Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
 
  26#include <linux/ratelimit.h>
  27#include <linux/crc32c.h>
  28#include <linux/btrfs.h>
  29#include <linux/security.h>
  30#include <linux/fs_parser.h>
  31#include "messages.h"
  32#include "delayed-inode.h"
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
  37#include "print-tree.h"
  38#include "props.h"
  39#include "xattr.h"
  40#include "bio.h"
  41#include "export.h"
  42#include "compression.h"
  43#include "rcu-string.h"
  44#include "dev-replace.h"
  45#include "free-space-cache.h"
  46#include "backref.h"
  47#include "space-info.h"
  48#include "sysfs.h"
  49#include "zoned.h"
  50#include "tests/btrfs-tests.h"
  51#include "block-group.h"
  52#include "discard.h"
 
  53#include "qgroup.h"
  54#include "raid56.h"
  55#include "fs.h"
  56#include "accessors.h"
  57#include "defrag.h"
  58#include "dir-item.h"
  59#include "ioctl.h"
  60#include "scrub.h"
  61#include "verity.h"
  62#include "super.h"
  63#include "extent-tree.h"
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/btrfs.h>
  66
  67static const struct super_operations btrfs_super_ops;
 
 
 
 
 
 
 
 
 
  68static struct file_system_type btrfs_fs_type;
 
  69
  70static void btrfs_put_super(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71{
  72	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  73
  74	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
  75	close_ctree(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76}
  77
  78/* Store the mount options related information. */
  79struct btrfs_fs_context {
  80	char *subvol_name;
  81	u64 subvol_objectid;
  82	u64 max_inline;
  83	u32 commit_interval;
  84	u32 metadata_ratio;
  85	u32 thread_pool_size;
  86	unsigned long mount_opt;
  87	unsigned long compress_type:4;
  88	unsigned int compress_level;
  89	refcount_t refs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90};
  91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92enum {
  93	Opt_acl,
  94	Opt_clear_cache,
  95	Opt_commit_interval,
  96	Opt_compress,
  97	Opt_compress_force,
  98	Opt_compress_force_type,
  99	Opt_compress_type,
 100	Opt_degraded,
 101	Opt_device,
 102	Opt_fatal_errors,
 103	Opt_flushoncommit,
 
 104	Opt_max_inline,
 105	Opt_barrier,
 106	Opt_datacow,
 107	Opt_datasum,
 108	Opt_defrag,
 109	Opt_discard,
 110	Opt_discard_mode,
 
 111	Opt_ratio,
 112	Opt_rescan_uuid_tree,
 113	Opt_skip_balance,
 114	Opt_space_cache,
 115	Opt_space_cache_version,
 116	Opt_ssd,
 117	Opt_ssd_spread,
 118	Opt_subvol,
 119	Opt_subvol_empty,
 120	Opt_subvolid,
 121	Opt_thread_pool,
 122	Opt_treelog,
 123	Opt_user_subvol_rm_allowed,
 124
 125	/* Rescue options */
 126	Opt_rescue,
 127	Opt_usebackuproot,
 128	Opt_nologreplay,
 129	Opt_ignorebadroots,
 130	Opt_ignoredatacsums,
 131	Opt_rescue_all,
 132
 133	/* Debugging options */
 134	Opt_enospc_debug,
 
 
 
 135#ifdef CONFIG_BTRFS_DEBUG
 136	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 137#endif
 138#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 139	Opt_ref_verify,
 140#endif
 141	Opt_err,
 142};
 143
 144enum {
 145	Opt_fatal_errors_panic,
 146	Opt_fatal_errors_bug,
 147};
 148
 149static const struct constant_table btrfs_parameter_fatal_errors[] = {
 150	{ "panic", Opt_fatal_errors_panic },
 151	{ "bug", Opt_fatal_errors_bug },
 152	{}
 153};
 154
 155enum {
 156	Opt_discard_sync,
 157	Opt_discard_async,
 158};
 159
 160static const struct constant_table btrfs_parameter_discard[] = {
 161	{ "sync", Opt_discard_sync },
 162	{ "async", Opt_discard_async },
 163	{}
 164};
 165
 166enum {
 167	Opt_space_cache_v1,
 168	Opt_space_cache_v2,
 169};
 170
 171static const struct constant_table btrfs_parameter_space_cache[] = {
 172	{ "v1", Opt_space_cache_v1 },
 173	{ "v2", Opt_space_cache_v2 },
 174	{}
 175};
 176
 177enum {
 178	Opt_rescue_usebackuproot,
 179	Opt_rescue_nologreplay,
 180	Opt_rescue_ignorebadroots,
 181	Opt_rescue_ignoredatacsums,
 182	Opt_rescue_parameter_all,
 183};
 184
 185static const struct constant_table btrfs_parameter_rescue[] = {
 186	{ "usebackuproot", Opt_rescue_usebackuproot },
 187	{ "nologreplay", Opt_rescue_nologreplay },
 188	{ "ignorebadroots", Opt_rescue_ignorebadroots },
 189	{ "ibadroots", Opt_rescue_ignorebadroots },
 190	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
 191	{ "idatacsums", Opt_rescue_ignoredatacsums },
 192	{ "all", Opt_rescue_parameter_all },
 193	{}
 194};
 195
 196#ifdef CONFIG_BTRFS_DEBUG
 197enum {
 198	Opt_fragment_parameter_data,
 199	Opt_fragment_parameter_metadata,
 200	Opt_fragment_parameter_all,
 201};
 202
 203static const struct constant_table btrfs_parameter_fragment[] = {
 204	{ "data", Opt_fragment_parameter_data },
 205	{ "metadata", Opt_fragment_parameter_metadata },
 206	{ "all", Opt_fragment_parameter_all },
 207	{}
 208};
 209#endif
 210
 211static const struct fs_parameter_spec btrfs_fs_parameters[] = {
 212	fsparam_flag_no("acl", Opt_acl),
 213	fsparam_flag_no("autodefrag", Opt_defrag),
 214	fsparam_flag_no("barrier", Opt_barrier),
 215	fsparam_flag("clear_cache", Opt_clear_cache),
 216	fsparam_u32("commit", Opt_commit_interval),
 217	fsparam_flag("compress", Opt_compress),
 218	fsparam_string("compress", Opt_compress_type),
 219	fsparam_flag("compress-force", Opt_compress_force),
 220	fsparam_string("compress-force", Opt_compress_force_type),
 221	fsparam_flag_no("datacow", Opt_datacow),
 222	fsparam_flag_no("datasum", Opt_datasum),
 223	fsparam_flag("degraded", Opt_degraded),
 224	fsparam_string("device", Opt_device),
 225	fsparam_flag_no("discard", Opt_discard),
 226	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
 227	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
 228	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
 229	fsparam_string("max_inline", Opt_max_inline),
 230	fsparam_u32("metadata_ratio", Opt_ratio),
 231	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
 232	fsparam_flag("skip_balance", Opt_skip_balance),
 233	fsparam_flag_no("space_cache", Opt_space_cache),
 234	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
 235	fsparam_flag_no("ssd", Opt_ssd),
 236	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
 237	fsparam_string("subvol", Opt_subvol),
 238	fsparam_flag("subvol=", Opt_subvol_empty),
 239	fsparam_u64("subvolid", Opt_subvolid),
 240	fsparam_u32("thread_pool", Opt_thread_pool),
 241	fsparam_flag_no("treelog", Opt_treelog),
 242	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
 243
 244	/* Rescue options. */
 245	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
 246	/* Deprecated, with alias rescue=nologreplay */
 247	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
 248	/* Deprecated, with alias rescue=usebackuproot */
 249	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
 
 
 
 250
 251	/* Debugging options. */
 252	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
 
 
 
 
 253#ifdef CONFIG_BTRFS_DEBUG
 254	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
 
 
 255#endif
 256#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 257	fsparam_flag("ref_verify", Opt_ref_verify),
 258#endif
 259	{}
 260};
 261
 262/* No support for restricting writes to btrfs devices yet... */
 263static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
 264{
 265	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
 266}
 267
 268static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 269{
 270	struct btrfs_fs_context *ctx = fc->fs_private;
 271	struct fs_parse_result result;
 272	int opt;
 
 
 273
 274	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
 275	if (opt < 0)
 276		return opt;
 
 277
 278	switch (opt) {
 279	case Opt_degraded:
 280		btrfs_set_opt(ctx->mount_opt, DEGRADED);
 281		break;
 282	case Opt_subvol_empty:
 283		/*
 284		 * This exists because we used to allow it on accident, so we're
 285		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
 286		 * empty subvol= again").
 287		 */
 288		break;
 289	case Opt_subvol:
 290		kfree(ctx->subvol_name);
 291		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
 292		if (!ctx->subvol_name)
 293			return -ENOMEM;
 294		break;
 295	case Opt_subvolid:
 296		ctx->subvol_objectid = result.uint_64;
 297
 298		/* subvolid=0 means give me the original fs_tree. */
 299		if (!ctx->subvol_objectid)
 300			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
 301		break;
 302	case Opt_device: {
 303		struct btrfs_device *device;
 304		blk_mode_t mode = btrfs_open_mode(fc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 305
 306		mutex_lock(&uuid_mutex);
 307		device = btrfs_scan_one_device(param->string, mode, false);
 308		mutex_unlock(&uuid_mutex);
 309		if (IS_ERR(device))
 310			return PTR_ERR(device);
 311		break;
 312	}
 313	case Opt_datasum:
 314		if (result.negated) {
 315			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 316		} else {
 317			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 318			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 319		}
 320		break;
 321	case Opt_datacow:
 322		if (result.negated) {
 323			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 324			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 325			btrfs_set_opt(ctx->mount_opt, NODATACOW);
 326			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 327		} else {
 328			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 329		}
 330		break;
 331	case Opt_compress_force:
 332	case Opt_compress_force_type:
 333		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
 334		fallthrough;
 335	case Opt_compress:
 336	case Opt_compress_type:
 337		if (opt == Opt_compress || opt == Opt_compress_force) {
 338			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 339			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 340			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 341			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 342			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 343		} else if (strncmp(param->string, "zlib", 4) == 0) {
 344			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 345			ctx->compress_level =
 346				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
 347							 param->string + 4);
 348			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 349			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 350			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 351		} else if (strncmp(param->string, "lzo", 3) == 0) {
 352			ctx->compress_type = BTRFS_COMPRESS_LZO;
 353			ctx->compress_level = 0;
 354			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 355			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 356			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 357		} else if (strncmp(param->string, "zstd", 4) == 0) {
 358			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
 359			ctx->compress_level =
 360				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
 361							 param->string + 4);
 362			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 363			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 364			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 365		} else if (strncmp(param->string, "no", 2) == 0) {
 366			ctx->compress_level = 0;
 367			ctx->compress_type = 0;
 368			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 369			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 370		} else {
 371			btrfs_err(NULL, "unrecognized compression value %s",
 372				  param->string);
 373			return -EINVAL;
 374		}
 375		break;
 376	case Opt_ssd:
 377		if (result.negated) {
 378			btrfs_set_opt(ctx->mount_opt, NOSSD);
 379			btrfs_clear_opt(ctx->mount_opt, SSD);
 380			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 381		} else {
 382			btrfs_set_opt(ctx->mount_opt, SSD);
 383			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 384		}
 385		break;
 386	case Opt_ssd_spread:
 387		if (result.negated) {
 388			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 389		} else {
 390			btrfs_set_opt(ctx->mount_opt, SSD);
 391			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
 392			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 393		}
 394		break;
 395	case Opt_barrier:
 396		if (result.negated)
 397			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
 398		else
 399			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
 400		break;
 401	case Opt_thread_pool:
 402		if (result.uint_32 == 0) {
 403			btrfs_err(NULL, "invalid value 0 for thread_pool");
 404			return -EINVAL;
 405		}
 406		ctx->thread_pool_size = result.uint_32;
 407		break;
 408	case Opt_max_inline:
 409		ctx->max_inline = memparse(param->string, NULL);
 410		break;
 411	case Opt_acl:
 412		if (result.negated) {
 413			fc->sb_flags &= ~SB_POSIXACL;
 414		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 416			fc->sb_flags |= SB_POSIXACL;
 
 417#else
 418			btrfs_err(NULL, "support for ACL not compiled in");
 419			return -EINVAL;
 
 420#endif
 421		}
 422		/*
 423		 * VFS limits the ability to toggle ACL on and off via remount,
 424		 * despite every file system allowing this.  This seems to be
 425		 * an oversight since we all do, but it'll fail if we're
 426		 * remounting.  So don't set the mask here, we'll check it in
 427		 * btrfs_reconfigure and do the toggling ourselves.
 428		 */
 429		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
 430			fc->sb_flags_mask |= SB_POSIXACL;
 431		break;
 432	case Opt_treelog:
 433		if (result.negated)
 434			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
 435		else
 436			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
 437		break;
 438	case Opt_nologreplay:
 439		btrfs_warn(NULL,
 440		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 441		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 442		break;
 443	case Opt_flushoncommit:
 444		if (result.negated)
 445			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
 446		else
 447			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
 448		break;
 449	case Opt_ratio:
 450		ctx->metadata_ratio = result.uint_32;
 451		break;
 452	case Opt_discard:
 453		if (result.negated) {
 454			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 455			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 456			btrfs_set_opt(ctx->mount_opt, NODISCARD);
 457		} else {
 458			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 459			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 460		}
 461		break;
 462	case Opt_discard_mode:
 463		switch (result.uint_32) {
 464		case Opt_discard_sync:
 465			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 466			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 467			break;
 468		case Opt_discard_async:
 469			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 470			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
 471			break;
 472		default:
 473			btrfs_err(NULL, "unrecognized discard mode value %s",
 474				  param->key);
 475			return -EINVAL;
 476		}
 477		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
 478		break;
 479	case Opt_space_cache:
 480		if (result.negated) {
 481			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
 482			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 483			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 484		} else {
 485			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 486			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 487		}
 488		break;
 489	case Opt_space_cache_version:
 490		switch (result.uint_32) {
 491		case Opt_space_cache_v1:
 492			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 493			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 494			break;
 495		case Opt_space_cache_v2:
 496			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 497			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
 498			break;
 499		default:
 500			btrfs_err(NULL, "unrecognized space_cache value %s",
 501				  param->key);
 502			return -EINVAL;
 503		}
 504		break;
 505	case Opt_rescan_uuid_tree:
 506		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
 507		break;
 508	case Opt_clear_cache:
 509		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 510		break;
 511	case Opt_user_subvol_rm_allowed:
 512		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
 513		break;
 514	case Opt_enospc_debug:
 515		if (result.negated)
 516			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
 517		else
 518			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
 519		break;
 520	case Opt_defrag:
 521		if (result.negated)
 522			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
 523		else
 524			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
 525		break;
 526	case Opt_usebackuproot:
 527		btrfs_warn(NULL,
 528			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
 529		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 530
 531		/* If we're loading the backup roots we can't trust the space cache. */
 532		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 533		break;
 534	case Opt_skip_balance:
 535		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
 536		break;
 537	case Opt_fatal_errors:
 538		switch (result.uint_32) {
 539		case Opt_fatal_errors_panic:
 540			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 541			break;
 542		case Opt_fatal_errors_bug:
 543			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 
 
 
 
 
 544			break;
 545		default:
 546			btrfs_err(NULL, "unrecognized fatal_errors value %s",
 547				  param->key);
 548			return -EINVAL;
 549		}
 550		break;
 551	case Opt_commit_interval:
 552		ctx->commit_interval = result.uint_32;
 553		if (ctx->commit_interval == 0)
 554			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 555		break;
 556	case Opt_rescue:
 557		switch (result.uint_32) {
 558		case Opt_rescue_usebackuproot:
 559			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 560			break;
 561		case Opt_rescue_nologreplay:
 562			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 563			break;
 564		case Opt_rescue_ignorebadroots:
 565			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 566			break;
 567		case Opt_rescue_ignoredatacsums:
 568			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 569			break;
 570		case Opt_rescue_parameter_all:
 571			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 572			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 573			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574			break;
 575		default:
 576			btrfs_info(NULL, "unrecognized rescue option '%s'",
 577				   param->key);
 578			return -EINVAL;
 579		}
 580		break;
 581#ifdef CONFIG_BTRFS_DEBUG
 582	case Opt_fragment:
 583		switch (result.uint_32) {
 584		case Opt_fragment_parameter_all:
 585			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 586			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 587			break;
 588		case Opt_fragment_parameter_metadata:
 589			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 
 
 590			break;
 591		case Opt_fragment_parameter_data:
 592			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 
 593			break;
 594		default:
 595			btrfs_info(NULL, "unrecognized fragment option '%s'",
 596				   param->key);
 597			return -EINVAL;
 598		}
 599		break;
 600#endif
 601#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 602	case Opt_ref_verify:
 603		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
 604		break;
 
 605#endif
 606	default:
 607		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
 608		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 609	}
 
 
 
 
 
 
 610
 611	return 0;
 
 
 
 
 
 612}
 613
 614/*
 615 * Some options only have meaning at mount time and shouldn't persist across
 616 * remounts, or be displayed. Clear these at the end of mount and remount code
 617 * paths.
 
 618 */
 619static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
 
 620{
 621	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
 622	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
 623	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
 624}
 625
 626static bool check_ro_option(struct btrfs_fs_info *fs_info,
 627			    unsigned long mount_opt, unsigned long opt,
 628			    const char *opt_name)
 629{
 630	if (mount_opt & opt) {
 631		btrfs_err(fs_info, "%s must be used with ro mount option",
 632			  opt_name);
 633		return true;
 634	}
 635	return false;
 636}
 637
 638bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
 639			 unsigned long flags)
 640{
 641	bool ret = true;
 642
 643	if (!(flags & SB_RDONLY) &&
 644	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
 645	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
 646	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
 647		ret = false;
 
 
 
 648
 649	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 650	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
 651	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
 652		btrfs_err(info, "cannot disable free-space-tree");
 653		ret = false;
 654	}
 655	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
 656	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
 657		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
 658		ret = false;
 659	}
 660
 661	if (btrfs_check_mountopts_zoned(info, mount_opt))
 662		ret = false;
 663
 664	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
 665		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
 666			btrfs_info(info, "disk space caching is enabled");
 667		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
 668			btrfs_info(info, "using free-space-tree");
 
 669	}
 670
 671	return ret;
 
 
 672}
 673
 674/*
 675 * This is subtle, we only call this during open_ctree().  We need to pre-load
 676 * the mount options with the on-disk settings.  Before the new mount API took
 677 * effect we would do this on mount and remount.  With the new mount API we'll
 678 * only do this on the initial mount.
 679 *
 680 * This isn't a change in behavior, because we're using the current state of the
 681 * file system to set the current mount options.  If you mounted with special
 682 * options to disable these features and then remounted we wouldn't revert the
 683 * settings, because mounting without these features cleared the on-disk
 684 * settings, so this being called on re-mount is not needed.
 685 */
 686void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
 
 687{
 688	if (fs_info->sectorsize < PAGE_SIZE) {
 689		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
 690		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
 691			btrfs_info(fs_info,
 692				   "forcing free space tree for sector size %u with page size %lu",
 693				   fs_info->sectorsize, PAGE_SIZE);
 694			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 695		}
 696	}
 697
 698	/*
 699	 * At this point our mount options are populated, so we only mess with
 700	 * these settings if we don't have any settings already.
 701	 */
 702	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 703		return;
 704
 705	if (btrfs_is_zoned(fs_info) &&
 706	    btrfs_free_space_cache_v1_active(fs_info)) {
 707		btrfs_info(fs_info, "zoned: clearing existing space cache");
 708		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
 709		return;
 710	}
 711
 712	if (btrfs_test_opt(fs_info, SPACE_CACHE))
 713		return;
 
 
 714
 715	if (btrfs_test_opt(fs_info, NOSPACECACHE))
 716		return;
 
 
 
 
 
 
 
 
 
 
 
 
 717
 718	/*
 719	 * At this point we don't have explicit options set by the user, set
 720	 * them ourselves based on the state of the file system.
 721	 */
 722	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 723		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 724	else if (btrfs_free_space_cache_v1_active(fs_info))
 725		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
 726}
 727
 728static void set_device_specific_options(struct btrfs_fs_info *fs_info)
 729{
 730	if (!btrfs_test_opt(fs_info, NOSSD) &&
 731	    !fs_info->fs_devices->rotating)
 732		btrfs_set_opt(fs_info->mount_opt, SSD);
 
 733
 734	/*
 735	 * For devices supporting discard turn on discard=async automatically,
 736	 * unless it's already set or disabled. This could be turned off by
 737	 * nodiscard for the same mount.
 738	 *
 739	 * The zoned mode piggy backs on the discard functionality for
 740	 * resetting a zone. There is no reason to delay the zone reset as it is
 741	 * fast enough. So, do not enable async discard for zoned mode.
 742	 */
 743	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
 744	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
 745	      btrfs_test_opt(fs_info, NODISCARD)) &&
 746	    fs_info->fs_devices->discardable &&
 747	    !btrfs_is_zoned(fs_info))
 748		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
 749}
 750
 751char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 752					  u64 subvol_objectid)
 753{
 754	struct btrfs_root *root = fs_info->tree_root;
 755	struct btrfs_root *fs_root = NULL;
 756	struct btrfs_root_ref *root_ref;
 757	struct btrfs_inode_ref *inode_ref;
 758	struct btrfs_key key;
 759	struct btrfs_path *path = NULL;
 760	char *name = NULL, *ptr;
 761	u64 dirid;
 762	int len;
 763	int ret;
 764
 765	path = btrfs_alloc_path();
 766	if (!path) {
 767		ret = -ENOMEM;
 768		goto err;
 769	}
 
 770
 771	name = kmalloc(PATH_MAX, GFP_KERNEL);
 772	if (!name) {
 773		ret = -ENOMEM;
 774		goto err;
 775	}
 776	ptr = name + PATH_MAX - 1;
 777	ptr[0] = '\0';
 778
 779	/*
 780	 * Walk up the subvolume trees in the tree of tree roots by root
 781	 * backrefs until we hit the top-level subvolume.
 782	 */
 783	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 784		key.objectid = subvol_objectid;
 785		key.type = BTRFS_ROOT_BACKREF_KEY;
 786		key.offset = (u64)-1;
 787
 788		ret = btrfs_search_backwards(root, &key, path);
 789		if (ret < 0) {
 790			goto err;
 791		} else if (ret > 0) {
 792			ret = -ENOENT;
 793			goto err;
 
 
 
 
 
 
 794		}
 795
 
 796		subvol_objectid = key.offset;
 797
 798		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
 799					  struct btrfs_root_ref);
 800		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
 801		ptr -= len + 1;
 802		if (ptr < name) {
 803			ret = -ENAMETOOLONG;
 804			goto err;
 805		}
 806		read_extent_buffer(path->nodes[0], ptr + 1,
 807				   (unsigned long)(root_ref + 1), len);
 808		ptr[0] = '/';
 809		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
 810		btrfs_release_path(path);
 811
 812		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
 813		if (IS_ERR(fs_root)) {
 814			ret = PTR_ERR(fs_root);
 815			fs_root = NULL;
 816			goto err;
 817		}
 818
 819		/*
 820		 * Walk up the filesystem tree by inode refs until we hit the
 821		 * root directory.
 822		 */
 823		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
 824			key.objectid = dirid;
 825			key.type = BTRFS_INODE_REF_KEY;
 826			key.offset = (u64)-1;
 827
 828			ret = btrfs_search_backwards(fs_root, &key, path);
 829			if (ret < 0) {
 830				goto err;
 831			} else if (ret > 0) {
 832				ret = -ENOENT;
 833				goto err;
 
 
 
 
 
 
 834			}
 835
 
 836			dirid = key.offset;
 837
 838			inode_ref = btrfs_item_ptr(path->nodes[0],
 839						   path->slots[0],
 840						   struct btrfs_inode_ref);
 841			len = btrfs_inode_ref_name_len(path->nodes[0],
 842						       inode_ref);
 843			ptr -= len + 1;
 844			if (ptr < name) {
 845				ret = -ENAMETOOLONG;
 846				goto err;
 847			}
 848			read_extent_buffer(path->nodes[0], ptr + 1,
 849					   (unsigned long)(inode_ref + 1), len);
 850			ptr[0] = '/';
 851			btrfs_release_path(path);
 852		}
 853		btrfs_put_root(fs_root);
 854		fs_root = NULL;
 855	}
 856
 857	btrfs_free_path(path);
 858	if (ptr == name + PATH_MAX - 1) {
 859		name[0] = '/';
 860		name[1] = '\0';
 861	} else {
 862		memmove(name, ptr, name + PATH_MAX - ptr);
 863	}
 864	return name;
 865
 866err:
 867	btrfs_put_root(fs_root);
 868	btrfs_free_path(path);
 869	kfree(name);
 870	return ERR_PTR(ret);
 871}
 872
 873static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
 874{
 875	struct btrfs_root *root = fs_info->tree_root;
 876	struct btrfs_dir_item *di;
 877	struct btrfs_path *path;
 878	struct btrfs_key location;
 879	struct fscrypt_str name = FSTR_INIT("default", 7);
 880	u64 dir_id;
 881
 882	path = btrfs_alloc_path();
 883	if (!path)
 884		return -ENOMEM;
 
 885
 886	/*
 887	 * Find the "default" dir item which points to the root item that we
 888	 * will mount by default if we haven't been given a specific subvolume
 889	 * to mount.
 890	 */
 891	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 892	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
 893	if (IS_ERR(di)) {
 894		btrfs_free_path(path);
 895		return PTR_ERR(di);
 896	}
 897	if (!di) {
 898		/*
 899		 * Ok the default dir item isn't there.  This is weird since
 900		 * it's always been there, but don't freak out, just try and
 901		 * mount the top-level subvolume.
 902		 */
 903		btrfs_free_path(path);
 904		*objectid = BTRFS_FS_TREE_OBJECTID;
 905		return 0;
 906	}
 907
 908	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 909	btrfs_free_path(path);
 910	*objectid = location.objectid;
 911	return 0;
 912}
 913
 914static int btrfs_fill_super(struct super_block *sb,
 915			    struct btrfs_fs_devices *fs_devices,
 916			    void *data)
 917{
 918	struct inode *inode;
 919	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 920	int err;
 921
 922	sb->s_maxbytes = MAX_LFS_FILESIZE;
 923	sb->s_magic = BTRFS_SUPER_MAGIC;
 924	sb->s_op = &btrfs_super_ops;
 925	sb->s_d_op = &btrfs_dentry_operations;
 926	sb->s_export_op = &btrfs_export_ops;
 927#ifdef CONFIG_FS_VERITY
 928	sb->s_vop = &btrfs_verityops;
 929#endif
 930	sb->s_xattr = btrfs_xattr_handlers;
 931	sb->s_time_gran = 1;
 
 
 
 
 932	sb->s_iflags |= SB_I_CGROUPWB;
 933
 934	err = super_setup_bdi(sb);
 935	if (err) {
 936		btrfs_err(fs_info, "super_setup_bdi failed");
 937		return err;
 938	}
 939
 940	err = open_ctree(sb, fs_devices, (char *)data);
 941	if (err) {
 942		btrfs_err(fs_info, "open_ctree failed");
 943		return err;
 944	}
 945
 946	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 947	if (IS_ERR(inode)) {
 948		err = PTR_ERR(inode);
 949		btrfs_handle_fs_error(fs_info, err, NULL);
 950		goto fail_close;
 951	}
 952
 953	sb->s_root = d_make_root(inode);
 954	if (!sb->s_root) {
 955		err = -ENOMEM;
 956		goto fail_close;
 957	}
 958
 
 959	sb->s_flags |= SB_ACTIVE;
 960	return 0;
 961
 962fail_close:
 963	close_ctree(fs_info);
 964	return err;
 965}
 966
 967int btrfs_sync_fs(struct super_block *sb, int wait)
 968{
 969	struct btrfs_trans_handle *trans;
 970	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 971	struct btrfs_root *root = fs_info->tree_root;
 972
 973	trace_btrfs_sync_fs(fs_info, wait);
 974
 975	if (!wait) {
 976		filemap_flush(fs_info->btree_inode->i_mapping);
 977		return 0;
 978	}
 979
 980	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
 981
 982	trans = btrfs_attach_transaction_barrier(root);
 983	if (IS_ERR(trans)) {
 984		/* no transaction, don't bother */
 985		if (PTR_ERR(trans) == -ENOENT) {
 986			/*
 987			 * Exit unless we have some pending changes
 988			 * that need to go through commit
 989			 */
 990			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
 991				      &fs_info->flags))
 992				return 0;
 993			/*
 994			 * A non-blocking test if the fs is frozen. We must not
 995			 * start a new transaction here otherwise a deadlock
 996			 * happens. The pending operations are delayed to the
 997			 * next commit after thawing.
 998			 */
 999			if (sb_start_write_trylock(sb))
1000				sb_end_write(sb);
1001			else
1002				return 0;
1003			trans = btrfs_start_transaction(root, 0);
1004		}
1005		if (IS_ERR(trans))
1006			return PTR_ERR(trans);
1007	}
1008	return btrfs_commit_transaction(trans);
1009}
1010
1011static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1012{
1013	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1014	*printed = true;
1015}
1016
1017static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1018{
1019	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1020	const char *compress_type;
1021	const char *subvol_name;
1022	bool printed = false;
1023
1024	if (btrfs_test_opt(info, DEGRADED))
1025		seq_puts(seq, ",degraded");
1026	if (btrfs_test_opt(info, NODATASUM))
1027		seq_puts(seq, ",nodatasum");
1028	if (btrfs_test_opt(info, NODATACOW))
1029		seq_puts(seq, ",nodatacow");
1030	if (btrfs_test_opt(info, NOBARRIER))
1031		seq_puts(seq, ",nobarrier");
1032	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1033		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1034	if (info->thread_pool_size !=  min_t(unsigned long,
1035					     num_online_cpus() + 2, 8))
1036		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1037	if (btrfs_test_opt(info, COMPRESS)) {
1038		compress_type = btrfs_compress_type2str(info->compress_type);
1039		if (btrfs_test_opt(info, FORCE_COMPRESS))
1040			seq_printf(seq, ",compress-force=%s", compress_type);
1041		else
1042			seq_printf(seq, ",compress=%s", compress_type);
1043		if (info->compress_level)
1044			seq_printf(seq, ":%d", info->compress_level);
1045	}
1046	if (btrfs_test_opt(info, NOSSD))
1047		seq_puts(seq, ",nossd");
1048	if (btrfs_test_opt(info, SSD_SPREAD))
1049		seq_puts(seq, ",ssd_spread");
1050	else if (btrfs_test_opt(info, SSD))
1051		seq_puts(seq, ",ssd");
1052	if (btrfs_test_opt(info, NOTREELOG))
1053		seq_puts(seq, ",notreelog");
1054	if (btrfs_test_opt(info, NOLOGREPLAY))
1055		print_rescue_option(seq, "nologreplay", &printed);
1056	if (btrfs_test_opt(info, USEBACKUPROOT))
1057		print_rescue_option(seq, "usebackuproot", &printed);
1058	if (btrfs_test_opt(info, IGNOREBADROOTS))
1059		print_rescue_option(seq, "ignorebadroots", &printed);
1060	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1061		print_rescue_option(seq, "ignoredatacsums", &printed);
1062	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1063		seq_puts(seq, ",flushoncommit");
1064	if (btrfs_test_opt(info, DISCARD_SYNC))
1065		seq_puts(seq, ",discard");
1066	if (btrfs_test_opt(info, DISCARD_ASYNC))
1067		seq_puts(seq, ",discard=async");
1068	if (!(info->sb->s_flags & SB_POSIXACL))
1069		seq_puts(seq, ",noacl");
1070	if (btrfs_free_space_cache_v1_active(info))
1071		seq_puts(seq, ",space_cache");
1072	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1073		seq_puts(seq, ",space_cache=v2");
1074	else
1075		seq_puts(seq, ",nospace_cache");
1076	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1077		seq_puts(seq, ",rescan_uuid_tree");
1078	if (btrfs_test_opt(info, CLEAR_CACHE))
1079		seq_puts(seq, ",clear_cache");
1080	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1081		seq_puts(seq, ",user_subvol_rm_allowed");
1082	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1083		seq_puts(seq, ",enospc_debug");
1084	if (btrfs_test_opt(info, AUTO_DEFRAG))
1085		seq_puts(seq, ",autodefrag");
 
 
1086	if (btrfs_test_opt(info, SKIP_BALANCE))
1087		seq_puts(seq, ",skip_balance");
 
 
 
 
 
 
 
 
 
1088	if (info->metadata_ratio)
1089		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1090	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1091		seq_puts(seq, ",fatal_errors=panic");
1092	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1093		seq_printf(seq, ",commit=%u", info->commit_interval);
1094#ifdef CONFIG_BTRFS_DEBUG
1095	if (btrfs_test_opt(info, FRAGMENT_DATA))
1096		seq_puts(seq, ",fragment=data");
1097	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1098		seq_puts(seq, ",fragment=metadata");
1099#endif
1100	if (btrfs_test_opt(info, REF_VERIFY))
1101		seq_puts(seq, ",ref_verify");
1102	seq_printf(seq, ",subvolid=%llu",
1103		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1104	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1105			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1106	if (!IS_ERR(subvol_name)) {
1107		seq_puts(seq, ",subvol=");
1108		seq_escape(seq, subvol_name, " \t\n\\");
1109		kfree(subvol_name);
1110	}
1111	return 0;
1112}
1113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1114/*
1115 * subvolumes are identified by ino 256
1116 */
1117static inline int is_subvolume_inode(struct inode *inode)
1118{
1119	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1120		return 1;
1121	return 0;
1122}
1123
1124static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1125				   struct vfsmount *mnt)
1126{
1127	struct dentry *root;
1128	int ret;
1129
1130	if (!subvol_name) {
1131		if (!subvol_objectid) {
1132			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1133							  &subvol_objectid);
1134			if (ret) {
1135				root = ERR_PTR(ret);
1136				goto out;
1137			}
1138		}
1139		subvol_name = btrfs_get_subvol_name_from_objectid(
1140					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1141		if (IS_ERR(subvol_name)) {
1142			root = ERR_CAST(subvol_name);
1143			subvol_name = NULL;
1144			goto out;
1145		}
1146
1147	}
1148
1149	root = mount_subtree(mnt, subvol_name);
1150	/* mount_subtree() drops our reference on the vfsmount. */
1151	mnt = NULL;
1152
1153	if (!IS_ERR(root)) {
1154		struct super_block *s = root->d_sb;
1155		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1156		struct inode *root_inode = d_inode(root);
1157		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1158
1159		ret = 0;
1160		if (!is_subvolume_inode(root_inode)) {
1161			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1162			       subvol_name);
1163			ret = -EINVAL;
1164		}
1165		if (subvol_objectid && root_objectid != subvol_objectid) {
1166			/*
1167			 * This will also catch a race condition where a
1168			 * subvolume which was passed by ID is renamed and
1169			 * another subvolume is renamed over the old location.
1170			 */
1171			btrfs_err(fs_info,
1172				  "subvol '%s' does not match subvolid %llu",
1173				  subvol_name, subvol_objectid);
1174			ret = -EINVAL;
1175		}
1176		if (ret) {
1177			dput(root);
1178			root = ERR_PTR(ret);
1179			deactivate_locked_super(s);
1180		}
1181	}
1182
1183out:
1184	mntput(mnt);
1185	kfree(subvol_name);
1186	return root;
1187}
1188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1190				     u32 new_pool_size, u32 old_pool_size)
1191{
1192	if (new_pool_size == old_pool_size)
1193		return;
1194
1195	fs_info->thread_pool_size = new_pool_size;
1196
1197	btrfs_info(fs_info, "resize thread pool %d -> %d",
1198	       old_pool_size, new_pool_size);
1199
1200	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1201	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1202	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1203	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1204	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
 
 
1205	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1206	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1207	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
 
 
 
1208}
1209
1210static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1211				       unsigned long old_opts, int flags)
1212{
1213	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1214	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1215	     (flags & SB_RDONLY))) {
1216		/* wait for any defraggers to finish */
1217		wait_event(fs_info->transaction_wait,
1218			   (atomic_read(&fs_info->defrag_running) == 0));
1219		if (flags & SB_RDONLY)
1220			sync_filesystem(fs_info->sb);
1221	}
1222}
1223
1224static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1225					 unsigned long old_opts)
1226{
1227	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1228
1229	/*
1230	 * We need to cleanup all defragable inodes if the autodefragment is
1231	 * close or the filesystem is read only.
1232	 */
1233	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1234	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1235		btrfs_cleanup_defrag_inodes(fs_info);
1236	}
1237
1238	/* If we toggled discard async */
1239	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1240	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1241		btrfs_discard_resume(fs_info);
1242	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1243		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1244		btrfs_discard_cleanup(fs_info);
1245
1246	/* If we toggled space cache */
1247	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1248		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1249}
1250
1251static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1252{
 
 
 
 
 
 
 
 
1253	int ret;
1254
1255	if (BTRFS_FS_ERROR(fs_info)) {
1256		btrfs_err(fs_info,
1257			  "remounting read-write after error is not allowed");
1258		return -EINVAL;
1259	}
1260
1261	if (fs_info->fs_devices->rw_devices == 0)
1262		return -EACCES;
1263
1264	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1265		btrfs_warn(fs_info,
1266			   "too many missing devices, writable remount is not allowed");
1267		return -EACCES;
1268	}
1269
1270	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1271		btrfs_warn(fs_info,
1272			   "mount required to replay tree-log, cannot remount read-write");
1273		return -EINVAL;
 
 
1274	}
1275
1276	/*
1277	 * NOTE: when remounting with a change that does writes, don't put it
1278	 * anywhere above this point, as we are not sure to be safe to write
1279	 * until we pass the above checks.
1280	 */
1281	ret = btrfs_start_pre_rw_mount(fs_info);
1282	if (ret)
1283		return ret;
1284
1285	btrfs_clear_sb_rdonly(fs_info->sb);
1286
1287	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1288
1289	/*
1290	 * If we've gone from readonly -> read-write, we need to get our
1291	 * sync/async discard lists in the right state.
1292	 */
1293	btrfs_discard_resume(fs_info);
1294
1295	return 0;
1296}
1297
1298static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1299{
1300	/*
1301	 * This also happens on 'umount -rf' or on shutdown, when the
1302	 * filesystem is busy.
1303	 */
1304	cancel_work_sync(&fs_info->async_reclaim_work);
1305	cancel_work_sync(&fs_info->async_data_reclaim_work);
1306
1307	btrfs_discard_cleanup(fs_info);
1308
1309	/* Wait for the uuid_scan task to finish */
1310	down(&fs_info->uuid_tree_rescan_sem);
1311	/* Avoid complains from lockdep et al. */
1312	up(&fs_info->uuid_tree_rescan_sem);
1313
1314	btrfs_set_sb_rdonly(fs_info->sb);
 
 
1315
1316	/*
1317	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1318	 * loop if it's already active.  If it's already asleep, we'll leave
1319	 * unused block groups on disk until we're mounted read-write again
1320	 * unless we clean them up here.
1321	 */
1322	btrfs_delete_unused_bgs(fs_info);
1323
1324	/*
1325	 * The cleaner task could be already running before we set the flag
1326	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1327	 * sure that after we finish the remount, i.e. after we call
1328	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1329	 * - either because it was dropping a dead root, running delayed iputs
1330	 *   or deleting an unused block group (the cleaner picked a block
1331	 *   group from the list of unused block groups before we were able to
1332	 *   in the previous call to btrfs_delete_unused_bgs()).
1333	 */
1334	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1335
1336	/*
1337	 * We've set the superblock to RO mode, so we might have made the
1338	 * cleaner task sleep without running all pending delayed iputs. Go
1339	 * through all the delayed iputs here, so that if an unmount happens
1340	 * without remounting RW we don't end up at finishing close_ctree()
1341	 * with a non-empty list of delayed iputs.
1342	 */
1343	btrfs_run_delayed_iputs(fs_info);
1344
1345	btrfs_dev_replace_suspend_for_unmount(fs_info);
1346	btrfs_scrub_cancel(fs_info);
1347	btrfs_pause_balance(fs_info);
 
1348
1349	/*
1350	 * Pause the qgroup rescan worker if it is running. We don't want it to
1351	 * be still running after we are in RO mode, as after that, by the time
1352	 * we unmount, it might have left a transaction open, so we would leak
1353	 * the transaction and/or crash.
1354	 */
1355	btrfs_qgroup_wait_for_completion(fs_info, false);
1356
1357	return btrfs_commit_super(fs_info);
1358}
 
 
 
 
 
 
1359
1360static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1361{
1362	fs_info->max_inline = ctx->max_inline;
1363	fs_info->commit_interval = ctx->commit_interval;
1364	fs_info->metadata_ratio = ctx->metadata_ratio;
1365	fs_info->thread_pool_size = ctx->thread_pool_size;
1366	fs_info->mount_opt = ctx->mount_opt;
1367	fs_info->compress_type = ctx->compress_type;
1368	fs_info->compress_level = ctx->compress_level;
1369}
1370
1371static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1372{
1373	ctx->max_inline = fs_info->max_inline;
1374	ctx->commit_interval = fs_info->commit_interval;
1375	ctx->metadata_ratio = fs_info->metadata_ratio;
1376	ctx->thread_pool_size = fs_info->thread_pool_size;
1377	ctx->mount_opt = fs_info->mount_opt;
1378	ctx->compress_type = fs_info->compress_type;
1379	ctx->compress_level = fs_info->compress_level;
1380}
1381
1382#define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1383do {										\
1384	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1385	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1386		btrfs_info(fs_info, fmt, ##args);				\
1387} while (0)
1388
1389#define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1390do {									\
1391	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1392	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1393		btrfs_info(fs_info, fmt, ##args);			\
1394} while (0)
1395
1396static void btrfs_emit_options(struct btrfs_fs_info *info,
1397			       struct btrfs_fs_context *old)
1398{
1399	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1400	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1401	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1402	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1403	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1404	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1405	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1406	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1407	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1408	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1409	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1410	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1411	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1412	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1413	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1414	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1415	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1416	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1417	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1418	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1419	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1420
1421	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1422	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1423	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1424	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1425	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1426	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1427	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1428	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1429	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1430
1431	/* Did the compression settings change? */
1432	if (btrfs_test_opt(info, COMPRESS) &&
1433	    (!old ||
1434	     old->compress_type != info->compress_type ||
1435	     old->compress_level != info->compress_level ||
1436	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1437	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1438		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1439
1440		btrfs_info(info, "%s %s compression, level %d",
1441			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1442			   compress_type, info->compress_level);
1443	}
1444
1445	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1446		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1447}
 
 
 
1448
1449static int btrfs_reconfigure(struct fs_context *fc)
1450{
1451	struct super_block *sb = fc->root->d_sb;
1452	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1453	struct btrfs_fs_context *ctx = fc->fs_private;
1454	struct btrfs_fs_context old_ctx;
1455	int ret = 0;
1456	bool mount_reconfigure = (fc->s_fs_info != NULL);
1457
1458	btrfs_info_to_ctx(fs_info, &old_ctx);
 
 
1459
1460	/*
1461	 * This is our "bind mount" trick, we don't want to allow the user to do
1462	 * anything other than mount a different ro/rw and a different subvol,
1463	 * all of the mount options should be maintained.
1464	 */
1465	if (mount_reconfigure)
1466		ctx->mount_opt = old_ctx.mount_opt;
1467
1468	sync_filesystem(sb);
1469	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
1470
1471	if (!mount_reconfigure &&
1472	    !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1473		return -EINVAL;
 
 
1474
1475	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1476	if (ret < 0)
1477		return ret;
1478
1479	btrfs_ctx_to_info(fs_info, ctx);
1480	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1481	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1482				 old_ctx.thread_pool_size);
1483
1484	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1485	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1486	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1487		btrfs_warn(fs_info,
1488		"remount supports changing free space tree only from RO to RW");
1489		/* Make sure free space cache options match the state on disk. */
1490		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1491			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1492			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1493		}
1494		if (btrfs_free_space_cache_v1_active(fs_info)) {
1495			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1496			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1497		}
1498	}
1499
1500	ret = 0;
1501	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1502		ret = btrfs_remount_ro(fs_info);
1503	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1504		ret = btrfs_remount_rw(fs_info);
1505	if (ret)
1506		goto restore;
1507
 
 
 
1508	/*
1509	 * If we set the mask during the parameter parsing VFS would reject the
1510	 * remount.  Here we can set the mask and the value will be updated
1511	 * appropriately.
1512	 */
1513	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1514		fc->sb_flags_mask |= SB_POSIXACL;
1515
1516	btrfs_emit_options(fs_info, &old_ctx);
1517	wake_up_process(fs_info->transaction_kthread);
1518	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1519	btrfs_clear_oneshot_options(fs_info);
1520	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1521
1522	return 0;
 
1523restore:
1524	btrfs_ctx_to_info(fs_info, &old_ctx);
1525	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
 
 
 
 
 
 
 
 
 
1526	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
1527	return ret;
1528}
1529
1530/* Used to sort the devices by max_avail(descending sort) */
1531static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
 
1532{
1533	const struct btrfs_device_info *dev_info1 = a;
1534	const struct btrfs_device_info *dev_info2 = b;
1535
1536	if (dev_info1->max_avail > dev_info2->max_avail)
1537		return -1;
1538	else if (dev_info1->max_avail < dev_info2->max_avail)
 
1539		return 1;
 
1540	return 0;
1541}
1542
1543/*
1544 * sort the devices by max_avail, in which max free extent size of each device
1545 * is stored.(Descending Sort)
1546 */
1547static inline void btrfs_descending_sort_devices(
1548					struct btrfs_device_info *devices,
1549					size_t nr_devices)
1550{
1551	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1552	     btrfs_cmp_device_free_bytes, NULL);
1553}
1554
1555/*
1556 * The helper to calc the free space on the devices that can be used to store
1557 * file data.
1558 */
1559static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1560					      u64 *free_bytes)
1561{
1562	struct btrfs_device_info *devices_info;
1563	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1564	struct btrfs_device *device;
1565	u64 type;
1566	u64 avail_space;
1567	u64 min_stripe_size;
1568	int num_stripes = 1;
1569	int i = 0, nr_devices;
1570	const struct btrfs_raid_attr *rattr;
1571
1572	/*
1573	 * We aren't under the device list lock, so this is racy-ish, but good
1574	 * enough for our purposes.
1575	 */
1576	nr_devices = fs_info->fs_devices->open_devices;
1577	if (!nr_devices) {
1578		smp_mb();
1579		nr_devices = fs_info->fs_devices->open_devices;
1580		ASSERT(nr_devices);
1581		if (!nr_devices) {
1582			*free_bytes = 0;
1583			return 0;
1584		}
1585	}
1586
1587	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1588			       GFP_KERNEL);
1589	if (!devices_info)
1590		return -ENOMEM;
1591
1592	/* calc min stripe number for data space allocation */
1593	type = btrfs_data_alloc_profile(fs_info);
1594	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1595
1596	if (type & BTRFS_BLOCK_GROUP_RAID0)
1597		num_stripes = nr_devices;
1598	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1599		num_stripes = rattr->ncopies;
 
 
 
 
1600	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1601		num_stripes = 4;
1602
1603	/* Adjust for more than 1 stripe per device */
1604	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1605
1606	rcu_read_lock();
1607	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1608		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1609						&device->dev_state) ||
1610		    !device->bdev ||
1611		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1612			continue;
1613
1614		if (i >= nr_devices)
1615			break;
1616
1617		avail_space = device->total_bytes - device->bytes_used;
1618
1619		/* align with stripe_len */
1620		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1621
1622		/*
1623		 * Ensure we have at least min_stripe_size on top of the
1624		 * reserved space on the device.
 
 
 
 
1625		 */
1626		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1627			continue;
1628
1629		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1630
1631		devices_info[i].dev = device;
1632		devices_info[i].max_avail = avail_space;
1633
1634		i++;
1635	}
1636	rcu_read_unlock();
1637
1638	nr_devices = i;
1639
1640	btrfs_descending_sort_devices(devices_info, nr_devices);
1641
1642	i = nr_devices - 1;
1643	avail_space = 0;
1644	while (nr_devices >= rattr->devs_min) {
1645		num_stripes = min(num_stripes, nr_devices);
1646
1647		if (devices_info[i].max_avail >= min_stripe_size) {
1648			int j;
1649			u64 alloc_size;
1650
1651			avail_space += devices_info[i].max_avail * num_stripes;
1652			alloc_size = devices_info[i].max_avail;
1653			for (j = i + 1 - num_stripes; j <= i; j++)
1654				devices_info[j].max_avail -= alloc_size;
1655		}
1656		i--;
1657		nr_devices--;
1658	}
1659
1660	kfree(devices_info);
1661	*free_bytes = avail_space;
1662	return 0;
1663}
1664
1665/*
1666 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1667 *
1668 * If there's a redundant raid level at DATA block groups, use the respective
1669 * multiplier to scale the sizes.
1670 *
1671 * Unused device space usage is based on simulating the chunk allocator
1672 * algorithm that respects the device sizes and order of allocations.  This is
1673 * a close approximation of the actual use but there are other factors that may
1674 * change the result (like a new metadata chunk).
1675 *
1676 * If metadata is exhausted, f_bavail will be 0.
1677 */
1678static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1679{
1680	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1681	struct btrfs_super_block *disk_super = fs_info->super_copy;
1682	struct btrfs_space_info *found;
1683	u64 total_used = 0;
1684	u64 total_free_data = 0;
1685	u64 total_free_meta = 0;
1686	u32 bits = fs_info->sectorsize_bits;
1687	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1688	unsigned factor = 1;
1689	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1690	int ret;
1691	u64 thresh = 0;
1692	int mixed = 0;
1693
1694	list_for_each_entry(found, &fs_info->space_info, list) {
 
1695		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1696			int i;
1697
1698			total_free_data += found->disk_total - found->disk_used;
1699			total_free_data -=
1700				btrfs_account_ro_block_groups_free_space(found);
1701
1702			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1703				if (!list_empty(&found->block_groups[i]))
1704					factor = btrfs_bg_type_to_factor(
1705						btrfs_raid_array[i].bg_flag);
1706			}
1707		}
1708
1709		/*
1710		 * Metadata in mixed block group profiles are accounted in data
1711		 */
1712		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1713			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1714				mixed = 1;
1715			else
1716				total_free_meta += found->disk_total -
1717					found->disk_used;
1718		}
1719
1720		total_used += found->disk_used;
1721	}
1722
 
 
1723	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1724	buf->f_blocks >>= bits;
1725	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1726
1727	/* Account global block reserve as used, it's in logical size already */
1728	spin_lock(&block_rsv->lock);
1729	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1730	if (buf->f_bfree >= block_rsv->size >> bits)
1731		buf->f_bfree -= block_rsv->size >> bits;
1732	else
1733		buf->f_bfree = 0;
1734	spin_unlock(&block_rsv->lock);
1735
1736	buf->f_bavail = div_u64(total_free_data, factor);
1737	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1738	if (ret)
1739		return ret;
1740	buf->f_bavail += div_u64(total_free_data, factor);
1741	buf->f_bavail = buf->f_bavail >> bits;
1742
1743	/*
1744	 * We calculate the remaining metadata space minus global reserve. If
1745	 * this is (supposedly) smaller than zero, there's no space. But this
1746	 * does not hold in practice, the exhausted state happens where's still
1747	 * some positive delta. So we apply some guesswork and compare the
1748	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1749	 *
1750	 * We probably cannot calculate the exact threshold value because this
1751	 * depends on the internal reservations requested by various
1752	 * operations, so some operations that consume a few metadata will
1753	 * succeed even if the Avail is zero. But this is better than the other
1754	 * way around.
1755	 */
1756	thresh = SZ_4M;
1757
1758	/*
1759	 * We only want to claim there's no available space if we can no longer
1760	 * allocate chunks for our metadata profile and our global reserve will
1761	 * not fit in the free metadata space.  If we aren't ->full then we
1762	 * still can allocate chunks and thus are fine using the currently
1763	 * calculated f_bavail.
1764	 */
1765	if (!mixed && block_rsv->space_info->full &&
1766	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1767		buf->f_bavail = 0;
1768
1769	buf->f_type = BTRFS_SUPER_MAGIC;
1770	buf->f_bsize = dentry->d_sb->s_blocksize;
1771	buf->f_namelen = BTRFS_NAME_LEN;
1772
1773	/* We treat it as constant endianness (it doesn't matter _which_)
1774	   because we want the fsid to come out the same whether mounted
1775	   on a big-endian or little-endian host */
1776	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1777	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1778	/* Mask in the root object ID too, to disambiguate subvols */
1779	buf->f_fsid.val[0] ^=
1780		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
1781	buf->f_fsid.val[1] ^=
1782		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
1783
1784	return 0;
1785}
1786
1787static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1788{
1789	struct btrfs_fs_info *p = fc->s_fs_info;
1790	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1791
1792	return fs_info->fs_devices == p->fs_devices;
1793}
1794
1795static int btrfs_get_tree_super(struct fs_context *fc)
1796{
1797	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1798	struct btrfs_fs_context *ctx = fc->fs_private;
1799	struct btrfs_fs_devices *fs_devices = NULL;
1800	struct block_device *bdev;
1801	struct btrfs_device *device;
1802	struct super_block *sb;
1803	blk_mode_t mode = btrfs_open_mode(fc);
1804	int ret;
1805
1806	btrfs_ctx_to_info(fs_info, ctx);
1807	mutex_lock(&uuid_mutex);
1808
1809	/*
1810	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1811	 * either a valid device or an error.
1812	 */
1813	device = btrfs_scan_one_device(fc->source, mode, true);
1814	ASSERT(device != NULL);
1815	if (IS_ERR(device)) {
1816		mutex_unlock(&uuid_mutex);
1817		return PTR_ERR(device);
1818	}
1819
1820	fs_devices = device->fs_devices;
1821	fs_info->fs_devices = fs_devices;
1822
1823	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1824	mutex_unlock(&uuid_mutex);
1825	if (ret)
1826		return ret;
1827
1828	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1829		ret = -EACCES;
1830		goto error;
1831	}
1832
1833	bdev = fs_devices->latest_dev->bdev;
1834
1835	/*
1836	 * From now on the error handling is not straightforward.
1837	 *
1838	 * If successful, this will transfer the fs_info into the super block,
1839	 * and fc->s_fs_info will be NULL.  However if there's an existing
1840	 * super, we'll still have fc->s_fs_info populated.  If we error
1841	 * completely out it'll be cleaned up when we drop the fs_context,
1842	 * otherwise it's tied to the lifetime of the super_block.
1843	 */
1844	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1845	if (IS_ERR(sb)) {
1846		ret = PTR_ERR(sb);
1847		goto error;
1848	}
1849
1850	set_device_specific_options(fs_info);
1851
1852	if (sb->s_root) {
1853		btrfs_close_devices(fs_devices);
1854		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1855			ret = -EBUSY;
1856	} else {
1857		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1858		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1859		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1860		ret = btrfs_fill_super(sb, fs_devices, NULL);
1861	}
1862
1863	if (ret) {
1864		deactivate_locked_super(sb);
1865		return ret;
1866	}
1867
1868	btrfs_clear_oneshot_options(fs_info);
1869
1870	fc->root = dget(sb->s_root);
1871	return 0;
1872
1873error:
1874	btrfs_close_devices(fs_devices);
1875	return ret;
1876}
1877
1878/*
1879 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1880 * with different ro/rw options") the following works:
1881 *
1882 *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1883 *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1884 *
1885 * which looks nice and innocent but is actually pretty intricate and deserves
1886 * a long comment.
1887 *
1888 * On another filesystem a subvolume mount is close to something like:
1889 *
1890 *	(iii) # create rw superblock + initial mount
1891 *	      mount -t xfs /dev/sdb /opt/
1892 *
1893 *	      # create ro bind mount
1894 *	      mount --bind -o ro /opt/foo /mnt/foo
1895 *
1896 *	      # unmount initial mount
1897 *	      umount /opt
1898 *
1899 * Of course, there's some special subvolume sauce and there's the fact that the
1900 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1901 * it's very close and will help us understand the issue.
1902 *
1903 * The old mount API didn't cleanly distinguish between a mount being made ro
1904 * and a superblock being made ro.  The only way to change the ro state of
1905 * either object was by passing ms_rdonly. If a new mount was created via
1906 * mount(2) such as:
1907 *
1908 *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1909 *
1910 * the MS_RDONLY flag being specified had two effects:
1911 *
1912 * (1) MNT_READONLY was raised -> the resulting mount got
1913 *     @mnt->mnt_flags |= MNT_READONLY raised.
1914 *
1915 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1916 *     made the superblock ro. Note, how SB_RDONLY has the same value as
1917 *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1918 *
1919 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1920 * subtree mounted ro.
1921 *
1922 * But consider the effect on the old mount API on btrfs subvolume mounting
1923 * which combines the distinct step in (iii) into a single step.
1924 *
1925 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1926 * is issued the superblock is ro and thus even if the mount created for (ii) is
1927 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1928 * to rw for (ii) which it did using an internal remount call.
1929 *
1930 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1931 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1932 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1933 * passed by mount(8) to mount(2).
1934 *
1935 * Enter the new mount API. The new mount API disambiguates making a mount ro
1936 * and making a superblock ro.
1937 *
1938 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1939 *     fsmount() or mount_setattr() this is a pure VFS level change for a
1940 *     specific mount or mount tree that is never seen by the filesystem itself.
1941 *
1942 * (4) To turn a superblock ro the "ro" flag must be used with
1943 *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1944 *     in fc->sb_flags.
1945 *
1946 * This disambiguation has rather positive consequences.  Mounting a subvolume
1947 * ro will not also turn the superblock ro. Only the mount for the subvolume
1948 * will become ro.
1949 *
1950 * So, if the superblock creation request comes from the new mount API the
1951 * caller must have explicitly done:
1952 *
1953 *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1954 *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1955 *
1956 * IOW, at some point the caller must have explicitly turned the whole
1957 * superblock ro and we shouldn't just undo it like we did for the old mount
1958 * API. In any case, it lets us avoid the hack in the new mount API.
1959 *
1960 * Consequently, the remounting hack must only be used for requests originating
1961 * from the old mount API and should be marked for full deprecation so it can be
1962 * turned off in a couple of years.
1963 *
1964 * The new mount API has no reason to support this hack.
1965 */
1966static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1967{
1968	struct vfsmount *mnt;
1969	int ret;
1970	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1971
1972	/*
1973	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1974	 * super block, so invert our setting here and retry the mount so we
1975	 * can get our vfsmount.
1976	 */
1977	if (ro2rw)
1978		fc->sb_flags |= SB_RDONLY;
1979	else
1980		fc->sb_flags &= ~SB_RDONLY;
1981
1982	mnt = fc_mount(fc);
1983	if (IS_ERR(mnt))
1984		return mnt;
1985
1986	if (!fc->oldapi || !ro2rw)
1987		return mnt;
1988
1989	/* We need to convert to rw, call reconfigure. */
1990	fc->sb_flags &= ~SB_RDONLY;
1991	down_write(&mnt->mnt_sb->s_umount);
1992	ret = btrfs_reconfigure(fc);
1993	up_write(&mnt->mnt_sb->s_umount);
1994	if (ret) {
1995		mntput(mnt);
1996		return ERR_PTR(ret);
1997	}
1998	return mnt;
1999}
2000
2001static int btrfs_get_tree_subvol(struct fs_context *fc)
2002{
2003	struct btrfs_fs_info *fs_info = NULL;
2004	struct btrfs_fs_context *ctx = fc->fs_private;
2005	struct fs_context *dup_fc;
2006	struct dentry *dentry;
2007	struct vfsmount *mnt;
2008
2009	/*
2010	 * Setup a dummy root and fs_info for test/set super.  This is because
2011	 * we don't actually fill this stuff out until open_ctree, but we need
2012	 * then open_ctree will properly initialize the file system specific
2013	 * settings later.  btrfs_init_fs_info initializes the static elements
2014	 * of the fs_info (locks and such) to make cleanup easier if we find a
2015	 * superblock with our given fs_devices later on at sget() time.
2016	 */
2017	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2018	if (!fs_info)
2019		return -ENOMEM;
2020
2021	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2022	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2023	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2024		btrfs_free_fs_info(fs_info);
2025		return -ENOMEM;
2026	}
2027	btrfs_init_fs_info(fs_info);
2028
2029	dup_fc = vfs_dup_fs_context(fc);
2030	if (IS_ERR(dup_fc)) {
2031		btrfs_free_fs_info(fs_info);
2032		return PTR_ERR(dup_fc);
2033	}
2034
2035	/*
2036	 * When we do the sget_fc this gets transferred to the sb, so we only
2037	 * need to set it on the dup_fc as this is what creates the super block.
2038	 */
2039	dup_fc->s_fs_info = fs_info;
2040
2041	/*
2042	 * We'll do the security settings in our btrfs_get_tree_super() mount
2043	 * loop, they were duplicated into dup_fc, we can drop the originals
2044	 * here.
2045	 */
2046	security_free_mnt_opts(&fc->security);
2047	fc->security = NULL;
2048
2049	mnt = fc_mount(dup_fc);
2050	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2051		mnt = btrfs_reconfigure_for_mount(dup_fc);
2052	put_fs_context(dup_fc);
2053	if (IS_ERR(mnt))
2054		return PTR_ERR(mnt);
2055
2056	/*
2057	 * This free's ->subvol_name, because if it isn't set we have to
2058	 * allocate a buffer to hold the subvol_name, so we just drop our
2059	 * reference to it here.
2060	 */
2061	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2062	ctx->subvol_name = NULL;
2063	if (IS_ERR(dentry))
2064		return PTR_ERR(dentry);
2065
2066	fc->root = dentry;
2067	return 0;
2068}
2069
2070static int btrfs_get_tree(struct fs_context *fc)
2071{
2072	/*
2073	 * Since we use mount_subtree to mount the default/specified subvol, we
2074	 * have to do mounts in two steps.
2075	 *
2076	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2077	 * wrapper around fc_mount() to call back into here again, and this time
2078	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2079	 * everything to open the devices and file system.  Then we return back
2080	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2081	 * from there we can do our mount_subvol() call, which will lookup
2082	 * whichever subvol we're mounting and setup this fc with the
2083	 * appropriate dentry for the subvol.
2084	 */
2085	if (fc->s_fs_info)
2086		return btrfs_get_tree_super(fc);
2087	return btrfs_get_tree_subvol(fc);
2088}
2089
2090static void btrfs_kill_super(struct super_block *sb)
2091{
2092	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2093	kill_anon_super(sb);
2094	btrfs_free_fs_info(fs_info);
2095}
2096
2097static void btrfs_free_fs_context(struct fs_context *fc)
2098{
2099	struct btrfs_fs_context *ctx = fc->fs_private;
2100	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2101
2102	if (fs_info)
2103		btrfs_free_fs_info(fs_info);
2104
2105	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2106		kfree(ctx->subvol_name);
2107		kfree(ctx);
2108	}
2109}
2110
2111static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2112{
2113	struct btrfs_fs_context *ctx = src_fc->fs_private;
2114
2115	/*
2116	 * Give a ref to our ctx to this dup, as we want to keep it around for
2117	 * our original fc so we can have the subvolume name or objectid.
2118	 *
2119	 * We unset ->source in the original fc because the dup needs it for
2120	 * mounting, and then once we free the dup it'll free ->source, so we
2121	 * need to make sure we're only pointing to it in one fc.
2122	 */
2123	refcount_inc(&ctx->refs);
2124	fc->fs_private = ctx;
2125	fc->source = src_fc->source;
2126	src_fc->source = NULL;
2127	return 0;
2128}
2129
2130static const struct fs_context_operations btrfs_fs_context_ops = {
2131	.parse_param	= btrfs_parse_param,
2132	.reconfigure	= btrfs_reconfigure,
2133	.get_tree	= btrfs_get_tree,
2134	.dup		= btrfs_dup_fs_context,
2135	.free		= btrfs_free_fs_context,
2136};
2137
2138static int btrfs_init_fs_context(struct fs_context *fc)
2139{
2140	struct btrfs_fs_context *ctx;
2141
2142	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2143	if (!ctx)
2144		return -ENOMEM;
2145
2146	refcount_set(&ctx->refs, 1);
2147	fc->fs_private = ctx;
2148	fc->ops = &btrfs_fs_context_ops;
2149
2150	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2151		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2152	} else {
2153		ctx->thread_pool_size =
2154			min_t(unsigned long, num_online_cpus() + 2, 8);
2155		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2156		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2157	}
2158
2159#ifdef CONFIG_BTRFS_FS_POSIX_ACL
2160	fc->sb_flags |= SB_POSIXACL;
2161#endif
2162	fc->sb_flags |= SB_I_VERSION;
2163
2164	return 0;
2165}
2166
2167static struct file_system_type btrfs_fs_type = {
2168	.owner			= THIS_MODULE,
2169	.name			= "btrfs",
2170	.init_fs_context	= btrfs_init_fs_context,
2171	.parameters		= btrfs_fs_parameters,
2172	.kill_sb		= btrfs_kill_super,
2173	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2174 };
2175
2176MODULE_ALIAS_FS("btrfs");
2177
2178static int btrfs_control_open(struct inode *inode, struct file *file)
2179{
2180	/*
2181	 * The control file's private_data is used to hold the
2182	 * transaction when it is started and is used to keep
2183	 * track of whether a transaction is already in progress.
2184	 */
2185	file->private_data = NULL;
2186	return 0;
2187}
2188
2189/*
2190 * Used by /dev/btrfs-control for devices ioctls.
2191 */
2192static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2193				unsigned long arg)
2194{
2195	struct btrfs_ioctl_vol_args *vol;
2196	struct btrfs_device *device = NULL;
2197	dev_t devt = 0;
2198	int ret = -ENOTTY;
2199
2200	if (!capable(CAP_SYS_ADMIN))
2201		return -EPERM;
2202
2203	vol = memdup_user((void __user *)arg, sizeof(*vol));
2204	if (IS_ERR(vol))
2205		return PTR_ERR(vol);
2206	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2207
2208	switch (cmd) {
2209	case BTRFS_IOC_SCAN_DEV:
2210		mutex_lock(&uuid_mutex);
2211		/*
2212		 * Scanning outside of mount can return NULL which would turn
2213		 * into 0 error code.
2214		 */
2215		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2216		ret = PTR_ERR_OR_ZERO(device);
2217		mutex_unlock(&uuid_mutex);
2218		break;
2219	case BTRFS_IOC_FORGET_DEV:
2220		if (vol->name[0] != 0) {
2221			ret = lookup_bdev(vol->name, &devt);
2222			if (ret)
2223				break;
2224		}
2225		ret = btrfs_forget_devices(devt);
2226		break;
2227	case BTRFS_IOC_DEVICES_READY:
2228		mutex_lock(&uuid_mutex);
2229		/*
2230		 * Scanning outside of mount can return NULL which would turn
2231		 * into 0 error code.
2232		 */
2233		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2234		if (IS_ERR_OR_NULL(device)) {
2235			mutex_unlock(&uuid_mutex);
2236			ret = PTR_ERR(device);
2237			break;
2238		}
2239		ret = !(device->fs_devices->num_devices ==
2240			device->fs_devices->total_devices);
2241		mutex_unlock(&uuid_mutex);
2242		break;
2243	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2244		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2245		break;
2246	}
2247
2248	kfree(vol);
2249	return ret;
2250}
2251
2252static int btrfs_freeze(struct super_block *sb)
2253{
2254	struct btrfs_trans_handle *trans;
2255	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2256	struct btrfs_root *root = fs_info->tree_root;
2257
2258	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2259	/*
2260	 * We don't need a barrier here, we'll wait for any transaction that
2261	 * could be in progress on other threads (and do delayed iputs that
2262	 * we want to avoid on a frozen filesystem), or do the commit
2263	 * ourselves.
2264	 */
2265	trans = btrfs_attach_transaction_barrier(root);
2266	if (IS_ERR(trans)) {
2267		/* no transaction, don't bother */
2268		if (PTR_ERR(trans) == -ENOENT)
2269			return 0;
2270		return PTR_ERR(trans);
2271	}
2272	return btrfs_commit_transaction(trans);
2273}
2274
2275static int check_dev_super(struct btrfs_device *dev)
2276{
2277	struct btrfs_fs_info *fs_info = dev->fs_info;
2278	struct btrfs_super_block *sb;
2279	u64 last_trans;
2280	u16 csum_type;
2281	int ret = 0;
2282
2283	/* This should be called with fs still frozen. */
2284	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2285
2286	/* Missing dev, no need to check. */
2287	if (!dev->bdev)
2288		return 0;
2289
2290	/* Only need to check the primary super block. */
2291	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2292	if (IS_ERR(sb))
2293		return PTR_ERR(sb);
2294
2295	/* Verify the checksum. */
2296	csum_type = btrfs_super_csum_type(sb);
2297	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2298		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2299			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2300		ret = -EUCLEAN;
2301		goto out;
2302	}
2303
2304	if (btrfs_check_super_csum(fs_info, sb)) {
2305		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2306		ret = -EUCLEAN;
2307		goto out;
2308	}
2309
2310	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2311	ret = btrfs_validate_super(fs_info, sb, 0);
2312	if (ret < 0)
2313		goto out;
2314
2315	last_trans = btrfs_get_last_trans_committed(fs_info);
2316	if (btrfs_super_generation(sb) != last_trans) {
2317		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2318			  btrfs_super_generation(sb), last_trans);
2319		ret = -EUCLEAN;
2320		goto out;
2321	}
2322out:
2323	btrfs_release_disk_super(sb);
2324	return ret;
2325}
2326
2327static int btrfs_unfreeze(struct super_block *sb)
2328{
2329	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2330	struct btrfs_device *device;
2331	int ret = 0;
2332
2333	/*
2334	 * Make sure the fs is not changed by accident (like hibernation then
2335	 * modified by other OS).
2336	 * If we found anything wrong, we mark the fs error immediately.
2337	 *
2338	 * And since the fs is frozen, no one can modify the fs yet, thus
2339	 * we don't need to hold device_list_mutex.
2340	 */
2341	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2342		ret = check_dev_super(device);
2343		if (ret < 0) {
2344			btrfs_handle_fs_error(fs_info, ret,
2345				"super block on devid %llu got modified unexpectedly",
2346				device->devid);
2347			break;
2348		}
2349	}
2350	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2351
2352	/*
2353	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2354	 * above checks failed. Since the fs is either fine or read-only, we're
2355	 * safe to continue, without causing further damage.
2356	 */
2357	return 0;
2358}
2359
2360static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2361{
2362	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
 
2363
2364	/*
2365	 * There should be always a valid pointer in latest_dev, it may be stale
2366	 * for a short moment in case it's being deleted but still valid until
2367	 * the end of RCU grace period.
 
 
2368	 */
2369	rcu_read_lock();
2370	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2371	rcu_read_unlock();
 
 
 
 
 
 
2372
 
 
 
 
 
2373	return 0;
2374}
2375
2376static const struct super_operations btrfs_super_ops = {
2377	.drop_inode	= btrfs_drop_inode,
2378	.evict_inode	= btrfs_evict_inode,
2379	.put_super	= btrfs_put_super,
2380	.sync_fs	= btrfs_sync_fs,
2381	.show_options	= btrfs_show_options,
2382	.show_devname	= btrfs_show_devname,
2383	.alloc_inode	= btrfs_alloc_inode,
2384	.destroy_inode	= btrfs_destroy_inode,
2385	.free_inode	= btrfs_free_inode,
2386	.statfs		= btrfs_statfs,
 
2387	.freeze_fs	= btrfs_freeze,
2388	.unfreeze_fs	= btrfs_unfreeze,
2389};
2390
2391static const struct file_operations btrfs_ctl_fops = {
2392	.open = btrfs_control_open,
2393	.unlocked_ioctl	 = btrfs_control_ioctl,
2394	.compat_ioctl = compat_ptr_ioctl,
2395	.owner	 = THIS_MODULE,
2396	.llseek = noop_llseek,
2397};
2398
2399static struct miscdevice btrfs_misc = {
2400	.minor		= BTRFS_MINOR,
2401	.name		= "btrfs-control",
2402	.fops		= &btrfs_ctl_fops
2403};
2404
2405MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2406MODULE_ALIAS("devname:btrfs-control");
2407
2408static int __init btrfs_interface_init(void)
2409{
2410	return misc_register(&btrfs_misc);
2411}
2412
2413static __cold void btrfs_interface_exit(void)
2414{
2415	misc_deregister(&btrfs_misc);
2416}
2417
2418static int __init btrfs_print_mod_info(void)
2419{
2420	static const char options[] = ""
2421#ifdef CONFIG_BTRFS_DEBUG
2422			", debug=on"
2423#endif
2424#ifdef CONFIG_BTRFS_ASSERT
2425			", assert=on"
2426#endif
 
 
 
2427#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2428			", ref-verify=on"
2429#endif
2430#ifdef CONFIG_BLK_DEV_ZONED
2431			", zoned=yes"
2432#else
2433			", zoned=no"
2434#endif
2435#ifdef CONFIG_FS_VERITY
2436			", fsverity=yes"
2437#else
2438			", fsverity=no"
2439#endif
2440			;
2441	pr_info("Btrfs loaded%s\n", options);
2442	return 0;
2443}
2444
2445static int register_btrfs(void)
2446{
2447	return register_filesystem(&btrfs_fs_type);
2448}
2449
2450static void unregister_btrfs(void)
2451{
2452	unregister_filesystem(&btrfs_fs_type);
2453}
2454
2455/* Helper structure for long init/exit functions. */
2456struct init_sequence {
2457	int (*init_func)(void);
2458	/* Can be NULL if the init_func doesn't need cleanup. */
2459	void (*exit_func)(void);
2460};
2461
2462static const struct init_sequence mod_init_seq[] = {
2463	{
2464		.init_func = btrfs_props_init,
2465		.exit_func = NULL,
2466	}, {
2467		.init_func = btrfs_init_sysfs,
2468		.exit_func = btrfs_exit_sysfs,
2469	}, {
2470		.init_func = btrfs_init_compress,
2471		.exit_func = btrfs_exit_compress,
2472	}, {
2473		.init_func = btrfs_init_cachep,
2474		.exit_func = btrfs_destroy_cachep,
2475	}, {
2476		.init_func = btrfs_transaction_init,
2477		.exit_func = btrfs_transaction_exit,
2478	}, {
2479		.init_func = btrfs_ctree_init,
2480		.exit_func = btrfs_ctree_exit,
2481	}, {
2482		.init_func = btrfs_free_space_init,
2483		.exit_func = btrfs_free_space_exit,
2484	}, {
2485		.init_func = extent_state_init_cachep,
2486		.exit_func = extent_state_free_cachep,
2487	}, {
2488		.init_func = extent_buffer_init_cachep,
2489		.exit_func = extent_buffer_free_cachep,
2490	}, {
2491		.init_func = btrfs_bioset_init,
2492		.exit_func = btrfs_bioset_exit,
2493	}, {
2494		.init_func = extent_map_init,
2495		.exit_func = extent_map_exit,
2496	}, {
2497		.init_func = ordered_data_init,
2498		.exit_func = ordered_data_exit,
2499	}, {
2500		.init_func = btrfs_delayed_inode_init,
2501		.exit_func = btrfs_delayed_inode_exit,
2502	}, {
2503		.init_func = btrfs_auto_defrag_init,
2504		.exit_func = btrfs_auto_defrag_exit,
2505	}, {
2506		.init_func = btrfs_delayed_ref_init,
2507		.exit_func = btrfs_delayed_ref_exit,
2508	}, {
2509		.init_func = btrfs_prelim_ref_init,
2510		.exit_func = btrfs_prelim_ref_exit,
2511	}, {
2512		.init_func = btrfs_interface_init,
2513		.exit_func = btrfs_interface_exit,
2514	}, {
2515		.init_func = btrfs_print_mod_info,
2516		.exit_func = NULL,
2517	}, {
2518		.init_func = btrfs_run_sanity_tests,
2519		.exit_func = NULL,
2520	}, {
2521		.init_func = register_btrfs,
2522		.exit_func = unregister_btrfs,
2523	}
2524};
2525
2526static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
 
 
2527
2528static __always_inline void btrfs_exit_btrfs_fs(void)
2529{
2530	int i;
2531
2532	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2533		if (!mod_init_result[i])
2534			continue;
2535		if (mod_init_seq[i].exit_func)
2536			mod_init_seq[i].exit_func();
2537		mod_init_result[i] = false;
2538	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539}
2540
2541static void __exit exit_btrfs_fs(void)
2542{
2543	btrfs_exit_btrfs_fs();
 
 
 
 
 
 
 
 
 
 
 
 
2544	btrfs_cleanup_fs_uuids();
2545}
2546
2547static int __init init_btrfs_fs(void)
2548{
2549	int ret;
2550	int i;
2551
2552	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2553		ASSERT(!mod_init_result[i]);
2554		ret = mod_init_seq[i].init_func();
2555		if (ret < 0) {
2556			btrfs_exit_btrfs_fs();
2557			return ret;
2558		}
2559		mod_init_result[i] = true;
2560	}
2561	return 0;
2562}
2563
2564late_initcall(init_btrfs_fs);
2565module_exit(exit_btrfs_fs)
2566
2567MODULE_LICENSE("GPL");
2568MODULE_SOFTDEP("pre: crc32c");
2569MODULE_SOFTDEP("pre: xxhash64");
2570MODULE_SOFTDEP("pre: sha256");
2571MODULE_SOFTDEP("pre: blake2b-256");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
  26#include <linux/cleancache.h>
  27#include <linux/ratelimit.h>
  28#include <linux/crc32c.h>
  29#include <linux/btrfs.h>
 
 
 
  30#include "delayed-inode.h"
  31#include "ctree.h"
  32#include "disk-io.h"
  33#include "transaction.h"
  34#include "btrfs_inode.h"
  35#include "print-tree.h"
  36#include "props.h"
  37#include "xattr.h"
  38#include "volumes.h"
  39#include "export.h"
  40#include "compression.h"
  41#include "rcu-string.h"
  42#include "dev-replace.h"
  43#include "free-space-cache.h"
  44#include "backref.h"
  45#include "space-info.h"
  46#include "sysfs.h"
 
  47#include "tests/btrfs-tests.h"
  48#include "block-group.h"
  49#include "discard.h"
  50
  51#include "qgroup.h"
 
 
 
 
 
 
 
 
 
 
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/btrfs.h>
  54
  55static const struct super_operations btrfs_super_ops;
  56
  57/*
  58 * Types for mounting the default subvolume and a subvolume explicitly
  59 * requested by subvol=/path. That way the callchain is straightforward and we
  60 * don't have to play tricks with the mount options and recursive calls to
  61 * btrfs_mount.
  62 *
  63 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
  64 */
  65static struct file_system_type btrfs_fs_type;
  66static struct file_system_type btrfs_root_fs_type;
  67
  68static int btrfs_remount(struct super_block *sb, int *flags, char *data);
  69
  70/*
  71 * Generally the error codes correspond to their respective errors, but there
  72 * are a few special cases.
  73 *
  74 * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
  75 *          instance will return EUCLEAN if any of the blocks are corrupted in
  76 *          a way that is problematic.  We want to reserve EUCLEAN for these
  77 *          sort of corruptions.
  78 *
  79 * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
  80 *        need to use EROFS for this case.  We will have no idea of the
  81 *        original failure, that will have been reported at the time we tripped
  82 *        over the error.  Each subsequent error that doesn't have any context
  83 *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
  84 */
  85const char * __attribute_const__ btrfs_decode_error(int errno)
  86{
  87	char *errstr = "unknown";
  88
  89	switch (errno) {
  90	case -ENOENT:		/* -2 */
  91		errstr = "No such entry";
  92		break;
  93	case -EIO:		/* -5 */
  94		errstr = "IO failure";
  95		break;
  96	case -ENOMEM:		/* -12*/
  97		errstr = "Out of memory";
  98		break;
  99	case -EEXIST:		/* -17 */
 100		errstr = "Object already exists";
 101		break;
 102	case -ENOSPC:		/* -28 */
 103		errstr = "No space left";
 104		break;
 105	case -EROFS:		/* -30 */
 106		errstr = "Readonly filesystem";
 107		break;
 108	case -EOPNOTSUPP:	/* -95 */
 109		errstr = "Operation not supported";
 110		break;
 111	case -EUCLEAN:		/* -117 */
 112		errstr = "Filesystem corrupted";
 113		break;
 114	case -EDQUOT:		/* -122 */
 115		errstr = "Quota exceeded";
 116		break;
 117	}
 118
 119	return errstr;
 120}
 121
 122/*
 123 * __btrfs_handle_fs_error decodes expected errors from the caller and
 124 * invokes the appropriate error response.
 125 */
 126__cold
 127void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
 128		       unsigned int line, int errno, const char *fmt, ...)
 129{
 130	struct super_block *sb = fs_info->sb;
 131#ifdef CONFIG_PRINTK
 132	const char *errstr;
 133#endif
 134
 135	/*
 136	 * Special case: if the error is EROFS, and we're already
 137	 * under SB_RDONLY, then it is safe here.
 138	 */
 139	if (errno == -EROFS && sb_rdonly(sb))
 140  		return;
 141
 142#ifdef CONFIG_PRINTK
 143	errstr = btrfs_decode_error(errno);
 144	if (fmt) {
 145		struct va_format vaf;
 146		va_list args;
 147
 148		va_start(args, fmt);
 149		vaf.fmt = fmt;
 150		vaf.va = &args;
 151
 152		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
 153			sb->s_id, function, line, errno, errstr, &vaf);
 154		va_end(args);
 155	} else {
 156		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
 157			sb->s_id, function, line, errno, errstr);
 158	}
 159#endif
 160
 161	/*
 162	 * Today we only save the error info to memory.  Long term we'll
 163	 * also send it down to the disk
 164	 */
 165	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 166
 167	/* Don't go through full error handling during mount */
 168	if (!(sb->s_flags & SB_BORN))
 169		return;
 170
 171	if (sb_rdonly(sb))
 172		return;
 173
 174	btrfs_discard_stop(fs_info);
 175
 176	/* btrfs handle error by forcing the filesystem readonly */
 177	sb->s_flags |= SB_RDONLY;
 178	btrfs_info(fs_info, "forced readonly");
 179	/*
 180	 * Note that a running device replace operation is not canceled here
 181	 * although there is no way to update the progress. It would add the
 182	 * risk of a deadlock, therefore the canceling is omitted. The only
 183	 * penalty is that some I/O remains active until the procedure
 184	 * completes. The next time when the filesystem is mounted writable
 185	 * again, the device replace operation continues.
 186	 */
 187}
 188
 189#ifdef CONFIG_PRINTK
 190static const char * const logtypes[] = {
 191	"emergency",
 192	"alert",
 193	"critical",
 194	"error",
 195	"warning",
 196	"notice",
 197	"info",
 198	"debug",
 199};
 200
 201
 202/*
 203 * Use one ratelimit state per log level so that a flood of less important
 204 * messages doesn't cause more important ones to be dropped.
 205 */
 206static struct ratelimit_state printk_limits[] = {
 207	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
 208	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
 209	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
 210	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
 211	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
 212	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
 213	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
 214	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
 215};
 216
 217void __cold btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
 218{
 219	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
 220	struct va_format vaf;
 221	va_list args;
 222	int kern_level;
 223	const char *type = logtypes[4];
 224	struct ratelimit_state *ratelimit = &printk_limits[4];
 225
 226	va_start(args, fmt);
 227
 228	while ((kern_level = printk_get_level(fmt)) != 0) {
 229		size_t size = printk_skip_level(fmt) - fmt;
 230
 231		if (kern_level >= '0' && kern_level <= '7') {
 232			memcpy(lvl, fmt,  size);
 233			lvl[size] = '\0';
 234			type = logtypes[kern_level - '0'];
 235			ratelimit = &printk_limits[kern_level - '0'];
 236		}
 237		fmt += size;
 238	}
 239
 240	vaf.fmt = fmt;
 241	vaf.va = &args;
 242
 243	if (__ratelimit(ratelimit))
 244		printk("%sBTRFS %s (device %s): %pV\n", lvl, type,
 245			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf);
 246
 247	va_end(args);
 248}
 249#endif
 250
 251/*
 252 * We only mark the transaction aborted and then set the file system read-only.
 253 * This will prevent new transactions from starting or trying to join this
 254 * one.
 255 *
 256 * This means that error recovery at the call site is limited to freeing
 257 * any local memory allocations and passing the error code up without
 258 * further cleanup. The transaction should complete as it normally would
 259 * in the call path but will return -EIO.
 260 *
 261 * We'll complete the cleanup in btrfs_end_transaction and
 262 * btrfs_commit_transaction.
 263 */
 264__cold
 265void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 266			       const char *function,
 267			       unsigned int line, int errno)
 268{
 269	struct btrfs_fs_info *fs_info = trans->fs_info;
 270
 271	WRITE_ONCE(trans->aborted, errno);
 272	/* Nothing used. The other threads that have joined this
 273	 * transaction may be able to continue. */
 274	if (!trans->dirty && list_empty(&trans->new_bgs)) {
 275		const char *errstr;
 276
 277		errstr = btrfs_decode_error(errno);
 278		btrfs_warn(fs_info,
 279		           "%s:%d: Aborting unused transaction(%s).",
 280		           function, line, errstr);
 281		return;
 282	}
 283	WRITE_ONCE(trans->transaction->aborted, errno);
 284	/* Wake up anybody who may be waiting on this transaction */
 285	wake_up(&fs_info->transaction_wait);
 286	wake_up(&fs_info->transaction_blocked_wait);
 287	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
 288}
 289/*
 290 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 291 * issues an alert, and either panics or BUGs, depending on mount options.
 292 */
 293__cold
 294void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 295		   unsigned int line, int errno, const char *fmt, ...)
 296{
 297	char *s_id = "<unknown>";
 298	const char *errstr;
 299	struct va_format vaf = { .fmt = fmt };
 300	va_list args;
 301
 302	if (fs_info)
 303		s_id = fs_info->sb->s_id;
 304
 305	va_start(args, fmt);
 306	vaf.va = &args;
 307
 308	errstr = btrfs_decode_error(errno);
 309	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
 310		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 311			s_id, function, line, &vaf, errno, errstr);
 312
 313	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
 314		   function, line, &vaf, errno, errstr);
 315	va_end(args);
 316	/* Caller calls BUG() */
 317}
 318
 319static void btrfs_put_super(struct super_block *sb)
 320{
 321	close_ctree(btrfs_sb(sb));
 322}
 323
 324enum {
 325	Opt_acl, Opt_noacl,
 326	Opt_clear_cache,
 327	Opt_commit_interval,
 328	Opt_compress,
 329	Opt_compress_force,
 330	Opt_compress_force_type,
 331	Opt_compress_type,
 332	Opt_degraded,
 333	Opt_device,
 334	Opt_fatal_errors,
 335	Opt_flushoncommit, Opt_noflushoncommit,
 336	Opt_inode_cache, Opt_noinode_cache,
 337	Opt_max_inline,
 338	Opt_barrier, Opt_nobarrier,
 339	Opt_datacow, Opt_nodatacow,
 340	Opt_datasum, Opt_nodatasum,
 341	Opt_defrag, Opt_nodefrag,
 342	Opt_discard, Opt_nodiscard,
 343	Opt_discard_mode,
 344	Opt_norecovery,
 345	Opt_ratio,
 346	Opt_rescan_uuid_tree,
 347	Opt_skip_balance,
 348	Opt_space_cache, Opt_no_space_cache,
 349	Opt_space_cache_version,
 350	Opt_ssd, Opt_nossd,
 351	Opt_ssd_spread, Opt_nossd_spread,
 352	Opt_subvol,
 353	Opt_subvol_empty,
 354	Opt_subvolid,
 355	Opt_thread_pool,
 356	Opt_treelog, Opt_notreelog,
 357	Opt_user_subvol_rm_allowed,
 358
 359	/* Rescue options */
 360	Opt_rescue,
 361	Opt_usebackuproot,
 362	Opt_nologreplay,
 363
 364	/* Deprecated options */
 365	Opt_recovery,
 366
 367	/* Debugging options */
 368	Opt_check_integrity,
 369	Opt_check_integrity_including_extent_data,
 370	Opt_check_integrity_print_mask,
 371	Opt_enospc_debug, Opt_noenospc_debug,
 372#ifdef CONFIG_BTRFS_DEBUG
 373	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 374#endif
 375#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 376	Opt_ref_verify,
 377#endif
 378	Opt_err,
 379};
 380
 381static const match_table_t tokens = {
 382	{Opt_acl, "acl"},
 383	{Opt_noacl, "noacl"},
 384	{Opt_clear_cache, "clear_cache"},
 385	{Opt_commit_interval, "commit=%u"},
 386	{Opt_compress, "compress"},
 387	{Opt_compress_type, "compress=%s"},
 388	{Opt_compress_force, "compress-force"},
 389	{Opt_compress_force_type, "compress-force=%s"},
 390	{Opt_degraded, "degraded"},
 391	{Opt_device, "device=%s"},
 392	{Opt_fatal_errors, "fatal_errors=%s"},
 393	{Opt_flushoncommit, "flushoncommit"},
 394	{Opt_noflushoncommit, "noflushoncommit"},
 395	{Opt_inode_cache, "inode_cache"},
 396	{Opt_noinode_cache, "noinode_cache"},
 397	{Opt_max_inline, "max_inline=%s"},
 398	{Opt_barrier, "barrier"},
 399	{Opt_nobarrier, "nobarrier"},
 400	{Opt_datacow, "datacow"},
 401	{Opt_nodatacow, "nodatacow"},
 402	{Opt_datasum, "datasum"},
 403	{Opt_nodatasum, "nodatasum"},
 404	{Opt_defrag, "autodefrag"},
 405	{Opt_nodefrag, "noautodefrag"},
 406	{Opt_discard, "discard"},
 407	{Opt_discard_mode, "discard=%s"},
 408	{Opt_nodiscard, "nodiscard"},
 409	{Opt_norecovery, "norecovery"},
 410	{Opt_ratio, "metadata_ratio=%u"},
 411	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 412	{Opt_skip_balance, "skip_balance"},
 413	{Opt_space_cache, "space_cache"},
 414	{Opt_no_space_cache, "nospace_cache"},
 415	{Opt_space_cache_version, "space_cache=%s"},
 416	{Opt_ssd, "ssd"},
 417	{Opt_nossd, "nossd"},
 418	{Opt_ssd_spread, "ssd_spread"},
 419	{Opt_nossd_spread, "nossd_spread"},
 420	{Opt_subvol, "subvol=%s"},
 421	{Opt_subvol_empty, "subvol="},
 422	{Opt_subvolid, "subvolid=%s"},
 423	{Opt_thread_pool, "thread_pool=%u"},
 424	{Opt_treelog, "treelog"},
 425	{Opt_notreelog, "notreelog"},
 426	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 
 
 
 
 
 
 
 
 
 
 
 
 427
 428	/* Rescue options */
 429	{Opt_rescue, "rescue=%s"},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430	/* Deprecated, with alias rescue=nologreplay */
 431	{Opt_nologreplay, "nologreplay"},
 432	/* Deprecated, with alias rescue=usebackuproot */
 433	{Opt_usebackuproot, "usebackuproot"},
 434
 435	/* Deprecated options */
 436	{Opt_recovery, "recovery"},
 437
 438	/* Debugging options */
 439	{Opt_check_integrity, "check_int"},
 440	{Opt_check_integrity_including_extent_data, "check_int_data"},
 441	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
 442	{Opt_enospc_debug, "enospc_debug"},
 443	{Opt_noenospc_debug, "noenospc_debug"},
 444#ifdef CONFIG_BTRFS_DEBUG
 445	{Opt_fragment_data, "fragment=data"},
 446	{Opt_fragment_metadata, "fragment=metadata"},
 447	{Opt_fragment_all, "fragment=all"},
 448#endif
 449#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 450	{Opt_ref_verify, "ref_verify"},
 451#endif
 452	{Opt_err, NULL},
 453};
 454
 455static const match_table_t rescue_tokens = {
 456	{Opt_usebackuproot, "usebackuproot"},
 457	{Opt_nologreplay, "nologreplay"},
 458	{Opt_err, NULL},
 459};
 460
 461static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
 462{
 463	char *opts;
 464	char *orig;
 465	char *p;
 466	substring_t args[MAX_OPT_ARGS];
 467	int ret = 0;
 468
 469	opts = kstrdup(options, GFP_KERNEL);
 470	if (!opts)
 471		return -ENOMEM;
 472	orig = opts;
 473
 474	while ((p = strsep(&opts, ":")) != NULL) {
 475		int token;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476
 477		if (!*p)
 478			continue;
 479		token = match_token(p, rescue_tokens, args);
 480		switch (token){
 481		case Opt_usebackuproot:
 482			btrfs_info(info,
 483				   "trying to use backup root at mount time");
 484			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 485			break;
 486		case Opt_nologreplay:
 487			btrfs_set_and_info(info, NOLOGREPLAY,
 488					   "disabling log replay at mount time");
 489			break;
 490		case Opt_err:
 491			btrfs_info(info, "unrecognized rescue option '%s'", p);
 492			ret = -EINVAL;
 493			goto out;
 494		default:
 495			break;
 496		}
 497
 
 
 
 
 
 
 498	}
 499out:
 500	kfree(orig);
 501	return ret;
 502}
 503
 504/*
 505 * Regular mount options parser.  Everything that is needed only when
 506 * reading in a new superblock is parsed here.
 507 * XXX JDM: This needs to be cleaned up for remount.
 508 */
 509int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
 510			unsigned long new_flags)
 511{
 512	substring_t args[MAX_OPT_ARGS];
 513	char *p, *num;
 514	u64 cache_gen;
 515	int intarg;
 516	int ret = 0;
 517	char *compress_type;
 518	bool compress_force = false;
 519	enum btrfs_compression_type saved_compress_type;
 520	int saved_compress_level;
 521	bool saved_compress_force;
 522	int no_compress = 0;
 523
 524	cache_gen = btrfs_super_cache_generation(info->super_copy);
 525	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
 526		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
 527	else if (cache_gen)
 528		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 529
 530	/*
 531	 * Even the options are empty, we still need to do extra check
 532	 * against new flags
 533	 */
 534	if (!options)
 535		goto check;
 536
 537	while ((p = strsep(&options, ",")) != NULL) {
 538		int token;
 539		if (!*p)
 540			continue;
 541
 542		token = match_token(p, tokens, args);
 543		switch (token) {
 544		case Opt_degraded:
 545			btrfs_info(info, "allowing degraded mounts");
 546			btrfs_set_opt(info->mount_opt, DEGRADED);
 547			break;
 548		case Opt_subvol:
 549		case Opt_subvol_empty:
 550		case Opt_subvolid:
 551		case Opt_device:
 552			/*
 553			 * These are parsed by btrfs_parse_subvol_options or
 554			 * btrfs_parse_device_options and can be ignored here.
 555			 */
 556			break;
 557		case Opt_nodatasum:
 558			btrfs_set_and_info(info, NODATASUM,
 559					   "setting nodatasum");
 560			break;
 561		case Opt_datasum:
 562			if (btrfs_test_opt(info, NODATASUM)) {
 563				if (btrfs_test_opt(info, NODATACOW))
 564					btrfs_info(info,
 565						   "setting datasum, datacow enabled");
 566				else
 567					btrfs_info(info, "setting datasum");
 568			}
 569			btrfs_clear_opt(info->mount_opt, NODATACOW);
 570			btrfs_clear_opt(info->mount_opt, NODATASUM);
 571			break;
 572		case Opt_nodatacow:
 573			if (!btrfs_test_opt(info, NODATACOW)) {
 574				if (!btrfs_test_opt(info, COMPRESS) ||
 575				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
 576					btrfs_info(info,
 577						   "setting nodatacow, compression disabled");
 578				} else {
 579					btrfs_info(info, "setting nodatacow");
 580				}
 581			}
 582			btrfs_clear_opt(info->mount_opt, COMPRESS);
 583			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 584			btrfs_set_opt(info->mount_opt, NODATACOW);
 585			btrfs_set_opt(info->mount_opt, NODATASUM);
 586			break;
 587		case Opt_datacow:
 588			btrfs_clear_and_info(info, NODATACOW,
 589					     "setting datacow");
 590			break;
 591		case Opt_compress_force:
 592		case Opt_compress_force_type:
 593			compress_force = true;
 594			fallthrough;
 595		case Opt_compress:
 596		case Opt_compress_type:
 597			saved_compress_type = btrfs_test_opt(info,
 598							     COMPRESS) ?
 599				info->compress_type : BTRFS_COMPRESS_NONE;
 600			saved_compress_force =
 601				btrfs_test_opt(info, FORCE_COMPRESS);
 602			saved_compress_level = info->compress_level;
 603			if (token == Opt_compress ||
 604			    token == Opt_compress_force ||
 605			    strncmp(args[0].from, "zlib", 4) == 0) {
 606				compress_type = "zlib";
 607
 608				info->compress_type = BTRFS_COMPRESS_ZLIB;
 609				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 610				/*
 611				 * args[0] contains uninitialized data since
 612				 * for these tokens we don't expect any
 613				 * parameter.
 614				 */
 615				if (token != Opt_compress &&
 616				    token != Opt_compress_force)
 617					info->compress_level =
 618					  btrfs_compress_str2level(
 619							BTRFS_COMPRESS_ZLIB,
 620							args[0].from + 4);
 621				btrfs_set_opt(info->mount_opt, COMPRESS);
 622				btrfs_clear_opt(info->mount_opt, NODATACOW);
 623				btrfs_clear_opt(info->mount_opt, NODATASUM);
 624				no_compress = 0;
 625			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
 626				compress_type = "lzo";
 627				info->compress_type = BTRFS_COMPRESS_LZO;
 628				info->compress_level = 0;
 629				btrfs_set_opt(info->mount_opt, COMPRESS);
 630				btrfs_clear_opt(info->mount_opt, NODATACOW);
 631				btrfs_clear_opt(info->mount_opt, NODATASUM);
 632				btrfs_set_fs_incompat(info, COMPRESS_LZO);
 633				no_compress = 0;
 634			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
 635				compress_type = "zstd";
 636				info->compress_type = BTRFS_COMPRESS_ZSTD;
 637				info->compress_level =
 638					btrfs_compress_str2level(
 639							 BTRFS_COMPRESS_ZSTD,
 640							 args[0].from + 4);
 641				btrfs_set_opt(info->mount_opt, COMPRESS);
 642				btrfs_clear_opt(info->mount_opt, NODATACOW);
 643				btrfs_clear_opt(info->mount_opt, NODATASUM);
 644				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
 645				no_compress = 0;
 646			} else if (strncmp(args[0].from, "no", 2) == 0) {
 647				compress_type = "no";
 648				info->compress_level = 0;
 649				info->compress_type = 0;
 650				btrfs_clear_opt(info->mount_opt, COMPRESS);
 651				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 652				compress_force = false;
 653				no_compress++;
 654			} else {
 655				ret = -EINVAL;
 656				goto out;
 657			}
 658
 659			if (compress_force) {
 660				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 661			} else {
 662				/*
 663				 * If we remount from compress-force=xxx to
 664				 * compress=xxx, we need clear FORCE_COMPRESS
 665				 * flag, otherwise, there is no way for users
 666				 * to disable forcible compression separately.
 667				 */
 668				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 669			}
 670			if (no_compress == 1) {
 671				btrfs_info(info, "use no compression");
 672			} else if ((info->compress_type != saved_compress_type) ||
 673				   (compress_force != saved_compress_force) ||
 674				   (info->compress_level != saved_compress_level)) {
 675				btrfs_info(info, "%s %s compression, level %d",
 676					   (compress_force) ? "force" : "use",
 677					   compress_type, info->compress_level);
 678			}
 679			compress_force = false;
 680			break;
 681		case Opt_ssd:
 682			btrfs_set_and_info(info, SSD,
 683					   "enabling ssd optimizations");
 684			btrfs_clear_opt(info->mount_opt, NOSSD);
 685			break;
 686		case Opt_ssd_spread:
 687			btrfs_set_and_info(info, SSD,
 688					   "enabling ssd optimizations");
 689			btrfs_set_and_info(info, SSD_SPREAD,
 690					   "using spread ssd allocation scheme");
 691			btrfs_clear_opt(info->mount_opt, NOSSD);
 692			break;
 693		case Opt_nossd:
 694			btrfs_set_opt(info->mount_opt, NOSSD);
 695			btrfs_clear_and_info(info, SSD,
 696					     "not using ssd optimizations");
 697			fallthrough;
 698		case Opt_nossd_spread:
 699			btrfs_clear_and_info(info, SSD_SPREAD,
 700					     "not using spread ssd allocation scheme");
 701			break;
 702		case Opt_barrier:
 703			btrfs_clear_and_info(info, NOBARRIER,
 704					     "turning on barriers");
 705			break;
 706		case Opt_nobarrier:
 707			btrfs_set_and_info(info, NOBARRIER,
 708					   "turning off barriers");
 709			break;
 710		case Opt_thread_pool:
 711			ret = match_int(&args[0], &intarg);
 712			if (ret) {
 713				goto out;
 714			} else if (intarg == 0) {
 715				ret = -EINVAL;
 716				goto out;
 717			}
 718			info->thread_pool_size = intarg;
 719			break;
 720		case Opt_max_inline:
 721			num = match_strdup(&args[0]);
 722			if (num) {
 723				info->max_inline = memparse(num, NULL);
 724				kfree(num);
 725
 726				if (info->max_inline) {
 727					info->max_inline = min_t(u64,
 728						info->max_inline,
 729						info->sectorsize);
 730				}
 731				btrfs_info(info, "max_inline at %llu",
 732					   info->max_inline);
 733			} else {
 734				ret = -ENOMEM;
 735				goto out;
 736			}
 737			break;
 738		case Opt_acl:
 739#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 740			info->sb->s_flags |= SB_POSIXACL;
 741			break;
 742#else
 743			btrfs_err(info, "support for ACL not compiled in!");
 744			ret = -EINVAL;
 745			goto out;
 746#endif
 747		case Opt_noacl:
 748			info->sb->s_flags &= ~SB_POSIXACL;
 749			break;
 750		case Opt_notreelog:
 751			btrfs_set_and_info(info, NOTREELOG,
 752					   "disabling tree log");
 753			break;
 754		case Opt_treelog:
 755			btrfs_clear_and_info(info, NOTREELOG,
 756					     "enabling tree log");
 757			break;
 758		case Opt_norecovery:
 759		case Opt_nologreplay:
 760			btrfs_warn(info,
 
 
 
 
 
 761		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 762			btrfs_set_and_info(info, NOLOGREPLAY,
 763					   "disabling log replay at mount time");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 764			break;
 765		case Opt_flushoncommit:
 766			btrfs_set_and_info(info, FLUSHONCOMMIT,
 767					   "turning on flush-on-commit");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768			break;
 769		case Opt_noflushoncommit:
 770			btrfs_clear_and_info(info, FLUSHONCOMMIT,
 771					     "turning off flush-on-commit");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 772			break;
 773		case Opt_ratio:
 774			ret = match_int(&args[0], &intarg);
 775			if (ret)
 776				goto out;
 777			info->metadata_ratio = intarg;
 778			btrfs_info(info, "metadata ratio %u",
 779				   info->metadata_ratio);
 780			break;
 781		case Opt_discard:
 782		case Opt_discard_mode:
 783			if (token == Opt_discard ||
 784			    strcmp(args[0].from, "sync") == 0) {
 785				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
 786				btrfs_set_and_info(info, DISCARD_SYNC,
 787						   "turning on sync discard");
 788			} else if (strcmp(args[0].from, "async") == 0) {
 789				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
 790				btrfs_set_and_info(info, DISCARD_ASYNC,
 791						   "turning on async discard");
 792			} else {
 793				ret = -EINVAL;
 794				goto out;
 795			}
 796			break;
 797		case Opt_nodiscard:
 798			btrfs_clear_and_info(info, DISCARD_SYNC,
 799					     "turning off discard");
 800			btrfs_clear_and_info(info, DISCARD_ASYNC,
 801					     "turning off async discard");
 802			break;
 803		case Opt_space_cache:
 804		case Opt_space_cache_version:
 805			if (token == Opt_space_cache ||
 806			    strcmp(args[0].from, "v1") == 0) {
 807				btrfs_clear_opt(info->mount_opt,
 808						FREE_SPACE_TREE);
 809				btrfs_set_and_info(info, SPACE_CACHE,
 810					   "enabling disk space caching");
 811			} else if (strcmp(args[0].from, "v2") == 0) {
 812				btrfs_clear_opt(info->mount_opt,
 813						SPACE_CACHE);
 814				btrfs_set_and_info(info, FREE_SPACE_TREE,
 815						   "enabling free space tree");
 816			} else {
 817				ret = -EINVAL;
 818				goto out;
 819			}
 820			break;
 821		case Opt_rescan_uuid_tree:
 822			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 823			break;
 824		case Opt_no_space_cache:
 825			if (btrfs_test_opt(info, SPACE_CACHE)) {
 826				btrfs_clear_and_info(info, SPACE_CACHE,
 827					     "disabling disk space caching");
 828			}
 829			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
 830				btrfs_clear_and_info(info, FREE_SPACE_TREE,
 831					     "disabling free space tree");
 832			}
 833			break;
 834		case Opt_inode_cache:
 835			btrfs_warn(info,
 836	"the 'inode_cache' option is deprecated and will have no effect from 5.11");
 837			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
 838					   "enabling inode map caching");
 839			break;
 840		case Opt_noinode_cache:
 841			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
 842					     "disabling inode map caching");
 843			break;
 844		case Opt_clear_cache:
 845			btrfs_set_and_info(info, CLEAR_CACHE,
 846					   "force clearing of disk cache");
 847			break;
 848		case Opt_user_subvol_rm_allowed:
 849			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 850			break;
 851		case Opt_enospc_debug:
 852			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 853			break;
 854		case Opt_noenospc_debug:
 855			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 856			break;
 857		case Opt_defrag:
 858			btrfs_set_and_info(info, AUTO_DEFRAG,
 859					   "enabling auto defrag");
 860			break;
 861		case Opt_nodefrag:
 862			btrfs_clear_and_info(info, AUTO_DEFRAG,
 863					     "disabling auto defrag");
 864			break;
 865		case Opt_recovery:
 866		case Opt_usebackuproot:
 867			btrfs_warn(info,
 868			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
 869				   token == Opt_recovery ? "recovery" :
 870				   "usebackuproot");
 871			btrfs_info(info,
 872				   "trying to use backup root at mount time");
 873			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
 874			break;
 875		case Opt_skip_balance:
 876			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 877			break;
 878#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 879		case Opt_check_integrity_including_extent_data:
 880			btrfs_info(info,
 881				   "enabling check integrity including extent data");
 882			btrfs_set_opt(info->mount_opt,
 883				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 884			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 885			break;
 886		case Opt_check_integrity:
 887			btrfs_info(info, "enabling check integrity");
 888			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 889			break;
 890		case Opt_check_integrity_print_mask:
 891			ret = match_int(&args[0], &intarg);
 892			if (ret)
 893				goto out;
 894			info->check_integrity_print_mask = intarg;
 895			btrfs_info(info, "check_integrity_print_mask 0x%x",
 896				   info->check_integrity_print_mask);
 897			break;
 898#else
 899		case Opt_check_integrity_including_extent_data:
 900		case Opt_check_integrity:
 901		case Opt_check_integrity_print_mask:
 902			btrfs_err(info,
 903				  "support for check_integrity* not compiled in!");
 904			ret = -EINVAL;
 905			goto out;
 906#endif
 907		case Opt_fatal_errors:
 908			if (strcmp(args[0].from, "panic") == 0)
 909				btrfs_set_opt(info->mount_opt,
 910					      PANIC_ON_FATAL_ERROR);
 911			else if (strcmp(args[0].from, "bug") == 0)
 912				btrfs_clear_opt(info->mount_opt,
 913					      PANIC_ON_FATAL_ERROR);
 914			else {
 915				ret = -EINVAL;
 916				goto out;
 917			}
 918			break;
 919		case Opt_commit_interval:
 920			intarg = 0;
 921			ret = match_int(&args[0], &intarg);
 922			if (ret)
 923				goto out;
 924			if (intarg == 0) {
 925				btrfs_info(info,
 926					   "using default commit interval %us",
 927					   BTRFS_DEFAULT_COMMIT_INTERVAL);
 928				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
 929			} else if (intarg > 300) {
 930				btrfs_warn(info, "excessive commit interval %d",
 931					   intarg);
 932			}
 933			info->commit_interval = intarg;
 934			break;
 935		case Opt_rescue:
 936			ret = parse_rescue_options(info, args[0].from);
 937			if (ret < 0)
 938				goto out;
 939			break;
 
 
 
 
 
 
 940#ifdef CONFIG_BTRFS_DEBUG
 941		case Opt_fragment_all:
 942			btrfs_info(info, "fragmenting all space");
 943			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 944			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
 
 945			break;
 946		case Opt_fragment_metadata:
 947			btrfs_info(info, "fragmenting metadata");
 948			btrfs_set_opt(info->mount_opt,
 949				      FRAGMENT_METADATA);
 950			break;
 951		case Opt_fragment_data:
 952			btrfs_info(info, "fragmenting data");
 953			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
 954			break;
 
 
 
 
 
 
 955#endif
 956#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 957		case Opt_ref_verify:
 958			btrfs_info(info, "doing ref verification");
 959			btrfs_set_opt(info->mount_opt, REF_VERIFY);
 960			break;
 961#endif
 962		case Opt_err:
 963			btrfs_err(info, "unrecognized mount option '%s'", p);
 964			ret = -EINVAL;
 965			goto out;
 966		default:
 967			break;
 968		}
 969	}
 970check:
 971	/*
 972	 * Extra check for current option against current flag
 973	 */
 974	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) {
 975		btrfs_err(info,
 976			  "nologreplay must be used with ro mount option");
 977		ret = -EINVAL;
 978	}
 979out:
 980	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 981	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
 982	    !btrfs_test_opt(info, CLEAR_CACHE)) {
 983		btrfs_err(info, "cannot disable free space tree");
 984		ret = -EINVAL;
 985
 986	}
 987	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
 988		btrfs_info(info, "disk space caching is enabled");
 989	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
 990		btrfs_info(info, "using free space tree");
 991	return ret;
 992}
 993
 994/*
 995 * Parse mount options that are required early in the mount process.
 996 *
 997 * All other options will be parsed on much later in the mount process and
 998 * only when we need to allocate a new super block.
 999 */
1000static int btrfs_parse_device_options(const char *options, fmode_t flags,
1001				      void *holder)
1002{
1003	substring_t args[MAX_OPT_ARGS];
1004	char *device_name, *opts, *orig, *p;
1005	struct btrfs_device *device = NULL;
1006	int error = 0;
1007
1008	lockdep_assert_held(&uuid_mutex);
 
 
 
 
 
 
 
 
 
 
1009
1010	if (!options)
1011		return 0;
 
 
1012
1013	/*
1014	 * strsep changes the string, duplicate it because btrfs_parse_options
1015	 * gets called later
1016	 */
1017	opts = kstrdup(options, GFP_KERNEL);
1018	if (!opts)
1019		return -ENOMEM;
1020	orig = opts;
1021
1022	while ((p = strsep(&opts, ",")) != NULL) {
1023		int token;
1024
1025		if (!*p)
1026			continue;
1027
1028		token = match_token(p, tokens, args);
1029		if (token == Opt_device) {
1030			device_name = match_strdup(&args[0]);
1031			if (!device_name) {
1032				error = -ENOMEM;
1033				goto out;
1034			}
1035			device = btrfs_scan_one_device(device_name, flags,
1036					holder);
1037			kfree(device_name);
1038			if (IS_ERR(device)) {
1039				error = PTR_ERR(device);
1040				goto out;
1041			}
1042		}
1043	}
1044
1045out:
1046	kfree(orig);
1047	return error;
1048}
1049
1050/*
1051 * Parse mount options that are related to subvolume id
 
 
 
1052 *
1053 * The value is later passed to mount_subvol()
 
 
 
 
1054 */
1055static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
1056		u64 *subvol_objectid)
1057{
1058	substring_t args[MAX_OPT_ARGS];
1059	char *opts, *orig, *p;
1060	int error = 0;
1061	u64 subvolid;
1062
1063	if (!options)
1064		return 0;
 
 
1065
1066	/*
1067	 * strsep changes the string, duplicate it because
1068	 * btrfs_parse_device_options gets called later
1069	 */
1070	opts = kstrdup(options, GFP_KERNEL);
1071	if (!opts)
1072		return -ENOMEM;
1073	orig = opts;
 
 
 
 
 
1074
1075	while ((p = strsep(&opts, ",")) != NULL) {
1076		int token;
1077		if (!*p)
1078			continue;
1079
1080		token = match_token(p, tokens, args);
1081		switch (token) {
1082		case Opt_subvol:
1083			kfree(*subvol_name);
1084			*subvol_name = match_strdup(&args[0]);
1085			if (!*subvol_name) {
1086				error = -ENOMEM;
1087				goto out;
1088			}
1089			break;
1090		case Opt_subvolid:
1091			error = match_u64(&args[0], &subvolid);
1092			if (error)
1093				goto out;
1094
1095			/* we want the original fs_tree */
1096			if (subvolid == 0)
1097				subvolid = BTRFS_FS_TREE_OBJECTID;
 
 
 
 
 
 
1098
1099			*subvol_objectid = subvolid;
1100			break;
1101		default:
1102			break;
1103		}
1104	}
1105
1106out:
1107	kfree(orig);
1108	return error;
 
 
 
 
 
 
 
 
 
 
 
 
1109}
1110
1111char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
1112					  u64 subvol_objectid)
1113{
1114	struct btrfs_root *root = fs_info->tree_root;
1115	struct btrfs_root *fs_root = NULL;
1116	struct btrfs_root_ref *root_ref;
1117	struct btrfs_inode_ref *inode_ref;
1118	struct btrfs_key key;
1119	struct btrfs_path *path = NULL;
1120	char *name = NULL, *ptr;
1121	u64 dirid;
1122	int len;
1123	int ret;
1124
1125	path = btrfs_alloc_path();
1126	if (!path) {
1127		ret = -ENOMEM;
1128		goto err;
1129	}
1130	path->leave_spinning = 1;
1131
1132	name = kmalloc(PATH_MAX, GFP_KERNEL);
1133	if (!name) {
1134		ret = -ENOMEM;
1135		goto err;
1136	}
1137	ptr = name + PATH_MAX - 1;
1138	ptr[0] = '\0';
1139
1140	/*
1141	 * Walk up the subvolume trees in the tree of tree roots by root
1142	 * backrefs until we hit the top-level subvolume.
1143	 */
1144	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1145		key.objectid = subvol_objectid;
1146		key.type = BTRFS_ROOT_BACKREF_KEY;
1147		key.offset = (u64)-1;
1148
1149		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1150		if (ret < 0) {
1151			goto err;
1152		} else if (ret > 0) {
1153			ret = btrfs_previous_item(root, path, subvol_objectid,
1154						  BTRFS_ROOT_BACKREF_KEY);
1155			if (ret < 0) {
1156				goto err;
1157			} else if (ret > 0) {
1158				ret = -ENOENT;
1159				goto err;
1160			}
1161		}
1162
1163		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1164		subvol_objectid = key.offset;
1165
1166		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1167					  struct btrfs_root_ref);
1168		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1169		ptr -= len + 1;
1170		if (ptr < name) {
1171			ret = -ENAMETOOLONG;
1172			goto err;
1173		}
1174		read_extent_buffer(path->nodes[0], ptr + 1,
1175				   (unsigned long)(root_ref + 1), len);
1176		ptr[0] = '/';
1177		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1178		btrfs_release_path(path);
1179
1180		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1181		if (IS_ERR(fs_root)) {
1182			ret = PTR_ERR(fs_root);
1183			fs_root = NULL;
1184			goto err;
1185		}
1186
1187		/*
1188		 * Walk up the filesystem tree by inode refs until we hit the
1189		 * root directory.
1190		 */
1191		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1192			key.objectid = dirid;
1193			key.type = BTRFS_INODE_REF_KEY;
1194			key.offset = (u64)-1;
1195
1196			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1197			if (ret < 0) {
1198				goto err;
1199			} else if (ret > 0) {
1200				ret = btrfs_previous_item(fs_root, path, dirid,
1201							  BTRFS_INODE_REF_KEY);
1202				if (ret < 0) {
1203					goto err;
1204				} else if (ret > 0) {
1205					ret = -ENOENT;
1206					goto err;
1207				}
1208			}
1209
1210			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1211			dirid = key.offset;
1212
1213			inode_ref = btrfs_item_ptr(path->nodes[0],
1214						   path->slots[0],
1215						   struct btrfs_inode_ref);
1216			len = btrfs_inode_ref_name_len(path->nodes[0],
1217						       inode_ref);
1218			ptr -= len + 1;
1219			if (ptr < name) {
1220				ret = -ENAMETOOLONG;
1221				goto err;
1222			}
1223			read_extent_buffer(path->nodes[0], ptr + 1,
1224					   (unsigned long)(inode_ref + 1), len);
1225			ptr[0] = '/';
1226			btrfs_release_path(path);
1227		}
1228		btrfs_put_root(fs_root);
1229		fs_root = NULL;
1230	}
1231
1232	btrfs_free_path(path);
1233	if (ptr == name + PATH_MAX - 1) {
1234		name[0] = '/';
1235		name[1] = '\0';
1236	} else {
1237		memmove(name, ptr, name + PATH_MAX - ptr);
1238	}
1239	return name;
1240
1241err:
1242	btrfs_put_root(fs_root);
1243	btrfs_free_path(path);
1244	kfree(name);
1245	return ERR_PTR(ret);
1246}
1247
1248static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1249{
1250	struct btrfs_root *root = fs_info->tree_root;
1251	struct btrfs_dir_item *di;
1252	struct btrfs_path *path;
1253	struct btrfs_key location;
 
1254	u64 dir_id;
1255
1256	path = btrfs_alloc_path();
1257	if (!path)
1258		return -ENOMEM;
1259	path->leave_spinning = 1;
1260
1261	/*
1262	 * Find the "default" dir item which points to the root item that we
1263	 * will mount by default if we haven't been given a specific subvolume
1264	 * to mount.
1265	 */
1266	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1267	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1268	if (IS_ERR(di)) {
1269		btrfs_free_path(path);
1270		return PTR_ERR(di);
1271	}
1272	if (!di) {
1273		/*
1274		 * Ok the default dir item isn't there.  This is weird since
1275		 * it's always been there, but don't freak out, just try and
1276		 * mount the top-level subvolume.
1277		 */
1278		btrfs_free_path(path);
1279		*objectid = BTRFS_FS_TREE_OBJECTID;
1280		return 0;
1281	}
1282
1283	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1284	btrfs_free_path(path);
1285	*objectid = location.objectid;
1286	return 0;
1287}
1288
1289static int btrfs_fill_super(struct super_block *sb,
1290			    struct btrfs_fs_devices *fs_devices,
1291			    void *data)
1292{
1293	struct inode *inode;
1294	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1295	int err;
1296
1297	sb->s_maxbytes = MAX_LFS_FILESIZE;
1298	sb->s_magic = BTRFS_SUPER_MAGIC;
1299	sb->s_op = &btrfs_super_ops;
1300	sb->s_d_op = &btrfs_dentry_operations;
1301	sb->s_export_op = &btrfs_export_ops;
 
 
 
1302	sb->s_xattr = btrfs_xattr_handlers;
1303	sb->s_time_gran = 1;
1304#ifdef CONFIG_BTRFS_FS_POSIX_ACL
1305	sb->s_flags |= SB_POSIXACL;
1306#endif
1307	sb->s_flags |= SB_I_VERSION;
1308	sb->s_iflags |= SB_I_CGROUPWB;
1309
1310	err = super_setup_bdi(sb);
1311	if (err) {
1312		btrfs_err(fs_info, "super_setup_bdi failed");
1313		return err;
1314	}
1315
1316	err = open_ctree(sb, fs_devices, (char *)data);
1317	if (err) {
1318		btrfs_err(fs_info, "open_ctree failed");
1319		return err;
1320	}
1321
1322	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1323	if (IS_ERR(inode)) {
1324		err = PTR_ERR(inode);
 
1325		goto fail_close;
1326	}
1327
1328	sb->s_root = d_make_root(inode);
1329	if (!sb->s_root) {
1330		err = -ENOMEM;
1331		goto fail_close;
1332	}
1333
1334	cleancache_init_fs(sb);
1335	sb->s_flags |= SB_ACTIVE;
1336	return 0;
1337
1338fail_close:
1339	close_ctree(fs_info);
1340	return err;
1341}
1342
1343int btrfs_sync_fs(struct super_block *sb, int wait)
1344{
1345	struct btrfs_trans_handle *trans;
1346	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1347	struct btrfs_root *root = fs_info->tree_root;
1348
1349	trace_btrfs_sync_fs(fs_info, wait);
1350
1351	if (!wait) {
1352		filemap_flush(fs_info->btree_inode->i_mapping);
1353		return 0;
1354	}
1355
1356	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1357
1358	trans = btrfs_attach_transaction_barrier(root);
1359	if (IS_ERR(trans)) {
1360		/* no transaction, don't bother */
1361		if (PTR_ERR(trans) == -ENOENT) {
1362			/*
1363			 * Exit unless we have some pending changes
1364			 * that need to go through commit
1365			 */
1366			if (fs_info->pending_changes == 0)
 
1367				return 0;
1368			/*
1369			 * A non-blocking test if the fs is frozen. We must not
1370			 * start a new transaction here otherwise a deadlock
1371			 * happens. The pending operations are delayed to the
1372			 * next commit after thawing.
1373			 */
1374			if (sb_start_write_trylock(sb))
1375				sb_end_write(sb);
1376			else
1377				return 0;
1378			trans = btrfs_start_transaction(root, 0);
1379		}
1380		if (IS_ERR(trans))
1381			return PTR_ERR(trans);
1382	}
1383	return btrfs_commit_transaction(trans);
1384}
1385
 
 
 
 
 
 
1386static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1387{
1388	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1389	const char *compress_type;
1390	const char *subvol_name;
 
1391
1392	if (btrfs_test_opt(info, DEGRADED))
1393		seq_puts(seq, ",degraded");
1394	if (btrfs_test_opt(info, NODATASUM))
1395		seq_puts(seq, ",nodatasum");
1396	if (btrfs_test_opt(info, NODATACOW))
1397		seq_puts(seq, ",nodatacow");
1398	if (btrfs_test_opt(info, NOBARRIER))
1399		seq_puts(seq, ",nobarrier");
1400	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1401		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1402	if (info->thread_pool_size !=  min_t(unsigned long,
1403					     num_online_cpus() + 2, 8))
1404		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1405	if (btrfs_test_opt(info, COMPRESS)) {
1406		compress_type = btrfs_compress_type2str(info->compress_type);
1407		if (btrfs_test_opt(info, FORCE_COMPRESS))
1408			seq_printf(seq, ",compress-force=%s", compress_type);
1409		else
1410			seq_printf(seq, ",compress=%s", compress_type);
1411		if (info->compress_level)
1412			seq_printf(seq, ":%d", info->compress_level);
1413	}
1414	if (btrfs_test_opt(info, NOSSD))
1415		seq_puts(seq, ",nossd");
1416	if (btrfs_test_opt(info, SSD_SPREAD))
1417		seq_puts(seq, ",ssd_spread");
1418	else if (btrfs_test_opt(info, SSD))
1419		seq_puts(seq, ",ssd");
1420	if (btrfs_test_opt(info, NOTREELOG))
1421		seq_puts(seq, ",notreelog");
1422	if (btrfs_test_opt(info, NOLOGREPLAY))
1423		seq_puts(seq, ",rescue=nologreplay");
 
 
 
 
 
 
1424	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1425		seq_puts(seq, ",flushoncommit");
1426	if (btrfs_test_opt(info, DISCARD_SYNC))
1427		seq_puts(seq, ",discard");
1428	if (btrfs_test_opt(info, DISCARD_ASYNC))
1429		seq_puts(seq, ",discard=async");
1430	if (!(info->sb->s_flags & SB_POSIXACL))
1431		seq_puts(seq, ",noacl");
1432	if (btrfs_test_opt(info, SPACE_CACHE))
1433		seq_puts(seq, ",space_cache");
1434	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1435		seq_puts(seq, ",space_cache=v2");
1436	else
1437		seq_puts(seq, ",nospace_cache");
1438	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1439		seq_puts(seq, ",rescan_uuid_tree");
1440	if (btrfs_test_opt(info, CLEAR_CACHE))
1441		seq_puts(seq, ",clear_cache");
1442	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1443		seq_puts(seq, ",user_subvol_rm_allowed");
1444	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1445		seq_puts(seq, ",enospc_debug");
1446	if (btrfs_test_opt(info, AUTO_DEFRAG))
1447		seq_puts(seq, ",autodefrag");
1448	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1449		seq_puts(seq, ",inode_cache");
1450	if (btrfs_test_opt(info, SKIP_BALANCE))
1451		seq_puts(seq, ",skip_balance");
1452#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1453	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1454		seq_puts(seq, ",check_int_data");
1455	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1456		seq_puts(seq, ",check_int");
1457	if (info->check_integrity_print_mask)
1458		seq_printf(seq, ",check_int_print_mask=%d",
1459				info->check_integrity_print_mask);
1460#endif
1461	if (info->metadata_ratio)
1462		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1463	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1464		seq_puts(seq, ",fatal_errors=panic");
1465	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1466		seq_printf(seq, ",commit=%u", info->commit_interval);
1467#ifdef CONFIG_BTRFS_DEBUG
1468	if (btrfs_test_opt(info, FRAGMENT_DATA))
1469		seq_puts(seq, ",fragment=data");
1470	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1471		seq_puts(seq, ",fragment=metadata");
1472#endif
1473	if (btrfs_test_opt(info, REF_VERIFY))
1474		seq_puts(seq, ",ref_verify");
1475	seq_printf(seq, ",subvolid=%llu",
1476		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1477	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1478			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1479	if (!IS_ERR(subvol_name)) {
1480		seq_puts(seq, ",subvol=");
1481		seq_escape(seq, subvol_name, " \t\n\\");
1482		kfree(subvol_name);
1483	}
1484	return 0;
1485}
1486
1487static int btrfs_test_super(struct super_block *s, void *data)
1488{
1489	struct btrfs_fs_info *p = data;
1490	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1491
1492	return fs_info->fs_devices == p->fs_devices;
1493}
1494
1495static int btrfs_set_super(struct super_block *s, void *data)
1496{
1497	int err = set_anon_super(s, data);
1498	if (!err)
1499		s->s_fs_info = data;
1500	return err;
1501}
1502
1503/*
1504 * subvolumes are identified by ino 256
1505 */
1506static inline int is_subvolume_inode(struct inode *inode)
1507{
1508	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1509		return 1;
1510	return 0;
1511}
1512
1513static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1514				   struct vfsmount *mnt)
1515{
1516	struct dentry *root;
1517	int ret;
1518
1519	if (!subvol_name) {
1520		if (!subvol_objectid) {
1521			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1522							  &subvol_objectid);
1523			if (ret) {
1524				root = ERR_PTR(ret);
1525				goto out;
1526			}
1527		}
1528		subvol_name = btrfs_get_subvol_name_from_objectid(
1529					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1530		if (IS_ERR(subvol_name)) {
1531			root = ERR_CAST(subvol_name);
1532			subvol_name = NULL;
1533			goto out;
1534		}
1535
1536	}
1537
1538	root = mount_subtree(mnt, subvol_name);
1539	/* mount_subtree() drops our reference on the vfsmount. */
1540	mnt = NULL;
1541
1542	if (!IS_ERR(root)) {
1543		struct super_block *s = root->d_sb;
1544		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1545		struct inode *root_inode = d_inode(root);
1546		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1547
1548		ret = 0;
1549		if (!is_subvolume_inode(root_inode)) {
1550			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1551			       subvol_name);
1552			ret = -EINVAL;
1553		}
1554		if (subvol_objectid && root_objectid != subvol_objectid) {
1555			/*
1556			 * This will also catch a race condition where a
1557			 * subvolume which was passed by ID is renamed and
1558			 * another subvolume is renamed over the old location.
1559			 */
1560			btrfs_err(fs_info,
1561				  "subvol '%s' does not match subvolid %llu",
1562				  subvol_name, subvol_objectid);
1563			ret = -EINVAL;
1564		}
1565		if (ret) {
1566			dput(root);
1567			root = ERR_PTR(ret);
1568			deactivate_locked_super(s);
1569		}
1570	}
1571
1572out:
1573	mntput(mnt);
1574	kfree(subvol_name);
1575	return root;
1576}
1577
1578/*
1579 * Find a superblock for the given device / mount point.
1580 *
1581 * Note: This is based on mount_bdev from fs/super.c with a few additions
1582 *       for multiple device setup.  Make sure to keep it in sync.
1583 */
1584static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1585		int flags, const char *device_name, void *data)
1586{
1587	struct block_device *bdev = NULL;
1588	struct super_block *s;
1589	struct btrfs_device *device = NULL;
1590	struct btrfs_fs_devices *fs_devices = NULL;
1591	struct btrfs_fs_info *fs_info = NULL;
1592	void *new_sec_opts = NULL;
1593	fmode_t mode = FMODE_READ;
1594	int error = 0;
1595
1596	if (!(flags & SB_RDONLY))
1597		mode |= FMODE_WRITE;
1598
1599	if (data) {
1600		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1601		if (error)
1602			return ERR_PTR(error);
1603	}
1604
1605	/*
1606	 * Setup a dummy root and fs_info for test/set super.  This is because
1607	 * we don't actually fill this stuff out until open_ctree, but we need
1608	 * then open_ctree will properly initialize the file system specific
1609	 * settings later.  btrfs_init_fs_info initializes the static elements
1610	 * of the fs_info (locks and such) to make cleanup easier if we find a
1611	 * superblock with our given fs_devices later on at sget() time.
1612	 */
1613	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1614	if (!fs_info) {
1615		error = -ENOMEM;
1616		goto error_sec_opts;
1617	}
1618	btrfs_init_fs_info(fs_info);
1619
1620	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1621	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1622	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1623		error = -ENOMEM;
1624		goto error_fs_info;
1625	}
1626
1627	mutex_lock(&uuid_mutex);
1628	error = btrfs_parse_device_options(data, mode, fs_type);
1629	if (error) {
1630		mutex_unlock(&uuid_mutex);
1631		goto error_fs_info;
1632	}
1633
1634	device = btrfs_scan_one_device(device_name, mode, fs_type);
1635	if (IS_ERR(device)) {
1636		mutex_unlock(&uuid_mutex);
1637		error = PTR_ERR(device);
1638		goto error_fs_info;
1639	}
1640
1641	fs_devices = device->fs_devices;
1642	fs_info->fs_devices = fs_devices;
1643
1644	error = btrfs_open_devices(fs_devices, mode, fs_type);
1645	mutex_unlock(&uuid_mutex);
1646	if (error)
1647		goto error_fs_info;
1648
1649	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1650		error = -EACCES;
1651		goto error_close_devices;
1652	}
1653
1654	bdev = fs_devices->latest_bdev;
1655	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1656		 fs_info);
1657	if (IS_ERR(s)) {
1658		error = PTR_ERR(s);
1659		goto error_close_devices;
1660	}
1661
1662	if (s->s_root) {
1663		btrfs_close_devices(fs_devices);
1664		btrfs_free_fs_info(fs_info);
1665		if ((flags ^ s->s_flags) & SB_RDONLY)
1666			error = -EBUSY;
1667	} else {
1668		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1669		btrfs_sb(s)->bdev_holder = fs_type;
1670		if (!strstr(crc32c_impl(), "generic"))
1671			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1672		error = btrfs_fill_super(s, fs_devices, data);
1673	}
1674	if (!error)
1675		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1676	security_free_mnt_opts(&new_sec_opts);
1677	if (error) {
1678		deactivate_locked_super(s);
1679		return ERR_PTR(error);
1680	}
1681
1682	return dget(s->s_root);
1683
1684error_close_devices:
1685	btrfs_close_devices(fs_devices);
1686error_fs_info:
1687	btrfs_free_fs_info(fs_info);
1688error_sec_opts:
1689	security_free_mnt_opts(&new_sec_opts);
1690	return ERR_PTR(error);
1691}
1692
1693/*
1694 * Mount function which is called by VFS layer.
1695 *
1696 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1697 * which needs vfsmount* of device's root (/).  This means device's root has to
1698 * be mounted internally in any case.
1699 *
1700 * Operation flow:
1701 *   1. Parse subvol id related options for later use in mount_subvol().
1702 *
1703 *   2. Mount device's root (/) by calling vfs_kern_mount().
1704 *
1705 *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1706 *      first place. In order to avoid calling btrfs_mount() again, we use
1707 *      different file_system_type which is not registered to VFS by
1708 *      register_filesystem() (btrfs_root_fs_type). As a result,
1709 *      btrfs_mount_root() is called. The return value will be used by
1710 *      mount_subtree() in mount_subvol().
1711 *
1712 *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1713 *      "btrfs subvolume set-default", mount_subvol() is called always.
1714 */
1715static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1716		const char *device_name, void *data)
1717{
1718	struct vfsmount *mnt_root;
1719	struct dentry *root;
1720	char *subvol_name = NULL;
1721	u64 subvol_objectid = 0;
1722	int error = 0;
1723
1724	error = btrfs_parse_subvol_options(data, &subvol_name,
1725					&subvol_objectid);
1726	if (error) {
1727		kfree(subvol_name);
1728		return ERR_PTR(error);
1729	}
1730
1731	/* mount device's root (/) */
1732	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1733	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1734		if (flags & SB_RDONLY) {
1735			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1736				flags & ~SB_RDONLY, device_name, data);
1737		} else {
1738			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1739				flags | SB_RDONLY, device_name, data);
1740			if (IS_ERR(mnt_root)) {
1741				root = ERR_CAST(mnt_root);
1742				kfree(subvol_name);
1743				goto out;
1744			}
1745
1746			down_write(&mnt_root->mnt_sb->s_umount);
1747			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1748			up_write(&mnt_root->mnt_sb->s_umount);
1749			if (error < 0) {
1750				root = ERR_PTR(error);
1751				mntput(mnt_root);
1752				kfree(subvol_name);
1753				goto out;
1754			}
1755		}
1756	}
1757	if (IS_ERR(mnt_root)) {
1758		root = ERR_CAST(mnt_root);
1759		kfree(subvol_name);
1760		goto out;
1761	}
1762
1763	/* mount_subvol() will free subvol_name and mnt_root */
1764	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1765
1766out:
1767	return root;
1768}
1769
1770static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1771				     u32 new_pool_size, u32 old_pool_size)
1772{
1773	if (new_pool_size == old_pool_size)
1774		return;
1775
1776	fs_info->thread_pool_size = new_pool_size;
1777
1778	btrfs_info(fs_info, "resize thread pool %d -> %d",
1779	       old_pool_size, new_pool_size);
1780
1781	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1782	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1783	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1784	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1785	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1786	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1787				new_pool_size);
1788	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1789	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1790	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1791	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1792	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1793				new_pool_size);
1794}
1795
1796static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1797				       unsigned long old_opts, int flags)
1798{
1799	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1800	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1801	     (flags & SB_RDONLY))) {
1802		/* wait for any defraggers to finish */
1803		wait_event(fs_info->transaction_wait,
1804			   (atomic_read(&fs_info->defrag_running) == 0));
1805		if (flags & SB_RDONLY)
1806			sync_filesystem(fs_info->sb);
1807	}
1808}
1809
1810static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1811					 unsigned long old_opts)
1812{
 
 
1813	/*
1814	 * We need to cleanup all defragable inodes if the autodefragment is
1815	 * close or the filesystem is read only.
1816	 */
1817	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1818	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1819		btrfs_cleanup_defrag_inodes(fs_info);
1820	}
1821
1822	/* If we toggled discard async */
1823	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1824	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1825		btrfs_discard_resume(fs_info);
1826	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1827		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1828		btrfs_discard_cleanup(fs_info);
 
 
 
 
1829}
1830
1831static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1832{
1833	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1834	struct btrfs_root *root = fs_info->tree_root;
1835	unsigned old_flags = sb->s_flags;
1836	unsigned long old_opts = fs_info->mount_opt;
1837	unsigned long old_compress_type = fs_info->compress_type;
1838	u64 old_max_inline = fs_info->max_inline;
1839	u32 old_thread_pool_size = fs_info->thread_pool_size;
1840	u32 old_metadata_ratio = fs_info->metadata_ratio;
1841	int ret;
1842
1843	sync_filesystem(sb);
1844	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
 
 
 
 
 
 
1845
1846	if (data) {
1847		void *new_sec_opts = NULL;
 
 
 
1848
1849		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1850		if (!ret)
1851			ret = security_sb_remount(sb, new_sec_opts);
1852		security_free_mnt_opts(&new_sec_opts);
1853		if (ret)
1854			goto restore;
1855	}
1856
1857	ret = btrfs_parse_options(fs_info, data, *flags);
 
 
 
 
 
1858	if (ret)
1859		goto restore;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1860
1861	btrfs_remount_begin(fs_info, old_opts, *flags);
1862	btrfs_resize_thread_pool(fs_info,
1863		fs_info->thread_pool_size, old_thread_pool_size);
1864
1865	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1866		goto out;
 
 
 
 
 
1867
1868	if (*flags & SB_RDONLY) {
1869		/*
1870		 * this also happens on 'umount -rf' or on shutdown, when
1871		 * the filesystem is busy.
1872		 */
1873		cancel_work_sync(&fs_info->async_reclaim_work);
 
 
 
 
 
1874
1875		btrfs_discard_cleanup(fs_info);
 
 
 
 
 
 
 
1876
1877		/* wait for the uuid_scan task to finish */
1878		down(&fs_info->uuid_tree_rescan_sem);
1879		/* avoid complains from lockdep et al. */
1880		up(&fs_info->uuid_tree_rescan_sem);
1881
1882		sb->s_flags |= SB_RDONLY;
 
 
 
 
 
 
1883
1884		/*
1885		 * Setting SB_RDONLY will put the cleaner thread to
1886		 * sleep at the next loop if it's already active.
1887		 * If it's already asleep, we'll leave unused block
1888		 * groups on disk until we're mounted read-write again
1889		 * unless we clean them up here.
1890		 */
1891		btrfs_delete_unused_bgs(fs_info);
1892
1893		btrfs_dev_replace_suspend_for_unmount(fs_info);
1894		btrfs_scrub_cancel(fs_info);
1895		btrfs_pause_balance(fs_info);
1896
1897		ret = btrfs_commit_super(fs_info);
1898		if (ret)
1899			goto restore;
1900	} else {
1901		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1902			btrfs_err(fs_info,
1903				"Remounting read-write after error is not allowed");
1904			ret = -EINVAL;
1905			goto restore;
1906		}
1907		if (fs_info->fs_devices->rw_devices == 0) {
1908			ret = -EACCES;
1909			goto restore;
1910		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911
1912		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1913			btrfs_warn(fs_info,
1914		"too many missing devices, writable remount is not allowed");
1915			ret = -EACCES;
1916			goto restore;
1917		}
1918
1919		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1920			btrfs_warn(fs_info,
1921		"mount required to replay tree-log, cannot remount read-write");
1922			ret = -EINVAL;
1923			goto restore;
1924		}
 
 
1925
1926		ret = btrfs_cleanup_fs_roots(fs_info);
1927		if (ret)
1928			goto restore;
1929
1930		/* recover relocation */
1931		mutex_lock(&fs_info->cleaner_mutex);
1932		ret = btrfs_recover_relocation(root);
1933		mutex_unlock(&fs_info->cleaner_mutex);
1934		if (ret)
1935			goto restore;
 
1936
1937		ret = btrfs_resume_balance_async(fs_info);
1938		if (ret)
1939			goto restore;
1940
1941		ret = btrfs_resume_dev_replace_async(fs_info);
1942		if (ret) {
1943			btrfs_warn(fs_info, "failed to resume dev_replace");
1944			goto restore;
1945		}
1946
1947		btrfs_qgroup_rescan_resume(fs_info);
 
 
1948
1949		if (!fs_info->uuid_root) {
1950			btrfs_info(fs_info, "creating UUID tree");
1951			ret = btrfs_create_uuid_tree(fs_info);
1952			if (ret) {
1953				btrfs_warn(fs_info,
1954					   "failed to create the UUID tree %d",
1955					   ret);
1956				goto restore;
1957			}
 
 
 
 
 
 
 
 
 
1958		}
1959		sb->s_flags &= ~SB_RDONLY;
 
 
 
 
 
 
 
 
1960
1961		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1962	}
1963out:
1964	/*
1965	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1966	 * since the absence of the flag means it can be toggled off by remount.
 
1967	 */
1968	*flags |= SB_I_VERSION;
 
1969
 
1970	wake_up_process(fs_info->transaction_kthread);
1971	btrfs_remount_cleanup(fs_info, old_opts);
 
1972	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1973
1974	return 0;
1975
1976restore:
1977	/* We've hit an error - don't reset SB_RDONLY */
1978	if (sb_rdonly(sb))
1979		old_flags |= SB_RDONLY;
1980	sb->s_flags = old_flags;
1981	fs_info->mount_opt = old_opts;
1982	fs_info->compress_type = old_compress_type;
1983	fs_info->max_inline = old_max_inline;
1984	btrfs_resize_thread_pool(fs_info,
1985		old_thread_pool_size, fs_info->thread_pool_size);
1986	fs_info->metadata_ratio = old_metadata_ratio;
1987	btrfs_remount_cleanup(fs_info, old_opts);
1988	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1989
1990	return ret;
1991}
1992
1993/* Used to sort the devices by max_avail(descending sort) */
1994static inline int btrfs_cmp_device_free_bytes(const void *dev_info1,
1995				       const void *dev_info2)
1996{
1997	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1998	    ((struct btrfs_device_info *)dev_info2)->max_avail)
 
 
1999		return -1;
2000	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2001		 ((struct btrfs_device_info *)dev_info2)->max_avail)
2002		return 1;
2003	else
2004	return 0;
2005}
2006
2007/*
2008 * sort the devices by max_avail, in which max free extent size of each device
2009 * is stored.(Descending Sort)
2010 */
2011static inline void btrfs_descending_sort_devices(
2012					struct btrfs_device_info *devices,
2013					size_t nr_devices)
2014{
2015	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
2016	     btrfs_cmp_device_free_bytes, NULL);
2017}
2018
2019/*
2020 * The helper to calc the free space on the devices that can be used to store
2021 * file data.
2022 */
2023static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
2024					      u64 *free_bytes)
2025{
2026	struct btrfs_device_info *devices_info;
2027	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2028	struct btrfs_device *device;
2029	u64 type;
2030	u64 avail_space;
2031	u64 min_stripe_size;
2032	int num_stripes = 1;
2033	int i = 0, nr_devices;
2034	const struct btrfs_raid_attr *rattr;
2035
2036	/*
2037	 * We aren't under the device list lock, so this is racy-ish, but good
2038	 * enough for our purposes.
2039	 */
2040	nr_devices = fs_info->fs_devices->open_devices;
2041	if (!nr_devices) {
2042		smp_mb();
2043		nr_devices = fs_info->fs_devices->open_devices;
2044		ASSERT(nr_devices);
2045		if (!nr_devices) {
2046			*free_bytes = 0;
2047			return 0;
2048		}
2049	}
2050
2051	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
2052			       GFP_KERNEL);
2053	if (!devices_info)
2054		return -ENOMEM;
2055
2056	/* calc min stripe number for data space allocation */
2057	type = btrfs_data_alloc_profile(fs_info);
2058	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
2059
2060	if (type & BTRFS_BLOCK_GROUP_RAID0)
2061		num_stripes = nr_devices;
2062	else if (type & BTRFS_BLOCK_GROUP_RAID1)
2063		num_stripes = 2;
2064	else if (type & BTRFS_BLOCK_GROUP_RAID1C3)
2065		num_stripes = 3;
2066	else if (type & BTRFS_BLOCK_GROUP_RAID1C4)
2067		num_stripes = 4;
2068	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2069		num_stripes = 4;
2070
2071	/* Adjust for more than 1 stripe per device */
2072	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
2073
2074	rcu_read_lock();
2075	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2076		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2077						&device->dev_state) ||
2078		    !device->bdev ||
2079		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2080			continue;
2081
2082		if (i >= nr_devices)
2083			break;
2084
2085		avail_space = device->total_bytes - device->bytes_used;
2086
2087		/* align with stripe_len */
2088		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
2089
2090		/*
2091		 * In order to avoid overwriting the superblock on the drive,
2092		 * btrfs starts at an offset of at least 1MB when doing chunk
2093		 * allocation.
2094		 *
2095		 * This ensures we have at least min_stripe_size free space
2096		 * after excluding 1MB.
2097		 */
2098		if (avail_space <= SZ_1M + min_stripe_size)
2099			continue;
2100
2101		avail_space -= SZ_1M;
2102
2103		devices_info[i].dev = device;
2104		devices_info[i].max_avail = avail_space;
2105
2106		i++;
2107	}
2108	rcu_read_unlock();
2109
2110	nr_devices = i;
2111
2112	btrfs_descending_sort_devices(devices_info, nr_devices);
2113
2114	i = nr_devices - 1;
2115	avail_space = 0;
2116	while (nr_devices >= rattr->devs_min) {
2117		num_stripes = min(num_stripes, nr_devices);
2118
2119		if (devices_info[i].max_avail >= min_stripe_size) {
2120			int j;
2121			u64 alloc_size;
2122
2123			avail_space += devices_info[i].max_avail * num_stripes;
2124			alloc_size = devices_info[i].max_avail;
2125			for (j = i + 1 - num_stripes; j <= i; j++)
2126				devices_info[j].max_avail -= alloc_size;
2127		}
2128		i--;
2129		nr_devices--;
2130	}
2131
2132	kfree(devices_info);
2133	*free_bytes = avail_space;
2134	return 0;
2135}
2136
2137/*
2138 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2139 *
2140 * If there's a redundant raid level at DATA block groups, use the respective
2141 * multiplier to scale the sizes.
2142 *
2143 * Unused device space usage is based on simulating the chunk allocator
2144 * algorithm that respects the device sizes and order of allocations.  This is
2145 * a close approximation of the actual use but there are other factors that may
2146 * change the result (like a new metadata chunk).
2147 *
2148 * If metadata is exhausted, f_bavail will be 0.
2149 */
2150static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2151{
2152	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2153	struct btrfs_super_block *disk_super = fs_info->super_copy;
2154	struct btrfs_space_info *found;
2155	u64 total_used = 0;
2156	u64 total_free_data = 0;
2157	u64 total_free_meta = 0;
2158	int bits = dentry->d_sb->s_blocksize_bits;
2159	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2160	unsigned factor = 1;
2161	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2162	int ret;
2163	u64 thresh = 0;
2164	int mixed = 0;
2165
2166	rcu_read_lock();
2167	list_for_each_entry_rcu(found, &fs_info->space_info, list) {
2168		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2169			int i;
2170
2171			total_free_data += found->disk_total - found->disk_used;
2172			total_free_data -=
2173				btrfs_account_ro_block_groups_free_space(found);
2174
2175			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2176				if (!list_empty(&found->block_groups[i]))
2177					factor = btrfs_bg_type_to_factor(
2178						btrfs_raid_array[i].bg_flag);
2179			}
2180		}
2181
2182		/*
2183		 * Metadata in mixed block goup profiles are accounted in data
2184		 */
2185		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2186			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2187				mixed = 1;
2188			else
2189				total_free_meta += found->disk_total -
2190					found->disk_used;
2191		}
2192
2193		total_used += found->disk_used;
2194	}
2195
2196	rcu_read_unlock();
2197
2198	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2199	buf->f_blocks >>= bits;
2200	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2201
2202	/* Account global block reserve as used, it's in logical size already */
2203	spin_lock(&block_rsv->lock);
2204	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2205	if (buf->f_bfree >= block_rsv->size >> bits)
2206		buf->f_bfree -= block_rsv->size >> bits;
2207	else
2208		buf->f_bfree = 0;
2209	spin_unlock(&block_rsv->lock);
2210
2211	buf->f_bavail = div_u64(total_free_data, factor);
2212	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2213	if (ret)
2214		return ret;
2215	buf->f_bavail += div_u64(total_free_data, factor);
2216	buf->f_bavail = buf->f_bavail >> bits;
2217
2218	/*
2219	 * We calculate the remaining metadata space minus global reserve. If
2220	 * this is (supposedly) smaller than zero, there's no space. But this
2221	 * does not hold in practice, the exhausted state happens where's still
2222	 * some positive delta. So we apply some guesswork and compare the
2223	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2224	 *
2225	 * We probably cannot calculate the exact threshold value because this
2226	 * depends on the internal reservations requested by various
2227	 * operations, so some operations that consume a few metadata will
2228	 * succeed even if the Avail is zero. But this is better than the other
2229	 * way around.
2230	 */
2231	thresh = SZ_4M;
2232
2233	/*
2234	 * We only want to claim there's no available space if we can no longer
2235	 * allocate chunks for our metadata profile and our global reserve will
2236	 * not fit in the free metadata space.  If we aren't ->full then we
2237	 * still can allocate chunks and thus are fine using the currently
2238	 * calculated f_bavail.
2239	 */
2240	if (!mixed && block_rsv->space_info->full &&
2241	    total_free_meta - thresh < block_rsv->size)
2242		buf->f_bavail = 0;
2243
2244	buf->f_type = BTRFS_SUPER_MAGIC;
2245	buf->f_bsize = dentry->d_sb->s_blocksize;
2246	buf->f_namelen = BTRFS_NAME_LEN;
2247
2248	/* We treat it as constant endianness (it doesn't matter _which_)
2249	   because we want the fsid to come out the same whether mounted
2250	   on a big-endian or little-endian host */
2251	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2252	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2253	/* Mask in the root object ID too, to disambiguate subvols */
2254	buf->f_fsid.val[0] ^=
2255		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2256	buf->f_fsid.val[1] ^=
2257		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2258
2259	return 0;
2260}
2261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2262static void btrfs_kill_super(struct super_block *sb)
2263{
2264	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2265	kill_anon_super(sb);
2266	btrfs_free_fs_info(fs_info);
2267}
2268
2269static struct file_system_type btrfs_fs_type = {
2270	.owner		= THIS_MODULE,
2271	.name		= "btrfs",
2272	.mount		= btrfs_mount,
2273	.kill_sb	= btrfs_kill_super,
2274	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2275};
2276
2277static struct file_system_type btrfs_root_fs_type = {
2278	.owner		= THIS_MODULE,
2279	.name		= "btrfs",
2280	.mount		= btrfs_mount_root,
2281	.kill_sb	= btrfs_kill_super,
2282	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2283};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284
2285MODULE_ALIAS_FS("btrfs");
2286
2287static int btrfs_control_open(struct inode *inode, struct file *file)
2288{
2289	/*
2290	 * The control file's private_data is used to hold the
2291	 * transaction when it is started and is used to keep
2292	 * track of whether a transaction is already in progress.
2293	 */
2294	file->private_data = NULL;
2295	return 0;
2296}
2297
2298/*
2299 * Used by /dev/btrfs-control for devices ioctls.
2300 */
2301static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2302				unsigned long arg)
2303{
2304	struct btrfs_ioctl_vol_args *vol;
2305	struct btrfs_device *device = NULL;
 
2306	int ret = -ENOTTY;
2307
2308	if (!capable(CAP_SYS_ADMIN))
2309		return -EPERM;
2310
2311	vol = memdup_user((void __user *)arg, sizeof(*vol));
2312	if (IS_ERR(vol))
2313		return PTR_ERR(vol);
2314	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2315
2316	switch (cmd) {
2317	case BTRFS_IOC_SCAN_DEV:
2318		mutex_lock(&uuid_mutex);
2319		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2320					       &btrfs_root_fs_type);
 
 
 
2321		ret = PTR_ERR_OR_ZERO(device);
2322		mutex_unlock(&uuid_mutex);
2323		break;
2324	case BTRFS_IOC_FORGET_DEV:
2325		ret = btrfs_forget_devices(vol->name);
 
 
 
 
 
2326		break;
2327	case BTRFS_IOC_DEVICES_READY:
2328		mutex_lock(&uuid_mutex);
2329		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2330					       &btrfs_root_fs_type);
2331		if (IS_ERR(device)) {
 
 
 
2332			mutex_unlock(&uuid_mutex);
2333			ret = PTR_ERR(device);
2334			break;
2335		}
2336		ret = !(device->fs_devices->num_devices ==
2337			device->fs_devices->total_devices);
2338		mutex_unlock(&uuid_mutex);
2339		break;
2340	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2341		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2342		break;
2343	}
2344
2345	kfree(vol);
2346	return ret;
2347}
2348
2349static int btrfs_freeze(struct super_block *sb)
2350{
2351	struct btrfs_trans_handle *trans;
2352	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2353	struct btrfs_root *root = fs_info->tree_root;
2354
2355	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2356	/*
2357	 * We don't need a barrier here, we'll wait for any transaction that
2358	 * could be in progress on other threads (and do delayed iputs that
2359	 * we want to avoid on a frozen filesystem), or do the commit
2360	 * ourselves.
2361	 */
2362	trans = btrfs_attach_transaction_barrier(root);
2363	if (IS_ERR(trans)) {
2364		/* no transaction, don't bother */
2365		if (PTR_ERR(trans) == -ENOENT)
2366			return 0;
2367		return PTR_ERR(trans);
2368	}
2369	return btrfs_commit_transaction(trans);
2370}
2371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2372static int btrfs_unfreeze(struct super_block *sb)
2373{
2374	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
 
2375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2376	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
 
 
 
 
 
 
2377	return 0;
2378}
2379
2380static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2381{
2382	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2383	struct btrfs_device *dev, *first_dev = NULL;
2384
2385	/*
2386	 * Lightweight locking of the devices. We should not need
2387	 * device_list_mutex here as we only read the device data and the list
2388	 * is protected by RCU.  Even if a device is deleted during the list
2389	 * traversals, we'll get valid data, the freeing callback will wait at
2390	 * least until the rcu_read_unlock.
2391	 */
2392	rcu_read_lock();
2393	list_for_each_entry_rcu(dev, &fs_info->fs_devices->devices, dev_list) {
2394		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
2395			continue;
2396		if (!dev->name)
2397			continue;
2398		if (!first_dev || dev->devid < first_dev->devid)
2399			first_dev = dev;
2400	}
2401
2402	if (first_dev)
2403		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\");
2404	else
2405		WARN_ON(1);
2406	rcu_read_unlock();
2407	return 0;
2408}
2409
2410static const struct super_operations btrfs_super_ops = {
2411	.drop_inode	= btrfs_drop_inode,
2412	.evict_inode	= btrfs_evict_inode,
2413	.put_super	= btrfs_put_super,
2414	.sync_fs	= btrfs_sync_fs,
2415	.show_options	= btrfs_show_options,
2416	.show_devname	= btrfs_show_devname,
2417	.alloc_inode	= btrfs_alloc_inode,
2418	.destroy_inode	= btrfs_destroy_inode,
2419	.free_inode	= btrfs_free_inode,
2420	.statfs		= btrfs_statfs,
2421	.remount_fs	= btrfs_remount,
2422	.freeze_fs	= btrfs_freeze,
2423	.unfreeze_fs	= btrfs_unfreeze,
2424};
2425
2426static const struct file_operations btrfs_ctl_fops = {
2427	.open = btrfs_control_open,
2428	.unlocked_ioctl	 = btrfs_control_ioctl,
2429	.compat_ioctl = compat_ptr_ioctl,
2430	.owner	 = THIS_MODULE,
2431	.llseek = noop_llseek,
2432};
2433
2434static struct miscdevice btrfs_misc = {
2435	.minor		= BTRFS_MINOR,
2436	.name		= "btrfs-control",
2437	.fops		= &btrfs_ctl_fops
2438};
2439
2440MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2441MODULE_ALIAS("devname:btrfs-control");
2442
2443static int __init btrfs_interface_init(void)
2444{
2445	return misc_register(&btrfs_misc);
2446}
2447
2448static __cold void btrfs_interface_exit(void)
2449{
2450	misc_deregister(&btrfs_misc);
2451}
2452
2453static void __init btrfs_print_mod_info(void)
2454{
2455	static const char options[] = ""
2456#ifdef CONFIG_BTRFS_DEBUG
2457			", debug=on"
2458#endif
2459#ifdef CONFIG_BTRFS_ASSERT
2460			", assert=on"
2461#endif
2462#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2463			", integrity-checker=on"
2464#endif
2465#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2466			", ref-verify=on"
2467#endif
 
 
 
 
 
 
 
 
 
 
2468			;
2469	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
 
2470}
2471
2472static int __init init_btrfs_fs(void)
2473{
2474	int err;
 
2475
2476	btrfs_props_init();
 
 
 
2477
2478	err = btrfs_init_sysfs();
2479	if (err)
2480		return err;
 
 
 
2481
2482	btrfs_init_compress();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2483
2484	err = btrfs_init_cachep();
2485	if (err)
2486		goto free_compress;
2487
2488	err = extent_io_init();
2489	if (err)
2490		goto free_cachep;
2491
2492	err = extent_state_cache_init();
2493	if (err)
2494		goto free_extent_io;
2495
2496	err = extent_map_init();
2497	if (err)
2498		goto free_extent_state_cache;
2499
2500	err = ordered_data_init();
2501	if (err)
2502		goto free_extent_map;
2503
2504	err = btrfs_delayed_inode_init();
2505	if (err)
2506		goto free_ordered_data;
2507
2508	err = btrfs_auto_defrag_init();
2509	if (err)
2510		goto free_delayed_inode;
2511
2512	err = btrfs_delayed_ref_init();
2513	if (err)
2514		goto free_auto_defrag;
2515
2516	err = btrfs_prelim_ref_init();
2517	if (err)
2518		goto free_delayed_ref;
2519
2520	err = btrfs_end_io_wq_init();
2521	if (err)
2522		goto free_prelim_ref;
2523
2524	err = btrfs_interface_init();
2525	if (err)
2526		goto free_end_io_wq;
2527
2528	btrfs_init_lockdep();
2529
2530	btrfs_print_mod_info();
2531
2532	err = btrfs_run_sanity_tests();
2533	if (err)
2534		goto unregister_ioctl;
2535
2536	err = register_filesystem(&btrfs_fs_type);
2537	if (err)
2538		goto unregister_ioctl;
2539
2540	return 0;
2541
2542unregister_ioctl:
2543	btrfs_interface_exit();
2544free_end_io_wq:
2545	btrfs_end_io_wq_exit();
2546free_prelim_ref:
2547	btrfs_prelim_ref_exit();
2548free_delayed_ref:
2549	btrfs_delayed_ref_exit();
2550free_auto_defrag:
2551	btrfs_auto_defrag_exit();
2552free_delayed_inode:
2553	btrfs_delayed_inode_exit();
2554free_ordered_data:
2555	ordered_data_exit();
2556free_extent_map:
2557	extent_map_exit();
2558free_extent_state_cache:
2559	extent_state_cache_exit();
2560free_extent_io:
2561	extent_io_exit();
2562free_cachep:
2563	btrfs_destroy_cachep();
2564free_compress:
2565	btrfs_exit_compress();
2566	btrfs_exit_sysfs();
2567
2568	return err;
2569}
2570
2571static void __exit exit_btrfs_fs(void)
2572{
2573	btrfs_destroy_cachep();
2574	btrfs_delayed_ref_exit();
2575	btrfs_auto_defrag_exit();
2576	btrfs_delayed_inode_exit();
2577	btrfs_prelim_ref_exit();
2578	ordered_data_exit();
2579	extent_map_exit();
2580	extent_state_cache_exit();
2581	extent_io_exit();
2582	btrfs_interface_exit();
2583	btrfs_end_io_wq_exit();
2584	unregister_filesystem(&btrfs_fs_type);
2585	btrfs_exit_sysfs();
2586	btrfs_cleanup_fs_uuids();
2587	btrfs_exit_compress();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2588}
2589
2590late_initcall(init_btrfs_fs);
2591module_exit(exit_btrfs_fs)
2592
2593MODULE_LICENSE("GPL");
2594MODULE_SOFTDEP("pre: crc32c");
2595MODULE_SOFTDEP("pre: xxhash64");
2596MODULE_SOFTDEP("pre: sha256");
2597MODULE_SOFTDEP("pre: blake2b-256");