Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/pagewalk.h>
3#include <linux/mm_inline.h>
4#include <linux/hugetlb.h>
5#include <linux/huge_mm.h>
6#include <linux/mount.h>
7#include <linux/ksm.h>
8#include <linux/seq_file.h>
9#include <linux/highmem.h>
10#include <linux/ptrace.h>
11#include <linux/slab.h>
12#include <linux/pagemap.h>
13#include <linux/mempolicy.h>
14#include <linux/rmap.h>
15#include <linux/swap.h>
16#include <linux/sched/mm.h>
17#include <linux/swapops.h>
18#include <linux/mmu_notifier.h>
19#include <linux/page_idle.h>
20#include <linux/shmem_fs.h>
21#include <linux/uaccess.h>
22#include <linux/pkeys.h>
23#include <linux/minmax.h>
24#include <linux/overflow.h>
25
26#include <asm/elf.h>
27#include <asm/tlb.h>
28#include <asm/tlbflush.h>
29#include "internal.h"
30
31#define SEQ_PUT_DEC(str, val) \
32 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
33void task_mem(struct seq_file *m, struct mm_struct *mm)
34{
35 unsigned long text, lib, swap, anon, file, shmem;
36 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
37
38 anon = get_mm_counter(mm, MM_ANONPAGES);
39 file = get_mm_counter(mm, MM_FILEPAGES);
40 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
41
42 /*
43 * Note: to minimize their overhead, mm maintains hiwater_vm and
44 * hiwater_rss only when about to *lower* total_vm or rss. Any
45 * collector of these hiwater stats must therefore get total_vm
46 * and rss too, which will usually be the higher. Barriers? not
47 * worth the effort, such snapshots can always be inconsistent.
48 */
49 hiwater_vm = total_vm = mm->total_vm;
50 if (hiwater_vm < mm->hiwater_vm)
51 hiwater_vm = mm->hiwater_vm;
52 hiwater_rss = total_rss = anon + file + shmem;
53 if (hiwater_rss < mm->hiwater_rss)
54 hiwater_rss = mm->hiwater_rss;
55
56 /* split executable areas between text and lib */
57 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
58 text = min(text, mm->exec_vm << PAGE_SHIFT);
59 lib = (mm->exec_vm << PAGE_SHIFT) - text;
60
61 swap = get_mm_counter(mm, MM_SWAPENTS);
62 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
63 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
64 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
65 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
66 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
67 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
68 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
69 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
70 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
71 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
72 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
73 seq_put_decimal_ull_width(m,
74 " kB\nVmExe:\t", text >> 10, 8);
75 seq_put_decimal_ull_width(m,
76 " kB\nVmLib:\t", lib >> 10, 8);
77 seq_put_decimal_ull_width(m,
78 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
79 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
80 seq_puts(m, " kB\n");
81 hugetlb_report_usage(m, mm);
82}
83#undef SEQ_PUT_DEC
84
85unsigned long task_vsize(struct mm_struct *mm)
86{
87 return PAGE_SIZE * mm->total_vm;
88}
89
90unsigned long task_statm(struct mm_struct *mm,
91 unsigned long *shared, unsigned long *text,
92 unsigned long *data, unsigned long *resident)
93{
94 *shared = get_mm_counter(mm, MM_FILEPAGES) +
95 get_mm_counter(mm, MM_SHMEMPAGES);
96 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
97 >> PAGE_SHIFT;
98 *data = mm->data_vm + mm->stack_vm;
99 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
100 return mm->total_vm;
101}
102
103#ifdef CONFIG_NUMA
104/*
105 * Save get_task_policy() for show_numa_map().
106 */
107static void hold_task_mempolicy(struct proc_maps_private *priv)
108{
109 struct task_struct *task = priv->task;
110
111 task_lock(task);
112 priv->task_mempolicy = get_task_policy(task);
113 mpol_get(priv->task_mempolicy);
114 task_unlock(task);
115}
116static void release_task_mempolicy(struct proc_maps_private *priv)
117{
118 mpol_put(priv->task_mempolicy);
119}
120#else
121static void hold_task_mempolicy(struct proc_maps_private *priv)
122{
123}
124static void release_task_mempolicy(struct proc_maps_private *priv)
125{
126}
127#endif
128
129static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
130 loff_t *ppos)
131{
132 struct vm_area_struct *vma = vma_next(&priv->iter);
133
134 if (vma) {
135 *ppos = vma->vm_start;
136 } else {
137 *ppos = -2UL;
138 vma = get_gate_vma(priv->mm);
139 }
140
141 return vma;
142}
143
144static void *m_start(struct seq_file *m, loff_t *ppos)
145{
146 struct proc_maps_private *priv = m->private;
147 unsigned long last_addr = *ppos;
148 struct mm_struct *mm;
149
150 /* See m_next(). Zero at the start or after lseek. */
151 if (last_addr == -1UL)
152 return NULL;
153
154 priv->task = get_proc_task(priv->inode);
155 if (!priv->task)
156 return ERR_PTR(-ESRCH);
157
158 mm = priv->mm;
159 if (!mm || !mmget_not_zero(mm)) {
160 put_task_struct(priv->task);
161 priv->task = NULL;
162 return NULL;
163 }
164
165 if (mmap_read_lock_killable(mm)) {
166 mmput(mm);
167 put_task_struct(priv->task);
168 priv->task = NULL;
169 return ERR_PTR(-EINTR);
170 }
171
172 vma_iter_init(&priv->iter, mm, last_addr);
173 hold_task_mempolicy(priv);
174 if (last_addr == -2UL)
175 return get_gate_vma(mm);
176
177 return proc_get_vma(priv, ppos);
178}
179
180static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
181{
182 if (*ppos == -2UL) {
183 *ppos = -1UL;
184 return NULL;
185 }
186 return proc_get_vma(m->private, ppos);
187}
188
189static void m_stop(struct seq_file *m, void *v)
190{
191 struct proc_maps_private *priv = m->private;
192 struct mm_struct *mm = priv->mm;
193
194 if (!priv->task)
195 return;
196
197 release_task_mempolicy(priv);
198 mmap_read_unlock(mm);
199 mmput(mm);
200 put_task_struct(priv->task);
201 priv->task = NULL;
202}
203
204static int proc_maps_open(struct inode *inode, struct file *file,
205 const struct seq_operations *ops, int psize)
206{
207 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
208
209 if (!priv)
210 return -ENOMEM;
211
212 priv->inode = inode;
213 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
214 if (IS_ERR(priv->mm)) {
215 int err = PTR_ERR(priv->mm);
216
217 seq_release_private(inode, file);
218 return err;
219 }
220
221 return 0;
222}
223
224static int proc_map_release(struct inode *inode, struct file *file)
225{
226 struct seq_file *seq = file->private_data;
227 struct proc_maps_private *priv = seq->private;
228
229 if (priv->mm)
230 mmdrop(priv->mm);
231
232 return seq_release_private(inode, file);
233}
234
235static int do_maps_open(struct inode *inode, struct file *file,
236 const struct seq_operations *ops)
237{
238 return proc_maps_open(inode, file, ops,
239 sizeof(struct proc_maps_private));
240}
241
242static void show_vma_header_prefix(struct seq_file *m,
243 unsigned long start, unsigned long end,
244 vm_flags_t flags, unsigned long long pgoff,
245 dev_t dev, unsigned long ino)
246{
247 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
248 seq_put_hex_ll(m, NULL, start, 8);
249 seq_put_hex_ll(m, "-", end, 8);
250 seq_putc(m, ' ');
251 seq_putc(m, flags & VM_READ ? 'r' : '-');
252 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
253 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
254 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
255 seq_put_hex_ll(m, " ", pgoff, 8);
256 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
257 seq_put_hex_ll(m, ":", MINOR(dev), 2);
258 seq_put_decimal_ull(m, " ", ino);
259 seq_putc(m, ' ');
260}
261
262static void
263show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
264{
265 struct anon_vma_name *anon_name = NULL;
266 struct mm_struct *mm = vma->vm_mm;
267 struct file *file = vma->vm_file;
268 vm_flags_t flags = vma->vm_flags;
269 unsigned long ino = 0;
270 unsigned long long pgoff = 0;
271 unsigned long start, end;
272 dev_t dev = 0;
273 const char *name = NULL;
274
275 if (file) {
276 const struct inode *inode = file_user_inode(vma->vm_file);
277
278 dev = inode->i_sb->s_dev;
279 ino = inode->i_ino;
280 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
281 }
282
283 start = vma->vm_start;
284 end = vma->vm_end;
285 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
286 if (mm)
287 anon_name = anon_vma_name(vma);
288
289 /*
290 * Print the dentry name for named mappings, and a
291 * special [heap] marker for the heap:
292 */
293 if (file) {
294 seq_pad(m, ' ');
295 /*
296 * If user named this anon shared memory via
297 * prctl(PR_SET_VMA ..., use the provided name.
298 */
299 if (anon_name)
300 seq_printf(m, "[anon_shmem:%s]", anon_name->name);
301 else
302 seq_path(m, file_user_path(file), "\n");
303 goto done;
304 }
305
306 if (vma->vm_ops && vma->vm_ops->name) {
307 name = vma->vm_ops->name(vma);
308 if (name)
309 goto done;
310 }
311
312 name = arch_vma_name(vma);
313 if (!name) {
314 if (!mm) {
315 name = "[vdso]";
316 goto done;
317 }
318
319 if (vma_is_initial_heap(vma)) {
320 name = "[heap]";
321 goto done;
322 }
323
324 if (vma_is_initial_stack(vma)) {
325 name = "[stack]";
326 goto done;
327 }
328
329 if (anon_name) {
330 seq_pad(m, ' ');
331 seq_printf(m, "[anon:%s]", anon_name->name);
332 }
333 }
334
335done:
336 if (name) {
337 seq_pad(m, ' ');
338 seq_puts(m, name);
339 }
340 seq_putc(m, '\n');
341}
342
343static int show_map(struct seq_file *m, void *v)
344{
345 show_map_vma(m, v);
346 return 0;
347}
348
349static const struct seq_operations proc_pid_maps_op = {
350 .start = m_start,
351 .next = m_next,
352 .stop = m_stop,
353 .show = show_map
354};
355
356static int pid_maps_open(struct inode *inode, struct file *file)
357{
358 return do_maps_open(inode, file, &proc_pid_maps_op);
359}
360
361const struct file_operations proc_pid_maps_operations = {
362 .open = pid_maps_open,
363 .read = seq_read,
364 .llseek = seq_lseek,
365 .release = proc_map_release,
366};
367
368/*
369 * Proportional Set Size(PSS): my share of RSS.
370 *
371 * PSS of a process is the count of pages it has in memory, where each
372 * page is divided by the number of processes sharing it. So if a
373 * process has 1000 pages all to itself, and 1000 shared with one other
374 * process, its PSS will be 1500.
375 *
376 * To keep (accumulated) division errors low, we adopt a 64bit
377 * fixed-point pss counter to minimize division errors. So (pss >>
378 * PSS_SHIFT) would be the real byte count.
379 *
380 * A shift of 12 before division means (assuming 4K page size):
381 * - 1M 3-user-pages add up to 8KB errors;
382 * - supports mapcount up to 2^24, or 16M;
383 * - supports PSS up to 2^52 bytes, or 4PB.
384 */
385#define PSS_SHIFT 12
386
387#ifdef CONFIG_PROC_PAGE_MONITOR
388struct mem_size_stats {
389 unsigned long resident;
390 unsigned long shared_clean;
391 unsigned long shared_dirty;
392 unsigned long private_clean;
393 unsigned long private_dirty;
394 unsigned long referenced;
395 unsigned long anonymous;
396 unsigned long lazyfree;
397 unsigned long anonymous_thp;
398 unsigned long shmem_thp;
399 unsigned long file_thp;
400 unsigned long swap;
401 unsigned long shared_hugetlb;
402 unsigned long private_hugetlb;
403 unsigned long ksm;
404 u64 pss;
405 u64 pss_anon;
406 u64 pss_file;
407 u64 pss_shmem;
408 u64 pss_dirty;
409 u64 pss_locked;
410 u64 swap_pss;
411};
412
413static void smaps_page_accumulate(struct mem_size_stats *mss,
414 struct page *page, unsigned long size, unsigned long pss,
415 bool dirty, bool locked, bool private)
416{
417 mss->pss += pss;
418
419 if (PageAnon(page))
420 mss->pss_anon += pss;
421 else if (PageSwapBacked(page))
422 mss->pss_shmem += pss;
423 else
424 mss->pss_file += pss;
425
426 if (locked)
427 mss->pss_locked += pss;
428
429 if (dirty || PageDirty(page)) {
430 mss->pss_dirty += pss;
431 if (private)
432 mss->private_dirty += size;
433 else
434 mss->shared_dirty += size;
435 } else {
436 if (private)
437 mss->private_clean += size;
438 else
439 mss->shared_clean += size;
440 }
441}
442
443static void smaps_account(struct mem_size_stats *mss, struct page *page,
444 bool compound, bool young, bool dirty, bool locked,
445 bool migration)
446{
447 int i, nr = compound ? compound_nr(page) : 1;
448 unsigned long size = nr * PAGE_SIZE;
449
450 /*
451 * First accumulate quantities that depend only on |size| and the type
452 * of the compound page.
453 */
454 if (PageAnon(page)) {
455 mss->anonymous += size;
456 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
457 mss->lazyfree += size;
458 }
459
460 if (PageKsm(page))
461 mss->ksm += size;
462
463 mss->resident += size;
464 /* Accumulate the size in pages that have been accessed. */
465 if (young || page_is_young(page) || PageReferenced(page))
466 mss->referenced += size;
467
468 /*
469 * Then accumulate quantities that may depend on sharing, or that may
470 * differ page-by-page.
471 *
472 * page_count(page) == 1 guarantees the page is mapped exactly once.
473 * If any subpage of the compound page mapped with PTE it would elevate
474 * page_count().
475 *
476 * The page_mapcount() is called to get a snapshot of the mapcount.
477 * Without holding the page lock this snapshot can be slightly wrong as
478 * we cannot always read the mapcount atomically. It is not safe to
479 * call page_mapcount() even with PTL held if the page is not mapped,
480 * especially for migration entries. Treat regular migration entries
481 * as mapcount == 1.
482 */
483 if ((page_count(page) == 1) || migration) {
484 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
485 locked, true);
486 return;
487 }
488 for (i = 0; i < nr; i++, page++) {
489 int mapcount = page_mapcount(page);
490 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
491 if (mapcount >= 2)
492 pss /= mapcount;
493 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
494 mapcount < 2);
495 }
496}
497
498#ifdef CONFIG_SHMEM
499static int smaps_pte_hole(unsigned long addr, unsigned long end,
500 __always_unused int depth, struct mm_walk *walk)
501{
502 struct mem_size_stats *mss = walk->private;
503 struct vm_area_struct *vma = walk->vma;
504
505 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
506 linear_page_index(vma, addr),
507 linear_page_index(vma, end));
508
509 return 0;
510}
511#else
512#define smaps_pte_hole NULL
513#endif /* CONFIG_SHMEM */
514
515static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
516{
517#ifdef CONFIG_SHMEM
518 if (walk->ops->pte_hole) {
519 /* depth is not used */
520 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
521 }
522#endif
523}
524
525static void smaps_pte_entry(pte_t *pte, unsigned long addr,
526 struct mm_walk *walk)
527{
528 struct mem_size_stats *mss = walk->private;
529 struct vm_area_struct *vma = walk->vma;
530 bool locked = !!(vma->vm_flags & VM_LOCKED);
531 struct page *page = NULL;
532 bool migration = false, young = false, dirty = false;
533 pte_t ptent = ptep_get(pte);
534
535 if (pte_present(ptent)) {
536 page = vm_normal_page(vma, addr, ptent);
537 young = pte_young(ptent);
538 dirty = pte_dirty(ptent);
539 } else if (is_swap_pte(ptent)) {
540 swp_entry_t swpent = pte_to_swp_entry(ptent);
541
542 if (!non_swap_entry(swpent)) {
543 int mapcount;
544
545 mss->swap += PAGE_SIZE;
546 mapcount = swp_swapcount(swpent);
547 if (mapcount >= 2) {
548 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
549
550 do_div(pss_delta, mapcount);
551 mss->swap_pss += pss_delta;
552 } else {
553 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
554 }
555 } else if (is_pfn_swap_entry(swpent)) {
556 if (is_migration_entry(swpent))
557 migration = true;
558 page = pfn_swap_entry_to_page(swpent);
559 }
560 } else {
561 smaps_pte_hole_lookup(addr, walk);
562 return;
563 }
564
565 if (!page)
566 return;
567
568 smaps_account(mss, page, false, young, dirty, locked, migration);
569}
570
571#ifdef CONFIG_TRANSPARENT_HUGEPAGE
572static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
573 struct mm_walk *walk)
574{
575 struct mem_size_stats *mss = walk->private;
576 struct vm_area_struct *vma = walk->vma;
577 bool locked = !!(vma->vm_flags & VM_LOCKED);
578 struct page *page = NULL;
579 bool migration = false;
580
581 if (pmd_present(*pmd)) {
582 page = vm_normal_page_pmd(vma, addr, *pmd);
583 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
584 swp_entry_t entry = pmd_to_swp_entry(*pmd);
585
586 if (is_migration_entry(entry)) {
587 migration = true;
588 page = pfn_swap_entry_to_page(entry);
589 }
590 }
591 if (IS_ERR_OR_NULL(page))
592 return;
593 if (PageAnon(page))
594 mss->anonymous_thp += HPAGE_PMD_SIZE;
595 else if (PageSwapBacked(page))
596 mss->shmem_thp += HPAGE_PMD_SIZE;
597 else if (is_zone_device_page(page))
598 /* pass */;
599 else
600 mss->file_thp += HPAGE_PMD_SIZE;
601
602 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
603 locked, migration);
604}
605#else
606static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
607 struct mm_walk *walk)
608{
609}
610#endif
611
612static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
613 struct mm_walk *walk)
614{
615 struct vm_area_struct *vma = walk->vma;
616 pte_t *pte;
617 spinlock_t *ptl;
618
619 ptl = pmd_trans_huge_lock(pmd, vma);
620 if (ptl) {
621 smaps_pmd_entry(pmd, addr, walk);
622 spin_unlock(ptl);
623 goto out;
624 }
625
626 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
627 if (!pte) {
628 walk->action = ACTION_AGAIN;
629 return 0;
630 }
631 for (; addr != end; pte++, addr += PAGE_SIZE)
632 smaps_pte_entry(pte, addr, walk);
633 pte_unmap_unlock(pte - 1, ptl);
634out:
635 cond_resched();
636 return 0;
637}
638
639static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
640{
641 /*
642 * Don't forget to update Documentation/ on changes.
643 */
644 static const char mnemonics[BITS_PER_LONG][2] = {
645 /*
646 * In case if we meet a flag we don't know about.
647 */
648 [0 ... (BITS_PER_LONG-1)] = "??",
649
650 [ilog2(VM_READ)] = "rd",
651 [ilog2(VM_WRITE)] = "wr",
652 [ilog2(VM_EXEC)] = "ex",
653 [ilog2(VM_SHARED)] = "sh",
654 [ilog2(VM_MAYREAD)] = "mr",
655 [ilog2(VM_MAYWRITE)] = "mw",
656 [ilog2(VM_MAYEXEC)] = "me",
657 [ilog2(VM_MAYSHARE)] = "ms",
658 [ilog2(VM_GROWSDOWN)] = "gd",
659 [ilog2(VM_PFNMAP)] = "pf",
660 [ilog2(VM_LOCKED)] = "lo",
661 [ilog2(VM_IO)] = "io",
662 [ilog2(VM_SEQ_READ)] = "sr",
663 [ilog2(VM_RAND_READ)] = "rr",
664 [ilog2(VM_DONTCOPY)] = "dc",
665 [ilog2(VM_DONTEXPAND)] = "de",
666 [ilog2(VM_LOCKONFAULT)] = "lf",
667 [ilog2(VM_ACCOUNT)] = "ac",
668 [ilog2(VM_NORESERVE)] = "nr",
669 [ilog2(VM_HUGETLB)] = "ht",
670 [ilog2(VM_SYNC)] = "sf",
671 [ilog2(VM_ARCH_1)] = "ar",
672 [ilog2(VM_WIPEONFORK)] = "wf",
673 [ilog2(VM_DONTDUMP)] = "dd",
674#ifdef CONFIG_ARM64_BTI
675 [ilog2(VM_ARM64_BTI)] = "bt",
676#endif
677#ifdef CONFIG_MEM_SOFT_DIRTY
678 [ilog2(VM_SOFTDIRTY)] = "sd",
679#endif
680 [ilog2(VM_MIXEDMAP)] = "mm",
681 [ilog2(VM_HUGEPAGE)] = "hg",
682 [ilog2(VM_NOHUGEPAGE)] = "nh",
683 [ilog2(VM_MERGEABLE)] = "mg",
684 [ilog2(VM_UFFD_MISSING)]= "um",
685 [ilog2(VM_UFFD_WP)] = "uw",
686#ifdef CONFIG_ARM64_MTE
687 [ilog2(VM_MTE)] = "mt",
688 [ilog2(VM_MTE_ALLOWED)] = "",
689#endif
690#ifdef CONFIG_ARCH_HAS_PKEYS
691 /* These come out via ProtectionKey: */
692 [ilog2(VM_PKEY_BIT0)] = "",
693 [ilog2(VM_PKEY_BIT1)] = "",
694 [ilog2(VM_PKEY_BIT2)] = "",
695 [ilog2(VM_PKEY_BIT3)] = "",
696#if VM_PKEY_BIT4
697 [ilog2(VM_PKEY_BIT4)] = "",
698#endif
699#endif /* CONFIG_ARCH_HAS_PKEYS */
700#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
701 [ilog2(VM_UFFD_MINOR)] = "ui",
702#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
703#ifdef CONFIG_X86_USER_SHADOW_STACK
704 [ilog2(VM_SHADOW_STACK)] = "ss",
705#endif
706 };
707 size_t i;
708
709 seq_puts(m, "VmFlags: ");
710 for (i = 0; i < BITS_PER_LONG; i++) {
711 if (!mnemonics[i][0])
712 continue;
713 if (vma->vm_flags & (1UL << i)) {
714 seq_putc(m, mnemonics[i][0]);
715 seq_putc(m, mnemonics[i][1]);
716 seq_putc(m, ' ');
717 }
718 }
719 seq_putc(m, '\n');
720}
721
722#ifdef CONFIG_HUGETLB_PAGE
723static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
724 unsigned long addr, unsigned long end,
725 struct mm_walk *walk)
726{
727 struct mem_size_stats *mss = walk->private;
728 struct vm_area_struct *vma = walk->vma;
729 struct page *page = NULL;
730 pte_t ptent = ptep_get(pte);
731
732 if (pte_present(ptent)) {
733 page = vm_normal_page(vma, addr, ptent);
734 } else if (is_swap_pte(ptent)) {
735 swp_entry_t swpent = pte_to_swp_entry(ptent);
736
737 if (is_pfn_swap_entry(swpent))
738 page = pfn_swap_entry_to_page(swpent);
739 }
740 if (page) {
741 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
742 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
743 else
744 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
745 }
746 return 0;
747}
748#else
749#define smaps_hugetlb_range NULL
750#endif /* HUGETLB_PAGE */
751
752static const struct mm_walk_ops smaps_walk_ops = {
753 .pmd_entry = smaps_pte_range,
754 .hugetlb_entry = smaps_hugetlb_range,
755 .walk_lock = PGWALK_RDLOCK,
756};
757
758static const struct mm_walk_ops smaps_shmem_walk_ops = {
759 .pmd_entry = smaps_pte_range,
760 .hugetlb_entry = smaps_hugetlb_range,
761 .pte_hole = smaps_pte_hole,
762 .walk_lock = PGWALK_RDLOCK,
763};
764
765/*
766 * Gather mem stats from @vma with the indicated beginning
767 * address @start, and keep them in @mss.
768 *
769 * Use vm_start of @vma as the beginning address if @start is 0.
770 */
771static void smap_gather_stats(struct vm_area_struct *vma,
772 struct mem_size_stats *mss, unsigned long start)
773{
774 const struct mm_walk_ops *ops = &smaps_walk_ops;
775
776 /* Invalid start */
777 if (start >= vma->vm_end)
778 return;
779
780 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
781 /*
782 * For shared or readonly shmem mappings we know that all
783 * swapped out pages belong to the shmem object, and we can
784 * obtain the swap value much more efficiently. For private
785 * writable mappings, we might have COW pages that are
786 * not affected by the parent swapped out pages of the shmem
787 * object, so we have to distinguish them during the page walk.
788 * Unless we know that the shmem object (or the part mapped by
789 * our VMA) has no swapped out pages at all.
790 */
791 unsigned long shmem_swapped = shmem_swap_usage(vma);
792
793 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
794 !(vma->vm_flags & VM_WRITE))) {
795 mss->swap += shmem_swapped;
796 } else {
797 ops = &smaps_shmem_walk_ops;
798 }
799 }
800
801 /* mmap_lock is held in m_start */
802 if (!start)
803 walk_page_vma(vma, ops, mss);
804 else
805 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
806}
807
808#define SEQ_PUT_DEC(str, val) \
809 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
810
811/* Show the contents common for smaps and smaps_rollup */
812static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
813 bool rollup_mode)
814{
815 SEQ_PUT_DEC("Rss: ", mss->resident);
816 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
817 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT);
818 if (rollup_mode) {
819 /*
820 * These are meaningful only for smaps_rollup, otherwise two of
821 * them are zero, and the other one is the same as Pss.
822 */
823 SEQ_PUT_DEC(" kB\nPss_Anon: ",
824 mss->pss_anon >> PSS_SHIFT);
825 SEQ_PUT_DEC(" kB\nPss_File: ",
826 mss->pss_file >> PSS_SHIFT);
827 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
828 mss->pss_shmem >> PSS_SHIFT);
829 }
830 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
831 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
832 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
833 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
834 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
835 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
836 SEQ_PUT_DEC(" kB\nKSM: ", mss->ksm);
837 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
838 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
839 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
840 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
841 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
842 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
843 mss->private_hugetlb >> 10, 7);
844 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
845 SEQ_PUT_DEC(" kB\nSwapPss: ",
846 mss->swap_pss >> PSS_SHIFT);
847 SEQ_PUT_DEC(" kB\nLocked: ",
848 mss->pss_locked >> PSS_SHIFT);
849 seq_puts(m, " kB\n");
850}
851
852static int show_smap(struct seq_file *m, void *v)
853{
854 struct vm_area_struct *vma = v;
855 struct mem_size_stats mss = {};
856
857 smap_gather_stats(vma, &mss, 0);
858
859 show_map_vma(m, vma);
860
861 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
862 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
863 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
864 seq_puts(m, " kB\n");
865
866 __show_smap(m, &mss, false);
867
868 seq_printf(m, "THPeligible: %8u\n",
869 !!thp_vma_allowable_orders(vma, vma->vm_flags, true, false,
870 true, THP_ORDERS_ALL));
871
872 if (arch_pkeys_enabled())
873 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
874 show_smap_vma_flags(m, vma);
875
876 return 0;
877}
878
879static int show_smaps_rollup(struct seq_file *m, void *v)
880{
881 struct proc_maps_private *priv = m->private;
882 struct mem_size_stats mss = {};
883 struct mm_struct *mm = priv->mm;
884 struct vm_area_struct *vma;
885 unsigned long vma_start = 0, last_vma_end = 0;
886 int ret = 0;
887 VMA_ITERATOR(vmi, mm, 0);
888
889 priv->task = get_proc_task(priv->inode);
890 if (!priv->task)
891 return -ESRCH;
892
893 if (!mm || !mmget_not_zero(mm)) {
894 ret = -ESRCH;
895 goto out_put_task;
896 }
897
898 ret = mmap_read_lock_killable(mm);
899 if (ret)
900 goto out_put_mm;
901
902 hold_task_mempolicy(priv);
903 vma = vma_next(&vmi);
904
905 if (unlikely(!vma))
906 goto empty_set;
907
908 vma_start = vma->vm_start;
909 do {
910 smap_gather_stats(vma, &mss, 0);
911 last_vma_end = vma->vm_end;
912
913 /*
914 * Release mmap_lock temporarily if someone wants to
915 * access it for write request.
916 */
917 if (mmap_lock_is_contended(mm)) {
918 vma_iter_invalidate(&vmi);
919 mmap_read_unlock(mm);
920 ret = mmap_read_lock_killable(mm);
921 if (ret) {
922 release_task_mempolicy(priv);
923 goto out_put_mm;
924 }
925
926 /*
927 * After dropping the lock, there are four cases to
928 * consider. See the following example for explanation.
929 *
930 * +------+------+-----------+
931 * | VMA1 | VMA2 | VMA3 |
932 * +------+------+-----------+
933 * | | | |
934 * 4k 8k 16k 400k
935 *
936 * Suppose we drop the lock after reading VMA2 due to
937 * contention, then we get:
938 *
939 * last_vma_end = 16k
940 *
941 * 1) VMA2 is freed, but VMA3 exists:
942 *
943 * vma_next(vmi) will return VMA3.
944 * In this case, just continue from VMA3.
945 *
946 * 2) VMA2 still exists:
947 *
948 * vma_next(vmi) will return VMA3.
949 * In this case, just continue from VMA3.
950 *
951 * 3) No more VMAs can be found:
952 *
953 * vma_next(vmi) will return NULL.
954 * No more things to do, just break.
955 *
956 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
957 *
958 * vma_next(vmi) will return VMA' whose range
959 * contains last_vma_end.
960 * Iterate VMA' from last_vma_end.
961 */
962 vma = vma_next(&vmi);
963 /* Case 3 above */
964 if (!vma)
965 break;
966
967 /* Case 1 and 2 above */
968 if (vma->vm_start >= last_vma_end)
969 continue;
970
971 /* Case 4 above */
972 if (vma->vm_end > last_vma_end)
973 smap_gather_stats(vma, &mss, last_vma_end);
974 }
975 } for_each_vma(vmi, vma);
976
977empty_set:
978 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
979 seq_pad(m, ' ');
980 seq_puts(m, "[rollup]\n");
981
982 __show_smap(m, &mss, true);
983
984 release_task_mempolicy(priv);
985 mmap_read_unlock(mm);
986
987out_put_mm:
988 mmput(mm);
989out_put_task:
990 put_task_struct(priv->task);
991 priv->task = NULL;
992
993 return ret;
994}
995#undef SEQ_PUT_DEC
996
997static const struct seq_operations proc_pid_smaps_op = {
998 .start = m_start,
999 .next = m_next,
1000 .stop = m_stop,
1001 .show = show_smap
1002};
1003
1004static int pid_smaps_open(struct inode *inode, struct file *file)
1005{
1006 return do_maps_open(inode, file, &proc_pid_smaps_op);
1007}
1008
1009static int smaps_rollup_open(struct inode *inode, struct file *file)
1010{
1011 int ret;
1012 struct proc_maps_private *priv;
1013
1014 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1015 if (!priv)
1016 return -ENOMEM;
1017
1018 ret = single_open(file, show_smaps_rollup, priv);
1019 if (ret)
1020 goto out_free;
1021
1022 priv->inode = inode;
1023 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1024 if (IS_ERR(priv->mm)) {
1025 ret = PTR_ERR(priv->mm);
1026
1027 single_release(inode, file);
1028 goto out_free;
1029 }
1030
1031 return 0;
1032
1033out_free:
1034 kfree(priv);
1035 return ret;
1036}
1037
1038static int smaps_rollup_release(struct inode *inode, struct file *file)
1039{
1040 struct seq_file *seq = file->private_data;
1041 struct proc_maps_private *priv = seq->private;
1042
1043 if (priv->mm)
1044 mmdrop(priv->mm);
1045
1046 kfree(priv);
1047 return single_release(inode, file);
1048}
1049
1050const struct file_operations proc_pid_smaps_operations = {
1051 .open = pid_smaps_open,
1052 .read = seq_read,
1053 .llseek = seq_lseek,
1054 .release = proc_map_release,
1055};
1056
1057const struct file_operations proc_pid_smaps_rollup_operations = {
1058 .open = smaps_rollup_open,
1059 .read = seq_read,
1060 .llseek = seq_lseek,
1061 .release = smaps_rollup_release,
1062};
1063
1064enum clear_refs_types {
1065 CLEAR_REFS_ALL = 1,
1066 CLEAR_REFS_ANON,
1067 CLEAR_REFS_MAPPED,
1068 CLEAR_REFS_SOFT_DIRTY,
1069 CLEAR_REFS_MM_HIWATER_RSS,
1070 CLEAR_REFS_LAST,
1071};
1072
1073struct clear_refs_private {
1074 enum clear_refs_types type;
1075};
1076
1077#ifdef CONFIG_MEM_SOFT_DIRTY
1078
1079static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1080{
1081 struct page *page;
1082
1083 if (!pte_write(pte))
1084 return false;
1085 if (!is_cow_mapping(vma->vm_flags))
1086 return false;
1087 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1088 return false;
1089 page = vm_normal_page(vma, addr, pte);
1090 if (!page)
1091 return false;
1092 return page_maybe_dma_pinned(page);
1093}
1094
1095static inline void clear_soft_dirty(struct vm_area_struct *vma,
1096 unsigned long addr, pte_t *pte)
1097{
1098 /*
1099 * The soft-dirty tracker uses #PF-s to catch writes
1100 * to pages, so write-protect the pte as well. See the
1101 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1102 * of how soft-dirty works.
1103 */
1104 pte_t ptent = ptep_get(pte);
1105
1106 if (pte_present(ptent)) {
1107 pte_t old_pte;
1108
1109 if (pte_is_pinned(vma, addr, ptent))
1110 return;
1111 old_pte = ptep_modify_prot_start(vma, addr, pte);
1112 ptent = pte_wrprotect(old_pte);
1113 ptent = pte_clear_soft_dirty(ptent);
1114 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1115 } else if (is_swap_pte(ptent)) {
1116 ptent = pte_swp_clear_soft_dirty(ptent);
1117 set_pte_at(vma->vm_mm, addr, pte, ptent);
1118 }
1119}
1120#else
1121static inline void clear_soft_dirty(struct vm_area_struct *vma,
1122 unsigned long addr, pte_t *pte)
1123{
1124}
1125#endif
1126
1127#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1128static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1129 unsigned long addr, pmd_t *pmdp)
1130{
1131 pmd_t old, pmd = *pmdp;
1132
1133 if (pmd_present(pmd)) {
1134 /* See comment in change_huge_pmd() */
1135 old = pmdp_invalidate(vma, addr, pmdp);
1136 if (pmd_dirty(old))
1137 pmd = pmd_mkdirty(pmd);
1138 if (pmd_young(old))
1139 pmd = pmd_mkyoung(pmd);
1140
1141 pmd = pmd_wrprotect(pmd);
1142 pmd = pmd_clear_soft_dirty(pmd);
1143
1144 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1145 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1146 pmd = pmd_swp_clear_soft_dirty(pmd);
1147 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1148 }
1149}
1150#else
1151static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1152 unsigned long addr, pmd_t *pmdp)
1153{
1154}
1155#endif
1156
1157static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1158 unsigned long end, struct mm_walk *walk)
1159{
1160 struct clear_refs_private *cp = walk->private;
1161 struct vm_area_struct *vma = walk->vma;
1162 pte_t *pte, ptent;
1163 spinlock_t *ptl;
1164 struct page *page;
1165
1166 ptl = pmd_trans_huge_lock(pmd, vma);
1167 if (ptl) {
1168 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1169 clear_soft_dirty_pmd(vma, addr, pmd);
1170 goto out;
1171 }
1172
1173 if (!pmd_present(*pmd))
1174 goto out;
1175
1176 page = pmd_page(*pmd);
1177
1178 /* Clear accessed and referenced bits. */
1179 pmdp_test_and_clear_young(vma, addr, pmd);
1180 test_and_clear_page_young(page);
1181 ClearPageReferenced(page);
1182out:
1183 spin_unlock(ptl);
1184 return 0;
1185 }
1186
1187 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1188 if (!pte) {
1189 walk->action = ACTION_AGAIN;
1190 return 0;
1191 }
1192 for (; addr != end; pte++, addr += PAGE_SIZE) {
1193 ptent = ptep_get(pte);
1194
1195 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1196 clear_soft_dirty(vma, addr, pte);
1197 continue;
1198 }
1199
1200 if (!pte_present(ptent))
1201 continue;
1202
1203 page = vm_normal_page(vma, addr, ptent);
1204 if (!page)
1205 continue;
1206
1207 /* Clear accessed and referenced bits. */
1208 ptep_test_and_clear_young(vma, addr, pte);
1209 test_and_clear_page_young(page);
1210 ClearPageReferenced(page);
1211 }
1212 pte_unmap_unlock(pte - 1, ptl);
1213 cond_resched();
1214 return 0;
1215}
1216
1217static int clear_refs_test_walk(unsigned long start, unsigned long end,
1218 struct mm_walk *walk)
1219{
1220 struct clear_refs_private *cp = walk->private;
1221 struct vm_area_struct *vma = walk->vma;
1222
1223 if (vma->vm_flags & VM_PFNMAP)
1224 return 1;
1225
1226 /*
1227 * Writing 1 to /proc/pid/clear_refs affects all pages.
1228 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1229 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1230 * Writing 4 to /proc/pid/clear_refs affects all pages.
1231 */
1232 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1233 return 1;
1234 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1235 return 1;
1236 return 0;
1237}
1238
1239static const struct mm_walk_ops clear_refs_walk_ops = {
1240 .pmd_entry = clear_refs_pte_range,
1241 .test_walk = clear_refs_test_walk,
1242 .walk_lock = PGWALK_WRLOCK,
1243};
1244
1245static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1246 size_t count, loff_t *ppos)
1247{
1248 struct task_struct *task;
1249 char buffer[PROC_NUMBUF] = {};
1250 struct mm_struct *mm;
1251 struct vm_area_struct *vma;
1252 enum clear_refs_types type;
1253 int itype;
1254 int rv;
1255
1256 if (count > sizeof(buffer) - 1)
1257 count = sizeof(buffer) - 1;
1258 if (copy_from_user(buffer, buf, count))
1259 return -EFAULT;
1260 rv = kstrtoint(strstrip(buffer), 10, &itype);
1261 if (rv < 0)
1262 return rv;
1263 type = (enum clear_refs_types)itype;
1264 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1265 return -EINVAL;
1266
1267 task = get_proc_task(file_inode(file));
1268 if (!task)
1269 return -ESRCH;
1270 mm = get_task_mm(task);
1271 if (mm) {
1272 VMA_ITERATOR(vmi, mm, 0);
1273 struct mmu_notifier_range range;
1274 struct clear_refs_private cp = {
1275 .type = type,
1276 };
1277
1278 if (mmap_write_lock_killable(mm)) {
1279 count = -EINTR;
1280 goto out_mm;
1281 }
1282 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1283 /*
1284 * Writing 5 to /proc/pid/clear_refs resets the peak
1285 * resident set size to this mm's current rss value.
1286 */
1287 reset_mm_hiwater_rss(mm);
1288 goto out_unlock;
1289 }
1290
1291 if (type == CLEAR_REFS_SOFT_DIRTY) {
1292 for_each_vma(vmi, vma) {
1293 if (!(vma->vm_flags & VM_SOFTDIRTY))
1294 continue;
1295 vm_flags_clear(vma, VM_SOFTDIRTY);
1296 vma_set_page_prot(vma);
1297 }
1298
1299 inc_tlb_flush_pending(mm);
1300 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1301 0, mm, 0, -1UL);
1302 mmu_notifier_invalidate_range_start(&range);
1303 }
1304 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1305 if (type == CLEAR_REFS_SOFT_DIRTY) {
1306 mmu_notifier_invalidate_range_end(&range);
1307 flush_tlb_mm(mm);
1308 dec_tlb_flush_pending(mm);
1309 }
1310out_unlock:
1311 mmap_write_unlock(mm);
1312out_mm:
1313 mmput(mm);
1314 }
1315 put_task_struct(task);
1316
1317 return count;
1318}
1319
1320const struct file_operations proc_clear_refs_operations = {
1321 .write = clear_refs_write,
1322 .llseek = noop_llseek,
1323};
1324
1325typedef struct {
1326 u64 pme;
1327} pagemap_entry_t;
1328
1329struct pagemapread {
1330 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1331 pagemap_entry_t *buffer;
1332 bool show_pfn;
1333};
1334
1335#define PAGEMAP_WALK_SIZE (PMD_SIZE)
1336#define PAGEMAP_WALK_MASK (PMD_MASK)
1337
1338#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1339#define PM_PFRAME_BITS 55
1340#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1341#define PM_SOFT_DIRTY BIT_ULL(55)
1342#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1343#define PM_UFFD_WP BIT_ULL(57)
1344#define PM_FILE BIT_ULL(61)
1345#define PM_SWAP BIT_ULL(62)
1346#define PM_PRESENT BIT_ULL(63)
1347
1348#define PM_END_OF_BUFFER 1
1349
1350static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1351{
1352 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1353}
1354
1355static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1356{
1357 pm->buffer[pm->pos++] = *pme;
1358 if (pm->pos >= pm->len)
1359 return PM_END_OF_BUFFER;
1360 return 0;
1361}
1362
1363static int pagemap_pte_hole(unsigned long start, unsigned long end,
1364 __always_unused int depth, struct mm_walk *walk)
1365{
1366 struct pagemapread *pm = walk->private;
1367 unsigned long addr = start;
1368 int err = 0;
1369
1370 while (addr < end) {
1371 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1372 pagemap_entry_t pme = make_pme(0, 0);
1373 /* End of address space hole, which we mark as non-present. */
1374 unsigned long hole_end;
1375
1376 if (vma)
1377 hole_end = min(end, vma->vm_start);
1378 else
1379 hole_end = end;
1380
1381 for (; addr < hole_end; addr += PAGE_SIZE) {
1382 err = add_to_pagemap(&pme, pm);
1383 if (err)
1384 goto out;
1385 }
1386
1387 if (!vma)
1388 break;
1389
1390 /* Addresses in the VMA. */
1391 if (vma->vm_flags & VM_SOFTDIRTY)
1392 pme = make_pme(0, PM_SOFT_DIRTY);
1393 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1394 err = add_to_pagemap(&pme, pm);
1395 if (err)
1396 goto out;
1397 }
1398 }
1399out:
1400 return err;
1401}
1402
1403static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1404 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1405{
1406 u64 frame = 0, flags = 0;
1407 struct page *page = NULL;
1408 bool migration = false;
1409
1410 if (pte_present(pte)) {
1411 if (pm->show_pfn)
1412 frame = pte_pfn(pte);
1413 flags |= PM_PRESENT;
1414 page = vm_normal_page(vma, addr, pte);
1415 if (pte_soft_dirty(pte))
1416 flags |= PM_SOFT_DIRTY;
1417 if (pte_uffd_wp(pte))
1418 flags |= PM_UFFD_WP;
1419 } else if (is_swap_pte(pte)) {
1420 swp_entry_t entry;
1421 if (pte_swp_soft_dirty(pte))
1422 flags |= PM_SOFT_DIRTY;
1423 if (pte_swp_uffd_wp(pte))
1424 flags |= PM_UFFD_WP;
1425 entry = pte_to_swp_entry(pte);
1426 if (pm->show_pfn) {
1427 pgoff_t offset;
1428 /*
1429 * For PFN swap offsets, keeping the offset field
1430 * to be PFN only to be compatible with old smaps.
1431 */
1432 if (is_pfn_swap_entry(entry))
1433 offset = swp_offset_pfn(entry);
1434 else
1435 offset = swp_offset(entry);
1436 frame = swp_type(entry) |
1437 (offset << MAX_SWAPFILES_SHIFT);
1438 }
1439 flags |= PM_SWAP;
1440 migration = is_migration_entry(entry);
1441 if (is_pfn_swap_entry(entry))
1442 page = pfn_swap_entry_to_page(entry);
1443 if (pte_marker_entry_uffd_wp(entry))
1444 flags |= PM_UFFD_WP;
1445 }
1446
1447 if (page && !PageAnon(page))
1448 flags |= PM_FILE;
1449 if (page && !migration && page_mapcount(page) == 1)
1450 flags |= PM_MMAP_EXCLUSIVE;
1451 if (vma->vm_flags & VM_SOFTDIRTY)
1452 flags |= PM_SOFT_DIRTY;
1453
1454 return make_pme(frame, flags);
1455}
1456
1457static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1458 struct mm_walk *walk)
1459{
1460 struct vm_area_struct *vma = walk->vma;
1461 struct pagemapread *pm = walk->private;
1462 spinlock_t *ptl;
1463 pte_t *pte, *orig_pte;
1464 int err = 0;
1465#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1466 bool migration = false;
1467
1468 ptl = pmd_trans_huge_lock(pmdp, vma);
1469 if (ptl) {
1470 u64 flags = 0, frame = 0;
1471 pmd_t pmd = *pmdp;
1472 struct page *page = NULL;
1473
1474 if (vma->vm_flags & VM_SOFTDIRTY)
1475 flags |= PM_SOFT_DIRTY;
1476
1477 if (pmd_present(pmd)) {
1478 page = pmd_page(pmd);
1479
1480 flags |= PM_PRESENT;
1481 if (pmd_soft_dirty(pmd))
1482 flags |= PM_SOFT_DIRTY;
1483 if (pmd_uffd_wp(pmd))
1484 flags |= PM_UFFD_WP;
1485 if (pm->show_pfn)
1486 frame = pmd_pfn(pmd) +
1487 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1488 }
1489#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1490 else if (is_swap_pmd(pmd)) {
1491 swp_entry_t entry = pmd_to_swp_entry(pmd);
1492 unsigned long offset;
1493
1494 if (pm->show_pfn) {
1495 if (is_pfn_swap_entry(entry))
1496 offset = swp_offset_pfn(entry);
1497 else
1498 offset = swp_offset(entry);
1499 offset = offset +
1500 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1501 frame = swp_type(entry) |
1502 (offset << MAX_SWAPFILES_SHIFT);
1503 }
1504 flags |= PM_SWAP;
1505 if (pmd_swp_soft_dirty(pmd))
1506 flags |= PM_SOFT_DIRTY;
1507 if (pmd_swp_uffd_wp(pmd))
1508 flags |= PM_UFFD_WP;
1509 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1510 migration = is_migration_entry(entry);
1511 page = pfn_swap_entry_to_page(entry);
1512 }
1513#endif
1514
1515 if (page && !migration && page_mapcount(page) == 1)
1516 flags |= PM_MMAP_EXCLUSIVE;
1517
1518 for (; addr != end; addr += PAGE_SIZE) {
1519 pagemap_entry_t pme = make_pme(frame, flags);
1520
1521 err = add_to_pagemap(&pme, pm);
1522 if (err)
1523 break;
1524 if (pm->show_pfn) {
1525 if (flags & PM_PRESENT)
1526 frame++;
1527 else if (flags & PM_SWAP)
1528 frame += (1 << MAX_SWAPFILES_SHIFT);
1529 }
1530 }
1531 spin_unlock(ptl);
1532 return err;
1533 }
1534#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1535
1536 /*
1537 * We can assume that @vma always points to a valid one and @end never
1538 * goes beyond vma->vm_end.
1539 */
1540 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1541 if (!pte) {
1542 walk->action = ACTION_AGAIN;
1543 return err;
1544 }
1545 for (; addr < end; pte++, addr += PAGE_SIZE) {
1546 pagemap_entry_t pme;
1547
1548 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1549 err = add_to_pagemap(&pme, pm);
1550 if (err)
1551 break;
1552 }
1553 pte_unmap_unlock(orig_pte, ptl);
1554
1555 cond_resched();
1556
1557 return err;
1558}
1559
1560#ifdef CONFIG_HUGETLB_PAGE
1561/* This function walks within one hugetlb entry in the single call */
1562static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1563 unsigned long addr, unsigned long end,
1564 struct mm_walk *walk)
1565{
1566 struct pagemapread *pm = walk->private;
1567 struct vm_area_struct *vma = walk->vma;
1568 u64 flags = 0, frame = 0;
1569 int err = 0;
1570 pte_t pte;
1571
1572 if (vma->vm_flags & VM_SOFTDIRTY)
1573 flags |= PM_SOFT_DIRTY;
1574
1575 pte = huge_ptep_get(ptep);
1576 if (pte_present(pte)) {
1577 struct page *page = pte_page(pte);
1578
1579 if (!PageAnon(page))
1580 flags |= PM_FILE;
1581
1582 if (page_mapcount(page) == 1)
1583 flags |= PM_MMAP_EXCLUSIVE;
1584
1585 if (huge_pte_uffd_wp(pte))
1586 flags |= PM_UFFD_WP;
1587
1588 flags |= PM_PRESENT;
1589 if (pm->show_pfn)
1590 frame = pte_pfn(pte) +
1591 ((addr & ~hmask) >> PAGE_SHIFT);
1592 } else if (pte_swp_uffd_wp_any(pte)) {
1593 flags |= PM_UFFD_WP;
1594 }
1595
1596 for (; addr != end; addr += PAGE_SIZE) {
1597 pagemap_entry_t pme = make_pme(frame, flags);
1598
1599 err = add_to_pagemap(&pme, pm);
1600 if (err)
1601 return err;
1602 if (pm->show_pfn && (flags & PM_PRESENT))
1603 frame++;
1604 }
1605
1606 cond_resched();
1607
1608 return err;
1609}
1610#else
1611#define pagemap_hugetlb_range NULL
1612#endif /* HUGETLB_PAGE */
1613
1614static const struct mm_walk_ops pagemap_ops = {
1615 .pmd_entry = pagemap_pmd_range,
1616 .pte_hole = pagemap_pte_hole,
1617 .hugetlb_entry = pagemap_hugetlb_range,
1618 .walk_lock = PGWALK_RDLOCK,
1619};
1620
1621/*
1622 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1623 *
1624 * For each page in the address space, this file contains one 64-bit entry
1625 * consisting of the following:
1626 *
1627 * Bits 0-54 page frame number (PFN) if present
1628 * Bits 0-4 swap type if swapped
1629 * Bits 5-54 swap offset if swapped
1630 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1631 * Bit 56 page exclusively mapped
1632 * Bit 57 pte is uffd-wp write-protected
1633 * Bits 58-60 zero
1634 * Bit 61 page is file-page or shared-anon
1635 * Bit 62 page swapped
1636 * Bit 63 page present
1637 *
1638 * If the page is not present but in swap, then the PFN contains an
1639 * encoding of the swap file number and the page's offset into the
1640 * swap. Unmapped pages return a null PFN. This allows determining
1641 * precisely which pages are mapped (or in swap) and comparing mapped
1642 * pages between processes.
1643 *
1644 * Efficient users of this interface will use /proc/pid/maps to
1645 * determine which areas of memory are actually mapped and llseek to
1646 * skip over unmapped regions.
1647 */
1648static ssize_t pagemap_read(struct file *file, char __user *buf,
1649 size_t count, loff_t *ppos)
1650{
1651 struct mm_struct *mm = file->private_data;
1652 struct pagemapread pm;
1653 unsigned long src;
1654 unsigned long svpfn;
1655 unsigned long start_vaddr;
1656 unsigned long end_vaddr;
1657 int ret = 0, copied = 0;
1658
1659 if (!mm || !mmget_not_zero(mm))
1660 goto out;
1661
1662 ret = -EINVAL;
1663 /* file position must be aligned */
1664 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1665 goto out_mm;
1666
1667 ret = 0;
1668 if (!count)
1669 goto out_mm;
1670
1671 /* do not disclose physical addresses: attack vector */
1672 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1673
1674 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1675 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1676 ret = -ENOMEM;
1677 if (!pm.buffer)
1678 goto out_mm;
1679
1680 src = *ppos;
1681 svpfn = src / PM_ENTRY_BYTES;
1682 end_vaddr = mm->task_size;
1683
1684 /* watch out for wraparound */
1685 start_vaddr = end_vaddr;
1686 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1687 unsigned long end;
1688
1689 ret = mmap_read_lock_killable(mm);
1690 if (ret)
1691 goto out_free;
1692 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1693 mmap_read_unlock(mm);
1694
1695 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1696 if (end >= start_vaddr && end < mm->task_size)
1697 end_vaddr = end;
1698 }
1699
1700 /* Ensure the address is inside the task */
1701 if (start_vaddr > mm->task_size)
1702 start_vaddr = end_vaddr;
1703
1704 ret = 0;
1705 while (count && (start_vaddr < end_vaddr)) {
1706 int len;
1707 unsigned long end;
1708
1709 pm.pos = 0;
1710 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1711 /* overflow ? */
1712 if (end < start_vaddr || end > end_vaddr)
1713 end = end_vaddr;
1714 ret = mmap_read_lock_killable(mm);
1715 if (ret)
1716 goto out_free;
1717 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1718 mmap_read_unlock(mm);
1719 start_vaddr = end;
1720
1721 len = min(count, PM_ENTRY_BYTES * pm.pos);
1722 if (copy_to_user(buf, pm.buffer, len)) {
1723 ret = -EFAULT;
1724 goto out_free;
1725 }
1726 copied += len;
1727 buf += len;
1728 count -= len;
1729 }
1730 *ppos += copied;
1731 if (!ret || ret == PM_END_OF_BUFFER)
1732 ret = copied;
1733
1734out_free:
1735 kfree(pm.buffer);
1736out_mm:
1737 mmput(mm);
1738out:
1739 return ret;
1740}
1741
1742static int pagemap_open(struct inode *inode, struct file *file)
1743{
1744 struct mm_struct *mm;
1745
1746 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1747 if (IS_ERR(mm))
1748 return PTR_ERR(mm);
1749 file->private_data = mm;
1750 return 0;
1751}
1752
1753static int pagemap_release(struct inode *inode, struct file *file)
1754{
1755 struct mm_struct *mm = file->private_data;
1756
1757 if (mm)
1758 mmdrop(mm);
1759 return 0;
1760}
1761
1762#define PM_SCAN_CATEGORIES (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN | \
1763 PAGE_IS_FILE | PAGE_IS_PRESENT | \
1764 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO | \
1765 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
1766#define PM_SCAN_FLAGS (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
1767
1768struct pagemap_scan_private {
1769 struct pm_scan_arg arg;
1770 unsigned long masks_of_interest, cur_vma_category;
1771 struct page_region *vec_buf;
1772 unsigned long vec_buf_len, vec_buf_index, found_pages;
1773 struct page_region __user *vec_out;
1774};
1775
1776static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
1777 struct vm_area_struct *vma,
1778 unsigned long addr, pte_t pte)
1779{
1780 unsigned long categories = 0;
1781
1782 if (pte_present(pte)) {
1783 struct page *page;
1784
1785 categories |= PAGE_IS_PRESENT;
1786 if (!pte_uffd_wp(pte))
1787 categories |= PAGE_IS_WRITTEN;
1788
1789 if (p->masks_of_interest & PAGE_IS_FILE) {
1790 page = vm_normal_page(vma, addr, pte);
1791 if (page && !PageAnon(page))
1792 categories |= PAGE_IS_FILE;
1793 }
1794
1795 if (is_zero_pfn(pte_pfn(pte)))
1796 categories |= PAGE_IS_PFNZERO;
1797 if (pte_soft_dirty(pte))
1798 categories |= PAGE_IS_SOFT_DIRTY;
1799 } else if (is_swap_pte(pte)) {
1800 swp_entry_t swp;
1801
1802 categories |= PAGE_IS_SWAPPED;
1803 if (!pte_swp_uffd_wp_any(pte))
1804 categories |= PAGE_IS_WRITTEN;
1805
1806 if (p->masks_of_interest & PAGE_IS_FILE) {
1807 swp = pte_to_swp_entry(pte);
1808 if (is_pfn_swap_entry(swp) &&
1809 !folio_test_anon(pfn_swap_entry_folio(swp)))
1810 categories |= PAGE_IS_FILE;
1811 }
1812 if (pte_swp_soft_dirty(pte))
1813 categories |= PAGE_IS_SOFT_DIRTY;
1814 }
1815
1816 return categories;
1817}
1818
1819static void make_uffd_wp_pte(struct vm_area_struct *vma,
1820 unsigned long addr, pte_t *pte, pte_t ptent)
1821{
1822 if (pte_present(ptent)) {
1823 pte_t old_pte;
1824
1825 old_pte = ptep_modify_prot_start(vma, addr, pte);
1826 ptent = pte_mkuffd_wp(old_pte);
1827 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1828 } else if (is_swap_pte(ptent)) {
1829 ptent = pte_swp_mkuffd_wp(ptent);
1830 set_pte_at(vma->vm_mm, addr, pte, ptent);
1831 } else {
1832 set_pte_at(vma->vm_mm, addr, pte,
1833 make_pte_marker(PTE_MARKER_UFFD_WP));
1834 }
1835}
1836
1837#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1838static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
1839 struct vm_area_struct *vma,
1840 unsigned long addr, pmd_t pmd)
1841{
1842 unsigned long categories = PAGE_IS_HUGE;
1843
1844 if (pmd_present(pmd)) {
1845 struct page *page;
1846
1847 categories |= PAGE_IS_PRESENT;
1848 if (!pmd_uffd_wp(pmd))
1849 categories |= PAGE_IS_WRITTEN;
1850
1851 if (p->masks_of_interest & PAGE_IS_FILE) {
1852 page = vm_normal_page_pmd(vma, addr, pmd);
1853 if (page && !PageAnon(page))
1854 categories |= PAGE_IS_FILE;
1855 }
1856
1857 if (is_zero_pfn(pmd_pfn(pmd)))
1858 categories |= PAGE_IS_PFNZERO;
1859 if (pmd_soft_dirty(pmd))
1860 categories |= PAGE_IS_SOFT_DIRTY;
1861 } else if (is_swap_pmd(pmd)) {
1862 swp_entry_t swp;
1863
1864 categories |= PAGE_IS_SWAPPED;
1865 if (!pmd_swp_uffd_wp(pmd))
1866 categories |= PAGE_IS_WRITTEN;
1867 if (pmd_swp_soft_dirty(pmd))
1868 categories |= PAGE_IS_SOFT_DIRTY;
1869
1870 if (p->masks_of_interest & PAGE_IS_FILE) {
1871 swp = pmd_to_swp_entry(pmd);
1872 if (is_pfn_swap_entry(swp) &&
1873 !folio_test_anon(pfn_swap_entry_folio(swp)))
1874 categories |= PAGE_IS_FILE;
1875 }
1876 }
1877
1878 return categories;
1879}
1880
1881static void make_uffd_wp_pmd(struct vm_area_struct *vma,
1882 unsigned long addr, pmd_t *pmdp)
1883{
1884 pmd_t old, pmd = *pmdp;
1885
1886 if (pmd_present(pmd)) {
1887 old = pmdp_invalidate_ad(vma, addr, pmdp);
1888 pmd = pmd_mkuffd_wp(old);
1889 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1890 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1891 pmd = pmd_swp_mkuffd_wp(pmd);
1892 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1893 }
1894}
1895#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1896
1897#ifdef CONFIG_HUGETLB_PAGE
1898static unsigned long pagemap_hugetlb_category(pte_t pte)
1899{
1900 unsigned long categories = PAGE_IS_HUGE;
1901
1902 /*
1903 * According to pagemap_hugetlb_range(), file-backed HugeTLB
1904 * page cannot be swapped. So PAGE_IS_FILE is not checked for
1905 * swapped pages.
1906 */
1907 if (pte_present(pte)) {
1908 categories |= PAGE_IS_PRESENT;
1909 if (!huge_pte_uffd_wp(pte))
1910 categories |= PAGE_IS_WRITTEN;
1911 if (!PageAnon(pte_page(pte)))
1912 categories |= PAGE_IS_FILE;
1913 if (is_zero_pfn(pte_pfn(pte)))
1914 categories |= PAGE_IS_PFNZERO;
1915 if (pte_soft_dirty(pte))
1916 categories |= PAGE_IS_SOFT_DIRTY;
1917 } else if (is_swap_pte(pte)) {
1918 categories |= PAGE_IS_SWAPPED;
1919 if (!pte_swp_uffd_wp_any(pte))
1920 categories |= PAGE_IS_WRITTEN;
1921 if (pte_swp_soft_dirty(pte))
1922 categories |= PAGE_IS_SOFT_DIRTY;
1923 }
1924
1925 return categories;
1926}
1927
1928static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
1929 unsigned long addr, pte_t *ptep,
1930 pte_t ptent)
1931{
1932 unsigned long psize;
1933
1934 if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
1935 return;
1936
1937 psize = huge_page_size(hstate_vma(vma));
1938
1939 if (is_hugetlb_entry_migration(ptent))
1940 set_huge_pte_at(vma->vm_mm, addr, ptep,
1941 pte_swp_mkuffd_wp(ptent), psize);
1942 else if (!huge_pte_none(ptent))
1943 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
1944 huge_pte_mkuffd_wp(ptent));
1945 else
1946 set_huge_pte_at(vma->vm_mm, addr, ptep,
1947 make_pte_marker(PTE_MARKER_UFFD_WP), psize);
1948}
1949#endif /* CONFIG_HUGETLB_PAGE */
1950
1951#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1952static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
1953 unsigned long addr, unsigned long end)
1954{
1955 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
1956
1957 if (cur_buf->start != addr)
1958 cur_buf->end = addr;
1959 else
1960 cur_buf->start = cur_buf->end = 0;
1961
1962 p->found_pages -= (end - addr) / PAGE_SIZE;
1963}
1964#endif
1965
1966static bool pagemap_scan_is_interesting_page(unsigned long categories,
1967 const struct pagemap_scan_private *p)
1968{
1969 categories ^= p->arg.category_inverted;
1970 if ((categories & p->arg.category_mask) != p->arg.category_mask)
1971 return false;
1972 if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
1973 return false;
1974
1975 return true;
1976}
1977
1978static bool pagemap_scan_is_interesting_vma(unsigned long categories,
1979 const struct pagemap_scan_private *p)
1980{
1981 unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
1982
1983 categories ^= p->arg.category_inverted;
1984 if ((categories & required) != required)
1985 return false;
1986
1987 return true;
1988}
1989
1990static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
1991 struct mm_walk *walk)
1992{
1993 struct pagemap_scan_private *p = walk->private;
1994 struct vm_area_struct *vma = walk->vma;
1995 unsigned long vma_category = 0;
1996 bool wp_allowed = userfaultfd_wp_async(vma) &&
1997 userfaultfd_wp_use_markers(vma);
1998
1999 if (!wp_allowed) {
2000 /* User requested explicit failure over wp-async capability */
2001 if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2002 return -EPERM;
2003 /*
2004 * User requires wr-protect, and allows silently skipping
2005 * unsupported vmas.
2006 */
2007 if (p->arg.flags & PM_SCAN_WP_MATCHING)
2008 return 1;
2009 /*
2010 * Then the request doesn't involve wr-protects at all,
2011 * fall through to the rest checks, and allow vma walk.
2012 */
2013 }
2014
2015 if (vma->vm_flags & VM_PFNMAP)
2016 return 1;
2017
2018 if (wp_allowed)
2019 vma_category |= PAGE_IS_WPALLOWED;
2020
2021 if (vma->vm_flags & VM_SOFTDIRTY)
2022 vma_category |= PAGE_IS_SOFT_DIRTY;
2023
2024 if (!pagemap_scan_is_interesting_vma(vma_category, p))
2025 return 1;
2026
2027 p->cur_vma_category = vma_category;
2028
2029 return 0;
2030}
2031
2032static bool pagemap_scan_push_range(unsigned long categories,
2033 struct pagemap_scan_private *p,
2034 unsigned long addr, unsigned long end)
2035{
2036 struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2037
2038 /*
2039 * When there is no output buffer provided at all, the sentinel values
2040 * won't match here. There is no other way for `cur_buf->end` to be
2041 * non-zero other than it being non-empty.
2042 */
2043 if (addr == cur_buf->end && categories == cur_buf->categories) {
2044 cur_buf->end = end;
2045 return true;
2046 }
2047
2048 if (cur_buf->end) {
2049 if (p->vec_buf_index >= p->vec_buf_len - 1)
2050 return false;
2051
2052 cur_buf = &p->vec_buf[++p->vec_buf_index];
2053 }
2054
2055 cur_buf->start = addr;
2056 cur_buf->end = end;
2057 cur_buf->categories = categories;
2058
2059 return true;
2060}
2061
2062static int pagemap_scan_output(unsigned long categories,
2063 struct pagemap_scan_private *p,
2064 unsigned long addr, unsigned long *end)
2065{
2066 unsigned long n_pages, total_pages;
2067 int ret = 0;
2068
2069 if (!p->vec_buf)
2070 return 0;
2071
2072 categories &= p->arg.return_mask;
2073
2074 n_pages = (*end - addr) / PAGE_SIZE;
2075 if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2076 total_pages > p->arg.max_pages) {
2077 size_t n_too_much = total_pages - p->arg.max_pages;
2078 *end -= n_too_much * PAGE_SIZE;
2079 n_pages -= n_too_much;
2080 ret = -ENOSPC;
2081 }
2082
2083 if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2084 *end = addr;
2085 n_pages = 0;
2086 ret = -ENOSPC;
2087 }
2088
2089 p->found_pages += n_pages;
2090 if (ret)
2091 p->arg.walk_end = *end;
2092
2093 return ret;
2094}
2095
2096static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2097 unsigned long end, struct mm_walk *walk)
2098{
2099#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2100 struct pagemap_scan_private *p = walk->private;
2101 struct vm_area_struct *vma = walk->vma;
2102 unsigned long categories;
2103 spinlock_t *ptl;
2104 int ret = 0;
2105
2106 ptl = pmd_trans_huge_lock(pmd, vma);
2107 if (!ptl)
2108 return -ENOENT;
2109
2110 categories = p->cur_vma_category |
2111 pagemap_thp_category(p, vma, start, *pmd);
2112
2113 if (!pagemap_scan_is_interesting_page(categories, p))
2114 goto out_unlock;
2115
2116 ret = pagemap_scan_output(categories, p, start, &end);
2117 if (start == end)
2118 goto out_unlock;
2119
2120 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2121 goto out_unlock;
2122 if (~categories & PAGE_IS_WRITTEN)
2123 goto out_unlock;
2124
2125 /*
2126 * Break huge page into small pages if the WP operation
2127 * needs to be performed on a portion of the huge page.
2128 */
2129 if (end != start + HPAGE_SIZE) {
2130 spin_unlock(ptl);
2131 split_huge_pmd(vma, pmd, start);
2132 pagemap_scan_backout_range(p, start, end);
2133 /* Report as if there was no THP */
2134 return -ENOENT;
2135 }
2136
2137 make_uffd_wp_pmd(vma, start, pmd);
2138 flush_tlb_range(vma, start, end);
2139out_unlock:
2140 spin_unlock(ptl);
2141 return ret;
2142#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2143 return -ENOENT;
2144#endif
2145}
2146
2147static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2148 unsigned long end, struct mm_walk *walk)
2149{
2150 struct pagemap_scan_private *p = walk->private;
2151 struct vm_area_struct *vma = walk->vma;
2152 unsigned long addr, flush_end = 0;
2153 pte_t *pte, *start_pte;
2154 spinlock_t *ptl;
2155 int ret;
2156
2157 arch_enter_lazy_mmu_mode();
2158
2159 ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2160 if (ret != -ENOENT) {
2161 arch_leave_lazy_mmu_mode();
2162 return ret;
2163 }
2164
2165 ret = 0;
2166 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2167 if (!pte) {
2168 arch_leave_lazy_mmu_mode();
2169 walk->action = ACTION_AGAIN;
2170 return 0;
2171 }
2172
2173 if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2174 /* Fast path for performing exclusive WP */
2175 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2176 pte_t ptent = ptep_get(pte);
2177
2178 if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2179 pte_swp_uffd_wp_any(ptent))
2180 continue;
2181 make_uffd_wp_pte(vma, addr, pte, ptent);
2182 if (!flush_end)
2183 start = addr;
2184 flush_end = addr + PAGE_SIZE;
2185 }
2186 goto flush_and_return;
2187 }
2188
2189 if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2190 p->arg.category_mask == PAGE_IS_WRITTEN &&
2191 p->arg.return_mask == PAGE_IS_WRITTEN) {
2192 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2193 unsigned long next = addr + PAGE_SIZE;
2194 pte_t ptent = ptep_get(pte);
2195
2196 if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2197 pte_swp_uffd_wp_any(ptent))
2198 continue;
2199 ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2200 p, addr, &next);
2201 if (next == addr)
2202 break;
2203 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2204 continue;
2205 make_uffd_wp_pte(vma, addr, pte, ptent);
2206 if (!flush_end)
2207 start = addr;
2208 flush_end = next;
2209 }
2210 goto flush_and_return;
2211 }
2212
2213 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2214 pte_t ptent = ptep_get(pte);
2215 unsigned long categories = p->cur_vma_category |
2216 pagemap_page_category(p, vma, addr, ptent);
2217 unsigned long next = addr + PAGE_SIZE;
2218
2219 if (!pagemap_scan_is_interesting_page(categories, p))
2220 continue;
2221
2222 ret = pagemap_scan_output(categories, p, addr, &next);
2223 if (next == addr)
2224 break;
2225
2226 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2227 continue;
2228 if (~categories & PAGE_IS_WRITTEN)
2229 continue;
2230
2231 make_uffd_wp_pte(vma, addr, pte, ptent);
2232 if (!flush_end)
2233 start = addr;
2234 flush_end = next;
2235 }
2236
2237flush_and_return:
2238 if (flush_end)
2239 flush_tlb_range(vma, start, addr);
2240
2241 pte_unmap_unlock(start_pte, ptl);
2242 arch_leave_lazy_mmu_mode();
2243
2244 cond_resched();
2245 return ret;
2246}
2247
2248#ifdef CONFIG_HUGETLB_PAGE
2249static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2250 unsigned long start, unsigned long end,
2251 struct mm_walk *walk)
2252{
2253 struct pagemap_scan_private *p = walk->private;
2254 struct vm_area_struct *vma = walk->vma;
2255 unsigned long categories;
2256 spinlock_t *ptl;
2257 int ret = 0;
2258 pte_t pte;
2259
2260 if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2261 /* Go the short route when not write-protecting pages. */
2262
2263 pte = huge_ptep_get(ptep);
2264 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2265
2266 if (!pagemap_scan_is_interesting_page(categories, p))
2267 return 0;
2268
2269 return pagemap_scan_output(categories, p, start, &end);
2270 }
2271
2272 i_mmap_lock_write(vma->vm_file->f_mapping);
2273 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2274
2275 pte = huge_ptep_get(ptep);
2276 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2277
2278 if (!pagemap_scan_is_interesting_page(categories, p))
2279 goto out_unlock;
2280
2281 ret = pagemap_scan_output(categories, p, start, &end);
2282 if (start == end)
2283 goto out_unlock;
2284
2285 if (~categories & PAGE_IS_WRITTEN)
2286 goto out_unlock;
2287
2288 if (end != start + HPAGE_SIZE) {
2289 /* Partial HugeTLB page WP isn't possible. */
2290 pagemap_scan_backout_range(p, start, end);
2291 p->arg.walk_end = start;
2292 ret = 0;
2293 goto out_unlock;
2294 }
2295
2296 make_uffd_wp_huge_pte(vma, start, ptep, pte);
2297 flush_hugetlb_tlb_range(vma, start, end);
2298
2299out_unlock:
2300 spin_unlock(ptl);
2301 i_mmap_unlock_write(vma->vm_file->f_mapping);
2302
2303 return ret;
2304}
2305#else
2306#define pagemap_scan_hugetlb_entry NULL
2307#endif
2308
2309static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2310 int depth, struct mm_walk *walk)
2311{
2312 struct pagemap_scan_private *p = walk->private;
2313 struct vm_area_struct *vma = walk->vma;
2314 int ret, err;
2315
2316 if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2317 return 0;
2318
2319 ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2320 if (addr == end)
2321 return ret;
2322
2323 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2324 return ret;
2325
2326 err = uffd_wp_range(vma, addr, end - addr, true);
2327 if (err < 0)
2328 ret = err;
2329
2330 return ret;
2331}
2332
2333static const struct mm_walk_ops pagemap_scan_ops = {
2334 .test_walk = pagemap_scan_test_walk,
2335 .pmd_entry = pagemap_scan_pmd_entry,
2336 .pte_hole = pagemap_scan_pte_hole,
2337 .hugetlb_entry = pagemap_scan_hugetlb_entry,
2338};
2339
2340static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2341 unsigned long uarg)
2342{
2343 if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2344 return -EFAULT;
2345
2346 if (arg->size != sizeof(struct pm_scan_arg))
2347 return -EINVAL;
2348
2349 /* Validate requested features */
2350 if (arg->flags & ~PM_SCAN_FLAGS)
2351 return -EINVAL;
2352 if ((arg->category_inverted | arg->category_mask |
2353 arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2354 return -EINVAL;
2355
2356 arg->start = untagged_addr((unsigned long)arg->start);
2357 arg->end = untagged_addr((unsigned long)arg->end);
2358 arg->vec = untagged_addr((unsigned long)arg->vec);
2359
2360 /* Validate memory pointers */
2361 if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2362 return -EINVAL;
2363 if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2364 return -EFAULT;
2365 if (!arg->vec && arg->vec_len)
2366 return -EINVAL;
2367 if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2368 arg->vec_len * sizeof(struct page_region)))
2369 return -EFAULT;
2370
2371 /* Fixup default values */
2372 arg->end = ALIGN(arg->end, PAGE_SIZE);
2373 arg->walk_end = 0;
2374 if (!arg->max_pages)
2375 arg->max_pages = ULONG_MAX;
2376
2377 return 0;
2378}
2379
2380static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2381 unsigned long uargl)
2382{
2383 struct pm_scan_arg __user *uarg = (void __user *)uargl;
2384
2385 if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2386 return -EFAULT;
2387
2388 return 0;
2389}
2390
2391static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2392{
2393 if (!p->arg.vec_len)
2394 return 0;
2395
2396 p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2397 p->arg.vec_len);
2398 p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2399 GFP_KERNEL);
2400 if (!p->vec_buf)
2401 return -ENOMEM;
2402
2403 p->vec_buf->start = p->vec_buf->end = 0;
2404 p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2405
2406 return 0;
2407}
2408
2409static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2410{
2411 const struct page_region *buf = p->vec_buf;
2412 long n = p->vec_buf_index;
2413
2414 if (!p->vec_buf)
2415 return 0;
2416
2417 if (buf[n].end != buf[n].start)
2418 n++;
2419
2420 if (!n)
2421 return 0;
2422
2423 if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2424 return -EFAULT;
2425
2426 p->arg.vec_len -= n;
2427 p->vec_out += n;
2428
2429 p->vec_buf_index = 0;
2430 p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2431 p->vec_buf->start = p->vec_buf->end = 0;
2432
2433 return n;
2434}
2435
2436static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2437{
2438 struct pagemap_scan_private p = {0};
2439 unsigned long walk_start;
2440 size_t n_ranges_out = 0;
2441 int ret;
2442
2443 ret = pagemap_scan_get_args(&p.arg, uarg);
2444 if (ret)
2445 return ret;
2446
2447 p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2448 p.arg.return_mask;
2449 ret = pagemap_scan_init_bounce_buffer(&p);
2450 if (ret)
2451 return ret;
2452
2453 for (walk_start = p.arg.start; walk_start < p.arg.end;
2454 walk_start = p.arg.walk_end) {
2455 struct mmu_notifier_range range;
2456 long n_out;
2457
2458 if (fatal_signal_pending(current)) {
2459 ret = -EINTR;
2460 break;
2461 }
2462
2463 ret = mmap_read_lock_killable(mm);
2464 if (ret)
2465 break;
2466
2467 /* Protection change for the range is going to happen. */
2468 if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2469 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2470 mm, walk_start, p.arg.end);
2471 mmu_notifier_invalidate_range_start(&range);
2472 }
2473
2474 ret = walk_page_range(mm, walk_start, p.arg.end,
2475 &pagemap_scan_ops, &p);
2476
2477 if (p.arg.flags & PM_SCAN_WP_MATCHING)
2478 mmu_notifier_invalidate_range_end(&range);
2479
2480 mmap_read_unlock(mm);
2481
2482 n_out = pagemap_scan_flush_buffer(&p);
2483 if (n_out < 0)
2484 ret = n_out;
2485 else
2486 n_ranges_out += n_out;
2487
2488 if (ret != -ENOSPC)
2489 break;
2490
2491 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2492 break;
2493 }
2494
2495 /* ENOSPC signifies early stop (buffer full) from the walk. */
2496 if (!ret || ret == -ENOSPC)
2497 ret = n_ranges_out;
2498
2499 /* The walk_end isn't set when ret is zero */
2500 if (!p.arg.walk_end)
2501 p.arg.walk_end = p.arg.end;
2502 if (pagemap_scan_writeback_args(&p.arg, uarg))
2503 ret = -EFAULT;
2504
2505 kfree(p.vec_buf);
2506 return ret;
2507}
2508
2509static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2510 unsigned long arg)
2511{
2512 struct mm_struct *mm = file->private_data;
2513
2514 switch (cmd) {
2515 case PAGEMAP_SCAN:
2516 return do_pagemap_scan(mm, arg);
2517
2518 default:
2519 return -EINVAL;
2520 }
2521}
2522
2523const struct file_operations proc_pagemap_operations = {
2524 .llseek = mem_lseek, /* borrow this */
2525 .read = pagemap_read,
2526 .open = pagemap_open,
2527 .release = pagemap_release,
2528 .unlocked_ioctl = do_pagemap_cmd,
2529 .compat_ioctl = do_pagemap_cmd,
2530};
2531#endif /* CONFIG_PROC_PAGE_MONITOR */
2532
2533#ifdef CONFIG_NUMA
2534
2535struct numa_maps {
2536 unsigned long pages;
2537 unsigned long anon;
2538 unsigned long active;
2539 unsigned long writeback;
2540 unsigned long mapcount_max;
2541 unsigned long dirty;
2542 unsigned long swapcache;
2543 unsigned long node[MAX_NUMNODES];
2544};
2545
2546struct numa_maps_private {
2547 struct proc_maps_private proc_maps;
2548 struct numa_maps md;
2549};
2550
2551static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2552 unsigned long nr_pages)
2553{
2554 int count = page_mapcount(page);
2555
2556 md->pages += nr_pages;
2557 if (pte_dirty || PageDirty(page))
2558 md->dirty += nr_pages;
2559
2560 if (PageSwapCache(page))
2561 md->swapcache += nr_pages;
2562
2563 if (PageActive(page) || PageUnevictable(page))
2564 md->active += nr_pages;
2565
2566 if (PageWriteback(page))
2567 md->writeback += nr_pages;
2568
2569 if (PageAnon(page))
2570 md->anon += nr_pages;
2571
2572 if (count > md->mapcount_max)
2573 md->mapcount_max = count;
2574
2575 md->node[page_to_nid(page)] += nr_pages;
2576}
2577
2578static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2579 unsigned long addr)
2580{
2581 struct page *page;
2582 int nid;
2583
2584 if (!pte_present(pte))
2585 return NULL;
2586
2587 page = vm_normal_page(vma, addr, pte);
2588 if (!page || is_zone_device_page(page))
2589 return NULL;
2590
2591 if (PageReserved(page))
2592 return NULL;
2593
2594 nid = page_to_nid(page);
2595 if (!node_isset(nid, node_states[N_MEMORY]))
2596 return NULL;
2597
2598 return page;
2599}
2600
2601#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2602static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2603 struct vm_area_struct *vma,
2604 unsigned long addr)
2605{
2606 struct page *page;
2607 int nid;
2608
2609 if (!pmd_present(pmd))
2610 return NULL;
2611
2612 page = vm_normal_page_pmd(vma, addr, pmd);
2613 if (!page)
2614 return NULL;
2615
2616 if (PageReserved(page))
2617 return NULL;
2618
2619 nid = page_to_nid(page);
2620 if (!node_isset(nid, node_states[N_MEMORY]))
2621 return NULL;
2622
2623 return page;
2624}
2625#endif
2626
2627static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2628 unsigned long end, struct mm_walk *walk)
2629{
2630 struct numa_maps *md = walk->private;
2631 struct vm_area_struct *vma = walk->vma;
2632 spinlock_t *ptl;
2633 pte_t *orig_pte;
2634 pte_t *pte;
2635
2636#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2637 ptl = pmd_trans_huge_lock(pmd, vma);
2638 if (ptl) {
2639 struct page *page;
2640
2641 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2642 if (page)
2643 gather_stats(page, md, pmd_dirty(*pmd),
2644 HPAGE_PMD_SIZE/PAGE_SIZE);
2645 spin_unlock(ptl);
2646 return 0;
2647 }
2648#endif
2649 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2650 if (!pte) {
2651 walk->action = ACTION_AGAIN;
2652 return 0;
2653 }
2654 do {
2655 pte_t ptent = ptep_get(pte);
2656 struct page *page = can_gather_numa_stats(ptent, vma, addr);
2657 if (!page)
2658 continue;
2659 gather_stats(page, md, pte_dirty(ptent), 1);
2660
2661 } while (pte++, addr += PAGE_SIZE, addr != end);
2662 pte_unmap_unlock(orig_pte, ptl);
2663 cond_resched();
2664 return 0;
2665}
2666#ifdef CONFIG_HUGETLB_PAGE
2667static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2668 unsigned long addr, unsigned long end, struct mm_walk *walk)
2669{
2670 pte_t huge_pte = huge_ptep_get(pte);
2671 struct numa_maps *md;
2672 struct page *page;
2673
2674 if (!pte_present(huge_pte))
2675 return 0;
2676
2677 page = pte_page(huge_pte);
2678
2679 md = walk->private;
2680 gather_stats(page, md, pte_dirty(huge_pte), 1);
2681 return 0;
2682}
2683
2684#else
2685static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2686 unsigned long addr, unsigned long end, struct mm_walk *walk)
2687{
2688 return 0;
2689}
2690#endif
2691
2692static const struct mm_walk_ops show_numa_ops = {
2693 .hugetlb_entry = gather_hugetlb_stats,
2694 .pmd_entry = gather_pte_stats,
2695 .walk_lock = PGWALK_RDLOCK,
2696};
2697
2698/*
2699 * Display pages allocated per node and memory policy via /proc.
2700 */
2701static int show_numa_map(struct seq_file *m, void *v)
2702{
2703 struct numa_maps_private *numa_priv = m->private;
2704 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2705 struct vm_area_struct *vma = v;
2706 struct numa_maps *md = &numa_priv->md;
2707 struct file *file = vma->vm_file;
2708 struct mm_struct *mm = vma->vm_mm;
2709 char buffer[64];
2710 struct mempolicy *pol;
2711 pgoff_t ilx;
2712 int nid;
2713
2714 if (!mm)
2715 return 0;
2716
2717 /* Ensure we start with an empty set of numa_maps statistics. */
2718 memset(md, 0, sizeof(*md));
2719
2720 pol = __get_vma_policy(vma, vma->vm_start, &ilx);
2721 if (pol) {
2722 mpol_to_str(buffer, sizeof(buffer), pol);
2723 mpol_cond_put(pol);
2724 } else {
2725 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
2726 }
2727
2728 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2729
2730 if (file) {
2731 seq_puts(m, " file=");
2732 seq_path(m, file_user_path(file), "\n\t= ");
2733 } else if (vma_is_initial_heap(vma)) {
2734 seq_puts(m, " heap");
2735 } else if (vma_is_initial_stack(vma)) {
2736 seq_puts(m, " stack");
2737 }
2738
2739 if (is_vm_hugetlb_page(vma))
2740 seq_puts(m, " huge");
2741
2742 /* mmap_lock is held by m_start */
2743 walk_page_vma(vma, &show_numa_ops, md);
2744
2745 if (!md->pages)
2746 goto out;
2747
2748 if (md->anon)
2749 seq_printf(m, " anon=%lu", md->anon);
2750
2751 if (md->dirty)
2752 seq_printf(m, " dirty=%lu", md->dirty);
2753
2754 if (md->pages != md->anon && md->pages != md->dirty)
2755 seq_printf(m, " mapped=%lu", md->pages);
2756
2757 if (md->mapcount_max > 1)
2758 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2759
2760 if (md->swapcache)
2761 seq_printf(m, " swapcache=%lu", md->swapcache);
2762
2763 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2764 seq_printf(m, " active=%lu", md->active);
2765
2766 if (md->writeback)
2767 seq_printf(m, " writeback=%lu", md->writeback);
2768
2769 for_each_node_state(nid, N_MEMORY)
2770 if (md->node[nid])
2771 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2772
2773 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2774out:
2775 seq_putc(m, '\n');
2776 return 0;
2777}
2778
2779static const struct seq_operations proc_pid_numa_maps_op = {
2780 .start = m_start,
2781 .next = m_next,
2782 .stop = m_stop,
2783 .show = show_numa_map,
2784};
2785
2786static int pid_numa_maps_open(struct inode *inode, struct file *file)
2787{
2788 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2789 sizeof(struct numa_maps_private));
2790}
2791
2792const struct file_operations proc_pid_numa_maps_operations = {
2793 .open = pid_numa_maps_open,
2794 .read = seq_read,
2795 .llseek = seq_lseek,
2796 .release = proc_map_release,
2797};
2798
2799#endif /* CONFIG_NUMA */
1#include <linux/mm.h>
2#include <linux/vmacache.h>
3#include <linux/hugetlb.h>
4#include <linux/huge_mm.h>
5#include <linux/mount.h>
6#include <linux/seq_file.h>
7#include <linux/highmem.h>
8#include <linux/ptrace.h>
9#include <linux/slab.h>
10#include <linux/pagemap.h>
11#include <linux/mempolicy.h>
12#include <linux/rmap.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/mmu_notifier.h>
16
17#include <asm/elf.h>
18#include <asm/uaccess.h>
19#include <asm/tlbflush.h>
20#include "internal.h"
21
22void task_mem(struct seq_file *m, struct mm_struct *mm)
23{
24 unsigned long data, text, lib, swap;
25 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
26
27 /*
28 * Note: to minimize their overhead, mm maintains hiwater_vm and
29 * hiwater_rss only when about to *lower* total_vm or rss. Any
30 * collector of these hiwater stats must therefore get total_vm
31 * and rss too, which will usually be the higher. Barriers? not
32 * worth the effort, such snapshots can always be inconsistent.
33 */
34 hiwater_vm = total_vm = mm->total_vm;
35 if (hiwater_vm < mm->hiwater_vm)
36 hiwater_vm = mm->hiwater_vm;
37 hiwater_rss = total_rss = get_mm_rss(mm);
38 if (hiwater_rss < mm->hiwater_rss)
39 hiwater_rss = mm->hiwater_rss;
40
41 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
42 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
43 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
44 swap = get_mm_counter(mm, MM_SWAPENTS);
45 seq_printf(m,
46 "VmPeak:\t%8lu kB\n"
47 "VmSize:\t%8lu kB\n"
48 "VmLck:\t%8lu kB\n"
49 "VmPin:\t%8lu kB\n"
50 "VmHWM:\t%8lu kB\n"
51 "VmRSS:\t%8lu kB\n"
52 "VmData:\t%8lu kB\n"
53 "VmStk:\t%8lu kB\n"
54 "VmExe:\t%8lu kB\n"
55 "VmLib:\t%8lu kB\n"
56 "VmPTE:\t%8lu kB\n"
57 "VmSwap:\t%8lu kB\n",
58 hiwater_vm << (PAGE_SHIFT-10),
59 total_vm << (PAGE_SHIFT-10),
60 mm->locked_vm << (PAGE_SHIFT-10),
61 mm->pinned_vm << (PAGE_SHIFT-10),
62 hiwater_rss << (PAGE_SHIFT-10),
63 total_rss << (PAGE_SHIFT-10),
64 data << (PAGE_SHIFT-10),
65 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
66 (PTRS_PER_PTE * sizeof(pte_t) *
67 atomic_long_read(&mm->nr_ptes)) >> 10,
68 swap << (PAGE_SHIFT-10));
69}
70
71unsigned long task_vsize(struct mm_struct *mm)
72{
73 return PAGE_SIZE * mm->total_vm;
74}
75
76unsigned long task_statm(struct mm_struct *mm,
77 unsigned long *shared, unsigned long *text,
78 unsigned long *data, unsigned long *resident)
79{
80 *shared = get_mm_counter(mm, MM_FILEPAGES);
81 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
82 >> PAGE_SHIFT;
83 *data = mm->total_vm - mm->shared_vm;
84 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
85 return mm->total_vm;
86}
87
88#ifdef CONFIG_NUMA
89/*
90 * These functions are for numa_maps but called in generic **maps seq_file
91 * ->start(), ->stop() ops.
92 *
93 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
94 * Each mempolicy object is controlled by reference counting. The problem here
95 * is how to avoid accessing dead mempolicy object.
96 *
97 * Because we're holding mmap_sem while reading seq_file, it's safe to access
98 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
99 *
100 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
101 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
102 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
103 * gurantee the task never exits under us. But taking task_lock() around
104 * get_vma_plicy() causes lock order problem.
105 *
106 * To access task->mempolicy without lock, we hold a reference count of an
107 * object pointed by task->mempolicy and remember it. This will guarantee
108 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
109 */
110static void hold_task_mempolicy(struct proc_maps_private *priv)
111{
112 struct task_struct *task = priv->task;
113
114 task_lock(task);
115 priv->task_mempolicy = task->mempolicy;
116 mpol_get(priv->task_mempolicy);
117 task_unlock(task);
118}
119static void release_task_mempolicy(struct proc_maps_private *priv)
120{
121 mpol_put(priv->task_mempolicy);
122}
123#else
124static void hold_task_mempolicy(struct proc_maps_private *priv)
125{
126}
127static void release_task_mempolicy(struct proc_maps_private *priv)
128{
129}
130#endif
131
132static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
133{
134 if (vma && vma != priv->tail_vma) {
135 struct mm_struct *mm = vma->vm_mm;
136 release_task_mempolicy(priv);
137 up_read(&mm->mmap_sem);
138 mmput(mm);
139 }
140}
141
142static void *m_start(struct seq_file *m, loff_t *pos)
143{
144 struct proc_maps_private *priv = m->private;
145 unsigned long last_addr = m->version;
146 struct mm_struct *mm;
147 struct vm_area_struct *vma, *tail_vma = NULL;
148 loff_t l = *pos;
149
150 /* Clear the per syscall fields in priv */
151 priv->task = NULL;
152 priv->tail_vma = NULL;
153
154 /*
155 * We remember last_addr rather than next_addr to hit with
156 * vmacache most of the time. We have zero last_addr at
157 * the beginning and also after lseek. We will have -1 last_addr
158 * after the end of the vmas.
159 */
160
161 if (last_addr == -1UL)
162 return NULL;
163
164 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
165 if (!priv->task)
166 return ERR_PTR(-ESRCH);
167
168 mm = mm_access(priv->task, PTRACE_MODE_READ);
169 if (!mm || IS_ERR(mm))
170 return mm;
171 down_read(&mm->mmap_sem);
172
173 tail_vma = get_gate_vma(priv->task->mm);
174 priv->tail_vma = tail_vma;
175 hold_task_mempolicy(priv);
176 /* Start with last addr hint */
177 vma = find_vma(mm, last_addr);
178 if (last_addr && vma) {
179 vma = vma->vm_next;
180 goto out;
181 }
182
183 /*
184 * Check the vma index is within the range and do
185 * sequential scan until m_index.
186 */
187 vma = NULL;
188 if ((unsigned long)l < mm->map_count) {
189 vma = mm->mmap;
190 while (l-- && vma)
191 vma = vma->vm_next;
192 goto out;
193 }
194
195 if (l != mm->map_count)
196 tail_vma = NULL; /* After gate vma */
197
198out:
199 if (vma)
200 return vma;
201
202 release_task_mempolicy(priv);
203 /* End of vmas has been reached */
204 m->version = (tail_vma != NULL)? 0: -1UL;
205 up_read(&mm->mmap_sem);
206 mmput(mm);
207 return tail_vma;
208}
209
210static void *m_next(struct seq_file *m, void *v, loff_t *pos)
211{
212 struct proc_maps_private *priv = m->private;
213 struct vm_area_struct *vma = v;
214 struct vm_area_struct *tail_vma = priv->tail_vma;
215
216 (*pos)++;
217 if (vma && (vma != tail_vma) && vma->vm_next)
218 return vma->vm_next;
219 vma_stop(priv, vma);
220 return (vma != tail_vma)? tail_vma: NULL;
221}
222
223static void m_stop(struct seq_file *m, void *v)
224{
225 struct proc_maps_private *priv = m->private;
226 struct vm_area_struct *vma = v;
227
228 if (!IS_ERR(vma))
229 vma_stop(priv, vma);
230 if (priv->task)
231 put_task_struct(priv->task);
232}
233
234static int do_maps_open(struct inode *inode, struct file *file,
235 const struct seq_operations *ops)
236{
237 struct proc_maps_private *priv;
238 int ret = -ENOMEM;
239 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
240 if (priv) {
241 priv->pid = proc_pid(inode);
242 ret = seq_open(file, ops);
243 if (!ret) {
244 struct seq_file *m = file->private_data;
245 m->private = priv;
246 } else {
247 kfree(priv);
248 }
249 }
250 return ret;
251}
252
253static void
254show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
255{
256 struct mm_struct *mm = vma->vm_mm;
257 struct file *file = vma->vm_file;
258 struct proc_maps_private *priv = m->private;
259 struct task_struct *task = priv->task;
260 vm_flags_t flags = vma->vm_flags;
261 unsigned long ino = 0;
262 unsigned long long pgoff = 0;
263 unsigned long start, end;
264 dev_t dev = 0;
265 const char *name = NULL;
266
267 if (file) {
268 struct inode *inode = file_inode(vma->vm_file);
269 dev = inode->i_sb->s_dev;
270 ino = inode->i_ino;
271 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
272 }
273
274 /* We don't show the stack guard page in /proc/maps */
275 start = vma->vm_start;
276 if (stack_guard_page_start(vma, start))
277 start += PAGE_SIZE;
278 end = vma->vm_end;
279 if (stack_guard_page_end(vma, end))
280 end -= PAGE_SIZE;
281
282 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
283 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
284 start,
285 end,
286 flags & VM_READ ? 'r' : '-',
287 flags & VM_WRITE ? 'w' : '-',
288 flags & VM_EXEC ? 'x' : '-',
289 flags & VM_MAYSHARE ? 's' : 'p',
290 pgoff,
291 MAJOR(dev), MINOR(dev), ino);
292
293 /*
294 * Print the dentry name for named mappings, and a
295 * special [heap] marker for the heap:
296 */
297 if (file) {
298 seq_pad(m, ' ');
299 seq_path(m, &file->f_path, "\n");
300 goto done;
301 }
302
303 name = arch_vma_name(vma);
304 if (!name) {
305 pid_t tid;
306
307 if (!mm) {
308 name = "[vdso]";
309 goto done;
310 }
311
312 if (vma->vm_start <= mm->brk &&
313 vma->vm_end >= mm->start_brk) {
314 name = "[heap]";
315 goto done;
316 }
317
318 tid = vm_is_stack(task, vma, is_pid);
319
320 if (tid != 0) {
321 /*
322 * Thread stack in /proc/PID/task/TID/maps or
323 * the main process stack.
324 */
325 if (!is_pid || (vma->vm_start <= mm->start_stack &&
326 vma->vm_end >= mm->start_stack)) {
327 name = "[stack]";
328 } else {
329 /* Thread stack in /proc/PID/maps */
330 seq_pad(m, ' ');
331 seq_printf(m, "[stack:%d]", tid);
332 }
333 }
334 }
335
336done:
337 if (name) {
338 seq_pad(m, ' ');
339 seq_puts(m, name);
340 }
341 seq_putc(m, '\n');
342}
343
344static int show_map(struct seq_file *m, void *v, int is_pid)
345{
346 struct vm_area_struct *vma = v;
347 struct proc_maps_private *priv = m->private;
348 struct task_struct *task = priv->task;
349
350 show_map_vma(m, vma, is_pid);
351
352 if (m->count < m->size) /* vma is copied successfully */
353 m->version = (vma != get_gate_vma(task->mm))
354 ? vma->vm_start : 0;
355 return 0;
356}
357
358static int show_pid_map(struct seq_file *m, void *v)
359{
360 return show_map(m, v, 1);
361}
362
363static int show_tid_map(struct seq_file *m, void *v)
364{
365 return show_map(m, v, 0);
366}
367
368static const struct seq_operations proc_pid_maps_op = {
369 .start = m_start,
370 .next = m_next,
371 .stop = m_stop,
372 .show = show_pid_map
373};
374
375static const struct seq_operations proc_tid_maps_op = {
376 .start = m_start,
377 .next = m_next,
378 .stop = m_stop,
379 .show = show_tid_map
380};
381
382static int pid_maps_open(struct inode *inode, struct file *file)
383{
384 return do_maps_open(inode, file, &proc_pid_maps_op);
385}
386
387static int tid_maps_open(struct inode *inode, struct file *file)
388{
389 return do_maps_open(inode, file, &proc_tid_maps_op);
390}
391
392const struct file_operations proc_pid_maps_operations = {
393 .open = pid_maps_open,
394 .read = seq_read,
395 .llseek = seq_lseek,
396 .release = seq_release_private,
397};
398
399const struct file_operations proc_tid_maps_operations = {
400 .open = tid_maps_open,
401 .read = seq_read,
402 .llseek = seq_lseek,
403 .release = seq_release_private,
404};
405
406/*
407 * Proportional Set Size(PSS): my share of RSS.
408 *
409 * PSS of a process is the count of pages it has in memory, where each
410 * page is divided by the number of processes sharing it. So if a
411 * process has 1000 pages all to itself, and 1000 shared with one other
412 * process, its PSS will be 1500.
413 *
414 * To keep (accumulated) division errors low, we adopt a 64bit
415 * fixed-point pss counter to minimize division errors. So (pss >>
416 * PSS_SHIFT) would be the real byte count.
417 *
418 * A shift of 12 before division means (assuming 4K page size):
419 * - 1M 3-user-pages add up to 8KB errors;
420 * - supports mapcount up to 2^24, or 16M;
421 * - supports PSS up to 2^52 bytes, or 4PB.
422 */
423#define PSS_SHIFT 12
424
425#ifdef CONFIG_PROC_PAGE_MONITOR
426struct mem_size_stats {
427 struct vm_area_struct *vma;
428 unsigned long resident;
429 unsigned long shared_clean;
430 unsigned long shared_dirty;
431 unsigned long private_clean;
432 unsigned long private_dirty;
433 unsigned long referenced;
434 unsigned long anonymous;
435 unsigned long anonymous_thp;
436 unsigned long swap;
437 unsigned long nonlinear;
438 u64 pss;
439};
440
441
442static void smaps_pte_entry(pte_t ptent, unsigned long addr,
443 unsigned long ptent_size, struct mm_walk *walk)
444{
445 struct mem_size_stats *mss = walk->private;
446 struct vm_area_struct *vma = mss->vma;
447 pgoff_t pgoff = linear_page_index(vma, addr);
448 struct page *page = NULL;
449 int mapcount;
450
451 if (pte_present(ptent)) {
452 page = vm_normal_page(vma, addr, ptent);
453 } else if (is_swap_pte(ptent)) {
454 swp_entry_t swpent = pte_to_swp_entry(ptent);
455
456 if (!non_swap_entry(swpent))
457 mss->swap += ptent_size;
458 else if (is_migration_entry(swpent))
459 page = migration_entry_to_page(swpent);
460 } else if (pte_file(ptent)) {
461 if (pte_to_pgoff(ptent) != pgoff)
462 mss->nonlinear += ptent_size;
463 }
464
465 if (!page)
466 return;
467
468 if (PageAnon(page))
469 mss->anonymous += ptent_size;
470
471 if (page->index != pgoff)
472 mss->nonlinear += ptent_size;
473
474 mss->resident += ptent_size;
475 /* Accumulate the size in pages that have been accessed. */
476 if (pte_young(ptent) || PageReferenced(page))
477 mss->referenced += ptent_size;
478 mapcount = page_mapcount(page);
479 if (mapcount >= 2) {
480 if (pte_dirty(ptent) || PageDirty(page))
481 mss->shared_dirty += ptent_size;
482 else
483 mss->shared_clean += ptent_size;
484 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
485 } else {
486 if (pte_dirty(ptent) || PageDirty(page))
487 mss->private_dirty += ptent_size;
488 else
489 mss->private_clean += ptent_size;
490 mss->pss += (ptent_size << PSS_SHIFT);
491 }
492}
493
494static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
495 struct mm_walk *walk)
496{
497 struct mem_size_stats *mss = walk->private;
498 struct vm_area_struct *vma = mss->vma;
499 pte_t *pte;
500 spinlock_t *ptl;
501
502 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
503 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
504 spin_unlock(ptl);
505 mss->anonymous_thp += HPAGE_PMD_SIZE;
506 return 0;
507 }
508
509 if (pmd_trans_unstable(pmd))
510 return 0;
511 /*
512 * The mmap_sem held all the way back in m_start() is what
513 * keeps khugepaged out of here and from collapsing things
514 * in here.
515 */
516 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
517 for (; addr != end; pte++, addr += PAGE_SIZE)
518 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
519 pte_unmap_unlock(pte - 1, ptl);
520 cond_resched();
521 return 0;
522}
523
524static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
525{
526 /*
527 * Don't forget to update Documentation/ on changes.
528 */
529 static const char mnemonics[BITS_PER_LONG][2] = {
530 /*
531 * In case if we meet a flag we don't know about.
532 */
533 [0 ... (BITS_PER_LONG-1)] = "??",
534
535 [ilog2(VM_READ)] = "rd",
536 [ilog2(VM_WRITE)] = "wr",
537 [ilog2(VM_EXEC)] = "ex",
538 [ilog2(VM_SHARED)] = "sh",
539 [ilog2(VM_MAYREAD)] = "mr",
540 [ilog2(VM_MAYWRITE)] = "mw",
541 [ilog2(VM_MAYEXEC)] = "me",
542 [ilog2(VM_MAYSHARE)] = "ms",
543 [ilog2(VM_GROWSDOWN)] = "gd",
544 [ilog2(VM_PFNMAP)] = "pf",
545 [ilog2(VM_DENYWRITE)] = "dw",
546 [ilog2(VM_LOCKED)] = "lo",
547 [ilog2(VM_IO)] = "io",
548 [ilog2(VM_SEQ_READ)] = "sr",
549 [ilog2(VM_RAND_READ)] = "rr",
550 [ilog2(VM_DONTCOPY)] = "dc",
551 [ilog2(VM_DONTEXPAND)] = "de",
552 [ilog2(VM_ACCOUNT)] = "ac",
553 [ilog2(VM_NORESERVE)] = "nr",
554 [ilog2(VM_HUGETLB)] = "ht",
555 [ilog2(VM_NONLINEAR)] = "nl",
556 [ilog2(VM_ARCH_1)] = "ar",
557 [ilog2(VM_DONTDUMP)] = "dd",
558#ifdef CONFIG_MEM_SOFT_DIRTY
559 [ilog2(VM_SOFTDIRTY)] = "sd",
560#endif
561 [ilog2(VM_MIXEDMAP)] = "mm",
562 [ilog2(VM_HUGEPAGE)] = "hg",
563 [ilog2(VM_NOHUGEPAGE)] = "nh",
564 [ilog2(VM_MERGEABLE)] = "mg",
565 };
566 size_t i;
567
568 seq_puts(m, "VmFlags: ");
569 for (i = 0; i < BITS_PER_LONG; i++) {
570 if (vma->vm_flags & (1UL << i)) {
571 seq_printf(m, "%c%c ",
572 mnemonics[i][0], mnemonics[i][1]);
573 }
574 }
575 seq_putc(m, '\n');
576}
577
578static int show_smap(struct seq_file *m, void *v, int is_pid)
579{
580 struct proc_maps_private *priv = m->private;
581 struct task_struct *task = priv->task;
582 struct vm_area_struct *vma = v;
583 struct mem_size_stats mss;
584 struct mm_walk smaps_walk = {
585 .pmd_entry = smaps_pte_range,
586 .mm = vma->vm_mm,
587 .private = &mss,
588 };
589
590 memset(&mss, 0, sizeof mss);
591 mss.vma = vma;
592 /* mmap_sem is held in m_start */
593 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
594 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
595
596 show_map_vma(m, vma, is_pid);
597
598 seq_printf(m,
599 "Size: %8lu kB\n"
600 "Rss: %8lu kB\n"
601 "Pss: %8lu kB\n"
602 "Shared_Clean: %8lu kB\n"
603 "Shared_Dirty: %8lu kB\n"
604 "Private_Clean: %8lu kB\n"
605 "Private_Dirty: %8lu kB\n"
606 "Referenced: %8lu kB\n"
607 "Anonymous: %8lu kB\n"
608 "AnonHugePages: %8lu kB\n"
609 "Swap: %8lu kB\n"
610 "KernelPageSize: %8lu kB\n"
611 "MMUPageSize: %8lu kB\n"
612 "Locked: %8lu kB\n",
613 (vma->vm_end - vma->vm_start) >> 10,
614 mss.resident >> 10,
615 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
616 mss.shared_clean >> 10,
617 mss.shared_dirty >> 10,
618 mss.private_clean >> 10,
619 mss.private_dirty >> 10,
620 mss.referenced >> 10,
621 mss.anonymous >> 10,
622 mss.anonymous_thp >> 10,
623 mss.swap >> 10,
624 vma_kernel_pagesize(vma) >> 10,
625 vma_mmu_pagesize(vma) >> 10,
626 (vma->vm_flags & VM_LOCKED) ?
627 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
628
629 if (vma->vm_flags & VM_NONLINEAR)
630 seq_printf(m, "Nonlinear: %8lu kB\n",
631 mss.nonlinear >> 10);
632
633 show_smap_vma_flags(m, vma);
634
635 if (m->count < m->size) /* vma is copied successfully */
636 m->version = (vma != get_gate_vma(task->mm))
637 ? vma->vm_start : 0;
638 return 0;
639}
640
641static int show_pid_smap(struct seq_file *m, void *v)
642{
643 return show_smap(m, v, 1);
644}
645
646static int show_tid_smap(struct seq_file *m, void *v)
647{
648 return show_smap(m, v, 0);
649}
650
651static const struct seq_operations proc_pid_smaps_op = {
652 .start = m_start,
653 .next = m_next,
654 .stop = m_stop,
655 .show = show_pid_smap
656};
657
658static const struct seq_operations proc_tid_smaps_op = {
659 .start = m_start,
660 .next = m_next,
661 .stop = m_stop,
662 .show = show_tid_smap
663};
664
665static int pid_smaps_open(struct inode *inode, struct file *file)
666{
667 return do_maps_open(inode, file, &proc_pid_smaps_op);
668}
669
670static int tid_smaps_open(struct inode *inode, struct file *file)
671{
672 return do_maps_open(inode, file, &proc_tid_smaps_op);
673}
674
675const struct file_operations proc_pid_smaps_operations = {
676 .open = pid_smaps_open,
677 .read = seq_read,
678 .llseek = seq_lseek,
679 .release = seq_release_private,
680};
681
682const struct file_operations proc_tid_smaps_operations = {
683 .open = tid_smaps_open,
684 .read = seq_read,
685 .llseek = seq_lseek,
686 .release = seq_release_private,
687};
688
689/*
690 * We do not want to have constant page-shift bits sitting in
691 * pagemap entries and are about to reuse them some time soon.
692 *
693 * Here's the "migration strategy":
694 * 1. when the system boots these bits remain what they are,
695 * but a warning about future change is printed in log;
696 * 2. once anyone clears soft-dirty bits via clear_refs file,
697 * these flag is set to denote, that user is aware of the
698 * new API and those page-shift bits change their meaning.
699 * The respective warning is printed in dmesg;
700 * 3. In a couple of releases we will remove all the mentions
701 * of page-shift in pagemap entries.
702 */
703
704static bool soft_dirty_cleared __read_mostly;
705
706enum clear_refs_types {
707 CLEAR_REFS_ALL = 1,
708 CLEAR_REFS_ANON,
709 CLEAR_REFS_MAPPED,
710 CLEAR_REFS_SOFT_DIRTY,
711 CLEAR_REFS_LAST,
712};
713
714struct clear_refs_private {
715 struct vm_area_struct *vma;
716 enum clear_refs_types type;
717};
718
719static inline void clear_soft_dirty(struct vm_area_struct *vma,
720 unsigned long addr, pte_t *pte)
721{
722#ifdef CONFIG_MEM_SOFT_DIRTY
723 /*
724 * The soft-dirty tracker uses #PF-s to catch writes
725 * to pages, so write-protect the pte as well. See the
726 * Documentation/vm/soft-dirty.txt for full description
727 * of how soft-dirty works.
728 */
729 pte_t ptent = *pte;
730
731 if (pte_present(ptent)) {
732 ptent = pte_wrprotect(ptent);
733 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
734 } else if (is_swap_pte(ptent)) {
735 ptent = pte_swp_clear_soft_dirty(ptent);
736 } else if (pte_file(ptent)) {
737 ptent = pte_file_clear_soft_dirty(ptent);
738 }
739
740 if (vma->vm_flags & VM_SOFTDIRTY)
741 vma->vm_flags &= ~VM_SOFTDIRTY;
742
743 set_pte_at(vma->vm_mm, addr, pte, ptent);
744#endif
745}
746
747static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
748 unsigned long end, struct mm_walk *walk)
749{
750 struct clear_refs_private *cp = walk->private;
751 struct vm_area_struct *vma = cp->vma;
752 pte_t *pte, ptent;
753 spinlock_t *ptl;
754 struct page *page;
755
756 split_huge_page_pmd(vma, addr, pmd);
757 if (pmd_trans_unstable(pmd))
758 return 0;
759
760 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
761 for (; addr != end; pte++, addr += PAGE_SIZE) {
762 ptent = *pte;
763
764 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
765 clear_soft_dirty(vma, addr, pte);
766 continue;
767 }
768
769 if (!pte_present(ptent))
770 continue;
771
772 page = vm_normal_page(vma, addr, ptent);
773 if (!page)
774 continue;
775
776 /* Clear accessed and referenced bits. */
777 ptep_test_and_clear_young(vma, addr, pte);
778 ClearPageReferenced(page);
779 }
780 pte_unmap_unlock(pte - 1, ptl);
781 cond_resched();
782 return 0;
783}
784
785static ssize_t clear_refs_write(struct file *file, const char __user *buf,
786 size_t count, loff_t *ppos)
787{
788 struct task_struct *task;
789 char buffer[PROC_NUMBUF];
790 struct mm_struct *mm;
791 struct vm_area_struct *vma;
792 enum clear_refs_types type;
793 int itype;
794 int rv;
795
796 memset(buffer, 0, sizeof(buffer));
797 if (count > sizeof(buffer) - 1)
798 count = sizeof(buffer) - 1;
799 if (copy_from_user(buffer, buf, count))
800 return -EFAULT;
801 rv = kstrtoint(strstrip(buffer), 10, &itype);
802 if (rv < 0)
803 return rv;
804 type = (enum clear_refs_types)itype;
805 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
806 return -EINVAL;
807
808 if (type == CLEAR_REFS_SOFT_DIRTY) {
809 soft_dirty_cleared = true;
810 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
811 "See the linux/Documentation/vm/pagemap.txt for details.\n");
812 }
813
814 task = get_proc_task(file_inode(file));
815 if (!task)
816 return -ESRCH;
817 mm = get_task_mm(task);
818 if (mm) {
819 struct clear_refs_private cp = {
820 .type = type,
821 };
822 struct mm_walk clear_refs_walk = {
823 .pmd_entry = clear_refs_pte_range,
824 .mm = mm,
825 .private = &cp,
826 };
827 down_read(&mm->mmap_sem);
828 if (type == CLEAR_REFS_SOFT_DIRTY)
829 mmu_notifier_invalidate_range_start(mm, 0, -1);
830 for (vma = mm->mmap; vma; vma = vma->vm_next) {
831 cp.vma = vma;
832 if (is_vm_hugetlb_page(vma))
833 continue;
834 /*
835 * Writing 1 to /proc/pid/clear_refs affects all pages.
836 *
837 * Writing 2 to /proc/pid/clear_refs only affects
838 * Anonymous pages.
839 *
840 * Writing 3 to /proc/pid/clear_refs only affects file
841 * mapped pages.
842 */
843 if (type == CLEAR_REFS_ANON && vma->vm_file)
844 continue;
845 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
846 continue;
847 walk_page_range(vma->vm_start, vma->vm_end,
848 &clear_refs_walk);
849 }
850 if (type == CLEAR_REFS_SOFT_DIRTY)
851 mmu_notifier_invalidate_range_end(mm, 0, -1);
852 flush_tlb_mm(mm);
853 up_read(&mm->mmap_sem);
854 mmput(mm);
855 }
856 put_task_struct(task);
857
858 return count;
859}
860
861const struct file_operations proc_clear_refs_operations = {
862 .write = clear_refs_write,
863 .llseek = noop_llseek,
864};
865
866typedef struct {
867 u64 pme;
868} pagemap_entry_t;
869
870struct pagemapread {
871 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
872 pagemap_entry_t *buffer;
873 bool v2;
874};
875
876#define PAGEMAP_WALK_SIZE (PMD_SIZE)
877#define PAGEMAP_WALK_MASK (PMD_MASK)
878
879#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
880#define PM_STATUS_BITS 3
881#define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
882#define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
883#define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
884#define PM_PSHIFT_BITS 6
885#define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
886#define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
887#define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
888#define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
889#define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
890/* in "new" pagemap pshift bits are occupied with more status bits */
891#define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
892
893#define __PM_SOFT_DIRTY (1LL)
894#define PM_PRESENT PM_STATUS(4LL)
895#define PM_SWAP PM_STATUS(2LL)
896#define PM_FILE PM_STATUS(1LL)
897#define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
898#define PM_END_OF_BUFFER 1
899
900static inline pagemap_entry_t make_pme(u64 val)
901{
902 return (pagemap_entry_t) { .pme = val };
903}
904
905static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
906 struct pagemapread *pm)
907{
908 pm->buffer[pm->pos++] = *pme;
909 if (pm->pos >= pm->len)
910 return PM_END_OF_BUFFER;
911 return 0;
912}
913
914static int pagemap_pte_hole(unsigned long start, unsigned long end,
915 struct mm_walk *walk)
916{
917 struct pagemapread *pm = walk->private;
918 unsigned long addr;
919 int err = 0;
920 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
921
922 for (addr = start; addr < end; addr += PAGE_SIZE) {
923 err = add_to_pagemap(addr, &pme, pm);
924 if (err)
925 break;
926 }
927 return err;
928}
929
930static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
931 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
932{
933 u64 frame, flags;
934 struct page *page = NULL;
935 int flags2 = 0;
936
937 if (pte_present(pte)) {
938 frame = pte_pfn(pte);
939 flags = PM_PRESENT;
940 page = vm_normal_page(vma, addr, pte);
941 if (pte_soft_dirty(pte))
942 flags2 |= __PM_SOFT_DIRTY;
943 } else if (is_swap_pte(pte)) {
944 swp_entry_t entry;
945 if (pte_swp_soft_dirty(pte))
946 flags2 |= __PM_SOFT_DIRTY;
947 entry = pte_to_swp_entry(pte);
948 frame = swp_type(entry) |
949 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
950 flags = PM_SWAP;
951 if (is_migration_entry(entry))
952 page = migration_entry_to_page(entry);
953 } else {
954 if (vma->vm_flags & VM_SOFTDIRTY)
955 flags2 |= __PM_SOFT_DIRTY;
956 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
957 return;
958 }
959
960 if (page && !PageAnon(page))
961 flags |= PM_FILE;
962 if ((vma->vm_flags & VM_SOFTDIRTY))
963 flags2 |= __PM_SOFT_DIRTY;
964
965 *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
966}
967
968#ifdef CONFIG_TRANSPARENT_HUGEPAGE
969static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
970 pmd_t pmd, int offset, int pmd_flags2)
971{
972 /*
973 * Currently pmd for thp is always present because thp can not be
974 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
975 * This if-check is just to prepare for future implementation.
976 */
977 if (pmd_present(pmd))
978 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
979 | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
980 else
981 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
982}
983#else
984static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
985 pmd_t pmd, int offset, int pmd_flags2)
986{
987}
988#endif
989
990static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
991 struct mm_walk *walk)
992{
993 struct vm_area_struct *vma;
994 struct pagemapread *pm = walk->private;
995 spinlock_t *ptl;
996 pte_t *pte;
997 int err = 0;
998 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
999
1000 /* find the first VMA at or above 'addr' */
1001 vma = find_vma(walk->mm, addr);
1002 if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1003 int pmd_flags2;
1004
1005 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1006 pmd_flags2 = __PM_SOFT_DIRTY;
1007 else
1008 pmd_flags2 = 0;
1009
1010 for (; addr != end; addr += PAGE_SIZE) {
1011 unsigned long offset;
1012
1013 offset = (addr & ~PAGEMAP_WALK_MASK) >>
1014 PAGE_SHIFT;
1015 thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1016 err = add_to_pagemap(addr, &pme, pm);
1017 if (err)
1018 break;
1019 }
1020 spin_unlock(ptl);
1021 return err;
1022 }
1023
1024 if (pmd_trans_unstable(pmd))
1025 return 0;
1026 for (; addr != end; addr += PAGE_SIZE) {
1027 int flags2;
1028
1029 /* check to see if we've left 'vma' behind
1030 * and need a new, higher one */
1031 if (vma && (addr >= vma->vm_end)) {
1032 vma = find_vma(walk->mm, addr);
1033 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1034 flags2 = __PM_SOFT_DIRTY;
1035 else
1036 flags2 = 0;
1037 pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1038 }
1039
1040 /* check that 'vma' actually covers this address,
1041 * and that it isn't a huge page vma */
1042 if (vma && (vma->vm_start <= addr) &&
1043 !is_vm_hugetlb_page(vma)) {
1044 pte = pte_offset_map(pmd, addr);
1045 pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1046 /* unmap before userspace copy */
1047 pte_unmap(pte);
1048 }
1049 err = add_to_pagemap(addr, &pme, pm);
1050 if (err)
1051 return err;
1052 }
1053
1054 cond_resched();
1055
1056 return err;
1057}
1058
1059#ifdef CONFIG_HUGETLB_PAGE
1060static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1061 pte_t pte, int offset, int flags2)
1062{
1063 if (pte_present(pte))
1064 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
1065 PM_STATUS2(pm->v2, flags2) |
1066 PM_PRESENT);
1067 else
1068 *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
1069 PM_STATUS2(pm->v2, flags2));
1070}
1071
1072/* This function walks within one hugetlb entry in the single call */
1073static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1074 unsigned long addr, unsigned long end,
1075 struct mm_walk *walk)
1076{
1077 struct pagemapread *pm = walk->private;
1078 struct vm_area_struct *vma;
1079 int err = 0;
1080 int flags2;
1081 pagemap_entry_t pme;
1082
1083 vma = find_vma(walk->mm, addr);
1084 WARN_ON_ONCE(!vma);
1085
1086 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1087 flags2 = __PM_SOFT_DIRTY;
1088 else
1089 flags2 = 0;
1090
1091 for (; addr != end; addr += PAGE_SIZE) {
1092 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1093 huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1094 err = add_to_pagemap(addr, &pme, pm);
1095 if (err)
1096 return err;
1097 }
1098
1099 cond_resched();
1100
1101 return err;
1102}
1103#endif /* HUGETLB_PAGE */
1104
1105/*
1106 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1107 *
1108 * For each page in the address space, this file contains one 64-bit entry
1109 * consisting of the following:
1110 *
1111 * Bits 0-54 page frame number (PFN) if present
1112 * Bits 0-4 swap type if swapped
1113 * Bits 5-54 swap offset if swapped
1114 * Bits 55-60 page shift (page size = 1<<page shift)
1115 * Bit 61 page is file-page or shared-anon
1116 * Bit 62 page swapped
1117 * Bit 63 page present
1118 *
1119 * If the page is not present but in swap, then the PFN contains an
1120 * encoding of the swap file number and the page's offset into the
1121 * swap. Unmapped pages return a null PFN. This allows determining
1122 * precisely which pages are mapped (or in swap) and comparing mapped
1123 * pages between processes.
1124 *
1125 * Efficient users of this interface will use /proc/pid/maps to
1126 * determine which areas of memory are actually mapped and llseek to
1127 * skip over unmapped regions.
1128 */
1129static ssize_t pagemap_read(struct file *file, char __user *buf,
1130 size_t count, loff_t *ppos)
1131{
1132 struct task_struct *task = get_proc_task(file_inode(file));
1133 struct mm_struct *mm;
1134 struct pagemapread pm;
1135 int ret = -ESRCH;
1136 struct mm_walk pagemap_walk = {};
1137 unsigned long src;
1138 unsigned long svpfn;
1139 unsigned long start_vaddr;
1140 unsigned long end_vaddr;
1141 int copied = 0;
1142
1143 if (!task)
1144 goto out;
1145
1146 ret = -EINVAL;
1147 /* file position must be aligned */
1148 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1149 goto out_task;
1150
1151 ret = 0;
1152 if (!count)
1153 goto out_task;
1154
1155 pm.v2 = soft_dirty_cleared;
1156 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1157 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1158 ret = -ENOMEM;
1159 if (!pm.buffer)
1160 goto out_task;
1161
1162 mm = mm_access(task, PTRACE_MODE_READ);
1163 ret = PTR_ERR(mm);
1164 if (!mm || IS_ERR(mm))
1165 goto out_free;
1166
1167 pagemap_walk.pmd_entry = pagemap_pte_range;
1168 pagemap_walk.pte_hole = pagemap_pte_hole;
1169#ifdef CONFIG_HUGETLB_PAGE
1170 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1171#endif
1172 pagemap_walk.mm = mm;
1173 pagemap_walk.private = ±
1174
1175 src = *ppos;
1176 svpfn = src / PM_ENTRY_BYTES;
1177 start_vaddr = svpfn << PAGE_SHIFT;
1178 end_vaddr = TASK_SIZE_OF(task);
1179
1180 /* watch out for wraparound */
1181 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1182 start_vaddr = end_vaddr;
1183
1184 /*
1185 * The odds are that this will stop walking way
1186 * before end_vaddr, because the length of the
1187 * user buffer is tracked in "pm", and the walk
1188 * will stop when we hit the end of the buffer.
1189 */
1190 ret = 0;
1191 while (count && (start_vaddr < end_vaddr)) {
1192 int len;
1193 unsigned long end;
1194
1195 pm.pos = 0;
1196 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1197 /* overflow ? */
1198 if (end < start_vaddr || end > end_vaddr)
1199 end = end_vaddr;
1200 down_read(&mm->mmap_sem);
1201 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1202 up_read(&mm->mmap_sem);
1203 start_vaddr = end;
1204
1205 len = min(count, PM_ENTRY_BYTES * pm.pos);
1206 if (copy_to_user(buf, pm.buffer, len)) {
1207 ret = -EFAULT;
1208 goto out_mm;
1209 }
1210 copied += len;
1211 buf += len;
1212 count -= len;
1213 }
1214 *ppos += copied;
1215 if (!ret || ret == PM_END_OF_BUFFER)
1216 ret = copied;
1217
1218out_mm:
1219 mmput(mm);
1220out_free:
1221 kfree(pm.buffer);
1222out_task:
1223 put_task_struct(task);
1224out:
1225 return ret;
1226}
1227
1228static int pagemap_open(struct inode *inode, struct file *file)
1229{
1230 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1231 "to stop being page-shift some time soon. See the "
1232 "linux/Documentation/vm/pagemap.txt for details.\n");
1233 return 0;
1234}
1235
1236const struct file_operations proc_pagemap_operations = {
1237 .llseek = mem_lseek, /* borrow this */
1238 .read = pagemap_read,
1239 .open = pagemap_open,
1240};
1241#endif /* CONFIG_PROC_PAGE_MONITOR */
1242
1243#ifdef CONFIG_NUMA
1244
1245struct numa_maps {
1246 struct vm_area_struct *vma;
1247 unsigned long pages;
1248 unsigned long anon;
1249 unsigned long active;
1250 unsigned long writeback;
1251 unsigned long mapcount_max;
1252 unsigned long dirty;
1253 unsigned long swapcache;
1254 unsigned long node[MAX_NUMNODES];
1255};
1256
1257struct numa_maps_private {
1258 struct proc_maps_private proc_maps;
1259 struct numa_maps md;
1260};
1261
1262static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1263 unsigned long nr_pages)
1264{
1265 int count = page_mapcount(page);
1266
1267 md->pages += nr_pages;
1268 if (pte_dirty || PageDirty(page))
1269 md->dirty += nr_pages;
1270
1271 if (PageSwapCache(page))
1272 md->swapcache += nr_pages;
1273
1274 if (PageActive(page) || PageUnevictable(page))
1275 md->active += nr_pages;
1276
1277 if (PageWriteback(page))
1278 md->writeback += nr_pages;
1279
1280 if (PageAnon(page))
1281 md->anon += nr_pages;
1282
1283 if (count > md->mapcount_max)
1284 md->mapcount_max = count;
1285
1286 md->node[page_to_nid(page)] += nr_pages;
1287}
1288
1289static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1290 unsigned long addr)
1291{
1292 struct page *page;
1293 int nid;
1294
1295 if (!pte_present(pte))
1296 return NULL;
1297
1298 page = vm_normal_page(vma, addr, pte);
1299 if (!page)
1300 return NULL;
1301
1302 if (PageReserved(page))
1303 return NULL;
1304
1305 nid = page_to_nid(page);
1306 if (!node_isset(nid, node_states[N_MEMORY]))
1307 return NULL;
1308
1309 return page;
1310}
1311
1312static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1313 unsigned long end, struct mm_walk *walk)
1314{
1315 struct numa_maps *md;
1316 spinlock_t *ptl;
1317 pte_t *orig_pte;
1318 pte_t *pte;
1319
1320 md = walk->private;
1321
1322 if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
1323 pte_t huge_pte = *(pte_t *)pmd;
1324 struct page *page;
1325
1326 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1327 if (page)
1328 gather_stats(page, md, pte_dirty(huge_pte),
1329 HPAGE_PMD_SIZE/PAGE_SIZE);
1330 spin_unlock(ptl);
1331 return 0;
1332 }
1333
1334 if (pmd_trans_unstable(pmd))
1335 return 0;
1336 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1337 do {
1338 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1339 if (!page)
1340 continue;
1341 gather_stats(page, md, pte_dirty(*pte), 1);
1342
1343 } while (pte++, addr += PAGE_SIZE, addr != end);
1344 pte_unmap_unlock(orig_pte, ptl);
1345 return 0;
1346}
1347#ifdef CONFIG_HUGETLB_PAGE
1348static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1349 unsigned long addr, unsigned long end, struct mm_walk *walk)
1350{
1351 struct numa_maps *md;
1352 struct page *page;
1353
1354 if (!pte_present(*pte))
1355 return 0;
1356
1357 page = pte_page(*pte);
1358 if (!page)
1359 return 0;
1360
1361 md = walk->private;
1362 gather_stats(page, md, pte_dirty(*pte), 1);
1363 return 0;
1364}
1365
1366#else
1367static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1368 unsigned long addr, unsigned long end, struct mm_walk *walk)
1369{
1370 return 0;
1371}
1372#endif
1373
1374/*
1375 * Display pages allocated per node and memory policy via /proc.
1376 */
1377static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1378{
1379 struct numa_maps_private *numa_priv = m->private;
1380 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1381 struct vm_area_struct *vma = v;
1382 struct numa_maps *md = &numa_priv->md;
1383 struct file *file = vma->vm_file;
1384 struct task_struct *task = proc_priv->task;
1385 struct mm_struct *mm = vma->vm_mm;
1386 struct mm_walk walk = {};
1387 struct mempolicy *pol;
1388 char buffer[64];
1389 int nid;
1390
1391 if (!mm)
1392 return 0;
1393
1394 /* Ensure we start with an empty set of numa_maps statistics. */
1395 memset(md, 0, sizeof(*md));
1396
1397 md->vma = vma;
1398
1399 walk.hugetlb_entry = gather_hugetbl_stats;
1400 walk.pmd_entry = gather_pte_stats;
1401 walk.private = md;
1402 walk.mm = mm;
1403
1404 pol = get_vma_policy(task, vma, vma->vm_start);
1405 mpol_to_str(buffer, sizeof(buffer), pol);
1406 mpol_cond_put(pol);
1407
1408 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1409
1410 if (file) {
1411 seq_printf(m, " file=");
1412 seq_path(m, &file->f_path, "\n\t= ");
1413 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1414 seq_printf(m, " heap");
1415 } else {
1416 pid_t tid = vm_is_stack(task, vma, is_pid);
1417 if (tid != 0) {
1418 /*
1419 * Thread stack in /proc/PID/task/TID/maps or
1420 * the main process stack.
1421 */
1422 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1423 vma->vm_end >= mm->start_stack))
1424 seq_printf(m, " stack");
1425 else
1426 seq_printf(m, " stack:%d", tid);
1427 }
1428 }
1429
1430 if (is_vm_hugetlb_page(vma))
1431 seq_printf(m, " huge");
1432
1433 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1434
1435 if (!md->pages)
1436 goto out;
1437
1438 if (md->anon)
1439 seq_printf(m, " anon=%lu", md->anon);
1440
1441 if (md->dirty)
1442 seq_printf(m, " dirty=%lu", md->dirty);
1443
1444 if (md->pages != md->anon && md->pages != md->dirty)
1445 seq_printf(m, " mapped=%lu", md->pages);
1446
1447 if (md->mapcount_max > 1)
1448 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1449
1450 if (md->swapcache)
1451 seq_printf(m, " swapcache=%lu", md->swapcache);
1452
1453 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1454 seq_printf(m, " active=%lu", md->active);
1455
1456 if (md->writeback)
1457 seq_printf(m, " writeback=%lu", md->writeback);
1458
1459 for_each_node_state(nid, N_MEMORY)
1460 if (md->node[nid])
1461 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1462out:
1463 seq_putc(m, '\n');
1464
1465 if (m->count < m->size)
1466 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1467 return 0;
1468}
1469
1470static int show_pid_numa_map(struct seq_file *m, void *v)
1471{
1472 return show_numa_map(m, v, 1);
1473}
1474
1475static int show_tid_numa_map(struct seq_file *m, void *v)
1476{
1477 return show_numa_map(m, v, 0);
1478}
1479
1480static const struct seq_operations proc_pid_numa_maps_op = {
1481 .start = m_start,
1482 .next = m_next,
1483 .stop = m_stop,
1484 .show = show_pid_numa_map,
1485};
1486
1487static const struct seq_operations proc_tid_numa_maps_op = {
1488 .start = m_start,
1489 .next = m_next,
1490 .stop = m_stop,
1491 .show = show_tid_numa_map,
1492};
1493
1494static int numa_maps_open(struct inode *inode, struct file *file,
1495 const struct seq_operations *ops)
1496{
1497 struct numa_maps_private *priv;
1498 int ret = -ENOMEM;
1499 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1500 if (priv) {
1501 priv->proc_maps.pid = proc_pid(inode);
1502 ret = seq_open(file, ops);
1503 if (!ret) {
1504 struct seq_file *m = file->private_data;
1505 m->private = priv;
1506 } else {
1507 kfree(priv);
1508 }
1509 }
1510 return ret;
1511}
1512
1513static int pid_numa_maps_open(struct inode *inode, struct file *file)
1514{
1515 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1516}
1517
1518static int tid_numa_maps_open(struct inode *inode, struct file *file)
1519{
1520 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1521}
1522
1523const struct file_operations proc_pid_numa_maps_operations = {
1524 .open = pid_numa_maps_open,
1525 .read = seq_read,
1526 .llseek = seq_lseek,
1527 .release = seq_release_private,
1528};
1529
1530const struct file_operations proc_tid_numa_maps_operations = {
1531 .open = tid_numa_maps_open,
1532 .read = seq_read,
1533 .llseek = seq_lseek,
1534 .release = seq_release_private,
1535};
1536#endif /* CONFIG_NUMA */