2411
2412	netdev->priv_flags |= IFF_UNICAST_FLT;
 
 
2413
2414	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2415
2416	/* before reading the NVM, reset the controller to put the device in a
2417	 * known good starting state
2418	 */
2419	hw->mac.ops.reset_hw(hw);
2420
2421	/* make sure the NVM is good , i211/i210 parts can have special NVM
2422	 * that doesn't contain a checksum
2423	 */
2424	switch (hw->mac.type) {
2425	case e1000_i210:
2426	case e1000_i211:
2427		if (igb_get_flash_presence_i210(hw)) {
2428			if (hw->nvm.ops.validate(hw) < 0) {
2429				dev_err(&pdev->dev,
2430					"The NVM Checksum Is Not Valid\n");
2431				err = -EIO;
2432				goto err_eeprom;
2433			}
2434		}
2435		break;
2436	default:
2437		if (hw->nvm.ops.validate(hw) < 0) {
2438			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2439			err = -EIO;
2440			goto err_eeprom;
2441		}
2442		break;
2443	}
2444
2445	/* copy the MAC address out of the NVM */
2446	if (hw->mac.ops.read_mac_addr(hw))
2447		dev_err(&pdev->dev, "NVM Read Error\n");
 
 
2448
2449	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2450
2451	if (!is_valid_ether_addr(netdev->dev_addr)) {
2452		dev_err(&pdev->dev, "Invalid MAC Address\n");
2453		err = -EIO;
2454		goto err_eeprom;
2455	}
2456
 
 
2457	/* get firmware version for ethtool -i */
2458	igb_set_fw_version(adapter);
2459
2460	/* configure RXPBSIZE and TXPBSIZE */
2461	if (hw->mac.type == e1000_i210) {
2462		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2463		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2464	}
2465
2466	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2467		    (unsigned long) adapter);
2468	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2469		    (unsigned long) adapter);
2470
2471	INIT_WORK(&adapter->reset_task, igb_reset_task);
2472	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2473
2474	/* Initialize link properties that are user-changeable */
2475	adapter->fc_autoneg = true;
2476	hw->mac.autoneg = true;
2477	hw->phy.autoneg_advertised = 0x2f;
2478
2479	hw->fc.requested_mode = e1000_fc_default;
2480	hw->fc.current_mode = e1000_fc_default;
2481
2482	igb_validate_mdi_setting(hw);
2483
2484	/* By default, support wake on port A */
2485	if (hw->bus.func == 0)
2486		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2487
2488	/* Check the NVM for wake support on non-port A ports */
2489	if (hw->mac.type >= e1000_82580)
2490		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2491				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2492				 &eeprom_data);
2493	else if (hw->bus.func == 1)
2494		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2495
2496	if (eeprom_data & IGB_EEPROM_APME)
2497		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2498
2499	/* now that we have the eeprom settings, apply the special cases where
2500	 * the eeprom may be wrong or the board simply won't support wake on
2501	 * lan on a particular port
2502	 */
2503	switch (pdev->device) {
2504	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2505		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2506		break;
2507	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2508	case E1000_DEV_ID_82576_FIBER:
2509	case E1000_DEV_ID_82576_SERDES:
2510		/* Wake events only supported on port A for dual fiber
2511		 * regardless of eeprom setting
2512		 */
2513		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2514			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2515		break;
2516	case E1000_DEV_ID_82576_QUAD_COPPER:
2517	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2518		/* if quad port adapter, disable WoL on all but port A */
2519		if (global_quad_port_a != 0)
2520			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2521		else
2522			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2523		/* Reset for multiple quad port adapters */
2524		if (++global_quad_port_a == 4)
2525			global_quad_port_a = 0;
2526		break;
2527	default:
2528		/* If the device can't wake, don't set software support */
2529		if (!device_can_wakeup(&adapter->pdev->dev))
2530			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2531	}
2532
2533	/* initialize the wol settings based on the eeprom settings */
2534	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2535		adapter->wol |= E1000_WUFC_MAG;
2536
2537	/* Some vendors want WoL disabled by default, but still supported */
2538	if ((hw->mac.type == e1000_i350) &&
2539	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2540		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2541		adapter->wol = 0;
2542	}
2543
2544	/* Some vendors want the ability to Use the EEPROM setting as
2545	 * enable/disable only, and not for capability
2546	 */
2547	if (((hw->mac.type == e1000_i350) ||
2548	     (hw->mac.type == e1000_i354)) &&
2549	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2550		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2551		adapter->wol = 0;
2552	}
2553	if (hw->mac.type == e1000_i350) {
2554		if (((pdev->subsystem_device == 0x5001) ||
2555		     (pdev->subsystem_device == 0x5002)) &&
2556				(hw->bus.func == 0)) {
2557			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2558			adapter->wol = 0;
2559		}
2560		if (pdev->subsystem_device == 0x1F52)
2561			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2562	}
2563
2564	device_set_wakeup_enable(&adapter->pdev->dev,
2565				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2566
2567	/* reset the hardware with the new settings */
2568	igb_reset(adapter);
2569
2570	/* Init the I2C interface */
2571	err = igb_init_i2c(adapter);
2572	if (err) {
2573		dev_err(&pdev->dev, "failed to init i2c interface\n");
2574		goto err_eeprom;
2575	}
2576
2577	/* let the f/w know that the h/w is now under the control of the
2578	 * driver.
2579	 */
2580	igb_get_hw_control(adapter);
2581
2582	strcpy(netdev->name, "eth%d");
2583	err = register_netdev(netdev);
2584	if (err)
2585		goto err_register;
2586
2587	/* carrier off reporting is important to ethtool even BEFORE open */
2588	netif_carrier_off(netdev);
2589
2590#ifdef CONFIG_IGB_DCA
2591	if (dca_add_requester(&pdev->dev) == 0) {
2592		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2593		dev_info(&pdev->dev, "DCA enabled\n");
2594		igb_setup_dca(adapter);
2595	}
2596
2597#endif
2598#ifdef CONFIG_IGB_HWMON
2599	/* Initialize the thermal sensor on i350 devices. */
2600	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2601		u16 ets_word;
2602
2603		/* Read the NVM to determine if this i350 device supports an
2604		 * external thermal sensor.
2605		 */
2606		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2607		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2608			adapter->ets = true;
2609		else
2610			adapter->ets = false;
 
 
 
 
 
 
2611		if (igb_sysfs_init(adapter))
2612			dev_err(&pdev->dev,
2613				"failed to allocate sysfs resources\n");
2614	} else {
2615		adapter->ets = false;
2616	}
2617#endif
2618	/* Check if Media Autosense is enabled */
2619	adapter->ei = *ei;
2620	if (hw->dev_spec._82575.mas_capable)
2621		igb_init_mas(adapter);
2622
2623	/* do hw tstamp init after resetting */
2624	igb_ptp_init(adapter);
2625
2626	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2627	/* print bus type/speed/width info, not applicable to i354 */
2628	if (hw->mac.type != e1000_i354) {
2629		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2630			 netdev->name,
2631			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2632			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2633			   "unknown"),
2634			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2635			  "Width x4" :
2636			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2637			  "Width x2" :
2638			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2639			  "Width x1" : "unknown"), netdev->dev_addr);
2640	}
2641
2642	if ((hw->mac.type >= e1000_i210 ||
 
 
2643	     igb_get_flash_presence_i210(hw))) {
2644		ret_val = igb_read_part_string(hw, part_str,
2645					       E1000_PBANUM_LENGTH);
2646	} else {
2647		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2648	}
2649
2650	if (ret_val)
2651		strcpy(part_str, "Unknown");
2652	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2653	dev_info(&pdev->dev,
2654		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2655		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2656		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2657		adapter->num_rx_queues, adapter->num_tx_queues);
2658	if (hw->phy.media_type == e1000_media_type_copper) {
2659		switch (hw->mac.type) {
2660		case e1000_i350:
2661		case e1000_i210:
2662		case e1000_i211:
2663			/* Enable EEE for internal copper PHY devices */
2664			err = igb_set_eee_i350(hw, true, true);
2665			if ((!err) &&
2666			    (!hw->dev_spec._82575.eee_disable)) {
2667				adapter->eee_advert =
2668					MDIO_EEE_100TX | MDIO_EEE_1000T;
2669				adapter->flags |= IGB_FLAG_EEE;
2670			}
2671			break;
2672		case e1000_i354:
2673			if ((rd32(E1000_CTRL_EXT) &
2674			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2675				err = igb_set_eee_i354(hw, true, true);
2676				if ((!err) &&
2677					(!hw->dev_spec._82575.eee_disable)) {
2678					adapter->eee_advert =
2679					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2680					adapter->flags |= IGB_FLAG_EEE;
2681				}
2682			}
2683			break;
2684		default:
2685			break;
2686		}
2687	}
 
 
 
2688	pm_runtime_put_noidle(&pdev->dev);
2689	return 0;
2690
2691err_register:
2692	igb_release_hw_control(adapter);
2693	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2694err_eeprom:
2695	if (!igb_check_reset_block(hw))
2696		igb_reset_phy(hw);
2697
2698	if (hw->flash_address)
2699		iounmap(hw->flash_address);
2700err_sw_init:
 
2701	kfree(adapter->shadow_vfta);
2702	igb_clear_interrupt_scheme(adapter);
2703#ifdef CONFIG_PCI_IOV
2704	igb_disable_sriov(pdev);
2705#endif
2706	pci_iounmap(pdev, adapter->io_addr);
2707err_ioremap:
2708	free_netdev(netdev);
2709err_alloc_etherdev:
2710	pci_release_selected_regions(pdev,
2711				     pci_select_bars(pdev, IORESOURCE_MEM));
2712err_pci_reg:
2713err_dma:
2714	pci_disable_device(pdev);
2715	return err;
2716}
2717
2718#ifdef CONFIG_PCI_IOV
2719static int igb_disable_sriov(struct pci_dev *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2720{
2721	struct net_device *netdev = pci_get_drvdata(pdev);
2722	struct igb_adapter *adapter = netdev_priv(netdev);
2723	struct e1000_hw *hw = &adapter->hw;
 
2724
2725	/* reclaim resources allocated to VFs */
2726	if (adapter->vf_data) {
2727		/* disable iov and allow time for transactions to clear */
2728		if (pci_vfs_assigned(pdev)) {
2729			dev_warn(&pdev->dev,
2730				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2731			return -EPERM;
2732		} else {
2733			pci_disable_sriov(pdev);
2734			msleep(500);
2735		}
2736
 
 
2737		kfree(adapter->vf_data);
2738		adapter->vf_data = NULL;
2739		adapter->vfs_allocated_count = 0;
 
2740		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2741		wrfl();
2742		msleep(100);
2743		dev_info(&pdev->dev, "IOV Disabled\n");
2744
2745		/* Re-enable DMA Coalescing flag since IOV is turned off */
2746		adapter->flags |= IGB_FLAG_DMAC;
2747	}
2748
2749	return 0;
2750}
2751
2752static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2753{
2754	struct net_device *netdev = pci_get_drvdata(pdev);
2755	struct igb_adapter *adapter = netdev_priv(netdev);
2756	int old_vfs = pci_num_vf(pdev);
 
2757	int err = 0;
2758	int i;
2759
2760	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2761		err = -EPERM;
2762		goto out;
2763	}
2764	if (!num_vfs)
2765		goto out;
2766
2767	if (old_vfs) {
2768		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2769			 old_vfs, max_vfs);
2770		adapter->vfs_allocated_count = old_vfs;
2771	} else
2772		adapter->vfs_allocated_count = num_vfs;
2773
2774	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2775				sizeof(struct vf_data_storage), GFP_KERNEL);
2776
2777	/* if allocation failed then we do not support SR-IOV */
2778	if (!adapter->vf_data) {
2779		adapter->vfs_allocated_count = 0;
2780		dev_err(&pdev->dev,
2781			"Unable to allocate memory for VF Data Storage\n");
2782		err = -ENOMEM;
2783		goto out;
2784	}
2785
2786	/* only call pci_enable_sriov() if no VFs are allocated already */
2787	if (!old_vfs) {
2788		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2789		if (err)
2790			goto err_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2791	}
 
2792	dev_info(&pdev->dev, "%d VFs allocated\n",
2793		 adapter->vfs_allocated_count);
2794	for (i = 0; i < adapter->vfs_allocated_count; i++)
2795		igb_vf_configure(adapter, i);
2796
2797	/* DMA Coalescing is not supported in IOV mode. */
2798	adapter->flags &= ~IGB_FLAG_DMAC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799	goto out;
2800
2801err_out:
 
 
2802	kfree(adapter->vf_data);
2803	adapter->vf_data = NULL;
2804	adapter->vfs_allocated_count = 0;
2805out:
2806	return err;
2807}
2808
2809#endif
2810/**
2811 *  igb_remove_i2c - Cleanup  I2C interface
2812 *  @adapter: pointer to adapter structure
2813 **/
2814static void igb_remove_i2c(struct igb_adapter *adapter)
2815{
2816	/* free the adapter bus structure */
2817	i2c_del_adapter(&adapter->i2c_adap);
2818}
2819
2820/**
2821 *  igb_remove - Device Removal Routine
2822 *  @pdev: PCI device information struct
2823 *
2824 *  igb_remove is called by the PCI subsystem to alert the driver
2825 *  that it should release a PCI device.  The could be caused by a
2826 *  Hot-Plug event, or because the driver is going to be removed from
2827 *  memory.
2828 **/
2829static void igb_remove(struct pci_dev *pdev)
2830{
2831	struct net_device *netdev = pci_get_drvdata(pdev);
2832	struct igb_adapter *adapter = netdev_priv(netdev);
2833	struct e1000_hw *hw = &adapter->hw;
2834
2835	pm_runtime_get_noresume(&pdev->dev);
2836#ifdef CONFIG_IGB_HWMON
2837	igb_sysfs_exit(adapter);
2838#endif
2839	igb_remove_i2c(adapter);
2840	igb_ptp_stop(adapter);
2841	/* The watchdog timer may be rescheduled, so explicitly
2842	 * disable watchdog from being rescheduled.
2843	 */
2844	set_bit(__IGB_DOWN, &adapter->state);
2845	del_timer_sync(&adapter->watchdog_timer);
2846	del_timer_sync(&adapter->phy_info_timer);
2847
2848	cancel_work_sync(&adapter->reset_task);
2849	cancel_work_sync(&adapter->watchdog_task);
2850
2851#ifdef CONFIG_IGB_DCA
2852	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2853		dev_info(&pdev->dev, "DCA disabled\n");
2854		dca_remove_requester(&pdev->dev);
2855		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2856		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2857	}
2858#endif
2859
2860	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2861	 * would have already happened in close and is redundant.
2862	 */
2863	igb_release_hw_control(adapter);
2864
2865#ifdef CONFIG_PCI_IOV
2866	igb_disable_sriov(pdev);
2867#endif
2868
2869	unregister_netdev(netdev);
2870
2871	igb_clear_interrupt_scheme(adapter);
2872
2873	pci_iounmap(pdev, adapter->io_addr);
2874	if (hw->flash_address)
2875		iounmap(hw->flash_address);
2876	pci_release_selected_regions(pdev,
2877				     pci_select_bars(pdev, IORESOURCE_MEM));
2878
 
2879	kfree(adapter->shadow_vfta);
2880	free_netdev(netdev);
2881
2882	pci_disable_pcie_error_reporting(pdev);
2883
2884	pci_disable_device(pdev);
2885}
2886
2887/**
2888 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2889 *  @adapter: board private structure to initialize
2890 *
2891 *  This function initializes the vf specific data storage and then attempts to
2892 *  allocate the VFs.  The reason for ordering it this way is because it is much
2893 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2894 *  the memory for the VFs.
2895 **/
2896static void igb_probe_vfs(struct igb_adapter *adapter)
2897{
2898#ifdef CONFIG_PCI_IOV
2899	struct pci_dev *pdev = adapter->pdev;
2900	struct e1000_hw *hw = &adapter->hw;
2901
2902	/* Virtualization features not supported on i210 family. */
2903	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
 
2904		return;
2905
2906	/* Of the below we really only want the effect of getting
2907	 * IGB_FLAG_HAS_MSIX set (if available), without which
2908	 * igb_enable_sriov() has no effect.
2909	 */
2910	igb_set_interrupt_capability(adapter, true);
2911	igb_reset_interrupt_capability(adapter);
2912
2913	pci_sriov_set_totalvfs(pdev, 7);
2914	igb_enable_sriov(pdev, max_vfs);
2915
2916#endif /* CONFIG_PCI_IOV */
2917}
2918
2919static void igb_init_queue_configuration(struct igb_adapter *adapter)
2920{
2921	struct e1000_hw *hw = &adapter->hw;
2922	u32 max_rss_queues;
2923
2924	/* Determine the maximum number of RSS queues supported. */
2925	switch (hw->mac.type) {
2926	case e1000_i211:
2927		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2928		break;
2929	case e1000_82575:
2930	case e1000_i210:
2931		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2932		break;
2933	case e1000_i350:
2934		/* I350 cannot do RSS and SR-IOV at the same time */
2935		if (!!adapter->vfs_allocated_count) {
2936			max_rss_queues = 1;
2937			break;
2938		}
2939		/* fall through */
2940	case e1000_82576:
2941		if (!!adapter->vfs_allocated_count) {
2942			max_rss_queues = 2;
2943			break;
2944		}
2945		/* fall through */
2946	case e1000_82580:
2947	case e1000_i354:
2948	default:
2949		max_rss_queues = IGB_MAX_RX_QUEUES;
2950		break;
2951	}
2952
 
 
 
 
 
 
 
 
2953	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2954
2955	igb_set_flag_queue_pairs(adapter, max_rss_queues);
2956}
2957
2958void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2959			      const u32 max_rss_queues)
2960{
2961	struct e1000_hw *hw = &adapter->hw;
2962
2963	/* Determine if we need to pair queues. */
2964	switch (hw->mac.type) {
2965	case e1000_82575:
2966	case e1000_i211:
2967		/* Device supports enough interrupts without queue pairing. */
2968		break;
2969	case e1000_82576:
2970	case e1000_82580:
2971	case e1000_i350:
2972	case e1000_i354:
2973	case e1000_i210:
2974	default:
2975		/* If rss_queues > half of max_rss_queues, pair the queues in
2976		 * order to conserve interrupts due to limited supply.
2977		 */
2978		if (adapter->rss_queues > (max_rss_queues / 2))
2979			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2980		else
2981			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
2982		break;
2983	}
2984}
2985
2986/**
2987 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2988 *  @adapter: board private structure to initialize
2989 *
2990 *  igb_sw_init initializes the Adapter private data structure.
2991 *  Fields are initialized based on PCI device information and
2992 *  OS network device settings (MTU size).
2993 **/
2994static int igb_sw_init(struct igb_adapter *adapter)
2995{
2996	struct e1000_hw *hw = &adapter->hw;
2997	struct net_device *netdev = adapter->netdev;
2998	struct pci_dev *pdev = adapter->pdev;
2999
3000	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3001
3002	/* set default ring sizes */
3003	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3004	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3005
3006	/* set default ITR values */
3007	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3008	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3009
3010	/* set default work limits */
3011	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3012
3013	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3014				  VLAN_HLEN;
3015	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3016
 
3017	spin_lock_init(&adapter->stats64_lock);
 
 
 
3018#ifdef CONFIG_PCI_IOV
3019	switch (hw->mac.type) {
3020	case e1000_82576:
3021	case e1000_i350:
3022		if (max_vfs > 7) {
3023			dev_warn(&pdev->dev,
3024				 "Maximum of 7 VFs per PF, using max\n");
3025			max_vfs = adapter->vfs_allocated_count = 7;
3026		} else
3027			adapter->vfs_allocated_count = max_vfs;
3028		if (adapter->vfs_allocated_count)
3029			dev_warn(&pdev->dev,
3030				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3031		break;
3032	default:
3033		break;
3034	}
3035#endif /* CONFIG_PCI_IOV */
3036
3037	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3038	adapter->flags |= IGB_FLAG_HAS_MSIX;
3039
 
 
 
 
 
 
3040	igb_probe_vfs(adapter);
3041
3042	igb_init_queue_configuration(adapter);
3043
3044	/* Setup and initialize a copy of the hw vlan table array */
3045	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3046				       GFP_ATOMIC);
 
 
3047
3048	/* This call may decrease the number of queues */
3049	if (igb_init_interrupt_scheme(adapter, true)) {
3050		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3051		return -ENOMEM;
3052	}
3053
3054	/* Explicitly disable IRQ since the NIC can be in any state. */
3055	igb_irq_disable(adapter);
3056
3057	if (hw->mac.type >= e1000_i350)
3058		adapter->flags &= ~IGB_FLAG_DMAC;
3059
3060	set_bit(__IGB_DOWN, &adapter->state);
3061	return 0;
3062}
3063
3064/**
3065 *  igb_open - Called when a network interface is made active
3066 *  @netdev: network interface device structure
 
3067 *
3068 *  Returns 0 on success, negative value on failure
3069 *
3070 *  The open entry point is called when a network interface is made
3071 *  active by the system (IFF_UP).  At this point all resources needed
3072 *  for transmit and receive operations are allocated, the interrupt
3073 *  handler is registered with the OS, the watchdog timer is started,
3074 *  and the stack is notified that the interface is ready.
3075 **/
3076static int __igb_open(struct net_device *netdev, bool resuming)
3077{
3078	struct igb_adapter *adapter = netdev_priv(netdev);
3079	struct e1000_hw *hw = &adapter->hw;
3080	struct pci_dev *pdev = adapter->pdev;
3081	int err;
3082	int i;
3083
3084	/* disallow open during test */
3085	if (test_bit(__IGB_TESTING, &adapter->state)) {
3086		WARN_ON(resuming);
3087		return -EBUSY;
3088	}
3089
3090	if (!resuming)
3091		pm_runtime_get_sync(&pdev->dev);
3092
3093	netif_carrier_off(netdev);
3094
3095	/* allocate transmit descriptors */
3096	err = igb_setup_all_tx_resources(adapter);
3097	if (err)
3098		goto err_setup_tx;
3099
3100	/* allocate receive descriptors */
3101	err = igb_setup_all_rx_resources(adapter);
3102	if (err)
3103		goto err_setup_rx;
3104
3105	igb_power_up_link(adapter);
3106
3107	/* before we allocate an interrupt, we must be ready to handle it.
3108	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3109	 * as soon as we call pci_request_irq, so we have to setup our
3110	 * clean_rx handler before we do so.
3111	 */
3112	igb_configure(adapter);
3113
3114	err = igb_request_irq(adapter);
3115	if (err)
3116		goto err_req_irq;
3117
3118	/* Notify the stack of the actual queue counts. */
3119	err = netif_set_real_num_tx_queues(adapter->netdev,
3120					   adapter->num_tx_queues);
3121	if (err)
3122		goto err_set_queues;
3123
3124	err = netif_set_real_num_rx_queues(adapter->netdev,
3125					   adapter->num_rx_queues);
3126	if (err)
3127		goto err_set_queues;
3128
3129	/* From here on the code is the same as igb_up() */
3130	clear_bit(__IGB_DOWN, &adapter->state);
3131
3132	for (i = 0; i < adapter->num_q_vectors; i++)
3133		napi_enable(&(adapter->q_vector[i]->napi));
3134
3135	/* Clear any pending interrupts. */
 
3136	rd32(E1000_ICR);
3137
3138	igb_irq_enable(adapter);
3139
3140	/* notify VFs that reset has been completed */
3141	if (adapter->vfs_allocated_count) {
3142		u32 reg_data = rd32(E1000_CTRL_EXT);
3143
3144		reg_data |= E1000_CTRL_EXT_PFRSTD;
3145		wr32(E1000_CTRL_EXT, reg_data);
3146	}
3147
3148	netif_tx_start_all_queues(netdev);
3149
3150	if (!resuming)
3151		pm_runtime_put(&pdev->dev);
3152
3153	/* start the watchdog. */
3154	hw->mac.get_link_status = 1;
3155	schedule_work(&adapter->watchdog_task);
3156
3157	return 0;
3158
3159err_set_queues:
3160	igb_free_irq(adapter);
3161err_req_irq:
3162	igb_release_hw_control(adapter);
3163	igb_power_down_link(adapter);
3164	igb_free_all_rx_resources(adapter);
3165err_setup_rx:
3166	igb_free_all_tx_resources(adapter);
3167err_setup_tx:
3168	igb_reset(adapter);
3169	if (!resuming)
3170		pm_runtime_put(&pdev->dev);
3171
3172	return err;
3173}
3174
3175int igb_open(struct net_device *netdev)
3176{
3177	return __igb_open(netdev, false);
3178}
3179
3180/**
3181 *  igb_close - Disables a network interface
3182 *  @netdev: network interface device structure
 
3183 *
3184 *  Returns 0, this is not allowed to fail
3185 *
3186 *  The close entry point is called when an interface is de-activated
3187 *  by the OS.  The hardware is still under the driver's control, but
3188 *  needs to be disabled.  A global MAC reset is issued to stop the
3189 *  hardware, and all transmit and receive resources are freed.
3190 **/
3191static int __igb_close(struct net_device *netdev, bool suspending)
3192{
3193	struct igb_adapter *adapter = netdev_priv(netdev);
3194	struct pci_dev *pdev = adapter->pdev;
3195
3196	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3197
3198	if (!suspending)
3199		pm_runtime_get_sync(&pdev->dev);
3200
3201	igb_down(adapter);
3202	igb_free_irq(adapter);
3203
3204	igb_free_all_tx_resources(adapter);
3205	igb_free_all_rx_resources(adapter);
3206
3207	if (!suspending)
3208		pm_runtime_put_sync(&pdev->dev);
3209	return 0;
3210}
3211
3212int igb_close(struct net_device *netdev)
3213{
3214	return __igb_close(netdev, false);
 
 
3215}
3216
3217/**
3218 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3219 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3220 *
3221 *  Return 0 on success, negative on failure
3222 **/
3223int igb_setup_tx_resources(struct igb_ring *tx_ring)
3224{
3225	struct device *dev = tx_ring->dev;
3226	int size;
3227
3228	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3229
3230	tx_ring->tx_buffer_info = vzalloc(size);
3231	if (!tx_ring->tx_buffer_info)
3232		goto err;
3233
3234	/* round up to nearest 4K */
3235	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3236	tx_ring->size = ALIGN(tx_ring->size, 4096);
3237
3238	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3239					   &tx_ring->dma, GFP_KERNEL);
3240	if (!tx_ring->desc)
3241		goto err;
3242
3243	tx_ring->next_to_use = 0;
3244	tx_ring->next_to_clean = 0;
3245
3246	return 0;
3247
3248err:
3249	vfree(tx_ring->tx_buffer_info);
3250	tx_ring->tx_buffer_info = NULL;
3251	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3252	return -ENOMEM;
3253}
3254
3255/**
3256 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3257 *				 (Descriptors) for all queues
3258 *  @adapter: board private structure
3259 *
3260 *  Return 0 on success, negative on failure
3261 **/
3262static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3263{
3264	struct pci_dev *pdev = adapter->pdev;
3265	int i, err = 0;
3266
3267	for (i = 0; i < adapter->num_tx_queues; i++) {
3268		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3269		if (err) {
3270			dev_err(&pdev->dev,
3271				"Allocation for Tx Queue %u failed\n", i);
3272			for (i--; i >= 0; i--)
3273				igb_free_tx_resources(adapter->tx_ring[i]);
3274			break;
3275		}
3276	}
3277
3278	return err;
3279}
3280
3281/**
3282 *  igb_setup_tctl - configure the transmit control registers
3283 *  @adapter: Board private structure
3284 **/
3285void igb_setup_tctl(struct igb_adapter *adapter)
3286{
3287	struct e1000_hw *hw = &adapter->hw;
3288	u32 tctl;
3289
3290	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3291	wr32(E1000_TXDCTL(0), 0);
3292
3293	/* Program the Transmit Control Register */
3294	tctl = rd32(E1000_TCTL);
3295	tctl &= ~E1000_TCTL_CT;
3296	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3297		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3298
3299	igb_config_collision_dist(hw);
3300
3301	/* Enable transmits */
3302	tctl |= E1000_TCTL_EN;
3303
3304	wr32(E1000_TCTL, tctl);
3305}
3306
3307/**
3308 *  igb_configure_tx_ring - Configure transmit ring after Reset
3309 *  @adapter: board private structure
3310 *  @ring: tx ring to configure
3311 *
3312 *  Configure a transmit ring after a reset.
3313 **/
3314void igb_configure_tx_ring(struct igb_adapter *adapter,
3315			   struct igb_ring *ring)
3316{
3317	struct e1000_hw *hw = &adapter->hw;
3318	u32 txdctl = 0;
3319	u64 tdba = ring->dma;
3320	int reg_idx = ring->reg_idx;
3321
3322	/* disable the queue */
3323	wr32(E1000_TXDCTL(reg_idx), 0);
3324	wrfl();
3325	mdelay(10);
3326
3327	wr32(E1000_TDLEN(reg_idx),
3328	     ring->count * sizeof(union e1000_adv_tx_desc));
3329	wr32(E1000_TDBAL(reg_idx),
3330	     tdba & 0x00000000ffffffffULL);
3331	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3332
3333	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3334	wr32(E1000_TDH(reg_idx), 0);
3335	writel(0, ring->tail);
3336
3337	txdctl |= IGB_TX_PTHRESH;
3338	txdctl |= IGB_TX_HTHRESH << 8;
3339	txdctl |= IGB_TX_WTHRESH << 16;
3340
 
 
 
 
3341	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3342	wr32(E1000_TXDCTL(reg_idx), txdctl);
3343}
3344
3345/**
3346 *  igb_configure_tx - Configure transmit Unit after Reset
3347 *  @adapter: board private structure
3348 *
3349 *  Configure the Tx unit of the MAC after a reset.
3350 **/
3351static void igb_configure_tx(struct igb_adapter *adapter)
3352{
 
3353	int i;
3354
 
 
 
 
 
 
 
3355	for (i = 0; i < adapter->num_tx_queues; i++)
3356		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3357}
3358
3359/**
3360 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3361 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3362 *
3363 *  Returns 0 on success, negative on failure
3364 **/
3365int igb_setup_rx_resources(struct igb_ring *rx_ring)
3366{
 
3367	struct device *dev = rx_ring->dev;
3368	int size;
 
 
 
 
 
 
 
 
 
 
 
3369
3370	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3371
3372	rx_ring->rx_buffer_info = vzalloc(size);
3373	if (!rx_ring->rx_buffer_info)
3374		goto err;
3375
3376	/* Round up to nearest 4K */
3377	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3378	rx_ring->size = ALIGN(rx_ring->size, 4096);
3379
3380	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3381					   &rx_ring->dma, GFP_KERNEL);
3382	if (!rx_ring->desc)
3383		goto err;
3384
3385	rx_ring->next_to_alloc = 0;
3386	rx_ring->next_to_clean = 0;
3387	rx_ring->next_to_use = 0;
3388
 
 
3389	return 0;
3390
3391err:
 
3392	vfree(rx_ring->rx_buffer_info);
3393	rx_ring->rx_buffer_info = NULL;
3394	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3395	return -ENOMEM;
3396}
3397
3398/**
3399 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3400 *				 (Descriptors) for all queues
3401 *  @adapter: board private structure
3402 *
3403 *  Return 0 on success, negative on failure
3404 **/
3405static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3406{
3407	struct pci_dev *pdev = adapter->pdev;
3408	int i, err = 0;
3409
3410	for (i = 0; i < adapter->num_rx_queues; i++) {
3411		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3412		if (err) {
3413			dev_err(&pdev->dev,
3414				"Allocation for Rx Queue %u failed\n", i);
3415			for (i--; i >= 0; i--)
3416				igb_free_rx_resources(adapter->rx_ring[i]);
3417			break;
3418		}
3419	}
3420
3421	return err;
3422}
3423
3424/**
3425 *  igb_setup_mrqc - configure the multiple receive queue control registers
3426 *  @adapter: Board private structure
3427 **/
3428static void igb_setup_mrqc(struct igb_adapter *adapter)
3429{
3430	struct e1000_hw *hw = &adapter->hw;
3431	u32 mrqc, rxcsum;
3432	u32 j, num_rx_queues;
3433	u32 rss_key[10];
3434
3435	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3436	for (j = 0; j < 10; j++)
3437		wr32(E1000_RSSRK(j), rss_key[j]);
3438
3439	num_rx_queues = adapter->rss_queues;
3440
3441	switch (hw->mac.type) {
3442	case e1000_82576:
3443		/* 82576 supports 2 RSS queues for SR-IOV */
3444		if (adapter->vfs_allocated_count)
3445			num_rx_queues = 2;
3446		break;
3447	default:
3448		break;
3449	}
3450
3451	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3452		for (j = 0; j < IGB_RETA_SIZE; j++)
3453			adapter->rss_indir_tbl[j] =
3454			(j * num_rx_queues) / IGB_RETA_SIZE;
3455		adapter->rss_indir_tbl_init = num_rx_queues;
3456	}
3457	igb_write_rss_indir_tbl(adapter);
3458
3459	/* Disable raw packet checksumming so that RSS hash is placed in
3460	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3461	 * offloads as they are enabled by default
3462	 */
3463	rxcsum = rd32(E1000_RXCSUM);
3464	rxcsum |= E1000_RXCSUM_PCSD;
3465
3466	if (adapter->hw.mac.type >= e1000_82576)
3467		/* Enable Receive Checksum Offload for SCTP */
3468		rxcsum |= E1000_RXCSUM_CRCOFL;
3469
3470	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3471	wr32(E1000_RXCSUM, rxcsum);
3472
3473	/* Generate RSS hash based on packet types, TCP/UDP
3474	 * port numbers and/or IPv4/v6 src and dst addresses
3475	 */
3476	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3477	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3478	       E1000_MRQC_RSS_FIELD_IPV6 |
3479	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3480	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3481
3482	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3483		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3484	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3485		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3486
3487	/* If VMDq is enabled then we set the appropriate mode for that, else
3488	 * we default to RSS so that an RSS hash is calculated per packet even
3489	 * if we are only using one queue
3490	 */
3491	if (adapter->vfs_allocated_count) {
3492		if (hw->mac.type > e1000_82575) {
3493			/* Set the default pool for the PF's first queue */
3494			u32 vtctl = rd32(E1000_VT_CTL);
3495
3496			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3497				   E1000_VT_CTL_DISABLE_DEF_POOL);
3498			vtctl |= adapter->vfs_allocated_count <<
3499				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3500			wr32(E1000_VT_CTL, vtctl);
3501		}
3502		if (adapter->rss_queues > 1)
3503			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3504		else
3505			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3506	} else {
3507		if (hw->mac.type != e1000_i211)
3508			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3509	}
3510	igb_vmm_control(adapter);
3511
3512	wr32(E1000_MRQC, mrqc);
3513}
3514
3515/**
3516 *  igb_setup_rctl - configure the receive control registers
3517 *  @adapter: Board private structure
3518 **/
3519void igb_setup_rctl(struct igb_adapter *adapter)
3520{
3521	struct e1000_hw *hw = &adapter->hw;
3522	u32 rctl;
3523
3524	rctl = rd32(E1000_RCTL);
3525
3526	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3527	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3528
3529	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3530		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3531
3532	/* enable stripping of CRC. It's unlikely this will break BMC
3533	 * redirection as it did with e1000. Newer features require
3534	 * that the HW strips the CRC.
3535	 */
3536	rctl |= E1000_RCTL_SECRC;
3537
3538	/* disable store bad packets and clear size bits. */
3539	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3540
3541	/* enable LPE to allow for reception of jumbo frames */
3542	rctl |= E1000_RCTL_LPE;
3543
3544	/* disable queue 0 to prevent tail write w/o re-config */
3545	wr32(E1000_RXDCTL(0), 0);
3546
3547	/* Attention!!!  For SR-IOV PF driver operations you must enable
3548	 * queue drop for all VF and PF queues to prevent head of line blocking
3549	 * if an un-trusted VF does not provide descriptors to hardware.
3550	 */
3551	if (adapter->vfs_allocated_count) {
3552		/* set all queue drop enable bits */
3553		wr32(E1000_QDE, ALL_QUEUES);
3554	}
3555
3556	/* This is useful for sniffing bad packets. */
3557	if (adapter->netdev->features & NETIF_F_RXALL) {
3558		/* UPE and MPE will be handled by normal PROMISC logic
3559		 * in e1000e_set_rx_mode
3560		 */
3561		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3562			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3563			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3564
3565		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3566			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3567		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3568		 * and that breaks VLANs.
3569		 */
3570	}
3571
3572	wr32(E1000_RCTL, rctl);
3573}
3574
3575static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3576				   int vfn)
3577{
3578	struct e1000_hw *hw = &adapter->hw;
3579	u32 vmolr;
3580
3581	if (size > MAX_JUMBO_FRAME_SIZE)
3582		size = MAX_JUMBO_FRAME_SIZE;
3583
3584	vmolr = rd32(E1000_VMOLR(vfn));
3585	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3586	vmolr |= size | E1000_VMOLR_LPE;
3587	wr32(E1000_VMOLR(vfn), vmolr);
3588
3589	return 0;
3590}
3591
3592static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3593					 int vfn, bool enable)
3594{
3595	struct e1000_hw *hw = &adapter->hw;
3596	u32 val, reg;
3597
3598	if (hw->mac.type < e1000_82576)
3599		return;
3600
3601	if (hw->mac.type == e1000_i350)
3602		reg = E1000_DVMOLR(vfn);
3603	else
3604		reg = E1000_VMOLR(vfn);
3605
3606	val = rd32(reg);
3607	if (enable)
3608		val |= E1000_VMOLR_STRVLAN;
3609	else
3610		val &= ~(E1000_VMOLR_STRVLAN);
3611	wr32(reg, val);
3612}
3613
3614static inline void igb_set_vmolr(struct igb_adapter *adapter,
3615				 int vfn, bool aupe)
3616{
3617	struct e1000_hw *hw = &adapter->hw;
3618	u32 vmolr;
3619
3620	/* This register exists only on 82576 and newer so if we are older then
3621	 * we should exit and do nothing
3622	 */
3623	if (hw->mac.type < e1000_82576)
3624		return;
3625
3626	vmolr = rd32(E1000_VMOLR(vfn));
3627	if (aupe)
3628		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3629	else
3630		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3631
3632	/* clear all bits that might not be set */
3633	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3634
3635	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3636		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3637	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3638	 * multicast packets
3639	 */
3640	if (vfn <= adapter->vfs_allocated_count)
3641		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3642
3643	wr32(E1000_VMOLR(vfn), vmolr);
3644}
3645
3646/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3647 *  igb_configure_rx_ring - Configure a receive ring after Reset
3648 *  @adapter: board private structure
3649 *  @ring: receive ring to be configured
3650 *
3651 *  Configure the Rx unit of the MAC after a reset.
3652 **/
3653void igb_configure_rx_ring(struct igb_adapter *adapter,
3654			   struct igb_ring *ring)
3655{
3656	struct e1000_hw *hw = &adapter->hw;
 
3657	u64 rdba = ring->dma;
3658	int reg_idx = ring->reg_idx;
3659	u32 srrctl = 0, rxdctl = 0;
 
 
 
 
3660
3661	/* disable the queue */
3662	wr32(E1000_RXDCTL(reg_idx), 0);
3663
3664	/* Set DMA base address registers */
3665	wr32(E1000_RDBAL(reg_idx),
3666	     rdba & 0x00000000ffffffffULL);
3667	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3668	wr32(E1000_RDLEN(reg_idx),
3669	     ring->count * sizeof(union e1000_adv_rx_desc));
3670
3671	/* initialize head and tail */
3672	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3673	wr32(E1000_RDH(reg_idx), 0);
3674	writel(0, ring->tail);
3675
3676	/* set descriptor configuration */
3677	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3678	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3679	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3680	if (hw->mac.type >= e1000_82580)
3681		srrctl |= E1000_SRRCTL_TIMESTAMP;
3682	/* Only set Drop Enable if we are supporting multiple queues */
3683	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3684		srrctl |= E1000_SRRCTL_DROP_EN;
3685
3686	wr32(E1000_SRRCTL(reg_idx), srrctl);
3687
3688	/* set filtering for VMDQ pools */
3689	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3690
3691	rxdctl |= IGB_RX_PTHRESH;
3692	rxdctl |= IGB_RX_HTHRESH << 8;
3693	rxdctl |= IGB_RX_WTHRESH << 16;
3694
 
 
 
 
 
 
 
 
3695	/* enable receive descriptor fetching */
3696	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3697	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3698}
3699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3700/**
3701 *  igb_configure_rx - Configure receive Unit after Reset
3702 *  @adapter: board private structure
3703 *
3704 *  Configure the Rx unit of the MAC after a reset.
3705 **/
3706static void igb_configure_rx(struct igb_adapter *adapter)
3707{
3708	int i;
3709
3710	/* set the correct pool for the PF default MAC address in entry 0 */
3711	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3712			 adapter->vfs_allocated_count);
3713
3714	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3715	 * the Base and Length of the Rx Descriptor Ring
3716	 */
3717	for (i = 0; i < adapter->num_rx_queues; i++)
3718		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
 
 
 
 
3719}
3720
3721/**
3722 *  igb_free_tx_resources - Free Tx Resources per Queue
3723 *  @tx_ring: Tx descriptor ring for a specific queue
3724 *
3725 *  Free all transmit software resources
3726 **/
3727void igb_free_tx_resources(struct igb_ring *tx_ring)
3728{
3729	igb_clean_tx_ring(tx_ring);
3730
3731	vfree(tx_ring->tx_buffer_info);
3732	tx_ring->tx_buffer_info = NULL;
3733
3734	/* if not set, then don't free */
3735	if (!tx_ring->desc)
3736		return;
3737
3738	dma_free_coherent(tx_ring->dev, tx_ring->size,
3739			  tx_ring->desc, tx_ring->dma);
3740
3741	tx_ring->desc = NULL;
3742}
3743
3744/**
3745 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3746 *  @adapter: board private structure
3747 *
3748 *  Free all transmit software resources
3749 **/
3750static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3751{
3752	int i;
3753
3754	for (i = 0; i < adapter->num_tx_queues; i++)
3755		if (adapter->tx_ring[i])
3756			igb_free_tx_resources(adapter->tx_ring[i]);
3757}
3758
3759void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3760				    struct igb_tx_buffer *tx_buffer)
3761{
3762	if (tx_buffer->skb) {
3763		dev_kfree_skb_any(tx_buffer->skb);
3764		if (dma_unmap_len(tx_buffer, len))
3765			dma_unmap_single(ring->dev,
3766					 dma_unmap_addr(tx_buffer, dma),
3767					 dma_unmap_len(tx_buffer, len),
3768					 DMA_TO_DEVICE);
3769	} else if (dma_unmap_len(tx_buffer, len)) {
3770		dma_unmap_page(ring->dev,
3771			       dma_unmap_addr(tx_buffer, dma),
3772			       dma_unmap_len(tx_buffer, len),
3773			       DMA_TO_DEVICE);
3774	}
3775	tx_buffer->next_to_watch = NULL;
3776	tx_buffer->skb = NULL;
3777	dma_unmap_len_set(tx_buffer, len, 0);
3778	/* buffer_info must be completely set up in the transmit path */
3779}
3780
3781/**
3782 *  igb_clean_tx_ring - Free Tx Buffers
3783 *  @tx_ring: ring to be cleaned
3784 **/
3785static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3786{
3787	struct igb_tx_buffer *buffer_info;
3788	unsigned long size;
3789	u16 i;
 
 
 
 
 
 
 
 
3790
3791	if (!tx_ring->tx_buffer_info)
3792		return;
3793	/* Free all the Tx ring sk_buffs */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3794
3795	for (i = 0; i < tx_ring->count; i++) {
3796		buffer_info = &tx_ring->tx_buffer_info[i];
3797		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
 
 
 
 
3798	}
3799
 
3800	netdev_tx_reset_queue(txring_txq(tx_ring));
3801
3802	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3803	memset(tx_ring->tx_buffer_info, 0, size);
3804
3805	/* Zero out the descriptor ring */
3806	memset(tx_ring->desc, 0, tx_ring->size);
3807
3808	tx_ring->next_to_use = 0;
3809	tx_ring->next_to_clean = 0;
3810}
3811
3812/**
3813 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3814 *  @adapter: board private structure
3815 **/
3816static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3817{
3818	int i;
3819
3820	for (i = 0; i < adapter->num_tx_queues; i++)
3821		if (adapter->tx_ring[i])
3822			igb_clean_tx_ring(adapter->tx_ring[i]);
3823}
3824
3825/**
3826 *  igb_free_rx_resources - Free Rx Resources
3827 *  @rx_ring: ring to clean the resources from
3828 *
3829 *  Free all receive software resources
3830 **/
3831void igb_free_rx_resources(struct igb_ring *rx_ring)
3832{
3833	igb_clean_rx_ring(rx_ring);
3834
 
 
3835	vfree(rx_ring->rx_buffer_info);
3836	rx_ring->rx_buffer_info = NULL;
3837
3838	/* if not set, then don't free */
3839	if (!rx_ring->desc)
3840		return;
3841
3842	dma_free_coherent(rx_ring->dev, rx_ring->size,
3843			  rx_ring->desc, rx_ring->dma);
3844
3845	rx_ring->desc = NULL;
3846}
3847
3848/**
3849 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3850 *  @adapter: board private structure
3851 *
3852 *  Free all receive software resources
3853 **/
3854static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3855{
3856	int i;
3857
3858	for (i = 0; i < adapter->num_rx_queues; i++)
3859		if (adapter->rx_ring[i])
3860			igb_free_rx_resources(adapter->rx_ring[i]);
3861}
3862
3863/**
3864 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3865 *  @rx_ring: ring to free buffers from
3866 **/
3867static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3868{
3869	unsigned long size;
3870	u16 i;
3871
3872	if (rx_ring->skb)
3873		dev_kfree_skb(rx_ring->skb);
3874	rx_ring->skb = NULL;
3875
3876	if (!rx_ring->rx_buffer_info)
3877		return;
3878
3879	/* Free all the Rx ring sk_buffs */
3880	for (i = 0; i < rx_ring->count; i++) {
3881		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3882
3883		if (!buffer_info->page)
3884			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3885
3886		dma_unmap_page(rx_ring->dev,
3887			       buffer_info->dma,
3888			       PAGE_SIZE,
3889			       DMA_FROM_DEVICE);
3890		__free_page(buffer_info->page);
3891
3892		buffer_info->page = NULL;
3893	}
3894
3895	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3896	memset(rx_ring->rx_buffer_info, 0, size);
3897
3898	/* Zero out the descriptor ring */
3899	memset(rx_ring->desc, 0, rx_ring->size);
3900
3901	rx_ring->next_to_alloc = 0;
3902	rx_ring->next_to_clean = 0;
3903	rx_ring->next_to_use = 0;
3904}
3905
3906/**
3907 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3908 *  @adapter: board private structure
3909 **/
3910static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3911{
3912	int i;
3913
3914	for (i = 0; i < adapter->num_rx_queues; i++)
3915		if (adapter->rx_ring[i])
3916			igb_clean_rx_ring(adapter->rx_ring[i]);
3917}
3918
3919/**
3920 *  igb_set_mac - Change the Ethernet Address of the NIC
3921 *  @netdev: network interface device structure
3922 *  @p: pointer to an address structure
3923 *
3924 *  Returns 0 on success, negative on failure
3925 **/
3926static int igb_set_mac(struct net_device *netdev, void *p)
3927{
3928	struct igb_adapter *adapter = netdev_priv(netdev);
3929	struct e1000_hw *hw = &adapter->hw;
3930	struct sockaddr *addr = p;
3931
3932	if (!is_valid_ether_addr(addr->sa_data))
3933		return -EADDRNOTAVAIL;
3934
3935	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3936	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3937
3938	/* set the correct pool for the new PF MAC address in entry 0 */
3939	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3940			 adapter->vfs_allocated_count);
3941
3942	return 0;
3943}
3944
3945/**
3946 *  igb_write_mc_addr_list - write multicast addresses to MTA
3947 *  @netdev: network interface device structure
3948 *
3949 *  Writes multicast address list to the MTA hash table.
3950 *  Returns: -ENOMEM on failure
3951 *           0 on no addresses written
3952 *           X on writing X addresses to MTA
3953 **/
3954static int igb_write_mc_addr_list(struct net_device *netdev)
3955{
3956	struct igb_adapter *adapter = netdev_priv(netdev);
3957	struct e1000_hw *hw = &adapter->hw;
3958	struct netdev_hw_addr *ha;
3959	u8  *mta_list;
3960	int i;
3961
3962	if (netdev_mc_empty(netdev)) {
3963		/* nothing to program, so clear mc list */
3964		igb_update_mc_addr_list(hw, NULL, 0);
3965		igb_restore_vf_multicasts(adapter);
3966		return 0;
3967	}
3968
3969	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3970	if (!mta_list)
3971		return -ENOMEM;
3972
3973	/* The shared function expects a packed array of only addresses. */
3974	i = 0;
3975	netdev_for_each_mc_addr(ha, netdev)
3976		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3977
3978	igb_update_mc_addr_list(hw, mta_list, i);
3979	kfree(mta_list);
3980
3981	return netdev_mc_count(netdev);
3982}
3983
3984/**
3985 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3986 *  @netdev: network interface device structure
3987 *
3988 *  Writes unicast address list to the RAR table.
3989 *  Returns: -ENOMEM on failure/insufficient address space
3990 *           0 on no addresses written
3991 *           X on writing X addresses to the RAR table
3992 **/
3993static int igb_write_uc_addr_list(struct net_device *netdev)
3994{
3995	struct igb_adapter *adapter = netdev_priv(netdev);
3996	struct e1000_hw *hw = &adapter->hw;
3997	unsigned int vfn = adapter->vfs_allocated_count;
3998	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3999	int count = 0;
4000
4001	/* return ENOMEM indicating insufficient memory for addresses */
4002	if (netdev_uc_count(netdev) > rar_entries)
4003		return -ENOMEM;
4004
4005	if (!netdev_uc_empty(netdev) && rar_entries) {
4006		struct netdev_hw_addr *ha;
4007
4008		netdev_for_each_uc_addr(ha, netdev) {
4009			if (!rar_entries)
4010				break;
4011			igb_rar_set_qsel(adapter, ha->addr,
4012					 rar_entries--,
4013					 vfn);
4014			count++;
4015		}
4016	}
4017	/* write the addresses in reverse order to avoid write combining */
4018	for (; rar_entries > 0 ; rar_entries--) {
4019		wr32(E1000_RAH(rar_entries), 0);
4020		wr32(E1000_RAL(rar_entries), 0);
4021	}
4022	wrfl();
4023
4024	return count;
4025}
4026
4027static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4028{
4029	struct e1000_hw *hw = &adapter->hw;
4030	u32 i, pf_id;
4031
4032	switch (hw->mac.type) {
4033	case e1000_i210:
4034	case e1000_i211:
4035	case e1000_i350:
4036		/* VLAN filtering needed for VLAN prio filter */
4037		if (adapter->netdev->features & NETIF_F_NTUPLE)
4038			break;
4039		/* fall through */
4040	case e1000_82576:
4041	case e1000_82580:
4042	case e1000_i354:
4043		/* VLAN filtering needed for pool filtering */
4044		if (adapter->vfs_allocated_count)
4045			break;
4046		/* fall through */
4047	default:
4048		return 1;
4049	}
4050
4051	/* We are already in VLAN promisc, nothing to do */
4052	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4053		return 0;
4054
4055	if (!adapter->vfs_allocated_count)
4056		goto set_vfta;
4057
4058	/* Add PF to all active pools */
4059	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4060
4061	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4062		u32 vlvf = rd32(E1000_VLVF(i));
4063
4064		vlvf |= 1 << pf_id;
4065		wr32(E1000_VLVF(i), vlvf);
4066	}
4067
4068set_vfta:
4069	/* Set all bits in the VLAN filter table array */
4070	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4071		hw->mac.ops.write_vfta(hw, i, ~0U);
4072
4073	/* Set flag so we don't redo unnecessary work */
4074	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4075
4076	return 0;
4077}
4078
4079#define VFTA_BLOCK_SIZE 8
4080static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4081{
4082	struct e1000_hw *hw = &adapter->hw;
4083	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4084	u32 vid_start = vfta_offset * 32;
4085	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4086	u32 i, vid, word, bits, pf_id;
4087
4088	/* guarantee that we don't scrub out management VLAN */
4089	vid = adapter->mng_vlan_id;
4090	if (vid >= vid_start && vid < vid_end)
4091		vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
4092
4093	if (!adapter->vfs_allocated_count)
4094		goto set_vfta;
4095
4096	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4097
4098	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4099		u32 vlvf = rd32(E1000_VLVF(i));
4100
4101		/* pull VLAN ID from VLVF */
4102		vid = vlvf & VLAN_VID_MASK;
4103
4104		/* only concern ourselves with a certain range */
4105		if (vid < vid_start || vid >= vid_end)
4106			continue;
4107
4108		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4109			/* record VLAN ID in VFTA */
4110			vfta[(vid - vid_start) / 32] |= 1 << (vid % 32);
4111
4112			/* if PF is part of this then continue */
4113			if (test_bit(vid, adapter->active_vlans))
4114				continue;
4115		}
4116
4117		/* remove PF from the pool */
4118		bits = ~(1 << pf_id);
4119		bits &= rd32(E1000_VLVF(i));
4120		wr32(E1000_VLVF(i), bits);
4121	}
4122
4123set_vfta:
4124	/* extract values from active_vlans and write back to VFTA */
4125	for (i = VFTA_BLOCK_SIZE; i--;) {
4126		vid = (vfta_offset + i) * 32;
4127		word = vid / BITS_PER_LONG;
4128		bits = vid % BITS_PER_LONG;
4129
4130		vfta[i] |= adapter->active_vlans[word] >> bits;
4131
4132		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4133	}
4134}
4135
4136static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4137{
4138	u32 i;
4139
4140	/* We are not in VLAN promisc, nothing to do */
4141	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4142		return;
4143
4144	/* Set flag so we don't redo unnecessary work */
4145	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4146
4147	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4148		igb_scrub_vfta(adapter, i);
4149}
4150
4151/**
4152 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4153 *  @netdev: network interface device structure
4154 *
4155 *  The set_rx_mode entry point is called whenever the unicast or multicast
4156 *  address lists or the network interface flags are updated.  This routine is
4157 *  responsible for configuring the hardware for proper unicast, multicast,
4158 *  promiscuous mode, and all-multi behavior.
4159 **/
4160static void igb_set_rx_mode(struct net_device *netdev)
4161{
4162	struct igb_adapter *adapter = netdev_priv(netdev);
4163	struct e1000_hw *hw = &adapter->hw;
4164	unsigned int vfn = adapter->vfs_allocated_count;
4165	u32 rctl = 0, vmolr = 0;
4166	int count;
4167
4168	/* Check for Promiscuous and All Multicast modes */
4169	if (netdev->flags & IFF_PROMISC) {
4170		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4171		vmolr |= E1000_VMOLR_MPME;
4172
4173		/* enable use of UTA filter to force packets to default pool */
4174		if (hw->mac.type == e1000_82576)
4175			vmolr |= E1000_VMOLR_ROPE;
4176	} else {
4177		if (netdev->flags & IFF_ALLMULTI) {
4178			rctl |= E1000_RCTL_MPE;
4179			vmolr |= E1000_VMOLR_MPME;
4180		} else {
4181			/* Write addresses to the MTA, if the attempt fails
4182			 * then we should just turn on promiscuous mode so
4183			 * that we can at least receive multicast traffic
4184			 */
4185			count = igb_write_mc_addr_list(netdev);
4186			if (count < 0) {
4187				rctl |= E1000_RCTL_MPE;
4188				vmolr |= E1000_VMOLR_MPME;
4189			} else if (count) {
4190				vmolr |= E1000_VMOLR_ROMPE;
4191			}
4192		}
4193	}
4194
4195	/* Write addresses to available RAR registers, if there is not
4196	 * sufficient space to store all the addresses then enable
4197	 * unicast promiscuous mode
4198	 */
4199	count = igb_write_uc_addr_list(netdev);
4200	if (count < 0) {
4201		rctl |= E1000_RCTL_UPE;
4202		vmolr |= E1000_VMOLR_ROPE;
4203	}
4204
4205	/* enable VLAN filtering by default */
4206	rctl |= E1000_RCTL_VFE;
4207
4208	/* disable VLAN filtering for modes that require it */
4209	if ((netdev->flags & IFF_PROMISC) ||
4210	    (netdev->features & NETIF_F_RXALL)) {
4211		/* if we fail to set all rules then just clear VFE */
4212		if (igb_vlan_promisc_enable(adapter))
4213			rctl &= ~E1000_RCTL_VFE;
4214	} else {
4215		igb_vlan_promisc_disable(adapter);
4216	}
4217
4218	/* update state of unicast, multicast, and VLAN filtering modes */
4219	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4220				     E1000_RCTL_VFE);
4221	wr32(E1000_RCTL, rctl);
4222
 
 
 
 
 
 
 
 
4223	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4224	 * the VMOLR to enable the appropriate modes.  Without this workaround
4225	 * we will have issues with VLAN tag stripping not being done for frames
4226	 * that are only arriving because we are the default pool
4227	 */
4228	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4229		return;
4230
4231	/* set UTA to appropriate mode */
4232	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4233
4234	vmolr |= rd32(E1000_VMOLR(vfn)) &
4235		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4236
4237	/* enable Rx jumbo frames, no need for restriction */
4238	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4239	vmolr |= MAX_JUMBO_FRAME_SIZE | E1000_VMOLR_LPE;
 
 
 
 
 
 
4240
4241	wr32(E1000_VMOLR(vfn), vmolr);
4242	wr32(E1000_RLPML, MAX_JUMBO_FRAME_SIZE);
4243
4244	igb_restore_vf_multicasts(adapter);
4245}
4246
4247static void igb_check_wvbr(struct igb_adapter *adapter)
4248{
4249	struct e1000_hw *hw = &adapter->hw;
4250	u32 wvbr = 0;
4251
4252	switch (hw->mac.type) {
4253	case e1000_82576:
4254	case e1000_i350:
4255		wvbr = rd32(E1000_WVBR);
4256		if (!wvbr)
4257			return;
4258		break;
4259	default:
4260		break;
4261	}
4262
4263	adapter->wvbr |= wvbr;
4264}
4265
4266#define IGB_STAGGERED_QUEUE_OFFSET 8
4267
4268static void igb_spoof_check(struct igb_adapter *adapter)
4269{
4270	int j;
4271
4272	if (!adapter->wvbr)
4273		return;
4274
4275	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4276		if (adapter->wvbr & (1 << j) ||
4277		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4278			dev_warn(&adapter->pdev->dev,
4279				"Spoof event(s) detected on VF %d\n", j);
4280			adapter->wvbr &=
4281				~((1 << j) |
4282				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4283		}
4284	}
4285}
4286
4287/* Need to wait a few seconds after link up to get diagnostic information from
4288 * the phy
4289 */
4290static void igb_update_phy_info(unsigned long data)
4291{
4292	struct igb_adapter *adapter = (struct igb_adapter *) data;
4293	igb_get_phy_info(&adapter->hw);
4294}
4295
4296/**
4297 *  igb_has_link - check shared code for link and determine up/down
4298 *  @adapter: pointer to driver private info
4299 **/
4300bool igb_has_link(struct igb_adapter *adapter)
4301{
4302	struct e1000_hw *hw = &adapter->hw;
4303	bool link_active = false;
4304
4305	/* get_link_status is set on LSC (link status) interrupt or
4306	 * rx sequence error interrupt.  get_link_status will stay
4307	 * false until the e1000_check_for_link establishes link
4308	 * for copper adapters ONLY
4309	 */
4310	switch (hw->phy.media_type) {
4311	case e1000_media_type_copper:
4312		if (!hw->mac.get_link_status)
4313			return true;
 
4314	case e1000_media_type_internal_serdes:
4315		hw->mac.ops.check_for_link(hw);
4316		link_active = !hw->mac.get_link_status;
4317		break;
4318	default:
4319	case e1000_media_type_unknown:
4320		break;
4321	}
4322
4323	if (((hw->mac.type == e1000_i210) ||
4324	     (hw->mac.type == e1000_i211)) &&
4325	     (hw->phy.id == I210_I_PHY_ID)) {
4326		if (!netif_carrier_ok(adapter->netdev)) {
4327			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4328		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4329			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4330			adapter->link_check_timeout = jiffies;
4331		}
4332	}
4333
4334	return link_active;
4335}
4336
4337static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4338{
4339	bool ret = false;
4340	u32 ctrl_ext, thstat;
4341
4342	/* check for thermal sensor event on i350 copper only */
4343	if (hw->mac.type == e1000_i350) {
4344		thstat = rd32(E1000_THSTAT);
4345		ctrl_ext = rd32(E1000_CTRL_EXT);
4346
4347		if ((hw->phy.media_type == e1000_media_type_copper) &&
4348		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4349			ret = !!(thstat & event);
4350	}
4351
4352	return ret;
4353}
4354
4355/**
4356 *  igb_check_lvmmc - check for malformed packets received
4357 *  and indicated in LVMMC register
4358 *  @adapter: pointer to adapter
4359 **/
4360static void igb_check_lvmmc(struct igb_adapter *adapter)
4361{
4362	struct e1000_hw *hw = &adapter->hw;
4363	u32 lvmmc;
4364
4365	lvmmc = rd32(E1000_LVMMC);
4366	if (lvmmc) {
4367		if (unlikely(net_ratelimit())) {
4368			netdev_warn(adapter->netdev,
4369				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4370				    lvmmc);
4371		}
4372	}
4373}
4374
4375/**
4376 *  igb_watchdog - Timer Call-back
4377 *  @data: pointer to adapter cast into an unsigned long
4378 **/
4379static void igb_watchdog(unsigned long data)
4380{
4381	struct igb_adapter *adapter = (struct igb_adapter *)data;
4382	/* Do the rest outside of interrupt context */
4383	schedule_work(&adapter->watchdog_task);
4384}
4385
4386static void igb_watchdog_task(struct work_struct *work)
4387{
4388	struct igb_adapter *adapter = container_of(work,
4389						   struct igb_adapter,
4390						   watchdog_task);
4391	struct e1000_hw *hw = &adapter->hw;
4392	struct e1000_phy_info *phy = &hw->phy;
4393	struct net_device *netdev = adapter->netdev;
4394	u32 link;
4395	int i;
4396	u32 connsw;
4397	u16 phy_data, retry_count = 20;
4398
4399	link = igb_has_link(adapter);
4400
4401	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4402		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4403			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4404		else
4405			link = false;
4406	}
4407
4408	/* Force link down if we have fiber to swap to */
4409	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4410		if (hw->phy.media_type == e1000_media_type_copper) {
4411			connsw = rd32(E1000_CONNSW);
4412			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4413				link = 0;
4414		}
4415	}
4416	if (link) {
4417		/* Perform a reset if the media type changed. */
4418		if (hw->dev_spec._82575.media_changed) {
4419			hw->dev_spec._82575.media_changed = false;
4420			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4421			igb_reset(adapter);
4422		}
4423		/* Cancel scheduled suspend requests. */
4424		pm_runtime_resume(netdev->dev.parent);
4425
4426		if (!netif_carrier_ok(netdev)) {
4427			u32 ctrl;
4428
4429			hw->mac.ops.get_speed_and_duplex(hw,
4430							 &adapter->link_speed,
4431							 &adapter->link_duplex);
4432
4433			ctrl = rd32(E1000_CTRL);
4434			/* Links status message must follow this format */
4435			netdev_info(netdev,
4436			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4437			       netdev->name,
4438			       adapter->link_speed,
4439			       adapter->link_duplex == FULL_DUPLEX ?
4440			       "Full" : "Half",
4441			       (ctrl & E1000_CTRL_TFCE) &&
4442			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4443			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4444			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4445
4446			/* disable EEE if enabled */
4447			if ((adapter->flags & IGB_FLAG_EEE) &&
4448				(adapter->link_duplex == HALF_DUPLEX)) {
4449				dev_info(&adapter->pdev->dev,
4450				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4451				adapter->hw.dev_spec._82575.eee_disable = true;
4452				adapter->flags &= ~IGB_FLAG_EEE;
4453			}
4454
4455			/* check if SmartSpeed worked */
4456			igb_check_downshift(hw);
4457			if (phy->speed_downgraded)
4458				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4459
4460			/* check for thermal sensor event */
4461			if (igb_thermal_sensor_event(hw,
4462			    E1000_THSTAT_LINK_THROTTLE))
4463				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4464
4465			/* adjust timeout factor according to speed/duplex */
4466			adapter->tx_timeout_factor = 1;
4467			switch (adapter->link_speed) {
4468			case SPEED_10:
4469				adapter->tx_timeout_factor = 14;
4470				break;
4471			case SPEED_100:
4472				/* maybe add some timeout factor ? */
4473				break;
4474			}
4475
4476			if (adapter->link_speed != SPEED_1000)
 
4477				goto no_wait;
4478
4479			/* wait for Remote receiver status OK */
4480retry_read_status:
4481			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4482					      &phy_data)) {
4483				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4484				    retry_count) {
4485					msleep(100);
4486					retry_count--;
4487					goto retry_read_status;
4488				} else if (!retry_count) {
4489					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4490				}
4491			} else {
4492				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4493			}
4494no_wait:
4495			netif_carrier_on(netdev);
4496
4497			igb_ping_all_vfs(adapter);
4498			igb_check_vf_rate_limit(adapter);
4499
4500			/* link state has changed, schedule phy info update */
4501			if (!test_bit(__IGB_DOWN, &adapter->state))
4502				mod_timer(&adapter->phy_info_timer,
4503					  round_jiffies(jiffies + 2 * HZ));
4504		}
4505	} else {
4506		if (netif_carrier_ok(netdev)) {
4507			adapter->link_speed = 0;
4508			adapter->link_duplex = 0;
4509
4510			/* check for thermal sensor event */
4511			if (igb_thermal_sensor_event(hw,
4512			    E1000_THSTAT_PWR_DOWN)) {
4513				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4514			}
4515
4516			/* Links status message must follow this format */
4517			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4518			       netdev->name);
4519			netif_carrier_off(netdev);
4520
4521			igb_ping_all_vfs(adapter);
4522
4523			/* link state has changed, schedule phy info update */
4524			if (!test_bit(__IGB_DOWN, &adapter->state))
4525				mod_timer(&adapter->phy_info_timer,
4526					  round_jiffies(jiffies + 2 * HZ));
4527
4528			/* link is down, time to check for alternate media */
4529			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4530				igb_check_swap_media(adapter);
4531				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4532					schedule_work(&adapter->reset_task);
4533					/* return immediately */
4534					return;
4535				}
4536			}
4537			pm_schedule_suspend(netdev->dev.parent,
4538					    MSEC_PER_SEC * 5);
4539
4540		/* also check for alternate media here */
4541		} else if (!netif_carrier_ok(netdev) &&
4542			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4543			igb_check_swap_media(adapter);
4544			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4545				schedule_work(&adapter->reset_task);
4546				/* return immediately */
4547				return;
4548			}
4549		}
4550	}
4551
4552	spin_lock(&adapter->stats64_lock);
4553	igb_update_stats(adapter, &adapter->stats64);
4554	spin_unlock(&adapter->stats64_lock);
4555
4556	for (i = 0; i < adapter->num_tx_queues; i++) {
4557		struct igb_ring *tx_ring = adapter->tx_ring[i];
4558		if (!netif_carrier_ok(netdev)) {
4559			/* We've lost link, so the controller stops DMA,
4560			 * but we've got queued Tx work that's never going
4561			 * to get done, so reset controller to flush Tx.
4562			 * (Do the reset outside of interrupt context).
4563			 */
4564			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4565				adapter->tx_timeout_count++;
4566				schedule_work(&adapter->reset_task);
4567				/* return immediately since reset is imminent */
4568				return;
4569			}
4570		}
4571
4572		/* Force detection of hung controller every watchdog period */
4573		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4574	}
4575
4576	/* Cause software interrupt to ensure Rx ring is cleaned */
4577	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4578		u32 eics = 0;
4579
4580		for (i = 0; i < adapter->num_q_vectors; i++)
4581			eics |= adapter->q_vector[i]->eims_value;
4582		wr32(E1000_EICS, eics);
4583	} else {
4584		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4585	}
4586
4587	igb_spoof_check(adapter);
4588	igb_ptp_rx_hang(adapter);
 
4589
4590	/* Check LVMMC register on i350/i354 only */
4591	if ((adapter->hw.mac.type == e1000_i350) ||
4592	    (adapter->hw.mac.type == e1000_i354))
4593		igb_check_lvmmc(adapter);
4594
4595	/* Reset the timer */
4596	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4597		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4598			mod_timer(&adapter->watchdog_timer,
4599				  round_jiffies(jiffies +  HZ));
4600		else
4601			mod_timer(&adapter->watchdog_timer,
4602				  round_jiffies(jiffies + 2 * HZ));
4603	}
4604}
4605
4606enum latency_range {
4607	lowest_latency = 0,
4608	low_latency = 1,
4609	bulk_latency = 2,
4610	latency_invalid = 255
4611};
4612
4613/**
4614 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4615 *  @q_vector: pointer to q_vector
4616 *
4617 *  Stores a new ITR value based on strictly on packet size.  This
4618 *  algorithm is less sophisticated than that used in igb_update_itr,
4619 *  due to the difficulty of synchronizing statistics across multiple
4620 *  receive rings.  The divisors and thresholds used by this function
4621 *  were determined based on theoretical maximum wire speed and testing
4622 *  data, in order to minimize response time while increasing bulk
4623 *  throughput.
4624 *  This functionality is controlled by ethtool's coalescing settings.
4625 *  NOTE:  This function is called only when operating in a multiqueue
4626 *         receive environment.
4627 **/
4628static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4629{
4630	int new_val = q_vector->itr_val;
4631	int avg_wire_size = 0;
4632	struct igb_adapter *adapter = q_vector->adapter;
4633	unsigned int packets;
4634
4635	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4636	 * ints/sec - ITR timer value of 120 ticks.
4637	 */
4638	if (adapter->link_speed != SPEED_1000) {
4639		new_val = IGB_4K_ITR;
4640		goto set_itr_val;
4641	}
4642
4643	packets = q_vector->rx.total_packets;
4644	if (packets)
4645		avg_wire_size = q_vector->rx.total_bytes / packets;
4646
4647	packets = q_vector->tx.total_packets;
4648	if (packets)
4649		avg_wire_size = max_t(u32, avg_wire_size,
4650				      q_vector->tx.total_bytes / packets);
4651
4652	/* if avg_wire_size isn't set no work was done */
4653	if (!avg_wire_size)
4654		goto clear_counts;
4655
4656	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4657	avg_wire_size += 24;
4658
4659	/* Don't starve jumbo frames */
4660	avg_wire_size = min(avg_wire_size, 3000);
4661
4662	/* Give a little boost to mid-size frames */
4663	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4664		new_val = avg_wire_size / 3;
4665	else
4666		new_val = avg_wire_size / 2;
4667
4668	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4669	if (new_val < IGB_20K_ITR &&
4670	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4671	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4672		new_val = IGB_20K_ITR;
4673
4674set_itr_val:
4675	if (new_val != q_vector->itr_val) {
4676		q_vector->itr_val = new_val;
4677		q_vector->set_itr = 1;
4678	}
4679clear_counts:
4680	q_vector->rx.total_bytes = 0;
4681	q_vector->rx.total_packets = 0;
4682	q_vector->tx.total_bytes = 0;
4683	q_vector->tx.total_packets = 0;
4684}
4685
4686/**
4687 *  igb_update_itr - update the dynamic ITR value based on statistics
4688 *  @q_vector: pointer to q_vector
4689 *  @ring_container: ring info to update the itr for
4690 *
4691 *  Stores a new ITR value based on packets and byte
4692 *  counts during the last interrupt.  The advantage of per interrupt
4693 *  computation is faster updates and more accurate ITR for the current
4694 *  traffic pattern.  Constants in this function were computed
4695 *  based on theoretical maximum wire speed and thresholds were set based
4696 *  on testing data as well as attempting to minimize response time
4697 *  while increasing bulk throughput.
4698 *  This functionality is controlled by ethtool's coalescing settings.
4699 *  NOTE:  These calculations are only valid when operating in a single-
4700 *         queue environment.
4701 **/
4702static void igb_update_itr(struct igb_q_vector *q_vector,
4703			   struct igb_ring_container *ring_container)
4704{
4705	unsigned int packets = ring_container->total_packets;
4706	unsigned int bytes = ring_container->total_bytes;
4707	u8 itrval = ring_container->itr;
4708
4709	/* no packets, exit with status unchanged */
4710	if (packets == 0)
4711		return;
4712
4713	switch (itrval) {
4714	case lowest_latency:
4715		/* handle TSO and jumbo frames */
4716		if (bytes/packets > 8000)
4717			itrval = bulk_latency;
4718		else if ((packets < 5) && (bytes > 512))
4719			itrval = low_latency;
4720		break;
4721	case low_latency:  /* 50 usec aka 20000 ints/s */
4722		if (bytes > 10000) {
4723			/* this if handles the TSO accounting */
4724			if (bytes/packets > 8000)
4725				itrval = bulk_latency;
4726			else if ((packets < 10) || ((bytes/packets) > 1200))
4727				itrval = bulk_latency;
4728			else if ((packets > 35))
4729				itrval = lowest_latency;
4730		} else if (bytes/packets > 2000) {
4731			itrval = bulk_latency;
4732		} else if (packets <= 2 && bytes < 512) {
4733			itrval = lowest_latency;
4734		}
4735		break;
4736	case bulk_latency: /* 250 usec aka 4000 ints/s */
4737		if (bytes > 25000) {
4738			if (packets > 35)
4739				itrval = low_latency;
4740		} else if (bytes < 1500) {
4741			itrval = low_latency;
4742		}
4743		break;
4744	}
4745
4746	/* clear work counters since we have the values we need */
4747	ring_container->total_bytes = 0;
4748	ring_container->total_packets = 0;
4749
4750	/* write updated itr to ring container */
4751	ring_container->itr = itrval;
4752}
4753
4754static void igb_set_itr(struct igb_q_vector *q_vector)
4755{
4756	struct igb_adapter *adapter = q_vector->adapter;
4757	u32 new_itr = q_vector->itr_val;
4758	u8 current_itr = 0;
4759
4760	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4761	if (adapter->link_speed != SPEED_1000) {
4762		current_itr = 0;
4763		new_itr = IGB_4K_ITR;
4764		goto set_itr_now;
4765	}
4766
4767	igb_update_itr(q_vector, &q_vector->tx);
4768	igb_update_itr(q_vector, &q_vector->rx);
4769
4770	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4771
4772	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4773	if (current_itr == lowest_latency &&
4774	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4775	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4776		current_itr = low_latency;
4777
4778	switch (current_itr) {
4779	/* counts and packets in update_itr are dependent on these numbers */
4780	case lowest_latency:
4781		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4782		break;
4783	case low_latency:
4784		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4785		break;
4786	case bulk_latency:
4787		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4788		break;
4789	default:
4790		break;
4791	}
4792
4793set_itr_now:
4794	if (new_itr != q_vector->itr_val) {
4795		/* this attempts to bias the interrupt rate towards Bulk
4796		 * by adding intermediate steps when interrupt rate is
4797		 * increasing
4798		 */
4799		new_itr = new_itr > q_vector->itr_val ?
4800			  max((new_itr * q_vector->itr_val) /
4801			  (new_itr + (q_vector->itr_val >> 2)),
4802			  new_itr) : new_itr;
4803		/* Don't write the value here; it resets the adapter's
4804		 * internal timer, and causes us to delay far longer than
4805		 * we should between interrupts.  Instead, we write the ITR
4806		 * value at the beginning of the next interrupt so the timing
4807		 * ends up being correct.
4808		 */
4809		q_vector->itr_val = new_itr;
4810		q_vector->set_itr = 1;
4811	}
4812}
4813
4814static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4815			    u32 type_tucmd, u32 mss_l4len_idx)
 
 
4816{
4817	struct e1000_adv_tx_context_desc *context_desc;
4818	u16 i = tx_ring->next_to_use;
 
4819
4820	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4821
4822	i++;
4823	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4824
4825	/* set bits to identify this as an advanced context descriptor */
4826	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4827
4828	/* For 82575, context index must be unique per ring. */
4829	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4830		mss_l4len_idx |= tx_ring->reg_idx << 4;
4831
4832	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4833	context_desc->seqnum_seed	= 0;
4834	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4835	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
 
 
 
 
 
 
 
 
 
 
 
4836}
4837
4838static int igb_tso(struct igb_ring *tx_ring,
4839		   struct igb_tx_buffer *first,
4840		   u8 *hdr_len)
4841{
 
4842	struct sk_buff *skb = first->skb;
4843	u32 vlan_macip_lens, type_tucmd;
4844	u32 mss_l4len_idx, l4len;
 
 
 
 
 
 
 
 
 
4845	int err;
4846
4847	if (skb->ip_summed != CHECKSUM_PARTIAL)
4848		return 0;
4849
4850	if (!skb_is_gso(skb))
4851		return 0;
4852
4853	err = skb_cow_head(skb, 0);
4854	if (err < 0)
4855		return err;
4856
 
 
 
4857	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4858	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
 
 
 
 
 
 
4859
4860	if (first->protocol == htons(ETH_P_IP)) {
4861		struct iphdr *iph = ip_hdr(skb);
4862		iph->tot_len = 0;
4863		iph->check = 0;
4864		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4865							 iph->daddr, 0,
4866							 IPPROTO_TCP,
4867							 0);
4868		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
 
 
4869		first->tx_flags |= IGB_TX_FLAGS_TSO |
4870				   IGB_TX_FLAGS_CSUM |
4871				   IGB_TX_FLAGS_IPV4;
4872	} else if (skb_is_gso_v6(skb)) {
4873		ipv6_hdr(skb)->payload_len = 0;
4874		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4875						       &ipv6_hdr(skb)->daddr,
4876						       0, IPPROTO_TCP, 0);
4877		first->tx_flags |= IGB_TX_FLAGS_TSO |
4878				   IGB_TX_FLAGS_CSUM;
4879	}
4880
4881	/* compute header lengths */
4882	l4len = tcp_hdrlen(skb);
4883	*hdr_len = skb_transport_offset(skb) + l4len;
 
 
 
 
 
 
 
 
 
 
 
 
 
4884
4885	/* update gso size and bytecount with header size */
4886	first->gso_segs = skb_shinfo(skb)->gso_segs;
4887	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4888
4889	/* MSS L4LEN IDX */
4890	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4891	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4892
4893	/* VLAN MACLEN IPLEN */
4894	vlan_macip_lens = skb_network_header_len(skb);
4895	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4896	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4897
4898	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
 
4899
4900	return 1;
4901}
4902
4903static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
4904{
4905	unsigned int offset = 0;
4906
4907	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
4908
4909	return offset == skb_checksum_start_offset(skb);
4910}
4911
4912static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4913{
4914	struct sk_buff *skb = first->skb;
4915	u32 vlan_macip_lens = 0;
4916	u32 type_tucmd = 0;
4917
4918	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4919csum_failed:
4920		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
 
4921			return;
4922		goto no_csum;
4923	}
4924
4925	switch (skb->csum_offset) {
4926	case offsetof(struct tcphdr, check):
4927		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4928		/* fall through */
4929	case offsetof(struct udphdr, check):
4930		break;
4931	case offsetof(struct sctphdr, checksum):
4932		/* validate that this is actually an SCTP request */
4933		if (((first->protocol == htons(ETH_P_IP)) &&
4934		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
4935		    ((first->protocol == htons(ETH_P_IPV6)) &&
4936		     igb_ipv6_csum_is_sctp(skb))) {
4937			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
4938			break;
4939		}
 
4940	default:
4941		skb_checksum_help(skb);
4942		goto csum_failed;
4943	}
4944
4945	/* update TX checksum flag */
4946	first->tx_flags |= IGB_TX_FLAGS_CSUM;
4947	vlan_macip_lens = skb_checksum_start_offset(skb) -
4948			  skb_network_offset(skb);
4949no_csum:
4950	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4951	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4952
4953	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
4954}
4955
4956#define IGB_SET_FLAG(_input, _flag, _result) \
4957	((_flag <= _result) ? \
4958	 ((u32)(_input & _flag) * (_result / _flag)) : \
4959	 ((u32)(_input & _flag) / (_flag / _result)))
4960
4961static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4962{
4963	/* set type for advanced descriptor with frame checksum insertion */
4964	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4965		       E1000_ADVTXD_DCMD_DEXT |
4966		       E1000_ADVTXD_DCMD_IFCS;
4967
4968	/* set HW vlan bit if vlan is present */
4969	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4970				 (E1000_ADVTXD_DCMD_VLE));
4971
4972	/* set segmentation bits for TSO */
4973	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4974				 (E1000_ADVTXD_DCMD_TSE));
4975
4976	/* set timestamp bit if present */
4977	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4978				 (E1000_ADVTXD_MAC_TSTAMP));
4979
4980	/* insert frame checksum */
4981	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4982
4983	return cmd_type;
4984}
4985
4986static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4987				 union e1000_adv_tx_desc *tx_desc,
4988				 u32 tx_flags, unsigned int paylen)
4989{
4990	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4991
4992	/* 82575 requires a unique index per ring */
4993	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4994		olinfo_status |= tx_ring->reg_idx << 4;
4995
4996	/* insert L4 checksum */
4997	olinfo_status |= IGB_SET_FLAG(tx_flags,
4998				      IGB_TX_FLAGS_CSUM,
4999				      (E1000_TXD_POPTS_TXSM << 8));
5000
5001	/* insert IPv4 checksum */
5002	olinfo_status |= IGB_SET_FLAG(tx_flags,
5003				      IGB_TX_FLAGS_IPV4,
5004				      (E1000_TXD_POPTS_IXSM << 8));
5005
5006	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5007}
5008
5009static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5010{
5011	struct net_device *netdev = tx_ring->netdev;
5012
5013	netif_stop_subqueue(netdev, tx_ring->queue_index);
5014
5015	/* Herbert's original patch had:
5016	 *  smp_mb__after_netif_stop_queue();
5017	 * but since that doesn't exist yet, just open code it.
5018	 */
5019	smp_mb();
5020
5021	/* We need to check again in a case another CPU has just
5022	 * made room available.
5023	 */
5024	if (igb_desc_unused(tx_ring) < size)
5025		return -EBUSY;
5026
5027	/* A reprieve! */
5028	netif_wake_subqueue(netdev, tx_ring->queue_index);
5029
5030	u64_stats_update_begin(&tx_ring->tx_syncp2);
5031	tx_ring->tx_stats.restart_queue2++;
5032	u64_stats_update_end(&tx_ring->tx_syncp2);
5033
5034	return 0;
5035}
5036
5037static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5038{
5039	if (igb_desc_unused(tx_ring) >= size)
5040		return 0;
5041	return __igb_maybe_stop_tx(tx_ring, size);
5042}
5043
5044static void igb_tx_map(struct igb_ring *tx_ring,
5045		       struct igb_tx_buffer *first,
5046		       const u8 hdr_len)
5047{
5048	struct sk_buff *skb = first->skb;
5049	struct igb_tx_buffer *tx_buffer;
5050	union e1000_adv_tx_desc *tx_desc;
5051	struct skb_frag_struct *frag;
5052	dma_addr_t dma;
5053	unsigned int data_len, size;
5054	u32 tx_flags = first->tx_flags;
5055	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5056	u16 i = tx_ring->next_to_use;
5057
5058	tx_desc = IGB_TX_DESC(tx_ring, i);
5059
5060	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5061
5062	size = skb_headlen(skb);
5063	data_len = skb->data_len;
5064
5065	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5066
5067	tx_buffer = first;
5068
5069	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5070		if (dma_mapping_error(tx_ring->dev, dma))
5071			goto dma_error;
5072
5073		/* record length, and DMA address */
5074		dma_unmap_len_set(tx_buffer, len, size);
5075		dma_unmap_addr_set(tx_buffer, dma, dma);
5076
5077		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5078
5079		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5080			tx_desc->read.cmd_type_len =
5081				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5082
5083			i++;
5084			tx_desc++;
5085			if (i == tx_ring->count) {
5086				tx_desc = IGB_TX_DESC(tx_ring, 0);
5087				i = 0;
5088			}
5089			tx_desc->read.olinfo_status = 0;
5090
5091			dma += IGB_MAX_DATA_PER_TXD;
5092			size -= IGB_MAX_DATA_PER_TXD;
5093
5094			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5095		}
5096
5097		if (likely(!data_len))
5098			break;
5099
5100		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5101
5102		i++;
5103		tx_desc++;
5104		if (i == tx_ring->count) {
5105			tx_desc = IGB_TX_DESC(tx_ring, 0);
5106			i = 0;
5107		}
5108		tx_desc->read.olinfo_status = 0;
5109
5110		size = skb_frag_size(frag);
5111		data_len -= size;
5112
5113		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5114				       size, DMA_TO_DEVICE);
5115
5116		tx_buffer = &tx_ring->tx_buffer_info[i];
5117	}
5118
5119	/* write last descriptor with RS and EOP bits */
5120	cmd_type |= size | IGB_TXD_DCMD;
5121	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5122
5123	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5124
5125	/* set the timestamp */
5126	first->time_stamp = jiffies;
5127
 
 
5128	/* Force memory writes to complete before letting h/w know there
5129	 * are new descriptors to fetch.  (Only applicable for weak-ordered
5130	 * memory model archs, such as IA-64).
5131	 *
5132	 * We also need this memory barrier to make certain all of the
5133	 * status bits have been updated before next_to_watch is written.
5134	 */
5135	wmb();
5136
5137	/* set next_to_watch value indicating a packet is present */
5138	first->next_to_watch = tx_desc;
5139
5140	i++;
5141	if (i == tx_ring->count)
5142		i = 0;
5143
5144	tx_ring->next_to_use = i;
5145
5146	/* Make sure there is space in the ring for the next send. */
5147	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5148
5149	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5150		writel(i, tx_ring->tail);
5151
5152		/* we need this if more than one processor can write to our tail
5153		 * at a time, it synchronizes IO on IA64/Altix systems
5154		 */
5155		mmiowb();
5156	}
5157	return;
5158
5159dma_error:
5160	dev_err(tx_ring->dev, "TX DMA map failed\n");
 
5161
5162	/* clear dma mappings for failed tx_buffer_info map */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5163	for (;;) {
5164		tx_buffer = &tx_ring->tx_buffer_info[i];
5165		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
5166		if (tx_buffer == first)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5167			break;
5168		if (i == 0)
5169			i = tx_ring->count;
5170		i--;
 
5171	}
5172
5173	tx_ring->next_to_use = i;
5174}
5175
5176netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5177				struct igb_ring *tx_ring)
5178{
5179	struct igb_tx_buffer *first;
5180	int tso;
5181	u32 tx_flags = 0;
5182	unsigned short f;
5183	u16 count = TXD_USE_COUNT(skb_headlen(skb));
5184	__be16 protocol = vlan_get_protocol(skb);
5185	u8 hdr_len = 0;
5186
5187	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5188	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5189	 *       + 2 desc gap to keep tail from touching head,
5190	 *       + 1 desc for context descriptor,
5191	 * otherwise try next time
5192	 */
5193	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5194		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
 
5195
5196	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5197		/* this is a hard error */
5198		return NETDEV_TX_BUSY;
5199	}
5200
5201	/* record the location of the first descriptor for this packet */
5202	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
 
5203	first->skb = skb;
5204	first->bytecount = skb->len;
5205	first->gso_segs = 1;
5206
5207	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5208		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5209
5210		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
 
5211					   &adapter->state)) {
5212			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5213			tx_flags |= IGB_TX_FLAGS_TSTAMP;
5214
5215			adapter->ptp_tx_skb = skb_get(skb);
5216			adapter->ptp_tx_start = jiffies;
5217			if (adapter->hw.mac.type == e1000_82576)
5218				schedule_work(&adapter->ptp_tx_work);
 
 
5219		}
5220	}
5221
5222	skb_tx_timestamp(skb);
5223
5224	if (skb_vlan_tag_present(skb)) {
5225		tx_flags |= IGB_TX_FLAGS_VLAN;
5226		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5227	}
5228
5229	/* record initial flags and protocol */
5230	first->tx_flags = tx_flags;
5231	first->protocol = protocol;
5232
5233	tso = igb_tso(tx_ring, first, &hdr_len);
5234	if (tso < 0)
5235		goto out_drop;
5236	else if (!tso)
5237		igb_tx_csum(tx_ring, first);
5238
5239	igb_tx_map(tx_ring, first, hdr_len);
 
5240
5241	return NETDEV_TX_OK;
5242
5243out_drop:
5244	igb_unmap_and_free_tx_resource(tx_ring, first);
 
 
 
 
 
 
 
 
 
 
 
5245
5246	return NETDEV_TX_OK;
5247}
5248
5249static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5250						    struct sk_buff *skb)
5251{
5252	unsigned int r_idx = skb->queue_mapping;
5253
5254	if (r_idx >= adapter->num_tx_queues)
5255		r_idx = r_idx % adapter->num_tx_queues;
5256
5257	return adapter->tx_ring[r_idx];
5258}
5259
5260static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5261				  struct net_device *netdev)
5262{
5263	struct igb_adapter *adapter = netdev_priv(netdev);
5264
5265	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5266	 * in order to meet this minimum size requirement.
5267	 */
5268	if (skb_put_padto(skb, 17))
5269		return NETDEV_TX_OK;
5270
5271	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5272}
5273
5274/**
5275 *  igb_tx_timeout - Respond to a Tx Hang
5276 *  @netdev: network interface device structure
 
5277 **/
5278static void igb_tx_timeout(struct net_device *netdev)
5279{
5280	struct igb_adapter *adapter = netdev_priv(netdev);
5281	struct e1000_hw *hw = &adapter->hw;
5282
5283	/* Do the reset outside of interrupt context */
5284	adapter->tx_timeout_count++;
5285
5286	if (hw->mac.type >= e1000_82580)
5287		hw->dev_spec._82575.global_device_reset = true;
5288
5289	schedule_work(&adapter->reset_task);
5290	wr32(E1000_EICS,
5291	     (adapter->eims_enable_mask & ~adapter->eims_other));
5292}
5293
5294static void igb_reset_task(struct work_struct *work)
5295{
5296	struct igb_adapter *adapter;
5297	adapter = container_of(work, struct igb_adapter, reset_task);
5298
 
 
 
 
 
 
 
 
5299	igb_dump(adapter);
5300	netdev_err(adapter->netdev, "Reset adapter\n");
5301	igb_reinit_locked(adapter);
 
5302}
5303
5304/**
5305 *  igb_get_stats64 - Get System Network Statistics
5306 *  @netdev: network interface device structure
5307 *  @stats: rtnl_link_stats64 pointer
5308 **/
5309static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5310						struct rtnl_link_stats64 *stats)
5311{
5312	struct igb_adapter *adapter = netdev_priv(netdev);
5313
5314	spin_lock(&adapter->stats64_lock);
5315	igb_update_stats(adapter, &adapter->stats64);
5316	memcpy(stats, &adapter->stats64, sizeof(*stats));
5317	spin_unlock(&adapter->stats64_lock);
5318
5319	return stats;
5320}
5321
5322/**
5323 *  igb_change_mtu - Change the Maximum Transfer Unit
5324 *  @netdev: network interface device structure
5325 *  @new_mtu: new value for maximum frame size
5326 *
5327 *  Returns 0 on success, negative on failure
5328 **/
5329static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5330{
5331	struct igb_adapter *adapter = netdev_priv(netdev);
5332	struct pci_dev *pdev = adapter->pdev;
5333	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 
 
5334
5335	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5336		dev_err(&pdev->dev, "Invalid MTU setting\n");
5337		return -EINVAL;
5338	}
5339
5340#define MAX_STD_JUMBO_FRAME_SIZE 9238
5341	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5342		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5343		return -EINVAL;
 
 
 
5344	}
5345
5346	/* adjust max frame to be at least the size of a standard frame */
5347	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5348		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5349
5350	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5351		usleep_range(1000, 2000);
5352
5353	/* igb_down has a dependency on max_frame_size */
5354	adapter->max_frame_size = max_frame;
5355
5356	if (netif_running(netdev))
5357		igb_down(adapter);
5358
5359	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5360		 netdev->mtu, new_mtu);
5361	netdev->mtu = new_mtu;
5362
5363	if (netif_running(netdev))
5364		igb_up(adapter);
5365	else
5366		igb_reset(adapter);
5367
5368	clear_bit(__IGB_RESETTING, &adapter->state);
5369
5370	return 0;
5371}
5372
5373/**
5374 *  igb_update_stats - Update the board statistics counters
5375 *  @adapter: board private structure
5376 **/
5377void igb_update_stats(struct igb_adapter *adapter,
5378		      struct rtnl_link_stats64 *net_stats)
5379{
 
5380	struct e1000_hw *hw = &adapter->hw;
5381	struct pci_dev *pdev = adapter->pdev;
5382	u32 reg, mpc;
5383	int i;
5384	u64 bytes, packets;
5385	unsigned int start;
5386	u64 _bytes, _packets;
5387
5388	/* Prevent stats update while adapter is being reset, or if the pci
5389	 * connection is down.
5390	 */
5391	if (adapter->link_speed == 0)
5392		return;
5393	if (pci_channel_offline(pdev))
5394		return;
5395
5396	bytes = 0;
5397	packets = 0;
5398
5399	rcu_read_lock();
5400	for (i = 0; i < adapter->num_rx_queues; i++) {
5401		struct igb_ring *ring = adapter->rx_ring[i];
5402		u32 rqdpc = rd32(E1000_RQDPC(i));
5403		if (hw->mac.type >= e1000_i210)
5404			wr32(E1000_RQDPC(i), 0);
5405
5406		if (rqdpc) {
5407			ring->rx_stats.drops += rqdpc;
5408			net_stats->rx_fifo_errors += rqdpc;
5409		}
5410
5411		do {
5412			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5413			_bytes = ring->rx_stats.bytes;
5414			_packets = ring->rx_stats.packets;
5415		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5416		bytes += _bytes;
5417		packets += _packets;
5418	}
5419
5420	net_stats->rx_bytes = bytes;
5421	net_stats->rx_packets = packets;
5422
5423	bytes = 0;
5424	packets = 0;
5425	for (i = 0; i < adapter->num_tx_queues; i++) {
5426		struct igb_ring *ring = adapter->tx_ring[i];
5427		do {
5428			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5429			_bytes = ring->tx_stats.bytes;
5430			_packets = ring->tx_stats.packets;
5431		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5432		bytes += _bytes;
5433		packets += _packets;
5434	}
5435	net_stats->tx_bytes = bytes;
5436	net_stats->tx_packets = packets;
5437	rcu_read_unlock();
5438
5439	/* read stats registers */
5440	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5441	adapter->stats.gprc += rd32(E1000_GPRC);
5442	adapter->stats.gorc += rd32(E1000_GORCL);
5443	rd32(E1000_GORCH); /* clear GORCL */
5444	adapter->stats.bprc += rd32(E1000_BPRC);
5445	adapter->stats.mprc += rd32(E1000_MPRC);
5446	adapter->stats.roc += rd32(E1000_ROC);
5447
5448	adapter->stats.prc64 += rd32(E1000_PRC64);
5449	adapter->stats.prc127 += rd32(E1000_PRC127);
5450	adapter->stats.prc255 += rd32(E1000_PRC255);
5451	adapter->stats.prc511 += rd32(E1000_PRC511);
5452	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5453	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5454	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5455	adapter->stats.sec += rd32(E1000_SEC);
5456
5457	mpc = rd32(E1000_MPC);
5458	adapter->stats.mpc += mpc;
5459	net_stats->rx_fifo_errors += mpc;
5460	adapter->stats.scc += rd32(E1000_SCC);
5461	adapter->stats.ecol += rd32(E1000_ECOL);
5462	adapter->stats.mcc += rd32(E1000_MCC);
5463	adapter->stats.latecol += rd32(E1000_LATECOL);
5464	adapter->stats.dc += rd32(E1000_DC);
5465	adapter->stats.rlec += rd32(E1000_RLEC);
5466	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5467	adapter->stats.xontxc += rd32(E1000_XONTXC);
5468	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5469	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5470	adapter->stats.fcruc += rd32(E1000_FCRUC);
5471	adapter->stats.gptc += rd32(E1000_GPTC);
5472	adapter->stats.gotc += rd32(E1000_GOTCL);
5473	rd32(E1000_GOTCH); /* clear GOTCL */
5474	adapter->stats.rnbc += rd32(E1000_RNBC);
5475	adapter->stats.ruc += rd32(E1000_RUC);
5476	adapter->stats.rfc += rd32(E1000_RFC);
5477	adapter->stats.rjc += rd32(E1000_RJC);
5478	adapter->stats.tor += rd32(E1000_TORH);
5479	adapter->stats.tot += rd32(E1000_TOTH);
5480	adapter->stats.tpr += rd32(E1000_TPR);
5481
5482	adapter->stats.ptc64 += rd32(E1000_PTC64);
5483	adapter->stats.ptc127 += rd32(E1000_PTC127);
5484	adapter->stats.ptc255 += rd32(E1000_PTC255);
5485	adapter->stats.ptc511 += rd32(E1000_PTC511);
5486	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5487	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5488
5489	adapter->stats.mptc += rd32(E1000_MPTC);
5490	adapter->stats.bptc += rd32(E1000_BPTC);
5491
5492	adapter->stats.tpt += rd32(E1000_TPT);
5493	adapter->stats.colc += rd32(E1000_COLC);
5494
5495	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5496	/* read internal phy specific stats */
5497	reg = rd32(E1000_CTRL_EXT);
5498	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5499		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5500
5501		/* this stat has invalid values on i210/i211 */
5502		if ((hw->mac.type != e1000_i210) &&
5503		    (hw->mac.type != e1000_i211))
5504			adapter->stats.tncrs += rd32(E1000_TNCRS);
5505	}
5506
5507	adapter->stats.tsctc += rd32(E1000_TSCTC);
5508	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5509
5510	adapter->stats.iac += rd32(E1000_IAC);
5511	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5512	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5513	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5514	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5515	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5516	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5517	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5518	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5519
5520	/* Fill out the OS statistics structure */
5521	net_stats->multicast = adapter->stats.mprc;
5522	net_stats->collisions = adapter->stats.colc;
5523
5524	/* Rx Errors */
5525
5526	/* RLEC on some newer hardware can be incorrect so build
5527	 * our own version based on RUC and ROC
5528	 */
5529	net_stats->rx_errors = adapter->stats.rxerrc +
5530		adapter->stats.crcerrs + adapter->stats.algnerrc +
5531		adapter->stats.ruc + adapter->stats.roc +
5532		adapter->stats.cexterr;
5533	net_stats->rx_length_errors = adapter->stats.ruc +
5534				      adapter->stats.roc;
5535	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5536	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5537	net_stats->rx_missed_errors = adapter->stats.mpc;
5538
5539	/* Tx Errors */
5540	net_stats->tx_errors = adapter->stats.ecol +
5541			       adapter->stats.latecol;
5542	net_stats->tx_aborted_errors = adapter->stats.ecol;
5543	net_stats->tx_window_errors = adapter->stats.latecol;
5544	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5545
5546	/* Tx Dropped needs to be maintained elsewhere */
5547
5548	/* Management Stats */
5549	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5550	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5551	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5552
5553	/* OS2BMC Stats */
5554	reg = rd32(E1000_MANC);
5555	if (reg & E1000_MANC_EN_BMC2OS) {
5556		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5557		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5558		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5559		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5560	}
5561}
5562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5563static void igb_tsync_interrupt(struct igb_adapter *adapter)
5564{
5565	struct e1000_hw *hw = &adapter->hw;
 
5566	struct ptp_clock_event event;
5567	struct timespec64 ts;
5568	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5569
5570	if (tsicr & TSINTR_SYS_WRAP) {
5571		event.type = PTP_CLOCK_PPS;
5572		if (adapter->ptp_caps.pps)
5573			ptp_clock_event(adapter->ptp_clock, &event);
5574		else
5575			dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5576		ack |= TSINTR_SYS_WRAP;
5577	}
5578
5579	if (tsicr & E1000_TSICR_TXTS) {
5580		/* retrieve hardware timestamp */
5581		schedule_work(&adapter->ptp_tx_work);
5582		ack |= E1000_TSICR_TXTS;
5583	}
5584
5585	if (tsicr & TSINTR_TT0) {
5586		spin_lock(&adapter->tmreg_lock);
5587		ts = timespec64_add(adapter->perout[0].start,
5588				    adapter->perout[0].period);
5589		/* u32 conversion of tv_sec is safe until y2106 */
5590		wr32(E1000_TRGTTIML0, ts.tv_nsec);
5591		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5592		tsauxc = rd32(E1000_TSAUXC);
5593		tsauxc |= TSAUXC_EN_TT0;
5594		wr32(E1000_TSAUXC, tsauxc);
5595		adapter->perout[0].start = ts;
5596		spin_unlock(&adapter->tmreg_lock);
5597		ack |= TSINTR_TT0;
5598	}
5599
5600	if (tsicr & TSINTR_TT1) {
5601		spin_lock(&adapter->tmreg_lock);
5602		ts = timespec64_add(adapter->perout[1].start,
5603				    adapter->perout[1].period);
5604		wr32(E1000_TRGTTIML1, ts.tv_nsec);
5605		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5606		tsauxc = rd32(E1000_TSAUXC);
5607		tsauxc |= TSAUXC_EN_TT1;
5608		wr32(E1000_TSAUXC, tsauxc);
5609		adapter->perout[1].start = ts;
5610		spin_unlock(&adapter->tmreg_lock);
5611		ack |= TSINTR_TT1;
5612	}
5613
5614	if (tsicr & TSINTR_AUTT0) {
5615		nsec = rd32(E1000_AUXSTMPL0);
5616		sec  = rd32(E1000_AUXSTMPH0);
5617		event.type = PTP_CLOCK_EXTTS;
5618		event.index = 0;
5619		event.timestamp = sec * 1000000000ULL + nsec;
5620		ptp_clock_event(adapter->ptp_clock, &event);
5621		ack |= TSINTR_AUTT0;
5622	}
5623
5624	if (tsicr & TSINTR_AUTT1) {
5625		nsec = rd32(E1000_AUXSTMPL1);
5626		sec  = rd32(E1000_AUXSTMPH1);
5627		event.type = PTP_CLOCK_EXTTS;
5628		event.index = 1;
5629		event.timestamp = sec * 1000000000ULL + nsec;
5630		ptp_clock_event(adapter->ptp_clock, &event);
5631		ack |= TSINTR_AUTT1;
5632	}
5633
5634	/* acknowledge the interrupts */
5635	wr32(E1000_TSICR, ack);
5636}
5637
5638static irqreturn_t igb_msix_other(int irq, void *data)
5639{
5640	struct igb_adapter *adapter = data;
5641	struct e1000_hw *hw = &adapter->hw;
5642	u32 icr = rd32(E1000_ICR);
5643	/* reading ICR causes bit 31 of EICR to be cleared */
5644
5645	if (icr & E1000_ICR_DRSTA)
5646		schedule_work(&adapter->reset_task);
5647
5648	if (icr & E1000_ICR_DOUTSYNC) {
5649		/* HW is reporting DMA is out of sync */
5650		adapter->stats.doosync++;
5651		/* The DMA Out of Sync is also indication of a spoof event
5652		 * in IOV mode. Check the Wrong VM Behavior register to
5653		 * see if it is really a spoof event.
5654		 */
5655		igb_check_wvbr(adapter);
5656	}
5657
5658	/* Check for a mailbox event */
5659	if (icr & E1000_ICR_VMMB)
5660		igb_msg_task(adapter);
5661
5662	if (icr & E1000_ICR_LSC) {
5663		hw->mac.get_link_status = 1;
5664		/* guard against interrupt when we're going down */
5665		if (!test_bit(__IGB_DOWN, &adapter->state))
5666			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5667	}
5668
5669	if (icr & E1000_ICR_TS)
5670		igb_tsync_interrupt(adapter);
5671
5672	wr32(E1000_EIMS, adapter->eims_other);
5673
5674	return IRQ_HANDLED;
5675}
5676
5677static void igb_write_itr(struct igb_q_vector *q_vector)
5678{
5679	struct igb_adapter *adapter = q_vector->adapter;
5680	u32 itr_val = q_vector->itr_val & 0x7FFC;
5681
5682	if (!q_vector->set_itr)
5683		return;
5684
5685	if (!itr_val)
5686		itr_val = 0x4;
5687
5688	if (adapter->hw.mac.type == e1000_82575)
5689		itr_val |= itr_val << 16;
5690	else
5691		itr_val |= E1000_EITR_CNT_IGNR;
5692
5693	writel(itr_val, q_vector->itr_register);
5694	q_vector->set_itr = 0;
5695}
5696
5697static irqreturn_t igb_msix_ring(int irq, void *data)
5698{
5699	struct igb_q_vector *q_vector = data;
5700
5701	/* Write the ITR value calculated from the previous interrupt. */
5702	igb_write_itr(q_vector);
5703
5704	napi_schedule(&q_vector->napi);
5705
5706	return IRQ_HANDLED;
5707}
5708
5709#ifdef CONFIG_IGB_DCA
5710static void igb_update_tx_dca(struct igb_adapter *adapter,
5711			      struct igb_ring *tx_ring,
5712			      int cpu)
5713{
5714	struct e1000_hw *hw = &adapter->hw;
5715	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5716
5717	if (hw->mac.type != e1000_82575)
5718		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5719
5720	/* We can enable relaxed ordering for reads, but not writes when
5721	 * DCA is enabled.  This is due to a known issue in some chipsets
5722	 * which will cause the DCA tag to be cleared.
5723	 */
5724	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5725		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5726		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5727
5728	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5729}
5730
5731static void igb_update_rx_dca(struct igb_adapter *adapter,
5732			      struct igb_ring *rx_ring,
5733			      int cpu)
5734{
5735	struct e1000_hw *hw = &adapter->hw;
5736	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5737
5738	if (hw->mac.type != e1000_82575)
5739		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5740
5741	/* We can enable relaxed ordering for reads, but not writes when
5742	 * DCA is enabled.  This is due to a known issue in some chipsets
5743	 * which will cause the DCA tag to be cleared.
5744	 */
5745	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5746		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5747
5748	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5749}
5750
5751static void igb_update_dca(struct igb_q_vector *q_vector)
5752{
5753	struct igb_adapter *adapter = q_vector->adapter;
5754	int cpu = get_cpu();
5755
5756	if (q_vector->cpu == cpu)
5757		goto out_no_update;
5758
5759	if (q_vector->tx.ring)
5760		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5761
5762	if (q_vector->rx.ring)
5763		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5764
5765	q_vector->cpu = cpu;
5766out_no_update:
5767	put_cpu();
5768}
5769
5770static void igb_setup_dca(struct igb_adapter *adapter)
5771{
5772	struct e1000_hw *hw = &adapter->hw;
5773	int i;
5774
5775	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5776		return;
5777
5778	/* Always use CB2 mode, difference is masked in the CB driver. */
5779	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5780
5781	for (i = 0; i < adapter->num_q_vectors; i++) {
5782		adapter->q_vector[i]->cpu = -1;
5783		igb_update_dca(adapter->q_vector[i]);
5784	}
5785}
5786
5787static int __igb_notify_dca(struct device *dev, void *data)
5788{
5789	struct net_device *netdev = dev_get_drvdata(dev);
5790	struct igb_adapter *adapter = netdev_priv(netdev);
5791	struct pci_dev *pdev = adapter->pdev;
5792	struct e1000_hw *hw = &adapter->hw;
5793	unsigned long event = *(unsigned long *)data;
5794
5795	switch (event) {
5796	case DCA_PROVIDER_ADD:
5797		/* if already enabled, don't do it again */
5798		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5799			break;
5800		if (dca_add_requester(dev) == 0) {
5801			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5802			dev_info(&pdev->dev, "DCA enabled\n");
5803			igb_setup_dca(adapter);
5804			break;
5805		}
5806		/* Fall Through since DCA is disabled. */
5807	case DCA_PROVIDER_REMOVE:
5808		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5809			/* without this a class_device is left
5810			 * hanging around in the sysfs model
5811			 */
5812			dca_remove_requester(dev);
5813			dev_info(&pdev->dev, "DCA disabled\n");
5814			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5815			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5816		}
5817		break;
5818	}
5819
5820	return 0;
5821}
5822
5823static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5824			  void *p)
5825{
5826	int ret_val;
5827
5828	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5829					 __igb_notify_dca);
5830
5831	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5832}
5833#endif /* CONFIG_IGB_DCA */
5834
5835#ifdef CONFIG_PCI_IOV
5836static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5837{
5838	unsigned char mac_addr[ETH_ALEN];
5839
5840	eth_zero_addr(mac_addr);
5841	igb_set_vf_mac(adapter, vf, mac_addr);
5842
5843	/* By default spoof check is enabled for all VFs */
5844	adapter->vf_data[vf].spoofchk_enabled = true;
5845
 
 
 
5846	return 0;
5847}
5848
5849#endif
5850static void igb_ping_all_vfs(struct igb_adapter *adapter)
5851{
5852	struct e1000_hw *hw = &adapter->hw;
5853	u32 ping;
5854	int i;
5855
5856	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5857		ping = E1000_PF_CONTROL_MSG;
5858		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5859			ping |= E1000_VT_MSGTYPE_CTS;
5860		igb_write_mbx(hw, &ping, 1, i);
5861	}
5862}
5863
5864static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5865{
5866	struct e1000_hw *hw = &adapter->hw;
5867	u32 vmolr = rd32(E1000_VMOLR(vf));
5868	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5869
5870	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5871			    IGB_VF_FLAG_MULTI_PROMISC);
5872	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5873
5874	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5875		vmolr |= E1000_VMOLR_MPME;
5876		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5877		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5878	} else {
5879		/* if we have hashes and we are clearing a multicast promisc
5880		 * flag we need to write the hashes to the MTA as this step
5881		 * was previously skipped
5882		 */
5883		if (vf_data->num_vf_mc_hashes > 30) {
5884			vmolr |= E1000_VMOLR_MPME;
5885		} else if (vf_data->num_vf_mc_hashes) {
5886			int j;
5887
5888			vmolr |= E1000_VMOLR_ROMPE;
5889			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5890				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5891		}
5892	}
5893
5894	wr32(E1000_VMOLR(vf), vmolr);
5895
5896	/* there are flags left unprocessed, likely not supported */
5897	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5898		return -EINVAL;
5899
5900	return 0;
5901}
5902
5903static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5904				  u32 *msgbuf, u32 vf)
5905{
5906	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5907	u16 *hash_list = (u16 *)&msgbuf[1];
5908	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5909	int i;
5910
5911	/* salt away the number of multicast addresses assigned
5912	 * to this VF for later use to restore when the PF multi cast
5913	 * list changes
5914	 */
5915	vf_data->num_vf_mc_hashes = n;
5916
5917	/* only up to 30 hash values supported */
5918	if (n > 30)
5919		n = 30;
5920
5921	/* store the hashes for later use */
5922	for (i = 0; i < n; i++)
5923		vf_data->vf_mc_hashes[i] = hash_list[i];
5924
5925	/* Flush and reset the mta with the new values */
5926	igb_set_rx_mode(adapter->netdev);
5927
5928	return 0;
5929}
5930
5931static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5932{
5933	struct e1000_hw *hw = &adapter->hw;
5934	struct vf_data_storage *vf_data;
5935	int i, j;
5936
5937	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5938		u32 vmolr = rd32(E1000_VMOLR(i));
5939
5940		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5941
5942		vf_data = &adapter->vf_data[i];
5943
5944		if ((vf_data->num_vf_mc_hashes > 30) ||
5945		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5946			vmolr |= E1000_VMOLR_MPME;
5947		} else if (vf_data->num_vf_mc_hashes) {
5948			vmolr |= E1000_VMOLR_ROMPE;
5949			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5950				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5951		}
5952		wr32(E1000_VMOLR(i), vmolr);
5953	}
5954}
5955
5956static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5957{
5958	struct e1000_hw *hw = &adapter->hw;
5959	u32 pool_mask, vlvf_mask, i;
5960
5961	/* create mask for VF and other pools */
5962	pool_mask = E1000_VLVF_POOLSEL_MASK;
5963	vlvf_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5964
5965	/* drop PF from pool bits */
5966	pool_mask &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT +
5967			     adapter->vfs_allocated_count));
5968
5969	/* Find the vlan filter for this id */
5970	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
5971		u32 vlvf = rd32(E1000_VLVF(i));
5972		u32 vfta_mask, vid, vfta;
5973
5974		/* remove the vf from the pool */
5975		if (!(vlvf & vlvf_mask))
5976			continue;
5977
5978		/* clear out bit from VLVF */
5979		vlvf ^= vlvf_mask;
5980
5981		/* if other pools are present, just remove ourselves */
5982		if (vlvf & pool_mask)
5983			goto update_vlvfb;
5984
5985		/* if PF is present, leave VFTA */
5986		if (vlvf & E1000_VLVF_POOLSEL_MASK)
5987			goto update_vlvf;
5988
5989		vid = vlvf & E1000_VLVF_VLANID_MASK;
5990		vfta_mask = 1 << (vid % 32);
5991
5992		/* clear bit from VFTA */
5993		vfta = adapter->shadow_vfta[vid / 32];
5994		if (vfta & vfta_mask)
5995			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
5996update_vlvf:
5997		/* clear pool selection enable */
5998		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5999			vlvf &= E1000_VLVF_POOLSEL_MASK;
6000		else
6001			vlvf = 0;
6002update_vlvfb:
6003		/* clear pool bits */
6004		wr32(E1000_VLVF(i), vlvf);
6005	}
6006}
6007
6008static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6009{
6010	u32 vlvf;
6011	int idx;
6012
6013	/* short cut the special case */
6014	if (vlan == 0)
6015		return 0;
6016
6017	/* Search for the VLAN id in the VLVF entries */
6018	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6019		vlvf = rd32(E1000_VLVF(idx));
6020		if ((vlvf & VLAN_VID_MASK) == vlan)
6021			break;
6022	}
6023
6024	return idx;
6025}
6026
6027void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6028{
6029	struct e1000_hw *hw = &adapter->hw;
6030	u32 bits, pf_id;
6031	int idx;
6032
6033	idx = igb_find_vlvf_entry(hw, vid);
6034	if (!idx)
6035		return;
6036
6037	/* See if any other pools are set for this VLAN filter
6038	 * entry other than the PF.
6039	 */
6040	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6041	bits = ~(1 << pf_id) & E1000_VLVF_POOLSEL_MASK;
6042	bits &= rd32(E1000_VLVF(idx));
6043
6044	/* Disable the filter so this falls into the default pool. */
6045	if (!bits) {
6046		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6047			wr32(E1000_VLVF(idx), 1 << pf_id);
6048		else
6049			wr32(E1000_VLVF(idx), 0);
6050	}
6051}
6052
6053static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6054			   bool add, u32 vf)
6055{
6056	int pf_id = adapter->vfs_allocated_count;
6057	struct e1000_hw *hw = &adapter->hw;
6058	int err;
6059
6060	/* If VLAN overlaps with one the PF is currently monitoring make
6061	 * sure that we are able to allocate a VLVF entry.  This may be
6062	 * redundant but it guarantees PF will maintain visibility to
6063	 * the VLAN.
6064	 */
6065	if (add && test_bit(vid, adapter->active_vlans)) {
6066		err = igb_vfta_set(hw, vid, pf_id, true, false);
6067		if (err)
6068			return err;
6069	}
6070
6071	err = igb_vfta_set(hw, vid, vf, add, false);
6072
6073	if (add && !err)
6074		return err;
6075
6076	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6077	 * we may need to drop the PF pool bit in order to allow us to free
6078	 * up the VLVF resources.
6079	 */
6080	if (test_bit(vid, adapter->active_vlans) ||
6081	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6082		igb_update_pf_vlvf(adapter, vid);
6083
6084	return err;
6085}
6086
6087static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6088{
6089	struct e1000_hw *hw = &adapter->hw;
6090
6091	if (vid)
6092		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6093	else
6094		wr32(E1000_VMVIR(vf), 0);
6095}
6096
6097static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6098				u16 vlan, u8 qos)
6099{
6100	int err;
6101
6102	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6103	if (err)
6104		return err;
6105
6106	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6107	igb_set_vmolr(adapter, vf, !vlan);
6108
6109	/* revoke access to previous VLAN */
6110	if (vlan != adapter->vf_data[vf].pf_vlan)
6111		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6112				false, vf);
6113
6114	adapter->vf_data[vf].pf_vlan = vlan;
6115	adapter->vf_data[vf].pf_qos = qos;
6116	igb_set_vf_vlan_strip(adapter, vf, true);
6117	dev_info(&adapter->pdev->dev,
6118		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6119	if (test_bit(__IGB_DOWN, &adapter->state)) {
6120		dev_warn(&adapter->pdev->dev,
6121			 "The VF VLAN has been set, but the PF device is not up.\n");
6122		dev_warn(&adapter->pdev->dev,
6123			 "Bring the PF device up before attempting to use the VF device.\n");
6124	}
6125
6126	return err;
6127}
6128
6129static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6130{
6131	/* Restore tagless access via VLAN 0 */
6132	igb_set_vf_vlan(adapter, 0, true, vf);
6133
6134	igb_set_vmvir(adapter, 0, vf);
6135	igb_set_vmolr(adapter, vf, true);
6136
6137	/* Remove any PF assigned VLAN */
6138	if (adapter->vf_data[vf].pf_vlan)
6139		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6140				false, vf);
6141
6142	adapter->vf_data[vf].pf_vlan = 0;
6143	adapter->vf_data[vf].pf_qos = 0;
6144	igb_set_vf_vlan_strip(adapter, vf, false);
6145
6146	return 0;
6147}
6148
6149static int igb_ndo_set_vf_vlan(struct net_device *netdev,
6150			       int vf, u16 vlan, u8 qos)
6151{
6152	struct igb_adapter *adapter = netdev_priv(netdev);
6153
6154	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6155		return -EINVAL;
6156
 
 
 
6157	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6158			       igb_disable_port_vlan(adapter, vf);
6159}
6160
6161static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6162{
6163	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6164	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6165	int ret;
6166
6167	if (adapter->vf_data[vf].pf_vlan)
6168		return -1;
6169
6170	/* VLAN 0 is a special case, don't allow it to be removed */
6171	if (!vid && !add)
6172		return 0;
6173
6174	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6175	if (!ret)
6176		igb_set_vf_vlan_strip(adapter, vf, !!vid);
6177	return ret;
6178}
6179
6180static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6181{
6182	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6183
6184	/* clear flags - except flag that indicates PF has set the MAC */
6185	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6186	vf_data->last_nack = jiffies;
6187
6188	/* reset vlans for device */
6189	igb_clear_vf_vfta(adapter, vf);
6190	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6191	igb_set_vmvir(adapter, vf_data->pf_vlan |
6192			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6193	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6194	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6195
6196	/* reset multicast table array for vf */
6197	adapter->vf_data[vf].num_vf_mc_hashes = 0;
6198
6199	/* Flush and reset the mta with the new values */
6200	igb_set_rx_mode(adapter->netdev);
6201}
6202
6203static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6204{
6205	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6206
6207	/* clear mac address as we were hotplug removed/added */
6208	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6209		eth_zero_addr(vf_mac);
6210
6211	/* process remaining reset events */
6212	igb_vf_reset(adapter, vf);
6213}
6214
6215static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6216{
6217	struct e1000_hw *hw = &adapter->hw;
6218	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6219	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6220	u32 reg, msgbuf[3];
6221	u8 *addr = (u8 *)(&msgbuf[1]);
6222
6223	/* process all the same items cleared in a function level reset */
6224	igb_vf_reset(adapter, vf);
6225
6226	/* set vf mac address */
6227	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6228
6229	/* enable transmit and receive for vf */
6230	reg = rd32(E1000_VFTE);
6231	wr32(E1000_VFTE, reg | (1 << vf));
6232	reg = rd32(E1000_VFRE);
6233	wr32(E1000_VFRE, reg | (1 << vf));
6234
6235	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6236
6237	/* reply to reset with ack and vf mac address */
6238	if (!is_zero_ether_addr(vf_mac)) {
6239		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6240		memcpy(addr, vf_mac, ETH_ALEN);
6241	} else {
6242		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6243	}
6244	igb_write_mbx(hw, msgbuf, 3, vf);
6245}
6246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6247static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6248{
 
 
 
 
6249	/* The VF MAC Address is stored in a packed array of bytes
6250	 * starting at the second 32 bit word of the msg array
6251	 */
6252	unsigned char *addr = (char *)&msg[1];
6253	int err = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6254
6255	if (is_valid_ether_addr(addr))
6256		err = igb_set_vf_mac(adapter, vf, addr);
 
 
6257
6258	return err;
6259}
6260
6261static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6262{
6263	struct e1000_hw *hw = &adapter->hw;
6264	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6265	u32 msg = E1000_VT_MSGTYPE_NACK;
6266
6267	/* if device isn't clear to send it shouldn't be reading either */
6268	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6269	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6270		igb_write_mbx(hw, &msg, 1, vf);
6271		vf_data->last_nack = jiffies;
6272	}
6273}
6274
6275static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6276{
6277	struct pci_dev *pdev = adapter->pdev;
6278	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6279	struct e1000_hw *hw = &adapter->hw;
6280	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6281	s32 retval;
6282
6283	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6284
6285	if (retval) {
6286		/* if receive failed revoke VF CTS stats and restart init */
6287		dev_err(&pdev->dev, "Error receiving message from VF\n");
6288		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6289		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6290			return;
6291		goto out;
6292	}
6293
6294	/* this is a message we already processed, do nothing */
6295	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6296		return;
6297
6298	/* until the vf completes a reset it should not be
6299	 * allowed to start any configuration.
6300	 */
6301	if (msgbuf[0] == E1000_VF_RESET) {
 
6302		igb_vf_reset_msg(adapter, vf);
6303		return;
6304	}
6305
6306	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6307		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6308			return;
6309		retval = -1;
6310		goto out;
6311	}
6312
6313	switch ((msgbuf[0] & 0xFFFF)) {
6314	case E1000_VF_SET_MAC_ADDR:
6315		retval = -EINVAL;
6316		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6317			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6318		else
6319			dev_warn(&pdev->dev,
6320				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6321				 vf);
6322		break;
6323	case E1000_VF_SET_PROMISC:
6324		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6325		break;
6326	case E1000_VF_SET_MULTICAST:
6327		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6328		break;
6329	case E1000_VF_SET_LPE:
6330		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6331		break;
6332	case E1000_VF_SET_VLAN:
6333		retval = -1;
6334		if (vf_data->pf_vlan)
6335			dev_warn(&pdev->dev,
6336				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6337				 vf);
6338		else
6339			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6340		break;
6341	default:
6342		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6343		retval = -1;
6344		break;
6345	}
6346
6347	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6348out:
6349	/* notify the VF of the results of what it sent us */
6350	if (retval)
6351		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6352	else
6353		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6354
 
6355	igb_write_mbx(hw, msgbuf, 1, vf);
 
 
 
 
6356}
6357
6358static void igb_msg_task(struct igb_adapter *adapter)
6359{
6360	struct e1000_hw *hw = &adapter->hw;
 
6361	u32 vf;
6362
 
6363	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6364		/* process any reset requests */
6365		if (!igb_check_for_rst(hw, vf))
6366			igb_vf_reset_event(adapter, vf);
6367
6368		/* process any messages pending */
6369		if (!igb_check_for_msg(hw, vf))
6370			igb_rcv_msg_from_vf(adapter, vf);
6371
6372		/* process any acks */
6373		if (!igb_check_for_ack(hw, vf))
6374			igb_rcv_ack_from_vf(adapter, vf);
6375	}
 
6376}
6377
6378/**
6379 *  igb_set_uta - Set unicast filter table address
6380 *  @adapter: board private structure
6381 *  @set: boolean indicating if we are setting or clearing bits
6382 *
6383 *  The unicast table address is a register array of 32-bit registers.
6384 *  The table is meant to be used in a way similar to how the MTA is used
6385 *  however due to certain limitations in the hardware it is necessary to
6386 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6387 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6388 **/
6389static void igb_set_uta(struct igb_adapter *adapter, bool set)
6390{
6391	struct e1000_hw *hw = &adapter->hw;
6392	u32 uta = set ? ~0 : 0;
6393	int i;
6394
6395	/* we only need to do this if VMDq is enabled */
6396	if (!adapter->vfs_allocated_count)
6397		return;
6398
6399	for (i = hw->mac.uta_reg_count; i--;)
6400		array_wr32(E1000_UTA, i, uta);
6401}
6402
6403/**
6404 *  igb_intr_msi - Interrupt Handler
6405 *  @irq: interrupt number
6406 *  @data: pointer to a network interface device structure
6407 **/
6408static irqreturn_t igb_intr_msi(int irq, void *data)
6409{
6410	struct igb_adapter *adapter = data;
6411	struct igb_q_vector *q_vector = adapter->q_vector[0];
6412	struct e1000_hw *hw = &adapter->hw;
6413	/* read ICR disables interrupts using IAM */
6414	u32 icr = rd32(E1000_ICR);
6415
6416	igb_write_itr(q_vector);
6417
6418	if (icr & E1000_ICR_DRSTA)
6419		schedule_work(&adapter->reset_task);
6420
6421	if (icr & E1000_ICR_DOUTSYNC) {
6422		/* HW is reporting DMA is out of sync */
6423		adapter->stats.doosync++;
6424	}
6425
6426	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6427		hw->mac.get_link_status = 1;
6428		if (!test_bit(__IGB_DOWN, &adapter->state))
6429			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6430	}
6431
6432	if (icr & E1000_ICR_TS)
6433		igb_tsync_interrupt(adapter);
6434
6435	napi_schedule(&q_vector->napi);
6436
6437	return IRQ_HANDLED;
6438}
6439
6440/**
6441 *  igb_intr - Legacy Interrupt Handler
6442 *  @irq: interrupt number
6443 *  @data: pointer to a network interface device structure
6444 **/
6445static irqreturn_t igb_intr(int irq, void *data)
6446{
6447	struct igb_adapter *adapter = data;
6448	struct igb_q_vector *q_vector = adapter->q_vector[0];
6449	struct e1000_hw *hw = &adapter->hw;
6450	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6451	 * need for the IMC write
6452	 */
6453	u32 icr = rd32(E1000_ICR);
6454
6455	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6456	 * not set, then the adapter didn't send an interrupt
6457	 */
6458	if (!(icr & E1000_ICR_INT_ASSERTED))
6459		return IRQ_NONE;
6460
6461	igb_write_itr(q_vector);
6462
6463	if (icr & E1000_ICR_DRSTA)
6464		schedule_work(&adapter->reset_task);
6465
6466	if (icr & E1000_ICR_DOUTSYNC) {
6467		/* HW is reporting DMA is out of sync */
6468		adapter->stats.doosync++;
6469	}
6470
6471	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6472		hw->mac.get_link_status = 1;
6473		/* guard against interrupt when we're going down */
6474		if (!test_bit(__IGB_DOWN, &adapter->state))
6475			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6476	}
6477
6478	if (icr & E1000_ICR_TS)
6479		igb_tsync_interrupt(adapter);
6480
6481	napi_schedule(&q_vector->napi);
6482
6483	return IRQ_HANDLED;
6484}
6485
6486static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6487{
6488	struct igb_adapter *adapter = q_vector->adapter;
6489	struct e1000_hw *hw = &adapter->hw;
6490
6491	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6492	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6493		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6494			igb_set_itr(q_vector);
6495		else
6496			igb_update_ring_itr(q_vector);
6497	}
6498
6499	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6500		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6501			wr32(E1000_EIMS, q_vector->eims_value);
6502		else
6503			igb_irq_enable(adapter);
6504	}
6505}
6506
6507/**
6508 *  igb_poll - NAPI Rx polling callback
6509 *  @napi: napi polling structure
6510 *  @budget: count of how many packets we should handle
6511 **/
6512static int igb_poll(struct napi_struct *napi, int budget)
6513{
6514	struct igb_q_vector *q_vector = container_of(napi,
6515						     struct igb_q_vector,
6516						     napi);
6517	bool clean_complete = true;
6518	int work_done = 0;
6519
6520#ifdef CONFIG_IGB_DCA
6521	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6522		igb_update_dca(q_vector);
6523#endif
6524	if (q_vector->tx.ring)
6525		clean_complete = igb_clean_tx_irq(q_vector);
6526
6527	if (q_vector->rx.ring) {
6528		int cleaned = igb_clean_rx_irq(q_vector, budget);
6529
6530		work_done += cleaned;
6531		clean_complete &= (cleaned < budget);
 
6532	}
6533
6534	/* If all work not completed, return budget and keep polling */
6535	if (!clean_complete)
6536		return budget;
6537
6538	/* If not enough Rx work done, exit the polling mode */
6539	napi_complete_done(napi, work_done);
6540	igb_ring_irq_enable(q_vector);
 
 
6541
6542	return 0;
6543}
6544
6545/**
6546 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6547 *  @q_vector: pointer to q_vector containing needed info
 
6548 *
6549 *  returns true if ring is completely cleaned
6550 **/
6551static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6552{
6553	struct igb_adapter *adapter = q_vector->adapter;
6554	struct igb_ring *tx_ring = q_vector->tx.ring;
6555	struct igb_tx_buffer *tx_buffer;
6556	union e1000_adv_tx_desc *tx_desc;
6557	unsigned int total_bytes = 0, total_packets = 0;
6558	unsigned int budget = q_vector->tx.work_limit;
6559	unsigned int i = tx_ring->next_to_clean;
6560
6561	if (test_bit(__IGB_DOWN, &adapter->state))
6562		return true;
6563
6564	tx_buffer = &tx_ring->tx_buffer_info[i];
6565	tx_desc = IGB_TX_DESC(tx_ring, i);
6566	i -= tx_ring->count;
6567
6568	do {
6569		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6570
6571		/* if next_to_watch is not set then there is no work pending */
6572		if (!eop_desc)
6573			break;
6574
6575		/* prevent any other reads prior to eop_desc */
6576		read_barrier_depends();
6577
6578		/* if DD is not set pending work has not been completed */
6579		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6580			break;
6581
6582		/* clear next_to_watch to prevent false hangs */
6583		tx_buffer->next_to_watch = NULL;
6584
6585		/* update the statistics for this packet */
6586		total_bytes += tx_buffer->bytecount;
6587		total_packets += tx_buffer->gso_segs;
6588
6589		/* free the skb */
6590		dev_consume_skb_any(tx_buffer->skb);
 
 
 
6591
6592		/* unmap skb header data */
6593		dma_unmap_single(tx_ring->dev,
6594				 dma_unmap_addr(tx_buffer, dma),
6595				 dma_unmap_len(tx_buffer, len),
6596				 DMA_TO_DEVICE);
6597
6598		/* clear tx_buffer data */
6599		tx_buffer->skb = NULL;
6600		dma_unmap_len_set(tx_buffer, len, 0);
6601
6602		/* clear last DMA location and unmap remaining buffers */
6603		while (tx_desc != eop_desc) {
6604			tx_buffer++;
6605			tx_desc++;
6606			i++;
6607			if (unlikely(!i)) {
6608				i -= tx_ring->count;
6609				tx_buffer = tx_ring->tx_buffer_info;
6610				tx_desc = IGB_TX_DESC(tx_ring, 0);
6611			}
6612
6613			/* unmap any remaining paged data */
6614			if (dma_unmap_len(tx_buffer, len)) {
6615				dma_unmap_page(tx_ring->dev,
6616					       dma_unmap_addr(tx_buffer, dma),
6617					       dma_unmap_len(tx_buffer, len),
6618					       DMA_TO_DEVICE);
6619				dma_unmap_len_set(tx_buffer, len, 0);
6620			}
6621		}
6622
6623		/* move us one more past the eop_desc for start of next pkt */
6624		tx_buffer++;
6625		tx_desc++;
6626		i++;
6627		if (unlikely(!i)) {
6628			i -= tx_ring->count;
6629			tx_buffer = tx_ring->tx_buffer_info;
6630			tx_desc = IGB_TX_DESC(tx_ring, 0);
6631		}
6632
6633		/* issue prefetch for next Tx descriptor */
6634		prefetch(tx_desc);
6635
6636		/* update budget accounting */
6637		budget--;
6638	} while (likely(budget));
6639
6640	netdev_tx_completed_queue(txring_txq(tx_ring),
6641				  total_packets, total_bytes);
6642	i += tx_ring->count;
6643	tx_ring->next_to_clean = i;
6644	u64_stats_update_begin(&tx_ring->tx_syncp);
6645	tx_ring->tx_stats.bytes += total_bytes;
6646	tx_ring->tx_stats.packets += total_packets;
6647	u64_stats_update_end(&tx_ring->tx_syncp);
6648	q_vector->tx.total_bytes += total_bytes;
6649	q_vector->tx.total_packets += total_packets;
6650
6651	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6652		struct e1000_hw *hw = &adapter->hw;
6653
6654		/* Detect a transmit hang in hardware, this serializes the
6655		 * check with the clearing of time_stamp and movement of i
6656		 */
6657		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6658		if (tx_buffer->next_to_watch &&
6659		    time_after(jiffies, tx_buffer->time_stamp +
6660			       (adapter->tx_timeout_factor * HZ)) &&
6661		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6662
6663			/* detected Tx unit hang */
6664			dev_err(tx_ring->dev,
6665				"Detected Tx Unit Hang\n"
6666				"  Tx Queue             <%d>\n"
6667				"  TDH                  <%x>\n"
6668				"  TDT                  <%x>\n"
6669				"  next_to_use          <%x>\n"
6670				"  next_to_clean        <%x>\n"
6671				"buffer_info[next_to_clean]\n"
6672				"  time_stamp           <%lx>\n"
6673				"  next_to_watch        <%p>\n"
6674				"  jiffies              <%lx>\n"
6675				"  desc.status          <%x>\n",
6676				tx_ring->queue_index,
6677				rd32(E1000_TDH(tx_ring->reg_idx)),
6678				readl(tx_ring->tail),
6679				tx_ring->next_to_use,
6680				tx_ring->next_to_clean,
6681				tx_buffer->time_stamp,
6682				tx_buffer->next_to_watch,
6683				jiffies,
6684				tx_buffer->next_to_watch->wb.status);
6685			netif_stop_subqueue(tx_ring->netdev,
6686					    tx_ring->queue_index);
6687
6688			/* we are about to reset, no point in enabling stuff */
6689			return true;
6690		}
6691	}
6692
6693#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6694	if (unlikely(total_packets &&
6695	    netif_carrier_ok(tx_ring->netdev) &&
6696	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6697		/* Make sure that anybody stopping the queue after this
6698		 * sees the new next_to_clean.
6699		 */
6700		smp_mb();
6701		if (__netif_subqueue_stopped(tx_ring->netdev,
6702					     tx_ring->queue_index) &&
6703		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6704			netif_wake_subqueue(tx_ring->netdev,
6705					    tx_ring->queue_index);
6706
6707			u64_stats_update_begin(&tx_ring->tx_syncp);
6708			tx_ring->tx_stats.restart_queue++;
6709			u64_stats_update_end(&tx_ring->tx_syncp);
6710		}
6711	}
6712
6713	return !!budget;
6714}
6715
6716/**
6717 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6718 *  @rx_ring: rx descriptor ring to store buffers on
6719 *  @old_buff: donor buffer to have page reused
6720 *
6721 *  Synchronizes page for reuse by the adapter
6722 **/
6723static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6724			      struct igb_rx_buffer *old_buff)
6725{
6726	struct igb_rx_buffer *new_buff;
6727	u16 nta = rx_ring->next_to_alloc;
6728
6729	new_buff = &rx_ring->rx_buffer_info[nta];
6730
6731	/* update, and store next to alloc */
6732	nta++;
6733	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6734
6735	/* transfer page from old buffer to new buffer */
6736	*new_buff = *old_buff;
6737
6738	/* sync the buffer for use by the device */
6739	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6740					 old_buff->page_offset,
6741					 IGB_RX_BUFSZ,
6742					 DMA_FROM_DEVICE);
6743}
6744
6745static inline bool igb_page_is_reserved(struct page *page)
 
6746{
6747	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6748}
6749
6750static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6751				  struct page *page,
6752				  unsigned int truesize)
6753{
6754	/* avoid re-using remote pages */
6755	if (unlikely(igb_page_is_reserved(page)))
6756		return false;
6757
6758#if (PAGE_SIZE < 8192)
6759	/* if we are only owner of page we can reuse it */
6760	if (unlikely(page_count(page) != 1))
6761		return false;
6762
6763	/* flip page offset to other buffer */
6764	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6765#else
6766	/* move offset up to the next cache line */
6767	rx_buffer->page_offset += truesize;
6768
6769	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6770		return false;
6771#endif
6772
6773	/* Even if we own the page, we are not allowed to use atomic_set()
6774	 * This would break get_page_unless_zero() users.
6775	 */
6776	page_ref_inc(page);
 
 
 
 
6777
6778	return true;
6779}
6780
6781/**
6782 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6783 *  @rx_ring: rx descriptor ring to transact packets on
6784 *  @rx_buffer: buffer containing page to add
6785 *  @rx_desc: descriptor containing length of buffer written by hardware
6786 *  @skb: sk_buff to place the data into
 
6787 *
6788 *  This function will add the data contained in rx_buffer->page to the skb.
6789 *  This is done either through a direct copy if the data in the buffer is
6790 *  less than the skb header size, otherwise it will just attach the page as
6791 *  a frag to the skb.
6792 *
6793 *  The function will then update the page offset if necessary and return
6794 *  true if the buffer can be reused by the adapter.
6795 **/
6796static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6797			    struct igb_rx_buffer *rx_buffer,
6798			    union e1000_adv_rx_desc *rx_desc,
6799			    struct sk_buff *skb)
6800{
6801	struct page *page = rx_buffer->page;
6802	unsigned char *va = page_address(page) + rx_buffer->page_offset;
6803	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6804#if (PAGE_SIZE < 8192)
6805	unsigned int truesize = IGB_RX_BUFSZ;
 
 
 
 
 
 
 
 
 
6806#else
6807	unsigned int truesize = SKB_DATA_ALIGN(size);
6808#endif
6809	unsigned int pull_len;
6810
6811	if (unlikely(skb_is_nonlinear(skb)))
6812		goto add_tail_frag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6813
6814	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6815		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6816		va += IGB_TS_HDR_LEN;
6817		size -= IGB_TS_HDR_LEN;
 
 
 
 
 
 
 
 
 
 
 
 
6818	}
6819
6820	if (likely(size <= IGB_RX_HDR_LEN)) {
6821		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6822
6823		/* page is not reserved, we can reuse buffer as-is */
6824		if (likely(!igb_page_is_reserved(page)))
6825			return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6826
6827		/* this page cannot be reused so discard it */
6828		__free_page(page);
6829		return false;
6830	}
6831
6832	/* we need the header to contain the greater of either ETH_HLEN or
6833	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6834	 */
6835	pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6836
6837	/* align pull length to size of long to optimize memcpy performance */
6838	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6839
6840	/* update all of the pointers */
6841	va += pull_len;
6842	size -= pull_len;
6843
6844add_tail_frag:
6845	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6846			(unsigned long)va & ~PAGE_MASK, size, truesize);
 
 
 
6847
6848	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6849}
6850
6851static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6852					   union e1000_adv_rx_desc *rx_desc,
6853					   struct sk_buff *skb)
6854{
6855	struct igb_rx_buffer *rx_buffer;
6856	struct page *page;
 
6857
6858	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6859	page = rx_buffer->page;
6860	prefetchw(page);
6861
6862	if (likely(!skb)) {
6863		void *page_addr = page_address(page) +
6864				  rx_buffer->page_offset;
6865
6866		/* prefetch first cache line of first page */
6867		prefetch(page_addr);
6868#if L1_CACHE_BYTES < 128
6869		prefetch(page_addr + L1_CACHE_BYTES);
6870#endif
6871
6872		/* allocate a skb to store the frags */
6873		skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6874		if (unlikely(!skb)) {
6875			rx_ring->rx_stats.alloc_failed++;
6876			return NULL;
6877		}
6878
6879		/* we will be copying header into skb->data in
6880		 * pskb_may_pull so it is in our interest to prefetch
6881		 * it now to avoid a possible cache miss
6882		 */
6883		prefetchw(skb->data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6884	}
 
 
 
6885
6886	/* we are reusing so sync this buffer for CPU use */
6887	dma_sync_single_range_for_cpu(rx_ring->dev,
6888				      rx_buffer->dma,
6889				      rx_buffer->page_offset,
6890				      IGB_RX_BUFSZ,
6891				      DMA_FROM_DEVICE);
6892
6893	/* pull page into skb */
6894	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6895		/* hand second half of page back to the ring */
6896		igb_reuse_rx_page(rx_ring, rx_buffer);
6897	} else {
6898		/* we are not reusing the buffer so unmap it */
6899		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6900			       PAGE_SIZE, DMA_FROM_DEVICE);
6901	}
 
6902
6903	/* clear contents of rx_buffer */
6904	rx_buffer->page = NULL;
6905
6906	return skb;
 
 
 
 
 
 
6907}
6908
6909static inline void igb_rx_checksum(struct igb_ring *ring,
6910				   union e1000_adv_rx_desc *rx_desc,
6911				   struct sk_buff *skb)
6912{
6913	skb_checksum_none_assert(skb);
6914
6915	/* Ignore Checksum bit is set */
6916	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6917		return;
6918
6919	/* Rx checksum disabled via ethtool */
6920	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6921		return;
6922
6923	/* TCP/UDP checksum error bit is set */
6924	if (igb_test_staterr(rx_desc,
6925			     E1000_RXDEXT_STATERR_TCPE |
6926			     E1000_RXDEXT_STATERR_IPE)) {
6927		/* work around errata with sctp packets where the TCPE aka
6928		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6929		 * packets, (aka let the stack check the crc32c)
6930		 */
6931		if (!((skb->len == 60) &&
6932		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6933			u64_stats_update_begin(&ring->rx_syncp);
6934			ring->rx_stats.csum_err++;
6935			u64_stats_update_end(&ring->rx_syncp);
6936		}
6937		/* let the stack verify checksum errors */
6938		return;
6939	}
6940	/* It must be a TCP or UDP packet with a valid checksum */
6941	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6942				      E1000_RXD_STAT_UDPCS))
6943		skb->ip_summed = CHECKSUM_UNNECESSARY;
6944
6945	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6946		le32_to_cpu(rx_desc->wb.upper.status_error));
6947}
6948
6949static inline void igb_rx_hash(struct igb_ring *ring,
6950			       union e1000_adv_rx_desc *rx_desc,
6951			       struct sk_buff *skb)
6952{
6953	if (ring->netdev->features & NETIF_F_RXHASH)
6954		skb_set_hash(skb,
6955			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6956			     PKT_HASH_TYPE_L3);
6957}
6958
6959/**
6960 *  igb_is_non_eop - process handling of non-EOP buffers
6961 *  @rx_ring: Rx ring being processed
6962 *  @rx_desc: Rx descriptor for current buffer
6963 *  @skb: current socket buffer containing buffer in progress
6964 *
6965 *  This function updates next to clean.  If the buffer is an EOP buffer
6966 *  this function exits returning false, otherwise it will place the
6967 *  sk_buff in the next buffer to be chained and return true indicating
6968 *  that this is in fact a non-EOP buffer.
6969 **/
6970static bool igb_is_non_eop(struct igb_ring *rx_ring,
6971			   union e1000_adv_rx_desc *rx_desc)
6972{
6973	u32 ntc = rx_ring->next_to_clean + 1;
6974
6975	/* fetch, update, and store next to clean */
6976	ntc = (ntc < rx_ring->count) ? ntc : 0;
6977	rx_ring->next_to_clean = ntc;
6978
6979	prefetch(IGB_RX_DESC(rx_ring, ntc));
6980
6981	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6982		return false;
6983
6984	return true;
6985}
6986
6987/**
6988 *  igb_cleanup_headers - Correct corrupted or empty headers
6989 *  @rx_ring: rx descriptor ring packet is being transacted on
6990 *  @rx_desc: pointer to the EOP Rx descriptor
6991 *  @skb: pointer to current skb being fixed
6992 *
6993 *  Address the case where we are pulling data in on pages only
6994 *  and as such no data is present in the skb header.
6995 *
6996 *  In addition if skb is not at least 60 bytes we need to pad it so that
6997 *  it is large enough to qualify as a valid Ethernet frame.
6998 *
6999 *  Returns true if an error was encountered and skb was freed.
7000 **/
7001static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7002				union e1000_adv_rx_desc *rx_desc,
7003				struct sk_buff *skb)
7004{
 
 
 
 
7005	if (unlikely((igb_test_staterr(rx_desc,
7006				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7007		struct net_device *netdev = rx_ring->netdev;
7008		if (!(netdev->features & NETIF_F_RXALL)) {
7009			dev_kfree_skb_any(skb);
7010			return true;
7011		}
7012	}
7013
7014	/* if eth_skb_pad returns an error the skb was freed */
7015	if (eth_skb_pad(skb))
7016		return true;
7017
7018	return false;
7019}
7020
7021/**
7022 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7023 *  @rx_ring: rx descriptor ring packet is being transacted on
7024 *  @rx_desc: pointer to the EOP Rx descriptor
7025 *  @skb: pointer to current skb being populated
7026 *
7027 *  This function checks the ring, descriptor, and packet information in
7028 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7029 *  other fields within the skb.
7030 **/
7031static void igb_process_skb_fields(struct igb_ring *rx_ring,
7032				   union e1000_adv_rx_desc *rx_desc,
7033				   struct sk_buff *skb)
7034{
7035	struct net_device *dev = rx_ring->netdev;
7036
7037	igb_rx_hash(rx_ring, rx_desc, skb);
7038
7039	igb_rx_checksum(rx_ring, rx_desc, skb);
7040
7041	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7042	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7043		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7044
7045	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7046	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7047		u16 vid;
7048
7049		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7050		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7051			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7052		else
7053			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7054
7055		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7056	}
7057
7058	skb_record_rx_queue(skb, rx_ring->queue_index);
7059
7060	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7061}
7062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7063static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7064{
 
7065	struct igb_ring *rx_ring = q_vector->rx.ring;
7066	struct sk_buff *skb = rx_ring->skb;
7067	unsigned int total_bytes = 0, total_packets = 0;
7068	u16 cleaned_count = igb_desc_unused(rx_ring);
 
 
 
 
 
 
 
 
 
 
7069
7070	while (likely(total_packets < budget)) {
7071		union e1000_adv_rx_desc *rx_desc;
 
 
 
 
 
7072
7073		/* return some buffers to hardware, one at a time is too slow */
7074		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7075			igb_alloc_rx_buffers(rx_ring, cleaned_count);
7076			cleaned_count = 0;
7077		}
7078
7079		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7080
7081		if (!rx_desc->wb.upper.status_error)
7082			break;
7083
7084		/* This memory barrier is needed to keep us from reading
7085		 * any other fields out of the rx_desc until we know the
7086		 * descriptor has been written back
7087		 */
7088		dma_rmb();
7089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7090		/* retrieve a buffer from the ring */
7091		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7092
7093		/* exit if we failed to retrieve a buffer */
7094		if (!skb)
 
 
7095			break;
 
7096
 
7097		cleaned_count++;
7098
7099		/* fetch next buffer in frame if non-eop */
7100		if (igb_is_non_eop(rx_ring, rx_desc))
7101			continue;
7102
7103		/* verify the packet layout is correct */
7104		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7105			skb = NULL;
7106			continue;
7107		}
7108
7109		/* probably a little skewed due to removing CRC */
7110		total_bytes += skb->len;
7111
7112		/* populate checksum, timestamp, VLAN, and protocol */
7113		igb_process_skb_fields(rx_ring, rx_desc, skb);
7114
7115		napi_gro_receive(&q_vector->napi, skb);
7116
7117		/* reset skb pointer */
7118		skb = NULL;
7119
7120		/* update budget accounting */
7121		total_packets++;
7122	}
7123
7124	/* place incomplete frames back on ring for completion */
7125	rx_ring->skb = skb;
7126
 
 
 
 
 
 
 
 
 
7127	u64_stats_update_begin(&rx_ring->rx_syncp);
7128	rx_ring->rx_stats.packets += total_packets;
7129	rx_ring->rx_stats.bytes += total_bytes;
7130	u64_stats_update_end(&rx_ring->rx_syncp);
7131	q_vector->rx.total_packets += total_packets;
7132	q_vector->rx.total_bytes += total_bytes;
7133
7134	if (cleaned_count)
7135		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7136
7137	return total_packets;
7138}
7139
7140static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7141				  struct igb_rx_buffer *bi)
7142{
7143	struct page *page = bi->page;
7144	dma_addr_t dma;
7145
7146	/* since we are recycling buffers we should seldom need to alloc */
7147	if (likely(page))
7148		return true;
7149
7150	/* alloc new page for storage */
7151	page = dev_alloc_page();
7152	if (unlikely(!page)) {
7153		rx_ring->rx_stats.alloc_failed++;
7154		return false;
7155	}
7156
7157	/* map page for use */
7158	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 
 
 
7159
7160	/* if mapping failed free memory back to system since
7161	 * there isn't much point in holding memory we can't use
7162	 */
7163	if (dma_mapping_error(rx_ring->dev, dma)) {
7164		__free_page(page);
7165
7166		rx_ring->rx_stats.alloc_failed++;
7167		return false;
7168	}
7169
7170	bi->dma = dma;
7171	bi->page = page;
7172	bi->page_offset = 0;
 
 
7173
7174	return true;
7175}
7176
7177/**
7178 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7179 *  @adapter: address of board private structure
 
7180 **/
7181void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7182{
7183	union e1000_adv_rx_desc *rx_desc;
7184	struct igb_rx_buffer *bi;
7185	u16 i = rx_ring->next_to_use;
 
7186
7187	/* nothing to do */
7188	if (!cleaned_count)
7189		return;
7190
7191	rx_desc = IGB_RX_DESC(rx_ring, i);
7192	bi = &rx_ring->rx_buffer_info[i];
7193	i -= rx_ring->count;
7194
 
 
7195	do {
7196		if (!igb_alloc_mapped_page(rx_ring, bi))
7197			break;
7198
 
 
 
 
 
7199		/* Refresh the desc even if buffer_addrs didn't change
7200		 * because each write-back erases this info.
7201		 */
7202		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7203
7204		rx_desc++;
7205		bi++;
7206		i++;
7207		if (unlikely(!i)) {
7208			rx_desc = IGB_RX_DESC(rx_ring, 0);
7209			bi = rx_ring->rx_buffer_info;
7210			i -= rx_ring->count;
7211		}
7212
7213		/* clear the status bits for the next_to_use descriptor */
7214		rx_desc->wb.upper.status_error = 0;
7215
7216		cleaned_count--;
7217	} while (cleaned_count);
7218
7219	i += rx_ring->count;
7220
7221	if (rx_ring->next_to_use != i) {
7222		/* record the next descriptor to use */
7223		rx_ring->next_to_use = i;
7224
7225		/* update next to alloc since we have filled the ring */
7226		rx_ring->next_to_alloc = i;
7227
7228		/* Force memory writes to complete before letting h/w
7229		 * know there are new descriptors to fetch.  (Only
7230		 * applicable for weak-ordered memory model archs,
7231		 * such as IA-64).
7232		 */
7233		wmb();
7234		writel(i, rx_ring->tail);
7235	}
7236}
7237
7238/**
7239 * igb_mii_ioctl -
7240 * @netdev:
7241 * @ifreq:
7242 * @cmd:
7243 **/
7244static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7245{
7246	struct igb_adapter *adapter = netdev_priv(netdev);
7247	struct mii_ioctl_data *data = if_mii(ifr);
7248
7249	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7250		return -EOPNOTSUPP;
7251
7252	switch (cmd) {
7253	case SIOCGMIIPHY:
7254		data->phy_id = adapter->hw.phy.addr;
7255		break;
7256	case SIOCGMIIREG:
7257		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7258				     &data->val_out))
7259			return -EIO;
7260		break;
7261	case SIOCSMIIREG:
7262	default:
7263		return -EOPNOTSUPP;
7264	}
7265	return 0;
7266}
7267
7268/**
7269 * igb_ioctl -
7270 * @netdev:
7271 * @ifreq:
7272 * @cmd:
7273 **/
7274static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7275{
7276	switch (cmd) {
7277	case SIOCGMIIPHY:
7278	case SIOCGMIIREG:
7279	case SIOCSMIIREG:
7280		return igb_mii_ioctl(netdev, ifr, cmd);
7281	case SIOCGHWTSTAMP:
7282		return igb_ptp_get_ts_config(netdev, ifr);
7283	case SIOCSHWTSTAMP:
7284		return igb_ptp_set_ts_config(netdev, ifr);
7285	default:
7286		return -EOPNOTSUPP;
7287	}
7288}
7289
7290void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7291{
7292	struct igb_adapter *adapter = hw->back;
7293
7294	pci_read_config_word(adapter->pdev, reg, value);
7295}
7296
7297void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7298{
7299	struct igb_adapter *adapter = hw->back;
7300
7301	pci_write_config_word(adapter->pdev, reg, *value);
7302}
7303
7304s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7305{
7306	struct igb_adapter *adapter = hw->back;
7307
7308	if (pcie_capability_read_word(adapter->pdev, reg, value))
7309		return -E1000_ERR_CONFIG;
7310
7311	return 0;
7312}
7313
7314s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7315{
7316	struct igb_adapter *adapter = hw->back;
7317
7318	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7319		return -E1000_ERR_CONFIG;
7320
7321	return 0;
7322}
7323
7324static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7325{
7326	struct igb_adapter *adapter = netdev_priv(netdev);
7327	struct e1000_hw *hw = &adapter->hw;
7328	u32 ctrl, rctl;
7329	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7330
7331	if (enable) {
7332		/* enable VLAN tag insert/strip */
7333		ctrl = rd32(E1000_CTRL);
7334		ctrl |= E1000_CTRL_VME;
7335		wr32(E1000_CTRL, ctrl);
7336
7337		/* Disable CFI check */
7338		rctl = rd32(E1000_RCTL);
7339		rctl &= ~E1000_RCTL_CFIEN;
7340		wr32(E1000_RCTL, rctl);
7341	} else {
7342		/* disable VLAN tag insert/strip */
7343		ctrl = rd32(E1000_CTRL);
7344		ctrl &= ~E1000_CTRL_VME;
7345		wr32(E1000_CTRL, ctrl);
7346	}
7347
7348	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7349}
7350
7351static int igb_vlan_rx_add_vid(struct net_device *netdev,
7352			       __be16 proto, u16 vid)
7353{
7354	struct igb_adapter *adapter = netdev_priv(netdev);
7355	struct e1000_hw *hw = &adapter->hw;
7356	int pf_id = adapter->vfs_allocated_count;
7357
7358	/* add the filter since PF can receive vlans w/o entry in vlvf */
7359	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7360		igb_vfta_set(hw, vid, pf_id, true, !!vid);
7361
7362	set_bit(vid, adapter->active_vlans);
7363
7364	return 0;
7365}
7366
7367static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7368				__be16 proto, u16 vid)
7369{
7370	struct igb_adapter *adapter = netdev_priv(netdev);
7371	int pf_id = adapter->vfs_allocated_count;
7372	struct e1000_hw *hw = &adapter->hw;
7373
7374	/* remove VID from filter table */
7375	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7376		igb_vfta_set(hw, vid, pf_id, false, true);
7377
7378	clear_bit(vid, adapter->active_vlans);
7379
7380	return 0;
7381}
7382
7383static void igb_restore_vlan(struct igb_adapter *adapter)
7384{
7385	u16 vid = 1;
7386
7387	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7388	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7389
7390	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7391		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7392}
7393
7394int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7395{
7396	struct pci_dev *pdev = adapter->pdev;
7397	struct e1000_mac_info *mac = &adapter->hw.mac;
7398
7399	mac->autoneg = 0;
7400
7401	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7402	 * for the switch() below to work
7403	 */
7404	if ((spd & 1) || (dplx & ~1))
7405		goto err_inval;
7406
7407	/* Fiber NIC's only allow 1000 gbps Full duplex
7408	 * and 100Mbps Full duplex for 100baseFx sfp
7409	 */
7410	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7411		switch (spd + dplx) {
7412		case SPEED_10 + DUPLEX_HALF:
7413		case SPEED_10 + DUPLEX_FULL:
7414		case SPEED_100 + DUPLEX_HALF:
7415			goto err_inval;
7416		default:
7417			break;
7418		}
7419	}
7420
7421	switch (spd + dplx) {
7422	case SPEED_10 + DUPLEX_HALF:
7423		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7424		break;
7425	case SPEED_10 + DUPLEX_FULL:
7426		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7427		break;
7428	case SPEED_100 + DUPLEX_HALF:
7429		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7430		break;
7431	case SPEED_100 + DUPLEX_FULL:
7432		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7433		break;
7434	case SPEED_1000 + DUPLEX_FULL:
7435		mac->autoneg = 1;
7436		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7437		break;
7438	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7439	default:
7440		goto err_inval;
7441	}
7442
7443	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7444	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7445
7446	return 0;
7447
7448err_inval:
7449	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7450	return -EINVAL;
7451}
7452
7453static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7454			  bool runtime)
7455{
7456	struct net_device *netdev = pci_get_drvdata(pdev);
7457	struct igb_adapter *adapter = netdev_priv(netdev);
7458	struct e1000_hw *hw = &adapter->hw;
7459	u32 ctrl, rctl, status;
7460	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7461#ifdef CONFIG_PM
7462	int retval = 0;
7463#endif
7464
 
7465	netif_device_detach(netdev);
7466
7467	if (netif_running(netdev))
7468		__igb_close(netdev, true);
7469
 
 
7470	igb_clear_interrupt_scheme(adapter);
7471
7472#ifdef CONFIG_PM
7473	retval = pci_save_state(pdev);
7474	if (retval)
7475		return retval;
7476#endif
7477
7478	status = rd32(E1000_STATUS);
7479	if (status & E1000_STATUS_LU)
7480		wufc &= ~E1000_WUFC_LNKC;
7481
7482	if (wufc) {
7483		igb_setup_rctl(adapter);
7484		igb_set_rx_mode(netdev);
7485
7486		/* turn on all-multi mode if wake on multicast is enabled */
7487		if (wufc & E1000_WUFC_MC) {
7488			rctl = rd32(E1000_RCTL);
7489			rctl |= E1000_RCTL_MPE;
7490			wr32(E1000_RCTL, rctl);
7491		}
7492
7493		ctrl = rd32(E1000_CTRL);
7494		/* advertise wake from D3Cold */
7495		#define E1000_CTRL_ADVD3WUC 0x00100000
7496		/* phy power management enable */
7497		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7498		ctrl |= E1000_CTRL_ADVD3WUC;
7499		wr32(E1000_CTRL, ctrl);
7500
7501		/* Allow time for pending master requests to run */
7502		igb_disable_pcie_master(hw);
7503
7504		wr32(E1000_WUC, E1000_WUC_PME_EN);
7505		wr32(E1000_WUFC, wufc);
7506	} else {
7507		wr32(E1000_WUC, 0);
7508		wr32(E1000_WUFC, 0);
7509	}
7510
7511	*enable_wake = wufc || adapter->en_mng_pt;
7512	if (!*enable_wake)
7513		igb_power_down_link(adapter);
7514	else
7515		igb_power_up_link(adapter);
7516
 
 
 
7517	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7518	 * would have already happened in close and is redundant.
7519	 */
7520	igb_release_hw_control(adapter);
7521
7522	pci_disable_device(pdev);
7523
7524	return 0;
7525}
7526
7527#ifdef CONFIG_PM
7528#ifdef CONFIG_PM_SLEEP
7529static int igb_suspend(struct device *dev)
7530{
7531	int retval;
7532	bool wake;
7533	struct pci_dev *pdev = to_pci_dev(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7534
7535	retval = __igb_shutdown(pdev, &wake, 0);
7536	if (retval)
7537		return retval;
7538
7539	if (wake) {
7540		pci_prepare_to_sleep(pdev);
7541	} else {
7542		pci_wake_from_d3(pdev, false);
7543		pci_set_power_state(pdev, PCI_D3hot);
7544	}
7545
7546	return 0;
 
 
7547}
7548#endif /* CONFIG_PM_SLEEP */
7549
7550static int igb_resume(struct device *dev)
7551{
7552	struct pci_dev *pdev = to_pci_dev(dev);
7553	struct net_device *netdev = pci_get_drvdata(pdev);
7554	struct igb_adapter *adapter = netdev_priv(netdev);
7555	struct e1000_hw *hw = &adapter->hw;
7556	u32 err;
7557
7558	pci_set_power_state(pdev, PCI_D0);
7559	pci_restore_state(pdev);
7560	pci_save_state(pdev);
7561
7562	if (!pci_device_is_present(pdev))
7563		return -ENODEV;
7564	err = pci_enable_device_mem(pdev);
7565	if (err) {
7566		dev_err(&pdev->dev,
7567			"igb: Cannot enable PCI device from suspend\n");
7568		return err;
7569	}
7570	pci_set_master(pdev);
7571
7572	pci_enable_wake(pdev, PCI_D3hot, 0);
7573	pci_enable_wake(pdev, PCI_D3cold, 0);
7574
7575	if (igb_init_interrupt_scheme(adapter, true)) {
7576		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7577		rtnl_unlock();
7578		return -ENOMEM;
7579	}
7580
7581	igb_reset(adapter);
7582
7583	/* let the f/w know that the h/w is now under the control of the
7584	 * driver.
7585	 */
7586	igb_get_hw_control(adapter);
7587
 
 
 
 
7588	wr32(E1000_WUS, ~0);
7589
7590	if (netdev->flags & IFF_UP) {
7591		rtnl_lock();
 
7592		err = __igb_open(netdev, true);
 
 
 
 
7593		rtnl_unlock();
7594		if (err)
7595			return err;
7596	}
7597
7598	netif_device_attach(netdev);
7599	return 0;
 
 
 
 
7600}
7601
7602static int igb_runtime_idle(struct device *dev)
7603{
7604	struct pci_dev *pdev = to_pci_dev(dev);
7605	struct net_device *netdev = pci_get_drvdata(pdev);
7606	struct igb_adapter *adapter = netdev_priv(netdev);
7607
7608	if (!igb_has_link(adapter))
7609		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7610
7611	return -EBUSY;
7612}
7613
7614static int igb_runtime_suspend(struct device *dev)
7615{
7616	struct pci_dev *pdev = to_pci_dev(dev);
7617	int retval;
7618	bool wake;
7619
7620	retval = __igb_shutdown(pdev, &wake, 1);
7621	if (retval)
7622		return retval;
7623
7624	if (wake) {
7625		pci_prepare_to_sleep(pdev);
7626	} else {
7627		pci_wake_from_d3(pdev, false);
7628		pci_set_power_state(pdev, PCI_D3hot);
7629	}
7630
7631	return 0;
7632}
7633
7634static int igb_runtime_resume(struct device *dev)
7635{
7636	return igb_resume(dev);
7637}
7638#endif /* CONFIG_PM */
7639
7640static void igb_shutdown(struct pci_dev *pdev)
7641{
7642	bool wake;
7643
7644	__igb_shutdown(pdev, &wake, 0);
7645
7646	if (system_state == SYSTEM_POWER_OFF) {
7647		pci_wake_from_d3(pdev, wake);
7648		pci_set_power_state(pdev, PCI_D3hot);
7649	}
7650}
7651
 
 
7652#ifdef CONFIG_PCI_IOV
7653static int igb_sriov_reinit(struct pci_dev *dev)
7654{
7655	struct net_device *netdev = pci_get_drvdata(dev);
7656	struct igb_adapter *adapter = netdev_priv(netdev);
7657	struct pci_dev *pdev = adapter->pdev;
7658
7659	rtnl_lock();
7660
7661	if (netif_running(netdev))
7662		igb_close(netdev);
7663	else
7664		igb_reset(adapter);
7665
7666	igb_clear_interrupt_scheme(adapter);
7667
7668	igb_init_queue_configuration(adapter);
7669
7670	if (igb_init_interrupt_scheme(adapter, true)) {
7671		rtnl_unlock();
7672		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7673		return -ENOMEM;
7674	}
7675
7676	if (netif_running(netdev))
7677		igb_open(netdev);
7678
7679	rtnl_unlock();
7680
7681	return 0;
7682}
7683
7684static int igb_pci_disable_sriov(struct pci_dev *dev)
7685{
7686	int err = igb_disable_sriov(dev);
7687
7688	if (!err)
7689		err = igb_sriov_reinit(dev);
7690
7691	return err;
7692}
7693
7694static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7695{
7696	int err = igb_enable_sriov(dev, num_vfs);
7697
7698	if (err)
7699		goto out;
7700
7701	err = igb_sriov_reinit(dev);
7702	if (!err)
7703		return num_vfs;
7704
7705out:
7706	return err;
7707}
7708
7709#endif
7710static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7711{
7712#ifdef CONFIG_PCI_IOV
7713	if (num_vfs == 0)
7714		return igb_pci_disable_sriov(dev);
7715	else
7716		return igb_pci_enable_sriov(dev, num_vfs);
7717#endif
7718	return 0;
7719}
7720
7721#ifdef CONFIG_NET_POLL_CONTROLLER
7722/* Polling 'interrupt' - used by things like netconsole to send skbs
7723 * without having to re-enable interrupts. It's not called while
7724 * the interrupt routine is executing.
7725 */
7726static void igb_netpoll(struct net_device *netdev)
7727{
7728	struct igb_adapter *adapter = netdev_priv(netdev);
7729	struct e1000_hw *hw = &adapter->hw;
7730	struct igb_q_vector *q_vector;
7731	int i;
7732
7733	for (i = 0; i < adapter->num_q_vectors; i++) {
7734		q_vector = adapter->q_vector[i];
7735		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7736			wr32(E1000_EIMC, q_vector->eims_value);
7737		else
7738			igb_irq_disable(adapter);
7739		napi_schedule(&q_vector->napi);
7740	}
7741}
7742#endif /* CONFIG_NET_POLL_CONTROLLER */
7743
7744/**
7745 *  igb_io_error_detected - called when PCI error is detected
7746 *  @pdev: Pointer to PCI device
7747 *  @state: The current pci connection state
7748 *
7749 *  This function is called after a PCI bus error affecting
7750 *  this device has been detected.
7751 **/
7752static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7753					      pci_channel_state_t state)
7754{
7755	struct net_device *netdev = pci_get_drvdata(pdev);
7756	struct igb_adapter *adapter = netdev_priv(netdev);
7757
 
 
 
 
 
7758	netif_device_detach(netdev);
7759
7760	if (state == pci_channel_io_perm_failure)
7761		return PCI_ERS_RESULT_DISCONNECT;
7762
7763	if (netif_running(netdev))
7764		igb_down(adapter);
7765	pci_disable_device(pdev);
7766
7767	/* Request a slot slot reset. */
7768	return PCI_ERS_RESULT_NEED_RESET;
7769}
7770
7771/**
7772 *  igb_io_slot_reset - called after the pci bus has been reset.
7773 *  @pdev: Pointer to PCI device
7774 *
7775 *  Restart the card from scratch, as if from a cold-boot. Implementation
7776 *  resembles the first-half of the igb_resume routine.
7777 **/
7778static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7779{
7780	struct net_device *netdev = pci_get_drvdata(pdev);
7781	struct igb_adapter *adapter = netdev_priv(netdev);
7782	struct e1000_hw *hw = &adapter->hw;
7783	pci_ers_result_t result;
7784	int err;
7785
7786	if (pci_enable_device_mem(pdev)) {
7787		dev_err(&pdev->dev,
7788			"Cannot re-enable PCI device after reset.\n");
7789		result = PCI_ERS_RESULT_DISCONNECT;
7790	} else {
7791		pci_set_master(pdev);
7792		pci_restore_state(pdev);
7793		pci_save_state(pdev);
7794
7795		pci_enable_wake(pdev, PCI_D3hot, 0);
7796		pci_enable_wake(pdev, PCI_D3cold, 0);
7797
 
 
 
 
 
7798		igb_reset(adapter);
7799		wr32(E1000_WUS, ~0);
7800		result = PCI_ERS_RESULT_RECOVERED;
7801	}
7802
7803	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7804	if (err) {
7805		dev_err(&pdev->dev,
7806			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7807			err);
7808		/* non-fatal, continue */
7809	}
7810
7811	return result;
7812}
7813
7814/**
7815 *  igb_io_resume - called when traffic can start flowing again.
7816 *  @pdev: Pointer to PCI device
7817 *
7818 *  This callback is called when the error recovery driver tells us that
7819 *  its OK to resume normal operation. Implementation resembles the
7820 *  second-half of the igb_resume routine.
7821 */
7822static void igb_io_resume(struct pci_dev *pdev)
7823{
7824	struct net_device *netdev = pci_get_drvdata(pdev);
7825	struct igb_adapter *adapter = netdev_priv(netdev);
7826
7827	if (netif_running(netdev)) {
7828		if (igb_up(adapter)) {
7829			dev_err(&pdev->dev, "igb_up failed after reset\n");
7830			return;
7831		}
7832	}
7833
7834	netif_device_attach(netdev);
7835
7836	/* let the f/w know that the h/w is now under the control of the
7837	 * driver.
7838	 */
7839	igb_get_hw_control(adapter);
7840}
7841
7842static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7843			     u8 qsel)
 
 
 
 
7844{
7845	struct e1000_hw *hw = &adapter->hw;
7846	u32 rar_low, rar_high;
 
7847
7848	/* HW expects these in little endian so we reverse the byte order
7849	 * from network order (big endian) to CPU endian
 
 
7850	 */
7851	rar_low = le32_to_cpup((__be32 *)(addr));
7852	rar_high = le16_to_cpup((__be16 *)(addr + 4));
7853
7854	/* Indicate to hardware the Address is Valid. */
7855	rar_high |= E1000_RAH_AV;
 
 
 
 
 
7856
7857	if (hw->mac.type == e1000_82575)
7858		rar_high |= E1000_RAH_POOL_1 * qsel;
7859	else
7860		rar_high |= E1000_RAH_POOL_1 << qsel;
 
 
 
 
 
 
 
 
 
 
 
 
7861
7862	wr32(E1000_RAL(index), rar_low);
7863	wrfl();
7864	wr32(E1000_RAH(index), rar_high);
7865	wrfl();
7866}
7867
7868static int igb_set_vf_mac(struct igb_adapter *adapter,
7869			  int vf, unsigned char *mac_addr)
7870{
7871	struct e1000_hw *hw = &adapter->hw;
7872	/* VF MAC addresses start at end of receive addresses and moves
7873	 * towards the first, as a result a collision should not be possible
7874	 */
7875	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
 
7876
7877	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7878
7879	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
 
 
7880
7881	return 0;
7882}
7883
7884static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7885{
7886	struct igb_adapter *adapter = netdev_priv(netdev);
7887	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7888		return -EINVAL;
7889	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7890	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7891	dev_info(&adapter->pdev->dev,
7892		 "Reload the VF driver to make this change effective.");
7893	if (test_bit(__IGB_DOWN, &adapter->state)) {
7894		dev_warn(&adapter->pdev->dev,
7895			 "The VF MAC address has been set, but the PF device is not up.\n");
7896		dev_warn(&adapter->pdev->dev,
7897			 "Bring the PF device up before attempting to use the VF device.\n");
7898	}
7899	return igb_set_vf_mac(adapter, vf, mac);
7900}
7901
7902static int igb_link_mbps(int internal_link_speed)
7903{
7904	switch (internal_link_speed) {
7905	case SPEED_100:
7906		return 100;
7907	case SPEED_1000:
7908		return 1000;
7909	default:
7910		return 0;
7911	}
7912}
7913
7914static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7915				  int link_speed)
7916{
7917	int rf_dec, rf_int;
7918	u32 bcnrc_val;
7919
7920	if (tx_rate != 0) {
7921		/* Calculate the rate factor values to set */
7922		rf_int = link_speed / tx_rate;
7923		rf_dec = (link_speed - (rf_int * tx_rate));
7924		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7925			 tx_rate;
7926
7927		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7928		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7929			      E1000_RTTBCNRC_RF_INT_MASK);
7930		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7931	} else {
7932		bcnrc_val = 0;
7933	}
7934
7935	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7936	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7937	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7938	 */
7939	wr32(E1000_RTTBCNRM, 0x14);
7940	wr32(E1000_RTTBCNRC, bcnrc_val);
7941}
7942
7943static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7944{
7945	int actual_link_speed, i;
7946	bool reset_rate = false;
7947
7948	/* VF TX rate limit was not set or not supported */
7949	if ((adapter->vf_rate_link_speed == 0) ||
7950	    (adapter->hw.mac.type != e1000_82576))
7951		return;
7952
7953	actual_link_speed = igb_link_mbps(adapter->link_speed);
7954	if (actual_link_speed != adapter->vf_rate_link_speed) {
7955		reset_rate = true;
7956		adapter->vf_rate_link_speed = 0;
7957		dev_info(&adapter->pdev->dev,
7958			 "Link speed has been changed. VF Transmit rate is disabled\n");
7959	}
7960
7961	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7962		if (reset_rate)
7963			adapter->vf_data[i].tx_rate = 0;
7964
7965		igb_set_vf_rate_limit(&adapter->hw, i,
7966				      adapter->vf_data[i].tx_rate,
7967				      actual_link_speed);
7968	}
7969}
7970
7971static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7972			     int min_tx_rate, int max_tx_rate)
7973{
7974	struct igb_adapter *adapter = netdev_priv(netdev);
7975	struct e1000_hw *hw = &adapter->hw;
7976	int actual_link_speed;
7977
7978	if (hw->mac.type != e1000_82576)
7979		return -EOPNOTSUPP;
7980
7981	if (min_tx_rate)
7982		return -EINVAL;
7983
7984	actual_link_speed = igb_link_mbps(adapter->link_speed);
7985	if ((vf >= adapter->vfs_allocated_count) ||
7986	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7987	    (max_tx_rate < 0) ||
7988	    (max_tx_rate > actual_link_speed))
7989		return -EINVAL;
7990
7991	adapter->vf_rate_link_speed = actual_link_speed;
7992	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7993	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7994
7995	return 0;
7996}
7997
7998static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7999				   bool setting)
8000{
8001	struct igb_adapter *adapter = netdev_priv(netdev);
8002	struct e1000_hw *hw = &adapter->hw;
8003	u32 reg_val, reg_offset;
8004
8005	if (!adapter->vfs_allocated_count)
8006		return -EOPNOTSUPP;
8007
8008	if (vf >= adapter->vfs_allocated_count)
8009		return -EINVAL;
8010
8011	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8012	reg_val = rd32(reg_offset);
8013	if (setting)
8014		reg_val |= ((1 << vf) |
8015			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
8016	else
8017		reg_val &= ~((1 << vf) |
8018			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
8019	wr32(reg_offset, reg_val);
8020
8021	adapter->vf_data[vf].spoofchk_enabled = setting;
8022	return 0;
8023}
8024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8025static int igb_ndo_get_vf_config(struct net_device *netdev,
8026				 int vf, struct ifla_vf_info *ivi)
8027{
8028	struct igb_adapter *adapter = netdev_priv(netdev);
8029	if (vf >= adapter->vfs_allocated_count)
8030		return -EINVAL;
8031	ivi->vf = vf;
8032	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8033	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8034	ivi->min_tx_rate = 0;
8035	ivi->vlan = adapter->vf_data[vf].pf_vlan;
8036	ivi->qos = adapter->vf_data[vf].pf_qos;
8037	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
 
8038	return 0;
8039}
8040
8041static void igb_vmm_control(struct igb_adapter *adapter)
8042{
8043	struct e1000_hw *hw = &adapter->hw;
8044	u32 reg;
8045
8046	switch (hw->mac.type) {
8047	case e1000_82575:
8048	case e1000_i210:
8049	case e1000_i211:
8050	case e1000_i354:
8051	default:
8052		/* replication is not supported for 82575 */
8053		return;
8054	case e1000_82576:
8055		/* notify HW that the MAC is adding vlan tags */
8056		reg = rd32(E1000_DTXCTL);
8057		reg |= E1000_DTXCTL_VLAN_ADDED;
8058		wr32(E1000_DTXCTL, reg);
8059		/* Fall through */
8060	case e1000_82580:
8061		/* enable replication vlan tag stripping */
8062		reg = rd32(E1000_RPLOLR);
8063		reg |= E1000_RPLOLR_STRVLAN;
8064		wr32(E1000_RPLOLR, reg);
8065		/* Fall through */
8066	case e1000_i350:
8067		/* none of the above registers are supported by i350 */
8068		break;
8069	}
8070
8071	if (adapter->vfs_allocated_count) {
8072		igb_vmdq_set_loopback_pf(hw, true);
8073		igb_vmdq_set_replication_pf(hw, true);
8074		igb_vmdq_set_anti_spoofing_pf(hw, true,
8075					      adapter->vfs_allocated_count);
8076	} else {
8077		igb_vmdq_set_loopback_pf(hw, false);
8078		igb_vmdq_set_replication_pf(hw, false);
8079	}
8080}
8081
8082static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8083{
8084	struct e1000_hw *hw = &adapter->hw;
8085	u32 dmac_thr;
8086	u16 hwm;
 
8087
8088	if (hw->mac.type > e1000_82580) {
8089		if (adapter->flags & IGB_FLAG_DMAC) {
8090			u32 reg;
8091
8092			/* force threshold to 0. */
8093			wr32(E1000_DMCTXTH, 0);
8094
8095			/* DMA Coalescing high water mark needs to be greater
8096			 * than the Rx threshold. Set hwm to PBA - max frame
8097			 * size in 16B units, capping it at PBA - 6KB.
8098			 */
8099			hwm = 64 * (pba - 6);
8100			reg = rd32(E1000_FCRTC);
8101			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8102			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8103				& E1000_FCRTC_RTH_COAL_MASK);
8104			wr32(E1000_FCRTC, reg);
8105
8106			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8107			 * frame size, capping it at PBA - 10KB.
8108			 */
8109			dmac_thr = pba - 10;
8110			reg = rd32(E1000_DMACR);
8111			reg &= ~E1000_DMACR_DMACTHR_MASK;
8112			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8113				& E1000_DMACR_DMACTHR_MASK);
8114
8115			/* transition to L0x or L1 if available..*/
8116			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8117
8118			/* watchdog timer= +-1000 usec in 32usec intervals */
8119			reg |= (1000 >> 5);
8120
8121			/* Disable BMC-to-OS Watchdog Enable */
8122			if (hw->mac.type != e1000_i354)
8123				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8124
8125			wr32(E1000_DMACR, reg);
8126
8127			/* no lower threshold to disable
8128			 * coalescing(smart fifb)-UTRESH=0
8129			 */
8130			wr32(E1000_DMCRTRH, 0);
8131
8132			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8133
8134			wr32(E1000_DMCTLX, reg);
8135
8136			/* free space in tx packet buffer to wake from
8137			 * DMA coal
8138			 */
8139			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8140			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
 
8141
8142			/* make low power state decision controlled
8143			 * by DMA coal
8144			 */
8145			reg = rd32(E1000_PCIEMISC);
8146			reg &= ~E1000_PCIEMISC_LX_DECISION;
8147			wr32(E1000_PCIEMISC, reg);
8148		} /* endif adapter->dmac is not disabled */
8149	} else if (hw->mac.type == e1000_82580) {
8150		u32 reg = rd32(E1000_PCIEMISC);
8151
8152		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8153		wr32(E1000_DMACR, 0);
8154	}
8155}
8156
8157/**
8158 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8159 *  @hw: pointer to hardware structure
8160 *  @byte_offset: byte offset to read
8161 *  @dev_addr: device address
8162 *  @data: value read
8163 *
8164 *  Performs byte read operation over I2C interface at
8165 *  a specified device address.
8166 **/
8167s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8168		      u8 dev_addr, u8 *data)
8169{
8170	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8171	struct i2c_client *this_client = adapter->i2c_client;
8172	s32 status;
8173	u16 swfw_mask = 0;
8174
8175	if (!this_client)
8176		return E1000_ERR_I2C;
8177
8178	swfw_mask = E1000_SWFW_PHY0_SM;
8179
8180	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8181		return E1000_ERR_SWFW_SYNC;
8182
8183	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8184	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8185
8186	if (status < 0)
8187		return E1000_ERR_I2C;
8188	else {
8189		*data = status;
8190		return 0;
8191	}
8192}
8193
8194/**
8195 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8196 *  @hw: pointer to hardware structure
8197 *  @byte_offset: byte offset to write
8198 *  @dev_addr: device address
8199 *  @data: value to write
8200 *
8201 *  Performs byte write operation over I2C interface at
8202 *  a specified device address.
8203 **/
8204s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8205		       u8 dev_addr, u8 data)
8206{
8207	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8208	struct i2c_client *this_client = adapter->i2c_client;
8209	s32 status;
8210	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8211
8212	if (!this_client)
8213		return E1000_ERR_I2C;
8214
8215	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8216		return E1000_ERR_SWFW_SYNC;
8217	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8218	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8219
8220	if (status)
8221		return E1000_ERR_I2C;
8222	else
8223		return 0;
8224
8225}
8226
8227int igb_reinit_queues(struct igb_adapter *adapter)
8228{
8229	struct net_device *netdev = adapter->netdev;
8230	struct pci_dev *pdev = adapter->pdev;
8231	int err = 0;
8232
8233	if (netif_running(netdev))
8234		igb_close(netdev);
8235
8236	igb_reset_interrupt_capability(adapter);
8237
8238	if (igb_init_interrupt_scheme(adapter, true)) {
8239		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8240		return -ENOMEM;
8241	}
8242
8243	if (netif_running(netdev))
8244		err = igb_open(netdev);
8245
8246	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8247}
8248/* igb_main.c */