Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
  26#include <linux/ratelimit.h>
  27#include <linux/crc32c.h>
  28#include <linux/btrfs.h>
  29#include <linux/security.h>
  30#include <linux/fs_parser.h>
  31#include "messages.h"
  32#include "delayed-inode.h"
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
  37#include "print-tree.h"
  38#include "props.h"
  39#include "xattr.h"
  40#include "bio.h"
  41#include "export.h"
  42#include "compression.h"
  43#include "rcu-string.h"
  44#include "dev-replace.h"
  45#include "free-space-cache.h"
  46#include "backref.h"
  47#include "space-info.h"
  48#include "sysfs.h"
  49#include "zoned.h"
  50#include "tests/btrfs-tests.h"
  51#include "block-group.h"
  52#include "discard.h"
  53#include "qgroup.h"
  54#include "raid56.h"
  55#include "fs.h"
  56#include "accessors.h"
  57#include "defrag.h"
  58#include "dir-item.h"
  59#include "ioctl.h"
  60#include "scrub.h"
  61#include "verity.h"
  62#include "super.h"
  63#include "extent-tree.h"
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/btrfs.h>
  66
  67static const struct super_operations btrfs_super_ops;
  68static struct file_system_type btrfs_fs_type;
  69
  70static void btrfs_put_super(struct super_block *sb)
  71{
  72	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  73
  74	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
  75	close_ctree(fs_info);
  76}
  77
  78/* Store the mount options related information. */
  79struct btrfs_fs_context {
  80	char *subvol_name;
  81	u64 subvol_objectid;
  82	u64 max_inline;
  83	u32 commit_interval;
  84	u32 metadata_ratio;
  85	u32 thread_pool_size;
  86	unsigned long mount_opt;
  87	unsigned long compress_type:4;
  88	unsigned int compress_level;
  89	refcount_t refs;
  90};
  91
  92enum {
  93	Opt_acl,
  94	Opt_clear_cache,
  95	Opt_commit_interval,
  96	Opt_compress,
  97	Opt_compress_force,
  98	Opt_compress_force_type,
  99	Opt_compress_type,
 100	Opt_degraded,
 101	Opt_device,
 102	Opt_fatal_errors,
 103	Opt_flushoncommit,
 104	Opt_max_inline,
 105	Opt_barrier,
 106	Opt_datacow,
 107	Opt_datasum,
 108	Opt_defrag,
 109	Opt_discard,
 110	Opt_discard_mode,
 111	Opt_ratio,
 112	Opt_rescan_uuid_tree,
 113	Opt_skip_balance,
 114	Opt_space_cache,
 115	Opt_space_cache_version,
 116	Opt_ssd,
 117	Opt_ssd_spread,
 118	Opt_subvol,
 119	Opt_subvol_empty,
 120	Opt_subvolid,
 121	Opt_thread_pool,
 122	Opt_treelog,
 123	Opt_user_subvol_rm_allowed,
 124
 125	/* Rescue options */
 126	Opt_rescue,
 127	Opt_usebackuproot,
 128	Opt_nologreplay,
 129	Opt_ignorebadroots,
 130	Opt_ignoredatacsums,
 131	Opt_rescue_all,
 132
 133	/* Debugging options */
 134	Opt_enospc_debug,
 135#ifdef CONFIG_BTRFS_DEBUG
 136	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 137#endif
 138#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 139	Opt_ref_verify,
 140#endif
 141	Opt_err,
 142};
 143
 144enum {
 145	Opt_fatal_errors_panic,
 146	Opt_fatal_errors_bug,
 147};
 148
 149static const struct constant_table btrfs_parameter_fatal_errors[] = {
 150	{ "panic", Opt_fatal_errors_panic },
 151	{ "bug", Opt_fatal_errors_bug },
 152	{}
 153};
 154
 155enum {
 156	Opt_discard_sync,
 157	Opt_discard_async,
 158};
 159
 160static const struct constant_table btrfs_parameter_discard[] = {
 161	{ "sync", Opt_discard_sync },
 162	{ "async", Opt_discard_async },
 163	{}
 164};
 165
 166enum {
 167	Opt_space_cache_v1,
 168	Opt_space_cache_v2,
 169};
 170
 171static const struct constant_table btrfs_parameter_space_cache[] = {
 172	{ "v1", Opt_space_cache_v1 },
 173	{ "v2", Opt_space_cache_v2 },
 174	{}
 175};
 176
 177enum {
 178	Opt_rescue_usebackuproot,
 179	Opt_rescue_nologreplay,
 180	Opt_rescue_ignorebadroots,
 181	Opt_rescue_ignoredatacsums,
 182	Opt_rescue_parameter_all,
 183};
 184
 185static const struct constant_table btrfs_parameter_rescue[] = {
 186	{ "usebackuproot", Opt_rescue_usebackuproot },
 187	{ "nologreplay", Opt_rescue_nologreplay },
 188	{ "ignorebadroots", Opt_rescue_ignorebadroots },
 189	{ "ibadroots", Opt_rescue_ignorebadroots },
 190	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
 191	{ "idatacsums", Opt_rescue_ignoredatacsums },
 192	{ "all", Opt_rescue_parameter_all },
 193	{}
 194};
 195
 196#ifdef CONFIG_BTRFS_DEBUG
 197enum {
 198	Opt_fragment_parameter_data,
 199	Opt_fragment_parameter_metadata,
 200	Opt_fragment_parameter_all,
 201};
 202
 203static const struct constant_table btrfs_parameter_fragment[] = {
 204	{ "data", Opt_fragment_parameter_data },
 205	{ "metadata", Opt_fragment_parameter_metadata },
 206	{ "all", Opt_fragment_parameter_all },
 207	{}
 208};
 209#endif
 210
 211static const struct fs_parameter_spec btrfs_fs_parameters[] = {
 212	fsparam_flag_no("acl", Opt_acl),
 213	fsparam_flag_no("autodefrag", Opt_defrag),
 214	fsparam_flag_no("barrier", Opt_barrier),
 215	fsparam_flag("clear_cache", Opt_clear_cache),
 216	fsparam_u32("commit", Opt_commit_interval),
 217	fsparam_flag("compress", Opt_compress),
 218	fsparam_string("compress", Opt_compress_type),
 219	fsparam_flag("compress-force", Opt_compress_force),
 220	fsparam_string("compress-force", Opt_compress_force_type),
 221	fsparam_flag_no("datacow", Opt_datacow),
 222	fsparam_flag_no("datasum", Opt_datasum),
 223	fsparam_flag("degraded", Opt_degraded),
 224	fsparam_string("device", Opt_device),
 225	fsparam_flag_no("discard", Opt_discard),
 226	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
 227	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
 228	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
 229	fsparam_string("max_inline", Opt_max_inline),
 230	fsparam_u32("metadata_ratio", Opt_ratio),
 231	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
 232	fsparam_flag("skip_balance", Opt_skip_balance),
 233	fsparam_flag_no("space_cache", Opt_space_cache),
 234	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
 235	fsparam_flag_no("ssd", Opt_ssd),
 236	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
 237	fsparam_string("subvol", Opt_subvol),
 238	fsparam_flag("subvol=", Opt_subvol_empty),
 239	fsparam_u64("subvolid", Opt_subvolid),
 240	fsparam_u32("thread_pool", Opt_thread_pool),
 241	fsparam_flag_no("treelog", Opt_treelog),
 242	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
 243
 244	/* Rescue options. */
 245	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
 246	/* Deprecated, with alias rescue=nologreplay */
 247	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
 248	/* Deprecated, with alias rescue=usebackuproot */
 249	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
 250
 251	/* Debugging options. */
 252	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
 253#ifdef CONFIG_BTRFS_DEBUG
 254	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
 255#endif
 256#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 257	fsparam_flag("ref_verify", Opt_ref_verify),
 258#endif
 259	{}
 260};
 261
 262/* No support for restricting writes to btrfs devices yet... */
 263static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
 264{
 265	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
 266}
 267
 268static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 269{
 270	struct btrfs_fs_context *ctx = fc->fs_private;
 271	struct fs_parse_result result;
 272	int opt;
 273
 274	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
 275	if (opt < 0)
 276		return opt;
 277
 278	switch (opt) {
 279	case Opt_degraded:
 280		btrfs_set_opt(ctx->mount_opt, DEGRADED);
 281		break;
 282	case Opt_subvol_empty:
 283		/*
 284		 * This exists because we used to allow it on accident, so we're
 285		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
 286		 * empty subvol= again").
 287		 */
 288		break;
 289	case Opt_subvol:
 290		kfree(ctx->subvol_name);
 291		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
 292		if (!ctx->subvol_name)
 293			return -ENOMEM;
 294		break;
 295	case Opt_subvolid:
 296		ctx->subvol_objectid = result.uint_64;
 297
 298		/* subvolid=0 means give me the original fs_tree. */
 299		if (!ctx->subvol_objectid)
 300			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
 301		break;
 302	case Opt_device: {
 303		struct btrfs_device *device;
 304		blk_mode_t mode = btrfs_open_mode(fc);
 305
 306		mutex_lock(&uuid_mutex);
 307		device = btrfs_scan_one_device(param->string, mode, false);
 308		mutex_unlock(&uuid_mutex);
 309		if (IS_ERR(device))
 310			return PTR_ERR(device);
 311		break;
 312	}
 313	case Opt_datasum:
 314		if (result.negated) {
 315			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 316		} else {
 317			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 318			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 319		}
 320		break;
 321	case Opt_datacow:
 322		if (result.negated) {
 323			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 324			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 325			btrfs_set_opt(ctx->mount_opt, NODATACOW);
 326			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 327		} else {
 328			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 329		}
 330		break;
 331	case Opt_compress_force:
 332	case Opt_compress_force_type:
 333		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
 334		fallthrough;
 335	case Opt_compress:
 336	case Opt_compress_type:
 337		if (opt == Opt_compress || opt == Opt_compress_force) {
 338			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 339			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 340			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 341			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 342			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 343		} else if (strncmp(param->string, "zlib", 4) == 0) {
 344			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 345			ctx->compress_level =
 346				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
 347							 param->string + 4);
 348			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 349			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 350			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 351		} else if (strncmp(param->string, "lzo", 3) == 0) {
 352			ctx->compress_type = BTRFS_COMPRESS_LZO;
 353			ctx->compress_level = 0;
 354			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 355			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 356			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 357		} else if (strncmp(param->string, "zstd", 4) == 0) {
 358			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
 359			ctx->compress_level =
 360				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
 361							 param->string + 4);
 362			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 363			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 364			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 365		} else if (strncmp(param->string, "no", 2) == 0) {
 366			ctx->compress_level = 0;
 367			ctx->compress_type = 0;
 368			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 369			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 370		} else {
 371			btrfs_err(NULL, "unrecognized compression value %s",
 372				  param->string);
 373			return -EINVAL;
 374		}
 375		break;
 376	case Opt_ssd:
 377		if (result.negated) {
 378			btrfs_set_opt(ctx->mount_opt, NOSSD);
 379			btrfs_clear_opt(ctx->mount_opt, SSD);
 380			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 381		} else {
 382			btrfs_set_opt(ctx->mount_opt, SSD);
 383			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 384		}
 385		break;
 386	case Opt_ssd_spread:
 387		if (result.negated) {
 388			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 389		} else {
 390			btrfs_set_opt(ctx->mount_opt, SSD);
 391			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
 392			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 393		}
 394		break;
 395	case Opt_barrier:
 396		if (result.negated)
 397			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
 398		else
 399			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
 400		break;
 401	case Opt_thread_pool:
 402		if (result.uint_32 == 0) {
 403			btrfs_err(NULL, "invalid value 0 for thread_pool");
 404			return -EINVAL;
 405		}
 406		ctx->thread_pool_size = result.uint_32;
 407		break;
 408	case Opt_max_inline:
 409		ctx->max_inline = memparse(param->string, NULL);
 410		break;
 411	case Opt_acl:
 412		if (result.negated) {
 413			fc->sb_flags &= ~SB_POSIXACL;
 414		} else {
 415#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 416			fc->sb_flags |= SB_POSIXACL;
 417#else
 418			btrfs_err(NULL, "support for ACL not compiled in");
 419			return -EINVAL;
 420#endif
 421		}
 422		/*
 423		 * VFS limits the ability to toggle ACL on and off via remount,
 424		 * despite every file system allowing this.  This seems to be
 425		 * an oversight since we all do, but it'll fail if we're
 426		 * remounting.  So don't set the mask here, we'll check it in
 427		 * btrfs_reconfigure and do the toggling ourselves.
 428		 */
 429		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
 430			fc->sb_flags_mask |= SB_POSIXACL;
 431		break;
 432	case Opt_treelog:
 433		if (result.negated)
 434			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
 435		else
 436			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
 437		break;
 438	case Opt_nologreplay:
 439		btrfs_warn(NULL,
 440		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 441		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 442		break;
 443	case Opt_flushoncommit:
 444		if (result.negated)
 445			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
 446		else
 447			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
 448		break;
 449	case Opt_ratio:
 450		ctx->metadata_ratio = result.uint_32;
 451		break;
 452	case Opt_discard:
 453		if (result.negated) {
 454			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 455			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 456			btrfs_set_opt(ctx->mount_opt, NODISCARD);
 457		} else {
 458			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 459			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 460		}
 461		break;
 462	case Opt_discard_mode:
 463		switch (result.uint_32) {
 464		case Opt_discard_sync:
 465			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 466			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 467			break;
 468		case Opt_discard_async:
 469			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 470			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
 471			break;
 472		default:
 473			btrfs_err(NULL, "unrecognized discard mode value %s",
 474				  param->key);
 475			return -EINVAL;
 476		}
 477		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
 478		break;
 479	case Opt_space_cache:
 480		if (result.negated) {
 481			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
 482			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 483			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 484		} else {
 485			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 486			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 487		}
 488		break;
 489	case Opt_space_cache_version:
 490		switch (result.uint_32) {
 491		case Opt_space_cache_v1:
 492			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 493			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 494			break;
 495		case Opt_space_cache_v2:
 496			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 497			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
 498			break;
 499		default:
 500			btrfs_err(NULL, "unrecognized space_cache value %s",
 501				  param->key);
 502			return -EINVAL;
 503		}
 504		break;
 505	case Opt_rescan_uuid_tree:
 506		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
 507		break;
 508	case Opt_clear_cache:
 509		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 510		break;
 511	case Opt_user_subvol_rm_allowed:
 512		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
 513		break;
 514	case Opt_enospc_debug:
 515		if (result.negated)
 516			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
 517		else
 518			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
 519		break;
 520	case Opt_defrag:
 521		if (result.negated)
 522			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
 523		else
 524			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
 525		break;
 526	case Opt_usebackuproot:
 527		btrfs_warn(NULL,
 528			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
 529		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 530
 531		/* If we're loading the backup roots we can't trust the space cache. */
 532		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 533		break;
 534	case Opt_skip_balance:
 535		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
 536		break;
 537	case Opt_fatal_errors:
 538		switch (result.uint_32) {
 539		case Opt_fatal_errors_panic:
 540			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 541			break;
 542		case Opt_fatal_errors_bug:
 543			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 544			break;
 545		default:
 546			btrfs_err(NULL, "unrecognized fatal_errors value %s",
 547				  param->key);
 548			return -EINVAL;
 549		}
 550		break;
 551	case Opt_commit_interval:
 552		ctx->commit_interval = result.uint_32;
 553		if (ctx->commit_interval == 0)
 554			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 555		break;
 556	case Opt_rescue:
 557		switch (result.uint_32) {
 558		case Opt_rescue_usebackuproot:
 559			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 560			break;
 561		case Opt_rescue_nologreplay:
 562			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 563			break;
 564		case Opt_rescue_ignorebadroots:
 565			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 566			break;
 567		case Opt_rescue_ignoredatacsums:
 568			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 569			break;
 570		case Opt_rescue_parameter_all:
 571			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 572			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 573			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 574			break;
 575		default:
 576			btrfs_info(NULL, "unrecognized rescue option '%s'",
 577				   param->key);
 578			return -EINVAL;
 579		}
 580		break;
 581#ifdef CONFIG_BTRFS_DEBUG
 582	case Opt_fragment:
 583		switch (result.uint_32) {
 584		case Opt_fragment_parameter_all:
 585			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 586			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 587			break;
 588		case Opt_fragment_parameter_metadata:
 589			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 590			break;
 591		case Opt_fragment_parameter_data:
 592			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 593			break;
 594		default:
 595			btrfs_info(NULL, "unrecognized fragment option '%s'",
 596				   param->key);
 597			return -EINVAL;
 598		}
 599		break;
 600#endif
 601#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 602	case Opt_ref_verify:
 603		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
 604		break;
 605#endif
 606	default:
 607		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
 608		return -EINVAL;
 609	}
 610
 611	return 0;
 612}
 613
 614/*
 615 * Some options only have meaning at mount time and shouldn't persist across
 616 * remounts, or be displayed. Clear these at the end of mount and remount code
 617 * paths.
 618 */
 619static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
 620{
 621	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
 622	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
 623	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
 624}
 625
 626static bool check_ro_option(struct btrfs_fs_info *fs_info,
 627			    unsigned long mount_opt, unsigned long opt,
 628			    const char *opt_name)
 629{
 630	if (mount_opt & opt) {
 631		btrfs_err(fs_info, "%s must be used with ro mount option",
 632			  opt_name);
 633		return true;
 634	}
 635	return false;
 636}
 637
 638bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
 639			 unsigned long flags)
 640{
 641	bool ret = true;
 642
 643	if (!(flags & SB_RDONLY) &&
 644	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
 645	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
 646	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
 647		ret = false;
 648
 649	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 650	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
 651	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
 652		btrfs_err(info, "cannot disable free-space-tree");
 653		ret = false;
 654	}
 655	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
 656	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
 657		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
 658		ret = false;
 659	}
 660
 661	if (btrfs_check_mountopts_zoned(info, mount_opt))
 662		ret = false;
 663
 664	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
 665		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
 666			btrfs_info(info, "disk space caching is enabled");
 667		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
 668			btrfs_info(info, "using free-space-tree");
 669	}
 670
 671	return ret;
 672}
 673
 674/*
 675 * This is subtle, we only call this during open_ctree().  We need to pre-load
 676 * the mount options with the on-disk settings.  Before the new mount API took
 677 * effect we would do this on mount and remount.  With the new mount API we'll
 678 * only do this on the initial mount.
 679 *
 680 * This isn't a change in behavior, because we're using the current state of the
 681 * file system to set the current mount options.  If you mounted with special
 682 * options to disable these features and then remounted we wouldn't revert the
 683 * settings, because mounting without these features cleared the on-disk
 684 * settings, so this being called on re-mount is not needed.
 685 */
 686void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
 687{
 688	if (fs_info->sectorsize < PAGE_SIZE) {
 689		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
 690		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
 691			btrfs_info(fs_info,
 692				   "forcing free space tree for sector size %u with page size %lu",
 693				   fs_info->sectorsize, PAGE_SIZE);
 694			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 695		}
 696	}
 697
 698	/*
 699	 * At this point our mount options are populated, so we only mess with
 700	 * these settings if we don't have any settings already.
 701	 */
 702	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 703		return;
 704
 705	if (btrfs_is_zoned(fs_info) &&
 706	    btrfs_free_space_cache_v1_active(fs_info)) {
 707		btrfs_info(fs_info, "zoned: clearing existing space cache");
 708		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
 709		return;
 710	}
 711
 712	if (btrfs_test_opt(fs_info, SPACE_CACHE))
 713		return;
 714
 715	if (btrfs_test_opt(fs_info, NOSPACECACHE))
 716		return;
 717
 718	/*
 719	 * At this point we don't have explicit options set by the user, set
 720	 * them ourselves based on the state of the file system.
 721	 */
 722	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 723		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 724	else if (btrfs_free_space_cache_v1_active(fs_info))
 725		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
 726}
 727
 728static void set_device_specific_options(struct btrfs_fs_info *fs_info)
 729{
 730	if (!btrfs_test_opt(fs_info, NOSSD) &&
 731	    !fs_info->fs_devices->rotating)
 732		btrfs_set_opt(fs_info->mount_opt, SSD);
 733
 734	/*
 735	 * For devices supporting discard turn on discard=async automatically,
 736	 * unless it's already set or disabled. This could be turned off by
 737	 * nodiscard for the same mount.
 738	 *
 739	 * The zoned mode piggy backs on the discard functionality for
 740	 * resetting a zone. There is no reason to delay the zone reset as it is
 741	 * fast enough. So, do not enable async discard for zoned mode.
 742	 */
 743	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
 744	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
 745	      btrfs_test_opt(fs_info, NODISCARD)) &&
 746	    fs_info->fs_devices->discardable &&
 747	    !btrfs_is_zoned(fs_info))
 748		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
 749}
 750
 751char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 752					  u64 subvol_objectid)
 753{
 754	struct btrfs_root *root = fs_info->tree_root;
 755	struct btrfs_root *fs_root = NULL;
 756	struct btrfs_root_ref *root_ref;
 757	struct btrfs_inode_ref *inode_ref;
 758	struct btrfs_key key;
 759	struct btrfs_path *path = NULL;
 760	char *name = NULL, *ptr;
 761	u64 dirid;
 762	int len;
 763	int ret;
 764
 765	path = btrfs_alloc_path();
 766	if (!path) {
 767		ret = -ENOMEM;
 768		goto err;
 769	}
 770
 771	name = kmalloc(PATH_MAX, GFP_KERNEL);
 772	if (!name) {
 773		ret = -ENOMEM;
 774		goto err;
 775	}
 776	ptr = name + PATH_MAX - 1;
 777	ptr[0] = '\0';
 778
 779	/*
 780	 * Walk up the subvolume trees in the tree of tree roots by root
 781	 * backrefs until we hit the top-level subvolume.
 782	 */
 783	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 784		key.objectid = subvol_objectid;
 785		key.type = BTRFS_ROOT_BACKREF_KEY;
 786		key.offset = (u64)-1;
 787
 788		ret = btrfs_search_backwards(root, &key, path);
 789		if (ret < 0) {
 790			goto err;
 791		} else if (ret > 0) {
 792			ret = -ENOENT;
 793			goto err;
 794		}
 795
 796		subvol_objectid = key.offset;
 797
 798		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
 799					  struct btrfs_root_ref);
 800		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
 801		ptr -= len + 1;
 802		if (ptr < name) {
 803			ret = -ENAMETOOLONG;
 804			goto err;
 805		}
 806		read_extent_buffer(path->nodes[0], ptr + 1,
 807				   (unsigned long)(root_ref + 1), len);
 808		ptr[0] = '/';
 809		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
 810		btrfs_release_path(path);
 811
 812		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
 813		if (IS_ERR(fs_root)) {
 814			ret = PTR_ERR(fs_root);
 815			fs_root = NULL;
 816			goto err;
 817		}
 818
 819		/*
 820		 * Walk up the filesystem tree by inode refs until we hit the
 821		 * root directory.
 822		 */
 823		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
 824			key.objectid = dirid;
 825			key.type = BTRFS_INODE_REF_KEY;
 826			key.offset = (u64)-1;
 827
 828			ret = btrfs_search_backwards(fs_root, &key, path);
 829			if (ret < 0) {
 830				goto err;
 831			} else if (ret > 0) {
 832				ret = -ENOENT;
 833				goto err;
 834			}
 835
 836			dirid = key.offset;
 837
 838			inode_ref = btrfs_item_ptr(path->nodes[0],
 839						   path->slots[0],
 840						   struct btrfs_inode_ref);
 841			len = btrfs_inode_ref_name_len(path->nodes[0],
 842						       inode_ref);
 843			ptr -= len + 1;
 844			if (ptr < name) {
 845				ret = -ENAMETOOLONG;
 846				goto err;
 847			}
 848			read_extent_buffer(path->nodes[0], ptr + 1,
 849					   (unsigned long)(inode_ref + 1), len);
 850			ptr[0] = '/';
 851			btrfs_release_path(path);
 852		}
 853		btrfs_put_root(fs_root);
 854		fs_root = NULL;
 855	}
 856
 857	btrfs_free_path(path);
 858	if (ptr == name + PATH_MAX - 1) {
 859		name[0] = '/';
 860		name[1] = '\0';
 861	} else {
 862		memmove(name, ptr, name + PATH_MAX - ptr);
 863	}
 864	return name;
 865
 866err:
 867	btrfs_put_root(fs_root);
 868	btrfs_free_path(path);
 869	kfree(name);
 870	return ERR_PTR(ret);
 871}
 872
 873static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
 874{
 875	struct btrfs_root *root = fs_info->tree_root;
 876	struct btrfs_dir_item *di;
 877	struct btrfs_path *path;
 878	struct btrfs_key location;
 879	struct fscrypt_str name = FSTR_INIT("default", 7);
 880	u64 dir_id;
 881
 882	path = btrfs_alloc_path();
 883	if (!path)
 884		return -ENOMEM;
 885
 886	/*
 887	 * Find the "default" dir item which points to the root item that we
 888	 * will mount by default if we haven't been given a specific subvolume
 889	 * to mount.
 890	 */
 891	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 892	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
 893	if (IS_ERR(di)) {
 894		btrfs_free_path(path);
 895		return PTR_ERR(di);
 896	}
 897	if (!di) {
 898		/*
 899		 * Ok the default dir item isn't there.  This is weird since
 900		 * it's always been there, but don't freak out, just try and
 901		 * mount the top-level subvolume.
 902		 */
 903		btrfs_free_path(path);
 904		*objectid = BTRFS_FS_TREE_OBJECTID;
 905		return 0;
 906	}
 907
 908	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 909	btrfs_free_path(path);
 910	*objectid = location.objectid;
 911	return 0;
 912}
 913
 914static int btrfs_fill_super(struct super_block *sb,
 915			    struct btrfs_fs_devices *fs_devices,
 916			    void *data)
 917{
 918	struct inode *inode;
 919	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 920	int err;
 921
 922	sb->s_maxbytes = MAX_LFS_FILESIZE;
 923	sb->s_magic = BTRFS_SUPER_MAGIC;
 924	sb->s_op = &btrfs_super_ops;
 925	sb->s_d_op = &btrfs_dentry_operations;
 926	sb->s_export_op = &btrfs_export_ops;
 927#ifdef CONFIG_FS_VERITY
 928	sb->s_vop = &btrfs_verityops;
 929#endif
 930	sb->s_xattr = btrfs_xattr_handlers;
 931	sb->s_time_gran = 1;
 932	sb->s_iflags |= SB_I_CGROUPWB;
 933
 934	err = super_setup_bdi(sb);
 935	if (err) {
 936		btrfs_err(fs_info, "super_setup_bdi failed");
 937		return err;
 938	}
 939
 940	err = open_ctree(sb, fs_devices, (char *)data);
 941	if (err) {
 942		btrfs_err(fs_info, "open_ctree failed");
 943		return err;
 944	}
 945
 946	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 947	if (IS_ERR(inode)) {
 948		err = PTR_ERR(inode);
 949		btrfs_handle_fs_error(fs_info, err, NULL);
 950		goto fail_close;
 951	}
 952
 953	sb->s_root = d_make_root(inode);
 954	if (!sb->s_root) {
 955		err = -ENOMEM;
 956		goto fail_close;
 957	}
 958
 959	sb->s_flags |= SB_ACTIVE;
 960	return 0;
 961
 962fail_close:
 963	close_ctree(fs_info);
 964	return err;
 965}
 966
 967int btrfs_sync_fs(struct super_block *sb, int wait)
 968{
 969	struct btrfs_trans_handle *trans;
 970	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 971	struct btrfs_root *root = fs_info->tree_root;
 972
 973	trace_btrfs_sync_fs(fs_info, wait);
 974
 975	if (!wait) {
 976		filemap_flush(fs_info->btree_inode->i_mapping);
 977		return 0;
 978	}
 979
 980	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
 981
 982	trans = btrfs_attach_transaction_barrier(root);
 983	if (IS_ERR(trans)) {
 984		/* no transaction, don't bother */
 985		if (PTR_ERR(trans) == -ENOENT) {
 986			/*
 987			 * Exit unless we have some pending changes
 988			 * that need to go through commit
 989			 */
 990			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
 991				      &fs_info->flags))
 992				return 0;
 993			/*
 994			 * A non-blocking test if the fs is frozen. We must not
 995			 * start a new transaction here otherwise a deadlock
 996			 * happens. The pending operations are delayed to the
 997			 * next commit after thawing.
 998			 */
 999			if (sb_start_write_trylock(sb))
1000				sb_end_write(sb);
1001			else
1002				return 0;
1003			trans = btrfs_start_transaction(root, 0);
1004		}
1005		if (IS_ERR(trans))
1006			return PTR_ERR(trans);
1007	}
1008	return btrfs_commit_transaction(trans);
1009}
1010
1011static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1012{
1013	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1014	*printed = true;
1015}
1016
1017static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1018{
1019	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1020	const char *compress_type;
1021	const char *subvol_name;
1022	bool printed = false;
1023
1024	if (btrfs_test_opt(info, DEGRADED))
1025		seq_puts(seq, ",degraded");
1026	if (btrfs_test_opt(info, NODATASUM))
1027		seq_puts(seq, ",nodatasum");
1028	if (btrfs_test_opt(info, NODATACOW))
1029		seq_puts(seq, ",nodatacow");
1030	if (btrfs_test_opt(info, NOBARRIER))
1031		seq_puts(seq, ",nobarrier");
1032	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1033		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1034	if (info->thread_pool_size !=  min_t(unsigned long,
1035					     num_online_cpus() + 2, 8))
1036		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1037	if (btrfs_test_opt(info, COMPRESS)) {
1038		compress_type = btrfs_compress_type2str(info->compress_type);
1039		if (btrfs_test_opt(info, FORCE_COMPRESS))
1040			seq_printf(seq, ",compress-force=%s", compress_type);
1041		else
1042			seq_printf(seq, ",compress=%s", compress_type);
1043		if (info->compress_level)
1044			seq_printf(seq, ":%d", info->compress_level);
1045	}
1046	if (btrfs_test_opt(info, NOSSD))
1047		seq_puts(seq, ",nossd");
1048	if (btrfs_test_opt(info, SSD_SPREAD))
1049		seq_puts(seq, ",ssd_spread");
1050	else if (btrfs_test_opt(info, SSD))
1051		seq_puts(seq, ",ssd");
1052	if (btrfs_test_opt(info, NOTREELOG))
1053		seq_puts(seq, ",notreelog");
1054	if (btrfs_test_opt(info, NOLOGREPLAY))
1055		print_rescue_option(seq, "nologreplay", &printed);
1056	if (btrfs_test_opt(info, USEBACKUPROOT))
1057		print_rescue_option(seq, "usebackuproot", &printed);
1058	if (btrfs_test_opt(info, IGNOREBADROOTS))
1059		print_rescue_option(seq, "ignorebadroots", &printed);
1060	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1061		print_rescue_option(seq, "ignoredatacsums", &printed);
1062	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1063		seq_puts(seq, ",flushoncommit");
1064	if (btrfs_test_opt(info, DISCARD_SYNC))
1065		seq_puts(seq, ",discard");
1066	if (btrfs_test_opt(info, DISCARD_ASYNC))
1067		seq_puts(seq, ",discard=async");
1068	if (!(info->sb->s_flags & SB_POSIXACL))
1069		seq_puts(seq, ",noacl");
1070	if (btrfs_free_space_cache_v1_active(info))
1071		seq_puts(seq, ",space_cache");
1072	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1073		seq_puts(seq, ",space_cache=v2");
1074	else
1075		seq_puts(seq, ",nospace_cache");
1076	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1077		seq_puts(seq, ",rescan_uuid_tree");
1078	if (btrfs_test_opt(info, CLEAR_CACHE))
1079		seq_puts(seq, ",clear_cache");
1080	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1081		seq_puts(seq, ",user_subvol_rm_allowed");
1082	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1083		seq_puts(seq, ",enospc_debug");
1084	if (btrfs_test_opt(info, AUTO_DEFRAG))
1085		seq_puts(seq, ",autodefrag");
1086	if (btrfs_test_opt(info, SKIP_BALANCE))
1087		seq_puts(seq, ",skip_balance");
1088	if (info->metadata_ratio)
1089		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1090	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1091		seq_puts(seq, ",fatal_errors=panic");
1092	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1093		seq_printf(seq, ",commit=%u", info->commit_interval);
1094#ifdef CONFIG_BTRFS_DEBUG
1095	if (btrfs_test_opt(info, FRAGMENT_DATA))
1096		seq_puts(seq, ",fragment=data");
1097	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1098		seq_puts(seq, ",fragment=metadata");
1099#endif
1100	if (btrfs_test_opt(info, REF_VERIFY))
1101		seq_puts(seq, ",ref_verify");
1102	seq_printf(seq, ",subvolid=%llu",
1103		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1104	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1105			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1106	if (!IS_ERR(subvol_name)) {
1107		seq_puts(seq, ",subvol=");
1108		seq_escape(seq, subvol_name, " \t\n\\");
1109		kfree(subvol_name);
1110	}
1111	return 0;
1112}
1113
1114/*
1115 * subvolumes are identified by ino 256
1116 */
1117static inline int is_subvolume_inode(struct inode *inode)
1118{
1119	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1120		return 1;
1121	return 0;
1122}
1123
1124static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1125				   struct vfsmount *mnt)
1126{
1127	struct dentry *root;
1128	int ret;
1129
1130	if (!subvol_name) {
1131		if (!subvol_objectid) {
1132			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1133							  &subvol_objectid);
1134			if (ret) {
1135				root = ERR_PTR(ret);
1136				goto out;
1137			}
1138		}
1139		subvol_name = btrfs_get_subvol_name_from_objectid(
1140					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1141		if (IS_ERR(subvol_name)) {
1142			root = ERR_CAST(subvol_name);
1143			subvol_name = NULL;
1144			goto out;
1145		}
1146
1147	}
1148
1149	root = mount_subtree(mnt, subvol_name);
1150	/* mount_subtree() drops our reference on the vfsmount. */
1151	mnt = NULL;
1152
1153	if (!IS_ERR(root)) {
1154		struct super_block *s = root->d_sb;
1155		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1156		struct inode *root_inode = d_inode(root);
1157		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1158
1159		ret = 0;
1160		if (!is_subvolume_inode(root_inode)) {
1161			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1162			       subvol_name);
1163			ret = -EINVAL;
1164		}
1165		if (subvol_objectid && root_objectid != subvol_objectid) {
1166			/*
1167			 * This will also catch a race condition where a
1168			 * subvolume which was passed by ID is renamed and
1169			 * another subvolume is renamed over the old location.
1170			 */
1171			btrfs_err(fs_info,
1172				  "subvol '%s' does not match subvolid %llu",
1173				  subvol_name, subvol_objectid);
1174			ret = -EINVAL;
1175		}
1176		if (ret) {
1177			dput(root);
1178			root = ERR_PTR(ret);
1179			deactivate_locked_super(s);
1180		}
1181	}
1182
1183out:
1184	mntput(mnt);
1185	kfree(subvol_name);
1186	return root;
1187}
1188
1189static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1190				     u32 new_pool_size, u32 old_pool_size)
1191{
1192	if (new_pool_size == old_pool_size)
1193		return;
1194
1195	fs_info->thread_pool_size = new_pool_size;
1196
1197	btrfs_info(fs_info, "resize thread pool %d -> %d",
1198	       old_pool_size, new_pool_size);
1199
1200	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1201	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1202	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1203	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1204	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1205	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1206	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1207	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1208}
1209
1210static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1211				       unsigned long old_opts, int flags)
1212{
1213	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1214	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1215	     (flags & SB_RDONLY))) {
1216		/* wait for any defraggers to finish */
1217		wait_event(fs_info->transaction_wait,
1218			   (atomic_read(&fs_info->defrag_running) == 0));
1219		if (flags & SB_RDONLY)
1220			sync_filesystem(fs_info->sb);
1221	}
1222}
1223
1224static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1225					 unsigned long old_opts)
1226{
1227	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1228
1229	/*
1230	 * We need to cleanup all defragable inodes if the autodefragment is
1231	 * close or the filesystem is read only.
1232	 */
1233	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1234	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1235		btrfs_cleanup_defrag_inodes(fs_info);
1236	}
1237
1238	/* If we toggled discard async */
1239	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1240	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1241		btrfs_discard_resume(fs_info);
1242	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1243		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1244		btrfs_discard_cleanup(fs_info);
1245
1246	/* If we toggled space cache */
1247	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1248		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1249}
1250
1251static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1252{
1253	int ret;
1254
1255	if (BTRFS_FS_ERROR(fs_info)) {
1256		btrfs_err(fs_info,
1257			  "remounting read-write after error is not allowed");
1258		return -EINVAL;
1259	}
1260
1261	if (fs_info->fs_devices->rw_devices == 0)
1262		return -EACCES;
1263
1264	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1265		btrfs_warn(fs_info,
1266			   "too many missing devices, writable remount is not allowed");
1267		return -EACCES;
1268	}
1269
1270	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1271		btrfs_warn(fs_info,
1272			   "mount required to replay tree-log, cannot remount read-write");
1273		return -EINVAL;
1274	}
1275
1276	/*
1277	 * NOTE: when remounting with a change that does writes, don't put it
1278	 * anywhere above this point, as we are not sure to be safe to write
1279	 * until we pass the above checks.
1280	 */
1281	ret = btrfs_start_pre_rw_mount(fs_info);
1282	if (ret)
1283		return ret;
1284
1285	btrfs_clear_sb_rdonly(fs_info->sb);
1286
1287	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1288
1289	/*
1290	 * If we've gone from readonly -> read-write, we need to get our
1291	 * sync/async discard lists in the right state.
1292	 */
1293	btrfs_discard_resume(fs_info);
1294
1295	return 0;
1296}
1297
1298static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1299{
1300	/*
1301	 * This also happens on 'umount -rf' or on shutdown, when the
1302	 * filesystem is busy.
1303	 */
1304	cancel_work_sync(&fs_info->async_reclaim_work);
1305	cancel_work_sync(&fs_info->async_data_reclaim_work);
1306
1307	btrfs_discard_cleanup(fs_info);
1308
1309	/* Wait for the uuid_scan task to finish */
1310	down(&fs_info->uuid_tree_rescan_sem);
1311	/* Avoid complains from lockdep et al. */
1312	up(&fs_info->uuid_tree_rescan_sem);
1313
1314	btrfs_set_sb_rdonly(fs_info->sb);
1315
1316	/*
1317	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1318	 * loop if it's already active.  If it's already asleep, we'll leave
1319	 * unused block groups on disk until we're mounted read-write again
1320	 * unless we clean them up here.
1321	 */
1322	btrfs_delete_unused_bgs(fs_info);
1323
1324	/*
1325	 * The cleaner task could be already running before we set the flag
1326	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1327	 * sure that after we finish the remount, i.e. after we call
1328	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1329	 * - either because it was dropping a dead root, running delayed iputs
1330	 *   or deleting an unused block group (the cleaner picked a block
1331	 *   group from the list of unused block groups before we were able to
1332	 *   in the previous call to btrfs_delete_unused_bgs()).
1333	 */
1334	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1335
1336	/*
1337	 * We've set the superblock to RO mode, so we might have made the
1338	 * cleaner task sleep without running all pending delayed iputs. Go
1339	 * through all the delayed iputs here, so that if an unmount happens
1340	 * without remounting RW we don't end up at finishing close_ctree()
1341	 * with a non-empty list of delayed iputs.
1342	 */
1343	btrfs_run_delayed_iputs(fs_info);
1344
1345	btrfs_dev_replace_suspend_for_unmount(fs_info);
1346	btrfs_scrub_cancel(fs_info);
1347	btrfs_pause_balance(fs_info);
1348
1349	/*
1350	 * Pause the qgroup rescan worker if it is running. We don't want it to
1351	 * be still running after we are in RO mode, as after that, by the time
1352	 * we unmount, it might have left a transaction open, so we would leak
1353	 * the transaction and/or crash.
1354	 */
1355	btrfs_qgroup_wait_for_completion(fs_info, false);
1356
1357	return btrfs_commit_super(fs_info);
1358}
1359
1360static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1361{
1362	fs_info->max_inline = ctx->max_inline;
1363	fs_info->commit_interval = ctx->commit_interval;
1364	fs_info->metadata_ratio = ctx->metadata_ratio;
1365	fs_info->thread_pool_size = ctx->thread_pool_size;
1366	fs_info->mount_opt = ctx->mount_opt;
1367	fs_info->compress_type = ctx->compress_type;
1368	fs_info->compress_level = ctx->compress_level;
1369}
1370
1371static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1372{
1373	ctx->max_inline = fs_info->max_inline;
1374	ctx->commit_interval = fs_info->commit_interval;
1375	ctx->metadata_ratio = fs_info->metadata_ratio;
1376	ctx->thread_pool_size = fs_info->thread_pool_size;
1377	ctx->mount_opt = fs_info->mount_opt;
1378	ctx->compress_type = fs_info->compress_type;
1379	ctx->compress_level = fs_info->compress_level;
1380}
1381
1382#define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1383do {										\
1384	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1385	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1386		btrfs_info(fs_info, fmt, ##args);				\
1387} while (0)
1388
1389#define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1390do {									\
1391	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1392	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1393		btrfs_info(fs_info, fmt, ##args);			\
1394} while (0)
1395
1396static void btrfs_emit_options(struct btrfs_fs_info *info,
1397			       struct btrfs_fs_context *old)
1398{
1399	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1400	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1401	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1402	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1403	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1404	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1405	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1406	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1407	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1408	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1409	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1410	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1411	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1412	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1413	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1414	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1415	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1416	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1417	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1418	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1419	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1420
1421	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1422	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1423	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1424	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1425	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1426	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1427	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1428	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1429	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1430
1431	/* Did the compression settings change? */
1432	if (btrfs_test_opt(info, COMPRESS) &&
1433	    (!old ||
1434	     old->compress_type != info->compress_type ||
1435	     old->compress_level != info->compress_level ||
1436	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1437	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1438		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1439
1440		btrfs_info(info, "%s %s compression, level %d",
1441			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1442			   compress_type, info->compress_level);
1443	}
1444
1445	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1446		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1447}
1448
1449static int btrfs_reconfigure(struct fs_context *fc)
1450{
1451	struct super_block *sb = fc->root->d_sb;
1452	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1453	struct btrfs_fs_context *ctx = fc->fs_private;
1454	struct btrfs_fs_context old_ctx;
1455	int ret = 0;
1456	bool mount_reconfigure = (fc->s_fs_info != NULL);
1457
1458	btrfs_info_to_ctx(fs_info, &old_ctx);
1459
1460	/*
1461	 * This is our "bind mount" trick, we don't want to allow the user to do
1462	 * anything other than mount a different ro/rw and a different subvol,
1463	 * all of the mount options should be maintained.
1464	 */
1465	if (mount_reconfigure)
1466		ctx->mount_opt = old_ctx.mount_opt;
1467
1468	sync_filesystem(sb);
1469	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1470
1471	if (!mount_reconfigure &&
1472	    !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1473		return -EINVAL;
1474
1475	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1476	if (ret < 0)
1477		return ret;
1478
1479	btrfs_ctx_to_info(fs_info, ctx);
1480	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1481	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1482				 old_ctx.thread_pool_size);
1483
1484	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1485	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1486	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1487		btrfs_warn(fs_info,
1488		"remount supports changing free space tree only from RO to RW");
1489		/* Make sure free space cache options match the state on disk. */
1490		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1491			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1492			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1493		}
1494		if (btrfs_free_space_cache_v1_active(fs_info)) {
1495			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1496			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1497		}
1498	}
1499
1500	ret = 0;
1501	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1502		ret = btrfs_remount_ro(fs_info);
1503	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1504		ret = btrfs_remount_rw(fs_info);
1505	if (ret)
1506		goto restore;
1507
1508	/*
1509	 * If we set the mask during the parameter parsing VFS would reject the
1510	 * remount.  Here we can set the mask and the value will be updated
1511	 * appropriately.
1512	 */
1513	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1514		fc->sb_flags_mask |= SB_POSIXACL;
1515
1516	btrfs_emit_options(fs_info, &old_ctx);
1517	wake_up_process(fs_info->transaction_kthread);
1518	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1519	btrfs_clear_oneshot_options(fs_info);
1520	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1521
1522	return 0;
1523restore:
1524	btrfs_ctx_to_info(fs_info, &old_ctx);
1525	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1526	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1527	return ret;
1528}
1529
1530/* Used to sort the devices by max_avail(descending sort) */
1531static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1532{
1533	const struct btrfs_device_info *dev_info1 = a;
1534	const struct btrfs_device_info *dev_info2 = b;
1535
1536	if (dev_info1->max_avail > dev_info2->max_avail)
1537		return -1;
1538	else if (dev_info1->max_avail < dev_info2->max_avail)
1539		return 1;
1540	return 0;
1541}
1542
1543/*
1544 * sort the devices by max_avail, in which max free extent size of each device
1545 * is stored.(Descending Sort)
1546 */
1547static inline void btrfs_descending_sort_devices(
1548					struct btrfs_device_info *devices,
1549					size_t nr_devices)
1550{
1551	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1552	     btrfs_cmp_device_free_bytes, NULL);
1553}
1554
1555/*
1556 * The helper to calc the free space on the devices that can be used to store
1557 * file data.
1558 */
1559static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1560					      u64 *free_bytes)
1561{
1562	struct btrfs_device_info *devices_info;
1563	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1564	struct btrfs_device *device;
1565	u64 type;
1566	u64 avail_space;
1567	u64 min_stripe_size;
1568	int num_stripes = 1;
1569	int i = 0, nr_devices;
1570	const struct btrfs_raid_attr *rattr;
1571
1572	/*
1573	 * We aren't under the device list lock, so this is racy-ish, but good
1574	 * enough for our purposes.
1575	 */
1576	nr_devices = fs_info->fs_devices->open_devices;
1577	if (!nr_devices) {
1578		smp_mb();
1579		nr_devices = fs_info->fs_devices->open_devices;
1580		ASSERT(nr_devices);
1581		if (!nr_devices) {
1582			*free_bytes = 0;
1583			return 0;
1584		}
1585	}
1586
1587	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1588			       GFP_KERNEL);
1589	if (!devices_info)
1590		return -ENOMEM;
1591
1592	/* calc min stripe number for data space allocation */
1593	type = btrfs_data_alloc_profile(fs_info);
1594	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1595
1596	if (type & BTRFS_BLOCK_GROUP_RAID0)
1597		num_stripes = nr_devices;
1598	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1599		num_stripes = rattr->ncopies;
1600	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1601		num_stripes = 4;
1602
1603	/* Adjust for more than 1 stripe per device */
1604	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1605
1606	rcu_read_lock();
1607	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1608		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1609						&device->dev_state) ||
1610		    !device->bdev ||
1611		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1612			continue;
1613
1614		if (i >= nr_devices)
1615			break;
1616
1617		avail_space = device->total_bytes - device->bytes_used;
1618
1619		/* align with stripe_len */
1620		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1621
1622		/*
1623		 * Ensure we have at least min_stripe_size on top of the
1624		 * reserved space on the device.
1625		 */
1626		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1627			continue;
1628
1629		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1630
1631		devices_info[i].dev = device;
1632		devices_info[i].max_avail = avail_space;
1633
1634		i++;
1635	}
1636	rcu_read_unlock();
1637
1638	nr_devices = i;
1639
1640	btrfs_descending_sort_devices(devices_info, nr_devices);
1641
1642	i = nr_devices - 1;
1643	avail_space = 0;
1644	while (nr_devices >= rattr->devs_min) {
1645		num_stripes = min(num_stripes, nr_devices);
1646
1647		if (devices_info[i].max_avail >= min_stripe_size) {
1648			int j;
1649			u64 alloc_size;
1650
1651			avail_space += devices_info[i].max_avail * num_stripes;
1652			alloc_size = devices_info[i].max_avail;
1653			for (j = i + 1 - num_stripes; j <= i; j++)
1654				devices_info[j].max_avail -= alloc_size;
1655		}
1656		i--;
1657		nr_devices--;
1658	}
1659
1660	kfree(devices_info);
1661	*free_bytes = avail_space;
1662	return 0;
1663}
1664
1665/*
1666 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1667 *
1668 * If there's a redundant raid level at DATA block groups, use the respective
1669 * multiplier to scale the sizes.
1670 *
1671 * Unused device space usage is based on simulating the chunk allocator
1672 * algorithm that respects the device sizes and order of allocations.  This is
1673 * a close approximation of the actual use but there are other factors that may
1674 * change the result (like a new metadata chunk).
1675 *
1676 * If metadata is exhausted, f_bavail will be 0.
1677 */
1678static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1679{
1680	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1681	struct btrfs_super_block *disk_super = fs_info->super_copy;
1682	struct btrfs_space_info *found;
1683	u64 total_used = 0;
1684	u64 total_free_data = 0;
1685	u64 total_free_meta = 0;
1686	u32 bits = fs_info->sectorsize_bits;
1687	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1688	unsigned factor = 1;
1689	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1690	int ret;
1691	u64 thresh = 0;
1692	int mixed = 0;
1693
1694	list_for_each_entry(found, &fs_info->space_info, list) {
1695		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1696			int i;
1697
1698			total_free_data += found->disk_total - found->disk_used;
1699			total_free_data -=
1700				btrfs_account_ro_block_groups_free_space(found);
1701
1702			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1703				if (!list_empty(&found->block_groups[i]))
1704					factor = btrfs_bg_type_to_factor(
1705						btrfs_raid_array[i].bg_flag);
1706			}
1707		}
1708
1709		/*
1710		 * Metadata in mixed block group profiles are accounted in data
1711		 */
1712		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1713			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1714				mixed = 1;
1715			else
1716				total_free_meta += found->disk_total -
1717					found->disk_used;
1718		}
1719
1720		total_used += found->disk_used;
1721	}
1722
1723	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1724	buf->f_blocks >>= bits;
1725	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1726
1727	/* Account global block reserve as used, it's in logical size already */
1728	spin_lock(&block_rsv->lock);
1729	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1730	if (buf->f_bfree >= block_rsv->size >> bits)
1731		buf->f_bfree -= block_rsv->size >> bits;
1732	else
1733		buf->f_bfree = 0;
1734	spin_unlock(&block_rsv->lock);
1735
1736	buf->f_bavail = div_u64(total_free_data, factor);
1737	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1738	if (ret)
1739		return ret;
1740	buf->f_bavail += div_u64(total_free_data, factor);
1741	buf->f_bavail = buf->f_bavail >> bits;
1742
1743	/*
1744	 * We calculate the remaining metadata space minus global reserve. If
1745	 * this is (supposedly) smaller than zero, there's no space. But this
1746	 * does not hold in practice, the exhausted state happens where's still
1747	 * some positive delta. So we apply some guesswork and compare the
1748	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1749	 *
1750	 * We probably cannot calculate the exact threshold value because this
1751	 * depends on the internal reservations requested by various
1752	 * operations, so some operations that consume a few metadata will
1753	 * succeed even if the Avail is zero. But this is better than the other
1754	 * way around.
1755	 */
1756	thresh = SZ_4M;
1757
1758	/*
1759	 * We only want to claim there's no available space if we can no longer
1760	 * allocate chunks for our metadata profile and our global reserve will
1761	 * not fit in the free metadata space.  If we aren't ->full then we
1762	 * still can allocate chunks and thus are fine using the currently
1763	 * calculated f_bavail.
1764	 */
1765	if (!mixed && block_rsv->space_info->full &&
1766	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1767		buf->f_bavail = 0;
1768
1769	buf->f_type = BTRFS_SUPER_MAGIC;
1770	buf->f_bsize = dentry->d_sb->s_blocksize;
1771	buf->f_namelen = BTRFS_NAME_LEN;
1772
1773	/* We treat it as constant endianness (it doesn't matter _which_)
1774	   because we want the fsid to come out the same whether mounted
1775	   on a big-endian or little-endian host */
1776	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1777	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1778	/* Mask in the root object ID too, to disambiguate subvols */
1779	buf->f_fsid.val[0] ^=
1780		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
1781	buf->f_fsid.val[1] ^=
1782		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
1783
1784	return 0;
1785}
1786
1787static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1788{
1789	struct btrfs_fs_info *p = fc->s_fs_info;
1790	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1791
1792	return fs_info->fs_devices == p->fs_devices;
1793}
1794
1795static int btrfs_get_tree_super(struct fs_context *fc)
1796{
1797	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1798	struct btrfs_fs_context *ctx = fc->fs_private;
1799	struct btrfs_fs_devices *fs_devices = NULL;
1800	struct block_device *bdev;
1801	struct btrfs_device *device;
1802	struct super_block *sb;
1803	blk_mode_t mode = btrfs_open_mode(fc);
1804	int ret;
1805
1806	btrfs_ctx_to_info(fs_info, ctx);
1807	mutex_lock(&uuid_mutex);
1808
1809	/*
1810	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1811	 * either a valid device or an error.
1812	 */
1813	device = btrfs_scan_one_device(fc->source, mode, true);
1814	ASSERT(device != NULL);
1815	if (IS_ERR(device)) {
1816		mutex_unlock(&uuid_mutex);
1817		return PTR_ERR(device);
1818	}
1819
1820	fs_devices = device->fs_devices;
1821	fs_info->fs_devices = fs_devices;
1822
1823	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1824	mutex_unlock(&uuid_mutex);
1825	if (ret)
1826		return ret;
1827
1828	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1829		ret = -EACCES;
1830		goto error;
1831	}
1832
1833	bdev = fs_devices->latest_dev->bdev;
1834
1835	/*
1836	 * From now on the error handling is not straightforward.
1837	 *
1838	 * If successful, this will transfer the fs_info into the super block,
1839	 * and fc->s_fs_info will be NULL.  However if there's an existing
1840	 * super, we'll still have fc->s_fs_info populated.  If we error
1841	 * completely out it'll be cleaned up when we drop the fs_context,
1842	 * otherwise it's tied to the lifetime of the super_block.
1843	 */
1844	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1845	if (IS_ERR(sb)) {
1846		ret = PTR_ERR(sb);
1847		goto error;
1848	}
1849
1850	set_device_specific_options(fs_info);
1851
1852	if (sb->s_root) {
1853		btrfs_close_devices(fs_devices);
1854		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1855			ret = -EBUSY;
1856	} else {
1857		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1858		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1859		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1860		ret = btrfs_fill_super(sb, fs_devices, NULL);
1861	}
1862
1863	if (ret) {
1864		deactivate_locked_super(sb);
1865		return ret;
1866	}
1867
1868	btrfs_clear_oneshot_options(fs_info);
1869
1870	fc->root = dget(sb->s_root);
1871	return 0;
1872
1873error:
1874	btrfs_close_devices(fs_devices);
1875	return ret;
1876}
1877
1878/*
1879 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1880 * with different ro/rw options") the following works:
1881 *
1882 *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1883 *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1884 *
1885 * which looks nice and innocent but is actually pretty intricate and deserves
1886 * a long comment.
1887 *
1888 * On another filesystem a subvolume mount is close to something like:
1889 *
1890 *	(iii) # create rw superblock + initial mount
1891 *	      mount -t xfs /dev/sdb /opt/
1892 *
1893 *	      # create ro bind mount
1894 *	      mount --bind -o ro /opt/foo /mnt/foo
1895 *
1896 *	      # unmount initial mount
1897 *	      umount /opt
1898 *
1899 * Of course, there's some special subvolume sauce and there's the fact that the
1900 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1901 * it's very close and will help us understand the issue.
1902 *
1903 * The old mount API didn't cleanly distinguish between a mount being made ro
1904 * and a superblock being made ro.  The only way to change the ro state of
1905 * either object was by passing ms_rdonly. If a new mount was created via
1906 * mount(2) such as:
1907 *
1908 *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1909 *
1910 * the MS_RDONLY flag being specified had two effects:
1911 *
1912 * (1) MNT_READONLY was raised -> the resulting mount got
1913 *     @mnt->mnt_flags |= MNT_READONLY raised.
1914 *
1915 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1916 *     made the superblock ro. Note, how SB_RDONLY has the same value as
1917 *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1918 *
1919 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1920 * subtree mounted ro.
1921 *
1922 * But consider the effect on the old mount API on btrfs subvolume mounting
1923 * which combines the distinct step in (iii) into a single step.
1924 *
1925 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1926 * is issued the superblock is ro and thus even if the mount created for (ii) is
1927 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1928 * to rw for (ii) which it did using an internal remount call.
1929 *
1930 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1931 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1932 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1933 * passed by mount(8) to mount(2).
1934 *
1935 * Enter the new mount API. The new mount API disambiguates making a mount ro
1936 * and making a superblock ro.
1937 *
1938 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1939 *     fsmount() or mount_setattr() this is a pure VFS level change for a
1940 *     specific mount or mount tree that is never seen by the filesystem itself.
1941 *
1942 * (4) To turn a superblock ro the "ro" flag must be used with
1943 *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1944 *     in fc->sb_flags.
1945 *
1946 * This disambiguation has rather positive consequences.  Mounting a subvolume
1947 * ro will not also turn the superblock ro. Only the mount for the subvolume
1948 * will become ro.
1949 *
1950 * So, if the superblock creation request comes from the new mount API the
1951 * caller must have explicitly done:
1952 *
1953 *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1954 *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1955 *
1956 * IOW, at some point the caller must have explicitly turned the whole
1957 * superblock ro and we shouldn't just undo it like we did for the old mount
1958 * API. In any case, it lets us avoid the hack in the new mount API.
1959 *
1960 * Consequently, the remounting hack must only be used for requests originating
1961 * from the old mount API and should be marked for full deprecation so it can be
1962 * turned off in a couple of years.
1963 *
1964 * The new mount API has no reason to support this hack.
1965 */
1966static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1967{
1968	struct vfsmount *mnt;
1969	int ret;
1970	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1971
1972	/*
1973	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1974	 * super block, so invert our setting here and retry the mount so we
1975	 * can get our vfsmount.
1976	 */
1977	if (ro2rw)
1978		fc->sb_flags |= SB_RDONLY;
1979	else
1980		fc->sb_flags &= ~SB_RDONLY;
1981
1982	mnt = fc_mount(fc);
1983	if (IS_ERR(mnt))
1984		return mnt;
1985
1986	if (!fc->oldapi || !ro2rw)
1987		return mnt;
1988
1989	/* We need to convert to rw, call reconfigure. */
1990	fc->sb_flags &= ~SB_RDONLY;
1991	down_write(&mnt->mnt_sb->s_umount);
1992	ret = btrfs_reconfigure(fc);
1993	up_write(&mnt->mnt_sb->s_umount);
1994	if (ret) {
1995		mntput(mnt);
1996		return ERR_PTR(ret);
1997	}
1998	return mnt;
1999}
2000
2001static int btrfs_get_tree_subvol(struct fs_context *fc)
2002{
2003	struct btrfs_fs_info *fs_info = NULL;
2004	struct btrfs_fs_context *ctx = fc->fs_private;
2005	struct fs_context *dup_fc;
2006	struct dentry *dentry;
2007	struct vfsmount *mnt;
2008
2009	/*
2010	 * Setup a dummy root and fs_info for test/set super.  This is because
2011	 * we don't actually fill this stuff out until open_ctree, but we need
2012	 * then open_ctree will properly initialize the file system specific
2013	 * settings later.  btrfs_init_fs_info initializes the static elements
2014	 * of the fs_info (locks and such) to make cleanup easier if we find a
2015	 * superblock with our given fs_devices later on at sget() time.
2016	 */
2017	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2018	if (!fs_info)
2019		return -ENOMEM;
2020
2021	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2022	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2023	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2024		btrfs_free_fs_info(fs_info);
2025		return -ENOMEM;
2026	}
2027	btrfs_init_fs_info(fs_info);
2028
2029	dup_fc = vfs_dup_fs_context(fc);
2030	if (IS_ERR(dup_fc)) {
2031		btrfs_free_fs_info(fs_info);
2032		return PTR_ERR(dup_fc);
2033	}
2034
2035	/*
2036	 * When we do the sget_fc this gets transferred to the sb, so we only
2037	 * need to set it on the dup_fc as this is what creates the super block.
2038	 */
2039	dup_fc->s_fs_info = fs_info;
2040
2041	/*
2042	 * We'll do the security settings in our btrfs_get_tree_super() mount
2043	 * loop, they were duplicated into dup_fc, we can drop the originals
2044	 * here.
2045	 */
2046	security_free_mnt_opts(&fc->security);
2047	fc->security = NULL;
2048
2049	mnt = fc_mount(dup_fc);
2050	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2051		mnt = btrfs_reconfigure_for_mount(dup_fc);
2052	put_fs_context(dup_fc);
2053	if (IS_ERR(mnt))
2054		return PTR_ERR(mnt);
2055
2056	/*
2057	 * This free's ->subvol_name, because if it isn't set we have to
2058	 * allocate a buffer to hold the subvol_name, so we just drop our
2059	 * reference to it here.
2060	 */
2061	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2062	ctx->subvol_name = NULL;
2063	if (IS_ERR(dentry))
2064		return PTR_ERR(dentry);
2065
2066	fc->root = dentry;
2067	return 0;
2068}
2069
2070static int btrfs_get_tree(struct fs_context *fc)
2071{
2072	/*
2073	 * Since we use mount_subtree to mount the default/specified subvol, we
2074	 * have to do mounts in two steps.
2075	 *
2076	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2077	 * wrapper around fc_mount() to call back into here again, and this time
2078	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2079	 * everything to open the devices and file system.  Then we return back
2080	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2081	 * from there we can do our mount_subvol() call, which will lookup
2082	 * whichever subvol we're mounting and setup this fc with the
2083	 * appropriate dentry for the subvol.
2084	 */
2085	if (fc->s_fs_info)
2086		return btrfs_get_tree_super(fc);
2087	return btrfs_get_tree_subvol(fc);
2088}
2089
2090static void btrfs_kill_super(struct super_block *sb)
2091{
2092	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2093	kill_anon_super(sb);
2094	btrfs_free_fs_info(fs_info);
2095}
2096
2097static void btrfs_free_fs_context(struct fs_context *fc)
2098{
2099	struct btrfs_fs_context *ctx = fc->fs_private;
2100	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2101
2102	if (fs_info)
2103		btrfs_free_fs_info(fs_info);
2104
2105	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2106		kfree(ctx->subvol_name);
2107		kfree(ctx);
2108	}
2109}
2110
2111static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2112{
2113	struct btrfs_fs_context *ctx = src_fc->fs_private;
2114
2115	/*
2116	 * Give a ref to our ctx to this dup, as we want to keep it around for
2117	 * our original fc so we can have the subvolume name or objectid.
2118	 *
2119	 * We unset ->source in the original fc because the dup needs it for
2120	 * mounting, and then once we free the dup it'll free ->source, so we
2121	 * need to make sure we're only pointing to it in one fc.
2122	 */
2123	refcount_inc(&ctx->refs);
2124	fc->fs_private = ctx;
2125	fc->source = src_fc->source;
2126	src_fc->source = NULL;
2127	return 0;
2128}
2129
2130static const struct fs_context_operations btrfs_fs_context_ops = {
2131	.parse_param	= btrfs_parse_param,
2132	.reconfigure	= btrfs_reconfigure,
2133	.get_tree	= btrfs_get_tree,
2134	.dup		= btrfs_dup_fs_context,
2135	.free		= btrfs_free_fs_context,
2136};
2137
2138static int btrfs_init_fs_context(struct fs_context *fc)
2139{
2140	struct btrfs_fs_context *ctx;
2141
2142	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2143	if (!ctx)
2144		return -ENOMEM;
2145
2146	refcount_set(&ctx->refs, 1);
2147	fc->fs_private = ctx;
2148	fc->ops = &btrfs_fs_context_ops;
2149
2150	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2151		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2152	} else {
2153		ctx->thread_pool_size =
2154			min_t(unsigned long, num_online_cpus() + 2, 8);
2155		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2156		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2157	}
2158
2159#ifdef CONFIG_BTRFS_FS_POSIX_ACL
2160	fc->sb_flags |= SB_POSIXACL;
2161#endif
2162	fc->sb_flags |= SB_I_VERSION;
2163
2164	return 0;
2165}
2166
2167static struct file_system_type btrfs_fs_type = {
2168	.owner			= THIS_MODULE,
2169	.name			= "btrfs",
2170	.init_fs_context	= btrfs_init_fs_context,
2171	.parameters		= btrfs_fs_parameters,
2172	.kill_sb		= btrfs_kill_super,
2173	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2174 };
2175
2176MODULE_ALIAS_FS("btrfs");
2177
2178static int btrfs_control_open(struct inode *inode, struct file *file)
2179{
2180	/*
2181	 * The control file's private_data is used to hold the
2182	 * transaction when it is started and is used to keep
2183	 * track of whether a transaction is already in progress.
2184	 */
2185	file->private_data = NULL;
2186	return 0;
2187}
2188
2189/*
2190 * Used by /dev/btrfs-control for devices ioctls.
2191 */
2192static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2193				unsigned long arg)
2194{
2195	struct btrfs_ioctl_vol_args *vol;
2196	struct btrfs_device *device = NULL;
2197	dev_t devt = 0;
2198	int ret = -ENOTTY;
2199
2200	if (!capable(CAP_SYS_ADMIN))
2201		return -EPERM;
2202
2203	vol = memdup_user((void __user *)arg, sizeof(*vol));
2204	if (IS_ERR(vol))
2205		return PTR_ERR(vol);
2206	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
2207
2208	switch (cmd) {
2209	case BTRFS_IOC_SCAN_DEV:
2210		mutex_lock(&uuid_mutex);
2211		/*
2212		 * Scanning outside of mount can return NULL which would turn
2213		 * into 0 error code.
2214		 */
2215		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2216		ret = PTR_ERR_OR_ZERO(device);
2217		mutex_unlock(&uuid_mutex);
2218		break;
2219	case BTRFS_IOC_FORGET_DEV:
2220		if (vol->name[0] != 0) {
2221			ret = lookup_bdev(vol->name, &devt);
2222			if (ret)
2223				break;
2224		}
2225		ret = btrfs_forget_devices(devt);
2226		break;
2227	case BTRFS_IOC_DEVICES_READY:
2228		mutex_lock(&uuid_mutex);
2229		/*
2230		 * Scanning outside of mount can return NULL which would turn
2231		 * into 0 error code.
2232		 */
2233		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2234		if (IS_ERR_OR_NULL(device)) {
2235			mutex_unlock(&uuid_mutex);
2236			ret = PTR_ERR(device);
2237			break;
2238		}
2239		ret = !(device->fs_devices->num_devices ==
2240			device->fs_devices->total_devices);
2241		mutex_unlock(&uuid_mutex);
2242		break;
2243	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2244		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2245		break;
2246	}
2247
 
2248	kfree(vol);
2249	return ret;
2250}
2251
2252static int btrfs_freeze(struct super_block *sb)
2253{
2254	struct btrfs_trans_handle *trans;
2255	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2256	struct btrfs_root *root = fs_info->tree_root;
2257
2258	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2259	/*
2260	 * We don't need a barrier here, we'll wait for any transaction that
2261	 * could be in progress on other threads (and do delayed iputs that
2262	 * we want to avoid on a frozen filesystem), or do the commit
2263	 * ourselves.
2264	 */
2265	trans = btrfs_attach_transaction_barrier(root);
2266	if (IS_ERR(trans)) {
2267		/* no transaction, don't bother */
2268		if (PTR_ERR(trans) == -ENOENT)
2269			return 0;
2270		return PTR_ERR(trans);
2271	}
2272	return btrfs_commit_transaction(trans);
2273}
2274
2275static int check_dev_super(struct btrfs_device *dev)
2276{
2277	struct btrfs_fs_info *fs_info = dev->fs_info;
2278	struct btrfs_super_block *sb;
2279	u64 last_trans;
2280	u16 csum_type;
2281	int ret = 0;
2282
2283	/* This should be called with fs still frozen. */
2284	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2285
2286	/* Missing dev, no need to check. */
2287	if (!dev->bdev)
2288		return 0;
2289
2290	/* Only need to check the primary super block. */
2291	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2292	if (IS_ERR(sb))
2293		return PTR_ERR(sb);
2294
2295	/* Verify the checksum. */
2296	csum_type = btrfs_super_csum_type(sb);
2297	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2298		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2299			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2300		ret = -EUCLEAN;
2301		goto out;
2302	}
2303
2304	if (btrfs_check_super_csum(fs_info, sb)) {
2305		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2306		ret = -EUCLEAN;
2307		goto out;
2308	}
2309
2310	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2311	ret = btrfs_validate_super(fs_info, sb, 0);
2312	if (ret < 0)
2313		goto out;
2314
2315	last_trans = btrfs_get_last_trans_committed(fs_info);
2316	if (btrfs_super_generation(sb) != last_trans) {
2317		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2318			  btrfs_super_generation(sb), last_trans);
2319		ret = -EUCLEAN;
2320		goto out;
2321	}
2322out:
2323	btrfs_release_disk_super(sb);
2324	return ret;
2325}
2326
2327static int btrfs_unfreeze(struct super_block *sb)
2328{
2329	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2330	struct btrfs_device *device;
2331	int ret = 0;
2332
2333	/*
2334	 * Make sure the fs is not changed by accident (like hibernation then
2335	 * modified by other OS).
2336	 * If we found anything wrong, we mark the fs error immediately.
2337	 *
2338	 * And since the fs is frozen, no one can modify the fs yet, thus
2339	 * we don't need to hold device_list_mutex.
2340	 */
2341	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2342		ret = check_dev_super(device);
2343		if (ret < 0) {
2344			btrfs_handle_fs_error(fs_info, ret,
2345				"super block on devid %llu got modified unexpectedly",
2346				device->devid);
2347			break;
2348		}
2349	}
2350	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2351
2352	/*
2353	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2354	 * above checks failed. Since the fs is either fine or read-only, we're
2355	 * safe to continue, without causing further damage.
2356	 */
2357	return 0;
2358}
2359
2360static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2361{
2362	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2363
2364	/*
2365	 * There should be always a valid pointer in latest_dev, it may be stale
2366	 * for a short moment in case it's being deleted but still valid until
2367	 * the end of RCU grace period.
2368	 */
2369	rcu_read_lock();
2370	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2371	rcu_read_unlock();
2372
2373	return 0;
2374}
2375
2376static const struct super_operations btrfs_super_ops = {
2377	.drop_inode	= btrfs_drop_inode,
2378	.evict_inode	= btrfs_evict_inode,
2379	.put_super	= btrfs_put_super,
2380	.sync_fs	= btrfs_sync_fs,
2381	.show_options	= btrfs_show_options,
2382	.show_devname	= btrfs_show_devname,
2383	.alloc_inode	= btrfs_alloc_inode,
2384	.destroy_inode	= btrfs_destroy_inode,
2385	.free_inode	= btrfs_free_inode,
2386	.statfs		= btrfs_statfs,
2387	.freeze_fs	= btrfs_freeze,
2388	.unfreeze_fs	= btrfs_unfreeze,
2389};
2390
2391static const struct file_operations btrfs_ctl_fops = {
2392	.open = btrfs_control_open,
2393	.unlocked_ioctl	 = btrfs_control_ioctl,
2394	.compat_ioctl = compat_ptr_ioctl,
2395	.owner	 = THIS_MODULE,
2396	.llseek = noop_llseek,
2397};
2398
2399static struct miscdevice btrfs_misc = {
2400	.minor		= BTRFS_MINOR,
2401	.name		= "btrfs-control",
2402	.fops		= &btrfs_ctl_fops
2403};
2404
2405MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2406MODULE_ALIAS("devname:btrfs-control");
2407
2408static int __init btrfs_interface_init(void)
2409{
2410	return misc_register(&btrfs_misc);
2411}
2412
2413static __cold void btrfs_interface_exit(void)
2414{
2415	misc_deregister(&btrfs_misc);
2416}
2417
2418static int __init btrfs_print_mod_info(void)
2419{
2420	static const char options[] = ""
2421#ifdef CONFIG_BTRFS_DEBUG
2422			", debug=on"
2423#endif
2424#ifdef CONFIG_BTRFS_ASSERT
2425			", assert=on"
2426#endif
2427#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2428			", ref-verify=on"
2429#endif
2430#ifdef CONFIG_BLK_DEV_ZONED
2431			", zoned=yes"
2432#else
2433			", zoned=no"
2434#endif
2435#ifdef CONFIG_FS_VERITY
2436			", fsverity=yes"
2437#else
2438			", fsverity=no"
2439#endif
2440			;
2441	pr_info("Btrfs loaded%s\n", options);
2442	return 0;
2443}
2444
2445static int register_btrfs(void)
2446{
2447	return register_filesystem(&btrfs_fs_type);
2448}
2449
2450static void unregister_btrfs(void)
2451{
2452	unregister_filesystem(&btrfs_fs_type);
2453}
2454
2455/* Helper structure for long init/exit functions. */
2456struct init_sequence {
2457	int (*init_func)(void);
2458	/* Can be NULL if the init_func doesn't need cleanup. */
2459	void (*exit_func)(void);
2460};
2461
2462static const struct init_sequence mod_init_seq[] = {
2463	{
2464		.init_func = btrfs_props_init,
2465		.exit_func = NULL,
2466	}, {
2467		.init_func = btrfs_init_sysfs,
2468		.exit_func = btrfs_exit_sysfs,
2469	}, {
2470		.init_func = btrfs_init_compress,
2471		.exit_func = btrfs_exit_compress,
2472	}, {
2473		.init_func = btrfs_init_cachep,
2474		.exit_func = btrfs_destroy_cachep,
2475	}, {
2476		.init_func = btrfs_transaction_init,
2477		.exit_func = btrfs_transaction_exit,
2478	}, {
2479		.init_func = btrfs_ctree_init,
2480		.exit_func = btrfs_ctree_exit,
2481	}, {
2482		.init_func = btrfs_free_space_init,
2483		.exit_func = btrfs_free_space_exit,
2484	}, {
2485		.init_func = extent_state_init_cachep,
2486		.exit_func = extent_state_free_cachep,
2487	}, {
2488		.init_func = extent_buffer_init_cachep,
2489		.exit_func = extent_buffer_free_cachep,
2490	}, {
2491		.init_func = btrfs_bioset_init,
2492		.exit_func = btrfs_bioset_exit,
2493	}, {
2494		.init_func = extent_map_init,
2495		.exit_func = extent_map_exit,
2496	}, {
2497		.init_func = ordered_data_init,
2498		.exit_func = ordered_data_exit,
2499	}, {
2500		.init_func = btrfs_delayed_inode_init,
2501		.exit_func = btrfs_delayed_inode_exit,
2502	}, {
2503		.init_func = btrfs_auto_defrag_init,
2504		.exit_func = btrfs_auto_defrag_exit,
2505	}, {
2506		.init_func = btrfs_delayed_ref_init,
2507		.exit_func = btrfs_delayed_ref_exit,
2508	}, {
2509		.init_func = btrfs_prelim_ref_init,
2510		.exit_func = btrfs_prelim_ref_exit,
2511	}, {
2512		.init_func = btrfs_interface_init,
2513		.exit_func = btrfs_interface_exit,
2514	}, {
2515		.init_func = btrfs_print_mod_info,
2516		.exit_func = NULL,
2517	}, {
2518		.init_func = btrfs_run_sanity_tests,
2519		.exit_func = NULL,
2520	}, {
2521		.init_func = register_btrfs,
2522		.exit_func = unregister_btrfs,
2523	}
2524};
2525
2526static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2527
2528static __always_inline void btrfs_exit_btrfs_fs(void)
2529{
2530	int i;
2531
2532	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2533		if (!mod_init_result[i])
2534			continue;
2535		if (mod_init_seq[i].exit_func)
2536			mod_init_seq[i].exit_func();
2537		mod_init_result[i] = false;
2538	}
2539}
2540
2541static void __exit exit_btrfs_fs(void)
2542{
2543	btrfs_exit_btrfs_fs();
2544	btrfs_cleanup_fs_uuids();
2545}
2546
2547static int __init init_btrfs_fs(void)
2548{
2549	int ret;
2550	int i;
2551
2552	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2553		ASSERT(!mod_init_result[i]);
2554		ret = mod_init_seq[i].init_func();
2555		if (ret < 0) {
2556			btrfs_exit_btrfs_fs();
2557			return ret;
2558		}
2559		mod_init_result[i] = true;
2560	}
2561	return 0;
2562}
2563
2564late_initcall(init_btrfs_fs);
2565module_exit(exit_btrfs_fs)
2566
2567MODULE_LICENSE("GPL");
2568MODULE_SOFTDEP("pre: crc32c");
2569MODULE_SOFTDEP("pre: xxhash64");
2570MODULE_SOFTDEP("pre: sha256");
2571MODULE_SOFTDEP("pre: blake2b-256");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
  26#include <linux/ratelimit.h>
  27#include <linux/crc32c.h>
  28#include <linux/btrfs.h>
  29#include <linux/security.h>
  30#include <linux/fs_parser.h>
  31#include "messages.h"
  32#include "delayed-inode.h"
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
 
  37#include "props.h"
  38#include "xattr.h"
  39#include "bio.h"
  40#include "export.h"
  41#include "compression.h"
 
  42#include "dev-replace.h"
  43#include "free-space-cache.h"
  44#include "backref.h"
  45#include "space-info.h"
  46#include "sysfs.h"
  47#include "zoned.h"
  48#include "tests/btrfs-tests.h"
  49#include "block-group.h"
  50#include "discard.h"
  51#include "qgroup.h"
  52#include "raid56.h"
  53#include "fs.h"
  54#include "accessors.h"
  55#include "defrag.h"
  56#include "dir-item.h"
  57#include "ioctl.h"
  58#include "scrub.h"
  59#include "verity.h"
  60#include "super.h"
  61#include "extent-tree.h"
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/btrfs.h>
  64
  65static const struct super_operations btrfs_super_ops;
  66static struct file_system_type btrfs_fs_type;
  67
  68static void btrfs_put_super(struct super_block *sb)
  69{
  70	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  71
  72	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
  73	close_ctree(fs_info);
  74}
  75
  76/* Store the mount options related information. */
  77struct btrfs_fs_context {
  78	char *subvol_name;
  79	u64 subvol_objectid;
  80	u64 max_inline;
  81	u32 commit_interval;
  82	u32 metadata_ratio;
  83	u32 thread_pool_size;
  84	unsigned long mount_opt;
  85	unsigned long compress_type:4;
  86	unsigned int compress_level;
  87	refcount_t refs;
  88};
  89
  90enum {
  91	Opt_acl,
  92	Opt_clear_cache,
  93	Opt_commit_interval,
  94	Opt_compress,
  95	Opt_compress_force,
  96	Opt_compress_force_type,
  97	Opt_compress_type,
  98	Opt_degraded,
  99	Opt_device,
 100	Opt_fatal_errors,
 101	Opt_flushoncommit,
 102	Opt_max_inline,
 103	Opt_barrier,
 104	Opt_datacow,
 105	Opt_datasum,
 106	Opt_defrag,
 107	Opt_discard,
 108	Opt_discard_mode,
 109	Opt_ratio,
 110	Opt_rescan_uuid_tree,
 111	Opt_skip_balance,
 112	Opt_space_cache,
 113	Opt_space_cache_version,
 114	Opt_ssd,
 115	Opt_ssd_spread,
 116	Opt_subvol,
 117	Opt_subvol_empty,
 118	Opt_subvolid,
 119	Opt_thread_pool,
 120	Opt_treelog,
 121	Opt_user_subvol_rm_allowed,
 122
 123	/* Rescue options */
 124	Opt_rescue,
 125	Opt_usebackuproot,
 126	Opt_nologreplay,
 127	Opt_ignorebadroots,
 128	Opt_ignoredatacsums,
 129	Opt_rescue_all,
 130
 131	/* Debugging options */
 132	Opt_enospc_debug,
 133#ifdef CONFIG_BTRFS_DEBUG
 134	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 135#endif
 136#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 137	Opt_ref_verify,
 138#endif
 139	Opt_err,
 140};
 141
 142enum {
 143	Opt_fatal_errors_panic,
 144	Opt_fatal_errors_bug,
 145};
 146
 147static const struct constant_table btrfs_parameter_fatal_errors[] = {
 148	{ "panic", Opt_fatal_errors_panic },
 149	{ "bug", Opt_fatal_errors_bug },
 150	{}
 151};
 152
 153enum {
 154	Opt_discard_sync,
 155	Opt_discard_async,
 156};
 157
 158static const struct constant_table btrfs_parameter_discard[] = {
 159	{ "sync", Opt_discard_sync },
 160	{ "async", Opt_discard_async },
 161	{}
 162};
 163
 164enum {
 165	Opt_space_cache_v1,
 166	Opt_space_cache_v2,
 167};
 168
 169static const struct constant_table btrfs_parameter_space_cache[] = {
 170	{ "v1", Opt_space_cache_v1 },
 171	{ "v2", Opt_space_cache_v2 },
 172	{}
 173};
 174
 175enum {
 176	Opt_rescue_usebackuproot,
 177	Opt_rescue_nologreplay,
 178	Opt_rescue_ignorebadroots,
 179	Opt_rescue_ignoredatacsums,
 180	Opt_rescue_parameter_all,
 181};
 182
 183static const struct constant_table btrfs_parameter_rescue[] = {
 184	{ "usebackuproot", Opt_rescue_usebackuproot },
 185	{ "nologreplay", Opt_rescue_nologreplay },
 186	{ "ignorebadroots", Opt_rescue_ignorebadroots },
 187	{ "ibadroots", Opt_rescue_ignorebadroots },
 188	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
 189	{ "idatacsums", Opt_rescue_ignoredatacsums },
 190	{ "all", Opt_rescue_parameter_all },
 191	{}
 192};
 193
 194#ifdef CONFIG_BTRFS_DEBUG
 195enum {
 196	Opt_fragment_parameter_data,
 197	Opt_fragment_parameter_metadata,
 198	Opt_fragment_parameter_all,
 199};
 200
 201static const struct constant_table btrfs_parameter_fragment[] = {
 202	{ "data", Opt_fragment_parameter_data },
 203	{ "metadata", Opt_fragment_parameter_metadata },
 204	{ "all", Opt_fragment_parameter_all },
 205	{}
 206};
 207#endif
 208
 209static const struct fs_parameter_spec btrfs_fs_parameters[] = {
 210	fsparam_flag_no("acl", Opt_acl),
 211	fsparam_flag_no("autodefrag", Opt_defrag),
 212	fsparam_flag_no("barrier", Opt_barrier),
 213	fsparam_flag("clear_cache", Opt_clear_cache),
 214	fsparam_u32("commit", Opt_commit_interval),
 215	fsparam_flag("compress", Opt_compress),
 216	fsparam_string("compress", Opt_compress_type),
 217	fsparam_flag("compress-force", Opt_compress_force),
 218	fsparam_string("compress-force", Opt_compress_force_type),
 219	fsparam_flag_no("datacow", Opt_datacow),
 220	fsparam_flag_no("datasum", Opt_datasum),
 221	fsparam_flag("degraded", Opt_degraded),
 222	fsparam_string("device", Opt_device),
 223	fsparam_flag_no("discard", Opt_discard),
 224	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
 225	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
 226	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
 227	fsparam_string("max_inline", Opt_max_inline),
 228	fsparam_u32("metadata_ratio", Opt_ratio),
 229	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
 230	fsparam_flag("skip_balance", Opt_skip_balance),
 231	fsparam_flag_no("space_cache", Opt_space_cache),
 232	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
 233	fsparam_flag_no("ssd", Opt_ssd),
 234	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
 235	fsparam_string("subvol", Opt_subvol),
 236	fsparam_flag("subvol=", Opt_subvol_empty),
 237	fsparam_u64("subvolid", Opt_subvolid),
 238	fsparam_u32("thread_pool", Opt_thread_pool),
 239	fsparam_flag_no("treelog", Opt_treelog),
 240	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
 241
 242	/* Rescue options. */
 243	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
 244	/* Deprecated, with alias rescue=nologreplay */
 245	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
 246	/* Deprecated, with alias rescue=usebackuproot */
 247	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
 248
 249	/* Debugging options. */
 250	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
 251#ifdef CONFIG_BTRFS_DEBUG
 252	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
 253#endif
 254#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 255	fsparam_flag("ref_verify", Opt_ref_verify),
 256#endif
 257	{}
 258};
 259
 260/* No support for restricting writes to btrfs devices yet... */
 261static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
 262{
 263	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
 264}
 265
 266static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 267{
 268	struct btrfs_fs_context *ctx = fc->fs_private;
 269	struct fs_parse_result result;
 270	int opt;
 271
 272	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
 273	if (opt < 0)
 274		return opt;
 275
 276	switch (opt) {
 277	case Opt_degraded:
 278		btrfs_set_opt(ctx->mount_opt, DEGRADED);
 279		break;
 280	case Opt_subvol_empty:
 281		/*
 282		 * This exists because we used to allow it on accident, so we're
 283		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
 284		 * empty subvol= again").
 285		 */
 286		break;
 287	case Opt_subvol:
 288		kfree(ctx->subvol_name);
 289		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
 290		if (!ctx->subvol_name)
 291			return -ENOMEM;
 292		break;
 293	case Opt_subvolid:
 294		ctx->subvol_objectid = result.uint_64;
 295
 296		/* subvolid=0 means give me the original fs_tree. */
 297		if (!ctx->subvol_objectid)
 298			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
 299		break;
 300	case Opt_device: {
 301		struct btrfs_device *device;
 302		blk_mode_t mode = btrfs_open_mode(fc);
 303
 304		mutex_lock(&uuid_mutex);
 305		device = btrfs_scan_one_device(param->string, mode, false);
 306		mutex_unlock(&uuid_mutex);
 307		if (IS_ERR(device))
 308			return PTR_ERR(device);
 309		break;
 310	}
 311	case Opt_datasum:
 312		if (result.negated) {
 313			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 314		} else {
 315			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 316			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 317		}
 318		break;
 319	case Opt_datacow:
 320		if (result.negated) {
 321			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 322			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 323			btrfs_set_opt(ctx->mount_opt, NODATACOW);
 324			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 325		} else {
 326			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 327		}
 328		break;
 329	case Opt_compress_force:
 330	case Opt_compress_force_type:
 331		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
 332		fallthrough;
 333	case Opt_compress:
 334	case Opt_compress_type:
 335		if (opt == Opt_compress || opt == Opt_compress_force) {
 336			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 337			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 338			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 339			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 340			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 341		} else if (strncmp(param->string, "zlib", 4) == 0) {
 342			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 343			ctx->compress_level =
 344				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
 345							 param->string + 4);
 346			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 347			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 348			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 349		} else if (strncmp(param->string, "lzo", 3) == 0) {
 350			ctx->compress_type = BTRFS_COMPRESS_LZO;
 351			ctx->compress_level = 0;
 352			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 353			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 354			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 355		} else if (strncmp(param->string, "zstd", 4) == 0) {
 356			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
 357			ctx->compress_level =
 358				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
 359							 param->string + 4);
 360			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 361			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 362			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 363		} else if (strncmp(param->string, "no", 2) == 0) {
 364			ctx->compress_level = 0;
 365			ctx->compress_type = 0;
 366			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 367			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 368		} else {
 369			btrfs_err(NULL, "unrecognized compression value %s",
 370				  param->string);
 371			return -EINVAL;
 372		}
 373		break;
 374	case Opt_ssd:
 375		if (result.negated) {
 376			btrfs_set_opt(ctx->mount_opt, NOSSD);
 377			btrfs_clear_opt(ctx->mount_opt, SSD);
 378			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 379		} else {
 380			btrfs_set_opt(ctx->mount_opt, SSD);
 381			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 382		}
 383		break;
 384	case Opt_ssd_spread:
 385		if (result.negated) {
 386			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 387		} else {
 388			btrfs_set_opt(ctx->mount_opt, SSD);
 389			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
 390			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 391		}
 392		break;
 393	case Opt_barrier:
 394		if (result.negated)
 395			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
 396		else
 397			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
 398		break;
 399	case Opt_thread_pool:
 400		if (result.uint_32 == 0) {
 401			btrfs_err(NULL, "invalid value 0 for thread_pool");
 402			return -EINVAL;
 403		}
 404		ctx->thread_pool_size = result.uint_32;
 405		break;
 406	case Opt_max_inline:
 407		ctx->max_inline = memparse(param->string, NULL);
 408		break;
 409	case Opt_acl:
 410		if (result.negated) {
 411			fc->sb_flags &= ~SB_POSIXACL;
 412		} else {
 413#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 414			fc->sb_flags |= SB_POSIXACL;
 415#else
 416			btrfs_err(NULL, "support for ACL not compiled in");
 417			return -EINVAL;
 418#endif
 419		}
 420		/*
 421		 * VFS limits the ability to toggle ACL on and off via remount,
 422		 * despite every file system allowing this.  This seems to be
 423		 * an oversight since we all do, but it'll fail if we're
 424		 * remounting.  So don't set the mask here, we'll check it in
 425		 * btrfs_reconfigure and do the toggling ourselves.
 426		 */
 427		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
 428			fc->sb_flags_mask |= SB_POSIXACL;
 429		break;
 430	case Opt_treelog:
 431		if (result.negated)
 432			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
 433		else
 434			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
 435		break;
 436	case Opt_nologreplay:
 437		btrfs_warn(NULL,
 438		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 439		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 440		break;
 441	case Opt_flushoncommit:
 442		if (result.negated)
 443			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
 444		else
 445			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
 446		break;
 447	case Opt_ratio:
 448		ctx->metadata_ratio = result.uint_32;
 449		break;
 450	case Opt_discard:
 451		if (result.negated) {
 452			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 453			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 454			btrfs_set_opt(ctx->mount_opt, NODISCARD);
 455		} else {
 456			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 457			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 458		}
 459		break;
 460	case Opt_discard_mode:
 461		switch (result.uint_32) {
 462		case Opt_discard_sync:
 463			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 464			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 465			break;
 466		case Opt_discard_async:
 467			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 468			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
 469			break;
 470		default:
 471			btrfs_err(NULL, "unrecognized discard mode value %s",
 472				  param->key);
 473			return -EINVAL;
 474		}
 475		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
 476		break;
 477	case Opt_space_cache:
 478		if (result.negated) {
 479			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
 480			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 481			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 482		} else {
 483			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 484			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 485		}
 486		break;
 487	case Opt_space_cache_version:
 488		switch (result.uint_32) {
 489		case Opt_space_cache_v1:
 490			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 491			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 492			break;
 493		case Opt_space_cache_v2:
 494			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 495			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
 496			break;
 497		default:
 498			btrfs_err(NULL, "unrecognized space_cache value %s",
 499				  param->key);
 500			return -EINVAL;
 501		}
 502		break;
 503	case Opt_rescan_uuid_tree:
 504		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
 505		break;
 506	case Opt_clear_cache:
 507		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 508		break;
 509	case Opt_user_subvol_rm_allowed:
 510		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
 511		break;
 512	case Opt_enospc_debug:
 513		if (result.negated)
 514			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
 515		else
 516			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
 517		break;
 518	case Opt_defrag:
 519		if (result.negated)
 520			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
 521		else
 522			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
 523		break;
 524	case Opt_usebackuproot:
 525		btrfs_warn(NULL,
 526			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
 527		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 528
 529		/* If we're loading the backup roots we can't trust the space cache. */
 530		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 531		break;
 532	case Opt_skip_balance:
 533		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
 534		break;
 535	case Opt_fatal_errors:
 536		switch (result.uint_32) {
 537		case Opt_fatal_errors_panic:
 538			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 539			break;
 540		case Opt_fatal_errors_bug:
 541			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 542			break;
 543		default:
 544			btrfs_err(NULL, "unrecognized fatal_errors value %s",
 545				  param->key);
 546			return -EINVAL;
 547		}
 548		break;
 549	case Opt_commit_interval:
 550		ctx->commit_interval = result.uint_32;
 551		if (ctx->commit_interval == 0)
 552			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 553		break;
 554	case Opt_rescue:
 555		switch (result.uint_32) {
 556		case Opt_rescue_usebackuproot:
 557			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 558			break;
 559		case Opt_rescue_nologreplay:
 560			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 561			break;
 562		case Opt_rescue_ignorebadroots:
 563			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 564			break;
 565		case Opt_rescue_ignoredatacsums:
 566			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 567			break;
 568		case Opt_rescue_parameter_all:
 569			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 570			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 571			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 572			break;
 573		default:
 574			btrfs_info(NULL, "unrecognized rescue option '%s'",
 575				   param->key);
 576			return -EINVAL;
 577		}
 578		break;
 579#ifdef CONFIG_BTRFS_DEBUG
 580	case Opt_fragment:
 581		switch (result.uint_32) {
 582		case Opt_fragment_parameter_all:
 583			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 584			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 585			break;
 586		case Opt_fragment_parameter_metadata:
 587			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 588			break;
 589		case Opt_fragment_parameter_data:
 590			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 591			break;
 592		default:
 593			btrfs_info(NULL, "unrecognized fragment option '%s'",
 594				   param->key);
 595			return -EINVAL;
 596		}
 597		break;
 598#endif
 599#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 600	case Opt_ref_verify:
 601		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
 602		break;
 603#endif
 604	default:
 605		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
 606		return -EINVAL;
 607	}
 608
 609	return 0;
 610}
 611
 612/*
 613 * Some options only have meaning at mount time and shouldn't persist across
 614 * remounts, or be displayed. Clear these at the end of mount and remount code
 615 * paths.
 616 */
 617static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
 618{
 619	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
 620	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
 621	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
 622}
 623
 624static bool check_ro_option(struct btrfs_fs_info *fs_info,
 625			    unsigned long mount_opt, unsigned long opt,
 626			    const char *opt_name)
 627{
 628	if (mount_opt & opt) {
 629		btrfs_err(fs_info, "%s must be used with ro mount option",
 630			  opt_name);
 631		return true;
 632	}
 633	return false;
 634}
 635
 636bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
 637			 unsigned long flags)
 638{
 639	bool ret = true;
 640
 641	if (!(flags & SB_RDONLY) &&
 642	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
 643	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
 644	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
 645		ret = false;
 646
 647	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 648	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
 649	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
 650		btrfs_err(info, "cannot disable free-space-tree");
 651		ret = false;
 652	}
 653	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
 654	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
 655		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
 656		ret = false;
 657	}
 658
 659	if (btrfs_check_mountopts_zoned(info, mount_opt))
 660		ret = false;
 661
 662	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
 663		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
 664			btrfs_info(info, "disk space caching is enabled");
 665		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
 666			btrfs_info(info, "using free-space-tree");
 667	}
 668
 669	return ret;
 670}
 671
 672/*
 673 * This is subtle, we only call this during open_ctree().  We need to pre-load
 674 * the mount options with the on-disk settings.  Before the new mount API took
 675 * effect we would do this on mount and remount.  With the new mount API we'll
 676 * only do this on the initial mount.
 677 *
 678 * This isn't a change in behavior, because we're using the current state of the
 679 * file system to set the current mount options.  If you mounted with special
 680 * options to disable these features and then remounted we wouldn't revert the
 681 * settings, because mounting without these features cleared the on-disk
 682 * settings, so this being called on re-mount is not needed.
 683 */
 684void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
 685{
 686	if (fs_info->sectorsize < PAGE_SIZE) {
 687		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
 688		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
 689			btrfs_info(fs_info,
 690				   "forcing free space tree for sector size %u with page size %lu",
 691				   fs_info->sectorsize, PAGE_SIZE);
 692			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 693		}
 694	}
 695
 696	/*
 697	 * At this point our mount options are populated, so we only mess with
 698	 * these settings if we don't have any settings already.
 699	 */
 700	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 701		return;
 702
 703	if (btrfs_is_zoned(fs_info) &&
 704	    btrfs_free_space_cache_v1_active(fs_info)) {
 705		btrfs_info(fs_info, "zoned: clearing existing space cache");
 706		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
 707		return;
 708	}
 709
 710	if (btrfs_test_opt(fs_info, SPACE_CACHE))
 711		return;
 712
 713	if (btrfs_test_opt(fs_info, NOSPACECACHE))
 714		return;
 715
 716	/*
 717	 * At this point we don't have explicit options set by the user, set
 718	 * them ourselves based on the state of the file system.
 719	 */
 720	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 721		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 722	else if (btrfs_free_space_cache_v1_active(fs_info))
 723		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
 724}
 725
 726static void set_device_specific_options(struct btrfs_fs_info *fs_info)
 727{
 728	if (!btrfs_test_opt(fs_info, NOSSD) &&
 729	    !fs_info->fs_devices->rotating)
 730		btrfs_set_opt(fs_info->mount_opt, SSD);
 731
 732	/*
 733	 * For devices supporting discard turn on discard=async automatically,
 734	 * unless it's already set or disabled. This could be turned off by
 735	 * nodiscard for the same mount.
 736	 *
 737	 * The zoned mode piggy backs on the discard functionality for
 738	 * resetting a zone. There is no reason to delay the zone reset as it is
 739	 * fast enough. So, do not enable async discard for zoned mode.
 740	 */
 741	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
 742	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
 743	      btrfs_test_opt(fs_info, NODISCARD)) &&
 744	    fs_info->fs_devices->discardable &&
 745	    !btrfs_is_zoned(fs_info))
 746		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
 747}
 748
 749char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 750					  u64 subvol_objectid)
 751{
 752	struct btrfs_root *root = fs_info->tree_root;
 753	struct btrfs_root *fs_root = NULL;
 754	struct btrfs_root_ref *root_ref;
 755	struct btrfs_inode_ref *inode_ref;
 756	struct btrfs_key key;
 757	struct btrfs_path *path = NULL;
 758	char *name = NULL, *ptr;
 759	u64 dirid;
 760	int len;
 761	int ret;
 762
 763	path = btrfs_alloc_path();
 764	if (!path) {
 765		ret = -ENOMEM;
 766		goto err;
 767	}
 768
 769	name = kmalloc(PATH_MAX, GFP_KERNEL);
 770	if (!name) {
 771		ret = -ENOMEM;
 772		goto err;
 773	}
 774	ptr = name + PATH_MAX - 1;
 775	ptr[0] = '\0';
 776
 777	/*
 778	 * Walk up the subvolume trees in the tree of tree roots by root
 779	 * backrefs until we hit the top-level subvolume.
 780	 */
 781	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 782		key.objectid = subvol_objectid;
 783		key.type = BTRFS_ROOT_BACKREF_KEY;
 784		key.offset = (u64)-1;
 785
 786		ret = btrfs_search_backwards(root, &key, path);
 787		if (ret < 0) {
 788			goto err;
 789		} else if (ret > 0) {
 790			ret = -ENOENT;
 791			goto err;
 792		}
 793
 794		subvol_objectid = key.offset;
 795
 796		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
 797					  struct btrfs_root_ref);
 798		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
 799		ptr -= len + 1;
 800		if (ptr < name) {
 801			ret = -ENAMETOOLONG;
 802			goto err;
 803		}
 804		read_extent_buffer(path->nodes[0], ptr + 1,
 805				   (unsigned long)(root_ref + 1), len);
 806		ptr[0] = '/';
 807		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
 808		btrfs_release_path(path);
 809
 810		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
 811		if (IS_ERR(fs_root)) {
 812			ret = PTR_ERR(fs_root);
 813			fs_root = NULL;
 814			goto err;
 815		}
 816
 817		/*
 818		 * Walk up the filesystem tree by inode refs until we hit the
 819		 * root directory.
 820		 */
 821		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
 822			key.objectid = dirid;
 823			key.type = BTRFS_INODE_REF_KEY;
 824			key.offset = (u64)-1;
 825
 826			ret = btrfs_search_backwards(fs_root, &key, path);
 827			if (ret < 0) {
 828				goto err;
 829			} else if (ret > 0) {
 830				ret = -ENOENT;
 831				goto err;
 832			}
 833
 834			dirid = key.offset;
 835
 836			inode_ref = btrfs_item_ptr(path->nodes[0],
 837						   path->slots[0],
 838						   struct btrfs_inode_ref);
 839			len = btrfs_inode_ref_name_len(path->nodes[0],
 840						       inode_ref);
 841			ptr -= len + 1;
 842			if (ptr < name) {
 843				ret = -ENAMETOOLONG;
 844				goto err;
 845			}
 846			read_extent_buffer(path->nodes[0], ptr + 1,
 847					   (unsigned long)(inode_ref + 1), len);
 848			ptr[0] = '/';
 849			btrfs_release_path(path);
 850		}
 851		btrfs_put_root(fs_root);
 852		fs_root = NULL;
 853	}
 854
 855	btrfs_free_path(path);
 856	if (ptr == name + PATH_MAX - 1) {
 857		name[0] = '/';
 858		name[1] = '\0';
 859	} else {
 860		memmove(name, ptr, name + PATH_MAX - ptr);
 861	}
 862	return name;
 863
 864err:
 865	btrfs_put_root(fs_root);
 866	btrfs_free_path(path);
 867	kfree(name);
 868	return ERR_PTR(ret);
 869}
 870
 871static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
 872{
 873	struct btrfs_root *root = fs_info->tree_root;
 874	struct btrfs_dir_item *di;
 875	struct btrfs_path *path;
 876	struct btrfs_key location;
 877	struct fscrypt_str name = FSTR_INIT("default", 7);
 878	u64 dir_id;
 879
 880	path = btrfs_alloc_path();
 881	if (!path)
 882		return -ENOMEM;
 883
 884	/*
 885	 * Find the "default" dir item which points to the root item that we
 886	 * will mount by default if we haven't been given a specific subvolume
 887	 * to mount.
 888	 */
 889	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 890	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
 891	if (IS_ERR(di)) {
 892		btrfs_free_path(path);
 893		return PTR_ERR(di);
 894	}
 895	if (!di) {
 896		/*
 897		 * Ok the default dir item isn't there.  This is weird since
 898		 * it's always been there, but don't freak out, just try and
 899		 * mount the top-level subvolume.
 900		 */
 901		btrfs_free_path(path);
 902		*objectid = BTRFS_FS_TREE_OBJECTID;
 903		return 0;
 904	}
 905
 906	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 907	btrfs_free_path(path);
 908	*objectid = location.objectid;
 909	return 0;
 910}
 911
 912static int btrfs_fill_super(struct super_block *sb,
 913			    struct btrfs_fs_devices *fs_devices,
 914			    void *data)
 915{
 916	struct inode *inode;
 917	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 918	int err;
 919
 920	sb->s_maxbytes = MAX_LFS_FILESIZE;
 921	sb->s_magic = BTRFS_SUPER_MAGIC;
 922	sb->s_op = &btrfs_super_ops;
 923	sb->s_d_op = &btrfs_dentry_operations;
 924	sb->s_export_op = &btrfs_export_ops;
 925#ifdef CONFIG_FS_VERITY
 926	sb->s_vop = &btrfs_verityops;
 927#endif
 928	sb->s_xattr = btrfs_xattr_handlers;
 929	sb->s_time_gran = 1;
 930	sb->s_iflags |= SB_I_CGROUPWB;
 931
 932	err = super_setup_bdi(sb);
 933	if (err) {
 934		btrfs_err(fs_info, "super_setup_bdi failed");
 935		return err;
 936	}
 937
 938	err = open_ctree(sb, fs_devices, (char *)data);
 939	if (err) {
 940		btrfs_err(fs_info, "open_ctree failed");
 941		return err;
 942	}
 943
 944	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 945	if (IS_ERR(inode)) {
 946		err = PTR_ERR(inode);
 947		btrfs_handle_fs_error(fs_info, err, NULL);
 948		goto fail_close;
 949	}
 950
 951	sb->s_root = d_make_root(inode);
 952	if (!sb->s_root) {
 953		err = -ENOMEM;
 954		goto fail_close;
 955	}
 956
 957	sb->s_flags |= SB_ACTIVE;
 958	return 0;
 959
 960fail_close:
 961	close_ctree(fs_info);
 962	return err;
 963}
 964
 965int btrfs_sync_fs(struct super_block *sb, int wait)
 966{
 967	struct btrfs_trans_handle *trans;
 968	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 969	struct btrfs_root *root = fs_info->tree_root;
 970
 971	trace_btrfs_sync_fs(fs_info, wait);
 972
 973	if (!wait) {
 974		filemap_flush(fs_info->btree_inode->i_mapping);
 975		return 0;
 976	}
 977
 978	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
 979
 980	trans = btrfs_attach_transaction_barrier(root);
 981	if (IS_ERR(trans)) {
 982		/* no transaction, don't bother */
 983		if (PTR_ERR(trans) == -ENOENT) {
 984			/*
 985			 * Exit unless we have some pending changes
 986			 * that need to go through commit
 987			 */
 988			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
 989				      &fs_info->flags))
 990				return 0;
 991			/*
 992			 * A non-blocking test if the fs is frozen. We must not
 993			 * start a new transaction here otherwise a deadlock
 994			 * happens. The pending operations are delayed to the
 995			 * next commit after thawing.
 996			 */
 997			if (sb_start_write_trylock(sb))
 998				sb_end_write(sb);
 999			else
1000				return 0;
1001			trans = btrfs_start_transaction(root, 0);
1002		}
1003		if (IS_ERR(trans))
1004			return PTR_ERR(trans);
1005	}
1006	return btrfs_commit_transaction(trans);
1007}
1008
1009static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1010{
1011	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1012	*printed = true;
1013}
1014
1015static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1016{
1017	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1018	const char *compress_type;
1019	const char *subvol_name;
1020	bool printed = false;
1021
1022	if (btrfs_test_opt(info, DEGRADED))
1023		seq_puts(seq, ",degraded");
1024	if (btrfs_test_opt(info, NODATASUM))
1025		seq_puts(seq, ",nodatasum");
1026	if (btrfs_test_opt(info, NODATACOW))
1027		seq_puts(seq, ",nodatacow");
1028	if (btrfs_test_opt(info, NOBARRIER))
1029		seq_puts(seq, ",nobarrier");
1030	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1031		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1032	if (info->thread_pool_size !=  min_t(unsigned long,
1033					     num_online_cpus() + 2, 8))
1034		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1035	if (btrfs_test_opt(info, COMPRESS)) {
1036		compress_type = btrfs_compress_type2str(info->compress_type);
1037		if (btrfs_test_opt(info, FORCE_COMPRESS))
1038			seq_printf(seq, ",compress-force=%s", compress_type);
1039		else
1040			seq_printf(seq, ",compress=%s", compress_type);
1041		if (info->compress_level)
1042			seq_printf(seq, ":%d", info->compress_level);
1043	}
1044	if (btrfs_test_opt(info, NOSSD))
1045		seq_puts(seq, ",nossd");
1046	if (btrfs_test_opt(info, SSD_SPREAD))
1047		seq_puts(seq, ",ssd_spread");
1048	else if (btrfs_test_opt(info, SSD))
1049		seq_puts(seq, ",ssd");
1050	if (btrfs_test_opt(info, NOTREELOG))
1051		seq_puts(seq, ",notreelog");
1052	if (btrfs_test_opt(info, NOLOGREPLAY))
1053		print_rescue_option(seq, "nologreplay", &printed);
1054	if (btrfs_test_opt(info, USEBACKUPROOT))
1055		print_rescue_option(seq, "usebackuproot", &printed);
1056	if (btrfs_test_opt(info, IGNOREBADROOTS))
1057		print_rescue_option(seq, "ignorebadroots", &printed);
1058	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1059		print_rescue_option(seq, "ignoredatacsums", &printed);
1060	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1061		seq_puts(seq, ",flushoncommit");
1062	if (btrfs_test_opt(info, DISCARD_SYNC))
1063		seq_puts(seq, ",discard");
1064	if (btrfs_test_opt(info, DISCARD_ASYNC))
1065		seq_puts(seq, ",discard=async");
1066	if (!(info->sb->s_flags & SB_POSIXACL))
1067		seq_puts(seq, ",noacl");
1068	if (btrfs_free_space_cache_v1_active(info))
1069		seq_puts(seq, ",space_cache");
1070	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1071		seq_puts(seq, ",space_cache=v2");
1072	else
1073		seq_puts(seq, ",nospace_cache");
1074	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1075		seq_puts(seq, ",rescan_uuid_tree");
1076	if (btrfs_test_opt(info, CLEAR_CACHE))
1077		seq_puts(seq, ",clear_cache");
1078	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1079		seq_puts(seq, ",user_subvol_rm_allowed");
1080	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1081		seq_puts(seq, ",enospc_debug");
1082	if (btrfs_test_opt(info, AUTO_DEFRAG))
1083		seq_puts(seq, ",autodefrag");
1084	if (btrfs_test_opt(info, SKIP_BALANCE))
1085		seq_puts(seq, ",skip_balance");
1086	if (info->metadata_ratio)
1087		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1088	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1089		seq_puts(seq, ",fatal_errors=panic");
1090	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1091		seq_printf(seq, ",commit=%u", info->commit_interval);
1092#ifdef CONFIG_BTRFS_DEBUG
1093	if (btrfs_test_opt(info, FRAGMENT_DATA))
1094		seq_puts(seq, ",fragment=data");
1095	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1096		seq_puts(seq, ",fragment=metadata");
1097#endif
1098	if (btrfs_test_opt(info, REF_VERIFY))
1099		seq_puts(seq, ",ref_verify");
1100	seq_printf(seq, ",subvolid=%llu",
1101		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1102	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1103			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1104	if (!IS_ERR(subvol_name)) {
1105		seq_puts(seq, ",subvol=");
1106		seq_escape(seq, subvol_name, " \t\n\\");
1107		kfree(subvol_name);
1108	}
1109	return 0;
1110}
1111
1112/*
1113 * subvolumes are identified by ino 256
1114 */
1115static inline int is_subvolume_inode(struct inode *inode)
1116{
1117	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1118		return 1;
1119	return 0;
1120}
1121
1122static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1123				   struct vfsmount *mnt)
1124{
1125	struct dentry *root;
1126	int ret;
1127
1128	if (!subvol_name) {
1129		if (!subvol_objectid) {
1130			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1131							  &subvol_objectid);
1132			if (ret) {
1133				root = ERR_PTR(ret);
1134				goto out;
1135			}
1136		}
1137		subvol_name = btrfs_get_subvol_name_from_objectid(
1138					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1139		if (IS_ERR(subvol_name)) {
1140			root = ERR_CAST(subvol_name);
1141			subvol_name = NULL;
1142			goto out;
1143		}
1144
1145	}
1146
1147	root = mount_subtree(mnt, subvol_name);
1148	/* mount_subtree() drops our reference on the vfsmount. */
1149	mnt = NULL;
1150
1151	if (!IS_ERR(root)) {
1152		struct super_block *s = root->d_sb;
1153		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1154		struct inode *root_inode = d_inode(root);
1155		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1156
1157		ret = 0;
1158		if (!is_subvolume_inode(root_inode)) {
1159			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1160			       subvol_name);
1161			ret = -EINVAL;
1162		}
1163		if (subvol_objectid && root_objectid != subvol_objectid) {
1164			/*
1165			 * This will also catch a race condition where a
1166			 * subvolume which was passed by ID is renamed and
1167			 * another subvolume is renamed over the old location.
1168			 */
1169			btrfs_err(fs_info,
1170				  "subvol '%s' does not match subvolid %llu",
1171				  subvol_name, subvol_objectid);
1172			ret = -EINVAL;
1173		}
1174		if (ret) {
1175			dput(root);
1176			root = ERR_PTR(ret);
1177			deactivate_locked_super(s);
1178		}
1179	}
1180
1181out:
1182	mntput(mnt);
1183	kfree(subvol_name);
1184	return root;
1185}
1186
1187static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1188				     u32 new_pool_size, u32 old_pool_size)
1189{
1190	if (new_pool_size == old_pool_size)
1191		return;
1192
1193	fs_info->thread_pool_size = new_pool_size;
1194
1195	btrfs_info(fs_info, "resize thread pool %d -> %d",
1196	       old_pool_size, new_pool_size);
1197
1198	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1199	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1200	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1201	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1202	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1203	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1204	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1205	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1206}
1207
1208static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1209				       unsigned long old_opts, int flags)
1210{
1211	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1212	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1213	     (flags & SB_RDONLY))) {
1214		/* wait for any defraggers to finish */
1215		wait_event(fs_info->transaction_wait,
1216			   (atomic_read(&fs_info->defrag_running) == 0));
1217		if (flags & SB_RDONLY)
1218			sync_filesystem(fs_info->sb);
1219	}
1220}
1221
1222static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1223					 unsigned long old_opts)
1224{
1225	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1226
1227	/*
1228	 * We need to cleanup all defragable inodes if the autodefragment is
1229	 * close or the filesystem is read only.
1230	 */
1231	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1232	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1233		btrfs_cleanup_defrag_inodes(fs_info);
1234	}
1235
1236	/* If we toggled discard async */
1237	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1238	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1239		btrfs_discard_resume(fs_info);
1240	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1241		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1242		btrfs_discard_cleanup(fs_info);
1243
1244	/* If we toggled space cache */
1245	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1246		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1247}
1248
1249static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1250{
1251	int ret;
1252
1253	if (BTRFS_FS_ERROR(fs_info)) {
1254		btrfs_err(fs_info,
1255			  "remounting read-write after error is not allowed");
1256		return -EINVAL;
1257	}
1258
1259	if (fs_info->fs_devices->rw_devices == 0)
1260		return -EACCES;
1261
1262	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1263		btrfs_warn(fs_info,
1264			   "too many missing devices, writable remount is not allowed");
1265		return -EACCES;
1266	}
1267
1268	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1269		btrfs_warn(fs_info,
1270			   "mount required to replay tree-log, cannot remount read-write");
1271		return -EINVAL;
1272	}
1273
1274	/*
1275	 * NOTE: when remounting with a change that does writes, don't put it
1276	 * anywhere above this point, as we are not sure to be safe to write
1277	 * until we pass the above checks.
1278	 */
1279	ret = btrfs_start_pre_rw_mount(fs_info);
1280	if (ret)
1281		return ret;
1282
1283	btrfs_clear_sb_rdonly(fs_info->sb);
1284
1285	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1286
1287	/*
1288	 * If we've gone from readonly -> read-write, we need to get our
1289	 * sync/async discard lists in the right state.
1290	 */
1291	btrfs_discard_resume(fs_info);
1292
1293	return 0;
1294}
1295
1296static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1297{
1298	/*
1299	 * This also happens on 'umount -rf' or on shutdown, when the
1300	 * filesystem is busy.
1301	 */
1302	cancel_work_sync(&fs_info->async_reclaim_work);
1303	cancel_work_sync(&fs_info->async_data_reclaim_work);
1304
1305	btrfs_discard_cleanup(fs_info);
1306
1307	/* Wait for the uuid_scan task to finish */
1308	down(&fs_info->uuid_tree_rescan_sem);
1309	/* Avoid complains from lockdep et al. */
1310	up(&fs_info->uuid_tree_rescan_sem);
1311
1312	btrfs_set_sb_rdonly(fs_info->sb);
1313
1314	/*
1315	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1316	 * loop if it's already active.  If it's already asleep, we'll leave
1317	 * unused block groups on disk until we're mounted read-write again
1318	 * unless we clean them up here.
1319	 */
1320	btrfs_delete_unused_bgs(fs_info);
1321
1322	/*
1323	 * The cleaner task could be already running before we set the flag
1324	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1325	 * sure that after we finish the remount, i.e. after we call
1326	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1327	 * - either because it was dropping a dead root, running delayed iputs
1328	 *   or deleting an unused block group (the cleaner picked a block
1329	 *   group from the list of unused block groups before we were able to
1330	 *   in the previous call to btrfs_delete_unused_bgs()).
1331	 */
1332	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1333
1334	/*
1335	 * We've set the superblock to RO mode, so we might have made the
1336	 * cleaner task sleep without running all pending delayed iputs. Go
1337	 * through all the delayed iputs here, so that if an unmount happens
1338	 * without remounting RW we don't end up at finishing close_ctree()
1339	 * with a non-empty list of delayed iputs.
1340	 */
1341	btrfs_run_delayed_iputs(fs_info);
1342
1343	btrfs_dev_replace_suspend_for_unmount(fs_info);
1344	btrfs_scrub_cancel(fs_info);
1345	btrfs_pause_balance(fs_info);
1346
1347	/*
1348	 * Pause the qgroup rescan worker if it is running. We don't want it to
1349	 * be still running after we are in RO mode, as after that, by the time
1350	 * we unmount, it might have left a transaction open, so we would leak
1351	 * the transaction and/or crash.
1352	 */
1353	btrfs_qgroup_wait_for_completion(fs_info, false);
1354
1355	return btrfs_commit_super(fs_info);
1356}
1357
1358static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1359{
1360	fs_info->max_inline = ctx->max_inline;
1361	fs_info->commit_interval = ctx->commit_interval;
1362	fs_info->metadata_ratio = ctx->metadata_ratio;
1363	fs_info->thread_pool_size = ctx->thread_pool_size;
1364	fs_info->mount_opt = ctx->mount_opt;
1365	fs_info->compress_type = ctx->compress_type;
1366	fs_info->compress_level = ctx->compress_level;
1367}
1368
1369static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1370{
1371	ctx->max_inline = fs_info->max_inline;
1372	ctx->commit_interval = fs_info->commit_interval;
1373	ctx->metadata_ratio = fs_info->metadata_ratio;
1374	ctx->thread_pool_size = fs_info->thread_pool_size;
1375	ctx->mount_opt = fs_info->mount_opt;
1376	ctx->compress_type = fs_info->compress_type;
1377	ctx->compress_level = fs_info->compress_level;
1378}
1379
1380#define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1381do {										\
1382	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1383	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1384		btrfs_info(fs_info, fmt, ##args);				\
1385} while (0)
1386
1387#define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1388do {									\
1389	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1390	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1391		btrfs_info(fs_info, fmt, ##args);			\
1392} while (0)
1393
1394static void btrfs_emit_options(struct btrfs_fs_info *info,
1395			       struct btrfs_fs_context *old)
1396{
1397	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1398	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1399	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1400	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1401	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1402	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1403	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1404	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1405	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1406	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1407	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1408	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1409	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1410	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1411	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1412	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1413	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1414	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1415	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1416	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1417	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1418
1419	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1420	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1421	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1422	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1423	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1424	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1425	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1426	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1427	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1428
1429	/* Did the compression settings change? */
1430	if (btrfs_test_opt(info, COMPRESS) &&
1431	    (!old ||
1432	     old->compress_type != info->compress_type ||
1433	     old->compress_level != info->compress_level ||
1434	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1435	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1436		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1437
1438		btrfs_info(info, "%s %s compression, level %d",
1439			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1440			   compress_type, info->compress_level);
1441	}
1442
1443	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1444		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1445}
1446
1447static int btrfs_reconfigure(struct fs_context *fc)
1448{
1449	struct super_block *sb = fc->root->d_sb;
1450	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1451	struct btrfs_fs_context *ctx = fc->fs_private;
1452	struct btrfs_fs_context old_ctx;
1453	int ret = 0;
1454	bool mount_reconfigure = (fc->s_fs_info != NULL);
1455
1456	btrfs_info_to_ctx(fs_info, &old_ctx);
1457
1458	/*
1459	 * This is our "bind mount" trick, we don't want to allow the user to do
1460	 * anything other than mount a different ro/rw and a different subvol,
1461	 * all of the mount options should be maintained.
1462	 */
1463	if (mount_reconfigure)
1464		ctx->mount_opt = old_ctx.mount_opt;
1465
1466	sync_filesystem(sb);
1467	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1468
1469	if (!mount_reconfigure &&
1470	    !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1471		return -EINVAL;
1472
1473	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1474	if (ret < 0)
1475		return ret;
1476
1477	btrfs_ctx_to_info(fs_info, ctx);
1478	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1479	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1480				 old_ctx.thread_pool_size);
1481
1482	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1483	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1484	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1485		btrfs_warn(fs_info,
1486		"remount supports changing free space tree only from RO to RW");
1487		/* Make sure free space cache options match the state on disk. */
1488		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1489			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1490			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1491		}
1492		if (btrfs_free_space_cache_v1_active(fs_info)) {
1493			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1494			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1495		}
1496	}
1497
1498	ret = 0;
1499	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1500		ret = btrfs_remount_ro(fs_info);
1501	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1502		ret = btrfs_remount_rw(fs_info);
1503	if (ret)
1504		goto restore;
1505
1506	/*
1507	 * If we set the mask during the parameter parsing VFS would reject the
1508	 * remount.  Here we can set the mask and the value will be updated
1509	 * appropriately.
1510	 */
1511	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1512		fc->sb_flags_mask |= SB_POSIXACL;
1513
1514	btrfs_emit_options(fs_info, &old_ctx);
1515	wake_up_process(fs_info->transaction_kthread);
1516	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1517	btrfs_clear_oneshot_options(fs_info);
1518	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1519
1520	return 0;
1521restore:
1522	btrfs_ctx_to_info(fs_info, &old_ctx);
1523	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1524	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1525	return ret;
1526}
1527
1528/* Used to sort the devices by max_avail(descending sort) */
1529static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1530{
1531	const struct btrfs_device_info *dev_info1 = a;
1532	const struct btrfs_device_info *dev_info2 = b;
1533
1534	if (dev_info1->max_avail > dev_info2->max_avail)
1535		return -1;
1536	else if (dev_info1->max_avail < dev_info2->max_avail)
1537		return 1;
1538	return 0;
1539}
1540
1541/*
1542 * sort the devices by max_avail, in which max free extent size of each device
1543 * is stored.(Descending Sort)
1544 */
1545static inline void btrfs_descending_sort_devices(
1546					struct btrfs_device_info *devices,
1547					size_t nr_devices)
1548{
1549	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1550	     btrfs_cmp_device_free_bytes, NULL);
1551}
1552
1553/*
1554 * The helper to calc the free space on the devices that can be used to store
1555 * file data.
1556 */
1557static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1558					      u64 *free_bytes)
1559{
1560	struct btrfs_device_info *devices_info;
1561	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1562	struct btrfs_device *device;
1563	u64 type;
1564	u64 avail_space;
1565	u64 min_stripe_size;
1566	int num_stripes = 1;
1567	int i = 0, nr_devices;
1568	const struct btrfs_raid_attr *rattr;
1569
1570	/*
1571	 * We aren't under the device list lock, so this is racy-ish, but good
1572	 * enough for our purposes.
1573	 */
1574	nr_devices = fs_info->fs_devices->open_devices;
1575	if (!nr_devices) {
1576		smp_mb();
1577		nr_devices = fs_info->fs_devices->open_devices;
1578		ASSERT(nr_devices);
1579		if (!nr_devices) {
1580			*free_bytes = 0;
1581			return 0;
1582		}
1583	}
1584
1585	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1586			       GFP_KERNEL);
1587	if (!devices_info)
1588		return -ENOMEM;
1589
1590	/* calc min stripe number for data space allocation */
1591	type = btrfs_data_alloc_profile(fs_info);
1592	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1593
1594	if (type & BTRFS_BLOCK_GROUP_RAID0)
1595		num_stripes = nr_devices;
1596	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1597		num_stripes = rattr->ncopies;
1598	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1599		num_stripes = 4;
1600
1601	/* Adjust for more than 1 stripe per device */
1602	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1603
1604	rcu_read_lock();
1605	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1606		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1607						&device->dev_state) ||
1608		    !device->bdev ||
1609		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1610			continue;
1611
1612		if (i >= nr_devices)
1613			break;
1614
1615		avail_space = device->total_bytes - device->bytes_used;
1616
1617		/* align with stripe_len */
1618		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1619
1620		/*
1621		 * Ensure we have at least min_stripe_size on top of the
1622		 * reserved space on the device.
1623		 */
1624		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1625			continue;
1626
1627		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1628
1629		devices_info[i].dev = device;
1630		devices_info[i].max_avail = avail_space;
1631
1632		i++;
1633	}
1634	rcu_read_unlock();
1635
1636	nr_devices = i;
1637
1638	btrfs_descending_sort_devices(devices_info, nr_devices);
1639
1640	i = nr_devices - 1;
1641	avail_space = 0;
1642	while (nr_devices >= rattr->devs_min) {
1643		num_stripes = min(num_stripes, nr_devices);
1644
1645		if (devices_info[i].max_avail >= min_stripe_size) {
1646			int j;
1647			u64 alloc_size;
1648
1649			avail_space += devices_info[i].max_avail * num_stripes;
1650			alloc_size = devices_info[i].max_avail;
1651			for (j = i + 1 - num_stripes; j <= i; j++)
1652				devices_info[j].max_avail -= alloc_size;
1653		}
1654		i--;
1655		nr_devices--;
1656	}
1657
1658	kfree(devices_info);
1659	*free_bytes = avail_space;
1660	return 0;
1661}
1662
1663/*
1664 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1665 *
1666 * If there's a redundant raid level at DATA block groups, use the respective
1667 * multiplier to scale the sizes.
1668 *
1669 * Unused device space usage is based on simulating the chunk allocator
1670 * algorithm that respects the device sizes and order of allocations.  This is
1671 * a close approximation of the actual use but there are other factors that may
1672 * change the result (like a new metadata chunk).
1673 *
1674 * If metadata is exhausted, f_bavail will be 0.
1675 */
1676static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1677{
1678	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1679	struct btrfs_super_block *disk_super = fs_info->super_copy;
1680	struct btrfs_space_info *found;
1681	u64 total_used = 0;
1682	u64 total_free_data = 0;
1683	u64 total_free_meta = 0;
1684	u32 bits = fs_info->sectorsize_bits;
1685	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1686	unsigned factor = 1;
1687	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1688	int ret;
1689	u64 thresh = 0;
1690	int mixed = 0;
1691
1692	list_for_each_entry(found, &fs_info->space_info, list) {
1693		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1694			int i;
1695
1696			total_free_data += found->disk_total - found->disk_used;
1697			total_free_data -=
1698				btrfs_account_ro_block_groups_free_space(found);
1699
1700			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1701				if (!list_empty(&found->block_groups[i]))
1702					factor = btrfs_bg_type_to_factor(
1703						btrfs_raid_array[i].bg_flag);
1704			}
1705		}
1706
1707		/*
1708		 * Metadata in mixed block group profiles are accounted in data
1709		 */
1710		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1711			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1712				mixed = 1;
1713			else
1714				total_free_meta += found->disk_total -
1715					found->disk_used;
1716		}
1717
1718		total_used += found->disk_used;
1719	}
1720
1721	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1722	buf->f_blocks >>= bits;
1723	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1724
1725	/* Account global block reserve as used, it's in logical size already */
1726	spin_lock(&block_rsv->lock);
1727	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1728	if (buf->f_bfree >= block_rsv->size >> bits)
1729		buf->f_bfree -= block_rsv->size >> bits;
1730	else
1731		buf->f_bfree = 0;
1732	spin_unlock(&block_rsv->lock);
1733
1734	buf->f_bavail = div_u64(total_free_data, factor);
1735	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1736	if (ret)
1737		return ret;
1738	buf->f_bavail += div_u64(total_free_data, factor);
1739	buf->f_bavail = buf->f_bavail >> bits;
1740
1741	/*
1742	 * We calculate the remaining metadata space minus global reserve. If
1743	 * this is (supposedly) smaller than zero, there's no space. But this
1744	 * does not hold in practice, the exhausted state happens where's still
1745	 * some positive delta. So we apply some guesswork and compare the
1746	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1747	 *
1748	 * We probably cannot calculate the exact threshold value because this
1749	 * depends on the internal reservations requested by various
1750	 * operations, so some operations that consume a few metadata will
1751	 * succeed even if the Avail is zero. But this is better than the other
1752	 * way around.
1753	 */
1754	thresh = SZ_4M;
1755
1756	/*
1757	 * We only want to claim there's no available space if we can no longer
1758	 * allocate chunks for our metadata profile and our global reserve will
1759	 * not fit in the free metadata space.  If we aren't ->full then we
1760	 * still can allocate chunks and thus are fine using the currently
1761	 * calculated f_bavail.
1762	 */
1763	if (!mixed && block_rsv->space_info->full &&
1764	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1765		buf->f_bavail = 0;
1766
1767	buf->f_type = BTRFS_SUPER_MAGIC;
1768	buf->f_bsize = fs_info->sectorsize;
1769	buf->f_namelen = BTRFS_NAME_LEN;
1770
1771	/* We treat it as constant endianness (it doesn't matter _which_)
1772	   because we want the fsid to come out the same whether mounted
1773	   on a big-endian or little-endian host */
1774	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1775	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1776	/* Mask in the root object ID too, to disambiguate subvols */
1777	buf->f_fsid.val[0] ^=
1778		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
1779	buf->f_fsid.val[1] ^=
1780		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
1781
1782	return 0;
1783}
1784
1785static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1786{
1787	struct btrfs_fs_info *p = fc->s_fs_info;
1788	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1789
1790	return fs_info->fs_devices == p->fs_devices;
1791}
1792
1793static int btrfs_get_tree_super(struct fs_context *fc)
1794{
1795	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1796	struct btrfs_fs_context *ctx = fc->fs_private;
1797	struct btrfs_fs_devices *fs_devices = NULL;
1798	struct block_device *bdev;
1799	struct btrfs_device *device;
1800	struct super_block *sb;
1801	blk_mode_t mode = btrfs_open_mode(fc);
1802	int ret;
1803
1804	btrfs_ctx_to_info(fs_info, ctx);
1805	mutex_lock(&uuid_mutex);
1806
1807	/*
1808	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1809	 * either a valid device or an error.
1810	 */
1811	device = btrfs_scan_one_device(fc->source, mode, true);
1812	ASSERT(device != NULL);
1813	if (IS_ERR(device)) {
1814		mutex_unlock(&uuid_mutex);
1815		return PTR_ERR(device);
1816	}
1817
1818	fs_devices = device->fs_devices;
1819	fs_info->fs_devices = fs_devices;
1820
1821	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1822	mutex_unlock(&uuid_mutex);
1823	if (ret)
1824		return ret;
1825
1826	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1827		ret = -EACCES;
1828		goto error;
1829	}
1830
1831	bdev = fs_devices->latest_dev->bdev;
1832
1833	/*
1834	 * From now on the error handling is not straightforward.
1835	 *
1836	 * If successful, this will transfer the fs_info into the super block,
1837	 * and fc->s_fs_info will be NULL.  However if there's an existing
1838	 * super, we'll still have fc->s_fs_info populated.  If we error
1839	 * completely out it'll be cleaned up when we drop the fs_context,
1840	 * otherwise it's tied to the lifetime of the super_block.
1841	 */
1842	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1843	if (IS_ERR(sb)) {
1844		ret = PTR_ERR(sb);
1845		goto error;
1846	}
1847
1848	set_device_specific_options(fs_info);
1849
1850	if (sb->s_root) {
1851		btrfs_close_devices(fs_devices);
1852		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1853			ret = -EBUSY;
1854	} else {
1855		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1856		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1857		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1858		ret = btrfs_fill_super(sb, fs_devices, NULL);
1859	}
1860
1861	if (ret) {
1862		deactivate_locked_super(sb);
1863		return ret;
1864	}
1865
1866	btrfs_clear_oneshot_options(fs_info);
1867
1868	fc->root = dget(sb->s_root);
1869	return 0;
1870
1871error:
1872	btrfs_close_devices(fs_devices);
1873	return ret;
1874}
1875
1876/*
1877 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1878 * with different ro/rw options") the following works:
1879 *
1880 *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1881 *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1882 *
1883 * which looks nice and innocent but is actually pretty intricate and deserves
1884 * a long comment.
1885 *
1886 * On another filesystem a subvolume mount is close to something like:
1887 *
1888 *	(iii) # create rw superblock + initial mount
1889 *	      mount -t xfs /dev/sdb /opt/
1890 *
1891 *	      # create ro bind mount
1892 *	      mount --bind -o ro /opt/foo /mnt/foo
1893 *
1894 *	      # unmount initial mount
1895 *	      umount /opt
1896 *
1897 * Of course, there's some special subvolume sauce and there's the fact that the
1898 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1899 * it's very close and will help us understand the issue.
1900 *
1901 * The old mount API didn't cleanly distinguish between a mount being made ro
1902 * and a superblock being made ro.  The only way to change the ro state of
1903 * either object was by passing ms_rdonly. If a new mount was created via
1904 * mount(2) such as:
1905 *
1906 *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1907 *
1908 * the MS_RDONLY flag being specified had two effects:
1909 *
1910 * (1) MNT_READONLY was raised -> the resulting mount got
1911 *     @mnt->mnt_flags |= MNT_READONLY raised.
1912 *
1913 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1914 *     made the superblock ro. Note, how SB_RDONLY has the same value as
1915 *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1916 *
1917 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1918 * subtree mounted ro.
1919 *
1920 * But consider the effect on the old mount API on btrfs subvolume mounting
1921 * which combines the distinct step in (iii) into a single step.
1922 *
1923 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1924 * is issued the superblock is ro and thus even if the mount created for (ii) is
1925 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1926 * to rw for (ii) which it did using an internal remount call.
1927 *
1928 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1929 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1930 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1931 * passed by mount(8) to mount(2).
1932 *
1933 * Enter the new mount API. The new mount API disambiguates making a mount ro
1934 * and making a superblock ro.
1935 *
1936 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1937 *     fsmount() or mount_setattr() this is a pure VFS level change for a
1938 *     specific mount or mount tree that is never seen by the filesystem itself.
1939 *
1940 * (4) To turn a superblock ro the "ro" flag must be used with
1941 *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1942 *     in fc->sb_flags.
1943 *
1944 * This disambiguation has rather positive consequences.  Mounting a subvolume
1945 * ro will not also turn the superblock ro. Only the mount for the subvolume
1946 * will become ro.
1947 *
1948 * So, if the superblock creation request comes from the new mount API the
1949 * caller must have explicitly done:
1950 *
1951 *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1952 *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1953 *
1954 * IOW, at some point the caller must have explicitly turned the whole
1955 * superblock ro and we shouldn't just undo it like we did for the old mount
1956 * API. In any case, it lets us avoid the hack in the new mount API.
1957 *
1958 * Consequently, the remounting hack must only be used for requests originating
1959 * from the old mount API and should be marked for full deprecation so it can be
1960 * turned off in a couple of years.
1961 *
1962 * The new mount API has no reason to support this hack.
1963 */
1964static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1965{
1966	struct vfsmount *mnt;
1967	int ret;
1968	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1969
1970	/*
1971	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1972	 * super block, so invert our setting here and retry the mount so we
1973	 * can get our vfsmount.
1974	 */
1975	if (ro2rw)
1976		fc->sb_flags |= SB_RDONLY;
1977	else
1978		fc->sb_flags &= ~SB_RDONLY;
1979
1980	mnt = fc_mount(fc);
1981	if (IS_ERR(mnt))
1982		return mnt;
1983
1984	if (!fc->oldapi || !ro2rw)
1985		return mnt;
1986
1987	/* We need to convert to rw, call reconfigure. */
1988	fc->sb_flags &= ~SB_RDONLY;
1989	down_write(&mnt->mnt_sb->s_umount);
1990	ret = btrfs_reconfigure(fc);
1991	up_write(&mnt->mnt_sb->s_umount);
1992	if (ret) {
1993		mntput(mnt);
1994		return ERR_PTR(ret);
1995	}
1996	return mnt;
1997}
1998
1999static int btrfs_get_tree_subvol(struct fs_context *fc)
2000{
2001	struct btrfs_fs_info *fs_info = NULL;
2002	struct btrfs_fs_context *ctx = fc->fs_private;
2003	struct fs_context *dup_fc;
2004	struct dentry *dentry;
2005	struct vfsmount *mnt;
2006
2007	/*
2008	 * Setup a dummy root and fs_info for test/set super.  This is because
2009	 * we don't actually fill this stuff out until open_ctree, but we need
2010	 * then open_ctree will properly initialize the file system specific
2011	 * settings later.  btrfs_init_fs_info initializes the static elements
2012	 * of the fs_info (locks and such) to make cleanup easier if we find a
2013	 * superblock with our given fs_devices later on at sget() time.
2014	 */
2015	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2016	if (!fs_info)
2017		return -ENOMEM;
2018
2019	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2020	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2021	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2022		btrfs_free_fs_info(fs_info);
2023		return -ENOMEM;
2024	}
2025	btrfs_init_fs_info(fs_info);
2026
2027	dup_fc = vfs_dup_fs_context(fc);
2028	if (IS_ERR(dup_fc)) {
2029		btrfs_free_fs_info(fs_info);
2030		return PTR_ERR(dup_fc);
2031	}
2032
2033	/*
2034	 * When we do the sget_fc this gets transferred to the sb, so we only
2035	 * need to set it on the dup_fc as this is what creates the super block.
2036	 */
2037	dup_fc->s_fs_info = fs_info;
2038
2039	/*
2040	 * We'll do the security settings in our btrfs_get_tree_super() mount
2041	 * loop, they were duplicated into dup_fc, we can drop the originals
2042	 * here.
2043	 */
2044	security_free_mnt_opts(&fc->security);
2045	fc->security = NULL;
2046
2047	mnt = fc_mount(dup_fc);
2048	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2049		mnt = btrfs_reconfigure_for_mount(dup_fc);
2050	put_fs_context(dup_fc);
2051	if (IS_ERR(mnt))
2052		return PTR_ERR(mnt);
2053
2054	/*
2055	 * This free's ->subvol_name, because if it isn't set we have to
2056	 * allocate a buffer to hold the subvol_name, so we just drop our
2057	 * reference to it here.
2058	 */
2059	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2060	ctx->subvol_name = NULL;
2061	if (IS_ERR(dentry))
2062		return PTR_ERR(dentry);
2063
2064	fc->root = dentry;
2065	return 0;
2066}
2067
2068static int btrfs_get_tree(struct fs_context *fc)
2069{
2070	/*
2071	 * Since we use mount_subtree to mount the default/specified subvol, we
2072	 * have to do mounts in two steps.
2073	 *
2074	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2075	 * wrapper around fc_mount() to call back into here again, and this time
2076	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2077	 * everything to open the devices and file system.  Then we return back
2078	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2079	 * from there we can do our mount_subvol() call, which will lookup
2080	 * whichever subvol we're mounting and setup this fc with the
2081	 * appropriate dentry for the subvol.
2082	 */
2083	if (fc->s_fs_info)
2084		return btrfs_get_tree_super(fc);
2085	return btrfs_get_tree_subvol(fc);
2086}
2087
2088static void btrfs_kill_super(struct super_block *sb)
2089{
2090	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2091	kill_anon_super(sb);
2092	btrfs_free_fs_info(fs_info);
2093}
2094
2095static void btrfs_free_fs_context(struct fs_context *fc)
2096{
2097	struct btrfs_fs_context *ctx = fc->fs_private;
2098	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2099
2100	if (fs_info)
2101		btrfs_free_fs_info(fs_info);
2102
2103	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2104		kfree(ctx->subvol_name);
2105		kfree(ctx);
2106	}
2107}
2108
2109static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2110{
2111	struct btrfs_fs_context *ctx = src_fc->fs_private;
2112
2113	/*
2114	 * Give a ref to our ctx to this dup, as we want to keep it around for
2115	 * our original fc so we can have the subvolume name or objectid.
2116	 *
2117	 * We unset ->source in the original fc because the dup needs it for
2118	 * mounting, and then once we free the dup it'll free ->source, so we
2119	 * need to make sure we're only pointing to it in one fc.
2120	 */
2121	refcount_inc(&ctx->refs);
2122	fc->fs_private = ctx;
2123	fc->source = src_fc->source;
2124	src_fc->source = NULL;
2125	return 0;
2126}
2127
2128static const struct fs_context_operations btrfs_fs_context_ops = {
2129	.parse_param	= btrfs_parse_param,
2130	.reconfigure	= btrfs_reconfigure,
2131	.get_tree	= btrfs_get_tree,
2132	.dup		= btrfs_dup_fs_context,
2133	.free		= btrfs_free_fs_context,
2134};
2135
2136static int btrfs_init_fs_context(struct fs_context *fc)
2137{
2138	struct btrfs_fs_context *ctx;
2139
2140	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2141	if (!ctx)
2142		return -ENOMEM;
2143
2144	refcount_set(&ctx->refs, 1);
2145	fc->fs_private = ctx;
2146	fc->ops = &btrfs_fs_context_ops;
2147
2148	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2149		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2150	} else {
2151		ctx->thread_pool_size =
2152			min_t(unsigned long, num_online_cpus() + 2, 8);
2153		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2154		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2155	}
2156
2157#ifdef CONFIG_BTRFS_FS_POSIX_ACL
2158	fc->sb_flags |= SB_POSIXACL;
2159#endif
2160	fc->sb_flags |= SB_I_VERSION;
2161
2162	return 0;
2163}
2164
2165static struct file_system_type btrfs_fs_type = {
2166	.owner			= THIS_MODULE,
2167	.name			= "btrfs",
2168	.init_fs_context	= btrfs_init_fs_context,
2169	.parameters		= btrfs_fs_parameters,
2170	.kill_sb		= btrfs_kill_super,
2171	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2172 };
2173
2174MODULE_ALIAS_FS("btrfs");
2175
2176static int btrfs_control_open(struct inode *inode, struct file *file)
2177{
2178	/*
2179	 * The control file's private_data is used to hold the
2180	 * transaction when it is started and is used to keep
2181	 * track of whether a transaction is already in progress.
2182	 */
2183	file->private_data = NULL;
2184	return 0;
2185}
2186
2187/*
2188 * Used by /dev/btrfs-control for devices ioctls.
2189 */
2190static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2191				unsigned long arg)
2192{
2193	struct btrfs_ioctl_vol_args *vol;
2194	struct btrfs_device *device = NULL;
2195	dev_t devt = 0;
2196	int ret = -ENOTTY;
2197
2198	if (!capable(CAP_SYS_ADMIN))
2199		return -EPERM;
2200
2201	vol = memdup_user((void __user *)arg, sizeof(*vol));
2202	if (IS_ERR(vol))
2203		return PTR_ERR(vol);
2204	ret = btrfs_check_ioctl_vol_args_path(vol);
2205	if (ret < 0)
2206		goto out;
2207
2208	switch (cmd) {
2209	case BTRFS_IOC_SCAN_DEV:
2210		mutex_lock(&uuid_mutex);
2211		/*
2212		 * Scanning outside of mount can return NULL which would turn
2213		 * into 0 error code.
2214		 */
2215		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2216		ret = PTR_ERR_OR_ZERO(device);
2217		mutex_unlock(&uuid_mutex);
2218		break;
2219	case BTRFS_IOC_FORGET_DEV:
2220		if (vol->name[0] != 0) {
2221			ret = lookup_bdev(vol->name, &devt);
2222			if (ret)
2223				break;
2224		}
2225		ret = btrfs_forget_devices(devt);
2226		break;
2227	case BTRFS_IOC_DEVICES_READY:
2228		mutex_lock(&uuid_mutex);
2229		/*
2230		 * Scanning outside of mount can return NULL which would turn
2231		 * into 0 error code.
2232		 */
2233		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2234		if (IS_ERR_OR_NULL(device)) {
2235			mutex_unlock(&uuid_mutex);
2236			ret = PTR_ERR(device);
2237			break;
2238		}
2239		ret = !(device->fs_devices->num_devices ==
2240			device->fs_devices->total_devices);
2241		mutex_unlock(&uuid_mutex);
2242		break;
2243	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2244		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2245		break;
2246	}
2247
2248out:
2249	kfree(vol);
2250	return ret;
2251}
2252
2253static int btrfs_freeze(struct super_block *sb)
2254{
2255	struct btrfs_trans_handle *trans;
2256	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2257	struct btrfs_root *root = fs_info->tree_root;
2258
2259	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2260	/*
2261	 * We don't need a barrier here, we'll wait for any transaction that
2262	 * could be in progress on other threads (and do delayed iputs that
2263	 * we want to avoid on a frozen filesystem), or do the commit
2264	 * ourselves.
2265	 */
2266	trans = btrfs_attach_transaction_barrier(root);
2267	if (IS_ERR(trans)) {
2268		/* no transaction, don't bother */
2269		if (PTR_ERR(trans) == -ENOENT)
2270			return 0;
2271		return PTR_ERR(trans);
2272	}
2273	return btrfs_commit_transaction(trans);
2274}
2275
2276static int check_dev_super(struct btrfs_device *dev)
2277{
2278	struct btrfs_fs_info *fs_info = dev->fs_info;
2279	struct btrfs_super_block *sb;
2280	u64 last_trans;
2281	u16 csum_type;
2282	int ret = 0;
2283
2284	/* This should be called with fs still frozen. */
2285	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2286
2287	/* Missing dev, no need to check. */
2288	if (!dev->bdev)
2289		return 0;
2290
2291	/* Only need to check the primary super block. */
2292	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2293	if (IS_ERR(sb))
2294		return PTR_ERR(sb);
2295
2296	/* Verify the checksum. */
2297	csum_type = btrfs_super_csum_type(sb);
2298	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2299		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2300			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2301		ret = -EUCLEAN;
2302		goto out;
2303	}
2304
2305	if (btrfs_check_super_csum(fs_info, sb)) {
2306		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2307		ret = -EUCLEAN;
2308		goto out;
2309	}
2310
2311	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2312	ret = btrfs_validate_super(fs_info, sb, 0);
2313	if (ret < 0)
2314		goto out;
2315
2316	last_trans = btrfs_get_last_trans_committed(fs_info);
2317	if (btrfs_super_generation(sb) != last_trans) {
2318		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2319			  btrfs_super_generation(sb), last_trans);
2320		ret = -EUCLEAN;
2321		goto out;
2322	}
2323out:
2324	btrfs_release_disk_super(sb);
2325	return ret;
2326}
2327
2328static int btrfs_unfreeze(struct super_block *sb)
2329{
2330	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2331	struct btrfs_device *device;
2332	int ret = 0;
2333
2334	/*
2335	 * Make sure the fs is not changed by accident (like hibernation then
2336	 * modified by other OS).
2337	 * If we found anything wrong, we mark the fs error immediately.
2338	 *
2339	 * And since the fs is frozen, no one can modify the fs yet, thus
2340	 * we don't need to hold device_list_mutex.
2341	 */
2342	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2343		ret = check_dev_super(device);
2344		if (ret < 0) {
2345			btrfs_handle_fs_error(fs_info, ret,
2346				"super block on devid %llu got modified unexpectedly",
2347				device->devid);
2348			break;
2349		}
2350	}
2351	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2352
2353	/*
2354	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2355	 * above checks failed. Since the fs is either fine or read-only, we're
2356	 * safe to continue, without causing further damage.
2357	 */
2358	return 0;
2359}
2360
2361static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2362{
2363	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2364
2365	/*
2366	 * There should be always a valid pointer in latest_dev, it may be stale
2367	 * for a short moment in case it's being deleted but still valid until
2368	 * the end of RCU grace period.
2369	 */
2370	rcu_read_lock();
2371	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2372	rcu_read_unlock();
2373
2374	return 0;
2375}
2376
2377static const struct super_operations btrfs_super_ops = {
2378	.drop_inode	= btrfs_drop_inode,
2379	.evict_inode	= btrfs_evict_inode,
2380	.put_super	= btrfs_put_super,
2381	.sync_fs	= btrfs_sync_fs,
2382	.show_options	= btrfs_show_options,
2383	.show_devname	= btrfs_show_devname,
2384	.alloc_inode	= btrfs_alloc_inode,
2385	.destroy_inode	= btrfs_destroy_inode,
2386	.free_inode	= btrfs_free_inode,
2387	.statfs		= btrfs_statfs,
2388	.freeze_fs	= btrfs_freeze,
2389	.unfreeze_fs	= btrfs_unfreeze,
2390};
2391
2392static const struct file_operations btrfs_ctl_fops = {
2393	.open = btrfs_control_open,
2394	.unlocked_ioctl	 = btrfs_control_ioctl,
2395	.compat_ioctl = compat_ptr_ioctl,
2396	.owner	 = THIS_MODULE,
2397	.llseek = noop_llseek,
2398};
2399
2400static struct miscdevice btrfs_misc = {
2401	.minor		= BTRFS_MINOR,
2402	.name		= "btrfs-control",
2403	.fops		= &btrfs_ctl_fops
2404};
2405
2406MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2407MODULE_ALIAS("devname:btrfs-control");
2408
2409static int __init btrfs_interface_init(void)
2410{
2411	return misc_register(&btrfs_misc);
2412}
2413
2414static __cold void btrfs_interface_exit(void)
2415{
2416	misc_deregister(&btrfs_misc);
2417}
2418
2419static int __init btrfs_print_mod_info(void)
2420{
2421	static const char options[] = ""
2422#ifdef CONFIG_BTRFS_DEBUG
2423			", debug=on"
2424#endif
2425#ifdef CONFIG_BTRFS_ASSERT
2426			", assert=on"
2427#endif
2428#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2429			", ref-verify=on"
2430#endif
2431#ifdef CONFIG_BLK_DEV_ZONED
2432			", zoned=yes"
2433#else
2434			", zoned=no"
2435#endif
2436#ifdef CONFIG_FS_VERITY
2437			", fsverity=yes"
2438#else
2439			", fsverity=no"
2440#endif
2441			;
2442	pr_info("Btrfs loaded%s\n", options);
2443	return 0;
2444}
2445
2446static int register_btrfs(void)
2447{
2448	return register_filesystem(&btrfs_fs_type);
2449}
2450
2451static void unregister_btrfs(void)
2452{
2453	unregister_filesystem(&btrfs_fs_type);
2454}
2455
2456/* Helper structure for long init/exit functions. */
2457struct init_sequence {
2458	int (*init_func)(void);
2459	/* Can be NULL if the init_func doesn't need cleanup. */
2460	void (*exit_func)(void);
2461};
2462
2463static const struct init_sequence mod_init_seq[] = {
2464	{
2465		.init_func = btrfs_props_init,
2466		.exit_func = NULL,
2467	}, {
2468		.init_func = btrfs_init_sysfs,
2469		.exit_func = btrfs_exit_sysfs,
2470	}, {
2471		.init_func = btrfs_init_compress,
2472		.exit_func = btrfs_exit_compress,
2473	}, {
2474		.init_func = btrfs_init_cachep,
2475		.exit_func = btrfs_destroy_cachep,
2476	}, {
2477		.init_func = btrfs_transaction_init,
2478		.exit_func = btrfs_transaction_exit,
2479	}, {
2480		.init_func = btrfs_ctree_init,
2481		.exit_func = btrfs_ctree_exit,
2482	}, {
2483		.init_func = btrfs_free_space_init,
2484		.exit_func = btrfs_free_space_exit,
2485	}, {
2486		.init_func = extent_state_init_cachep,
2487		.exit_func = extent_state_free_cachep,
2488	}, {
2489		.init_func = extent_buffer_init_cachep,
2490		.exit_func = extent_buffer_free_cachep,
2491	}, {
2492		.init_func = btrfs_bioset_init,
2493		.exit_func = btrfs_bioset_exit,
2494	}, {
2495		.init_func = extent_map_init,
2496		.exit_func = extent_map_exit,
2497	}, {
2498		.init_func = ordered_data_init,
2499		.exit_func = ordered_data_exit,
2500	}, {
2501		.init_func = btrfs_delayed_inode_init,
2502		.exit_func = btrfs_delayed_inode_exit,
2503	}, {
2504		.init_func = btrfs_auto_defrag_init,
2505		.exit_func = btrfs_auto_defrag_exit,
2506	}, {
2507		.init_func = btrfs_delayed_ref_init,
2508		.exit_func = btrfs_delayed_ref_exit,
2509	}, {
2510		.init_func = btrfs_prelim_ref_init,
2511		.exit_func = btrfs_prelim_ref_exit,
2512	}, {
2513		.init_func = btrfs_interface_init,
2514		.exit_func = btrfs_interface_exit,
2515	}, {
2516		.init_func = btrfs_print_mod_info,
2517		.exit_func = NULL,
2518	}, {
2519		.init_func = btrfs_run_sanity_tests,
2520		.exit_func = NULL,
2521	}, {
2522		.init_func = register_btrfs,
2523		.exit_func = unregister_btrfs,
2524	}
2525};
2526
2527static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2528
2529static __always_inline void btrfs_exit_btrfs_fs(void)
2530{
2531	int i;
2532
2533	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2534		if (!mod_init_result[i])
2535			continue;
2536		if (mod_init_seq[i].exit_func)
2537			mod_init_seq[i].exit_func();
2538		mod_init_result[i] = false;
2539	}
2540}
2541
2542static void __exit exit_btrfs_fs(void)
2543{
2544	btrfs_exit_btrfs_fs();
2545	btrfs_cleanup_fs_uuids();
2546}
2547
2548static int __init init_btrfs_fs(void)
2549{
2550	int ret;
2551	int i;
2552
2553	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2554		ASSERT(!mod_init_result[i]);
2555		ret = mod_init_seq[i].init_func();
2556		if (ret < 0) {
2557			btrfs_exit_btrfs_fs();
2558			return ret;
2559		}
2560		mod_init_result[i] = true;
2561	}
2562	return 0;
2563}
2564
2565late_initcall(init_btrfs_fs);
2566module_exit(exit_btrfs_fs)
2567
2568MODULE_LICENSE("GPL");
2569MODULE_SOFTDEP("pre: crc32c");
2570MODULE_SOFTDEP("pre: xxhash64");
2571MODULE_SOFTDEP("pre: sha256");
2572MODULE_SOFTDEP("pre: blake2b-256");