Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/bitops.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/netdevice.h>
13#include <linux/ipv6.h>
14#include <linux/slab.h>
15#include <net/checksum.h>
16#include <net/ip6_checksum.h>
17#include <net/pkt_sched.h>
18#include <net/pkt_cls.h>
19#include <linux/net_tstamp.h>
20#include <linux/mii.h>
21#include <linux/ethtool.h>
22#include <linux/if.h>
23#include <linux/if_vlan.h>
24#include <linux/pci.h>
25#include <linux/delay.h>
26#include <linux/interrupt.h>
27#include <linux/ip.h>
28#include <linux/tcp.h>
29#include <linux/sctp.h>
30#include <linux/if_ether.h>
31#include <linux/prefetch.h>
32#include <linux/bpf.h>
33#include <linux/bpf_trace.h>
34#include <linux/pm_runtime.h>
35#include <linux/etherdevice.h>
36#ifdef CONFIG_IGB_DCA
37#include <linux/dca.h>
38#endif
39#include <linux/i2c.h>
40#include "igb.h"
41
42enum queue_mode {
43 QUEUE_MODE_STRICT_PRIORITY,
44 QUEUE_MODE_STREAM_RESERVATION,
45};
46
47enum tx_queue_prio {
48 TX_QUEUE_PRIO_HIGH,
49 TX_QUEUE_PRIO_LOW,
50};
51
52char igb_driver_name[] = "igb";
53static const char igb_driver_string[] =
54 "Intel(R) Gigabit Ethernet Network Driver";
55static const char igb_copyright[] =
56 "Copyright (c) 2007-2014 Intel Corporation.";
57
58static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
60};
61
62static const struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 /* required last entry */
99 {0, }
100};
101
102MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103
104static int igb_setup_all_tx_resources(struct igb_adapter *);
105static int igb_setup_all_rx_resources(struct igb_adapter *);
106static void igb_free_all_tx_resources(struct igb_adapter *);
107static void igb_free_all_rx_resources(struct igb_adapter *);
108static void igb_setup_mrqc(struct igb_adapter *);
109static int igb_probe(struct pci_dev *, const struct pci_device_id *);
110static void igb_remove(struct pci_dev *pdev);
111static void igb_init_queue_configuration(struct igb_adapter *adapter);
112static int igb_sw_init(struct igb_adapter *);
113int igb_open(struct net_device *);
114int igb_close(struct net_device *);
115static void igb_configure(struct igb_adapter *);
116static void igb_configure_tx(struct igb_adapter *);
117static void igb_configure_rx(struct igb_adapter *);
118static void igb_clean_all_tx_rings(struct igb_adapter *);
119static void igb_clean_all_rx_rings(struct igb_adapter *);
120static void igb_clean_tx_ring(struct igb_ring *);
121static void igb_clean_rx_ring(struct igb_ring *);
122static void igb_set_rx_mode(struct net_device *);
123static void igb_update_phy_info(struct timer_list *);
124static void igb_watchdog(struct timer_list *);
125static void igb_watchdog_task(struct work_struct *);
126static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127static void igb_get_stats64(struct net_device *dev,
128 struct rtnl_link_stats64 *stats);
129static int igb_change_mtu(struct net_device *, int);
130static int igb_set_mac(struct net_device *, void *);
131static void igb_set_uta(struct igb_adapter *adapter, bool set);
132static irqreturn_t igb_intr(int irq, void *);
133static irqreturn_t igb_intr_msi(int irq, void *);
134static irqreturn_t igb_msix_other(int irq, void *);
135static irqreturn_t igb_msix_ring(int irq, void *);
136#ifdef CONFIG_IGB_DCA
137static void igb_update_dca(struct igb_q_vector *);
138static void igb_setup_dca(struct igb_adapter *);
139#endif /* CONFIG_IGB_DCA */
140static int igb_poll(struct napi_struct *, int);
141static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142static int igb_clean_rx_irq(struct igb_q_vector *, int);
143static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145static void igb_reset_task(struct work_struct *);
146static void igb_vlan_mode(struct net_device *netdev,
147 netdev_features_t features);
148static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150static void igb_restore_vlan(struct igb_adapter *);
151static void igb_rar_set_index(struct igb_adapter *, u32);
152static void igb_ping_all_vfs(struct igb_adapter *);
153static void igb_msg_task(struct igb_adapter *);
154static void igb_vmm_control(struct igb_adapter *);
155static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156static void igb_flush_mac_table(struct igb_adapter *);
157static int igb_available_rars(struct igb_adapter *, u8);
158static void igb_set_default_mac_filter(struct igb_adapter *);
159static int igb_uc_sync(struct net_device *, const unsigned char *);
160static int igb_uc_unsync(struct net_device *, const unsigned char *);
161static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 bool setting);
168static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 bool setting);
170static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 struct ifla_vf_info *ivi);
172static void igb_check_vf_rate_limit(struct igb_adapter *);
173static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176#ifdef CONFIG_PCI_IOV
177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
179#endif
180
181static int igb_suspend(struct device *);
182static int igb_resume(struct device *);
183static int igb_runtime_suspend(struct device *dev);
184static int igb_runtime_resume(struct device *dev);
185static int igb_runtime_idle(struct device *dev);
186#ifdef CONFIG_PM
187static const struct dev_pm_ops igb_pm_ops = {
188 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
189 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
190 igb_runtime_idle)
191};
192#endif
193static void igb_shutdown(struct pci_dev *);
194static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195#ifdef CONFIG_IGB_DCA
196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197static struct notifier_block dca_notifier = {
198 .notifier_call = igb_notify_dca,
199 .next = NULL,
200 .priority = 0
201};
202#endif
203#ifdef CONFIG_PCI_IOV
204static unsigned int max_vfs;
205module_param(max_vfs, uint, 0444);
206MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207#endif /* CONFIG_PCI_IOV */
208
209static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 pci_channel_state_t);
211static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212static void igb_io_resume(struct pci_dev *);
213
214static const struct pci_error_handlers igb_err_handler = {
215 .error_detected = igb_io_error_detected,
216 .slot_reset = igb_io_slot_reset,
217 .resume = igb_io_resume,
218};
219
220static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222static struct pci_driver igb_driver = {
223 .name = igb_driver_name,
224 .id_table = igb_pci_tbl,
225 .probe = igb_probe,
226 .remove = igb_remove,
227#ifdef CONFIG_PM
228 .driver.pm = &igb_pm_ops,
229#endif
230 .shutdown = igb_shutdown,
231 .sriov_configure = igb_pci_sriov_configure,
232 .err_handler = &igb_err_handler
233};
234
235MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237MODULE_LICENSE("GPL v2");
238
239#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240static int debug = -1;
241module_param(debug, int, 0);
242MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244struct igb_reg_info {
245 u32 ofs;
246 char *name;
247};
248
249static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251 /* General Registers */
252 {E1000_CTRL, "CTRL"},
253 {E1000_STATUS, "STATUS"},
254 {E1000_CTRL_EXT, "CTRL_EXT"},
255
256 /* Interrupt Registers */
257 {E1000_ICR, "ICR"},
258
259 /* RX Registers */
260 {E1000_RCTL, "RCTL"},
261 {E1000_RDLEN(0), "RDLEN"},
262 {E1000_RDH(0), "RDH"},
263 {E1000_RDT(0), "RDT"},
264 {E1000_RXDCTL(0), "RXDCTL"},
265 {E1000_RDBAL(0), "RDBAL"},
266 {E1000_RDBAH(0), "RDBAH"},
267
268 /* TX Registers */
269 {E1000_TCTL, "TCTL"},
270 {E1000_TDBAL(0), "TDBAL"},
271 {E1000_TDBAH(0), "TDBAH"},
272 {E1000_TDLEN(0), "TDLEN"},
273 {E1000_TDH(0), "TDH"},
274 {E1000_TDT(0), "TDT"},
275 {E1000_TXDCTL(0), "TXDCTL"},
276 {E1000_TDFH, "TDFH"},
277 {E1000_TDFT, "TDFT"},
278 {E1000_TDFHS, "TDFHS"},
279 {E1000_TDFPC, "TDFPC"},
280
281 /* List Terminator */
282 {}
283};
284
285/* igb_regdump - register printout routine */
286static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287{
288 int n = 0;
289 char rname[16];
290 u32 regs[8];
291
292 switch (reginfo->ofs) {
293 case E1000_RDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDLEN(n));
296 break;
297 case E1000_RDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_RDH(n));
300 break;
301 case E1000_RDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDT(n));
304 break;
305 case E1000_RXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RXDCTL(n));
308 break;
309 case E1000_RDBAL(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDBAL(n));
312 break;
313 case E1000_RDBAH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDBAH(n));
316 break;
317 case E1000_TDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_TDBAL(n));
320 break;
321 case E1000_TDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_TDBAH(n));
324 break;
325 case E1000_TDLEN(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_TDLEN(n));
328 break;
329 case E1000_TDH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDH(n));
332 break;
333 case E1000_TDT(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDT(n));
336 break;
337 case E1000_TXDCTL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TXDCTL(n));
340 break;
341 default:
342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 return;
344 }
345
346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 regs[2], regs[3]);
349}
350
351/* igb_dump - Print registers, Tx-rings and Rx-rings */
352static void igb_dump(struct igb_adapter *adapter)
353{
354 struct net_device *netdev = adapter->netdev;
355 struct e1000_hw *hw = &adapter->hw;
356 struct igb_reg_info *reginfo;
357 struct igb_ring *tx_ring;
358 union e1000_adv_tx_desc *tx_desc;
359 struct my_u0 { __le64 a; __le64 b; } *u0;
360 struct igb_ring *rx_ring;
361 union e1000_adv_rx_desc *rx_desc;
362 u32 staterr;
363 u16 i, n;
364
365 if (!netif_msg_hw(adapter))
366 return;
367
368 /* Print netdevice Info */
369 if (netdev) {
370 dev_info(&adapter->pdev->dev, "Net device Info\n");
371 pr_info("Device Name state trans_start\n");
372 pr_info("%-15s %016lX %016lX\n", netdev->name,
373 netdev->state, dev_trans_start(netdev));
374 }
375
376 /* Print Registers */
377 dev_info(&adapter->pdev->dev, "Register Dump\n");
378 pr_info(" Register Name Value\n");
379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 reginfo->name; reginfo++) {
381 igb_regdump(hw, reginfo);
382 }
383
384 /* Print TX Ring Summary */
385 if (!netdev || !netif_running(netdev))
386 goto exit;
387
388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
390 for (n = 0; n < adapter->num_tx_queues; n++) {
391 struct igb_tx_buffer *buffer_info;
392 tx_ring = adapter->tx_ring[n];
393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 (u64)dma_unmap_addr(buffer_info, dma),
397 dma_unmap_len(buffer_info, len),
398 buffer_info->next_to_watch,
399 (u64)buffer_info->time_stamp);
400 }
401
402 /* Print TX Rings */
403 if (!netif_msg_tx_done(adapter))
404 goto rx_ring_summary;
405
406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408 /* Transmit Descriptor Formats
409 *
410 * Advanced Transmit Descriptor
411 * +--------------------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +--------------------------------------------------------------+
414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
415 * +--------------------------------------------------------------+
416 * 63 46 45 40 39 38 36 35 32 31 24 15 0
417 */
418
419 for (n = 0; n < adapter->num_tx_queues; n++) {
420 tx_ring = adapter->tx_ring[n];
421 pr_info("------------------------------------\n");
422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 pr_info("------------------------------------\n");
424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
425
426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 const char *next_desc;
428 struct igb_tx_buffer *buffer_info;
429 tx_desc = IGB_TX_DESC(tx_ring, i);
430 buffer_info = &tx_ring->tx_buffer_info[i];
431 u0 = (struct my_u0 *)tx_desc;
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 next_desc = " NTC/U";
435 else if (i == tx_ring->next_to_use)
436 next_desc = " NTU";
437 else if (i == tx_ring->next_to_clean)
438 next_desc = " NTC";
439 else
440 next_desc = "";
441
442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
443 i, le64_to_cpu(u0->a),
444 le64_to_cpu(u0->b),
445 (u64)dma_unmap_addr(buffer_info, dma),
446 dma_unmap_len(buffer_info, len),
447 buffer_info->next_to_watch,
448 (u64)buffer_info->time_stamp,
449 buffer_info->skb, next_desc);
450
451 if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 print_hex_dump(KERN_INFO, "",
453 DUMP_PREFIX_ADDRESS,
454 16, 1, buffer_info->skb->data,
455 dma_unmap_len(buffer_info, len),
456 true);
457 }
458 }
459
460 /* Print RX Rings Summary */
461rx_ring_summary:
462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 pr_info("Queue [NTU] [NTC]\n");
464 for (n = 0; n < adapter->num_rx_queues; n++) {
465 rx_ring = adapter->rx_ring[n];
466 pr_info(" %5d %5X %5X\n",
467 n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 }
469
470 /* Print RX Rings */
471 if (!netif_msg_rx_status(adapter))
472 goto exit;
473
474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476 /* Advanced Receive Descriptor (Read) Format
477 * 63 1 0
478 * +-----------------------------------------------------+
479 * 0 | Packet Buffer Address [63:1] |A0/NSE|
480 * +----------------------------------------------+------+
481 * 8 | Header Buffer Address [63:1] | DD |
482 * +-----------------------------------------------------+
483 *
484 *
485 * Advanced Receive Descriptor (Write-Back) Format
486 *
487 * 63 48 47 32 31 30 21 20 17 16 4 3 0
488 * +------------------------------------------------------+
489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
490 * | Checksum Ident | | | | Type | Type |
491 * +------------------------------------------------------+
492 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 * +------------------------------------------------------+
494 * 63 48 47 32 31 20 19 0
495 */
496
497 for (n = 0; n < adapter->num_rx_queues; n++) {
498 rx_ring = adapter->rx_ring[n];
499 pr_info("------------------------------------\n");
500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 pr_info("------------------------------------\n");
502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505 for (i = 0; i < rx_ring->count; i++) {
506 const char *next_desc;
507 struct igb_rx_buffer *buffer_info;
508 buffer_info = &rx_ring->rx_buffer_info[i];
509 rx_desc = IGB_RX_DESC(rx_ring, i);
510 u0 = (struct my_u0 *)rx_desc;
511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513 if (i == rx_ring->next_to_use)
514 next_desc = " NTU";
515 else if (i == rx_ring->next_to_clean)
516 next_desc = " NTC";
517 else
518 next_desc = "";
519
520 if (staterr & E1000_RXD_STAT_DD) {
521 /* Descriptor Done */
522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
523 "RWB", i,
524 le64_to_cpu(u0->a),
525 le64_to_cpu(u0->b),
526 next_desc);
527 } else {
528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
529 "R ", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 (u64)buffer_info->dma,
533 next_desc);
534
535 if (netif_msg_pktdata(adapter) &&
536 buffer_info->dma && buffer_info->page) {
537 print_hex_dump(KERN_INFO, "",
538 DUMP_PREFIX_ADDRESS,
539 16, 1,
540 page_address(buffer_info->page) +
541 buffer_info->page_offset,
542 igb_rx_bufsz(rx_ring), true);
543 }
544 }
545 }
546 }
547
548exit:
549 return;
550}
551
552/**
553 * igb_get_i2c_data - Reads the I2C SDA data bit
554 * @data: opaque pointer to adapter struct
555 *
556 * Returns the I2C data bit value
557 **/
558static int igb_get_i2c_data(void *data)
559{
560 struct igb_adapter *adapter = (struct igb_adapter *)data;
561 struct e1000_hw *hw = &adapter->hw;
562 s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564 return !!(i2cctl & E1000_I2C_DATA_IN);
565}
566
567/**
568 * igb_set_i2c_data - Sets the I2C data bit
569 * @data: pointer to hardware structure
570 * @state: I2C data value (0 or 1) to set
571 *
572 * Sets the I2C data bit
573 **/
574static void igb_set_i2c_data(void *data, int state)
575{
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 if (state) {
581 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
582 } else {
583 i2cctl &= ~E1000_I2C_DATA_OE_N;
584 i2cctl &= ~E1000_I2C_DATA_OUT;
585 }
586
587 wr32(E1000_I2CPARAMS, i2cctl);
588 wrfl();
589}
590
591/**
592 * igb_set_i2c_clk - Sets the I2C SCL clock
593 * @data: pointer to hardware structure
594 * @state: state to set clock
595 *
596 * Sets the I2C clock line to state
597 **/
598static void igb_set_i2c_clk(void *data, int state)
599{
600 struct igb_adapter *adapter = (struct igb_adapter *)data;
601 struct e1000_hw *hw = &adapter->hw;
602 s32 i2cctl = rd32(E1000_I2CPARAMS);
603
604 if (state) {
605 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
606 } else {
607 i2cctl &= ~E1000_I2C_CLK_OUT;
608 i2cctl &= ~E1000_I2C_CLK_OE_N;
609 }
610 wr32(E1000_I2CPARAMS, i2cctl);
611 wrfl();
612}
613
614/**
615 * igb_get_i2c_clk - Gets the I2C SCL clock state
616 * @data: pointer to hardware structure
617 *
618 * Gets the I2C clock state
619 **/
620static int igb_get_i2c_clk(void *data)
621{
622 struct igb_adapter *adapter = (struct igb_adapter *)data;
623 struct e1000_hw *hw = &adapter->hw;
624 s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626 return !!(i2cctl & E1000_I2C_CLK_IN);
627}
628
629static const struct i2c_algo_bit_data igb_i2c_algo = {
630 .setsda = igb_set_i2c_data,
631 .setscl = igb_set_i2c_clk,
632 .getsda = igb_get_i2c_data,
633 .getscl = igb_get_i2c_clk,
634 .udelay = 5,
635 .timeout = 20,
636};
637
638/**
639 * igb_get_hw_dev - return device
640 * @hw: pointer to hardware structure
641 *
642 * used by hardware layer to print debugging information
643 **/
644struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
645{
646 struct igb_adapter *adapter = hw->back;
647 return adapter->netdev;
648}
649
650/**
651 * igb_init_module - Driver Registration Routine
652 *
653 * igb_init_module is the first routine called when the driver is
654 * loaded. All it does is register with the PCI subsystem.
655 **/
656static int __init igb_init_module(void)
657{
658 int ret;
659
660 pr_info("%s\n", igb_driver_string);
661 pr_info("%s\n", igb_copyright);
662
663#ifdef CONFIG_IGB_DCA
664 dca_register_notify(&dca_notifier);
665#endif
666 ret = pci_register_driver(&igb_driver);
667 return ret;
668}
669
670module_init(igb_init_module);
671
672/**
673 * igb_exit_module - Driver Exit Cleanup Routine
674 *
675 * igb_exit_module is called just before the driver is removed
676 * from memory.
677 **/
678static void __exit igb_exit_module(void)
679{
680#ifdef CONFIG_IGB_DCA
681 dca_unregister_notify(&dca_notifier);
682#endif
683 pci_unregister_driver(&igb_driver);
684}
685
686module_exit(igb_exit_module);
687
688#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
689/**
690 * igb_cache_ring_register - Descriptor ring to register mapping
691 * @adapter: board private structure to initialize
692 *
693 * Once we know the feature-set enabled for the device, we'll cache
694 * the register offset the descriptor ring is assigned to.
695 **/
696static void igb_cache_ring_register(struct igb_adapter *adapter)
697{
698 int i = 0, j = 0;
699 u32 rbase_offset = adapter->vfs_allocated_count;
700
701 switch (adapter->hw.mac.type) {
702 case e1000_82576:
703 /* The queues are allocated for virtualization such that VF 0
704 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705 * In order to avoid collision we start at the first free queue
706 * and continue consuming queues in the same sequence
707 */
708 if (adapter->vfs_allocated_count) {
709 for (; i < adapter->rss_queues; i++)
710 adapter->rx_ring[i]->reg_idx = rbase_offset +
711 Q_IDX_82576(i);
712 }
713 fallthrough;
714 case e1000_82575:
715 case e1000_82580:
716 case e1000_i350:
717 case e1000_i354:
718 case e1000_i210:
719 case e1000_i211:
720 default:
721 for (; i < adapter->num_rx_queues; i++)
722 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723 for (; j < adapter->num_tx_queues; j++)
724 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
725 break;
726 }
727}
728
729u32 igb_rd32(struct e1000_hw *hw, u32 reg)
730{
731 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
733 u32 value = 0;
734
735 if (E1000_REMOVED(hw_addr))
736 return ~value;
737
738 value = readl(&hw_addr[reg]);
739
740 /* reads should not return all F's */
741 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
742 struct net_device *netdev = igb->netdev;
743 hw->hw_addr = NULL;
744 netdev_err(netdev, "PCIe link lost\n");
745 WARN(pci_device_is_present(igb->pdev),
746 "igb: Failed to read reg 0x%x!\n", reg);
747 }
748
749 return value;
750}
751
752/**
753 * igb_write_ivar - configure ivar for given MSI-X vector
754 * @hw: pointer to the HW structure
755 * @msix_vector: vector number we are allocating to a given ring
756 * @index: row index of IVAR register to write within IVAR table
757 * @offset: column offset of in IVAR, should be multiple of 8
758 *
759 * This function is intended to handle the writing of the IVAR register
760 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
761 * each containing an cause allocation for an Rx and Tx ring, and a
762 * variable number of rows depending on the number of queues supported.
763 **/
764static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 int index, int offset)
766{
767 u32 ivar = array_rd32(E1000_IVAR0, index);
768
769 /* clear any bits that are currently set */
770 ivar &= ~((u32)0xFF << offset);
771
772 /* write vector and valid bit */
773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775 array_wr32(E1000_IVAR0, index, ivar);
776}
777
778#define IGB_N0_QUEUE -1
779static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780{
781 struct igb_adapter *adapter = q_vector->adapter;
782 struct e1000_hw *hw = &adapter->hw;
783 int rx_queue = IGB_N0_QUEUE;
784 int tx_queue = IGB_N0_QUEUE;
785 u32 msixbm = 0;
786
787 if (q_vector->rx.ring)
788 rx_queue = q_vector->rx.ring->reg_idx;
789 if (q_vector->tx.ring)
790 tx_queue = q_vector->tx.ring->reg_idx;
791
792 switch (hw->mac.type) {
793 case e1000_82575:
794 /* The 82575 assigns vectors using a bitmask, which matches the
795 * bitmask for the EICR/EIMS/EIMC registers. To assign one
796 * or more queues to a vector, we write the appropriate bits
797 * into the MSIXBM register for that vector.
798 */
799 if (rx_queue > IGB_N0_QUEUE)
800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 if (tx_queue > IGB_N0_QUEUE)
802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804 msixbm |= E1000_EIMS_OTHER;
805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 q_vector->eims_value = msixbm;
807 break;
808 case e1000_82576:
809 /* 82576 uses a table that essentially consists of 2 columns
810 * with 8 rows. The ordering is column-major so we use the
811 * lower 3 bits as the row index, and the 4th bit as the
812 * column offset.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 rx_queue & 0x7,
817 (rx_queue & 0x8) << 1);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 tx_queue & 0x7,
821 ((tx_queue & 0x8) << 1) + 8);
822 q_vector->eims_value = BIT(msix_vector);
823 break;
824 case e1000_82580:
825 case e1000_i350:
826 case e1000_i354:
827 case e1000_i210:
828 case e1000_i211:
829 /* On 82580 and newer adapters the scheme is similar to 82576
830 * however instead of ordering column-major we have things
831 * ordered row-major. So we traverse the table by using
832 * bit 0 as the column offset, and the remaining bits as the
833 * row index.
834 */
835 if (rx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 rx_queue >> 1,
838 (rx_queue & 0x1) << 4);
839 if (tx_queue > IGB_N0_QUEUE)
840 igb_write_ivar(hw, msix_vector,
841 tx_queue >> 1,
842 ((tx_queue & 0x1) << 4) + 8);
843 q_vector->eims_value = BIT(msix_vector);
844 break;
845 default:
846 BUG();
847 break;
848 }
849
850 /* add q_vector eims value to global eims_enable_mask */
851 adapter->eims_enable_mask |= q_vector->eims_value;
852
853 /* configure q_vector to set itr on first interrupt */
854 q_vector->set_itr = 1;
855}
856
857/**
858 * igb_configure_msix - Configure MSI-X hardware
859 * @adapter: board private structure to initialize
860 *
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
863 **/
864static void igb_configure_msix(struct igb_adapter *adapter)
865{
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
871
872 /* set vector for other causes, i.e. link changes */
873 switch (hw->mac.type) {
874 case e1000_82575:
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
884
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 adapter->eims_other = E1000_EIMS_OTHER;
888
889 break;
890
891 case e1000_82576:
892 case e1000_82580:
893 case e1000_i350:
894 case e1000_i354:
895 case e1000_i210:
896 case e1000_i211:
897 /* Turn on MSI-X capability first, or our settings
898 * won't stick. And it will take days to debug.
899 */
900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 E1000_GPIE_NSICR);
903
904 /* enable msix_other interrupt */
905 adapter->eims_other = BIT(vector);
906 tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908 wr32(E1000_IVAR_MISC, tmp);
909 break;
910 default:
911 /* do nothing, since nothing else supports MSI-X */
912 break;
913 } /* switch (hw->mac.type) */
914
915 adapter->eims_enable_mask |= adapter->eims_other;
916
917 for (i = 0; i < adapter->num_q_vectors; i++)
918 igb_assign_vector(adapter->q_vector[i], vector++);
919
920 wrfl();
921}
922
923/**
924 * igb_request_msix - Initialize MSI-X interrupts
925 * @adapter: board private structure to initialize
926 *
927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
928 * kernel.
929 **/
930static int igb_request_msix(struct igb_adapter *adapter)
931{
932 unsigned int num_q_vectors = adapter->num_q_vectors;
933 struct net_device *netdev = adapter->netdev;
934 int i, err = 0, vector = 0, free_vector = 0;
935
936 err = request_irq(adapter->msix_entries[vector].vector,
937 igb_msix_other, 0, netdev->name, adapter);
938 if (err)
939 goto err_out;
940
941 if (num_q_vectors > MAX_Q_VECTORS) {
942 num_q_vectors = MAX_Q_VECTORS;
943 dev_warn(&adapter->pdev->dev,
944 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945 adapter->num_q_vectors, MAX_Q_VECTORS);
946 }
947 for (i = 0; i < num_q_vectors; i++) {
948 struct igb_q_vector *q_vector = adapter->q_vector[i];
949
950 vector++;
951
952 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
953
954 if (q_vector->rx.ring && q_vector->tx.ring)
955 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
956 q_vector->rx.ring->queue_index);
957 else if (q_vector->tx.ring)
958 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
959 q_vector->tx.ring->queue_index);
960 else if (q_vector->rx.ring)
961 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
962 q_vector->rx.ring->queue_index);
963 else
964 sprintf(q_vector->name, "%s-unused", netdev->name);
965
966 err = request_irq(adapter->msix_entries[vector].vector,
967 igb_msix_ring, 0, q_vector->name,
968 q_vector);
969 if (err)
970 goto err_free;
971 }
972
973 igb_configure_msix(adapter);
974 return 0;
975
976err_free:
977 /* free already assigned IRQs */
978 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
979
980 vector--;
981 for (i = 0; i < vector; i++) {
982 free_irq(adapter->msix_entries[free_vector++].vector,
983 adapter->q_vector[i]);
984 }
985err_out:
986 return err;
987}
988
989/**
990 * igb_free_q_vector - Free memory allocated for specific interrupt vector
991 * @adapter: board private structure to initialize
992 * @v_idx: Index of vector to be freed
993 *
994 * This function frees the memory allocated to the q_vector.
995 **/
996static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
997{
998 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999
1000 adapter->q_vector[v_idx] = NULL;
1001
1002 /* igb_get_stats64() might access the rings on this vector,
1003 * we must wait a grace period before freeing it.
1004 */
1005 if (q_vector)
1006 kfree_rcu(q_vector, rcu);
1007}
1008
1009/**
1010 * igb_reset_q_vector - Reset config for interrupt vector
1011 * @adapter: board private structure to initialize
1012 * @v_idx: Index of vector to be reset
1013 *
1014 * If NAPI is enabled it will delete any references to the
1015 * NAPI struct. This is preparation for igb_free_q_vector.
1016 **/
1017static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018{
1019 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020
1021 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1022 * allocated. So, q_vector is NULL so we should stop here.
1023 */
1024 if (!q_vector)
1025 return;
1026
1027 if (q_vector->tx.ring)
1028 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029
1030 if (q_vector->rx.ring)
1031 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032
1033 netif_napi_del(&q_vector->napi);
1034
1035}
1036
1037static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038{
1039 int v_idx = adapter->num_q_vectors;
1040
1041 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042 pci_disable_msix(adapter->pdev);
1043 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044 pci_disable_msi(adapter->pdev);
1045
1046 while (v_idx--)
1047 igb_reset_q_vector(adapter, v_idx);
1048}
1049
1050/**
1051 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1052 * @adapter: board private structure to initialize
1053 *
1054 * This function frees the memory allocated to the q_vectors. In addition if
1055 * NAPI is enabled it will delete any references to the NAPI struct prior
1056 * to freeing the q_vector.
1057 **/
1058static void igb_free_q_vectors(struct igb_adapter *adapter)
1059{
1060 int v_idx = adapter->num_q_vectors;
1061
1062 adapter->num_tx_queues = 0;
1063 adapter->num_rx_queues = 0;
1064 adapter->num_q_vectors = 0;
1065
1066 while (v_idx--) {
1067 igb_reset_q_vector(adapter, v_idx);
1068 igb_free_q_vector(adapter, v_idx);
1069 }
1070}
1071
1072/**
1073 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074 * @adapter: board private structure to initialize
1075 *
1076 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1077 * MSI-X interrupts allocated.
1078 */
1079static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080{
1081 igb_free_q_vectors(adapter);
1082 igb_reset_interrupt_capability(adapter);
1083}
1084
1085/**
1086 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1087 * @adapter: board private structure to initialize
1088 * @msix: boolean value of MSIX capability
1089 *
1090 * Attempt to configure interrupts using the best available
1091 * capabilities of the hardware and kernel.
1092 **/
1093static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094{
1095 int err;
1096 int numvecs, i;
1097
1098 if (!msix)
1099 goto msi_only;
1100 adapter->flags |= IGB_FLAG_HAS_MSIX;
1101
1102 /* Number of supported queues. */
1103 adapter->num_rx_queues = adapter->rss_queues;
1104 if (adapter->vfs_allocated_count)
1105 adapter->num_tx_queues = 1;
1106 else
1107 adapter->num_tx_queues = adapter->rss_queues;
1108
1109 /* start with one vector for every Rx queue */
1110 numvecs = adapter->num_rx_queues;
1111
1112 /* if Tx handler is separate add 1 for every Tx queue */
1113 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114 numvecs += adapter->num_tx_queues;
1115
1116 /* store the number of vectors reserved for queues */
1117 adapter->num_q_vectors = numvecs;
1118
1119 /* add 1 vector for link status interrupts */
1120 numvecs++;
1121 for (i = 0; i < numvecs; i++)
1122 adapter->msix_entries[i].entry = i;
1123
1124 err = pci_enable_msix_range(adapter->pdev,
1125 adapter->msix_entries,
1126 numvecs,
1127 numvecs);
1128 if (err > 0)
1129 return;
1130
1131 igb_reset_interrupt_capability(adapter);
1132
1133 /* If we can't do MSI-X, try MSI */
1134msi_only:
1135 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136#ifdef CONFIG_PCI_IOV
1137 /* disable SR-IOV for non MSI-X configurations */
1138 if (adapter->vf_data) {
1139 struct e1000_hw *hw = &adapter->hw;
1140 /* disable iov and allow time for transactions to clear */
1141 pci_disable_sriov(adapter->pdev);
1142 msleep(500);
1143
1144 kfree(adapter->vf_mac_list);
1145 adapter->vf_mac_list = NULL;
1146 kfree(adapter->vf_data);
1147 adapter->vf_data = NULL;
1148 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149 wrfl();
1150 msleep(100);
1151 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152 }
1153#endif
1154 adapter->vfs_allocated_count = 0;
1155 adapter->rss_queues = 1;
1156 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157 adapter->num_rx_queues = 1;
1158 adapter->num_tx_queues = 1;
1159 adapter->num_q_vectors = 1;
1160 if (!pci_enable_msi(adapter->pdev))
1161 adapter->flags |= IGB_FLAG_HAS_MSI;
1162}
1163
1164static void igb_add_ring(struct igb_ring *ring,
1165 struct igb_ring_container *head)
1166{
1167 head->ring = ring;
1168 head->count++;
1169}
1170
1171/**
1172 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173 * @adapter: board private structure to initialize
1174 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1175 * @v_idx: index of vector in adapter struct
1176 * @txr_count: total number of Tx rings to allocate
1177 * @txr_idx: index of first Tx ring to allocate
1178 * @rxr_count: total number of Rx rings to allocate
1179 * @rxr_idx: index of first Rx ring to allocate
1180 *
1181 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1182 **/
1183static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184 int v_count, int v_idx,
1185 int txr_count, int txr_idx,
1186 int rxr_count, int rxr_idx)
1187{
1188 struct igb_q_vector *q_vector;
1189 struct igb_ring *ring;
1190 int ring_count;
1191 size_t size;
1192
1193 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194 if (txr_count > 1 || rxr_count > 1)
1195 return -ENOMEM;
1196
1197 ring_count = txr_count + rxr_count;
1198 size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1199
1200 /* allocate q_vector and rings */
1201 q_vector = adapter->q_vector[v_idx];
1202 if (!q_vector) {
1203 q_vector = kzalloc(size, GFP_KERNEL);
1204 } else if (size > ksize(q_vector)) {
1205 struct igb_q_vector *new_q_vector;
1206
1207 new_q_vector = kzalloc(size, GFP_KERNEL);
1208 if (new_q_vector)
1209 kfree_rcu(q_vector, rcu);
1210 q_vector = new_q_vector;
1211 } else {
1212 memset(q_vector, 0, size);
1213 }
1214 if (!q_vector)
1215 return -ENOMEM;
1216
1217 /* initialize NAPI */
1218 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1219
1220 /* tie q_vector and adapter together */
1221 adapter->q_vector[v_idx] = q_vector;
1222 q_vector->adapter = adapter;
1223
1224 /* initialize work limits */
1225 q_vector->tx.work_limit = adapter->tx_work_limit;
1226
1227 /* initialize ITR configuration */
1228 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1229 q_vector->itr_val = IGB_START_ITR;
1230
1231 /* initialize pointer to rings */
1232 ring = q_vector->ring;
1233
1234 /* intialize ITR */
1235 if (rxr_count) {
1236 /* rx or rx/tx vector */
1237 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1238 q_vector->itr_val = adapter->rx_itr_setting;
1239 } else {
1240 /* tx only vector */
1241 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1242 q_vector->itr_val = adapter->tx_itr_setting;
1243 }
1244
1245 if (txr_count) {
1246 /* assign generic ring traits */
1247 ring->dev = &adapter->pdev->dev;
1248 ring->netdev = adapter->netdev;
1249
1250 /* configure backlink on ring */
1251 ring->q_vector = q_vector;
1252
1253 /* update q_vector Tx values */
1254 igb_add_ring(ring, &q_vector->tx);
1255
1256 /* For 82575, context index must be unique per ring. */
1257 if (adapter->hw.mac.type == e1000_82575)
1258 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1259
1260 /* apply Tx specific ring traits */
1261 ring->count = adapter->tx_ring_count;
1262 ring->queue_index = txr_idx;
1263
1264 ring->cbs_enable = false;
1265 ring->idleslope = 0;
1266 ring->sendslope = 0;
1267 ring->hicredit = 0;
1268 ring->locredit = 0;
1269
1270 u64_stats_init(&ring->tx_syncp);
1271 u64_stats_init(&ring->tx_syncp2);
1272
1273 /* assign ring to adapter */
1274 adapter->tx_ring[txr_idx] = ring;
1275
1276 /* push pointer to next ring */
1277 ring++;
1278 }
1279
1280 if (rxr_count) {
1281 /* assign generic ring traits */
1282 ring->dev = &adapter->pdev->dev;
1283 ring->netdev = adapter->netdev;
1284
1285 /* configure backlink on ring */
1286 ring->q_vector = q_vector;
1287
1288 /* update q_vector Rx values */
1289 igb_add_ring(ring, &q_vector->rx);
1290
1291 /* set flag indicating ring supports SCTP checksum offload */
1292 if (adapter->hw.mac.type >= e1000_82576)
1293 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294
1295 /* On i350, i354, i210, and i211, loopback VLAN packets
1296 * have the tag byte-swapped.
1297 */
1298 if (adapter->hw.mac.type >= e1000_i350)
1299 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1300
1301 /* apply Rx specific ring traits */
1302 ring->count = adapter->rx_ring_count;
1303 ring->queue_index = rxr_idx;
1304
1305 u64_stats_init(&ring->rx_syncp);
1306
1307 /* assign ring to adapter */
1308 adapter->rx_ring[rxr_idx] = ring;
1309 }
1310
1311 return 0;
1312}
1313
1314
1315/**
1316 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1317 * @adapter: board private structure to initialize
1318 *
1319 * We allocate one q_vector per queue interrupt. If allocation fails we
1320 * return -ENOMEM.
1321 **/
1322static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1323{
1324 int q_vectors = adapter->num_q_vectors;
1325 int rxr_remaining = adapter->num_rx_queues;
1326 int txr_remaining = adapter->num_tx_queues;
1327 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1328 int err;
1329
1330 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1331 for (; rxr_remaining; v_idx++) {
1332 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1333 0, 0, 1, rxr_idx);
1334
1335 if (err)
1336 goto err_out;
1337
1338 /* update counts and index */
1339 rxr_remaining--;
1340 rxr_idx++;
1341 }
1342 }
1343
1344 for (; v_idx < q_vectors; v_idx++) {
1345 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1346 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1347
1348 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 tqpv, txr_idx, rqpv, rxr_idx);
1350
1351 if (err)
1352 goto err_out;
1353
1354 /* update counts and index */
1355 rxr_remaining -= rqpv;
1356 txr_remaining -= tqpv;
1357 rxr_idx++;
1358 txr_idx++;
1359 }
1360
1361 return 0;
1362
1363err_out:
1364 adapter->num_tx_queues = 0;
1365 adapter->num_rx_queues = 0;
1366 adapter->num_q_vectors = 0;
1367
1368 while (v_idx--)
1369 igb_free_q_vector(adapter, v_idx);
1370
1371 return -ENOMEM;
1372}
1373
1374/**
1375 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376 * @adapter: board private structure to initialize
1377 * @msix: boolean value of MSIX capability
1378 *
1379 * This function initializes the interrupts and allocates all of the queues.
1380 **/
1381static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382{
1383 struct pci_dev *pdev = adapter->pdev;
1384 int err;
1385
1386 igb_set_interrupt_capability(adapter, msix);
1387
1388 err = igb_alloc_q_vectors(adapter);
1389 if (err) {
1390 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 goto err_alloc_q_vectors;
1392 }
1393
1394 igb_cache_ring_register(adapter);
1395
1396 return 0;
1397
1398err_alloc_q_vectors:
1399 igb_reset_interrupt_capability(adapter);
1400 return err;
1401}
1402
1403/**
1404 * igb_request_irq - initialize interrupts
1405 * @adapter: board private structure to initialize
1406 *
1407 * Attempts to configure interrupts using the best available
1408 * capabilities of the hardware and kernel.
1409 **/
1410static int igb_request_irq(struct igb_adapter *adapter)
1411{
1412 struct net_device *netdev = adapter->netdev;
1413 struct pci_dev *pdev = adapter->pdev;
1414 int err = 0;
1415
1416 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 err = igb_request_msix(adapter);
1418 if (!err)
1419 goto request_done;
1420 /* fall back to MSI */
1421 igb_free_all_tx_resources(adapter);
1422 igb_free_all_rx_resources(adapter);
1423
1424 igb_clear_interrupt_scheme(adapter);
1425 err = igb_init_interrupt_scheme(adapter, false);
1426 if (err)
1427 goto request_done;
1428
1429 igb_setup_all_tx_resources(adapter);
1430 igb_setup_all_rx_resources(adapter);
1431 igb_configure(adapter);
1432 }
1433
1434 igb_assign_vector(adapter->q_vector[0], 0);
1435
1436 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 err = request_irq(pdev->irq, igb_intr_msi, 0,
1438 netdev->name, adapter);
1439 if (!err)
1440 goto request_done;
1441
1442 /* fall back to legacy interrupts */
1443 igb_reset_interrupt_capability(adapter);
1444 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445 }
1446
1447 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448 netdev->name, adapter);
1449
1450 if (err)
1451 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452 err);
1453
1454request_done:
1455 return err;
1456}
1457
1458static void igb_free_irq(struct igb_adapter *adapter)
1459{
1460 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461 int vector = 0, i;
1462
1463 free_irq(adapter->msix_entries[vector++].vector, adapter);
1464
1465 for (i = 0; i < adapter->num_q_vectors; i++)
1466 free_irq(adapter->msix_entries[vector++].vector,
1467 adapter->q_vector[i]);
1468 } else {
1469 free_irq(adapter->pdev->irq, adapter);
1470 }
1471}
1472
1473/**
1474 * igb_irq_disable - Mask off interrupt generation on the NIC
1475 * @adapter: board private structure
1476 **/
1477static void igb_irq_disable(struct igb_adapter *adapter)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
1480
1481 /* we need to be careful when disabling interrupts. The VFs are also
1482 * mapped into these registers and so clearing the bits can cause
1483 * issues on the VF drivers so we only need to clear what we set
1484 */
1485 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 u32 regval = rd32(E1000_EIAM);
1487
1488 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1489 wr32(E1000_EIMC, adapter->eims_enable_mask);
1490 regval = rd32(E1000_EIAC);
1491 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1492 }
1493
1494 wr32(E1000_IAM, 0);
1495 wr32(E1000_IMC, ~0);
1496 wrfl();
1497 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1498 int i;
1499
1500 for (i = 0; i < adapter->num_q_vectors; i++)
1501 synchronize_irq(adapter->msix_entries[i].vector);
1502 } else {
1503 synchronize_irq(adapter->pdev->irq);
1504 }
1505}
1506
1507/**
1508 * igb_irq_enable - Enable default interrupt generation settings
1509 * @adapter: board private structure
1510 **/
1511static void igb_irq_enable(struct igb_adapter *adapter)
1512{
1513 struct e1000_hw *hw = &adapter->hw;
1514
1515 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1516 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1517 u32 regval = rd32(E1000_EIAC);
1518
1519 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1520 regval = rd32(E1000_EIAM);
1521 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1522 wr32(E1000_EIMS, adapter->eims_enable_mask);
1523 if (adapter->vfs_allocated_count) {
1524 wr32(E1000_MBVFIMR, 0xFF);
1525 ims |= E1000_IMS_VMMB;
1526 }
1527 wr32(E1000_IMS, ims);
1528 } else {
1529 wr32(E1000_IMS, IMS_ENABLE_MASK |
1530 E1000_IMS_DRSTA);
1531 wr32(E1000_IAM, IMS_ENABLE_MASK |
1532 E1000_IMS_DRSTA);
1533 }
1534}
1535
1536static void igb_update_mng_vlan(struct igb_adapter *adapter)
1537{
1538 struct e1000_hw *hw = &adapter->hw;
1539 u16 pf_id = adapter->vfs_allocated_count;
1540 u16 vid = adapter->hw.mng_cookie.vlan_id;
1541 u16 old_vid = adapter->mng_vlan_id;
1542
1543 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1544 /* add VID to filter table */
1545 igb_vfta_set(hw, vid, pf_id, true, true);
1546 adapter->mng_vlan_id = vid;
1547 } else {
1548 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1549 }
1550
1551 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1552 (vid != old_vid) &&
1553 !test_bit(old_vid, adapter->active_vlans)) {
1554 /* remove VID from filter table */
1555 igb_vfta_set(hw, vid, pf_id, false, true);
1556 }
1557}
1558
1559/**
1560 * igb_release_hw_control - release control of the h/w to f/w
1561 * @adapter: address of board private structure
1562 *
1563 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1564 * For ASF and Pass Through versions of f/w this means that the
1565 * driver is no longer loaded.
1566 **/
1567static void igb_release_hw_control(struct igb_adapter *adapter)
1568{
1569 struct e1000_hw *hw = &adapter->hw;
1570 u32 ctrl_ext;
1571
1572 /* Let firmware take over control of h/w */
1573 ctrl_ext = rd32(E1000_CTRL_EXT);
1574 wr32(E1000_CTRL_EXT,
1575 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1576}
1577
1578/**
1579 * igb_get_hw_control - get control of the h/w from f/w
1580 * @adapter: address of board private structure
1581 *
1582 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1583 * For ASF and Pass Through versions of f/w this means that
1584 * the driver is loaded.
1585 **/
1586static void igb_get_hw_control(struct igb_adapter *adapter)
1587{
1588 struct e1000_hw *hw = &adapter->hw;
1589 u32 ctrl_ext;
1590
1591 /* Let firmware know the driver has taken over */
1592 ctrl_ext = rd32(E1000_CTRL_EXT);
1593 wr32(E1000_CTRL_EXT,
1594 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1595}
1596
1597static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1598{
1599 struct net_device *netdev = adapter->netdev;
1600 struct e1000_hw *hw = &adapter->hw;
1601
1602 WARN_ON(hw->mac.type != e1000_i210);
1603
1604 if (enable)
1605 adapter->flags |= IGB_FLAG_FQTSS;
1606 else
1607 adapter->flags &= ~IGB_FLAG_FQTSS;
1608
1609 if (netif_running(netdev))
1610 schedule_work(&adapter->reset_task);
1611}
1612
1613static bool is_fqtss_enabled(struct igb_adapter *adapter)
1614{
1615 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1616}
1617
1618static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1619 enum tx_queue_prio prio)
1620{
1621 u32 val;
1622
1623 WARN_ON(hw->mac.type != e1000_i210);
1624 WARN_ON(queue < 0 || queue > 4);
1625
1626 val = rd32(E1000_I210_TXDCTL(queue));
1627
1628 if (prio == TX_QUEUE_PRIO_HIGH)
1629 val |= E1000_TXDCTL_PRIORITY;
1630 else
1631 val &= ~E1000_TXDCTL_PRIORITY;
1632
1633 wr32(E1000_I210_TXDCTL(queue), val);
1634}
1635
1636static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1637{
1638 u32 val;
1639
1640 WARN_ON(hw->mac.type != e1000_i210);
1641 WARN_ON(queue < 0 || queue > 1);
1642
1643 val = rd32(E1000_I210_TQAVCC(queue));
1644
1645 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1646 val |= E1000_TQAVCC_QUEUEMODE;
1647 else
1648 val &= ~E1000_TQAVCC_QUEUEMODE;
1649
1650 wr32(E1000_I210_TQAVCC(queue), val);
1651}
1652
1653static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1654{
1655 int i;
1656
1657 for (i = 0; i < adapter->num_tx_queues; i++) {
1658 if (adapter->tx_ring[i]->cbs_enable)
1659 return true;
1660 }
1661
1662 return false;
1663}
1664
1665static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1666{
1667 int i;
1668
1669 for (i = 0; i < adapter->num_tx_queues; i++) {
1670 if (adapter->tx_ring[i]->launchtime_enable)
1671 return true;
1672 }
1673
1674 return false;
1675}
1676
1677/**
1678 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1679 * @adapter: pointer to adapter struct
1680 * @queue: queue number
1681 *
1682 * Configure CBS and Launchtime for a given hardware queue.
1683 * Parameters are retrieved from the correct Tx ring, so
1684 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1685 * for setting those correctly prior to this function being called.
1686 **/
1687static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1688{
1689 struct net_device *netdev = adapter->netdev;
1690 struct e1000_hw *hw = &adapter->hw;
1691 struct igb_ring *ring;
1692 u32 tqavcc, tqavctrl;
1693 u16 value;
1694
1695 WARN_ON(hw->mac.type != e1000_i210);
1696 WARN_ON(queue < 0 || queue > 1);
1697 ring = adapter->tx_ring[queue];
1698
1699 /* If any of the Qav features is enabled, configure queues as SR and
1700 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701 * as SP.
1702 */
1703 if (ring->cbs_enable || ring->launchtime_enable) {
1704 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706 } else {
1707 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709 }
1710
1711 /* If CBS is enabled, set DataTranARB and config its parameters. */
1712 if (ring->cbs_enable || queue == 0) {
1713 /* i210 does not allow the queue 0 to be in the Strict
1714 * Priority mode while the Qav mode is enabled, so,
1715 * instead of disabling strict priority mode, we give
1716 * queue 0 the maximum of credits possible.
1717 *
1718 * See section 8.12.19 of the i210 datasheet, "Note:
1719 * Queue0 QueueMode must be set to 1b when
1720 * TransmitMode is set to Qav."
1721 */
1722 if (queue == 0 && !ring->cbs_enable) {
1723 /* max "linkspeed" idleslope in kbps */
1724 ring->idleslope = 1000000;
1725 ring->hicredit = ETH_FRAME_LEN;
1726 }
1727
1728 /* Always set data transfer arbitration to credit-based
1729 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730 * the queues.
1731 */
1732 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735
1736 /* According to i210 datasheet section 7.2.7.7, we should set
1737 * the 'idleSlope' field from TQAVCC register following the
1738 * equation:
1739 *
1740 * For 100 Mbps link speed:
1741 *
1742 * value = BW * 0x7735 * 0.2 (E1)
1743 *
1744 * For 1000Mbps link speed:
1745 *
1746 * value = BW * 0x7735 * 2 (E2)
1747 *
1748 * E1 and E2 can be merged into one equation as shown below.
1749 * Note that 'link-speed' is in Mbps.
1750 *
1751 * value = BW * 0x7735 * 2 * link-speed
1752 * -------------- (E3)
1753 * 1000
1754 *
1755 * 'BW' is the percentage bandwidth out of full link speed
1756 * which can be found with the following equation. Note that
1757 * idleSlope here is the parameter from this function which
1758 * is in kbps.
1759 *
1760 * BW = idleSlope
1761 * ----------------- (E4)
1762 * link-speed * 1000
1763 *
1764 * That said, we can come up with a generic equation to
1765 * calculate the value we should set it TQAVCC register by
1766 * replacing 'BW' in E3 by E4. The resulting equation is:
1767 *
1768 * value = idleSlope * 0x7735 * 2 * link-speed
1769 * ----------------- -------------- (E5)
1770 * link-speed * 1000 1000
1771 *
1772 * 'link-speed' is present in both sides of the fraction so
1773 * it is canceled out. The final equation is the following:
1774 *
1775 * value = idleSlope * 61034
1776 * ----------------- (E6)
1777 * 1000000
1778 *
1779 * NOTE: For i210, given the above, we can see that idleslope
1780 * is represented in 16.38431 kbps units by the value at
1781 * the TQAVCC register (1Gbps / 61034), which reduces
1782 * the granularity for idleslope increments.
1783 * For instance, if you want to configure a 2576kbps
1784 * idleslope, the value to be written on the register
1785 * would have to be 157.23. If rounded down, you end
1786 * up with less bandwidth available than originally
1787 * required (~2572 kbps). If rounded up, you end up
1788 * with a higher bandwidth (~2589 kbps). Below the
1789 * approach we take is to always round up the
1790 * calculated value, so the resulting bandwidth might
1791 * be slightly higher for some configurations.
1792 */
1793 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794
1795 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797 tqavcc |= value;
1798 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799
1800 wr32(E1000_I210_TQAVHC(queue),
1801 0x80000000 + ring->hicredit * 0x7735);
1802 } else {
1803
1804 /* Set idleSlope to zero. */
1805 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808
1809 /* Set hiCredit to zero. */
1810 wr32(E1000_I210_TQAVHC(queue), 0);
1811
1812 /* If CBS is not enabled for any queues anymore, then return to
1813 * the default state of Data Transmission Arbitration on
1814 * TQAVCTRL.
1815 */
1816 if (!is_any_cbs_enabled(adapter)) {
1817 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 }
1821 }
1822
1823 /* If LaunchTime is enabled, set DataTranTIM. */
1824 if (ring->launchtime_enable) {
1825 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 * for any of the SR queues, and configure fetchtime delta.
1827 * XXX NOTE:
1828 * - LaunchTime will be enabled for all SR queues.
1829 * - A fixed offset can be added relative to the launch
1830 * time of all packets if configured at reg LAUNCH_OS0.
1831 * We are keeping it as 0 for now (default value).
1832 */
1833 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837 } else {
1838 /* If Launchtime is not enabled for any SR queues anymore,
1839 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 * effectively disabling Launchtime.
1841 */
1842 if (!is_any_txtime_enabled(adapter)) {
1843 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847 }
1848 }
1849
1850 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 * CBS are not configurable by software so we don't do any 'controller
1852 * configuration' in respect to these parameters.
1853 */
1854
1855 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 ring->cbs_enable ? "enabled" : "disabled",
1857 ring->launchtime_enable ? "enabled" : "disabled",
1858 queue,
1859 ring->idleslope, ring->sendslope,
1860 ring->hicredit, ring->locredit);
1861}
1862
1863static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864 bool enable)
1865{
1866 struct igb_ring *ring;
1867
1868 if (queue < 0 || queue > adapter->num_tx_queues)
1869 return -EINVAL;
1870
1871 ring = adapter->tx_ring[queue];
1872 ring->launchtime_enable = enable;
1873
1874 return 0;
1875}
1876
1877static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 bool enable, int idleslope, int sendslope,
1879 int hicredit, int locredit)
1880{
1881 struct igb_ring *ring;
1882
1883 if (queue < 0 || queue > adapter->num_tx_queues)
1884 return -EINVAL;
1885
1886 ring = adapter->tx_ring[queue];
1887
1888 ring->cbs_enable = enable;
1889 ring->idleslope = idleslope;
1890 ring->sendslope = sendslope;
1891 ring->hicredit = hicredit;
1892 ring->locredit = locredit;
1893
1894 return 0;
1895}
1896
1897/**
1898 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899 * @adapter: pointer to adapter struct
1900 *
1901 * Configure TQAVCTRL register switching the controller's Tx mode
1902 * if FQTSS mode is enabled or disabled. Additionally, will issue
1903 * a call to igb_config_tx_modes() per queue so any previously saved
1904 * Tx parameters are applied.
1905 **/
1906static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907{
1908 struct net_device *netdev = adapter->netdev;
1909 struct e1000_hw *hw = &adapter->hw;
1910 u32 val;
1911
1912 /* Only i210 controller supports changing the transmission mode. */
1913 if (hw->mac.type != e1000_i210)
1914 return;
1915
1916 if (is_fqtss_enabled(adapter)) {
1917 int i, max_queue;
1918
1919 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 * so SP queues wait for SR ones.
1922 */
1923 val = rd32(E1000_I210_TQAVCTRL);
1924 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 wr32(E1000_I210_TQAVCTRL, val);
1927
1928 /* Configure Tx and Rx packet buffers sizes as described in
1929 * i210 datasheet section 7.2.7.7.
1930 */
1931 val = rd32(E1000_TXPBS);
1932 val &= ~I210_TXPBSIZE_MASK;
1933 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1934 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1935 wr32(E1000_TXPBS, val);
1936
1937 val = rd32(E1000_RXPBS);
1938 val &= ~I210_RXPBSIZE_MASK;
1939 val |= I210_RXPBSIZE_PB_30KB;
1940 wr32(E1000_RXPBS, val);
1941
1942 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 * register should not exceed the buffer size programmed in
1944 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946 * 4kB / 64.
1947 *
1948 * However, when we do so, no frame from queue 2 and 3 are
1949 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1950 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952 */
1953 val = (4096 - 1) / 64;
1954 wr32(E1000_I210_DTXMXPKTSZ, val);
1955
1956 /* Since FQTSS mode is enabled, apply any CBS configuration
1957 * previously set. If no previous CBS configuration has been
1958 * done, then the initial configuration is applied, which means
1959 * CBS is disabled.
1960 */
1961 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963
1964 for (i = 0; i < max_queue; i++) {
1965 igb_config_tx_modes(adapter, i);
1966 }
1967 } else {
1968 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971
1972 val = rd32(E1000_I210_TQAVCTRL);
1973 /* According to Section 8.12.21, the other flags we've set when
1974 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 * don't set they here.
1976 */
1977 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 wr32(E1000_I210_TQAVCTRL, val);
1979 }
1980
1981 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 "enabled" : "disabled");
1983}
1984
1985/**
1986 * igb_configure - configure the hardware for RX and TX
1987 * @adapter: private board structure
1988 **/
1989static void igb_configure(struct igb_adapter *adapter)
1990{
1991 struct net_device *netdev = adapter->netdev;
1992 int i;
1993
1994 igb_get_hw_control(adapter);
1995 igb_set_rx_mode(netdev);
1996 igb_setup_tx_mode(adapter);
1997
1998 igb_restore_vlan(adapter);
1999
2000 igb_setup_tctl(adapter);
2001 igb_setup_mrqc(adapter);
2002 igb_setup_rctl(adapter);
2003
2004 igb_nfc_filter_restore(adapter);
2005 igb_configure_tx(adapter);
2006 igb_configure_rx(adapter);
2007
2008 igb_rx_fifo_flush_82575(&adapter->hw);
2009
2010 /* call igb_desc_unused which always leaves
2011 * at least 1 descriptor unused to make sure
2012 * next_to_use != next_to_clean
2013 */
2014 for (i = 0; i < adapter->num_rx_queues; i++) {
2015 struct igb_ring *ring = adapter->rx_ring[i];
2016 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017 }
2018}
2019
2020/**
2021 * igb_power_up_link - Power up the phy/serdes link
2022 * @adapter: address of board private structure
2023 **/
2024void igb_power_up_link(struct igb_adapter *adapter)
2025{
2026 igb_reset_phy(&adapter->hw);
2027
2028 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 igb_power_up_phy_copper(&adapter->hw);
2030 else
2031 igb_power_up_serdes_link_82575(&adapter->hw);
2032
2033 igb_setup_link(&adapter->hw);
2034}
2035
2036/**
2037 * igb_power_down_link - Power down the phy/serdes link
2038 * @adapter: address of board private structure
2039 */
2040static void igb_power_down_link(struct igb_adapter *adapter)
2041{
2042 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 igb_power_down_phy_copper_82575(&adapter->hw);
2044 else
2045 igb_shutdown_serdes_link_82575(&adapter->hw);
2046}
2047
2048/**
2049 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2050 * @adapter: address of the board private structure
2051 **/
2052static void igb_check_swap_media(struct igb_adapter *adapter)
2053{
2054 struct e1000_hw *hw = &adapter->hw;
2055 u32 ctrl_ext, connsw;
2056 bool swap_now = false;
2057
2058 ctrl_ext = rd32(E1000_CTRL_EXT);
2059 connsw = rd32(E1000_CONNSW);
2060
2061 /* need to live swap if current media is copper and we have fiber/serdes
2062 * to go to.
2063 */
2064
2065 if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067 swap_now = true;
2068 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 !(connsw & E1000_CONNSW_SERDESD)) {
2070 /* copper signal takes time to appear */
2071 if (adapter->copper_tries < 4) {
2072 adapter->copper_tries++;
2073 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 wr32(E1000_CONNSW, connsw);
2075 return;
2076 } else {
2077 adapter->copper_tries = 0;
2078 if ((connsw & E1000_CONNSW_PHYSD) &&
2079 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080 swap_now = true;
2081 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 wr32(E1000_CONNSW, connsw);
2083 }
2084 }
2085 }
2086
2087 if (!swap_now)
2088 return;
2089
2090 switch (hw->phy.media_type) {
2091 case e1000_media_type_copper:
2092 netdev_info(adapter->netdev,
2093 "MAS: changing media to fiber/serdes\n");
2094 ctrl_ext |=
2095 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 adapter->copper_tries = 0;
2098 break;
2099 case e1000_media_type_internal_serdes:
2100 case e1000_media_type_fiber:
2101 netdev_info(adapter->netdev,
2102 "MAS: changing media to copper\n");
2103 ctrl_ext &=
2104 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106 break;
2107 default:
2108 /* shouldn't get here during regular operation */
2109 netdev_err(adapter->netdev,
2110 "AMS: Invalid media type found, returning\n");
2111 break;
2112 }
2113 wr32(E1000_CTRL_EXT, ctrl_ext);
2114}
2115
2116/**
2117 * igb_up - Open the interface and prepare it to handle traffic
2118 * @adapter: board private structure
2119 **/
2120int igb_up(struct igb_adapter *adapter)
2121{
2122 struct e1000_hw *hw = &adapter->hw;
2123 int i;
2124
2125 /* hardware has been reset, we need to reload some things */
2126 igb_configure(adapter);
2127
2128 clear_bit(__IGB_DOWN, &adapter->state);
2129
2130 for (i = 0; i < adapter->num_q_vectors; i++)
2131 napi_enable(&(adapter->q_vector[i]->napi));
2132
2133 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 igb_configure_msix(adapter);
2135 else
2136 igb_assign_vector(adapter->q_vector[0], 0);
2137
2138 /* Clear any pending interrupts. */
2139 rd32(E1000_TSICR);
2140 rd32(E1000_ICR);
2141 igb_irq_enable(adapter);
2142
2143 /* notify VFs that reset has been completed */
2144 if (adapter->vfs_allocated_count) {
2145 u32 reg_data = rd32(E1000_CTRL_EXT);
2146
2147 reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 wr32(E1000_CTRL_EXT, reg_data);
2149 }
2150
2151 netif_tx_start_all_queues(adapter->netdev);
2152
2153 /* start the watchdog. */
2154 hw->mac.get_link_status = 1;
2155 schedule_work(&adapter->watchdog_task);
2156
2157 if ((adapter->flags & IGB_FLAG_EEE) &&
2158 (!hw->dev_spec._82575.eee_disable))
2159 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160
2161 return 0;
2162}
2163
2164void igb_down(struct igb_adapter *adapter)
2165{
2166 struct net_device *netdev = adapter->netdev;
2167 struct e1000_hw *hw = &adapter->hw;
2168 u32 tctl, rctl;
2169 int i;
2170
2171 /* signal that we're down so the interrupt handler does not
2172 * reschedule our watchdog timer
2173 */
2174 set_bit(__IGB_DOWN, &adapter->state);
2175
2176 /* disable receives in the hardware */
2177 rctl = rd32(E1000_RCTL);
2178 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 /* flush and sleep below */
2180
2181 igb_nfc_filter_exit(adapter);
2182
2183 netif_carrier_off(netdev);
2184 netif_tx_stop_all_queues(netdev);
2185
2186 /* disable transmits in the hardware */
2187 tctl = rd32(E1000_TCTL);
2188 tctl &= ~E1000_TCTL_EN;
2189 wr32(E1000_TCTL, tctl);
2190 /* flush both disables and wait for them to finish */
2191 wrfl();
2192 usleep_range(10000, 11000);
2193
2194 igb_irq_disable(adapter);
2195
2196 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197
2198 for (i = 0; i < adapter->num_q_vectors; i++) {
2199 if (adapter->q_vector[i]) {
2200 napi_synchronize(&adapter->q_vector[i]->napi);
2201 napi_disable(&adapter->q_vector[i]->napi);
2202 }
2203 }
2204
2205 del_timer_sync(&adapter->watchdog_timer);
2206 del_timer_sync(&adapter->phy_info_timer);
2207
2208 /* record the stats before reset*/
2209 spin_lock(&adapter->stats64_lock);
2210 igb_update_stats(adapter);
2211 spin_unlock(&adapter->stats64_lock);
2212
2213 adapter->link_speed = 0;
2214 adapter->link_duplex = 0;
2215
2216 if (!pci_channel_offline(adapter->pdev))
2217 igb_reset(adapter);
2218
2219 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221
2222 igb_clean_all_tx_rings(adapter);
2223 igb_clean_all_rx_rings(adapter);
2224#ifdef CONFIG_IGB_DCA
2225
2226 /* since we reset the hardware DCA settings were cleared */
2227 igb_setup_dca(adapter);
2228#endif
2229}
2230
2231void igb_reinit_locked(struct igb_adapter *adapter)
2232{
2233 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2234 usleep_range(1000, 2000);
2235 igb_down(adapter);
2236 igb_up(adapter);
2237 clear_bit(__IGB_RESETTING, &adapter->state);
2238}
2239
2240/** igb_enable_mas - Media Autosense re-enable after swap
2241 *
2242 * @adapter: adapter struct
2243 **/
2244static void igb_enable_mas(struct igb_adapter *adapter)
2245{
2246 struct e1000_hw *hw = &adapter->hw;
2247 u32 connsw = rd32(E1000_CONNSW);
2248
2249 /* configure for SerDes media detect */
2250 if ((hw->phy.media_type == e1000_media_type_copper) &&
2251 (!(connsw & E1000_CONNSW_SERDESD))) {
2252 connsw |= E1000_CONNSW_ENRGSRC;
2253 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254 wr32(E1000_CONNSW, connsw);
2255 wrfl();
2256 }
2257}
2258
2259#ifdef CONFIG_IGB_HWMON
2260/**
2261 * igb_set_i2c_bb - Init I2C interface
2262 * @hw: pointer to hardware structure
2263 **/
2264static void igb_set_i2c_bb(struct e1000_hw *hw)
2265{
2266 u32 ctrl_ext;
2267 s32 i2cctl;
2268
2269 ctrl_ext = rd32(E1000_CTRL_EXT);
2270 ctrl_ext |= E1000_CTRL_I2C_ENA;
2271 wr32(E1000_CTRL_EXT, ctrl_ext);
2272 wrfl();
2273
2274 i2cctl = rd32(E1000_I2CPARAMS);
2275 i2cctl |= E1000_I2CBB_EN
2276 | E1000_I2C_CLK_OE_N
2277 | E1000_I2C_DATA_OE_N;
2278 wr32(E1000_I2CPARAMS, i2cctl);
2279 wrfl();
2280}
2281#endif
2282
2283void igb_reset(struct igb_adapter *adapter)
2284{
2285 struct pci_dev *pdev = adapter->pdev;
2286 struct e1000_hw *hw = &adapter->hw;
2287 struct e1000_mac_info *mac = &hw->mac;
2288 struct e1000_fc_info *fc = &hw->fc;
2289 u32 pba, hwm;
2290
2291 /* Repartition Pba for greater than 9k mtu
2292 * To take effect CTRL.RST is required.
2293 */
2294 switch (mac->type) {
2295 case e1000_i350:
2296 case e1000_i354:
2297 case e1000_82580:
2298 pba = rd32(E1000_RXPBS);
2299 pba = igb_rxpbs_adjust_82580(pba);
2300 break;
2301 case e1000_82576:
2302 pba = rd32(E1000_RXPBS);
2303 pba &= E1000_RXPBS_SIZE_MASK_82576;
2304 break;
2305 case e1000_82575:
2306 case e1000_i210:
2307 case e1000_i211:
2308 default:
2309 pba = E1000_PBA_34K;
2310 break;
2311 }
2312
2313 if (mac->type == e1000_82575) {
2314 u32 min_rx_space, min_tx_space, needed_tx_space;
2315
2316 /* write Rx PBA so that hardware can report correct Tx PBA */
2317 wr32(E1000_PBA, pba);
2318
2319 /* To maintain wire speed transmits, the Tx FIFO should be
2320 * large enough to accommodate two full transmit packets,
2321 * rounded up to the next 1KB and expressed in KB. Likewise,
2322 * the Rx FIFO should be large enough to accommodate at least
2323 * one full receive packet and is similarly rounded up and
2324 * expressed in KB.
2325 */
2326 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2327
2328 /* The Tx FIFO also stores 16 bytes of information about the Tx
2329 * but don't include Ethernet FCS because hardware appends it.
2330 * We only need to round down to the nearest 512 byte block
2331 * count since the value we care about is 2 frames, not 1.
2332 */
2333 min_tx_space = adapter->max_frame_size;
2334 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2335 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2336
2337 /* upper 16 bits has Tx packet buffer allocation size in KB */
2338 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2339
2340 /* If current Tx allocation is less than the min Tx FIFO size,
2341 * and the min Tx FIFO size is less than the current Rx FIFO
2342 * allocation, take space away from current Rx allocation.
2343 */
2344 if (needed_tx_space < pba) {
2345 pba -= needed_tx_space;
2346
2347 /* if short on Rx space, Rx wins and must trump Tx
2348 * adjustment
2349 */
2350 if (pba < min_rx_space)
2351 pba = min_rx_space;
2352 }
2353
2354 /* adjust PBA for jumbo frames */
2355 wr32(E1000_PBA, pba);
2356 }
2357
2358 /* flow control settings
2359 * The high water mark must be low enough to fit one full frame
2360 * after transmitting the pause frame. As such we must have enough
2361 * space to allow for us to complete our current transmit and then
2362 * receive the frame that is in progress from the link partner.
2363 * Set it to:
2364 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2365 */
2366 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2367
2368 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2369 fc->low_water = fc->high_water - 16;
2370 fc->pause_time = 0xFFFF;
2371 fc->send_xon = 1;
2372 fc->current_mode = fc->requested_mode;
2373
2374 /* disable receive for all VFs and wait one second */
2375 if (adapter->vfs_allocated_count) {
2376 int i;
2377
2378 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2379 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2380
2381 /* ping all the active vfs to let them know we are going down */
2382 igb_ping_all_vfs(adapter);
2383
2384 /* disable transmits and receives */
2385 wr32(E1000_VFRE, 0);
2386 wr32(E1000_VFTE, 0);
2387 }
2388
2389 /* Allow time for pending master requests to run */
2390 hw->mac.ops.reset_hw(hw);
2391 wr32(E1000_WUC, 0);
2392
2393 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2394 /* need to resetup here after media swap */
2395 adapter->ei.get_invariants(hw);
2396 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2397 }
2398 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2399 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2400 igb_enable_mas(adapter);
2401 }
2402 if (hw->mac.ops.init_hw(hw))
2403 dev_err(&pdev->dev, "Hardware Error\n");
2404
2405 /* RAR registers were cleared during init_hw, clear mac table */
2406 igb_flush_mac_table(adapter);
2407 __dev_uc_unsync(adapter->netdev, NULL);
2408
2409 /* Recover default RAR entry */
2410 igb_set_default_mac_filter(adapter);
2411
2412 /* Flow control settings reset on hardware reset, so guarantee flow
2413 * control is off when forcing speed.
2414 */
2415 if (!hw->mac.autoneg)
2416 igb_force_mac_fc(hw);
2417
2418 igb_init_dmac(adapter, pba);
2419#ifdef CONFIG_IGB_HWMON
2420 /* Re-initialize the thermal sensor on i350 devices. */
2421 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2422 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2423 /* If present, re-initialize the external thermal sensor
2424 * interface.
2425 */
2426 if (adapter->ets)
2427 igb_set_i2c_bb(hw);
2428 mac->ops.init_thermal_sensor_thresh(hw);
2429 }
2430 }
2431#endif
2432 /* Re-establish EEE setting */
2433 if (hw->phy.media_type == e1000_media_type_copper) {
2434 switch (mac->type) {
2435 case e1000_i350:
2436 case e1000_i210:
2437 case e1000_i211:
2438 igb_set_eee_i350(hw, true, true);
2439 break;
2440 case e1000_i354:
2441 igb_set_eee_i354(hw, true, true);
2442 break;
2443 default:
2444 break;
2445 }
2446 }
2447 if (!netif_running(adapter->netdev))
2448 igb_power_down_link(adapter);
2449
2450 igb_update_mng_vlan(adapter);
2451
2452 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2453 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2454
2455 /* Re-enable PTP, where applicable. */
2456 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2457 igb_ptp_reset(adapter);
2458
2459 igb_get_phy_info(hw);
2460}
2461
2462static netdev_features_t igb_fix_features(struct net_device *netdev,
2463 netdev_features_t features)
2464{
2465 /* Since there is no support for separate Rx/Tx vlan accel
2466 * enable/disable make sure Tx flag is always in same state as Rx.
2467 */
2468 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2469 features |= NETIF_F_HW_VLAN_CTAG_TX;
2470 else
2471 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2472
2473 return features;
2474}
2475
2476static int igb_set_features(struct net_device *netdev,
2477 netdev_features_t features)
2478{
2479 netdev_features_t changed = netdev->features ^ features;
2480 struct igb_adapter *adapter = netdev_priv(netdev);
2481
2482 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2483 igb_vlan_mode(netdev, features);
2484
2485 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2486 return 0;
2487
2488 if (!(features & NETIF_F_NTUPLE)) {
2489 struct hlist_node *node2;
2490 struct igb_nfc_filter *rule;
2491
2492 spin_lock(&adapter->nfc_lock);
2493 hlist_for_each_entry_safe(rule, node2,
2494 &adapter->nfc_filter_list, nfc_node) {
2495 igb_erase_filter(adapter, rule);
2496 hlist_del(&rule->nfc_node);
2497 kfree(rule);
2498 }
2499 spin_unlock(&adapter->nfc_lock);
2500 adapter->nfc_filter_count = 0;
2501 }
2502
2503 netdev->features = features;
2504
2505 if (netif_running(netdev))
2506 igb_reinit_locked(adapter);
2507 else
2508 igb_reset(adapter);
2509
2510 return 1;
2511}
2512
2513static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2514 struct net_device *dev,
2515 const unsigned char *addr, u16 vid,
2516 u16 flags,
2517 struct netlink_ext_ack *extack)
2518{
2519 /* guarantee we can provide a unique filter for the unicast address */
2520 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2521 struct igb_adapter *adapter = netdev_priv(dev);
2522 int vfn = adapter->vfs_allocated_count;
2523
2524 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2525 return -ENOMEM;
2526 }
2527
2528 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2529}
2530
2531#define IGB_MAX_MAC_HDR_LEN 127
2532#define IGB_MAX_NETWORK_HDR_LEN 511
2533
2534static netdev_features_t
2535igb_features_check(struct sk_buff *skb, struct net_device *dev,
2536 netdev_features_t features)
2537{
2538 unsigned int network_hdr_len, mac_hdr_len;
2539
2540 /* Make certain the headers can be described by a context descriptor */
2541 mac_hdr_len = skb_network_offset(skb);
2542 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2543 return features & ~(NETIF_F_HW_CSUM |
2544 NETIF_F_SCTP_CRC |
2545 NETIF_F_GSO_UDP_L4 |
2546 NETIF_F_HW_VLAN_CTAG_TX |
2547 NETIF_F_TSO |
2548 NETIF_F_TSO6);
2549
2550 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2551 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2552 return features & ~(NETIF_F_HW_CSUM |
2553 NETIF_F_SCTP_CRC |
2554 NETIF_F_GSO_UDP_L4 |
2555 NETIF_F_TSO |
2556 NETIF_F_TSO6);
2557
2558 /* We can only support IPV4 TSO in tunnels if we can mangle the
2559 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2560 */
2561 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2562 features &= ~NETIF_F_TSO;
2563
2564 return features;
2565}
2566
2567static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2568{
2569 if (!is_fqtss_enabled(adapter)) {
2570 enable_fqtss(adapter, true);
2571 return;
2572 }
2573
2574 igb_config_tx_modes(adapter, queue);
2575
2576 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2577 enable_fqtss(adapter, false);
2578}
2579
2580static int igb_offload_cbs(struct igb_adapter *adapter,
2581 struct tc_cbs_qopt_offload *qopt)
2582{
2583 struct e1000_hw *hw = &adapter->hw;
2584 int err;
2585
2586 /* CBS offloading is only supported by i210 controller. */
2587 if (hw->mac.type != e1000_i210)
2588 return -EOPNOTSUPP;
2589
2590 /* CBS offloading is only supported by queue 0 and queue 1. */
2591 if (qopt->queue < 0 || qopt->queue > 1)
2592 return -EINVAL;
2593
2594 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2595 qopt->idleslope, qopt->sendslope,
2596 qopt->hicredit, qopt->locredit);
2597 if (err)
2598 return err;
2599
2600 igb_offload_apply(adapter, qopt->queue);
2601
2602 return 0;
2603}
2604
2605#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2606#define VLAN_PRIO_FULL_MASK (0x07)
2607
2608static int igb_parse_cls_flower(struct igb_adapter *adapter,
2609 struct flow_cls_offload *f,
2610 int traffic_class,
2611 struct igb_nfc_filter *input)
2612{
2613 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2614 struct flow_dissector *dissector = rule->match.dissector;
2615 struct netlink_ext_ack *extack = f->common.extack;
2616
2617 if (dissector->used_keys &
2618 ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2619 BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2620 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2621 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2622 NL_SET_ERR_MSG_MOD(extack,
2623 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2624 return -EOPNOTSUPP;
2625 }
2626
2627 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2628 struct flow_match_eth_addrs match;
2629
2630 flow_rule_match_eth_addrs(rule, &match);
2631 if (!is_zero_ether_addr(match.mask->dst)) {
2632 if (!is_broadcast_ether_addr(match.mask->dst)) {
2633 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2634 return -EINVAL;
2635 }
2636
2637 input->filter.match_flags |=
2638 IGB_FILTER_FLAG_DST_MAC_ADDR;
2639 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2640 }
2641
2642 if (!is_zero_ether_addr(match.mask->src)) {
2643 if (!is_broadcast_ether_addr(match.mask->src)) {
2644 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2645 return -EINVAL;
2646 }
2647
2648 input->filter.match_flags |=
2649 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2650 ether_addr_copy(input->filter.src_addr, match.key->src);
2651 }
2652 }
2653
2654 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2655 struct flow_match_basic match;
2656
2657 flow_rule_match_basic(rule, &match);
2658 if (match.mask->n_proto) {
2659 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2660 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2661 return -EINVAL;
2662 }
2663
2664 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2665 input->filter.etype = match.key->n_proto;
2666 }
2667 }
2668
2669 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2670 struct flow_match_vlan match;
2671
2672 flow_rule_match_vlan(rule, &match);
2673 if (match.mask->vlan_priority) {
2674 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2675 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2676 return -EINVAL;
2677 }
2678
2679 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2680 input->filter.vlan_tci =
2681 (__force __be16)match.key->vlan_priority;
2682 }
2683 }
2684
2685 input->action = traffic_class;
2686 input->cookie = f->cookie;
2687
2688 return 0;
2689}
2690
2691static int igb_configure_clsflower(struct igb_adapter *adapter,
2692 struct flow_cls_offload *cls_flower)
2693{
2694 struct netlink_ext_ack *extack = cls_flower->common.extack;
2695 struct igb_nfc_filter *filter, *f;
2696 int err, tc;
2697
2698 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2699 if (tc < 0) {
2700 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2701 return -EINVAL;
2702 }
2703
2704 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2705 if (!filter)
2706 return -ENOMEM;
2707
2708 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2709 if (err < 0)
2710 goto err_parse;
2711
2712 spin_lock(&adapter->nfc_lock);
2713
2714 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2715 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2716 err = -EEXIST;
2717 NL_SET_ERR_MSG_MOD(extack,
2718 "This filter is already set in ethtool");
2719 goto err_locked;
2720 }
2721 }
2722
2723 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2724 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2725 err = -EEXIST;
2726 NL_SET_ERR_MSG_MOD(extack,
2727 "This filter is already set in cls_flower");
2728 goto err_locked;
2729 }
2730 }
2731
2732 err = igb_add_filter(adapter, filter);
2733 if (err < 0) {
2734 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2735 goto err_locked;
2736 }
2737
2738 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2739
2740 spin_unlock(&adapter->nfc_lock);
2741
2742 return 0;
2743
2744err_locked:
2745 spin_unlock(&adapter->nfc_lock);
2746
2747err_parse:
2748 kfree(filter);
2749
2750 return err;
2751}
2752
2753static int igb_delete_clsflower(struct igb_adapter *adapter,
2754 struct flow_cls_offload *cls_flower)
2755{
2756 struct igb_nfc_filter *filter;
2757 int err;
2758
2759 spin_lock(&adapter->nfc_lock);
2760
2761 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2762 if (filter->cookie == cls_flower->cookie)
2763 break;
2764
2765 if (!filter) {
2766 err = -ENOENT;
2767 goto out;
2768 }
2769
2770 err = igb_erase_filter(adapter, filter);
2771 if (err < 0)
2772 goto out;
2773
2774 hlist_del(&filter->nfc_node);
2775 kfree(filter);
2776
2777out:
2778 spin_unlock(&adapter->nfc_lock);
2779
2780 return err;
2781}
2782
2783static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2784 struct flow_cls_offload *cls_flower)
2785{
2786 switch (cls_flower->command) {
2787 case FLOW_CLS_REPLACE:
2788 return igb_configure_clsflower(adapter, cls_flower);
2789 case FLOW_CLS_DESTROY:
2790 return igb_delete_clsflower(adapter, cls_flower);
2791 case FLOW_CLS_STATS:
2792 return -EOPNOTSUPP;
2793 default:
2794 return -EOPNOTSUPP;
2795 }
2796}
2797
2798static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2799 void *cb_priv)
2800{
2801 struct igb_adapter *adapter = cb_priv;
2802
2803 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2804 return -EOPNOTSUPP;
2805
2806 switch (type) {
2807 case TC_SETUP_CLSFLOWER:
2808 return igb_setup_tc_cls_flower(adapter, type_data);
2809
2810 default:
2811 return -EOPNOTSUPP;
2812 }
2813}
2814
2815static int igb_offload_txtime(struct igb_adapter *adapter,
2816 struct tc_etf_qopt_offload *qopt)
2817{
2818 struct e1000_hw *hw = &adapter->hw;
2819 int err;
2820
2821 /* Launchtime offloading is only supported by i210 controller. */
2822 if (hw->mac.type != e1000_i210)
2823 return -EOPNOTSUPP;
2824
2825 /* Launchtime offloading is only supported by queues 0 and 1. */
2826 if (qopt->queue < 0 || qopt->queue > 1)
2827 return -EINVAL;
2828
2829 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2830 if (err)
2831 return err;
2832
2833 igb_offload_apply(adapter, qopt->queue);
2834
2835 return 0;
2836}
2837
2838static int igb_tc_query_caps(struct igb_adapter *adapter,
2839 struct tc_query_caps_base *base)
2840{
2841 switch (base->type) {
2842 case TC_SETUP_QDISC_TAPRIO: {
2843 struct tc_taprio_caps *caps = base->caps;
2844
2845 caps->broken_mqprio = true;
2846
2847 return 0;
2848 }
2849 default:
2850 return -EOPNOTSUPP;
2851 }
2852}
2853
2854static LIST_HEAD(igb_block_cb_list);
2855
2856static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2857 void *type_data)
2858{
2859 struct igb_adapter *adapter = netdev_priv(dev);
2860
2861 switch (type) {
2862 case TC_QUERY_CAPS:
2863 return igb_tc_query_caps(adapter, type_data);
2864 case TC_SETUP_QDISC_CBS:
2865 return igb_offload_cbs(adapter, type_data);
2866 case TC_SETUP_BLOCK:
2867 return flow_block_cb_setup_simple(type_data,
2868 &igb_block_cb_list,
2869 igb_setup_tc_block_cb,
2870 adapter, adapter, true);
2871
2872 case TC_SETUP_QDISC_ETF:
2873 return igb_offload_txtime(adapter, type_data);
2874
2875 default:
2876 return -EOPNOTSUPP;
2877 }
2878}
2879
2880static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2881{
2882 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2883 struct igb_adapter *adapter = netdev_priv(dev);
2884 struct bpf_prog *prog = bpf->prog, *old_prog;
2885 bool running = netif_running(dev);
2886 bool need_reset;
2887
2888 /* verify igb ring attributes are sufficient for XDP */
2889 for (i = 0; i < adapter->num_rx_queues; i++) {
2890 struct igb_ring *ring = adapter->rx_ring[i];
2891
2892 if (frame_size > igb_rx_bufsz(ring)) {
2893 NL_SET_ERR_MSG_MOD(bpf->extack,
2894 "The RX buffer size is too small for the frame size");
2895 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2896 igb_rx_bufsz(ring), frame_size);
2897 return -EINVAL;
2898 }
2899 }
2900
2901 old_prog = xchg(&adapter->xdp_prog, prog);
2902 need_reset = (!!prog != !!old_prog);
2903
2904 /* device is up and bpf is added/removed, must setup the RX queues */
2905 if (need_reset && running) {
2906 igb_close(dev);
2907 } else {
2908 for (i = 0; i < adapter->num_rx_queues; i++)
2909 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2910 adapter->xdp_prog);
2911 }
2912
2913 if (old_prog)
2914 bpf_prog_put(old_prog);
2915
2916 /* bpf is just replaced, RXQ and MTU are already setup */
2917 if (!need_reset) {
2918 return 0;
2919 } else {
2920 if (prog)
2921 xdp_features_set_redirect_target(dev, true);
2922 else
2923 xdp_features_clear_redirect_target(dev);
2924 }
2925
2926 if (running)
2927 igb_open(dev);
2928
2929 return 0;
2930}
2931
2932static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2933{
2934 switch (xdp->command) {
2935 case XDP_SETUP_PROG:
2936 return igb_xdp_setup(dev, xdp);
2937 default:
2938 return -EINVAL;
2939 }
2940}
2941
2942static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2943{
2944 /* Force memory writes to complete before letting h/w know there
2945 * are new descriptors to fetch.
2946 */
2947 wmb();
2948 writel(ring->next_to_use, ring->tail);
2949}
2950
2951static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2952{
2953 unsigned int r_idx = smp_processor_id();
2954
2955 if (r_idx >= adapter->num_tx_queues)
2956 r_idx = r_idx % adapter->num_tx_queues;
2957
2958 return adapter->tx_ring[r_idx];
2959}
2960
2961static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2962{
2963 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2964 int cpu = smp_processor_id();
2965 struct igb_ring *tx_ring;
2966 struct netdev_queue *nq;
2967 u32 ret;
2968
2969 if (unlikely(!xdpf))
2970 return IGB_XDP_CONSUMED;
2971
2972 /* During program transitions its possible adapter->xdp_prog is assigned
2973 * but ring has not been configured yet. In this case simply abort xmit.
2974 */
2975 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2976 if (unlikely(!tx_ring))
2977 return IGB_XDP_CONSUMED;
2978
2979 nq = txring_txq(tx_ring);
2980 __netif_tx_lock(nq, cpu);
2981 /* Avoid transmit queue timeout since we share it with the slow path */
2982 txq_trans_cond_update(nq);
2983 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2984 __netif_tx_unlock(nq);
2985
2986 return ret;
2987}
2988
2989static int igb_xdp_xmit(struct net_device *dev, int n,
2990 struct xdp_frame **frames, u32 flags)
2991{
2992 struct igb_adapter *adapter = netdev_priv(dev);
2993 int cpu = smp_processor_id();
2994 struct igb_ring *tx_ring;
2995 struct netdev_queue *nq;
2996 int nxmit = 0;
2997 int i;
2998
2999 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
3000 return -ENETDOWN;
3001
3002 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3003 return -EINVAL;
3004
3005 /* During program transitions its possible adapter->xdp_prog is assigned
3006 * but ring has not been configured yet. In this case simply abort xmit.
3007 */
3008 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
3009 if (unlikely(!tx_ring))
3010 return -ENXIO;
3011
3012 nq = txring_txq(tx_ring);
3013 __netif_tx_lock(nq, cpu);
3014
3015 /* Avoid transmit queue timeout since we share it with the slow path */
3016 txq_trans_cond_update(nq);
3017
3018 for (i = 0; i < n; i++) {
3019 struct xdp_frame *xdpf = frames[i];
3020 int err;
3021
3022 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3023 if (err != IGB_XDP_TX)
3024 break;
3025 nxmit++;
3026 }
3027
3028 __netif_tx_unlock(nq);
3029
3030 if (unlikely(flags & XDP_XMIT_FLUSH))
3031 igb_xdp_ring_update_tail(tx_ring);
3032
3033 return nxmit;
3034}
3035
3036static const struct net_device_ops igb_netdev_ops = {
3037 .ndo_open = igb_open,
3038 .ndo_stop = igb_close,
3039 .ndo_start_xmit = igb_xmit_frame,
3040 .ndo_get_stats64 = igb_get_stats64,
3041 .ndo_set_rx_mode = igb_set_rx_mode,
3042 .ndo_set_mac_address = igb_set_mac,
3043 .ndo_change_mtu = igb_change_mtu,
3044 .ndo_eth_ioctl = igb_ioctl,
3045 .ndo_tx_timeout = igb_tx_timeout,
3046 .ndo_validate_addr = eth_validate_addr,
3047 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
3048 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3049 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3050 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3051 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3052 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3053 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3054 .ndo_get_vf_config = igb_ndo_get_vf_config,
3055 .ndo_fix_features = igb_fix_features,
3056 .ndo_set_features = igb_set_features,
3057 .ndo_fdb_add = igb_ndo_fdb_add,
3058 .ndo_features_check = igb_features_check,
3059 .ndo_setup_tc = igb_setup_tc,
3060 .ndo_bpf = igb_xdp,
3061 .ndo_xdp_xmit = igb_xdp_xmit,
3062};
3063
3064/**
3065 * igb_set_fw_version - Configure version string for ethtool
3066 * @adapter: adapter struct
3067 **/
3068void igb_set_fw_version(struct igb_adapter *adapter)
3069{
3070 struct e1000_hw *hw = &adapter->hw;
3071 struct e1000_fw_version fw;
3072
3073 igb_get_fw_version(hw, &fw);
3074
3075 switch (hw->mac.type) {
3076 case e1000_i210:
3077 case e1000_i211:
3078 if (!(igb_get_flash_presence_i210(hw))) {
3079 snprintf(adapter->fw_version,
3080 sizeof(adapter->fw_version),
3081 "%2d.%2d-%d",
3082 fw.invm_major, fw.invm_minor,
3083 fw.invm_img_type);
3084 break;
3085 }
3086 fallthrough;
3087 default:
3088 /* if option rom is valid, display its version too */
3089 if (fw.or_valid) {
3090 snprintf(adapter->fw_version,
3091 sizeof(adapter->fw_version),
3092 "%d.%d, 0x%08x, %d.%d.%d",
3093 fw.eep_major, fw.eep_minor, fw.etrack_id,
3094 fw.or_major, fw.or_build, fw.or_patch);
3095 /* no option rom */
3096 } else if (fw.etrack_id != 0X0000) {
3097 snprintf(adapter->fw_version,
3098 sizeof(adapter->fw_version),
3099 "%d.%d, 0x%08x",
3100 fw.eep_major, fw.eep_minor, fw.etrack_id);
3101 } else {
3102 snprintf(adapter->fw_version,
3103 sizeof(adapter->fw_version),
3104 "%d.%d.%d",
3105 fw.eep_major, fw.eep_minor, fw.eep_build);
3106 }
3107 break;
3108 }
3109}
3110
3111/**
3112 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3113 *
3114 * @adapter: adapter struct
3115 **/
3116static void igb_init_mas(struct igb_adapter *adapter)
3117{
3118 struct e1000_hw *hw = &adapter->hw;
3119 u16 eeprom_data;
3120
3121 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3122 switch (hw->bus.func) {
3123 case E1000_FUNC_0:
3124 if (eeprom_data & IGB_MAS_ENABLE_0) {
3125 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3126 netdev_info(adapter->netdev,
3127 "MAS: Enabling Media Autosense for port %d\n",
3128 hw->bus.func);
3129 }
3130 break;
3131 case E1000_FUNC_1:
3132 if (eeprom_data & IGB_MAS_ENABLE_1) {
3133 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3134 netdev_info(adapter->netdev,
3135 "MAS: Enabling Media Autosense for port %d\n",
3136 hw->bus.func);
3137 }
3138 break;
3139 case E1000_FUNC_2:
3140 if (eeprom_data & IGB_MAS_ENABLE_2) {
3141 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3142 netdev_info(adapter->netdev,
3143 "MAS: Enabling Media Autosense for port %d\n",
3144 hw->bus.func);
3145 }
3146 break;
3147 case E1000_FUNC_3:
3148 if (eeprom_data & IGB_MAS_ENABLE_3) {
3149 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3150 netdev_info(adapter->netdev,
3151 "MAS: Enabling Media Autosense for port %d\n",
3152 hw->bus.func);
3153 }
3154 break;
3155 default:
3156 /* Shouldn't get here */
3157 netdev_err(adapter->netdev,
3158 "MAS: Invalid port configuration, returning\n");
3159 break;
3160 }
3161}
3162
3163/**
3164 * igb_init_i2c - Init I2C interface
3165 * @adapter: pointer to adapter structure
3166 **/
3167static s32 igb_init_i2c(struct igb_adapter *adapter)
3168{
3169 s32 status = 0;
3170
3171 /* I2C interface supported on i350 devices */
3172 if (adapter->hw.mac.type != e1000_i350)
3173 return 0;
3174
3175 /* Initialize the i2c bus which is controlled by the registers.
3176 * This bus will use the i2c_algo_bit structure that implements
3177 * the protocol through toggling of the 4 bits in the register.
3178 */
3179 adapter->i2c_adap.owner = THIS_MODULE;
3180 adapter->i2c_algo = igb_i2c_algo;
3181 adapter->i2c_algo.data = adapter;
3182 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3183 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3184 strscpy(adapter->i2c_adap.name, "igb BB",
3185 sizeof(adapter->i2c_adap.name));
3186 status = i2c_bit_add_bus(&adapter->i2c_adap);
3187 return status;
3188}
3189
3190/**
3191 * igb_probe - Device Initialization Routine
3192 * @pdev: PCI device information struct
3193 * @ent: entry in igb_pci_tbl
3194 *
3195 * Returns 0 on success, negative on failure
3196 *
3197 * igb_probe initializes an adapter identified by a pci_dev structure.
3198 * The OS initialization, configuring of the adapter private structure,
3199 * and a hardware reset occur.
3200 **/
3201static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3202{
3203 struct net_device *netdev;
3204 struct igb_adapter *adapter;
3205 struct e1000_hw *hw;
3206 u16 eeprom_data = 0;
3207 s32 ret_val;
3208 static int global_quad_port_a; /* global quad port a indication */
3209 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3210 u8 part_str[E1000_PBANUM_LENGTH];
3211 int err;
3212
3213 /* Catch broken hardware that put the wrong VF device ID in
3214 * the PCIe SR-IOV capability.
3215 */
3216 if (pdev->is_virtfn) {
3217 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3218 pci_name(pdev), pdev->vendor, pdev->device);
3219 return -EINVAL;
3220 }
3221
3222 err = pci_enable_device_mem(pdev);
3223 if (err)
3224 return err;
3225
3226 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3227 if (err) {
3228 dev_err(&pdev->dev,
3229 "No usable DMA configuration, aborting\n");
3230 goto err_dma;
3231 }
3232
3233 err = pci_request_mem_regions(pdev, igb_driver_name);
3234 if (err)
3235 goto err_pci_reg;
3236
3237 pci_set_master(pdev);
3238 pci_save_state(pdev);
3239
3240 err = -ENOMEM;
3241 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3242 IGB_MAX_TX_QUEUES);
3243 if (!netdev)
3244 goto err_alloc_etherdev;
3245
3246 SET_NETDEV_DEV(netdev, &pdev->dev);
3247
3248 pci_set_drvdata(pdev, netdev);
3249 adapter = netdev_priv(netdev);
3250 adapter->netdev = netdev;
3251 adapter->pdev = pdev;
3252 hw = &adapter->hw;
3253 hw->back = adapter;
3254 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3255
3256 err = -EIO;
3257 adapter->io_addr = pci_iomap(pdev, 0, 0);
3258 if (!adapter->io_addr)
3259 goto err_ioremap;
3260 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3261 hw->hw_addr = adapter->io_addr;
3262
3263 netdev->netdev_ops = &igb_netdev_ops;
3264 igb_set_ethtool_ops(netdev);
3265 netdev->watchdog_timeo = 5 * HZ;
3266
3267 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3268
3269 netdev->mem_start = pci_resource_start(pdev, 0);
3270 netdev->mem_end = pci_resource_end(pdev, 0);
3271
3272 /* PCI config space info */
3273 hw->vendor_id = pdev->vendor;
3274 hw->device_id = pdev->device;
3275 hw->revision_id = pdev->revision;
3276 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3277 hw->subsystem_device_id = pdev->subsystem_device;
3278
3279 /* Copy the default MAC, PHY and NVM function pointers */
3280 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3281 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3282 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3283 /* Initialize skew-specific constants */
3284 err = ei->get_invariants(hw);
3285 if (err)
3286 goto err_sw_init;
3287
3288 /* setup the private structure */
3289 err = igb_sw_init(adapter);
3290 if (err)
3291 goto err_sw_init;
3292
3293 igb_get_bus_info_pcie(hw);
3294
3295 hw->phy.autoneg_wait_to_complete = false;
3296
3297 /* Copper options */
3298 if (hw->phy.media_type == e1000_media_type_copper) {
3299 hw->phy.mdix = AUTO_ALL_MODES;
3300 hw->phy.disable_polarity_correction = false;
3301 hw->phy.ms_type = e1000_ms_hw_default;
3302 }
3303
3304 if (igb_check_reset_block(hw))
3305 dev_info(&pdev->dev,
3306 "PHY reset is blocked due to SOL/IDER session.\n");
3307
3308 /* features is initialized to 0 in allocation, it might have bits
3309 * set by igb_sw_init so we should use an or instead of an
3310 * assignment.
3311 */
3312 netdev->features |= NETIF_F_SG |
3313 NETIF_F_TSO |
3314 NETIF_F_TSO6 |
3315 NETIF_F_RXHASH |
3316 NETIF_F_RXCSUM |
3317 NETIF_F_HW_CSUM;
3318
3319 if (hw->mac.type >= e1000_82576)
3320 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3321
3322 if (hw->mac.type >= e1000_i350)
3323 netdev->features |= NETIF_F_HW_TC;
3324
3325#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3326 NETIF_F_GSO_GRE_CSUM | \
3327 NETIF_F_GSO_IPXIP4 | \
3328 NETIF_F_GSO_IPXIP6 | \
3329 NETIF_F_GSO_UDP_TUNNEL | \
3330 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3331
3332 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3333 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3334
3335 /* copy netdev features into list of user selectable features */
3336 netdev->hw_features |= netdev->features |
3337 NETIF_F_HW_VLAN_CTAG_RX |
3338 NETIF_F_HW_VLAN_CTAG_TX |
3339 NETIF_F_RXALL;
3340
3341 if (hw->mac.type >= e1000_i350)
3342 netdev->hw_features |= NETIF_F_NTUPLE;
3343
3344 netdev->features |= NETIF_F_HIGHDMA;
3345
3346 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3347 netdev->mpls_features |= NETIF_F_HW_CSUM;
3348 netdev->hw_enc_features |= netdev->vlan_features;
3349
3350 /* set this bit last since it cannot be part of vlan_features */
3351 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3352 NETIF_F_HW_VLAN_CTAG_RX |
3353 NETIF_F_HW_VLAN_CTAG_TX;
3354
3355 netdev->priv_flags |= IFF_SUPP_NOFCS;
3356
3357 netdev->priv_flags |= IFF_UNICAST_FLT;
3358 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3359
3360 /* MTU range: 68 - 9216 */
3361 netdev->min_mtu = ETH_MIN_MTU;
3362 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3363
3364 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3365
3366 /* before reading the NVM, reset the controller to put the device in a
3367 * known good starting state
3368 */
3369 hw->mac.ops.reset_hw(hw);
3370
3371 /* make sure the NVM is good , i211/i210 parts can have special NVM
3372 * that doesn't contain a checksum
3373 */
3374 switch (hw->mac.type) {
3375 case e1000_i210:
3376 case e1000_i211:
3377 if (igb_get_flash_presence_i210(hw)) {
3378 if (hw->nvm.ops.validate(hw) < 0) {
3379 dev_err(&pdev->dev,
3380 "The NVM Checksum Is Not Valid\n");
3381 err = -EIO;
3382 goto err_eeprom;
3383 }
3384 }
3385 break;
3386 default:
3387 if (hw->nvm.ops.validate(hw) < 0) {
3388 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3389 err = -EIO;
3390 goto err_eeprom;
3391 }
3392 break;
3393 }
3394
3395 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3396 /* copy the MAC address out of the NVM */
3397 if (hw->mac.ops.read_mac_addr(hw))
3398 dev_err(&pdev->dev, "NVM Read Error\n");
3399 }
3400
3401 eth_hw_addr_set(netdev, hw->mac.addr);
3402
3403 if (!is_valid_ether_addr(netdev->dev_addr)) {
3404 dev_err(&pdev->dev, "Invalid MAC Address\n");
3405 err = -EIO;
3406 goto err_eeprom;
3407 }
3408
3409 igb_set_default_mac_filter(adapter);
3410
3411 /* get firmware version for ethtool -i */
3412 igb_set_fw_version(adapter);
3413
3414 /* configure RXPBSIZE and TXPBSIZE */
3415 if (hw->mac.type == e1000_i210) {
3416 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3417 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3418 }
3419
3420 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3421 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3422
3423 INIT_WORK(&adapter->reset_task, igb_reset_task);
3424 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3425
3426 /* Initialize link properties that are user-changeable */
3427 adapter->fc_autoneg = true;
3428 hw->mac.autoneg = true;
3429 hw->phy.autoneg_advertised = 0x2f;
3430
3431 hw->fc.requested_mode = e1000_fc_default;
3432 hw->fc.current_mode = e1000_fc_default;
3433
3434 igb_validate_mdi_setting(hw);
3435
3436 /* By default, support wake on port A */
3437 if (hw->bus.func == 0)
3438 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3439
3440 /* Check the NVM for wake support on non-port A ports */
3441 if (hw->mac.type >= e1000_82580)
3442 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3443 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3444 &eeprom_data);
3445 else if (hw->bus.func == 1)
3446 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3447
3448 if (eeprom_data & IGB_EEPROM_APME)
3449 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3450
3451 /* now that we have the eeprom settings, apply the special cases where
3452 * the eeprom may be wrong or the board simply won't support wake on
3453 * lan on a particular port
3454 */
3455 switch (pdev->device) {
3456 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3457 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3458 break;
3459 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3460 case E1000_DEV_ID_82576_FIBER:
3461 case E1000_DEV_ID_82576_SERDES:
3462 /* Wake events only supported on port A for dual fiber
3463 * regardless of eeprom setting
3464 */
3465 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3466 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3467 break;
3468 case E1000_DEV_ID_82576_QUAD_COPPER:
3469 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3470 /* if quad port adapter, disable WoL on all but port A */
3471 if (global_quad_port_a != 0)
3472 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3473 else
3474 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3475 /* Reset for multiple quad port adapters */
3476 if (++global_quad_port_a == 4)
3477 global_quad_port_a = 0;
3478 break;
3479 default:
3480 /* If the device can't wake, don't set software support */
3481 if (!device_can_wakeup(&adapter->pdev->dev))
3482 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3483 }
3484
3485 /* initialize the wol settings based on the eeprom settings */
3486 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3487 adapter->wol |= E1000_WUFC_MAG;
3488
3489 /* Some vendors want WoL disabled by default, but still supported */
3490 if ((hw->mac.type == e1000_i350) &&
3491 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3492 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3493 adapter->wol = 0;
3494 }
3495
3496 /* Some vendors want the ability to Use the EEPROM setting as
3497 * enable/disable only, and not for capability
3498 */
3499 if (((hw->mac.type == e1000_i350) ||
3500 (hw->mac.type == e1000_i354)) &&
3501 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3502 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3503 adapter->wol = 0;
3504 }
3505 if (hw->mac.type == e1000_i350) {
3506 if (((pdev->subsystem_device == 0x5001) ||
3507 (pdev->subsystem_device == 0x5002)) &&
3508 (hw->bus.func == 0)) {
3509 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3510 adapter->wol = 0;
3511 }
3512 if (pdev->subsystem_device == 0x1F52)
3513 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3514 }
3515
3516 device_set_wakeup_enable(&adapter->pdev->dev,
3517 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3518
3519 /* reset the hardware with the new settings */
3520 igb_reset(adapter);
3521
3522 /* Init the I2C interface */
3523 err = igb_init_i2c(adapter);
3524 if (err) {
3525 dev_err(&pdev->dev, "failed to init i2c interface\n");
3526 goto err_eeprom;
3527 }
3528
3529 /* let the f/w know that the h/w is now under the control of the
3530 * driver.
3531 */
3532 igb_get_hw_control(adapter);
3533
3534 strcpy(netdev->name, "eth%d");
3535 err = register_netdev(netdev);
3536 if (err)
3537 goto err_register;
3538
3539 /* carrier off reporting is important to ethtool even BEFORE open */
3540 netif_carrier_off(netdev);
3541
3542#ifdef CONFIG_IGB_DCA
3543 if (dca_add_requester(&pdev->dev) == 0) {
3544 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3545 dev_info(&pdev->dev, "DCA enabled\n");
3546 igb_setup_dca(adapter);
3547 }
3548
3549#endif
3550#ifdef CONFIG_IGB_HWMON
3551 /* Initialize the thermal sensor on i350 devices. */
3552 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3553 u16 ets_word;
3554
3555 /* Read the NVM to determine if this i350 device supports an
3556 * external thermal sensor.
3557 */
3558 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3559 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3560 adapter->ets = true;
3561 else
3562 adapter->ets = false;
3563 /* Only enable I2C bit banging if an external thermal
3564 * sensor is supported.
3565 */
3566 if (adapter->ets)
3567 igb_set_i2c_bb(hw);
3568 hw->mac.ops.init_thermal_sensor_thresh(hw);
3569 if (igb_sysfs_init(adapter))
3570 dev_err(&pdev->dev,
3571 "failed to allocate sysfs resources\n");
3572 } else {
3573 adapter->ets = false;
3574 }
3575#endif
3576 /* Check if Media Autosense is enabled */
3577 adapter->ei = *ei;
3578 if (hw->dev_spec._82575.mas_capable)
3579 igb_init_mas(adapter);
3580
3581 /* do hw tstamp init after resetting */
3582 igb_ptp_init(adapter);
3583
3584 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3585 /* print bus type/speed/width info, not applicable to i354 */
3586 if (hw->mac.type != e1000_i354) {
3587 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3588 netdev->name,
3589 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3590 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3591 "unknown"),
3592 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3593 "Width x4" :
3594 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3595 "Width x2" :
3596 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3597 "Width x1" : "unknown"), netdev->dev_addr);
3598 }
3599
3600 if ((hw->mac.type == e1000_82576 &&
3601 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3602 (hw->mac.type >= e1000_i210 ||
3603 igb_get_flash_presence_i210(hw))) {
3604 ret_val = igb_read_part_string(hw, part_str,
3605 E1000_PBANUM_LENGTH);
3606 } else {
3607 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3608 }
3609
3610 if (ret_val)
3611 strcpy(part_str, "Unknown");
3612 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3613 dev_info(&pdev->dev,
3614 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3615 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3616 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3617 adapter->num_rx_queues, adapter->num_tx_queues);
3618 if (hw->phy.media_type == e1000_media_type_copper) {
3619 switch (hw->mac.type) {
3620 case e1000_i350:
3621 case e1000_i210:
3622 case e1000_i211:
3623 /* Enable EEE for internal copper PHY devices */
3624 err = igb_set_eee_i350(hw, true, true);
3625 if ((!err) &&
3626 (!hw->dev_spec._82575.eee_disable)) {
3627 adapter->eee_advert =
3628 MDIO_EEE_100TX | MDIO_EEE_1000T;
3629 adapter->flags |= IGB_FLAG_EEE;
3630 }
3631 break;
3632 case e1000_i354:
3633 if ((rd32(E1000_CTRL_EXT) &
3634 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3635 err = igb_set_eee_i354(hw, true, true);
3636 if ((!err) &&
3637 (!hw->dev_spec._82575.eee_disable)) {
3638 adapter->eee_advert =
3639 MDIO_EEE_100TX | MDIO_EEE_1000T;
3640 adapter->flags |= IGB_FLAG_EEE;
3641 }
3642 }
3643 break;
3644 default:
3645 break;
3646 }
3647 }
3648
3649 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3650
3651 pm_runtime_put_noidle(&pdev->dev);
3652 return 0;
3653
3654err_register:
3655 igb_release_hw_control(adapter);
3656 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3657err_eeprom:
3658 if (!igb_check_reset_block(hw))
3659 igb_reset_phy(hw);
3660
3661 if (hw->flash_address)
3662 iounmap(hw->flash_address);
3663err_sw_init:
3664 kfree(adapter->mac_table);
3665 kfree(adapter->shadow_vfta);
3666 igb_clear_interrupt_scheme(adapter);
3667#ifdef CONFIG_PCI_IOV
3668 igb_disable_sriov(pdev, false);
3669#endif
3670 pci_iounmap(pdev, adapter->io_addr);
3671err_ioremap:
3672 free_netdev(netdev);
3673err_alloc_etherdev:
3674 pci_release_mem_regions(pdev);
3675err_pci_reg:
3676err_dma:
3677 pci_disable_device(pdev);
3678 return err;
3679}
3680
3681#ifdef CONFIG_PCI_IOV
3682static int igb_sriov_reinit(struct pci_dev *dev)
3683{
3684 struct net_device *netdev = pci_get_drvdata(dev);
3685 struct igb_adapter *adapter = netdev_priv(netdev);
3686 struct pci_dev *pdev = adapter->pdev;
3687
3688 rtnl_lock();
3689
3690 if (netif_running(netdev))
3691 igb_close(netdev);
3692 else
3693 igb_reset(adapter);
3694
3695 igb_clear_interrupt_scheme(adapter);
3696
3697 igb_init_queue_configuration(adapter);
3698
3699 if (igb_init_interrupt_scheme(adapter, true)) {
3700 rtnl_unlock();
3701 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3702 return -ENOMEM;
3703 }
3704
3705 if (netif_running(netdev))
3706 igb_open(netdev);
3707
3708 rtnl_unlock();
3709
3710 return 0;
3711}
3712
3713static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3714{
3715 struct net_device *netdev = pci_get_drvdata(pdev);
3716 struct igb_adapter *adapter = netdev_priv(netdev);
3717 struct e1000_hw *hw = &adapter->hw;
3718 unsigned long flags;
3719
3720 /* reclaim resources allocated to VFs */
3721 if (adapter->vf_data) {
3722 /* disable iov and allow time for transactions to clear */
3723 if (pci_vfs_assigned(pdev)) {
3724 dev_warn(&pdev->dev,
3725 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3726 return -EPERM;
3727 } else {
3728 pci_disable_sriov(pdev);
3729 msleep(500);
3730 }
3731 spin_lock_irqsave(&adapter->vfs_lock, flags);
3732 kfree(adapter->vf_mac_list);
3733 adapter->vf_mac_list = NULL;
3734 kfree(adapter->vf_data);
3735 adapter->vf_data = NULL;
3736 adapter->vfs_allocated_count = 0;
3737 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3738 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3739 wrfl();
3740 msleep(100);
3741 dev_info(&pdev->dev, "IOV Disabled\n");
3742
3743 /* Re-enable DMA Coalescing flag since IOV is turned off */
3744 adapter->flags |= IGB_FLAG_DMAC;
3745 }
3746
3747 return reinit ? igb_sriov_reinit(pdev) : 0;
3748}
3749
3750static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3751{
3752 struct net_device *netdev = pci_get_drvdata(pdev);
3753 struct igb_adapter *adapter = netdev_priv(netdev);
3754 int old_vfs = pci_num_vf(pdev);
3755 struct vf_mac_filter *mac_list;
3756 int err = 0;
3757 int num_vf_mac_filters, i;
3758
3759 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3760 err = -EPERM;
3761 goto out;
3762 }
3763 if (!num_vfs)
3764 goto out;
3765
3766 if (old_vfs) {
3767 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3768 old_vfs, max_vfs);
3769 adapter->vfs_allocated_count = old_vfs;
3770 } else
3771 adapter->vfs_allocated_count = num_vfs;
3772
3773 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3774 sizeof(struct vf_data_storage), GFP_KERNEL);
3775
3776 /* if allocation failed then we do not support SR-IOV */
3777 if (!adapter->vf_data) {
3778 adapter->vfs_allocated_count = 0;
3779 err = -ENOMEM;
3780 goto out;
3781 }
3782
3783 /* Due to the limited number of RAR entries calculate potential
3784 * number of MAC filters available for the VFs. Reserve entries
3785 * for PF default MAC, PF MAC filters and at least one RAR entry
3786 * for each VF for VF MAC.
3787 */
3788 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3789 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3790 adapter->vfs_allocated_count);
3791
3792 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3793 sizeof(struct vf_mac_filter),
3794 GFP_KERNEL);
3795
3796 mac_list = adapter->vf_mac_list;
3797 INIT_LIST_HEAD(&adapter->vf_macs.l);
3798
3799 if (adapter->vf_mac_list) {
3800 /* Initialize list of VF MAC filters */
3801 for (i = 0; i < num_vf_mac_filters; i++) {
3802 mac_list->vf = -1;
3803 mac_list->free = true;
3804 list_add(&mac_list->l, &adapter->vf_macs.l);
3805 mac_list++;
3806 }
3807 } else {
3808 /* If we could not allocate memory for the VF MAC filters
3809 * we can continue without this feature but warn user.
3810 */
3811 dev_err(&pdev->dev,
3812 "Unable to allocate memory for VF MAC filter list\n");
3813 }
3814
3815 dev_info(&pdev->dev, "%d VFs allocated\n",
3816 adapter->vfs_allocated_count);
3817 for (i = 0; i < adapter->vfs_allocated_count; i++)
3818 igb_vf_configure(adapter, i);
3819
3820 /* DMA Coalescing is not supported in IOV mode. */
3821 adapter->flags &= ~IGB_FLAG_DMAC;
3822
3823 if (reinit) {
3824 err = igb_sriov_reinit(pdev);
3825 if (err)
3826 goto err_out;
3827 }
3828
3829 /* only call pci_enable_sriov() if no VFs are allocated already */
3830 if (!old_vfs) {
3831 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3832 if (err)
3833 goto err_out;
3834 }
3835
3836 goto out;
3837
3838err_out:
3839 kfree(adapter->vf_mac_list);
3840 adapter->vf_mac_list = NULL;
3841 kfree(adapter->vf_data);
3842 adapter->vf_data = NULL;
3843 adapter->vfs_allocated_count = 0;
3844out:
3845 return err;
3846}
3847
3848#endif
3849/**
3850 * igb_remove_i2c - Cleanup I2C interface
3851 * @adapter: pointer to adapter structure
3852 **/
3853static void igb_remove_i2c(struct igb_adapter *adapter)
3854{
3855 /* free the adapter bus structure */
3856 i2c_del_adapter(&adapter->i2c_adap);
3857}
3858
3859/**
3860 * igb_remove - Device Removal Routine
3861 * @pdev: PCI device information struct
3862 *
3863 * igb_remove is called by the PCI subsystem to alert the driver
3864 * that it should release a PCI device. The could be caused by a
3865 * Hot-Plug event, or because the driver is going to be removed from
3866 * memory.
3867 **/
3868static void igb_remove(struct pci_dev *pdev)
3869{
3870 struct net_device *netdev = pci_get_drvdata(pdev);
3871 struct igb_adapter *adapter = netdev_priv(netdev);
3872 struct e1000_hw *hw = &adapter->hw;
3873
3874 pm_runtime_get_noresume(&pdev->dev);
3875#ifdef CONFIG_IGB_HWMON
3876 igb_sysfs_exit(adapter);
3877#endif
3878 igb_remove_i2c(adapter);
3879 igb_ptp_stop(adapter);
3880 /* The watchdog timer may be rescheduled, so explicitly
3881 * disable watchdog from being rescheduled.
3882 */
3883 set_bit(__IGB_DOWN, &adapter->state);
3884 del_timer_sync(&adapter->watchdog_timer);
3885 del_timer_sync(&adapter->phy_info_timer);
3886
3887 cancel_work_sync(&adapter->reset_task);
3888 cancel_work_sync(&adapter->watchdog_task);
3889
3890#ifdef CONFIG_IGB_DCA
3891 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3892 dev_info(&pdev->dev, "DCA disabled\n");
3893 dca_remove_requester(&pdev->dev);
3894 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3895 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3896 }
3897#endif
3898
3899 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3900 * would have already happened in close and is redundant.
3901 */
3902 igb_release_hw_control(adapter);
3903
3904#ifdef CONFIG_PCI_IOV
3905 igb_disable_sriov(pdev, false);
3906#endif
3907
3908 unregister_netdev(netdev);
3909
3910 igb_clear_interrupt_scheme(adapter);
3911
3912 pci_iounmap(pdev, adapter->io_addr);
3913 if (hw->flash_address)
3914 iounmap(hw->flash_address);
3915 pci_release_mem_regions(pdev);
3916
3917 kfree(adapter->mac_table);
3918 kfree(adapter->shadow_vfta);
3919 free_netdev(netdev);
3920
3921 pci_disable_device(pdev);
3922}
3923
3924/**
3925 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3926 * @adapter: board private structure to initialize
3927 *
3928 * This function initializes the vf specific data storage and then attempts to
3929 * allocate the VFs. The reason for ordering it this way is because it is much
3930 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3931 * the memory for the VFs.
3932 **/
3933static void igb_probe_vfs(struct igb_adapter *adapter)
3934{
3935#ifdef CONFIG_PCI_IOV
3936 struct pci_dev *pdev = adapter->pdev;
3937 struct e1000_hw *hw = &adapter->hw;
3938
3939 /* Virtualization features not supported on i210 and 82580 family. */
3940 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3941 (hw->mac.type == e1000_82580))
3942 return;
3943
3944 /* Of the below we really only want the effect of getting
3945 * IGB_FLAG_HAS_MSIX set (if available), without which
3946 * igb_enable_sriov() has no effect.
3947 */
3948 igb_set_interrupt_capability(adapter, true);
3949 igb_reset_interrupt_capability(adapter);
3950
3951 pci_sriov_set_totalvfs(pdev, 7);
3952 igb_enable_sriov(pdev, max_vfs, false);
3953
3954#endif /* CONFIG_PCI_IOV */
3955}
3956
3957unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3958{
3959 struct e1000_hw *hw = &adapter->hw;
3960 unsigned int max_rss_queues;
3961
3962 /* Determine the maximum number of RSS queues supported. */
3963 switch (hw->mac.type) {
3964 case e1000_i211:
3965 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3966 break;
3967 case e1000_82575:
3968 case e1000_i210:
3969 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3970 break;
3971 case e1000_i350:
3972 /* I350 cannot do RSS and SR-IOV at the same time */
3973 if (!!adapter->vfs_allocated_count) {
3974 max_rss_queues = 1;
3975 break;
3976 }
3977 fallthrough;
3978 case e1000_82576:
3979 if (!!adapter->vfs_allocated_count) {
3980 max_rss_queues = 2;
3981 break;
3982 }
3983 fallthrough;
3984 case e1000_82580:
3985 case e1000_i354:
3986 default:
3987 max_rss_queues = IGB_MAX_RX_QUEUES;
3988 break;
3989 }
3990
3991 return max_rss_queues;
3992}
3993
3994static void igb_init_queue_configuration(struct igb_adapter *adapter)
3995{
3996 u32 max_rss_queues;
3997
3998 max_rss_queues = igb_get_max_rss_queues(adapter);
3999 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4000
4001 igb_set_flag_queue_pairs(adapter, max_rss_queues);
4002}
4003
4004void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
4005 const u32 max_rss_queues)
4006{
4007 struct e1000_hw *hw = &adapter->hw;
4008
4009 /* Determine if we need to pair queues. */
4010 switch (hw->mac.type) {
4011 case e1000_82575:
4012 case e1000_i211:
4013 /* Device supports enough interrupts without queue pairing. */
4014 break;
4015 case e1000_82576:
4016 case e1000_82580:
4017 case e1000_i350:
4018 case e1000_i354:
4019 case e1000_i210:
4020 default:
4021 /* If rss_queues > half of max_rss_queues, pair the queues in
4022 * order to conserve interrupts due to limited supply.
4023 */
4024 if (adapter->rss_queues > (max_rss_queues / 2))
4025 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4026 else
4027 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4028 break;
4029 }
4030}
4031
4032/**
4033 * igb_sw_init - Initialize general software structures (struct igb_adapter)
4034 * @adapter: board private structure to initialize
4035 *
4036 * igb_sw_init initializes the Adapter private data structure.
4037 * Fields are initialized based on PCI device information and
4038 * OS network device settings (MTU size).
4039 **/
4040static int igb_sw_init(struct igb_adapter *adapter)
4041{
4042 struct e1000_hw *hw = &adapter->hw;
4043 struct net_device *netdev = adapter->netdev;
4044 struct pci_dev *pdev = adapter->pdev;
4045
4046 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4047
4048 /* set default ring sizes */
4049 adapter->tx_ring_count = IGB_DEFAULT_TXD;
4050 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4051
4052 /* set default ITR values */
4053 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4054 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4055
4056 /* set default work limits */
4057 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4058
4059 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4060 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4061
4062 spin_lock_init(&adapter->nfc_lock);
4063 spin_lock_init(&adapter->stats64_lock);
4064
4065 /* init spinlock to avoid concurrency of VF resources */
4066 spin_lock_init(&adapter->vfs_lock);
4067#ifdef CONFIG_PCI_IOV
4068 switch (hw->mac.type) {
4069 case e1000_82576:
4070 case e1000_i350:
4071 if (max_vfs > 7) {
4072 dev_warn(&pdev->dev,
4073 "Maximum of 7 VFs per PF, using max\n");
4074 max_vfs = adapter->vfs_allocated_count = 7;
4075 } else
4076 adapter->vfs_allocated_count = max_vfs;
4077 if (adapter->vfs_allocated_count)
4078 dev_warn(&pdev->dev,
4079 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4080 break;
4081 default:
4082 break;
4083 }
4084#endif /* CONFIG_PCI_IOV */
4085
4086 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4087 adapter->flags |= IGB_FLAG_HAS_MSIX;
4088
4089 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4090 sizeof(struct igb_mac_addr),
4091 GFP_KERNEL);
4092 if (!adapter->mac_table)
4093 return -ENOMEM;
4094
4095 igb_probe_vfs(adapter);
4096
4097 igb_init_queue_configuration(adapter);
4098
4099 /* Setup and initialize a copy of the hw vlan table array */
4100 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4101 GFP_KERNEL);
4102 if (!adapter->shadow_vfta)
4103 return -ENOMEM;
4104
4105 /* This call may decrease the number of queues */
4106 if (igb_init_interrupt_scheme(adapter, true)) {
4107 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4108 return -ENOMEM;
4109 }
4110
4111 /* Explicitly disable IRQ since the NIC can be in any state. */
4112 igb_irq_disable(adapter);
4113
4114 if (hw->mac.type >= e1000_i350)
4115 adapter->flags &= ~IGB_FLAG_DMAC;
4116
4117 set_bit(__IGB_DOWN, &adapter->state);
4118 return 0;
4119}
4120
4121/**
4122 * __igb_open - Called when a network interface is made active
4123 * @netdev: network interface device structure
4124 * @resuming: indicates whether we are in a resume call
4125 *
4126 * Returns 0 on success, negative value on failure
4127 *
4128 * The open entry point is called when a network interface is made
4129 * active by the system (IFF_UP). At this point all resources needed
4130 * for transmit and receive operations are allocated, the interrupt
4131 * handler is registered with the OS, the watchdog timer is started,
4132 * and the stack is notified that the interface is ready.
4133 **/
4134static int __igb_open(struct net_device *netdev, bool resuming)
4135{
4136 struct igb_adapter *adapter = netdev_priv(netdev);
4137 struct e1000_hw *hw = &adapter->hw;
4138 struct pci_dev *pdev = adapter->pdev;
4139 int err;
4140 int i;
4141
4142 /* disallow open during test */
4143 if (test_bit(__IGB_TESTING, &adapter->state)) {
4144 WARN_ON(resuming);
4145 return -EBUSY;
4146 }
4147
4148 if (!resuming)
4149 pm_runtime_get_sync(&pdev->dev);
4150
4151 netif_carrier_off(netdev);
4152
4153 /* allocate transmit descriptors */
4154 err = igb_setup_all_tx_resources(adapter);
4155 if (err)
4156 goto err_setup_tx;
4157
4158 /* allocate receive descriptors */
4159 err = igb_setup_all_rx_resources(adapter);
4160 if (err)
4161 goto err_setup_rx;
4162
4163 igb_power_up_link(adapter);
4164
4165 /* before we allocate an interrupt, we must be ready to handle it.
4166 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4167 * as soon as we call pci_request_irq, so we have to setup our
4168 * clean_rx handler before we do so.
4169 */
4170 igb_configure(adapter);
4171
4172 err = igb_request_irq(adapter);
4173 if (err)
4174 goto err_req_irq;
4175
4176 /* Notify the stack of the actual queue counts. */
4177 err = netif_set_real_num_tx_queues(adapter->netdev,
4178 adapter->num_tx_queues);
4179 if (err)
4180 goto err_set_queues;
4181
4182 err = netif_set_real_num_rx_queues(adapter->netdev,
4183 adapter->num_rx_queues);
4184 if (err)
4185 goto err_set_queues;
4186
4187 /* From here on the code is the same as igb_up() */
4188 clear_bit(__IGB_DOWN, &adapter->state);
4189
4190 for (i = 0; i < adapter->num_q_vectors; i++)
4191 napi_enable(&(adapter->q_vector[i]->napi));
4192
4193 /* Clear any pending interrupts. */
4194 rd32(E1000_TSICR);
4195 rd32(E1000_ICR);
4196
4197 igb_irq_enable(adapter);
4198
4199 /* notify VFs that reset has been completed */
4200 if (adapter->vfs_allocated_count) {
4201 u32 reg_data = rd32(E1000_CTRL_EXT);
4202
4203 reg_data |= E1000_CTRL_EXT_PFRSTD;
4204 wr32(E1000_CTRL_EXT, reg_data);
4205 }
4206
4207 netif_tx_start_all_queues(netdev);
4208
4209 if (!resuming)
4210 pm_runtime_put(&pdev->dev);
4211
4212 /* start the watchdog. */
4213 hw->mac.get_link_status = 1;
4214 schedule_work(&adapter->watchdog_task);
4215
4216 return 0;
4217
4218err_set_queues:
4219 igb_free_irq(adapter);
4220err_req_irq:
4221 igb_release_hw_control(adapter);
4222 igb_power_down_link(adapter);
4223 igb_free_all_rx_resources(adapter);
4224err_setup_rx:
4225 igb_free_all_tx_resources(adapter);
4226err_setup_tx:
4227 igb_reset(adapter);
4228 if (!resuming)
4229 pm_runtime_put(&pdev->dev);
4230
4231 return err;
4232}
4233
4234int igb_open(struct net_device *netdev)
4235{
4236 return __igb_open(netdev, false);
4237}
4238
4239/**
4240 * __igb_close - Disables a network interface
4241 * @netdev: network interface device structure
4242 * @suspending: indicates we are in a suspend call
4243 *
4244 * Returns 0, this is not allowed to fail
4245 *
4246 * The close entry point is called when an interface is de-activated
4247 * by the OS. The hardware is still under the driver's control, but
4248 * needs to be disabled. A global MAC reset is issued to stop the
4249 * hardware, and all transmit and receive resources are freed.
4250 **/
4251static int __igb_close(struct net_device *netdev, bool suspending)
4252{
4253 struct igb_adapter *adapter = netdev_priv(netdev);
4254 struct pci_dev *pdev = adapter->pdev;
4255
4256 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4257
4258 if (!suspending)
4259 pm_runtime_get_sync(&pdev->dev);
4260
4261 igb_down(adapter);
4262 igb_free_irq(adapter);
4263
4264 igb_free_all_tx_resources(adapter);
4265 igb_free_all_rx_resources(adapter);
4266
4267 if (!suspending)
4268 pm_runtime_put_sync(&pdev->dev);
4269 return 0;
4270}
4271
4272int igb_close(struct net_device *netdev)
4273{
4274 if (netif_device_present(netdev) || netdev->dismantle)
4275 return __igb_close(netdev, false);
4276 return 0;
4277}
4278
4279/**
4280 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4281 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4282 *
4283 * Return 0 on success, negative on failure
4284 **/
4285int igb_setup_tx_resources(struct igb_ring *tx_ring)
4286{
4287 struct device *dev = tx_ring->dev;
4288 int size;
4289
4290 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4291
4292 tx_ring->tx_buffer_info = vmalloc(size);
4293 if (!tx_ring->tx_buffer_info)
4294 goto err;
4295
4296 /* round up to nearest 4K */
4297 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4298 tx_ring->size = ALIGN(tx_ring->size, 4096);
4299
4300 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4301 &tx_ring->dma, GFP_KERNEL);
4302 if (!tx_ring->desc)
4303 goto err;
4304
4305 tx_ring->next_to_use = 0;
4306 tx_ring->next_to_clean = 0;
4307
4308 return 0;
4309
4310err:
4311 vfree(tx_ring->tx_buffer_info);
4312 tx_ring->tx_buffer_info = NULL;
4313 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4314 return -ENOMEM;
4315}
4316
4317/**
4318 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4319 * (Descriptors) for all queues
4320 * @adapter: board private structure
4321 *
4322 * Return 0 on success, negative on failure
4323 **/
4324static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4325{
4326 struct pci_dev *pdev = adapter->pdev;
4327 int i, err = 0;
4328
4329 for (i = 0; i < adapter->num_tx_queues; i++) {
4330 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4331 if (err) {
4332 dev_err(&pdev->dev,
4333 "Allocation for Tx Queue %u failed\n", i);
4334 for (i--; i >= 0; i--)
4335 igb_free_tx_resources(adapter->tx_ring[i]);
4336 break;
4337 }
4338 }
4339
4340 return err;
4341}
4342
4343/**
4344 * igb_setup_tctl - configure the transmit control registers
4345 * @adapter: Board private structure
4346 **/
4347void igb_setup_tctl(struct igb_adapter *adapter)
4348{
4349 struct e1000_hw *hw = &adapter->hw;
4350 u32 tctl;
4351
4352 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4353 wr32(E1000_TXDCTL(0), 0);
4354
4355 /* Program the Transmit Control Register */
4356 tctl = rd32(E1000_TCTL);
4357 tctl &= ~E1000_TCTL_CT;
4358 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4359 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4360
4361 igb_config_collision_dist(hw);
4362
4363 /* Enable transmits */
4364 tctl |= E1000_TCTL_EN;
4365
4366 wr32(E1000_TCTL, tctl);
4367}
4368
4369/**
4370 * igb_configure_tx_ring - Configure transmit ring after Reset
4371 * @adapter: board private structure
4372 * @ring: tx ring to configure
4373 *
4374 * Configure a transmit ring after a reset.
4375 **/
4376void igb_configure_tx_ring(struct igb_adapter *adapter,
4377 struct igb_ring *ring)
4378{
4379 struct e1000_hw *hw = &adapter->hw;
4380 u32 txdctl = 0;
4381 u64 tdba = ring->dma;
4382 int reg_idx = ring->reg_idx;
4383
4384 wr32(E1000_TDLEN(reg_idx),
4385 ring->count * sizeof(union e1000_adv_tx_desc));
4386 wr32(E1000_TDBAL(reg_idx),
4387 tdba & 0x00000000ffffffffULL);
4388 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4389
4390 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4391 wr32(E1000_TDH(reg_idx), 0);
4392 writel(0, ring->tail);
4393
4394 txdctl |= IGB_TX_PTHRESH;
4395 txdctl |= IGB_TX_HTHRESH << 8;
4396 txdctl |= IGB_TX_WTHRESH << 16;
4397
4398 /* reinitialize tx_buffer_info */
4399 memset(ring->tx_buffer_info, 0,
4400 sizeof(struct igb_tx_buffer) * ring->count);
4401
4402 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4403 wr32(E1000_TXDCTL(reg_idx), txdctl);
4404}
4405
4406/**
4407 * igb_configure_tx - Configure transmit Unit after Reset
4408 * @adapter: board private structure
4409 *
4410 * Configure the Tx unit of the MAC after a reset.
4411 **/
4412static void igb_configure_tx(struct igb_adapter *adapter)
4413{
4414 struct e1000_hw *hw = &adapter->hw;
4415 int i;
4416
4417 /* disable the queues */
4418 for (i = 0; i < adapter->num_tx_queues; i++)
4419 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4420
4421 wrfl();
4422 usleep_range(10000, 20000);
4423
4424 for (i = 0; i < adapter->num_tx_queues; i++)
4425 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4426}
4427
4428/**
4429 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4430 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4431 *
4432 * Returns 0 on success, negative on failure
4433 **/
4434int igb_setup_rx_resources(struct igb_ring *rx_ring)
4435{
4436 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4437 struct device *dev = rx_ring->dev;
4438 int size, res;
4439
4440 /* XDP RX-queue info */
4441 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4442 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4443 res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4444 rx_ring->queue_index, 0);
4445 if (res < 0) {
4446 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4447 rx_ring->queue_index);
4448 return res;
4449 }
4450
4451 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4452
4453 rx_ring->rx_buffer_info = vmalloc(size);
4454 if (!rx_ring->rx_buffer_info)
4455 goto err;
4456
4457 /* Round up to nearest 4K */
4458 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4459 rx_ring->size = ALIGN(rx_ring->size, 4096);
4460
4461 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4462 &rx_ring->dma, GFP_KERNEL);
4463 if (!rx_ring->desc)
4464 goto err;
4465
4466 rx_ring->next_to_alloc = 0;
4467 rx_ring->next_to_clean = 0;
4468 rx_ring->next_to_use = 0;
4469
4470 rx_ring->xdp_prog = adapter->xdp_prog;
4471
4472 return 0;
4473
4474err:
4475 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4476 vfree(rx_ring->rx_buffer_info);
4477 rx_ring->rx_buffer_info = NULL;
4478 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4479 return -ENOMEM;
4480}
4481
4482/**
4483 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4484 * (Descriptors) for all queues
4485 * @adapter: board private structure
4486 *
4487 * Return 0 on success, negative on failure
4488 **/
4489static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4490{
4491 struct pci_dev *pdev = adapter->pdev;
4492 int i, err = 0;
4493
4494 for (i = 0; i < adapter->num_rx_queues; i++) {
4495 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4496 if (err) {
4497 dev_err(&pdev->dev,
4498 "Allocation for Rx Queue %u failed\n", i);
4499 for (i--; i >= 0; i--)
4500 igb_free_rx_resources(adapter->rx_ring[i]);
4501 break;
4502 }
4503 }
4504
4505 return err;
4506}
4507
4508/**
4509 * igb_setup_mrqc - configure the multiple receive queue control registers
4510 * @adapter: Board private structure
4511 **/
4512static void igb_setup_mrqc(struct igb_adapter *adapter)
4513{
4514 struct e1000_hw *hw = &adapter->hw;
4515 u32 mrqc, rxcsum;
4516 u32 j, num_rx_queues;
4517 u32 rss_key[10];
4518
4519 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4520 for (j = 0; j < 10; j++)
4521 wr32(E1000_RSSRK(j), rss_key[j]);
4522
4523 num_rx_queues = adapter->rss_queues;
4524
4525 switch (hw->mac.type) {
4526 case e1000_82576:
4527 /* 82576 supports 2 RSS queues for SR-IOV */
4528 if (adapter->vfs_allocated_count)
4529 num_rx_queues = 2;
4530 break;
4531 default:
4532 break;
4533 }
4534
4535 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4536 for (j = 0; j < IGB_RETA_SIZE; j++)
4537 adapter->rss_indir_tbl[j] =
4538 (j * num_rx_queues) / IGB_RETA_SIZE;
4539 adapter->rss_indir_tbl_init = num_rx_queues;
4540 }
4541 igb_write_rss_indir_tbl(adapter);
4542
4543 /* Disable raw packet checksumming so that RSS hash is placed in
4544 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4545 * offloads as they are enabled by default
4546 */
4547 rxcsum = rd32(E1000_RXCSUM);
4548 rxcsum |= E1000_RXCSUM_PCSD;
4549
4550 if (adapter->hw.mac.type >= e1000_82576)
4551 /* Enable Receive Checksum Offload for SCTP */
4552 rxcsum |= E1000_RXCSUM_CRCOFL;
4553
4554 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4555 wr32(E1000_RXCSUM, rxcsum);
4556
4557 /* Generate RSS hash based on packet types, TCP/UDP
4558 * port numbers and/or IPv4/v6 src and dst addresses
4559 */
4560 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4561 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4562 E1000_MRQC_RSS_FIELD_IPV6 |
4563 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4564 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4565
4566 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4567 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4568 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4569 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4570
4571 /* If VMDq is enabled then we set the appropriate mode for that, else
4572 * we default to RSS so that an RSS hash is calculated per packet even
4573 * if we are only using one queue
4574 */
4575 if (adapter->vfs_allocated_count) {
4576 if (hw->mac.type > e1000_82575) {
4577 /* Set the default pool for the PF's first queue */
4578 u32 vtctl = rd32(E1000_VT_CTL);
4579
4580 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4581 E1000_VT_CTL_DISABLE_DEF_POOL);
4582 vtctl |= adapter->vfs_allocated_count <<
4583 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4584 wr32(E1000_VT_CTL, vtctl);
4585 }
4586 if (adapter->rss_queues > 1)
4587 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4588 else
4589 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4590 } else {
4591 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4592 }
4593 igb_vmm_control(adapter);
4594
4595 wr32(E1000_MRQC, mrqc);
4596}
4597
4598/**
4599 * igb_setup_rctl - configure the receive control registers
4600 * @adapter: Board private structure
4601 **/
4602void igb_setup_rctl(struct igb_adapter *adapter)
4603{
4604 struct e1000_hw *hw = &adapter->hw;
4605 u32 rctl;
4606
4607 rctl = rd32(E1000_RCTL);
4608
4609 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4610 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4611
4612 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4613 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4614
4615 /* enable stripping of CRC. It's unlikely this will break BMC
4616 * redirection as it did with e1000. Newer features require
4617 * that the HW strips the CRC.
4618 */
4619 rctl |= E1000_RCTL_SECRC;
4620
4621 /* disable store bad packets and clear size bits. */
4622 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4623
4624 /* enable LPE to allow for reception of jumbo frames */
4625 rctl |= E1000_RCTL_LPE;
4626
4627 /* disable queue 0 to prevent tail write w/o re-config */
4628 wr32(E1000_RXDCTL(0), 0);
4629
4630 /* Attention!!! For SR-IOV PF driver operations you must enable
4631 * queue drop for all VF and PF queues to prevent head of line blocking
4632 * if an un-trusted VF does not provide descriptors to hardware.
4633 */
4634 if (adapter->vfs_allocated_count) {
4635 /* set all queue drop enable bits */
4636 wr32(E1000_QDE, ALL_QUEUES);
4637 }
4638
4639 /* This is useful for sniffing bad packets. */
4640 if (adapter->netdev->features & NETIF_F_RXALL) {
4641 /* UPE and MPE will be handled by normal PROMISC logic
4642 * in e1000e_set_rx_mode
4643 */
4644 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4645 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4646 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4647
4648 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4649 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4650 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4651 * and that breaks VLANs.
4652 */
4653 }
4654
4655 wr32(E1000_RCTL, rctl);
4656}
4657
4658static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4659 int vfn)
4660{
4661 struct e1000_hw *hw = &adapter->hw;
4662 u32 vmolr;
4663
4664 if (size > MAX_JUMBO_FRAME_SIZE)
4665 size = MAX_JUMBO_FRAME_SIZE;
4666
4667 vmolr = rd32(E1000_VMOLR(vfn));
4668 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4669 vmolr |= size | E1000_VMOLR_LPE;
4670 wr32(E1000_VMOLR(vfn), vmolr);
4671
4672 return 0;
4673}
4674
4675static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4676 int vfn, bool enable)
4677{
4678 struct e1000_hw *hw = &adapter->hw;
4679 u32 val, reg;
4680
4681 if (hw->mac.type < e1000_82576)
4682 return;
4683
4684 if (hw->mac.type == e1000_i350)
4685 reg = E1000_DVMOLR(vfn);
4686 else
4687 reg = E1000_VMOLR(vfn);
4688
4689 val = rd32(reg);
4690 if (enable)
4691 val |= E1000_VMOLR_STRVLAN;
4692 else
4693 val &= ~(E1000_VMOLR_STRVLAN);
4694 wr32(reg, val);
4695}
4696
4697static inline void igb_set_vmolr(struct igb_adapter *adapter,
4698 int vfn, bool aupe)
4699{
4700 struct e1000_hw *hw = &adapter->hw;
4701 u32 vmolr;
4702
4703 /* This register exists only on 82576 and newer so if we are older then
4704 * we should exit and do nothing
4705 */
4706 if (hw->mac.type < e1000_82576)
4707 return;
4708
4709 vmolr = rd32(E1000_VMOLR(vfn));
4710 if (aupe)
4711 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4712 else
4713 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4714
4715 /* clear all bits that might not be set */
4716 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4717
4718 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4719 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4720 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4721 * multicast packets
4722 */
4723 if (vfn <= adapter->vfs_allocated_count)
4724 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4725
4726 wr32(E1000_VMOLR(vfn), vmolr);
4727}
4728
4729/**
4730 * igb_setup_srrctl - configure the split and replication receive control
4731 * registers
4732 * @adapter: Board private structure
4733 * @ring: receive ring to be configured
4734 **/
4735void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4736{
4737 struct e1000_hw *hw = &adapter->hw;
4738 int reg_idx = ring->reg_idx;
4739 u32 srrctl = 0;
4740
4741 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4742 if (ring_uses_large_buffer(ring))
4743 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4744 else
4745 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4746 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4747 if (hw->mac.type >= e1000_82580)
4748 srrctl |= E1000_SRRCTL_TIMESTAMP;
4749 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4750 * queues and rx flow control is disabled
4751 */
4752 if (adapter->vfs_allocated_count ||
4753 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4754 adapter->num_rx_queues > 1))
4755 srrctl |= E1000_SRRCTL_DROP_EN;
4756
4757 wr32(E1000_SRRCTL(reg_idx), srrctl);
4758}
4759
4760/**
4761 * igb_configure_rx_ring - Configure a receive ring after Reset
4762 * @adapter: board private structure
4763 * @ring: receive ring to be configured
4764 *
4765 * Configure the Rx unit of the MAC after a reset.
4766 **/
4767void igb_configure_rx_ring(struct igb_adapter *adapter,
4768 struct igb_ring *ring)
4769{
4770 struct e1000_hw *hw = &adapter->hw;
4771 union e1000_adv_rx_desc *rx_desc;
4772 u64 rdba = ring->dma;
4773 int reg_idx = ring->reg_idx;
4774 u32 rxdctl = 0;
4775
4776 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4777 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4778 MEM_TYPE_PAGE_SHARED, NULL));
4779
4780 /* disable the queue */
4781 wr32(E1000_RXDCTL(reg_idx), 0);
4782
4783 /* Set DMA base address registers */
4784 wr32(E1000_RDBAL(reg_idx),
4785 rdba & 0x00000000ffffffffULL);
4786 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4787 wr32(E1000_RDLEN(reg_idx),
4788 ring->count * sizeof(union e1000_adv_rx_desc));
4789
4790 /* initialize head and tail */
4791 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4792 wr32(E1000_RDH(reg_idx), 0);
4793 writel(0, ring->tail);
4794
4795 /* set descriptor configuration */
4796 igb_setup_srrctl(adapter, ring);
4797
4798 /* set filtering for VMDQ pools */
4799 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4800
4801 rxdctl |= IGB_RX_PTHRESH;
4802 rxdctl |= IGB_RX_HTHRESH << 8;
4803 rxdctl |= IGB_RX_WTHRESH << 16;
4804
4805 /* initialize rx_buffer_info */
4806 memset(ring->rx_buffer_info, 0,
4807 sizeof(struct igb_rx_buffer) * ring->count);
4808
4809 /* initialize Rx descriptor 0 */
4810 rx_desc = IGB_RX_DESC(ring, 0);
4811 rx_desc->wb.upper.length = 0;
4812
4813 /* enable receive descriptor fetching */
4814 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4815 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4816}
4817
4818static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4819 struct igb_ring *rx_ring)
4820{
4821#if (PAGE_SIZE < 8192)
4822 struct e1000_hw *hw = &adapter->hw;
4823#endif
4824
4825 /* set build_skb and buffer size flags */
4826 clear_ring_build_skb_enabled(rx_ring);
4827 clear_ring_uses_large_buffer(rx_ring);
4828
4829 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4830 return;
4831
4832 set_ring_build_skb_enabled(rx_ring);
4833
4834#if (PAGE_SIZE < 8192)
4835 if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4836 rd32(E1000_RCTL) & E1000_RCTL_SBP)
4837 set_ring_uses_large_buffer(rx_ring);
4838#endif
4839}
4840
4841/**
4842 * igb_configure_rx - Configure receive Unit after Reset
4843 * @adapter: board private structure
4844 *
4845 * Configure the Rx unit of the MAC after a reset.
4846 **/
4847static void igb_configure_rx(struct igb_adapter *adapter)
4848{
4849 int i;
4850
4851 /* set the correct pool for the PF default MAC address in entry 0 */
4852 igb_set_default_mac_filter(adapter);
4853
4854 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4855 * the Base and Length of the Rx Descriptor Ring
4856 */
4857 for (i = 0; i < adapter->num_rx_queues; i++) {
4858 struct igb_ring *rx_ring = adapter->rx_ring[i];
4859
4860 igb_set_rx_buffer_len(adapter, rx_ring);
4861 igb_configure_rx_ring(adapter, rx_ring);
4862 }
4863}
4864
4865/**
4866 * igb_free_tx_resources - Free Tx Resources per Queue
4867 * @tx_ring: Tx descriptor ring for a specific queue
4868 *
4869 * Free all transmit software resources
4870 **/
4871void igb_free_tx_resources(struct igb_ring *tx_ring)
4872{
4873 igb_clean_tx_ring(tx_ring);
4874
4875 vfree(tx_ring->tx_buffer_info);
4876 tx_ring->tx_buffer_info = NULL;
4877
4878 /* if not set, then don't free */
4879 if (!tx_ring->desc)
4880 return;
4881
4882 dma_free_coherent(tx_ring->dev, tx_ring->size,
4883 tx_ring->desc, tx_ring->dma);
4884
4885 tx_ring->desc = NULL;
4886}
4887
4888/**
4889 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4890 * @adapter: board private structure
4891 *
4892 * Free all transmit software resources
4893 **/
4894static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4895{
4896 int i;
4897
4898 for (i = 0; i < adapter->num_tx_queues; i++)
4899 if (adapter->tx_ring[i])
4900 igb_free_tx_resources(adapter->tx_ring[i]);
4901}
4902
4903/**
4904 * igb_clean_tx_ring - Free Tx Buffers
4905 * @tx_ring: ring to be cleaned
4906 **/
4907static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4908{
4909 u16 i = tx_ring->next_to_clean;
4910 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4911
4912 while (i != tx_ring->next_to_use) {
4913 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4914
4915 /* Free all the Tx ring sk_buffs or xdp frames */
4916 if (tx_buffer->type == IGB_TYPE_SKB)
4917 dev_kfree_skb_any(tx_buffer->skb);
4918 else
4919 xdp_return_frame(tx_buffer->xdpf);
4920
4921 /* unmap skb header data */
4922 dma_unmap_single(tx_ring->dev,
4923 dma_unmap_addr(tx_buffer, dma),
4924 dma_unmap_len(tx_buffer, len),
4925 DMA_TO_DEVICE);
4926
4927 /* check for eop_desc to determine the end of the packet */
4928 eop_desc = tx_buffer->next_to_watch;
4929 tx_desc = IGB_TX_DESC(tx_ring, i);
4930
4931 /* unmap remaining buffers */
4932 while (tx_desc != eop_desc) {
4933 tx_buffer++;
4934 tx_desc++;
4935 i++;
4936 if (unlikely(i == tx_ring->count)) {
4937 i = 0;
4938 tx_buffer = tx_ring->tx_buffer_info;
4939 tx_desc = IGB_TX_DESC(tx_ring, 0);
4940 }
4941
4942 /* unmap any remaining paged data */
4943 if (dma_unmap_len(tx_buffer, len))
4944 dma_unmap_page(tx_ring->dev,
4945 dma_unmap_addr(tx_buffer, dma),
4946 dma_unmap_len(tx_buffer, len),
4947 DMA_TO_DEVICE);
4948 }
4949
4950 tx_buffer->next_to_watch = NULL;
4951
4952 /* move us one more past the eop_desc for start of next pkt */
4953 tx_buffer++;
4954 i++;
4955 if (unlikely(i == tx_ring->count)) {
4956 i = 0;
4957 tx_buffer = tx_ring->tx_buffer_info;
4958 }
4959 }
4960
4961 /* reset BQL for queue */
4962 netdev_tx_reset_queue(txring_txq(tx_ring));
4963
4964 /* reset next_to_use and next_to_clean */
4965 tx_ring->next_to_use = 0;
4966 tx_ring->next_to_clean = 0;
4967}
4968
4969/**
4970 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4971 * @adapter: board private structure
4972 **/
4973static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4974{
4975 int i;
4976
4977 for (i = 0; i < adapter->num_tx_queues; i++)
4978 if (adapter->tx_ring[i])
4979 igb_clean_tx_ring(adapter->tx_ring[i]);
4980}
4981
4982/**
4983 * igb_free_rx_resources - Free Rx Resources
4984 * @rx_ring: ring to clean the resources from
4985 *
4986 * Free all receive software resources
4987 **/
4988void igb_free_rx_resources(struct igb_ring *rx_ring)
4989{
4990 igb_clean_rx_ring(rx_ring);
4991
4992 rx_ring->xdp_prog = NULL;
4993 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4994 vfree(rx_ring->rx_buffer_info);
4995 rx_ring->rx_buffer_info = NULL;
4996
4997 /* if not set, then don't free */
4998 if (!rx_ring->desc)
4999 return;
5000
5001 dma_free_coherent(rx_ring->dev, rx_ring->size,
5002 rx_ring->desc, rx_ring->dma);
5003
5004 rx_ring->desc = NULL;
5005}
5006
5007/**
5008 * igb_free_all_rx_resources - Free Rx Resources for All Queues
5009 * @adapter: board private structure
5010 *
5011 * Free all receive software resources
5012 **/
5013static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5014{
5015 int i;
5016
5017 for (i = 0; i < adapter->num_rx_queues; i++)
5018 if (adapter->rx_ring[i])
5019 igb_free_rx_resources(adapter->rx_ring[i]);
5020}
5021
5022/**
5023 * igb_clean_rx_ring - Free Rx Buffers per Queue
5024 * @rx_ring: ring to free buffers from
5025 **/
5026static void igb_clean_rx_ring(struct igb_ring *rx_ring)
5027{
5028 u16 i = rx_ring->next_to_clean;
5029
5030 dev_kfree_skb(rx_ring->skb);
5031 rx_ring->skb = NULL;
5032
5033 /* Free all the Rx ring sk_buffs */
5034 while (i != rx_ring->next_to_alloc) {
5035 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5036
5037 /* Invalidate cache lines that may have been written to by
5038 * device so that we avoid corrupting memory.
5039 */
5040 dma_sync_single_range_for_cpu(rx_ring->dev,
5041 buffer_info->dma,
5042 buffer_info->page_offset,
5043 igb_rx_bufsz(rx_ring),
5044 DMA_FROM_DEVICE);
5045
5046 /* free resources associated with mapping */
5047 dma_unmap_page_attrs(rx_ring->dev,
5048 buffer_info->dma,
5049 igb_rx_pg_size(rx_ring),
5050 DMA_FROM_DEVICE,
5051 IGB_RX_DMA_ATTR);
5052 __page_frag_cache_drain(buffer_info->page,
5053 buffer_info->pagecnt_bias);
5054
5055 i++;
5056 if (i == rx_ring->count)
5057 i = 0;
5058 }
5059
5060 rx_ring->next_to_alloc = 0;
5061 rx_ring->next_to_clean = 0;
5062 rx_ring->next_to_use = 0;
5063}
5064
5065/**
5066 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
5067 * @adapter: board private structure
5068 **/
5069static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5070{
5071 int i;
5072
5073 for (i = 0; i < adapter->num_rx_queues; i++)
5074 if (adapter->rx_ring[i])
5075 igb_clean_rx_ring(adapter->rx_ring[i]);
5076}
5077
5078/**
5079 * igb_set_mac - Change the Ethernet Address of the NIC
5080 * @netdev: network interface device structure
5081 * @p: pointer to an address structure
5082 *
5083 * Returns 0 on success, negative on failure
5084 **/
5085static int igb_set_mac(struct net_device *netdev, void *p)
5086{
5087 struct igb_adapter *adapter = netdev_priv(netdev);
5088 struct e1000_hw *hw = &adapter->hw;
5089 struct sockaddr *addr = p;
5090
5091 if (!is_valid_ether_addr(addr->sa_data))
5092 return -EADDRNOTAVAIL;
5093
5094 eth_hw_addr_set(netdev, addr->sa_data);
5095 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5096
5097 /* set the correct pool for the new PF MAC address in entry 0 */
5098 igb_set_default_mac_filter(adapter);
5099
5100 return 0;
5101}
5102
5103/**
5104 * igb_write_mc_addr_list - write multicast addresses to MTA
5105 * @netdev: network interface device structure
5106 *
5107 * Writes multicast address list to the MTA hash table.
5108 * Returns: -ENOMEM on failure
5109 * 0 on no addresses written
5110 * X on writing X addresses to MTA
5111 **/
5112static int igb_write_mc_addr_list(struct net_device *netdev)
5113{
5114 struct igb_adapter *adapter = netdev_priv(netdev);
5115 struct e1000_hw *hw = &adapter->hw;
5116 struct netdev_hw_addr *ha;
5117 u8 *mta_list;
5118 int i;
5119
5120 if (netdev_mc_empty(netdev)) {
5121 /* nothing to program, so clear mc list */
5122 igb_update_mc_addr_list(hw, NULL, 0);
5123 igb_restore_vf_multicasts(adapter);
5124 return 0;
5125 }
5126
5127 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5128 if (!mta_list)
5129 return -ENOMEM;
5130
5131 /* The shared function expects a packed array of only addresses. */
5132 i = 0;
5133 netdev_for_each_mc_addr(ha, netdev)
5134 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5135
5136 igb_update_mc_addr_list(hw, mta_list, i);
5137 kfree(mta_list);
5138
5139 return netdev_mc_count(netdev);
5140}
5141
5142static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5143{
5144 struct e1000_hw *hw = &adapter->hw;
5145 u32 i, pf_id;
5146
5147 switch (hw->mac.type) {
5148 case e1000_i210:
5149 case e1000_i211:
5150 case e1000_i350:
5151 /* VLAN filtering needed for VLAN prio filter */
5152 if (adapter->netdev->features & NETIF_F_NTUPLE)
5153 break;
5154 fallthrough;
5155 case e1000_82576:
5156 case e1000_82580:
5157 case e1000_i354:
5158 /* VLAN filtering needed for pool filtering */
5159 if (adapter->vfs_allocated_count)
5160 break;
5161 fallthrough;
5162 default:
5163 return 1;
5164 }
5165
5166 /* We are already in VLAN promisc, nothing to do */
5167 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5168 return 0;
5169
5170 if (!adapter->vfs_allocated_count)
5171 goto set_vfta;
5172
5173 /* Add PF to all active pools */
5174 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5175
5176 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5177 u32 vlvf = rd32(E1000_VLVF(i));
5178
5179 vlvf |= BIT(pf_id);
5180 wr32(E1000_VLVF(i), vlvf);
5181 }
5182
5183set_vfta:
5184 /* Set all bits in the VLAN filter table array */
5185 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5186 hw->mac.ops.write_vfta(hw, i, ~0U);
5187
5188 /* Set flag so we don't redo unnecessary work */
5189 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5190
5191 return 0;
5192}
5193
5194#define VFTA_BLOCK_SIZE 8
5195static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5196{
5197 struct e1000_hw *hw = &adapter->hw;
5198 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5199 u32 vid_start = vfta_offset * 32;
5200 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5201 u32 i, vid, word, bits, pf_id;
5202
5203 /* guarantee that we don't scrub out management VLAN */
5204 vid = adapter->mng_vlan_id;
5205 if (vid >= vid_start && vid < vid_end)
5206 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5207
5208 if (!adapter->vfs_allocated_count)
5209 goto set_vfta;
5210
5211 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5212
5213 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5214 u32 vlvf = rd32(E1000_VLVF(i));
5215
5216 /* pull VLAN ID from VLVF */
5217 vid = vlvf & VLAN_VID_MASK;
5218
5219 /* only concern ourselves with a certain range */
5220 if (vid < vid_start || vid >= vid_end)
5221 continue;
5222
5223 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5224 /* record VLAN ID in VFTA */
5225 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5226
5227 /* if PF is part of this then continue */
5228 if (test_bit(vid, adapter->active_vlans))
5229 continue;
5230 }
5231
5232 /* remove PF from the pool */
5233 bits = ~BIT(pf_id);
5234 bits &= rd32(E1000_VLVF(i));
5235 wr32(E1000_VLVF(i), bits);
5236 }
5237
5238set_vfta:
5239 /* extract values from active_vlans and write back to VFTA */
5240 for (i = VFTA_BLOCK_SIZE; i--;) {
5241 vid = (vfta_offset + i) * 32;
5242 word = vid / BITS_PER_LONG;
5243 bits = vid % BITS_PER_LONG;
5244
5245 vfta[i] |= adapter->active_vlans[word] >> bits;
5246
5247 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5248 }
5249}
5250
5251static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5252{
5253 u32 i;
5254
5255 /* We are not in VLAN promisc, nothing to do */
5256 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5257 return;
5258
5259 /* Set flag so we don't redo unnecessary work */
5260 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5261
5262 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5263 igb_scrub_vfta(adapter, i);
5264}
5265
5266/**
5267 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5268 * @netdev: network interface device structure
5269 *
5270 * The set_rx_mode entry point is called whenever the unicast or multicast
5271 * address lists or the network interface flags are updated. This routine is
5272 * responsible for configuring the hardware for proper unicast, multicast,
5273 * promiscuous mode, and all-multi behavior.
5274 **/
5275static void igb_set_rx_mode(struct net_device *netdev)
5276{
5277 struct igb_adapter *adapter = netdev_priv(netdev);
5278 struct e1000_hw *hw = &adapter->hw;
5279 unsigned int vfn = adapter->vfs_allocated_count;
5280 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5281 int count;
5282
5283 /* Check for Promiscuous and All Multicast modes */
5284 if (netdev->flags & IFF_PROMISC) {
5285 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5286 vmolr |= E1000_VMOLR_MPME;
5287
5288 /* enable use of UTA filter to force packets to default pool */
5289 if (hw->mac.type == e1000_82576)
5290 vmolr |= E1000_VMOLR_ROPE;
5291 } else {
5292 if (netdev->flags & IFF_ALLMULTI) {
5293 rctl |= E1000_RCTL_MPE;
5294 vmolr |= E1000_VMOLR_MPME;
5295 } else {
5296 /* Write addresses to the MTA, if the attempt fails
5297 * then we should just turn on promiscuous mode so
5298 * that we can at least receive multicast traffic
5299 */
5300 count = igb_write_mc_addr_list(netdev);
5301 if (count < 0) {
5302 rctl |= E1000_RCTL_MPE;
5303 vmolr |= E1000_VMOLR_MPME;
5304 } else if (count) {
5305 vmolr |= E1000_VMOLR_ROMPE;
5306 }
5307 }
5308 }
5309
5310 /* Write addresses to available RAR registers, if there is not
5311 * sufficient space to store all the addresses then enable
5312 * unicast promiscuous mode
5313 */
5314 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5315 rctl |= E1000_RCTL_UPE;
5316 vmolr |= E1000_VMOLR_ROPE;
5317 }
5318
5319 /* enable VLAN filtering by default */
5320 rctl |= E1000_RCTL_VFE;
5321
5322 /* disable VLAN filtering for modes that require it */
5323 if ((netdev->flags & IFF_PROMISC) ||
5324 (netdev->features & NETIF_F_RXALL)) {
5325 /* if we fail to set all rules then just clear VFE */
5326 if (igb_vlan_promisc_enable(adapter))
5327 rctl &= ~E1000_RCTL_VFE;
5328 } else {
5329 igb_vlan_promisc_disable(adapter);
5330 }
5331
5332 /* update state of unicast, multicast, and VLAN filtering modes */
5333 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5334 E1000_RCTL_VFE);
5335 wr32(E1000_RCTL, rctl);
5336
5337#if (PAGE_SIZE < 8192)
5338 if (!adapter->vfs_allocated_count) {
5339 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5340 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5341 }
5342#endif
5343 wr32(E1000_RLPML, rlpml);
5344
5345 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5346 * the VMOLR to enable the appropriate modes. Without this workaround
5347 * we will have issues with VLAN tag stripping not being done for frames
5348 * that are only arriving because we are the default pool
5349 */
5350 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5351 return;
5352
5353 /* set UTA to appropriate mode */
5354 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5355
5356 vmolr |= rd32(E1000_VMOLR(vfn)) &
5357 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5358
5359 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5360 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5361#if (PAGE_SIZE < 8192)
5362 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5363 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5364 else
5365#endif
5366 vmolr |= MAX_JUMBO_FRAME_SIZE;
5367 vmolr |= E1000_VMOLR_LPE;
5368
5369 wr32(E1000_VMOLR(vfn), vmolr);
5370
5371 igb_restore_vf_multicasts(adapter);
5372}
5373
5374static void igb_check_wvbr(struct igb_adapter *adapter)
5375{
5376 struct e1000_hw *hw = &adapter->hw;
5377 u32 wvbr = 0;
5378
5379 switch (hw->mac.type) {
5380 case e1000_82576:
5381 case e1000_i350:
5382 wvbr = rd32(E1000_WVBR);
5383 if (!wvbr)
5384 return;
5385 break;
5386 default:
5387 break;
5388 }
5389
5390 adapter->wvbr |= wvbr;
5391}
5392
5393#define IGB_STAGGERED_QUEUE_OFFSET 8
5394
5395static void igb_spoof_check(struct igb_adapter *adapter)
5396{
5397 int j;
5398
5399 if (!adapter->wvbr)
5400 return;
5401
5402 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5403 if (adapter->wvbr & BIT(j) ||
5404 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5405 dev_warn(&adapter->pdev->dev,
5406 "Spoof event(s) detected on VF %d\n", j);
5407 adapter->wvbr &=
5408 ~(BIT(j) |
5409 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5410 }
5411 }
5412}
5413
5414/* Need to wait a few seconds after link up to get diagnostic information from
5415 * the phy
5416 */
5417static void igb_update_phy_info(struct timer_list *t)
5418{
5419 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5420 igb_get_phy_info(&adapter->hw);
5421}
5422
5423/**
5424 * igb_has_link - check shared code for link and determine up/down
5425 * @adapter: pointer to driver private info
5426 **/
5427bool igb_has_link(struct igb_adapter *adapter)
5428{
5429 struct e1000_hw *hw = &adapter->hw;
5430 bool link_active = false;
5431
5432 /* get_link_status is set on LSC (link status) interrupt or
5433 * rx sequence error interrupt. get_link_status will stay
5434 * false until the e1000_check_for_link establishes link
5435 * for copper adapters ONLY
5436 */
5437 switch (hw->phy.media_type) {
5438 case e1000_media_type_copper:
5439 if (!hw->mac.get_link_status)
5440 return true;
5441 fallthrough;
5442 case e1000_media_type_internal_serdes:
5443 hw->mac.ops.check_for_link(hw);
5444 link_active = !hw->mac.get_link_status;
5445 break;
5446 default:
5447 case e1000_media_type_unknown:
5448 break;
5449 }
5450
5451 if (((hw->mac.type == e1000_i210) ||
5452 (hw->mac.type == e1000_i211)) &&
5453 (hw->phy.id == I210_I_PHY_ID)) {
5454 if (!netif_carrier_ok(adapter->netdev)) {
5455 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5456 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5457 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5458 adapter->link_check_timeout = jiffies;
5459 }
5460 }
5461
5462 return link_active;
5463}
5464
5465static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5466{
5467 bool ret = false;
5468 u32 ctrl_ext, thstat;
5469
5470 /* check for thermal sensor event on i350 copper only */
5471 if (hw->mac.type == e1000_i350) {
5472 thstat = rd32(E1000_THSTAT);
5473 ctrl_ext = rd32(E1000_CTRL_EXT);
5474
5475 if ((hw->phy.media_type == e1000_media_type_copper) &&
5476 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5477 ret = !!(thstat & event);
5478 }
5479
5480 return ret;
5481}
5482
5483/**
5484 * igb_check_lvmmc - check for malformed packets received
5485 * and indicated in LVMMC register
5486 * @adapter: pointer to adapter
5487 **/
5488static void igb_check_lvmmc(struct igb_adapter *adapter)
5489{
5490 struct e1000_hw *hw = &adapter->hw;
5491 u32 lvmmc;
5492
5493 lvmmc = rd32(E1000_LVMMC);
5494 if (lvmmc) {
5495 if (unlikely(net_ratelimit())) {
5496 netdev_warn(adapter->netdev,
5497 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5498 lvmmc);
5499 }
5500 }
5501}
5502
5503/**
5504 * igb_watchdog - Timer Call-back
5505 * @t: pointer to timer_list containing our private info pointer
5506 **/
5507static void igb_watchdog(struct timer_list *t)
5508{
5509 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5510 /* Do the rest outside of interrupt context */
5511 schedule_work(&adapter->watchdog_task);
5512}
5513
5514static void igb_watchdog_task(struct work_struct *work)
5515{
5516 struct igb_adapter *adapter = container_of(work,
5517 struct igb_adapter,
5518 watchdog_task);
5519 struct e1000_hw *hw = &adapter->hw;
5520 struct e1000_phy_info *phy = &hw->phy;
5521 struct net_device *netdev = adapter->netdev;
5522 u32 link;
5523 int i;
5524 u32 connsw;
5525 u16 phy_data, retry_count = 20;
5526
5527 link = igb_has_link(adapter);
5528
5529 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5530 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5531 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5532 else
5533 link = false;
5534 }
5535
5536 /* Force link down if we have fiber to swap to */
5537 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5538 if (hw->phy.media_type == e1000_media_type_copper) {
5539 connsw = rd32(E1000_CONNSW);
5540 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5541 link = 0;
5542 }
5543 }
5544 if (link) {
5545 /* Perform a reset if the media type changed. */
5546 if (hw->dev_spec._82575.media_changed) {
5547 hw->dev_spec._82575.media_changed = false;
5548 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5549 igb_reset(adapter);
5550 }
5551 /* Cancel scheduled suspend requests. */
5552 pm_runtime_resume(netdev->dev.parent);
5553
5554 if (!netif_carrier_ok(netdev)) {
5555 u32 ctrl;
5556
5557 hw->mac.ops.get_speed_and_duplex(hw,
5558 &adapter->link_speed,
5559 &adapter->link_duplex);
5560
5561 ctrl = rd32(E1000_CTRL);
5562 /* Links status message must follow this format */
5563 netdev_info(netdev,
5564 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5565 netdev->name,
5566 adapter->link_speed,
5567 adapter->link_duplex == FULL_DUPLEX ?
5568 "Full" : "Half",
5569 (ctrl & E1000_CTRL_TFCE) &&
5570 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5571 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5572 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5573
5574 /* disable EEE if enabled */
5575 if ((adapter->flags & IGB_FLAG_EEE) &&
5576 (adapter->link_duplex == HALF_DUPLEX)) {
5577 dev_info(&adapter->pdev->dev,
5578 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5579 adapter->hw.dev_spec._82575.eee_disable = true;
5580 adapter->flags &= ~IGB_FLAG_EEE;
5581 }
5582
5583 /* check if SmartSpeed worked */
5584 igb_check_downshift(hw);
5585 if (phy->speed_downgraded)
5586 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5587
5588 /* check for thermal sensor event */
5589 if (igb_thermal_sensor_event(hw,
5590 E1000_THSTAT_LINK_THROTTLE))
5591 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5592
5593 /* adjust timeout factor according to speed/duplex */
5594 adapter->tx_timeout_factor = 1;
5595 switch (adapter->link_speed) {
5596 case SPEED_10:
5597 adapter->tx_timeout_factor = 14;
5598 break;
5599 case SPEED_100:
5600 /* maybe add some timeout factor ? */
5601 break;
5602 }
5603
5604 if (adapter->link_speed != SPEED_1000 ||
5605 !hw->phy.ops.read_reg)
5606 goto no_wait;
5607
5608 /* wait for Remote receiver status OK */
5609retry_read_status:
5610 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5611 &phy_data)) {
5612 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5613 retry_count) {
5614 msleep(100);
5615 retry_count--;
5616 goto retry_read_status;
5617 } else if (!retry_count) {
5618 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5619 }
5620 } else {
5621 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5622 }
5623no_wait:
5624 netif_carrier_on(netdev);
5625
5626 igb_ping_all_vfs(adapter);
5627 igb_check_vf_rate_limit(adapter);
5628
5629 /* link state has changed, schedule phy info update */
5630 if (!test_bit(__IGB_DOWN, &adapter->state))
5631 mod_timer(&adapter->phy_info_timer,
5632 round_jiffies(jiffies + 2 * HZ));
5633 }
5634 } else {
5635 if (netif_carrier_ok(netdev)) {
5636 adapter->link_speed = 0;
5637 adapter->link_duplex = 0;
5638
5639 /* check for thermal sensor event */
5640 if (igb_thermal_sensor_event(hw,
5641 E1000_THSTAT_PWR_DOWN)) {
5642 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5643 }
5644
5645 /* Links status message must follow this format */
5646 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5647 netdev->name);
5648 netif_carrier_off(netdev);
5649
5650 igb_ping_all_vfs(adapter);
5651
5652 /* link state has changed, schedule phy info update */
5653 if (!test_bit(__IGB_DOWN, &adapter->state))
5654 mod_timer(&adapter->phy_info_timer,
5655 round_jiffies(jiffies + 2 * HZ));
5656
5657 /* link is down, time to check for alternate media */
5658 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5659 igb_check_swap_media(adapter);
5660 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5661 schedule_work(&adapter->reset_task);
5662 /* return immediately */
5663 return;
5664 }
5665 }
5666 pm_schedule_suspend(netdev->dev.parent,
5667 MSEC_PER_SEC * 5);
5668
5669 /* also check for alternate media here */
5670 } else if (!netif_carrier_ok(netdev) &&
5671 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5672 igb_check_swap_media(adapter);
5673 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5674 schedule_work(&adapter->reset_task);
5675 /* return immediately */
5676 return;
5677 }
5678 }
5679 }
5680
5681 spin_lock(&adapter->stats64_lock);
5682 igb_update_stats(adapter);
5683 spin_unlock(&adapter->stats64_lock);
5684
5685 for (i = 0; i < adapter->num_tx_queues; i++) {
5686 struct igb_ring *tx_ring = adapter->tx_ring[i];
5687 if (!netif_carrier_ok(netdev)) {
5688 /* We've lost link, so the controller stops DMA,
5689 * but we've got queued Tx work that's never going
5690 * to get done, so reset controller to flush Tx.
5691 * (Do the reset outside of interrupt context).
5692 */
5693 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5694 adapter->tx_timeout_count++;
5695 schedule_work(&adapter->reset_task);
5696 /* return immediately since reset is imminent */
5697 return;
5698 }
5699 }
5700
5701 /* Force detection of hung controller every watchdog period */
5702 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5703 }
5704
5705 /* Cause software interrupt to ensure Rx ring is cleaned */
5706 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5707 u32 eics = 0;
5708
5709 for (i = 0; i < adapter->num_q_vectors; i++)
5710 eics |= adapter->q_vector[i]->eims_value;
5711 wr32(E1000_EICS, eics);
5712 } else {
5713 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5714 }
5715
5716 igb_spoof_check(adapter);
5717 igb_ptp_rx_hang(adapter);
5718 igb_ptp_tx_hang(adapter);
5719
5720 /* Check LVMMC register on i350/i354 only */
5721 if ((adapter->hw.mac.type == e1000_i350) ||
5722 (adapter->hw.mac.type == e1000_i354))
5723 igb_check_lvmmc(adapter);
5724
5725 /* Reset the timer */
5726 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5727 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5728 mod_timer(&adapter->watchdog_timer,
5729 round_jiffies(jiffies + HZ));
5730 else
5731 mod_timer(&adapter->watchdog_timer,
5732 round_jiffies(jiffies + 2 * HZ));
5733 }
5734}
5735
5736enum latency_range {
5737 lowest_latency = 0,
5738 low_latency = 1,
5739 bulk_latency = 2,
5740 latency_invalid = 255
5741};
5742
5743/**
5744 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5745 * @q_vector: pointer to q_vector
5746 *
5747 * Stores a new ITR value based on strictly on packet size. This
5748 * algorithm is less sophisticated than that used in igb_update_itr,
5749 * due to the difficulty of synchronizing statistics across multiple
5750 * receive rings. The divisors and thresholds used by this function
5751 * were determined based on theoretical maximum wire speed and testing
5752 * data, in order to minimize response time while increasing bulk
5753 * throughput.
5754 * This functionality is controlled by ethtool's coalescing settings.
5755 * NOTE: This function is called only when operating in a multiqueue
5756 * receive environment.
5757 **/
5758static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5759{
5760 int new_val = q_vector->itr_val;
5761 int avg_wire_size = 0;
5762 struct igb_adapter *adapter = q_vector->adapter;
5763 unsigned int packets;
5764
5765 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5766 * ints/sec - ITR timer value of 120 ticks.
5767 */
5768 if (adapter->link_speed != SPEED_1000) {
5769 new_val = IGB_4K_ITR;
5770 goto set_itr_val;
5771 }
5772
5773 packets = q_vector->rx.total_packets;
5774 if (packets)
5775 avg_wire_size = q_vector->rx.total_bytes / packets;
5776
5777 packets = q_vector->tx.total_packets;
5778 if (packets)
5779 avg_wire_size = max_t(u32, avg_wire_size,
5780 q_vector->tx.total_bytes / packets);
5781
5782 /* if avg_wire_size isn't set no work was done */
5783 if (!avg_wire_size)
5784 goto clear_counts;
5785
5786 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5787 avg_wire_size += 24;
5788
5789 /* Don't starve jumbo frames */
5790 avg_wire_size = min(avg_wire_size, 3000);
5791
5792 /* Give a little boost to mid-size frames */
5793 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5794 new_val = avg_wire_size / 3;
5795 else
5796 new_val = avg_wire_size / 2;
5797
5798 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5799 if (new_val < IGB_20K_ITR &&
5800 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5801 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5802 new_val = IGB_20K_ITR;
5803
5804set_itr_val:
5805 if (new_val != q_vector->itr_val) {
5806 q_vector->itr_val = new_val;
5807 q_vector->set_itr = 1;
5808 }
5809clear_counts:
5810 q_vector->rx.total_bytes = 0;
5811 q_vector->rx.total_packets = 0;
5812 q_vector->tx.total_bytes = 0;
5813 q_vector->tx.total_packets = 0;
5814}
5815
5816/**
5817 * igb_update_itr - update the dynamic ITR value based on statistics
5818 * @q_vector: pointer to q_vector
5819 * @ring_container: ring info to update the itr for
5820 *
5821 * Stores a new ITR value based on packets and byte
5822 * counts during the last interrupt. The advantage of per interrupt
5823 * computation is faster updates and more accurate ITR for the current
5824 * traffic pattern. Constants in this function were computed
5825 * based on theoretical maximum wire speed and thresholds were set based
5826 * on testing data as well as attempting to minimize response time
5827 * while increasing bulk throughput.
5828 * This functionality is controlled by ethtool's coalescing settings.
5829 * NOTE: These calculations are only valid when operating in a single-
5830 * queue environment.
5831 **/
5832static void igb_update_itr(struct igb_q_vector *q_vector,
5833 struct igb_ring_container *ring_container)
5834{
5835 unsigned int packets = ring_container->total_packets;
5836 unsigned int bytes = ring_container->total_bytes;
5837 u8 itrval = ring_container->itr;
5838
5839 /* no packets, exit with status unchanged */
5840 if (packets == 0)
5841 return;
5842
5843 switch (itrval) {
5844 case lowest_latency:
5845 /* handle TSO and jumbo frames */
5846 if (bytes/packets > 8000)
5847 itrval = bulk_latency;
5848 else if ((packets < 5) && (bytes > 512))
5849 itrval = low_latency;
5850 break;
5851 case low_latency: /* 50 usec aka 20000 ints/s */
5852 if (bytes > 10000) {
5853 /* this if handles the TSO accounting */
5854 if (bytes/packets > 8000)
5855 itrval = bulk_latency;
5856 else if ((packets < 10) || ((bytes/packets) > 1200))
5857 itrval = bulk_latency;
5858 else if ((packets > 35))
5859 itrval = lowest_latency;
5860 } else if (bytes/packets > 2000) {
5861 itrval = bulk_latency;
5862 } else if (packets <= 2 && bytes < 512) {
5863 itrval = lowest_latency;
5864 }
5865 break;
5866 case bulk_latency: /* 250 usec aka 4000 ints/s */
5867 if (bytes > 25000) {
5868 if (packets > 35)
5869 itrval = low_latency;
5870 } else if (bytes < 1500) {
5871 itrval = low_latency;
5872 }
5873 break;
5874 }
5875
5876 /* clear work counters since we have the values we need */
5877 ring_container->total_bytes = 0;
5878 ring_container->total_packets = 0;
5879
5880 /* write updated itr to ring container */
5881 ring_container->itr = itrval;
5882}
5883
5884static void igb_set_itr(struct igb_q_vector *q_vector)
5885{
5886 struct igb_adapter *adapter = q_vector->adapter;
5887 u32 new_itr = q_vector->itr_val;
5888 u8 current_itr = 0;
5889
5890 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5891 if (adapter->link_speed != SPEED_1000) {
5892 current_itr = 0;
5893 new_itr = IGB_4K_ITR;
5894 goto set_itr_now;
5895 }
5896
5897 igb_update_itr(q_vector, &q_vector->tx);
5898 igb_update_itr(q_vector, &q_vector->rx);
5899
5900 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5901
5902 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5903 if (current_itr == lowest_latency &&
5904 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5905 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5906 current_itr = low_latency;
5907
5908 switch (current_itr) {
5909 /* counts and packets in update_itr are dependent on these numbers */
5910 case lowest_latency:
5911 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5912 break;
5913 case low_latency:
5914 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5915 break;
5916 case bulk_latency:
5917 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5918 break;
5919 default:
5920 break;
5921 }
5922
5923set_itr_now:
5924 if (new_itr != q_vector->itr_val) {
5925 /* this attempts to bias the interrupt rate towards Bulk
5926 * by adding intermediate steps when interrupt rate is
5927 * increasing
5928 */
5929 new_itr = new_itr > q_vector->itr_val ?
5930 max((new_itr * q_vector->itr_val) /
5931 (new_itr + (q_vector->itr_val >> 2)),
5932 new_itr) : new_itr;
5933 /* Don't write the value here; it resets the adapter's
5934 * internal timer, and causes us to delay far longer than
5935 * we should between interrupts. Instead, we write the ITR
5936 * value at the beginning of the next interrupt so the timing
5937 * ends up being correct.
5938 */
5939 q_vector->itr_val = new_itr;
5940 q_vector->set_itr = 1;
5941 }
5942}
5943
5944static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5945 struct igb_tx_buffer *first,
5946 u32 vlan_macip_lens, u32 type_tucmd,
5947 u32 mss_l4len_idx)
5948{
5949 struct e1000_adv_tx_context_desc *context_desc;
5950 u16 i = tx_ring->next_to_use;
5951 struct timespec64 ts;
5952
5953 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5954
5955 i++;
5956 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5957
5958 /* set bits to identify this as an advanced context descriptor */
5959 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5960
5961 /* For 82575, context index must be unique per ring. */
5962 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5963 mss_l4len_idx |= tx_ring->reg_idx << 4;
5964
5965 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5966 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5967 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5968
5969 /* We assume there is always a valid tx time available. Invalid times
5970 * should have been handled by the upper layers.
5971 */
5972 if (tx_ring->launchtime_enable) {
5973 ts = ktime_to_timespec64(first->skb->tstamp);
5974 skb_txtime_consumed(first->skb);
5975 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5976 } else {
5977 context_desc->seqnum_seed = 0;
5978 }
5979}
5980
5981static int igb_tso(struct igb_ring *tx_ring,
5982 struct igb_tx_buffer *first,
5983 u8 *hdr_len)
5984{
5985 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5986 struct sk_buff *skb = first->skb;
5987 union {
5988 struct iphdr *v4;
5989 struct ipv6hdr *v6;
5990 unsigned char *hdr;
5991 } ip;
5992 union {
5993 struct tcphdr *tcp;
5994 struct udphdr *udp;
5995 unsigned char *hdr;
5996 } l4;
5997 u32 paylen, l4_offset;
5998 int err;
5999
6000 if (skb->ip_summed != CHECKSUM_PARTIAL)
6001 return 0;
6002
6003 if (!skb_is_gso(skb))
6004 return 0;
6005
6006 err = skb_cow_head(skb, 0);
6007 if (err < 0)
6008 return err;
6009
6010 ip.hdr = skb_network_header(skb);
6011 l4.hdr = skb_checksum_start(skb);
6012
6013 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6014 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6015 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6016
6017 /* initialize outer IP header fields */
6018 if (ip.v4->version == 4) {
6019 unsigned char *csum_start = skb_checksum_start(skb);
6020 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6021
6022 /* IP header will have to cancel out any data that
6023 * is not a part of the outer IP header
6024 */
6025 ip.v4->check = csum_fold(csum_partial(trans_start,
6026 csum_start - trans_start,
6027 0));
6028 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6029
6030 ip.v4->tot_len = 0;
6031 first->tx_flags |= IGB_TX_FLAGS_TSO |
6032 IGB_TX_FLAGS_CSUM |
6033 IGB_TX_FLAGS_IPV4;
6034 } else {
6035 ip.v6->payload_len = 0;
6036 first->tx_flags |= IGB_TX_FLAGS_TSO |
6037 IGB_TX_FLAGS_CSUM;
6038 }
6039
6040 /* determine offset of inner transport header */
6041 l4_offset = l4.hdr - skb->data;
6042
6043 /* remove payload length from inner checksum */
6044 paylen = skb->len - l4_offset;
6045 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6046 /* compute length of segmentation header */
6047 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
6048 csum_replace_by_diff(&l4.tcp->check,
6049 (__force __wsum)htonl(paylen));
6050 } else {
6051 /* compute length of segmentation header */
6052 *hdr_len = sizeof(*l4.udp) + l4_offset;
6053 csum_replace_by_diff(&l4.udp->check,
6054 (__force __wsum)htonl(paylen));
6055 }
6056
6057 /* update gso size and bytecount with header size */
6058 first->gso_segs = skb_shinfo(skb)->gso_segs;
6059 first->bytecount += (first->gso_segs - 1) * *hdr_len;
6060
6061 /* MSS L4LEN IDX */
6062 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6063 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6064
6065 /* VLAN MACLEN IPLEN */
6066 vlan_macip_lens = l4.hdr - ip.hdr;
6067 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6068 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6069
6070 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6071 type_tucmd, mss_l4len_idx);
6072
6073 return 1;
6074}
6075
6076static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6077{
6078 struct sk_buff *skb = first->skb;
6079 u32 vlan_macip_lens = 0;
6080 u32 type_tucmd = 0;
6081
6082 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6083csum_failed:
6084 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6085 !tx_ring->launchtime_enable)
6086 return;
6087 goto no_csum;
6088 }
6089
6090 switch (skb->csum_offset) {
6091 case offsetof(struct tcphdr, check):
6092 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6093 fallthrough;
6094 case offsetof(struct udphdr, check):
6095 break;
6096 case offsetof(struct sctphdr, checksum):
6097 /* validate that this is actually an SCTP request */
6098 if (skb_csum_is_sctp(skb)) {
6099 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6100 break;
6101 }
6102 fallthrough;
6103 default:
6104 skb_checksum_help(skb);
6105 goto csum_failed;
6106 }
6107
6108 /* update TX checksum flag */
6109 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6110 vlan_macip_lens = skb_checksum_start_offset(skb) -
6111 skb_network_offset(skb);
6112no_csum:
6113 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6114 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6115
6116 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6117}
6118
6119#define IGB_SET_FLAG(_input, _flag, _result) \
6120 ((_flag <= _result) ? \
6121 ((u32)(_input & _flag) * (_result / _flag)) : \
6122 ((u32)(_input & _flag) / (_flag / _result)))
6123
6124static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6125{
6126 /* set type for advanced descriptor with frame checksum insertion */
6127 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6128 E1000_ADVTXD_DCMD_DEXT |
6129 E1000_ADVTXD_DCMD_IFCS;
6130
6131 /* set HW vlan bit if vlan is present */
6132 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6133 (E1000_ADVTXD_DCMD_VLE));
6134
6135 /* set segmentation bits for TSO */
6136 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6137 (E1000_ADVTXD_DCMD_TSE));
6138
6139 /* set timestamp bit if present */
6140 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6141 (E1000_ADVTXD_MAC_TSTAMP));
6142
6143 /* insert frame checksum */
6144 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6145
6146 return cmd_type;
6147}
6148
6149static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6150 union e1000_adv_tx_desc *tx_desc,
6151 u32 tx_flags, unsigned int paylen)
6152{
6153 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6154
6155 /* 82575 requires a unique index per ring */
6156 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6157 olinfo_status |= tx_ring->reg_idx << 4;
6158
6159 /* insert L4 checksum */
6160 olinfo_status |= IGB_SET_FLAG(tx_flags,
6161 IGB_TX_FLAGS_CSUM,
6162 (E1000_TXD_POPTS_TXSM << 8));
6163
6164 /* insert IPv4 checksum */
6165 olinfo_status |= IGB_SET_FLAG(tx_flags,
6166 IGB_TX_FLAGS_IPV4,
6167 (E1000_TXD_POPTS_IXSM << 8));
6168
6169 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6170}
6171
6172static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6173{
6174 struct net_device *netdev = tx_ring->netdev;
6175
6176 netif_stop_subqueue(netdev, tx_ring->queue_index);
6177
6178 /* Herbert's original patch had:
6179 * smp_mb__after_netif_stop_queue();
6180 * but since that doesn't exist yet, just open code it.
6181 */
6182 smp_mb();
6183
6184 /* We need to check again in a case another CPU has just
6185 * made room available.
6186 */
6187 if (igb_desc_unused(tx_ring) < size)
6188 return -EBUSY;
6189
6190 /* A reprieve! */
6191 netif_wake_subqueue(netdev, tx_ring->queue_index);
6192
6193 u64_stats_update_begin(&tx_ring->tx_syncp2);
6194 tx_ring->tx_stats.restart_queue2++;
6195 u64_stats_update_end(&tx_ring->tx_syncp2);
6196
6197 return 0;
6198}
6199
6200static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6201{
6202 if (igb_desc_unused(tx_ring) >= size)
6203 return 0;
6204 return __igb_maybe_stop_tx(tx_ring, size);
6205}
6206
6207static int igb_tx_map(struct igb_ring *tx_ring,
6208 struct igb_tx_buffer *first,
6209 const u8 hdr_len)
6210{
6211 struct sk_buff *skb = first->skb;
6212 struct igb_tx_buffer *tx_buffer;
6213 union e1000_adv_tx_desc *tx_desc;
6214 skb_frag_t *frag;
6215 dma_addr_t dma;
6216 unsigned int data_len, size;
6217 u32 tx_flags = first->tx_flags;
6218 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6219 u16 i = tx_ring->next_to_use;
6220
6221 tx_desc = IGB_TX_DESC(tx_ring, i);
6222
6223 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6224
6225 size = skb_headlen(skb);
6226 data_len = skb->data_len;
6227
6228 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6229
6230 tx_buffer = first;
6231
6232 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6233 if (dma_mapping_error(tx_ring->dev, dma))
6234 goto dma_error;
6235
6236 /* record length, and DMA address */
6237 dma_unmap_len_set(tx_buffer, len, size);
6238 dma_unmap_addr_set(tx_buffer, dma, dma);
6239
6240 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6241
6242 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6243 tx_desc->read.cmd_type_len =
6244 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6245
6246 i++;
6247 tx_desc++;
6248 if (i == tx_ring->count) {
6249 tx_desc = IGB_TX_DESC(tx_ring, 0);
6250 i = 0;
6251 }
6252 tx_desc->read.olinfo_status = 0;
6253
6254 dma += IGB_MAX_DATA_PER_TXD;
6255 size -= IGB_MAX_DATA_PER_TXD;
6256
6257 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6258 }
6259
6260 if (likely(!data_len))
6261 break;
6262
6263 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6264
6265 i++;
6266 tx_desc++;
6267 if (i == tx_ring->count) {
6268 tx_desc = IGB_TX_DESC(tx_ring, 0);
6269 i = 0;
6270 }
6271 tx_desc->read.olinfo_status = 0;
6272
6273 size = skb_frag_size(frag);
6274 data_len -= size;
6275
6276 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6277 size, DMA_TO_DEVICE);
6278
6279 tx_buffer = &tx_ring->tx_buffer_info[i];
6280 }
6281
6282 /* write last descriptor with RS and EOP bits */
6283 cmd_type |= size | IGB_TXD_DCMD;
6284 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6285
6286 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6287
6288 /* set the timestamp */
6289 first->time_stamp = jiffies;
6290
6291 skb_tx_timestamp(skb);
6292
6293 /* Force memory writes to complete before letting h/w know there
6294 * are new descriptors to fetch. (Only applicable for weak-ordered
6295 * memory model archs, such as IA-64).
6296 *
6297 * We also need this memory barrier to make certain all of the
6298 * status bits have been updated before next_to_watch is written.
6299 */
6300 dma_wmb();
6301
6302 /* set next_to_watch value indicating a packet is present */
6303 first->next_to_watch = tx_desc;
6304
6305 i++;
6306 if (i == tx_ring->count)
6307 i = 0;
6308
6309 tx_ring->next_to_use = i;
6310
6311 /* Make sure there is space in the ring for the next send. */
6312 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6313
6314 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6315 writel(i, tx_ring->tail);
6316 }
6317 return 0;
6318
6319dma_error:
6320 dev_err(tx_ring->dev, "TX DMA map failed\n");
6321 tx_buffer = &tx_ring->tx_buffer_info[i];
6322
6323 /* clear dma mappings for failed tx_buffer_info map */
6324 while (tx_buffer != first) {
6325 if (dma_unmap_len(tx_buffer, len))
6326 dma_unmap_page(tx_ring->dev,
6327 dma_unmap_addr(tx_buffer, dma),
6328 dma_unmap_len(tx_buffer, len),
6329 DMA_TO_DEVICE);
6330 dma_unmap_len_set(tx_buffer, len, 0);
6331
6332 if (i-- == 0)
6333 i += tx_ring->count;
6334 tx_buffer = &tx_ring->tx_buffer_info[i];
6335 }
6336
6337 if (dma_unmap_len(tx_buffer, len))
6338 dma_unmap_single(tx_ring->dev,
6339 dma_unmap_addr(tx_buffer, dma),
6340 dma_unmap_len(tx_buffer, len),
6341 DMA_TO_DEVICE);
6342 dma_unmap_len_set(tx_buffer, len, 0);
6343
6344 dev_kfree_skb_any(tx_buffer->skb);
6345 tx_buffer->skb = NULL;
6346
6347 tx_ring->next_to_use = i;
6348
6349 return -1;
6350}
6351
6352int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6353 struct igb_ring *tx_ring,
6354 struct xdp_frame *xdpf)
6355{
6356 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6357 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6358 u16 count, i, index = tx_ring->next_to_use;
6359 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6360 struct igb_tx_buffer *tx_buffer = tx_head;
6361 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6362 u32 len = xdpf->len, cmd_type, olinfo_status;
6363 void *data = xdpf->data;
6364
6365 count = TXD_USE_COUNT(len);
6366 for (i = 0; i < nr_frags; i++)
6367 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6368
6369 if (igb_maybe_stop_tx(tx_ring, count + 3))
6370 return IGB_XDP_CONSUMED;
6371
6372 i = 0;
6373 /* record the location of the first descriptor for this packet */
6374 tx_head->bytecount = xdp_get_frame_len(xdpf);
6375 tx_head->type = IGB_TYPE_XDP;
6376 tx_head->gso_segs = 1;
6377 tx_head->xdpf = xdpf;
6378
6379 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6380 /* 82575 requires a unique index per ring */
6381 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6382 olinfo_status |= tx_ring->reg_idx << 4;
6383 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6384
6385 for (;;) {
6386 dma_addr_t dma;
6387
6388 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6389 if (dma_mapping_error(tx_ring->dev, dma))
6390 goto unmap;
6391
6392 /* record length, and DMA address */
6393 dma_unmap_len_set(tx_buffer, len, len);
6394 dma_unmap_addr_set(tx_buffer, dma, dma);
6395
6396 /* put descriptor type bits */
6397 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6398 E1000_ADVTXD_DCMD_IFCS | len;
6399
6400 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6401 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6402
6403 tx_buffer->protocol = 0;
6404
6405 if (++index == tx_ring->count)
6406 index = 0;
6407
6408 if (i == nr_frags)
6409 break;
6410
6411 tx_buffer = &tx_ring->tx_buffer_info[index];
6412 tx_desc = IGB_TX_DESC(tx_ring, index);
6413 tx_desc->read.olinfo_status = 0;
6414
6415 data = skb_frag_address(&sinfo->frags[i]);
6416 len = skb_frag_size(&sinfo->frags[i]);
6417 i++;
6418 }
6419 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6420
6421 netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6422 /* set the timestamp */
6423 tx_head->time_stamp = jiffies;
6424
6425 /* Avoid any potential race with xdp_xmit and cleanup */
6426 smp_wmb();
6427
6428 /* set next_to_watch value indicating a packet is present */
6429 tx_head->next_to_watch = tx_desc;
6430 tx_ring->next_to_use = index;
6431
6432 /* Make sure there is space in the ring for the next send. */
6433 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6434
6435 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6436 writel(index, tx_ring->tail);
6437
6438 return IGB_XDP_TX;
6439
6440unmap:
6441 for (;;) {
6442 tx_buffer = &tx_ring->tx_buffer_info[index];
6443 if (dma_unmap_len(tx_buffer, len))
6444 dma_unmap_page(tx_ring->dev,
6445 dma_unmap_addr(tx_buffer, dma),
6446 dma_unmap_len(tx_buffer, len),
6447 DMA_TO_DEVICE);
6448 dma_unmap_len_set(tx_buffer, len, 0);
6449 if (tx_buffer == tx_head)
6450 break;
6451
6452 if (!index)
6453 index += tx_ring->count;
6454 index--;
6455 }
6456
6457 return IGB_XDP_CONSUMED;
6458}
6459
6460netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6461 struct igb_ring *tx_ring)
6462{
6463 struct igb_tx_buffer *first;
6464 int tso;
6465 u32 tx_flags = 0;
6466 unsigned short f;
6467 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6468 __be16 protocol = vlan_get_protocol(skb);
6469 u8 hdr_len = 0;
6470
6471 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6472 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6473 * + 2 desc gap to keep tail from touching head,
6474 * + 1 desc for context descriptor,
6475 * otherwise try next time
6476 */
6477 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6478 count += TXD_USE_COUNT(skb_frag_size(
6479 &skb_shinfo(skb)->frags[f]));
6480
6481 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6482 /* this is a hard error */
6483 return NETDEV_TX_BUSY;
6484 }
6485
6486 /* record the location of the first descriptor for this packet */
6487 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6488 first->type = IGB_TYPE_SKB;
6489 first->skb = skb;
6490 first->bytecount = skb->len;
6491 first->gso_segs = 1;
6492
6493 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6494 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6495
6496 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6497 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6498 &adapter->state)) {
6499 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6500 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6501
6502 adapter->ptp_tx_skb = skb_get(skb);
6503 adapter->ptp_tx_start = jiffies;
6504 if (adapter->hw.mac.type == e1000_82576)
6505 schedule_work(&adapter->ptp_tx_work);
6506 } else {
6507 adapter->tx_hwtstamp_skipped++;
6508 }
6509 }
6510
6511 if (skb_vlan_tag_present(skb)) {
6512 tx_flags |= IGB_TX_FLAGS_VLAN;
6513 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6514 }
6515
6516 /* record initial flags and protocol */
6517 first->tx_flags = tx_flags;
6518 first->protocol = protocol;
6519
6520 tso = igb_tso(tx_ring, first, &hdr_len);
6521 if (tso < 0)
6522 goto out_drop;
6523 else if (!tso)
6524 igb_tx_csum(tx_ring, first);
6525
6526 if (igb_tx_map(tx_ring, first, hdr_len))
6527 goto cleanup_tx_tstamp;
6528
6529 return NETDEV_TX_OK;
6530
6531out_drop:
6532 dev_kfree_skb_any(first->skb);
6533 first->skb = NULL;
6534cleanup_tx_tstamp:
6535 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6536 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6537
6538 dev_kfree_skb_any(adapter->ptp_tx_skb);
6539 adapter->ptp_tx_skb = NULL;
6540 if (adapter->hw.mac.type == e1000_82576)
6541 cancel_work_sync(&adapter->ptp_tx_work);
6542 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6543 }
6544
6545 return NETDEV_TX_OK;
6546}
6547
6548static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6549 struct sk_buff *skb)
6550{
6551 unsigned int r_idx = skb->queue_mapping;
6552
6553 if (r_idx >= adapter->num_tx_queues)
6554 r_idx = r_idx % adapter->num_tx_queues;
6555
6556 return adapter->tx_ring[r_idx];
6557}
6558
6559static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6560 struct net_device *netdev)
6561{
6562 struct igb_adapter *adapter = netdev_priv(netdev);
6563
6564 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6565 * in order to meet this minimum size requirement.
6566 */
6567 if (skb_put_padto(skb, 17))
6568 return NETDEV_TX_OK;
6569
6570 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6571}
6572
6573/**
6574 * igb_tx_timeout - Respond to a Tx Hang
6575 * @netdev: network interface device structure
6576 * @txqueue: number of the Tx queue that hung (unused)
6577 **/
6578static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6579{
6580 struct igb_adapter *adapter = netdev_priv(netdev);
6581 struct e1000_hw *hw = &adapter->hw;
6582
6583 /* Do the reset outside of interrupt context */
6584 adapter->tx_timeout_count++;
6585
6586 if (hw->mac.type >= e1000_82580)
6587 hw->dev_spec._82575.global_device_reset = true;
6588
6589 schedule_work(&adapter->reset_task);
6590 wr32(E1000_EICS,
6591 (adapter->eims_enable_mask & ~adapter->eims_other));
6592}
6593
6594static void igb_reset_task(struct work_struct *work)
6595{
6596 struct igb_adapter *adapter;
6597 adapter = container_of(work, struct igb_adapter, reset_task);
6598
6599 rtnl_lock();
6600 /* If we're already down or resetting, just bail */
6601 if (test_bit(__IGB_DOWN, &adapter->state) ||
6602 test_bit(__IGB_RESETTING, &adapter->state)) {
6603 rtnl_unlock();
6604 return;
6605 }
6606
6607 igb_dump(adapter);
6608 netdev_err(adapter->netdev, "Reset adapter\n");
6609 igb_reinit_locked(adapter);
6610 rtnl_unlock();
6611}
6612
6613/**
6614 * igb_get_stats64 - Get System Network Statistics
6615 * @netdev: network interface device structure
6616 * @stats: rtnl_link_stats64 pointer
6617 **/
6618static void igb_get_stats64(struct net_device *netdev,
6619 struct rtnl_link_stats64 *stats)
6620{
6621 struct igb_adapter *adapter = netdev_priv(netdev);
6622
6623 spin_lock(&adapter->stats64_lock);
6624 igb_update_stats(adapter);
6625 memcpy(stats, &adapter->stats64, sizeof(*stats));
6626 spin_unlock(&adapter->stats64_lock);
6627}
6628
6629/**
6630 * igb_change_mtu - Change the Maximum Transfer Unit
6631 * @netdev: network interface device structure
6632 * @new_mtu: new value for maximum frame size
6633 *
6634 * Returns 0 on success, negative on failure
6635 **/
6636static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6637{
6638 struct igb_adapter *adapter = netdev_priv(netdev);
6639 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6640
6641 if (adapter->xdp_prog) {
6642 int i;
6643
6644 for (i = 0; i < adapter->num_rx_queues; i++) {
6645 struct igb_ring *ring = adapter->rx_ring[i];
6646
6647 if (max_frame > igb_rx_bufsz(ring)) {
6648 netdev_warn(adapter->netdev,
6649 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6650 max_frame);
6651 return -EINVAL;
6652 }
6653 }
6654 }
6655
6656 /* adjust max frame to be at least the size of a standard frame */
6657 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6658 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6659
6660 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6661 usleep_range(1000, 2000);
6662
6663 /* igb_down has a dependency on max_frame_size */
6664 adapter->max_frame_size = max_frame;
6665
6666 if (netif_running(netdev))
6667 igb_down(adapter);
6668
6669 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6670 netdev->mtu, new_mtu);
6671 netdev->mtu = new_mtu;
6672
6673 if (netif_running(netdev))
6674 igb_up(adapter);
6675 else
6676 igb_reset(adapter);
6677
6678 clear_bit(__IGB_RESETTING, &adapter->state);
6679
6680 return 0;
6681}
6682
6683/**
6684 * igb_update_stats - Update the board statistics counters
6685 * @adapter: board private structure
6686 **/
6687void igb_update_stats(struct igb_adapter *adapter)
6688{
6689 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6690 struct e1000_hw *hw = &adapter->hw;
6691 struct pci_dev *pdev = adapter->pdev;
6692 u32 reg, mpc;
6693 int i;
6694 u64 bytes, packets;
6695 unsigned int start;
6696 u64 _bytes, _packets;
6697
6698 /* Prevent stats update while adapter is being reset, or if the pci
6699 * connection is down.
6700 */
6701 if (adapter->link_speed == 0)
6702 return;
6703 if (pci_channel_offline(pdev))
6704 return;
6705
6706 bytes = 0;
6707 packets = 0;
6708
6709 rcu_read_lock();
6710 for (i = 0; i < adapter->num_rx_queues; i++) {
6711 struct igb_ring *ring = adapter->rx_ring[i];
6712 u32 rqdpc = rd32(E1000_RQDPC(i));
6713 if (hw->mac.type >= e1000_i210)
6714 wr32(E1000_RQDPC(i), 0);
6715
6716 if (rqdpc) {
6717 ring->rx_stats.drops += rqdpc;
6718 net_stats->rx_fifo_errors += rqdpc;
6719 }
6720
6721 do {
6722 start = u64_stats_fetch_begin(&ring->rx_syncp);
6723 _bytes = ring->rx_stats.bytes;
6724 _packets = ring->rx_stats.packets;
6725 } while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6726 bytes += _bytes;
6727 packets += _packets;
6728 }
6729
6730 net_stats->rx_bytes = bytes;
6731 net_stats->rx_packets = packets;
6732
6733 bytes = 0;
6734 packets = 0;
6735 for (i = 0; i < adapter->num_tx_queues; i++) {
6736 struct igb_ring *ring = adapter->tx_ring[i];
6737 do {
6738 start = u64_stats_fetch_begin(&ring->tx_syncp);
6739 _bytes = ring->tx_stats.bytes;
6740 _packets = ring->tx_stats.packets;
6741 } while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6742 bytes += _bytes;
6743 packets += _packets;
6744 }
6745 net_stats->tx_bytes = bytes;
6746 net_stats->tx_packets = packets;
6747 rcu_read_unlock();
6748
6749 /* read stats registers */
6750 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6751 adapter->stats.gprc += rd32(E1000_GPRC);
6752 adapter->stats.gorc += rd32(E1000_GORCL);
6753 rd32(E1000_GORCH); /* clear GORCL */
6754 adapter->stats.bprc += rd32(E1000_BPRC);
6755 adapter->stats.mprc += rd32(E1000_MPRC);
6756 adapter->stats.roc += rd32(E1000_ROC);
6757
6758 adapter->stats.prc64 += rd32(E1000_PRC64);
6759 adapter->stats.prc127 += rd32(E1000_PRC127);
6760 adapter->stats.prc255 += rd32(E1000_PRC255);
6761 adapter->stats.prc511 += rd32(E1000_PRC511);
6762 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6763 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6764 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6765 adapter->stats.sec += rd32(E1000_SEC);
6766
6767 mpc = rd32(E1000_MPC);
6768 adapter->stats.mpc += mpc;
6769 net_stats->rx_fifo_errors += mpc;
6770 adapter->stats.scc += rd32(E1000_SCC);
6771 adapter->stats.ecol += rd32(E1000_ECOL);
6772 adapter->stats.mcc += rd32(E1000_MCC);
6773 adapter->stats.latecol += rd32(E1000_LATECOL);
6774 adapter->stats.dc += rd32(E1000_DC);
6775 adapter->stats.rlec += rd32(E1000_RLEC);
6776 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6777 adapter->stats.xontxc += rd32(E1000_XONTXC);
6778 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6779 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6780 adapter->stats.fcruc += rd32(E1000_FCRUC);
6781 adapter->stats.gptc += rd32(E1000_GPTC);
6782 adapter->stats.gotc += rd32(E1000_GOTCL);
6783 rd32(E1000_GOTCH); /* clear GOTCL */
6784 adapter->stats.rnbc += rd32(E1000_RNBC);
6785 adapter->stats.ruc += rd32(E1000_RUC);
6786 adapter->stats.rfc += rd32(E1000_RFC);
6787 adapter->stats.rjc += rd32(E1000_RJC);
6788 adapter->stats.tor += rd32(E1000_TORH);
6789 adapter->stats.tot += rd32(E1000_TOTH);
6790 adapter->stats.tpr += rd32(E1000_TPR);
6791
6792 adapter->stats.ptc64 += rd32(E1000_PTC64);
6793 adapter->stats.ptc127 += rd32(E1000_PTC127);
6794 adapter->stats.ptc255 += rd32(E1000_PTC255);
6795 adapter->stats.ptc511 += rd32(E1000_PTC511);
6796 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6797 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6798
6799 adapter->stats.mptc += rd32(E1000_MPTC);
6800 adapter->stats.bptc += rd32(E1000_BPTC);
6801
6802 adapter->stats.tpt += rd32(E1000_TPT);
6803 adapter->stats.colc += rd32(E1000_COLC);
6804
6805 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6806 /* read internal phy specific stats */
6807 reg = rd32(E1000_CTRL_EXT);
6808 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6809 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6810
6811 /* this stat has invalid values on i210/i211 */
6812 if ((hw->mac.type != e1000_i210) &&
6813 (hw->mac.type != e1000_i211))
6814 adapter->stats.tncrs += rd32(E1000_TNCRS);
6815 }
6816
6817 adapter->stats.tsctc += rd32(E1000_TSCTC);
6818 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6819
6820 adapter->stats.iac += rd32(E1000_IAC);
6821 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6822 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6823 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6824 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6825 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6826 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6827 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6828 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6829
6830 /* Fill out the OS statistics structure */
6831 net_stats->multicast = adapter->stats.mprc;
6832 net_stats->collisions = adapter->stats.colc;
6833
6834 /* Rx Errors */
6835
6836 /* RLEC on some newer hardware can be incorrect so build
6837 * our own version based on RUC and ROC
6838 */
6839 net_stats->rx_errors = adapter->stats.rxerrc +
6840 adapter->stats.crcerrs + adapter->stats.algnerrc +
6841 adapter->stats.ruc + adapter->stats.roc +
6842 adapter->stats.cexterr;
6843 net_stats->rx_length_errors = adapter->stats.ruc +
6844 adapter->stats.roc;
6845 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6846 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6847 net_stats->rx_missed_errors = adapter->stats.mpc;
6848
6849 /* Tx Errors */
6850 net_stats->tx_errors = adapter->stats.ecol +
6851 adapter->stats.latecol;
6852 net_stats->tx_aborted_errors = adapter->stats.ecol;
6853 net_stats->tx_window_errors = adapter->stats.latecol;
6854 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6855
6856 /* Tx Dropped needs to be maintained elsewhere */
6857
6858 /* Management Stats */
6859 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6860 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6861 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6862
6863 /* OS2BMC Stats */
6864 reg = rd32(E1000_MANC);
6865 if (reg & E1000_MANC_EN_BMC2OS) {
6866 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6867 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6868 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6869 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6870 }
6871}
6872
6873static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6874{
6875 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6876 struct e1000_hw *hw = &adapter->hw;
6877 struct timespec64 ts;
6878 u32 tsauxc;
6879
6880 if (pin < 0 || pin >= IGB_N_SDP)
6881 return;
6882
6883 spin_lock(&adapter->tmreg_lock);
6884
6885 if (hw->mac.type == e1000_82580 ||
6886 hw->mac.type == e1000_i354 ||
6887 hw->mac.type == e1000_i350) {
6888 s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6889 u32 systiml, systimh, level_mask, level, rem;
6890 u64 systim, now;
6891
6892 /* read systim registers in sequence */
6893 rd32(E1000_SYSTIMR);
6894 systiml = rd32(E1000_SYSTIML);
6895 systimh = rd32(E1000_SYSTIMH);
6896 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6897 now = timecounter_cyc2time(&adapter->tc, systim);
6898
6899 if (pin < 2) {
6900 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6901 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6902 } else {
6903 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6904 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6905 }
6906
6907 div_u64_rem(now, ns, &rem);
6908 systim = systim + (ns - rem);
6909
6910 /* synchronize pin level with rising/falling edges */
6911 div_u64_rem(now, ns << 1, &rem);
6912 if (rem < ns) {
6913 /* first half of period */
6914 if (level == 0) {
6915 /* output is already low, skip this period */
6916 systim += ns;
6917 pr_notice("igb: periodic output on %s missed falling edge\n",
6918 adapter->sdp_config[pin].name);
6919 }
6920 } else {
6921 /* second half of period */
6922 if (level == 1) {
6923 /* output is already high, skip this period */
6924 systim += ns;
6925 pr_notice("igb: periodic output on %s missed rising edge\n",
6926 adapter->sdp_config[pin].name);
6927 }
6928 }
6929
6930 /* for this chip family tv_sec is the upper part of the binary value,
6931 * so not seconds
6932 */
6933 ts.tv_nsec = (u32)systim;
6934 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
6935 } else {
6936 ts = timespec64_add(adapter->perout[tsintr_tt].start,
6937 adapter->perout[tsintr_tt].period);
6938 }
6939
6940 /* u32 conversion of tv_sec is safe until y2106 */
6941 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6942 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6943 tsauxc = rd32(E1000_TSAUXC);
6944 tsauxc |= TSAUXC_EN_TT0;
6945 wr32(E1000_TSAUXC, tsauxc);
6946 adapter->perout[tsintr_tt].start = ts;
6947
6948 spin_unlock(&adapter->tmreg_lock);
6949}
6950
6951static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6952{
6953 int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6954 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6955 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6956 struct e1000_hw *hw = &adapter->hw;
6957 struct ptp_clock_event event;
6958 struct timespec64 ts;
6959 unsigned long flags;
6960
6961 if (pin < 0 || pin >= IGB_N_SDP)
6962 return;
6963
6964 if (hw->mac.type == e1000_82580 ||
6965 hw->mac.type == e1000_i354 ||
6966 hw->mac.type == e1000_i350) {
6967 u64 ns = rd32(auxstmpl);
6968
6969 ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6970 spin_lock_irqsave(&adapter->tmreg_lock, flags);
6971 ns = timecounter_cyc2time(&adapter->tc, ns);
6972 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
6973 ts = ns_to_timespec64(ns);
6974 } else {
6975 ts.tv_nsec = rd32(auxstmpl);
6976 ts.tv_sec = rd32(auxstmph);
6977 }
6978
6979 event.type = PTP_CLOCK_EXTTS;
6980 event.index = tsintr_tt;
6981 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6982 ptp_clock_event(adapter->ptp_clock, &event);
6983}
6984
6985static void igb_tsync_interrupt(struct igb_adapter *adapter)
6986{
6987 struct e1000_hw *hw = &adapter->hw;
6988 u32 tsicr = rd32(E1000_TSICR);
6989 struct ptp_clock_event event;
6990
6991 if (tsicr & TSINTR_SYS_WRAP) {
6992 event.type = PTP_CLOCK_PPS;
6993 if (adapter->ptp_caps.pps)
6994 ptp_clock_event(adapter->ptp_clock, &event);
6995 }
6996
6997 if (tsicr & E1000_TSICR_TXTS) {
6998 /* retrieve hardware timestamp */
6999 schedule_work(&adapter->ptp_tx_work);
7000 }
7001
7002 if (tsicr & TSINTR_TT0)
7003 igb_perout(adapter, 0);
7004
7005 if (tsicr & TSINTR_TT1)
7006 igb_perout(adapter, 1);
7007
7008 if (tsicr & TSINTR_AUTT0)
7009 igb_extts(adapter, 0);
7010
7011 if (tsicr & TSINTR_AUTT1)
7012 igb_extts(adapter, 1);
7013}
7014
7015static irqreturn_t igb_msix_other(int irq, void *data)
7016{
7017 struct igb_adapter *adapter = data;
7018 struct e1000_hw *hw = &adapter->hw;
7019 u32 icr = rd32(E1000_ICR);
7020 /* reading ICR causes bit 31 of EICR to be cleared */
7021
7022 if (icr & E1000_ICR_DRSTA)
7023 schedule_work(&adapter->reset_task);
7024
7025 if (icr & E1000_ICR_DOUTSYNC) {
7026 /* HW is reporting DMA is out of sync */
7027 adapter->stats.doosync++;
7028 /* The DMA Out of Sync is also indication of a spoof event
7029 * in IOV mode. Check the Wrong VM Behavior register to
7030 * see if it is really a spoof event.
7031 */
7032 igb_check_wvbr(adapter);
7033 }
7034
7035 /* Check for a mailbox event */
7036 if (icr & E1000_ICR_VMMB)
7037 igb_msg_task(adapter);
7038
7039 if (icr & E1000_ICR_LSC) {
7040 hw->mac.get_link_status = 1;
7041 /* guard against interrupt when we're going down */
7042 if (!test_bit(__IGB_DOWN, &adapter->state))
7043 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7044 }
7045
7046 if (icr & E1000_ICR_TS)
7047 igb_tsync_interrupt(adapter);
7048
7049 wr32(E1000_EIMS, adapter->eims_other);
7050
7051 return IRQ_HANDLED;
7052}
7053
7054static void igb_write_itr(struct igb_q_vector *q_vector)
7055{
7056 struct igb_adapter *adapter = q_vector->adapter;
7057 u32 itr_val = q_vector->itr_val & 0x7FFC;
7058
7059 if (!q_vector->set_itr)
7060 return;
7061
7062 if (!itr_val)
7063 itr_val = 0x4;
7064
7065 if (adapter->hw.mac.type == e1000_82575)
7066 itr_val |= itr_val << 16;
7067 else
7068 itr_val |= E1000_EITR_CNT_IGNR;
7069
7070 writel(itr_val, q_vector->itr_register);
7071 q_vector->set_itr = 0;
7072}
7073
7074static irqreturn_t igb_msix_ring(int irq, void *data)
7075{
7076 struct igb_q_vector *q_vector = data;
7077
7078 /* Write the ITR value calculated from the previous interrupt. */
7079 igb_write_itr(q_vector);
7080
7081 napi_schedule(&q_vector->napi);
7082
7083 return IRQ_HANDLED;
7084}
7085
7086#ifdef CONFIG_IGB_DCA
7087static void igb_update_tx_dca(struct igb_adapter *adapter,
7088 struct igb_ring *tx_ring,
7089 int cpu)
7090{
7091 struct e1000_hw *hw = &adapter->hw;
7092 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7093
7094 if (hw->mac.type != e1000_82575)
7095 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7096
7097 /* We can enable relaxed ordering for reads, but not writes when
7098 * DCA is enabled. This is due to a known issue in some chipsets
7099 * which will cause the DCA tag to be cleared.
7100 */
7101 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7102 E1000_DCA_TXCTRL_DATA_RRO_EN |
7103 E1000_DCA_TXCTRL_DESC_DCA_EN;
7104
7105 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7106}
7107
7108static void igb_update_rx_dca(struct igb_adapter *adapter,
7109 struct igb_ring *rx_ring,
7110 int cpu)
7111{
7112 struct e1000_hw *hw = &adapter->hw;
7113 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7114
7115 if (hw->mac.type != e1000_82575)
7116 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7117
7118 /* We can enable relaxed ordering for reads, but not writes when
7119 * DCA is enabled. This is due to a known issue in some chipsets
7120 * which will cause the DCA tag to be cleared.
7121 */
7122 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7123 E1000_DCA_RXCTRL_DESC_DCA_EN;
7124
7125 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7126}
7127
7128static void igb_update_dca(struct igb_q_vector *q_vector)
7129{
7130 struct igb_adapter *adapter = q_vector->adapter;
7131 int cpu = get_cpu();
7132
7133 if (q_vector->cpu == cpu)
7134 goto out_no_update;
7135
7136 if (q_vector->tx.ring)
7137 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7138
7139 if (q_vector->rx.ring)
7140 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7141
7142 q_vector->cpu = cpu;
7143out_no_update:
7144 put_cpu();
7145}
7146
7147static void igb_setup_dca(struct igb_adapter *adapter)
7148{
7149 struct e1000_hw *hw = &adapter->hw;
7150 int i;
7151
7152 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7153 return;
7154
7155 /* Always use CB2 mode, difference is masked in the CB driver. */
7156 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7157
7158 for (i = 0; i < adapter->num_q_vectors; i++) {
7159 adapter->q_vector[i]->cpu = -1;
7160 igb_update_dca(adapter->q_vector[i]);
7161 }
7162}
7163
7164static int __igb_notify_dca(struct device *dev, void *data)
7165{
7166 struct net_device *netdev = dev_get_drvdata(dev);
7167 struct igb_adapter *adapter = netdev_priv(netdev);
7168 struct pci_dev *pdev = adapter->pdev;
7169 struct e1000_hw *hw = &adapter->hw;
7170 unsigned long event = *(unsigned long *)data;
7171
7172 switch (event) {
7173 case DCA_PROVIDER_ADD:
7174 /* if already enabled, don't do it again */
7175 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7176 break;
7177 if (dca_add_requester(dev) == 0) {
7178 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7179 dev_info(&pdev->dev, "DCA enabled\n");
7180 igb_setup_dca(adapter);
7181 break;
7182 }
7183 fallthrough; /* since DCA is disabled. */
7184 case DCA_PROVIDER_REMOVE:
7185 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7186 /* without this a class_device is left
7187 * hanging around in the sysfs model
7188 */
7189 dca_remove_requester(dev);
7190 dev_info(&pdev->dev, "DCA disabled\n");
7191 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7192 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7193 }
7194 break;
7195 }
7196
7197 return 0;
7198}
7199
7200static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7201 void *p)
7202{
7203 int ret_val;
7204
7205 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7206 __igb_notify_dca);
7207
7208 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7209}
7210#endif /* CONFIG_IGB_DCA */
7211
7212#ifdef CONFIG_PCI_IOV
7213static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7214{
7215 unsigned char mac_addr[ETH_ALEN];
7216
7217 eth_zero_addr(mac_addr);
7218 igb_set_vf_mac(adapter, vf, mac_addr);
7219
7220 /* By default spoof check is enabled for all VFs */
7221 adapter->vf_data[vf].spoofchk_enabled = true;
7222
7223 /* By default VFs are not trusted */
7224 adapter->vf_data[vf].trusted = false;
7225
7226 return 0;
7227}
7228
7229#endif
7230static void igb_ping_all_vfs(struct igb_adapter *adapter)
7231{
7232 struct e1000_hw *hw = &adapter->hw;
7233 u32 ping;
7234 int i;
7235
7236 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7237 ping = E1000_PF_CONTROL_MSG;
7238 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7239 ping |= E1000_VT_MSGTYPE_CTS;
7240 igb_write_mbx(hw, &ping, 1, i);
7241 }
7242}
7243
7244static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7245{
7246 struct e1000_hw *hw = &adapter->hw;
7247 u32 vmolr = rd32(E1000_VMOLR(vf));
7248 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7249
7250 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7251 IGB_VF_FLAG_MULTI_PROMISC);
7252 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7253
7254 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7255 vmolr |= E1000_VMOLR_MPME;
7256 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7257 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7258 } else {
7259 /* if we have hashes and we are clearing a multicast promisc
7260 * flag we need to write the hashes to the MTA as this step
7261 * was previously skipped
7262 */
7263 if (vf_data->num_vf_mc_hashes > 30) {
7264 vmolr |= E1000_VMOLR_MPME;
7265 } else if (vf_data->num_vf_mc_hashes) {
7266 int j;
7267
7268 vmolr |= E1000_VMOLR_ROMPE;
7269 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7270 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7271 }
7272 }
7273
7274 wr32(E1000_VMOLR(vf), vmolr);
7275
7276 /* there are flags left unprocessed, likely not supported */
7277 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7278 return -EINVAL;
7279
7280 return 0;
7281}
7282
7283static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7284 u32 *msgbuf, u32 vf)
7285{
7286 int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7287 u16 *hash_list = (u16 *)&msgbuf[1];
7288 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7289 int i;
7290
7291 /* salt away the number of multicast addresses assigned
7292 * to this VF for later use to restore when the PF multi cast
7293 * list changes
7294 */
7295 vf_data->num_vf_mc_hashes = n;
7296
7297 /* only up to 30 hash values supported */
7298 if (n > 30)
7299 n = 30;
7300
7301 /* store the hashes for later use */
7302 for (i = 0; i < n; i++)
7303 vf_data->vf_mc_hashes[i] = hash_list[i];
7304
7305 /* Flush and reset the mta with the new values */
7306 igb_set_rx_mode(adapter->netdev);
7307
7308 return 0;
7309}
7310
7311static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7312{
7313 struct e1000_hw *hw = &adapter->hw;
7314 struct vf_data_storage *vf_data;
7315 int i, j;
7316
7317 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7318 u32 vmolr = rd32(E1000_VMOLR(i));
7319
7320 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7321
7322 vf_data = &adapter->vf_data[i];
7323
7324 if ((vf_data->num_vf_mc_hashes > 30) ||
7325 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7326 vmolr |= E1000_VMOLR_MPME;
7327 } else if (vf_data->num_vf_mc_hashes) {
7328 vmolr |= E1000_VMOLR_ROMPE;
7329 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7330 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7331 }
7332 wr32(E1000_VMOLR(i), vmolr);
7333 }
7334}
7335
7336static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7337{
7338 struct e1000_hw *hw = &adapter->hw;
7339 u32 pool_mask, vlvf_mask, i;
7340
7341 /* create mask for VF and other pools */
7342 pool_mask = E1000_VLVF_POOLSEL_MASK;
7343 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7344
7345 /* drop PF from pool bits */
7346 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7347 adapter->vfs_allocated_count);
7348
7349 /* Find the vlan filter for this id */
7350 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7351 u32 vlvf = rd32(E1000_VLVF(i));
7352 u32 vfta_mask, vid, vfta;
7353
7354 /* remove the vf from the pool */
7355 if (!(vlvf & vlvf_mask))
7356 continue;
7357
7358 /* clear out bit from VLVF */
7359 vlvf ^= vlvf_mask;
7360
7361 /* if other pools are present, just remove ourselves */
7362 if (vlvf & pool_mask)
7363 goto update_vlvfb;
7364
7365 /* if PF is present, leave VFTA */
7366 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7367 goto update_vlvf;
7368
7369 vid = vlvf & E1000_VLVF_VLANID_MASK;
7370 vfta_mask = BIT(vid % 32);
7371
7372 /* clear bit from VFTA */
7373 vfta = adapter->shadow_vfta[vid / 32];
7374 if (vfta & vfta_mask)
7375 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7376update_vlvf:
7377 /* clear pool selection enable */
7378 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7379 vlvf &= E1000_VLVF_POOLSEL_MASK;
7380 else
7381 vlvf = 0;
7382update_vlvfb:
7383 /* clear pool bits */
7384 wr32(E1000_VLVF(i), vlvf);
7385 }
7386}
7387
7388static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7389{
7390 u32 vlvf;
7391 int idx;
7392
7393 /* short cut the special case */
7394 if (vlan == 0)
7395 return 0;
7396
7397 /* Search for the VLAN id in the VLVF entries */
7398 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7399 vlvf = rd32(E1000_VLVF(idx));
7400 if ((vlvf & VLAN_VID_MASK) == vlan)
7401 break;
7402 }
7403
7404 return idx;
7405}
7406
7407static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7408{
7409 struct e1000_hw *hw = &adapter->hw;
7410 u32 bits, pf_id;
7411 int idx;
7412
7413 idx = igb_find_vlvf_entry(hw, vid);
7414 if (!idx)
7415 return;
7416
7417 /* See if any other pools are set for this VLAN filter
7418 * entry other than the PF.
7419 */
7420 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7421 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7422 bits &= rd32(E1000_VLVF(idx));
7423
7424 /* Disable the filter so this falls into the default pool. */
7425 if (!bits) {
7426 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7427 wr32(E1000_VLVF(idx), BIT(pf_id));
7428 else
7429 wr32(E1000_VLVF(idx), 0);
7430 }
7431}
7432
7433static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7434 bool add, u32 vf)
7435{
7436 int pf_id = adapter->vfs_allocated_count;
7437 struct e1000_hw *hw = &adapter->hw;
7438 int err;
7439
7440 /* If VLAN overlaps with one the PF is currently monitoring make
7441 * sure that we are able to allocate a VLVF entry. This may be
7442 * redundant but it guarantees PF will maintain visibility to
7443 * the VLAN.
7444 */
7445 if (add && test_bit(vid, adapter->active_vlans)) {
7446 err = igb_vfta_set(hw, vid, pf_id, true, false);
7447 if (err)
7448 return err;
7449 }
7450
7451 err = igb_vfta_set(hw, vid, vf, add, false);
7452
7453 if (add && !err)
7454 return err;
7455
7456 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7457 * we may need to drop the PF pool bit in order to allow us to free
7458 * up the VLVF resources.
7459 */
7460 if (test_bit(vid, adapter->active_vlans) ||
7461 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7462 igb_update_pf_vlvf(adapter, vid);
7463
7464 return err;
7465}
7466
7467static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7468{
7469 struct e1000_hw *hw = &adapter->hw;
7470
7471 if (vid)
7472 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7473 else
7474 wr32(E1000_VMVIR(vf), 0);
7475}
7476
7477static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7478 u16 vlan, u8 qos)
7479{
7480 int err;
7481
7482 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7483 if (err)
7484 return err;
7485
7486 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7487 igb_set_vmolr(adapter, vf, !vlan);
7488
7489 /* revoke access to previous VLAN */
7490 if (vlan != adapter->vf_data[vf].pf_vlan)
7491 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7492 false, vf);
7493
7494 adapter->vf_data[vf].pf_vlan = vlan;
7495 adapter->vf_data[vf].pf_qos = qos;
7496 igb_set_vf_vlan_strip(adapter, vf, true);
7497 dev_info(&adapter->pdev->dev,
7498 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7499 if (test_bit(__IGB_DOWN, &adapter->state)) {
7500 dev_warn(&adapter->pdev->dev,
7501 "The VF VLAN has been set, but the PF device is not up.\n");
7502 dev_warn(&adapter->pdev->dev,
7503 "Bring the PF device up before attempting to use the VF device.\n");
7504 }
7505
7506 return err;
7507}
7508
7509static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7510{
7511 /* Restore tagless access via VLAN 0 */
7512 igb_set_vf_vlan(adapter, 0, true, vf);
7513
7514 igb_set_vmvir(adapter, 0, vf);
7515 igb_set_vmolr(adapter, vf, true);
7516
7517 /* Remove any PF assigned VLAN */
7518 if (adapter->vf_data[vf].pf_vlan)
7519 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7520 false, vf);
7521
7522 adapter->vf_data[vf].pf_vlan = 0;
7523 adapter->vf_data[vf].pf_qos = 0;
7524 igb_set_vf_vlan_strip(adapter, vf, false);
7525
7526 return 0;
7527}
7528
7529static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7530 u16 vlan, u8 qos, __be16 vlan_proto)
7531{
7532 struct igb_adapter *adapter = netdev_priv(netdev);
7533
7534 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7535 return -EINVAL;
7536
7537 if (vlan_proto != htons(ETH_P_8021Q))
7538 return -EPROTONOSUPPORT;
7539
7540 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7541 igb_disable_port_vlan(adapter, vf);
7542}
7543
7544static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7545{
7546 int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7547 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7548 int ret;
7549
7550 if (adapter->vf_data[vf].pf_vlan)
7551 return -1;
7552
7553 /* VLAN 0 is a special case, don't allow it to be removed */
7554 if (!vid && !add)
7555 return 0;
7556
7557 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7558 if (!ret)
7559 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7560 return ret;
7561}
7562
7563static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7564{
7565 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7566
7567 /* clear flags - except flag that indicates PF has set the MAC */
7568 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7569 vf_data->last_nack = jiffies;
7570
7571 /* reset vlans for device */
7572 igb_clear_vf_vfta(adapter, vf);
7573 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7574 igb_set_vmvir(adapter, vf_data->pf_vlan |
7575 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7576 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7577 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7578
7579 /* reset multicast table array for vf */
7580 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7581
7582 /* Flush and reset the mta with the new values */
7583 igb_set_rx_mode(adapter->netdev);
7584}
7585
7586static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7587{
7588 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7589
7590 /* clear mac address as we were hotplug removed/added */
7591 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7592 eth_zero_addr(vf_mac);
7593
7594 /* process remaining reset events */
7595 igb_vf_reset(adapter, vf);
7596}
7597
7598static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7599{
7600 struct e1000_hw *hw = &adapter->hw;
7601 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7602 u32 reg, msgbuf[3] = {};
7603 u8 *addr = (u8 *)(&msgbuf[1]);
7604
7605 /* process all the same items cleared in a function level reset */
7606 igb_vf_reset(adapter, vf);
7607
7608 /* set vf mac address */
7609 igb_set_vf_mac(adapter, vf, vf_mac);
7610
7611 /* enable transmit and receive for vf */
7612 reg = rd32(E1000_VFTE);
7613 wr32(E1000_VFTE, reg | BIT(vf));
7614 reg = rd32(E1000_VFRE);
7615 wr32(E1000_VFRE, reg | BIT(vf));
7616
7617 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7618
7619 /* reply to reset with ack and vf mac address */
7620 if (!is_zero_ether_addr(vf_mac)) {
7621 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7622 memcpy(addr, vf_mac, ETH_ALEN);
7623 } else {
7624 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7625 }
7626 igb_write_mbx(hw, msgbuf, 3, vf);
7627}
7628
7629static void igb_flush_mac_table(struct igb_adapter *adapter)
7630{
7631 struct e1000_hw *hw = &adapter->hw;
7632 int i;
7633
7634 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7635 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7636 eth_zero_addr(adapter->mac_table[i].addr);
7637 adapter->mac_table[i].queue = 0;
7638 igb_rar_set_index(adapter, i);
7639 }
7640}
7641
7642static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7643{
7644 struct e1000_hw *hw = &adapter->hw;
7645 /* do not count rar entries reserved for VFs MAC addresses */
7646 int rar_entries = hw->mac.rar_entry_count -
7647 adapter->vfs_allocated_count;
7648 int i, count = 0;
7649
7650 for (i = 0; i < rar_entries; i++) {
7651 /* do not count default entries */
7652 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7653 continue;
7654
7655 /* do not count "in use" entries for different queues */
7656 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7657 (adapter->mac_table[i].queue != queue))
7658 continue;
7659
7660 count++;
7661 }
7662
7663 return count;
7664}
7665
7666/* Set default MAC address for the PF in the first RAR entry */
7667static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7668{
7669 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7670
7671 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7672 mac_table->queue = adapter->vfs_allocated_count;
7673 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7674
7675 igb_rar_set_index(adapter, 0);
7676}
7677
7678/* If the filter to be added and an already existing filter express
7679 * the same address and address type, it should be possible to only
7680 * override the other configurations, for example the queue to steer
7681 * traffic.
7682 */
7683static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7684 const u8 *addr, const u8 flags)
7685{
7686 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7687 return true;
7688
7689 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7690 (flags & IGB_MAC_STATE_SRC_ADDR))
7691 return false;
7692
7693 if (!ether_addr_equal(addr, entry->addr))
7694 return false;
7695
7696 return true;
7697}
7698
7699/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7700 * 'flags' is used to indicate what kind of match is made, match is by
7701 * default for the destination address, if matching by source address
7702 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7703 */
7704static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7705 const u8 *addr, const u8 queue,
7706 const u8 flags)
7707{
7708 struct e1000_hw *hw = &adapter->hw;
7709 int rar_entries = hw->mac.rar_entry_count -
7710 adapter->vfs_allocated_count;
7711 int i;
7712
7713 if (is_zero_ether_addr(addr))
7714 return -EINVAL;
7715
7716 /* Search for the first empty entry in the MAC table.
7717 * Do not touch entries at the end of the table reserved for the VF MAC
7718 * addresses.
7719 */
7720 for (i = 0; i < rar_entries; i++) {
7721 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7722 addr, flags))
7723 continue;
7724
7725 ether_addr_copy(adapter->mac_table[i].addr, addr);
7726 adapter->mac_table[i].queue = queue;
7727 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7728
7729 igb_rar_set_index(adapter, i);
7730 return i;
7731 }
7732
7733 return -ENOSPC;
7734}
7735
7736static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7737 const u8 queue)
7738{
7739 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7740}
7741
7742/* Remove a MAC filter for 'addr' directing matching traffic to
7743 * 'queue', 'flags' is used to indicate what kind of match need to be
7744 * removed, match is by default for the destination address, if
7745 * matching by source address is to be removed the flag
7746 * IGB_MAC_STATE_SRC_ADDR can be used.
7747 */
7748static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7749 const u8 *addr, const u8 queue,
7750 const u8 flags)
7751{
7752 struct e1000_hw *hw = &adapter->hw;
7753 int rar_entries = hw->mac.rar_entry_count -
7754 adapter->vfs_allocated_count;
7755 int i;
7756
7757 if (is_zero_ether_addr(addr))
7758 return -EINVAL;
7759
7760 /* Search for matching entry in the MAC table based on given address
7761 * and queue. Do not touch entries at the end of the table reserved
7762 * for the VF MAC addresses.
7763 */
7764 for (i = 0; i < rar_entries; i++) {
7765 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7766 continue;
7767 if ((adapter->mac_table[i].state & flags) != flags)
7768 continue;
7769 if (adapter->mac_table[i].queue != queue)
7770 continue;
7771 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7772 continue;
7773
7774 /* When a filter for the default address is "deleted",
7775 * we return it to its initial configuration
7776 */
7777 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7778 adapter->mac_table[i].state =
7779 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7780 adapter->mac_table[i].queue =
7781 adapter->vfs_allocated_count;
7782 } else {
7783 adapter->mac_table[i].state = 0;
7784 adapter->mac_table[i].queue = 0;
7785 eth_zero_addr(adapter->mac_table[i].addr);
7786 }
7787
7788 igb_rar_set_index(adapter, i);
7789 return 0;
7790 }
7791
7792 return -ENOENT;
7793}
7794
7795static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7796 const u8 queue)
7797{
7798 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7799}
7800
7801int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7802 const u8 *addr, u8 queue, u8 flags)
7803{
7804 struct e1000_hw *hw = &adapter->hw;
7805
7806 /* In theory, this should be supported on 82575 as well, but
7807 * that part wasn't easily accessible during development.
7808 */
7809 if (hw->mac.type != e1000_i210)
7810 return -EOPNOTSUPP;
7811
7812 return igb_add_mac_filter_flags(adapter, addr, queue,
7813 IGB_MAC_STATE_QUEUE_STEERING | flags);
7814}
7815
7816int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7817 const u8 *addr, u8 queue, u8 flags)
7818{
7819 return igb_del_mac_filter_flags(adapter, addr, queue,
7820 IGB_MAC_STATE_QUEUE_STEERING | flags);
7821}
7822
7823static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7824{
7825 struct igb_adapter *adapter = netdev_priv(netdev);
7826 int ret;
7827
7828 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7829
7830 return min_t(int, ret, 0);
7831}
7832
7833static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7834{
7835 struct igb_adapter *adapter = netdev_priv(netdev);
7836
7837 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7838
7839 return 0;
7840}
7841
7842static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7843 const u32 info, const u8 *addr)
7844{
7845 struct pci_dev *pdev = adapter->pdev;
7846 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7847 struct vf_mac_filter *entry;
7848 bool found = false;
7849 int ret = 0;
7850
7851 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7852 !vf_data->trusted) {
7853 dev_warn(&pdev->dev,
7854 "VF %d requested MAC filter but is administratively denied\n",
7855 vf);
7856 return -EINVAL;
7857 }
7858 if (!is_valid_ether_addr(addr)) {
7859 dev_warn(&pdev->dev,
7860 "VF %d attempted to set invalid MAC filter\n",
7861 vf);
7862 return -EINVAL;
7863 }
7864
7865 switch (info) {
7866 case E1000_VF_MAC_FILTER_CLR:
7867 /* remove all unicast MAC filters related to the current VF */
7868 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7869 if (entry->vf == vf) {
7870 entry->vf = -1;
7871 entry->free = true;
7872 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7873 }
7874 }
7875 break;
7876 case E1000_VF_MAC_FILTER_ADD:
7877 /* try to find empty slot in the list */
7878 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7879 if (entry->free) {
7880 found = true;
7881 break;
7882 }
7883 }
7884
7885 if (found) {
7886 entry->free = false;
7887 entry->vf = vf;
7888 ether_addr_copy(entry->vf_mac, addr);
7889
7890 ret = igb_add_mac_filter(adapter, addr, vf);
7891 ret = min_t(int, ret, 0);
7892 } else {
7893 ret = -ENOSPC;
7894 }
7895
7896 if (ret == -ENOSPC)
7897 dev_warn(&pdev->dev,
7898 "VF %d has requested MAC filter but there is no space for it\n",
7899 vf);
7900 break;
7901 default:
7902 ret = -EINVAL;
7903 break;
7904 }
7905
7906 return ret;
7907}
7908
7909static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7910{
7911 struct pci_dev *pdev = adapter->pdev;
7912 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7913 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7914
7915 /* The VF MAC Address is stored in a packed array of bytes
7916 * starting at the second 32 bit word of the msg array
7917 */
7918 unsigned char *addr = (unsigned char *)&msg[1];
7919 int ret = 0;
7920
7921 if (!info) {
7922 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7923 !vf_data->trusted) {
7924 dev_warn(&pdev->dev,
7925 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7926 vf);
7927 return -EINVAL;
7928 }
7929
7930 if (!is_valid_ether_addr(addr)) {
7931 dev_warn(&pdev->dev,
7932 "VF %d attempted to set invalid MAC\n",
7933 vf);
7934 return -EINVAL;
7935 }
7936
7937 ret = igb_set_vf_mac(adapter, vf, addr);
7938 } else {
7939 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7940 }
7941
7942 return ret;
7943}
7944
7945static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7946{
7947 struct e1000_hw *hw = &adapter->hw;
7948 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7949 u32 msg = E1000_VT_MSGTYPE_NACK;
7950
7951 /* if device isn't clear to send it shouldn't be reading either */
7952 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7953 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7954 igb_write_mbx(hw, &msg, 1, vf);
7955 vf_data->last_nack = jiffies;
7956 }
7957}
7958
7959static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7960{
7961 struct pci_dev *pdev = adapter->pdev;
7962 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7963 struct e1000_hw *hw = &adapter->hw;
7964 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7965 s32 retval;
7966
7967 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7968
7969 if (retval) {
7970 /* if receive failed revoke VF CTS stats and restart init */
7971 dev_err(&pdev->dev, "Error receiving message from VF\n");
7972 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7973 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7974 goto unlock;
7975 goto out;
7976 }
7977
7978 /* this is a message we already processed, do nothing */
7979 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7980 goto unlock;
7981
7982 /* until the vf completes a reset it should not be
7983 * allowed to start any configuration.
7984 */
7985 if (msgbuf[0] == E1000_VF_RESET) {
7986 /* unlocks mailbox */
7987 igb_vf_reset_msg(adapter, vf);
7988 return;
7989 }
7990
7991 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7992 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7993 goto unlock;
7994 retval = -1;
7995 goto out;
7996 }
7997
7998 switch ((msgbuf[0] & 0xFFFF)) {
7999 case E1000_VF_SET_MAC_ADDR:
8000 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
8001 break;
8002 case E1000_VF_SET_PROMISC:
8003 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8004 break;
8005 case E1000_VF_SET_MULTICAST:
8006 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8007 break;
8008 case E1000_VF_SET_LPE:
8009 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
8010 break;
8011 case E1000_VF_SET_VLAN:
8012 retval = -1;
8013 if (vf_data->pf_vlan)
8014 dev_warn(&pdev->dev,
8015 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8016 vf);
8017 else
8018 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8019 break;
8020 default:
8021 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8022 retval = -1;
8023 break;
8024 }
8025
8026 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8027out:
8028 /* notify the VF of the results of what it sent us */
8029 if (retval)
8030 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8031 else
8032 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8033
8034 /* unlocks mailbox */
8035 igb_write_mbx(hw, msgbuf, 1, vf);
8036 return;
8037
8038unlock:
8039 igb_unlock_mbx(hw, vf);
8040}
8041
8042static void igb_msg_task(struct igb_adapter *adapter)
8043{
8044 struct e1000_hw *hw = &adapter->hw;
8045 unsigned long flags;
8046 u32 vf;
8047
8048 spin_lock_irqsave(&adapter->vfs_lock, flags);
8049 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8050 /* process any reset requests */
8051 if (!igb_check_for_rst(hw, vf))
8052 igb_vf_reset_event(adapter, vf);
8053
8054 /* process any messages pending */
8055 if (!igb_check_for_msg(hw, vf))
8056 igb_rcv_msg_from_vf(adapter, vf);
8057
8058 /* process any acks */
8059 if (!igb_check_for_ack(hw, vf))
8060 igb_rcv_ack_from_vf(adapter, vf);
8061 }
8062 spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8063}
8064
8065/**
8066 * igb_set_uta - Set unicast filter table address
8067 * @adapter: board private structure
8068 * @set: boolean indicating if we are setting or clearing bits
8069 *
8070 * The unicast table address is a register array of 32-bit registers.
8071 * The table is meant to be used in a way similar to how the MTA is used
8072 * however due to certain limitations in the hardware it is necessary to
8073 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8074 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
8075 **/
8076static void igb_set_uta(struct igb_adapter *adapter, bool set)
8077{
8078 struct e1000_hw *hw = &adapter->hw;
8079 u32 uta = set ? ~0 : 0;
8080 int i;
8081
8082 /* we only need to do this if VMDq is enabled */
8083 if (!adapter->vfs_allocated_count)
8084 return;
8085
8086 for (i = hw->mac.uta_reg_count; i--;)
8087 array_wr32(E1000_UTA, i, uta);
8088}
8089
8090/**
8091 * igb_intr_msi - Interrupt Handler
8092 * @irq: interrupt number
8093 * @data: pointer to a network interface device structure
8094 **/
8095static irqreturn_t igb_intr_msi(int irq, void *data)
8096{
8097 struct igb_adapter *adapter = data;
8098 struct igb_q_vector *q_vector = adapter->q_vector[0];
8099 struct e1000_hw *hw = &adapter->hw;
8100 /* read ICR disables interrupts using IAM */
8101 u32 icr = rd32(E1000_ICR);
8102
8103 igb_write_itr(q_vector);
8104
8105 if (icr & E1000_ICR_DRSTA)
8106 schedule_work(&adapter->reset_task);
8107
8108 if (icr & E1000_ICR_DOUTSYNC) {
8109 /* HW is reporting DMA is out of sync */
8110 adapter->stats.doosync++;
8111 }
8112
8113 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8114 hw->mac.get_link_status = 1;
8115 if (!test_bit(__IGB_DOWN, &adapter->state))
8116 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8117 }
8118
8119 if (icr & E1000_ICR_TS)
8120 igb_tsync_interrupt(adapter);
8121
8122 napi_schedule(&q_vector->napi);
8123
8124 return IRQ_HANDLED;
8125}
8126
8127/**
8128 * igb_intr - Legacy Interrupt Handler
8129 * @irq: interrupt number
8130 * @data: pointer to a network interface device structure
8131 **/
8132static irqreturn_t igb_intr(int irq, void *data)
8133{
8134 struct igb_adapter *adapter = data;
8135 struct igb_q_vector *q_vector = adapter->q_vector[0];
8136 struct e1000_hw *hw = &adapter->hw;
8137 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8138 * need for the IMC write
8139 */
8140 u32 icr = rd32(E1000_ICR);
8141
8142 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8143 * not set, then the adapter didn't send an interrupt
8144 */
8145 if (!(icr & E1000_ICR_INT_ASSERTED))
8146 return IRQ_NONE;
8147
8148 igb_write_itr(q_vector);
8149
8150 if (icr & E1000_ICR_DRSTA)
8151 schedule_work(&adapter->reset_task);
8152
8153 if (icr & E1000_ICR_DOUTSYNC) {
8154 /* HW is reporting DMA is out of sync */
8155 adapter->stats.doosync++;
8156 }
8157
8158 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8159 hw->mac.get_link_status = 1;
8160 /* guard against interrupt when we're going down */
8161 if (!test_bit(__IGB_DOWN, &adapter->state))
8162 mod_timer(&adapter->watchdog_timer, jiffies + 1);
8163 }
8164
8165 if (icr & E1000_ICR_TS)
8166 igb_tsync_interrupt(adapter);
8167
8168 napi_schedule(&q_vector->napi);
8169
8170 return IRQ_HANDLED;
8171}
8172
8173static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8174{
8175 struct igb_adapter *adapter = q_vector->adapter;
8176 struct e1000_hw *hw = &adapter->hw;
8177
8178 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8179 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8180 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8181 igb_set_itr(q_vector);
8182 else
8183 igb_update_ring_itr(q_vector);
8184 }
8185
8186 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8187 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8188 wr32(E1000_EIMS, q_vector->eims_value);
8189 else
8190 igb_irq_enable(adapter);
8191 }
8192}
8193
8194/**
8195 * igb_poll - NAPI Rx polling callback
8196 * @napi: napi polling structure
8197 * @budget: count of how many packets we should handle
8198 **/
8199static int igb_poll(struct napi_struct *napi, int budget)
8200{
8201 struct igb_q_vector *q_vector = container_of(napi,
8202 struct igb_q_vector,
8203 napi);
8204 bool clean_complete = true;
8205 int work_done = 0;
8206
8207#ifdef CONFIG_IGB_DCA
8208 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8209 igb_update_dca(q_vector);
8210#endif
8211 if (q_vector->tx.ring)
8212 clean_complete = igb_clean_tx_irq(q_vector, budget);
8213
8214 if (q_vector->rx.ring) {
8215 int cleaned = igb_clean_rx_irq(q_vector, budget);
8216
8217 work_done += cleaned;
8218 if (cleaned >= budget)
8219 clean_complete = false;
8220 }
8221
8222 /* If all work not completed, return budget and keep polling */
8223 if (!clean_complete)
8224 return budget;
8225
8226 /* Exit the polling mode, but don't re-enable interrupts if stack might
8227 * poll us due to busy-polling
8228 */
8229 if (likely(napi_complete_done(napi, work_done)))
8230 igb_ring_irq_enable(q_vector);
8231
8232 return work_done;
8233}
8234
8235/**
8236 * igb_clean_tx_irq - Reclaim resources after transmit completes
8237 * @q_vector: pointer to q_vector containing needed info
8238 * @napi_budget: Used to determine if we are in netpoll
8239 *
8240 * returns true if ring is completely cleaned
8241 **/
8242static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8243{
8244 struct igb_adapter *adapter = q_vector->adapter;
8245 struct igb_ring *tx_ring = q_vector->tx.ring;
8246 struct igb_tx_buffer *tx_buffer;
8247 union e1000_adv_tx_desc *tx_desc;
8248 unsigned int total_bytes = 0, total_packets = 0;
8249 unsigned int budget = q_vector->tx.work_limit;
8250 unsigned int i = tx_ring->next_to_clean;
8251
8252 if (test_bit(__IGB_DOWN, &adapter->state))
8253 return true;
8254
8255 tx_buffer = &tx_ring->tx_buffer_info[i];
8256 tx_desc = IGB_TX_DESC(tx_ring, i);
8257 i -= tx_ring->count;
8258
8259 do {
8260 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8261
8262 /* if next_to_watch is not set then there is no work pending */
8263 if (!eop_desc)
8264 break;
8265
8266 /* prevent any other reads prior to eop_desc */
8267 smp_rmb();
8268
8269 /* if DD is not set pending work has not been completed */
8270 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8271 break;
8272
8273 /* clear next_to_watch to prevent false hangs */
8274 tx_buffer->next_to_watch = NULL;
8275
8276 /* update the statistics for this packet */
8277 total_bytes += tx_buffer->bytecount;
8278 total_packets += tx_buffer->gso_segs;
8279
8280 /* free the skb */
8281 if (tx_buffer->type == IGB_TYPE_SKB)
8282 napi_consume_skb(tx_buffer->skb, napi_budget);
8283 else
8284 xdp_return_frame(tx_buffer->xdpf);
8285
8286 /* unmap skb header data */
8287 dma_unmap_single(tx_ring->dev,
8288 dma_unmap_addr(tx_buffer, dma),
8289 dma_unmap_len(tx_buffer, len),
8290 DMA_TO_DEVICE);
8291
8292 /* clear tx_buffer data */
8293 dma_unmap_len_set(tx_buffer, len, 0);
8294
8295 /* clear last DMA location and unmap remaining buffers */
8296 while (tx_desc != eop_desc) {
8297 tx_buffer++;
8298 tx_desc++;
8299 i++;
8300 if (unlikely(!i)) {
8301 i -= tx_ring->count;
8302 tx_buffer = tx_ring->tx_buffer_info;
8303 tx_desc = IGB_TX_DESC(tx_ring, 0);
8304 }
8305
8306 /* unmap any remaining paged data */
8307 if (dma_unmap_len(tx_buffer, len)) {
8308 dma_unmap_page(tx_ring->dev,
8309 dma_unmap_addr(tx_buffer, dma),
8310 dma_unmap_len(tx_buffer, len),
8311 DMA_TO_DEVICE);
8312 dma_unmap_len_set(tx_buffer, len, 0);
8313 }
8314 }
8315
8316 /* move us one more past the eop_desc for start of next pkt */
8317 tx_buffer++;
8318 tx_desc++;
8319 i++;
8320 if (unlikely(!i)) {
8321 i -= tx_ring->count;
8322 tx_buffer = tx_ring->tx_buffer_info;
8323 tx_desc = IGB_TX_DESC(tx_ring, 0);
8324 }
8325
8326 /* issue prefetch for next Tx descriptor */
8327 prefetch(tx_desc);
8328
8329 /* update budget accounting */
8330 budget--;
8331 } while (likely(budget));
8332
8333 netdev_tx_completed_queue(txring_txq(tx_ring),
8334 total_packets, total_bytes);
8335 i += tx_ring->count;
8336 tx_ring->next_to_clean = i;
8337 u64_stats_update_begin(&tx_ring->tx_syncp);
8338 tx_ring->tx_stats.bytes += total_bytes;
8339 tx_ring->tx_stats.packets += total_packets;
8340 u64_stats_update_end(&tx_ring->tx_syncp);
8341 q_vector->tx.total_bytes += total_bytes;
8342 q_vector->tx.total_packets += total_packets;
8343
8344 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8345 struct e1000_hw *hw = &adapter->hw;
8346
8347 /* Detect a transmit hang in hardware, this serializes the
8348 * check with the clearing of time_stamp and movement of i
8349 */
8350 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8351 if (tx_buffer->next_to_watch &&
8352 time_after(jiffies, tx_buffer->time_stamp +
8353 (adapter->tx_timeout_factor * HZ)) &&
8354 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8355
8356 /* detected Tx unit hang */
8357 dev_err(tx_ring->dev,
8358 "Detected Tx Unit Hang\n"
8359 " Tx Queue <%d>\n"
8360 " TDH <%x>\n"
8361 " TDT <%x>\n"
8362 " next_to_use <%x>\n"
8363 " next_to_clean <%x>\n"
8364 "buffer_info[next_to_clean]\n"
8365 " time_stamp <%lx>\n"
8366 " next_to_watch <%p>\n"
8367 " jiffies <%lx>\n"
8368 " desc.status <%x>\n",
8369 tx_ring->queue_index,
8370 rd32(E1000_TDH(tx_ring->reg_idx)),
8371 readl(tx_ring->tail),
8372 tx_ring->next_to_use,
8373 tx_ring->next_to_clean,
8374 tx_buffer->time_stamp,
8375 tx_buffer->next_to_watch,
8376 jiffies,
8377 tx_buffer->next_to_watch->wb.status);
8378 netif_stop_subqueue(tx_ring->netdev,
8379 tx_ring->queue_index);
8380
8381 /* we are about to reset, no point in enabling stuff */
8382 return true;
8383 }
8384 }
8385
8386#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8387 if (unlikely(total_packets &&
8388 netif_carrier_ok(tx_ring->netdev) &&
8389 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8390 /* Make sure that anybody stopping the queue after this
8391 * sees the new next_to_clean.
8392 */
8393 smp_mb();
8394 if (__netif_subqueue_stopped(tx_ring->netdev,
8395 tx_ring->queue_index) &&
8396 !(test_bit(__IGB_DOWN, &adapter->state))) {
8397 netif_wake_subqueue(tx_ring->netdev,
8398 tx_ring->queue_index);
8399
8400 u64_stats_update_begin(&tx_ring->tx_syncp);
8401 tx_ring->tx_stats.restart_queue++;
8402 u64_stats_update_end(&tx_ring->tx_syncp);
8403 }
8404 }
8405
8406 return !!budget;
8407}
8408
8409/**
8410 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8411 * @rx_ring: rx descriptor ring to store buffers on
8412 * @old_buff: donor buffer to have page reused
8413 *
8414 * Synchronizes page for reuse by the adapter
8415 **/
8416static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8417 struct igb_rx_buffer *old_buff)
8418{
8419 struct igb_rx_buffer *new_buff;
8420 u16 nta = rx_ring->next_to_alloc;
8421
8422 new_buff = &rx_ring->rx_buffer_info[nta];
8423
8424 /* update, and store next to alloc */
8425 nta++;
8426 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8427
8428 /* Transfer page from old buffer to new buffer.
8429 * Move each member individually to avoid possible store
8430 * forwarding stalls.
8431 */
8432 new_buff->dma = old_buff->dma;
8433 new_buff->page = old_buff->page;
8434 new_buff->page_offset = old_buff->page_offset;
8435 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8436}
8437
8438static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8439 int rx_buf_pgcnt)
8440{
8441 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8442 struct page *page = rx_buffer->page;
8443
8444 /* avoid re-using remote and pfmemalloc pages */
8445 if (!dev_page_is_reusable(page))
8446 return false;
8447
8448#if (PAGE_SIZE < 8192)
8449 /* if we are only owner of page we can reuse it */
8450 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8451 return false;
8452#else
8453#define IGB_LAST_OFFSET \
8454 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8455
8456 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8457 return false;
8458#endif
8459
8460 /* If we have drained the page fragment pool we need to update
8461 * the pagecnt_bias and page count so that we fully restock the
8462 * number of references the driver holds.
8463 */
8464 if (unlikely(pagecnt_bias == 1)) {
8465 page_ref_add(page, USHRT_MAX - 1);
8466 rx_buffer->pagecnt_bias = USHRT_MAX;
8467 }
8468
8469 return true;
8470}
8471
8472/**
8473 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8474 * @rx_ring: rx descriptor ring to transact packets on
8475 * @rx_buffer: buffer containing page to add
8476 * @skb: sk_buff to place the data into
8477 * @size: size of buffer to be added
8478 *
8479 * This function will add the data contained in rx_buffer->page to the skb.
8480 **/
8481static void igb_add_rx_frag(struct igb_ring *rx_ring,
8482 struct igb_rx_buffer *rx_buffer,
8483 struct sk_buff *skb,
8484 unsigned int size)
8485{
8486#if (PAGE_SIZE < 8192)
8487 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8488#else
8489 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8490 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8491 SKB_DATA_ALIGN(size);
8492#endif
8493 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8494 rx_buffer->page_offset, size, truesize);
8495#if (PAGE_SIZE < 8192)
8496 rx_buffer->page_offset ^= truesize;
8497#else
8498 rx_buffer->page_offset += truesize;
8499#endif
8500}
8501
8502static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8503 struct igb_rx_buffer *rx_buffer,
8504 struct xdp_buff *xdp,
8505 ktime_t timestamp)
8506{
8507#if (PAGE_SIZE < 8192)
8508 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8509#else
8510 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8511 xdp->data_hard_start);
8512#endif
8513 unsigned int size = xdp->data_end - xdp->data;
8514 unsigned int headlen;
8515 struct sk_buff *skb;
8516
8517 /* prefetch first cache line of first page */
8518 net_prefetch(xdp->data);
8519
8520 /* allocate a skb to store the frags */
8521 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8522 if (unlikely(!skb))
8523 return NULL;
8524
8525 if (timestamp)
8526 skb_hwtstamps(skb)->hwtstamp = timestamp;
8527
8528 /* Determine available headroom for copy */
8529 headlen = size;
8530 if (headlen > IGB_RX_HDR_LEN)
8531 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8532
8533 /* align pull length to size of long to optimize memcpy performance */
8534 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8535
8536 /* update all of the pointers */
8537 size -= headlen;
8538 if (size) {
8539 skb_add_rx_frag(skb, 0, rx_buffer->page,
8540 (xdp->data + headlen) - page_address(rx_buffer->page),
8541 size, truesize);
8542#if (PAGE_SIZE < 8192)
8543 rx_buffer->page_offset ^= truesize;
8544#else
8545 rx_buffer->page_offset += truesize;
8546#endif
8547 } else {
8548 rx_buffer->pagecnt_bias++;
8549 }
8550
8551 return skb;
8552}
8553
8554static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8555 struct igb_rx_buffer *rx_buffer,
8556 struct xdp_buff *xdp,
8557 ktime_t timestamp)
8558{
8559#if (PAGE_SIZE < 8192)
8560 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8561#else
8562 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8563 SKB_DATA_ALIGN(xdp->data_end -
8564 xdp->data_hard_start);
8565#endif
8566 unsigned int metasize = xdp->data - xdp->data_meta;
8567 struct sk_buff *skb;
8568
8569 /* prefetch first cache line of first page */
8570 net_prefetch(xdp->data_meta);
8571
8572 /* build an skb around the page buffer */
8573 skb = napi_build_skb(xdp->data_hard_start, truesize);
8574 if (unlikely(!skb))
8575 return NULL;
8576
8577 /* update pointers within the skb to store the data */
8578 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8579 __skb_put(skb, xdp->data_end - xdp->data);
8580
8581 if (metasize)
8582 skb_metadata_set(skb, metasize);
8583
8584 if (timestamp)
8585 skb_hwtstamps(skb)->hwtstamp = timestamp;
8586
8587 /* update buffer offset */
8588#if (PAGE_SIZE < 8192)
8589 rx_buffer->page_offset ^= truesize;
8590#else
8591 rx_buffer->page_offset += truesize;
8592#endif
8593
8594 return skb;
8595}
8596
8597static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8598 struct igb_ring *rx_ring,
8599 struct xdp_buff *xdp)
8600{
8601 int err, result = IGB_XDP_PASS;
8602 struct bpf_prog *xdp_prog;
8603 u32 act;
8604
8605 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8606
8607 if (!xdp_prog)
8608 goto xdp_out;
8609
8610 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8611
8612 act = bpf_prog_run_xdp(xdp_prog, xdp);
8613 switch (act) {
8614 case XDP_PASS:
8615 break;
8616 case XDP_TX:
8617 result = igb_xdp_xmit_back(adapter, xdp);
8618 if (result == IGB_XDP_CONSUMED)
8619 goto out_failure;
8620 break;
8621 case XDP_REDIRECT:
8622 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8623 if (err)
8624 goto out_failure;
8625 result = IGB_XDP_REDIR;
8626 break;
8627 default:
8628 bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8629 fallthrough;
8630 case XDP_ABORTED:
8631out_failure:
8632 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8633 fallthrough;
8634 case XDP_DROP:
8635 result = IGB_XDP_CONSUMED;
8636 break;
8637 }
8638xdp_out:
8639 return ERR_PTR(-result);
8640}
8641
8642static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8643 unsigned int size)
8644{
8645 unsigned int truesize;
8646
8647#if (PAGE_SIZE < 8192)
8648 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8649#else
8650 truesize = ring_uses_build_skb(rx_ring) ?
8651 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8652 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8653 SKB_DATA_ALIGN(size);
8654#endif
8655 return truesize;
8656}
8657
8658static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8659 struct igb_rx_buffer *rx_buffer,
8660 unsigned int size)
8661{
8662 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8663#if (PAGE_SIZE < 8192)
8664 rx_buffer->page_offset ^= truesize;
8665#else
8666 rx_buffer->page_offset += truesize;
8667#endif
8668}
8669
8670static inline void igb_rx_checksum(struct igb_ring *ring,
8671 union e1000_adv_rx_desc *rx_desc,
8672 struct sk_buff *skb)
8673{
8674 skb_checksum_none_assert(skb);
8675
8676 /* Ignore Checksum bit is set */
8677 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8678 return;
8679
8680 /* Rx checksum disabled via ethtool */
8681 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8682 return;
8683
8684 /* TCP/UDP checksum error bit is set */
8685 if (igb_test_staterr(rx_desc,
8686 E1000_RXDEXT_STATERR_TCPE |
8687 E1000_RXDEXT_STATERR_IPE)) {
8688 /* work around errata with sctp packets where the TCPE aka
8689 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8690 * packets, (aka let the stack check the crc32c)
8691 */
8692 if (!((skb->len == 60) &&
8693 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8694 u64_stats_update_begin(&ring->rx_syncp);
8695 ring->rx_stats.csum_err++;
8696 u64_stats_update_end(&ring->rx_syncp);
8697 }
8698 /* let the stack verify checksum errors */
8699 return;
8700 }
8701 /* It must be a TCP or UDP packet with a valid checksum */
8702 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8703 E1000_RXD_STAT_UDPCS))
8704 skb->ip_summed = CHECKSUM_UNNECESSARY;
8705
8706 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8707 le32_to_cpu(rx_desc->wb.upper.status_error));
8708}
8709
8710static inline void igb_rx_hash(struct igb_ring *ring,
8711 union e1000_adv_rx_desc *rx_desc,
8712 struct sk_buff *skb)
8713{
8714 if (ring->netdev->features & NETIF_F_RXHASH)
8715 skb_set_hash(skb,
8716 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8717 PKT_HASH_TYPE_L3);
8718}
8719
8720/**
8721 * igb_is_non_eop - process handling of non-EOP buffers
8722 * @rx_ring: Rx ring being processed
8723 * @rx_desc: Rx descriptor for current buffer
8724 *
8725 * This function updates next to clean. If the buffer is an EOP buffer
8726 * this function exits returning false, otherwise it will place the
8727 * sk_buff in the next buffer to be chained and return true indicating
8728 * that this is in fact a non-EOP buffer.
8729 **/
8730static bool igb_is_non_eop(struct igb_ring *rx_ring,
8731 union e1000_adv_rx_desc *rx_desc)
8732{
8733 u32 ntc = rx_ring->next_to_clean + 1;
8734
8735 /* fetch, update, and store next to clean */
8736 ntc = (ntc < rx_ring->count) ? ntc : 0;
8737 rx_ring->next_to_clean = ntc;
8738
8739 prefetch(IGB_RX_DESC(rx_ring, ntc));
8740
8741 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8742 return false;
8743
8744 return true;
8745}
8746
8747/**
8748 * igb_cleanup_headers - Correct corrupted or empty headers
8749 * @rx_ring: rx descriptor ring packet is being transacted on
8750 * @rx_desc: pointer to the EOP Rx descriptor
8751 * @skb: pointer to current skb being fixed
8752 *
8753 * Address the case where we are pulling data in on pages only
8754 * and as such no data is present in the skb header.
8755 *
8756 * In addition if skb is not at least 60 bytes we need to pad it so that
8757 * it is large enough to qualify as a valid Ethernet frame.
8758 *
8759 * Returns true if an error was encountered and skb was freed.
8760 **/
8761static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8762 union e1000_adv_rx_desc *rx_desc,
8763 struct sk_buff *skb)
8764{
8765 /* XDP packets use error pointer so abort at this point */
8766 if (IS_ERR(skb))
8767 return true;
8768
8769 if (unlikely((igb_test_staterr(rx_desc,
8770 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8771 struct net_device *netdev = rx_ring->netdev;
8772 if (!(netdev->features & NETIF_F_RXALL)) {
8773 dev_kfree_skb_any(skb);
8774 return true;
8775 }
8776 }
8777
8778 /* if eth_skb_pad returns an error the skb was freed */
8779 if (eth_skb_pad(skb))
8780 return true;
8781
8782 return false;
8783}
8784
8785/**
8786 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8787 * @rx_ring: rx descriptor ring packet is being transacted on
8788 * @rx_desc: pointer to the EOP Rx descriptor
8789 * @skb: pointer to current skb being populated
8790 *
8791 * This function checks the ring, descriptor, and packet information in
8792 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8793 * other fields within the skb.
8794 **/
8795static void igb_process_skb_fields(struct igb_ring *rx_ring,
8796 union e1000_adv_rx_desc *rx_desc,
8797 struct sk_buff *skb)
8798{
8799 struct net_device *dev = rx_ring->netdev;
8800
8801 igb_rx_hash(rx_ring, rx_desc, skb);
8802
8803 igb_rx_checksum(rx_ring, rx_desc, skb);
8804
8805 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8806 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8807 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8808
8809 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8810 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8811 u16 vid;
8812
8813 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8814 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8815 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8816 else
8817 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8818
8819 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8820 }
8821
8822 skb_record_rx_queue(skb, rx_ring->queue_index);
8823
8824 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8825}
8826
8827static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8828{
8829 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8830}
8831
8832static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8833 const unsigned int size, int *rx_buf_pgcnt)
8834{
8835 struct igb_rx_buffer *rx_buffer;
8836
8837 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8838 *rx_buf_pgcnt =
8839#if (PAGE_SIZE < 8192)
8840 page_count(rx_buffer->page);
8841#else
8842 0;
8843#endif
8844 prefetchw(rx_buffer->page);
8845
8846 /* we are reusing so sync this buffer for CPU use */
8847 dma_sync_single_range_for_cpu(rx_ring->dev,
8848 rx_buffer->dma,
8849 rx_buffer->page_offset,
8850 size,
8851 DMA_FROM_DEVICE);
8852
8853 rx_buffer->pagecnt_bias--;
8854
8855 return rx_buffer;
8856}
8857
8858static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8859 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8860{
8861 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8862 /* hand second half of page back to the ring */
8863 igb_reuse_rx_page(rx_ring, rx_buffer);
8864 } else {
8865 /* We are not reusing the buffer so unmap it and free
8866 * any references we are holding to it
8867 */
8868 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8869 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8870 IGB_RX_DMA_ATTR);
8871 __page_frag_cache_drain(rx_buffer->page,
8872 rx_buffer->pagecnt_bias);
8873 }
8874
8875 /* clear contents of rx_buffer */
8876 rx_buffer->page = NULL;
8877}
8878
8879static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8880{
8881 struct igb_adapter *adapter = q_vector->adapter;
8882 struct igb_ring *rx_ring = q_vector->rx.ring;
8883 struct sk_buff *skb = rx_ring->skb;
8884 unsigned int total_bytes = 0, total_packets = 0;
8885 u16 cleaned_count = igb_desc_unused(rx_ring);
8886 unsigned int xdp_xmit = 0;
8887 struct xdp_buff xdp;
8888 u32 frame_sz = 0;
8889 int rx_buf_pgcnt;
8890
8891 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8892#if (PAGE_SIZE < 8192)
8893 frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8894#endif
8895 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8896
8897 while (likely(total_packets < budget)) {
8898 union e1000_adv_rx_desc *rx_desc;
8899 struct igb_rx_buffer *rx_buffer;
8900 ktime_t timestamp = 0;
8901 int pkt_offset = 0;
8902 unsigned int size;
8903 void *pktbuf;
8904
8905 /* return some buffers to hardware, one at a time is too slow */
8906 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8907 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8908 cleaned_count = 0;
8909 }
8910
8911 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8912 size = le16_to_cpu(rx_desc->wb.upper.length);
8913 if (!size)
8914 break;
8915
8916 /* This memory barrier is needed to keep us from reading
8917 * any other fields out of the rx_desc until we know the
8918 * descriptor has been written back
8919 */
8920 dma_rmb();
8921
8922 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8923 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8924
8925 /* pull rx packet timestamp if available and valid */
8926 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8927 int ts_hdr_len;
8928
8929 ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8930 pktbuf, ×tamp);
8931
8932 pkt_offset += ts_hdr_len;
8933 size -= ts_hdr_len;
8934 }
8935
8936 /* retrieve a buffer from the ring */
8937 if (!skb) {
8938 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8939 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8940
8941 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8942 xdp_buff_clear_frags_flag(&xdp);
8943#if (PAGE_SIZE > 4096)
8944 /* At larger PAGE_SIZE, frame_sz depend on len size */
8945 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8946#endif
8947 skb = igb_run_xdp(adapter, rx_ring, &xdp);
8948 }
8949
8950 if (IS_ERR(skb)) {
8951 unsigned int xdp_res = -PTR_ERR(skb);
8952
8953 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8954 xdp_xmit |= xdp_res;
8955 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8956 } else {
8957 rx_buffer->pagecnt_bias++;
8958 }
8959 total_packets++;
8960 total_bytes += size;
8961 } else if (skb)
8962 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8963 else if (ring_uses_build_skb(rx_ring))
8964 skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8965 timestamp);
8966 else
8967 skb = igb_construct_skb(rx_ring, rx_buffer,
8968 &xdp, timestamp);
8969
8970 /* exit if we failed to retrieve a buffer */
8971 if (!skb) {
8972 rx_ring->rx_stats.alloc_failed++;
8973 rx_buffer->pagecnt_bias++;
8974 break;
8975 }
8976
8977 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8978 cleaned_count++;
8979
8980 /* fetch next buffer in frame if non-eop */
8981 if (igb_is_non_eop(rx_ring, rx_desc))
8982 continue;
8983
8984 /* verify the packet layout is correct */
8985 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8986 skb = NULL;
8987 continue;
8988 }
8989
8990 /* probably a little skewed due to removing CRC */
8991 total_bytes += skb->len;
8992
8993 /* populate checksum, timestamp, VLAN, and protocol */
8994 igb_process_skb_fields(rx_ring, rx_desc, skb);
8995
8996 napi_gro_receive(&q_vector->napi, skb);
8997
8998 /* reset skb pointer */
8999 skb = NULL;
9000
9001 /* update budget accounting */
9002 total_packets++;
9003 }
9004
9005 /* place incomplete frames back on ring for completion */
9006 rx_ring->skb = skb;
9007
9008 if (xdp_xmit & IGB_XDP_REDIR)
9009 xdp_do_flush();
9010
9011 if (xdp_xmit & IGB_XDP_TX) {
9012 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
9013
9014 igb_xdp_ring_update_tail(tx_ring);
9015 }
9016
9017 u64_stats_update_begin(&rx_ring->rx_syncp);
9018 rx_ring->rx_stats.packets += total_packets;
9019 rx_ring->rx_stats.bytes += total_bytes;
9020 u64_stats_update_end(&rx_ring->rx_syncp);
9021 q_vector->rx.total_packets += total_packets;
9022 q_vector->rx.total_bytes += total_bytes;
9023
9024 if (cleaned_count)
9025 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9026
9027 return total_packets;
9028}
9029
9030static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9031 struct igb_rx_buffer *bi)
9032{
9033 struct page *page = bi->page;
9034 dma_addr_t dma;
9035
9036 /* since we are recycling buffers we should seldom need to alloc */
9037 if (likely(page))
9038 return true;
9039
9040 /* alloc new page for storage */
9041 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9042 if (unlikely(!page)) {
9043 rx_ring->rx_stats.alloc_failed++;
9044 return false;
9045 }
9046
9047 /* map page for use */
9048 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9049 igb_rx_pg_size(rx_ring),
9050 DMA_FROM_DEVICE,
9051 IGB_RX_DMA_ATTR);
9052
9053 /* if mapping failed free memory back to system since
9054 * there isn't much point in holding memory we can't use
9055 */
9056 if (dma_mapping_error(rx_ring->dev, dma)) {
9057 __free_pages(page, igb_rx_pg_order(rx_ring));
9058
9059 rx_ring->rx_stats.alloc_failed++;
9060 return false;
9061 }
9062
9063 bi->dma = dma;
9064 bi->page = page;
9065 bi->page_offset = igb_rx_offset(rx_ring);
9066 page_ref_add(page, USHRT_MAX - 1);
9067 bi->pagecnt_bias = USHRT_MAX;
9068
9069 return true;
9070}
9071
9072/**
9073 * igb_alloc_rx_buffers - Replace used receive buffers
9074 * @rx_ring: rx descriptor ring to allocate new receive buffers
9075 * @cleaned_count: count of buffers to allocate
9076 **/
9077void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9078{
9079 union e1000_adv_rx_desc *rx_desc;
9080 struct igb_rx_buffer *bi;
9081 u16 i = rx_ring->next_to_use;
9082 u16 bufsz;
9083
9084 /* nothing to do */
9085 if (!cleaned_count)
9086 return;
9087
9088 rx_desc = IGB_RX_DESC(rx_ring, i);
9089 bi = &rx_ring->rx_buffer_info[i];
9090 i -= rx_ring->count;
9091
9092 bufsz = igb_rx_bufsz(rx_ring);
9093
9094 do {
9095 if (!igb_alloc_mapped_page(rx_ring, bi))
9096 break;
9097
9098 /* sync the buffer for use by the device */
9099 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9100 bi->page_offset, bufsz,
9101 DMA_FROM_DEVICE);
9102
9103 /* Refresh the desc even if buffer_addrs didn't change
9104 * because each write-back erases this info.
9105 */
9106 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9107
9108 rx_desc++;
9109 bi++;
9110 i++;
9111 if (unlikely(!i)) {
9112 rx_desc = IGB_RX_DESC(rx_ring, 0);
9113 bi = rx_ring->rx_buffer_info;
9114 i -= rx_ring->count;
9115 }
9116
9117 /* clear the length for the next_to_use descriptor */
9118 rx_desc->wb.upper.length = 0;
9119
9120 cleaned_count--;
9121 } while (cleaned_count);
9122
9123 i += rx_ring->count;
9124
9125 if (rx_ring->next_to_use != i) {
9126 /* record the next descriptor to use */
9127 rx_ring->next_to_use = i;
9128
9129 /* update next to alloc since we have filled the ring */
9130 rx_ring->next_to_alloc = i;
9131
9132 /* Force memory writes to complete before letting h/w
9133 * know there are new descriptors to fetch. (Only
9134 * applicable for weak-ordered memory model archs,
9135 * such as IA-64).
9136 */
9137 dma_wmb();
9138 writel(i, rx_ring->tail);
9139 }
9140}
9141
9142/**
9143 * igb_mii_ioctl -
9144 * @netdev: pointer to netdev struct
9145 * @ifr: interface structure
9146 * @cmd: ioctl command to execute
9147 **/
9148static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9149{
9150 struct igb_adapter *adapter = netdev_priv(netdev);
9151 struct mii_ioctl_data *data = if_mii(ifr);
9152
9153 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9154 return -EOPNOTSUPP;
9155
9156 switch (cmd) {
9157 case SIOCGMIIPHY:
9158 data->phy_id = adapter->hw.phy.addr;
9159 break;
9160 case SIOCGMIIREG:
9161 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9162 &data->val_out))
9163 return -EIO;
9164 break;
9165 case SIOCSMIIREG:
9166 default:
9167 return -EOPNOTSUPP;
9168 }
9169 return 0;
9170}
9171
9172/**
9173 * igb_ioctl -
9174 * @netdev: pointer to netdev struct
9175 * @ifr: interface structure
9176 * @cmd: ioctl command to execute
9177 **/
9178static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9179{
9180 switch (cmd) {
9181 case SIOCGMIIPHY:
9182 case SIOCGMIIREG:
9183 case SIOCSMIIREG:
9184 return igb_mii_ioctl(netdev, ifr, cmd);
9185 case SIOCGHWTSTAMP:
9186 return igb_ptp_get_ts_config(netdev, ifr);
9187 case SIOCSHWTSTAMP:
9188 return igb_ptp_set_ts_config(netdev, ifr);
9189 default:
9190 return -EOPNOTSUPP;
9191 }
9192}
9193
9194void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9195{
9196 struct igb_adapter *adapter = hw->back;
9197
9198 pci_read_config_word(adapter->pdev, reg, value);
9199}
9200
9201void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9202{
9203 struct igb_adapter *adapter = hw->back;
9204
9205 pci_write_config_word(adapter->pdev, reg, *value);
9206}
9207
9208s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9209{
9210 struct igb_adapter *adapter = hw->back;
9211
9212 if (pcie_capability_read_word(adapter->pdev, reg, value))
9213 return -E1000_ERR_CONFIG;
9214
9215 return 0;
9216}
9217
9218s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9219{
9220 struct igb_adapter *adapter = hw->back;
9221
9222 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9223 return -E1000_ERR_CONFIG;
9224
9225 return 0;
9226}
9227
9228static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9229{
9230 struct igb_adapter *adapter = netdev_priv(netdev);
9231 struct e1000_hw *hw = &adapter->hw;
9232 u32 ctrl, rctl;
9233 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9234
9235 if (enable) {
9236 /* enable VLAN tag insert/strip */
9237 ctrl = rd32(E1000_CTRL);
9238 ctrl |= E1000_CTRL_VME;
9239 wr32(E1000_CTRL, ctrl);
9240
9241 /* Disable CFI check */
9242 rctl = rd32(E1000_RCTL);
9243 rctl &= ~E1000_RCTL_CFIEN;
9244 wr32(E1000_RCTL, rctl);
9245 } else {
9246 /* disable VLAN tag insert/strip */
9247 ctrl = rd32(E1000_CTRL);
9248 ctrl &= ~E1000_CTRL_VME;
9249 wr32(E1000_CTRL, ctrl);
9250 }
9251
9252 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9253}
9254
9255static int igb_vlan_rx_add_vid(struct net_device *netdev,
9256 __be16 proto, u16 vid)
9257{
9258 struct igb_adapter *adapter = netdev_priv(netdev);
9259 struct e1000_hw *hw = &adapter->hw;
9260 int pf_id = adapter->vfs_allocated_count;
9261
9262 /* add the filter since PF can receive vlans w/o entry in vlvf */
9263 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9264 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9265
9266 set_bit(vid, adapter->active_vlans);
9267
9268 return 0;
9269}
9270
9271static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9272 __be16 proto, u16 vid)
9273{
9274 struct igb_adapter *adapter = netdev_priv(netdev);
9275 int pf_id = adapter->vfs_allocated_count;
9276 struct e1000_hw *hw = &adapter->hw;
9277
9278 /* remove VID from filter table */
9279 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9280 igb_vfta_set(hw, vid, pf_id, false, true);
9281
9282 clear_bit(vid, adapter->active_vlans);
9283
9284 return 0;
9285}
9286
9287static void igb_restore_vlan(struct igb_adapter *adapter)
9288{
9289 u16 vid = 1;
9290
9291 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9292 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9293
9294 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9295 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9296}
9297
9298int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9299{
9300 struct pci_dev *pdev = adapter->pdev;
9301 struct e1000_mac_info *mac = &adapter->hw.mac;
9302
9303 mac->autoneg = 0;
9304
9305 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9306 * for the switch() below to work
9307 */
9308 if ((spd & 1) || (dplx & ~1))
9309 goto err_inval;
9310
9311 /* Fiber NIC's only allow 1000 gbps Full duplex
9312 * and 100Mbps Full duplex for 100baseFx sfp
9313 */
9314 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9315 switch (spd + dplx) {
9316 case SPEED_10 + DUPLEX_HALF:
9317 case SPEED_10 + DUPLEX_FULL:
9318 case SPEED_100 + DUPLEX_HALF:
9319 goto err_inval;
9320 default:
9321 break;
9322 }
9323 }
9324
9325 switch (spd + dplx) {
9326 case SPEED_10 + DUPLEX_HALF:
9327 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9328 break;
9329 case SPEED_10 + DUPLEX_FULL:
9330 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9331 break;
9332 case SPEED_100 + DUPLEX_HALF:
9333 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9334 break;
9335 case SPEED_100 + DUPLEX_FULL:
9336 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9337 break;
9338 case SPEED_1000 + DUPLEX_FULL:
9339 mac->autoneg = 1;
9340 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9341 break;
9342 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9343 default:
9344 goto err_inval;
9345 }
9346
9347 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9348 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9349
9350 return 0;
9351
9352err_inval:
9353 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9354 return -EINVAL;
9355}
9356
9357static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9358 bool runtime)
9359{
9360 struct net_device *netdev = pci_get_drvdata(pdev);
9361 struct igb_adapter *adapter = netdev_priv(netdev);
9362 struct e1000_hw *hw = &adapter->hw;
9363 u32 ctrl, rctl, status;
9364 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9365 bool wake;
9366
9367 rtnl_lock();
9368 netif_device_detach(netdev);
9369
9370 if (netif_running(netdev))
9371 __igb_close(netdev, true);
9372
9373 igb_ptp_suspend(adapter);
9374
9375 igb_clear_interrupt_scheme(adapter);
9376 rtnl_unlock();
9377
9378 status = rd32(E1000_STATUS);
9379 if (status & E1000_STATUS_LU)
9380 wufc &= ~E1000_WUFC_LNKC;
9381
9382 if (wufc) {
9383 igb_setup_rctl(adapter);
9384 igb_set_rx_mode(netdev);
9385
9386 /* turn on all-multi mode if wake on multicast is enabled */
9387 if (wufc & E1000_WUFC_MC) {
9388 rctl = rd32(E1000_RCTL);
9389 rctl |= E1000_RCTL_MPE;
9390 wr32(E1000_RCTL, rctl);
9391 }
9392
9393 ctrl = rd32(E1000_CTRL);
9394 ctrl |= E1000_CTRL_ADVD3WUC;
9395 wr32(E1000_CTRL, ctrl);
9396
9397 /* Allow time for pending master requests to run */
9398 igb_disable_pcie_master(hw);
9399
9400 wr32(E1000_WUC, E1000_WUC_PME_EN);
9401 wr32(E1000_WUFC, wufc);
9402 } else {
9403 wr32(E1000_WUC, 0);
9404 wr32(E1000_WUFC, 0);
9405 }
9406
9407 wake = wufc || adapter->en_mng_pt;
9408 if (!wake)
9409 igb_power_down_link(adapter);
9410 else
9411 igb_power_up_link(adapter);
9412
9413 if (enable_wake)
9414 *enable_wake = wake;
9415
9416 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9417 * would have already happened in close and is redundant.
9418 */
9419 igb_release_hw_control(adapter);
9420
9421 pci_disable_device(pdev);
9422
9423 return 0;
9424}
9425
9426static void igb_deliver_wake_packet(struct net_device *netdev)
9427{
9428 struct igb_adapter *adapter = netdev_priv(netdev);
9429 struct e1000_hw *hw = &adapter->hw;
9430 struct sk_buff *skb;
9431 u32 wupl;
9432
9433 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9434
9435 /* WUPM stores only the first 128 bytes of the wake packet.
9436 * Read the packet only if we have the whole thing.
9437 */
9438 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9439 return;
9440
9441 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9442 if (!skb)
9443 return;
9444
9445 skb_put(skb, wupl);
9446
9447 /* Ensure reads are 32-bit aligned */
9448 wupl = roundup(wupl, 4);
9449
9450 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9451
9452 skb->protocol = eth_type_trans(skb, netdev);
9453 netif_rx(skb);
9454}
9455
9456static int __maybe_unused igb_suspend(struct device *dev)
9457{
9458 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9459}
9460
9461static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9462{
9463 struct pci_dev *pdev = to_pci_dev(dev);
9464 struct net_device *netdev = pci_get_drvdata(pdev);
9465 struct igb_adapter *adapter = netdev_priv(netdev);
9466 struct e1000_hw *hw = &adapter->hw;
9467 u32 err, val;
9468
9469 pci_set_power_state(pdev, PCI_D0);
9470 pci_restore_state(pdev);
9471 pci_save_state(pdev);
9472
9473 if (!pci_device_is_present(pdev))
9474 return -ENODEV;
9475 err = pci_enable_device_mem(pdev);
9476 if (err) {
9477 dev_err(&pdev->dev,
9478 "igb: Cannot enable PCI device from suspend\n");
9479 return err;
9480 }
9481 pci_set_master(pdev);
9482
9483 pci_enable_wake(pdev, PCI_D3hot, 0);
9484 pci_enable_wake(pdev, PCI_D3cold, 0);
9485
9486 if (igb_init_interrupt_scheme(adapter, true)) {
9487 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9488 return -ENOMEM;
9489 }
9490
9491 igb_reset(adapter);
9492
9493 /* let the f/w know that the h/w is now under the control of the
9494 * driver.
9495 */
9496 igb_get_hw_control(adapter);
9497
9498 val = rd32(E1000_WUS);
9499 if (val & WAKE_PKT_WUS)
9500 igb_deliver_wake_packet(netdev);
9501
9502 wr32(E1000_WUS, ~0);
9503
9504 if (!rpm)
9505 rtnl_lock();
9506 if (!err && netif_running(netdev))
9507 err = __igb_open(netdev, true);
9508
9509 if (!err)
9510 netif_device_attach(netdev);
9511 if (!rpm)
9512 rtnl_unlock();
9513
9514 return err;
9515}
9516
9517static int __maybe_unused igb_resume(struct device *dev)
9518{
9519 return __igb_resume(dev, false);
9520}
9521
9522static int __maybe_unused igb_runtime_idle(struct device *dev)
9523{
9524 struct net_device *netdev = dev_get_drvdata(dev);
9525 struct igb_adapter *adapter = netdev_priv(netdev);
9526
9527 if (!igb_has_link(adapter))
9528 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9529
9530 return -EBUSY;
9531}
9532
9533static int __maybe_unused igb_runtime_suspend(struct device *dev)
9534{
9535 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9536}
9537
9538static int __maybe_unused igb_runtime_resume(struct device *dev)
9539{
9540 return __igb_resume(dev, true);
9541}
9542
9543static void igb_shutdown(struct pci_dev *pdev)
9544{
9545 bool wake;
9546
9547 __igb_shutdown(pdev, &wake, 0);
9548
9549 if (system_state == SYSTEM_POWER_OFF) {
9550 pci_wake_from_d3(pdev, wake);
9551 pci_set_power_state(pdev, PCI_D3hot);
9552 }
9553}
9554
9555static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9556{
9557#ifdef CONFIG_PCI_IOV
9558 int err;
9559
9560 if (num_vfs == 0) {
9561 return igb_disable_sriov(dev, true);
9562 } else {
9563 err = igb_enable_sriov(dev, num_vfs, true);
9564 return err ? err : num_vfs;
9565 }
9566#endif
9567 return 0;
9568}
9569
9570/**
9571 * igb_io_error_detected - called when PCI error is detected
9572 * @pdev: Pointer to PCI device
9573 * @state: The current pci connection state
9574 *
9575 * This function is called after a PCI bus error affecting
9576 * this device has been detected.
9577 **/
9578static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9579 pci_channel_state_t state)
9580{
9581 struct net_device *netdev = pci_get_drvdata(pdev);
9582 struct igb_adapter *adapter = netdev_priv(netdev);
9583
9584 if (state == pci_channel_io_normal) {
9585 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9586 return PCI_ERS_RESULT_CAN_RECOVER;
9587 }
9588
9589 netif_device_detach(netdev);
9590
9591 if (state == pci_channel_io_perm_failure)
9592 return PCI_ERS_RESULT_DISCONNECT;
9593
9594 if (netif_running(netdev))
9595 igb_down(adapter);
9596 pci_disable_device(pdev);
9597
9598 /* Request a slot reset. */
9599 return PCI_ERS_RESULT_NEED_RESET;
9600}
9601
9602/**
9603 * igb_io_slot_reset - called after the pci bus has been reset.
9604 * @pdev: Pointer to PCI device
9605 *
9606 * Restart the card from scratch, as if from a cold-boot. Implementation
9607 * resembles the first-half of the __igb_resume routine.
9608 **/
9609static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9610{
9611 struct net_device *netdev = pci_get_drvdata(pdev);
9612 struct igb_adapter *adapter = netdev_priv(netdev);
9613 struct e1000_hw *hw = &adapter->hw;
9614 pci_ers_result_t result;
9615
9616 if (pci_enable_device_mem(pdev)) {
9617 dev_err(&pdev->dev,
9618 "Cannot re-enable PCI device after reset.\n");
9619 result = PCI_ERS_RESULT_DISCONNECT;
9620 } else {
9621 pci_set_master(pdev);
9622 pci_restore_state(pdev);
9623 pci_save_state(pdev);
9624
9625 pci_enable_wake(pdev, PCI_D3hot, 0);
9626 pci_enable_wake(pdev, PCI_D3cold, 0);
9627
9628 /* In case of PCI error, adapter lose its HW address
9629 * so we should re-assign it here.
9630 */
9631 hw->hw_addr = adapter->io_addr;
9632
9633 igb_reset(adapter);
9634 wr32(E1000_WUS, ~0);
9635 result = PCI_ERS_RESULT_RECOVERED;
9636 }
9637
9638 return result;
9639}
9640
9641/**
9642 * igb_io_resume - called when traffic can start flowing again.
9643 * @pdev: Pointer to PCI device
9644 *
9645 * This callback is called when the error recovery driver tells us that
9646 * its OK to resume normal operation. Implementation resembles the
9647 * second-half of the __igb_resume routine.
9648 */
9649static void igb_io_resume(struct pci_dev *pdev)
9650{
9651 struct net_device *netdev = pci_get_drvdata(pdev);
9652 struct igb_adapter *adapter = netdev_priv(netdev);
9653
9654 if (netif_running(netdev)) {
9655 if (igb_up(adapter)) {
9656 dev_err(&pdev->dev, "igb_up failed after reset\n");
9657 return;
9658 }
9659 }
9660
9661 netif_device_attach(netdev);
9662
9663 /* let the f/w know that the h/w is now under the control of the
9664 * driver.
9665 */
9666 igb_get_hw_control(adapter);
9667}
9668
9669/**
9670 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9671 * @adapter: Pointer to adapter structure
9672 * @index: Index of the RAR entry which need to be synced with MAC table
9673 **/
9674static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9675{
9676 struct e1000_hw *hw = &adapter->hw;
9677 u32 rar_low, rar_high;
9678 u8 *addr = adapter->mac_table[index].addr;
9679
9680 /* HW expects these to be in network order when they are plugged
9681 * into the registers which are little endian. In order to guarantee
9682 * that ordering we need to do an leXX_to_cpup here in order to be
9683 * ready for the byteswap that occurs with writel
9684 */
9685 rar_low = le32_to_cpup((__le32 *)(addr));
9686 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9687
9688 /* Indicate to hardware the Address is Valid. */
9689 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9690 if (is_valid_ether_addr(addr))
9691 rar_high |= E1000_RAH_AV;
9692
9693 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9694 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9695
9696 switch (hw->mac.type) {
9697 case e1000_82575:
9698 case e1000_i210:
9699 if (adapter->mac_table[index].state &
9700 IGB_MAC_STATE_QUEUE_STEERING)
9701 rar_high |= E1000_RAH_QSEL_ENABLE;
9702
9703 rar_high |= E1000_RAH_POOL_1 *
9704 adapter->mac_table[index].queue;
9705 break;
9706 default:
9707 rar_high |= E1000_RAH_POOL_1 <<
9708 adapter->mac_table[index].queue;
9709 break;
9710 }
9711 }
9712
9713 wr32(E1000_RAL(index), rar_low);
9714 wrfl();
9715 wr32(E1000_RAH(index), rar_high);
9716 wrfl();
9717}
9718
9719static int igb_set_vf_mac(struct igb_adapter *adapter,
9720 int vf, unsigned char *mac_addr)
9721{
9722 struct e1000_hw *hw = &adapter->hw;
9723 /* VF MAC addresses start at end of receive addresses and moves
9724 * towards the first, as a result a collision should not be possible
9725 */
9726 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9727 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9728
9729 ether_addr_copy(vf_mac_addr, mac_addr);
9730 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9731 adapter->mac_table[rar_entry].queue = vf;
9732 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9733 igb_rar_set_index(adapter, rar_entry);
9734
9735 return 0;
9736}
9737
9738static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9739{
9740 struct igb_adapter *adapter = netdev_priv(netdev);
9741
9742 if (vf >= adapter->vfs_allocated_count)
9743 return -EINVAL;
9744
9745 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9746 * flag and allows to overwrite the MAC via VF netdev. This
9747 * is necessary to allow libvirt a way to restore the original
9748 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9749 * down a VM.
9750 */
9751 if (is_zero_ether_addr(mac)) {
9752 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9753 dev_info(&adapter->pdev->dev,
9754 "remove administratively set MAC on VF %d\n",
9755 vf);
9756 } else if (is_valid_ether_addr(mac)) {
9757 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9758 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9759 mac, vf);
9760 dev_info(&adapter->pdev->dev,
9761 "Reload the VF driver to make this change effective.");
9762 /* Generate additional warning if PF is down */
9763 if (test_bit(__IGB_DOWN, &adapter->state)) {
9764 dev_warn(&adapter->pdev->dev,
9765 "The VF MAC address has been set, but the PF device is not up.\n");
9766 dev_warn(&adapter->pdev->dev,
9767 "Bring the PF device up before attempting to use the VF device.\n");
9768 }
9769 } else {
9770 return -EINVAL;
9771 }
9772 return igb_set_vf_mac(adapter, vf, mac);
9773}
9774
9775static int igb_link_mbps(int internal_link_speed)
9776{
9777 switch (internal_link_speed) {
9778 case SPEED_100:
9779 return 100;
9780 case SPEED_1000:
9781 return 1000;
9782 default:
9783 return 0;
9784 }
9785}
9786
9787static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9788 int link_speed)
9789{
9790 int rf_dec, rf_int;
9791 u32 bcnrc_val;
9792
9793 if (tx_rate != 0) {
9794 /* Calculate the rate factor values to set */
9795 rf_int = link_speed / tx_rate;
9796 rf_dec = (link_speed - (rf_int * tx_rate));
9797 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9798 tx_rate;
9799
9800 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9801 bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9802 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9803 } else {
9804 bcnrc_val = 0;
9805 }
9806
9807 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9808 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9809 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9810 */
9811 wr32(E1000_RTTBCNRM, 0x14);
9812 wr32(E1000_RTTBCNRC, bcnrc_val);
9813}
9814
9815static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9816{
9817 int actual_link_speed, i;
9818 bool reset_rate = false;
9819
9820 /* VF TX rate limit was not set or not supported */
9821 if ((adapter->vf_rate_link_speed == 0) ||
9822 (adapter->hw.mac.type != e1000_82576))
9823 return;
9824
9825 actual_link_speed = igb_link_mbps(adapter->link_speed);
9826 if (actual_link_speed != adapter->vf_rate_link_speed) {
9827 reset_rate = true;
9828 adapter->vf_rate_link_speed = 0;
9829 dev_info(&adapter->pdev->dev,
9830 "Link speed has been changed. VF Transmit rate is disabled\n");
9831 }
9832
9833 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9834 if (reset_rate)
9835 adapter->vf_data[i].tx_rate = 0;
9836
9837 igb_set_vf_rate_limit(&adapter->hw, i,
9838 adapter->vf_data[i].tx_rate,
9839 actual_link_speed);
9840 }
9841}
9842
9843static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9844 int min_tx_rate, int max_tx_rate)
9845{
9846 struct igb_adapter *adapter = netdev_priv(netdev);
9847 struct e1000_hw *hw = &adapter->hw;
9848 int actual_link_speed;
9849
9850 if (hw->mac.type != e1000_82576)
9851 return -EOPNOTSUPP;
9852
9853 if (min_tx_rate)
9854 return -EINVAL;
9855
9856 actual_link_speed = igb_link_mbps(adapter->link_speed);
9857 if ((vf >= adapter->vfs_allocated_count) ||
9858 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9859 (max_tx_rate < 0) ||
9860 (max_tx_rate > actual_link_speed))
9861 return -EINVAL;
9862
9863 adapter->vf_rate_link_speed = actual_link_speed;
9864 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9865 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9866
9867 return 0;
9868}
9869
9870static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9871 bool setting)
9872{
9873 struct igb_adapter *adapter = netdev_priv(netdev);
9874 struct e1000_hw *hw = &adapter->hw;
9875 u32 reg_val, reg_offset;
9876
9877 if (!adapter->vfs_allocated_count)
9878 return -EOPNOTSUPP;
9879
9880 if (vf >= adapter->vfs_allocated_count)
9881 return -EINVAL;
9882
9883 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9884 reg_val = rd32(reg_offset);
9885 if (setting)
9886 reg_val |= (BIT(vf) |
9887 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9888 else
9889 reg_val &= ~(BIT(vf) |
9890 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9891 wr32(reg_offset, reg_val);
9892
9893 adapter->vf_data[vf].spoofchk_enabled = setting;
9894 return 0;
9895}
9896
9897static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9898{
9899 struct igb_adapter *adapter = netdev_priv(netdev);
9900
9901 if (vf >= adapter->vfs_allocated_count)
9902 return -EINVAL;
9903 if (adapter->vf_data[vf].trusted == setting)
9904 return 0;
9905
9906 adapter->vf_data[vf].trusted = setting;
9907
9908 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9909 vf, setting ? "" : "not ");
9910 return 0;
9911}
9912
9913static int igb_ndo_get_vf_config(struct net_device *netdev,
9914 int vf, struct ifla_vf_info *ivi)
9915{
9916 struct igb_adapter *adapter = netdev_priv(netdev);
9917 if (vf >= adapter->vfs_allocated_count)
9918 return -EINVAL;
9919 ivi->vf = vf;
9920 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9921 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9922 ivi->min_tx_rate = 0;
9923 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9924 ivi->qos = adapter->vf_data[vf].pf_qos;
9925 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9926 ivi->trusted = adapter->vf_data[vf].trusted;
9927 return 0;
9928}
9929
9930static void igb_vmm_control(struct igb_adapter *adapter)
9931{
9932 struct e1000_hw *hw = &adapter->hw;
9933 u32 reg;
9934
9935 switch (hw->mac.type) {
9936 case e1000_82575:
9937 case e1000_i210:
9938 case e1000_i211:
9939 case e1000_i354:
9940 default:
9941 /* replication is not supported for 82575 */
9942 return;
9943 case e1000_82576:
9944 /* notify HW that the MAC is adding vlan tags */
9945 reg = rd32(E1000_DTXCTL);
9946 reg |= E1000_DTXCTL_VLAN_ADDED;
9947 wr32(E1000_DTXCTL, reg);
9948 fallthrough;
9949 case e1000_82580:
9950 /* enable replication vlan tag stripping */
9951 reg = rd32(E1000_RPLOLR);
9952 reg |= E1000_RPLOLR_STRVLAN;
9953 wr32(E1000_RPLOLR, reg);
9954 fallthrough;
9955 case e1000_i350:
9956 /* none of the above registers are supported by i350 */
9957 break;
9958 }
9959
9960 if (adapter->vfs_allocated_count) {
9961 igb_vmdq_set_loopback_pf(hw, true);
9962 igb_vmdq_set_replication_pf(hw, true);
9963 igb_vmdq_set_anti_spoofing_pf(hw, true,
9964 adapter->vfs_allocated_count);
9965 } else {
9966 igb_vmdq_set_loopback_pf(hw, false);
9967 igb_vmdq_set_replication_pf(hw, false);
9968 }
9969}
9970
9971static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9972{
9973 struct e1000_hw *hw = &adapter->hw;
9974 u32 dmac_thr;
9975 u16 hwm;
9976 u32 reg;
9977
9978 if (hw->mac.type > e1000_82580) {
9979 if (adapter->flags & IGB_FLAG_DMAC) {
9980 /* force threshold to 0. */
9981 wr32(E1000_DMCTXTH, 0);
9982
9983 /* DMA Coalescing high water mark needs to be greater
9984 * than the Rx threshold. Set hwm to PBA - max frame
9985 * size in 16B units, capping it at PBA - 6KB.
9986 */
9987 hwm = 64 * (pba - 6);
9988 reg = rd32(E1000_FCRTC);
9989 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9990 reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
9991 wr32(E1000_FCRTC, reg);
9992
9993 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9994 * frame size, capping it at PBA - 10KB.
9995 */
9996 dmac_thr = pba - 10;
9997 reg = rd32(E1000_DMACR);
9998 reg &= ~E1000_DMACR_DMACTHR_MASK;
9999 reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10000
10001 /* transition to L0x or L1 if available..*/
10002 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10003
10004 /* watchdog timer= +-1000 usec in 32usec intervals */
10005 reg |= (1000 >> 5);
10006
10007 /* Disable BMC-to-OS Watchdog Enable */
10008 if (hw->mac.type != e1000_i354)
10009 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10010 wr32(E1000_DMACR, reg);
10011
10012 /* no lower threshold to disable
10013 * coalescing(smart fifb)-UTRESH=0
10014 */
10015 wr32(E1000_DMCRTRH, 0);
10016
10017 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10018
10019 wr32(E1000_DMCTLX, reg);
10020
10021 /* free space in tx packet buffer to wake from
10022 * DMA coal
10023 */
10024 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10025 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10026 }
10027
10028 if (hw->mac.type >= e1000_i210 ||
10029 (adapter->flags & IGB_FLAG_DMAC)) {
10030 reg = rd32(E1000_PCIEMISC);
10031 reg |= E1000_PCIEMISC_LX_DECISION;
10032 wr32(E1000_PCIEMISC, reg);
10033 } /* endif adapter->dmac is not disabled */
10034 } else if (hw->mac.type == e1000_82580) {
10035 u32 reg = rd32(E1000_PCIEMISC);
10036
10037 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10038 wr32(E1000_DMACR, 0);
10039 }
10040}
10041
10042/**
10043 * igb_read_i2c_byte - Reads 8 bit word over I2C
10044 * @hw: pointer to hardware structure
10045 * @byte_offset: byte offset to read
10046 * @dev_addr: device address
10047 * @data: value read
10048 *
10049 * Performs byte read operation over I2C interface at
10050 * a specified device address.
10051 **/
10052s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10053 u8 dev_addr, u8 *data)
10054{
10055 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10056 struct i2c_client *this_client = adapter->i2c_client;
10057 s32 status;
10058 u16 swfw_mask = 0;
10059
10060 if (!this_client)
10061 return E1000_ERR_I2C;
10062
10063 swfw_mask = E1000_SWFW_PHY0_SM;
10064
10065 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10066 return E1000_ERR_SWFW_SYNC;
10067
10068 status = i2c_smbus_read_byte_data(this_client, byte_offset);
10069 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10070
10071 if (status < 0)
10072 return E1000_ERR_I2C;
10073 else {
10074 *data = status;
10075 return 0;
10076 }
10077}
10078
10079/**
10080 * igb_write_i2c_byte - Writes 8 bit word over I2C
10081 * @hw: pointer to hardware structure
10082 * @byte_offset: byte offset to write
10083 * @dev_addr: device address
10084 * @data: value to write
10085 *
10086 * Performs byte write operation over I2C interface at
10087 * a specified device address.
10088 **/
10089s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10090 u8 dev_addr, u8 data)
10091{
10092 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10093 struct i2c_client *this_client = adapter->i2c_client;
10094 s32 status;
10095 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10096
10097 if (!this_client)
10098 return E1000_ERR_I2C;
10099
10100 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10101 return E1000_ERR_SWFW_SYNC;
10102 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10103 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10104
10105 if (status)
10106 return E1000_ERR_I2C;
10107 else
10108 return 0;
10109
10110}
10111
10112int igb_reinit_queues(struct igb_adapter *adapter)
10113{
10114 struct net_device *netdev = adapter->netdev;
10115 struct pci_dev *pdev = adapter->pdev;
10116 int err = 0;
10117
10118 if (netif_running(netdev))
10119 igb_close(netdev);
10120
10121 igb_reset_interrupt_capability(adapter);
10122
10123 if (igb_init_interrupt_scheme(adapter, true)) {
10124 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10125 return -ENOMEM;
10126 }
10127
10128 if (netif_running(netdev))
10129 err = igb_open(netdev);
10130
10131 return err;
10132}
10133
10134static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10135{
10136 struct igb_nfc_filter *rule;
10137
10138 spin_lock(&adapter->nfc_lock);
10139
10140 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10141 igb_erase_filter(adapter, rule);
10142
10143 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10144 igb_erase_filter(adapter, rule);
10145
10146 spin_unlock(&adapter->nfc_lock);
10147}
10148
10149static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10150{
10151 struct igb_nfc_filter *rule;
10152
10153 spin_lock(&adapter->nfc_lock);
10154
10155 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10156 igb_add_filter(adapter, rule);
10157
10158 spin_unlock(&adapter->nfc_lock);
10159}
10160/* igb_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Intel(R) Gigabit Ethernet Linux driver
3 * Copyright(c) 2007-2014 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, see <http://www.gnu.org/licenses/>.
16 *
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
19 *
20 * Contact Information:
21 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
22 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/init.h>
30#include <linux/bitops.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
34#include <linux/ipv6.h>
35#include <linux/slab.h>
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
38#include <net/pkt_sched.h>
39#include <linux/net_tstamp.h>
40#include <linux/mii.h>
41#include <linux/ethtool.h>
42#include <linux/if.h>
43#include <linux/if_vlan.h>
44#include <linux/pci.h>
45#include <linux/pci-aspm.h>
46#include <linux/delay.h>
47#include <linux/interrupt.h>
48#include <linux/ip.h>
49#include <linux/tcp.h>
50#include <linux/sctp.h>
51#include <linux/if_ether.h>
52#include <linux/aer.h>
53#include <linux/prefetch.h>
54#include <linux/pm_runtime.h>
55#include <linux/etherdevice.h>
56#ifdef CONFIG_IGB_DCA
57#include <linux/dca.h>
58#endif
59#include <linux/i2c.h>
60#include "igb.h"
61
62#define MAJ 5
63#define MIN 4
64#define BUILD 0
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67
68enum queue_mode {
69 QUEUE_MODE_STRICT_PRIORITY,
70 QUEUE_MODE_STREAM_RESERVATION,
71};
72
73enum tx_queue_prio {
74 TX_QUEUE_PRIO_HIGH,
75 TX_QUEUE_PRIO_LOW,
76};
77
78char igb_driver_name[] = "igb";
79char igb_driver_version[] = DRV_VERSION;
80static const char igb_driver_string[] =
81 "Intel(R) Gigabit Ethernet Network Driver";
82static const char igb_copyright[] =
83 "Copyright (c) 2007-2014 Intel Corporation.";
84
85static const struct e1000_info *igb_info_tbl[] = {
86 [board_82575] = &e1000_82575_info,
87};
88
89static const struct pci_device_id igb_pci_tbl[] = {
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
124 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
125 /* required last entry */
126 {0, }
127};
128
129MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
130
131static int igb_setup_all_tx_resources(struct igb_adapter *);
132static int igb_setup_all_rx_resources(struct igb_adapter *);
133static void igb_free_all_tx_resources(struct igb_adapter *);
134static void igb_free_all_rx_resources(struct igb_adapter *);
135static void igb_setup_mrqc(struct igb_adapter *);
136static int igb_probe(struct pci_dev *, const struct pci_device_id *);
137static void igb_remove(struct pci_dev *pdev);
138static int igb_sw_init(struct igb_adapter *);
139int igb_open(struct net_device *);
140int igb_close(struct net_device *);
141static void igb_configure(struct igb_adapter *);
142static void igb_configure_tx(struct igb_adapter *);
143static void igb_configure_rx(struct igb_adapter *);
144static void igb_clean_all_tx_rings(struct igb_adapter *);
145static void igb_clean_all_rx_rings(struct igb_adapter *);
146static void igb_clean_tx_ring(struct igb_ring *);
147static void igb_clean_rx_ring(struct igb_ring *);
148static void igb_set_rx_mode(struct net_device *);
149static void igb_update_phy_info(struct timer_list *);
150static void igb_watchdog(struct timer_list *);
151static void igb_watchdog_task(struct work_struct *);
152static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
153static void igb_get_stats64(struct net_device *dev,
154 struct rtnl_link_stats64 *stats);
155static int igb_change_mtu(struct net_device *, int);
156static int igb_set_mac(struct net_device *, void *);
157static void igb_set_uta(struct igb_adapter *adapter, bool set);
158static irqreturn_t igb_intr(int irq, void *);
159static irqreturn_t igb_intr_msi(int irq, void *);
160static irqreturn_t igb_msix_other(int irq, void *);
161static irqreturn_t igb_msix_ring(int irq, void *);
162#ifdef CONFIG_IGB_DCA
163static void igb_update_dca(struct igb_q_vector *);
164static void igb_setup_dca(struct igb_adapter *);
165#endif /* CONFIG_IGB_DCA */
166static int igb_poll(struct napi_struct *, int);
167static bool igb_clean_tx_irq(struct igb_q_vector *, int);
168static int igb_clean_rx_irq(struct igb_q_vector *, int);
169static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
170static void igb_tx_timeout(struct net_device *);
171static void igb_reset_task(struct work_struct *);
172static void igb_vlan_mode(struct net_device *netdev,
173 netdev_features_t features);
174static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
175static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
176static void igb_restore_vlan(struct igb_adapter *);
177static void igb_rar_set_index(struct igb_adapter *, u32);
178static void igb_ping_all_vfs(struct igb_adapter *);
179static void igb_msg_task(struct igb_adapter *);
180static void igb_vmm_control(struct igb_adapter *);
181static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
182static void igb_flush_mac_table(struct igb_adapter *);
183static int igb_available_rars(struct igb_adapter *, u8);
184static void igb_set_default_mac_filter(struct igb_adapter *);
185static int igb_uc_sync(struct net_device *, const unsigned char *);
186static int igb_uc_unsync(struct net_device *, const unsigned char *);
187static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
188static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
189static int igb_ndo_set_vf_vlan(struct net_device *netdev,
190 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
191static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
192static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
193 bool setting);
194static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
195 bool setting);
196static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
197 struct ifla_vf_info *ivi);
198static void igb_check_vf_rate_limit(struct igb_adapter *);
199static void igb_nfc_filter_exit(struct igb_adapter *adapter);
200static void igb_nfc_filter_restore(struct igb_adapter *adapter);
201
202#ifdef CONFIG_PCI_IOV
203static int igb_vf_configure(struct igb_adapter *adapter, int vf);
204static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
205static int igb_disable_sriov(struct pci_dev *dev);
206static int igb_pci_disable_sriov(struct pci_dev *dev);
207#endif
208
209static int igb_suspend(struct device *);
210static int igb_resume(struct device *);
211static int igb_runtime_suspend(struct device *dev);
212static int igb_runtime_resume(struct device *dev);
213static int igb_runtime_idle(struct device *dev);
214static const struct dev_pm_ops igb_pm_ops = {
215 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
216 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
217 igb_runtime_idle)
218};
219static void igb_shutdown(struct pci_dev *);
220static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
221#ifdef CONFIG_IGB_DCA
222static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
223static struct notifier_block dca_notifier = {
224 .notifier_call = igb_notify_dca,
225 .next = NULL,
226 .priority = 0
227};
228#endif
229#ifdef CONFIG_NET_POLL_CONTROLLER
230/* for netdump / net console */
231static void igb_netpoll(struct net_device *);
232#endif
233#ifdef CONFIG_PCI_IOV
234static unsigned int max_vfs;
235module_param(max_vfs, uint, 0);
236MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
237#endif /* CONFIG_PCI_IOV */
238
239static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
240 pci_channel_state_t);
241static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
242static void igb_io_resume(struct pci_dev *);
243
244static const struct pci_error_handlers igb_err_handler = {
245 .error_detected = igb_io_error_detected,
246 .slot_reset = igb_io_slot_reset,
247 .resume = igb_io_resume,
248};
249
250static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
251
252static struct pci_driver igb_driver = {
253 .name = igb_driver_name,
254 .id_table = igb_pci_tbl,
255 .probe = igb_probe,
256 .remove = igb_remove,
257#ifdef CONFIG_PM
258 .driver.pm = &igb_pm_ops,
259#endif
260 .shutdown = igb_shutdown,
261 .sriov_configure = igb_pci_sriov_configure,
262 .err_handler = &igb_err_handler
263};
264
265MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
266MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
267MODULE_LICENSE("GPL");
268MODULE_VERSION(DRV_VERSION);
269
270#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
271static int debug = -1;
272module_param(debug, int, 0);
273MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
274
275struct igb_reg_info {
276 u32 ofs;
277 char *name;
278};
279
280static const struct igb_reg_info igb_reg_info_tbl[] = {
281
282 /* General Registers */
283 {E1000_CTRL, "CTRL"},
284 {E1000_STATUS, "STATUS"},
285 {E1000_CTRL_EXT, "CTRL_EXT"},
286
287 /* Interrupt Registers */
288 {E1000_ICR, "ICR"},
289
290 /* RX Registers */
291 {E1000_RCTL, "RCTL"},
292 {E1000_RDLEN(0), "RDLEN"},
293 {E1000_RDH(0), "RDH"},
294 {E1000_RDT(0), "RDT"},
295 {E1000_RXDCTL(0), "RXDCTL"},
296 {E1000_RDBAL(0), "RDBAL"},
297 {E1000_RDBAH(0), "RDBAH"},
298
299 /* TX Registers */
300 {E1000_TCTL, "TCTL"},
301 {E1000_TDBAL(0), "TDBAL"},
302 {E1000_TDBAH(0), "TDBAH"},
303 {E1000_TDLEN(0), "TDLEN"},
304 {E1000_TDH(0), "TDH"},
305 {E1000_TDT(0), "TDT"},
306 {E1000_TXDCTL(0), "TXDCTL"},
307 {E1000_TDFH, "TDFH"},
308 {E1000_TDFT, "TDFT"},
309 {E1000_TDFHS, "TDFHS"},
310 {E1000_TDFPC, "TDFPC"},
311
312 /* List Terminator */
313 {}
314};
315
316/* igb_regdump - register printout routine */
317static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
318{
319 int n = 0;
320 char rname[16];
321 u32 regs[8];
322
323 switch (reginfo->ofs) {
324 case E1000_RDLEN(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDLEN(n));
327 break;
328 case E1000_RDH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_RDH(n));
331 break;
332 case E1000_RDT(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_RDT(n));
335 break;
336 case E1000_RXDCTL(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_RXDCTL(n));
339 break;
340 case E1000_RDBAL(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_RDBAL(n));
343 break;
344 case E1000_RDBAH(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_RDBAH(n));
347 break;
348 case E1000_TDBAL(0):
349 for (n = 0; n < 4; n++)
350 regs[n] = rd32(E1000_RDBAL(n));
351 break;
352 case E1000_TDBAH(0):
353 for (n = 0; n < 4; n++)
354 regs[n] = rd32(E1000_TDBAH(n));
355 break;
356 case E1000_TDLEN(0):
357 for (n = 0; n < 4; n++)
358 regs[n] = rd32(E1000_TDLEN(n));
359 break;
360 case E1000_TDH(0):
361 for (n = 0; n < 4; n++)
362 regs[n] = rd32(E1000_TDH(n));
363 break;
364 case E1000_TDT(0):
365 for (n = 0; n < 4; n++)
366 regs[n] = rd32(E1000_TDT(n));
367 break;
368 case E1000_TXDCTL(0):
369 for (n = 0; n < 4; n++)
370 regs[n] = rd32(E1000_TXDCTL(n));
371 break;
372 default:
373 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
374 return;
375 }
376
377 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
378 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
379 regs[2], regs[3]);
380}
381
382/* igb_dump - Print registers, Tx-rings and Rx-rings */
383static void igb_dump(struct igb_adapter *adapter)
384{
385 struct net_device *netdev = adapter->netdev;
386 struct e1000_hw *hw = &adapter->hw;
387 struct igb_reg_info *reginfo;
388 struct igb_ring *tx_ring;
389 union e1000_adv_tx_desc *tx_desc;
390 struct my_u0 { u64 a; u64 b; } *u0;
391 struct igb_ring *rx_ring;
392 union e1000_adv_rx_desc *rx_desc;
393 u32 staterr;
394 u16 i, n;
395
396 if (!netif_msg_hw(adapter))
397 return;
398
399 /* Print netdevice Info */
400 if (netdev) {
401 dev_info(&adapter->pdev->dev, "Net device Info\n");
402 pr_info("Device Name state trans_start\n");
403 pr_info("%-15s %016lX %016lX\n", netdev->name,
404 netdev->state, dev_trans_start(netdev));
405 }
406
407 /* Print Registers */
408 dev_info(&adapter->pdev->dev, "Register Dump\n");
409 pr_info(" Register Name Value\n");
410 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
411 reginfo->name; reginfo++) {
412 igb_regdump(hw, reginfo);
413 }
414
415 /* Print TX Ring Summary */
416 if (!netdev || !netif_running(netdev))
417 goto exit;
418
419 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
420 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
421 for (n = 0; n < adapter->num_tx_queues; n++) {
422 struct igb_tx_buffer *buffer_info;
423 tx_ring = adapter->tx_ring[n];
424 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
425 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
426 n, tx_ring->next_to_use, tx_ring->next_to_clean,
427 (u64)dma_unmap_addr(buffer_info, dma),
428 dma_unmap_len(buffer_info, len),
429 buffer_info->next_to_watch,
430 (u64)buffer_info->time_stamp);
431 }
432
433 /* Print TX Rings */
434 if (!netif_msg_tx_done(adapter))
435 goto rx_ring_summary;
436
437 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
438
439 /* Transmit Descriptor Formats
440 *
441 * Advanced Transmit Descriptor
442 * +--------------------------------------------------------------+
443 * 0 | Buffer Address [63:0] |
444 * +--------------------------------------------------------------+
445 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
446 * +--------------------------------------------------------------+
447 * 63 46 45 40 39 38 36 35 32 31 24 15 0
448 */
449
450 for (n = 0; n < adapter->num_tx_queues; n++) {
451 tx_ring = adapter->tx_ring[n];
452 pr_info("------------------------------------\n");
453 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
454 pr_info("------------------------------------\n");
455 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
456
457 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
458 const char *next_desc;
459 struct igb_tx_buffer *buffer_info;
460 tx_desc = IGB_TX_DESC(tx_ring, i);
461 buffer_info = &tx_ring->tx_buffer_info[i];
462 u0 = (struct my_u0 *)tx_desc;
463 if (i == tx_ring->next_to_use &&
464 i == tx_ring->next_to_clean)
465 next_desc = " NTC/U";
466 else if (i == tx_ring->next_to_use)
467 next_desc = " NTU";
468 else if (i == tx_ring->next_to_clean)
469 next_desc = " NTC";
470 else
471 next_desc = "";
472
473 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
474 i, le64_to_cpu(u0->a),
475 le64_to_cpu(u0->b),
476 (u64)dma_unmap_addr(buffer_info, dma),
477 dma_unmap_len(buffer_info, len),
478 buffer_info->next_to_watch,
479 (u64)buffer_info->time_stamp,
480 buffer_info->skb, next_desc);
481
482 if (netif_msg_pktdata(adapter) && buffer_info->skb)
483 print_hex_dump(KERN_INFO, "",
484 DUMP_PREFIX_ADDRESS,
485 16, 1, buffer_info->skb->data,
486 dma_unmap_len(buffer_info, len),
487 true);
488 }
489 }
490
491 /* Print RX Rings Summary */
492rx_ring_summary:
493 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
494 pr_info("Queue [NTU] [NTC]\n");
495 for (n = 0; n < adapter->num_rx_queues; n++) {
496 rx_ring = adapter->rx_ring[n];
497 pr_info(" %5d %5X %5X\n",
498 n, rx_ring->next_to_use, rx_ring->next_to_clean);
499 }
500
501 /* Print RX Rings */
502 if (!netif_msg_rx_status(adapter))
503 goto exit;
504
505 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
506
507 /* Advanced Receive Descriptor (Read) Format
508 * 63 1 0
509 * +-----------------------------------------------------+
510 * 0 | Packet Buffer Address [63:1] |A0/NSE|
511 * +----------------------------------------------+------+
512 * 8 | Header Buffer Address [63:1] | DD |
513 * +-----------------------------------------------------+
514 *
515 *
516 * Advanced Receive Descriptor (Write-Back) Format
517 *
518 * 63 48 47 32 31 30 21 20 17 16 4 3 0
519 * +------------------------------------------------------+
520 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
521 * | Checksum Ident | | | | Type | Type |
522 * +------------------------------------------------------+
523 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
524 * +------------------------------------------------------+
525 * 63 48 47 32 31 20 19 0
526 */
527
528 for (n = 0; n < adapter->num_rx_queues; n++) {
529 rx_ring = adapter->rx_ring[n];
530 pr_info("------------------------------------\n");
531 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
532 pr_info("------------------------------------\n");
533 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
534 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
535
536 for (i = 0; i < rx_ring->count; i++) {
537 const char *next_desc;
538 struct igb_rx_buffer *buffer_info;
539 buffer_info = &rx_ring->rx_buffer_info[i];
540 rx_desc = IGB_RX_DESC(rx_ring, i);
541 u0 = (struct my_u0 *)rx_desc;
542 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
543
544 if (i == rx_ring->next_to_use)
545 next_desc = " NTU";
546 else if (i == rx_ring->next_to_clean)
547 next_desc = " NTC";
548 else
549 next_desc = "";
550
551 if (staterr & E1000_RXD_STAT_DD) {
552 /* Descriptor Done */
553 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
554 "RWB", i,
555 le64_to_cpu(u0->a),
556 le64_to_cpu(u0->b),
557 next_desc);
558 } else {
559 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
560 "R ", i,
561 le64_to_cpu(u0->a),
562 le64_to_cpu(u0->b),
563 (u64)buffer_info->dma,
564 next_desc);
565
566 if (netif_msg_pktdata(adapter) &&
567 buffer_info->dma && buffer_info->page) {
568 print_hex_dump(KERN_INFO, "",
569 DUMP_PREFIX_ADDRESS,
570 16, 1,
571 page_address(buffer_info->page) +
572 buffer_info->page_offset,
573 igb_rx_bufsz(rx_ring), true);
574 }
575 }
576 }
577 }
578
579exit:
580 return;
581}
582
583/**
584 * igb_get_i2c_data - Reads the I2C SDA data bit
585 * @hw: pointer to hardware structure
586 * @i2cctl: Current value of I2CCTL register
587 *
588 * Returns the I2C data bit value
589 **/
590static int igb_get_i2c_data(void *data)
591{
592 struct igb_adapter *adapter = (struct igb_adapter *)data;
593 struct e1000_hw *hw = &adapter->hw;
594 s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596 return !!(i2cctl & E1000_I2C_DATA_IN);
597}
598
599/**
600 * igb_set_i2c_data - Sets the I2C data bit
601 * @data: pointer to hardware structure
602 * @state: I2C data value (0 or 1) to set
603 *
604 * Sets the I2C data bit
605 **/
606static void igb_set_i2c_data(void *data, int state)
607{
608 struct igb_adapter *adapter = (struct igb_adapter *)data;
609 struct e1000_hw *hw = &adapter->hw;
610 s32 i2cctl = rd32(E1000_I2CPARAMS);
611
612 if (state)
613 i2cctl |= E1000_I2C_DATA_OUT;
614 else
615 i2cctl &= ~E1000_I2C_DATA_OUT;
616
617 i2cctl &= ~E1000_I2C_DATA_OE_N;
618 i2cctl |= E1000_I2C_CLK_OE_N;
619 wr32(E1000_I2CPARAMS, i2cctl);
620 wrfl();
621
622}
623
624/**
625 * igb_set_i2c_clk - Sets the I2C SCL clock
626 * @data: pointer to hardware structure
627 * @state: state to set clock
628 *
629 * Sets the I2C clock line to state
630 **/
631static void igb_set_i2c_clk(void *data, int state)
632{
633 struct igb_adapter *adapter = (struct igb_adapter *)data;
634 struct e1000_hw *hw = &adapter->hw;
635 s32 i2cctl = rd32(E1000_I2CPARAMS);
636
637 if (state) {
638 i2cctl |= E1000_I2C_CLK_OUT;
639 i2cctl &= ~E1000_I2C_CLK_OE_N;
640 } else {
641 i2cctl &= ~E1000_I2C_CLK_OUT;
642 i2cctl &= ~E1000_I2C_CLK_OE_N;
643 }
644 wr32(E1000_I2CPARAMS, i2cctl);
645 wrfl();
646}
647
648/**
649 * igb_get_i2c_clk - Gets the I2C SCL clock state
650 * @data: pointer to hardware structure
651 *
652 * Gets the I2C clock state
653 **/
654static int igb_get_i2c_clk(void *data)
655{
656 struct igb_adapter *adapter = (struct igb_adapter *)data;
657 struct e1000_hw *hw = &adapter->hw;
658 s32 i2cctl = rd32(E1000_I2CPARAMS);
659
660 return !!(i2cctl & E1000_I2C_CLK_IN);
661}
662
663static const struct i2c_algo_bit_data igb_i2c_algo = {
664 .setsda = igb_set_i2c_data,
665 .setscl = igb_set_i2c_clk,
666 .getsda = igb_get_i2c_data,
667 .getscl = igb_get_i2c_clk,
668 .udelay = 5,
669 .timeout = 20,
670};
671
672/**
673 * igb_get_hw_dev - return device
674 * @hw: pointer to hardware structure
675 *
676 * used by hardware layer to print debugging information
677 **/
678struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
679{
680 struct igb_adapter *adapter = hw->back;
681 return adapter->netdev;
682}
683
684/**
685 * igb_init_module - Driver Registration Routine
686 *
687 * igb_init_module is the first routine called when the driver is
688 * loaded. All it does is register with the PCI subsystem.
689 **/
690static int __init igb_init_module(void)
691{
692 int ret;
693
694 pr_info("%s - version %s\n",
695 igb_driver_string, igb_driver_version);
696 pr_info("%s\n", igb_copyright);
697
698#ifdef CONFIG_IGB_DCA
699 dca_register_notify(&dca_notifier);
700#endif
701 ret = pci_register_driver(&igb_driver);
702 return ret;
703}
704
705module_init(igb_init_module);
706
707/**
708 * igb_exit_module - Driver Exit Cleanup Routine
709 *
710 * igb_exit_module is called just before the driver is removed
711 * from memory.
712 **/
713static void __exit igb_exit_module(void)
714{
715#ifdef CONFIG_IGB_DCA
716 dca_unregister_notify(&dca_notifier);
717#endif
718 pci_unregister_driver(&igb_driver);
719}
720
721module_exit(igb_exit_module);
722
723#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
724/**
725 * igb_cache_ring_register - Descriptor ring to register mapping
726 * @adapter: board private structure to initialize
727 *
728 * Once we know the feature-set enabled for the device, we'll cache
729 * the register offset the descriptor ring is assigned to.
730 **/
731static void igb_cache_ring_register(struct igb_adapter *adapter)
732{
733 int i = 0, j = 0;
734 u32 rbase_offset = adapter->vfs_allocated_count;
735
736 switch (adapter->hw.mac.type) {
737 case e1000_82576:
738 /* The queues are allocated for virtualization such that VF 0
739 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
740 * In order to avoid collision we start at the first free queue
741 * and continue consuming queues in the same sequence
742 */
743 if (adapter->vfs_allocated_count) {
744 for (; i < adapter->rss_queues; i++)
745 adapter->rx_ring[i]->reg_idx = rbase_offset +
746 Q_IDX_82576(i);
747 }
748 /* Fall through */
749 case e1000_82575:
750 case e1000_82580:
751 case e1000_i350:
752 case e1000_i354:
753 case e1000_i210:
754 case e1000_i211:
755 /* Fall through */
756 default:
757 for (; i < adapter->num_rx_queues; i++)
758 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
759 for (; j < adapter->num_tx_queues; j++)
760 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
761 break;
762 }
763}
764
765u32 igb_rd32(struct e1000_hw *hw, u32 reg)
766{
767 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
768 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
769 u32 value = 0;
770
771 if (E1000_REMOVED(hw_addr))
772 return ~value;
773
774 value = readl(&hw_addr[reg]);
775
776 /* reads should not return all F's */
777 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
778 struct net_device *netdev = igb->netdev;
779 hw->hw_addr = NULL;
780 netdev_err(netdev, "PCIe link lost\n");
781 }
782
783 return value;
784}
785
786/**
787 * igb_write_ivar - configure ivar for given MSI-X vector
788 * @hw: pointer to the HW structure
789 * @msix_vector: vector number we are allocating to a given ring
790 * @index: row index of IVAR register to write within IVAR table
791 * @offset: column offset of in IVAR, should be multiple of 8
792 *
793 * This function is intended to handle the writing of the IVAR register
794 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
795 * each containing an cause allocation for an Rx and Tx ring, and a
796 * variable number of rows depending on the number of queues supported.
797 **/
798static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
799 int index, int offset)
800{
801 u32 ivar = array_rd32(E1000_IVAR0, index);
802
803 /* clear any bits that are currently set */
804 ivar &= ~((u32)0xFF << offset);
805
806 /* write vector and valid bit */
807 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
808
809 array_wr32(E1000_IVAR0, index, ivar);
810}
811
812#define IGB_N0_QUEUE -1
813static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
814{
815 struct igb_adapter *adapter = q_vector->adapter;
816 struct e1000_hw *hw = &adapter->hw;
817 int rx_queue = IGB_N0_QUEUE;
818 int tx_queue = IGB_N0_QUEUE;
819 u32 msixbm = 0;
820
821 if (q_vector->rx.ring)
822 rx_queue = q_vector->rx.ring->reg_idx;
823 if (q_vector->tx.ring)
824 tx_queue = q_vector->tx.ring->reg_idx;
825
826 switch (hw->mac.type) {
827 case e1000_82575:
828 /* The 82575 assigns vectors using a bitmask, which matches the
829 * bitmask for the EICR/EIMS/EIMC registers. To assign one
830 * or more queues to a vector, we write the appropriate bits
831 * into the MSIXBM register for that vector.
832 */
833 if (rx_queue > IGB_N0_QUEUE)
834 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
835 if (tx_queue > IGB_N0_QUEUE)
836 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
837 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
838 msixbm |= E1000_EIMS_OTHER;
839 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
840 q_vector->eims_value = msixbm;
841 break;
842 case e1000_82576:
843 /* 82576 uses a table that essentially consists of 2 columns
844 * with 8 rows. The ordering is column-major so we use the
845 * lower 3 bits as the row index, and the 4th bit as the
846 * column offset.
847 */
848 if (rx_queue > IGB_N0_QUEUE)
849 igb_write_ivar(hw, msix_vector,
850 rx_queue & 0x7,
851 (rx_queue & 0x8) << 1);
852 if (tx_queue > IGB_N0_QUEUE)
853 igb_write_ivar(hw, msix_vector,
854 tx_queue & 0x7,
855 ((tx_queue & 0x8) << 1) + 8);
856 q_vector->eims_value = BIT(msix_vector);
857 break;
858 case e1000_82580:
859 case e1000_i350:
860 case e1000_i354:
861 case e1000_i210:
862 case e1000_i211:
863 /* On 82580 and newer adapters the scheme is similar to 82576
864 * however instead of ordering column-major we have things
865 * ordered row-major. So we traverse the table by using
866 * bit 0 as the column offset, and the remaining bits as the
867 * row index.
868 */
869 if (rx_queue > IGB_N0_QUEUE)
870 igb_write_ivar(hw, msix_vector,
871 rx_queue >> 1,
872 (rx_queue & 0x1) << 4);
873 if (tx_queue > IGB_N0_QUEUE)
874 igb_write_ivar(hw, msix_vector,
875 tx_queue >> 1,
876 ((tx_queue & 0x1) << 4) + 8);
877 q_vector->eims_value = BIT(msix_vector);
878 break;
879 default:
880 BUG();
881 break;
882 }
883
884 /* add q_vector eims value to global eims_enable_mask */
885 adapter->eims_enable_mask |= q_vector->eims_value;
886
887 /* configure q_vector to set itr on first interrupt */
888 q_vector->set_itr = 1;
889}
890
891/**
892 * igb_configure_msix - Configure MSI-X hardware
893 * @adapter: board private structure to initialize
894 *
895 * igb_configure_msix sets up the hardware to properly
896 * generate MSI-X interrupts.
897 **/
898static void igb_configure_msix(struct igb_adapter *adapter)
899{
900 u32 tmp;
901 int i, vector = 0;
902 struct e1000_hw *hw = &adapter->hw;
903
904 adapter->eims_enable_mask = 0;
905
906 /* set vector for other causes, i.e. link changes */
907 switch (hw->mac.type) {
908 case e1000_82575:
909 tmp = rd32(E1000_CTRL_EXT);
910 /* enable MSI-X PBA support*/
911 tmp |= E1000_CTRL_EXT_PBA_CLR;
912
913 /* Auto-Mask interrupts upon ICR read. */
914 tmp |= E1000_CTRL_EXT_EIAME;
915 tmp |= E1000_CTRL_EXT_IRCA;
916
917 wr32(E1000_CTRL_EXT, tmp);
918
919 /* enable msix_other interrupt */
920 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
921 adapter->eims_other = E1000_EIMS_OTHER;
922
923 break;
924
925 case e1000_82576:
926 case e1000_82580:
927 case e1000_i350:
928 case e1000_i354:
929 case e1000_i210:
930 case e1000_i211:
931 /* Turn on MSI-X capability first, or our settings
932 * won't stick. And it will take days to debug.
933 */
934 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
935 E1000_GPIE_PBA | E1000_GPIE_EIAME |
936 E1000_GPIE_NSICR);
937
938 /* enable msix_other interrupt */
939 adapter->eims_other = BIT(vector);
940 tmp = (vector++ | E1000_IVAR_VALID) << 8;
941
942 wr32(E1000_IVAR_MISC, tmp);
943 break;
944 default:
945 /* do nothing, since nothing else supports MSI-X */
946 break;
947 } /* switch (hw->mac.type) */
948
949 adapter->eims_enable_mask |= adapter->eims_other;
950
951 for (i = 0; i < adapter->num_q_vectors; i++)
952 igb_assign_vector(adapter->q_vector[i], vector++);
953
954 wrfl();
955}
956
957/**
958 * igb_request_msix - Initialize MSI-X interrupts
959 * @adapter: board private structure to initialize
960 *
961 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
962 * kernel.
963 **/
964static int igb_request_msix(struct igb_adapter *adapter)
965{
966 struct net_device *netdev = adapter->netdev;
967 int i, err = 0, vector = 0, free_vector = 0;
968
969 err = request_irq(adapter->msix_entries[vector].vector,
970 igb_msix_other, 0, netdev->name, adapter);
971 if (err)
972 goto err_out;
973
974 for (i = 0; i < adapter->num_q_vectors; i++) {
975 struct igb_q_vector *q_vector = adapter->q_vector[i];
976
977 vector++;
978
979 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
980
981 if (q_vector->rx.ring && q_vector->tx.ring)
982 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
983 q_vector->rx.ring->queue_index);
984 else if (q_vector->tx.ring)
985 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
986 q_vector->tx.ring->queue_index);
987 else if (q_vector->rx.ring)
988 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
989 q_vector->rx.ring->queue_index);
990 else
991 sprintf(q_vector->name, "%s-unused", netdev->name);
992
993 err = request_irq(adapter->msix_entries[vector].vector,
994 igb_msix_ring, 0, q_vector->name,
995 q_vector);
996 if (err)
997 goto err_free;
998 }
999
1000 igb_configure_msix(adapter);
1001 return 0;
1002
1003err_free:
1004 /* free already assigned IRQs */
1005 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
1006
1007 vector--;
1008 for (i = 0; i < vector; i++) {
1009 free_irq(adapter->msix_entries[free_vector++].vector,
1010 adapter->q_vector[i]);
1011 }
1012err_out:
1013 return err;
1014}
1015
1016/**
1017 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1018 * @adapter: board private structure to initialize
1019 * @v_idx: Index of vector to be freed
1020 *
1021 * This function frees the memory allocated to the q_vector.
1022 **/
1023static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1024{
1025 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1026
1027 adapter->q_vector[v_idx] = NULL;
1028
1029 /* igb_get_stats64() might access the rings on this vector,
1030 * we must wait a grace period before freeing it.
1031 */
1032 if (q_vector)
1033 kfree_rcu(q_vector, rcu);
1034}
1035
1036/**
1037 * igb_reset_q_vector - Reset config for interrupt vector
1038 * @adapter: board private structure to initialize
1039 * @v_idx: Index of vector to be reset
1040 *
1041 * If NAPI is enabled it will delete any references to the
1042 * NAPI struct. This is preparation for igb_free_q_vector.
1043 **/
1044static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1045{
1046 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1047
1048 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1049 * allocated. So, q_vector is NULL so we should stop here.
1050 */
1051 if (!q_vector)
1052 return;
1053
1054 if (q_vector->tx.ring)
1055 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1056
1057 if (q_vector->rx.ring)
1058 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1059
1060 netif_napi_del(&q_vector->napi);
1061
1062}
1063
1064static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1065{
1066 int v_idx = adapter->num_q_vectors;
1067
1068 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1069 pci_disable_msix(adapter->pdev);
1070 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1071 pci_disable_msi(adapter->pdev);
1072
1073 while (v_idx--)
1074 igb_reset_q_vector(adapter, v_idx);
1075}
1076
1077/**
1078 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1079 * @adapter: board private structure to initialize
1080 *
1081 * This function frees the memory allocated to the q_vectors. In addition if
1082 * NAPI is enabled it will delete any references to the NAPI struct prior
1083 * to freeing the q_vector.
1084 **/
1085static void igb_free_q_vectors(struct igb_adapter *adapter)
1086{
1087 int v_idx = adapter->num_q_vectors;
1088
1089 adapter->num_tx_queues = 0;
1090 adapter->num_rx_queues = 0;
1091 adapter->num_q_vectors = 0;
1092
1093 while (v_idx--) {
1094 igb_reset_q_vector(adapter, v_idx);
1095 igb_free_q_vector(adapter, v_idx);
1096 }
1097}
1098
1099/**
1100 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1101 * @adapter: board private structure to initialize
1102 *
1103 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1104 * MSI-X interrupts allocated.
1105 */
1106static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1107{
1108 igb_free_q_vectors(adapter);
1109 igb_reset_interrupt_capability(adapter);
1110}
1111
1112/**
1113 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1114 * @adapter: board private structure to initialize
1115 * @msix: boolean value of MSIX capability
1116 *
1117 * Attempt to configure interrupts using the best available
1118 * capabilities of the hardware and kernel.
1119 **/
1120static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1121{
1122 int err;
1123 int numvecs, i;
1124
1125 if (!msix)
1126 goto msi_only;
1127 adapter->flags |= IGB_FLAG_HAS_MSIX;
1128
1129 /* Number of supported queues. */
1130 adapter->num_rx_queues = adapter->rss_queues;
1131 if (adapter->vfs_allocated_count)
1132 adapter->num_tx_queues = 1;
1133 else
1134 adapter->num_tx_queues = adapter->rss_queues;
1135
1136 /* start with one vector for every Rx queue */
1137 numvecs = adapter->num_rx_queues;
1138
1139 /* if Tx handler is separate add 1 for every Tx queue */
1140 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1141 numvecs += adapter->num_tx_queues;
1142
1143 /* store the number of vectors reserved for queues */
1144 adapter->num_q_vectors = numvecs;
1145
1146 /* add 1 vector for link status interrupts */
1147 numvecs++;
1148 for (i = 0; i < numvecs; i++)
1149 adapter->msix_entries[i].entry = i;
1150
1151 err = pci_enable_msix_range(adapter->pdev,
1152 adapter->msix_entries,
1153 numvecs,
1154 numvecs);
1155 if (err > 0)
1156 return;
1157
1158 igb_reset_interrupt_capability(adapter);
1159
1160 /* If we can't do MSI-X, try MSI */
1161msi_only:
1162 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1163#ifdef CONFIG_PCI_IOV
1164 /* disable SR-IOV for non MSI-X configurations */
1165 if (adapter->vf_data) {
1166 struct e1000_hw *hw = &adapter->hw;
1167 /* disable iov and allow time for transactions to clear */
1168 pci_disable_sriov(adapter->pdev);
1169 msleep(500);
1170
1171 kfree(adapter->vf_mac_list);
1172 adapter->vf_mac_list = NULL;
1173 kfree(adapter->vf_data);
1174 adapter->vf_data = NULL;
1175 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1176 wrfl();
1177 msleep(100);
1178 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1179 }
1180#endif
1181 adapter->vfs_allocated_count = 0;
1182 adapter->rss_queues = 1;
1183 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1184 adapter->num_rx_queues = 1;
1185 adapter->num_tx_queues = 1;
1186 adapter->num_q_vectors = 1;
1187 if (!pci_enable_msi(adapter->pdev))
1188 adapter->flags |= IGB_FLAG_HAS_MSI;
1189}
1190
1191static void igb_add_ring(struct igb_ring *ring,
1192 struct igb_ring_container *head)
1193{
1194 head->ring = ring;
1195 head->count++;
1196}
1197
1198/**
1199 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1200 * @adapter: board private structure to initialize
1201 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1202 * @v_idx: index of vector in adapter struct
1203 * @txr_count: total number of Tx rings to allocate
1204 * @txr_idx: index of first Tx ring to allocate
1205 * @rxr_count: total number of Rx rings to allocate
1206 * @rxr_idx: index of first Rx ring to allocate
1207 *
1208 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1209 **/
1210static int igb_alloc_q_vector(struct igb_adapter *adapter,
1211 int v_count, int v_idx,
1212 int txr_count, int txr_idx,
1213 int rxr_count, int rxr_idx)
1214{
1215 struct igb_q_vector *q_vector;
1216 struct igb_ring *ring;
1217 int ring_count, size;
1218
1219 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1220 if (txr_count > 1 || rxr_count > 1)
1221 return -ENOMEM;
1222
1223 ring_count = txr_count + rxr_count;
1224 size = sizeof(struct igb_q_vector) +
1225 (sizeof(struct igb_ring) * ring_count);
1226
1227 /* allocate q_vector and rings */
1228 q_vector = adapter->q_vector[v_idx];
1229 if (!q_vector) {
1230 q_vector = kzalloc(size, GFP_KERNEL);
1231 } else if (size > ksize(q_vector)) {
1232 kfree_rcu(q_vector, rcu);
1233 q_vector = kzalloc(size, GFP_KERNEL);
1234 } else {
1235 memset(q_vector, 0, size);
1236 }
1237 if (!q_vector)
1238 return -ENOMEM;
1239
1240 /* initialize NAPI */
1241 netif_napi_add(adapter->netdev, &q_vector->napi,
1242 igb_poll, 64);
1243
1244 /* tie q_vector and adapter together */
1245 adapter->q_vector[v_idx] = q_vector;
1246 q_vector->adapter = adapter;
1247
1248 /* initialize work limits */
1249 q_vector->tx.work_limit = adapter->tx_work_limit;
1250
1251 /* initialize ITR configuration */
1252 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1253 q_vector->itr_val = IGB_START_ITR;
1254
1255 /* initialize pointer to rings */
1256 ring = q_vector->ring;
1257
1258 /* intialize ITR */
1259 if (rxr_count) {
1260 /* rx or rx/tx vector */
1261 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1262 q_vector->itr_val = adapter->rx_itr_setting;
1263 } else {
1264 /* tx only vector */
1265 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1266 q_vector->itr_val = adapter->tx_itr_setting;
1267 }
1268
1269 if (txr_count) {
1270 /* assign generic ring traits */
1271 ring->dev = &adapter->pdev->dev;
1272 ring->netdev = adapter->netdev;
1273
1274 /* configure backlink on ring */
1275 ring->q_vector = q_vector;
1276
1277 /* update q_vector Tx values */
1278 igb_add_ring(ring, &q_vector->tx);
1279
1280 /* For 82575, context index must be unique per ring. */
1281 if (adapter->hw.mac.type == e1000_82575)
1282 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1283
1284 /* apply Tx specific ring traits */
1285 ring->count = adapter->tx_ring_count;
1286 ring->queue_index = txr_idx;
1287
1288 ring->cbs_enable = false;
1289 ring->idleslope = 0;
1290 ring->sendslope = 0;
1291 ring->hicredit = 0;
1292 ring->locredit = 0;
1293
1294 u64_stats_init(&ring->tx_syncp);
1295 u64_stats_init(&ring->tx_syncp2);
1296
1297 /* assign ring to adapter */
1298 adapter->tx_ring[txr_idx] = ring;
1299
1300 /* push pointer to next ring */
1301 ring++;
1302 }
1303
1304 if (rxr_count) {
1305 /* assign generic ring traits */
1306 ring->dev = &adapter->pdev->dev;
1307 ring->netdev = adapter->netdev;
1308
1309 /* configure backlink on ring */
1310 ring->q_vector = q_vector;
1311
1312 /* update q_vector Rx values */
1313 igb_add_ring(ring, &q_vector->rx);
1314
1315 /* set flag indicating ring supports SCTP checksum offload */
1316 if (adapter->hw.mac.type >= e1000_82576)
1317 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1318
1319 /* On i350, i354, i210, and i211, loopback VLAN packets
1320 * have the tag byte-swapped.
1321 */
1322 if (adapter->hw.mac.type >= e1000_i350)
1323 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1324
1325 /* apply Rx specific ring traits */
1326 ring->count = adapter->rx_ring_count;
1327 ring->queue_index = rxr_idx;
1328
1329 u64_stats_init(&ring->rx_syncp);
1330
1331 /* assign ring to adapter */
1332 adapter->rx_ring[rxr_idx] = ring;
1333 }
1334
1335 return 0;
1336}
1337
1338
1339/**
1340 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1341 * @adapter: board private structure to initialize
1342 *
1343 * We allocate one q_vector per queue interrupt. If allocation fails we
1344 * return -ENOMEM.
1345 **/
1346static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1347{
1348 int q_vectors = adapter->num_q_vectors;
1349 int rxr_remaining = adapter->num_rx_queues;
1350 int txr_remaining = adapter->num_tx_queues;
1351 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1352 int err;
1353
1354 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1355 for (; rxr_remaining; v_idx++) {
1356 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1357 0, 0, 1, rxr_idx);
1358
1359 if (err)
1360 goto err_out;
1361
1362 /* update counts and index */
1363 rxr_remaining--;
1364 rxr_idx++;
1365 }
1366 }
1367
1368 for (; v_idx < q_vectors; v_idx++) {
1369 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1370 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1371
1372 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1373 tqpv, txr_idx, rqpv, rxr_idx);
1374
1375 if (err)
1376 goto err_out;
1377
1378 /* update counts and index */
1379 rxr_remaining -= rqpv;
1380 txr_remaining -= tqpv;
1381 rxr_idx++;
1382 txr_idx++;
1383 }
1384
1385 return 0;
1386
1387err_out:
1388 adapter->num_tx_queues = 0;
1389 adapter->num_rx_queues = 0;
1390 adapter->num_q_vectors = 0;
1391
1392 while (v_idx--)
1393 igb_free_q_vector(adapter, v_idx);
1394
1395 return -ENOMEM;
1396}
1397
1398/**
1399 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1400 * @adapter: board private structure to initialize
1401 * @msix: boolean value of MSIX capability
1402 *
1403 * This function initializes the interrupts and allocates all of the queues.
1404 **/
1405static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1406{
1407 struct pci_dev *pdev = adapter->pdev;
1408 int err;
1409
1410 igb_set_interrupt_capability(adapter, msix);
1411
1412 err = igb_alloc_q_vectors(adapter);
1413 if (err) {
1414 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1415 goto err_alloc_q_vectors;
1416 }
1417
1418 igb_cache_ring_register(adapter);
1419
1420 return 0;
1421
1422err_alloc_q_vectors:
1423 igb_reset_interrupt_capability(adapter);
1424 return err;
1425}
1426
1427/**
1428 * igb_request_irq - initialize interrupts
1429 * @adapter: board private structure to initialize
1430 *
1431 * Attempts to configure interrupts using the best available
1432 * capabilities of the hardware and kernel.
1433 **/
1434static int igb_request_irq(struct igb_adapter *adapter)
1435{
1436 struct net_device *netdev = adapter->netdev;
1437 struct pci_dev *pdev = adapter->pdev;
1438 int err = 0;
1439
1440 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1441 err = igb_request_msix(adapter);
1442 if (!err)
1443 goto request_done;
1444 /* fall back to MSI */
1445 igb_free_all_tx_resources(adapter);
1446 igb_free_all_rx_resources(adapter);
1447
1448 igb_clear_interrupt_scheme(adapter);
1449 err = igb_init_interrupt_scheme(adapter, false);
1450 if (err)
1451 goto request_done;
1452
1453 igb_setup_all_tx_resources(adapter);
1454 igb_setup_all_rx_resources(adapter);
1455 igb_configure(adapter);
1456 }
1457
1458 igb_assign_vector(adapter->q_vector[0], 0);
1459
1460 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1461 err = request_irq(pdev->irq, igb_intr_msi, 0,
1462 netdev->name, adapter);
1463 if (!err)
1464 goto request_done;
1465
1466 /* fall back to legacy interrupts */
1467 igb_reset_interrupt_capability(adapter);
1468 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1469 }
1470
1471 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1472 netdev->name, adapter);
1473
1474 if (err)
1475 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1476 err);
1477
1478request_done:
1479 return err;
1480}
1481
1482static void igb_free_irq(struct igb_adapter *adapter)
1483{
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 int vector = 0, i;
1486
1487 free_irq(adapter->msix_entries[vector++].vector, adapter);
1488
1489 for (i = 0; i < adapter->num_q_vectors; i++)
1490 free_irq(adapter->msix_entries[vector++].vector,
1491 adapter->q_vector[i]);
1492 } else {
1493 free_irq(adapter->pdev->irq, adapter);
1494 }
1495}
1496
1497/**
1498 * igb_irq_disable - Mask off interrupt generation on the NIC
1499 * @adapter: board private structure
1500 **/
1501static void igb_irq_disable(struct igb_adapter *adapter)
1502{
1503 struct e1000_hw *hw = &adapter->hw;
1504
1505 /* we need to be careful when disabling interrupts. The VFs are also
1506 * mapped into these registers and so clearing the bits can cause
1507 * issues on the VF drivers so we only need to clear what we set
1508 */
1509 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1510 u32 regval = rd32(E1000_EIAM);
1511
1512 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1513 wr32(E1000_EIMC, adapter->eims_enable_mask);
1514 regval = rd32(E1000_EIAC);
1515 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1516 }
1517
1518 wr32(E1000_IAM, 0);
1519 wr32(E1000_IMC, ~0);
1520 wrfl();
1521 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1522 int i;
1523
1524 for (i = 0; i < adapter->num_q_vectors; i++)
1525 synchronize_irq(adapter->msix_entries[i].vector);
1526 } else {
1527 synchronize_irq(adapter->pdev->irq);
1528 }
1529}
1530
1531/**
1532 * igb_irq_enable - Enable default interrupt generation settings
1533 * @adapter: board private structure
1534 **/
1535static void igb_irq_enable(struct igb_adapter *adapter)
1536{
1537 struct e1000_hw *hw = &adapter->hw;
1538
1539 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1540 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1541 u32 regval = rd32(E1000_EIAC);
1542
1543 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1544 regval = rd32(E1000_EIAM);
1545 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1546 wr32(E1000_EIMS, adapter->eims_enable_mask);
1547 if (adapter->vfs_allocated_count) {
1548 wr32(E1000_MBVFIMR, 0xFF);
1549 ims |= E1000_IMS_VMMB;
1550 }
1551 wr32(E1000_IMS, ims);
1552 } else {
1553 wr32(E1000_IMS, IMS_ENABLE_MASK |
1554 E1000_IMS_DRSTA);
1555 wr32(E1000_IAM, IMS_ENABLE_MASK |
1556 E1000_IMS_DRSTA);
1557 }
1558}
1559
1560static void igb_update_mng_vlan(struct igb_adapter *adapter)
1561{
1562 struct e1000_hw *hw = &adapter->hw;
1563 u16 pf_id = adapter->vfs_allocated_count;
1564 u16 vid = adapter->hw.mng_cookie.vlan_id;
1565 u16 old_vid = adapter->mng_vlan_id;
1566
1567 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1568 /* add VID to filter table */
1569 igb_vfta_set(hw, vid, pf_id, true, true);
1570 adapter->mng_vlan_id = vid;
1571 } else {
1572 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1573 }
1574
1575 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1576 (vid != old_vid) &&
1577 !test_bit(old_vid, adapter->active_vlans)) {
1578 /* remove VID from filter table */
1579 igb_vfta_set(hw, vid, pf_id, false, true);
1580 }
1581}
1582
1583/**
1584 * igb_release_hw_control - release control of the h/w to f/w
1585 * @adapter: address of board private structure
1586 *
1587 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1588 * For ASF and Pass Through versions of f/w this means that the
1589 * driver is no longer loaded.
1590 **/
1591static void igb_release_hw_control(struct igb_adapter *adapter)
1592{
1593 struct e1000_hw *hw = &adapter->hw;
1594 u32 ctrl_ext;
1595
1596 /* Let firmware take over control of h/w */
1597 ctrl_ext = rd32(E1000_CTRL_EXT);
1598 wr32(E1000_CTRL_EXT,
1599 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1600}
1601
1602/**
1603 * igb_get_hw_control - get control of the h/w from f/w
1604 * @adapter: address of board private structure
1605 *
1606 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1607 * For ASF and Pass Through versions of f/w this means that
1608 * the driver is loaded.
1609 **/
1610static void igb_get_hw_control(struct igb_adapter *adapter)
1611{
1612 struct e1000_hw *hw = &adapter->hw;
1613 u32 ctrl_ext;
1614
1615 /* Let firmware know the driver has taken over */
1616 ctrl_ext = rd32(E1000_CTRL_EXT);
1617 wr32(E1000_CTRL_EXT,
1618 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1619}
1620
1621static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1622{
1623 struct net_device *netdev = adapter->netdev;
1624 struct e1000_hw *hw = &adapter->hw;
1625
1626 WARN_ON(hw->mac.type != e1000_i210);
1627
1628 if (enable)
1629 adapter->flags |= IGB_FLAG_FQTSS;
1630 else
1631 adapter->flags &= ~IGB_FLAG_FQTSS;
1632
1633 if (netif_running(netdev))
1634 schedule_work(&adapter->reset_task);
1635}
1636
1637static bool is_fqtss_enabled(struct igb_adapter *adapter)
1638{
1639 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1640}
1641
1642static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1643 enum tx_queue_prio prio)
1644{
1645 u32 val;
1646
1647 WARN_ON(hw->mac.type != e1000_i210);
1648 WARN_ON(queue < 0 || queue > 4);
1649
1650 val = rd32(E1000_I210_TXDCTL(queue));
1651
1652 if (prio == TX_QUEUE_PRIO_HIGH)
1653 val |= E1000_TXDCTL_PRIORITY;
1654 else
1655 val &= ~E1000_TXDCTL_PRIORITY;
1656
1657 wr32(E1000_I210_TXDCTL(queue), val);
1658}
1659
1660static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1661{
1662 u32 val;
1663
1664 WARN_ON(hw->mac.type != e1000_i210);
1665 WARN_ON(queue < 0 || queue > 1);
1666
1667 val = rd32(E1000_I210_TQAVCC(queue));
1668
1669 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1670 val |= E1000_TQAVCC_QUEUEMODE;
1671 else
1672 val &= ~E1000_TQAVCC_QUEUEMODE;
1673
1674 wr32(E1000_I210_TQAVCC(queue), val);
1675}
1676
1677/**
1678 * igb_configure_cbs - Configure Credit-Based Shaper (CBS)
1679 * @adapter: pointer to adapter struct
1680 * @queue: queue number
1681 * @enable: true = enable CBS, false = disable CBS
1682 * @idleslope: idleSlope in kbps
1683 * @sendslope: sendSlope in kbps
1684 * @hicredit: hiCredit in bytes
1685 * @locredit: loCredit in bytes
1686 *
1687 * Configure CBS for a given hardware queue. When disabling, idleslope,
1688 * sendslope, hicredit, locredit arguments are ignored. Returns 0 if
1689 * success. Negative otherwise.
1690 **/
1691static void igb_configure_cbs(struct igb_adapter *adapter, int queue,
1692 bool enable, int idleslope, int sendslope,
1693 int hicredit, int locredit)
1694{
1695 struct net_device *netdev = adapter->netdev;
1696 struct e1000_hw *hw = &adapter->hw;
1697 u32 tqavcc;
1698 u16 value;
1699
1700 WARN_ON(hw->mac.type != e1000_i210);
1701 WARN_ON(queue < 0 || queue > 1);
1702
1703 if (enable || queue == 0) {
1704 /* i210 does not allow the queue 0 to be in the Strict
1705 * Priority mode while the Qav mode is enabled, so,
1706 * instead of disabling strict priority mode, we give
1707 * queue 0 the maximum of credits possible.
1708 *
1709 * See section 8.12.19 of the i210 datasheet, "Note:
1710 * Queue0 QueueMode must be set to 1b when
1711 * TransmitMode is set to Qav."
1712 */
1713 if (queue == 0 && !enable) {
1714 /* max "linkspeed" idleslope in kbps */
1715 idleslope = 1000000;
1716 hicredit = ETH_FRAME_LEN;
1717 }
1718
1719 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1720 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1721
1722 /* According to i210 datasheet section 7.2.7.7, we should set
1723 * the 'idleSlope' field from TQAVCC register following the
1724 * equation:
1725 *
1726 * For 100 Mbps link speed:
1727 *
1728 * value = BW * 0x7735 * 0.2 (E1)
1729 *
1730 * For 1000Mbps link speed:
1731 *
1732 * value = BW * 0x7735 * 2 (E2)
1733 *
1734 * E1 and E2 can be merged into one equation as shown below.
1735 * Note that 'link-speed' is in Mbps.
1736 *
1737 * value = BW * 0x7735 * 2 * link-speed
1738 * -------------- (E3)
1739 * 1000
1740 *
1741 * 'BW' is the percentage bandwidth out of full link speed
1742 * which can be found with the following equation. Note that
1743 * idleSlope here is the parameter from this function which
1744 * is in kbps.
1745 *
1746 * BW = idleSlope
1747 * ----------------- (E4)
1748 * link-speed * 1000
1749 *
1750 * That said, we can come up with a generic equation to
1751 * calculate the value we should set it TQAVCC register by
1752 * replacing 'BW' in E3 by E4. The resulting equation is:
1753 *
1754 * value = idleSlope * 0x7735 * 2 * link-speed
1755 * ----------------- -------------- (E5)
1756 * link-speed * 1000 1000
1757 *
1758 * 'link-speed' is present in both sides of the fraction so
1759 * it is canceled out. The final equation is the following:
1760 *
1761 * value = idleSlope * 61034
1762 * ----------------- (E6)
1763 * 1000000
1764 *
1765 * NOTE: For i210, given the above, we can see that idleslope
1766 * is represented in 16.38431 kbps units by the value at
1767 * the TQAVCC register (1Gbps / 61034), which reduces
1768 * the granularity for idleslope increments.
1769 * For instance, if you want to configure a 2576kbps
1770 * idleslope, the value to be written on the register
1771 * would have to be 157.23. If rounded down, you end
1772 * up with less bandwidth available than originally
1773 * required (~2572 kbps). If rounded up, you end up
1774 * with a higher bandwidth (~2589 kbps). Below the
1775 * approach we take is to always round up the
1776 * calculated value, so the resulting bandwidth might
1777 * be slightly higher for some configurations.
1778 */
1779 value = DIV_ROUND_UP_ULL(idleslope * 61034ULL, 1000000);
1780
1781 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1782 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1783 tqavcc |= value;
1784 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1785
1786 wr32(E1000_I210_TQAVHC(queue), 0x80000000 + hicredit * 0x7735);
1787 } else {
1788 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1789 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1790
1791 /* Set idleSlope to zero. */
1792 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1793 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1794 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1795
1796 /* Set hiCredit to zero. */
1797 wr32(E1000_I210_TQAVHC(queue), 0);
1798 }
1799
1800 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1801 * CBS are not configurable by software so we don't do any 'controller
1802 * configuration' in respect to these parameters.
1803 */
1804
1805 netdev_dbg(netdev, "CBS %s: queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1806 (enable) ? "enabled" : "disabled", queue,
1807 idleslope, sendslope, hicredit, locredit);
1808}
1809
1810static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1811 bool enable, int idleslope, int sendslope,
1812 int hicredit, int locredit)
1813{
1814 struct igb_ring *ring;
1815
1816 if (queue < 0 || queue > adapter->num_tx_queues)
1817 return -EINVAL;
1818
1819 ring = adapter->tx_ring[queue];
1820
1821 ring->cbs_enable = enable;
1822 ring->idleslope = idleslope;
1823 ring->sendslope = sendslope;
1824 ring->hicredit = hicredit;
1825 ring->locredit = locredit;
1826
1827 return 0;
1828}
1829
1830static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1831{
1832 struct igb_ring *ring;
1833 int i;
1834
1835 for (i = 0; i < adapter->num_tx_queues; i++) {
1836 ring = adapter->tx_ring[i];
1837
1838 if (ring->cbs_enable)
1839 return true;
1840 }
1841
1842 return false;
1843}
1844
1845static void igb_setup_tx_mode(struct igb_adapter *adapter)
1846{
1847 struct net_device *netdev = adapter->netdev;
1848 struct e1000_hw *hw = &adapter->hw;
1849 u32 val;
1850
1851 /* Only i210 controller supports changing the transmission mode. */
1852 if (hw->mac.type != e1000_i210)
1853 return;
1854
1855 if (is_fqtss_enabled(adapter)) {
1856 int i, max_queue;
1857
1858 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1859 * set data fetch arbitration to 'round robin' and set data
1860 * transfer arbitration to 'credit shaper algorithm.
1861 */
1862 val = rd32(E1000_I210_TQAVCTRL);
1863 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_DATATRANARB;
1864 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1865 wr32(E1000_I210_TQAVCTRL, val);
1866
1867 /* Configure Tx and Rx packet buffers sizes as described in
1868 * i210 datasheet section 7.2.7.7.
1869 */
1870 val = rd32(E1000_TXPBS);
1871 val &= ~I210_TXPBSIZE_MASK;
1872 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1873 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1874 wr32(E1000_TXPBS, val);
1875
1876 val = rd32(E1000_RXPBS);
1877 val &= ~I210_RXPBSIZE_MASK;
1878 val |= I210_RXPBSIZE_PB_32KB;
1879 wr32(E1000_RXPBS, val);
1880
1881 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1882 * register should not exceed the buffer size programmed in
1883 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1884 * so according to the datasheet we should set MAX_TPKT_SIZE to
1885 * 4kB / 64.
1886 *
1887 * However, when we do so, no frame from queue 2 and 3 are
1888 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1889 * or _equal_ to the buffer size programmed in TXPBS. For this
1890 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1891 */
1892 val = (4096 - 1) / 64;
1893 wr32(E1000_I210_DTXMXPKTSZ, val);
1894
1895 /* Since FQTSS mode is enabled, apply any CBS configuration
1896 * previously set. If no previous CBS configuration has been
1897 * done, then the initial configuration is applied, which means
1898 * CBS is disabled.
1899 */
1900 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1901 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1902
1903 for (i = 0; i < max_queue; i++) {
1904 struct igb_ring *ring = adapter->tx_ring[i];
1905
1906 igb_configure_cbs(adapter, i, ring->cbs_enable,
1907 ring->idleslope, ring->sendslope,
1908 ring->hicredit, ring->locredit);
1909 }
1910 } else {
1911 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1912 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1913 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1914
1915 val = rd32(E1000_I210_TQAVCTRL);
1916 /* According to Section 8.12.21, the other flags we've set when
1917 * enabling FQTSS are not relevant when disabling FQTSS so we
1918 * don't set they here.
1919 */
1920 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1921 wr32(E1000_I210_TQAVCTRL, val);
1922 }
1923
1924 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1925 "enabled" : "disabled");
1926}
1927
1928/**
1929 * igb_configure - configure the hardware for RX and TX
1930 * @adapter: private board structure
1931 **/
1932static void igb_configure(struct igb_adapter *adapter)
1933{
1934 struct net_device *netdev = adapter->netdev;
1935 int i;
1936
1937 igb_get_hw_control(adapter);
1938 igb_set_rx_mode(netdev);
1939 igb_setup_tx_mode(adapter);
1940
1941 igb_restore_vlan(adapter);
1942
1943 igb_setup_tctl(adapter);
1944 igb_setup_mrqc(adapter);
1945 igb_setup_rctl(adapter);
1946
1947 igb_nfc_filter_restore(adapter);
1948 igb_configure_tx(adapter);
1949 igb_configure_rx(adapter);
1950
1951 igb_rx_fifo_flush_82575(&adapter->hw);
1952
1953 /* call igb_desc_unused which always leaves
1954 * at least 1 descriptor unused to make sure
1955 * next_to_use != next_to_clean
1956 */
1957 for (i = 0; i < adapter->num_rx_queues; i++) {
1958 struct igb_ring *ring = adapter->rx_ring[i];
1959 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1960 }
1961}
1962
1963/**
1964 * igb_power_up_link - Power up the phy/serdes link
1965 * @adapter: address of board private structure
1966 **/
1967void igb_power_up_link(struct igb_adapter *adapter)
1968{
1969 igb_reset_phy(&adapter->hw);
1970
1971 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1972 igb_power_up_phy_copper(&adapter->hw);
1973 else
1974 igb_power_up_serdes_link_82575(&adapter->hw);
1975
1976 igb_setup_link(&adapter->hw);
1977}
1978
1979/**
1980 * igb_power_down_link - Power down the phy/serdes link
1981 * @adapter: address of board private structure
1982 */
1983static void igb_power_down_link(struct igb_adapter *adapter)
1984{
1985 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1986 igb_power_down_phy_copper_82575(&adapter->hw);
1987 else
1988 igb_shutdown_serdes_link_82575(&adapter->hw);
1989}
1990
1991/**
1992 * Detect and switch function for Media Auto Sense
1993 * @adapter: address of the board private structure
1994 **/
1995static void igb_check_swap_media(struct igb_adapter *adapter)
1996{
1997 struct e1000_hw *hw = &adapter->hw;
1998 u32 ctrl_ext, connsw;
1999 bool swap_now = false;
2000
2001 ctrl_ext = rd32(E1000_CTRL_EXT);
2002 connsw = rd32(E1000_CONNSW);
2003
2004 /* need to live swap if current media is copper and we have fiber/serdes
2005 * to go to.
2006 */
2007
2008 if ((hw->phy.media_type == e1000_media_type_copper) &&
2009 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2010 swap_now = true;
2011 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
2012 /* copper signal takes time to appear */
2013 if (adapter->copper_tries < 4) {
2014 adapter->copper_tries++;
2015 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2016 wr32(E1000_CONNSW, connsw);
2017 return;
2018 } else {
2019 adapter->copper_tries = 0;
2020 if ((connsw & E1000_CONNSW_PHYSD) &&
2021 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2022 swap_now = true;
2023 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2024 wr32(E1000_CONNSW, connsw);
2025 }
2026 }
2027 }
2028
2029 if (!swap_now)
2030 return;
2031
2032 switch (hw->phy.media_type) {
2033 case e1000_media_type_copper:
2034 netdev_info(adapter->netdev,
2035 "MAS: changing media to fiber/serdes\n");
2036 ctrl_ext |=
2037 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2038 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2039 adapter->copper_tries = 0;
2040 break;
2041 case e1000_media_type_internal_serdes:
2042 case e1000_media_type_fiber:
2043 netdev_info(adapter->netdev,
2044 "MAS: changing media to copper\n");
2045 ctrl_ext &=
2046 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2047 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2048 break;
2049 default:
2050 /* shouldn't get here during regular operation */
2051 netdev_err(adapter->netdev,
2052 "AMS: Invalid media type found, returning\n");
2053 break;
2054 }
2055 wr32(E1000_CTRL_EXT, ctrl_ext);
2056}
2057
2058/**
2059 * igb_up - Open the interface and prepare it to handle traffic
2060 * @adapter: board private structure
2061 **/
2062int igb_up(struct igb_adapter *adapter)
2063{
2064 struct e1000_hw *hw = &adapter->hw;
2065 int i;
2066
2067 /* hardware has been reset, we need to reload some things */
2068 igb_configure(adapter);
2069
2070 clear_bit(__IGB_DOWN, &adapter->state);
2071
2072 for (i = 0; i < adapter->num_q_vectors; i++)
2073 napi_enable(&(adapter->q_vector[i]->napi));
2074
2075 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2076 igb_configure_msix(adapter);
2077 else
2078 igb_assign_vector(adapter->q_vector[0], 0);
2079
2080 /* Clear any pending interrupts. */
2081 rd32(E1000_ICR);
2082 igb_irq_enable(adapter);
2083
2084 /* notify VFs that reset has been completed */
2085 if (adapter->vfs_allocated_count) {
2086 u32 reg_data = rd32(E1000_CTRL_EXT);
2087
2088 reg_data |= E1000_CTRL_EXT_PFRSTD;
2089 wr32(E1000_CTRL_EXT, reg_data);
2090 }
2091
2092 netif_tx_start_all_queues(adapter->netdev);
2093
2094 /* start the watchdog. */
2095 hw->mac.get_link_status = 1;
2096 schedule_work(&adapter->watchdog_task);
2097
2098 if ((adapter->flags & IGB_FLAG_EEE) &&
2099 (!hw->dev_spec._82575.eee_disable))
2100 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2101
2102 return 0;
2103}
2104
2105void igb_down(struct igb_adapter *adapter)
2106{
2107 struct net_device *netdev = adapter->netdev;
2108 struct e1000_hw *hw = &adapter->hw;
2109 u32 tctl, rctl;
2110 int i;
2111
2112 /* signal that we're down so the interrupt handler does not
2113 * reschedule our watchdog timer
2114 */
2115 set_bit(__IGB_DOWN, &adapter->state);
2116
2117 /* disable receives in the hardware */
2118 rctl = rd32(E1000_RCTL);
2119 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2120 /* flush and sleep below */
2121
2122 igb_nfc_filter_exit(adapter);
2123
2124 netif_carrier_off(netdev);
2125 netif_tx_stop_all_queues(netdev);
2126
2127 /* disable transmits in the hardware */
2128 tctl = rd32(E1000_TCTL);
2129 tctl &= ~E1000_TCTL_EN;
2130 wr32(E1000_TCTL, tctl);
2131 /* flush both disables and wait for them to finish */
2132 wrfl();
2133 usleep_range(10000, 11000);
2134
2135 igb_irq_disable(adapter);
2136
2137 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2138
2139 for (i = 0; i < adapter->num_q_vectors; i++) {
2140 if (adapter->q_vector[i]) {
2141 napi_synchronize(&adapter->q_vector[i]->napi);
2142 napi_disable(&adapter->q_vector[i]->napi);
2143 }
2144 }
2145
2146 del_timer_sync(&adapter->watchdog_timer);
2147 del_timer_sync(&adapter->phy_info_timer);
2148
2149 /* record the stats before reset*/
2150 spin_lock(&adapter->stats64_lock);
2151 igb_update_stats(adapter);
2152 spin_unlock(&adapter->stats64_lock);
2153
2154 adapter->link_speed = 0;
2155 adapter->link_duplex = 0;
2156
2157 if (!pci_channel_offline(adapter->pdev))
2158 igb_reset(adapter);
2159
2160 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2161 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2162
2163 igb_clean_all_tx_rings(adapter);
2164 igb_clean_all_rx_rings(adapter);
2165#ifdef CONFIG_IGB_DCA
2166
2167 /* since we reset the hardware DCA settings were cleared */
2168 igb_setup_dca(adapter);
2169#endif
2170}
2171
2172void igb_reinit_locked(struct igb_adapter *adapter)
2173{
2174 WARN_ON(in_interrupt());
2175 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2176 usleep_range(1000, 2000);
2177 igb_down(adapter);
2178 igb_up(adapter);
2179 clear_bit(__IGB_RESETTING, &adapter->state);
2180}
2181
2182/** igb_enable_mas - Media Autosense re-enable after swap
2183 *
2184 * @adapter: adapter struct
2185 **/
2186static void igb_enable_mas(struct igb_adapter *adapter)
2187{
2188 struct e1000_hw *hw = &adapter->hw;
2189 u32 connsw = rd32(E1000_CONNSW);
2190
2191 /* configure for SerDes media detect */
2192 if ((hw->phy.media_type == e1000_media_type_copper) &&
2193 (!(connsw & E1000_CONNSW_SERDESD))) {
2194 connsw |= E1000_CONNSW_ENRGSRC;
2195 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2196 wr32(E1000_CONNSW, connsw);
2197 wrfl();
2198 }
2199}
2200
2201void igb_reset(struct igb_adapter *adapter)
2202{
2203 struct pci_dev *pdev = adapter->pdev;
2204 struct e1000_hw *hw = &adapter->hw;
2205 struct e1000_mac_info *mac = &hw->mac;
2206 struct e1000_fc_info *fc = &hw->fc;
2207 u32 pba, hwm;
2208
2209 /* Repartition Pba for greater than 9k mtu
2210 * To take effect CTRL.RST is required.
2211 */
2212 switch (mac->type) {
2213 case e1000_i350:
2214 case e1000_i354:
2215 case e1000_82580:
2216 pba = rd32(E1000_RXPBS);
2217 pba = igb_rxpbs_adjust_82580(pba);
2218 break;
2219 case e1000_82576:
2220 pba = rd32(E1000_RXPBS);
2221 pba &= E1000_RXPBS_SIZE_MASK_82576;
2222 break;
2223 case e1000_82575:
2224 case e1000_i210:
2225 case e1000_i211:
2226 default:
2227 pba = E1000_PBA_34K;
2228 break;
2229 }
2230
2231 if (mac->type == e1000_82575) {
2232 u32 min_rx_space, min_tx_space, needed_tx_space;
2233
2234 /* write Rx PBA so that hardware can report correct Tx PBA */
2235 wr32(E1000_PBA, pba);
2236
2237 /* To maintain wire speed transmits, the Tx FIFO should be
2238 * large enough to accommodate two full transmit packets,
2239 * rounded up to the next 1KB and expressed in KB. Likewise,
2240 * the Rx FIFO should be large enough to accommodate at least
2241 * one full receive packet and is similarly rounded up and
2242 * expressed in KB.
2243 */
2244 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2245
2246 /* The Tx FIFO also stores 16 bytes of information about the Tx
2247 * but don't include Ethernet FCS because hardware appends it.
2248 * We only need to round down to the nearest 512 byte block
2249 * count since the value we care about is 2 frames, not 1.
2250 */
2251 min_tx_space = adapter->max_frame_size;
2252 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2253 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2254
2255 /* upper 16 bits has Tx packet buffer allocation size in KB */
2256 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2257
2258 /* If current Tx allocation is less than the min Tx FIFO size,
2259 * and the min Tx FIFO size is less than the current Rx FIFO
2260 * allocation, take space away from current Rx allocation.
2261 */
2262 if (needed_tx_space < pba) {
2263 pba -= needed_tx_space;
2264
2265 /* if short on Rx space, Rx wins and must trump Tx
2266 * adjustment
2267 */
2268 if (pba < min_rx_space)
2269 pba = min_rx_space;
2270 }
2271
2272 /* adjust PBA for jumbo frames */
2273 wr32(E1000_PBA, pba);
2274 }
2275
2276 /* flow control settings
2277 * The high water mark must be low enough to fit one full frame
2278 * after transmitting the pause frame. As such we must have enough
2279 * space to allow for us to complete our current transmit and then
2280 * receive the frame that is in progress from the link partner.
2281 * Set it to:
2282 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2283 */
2284 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2285
2286 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2287 fc->low_water = fc->high_water - 16;
2288 fc->pause_time = 0xFFFF;
2289 fc->send_xon = 1;
2290 fc->current_mode = fc->requested_mode;
2291
2292 /* disable receive for all VFs and wait one second */
2293 if (adapter->vfs_allocated_count) {
2294 int i;
2295
2296 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2297 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2298
2299 /* ping all the active vfs to let them know we are going down */
2300 igb_ping_all_vfs(adapter);
2301
2302 /* disable transmits and receives */
2303 wr32(E1000_VFRE, 0);
2304 wr32(E1000_VFTE, 0);
2305 }
2306
2307 /* Allow time for pending master requests to run */
2308 hw->mac.ops.reset_hw(hw);
2309 wr32(E1000_WUC, 0);
2310
2311 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2312 /* need to resetup here after media swap */
2313 adapter->ei.get_invariants(hw);
2314 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2315 }
2316 if ((mac->type == e1000_82575) &&
2317 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2318 igb_enable_mas(adapter);
2319 }
2320 if (hw->mac.ops.init_hw(hw))
2321 dev_err(&pdev->dev, "Hardware Error\n");
2322
2323 /* RAR registers were cleared during init_hw, clear mac table */
2324 igb_flush_mac_table(adapter);
2325 __dev_uc_unsync(adapter->netdev, NULL);
2326
2327 /* Recover default RAR entry */
2328 igb_set_default_mac_filter(adapter);
2329
2330 /* Flow control settings reset on hardware reset, so guarantee flow
2331 * control is off when forcing speed.
2332 */
2333 if (!hw->mac.autoneg)
2334 igb_force_mac_fc(hw);
2335
2336 igb_init_dmac(adapter, pba);
2337#ifdef CONFIG_IGB_HWMON
2338 /* Re-initialize the thermal sensor on i350 devices. */
2339 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2340 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2341 /* If present, re-initialize the external thermal sensor
2342 * interface.
2343 */
2344 if (adapter->ets)
2345 mac->ops.init_thermal_sensor_thresh(hw);
2346 }
2347 }
2348#endif
2349 /* Re-establish EEE setting */
2350 if (hw->phy.media_type == e1000_media_type_copper) {
2351 switch (mac->type) {
2352 case e1000_i350:
2353 case e1000_i210:
2354 case e1000_i211:
2355 igb_set_eee_i350(hw, true, true);
2356 break;
2357 case e1000_i354:
2358 igb_set_eee_i354(hw, true, true);
2359 break;
2360 default:
2361 break;
2362 }
2363 }
2364 if (!netif_running(adapter->netdev))
2365 igb_power_down_link(adapter);
2366
2367 igb_update_mng_vlan(adapter);
2368
2369 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2370 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2371
2372 /* Re-enable PTP, where applicable. */
2373 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2374 igb_ptp_reset(adapter);
2375
2376 igb_get_phy_info(hw);
2377}
2378
2379static netdev_features_t igb_fix_features(struct net_device *netdev,
2380 netdev_features_t features)
2381{
2382 /* Since there is no support for separate Rx/Tx vlan accel
2383 * enable/disable make sure Tx flag is always in same state as Rx.
2384 */
2385 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2386 features |= NETIF_F_HW_VLAN_CTAG_TX;
2387 else
2388 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2389
2390 return features;
2391}
2392
2393static int igb_set_features(struct net_device *netdev,
2394 netdev_features_t features)
2395{
2396 netdev_features_t changed = netdev->features ^ features;
2397 struct igb_adapter *adapter = netdev_priv(netdev);
2398
2399 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2400 igb_vlan_mode(netdev, features);
2401
2402 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2403 return 0;
2404
2405 if (!(features & NETIF_F_NTUPLE)) {
2406 struct hlist_node *node2;
2407 struct igb_nfc_filter *rule;
2408
2409 spin_lock(&adapter->nfc_lock);
2410 hlist_for_each_entry_safe(rule, node2,
2411 &adapter->nfc_filter_list, nfc_node) {
2412 igb_erase_filter(adapter, rule);
2413 hlist_del(&rule->nfc_node);
2414 kfree(rule);
2415 }
2416 spin_unlock(&adapter->nfc_lock);
2417 adapter->nfc_filter_count = 0;
2418 }
2419
2420 netdev->features = features;
2421
2422 if (netif_running(netdev))
2423 igb_reinit_locked(adapter);
2424 else
2425 igb_reset(adapter);
2426
2427 return 0;
2428}
2429
2430static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2431 struct net_device *dev,
2432 const unsigned char *addr, u16 vid,
2433 u16 flags)
2434{
2435 /* guarantee we can provide a unique filter for the unicast address */
2436 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2437 struct igb_adapter *adapter = netdev_priv(dev);
2438 int vfn = adapter->vfs_allocated_count;
2439
2440 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2441 return -ENOMEM;
2442 }
2443
2444 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2445}
2446
2447#define IGB_MAX_MAC_HDR_LEN 127
2448#define IGB_MAX_NETWORK_HDR_LEN 511
2449
2450static netdev_features_t
2451igb_features_check(struct sk_buff *skb, struct net_device *dev,
2452 netdev_features_t features)
2453{
2454 unsigned int network_hdr_len, mac_hdr_len;
2455
2456 /* Make certain the headers can be described by a context descriptor */
2457 mac_hdr_len = skb_network_header(skb) - skb->data;
2458 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2459 return features & ~(NETIF_F_HW_CSUM |
2460 NETIF_F_SCTP_CRC |
2461 NETIF_F_HW_VLAN_CTAG_TX |
2462 NETIF_F_TSO |
2463 NETIF_F_TSO6);
2464
2465 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2466 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2467 return features & ~(NETIF_F_HW_CSUM |
2468 NETIF_F_SCTP_CRC |
2469 NETIF_F_TSO |
2470 NETIF_F_TSO6);
2471
2472 /* We can only support IPV4 TSO in tunnels if we can mangle the
2473 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2474 */
2475 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2476 features &= ~NETIF_F_TSO;
2477
2478 return features;
2479}
2480
2481static int igb_offload_cbs(struct igb_adapter *adapter,
2482 struct tc_cbs_qopt_offload *qopt)
2483{
2484 struct e1000_hw *hw = &adapter->hw;
2485 int err;
2486
2487 /* CBS offloading is only supported by i210 controller. */
2488 if (hw->mac.type != e1000_i210)
2489 return -EOPNOTSUPP;
2490
2491 /* CBS offloading is only supported by queue 0 and queue 1. */
2492 if (qopt->queue < 0 || qopt->queue > 1)
2493 return -EINVAL;
2494
2495 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2496 qopt->idleslope, qopt->sendslope,
2497 qopt->hicredit, qopt->locredit);
2498 if (err)
2499 return err;
2500
2501 if (is_fqtss_enabled(adapter)) {
2502 igb_configure_cbs(adapter, qopt->queue, qopt->enable,
2503 qopt->idleslope, qopt->sendslope,
2504 qopt->hicredit, qopt->locredit);
2505
2506 if (!is_any_cbs_enabled(adapter))
2507 enable_fqtss(adapter, false);
2508
2509 } else {
2510 enable_fqtss(adapter, true);
2511 }
2512
2513 return 0;
2514}
2515
2516static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2517 void *type_data)
2518{
2519 struct igb_adapter *adapter = netdev_priv(dev);
2520
2521 switch (type) {
2522 case TC_SETUP_QDISC_CBS:
2523 return igb_offload_cbs(adapter, type_data);
2524
2525 default:
2526 return -EOPNOTSUPP;
2527 }
2528}
2529
2530static const struct net_device_ops igb_netdev_ops = {
2531 .ndo_open = igb_open,
2532 .ndo_stop = igb_close,
2533 .ndo_start_xmit = igb_xmit_frame,
2534 .ndo_get_stats64 = igb_get_stats64,
2535 .ndo_set_rx_mode = igb_set_rx_mode,
2536 .ndo_set_mac_address = igb_set_mac,
2537 .ndo_change_mtu = igb_change_mtu,
2538 .ndo_do_ioctl = igb_ioctl,
2539 .ndo_tx_timeout = igb_tx_timeout,
2540 .ndo_validate_addr = eth_validate_addr,
2541 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2542 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2543 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2544 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2545 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2546 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2547 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
2548 .ndo_get_vf_config = igb_ndo_get_vf_config,
2549#ifdef CONFIG_NET_POLL_CONTROLLER
2550 .ndo_poll_controller = igb_netpoll,
2551#endif
2552 .ndo_fix_features = igb_fix_features,
2553 .ndo_set_features = igb_set_features,
2554 .ndo_fdb_add = igb_ndo_fdb_add,
2555 .ndo_features_check = igb_features_check,
2556 .ndo_setup_tc = igb_setup_tc,
2557};
2558
2559/**
2560 * igb_set_fw_version - Configure version string for ethtool
2561 * @adapter: adapter struct
2562 **/
2563void igb_set_fw_version(struct igb_adapter *adapter)
2564{
2565 struct e1000_hw *hw = &adapter->hw;
2566 struct e1000_fw_version fw;
2567
2568 igb_get_fw_version(hw, &fw);
2569
2570 switch (hw->mac.type) {
2571 case e1000_i210:
2572 case e1000_i211:
2573 if (!(igb_get_flash_presence_i210(hw))) {
2574 snprintf(adapter->fw_version,
2575 sizeof(adapter->fw_version),
2576 "%2d.%2d-%d",
2577 fw.invm_major, fw.invm_minor,
2578 fw.invm_img_type);
2579 break;
2580 }
2581 /* fall through */
2582 default:
2583 /* if option is rom valid, display its version too */
2584 if (fw.or_valid) {
2585 snprintf(adapter->fw_version,
2586 sizeof(adapter->fw_version),
2587 "%d.%d, 0x%08x, %d.%d.%d",
2588 fw.eep_major, fw.eep_minor, fw.etrack_id,
2589 fw.or_major, fw.or_build, fw.or_patch);
2590 /* no option rom */
2591 } else if (fw.etrack_id != 0X0000) {
2592 snprintf(adapter->fw_version,
2593 sizeof(adapter->fw_version),
2594 "%d.%d, 0x%08x",
2595 fw.eep_major, fw.eep_minor, fw.etrack_id);
2596 } else {
2597 snprintf(adapter->fw_version,
2598 sizeof(adapter->fw_version),
2599 "%d.%d.%d",
2600 fw.eep_major, fw.eep_minor, fw.eep_build);
2601 }
2602 break;
2603 }
2604}
2605
2606/**
2607 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2608 *
2609 * @adapter: adapter struct
2610 **/
2611static void igb_init_mas(struct igb_adapter *adapter)
2612{
2613 struct e1000_hw *hw = &adapter->hw;
2614 u16 eeprom_data;
2615
2616 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2617 switch (hw->bus.func) {
2618 case E1000_FUNC_0:
2619 if (eeprom_data & IGB_MAS_ENABLE_0) {
2620 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2621 netdev_info(adapter->netdev,
2622 "MAS: Enabling Media Autosense for port %d\n",
2623 hw->bus.func);
2624 }
2625 break;
2626 case E1000_FUNC_1:
2627 if (eeprom_data & IGB_MAS_ENABLE_1) {
2628 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2629 netdev_info(adapter->netdev,
2630 "MAS: Enabling Media Autosense for port %d\n",
2631 hw->bus.func);
2632 }
2633 break;
2634 case E1000_FUNC_2:
2635 if (eeprom_data & IGB_MAS_ENABLE_2) {
2636 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2637 netdev_info(adapter->netdev,
2638 "MAS: Enabling Media Autosense for port %d\n",
2639 hw->bus.func);
2640 }
2641 break;
2642 case E1000_FUNC_3:
2643 if (eeprom_data & IGB_MAS_ENABLE_3) {
2644 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2645 netdev_info(adapter->netdev,
2646 "MAS: Enabling Media Autosense for port %d\n",
2647 hw->bus.func);
2648 }
2649 break;
2650 default:
2651 /* Shouldn't get here */
2652 netdev_err(adapter->netdev,
2653 "MAS: Invalid port configuration, returning\n");
2654 break;
2655 }
2656}
2657
2658/**
2659 * igb_init_i2c - Init I2C interface
2660 * @adapter: pointer to adapter structure
2661 **/
2662static s32 igb_init_i2c(struct igb_adapter *adapter)
2663{
2664 s32 status = 0;
2665
2666 /* I2C interface supported on i350 devices */
2667 if (adapter->hw.mac.type != e1000_i350)
2668 return 0;
2669
2670 /* Initialize the i2c bus which is controlled by the registers.
2671 * This bus will use the i2c_algo_bit structue that implements
2672 * the protocol through toggling of the 4 bits in the register.
2673 */
2674 adapter->i2c_adap.owner = THIS_MODULE;
2675 adapter->i2c_algo = igb_i2c_algo;
2676 adapter->i2c_algo.data = adapter;
2677 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2678 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2679 strlcpy(adapter->i2c_adap.name, "igb BB",
2680 sizeof(adapter->i2c_adap.name));
2681 status = i2c_bit_add_bus(&adapter->i2c_adap);
2682 return status;
2683}
2684
2685/**
2686 * igb_probe - Device Initialization Routine
2687 * @pdev: PCI device information struct
2688 * @ent: entry in igb_pci_tbl
2689 *
2690 * Returns 0 on success, negative on failure
2691 *
2692 * igb_probe initializes an adapter identified by a pci_dev structure.
2693 * The OS initialization, configuring of the adapter private structure,
2694 * and a hardware reset occur.
2695 **/
2696static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2697{
2698 struct net_device *netdev;
2699 struct igb_adapter *adapter;
2700 struct e1000_hw *hw;
2701 u16 eeprom_data = 0;
2702 s32 ret_val;
2703 static int global_quad_port_a; /* global quad port a indication */
2704 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2705 int err, pci_using_dac;
2706 u8 part_str[E1000_PBANUM_LENGTH];
2707
2708 /* Catch broken hardware that put the wrong VF device ID in
2709 * the PCIe SR-IOV capability.
2710 */
2711 if (pdev->is_virtfn) {
2712 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2713 pci_name(pdev), pdev->vendor, pdev->device);
2714 return -EINVAL;
2715 }
2716
2717 err = pci_enable_device_mem(pdev);
2718 if (err)
2719 return err;
2720
2721 pci_using_dac = 0;
2722 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2723 if (!err) {
2724 pci_using_dac = 1;
2725 } else {
2726 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2727 if (err) {
2728 dev_err(&pdev->dev,
2729 "No usable DMA configuration, aborting\n");
2730 goto err_dma;
2731 }
2732 }
2733
2734 err = pci_request_mem_regions(pdev, igb_driver_name);
2735 if (err)
2736 goto err_pci_reg;
2737
2738 pci_enable_pcie_error_reporting(pdev);
2739
2740 pci_set_master(pdev);
2741 pci_save_state(pdev);
2742
2743 err = -ENOMEM;
2744 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2745 IGB_MAX_TX_QUEUES);
2746 if (!netdev)
2747 goto err_alloc_etherdev;
2748
2749 SET_NETDEV_DEV(netdev, &pdev->dev);
2750
2751 pci_set_drvdata(pdev, netdev);
2752 adapter = netdev_priv(netdev);
2753 adapter->netdev = netdev;
2754 adapter->pdev = pdev;
2755 hw = &adapter->hw;
2756 hw->back = adapter;
2757 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2758
2759 err = -EIO;
2760 adapter->io_addr = pci_iomap(pdev, 0, 0);
2761 if (!adapter->io_addr)
2762 goto err_ioremap;
2763 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2764 hw->hw_addr = adapter->io_addr;
2765
2766 netdev->netdev_ops = &igb_netdev_ops;
2767 igb_set_ethtool_ops(netdev);
2768 netdev->watchdog_timeo = 5 * HZ;
2769
2770 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2771
2772 netdev->mem_start = pci_resource_start(pdev, 0);
2773 netdev->mem_end = pci_resource_end(pdev, 0);
2774
2775 /* PCI config space info */
2776 hw->vendor_id = pdev->vendor;
2777 hw->device_id = pdev->device;
2778 hw->revision_id = pdev->revision;
2779 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2780 hw->subsystem_device_id = pdev->subsystem_device;
2781
2782 /* Copy the default MAC, PHY and NVM function pointers */
2783 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2784 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2785 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2786 /* Initialize skew-specific constants */
2787 err = ei->get_invariants(hw);
2788 if (err)
2789 goto err_sw_init;
2790
2791 /* setup the private structure */
2792 err = igb_sw_init(adapter);
2793 if (err)
2794 goto err_sw_init;
2795
2796 igb_get_bus_info_pcie(hw);
2797
2798 hw->phy.autoneg_wait_to_complete = false;
2799
2800 /* Copper options */
2801 if (hw->phy.media_type == e1000_media_type_copper) {
2802 hw->phy.mdix = AUTO_ALL_MODES;
2803 hw->phy.disable_polarity_correction = false;
2804 hw->phy.ms_type = e1000_ms_hw_default;
2805 }
2806
2807 if (igb_check_reset_block(hw))
2808 dev_info(&pdev->dev,
2809 "PHY reset is blocked due to SOL/IDER session.\n");
2810
2811 /* features is initialized to 0 in allocation, it might have bits
2812 * set by igb_sw_init so we should use an or instead of an
2813 * assignment.
2814 */
2815 netdev->features |= NETIF_F_SG |
2816 NETIF_F_TSO |
2817 NETIF_F_TSO6 |
2818 NETIF_F_RXHASH |
2819 NETIF_F_RXCSUM |
2820 NETIF_F_HW_CSUM;
2821
2822 if (hw->mac.type >= e1000_82576)
2823 netdev->features |= NETIF_F_SCTP_CRC;
2824
2825#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2826 NETIF_F_GSO_GRE_CSUM | \
2827 NETIF_F_GSO_IPXIP4 | \
2828 NETIF_F_GSO_IPXIP6 | \
2829 NETIF_F_GSO_UDP_TUNNEL | \
2830 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2831
2832 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2833 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2834
2835 /* copy netdev features into list of user selectable features */
2836 netdev->hw_features |= netdev->features |
2837 NETIF_F_HW_VLAN_CTAG_RX |
2838 NETIF_F_HW_VLAN_CTAG_TX |
2839 NETIF_F_RXALL;
2840
2841 if (hw->mac.type >= e1000_i350)
2842 netdev->hw_features |= NETIF_F_NTUPLE;
2843
2844 if (pci_using_dac)
2845 netdev->features |= NETIF_F_HIGHDMA;
2846
2847 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2848 netdev->mpls_features |= NETIF_F_HW_CSUM;
2849 netdev->hw_enc_features |= netdev->vlan_features;
2850
2851 /* set this bit last since it cannot be part of vlan_features */
2852 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2853 NETIF_F_HW_VLAN_CTAG_RX |
2854 NETIF_F_HW_VLAN_CTAG_TX;
2855
2856 netdev->priv_flags |= IFF_SUPP_NOFCS;
2857
2858 netdev->priv_flags |= IFF_UNICAST_FLT;
2859
2860 /* MTU range: 68 - 9216 */
2861 netdev->min_mtu = ETH_MIN_MTU;
2862 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2863
2864 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2865
2866 /* before reading the NVM, reset the controller to put the device in a
2867 * known good starting state
2868 */
2869 hw->mac.ops.reset_hw(hw);
2870
2871 /* make sure the NVM is good , i211/i210 parts can have special NVM
2872 * that doesn't contain a checksum
2873 */
2874 switch (hw->mac.type) {
2875 case e1000_i210:
2876 case e1000_i211:
2877 if (igb_get_flash_presence_i210(hw)) {
2878 if (hw->nvm.ops.validate(hw) < 0) {
2879 dev_err(&pdev->dev,
2880 "The NVM Checksum Is Not Valid\n");
2881 err = -EIO;
2882 goto err_eeprom;
2883 }
2884 }
2885 break;
2886 default:
2887 if (hw->nvm.ops.validate(hw) < 0) {
2888 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2889 err = -EIO;
2890 goto err_eeprom;
2891 }
2892 break;
2893 }
2894
2895 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2896 /* copy the MAC address out of the NVM */
2897 if (hw->mac.ops.read_mac_addr(hw))
2898 dev_err(&pdev->dev, "NVM Read Error\n");
2899 }
2900
2901 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2902
2903 if (!is_valid_ether_addr(netdev->dev_addr)) {
2904 dev_err(&pdev->dev, "Invalid MAC Address\n");
2905 err = -EIO;
2906 goto err_eeprom;
2907 }
2908
2909 igb_set_default_mac_filter(adapter);
2910
2911 /* get firmware version for ethtool -i */
2912 igb_set_fw_version(adapter);
2913
2914 /* configure RXPBSIZE and TXPBSIZE */
2915 if (hw->mac.type == e1000_i210) {
2916 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2917 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2918 }
2919
2920 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
2921 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
2922
2923 INIT_WORK(&adapter->reset_task, igb_reset_task);
2924 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2925
2926 /* Initialize link properties that are user-changeable */
2927 adapter->fc_autoneg = true;
2928 hw->mac.autoneg = true;
2929 hw->phy.autoneg_advertised = 0x2f;
2930
2931 hw->fc.requested_mode = e1000_fc_default;
2932 hw->fc.current_mode = e1000_fc_default;
2933
2934 igb_validate_mdi_setting(hw);
2935
2936 /* By default, support wake on port A */
2937 if (hw->bus.func == 0)
2938 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2939
2940 /* Check the NVM for wake support on non-port A ports */
2941 if (hw->mac.type >= e1000_82580)
2942 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2943 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2944 &eeprom_data);
2945 else if (hw->bus.func == 1)
2946 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2947
2948 if (eeprom_data & IGB_EEPROM_APME)
2949 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2950
2951 /* now that we have the eeprom settings, apply the special cases where
2952 * the eeprom may be wrong or the board simply won't support wake on
2953 * lan on a particular port
2954 */
2955 switch (pdev->device) {
2956 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2957 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2958 break;
2959 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2960 case E1000_DEV_ID_82576_FIBER:
2961 case E1000_DEV_ID_82576_SERDES:
2962 /* Wake events only supported on port A for dual fiber
2963 * regardless of eeprom setting
2964 */
2965 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2966 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2967 break;
2968 case E1000_DEV_ID_82576_QUAD_COPPER:
2969 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2970 /* if quad port adapter, disable WoL on all but port A */
2971 if (global_quad_port_a != 0)
2972 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2973 else
2974 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2975 /* Reset for multiple quad port adapters */
2976 if (++global_quad_port_a == 4)
2977 global_quad_port_a = 0;
2978 break;
2979 default:
2980 /* If the device can't wake, don't set software support */
2981 if (!device_can_wakeup(&adapter->pdev->dev))
2982 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2983 }
2984
2985 /* initialize the wol settings based on the eeprom settings */
2986 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2987 adapter->wol |= E1000_WUFC_MAG;
2988
2989 /* Some vendors want WoL disabled by default, but still supported */
2990 if ((hw->mac.type == e1000_i350) &&
2991 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2992 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2993 adapter->wol = 0;
2994 }
2995
2996 /* Some vendors want the ability to Use the EEPROM setting as
2997 * enable/disable only, and not for capability
2998 */
2999 if (((hw->mac.type == e1000_i350) ||
3000 (hw->mac.type == e1000_i354)) &&
3001 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3002 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3003 adapter->wol = 0;
3004 }
3005 if (hw->mac.type == e1000_i350) {
3006 if (((pdev->subsystem_device == 0x5001) ||
3007 (pdev->subsystem_device == 0x5002)) &&
3008 (hw->bus.func == 0)) {
3009 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3010 adapter->wol = 0;
3011 }
3012 if (pdev->subsystem_device == 0x1F52)
3013 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3014 }
3015
3016 device_set_wakeup_enable(&adapter->pdev->dev,
3017 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3018
3019 /* reset the hardware with the new settings */
3020 igb_reset(adapter);
3021
3022 /* Init the I2C interface */
3023 err = igb_init_i2c(adapter);
3024 if (err) {
3025 dev_err(&pdev->dev, "failed to init i2c interface\n");
3026 goto err_eeprom;
3027 }
3028
3029 /* let the f/w know that the h/w is now under the control of the
3030 * driver.
3031 */
3032 igb_get_hw_control(adapter);
3033
3034 strcpy(netdev->name, "eth%d");
3035 err = register_netdev(netdev);
3036 if (err)
3037 goto err_register;
3038
3039 /* carrier off reporting is important to ethtool even BEFORE open */
3040 netif_carrier_off(netdev);
3041
3042#ifdef CONFIG_IGB_DCA
3043 if (dca_add_requester(&pdev->dev) == 0) {
3044 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3045 dev_info(&pdev->dev, "DCA enabled\n");
3046 igb_setup_dca(adapter);
3047 }
3048
3049#endif
3050#ifdef CONFIG_IGB_HWMON
3051 /* Initialize the thermal sensor on i350 devices. */
3052 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3053 u16 ets_word;
3054
3055 /* Read the NVM to determine if this i350 device supports an
3056 * external thermal sensor.
3057 */
3058 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3059 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3060 adapter->ets = true;
3061 else
3062 adapter->ets = false;
3063 if (igb_sysfs_init(adapter))
3064 dev_err(&pdev->dev,
3065 "failed to allocate sysfs resources\n");
3066 } else {
3067 adapter->ets = false;
3068 }
3069#endif
3070 /* Check if Media Autosense is enabled */
3071 adapter->ei = *ei;
3072 if (hw->dev_spec._82575.mas_capable)
3073 igb_init_mas(adapter);
3074
3075 /* do hw tstamp init after resetting */
3076 igb_ptp_init(adapter);
3077
3078 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3079 /* print bus type/speed/width info, not applicable to i354 */
3080 if (hw->mac.type != e1000_i354) {
3081 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3082 netdev->name,
3083 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3084 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3085 "unknown"),
3086 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3087 "Width x4" :
3088 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3089 "Width x2" :
3090 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3091 "Width x1" : "unknown"), netdev->dev_addr);
3092 }
3093
3094 if ((hw->mac.type >= e1000_i210 ||
3095 igb_get_flash_presence_i210(hw))) {
3096 ret_val = igb_read_part_string(hw, part_str,
3097 E1000_PBANUM_LENGTH);
3098 } else {
3099 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3100 }
3101
3102 if (ret_val)
3103 strcpy(part_str, "Unknown");
3104 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3105 dev_info(&pdev->dev,
3106 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3107 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3108 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3109 adapter->num_rx_queues, adapter->num_tx_queues);
3110 if (hw->phy.media_type == e1000_media_type_copper) {
3111 switch (hw->mac.type) {
3112 case e1000_i350:
3113 case e1000_i210:
3114 case e1000_i211:
3115 /* Enable EEE for internal copper PHY devices */
3116 err = igb_set_eee_i350(hw, true, true);
3117 if ((!err) &&
3118 (!hw->dev_spec._82575.eee_disable)) {
3119 adapter->eee_advert =
3120 MDIO_EEE_100TX | MDIO_EEE_1000T;
3121 adapter->flags |= IGB_FLAG_EEE;
3122 }
3123 break;
3124 case e1000_i354:
3125 if ((rd32(E1000_CTRL_EXT) &
3126 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3127 err = igb_set_eee_i354(hw, true, true);
3128 if ((!err) &&
3129 (!hw->dev_spec._82575.eee_disable)) {
3130 adapter->eee_advert =
3131 MDIO_EEE_100TX | MDIO_EEE_1000T;
3132 adapter->flags |= IGB_FLAG_EEE;
3133 }
3134 }
3135 break;
3136 default:
3137 break;
3138 }
3139 }
3140 pm_runtime_put_noidle(&pdev->dev);
3141 return 0;
3142
3143err_register:
3144 igb_release_hw_control(adapter);
3145 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3146err_eeprom:
3147 if (!igb_check_reset_block(hw))
3148 igb_reset_phy(hw);
3149
3150 if (hw->flash_address)
3151 iounmap(hw->flash_address);
3152err_sw_init:
3153 kfree(adapter->mac_table);
3154 kfree(adapter->shadow_vfta);
3155 igb_clear_interrupt_scheme(adapter);
3156#ifdef CONFIG_PCI_IOV
3157 igb_disable_sriov(pdev);
3158#endif
3159 pci_iounmap(pdev, adapter->io_addr);
3160err_ioremap:
3161 free_netdev(netdev);
3162err_alloc_etherdev:
3163 pci_release_mem_regions(pdev);
3164err_pci_reg:
3165err_dma:
3166 pci_disable_device(pdev);
3167 return err;
3168}
3169
3170#ifdef CONFIG_PCI_IOV
3171static int igb_disable_sriov(struct pci_dev *pdev)
3172{
3173 struct net_device *netdev = pci_get_drvdata(pdev);
3174 struct igb_adapter *adapter = netdev_priv(netdev);
3175 struct e1000_hw *hw = &adapter->hw;
3176
3177 /* reclaim resources allocated to VFs */
3178 if (adapter->vf_data) {
3179 /* disable iov and allow time for transactions to clear */
3180 if (pci_vfs_assigned(pdev)) {
3181 dev_warn(&pdev->dev,
3182 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3183 return -EPERM;
3184 } else {
3185 pci_disable_sriov(pdev);
3186 msleep(500);
3187 }
3188
3189 kfree(adapter->vf_mac_list);
3190 adapter->vf_mac_list = NULL;
3191 kfree(adapter->vf_data);
3192 adapter->vf_data = NULL;
3193 adapter->vfs_allocated_count = 0;
3194 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3195 wrfl();
3196 msleep(100);
3197 dev_info(&pdev->dev, "IOV Disabled\n");
3198
3199 /* Re-enable DMA Coalescing flag since IOV is turned off */
3200 adapter->flags |= IGB_FLAG_DMAC;
3201 }
3202
3203 return 0;
3204}
3205
3206static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3207{
3208 struct net_device *netdev = pci_get_drvdata(pdev);
3209 struct igb_adapter *adapter = netdev_priv(netdev);
3210 int old_vfs = pci_num_vf(pdev);
3211 struct vf_mac_filter *mac_list;
3212 int err = 0;
3213 int num_vf_mac_filters, i;
3214
3215 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3216 err = -EPERM;
3217 goto out;
3218 }
3219 if (!num_vfs)
3220 goto out;
3221
3222 if (old_vfs) {
3223 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3224 old_vfs, max_vfs);
3225 adapter->vfs_allocated_count = old_vfs;
3226 } else
3227 adapter->vfs_allocated_count = num_vfs;
3228
3229 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3230 sizeof(struct vf_data_storage), GFP_KERNEL);
3231
3232 /* if allocation failed then we do not support SR-IOV */
3233 if (!adapter->vf_data) {
3234 adapter->vfs_allocated_count = 0;
3235 err = -ENOMEM;
3236 goto out;
3237 }
3238
3239 /* Due to the limited number of RAR entries calculate potential
3240 * number of MAC filters available for the VFs. Reserve entries
3241 * for PF default MAC, PF MAC filters and at least one RAR entry
3242 * for each VF for VF MAC.
3243 */
3244 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3245 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3246 adapter->vfs_allocated_count);
3247
3248 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3249 sizeof(struct vf_mac_filter),
3250 GFP_KERNEL);
3251
3252 mac_list = adapter->vf_mac_list;
3253 INIT_LIST_HEAD(&adapter->vf_macs.l);
3254
3255 if (adapter->vf_mac_list) {
3256 /* Initialize list of VF MAC filters */
3257 for (i = 0; i < num_vf_mac_filters; i++) {
3258 mac_list->vf = -1;
3259 mac_list->free = true;
3260 list_add(&mac_list->l, &adapter->vf_macs.l);
3261 mac_list++;
3262 }
3263 } else {
3264 /* If we could not allocate memory for the VF MAC filters
3265 * we can continue without this feature but warn user.
3266 */
3267 dev_err(&pdev->dev,
3268 "Unable to allocate memory for VF MAC filter list\n");
3269 }
3270
3271 /* only call pci_enable_sriov() if no VFs are allocated already */
3272 if (!old_vfs) {
3273 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3274 if (err)
3275 goto err_out;
3276 }
3277 dev_info(&pdev->dev, "%d VFs allocated\n",
3278 adapter->vfs_allocated_count);
3279 for (i = 0; i < adapter->vfs_allocated_count; i++)
3280 igb_vf_configure(adapter, i);
3281
3282 /* DMA Coalescing is not supported in IOV mode. */
3283 adapter->flags &= ~IGB_FLAG_DMAC;
3284 goto out;
3285
3286err_out:
3287 kfree(adapter->vf_mac_list);
3288 adapter->vf_mac_list = NULL;
3289 kfree(adapter->vf_data);
3290 adapter->vf_data = NULL;
3291 adapter->vfs_allocated_count = 0;
3292out:
3293 return err;
3294}
3295
3296#endif
3297/**
3298 * igb_remove_i2c - Cleanup I2C interface
3299 * @adapter: pointer to adapter structure
3300 **/
3301static void igb_remove_i2c(struct igb_adapter *adapter)
3302{
3303 /* free the adapter bus structure */
3304 i2c_del_adapter(&adapter->i2c_adap);
3305}
3306
3307/**
3308 * igb_remove - Device Removal Routine
3309 * @pdev: PCI device information struct
3310 *
3311 * igb_remove is called by the PCI subsystem to alert the driver
3312 * that it should release a PCI device. The could be caused by a
3313 * Hot-Plug event, or because the driver is going to be removed from
3314 * memory.
3315 **/
3316static void igb_remove(struct pci_dev *pdev)
3317{
3318 struct net_device *netdev = pci_get_drvdata(pdev);
3319 struct igb_adapter *adapter = netdev_priv(netdev);
3320 struct e1000_hw *hw = &adapter->hw;
3321
3322 pm_runtime_get_noresume(&pdev->dev);
3323#ifdef CONFIG_IGB_HWMON
3324 igb_sysfs_exit(adapter);
3325#endif
3326 igb_remove_i2c(adapter);
3327 igb_ptp_stop(adapter);
3328 /* The watchdog timer may be rescheduled, so explicitly
3329 * disable watchdog from being rescheduled.
3330 */
3331 set_bit(__IGB_DOWN, &adapter->state);
3332 del_timer_sync(&adapter->watchdog_timer);
3333 del_timer_sync(&adapter->phy_info_timer);
3334
3335 cancel_work_sync(&adapter->reset_task);
3336 cancel_work_sync(&adapter->watchdog_task);
3337
3338#ifdef CONFIG_IGB_DCA
3339 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3340 dev_info(&pdev->dev, "DCA disabled\n");
3341 dca_remove_requester(&pdev->dev);
3342 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3343 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3344 }
3345#endif
3346
3347 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3348 * would have already happened in close and is redundant.
3349 */
3350 igb_release_hw_control(adapter);
3351
3352#ifdef CONFIG_PCI_IOV
3353 igb_disable_sriov(pdev);
3354#endif
3355
3356 unregister_netdev(netdev);
3357
3358 igb_clear_interrupt_scheme(adapter);
3359
3360 pci_iounmap(pdev, adapter->io_addr);
3361 if (hw->flash_address)
3362 iounmap(hw->flash_address);
3363 pci_release_mem_regions(pdev);
3364
3365 kfree(adapter->mac_table);
3366 kfree(adapter->shadow_vfta);
3367 free_netdev(netdev);
3368
3369 pci_disable_pcie_error_reporting(pdev);
3370
3371 pci_disable_device(pdev);
3372}
3373
3374/**
3375 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3376 * @adapter: board private structure to initialize
3377 *
3378 * This function initializes the vf specific data storage and then attempts to
3379 * allocate the VFs. The reason for ordering it this way is because it is much
3380 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3381 * the memory for the VFs.
3382 **/
3383static void igb_probe_vfs(struct igb_adapter *adapter)
3384{
3385#ifdef CONFIG_PCI_IOV
3386 struct pci_dev *pdev = adapter->pdev;
3387 struct e1000_hw *hw = &adapter->hw;
3388
3389 /* Virtualization features not supported on i210 family. */
3390 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3391 return;
3392
3393 /* Of the below we really only want the effect of getting
3394 * IGB_FLAG_HAS_MSIX set (if available), without which
3395 * igb_enable_sriov() has no effect.
3396 */
3397 igb_set_interrupt_capability(adapter, true);
3398 igb_reset_interrupt_capability(adapter);
3399
3400 pci_sriov_set_totalvfs(pdev, 7);
3401 igb_enable_sriov(pdev, max_vfs);
3402
3403#endif /* CONFIG_PCI_IOV */
3404}
3405
3406unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3407{
3408 struct e1000_hw *hw = &adapter->hw;
3409 unsigned int max_rss_queues;
3410
3411 /* Determine the maximum number of RSS queues supported. */
3412 switch (hw->mac.type) {
3413 case e1000_i211:
3414 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3415 break;
3416 case e1000_82575:
3417 case e1000_i210:
3418 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3419 break;
3420 case e1000_i350:
3421 /* I350 cannot do RSS and SR-IOV at the same time */
3422 if (!!adapter->vfs_allocated_count) {
3423 max_rss_queues = 1;
3424 break;
3425 }
3426 /* fall through */
3427 case e1000_82576:
3428 if (!!adapter->vfs_allocated_count) {
3429 max_rss_queues = 2;
3430 break;
3431 }
3432 /* fall through */
3433 case e1000_82580:
3434 case e1000_i354:
3435 default:
3436 max_rss_queues = IGB_MAX_RX_QUEUES;
3437 break;
3438 }
3439
3440 return max_rss_queues;
3441}
3442
3443static void igb_init_queue_configuration(struct igb_adapter *adapter)
3444{
3445 u32 max_rss_queues;
3446
3447 max_rss_queues = igb_get_max_rss_queues(adapter);
3448 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3449
3450 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3451}
3452
3453void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3454 const u32 max_rss_queues)
3455{
3456 struct e1000_hw *hw = &adapter->hw;
3457
3458 /* Determine if we need to pair queues. */
3459 switch (hw->mac.type) {
3460 case e1000_82575:
3461 case e1000_i211:
3462 /* Device supports enough interrupts without queue pairing. */
3463 break;
3464 case e1000_82576:
3465 case e1000_82580:
3466 case e1000_i350:
3467 case e1000_i354:
3468 case e1000_i210:
3469 default:
3470 /* If rss_queues > half of max_rss_queues, pair the queues in
3471 * order to conserve interrupts due to limited supply.
3472 */
3473 if (adapter->rss_queues > (max_rss_queues / 2))
3474 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3475 else
3476 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3477 break;
3478 }
3479}
3480
3481/**
3482 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3483 * @adapter: board private structure to initialize
3484 *
3485 * igb_sw_init initializes the Adapter private data structure.
3486 * Fields are initialized based on PCI device information and
3487 * OS network device settings (MTU size).
3488 **/
3489static int igb_sw_init(struct igb_adapter *adapter)
3490{
3491 struct e1000_hw *hw = &adapter->hw;
3492 struct net_device *netdev = adapter->netdev;
3493 struct pci_dev *pdev = adapter->pdev;
3494
3495 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3496
3497 /* set default ring sizes */
3498 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3499 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3500
3501 /* set default ITR values */
3502 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3503 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3504
3505 /* set default work limits */
3506 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3507
3508 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3509 VLAN_HLEN;
3510 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3511
3512 spin_lock_init(&adapter->nfc_lock);
3513 spin_lock_init(&adapter->stats64_lock);
3514#ifdef CONFIG_PCI_IOV
3515 switch (hw->mac.type) {
3516 case e1000_82576:
3517 case e1000_i350:
3518 if (max_vfs > 7) {
3519 dev_warn(&pdev->dev,
3520 "Maximum of 7 VFs per PF, using max\n");
3521 max_vfs = adapter->vfs_allocated_count = 7;
3522 } else
3523 adapter->vfs_allocated_count = max_vfs;
3524 if (adapter->vfs_allocated_count)
3525 dev_warn(&pdev->dev,
3526 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3527 break;
3528 default:
3529 break;
3530 }
3531#endif /* CONFIG_PCI_IOV */
3532
3533 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3534 adapter->flags |= IGB_FLAG_HAS_MSIX;
3535
3536 adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
3537 hw->mac.rar_entry_count, GFP_ATOMIC);
3538 if (!adapter->mac_table)
3539 return -ENOMEM;
3540
3541 igb_probe_vfs(adapter);
3542
3543 igb_init_queue_configuration(adapter);
3544
3545 /* Setup and initialize a copy of the hw vlan table array */
3546 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3547 GFP_ATOMIC);
3548 if (!adapter->shadow_vfta)
3549 return -ENOMEM;
3550
3551 /* This call may decrease the number of queues */
3552 if (igb_init_interrupt_scheme(adapter, true)) {
3553 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3554 return -ENOMEM;
3555 }
3556
3557 /* Explicitly disable IRQ since the NIC can be in any state. */
3558 igb_irq_disable(adapter);
3559
3560 if (hw->mac.type >= e1000_i350)
3561 adapter->flags &= ~IGB_FLAG_DMAC;
3562
3563 set_bit(__IGB_DOWN, &adapter->state);
3564 return 0;
3565}
3566
3567/**
3568 * igb_open - Called when a network interface is made active
3569 * @netdev: network interface device structure
3570 *
3571 * Returns 0 on success, negative value on failure
3572 *
3573 * The open entry point is called when a network interface is made
3574 * active by the system (IFF_UP). At this point all resources needed
3575 * for transmit and receive operations are allocated, the interrupt
3576 * handler is registered with the OS, the watchdog timer is started,
3577 * and the stack is notified that the interface is ready.
3578 **/
3579static int __igb_open(struct net_device *netdev, bool resuming)
3580{
3581 struct igb_adapter *adapter = netdev_priv(netdev);
3582 struct e1000_hw *hw = &adapter->hw;
3583 struct pci_dev *pdev = adapter->pdev;
3584 int err;
3585 int i;
3586
3587 /* disallow open during test */
3588 if (test_bit(__IGB_TESTING, &adapter->state)) {
3589 WARN_ON(resuming);
3590 return -EBUSY;
3591 }
3592
3593 if (!resuming)
3594 pm_runtime_get_sync(&pdev->dev);
3595
3596 netif_carrier_off(netdev);
3597
3598 /* allocate transmit descriptors */
3599 err = igb_setup_all_tx_resources(adapter);
3600 if (err)
3601 goto err_setup_tx;
3602
3603 /* allocate receive descriptors */
3604 err = igb_setup_all_rx_resources(adapter);
3605 if (err)
3606 goto err_setup_rx;
3607
3608 igb_power_up_link(adapter);
3609
3610 /* before we allocate an interrupt, we must be ready to handle it.
3611 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3612 * as soon as we call pci_request_irq, so we have to setup our
3613 * clean_rx handler before we do so.
3614 */
3615 igb_configure(adapter);
3616
3617 err = igb_request_irq(adapter);
3618 if (err)
3619 goto err_req_irq;
3620
3621 /* Notify the stack of the actual queue counts. */
3622 err = netif_set_real_num_tx_queues(adapter->netdev,
3623 adapter->num_tx_queues);
3624 if (err)
3625 goto err_set_queues;
3626
3627 err = netif_set_real_num_rx_queues(adapter->netdev,
3628 adapter->num_rx_queues);
3629 if (err)
3630 goto err_set_queues;
3631
3632 /* From here on the code is the same as igb_up() */
3633 clear_bit(__IGB_DOWN, &adapter->state);
3634
3635 for (i = 0; i < adapter->num_q_vectors; i++)
3636 napi_enable(&(adapter->q_vector[i]->napi));
3637
3638 /* Clear any pending interrupts. */
3639 rd32(E1000_ICR);
3640
3641 igb_irq_enable(adapter);
3642
3643 /* notify VFs that reset has been completed */
3644 if (adapter->vfs_allocated_count) {
3645 u32 reg_data = rd32(E1000_CTRL_EXT);
3646
3647 reg_data |= E1000_CTRL_EXT_PFRSTD;
3648 wr32(E1000_CTRL_EXT, reg_data);
3649 }
3650
3651 netif_tx_start_all_queues(netdev);
3652
3653 if (!resuming)
3654 pm_runtime_put(&pdev->dev);
3655
3656 /* start the watchdog. */
3657 hw->mac.get_link_status = 1;
3658 schedule_work(&adapter->watchdog_task);
3659
3660 return 0;
3661
3662err_set_queues:
3663 igb_free_irq(adapter);
3664err_req_irq:
3665 igb_release_hw_control(adapter);
3666 igb_power_down_link(adapter);
3667 igb_free_all_rx_resources(adapter);
3668err_setup_rx:
3669 igb_free_all_tx_resources(adapter);
3670err_setup_tx:
3671 igb_reset(adapter);
3672 if (!resuming)
3673 pm_runtime_put(&pdev->dev);
3674
3675 return err;
3676}
3677
3678int igb_open(struct net_device *netdev)
3679{
3680 return __igb_open(netdev, false);
3681}
3682
3683/**
3684 * igb_close - Disables a network interface
3685 * @netdev: network interface device structure
3686 *
3687 * Returns 0, this is not allowed to fail
3688 *
3689 * The close entry point is called when an interface is de-activated
3690 * by the OS. The hardware is still under the driver's control, but
3691 * needs to be disabled. A global MAC reset is issued to stop the
3692 * hardware, and all transmit and receive resources are freed.
3693 **/
3694static int __igb_close(struct net_device *netdev, bool suspending)
3695{
3696 struct igb_adapter *adapter = netdev_priv(netdev);
3697 struct pci_dev *pdev = adapter->pdev;
3698
3699 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3700
3701 if (!suspending)
3702 pm_runtime_get_sync(&pdev->dev);
3703
3704 igb_down(adapter);
3705 igb_free_irq(adapter);
3706
3707 igb_free_all_tx_resources(adapter);
3708 igb_free_all_rx_resources(adapter);
3709
3710 if (!suspending)
3711 pm_runtime_put_sync(&pdev->dev);
3712 return 0;
3713}
3714
3715int igb_close(struct net_device *netdev)
3716{
3717 if (netif_device_present(netdev) || netdev->dismantle)
3718 return __igb_close(netdev, false);
3719 return 0;
3720}
3721
3722/**
3723 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3724 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3725 *
3726 * Return 0 on success, negative on failure
3727 **/
3728int igb_setup_tx_resources(struct igb_ring *tx_ring)
3729{
3730 struct device *dev = tx_ring->dev;
3731 int size;
3732
3733 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3734
3735 tx_ring->tx_buffer_info = vmalloc(size);
3736 if (!tx_ring->tx_buffer_info)
3737 goto err;
3738
3739 /* round up to nearest 4K */
3740 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3741 tx_ring->size = ALIGN(tx_ring->size, 4096);
3742
3743 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3744 &tx_ring->dma, GFP_KERNEL);
3745 if (!tx_ring->desc)
3746 goto err;
3747
3748 tx_ring->next_to_use = 0;
3749 tx_ring->next_to_clean = 0;
3750
3751 return 0;
3752
3753err:
3754 vfree(tx_ring->tx_buffer_info);
3755 tx_ring->tx_buffer_info = NULL;
3756 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3757 return -ENOMEM;
3758}
3759
3760/**
3761 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3762 * (Descriptors) for all queues
3763 * @adapter: board private structure
3764 *
3765 * Return 0 on success, negative on failure
3766 **/
3767static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3768{
3769 struct pci_dev *pdev = adapter->pdev;
3770 int i, err = 0;
3771
3772 for (i = 0; i < adapter->num_tx_queues; i++) {
3773 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3774 if (err) {
3775 dev_err(&pdev->dev,
3776 "Allocation for Tx Queue %u failed\n", i);
3777 for (i--; i >= 0; i--)
3778 igb_free_tx_resources(adapter->tx_ring[i]);
3779 break;
3780 }
3781 }
3782
3783 return err;
3784}
3785
3786/**
3787 * igb_setup_tctl - configure the transmit control registers
3788 * @adapter: Board private structure
3789 **/
3790void igb_setup_tctl(struct igb_adapter *adapter)
3791{
3792 struct e1000_hw *hw = &adapter->hw;
3793 u32 tctl;
3794
3795 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3796 wr32(E1000_TXDCTL(0), 0);
3797
3798 /* Program the Transmit Control Register */
3799 tctl = rd32(E1000_TCTL);
3800 tctl &= ~E1000_TCTL_CT;
3801 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3802 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3803
3804 igb_config_collision_dist(hw);
3805
3806 /* Enable transmits */
3807 tctl |= E1000_TCTL_EN;
3808
3809 wr32(E1000_TCTL, tctl);
3810}
3811
3812/**
3813 * igb_configure_tx_ring - Configure transmit ring after Reset
3814 * @adapter: board private structure
3815 * @ring: tx ring to configure
3816 *
3817 * Configure a transmit ring after a reset.
3818 **/
3819void igb_configure_tx_ring(struct igb_adapter *adapter,
3820 struct igb_ring *ring)
3821{
3822 struct e1000_hw *hw = &adapter->hw;
3823 u32 txdctl = 0;
3824 u64 tdba = ring->dma;
3825 int reg_idx = ring->reg_idx;
3826
3827 /* disable the queue */
3828 wr32(E1000_TXDCTL(reg_idx), 0);
3829 wrfl();
3830 mdelay(10);
3831
3832 wr32(E1000_TDLEN(reg_idx),
3833 ring->count * sizeof(union e1000_adv_tx_desc));
3834 wr32(E1000_TDBAL(reg_idx),
3835 tdba & 0x00000000ffffffffULL);
3836 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3837
3838 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
3839 wr32(E1000_TDH(reg_idx), 0);
3840 writel(0, ring->tail);
3841
3842 txdctl |= IGB_TX_PTHRESH;
3843 txdctl |= IGB_TX_HTHRESH << 8;
3844 txdctl |= IGB_TX_WTHRESH << 16;
3845
3846 /* reinitialize tx_buffer_info */
3847 memset(ring->tx_buffer_info, 0,
3848 sizeof(struct igb_tx_buffer) * ring->count);
3849
3850 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3851 wr32(E1000_TXDCTL(reg_idx), txdctl);
3852}
3853
3854/**
3855 * igb_configure_tx - Configure transmit Unit after Reset
3856 * @adapter: board private structure
3857 *
3858 * Configure the Tx unit of the MAC after a reset.
3859 **/
3860static void igb_configure_tx(struct igb_adapter *adapter)
3861{
3862 int i;
3863
3864 for (i = 0; i < adapter->num_tx_queues; i++)
3865 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3866}
3867
3868/**
3869 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3870 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3871 *
3872 * Returns 0 on success, negative on failure
3873 **/
3874int igb_setup_rx_resources(struct igb_ring *rx_ring)
3875{
3876 struct device *dev = rx_ring->dev;
3877 int size;
3878
3879 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3880
3881 rx_ring->rx_buffer_info = vmalloc(size);
3882 if (!rx_ring->rx_buffer_info)
3883 goto err;
3884
3885 /* Round up to nearest 4K */
3886 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3887 rx_ring->size = ALIGN(rx_ring->size, 4096);
3888
3889 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3890 &rx_ring->dma, GFP_KERNEL);
3891 if (!rx_ring->desc)
3892 goto err;
3893
3894 rx_ring->next_to_alloc = 0;
3895 rx_ring->next_to_clean = 0;
3896 rx_ring->next_to_use = 0;
3897
3898 return 0;
3899
3900err:
3901 vfree(rx_ring->rx_buffer_info);
3902 rx_ring->rx_buffer_info = NULL;
3903 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3904 return -ENOMEM;
3905}
3906
3907/**
3908 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3909 * (Descriptors) for all queues
3910 * @adapter: board private structure
3911 *
3912 * Return 0 on success, negative on failure
3913 **/
3914static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3915{
3916 struct pci_dev *pdev = adapter->pdev;
3917 int i, err = 0;
3918
3919 for (i = 0; i < adapter->num_rx_queues; i++) {
3920 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3921 if (err) {
3922 dev_err(&pdev->dev,
3923 "Allocation for Rx Queue %u failed\n", i);
3924 for (i--; i >= 0; i--)
3925 igb_free_rx_resources(adapter->rx_ring[i]);
3926 break;
3927 }
3928 }
3929
3930 return err;
3931}
3932
3933/**
3934 * igb_setup_mrqc - configure the multiple receive queue control registers
3935 * @adapter: Board private structure
3936 **/
3937static void igb_setup_mrqc(struct igb_adapter *adapter)
3938{
3939 struct e1000_hw *hw = &adapter->hw;
3940 u32 mrqc, rxcsum;
3941 u32 j, num_rx_queues;
3942 u32 rss_key[10];
3943
3944 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3945 for (j = 0; j < 10; j++)
3946 wr32(E1000_RSSRK(j), rss_key[j]);
3947
3948 num_rx_queues = adapter->rss_queues;
3949
3950 switch (hw->mac.type) {
3951 case e1000_82576:
3952 /* 82576 supports 2 RSS queues for SR-IOV */
3953 if (adapter->vfs_allocated_count)
3954 num_rx_queues = 2;
3955 break;
3956 default:
3957 break;
3958 }
3959
3960 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3961 for (j = 0; j < IGB_RETA_SIZE; j++)
3962 adapter->rss_indir_tbl[j] =
3963 (j * num_rx_queues) / IGB_RETA_SIZE;
3964 adapter->rss_indir_tbl_init = num_rx_queues;
3965 }
3966 igb_write_rss_indir_tbl(adapter);
3967
3968 /* Disable raw packet checksumming so that RSS hash is placed in
3969 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3970 * offloads as they are enabled by default
3971 */
3972 rxcsum = rd32(E1000_RXCSUM);
3973 rxcsum |= E1000_RXCSUM_PCSD;
3974
3975 if (adapter->hw.mac.type >= e1000_82576)
3976 /* Enable Receive Checksum Offload for SCTP */
3977 rxcsum |= E1000_RXCSUM_CRCOFL;
3978
3979 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3980 wr32(E1000_RXCSUM, rxcsum);
3981
3982 /* Generate RSS hash based on packet types, TCP/UDP
3983 * port numbers and/or IPv4/v6 src and dst addresses
3984 */
3985 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3986 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3987 E1000_MRQC_RSS_FIELD_IPV6 |
3988 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3989 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3990
3991 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3992 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3993 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3994 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3995
3996 /* If VMDq is enabled then we set the appropriate mode for that, else
3997 * we default to RSS so that an RSS hash is calculated per packet even
3998 * if we are only using one queue
3999 */
4000 if (adapter->vfs_allocated_count) {
4001 if (hw->mac.type > e1000_82575) {
4002 /* Set the default pool for the PF's first queue */
4003 u32 vtctl = rd32(E1000_VT_CTL);
4004
4005 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4006 E1000_VT_CTL_DISABLE_DEF_POOL);
4007 vtctl |= adapter->vfs_allocated_count <<
4008 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4009 wr32(E1000_VT_CTL, vtctl);
4010 }
4011 if (adapter->rss_queues > 1)
4012 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4013 else
4014 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4015 } else {
4016 if (hw->mac.type != e1000_i211)
4017 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4018 }
4019 igb_vmm_control(adapter);
4020
4021 wr32(E1000_MRQC, mrqc);
4022}
4023
4024/**
4025 * igb_setup_rctl - configure the receive control registers
4026 * @adapter: Board private structure
4027 **/
4028void igb_setup_rctl(struct igb_adapter *adapter)
4029{
4030 struct e1000_hw *hw = &adapter->hw;
4031 u32 rctl;
4032
4033 rctl = rd32(E1000_RCTL);
4034
4035 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4036 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4037
4038 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4039 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4040
4041 /* enable stripping of CRC. It's unlikely this will break BMC
4042 * redirection as it did with e1000. Newer features require
4043 * that the HW strips the CRC.
4044 */
4045 rctl |= E1000_RCTL_SECRC;
4046
4047 /* disable store bad packets and clear size bits. */
4048 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4049
4050 /* enable LPE to allow for reception of jumbo frames */
4051 rctl |= E1000_RCTL_LPE;
4052
4053 /* disable queue 0 to prevent tail write w/o re-config */
4054 wr32(E1000_RXDCTL(0), 0);
4055
4056 /* Attention!!! For SR-IOV PF driver operations you must enable
4057 * queue drop for all VF and PF queues to prevent head of line blocking
4058 * if an un-trusted VF does not provide descriptors to hardware.
4059 */
4060 if (adapter->vfs_allocated_count) {
4061 /* set all queue drop enable bits */
4062 wr32(E1000_QDE, ALL_QUEUES);
4063 }
4064
4065 /* This is useful for sniffing bad packets. */
4066 if (adapter->netdev->features & NETIF_F_RXALL) {
4067 /* UPE and MPE will be handled by normal PROMISC logic
4068 * in e1000e_set_rx_mode
4069 */
4070 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4071 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4072 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4073
4074 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4075 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4076 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4077 * and that breaks VLANs.
4078 */
4079 }
4080
4081 wr32(E1000_RCTL, rctl);
4082}
4083
4084static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4085 int vfn)
4086{
4087 struct e1000_hw *hw = &adapter->hw;
4088 u32 vmolr;
4089
4090 if (size > MAX_JUMBO_FRAME_SIZE)
4091 size = MAX_JUMBO_FRAME_SIZE;
4092
4093 vmolr = rd32(E1000_VMOLR(vfn));
4094 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4095 vmolr |= size | E1000_VMOLR_LPE;
4096 wr32(E1000_VMOLR(vfn), vmolr);
4097
4098 return 0;
4099}
4100
4101static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4102 int vfn, bool enable)
4103{
4104 struct e1000_hw *hw = &adapter->hw;
4105 u32 val, reg;
4106
4107 if (hw->mac.type < e1000_82576)
4108 return;
4109
4110 if (hw->mac.type == e1000_i350)
4111 reg = E1000_DVMOLR(vfn);
4112 else
4113 reg = E1000_VMOLR(vfn);
4114
4115 val = rd32(reg);
4116 if (enable)
4117 val |= E1000_VMOLR_STRVLAN;
4118 else
4119 val &= ~(E1000_VMOLR_STRVLAN);
4120 wr32(reg, val);
4121}
4122
4123static inline void igb_set_vmolr(struct igb_adapter *adapter,
4124 int vfn, bool aupe)
4125{
4126 struct e1000_hw *hw = &adapter->hw;
4127 u32 vmolr;
4128
4129 /* This register exists only on 82576 and newer so if we are older then
4130 * we should exit and do nothing
4131 */
4132 if (hw->mac.type < e1000_82576)
4133 return;
4134
4135 vmolr = rd32(E1000_VMOLR(vfn));
4136 if (aupe)
4137 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4138 else
4139 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4140
4141 /* clear all bits that might not be set */
4142 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4143
4144 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4145 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4146 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4147 * multicast packets
4148 */
4149 if (vfn <= adapter->vfs_allocated_count)
4150 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4151
4152 wr32(E1000_VMOLR(vfn), vmolr);
4153}
4154
4155/**
4156 * igb_configure_rx_ring - Configure a receive ring after Reset
4157 * @adapter: board private structure
4158 * @ring: receive ring to be configured
4159 *
4160 * Configure the Rx unit of the MAC after a reset.
4161 **/
4162void igb_configure_rx_ring(struct igb_adapter *adapter,
4163 struct igb_ring *ring)
4164{
4165 struct e1000_hw *hw = &adapter->hw;
4166 union e1000_adv_rx_desc *rx_desc;
4167 u64 rdba = ring->dma;
4168 int reg_idx = ring->reg_idx;
4169 u32 srrctl = 0, rxdctl = 0;
4170
4171 /* disable the queue */
4172 wr32(E1000_RXDCTL(reg_idx), 0);
4173
4174 /* Set DMA base address registers */
4175 wr32(E1000_RDBAL(reg_idx),
4176 rdba & 0x00000000ffffffffULL);
4177 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4178 wr32(E1000_RDLEN(reg_idx),
4179 ring->count * sizeof(union e1000_adv_rx_desc));
4180
4181 /* initialize head and tail */
4182 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4183 wr32(E1000_RDH(reg_idx), 0);
4184 writel(0, ring->tail);
4185
4186 /* set descriptor configuration */
4187 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4188 if (ring_uses_large_buffer(ring))
4189 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4190 else
4191 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4192 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4193 if (hw->mac.type >= e1000_82580)
4194 srrctl |= E1000_SRRCTL_TIMESTAMP;
4195 /* Only set Drop Enable if we are supporting multiple queues */
4196 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4197 srrctl |= E1000_SRRCTL_DROP_EN;
4198
4199 wr32(E1000_SRRCTL(reg_idx), srrctl);
4200
4201 /* set filtering for VMDQ pools */
4202 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4203
4204 rxdctl |= IGB_RX_PTHRESH;
4205 rxdctl |= IGB_RX_HTHRESH << 8;
4206 rxdctl |= IGB_RX_WTHRESH << 16;
4207
4208 /* initialize rx_buffer_info */
4209 memset(ring->rx_buffer_info, 0,
4210 sizeof(struct igb_rx_buffer) * ring->count);
4211
4212 /* initialize Rx descriptor 0 */
4213 rx_desc = IGB_RX_DESC(ring, 0);
4214 rx_desc->wb.upper.length = 0;
4215
4216 /* enable receive descriptor fetching */
4217 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4218 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4219}
4220
4221static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4222 struct igb_ring *rx_ring)
4223{
4224 /* set build_skb and buffer size flags */
4225 clear_ring_build_skb_enabled(rx_ring);
4226 clear_ring_uses_large_buffer(rx_ring);
4227
4228 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4229 return;
4230
4231 set_ring_build_skb_enabled(rx_ring);
4232
4233#if (PAGE_SIZE < 8192)
4234 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4235 return;
4236
4237 set_ring_uses_large_buffer(rx_ring);
4238#endif
4239}
4240
4241/**
4242 * igb_configure_rx - Configure receive Unit after Reset
4243 * @adapter: board private structure
4244 *
4245 * Configure the Rx unit of the MAC after a reset.
4246 **/
4247static void igb_configure_rx(struct igb_adapter *adapter)
4248{
4249 int i;
4250
4251 /* set the correct pool for the PF default MAC address in entry 0 */
4252 igb_set_default_mac_filter(adapter);
4253
4254 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4255 * the Base and Length of the Rx Descriptor Ring
4256 */
4257 for (i = 0; i < adapter->num_rx_queues; i++) {
4258 struct igb_ring *rx_ring = adapter->rx_ring[i];
4259
4260 igb_set_rx_buffer_len(adapter, rx_ring);
4261 igb_configure_rx_ring(adapter, rx_ring);
4262 }
4263}
4264
4265/**
4266 * igb_free_tx_resources - Free Tx Resources per Queue
4267 * @tx_ring: Tx descriptor ring for a specific queue
4268 *
4269 * Free all transmit software resources
4270 **/
4271void igb_free_tx_resources(struct igb_ring *tx_ring)
4272{
4273 igb_clean_tx_ring(tx_ring);
4274
4275 vfree(tx_ring->tx_buffer_info);
4276 tx_ring->tx_buffer_info = NULL;
4277
4278 /* if not set, then don't free */
4279 if (!tx_ring->desc)
4280 return;
4281
4282 dma_free_coherent(tx_ring->dev, tx_ring->size,
4283 tx_ring->desc, tx_ring->dma);
4284
4285 tx_ring->desc = NULL;
4286}
4287
4288/**
4289 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4290 * @adapter: board private structure
4291 *
4292 * Free all transmit software resources
4293 **/
4294static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4295{
4296 int i;
4297
4298 for (i = 0; i < adapter->num_tx_queues; i++)
4299 if (adapter->tx_ring[i])
4300 igb_free_tx_resources(adapter->tx_ring[i]);
4301}
4302
4303/**
4304 * igb_clean_tx_ring - Free Tx Buffers
4305 * @tx_ring: ring to be cleaned
4306 **/
4307static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4308{
4309 u16 i = tx_ring->next_to_clean;
4310 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4311
4312 while (i != tx_ring->next_to_use) {
4313 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4314
4315 /* Free all the Tx ring sk_buffs */
4316 dev_kfree_skb_any(tx_buffer->skb);
4317
4318 /* unmap skb header data */
4319 dma_unmap_single(tx_ring->dev,
4320 dma_unmap_addr(tx_buffer, dma),
4321 dma_unmap_len(tx_buffer, len),
4322 DMA_TO_DEVICE);
4323
4324 /* check for eop_desc to determine the end of the packet */
4325 eop_desc = tx_buffer->next_to_watch;
4326 tx_desc = IGB_TX_DESC(tx_ring, i);
4327
4328 /* unmap remaining buffers */
4329 while (tx_desc != eop_desc) {
4330 tx_buffer++;
4331 tx_desc++;
4332 i++;
4333 if (unlikely(i == tx_ring->count)) {
4334 i = 0;
4335 tx_buffer = tx_ring->tx_buffer_info;
4336 tx_desc = IGB_TX_DESC(tx_ring, 0);
4337 }
4338
4339 /* unmap any remaining paged data */
4340 if (dma_unmap_len(tx_buffer, len))
4341 dma_unmap_page(tx_ring->dev,
4342 dma_unmap_addr(tx_buffer, dma),
4343 dma_unmap_len(tx_buffer, len),
4344 DMA_TO_DEVICE);
4345 }
4346
4347 /* move us one more past the eop_desc for start of next pkt */
4348 tx_buffer++;
4349 i++;
4350 if (unlikely(i == tx_ring->count)) {
4351 i = 0;
4352 tx_buffer = tx_ring->tx_buffer_info;
4353 }
4354 }
4355
4356 /* reset BQL for queue */
4357 netdev_tx_reset_queue(txring_txq(tx_ring));
4358
4359 /* reset next_to_use and next_to_clean */
4360 tx_ring->next_to_use = 0;
4361 tx_ring->next_to_clean = 0;
4362}
4363
4364/**
4365 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4366 * @adapter: board private structure
4367 **/
4368static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4369{
4370 int i;
4371
4372 for (i = 0; i < adapter->num_tx_queues; i++)
4373 if (adapter->tx_ring[i])
4374 igb_clean_tx_ring(adapter->tx_ring[i]);
4375}
4376
4377/**
4378 * igb_free_rx_resources - Free Rx Resources
4379 * @rx_ring: ring to clean the resources from
4380 *
4381 * Free all receive software resources
4382 **/
4383void igb_free_rx_resources(struct igb_ring *rx_ring)
4384{
4385 igb_clean_rx_ring(rx_ring);
4386
4387 vfree(rx_ring->rx_buffer_info);
4388 rx_ring->rx_buffer_info = NULL;
4389
4390 /* if not set, then don't free */
4391 if (!rx_ring->desc)
4392 return;
4393
4394 dma_free_coherent(rx_ring->dev, rx_ring->size,
4395 rx_ring->desc, rx_ring->dma);
4396
4397 rx_ring->desc = NULL;
4398}
4399
4400/**
4401 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4402 * @adapter: board private structure
4403 *
4404 * Free all receive software resources
4405 **/
4406static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4407{
4408 int i;
4409
4410 for (i = 0; i < adapter->num_rx_queues; i++)
4411 if (adapter->rx_ring[i])
4412 igb_free_rx_resources(adapter->rx_ring[i]);
4413}
4414
4415/**
4416 * igb_clean_rx_ring - Free Rx Buffers per Queue
4417 * @rx_ring: ring to free buffers from
4418 **/
4419static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4420{
4421 u16 i = rx_ring->next_to_clean;
4422
4423 if (rx_ring->skb)
4424 dev_kfree_skb(rx_ring->skb);
4425 rx_ring->skb = NULL;
4426
4427 /* Free all the Rx ring sk_buffs */
4428 while (i != rx_ring->next_to_alloc) {
4429 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4430
4431 /* Invalidate cache lines that may have been written to by
4432 * device so that we avoid corrupting memory.
4433 */
4434 dma_sync_single_range_for_cpu(rx_ring->dev,
4435 buffer_info->dma,
4436 buffer_info->page_offset,
4437 igb_rx_bufsz(rx_ring),
4438 DMA_FROM_DEVICE);
4439
4440 /* free resources associated with mapping */
4441 dma_unmap_page_attrs(rx_ring->dev,
4442 buffer_info->dma,
4443 igb_rx_pg_size(rx_ring),
4444 DMA_FROM_DEVICE,
4445 IGB_RX_DMA_ATTR);
4446 __page_frag_cache_drain(buffer_info->page,
4447 buffer_info->pagecnt_bias);
4448
4449 i++;
4450 if (i == rx_ring->count)
4451 i = 0;
4452 }
4453
4454 rx_ring->next_to_alloc = 0;
4455 rx_ring->next_to_clean = 0;
4456 rx_ring->next_to_use = 0;
4457}
4458
4459/**
4460 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4461 * @adapter: board private structure
4462 **/
4463static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4464{
4465 int i;
4466
4467 for (i = 0; i < adapter->num_rx_queues; i++)
4468 if (adapter->rx_ring[i])
4469 igb_clean_rx_ring(adapter->rx_ring[i]);
4470}
4471
4472/**
4473 * igb_set_mac - Change the Ethernet Address of the NIC
4474 * @netdev: network interface device structure
4475 * @p: pointer to an address structure
4476 *
4477 * Returns 0 on success, negative on failure
4478 **/
4479static int igb_set_mac(struct net_device *netdev, void *p)
4480{
4481 struct igb_adapter *adapter = netdev_priv(netdev);
4482 struct e1000_hw *hw = &adapter->hw;
4483 struct sockaddr *addr = p;
4484
4485 if (!is_valid_ether_addr(addr->sa_data))
4486 return -EADDRNOTAVAIL;
4487
4488 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4489 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4490
4491 /* set the correct pool for the new PF MAC address in entry 0 */
4492 igb_set_default_mac_filter(adapter);
4493
4494 return 0;
4495}
4496
4497/**
4498 * igb_write_mc_addr_list - write multicast addresses to MTA
4499 * @netdev: network interface device structure
4500 *
4501 * Writes multicast address list to the MTA hash table.
4502 * Returns: -ENOMEM on failure
4503 * 0 on no addresses written
4504 * X on writing X addresses to MTA
4505 **/
4506static int igb_write_mc_addr_list(struct net_device *netdev)
4507{
4508 struct igb_adapter *adapter = netdev_priv(netdev);
4509 struct e1000_hw *hw = &adapter->hw;
4510 struct netdev_hw_addr *ha;
4511 u8 *mta_list;
4512 int i;
4513
4514 if (netdev_mc_empty(netdev)) {
4515 /* nothing to program, so clear mc list */
4516 igb_update_mc_addr_list(hw, NULL, 0);
4517 igb_restore_vf_multicasts(adapter);
4518 return 0;
4519 }
4520
4521 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4522 if (!mta_list)
4523 return -ENOMEM;
4524
4525 /* The shared function expects a packed array of only addresses. */
4526 i = 0;
4527 netdev_for_each_mc_addr(ha, netdev)
4528 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4529
4530 igb_update_mc_addr_list(hw, mta_list, i);
4531 kfree(mta_list);
4532
4533 return netdev_mc_count(netdev);
4534}
4535
4536static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4537{
4538 struct e1000_hw *hw = &adapter->hw;
4539 u32 i, pf_id;
4540
4541 switch (hw->mac.type) {
4542 case e1000_i210:
4543 case e1000_i211:
4544 case e1000_i350:
4545 /* VLAN filtering needed for VLAN prio filter */
4546 if (adapter->netdev->features & NETIF_F_NTUPLE)
4547 break;
4548 /* fall through */
4549 case e1000_82576:
4550 case e1000_82580:
4551 case e1000_i354:
4552 /* VLAN filtering needed for pool filtering */
4553 if (adapter->vfs_allocated_count)
4554 break;
4555 /* fall through */
4556 default:
4557 return 1;
4558 }
4559
4560 /* We are already in VLAN promisc, nothing to do */
4561 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4562 return 0;
4563
4564 if (!adapter->vfs_allocated_count)
4565 goto set_vfta;
4566
4567 /* Add PF to all active pools */
4568 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4569
4570 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4571 u32 vlvf = rd32(E1000_VLVF(i));
4572
4573 vlvf |= BIT(pf_id);
4574 wr32(E1000_VLVF(i), vlvf);
4575 }
4576
4577set_vfta:
4578 /* Set all bits in the VLAN filter table array */
4579 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4580 hw->mac.ops.write_vfta(hw, i, ~0U);
4581
4582 /* Set flag so we don't redo unnecessary work */
4583 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4584
4585 return 0;
4586}
4587
4588#define VFTA_BLOCK_SIZE 8
4589static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4590{
4591 struct e1000_hw *hw = &adapter->hw;
4592 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4593 u32 vid_start = vfta_offset * 32;
4594 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4595 u32 i, vid, word, bits, pf_id;
4596
4597 /* guarantee that we don't scrub out management VLAN */
4598 vid = adapter->mng_vlan_id;
4599 if (vid >= vid_start && vid < vid_end)
4600 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4601
4602 if (!adapter->vfs_allocated_count)
4603 goto set_vfta;
4604
4605 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4606
4607 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4608 u32 vlvf = rd32(E1000_VLVF(i));
4609
4610 /* pull VLAN ID from VLVF */
4611 vid = vlvf & VLAN_VID_MASK;
4612
4613 /* only concern ourselves with a certain range */
4614 if (vid < vid_start || vid >= vid_end)
4615 continue;
4616
4617 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4618 /* record VLAN ID in VFTA */
4619 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4620
4621 /* if PF is part of this then continue */
4622 if (test_bit(vid, adapter->active_vlans))
4623 continue;
4624 }
4625
4626 /* remove PF from the pool */
4627 bits = ~BIT(pf_id);
4628 bits &= rd32(E1000_VLVF(i));
4629 wr32(E1000_VLVF(i), bits);
4630 }
4631
4632set_vfta:
4633 /* extract values from active_vlans and write back to VFTA */
4634 for (i = VFTA_BLOCK_SIZE; i--;) {
4635 vid = (vfta_offset + i) * 32;
4636 word = vid / BITS_PER_LONG;
4637 bits = vid % BITS_PER_LONG;
4638
4639 vfta[i] |= adapter->active_vlans[word] >> bits;
4640
4641 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4642 }
4643}
4644
4645static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4646{
4647 u32 i;
4648
4649 /* We are not in VLAN promisc, nothing to do */
4650 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4651 return;
4652
4653 /* Set flag so we don't redo unnecessary work */
4654 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4655
4656 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4657 igb_scrub_vfta(adapter, i);
4658}
4659
4660/**
4661 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4662 * @netdev: network interface device structure
4663 *
4664 * The set_rx_mode entry point is called whenever the unicast or multicast
4665 * address lists or the network interface flags are updated. This routine is
4666 * responsible for configuring the hardware for proper unicast, multicast,
4667 * promiscuous mode, and all-multi behavior.
4668 **/
4669static void igb_set_rx_mode(struct net_device *netdev)
4670{
4671 struct igb_adapter *adapter = netdev_priv(netdev);
4672 struct e1000_hw *hw = &adapter->hw;
4673 unsigned int vfn = adapter->vfs_allocated_count;
4674 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4675 int count;
4676
4677 /* Check for Promiscuous and All Multicast modes */
4678 if (netdev->flags & IFF_PROMISC) {
4679 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4680 vmolr |= E1000_VMOLR_MPME;
4681
4682 /* enable use of UTA filter to force packets to default pool */
4683 if (hw->mac.type == e1000_82576)
4684 vmolr |= E1000_VMOLR_ROPE;
4685 } else {
4686 if (netdev->flags & IFF_ALLMULTI) {
4687 rctl |= E1000_RCTL_MPE;
4688 vmolr |= E1000_VMOLR_MPME;
4689 } else {
4690 /* Write addresses to the MTA, if the attempt fails
4691 * then we should just turn on promiscuous mode so
4692 * that we can at least receive multicast traffic
4693 */
4694 count = igb_write_mc_addr_list(netdev);
4695 if (count < 0) {
4696 rctl |= E1000_RCTL_MPE;
4697 vmolr |= E1000_VMOLR_MPME;
4698 } else if (count) {
4699 vmolr |= E1000_VMOLR_ROMPE;
4700 }
4701 }
4702 }
4703
4704 /* Write addresses to available RAR registers, if there is not
4705 * sufficient space to store all the addresses then enable
4706 * unicast promiscuous mode
4707 */
4708 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
4709 rctl |= E1000_RCTL_UPE;
4710 vmolr |= E1000_VMOLR_ROPE;
4711 }
4712
4713 /* enable VLAN filtering by default */
4714 rctl |= E1000_RCTL_VFE;
4715
4716 /* disable VLAN filtering for modes that require it */
4717 if ((netdev->flags & IFF_PROMISC) ||
4718 (netdev->features & NETIF_F_RXALL)) {
4719 /* if we fail to set all rules then just clear VFE */
4720 if (igb_vlan_promisc_enable(adapter))
4721 rctl &= ~E1000_RCTL_VFE;
4722 } else {
4723 igb_vlan_promisc_disable(adapter);
4724 }
4725
4726 /* update state of unicast, multicast, and VLAN filtering modes */
4727 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4728 E1000_RCTL_VFE);
4729 wr32(E1000_RCTL, rctl);
4730
4731#if (PAGE_SIZE < 8192)
4732 if (!adapter->vfs_allocated_count) {
4733 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4734 rlpml = IGB_MAX_FRAME_BUILD_SKB;
4735 }
4736#endif
4737 wr32(E1000_RLPML, rlpml);
4738
4739 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4740 * the VMOLR to enable the appropriate modes. Without this workaround
4741 * we will have issues with VLAN tag stripping not being done for frames
4742 * that are only arriving because we are the default pool
4743 */
4744 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4745 return;
4746
4747 /* set UTA to appropriate mode */
4748 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4749
4750 vmolr |= rd32(E1000_VMOLR(vfn)) &
4751 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4752
4753 /* enable Rx jumbo frames, restrict as needed to support build_skb */
4754 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4755#if (PAGE_SIZE < 8192)
4756 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4757 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
4758 else
4759#endif
4760 vmolr |= MAX_JUMBO_FRAME_SIZE;
4761 vmolr |= E1000_VMOLR_LPE;
4762
4763 wr32(E1000_VMOLR(vfn), vmolr);
4764
4765 igb_restore_vf_multicasts(adapter);
4766}
4767
4768static void igb_check_wvbr(struct igb_adapter *adapter)
4769{
4770 struct e1000_hw *hw = &adapter->hw;
4771 u32 wvbr = 0;
4772
4773 switch (hw->mac.type) {
4774 case e1000_82576:
4775 case e1000_i350:
4776 wvbr = rd32(E1000_WVBR);
4777 if (!wvbr)
4778 return;
4779 break;
4780 default:
4781 break;
4782 }
4783
4784 adapter->wvbr |= wvbr;
4785}
4786
4787#define IGB_STAGGERED_QUEUE_OFFSET 8
4788
4789static void igb_spoof_check(struct igb_adapter *adapter)
4790{
4791 int j;
4792
4793 if (!adapter->wvbr)
4794 return;
4795
4796 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4797 if (adapter->wvbr & BIT(j) ||
4798 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4799 dev_warn(&adapter->pdev->dev,
4800 "Spoof event(s) detected on VF %d\n", j);
4801 adapter->wvbr &=
4802 ~(BIT(j) |
4803 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4804 }
4805 }
4806}
4807
4808/* Need to wait a few seconds after link up to get diagnostic information from
4809 * the phy
4810 */
4811static void igb_update_phy_info(struct timer_list *t)
4812{
4813 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4814 igb_get_phy_info(&adapter->hw);
4815}
4816
4817/**
4818 * igb_has_link - check shared code for link and determine up/down
4819 * @adapter: pointer to driver private info
4820 **/
4821bool igb_has_link(struct igb_adapter *adapter)
4822{
4823 struct e1000_hw *hw = &adapter->hw;
4824 bool link_active = false;
4825
4826 /* get_link_status is set on LSC (link status) interrupt or
4827 * rx sequence error interrupt. get_link_status will stay
4828 * false until the e1000_check_for_link establishes link
4829 * for copper adapters ONLY
4830 */
4831 switch (hw->phy.media_type) {
4832 case e1000_media_type_copper:
4833 if (!hw->mac.get_link_status)
4834 return true;
4835 case e1000_media_type_internal_serdes:
4836 hw->mac.ops.check_for_link(hw);
4837 link_active = !hw->mac.get_link_status;
4838 break;
4839 default:
4840 case e1000_media_type_unknown:
4841 break;
4842 }
4843
4844 if (((hw->mac.type == e1000_i210) ||
4845 (hw->mac.type == e1000_i211)) &&
4846 (hw->phy.id == I210_I_PHY_ID)) {
4847 if (!netif_carrier_ok(adapter->netdev)) {
4848 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4849 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4850 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4851 adapter->link_check_timeout = jiffies;
4852 }
4853 }
4854
4855 return link_active;
4856}
4857
4858static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4859{
4860 bool ret = false;
4861 u32 ctrl_ext, thstat;
4862
4863 /* check for thermal sensor event on i350 copper only */
4864 if (hw->mac.type == e1000_i350) {
4865 thstat = rd32(E1000_THSTAT);
4866 ctrl_ext = rd32(E1000_CTRL_EXT);
4867
4868 if ((hw->phy.media_type == e1000_media_type_copper) &&
4869 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4870 ret = !!(thstat & event);
4871 }
4872
4873 return ret;
4874}
4875
4876/**
4877 * igb_check_lvmmc - check for malformed packets received
4878 * and indicated in LVMMC register
4879 * @adapter: pointer to adapter
4880 **/
4881static void igb_check_lvmmc(struct igb_adapter *adapter)
4882{
4883 struct e1000_hw *hw = &adapter->hw;
4884 u32 lvmmc;
4885
4886 lvmmc = rd32(E1000_LVMMC);
4887 if (lvmmc) {
4888 if (unlikely(net_ratelimit())) {
4889 netdev_warn(adapter->netdev,
4890 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4891 lvmmc);
4892 }
4893 }
4894}
4895
4896/**
4897 * igb_watchdog - Timer Call-back
4898 * @data: pointer to adapter cast into an unsigned long
4899 **/
4900static void igb_watchdog(struct timer_list *t)
4901{
4902 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4903 /* Do the rest outside of interrupt context */
4904 schedule_work(&adapter->watchdog_task);
4905}
4906
4907static void igb_watchdog_task(struct work_struct *work)
4908{
4909 struct igb_adapter *adapter = container_of(work,
4910 struct igb_adapter,
4911 watchdog_task);
4912 struct e1000_hw *hw = &adapter->hw;
4913 struct e1000_phy_info *phy = &hw->phy;
4914 struct net_device *netdev = adapter->netdev;
4915 u32 link;
4916 int i;
4917 u32 connsw;
4918 u16 phy_data, retry_count = 20;
4919
4920 link = igb_has_link(adapter);
4921
4922 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4923 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4924 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4925 else
4926 link = false;
4927 }
4928
4929 /* Force link down if we have fiber to swap to */
4930 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4931 if (hw->phy.media_type == e1000_media_type_copper) {
4932 connsw = rd32(E1000_CONNSW);
4933 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4934 link = 0;
4935 }
4936 }
4937 if (link) {
4938 /* Perform a reset if the media type changed. */
4939 if (hw->dev_spec._82575.media_changed) {
4940 hw->dev_spec._82575.media_changed = false;
4941 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4942 igb_reset(adapter);
4943 }
4944 /* Cancel scheduled suspend requests. */
4945 pm_runtime_resume(netdev->dev.parent);
4946
4947 if (!netif_carrier_ok(netdev)) {
4948 u32 ctrl;
4949
4950 hw->mac.ops.get_speed_and_duplex(hw,
4951 &adapter->link_speed,
4952 &adapter->link_duplex);
4953
4954 ctrl = rd32(E1000_CTRL);
4955 /* Links status message must follow this format */
4956 netdev_info(netdev,
4957 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4958 netdev->name,
4959 adapter->link_speed,
4960 adapter->link_duplex == FULL_DUPLEX ?
4961 "Full" : "Half",
4962 (ctrl & E1000_CTRL_TFCE) &&
4963 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4964 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4965 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4966
4967 /* disable EEE if enabled */
4968 if ((adapter->flags & IGB_FLAG_EEE) &&
4969 (adapter->link_duplex == HALF_DUPLEX)) {
4970 dev_info(&adapter->pdev->dev,
4971 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4972 adapter->hw.dev_spec._82575.eee_disable = true;
4973 adapter->flags &= ~IGB_FLAG_EEE;
4974 }
4975
4976 /* check if SmartSpeed worked */
4977 igb_check_downshift(hw);
4978 if (phy->speed_downgraded)
4979 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4980
4981 /* check for thermal sensor event */
4982 if (igb_thermal_sensor_event(hw,
4983 E1000_THSTAT_LINK_THROTTLE))
4984 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4985
4986 /* adjust timeout factor according to speed/duplex */
4987 adapter->tx_timeout_factor = 1;
4988 switch (adapter->link_speed) {
4989 case SPEED_10:
4990 adapter->tx_timeout_factor = 14;
4991 break;
4992 case SPEED_100:
4993 /* maybe add some timeout factor ? */
4994 break;
4995 }
4996
4997 if (adapter->link_speed != SPEED_1000)
4998 goto no_wait;
4999
5000 /* wait for Remote receiver status OK */
5001retry_read_status:
5002 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5003 &phy_data)) {
5004 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5005 retry_count) {
5006 msleep(100);
5007 retry_count--;
5008 goto retry_read_status;
5009 } else if (!retry_count) {
5010 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5011 }
5012 } else {
5013 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5014 }
5015no_wait:
5016 netif_carrier_on(netdev);
5017
5018 igb_ping_all_vfs(adapter);
5019 igb_check_vf_rate_limit(adapter);
5020
5021 /* link state has changed, schedule phy info update */
5022 if (!test_bit(__IGB_DOWN, &adapter->state))
5023 mod_timer(&adapter->phy_info_timer,
5024 round_jiffies(jiffies + 2 * HZ));
5025 }
5026 } else {
5027 if (netif_carrier_ok(netdev)) {
5028 adapter->link_speed = 0;
5029 adapter->link_duplex = 0;
5030
5031 /* check for thermal sensor event */
5032 if (igb_thermal_sensor_event(hw,
5033 E1000_THSTAT_PWR_DOWN)) {
5034 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5035 }
5036
5037 /* Links status message must follow this format */
5038 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5039 netdev->name);
5040 netif_carrier_off(netdev);
5041
5042 igb_ping_all_vfs(adapter);
5043
5044 /* link state has changed, schedule phy info update */
5045 if (!test_bit(__IGB_DOWN, &adapter->state))
5046 mod_timer(&adapter->phy_info_timer,
5047 round_jiffies(jiffies + 2 * HZ));
5048
5049 /* link is down, time to check for alternate media */
5050 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5051 igb_check_swap_media(adapter);
5052 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5053 schedule_work(&adapter->reset_task);
5054 /* return immediately */
5055 return;
5056 }
5057 }
5058 pm_schedule_suspend(netdev->dev.parent,
5059 MSEC_PER_SEC * 5);
5060
5061 /* also check for alternate media here */
5062 } else if (!netif_carrier_ok(netdev) &&
5063 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5064 igb_check_swap_media(adapter);
5065 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5066 schedule_work(&adapter->reset_task);
5067 /* return immediately */
5068 return;
5069 }
5070 }
5071 }
5072
5073 spin_lock(&adapter->stats64_lock);
5074 igb_update_stats(adapter);
5075 spin_unlock(&adapter->stats64_lock);
5076
5077 for (i = 0; i < adapter->num_tx_queues; i++) {
5078 struct igb_ring *tx_ring = adapter->tx_ring[i];
5079 if (!netif_carrier_ok(netdev)) {
5080 /* We've lost link, so the controller stops DMA,
5081 * but we've got queued Tx work that's never going
5082 * to get done, so reset controller to flush Tx.
5083 * (Do the reset outside of interrupt context).
5084 */
5085 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5086 adapter->tx_timeout_count++;
5087 schedule_work(&adapter->reset_task);
5088 /* return immediately since reset is imminent */
5089 return;
5090 }
5091 }
5092
5093 /* Force detection of hung controller every watchdog period */
5094 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5095 }
5096
5097 /* Cause software interrupt to ensure Rx ring is cleaned */
5098 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5099 u32 eics = 0;
5100
5101 for (i = 0; i < adapter->num_q_vectors; i++)
5102 eics |= adapter->q_vector[i]->eims_value;
5103 wr32(E1000_EICS, eics);
5104 } else {
5105 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5106 }
5107
5108 igb_spoof_check(adapter);
5109 igb_ptp_rx_hang(adapter);
5110 igb_ptp_tx_hang(adapter);
5111
5112 /* Check LVMMC register on i350/i354 only */
5113 if ((adapter->hw.mac.type == e1000_i350) ||
5114 (adapter->hw.mac.type == e1000_i354))
5115 igb_check_lvmmc(adapter);
5116
5117 /* Reset the timer */
5118 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5119 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5120 mod_timer(&adapter->watchdog_timer,
5121 round_jiffies(jiffies + HZ));
5122 else
5123 mod_timer(&adapter->watchdog_timer,
5124 round_jiffies(jiffies + 2 * HZ));
5125 }
5126}
5127
5128enum latency_range {
5129 lowest_latency = 0,
5130 low_latency = 1,
5131 bulk_latency = 2,
5132 latency_invalid = 255
5133};
5134
5135/**
5136 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5137 * @q_vector: pointer to q_vector
5138 *
5139 * Stores a new ITR value based on strictly on packet size. This
5140 * algorithm is less sophisticated than that used in igb_update_itr,
5141 * due to the difficulty of synchronizing statistics across multiple
5142 * receive rings. The divisors and thresholds used by this function
5143 * were determined based on theoretical maximum wire speed and testing
5144 * data, in order to minimize response time while increasing bulk
5145 * throughput.
5146 * This functionality is controlled by ethtool's coalescing settings.
5147 * NOTE: This function is called only when operating in a multiqueue
5148 * receive environment.
5149 **/
5150static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5151{
5152 int new_val = q_vector->itr_val;
5153 int avg_wire_size = 0;
5154 struct igb_adapter *adapter = q_vector->adapter;
5155 unsigned int packets;
5156
5157 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5158 * ints/sec - ITR timer value of 120 ticks.
5159 */
5160 if (adapter->link_speed != SPEED_1000) {
5161 new_val = IGB_4K_ITR;
5162 goto set_itr_val;
5163 }
5164
5165 packets = q_vector->rx.total_packets;
5166 if (packets)
5167 avg_wire_size = q_vector->rx.total_bytes / packets;
5168
5169 packets = q_vector->tx.total_packets;
5170 if (packets)
5171 avg_wire_size = max_t(u32, avg_wire_size,
5172 q_vector->tx.total_bytes / packets);
5173
5174 /* if avg_wire_size isn't set no work was done */
5175 if (!avg_wire_size)
5176 goto clear_counts;
5177
5178 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5179 avg_wire_size += 24;
5180
5181 /* Don't starve jumbo frames */
5182 avg_wire_size = min(avg_wire_size, 3000);
5183
5184 /* Give a little boost to mid-size frames */
5185 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5186 new_val = avg_wire_size / 3;
5187 else
5188 new_val = avg_wire_size / 2;
5189
5190 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5191 if (new_val < IGB_20K_ITR &&
5192 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5193 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5194 new_val = IGB_20K_ITR;
5195
5196set_itr_val:
5197 if (new_val != q_vector->itr_val) {
5198 q_vector->itr_val = new_val;
5199 q_vector->set_itr = 1;
5200 }
5201clear_counts:
5202 q_vector->rx.total_bytes = 0;
5203 q_vector->rx.total_packets = 0;
5204 q_vector->tx.total_bytes = 0;
5205 q_vector->tx.total_packets = 0;
5206}
5207
5208/**
5209 * igb_update_itr - update the dynamic ITR value based on statistics
5210 * @q_vector: pointer to q_vector
5211 * @ring_container: ring info to update the itr for
5212 *
5213 * Stores a new ITR value based on packets and byte
5214 * counts during the last interrupt. The advantage of per interrupt
5215 * computation is faster updates and more accurate ITR for the current
5216 * traffic pattern. Constants in this function were computed
5217 * based on theoretical maximum wire speed and thresholds were set based
5218 * on testing data as well as attempting to minimize response time
5219 * while increasing bulk throughput.
5220 * This functionality is controlled by ethtool's coalescing settings.
5221 * NOTE: These calculations are only valid when operating in a single-
5222 * queue environment.
5223 **/
5224static void igb_update_itr(struct igb_q_vector *q_vector,
5225 struct igb_ring_container *ring_container)
5226{
5227 unsigned int packets = ring_container->total_packets;
5228 unsigned int bytes = ring_container->total_bytes;
5229 u8 itrval = ring_container->itr;
5230
5231 /* no packets, exit with status unchanged */
5232 if (packets == 0)
5233 return;
5234
5235 switch (itrval) {
5236 case lowest_latency:
5237 /* handle TSO and jumbo frames */
5238 if (bytes/packets > 8000)
5239 itrval = bulk_latency;
5240 else if ((packets < 5) && (bytes > 512))
5241 itrval = low_latency;
5242 break;
5243 case low_latency: /* 50 usec aka 20000 ints/s */
5244 if (bytes > 10000) {
5245 /* this if handles the TSO accounting */
5246 if (bytes/packets > 8000)
5247 itrval = bulk_latency;
5248 else if ((packets < 10) || ((bytes/packets) > 1200))
5249 itrval = bulk_latency;
5250 else if ((packets > 35))
5251 itrval = lowest_latency;
5252 } else if (bytes/packets > 2000) {
5253 itrval = bulk_latency;
5254 } else if (packets <= 2 && bytes < 512) {
5255 itrval = lowest_latency;
5256 }
5257 break;
5258 case bulk_latency: /* 250 usec aka 4000 ints/s */
5259 if (bytes > 25000) {
5260 if (packets > 35)
5261 itrval = low_latency;
5262 } else if (bytes < 1500) {
5263 itrval = low_latency;
5264 }
5265 break;
5266 }
5267
5268 /* clear work counters since we have the values we need */
5269 ring_container->total_bytes = 0;
5270 ring_container->total_packets = 0;
5271
5272 /* write updated itr to ring container */
5273 ring_container->itr = itrval;
5274}
5275
5276static void igb_set_itr(struct igb_q_vector *q_vector)
5277{
5278 struct igb_adapter *adapter = q_vector->adapter;
5279 u32 new_itr = q_vector->itr_val;
5280 u8 current_itr = 0;
5281
5282 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5283 if (adapter->link_speed != SPEED_1000) {
5284 current_itr = 0;
5285 new_itr = IGB_4K_ITR;
5286 goto set_itr_now;
5287 }
5288
5289 igb_update_itr(q_vector, &q_vector->tx);
5290 igb_update_itr(q_vector, &q_vector->rx);
5291
5292 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5293
5294 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5295 if (current_itr == lowest_latency &&
5296 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5297 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5298 current_itr = low_latency;
5299
5300 switch (current_itr) {
5301 /* counts and packets in update_itr are dependent on these numbers */
5302 case lowest_latency:
5303 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5304 break;
5305 case low_latency:
5306 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5307 break;
5308 case bulk_latency:
5309 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5310 break;
5311 default:
5312 break;
5313 }
5314
5315set_itr_now:
5316 if (new_itr != q_vector->itr_val) {
5317 /* this attempts to bias the interrupt rate towards Bulk
5318 * by adding intermediate steps when interrupt rate is
5319 * increasing
5320 */
5321 new_itr = new_itr > q_vector->itr_val ?
5322 max((new_itr * q_vector->itr_val) /
5323 (new_itr + (q_vector->itr_val >> 2)),
5324 new_itr) : new_itr;
5325 /* Don't write the value here; it resets the adapter's
5326 * internal timer, and causes us to delay far longer than
5327 * we should between interrupts. Instead, we write the ITR
5328 * value at the beginning of the next interrupt so the timing
5329 * ends up being correct.
5330 */
5331 q_vector->itr_val = new_itr;
5332 q_vector->set_itr = 1;
5333 }
5334}
5335
5336static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
5337 u32 type_tucmd, u32 mss_l4len_idx)
5338{
5339 struct e1000_adv_tx_context_desc *context_desc;
5340 u16 i = tx_ring->next_to_use;
5341
5342 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5343
5344 i++;
5345 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5346
5347 /* set bits to identify this as an advanced context descriptor */
5348 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5349
5350 /* For 82575, context index must be unique per ring. */
5351 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5352 mss_l4len_idx |= tx_ring->reg_idx << 4;
5353
5354 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5355 context_desc->seqnum_seed = 0;
5356 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5357 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5358}
5359
5360static int igb_tso(struct igb_ring *tx_ring,
5361 struct igb_tx_buffer *first,
5362 u8 *hdr_len)
5363{
5364 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5365 struct sk_buff *skb = first->skb;
5366 union {
5367 struct iphdr *v4;
5368 struct ipv6hdr *v6;
5369 unsigned char *hdr;
5370 } ip;
5371 union {
5372 struct tcphdr *tcp;
5373 unsigned char *hdr;
5374 } l4;
5375 u32 paylen, l4_offset;
5376 int err;
5377
5378 if (skb->ip_summed != CHECKSUM_PARTIAL)
5379 return 0;
5380
5381 if (!skb_is_gso(skb))
5382 return 0;
5383
5384 err = skb_cow_head(skb, 0);
5385 if (err < 0)
5386 return err;
5387
5388 ip.hdr = skb_network_header(skb);
5389 l4.hdr = skb_checksum_start(skb);
5390
5391 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5392 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5393
5394 /* initialize outer IP header fields */
5395 if (ip.v4->version == 4) {
5396 unsigned char *csum_start = skb_checksum_start(skb);
5397 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5398
5399 /* IP header will have to cancel out any data that
5400 * is not a part of the outer IP header
5401 */
5402 ip.v4->check = csum_fold(csum_partial(trans_start,
5403 csum_start - trans_start,
5404 0));
5405 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5406
5407 ip.v4->tot_len = 0;
5408 first->tx_flags |= IGB_TX_FLAGS_TSO |
5409 IGB_TX_FLAGS_CSUM |
5410 IGB_TX_FLAGS_IPV4;
5411 } else {
5412 ip.v6->payload_len = 0;
5413 first->tx_flags |= IGB_TX_FLAGS_TSO |
5414 IGB_TX_FLAGS_CSUM;
5415 }
5416
5417 /* determine offset of inner transport header */
5418 l4_offset = l4.hdr - skb->data;
5419
5420 /* compute length of segmentation header */
5421 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5422
5423 /* remove payload length from inner checksum */
5424 paylen = skb->len - l4_offset;
5425 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5426
5427 /* update gso size and bytecount with header size */
5428 first->gso_segs = skb_shinfo(skb)->gso_segs;
5429 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5430
5431 /* MSS L4LEN IDX */
5432 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5433 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5434
5435 /* VLAN MACLEN IPLEN */
5436 vlan_macip_lens = l4.hdr - ip.hdr;
5437 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5438 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5439
5440 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5441
5442 return 1;
5443}
5444
5445static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5446{
5447 unsigned int offset = 0;
5448
5449 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5450
5451 return offset == skb_checksum_start_offset(skb);
5452}
5453
5454static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5455{
5456 struct sk_buff *skb = first->skb;
5457 u32 vlan_macip_lens = 0;
5458 u32 type_tucmd = 0;
5459
5460 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5461csum_failed:
5462 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5463 return;
5464 goto no_csum;
5465 }
5466
5467 switch (skb->csum_offset) {
5468 case offsetof(struct tcphdr, check):
5469 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5470 /* fall through */
5471 case offsetof(struct udphdr, check):
5472 break;
5473 case offsetof(struct sctphdr, checksum):
5474 /* validate that this is actually an SCTP request */
5475 if (((first->protocol == htons(ETH_P_IP)) &&
5476 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5477 ((first->protocol == htons(ETH_P_IPV6)) &&
5478 igb_ipv6_csum_is_sctp(skb))) {
5479 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5480 break;
5481 }
5482 default:
5483 skb_checksum_help(skb);
5484 goto csum_failed;
5485 }
5486
5487 /* update TX checksum flag */
5488 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5489 vlan_macip_lens = skb_checksum_start_offset(skb) -
5490 skb_network_offset(skb);
5491no_csum:
5492 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5493 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5494
5495 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5496}
5497
5498#define IGB_SET_FLAG(_input, _flag, _result) \
5499 ((_flag <= _result) ? \
5500 ((u32)(_input & _flag) * (_result / _flag)) : \
5501 ((u32)(_input & _flag) / (_flag / _result)))
5502
5503static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5504{
5505 /* set type for advanced descriptor with frame checksum insertion */
5506 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5507 E1000_ADVTXD_DCMD_DEXT |
5508 E1000_ADVTXD_DCMD_IFCS;
5509
5510 /* set HW vlan bit if vlan is present */
5511 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5512 (E1000_ADVTXD_DCMD_VLE));
5513
5514 /* set segmentation bits for TSO */
5515 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5516 (E1000_ADVTXD_DCMD_TSE));
5517
5518 /* set timestamp bit if present */
5519 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5520 (E1000_ADVTXD_MAC_TSTAMP));
5521
5522 /* insert frame checksum */
5523 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5524
5525 return cmd_type;
5526}
5527
5528static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5529 union e1000_adv_tx_desc *tx_desc,
5530 u32 tx_flags, unsigned int paylen)
5531{
5532 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5533
5534 /* 82575 requires a unique index per ring */
5535 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5536 olinfo_status |= tx_ring->reg_idx << 4;
5537
5538 /* insert L4 checksum */
5539 olinfo_status |= IGB_SET_FLAG(tx_flags,
5540 IGB_TX_FLAGS_CSUM,
5541 (E1000_TXD_POPTS_TXSM << 8));
5542
5543 /* insert IPv4 checksum */
5544 olinfo_status |= IGB_SET_FLAG(tx_flags,
5545 IGB_TX_FLAGS_IPV4,
5546 (E1000_TXD_POPTS_IXSM << 8));
5547
5548 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5549}
5550
5551static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5552{
5553 struct net_device *netdev = tx_ring->netdev;
5554
5555 netif_stop_subqueue(netdev, tx_ring->queue_index);
5556
5557 /* Herbert's original patch had:
5558 * smp_mb__after_netif_stop_queue();
5559 * but since that doesn't exist yet, just open code it.
5560 */
5561 smp_mb();
5562
5563 /* We need to check again in a case another CPU has just
5564 * made room available.
5565 */
5566 if (igb_desc_unused(tx_ring) < size)
5567 return -EBUSY;
5568
5569 /* A reprieve! */
5570 netif_wake_subqueue(netdev, tx_ring->queue_index);
5571
5572 u64_stats_update_begin(&tx_ring->tx_syncp2);
5573 tx_ring->tx_stats.restart_queue2++;
5574 u64_stats_update_end(&tx_ring->tx_syncp2);
5575
5576 return 0;
5577}
5578
5579static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5580{
5581 if (igb_desc_unused(tx_ring) >= size)
5582 return 0;
5583 return __igb_maybe_stop_tx(tx_ring, size);
5584}
5585
5586static int igb_tx_map(struct igb_ring *tx_ring,
5587 struct igb_tx_buffer *first,
5588 const u8 hdr_len)
5589{
5590 struct sk_buff *skb = first->skb;
5591 struct igb_tx_buffer *tx_buffer;
5592 union e1000_adv_tx_desc *tx_desc;
5593 struct skb_frag_struct *frag;
5594 dma_addr_t dma;
5595 unsigned int data_len, size;
5596 u32 tx_flags = first->tx_flags;
5597 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5598 u16 i = tx_ring->next_to_use;
5599
5600 tx_desc = IGB_TX_DESC(tx_ring, i);
5601
5602 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5603
5604 size = skb_headlen(skb);
5605 data_len = skb->data_len;
5606
5607 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5608
5609 tx_buffer = first;
5610
5611 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5612 if (dma_mapping_error(tx_ring->dev, dma))
5613 goto dma_error;
5614
5615 /* record length, and DMA address */
5616 dma_unmap_len_set(tx_buffer, len, size);
5617 dma_unmap_addr_set(tx_buffer, dma, dma);
5618
5619 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5620
5621 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5622 tx_desc->read.cmd_type_len =
5623 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5624
5625 i++;
5626 tx_desc++;
5627 if (i == tx_ring->count) {
5628 tx_desc = IGB_TX_DESC(tx_ring, 0);
5629 i = 0;
5630 }
5631 tx_desc->read.olinfo_status = 0;
5632
5633 dma += IGB_MAX_DATA_PER_TXD;
5634 size -= IGB_MAX_DATA_PER_TXD;
5635
5636 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5637 }
5638
5639 if (likely(!data_len))
5640 break;
5641
5642 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5643
5644 i++;
5645 tx_desc++;
5646 if (i == tx_ring->count) {
5647 tx_desc = IGB_TX_DESC(tx_ring, 0);
5648 i = 0;
5649 }
5650 tx_desc->read.olinfo_status = 0;
5651
5652 size = skb_frag_size(frag);
5653 data_len -= size;
5654
5655 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5656 size, DMA_TO_DEVICE);
5657
5658 tx_buffer = &tx_ring->tx_buffer_info[i];
5659 }
5660
5661 /* write last descriptor with RS and EOP bits */
5662 cmd_type |= size | IGB_TXD_DCMD;
5663 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5664
5665 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5666
5667 /* set the timestamp */
5668 first->time_stamp = jiffies;
5669
5670 /* Force memory writes to complete before letting h/w know there
5671 * are new descriptors to fetch. (Only applicable for weak-ordered
5672 * memory model archs, such as IA-64).
5673 *
5674 * We also need this memory barrier to make certain all of the
5675 * status bits have been updated before next_to_watch is written.
5676 */
5677 wmb();
5678
5679 /* set next_to_watch value indicating a packet is present */
5680 first->next_to_watch = tx_desc;
5681
5682 i++;
5683 if (i == tx_ring->count)
5684 i = 0;
5685
5686 tx_ring->next_to_use = i;
5687
5688 /* Make sure there is space in the ring for the next send. */
5689 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5690
5691 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5692 writel(i, tx_ring->tail);
5693
5694 /* we need this if more than one processor can write to our tail
5695 * at a time, it synchronizes IO on IA64/Altix systems
5696 */
5697 mmiowb();
5698 }
5699 return 0;
5700
5701dma_error:
5702 dev_err(tx_ring->dev, "TX DMA map failed\n");
5703 tx_buffer = &tx_ring->tx_buffer_info[i];
5704
5705 /* clear dma mappings for failed tx_buffer_info map */
5706 while (tx_buffer != first) {
5707 if (dma_unmap_len(tx_buffer, len))
5708 dma_unmap_page(tx_ring->dev,
5709 dma_unmap_addr(tx_buffer, dma),
5710 dma_unmap_len(tx_buffer, len),
5711 DMA_TO_DEVICE);
5712 dma_unmap_len_set(tx_buffer, len, 0);
5713
5714 if (i-- == 0)
5715 i += tx_ring->count;
5716 tx_buffer = &tx_ring->tx_buffer_info[i];
5717 }
5718
5719 if (dma_unmap_len(tx_buffer, len))
5720 dma_unmap_single(tx_ring->dev,
5721 dma_unmap_addr(tx_buffer, dma),
5722 dma_unmap_len(tx_buffer, len),
5723 DMA_TO_DEVICE);
5724 dma_unmap_len_set(tx_buffer, len, 0);
5725
5726 dev_kfree_skb_any(tx_buffer->skb);
5727 tx_buffer->skb = NULL;
5728
5729 tx_ring->next_to_use = i;
5730
5731 return -1;
5732}
5733
5734netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5735 struct igb_ring *tx_ring)
5736{
5737 struct igb_tx_buffer *first;
5738 int tso;
5739 u32 tx_flags = 0;
5740 unsigned short f;
5741 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5742 __be16 protocol = vlan_get_protocol(skb);
5743 u8 hdr_len = 0;
5744
5745 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5746 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5747 * + 2 desc gap to keep tail from touching head,
5748 * + 1 desc for context descriptor,
5749 * otherwise try next time
5750 */
5751 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5752 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5753
5754 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5755 /* this is a hard error */
5756 return NETDEV_TX_BUSY;
5757 }
5758
5759 /* record the location of the first descriptor for this packet */
5760 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5761 first->skb = skb;
5762 first->bytecount = skb->len;
5763 first->gso_segs = 1;
5764
5765 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5766 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5767
5768 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
5769 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5770 &adapter->state)) {
5771 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5772 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5773
5774 adapter->ptp_tx_skb = skb_get(skb);
5775 adapter->ptp_tx_start = jiffies;
5776 if (adapter->hw.mac.type == e1000_82576)
5777 schedule_work(&adapter->ptp_tx_work);
5778 } else {
5779 adapter->tx_hwtstamp_skipped++;
5780 }
5781 }
5782
5783 skb_tx_timestamp(skb);
5784
5785 if (skb_vlan_tag_present(skb)) {
5786 tx_flags |= IGB_TX_FLAGS_VLAN;
5787 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5788 }
5789
5790 /* record initial flags and protocol */
5791 first->tx_flags = tx_flags;
5792 first->protocol = protocol;
5793
5794 tso = igb_tso(tx_ring, first, &hdr_len);
5795 if (tso < 0)
5796 goto out_drop;
5797 else if (!tso)
5798 igb_tx_csum(tx_ring, first);
5799
5800 if (igb_tx_map(tx_ring, first, hdr_len))
5801 goto cleanup_tx_tstamp;
5802
5803 return NETDEV_TX_OK;
5804
5805out_drop:
5806 dev_kfree_skb_any(first->skb);
5807 first->skb = NULL;
5808cleanup_tx_tstamp:
5809 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
5810 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5811
5812 dev_kfree_skb_any(adapter->ptp_tx_skb);
5813 adapter->ptp_tx_skb = NULL;
5814 if (adapter->hw.mac.type == e1000_82576)
5815 cancel_work_sync(&adapter->ptp_tx_work);
5816 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
5817 }
5818
5819 return NETDEV_TX_OK;
5820}
5821
5822static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5823 struct sk_buff *skb)
5824{
5825 unsigned int r_idx = skb->queue_mapping;
5826
5827 if (r_idx >= adapter->num_tx_queues)
5828 r_idx = r_idx % adapter->num_tx_queues;
5829
5830 return adapter->tx_ring[r_idx];
5831}
5832
5833static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5834 struct net_device *netdev)
5835{
5836 struct igb_adapter *adapter = netdev_priv(netdev);
5837
5838 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5839 * in order to meet this minimum size requirement.
5840 */
5841 if (skb_put_padto(skb, 17))
5842 return NETDEV_TX_OK;
5843
5844 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5845}
5846
5847/**
5848 * igb_tx_timeout - Respond to a Tx Hang
5849 * @netdev: network interface device structure
5850 **/
5851static void igb_tx_timeout(struct net_device *netdev)
5852{
5853 struct igb_adapter *adapter = netdev_priv(netdev);
5854 struct e1000_hw *hw = &adapter->hw;
5855
5856 /* Do the reset outside of interrupt context */
5857 adapter->tx_timeout_count++;
5858
5859 if (hw->mac.type >= e1000_82580)
5860 hw->dev_spec._82575.global_device_reset = true;
5861
5862 schedule_work(&adapter->reset_task);
5863 wr32(E1000_EICS,
5864 (adapter->eims_enable_mask & ~adapter->eims_other));
5865}
5866
5867static void igb_reset_task(struct work_struct *work)
5868{
5869 struct igb_adapter *adapter;
5870 adapter = container_of(work, struct igb_adapter, reset_task);
5871
5872 igb_dump(adapter);
5873 netdev_err(adapter->netdev, "Reset adapter\n");
5874 igb_reinit_locked(adapter);
5875}
5876
5877/**
5878 * igb_get_stats64 - Get System Network Statistics
5879 * @netdev: network interface device structure
5880 * @stats: rtnl_link_stats64 pointer
5881 **/
5882static void igb_get_stats64(struct net_device *netdev,
5883 struct rtnl_link_stats64 *stats)
5884{
5885 struct igb_adapter *adapter = netdev_priv(netdev);
5886
5887 spin_lock(&adapter->stats64_lock);
5888 igb_update_stats(adapter);
5889 memcpy(stats, &adapter->stats64, sizeof(*stats));
5890 spin_unlock(&adapter->stats64_lock);
5891}
5892
5893/**
5894 * igb_change_mtu - Change the Maximum Transfer Unit
5895 * @netdev: network interface device structure
5896 * @new_mtu: new value for maximum frame size
5897 *
5898 * Returns 0 on success, negative on failure
5899 **/
5900static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5901{
5902 struct igb_adapter *adapter = netdev_priv(netdev);
5903 struct pci_dev *pdev = adapter->pdev;
5904 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5905
5906 /* adjust max frame to be at least the size of a standard frame */
5907 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5908 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5909
5910 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5911 usleep_range(1000, 2000);
5912
5913 /* igb_down has a dependency on max_frame_size */
5914 adapter->max_frame_size = max_frame;
5915
5916 if (netif_running(netdev))
5917 igb_down(adapter);
5918
5919 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5920 netdev->mtu, new_mtu);
5921 netdev->mtu = new_mtu;
5922
5923 if (netif_running(netdev))
5924 igb_up(adapter);
5925 else
5926 igb_reset(adapter);
5927
5928 clear_bit(__IGB_RESETTING, &adapter->state);
5929
5930 return 0;
5931}
5932
5933/**
5934 * igb_update_stats - Update the board statistics counters
5935 * @adapter: board private structure
5936 **/
5937void igb_update_stats(struct igb_adapter *adapter)
5938{
5939 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5940 struct e1000_hw *hw = &adapter->hw;
5941 struct pci_dev *pdev = adapter->pdev;
5942 u32 reg, mpc;
5943 int i;
5944 u64 bytes, packets;
5945 unsigned int start;
5946 u64 _bytes, _packets;
5947
5948 /* Prevent stats update while adapter is being reset, or if the pci
5949 * connection is down.
5950 */
5951 if (adapter->link_speed == 0)
5952 return;
5953 if (pci_channel_offline(pdev))
5954 return;
5955
5956 bytes = 0;
5957 packets = 0;
5958
5959 rcu_read_lock();
5960 for (i = 0; i < adapter->num_rx_queues; i++) {
5961 struct igb_ring *ring = adapter->rx_ring[i];
5962 u32 rqdpc = rd32(E1000_RQDPC(i));
5963 if (hw->mac.type >= e1000_i210)
5964 wr32(E1000_RQDPC(i), 0);
5965
5966 if (rqdpc) {
5967 ring->rx_stats.drops += rqdpc;
5968 net_stats->rx_fifo_errors += rqdpc;
5969 }
5970
5971 do {
5972 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5973 _bytes = ring->rx_stats.bytes;
5974 _packets = ring->rx_stats.packets;
5975 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5976 bytes += _bytes;
5977 packets += _packets;
5978 }
5979
5980 net_stats->rx_bytes = bytes;
5981 net_stats->rx_packets = packets;
5982
5983 bytes = 0;
5984 packets = 0;
5985 for (i = 0; i < adapter->num_tx_queues; i++) {
5986 struct igb_ring *ring = adapter->tx_ring[i];
5987 do {
5988 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5989 _bytes = ring->tx_stats.bytes;
5990 _packets = ring->tx_stats.packets;
5991 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5992 bytes += _bytes;
5993 packets += _packets;
5994 }
5995 net_stats->tx_bytes = bytes;
5996 net_stats->tx_packets = packets;
5997 rcu_read_unlock();
5998
5999 /* read stats registers */
6000 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6001 adapter->stats.gprc += rd32(E1000_GPRC);
6002 adapter->stats.gorc += rd32(E1000_GORCL);
6003 rd32(E1000_GORCH); /* clear GORCL */
6004 adapter->stats.bprc += rd32(E1000_BPRC);
6005 adapter->stats.mprc += rd32(E1000_MPRC);
6006 adapter->stats.roc += rd32(E1000_ROC);
6007
6008 adapter->stats.prc64 += rd32(E1000_PRC64);
6009 adapter->stats.prc127 += rd32(E1000_PRC127);
6010 adapter->stats.prc255 += rd32(E1000_PRC255);
6011 adapter->stats.prc511 += rd32(E1000_PRC511);
6012 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6013 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6014 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6015 adapter->stats.sec += rd32(E1000_SEC);
6016
6017 mpc = rd32(E1000_MPC);
6018 adapter->stats.mpc += mpc;
6019 net_stats->rx_fifo_errors += mpc;
6020 adapter->stats.scc += rd32(E1000_SCC);
6021 adapter->stats.ecol += rd32(E1000_ECOL);
6022 adapter->stats.mcc += rd32(E1000_MCC);
6023 adapter->stats.latecol += rd32(E1000_LATECOL);
6024 adapter->stats.dc += rd32(E1000_DC);
6025 adapter->stats.rlec += rd32(E1000_RLEC);
6026 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6027 adapter->stats.xontxc += rd32(E1000_XONTXC);
6028 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6029 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6030 adapter->stats.fcruc += rd32(E1000_FCRUC);
6031 adapter->stats.gptc += rd32(E1000_GPTC);
6032 adapter->stats.gotc += rd32(E1000_GOTCL);
6033 rd32(E1000_GOTCH); /* clear GOTCL */
6034 adapter->stats.rnbc += rd32(E1000_RNBC);
6035 adapter->stats.ruc += rd32(E1000_RUC);
6036 adapter->stats.rfc += rd32(E1000_RFC);
6037 adapter->stats.rjc += rd32(E1000_RJC);
6038 adapter->stats.tor += rd32(E1000_TORH);
6039 adapter->stats.tot += rd32(E1000_TOTH);
6040 adapter->stats.tpr += rd32(E1000_TPR);
6041
6042 adapter->stats.ptc64 += rd32(E1000_PTC64);
6043 adapter->stats.ptc127 += rd32(E1000_PTC127);
6044 adapter->stats.ptc255 += rd32(E1000_PTC255);
6045 adapter->stats.ptc511 += rd32(E1000_PTC511);
6046 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6047 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6048
6049 adapter->stats.mptc += rd32(E1000_MPTC);
6050 adapter->stats.bptc += rd32(E1000_BPTC);
6051
6052 adapter->stats.tpt += rd32(E1000_TPT);
6053 adapter->stats.colc += rd32(E1000_COLC);
6054
6055 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6056 /* read internal phy specific stats */
6057 reg = rd32(E1000_CTRL_EXT);
6058 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6059 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6060
6061 /* this stat has invalid values on i210/i211 */
6062 if ((hw->mac.type != e1000_i210) &&
6063 (hw->mac.type != e1000_i211))
6064 adapter->stats.tncrs += rd32(E1000_TNCRS);
6065 }
6066
6067 adapter->stats.tsctc += rd32(E1000_TSCTC);
6068 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6069
6070 adapter->stats.iac += rd32(E1000_IAC);
6071 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6072 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6073 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6074 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6075 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6076 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6077 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6078 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6079
6080 /* Fill out the OS statistics structure */
6081 net_stats->multicast = adapter->stats.mprc;
6082 net_stats->collisions = adapter->stats.colc;
6083
6084 /* Rx Errors */
6085
6086 /* RLEC on some newer hardware can be incorrect so build
6087 * our own version based on RUC and ROC
6088 */
6089 net_stats->rx_errors = adapter->stats.rxerrc +
6090 adapter->stats.crcerrs + adapter->stats.algnerrc +
6091 adapter->stats.ruc + adapter->stats.roc +
6092 adapter->stats.cexterr;
6093 net_stats->rx_length_errors = adapter->stats.ruc +
6094 adapter->stats.roc;
6095 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6096 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6097 net_stats->rx_missed_errors = adapter->stats.mpc;
6098
6099 /* Tx Errors */
6100 net_stats->tx_errors = adapter->stats.ecol +
6101 adapter->stats.latecol;
6102 net_stats->tx_aborted_errors = adapter->stats.ecol;
6103 net_stats->tx_window_errors = adapter->stats.latecol;
6104 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6105
6106 /* Tx Dropped needs to be maintained elsewhere */
6107
6108 /* Management Stats */
6109 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6110 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6111 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6112
6113 /* OS2BMC Stats */
6114 reg = rd32(E1000_MANC);
6115 if (reg & E1000_MANC_EN_BMC2OS) {
6116 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6117 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6118 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6119 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6120 }
6121}
6122
6123static void igb_tsync_interrupt(struct igb_adapter *adapter)
6124{
6125 struct e1000_hw *hw = &adapter->hw;
6126 struct ptp_clock_event event;
6127 struct timespec64 ts;
6128 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6129
6130 if (tsicr & TSINTR_SYS_WRAP) {
6131 event.type = PTP_CLOCK_PPS;
6132 if (adapter->ptp_caps.pps)
6133 ptp_clock_event(adapter->ptp_clock, &event);
6134 ack |= TSINTR_SYS_WRAP;
6135 }
6136
6137 if (tsicr & E1000_TSICR_TXTS) {
6138 /* retrieve hardware timestamp */
6139 schedule_work(&adapter->ptp_tx_work);
6140 ack |= E1000_TSICR_TXTS;
6141 }
6142
6143 if (tsicr & TSINTR_TT0) {
6144 spin_lock(&adapter->tmreg_lock);
6145 ts = timespec64_add(adapter->perout[0].start,
6146 adapter->perout[0].period);
6147 /* u32 conversion of tv_sec is safe until y2106 */
6148 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6149 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6150 tsauxc = rd32(E1000_TSAUXC);
6151 tsauxc |= TSAUXC_EN_TT0;
6152 wr32(E1000_TSAUXC, tsauxc);
6153 adapter->perout[0].start = ts;
6154 spin_unlock(&adapter->tmreg_lock);
6155 ack |= TSINTR_TT0;
6156 }
6157
6158 if (tsicr & TSINTR_TT1) {
6159 spin_lock(&adapter->tmreg_lock);
6160 ts = timespec64_add(adapter->perout[1].start,
6161 adapter->perout[1].period);
6162 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6163 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6164 tsauxc = rd32(E1000_TSAUXC);
6165 tsauxc |= TSAUXC_EN_TT1;
6166 wr32(E1000_TSAUXC, tsauxc);
6167 adapter->perout[1].start = ts;
6168 spin_unlock(&adapter->tmreg_lock);
6169 ack |= TSINTR_TT1;
6170 }
6171
6172 if (tsicr & TSINTR_AUTT0) {
6173 nsec = rd32(E1000_AUXSTMPL0);
6174 sec = rd32(E1000_AUXSTMPH0);
6175 event.type = PTP_CLOCK_EXTTS;
6176 event.index = 0;
6177 event.timestamp = sec * 1000000000ULL + nsec;
6178 ptp_clock_event(adapter->ptp_clock, &event);
6179 ack |= TSINTR_AUTT0;
6180 }
6181
6182 if (tsicr & TSINTR_AUTT1) {
6183 nsec = rd32(E1000_AUXSTMPL1);
6184 sec = rd32(E1000_AUXSTMPH1);
6185 event.type = PTP_CLOCK_EXTTS;
6186 event.index = 1;
6187 event.timestamp = sec * 1000000000ULL + nsec;
6188 ptp_clock_event(adapter->ptp_clock, &event);
6189 ack |= TSINTR_AUTT1;
6190 }
6191
6192 /* acknowledge the interrupts */
6193 wr32(E1000_TSICR, ack);
6194}
6195
6196static irqreturn_t igb_msix_other(int irq, void *data)
6197{
6198 struct igb_adapter *adapter = data;
6199 struct e1000_hw *hw = &adapter->hw;
6200 u32 icr = rd32(E1000_ICR);
6201 /* reading ICR causes bit 31 of EICR to be cleared */
6202
6203 if (icr & E1000_ICR_DRSTA)
6204 schedule_work(&adapter->reset_task);
6205
6206 if (icr & E1000_ICR_DOUTSYNC) {
6207 /* HW is reporting DMA is out of sync */
6208 adapter->stats.doosync++;
6209 /* The DMA Out of Sync is also indication of a spoof event
6210 * in IOV mode. Check the Wrong VM Behavior register to
6211 * see if it is really a spoof event.
6212 */
6213 igb_check_wvbr(adapter);
6214 }
6215
6216 /* Check for a mailbox event */
6217 if (icr & E1000_ICR_VMMB)
6218 igb_msg_task(adapter);
6219
6220 if (icr & E1000_ICR_LSC) {
6221 hw->mac.get_link_status = 1;
6222 /* guard against interrupt when we're going down */
6223 if (!test_bit(__IGB_DOWN, &adapter->state))
6224 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6225 }
6226
6227 if (icr & E1000_ICR_TS)
6228 igb_tsync_interrupt(adapter);
6229
6230 wr32(E1000_EIMS, adapter->eims_other);
6231
6232 return IRQ_HANDLED;
6233}
6234
6235static void igb_write_itr(struct igb_q_vector *q_vector)
6236{
6237 struct igb_adapter *adapter = q_vector->adapter;
6238 u32 itr_val = q_vector->itr_val & 0x7FFC;
6239
6240 if (!q_vector->set_itr)
6241 return;
6242
6243 if (!itr_val)
6244 itr_val = 0x4;
6245
6246 if (adapter->hw.mac.type == e1000_82575)
6247 itr_val |= itr_val << 16;
6248 else
6249 itr_val |= E1000_EITR_CNT_IGNR;
6250
6251 writel(itr_val, q_vector->itr_register);
6252 q_vector->set_itr = 0;
6253}
6254
6255static irqreturn_t igb_msix_ring(int irq, void *data)
6256{
6257 struct igb_q_vector *q_vector = data;
6258
6259 /* Write the ITR value calculated from the previous interrupt. */
6260 igb_write_itr(q_vector);
6261
6262 napi_schedule(&q_vector->napi);
6263
6264 return IRQ_HANDLED;
6265}
6266
6267#ifdef CONFIG_IGB_DCA
6268static void igb_update_tx_dca(struct igb_adapter *adapter,
6269 struct igb_ring *tx_ring,
6270 int cpu)
6271{
6272 struct e1000_hw *hw = &adapter->hw;
6273 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6274
6275 if (hw->mac.type != e1000_82575)
6276 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6277
6278 /* We can enable relaxed ordering for reads, but not writes when
6279 * DCA is enabled. This is due to a known issue in some chipsets
6280 * which will cause the DCA tag to be cleared.
6281 */
6282 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6283 E1000_DCA_TXCTRL_DATA_RRO_EN |
6284 E1000_DCA_TXCTRL_DESC_DCA_EN;
6285
6286 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6287}
6288
6289static void igb_update_rx_dca(struct igb_adapter *adapter,
6290 struct igb_ring *rx_ring,
6291 int cpu)
6292{
6293 struct e1000_hw *hw = &adapter->hw;
6294 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6295
6296 if (hw->mac.type != e1000_82575)
6297 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6298
6299 /* We can enable relaxed ordering for reads, but not writes when
6300 * DCA is enabled. This is due to a known issue in some chipsets
6301 * which will cause the DCA tag to be cleared.
6302 */
6303 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6304 E1000_DCA_RXCTRL_DESC_DCA_EN;
6305
6306 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6307}
6308
6309static void igb_update_dca(struct igb_q_vector *q_vector)
6310{
6311 struct igb_adapter *adapter = q_vector->adapter;
6312 int cpu = get_cpu();
6313
6314 if (q_vector->cpu == cpu)
6315 goto out_no_update;
6316
6317 if (q_vector->tx.ring)
6318 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6319
6320 if (q_vector->rx.ring)
6321 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6322
6323 q_vector->cpu = cpu;
6324out_no_update:
6325 put_cpu();
6326}
6327
6328static void igb_setup_dca(struct igb_adapter *adapter)
6329{
6330 struct e1000_hw *hw = &adapter->hw;
6331 int i;
6332
6333 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6334 return;
6335
6336 /* Always use CB2 mode, difference is masked in the CB driver. */
6337 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6338
6339 for (i = 0; i < adapter->num_q_vectors; i++) {
6340 adapter->q_vector[i]->cpu = -1;
6341 igb_update_dca(adapter->q_vector[i]);
6342 }
6343}
6344
6345static int __igb_notify_dca(struct device *dev, void *data)
6346{
6347 struct net_device *netdev = dev_get_drvdata(dev);
6348 struct igb_adapter *adapter = netdev_priv(netdev);
6349 struct pci_dev *pdev = adapter->pdev;
6350 struct e1000_hw *hw = &adapter->hw;
6351 unsigned long event = *(unsigned long *)data;
6352
6353 switch (event) {
6354 case DCA_PROVIDER_ADD:
6355 /* if already enabled, don't do it again */
6356 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6357 break;
6358 if (dca_add_requester(dev) == 0) {
6359 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6360 dev_info(&pdev->dev, "DCA enabled\n");
6361 igb_setup_dca(adapter);
6362 break;
6363 }
6364 /* Fall Through since DCA is disabled. */
6365 case DCA_PROVIDER_REMOVE:
6366 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6367 /* without this a class_device is left
6368 * hanging around in the sysfs model
6369 */
6370 dca_remove_requester(dev);
6371 dev_info(&pdev->dev, "DCA disabled\n");
6372 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6373 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6374 }
6375 break;
6376 }
6377
6378 return 0;
6379}
6380
6381static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6382 void *p)
6383{
6384 int ret_val;
6385
6386 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6387 __igb_notify_dca);
6388
6389 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6390}
6391#endif /* CONFIG_IGB_DCA */
6392
6393#ifdef CONFIG_PCI_IOV
6394static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6395{
6396 unsigned char mac_addr[ETH_ALEN];
6397
6398 eth_zero_addr(mac_addr);
6399 igb_set_vf_mac(adapter, vf, mac_addr);
6400
6401 /* By default spoof check is enabled for all VFs */
6402 adapter->vf_data[vf].spoofchk_enabled = true;
6403
6404 /* By default VFs are not trusted */
6405 adapter->vf_data[vf].trusted = false;
6406
6407 return 0;
6408}
6409
6410#endif
6411static void igb_ping_all_vfs(struct igb_adapter *adapter)
6412{
6413 struct e1000_hw *hw = &adapter->hw;
6414 u32 ping;
6415 int i;
6416
6417 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6418 ping = E1000_PF_CONTROL_MSG;
6419 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6420 ping |= E1000_VT_MSGTYPE_CTS;
6421 igb_write_mbx(hw, &ping, 1, i);
6422 }
6423}
6424
6425static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6426{
6427 struct e1000_hw *hw = &adapter->hw;
6428 u32 vmolr = rd32(E1000_VMOLR(vf));
6429 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6430
6431 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6432 IGB_VF_FLAG_MULTI_PROMISC);
6433 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6434
6435 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6436 vmolr |= E1000_VMOLR_MPME;
6437 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6438 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6439 } else {
6440 /* if we have hashes and we are clearing a multicast promisc
6441 * flag we need to write the hashes to the MTA as this step
6442 * was previously skipped
6443 */
6444 if (vf_data->num_vf_mc_hashes > 30) {
6445 vmolr |= E1000_VMOLR_MPME;
6446 } else if (vf_data->num_vf_mc_hashes) {
6447 int j;
6448
6449 vmolr |= E1000_VMOLR_ROMPE;
6450 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6451 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6452 }
6453 }
6454
6455 wr32(E1000_VMOLR(vf), vmolr);
6456
6457 /* there are flags left unprocessed, likely not supported */
6458 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6459 return -EINVAL;
6460
6461 return 0;
6462}
6463
6464static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6465 u32 *msgbuf, u32 vf)
6466{
6467 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6468 u16 *hash_list = (u16 *)&msgbuf[1];
6469 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6470 int i;
6471
6472 /* salt away the number of multicast addresses assigned
6473 * to this VF for later use to restore when the PF multi cast
6474 * list changes
6475 */
6476 vf_data->num_vf_mc_hashes = n;
6477
6478 /* only up to 30 hash values supported */
6479 if (n > 30)
6480 n = 30;
6481
6482 /* store the hashes for later use */
6483 for (i = 0; i < n; i++)
6484 vf_data->vf_mc_hashes[i] = hash_list[i];
6485
6486 /* Flush and reset the mta with the new values */
6487 igb_set_rx_mode(adapter->netdev);
6488
6489 return 0;
6490}
6491
6492static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6493{
6494 struct e1000_hw *hw = &adapter->hw;
6495 struct vf_data_storage *vf_data;
6496 int i, j;
6497
6498 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6499 u32 vmolr = rd32(E1000_VMOLR(i));
6500
6501 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6502
6503 vf_data = &adapter->vf_data[i];
6504
6505 if ((vf_data->num_vf_mc_hashes > 30) ||
6506 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6507 vmolr |= E1000_VMOLR_MPME;
6508 } else if (vf_data->num_vf_mc_hashes) {
6509 vmolr |= E1000_VMOLR_ROMPE;
6510 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6511 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6512 }
6513 wr32(E1000_VMOLR(i), vmolr);
6514 }
6515}
6516
6517static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6518{
6519 struct e1000_hw *hw = &adapter->hw;
6520 u32 pool_mask, vlvf_mask, i;
6521
6522 /* create mask for VF and other pools */
6523 pool_mask = E1000_VLVF_POOLSEL_MASK;
6524 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6525
6526 /* drop PF from pool bits */
6527 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6528 adapter->vfs_allocated_count);
6529
6530 /* Find the vlan filter for this id */
6531 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6532 u32 vlvf = rd32(E1000_VLVF(i));
6533 u32 vfta_mask, vid, vfta;
6534
6535 /* remove the vf from the pool */
6536 if (!(vlvf & vlvf_mask))
6537 continue;
6538
6539 /* clear out bit from VLVF */
6540 vlvf ^= vlvf_mask;
6541
6542 /* if other pools are present, just remove ourselves */
6543 if (vlvf & pool_mask)
6544 goto update_vlvfb;
6545
6546 /* if PF is present, leave VFTA */
6547 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6548 goto update_vlvf;
6549
6550 vid = vlvf & E1000_VLVF_VLANID_MASK;
6551 vfta_mask = BIT(vid % 32);
6552
6553 /* clear bit from VFTA */
6554 vfta = adapter->shadow_vfta[vid / 32];
6555 if (vfta & vfta_mask)
6556 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6557update_vlvf:
6558 /* clear pool selection enable */
6559 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6560 vlvf &= E1000_VLVF_POOLSEL_MASK;
6561 else
6562 vlvf = 0;
6563update_vlvfb:
6564 /* clear pool bits */
6565 wr32(E1000_VLVF(i), vlvf);
6566 }
6567}
6568
6569static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6570{
6571 u32 vlvf;
6572 int idx;
6573
6574 /* short cut the special case */
6575 if (vlan == 0)
6576 return 0;
6577
6578 /* Search for the VLAN id in the VLVF entries */
6579 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6580 vlvf = rd32(E1000_VLVF(idx));
6581 if ((vlvf & VLAN_VID_MASK) == vlan)
6582 break;
6583 }
6584
6585 return idx;
6586}
6587
6588static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6589{
6590 struct e1000_hw *hw = &adapter->hw;
6591 u32 bits, pf_id;
6592 int idx;
6593
6594 idx = igb_find_vlvf_entry(hw, vid);
6595 if (!idx)
6596 return;
6597
6598 /* See if any other pools are set for this VLAN filter
6599 * entry other than the PF.
6600 */
6601 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6602 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6603 bits &= rd32(E1000_VLVF(idx));
6604
6605 /* Disable the filter so this falls into the default pool. */
6606 if (!bits) {
6607 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6608 wr32(E1000_VLVF(idx), BIT(pf_id));
6609 else
6610 wr32(E1000_VLVF(idx), 0);
6611 }
6612}
6613
6614static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6615 bool add, u32 vf)
6616{
6617 int pf_id = adapter->vfs_allocated_count;
6618 struct e1000_hw *hw = &adapter->hw;
6619 int err;
6620
6621 /* If VLAN overlaps with one the PF is currently monitoring make
6622 * sure that we are able to allocate a VLVF entry. This may be
6623 * redundant but it guarantees PF will maintain visibility to
6624 * the VLAN.
6625 */
6626 if (add && test_bit(vid, adapter->active_vlans)) {
6627 err = igb_vfta_set(hw, vid, pf_id, true, false);
6628 if (err)
6629 return err;
6630 }
6631
6632 err = igb_vfta_set(hw, vid, vf, add, false);
6633
6634 if (add && !err)
6635 return err;
6636
6637 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6638 * we may need to drop the PF pool bit in order to allow us to free
6639 * up the VLVF resources.
6640 */
6641 if (test_bit(vid, adapter->active_vlans) ||
6642 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6643 igb_update_pf_vlvf(adapter, vid);
6644
6645 return err;
6646}
6647
6648static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6649{
6650 struct e1000_hw *hw = &adapter->hw;
6651
6652 if (vid)
6653 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6654 else
6655 wr32(E1000_VMVIR(vf), 0);
6656}
6657
6658static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6659 u16 vlan, u8 qos)
6660{
6661 int err;
6662
6663 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6664 if (err)
6665 return err;
6666
6667 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6668 igb_set_vmolr(adapter, vf, !vlan);
6669
6670 /* revoke access to previous VLAN */
6671 if (vlan != adapter->vf_data[vf].pf_vlan)
6672 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6673 false, vf);
6674
6675 adapter->vf_data[vf].pf_vlan = vlan;
6676 adapter->vf_data[vf].pf_qos = qos;
6677 igb_set_vf_vlan_strip(adapter, vf, true);
6678 dev_info(&adapter->pdev->dev,
6679 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6680 if (test_bit(__IGB_DOWN, &adapter->state)) {
6681 dev_warn(&adapter->pdev->dev,
6682 "The VF VLAN has been set, but the PF device is not up.\n");
6683 dev_warn(&adapter->pdev->dev,
6684 "Bring the PF device up before attempting to use the VF device.\n");
6685 }
6686
6687 return err;
6688}
6689
6690static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6691{
6692 /* Restore tagless access via VLAN 0 */
6693 igb_set_vf_vlan(adapter, 0, true, vf);
6694
6695 igb_set_vmvir(adapter, 0, vf);
6696 igb_set_vmolr(adapter, vf, true);
6697
6698 /* Remove any PF assigned VLAN */
6699 if (adapter->vf_data[vf].pf_vlan)
6700 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6701 false, vf);
6702
6703 adapter->vf_data[vf].pf_vlan = 0;
6704 adapter->vf_data[vf].pf_qos = 0;
6705 igb_set_vf_vlan_strip(adapter, vf, false);
6706
6707 return 0;
6708}
6709
6710static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6711 u16 vlan, u8 qos, __be16 vlan_proto)
6712{
6713 struct igb_adapter *adapter = netdev_priv(netdev);
6714
6715 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6716 return -EINVAL;
6717
6718 if (vlan_proto != htons(ETH_P_8021Q))
6719 return -EPROTONOSUPPORT;
6720
6721 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6722 igb_disable_port_vlan(adapter, vf);
6723}
6724
6725static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6726{
6727 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6728 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6729 int ret;
6730
6731 if (adapter->vf_data[vf].pf_vlan)
6732 return -1;
6733
6734 /* VLAN 0 is a special case, don't allow it to be removed */
6735 if (!vid && !add)
6736 return 0;
6737
6738 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6739 if (!ret)
6740 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6741 return ret;
6742}
6743
6744static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6745{
6746 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6747
6748 /* clear flags - except flag that indicates PF has set the MAC */
6749 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6750 vf_data->last_nack = jiffies;
6751
6752 /* reset vlans for device */
6753 igb_clear_vf_vfta(adapter, vf);
6754 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6755 igb_set_vmvir(adapter, vf_data->pf_vlan |
6756 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6757 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6758 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6759
6760 /* reset multicast table array for vf */
6761 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6762
6763 /* Flush and reset the mta with the new values */
6764 igb_set_rx_mode(adapter->netdev);
6765}
6766
6767static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6768{
6769 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6770
6771 /* clear mac address as we were hotplug removed/added */
6772 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6773 eth_zero_addr(vf_mac);
6774
6775 /* process remaining reset events */
6776 igb_vf_reset(adapter, vf);
6777}
6778
6779static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6780{
6781 struct e1000_hw *hw = &adapter->hw;
6782 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6783 u32 reg, msgbuf[3];
6784 u8 *addr = (u8 *)(&msgbuf[1]);
6785
6786 /* process all the same items cleared in a function level reset */
6787 igb_vf_reset(adapter, vf);
6788
6789 /* set vf mac address */
6790 igb_set_vf_mac(adapter, vf, vf_mac);
6791
6792 /* enable transmit and receive for vf */
6793 reg = rd32(E1000_VFTE);
6794 wr32(E1000_VFTE, reg | BIT(vf));
6795 reg = rd32(E1000_VFRE);
6796 wr32(E1000_VFRE, reg | BIT(vf));
6797
6798 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6799
6800 /* reply to reset with ack and vf mac address */
6801 if (!is_zero_ether_addr(vf_mac)) {
6802 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6803 memcpy(addr, vf_mac, ETH_ALEN);
6804 } else {
6805 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6806 }
6807 igb_write_mbx(hw, msgbuf, 3, vf);
6808}
6809
6810static void igb_flush_mac_table(struct igb_adapter *adapter)
6811{
6812 struct e1000_hw *hw = &adapter->hw;
6813 int i;
6814
6815 for (i = 0; i < hw->mac.rar_entry_count; i++) {
6816 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6817 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6818 adapter->mac_table[i].queue = 0;
6819 igb_rar_set_index(adapter, i);
6820 }
6821}
6822
6823static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
6824{
6825 struct e1000_hw *hw = &adapter->hw;
6826 /* do not count rar entries reserved for VFs MAC addresses */
6827 int rar_entries = hw->mac.rar_entry_count -
6828 adapter->vfs_allocated_count;
6829 int i, count = 0;
6830
6831 for (i = 0; i < rar_entries; i++) {
6832 /* do not count default entries */
6833 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
6834 continue;
6835
6836 /* do not count "in use" entries for different queues */
6837 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
6838 (adapter->mac_table[i].queue != queue))
6839 continue;
6840
6841 count++;
6842 }
6843
6844 return count;
6845}
6846
6847/* Set default MAC address for the PF in the first RAR entry */
6848static void igb_set_default_mac_filter(struct igb_adapter *adapter)
6849{
6850 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
6851
6852 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
6853 mac_table->queue = adapter->vfs_allocated_count;
6854 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
6855
6856 igb_rar_set_index(adapter, 0);
6857}
6858
6859static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6860 const u8 queue)
6861{
6862 struct e1000_hw *hw = &adapter->hw;
6863 int rar_entries = hw->mac.rar_entry_count -
6864 adapter->vfs_allocated_count;
6865 int i;
6866
6867 if (is_zero_ether_addr(addr))
6868 return -EINVAL;
6869
6870 /* Search for the first empty entry in the MAC table.
6871 * Do not touch entries at the end of the table reserved for the VF MAC
6872 * addresses.
6873 */
6874 for (i = 0; i < rar_entries; i++) {
6875 if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
6876 continue;
6877
6878 ether_addr_copy(adapter->mac_table[i].addr, addr);
6879 adapter->mac_table[i].queue = queue;
6880 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE;
6881
6882 igb_rar_set_index(adapter, i);
6883 return i;
6884 }
6885
6886 return -ENOSPC;
6887}
6888
6889static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6890 const u8 queue)
6891{
6892 struct e1000_hw *hw = &adapter->hw;
6893 int rar_entries = hw->mac.rar_entry_count -
6894 adapter->vfs_allocated_count;
6895 int i;
6896
6897 if (is_zero_ether_addr(addr))
6898 return -EINVAL;
6899
6900 /* Search for matching entry in the MAC table based on given address
6901 * and queue. Do not touch entries at the end of the table reserved
6902 * for the VF MAC addresses.
6903 */
6904 for (i = 0; i < rar_entries; i++) {
6905 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
6906 continue;
6907 if (adapter->mac_table[i].queue != queue)
6908 continue;
6909 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
6910 continue;
6911
6912 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6913 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6914 adapter->mac_table[i].queue = 0;
6915
6916 igb_rar_set_index(adapter, i);
6917 return 0;
6918 }
6919
6920 return -ENOENT;
6921}
6922
6923static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
6924{
6925 struct igb_adapter *adapter = netdev_priv(netdev);
6926 int ret;
6927
6928 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6929
6930 return min_t(int, ret, 0);
6931}
6932
6933static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
6934{
6935 struct igb_adapter *adapter = netdev_priv(netdev);
6936
6937 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6938
6939 return 0;
6940}
6941
6942static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
6943 const u32 info, const u8 *addr)
6944{
6945 struct pci_dev *pdev = adapter->pdev;
6946 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6947 struct list_head *pos;
6948 struct vf_mac_filter *entry = NULL;
6949 int ret = 0;
6950
6951 switch (info) {
6952 case E1000_VF_MAC_FILTER_CLR:
6953 /* remove all unicast MAC filters related to the current VF */
6954 list_for_each(pos, &adapter->vf_macs.l) {
6955 entry = list_entry(pos, struct vf_mac_filter, l);
6956 if (entry->vf == vf) {
6957 entry->vf = -1;
6958 entry->free = true;
6959 igb_del_mac_filter(adapter, entry->vf_mac, vf);
6960 }
6961 }
6962 break;
6963 case E1000_VF_MAC_FILTER_ADD:
6964 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
6965 !vf_data->trusted) {
6966 dev_warn(&pdev->dev,
6967 "VF %d requested MAC filter but is administratively denied\n",
6968 vf);
6969 return -EINVAL;
6970 }
6971 if (!is_valid_ether_addr(addr)) {
6972 dev_warn(&pdev->dev,
6973 "VF %d attempted to set invalid MAC filter\n",
6974 vf);
6975 return -EINVAL;
6976 }
6977
6978 /* try to find empty slot in the list */
6979 list_for_each(pos, &adapter->vf_macs.l) {
6980 entry = list_entry(pos, struct vf_mac_filter, l);
6981 if (entry->free)
6982 break;
6983 }
6984
6985 if (entry && entry->free) {
6986 entry->free = false;
6987 entry->vf = vf;
6988 ether_addr_copy(entry->vf_mac, addr);
6989
6990 ret = igb_add_mac_filter(adapter, addr, vf);
6991 ret = min_t(int, ret, 0);
6992 } else {
6993 ret = -ENOSPC;
6994 }
6995
6996 if (ret == -ENOSPC)
6997 dev_warn(&pdev->dev,
6998 "VF %d has requested MAC filter but there is no space for it\n",
6999 vf);
7000 break;
7001 default:
7002 ret = -EINVAL;
7003 break;
7004 }
7005
7006 return ret;
7007}
7008
7009static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7010{
7011 struct pci_dev *pdev = adapter->pdev;
7012 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7013 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7014
7015 /* The VF MAC Address is stored in a packed array of bytes
7016 * starting at the second 32 bit word of the msg array
7017 */
7018 unsigned char *addr = (unsigned char *)&msg[1];
7019 int ret = 0;
7020
7021 if (!info) {
7022 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7023 !vf_data->trusted) {
7024 dev_warn(&pdev->dev,
7025 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7026 vf);
7027 return -EINVAL;
7028 }
7029
7030 if (!is_valid_ether_addr(addr)) {
7031 dev_warn(&pdev->dev,
7032 "VF %d attempted to set invalid MAC\n",
7033 vf);
7034 return -EINVAL;
7035 }
7036
7037 ret = igb_set_vf_mac(adapter, vf, addr);
7038 } else {
7039 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7040 }
7041
7042 return ret;
7043}
7044
7045static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7046{
7047 struct e1000_hw *hw = &adapter->hw;
7048 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7049 u32 msg = E1000_VT_MSGTYPE_NACK;
7050
7051 /* if device isn't clear to send it shouldn't be reading either */
7052 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7053 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7054 igb_write_mbx(hw, &msg, 1, vf);
7055 vf_data->last_nack = jiffies;
7056 }
7057}
7058
7059static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7060{
7061 struct pci_dev *pdev = adapter->pdev;
7062 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7063 struct e1000_hw *hw = &adapter->hw;
7064 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7065 s32 retval;
7066
7067 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7068
7069 if (retval) {
7070 /* if receive failed revoke VF CTS stats and restart init */
7071 dev_err(&pdev->dev, "Error receiving message from VF\n");
7072 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7073 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7074 goto unlock;
7075 goto out;
7076 }
7077
7078 /* this is a message we already processed, do nothing */
7079 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7080 goto unlock;
7081
7082 /* until the vf completes a reset it should not be
7083 * allowed to start any configuration.
7084 */
7085 if (msgbuf[0] == E1000_VF_RESET) {
7086 /* unlocks mailbox */
7087 igb_vf_reset_msg(adapter, vf);
7088 return;
7089 }
7090
7091 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7092 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7093 goto unlock;
7094 retval = -1;
7095 goto out;
7096 }
7097
7098 switch ((msgbuf[0] & 0xFFFF)) {
7099 case E1000_VF_SET_MAC_ADDR:
7100 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7101 break;
7102 case E1000_VF_SET_PROMISC:
7103 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7104 break;
7105 case E1000_VF_SET_MULTICAST:
7106 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7107 break;
7108 case E1000_VF_SET_LPE:
7109 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7110 break;
7111 case E1000_VF_SET_VLAN:
7112 retval = -1;
7113 if (vf_data->pf_vlan)
7114 dev_warn(&pdev->dev,
7115 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7116 vf);
7117 else
7118 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7119 break;
7120 default:
7121 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7122 retval = -1;
7123 break;
7124 }
7125
7126 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7127out:
7128 /* notify the VF of the results of what it sent us */
7129 if (retval)
7130 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7131 else
7132 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7133
7134 /* unlocks mailbox */
7135 igb_write_mbx(hw, msgbuf, 1, vf);
7136 return;
7137
7138unlock:
7139 igb_unlock_mbx(hw, vf);
7140}
7141
7142static void igb_msg_task(struct igb_adapter *adapter)
7143{
7144 struct e1000_hw *hw = &adapter->hw;
7145 u32 vf;
7146
7147 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7148 /* process any reset requests */
7149 if (!igb_check_for_rst(hw, vf))
7150 igb_vf_reset_event(adapter, vf);
7151
7152 /* process any messages pending */
7153 if (!igb_check_for_msg(hw, vf))
7154 igb_rcv_msg_from_vf(adapter, vf);
7155
7156 /* process any acks */
7157 if (!igb_check_for_ack(hw, vf))
7158 igb_rcv_ack_from_vf(adapter, vf);
7159 }
7160}
7161
7162/**
7163 * igb_set_uta - Set unicast filter table address
7164 * @adapter: board private structure
7165 * @set: boolean indicating if we are setting or clearing bits
7166 *
7167 * The unicast table address is a register array of 32-bit registers.
7168 * The table is meant to be used in a way similar to how the MTA is used
7169 * however due to certain limitations in the hardware it is necessary to
7170 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7171 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7172 **/
7173static void igb_set_uta(struct igb_adapter *adapter, bool set)
7174{
7175 struct e1000_hw *hw = &adapter->hw;
7176 u32 uta = set ? ~0 : 0;
7177 int i;
7178
7179 /* we only need to do this if VMDq is enabled */
7180 if (!adapter->vfs_allocated_count)
7181 return;
7182
7183 for (i = hw->mac.uta_reg_count; i--;)
7184 array_wr32(E1000_UTA, i, uta);
7185}
7186
7187/**
7188 * igb_intr_msi - Interrupt Handler
7189 * @irq: interrupt number
7190 * @data: pointer to a network interface device structure
7191 **/
7192static irqreturn_t igb_intr_msi(int irq, void *data)
7193{
7194 struct igb_adapter *adapter = data;
7195 struct igb_q_vector *q_vector = adapter->q_vector[0];
7196 struct e1000_hw *hw = &adapter->hw;
7197 /* read ICR disables interrupts using IAM */
7198 u32 icr = rd32(E1000_ICR);
7199
7200 igb_write_itr(q_vector);
7201
7202 if (icr & E1000_ICR_DRSTA)
7203 schedule_work(&adapter->reset_task);
7204
7205 if (icr & E1000_ICR_DOUTSYNC) {
7206 /* HW is reporting DMA is out of sync */
7207 adapter->stats.doosync++;
7208 }
7209
7210 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7211 hw->mac.get_link_status = 1;
7212 if (!test_bit(__IGB_DOWN, &adapter->state))
7213 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7214 }
7215
7216 if (icr & E1000_ICR_TS)
7217 igb_tsync_interrupt(adapter);
7218
7219 napi_schedule(&q_vector->napi);
7220
7221 return IRQ_HANDLED;
7222}
7223
7224/**
7225 * igb_intr - Legacy Interrupt Handler
7226 * @irq: interrupt number
7227 * @data: pointer to a network interface device structure
7228 **/
7229static irqreturn_t igb_intr(int irq, void *data)
7230{
7231 struct igb_adapter *adapter = data;
7232 struct igb_q_vector *q_vector = adapter->q_vector[0];
7233 struct e1000_hw *hw = &adapter->hw;
7234 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7235 * need for the IMC write
7236 */
7237 u32 icr = rd32(E1000_ICR);
7238
7239 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7240 * not set, then the adapter didn't send an interrupt
7241 */
7242 if (!(icr & E1000_ICR_INT_ASSERTED))
7243 return IRQ_NONE;
7244
7245 igb_write_itr(q_vector);
7246
7247 if (icr & E1000_ICR_DRSTA)
7248 schedule_work(&adapter->reset_task);
7249
7250 if (icr & E1000_ICR_DOUTSYNC) {
7251 /* HW is reporting DMA is out of sync */
7252 adapter->stats.doosync++;
7253 }
7254
7255 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7256 hw->mac.get_link_status = 1;
7257 /* guard against interrupt when we're going down */
7258 if (!test_bit(__IGB_DOWN, &adapter->state))
7259 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7260 }
7261
7262 if (icr & E1000_ICR_TS)
7263 igb_tsync_interrupt(adapter);
7264
7265 napi_schedule(&q_vector->napi);
7266
7267 return IRQ_HANDLED;
7268}
7269
7270static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7271{
7272 struct igb_adapter *adapter = q_vector->adapter;
7273 struct e1000_hw *hw = &adapter->hw;
7274
7275 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7276 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7277 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7278 igb_set_itr(q_vector);
7279 else
7280 igb_update_ring_itr(q_vector);
7281 }
7282
7283 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7284 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7285 wr32(E1000_EIMS, q_vector->eims_value);
7286 else
7287 igb_irq_enable(adapter);
7288 }
7289}
7290
7291/**
7292 * igb_poll - NAPI Rx polling callback
7293 * @napi: napi polling structure
7294 * @budget: count of how many packets we should handle
7295 **/
7296static int igb_poll(struct napi_struct *napi, int budget)
7297{
7298 struct igb_q_vector *q_vector = container_of(napi,
7299 struct igb_q_vector,
7300 napi);
7301 bool clean_complete = true;
7302 int work_done = 0;
7303
7304#ifdef CONFIG_IGB_DCA
7305 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7306 igb_update_dca(q_vector);
7307#endif
7308 if (q_vector->tx.ring)
7309 clean_complete = igb_clean_tx_irq(q_vector, budget);
7310
7311 if (q_vector->rx.ring) {
7312 int cleaned = igb_clean_rx_irq(q_vector, budget);
7313
7314 work_done += cleaned;
7315 if (cleaned >= budget)
7316 clean_complete = false;
7317 }
7318
7319 /* If all work not completed, return budget and keep polling */
7320 if (!clean_complete)
7321 return budget;
7322
7323 /* If not enough Rx work done, exit the polling mode */
7324 napi_complete_done(napi, work_done);
7325 igb_ring_irq_enable(q_vector);
7326
7327 return 0;
7328}
7329
7330/**
7331 * igb_clean_tx_irq - Reclaim resources after transmit completes
7332 * @q_vector: pointer to q_vector containing needed info
7333 * @napi_budget: Used to determine if we are in netpoll
7334 *
7335 * returns true if ring is completely cleaned
7336 **/
7337static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7338{
7339 struct igb_adapter *adapter = q_vector->adapter;
7340 struct igb_ring *tx_ring = q_vector->tx.ring;
7341 struct igb_tx_buffer *tx_buffer;
7342 union e1000_adv_tx_desc *tx_desc;
7343 unsigned int total_bytes = 0, total_packets = 0;
7344 unsigned int budget = q_vector->tx.work_limit;
7345 unsigned int i = tx_ring->next_to_clean;
7346
7347 if (test_bit(__IGB_DOWN, &adapter->state))
7348 return true;
7349
7350 tx_buffer = &tx_ring->tx_buffer_info[i];
7351 tx_desc = IGB_TX_DESC(tx_ring, i);
7352 i -= tx_ring->count;
7353
7354 do {
7355 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7356
7357 /* if next_to_watch is not set then there is no work pending */
7358 if (!eop_desc)
7359 break;
7360
7361 /* prevent any other reads prior to eop_desc */
7362 smp_rmb();
7363
7364 /* if DD is not set pending work has not been completed */
7365 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7366 break;
7367
7368 /* clear next_to_watch to prevent false hangs */
7369 tx_buffer->next_to_watch = NULL;
7370
7371 /* update the statistics for this packet */
7372 total_bytes += tx_buffer->bytecount;
7373 total_packets += tx_buffer->gso_segs;
7374
7375 /* free the skb */
7376 napi_consume_skb(tx_buffer->skb, napi_budget);
7377
7378 /* unmap skb header data */
7379 dma_unmap_single(tx_ring->dev,
7380 dma_unmap_addr(tx_buffer, dma),
7381 dma_unmap_len(tx_buffer, len),
7382 DMA_TO_DEVICE);
7383
7384 /* clear tx_buffer data */
7385 dma_unmap_len_set(tx_buffer, len, 0);
7386
7387 /* clear last DMA location and unmap remaining buffers */
7388 while (tx_desc != eop_desc) {
7389 tx_buffer++;
7390 tx_desc++;
7391 i++;
7392 if (unlikely(!i)) {
7393 i -= tx_ring->count;
7394 tx_buffer = tx_ring->tx_buffer_info;
7395 tx_desc = IGB_TX_DESC(tx_ring, 0);
7396 }
7397
7398 /* unmap any remaining paged data */
7399 if (dma_unmap_len(tx_buffer, len)) {
7400 dma_unmap_page(tx_ring->dev,
7401 dma_unmap_addr(tx_buffer, dma),
7402 dma_unmap_len(tx_buffer, len),
7403 DMA_TO_DEVICE);
7404 dma_unmap_len_set(tx_buffer, len, 0);
7405 }
7406 }
7407
7408 /* move us one more past the eop_desc for start of next pkt */
7409 tx_buffer++;
7410 tx_desc++;
7411 i++;
7412 if (unlikely(!i)) {
7413 i -= tx_ring->count;
7414 tx_buffer = tx_ring->tx_buffer_info;
7415 tx_desc = IGB_TX_DESC(tx_ring, 0);
7416 }
7417
7418 /* issue prefetch for next Tx descriptor */
7419 prefetch(tx_desc);
7420
7421 /* update budget accounting */
7422 budget--;
7423 } while (likely(budget));
7424
7425 netdev_tx_completed_queue(txring_txq(tx_ring),
7426 total_packets, total_bytes);
7427 i += tx_ring->count;
7428 tx_ring->next_to_clean = i;
7429 u64_stats_update_begin(&tx_ring->tx_syncp);
7430 tx_ring->tx_stats.bytes += total_bytes;
7431 tx_ring->tx_stats.packets += total_packets;
7432 u64_stats_update_end(&tx_ring->tx_syncp);
7433 q_vector->tx.total_bytes += total_bytes;
7434 q_vector->tx.total_packets += total_packets;
7435
7436 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7437 struct e1000_hw *hw = &adapter->hw;
7438
7439 /* Detect a transmit hang in hardware, this serializes the
7440 * check with the clearing of time_stamp and movement of i
7441 */
7442 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7443 if (tx_buffer->next_to_watch &&
7444 time_after(jiffies, tx_buffer->time_stamp +
7445 (adapter->tx_timeout_factor * HZ)) &&
7446 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7447
7448 /* detected Tx unit hang */
7449 dev_err(tx_ring->dev,
7450 "Detected Tx Unit Hang\n"
7451 " Tx Queue <%d>\n"
7452 " TDH <%x>\n"
7453 " TDT <%x>\n"
7454 " next_to_use <%x>\n"
7455 " next_to_clean <%x>\n"
7456 "buffer_info[next_to_clean]\n"
7457 " time_stamp <%lx>\n"
7458 " next_to_watch <%p>\n"
7459 " jiffies <%lx>\n"
7460 " desc.status <%x>\n",
7461 tx_ring->queue_index,
7462 rd32(E1000_TDH(tx_ring->reg_idx)),
7463 readl(tx_ring->tail),
7464 tx_ring->next_to_use,
7465 tx_ring->next_to_clean,
7466 tx_buffer->time_stamp,
7467 tx_buffer->next_to_watch,
7468 jiffies,
7469 tx_buffer->next_to_watch->wb.status);
7470 netif_stop_subqueue(tx_ring->netdev,
7471 tx_ring->queue_index);
7472
7473 /* we are about to reset, no point in enabling stuff */
7474 return true;
7475 }
7476 }
7477
7478#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7479 if (unlikely(total_packets &&
7480 netif_carrier_ok(tx_ring->netdev) &&
7481 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7482 /* Make sure that anybody stopping the queue after this
7483 * sees the new next_to_clean.
7484 */
7485 smp_mb();
7486 if (__netif_subqueue_stopped(tx_ring->netdev,
7487 tx_ring->queue_index) &&
7488 !(test_bit(__IGB_DOWN, &adapter->state))) {
7489 netif_wake_subqueue(tx_ring->netdev,
7490 tx_ring->queue_index);
7491
7492 u64_stats_update_begin(&tx_ring->tx_syncp);
7493 tx_ring->tx_stats.restart_queue++;
7494 u64_stats_update_end(&tx_ring->tx_syncp);
7495 }
7496 }
7497
7498 return !!budget;
7499}
7500
7501/**
7502 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7503 * @rx_ring: rx descriptor ring to store buffers on
7504 * @old_buff: donor buffer to have page reused
7505 *
7506 * Synchronizes page for reuse by the adapter
7507 **/
7508static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7509 struct igb_rx_buffer *old_buff)
7510{
7511 struct igb_rx_buffer *new_buff;
7512 u16 nta = rx_ring->next_to_alloc;
7513
7514 new_buff = &rx_ring->rx_buffer_info[nta];
7515
7516 /* update, and store next to alloc */
7517 nta++;
7518 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7519
7520 /* Transfer page from old buffer to new buffer.
7521 * Move each member individually to avoid possible store
7522 * forwarding stalls.
7523 */
7524 new_buff->dma = old_buff->dma;
7525 new_buff->page = old_buff->page;
7526 new_buff->page_offset = old_buff->page_offset;
7527 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7528}
7529
7530static inline bool igb_page_is_reserved(struct page *page)
7531{
7532 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7533}
7534
7535static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7536{
7537 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7538 struct page *page = rx_buffer->page;
7539
7540 /* avoid re-using remote pages */
7541 if (unlikely(igb_page_is_reserved(page)))
7542 return false;
7543
7544#if (PAGE_SIZE < 8192)
7545 /* if we are only owner of page we can reuse it */
7546 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7547 return false;
7548#else
7549#define IGB_LAST_OFFSET \
7550 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7551
7552 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7553 return false;
7554#endif
7555
7556 /* If we have drained the page fragment pool we need to update
7557 * the pagecnt_bias and page count so that we fully restock the
7558 * number of references the driver holds.
7559 */
7560 if (unlikely(!pagecnt_bias)) {
7561 page_ref_add(page, USHRT_MAX);
7562 rx_buffer->pagecnt_bias = USHRT_MAX;
7563 }
7564
7565 return true;
7566}
7567
7568/**
7569 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7570 * @rx_ring: rx descriptor ring to transact packets on
7571 * @rx_buffer: buffer containing page to add
7572 * @skb: sk_buff to place the data into
7573 * @size: size of buffer to be added
7574 *
7575 * This function will add the data contained in rx_buffer->page to the skb.
7576 **/
7577static void igb_add_rx_frag(struct igb_ring *rx_ring,
7578 struct igb_rx_buffer *rx_buffer,
7579 struct sk_buff *skb,
7580 unsigned int size)
7581{
7582#if (PAGE_SIZE < 8192)
7583 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7584#else
7585 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7586 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7587 SKB_DATA_ALIGN(size);
7588#endif
7589 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7590 rx_buffer->page_offset, size, truesize);
7591#if (PAGE_SIZE < 8192)
7592 rx_buffer->page_offset ^= truesize;
7593#else
7594 rx_buffer->page_offset += truesize;
7595#endif
7596}
7597
7598static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
7599 struct igb_rx_buffer *rx_buffer,
7600 union e1000_adv_rx_desc *rx_desc,
7601 unsigned int size)
7602{
7603 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7604#if (PAGE_SIZE < 8192)
7605 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7606#else
7607 unsigned int truesize = SKB_DATA_ALIGN(size);
7608#endif
7609 unsigned int headlen;
7610 struct sk_buff *skb;
7611
7612 /* prefetch first cache line of first page */
7613 prefetch(va);
7614#if L1_CACHE_BYTES < 128
7615 prefetch(va + L1_CACHE_BYTES);
7616#endif
7617
7618 /* allocate a skb to store the frags */
7619 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
7620 if (unlikely(!skb))
7621 return NULL;
7622
7623 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
7624 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
7625 va += IGB_TS_HDR_LEN;
7626 size -= IGB_TS_HDR_LEN;
7627 }
7628
7629 /* Determine available headroom for copy */
7630 headlen = size;
7631 if (headlen > IGB_RX_HDR_LEN)
7632 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
7633
7634 /* align pull length to size of long to optimize memcpy performance */
7635 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
7636
7637 /* update all of the pointers */
7638 size -= headlen;
7639 if (size) {
7640 skb_add_rx_frag(skb, 0, rx_buffer->page,
7641 (va + headlen) - page_address(rx_buffer->page),
7642 size, truesize);
7643#if (PAGE_SIZE < 8192)
7644 rx_buffer->page_offset ^= truesize;
7645#else
7646 rx_buffer->page_offset += truesize;
7647#endif
7648 } else {
7649 rx_buffer->pagecnt_bias++;
7650 }
7651
7652 return skb;
7653}
7654
7655static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
7656 struct igb_rx_buffer *rx_buffer,
7657 union e1000_adv_rx_desc *rx_desc,
7658 unsigned int size)
7659{
7660 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7661#if (PAGE_SIZE < 8192)
7662 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7663#else
7664 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
7665 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
7666#endif
7667 struct sk_buff *skb;
7668
7669 /* prefetch first cache line of first page */
7670 prefetch(va);
7671#if L1_CACHE_BYTES < 128
7672 prefetch(va + L1_CACHE_BYTES);
7673#endif
7674
7675 /* build an skb around the page buffer */
7676 skb = build_skb(va - IGB_SKB_PAD, truesize);
7677 if (unlikely(!skb))
7678 return NULL;
7679
7680 /* update pointers within the skb to store the data */
7681 skb_reserve(skb, IGB_SKB_PAD);
7682 __skb_put(skb, size);
7683
7684 /* pull timestamp out of packet data */
7685 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7686 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
7687 __skb_pull(skb, IGB_TS_HDR_LEN);
7688 }
7689
7690 /* update buffer offset */
7691#if (PAGE_SIZE < 8192)
7692 rx_buffer->page_offset ^= truesize;
7693#else
7694 rx_buffer->page_offset += truesize;
7695#endif
7696
7697 return skb;
7698}
7699
7700static inline void igb_rx_checksum(struct igb_ring *ring,
7701 union e1000_adv_rx_desc *rx_desc,
7702 struct sk_buff *skb)
7703{
7704 skb_checksum_none_assert(skb);
7705
7706 /* Ignore Checksum bit is set */
7707 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7708 return;
7709
7710 /* Rx checksum disabled via ethtool */
7711 if (!(ring->netdev->features & NETIF_F_RXCSUM))
7712 return;
7713
7714 /* TCP/UDP checksum error bit is set */
7715 if (igb_test_staterr(rx_desc,
7716 E1000_RXDEXT_STATERR_TCPE |
7717 E1000_RXDEXT_STATERR_IPE)) {
7718 /* work around errata with sctp packets where the TCPE aka
7719 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7720 * packets, (aka let the stack check the crc32c)
7721 */
7722 if (!((skb->len == 60) &&
7723 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7724 u64_stats_update_begin(&ring->rx_syncp);
7725 ring->rx_stats.csum_err++;
7726 u64_stats_update_end(&ring->rx_syncp);
7727 }
7728 /* let the stack verify checksum errors */
7729 return;
7730 }
7731 /* It must be a TCP or UDP packet with a valid checksum */
7732 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7733 E1000_RXD_STAT_UDPCS))
7734 skb->ip_summed = CHECKSUM_UNNECESSARY;
7735
7736 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7737 le32_to_cpu(rx_desc->wb.upper.status_error));
7738}
7739
7740static inline void igb_rx_hash(struct igb_ring *ring,
7741 union e1000_adv_rx_desc *rx_desc,
7742 struct sk_buff *skb)
7743{
7744 if (ring->netdev->features & NETIF_F_RXHASH)
7745 skb_set_hash(skb,
7746 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7747 PKT_HASH_TYPE_L3);
7748}
7749
7750/**
7751 * igb_is_non_eop - process handling of non-EOP buffers
7752 * @rx_ring: Rx ring being processed
7753 * @rx_desc: Rx descriptor for current buffer
7754 * @skb: current socket buffer containing buffer in progress
7755 *
7756 * This function updates next to clean. If the buffer is an EOP buffer
7757 * this function exits returning false, otherwise it will place the
7758 * sk_buff in the next buffer to be chained and return true indicating
7759 * that this is in fact a non-EOP buffer.
7760 **/
7761static bool igb_is_non_eop(struct igb_ring *rx_ring,
7762 union e1000_adv_rx_desc *rx_desc)
7763{
7764 u32 ntc = rx_ring->next_to_clean + 1;
7765
7766 /* fetch, update, and store next to clean */
7767 ntc = (ntc < rx_ring->count) ? ntc : 0;
7768 rx_ring->next_to_clean = ntc;
7769
7770 prefetch(IGB_RX_DESC(rx_ring, ntc));
7771
7772 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7773 return false;
7774
7775 return true;
7776}
7777
7778/**
7779 * igb_cleanup_headers - Correct corrupted or empty headers
7780 * @rx_ring: rx descriptor ring packet is being transacted on
7781 * @rx_desc: pointer to the EOP Rx descriptor
7782 * @skb: pointer to current skb being fixed
7783 *
7784 * Address the case where we are pulling data in on pages only
7785 * and as such no data is present in the skb header.
7786 *
7787 * In addition if skb is not at least 60 bytes we need to pad it so that
7788 * it is large enough to qualify as a valid Ethernet frame.
7789 *
7790 * Returns true if an error was encountered and skb was freed.
7791 **/
7792static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7793 union e1000_adv_rx_desc *rx_desc,
7794 struct sk_buff *skb)
7795{
7796 if (unlikely((igb_test_staterr(rx_desc,
7797 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7798 struct net_device *netdev = rx_ring->netdev;
7799 if (!(netdev->features & NETIF_F_RXALL)) {
7800 dev_kfree_skb_any(skb);
7801 return true;
7802 }
7803 }
7804
7805 /* if eth_skb_pad returns an error the skb was freed */
7806 if (eth_skb_pad(skb))
7807 return true;
7808
7809 return false;
7810}
7811
7812/**
7813 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7814 * @rx_ring: rx descriptor ring packet is being transacted on
7815 * @rx_desc: pointer to the EOP Rx descriptor
7816 * @skb: pointer to current skb being populated
7817 *
7818 * This function checks the ring, descriptor, and packet information in
7819 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7820 * other fields within the skb.
7821 **/
7822static void igb_process_skb_fields(struct igb_ring *rx_ring,
7823 union e1000_adv_rx_desc *rx_desc,
7824 struct sk_buff *skb)
7825{
7826 struct net_device *dev = rx_ring->netdev;
7827
7828 igb_rx_hash(rx_ring, rx_desc, skb);
7829
7830 igb_rx_checksum(rx_ring, rx_desc, skb);
7831
7832 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7833 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7834 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7835
7836 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7837 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7838 u16 vid;
7839
7840 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7841 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7842 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7843 else
7844 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7845
7846 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7847 }
7848
7849 skb_record_rx_queue(skb, rx_ring->queue_index);
7850
7851 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7852}
7853
7854static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
7855 const unsigned int size)
7856{
7857 struct igb_rx_buffer *rx_buffer;
7858
7859 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7860 prefetchw(rx_buffer->page);
7861
7862 /* we are reusing so sync this buffer for CPU use */
7863 dma_sync_single_range_for_cpu(rx_ring->dev,
7864 rx_buffer->dma,
7865 rx_buffer->page_offset,
7866 size,
7867 DMA_FROM_DEVICE);
7868
7869 rx_buffer->pagecnt_bias--;
7870
7871 return rx_buffer;
7872}
7873
7874static void igb_put_rx_buffer(struct igb_ring *rx_ring,
7875 struct igb_rx_buffer *rx_buffer)
7876{
7877 if (igb_can_reuse_rx_page(rx_buffer)) {
7878 /* hand second half of page back to the ring */
7879 igb_reuse_rx_page(rx_ring, rx_buffer);
7880 } else {
7881 /* We are not reusing the buffer so unmap it and free
7882 * any references we are holding to it
7883 */
7884 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
7885 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
7886 IGB_RX_DMA_ATTR);
7887 __page_frag_cache_drain(rx_buffer->page,
7888 rx_buffer->pagecnt_bias);
7889 }
7890
7891 /* clear contents of rx_buffer */
7892 rx_buffer->page = NULL;
7893}
7894
7895static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7896{
7897 struct igb_ring *rx_ring = q_vector->rx.ring;
7898 struct sk_buff *skb = rx_ring->skb;
7899 unsigned int total_bytes = 0, total_packets = 0;
7900 u16 cleaned_count = igb_desc_unused(rx_ring);
7901
7902 while (likely(total_packets < budget)) {
7903 union e1000_adv_rx_desc *rx_desc;
7904 struct igb_rx_buffer *rx_buffer;
7905 unsigned int size;
7906
7907 /* return some buffers to hardware, one at a time is too slow */
7908 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7909 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7910 cleaned_count = 0;
7911 }
7912
7913 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7914 size = le16_to_cpu(rx_desc->wb.upper.length);
7915 if (!size)
7916 break;
7917
7918 /* This memory barrier is needed to keep us from reading
7919 * any other fields out of the rx_desc until we know the
7920 * descriptor has been written back
7921 */
7922 dma_rmb();
7923
7924 rx_buffer = igb_get_rx_buffer(rx_ring, size);
7925
7926 /* retrieve a buffer from the ring */
7927 if (skb)
7928 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
7929 else if (ring_uses_build_skb(rx_ring))
7930 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
7931 else
7932 skb = igb_construct_skb(rx_ring, rx_buffer,
7933 rx_desc, size);
7934
7935 /* exit if we failed to retrieve a buffer */
7936 if (!skb) {
7937 rx_ring->rx_stats.alloc_failed++;
7938 rx_buffer->pagecnt_bias++;
7939 break;
7940 }
7941
7942 igb_put_rx_buffer(rx_ring, rx_buffer);
7943 cleaned_count++;
7944
7945 /* fetch next buffer in frame if non-eop */
7946 if (igb_is_non_eop(rx_ring, rx_desc))
7947 continue;
7948
7949 /* verify the packet layout is correct */
7950 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7951 skb = NULL;
7952 continue;
7953 }
7954
7955 /* probably a little skewed due to removing CRC */
7956 total_bytes += skb->len;
7957
7958 /* populate checksum, timestamp, VLAN, and protocol */
7959 igb_process_skb_fields(rx_ring, rx_desc, skb);
7960
7961 napi_gro_receive(&q_vector->napi, skb);
7962
7963 /* reset skb pointer */
7964 skb = NULL;
7965
7966 /* update budget accounting */
7967 total_packets++;
7968 }
7969
7970 /* place incomplete frames back on ring for completion */
7971 rx_ring->skb = skb;
7972
7973 u64_stats_update_begin(&rx_ring->rx_syncp);
7974 rx_ring->rx_stats.packets += total_packets;
7975 rx_ring->rx_stats.bytes += total_bytes;
7976 u64_stats_update_end(&rx_ring->rx_syncp);
7977 q_vector->rx.total_packets += total_packets;
7978 q_vector->rx.total_bytes += total_bytes;
7979
7980 if (cleaned_count)
7981 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7982
7983 return total_packets;
7984}
7985
7986static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
7987{
7988 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
7989}
7990
7991static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7992 struct igb_rx_buffer *bi)
7993{
7994 struct page *page = bi->page;
7995 dma_addr_t dma;
7996
7997 /* since we are recycling buffers we should seldom need to alloc */
7998 if (likely(page))
7999 return true;
8000
8001 /* alloc new page for storage */
8002 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8003 if (unlikely(!page)) {
8004 rx_ring->rx_stats.alloc_failed++;
8005 return false;
8006 }
8007
8008 /* map page for use */
8009 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8010 igb_rx_pg_size(rx_ring),
8011 DMA_FROM_DEVICE,
8012 IGB_RX_DMA_ATTR);
8013
8014 /* if mapping failed free memory back to system since
8015 * there isn't much point in holding memory we can't use
8016 */
8017 if (dma_mapping_error(rx_ring->dev, dma)) {
8018 __free_pages(page, igb_rx_pg_order(rx_ring));
8019
8020 rx_ring->rx_stats.alloc_failed++;
8021 return false;
8022 }
8023
8024 bi->dma = dma;
8025 bi->page = page;
8026 bi->page_offset = igb_rx_offset(rx_ring);
8027 bi->pagecnt_bias = 1;
8028
8029 return true;
8030}
8031
8032/**
8033 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8034 * @adapter: address of board private structure
8035 **/
8036void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8037{
8038 union e1000_adv_rx_desc *rx_desc;
8039 struct igb_rx_buffer *bi;
8040 u16 i = rx_ring->next_to_use;
8041 u16 bufsz;
8042
8043 /* nothing to do */
8044 if (!cleaned_count)
8045 return;
8046
8047 rx_desc = IGB_RX_DESC(rx_ring, i);
8048 bi = &rx_ring->rx_buffer_info[i];
8049 i -= rx_ring->count;
8050
8051 bufsz = igb_rx_bufsz(rx_ring);
8052
8053 do {
8054 if (!igb_alloc_mapped_page(rx_ring, bi))
8055 break;
8056
8057 /* sync the buffer for use by the device */
8058 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8059 bi->page_offset, bufsz,
8060 DMA_FROM_DEVICE);
8061
8062 /* Refresh the desc even if buffer_addrs didn't change
8063 * because each write-back erases this info.
8064 */
8065 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8066
8067 rx_desc++;
8068 bi++;
8069 i++;
8070 if (unlikely(!i)) {
8071 rx_desc = IGB_RX_DESC(rx_ring, 0);
8072 bi = rx_ring->rx_buffer_info;
8073 i -= rx_ring->count;
8074 }
8075
8076 /* clear the length for the next_to_use descriptor */
8077 rx_desc->wb.upper.length = 0;
8078
8079 cleaned_count--;
8080 } while (cleaned_count);
8081
8082 i += rx_ring->count;
8083
8084 if (rx_ring->next_to_use != i) {
8085 /* record the next descriptor to use */
8086 rx_ring->next_to_use = i;
8087
8088 /* update next to alloc since we have filled the ring */
8089 rx_ring->next_to_alloc = i;
8090
8091 /* Force memory writes to complete before letting h/w
8092 * know there are new descriptors to fetch. (Only
8093 * applicable for weak-ordered memory model archs,
8094 * such as IA-64).
8095 */
8096 wmb();
8097 writel(i, rx_ring->tail);
8098 }
8099}
8100
8101/**
8102 * igb_mii_ioctl -
8103 * @netdev:
8104 * @ifreq:
8105 * @cmd:
8106 **/
8107static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8108{
8109 struct igb_adapter *adapter = netdev_priv(netdev);
8110 struct mii_ioctl_data *data = if_mii(ifr);
8111
8112 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8113 return -EOPNOTSUPP;
8114
8115 switch (cmd) {
8116 case SIOCGMIIPHY:
8117 data->phy_id = adapter->hw.phy.addr;
8118 break;
8119 case SIOCGMIIREG:
8120 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8121 &data->val_out))
8122 return -EIO;
8123 break;
8124 case SIOCSMIIREG:
8125 default:
8126 return -EOPNOTSUPP;
8127 }
8128 return 0;
8129}
8130
8131/**
8132 * igb_ioctl -
8133 * @netdev:
8134 * @ifreq:
8135 * @cmd:
8136 **/
8137static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8138{
8139 switch (cmd) {
8140 case SIOCGMIIPHY:
8141 case SIOCGMIIREG:
8142 case SIOCSMIIREG:
8143 return igb_mii_ioctl(netdev, ifr, cmd);
8144 case SIOCGHWTSTAMP:
8145 return igb_ptp_get_ts_config(netdev, ifr);
8146 case SIOCSHWTSTAMP:
8147 return igb_ptp_set_ts_config(netdev, ifr);
8148 default:
8149 return -EOPNOTSUPP;
8150 }
8151}
8152
8153void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8154{
8155 struct igb_adapter *adapter = hw->back;
8156
8157 pci_read_config_word(adapter->pdev, reg, value);
8158}
8159
8160void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8161{
8162 struct igb_adapter *adapter = hw->back;
8163
8164 pci_write_config_word(adapter->pdev, reg, *value);
8165}
8166
8167s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8168{
8169 struct igb_adapter *adapter = hw->back;
8170
8171 if (pcie_capability_read_word(adapter->pdev, reg, value))
8172 return -E1000_ERR_CONFIG;
8173
8174 return 0;
8175}
8176
8177s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8178{
8179 struct igb_adapter *adapter = hw->back;
8180
8181 if (pcie_capability_write_word(adapter->pdev, reg, *value))
8182 return -E1000_ERR_CONFIG;
8183
8184 return 0;
8185}
8186
8187static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8188{
8189 struct igb_adapter *adapter = netdev_priv(netdev);
8190 struct e1000_hw *hw = &adapter->hw;
8191 u32 ctrl, rctl;
8192 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8193
8194 if (enable) {
8195 /* enable VLAN tag insert/strip */
8196 ctrl = rd32(E1000_CTRL);
8197 ctrl |= E1000_CTRL_VME;
8198 wr32(E1000_CTRL, ctrl);
8199
8200 /* Disable CFI check */
8201 rctl = rd32(E1000_RCTL);
8202 rctl &= ~E1000_RCTL_CFIEN;
8203 wr32(E1000_RCTL, rctl);
8204 } else {
8205 /* disable VLAN tag insert/strip */
8206 ctrl = rd32(E1000_CTRL);
8207 ctrl &= ~E1000_CTRL_VME;
8208 wr32(E1000_CTRL, ctrl);
8209 }
8210
8211 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8212}
8213
8214static int igb_vlan_rx_add_vid(struct net_device *netdev,
8215 __be16 proto, u16 vid)
8216{
8217 struct igb_adapter *adapter = netdev_priv(netdev);
8218 struct e1000_hw *hw = &adapter->hw;
8219 int pf_id = adapter->vfs_allocated_count;
8220
8221 /* add the filter since PF can receive vlans w/o entry in vlvf */
8222 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8223 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8224
8225 set_bit(vid, adapter->active_vlans);
8226
8227 return 0;
8228}
8229
8230static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8231 __be16 proto, u16 vid)
8232{
8233 struct igb_adapter *adapter = netdev_priv(netdev);
8234 int pf_id = adapter->vfs_allocated_count;
8235 struct e1000_hw *hw = &adapter->hw;
8236
8237 /* remove VID from filter table */
8238 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8239 igb_vfta_set(hw, vid, pf_id, false, true);
8240
8241 clear_bit(vid, adapter->active_vlans);
8242
8243 return 0;
8244}
8245
8246static void igb_restore_vlan(struct igb_adapter *adapter)
8247{
8248 u16 vid = 1;
8249
8250 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8251 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8252
8253 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8254 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8255}
8256
8257int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8258{
8259 struct pci_dev *pdev = adapter->pdev;
8260 struct e1000_mac_info *mac = &adapter->hw.mac;
8261
8262 mac->autoneg = 0;
8263
8264 /* Make sure dplx is at most 1 bit and lsb of speed is not set
8265 * for the switch() below to work
8266 */
8267 if ((spd & 1) || (dplx & ~1))
8268 goto err_inval;
8269
8270 /* Fiber NIC's only allow 1000 gbps Full duplex
8271 * and 100Mbps Full duplex for 100baseFx sfp
8272 */
8273 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8274 switch (spd + dplx) {
8275 case SPEED_10 + DUPLEX_HALF:
8276 case SPEED_10 + DUPLEX_FULL:
8277 case SPEED_100 + DUPLEX_HALF:
8278 goto err_inval;
8279 default:
8280 break;
8281 }
8282 }
8283
8284 switch (spd + dplx) {
8285 case SPEED_10 + DUPLEX_HALF:
8286 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8287 break;
8288 case SPEED_10 + DUPLEX_FULL:
8289 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8290 break;
8291 case SPEED_100 + DUPLEX_HALF:
8292 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8293 break;
8294 case SPEED_100 + DUPLEX_FULL:
8295 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8296 break;
8297 case SPEED_1000 + DUPLEX_FULL:
8298 mac->autoneg = 1;
8299 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8300 break;
8301 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8302 default:
8303 goto err_inval;
8304 }
8305
8306 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8307 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8308
8309 return 0;
8310
8311err_inval:
8312 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8313 return -EINVAL;
8314}
8315
8316static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8317 bool runtime)
8318{
8319 struct net_device *netdev = pci_get_drvdata(pdev);
8320 struct igb_adapter *adapter = netdev_priv(netdev);
8321 struct e1000_hw *hw = &adapter->hw;
8322 u32 ctrl, rctl, status;
8323 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8324#ifdef CONFIG_PM
8325 int retval = 0;
8326#endif
8327
8328 rtnl_lock();
8329 netif_device_detach(netdev);
8330
8331 if (netif_running(netdev))
8332 __igb_close(netdev, true);
8333
8334 igb_ptp_suspend(adapter);
8335
8336 igb_clear_interrupt_scheme(adapter);
8337 rtnl_unlock();
8338
8339#ifdef CONFIG_PM
8340 retval = pci_save_state(pdev);
8341 if (retval)
8342 return retval;
8343#endif
8344
8345 status = rd32(E1000_STATUS);
8346 if (status & E1000_STATUS_LU)
8347 wufc &= ~E1000_WUFC_LNKC;
8348
8349 if (wufc) {
8350 igb_setup_rctl(adapter);
8351 igb_set_rx_mode(netdev);
8352
8353 /* turn on all-multi mode if wake on multicast is enabled */
8354 if (wufc & E1000_WUFC_MC) {
8355 rctl = rd32(E1000_RCTL);
8356 rctl |= E1000_RCTL_MPE;
8357 wr32(E1000_RCTL, rctl);
8358 }
8359
8360 ctrl = rd32(E1000_CTRL);
8361 /* advertise wake from D3Cold */
8362 #define E1000_CTRL_ADVD3WUC 0x00100000
8363 /* phy power management enable */
8364 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8365 ctrl |= E1000_CTRL_ADVD3WUC;
8366 wr32(E1000_CTRL, ctrl);
8367
8368 /* Allow time for pending master requests to run */
8369 igb_disable_pcie_master(hw);
8370
8371 wr32(E1000_WUC, E1000_WUC_PME_EN);
8372 wr32(E1000_WUFC, wufc);
8373 } else {
8374 wr32(E1000_WUC, 0);
8375 wr32(E1000_WUFC, 0);
8376 }
8377
8378 *enable_wake = wufc || adapter->en_mng_pt;
8379 if (!*enable_wake)
8380 igb_power_down_link(adapter);
8381 else
8382 igb_power_up_link(adapter);
8383
8384 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8385 * would have already happened in close and is redundant.
8386 */
8387 igb_release_hw_control(adapter);
8388
8389 pci_disable_device(pdev);
8390
8391 return 0;
8392}
8393
8394static void igb_deliver_wake_packet(struct net_device *netdev)
8395{
8396 struct igb_adapter *adapter = netdev_priv(netdev);
8397 struct e1000_hw *hw = &adapter->hw;
8398 struct sk_buff *skb;
8399 u32 wupl;
8400
8401 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8402
8403 /* WUPM stores only the first 128 bytes of the wake packet.
8404 * Read the packet only if we have the whole thing.
8405 */
8406 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8407 return;
8408
8409 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8410 if (!skb)
8411 return;
8412
8413 skb_put(skb, wupl);
8414
8415 /* Ensure reads are 32-bit aligned */
8416 wupl = roundup(wupl, 4);
8417
8418 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8419
8420 skb->protocol = eth_type_trans(skb, netdev);
8421 netif_rx(skb);
8422}
8423
8424static int __maybe_unused igb_suspend(struct device *dev)
8425{
8426 int retval;
8427 bool wake;
8428 struct pci_dev *pdev = to_pci_dev(dev);
8429
8430 retval = __igb_shutdown(pdev, &wake, 0);
8431 if (retval)
8432 return retval;
8433
8434 if (wake) {
8435 pci_prepare_to_sleep(pdev);
8436 } else {
8437 pci_wake_from_d3(pdev, false);
8438 pci_set_power_state(pdev, PCI_D3hot);
8439 }
8440
8441 return 0;
8442}
8443
8444static int __maybe_unused igb_resume(struct device *dev)
8445{
8446 struct pci_dev *pdev = to_pci_dev(dev);
8447 struct net_device *netdev = pci_get_drvdata(pdev);
8448 struct igb_adapter *adapter = netdev_priv(netdev);
8449 struct e1000_hw *hw = &adapter->hw;
8450 u32 err, val;
8451
8452 pci_set_power_state(pdev, PCI_D0);
8453 pci_restore_state(pdev);
8454 pci_save_state(pdev);
8455
8456 if (!pci_device_is_present(pdev))
8457 return -ENODEV;
8458 err = pci_enable_device_mem(pdev);
8459 if (err) {
8460 dev_err(&pdev->dev,
8461 "igb: Cannot enable PCI device from suspend\n");
8462 return err;
8463 }
8464 pci_set_master(pdev);
8465
8466 pci_enable_wake(pdev, PCI_D3hot, 0);
8467 pci_enable_wake(pdev, PCI_D3cold, 0);
8468
8469 if (igb_init_interrupt_scheme(adapter, true)) {
8470 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8471 return -ENOMEM;
8472 }
8473
8474 igb_reset(adapter);
8475
8476 /* let the f/w know that the h/w is now under the control of the
8477 * driver.
8478 */
8479 igb_get_hw_control(adapter);
8480
8481 val = rd32(E1000_WUS);
8482 if (val & WAKE_PKT_WUS)
8483 igb_deliver_wake_packet(netdev);
8484
8485 wr32(E1000_WUS, ~0);
8486
8487 rtnl_lock();
8488 if (!err && netif_running(netdev))
8489 err = __igb_open(netdev, true);
8490
8491 if (!err)
8492 netif_device_attach(netdev);
8493 rtnl_unlock();
8494
8495 return err;
8496}
8497
8498static int __maybe_unused igb_runtime_idle(struct device *dev)
8499{
8500 struct pci_dev *pdev = to_pci_dev(dev);
8501 struct net_device *netdev = pci_get_drvdata(pdev);
8502 struct igb_adapter *adapter = netdev_priv(netdev);
8503
8504 if (!igb_has_link(adapter))
8505 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8506
8507 return -EBUSY;
8508}
8509
8510static int __maybe_unused igb_runtime_suspend(struct device *dev)
8511{
8512 struct pci_dev *pdev = to_pci_dev(dev);
8513 int retval;
8514 bool wake;
8515
8516 retval = __igb_shutdown(pdev, &wake, 1);
8517 if (retval)
8518 return retval;
8519
8520 if (wake) {
8521 pci_prepare_to_sleep(pdev);
8522 } else {
8523 pci_wake_from_d3(pdev, false);
8524 pci_set_power_state(pdev, PCI_D3hot);
8525 }
8526
8527 return 0;
8528}
8529
8530static int __maybe_unused igb_runtime_resume(struct device *dev)
8531{
8532 return igb_resume(dev);
8533}
8534
8535static void igb_shutdown(struct pci_dev *pdev)
8536{
8537 bool wake;
8538
8539 __igb_shutdown(pdev, &wake, 0);
8540
8541 if (system_state == SYSTEM_POWER_OFF) {
8542 pci_wake_from_d3(pdev, wake);
8543 pci_set_power_state(pdev, PCI_D3hot);
8544 }
8545}
8546
8547#ifdef CONFIG_PCI_IOV
8548static int igb_sriov_reinit(struct pci_dev *dev)
8549{
8550 struct net_device *netdev = pci_get_drvdata(dev);
8551 struct igb_adapter *adapter = netdev_priv(netdev);
8552 struct pci_dev *pdev = adapter->pdev;
8553
8554 rtnl_lock();
8555
8556 if (netif_running(netdev))
8557 igb_close(netdev);
8558 else
8559 igb_reset(adapter);
8560
8561 igb_clear_interrupt_scheme(adapter);
8562
8563 igb_init_queue_configuration(adapter);
8564
8565 if (igb_init_interrupt_scheme(adapter, true)) {
8566 rtnl_unlock();
8567 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8568 return -ENOMEM;
8569 }
8570
8571 if (netif_running(netdev))
8572 igb_open(netdev);
8573
8574 rtnl_unlock();
8575
8576 return 0;
8577}
8578
8579static int igb_pci_disable_sriov(struct pci_dev *dev)
8580{
8581 int err = igb_disable_sriov(dev);
8582
8583 if (!err)
8584 err = igb_sriov_reinit(dev);
8585
8586 return err;
8587}
8588
8589static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8590{
8591 int err = igb_enable_sriov(dev, num_vfs);
8592
8593 if (err)
8594 goto out;
8595
8596 err = igb_sriov_reinit(dev);
8597 if (!err)
8598 return num_vfs;
8599
8600out:
8601 return err;
8602}
8603
8604#endif
8605static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8606{
8607#ifdef CONFIG_PCI_IOV
8608 if (num_vfs == 0)
8609 return igb_pci_disable_sriov(dev);
8610 else
8611 return igb_pci_enable_sriov(dev, num_vfs);
8612#endif
8613 return 0;
8614}
8615
8616#ifdef CONFIG_NET_POLL_CONTROLLER
8617/* Polling 'interrupt' - used by things like netconsole to send skbs
8618 * without having to re-enable interrupts. It's not called while
8619 * the interrupt routine is executing.
8620 */
8621static void igb_netpoll(struct net_device *netdev)
8622{
8623 struct igb_adapter *adapter = netdev_priv(netdev);
8624 struct e1000_hw *hw = &adapter->hw;
8625 struct igb_q_vector *q_vector;
8626 int i;
8627
8628 for (i = 0; i < adapter->num_q_vectors; i++) {
8629 q_vector = adapter->q_vector[i];
8630 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8631 wr32(E1000_EIMC, q_vector->eims_value);
8632 else
8633 igb_irq_disable(adapter);
8634 napi_schedule(&q_vector->napi);
8635 }
8636}
8637#endif /* CONFIG_NET_POLL_CONTROLLER */
8638
8639/**
8640 * igb_io_error_detected - called when PCI error is detected
8641 * @pdev: Pointer to PCI device
8642 * @state: The current pci connection state
8643 *
8644 * This function is called after a PCI bus error affecting
8645 * this device has been detected.
8646 **/
8647static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8648 pci_channel_state_t state)
8649{
8650 struct net_device *netdev = pci_get_drvdata(pdev);
8651 struct igb_adapter *adapter = netdev_priv(netdev);
8652
8653 netif_device_detach(netdev);
8654
8655 if (state == pci_channel_io_perm_failure)
8656 return PCI_ERS_RESULT_DISCONNECT;
8657
8658 if (netif_running(netdev))
8659 igb_down(adapter);
8660 pci_disable_device(pdev);
8661
8662 /* Request a slot slot reset. */
8663 return PCI_ERS_RESULT_NEED_RESET;
8664}
8665
8666/**
8667 * igb_io_slot_reset - called after the pci bus has been reset.
8668 * @pdev: Pointer to PCI device
8669 *
8670 * Restart the card from scratch, as if from a cold-boot. Implementation
8671 * resembles the first-half of the igb_resume routine.
8672 **/
8673static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
8674{
8675 struct net_device *netdev = pci_get_drvdata(pdev);
8676 struct igb_adapter *adapter = netdev_priv(netdev);
8677 struct e1000_hw *hw = &adapter->hw;
8678 pci_ers_result_t result;
8679 int err;
8680
8681 if (pci_enable_device_mem(pdev)) {
8682 dev_err(&pdev->dev,
8683 "Cannot re-enable PCI device after reset.\n");
8684 result = PCI_ERS_RESULT_DISCONNECT;
8685 } else {
8686 pci_set_master(pdev);
8687 pci_restore_state(pdev);
8688 pci_save_state(pdev);
8689
8690 pci_enable_wake(pdev, PCI_D3hot, 0);
8691 pci_enable_wake(pdev, PCI_D3cold, 0);
8692
8693 /* In case of PCI error, adapter lose its HW address
8694 * so we should re-assign it here.
8695 */
8696 hw->hw_addr = adapter->io_addr;
8697
8698 igb_reset(adapter);
8699 wr32(E1000_WUS, ~0);
8700 result = PCI_ERS_RESULT_RECOVERED;
8701 }
8702
8703 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8704 if (err) {
8705 dev_err(&pdev->dev,
8706 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8707 err);
8708 /* non-fatal, continue */
8709 }
8710
8711 return result;
8712}
8713
8714/**
8715 * igb_io_resume - called when traffic can start flowing again.
8716 * @pdev: Pointer to PCI device
8717 *
8718 * This callback is called when the error recovery driver tells us that
8719 * its OK to resume normal operation. Implementation resembles the
8720 * second-half of the igb_resume routine.
8721 */
8722static void igb_io_resume(struct pci_dev *pdev)
8723{
8724 struct net_device *netdev = pci_get_drvdata(pdev);
8725 struct igb_adapter *adapter = netdev_priv(netdev);
8726
8727 if (netif_running(netdev)) {
8728 if (igb_up(adapter)) {
8729 dev_err(&pdev->dev, "igb_up failed after reset\n");
8730 return;
8731 }
8732 }
8733
8734 netif_device_attach(netdev);
8735
8736 /* let the f/w know that the h/w is now under the control of the
8737 * driver.
8738 */
8739 igb_get_hw_control(adapter);
8740}
8741
8742/**
8743 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
8744 * @adapter: Pointer to adapter structure
8745 * @index: Index of the RAR entry which need to be synced with MAC table
8746 **/
8747static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
8748{
8749 struct e1000_hw *hw = &adapter->hw;
8750 u32 rar_low, rar_high;
8751 u8 *addr = adapter->mac_table[index].addr;
8752
8753 /* HW expects these to be in network order when they are plugged
8754 * into the registers which are little endian. In order to guarantee
8755 * that ordering we need to do an leXX_to_cpup here in order to be
8756 * ready for the byteswap that occurs with writel
8757 */
8758 rar_low = le32_to_cpup((__le32 *)(addr));
8759 rar_high = le16_to_cpup((__le16 *)(addr + 4));
8760
8761 /* Indicate to hardware the Address is Valid. */
8762 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
8763 if (is_valid_ether_addr(addr))
8764 rar_high |= E1000_RAH_AV;
8765
8766 if (hw->mac.type == e1000_82575)
8767 rar_high |= E1000_RAH_POOL_1 *
8768 adapter->mac_table[index].queue;
8769 else
8770 rar_high |= E1000_RAH_POOL_1 <<
8771 adapter->mac_table[index].queue;
8772 }
8773
8774 wr32(E1000_RAL(index), rar_low);
8775 wrfl();
8776 wr32(E1000_RAH(index), rar_high);
8777 wrfl();
8778}
8779
8780static int igb_set_vf_mac(struct igb_adapter *adapter,
8781 int vf, unsigned char *mac_addr)
8782{
8783 struct e1000_hw *hw = &adapter->hw;
8784 /* VF MAC addresses start at end of receive addresses and moves
8785 * towards the first, as a result a collision should not be possible
8786 */
8787 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
8788 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
8789
8790 ether_addr_copy(vf_mac_addr, mac_addr);
8791 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
8792 adapter->mac_table[rar_entry].queue = vf;
8793 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
8794 igb_rar_set_index(adapter, rar_entry);
8795
8796 return 0;
8797}
8798
8799static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
8800{
8801 struct igb_adapter *adapter = netdev_priv(netdev);
8802
8803 if (vf >= adapter->vfs_allocated_count)
8804 return -EINVAL;
8805
8806 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
8807 * flag and allows to overwrite the MAC via VF netdev. This
8808 * is necessary to allow libvirt a way to restore the original
8809 * MAC after unbinding vfio-pci and reloading igbvf after shutting
8810 * down a VM.
8811 */
8812 if (is_zero_ether_addr(mac)) {
8813 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
8814 dev_info(&adapter->pdev->dev,
8815 "remove administratively set MAC on VF %d\n",
8816 vf);
8817 } else if (is_valid_ether_addr(mac)) {
8818 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
8819 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
8820 mac, vf);
8821 dev_info(&adapter->pdev->dev,
8822 "Reload the VF driver to make this change effective.");
8823 /* Generate additional warning if PF is down */
8824 if (test_bit(__IGB_DOWN, &adapter->state)) {
8825 dev_warn(&adapter->pdev->dev,
8826 "The VF MAC address has been set, but the PF device is not up.\n");
8827 dev_warn(&adapter->pdev->dev,
8828 "Bring the PF device up before attempting to use the VF device.\n");
8829 }
8830 } else {
8831 return -EINVAL;
8832 }
8833 return igb_set_vf_mac(adapter, vf, mac);
8834}
8835
8836static int igb_link_mbps(int internal_link_speed)
8837{
8838 switch (internal_link_speed) {
8839 case SPEED_100:
8840 return 100;
8841 case SPEED_1000:
8842 return 1000;
8843 default:
8844 return 0;
8845 }
8846}
8847
8848static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8849 int link_speed)
8850{
8851 int rf_dec, rf_int;
8852 u32 bcnrc_val;
8853
8854 if (tx_rate != 0) {
8855 /* Calculate the rate factor values to set */
8856 rf_int = link_speed / tx_rate;
8857 rf_dec = (link_speed - (rf_int * tx_rate));
8858 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8859 tx_rate;
8860
8861 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8862 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8863 E1000_RTTBCNRC_RF_INT_MASK);
8864 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8865 } else {
8866 bcnrc_val = 0;
8867 }
8868
8869 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8870 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8871 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8872 */
8873 wr32(E1000_RTTBCNRM, 0x14);
8874 wr32(E1000_RTTBCNRC, bcnrc_val);
8875}
8876
8877static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8878{
8879 int actual_link_speed, i;
8880 bool reset_rate = false;
8881
8882 /* VF TX rate limit was not set or not supported */
8883 if ((adapter->vf_rate_link_speed == 0) ||
8884 (adapter->hw.mac.type != e1000_82576))
8885 return;
8886
8887 actual_link_speed = igb_link_mbps(adapter->link_speed);
8888 if (actual_link_speed != adapter->vf_rate_link_speed) {
8889 reset_rate = true;
8890 adapter->vf_rate_link_speed = 0;
8891 dev_info(&adapter->pdev->dev,
8892 "Link speed has been changed. VF Transmit rate is disabled\n");
8893 }
8894
8895 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8896 if (reset_rate)
8897 adapter->vf_data[i].tx_rate = 0;
8898
8899 igb_set_vf_rate_limit(&adapter->hw, i,
8900 adapter->vf_data[i].tx_rate,
8901 actual_link_speed);
8902 }
8903}
8904
8905static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8906 int min_tx_rate, int max_tx_rate)
8907{
8908 struct igb_adapter *adapter = netdev_priv(netdev);
8909 struct e1000_hw *hw = &adapter->hw;
8910 int actual_link_speed;
8911
8912 if (hw->mac.type != e1000_82576)
8913 return -EOPNOTSUPP;
8914
8915 if (min_tx_rate)
8916 return -EINVAL;
8917
8918 actual_link_speed = igb_link_mbps(adapter->link_speed);
8919 if ((vf >= adapter->vfs_allocated_count) ||
8920 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8921 (max_tx_rate < 0) ||
8922 (max_tx_rate > actual_link_speed))
8923 return -EINVAL;
8924
8925 adapter->vf_rate_link_speed = actual_link_speed;
8926 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8927 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8928
8929 return 0;
8930}
8931
8932static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8933 bool setting)
8934{
8935 struct igb_adapter *adapter = netdev_priv(netdev);
8936 struct e1000_hw *hw = &adapter->hw;
8937 u32 reg_val, reg_offset;
8938
8939 if (!adapter->vfs_allocated_count)
8940 return -EOPNOTSUPP;
8941
8942 if (vf >= adapter->vfs_allocated_count)
8943 return -EINVAL;
8944
8945 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8946 reg_val = rd32(reg_offset);
8947 if (setting)
8948 reg_val |= (BIT(vf) |
8949 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8950 else
8951 reg_val &= ~(BIT(vf) |
8952 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8953 wr32(reg_offset, reg_val);
8954
8955 adapter->vf_data[vf].spoofchk_enabled = setting;
8956 return 0;
8957}
8958
8959static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
8960{
8961 struct igb_adapter *adapter = netdev_priv(netdev);
8962
8963 if (vf >= adapter->vfs_allocated_count)
8964 return -EINVAL;
8965 if (adapter->vf_data[vf].trusted == setting)
8966 return 0;
8967
8968 adapter->vf_data[vf].trusted = setting;
8969
8970 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
8971 vf, setting ? "" : "not ");
8972 return 0;
8973}
8974
8975static int igb_ndo_get_vf_config(struct net_device *netdev,
8976 int vf, struct ifla_vf_info *ivi)
8977{
8978 struct igb_adapter *adapter = netdev_priv(netdev);
8979 if (vf >= adapter->vfs_allocated_count)
8980 return -EINVAL;
8981 ivi->vf = vf;
8982 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8983 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8984 ivi->min_tx_rate = 0;
8985 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8986 ivi->qos = adapter->vf_data[vf].pf_qos;
8987 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8988 ivi->trusted = adapter->vf_data[vf].trusted;
8989 return 0;
8990}
8991
8992static void igb_vmm_control(struct igb_adapter *adapter)
8993{
8994 struct e1000_hw *hw = &adapter->hw;
8995 u32 reg;
8996
8997 switch (hw->mac.type) {
8998 case e1000_82575:
8999 case e1000_i210:
9000 case e1000_i211:
9001 case e1000_i354:
9002 default:
9003 /* replication is not supported for 82575 */
9004 return;
9005 case e1000_82576:
9006 /* notify HW that the MAC is adding vlan tags */
9007 reg = rd32(E1000_DTXCTL);
9008 reg |= E1000_DTXCTL_VLAN_ADDED;
9009 wr32(E1000_DTXCTL, reg);
9010 /* Fall through */
9011 case e1000_82580:
9012 /* enable replication vlan tag stripping */
9013 reg = rd32(E1000_RPLOLR);
9014 reg |= E1000_RPLOLR_STRVLAN;
9015 wr32(E1000_RPLOLR, reg);
9016 /* Fall through */
9017 case e1000_i350:
9018 /* none of the above registers are supported by i350 */
9019 break;
9020 }
9021
9022 if (adapter->vfs_allocated_count) {
9023 igb_vmdq_set_loopback_pf(hw, true);
9024 igb_vmdq_set_replication_pf(hw, true);
9025 igb_vmdq_set_anti_spoofing_pf(hw, true,
9026 adapter->vfs_allocated_count);
9027 } else {
9028 igb_vmdq_set_loopback_pf(hw, false);
9029 igb_vmdq_set_replication_pf(hw, false);
9030 }
9031}
9032
9033static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9034{
9035 struct e1000_hw *hw = &adapter->hw;
9036 u32 dmac_thr;
9037 u16 hwm;
9038
9039 if (hw->mac.type > e1000_82580) {
9040 if (adapter->flags & IGB_FLAG_DMAC) {
9041 u32 reg;
9042
9043 /* force threshold to 0. */
9044 wr32(E1000_DMCTXTH, 0);
9045
9046 /* DMA Coalescing high water mark needs to be greater
9047 * than the Rx threshold. Set hwm to PBA - max frame
9048 * size in 16B units, capping it at PBA - 6KB.
9049 */
9050 hwm = 64 * (pba - 6);
9051 reg = rd32(E1000_FCRTC);
9052 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9053 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9054 & E1000_FCRTC_RTH_COAL_MASK);
9055 wr32(E1000_FCRTC, reg);
9056
9057 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9058 * frame size, capping it at PBA - 10KB.
9059 */
9060 dmac_thr = pba - 10;
9061 reg = rd32(E1000_DMACR);
9062 reg &= ~E1000_DMACR_DMACTHR_MASK;
9063 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9064 & E1000_DMACR_DMACTHR_MASK);
9065
9066 /* transition to L0x or L1 if available..*/
9067 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9068
9069 /* watchdog timer= +-1000 usec in 32usec intervals */
9070 reg |= (1000 >> 5);
9071
9072 /* Disable BMC-to-OS Watchdog Enable */
9073 if (hw->mac.type != e1000_i354)
9074 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9075
9076 wr32(E1000_DMACR, reg);
9077
9078 /* no lower threshold to disable
9079 * coalescing(smart fifb)-UTRESH=0
9080 */
9081 wr32(E1000_DMCRTRH, 0);
9082
9083 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9084
9085 wr32(E1000_DMCTLX, reg);
9086
9087 /* free space in tx packet buffer to wake from
9088 * DMA coal
9089 */
9090 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9091 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9092
9093 /* make low power state decision controlled
9094 * by DMA coal
9095 */
9096 reg = rd32(E1000_PCIEMISC);
9097 reg &= ~E1000_PCIEMISC_LX_DECISION;
9098 wr32(E1000_PCIEMISC, reg);
9099 } /* endif adapter->dmac is not disabled */
9100 } else if (hw->mac.type == e1000_82580) {
9101 u32 reg = rd32(E1000_PCIEMISC);
9102
9103 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9104 wr32(E1000_DMACR, 0);
9105 }
9106}
9107
9108/**
9109 * igb_read_i2c_byte - Reads 8 bit word over I2C
9110 * @hw: pointer to hardware structure
9111 * @byte_offset: byte offset to read
9112 * @dev_addr: device address
9113 * @data: value read
9114 *
9115 * Performs byte read operation over I2C interface at
9116 * a specified device address.
9117 **/
9118s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9119 u8 dev_addr, u8 *data)
9120{
9121 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9122 struct i2c_client *this_client = adapter->i2c_client;
9123 s32 status;
9124 u16 swfw_mask = 0;
9125
9126 if (!this_client)
9127 return E1000_ERR_I2C;
9128
9129 swfw_mask = E1000_SWFW_PHY0_SM;
9130
9131 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9132 return E1000_ERR_SWFW_SYNC;
9133
9134 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9135 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9136
9137 if (status < 0)
9138 return E1000_ERR_I2C;
9139 else {
9140 *data = status;
9141 return 0;
9142 }
9143}
9144
9145/**
9146 * igb_write_i2c_byte - Writes 8 bit word over I2C
9147 * @hw: pointer to hardware structure
9148 * @byte_offset: byte offset to write
9149 * @dev_addr: device address
9150 * @data: value to write
9151 *
9152 * Performs byte write operation over I2C interface at
9153 * a specified device address.
9154 **/
9155s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9156 u8 dev_addr, u8 data)
9157{
9158 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9159 struct i2c_client *this_client = adapter->i2c_client;
9160 s32 status;
9161 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9162
9163 if (!this_client)
9164 return E1000_ERR_I2C;
9165
9166 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9167 return E1000_ERR_SWFW_SYNC;
9168 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9169 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9170
9171 if (status)
9172 return E1000_ERR_I2C;
9173 else
9174 return 0;
9175
9176}
9177
9178int igb_reinit_queues(struct igb_adapter *adapter)
9179{
9180 struct net_device *netdev = adapter->netdev;
9181 struct pci_dev *pdev = adapter->pdev;
9182 int err = 0;
9183
9184 if (netif_running(netdev))
9185 igb_close(netdev);
9186
9187 igb_reset_interrupt_capability(adapter);
9188
9189 if (igb_init_interrupt_scheme(adapter, true)) {
9190 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9191 return -ENOMEM;
9192 }
9193
9194 if (netif_running(netdev))
9195 err = igb_open(netdev);
9196
9197 return err;
9198}
9199
9200static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9201{
9202 struct igb_nfc_filter *rule;
9203
9204 spin_lock(&adapter->nfc_lock);
9205
9206 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9207 igb_erase_filter(adapter, rule);
9208
9209 spin_unlock(&adapter->nfc_lock);
9210}
9211
9212static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9213{
9214 struct igb_nfc_filter *rule;
9215
9216 spin_lock(&adapter->nfc_lock);
9217
9218 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9219 igb_add_filter(adapter, rule);
9220
9221 spin_unlock(&adapter->nfc_lock);
9222}
9223/* igb_main.c */