Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
    1// SPDX-License-Identifier: GPL-2.0
    2/* Copyright(c) 2007 - 2018 Intel Corporation. */
    3
    4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    5
    6#include <linux/module.h>
    7#include <linux/types.h>
    8#include <linux/init.h>
    9#include <linux/bitops.h>
   10#include <linux/vmalloc.h>
   11#include <linux/pagemap.h>
   12#include <linux/netdevice.h>
   13#include <linux/ipv6.h>
   14#include <linux/slab.h>
   15#include <net/checksum.h>
   16#include <net/ip6_checksum.h>
   17#include <net/pkt_sched.h>
   18#include <net/pkt_cls.h>
   19#include <linux/net_tstamp.h>
   20#include <linux/mii.h>
   21#include <linux/ethtool.h>
   22#include <linux/if.h>
   23#include <linux/if_vlan.h>
   24#include <linux/pci.h>
   25#include <linux/delay.h>
   26#include <linux/interrupt.h>
   27#include <linux/ip.h>
   28#include <linux/tcp.h>
   29#include <linux/sctp.h>
   30#include <linux/if_ether.h>
   31#include <linux/prefetch.h>
   32#include <linux/bpf.h>
   33#include <linux/bpf_trace.h>
   34#include <linux/pm_runtime.h>
   35#include <linux/etherdevice.h>
   36#ifdef CONFIG_IGB_DCA
   37#include <linux/dca.h>
   38#endif
   39#include <linux/i2c.h>
   40#include "igb.h"
   41
   42enum queue_mode {
   43	QUEUE_MODE_STRICT_PRIORITY,
   44	QUEUE_MODE_STREAM_RESERVATION,
   45};
   46
   47enum tx_queue_prio {
   48	TX_QUEUE_PRIO_HIGH,
   49	TX_QUEUE_PRIO_LOW,
   50};
   51
   52char igb_driver_name[] = "igb";
   53static const char igb_driver_string[] =
   54				"Intel(R) Gigabit Ethernet Network Driver";
   55static const char igb_copyright[] =
   56				"Copyright (c) 2007-2014 Intel Corporation.";
   57
   58static const struct e1000_info *igb_info_tbl[] = {
   59	[board_82575] = &e1000_82575_info,
   60};
   61
   62static const struct pci_device_id igb_pci_tbl[] = {
   63	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
   64	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
   65	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
   66	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
   67	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
   68	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
   69	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
   70	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
   71	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
   72	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
   73	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
   74	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
   75	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
   76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
   77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
   78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
   79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
   80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
   81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
   82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
   83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
   84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
   85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
   86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
   87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
   88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
   89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
   90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
   91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
   92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
   93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
   94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
   95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
   96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
   97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
   98	/* required last entry */
   99	{0, }
  100};
  101
  102MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
  103
  104static int igb_setup_all_tx_resources(struct igb_adapter *);
  105static int igb_setup_all_rx_resources(struct igb_adapter *);
  106static void igb_free_all_tx_resources(struct igb_adapter *);
  107static void igb_free_all_rx_resources(struct igb_adapter *);
  108static void igb_setup_mrqc(struct igb_adapter *);
  109static int igb_probe(struct pci_dev *, const struct pci_device_id *);
  110static void igb_remove(struct pci_dev *pdev);
  111static void igb_init_queue_configuration(struct igb_adapter *adapter);
  112static int igb_sw_init(struct igb_adapter *);
  113int igb_open(struct net_device *);
  114int igb_close(struct net_device *);
  115static void igb_configure(struct igb_adapter *);
  116static void igb_configure_tx(struct igb_adapter *);
  117static void igb_configure_rx(struct igb_adapter *);
  118static void igb_clean_all_tx_rings(struct igb_adapter *);
  119static void igb_clean_all_rx_rings(struct igb_adapter *);
  120static void igb_clean_tx_ring(struct igb_ring *);
  121static void igb_clean_rx_ring(struct igb_ring *);
  122static void igb_set_rx_mode(struct net_device *);
  123static void igb_update_phy_info(struct timer_list *);
  124static void igb_watchdog(struct timer_list *);
  125static void igb_watchdog_task(struct work_struct *);
  126static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
  127static void igb_get_stats64(struct net_device *dev,
  128			    struct rtnl_link_stats64 *stats);
  129static int igb_change_mtu(struct net_device *, int);
  130static int igb_set_mac(struct net_device *, void *);
  131static void igb_set_uta(struct igb_adapter *adapter, bool set);
  132static irqreturn_t igb_intr(int irq, void *);
  133static irqreturn_t igb_intr_msi(int irq, void *);
  134static irqreturn_t igb_msix_other(int irq, void *);
  135static irqreturn_t igb_msix_ring(int irq, void *);
  136#ifdef CONFIG_IGB_DCA
  137static void igb_update_dca(struct igb_q_vector *);
  138static void igb_setup_dca(struct igb_adapter *);
  139#endif /* CONFIG_IGB_DCA */
  140static int igb_poll(struct napi_struct *, int);
  141static bool igb_clean_tx_irq(struct igb_q_vector *, int);
  142static int igb_clean_rx_irq(struct igb_q_vector *, int);
  143static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
  144static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
  145static void igb_reset_task(struct work_struct *);
  146static void igb_vlan_mode(struct net_device *netdev,
  147			  netdev_features_t features);
  148static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
  149static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
  150static void igb_restore_vlan(struct igb_adapter *);
  151static void igb_rar_set_index(struct igb_adapter *, u32);
  152static void igb_ping_all_vfs(struct igb_adapter *);
  153static void igb_msg_task(struct igb_adapter *);
  154static void igb_vmm_control(struct igb_adapter *);
  155static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
  156static void igb_flush_mac_table(struct igb_adapter *);
  157static int igb_available_rars(struct igb_adapter *, u8);
  158static void igb_set_default_mac_filter(struct igb_adapter *);
  159static int igb_uc_sync(struct net_device *, const unsigned char *);
  160static int igb_uc_unsync(struct net_device *, const unsigned char *);
  161static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
  162static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
  163static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  164			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
  165static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
  166static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  167				   bool setting);
  168static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
  169				bool setting);
  170static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
  171				 struct ifla_vf_info *ivi);
  172static void igb_check_vf_rate_limit(struct igb_adapter *);
  173static void igb_nfc_filter_exit(struct igb_adapter *adapter);
  174static void igb_nfc_filter_restore(struct igb_adapter *adapter);
  175
  176#ifdef CONFIG_PCI_IOV
  177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
  178static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
  179#endif
  180
  181static int igb_suspend(struct device *);
  182static int igb_resume(struct device *);
  183static int igb_runtime_suspend(struct device *dev);
  184static int igb_runtime_resume(struct device *dev);
  185static int igb_runtime_idle(struct device *dev);
  186#ifdef CONFIG_PM
  187static const struct dev_pm_ops igb_pm_ops = {
  188	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
  189	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
  190			igb_runtime_idle)
  191};
  192#endif
  193static void igb_shutdown(struct pci_dev *);
  194static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
  195#ifdef CONFIG_IGB_DCA
  196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
  197static struct notifier_block dca_notifier = {
  198	.notifier_call	= igb_notify_dca,
  199	.next		= NULL,
  200	.priority	= 0
  201};
  202#endif
  203#ifdef CONFIG_PCI_IOV
  204static unsigned int max_vfs;
  205module_param(max_vfs, uint, 0444);
  206MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
  207#endif /* CONFIG_PCI_IOV */
  208
  209static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
  210		     pci_channel_state_t);
  211static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
  212static void igb_io_resume(struct pci_dev *);
  213
  214static const struct pci_error_handlers igb_err_handler = {
  215	.error_detected = igb_io_error_detected,
  216	.slot_reset = igb_io_slot_reset,
  217	.resume = igb_io_resume,
  218};
  219
  220static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
  221
  222static struct pci_driver igb_driver = {
  223	.name     = igb_driver_name,
  224	.id_table = igb_pci_tbl,
  225	.probe    = igb_probe,
  226	.remove   = igb_remove,
  227#ifdef CONFIG_PM
  228	.driver.pm = &igb_pm_ops,
  229#endif
  230	.shutdown = igb_shutdown,
  231	.sriov_configure = igb_pci_sriov_configure,
  232	.err_handler = &igb_err_handler
  233};
  234
  235MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
  236MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
  237MODULE_LICENSE("GPL v2");
  238
  239#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  240static int debug = -1;
  241module_param(debug, int, 0);
  242MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  243
  244struct igb_reg_info {
  245	u32 ofs;
  246	char *name;
  247};
  248
  249static const struct igb_reg_info igb_reg_info_tbl[] = {
  250
  251	/* General Registers */
  252	{E1000_CTRL, "CTRL"},
  253	{E1000_STATUS, "STATUS"},
  254	{E1000_CTRL_EXT, "CTRL_EXT"},
  255
  256	/* Interrupt Registers */
  257	{E1000_ICR, "ICR"},
  258
  259	/* RX Registers */
  260	{E1000_RCTL, "RCTL"},
  261	{E1000_RDLEN(0), "RDLEN"},
  262	{E1000_RDH(0), "RDH"},
  263	{E1000_RDT(0), "RDT"},
  264	{E1000_RXDCTL(0), "RXDCTL"},
  265	{E1000_RDBAL(0), "RDBAL"},
  266	{E1000_RDBAH(0), "RDBAH"},
  267
  268	/* TX Registers */
  269	{E1000_TCTL, "TCTL"},
  270	{E1000_TDBAL(0), "TDBAL"},
  271	{E1000_TDBAH(0), "TDBAH"},
  272	{E1000_TDLEN(0), "TDLEN"},
  273	{E1000_TDH(0), "TDH"},
  274	{E1000_TDT(0), "TDT"},
  275	{E1000_TXDCTL(0), "TXDCTL"},
  276	{E1000_TDFH, "TDFH"},
  277	{E1000_TDFT, "TDFT"},
  278	{E1000_TDFHS, "TDFHS"},
  279	{E1000_TDFPC, "TDFPC"},
  280
  281	/* List Terminator */
  282	{}
  283};
  284
  285/* igb_regdump - register printout routine */
  286static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
  287{
  288	int n = 0;
  289	char rname[16];
  290	u32 regs[8];
  291
  292	switch (reginfo->ofs) {
  293	case E1000_RDLEN(0):
  294		for (n = 0; n < 4; n++)
  295			regs[n] = rd32(E1000_RDLEN(n));
  296		break;
  297	case E1000_RDH(0):
  298		for (n = 0; n < 4; n++)
  299			regs[n] = rd32(E1000_RDH(n));
  300		break;
  301	case E1000_RDT(0):
  302		for (n = 0; n < 4; n++)
  303			regs[n] = rd32(E1000_RDT(n));
  304		break;
  305	case E1000_RXDCTL(0):
  306		for (n = 0; n < 4; n++)
  307			regs[n] = rd32(E1000_RXDCTL(n));
  308		break;
  309	case E1000_RDBAL(0):
  310		for (n = 0; n < 4; n++)
  311			regs[n] = rd32(E1000_RDBAL(n));
  312		break;
  313	case E1000_RDBAH(0):
  314		for (n = 0; n < 4; n++)
  315			regs[n] = rd32(E1000_RDBAH(n));
  316		break;
  317	case E1000_TDBAL(0):
  318		for (n = 0; n < 4; n++)
  319			regs[n] = rd32(E1000_TDBAL(n));
  320		break;
  321	case E1000_TDBAH(0):
  322		for (n = 0; n < 4; n++)
  323			regs[n] = rd32(E1000_TDBAH(n));
  324		break;
  325	case E1000_TDLEN(0):
  326		for (n = 0; n < 4; n++)
  327			regs[n] = rd32(E1000_TDLEN(n));
  328		break;
  329	case E1000_TDH(0):
  330		for (n = 0; n < 4; n++)
  331			regs[n] = rd32(E1000_TDH(n));
  332		break;
  333	case E1000_TDT(0):
  334		for (n = 0; n < 4; n++)
  335			regs[n] = rd32(E1000_TDT(n));
  336		break;
  337	case E1000_TXDCTL(0):
  338		for (n = 0; n < 4; n++)
  339			regs[n] = rd32(E1000_TXDCTL(n));
  340		break;
  341	default:
  342		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
  343		return;
  344	}
  345
  346	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
  347	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
  348		regs[2], regs[3]);
  349}
  350
  351/* igb_dump - Print registers, Tx-rings and Rx-rings */
  352static void igb_dump(struct igb_adapter *adapter)
  353{
  354	struct net_device *netdev = adapter->netdev;
  355	struct e1000_hw *hw = &adapter->hw;
  356	struct igb_reg_info *reginfo;
  357	struct igb_ring *tx_ring;
  358	union e1000_adv_tx_desc *tx_desc;
  359	struct my_u0 { __le64 a; __le64 b; } *u0;
  360	struct igb_ring *rx_ring;
  361	union e1000_adv_rx_desc *rx_desc;
  362	u32 staterr;
  363	u16 i, n;
  364
  365	if (!netif_msg_hw(adapter))
  366		return;
  367
  368	/* Print netdevice Info */
  369	if (netdev) {
  370		dev_info(&adapter->pdev->dev, "Net device Info\n");
  371		pr_info("Device Name     state            trans_start\n");
  372		pr_info("%-15s %016lX %016lX\n", netdev->name,
  373			netdev->state, dev_trans_start(netdev));
  374	}
  375
  376	/* Print Registers */
  377	dev_info(&adapter->pdev->dev, "Register Dump\n");
  378	pr_info(" Register Name   Value\n");
  379	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
  380	     reginfo->name; reginfo++) {
  381		igb_regdump(hw, reginfo);
  382	}
  383
  384	/* Print TX Ring Summary */
  385	if (!netdev || !netif_running(netdev))
  386		goto exit;
  387
  388	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
  389	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
  390	for (n = 0; n < adapter->num_tx_queues; n++) {
  391		struct igb_tx_buffer *buffer_info;
  392		tx_ring = adapter->tx_ring[n];
  393		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
  394		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
  395			n, tx_ring->next_to_use, tx_ring->next_to_clean,
  396			(u64)dma_unmap_addr(buffer_info, dma),
  397			dma_unmap_len(buffer_info, len),
  398			buffer_info->next_to_watch,
  399			(u64)buffer_info->time_stamp);
  400	}
  401
  402	/* Print TX Rings */
  403	if (!netif_msg_tx_done(adapter))
  404		goto rx_ring_summary;
  405
  406	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
  407
  408	/* Transmit Descriptor Formats
  409	 *
  410	 * Advanced Transmit Descriptor
  411	 *   +--------------------------------------------------------------+
  412	 * 0 |         Buffer Address [63:0]                                |
  413	 *   +--------------------------------------------------------------+
  414	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
  415	 *   +--------------------------------------------------------------+
  416	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
  417	 */
  418
  419	for (n = 0; n < adapter->num_tx_queues; n++) {
  420		tx_ring = adapter->tx_ring[n];
  421		pr_info("------------------------------------\n");
  422		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
  423		pr_info("------------------------------------\n");
  424		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
  425
  426		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
  427			const char *next_desc;
  428			struct igb_tx_buffer *buffer_info;
  429			tx_desc = IGB_TX_DESC(tx_ring, i);
  430			buffer_info = &tx_ring->tx_buffer_info[i];
  431			u0 = (struct my_u0 *)tx_desc;
  432			if (i == tx_ring->next_to_use &&
  433			    i == tx_ring->next_to_clean)
  434				next_desc = " NTC/U";
  435			else if (i == tx_ring->next_to_use)
  436				next_desc = " NTU";
  437			else if (i == tx_ring->next_to_clean)
  438				next_desc = " NTC";
  439			else
  440				next_desc = "";
  441
  442			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
  443				i, le64_to_cpu(u0->a),
  444				le64_to_cpu(u0->b),
  445				(u64)dma_unmap_addr(buffer_info, dma),
  446				dma_unmap_len(buffer_info, len),
  447				buffer_info->next_to_watch,
  448				(u64)buffer_info->time_stamp,
  449				buffer_info->skb, next_desc);
  450
  451			if (netif_msg_pktdata(adapter) && buffer_info->skb)
  452				print_hex_dump(KERN_INFO, "",
  453					DUMP_PREFIX_ADDRESS,
  454					16, 1, buffer_info->skb->data,
  455					dma_unmap_len(buffer_info, len),
  456					true);
  457		}
  458	}
  459
  460	/* Print RX Rings Summary */
  461rx_ring_summary:
  462	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
  463	pr_info("Queue [NTU] [NTC]\n");
  464	for (n = 0; n < adapter->num_rx_queues; n++) {
  465		rx_ring = adapter->rx_ring[n];
  466		pr_info(" %5d %5X %5X\n",
  467			n, rx_ring->next_to_use, rx_ring->next_to_clean);
  468	}
  469
  470	/* Print RX Rings */
  471	if (!netif_msg_rx_status(adapter))
  472		goto exit;
  473
  474	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
  475
  476	/* Advanced Receive Descriptor (Read) Format
  477	 *    63                                           1        0
  478	 *    +-----------------------------------------------------+
  479	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
  480	 *    +----------------------------------------------+------+
  481	 *  8 |       Header Buffer Address [63:1]           |  DD  |
  482	 *    +-----------------------------------------------------+
  483	 *
  484	 *
  485	 * Advanced Receive Descriptor (Write-Back) Format
  486	 *
  487	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
  488	 *   +------------------------------------------------------+
  489	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
  490	 *   | Checksum   Ident  |   |           |    | Type | Type |
  491	 *   +------------------------------------------------------+
  492	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
  493	 *   +------------------------------------------------------+
  494	 *   63       48 47    32 31            20 19               0
  495	 */
  496
  497	for (n = 0; n < adapter->num_rx_queues; n++) {
  498		rx_ring = adapter->rx_ring[n];
  499		pr_info("------------------------------------\n");
  500		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
  501		pr_info("------------------------------------\n");
  502		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
  503		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
  504
  505		for (i = 0; i < rx_ring->count; i++) {
  506			const char *next_desc;
  507			struct igb_rx_buffer *buffer_info;
  508			buffer_info = &rx_ring->rx_buffer_info[i];
  509			rx_desc = IGB_RX_DESC(rx_ring, i);
  510			u0 = (struct my_u0 *)rx_desc;
  511			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  512
  513			if (i == rx_ring->next_to_use)
  514				next_desc = " NTU";
  515			else if (i == rx_ring->next_to_clean)
  516				next_desc = " NTC";
  517			else
  518				next_desc = "";
  519
  520			if (staterr & E1000_RXD_STAT_DD) {
  521				/* Descriptor Done */
  522				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
  523					"RWB", i,
  524					le64_to_cpu(u0->a),
  525					le64_to_cpu(u0->b),
  526					next_desc);
  527			} else {
  528				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
  529					"R  ", i,
  530					le64_to_cpu(u0->a),
  531					le64_to_cpu(u0->b),
  532					(u64)buffer_info->dma,
  533					next_desc);
  534
  535				if (netif_msg_pktdata(adapter) &&
  536				    buffer_info->dma && buffer_info->page) {
  537					print_hex_dump(KERN_INFO, "",
  538					  DUMP_PREFIX_ADDRESS,
  539					  16, 1,
  540					  page_address(buffer_info->page) +
  541						      buffer_info->page_offset,
  542					  igb_rx_bufsz(rx_ring), true);
  543				}
  544			}
  545		}
  546	}
  547
  548exit:
  549	return;
  550}
  551
  552/**
  553 *  igb_get_i2c_data - Reads the I2C SDA data bit
  554 *  @data: opaque pointer to adapter struct
  555 *
  556 *  Returns the I2C data bit value
  557 **/
  558static int igb_get_i2c_data(void *data)
  559{
  560	struct igb_adapter *adapter = (struct igb_adapter *)data;
  561	struct e1000_hw *hw = &adapter->hw;
  562	s32 i2cctl = rd32(E1000_I2CPARAMS);
  563
  564	return !!(i2cctl & E1000_I2C_DATA_IN);
  565}
  566
  567/**
  568 *  igb_set_i2c_data - Sets the I2C data bit
  569 *  @data: pointer to hardware structure
  570 *  @state: I2C data value (0 or 1) to set
  571 *
  572 *  Sets the I2C data bit
  573 **/
  574static void igb_set_i2c_data(void *data, int state)
  575{
  576	struct igb_adapter *adapter = (struct igb_adapter *)data;
  577	struct e1000_hw *hw = &adapter->hw;
  578	s32 i2cctl = rd32(E1000_I2CPARAMS);
  579
  580	if (state) {
  581		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
  582	} else {
  583		i2cctl &= ~E1000_I2C_DATA_OE_N;
  584		i2cctl &= ~E1000_I2C_DATA_OUT;
  585	}
  586
  587	wr32(E1000_I2CPARAMS, i2cctl);
  588	wrfl();
  589}
  590
  591/**
  592 *  igb_set_i2c_clk - Sets the I2C SCL clock
  593 *  @data: pointer to hardware structure
  594 *  @state: state to set clock
  595 *
  596 *  Sets the I2C clock line to state
  597 **/
  598static void igb_set_i2c_clk(void *data, int state)
  599{
  600	struct igb_adapter *adapter = (struct igb_adapter *)data;
  601	struct e1000_hw *hw = &adapter->hw;
  602	s32 i2cctl = rd32(E1000_I2CPARAMS);
  603
  604	if (state) {
  605		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
  606	} else {
  607		i2cctl &= ~E1000_I2C_CLK_OUT;
  608		i2cctl &= ~E1000_I2C_CLK_OE_N;
  609	}
  610	wr32(E1000_I2CPARAMS, i2cctl);
  611	wrfl();
  612}
  613
  614/**
  615 *  igb_get_i2c_clk - Gets the I2C SCL clock state
  616 *  @data: pointer to hardware structure
  617 *
  618 *  Gets the I2C clock state
  619 **/
  620static int igb_get_i2c_clk(void *data)
  621{
  622	struct igb_adapter *adapter = (struct igb_adapter *)data;
  623	struct e1000_hw *hw = &adapter->hw;
  624	s32 i2cctl = rd32(E1000_I2CPARAMS);
  625
  626	return !!(i2cctl & E1000_I2C_CLK_IN);
  627}
  628
  629static const struct i2c_algo_bit_data igb_i2c_algo = {
  630	.setsda		= igb_set_i2c_data,
  631	.setscl		= igb_set_i2c_clk,
  632	.getsda		= igb_get_i2c_data,
  633	.getscl		= igb_get_i2c_clk,
  634	.udelay		= 5,
  635	.timeout	= 20,
  636};
  637
  638/**
  639 *  igb_get_hw_dev - return device
  640 *  @hw: pointer to hardware structure
  641 *
  642 *  used by hardware layer to print debugging information
  643 **/
  644struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
  645{
  646	struct igb_adapter *adapter = hw->back;
  647	return adapter->netdev;
  648}
  649
  650/**
  651 *  igb_init_module - Driver Registration Routine
  652 *
  653 *  igb_init_module is the first routine called when the driver is
  654 *  loaded. All it does is register with the PCI subsystem.
  655 **/
  656static int __init igb_init_module(void)
  657{
  658	int ret;
  659
  660	pr_info("%s\n", igb_driver_string);
  661	pr_info("%s\n", igb_copyright);
  662
  663#ifdef CONFIG_IGB_DCA
  664	dca_register_notify(&dca_notifier);
  665#endif
  666	ret = pci_register_driver(&igb_driver);
  667	return ret;
  668}
  669
  670module_init(igb_init_module);
  671
  672/**
  673 *  igb_exit_module - Driver Exit Cleanup Routine
  674 *
  675 *  igb_exit_module is called just before the driver is removed
  676 *  from memory.
  677 **/
  678static void __exit igb_exit_module(void)
  679{
  680#ifdef CONFIG_IGB_DCA
  681	dca_unregister_notify(&dca_notifier);
  682#endif
  683	pci_unregister_driver(&igb_driver);
  684}
  685
  686module_exit(igb_exit_module);
  687
  688#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
  689/**
  690 *  igb_cache_ring_register - Descriptor ring to register mapping
  691 *  @adapter: board private structure to initialize
  692 *
  693 *  Once we know the feature-set enabled for the device, we'll cache
  694 *  the register offset the descriptor ring is assigned to.
  695 **/
  696static void igb_cache_ring_register(struct igb_adapter *adapter)
  697{
  698	int i = 0, j = 0;
  699	u32 rbase_offset = adapter->vfs_allocated_count;
  700
  701	switch (adapter->hw.mac.type) {
  702	case e1000_82576:
  703		/* The queues are allocated for virtualization such that VF 0
  704		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
  705		 * In order to avoid collision we start at the first free queue
  706		 * and continue consuming queues in the same sequence
  707		 */
  708		if (adapter->vfs_allocated_count) {
  709			for (; i < adapter->rss_queues; i++)
  710				adapter->rx_ring[i]->reg_idx = rbase_offset +
  711							       Q_IDX_82576(i);
  712		}
  713		fallthrough;
  714	case e1000_82575:
  715	case e1000_82580:
  716	case e1000_i350:
  717	case e1000_i354:
  718	case e1000_i210:
  719	case e1000_i211:
  720	default:
  721		for (; i < adapter->num_rx_queues; i++)
  722			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
  723		for (; j < adapter->num_tx_queues; j++)
  724			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
  725		break;
  726	}
  727}
  728
  729u32 igb_rd32(struct e1000_hw *hw, u32 reg)
  730{
  731	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
  732	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
  733	u32 value = 0;
  734
  735	if (E1000_REMOVED(hw_addr))
  736		return ~value;
  737
  738	value = readl(&hw_addr[reg]);
  739
  740	/* reads should not return all F's */
  741	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
  742		struct net_device *netdev = igb->netdev;
  743		hw->hw_addr = NULL;
  744		netdev_err(netdev, "PCIe link lost\n");
  745		WARN(pci_device_is_present(igb->pdev),
  746		     "igb: Failed to read reg 0x%x!\n", reg);
  747	}
  748
  749	return value;
  750}
  751
  752/**
  753 *  igb_write_ivar - configure ivar for given MSI-X vector
  754 *  @hw: pointer to the HW structure
  755 *  @msix_vector: vector number we are allocating to a given ring
  756 *  @index: row index of IVAR register to write within IVAR table
  757 *  @offset: column offset of in IVAR, should be multiple of 8
  758 *
  759 *  This function is intended to handle the writing of the IVAR register
  760 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
  761 *  each containing an cause allocation for an Rx and Tx ring, and a
  762 *  variable number of rows depending on the number of queues supported.
  763 **/
  764static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
  765			   int index, int offset)
  766{
  767	u32 ivar = array_rd32(E1000_IVAR0, index);
  768
  769	/* clear any bits that are currently set */
  770	ivar &= ~((u32)0xFF << offset);
  771
  772	/* write vector and valid bit */
  773	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
  774
  775	array_wr32(E1000_IVAR0, index, ivar);
  776}
  777
  778#define IGB_N0_QUEUE -1
  779static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
  780{
  781	struct igb_adapter *adapter = q_vector->adapter;
  782	struct e1000_hw *hw = &adapter->hw;
  783	int rx_queue = IGB_N0_QUEUE;
  784	int tx_queue = IGB_N0_QUEUE;
  785	u32 msixbm = 0;
  786
  787	if (q_vector->rx.ring)
  788		rx_queue = q_vector->rx.ring->reg_idx;
  789	if (q_vector->tx.ring)
  790		tx_queue = q_vector->tx.ring->reg_idx;
  791
  792	switch (hw->mac.type) {
  793	case e1000_82575:
  794		/* The 82575 assigns vectors using a bitmask, which matches the
  795		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
  796		 * or more queues to a vector, we write the appropriate bits
  797		 * into the MSIXBM register for that vector.
  798		 */
  799		if (rx_queue > IGB_N0_QUEUE)
  800			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
  801		if (tx_queue > IGB_N0_QUEUE)
  802			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
  803		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
  804			msixbm |= E1000_EIMS_OTHER;
  805		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
  806		q_vector->eims_value = msixbm;
  807		break;
  808	case e1000_82576:
  809		/* 82576 uses a table that essentially consists of 2 columns
  810		 * with 8 rows.  The ordering is column-major so we use the
  811		 * lower 3 bits as the row index, and the 4th bit as the
  812		 * column offset.
  813		 */
  814		if (rx_queue > IGB_N0_QUEUE)
  815			igb_write_ivar(hw, msix_vector,
  816				       rx_queue & 0x7,
  817				       (rx_queue & 0x8) << 1);
  818		if (tx_queue > IGB_N0_QUEUE)
  819			igb_write_ivar(hw, msix_vector,
  820				       tx_queue & 0x7,
  821				       ((tx_queue & 0x8) << 1) + 8);
  822		q_vector->eims_value = BIT(msix_vector);
  823		break;
  824	case e1000_82580:
  825	case e1000_i350:
  826	case e1000_i354:
  827	case e1000_i210:
  828	case e1000_i211:
  829		/* On 82580 and newer adapters the scheme is similar to 82576
  830		 * however instead of ordering column-major we have things
  831		 * ordered row-major.  So we traverse the table by using
  832		 * bit 0 as the column offset, and the remaining bits as the
  833		 * row index.
  834		 */
  835		if (rx_queue > IGB_N0_QUEUE)
  836			igb_write_ivar(hw, msix_vector,
  837				       rx_queue >> 1,
  838				       (rx_queue & 0x1) << 4);
  839		if (tx_queue > IGB_N0_QUEUE)
  840			igb_write_ivar(hw, msix_vector,
  841				       tx_queue >> 1,
  842				       ((tx_queue & 0x1) << 4) + 8);
  843		q_vector->eims_value = BIT(msix_vector);
  844		break;
  845	default:
  846		BUG();
  847		break;
  848	}
  849
  850	/* add q_vector eims value to global eims_enable_mask */
  851	adapter->eims_enable_mask |= q_vector->eims_value;
  852
  853	/* configure q_vector to set itr on first interrupt */
  854	q_vector->set_itr = 1;
  855}
  856
  857/**
  858 *  igb_configure_msix - Configure MSI-X hardware
  859 *  @adapter: board private structure to initialize
  860 *
  861 *  igb_configure_msix sets up the hardware to properly
  862 *  generate MSI-X interrupts.
  863 **/
  864static void igb_configure_msix(struct igb_adapter *adapter)
  865{
  866	u32 tmp;
  867	int i, vector = 0;
  868	struct e1000_hw *hw = &adapter->hw;
  869
  870	adapter->eims_enable_mask = 0;
  871
  872	/* set vector for other causes, i.e. link changes */
  873	switch (hw->mac.type) {
  874	case e1000_82575:
  875		tmp = rd32(E1000_CTRL_EXT);
  876		/* enable MSI-X PBA support*/
  877		tmp |= E1000_CTRL_EXT_PBA_CLR;
  878
  879		/* Auto-Mask interrupts upon ICR read. */
  880		tmp |= E1000_CTRL_EXT_EIAME;
  881		tmp |= E1000_CTRL_EXT_IRCA;
  882
  883		wr32(E1000_CTRL_EXT, tmp);
  884
  885		/* enable msix_other interrupt */
  886		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
  887		adapter->eims_other = E1000_EIMS_OTHER;
  888
  889		break;
  890
  891	case e1000_82576:
  892	case e1000_82580:
  893	case e1000_i350:
  894	case e1000_i354:
  895	case e1000_i210:
  896	case e1000_i211:
  897		/* Turn on MSI-X capability first, or our settings
  898		 * won't stick.  And it will take days to debug.
  899		 */
  900		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
  901		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
  902		     E1000_GPIE_NSICR);
  903
  904		/* enable msix_other interrupt */
  905		adapter->eims_other = BIT(vector);
  906		tmp = (vector++ | E1000_IVAR_VALID) << 8;
  907
  908		wr32(E1000_IVAR_MISC, tmp);
  909		break;
  910	default:
  911		/* do nothing, since nothing else supports MSI-X */
  912		break;
  913	} /* switch (hw->mac.type) */
  914
  915	adapter->eims_enable_mask |= adapter->eims_other;
  916
  917	for (i = 0; i < adapter->num_q_vectors; i++)
  918		igb_assign_vector(adapter->q_vector[i], vector++);
  919
  920	wrfl();
  921}
  922
  923/**
  924 *  igb_request_msix - Initialize MSI-X interrupts
  925 *  @adapter: board private structure to initialize
  926 *
  927 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
  928 *  kernel.
  929 **/
  930static int igb_request_msix(struct igb_adapter *adapter)
  931{
  932	unsigned int num_q_vectors = adapter->num_q_vectors;
  933	struct net_device *netdev = adapter->netdev;
  934	int i, err = 0, vector = 0, free_vector = 0;
  935
  936	err = request_irq(adapter->msix_entries[vector].vector,
  937			  igb_msix_other, 0, netdev->name, adapter);
  938	if (err)
  939		goto err_out;
  940
  941	if (num_q_vectors > MAX_Q_VECTORS) {
  942		num_q_vectors = MAX_Q_VECTORS;
  943		dev_warn(&adapter->pdev->dev,
  944			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
  945			 adapter->num_q_vectors, MAX_Q_VECTORS);
  946	}
  947	for (i = 0; i < num_q_vectors; i++) {
  948		struct igb_q_vector *q_vector = adapter->q_vector[i];
  949
  950		vector++;
  951
  952		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
  953
  954		if (q_vector->rx.ring && q_vector->tx.ring)
  955			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
  956				q_vector->rx.ring->queue_index);
  957		else if (q_vector->tx.ring)
  958			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
  959				q_vector->tx.ring->queue_index);
  960		else if (q_vector->rx.ring)
  961			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
  962				q_vector->rx.ring->queue_index);
  963		else
  964			sprintf(q_vector->name, "%s-unused", netdev->name);
  965
  966		err = request_irq(adapter->msix_entries[vector].vector,
  967				  igb_msix_ring, 0, q_vector->name,
  968				  q_vector);
  969		if (err)
  970			goto err_free;
  971	}
  972
  973	igb_configure_msix(adapter);
  974	return 0;
  975
  976err_free:
  977	/* free already assigned IRQs */
  978	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
  979
  980	vector--;
  981	for (i = 0; i < vector; i++) {
  982		free_irq(adapter->msix_entries[free_vector++].vector,
  983			 adapter->q_vector[i]);
  984	}
  985err_out:
  986	return err;
  987}
  988
  989/**
  990 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
  991 *  @adapter: board private structure to initialize
  992 *  @v_idx: Index of vector to be freed
  993 *
  994 *  This function frees the memory allocated to the q_vector.
  995 **/
  996static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
  997{
  998	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  999
 1000	adapter->q_vector[v_idx] = NULL;
 1001
 1002	/* igb_get_stats64() might access the rings on this vector,
 1003	 * we must wait a grace period before freeing it.
 1004	 */
 1005	if (q_vector)
 1006		kfree_rcu(q_vector, rcu);
 1007}
 1008
 1009/**
 1010 *  igb_reset_q_vector - Reset config for interrupt vector
 1011 *  @adapter: board private structure to initialize
 1012 *  @v_idx: Index of vector to be reset
 1013 *
 1014 *  If NAPI is enabled it will delete any references to the
 1015 *  NAPI struct. This is preparation for igb_free_q_vector.
 1016 **/
 1017static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
 1018{
 1019	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
 1020
 1021	/* Coming from igb_set_interrupt_capability, the vectors are not yet
 1022	 * allocated. So, q_vector is NULL so we should stop here.
 1023	 */
 1024	if (!q_vector)
 1025		return;
 1026
 1027	if (q_vector->tx.ring)
 1028		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
 1029
 1030	if (q_vector->rx.ring)
 1031		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
 1032
 1033	netif_napi_del(&q_vector->napi);
 1034
 1035}
 1036
 1037static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
 1038{
 1039	int v_idx = adapter->num_q_vectors;
 1040
 1041	if (adapter->flags & IGB_FLAG_HAS_MSIX)
 1042		pci_disable_msix(adapter->pdev);
 1043	else if (adapter->flags & IGB_FLAG_HAS_MSI)
 1044		pci_disable_msi(adapter->pdev);
 1045
 1046	while (v_idx--)
 1047		igb_reset_q_vector(adapter, v_idx);
 1048}
 1049
 1050/**
 1051 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 1052 *  @adapter: board private structure to initialize
 1053 *
 1054 *  This function frees the memory allocated to the q_vectors.  In addition if
 1055 *  NAPI is enabled it will delete any references to the NAPI struct prior
 1056 *  to freeing the q_vector.
 1057 **/
 1058static void igb_free_q_vectors(struct igb_adapter *adapter)
 1059{
 1060	int v_idx = adapter->num_q_vectors;
 1061
 1062	adapter->num_tx_queues = 0;
 1063	adapter->num_rx_queues = 0;
 1064	adapter->num_q_vectors = 0;
 1065
 1066	while (v_idx--) {
 1067		igb_reset_q_vector(adapter, v_idx);
 1068		igb_free_q_vector(adapter, v_idx);
 1069	}
 1070}
 1071
 1072/**
 1073 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 1074 *  @adapter: board private structure to initialize
 1075 *
 1076 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 1077 *  MSI-X interrupts allocated.
 1078 */
 1079static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
 1080{
 1081	igb_free_q_vectors(adapter);
 1082	igb_reset_interrupt_capability(adapter);
 1083}
 1084
 1085/**
 1086 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 1087 *  @adapter: board private structure to initialize
 1088 *  @msix: boolean value of MSIX capability
 1089 *
 1090 *  Attempt to configure interrupts using the best available
 1091 *  capabilities of the hardware and kernel.
 1092 **/
 1093static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
 1094{
 1095	int err;
 1096	int numvecs, i;
 1097
 1098	if (!msix)
 1099		goto msi_only;
 1100	adapter->flags |= IGB_FLAG_HAS_MSIX;
 1101
 1102	/* Number of supported queues. */
 1103	adapter->num_rx_queues = adapter->rss_queues;
 1104	if (adapter->vfs_allocated_count)
 1105		adapter->num_tx_queues = 1;
 1106	else
 1107		adapter->num_tx_queues = adapter->rss_queues;
 1108
 1109	/* start with one vector for every Rx queue */
 1110	numvecs = adapter->num_rx_queues;
 1111
 1112	/* if Tx handler is separate add 1 for every Tx queue */
 1113	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
 1114		numvecs += adapter->num_tx_queues;
 1115
 1116	/* store the number of vectors reserved for queues */
 1117	adapter->num_q_vectors = numvecs;
 1118
 1119	/* add 1 vector for link status interrupts */
 1120	numvecs++;
 1121	for (i = 0; i < numvecs; i++)
 1122		adapter->msix_entries[i].entry = i;
 1123
 1124	err = pci_enable_msix_range(adapter->pdev,
 1125				    adapter->msix_entries,
 1126				    numvecs,
 1127				    numvecs);
 1128	if (err > 0)
 1129		return;
 1130
 1131	igb_reset_interrupt_capability(adapter);
 1132
 1133	/* If we can't do MSI-X, try MSI */
 1134msi_only:
 1135	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
 1136#ifdef CONFIG_PCI_IOV
 1137	/* disable SR-IOV for non MSI-X configurations */
 1138	if (adapter->vf_data) {
 1139		struct e1000_hw *hw = &adapter->hw;
 1140		/* disable iov and allow time for transactions to clear */
 1141		pci_disable_sriov(adapter->pdev);
 1142		msleep(500);
 1143
 1144		kfree(adapter->vf_mac_list);
 1145		adapter->vf_mac_list = NULL;
 1146		kfree(adapter->vf_data);
 1147		adapter->vf_data = NULL;
 1148		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
 1149		wrfl();
 1150		msleep(100);
 1151		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
 1152	}
 1153#endif
 1154	adapter->vfs_allocated_count = 0;
 1155	adapter->rss_queues = 1;
 1156	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
 1157	adapter->num_rx_queues = 1;
 1158	adapter->num_tx_queues = 1;
 1159	adapter->num_q_vectors = 1;
 1160	if (!pci_enable_msi(adapter->pdev))
 1161		adapter->flags |= IGB_FLAG_HAS_MSI;
 1162}
 1163
 1164static void igb_add_ring(struct igb_ring *ring,
 1165			 struct igb_ring_container *head)
 1166{
 1167	head->ring = ring;
 1168	head->count++;
 1169}
 1170
 1171/**
 1172 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 1173 *  @adapter: board private structure to initialize
 1174 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 1175 *  @v_idx: index of vector in adapter struct
 1176 *  @txr_count: total number of Tx rings to allocate
 1177 *  @txr_idx: index of first Tx ring to allocate
 1178 *  @rxr_count: total number of Rx rings to allocate
 1179 *  @rxr_idx: index of first Rx ring to allocate
 1180 *
 1181 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
 1182 **/
 1183static int igb_alloc_q_vector(struct igb_adapter *adapter,
 1184			      int v_count, int v_idx,
 1185			      int txr_count, int txr_idx,
 1186			      int rxr_count, int rxr_idx)
 1187{
 1188	struct igb_q_vector *q_vector;
 1189	struct igb_ring *ring;
 1190	int ring_count;
 1191	size_t size;
 1192
 1193	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
 1194	if (txr_count > 1 || rxr_count > 1)
 1195		return -ENOMEM;
 1196
 1197	ring_count = txr_count + rxr_count;
 1198	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
 1199
 1200	/* allocate q_vector and rings */
 1201	q_vector = adapter->q_vector[v_idx];
 1202	if (!q_vector) {
 1203		q_vector = kzalloc(size, GFP_KERNEL);
 1204	} else if (size > ksize(q_vector)) {
 1205		struct igb_q_vector *new_q_vector;
 1206
 1207		new_q_vector = kzalloc(size, GFP_KERNEL);
 1208		if (new_q_vector)
 1209			kfree_rcu(q_vector, rcu);
 1210		q_vector = new_q_vector;
 1211	} else {
 1212		memset(q_vector, 0, size);
 1213	}
 1214	if (!q_vector)
 1215		return -ENOMEM;
 1216
 1217	/* initialize NAPI */
 1218	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
 1219
 1220	/* tie q_vector and adapter together */
 1221	adapter->q_vector[v_idx] = q_vector;
 1222	q_vector->adapter = adapter;
 1223
 1224	/* initialize work limits */
 1225	q_vector->tx.work_limit = adapter->tx_work_limit;
 1226
 1227	/* initialize ITR configuration */
 1228	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
 1229	q_vector->itr_val = IGB_START_ITR;
 1230
 1231	/* initialize pointer to rings */
 1232	ring = q_vector->ring;
 1233
 1234	/* intialize ITR */
 1235	if (rxr_count) {
 1236		/* rx or rx/tx vector */
 1237		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
 1238			q_vector->itr_val = adapter->rx_itr_setting;
 1239	} else {
 1240		/* tx only vector */
 1241		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
 1242			q_vector->itr_val = adapter->tx_itr_setting;
 1243	}
 1244
 1245	if (txr_count) {
 1246		/* assign generic ring traits */
 1247		ring->dev = &adapter->pdev->dev;
 1248		ring->netdev = adapter->netdev;
 1249
 1250		/* configure backlink on ring */
 1251		ring->q_vector = q_vector;
 1252
 1253		/* update q_vector Tx values */
 1254		igb_add_ring(ring, &q_vector->tx);
 1255
 1256		/* For 82575, context index must be unique per ring. */
 1257		if (adapter->hw.mac.type == e1000_82575)
 1258			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
 1259
 1260		/* apply Tx specific ring traits */
 1261		ring->count = adapter->tx_ring_count;
 1262		ring->queue_index = txr_idx;
 1263
 1264		ring->cbs_enable = false;
 1265		ring->idleslope = 0;
 1266		ring->sendslope = 0;
 1267		ring->hicredit = 0;
 1268		ring->locredit = 0;
 1269
 1270		u64_stats_init(&ring->tx_syncp);
 1271		u64_stats_init(&ring->tx_syncp2);
 1272
 1273		/* assign ring to adapter */
 1274		adapter->tx_ring[txr_idx] = ring;
 1275
 1276		/* push pointer to next ring */
 1277		ring++;
 1278	}
 1279
 1280	if (rxr_count) {
 1281		/* assign generic ring traits */
 1282		ring->dev = &adapter->pdev->dev;
 1283		ring->netdev = adapter->netdev;
 1284
 1285		/* configure backlink on ring */
 1286		ring->q_vector = q_vector;
 1287
 1288		/* update q_vector Rx values */
 1289		igb_add_ring(ring, &q_vector->rx);
 1290
 1291		/* set flag indicating ring supports SCTP checksum offload */
 1292		if (adapter->hw.mac.type >= e1000_82576)
 1293			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
 1294
 1295		/* On i350, i354, i210, and i211, loopback VLAN packets
 1296		 * have the tag byte-swapped.
 1297		 */
 1298		if (adapter->hw.mac.type >= e1000_i350)
 1299			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
 1300
 1301		/* apply Rx specific ring traits */
 1302		ring->count = adapter->rx_ring_count;
 1303		ring->queue_index = rxr_idx;
 1304
 1305		u64_stats_init(&ring->rx_syncp);
 1306
 1307		/* assign ring to adapter */
 1308		adapter->rx_ring[rxr_idx] = ring;
 1309	}
 1310
 1311	return 0;
 1312}
 1313
 1314
 1315/**
 1316 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 1317 *  @adapter: board private structure to initialize
 1318 *
 1319 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 1320 *  return -ENOMEM.
 1321 **/
 1322static int igb_alloc_q_vectors(struct igb_adapter *adapter)
 1323{
 1324	int q_vectors = adapter->num_q_vectors;
 1325	int rxr_remaining = adapter->num_rx_queues;
 1326	int txr_remaining = adapter->num_tx_queues;
 1327	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
 1328	int err;
 1329
 1330	if (q_vectors >= (rxr_remaining + txr_remaining)) {
 1331		for (; rxr_remaining; v_idx++) {
 1332			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
 1333						 0, 0, 1, rxr_idx);
 1334
 1335			if (err)
 1336				goto err_out;
 1337
 1338			/* update counts and index */
 1339			rxr_remaining--;
 1340			rxr_idx++;
 1341		}
 1342	}
 1343
 1344	for (; v_idx < q_vectors; v_idx++) {
 1345		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
 1346		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
 1347
 1348		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
 1349					 tqpv, txr_idx, rqpv, rxr_idx);
 1350
 1351		if (err)
 1352			goto err_out;
 1353
 1354		/* update counts and index */
 1355		rxr_remaining -= rqpv;
 1356		txr_remaining -= tqpv;
 1357		rxr_idx++;
 1358		txr_idx++;
 1359	}
 1360
 1361	return 0;
 1362
 1363err_out:
 1364	adapter->num_tx_queues = 0;
 1365	adapter->num_rx_queues = 0;
 1366	adapter->num_q_vectors = 0;
 1367
 1368	while (v_idx--)
 1369		igb_free_q_vector(adapter, v_idx);
 1370
 1371	return -ENOMEM;
 1372}
 1373
 1374/**
 1375 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 1376 *  @adapter: board private structure to initialize
 1377 *  @msix: boolean value of MSIX capability
 1378 *
 1379 *  This function initializes the interrupts and allocates all of the queues.
 1380 **/
 1381static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
 1382{
 1383	struct pci_dev *pdev = adapter->pdev;
 1384	int err;
 1385
 1386	igb_set_interrupt_capability(adapter, msix);
 1387
 1388	err = igb_alloc_q_vectors(adapter);
 1389	if (err) {
 1390		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
 1391		goto err_alloc_q_vectors;
 1392	}
 1393
 1394	igb_cache_ring_register(adapter);
 1395
 1396	return 0;
 1397
 1398err_alloc_q_vectors:
 1399	igb_reset_interrupt_capability(adapter);
 1400	return err;
 1401}
 1402
 1403/**
 1404 *  igb_request_irq - initialize interrupts
 1405 *  @adapter: board private structure to initialize
 1406 *
 1407 *  Attempts to configure interrupts using the best available
 1408 *  capabilities of the hardware and kernel.
 1409 **/
 1410static int igb_request_irq(struct igb_adapter *adapter)
 1411{
 1412	struct net_device *netdev = adapter->netdev;
 1413	struct pci_dev *pdev = adapter->pdev;
 1414	int err = 0;
 1415
 1416	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1417		err = igb_request_msix(adapter);
 1418		if (!err)
 1419			goto request_done;
 1420		/* fall back to MSI */
 1421		igb_free_all_tx_resources(adapter);
 1422		igb_free_all_rx_resources(adapter);
 1423
 1424		igb_clear_interrupt_scheme(adapter);
 1425		err = igb_init_interrupt_scheme(adapter, false);
 1426		if (err)
 1427			goto request_done;
 1428
 1429		igb_setup_all_tx_resources(adapter);
 1430		igb_setup_all_rx_resources(adapter);
 1431		igb_configure(adapter);
 1432	}
 1433
 1434	igb_assign_vector(adapter->q_vector[0], 0);
 1435
 1436	if (adapter->flags & IGB_FLAG_HAS_MSI) {
 1437		err = request_irq(pdev->irq, igb_intr_msi, 0,
 1438				  netdev->name, adapter);
 1439		if (!err)
 1440			goto request_done;
 1441
 1442		/* fall back to legacy interrupts */
 1443		igb_reset_interrupt_capability(adapter);
 1444		adapter->flags &= ~IGB_FLAG_HAS_MSI;
 1445	}
 1446
 1447	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
 1448			  netdev->name, adapter);
 1449
 1450	if (err)
 1451		dev_err(&pdev->dev, "Error %d getting interrupt\n",
 1452			err);
 1453
 1454request_done:
 1455	return err;
 1456}
 1457
 1458static void igb_free_irq(struct igb_adapter *adapter)
 1459{
 1460	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1461		int vector = 0, i;
 1462
 1463		free_irq(adapter->msix_entries[vector++].vector, adapter);
 1464
 1465		for (i = 0; i < adapter->num_q_vectors; i++)
 1466			free_irq(adapter->msix_entries[vector++].vector,
 1467				 adapter->q_vector[i]);
 1468	} else {
 1469		free_irq(adapter->pdev->irq, adapter);
 1470	}
 1471}
 1472
 1473/**
 1474 *  igb_irq_disable - Mask off interrupt generation on the NIC
 1475 *  @adapter: board private structure
 1476 **/
 1477static void igb_irq_disable(struct igb_adapter *adapter)
 1478{
 1479	struct e1000_hw *hw = &adapter->hw;
 1480
 1481	/* we need to be careful when disabling interrupts.  The VFs are also
 1482	 * mapped into these registers and so clearing the bits can cause
 1483	 * issues on the VF drivers so we only need to clear what we set
 1484	 */
 1485	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1486		u32 regval = rd32(E1000_EIAM);
 1487
 1488		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
 1489		wr32(E1000_EIMC, adapter->eims_enable_mask);
 1490		regval = rd32(E1000_EIAC);
 1491		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
 1492	}
 1493
 1494	wr32(E1000_IAM, 0);
 1495	wr32(E1000_IMC, ~0);
 1496	wrfl();
 1497	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1498		int i;
 1499
 1500		for (i = 0; i < adapter->num_q_vectors; i++)
 1501			synchronize_irq(adapter->msix_entries[i].vector);
 1502	} else {
 1503		synchronize_irq(adapter->pdev->irq);
 1504	}
 1505}
 1506
 1507/**
 1508 *  igb_irq_enable - Enable default interrupt generation settings
 1509 *  @adapter: board private structure
 1510 **/
 1511static void igb_irq_enable(struct igb_adapter *adapter)
 1512{
 1513	struct e1000_hw *hw = &adapter->hw;
 1514
 1515	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1516		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
 1517		u32 regval = rd32(E1000_EIAC);
 1518
 1519		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
 1520		regval = rd32(E1000_EIAM);
 1521		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
 1522		wr32(E1000_EIMS, adapter->eims_enable_mask);
 1523		if (adapter->vfs_allocated_count) {
 1524			wr32(E1000_MBVFIMR, 0xFF);
 1525			ims |= E1000_IMS_VMMB;
 1526		}
 1527		wr32(E1000_IMS, ims);
 1528	} else {
 1529		wr32(E1000_IMS, IMS_ENABLE_MASK |
 1530				E1000_IMS_DRSTA);
 1531		wr32(E1000_IAM, IMS_ENABLE_MASK |
 1532				E1000_IMS_DRSTA);
 1533	}
 1534}
 1535
 1536static void igb_update_mng_vlan(struct igb_adapter *adapter)
 1537{
 1538	struct e1000_hw *hw = &adapter->hw;
 1539	u16 pf_id = adapter->vfs_allocated_count;
 1540	u16 vid = adapter->hw.mng_cookie.vlan_id;
 1541	u16 old_vid = adapter->mng_vlan_id;
 1542
 1543	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
 1544		/* add VID to filter table */
 1545		igb_vfta_set(hw, vid, pf_id, true, true);
 1546		adapter->mng_vlan_id = vid;
 1547	} else {
 1548		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
 1549	}
 1550
 1551	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
 1552	    (vid != old_vid) &&
 1553	    !test_bit(old_vid, adapter->active_vlans)) {
 1554		/* remove VID from filter table */
 1555		igb_vfta_set(hw, vid, pf_id, false, true);
 1556	}
 1557}
 1558
 1559/**
 1560 *  igb_release_hw_control - release control of the h/w to f/w
 1561 *  @adapter: address of board private structure
 1562 *
 1563 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 1564 *  For ASF and Pass Through versions of f/w this means that the
 1565 *  driver is no longer loaded.
 1566 **/
 1567static void igb_release_hw_control(struct igb_adapter *adapter)
 1568{
 1569	struct e1000_hw *hw = &adapter->hw;
 1570	u32 ctrl_ext;
 1571
 1572	/* Let firmware take over control of h/w */
 1573	ctrl_ext = rd32(E1000_CTRL_EXT);
 1574	wr32(E1000_CTRL_EXT,
 1575			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
 1576}
 1577
 1578/**
 1579 *  igb_get_hw_control - get control of the h/w from f/w
 1580 *  @adapter: address of board private structure
 1581 *
 1582 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 1583 *  For ASF and Pass Through versions of f/w this means that
 1584 *  the driver is loaded.
 1585 **/
 1586static void igb_get_hw_control(struct igb_adapter *adapter)
 1587{
 1588	struct e1000_hw *hw = &adapter->hw;
 1589	u32 ctrl_ext;
 1590
 1591	/* Let firmware know the driver has taken over */
 1592	ctrl_ext = rd32(E1000_CTRL_EXT);
 1593	wr32(E1000_CTRL_EXT,
 1594			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
 1595}
 1596
 1597static void enable_fqtss(struct igb_adapter *adapter, bool enable)
 1598{
 1599	struct net_device *netdev = adapter->netdev;
 1600	struct e1000_hw *hw = &adapter->hw;
 1601
 1602	WARN_ON(hw->mac.type != e1000_i210);
 1603
 1604	if (enable)
 1605		adapter->flags |= IGB_FLAG_FQTSS;
 1606	else
 1607		adapter->flags &= ~IGB_FLAG_FQTSS;
 1608
 1609	if (netif_running(netdev))
 1610		schedule_work(&adapter->reset_task);
 1611}
 1612
 1613static bool is_fqtss_enabled(struct igb_adapter *adapter)
 1614{
 1615	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
 1616}
 1617
 1618static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
 1619				   enum tx_queue_prio prio)
 1620{
 1621	u32 val;
 1622
 1623	WARN_ON(hw->mac.type != e1000_i210);
 1624	WARN_ON(queue < 0 || queue > 4);
 1625
 1626	val = rd32(E1000_I210_TXDCTL(queue));
 1627
 1628	if (prio == TX_QUEUE_PRIO_HIGH)
 1629		val |= E1000_TXDCTL_PRIORITY;
 1630	else
 1631		val &= ~E1000_TXDCTL_PRIORITY;
 1632
 1633	wr32(E1000_I210_TXDCTL(queue), val);
 1634}
 1635
 1636static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
 1637{
 1638	u32 val;
 1639
 1640	WARN_ON(hw->mac.type != e1000_i210);
 1641	WARN_ON(queue < 0 || queue > 1);
 1642
 1643	val = rd32(E1000_I210_TQAVCC(queue));
 1644
 1645	if (mode == QUEUE_MODE_STREAM_RESERVATION)
 1646		val |= E1000_TQAVCC_QUEUEMODE;
 1647	else
 1648		val &= ~E1000_TQAVCC_QUEUEMODE;
 1649
 1650	wr32(E1000_I210_TQAVCC(queue), val);
 1651}
 1652
 1653static bool is_any_cbs_enabled(struct igb_adapter *adapter)
 1654{
 1655	int i;
 1656
 1657	for (i = 0; i < adapter->num_tx_queues; i++) {
 1658		if (adapter->tx_ring[i]->cbs_enable)
 1659			return true;
 1660	}
 1661
 1662	return false;
 1663}
 1664
 1665static bool is_any_txtime_enabled(struct igb_adapter *adapter)
 1666{
 1667	int i;
 1668
 1669	for (i = 0; i < adapter->num_tx_queues; i++) {
 1670		if (adapter->tx_ring[i]->launchtime_enable)
 1671			return true;
 1672	}
 1673
 1674	return false;
 1675}
 1676
 1677/**
 1678 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
 1679 *  @adapter: pointer to adapter struct
 1680 *  @queue: queue number
 1681 *
 1682 *  Configure CBS and Launchtime for a given hardware queue.
 1683 *  Parameters are retrieved from the correct Tx ring, so
 1684 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
 1685 *  for setting those correctly prior to this function being called.
 1686 **/
 1687static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
 1688{
 1689	struct net_device *netdev = adapter->netdev;
 1690	struct e1000_hw *hw = &adapter->hw;
 1691	struct igb_ring *ring;
 1692	u32 tqavcc, tqavctrl;
 1693	u16 value;
 1694
 1695	WARN_ON(hw->mac.type != e1000_i210);
 1696	WARN_ON(queue < 0 || queue > 1);
 1697	ring = adapter->tx_ring[queue];
 1698
 1699	/* If any of the Qav features is enabled, configure queues as SR and
 1700	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
 1701	 * as SP.
 1702	 */
 1703	if (ring->cbs_enable || ring->launchtime_enable) {
 1704		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
 1705		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
 1706	} else {
 1707		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
 1708		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
 1709	}
 1710
 1711	/* If CBS is enabled, set DataTranARB and config its parameters. */
 1712	if (ring->cbs_enable || queue == 0) {
 1713		/* i210 does not allow the queue 0 to be in the Strict
 1714		 * Priority mode while the Qav mode is enabled, so,
 1715		 * instead of disabling strict priority mode, we give
 1716		 * queue 0 the maximum of credits possible.
 1717		 *
 1718		 * See section 8.12.19 of the i210 datasheet, "Note:
 1719		 * Queue0 QueueMode must be set to 1b when
 1720		 * TransmitMode is set to Qav."
 1721		 */
 1722		if (queue == 0 && !ring->cbs_enable) {
 1723			/* max "linkspeed" idleslope in kbps */
 1724			ring->idleslope = 1000000;
 1725			ring->hicredit = ETH_FRAME_LEN;
 1726		}
 1727
 1728		/* Always set data transfer arbitration to credit-based
 1729		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
 1730		 * the queues.
 1731		 */
 1732		tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1733		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
 1734		wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1735
 1736		/* According to i210 datasheet section 7.2.7.7, we should set
 1737		 * the 'idleSlope' field from TQAVCC register following the
 1738		 * equation:
 1739		 *
 1740		 * For 100 Mbps link speed:
 1741		 *
 1742		 *     value = BW * 0x7735 * 0.2                          (E1)
 1743		 *
 1744		 * For 1000Mbps link speed:
 1745		 *
 1746		 *     value = BW * 0x7735 * 2                            (E2)
 1747		 *
 1748		 * E1 and E2 can be merged into one equation as shown below.
 1749		 * Note that 'link-speed' is in Mbps.
 1750		 *
 1751		 *     value = BW * 0x7735 * 2 * link-speed
 1752		 *                           --------------               (E3)
 1753		 *                                1000
 1754		 *
 1755		 * 'BW' is the percentage bandwidth out of full link speed
 1756		 * which can be found with the following equation. Note that
 1757		 * idleSlope here is the parameter from this function which
 1758		 * is in kbps.
 1759		 *
 1760		 *     BW =     idleSlope
 1761		 *          -----------------                             (E4)
 1762		 *          link-speed * 1000
 1763		 *
 1764		 * That said, we can come up with a generic equation to
 1765		 * calculate the value we should set it TQAVCC register by
 1766		 * replacing 'BW' in E3 by E4. The resulting equation is:
 1767		 *
 1768		 * value =     idleSlope     * 0x7735 * 2 * link-speed
 1769		 *         -----------------            --------------    (E5)
 1770		 *         link-speed * 1000                 1000
 1771		 *
 1772		 * 'link-speed' is present in both sides of the fraction so
 1773		 * it is canceled out. The final equation is the following:
 1774		 *
 1775		 *     value = idleSlope * 61034
 1776		 *             -----------------                          (E6)
 1777		 *                  1000000
 1778		 *
 1779		 * NOTE: For i210, given the above, we can see that idleslope
 1780		 *       is represented in 16.38431 kbps units by the value at
 1781		 *       the TQAVCC register (1Gbps / 61034), which reduces
 1782		 *       the granularity for idleslope increments.
 1783		 *       For instance, if you want to configure a 2576kbps
 1784		 *       idleslope, the value to be written on the register
 1785		 *       would have to be 157.23. If rounded down, you end
 1786		 *       up with less bandwidth available than originally
 1787		 *       required (~2572 kbps). If rounded up, you end up
 1788		 *       with a higher bandwidth (~2589 kbps). Below the
 1789		 *       approach we take is to always round up the
 1790		 *       calculated value, so the resulting bandwidth might
 1791		 *       be slightly higher for some configurations.
 1792		 */
 1793		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
 1794
 1795		tqavcc = rd32(E1000_I210_TQAVCC(queue));
 1796		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
 1797		tqavcc |= value;
 1798		wr32(E1000_I210_TQAVCC(queue), tqavcc);
 1799
 1800		wr32(E1000_I210_TQAVHC(queue),
 1801		     0x80000000 + ring->hicredit * 0x7735);
 1802	} else {
 1803
 1804		/* Set idleSlope to zero. */
 1805		tqavcc = rd32(E1000_I210_TQAVCC(queue));
 1806		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
 1807		wr32(E1000_I210_TQAVCC(queue), tqavcc);
 1808
 1809		/* Set hiCredit to zero. */
 1810		wr32(E1000_I210_TQAVHC(queue), 0);
 1811
 1812		/* If CBS is not enabled for any queues anymore, then return to
 1813		 * the default state of Data Transmission Arbitration on
 1814		 * TQAVCTRL.
 1815		 */
 1816		if (!is_any_cbs_enabled(adapter)) {
 1817			tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1818			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
 1819			wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1820		}
 1821	}
 1822
 1823	/* If LaunchTime is enabled, set DataTranTIM. */
 1824	if (ring->launchtime_enable) {
 1825		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
 1826		 * for any of the SR queues, and configure fetchtime delta.
 1827		 * XXX NOTE:
 1828		 *     - LaunchTime will be enabled for all SR queues.
 1829		 *     - A fixed offset can be added relative to the launch
 1830		 *       time of all packets if configured at reg LAUNCH_OS0.
 1831		 *       We are keeping it as 0 for now (default value).
 1832		 */
 1833		tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1834		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
 1835		       E1000_TQAVCTRL_FETCHTIME_DELTA;
 1836		wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1837	} else {
 1838		/* If Launchtime is not enabled for any SR queues anymore,
 1839		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
 1840		 * effectively disabling Launchtime.
 1841		 */
 1842		if (!is_any_txtime_enabled(adapter)) {
 1843			tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1844			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
 1845			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
 1846			wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1847		}
 1848	}
 1849
 1850	/* XXX: In i210 controller the sendSlope and loCredit parameters from
 1851	 * CBS are not configurable by software so we don't do any 'controller
 1852	 * configuration' in respect to these parameters.
 1853	 */
 1854
 1855	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
 1856		   ring->cbs_enable ? "enabled" : "disabled",
 1857		   ring->launchtime_enable ? "enabled" : "disabled",
 1858		   queue,
 1859		   ring->idleslope, ring->sendslope,
 1860		   ring->hicredit, ring->locredit);
 1861}
 1862
 1863static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
 1864				  bool enable)
 1865{
 1866	struct igb_ring *ring;
 1867
 1868	if (queue < 0 || queue > adapter->num_tx_queues)
 1869		return -EINVAL;
 1870
 1871	ring = adapter->tx_ring[queue];
 1872	ring->launchtime_enable = enable;
 1873
 1874	return 0;
 1875}
 1876
 1877static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
 1878			       bool enable, int idleslope, int sendslope,
 1879			       int hicredit, int locredit)
 1880{
 1881	struct igb_ring *ring;
 1882
 1883	if (queue < 0 || queue > adapter->num_tx_queues)
 1884		return -EINVAL;
 1885
 1886	ring = adapter->tx_ring[queue];
 1887
 1888	ring->cbs_enable = enable;
 1889	ring->idleslope = idleslope;
 1890	ring->sendslope = sendslope;
 1891	ring->hicredit = hicredit;
 1892	ring->locredit = locredit;
 1893
 1894	return 0;
 1895}
 1896
 1897/**
 1898 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
 1899 *  @adapter: pointer to adapter struct
 1900 *
 1901 *  Configure TQAVCTRL register switching the controller's Tx mode
 1902 *  if FQTSS mode is enabled or disabled. Additionally, will issue
 1903 *  a call to igb_config_tx_modes() per queue so any previously saved
 1904 *  Tx parameters are applied.
 1905 **/
 1906static void igb_setup_tx_mode(struct igb_adapter *adapter)
 1907{
 1908	struct net_device *netdev = adapter->netdev;
 1909	struct e1000_hw *hw = &adapter->hw;
 1910	u32 val;
 1911
 1912	/* Only i210 controller supports changing the transmission mode. */
 1913	if (hw->mac.type != e1000_i210)
 1914		return;
 1915
 1916	if (is_fqtss_enabled(adapter)) {
 1917		int i, max_queue;
 1918
 1919		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
 1920		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
 1921		 * so SP queues wait for SR ones.
 1922		 */
 1923		val = rd32(E1000_I210_TQAVCTRL);
 1924		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
 1925		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
 1926		wr32(E1000_I210_TQAVCTRL, val);
 1927
 1928		/* Configure Tx and Rx packet buffers sizes as described in
 1929		 * i210 datasheet section 7.2.7.7.
 1930		 */
 1931		val = rd32(E1000_TXPBS);
 1932		val &= ~I210_TXPBSIZE_MASK;
 1933		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
 1934			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
 1935		wr32(E1000_TXPBS, val);
 1936
 1937		val = rd32(E1000_RXPBS);
 1938		val &= ~I210_RXPBSIZE_MASK;
 1939		val |= I210_RXPBSIZE_PB_30KB;
 1940		wr32(E1000_RXPBS, val);
 1941
 1942		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
 1943		 * register should not exceed the buffer size programmed in
 1944		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
 1945		 * so according to the datasheet we should set MAX_TPKT_SIZE to
 1946		 * 4kB / 64.
 1947		 *
 1948		 * However, when we do so, no frame from queue 2 and 3 are
 1949		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
 1950		 * or _equal_ to the buffer size programmed in TXPBS. For this
 1951		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
 1952		 */
 1953		val = (4096 - 1) / 64;
 1954		wr32(E1000_I210_DTXMXPKTSZ, val);
 1955
 1956		/* Since FQTSS mode is enabled, apply any CBS configuration
 1957		 * previously set. If no previous CBS configuration has been
 1958		 * done, then the initial configuration is applied, which means
 1959		 * CBS is disabled.
 1960		 */
 1961		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
 1962			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
 1963
 1964		for (i = 0; i < max_queue; i++) {
 1965			igb_config_tx_modes(adapter, i);
 1966		}
 1967	} else {
 1968		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
 1969		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
 1970		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
 1971
 1972		val = rd32(E1000_I210_TQAVCTRL);
 1973		/* According to Section 8.12.21, the other flags we've set when
 1974		 * enabling FQTSS are not relevant when disabling FQTSS so we
 1975		 * don't set they here.
 1976		 */
 1977		val &= ~E1000_TQAVCTRL_XMIT_MODE;
 1978		wr32(E1000_I210_TQAVCTRL, val);
 1979	}
 1980
 1981	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
 1982		   "enabled" : "disabled");
 1983}
 1984
 1985/**
 1986 *  igb_configure - configure the hardware for RX and TX
 1987 *  @adapter: private board structure
 1988 **/
 1989static void igb_configure(struct igb_adapter *adapter)
 1990{
 1991	struct net_device *netdev = adapter->netdev;
 1992	int i;
 1993
 1994	igb_get_hw_control(adapter);
 1995	igb_set_rx_mode(netdev);
 1996	igb_setup_tx_mode(adapter);
 1997
 1998	igb_restore_vlan(adapter);
 1999
 2000	igb_setup_tctl(adapter);
 2001	igb_setup_mrqc(adapter);
 2002	igb_setup_rctl(adapter);
 2003
 2004	igb_nfc_filter_restore(adapter);
 2005	igb_configure_tx(adapter);
 2006	igb_configure_rx(adapter);
 2007
 2008	igb_rx_fifo_flush_82575(&adapter->hw);
 2009
 2010	/* call igb_desc_unused which always leaves
 2011	 * at least 1 descriptor unused to make sure
 2012	 * next_to_use != next_to_clean
 2013	 */
 2014	for (i = 0; i < adapter->num_rx_queues; i++) {
 2015		struct igb_ring *ring = adapter->rx_ring[i];
 2016		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
 2017	}
 2018}
 2019
 2020/**
 2021 *  igb_power_up_link - Power up the phy/serdes link
 2022 *  @adapter: address of board private structure
 2023 **/
 2024void igb_power_up_link(struct igb_adapter *adapter)
 2025{
 2026	igb_reset_phy(&adapter->hw);
 2027
 2028	if (adapter->hw.phy.media_type == e1000_media_type_copper)
 2029		igb_power_up_phy_copper(&adapter->hw);
 2030	else
 2031		igb_power_up_serdes_link_82575(&adapter->hw);
 2032
 2033	igb_setup_link(&adapter->hw);
 2034}
 2035
 2036/**
 2037 *  igb_power_down_link - Power down the phy/serdes link
 2038 *  @adapter: address of board private structure
 2039 */
 2040static void igb_power_down_link(struct igb_adapter *adapter)
 2041{
 2042	if (adapter->hw.phy.media_type == e1000_media_type_copper)
 2043		igb_power_down_phy_copper_82575(&adapter->hw);
 2044	else
 2045		igb_shutdown_serdes_link_82575(&adapter->hw);
 2046}
 2047
 2048/**
 2049 * igb_check_swap_media -  Detect and switch function for Media Auto Sense
 2050 * @adapter: address of the board private structure
 2051 **/
 2052static void igb_check_swap_media(struct igb_adapter *adapter)
 2053{
 2054	struct e1000_hw *hw = &adapter->hw;
 2055	u32 ctrl_ext, connsw;
 2056	bool swap_now = false;
 2057
 2058	ctrl_ext = rd32(E1000_CTRL_EXT);
 2059	connsw = rd32(E1000_CONNSW);
 2060
 2061	/* need to live swap if current media is copper and we have fiber/serdes
 2062	 * to go to.
 2063	 */
 2064
 2065	if ((hw->phy.media_type == e1000_media_type_copper) &&
 2066	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
 2067		swap_now = true;
 2068	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
 2069		   !(connsw & E1000_CONNSW_SERDESD)) {
 2070		/* copper signal takes time to appear */
 2071		if (adapter->copper_tries < 4) {
 2072			adapter->copper_tries++;
 2073			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
 2074			wr32(E1000_CONNSW, connsw);
 2075			return;
 2076		} else {
 2077			adapter->copper_tries = 0;
 2078			if ((connsw & E1000_CONNSW_PHYSD) &&
 2079			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
 2080				swap_now = true;
 2081				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
 2082				wr32(E1000_CONNSW, connsw);
 2083			}
 2084		}
 2085	}
 2086
 2087	if (!swap_now)
 2088		return;
 2089
 2090	switch (hw->phy.media_type) {
 2091	case e1000_media_type_copper:
 2092		netdev_info(adapter->netdev,
 2093			"MAS: changing media to fiber/serdes\n");
 2094		ctrl_ext |=
 2095			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 2096		adapter->flags |= IGB_FLAG_MEDIA_RESET;
 2097		adapter->copper_tries = 0;
 2098		break;
 2099	case e1000_media_type_internal_serdes:
 2100	case e1000_media_type_fiber:
 2101		netdev_info(adapter->netdev,
 2102			"MAS: changing media to copper\n");
 2103		ctrl_ext &=
 2104			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 2105		adapter->flags |= IGB_FLAG_MEDIA_RESET;
 2106		break;
 2107	default:
 2108		/* shouldn't get here during regular operation */
 2109		netdev_err(adapter->netdev,
 2110			"AMS: Invalid media type found, returning\n");
 2111		break;
 2112	}
 2113	wr32(E1000_CTRL_EXT, ctrl_ext);
 2114}
 2115
 2116/**
 2117 *  igb_up - Open the interface and prepare it to handle traffic
 2118 *  @adapter: board private structure
 2119 **/
 2120int igb_up(struct igb_adapter *adapter)
 2121{
 2122	struct e1000_hw *hw = &adapter->hw;
 2123	int i;
 2124
 2125	/* hardware has been reset, we need to reload some things */
 2126	igb_configure(adapter);
 2127
 2128	clear_bit(__IGB_DOWN, &adapter->state);
 2129
 2130	for (i = 0; i < adapter->num_q_vectors; i++)
 2131		napi_enable(&(adapter->q_vector[i]->napi));
 2132
 2133	if (adapter->flags & IGB_FLAG_HAS_MSIX)
 2134		igb_configure_msix(adapter);
 2135	else
 2136		igb_assign_vector(adapter->q_vector[0], 0);
 2137
 2138	/* Clear any pending interrupts. */
 2139	rd32(E1000_TSICR);
 2140	rd32(E1000_ICR);
 2141	igb_irq_enable(adapter);
 2142
 2143	/* notify VFs that reset has been completed */
 2144	if (adapter->vfs_allocated_count) {
 2145		u32 reg_data = rd32(E1000_CTRL_EXT);
 2146
 2147		reg_data |= E1000_CTRL_EXT_PFRSTD;
 2148		wr32(E1000_CTRL_EXT, reg_data);
 2149	}
 2150
 2151	netif_tx_start_all_queues(adapter->netdev);
 2152
 2153	/* start the watchdog. */
 2154	hw->mac.get_link_status = 1;
 2155	schedule_work(&adapter->watchdog_task);
 2156
 2157	if ((adapter->flags & IGB_FLAG_EEE) &&
 2158	    (!hw->dev_spec._82575.eee_disable))
 2159		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
 2160
 2161	return 0;
 2162}
 2163
 2164void igb_down(struct igb_adapter *adapter)
 2165{
 2166	struct net_device *netdev = adapter->netdev;
 2167	struct e1000_hw *hw = &adapter->hw;
 2168	u32 tctl, rctl;
 2169	int i;
 2170
 2171	/* signal that we're down so the interrupt handler does not
 2172	 * reschedule our watchdog timer
 2173	 */
 2174	set_bit(__IGB_DOWN, &adapter->state);
 2175
 2176	/* disable receives in the hardware */
 2177	rctl = rd32(E1000_RCTL);
 2178	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
 2179	/* flush and sleep below */
 2180
 2181	igb_nfc_filter_exit(adapter);
 2182
 2183	netif_carrier_off(netdev);
 2184	netif_tx_stop_all_queues(netdev);
 2185
 2186	/* disable transmits in the hardware */
 2187	tctl = rd32(E1000_TCTL);
 2188	tctl &= ~E1000_TCTL_EN;
 2189	wr32(E1000_TCTL, tctl);
 2190	/* flush both disables and wait for them to finish */
 2191	wrfl();
 2192	usleep_range(10000, 11000);
 2193
 2194	igb_irq_disable(adapter);
 2195
 2196	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 2197
 2198	for (i = 0; i < adapter->num_q_vectors; i++) {
 2199		if (adapter->q_vector[i]) {
 2200			napi_synchronize(&adapter->q_vector[i]->napi);
 2201			napi_disable(&adapter->q_vector[i]->napi);
 2202		}
 2203	}
 2204
 2205	del_timer_sync(&adapter->watchdog_timer);
 2206	del_timer_sync(&adapter->phy_info_timer);
 2207
 2208	/* record the stats before reset*/
 2209	spin_lock(&adapter->stats64_lock);
 2210	igb_update_stats(adapter);
 2211	spin_unlock(&adapter->stats64_lock);
 2212
 2213	adapter->link_speed = 0;
 2214	adapter->link_duplex = 0;
 2215
 2216	if (!pci_channel_offline(adapter->pdev))
 2217		igb_reset(adapter);
 2218
 2219	/* clear VLAN promisc flag so VFTA will be updated if necessary */
 2220	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
 2221
 2222	igb_clean_all_tx_rings(adapter);
 2223	igb_clean_all_rx_rings(adapter);
 2224#ifdef CONFIG_IGB_DCA
 2225
 2226	/* since we reset the hardware DCA settings were cleared */
 2227	igb_setup_dca(adapter);
 2228#endif
 2229}
 2230
 2231void igb_reinit_locked(struct igb_adapter *adapter)
 2232{
 2233	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 2234		usleep_range(1000, 2000);
 2235	igb_down(adapter);
 2236	igb_up(adapter);
 2237	clear_bit(__IGB_RESETTING, &adapter->state);
 2238}
 2239
 2240/** igb_enable_mas - Media Autosense re-enable after swap
 2241 *
 2242 * @adapter: adapter struct
 2243 **/
 2244static void igb_enable_mas(struct igb_adapter *adapter)
 2245{
 2246	struct e1000_hw *hw = &adapter->hw;
 2247	u32 connsw = rd32(E1000_CONNSW);
 2248
 2249	/* configure for SerDes media detect */
 2250	if ((hw->phy.media_type == e1000_media_type_copper) &&
 2251	    (!(connsw & E1000_CONNSW_SERDESD))) {
 2252		connsw |= E1000_CONNSW_ENRGSRC;
 2253		connsw |= E1000_CONNSW_AUTOSENSE_EN;
 2254		wr32(E1000_CONNSW, connsw);
 2255		wrfl();
 2256	}
 2257}
 2258
 2259#ifdef CONFIG_IGB_HWMON
 2260/**
 2261 *  igb_set_i2c_bb - Init I2C interface
 2262 *  @hw: pointer to hardware structure
 2263 **/
 2264static void igb_set_i2c_bb(struct e1000_hw *hw)
 2265{
 2266	u32 ctrl_ext;
 2267	s32 i2cctl;
 2268
 2269	ctrl_ext = rd32(E1000_CTRL_EXT);
 2270	ctrl_ext |= E1000_CTRL_I2C_ENA;
 2271	wr32(E1000_CTRL_EXT, ctrl_ext);
 2272	wrfl();
 2273
 2274	i2cctl = rd32(E1000_I2CPARAMS);
 2275	i2cctl |= E1000_I2CBB_EN
 2276		| E1000_I2C_CLK_OE_N
 2277		| E1000_I2C_DATA_OE_N;
 2278	wr32(E1000_I2CPARAMS, i2cctl);
 2279	wrfl();
 2280}
 2281#endif
 2282
 2283void igb_reset(struct igb_adapter *adapter)
 2284{
 2285	struct pci_dev *pdev = adapter->pdev;
 2286	struct e1000_hw *hw = &adapter->hw;
 2287	struct e1000_mac_info *mac = &hw->mac;
 2288	struct e1000_fc_info *fc = &hw->fc;
 2289	u32 pba, hwm;
 2290
 2291	/* Repartition Pba for greater than 9k mtu
 2292	 * To take effect CTRL.RST is required.
 2293	 */
 2294	switch (mac->type) {
 2295	case e1000_i350:
 2296	case e1000_i354:
 2297	case e1000_82580:
 2298		pba = rd32(E1000_RXPBS);
 2299		pba = igb_rxpbs_adjust_82580(pba);
 2300		break;
 2301	case e1000_82576:
 2302		pba = rd32(E1000_RXPBS);
 2303		pba &= E1000_RXPBS_SIZE_MASK_82576;
 2304		break;
 2305	case e1000_82575:
 2306	case e1000_i210:
 2307	case e1000_i211:
 2308	default:
 2309		pba = E1000_PBA_34K;
 2310		break;
 2311	}
 2312
 2313	if (mac->type == e1000_82575) {
 2314		u32 min_rx_space, min_tx_space, needed_tx_space;
 2315
 2316		/* write Rx PBA so that hardware can report correct Tx PBA */
 2317		wr32(E1000_PBA, pba);
 2318
 2319		/* To maintain wire speed transmits, the Tx FIFO should be
 2320		 * large enough to accommodate two full transmit packets,
 2321		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 2322		 * the Rx FIFO should be large enough to accommodate at least
 2323		 * one full receive packet and is similarly rounded up and
 2324		 * expressed in KB.
 2325		 */
 2326		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
 2327
 2328		/* The Tx FIFO also stores 16 bytes of information about the Tx
 2329		 * but don't include Ethernet FCS because hardware appends it.
 2330		 * We only need to round down to the nearest 512 byte block
 2331		 * count since the value we care about is 2 frames, not 1.
 2332		 */
 2333		min_tx_space = adapter->max_frame_size;
 2334		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
 2335		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
 2336
 2337		/* upper 16 bits has Tx packet buffer allocation size in KB */
 2338		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
 2339
 2340		/* If current Tx allocation is less than the min Tx FIFO size,
 2341		 * and the min Tx FIFO size is less than the current Rx FIFO
 2342		 * allocation, take space away from current Rx allocation.
 2343		 */
 2344		if (needed_tx_space < pba) {
 2345			pba -= needed_tx_space;
 2346
 2347			/* if short on Rx space, Rx wins and must trump Tx
 2348			 * adjustment
 2349			 */
 2350			if (pba < min_rx_space)
 2351				pba = min_rx_space;
 2352		}
 2353
 2354		/* adjust PBA for jumbo frames */
 2355		wr32(E1000_PBA, pba);
 2356	}
 2357
 2358	/* flow control settings
 2359	 * The high water mark must be low enough to fit one full frame
 2360	 * after transmitting the pause frame.  As such we must have enough
 2361	 * space to allow for us to complete our current transmit and then
 2362	 * receive the frame that is in progress from the link partner.
 2363	 * Set it to:
 2364	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
 2365	 */
 2366	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
 2367
 2368	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
 2369	fc->low_water = fc->high_water - 16;
 2370	fc->pause_time = 0xFFFF;
 2371	fc->send_xon = 1;
 2372	fc->current_mode = fc->requested_mode;
 2373
 2374	/* disable receive for all VFs and wait one second */
 2375	if (adapter->vfs_allocated_count) {
 2376		int i;
 2377
 2378		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
 2379			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
 2380
 2381		/* ping all the active vfs to let them know we are going down */
 2382		igb_ping_all_vfs(adapter);
 2383
 2384		/* disable transmits and receives */
 2385		wr32(E1000_VFRE, 0);
 2386		wr32(E1000_VFTE, 0);
 2387	}
 2388
 2389	/* Allow time for pending master requests to run */
 2390	hw->mac.ops.reset_hw(hw);
 2391	wr32(E1000_WUC, 0);
 2392
 2393	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 2394		/* need to resetup here after media swap */
 2395		adapter->ei.get_invariants(hw);
 2396		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
 2397	}
 2398	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
 2399	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
 2400		igb_enable_mas(adapter);
 2401	}
 2402	if (hw->mac.ops.init_hw(hw))
 2403		dev_err(&pdev->dev, "Hardware Error\n");
 2404
 2405	/* RAR registers were cleared during init_hw, clear mac table */
 2406	igb_flush_mac_table(adapter);
 2407	__dev_uc_unsync(adapter->netdev, NULL);
 2408
 2409	/* Recover default RAR entry */
 2410	igb_set_default_mac_filter(adapter);
 2411
 2412	/* Flow control settings reset on hardware reset, so guarantee flow
 2413	 * control is off when forcing speed.
 2414	 */
 2415	if (!hw->mac.autoneg)
 2416		igb_force_mac_fc(hw);
 2417
 2418	igb_init_dmac(adapter, pba);
 2419#ifdef CONFIG_IGB_HWMON
 2420	/* Re-initialize the thermal sensor on i350 devices. */
 2421	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 2422		if (mac->type == e1000_i350 && hw->bus.func == 0) {
 2423			/* If present, re-initialize the external thermal sensor
 2424			 * interface.
 2425			 */
 2426			if (adapter->ets)
 2427				igb_set_i2c_bb(hw);
 2428			mac->ops.init_thermal_sensor_thresh(hw);
 2429		}
 2430	}
 2431#endif
 2432	/* Re-establish EEE setting */
 2433	if (hw->phy.media_type == e1000_media_type_copper) {
 2434		switch (mac->type) {
 2435		case e1000_i350:
 2436		case e1000_i210:
 2437		case e1000_i211:
 2438			igb_set_eee_i350(hw, true, true);
 2439			break;
 2440		case e1000_i354:
 2441			igb_set_eee_i354(hw, true, true);
 2442			break;
 2443		default:
 2444			break;
 2445		}
 2446	}
 2447	if (!netif_running(adapter->netdev))
 2448		igb_power_down_link(adapter);
 2449
 2450	igb_update_mng_vlan(adapter);
 2451
 2452	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 2453	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
 2454
 2455	/* Re-enable PTP, where applicable. */
 2456	if (adapter->ptp_flags & IGB_PTP_ENABLED)
 2457		igb_ptp_reset(adapter);
 2458
 2459	igb_get_phy_info(hw);
 2460}
 2461
 2462static netdev_features_t igb_fix_features(struct net_device *netdev,
 2463	netdev_features_t features)
 2464{
 2465	/* Since there is no support for separate Rx/Tx vlan accel
 2466	 * enable/disable make sure Tx flag is always in same state as Rx.
 2467	 */
 2468	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 2469		features |= NETIF_F_HW_VLAN_CTAG_TX;
 2470	else
 2471		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 2472
 2473	return features;
 2474}
 2475
 2476static int igb_set_features(struct net_device *netdev,
 2477	netdev_features_t features)
 2478{
 2479	netdev_features_t changed = netdev->features ^ features;
 2480	struct igb_adapter *adapter = netdev_priv(netdev);
 2481
 2482	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 2483		igb_vlan_mode(netdev, features);
 2484
 2485	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
 2486		return 0;
 2487
 2488	if (!(features & NETIF_F_NTUPLE)) {
 2489		struct hlist_node *node2;
 2490		struct igb_nfc_filter *rule;
 2491
 2492		spin_lock(&adapter->nfc_lock);
 2493		hlist_for_each_entry_safe(rule, node2,
 2494					  &adapter->nfc_filter_list, nfc_node) {
 2495			igb_erase_filter(adapter, rule);
 2496			hlist_del(&rule->nfc_node);
 2497			kfree(rule);
 2498		}
 2499		spin_unlock(&adapter->nfc_lock);
 2500		adapter->nfc_filter_count = 0;
 2501	}
 2502
 2503	netdev->features = features;
 2504
 2505	if (netif_running(netdev))
 2506		igb_reinit_locked(adapter);
 2507	else
 2508		igb_reset(adapter);
 2509
 2510	return 1;
 2511}
 2512
 2513static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
 2514			   struct net_device *dev,
 2515			   const unsigned char *addr, u16 vid,
 2516			   u16 flags,
 2517			   struct netlink_ext_ack *extack)
 2518{
 2519	/* guarantee we can provide a unique filter for the unicast address */
 2520	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
 2521		struct igb_adapter *adapter = netdev_priv(dev);
 2522		int vfn = adapter->vfs_allocated_count;
 2523
 2524		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
 2525			return -ENOMEM;
 2526	}
 2527
 2528	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
 2529}
 2530
 2531#define IGB_MAX_MAC_HDR_LEN	127
 2532#define IGB_MAX_NETWORK_HDR_LEN	511
 2533
 2534static netdev_features_t
 2535igb_features_check(struct sk_buff *skb, struct net_device *dev,
 2536		   netdev_features_t features)
 2537{
 2538	unsigned int network_hdr_len, mac_hdr_len;
 2539
 2540	/* Make certain the headers can be described by a context descriptor */
 2541	mac_hdr_len = skb_network_offset(skb);
 2542	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
 2543		return features & ~(NETIF_F_HW_CSUM |
 2544				    NETIF_F_SCTP_CRC |
 2545				    NETIF_F_GSO_UDP_L4 |
 2546				    NETIF_F_HW_VLAN_CTAG_TX |
 2547				    NETIF_F_TSO |
 2548				    NETIF_F_TSO6);
 2549
 2550	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
 2551	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
 2552		return features & ~(NETIF_F_HW_CSUM |
 2553				    NETIF_F_SCTP_CRC |
 2554				    NETIF_F_GSO_UDP_L4 |
 2555				    NETIF_F_TSO |
 2556				    NETIF_F_TSO6);
 2557
 2558	/* We can only support IPV4 TSO in tunnels if we can mangle the
 2559	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
 2560	 */
 2561	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
 2562		features &= ~NETIF_F_TSO;
 2563
 2564	return features;
 2565}
 2566
 2567static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
 2568{
 2569	if (!is_fqtss_enabled(adapter)) {
 2570		enable_fqtss(adapter, true);
 2571		return;
 2572	}
 2573
 2574	igb_config_tx_modes(adapter, queue);
 2575
 2576	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
 2577		enable_fqtss(adapter, false);
 2578}
 2579
 2580static int igb_offload_cbs(struct igb_adapter *adapter,
 2581			   struct tc_cbs_qopt_offload *qopt)
 2582{
 2583	struct e1000_hw *hw = &adapter->hw;
 2584	int err;
 2585
 2586	/* CBS offloading is only supported by i210 controller. */
 2587	if (hw->mac.type != e1000_i210)
 2588		return -EOPNOTSUPP;
 2589
 2590	/* CBS offloading is only supported by queue 0 and queue 1. */
 2591	if (qopt->queue < 0 || qopt->queue > 1)
 2592		return -EINVAL;
 2593
 2594	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
 2595				  qopt->idleslope, qopt->sendslope,
 2596				  qopt->hicredit, qopt->locredit);
 2597	if (err)
 2598		return err;
 2599
 2600	igb_offload_apply(adapter, qopt->queue);
 2601
 2602	return 0;
 2603}
 2604
 2605#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
 2606#define VLAN_PRIO_FULL_MASK (0x07)
 2607
 2608static int igb_parse_cls_flower(struct igb_adapter *adapter,
 2609				struct flow_cls_offload *f,
 2610				int traffic_class,
 2611				struct igb_nfc_filter *input)
 2612{
 2613	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
 2614	struct flow_dissector *dissector = rule->match.dissector;
 2615	struct netlink_ext_ack *extack = f->common.extack;
 2616
 2617	if (dissector->used_keys &
 2618	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
 2619	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
 2620	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
 2621	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
 2622		NL_SET_ERR_MSG_MOD(extack,
 2623				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
 2624		return -EOPNOTSUPP;
 2625	}
 2626
 2627	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
 2628		struct flow_match_eth_addrs match;
 2629
 2630		flow_rule_match_eth_addrs(rule, &match);
 2631		if (!is_zero_ether_addr(match.mask->dst)) {
 2632			if (!is_broadcast_ether_addr(match.mask->dst)) {
 2633				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
 2634				return -EINVAL;
 2635			}
 2636
 2637			input->filter.match_flags |=
 2638				IGB_FILTER_FLAG_DST_MAC_ADDR;
 2639			ether_addr_copy(input->filter.dst_addr, match.key->dst);
 2640		}
 2641
 2642		if (!is_zero_ether_addr(match.mask->src)) {
 2643			if (!is_broadcast_ether_addr(match.mask->src)) {
 2644				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
 2645				return -EINVAL;
 2646			}
 2647
 2648			input->filter.match_flags |=
 2649				IGB_FILTER_FLAG_SRC_MAC_ADDR;
 2650			ether_addr_copy(input->filter.src_addr, match.key->src);
 2651		}
 2652	}
 2653
 2654	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
 2655		struct flow_match_basic match;
 2656
 2657		flow_rule_match_basic(rule, &match);
 2658		if (match.mask->n_proto) {
 2659			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
 2660				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
 2661				return -EINVAL;
 2662			}
 2663
 2664			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
 2665			input->filter.etype = match.key->n_proto;
 2666		}
 2667	}
 2668
 2669	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
 2670		struct flow_match_vlan match;
 2671
 2672		flow_rule_match_vlan(rule, &match);
 2673		if (match.mask->vlan_priority) {
 2674			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
 2675				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
 2676				return -EINVAL;
 2677			}
 2678
 2679			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
 2680			input->filter.vlan_tci =
 2681				(__force __be16)match.key->vlan_priority;
 2682		}
 2683	}
 2684
 2685	input->action = traffic_class;
 2686	input->cookie = f->cookie;
 2687
 2688	return 0;
 2689}
 2690
 2691static int igb_configure_clsflower(struct igb_adapter *adapter,
 2692				   struct flow_cls_offload *cls_flower)
 2693{
 2694	struct netlink_ext_ack *extack = cls_flower->common.extack;
 2695	struct igb_nfc_filter *filter, *f;
 2696	int err, tc;
 2697
 2698	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
 2699	if (tc < 0) {
 2700		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
 2701		return -EINVAL;
 2702	}
 2703
 2704	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
 2705	if (!filter)
 2706		return -ENOMEM;
 2707
 2708	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
 2709	if (err < 0)
 2710		goto err_parse;
 2711
 2712	spin_lock(&adapter->nfc_lock);
 2713
 2714	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
 2715		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
 2716			err = -EEXIST;
 2717			NL_SET_ERR_MSG_MOD(extack,
 2718					   "This filter is already set in ethtool");
 2719			goto err_locked;
 2720		}
 2721	}
 2722
 2723	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
 2724		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
 2725			err = -EEXIST;
 2726			NL_SET_ERR_MSG_MOD(extack,
 2727					   "This filter is already set in cls_flower");
 2728			goto err_locked;
 2729		}
 2730	}
 2731
 2732	err = igb_add_filter(adapter, filter);
 2733	if (err < 0) {
 2734		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
 2735		goto err_locked;
 2736	}
 2737
 2738	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
 2739
 2740	spin_unlock(&adapter->nfc_lock);
 2741
 2742	return 0;
 2743
 2744err_locked:
 2745	spin_unlock(&adapter->nfc_lock);
 2746
 2747err_parse:
 2748	kfree(filter);
 2749
 2750	return err;
 2751}
 2752
 2753static int igb_delete_clsflower(struct igb_adapter *adapter,
 2754				struct flow_cls_offload *cls_flower)
 2755{
 2756	struct igb_nfc_filter *filter;
 2757	int err;
 2758
 2759	spin_lock(&adapter->nfc_lock);
 2760
 2761	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
 2762		if (filter->cookie == cls_flower->cookie)
 2763			break;
 2764
 2765	if (!filter) {
 2766		err = -ENOENT;
 2767		goto out;
 2768	}
 2769
 2770	err = igb_erase_filter(adapter, filter);
 2771	if (err < 0)
 2772		goto out;
 2773
 2774	hlist_del(&filter->nfc_node);
 2775	kfree(filter);
 2776
 2777out:
 2778	spin_unlock(&adapter->nfc_lock);
 2779
 2780	return err;
 2781}
 2782
 2783static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
 2784				   struct flow_cls_offload *cls_flower)
 2785{
 2786	switch (cls_flower->command) {
 2787	case FLOW_CLS_REPLACE:
 2788		return igb_configure_clsflower(adapter, cls_flower);
 2789	case FLOW_CLS_DESTROY:
 2790		return igb_delete_clsflower(adapter, cls_flower);
 2791	case FLOW_CLS_STATS:
 2792		return -EOPNOTSUPP;
 2793	default:
 2794		return -EOPNOTSUPP;
 2795	}
 2796}
 2797
 2798static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
 2799				 void *cb_priv)
 2800{
 2801	struct igb_adapter *adapter = cb_priv;
 2802
 2803	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
 2804		return -EOPNOTSUPP;
 2805
 2806	switch (type) {
 2807	case TC_SETUP_CLSFLOWER:
 2808		return igb_setup_tc_cls_flower(adapter, type_data);
 2809
 2810	default:
 2811		return -EOPNOTSUPP;
 2812	}
 2813}
 2814
 2815static int igb_offload_txtime(struct igb_adapter *adapter,
 2816			      struct tc_etf_qopt_offload *qopt)
 2817{
 2818	struct e1000_hw *hw = &adapter->hw;
 2819	int err;
 2820
 2821	/* Launchtime offloading is only supported by i210 controller. */
 2822	if (hw->mac.type != e1000_i210)
 2823		return -EOPNOTSUPP;
 2824
 2825	/* Launchtime offloading is only supported by queues 0 and 1. */
 2826	if (qopt->queue < 0 || qopt->queue > 1)
 2827		return -EINVAL;
 2828
 2829	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
 2830	if (err)
 2831		return err;
 2832
 2833	igb_offload_apply(adapter, qopt->queue);
 2834
 2835	return 0;
 2836}
 2837
 2838static int igb_tc_query_caps(struct igb_adapter *adapter,
 2839			     struct tc_query_caps_base *base)
 2840{
 2841	switch (base->type) {
 2842	case TC_SETUP_QDISC_TAPRIO: {
 2843		struct tc_taprio_caps *caps = base->caps;
 2844
 2845		caps->broken_mqprio = true;
 2846
 2847		return 0;
 2848	}
 2849	default:
 2850		return -EOPNOTSUPP;
 2851	}
 2852}
 2853
 2854static LIST_HEAD(igb_block_cb_list);
 2855
 2856static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
 2857			void *type_data)
 2858{
 2859	struct igb_adapter *adapter = netdev_priv(dev);
 2860
 2861	switch (type) {
 2862	case TC_QUERY_CAPS:
 2863		return igb_tc_query_caps(adapter, type_data);
 2864	case TC_SETUP_QDISC_CBS:
 2865		return igb_offload_cbs(adapter, type_data);
 2866	case TC_SETUP_BLOCK:
 2867		return flow_block_cb_setup_simple(type_data,
 2868						  &igb_block_cb_list,
 2869						  igb_setup_tc_block_cb,
 2870						  adapter, adapter, true);
 2871
 2872	case TC_SETUP_QDISC_ETF:
 2873		return igb_offload_txtime(adapter, type_data);
 2874
 2875	default:
 2876		return -EOPNOTSUPP;
 2877	}
 2878}
 2879
 2880static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
 2881{
 2882	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
 2883	struct igb_adapter *adapter = netdev_priv(dev);
 2884	struct bpf_prog *prog = bpf->prog, *old_prog;
 2885	bool running = netif_running(dev);
 2886	bool need_reset;
 2887
 2888	/* verify igb ring attributes are sufficient for XDP */
 2889	for (i = 0; i < adapter->num_rx_queues; i++) {
 2890		struct igb_ring *ring = adapter->rx_ring[i];
 2891
 2892		if (frame_size > igb_rx_bufsz(ring)) {
 2893			NL_SET_ERR_MSG_MOD(bpf->extack,
 2894					   "The RX buffer size is too small for the frame size");
 2895			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
 2896				    igb_rx_bufsz(ring), frame_size);
 2897			return -EINVAL;
 2898		}
 2899	}
 2900
 2901	old_prog = xchg(&adapter->xdp_prog, prog);
 2902	need_reset = (!!prog != !!old_prog);
 2903
 2904	/* device is up and bpf is added/removed, must setup the RX queues */
 2905	if (need_reset && running) {
 2906		igb_close(dev);
 2907	} else {
 2908		for (i = 0; i < adapter->num_rx_queues; i++)
 2909			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
 2910			    adapter->xdp_prog);
 2911	}
 2912
 2913	if (old_prog)
 2914		bpf_prog_put(old_prog);
 2915
 2916	/* bpf is just replaced, RXQ and MTU are already setup */
 2917	if (!need_reset) {
 2918		return 0;
 2919	} else {
 2920		if (prog)
 2921			xdp_features_set_redirect_target(dev, true);
 2922		else
 2923			xdp_features_clear_redirect_target(dev);
 2924	}
 2925
 2926	if (running)
 2927		igb_open(dev);
 2928
 2929	return 0;
 2930}
 2931
 2932static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
 2933{
 2934	switch (xdp->command) {
 2935	case XDP_SETUP_PROG:
 2936		return igb_xdp_setup(dev, xdp);
 2937	default:
 2938		return -EINVAL;
 2939	}
 2940}
 2941
 2942static void igb_xdp_ring_update_tail(struct igb_ring *ring)
 2943{
 2944	/* Force memory writes to complete before letting h/w know there
 2945	 * are new descriptors to fetch.
 2946	 */
 2947	wmb();
 2948	writel(ring->next_to_use, ring->tail);
 2949}
 2950
 2951static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
 2952{
 2953	unsigned int r_idx = smp_processor_id();
 2954
 2955	if (r_idx >= adapter->num_tx_queues)
 2956		r_idx = r_idx % adapter->num_tx_queues;
 2957
 2958	return adapter->tx_ring[r_idx];
 2959}
 2960
 2961static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
 2962{
 2963	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
 2964	int cpu = smp_processor_id();
 2965	struct igb_ring *tx_ring;
 2966	struct netdev_queue *nq;
 2967	u32 ret;
 2968
 2969	if (unlikely(!xdpf))
 2970		return IGB_XDP_CONSUMED;
 2971
 2972	/* During program transitions its possible adapter->xdp_prog is assigned
 2973	 * but ring has not been configured yet. In this case simply abort xmit.
 2974	 */
 2975	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
 2976	if (unlikely(!tx_ring))
 2977		return IGB_XDP_CONSUMED;
 2978
 2979	nq = txring_txq(tx_ring);
 2980	__netif_tx_lock(nq, cpu);
 2981	/* Avoid transmit queue timeout since we share it with the slow path */
 2982	txq_trans_cond_update(nq);
 2983	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
 2984	__netif_tx_unlock(nq);
 2985
 2986	return ret;
 2987}
 2988
 2989static int igb_xdp_xmit(struct net_device *dev, int n,
 2990			struct xdp_frame **frames, u32 flags)
 2991{
 2992	struct igb_adapter *adapter = netdev_priv(dev);
 2993	int cpu = smp_processor_id();
 2994	struct igb_ring *tx_ring;
 2995	struct netdev_queue *nq;
 2996	int nxmit = 0;
 2997	int i;
 2998
 2999	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
 3000		return -ENETDOWN;
 3001
 3002	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 3003		return -EINVAL;
 3004
 3005	/* During program transitions its possible adapter->xdp_prog is assigned
 3006	 * but ring has not been configured yet. In this case simply abort xmit.
 3007	 */
 3008	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
 3009	if (unlikely(!tx_ring))
 3010		return -ENXIO;
 3011
 3012	nq = txring_txq(tx_ring);
 3013	__netif_tx_lock(nq, cpu);
 3014
 3015	/* Avoid transmit queue timeout since we share it with the slow path */
 3016	txq_trans_cond_update(nq);
 3017
 3018	for (i = 0; i < n; i++) {
 3019		struct xdp_frame *xdpf = frames[i];
 3020		int err;
 3021
 3022		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
 3023		if (err != IGB_XDP_TX)
 3024			break;
 3025		nxmit++;
 3026	}
 3027
 3028	__netif_tx_unlock(nq);
 3029
 3030	if (unlikely(flags & XDP_XMIT_FLUSH))
 3031		igb_xdp_ring_update_tail(tx_ring);
 3032
 3033	return nxmit;
 3034}
 3035
 3036static const struct net_device_ops igb_netdev_ops = {
 3037	.ndo_open		= igb_open,
 3038	.ndo_stop		= igb_close,
 3039	.ndo_start_xmit		= igb_xmit_frame,
 3040	.ndo_get_stats64	= igb_get_stats64,
 3041	.ndo_set_rx_mode	= igb_set_rx_mode,
 3042	.ndo_set_mac_address	= igb_set_mac,
 3043	.ndo_change_mtu		= igb_change_mtu,
 3044	.ndo_eth_ioctl		= igb_ioctl,
 3045	.ndo_tx_timeout		= igb_tx_timeout,
 3046	.ndo_validate_addr	= eth_validate_addr,
 3047	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
 3048	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
 3049	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
 3050	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
 3051	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
 3052	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
 3053	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
 3054	.ndo_get_vf_config	= igb_ndo_get_vf_config,
 3055	.ndo_fix_features	= igb_fix_features,
 3056	.ndo_set_features	= igb_set_features,
 3057	.ndo_fdb_add		= igb_ndo_fdb_add,
 3058	.ndo_features_check	= igb_features_check,
 3059	.ndo_setup_tc		= igb_setup_tc,
 3060	.ndo_bpf		= igb_xdp,
 3061	.ndo_xdp_xmit		= igb_xdp_xmit,
 3062};
 3063
 3064/**
 3065 * igb_set_fw_version - Configure version string for ethtool
 3066 * @adapter: adapter struct
 3067 **/
 3068void igb_set_fw_version(struct igb_adapter *adapter)
 3069{
 3070	struct e1000_hw *hw = &adapter->hw;
 3071	struct e1000_fw_version fw;
 3072
 3073	igb_get_fw_version(hw, &fw);
 3074
 3075	switch (hw->mac.type) {
 3076	case e1000_i210:
 3077	case e1000_i211:
 3078		if (!(igb_get_flash_presence_i210(hw))) {
 3079			snprintf(adapter->fw_version,
 3080				 sizeof(adapter->fw_version),
 3081				 "%2d.%2d-%d",
 3082				 fw.invm_major, fw.invm_minor,
 3083				 fw.invm_img_type);
 3084			break;
 3085		}
 3086		fallthrough;
 3087	default:
 3088		/* if option rom is valid, display its version too */
 3089		if (fw.or_valid) {
 3090			snprintf(adapter->fw_version,
 3091				 sizeof(adapter->fw_version),
 3092				 "%d.%d, 0x%08x, %d.%d.%d",
 3093				 fw.eep_major, fw.eep_minor, fw.etrack_id,
 3094				 fw.or_major, fw.or_build, fw.or_patch);
 3095		/* no option rom */
 3096		} else if (fw.etrack_id != 0X0000) {
 3097			snprintf(adapter->fw_version,
 3098				 sizeof(adapter->fw_version),
 3099				 "%d.%d, 0x%08x",
 3100				 fw.eep_major, fw.eep_minor, fw.etrack_id);
 3101		} else {
 3102			snprintf(adapter->fw_version,
 3103				 sizeof(adapter->fw_version),
 3104				 "%d.%d.%d",
 3105				 fw.eep_major, fw.eep_minor, fw.eep_build);
 3106		}
 3107		break;
 3108	}
 3109}
 3110
 3111/**
 3112 * igb_init_mas - init Media Autosense feature if enabled in the NVM
 3113 *
 3114 * @adapter: adapter struct
 3115 **/
 3116static void igb_init_mas(struct igb_adapter *adapter)
 3117{
 3118	struct e1000_hw *hw = &adapter->hw;
 3119	u16 eeprom_data;
 3120
 3121	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
 3122	switch (hw->bus.func) {
 3123	case E1000_FUNC_0:
 3124		if (eeprom_data & IGB_MAS_ENABLE_0) {
 3125			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3126			netdev_info(adapter->netdev,
 3127				"MAS: Enabling Media Autosense for port %d\n",
 3128				hw->bus.func);
 3129		}
 3130		break;
 3131	case E1000_FUNC_1:
 3132		if (eeprom_data & IGB_MAS_ENABLE_1) {
 3133			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3134			netdev_info(adapter->netdev,
 3135				"MAS: Enabling Media Autosense for port %d\n",
 3136				hw->bus.func);
 3137		}
 3138		break;
 3139	case E1000_FUNC_2:
 3140		if (eeprom_data & IGB_MAS_ENABLE_2) {
 3141			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3142			netdev_info(adapter->netdev,
 3143				"MAS: Enabling Media Autosense for port %d\n",
 3144				hw->bus.func);
 3145		}
 3146		break;
 3147	case E1000_FUNC_3:
 3148		if (eeprom_data & IGB_MAS_ENABLE_3) {
 3149			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3150			netdev_info(adapter->netdev,
 3151				"MAS: Enabling Media Autosense for port %d\n",
 3152				hw->bus.func);
 3153		}
 3154		break;
 3155	default:
 3156		/* Shouldn't get here */
 3157		netdev_err(adapter->netdev,
 3158			"MAS: Invalid port configuration, returning\n");
 3159		break;
 3160	}
 3161}
 3162
 3163/**
 3164 *  igb_init_i2c - Init I2C interface
 3165 *  @adapter: pointer to adapter structure
 3166 **/
 3167static s32 igb_init_i2c(struct igb_adapter *adapter)
 3168{
 3169	s32 status = 0;
 3170
 3171	/* I2C interface supported on i350 devices */
 3172	if (adapter->hw.mac.type != e1000_i350)
 3173		return 0;
 3174
 3175	/* Initialize the i2c bus which is controlled by the registers.
 3176	 * This bus will use the i2c_algo_bit structure that implements
 3177	 * the protocol through toggling of the 4 bits in the register.
 3178	 */
 3179	adapter->i2c_adap.owner = THIS_MODULE;
 3180	adapter->i2c_algo = igb_i2c_algo;
 3181	adapter->i2c_algo.data = adapter;
 3182	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
 3183	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
 3184	strscpy(adapter->i2c_adap.name, "igb BB",
 3185		sizeof(adapter->i2c_adap.name));
 3186	status = i2c_bit_add_bus(&adapter->i2c_adap);
 3187	return status;
 3188}
 3189
 3190/**
 3191 *  igb_probe - Device Initialization Routine
 3192 *  @pdev: PCI device information struct
 3193 *  @ent: entry in igb_pci_tbl
 3194 *
 3195 *  Returns 0 on success, negative on failure
 3196 *
 3197 *  igb_probe initializes an adapter identified by a pci_dev structure.
 3198 *  The OS initialization, configuring of the adapter private structure,
 3199 *  and a hardware reset occur.
 3200 **/
 3201static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 3202{
 3203	struct net_device *netdev;
 3204	struct igb_adapter *adapter;
 3205	struct e1000_hw *hw;
 3206	u16 eeprom_data = 0;
 3207	s32 ret_val;
 3208	static int global_quad_port_a; /* global quad port a indication */
 3209	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
 3210	u8 part_str[E1000_PBANUM_LENGTH];
 3211	int err;
 3212
 3213	/* Catch broken hardware that put the wrong VF device ID in
 3214	 * the PCIe SR-IOV capability.
 3215	 */
 3216	if (pdev->is_virtfn) {
 3217		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
 3218			pci_name(pdev), pdev->vendor, pdev->device);
 3219		return -EINVAL;
 3220	}
 3221
 3222	err = pci_enable_device_mem(pdev);
 3223	if (err)
 3224		return err;
 3225
 3226	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
 3227	if (err) {
 3228		dev_err(&pdev->dev,
 3229			"No usable DMA configuration, aborting\n");
 3230		goto err_dma;
 3231	}
 3232
 3233	err = pci_request_mem_regions(pdev, igb_driver_name);
 3234	if (err)
 3235		goto err_pci_reg;
 3236
 3237	pci_set_master(pdev);
 3238	pci_save_state(pdev);
 3239
 3240	err = -ENOMEM;
 3241	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
 3242				   IGB_MAX_TX_QUEUES);
 3243	if (!netdev)
 3244		goto err_alloc_etherdev;
 3245
 3246	SET_NETDEV_DEV(netdev, &pdev->dev);
 3247
 3248	pci_set_drvdata(pdev, netdev);
 3249	adapter = netdev_priv(netdev);
 3250	adapter->netdev = netdev;
 3251	adapter->pdev = pdev;
 3252	hw = &adapter->hw;
 3253	hw->back = adapter;
 3254	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 3255
 3256	err = -EIO;
 3257	adapter->io_addr = pci_iomap(pdev, 0, 0);
 3258	if (!adapter->io_addr)
 3259		goto err_ioremap;
 3260	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
 3261	hw->hw_addr = adapter->io_addr;
 3262
 3263	netdev->netdev_ops = &igb_netdev_ops;
 3264	igb_set_ethtool_ops(netdev);
 3265	netdev->watchdog_timeo = 5 * HZ;
 3266
 3267	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
 3268
 3269	netdev->mem_start = pci_resource_start(pdev, 0);
 3270	netdev->mem_end = pci_resource_end(pdev, 0);
 3271
 3272	/* PCI config space info */
 3273	hw->vendor_id = pdev->vendor;
 3274	hw->device_id = pdev->device;
 3275	hw->revision_id = pdev->revision;
 3276	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 3277	hw->subsystem_device_id = pdev->subsystem_device;
 3278
 3279	/* Copy the default MAC, PHY and NVM function pointers */
 3280	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
 3281	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
 3282	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
 3283	/* Initialize skew-specific constants */
 3284	err = ei->get_invariants(hw);
 3285	if (err)
 3286		goto err_sw_init;
 3287
 3288	/* setup the private structure */
 3289	err = igb_sw_init(adapter);
 3290	if (err)
 3291		goto err_sw_init;
 3292
 3293	igb_get_bus_info_pcie(hw);
 3294
 3295	hw->phy.autoneg_wait_to_complete = false;
 3296
 3297	/* Copper options */
 3298	if (hw->phy.media_type == e1000_media_type_copper) {
 3299		hw->phy.mdix = AUTO_ALL_MODES;
 3300		hw->phy.disable_polarity_correction = false;
 3301		hw->phy.ms_type = e1000_ms_hw_default;
 3302	}
 3303
 3304	if (igb_check_reset_block(hw))
 3305		dev_info(&pdev->dev,
 3306			"PHY reset is blocked due to SOL/IDER session.\n");
 3307
 3308	/* features is initialized to 0 in allocation, it might have bits
 3309	 * set by igb_sw_init so we should use an or instead of an
 3310	 * assignment.
 3311	 */
 3312	netdev->features |= NETIF_F_SG |
 3313			    NETIF_F_TSO |
 3314			    NETIF_F_TSO6 |
 3315			    NETIF_F_RXHASH |
 3316			    NETIF_F_RXCSUM |
 3317			    NETIF_F_HW_CSUM;
 3318
 3319	if (hw->mac.type >= e1000_82576)
 3320		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
 3321
 3322	if (hw->mac.type >= e1000_i350)
 3323		netdev->features |= NETIF_F_HW_TC;
 3324
 3325#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
 3326				  NETIF_F_GSO_GRE_CSUM | \
 3327				  NETIF_F_GSO_IPXIP4 | \
 3328				  NETIF_F_GSO_IPXIP6 | \
 3329				  NETIF_F_GSO_UDP_TUNNEL | \
 3330				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
 3331
 3332	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
 3333	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
 3334
 3335	/* copy netdev features into list of user selectable features */
 3336	netdev->hw_features |= netdev->features |
 3337			       NETIF_F_HW_VLAN_CTAG_RX |
 3338			       NETIF_F_HW_VLAN_CTAG_TX |
 3339			       NETIF_F_RXALL;
 3340
 3341	if (hw->mac.type >= e1000_i350)
 3342		netdev->hw_features |= NETIF_F_NTUPLE;
 3343
 3344	netdev->features |= NETIF_F_HIGHDMA;
 3345
 3346	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
 3347	netdev->mpls_features |= NETIF_F_HW_CSUM;
 3348	netdev->hw_enc_features |= netdev->vlan_features;
 3349
 3350	/* set this bit last since it cannot be part of vlan_features */
 3351	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
 3352			    NETIF_F_HW_VLAN_CTAG_RX |
 3353			    NETIF_F_HW_VLAN_CTAG_TX;
 3354
 3355	netdev->priv_flags |= IFF_SUPP_NOFCS;
 3356
 3357	netdev->priv_flags |= IFF_UNICAST_FLT;
 3358	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
 3359
 3360	/* MTU range: 68 - 9216 */
 3361	netdev->min_mtu = ETH_MIN_MTU;
 3362	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
 3363
 3364	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
 3365
 3366	/* before reading the NVM, reset the controller to put the device in a
 3367	 * known good starting state
 3368	 */
 3369	hw->mac.ops.reset_hw(hw);
 3370
 3371	/* make sure the NVM is good , i211/i210 parts can have special NVM
 3372	 * that doesn't contain a checksum
 3373	 */
 3374	switch (hw->mac.type) {
 3375	case e1000_i210:
 3376	case e1000_i211:
 3377		if (igb_get_flash_presence_i210(hw)) {
 3378			if (hw->nvm.ops.validate(hw) < 0) {
 3379				dev_err(&pdev->dev,
 3380					"The NVM Checksum Is Not Valid\n");
 3381				err = -EIO;
 3382				goto err_eeprom;
 3383			}
 3384		}
 3385		break;
 3386	default:
 3387		if (hw->nvm.ops.validate(hw) < 0) {
 3388			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
 3389			err = -EIO;
 3390			goto err_eeprom;
 3391		}
 3392		break;
 3393	}
 3394
 3395	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
 3396		/* copy the MAC address out of the NVM */
 3397		if (hw->mac.ops.read_mac_addr(hw))
 3398			dev_err(&pdev->dev, "NVM Read Error\n");
 3399	}
 3400
 3401	eth_hw_addr_set(netdev, hw->mac.addr);
 3402
 3403	if (!is_valid_ether_addr(netdev->dev_addr)) {
 3404		dev_err(&pdev->dev, "Invalid MAC Address\n");
 3405		err = -EIO;
 3406		goto err_eeprom;
 3407	}
 3408
 3409	igb_set_default_mac_filter(adapter);
 3410
 3411	/* get firmware version for ethtool -i */
 3412	igb_set_fw_version(adapter);
 3413
 3414	/* configure RXPBSIZE and TXPBSIZE */
 3415	if (hw->mac.type == e1000_i210) {
 3416		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
 3417		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
 3418	}
 3419
 3420	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
 3421	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
 3422
 3423	INIT_WORK(&adapter->reset_task, igb_reset_task);
 3424	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
 3425
 3426	/* Initialize link properties that are user-changeable */
 3427	adapter->fc_autoneg = true;
 3428	hw->mac.autoneg = true;
 3429	hw->phy.autoneg_advertised = 0x2f;
 3430
 3431	hw->fc.requested_mode = e1000_fc_default;
 3432	hw->fc.current_mode = e1000_fc_default;
 3433
 3434	igb_validate_mdi_setting(hw);
 3435
 3436	/* By default, support wake on port A */
 3437	if (hw->bus.func == 0)
 3438		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3439
 3440	/* Check the NVM for wake support on non-port A ports */
 3441	if (hw->mac.type >= e1000_82580)
 3442		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
 3443				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
 3444				 &eeprom_data);
 3445	else if (hw->bus.func == 1)
 3446		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
 3447
 3448	if (eeprom_data & IGB_EEPROM_APME)
 3449		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3450
 3451	/* now that we have the eeprom settings, apply the special cases where
 3452	 * the eeprom may be wrong or the board simply won't support wake on
 3453	 * lan on a particular port
 3454	 */
 3455	switch (pdev->device) {
 3456	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 3457		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3458		break;
 3459	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 3460	case E1000_DEV_ID_82576_FIBER:
 3461	case E1000_DEV_ID_82576_SERDES:
 3462		/* Wake events only supported on port A for dual fiber
 3463		 * regardless of eeprom setting
 3464		 */
 3465		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
 3466			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3467		break;
 3468	case E1000_DEV_ID_82576_QUAD_COPPER:
 3469	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 3470		/* if quad port adapter, disable WoL on all but port A */
 3471		if (global_quad_port_a != 0)
 3472			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3473		else
 3474			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
 3475		/* Reset for multiple quad port adapters */
 3476		if (++global_quad_port_a == 4)
 3477			global_quad_port_a = 0;
 3478		break;
 3479	default:
 3480		/* If the device can't wake, don't set software support */
 3481		if (!device_can_wakeup(&adapter->pdev->dev))
 3482			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3483	}
 3484
 3485	/* initialize the wol settings based on the eeprom settings */
 3486	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
 3487		adapter->wol |= E1000_WUFC_MAG;
 3488
 3489	/* Some vendors want WoL disabled by default, but still supported */
 3490	if ((hw->mac.type == e1000_i350) &&
 3491	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
 3492		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3493		adapter->wol = 0;
 3494	}
 3495
 3496	/* Some vendors want the ability to Use the EEPROM setting as
 3497	 * enable/disable only, and not for capability
 3498	 */
 3499	if (((hw->mac.type == e1000_i350) ||
 3500	     (hw->mac.type == e1000_i354)) &&
 3501	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
 3502		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3503		adapter->wol = 0;
 3504	}
 3505	if (hw->mac.type == e1000_i350) {
 3506		if (((pdev->subsystem_device == 0x5001) ||
 3507		     (pdev->subsystem_device == 0x5002)) &&
 3508				(hw->bus.func == 0)) {
 3509			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3510			adapter->wol = 0;
 3511		}
 3512		if (pdev->subsystem_device == 0x1F52)
 3513			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3514	}
 3515
 3516	device_set_wakeup_enable(&adapter->pdev->dev,
 3517				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
 3518
 3519	/* reset the hardware with the new settings */
 3520	igb_reset(adapter);
 3521
 3522	/* Init the I2C interface */
 3523	err = igb_init_i2c(adapter);
 3524	if (err) {
 3525		dev_err(&pdev->dev, "failed to init i2c interface\n");
 3526		goto err_eeprom;
 3527	}
 3528
 3529	/* let the f/w know that the h/w is now under the control of the
 3530	 * driver.
 3531	 */
 3532	igb_get_hw_control(adapter);
 3533
 3534	strcpy(netdev->name, "eth%d");
 3535	err = register_netdev(netdev);
 3536	if (err)
 3537		goto err_register;
 3538
 3539	/* carrier off reporting is important to ethtool even BEFORE open */
 3540	netif_carrier_off(netdev);
 3541
 3542#ifdef CONFIG_IGB_DCA
 3543	if (dca_add_requester(&pdev->dev) == 0) {
 3544		adapter->flags |= IGB_FLAG_DCA_ENABLED;
 3545		dev_info(&pdev->dev, "DCA enabled\n");
 3546		igb_setup_dca(adapter);
 3547	}
 3548
 3549#endif
 3550#ifdef CONFIG_IGB_HWMON
 3551	/* Initialize the thermal sensor on i350 devices. */
 3552	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
 3553		u16 ets_word;
 3554
 3555		/* Read the NVM to determine if this i350 device supports an
 3556		 * external thermal sensor.
 3557		 */
 3558		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
 3559		if (ets_word != 0x0000 && ets_word != 0xFFFF)
 3560			adapter->ets = true;
 3561		else
 3562			adapter->ets = false;
 3563		/* Only enable I2C bit banging if an external thermal
 3564		 * sensor is supported.
 3565		 */
 3566		if (adapter->ets)
 3567			igb_set_i2c_bb(hw);
 3568		hw->mac.ops.init_thermal_sensor_thresh(hw);
 3569		if (igb_sysfs_init(adapter))
 3570			dev_err(&pdev->dev,
 3571				"failed to allocate sysfs resources\n");
 3572	} else {
 3573		adapter->ets = false;
 3574	}
 3575#endif
 3576	/* Check if Media Autosense is enabled */
 3577	adapter->ei = *ei;
 3578	if (hw->dev_spec._82575.mas_capable)
 3579		igb_init_mas(adapter);
 3580
 3581	/* do hw tstamp init after resetting */
 3582	igb_ptp_init(adapter);
 3583
 3584	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
 3585	/* print bus type/speed/width info, not applicable to i354 */
 3586	if (hw->mac.type != e1000_i354) {
 3587		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
 3588			 netdev->name,
 3589			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
 3590			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
 3591			   "unknown"),
 3592			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
 3593			  "Width x4" :
 3594			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
 3595			  "Width x2" :
 3596			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
 3597			  "Width x1" : "unknown"), netdev->dev_addr);
 3598	}
 3599
 3600	if ((hw->mac.type == e1000_82576 &&
 3601	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
 3602	    (hw->mac.type >= e1000_i210 ||
 3603	     igb_get_flash_presence_i210(hw))) {
 3604		ret_val = igb_read_part_string(hw, part_str,
 3605					       E1000_PBANUM_LENGTH);
 3606	} else {
 3607		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
 3608	}
 3609
 3610	if (ret_val)
 3611		strcpy(part_str, "Unknown");
 3612	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
 3613	dev_info(&pdev->dev,
 3614		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
 3615		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
 3616		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
 3617		adapter->num_rx_queues, adapter->num_tx_queues);
 3618	if (hw->phy.media_type == e1000_media_type_copper) {
 3619		switch (hw->mac.type) {
 3620		case e1000_i350:
 3621		case e1000_i210:
 3622		case e1000_i211:
 3623			/* Enable EEE for internal copper PHY devices */
 3624			err = igb_set_eee_i350(hw, true, true);
 3625			if ((!err) &&
 3626			    (!hw->dev_spec._82575.eee_disable)) {
 3627				adapter->eee_advert =
 3628					MDIO_EEE_100TX | MDIO_EEE_1000T;
 3629				adapter->flags |= IGB_FLAG_EEE;
 3630			}
 3631			break;
 3632		case e1000_i354:
 3633			if ((rd32(E1000_CTRL_EXT) &
 3634			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
 3635				err = igb_set_eee_i354(hw, true, true);
 3636				if ((!err) &&
 3637					(!hw->dev_spec._82575.eee_disable)) {
 3638					adapter->eee_advert =
 3639					   MDIO_EEE_100TX | MDIO_EEE_1000T;
 3640					adapter->flags |= IGB_FLAG_EEE;
 3641				}
 3642			}
 3643			break;
 3644		default:
 3645			break;
 3646		}
 3647	}
 3648
 3649	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
 3650
 3651	pm_runtime_put_noidle(&pdev->dev);
 3652	return 0;
 3653
 3654err_register:
 3655	igb_release_hw_control(adapter);
 3656	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
 3657err_eeprom:
 3658	if (!igb_check_reset_block(hw))
 3659		igb_reset_phy(hw);
 3660
 3661	if (hw->flash_address)
 3662		iounmap(hw->flash_address);
 3663err_sw_init:
 3664	kfree(adapter->mac_table);
 3665	kfree(adapter->shadow_vfta);
 3666	igb_clear_interrupt_scheme(adapter);
 3667#ifdef CONFIG_PCI_IOV
 3668	igb_disable_sriov(pdev, false);
 3669#endif
 3670	pci_iounmap(pdev, adapter->io_addr);
 3671err_ioremap:
 3672	free_netdev(netdev);
 3673err_alloc_etherdev:
 3674	pci_release_mem_regions(pdev);
 3675err_pci_reg:
 3676err_dma:
 3677	pci_disable_device(pdev);
 3678	return err;
 3679}
 3680
 3681#ifdef CONFIG_PCI_IOV
 3682static int igb_sriov_reinit(struct pci_dev *dev)
 3683{
 3684	struct net_device *netdev = pci_get_drvdata(dev);
 3685	struct igb_adapter *adapter = netdev_priv(netdev);
 3686	struct pci_dev *pdev = adapter->pdev;
 3687
 3688	rtnl_lock();
 3689
 3690	if (netif_running(netdev))
 3691		igb_close(netdev);
 3692	else
 3693		igb_reset(adapter);
 3694
 3695	igb_clear_interrupt_scheme(adapter);
 3696
 3697	igb_init_queue_configuration(adapter);
 3698
 3699	if (igb_init_interrupt_scheme(adapter, true)) {
 3700		rtnl_unlock();
 3701		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 3702		return -ENOMEM;
 3703	}
 3704
 3705	if (netif_running(netdev))
 3706		igb_open(netdev);
 3707
 3708	rtnl_unlock();
 3709
 3710	return 0;
 3711}
 3712
 3713static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
 3714{
 3715	struct net_device *netdev = pci_get_drvdata(pdev);
 3716	struct igb_adapter *adapter = netdev_priv(netdev);
 3717	struct e1000_hw *hw = &adapter->hw;
 3718	unsigned long flags;
 3719
 3720	/* reclaim resources allocated to VFs */
 3721	if (adapter->vf_data) {
 3722		/* disable iov and allow time for transactions to clear */
 3723		if (pci_vfs_assigned(pdev)) {
 3724			dev_warn(&pdev->dev,
 3725				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
 3726			return -EPERM;
 3727		} else {
 3728			pci_disable_sriov(pdev);
 3729			msleep(500);
 3730		}
 3731		spin_lock_irqsave(&adapter->vfs_lock, flags);
 3732		kfree(adapter->vf_mac_list);
 3733		adapter->vf_mac_list = NULL;
 3734		kfree(adapter->vf_data);
 3735		adapter->vf_data = NULL;
 3736		adapter->vfs_allocated_count = 0;
 3737		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
 3738		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
 3739		wrfl();
 3740		msleep(100);
 3741		dev_info(&pdev->dev, "IOV Disabled\n");
 3742
 3743		/* Re-enable DMA Coalescing flag since IOV is turned off */
 3744		adapter->flags |= IGB_FLAG_DMAC;
 3745	}
 3746
 3747	return reinit ? igb_sriov_reinit(pdev) : 0;
 3748}
 3749
 3750static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
 3751{
 3752	struct net_device *netdev = pci_get_drvdata(pdev);
 3753	struct igb_adapter *adapter = netdev_priv(netdev);
 3754	int old_vfs = pci_num_vf(pdev);
 3755	struct vf_mac_filter *mac_list;
 3756	int err = 0;
 3757	int num_vf_mac_filters, i;
 3758
 3759	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
 3760		err = -EPERM;
 3761		goto out;
 3762	}
 3763	if (!num_vfs)
 3764		goto out;
 3765
 3766	if (old_vfs) {
 3767		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
 3768			 old_vfs, max_vfs);
 3769		adapter->vfs_allocated_count = old_vfs;
 3770	} else
 3771		adapter->vfs_allocated_count = num_vfs;
 3772
 3773	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
 3774				sizeof(struct vf_data_storage), GFP_KERNEL);
 3775
 3776	/* if allocation failed then we do not support SR-IOV */
 3777	if (!adapter->vf_data) {
 3778		adapter->vfs_allocated_count = 0;
 3779		err = -ENOMEM;
 3780		goto out;
 3781	}
 3782
 3783	/* Due to the limited number of RAR entries calculate potential
 3784	 * number of MAC filters available for the VFs. Reserve entries
 3785	 * for PF default MAC, PF MAC filters and at least one RAR entry
 3786	 * for each VF for VF MAC.
 3787	 */
 3788	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
 3789			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
 3790			      adapter->vfs_allocated_count);
 3791
 3792	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
 3793				       sizeof(struct vf_mac_filter),
 3794				       GFP_KERNEL);
 3795
 3796	mac_list = adapter->vf_mac_list;
 3797	INIT_LIST_HEAD(&adapter->vf_macs.l);
 3798
 3799	if (adapter->vf_mac_list) {
 3800		/* Initialize list of VF MAC filters */
 3801		for (i = 0; i < num_vf_mac_filters; i++) {
 3802			mac_list->vf = -1;
 3803			mac_list->free = true;
 3804			list_add(&mac_list->l, &adapter->vf_macs.l);
 3805			mac_list++;
 3806		}
 3807	} else {
 3808		/* If we could not allocate memory for the VF MAC filters
 3809		 * we can continue without this feature but warn user.
 3810		 */
 3811		dev_err(&pdev->dev,
 3812			"Unable to allocate memory for VF MAC filter list\n");
 3813	}
 3814
 3815	dev_info(&pdev->dev, "%d VFs allocated\n",
 3816		 adapter->vfs_allocated_count);
 3817	for (i = 0; i < adapter->vfs_allocated_count; i++)
 3818		igb_vf_configure(adapter, i);
 3819
 3820	/* DMA Coalescing is not supported in IOV mode. */
 3821	adapter->flags &= ~IGB_FLAG_DMAC;
 3822
 3823	if (reinit) {
 3824		err = igb_sriov_reinit(pdev);
 3825		if (err)
 3826			goto err_out;
 3827	}
 3828
 3829	/* only call pci_enable_sriov() if no VFs are allocated already */
 3830	if (!old_vfs) {
 3831		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
 3832		if (err)
 3833			goto err_out;
 3834	}
 3835
 3836	goto out;
 3837
 3838err_out:
 3839	kfree(adapter->vf_mac_list);
 3840	adapter->vf_mac_list = NULL;
 3841	kfree(adapter->vf_data);
 3842	adapter->vf_data = NULL;
 3843	adapter->vfs_allocated_count = 0;
 3844out:
 3845	return err;
 3846}
 3847
 3848#endif
 3849/**
 3850 *  igb_remove_i2c - Cleanup  I2C interface
 3851 *  @adapter: pointer to adapter structure
 3852 **/
 3853static void igb_remove_i2c(struct igb_adapter *adapter)
 3854{
 3855	/* free the adapter bus structure */
 3856	i2c_del_adapter(&adapter->i2c_adap);
 3857}
 3858
 3859/**
 3860 *  igb_remove - Device Removal Routine
 3861 *  @pdev: PCI device information struct
 3862 *
 3863 *  igb_remove is called by the PCI subsystem to alert the driver
 3864 *  that it should release a PCI device.  The could be caused by a
 3865 *  Hot-Plug event, or because the driver is going to be removed from
 3866 *  memory.
 3867 **/
 3868static void igb_remove(struct pci_dev *pdev)
 3869{
 3870	struct net_device *netdev = pci_get_drvdata(pdev);
 3871	struct igb_adapter *adapter = netdev_priv(netdev);
 3872	struct e1000_hw *hw = &adapter->hw;
 3873
 3874	pm_runtime_get_noresume(&pdev->dev);
 3875#ifdef CONFIG_IGB_HWMON
 3876	igb_sysfs_exit(adapter);
 3877#endif
 3878	igb_remove_i2c(adapter);
 3879	igb_ptp_stop(adapter);
 3880	/* The watchdog timer may be rescheduled, so explicitly
 3881	 * disable watchdog from being rescheduled.
 3882	 */
 3883	set_bit(__IGB_DOWN, &adapter->state);
 3884	del_timer_sync(&adapter->watchdog_timer);
 3885	del_timer_sync(&adapter->phy_info_timer);
 3886
 3887	cancel_work_sync(&adapter->reset_task);
 3888	cancel_work_sync(&adapter->watchdog_task);
 3889
 3890#ifdef CONFIG_IGB_DCA
 3891	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
 3892		dev_info(&pdev->dev, "DCA disabled\n");
 3893		dca_remove_requester(&pdev->dev);
 3894		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
 3895		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
 3896	}
 3897#endif
 3898
 3899	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 3900	 * would have already happened in close and is redundant.
 3901	 */
 3902	igb_release_hw_control(adapter);
 3903
 3904#ifdef CONFIG_PCI_IOV
 3905	igb_disable_sriov(pdev, false);
 3906#endif
 3907
 3908	unregister_netdev(netdev);
 3909
 3910	igb_clear_interrupt_scheme(adapter);
 3911
 3912	pci_iounmap(pdev, adapter->io_addr);
 3913	if (hw->flash_address)
 3914		iounmap(hw->flash_address);
 3915	pci_release_mem_regions(pdev);
 3916
 3917	kfree(adapter->mac_table);
 3918	kfree(adapter->shadow_vfta);
 3919	free_netdev(netdev);
 3920
 3921	pci_disable_device(pdev);
 3922}
 3923
 3924/**
 3925 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 3926 *  @adapter: board private structure to initialize
 3927 *
 3928 *  This function initializes the vf specific data storage and then attempts to
 3929 *  allocate the VFs.  The reason for ordering it this way is because it is much
 3930 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 3931 *  the memory for the VFs.
 3932 **/
 3933static void igb_probe_vfs(struct igb_adapter *adapter)
 3934{
 3935#ifdef CONFIG_PCI_IOV
 3936	struct pci_dev *pdev = adapter->pdev;
 3937	struct e1000_hw *hw = &adapter->hw;
 3938
 3939	/* Virtualization features not supported on i210 and 82580 family. */
 3940	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
 3941	    (hw->mac.type == e1000_82580))
 3942		return;
 3943
 3944	/* Of the below we really only want the effect of getting
 3945	 * IGB_FLAG_HAS_MSIX set (if available), without which
 3946	 * igb_enable_sriov() has no effect.
 3947	 */
 3948	igb_set_interrupt_capability(adapter, true);
 3949	igb_reset_interrupt_capability(adapter);
 3950
 3951	pci_sriov_set_totalvfs(pdev, 7);
 3952	igb_enable_sriov(pdev, max_vfs, false);
 3953
 3954#endif /* CONFIG_PCI_IOV */
 3955}
 3956
 3957unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
 3958{
 3959	struct e1000_hw *hw = &adapter->hw;
 3960	unsigned int max_rss_queues;
 3961
 3962	/* Determine the maximum number of RSS queues supported. */
 3963	switch (hw->mac.type) {
 3964	case e1000_i211:
 3965		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
 3966		break;
 3967	case e1000_82575:
 3968	case e1000_i210:
 3969		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
 3970		break;
 3971	case e1000_i350:
 3972		/* I350 cannot do RSS and SR-IOV at the same time */
 3973		if (!!adapter->vfs_allocated_count) {
 3974			max_rss_queues = 1;
 3975			break;
 3976		}
 3977		fallthrough;
 3978	case e1000_82576:
 3979		if (!!adapter->vfs_allocated_count) {
 3980			max_rss_queues = 2;
 3981			break;
 3982		}
 3983		fallthrough;
 3984	case e1000_82580:
 3985	case e1000_i354:
 3986	default:
 3987		max_rss_queues = IGB_MAX_RX_QUEUES;
 3988		break;
 3989	}
 3990
 3991	return max_rss_queues;
 3992}
 3993
 3994static void igb_init_queue_configuration(struct igb_adapter *adapter)
 3995{
 3996	u32 max_rss_queues;
 3997
 3998	max_rss_queues = igb_get_max_rss_queues(adapter);
 3999	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
 4000
 4001	igb_set_flag_queue_pairs(adapter, max_rss_queues);
 4002}
 4003
 4004void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
 4005			      const u32 max_rss_queues)
 4006{
 4007	struct e1000_hw *hw = &adapter->hw;
 4008
 4009	/* Determine if we need to pair queues. */
 4010	switch (hw->mac.type) {
 4011	case e1000_82575:
 4012	case e1000_i211:
 4013		/* Device supports enough interrupts without queue pairing. */
 4014		break;
 4015	case e1000_82576:
 4016	case e1000_82580:
 4017	case e1000_i350:
 4018	case e1000_i354:
 4019	case e1000_i210:
 4020	default:
 4021		/* If rss_queues > half of max_rss_queues, pair the queues in
 4022		 * order to conserve interrupts due to limited supply.
 4023		 */
 4024		if (adapter->rss_queues > (max_rss_queues / 2))
 4025			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
 4026		else
 4027			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
 4028		break;
 4029	}
 4030}
 4031
 4032/**
 4033 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 4034 *  @adapter: board private structure to initialize
 4035 *
 4036 *  igb_sw_init initializes the Adapter private data structure.
 4037 *  Fields are initialized based on PCI device information and
 4038 *  OS network device settings (MTU size).
 4039 **/
 4040static int igb_sw_init(struct igb_adapter *adapter)
 4041{
 4042	struct e1000_hw *hw = &adapter->hw;
 4043	struct net_device *netdev = adapter->netdev;
 4044	struct pci_dev *pdev = adapter->pdev;
 4045
 4046	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
 4047
 4048	/* set default ring sizes */
 4049	adapter->tx_ring_count = IGB_DEFAULT_TXD;
 4050	adapter->rx_ring_count = IGB_DEFAULT_RXD;
 4051
 4052	/* set default ITR values */
 4053	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
 4054	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
 4055
 4056	/* set default work limits */
 4057	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
 4058
 4059	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
 4060	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
 4061
 4062	spin_lock_init(&adapter->nfc_lock);
 4063	spin_lock_init(&adapter->stats64_lock);
 4064
 4065	/* init spinlock to avoid concurrency of VF resources */
 4066	spin_lock_init(&adapter->vfs_lock);
 4067#ifdef CONFIG_PCI_IOV
 4068	switch (hw->mac.type) {
 4069	case e1000_82576:
 4070	case e1000_i350:
 4071		if (max_vfs > 7) {
 4072			dev_warn(&pdev->dev,
 4073				 "Maximum of 7 VFs per PF, using max\n");
 4074			max_vfs = adapter->vfs_allocated_count = 7;
 4075		} else
 4076			adapter->vfs_allocated_count = max_vfs;
 4077		if (adapter->vfs_allocated_count)
 4078			dev_warn(&pdev->dev,
 4079				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
 4080		break;
 4081	default:
 4082		break;
 4083	}
 4084#endif /* CONFIG_PCI_IOV */
 4085
 4086	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
 4087	adapter->flags |= IGB_FLAG_HAS_MSIX;
 4088
 4089	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
 4090				     sizeof(struct igb_mac_addr),
 4091				     GFP_KERNEL);
 4092	if (!adapter->mac_table)
 4093		return -ENOMEM;
 4094
 4095	igb_probe_vfs(adapter);
 4096
 4097	igb_init_queue_configuration(adapter);
 4098
 4099	/* Setup and initialize a copy of the hw vlan table array */
 4100	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
 4101				       GFP_KERNEL);
 4102	if (!adapter->shadow_vfta)
 4103		return -ENOMEM;
 4104
 4105	/* This call may decrease the number of queues */
 4106	if (igb_init_interrupt_scheme(adapter, true)) {
 4107		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 4108		return -ENOMEM;
 4109	}
 4110
 4111	/* Explicitly disable IRQ since the NIC can be in any state. */
 4112	igb_irq_disable(adapter);
 4113
 4114	if (hw->mac.type >= e1000_i350)
 4115		adapter->flags &= ~IGB_FLAG_DMAC;
 4116
 4117	set_bit(__IGB_DOWN, &adapter->state);
 4118	return 0;
 4119}
 4120
 4121/**
 4122 *  __igb_open - Called when a network interface is made active
 4123 *  @netdev: network interface device structure
 4124 *  @resuming: indicates whether we are in a resume call
 4125 *
 4126 *  Returns 0 on success, negative value on failure
 4127 *
 4128 *  The open entry point is called when a network interface is made
 4129 *  active by the system (IFF_UP).  At this point all resources needed
 4130 *  for transmit and receive operations are allocated, the interrupt
 4131 *  handler is registered with the OS, the watchdog timer is started,
 4132 *  and the stack is notified that the interface is ready.
 4133 **/
 4134static int __igb_open(struct net_device *netdev, bool resuming)
 4135{
 4136	struct igb_adapter *adapter = netdev_priv(netdev);
 4137	struct e1000_hw *hw = &adapter->hw;
 4138	struct pci_dev *pdev = adapter->pdev;
 4139	int err;
 4140	int i;
 4141
 4142	/* disallow open during test */
 4143	if (test_bit(__IGB_TESTING, &adapter->state)) {
 4144		WARN_ON(resuming);
 4145		return -EBUSY;
 4146	}
 4147
 4148	if (!resuming)
 4149		pm_runtime_get_sync(&pdev->dev);
 4150
 4151	netif_carrier_off(netdev);
 4152
 4153	/* allocate transmit descriptors */
 4154	err = igb_setup_all_tx_resources(adapter);
 4155	if (err)
 4156		goto err_setup_tx;
 4157
 4158	/* allocate receive descriptors */
 4159	err = igb_setup_all_rx_resources(adapter);
 4160	if (err)
 4161		goto err_setup_rx;
 4162
 4163	igb_power_up_link(adapter);
 4164
 4165	/* before we allocate an interrupt, we must be ready to handle it.
 4166	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
 4167	 * as soon as we call pci_request_irq, so we have to setup our
 4168	 * clean_rx handler before we do so.
 4169	 */
 4170	igb_configure(adapter);
 4171
 4172	err = igb_request_irq(adapter);
 4173	if (err)
 4174		goto err_req_irq;
 4175
 4176	/* Notify the stack of the actual queue counts. */
 4177	err = netif_set_real_num_tx_queues(adapter->netdev,
 4178					   adapter->num_tx_queues);
 4179	if (err)
 4180		goto err_set_queues;
 4181
 4182	err = netif_set_real_num_rx_queues(adapter->netdev,
 4183					   adapter->num_rx_queues);
 4184	if (err)
 4185		goto err_set_queues;
 4186
 4187	/* From here on the code is the same as igb_up() */
 4188	clear_bit(__IGB_DOWN, &adapter->state);
 4189
 4190	for (i = 0; i < adapter->num_q_vectors; i++)
 4191		napi_enable(&(adapter->q_vector[i]->napi));
 4192
 4193	/* Clear any pending interrupts. */
 4194	rd32(E1000_TSICR);
 4195	rd32(E1000_ICR);
 4196
 4197	igb_irq_enable(adapter);
 4198
 4199	/* notify VFs that reset has been completed */
 4200	if (adapter->vfs_allocated_count) {
 4201		u32 reg_data = rd32(E1000_CTRL_EXT);
 4202
 4203		reg_data |= E1000_CTRL_EXT_PFRSTD;
 4204		wr32(E1000_CTRL_EXT, reg_data);
 4205	}
 4206
 4207	netif_tx_start_all_queues(netdev);
 4208
 4209	if (!resuming)
 4210		pm_runtime_put(&pdev->dev);
 4211
 4212	/* start the watchdog. */
 4213	hw->mac.get_link_status = 1;
 4214	schedule_work(&adapter->watchdog_task);
 4215
 4216	return 0;
 4217
 4218err_set_queues:
 4219	igb_free_irq(adapter);
 4220err_req_irq:
 4221	igb_release_hw_control(adapter);
 4222	igb_power_down_link(adapter);
 4223	igb_free_all_rx_resources(adapter);
 4224err_setup_rx:
 4225	igb_free_all_tx_resources(adapter);
 4226err_setup_tx:
 4227	igb_reset(adapter);
 4228	if (!resuming)
 4229		pm_runtime_put(&pdev->dev);
 4230
 4231	return err;
 4232}
 4233
 4234int igb_open(struct net_device *netdev)
 4235{
 4236	return __igb_open(netdev, false);
 4237}
 4238
 4239/**
 4240 *  __igb_close - Disables a network interface
 4241 *  @netdev: network interface device structure
 4242 *  @suspending: indicates we are in a suspend call
 4243 *
 4244 *  Returns 0, this is not allowed to fail
 4245 *
 4246 *  The close entry point is called when an interface is de-activated
 4247 *  by the OS.  The hardware is still under the driver's control, but
 4248 *  needs to be disabled.  A global MAC reset is issued to stop the
 4249 *  hardware, and all transmit and receive resources are freed.
 4250 **/
 4251static int __igb_close(struct net_device *netdev, bool suspending)
 4252{
 4253	struct igb_adapter *adapter = netdev_priv(netdev);
 4254	struct pci_dev *pdev = adapter->pdev;
 4255
 4256	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
 4257
 4258	if (!suspending)
 4259		pm_runtime_get_sync(&pdev->dev);
 4260
 4261	igb_down(adapter);
 4262	igb_free_irq(adapter);
 4263
 4264	igb_free_all_tx_resources(adapter);
 4265	igb_free_all_rx_resources(adapter);
 4266
 4267	if (!suspending)
 4268		pm_runtime_put_sync(&pdev->dev);
 4269	return 0;
 4270}
 4271
 4272int igb_close(struct net_device *netdev)
 4273{
 4274	if (netif_device_present(netdev) || netdev->dismantle)
 4275		return __igb_close(netdev, false);
 4276	return 0;
 4277}
 4278
 4279/**
 4280 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 4281 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
 4282 *
 4283 *  Return 0 on success, negative on failure
 4284 **/
 4285int igb_setup_tx_resources(struct igb_ring *tx_ring)
 4286{
 4287	struct device *dev = tx_ring->dev;
 4288	int size;
 4289
 4290	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
 4291
 4292	tx_ring->tx_buffer_info = vmalloc(size);
 4293	if (!tx_ring->tx_buffer_info)
 4294		goto err;
 4295
 4296	/* round up to nearest 4K */
 4297	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 4298	tx_ring->size = ALIGN(tx_ring->size, 4096);
 4299
 4300	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 4301					   &tx_ring->dma, GFP_KERNEL);
 4302	if (!tx_ring->desc)
 4303		goto err;
 4304
 4305	tx_ring->next_to_use = 0;
 4306	tx_ring->next_to_clean = 0;
 4307
 4308	return 0;
 4309
 4310err:
 4311	vfree(tx_ring->tx_buffer_info);
 4312	tx_ring->tx_buffer_info = NULL;
 4313	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
 4314	return -ENOMEM;
 4315}
 4316
 4317/**
 4318 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 4319 *				 (Descriptors) for all queues
 4320 *  @adapter: board private structure
 4321 *
 4322 *  Return 0 on success, negative on failure
 4323 **/
 4324static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
 4325{
 4326	struct pci_dev *pdev = adapter->pdev;
 4327	int i, err = 0;
 4328
 4329	for (i = 0; i < adapter->num_tx_queues; i++) {
 4330		err = igb_setup_tx_resources(adapter->tx_ring[i]);
 4331		if (err) {
 4332			dev_err(&pdev->dev,
 4333				"Allocation for Tx Queue %u failed\n", i);
 4334			for (i--; i >= 0; i--)
 4335				igb_free_tx_resources(adapter->tx_ring[i]);
 4336			break;
 4337		}
 4338	}
 4339
 4340	return err;
 4341}
 4342
 4343/**
 4344 *  igb_setup_tctl - configure the transmit control registers
 4345 *  @adapter: Board private structure
 4346 **/
 4347void igb_setup_tctl(struct igb_adapter *adapter)
 4348{
 4349	struct e1000_hw *hw = &adapter->hw;
 4350	u32 tctl;
 4351
 4352	/* disable queue 0 which is enabled by default on 82575 and 82576 */
 4353	wr32(E1000_TXDCTL(0), 0);
 4354
 4355	/* Program the Transmit Control Register */
 4356	tctl = rd32(E1000_TCTL);
 4357	tctl &= ~E1000_TCTL_CT;
 4358	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
 4359		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
 4360
 4361	igb_config_collision_dist(hw);
 4362
 4363	/* Enable transmits */
 4364	tctl |= E1000_TCTL_EN;
 4365
 4366	wr32(E1000_TCTL, tctl);
 4367}
 4368
 4369/**
 4370 *  igb_configure_tx_ring - Configure transmit ring after Reset
 4371 *  @adapter: board private structure
 4372 *  @ring: tx ring to configure
 4373 *
 4374 *  Configure a transmit ring after a reset.
 4375 **/
 4376void igb_configure_tx_ring(struct igb_adapter *adapter,
 4377			   struct igb_ring *ring)
 4378{
 4379	struct e1000_hw *hw = &adapter->hw;
 4380	u32 txdctl = 0;
 4381	u64 tdba = ring->dma;
 4382	int reg_idx = ring->reg_idx;
 4383
 4384	wr32(E1000_TDLEN(reg_idx),
 4385	     ring->count * sizeof(union e1000_adv_tx_desc));
 4386	wr32(E1000_TDBAL(reg_idx),
 4387	     tdba & 0x00000000ffffffffULL);
 4388	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
 4389
 4390	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
 4391	wr32(E1000_TDH(reg_idx), 0);
 4392	writel(0, ring->tail);
 4393
 4394	txdctl |= IGB_TX_PTHRESH;
 4395	txdctl |= IGB_TX_HTHRESH << 8;
 4396	txdctl |= IGB_TX_WTHRESH << 16;
 4397
 4398	/* reinitialize tx_buffer_info */
 4399	memset(ring->tx_buffer_info, 0,
 4400	       sizeof(struct igb_tx_buffer) * ring->count);
 4401
 4402	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
 4403	wr32(E1000_TXDCTL(reg_idx), txdctl);
 4404}
 4405
 4406/**
 4407 *  igb_configure_tx - Configure transmit Unit after Reset
 4408 *  @adapter: board private structure
 4409 *
 4410 *  Configure the Tx unit of the MAC after a reset.
 4411 **/
 4412static void igb_configure_tx(struct igb_adapter *adapter)
 4413{
 4414	struct e1000_hw *hw = &adapter->hw;
 4415	int i;
 4416
 4417	/* disable the queues */
 4418	for (i = 0; i < adapter->num_tx_queues; i++)
 4419		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
 4420
 4421	wrfl();
 4422	usleep_range(10000, 20000);
 4423
 4424	for (i = 0; i < adapter->num_tx_queues; i++)
 4425		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
 4426}
 4427
 4428/**
 4429 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 4430 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
 4431 *
 4432 *  Returns 0 on success, negative on failure
 4433 **/
 4434int igb_setup_rx_resources(struct igb_ring *rx_ring)
 4435{
 4436	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
 4437	struct device *dev = rx_ring->dev;
 4438	int size, res;
 4439
 4440	/* XDP RX-queue info */
 4441	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 4442		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4443	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
 4444			       rx_ring->queue_index, 0);
 4445	if (res < 0) {
 4446		dev_err(dev, "Failed to register xdp_rxq index %u\n",
 4447			rx_ring->queue_index);
 4448		return res;
 4449	}
 4450
 4451	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
 4452
 4453	rx_ring->rx_buffer_info = vmalloc(size);
 4454	if (!rx_ring->rx_buffer_info)
 4455		goto err;
 4456
 4457	/* Round up to nearest 4K */
 4458	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
 4459	rx_ring->size = ALIGN(rx_ring->size, 4096);
 4460
 4461	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 4462					   &rx_ring->dma, GFP_KERNEL);
 4463	if (!rx_ring->desc)
 4464		goto err;
 4465
 4466	rx_ring->next_to_alloc = 0;
 4467	rx_ring->next_to_clean = 0;
 4468	rx_ring->next_to_use = 0;
 4469
 4470	rx_ring->xdp_prog = adapter->xdp_prog;
 4471
 4472	return 0;
 4473
 4474err:
 4475	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4476	vfree(rx_ring->rx_buffer_info);
 4477	rx_ring->rx_buffer_info = NULL;
 4478	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
 4479	return -ENOMEM;
 4480}
 4481
 4482/**
 4483 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 4484 *				 (Descriptors) for all queues
 4485 *  @adapter: board private structure
 4486 *
 4487 *  Return 0 on success, negative on failure
 4488 **/
 4489static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
 4490{
 4491	struct pci_dev *pdev = adapter->pdev;
 4492	int i, err = 0;
 4493
 4494	for (i = 0; i < adapter->num_rx_queues; i++) {
 4495		err = igb_setup_rx_resources(adapter->rx_ring[i]);
 4496		if (err) {
 4497			dev_err(&pdev->dev,
 4498				"Allocation for Rx Queue %u failed\n", i);
 4499			for (i--; i >= 0; i--)
 4500				igb_free_rx_resources(adapter->rx_ring[i]);
 4501			break;
 4502		}
 4503	}
 4504
 4505	return err;
 4506}
 4507
 4508/**
 4509 *  igb_setup_mrqc - configure the multiple receive queue control registers
 4510 *  @adapter: Board private structure
 4511 **/
 4512static void igb_setup_mrqc(struct igb_adapter *adapter)
 4513{
 4514	struct e1000_hw *hw = &adapter->hw;
 4515	u32 mrqc, rxcsum;
 4516	u32 j, num_rx_queues;
 4517	u32 rss_key[10];
 4518
 4519	netdev_rss_key_fill(rss_key, sizeof(rss_key));
 4520	for (j = 0; j < 10; j++)
 4521		wr32(E1000_RSSRK(j), rss_key[j]);
 4522
 4523	num_rx_queues = adapter->rss_queues;
 4524
 4525	switch (hw->mac.type) {
 4526	case e1000_82576:
 4527		/* 82576 supports 2 RSS queues for SR-IOV */
 4528		if (adapter->vfs_allocated_count)
 4529			num_rx_queues = 2;
 4530		break;
 4531	default:
 4532		break;
 4533	}
 4534
 4535	if (adapter->rss_indir_tbl_init != num_rx_queues) {
 4536		for (j = 0; j < IGB_RETA_SIZE; j++)
 4537			adapter->rss_indir_tbl[j] =
 4538			(j * num_rx_queues) / IGB_RETA_SIZE;
 4539		adapter->rss_indir_tbl_init = num_rx_queues;
 4540	}
 4541	igb_write_rss_indir_tbl(adapter);
 4542
 4543	/* Disable raw packet checksumming so that RSS hash is placed in
 4544	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
 4545	 * offloads as they are enabled by default
 4546	 */
 4547	rxcsum = rd32(E1000_RXCSUM);
 4548	rxcsum |= E1000_RXCSUM_PCSD;
 4549
 4550	if (adapter->hw.mac.type >= e1000_82576)
 4551		/* Enable Receive Checksum Offload for SCTP */
 4552		rxcsum |= E1000_RXCSUM_CRCOFL;
 4553
 4554	/* Don't need to set TUOFL or IPOFL, they default to 1 */
 4555	wr32(E1000_RXCSUM, rxcsum);
 4556
 4557	/* Generate RSS hash based on packet types, TCP/UDP
 4558	 * port numbers and/or IPv4/v6 src and dst addresses
 4559	 */
 4560	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
 4561	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
 4562	       E1000_MRQC_RSS_FIELD_IPV6 |
 4563	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
 4564	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
 4565
 4566	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
 4567		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
 4568	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
 4569		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
 4570
 4571	/* If VMDq is enabled then we set the appropriate mode for that, else
 4572	 * we default to RSS so that an RSS hash is calculated per packet even
 4573	 * if we are only using one queue
 4574	 */
 4575	if (adapter->vfs_allocated_count) {
 4576		if (hw->mac.type > e1000_82575) {
 4577			/* Set the default pool for the PF's first queue */
 4578			u32 vtctl = rd32(E1000_VT_CTL);
 4579
 4580			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
 4581				   E1000_VT_CTL_DISABLE_DEF_POOL);
 4582			vtctl |= adapter->vfs_allocated_count <<
 4583				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
 4584			wr32(E1000_VT_CTL, vtctl);
 4585		}
 4586		if (adapter->rss_queues > 1)
 4587			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
 4588		else
 4589			mrqc |= E1000_MRQC_ENABLE_VMDQ;
 4590	} else {
 4591		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
 4592	}
 4593	igb_vmm_control(adapter);
 4594
 4595	wr32(E1000_MRQC, mrqc);
 4596}
 4597
 4598/**
 4599 *  igb_setup_rctl - configure the receive control registers
 4600 *  @adapter: Board private structure
 4601 **/
 4602void igb_setup_rctl(struct igb_adapter *adapter)
 4603{
 4604	struct e1000_hw *hw = &adapter->hw;
 4605	u32 rctl;
 4606
 4607	rctl = rd32(E1000_RCTL);
 4608
 4609	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 4610	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
 4611
 4612	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
 4613		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
 4614
 4615	/* enable stripping of CRC. It's unlikely this will break BMC
 4616	 * redirection as it did with e1000. Newer features require
 4617	 * that the HW strips the CRC.
 4618	 */
 4619	rctl |= E1000_RCTL_SECRC;
 4620
 4621	/* disable store bad packets and clear size bits. */
 4622	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
 4623
 4624	/* enable LPE to allow for reception of jumbo frames */
 4625	rctl |= E1000_RCTL_LPE;
 4626
 4627	/* disable queue 0 to prevent tail write w/o re-config */
 4628	wr32(E1000_RXDCTL(0), 0);
 4629
 4630	/* Attention!!!  For SR-IOV PF driver operations you must enable
 4631	 * queue drop for all VF and PF queues to prevent head of line blocking
 4632	 * if an un-trusted VF does not provide descriptors to hardware.
 4633	 */
 4634	if (adapter->vfs_allocated_count) {
 4635		/* set all queue drop enable bits */
 4636		wr32(E1000_QDE, ALL_QUEUES);
 4637	}
 4638
 4639	/* This is useful for sniffing bad packets. */
 4640	if (adapter->netdev->features & NETIF_F_RXALL) {
 4641		/* UPE and MPE will be handled by normal PROMISC logic
 4642		 * in e1000e_set_rx_mode
 4643		 */
 4644		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
 4645			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
 4646			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
 4647
 4648		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
 4649			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
 4650		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
 4651		 * and that breaks VLANs.
 4652		 */
 4653	}
 4654
 4655	wr32(E1000_RCTL, rctl);
 4656}
 4657
 4658static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
 4659				   int vfn)
 4660{
 4661	struct e1000_hw *hw = &adapter->hw;
 4662	u32 vmolr;
 4663
 4664	if (size > MAX_JUMBO_FRAME_SIZE)
 4665		size = MAX_JUMBO_FRAME_SIZE;
 4666
 4667	vmolr = rd32(E1000_VMOLR(vfn));
 4668	vmolr &= ~E1000_VMOLR_RLPML_MASK;
 4669	vmolr |= size | E1000_VMOLR_LPE;
 4670	wr32(E1000_VMOLR(vfn), vmolr);
 4671
 4672	return 0;
 4673}
 4674
 4675static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
 4676					 int vfn, bool enable)
 4677{
 4678	struct e1000_hw *hw = &adapter->hw;
 4679	u32 val, reg;
 4680
 4681	if (hw->mac.type < e1000_82576)
 4682		return;
 4683
 4684	if (hw->mac.type == e1000_i350)
 4685		reg = E1000_DVMOLR(vfn);
 4686	else
 4687		reg = E1000_VMOLR(vfn);
 4688
 4689	val = rd32(reg);
 4690	if (enable)
 4691		val |= E1000_VMOLR_STRVLAN;
 4692	else
 4693		val &= ~(E1000_VMOLR_STRVLAN);
 4694	wr32(reg, val);
 4695}
 4696
 4697static inline void igb_set_vmolr(struct igb_adapter *adapter,
 4698				 int vfn, bool aupe)
 4699{
 4700	struct e1000_hw *hw = &adapter->hw;
 4701	u32 vmolr;
 4702
 4703	/* This register exists only on 82576 and newer so if we are older then
 4704	 * we should exit and do nothing
 4705	 */
 4706	if (hw->mac.type < e1000_82576)
 4707		return;
 4708
 4709	vmolr = rd32(E1000_VMOLR(vfn));
 4710	if (aupe)
 4711		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
 4712	else
 4713		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
 4714
 4715	/* clear all bits that might not be set */
 4716	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
 4717
 4718	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
 4719		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
 4720	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
 4721	 * multicast packets
 4722	 */
 4723	if (vfn <= adapter->vfs_allocated_count)
 4724		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
 4725
 4726	wr32(E1000_VMOLR(vfn), vmolr);
 4727}
 4728
 4729/**
 4730 *  igb_setup_srrctl - configure the split and replication receive control
 4731 *                     registers
 4732 *  @adapter: Board private structure
 4733 *  @ring: receive ring to be configured
 4734 **/
 4735void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
 4736{
 4737	struct e1000_hw *hw = &adapter->hw;
 4738	int reg_idx = ring->reg_idx;
 4739	u32 srrctl = 0;
 4740
 4741	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
 4742	if (ring_uses_large_buffer(ring))
 4743		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
 4744	else
 4745		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
 4746	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
 4747	if (hw->mac.type >= e1000_82580)
 4748		srrctl |= E1000_SRRCTL_TIMESTAMP;
 4749	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
 4750	 * queues and rx flow control is disabled
 4751	 */
 4752	if (adapter->vfs_allocated_count ||
 4753	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
 4754	     adapter->num_rx_queues > 1))
 4755		srrctl |= E1000_SRRCTL_DROP_EN;
 4756
 4757	wr32(E1000_SRRCTL(reg_idx), srrctl);
 4758}
 4759
 4760/**
 4761 *  igb_configure_rx_ring - Configure a receive ring after Reset
 4762 *  @adapter: board private structure
 4763 *  @ring: receive ring to be configured
 4764 *
 4765 *  Configure the Rx unit of the MAC after a reset.
 4766 **/
 4767void igb_configure_rx_ring(struct igb_adapter *adapter,
 4768			   struct igb_ring *ring)
 4769{
 4770	struct e1000_hw *hw = &adapter->hw;
 4771	union e1000_adv_rx_desc *rx_desc;
 4772	u64 rdba = ring->dma;
 4773	int reg_idx = ring->reg_idx;
 4774	u32 rxdctl = 0;
 4775
 4776	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
 4777	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 4778					   MEM_TYPE_PAGE_SHARED, NULL));
 4779
 4780	/* disable the queue */
 4781	wr32(E1000_RXDCTL(reg_idx), 0);
 4782
 4783	/* Set DMA base address registers */
 4784	wr32(E1000_RDBAL(reg_idx),
 4785	     rdba & 0x00000000ffffffffULL);
 4786	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
 4787	wr32(E1000_RDLEN(reg_idx),
 4788	     ring->count * sizeof(union e1000_adv_rx_desc));
 4789
 4790	/* initialize head and tail */
 4791	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
 4792	wr32(E1000_RDH(reg_idx), 0);
 4793	writel(0, ring->tail);
 4794
 4795	/* set descriptor configuration */
 4796	igb_setup_srrctl(adapter, ring);
 4797
 4798	/* set filtering for VMDQ pools */
 4799	igb_set_vmolr(adapter, reg_idx & 0x7, true);
 4800
 4801	rxdctl |= IGB_RX_PTHRESH;
 4802	rxdctl |= IGB_RX_HTHRESH << 8;
 4803	rxdctl |= IGB_RX_WTHRESH << 16;
 4804
 4805	/* initialize rx_buffer_info */
 4806	memset(ring->rx_buffer_info, 0,
 4807	       sizeof(struct igb_rx_buffer) * ring->count);
 4808
 4809	/* initialize Rx descriptor 0 */
 4810	rx_desc = IGB_RX_DESC(ring, 0);
 4811	rx_desc->wb.upper.length = 0;
 4812
 4813	/* enable receive descriptor fetching */
 4814	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
 4815	wr32(E1000_RXDCTL(reg_idx), rxdctl);
 4816}
 4817
 4818static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
 4819				  struct igb_ring *rx_ring)
 4820{
 4821#if (PAGE_SIZE < 8192)
 4822	struct e1000_hw *hw = &adapter->hw;
 4823#endif
 4824
 4825	/* set build_skb and buffer size flags */
 4826	clear_ring_build_skb_enabled(rx_ring);
 4827	clear_ring_uses_large_buffer(rx_ring);
 4828
 4829	if (adapter->flags & IGB_FLAG_RX_LEGACY)
 4830		return;
 4831
 4832	set_ring_build_skb_enabled(rx_ring);
 4833
 4834#if (PAGE_SIZE < 8192)
 4835	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
 4836	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
 4837		set_ring_uses_large_buffer(rx_ring);
 4838#endif
 4839}
 4840
 4841/**
 4842 *  igb_configure_rx - Configure receive Unit after Reset
 4843 *  @adapter: board private structure
 4844 *
 4845 *  Configure the Rx unit of the MAC after a reset.
 4846 **/
 4847static void igb_configure_rx(struct igb_adapter *adapter)
 4848{
 4849	int i;
 4850
 4851	/* set the correct pool for the PF default MAC address in entry 0 */
 4852	igb_set_default_mac_filter(adapter);
 4853
 4854	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 4855	 * the Base and Length of the Rx Descriptor Ring
 4856	 */
 4857	for (i = 0; i < adapter->num_rx_queues; i++) {
 4858		struct igb_ring *rx_ring = adapter->rx_ring[i];
 4859
 4860		igb_set_rx_buffer_len(adapter, rx_ring);
 4861		igb_configure_rx_ring(adapter, rx_ring);
 4862	}
 4863}
 4864
 4865/**
 4866 *  igb_free_tx_resources - Free Tx Resources per Queue
 4867 *  @tx_ring: Tx descriptor ring for a specific queue
 4868 *
 4869 *  Free all transmit software resources
 4870 **/
 4871void igb_free_tx_resources(struct igb_ring *tx_ring)
 4872{
 4873	igb_clean_tx_ring(tx_ring);
 4874
 4875	vfree(tx_ring->tx_buffer_info);
 4876	tx_ring->tx_buffer_info = NULL;
 4877
 4878	/* if not set, then don't free */
 4879	if (!tx_ring->desc)
 4880		return;
 4881
 4882	dma_free_coherent(tx_ring->dev, tx_ring->size,
 4883			  tx_ring->desc, tx_ring->dma);
 4884
 4885	tx_ring->desc = NULL;
 4886}
 4887
 4888/**
 4889 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 4890 *  @adapter: board private structure
 4891 *
 4892 *  Free all transmit software resources
 4893 **/
 4894static void igb_free_all_tx_resources(struct igb_adapter *adapter)
 4895{
 4896	int i;
 4897
 4898	for (i = 0; i < adapter->num_tx_queues; i++)
 4899		if (adapter->tx_ring[i])
 4900			igb_free_tx_resources(adapter->tx_ring[i]);
 4901}
 4902
 4903/**
 4904 *  igb_clean_tx_ring - Free Tx Buffers
 4905 *  @tx_ring: ring to be cleaned
 4906 **/
 4907static void igb_clean_tx_ring(struct igb_ring *tx_ring)
 4908{
 4909	u16 i = tx_ring->next_to_clean;
 4910	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
 4911
 4912	while (i != tx_ring->next_to_use) {
 4913		union e1000_adv_tx_desc *eop_desc, *tx_desc;
 4914
 4915		/* Free all the Tx ring sk_buffs or xdp frames */
 4916		if (tx_buffer->type == IGB_TYPE_SKB)
 4917			dev_kfree_skb_any(tx_buffer->skb);
 4918		else
 4919			xdp_return_frame(tx_buffer->xdpf);
 4920
 4921		/* unmap skb header data */
 4922		dma_unmap_single(tx_ring->dev,
 4923				 dma_unmap_addr(tx_buffer, dma),
 4924				 dma_unmap_len(tx_buffer, len),
 4925				 DMA_TO_DEVICE);
 4926
 4927		/* check for eop_desc to determine the end of the packet */
 4928		eop_desc = tx_buffer->next_to_watch;
 4929		tx_desc = IGB_TX_DESC(tx_ring, i);
 4930
 4931		/* unmap remaining buffers */
 4932		while (tx_desc != eop_desc) {
 4933			tx_buffer++;
 4934			tx_desc++;
 4935			i++;
 4936			if (unlikely(i == tx_ring->count)) {
 4937				i = 0;
 4938				tx_buffer = tx_ring->tx_buffer_info;
 4939				tx_desc = IGB_TX_DESC(tx_ring, 0);
 4940			}
 4941
 4942			/* unmap any remaining paged data */
 4943			if (dma_unmap_len(tx_buffer, len))
 4944				dma_unmap_page(tx_ring->dev,
 4945					       dma_unmap_addr(tx_buffer, dma),
 4946					       dma_unmap_len(tx_buffer, len),
 4947					       DMA_TO_DEVICE);
 4948		}
 4949
 4950		tx_buffer->next_to_watch = NULL;
 4951
 4952		/* move us one more past the eop_desc for start of next pkt */
 4953		tx_buffer++;
 4954		i++;
 4955		if (unlikely(i == tx_ring->count)) {
 4956			i = 0;
 4957			tx_buffer = tx_ring->tx_buffer_info;
 4958		}
 4959	}
 4960
 4961	/* reset BQL for queue */
 4962	netdev_tx_reset_queue(txring_txq(tx_ring));
 4963
 4964	/* reset next_to_use and next_to_clean */
 4965	tx_ring->next_to_use = 0;
 4966	tx_ring->next_to_clean = 0;
 4967}
 4968
 4969/**
 4970 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 4971 *  @adapter: board private structure
 4972 **/
 4973static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
 4974{
 4975	int i;
 4976
 4977	for (i = 0; i < adapter->num_tx_queues; i++)
 4978		if (adapter->tx_ring[i])
 4979			igb_clean_tx_ring(adapter->tx_ring[i]);
 4980}
 4981
 4982/**
 4983 *  igb_free_rx_resources - Free Rx Resources
 4984 *  @rx_ring: ring to clean the resources from
 4985 *
 4986 *  Free all receive software resources
 4987 **/
 4988void igb_free_rx_resources(struct igb_ring *rx_ring)
 4989{
 4990	igb_clean_rx_ring(rx_ring);
 4991
 4992	rx_ring->xdp_prog = NULL;
 4993	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4994	vfree(rx_ring->rx_buffer_info);
 4995	rx_ring->rx_buffer_info = NULL;
 4996
 4997	/* if not set, then don't free */
 4998	if (!rx_ring->desc)
 4999		return;
 5000
 5001	dma_free_coherent(rx_ring->dev, rx_ring->size,
 5002			  rx_ring->desc, rx_ring->dma);
 5003
 5004	rx_ring->desc = NULL;
 5005}
 5006
 5007/**
 5008 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 5009 *  @adapter: board private structure
 5010 *
 5011 *  Free all receive software resources
 5012 **/
 5013static void igb_free_all_rx_resources(struct igb_adapter *adapter)
 5014{
 5015	int i;
 5016
 5017	for (i = 0; i < adapter->num_rx_queues; i++)
 5018		if (adapter->rx_ring[i])
 5019			igb_free_rx_resources(adapter->rx_ring[i]);
 5020}
 5021
 5022/**
 5023 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 5024 *  @rx_ring: ring to free buffers from
 5025 **/
 5026static void igb_clean_rx_ring(struct igb_ring *rx_ring)
 5027{
 5028	u16 i = rx_ring->next_to_clean;
 5029
 5030	dev_kfree_skb(rx_ring->skb);
 5031	rx_ring->skb = NULL;
 5032
 5033	/* Free all the Rx ring sk_buffs */
 5034	while (i != rx_ring->next_to_alloc) {
 5035		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
 5036
 5037		/* Invalidate cache lines that may have been written to by
 5038		 * device so that we avoid corrupting memory.
 5039		 */
 5040		dma_sync_single_range_for_cpu(rx_ring->dev,
 5041					      buffer_info->dma,
 5042					      buffer_info->page_offset,
 5043					      igb_rx_bufsz(rx_ring),
 5044					      DMA_FROM_DEVICE);
 5045
 5046		/* free resources associated with mapping */
 5047		dma_unmap_page_attrs(rx_ring->dev,
 5048				     buffer_info->dma,
 5049				     igb_rx_pg_size(rx_ring),
 5050				     DMA_FROM_DEVICE,
 5051				     IGB_RX_DMA_ATTR);
 5052		__page_frag_cache_drain(buffer_info->page,
 5053					buffer_info->pagecnt_bias);
 5054
 5055		i++;
 5056		if (i == rx_ring->count)
 5057			i = 0;
 5058	}
 5059
 5060	rx_ring->next_to_alloc = 0;
 5061	rx_ring->next_to_clean = 0;
 5062	rx_ring->next_to_use = 0;
 5063}
 5064
 5065/**
 5066 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 5067 *  @adapter: board private structure
 5068 **/
 5069static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
 5070{
 5071	int i;
 5072
 5073	for (i = 0; i < adapter->num_rx_queues; i++)
 5074		if (adapter->rx_ring[i])
 5075			igb_clean_rx_ring(adapter->rx_ring[i]);
 5076}
 5077
 5078/**
 5079 *  igb_set_mac - Change the Ethernet Address of the NIC
 5080 *  @netdev: network interface device structure
 5081 *  @p: pointer to an address structure
 5082 *
 5083 *  Returns 0 on success, negative on failure
 5084 **/
 5085static int igb_set_mac(struct net_device *netdev, void *p)
 5086{
 5087	struct igb_adapter *adapter = netdev_priv(netdev);
 5088	struct e1000_hw *hw = &adapter->hw;
 5089	struct sockaddr *addr = p;
 5090
 5091	if (!is_valid_ether_addr(addr->sa_data))
 5092		return -EADDRNOTAVAIL;
 5093
 5094	eth_hw_addr_set(netdev, addr->sa_data);
 5095	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
 5096
 5097	/* set the correct pool for the new PF MAC address in entry 0 */
 5098	igb_set_default_mac_filter(adapter);
 5099
 5100	return 0;
 5101}
 5102
 5103/**
 5104 *  igb_write_mc_addr_list - write multicast addresses to MTA
 5105 *  @netdev: network interface device structure
 5106 *
 5107 *  Writes multicast address list to the MTA hash table.
 5108 *  Returns: -ENOMEM on failure
 5109 *           0 on no addresses written
 5110 *           X on writing X addresses to MTA
 5111 **/
 5112static int igb_write_mc_addr_list(struct net_device *netdev)
 5113{
 5114	struct igb_adapter *adapter = netdev_priv(netdev);
 5115	struct e1000_hw *hw = &adapter->hw;
 5116	struct netdev_hw_addr *ha;
 5117	u8  *mta_list;
 5118	int i;
 5119
 5120	if (netdev_mc_empty(netdev)) {
 5121		/* nothing to program, so clear mc list */
 5122		igb_update_mc_addr_list(hw, NULL, 0);
 5123		igb_restore_vf_multicasts(adapter);
 5124		return 0;
 5125	}
 5126
 5127	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
 5128	if (!mta_list)
 5129		return -ENOMEM;
 5130
 5131	/* The shared function expects a packed array of only addresses. */
 5132	i = 0;
 5133	netdev_for_each_mc_addr(ha, netdev)
 5134		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
 5135
 5136	igb_update_mc_addr_list(hw, mta_list, i);
 5137	kfree(mta_list);
 5138
 5139	return netdev_mc_count(netdev);
 5140}
 5141
 5142static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
 5143{
 5144	struct e1000_hw *hw = &adapter->hw;
 5145	u32 i, pf_id;
 5146
 5147	switch (hw->mac.type) {
 5148	case e1000_i210:
 5149	case e1000_i211:
 5150	case e1000_i350:
 5151		/* VLAN filtering needed for VLAN prio filter */
 5152		if (adapter->netdev->features & NETIF_F_NTUPLE)
 5153			break;
 5154		fallthrough;
 5155	case e1000_82576:
 5156	case e1000_82580:
 5157	case e1000_i354:
 5158		/* VLAN filtering needed for pool filtering */
 5159		if (adapter->vfs_allocated_count)
 5160			break;
 5161		fallthrough;
 5162	default:
 5163		return 1;
 5164	}
 5165
 5166	/* We are already in VLAN promisc, nothing to do */
 5167	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 5168		return 0;
 5169
 5170	if (!adapter->vfs_allocated_count)
 5171		goto set_vfta;
 5172
 5173	/* Add PF to all active pools */
 5174	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 5175
 5176	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
 5177		u32 vlvf = rd32(E1000_VLVF(i));
 5178
 5179		vlvf |= BIT(pf_id);
 5180		wr32(E1000_VLVF(i), vlvf);
 5181	}
 5182
 5183set_vfta:
 5184	/* Set all bits in the VLAN filter table array */
 5185	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
 5186		hw->mac.ops.write_vfta(hw, i, ~0U);
 5187
 5188	/* Set flag so we don't redo unnecessary work */
 5189	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
 5190
 5191	return 0;
 5192}
 5193
 5194#define VFTA_BLOCK_SIZE 8
 5195static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
 5196{
 5197	struct e1000_hw *hw = &adapter->hw;
 5198	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
 5199	u32 vid_start = vfta_offset * 32;
 5200	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
 5201	u32 i, vid, word, bits, pf_id;
 5202
 5203	/* guarantee that we don't scrub out management VLAN */
 5204	vid = adapter->mng_vlan_id;
 5205	if (vid >= vid_start && vid < vid_end)
 5206		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
 5207
 5208	if (!adapter->vfs_allocated_count)
 5209		goto set_vfta;
 5210
 5211	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 5212
 5213	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
 5214		u32 vlvf = rd32(E1000_VLVF(i));
 5215
 5216		/* pull VLAN ID from VLVF */
 5217		vid = vlvf & VLAN_VID_MASK;
 5218
 5219		/* only concern ourselves with a certain range */
 5220		if (vid < vid_start || vid >= vid_end)
 5221			continue;
 5222
 5223		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
 5224			/* record VLAN ID in VFTA */
 5225			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
 5226
 5227			/* if PF is part of this then continue */
 5228			if (test_bit(vid, adapter->active_vlans))
 5229				continue;
 5230		}
 5231
 5232		/* remove PF from the pool */
 5233		bits = ~BIT(pf_id);
 5234		bits &= rd32(E1000_VLVF(i));
 5235		wr32(E1000_VLVF(i), bits);
 5236	}
 5237
 5238set_vfta:
 5239	/* extract values from active_vlans and write back to VFTA */
 5240	for (i = VFTA_BLOCK_SIZE; i--;) {
 5241		vid = (vfta_offset + i) * 32;
 5242		word = vid / BITS_PER_LONG;
 5243		bits = vid % BITS_PER_LONG;
 5244
 5245		vfta[i] |= adapter->active_vlans[word] >> bits;
 5246
 5247		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
 5248	}
 5249}
 5250
 5251static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
 5252{
 5253	u32 i;
 5254
 5255	/* We are not in VLAN promisc, nothing to do */
 5256	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 5257		return;
 5258
 5259	/* Set flag so we don't redo unnecessary work */
 5260	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
 5261
 5262	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
 5263		igb_scrub_vfta(adapter, i);
 5264}
 5265
 5266/**
 5267 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 5268 *  @netdev: network interface device structure
 5269 *
 5270 *  The set_rx_mode entry point is called whenever the unicast or multicast
 5271 *  address lists or the network interface flags are updated.  This routine is
 5272 *  responsible for configuring the hardware for proper unicast, multicast,
 5273 *  promiscuous mode, and all-multi behavior.
 5274 **/
 5275static void igb_set_rx_mode(struct net_device *netdev)
 5276{
 5277	struct igb_adapter *adapter = netdev_priv(netdev);
 5278	struct e1000_hw *hw = &adapter->hw;
 5279	unsigned int vfn = adapter->vfs_allocated_count;
 5280	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
 5281	int count;
 5282
 5283	/* Check for Promiscuous and All Multicast modes */
 5284	if (netdev->flags & IFF_PROMISC) {
 5285		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
 5286		vmolr |= E1000_VMOLR_MPME;
 5287
 5288		/* enable use of UTA filter to force packets to default pool */
 5289		if (hw->mac.type == e1000_82576)
 5290			vmolr |= E1000_VMOLR_ROPE;
 5291	} else {
 5292		if (netdev->flags & IFF_ALLMULTI) {
 5293			rctl |= E1000_RCTL_MPE;
 5294			vmolr |= E1000_VMOLR_MPME;
 5295		} else {
 5296			/* Write addresses to the MTA, if the attempt fails
 5297			 * then we should just turn on promiscuous mode so
 5298			 * that we can at least receive multicast traffic
 5299			 */
 5300			count = igb_write_mc_addr_list(netdev);
 5301			if (count < 0) {
 5302				rctl |= E1000_RCTL_MPE;
 5303				vmolr |= E1000_VMOLR_MPME;
 5304			} else if (count) {
 5305				vmolr |= E1000_VMOLR_ROMPE;
 5306			}
 5307		}
 5308	}
 5309
 5310	/* Write addresses to available RAR registers, if there is not
 5311	 * sufficient space to store all the addresses then enable
 5312	 * unicast promiscuous mode
 5313	 */
 5314	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
 5315		rctl |= E1000_RCTL_UPE;
 5316		vmolr |= E1000_VMOLR_ROPE;
 5317	}
 5318
 5319	/* enable VLAN filtering by default */
 5320	rctl |= E1000_RCTL_VFE;
 5321
 5322	/* disable VLAN filtering for modes that require it */
 5323	if ((netdev->flags & IFF_PROMISC) ||
 5324	    (netdev->features & NETIF_F_RXALL)) {
 5325		/* if we fail to set all rules then just clear VFE */
 5326		if (igb_vlan_promisc_enable(adapter))
 5327			rctl &= ~E1000_RCTL_VFE;
 5328	} else {
 5329		igb_vlan_promisc_disable(adapter);
 5330	}
 5331
 5332	/* update state of unicast, multicast, and VLAN filtering modes */
 5333	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
 5334				     E1000_RCTL_VFE);
 5335	wr32(E1000_RCTL, rctl);
 5336
 5337#if (PAGE_SIZE < 8192)
 5338	if (!adapter->vfs_allocated_count) {
 5339		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
 5340			rlpml = IGB_MAX_FRAME_BUILD_SKB;
 5341	}
 5342#endif
 5343	wr32(E1000_RLPML, rlpml);
 5344
 5345	/* In order to support SR-IOV and eventually VMDq it is necessary to set
 5346	 * the VMOLR to enable the appropriate modes.  Without this workaround
 5347	 * we will have issues with VLAN tag stripping not being done for frames
 5348	 * that are only arriving because we are the default pool
 5349	 */
 5350	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
 5351		return;
 5352
 5353	/* set UTA to appropriate mode */
 5354	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
 5355
 5356	vmolr |= rd32(E1000_VMOLR(vfn)) &
 5357		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
 5358
 5359	/* enable Rx jumbo frames, restrict as needed to support build_skb */
 5360	vmolr &= ~E1000_VMOLR_RLPML_MASK;
 5361#if (PAGE_SIZE < 8192)
 5362	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
 5363		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
 5364	else
 5365#endif
 5366		vmolr |= MAX_JUMBO_FRAME_SIZE;
 5367	vmolr |= E1000_VMOLR_LPE;
 5368
 5369	wr32(E1000_VMOLR(vfn), vmolr);
 5370
 5371	igb_restore_vf_multicasts(adapter);
 5372}
 5373
 5374static void igb_check_wvbr(struct igb_adapter *adapter)
 5375{
 5376	struct e1000_hw *hw = &adapter->hw;
 5377	u32 wvbr = 0;
 5378
 5379	switch (hw->mac.type) {
 5380	case e1000_82576:
 5381	case e1000_i350:
 5382		wvbr = rd32(E1000_WVBR);
 5383		if (!wvbr)
 5384			return;
 5385		break;
 5386	default:
 5387		break;
 5388	}
 5389
 5390	adapter->wvbr |= wvbr;
 5391}
 5392
 5393#define IGB_STAGGERED_QUEUE_OFFSET 8
 5394
 5395static void igb_spoof_check(struct igb_adapter *adapter)
 5396{
 5397	int j;
 5398
 5399	if (!adapter->wvbr)
 5400		return;
 5401
 5402	for (j = 0; j < adapter->vfs_allocated_count; j++) {
 5403		if (adapter->wvbr & BIT(j) ||
 5404		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
 5405			dev_warn(&adapter->pdev->dev,
 5406				"Spoof event(s) detected on VF %d\n", j);
 5407			adapter->wvbr &=
 5408				~(BIT(j) |
 5409				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
 5410		}
 5411	}
 5412}
 5413
 5414/* Need to wait a few seconds after link up to get diagnostic information from
 5415 * the phy
 5416 */
 5417static void igb_update_phy_info(struct timer_list *t)
 5418{
 5419	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
 5420	igb_get_phy_info(&adapter->hw);
 5421}
 5422
 5423/**
 5424 *  igb_has_link - check shared code for link and determine up/down
 5425 *  @adapter: pointer to driver private info
 5426 **/
 5427bool igb_has_link(struct igb_adapter *adapter)
 5428{
 5429	struct e1000_hw *hw = &adapter->hw;
 5430	bool link_active = false;
 5431
 5432	/* get_link_status is set on LSC (link status) interrupt or
 5433	 * rx sequence error interrupt.  get_link_status will stay
 5434	 * false until the e1000_check_for_link establishes link
 5435	 * for copper adapters ONLY
 5436	 */
 5437	switch (hw->phy.media_type) {
 5438	case e1000_media_type_copper:
 5439		if (!hw->mac.get_link_status)
 5440			return true;
 5441		fallthrough;
 5442	case e1000_media_type_internal_serdes:
 5443		hw->mac.ops.check_for_link(hw);
 5444		link_active = !hw->mac.get_link_status;
 5445		break;
 5446	default:
 5447	case e1000_media_type_unknown:
 5448		break;
 5449	}
 5450
 5451	if (((hw->mac.type == e1000_i210) ||
 5452	     (hw->mac.type == e1000_i211)) &&
 5453	     (hw->phy.id == I210_I_PHY_ID)) {
 5454		if (!netif_carrier_ok(adapter->netdev)) {
 5455			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 5456		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
 5457			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
 5458			adapter->link_check_timeout = jiffies;
 5459		}
 5460	}
 5461
 5462	return link_active;
 5463}
 5464
 5465static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
 5466{
 5467	bool ret = false;
 5468	u32 ctrl_ext, thstat;
 5469
 5470	/* check for thermal sensor event on i350 copper only */
 5471	if (hw->mac.type == e1000_i350) {
 5472		thstat = rd32(E1000_THSTAT);
 5473		ctrl_ext = rd32(E1000_CTRL_EXT);
 5474
 5475		if ((hw->phy.media_type == e1000_media_type_copper) &&
 5476		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
 5477			ret = !!(thstat & event);
 5478	}
 5479
 5480	return ret;
 5481}
 5482
 5483/**
 5484 *  igb_check_lvmmc - check for malformed packets received
 5485 *  and indicated in LVMMC register
 5486 *  @adapter: pointer to adapter
 5487 **/
 5488static void igb_check_lvmmc(struct igb_adapter *adapter)
 5489{
 5490	struct e1000_hw *hw = &adapter->hw;
 5491	u32 lvmmc;
 5492
 5493	lvmmc = rd32(E1000_LVMMC);
 5494	if (lvmmc) {
 5495		if (unlikely(net_ratelimit())) {
 5496			netdev_warn(adapter->netdev,
 5497				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
 5498				    lvmmc);
 5499		}
 5500	}
 5501}
 5502
 5503/**
 5504 *  igb_watchdog - Timer Call-back
 5505 *  @t: pointer to timer_list containing our private info pointer
 5506 **/
 5507static void igb_watchdog(struct timer_list *t)
 5508{
 5509	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
 5510	/* Do the rest outside of interrupt context */
 5511	schedule_work(&adapter->watchdog_task);
 5512}
 5513
 5514static void igb_watchdog_task(struct work_struct *work)
 5515{
 5516	struct igb_adapter *adapter = container_of(work,
 5517						   struct igb_adapter,
 5518						   watchdog_task);
 5519	struct e1000_hw *hw = &adapter->hw;
 5520	struct e1000_phy_info *phy = &hw->phy;
 5521	struct net_device *netdev = adapter->netdev;
 5522	u32 link;
 5523	int i;
 5524	u32 connsw;
 5525	u16 phy_data, retry_count = 20;
 5526
 5527	link = igb_has_link(adapter);
 5528
 5529	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
 5530		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
 5531			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 5532		else
 5533			link = false;
 5534	}
 5535
 5536	/* Force link down if we have fiber to swap to */
 5537	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
 5538		if (hw->phy.media_type == e1000_media_type_copper) {
 5539			connsw = rd32(E1000_CONNSW);
 5540			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
 5541				link = 0;
 5542		}
 5543	}
 5544	if (link) {
 5545		/* Perform a reset if the media type changed. */
 5546		if (hw->dev_spec._82575.media_changed) {
 5547			hw->dev_spec._82575.media_changed = false;
 5548			adapter->flags |= IGB_FLAG_MEDIA_RESET;
 5549			igb_reset(adapter);
 5550		}
 5551		/* Cancel scheduled suspend requests. */
 5552		pm_runtime_resume(netdev->dev.parent);
 5553
 5554		if (!netif_carrier_ok(netdev)) {
 5555			u32 ctrl;
 5556
 5557			hw->mac.ops.get_speed_and_duplex(hw,
 5558							 &adapter->link_speed,
 5559							 &adapter->link_duplex);
 5560
 5561			ctrl = rd32(E1000_CTRL);
 5562			/* Links status message must follow this format */
 5563			netdev_info(netdev,
 5564			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
 5565			       netdev->name,
 5566			       adapter->link_speed,
 5567			       adapter->link_duplex == FULL_DUPLEX ?
 5568			       "Full" : "Half",
 5569			       (ctrl & E1000_CTRL_TFCE) &&
 5570			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
 5571			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
 5572			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
 5573
 5574			/* disable EEE if enabled */
 5575			if ((adapter->flags & IGB_FLAG_EEE) &&
 5576				(adapter->link_duplex == HALF_DUPLEX)) {
 5577				dev_info(&adapter->pdev->dev,
 5578				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
 5579				adapter->hw.dev_spec._82575.eee_disable = true;
 5580				adapter->flags &= ~IGB_FLAG_EEE;
 5581			}
 5582
 5583			/* check if SmartSpeed worked */
 5584			igb_check_downshift(hw);
 5585			if (phy->speed_downgraded)
 5586				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
 5587
 5588			/* check for thermal sensor event */
 5589			if (igb_thermal_sensor_event(hw,
 5590			    E1000_THSTAT_LINK_THROTTLE))
 5591				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
 5592
 5593			/* adjust timeout factor according to speed/duplex */
 5594			adapter->tx_timeout_factor = 1;
 5595			switch (adapter->link_speed) {
 5596			case SPEED_10:
 5597				adapter->tx_timeout_factor = 14;
 5598				break;
 5599			case SPEED_100:
 5600				/* maybe add some timeout factor ? */
 5601				break;
 5602			}
 5603
 5604			if (adapter->link_speed != SPEED_1000 ||
 5605			    !hw->phy.ops.read_reg)
 5606				goto no_wait;
 5607
 5608			/* wait for Remote receiver status OK */
 5609retry_read_status:
 5610			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
 5611					      &phy_data)) {
 5612				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
 5613				    retry_count) {
 5614					msleep(100);
 5615					retry_count--;
 5616					goto retry_read_status;
 5617				} else if (!retry_count) {
 5618					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
 5619				}
 5620			} else {
 5621				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
 5622			}
 5623no_wait:
 5624			netif_carrier_on(netdev);
 5625
 5626			igb_ping_all_vfs(adapter);
 5627			igb_check_vf_rate_limit(adapter);
 5628
 5629			/* link state has changed, schedule phy info update */
 5630			if (!test_bit(__IGB_DOWN, &adapter->state))
 5631				mod_timer(&adapter->phy_info_timer,
 5632					  round_jiffies(jiffies + 2 * HZ));
 5633		}
 5634	} else {
 5635		if (netif_carrier_ok(netdev)) {
 5636			adapter->link_speed = 0;
 5637			adapter->link_duplex = 0;
 5638
 5639			/* check for thermal sensor event */
 5640			if (igb_thermal_sensor_event(hw,
 5641			    E1000_THSTAT_PWR_DOWN)) {
 5642				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
 5643			}
 5644
 5645			/* Links status message must follow this format */
 5646			netdev_info(netdev, "igb: %s NIC Link is Down\n",
 5647			       netdev->name);
 5648			netif_carrier_off(netdev);
 5649
 5650			igb_ping_all_vfs(adapter);
 5651
 5652			/* link state has changed, schedule phy info update */
 5653			if (!test_bit(__IGB_DOWN, &adapter->state))
 5654				mod_timer(&adapter->phy_info_timer,
 5655					  round_jiffies(jiffies + 2 * HZ));
 5656
 5657			/* link is down, time to check for alternate media */
 5658			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
 5659				igb_check_swap_media(adapter);
 5660				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 5661					schedule_work(&adapter->reset_task);
 5662					/* return immediately */
 5663					return;
 5664				}
 5665			}
 5666			pm_schedule_suspend(netdev->dev.parent,
 5667					    MSEC_PER_SEC * 5);
 5668
 5669		/* also check for alternate media here */
 5670		} else if (!netif_carrier_ok(netdev) &&
 5671			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
 5672			igb_check_swap_media(adapter);
 5673			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 5674				schedule_work(&adapter->reset_task);
 5675				/* return immediately */
 5676				return;
 5677			}
 5678		}
 5679	}
 5680
 5681	spin_lock(&adapter->stats64_lock);
 5682	igb_update_stats(adapter);
 5683	spin_unlock(&adapter->stats64_lock);
 5684
 5685	for (i = 0; i < adapter->num_tx_queues; i++) {
 5686		struct igb_ring *tx_ring = adapter->tx_ring[i];
 5687		if (!netif_carrier_ok(netdev)) {
 5688			/* We've lost link, so the controller stops DMA,
 5689			 * but we've got queued Tx work that's never going
 5690			 * to get done, so reset controller to flush Tx.
 5691			 * (Do the reset outside of interrupt context).
 5692			 */
 5693			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
 5694				adapter->tx_timeout_count++;
 5695				schedule_work(&adapter->reset_task);
 5696				/* return immediately since reset is imminent */
 5697				return;
 5698			}
 5699		}
 5700
 5701		/* Force detection of hung controller every watchdog period */
 5702		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
 5703	}
 5704
 5705	/* Cause software interrupt to ensure Rx ring is cleaned */
 5706	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 5707		u32 eics = 0;
 5708
 5709		for (i = 0; i < adapter->num_q_vectors; i++)
 5710			eics |= adapter->q_vector[i]->eims_value;
 5711		wr32(E1000_EICS, eics);
 5712	} else {
 5713		wr32(E1000_ICS, E1000_ICS_RXDMT0);
 5714	}
 5715
 5716	igb_spoof_check(adapter);
 5717	igb_ptp_rx_hang(adapter);
 5718	igb_ptp_tx_hang(adapter);
 5719
 5720	/* Check LVMMC register on i350/i354 only */
 5721	if ((adapter->hw.mac.type == e1000_i350) ||
 5722	    (adapter->hw.mac.type == e1000_i354))
 5723		igb_check_lvmmc(adapter);
 5724
 5725	/* Reset the timer */
 5726	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 5727		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
 5728			mod_timer(&adapter->watchdog_timer,
 5729				  round_jiffies(jiffies +  HZ));
 5730		else
 5731			mod_timer(&adapter->watchdog_timer,
 5732				  round_jiffies(jiffies + 2 * HZ));
 5733	}
 5734}
 5735
 5736enum latency_range {
 5737	lowest_latency = 0,
 5738	low_latency = 1,
 5739	bulk_latency = 2,
 5740	latency_invalid = 255
 5741};
 5742
 5743/**
 5744 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 5745 *  @q_vector: pointer to q_vector
 5746 *
 5747 *  Stores a new ITR value based on strictly on packet size.  This
 5748 *  algorithm is less sophisticated than that used in igb_update_itr,
 5749 *  due to the difficulty of synchronizing statistics across multiple
 5750 *  receive rings.  The divisors and thresholds used by this function
 5751 *  were determined based on theoretical maximum wire speed and testing
 5752 *  data, in order to minimize response time while increasing bulk
 5753 *  throughput.
 5754 *  This functionality is controlled by ethtool's coalescing settings.
 5755 *  NOTE:  This function is called only when operating in a multiqueue
 5756 *         receive environment.
 5757 **/
 5758static void igb_update_ring_itr(struct igb_q_vector *q_vector)
 5759{
 5760	int new_val = q_vector->itr_val;
 5761	int avg_wire_size = 0;
 5762	struct igb_adapter *adapter = q_vector->adapter;
 5763	unsigned int packets;
 5764
 5765	/* For non-gigabit speeds, just fix the interrupt rate at 4000
 5766	 * ints/sec - ITR timer value of 120 ticks.
 5767	 */
 5768	if (adapter->link_speed != SPEED_1000) {
 5769		new_val = IGB_4K_ITR;
 5770		goto set_itr_val;
 5771	}
 5772
 5773	packets = q_vector->rx.total_packets;
 5774	if (packets)
 5775		avg_wire_size = q_vector->rx.total_bytes / packets;
 5776
 5777	packets = q_vector->tx.total_packets;
 5778	if (packets)
 5779		avg_wire_size = max_t(u32, avg_wire_size,
 5780				      q_vector->tx.total_bytes / packets);
 5781
 5782	/* if avg_wire_size isn't set no work was done */
 5783	if (!avg_wire_size)
 5784		goto clear_counts;
 5785
 5786	/* Add 24 bytes to size to account for CRC, preamble, and gap */
 5787	avg_wire_size += 24;
 5788
 5789	/* Don't starve jumbo frames */
 5790	avg_wire_size = min(avg_wire_size, 3000);
 5791
 5792	/* Give a little boost to mid-size frames */
 5793	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
 5794		new_val = avg_wire_size / 3;
 5795	else
 5796		new_val = avg_wire_size / 2;
 5797
 5798	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 5799	if (new_val < IGB_20K_ITR &&
 5800	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
 5801	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
 5802		new_val = IGB_20K_ITR;
 5803
 5804set_itr_val:
 5805	if (new_val != q_vector->itr_val) {
 5806		q_vector->itr_val = new_val;
 5807		q_vector->set_itr = 1;
 5808	}
 5809clear_counts:
 5810	q_vector->rx.total_bytes = 0;
 5811	q_vector->rx.total_packets = 0;
 5812	q_vector->tx.total_bytes = 0;
 5813	q_vector->tx.total_packets = 0;
 5814}
 5815
 5816/**
 5817 *  igb_update_itr - update the dynamic ITR value based on statistics
 5818 *  @q_vector: pointer to q_vector
 5819 *  @ring_container: ring info to update the itr for
 5820 *
 5821 *  Stores a new ITR value based on packets and byte
 5822 *  counts during the last interrupt.  The advantage of per interrupt
 5823 *  computation is faster updates and more accurate ITR for the current
 5824 *  traffic pattern.  Constants in this function were computed
 5825 *  based on theoretical maximum wire speed and thresholds were set based
 5826 *  on testing data as well as attempting to minimize response time
 5827 *  while increasing bulk throughput.
 5828 *  This functionality is controlled by ethtool's coalescing settings.
 5829 *  NOTE:  These calculations are only valid when operating in a single-
 5830 *         queue environment.
 5831 **/
 5832static void igb_update_itr(struct igb_q_vector *q_vector,
 5833			   struct igb_ring_container *ring_container)
 5834{
 5835	unsigned int packets = ring_container->total_packets;
 5836	unsigned int bytes = ring_container->total_bytes;
 5837	u8 itrval = ring_container->itr;
 5838
 5839	/* no packets, exit with status unchanged */
 5840	if (packets == 0)
 5841		return;
 5842
 5843	switch (itrval) {
 5844	case lowest_latency:
 5845		/* handle TSO and jumbo frames */
 5846		if (bytes/packets > 8000)
 5847			itrval = bulk_latency;
 5848		else if ((packets < 5) && (bytes > 512))
 5849			itrval = low_latency;
 5850		break;
 5851	case low_latency:  /* 50 usec aka 20000 ints/s */
 5852		if (bytes > 10000) {
 5853			/* this if handles the TSO accounting */
 5854			if (bytes/packets > 8000)
 5855				itrval = bulk_latency;
 5856			else if ((packets < 10) || ((bytes/packets) > 1200))
 5857				itrval = bulk_latency;
 5858			else if ((packets > 35))
 5859				itrval = lowest_latency;
 5860		} else if (bytes/packets > 2000) {
 5861			itrval = bulk_latency;
 5862		} else if (packets <= 2 && bytes < 512) {
 5863			itrval = lowest_latency;
 5864		}
 5865		break;
 5866	case bulk_latency: /* 250 usec aka 4000 ints/s */
 5867		if (bytes > 25000) {
 5868			if (packets > 35)
 5869				itrval = low_latency;
 5870		} else if (bytes < 1500) {
 5871			itrval = low_latency;
 5872		}
 5873		break;
 5874	}
 5875
 5876	/* clear work counters since we have the values we need */
 5877	ring_container->total_bytes = 0;
 5878	ring_container->total_packets = 0;
 5879
 5880	/* write updated itr to ring container */
 5881	ring_container->itr = itrval;
 5882}
 5883
 5884static void igb_set_itr(struct igb_q_vector *q_vector)
 5885{
 5886	struct igb_adapter *adapter = q_vector->adapter;
 5887	u32 new_itr = q_vector->itr_val;
 5888	u8 current_itr = 0;
 5889
 5890	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
 5891	if (adapter->link_speed != SPEED_1000) {
 5892		current_itr = 0;
 5893		new_itr = IGB_4K_ITR;
 5894		goto set_itr_now;
 5895	}
 5896
 5897	igb_update_itr(q_vector, &q_vector->tx);
 5898	igb_update_itr(q_vector, &q_vector->rx);
 5899
 5900	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
 5901
 5902	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 5903	if (current_itr == lowest_latency &&
 5904	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
 5905	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
 5906		current_itr = low_latency;
 5907
 5908	switch (current_itr) {
 5909	/* counts and packets in update_itr are dependent on these numbers */
 5910	case lowest_latency:
 5911		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
 5912		break;
 5913	case low_latency:
 5914		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
 5915		break;
 5916	case bulk_latency:
 5917		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
 5918		break;
 5919	default:
 5920		break;
 5921	}
 5922
 5923set_itr_now:
 5924	if (new_itr != q_vector->itr_val) {
 5925		/* this attempts to bias the interrupt rate towards Bulk
 5926		 * by adding intermediate steps when interrupt rate is
 5927		 * increasing
 5928		 */
 5929		new_itr = new_itr > q_vector->itr_val ?
 5930			  max((new_itr * q_vector->itr_val) /
 5931			  (new_itr + (q_vector->itr_val >> 2)),
 5932			  new_itr) : new_itr;
 5933		/* Don't write the value here; it resets the adapter's
 5934		 * internal timer, and causes us to delay far longer than
 5935		 * we should between interrupts.  Instead, we write the ITR
 5936		 * value at the beginning of the next interrupt so the timing
 5937		 * ends up being correct.
 5938		 */
 5939		q_vector->itr_val = new_itr;
 5940		q_vector->set_itr = 1;
 5941	}
 5942}
 5943
 5944static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
 5945			    struct igb_tx_buffer *first,
 5946			    u32 vlan_macip_lens, u32 type_tucmd,
 5947			    u32 mss_l4len_idx)
 5948{
 5949	struct e1000_adv_tx_context_desc *context_desc;
 5950	u16 i = tx_ring->next_to_use;
 5951	struct timespec64 ts;
 5952
 5953	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
 5954
 5955	i++;
 5956	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 5957
 5958	/* set bits to identify this as an advanced context descriptor */
 5959	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
 5960
 5961	/* For 82575, context index must be unique per ring. */
 5962	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 5963		mss_l4len_idx |= tx_ring->reg_idx << 4;
 5964
 5965	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
 5966	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
 5967	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
 5968
 5969	/* We assume there is always a valid tx time available. Invalid times
 5970	 * should have been handled by the upper layers.
 5971	 */
 5972	if (tx_ring->launchtime_enable) {
 5973		ts = ktime_to_timespec64(first->skb->tstamp);
 5974		skb_txtime_consumed(first->skb);
 5975		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
 5976	} else {
 5977		context_desc->seqnum_seed = 0;
 5978	}
 5979}
 5980
 5981static int igb_tso(struct igb_ring *tx_ring,
 5982		   struct igb_tx_buffer *first,
 5983		   u8 *hdr_len)
 5984{
 5985	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
 5986	struct sk_buff *skb = first->skb;
 5987	union {
 5988		struct iphdr *v4;
 5989		struct ipv6hdr *v6;
 5990		unsigned char *hdr;
 5991	} ip;
 5992	union {
 5993		struct tcphdr *tcp;
 5994		struct udphdr *udp;
 5995		unsigned char *hdr;
 5996	} l4;
 5997	u32 paylen, l4_offset;
 5998	int err;
 5999
 6000	if (skb->ip_summed != CHECKSUM_PARTIAL)
 6001		return 0;
 6002
 6003	if (!skb_is_gso(skb))
 6004		return 0;
 6005
 6006	err = skb_cow_head(skb, 0);
 6007	if (err < 0)
 6008		return err;
 6009
 6010	ip.hdr = skb_network_header(skb);
 6011	l4.hdr = skb_checksum_start(skb);
 6012
 6013	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
 6014	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
 6015		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
 6016
 6017	/* initialize outer IP header fields */
 6018	if (ip.v4->version == 4) {
 6019		unsigned char *csum_start = skb_checksum_start(skb);
 6020		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
 6021
 6022		/* IP header will have to cancel out any data that
 6023		 * is not a part of the outer IP header
 6024		 */
 6025		ip.v4->check = csum_fold(csum_partial(trans_start,
 6026						      csum_start - trans_start,
 6027						      0));
 6028		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
 6029
 6030		ip.v4->tot_len = 0;
 6031		first->tx_flags |= IGB_TX_FLAGS_TSO |
 6032				   IGB_TX_FLAGS_CSUM |
 6033				   IGB_TX_FLAGS_IPV4;
 6034	} else {
 6035		ip.v6->payload_len = 0;
 6036		first->tx_flags |= IGB_TX_FLAGS_TSO |
 6037				   IGB_TX_FLAGS_CSUM;
 6038	}
 6039
 6040	/* determine offset of inner transport header */
 6041	l4_offset = l4.hdr - skb->data;
 6042
 6043	/* remove payload length from inner checksum */
 6044	paylen = skb->len - l4_offset;
 6045	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
 6046		/* compute length of segmentation header */
 6047		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 6048		csum_replace_by_diff(&l4.tcp->check,
 6049			(__force __wsum)htonl(paylen));
 6050	} else {
 6051		/* compute length of segmentation header */
 6052		*hdr_len = sizeof(*l4.udp) + l4_offset;
 6053		csum_replace_by_diff(&l4.udp->check,
 6054				     (__force __wsum)htonl(paylen));
 6055	}
 6056
 6057	/* update gso size and bytecount with header size */
 6058	first->gso_segs = skb_shinfo(skb)->gso_segs;
 6059	first->bytecount += (first->gso_segs - 1) * *hdr_len;
 6060
 6061	/* MSS L4LEN IDX */
 6062	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
 6063	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
 6064
 6065	/* VLAN MACLEN IPLEN */
 6066	vlan_macip_lens = l4.hdr - ip.hdr;
 6067	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
 6068	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
 6069
 6070	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
 6071			type_tucmd, mss_l4len_idx);
 6072
 6073	return 1;
 6074}
 6075
 6076static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
 6077{
 6078	struct sk_buff *skb = first->skb;
 6079	u32 vlan_macip_lens = 0;
 6080	u32 type_tucmd = 0;
 6081
 6082	if (skb->ip_summed != CHECKSUM_PARTIAL) {
 6083csum_failed:
 6084		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
 6085		    !tx_ring->launchtime_enable)
 6086			return;
 6087		goto no_csum;
 6088	}
 6089
 6090	switch (skb->csum_offset) {
 6091	case offsetof(struct tcphdr, check):
 6092		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
 6093		fallthrough;
 6094	case offsetof(struct udphdr, check):
 6095		break;
 6096	case offsetof(struct sctphdr, checksum):
 6097		/* validate that this is actually an SCTP request */
 6098		if (skb_csum_is_sctp(skb)) {
 6099			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
 6100			break;
 6101		}
 6102		fallthrough;
 6103	default:
 6104		skb_checksum_help(skb);
 6105		goto csum_failed;
 6106	}
 6107
 6108	/* update TX checksum flag */
 6109	first->tx_flags |= IGB_TX_FLAGS_CSUM;
 6110	vlan_macip_lens = skb_checksum_start_offset(skb) -
 6111			  skb_network_offset(skb);
 6112no_csum:
 6113	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
 6114	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
 6115
 6116	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
 6117}
 6118
 6119#define IGB_SET_FLAG(_input, _flag, _result) \
 6120	((_flag <= _result) ? \
 6121	 ((u32)(_input & _flag) * (_result / _flag)) : \
 6122	 ((u32)(_input & _flag) / (_flag / _result)))
 6123
 6124static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
 6125{
 6126	/* set type for advanced descriptor with frame checksum insertion */
 6127	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
 6128		       E1000_ADVTXD_DCMD_DEXT |
 6129		       E1000_ADVTXD_DCMD_IFCS;
 6130
 6131	/* set HW vlan bit if vlan is present */
 6132	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
 6133				 (E1000_ADVTXD_DCMD_VLE));
 6134
 6135	/* set segmentation bits for TSO */
 6136	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
 6137				 (E1000_ADVTXD_DCMD_TSE));
 6138
 6139	/* set timestamp bit if present */
 6140	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
 6141				 (E1000_ADVTXD_MAC_TSTAMP));
 6142
 6143	/* insert frame checksum */
 6144	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
 6145
 6146	return cmd_type;
 6147}
 6148
 6149static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
 6150				 union e1000_adv_tx_desc *tx_desc,
 6151				 u32 tx_flags, unsigned int paylen)
 6152{
 6153	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
 6154
 6155	/* 82575 requires a unique index per ring */
 6156	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 6157		olinfo_status |= tx_ring->reg_idx << 4;
 6158
 6159	/* insert L4 checksum */
 6160	olinfo_status |= IGB_SET_FLAG(tx_flags,
 6161				      IGB_TX_FLAGS_CSUM,
 6162				      (E1000_TXD_POPTS_TXSM << 8));
 6163
 6164	/* insert IPv4 checksum */
 6165	olinfo_status |= IGB_SET_FLAG(tx_flags,
 6166				      IGB_TX_FLAGS_IPV4,
 6167				      (E1000_TXD_POPTS_IXSM << 8));
 6168
 6169	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
 6170}
 6171
 6172static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
 6173{
 6174	struct net_device *netdev = tx_ring->netdev;
 6175
 6176	netif_stop_subqueue(netdev, tx_ring->queue_index);
 6177
 6178	/* Herbert's original patch had:
 6179	 *  smp_mb__after_netif_stop_queue();
 6180	 * but since that doesn't exist yet, just open code it.
 6181	 */
 6182	smp_mb();
 6183
 6184	/* We need to check again in a case another CPU has just
 6185	 * made room available.
 6186	 */
 6187	if (igb_desc_unused(tx_ring) < size)
 6188		return -EBUSY;
 6189
 6190	/* A reprieve! */
 6191	netif_wake_subqueue(netdev, tx_ring->queue_index);
 6192
 6193	u64_stats_update_begin(&tx_ring->tx_syncp2);
 6194	tx_ring->tx_stats.restart_queue2++;
 6195	u64_stats_update_end(&tx_ring->tx_syncp2);
 6196
 6197	return 0;
 6198}
 6199
 6200static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
 6201{
 6202	if (igb_desc_unused(tx_ring) >= size)
 6203		return 0;
 6204	return __igb_maybe_stop_tx(tx_ring, size);
 6205}
 6206
 6207static int igb_tx_map(struct igb_ring *tx_ring,
 6208		      struct igb_tx_buffer *first,
 6209		      const u8 hdr_len)
 6210{
 6211	struct sk_buff *skb = first->skb;
 6212	struct igb_tx_buffer *tx_buffer;
 6213	union e1000_adv_tx_desc *tx_desc;
 6214	skb_frag_t *frag;
 6215	dma_addr_t dma;
 6216	unsigned int data_len, size;
 6217	u32 tx_flags = first->tx_flags;
 6218	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
 6219	u16 i = tx_ring->next_to_use;
 6220
 6221	tx_desc = IGB_TX_DESC(tx_ring, i);
 6222
 6223	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
 6224
 6225	size = skb_headlen(skb);
 6226	data_len = skb->data_len;
 6227
 6228	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
 6229
 6230	tx_buffer = first;
 6231
 6232	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 6233		if (dma_mapping_error(tx_ring->dev, dma))
 6234			goto dma_error;
 6235
 6236		/* record length, and DMA address */
 6237		dma_unmap_len_set(tx_buffer, len, size);
 6238		dma_unmap_addr_set(tx_buffer, dma, dma);
 6239
 6240		tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6241
 6242		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
 6243			tx_desc->read.cmd_type_len =
 6244				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
 6245
 6246			i++;
 6247			tx_desc++;
 6248			if (i == tx_ring->count) {
 6249				tx_desc = IGB_TX_DESC(tx_ring, 0);
 6250				i = 0;
 6251			}
 6252			tx_desc->read.olinfo_status = 0;
 6253
 6254			dma += IGB_MAX_DATA_PER_TXD;
 6255			size -= IGB_MAX_DATA_PER_TXD;
 6256
 6257			tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6258		}
 6259
 6260		if (likely(!data_len))
 6261			break;
 6262
 6263		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
 6264
 6265		i++;
 6266		tx_desc++;
 6267		if (i == tx_ring->count) {
 6268			tx_desc = IGB_TX_DESC(tx_ring, 0);
 6269			i = 0;
 6270		}
 6271		tx_desc->read.olinfo_status = 0;
 6272
 6273		size = skb_frag_size(frag);
 6274		data_len -= size;
 6275
 6276		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
 6277				       size, DMA_TO_DEVICE);
 6278
 6279		tx_buffer = &tx_ring->tx_buffer_info[i];
 6280	}
 6281
 6282	/* write last descriptor with RS and EOP bits */
 6283	cmd_type |= size | IGB_TXD_DCMD;
 6284	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
 6285
 6286	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
 6287
 6288	/* set the timestamp */
 6289	first->time_stamp = jiffies;
 6290
 6291	skb_tx_timestamp(skb);
 6292
 6293	/* Force memory writes to complete before letting h/w know there
 6294	 * are new descriptors to fetch.  (Only applicable for weak-ordered
 6295	 * memory model archs, such as IA-64).
 6296	 *
 6297	 * We also need this memory barrier to make certain all of the
 6298	 * status bits have been updated before next_to_watch is written.
 6299	 */
 6300	dma_wmb();
 6301
 6302	/* set next_to_watch value indicating a packet is present */
 6303	first->next_to_watch = tx_desc;
 6304
 6305	i++;
 6306	if (i == tx_ring->count)
 6307		i = 0;
 6308
 6309	tx_ring->next_to_use = i;
 6310
 6311	/* Make sure there is space in the ring for the next send. */
 6312	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
 6313
 6314	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
 6315		writel(i, tx_ring->tail);
 6316	}
 6317	return 0;
 6318
 6319dma_error:
 6320	dev_err(tx_ring->dev, "TX DMA map failed\n");
 6321	tx_buffer = &tx_ring->tx_buffer_info[i];
 6322
 6323	/* clear dma mappings for failed tx_buffer_info map */
 6324	while (tx_buffer != first) {
 6325		if (dma_unmap_len(tx_buffer, len))
 6326			dma_unmap_page(tx_ring->dev,
 6327				       dma_unmap_addr(tx_buffer, dma),
 6328				       dma_unmap_len(tx_buffer, len),
 6329				       DMA_TO_DEVICE);
 6330		dma_unmap_len_set(tx_buffer, len, 0);
 6331
 6332		if (i-- == 0)
 6333			i += tx_ring->count;
 6334		tx_buffer = &tx_ring->tx_buffer_info[i];
 6335	}
 6336
 6337	if (dma_unmap_len(tx_buffer, len))
 6338		dma_unmap_single(tx_ring->dev,
 6339				 dma_unmap_addr(tx_buffer, dma),
 6340				 dma_unmap_len(tx_buffer, len),
 6341				 DMA_TO_DEVICE);
 6342	dma_unmap_len_set(tx_buffer, len, 0);
 6343
 6344	dev_kfree_skb_any(tx_buffer->skb);
 6345	tx_buffer->skb = NULL;
 6346
 6347	tx_ring->next_to_use = i;
 6348
 6349	return -1;
 6350}
 6351
 6352int igb_xmit_xdp_ring(struct igb_adapter *adapter,
 6353		      struct igb_ring *tx_ring,
 6354		      struct xdp_frame *xdpf)
 6355{
 6356	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
 6357	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
 6358	u16 count, i, index = tx_ring->next_to_use;
 6359	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
 6360	struct igb_tx_buffer *tx_buffer = tx_head;
 6361	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
 6362	u32 len = xdpf->len, cmd_type, olinfo_status;
 6363	void *data = xdpf->data;
 6364
 6365	count = TXD_USE_COUNT(len);
 6366	for (i = 0; i < nr_frags; i++)
 6367		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
 6368
 6369	if (igb_maybe_stop_tx(tx_ring, count + 3))
 6370		return IGB_XDP_CONSUMED;
 6371
 6372	i = 0;
 6373	/* record the location of the first descriptor for this packet */
 6374	tx_head->bytecount = xdp_get_frame_len(xdpf);
 6375	tx_head->type = IGB_TYPE_XDP;
 6376	tx_head->gso_segs = 1;
 6377	tx_head->xdpf = xdpf;
 6378
 6379	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
 6380	/* 82575 requires a unique index per ring */
 6381	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 6382		olinfo_status |= tx_ring->reg_idx << 4;
 6383	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
 6384
 6385	for (;;) {
 6386		dma_addr_t dma;
 6387
 6388		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
 6389		if (dma_mapping_error(tx_ring->dev, dma))
 6390			goto unmap;
 6391
 6392		/* record length, and DMA address */
 6393		dma_unmap_len_set(tx_buffer, len, len);
 6394		dma_unmap_addr_set(tx_buffer, dma, dma);
 6395
 6396		/* put descriptor type bits */
 6397		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
 6398			   E1000_ADVTXD_DCMD_IFCS | len;
 6399
 6400		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
 6401		tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6402
 6403		tx_buffer->protocol = 0;
 6404
 6405		if (++index == tx_ring->count)
 6406			index = 0;
 6407
 6408		if (i == nr_frags)
 6409			break;
 6410
 6411		tx_buffer = &tx_ring->tx_buffer_info[index];
 6412		tx_desc = IGB_TX_DESC(tx_ring, index);
 6413		tx_desc->read.olinfo_status = 0;
 6414
 6415		data = skb_frag_address(&sinfo->frags[i]);
 6416		len = skb_frag_size(&sinfo->frags[i]);
 6417		i++;
 6418	}
 6419	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
 6420
 6421	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
 6422	/* set the timestamp */
 6423	tx_head->time_stamp = jiffies;
 6424
 6425	/* Avoid any potential race with xdp_xmit and cleanup */
 6426	smp_wmb();
 6427
 6428	/* set next_to_watch value indicating a packet is present */
 6429	tx_head->next_to_watch = tx_desc;
 6430	tx_ring->next_to_use = index;
 6431
 6432	/* Make sure there is space in the ring for the next send. */
 6433	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
 6434
 6435	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
 6436		writel(index, tx_ring->tail);
 6437
 6438	return IGB_XDP_TX;
 6439
 6440unmap:
 6441	for (;;) {
 6442		tx_buffer = &tx_ring->tx_buffer_info[index];
 6443		if (dma_unmap_len(tx_buffer, len))
 6444			dma_unmap_page(tx_ring->dev,
 6445				       dma_unmap_addr(tx_buffer, dma),
 6446				       dma_unmap_len(tx_buffer, len),
 6447				       DMA_TO_DEVICE);
 6448		dma_unmap_len_set(tx_buffer, len, 0);
 6449		if (tx_buffer == tx_head)
 6450			break;
 6451
 6452		if (!index)
 6453			index += tx_ring->count;
 6454		index--;
 6455	}
 6456
 6457	return IGB_XDP_CONSUMED;
 6458}
 6459
 6460netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
 6461				struct igb_ring *tx_ring)
 6462{
 6463	struct igb_tx_buffer *first;
 6464	int tso;
 6465	u32 tx_flags = 0;
 6466	unsigned short f;
 6467	u16 count = TXD_USE_COUNT(skb_headlen(skb));
 6468	__be16 protocol = vlan_get_protocol(skb);
 6469	u8 hdr_len = 0;
 6470
 6471	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
 6472	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
 6473	 *       + 2 desc gap to keep tail from touching head,
 6474	 *       + 1 desc for context descriptor,
 6475	 * otherwise try next time
 6476	 */
 6477	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
 6478		count += TXD_USE_COUNT(skb_frag_size(
 6479						&skb_shinfo(skb)->frags[f]));
 6480
 6481	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
 6482		/* this is a hard error */
 6483		return NETDEV_TX_BUSY;
 6484	}
 6485
 6486	/* record the location of the first descriptor for this packet */
 6487	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
 6488	first->type = IGB_TYPE_SKB;
 6489	first->skb = skb;
 6490	first->bytecount = skb->len;
 6491	first->gso_segs = 1;
 6492
 6493	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
 6494		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
 6495
 6496		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
 6497		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
 6498					   &adapter->state)) {
 6499			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 6500			tx_flags |= IGB_TX_FLAGS_TSTAMP;
 6501
 6502			adapter->ptp_tx_skb = skb_get(skb);
 6503			adapter->ptp_tx_start = jiffies;
 6504			if (adapter->hw.mac.type == e1000_82576)
 6505				schedule_work(&adapter->ptp_tx_work);
 6506		} else {
 6507			adapter->tx_hwtstamp_skipped++;
 6508		}
 6509	}
 6510
 6511	if (skb_vlan_tag_present(skb)) {
 6512		tx_flags |= IGB_TX_FLAGS_VLAN;
 6513		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
 6514	}
 6515
 6516	/* record initial flags and protocol */
 6517	first->tx_flags = tx_flags;
 6518	first->protocol = protocol;
 6519
 6520	tso = igb_tso(tx_ring, first, &hdr_len);
 6521	if (tso < 0)
 6522		goto out_drop;
 6523	else if (!tso)
 6524		igb_tx_csum(tx_ring, first);
 6525
 6526	if (igb_tx_map(tx_ring, first, hdr_len))
 6527		goto cleanup_tx_tstamp;
 6528
 6529	return NETDEV_TX_OK;
 6530
 6531out_drop:
 6532	dev_kfree_skb_any(first->skb);
 6533	first->skb = NULL;
 6534cleanup_tx_tstamp:
 6535	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
 6536		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
 6537
 6538		dev_kfree_skb_any(adapter->ptp_tx_skb);
 6539		adapter->ptp_tx_skb = NULL;
 6540		if (adapter->hw.mac.type == e1000_82576)
 6541			cancel_work_sync(&adapter->ptp_tx_work);
 6542		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 6543	}
 6544
 6545	return NETDEV_TX_OK;
 6546}
 6547
 6548static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
 6549						    struct sk_buff *skb)
 6550{
 6551	unsigned int r_idx = skb->queue_mapping;
 6552
 6553	if (r_idx >= adapter->num_tx_queues)
 6554		r_idx = r_idx % adapter->num_tx_queues;
 6555
 6556	return adapter->tx_ring[r_idx];
 6557}
 6558
 6559static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
 6560				  struct net_device *netdev)
 6561{
 6562	struct igb_adapter *adapter = netdev_priv(netdev);
 6563
 6564	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
 6565	 * in order to meet this minimum size requirement.
 6566	 */
 6567	if (skb_put_padto(skb, 17))
 6568		return NETDEV_TX_OK;
 6569
 6570	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
 6571}
 6572
 6573/**
 6574 *  igb_tx_timeout - Respond to a Tx Hang
 6575 *  @netdev: network interface device structure
 6576 *  @txqueue: number of the Tx queue that hung (unused)
 6577 **/
 6578static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
 6579{
 6580	struct igb_adapter *adapter = netdev_priv(netdev);
 6581	struct e1000_hw *hw = &adapter->hw;
 6582
 6583	/* Do the reset outside of interrupt context */
 6584	adapter->tx_timeout_count++;
 6585
 6586	if (hw->mac.type >= e1000_82580)
 6587		hw->dev_spec._82575.global_device_reset = true;
 6588
 6589	schedule_work(&adapter->reset_task);
 6590	wr32(E1000_EICS,
 6591	     (adapter->eims_enable_mask & ~adapter->eims_other));
 6592}
 6593
 6594static void igb_reset_task(struct work_struct *work)
 6595{
 6596	struct igb_adapter *adapter;
 6597	adapter = container_of(work, struct igb_adapter, reset_task);
 6598
 6599	rtnl_lock();
 6600	/* If we're already down or resetting, just bail */
 6601	if (test_bit(__IGB_DOWN, &adapter->state) ||
 6602	    test_bit(__IGB_RESETTING, &adapter->state)) {
 6603		rtnl_unlock();
 6604		return;
 6605	}
 6606
 6607	igb_dump(adapter);
 6608	netdev_err(adapter->netdev, "Reset adapter\n");
 6609	igb_reinit_locked(adapter);
 6610	rtnl_unlock();
 6611}
 6612
 6613/**
 6614 *  igb_get_stats64 - Get System Network Statistics
 6615 *  @netdev: network interface device structure
 6616 *  @stats: rtnl_link_stats64 pointer
 6617 **/
 6618static void igb_get_stats64(struct net_device *netdev,
 6619			    struct rtnl_link_stats64 *stats)
 6620{
 6621	struct igb_adapter *adapter = netdev_priv(netdev);
 6622
 6623	spin_lock(&adapter->stats64_lock);
 6624	igb_update_stats(adapter);
 6625	memcpy(stats, &adapter->stats64, sizeof(*stats));
 6626	spin_unlock(&adapter->stats64_lock);
 6627}
 6628
 6629/**
 6630 *  igb_change_mtu - Change the Maximum Transfer Unit
 6631 *  @netdev: network interface device structure
 6632 *  @new_mtu: new value for maximum frame size
 6633 *
 6634 *  Returns 0 on success, negative on failure
 6635 **/
 6636static int igb_change_mtu(struct net_device *netdev, int new_mtu)
 6637{
 6638	struct igb_adapter *adapter = netdev_priv(netdev);
 6639	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
 6640
 6641	if (adapter->xdp_prog) {
 6642		int i;
 6643
 6644		for (i = 0; i < adapter->num_rx_queues; i++) {
 6645			struct igb_ring *ring = adapter->rx_ring[i];
 6646
 6647			if (max_frame > igb_rx_bufsz(ring)) {
 6648				netdev_warn(adapter->netdev,
 6649					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
 6650					    max_frame);
 6651				return -EINVAL;
 6652			}
 6653		}
 6654	}
 6655
 6656	/* adjust max frame to be at least the size of a standard frame */
 6657	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
 6658		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
 6659
 6660	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 6661		usleep_range(1000, 2000);
 6662
 6663	/* igb_down has a dependency on max_frame_size */
 6664	adapter->max_frame_size = max_frame;
 6665
 6666	if (netif_running(netdev))
 6667		igb_down(adapter);
 6668
 6669	netdev_dbg(netdev, "changing MTU from %d to %d\n",
 6670		   netdev->mtu, new_mtu);
 6671	netdev->mtu = new_mtu;
 6672
 6673	if (netif_running(netdev))
 6674		igb_up(adapter);
 6675	else
 6676		igb_reset(adapter);
 6677
 6678	clear_bit(__IGB_RESETTING, &adapter->state);
 6679
 6680	return 0;
 6681}
 6682
 6683/**
 6684 *  igb_update_stats - Update the board statistics counters
 6685 *  @adapter: board private structure
 6686 **/
 6687void igb_update_stats(struct igb_adapter *adapter)
 6688{
 6689	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
 6690	struct e1000_hw *hw = &adapter->hw;
 6691	struct pci_dev *pdev = adapter->pdev;
 6692	u32 reg, mpc;
 6693	int i;
 6694	u64 bytes, packets;
 6695	unsigned int start;
 6696	u64 _bytes, _packets;
 6697
 6698	/* Prevent stats update while adapter is being reset, or if the pci
 6699	 * connection is down.
 6700	 */
 6701	if (adapter->link_speed == 0)
 6702		return;
 6703	if (pci_channel_offline(pdev))
 6704		return;
 6705
 6706	bytes = 0;
 6707	packets = 0;
 6708
 6709	rcu_read_lock();
 6710	for (i = 0; i < adapter->num_rx_queues; i++) {
 6711		struct igb_ring *ring = adapter->rx_ring[i];
 6712		u32 rqdpc = rd32(E1000_RQDPC(i));
 6713		if (hw->mac.type >= e1000_i210)
 6714			wr32(E1000_RQDPC(i), 0);
 6715
 6716		if (rqdpc) {
 6717			ring->rx_stats.drops += rqdpc;
 6718			net_stats->rx_fifo_errors += rqdpc;
 6719		}
 6720
 6721		do {
 6722			start = u64_stats_fetch_begin(&ring->rx_syncp);
 6723			_bytes = ring->rx_stats.bytes;
 6724			_packets = ring->rx_stats.packets;
 6725		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
 6726		bytes += _bytes;
 6727		packets += _packets;
 6728	}
 6729
 6730	net_stats->rx_bytes = bytes;
 6731	net_stats->rx_packets = packets;
 6732
 6733	bytes = 0;
 6734	packets = 0;
 6735	for (i = 0; i < adapter->num_tx_queues; i++) {
 6736		struct igb_ring *ring = adapter->tx_ring[i];
 6737		do {
 6738			start = u64_stats_fetch_begin(&ring->tx_syncp);
 6739			_bytes = ring->tx_stats.bytes;
 6740			_packets = ring->tx_stats.packets;
 6741		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
 6742		bytes += _bytes;
 6743		packets += _packets;
 6744	}
 6745	net_stats->tx_bytes = bytes;
 6746	net_stats->tx_packets = packets;
 6747	rcu_read_unlock();
 6748
 6749	/* read stats registers */
 6750	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
 6751	adapter->stats.gprc += rd32(E1000_GPRC);
 6752	adapter->stats.gorc += rd32(E1000_GORCL);
 6753	rd32(E1000_GORCH); /* clear GORCL */
 6754	adapter->stats.bprc += rd32(E1000_BPRC);
 6755	adapter->stats.mprc += rd32(E1000_MPRC);
 6756	adapter->stats.roc += rd32(E1000_ROC);
 6757
 6758	adapter->stats.prc64 += rd32(E1000_PRC64);
 6759	adapter->stats.prc127 += rd32(E1000_PRC127);
 6760	adapter->stats.prc255 += rd32(E1000_PRC255);
 6761	adapter->stats.prc511 += rd32(E1000_PRC511);
 6762	adapter->stats.prc1023 += rd32(E1000_PRC1023);
 6763	adapter->stats.prc1522 += rd32(E1000_PRC1522);
 6764	adapter->stats.symerrs += rd32(E1000_SYMERRS);
 6765	adapter->stats.sec += rd32(E1000_SEC);
 6766
 6767	mpc = rd32(E1000_MPC);
 6768	adapter->stats.mpc += mpc;
 6769	net_stats->rx_fifo_errors += mpc;
 6770	adapter->stats.scc += rd32(E1000_SCC);
 6771	adapter->stats.ecol += rd32(E1000_ECOL);
 6772	adapter->stats.mcc += rd32(E1000_MCC);
 6773	adapter->stats.latecol += rd32(E1000_LATECOL);
 6774	adapter->stats.dc += rd32(E1000_DC);
 6775	adapter->stats.rlec += rd32(E1000_RLEC);
 6776	adapter->stats.xonrxc += rd32(E1000_XONRXC);
 6777	adapter->stats.xontxc += rd32(E1000_XONTXC);
 6778	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
 6779	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
 6780	adapter->stats.fcruc += rd32(E1000_FCRUC);
 6781	adapter->stats.gptc += rd32(E1000_GPTC);
 6782	adapter->stats.gotc += rd32(E1000_GOTCL);
 6783	rd32(E1000_GOTCH); /* clear GOTCL */
 6784	adapter->stats.rnbc += rd32(E1000_RNBC);
 6785	adapter->stats.ruc += rd32(E1000_RUC);
 6786	adapter->stats.rfc += rd32(E1000_RFC);
 6787	adapter->stats.rjc += rd32(E1000_RJC);
 6788	adapter->stats.tor += rd32(E1000_TORH);
 6789	adapter->stats.tot += rd32(E1000_TOTH);
 6790	adapter->stats.tpr += rd32(E1000_TPR);
 6791
 6792	adapter->stats.ptc64 += rd32(E1000_PTC64);
 6793	adapter->stats.ptc127 += rd32(E1000_PTC127);
 6794	adapter->stats.ptc255 += rd32(E1000_PTC255);
 6795	adapter->stats.ptc511 += rd32(E1000_PTC511);
 6796	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
 6797	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
 6798
 6799	adapter->stats.mptc += rd32(E1000_MPTC);
 6800	adapter->stats.bptc += rd32(E1000_BPTC);
 6801
 6802	adapter->stats.tpt += rd32(E1000_TPT);
 6803	adapter->stats.colc += rd32(E1000_COLC);
 6804
 6805	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
 6806	/* read internal phy specific stats */
 6807	reg = rd32(E1000_CTRL_EXT);
 6808	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
 6809		adapter->stats.rxerrc += rd32(E1000_RXERRC);
 6810
 6811		/* this stat has invalid values on i210/i211 */
 6812		if ((hw->mac.type != e1000_i210) &&
 6813		    (hw->mac.type != e1000_i211))
 6814			adapter->stats.tncrs += rd32(E1000_TNCRS);
 6815	}
 6816
 6817	adapter->stats.tsctc += rd32(E1000_TSCTC);
 6818	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
 6819
 6820	adapter->stats.iac += rd32(E1000_IAC);
 6821	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
 6822	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
 6823	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
 6824	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
 6825	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
 6826	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
 6827	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
 6828	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
 6829
 6830	/* Fill out the OS statistics structure */
 6831	net_stats->multicast = adapter->stats.mprc;
 6832	net_stats->collisions = adapter->stats.colc;
 6833
 6834	/* Rx Errors */
 6835
 6836	/* RLEC on some newer hardware can be incorrect so build
 6837	 * our own version based on RUC and ROC
 6838	 */
 6839	net_stats->rx_errors = adapter->stats.rxerrc +
 6840		adapter->stats.crcerrs + adapter->stats.algnerrc +
 6841		adapter->stats.ruc + adapter->stats.roc +
 6842		adapter->stats.cexterr;
 6843	net_stats->rx_length_errors = adapter->stats.ruc +
 6844				      adapter->stats.roc;
 6845	net_stats->rx_crc_errors = adapter->stats.crcerrs;
 6846	net_stats->rx_frame_errors = adapter->stats.algnerrc;
 6847	net_stats->rx_missed_errors = adapter->stats.mpc;
 6848
 6849	/* Tx Errors */
 6850	net_stats->tx_errors = adapter->stats.ecol +
 6851			       adapter->stats.latecol;
 6852	net_stats->tx_aborted_errors = adapter->stats.ecol;
 6853	net_stats->tx_window_errors = adapter->stats.latecol;
 6854	net_stats->tx_carrier_errors = adapter->stats.tncrs;
 6855
 6856	/* Tx Dropped needs to be maintained elsewhere */
 6857
 6858	/* Management Stats */
 6859	adapter->stats.mgptc += rd32(E1000_MGTPTC);
 6860	adapter->stats.mgprc += rd32(E1000_MGTPRC);
 6861	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
 6862
 6863	/* OS2BMC Stats */
 6864	reg = rd32(E1000_MANC);
 6865	if (reg & E1000_MANC_EN_BMC2OS) {
 6866		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
 6867		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
 6868		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
 6869		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
 6870	}
 6871}
 6872
 6873static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
 6874{
 6875	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
 6876	struct e1000_hw *hw = &adapter->hw;
 6877	struct timespec64 ts;
 6878	u32 tsauxc;
 6879
 6880	if (pin < 0 || pin >= IGB_N_SDP)
 6881		return;
 6882
 6883	spin_lock(&adapter->tmreg_lock);
 6884
 6885	if (hw->mac.type == e1000_82580 ||
 6886	    hw->mac.type == e1000_i354 ||
 6887	    hw->mac.type == e1000_i350) {
 6888		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
 6889		u32 systiml, systimh, level_mask, level, rem;
 6890		u64 systim, now;
 6891
 6892		/* read systim registers in sequence */
 6893		rd32(E1000_SYSTIMR);
 6894		systiml = rd32(E1000_SYSTIML);
 6895		systimh = rd32(E1000_SYSTIMH);
 6896		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
 6897		now = timecounter_cyc2time(&adapter->tc, systim);
 6898
 6899		if (pin < 2) {
 6900			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
 6901			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
 6902		} else {
 6903			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
 6904			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
 6905		}
 6906
 6907		div_u64_rem(now, ns, &rem);
 6908		systim = systim + (ns - rem);
 6909
 6910		/* synchronize pin level with rising/falling edges */
 6911		div_u64_rem(now, ns << 1, &rem);
 6912		if (rem < ns) {
 6913			/* first half of period */
 6914			if (level == 0) {
 6915				/* output is already low, skip this period */
 6916				systim += ns;
 6917				pr_notice("igb: periodic output on %s missed falling edge\n",
 6918					  adapter->sdp_config[pin].name);
 6919			}
 6920		} else {
 6921			/* second half of period */
 6922			if (level == 1) {
 6923				/* output is already high, skip this period */
 6924				systim += ns;
 6925				pr_notice("igb: periodic output on %s missed rising edge\n",
 6926					  adapter->sdp_config[pin].name);
 6927			}
 6928		}
 6929
 6930		/* for this chip family tv_sec is the upper part of the binary value,
 6931		 * so not seconds
 6932		 */
 6933		ts.tv_nsec = (u32)systim;
 6934		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
 6935	} else {
 6936		ts = timespec64_add(adapter->perout[tsintr_tt].start,
 6937				    adapter->perout[tsintr_tt].period);
 6938	}
 6939
 6940	/* u32 conversion of tv_sec is safe until y2106 */
 6941	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
 6942	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
 6943	tsauxc = rd32(E1000_TSAUXC);
 6944	tsauxc |= TSAUXC_EN_TT0;
 6945	wr32(E1000_TSAUXC, tsauxc);
 6946	adapter->perout[tsintr_tt].start = ts;
 6947
 6948	spin_unlock(&adapter->tmreg_lock);
 6949}
 6950
 6951static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
 6952{
 6953	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
 6954	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
 6955	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
 6956	struct e1000_hw *hw = &adapter->hw;
 6957	struct ptp_clock_event event;
 6958	struct timespec64 ts;
 6959	unsigned long flags;
 6960
 6961	if (pin < 0 || pin >= IGB_N_SDP)
 6962		return;
 6963
 6964	if (hw->mac.type == e1000_82580 ||
 6965	    hw->mac.type == e1000_i354 ||
 6966	    hw->mac.type == e1000_i350) {
 6967		u64 ns = rd32(auxstmpl);
 6968
 6969		ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
 6970		spin_lock_irqsave(&adapter->tmreg_lock, flags);
 6971		ns = timecounter_cyc2time(&adapter->tc, ns);
 6972		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 6973		ts = ns_to_timespec64(ns);
 6974	} else {
 6975		ts.tv_nsec = rd32(auxstmpl);
 6976		ts.tv_sec  = rd32(auxstmph);
 6977	}
 6978
 6979	event.type = PTP_CLOCK_EXTTS;
 6980	event.index = tsintr_tt;
 6981	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 6982	ptp_clock_event(adapter->ptp_clock, &event);
 6983}
 6984
 6985static void igb_tsync_interrupt(struct igb_adapter *adapter)
 6986{
 6987	struct e1000_hw *hw = &adapter->hw;
 6988	u32 tsicr = rd32(E1000_TSICR);
 6989	struct ptp_clock_event event;
 6990
 6991	if (tsicr & TSINTR_SYS_WRAP) {
 6992		event.type = PTP_CLOCK_PPS;
 6993		if (adapter->ptp_caps.pps)
 6994			ptp_clock_event(adapter->ptp_clock, &event);
 6995	}
 6996
 6997	if (tsicr & E1000_TSICR_TXTS) {
 6998		/* retrieve hardware timestamp */
 6999		schedule_work(&adapter->ptp_tx_work);
 7000	}
 7001
 7002	if (tsicr & TSINTR_TT0)
 7003		igb_perout(adapter, 0);
 7004
 7005	if (tsicr & TSINTR_TT1)
 7006		igb_perout(adapter, 1);
 7007
 7008	if (tsicr & TSINTR_AUTT0)
 7009		igb_extts(adapter, 0);
 7010
 7011	if (tsicr & TSINTR_AUTT1)
 7012		igb_extts(adapter, 1);
 7013}
 7014
 7015static irqreturn_t igb_msix_other(int irq, void *data)
 7016{
 7017	struct igb_adapter *adapter = data;
 7018	struct e1000_hw *hw = &adapter->hw;
 7019	u32 icr = rd32(E1000_ICR);
 7020	/* reading ICR causes bit 31 of EICR to be cleared */
 7021
 7022	if (icr & E1000_ICR_DRSTA)
 7023		schedule_work(&adapter->reset_task);
 7024
 7025	if (icr & E1000_ICR_DOUTSYNC) {
 7026		/* HW is reporting DMA is out of sync */
 7027		adapter->stats.doosync++;
 7028		/* The DMA Out of Sync is also indication of a spoof event
 7029		 * in IOV mode. Check the Wrong VM Behavior register to
 7030		 * see if it is really a spoof event.
 7031		 */
 7032		igb_check_wvbr(adapter);
 7033	}
 7034
 7035	/* Check for a mailbox event */
 7036	if (icr & E1000_ICR_VMMB)
 7037		igb_msg_task(adapter);
 7038
 7039	if (icr & E1000_ICR_LSC) {
 7040		hw->mac.get_link_status = 1;
 7041		/* guard against interrupt when we're going down */
 7042		if (!test_bit(__IGB_DOWN, &adapter->state))
 7043			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 7044	}
 7045
 7046	if (icr & E1000_ICR_TS)
 7047		igb_tsync_interrupt(adapter);
 7048
 7049	wr32(E1000_EIMS, adapter->eims_other);
 7050
 7051	return IRQ_HANDLED;
 7052}
 7053
 7054static void igb_write_itr(struct igb_q_vector *q_vector)
 7055{
 7056	struct igb_adapter *adapter = q_vector->adapter;
 7057	u32 itr_val = q_vector->itr_val & 0x7FFC;
 7058
 7059	if (!q_vector->set_itr)
 7060		return;
 7061
 7062	if (!itr_val)
 7063		itr_val = 0x4;
 7064
 7065	if (adapter->hw.mac.type == e1000_82575)
 7066		itr_val |= itr_val << 16;
 7067	else
 7068		itr_val |= E1000_EITR_CNT_IGNR;
 7069
 7070	writel(itr_val, q_vector->itr_register);
 7071	q_vector->set_itr = 0;
 7072}
 7073
 7074static irqreturn_t igb_msix_ring(int irq, void *data)
 7075{
 7076	struct igb_q_vector *q_vector = data;
 7077
 7078	/* Write the ITR value calculated from the previous interrupt. */
 7079	igb_write_itr(q_vector);
 7080
 7081	napi_schedule(&q_vector->napi);
 7082
 7083	return IRQ_HANDLED;
 7084}
 7085
 7086#ifdef CONFIG_IGB_DCA
 7087static void igb_update_tx_dca(struct igb_adapter *adapter,
 7088			      struct igb_ring *tx_ring,
 7089			      int cpu)
 7090{
 7091	struct e1000_hw *hw = &adapter->hw;
 7092	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
 7093
 7094	if (hw->mac.type != e1000_82575)
 7095		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
 7096
 7097	/* We can enable relaxed ordering for reads, but not writes when
 7098	 * DCA is enabled.  This is due to a known issue in some chipsets
 7099	 * which will cause the DCA tag to be cleared.
 7100	 */
 7101	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
 7102		  E1000_DCA_TXCTRL_DATA_RRO_EN |
 7103		  E1000_DCA_TXCTRL_DESC_DCA_EN;
 7104
 7105	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
 7106}
 7107
 7108static void igb_update_rx_dca(struct igb_adapter *adapter,
 7109			      struct igb_ring *rx_ring,
 7110			      int cpu)
 7111{
 7112	struct e1000_hw *hw = &adapter->hw;
 7113	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
 7114
 7115	if (hw->mac.type != e1000_82575)
 7116		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
 7117
 7118	/* We can enable relaxed ordering for reads, but not writes when
 7119	 * DCA is enabled.  This is due to a known issue in some chipsets
 7120	 * which will cause the DCA tag to be cleared.
 7121	 */
 7122	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
 7123		  E1000_DCA_RXCTRL_DESC_DCA_EN;
 7124
 7125	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
 7126}
 7127
 7128static void igb_update_dca(struct igb_q_vector *q_vector)
 7129{
 7130	struct igb_adapter *adapter = q_vector->adapter;
 7131	int cpu = get_cpu();
 7132
 7133	if (q_vector->cpu == cpu)
 7134		goto out_no_update;
 7135
 7136	if (q_vector->tx.ring)
 7137		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
 7138
 7139	if (q_vector->rx.ring)
 7140		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
 7141
 7142	q_vector->cpu = cpu;
 7143out_no_update:
 7144	put_cpu();
 7145}
 7146
 7147static void igb_setup_dca(struct igb_adapter *adapter)
 7148{
 7149	struct e1000_hw *hw = &adapter->hw;
 7150	int i;
 7151
 7152	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
 7153		return;
 7154
 7155	/* Always use CB2 mode, difference is masked in the CB driver. */
 7156	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
 7157
 7158	for (i = 0; i < adapter->num_q_vectors; i++) {
 7159		adapter->q_vector[i]->cpu = -1;
 7160		igb_update_dca(adapter->q_vector[i]);
 7161	}
 7162}
 7163
 7164static int __igb_notify_dca(struct device *dev, void *data)
 7165{
 7166	struct net_device *netdev = dev_get_drvdata(dev);
 7167	struct igb_adapter *adapter = netdev_priv(netdev);
 7168	struct pci_dev *pdev = adapter->pdev;
 7169	struct e1000_hw *hw = &adapter->hw;
 7170	unsigned long event = *(unsigned long *)data;
 7171
 7172	switch (event) {
 7173	case DCA_PROVIDER_ADD:
 7174		/* if already enabled, don't do it again */
 7175		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
 7176			break;
 7177		if (dca_add_requester(dev) == 0) {
 7178			adapter->flags |= IGB_FLAG_DCA_ENABLED;
 7179			dev_info(&pdev->dev, "DCA enabled\n");
 7180			igb_setup_dca(adapter);
 7181			break;
 7182		}
 7183		fallthrough; /* since DCA is disabled. */
 7184	case DCA_PROVIDER_REMOVE:
 7185		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
 7186			/* without this a class_device is left
 7187			 * hanging around in the sysfs model
 7188			 */
 7189			dca_remove_requester(dev);
 7190			dev_info(&pdev->dev, "DCA disabled\n");
 7191			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
 7192			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
 7193		}
 7194		break;
 7195	}
 7196
 7197	return 0;
 7198}
 7199
 7200static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
 7201			  void *p)
 7202{
 7203	int ret_val;
 7204
 7205	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
 7206					 __igb_notify_dca);
 7207
 7208	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
 7209}
 7210#endif /* CONFIG_IGB_DCA */
 7211
 7212#ifdef CONFIG_PCI_IOV
 7213static int igb_vf_configure(struct igb_adapter *adapter, int vf)
 7214{
 7215	unsigned char mac_addr[ETH_ALEN];
 7216
 7217	eth_zero_addr(mac_addr);
 7218	igb_set_vf_mac(adapter, vf, mac_addr);
 7219
 7220	/* By default spoof check is enabled for all VFs */
 7221	adapter->vf_data[vf].spoofchk_enabled = true;
 7222
 7223	/* By default VFs are not trusted */
 7224	adapter->vf_data[vf].trusted = false;
 7225
 7226	return 0;
 7227}
 7228
 7229#endif
 7230static void igb_ping_all_vfs(struct igb_adapter *adapter)
 7231{
 7232	struct e1000_hw *hw = &adapter->hw;
 7233	u32 ping;
 7234	int i;
 7235
 7236	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
 7237		ping = E1000_PF_CONTROL_MSG;
 7238		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
 7239			ping |= E1000_VT_MSGTYPE_CTS;
 7240		igb_write_mbx(hw, &ping, 1, i);
 7241	}
 7242}
 7243
 7244static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
 7245{
 7246	struct e1000_hw *hw = &adapter->hw;
 7247	u32 vmolr = rd32(E1000_VMOLR(vf));
 7248	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7249
 7250	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
 7251			    IGB_VF_FLAG_MULTI_PROMISC);
 7252	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
 7253
 7254	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
 7255		vmolr |= E1000_VMOLR_MPME;
 7256		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
 7257		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
 7258	} else {
 7259		/* if we have hashes and we are clearing a multicast promisc
 7260		 * flag we need to write the hashes to the MTA as this step
 7261		 * was previously skipped
 7262		 */
 7263		if (vf_data->num_vf_mc_hashes > 30) {
 7264			vmolr |= E1000_VMOLR_MPME;
 7265		} else if (vf_data->num_vf_mc_hashes) {
 7266			int j;
 7267
 7268			vmolr |= E1000_VMOLR_ROMPE;
 7269			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
 7270				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
 7271		}
 7272	}
 7273
 7274	wr32(E1000_VMOLR(vf), vmolr);
 7275
 7276	/* there are flags left unprocessed, likely not supported */
 7277	if (*msgbuf & E1000_VT_MSGINFO_MASK)
 7278		return -EINVAL;
 7279
 7280	return 0;
 7281}
 7282
 7283static int igb_set_vf_multicasts(struct igb_adapter *adapter,
 7284				  u32 *msgbuf, u32 vf)
 7285{
 7286	int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
 7287	u16 *hash_list = (u16 *)&msgbuf[1];
 7288	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7289	int i;
 7290
 7291	/* salt away the number of multicast addresses assigned
 7292	 * to this VF for later use to restore when the PF multi cast
 7293	 * list changes
 7294	 */
 7295	vf_data->num_vf_mc_hashes = n;
 7296
 7297	/* only up to 30 hash values supported */
 7298	if (n > 30)
 7299		n = 30;
 7300
 7301	/* store the hashes for later use */
 7302	for (i = 0; i < n; i++)
 7303		vf_data->vf_mc_hashes[i] = hash_list[i];
 7304
 7305	/* Flush and reset the mta with the new values */
 7306	igb_set_rx_mode(adapter->netdev);
 7307
 7308	return 0;
 7309}
 7310
 7311static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
 7312{
 7313	struct e1000_hw *hw = &adapter->hw;
 7314	struct vf_data_storage *vf_data;
 7315	int i, j;
 7316
 7317	for (i = 0; i < adapter->vfs_allocated_count; i++) {
 7318		u32 vmolr = rd32(E1000_VMOLR(i));
 7319
 7320		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
 7321
 7322		vf_data = &adapter->vf_data[i];
 7323
 7324		if ((vf_data->num_vf_mc_hashes > 30) ||
 7325		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
 7326			vmolr |= E1000_VMOLR_MPME;
 7327		} else if (vf_data->num_vf_mc_hashes) {
 7328			vmolr |= E1000_VMOLR_ROMPE;
 7329			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
 7330				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
 7331		}
 7332		wr32(E1000_VMOLR(i), vmolr);
 7333	}
 7334}
 7335
 7336static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
 7337{
 7338	struct e1000_hw *hw = &adapter->hw;
 7339	u32 pool_mask, vlvf_mask, i;
 7340
 7341	/* create mask for VF and other pools */
 7342	pool_mask = E1000_VLVF_POOLSEL_MASK;
 7343	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
 7344
 7345	/* drop PF from pool bits */
 7346	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
 7347			     adapter->vfs_allocated_count);
 7348
 7349	/* Find the vlan filter for this id */
 7350	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
 7351		u32 vlvf = rd32(E1000_VLVF(i));
 7352		u32 vfta_mask, vid, vfta;
 7353
 7354		/* remove the vf from the pool */
 7355		if (!(vlvf & vlvf_mask))
 7356			continue;
 7357
 7358		/* clear out bit from VLVF */
 7359		vlvf ^= vlvf_mask;
 7360
 7361		/* if other pools are present, just remove ourselves */
 7362		if (vlvf & pool_mask)
 7363			goto update_vlvfb;
 7364
 7365		/* if PF is present, leave VFTA */
 7366		if (vlvf & E1000_VLVF_POOLSEL_MASK)
 7367			goto update_vlvf;
 7368
 7369		vid = vlvf & E1000_VLVF_VLANID_MASK;
 7370		vfta_mask = BIT(vid % 32);
 7371
 7372		/* clear bit from VFTA */
 7373		vfta = adapter->shadow_vfta[vid / 32];
 7374		if (vfta & vfta_mask)
 7375			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
 7376update_vlvf:
 7377		/* clear pool selection enable */
 7378		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 7379			vlvf &= E1000_VLVF_POOLSEL_MASK;
 7380		else
 7381			vlvf = 0;
 7382update_vlvfb:
 7383		/* clear pool bits */
 7384		wr32(E1000_VLVF(i), vlvf);
 7385	}
 7386}
 7387
 7388static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
 7389{
 7390	u32 vlvf;
 7391	int idx;
 7392
 7393	/* short cut the special case */
 7394	if (vlan == 0)
 7395		return 0;
 7396
 7397	/* Search for the VLAN id in the VLVF entries */
 7398	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
 7399		vlvf = rd32(E1000_VLVF(idx));
 7400		if ((vlvf & VLAN_VID_MASK) == vlan)
 7401			break;
 7402	}
 7403
 7404	return idx;
 7405}
 7406
 7407static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
 7408{
 7409	struct e1000_hw *hw = &adapter->hw;
 7410	u32 bits, pf_id;
 7411	int idx;
 7412
 7413	idx = igb_find_vlvf_entry(hw, vid);
 7414	if (!idx)
 7415		return;
 7416
 7417	/* See if any other pools are set for this VLAN filter
 7418	 * entry other than the PF.
 7419	 */
 7420	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 7421	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
 7422	bits &= rd32(E1000_VLVF(idx));
 7423
 7424	/* Disable the filter so this falls into the default pool. */
 7425	if (!bits) {
 7426		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 7427			wr32(E1000_VLVF(idx), BIT(pf_id));
 7428		else
 7429			wr32(E1000_VLVF(idx), 0);
 7430	}
 7431}
 7432
 7433static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
 7434			   bool add, u32 vf)
 7435{
 7436	int pf_id = adapter->vfs_allocated_count;
 7437	struct e1000_hw *hw = &adapter->hw;
 7438	int err;
 7439
 7440	/* If VLAN overlaps with one the PF is currently monitoring make
 7441	 * sure that we are able to allocate a VLVF entry.  This may be
 7442	 * redundant but it guarantees PF will maintain visibility to
 7443	 * the VLAN.
 7444	 */
 7445	if (add && test_bit(vid, adapter->active_vlans)) {
 7446		err = igb_vfta_set(hw, vid, pf_id, true, false);
 7447		if (err)
 7448			return err;
 7449	}
 7450
 7451	err = igb_vfta_set(hw, vid, vf, add, false);
 7452
 7453	if (add && !err)
 7454		return err;
 7455
 7456	/* If we failed to add the VF VLAN or we are removing the VF VLAN
 7457	 * we may need to drop the PF pool bit in order to allow us to free
 7458	 * up the VLVF resources.
 7459	 */
 7460	if (test_bit(vid, adapter->active_vlans) ||
 7461	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
 7462		igb_update_pf_vlvf(adapter, vid);
 7463
 7464	return err;
 7465}
 7466
 7467static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
 7468{
 7469	struct e1000_hw *hw = &adapter->hw;
 7470
 7471	if (vid)
 7472		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
 7473	else
 7474		wr32(E1000_VMVIR(vf), 0);
 7475}
 7476
 7477static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
 7478				u16 vlan, u8 qos)
 7479{
 7480	int err;
 7481
 7482	err = igb_set_vf_vlan(adapter, vlan, true, vf);
 7483	if (err)
 7484		return err;
 7485
 7486	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
 7487	igb_set_vmolr(adapter, vf, !vlan);
 7488
 7489	/* revoke access to previous VLAN */
 7490	if (vlan != adapter->vf_data[vf].pf_vlan)
 7491		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
 7492				false, vf);
 7493
 7494	adapter->vf_data[vf].pf_vlan = vlan;
 7495	adapter->vf_data[vf].pf_qos = qos;
 7496	igb_set_vf_vlan_strip(adapter, vf, true);
 7497	dev_info(&adapter->pdev->dev,
 7498		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
 7499	if (test_bit(__IGB_DOWN, &adapter->state)) {
 7500		dev_warn(&adapter->pdev->dev,
 7501			 "The VF VLAN has been set, but the PF device is not up.\n");
 7502		dev_warn(&adapter->pdev->dev,
 7503			 "Bring the PF device up before attempting to use the VF device.\n");
 7504	}
 7505
 7506	return err;
 7507}
 7508
 7509static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
 7510{
 7511	/* Restore tagless access via VLAN 0 */
 7512	igb_set_vf_vlan(adapter, 0, true, vf);
 7513
 7514	igb_set_vmvir(adapter, 0, vf);
 7515	igb_set_vmolr(adapter, vf, true);
 7516
 7517	/* Remove any PF assigned VLAN */
 7518	if (adapter->vf_data[vf].pf_vlan)
 7519		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
 7520				false, vf);
 7521
 7522	adapter->vf_data[vf].pf_vlan = 0;
 7523	adapter->vf_data[vf].pf_qos = 0;
 7524	igb_set_vf_vlan_strip(adapter, vf, false);
 7525
 7526	return 0;
 7527}
 7528
 7529static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
 7530			       u16 vlan, u8 qos, __be16 vlan_proto)
 7531{
 7532	struct igb_adapter *adapter = netdev_priv(netdev);
 7533
 7534	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
 7535		return -EINVAL;
 7536
 7537	if (vlan_proto != htons(ETH_P_8021Q))
 7538		return -EPROTONOSUPPORT;
 7539
 7540	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
 7541			       igb_disable_port_vlan(adapter, vf);
 7542}
 7543
 7544static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
 7545{
 7546	int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
 7547	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
 7548	int ret;
 7549
 7550	if (adapter->vf_data[vf].pf_vlan)
 7551		return -1;
 7552
 7553	/* VLAN 0 is a special case, don't allow it to be removed */
 7554	if (!vid && !add)
 7555		return 0;
 7556
 7557	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
 7558	if (!ret)
 7559		igb_set_vf_vlan_strip(adapter, vf, !!vid);
 7560	return ret;
 7561}
 7562
 7563static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
 7564{
 7565	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7566
 7567	/* clear flags - except flag that indicates PF has set the MAC */
 7568	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
 7569	vf_data->last_nack = jiffies;
 7570
 7571	/* reset vlans for device */
 7572	igb_clear_vf_vfta(adapter, vf);
 7573	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
 7574	igb_set_vmvir(adapter, vf_data->pf_vlan |
 7575			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
 7576	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
 7577	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
 7578
 7579	/* reset multicast table array for vf */
 7580	adapter->vf_data[vf].num_vf_mc_hashes = 0;
 7581
 7582	/* Flush and reset the mta with the new values */
 7583	igb_set_rx_mode(adapter->netdev);
 7584}
 7585
 7586static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
 7587{
 7588	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
 7589
 7590	/* clear mac address as we were hotplug removed/added */
 7591	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
 7592		eth_zero_addr(vf_mac);
 7593
 7594	/* process remaining reset events */
 7595	igb_vf_reset(adapter, vf);
 7596}
 7597
 7598static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
 7599{
 7600	struct e1000_hw *hw = &adapter->hw;
 7601	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
 7602	u32 reg, msgbuf[3] = {};
 7603	u8 *addr = (u8 *)(&msgbuf[1]);
 7604
 7605	/* process all the same items cleared in a function level reset */
 7606	igb_vf_reset(adapter, vf);
 7607
 7608	/* set vf mac address */
 7609	igb_set_vf_mac(adapter, vf, vf_mac);
 7610
 7611	/* enable transmit and receive for vf */
 7612	reg = rd32(E1000_VFTE);
 7613	wr32(E1000_VFTE, reg | BIT(vf));
 7614	reg = rd32(E1000_VFRE);
 7615	wr32(E1000_VFRE, reg | BIT(vf));
 7616
 7617	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
 7618
 7619	/* reply to reset with ack and vf mac address */
 7620	if (!is_zero_ether_addr(vf_mac)) {
 7621		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
 7622		memcpy(addr, vf_mac, ETH_ALEN);
 7623	} else {
 7624		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
 7625	}
 7626	igb_write_mbx(hw, msgbuf, 3, vf);
 7627}
 7628
 7629static void igb_flush_mac_table(struct igb_adapter *adapter)
 7630{
 7631	struct e1000_hw *hw = &adapter->hw;
 7632	int i;
 7633
 7634	for (i = 0; i < hw->mac.rar_entry_count; i++) {
 7635		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
 7636		eth_zero_addr(adapter->mac_table[i].addr);
 7637		adapter->mac_table[i].queue = 0;
 7638		igb_rar_set_index(adapter, i);
 7639	}
 7640}
 7641
 7642static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
 7643{
 7644	struct e1000_hw *hw = &adapter->hw;
 7645	/* do not count rar entries reserved for VFs MAC addresses */
 7646	int rar_entries = hw->mac.rar_entry_count -
 7647			  adapter->vfs_allocated_count;
 7648	int i, count = 0;
 7649
 7650	for (i = 0; i < rar_entries; i++) {
 7651		/* do not count default entries */
 7652		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
 7653			continue;
 7654
 7655		/* do not count "in use" entries for different queues */
 7656		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
 7657		    (adapter->mac_table[i].queue != queue))
 7658			continue;
 7659
 7660		count++;
 7661	}
 7662
 7663	return count;
 7664}
 7665
 7666/* Set default MAC address for the PF in the first RAR entry */
 7667static void igb_set_default_mac_filter(struct igb_adapter *adapter)
 7668{
 7669	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
 7670
 7671	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
 7672	mac_table->queue = adapter->vfs_allocated_count;
 7673	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
 7674
 7675	igb_rar_set_index(adapter, 0);
 7676}
 7677
 7678/* If the filter to be added and an already existing filter express
 7679 * the same address and address type, it should be possible to only
 7680 * override the other configurations, for example the queue to steer
 7681 * traffic.
 7682 */
 7683static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
 7684				      const u8 *addr, const u8 flags)
 7685{
 7686	if (!(entry->state & IGB_MAC_STATE_IN_USE))
 7687		return true;
 7688
 7689	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
 7690	    (flags & IGB_MAC_STATE_SRC_ADDR))
 7691		return false;
 7692
 7693	if (!ether_addr_equal(addr, entry->addr))
 7694		return false;
 7695
 7696	return true;
 7697}
 7698
 7699/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
 7700 * 'flags' is used to indicate what kind of match is made, match is by
 7701 * default for the destination address, if matching by source address
 7702 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
 7703 */
 7704static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
 7705				    const u8 *addr, const u8 queue,
 7706				    const u8 flags)
 7707{
 7708	struct e1000_hw *hw = &adapter->hw;
 7709	int rar_entries = hw->mac.rar_entry_count -
 7710			  adapter->vfs_allocated_count;
 7711	int i;
 7712
 7713	if (is_zero_ether_addr(addr))
 7714		return -EINVAL;
 7715
 7716	/* Search for the first empty entry in the MAC table.
 7717	 * Do not touch entries at the end of the table reserved for the VF MAC
 7718	 * addresses.
 7719	 */
 7720	for (i = 0; i < rar_entries; i++) {
 7721		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
 7722					       addr, flags))
 7723			continue;
 7724
 7725		ether_addr_copy(adapter->mac_table[i].addr, addr);
 7726		adapter->mac_table[i].queue = queue;
 7727		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
 7728
 7729		igb_rar_set_index(adapter, i);
 7730		return i;
 7731	}
 7732
 7733	return -ENOSPC;
 7734}
 7735
 7736static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
 7737			      const u8 queue)
 7738{
 7739	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
 7740}
 7741
 7742/* Remove a MAC filter for 'addr' directing matching traffic to
 7743 * 'queue', 'flags' is used to indicate what kind of match need to be
 7744 * removed, match is by default for the destination address, if
 7745 * matching by source address is to be removed the flag
 7746 * IGB_MAC_STATE_SRC_ADDR can be used.
 7747 */
 7748static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
 7749				    const u8 *addr, const u8 queue,
 7750				    const u8 flags)
 7751{
 7752	struct e1000_hw *hw = &adapter->hw;
 7753	int rar_entries = hw->mac.rar_entry_count -
 7754			  adapter->vfs_allocated_count;
 7755	int i;
 7756
 7757	if (is_zero_ether_addr(addr))
 7758		return -EINVAL;
 7759
 7760	/* Search for matching entry in the MAC table based on given address
 7761	 * and queue. Do not touch entries at the end of the table reserved
 7762	 * for the VF MAC addresses.
 7763	 */
 7764	for (i = 0; i < rar_entries; i++) {
 7765		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
 7766			continue;
 7767		if ((adapter->mac_table[i].state & flags) != flags)
 7768			continue;
 7769		if (adapter->mac_table[i].queue != queue)
 7770			continue;
 7771		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
 7772			continue;
 7773
 7774		/* When a filter for the default address is "deleted",
 7775		 * we return it to its initial configuration
 7776		 */
 7777		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
 7778			adapter->mac_table[i].state =
 7779				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
 7780			adapter->mac_table[i].queue =
 7781				adapter->vfs_allocated_count;
 7782		} else {
 7783			adapter->mac_table[i].state = 0;
 7784			adapter->mac_table[i].queue = 0;
 7785			eth_zero_addr(adapter->mac_table[i].addr);
 7786		}
 7787
 7788		igb_rar_set_index(adapter, i);
 7789		return 0;
 7790	}
 7791
 7792	return -ENOENT;
 7793}
 7794
 7795static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
 7796			      const u8 queue)
 7797{
 7798	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
 7799}
 7800
 7801int igb_add_mac_steering_filter(struct igb_adapter *adapter,
 7802				const u8 *addr, u8 queue, u8 flags)
 7803{
 7804	struct e1000_hw *hw = &adapter->hw;
 7805
 7806	/* In theory, this should be supported on 82575 as well, but
 7807	 * that part wasn't easily accessible during development.
 7808	 */
 7809	if (hw->mac.type != e1000_i210)
 7810		return -EOPNOTSUPP;
 7811
 7812	return igb_add_mac_filter_flags(adapter, addr, queue,
 7813					IGB_MAC_STATE_QUEUE_STEERING | flags);
 7814}
 7815
 7816int igb_del_mac_steering_filter(struct igb_adapter *adapter,
 7817				const u8 *addr, u8 queue, u8 flags)
 7818{
 7819	return igb_del_mac_filter_flags(adapter, addr, queue,
 7820					IGB_MAC_STATE_QUEUE_STEERING | flags);
 7821}
 7822
 7823static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
 7824{
 7825	struct igb_adapter *adapter = netdev_priv(netdev);
 7826	int ret;
 7827
 7828	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
 7829
 7830	return min_t(int, ret, 0);
 7831}
 7832
 7833static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
 7834{
 7835	struct igb_adapter *adapter = netdev_priv(netdev);
 7836
 7837	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
 7838
 7839	return 0;
 7840}
 7841
 7842static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
 7843				 const u32 info, const u8 *addr)
 7844{
 7845	struct pci_dev *pdev = adapter->pdev;
 7846	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7847	struct vf_mac_filter *entry;
 7848	bool found = false;
 7849	int ret = 0;
 7850
 7851	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
 7852	    !vf_data->trusted) {
 7853		dev_warn(&pdev->dev,
 7854			 "VF %d requested MAC filter but is administratively denied\n",
 7855			  vf);
 7856		return -EINVAL;
 7857	}
 7858	if (!is_valid_ether_addr(addr)) {
 7859		dev_warn(&pdev->dev,
 7860			 "VF %d attempted to set invalid MAC filter\n",
 7861			  vf);
 7862		return -EINVAL;
 7863	}
 7864
 7865	switch (info) {
 7866	case E1000_VF_MAC_FILTER_CLR:
 7867		/* remove all unicast MAC filters related to the current VF */
 7868		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
 7869			if (entry->vf == vf) {
 7870				entry->vf = -1;
 7871				entry->free = true;
 7872				igb_del_mac_filter(adapter, entry->vf_mac, vf);
 7873			}
 7874		}
 7875		break;
 7876	case E1000_VF_MAC_FILTER_ADD:
 7877		/* try to find empty slot in the list */
 7878		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
 7879			if (entry->free) {
 7880				found = true;
 7881				break;
 7882			}
 7883		}
 7884
 7885		if (found) {
 7886			entry->free = false;
 7887			entry->vf = vf;
 7888			ether_addr_copy(entry->vf_mac, addr);
 7889
 7890			ret = igb_add_mac_filter(adapter, addr, vf);
 7891			ret = min_t(int, ret, 0);
 7892		} else {
 7893			ret = -ENOSPC;
 7894		}
 7895
 7896		if (ret == -ENOSPC)
 7897			dev_warn(&pdev->dev,
 7898				 "VF %d has requested MAC filter but there is no space for it\n",
 7899				 vf);
 7900		break;
 7901	default:
 7902		ret = -EINVAL;
 7903		break;
 7904	}
 7905
 7906	return ret;
 7907}
 7908
 7909static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
 7910{
 7911	struct pci_dev *pdev = adapter->pdev;
 7912	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7913	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
 7914
 7915	/* The VF MAC Address is stored in a packed array of bytes
 7916	 * starting at the second 32 bit word of the msg array
 7917	 */
 7918	unsigned char *addr = (unsigned char *)&msg[1];
 7919	int ret = 0;
 7920
 7921	if (!info) {
 7922		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
 7923		    !vf_data->trusted) {
 7924			dev_warn(&pdev->dev,
 7925				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
 7926				 vf);
 7927			return -EINVAL;
 7928		}
 7929
 7930		if (!is_valid_ether_addr(addr)) {
 7931			dev_warn(&pdev->dev,
 7932				 "VF %d attempted to set invalid MAC\n",
 7933				 vf);
 7934			return -EINVAL;
 7935		}
 7936
 7937		ret = igb_set_vf_mac(adapter, vf, addr);
 7938	} else {
 7939		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
 7940	}
 7941
 7942	return ret;
 7943}
 7944
 7945static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
 7946{
 7947	struct e1000_hw *hw = &adapter->hw;
 7948	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7949	u32 msg = E1000_VT_MSGTYPE_NACK;
 7950
 7951	/* if device isn't clear to send it shouldn't be reading either */
 7952	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
 7953	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
 7954		igb_write_mbx(hw, &msg, 1, vf);
 7955		vf_data->last_nack = jiffies;
 7956	}
 7957}
 7958
 7959static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
 7960{
 7961	struct pci_dev *pdev = adapter->pdev;
 7962	u32 msgbuf[E1000_VFMAILBOX_SIZE];
 7963	struct e1000_hw *hw = &adapter->hw;
 7964	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7965	s32 retval;
 7966
 7967	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
 7968
 7969	if (retval) {
 7970		/* if receive failed revoke VF CTS stats and restart init */
 7971		dev_err(&pdev->dev, "Error receiving message from VF\n");
 7972		vf_data->flags &= ~IGB_VF_FLAG_CTS;
 7973		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
 7974			goto unlock;
 7975		goto out;
 7976	}
 7977
 7978	/* this is a message we already processed, do nothing */
 7979	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
 7980		goto unlock;
 7981
 7982	/* until the vf completes a reset it should not be
 7983	 * allowed to start any configuration.
 7984	 */
 7985	if (msgbuf[0] == E1000_VF_RESET) {
 7986		/* unlocks mailbox */
 7987		igb_vf_reset_msg(adapter, vf);
 7988		return;
 7989	}
 7990
 7991	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
 7992		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
 7993			goto unlock;
 7994		retval = -1;
 7995		goto out;
 7996	}
 7997
 7998	switch ((msgbuf[0] & 0xFFFF)) {
 7999	case E1000_VF_SET_MAC_ADDR:
 8000		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
 8001		break;
 8002	case E1000_VF_SET_PROMISC:
 8003		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
 8004		break;
 8005	case E1000_VF_SET_MULTICAST:
 8006		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
 8007		break;
 8008	case E1000_VF_SET_LPE:
 8009		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
 8010		break;
 8011	case E1000_VF_SET_VLAN:
 8012		retval = -1;
 8013		if (vf_data->pf_vlan)
 8014			dev_warn(&pdev->dev,
 8015				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
 8016				 vf);
 8017		else
 8018			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
 8019		break;
 8020	default:
 8021		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
 8022		retval = -1;
 8023		break;
 8024	}
 8025
 8026	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
 8027out:
 8028	/* notify the VF of the results of what it sent us */
 8029	if (retval)
 8030		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
 8031	else
 8032		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
 8033
 8034	/* unlocks mailbox */
 8035	igb_write_mbx(hw, msgbuf, 1, vf);
 8036	return;
 8037
 8038unlock:
 8039	igb_unlock_mbx(hw, vf);
 8040}
 8041
 8042static void igb_msg_task(struct igb_adapter *adapter)
 8043{
 8044	struct e1000_hw *hw = &adapter->hw;
 8045	unsigned long flags;
 8046	u32 vf;
 8047
 8048	spin_lock_irqsave(&adapter->vfs_lock, flags);
 8049	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
 8050		/* process any reset requests */
 8051		if (!igb_check_for_rst(hw, vf))
 8052			igb_vf_reset_event(adapter, vf);
 8053
 8054		/* process any messages pending */
 8055		if (!igb_check_for_msg(hw, vf))
 8056			igb_rcv_msg_from_vf(adapter, vf);
 8057
 8058		/* process any acks */
 8059		if (!igb_check_for_ack(hw, vf))
 8060			igb_rcv_ack_from_vf(adapter, vf);
 8061	}
 8062	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
 8063}
 8064
 8065/**
 8066 *  igb_set_uta - Set unicast filter table address
 8067 *  @adapter: board private structure
 8068 *  @set: boolean indicating if we are setting or clearing bits
 8069 *
 8070 *  The unicast table address is a register array of 32-bit registers.
 8071 *  The table is meant to be used in a way similar to how the MTA is used
 8072 *  however due to certain limitations in the hardware it is necessary to
 8073 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 8074 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
 8075 **/
 8076static void igb_set_uta(struct igb_adapter *adapter, bool set)
 8077{
 8078	struct e1000_hw *hw = &adapter->hw;
 8079	u32 uta = set ? ~0 : 0;
 8080	int i;
 8081
 8082	/* we only need to do this if VMDq is enabled */
 8083	if (!adapter->vfs_allocated_count)
 8084		return;
 8085
 8086	for (i = hw->mac.uta_reg_count; i--;)
 8087		array_wr32(E1000_UTA, i, uta);
 8088}
 8089
 8090/**
 8091 *  igb_intr_msi - Interrupt Handler
 8092 *  @irq: interrupt number
 8093 *  @data: pointer to a network interface device structure
 8094 **/
 8095static irqreturn_t igb_intr_msi(int irq, void *data)
 8096{
 8097	struct igb_adapter *adapter = data;
 8098	struct igb_q_vector *q_vector = adapter->q_vector[0];
 8099	struct e1000_hw *hw = &adapter->hw;
 8100	/* read ICR disables interrupts using IAM */
 8101	u32 icr = rd32(E1000_ICR);
 8102
 8103	igb_write_itr(q_vector);
 8104
 8105	if (icr & E1000_ICR_DRSTA)
 8106		schedule_work(&adapter->reset_task);
 8107
 8108	if (icr & E1000_ICR_DOUTSYNC) {
 8109		/* HW is reporting DMA is out of sync */
 8110		adapter->stats.doosync++;
 8111	}
 8112
 8113	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 8114		hw->mac.get_link_status = 1;
 8115		if (!test_bit(__IGB_DOWN, &adapter->state))
 8116			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 8117	}
 8118
 8119	if (icr & E1000_ICR_TS)
 8120		igb_tsync_interrupt(adapter);
 8121
 8122	napi_schedule(&q_vector->napi);
 8123
 8124	return IRQ_HANDLED;
 8125}
 8126
 8127/**
 8128 *  igb_intr - Legacy Interrupt Handler
 8129 *  @irq: interrupt number
 8130 *  @data: pointer to a network interface device structure
 8131 **/
 8132static irqreturn_t igb_intr(int irq, void *data)
 8133{
 8134	struct igb_adapter *adapter = data;
 8135	struct igb_q_vector *q_vector = adapter->q_vector[0];
 8136	struct e1000_hw *hw = &adapter->hw;
 8137	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
 8138	 * need for the IMC write
 8139	 */
 8140	u32 icr = rd32(E1000_ICR);
 8141
 8142	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
 8143	 * not set, then the adapter didn't send an interrupt
 8144	 */
 8145	if (!(icr & E1000_ICR_INT_ASSERTED))
 8146		return IRQ_NONE;
 8147
 8148	igb_write_itr(q_vector);
 8149
 8150	if (icr & E1000_ICR_DRSTA)
 8151		schedule_work(&adapter->reset_task);
 8152
 8153	if (icr & E1000_ICR_DOUTSYNC) {
 8154		/* HW is reporting DMA is out of sync */
 8155		adapter->stats.doosync++;
 8156	}
 8157
 8158	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 8159		hw->mac.get_link_status = 1;
 8160		/* guard against interrupt when we're going down */
 8161		if (!test_bit(__IGB_DOWN, &adapter->state))
 8162			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 8163	}
 8164
 8165	if (icr & E1000_ICR_TS)
 8166		igb_tsync_interrupt(adapter);
 8167
 8168	napi_schedule(&q_vector->napi);
 8169
 8170	return IRQ_HANDLED;
 8171}
 8172
 8173static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
 8174{
 8175	struct igb_adapter *adapter = q_vector->adapter;
 8176	struct e1000_hw *hw = &adapter->hw;
 8177
 8178	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
 8179	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
 8180		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
 8181			igb_set_itr(q_vector);
 8182		else
 8183			igb_update_ring_itr(q_vector);
 8184	}
 8185
 8186	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 8187		if (adapter->flags & IGB_FLAG_HAS_MSIX)
 8188			wr32(E1000_EIMS, q_vector->eims_value);
 8189		else
 8190			igb_irq_enable(adapter);
 8191	}
 8192}
 8193
 8194/**
 8195 *  igb_poll - NAPI Rx polling callback
 8196 *  @napi: napi polling structure
 8197 *  @budget: count of how many packets we should handle
 8198 **/
 8199static int igb_poll(struct napi_struct *napi, int budget)
 8200{
 8201	struct igb_q_vector *q_vector = container_of(napi,
 8202						     struct igb_q_vector,
 8203						     napi);
 8204	bool clean_complete = true;
 8205	int work_done = 0;
 8206
 8207#ifdef CONFIG_IGB_DCA
 8208	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
 8209		igb_update_dca(q_vector);
 8210#endif
 8211	if (q_vector->tx.ring)
 8212		clean_complete = igb_clean_tx_irq(q_vector, budget);
 8213
 8214	if (q_vector->rx.ring) {
 8215		int cleaned = igb_clean_rx_irq(q_vector, budget);
 8216
 8217		work_done += cleaned;
 8218		if (cleaned >= budget)
 8219			clean_complete = false;
 8220	}
 8221
 8222	/* If all work not completed, return budget and keep polling */
 8223	if (!clean_complete)
 8224		return budget;
 8225
 8226	/* Exit the polling mode, but don't re-enable interrupts if stack might
 8227	 * poll us due to busy-polling
 8228	 */
 8229	if (likely(napi_complete_done(napi, work_done)))
 8230		igb_ring_irq_enable(q_vector);
 8231
 8232	return work_done;
 8233}
 8234
 8235/**
 8236 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 8237 *  @q_vector: pointer to q_vector containing needed info
 8238 *  @napi_budget: Used to determine if we are in netpoll
 8239 *
 8240 *  returns true if ring is completely cleaned
 8241 **/
 8242static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
 8243{
 8244	struct igb_adapter *adapter = q_vector->adapter;
 8245	struct igb_ring *tx_ring = q_vector->tx.ring;
 8246	struct igb_tx_buffer *tx_buffer;
 8247	union e1000_adv_tx_desc *tx_desc;
 8248	unsigned int total_bytes = 0, total_packets = 0;
 8249	unsigned int budget = q_vector->tx.work_limit;
 8250	unsigned int i = tx_ring->next_to_clean;
 8251
 8252	if (test_bit(__IGB_DOWN, &adapter->state))
 8253		return true;
 8254
 8255	tx_buffer = &tx_ring->tx_buffer_info[i];
 8256	tx_desc = IGB_TX_DESC(tx_ring, i);
 8257	i -= tx_ring->count;
 8258
 8259	do {
 8260		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
 8261
 8262		/* if next_to_watch is not set then there is no work pending */
 8263		if (!eop_desc)
 8264			break;
 8265
 8266		/* prevent any other reads prior to eop_desc */
 8267		smp_rmb();
 8268
 8269		/* if DD is not set pending work has not been completed */
 8270		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 8271			break;
 8272
 8273		/* clear next_to_watch to prevent false hangs */
 8274		tx_buffer->next_to_watch = NULL;
 8275
 8276		/* update the statistics for this packet */
 8277		total_bytes += tx_buffer->bytecount;
 8278		total_packets += tx_buffer->gso_segs;
 8279
 8280		/* free the skb */
 8281		if (tx_buffer->type == IGB_TYPE_SKB)
 8282			napi_consume_skb(tx_buffer->skb, napi_budget);
 8283		else
 8284			xdp_return_frame(tx_buffer->xdpf);
 8285
 8286		/* unmap skb header data */
 8287		dma_unmap_single(tx_ring->dev,
 8288				 dma_unmap_addr(tx_buffer, dma),
 8289				 dma_unmap_len(tx_buffer, len),
 8290				 DMA_TO_DEVICE);
 8291
 8292		/* clear tx_buffer data */
 8293		dma_unmap_len_set(tx_buffer, len, 0);
 8294
 8295		/* clear last DMA location and unmap remaining buffers */
 8296		while (tx_desc != eop_desc) {
 8297			tx_buffer++;
 8298			tx_desc++;
 8299			i++;
 8300			if (unlikely(!i)) {
 8301				i -= tx_ring->count;
 8302				tx_buffer = tx_ring->tx_buffer_info;
 8303				tx_desc = IGB_TX_DESC(tx_ring, 0);
 8304			}
 8305
 8306			/* unmap any remaining paged data */
 8307			if (dma_unmap_len(tx_buffer, len)) {
 8308				dma_unmap_page(tx_ring->dev,
 8309					       dma_unmap_addr(tx_buffer, dma),
 8310					       dma_unmap_len(tx_buffer, len),
 8311					       DMA_TO_DEVICE);
 8312				dma_unmap_len_set(tx_buffer, len, 0);
 8313			}
 8314		}
 8315
 8316		/* move us one more past the eop_desc for start of next pkt */
 8317		tx_buffer++;
 8318		tx_desc++;
 8319		i++;
 8320		if (unlikely(!i)) {
 8321			i -= tx_ring->count;
 8322			tx_buffer = tx_ring->tx_buffer_info;
 8323			tx_desc = IGB_TX_DESC(tx_ring, 0);
 8324		}
 8325
 8326		/* issue prefetch for next Tx descriptor */
 8327		prefetch(tx_desc);
 8328
 8329		/* update budget accounting */
 8330		budget--;
 8331	} while (likely(budget));
 8332
 8333	netdev_tx_completed_queue(txring_txq(tx_ring),
 8334				  total_packets, total_bytes);
 8335	i += tx_ring->count;
 8336	tx_ring->next_to_clean = i;
 8337	u64_stats_update_begin(&tx_ring->tx_syncp);
 8338	tx_ring->tx_stats.bytes += total_bytes;
 8339	tx_ring->tx_stats.packets += total_packets;
 8340	u64_stats_update_end(&tx_ring->tx_syncp);
 8341	q_vector->tx.total_bytes += total_bytes;
 8342	q_vector->tx.total_packets += total_packets;
 8343
 8344	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
 8345		struct e1000_hw *hw = &adapter->hw;
 8346
 8347		/* Detect a transmit hang in hardware, this serializes the
 8348		 * check with the clearing of time_stamp and movement of i
 8349		 */
 8350		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
 8351		if (tx_buffer->next_to_watch &&
 8352		    time_after(jiffies, tx_buffer->time_stamp +
 8353			       (adapter->tx_timeout_factor * HZ)) &&
 8354		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
 8355
 8356			/* detected Tx unit hang */
 8357			dev_err(tx_ring->dev,
 8358				"Detected Tx Unit Hang\n"
 8359				"  Tx Queue             <%d>\n"
 8360				"  TDH                  <%x>\n"
 8361				"  TDT                  <%x>\n"
 8362				"  next_to_use          <%x>\n"
 8363				"  next_to_clean        <%x>\n"
 8364				"buffer_info[next_to_clean]\n"
 8365				"  time_stamp           <%lx>\n"
 8366				"  next_to_watch        <%p>\n"
 8367				"  jiffies              <%lx>\n"
 8368				"  desc.status          <%x>\n",
 8369				tx_ring->queue_index,
 8370				rd32(E1000_TDH(tx_ring->reg_idx)),
 8371				readl(tx_ring->tail),
 8372				tx_ring->next_to_use,
 8373				tx_ring->next_to_clean,
 8374				tx_buffer->time_stamp,
 8375				tx_buffer->next_to_watch,
 8376				jiffies,
 8377				tx_buffer->next_to_watch->wb.status);
 8378			netif_stop_subqueue(tx_ring->netdev,
 8379					    tx_ring->queue_index);
 8380
 8381			/* we are about to reset, no point in enabling stuff */
 8382			return true;
 8383		}
 8384	}
 8385
 8386#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 8387	if (unlikely(total_packets &&
 8388	    netif_carrier_ok(tx_ring->netdev) &&
 8389	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
 8390		/* Make sure that anybody stopping the queue after this
 8391		 * sees the new next_to_clean.
 8392		 */
 8393		smp_mb();
 8394		if (__netif_subqueue_stopped(tx_ring->netdev,
 8395					     tx_ring->queue_index) &&
 8396		    !(test_bit(__IGB_DOWN, &adapter->state))) {
 8397			netif_wake_subqueue(tx_ring->netdev,
 8398					    tx_ring->queue_index);
 8399
 8400			u64_stats_update_begin(&tx_ring->tx_syncp);
 8401			tx_ring->tx_stats.restart_queue++;
 8402			u64_stats_update_end(&tx_ring->tx_syncp);
 8403		}
 8404	}
 8405
 8406	return !!budget;
 8407}
 8408
 8409/**
 8410 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 8411 *  @rx_ring: rx descriptor ring to store buffers on
 8412 *  @old_buff: donor buffer to have page reused
 8413 *
 8414 *  Synchronizes page for reuse by the adapter
 8415 **/
 8416static void igb_reuse_rx_page(struct igb_ring *rx_ring,
 8417			      struct igb_rx_buffer *old_buff)
 8418{
 8419	struct igb_rx_buffer *new_buff;
 8420	u16 nta = rx_ring->next_to_alloc;
 8421
 8422	new_buff = &rx_ring->rx_buffer_info[nta];
 8423
 8424	/* update, and store next to alloc */
 8425	nta++;
 8426	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 8427
 8428	/* Transfer page from old buffer to new buffer.
 8429	 * Move each member individually to avoid possible store
 8430	 * forwarding stalls.
 8431	 */
 8432	new_buff->dma		= old_buff->dma;
 8433	new_buff->page		= old_buff->page;
 8434	new_buff->page_offset	= old_buff->page_offset;
 8435	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
 8436}
 8437
 8438static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
 8439				  int rx_buf_pgcnt)
 8440{
 8441	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
 8442	struct page *page = rx_buffer->page;
 8443
 8444	/* avoid re-using remote and pfmemalloc pages */
 8445	if (!dev_page_is_reusable(page))
 8446		return false;
 8447
 8448#if (PAGE_SIZE < 8192)
 8449	/* if we are only owner of page we can reuse it */
 8450	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
 8451		return false;
 8452#else
 8453#define IGB_LAST_OFFSET \
 8454	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
 8455
 8456	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
 8457		return false;
 8458#endif
 8459
 8460	/* If we have drained the page fragment pool we need to update
 8461	 * the pagecnt_bias and page count so that we fully restock the
 8462	 * number of references the driver holds.
 8463	 */
 8464	if (unlikely(pagecnt_bias == 1)) {
 8465		page_ref_add(page, USHRT_MAX - 1);
 8466		rx_buffer->pagecnt_bias = USHRT_MAX;
 8467	}
 8468
 8469	return true;
 8470}
 8471
 8472/**
 8473 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 8474 *  @rx_ring: rx descriptor ring to transact packets on
 8475 *  @rx_buffer: buffer containing page to add
 8476 *  @skb: sk_buff to place the data into
 8477 *  @size: size of buffer to be added
 8478 *
 8479 *  This function will add the data contained in rx_buffer->page to the skb.
 8480 **/
 8481static void igb_add_rx_frag(struct igb_ring *rx_ring,
 8482			    struct igb_rx_buffer *rx_buffer,
 8483			    struct sk_buff *skb,
 8484			    unsigned int size)
 8485{
 8486#if (PAGE_SIZE < 8192)
 8487	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8488#else
 8489	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
 8490				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
 8491				SKB_DATA_ALIGN(size);
 8492#endif
 8493	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
 8494			rx_buffer->page_offset, size, truesize);
 8495#if (PAGE_SIZE < 8192)
 8496	rx_buffer->page_offset ^= truesize;
 8497#else
 8498	rx_buffer->page_offset += truesize;
 8499#endif
 8500}
 8501
 8502static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
 8503					 struct igb_rx_buffer *rx_buffer,
 8504					 struct xdp_buff *xdp,
 8505					 ktime_t timestamp)
 8506{
 8507#if (PAGE_SIZE < 8192)
 8508	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8509#else
 8510	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
 8511					       xdp->data_hard_start);
 8512#endif
 8513	unsigned int size = xdp->data_end - xdp->data;
 8514	unsigned int headlen;
 8515	struct sk_buff *skb;
 8516
 8517	/* prefetch first cache line of first page */
 8518	net_prefetch(xdp->data);
 8519
 8520	/* allocate a skb to store the frags */
 8521	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
 8522	if (unlikely(!skb))
 8523		return NULL;
 8524
 8525	if (timestamp)
 8526		skb_hwtstamps(skb)->hwtstamp = timestamp;
 8527
 8528	/* Determine available headroom for copy */
 8529	headlen = size;
 8530	if (headlen > IGB_RX_HDR_LEN)
 8531		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
 8532
 8533	/* align pull length to size of long to optimize memcpy performance */
 8534	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
 8535
 8536	/* update all of the pointers */
 8537	size -= headlen;
 8538	if (size) {
 8539		skb_add_rx_frag(skb, 0, rx_buffer->page,
 8540				(xdp->data + headlen) - page_address(rx_buffer->page),
 8541				size, truesize);
 8542#if (PAGE_SIZE < 8192)
 8543		rx_buffer->page_offset ^= truesize;
 8544#else
 8545		rx_buffer->page_offset += truesize;
 8546#endif
 8547	} else {
 8548		rx_buffer->pagecnt_bias++;
 8549	}
 8550
 8551	return skb;
 8552}
 8553
 8554static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
 8555				     struct igb_rx_buffer *rx_buffer,
 8556				     struct xdp_buff *xdp,
 8557				     ktime_t timestamp)
 8558{
 8559#if (PAGE_SIZE < 8192)
 8560	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8561#else
 8562	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
 8563				SKB_DATA_ALIGN(xdp->data_end -
 8564					       xdp->data_hard_start);
 8565#endif
 8566	unsigned int metasize = xdp->data - xdp->data_meta;
 8567	struct sk_buff *skb;
 8568
 8569	/* prefetch first cache line of first page */
 8570	net_prefetch(xdp->data_meta);
 8571
 8572	/* build an skb around the page buffer */
 8573	skb = napi_build_skb(xdp->data_hard_start, truesize);
 8574	if (unlikely(!skb))
 8575		return NULL;
 8576
 8577	/* update pointers within the skb to store the data */
 8578	skb_reserve(skb, xdp->data - xdp->data_hard_start);
 8579	__skb_put(skb, xdp->data_end - xdp->data);
 8580
 8581	if (metasize)
 8582		skb_metadata_set(skb, metasize);
 8583
 8584	if (timestamp)
 8585		skb_hwtstamps(skb)->hwtstamp = timestamp;
 8586
 8587	/* update buffer offset */
 8588#if (PAGE_SIZE < 8192)
 8589	rx_buffer->page_offset ^= truesize;
 8590#else
 8591	rx_buffer->page_offset += truesize;
 8592#endif
 8593
 8594	return skb;
 8595}
 8596
 8597static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
 8598				   struct igb_ring *rx_ring,
 8599				   struct xdp_buff *xdp)
 8600{
 8601	int err, result = IGB_XDP_PASS;
 8602	struct bpf_prog *xdp_prog;
 8603	u32 act;
 8604
 8605	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
 8606
 8607	if (!xdp_prog)
 8608		goto xdp_out;
 8609
 8610	prefetchw(xdp->data_hard_start); /* xdp_frame write */
 8611
 8612	act = bpf_prog_run_xdp(xdp_prog, xdp);
 8613	switch (act) {
 8614	case XDP_PASS:
 8615		break;
 8616	case XDP_TX:
 8617		result = igb_xdp_xmit_back(adapter, xdp);
 8618		if (result == IGB_XDP_CONSUMED)
 8619			goto out_failure;
 8620		break;
 8621	case XDP_REDIRECT:
 8622		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
 8623		if (err)
 8624			goto out_failure;
 8625		result = IGB_XDP_REDIR;
 8626		break;
 8627	default:
 8628		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
 8629		fallthrough;
 8630	case XDP_ABORTED:
 8631out_failure:
 8632		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 8633		fallthrough;
 8634	case XDP_DROP:
 8635		result = IGB_XDP_CONSUMED;
 8636		break;
 8637	}
 8638xdp_out:
 8639	return ERR_PTR(-result);
 8640}
 8641
 8642static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
 8643					  unsigned int size)
 8644{
 8645	unsigned int truesize;
 8646
 8647#if (PAGE_SIZE < 8192)
 8648	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
 8649#else
 8650	truesize = ring_uses_build_skb(rx_ring) ?
 8651		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
 8652		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
 8653		SKB_DATA_ALIGN(size);
 8654#endif
 8655	return truesize;
 8656}
 8657
 8658static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
 8659			       struct igb_rx_buffer *rx_buffer,
 8660			       unsigned int size)
 8661{
 8662	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
 8663#if (PAGE_SIZE < 8192)
 8664	rx_buffer->page_offset ^= truesize;
 8665#else
 8666	rx_buffer->page_offset += truesize;
 8667#endif
 8668}
 8669
 8670static inline void igb_rx_checksum(struct igb_ring *ring,
 8671				   union e1000_adv_rx_desc *rx_desc,
 8672				   struct sk_buff *skb)
 8673{
 8674	skb_checksum_none_assert(skb);
 8675
 8676	/* Ignore Checksum bit is set */
 8677	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
 8678		return;
 8679
 8680	/* Rx checksum disabled via ethtool */
 8681	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 8682		return;
 8683
 8684	/* TCP/UDP checksum error bit is set */
 8685	if (igb_test_staterr(rx_desc,
 8686			     E1000_RXDEXT_STATERR_TCPE |
 8687			     E1000_RXDEXT_STATERR_IPE)) {
 8688		/* work around errata with sctp packets where the TCPE aka
 8689		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
 8690		 * packets, (aka let the stack check the crc32c)
 8691		 */
 8692		if (!((skb->len == 60) &&
 8693		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
 8694			u64_stats_update_begin(&ring->rx_syncp);
 8695			ring->rx_stats.csum_err++;
 8696			u64_stats_update_end(&ring->rx_syncp);
 8697		}
 8698		/* let the stack verify checksum errors */
 8699		return;
 8700	}
 8701	/* It must be a TCP or UDP packet with a valid checksum */
 8702	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
 8703				      E1000_RXD_STAT_UDPCS))
 8704		skb->ip_summed = CHECKSUM_UNNECESSARY;
 8705
 8706	dev_dbg(ring->dev, "cksum success: bits %08X\n",
 8707		le32_to_cpu(rx_desc->wb.upper.status_error));
 8708}
 8709
 8710static inline void igb_rx_hash(struct igb_ring *ring,
 8711			       union e1000_adv_rx_desc *rx_desc,
 8712			       struct sk_buff *skb)
 8713{
 8714	if (ring->netdev->features & NETIF_F_RXHASH)
 8715		skb_set_hash(skb,
 8716			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
 8717			     PKT_HASH_TYPE_L3);
 8718}
 8719
 8720/**
 8721 *  igb_is_non_eop - process handling of non-EOP buffers
 8722 *  @rx_ring: Rx ring being processed
 8723 *  @rx_desc: Rx descriptor for current buffer
 8724 *
 8725 *  This function updates next to clean.  If the buffer is an EOP buffer
 8726 *  this function exits returning false, otherwise it will place the
 8727 *  sk_buff in the next buffer to be chained and return true indicating
 8728 *  that this is in fact a non-EOP buffer.
 8729 **/
 8730static bool igb_is_non_eop(struct igb_ring *rx_ring,
 8731			   union e1000_adv_rx_desc *rx_desc)
 8732{
 8733	u32 ntc = rx_ring->next_to_clean + 1;
 8734
 8735	/* fetch, update, and store next to clean */
 8736	ntc = (ntc < rx_ring->count) ? ntc : 0;
 8737	rx_ring->next_to_clean = ntc;
 8738
 8739	prefetch(IGB_RX_DESC(rx_ring, ntc));
 8740
 8741	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
 8742		return false;
 8743
 8744	return true;
 8745}
 8746
 8747/**
 8748 *  igb_cleanup_headers - Correct corrupted or empty headers
 8749 *  @rx_ring: rx descriptor ring packet is being transacted on
 8750 *  @rx_desc: pointer to the EOP Rx descriptor
 8751 *  @skb: pointer to current skb being fixed
 8752 *
 8753 *  Address the case where we are pulling data in on pages only
 8754 *  and as such no data is present in the skb header.
 8755 *
 8756 *  In addition if skb is not at least 60 bytes we need to pad it so that
 8757 *  it is large enough to qualify as a valid Ethernet frame.
 8758 *
 8759 *  Returns true if an error was encountered and skb was freed.
 8760 **/
 8761static bool igb_cleanup_headers(struct igb_ring *rx_ring,
 8762				union e1000_adv_rx_desc *rx_desc,
 8763				struct sk_buff *skb)
 8764{
 8765	/* XDP packets use error pointer so abort at this point */
 8766	if (IS_ERR(skb))
 8767		return true;
 8768
 8769	if (unlikely((igb_test_staterr(rx_desc,
 8770				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
 8771		struct net_device *netdev = rx_ring->netdev;
 8772		if (!(netdev->features & NETIF_F_RXALL)) {
 8773			dev_kfree_skb_any(skb);
 8774			return true;
 8775		}
 8776	}
 8777
 8778	/* if eth_skb_pad returns an error the skb was freed */
 8779	if (eth_skb_pad(skb))
 8780		return true;
 8781
 8782	return false;
 8783}
 8784
 8785/**
 8786 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 8787 *  @rx_ring: rx descriptor ring packet is being transacted on
 8788 *  @rx_desc: pointer to the EOP Rx descriptor
 8789 *  @skb: pointer to current skb being populated
 8790 *
 8791 *  This function checks the ring, descriptor, and packet information in
 8792 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 8793 *  other fields within the skb.
 8794 **/
 8795static void igb_process_skb_fields(struct igb_ring *rx_ring,
 8796				   union e1000_adv_rx_desc *rx_desc,
 8797				   struct sk_buff *skb)
 8798{
 8799	struct net_device *dev = rx_ring->netdev;
 8800
 8801	igb_rx_hash(rx_ring, rx_desc, skb);
 8802
 8803	igb_rx_checksum(rx_ring, rx_desc, skb);
 8804
 8805	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
 8806	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
 8807		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
 8808
 8809	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 8810	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
 8811		u16 vid;
 8812
 8813		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
 8814		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
 8815			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
 8816		else
 8817			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
 8818
 8819		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 8820	}
 8821
 8822	skb_record_rx_queue(skb, rx_ring->queue_index);
 8823
 8824	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 8825}
 8826
 8827static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
 8828{
 8829	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
 8830}
 8831
 8832static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
 8833					       const unsigned int size, int *rx_buf_pgcnt)
 8834{
 8835	struct igb_rx_buffer *rx_buffer;
 8836
 8837	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
 8838	*rx_buf_pgcnt =
 8839#if (PAGE_SIZE < 8192)
 8840		page_count(rx_buffer->page);
 8841#else
 8842		0;
 8843#endif
 8844	prefetchw(rx_buffer->page);
 8845
 8846	/* we are reusing so sync this buffer for CPU use */
 8847	dma_sync_single_range_for_cpu(rx_ring->dev,
 8848				      rx_buffer->dma,
 8849				      rx_buffer->page_offset,
 8850				      size,
 8851				      DMA_FROM_DEVICE);
 8852
 8853	rx_buffer->pagecnt_bias--;
 8854
 8855	return rx_buffer;
 8856}
 8857
 8858static void igb_put_rx_buffer(struct igb_ring *rx_ring,
 8859			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
 8860{
 8861	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
 8862		/* hand second half of page back to the ring */
 8863		igb_reuse_rx_page(rx_ring, rx_buffer);
 8864	} else {
 8865		/* We are not reusing the buffer so unmap it and free
 8866		 * any references we are holding to it
 8867		 */
 8868		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
 8869				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
 8870				     IGB_RX_DMA_ATTR);
 8871		__page_frag_cache_drain(rx_buffer->page,
 8872					rx_buffer->pagecnt_bias);
 8873	}
 8874
 8875	/* clear contents of rx_buffer */
 8876	rx_buffer->page = NULL;
 8877}
 8878
 8879static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
 8880{
 8881	struct igb_adapter *adapter = q_vector->adapter;
 8882	struct igb_ring *rx_ring = q_vector->rx.ring;
 8883	struct sk_buff *skb = rx_ring->skb;
 8884	unsigned int total_bytes = 0, total_packets = 0;
 8885	u16 cleaned_count = igb_desc_unused(rx_ring);
 8886	unsigned int xdp_xmit = 0;
 8887	struct xdp_buff xdp;
 8888	u32 frame_sz = 0;
 8889	int rx_buf_pgcnt;
 8890
 8891	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
 8892#if (PAGE_SIZE < 8192)
 8893	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
 8894#endif
 8895	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
 8896
 8897	while (likely(total_packets < budget)) {
 8898		union e1000_adv_rx_desc *rx_desc;
 8899		struct igb_rx_buffer *rx_buffer;
 8900		ktime_t timestamp = 0;
 8901		int pkt_offset = 0;
 8902		unsigned int size;
 8903		void *pktbuf;
 8904
 8905		/* return some buffers to hardware, one at a time is too slow */
 8906		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
 8907			igb_alloc_rx_buffers(rx_ring, cleaned_count);
 8908			cleaned_count = 0;
 8909		}
 8910
 8911		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
 8912		size = le16_to_cpu(rx_desc->wb.upper.length);
 8913		if (!size)
 8914			break;
 8915
 8916		/* This memory barrier is needed to keep us from reading
 8917		 * any other fields out of the rx_desc until we know the
 8918		 * descriptor has been written back
 8919		 */
 8920		dma_rmb();
 8921
 8922		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
 8923		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
 8924
 8925		/* pull rx packet timestamp if available and valid */
 8926		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
 8927			int ts_hdr_len;
 8928
 8929			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
 8930							 pktbuf, &timestamp);
 8931
 8932			pkt_offset += ts_hdr_len;
 8933			size -= ts_hdr_len;
 8934		}
 8935
 8936		/* retrieve a buffer from the ring */
 8937		if (!skb) {
 8938			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
 8939			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
 8940
 8941			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
 8942			xdp_buff_clear_frags_flag(&xdp);
 8943#if (PAGE_SIZE > 4096)
 8944			/* At larger PAGE_SIZE, frame_sz depend on len size */
 8945			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
 8946#endif
 8947			skb = igb_run_xdp(adapter, rx_ring, &xdp);
 8948		}
 8949
 8950		if (IS_ERR(skb)) {
 8951			unsigned int xdp_res = -PTR_ERR(skb);
 8952
 8953			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
 8954				xdp_xmit |= xdp_res;
 8955				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
 8956			} else {
 8957				rx_buffer->pagecnt_bias++;
 8958			}
 8959			total_packets++;
 8960			total_bytes += size;
 8961		} else if (skb)
 8962			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
 8963		else if (ring_uses_build_skb(rx_ring))
 8964			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
 8965					    timestamp);
 8966		else
 8967			skb = igb_construct_skb(rx_ring, rx_buffer,
 8968						&xdp, timestamp);
 8969
 8970		/* exit if we failed to retrieve a buffer */
 8971		if (!skb) {
 8972			rx_ring->rx_stats.alloc_failed++;
 8973			rx_buffer->pagecnt_bias++;
 8974			break;
 8975		}
 8976
 8977		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
 8978		cleaned_count++;
 8979
 8980		/* fetch next buffer in frame if non-eop */
 8981		if (igb_is_non_eop(rx_ring, rx_desc))
 8982			continue;
 8983
 8984		/* verify the packet layout is correct */
 8985		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
 8986			skb = NULL;
 8987			continue;
 8988		}
 8989
 8990		/* probably a little skewed due to removing CRC */
 8991		total_bytes += skb->len;
 8992
 8993		/* populate checksum, timestamp, VLAN, and protocol */
 8994		igb_process_skb_fields(rx_ring, rx_desc, skb);
 8995
 8996		napi_gro_receive(&q_vector->napi, skb);
 8997
 8998		/* reset skb pointer */
 8999		skb = NULL;
 9000
 9001		/* update budget accounting */
 9002		total_packets++;
 9003	}
 9004
 9005	/* place incomplete frames back on ring for completion */
 9006	rx_ring->skb = skb;
 9007
 9008	if (xdp_xmit & IGB_XDP_REDIR)
 9009		xdp_do_flush();
 9010
 9011	if (xdp_xmit & IGB_XDP_TX) {
 9012		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
 9013
 9014		igb_xdp_ring_update_tail(tx_ring);
 9015	}
 9016
 9017	u64_stats_update_begin(&rx_ring->rx_syncp);
 9018	rx_ring->rx_stats.packets += total_packets;
 9019	rx_ring->rx_stats.bytes += total_bytes;
 9020	u64_stats_update_end(&rx_ring->rx_syncp);
 9021	q_vector->rx.total_packets += total_packets;
 9022	q_vector->rx.total_bytes += total_bytes;
 9023
 9024	if (cleaned_count)
 9025		igb_alloc_rx_buffers(rx_ring, cleaned_count);
 9026
 9027	return total_packets;
 9028}
 9029
 9030static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
 9031				  struct igb_rx_buffer *bi)
 9032{
 9033	struct page *page = bi->page;
 9034	dma_addr_t dma;
 9035
 9036	/* since we are recycling buffers we should seldom need to alloc */
 9037	if (likely(page))
 9038		return true;
 9039
 9040	/* alloc new page for storage */
 9041	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
 9042	if (unlikely(!page)) {
 9043		rx_ring->rx_stats.alloc_failed++;
 9044		return false;
 9045	}
 9046
 9047	/* map page for use */
 9048	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 9049				 igb_rx_pg_size(rx_ring),
 9050				 DMA_FROM_DEVICE,
 9051				 IGB_RX_DMA_ATTR);
 9052
 9053	/* if mapping failed free memory back to system since
 9054	 * there isn't much point in holding memory we can't use
 9055	 */
 9056	if (dma_mapping_error(rx_ring->dev, dma)) {
 9057		__free_pages(page, igb_rx_pg_order(rx_ring));
 9058
 9059		rx_ring->rx_stats.alloc_failed++;
 9060		return false;
 9061	}
 9062
 9063	bi->dma = dma;
 9064	bi->page = page;
 9065	bi->page_offset = igb_rx_offset(rx_ring);
 9066	page_ref_add(page, USHRT_MAX - 1);
 9067	bi->pagecnt_bias = USHRT_MAX;
 9068
 9069	return true;
 9070}
 9071
 9072/**
 9073 *  igb_alloc_rx_buffers - Replace used receive buffers
 9074 *  @rx_ring: rx descriptor ring to allocate new receive buffers
 9075 *  @cleaned_count: count of buffers to allocate
 9076 **/
 9077void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
 9078{
 9079	union e1000_adv_rx_desc *rx_desc;
 9080	struct igb_rx_buffer *bi;
 9081	u16 i = rx_ring->next_to_use;
 9082	u16 bufsz;
 9083
 9084	/* nothing to do */
 9085	if (!cleaned_count)
 9086		return;
 9087
 9088	rx_desc = IGB_RX_DESC(rx_ring, i);
 9089	bi = &rx_ring->rx_buffer_info[i];
 9090	i -= rx_ring->count;
 9091
 9092	bufsz = igb_rx_bufsz(rx_ring);
 9093
 9094	do {
 9095		if (!igb_alloc_mapped_page(rx_ring, bi))
 9096			break;
 9097
 9098		/* sync the buffer for use by the device */
 9099		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 9100						 bi->page_offset, bufsz,
 9101						 DMA_FROM_DEVICE);
 9102
 9103		/* Refresh the desc even if buffer_addrs didn't change
 9104		 * because each write-back erases this info.
 9105		 */
 9106		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 9107
 9108		rx_desc++;
 9109		bi++;
 9110		i++;
 9111		if (unlikely(!i)) {
 9112			rx_desc = IGB_RX_DESC(rx_ring, 0);
 9113			bi = rx_ring->rx_buffer_info;
 9114			i -= rx_ring->count;
 9115		}
 9116
 9117		/* clear the length for the next_to_use descriptor */
 9118		rx_desc->wb.upper.length = 0;
 9119
 9120		cleaned_count--;
 9121	} while (cleaned_count);
 9122
 9123	i += rx_ring->count;
 9124
 9125	if (rx_ring->next_to_use != i) {
 9126		/* record the next descriptor to use */
 9127		rx_ring->next_to_use = i;
 9128
 9129		/* update next to alloc since we have filled the ring */
 9130		rx_ring->next_to_alloc = i;
 9131
 9132		/* Force memory writes to complete before letting h/w
 9133		 * know there are new descriptors to fetch.  (Only
 9134		 * applicable for weak-ordered memory model archs,
 9135		 * such as IA-64).
 9136		 */
 9137		dma_wmb();
 9138		writel(i, rx_ring->tail);
 9139	}
 9140}
 9141
 9142/**
 9143 * igb_mii_ioctl -
 9144 * @netdev: pointer to netdev struct
 9145 * @ifr: interface structure
 9146 * @cmd: ioctl command to execute
 9147 **/
 9148static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 9149{
 9150	struct igb_adapter *adapter = netdev_priv(netdev);
 9151	struct mii_ioctl_data *data = if_mii(ifr);
 9152
 9153	if (adapter->hw.phy.media_type != e1000_media_type_copper)
 9154		return -EOPNOTSUPP;
 9155
 9156	switch (cmd) {
 9157	case SIOCGMIIPHY:
 9158		data->phy_id = adapter->hw.phy.addr;
 9159		break;
 9160	case SIOCGMIIREG:
 9161		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
 9162				     &data->val_out))
 9163			return -EIO;
 9164		break;
 9165	case SIOCSMIIREG:
 9166	default:
 9167		return -EOPNOTSUPP;
 9168	}
 9169	return 0;
 9170}
 9171
 9172/**
 9173 * igb_ioctl -
 9174 * @netdev: pointer to netdev struct
 9175 * @ifr: interface structure
 9176 * @cmd: ioctl command to execute
 9177 **/
 9178static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 9179{
 9180	switch (cmd) {
 9181	case SIOCGMIIPHY:
 9182	case SIOCGMIIREG:
 9183	case SIOCSMIIREG:
 9184		return igb_mii_ioctl(netdev, ifr, cmd);
 9185	case SIOCGHWTSTAMP:
 9186		return igb_ptp_get_ts_config(netdev, ifr);
 9187	case SIOCSHWTSTAMP:
 9188		return igb_ptp_set_ts_config(netdev, ifr);
 9189	default:
 9190		return -EOPNOTSUPP;
 9191	}
 9192}
 9193
 9194void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
 9195{
 9196	struct igb_adapter *adapter = hw->back;
 9197
 9198	pci_read_config_word(adapter->pdev, reg, value);
 9199}
 9200
 9201void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
 9202{
 9203	struct igb_adapter *adapter = hw->back;
 9204
 9205	pci_write_config_word(adapter->pdev, reg, *value);
 9206}
 9207
 9208s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
 9209{
 9210	struct igb_adapter *adapter = hw->back;
 9211
 9212	if (pcie_capability_read_word(adapter->pdev, reg, value))
 9213		return -E1000_ERR_CONFIG;
 9214
 9215	return 0;
 9216}
 9217
 9218s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
 9219{
 9220	struct igb_adapter *adapter = hw->back;
 9221
 9222	if (pcie_capability_write_word(adapter->pdev, reg, *value))
 9223		return -E1000_ERR_CONFIG;
 9224
 9225	return 0;
 9226}
 9227
 9228static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
 9229{
 9230	struct igb_adapter *adapter = netdev_priv(netdev);
 9231	struct e1000_hw *hw = &adapter->hw;
 9232	u32 ctrl, rctl;
 9233	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
 9234
 9235	if (enable) {
 9236		/* enable VLAN tag insert/strip */
 9237		ctrl = rd32(E1000_CTRL);
 9238		ctrl |= E1000_CTRL_VME;
 9239		wr32(E1000_CTRL, ctrl);
 9240
 9241		/* Disable CFI check */
 9242		rctl = rd32(E1000_RCTL);
 9243		rctl &= ~E1000_RCTL_CFIEN;
 9244		wr32(E1000_RCTL, rctl);
 9245	} else {
 9246		/* disable VLAN tag insert/strip */
 9247		ctrl = rd32(E1000_CTRL);
 9248		ctrl &= ~E1000_CTRL_VME;
 9249		wr32(E1000_CTRL, ctrl);
 9250	}
 9251
 9252	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
 9253}
 9254
 9255static int igb_vlan_rx_add_vid(struct net_device *netdev,
 9256			       __be16 proto, u16 vid)
 9257{
 9258	struct igb_adapter *adapter = netdev_priv(netdev);
 9259	struct e1000_hw *hw = &adapter->hw;
 9260	int pf_id = adapter->vfs_allocated_count;
 9261
 9262	/* add the filter since PF can receive vlans w/o entry in vlvf */
 9263	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 9264		igb_vfta_set(hw, vid, pf_id, true, !!vid);
 9265
 9266	set_bit(vid, adapter->active_vlans);
 9267
 9268	return 0;
 9269}
 9270
 9271static int igb_vlan_rx_kill_vid(struct net_device *netdev,
 9272				__be16 proto, u16 vid)
 9273{
 9274	struct igb_adapter *adapter = netdev_priv(netdev);
 9275	int pf_id = adapter->vfs_allocated_count;
 9276	struct e1000_hw *hw = &adapter->hw;
 9277
 9278	/* remove VID from filter table */
 9279	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 9280		igb_vfta_set(hw, vid, pf_id, false, true);
 9281
 9282	clear_bit(vid, adapter->active_vlans);
 9283
 9284	return 0;
 9285}
 9286
 9287static void igb_restore_vlan(struct igb_adapter *adapter)
 9288{
 9289	u16 vid = 1;
 9290
 9291	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
 9292	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
 9293
 9294	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
 9295		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
 9296}
 9297
 9298int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
 9299{
 9300	struct pci_dev *pdev = adapter->pdev;
 9301	struct e1000_mac_info *mac = &adapter->hw.mac;
 9302
 9303	mac->autoneg = 0;
 9304
 9305	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 9306	 * for the switch() below to work
 9307	 */
 9308	if ((spd & 1) || (dplx & ~1))
 9309		goto err_inval;
 9310
 9311	/* Fiber NIC's only allow 1000 gbps Full duplex
 9312	 * and 100Mbps Full duplex for 100baseFx sfp
 9313	 */
 9314	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
 9315		switch (spd + dplx) {
 9316		case SPEED_10 + DUPLEX_HALF:
 9317		case SPEED_10 + DUPLEX_FULL:
 9318		case SPEED_100 + DUPLEX_HALF:
 9319			goto err_inval;
 9320		default:
 9321			break;
 9322		}
 9323	}
 9324
 9325	switch (spd + dplx) {
 9326	case SPEED_10 + DUPLEX_HALF:
 9327		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 9328		break;
 9329	case SPEED_10 + DUPLEX_FULL:
 9330		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 9331		break;
 9332	case SPEED_100 + DUPLEX_HALF:
 9333		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 9334		break;
 9335	case SPEED_100 + DUPLEX_FULL:
 9336		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 9337		break;
 9338	case SPEED_1000 + DUPLEX_FULL:
 9339		mac->autoneg = 1;
 9340		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
 9341		break;
 9342	case SPEED_1000 + DUPLEX_HALF: /* not supported */
 9343	default:
 9344		goto err_inval;
 9345	}
 9346
 9347	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 9348	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 9349
 9350	return 0;
 9351
 9352err_inval:
 9353	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
 9354	return -EINVAL;
 9355}
 9356
 9357static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
 9358			  bool runtime)
 9359{
 9360	struct net_device *netdev = pci_get_drvdata(pdev);
 9361	struct igb_adapter *adapter = netdev_priv(netdev);
 9362	struct e1000_hw *hw = &adapter->hw;
 9363	u32 ctrl, rctl, status;
 9364	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
 9365	bool wake;
 9366
 9367	rtnl_lock();
 9368	netif_device_detach(netdev);
 9369
 9370	if (netif_running(netdev))
 9371		__igb_close(netdev, true);
 9372
 9373	igb_ptp_suspend(adapter);
 9374
 9375	igb_clear_interrupt_scheme(adapter);
 9376	rtnl_unlock();
 9377
 9378	status = rd32(E1000_STATUS);
 9379	if (status & E1000_STATUS_LU)
 9380		wufc &= ~E1000_WUFC_LNKC;
 9381
 9382	if (wufc) {
 9383		igb_setup_rctl(adapter);
 9384		igb_set_rx_mode(netdev);
 9385
 9386		/* turn on all-multi mode if wake on multicast is enabled */
 9387		if (wufc & E1000_WUFC_MC) {
 9388			rctl = rd32(E1000_RCTL);
 9389			rctl |= E1000_RCTL_MPE;
 9390			wr32(E1000_RCTL, rctl);
 9391		}
 9392
 9393		ctrl = rd32(E1000_CTRL);
 9394		ctrl |= E1000_CTRL_ADVD3WUC;
 9395		wr32(E1000_CTRL, ctrl);
 9396
 9397		/* Allow time for pending master requests to run */
 9398		igb_disable_pcie_master(hw);
 9399
 9400		wr32(E1000_WUC, E1000_WUC_PME_EN);
 9401		wr32(E1000_WUFC, wufc);
 9402	} else {
 9403		wr32(E1000_WUC, 0);
 9404		wr32(E1000_WUFC, 0);
 9405	}
 9406
 9407	wake = wufc || adapter->en_mng_pt;
 9408	if (!wake)
 9409		igb_power_down_link(adapter);
 9410	else
 9411		igb_power_up_link(adapter);
 9412
 9413	if (enable_wake)
 9414		*enable_wake = wake;
 9415
 9416	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 9417	 * would have already happened in close and is redundant.
 9418	 */
 9419	igb_release_hw_control(adapter);
 9420
 9421	pci_disable_device(pdev);
 9422
 9423	return 0;
 9424}
 9425
 9426static void igb_deliver_wake_packet(struct net_device *netdev)
 9427{
 9428	struct igb_adapter *adapter = netdev_priv(netdev);
 9429	struct e1000_hw *hw = &adapter->hw;
 9430	struct sk_buff *skb;
 9431	u32 wupl;
 9432
 9433	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
 9434
 9435	/* WUPM stores only the first 128 bytes of the wake packet.
 9436	 * Read the packet only if we have the whole thing.
 9437	 */
 9438	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
 9439		return;
 9440
 9441	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
 9442	if (!skb)
 9443		return;
 9444
 9445	skb_put(skb, wupl);
 9446
 9447	/* Ensure reads are 32-bit aligned */
 9448	wupl = roundup(wupl, 4);
 9449
 9450	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
 9451
 9452	skb->protocol = eth_type_trans(skb, netdev);
 9453	netif_rx(skb);
 9454}
 9455
 9456static int __maybe_unused igb_suspend(struct device *dev)
 9457{
 9458	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
 9459}
 9460
 9461static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
 9462{
 9463	struct pci_dev *pdev = to_pci_dev(dev);
 9464	struct net_device *netdev = pci_get_drvdata(pdev);
 9465	struct igb_adapter *adapter = netdev_priv(netdev);
 9466	struct e1000_hw *hw = &adapter->hw;
 9467	u32 err, val;
 9468
 9469	pci_set_power_state(pdev, PCI_D0);
 9470	pci_restore_state(pdev);
 9471	pci_save_state(pdev);
 9472
 9473	if (!pci_device_is_present(pdev))
 9474		return -ENODEV;
 9475	err = pci_enable_device_mem(pdev);
 9476	if (err) {
 9477		dev_err(&pdev->dev,
 9478			"igb: Cannot enable PCI device from suspend\n");
 9479		return err;
 9480	}
 9481	pci_set_master(pdev);
 9482
 9483	pci_enable_wake(pdev, PCI_D3hot, 0);
 9484	pci_enable_wake(pdev, PCI_D3cold, 0);
 9485
 9486	if (igb_init_interrupt_scheme(adapter, true)) {
 9487		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 9488		return -ENOMEM;
 9489	}
 9490
 9491	igb_reset(adapter);
 9492
 9493	/* let the f/w know that the h/w is now under the control of the
 9494	 * driver.
 9495	 */
 9496	igb_get_hw_control(adapter);
 9497
 9498	val = rd32(E1000_WUS);
 9499	if (val & WAKE_PKT_WUS)
 9500		igb_deliver_wake_packet(netdev);
 9501
 9502	wr32(E1000_WUS, ~0);
 9503
 9504	if (!rpm)
 9505		rtnl_lock();
 9506	if (!err && netif_running(netdev))
 9507		err = __igb_open(netdev, true);
 9508
 9509	if (!err)
 9510		netif_device_attach(netdev);
 9511	if (!rpm)
 9512		rtnl_unlock();
 9513
 9514	return err;
 9515}
 9516
 9517static int __maybe_unused igb_resume(struct device *dev)
 9518{
 9519	return __igb_resume(dev, false);
 9520}
 9521
 9522static int __maybe_unused igb_runtime_idle(struct device *dev)
 9523{
 9524	struct net_device *netdev = dev_get_drvdata(dev);
 9525	struct igb_adapter *adapter = netdev_priv(netdev);
 9526
 9527	if (!igb_has_link(adapter))
 9528		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
 9529
 9530	return -EBUSY;
 9531}
 9532
 9533static int __maybe_unused igb_runtime_suspend(struct device *dev)
 9534{
 9535	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
 9536}
 9537
 9538static int __maybe_unused igb_runtime_resume(struct device *dev)
 9539{
 9540	return __igb_resume(dev, true);
 9541}
 9542
 9543static void igb_shutdown(struct pci_dev *pdev)
 9544{
 9545	bool wake;
 9546
 9547	__igb_shutdown(pdev, &wake, 0);
 9548
 9549	if (system_state == SYSTEM_POWER_OFF) {
 9550		pci_wake_from_d3(pdev, wake);
 9551		pci_set_power_state(pdev, PCI_D3hot);
 9552	}
 9553}
 9554
 9555static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
 9556{
 9557#ifdef CONFIG_PCI_IOV
 9558	int err;
 9559
 9560	if (num_vfs == 0) {
 9561		return igb_disable_sriov(dev, true);
 9562	} else {
 9563		err = igb_enable_sriov(dev, num_vfs, true);
 9564		return err ? err : num_vfs;
 9565	}
 9566#endif
 9567	return 0;
 9568}
 9569
 9570/**
 9571 *  igb_io_error_detected - called when PCI error is detected
 9572 *  @pdev: Pointer to PCI device
 9573 *  @state: The current pci connection state
 9574 *
 9575 *  This function is called after a PCI bus error affecting
 9576 *  this device has been detected.
 9577 **/
 9578static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
 9579					      pci_channel_state_t state)
 9580{
 9581	struct net_device *netdev = pci_get_drvdata(pdev);
 9582	struct igb_adapter *adapter = netdev_priv(netdev);
 9583
 9584	if (state == pci_channel_io_normal) {
 9585		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
 9586		return PCI_ERS_RESULT_CAN_RECOVER;
 9587	}
 9588
 9589	netif_device_detach(netdev);
 9590
 9591	if (state == pci_channel_io_perm_failure)
 9592		return PCI_ERS_RESULT_DISCONNECT;
 9593
 9594	if (netif_running(netdev))
 9595		igb_down(adapter);
 9596	pci_disable_device(pdev);
 9597
 9598	/* Request a slot reset. */
 9599	return PCI_ERS_RESULT_NEED_RESET;
 9600}
 9601
 9602/**
 9603 *  igb_io_slot_reset - called after the pci bus has been reset.
 9604 *  @pdev: Pointer to PCI device
 9605 *
 9606 *  Restart the card from scratch, as if from a cold-boot. Implementation
 9607 *  resembles the first-half of the __igb_resume routine.
 9608 **/
 9609static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
 9610{
 9611	struct net_device *netdev = pci_get_drvdata(pdev);
 9612	struct igb_adapter *adapter = netdev_priv(netdev);
 9613	struct e1000_hw *hw = &adapter->hw;
 9614	pci_ers_result_t result;
 9615
 9616	if (pci_enable_device_mem(pdev)) {
 9617		dev_err(&pdev->dev,
 9618			"Cannot re-enable PCI device after reset.\n");
 9619		result = PCI_ERS_RESULT_DISCONNECT;
 9620	} else {
 9621		pci_set_master(pdev);
 9622		pci_restore_state(pdev);
 9623		pci_save_state(pdev);
 9624
 9625		pci_enable_wake(pdev, PCI_D3hot, 0);
 9626		pci_enable_wake(pdev, PCI_D3cold, 0);
 9627
 9628		/* In case of PCI error, adapter lose its HW address
 9629		 * so we should re-assign it here.
 9630		 */
 9631		hw->hw_addr = adapter->io_addr;
 9632
 9633		igb_reset(adapter);
 9634		wr32(E1000_WUS, ~0);
 9635		result = PCI_ERS_RESULT_RECOVERED;
 9636	}
 9637
 9638	return result;
 9639}
 9640
 9641/**
 9642 *  igb_io_resume - called when traffic can start flowing again.
 9643 *  @pdev: Pointer to PCI device
 9644 *
 9645 *  This callback is called when the error recovery driver tells us that
 9646 *  its OK to resume normal operation. Implementation resembles the
 9647 *  second-half of the __igb_resume routine.
 9648 */
 9649static void igb_io_resume(struct pci_dev *pdev)
 9650{
 9651	struct net_device *netdev = pci_get_drvdata(pdev);
 9652	struct igb_adapter *adapter = netdev_priv(netdev);
 9653
 9654	if (netif_running(netdev)) {
 9655		if (igb_up(adapter)) {
 9656			dev_err(&pdev->dev, "igb_up failed after reset\n");
 9657			return;
 9658		}
 9659	}
 9660
 9661	netif_device_attach(netdev);
 9662
 9663	/* let the f/w know that the h/w is now under the control of the
 9664	 * driver.
 9665	 */
 9666	igb_get_hw_control(adapter);
 9667}
 9668
 9669/**
 9670 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
 9671 *  @adapter: Pointer to adapter structure
 9672 *  @index: Index of the RAR entry which need to be synced with MAC table
 9673 **/
 9674static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
 9675{
 9676	struct e1000_hw *hw = &adapter->hw;
 9677	u32 rar_low, rar_high;
 9678	u8 *addr = adapter->mac_table[index].addr;
 9679
 9680	/* HW expects these to be in network order when they are plugged
 9681	 * into the registers which are little endian.  In order to guarantee
 9682	 * that ordering we need to do an leXX_to_cpup here in order to be
 9683	 * ready for the byteswap that occurs with writel
 9684	 */
 9685	rar_low = le32_to_cpup((__le32 *)(addr));
 9686	rar_high = le16_to_cpup((__le16 *)(addr + 4));
 9687
 9688	/* Indicate to hardware the Address is Valid. */
 9689	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
 9690		if (is_valid_ether_addr(addr))
 9691			rar_high |= E1000_RAH_AV;
 9692
 9693		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
 9694			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
 9695
 9696		switch (hw->mac.type) {
 9697		case e1000_82575:
 9698		case e1000_i210:
 9699			if (adapter->mac_table[index].state &
 9700			    IGB_MAC_STATE_QUEUE_STEERING)
 9701				rar_high |= E1000_RAH_QSEL_ENABLE;
 9702
 9703			rar_high |= E1000_RAH_POOL_1 *
 9704				    adapter->mac_table[index].queue;
 9705			break;
 9706		default:
 9707			rar_high |= E1000_RAH_POOL_1 <<
 9708				    adapter->mac_table[index].queue;
 9709			break;
 9710		}
 9711	}
 9712
 9713	wr32(E1000_RAL(index), rar_low);
 9714	wrfl();
 9715	wr32(E1000_RAH(index), rar_high);
 9716	wrfl();
 9717}
 9718
 9719static int igb_set_vf_mac(struct igb_adapter *adapter,
 9720			  int vf, unsigned char *mac_addr)
 9721{
 9722	struct e1000_hw *hw = &adapter->hw;
 9723	/* VF MAC addresses start at end of receive addresses and moves
 9724	 * towards the first, as a result a collision should not be possible
 9725	 */
 9726	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
 9727	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
 9728
 9729	ether_addr_copy(vf_mac_addr, mac_addr);
 9730	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
 9731	adapter->mac_table[rar_entry].queue = vf;
 9732	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
 9733	igb_rar_set_index(adapter, rar_entry);
 9734
 9735	return 0;
 9736}
 9737
 9738static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
 9739{
 9740	struct igb_adapter *adapter = netdev_priv(netdev);
 9741
 9742	if (vf >= adapter->vfs_allocated_count)
 9743		return -EINVAL;
 9744
 9745	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
 9746	 * flag and allows to overwrite the MAC via VF netdev.  This
 9747	 * is necessary to allow libvirt a way to restore the original
 9748	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
 9749	 * down a VM.
 9750	 */
 9751	if (is_zero_ether_addr(mac)) {
 9752		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
 9753		dev_info(&adapter->pdev->dev,
 9754			 "remove administratively set MAC on VF %d\n",
 9755			 vf);
 9756	} else if (is_valid_ether_addr(mac)) {
 9757		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
 9758		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
 9759			 mac, vf);
 9760		dev_info(&adapter->pdev->dev,
 9761			 "Reload the VF driver to make this change effective.");
 9762		/* Generate additional warning if PF is down */
 9763		if (test_bit(__IGB_DOWN, &adapter->state)) {
 9764			dev_warn(&adapter->pdev->dev,
 9765				 "The VF MAC address has been set, but the PF device is not up.\n");
 9766			dev_warn(&adapter->pdev->dev,
 9767				 "Bring the PF device up before attempting to use the VF device.\n");
 9768		}
 9769	} else {
 9770		return -EINVAL;
 9771	}
 9772	return igb_set_vf_mac(adapter, vf, mac);
 9773}
 9774
 9775static int igb_link_mbps(int internal_link_speed)
 9776{
 9777	switch (internal_link_speed) {
 9778	case SPEED_100:
 9779		return 100;
 9780	case SPEED_1000:
 9781		return 1000;
 9782	default:
 9783		return 0;
 9784	}
 9785}
 9786
 9787static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
 9788				  int link_speed)
 9789{
 9790	int rf_dec, rf_int;
 9791	u32 bcnrc_val;
 9792
 9793	if (tx_rate != 0) {
 9794		/* Calculate the rate factor values to set */
 9795		rf_int = link_speed / tx_rate;
 9796		rf_dec = (link_speed - (rf_int * tx_rate));
 9797		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
 9798			 tx_rate;
 9799
 9800		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
 9801		bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
 9802		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
 9803	} else {
 9804		bcnrc_val = 0;
 9805	}
 9806
 9807	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
 9808	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
 9809	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
 9810	 */
 9811	wr32(E1000_RTTBCNRM, 0x14);
 9812	wr32(E1000_RTTBCNRC, bcnrc_val);
 9813}
 9814
 9815static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
 9816{
 9817	int actual_link_speed, i;
 9818	bool reset_rate = false;
 9819
 9820	/* VF TX rate limit was not set or not supported */
 9821	if ((adapter->vf_rate_link_speed == 0) ||
 9822	    (adapter->hw.mac.type != e1000_82576))
 9823		return;
 9824
 9825	actual_link_speed = igb_link_mbps(adapter->link_speed);
 9826	if (actual_link_speed != adapter->vf_rate_link_speed) {
 9827		reset_rate = true;
 9828		adapter->vf_rate_link_speed = 0;
 9829		dev_info(&adapter->pdev->dev,
 9830			 "Link speed has been changed. VF Transmit rate is disabled\n");
 9831	}
 9832
 9833	for (i = 0; i < adapter->vfs_allocated_count; i++) {
 9834		if (reset_rate)
 9835			adapter->vf_data[i].tx_rate = 0;
 9836
 9837		igb_set_vf_rate_limit(&adapter->hw, i,
 9838				      adapter->vf_data[i].tx_rate,
 9839				      actual_link_speed);
 9840	}
 9841}
 9842
 9843static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
 9844			     int min_tx_rate, int max_tx_rate)
 9845{
 9846	struct igb_adapter *adapter = netdev_priv(netdev);
 9847	struct e1000_hw *hw = &adapter->hw;
 9848	int actual_link_speed;
 9849
 9850	if (hw->mac.type != e1000_82576)
 9851		return -EOPNOTSUPP;
 9852
 9853	if (min_tx_rate)
 9854		return -EINVAL;
 9855
 9856	actual_link_speed = igb_link_mbps(adapter->link_speed);
 9857	if ((vf >= adapter->vfs_allocated_count) ||
 9858	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
 9859	    (max_tx_rate < 0) ||
 9860	    (max_tx_rate > actual_link_speed))
 9861		return -EINVAL;
 9862
 9863	adapter->vf_rate_link_speed = actual_link_speed;
 9864	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
 9865	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
 9866
 9867	return 0;
 9868}
 9869
 9870static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 9871				   bool setting)
 9872{
 9873	struct igb_adapter *adapter = netdev_priv(netdev);
 9874	struct e1000_hw *hw = &adapter->hw;
 9875	u32 reg_val, reg_offset;
 9876
 9877	if (!adapter->vfs_allocated_count)
 9878		return -EOPNOTSUPP;
 9879
 9880	if (vf >= adapter->vfs_allocated_count)
 9881		return -EINVAL;
 9882
 9883	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
 9884	reg_val = rd32(reg_offset);
 9885	if (setting)
 9886		reg_val |= (BIT(vf) |
 9887			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
 9888	else
 9889		reg_val &= ~(BIT(vf) |
 9890			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
 9891	wr32(reg_offset, reg_val);
 9892
 9893	adapter->vf_data[vf].spoofchk_enabled = setting;
 9894	return 0;
 9895}
 9896
 9897static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
 9898{
 9899	struct igb_adapter *adapter = netdev_priv(netdev);
 9900
 9901	if (vf >= adapter->vfs_allocated_count)
 9902		return -EINVAL;
 9903	if (adapter->vf_data[vf].trusted == setting)
 9904		return 0;
 9905
 9906	adapter->vf_data[vf].trusted = setting;
 9907
 9908	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
 9909		 vf, setting ? "" : "not ");
 9910	return 0;
 9911}
 9912
 9913static int igb_ndo_get_vf_config(struct net_device *netdev,
 9914				 int vf, struct ifla_vf_info *ivi)
 9915{
 9916	struct igb_adapter *adapter = netdev_priv(netdev);
 9917	if (vf >= adapter->vfs_allocated_count)
 9918		return -EINVAL;
 9919	ivi->vf = vf;
 9920	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
 9921	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
 9922	ivi->min_tx_rate = 0;
 9923	ivi->vlan = adapter->vf_data[vf].pf_vlan;
 9924	ivi->qos = adapter->vf_data[vf].pf_qos;
 9925	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
 9926	ivi->trusted = adapter->vf_data[vf].trusted;
 9927	return 0;
 9928}
 9929
 9930static void igb_vmm_control(struct igb_adapter *adapter)
 9931{
 9932	struct e1000_hw *hw = &adapter->hw;
 9933	u32 reg;
 9934
 9935	switch (hw->mac.type) {
 9936	case e1000_82575:
 9937	case e1000_i210:
 9938	case e1000_i211:
 9939	case e1000_i354:
 9940	default:
 9941		/* replication is not supported for 82575 */
 9942		return;
 9943	case e1000_82576:
 9944		/* notify HW that the MAC is adding vlan tags */
 9945		reg = rd32(E1000_DTXCTL);
 9946		reg |= E1000_DTXCTL_VLAN_ADDED;
 9947		wr32(E1000_DTXCTL, reg);
 9948		fallthrough;
 9949	case e1000_82580:
 9950		/* enable replication vlan tag stripping */
 9951		reg = rd32(E1000_RPLOLR);
 9952		reg |= E1000_RPLOLR_STRVLAN;
 9953		wr32(E1000_RPLOLR, reg);
 9954		fallthrough;
 9955	case e1000_i350:
 9956		/* none of the above registers are supported by i350 */
 9957		break;
 9958	}
 9959
 9960	if (adapter->vfs_allocated_count) {
 9961		igb_vmdq_set_loopback_pf(hw, true);
 9962		igb_vmdq_set_replication_pf(hw, true);
 9963		igb_vmdq_set_anti_spoofing_pf(hw, true,
 9964					      adapter->vfs_allocated_count);
 9965	} else {
 9966		igb_vmdq_set_loopback_pf(hw, false);
 9967		igb_vmdq_set_replication_pf(hw, false);
 9968	}
 9969}
 9970
 9971static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
 9972{
 9973	struct e1000_hw *hw = &adapter->hw;
 9974	u32 dmac_thr;
 9975	u16 hwm;
 9976	u32 reg;
 9977
 9978	if (hw->mac.type > e1000_82580) {
 9979		if (adapter->flags & IGB_FLAG_DMAC) {
 9980			/* force threshold to 0. */
 9981			wr32(E1000_DMCTXTH, 0);
 9982
 9983			/* DMA Coalescing high water mark needs to be greater
 9984			 * than the Rx threshold. Set hwm to PBA - max frame
 9985			 * size in 16B units, capping it at PBA - 6KB.
 9986			 */
 9987			hwm = 64 * (pba - 6);
 9988			reg = rd32(E1000_FCRTC);
 9989			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
 9990			reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
 9991			wr32(E1000_FCRTC, reg);
 9992
 9993			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
 9994			 * frame size, capping it at PBA - 10KB.
 9995			 */
 9996			dmac_thr = pba - 10;
 9997			reg = rd32(E1000_DMACR);
 9998			reg &= ~E1000_DMACR_DMACTHR_MASK;
 9999			reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10000
10001			/* transition to L0x or L1 if available..*/
10002			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10003
10004			/* watchdog timer= +-1000 usec in 32usec intervals */
10005			reg |= (1000 >> 5);
10006
10007			/* Disable BMC-to-OS Watchdog Enable */
10008			if (hw->mac.type != e1000_i354)
10009				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10010			wr32(E1000_DMACR, reg);
10011
10012			/* no lower threshold to disable
10013			 * coalescing(smart fifb)-UTRESH=0
10014			 */
10015			wr32(E1000_DMCRTRH, 0);
10016
10017			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10018
10019			wr32(E1000_DMCTLX, reg);
10020
10021			/* free space in tx packet buffer to wake from
10022			 * DMA coal
10023			 */
10024			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10025			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10026		}
10027
10028		if (hw->mac.type >= e1000_i210 ||
10029		    (adapter->flags & IGB_FLAG_DMAC)) {
10030			reg = rd32(E1000_PCIEMISC);
10031			reg |= E1000_PCIEMISC_LX_DECISION;
10032			wr32(E1000_PCIEMISC, reg);
10033		} /* endif adapter->dmac is not disabled */
10034	} else if (hw->mac.type == e1000_82580) {
10035		u32 reg = rd32(E1000_PCIEMISC);
10036
10037		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10038		wr32(E1000_DMACR, 0);
10039	}
10040}
10041
10042/**
10043 *  igb_read_i2c_byte - Reads 8 bit word over I2C
10044 *  @hw: pointer to hardware structure
10045 *  @byte_offset: byte offset to read
10046 *  @dev_addr: device address
10047 *  @data: value read
10048 *
10049 *  Performs byte read operation over I2C interface at
10050 *  a specified device address.
10051 **/
10052s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10053		      u8 dev_addr, u8 *data)
10054{
10055	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10056	struct i2c_client *this_client = adapter->i2c_client;
10057	s32 status;
10058	u16 swfw_mask = 0;
10059
10060	if (!this_client)
10061		return E1000_ERR_I2C;
10062
10063	swfw_mask = E1000_SWFW_PHY0_SM;
10064
10065	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10066		return E1000_ERR_SWFW_SYNC;
10067
10068	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10069	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10070
10071	if (status < 0)
10072		return E1000_ERR_I2C;
10073	else {
10074		*data = status;
10075		return 0;
10076	}
10077}
10078
10079/**
10080 *  igb_write_i2c_byte - Writes 8 bit word over I2C
10081 *  @hw: pointer to hardware structure
10082 *  @byte_offset: byte offset to write
10083 *  @dev_addr: device address
10084 *  @data: value to write
10085 *
10086 *  Performs byte write operation over I2C interface at
10087 *  a specified device address.
10088 **/
10089s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10090		       u8 dev_addr, u8 data)
10091{
10092	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10093	struct i2c_client *this_client = adapter->i2c_client;
10094	s32 status;
10095	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10096
10097	if (!this_client)
10098		return E1000_ERR_I2C;
10099
10100	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10101		return E1000_ERR_SWFW_SYNC;
10102	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10103	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10104
10105	if (status)
10106		return E1000_ERR_I2C;
10107	else
10108		return 0;
10109
10110}
10111
10112int igb_reinit_queues(struct igb_adapter *adapter)
10113{
10114	struct net_device *netdev = adapter->netdev;
10115	struct pci_dev *pdev = adapter->pdev;
10116	int err = 0;
10117
10118	if (netif_running(netdev))
10119		igb_close(netdev);
10120
10121	igb_reset_interrupt_capability(adapter);
10122
10123	if (igb_init_interrupt_scheme(adapter, true)) {
10124		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10125		return -ENOMEM;
10126	}
10127
10128	if (netif_running(netdev))
10129		err = igb_open(netdev);
10130
10131	return err;
10132}
10133
10134static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10135{
10136	struct igb_nfc_filter *rule;
10137
10138	spin_lock(&adapter->nfc_lock);
10139
10140	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10141		igb_erase_filter(adapter, rule);
10142
10143	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10144		igb_erase_filter(adapter, rule);
10145
10146	spin_unlock(&adapter->nfc_lock);
10147}
10148
10149static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10150{
10151	struct igb_nfc_filter *rule;
10152
10153	spin_lock(&adapter->nfc_lock);
10154
10155	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10156		igb_add_filter(adapter, rule);
10157
10158	spin_unlock(&adapter->nfc_lock);
10159}
10160/* igb_main.c */