Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/pagewalk.h>
   3#include <linux/mm_inline.h>
   4#include <linux/hugetlb.h>
   5#include <linux/huge_mm.h>
   6#include <linux/mount.h>
   7#include <linux/ksm.h>
   8#include <linux/seq_file.h>
   9#include <linux/highmem.h>
  10#include <linux/ptrace.h>
  11#include <linux/slab.h>
  12#include <linux/pagemap.h>
  13#include <linux/mempolicy.h>
  14#include <linux/rmap.h>
  15#include <linux/swap.h>
  16#include <linux/sched/mm.h>
  17#include <linux/swapops.h>
  18#include <linux/mmu_notifier.h>
  19#include <linux/page_idle.h>
  20#include <linux/shmem_fs.h>
  21#include <linux/uaccess.h>
  22#include <linux/pkeys.h>
  23#include <linux/minmax.h>
  24#include <linux/overflow.h>
  25
  26#include <asm/elf.h>
  27#include <asm/tlb.h>
  28#include <asm/tlbflush.h>
  29#include "internal.h"
  30
  31#define SEQ_PUT_DEC(str, val) \
  32		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  33void task_mem(struct seq_file *m, struct mm_struct *mm)
  34{
  35	unsigned long text, lib, swap, anon, file, shmem;
  36	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  37
  38	anon = get_mm_counter(mm, MM_ANONPAGES);
  39	file = get_mm_counter(mm, MM_FILEPAGES);
  40	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  41
  42	/*
  43	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  44	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  45	 * collector of these hiwater stats must therefore get total_vm
  46	 * and rss too, which will usually be the higher.  Barriers? not
  47	 * worth the effort, such snapshots can always be inconsistent.
  48	 */
  49	hiwater_vm = total_vm = mm->total_vm;
  50	if (hiwater_vm < mm->hiwater_vm)
  51		hiwater_vm = mm->hiwater_vm;
  52	hiwater_rss = total_rss = anon + file + shmem;
  53	if (hiwater_rss < mm->hiwater_rss)
  54		hiwater_rss = mm->hiwater_rss;
  55
  56	/* split executable areas between text and lib */
  57	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  58	text = min(text, mm->exec_vm << PAGE_SHIFT);
  59	lib = (mm->exec_vm << PAGE_SHIFT) - text;
  60
  61	swap = get_mm_counter(mm, MM_SWAPENTS);
  62	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  63	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  64	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  65	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
  66	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  67	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  68	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  69	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  70	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  71	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  72	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  73	seq_put_decimal_ull_width(m,
  74		    " kB\nVmExe:\t", text >> 10, 8);
  75	seq_put_decimal_ull_width(m,
  76		    " kB\nVmLib:\t", lib >> 10, 8);
  77	seq_put_decimal_ull_width(m,
  78		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  79	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  80	seq_puts(m, " kB\n");
  81	hugetlb_report_usage(m, mm);
 
 
 
 
  82}
  83#undef SEQ_PUT_DEC
  84
  85unsigned long task_vsize(struct mm_struct *mm)
  86{
  87	return PAGE_SIZE * mm->total_vm;
  88}
  89
  90unsigned long task_statm(struct mm_struct *mm,
  91			 unsigned long *shared, unsigned long *text,
  92			 unsigned long *data, unsigned long *resident)
  93{
  94	*shared = get_mm_counter(mm, MM_FILEPAGES) +
  95			get_mm_counter(mm, MM_SHMEMPAGES);
  96	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  97								>> PAGE_SHIFT;
  98	*data = mm->data_vm + mm->stack_vm;
  99	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
 100	return mm->total_vm;
 101}
 102
 103#ifdef CONFIG_NUMA
 104/*
 105 * Save get_task_policy() for show_numa_map().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106 */
 107static void hold_task_mempolicy(struct proc_maps_private *priv)
 108{
 109	struct task_struct *task = priv->task;
 110
 111	task_lock(task);
 112	priv->task_mempolicy = get_task_policy(task);
 113	mpol_get(priv->task_mempolicy);
 114	task_unlock(task);
 115}
 116static void release_task_mempolicy(struct proc_maps_private *priv)
 117{
 118	mpol_put(priv->task_mempolicy);
 119}
 120#else
 121static void hold_task_mempolicy(struct proc_maps_private *priv)
 122{
 123}
 124static void release_task_mempolicy(struct proc_maps_private *priv)
 125{
 126}
 127#endif
 128
 129static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
 130						loff_t *ppos)
 131{
 132	struct vm_area_struct *vma = vma_next(&priv->iter);
 133
 134	if (vma) {
 135		*ppos = vma->vm_start;
 136	} else {
 137		*ppos = -2UL;
 138		vma = get_gate_vma(priv->mm);
 139	}
 140
 141	return vma;
 142}
 143
 144static void *m_start(struct seq_file *m, loff_t *ppos)
 145{
 146	struct proc_maps_private *priv = m->private;
 147	unsigned long last_addr = *ppos;
 148	struct mm_struct *mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 149
 150	/* See m_next(). Zero at the start or after lseek. */
 151	if (last_addr == -1UL)
 152		return NULL;
 153
 154	priv->task = get_proc_task(priv->inode);
 155	if (!priv->task)
 156		return ERR_PTR(-ESRCH);
 157
 158	mm = priv->mm;
 159	if (!mm || !mmget_not_zero(mm)) {
 160		put_task_struct(priv->task);
 161		priv->task = NULL;
 162		return NULL;
 163	}
 164
 165	if (mmap_read_lock_killable(mm)) {
 166		mmput(mm);
 167		put_task_struct(priv->task);
 168		priv->task = NULL;
 169		return ERR_PTR(-EINTR);
 170	}
 171
 172	vma_iter_init(&priv->iter, mm, last_addr);
 173	hold_task_mempolicy(priv);
 174	if (last_addr == -2UL)
 175		return get_gate_vma(mm);
 176
 177	return proc_get_vma(priv, ppos);
 178}
 
 179
 180static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
 181{
 182	if (*ppos == -2UL) {
 183		*ppos = -1UL;
 184		return NULL;
 
 
 
 
 
 185	}
 186	return proc_get_vma(m->private, ppos);
 187}
 188
 189static void m_stop(struct seq_file *m, void *v)
 190{
 191	struct proc_maps_private *priv = m->private;
 192	struct mm_struct *mm = priv->mm;
 193
 194	if (!priv->task)
 195		return;
 
 196
 197	release_task_mempolicy(priv);
 198	mmap_read_unlock(mm);
 
 
 199	mmput(mm);
 200	put_task_struct(priv->task);
 201	priv->task = NULL;
 202}
 203
 204static int proc_maps_open(struct inode *inode, struct file *file,
 205			const struct seq_operations *ops, int psize)
 206{
 207	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
 208
 209	if (!priv)
 210		return -ENOMEM;
 211
 212	priv->inode = inode;
 213	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 214	if (IS_ERR(priv->mm)) {
 215		int err = PTR_ERR(priv->mm);
 216
 217		seq_release_private(inode, file);
 218		return err;
 219	}
 220
 221	return 0;
 
 
 
 
 222}
 223
 224static int proc_map_release(struct inode *inode, struct file *file)
 225{
 226	struct seq_file *seq = file->private_data;
 227	struct proc_maps_private *priv = seq->private;
 228
 229	if (priv->mm)
 230		mmdrop(priv->mm);
 231
 232	return seq_release_private(inode, file);
 
 
 
 233}
 234
 235static int do_maps_open(struct inode *inode, struct file *file,
 236			const struct seq_operations *ops)
 237{
 238	return proc_maps_open(inode, file, ops,
 239				sizeof(struct proc_maps_private));
 240}
 241
 242static void show_vma_header_prefix(struct seq_file *m,
 243				   unsigned long start, unsigned long end,
 244				   vm_flags_t flags, unsigned long long pgoff,
 245				   dev_t dev, unsigned long ino)
 246{
 247	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 248	seq_put_hex_ll(m, NULL, start, 8);
 249	seq_put_hex_ll(m, "-", end, 8);
 250	seq_putc(m, ' ');
 251	seq_putc(m, flags & VM_READ ? 'r' : '-');
 252	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
 253	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
 254	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
 255	seq_put_hex_ll(m, " ", pgoff, 8);
 256	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
 257	seq_put_hex_ll(m, ":", MINOR(dev), 2);
 258	seq_put_decimal_ull(m, " ", ino);
 259	seq_putc(m, ' ');
 260}
 261
 262static void
 263show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
 264{
 265	struct anon_vma_name *anon_name = NULL;
 266	struct mm_struct *mm = vma->vm_mm;
 267	struct file *file = vma->vm_file;
 
 
 268	vm_flags_t flags = vma->vm_flags;
 269	unsigned long ino = 0;
 270	unsigned long long pgoff = 0;
 271	unsigned long start, end;
 272	dev_t dev = 0;
 273	const char *name = NULL;
 274
 275	if (file) {
 276		const struct inode *inode = file_user_inode(vma->vm_file);
 277
 278		dev = inode->i_sb->s_dev;
 279		ino = inode->i_ino;
 280		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 281	}
 282
 
 283	start = vma->vm_start;
 
 
 284	end = vma->vm_end;
 285	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
 286	if (mm)
 287		anon_name = anon_vma_name(vma);
 
 
 
 
 
 
 
 
 
 
 288
 289	/*
 290	 * Print the dentry name for named mappings, and a
 291	 * special [heap] marker for the heap:
 292	 */
 293	if (file) {
 294		seq_pad(m, ' ');
 295		/*
 296		 * If user named this anon shared memory via
 297		 * prctl(PR_SET_VMA ..., use the provided name.
 298		 */
 299		if (anon_name)
 300			seq_printf(m, "[anon_shmem:%s]", anon_name->name);
 301		else
 302			seq_path(m, file_user_path(file), "\n");
 303		goto done;
 304	}
 305
 306	if (vma->vm_ops && vma->vm_ops->name) {
 307		name = vma->vm_ops->name(vma);
 308		if (name)
 309			goto done;
 310	}
 311
 312	name = arch_vma_name(vma);
 313	if (!name) {
 
 
 314		if (!mm) {
 315			name = "[vdso]";
 316			goto done;
 317		}
 318
 319		if (vma_is_initial_heap(vma)) {
 
 320			name = "[heap]";
 321			goto done;
 322		}
 323
 324		if (vma_is_initial_stack(vma)) {
 325			name = "[stack]";
 326			goto done;
 327		}
 328
 329		if (anon_name) {
 330			seq_pad(m, ' ');
 331			seq_printf(m, "[anon:%s]", anon_name->name);
 
 
 
 
 
 
 
 
 
 
 332		}
 333	}
 334
 335done:
 336	if (name) {
 337		seq_pad(m, ' ');
 338		seq_puts(m, name);
 339	}
 340	seq_putc(m, '\n');
 341}
 342
 343static int show_map(struct seq_file *m, void *v)
 344{
 345	show_map_vma(m, v);
 
 
 
 
 
 
 
 
 346	return 0;
 347}
 348
 
 
 
 
 
 
 
 
 
 
 349static const struct seq_operations proc_pid_maps_op = {
 350	.start	= m_start,
 351	.next	= m_next,
 352	.stop	= m_stop,
 353	.show	= show_map
 
 
 
 
 
 
 
 354};
 355
 356static int pid_maps_open(struct inode *inode, struct file *file)
 357{
 358	return do_maps_open(inode, file, &proc_pid_maps_op);
 359}
 360
 
 
 
 
 
 361const struct file_operations proc_pid_maps_operations = {
 362	.open		= pid_maps_open,
 363	.read		= seq_read,
 364	.llseek		= seq_lseek,
 365	.release	= proc_map_release,
 
 
 
 
 
 
 
 366};
 367
 368/*
 369 * Proportional Set Size(PSS): my share of RSS.
 370 *
 371 * PSS of a process is the count of pages it has in memory, where each
 372 * page is divided by the number of processes sharing it.  So if a
 373 * process has 1000 pages all to itself, and 1000 shared with one other
 374 * process, its PSS will be 1500.
 375 *
 376 * To keep (accumulated) division errors low, we adopt a 64bit
 377 * fixed-point pss counter to minimize division errors. So (pss >>
 378 * PSS_SHIFT) would be the real byte count.
 379 *
 380 * A shift of 12 before division means (assuming 4K page size):
 381 * 	- 1M 3-user-pages add up to 8KB errors;
 382 * 	- supports mapcount up to 2^24, or 16M;
 383 * 	- supports PSS up to 2^52 bytes, or 4PB.
 384 */
 385#define PSS_SHIFT 12
 386
 387#ifdef CONFIG_PROC_PAGE_MONITOR
 388struct mem_size_stats {
 
 389	unsigned long resident;
 390	unsigned long shared_clean;
 391	unsigned long shared_dirty;
 392	unsigned long private_clean;
 393	unsigned long private_dirty;
 394	unsigned long referenced;
 395	unsigned long anonymous;
 396	unsigned long lazyfree;
 397	unsigned long anonymous_thp;
 398	unsigned long shmem_thp;
 399	unsigned long file_thp;
 400	unsigned long swap;
 401	unsigned long shared_hugetlb;
 402	unsigned long private_hugetlb;
 403	unsigned long ksm;
 404	u64 pss;
 405	u64 pss_anon;
 406	u64 pss_file;
 407	u64 pss_shmem;
 408	u64 pss_dirty;
 409	u64 pss_locked;
 410	u64 swap_pss;
 411};
 412
 413static void smaps_page_accumulate(struct mem_size_stats *mss,
 414		struct page *page, unsigned long size, unsigned long pss,
 415		bool dirty, bool locked, bool private)
 416{
 417	mss->pss += pss;
 418
 419	if (PageAnon(page))
 420		mss->pss_anon += pss;
 421	else if (PageSwapBacked(page))
 422		mss->pss_shmem += pss;
 423	else
 424		mss->pss_file += pss;
 425
 426	if (locked)
 427		mss->pss_locked += pss;
 428
 429	if (dirty || PageDirty(page)) {
 430		mss->pss_dirty += pss;
 431		if (private)
 432			mss->private_dirty += size;
 433		else
 434			mss->shared_dirty += size;
 435	} else {
 436		if (private)
 437			mss->private_clean += size;
 438		else
 439			mss->shared_clean += size;
 440	}
 441}
 442
 443static void smaps_account(struct mem_size_stats *mss, struct page *page,
 444		bool compound, bool young, bool dirty, bool locked,
 445		bool migration)
 446{
 447	int i, nr = compound ? compound_nr(page) : 1;
 448	unsigned long size = nr * PAGE_SIZE;
 449
 450	/*
 451	 * First accumulate quantities that depend only on |size| and the type
 452	 * of the compound page.
 453	 */
 454	if (PageAnon(page)) {
 455		mss->anonymous += size;
 456		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
 457			mss->lazyfree += size;
 458	}
 459
 460	if (PageKsm(page))
 461		mss->ksm += size;
 462
 463	mss->resident += size;
 464	/* Accumulate the size in pages that have been accessed. */
 465	if (young || page_is_young(page) || PageReferenced(page))
 466		mss->referenced += size;
 467
 468	/*
 469	 * Then accumulate quantities that may depend on sharing, or that may
 470	 * differ page-by-page.
 471	 *
 472	 * page_count(page) == 1 guarantees the page is mapped exactly once.
 473	 * If any subpage of the compound page mapped with PTE it would elevate
 474	 * page_count().
 475	 *
 476	 * The page_mapcount() is called to get a snapshot of the mapcount.
 477	 * Without holding the page lock this snapshot can be slightly wrong as
 478	 * we cannot always read the mapcount atomically.  It is not safe to
 479	 * call page_mapcount() even with PTL held if the page is not mapped,
 480	 * especially for migration entries.  Treat regular migration entries
 481	 * as mapcount == 1.
 482	 */
 483	if ((page_count(page) == 1) || migration) {
 484		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
 485			locked, true);
 486		return;
 487	}
 488	for (i = 0; i < nr; i++, page++) {
 489		int mapcount = page_mapcount(page);
 490		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
 491		if (mapcount >= 2)
 492			pss /= mapcount;
 493		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
 494				      mapcount < 2);
 495	}
 496}
 497
 498#ifdef CONFIG_SHMEM
 499static int smaps_pte_hole(unsigned long addr, unsigned long end,
 500			  __always_unused int depth, struct mm_walk *walk)
 501{
 502	struct mem_size_stats *mss = walk->private;
 503	struct vm_area_struct *vma = walk->vma;
 504
 505	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
 506					      linear_page_index(vma, addr),
 507					      linear_page_index(vma, end));
 508
 509	return 0;
 510}
 511#else
 512#define smaps_pte_hole		NULL
 513#endif /* CONFIG_SHMEM */
 514
 515static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
 516{
 517#ifdef CONFIG_SHMEM
 518	if (walk->ops->pte_hole) {
 519		/* depth is not used */
 520		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
 521	}
 522#endif
 523}
 524
 525static void smaps_pte_entry(pte_t *pte, unsigned long addr,
 526		struct mm_walk *walk)
 527{
 528	struct mem_size_stats *mss = walk->private;
 529	struct vm_area_struct *vma = walk->vma;
 530	bool locked = !!(vma->vm_flags & VM_LOCKED);
 531	struct page *page = NULL;
 532	bool migration = false, young = false, dirty = false;
 533	pte_t ptent = ptep_get(pte);
 534
 535	if (pte_present(ptent)) {
 536		page = vm_normal_page(vma, addr, ptent);
 537		young = pte_young(ptent);
 538		dirty = pte_dirty(ptent);
 539	} else if (is_swap_pte(ptent)) {
 540		swp_entry_t swpent = pte_to_swp_entry(ptent);
 541
 542		if (!non_swap_entry(swpent)) {
 543			int mapcount;
 544
 545			mss->swap += PAGE_SIZE;
 546			mapcount = swp_swapcount(swpent);
 547			if (mapcount >= 2) {
 548				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
 549
 550				do_div(pss_delta, mapcount);
 551				mss->swap_pss += pss_delta;
 552			} else {
 553				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
 554			}
 555		} else if (is_pfn_swap_entry(swpent)) {
 556			if (is_migration_entry(swpent))
 557				migration = true;
 558			page = pfn_swap_entry_to_page(swpent);
 559		}
 560	} else {
 561		smaps_pte_hole_lookup(addr, walk);
 562		return;
 563	}
 564
 565	if (!page)
 566		return;
 567
 568	smaps_account(mss, page, false, young, dirty, locked, migration);
 569}
 570
 571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 572static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 573		struct mm_walk *walk)
 574{
 575	struct mem_size_stats *mss = walk->private;
 576	struct vm_area_struct *vma = walk->vma;
 577	bool locked = !!(vma->vm_flags & VM_LOCKED);
 578	struct page *page = NULL;
 579	bool migration = false;
 580
 581	if (pmd_present(*pmd)) {
 582		page = vm_normal_page_pmd(vma, addr, *pmd);
 583	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
 584		swp_entry_t entry = pmd_to_swp_entry(*pmd);
 585
 586		if (is_migration_entry(entry)) {
 587			migration = true;
 588			page = pfn_swap_entry_to_page(entry);
 589		}
 
 
 
 
 
 
 
 
 590	}
 591	if (IS_ERR_OR_NULL(page))
 592		return;
 593	if (PageAnon(page))
 594		mss->anonymous_thp += HPAGE_PMD_SIZE;
 595	else if (PageSwapBacked(page))
 596		mss->shmem_thp += HPAGE_PMD_SIZE;
 597	else if (is_zone_device_page(page))
 598		/* pass */;
 599	else
 600		mss->file_thp += HPAGE_PMD_SIZE;
 601
 602	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
 603		      locked, migration);
 604}
 605#else
 606static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 607		struct mm_walk *walk)
 608{
 609}
 610#endif
 611
 612static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 613			   struct mm_walk *walk)
 614{
 615	struct vm_area_struct *vma = walk->vma;
 
 616	pte_t *pte;
 617	spinlock_t *ptl;
 618
 619	ptl = pmd_trans_huge_lock(pmd, vma);
 620	if (ptl) {
 621		smaps_pmd_entry(pmd, addr, walk);
 622		spin_unlock(ptl);
 623		goto out;
 
 624	}
 625
 626	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 627	if (!pte) {
 628		walk->action = ACTION_AGAIN;
 629		return 0;
 630	}
 
 
 
 
 
 631	for (; addr != end; pte++, addr += PAGE_SIZE)
 632		smaps_pte_entry(pte, addr, walk);
 633	pte_unmap_unlock(pte - 1, ptl);
 634out:
 635	cond_resched();
 636	return 0;
 637}
 638
 639static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 640{
 641	/*
 642	 * Don't forget to update Documentation/ on changes.
 643	 */
 644	static const char mnemonics[BITS_PER_LONG][2] = {
 645		/*
 646		 * In case if we meet a flag we don't know about.
 647		 */
 648		[0 ... (BITS_PER_LONG-1)] = "??",
 649
 650		[ilog2(VM_READ)]	= "rd",
 651		[ilog2(VM_WRITE)]	= "wr",
 652		[ilog2(VM_EXEC)]	= "ex",
 653		[ilog2(VM_SHARED)]	= "sh",
 654		[ilog2(VM_MAYREAD)]	= "mr",
 655		[ilog2(VM_MAYWRITE)]	= "mw",
 656		[ilog2(VM_MAYEXEC)]	= "me",
 657		[ilog2(VM_MAYSHARE)]	= "ms",
 658		[ilog2(VM_GROWSDOWN)]	= "gd",
 659		[ilog2(VM_PFNMAP)]	= "pf",
 
 660		[ilog2(VM_LOCKED)]	= "lo",
 661		[ilog2(VM_IO)]		= "io",
 662		[ilog2(VM_SEQ_READ)]	= "sr",
 663		[ilog2(VM_RAND_READ)]	= "rr",
 664		[ilog2(VM_DONTCOPY)]	= "dc",
 665		[ilog2(VM_DONTEXPAND)]	= "de",
 666		[ilog2(VM_LOCKONFAULT)]	= "lf",
 667		[ilog2(VM_ACCOUNT)]	= "ac",
 668		[ilog2(VM_NORESERVE)]	= "nr",
 669		[ilog2(VM_HUGETLB)]	= "ht",
 670		[ilog2(VM_SYNC)]	= "sf",
 671		[ilog2(VM_ARCH_1)]	= "ar",
 672		[ilog2(VM_WIPEONFORK)]	= "wf",
 673		[ilog2(VM_DONTDUMP)]	= "dd",
 674#ifdef CONFIG_ARM64_BTI
 675		[ilog2(VM_ARM64_BTI)]	= "bt",
 676#endif
 677#ifdef CONFIG_MEM_SOFT_DIRTY
 678		[ilog2(VM_SOFTDIRTY)]	= "sd",
 679#endif
 680		[ilog2(VM_MIXEDMAP)]	= "mm",
 681		[ilog2(VM_HUGEPAGE)]	= "hg",
 682		[ilog2(VM_NOHUGEPAGE)]	= "nh",
 683		[ilog2(VM_MERGEABLE)]	= "mg",
 684		[ilog2(VM_UFFD_MISSING)]= "um",
 685		[ilog2(VM_UFFD_WP)]	= "uw",
 686#ifdef CONFIG_ARM64_MTE
 687		[ilog2(VM_MTE)]		= "mt",
 688		[ilog2(VM_MTE_ALLOWED)]	= "",
 689#endif
 690#ifdef CONFIG_ARCH_HAS_PKEYS
 691		/* These come out via ProtectionKey: */
 692		[ilog2(VM_PKEY_BIT0)]	= "",
 693		[ilog2(VM_PKEY_BIT1)]	= "",
 694		[ilog2(VM_PKEY_BIT2)]	= "",
 695		[ilog2(VM_PKEY_BIT3)]	= "",
 696#if VM_PKEY_BIT4
 697		[ilog2(VM_PKEY_BIT4)]	= "",
 698#endif
 699#endif /* CONFIG_ARCH_HAS_PKEYS */
 700#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
 701		[ilog2(VM_UFFD_MINOR)]	= "ui",
 702#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
 703#ifdef CONFIG_X86_USER_SHADOW_STACK
 704		[ilog2(VM_SHADOW_STACK)] = "ss",
 705#endif
 706	};
 707	size_t i;
 708
 709	seq_puts(m, "VmFlags: ");
 710	for (i = 0; i < BITS_PER_LONG; i++) {
 711		if (!mnemonics[i][0])
 712			continue;
 713		if (vma->vm_flags & (1UL << i)) {
 714			seq_putc(m, mnemonics[i][0]);
 715			seq_putc(m, mnemonics[i][1]);
 716			seq_putc(m, ' ');
 717		}
 718	}
 719	seq_putc(m, '\n');
 720}
 721
 722#ifdef CONFIG_HUGETLB_PAGE
 723static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
 724				 unsigned long addr, unsigned long end,
 725				 struct mm_walk *walk)
 726{
 727	struct mem_size_stats *mss = walk->private;
 728	struct vm_area_struct *vma = walk->vma;
 729	struct page *page = NULL;
 730	pte_t ptent = ptep_get(pte);
 731
 732	if (pte_present(ptent)) {
 733		page = vm_normal_page(vma, addr, ptent);
 734	} else if (is_swap_pte(ptent)) {
 735		swp_entry_t swpent = pte_to_swp_entry(ptent);
 736
 737		if (is_pfn_swap_entry(swpent))
 738			page = pfn_swap_entry_to_page(swpent);
 739	}
 740	if (page) {
 741		if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
 742			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
 743		else
 744			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
 745	}
 746	return 0;
 747}
 748#else
 749#define smaps_hugetlb_range	NULL
 750#endif /* HUGETLB_PAGE */
 751
 752static const struct mm_walk_ops smaps_walk_ops = {
 753	.pmd_entry		= smaps_pte_range,
 754	.hugetlb_entry		= smaps_hugetlb_range,
 755	.walk_lock		= PGWALK_RDLOCK,
 756};
 757
 758static const struct mm_walk_ops smaps_shmem_walk_ops = {
 759	.pmd_entry		= smaps_pte_range,
 760	.hugetlb_entry		= smaps_hugetlb_range,
 761	.pte_hole		= smaps_pte_hole,
 762	.walk_lock		= PGWALK_RDLOCK,
 763};
 764
 765/*
 766 * Gather mem stats from @vma with the indicated beginning
 767 * address @start, and keep them in @mss.
 768 *
 769 * Use vm_start of @vma as the beginning address if @start is 0.
 770 */
 771static void smap_gather_stats(struct vm_area_struct *vma,
 772		struct mem_size_stats *mss, unsigned long start)
 773{
 774	const struct mm_walk_ops *ops = &smaps_walk_ops;
 775
 776	/* Invalid start */
 777	if (start >= vma->vm_end)
 778		return;
 779
 780	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
 781		/*
 782		 * For shared or readonly shmem mappings we know that all
 783		 * swapped out pages belong to the shmem object, and we can
 784		 * obtain the swap value much more efficiently. For private
 785		 * writable mappings, we might have COW pages that are
 786		 * not affected by the parent swapped out pages of the shmem
 787		 * object, so we have to distinguish them during the page walk.
 788		 * Unless we know that the shmem object (or the part mapped by
 789		 * our VMA) has no swapped out pages at all.
 790		 */
 791		unsigned long shmem_swapped = shmem_swap_usage(vma);
 792
 793		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
 794					!(vma->vm_flags & VM_WRITE))) {
 795			mss->swap += shmem_swapped;
 796		} else {
 797			ops = &smaps_shmem_walk_ops;
 798		}
 799	}
 800
 801	/* mmap_lock is held in m_start */
 802	if (!start)
 803		walk_page_vma(vma, ops, mss);
 804	else
 805		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
 806}
 807
 808#define SEQ_PUT_DEC(str, val) \
 809		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
 810
 811/* Show the contents common for smaps and smaps_rollup */
 812static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
 813	bool rollup_mode)
 814{
 815	SEQ_PUT_DEC("Rss:            ", mss->resident);
 816	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
 817	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
 818	if (rollup_mode) {
 819		/*
 820		 * These are meaningful only for smaps_rollup, otherwise two of
 821		 * them are zero, and the other one is the same as Pss.
 822		 */
 823		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
 824			mss->pss_anon >> PSS_SHIFT);
 825		SEQ_PUT_DEC(" kB\nPss_File:       ",
 826			mss->pss_file >> PSS_SHIFT);
 827		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
 828			mss->pss_shmem >> PSS_SHIFT);
 829	}
 830	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
 831	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
 832	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
 833	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
 834	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
 835	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
 836	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
 837	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
 838	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
 839	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
 840	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
 841	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
 842	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
 843				  mss->private_hugetlb >> 10, 7);
 844	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
 845	SEQ_PUT_DEC(" kB\nSwapPss:        ",
 846					mss->swap_pss >> PSS_SHIFT);
 847	SEQ_PUT_DEC(" kB\nLocked:         ",
 848					mss->pss_locked >> PSS_SHIFT);
 849	seq_puts(m, " kB\n");
 850}
 851
 852static int show_smap(struct seq_file *m, void *v)
 853{
 
 
 854	struct vm_area_struct *vma = v;
 855	struct mem_size_stats mss = {};
 856
 857	smap_gather_stats(vma, &mss, 0);
 858
 859	show_map_vma(m, vma);
 860
 861	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
 862	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
 863	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
 864	seq_puts(m, " kB\n");
 865
 866	__show_smap(m, &mss, false);
 867
 868	seq_printf(m, "THPeligible:    %8u\n",
 869		   !!thp_vma_allowable_orders(vma, vma->vm_flags, true, false,
 870					      true, THP_ORDERS_ALL));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871
 872	if (arch_pkeys_enabled())
 873		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
 874	show_smap_vma_flags(m, vma);
 875
 
 
 
 876	return 0;
 877}
 878
 879static int show_smaps_rollup(struct seq_file *m, void *v)
 880{
 881	struct proc_maps_private *priv = m->private;
 882	struct mem_size_stats mss = {};
 883	struct mm_struct *mm = priv->mm;
 884	struct vm_area_struct *vma;
 885	unsigned long vma_start = 0, last_vma_end = 0;
 886	int ret = 0;
 887	VMA_ITERATOR(vmi, mm, 0);
 888
 889	priv->task = get_proc_task(priv->inode);
 890	if (!priv->task)
 891		return -ESRCH;
 892
 893	if (!mm || !mmget_not_zero(mm)) {
 894		ret = -ESRCH;
 895		goto out_put_task;
 896	}
 897
 898	ret = mmap_read_lock_killable(mm);
 899	if (ret)
 900		goto out_put_mm;
 901
 902	hold_task_mempolicy(priv);
 903	vma = vma_next(&vmi);
 904
 905	if (unlikely(!vma))
 906		goto empty_set;
 907
 908	vma_start = vma->vm_start;
 909	do {
 910		smap_gather_stats(vma, &mss, 0);
 911		last_vma_end = vma->vm_end;
 912
 913		/*
 914		 * Release mmap_lock temporarily if someone wants to
 915		 * access it for write request.
 916		 */
 917		if (mmap_lock_is_contended(mm)) {
 918			vma_iter_invalidate(&vmi);
 919			mmap_read_unlock(mm);
 920			ret = mmap_read_lock_killable(mm);
 921			if (ret) {
 922				release_task_mempolicy(priv);
 923				goto out_put_mm;
 924			}
 925
 926			/*
 927			 * After dropping the lock, there are four cases to
 928			 * consider. See the following example for explanation.
 929			 *
 930			 *   +------+------+-----------+
 931			 *   | VMA1 | VMA2 | VMA3      |
 932			 *   +------+------+-----------+
 933			 *   |      |      |           |
 934			 *  4k     8k     16k         400k
 935			 *
 936			 * Suppose we drop the lock after reading VMA2 due to
 937			 * contention, then we get:
 938			 *
 939			 *	last_vma_end = 16k
 940			 *
 941			 * 1) VMA2 is freed, but VMA3 exists:
 942			 *
 943			 *    vma_next(vmi) will return VMA3.
 944			 *    In this case, just continue from VMA3.
 945			 *
 946			 * 2) VMA2 still exists:
 947			 *
 948			 *    vma_next(vmi) will return VMA3.
 949			 *    In this case, just continue from VMA3.
 950			 *
 951			 * 3) No more VMAs can be found:
 952			 *
 953			 *    vma_next(vmi) will return NULL.
 954			 *    No more things to do, just break.
 955			 *
 956			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
 957			 *
 958			 *    vma_next(vmi) will return VMA' whose range
 959			 *    contains last_vma_end.
 960			 *    Iterate VMA' from last_vma_end.
 961			 */
 962			vma = vma_next(&vmi);
 963			/* Case 3 above */
 964			if (!vma)
 965				break;
 966
 967			/* Case 1 and 2 above */
 968			if (vma->vm_start >= last_vma_end)
 969				continue;
 970
 971			/* Case 4 above */
 972			if (vma->vm_end > last_vma_end)
 973				smap_gather_stats(vma, &mss, last_vma_end);
 974		}
 975	} for_each_vma(vmi, vma);
 976
 977empty_set:
 978	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
 979	seq_pad(m, ' ');
 980	seq_puts(m, "[rollup]\n");
 981
 982	__show_smap(m, &mss, true);
 983
 984	release_task_mempolicy(priv);
 985	mmap_read_unlock(mm);
 986
 987out_put_mm:
 988	mmput(mm);
 989out_put_task:
 990	put_task_struct(priv->task);
 991	priv->task = NULL;
 992
 993	return ret;
 
 
 994}
 995#undef SEQ_PUT_DEC
 996
 997static const struct seq_operations proc_pid_smaps_op = {
 998	.start	= m_start,
 999	.next	= m_next,
1000	.stop	= m_stop,
1001	.show	= show_smap
 
 
 
 
 
 
 
1002};
1003
1004static int pid_smaps_open(struct inode *inode, struct file *file)
1005{
1006	return do_maps_open(inode, file, &proc_pid_smaps_op);
1007}
1008
1009static int smaps_rollup_open(struct inode *inode, struct file *file)
1010{
1011	int ret;
1012	struct proc_maps_private *priv;
1013
1014	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1015	if (!priv)
1016		return -ENOMEM;
1017
1018	ret = single_open(file, show_smaps_rollup, priv);
1019	if (ret)
1020		goto out_free;
1021
1022	priv->inode = inode;
1023	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1024	if (IS_ERR(priv->mm)) {
1025		ret = PTR_ERR(priv->mm);
1026
1027		single_release(inode, file);
1028		goto out_free;
1029	}
1030
1031	return 0;
1032
1033out_free:
1034	kfree(priv);
1035	return ret;
1036}
1037
1038static int smaps_rollup_release(struct inode *inode, struct file *file)
1039{
1040	struct seq_file *seq = file->private_data;
1041	struct proc_maps_private *priv = seq->private;
1042
1043	if (priv->mm)
1044		mmdrop(priv->mm);
1045
1046	kfree(priv);
1047	return single_release(inode, file);
1048}
1049
1050const struct file_operations proc_pid_smaps_operations = {
1051	.open		= pid_smaps_open,
1052	.read		= seq_read,
1053	.llseek		= seq_lseek,
1054	.release	= proc_map_release,
1055};
1056
1057const struct file_operations proc_pid_smaps_rollup_operations = {
1058	.open		= smaps_rollup_open,
1059	.read		= seq_read,
1060	.llseek		= seq_lseek,
1061	.release	= smaps_rollup_release,
1062};
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064enum clear_refs_types {
1065	CLEAR_REFS_ALL = 1,
1066	CLEAR_REFS_ANON,
1067	CLEAR_REFS_MAPPED,
1068	CLEAR_REFS_SOFT_DIRTY,
1069	CLEAR_REFS_MM_HIWATER_RSS,
1070	CLEAR_REFS_LAST,
1071};
1072
1073struct clear_refs_private {
 
1074	enum clear_refs_types type;
1075};
1076
1077#ifdef CONFIG_MEM_SOFT_DIRTY
1078
1079static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1080{
1081	struct page *page;
1082
1083	if (!pte_write(pte))
1084		return false;
1085	if (!is_cow_mapping(vma->vm_flags))
1086		return false;
1087	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1088		return false;
1089	page = vm_normal_page(vma, addr, pte);
1090	if (!page)
1091		return false;
1092	return page_maybe_dma_pinned(page);
1093}
1094
1095static inline void clear_soft_dirty(struct vm_area_struct *vma,
1096		unsigned long addr, pte_t *pte)
1097{
 
1098	/*
1099	 * The soft-dirty tracker uses #PF-s to catch writes
1100	 * to pages, so write-protect the pte as well. See the
1101	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1102	 * of how soft-dirty works.
1103	 */
1104	pte_t ptent = ptep_get(pte);
1105
1106	if (pte_present(ptent)) {
1107		pte_t old_pte;
1108
1109		if (pte_is_pinned(vma, addr, ptent))
1110			return;
1111		old_pte = ptep_modify_prot_start(vma, addr, pte);
1112		ptent = pte_wrprotect(old_pte);
1113		ptent = pte_clear_soft_dirty(ptent);
1114		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1115	} else if (is_swap_pte(ptent)) {
1116		ptent = pte_swp_clear_soft_dirty(ptent);
1117		set_pte_at(vma->vm_mm, addr, pte, ptent);
 
1118	}
1119}
1120#else
1121static inline void clear_soft_dirty(struct vm_area_struct *vma,
1122		unsigned long addr, pte_t *pte)
1123{
1124}
1125#endif
1126
1127#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1128static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1129		unsigned long addr, pmd_t *pmdp)
1130{
1131	pmd_t old, pmd = *pmdp;
1132
1133	if (pmd_present(pmd)) {
1134		/* See comment in change_huge_pmd() */
1135		old = pmdp_invalidate(vma, addr, pmdp);
1136		if (pmd_dirty(old))
1137			pmd = pmd_mkdirty(pmd);
1138		if (pmd_young(old))
1139			pmd = pmd_mkyoung(pmd);
1140
1141		pmd = pmd_wrprotect(pmd);
1142		pmd = pmd_clear_soft_dirty(pmd);
1143
1144		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1145	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1146		pmd = pmd_swp_clear_soft_dirty(pmd);
1147		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1148	}
1149}
1150#else
1151static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1152		unsigned long addr, pmd_t *pmdp)
1153{
1154}
1155#endif
 
1156
1157static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1158				unsigned long end, struct mm_walk *walk)
1159{
1160	struct clear_refs_private *cp = walk->private;
1161	struct vm_area_struct *vma = walk->vma;
1162	pte_t *pte, ptent;
1163	spinlock_t *ptl;
1164	struct page *page;
1165
1166	ptl = pmd_trans_huge_lock(pmd, vma);
1167	if (ptl) {
1168		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1169			clear_soft_dirty_pmd(vma, addr, pmd);
1170			goto out;
1171		}
1172
1173		if (!pmd_present(*pmd))
1174			goto out;
1175
1176		page = pmd_page(*pmd);
1177
1178		/* Clear accessed and referenced bits. */
1179		pmdp_test_and_clear_young(vma, addr, pmd);
1180		test_and_clear_page_young(page);
1181		ClearPageReferenced(page);
1182out:
1183		spin_unlock(ptl);
1184		return 0;
1185	}
1186
1187	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1188	if (!pte) {
1189		walk->action = ACTION_AGAIN;
1190		return 0;
1191	}
1192	for (; addr != end; pte++, addr += PAGE_SIZE) {
1193		ptent = ptep_get(pte);
1194
1195		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1196			clear_soft_dirty(vma, addr, pte);
1197			continue;
1198		}
1199
1200		if (!pte_present(ptent))
1201			continue;
1202
1203		page = vm_normal_page(vma, addr, ptent);
1204		if (!page)
1205			continue;
1206
1207		/* Clear accessed and referenced bits. */
1208		ptep_test_and_clear_young(vma, addr, pte);
1209		test_and_clear_page_young(page);
1210		ClearPageReferenced(page);
1211	}
1212	pte_unmap_unlock(pte - 1, ptl);
1213	cond_resched();
1214	return 0;
1215}
1216
1217static int clear_refs_test_walk(unsigned long start, unsigned long end,
1218				struct mm_walk *walk)
1219{
1220	struct clear_refs_private *cp = walk->private;
1221	struct vm_area_struct *vma = walk->vma;
1222
1223	if (vma->vm_flags & VM_PFNMAP)
1224		return 1;
1225
1226	/*
1227	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1228	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1229	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1230	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1231	 */
1232	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1233		return 1;
1234	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1235		return 1;
1236	return 0;
1237}
1238
1239static const struct mm_walk_ops clear_refs_walk_ops = {
1240	.pmd_entry		= clear_refs_pte_range,
1241	.test_walk		= clear_refs_test_walk,
1242	.walk_lock		= PGWALK_WRLOCK,
1243};
1244
1245static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1246				size_t count, loff_t *ppos)
1247{
1248	struct task_struct *task;
1249	char buffer[PROC_NUMBUF] = {};
1250	struct mm_struct *mm;
1251	struct vm_area_struct *vma;
1252	enum clear_refs_types type;
1253	int itype;
1254	int rv;
1255
 
1256	if (count > sizeof(buffer) - 1)
1257		count = sizeof(buffer) - 1;
1258	if (copy_from_user(buffer, buf, count))
1259		return -EFAULT;
1260	rv = kstrtoint(strstrip(buffer), 10, &itype);
1261	if (rv < 0)
1262		return rv;
1263	type = (enum clear_refs_types)itype;
1264	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1265		return -EINVAL;
1266
 
 
 
 
 
 
1267	task = get_proc_task(file_inode(file));
1268	if (!task)
1269		return -ESRCH;
1270	mm = get_task_mm(task);
1271	if (mm) {
1272		VMA_ITERATOR(vmi, mm, 0);
1273		struct mmu_notifier_range range;
1274		struct clear_refs_private cp = {
1275			.type = type,
1276		};
1277
1278		if (mmap_write_lock_killable(mm)) {
1279			count = -EINTR;
1280			goto out_mm;
1281		}
1282		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
 
 
 
 
 
 
1283			/*
1284			 * Writing 5 to /proc/pid/clear_refs resets the peak
1285			 * resident set size to this mm's current rss value.
 
 
 
 
 
1286			 */
1287			reset_mm_hiwater_rss(mm);
1288			goto out_unlock;
1289		}
1290
1291		if (type == CLEAR_REFS_SOFT_DIRTY) {
1292			for_each_vma(vmi, vma) {
1293				if (!(vma->vm_flags & VM_SOFTDIRTY))
1294					continue;
1295				vm_flags_clear(vma, VM_SOFTDIRTY);
1296				vma_set_page_prot(vma);
1297			}
1298
1299			inc_tlb_flush_pending(mm);
1300			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1301						0, mm, 0, -1UL);
1302			mmu_notifier_invalidate_range_start(&range);
1303		}
1304		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1305		if (type == CLEAR_REFS_SOFT_DIRTY) {
1306			mmu_notifier_invalidate_range_end(&range);
1307			flush_tlb_mm(mm);
1308			dec_tlb_flush_pending(mm);
1309		}
1310out_unlock:
1311		mmap_write_unlock(mm);
1312out_mm:
 
1313		mmput(mm);
1314	}
1315	put_task_struct(task);
1316
1317	return count;
1318}
1319
1320const struct file_operations proc_clear_refs_operations = {
1321	.write		= clear_refs_write,
1322	.llseek		= noop_llseek,
1323};
1324
1325typedef struct {
1326	u64 pme;
1327} pagemap_entry_t;
1328
1329struct pagemapread {
1330	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1331	pagemap_entry_t *buffer;
1332	bool show_pfn;
1333};
1334
1335#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1336#define PAGEMAP_WALK_MASK	(PMD_MASK)
1337
1338#define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1339#define PM_PFRAME_BITS		55
1340#define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1341#define PM_SOFT_DIRTY		BIT_ULL(55)
1342#define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1343#define PM_UFFD_WP		BIT_ULL(57)
1344#define PM_FILE			BIT_ULL(61)
1345#define PM_SWAP			BIT_ULL(62)
1346#define PM_PRESENT		BIT_ULL(63)
1347
 
 
 
 
 
 
 
 
 
1348#define PM_END_OF_BUFFER    1
1349
1350static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1351{
1352	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1353}
1354
1355static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
 
1356{
1357	pm->buffer[pm->pos++] = *pme;
1358	if (pm->pos >= pm->len)
1359		return PM_END_OF_BUFFER;
1360	return 0;
1361}
1362
1363static int pagemap_pte_hole(unsigned long start, unsigned long end,
1364			    __always_unused int depth, struct mm_walk *walk)
1365{
1366	struct pagemapread *pm = walk->private;
1367	unsigned long addr = start;
1368	int err = 0;
 
1369
1370	while (addr < end) {
1371		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1372		pagemap_entry_t pme = make_pme(0, 0);
1373		/* End of address space hole, which we mark as non-present. */
1374		unsigned long hole_end;
1375
1376		if (vma)
1377			hole_end = min(end, vma->vm_start);
1378		else
1379			hole_end = end;
1380
1381		for (; addr < hole_end; addr += PAGE_SIZE) {
1382			err = add_to_pagemap(&pme, pm);
1383			if (err)
1384				goto out;
1385		}
1386
1387		if (!vma)
1388			break;
1389
1390		/* Addresses in the VMA. */
1391		if (vma->vm_flags & VM_SOFTDIRTY)
1392			pme = make_pme(0, PM_SOFT_DIRTY);
1393		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1394			err = add_to_pagemap(&pme, pm);
1395			if (err)
1396				goto out;
1397		}
1398	}
1399out:
1400	return err;
1401}
1402
1403static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1404		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1405{
1406	u64 frame = 0, flags = 0;
1407	struct page *page = NULL;
1408	bool migration = false;
1409
1410	if (pte_present(pte)) {
1411		if (pm->show_pfn)
1412			frame = pte_pfn(pte);
1413		flags |= PM_PRESENT;
1414		page = vm_normal_page(vma, addr, pte);
1415		if (pte_soft_dirty(pte))
1416			flags |= PM_SOFT_DIRTY;
1417		if (pte_uffd_wp(pte))
1418			flags |= PM_UFFD_WP;
1419	} else if (is_swap_pte(pte)) {
1420		swp_entry_t entry;
1421		if (pte_swp_soft_dirty(pte))
1422			flags |= PM_SOFT_DIRTY;
1423		if (pte_swp_uffd_wp(pte))
1424			flags |= PM_UFFD_WP;
1425		entry = pte_to_swp_entry(pte);
1426		if (pm->show_pfn) {
1427			pgoff_t offset;
1428			/*
1429			 * For PFN swap offsets, keeping the offset field
1430			 * to be PFN only to be compatible with old smaps.
1431			 */
1432			if (is_pfn_swap_entry(entry))
1433				offset = swp_offset_pfn(entry);
1434			else
1435				offset = swp_offset(entry);
1436			frame = swp_type(entry) |
1437			    (offset << MAX_SWAPFILES_SHIFT);
1438		}
1439		flags |= PM_SWAP;
1440		migration = is_migration_entry(entry);
1441		if (is_pfn_swap_entry(entry))
1442			page = pfn_swap_entry_to_page(entry);
1443		if (pte_marker_entry_uffd_wp(entry))
1444			flags |= PM_UFFD_WP;
1445	}
1446
1447	if (page && !PageAnon(page))
1448		flags |= PM_FILE;
1449	if (page && !migration && page_mapcount(page) == 1)
1450		flags |= PM_MMAP_EXCLUSIVE;
1451	if (vma->vm_flags & VM_SOFTDIRTY)
1452		flags |= PM_SOFT_DIRTY;
1453
1454	return make_pme(frame, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455}
 
1456
1457static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1458			     struct mm_walk *walk)
1459{
1460	struct vm_area_struct *vma = walk->vma;
1461	struct pagemapread *pm = walk->private;
1462	spinlock_t *ptl;
1463	pte_t *pte, *orig_pte;
1464	int err = 0;
1465#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1466	bool migration = false;
1467
1468	ptl = pmd_trans_huge_lock(pmdp, vma);
1469	if (ptl) {
1470		u64 flags = 0, frame = 0;
1471		pmd_t pmd = *pmdp;
1472		struct page *page = NULL;
1473
1474		if (vma->vm_flags & VM_SOFTDIRTY)
1475			flags |= PM_SOFT_DIRTY;
1476
1477		if (pmd_present(pmd)) {
1478			page = pmd_page(pmd);
1479
1480			flags |= PM_PRESENT;
1481			if (pmd_soft_dirty(pmd))
1482				flags |= PM_SOFT_DIRTY;
1483			if (pmd_uffd_wp(pmd))
1484				flags |= PM_UFFD_WP;
1485			if (pm->show_pfn)
1486				frame = pmd_pfn(pmd) +
1487					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1488		}
1489#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1490		else if (is_swap_pmd(pmd)) {
1491			swp_entry_t entry = pmd_to_swp_entry(pmd);
1492			unsigned long offset;
1493
1494			if (pm->show_pfn) {
1495				if (is_pfn_swap_entry(entry))
1496					offset = swp_offset_pfn(entry);
1497				else
1498					offset = swp_offset(entry);
1499				offset = offset +
1500					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1501				frame = swp_type(entry) |
1502					(offset << MAX_SWAPFILES_SHIFT);
1503			}
1504			flags |= PM_SWAP;
1505			if (pmd_swp_soft_dirty(pmd))
1506				flags |= PM_SOFT_DIRTY;
1507			if (pmd_swp_uffd_wp(pmd))
1508				flags |= PM_UFFD_WP;
1509			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1510			migration = is_migration_entry(entry);
1511			page = pfn_swap_entry_to_page(entry);
1512		}
1513#endif
1514
1515		if (page && !migration && page_mapcount(page) == 1)
1516			flags |= PM_MMAP_EXCLUSIVE;
 
 
1517
1518		for (; addr != end; addr += PAGE_SIZE) {
1519			pagemap_entry_t pme = make_pme(frame, flags);
1520
1521			err = add_to_pagemap(&pme, pm);
 
 
 
1522			if (err)
1523				break;
1524			if (pm->show_pfn) {
1525				if (flags & PM_PRESENT)
1526					frame++;
1527				else if (flags & PM_SWAP)
1528					frame += (1 << MAX_SWAPFILES_SHIFT);
1529			}
1530		}
1531		spin_unlock(ptl);
1532		return err;
1533	}
1534#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1535
1536	/*
1537	 * We can assume that @vma always points to a valid one and @end never
1538	 * goes beyond vma->vm_end.
1539	 */
1540	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1541	if (!pte) {
1542		walk->action = ACTION_AGAIN;
1543		return err;
1544	}
1545	for (; addr < end; pte++, addr += PAGE_SIZE) {
1546		pagemap_entry_t pme;
1547
1548		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1549		err = add_to_pagemap(&pme, pm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550		if (err)
1551			break;
1552	}
1553	pte_unmap_unlock(orig_pte, ptl);
1554
1555	cond_resched();
1556
1557	return err;
1558}
1559
1560#ifdef CONFIG_HUGETLB_PAGE
 
 
 
 
 
 
 
 
 
 
 
 
1561/* This function walks within one hugetlb entry in the single call */
1562static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1563				 unsigned long addr, unsigned long end,
1564				 struct mm_walk *walk)
1565{
1566	struct pagemapread *pm = walk->private;
1567	struct vm_area_struct *vma = walk->vma;
1568	u64 flags = 0, frame = 0;
1569	int err = 0;
1570	pte_t pte;
1571
1572	if (vma->vm_flags & VM_SOFTDIRTY)
1573		flags |= PM_SOFT_DIRTY;
1574
1575	pte = huge_ptep_get(ptep);
1576	if (pte_present(pte)) {
1577		struct page *page = pte_page(pte);
1578
1579		if (!PageAnon(page))
1580			flags |= PM_FILE;
1581
1582		if (page_mapcount(page) == 1)
1583			flags |= PM_MMAP_EXCLUSIVE;
1584
1585		if (huge_pte_uffd_wp(pte))
1586			flags |= PM_UFFD_WP;
1587
1588		flags |= PM_PRESENT;
1589		if (pm->show_pfn)
1590			frame = pte_pfn(pte) +
1591				((addr & ~hmask) >> PAGE_SHIFT);
1592	} else if (pte_swp_uffd_wp_any(pte)) {
1593		flags |= PM_UFFD_WP;
1594	}
1595
1596	for (; addr != end; addr += PAGE_SIZE) {
1597		pagemap_entry_t pme = make_pme(frame, flags);
1598
1599		err = add_to_pagemap(&pme, pm);
1600		if (err)
1601			return err;
1602		if (pm->show_pfn && (flags & PM_PRESENT))
1603			frame++;
1604	}
1605
1606	cond_resched();
1607
1608	return err;
1609}
1610#else
1611#define pagemap_hugetlb_range	NULL
1612#endif /* HUGETLB_PAGE */
1613
1614static const struct mm_walk_ops pagemap_ops = {
1615	.pmd_entry	= pagemap_pmd_range,
1616	.pte_hole	= pagemap_pte_hole,
1617	.hugetlb_entry	= pagemap_hugetlb_range,
1618	.walk_lock	= PGWALK_RDLOCK,
1619};
1620
1621/*
1622 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1623 *
1624 * For each page in the address space, this file contains one 64-bit entry
1625 * consisting of the following:
1626 *
1627 * Bits 0-54  page frame number (PFN) if present
1628 * Bits 0-4   swap type if swapped
1629 * Bits 5-54  swap offset if swapped
1630 * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1631 * Bit  56    page exclusively mapped
1632 * Bit  57    pte is uffd-wp write-protected
1633 * Bits 58-60 zero
1634 * Bit  61    page is file-page or shared-anon
1635 * Bit  62    page swapped
1636 * Bit  63    page present
1637 *
1638 * If the page is not present but in swap, then the PFN contains an
1639 * encoding of the swap file number and the page's offset into the
1640 * swap. Unmapped pages return a null PFN. This allows determining
1641 * precisely which pages are mapped (or in swap) and comparing mapped
1642 * pages between processes.
1643 *
1644 * Efficient users of this interface will use /proc/pid/maps to
1645 * determine which areas of memory are actually mapped and llseek to
1646 * skip over unmapped regions.
1647 */
1648static ssize_t pagemap_read(struct file *file, char __user *buf,
1649			    size_t count, loff_t *ppos)
1650{
1651	struct mm_struct *mm = file->private_data;
 
1652	struct pagemapread pm;
 
 
1653	unsigned long src;
1654	unsigned long svpfn;
1655	unsigned long start_vaddr;
1656	unsigned long end_vaddr;
1657	int ret = 0, copied = 0;
1658
1659	if (!mm || !mmget_not_zero(mm))
1660		goto out;
1661
1662	ret = -EINVAL;
1663	/* file position must be aligned */
1664	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1665		goto out_mm;
1666
1667	ret = 0;
1668	if (!count)
1669		goto out_mm;
1670
1671	/* do not disclose physical addresses: attack vector */
1672	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1673
 
1674	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1675	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1676	ret = -ENOMEM;
1677	if (!pm.buffer)
1678		goto out_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
1679
1680	src = *ppos;
1681	svpfn = src / PM_ENTRY_BYTES;
1682	end_vaddr = mm->task_size;
 
1683
1684	/* watch out for wraparound */
1685	start_vaddr = end_vaddr;
1686	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1687		unsigned long end;
1688
1689		ret = mmap_read_lock_killable(mm);
1690		if (ret)
1691			goto out_free;
1692		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1693		mmap_read_unlock(mm);
1694
1695		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1696		if (end >= start_vaddr && end < mm->task_size)
1697			end_vaddr = end;
1698	}
1699
1700	/* Ensure the address is inside the task */
1701	if (start_vaddr > mm->task_size)
1702		start_vaddr = end_vaddr;
1703
 
 
 
 
 
 
1704	ret = 0;
1705	while (count && (start_vaddr < end_vaddr)) {
1706		int len;
1707		unsigned long end;
1708
1709		pm.pos = 0;
1710		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1711		/* overflow ? */
1712		if (end < start_vaddr || end > end_vaddr)
1713			end = end_vaddr;
1714		ret = mmap_read_lock_killable(mm);
1715		if (ret)
1716			goto out_free;
1717		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1718		mmap_read_unlock(mm);
1719		start_vaddr = end;
1720
1721		len = min(count, PM_ENTRY_BYTES * pm.pos);
1722		if (copy_to_user(buf, pm.buffer, len)) {
1723			ret = -EFAULT;
1724			goto out_free;
1725		}
1726		copied += len;
1727		buf += len;
1728		count -= len;
1729	}
1730	*ppos += copied;
1731	if (!ret || ret == PM_END_OF_BUFFER)
1732		ret = copied;
1733
1734out_free:
1735	kfree(pm.buffer);
1736out_mm:
1737	mmput(mm);
 
 
 
 
1738out:
1739	return ret;
1740}
1741
1742static int pagemap_open(struct inode *inode, struct file *file)
1743{
1744	struct mm_struct *mm;
1745
1746	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1747	if (IS_ERR(mm))
1748		return PTR_ERR(mm);
1749	file->private_data = mm;
1750	return 0;
1751}
1752
1753static int pagemap_release(struct inode *inode, struct file *file)
1754{
1755	struct mm_struct *mm = file->private_data;
1756
1757	if (mm)
1758		mmdrop(mm);
1759	return 0;
1760}
1761
1762#define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
1763				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
1764				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
1765				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
1766#define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
1767
1768struct pagemap_scan_private {
1769	struct pm_scan_arg arg;
1770	unsigned long masks_of_interest, cur_vma_category;
1771	struct page_region *vec_buf;
1772	unsigned long vec_buf_len, vec_buf_index, found_pages;
1773	struct page_region __user *vec_out;
1774};
1775
1776static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
1777					   struct vm_area_struct *vma,
1778					   unsigned long addr, pte_t pte)
1779{
1780	unsigned long categories = 0;
1781
1782	if (pte_present(pte)) {
1783		struct page *page;
1784
1785		categories |= PAGE_IS_PRESENT;
1786		if (!pte_uffd_wp(pte))
1787			categories |= PAGE_IS_WRITTEN;
1788
1789		if (p->masks_of_interest & PAGE_IS_FILE) {
1790			page = vm_normal_page(vma, addr, pte);
1791			if (page && !PageAnon(page))
1792				categories |= PAGE_IS_FILE;
1793		}
1794
1795		if (is_zero_pfn(pte_pfn(pte)))
1796			categories |= PAGE_IS_PFNZERO;
1797		if (pte_soft_dirty(pte))
1798			categories |= PAGE_IS_SOFT_DIRTY;
1799	} else if (is_swap_pte(pte)) {
1800		swp_entry_t swp;
1801
1802		categories |= PAGE_IS_SWAPPED;
1803		if (!pte_swp_uffd_wp_any(pte))
1804			categories |= PAGE_IS_WRITTEN;
1805
1806		if (p->masks_of_interest & PAGE_IS_FILE) {
1807			swp = pte_to_swp_entry(pte);
1808			if (is_pfn_swap_entry(swp) &&
1809			    !folio_test_anon(pfn_swap_entry_folio(swp)))
1810				categories |= PAGE_IS_FILE;
1811		}
1812		if (pte_swp_soft_dirty(pte))
1813			categories |= PAGE_IS_SOFT_DIRTY;
1814	}
1815
1816	return categories;
1817}
1818
1819static void make_uffd_wp_pte(struct vm_area_struct *vma,
1820			     unsigned long addr, pte_t *pte, pte_t ptent)
1821{
1822	if (pte_present(ptent)) {
1823		pte_t old_pte;
1824
1825		old_pte = ptep_modify_prot_start(vma, addr, pte);
1826		ptent = pte_mkuffd_wp(old_pte);
1827		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1828	} else if (is_swap_pte(ptent)) {
1829		ptent = pte_swp_mkuffd_wp(ptent);
1830		set_pte_at(vma->vm_mm, addr, pte, ptent);
1831	} else {
1832		set_pte_at(vma->vm_mm, addr, pte,
1833			   make_pte_marker(PTE_MARKER_UFFD_WP));
1834	}
1835}
1836
1837#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1838static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
1839					  struct vm_area_struct *vma,
1840					  unsigned long addr, pmd_t pmd)
1841{
1842	unsigned long categories = PAGE_IS_HUGE;
1843
1844	if (pmd_present(pmd)) {
1845		struct page *page;
1846
1847		categories |= PAGE_IS_PRESENT;
1848		if (!pmd_uffd_wp(pmd))
1849			categories |= PAGE_IS_WRITTEN;
1850
1851		if (p->masks_of_interest & PAGE_IS_FILE) {
1852			page = vm_normal_page_pmd(vma, addr, pmd);
1853			if (page && !PageAnon(page))
1854				categories |= PAGE_IS_FILE;
1855		}
1856
1857		if (is_zero_pfn(pmd_pfn(pmd)))
1858			categories |= PAGE_IS_PFNZERO;
1859		if (pmd_soft_dirty(pmd))
1860			categories |= PAGE_IS_SOFT_DIRTY;
1861	} else if (is_swap_pmd(pmd)) {
1862		swp_entry_t swp;
1863
1864		categories |= PAGE_IS_SWAPPED;
1865		if (!pmd_swp_uffd_wp(pmd))
1866			categories |= PAGE_IS_WRITTEN;
1867		if (pmd_swp_soft_dirty(pmd))
1868			categories |= PAGE_IS_SOFT_DIRTY;
1869
1870		if (p->masks_of_interest & PAGE_IS_FILE) {
1871			swp = pmd_to_swp_entry(pmd);
1872			if (is_pfn_swap_entry(swp) &&
1873			    !folio_test_anon(pfn_swap_entry_folio(swp)))
1874				categories |= PAGE_IS_FILE;
1875		}
1876	}
1877
1878	return categories;
1879}
1880
1881static void make_uffd_wp_pmd(struct vm_area_struct *vma,
1882			     unsigned long addr, pmd_t *pmdp)
1883{
1884	pmd_t old, pmd = *pmdp;
1885
1886	if (pmd_present(pmd)) {
1887		old = pmdp_invalidate_ad(vma, addr, pmdp);
1888		pmd = pmd_mkuffd_wp(old);
1889		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1890	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1891		pmd = pmd_swp_mkuffd_wp(pmd);
1892		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1893	}
1894}
1895#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1896
1897#ifdef CONFIG_HUGETLB_PAGE
1898static unsigned long pagemap_hugetlb_category(pte_t pte)
1899{
1900	unsigned long categories = PAGE_IS_HUGE;
1901
1902	/*
1903	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
1904	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
1905	 * swapped pages.
1906	 */
1907	if (pte_present(pte)) {
1908		categories |= PAGE_IS_PRESENT;
1909		if (!huge_pte_uffd_wp(pte))
1910			categories |= PAGE_IS_WRITTEN;
1911		if (!PageAnon(pte_page(pte)))
1912			categories |= PAGE_IS_FILE;
1913		if (is_zero_pfn(pte_pfn(pte)))
1914			categories |= PAGE_IS_PFNZERO;
1915		if (pte_soft_dirty(pte))
1916			categories |= PAGE_IS_SOFT_DIRTY;
1917	} else if (is_swap_pte(pte)) {
1918		categories |= PAGE_IS_SWAPPED;
1919		if (!pte_swp_uffd_wp_any(pte))
1920			categories |= PAGE_IS_WRITTEN;
1921		if (pte_swp_soft_dirty(pte))
1922			categories |= PAGE_IS_SOFT_DIRTY;
1923	}
1924
1925	return categories;
1926}
1927
1928static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
1929				  unsigned long addr, pte_t *ptep,
1930				  pte_t ptent)
1931{
1932	unsigned long psize;
1933
1934	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
1935		return;
1936
1937	psize = huge_page_size(hstate_vma(vma));
1938
1939	if (is_hugetlb_entry_migration(ptent))
1940		set_huge_pte_at(vma->vm_mm, addr, ptep,
1941				pte_swp_mkuffd_wp(ptent), psize);
1942	else if (!huge_pte_none(ptent))
1943		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
1944					     huge_pte_mkuffd_wp(ptent));
1945	else
1946		set_huge_pte_at(vma->vm_mm, addr, ptep,
1947				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
1948}
1949#endif /* CONFIG_HUGETLB_PAGE */
1950
1951#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1952static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
1953				       unsigned long addr, unsigned long end)
1954{
1955	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
1956
1957	if (cur_buf->start != addr)
1958		cur_buf->end = addr;
1959	else
1960		cur_buf->start = cur_buf->end = 0;
1961
1962	p->found_pages -= (end - addr) / PAGE_SIZE;
1963}
1964#endif
1965
1966static bool pagemap_scan_is_interesting_page(unsigned long categories,
1967					     const struct pagemap_scan_private *p)
1968{
1969	categories ^= p->arg.category_inverted;
1970	if ((categories & p->arg.category_mask) != p->arg.category_mask)
1971		return false;
1972	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
1973		return false;
1974
1975	return true;
1976}
1977
1978static bool pagemap_scan_is_interesting_vma(unsigned long categories,
1979					    const struct pagemap_scan_private *p)
1980{
1981	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
1982
1983	categories ^= p->arg.category_inverted;
1984	if ((categories & required) != required)
1985		return false;
1986
1987	return true;
1988}
1989
1990static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
1991				  struct mm_walk *walk)
1992{
1993	struct pagemap_scan_private *p = walk->private;
1994	struct vm_area_struct *vma = walk->vma;
1995	unsigned long vma_category = 0;
1996	bool wp_allowed = userfaultfd_wp_async(vma) &&
1997	    userfaultfd_wp_use_markers(vma);
1998
1999	if (!wp_allowed) {
2000		/* User requested explicit failure over wp-async capability */
2001		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2002			return -EPERM;
2003		/*
2004		 * User requires wr-protect, and allows silently skipping
2005		 * unsupported vmas.
2006		 */
2007		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2008			return 1;
2009		/*
2010		 * Then the request doesn't involve wr-protects at all,
2011		 * fall through to the rest checks, and allow vma walk.
2012		 */
2013	}
2014
2015	if (vma->vm_flags & VM_PFNMAP)
2016		return 1;
2017
2018	if (wp_allowed)
2019		vma_category |= PAGE_IS_WPALLOWED;
2020
2021	if (vma->vm_flags & VM_SOFTDIRTY)
2022		vma_category |= PAGE_IS_SOFT_DIRTY;
2023
2024	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2025		return 1;
2026
2027	p->cur_vma_category = vma_category;
2028
2029	return 0;
2030}
2031
2032static bool pagemap_scan_push_range(unsigned long categories,
2033				    struct pagemap_scan_private *p,
2034				    unsigned long addr, unsigned long end)
2035{
2036	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2037
2038	/*
2039	 * When there is no output buffer provided at all, the sentinel values
2040	 * won't match here. There is no other way for `cur_buf->end` to be
2041	 * non-zero other than it being non-empty.
2042	 */
2043	if (addr == cur_buf->end && categories == cur_buf->categories) {
2044		cur_buf->end = end;
2045		return true;
2046	}
2047
2048	if (cur_buf->end) {
2049		if (p->vec_buf_index >= p->vec_buf_len - 1)
2050			return false;
2051
2052		cur_buf = &p->vec_buf[++p->vec_buf_index];
2053	}
2054
2055	cur_buf->start = addr;
2056	cur_buf->end = end;
2057	cur_buf->categories = categories;
2058
2059	return true;
2060}
2061
2062static int pagemap_scan_output(unsigned long categories,
2063			       struct pagemap_scan_private *p,
2064			       unsigned long addr, unsigned long *end)
2065{
2066	unsigned long n_pages, total_pages;
2067	int ret = 0;
2068
2069	if (!p->vec_buf)
2070		return 0;
2071
2072	categories &= p->arg.return_mask;
2073
2074	n_pages = (*end - addr) / PAGE_SIZE;
2075	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2076	    total_pages > p->arg.max_pages) {
2077		size_t n_too_much = total_pages - p->arg.max_pages;
2078		*end -= n_too_much * PAGE_SIZE;
2079		n_pages -= n_too_much;
2080		ret = -ENOSPC;
2081	}
2082
2083	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2084		*end = addr;
2085		n_pages = 0;
2086		ret = -ENOSPC;
2087	}
2088
2089	p->found_pages += n_pages;
2090	if (ret)
2091		p->arg.walk_end = *end;
2092
2093	return ret;
2094}
2095
2096static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2097				  unsigned long end, struct mm_walk *walk)
2098{
2099#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2100	struct pagemap_scan_private *p = walk->private;
2101	struct vm_area_struct *vma = walk->vma;
2102	unsigned long categories;
2103	spinlock_t *ptl;
2104	int ret = 0;
2105
2106	ptl = pmd_trans_huge_lock(pmd, vma);
2107	if (!ptl)
2108		return -ENOENT;
2109
2110	categories = p->cur_vma_category |
2111		     pagemap_thp_category(p, vma, start, *pmd);
2112
2113	if (!pagemap_scan_is_interesting_page(categories, p))
2114		goto out_unlock;
2115
2116	ret = pagemap_scan_output(categories, p, start, &end);
2117	if (start == end)
2118		goto out_unlock;
2119
2120	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2121		goto out_unlock;
2122	if (~categories & PAGE_IS_WRITTEN)
2123		goto out_unlock;
2124
2125	/*
2126	 * Break huge page into small pages if the WP operation
2127	 * needs to be performed on a portion of the huge page.
2128	 */
2129	if (end != start + HPAGE_SIZE) {
2130		spin_unlock(ptl);
2131		split_huge_pmd(vma, pmd, start);
2132		pagemap_scan_backout_range(p, start, end);
2133		/* Report as if there was no THP */
2134		return -ENOENT;
2135	}
2136
2137	make_uffd_wp_pmd(vma, start, pmd);
2138	flush_tlb_range(vma, start, end);
2139out_unlock:
2140	spin_unlock(ptl);
2141	return ret;
2142#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2143	return -ENOENT;
2144#endif
2145}
2146
2147static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2148				  unsigned long end, struct mm_walk *walk)
2149{
2150	struct pagemap_scan_private *p = walk->private;
2151	struct vm_area_struct *vma = walk->vma;
2152	unsigned long addr, flush_end = 0;
2153	pte_t *pte, *start_pte;
2154	spinlock_t *ptl;
2155	int ret;
2156
2157	arch_enter_lazy_mmu_mode();
2158
2159	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2160	if (ret != -ENOENT) {
2161		arch_leave_lazy_mmu_mode();
2162		return ret;
2163	}
2164
2165	ret = 0;
2166	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2167	if (!pte) {
2168		arch_leave_lazy_mmu_mode();
2169		walk->action = ACTION_AGAIN;
2170		return 0;
2171	}
2172
2173	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2174		/* Fast path for performing exclusive WP */
2175		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2176			pte_t ptent = ptep_get(pte);
2177
2178			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2179			    pte_swp_uffd_wp_any(ptent))
2180				continue;
2181			make_uffd_wp_pte(vma, addr, pte, ptent);
2182			if (!flush_end)
2183				start = addr;
2184			flush_end = addr + PAGE_SIZE;
2185		}
2186		goto flush_and_return;
2187	}
2188
2189	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2190	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2191	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2192		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2193			unsigned long next = addr + PAGE_SIZE;
2194			pte_t ptent = ptep_get(pte);
2195
2196			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2197			    pte_swp_uffd_wp_any(ptent))
2198				continue;
2199			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2200						  p, addr, &next);
2201			if (next == addr)
2202				break;
2203			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2204				continue;
2205			make_uffd_wp_pte(vma, addr, pte, ptent);
2206			if (!flush_end)
2207				start = addr;
2208			flush_end = next;
2209		}
2210		goto flush_and_return;
2211	}
2212
2213	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2214		pte_t ptent = ptep_get(pte);
2215		unsigned long categories = p->cur_vma_category |
2216					   pagemap_page_category(p, vma, addr, ptent);
2217		unsigned long next = addr + PAGE_SIZE;
2218
2219		if (!pagemap_scan_is_interesting_page(categories, p))
2220			continue;
2221
2222		ret = pagemap_scan_output(categories, p, addr, &next);
2223		if (next == addr)
2224			break;
2225
2226		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2227			continue;
2228		if (~categories & PAGE_IS_WRITTEN)
2229			continue;
2230
2231		make_uffd_wp_pte(vma, addr, pte, ptent);
2232		if (!flush_end)
2233			start = addr;
2234		flush_end = next;
2235	}
2236
2237flush_and_return:
2238	if (flush_end)
2239		flush_tlb_range(vma, start, addr);
2240
2241	pte_unmap_unlock(start_pte, ptl);
2242	arch_leave_lazy_mmu_mode();
2243
2244	cond_resched();
2245	return ret;
2246}
2247
2248#ifdef CONFIG_HUGETLB_PAGE
2249static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2250				      unsigned long start, unsigned long end,
2251				      struct mm_walk *walk)
2252{
2253	struct pagemap_scan_private *p = walk->private;
2254	struct vm_area_struct *vma = walk->vma;
2255	unsigned long categories;
2256	spinlock_t *ptl;
2257	int ret = 0;
2258	pte_t pte;
2259
2260	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2261		/* Go the short route when not write-protecting pages. */
2262
2263		pte = huge_ptep_get(ptep);
2264		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2265
2266		if (!pagemap_scan_is_interesting_page(categories, p))
2267			return 0;
2268
2269		return pagemap_scan_output(categories, p, start, &end);
2270	}
2271
2272	i_mmap_lock_write(vma->vm_file->f_mapping);
2273	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2274
2275	pte = huge_ptep_get(ptep);
2276	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2277
2278	if (!pagemap_scan_is_interesting_page(categories, p))
2279		goto out_unlock;
2280
2281	ret = pagemap_scan_output(categories, p, start, &end);
2282	if (start == end)
2283		goto out_unlock;
2284
2285	if (~categories & PAGE_IS_WRITTEN)
2286		goto out_unlock;
2287
2288	if (end != start + HPAGE_SIZE) {
2289		/* Partial HugeTLB page WP isn't possible. */
2290		pagemap_scan_backout_range(p, start, end);
2291		p->arg.walk_end = start;
2292		ret = 0;
2293		goto out_unlock;
2294	}
2295
2296	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2297	flush_hugetlb_tlb_range(vma, start, end);
2298
2299out_unlock:
2300	spin_unlock(ptl);
2301	i_mmap_unlock_write(vma->vm_file->f_mapping);
2302
2303	return ret;
2304}
2305#else
2306#define pagemap_scan_hugetlb_entry NULL
2307#endif
2308
2309static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2310				 int depth, struct mm_walk *walk)
2311{
2312	struct pagemap_scan_private *p = walk->private;
2313	struct vm_area_struct *vma = walk->vma;
2314	int ret, err;
2315
2316	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2317		return 0;
2318
2319	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2320	if (addr == end)
2321		return ret;
2322
2323	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2324		return ret;
2325
2326	err = uffd_wp_range(vma, addr, end - addr, true);
2327	if (err < 0)
2328		ret = err;
2329
2330	return ret;
2331}
2332
2333static const struct mm_walk_ops pagemap_scan_ops = {
2334	.test_walk = pagemap_scan_test_walk,
2335	.pmd_entry = pagemap_scan_pmd_entry,
2336	.pte_hole = pagemap_scan_pte_hole,
2337	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2338};
2339
2340static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2341				 unsigned long uarg)
2342{
2343	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2344		return -EFAULT;
2345
2346	if (arg->size != sizeof(struct pm_scan_arg))
2347		return -EINVAL;
2348
2349	/* Validate requested features */
2350	if (arg->flags & ~PM_SCAN_FLAGS)
2351		return -EINVAL;
2352	if ((arg->category_inverted | arg->category_mask |
2353	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2354		return -EINVAL;
2355
2356	arg->start = untagged_addr((unsigned long)arg->start);
2357	arg->end = untagged_addr((unsigned long)arg->end);
2358	arg->vec = untagged_addr((unsigned long)arg->vec);
2359
2360	/* Validate memory pointers */
2361	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2362		return -EINVAL;
2363	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2364		return -EFAULT;
2365	if (!arg->vec && arg->vec_len)
2366		return -EINVAL;
2367	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2368			      arg->vec_len * sizeof(struct page_region)))
2369		return -EFAULT;
2370
2371	/* Fixup default values */
2372	arg->end = ALIGN(arg->end, PAGE_SIZE);
2373	arg->walk_end = 0;
2374	if (!arg->max_pages)
2375		arg->max_pages = ULONG_MAX;
2376
2377	return 0;
2378}
2379
2380static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2381				       unsigned long uargl)
2382{
2383	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2384
2385	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2386		return -EFAULT;
2387
2388	return 0;
2389}
2390
2391static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2392{
2393	if (!p->arg.vec_len)
2394		return 0;
2395
2396	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2397			       p->arg.vec_len);
2398	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2399				   GFP_KERNEL);
2400	if (!p->vec_buf)
2401		return -ENOMEM;
2402
2403	p->vec_buf->start = p->vec_buf->end = 0;
2404	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2405
2406	return 0;
2407}
2408
2409static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2410{
2411	const struct page_region *buf = p->vec_buf;
2412	long n = p->vec_buf_index;
2413
2414	if (!p->vec_buf)
2415		return 0;
2416
2417	if (buf[n].end != buf[n].start)
2418		n++;
2419
2420	if (!n)
2421		return 0;
2422
2423	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2424		return -EFAULT;
2425
2426	p->arg.vec_len -= n;
2427	p->vec_out += n;
2428
2429	p->vec_buf_index = 0;
2430	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2431	p->vec_buf->start = p->vec_buf->end = 0;
2432
2433	return n;
2434}
2435
2436static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2437{
2438	struct pagemap_scan_private p = {0};
2439	unsigned long walk_start;
2440	size_t n_ranges_out = 0;
2441	int ret;
2442
2443	ret = pagemap_scan_get_args(&p.arg, uarg);
2444	if (ret)
2445		return ret;
2446
2447	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2448			      p.arg.return_mask;
2449	ret = pagemap_scan_init_bounce_buffer(&p);
2450	if (ret)
2451		return ret;
2452
2453	for (walk_start = p.arg.start; walk_start < p.arg.end;
2454			walk_start = p.arg.walk_end) {
2455		struct mmu_notifier_range range;
2456		long n_out;
2457
2458		if (fatal_signal_pending(current)) {
2459			ret = -EINTR;
2460			break;
2461		}
2462
2463		ret = mmap_read_lock_killable(mm);
2464		if (ret)
2465			break;
2466
2467		/* Protection change for the range is going to happen. */
2468		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2469			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2470						mm, walk_start, p.arg.end);
2471			mmu_notifier_invalidate_range_start(&range);
2472		}
2473
2474		ret = walk_page_range(mm, walk_start, p.arg.end,
2475				      &pagemap_scan_ops, &p);
2476
2477		if (p.arg.flags & PM_SCAN_WP_MATCHING)
2478			mmu_notifier_invalidate_range_end(&range);
2479
2480		mmap_read_unlock(mm);
2481
2482		n_out = pagemap_scan_flush_buffer(&p);
2483		if (n_out < 0)
2484			ret = n_out;
2485		else
2486			n_ranges_out += n_out;
2487
2488		if (ret != -ENOSPC)
2489			break;
2490
2491		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2492			break;
2493	}
2494
2495	/* ENOSPC signifies early stop (buffer full) from the walk. */
2496	if (!ret || ret == -ENOSPC)
2497		ret = n_ranges_out;
2498
2499	/* The walk_end isn't set when ret is zero */
2500	if (!p.arg.walk_end)
2501		p.arg.walk_end = p.arg.end;
2502	if (pagemap_scan_writeback_args(&p.arg, uarg))
2503		ret = -EFAULT;
2504
2505	kfree(p.vec_buf);
2506	return ret;
2507}
2508
2509static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2510			   unsigned long arg)
2511{
2512	struct mm_struct *mm = file->private_data;
2513
2514	switch (cmd) {
2515	case PAGEMAP_SCAN:
2516		return do_pagemap_scan(mm, arg);
2517
2518	default:
2519		return -EINVAL;
2520	}
2521}
2522
2523const struct file_operations proc_pagemap_operations = {
2524	.llseek		= mem_lseek, /* borrow this */
2525	.read		= pagemap_read,
2526	.open		= pagemap_open,
2527	.release	= pagemap_release,
2528	.unlocked_ioctl = do_pagemap_cmd,
2529	.compat_ioctl	= do_pagemap_cmd,
2530};
2531#endif /* CONFIG_PROC_PAGE_MONITOR */
2532
2533#ifdef CONFIG_NUMA
2534
2535struct numa_maps {
 
2536	unsigned long pages;
2537	unsigned long anon;
2538	unsigned long active;
2539	unsigned long writeback;
2540	unsigned long mapcount_max;
2541	unsigned long dirty;
2542	unsigned long swapcache;
2543	unsigned long node[MAX_NUMNODES];
2544};
2545
2546struct numa_maps_private {
2547	struct proc_maps_private proc_maps;
2548	struct numa_maps md;
2549};
2550
2551static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2552			unsigned long nr_pages)
2553{
2554	int count = page_mapcount(page);
2555
2556	md->pages += nr_pages;
2557	if (pte_dirty || PageDirty(page))
2558		md->dirty += nr_pages;
2559
2560	if (PageSwapCache(page))
2561		md->swapcache += nr_pages;
2562
2563	if (PageActive(page) || PageUnevictable(page))
2564		md->active += nr_pages;
2565
2566	if (PageWriteback(page))
2567		md->writeback += nr_pages;
2568
2569	if (PageAnon(page))
2570		md->anon += nr_pages;
2571
2572	if (count > md->mapcount_max)
2573		md->mapcount_max = count;
2574
2575	md->node[page_to_nid(page)] += nr_pages;
2576}
2577
2578static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2579		unsigned long addr)
2580{
2581	struct page *page;
2582	int nid;
2583
2584	if (!pte_present(pte))
2585		return NULL;
2586
2587	page = vm_normal_page(vma, addr, pte);
2588	if (!page || is_zone_device_page(page))
2589		return NULL;
2590
2591	if (PageReserved(page))
2592		return NULL;
2593
2594	nid = page_to_nid(page);
2595	if (!node_isset(nid, node_states[N_MEMORY]))
2596		return NULL;
2597
2598	return page;
2599}
2600
2601#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2602static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2603					      struct vm_area_struct *vma,
2604					      unsigned long addr)
2605{
2606	struct page *page;
2607	int nid;
2608
2609	if (!pmd_present(pmd))
2610		return NULL;
2611
2612	page = vm_normal_page_pmd(vma, addr, pmd);
2613	if (!page)
2614		return NULL;
2615
2616	if (PageReserved(page))
2617		return NULL;
2618
2619	nid = page_to_nid(page);
2620	if (!node_isset(nid, node_states[N_MEMORY]))
2621		return NULL;
2622
2623	return page;
2624}
2625#endif
2626
2627static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2628		unsigned long end, struct mm_walk *walk)
2629{
2630	struct numa_maps *md = walk->private;
2631	struct vm_area_struct *vma = walk->vma;
2632	spinlock_t *ptl;
2633	pte_t *orig_pte;
2634	pte_t *pte;
2635
2636#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2637	ptl = pmd_trans_huge_lock(pmd, vma);
2638	if (ptl) {
 
2639		struct page *page;
2640
2641		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2642		if (page)
2643			gather_stats(page, md, pmd_dirty(*pmd),
2644				     HPAGE_PMD_SIZE/PAGE_SIZE);
2645		spin_unlock(ptl);
2646		return 0;
2647	}
2648#endif
2649	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2650	if (!pte) {
2651		walk->action = ACTION_AGAIN;
2652		return 0;
2653	}
2654	do {
2655		pte_t ptent = ptep_get(pte);
2656		struct page *page = can_gather_numa_stats(ptent, vma, addr);
2657		if (!page)
2658			continue;
2659		gather_stats(page, md, pte_dirty(ptent), 1);
2660
2661	} while (pte++, addr += PAGE_SIZE, addr != end);
2662	pte_unmap_unlock(orig_pte, ptl);
2663	cond_resched();
2664	return 0;
2665}
2666#ifdef CONFIG_HUGETLB_PAGE
2667static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2668		unsigned long addr, unsigned long end, struct mm_walk *walk)
2669{
2670	pte_t huge_pte = huge_ptep_get(pte);
2671	struct numa_maps *md;
2672	struct page *page;
2673
2674	if (!pte_present(huge_pte))
2675		return 0;
2676
2677	page = pte_page(huge_pte);
 
 
2678
2679	md = walk->private;
2680	gather_stats(page, md, pte_dirty(huge_pte), 1);
2681	return 0;
2682}
2683
2684#else
2685static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2686		unsigned long addr, unsigned long end, struct mm_walk *walk)
2687{
2688	return 0;
2689}
2690#endif
2691
2692static const struct mm_walk_ops show_numa_ops = {
2693	.hugetlb_entry = gather_hugetlb_stats,
2694	.pmd_entry = gather_pte_stats,
2695	.walk_lock = PGWALK_RDLOCK,
2696};
2697
2698/*
2699 * Display pages allocated per node and memory policy via /proc.
2700 */
2701static int show_numa_map(struct seq_file *m, void *v)
2702{
2703	struct numa_maps_private *numa_priv = m->private;
2704	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2705	struct vm_area_struct *vma = v;
2706	struct numa_maps *md = &numa_priv->md;
2707	struct file *file = vma->vm_file;
 
2708	struct mm_struct *mm = vma->vm_mm;
2709	char buffer[64];
2710	struct mempolicy *pol;
2711	pgoff_t ilx;
2712	int nid;
2713
2714	if (!mm)
2715		return 0;
2716
2717	/* Ensure we start with an empty set of numa_maps statistics. */
2718	memset(md, 0, sizeof(*md));
2719
2720	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
2721	if (pol) {
2722		mpol_to_str(buffer, sizeof(buffer), pol);
2723		mpol_cond_put(pol);
2724	} else {
2725		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
2726	}
 
 
 
2727
2728	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2729
2730	if (file) {
2731		seq_puts(m, " file=");
2732		seq_path(m, file_user_path(file), "\n\t= ");
2733	} else if (vma_is_initial_heap(vma)) {
2734		seq_puts(m, " heap");
2735	} else if (vma_is_initial_stack(vma)) {
2736		seq_puts(m, " stack");
 
 
 
 
 
 
 
 
 
 
 
2737	}
2738
2739	if (is_vm_hugetlb_page(vma))
2740		seq_puts(m, " huge");
2741
2742	/* mmap_lock is held by m_start */
2743	walk_page_vma(vma, &show_numa_ops, md);
2744
2745	if (!md->pages)
2746		goto out;
2747
2748	if (md->anon)
2749		seq_printf(m, " anon=%lu", md->anon);
2750
2751	if (md->dirty)
2752		seq_printf(m, " dirty=%lu", md->dirty);
2753
2754	if (md->pages != md->anon && md->pages != md->dirty)
2755		seq_printf(m, " mapped=%lu", md->pages);
2756
2757	if (md->mapcount_max > 1)
2758		seq_printf(m, " mapmax=%lu", md->mapcount_max);
2759
2760	if (md->swapcache)
2761		seq_printf(m, " swapcache=%lu", md->swapcache);
2762
2763	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2764		seq_printf(m, " active=%lu", md->active);
2765
2766	if (md->writeback)
2767		seq_printf(m, " writeback=%lu", md->writeback);
2768
2769	for_each_node_state(nid, N_MEMORY)
2770		if (md->node[nid])
2771			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2772
2773	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2774out:
2775	seq_putc(m, '\n');
 
 
 
2776	return 0;
2777}
2778
 
 
 
 
 
 
 
 
 
 
2779static const struct seq_operations proc_pid_numa_maps_op = {
2780	.start  = m_start,
2781	.next   = m_next,
2782	.stop   = m_stop,
2783	.show   = show_numa_map,
 
 
 
 
 
 
 
2784};
2785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2786static int pid_numa_maps_open(struct inode *inode, struct file *file)
2787{
2788	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2789				sizeof(struct numa_maps_private));
 
 
 
 
2790}
2791
2792const struct file_operations proc_pid_numa_maps_operations = {
2793	.open		= pid_numa_maps_open,
2794	.read		= seq_read,
2795	.llseek		= seq_lseek,
2796	.release	= proc_map_release,
2797};
2798
 
 
 
 
 
 
2799#endif /* CONFIG_NUMA */
v3.15
   1#include <linux/mm.h>
   2#include <linux/vmacache.h>
 
   3#include <linux/hugetlb.h>
   4#include <linux/huge_mm.h>
   5#include <linux/mount.h>
 
   6#include <linux/seq_file.h>
   7#include <linux/highmem.h>
   8#include <linux/ptrace.h>
   9#include <linux/slab.h>
  10#include <linux/pagemap.h>
  11#include <linux/mempolicy.h>
  12#include <linux/rmap.h>
  13#include <linux/swap.h>
 
  14#include <linux/swapops.h>
  15#include <linux/mmu_notifier.h>
 
 
 
 
 
 
  16
  17#include <asm/elf.h>
  18#include <asm/uaccess.h>
  19#include <asm/tlbflush.h>
  20#include "internal.h"
  21
 
 
  22void task_mem(struct seq_file *m, struct mm_struct *mm)
  23{
  24	unsigned long data, text, lib, swap;
  25	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  26
 
 
 
 
  27	/*
  28	 * Note: to minimize their overhead, mm maintains hiwater_vm and
  29	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
  30	 * collector of these hiwater stats must therefore get total_vm
  31	 * and rss too, which will usually be the higher.  Barriers? not
  32	 * worth the effort, such snapshots can always be inconsistent.
  33	 */
  34	hiwater_vm = total_vm = mm->total_vm;
  35	if (hiwater_vm < mm->hiwater_vm)
  36		hiwater_vm = mm->hiwater_vm;
  37	hiwater_rss = total_rss = get_mm_rss(mm);
  38	if (hiwater_rss < mm->hiwater_rss)
  39		hiwater_rss = mm->hiwater_rss;
  40
  41	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  42	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  43	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
 
 
  44	swap = get_mm_counter(mm, MM_SWAPENTS);
  45	seq_printf(m,
  46		"VmPeak:\t%8lu kB\n"
  47		"VmSize:\t%8lu kB\n"
  48		"VmLck:\t%8lu kB\n"
  49		"VmPin:\t%8lu kB\n"
  50		"VmHWM:\t%8lu kB\n"
  51		"VmRSS:\t%8lu kB\n"
  52		"VmData:\t%8lu kB\n"
  53		"VmStk:\t%8lu kB\n"
  54		"VmExe:\t%8lu kB\n"
  55		"VmLib:\t%8lu kB\n"
  56		"VmPTE:\t%8lu kB\n"
  57		"VmSwap:\t%8lu kB\n",
  58		hiwater_vm << (PAGE_SHIFT-10),
  59		total_vm << (PAGE_SHIFT-10),
  60		mm->locked_vm << (PAGE_SHIFT-10),
  61		mm->pinned_vm << (PAGE_SHIFT-10),
  62		hiwater_rss << (PAGE_SHIFT-10),
  63		total_rss << (PAGE_SHIFT-10),
  64		data << (PAGE_SHIFT-10),
  65		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  66		(PTRS_PER_PTE * sizeof(pte_t) *
  67		 atomic_long_read(&mm->nr_ptes)) >> 10,
  68		swap << (PAGE_SHIFT-10));
  69}
 
  70
  71unsigned long task_vsize(struct mm_struct *mm)
  72{
  73	return PAGE_SIZE * mm->total_vm;
  74}
  75
  76unsigned long task_statm(struct mm_struct *mm,
  77			 unsigned long *shared, unsigned long *text,
  78			 unsigned long *data, unsigned long *resident)
  79{
  80	*shared = get_mm_counter(mm, MM_FILEPAGES);
 
  81	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  82								>> PAGE_SHIFT;
  83	*data = mm->total_vm - mm->shared_vm;
  84	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  85	return mm->total_vm;
  86}
  87
  88#ifdef CONFIG_NUMA
  89/*
  90 * These functions are for numa_maps but called in generic **maps seq_file
  91 * ->start(), ->stop() ops.
  92 *
  93 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
  94 * Each mempolicy object is controlled by reference counting. The problem here
  95 * is how to avoid accessing dead mempolicy object.
  96 *
  97 * Because we're holding mmap_sem while reading seq_file, it's safe to access
  98 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
  99 *
 100 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
 101 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
 102 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
 103 * gurantee the task never exits under us. But taking task_lock() around
 104 * get_vma_plicy() causes lock order problem.
 105 *
 106 * To access task->mempolicy without lock, we hold a reference count of an
 107 * object pointed by task->mempolicy and remember it. This will guarantee
 108 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
 109 */
 110static void hold_task_mempolicy(struct proc_maps_private *priv)
 111{
 112	struct task_struct *task = priv->task;
 113
 114	task_lock(task);
 115	priv->task_mempolicy = task->mempolicy;
 116	mpol_get(priv->task_mempolicy);
 117	task_unlock(task);
 118}
 119static void release_task_mempolicy(struct proc_maps_private *priv)
 120{
 121	mpol_put(priv->task_mempolicy);
 122}
 123#else
 124static void hold_task_mempolicy(struct proc_maps_private *priv)
 125{
 126}
 127static void release_task_mempolicy(struct proc_maps_private *priv)
 128{
 129}
 130#endif
 131
 132static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
 
 133{
 134	if (vma && vma != priv->tail_vma) {
 135		struct mm_struct *mm = vma->vm_mm;
 136		release_task_mempolicy(priv);
 137		up_read(&mm->mmap_sem);
 138		mmput(mm);
 
 
 139	}
 
 
 140}
 141
 142static void *m_start(struct seq_file *m, loff_t *pos)
 143{
 144	struct proc_maps_private *priv = m->private;
 145	unsigned long last_addr = m->version;
 146	struct mm_struct *mm;
 147	struct vm_area_struct *vma, *tail_vma = NULL;
 148	loff_t l = *pos;
 149
 150	/* Clear the per syscall fields in priv */
 151	priv->task = NULL;
 152	priv->tail_vma = NULL;
 153
 154	/*
 155	 * We remember last_addr rather than next_addr to hit with
 156	 * vmacache most of the time. We have zero last_addr at
 157	 * the beginning and also after lseek. We will have -1 last_addr
 158	 * after the end of the vmas.
 159	 */
 160
 
 161	if (last_addr == -1UL)
 162		return NULL;
 163
 164	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
 165	if (!priv->task)
 166		return ERR_PTR(-ESRCH);
 167
 168	mm = mm_access(priv->task, PTRACE_MODE_READ);
 169	if (!mm || IS_ERR(mm))
 170		return mm;
 171	down_read(&mm->mmap_sem);
 
 
 172
 173	tail_vma = get_gate_vma(priv->task->mm);
 174	priv->tail_vma = tail_vma;
 
 
 
 
 
 
 175	hold_task_mempolicy(priv);
 176	/* Start with last addr hint */
 177	vma = find_vma(mm, last_addr);
 178	if (last_addr && vma) {
 179		vma = vma->vm_next;
 180		goto out;
 181	}
 182
 183	/*
 184	 * Check the vma index is within the range and do
 185	 * sequential scan until m_index.
 186	 */
 187	vma = NULL;
 188	if ((unsigned long)l < mm->map_count) {
 189		vma = mm->mmap;
 190		while (l-- && vma)
 191			vma = vma->vm_next;
 192		goto out;
 193	}
 
 
 194
 195	if (l != mm->map_count)
 196		tail_vma = NULL; /* After gate vma */
 
 
 197
 198out:
 199	if (vma)
 200		return vma;
 201
 202	release_task_mempolicy(priv);
 203	/* End of vmas has been reached */
 204	m->version = (tail_vma != NULL)? 0: -1UL;
 205	up_read(&mm->mmap_sem);
 206	mmput(mm);
 207	return tail_vma;
 
 208}
 209
 210static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 
 211{
 212	struct proc_maps_private *priv = m->private;
 213	struct vm_area_struct *vma = v;
 214	struct vm_area_struct *tail_vma = priv->tail_vma;
 
 
 
 
 
 
 
 
 
 
 215
 216	(*pos)++;
 217	if (vma && (vma != tail_vma) && vma->vm_next)
 218		return vma->vm_next;
 219	vma_stop(priv, vma);
 220	return (vma != tail_vma)? tail_vma: NULL;
 221}
 222
 223static void m_stop(struct seq_file *m, void *v)
 224{
 225	struct proc_maps_private *priv = m->private;
 226	struct vm_area_struct *vma = v;
 
 
 
 227
 228	if (!IS_ERR(vma))
 229		vma_stop(priv, vma);
 230	if (priv->task)
 231		put_task_struct(priv->task);
 232}
 233
 234static int do_maps_open(struct inode *inode, struct file *file,
 235			const struct seq_operations *ops)
 236{
 237	struct proc_maps_private *priv;
 238	int ret = -ENOMEM;
 239	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
 240	if (priv) {
 241		priv->pid = proc_pid(inode);
 242		ret = seq_open(file, ops);
 243		if (!ret) {
 244			struct seq_file *m = file->private_data;
 245			m->private = priv;
 246		} else {
 247			kfree(priv);
 248		}
 249	}
 250	return ret;
 
 
 
 
 
 
 
 
 251}
 252
 253static void
 254show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
 255{
 
 256	struct mm_struct *mm = vma->vm_mm;
 257	struct file *file = vma->vm_file;
 258	struct proc_maps_private *priv = m->private;
 259	struct task_struct *task = priv->task;
 260	vm_flags_t flags = vma->vm_flags;
 261	unsigned long ino = 0;
 262	unsigned long long pgoff = 0;
 263	unsigned long start, end;
 264	dev_t dev = 0;
 265	const char *name = NULL;
 266
 267	if (file) {
 268		struct inode *inode = file_inode(vma->vm_file);
 
 269		dev = inode->i_sb->s_dev;
 270		ino = inode->i_ino;
 271		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 272	}
 273
 274	/* We don't show the stack guard page in /proc/maps */
 275	start = vma->vm_start;
 276	if (stack_guard_page_start(vma, start))
 277		start += PAGE_SIZE;
 278	end = vma->vm_end;
 279	if (stack_guard_page_end(vma, end))
 280		end -= PAGE_SIZE;
 281
 282	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 283	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
 284			start,
 285			end,
 286			flags & VM_READ ? 'r' : '-',
 287			flags & VM_WRITE ? 'w' : '-',
 288			flags & VM_EXEC ? 'x' : '-',
 289			flags & VM_MAYSHARE ? 's' : 'p',
 290			pgoff,
 291			MAJOR(dev), MINOR(dev), ino);
 292
 293	/*
 294	 * Print the dentry name for named mappings, and a
 295	 * special [heap] marker for the heap:
 296	 */
 297	if (file) {
 298		seq_pad(m, ' ');
 299		seq_path(m, &file->f_path, "\n");
 
 
 
 
 
 
 
 300		goto done;
 301	}
 302
 
 
 
 
 
 
 303	name = arch_vma_name(vma);
 304	if (!name) {
 305		pid_t tid;
 306
 307		if (!mm) {
 308			name = "[vdso]";
 309			goto done;
 310		}
 311
 312		if (vma->vm_start <= mm->brk &&
 313		    vma->vm_end >= mm->start_brk) {
 314			name = "[heap]";
 315			goto done;
 316		}
 317
 318		tid = vm_is_stack(task, vma, is_pid);
 
 
 
 319
 320		if (tid != 0) {
 321			/*
 322			 * Thread stack in /proc/PID/task/TID/maps or
 323			 * the main process stack.
 324			 */
 325			if (!is_pid || (vma->vm_start <= mm->start_stack &&
 326			    vma->vm_end >= mm->start_stack)) {
 327				name = "[stack]";
 328			} else {
 329				/* Thread stack in /proc/PID/maps */
 330				seq_pad(m, ' ');
 331				seq_printf(m, "[stack:%d]", tid);
 332			}
 333		}
 334	}
 335
 336done:
 337	if (name) {
 338		seq_pad(m, ' ');
 339		seq_puts(m, name);
 340	}
 341	seq_putc(m, '\n');
 342}
 343
 344static int show_map(struct seq_file *m, void *v, int is_pid)
 345{
 346	struct vm_area_struct *vma = v;
 347	struct proc_maps_private *priv = m->private;
 348	struct task_struct *task = priv->task;
 349
 350	show_map_vma(m, vma, is_pid);
 351
 352	if (m->count < m->size)  /* vma is copied successfully */
 353		m->version = (vma != get_gate_vma(task->mm))
 354			? vma->vm_start : 0;
 355	return 0;
 356}
 357
 358static int show_pid_map(struct seq_file *m, void *v)
 359{
 360	return show_map(m, v, 1);
 361}
 362
 363static int show_tid_map(struct seq_file *m, void *v)
 364{
 365	return show_map(m, v, 0);
 366}
 367
 368static const struct seq_operations proc_pid_maps_op = {
 369	.start	= m_start,
 370	.next	= m_next,
 371	.stop	= m_stop,
 372	.show	= show_pid_map
 373};
 374
 375static const struct seq_operations proc_tid_maps_op = {
 376	.start	= m_start,
 377	.next	= m_next,
 378	.stop	= m_stop,
 379	.show	= show_tid_map
 380};
 381
 382static int pid_maps_open(struct inode *inode, struct file *file)
 383{
 384	return do_maps_open(inode, file, &proc_pid_maps_op);
 385}
 386
 387static int tid_maps_open(struct inode *inode, struct file *file)
 388{
 389	return do_maps_open(inode, file, &proc_tid_maps_op);
 390}
 391
 392const struct file_operations proc_pid_maps_operations = {
 393	.open		= pid_maps_open,
 394	.read		= seq_read,
 395	.llseek		= seq_lseek,
 396	.release	= seq_release_private,
 397};
 398
 399const struct file_operations proc_tid_maps_operations = {
 400	.open		= tid_maps_open,
 401	.read		= seq_read,
 402	.llseek		= seq_lseek,
 403	.release	= seq_release_private,
 404};
 405
 406/*
 407 * Proportional Set Size(PSS): my share of RSS.
 408 *
 409 * PSS of a process is the count of pages it has in memory, where each
 410 * page is divided by the number of processes sharing it.  So if a
 411 * process has 1000 pages all to itself, and 1000 shared with one other
 412 * process, its PSS will be 1500.
 413 *
 414 * To keep (accumulated) division errors low, we adopt a 64bit
 415 * fixed-point pss counter to minimize division errors. So (pss >>
 416 * PSS_SHIFT) would be the real byte count.
 417 *
 418 * A shift of 12 before division means (assuming 4K page size):
 419 * 	- 1M 3-user-pages add up to 8KB errors;
 420 * 	- supports mapcount up to 2^24, or 16M;
 421 * 	- supports PSS up to 2^52 bytes, or 4PB.
 422 */
 423#define PSS_SHIFT 12
 424
 425#ifdef CONFIG_PROC_PAGE_MONITOR
 426struct mem_size_stats {
 427	struct vm_area_struct *vma;
 428	unsigned long resident;
 429	unsigned long shared_clean;
 430	unsigned long shared_dirty;
 431	unsigned long private_clean;
 432	unsigned long private_dirty;
 433	unsigned long referenced;
 434	unsigned long anonymous;
 
 435	unsigned long anonymous_thp;
 
 
 436	unsigned long swap;
 437	unsigned long nonlinear;
 
 
 438	u64 pss;
 
 
 
 
 
 
 439};
 440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441
 442static void smaps_pte_entry(pte_t ptent, unsigned long addr,
 443		unsigned long ptent_size, struct mm_walk *walk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444{
 445	struct mem_size_stats *mss = walk->private;
 446	struct vm_area_struct *vma = mss->vma;
 447	pgoff_t pgoff = linear_page_index(vma, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448	struct page *page = NULL;
 449	int mapcount;
 
 450
 451	if (pte_present(ptent)) {
 452		page = vm_normal_page(vma, addr, ptent);
 
 
 453	} else if (is_swap_pte(ptent)) {
 454		swp_entry_t swpent = pte_to_swp_entry(ptent);
 455
 456		if (!non_swap_entry(swpent))
 457			mss->swap += ptent_size;
 458		else if (is_migration_entry(swpent))
 459			page = migration_entry_to_page(swpent);
 460	} else if (pte_file(ptent)) {
 461		if (pte_to_pgoff(ptent) != pgoff)
 462			mss->nonlinear += ptent_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463	}
 464
 465	if (!page)
 466		return;
 467
 468	if (PageAnon(page))
 469		mss->anonymous += ptent_size;
 470
 471	if (page->index != pgoff)
 472		mss->nonlinear += ptent_size;
 
 
 
 
 
 
 
 473
 474	mss->resident += ptent_size;
 475	/* Accumulate the size in pages that have been accessed. */
 476	if (pte_young(ptent) || PageReferenced(page))
 477		mss->referenced += ptent_size;
 478	mapcount = page_mapcount(page);
 479	if (mapcount >= 2) {
 480		if (pte_dirty(ptent) || PageDirty(page))
 481			mss->shared_dirty += ptent_size;
 482		else
 483			mss->shared_clean += ptent_size;
 484		mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
 485	} else {
 486		if (pte_dirty(ptent) || PageDirty(page))
 487			mss->private_dirty += ptent_size;
 488		else
 489			mss->private_clean += ptent_size;
 490		mss->pss += (ptent_size << PSS_SHIFT);
 491	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492}
 
 493
 494static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 495			   struct mm_walk *walk)
 496{
 497	struct mem_size_stats *mss = walk->private;
 498	struct vm_area_struct *vma = mss->vma;
 499	pte_t *pte;
 500	spinlock_t *ptl;
 501
 502	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
 503		smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
 
 504		spin_unlock(ptl);
 505		mss->anonymous_thp += HPAGE_PMD_SIZE;
 506		return 0;
 507	}
 508
 509	if (pmd_trans_unstable(pmd))
 
 
 510		return 0;
 511	/*
 512	 * The mmap_sem held all the way back in m_start() is what
 513	 * keeps khugepaged out of here and from collapsing things
 514	 * in here.
 515	 */
 516	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 517	for (; addr != end; pte++, addr += PAGE_SIZE)
 518		smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
 519	pte_unmap_unlock(pte - 1, ptl);
 
 520	cond_resched();
 521	return 0;
 522}
 523
 524static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 525{
 526	/*
 527	 * Don't forget to update Documentation/ on changes.
 528	 */
 529	static const char mnemonics[BITS_PER_LONG][2] = {
 530		/*
 531		 * In case if we meet a flag we don't know about.
 532		 */
 533		[0 ... (BITS_PER_LONG-1)] = "??",
 534
 535		[ilog2(VM_READ)]	= "rd",
 536		[ilog2(VM_WRITE)]	= "wr",
 537		[ilog2(VM_EXEC)]	= "ex",
 538		[ilog2(VM_SHARED)]	= "sh",
 539		[ilog2(VM_MAYREAD)]	= "mr",
 540		[ilog2(VM_MAYWRITE)]	= "mw",
 541		[ilog2(VM_MAYEXEC)]	= "me",
 542		[ilog2(VM_MAYSHARE)]	= "ms",
 543		[ilog2(VM_GROWSDOWN)]	= "gd",
 544		[ilog2(VM_PFNMAP)]	= "pf",
 545		[ilog2(VM_DENYWRITE)]	= "dw",
 546		[ilog2(VM_LOCKED)]	= "lo",
 547		[ilog2(VM_IO)]		= "io",
 548		[ilog2(VM_SEQ_READ)]	= "sr",
 549		[ilog2(VM_RAND_READ)]	= "rr",
 550		[ilog2(VM_DONTCOPY)]	= "dc",
 551		[ilog2(VM_DONTEXPAND)]	= "de",
 
 552		[ilog2(VM_ACCOUNT)]	= "ac",
 553		[ilog2(VM_NORESERVE)]	= "nr",
 554		[ilog2(VM_HUGETLB)]	= "ht",
 555		[ilog2(VM_NONLINEAR)]	= "nl",
 556		[ilog2(VM_ARCH_1)]	= "ar",
 
 557		[ilog2(VM_DONTDUMP)]	= "dd",
 
 
 
 558#ifdef CONFIG_MEM_SOFT_DIRTY
 559		[ilog2(VM_SOFTDIRTY)]	= "sd",
 560#endif
 561		[ilog2(VM_MIXEDMAP)]	= "mm",
 562		[ilog2(VM_HUGEPAGE)]	= "hg",
 563		[ilog2(VM_NOHUGEPAGE)]	= "nh",
 564		[ilog2(VM_MERGEABLE)]	= "mg",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565	};
 566	size_t i;
 567
 568	seq_puts(m, "VmFlags: ");
 569	for (i = 0; i < BITS_PER_LONG; i++) {
 
 
 570		if (vma->vm_flags & (1UL << i)) {
 571			seq_printf(m, "%c%c ",
 572				   mnemonics[i][0], mnemonics[i][1]);
 
 573		}
 574	}
 575	seq_putc(m, '\n');
 576}
 577
 578static int show_smap(struct seq_file *m, void *v, int is_pid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579{
 580	struct proc_maps_private *priv = m->private;
 581	struct task_struct *task = priv->task;
 582	struct vm_area_struct *vma = v;
 583	struct mem_size_stats mss;
 584	struct mm_walk smaps_walk = {
 585		.pmd_entry = smaps_pte_range,
 586		.mm = vma->vm_mm,
 587		.private = &mss,
 588	};
 
 
 
 
 
 
 589
 590	memset(&mss, 0, sizeof mss);
 591	mss.vma = vma;
 592	/* mmap_sem is held in m_start */
 593	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
 594		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
 595
 596	show_map_vma(m, vma, is_pid);
 597
 598	seq_printf(m,
 599		   "Size:           %8lu kB\n"
 600		   "Rss:            %8lu kB\n"
 601		   "Pss:            %8lu kB\n"
 602		   "Shared_Clean:   %8lu kB\n"
 603		   "Shared_Dirty:   %8lu kB\n"
 604		   "Private_Clean:  %8lu kB\n"
 605		   "Private_Dirty:  %8lu kB\n"
 606		   "Referenced:     %8lu kB\n"
 607		   "Anonymous:      %8lu kB\n"
 608		   "AnonHugePages:  %8lu kB\n"
 609		   "Swap:           %8lu kB\n"
 610		   "KernelPageSize: %8lu kB\n"
 611		   "MMUPageSize:    %8lu kB\n"
 612		   "Locked:         %8lu kB\n",
 613		   (vma->vm_end - vma->vm_start) >> 10,
 614		   mss.resident >> 10,
 615		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
 616		   mss.shared_clean  >> 10,
 617		   mss.shared_dirty  >> 10,
 618		   mss.private_clean >> 10,
 619		   mss.private_dirty >> 10,
 620		   mss.referenced >> 10,
 621		   mss.anonymous >> 10,
 622		   mss.anonymous_thp >> 10,
 623		   mss.swap >> 10,
 624		   vma_kernel_pagesize(vma) >> 10,
 625		   vma_mmu_pagesize(vma) >> 10,
 626		   (vma->vm_flags & VM_LOCKED) ?
 627			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
 628
 629	if (vma->vm_flags & VM_NONLINEAR)
 630		seq_printf(m, "Nonlinear:      %8lu kB\n",
 631				mss.nonlinear >> 10);
 632
 
 
 633	show_smap_vma_flags(m, vma);
 634
 635	if (m->count < m->size)  /* vma is copied successfully */
 636		m->version = (vma != get_gate_vma(task->mm))
 637			? vma->vm_start : 0;
 638	return 0;
 639}
 640
 641static int show_pid_smap(struct seq_file *m, void *v)
 642{
 643	return show_smap(m, v, 1);
 644}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645
 646static int show_tid_smap(struct seq_file *m, void *v)
 647{
 648	return show_smap(m, v, 0);
 649}
 
 650
 651static const struct seq_operations proc_pid_smaps_op = {
 652	.start	= m_start,
 653	.next	= m_next,
 654	.stop	= m_stop,
 655	.show	= show_pid_smap
 656};
 657
 658static const struct seq_operations proc_tid_smaps_op = {
 659	.start	= m_start,
 660	.next	= m_next,
 661	.stop	= m_stop,
 662	.show	= show_tid_smap
 663};
 664
 665static int pid_smaps_open(struct inode *inode, struct file *file)
 666{
 667	return do_maps_open(inode, file, &proc_pid_smaps_op);
 668}
 669
 670static int tid_smaps_open(struct inode *inode, struct file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671{
 672	return do_maps_open(inode, file, &proc_tid_smaps_op);
 
 
 
 
 
 
 
 673}
 674
 675const struct file_operations proc_pid_smaps_operations = {
 676	.open		= pid_smaps_open,
 677	.read		= seq_read,
 678	.llseek		= seq_lseek,
 679	.release	= seq_release_private,
 680};
 681
 682const struct file_operations proc_tid_smaps_operations = {
 683	.open		= tid_smaps_open,
 684	.read		= seq_read,
 685	.llseek		= seq_lseek,
 686	.release	= seq_release_private,
 687};
 688
 689/*
 690 * We do not want to have constant page-shift bits sitting in
 691 * pagemap entries and are about to reuse them some time soon.
 692 *
 693 * Here's the "migration strategy":
 694 * 1. when the system boots these bits remain what they are,
 695 *    but a warning about future change is printed in log;
 696 * 2. once anyone clears soft-dirty bits via clear_refs file,
 697 *    these flag is set to denote, that user is aware of the
 698 *    new API and those page-shift bits change their meaning.
 699 *    The respective warning is printed in dmesg;
 700 * 3. In a couple of releases we will remove all the mentions
 701 *    of page-shift in pagemap entries.
 702 */
 703
 704static bool soft_dirty_cleared __read_mostly;
 705
 706enum clear_refs_types {
 707	CLEAR_REFS_ALL = 1,
 708	CLEAR_REFS_ANON,
 709	CLEAR_REFS_MAPPED,
 710	CLEAR_REFS_SOFT_DIRTY,
 
 711	CLEAR_REFS_LAST,
 712};
 713
 714struct clear_refs_private {
 715	struct vm_area_struct *vma;
 716	enum clear_refs_types type;
 717};
 718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719static inline void clear_soft_dirty(struct vm_area_struct *vma,
 720		unsigned long addr, pte_t *pte)
 721{
 722#ifdef CONFIG_MEM_SOFT_DIRTY
 723	/*
 724	 * The soft-dirty tracker uses #PF-s to catch writes
 725	 * to pages, so write-protect the pte as well. See the
 726	 * Documentation/vm/soft-dirty.txt for full description
 727	 * of how soft-dirty works.
 728	 */
 729	pte_t ptent = *pte;
 730
 731	if (pte_present(ptent)) {
 732		ptent = pte_wrprotect(ptent);
 733		ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
 
 
 
 
 
 
 734	} else if (is_swap_pte(ptent)) {
 735		ptent = pte_swp_clear_soft_dirty(ptent);
 736	} else if (pte_file(ptent)) {
 737		ptent = pte_file_clear_soft_dirty(ptent);
 738	}
 
 
 
 
 
 
 
 739
 740	if (vma->vm_flags & VM_SOFTDIRTY)
 741		vma->vm_flags &= ~VM_SOFTDIRTY;
 742
 743	set_pte_at(vma->vm_mm, addr, pte, ptent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744#endif
 745}
 746
 747static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
 748				unsigned long end, struct mm_walk *walk)
 749{
 750	struct clear_refs_private *cp = walk->private;
 751	struct vm_area_struct *vma = cp->vma;
 752	pte_t *pte, ptent;
 753	spinlock_t *ptl;
 754	struct page *page;
 755
 756	split_huge_page_pmd(vma, addr, pmd);
 757	if (pmd_trans_unstable(pmd))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758		return 0;
 
 759
 760	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 
 
 
 
 761	for (; addr != end; pte++, addr += PAGE_SIZE) {
 762		ptent = *pte;
 763
 764		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
 765			clear_soft_dirty(vma, addr, pte);
 766			continue;
 767		}
 768
 769		if (!pte_present(ptent))
 770			continue;
 771
 772		page = vm_normal_page(vma, addr, ptent);
 773		if (!page)
 774			continue;
 775
 776		/* Clear accessed and referenced bits. */
 777		ptep_test_and_clear_young(vma, addr, pte);
 
 778		ClearPageReferenced(page);
 779	}
 780	pte_unmap_unlock(pte - 1, ptl);
 781	cond_resched();
 782	return 0;
 783}
 784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785static ssize_t clear_refs_write(struct file *file, const char __user *buf,
 786				size_t count, loff_t *ppos)
 787{
 788	struct task_struct *task;
 789	char buffer[PROC_NUMBUF];
 790	struct mm_struct *mm;
 791	struct vm_area_struct *vma;
 792	enum clear_refs_types type;
 793	int itype;
 794	int rv;
 795
 796	memset(buffer, 0, sizeof(buffer));
 797	if (count > sizeof(buffer) - 1)
 798		count = sizeof(buffer) - 1;
 799	if (copy_from_user(buffer, buf, count))
 800		return -EFAULT;
 801	rv = kstrtoint(strstrip(buffer), 10, &itype);
 802	if (rv < 0)
 803		return rv;
 804	type = (enum clear_refs_types)itype;
 805	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
 806		return -EINVAL;
 807
 808	if (type == CLEAR_REFS_SOFT_DIRTY) {
 809		soft_dirty_cleared = true;
 810		pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
 811				"See the linux/Documentation/vm/pagemap.txt for details.\n");
 812	}
 813
 814	task = get_proc_task(file_inode(file));
 815	if (!task)
 816		return -ESRCH;
 817	mm = get_task_mm(task);
 818	if (mm) {
 
 
 819		struct clear_refs_private cp = {
 820			.type = type,
 821		};
 822		struct mm_walk clear_refs_walk = {
 823			.pmd_entry = clear_refs_pte_range,
 824			.mm = mm,
 825			.private = &cp,
 826		};
 827		down_read(&mm->mmap_sem);
 828		if (type == CLEAR_REFS_SOFT_DIRTY)
 829			mmu_notifier_invalidate_range_start(mm, 0, -1);
 830		for (vma = mm->mmap; vma; vma = vma->vm_next) {
 831			cp.vma = vma;
 832			if (is_vm_hugetlb_page(vma))
 833				continue;
 834			/*
 835			 * Writing 1 to /proc/pid/clear_refs affects all pages.
 836			 *
 837			 * Writing 2 to /proc/pid/clear_refs only affects
 838			 * Anonymous pages.
 839			 *
 840			 * Writing 3 to /proc/pid/clear_refs only affects file
 841			 * mapped pages.
 842			 */
 843			if (type == CLEAR_REFS_ANON && vma->vm_file)
 844				continue;
 845			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
 846				continue;
 847			walk_page_range(vma->vm_start, vma->vm_end,
 848					&clear_refs_walk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849		}
 850		if (type == CLEAR_REFS_SOFT_DIRTY)
 851			mmu_notifier_invalidate_range_end(mm, 0, -1);
 852		flush_tlb_mm(mm);
 853		up_read(&mm->mmap_sem);
 854		mmput(mm);
 855	}
 856	put_task_struct(task);
 857
 858	return count;
 859}
 860
 861const struct file_operations proc_clear_refs_operations = {
 862	.write		= clear_refs_write,
 863	.llseek		= noop_llseek,
 864};
 865
 866typedef struct {
 867	u64 pme;
 868} pagemap_entry_t;
 869
 870struct pagemapread {
 871	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
 872	pagemap_entry_t *buffer;
 873	bool v2;
 874};
 875
 876#define PAGEMAP_WALK_SIZE	(PMD_SIZE)
 877#define PAGEMAP_WALK_MASK	(PMD_MASK)
 878
 879#define PM_ENTRY_BYTES      sizeof(pagemap_entry_t)
 880#define PM_STATUS_BITS      3
 881#define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
 882#define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
 883#define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
 884#define PM_PSHIFT_BITS      6
 885#define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
 886#define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
 887#define __PM_PSHIFT(x)      (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
 888#define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
 889#define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
 890/* in "new" pagemap pshift bits are occupied with more status bits */
 891#define PM_STATUS2(v2, x)   (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
 892
 893#define __PM_SOFT_DIRTY      (1LL)
 894#define PM_PRESENT          PM_STATUS(4LL)
 895#define PM_SWAP             PM_STATUS(2LL)
 896#define PM_FILE             PM_STATUS(1LL)
 897#define PM_NOT_PRESENT(v2)  PM_STATUS2(v2, 0)
 898#define PM_END_OF_BUFFER    1
 899
 900static inline pagemap_entry_t make_pme(u64 val)
 901{
 902	return (pagemap_entry_t) { .pme = val };
 903}
 904
 905static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
 906			  struct pagemapread *pm)
 907{
 908	pm->buffer[pm->pos++] = *pme;
 909	if (pm->pos >= pm->len)
 910		return PM_END_OF_BUFFER;
 911	return 0;
 912}
 913
 914static int pagemap_pte_hole(unsigned long start, unsigned long end,
 915				struct mm_walk *walk)
 916{
 917	struct pagemapread *pm = walk->private;
 918	unsigned long addr;
 919	int err = 0;
 920	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
 921
 922	for (addr = start; addr < end; addr += PAGE_SIZE) {
 923		err = add_to_pagemap(addr, &pme, pm);
 924		if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925			break;
 
 
 
 
 
 
 
 
 
 926	}
 
 927	return err;
 928}
 929
 930static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 931		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
 932{
 933	u64 frame, flags;
 934	struct page *page = NULL;
 935	int flags2 = 0;
 936
 937	if (pte_present(pte)) {
 938		frame = pte_pfn(pte);
 939		flags = PM_PRESENT;
 
 940		page = vm_normal_page(vma, addr, pte);
 941		if (pte_soft_dirty(pte))
 942			flags2 |= __PM_SOFT_DIRTY;
 
 
 943	} else if (is_swap_pte(pte)) {
 944		swp_entry_t entry;
 945		if (pte_swp_soft_dirty(pte))
 946			flags2 |= __PM_SOFT_DIRTY;
 
 
 947		entry = pte_to_swp_entry(pte);
 948		frame = swp_type(entry) |
 949			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
 950		flags = PM_SWAP;
 951		if (is_migration_entry(entry))
 952			page = migration_entry_to_page(entry);
 953	} else {
 954		if (vma->vm_flags & VM_SOFTDIRTY)
 955			flags2 |= __PM_SOFT_DIRTY;
 956		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
 957		return;
 
 
 
 
 
 
 
 
 
 958	}
 959
 960	if (page && !PageAnon(page))
 961		flags |= PM_FILE;
 962	if ((vma->vm_flags & VM_SOFTDIRTY))
 963		flags2 |= __PM_SOFT_DIRTY;
 
 
 964
 965	*pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
 966}
 967
 968#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 969static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 970		pmd_t pmd, int offset, int pmd_flags2)
 971{
 972	/*
 973	 * Currently pmd for thp is always present because thp can not be
 974	 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
 975	 * This if-check is just to prepare for future implementation.
 976	 */
 977	if (pmd_present(pmd))
 978		*pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
 979				| PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
 980	else
 981		*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
 982}
 983#else
 984static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
 985		pmd_t pmd, int offset, int pmd_flags2)
 986{
 987}
 988#endif
 989
 990static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 991			     struct mm_walk *walk)
 992{
 993	struct vm_area_struct *vma;
 994	struct pagemapread *pm = walk->private;
 995	spinlock_t *ptl;
 996	pte_t *pte;
 997	int err = 0;
 998	pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
 
 
 
 
 
 
 
 
 
 
 
 
 
 999
1000	/* find the first VMA at or above 'addr' */
1001	vma = find_vma(walk->mm, addr);
1002	if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1003		int pmd_flags2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1004
1005		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1006			pmd_flags2 = __PM_SOFT_DIRTY;
1007		else
1008			pmd_flags2 = 0;
1009
1010		for (; addr != end; addr += PAGE_SIZE) {
1011			unsigned long offset;
1012
1013			offset = (addr & ~PAGEMAP_WALK_MASK) >>
1014					PAGE_SHIFT;
1015			thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1016			err = add_to_pagemap(addr, &pme, pm);
1017			if (err)
1018				break;
 
 
 
 
 
 
1019		}
1020		spin_unlock(ptl);
1021		return err;
1022	}
 
1023
1024	if (pmd_trans_unstable(pmd))
1025		return 0;
1026	for (; addr != end; addr += PAGE_SIZE) {
1027		int flags2;
 
 
 
 
 
 
 
1028
1029		/* check to see if we've left 'vma' behind
1030		 * and need a new, higher one */
1031		if (vma && (addr >= vma->vm_end)) {
1032			vma = find_vma(walk->mm, addr);
1033			if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1034				flags2 = __PM_SOFT_DIRTY;
1035			else
1036				flags2 = 0;
1037			pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1038		}
1039
1040		/* check that 'vma' actually covers this address,
1041		 * and that it isn't a huge page vma */
1042		if (vma && (vma->vm_start <= addr) &&
1043		    !is_vm_hugetlb_page(vma)) {
1044			pte = pte_offset_map(pmd, addr);
1045			pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1046			/* unmap before userspace copy */
1047			pte_unmap(pte);
1048		}
1049		err = add_to_pagemap(addr, &pme, pm);
1050		if (err)
1051			return err;
1052	}
 
1053
1054	cond_resched();
1055
1056	return err;
1057}
1058
1059#ifdef CONFIG_HUGETLB_PAGE
1060static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1061					pte_t pte, int offset, int flags2)
1062{
1063	if (pte_present(pte))
1064		*pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)	|
1065				PM_STATUS2(pm->v2, flags2)		|
1066				PM_PRESENT);
1067	else
1068		*pme = make_pme(PM_NOT_PRESENT(pm->v2)			|
1069				PM_STATUS2(pm->v2, flags2));
1070}
1071
1072/* This function walks within one hugetlb entry in the single call */
1073static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1074				 unsigned long addr, unsigned long end,
1075				 struct mm_walk *walk)
1076{
1077	struct pagemapread *pm = walk->private;
1078	struct vm_area_struct *vma;
 
1079	int err = 0;
1080	int flags2;
1081	pagemap_entry_t pme;
 
 
 
 
 
 
 
 
 
1082
1083	vma = find_vma(walk->mm, addr);
1084	WARN_ON_ONCE(!vma);
1085
1086	if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1087		flags2 = __PM_SOFT_DIRTY;
1088	else
1089		flags2 = 0;
 
 
 
 
 
 
1090
1091	for (; addr != end; addr += PAGE_SIZE) {
1092		int offset = (addr & ~hmask) >> PAGE_SHIFT;
1093		huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1094		err = add_to_pagemap(addr, &pme, pm);
1095		if (err)
1096			return err;
 
 
1097	}
1098
1099	cond_resched();
1100
1101	return err;
1102}
 
 
1103#endif /* HUGETLB_PAGE */
1104
 
 
 
 
 
 
 
1105/*
1106 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1107 *
1108 * For each page in the address space, this file contains one 64-bit entry
1109 * consisting of the following:
1110 *
1111 * Bits 0-54  page frame number (PFN) if present
1112 * Bits 0-4   swap type if swapped
1113 * Bits 5-54  swap offset if swapped
1114 * Bits 55-60 page shift (page size = 1<<page shift)
 
 
 
1115 * Bit  61    page is file-page or shared-anon
1116 * Bit  62    page swapped
1117 * Bit  63    page present
1118 *
1119 * If the page is not present but in swap, then the PFN contains an
1120 * encoding of the swap file number and the page's offset into the
1121 * swap. Unmapped pages return a null PFN. This allows determining
1122 * precisely which pages are mapped (or in swap) and comparing mapped
1123 * pages between processes.
1124 *
1125 * Efficient users of this interface will use /proc/pid/maps to
1126 * determine which areas of memory are actually mapped and llseek to
1127 * skip over unmapped regions.
1128 */
1129static ssize_t pagemap_read(struct file *file, char __user *buf,
1130			    size_t count, loff_t *ppos)
1131{
1132	struct task_struct *task = get_proc_task(file_inode(file));
1133	struct mm_struct *mm;
1134	struct pagemapread pm;
1135	int ret = -ESRCH;
1136	struct mm_walk pagemap_walk = {};
1137	unsigned long src;
1138	unsigned long svpfn;
1139	unsigned long start_vaddr;
1140	unsigned long end_vaddr;
1141	int copied = 0;
1142
1143	if (!task)
1144		goto out;
1145
1146	ret = -EINVAL;
1147	/* file position must be aligned */
1148	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1149		goto out_task;
1150
1151	ret = 0;
1152	if (!count)
1153		goto out_task;
 
 
 
1154
1155	pm.v2 = soft_dirty_cleared;
1156	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1157	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1158	ret = -ENOMEM;
1159	if (!pm.buffer)
1160		goto out_task;
1161
1162	mm = mm_access(task, PTRACE_MODE_READ);
1163	ret = PTR_ERR(mm);
1164	if (!mm || IS_ERR(mm))
1165		goto out_free;
1166
1167	pagemap_walk.pmd_entry = pagemap_pte_range;
1168	pagemap_walk.pte_hole = pagemap_pte_hole;
1169#ifdef CONFIG_HUGETLB_PAGE
1170	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1171#endif
1172	pagemap_walk.mm = mm;
1173	pagemap_walk.private = &pm;
1174
1175	src = *ppos;
1176	svpfn = src / PM_ENTRY_BYTES;
1177	start_vaddr = svpfn << PAGE_SHIFT;
1178	end_vaddr = TASK_SIZE_OF(task);
1179
1180	/* watch out for wraparound */
1181	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182		start_vaddr = end_vaddr;
1183
1184	/*
1185	 * The odds are that this will stop walking way
1186	 * before end_vaddr, because the length of the
1187	 * user buffer is tracked in "pm", and the walk
1188	 * will stop when we hit the end of the buffer.
1189	 */
1190	ret = 0;
1191	while (count && (start_vaddr < end_vaddr)) {
1192		int len;
1193		unsigned long end;
1194
1195		pm.pos = 0;
1196		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1197		/* overflow ? */
1198		if (end < start_vaddr || end > end_vaddr)
1199			end = end_vaddr;
1200		down_read(&mm->mmap_sem);
1201		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1202		up_read(&mm->mmap_sem);
 
 
1203		start_vaddr = end;
1204
1205		len = min(count, PM_ENTRY_BYTES * pm.pos);
1206		if (copy_to_user(buf, pm.buffer, len)) {
1207			ret = -EFAULT;
1208			goto out_mm;
1209		}
1210		copied += len;
1211		buf += len;
1212		count -= len;
1213	}
1214	*ppos += copied;
1215	if (!ret || ret == PM_END_OF_BUFFER)
1216		ret = copied;
1217
 
 
1218out_mm:
1219	mmput(mm);
1220out_free:
1221	kfree(pm.buffer);
1222out_task:
1223	put_task_struct(task);
1224out:
1225	return ret;
1226}
1227
1228static int pagemap_open(struct inode *inode, struct file *file)
1229{
1230	pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1231			"to stop being page-shift some time soon. See the "
1232			"linux/Documentation/vm/pagemap.txt for details.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233	return 0;
1234}
1235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236const struct file_operations proc_pagemap_operations = {
1237	.llseek		= mem_lseek, /* borrow this */
1238	.read		= pagemap_read,
1239	.open		= pagemap_open,
 
 
 
1240};
1241#endif /* CONFIG_PROC_PAGE_MONITOR */
1242
1243#ifdef CONFIG_NUMA
1244
1245struct numa_maps {
1246	struct vm_area_struct *vma;
1247	unsigned long pages;
1248	unsigned long anon;
1249	unsigned long active;
1250	unsigned long writeback;
1251	unsigned long mapcount_max;
1252	unsigned long dirty;
1253	unsigned long swapcache;
1254	unsigned long node[MAX_NUMNODES];
1255};
1256
1257struct numa_maps_private {
1258	struct proc_maps_private proc_maps;
1259	struct numa_maps md;
1260};
1261
1262static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1263			unsigned long nr_pages)
1264{
1265	int count = page_mapcount(page);
1266
1267	md->pages += nr_pages;
1268	if (pte_dirty || PageDirty(page))
1269		md->dirty += nr_pages;
1270
1271	if (PageSwapCache(page))
1272		md->swapcache += nr_pages;
1273
1274	if (PageActive(page) || PageUnevictable(page))
1275		md->active += nr_pages;
1276
1277	if (PageWriteback(page))
1278		md->writeback += nr_pages;
1279
1280	if (PageAnon(page))
1281		md->anon += nr_pages;
1282
1283	if (count > md->mapcount_max)
1284		md->mapcount_max = count;
1285
1286	md->node[page_to_nid(page)] += nr_pages;
1287}
1288
1289static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1290		unsigned long addr)
1291{
1292	struct page *page;
1293	int nid;
1294
1295	if (!pte_present(pte))
1296		return NULL;
1297
1298	page = vm_normal_page(vma, addr, pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299	if (!page)
1300		return NULL;
1301
1302	if (PageReserved(page))
1303		return NULL;
1304
1305	nid = page_to_nid(page);
1306	if (!node_isset(nid, node_states[N_MEMORY]))
1307		return NULL;
1308
1309	return page;
1310}
 
1311
1312static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1313		unsigned long end, struct mm_walk *walk)
1314{
1315	struct numa_maps *md;
 
1316	spinlock_t *ptl;
1317	pte_t *orig_pte;
1318	pte_t *pte;
1319
1320	md = walk->private;
1321
1322	if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
1323		pte_t huge_pte = *(pte_t *)pmd;
1324		struct page *page;
1325
1326		page = can_gather_numa_stats(huge_pte, md->vma, addr);
1327		if (page)
1328			gather_stats(page, md, pte_dirty(huge_pte),
1329				     HPAGE_PMD_SIZE/PAGE_SIZE);
1330		spin_unlock(ptl);
1331		return 0;
1332	}
1333
1334	if (pmd_trans_unstable(pmd))
 
 
1335		return 0;
1336	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1337	do {
1338		struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
 
1339		if (!page)
1340			continue;
1341		gather_stats(page, md, pte_dirty(*pte), 1);
1342
1343	} while (pte++, addr += PAGE_SIZE, addr != end);
1344	pte_unmap_unlock(orig_pte, ptl);
 
1345	return 0;
1346}
1347#ifdef CONFIG_HUGETLB_PAGE
1348static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1349		unsigned long addr, unsigned long end, struct mm_walk *walk)
1350{
 
1351	struct numa_maps *md;
1352	struct page *page;
1353
1354	if (!pte_present(*pte))
1355		return 0;
1356
1357	page = pte_page(*pte);
1358	if (!page)
1359		return 0;
1360
1361	md = walk->private;
1362	gather_stats(page, md, pte_dirty(*pte), 1);
1363	return 0;
1364}
1365
1366#else
1367static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1368		unsigned long addr, unsigned long end, struct mm_walk *walk)
1369{
1370	return 0;
1371}
1372#endif
1373
 
 
 
 
 
 
1374/*
1375 * Display pages allocated per node and memory policy via /proc.
1376 */
1377static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1378{
1379	struct numa_maps_private *numa_priv = m->private;
1380	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1381	struct vm_area_struct *vma = v;
1382	struct numa_maps *md = &numa_priv->md;
1383	struct file *file = vma->vm_file;
1384	struct task_struct *task = proc_priv->task;
1385	struct mm_struct *mm = vma->vm_mm;
1386	struct mm_walk walk = {};
1387	struct mempolicy *pol;
1388	char buffer[64];
1389	int nid;
1390
1391	if (!mm)
1392		return 0;
1393
1394	/* Ensure we start with an empty set of numa_maps statistics. */
1395	memset(md, 0, sizeof(*md));
1396
1397	md->vma = vma;
1398
1399	walk.hugetlb_entry = gather_hugetbl_stats;
1400	walk.pmd_entry = gather_pte_stats;
1401	walk.private = md;
1402	walk.mm = mm;
1403
1404	pol = get_vma_policy(task, vma, vma->vm_start);
1405	mpol_to_str(buffer, sizeof(buffer), pol);
1406	mpol_cond_put(pol);
1407
1408	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1409
1410	if (file) {
1411		seq_printf(m, " file=");
1412		seq_path(m, &file->f_path, "\n\t= ");
1413	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1414		seq_printf(m, " heap");
1415	} else {
1416		pid_t tid = vm_is_stack(task, vma, is_pid);
1417		if (tid != 0) {
1418			/*
1419			 * Thread stack in /proc/PID/task/TID/maps or
1420			 * the main process stack.
1421			 */
1422			if (!is_pid || (vma->vm_start <= mm->start_stack &&
1423			    vma->vm_end >= mm->start_stack))
1424				seq_printf(m, " stack");
1425			else
1426				seq_printf(m, " stack:%d", tid);
1427		}
1428	}
1429
1430	if (is_vm_hugetlb_page(vma))
1431		seq_printf(m, " huge");
1432
1433	walk_page_range(vma->vm_start, vma->vm_end, &walk);
 
1434
1435	if (!md->pages)
1436		goto out;
1437
1438	if (md->anon)
1439		seq_printf(m, " anon=%lu", md->anon);
1440
1441	if (md->dirty)
1442		seq_printf(m, " dirty=%lu", md->dirty);
1443
1444	if (md->pages != md->anon && md->pages != md->dirty)
1445		seq_printf(m, " mapped=%lu", md->pages);
1446
1447	if (md->mapcount_max > 1)
1448		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1449
1450	if (md->swapcache)
1451		seq_printf(m, " swapcache=%lu", md->swapcache);
1452
1453	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1454		seq_printf(m, " active=%lu", md->active);
1455
1456	if (md->writeback)
1457		seq_printf(m, " writeback=%lu", md->writeback);
1458
1459	for_each_node_state(nid, N_MEMORY)
1460		if (md->node[nid])
1461			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
 
 
1462out:
1463	seq_putc(m, '\n');
1464
1465	if (m->count < m->size)
1466		m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1467	return 0;
1468}
1469
1470static int show_pid_numa_map(struct seq_file *m, void *v)
1471{
1472	return show_numa_map(m, v, 1);
1473}
1474
1475static int show_tid_numa_map(struct seq_file *m, void *v)
1476{
1477	return show_numa_map(m, v, 0);
1478}
1479
1480static const struct seq_operations proc_pid_numa_maps_op = {
1481	.start  = m_start,
1482	.next   = m_next,
1483	.stop   = m_stop,
1484	.show   = show_pid_numa_map,
1485};
1486
1487static const struct seq_operations proc_tid_numa_maps_op = {
1488	.start  = m_start,
1489	.next   = m_next,
1490	.stop   = m_stop,
1491	.show   = show_tid_numa_map,
1492};
1493
1494static int numa_maps_open(struct inode *inode, struct file *file,
1495			  const struct seq_operations *ops)
1496{
1497	struct numa_maps_private *priv;
1498	int ret = -ENOMEM;
1499	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1500	if (priv) {
1501		priv->proc_maps.pid = proc_pid(inode);
1502		ret = seq_open(file, ops);
1503		if (!ret) {
1504			struct seq_file *m = file->private_data;
1505			m->private = priv;
1506		} else {
1507			kfree(priv);
1508		}
1509	}
1510	return ret;
1511}
1512
1513static int pid_numa_maps_open(struct inode *inode, struct file *file)
1514{
1515	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1516}
1517
1518static int tid_numa_maps_open(struct inode *inode, struct file *file)
1519{
1520	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1521}
1522
1523const struct file_operations proc_pid_numa_maps_operations = {
1524	.open		= pid_numa_maps_open,
1525	.read		= seq_read,
1526	.llseek		= seq_lseek,
1527	.release	= seq_release_private,
1528};
1529
1530const struct file_operations proc_tid_numa_maps_operations = {
1531	.open		= tid_numa_maps_open,
1532	.read		= seq_read,
1533	.llseek		= seq_lseek,
1534	.release	= seq_release_private,
1535};
1536#endif /* CONFIG_NUMA */