Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/blkdev.h>
   7#include <linux/module.h>
 
   8#include <linux/fs.h>
   9#include <linux/pagemap.h>
  10#include <linux/highmem.h>
  11#include <linux/time.h>
  12#include <linux/init.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
 
 
  17#include <linux/writeback.h>
  18#include <linux/statfs.h>
  19#include <linux/compat.h>
  20#include <linux/parser.h>
  21#include <linux/ctype.h>
  22#include <linux/namei.h>
  23#include <linux/miscdevice.h>
  24#include <linux/magic.h>
  25#include <linux/slab.h>
  26#include <linux/ratelimit.h>
  27#include <linux/crc32c.h>
  28#include <linux/btrfs.h>
  29#include <linux/security.h>
  30#include <linux/fs_parser.h>
  31#include "messages.h"
  32#include "delayed-inode.h"
  33#include "ctree.h"
  34#include "disk-io.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
 
  37#include "print-tree.h"
  38#include "props.h"
  39#include "xattr.h"
  40#include "bio.h"
 
  41#include "export.h"
  42#include "compression.h"
  43#include "rcu-string.h"
  44#include "dev-replace.h"
  45#include "free-space-cache.h"
  46#include "backref.h"
  47#include "space-info.h"
  48#include "sysfs.h"
  49#include "zoned.h"
  50#include "tests/btrfs-tests.h"
  51#include "block-group.h"
  52#include "discard.h"
  53#include "qgroup.h"
  54#include "raid56.h"
  55#include "fs.h"
  56#include "accessors.h"
  57#include "defrag.h"
  58#include "dir-item.h"
  59#include "ioctl.h"
  60#include "scrub.h"
  61#include "verity.h"
  62#include "super.h"
  63#include "extent-tree.h"
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/btrfs.h>
  66
  67static const struct super_operations btrfs_super_ops;
  68static struct file_system_type btrfs_fs_type;
  69
  70static void btrfs_put_super(struct super_block *sb)
  71{
  72	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  73
  74	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
  75	close_ctree(fs_info);
  76}
  77
  78/* Store the mount options related information. */
  79struct btrfs_fs_context {
  80	char *subvol_name;
  81	u64 subvol_objectid;
  82	u64 max_inline;
  83	u32 commit_interval;
  84	u32 metadata_ratio;
  85	u32 thread_pool_size;
  86	unsigned long mount_opt;
  87	unsigned long compress_type:4;
  88	unsigned int compress_level;
  89	refcount_t refs;
  90};
  91
  92enum {
  93	Opt_acl,
  94	Opt_clear_cache,
  95	Opt_commit_interval,
  96	Opt_compress,
  97	Opt_compress_force,
  98	Opt_compress_force_type,
  99	Opt_compress_type,
 100	Opt_degraded,
 101	Opt_device,
 102	Opt_fatal_errors,
 103	Opt_flushoncommit,
 104	Opt_max_inline,
 105	Opt_barrier,
 106	Opt_datacow,
 107	Opt_datasum,
 108	Opt_defrag,
 109	Opt_discard,
 110	Opt_discard_mode,
 111	Opt_ratio,
 112	Opt_rescan_uuid_tree,
 113	Opt_skip_balance,
 114	Opt_space_cache,
 115	Opt_space_cache_version,
 116	Opt_ssd,
 117	Opt_ssd_spread,
 118	Opt_subvol,
 119	Opt_subvol_empty,
 120	Opt_subvolid,
 121	Opt_thread_pool,
 122	Opt_treelog,
 123	Opt_user_subvol_rm_allowed,
 124
 125	/* Rescue options */
 126	Opt_rescue,
 127	Opt_usebackuproot,
 128	Opt_nologreplay,
 129	Opt_ignorebadroots,
 130	Opt_ignoredatacsums,
 131	Opt_rescue_all,
 132
 133	/* Debugging options */
 134	Opt_enospc_debug,
 135#ifdef CONFIG_BTRFS_DEBUG
 136	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
 137#endif
 138#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 139	Opt_ref_verify,
 140#endif
 141	Opt_err,
 142};
 143
 144enum {
 145	Opt_fatal_errors_panic,
 146	Opt_fatal_errors_bug,
 147};
 148
 149static const struct constant_table btrfs_parameter_fatal_errors[] = {
 150	{ "panic", Opt_fatal_errors_panic },
 151	{ "bug", Opt_fatal_errors_bug },
 152	{}
 153};
 154
 155enum {
 156	Opt_discard_sync,
 157	Opt_discard_async,
 158};
 159
 160static const struct constant_table btrfs_parameter_discard[] = {
 161	{ "sync", Opt_discard_sync },
 162	{ "async", Opt_discard_async },
 163	{}
 164};
 165
 166enum {
 167	Opt_space_cache_v1,
 168	Opt_space_cache_v2,
 169};
 170
 171static const struct constant_table btrfs_parameter_space_cache[] = {
 172	{ "v1", Opt_space_cache_v1 },
 173	{ "v2", Opt_space_cache_v2 },
 174	{}
 175};
 176
 177enum {
 178	Opt_rescue_usebackuproot,
 179	Opt_rescue_nologreplay,
 180	Opt_rescue_ignorebadroots,
 181	Opt_rescue_ignoredatacsums,
 182	Opt_rescue_parameter_all,
 183};
 184
 185static const struct constant_table btrfs_parameter_rescue[] = {
 186	{ "usebackuproot", Opt_rescue_usebackuproot },
 187	{ "nologreplay", Opt_rescue_nologreplay },
 188	{ "ignorebadroots", Opt_rescue_ignorebadroots },
 189	{ "ibadroots", Opt_rescue_ignorebadroots },
 190	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
 191	{ "idatacsums", Opt_rescue_ignoredatacsums },
 192	{ "all", Opt_rescue_parameter_all },
 193	{}
 194};
 195
 196#ifdef CONFIG_BTRFS_DEBUG
 197enum {
 198	Opt_fragment_parameter_data,
 199	Opt_fragment_parameter_metadata,
 200	Opt_fragment_parameter_all,
 201};
 202
 203static const struct constant_table btrfs_parameter_fragment[] = {
 204	{ "data", Opt_fragment_parameter_data },
 205	{ "metadata", Opt_fragment_parameter_metadata },
 206	{ "all", Opt_fragment_parameter_all },
 207	{}
 208};
 209#endif
 210
 211static const struct fs_parameter_spec btrfs_fs_parameters[] = {
 212	fsparam_flag_no("acl", Opt_acl),
 213	fsparam_flag_no("autodefrag", Opt_defrag),
 214	fsparam_flag_no("barrier", Opt_barrier),
 215	fsparam_flag("clear_cache", Opt_clear_cache),
 216	fsparam_u32("commit", Opt_commit_interval),
 217	fsparam_flag("compress", Opt_compress),
 218	fsparam_string("compress", Opt_compress_type),
 219	fsparam_flag("compress-force", Opt_compress_force),
 220	fsparam_string("compress-force", Opt_compress_force_type),
 221	fsparam_flag_no("datacow", Opt_datacow),
 222	fsparam_flag_no("datasum", Opt_datasum),
 223	fsparam_flag("degraded", Opt_degraded),
 224	fsparam_string("device", Opt_device),
 225	fsparam_flag_no("discard", Opt_discard),
 226	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
 227	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
 228	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
 229	fsparam_string("max_inline", Opt_max_inline),
 230	fsparam_u32("metadata_ratio", Opt_ratio),
 231	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
 232	fsparam_flag("skip_balance", Opt_skip_balance),
 233	fsparam_flag_no("space_cache", Opt_space_cache),
 234	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
 235	fsparam_flag_no("ssd", Opt_ssd),
 236	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
 237	fsparam_string("subvol", Opt_subvol),
 238	fsparam_flag("subvol=", Opt_subvol_empty),
 239	fsparam_u64("subvolid", Opt_subvolid),
 240	fsparam_u32("thread_pool", Opt_thread_pool),
 241	fsparam_flag_no("treelog", Opt_treelog),
 242	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
 243
 244	/* Rescue options. */
 245	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
 246	/* Deprecated, with alias rescue=nologreplay */
 247	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
 248	/* Deprecated, with alias rescue=usebackuproot */
 249	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
 250
 251	/* Debugging options. */
 252	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
 253#ifdef CONFIG_BTRFS_DEBUG
 254	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
 255#endif
 256#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 257	fsparam_flag("ref_verify", Opt_ref_verify),
 258#endif
 259	{}
 260};
 261
 262/* No support for restricting writes to btrfs devices yet... */
 263static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
 264{
 265	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
 266}
 267
 268static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
 269{
 270	struct btrfs_fs_context *ctx = fc->fs_private;
 271	struct fs_parse_result result;
 272	int opt;
 273
 274	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
 275	if (opt < 0)
 276		return opt;
 277
 278	switch (opt) {
 279	case Opt_degraded:
 280		btrfs_set_opt(ctx->mount_opt, DEGRADED);
 281		break;
 282	case Opt_subvol_empty:
 283		/*
 284		 * This exists because we used to allow it on accident, so we're
 285		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
 286		 * empty subvol= again").
 287		 */
 288		break;
 289	case Opt_subvol:
 290		kfree(ctx->subvol_name);
 291		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
 292		if (!ctx->subvol_name)
 293			return -ENOMEM;
 294		break;
 295	case Opt_subvolid:
 296		ctx->subvol_objectid = result.uint_64;
 297
 298		/* subvolid=0 means give me the original fs_tree. */
 299		if (!ctx->subvol_objectid)
 300			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
 301		break;
 302	case Opt_device: {
 303		struct btrfs_device *device;
 304		blk_mode_t mode = btrfs_open_mode(fc);
 305
 306		mutex_lock(&uuid_mutex);
 307		device = btrfs_scan_one_device(param->string, mode, false);
 308		mutex_unlock(&uuid_mutex);
 309		if (IS_ERR(device))
 310			return PTR_ERR(device);
 311		break;
 312	}
 313	case Opt_datasum:
 314		if (result.negated) {
 315			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 316		} else {
 317			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 318			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 319		}
 320		break;
 321	case Opt_datacow:
 322		if (result.negated) {
 323			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 324			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 325			btrfs_set_opt(ctx->mount_opt, NODATACOW);
 326			btrfs_set_opt(ctx->mount_opt, NODATASUM);
 327		} else {
 328			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 329		}
 330		break;
 331	case Opt_compress_force:
 332	case Opt_compress_force_type:
 333		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
 334		fallthrough;
 335	case Opt_compress:
 336	case Opt_compress_type:
 337		if (opt == Opt_compress || opt == Opt_compress_force) {
 338			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 339			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
 340			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 341			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 342			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 343		} else if (strncmp(param->string, "zlib", 4) == 0) {
 344			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
 345			ctx->compress_level =
 346				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
 347							 param->string + 4);
 348			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 349			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 350			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 351		} else if (strncmp(param->string, "lzo", 3) == 0) {
 352			ctx->compress_type = BTRFS_COMPRESS_LZO;
 353			ctx->compress_level = 0;
 354			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 355			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 356			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 357		} else if (strncmp(param->string, "zstd", 4) == 0) {
 358			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
 359			ctx->compress_level =
 360				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
 361							 param->string + 4);
 362			btrfs_set_opt(ctx->mount_opt, COMPRESS);
 363			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
 364			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
 365		} else if (strncmp(param->string, "no", 2) == 0) {
 366			ctx->compress_level = 0;
 367			ctx->compress_type = 0;
 368			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
 369			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
 370		} else {
 371			btrfs_err(NULL, "unrecognized compression value %s",
 372				  param->string);
 373			return -EINVAL;
 374		}
 375		break;
 376	case Opt_ssd:
 377		if (result.negated) {
 378			btrfs_set_opt(ctx->mount_opt, NOSSD);
 379			btrfs_clear_opt(ctx->mount_opt, SSD);
 380			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 381		} else {
 382			btrfs_set_opt(ctx->mount_opt, SSD);
 383			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 384		}
 385		break;
 386	case Opt_ssd_spread:
 387		if (result.negated) {
 388			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
 389		} else {
 390			btrfs_set_opt(ctx->mount_opt, SSD);
 391			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
 392			btrfs_clear_opt(ctx->mount_opt, NOSSD);
 393		}
 394		break;
 395	case Opt_barrier:
 396		if (result.negated)
 397			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
 398		else
 399			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
 400		break;
 401	case Opt_thread_pool:
 402		if (result.uint_32 == 0) {
 403			btrfs_err(NULL, "invalid value 0 for thread_pool");
 404			return -EINVAL;
 405		}
 406		ctx->thread_pool_size = result.uint_32;
 407		break;
 408	case Opt_max_inline:
 409		ctx->max_inline = memparse(param->string, NULL);
 410		break;
 411	case Opt_acl:
 412		if (result.negated) {
 413			fc->sb_flags &= ~SB_POSIXACL;
 414		} else {
 415#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 416			fc->sb_flags |= SB_POSIXACL;
 417#else
 418			btrfs_err(NULL, "support for ACL not compiled in");
 419			return -EINVAL;
 420#endif
 421		}
 422		/*
 423		 * VFS limits the ability to toggle ACL on and off via remount,
 424		 * despite every file system allowing this.  This seems to be
 425		 * an oversight since we all do, but it'll fail if we're
 426		 * remounting.  So don't set the mask here, we'll check it in
 427		 * btrfs_reconfigure and do the toggling ourselves.
 428		 */
 429		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
 430			fc->sb_flags_mask |= SB_POSIXACL;
 431		break;
 432	case Opt_treelog:
 433		if (result.negated)
 434			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
 435		else
 436			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
 437		break;
 438	case Opt_nologreplay:
 439		btrfs_warn(NULL,
 440		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
 441		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 442		break;
 443	case Opt_flushoncommit:
 444		if (result.negated)
 445			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
 446		else
 447			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
 448		break;
 449	case Opt_ratio:
 450		ctx->metadata_ratio = result.uint_32;
 451		break;
 452	case Opt_discard:
 453		if (result.negated) {
 454			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 455			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 456			btrfs_set_opt(ctx->mount_opt, NODISCARD);
 457		} else {
 458			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 459			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 460		}
 461		break;
 462	case Opt_discard_mode:
 463		switch (result.uint_32) {
 464		case Opt_discard_sync:
 465			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
 466			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
 467			break;
 468		case Opt_discard_async:
 469			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
 470			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
 471			break;
 472		default:
 473			btrfs_err(NULL, "unrecognized discard mode value %s",
 474				  param->key);
 475			return -EINVAL;
 476		}
 477		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
 478		break;
 479	case Opt_space_cache:
 480		if (result.negated) {
 481			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
 482			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 483			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 484		} else {
 485			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 486			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 487		}
 488		break;
 489	case Opt_space_cache_version:
 490		switch (result.uint_32) {
 491		case Opt_space_cache_v1:
 492			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
 493			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
 494			break;
 495		case Opt_space_cache_v2:
 496			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
 497			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
 498			break;
 499		default:
 500			btrfs_err(NULL, "unrecognized space_cache value %s",
 501				  param->key);
 502			return -EINVAL;
 503		}
 504		break;
 505	case Opt_rescan_uuid_tree:
 506		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
 507		break;
 508	case Opt_clear_cache:
 509		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 510		break;
 511	case Opt_user_subvol_rm_allowed:
 512		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
 513		break;
 514	case Opt_enospc_debug:
 515		if (result.negated)
 516			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
 517		else
 518			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
 519		break;
 520	case Opt_defrag:
 521		if (result.negated)
 522			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
 523		else
 524			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
 525		break;
 526	case Opt_usebackuproot:
 527		btrfs_warn(NULL,
 528			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
 529		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 530
 531		/* If we're loading the backup roots we can't trust the space cache. */
 532		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
 533		break;
 534	case Opt_skip_balance:
 535		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
 536		break;
 537	case Opt_fatal_errors:
 538		switch (result.uint_32) {
 539		case Opt_fatal_errors_panic:
 540			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 541			break;
 542		case Opt_fatal_errors_bug:
 543			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
 544			break;
 545		default:
 546			btrfs_err(NULL, "unrecognized fatal_errors value %s",
 547				  param->key);
 548			return -EINVAL;
 549		}
 550		break;
 551	case Opt_commit_interval:
 552		ctx->commit_interval = result.uint_32;
 553		if (ctx->commit_interval == 0)
 554			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 555		break;
 556	case Opt_rescue:
 557		switch (result.uint_32) {
 558		case Opt_rescue_usebackuproot:
 559			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
 560			break;
 561		case Opt_rescue_nologreplay:
 562			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 563			break;
 564		case Opt_rescue_ignorebadroots:
 565			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 566			break;
 567		case Opt_rescue_ignoredatacsums:
 568			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 569			break;
 570		case Opt_rescue_parameter_all:
 571			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
 572			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
 573			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
 574			break;
 575		default:
 576			btrfs_info(NULL, "unrecognized rescue option '%s'",
 577				   param->key);
 578			return -EINVAL;
 579		}
 580		break;
 581#ifdef CONFIG_BTRFS_DEBUG
 582	case Opt_fragment:
 583		switch (result.uint_32) {
 584		case Opt_fragment_parameter_all:
 585			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 586			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 587			break;
 588		case Opt_fragment_parameter_metadata:
 589			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
 590			break;
 591		case Opt_fragment_parameter_data:
 592			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
 593			break;
 594		default:
 595			btrfs_info(NULL, "unrecognized fragment option '%s'",
 596				   param->key);
 597			return -EINVAL;
 598		}
 599		break;
 600#endif
 601#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 602	case Opt_ref_verify:
 603		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
 604		break;
 605#endif
 606	default:
 607		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
 608		return -EINVAL;
 609	}
 610
 611	return 0;
 612}
 613
 614/*
 615 * Some options only have meaning at mount time and shouldn't persist across
 616 * remounts, or be displayed. Clear these at the end of mount and remount code
 617 * paths.
 618 */
 619static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
 620{
 621	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
 622	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
 623	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
 
 
 624}
 625
 626static bool check_ro_option(struct btrfs_fs_info *fs_info,
 627			    unsigned long mount_opt, unsigned long opt,
 628			    const char *opt_name)
 
 
 629{
 630	if (mount_opt & opt) {
 631		btrfs_err(fs_info, "%s must be used with ro mount option",
 632			  opt_name);
 633		return true;
 634	}
 635	return false;
 636}
 637
 638bool btrfs_check_options(struct btrfs_fs_info *info, unsigned long *mount_opt,
 639			 unsigned long flags)
 640{
 641	bool ret = true;
 642
 643	if (!(flags & SB_RDONLY) &&
 644	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
 645	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
 646	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")))
 647		ret = false;
 648
 649	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
 650	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
 651	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
 652		btrfs_err(info, "cannot disable free-space-tree");
 653		ret = false;
 654	}
 655	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
 656	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
 657		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
 658		ret = false;
 659	}
 660
 661	if (btrfs_check_mountopts_zoned(info, mount_opt))
 662		ret = false;
 663
 664	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
 665		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE))
 666			btrfs_info(info, "disk space caching is enabled");
 667		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
 668			btrfs_info(info, "using free-space-tree");
 669	}
 670
 671	return ret;
 672}
 673
 674/*
 675 * This is subtle, we only call this during open_ctree().  We need to pre-load
 676 * the mount options with the on-disk settings.  Before the new mount API took
 677 * effect we would do this on mount and remount.  With the new mount API we'll
 678 * only do this on the initial mount.
 679 *
 680 * This isn't a change in behavior, because we're using the current state of the
 681 * file system to set the current mount options.  If you mounted with special
 682 * options to disable these features and then remounted we wouldn't revert the
 683 * settings, because mounting without these features cleared the on-disk
 684 * settings, so this being called on re-mount is not needed.
 685 */
 686void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
 
 687{
 688	if (fs_info->sectorsize < PAGE_SIZE) {
 689		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
 690		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
 691			btrfs_info(fs_info,
 692				   "forcing free space tree for sector size %u with page size %lu",
 693				   fs_info->sectorsize, PAGE_SIZE);
 694			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 695		}
 696	}
 697
 698	/*
 699	 * At this point our mount options are populated, so we only mess with
 700	 * these settings if we don't have any settings already.
 701	 */
 702	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
 703		return;
 704
 705	if (btrfs_is_zoned(fs_info) &&
 706	    btrfs_free_space_cache_v1_active(fs_info)) {
 707		btrfs_info(fs_info, "zoned: clearing existing space cache");
 708		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
 709		return;
 710	}
 711
 712	if (btrfs_test_opt(fs_info, SPACE_CACHE))
 713		return;
 714
 715	if (btrfs_test_opt(fs_info, NOSPACECACHE))
 716		return;
 
 
 717
 718	/*
 719	 * At this point we don't have explicit options set by the user, set
 720	 * them ourselves based on the state of the file system.
 721	 */
 722	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 723		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
 724	else if (btrfs_free_space_cache_v1_active(fs_info))
 725		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
 726}
 727
 728static void set_device_specific_options(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729{
 730	if (!btrfs_test_opt(fs_info, NOSSD) &&
 731	    !fs_info->fs_devices->rotating)
 732		btrfs_set_opt(fs_info->mount_opt, SSD);
 
 
 
 
 
 
 
 733
 734	/*
 735	 * For devices supporting discard turn on discard=async automatically,
 736	 * unless it's already set or disabled. This could be turned off by
 737	 * nodiscard for the same mount.
 738	 *
 739	 * The zoned mode piggy backs on the discard functionality for
 740	 * resetting a zone. There is no reason to delay the zone reset as it is
 741	 * fast enough. So, do not enable async discard for zoned mode.
 742	 */
 743	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
 744	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
 745	      btrfs_test_opt(fs_info, NODISCARD)) &&
 746	    fs_info->fs_devices->discardable &&
 747	    !btrfs_is_zoned(fs_info))
 748		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
 749}
 750
 751char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
 752					  u64 subvol_objectid)
 753{
 754	struct btrfs_root *root = fs_info->tree_root;
 755	struct btrfs_root *fs_root = NULL;
 756	struct btrfs_root_ref *root_ref;
 757	struct btrfs_inode_ref *inode_ref;
 758	struct btrfs_key key;
 759	struct btrfs_path *path = NULL;
 760	char *name = NULL, *ptr;
 761	u64 dirid;
 762	int len;
 763	int ret;
 764
 765	path = btrfs_alloc_path();
 766	if (!path) {
 767		ret = -ENOMEM;
 768		goto err;
 769	}
 770
 771	name = kmalloc(PATH_MAX, GFP_KERNEL);
 772	if (!name) {
 773		ret = -ENOMEM;
 774		goto err;
 775	}
 776	ptr = name + PATH_MAX - 1;
 777	ptr[0] = '\0';
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778
 779	/*
 780	 * Walk up the subvolume trees in the tree of tree roots by root
 781	 * backrefs until we hit the top-level subvolume.
 782	 */
 783	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
 784		key.objectid = subvol_objectid;
 785		key.type = BTRFS_ROOT_BACKREF_KEY;
 786		key.offset = (u64)-1;
 787
 788		ret = btrfs_search_backwards(root, &key, path);
 789		if (ret < 0) {
 790			goto err;
 791		} else if (ret > 0) {
 792			ret = -ENOENT;
 793			goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794		}
 
 
 
 
 
 795
 796		subvol_objectid = key.offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 797
 798		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
 799					  struct btrfs_root_ref);
 800		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
 801		ptr -= len + 1;
 802		if (ptr < name) {
 803			ret = -ENAMETOOLONG;
 804			goto err;
 805		}
 806		read_extent_buffer(path->nodes[0], ptr + 1,
 807				   (unsigned long)(root_ref + 1), len);
 808		ptr[0] = '/';
 809		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
 810		btrfs_release_path(path);
 811
 812		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
 813		if (IS_ERR(fs_root)) {
 814			ret = PTR_ERR(fs_root);
 815			fs_root = NULL;
 816			goto err;
 817		}
 818
 819		/*
 820		 * Walk up the filesystem tree by inode refs until we hit the
 821		 * root directory.
 822		 */
 823		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
 824			key.objectid = dirid;
 825			key.type = BTRFS_INODE_REF_KEY;
 826			key.offset = (u64)-1;
 827
 828			ret = btrfs_search_backwards(fs_root, &key, path);
 829			if (ret < 0) {
 830				goto err;
 831			} else if (ret > 0) {
 832				ret = -ENOENT;
 833				goto err;
 834			}
 835
 836			dirid = key.offset;
 
 
 
 837
 838			inode_ref = btrfs_item_ptr(path->nodes[0],
 839						   path->slots[0],
 840						   struct btrfs_inode_ref);
 841			len = btrfs_inode_ref_name_len(path->nodes[0],
 842						       inode_ref);
 843			ptr -= len + 1;
 844			if (ptr < name) {
 845				ret = -ENAMETOOLONG;
 846				goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847			}
 848			read_extent_buffer(path->nodes[0], ptr + 1,
 849					   (unsigned long)(inode_ref + 1), len);
 850			ptr[0] = '/';
 851			btrfs_release_path(path);
 
 
 
 
 
 852		}
 853		btrfs_put_root(fs_root);
 854		fs_root = NULL;
 855	}
 856
 857	btrfs_free_path(path);
 858	if (ptr == name + PATH_MAX - 1) {
 859		name[0] = '/';
 860		name[1] = '\0';
 861	} else {
 862		memmove(name, ptr, name + PATH_MAX - ptr);
 
 
 
 
 
 
 863	}
 864	return name;
 865
 866err:
 867	btrfs_put_root(fs_root);
 868	btrfs_free_path(path);
 869	kfree(name);
 870	return ERR_PTR(ret);
 871}
 872
 873static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
 
 874{
 875	struct btrfs_root *root = fs_info->tree_root;
 
 876	struct btrfs_dir_item *di;
 877	struct btrfs_path *path;
 878	struct btrfs_key location;
 879	struct fscrypt_str name = FSTR_INIT("default", 7);
 
 880	u64 dir_id;
 
 
 
 
 
 
 
 
 
 
 
 
 881
 882	path = btrfs_alloc_path();
 883	if (!path)
 884		return -ENOMEM;
 
 885
 886	/*
 887	 * Find the "default" dir item which points to the root item that we
 888	 * will mount by default if we haven't been given a specific subvolume
 889	 * to mount.
 890	 */
 891	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 892	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
 893	if (IS_ERR(di)) {
 894		btrfs_free_path(path);
 895		return PTR_ERR(di);
 896	}
 897	if (!di) {
 898		/*
 899		 * Ok the default dir item isn't there.  This is weird since
 900		 * it's always been there, but don't freak out, just try and
 901		 * mount the top-level subvolume.
 902		 */
 903		btrfs_free_path(path);
 904		*objectid = BTRFS_FS_TREE_OBJECTID;
 905		return 0;
 
 906	}
 907
 908	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 909	btrfs_free_path(path);
 910	*objectid = location.objectid;
 911	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912}
 913
 914static int btrfs_fill_super(struct super_block *sb,
 915			    struct btrfs_fs_devices *fs_devices,
 916			    void *data)
 917{
 918	struct inode *inode;
 919	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
 
 920	int err;
 921
 922	sb->s_maxbytes = MAX_LFS_FILESIZE;
 923	sb->s_magic = BTRFS_SUPER_MAGIC;
 924	sb->s_op = &btrfs_super_ops;
 925	sb->s_d_op = &btrfs_dentry_operations;
 926	sb->s_export_op = &btrfs_export_ops;
 927#ifdef CONFIG_FS_VERITY
 928	sb->s_vop = &btrfs_verityops;
 929#endif
 930	sb->s_xattr = btrfs_xattr_handlers;
 931	sb->s_time_gran = 1;
 932	sb->s_iflags |= SB_I_CGROUPWB;
 933
 934	err = super_setup_bdi(sb);
 935	if (err) {
 936		btrfs_err(fs_info, "super_setup_bdi failed");
 937		return err;
 938	}
 939
 940	err = open_ctree(sb, fs_devices, (char *)data);
 941	if (err) {
 942		btrfs_err(fs_info, "open_ctree failed");
 943		return err;
 944	}
 945
 946	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
 
 
 
 
 
 
 
 
 
 947	if (IS_ERR(inode)) {
 948		err = PTR_ERR(inode);
 949		btrfs_handle_fs_error(fs_info, err, NULL);
 950		goto fail_close;
 951	}
 952
 953	sb->s_root = d_make_root(inode);
 954	if (!sb->s_root) {
 
 955		err = -ENOMEM;
 956		goto fail_close;
 957	}
 958
 959	sb->s_flags |= SB_ACTIVE;
 
 
 
 960	return 0;
 961
 962fail_close:
 963	close_ctree(fs_info);
 964	return err;
 965}
 966
 967int btrfs_sync_fs(struct super_block *sb, int wait)
 968{
 969	struct btrfs_trans_handle *trans;
 970	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 971	struct btrfs_root *root = fs_info->tree_root;
 972
 973	trace_btrfs_sync_fs(fs_info, wait);
 974
 975	if (!wait) {
 976		filemap_flush(fs_info->btree_inode->i_mapping);
 977		return 0;
 978	}
 979
 980	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
 
 981
 982	trans = btrfs_attach_transaction_barrier(root);
 983	if (IS_ERR(trans)) {
 984		/* no transaction, don't bother */
 985		if (PTR_ERR(trans) == -ENOENT) {
 986			/*
 987			 * Exit unless we have some pending changes
 988			 * that need to go through commit
 989			 */
 990			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
 991				      &fs_info->flags))
 992				return 0;
 993			/*
 994			 * A non-blocking test if the fs is frozen. We must not
 995			 * start a new transaction here otherwise a deadlock
 996			 * happens. The pending operations are delayed to the
 997			 * next commit after thawing.
 998			 */
 999			if (sb_start_write_trylock(sb))
1000				sb_end_write(sb);
1001			else
1002				return 0;
1003			trans = btrfs_start_transaction(root, 0);
1004		}
1005		if (IS_ERR(trans))
1006			return PTR_ERR(trans);
1007	}
1008	return btrfs_commit_transaction(trans);
1009}
1010
1011static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1012{
1013	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1014	*printed = true;
1015}
1016
1017static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1018{
1019	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1020	const char *compress_type;
1021	const char *subvol_name;
1022	bool printed = false;
1023
1024	if (btrfs_test_opt(info, DEGRADED))
1025		seq_puts(seq, ",degraded");
1026	if (btrfs_test_opt(info, NODATASUM))
1027		seq_puts(seq, ",nodatasum");
1028	if (btrfs_test_opt(info, NODATACOW))
1029		seq_puts(seq, ",nodatacow");
1030	if (btrfs_test_opt(info, NOBARRIER))
1031		seq_puts(seq, ",nobarrier");
1032	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1033		seq_printf(seq, ",max_inline=%llu", info->max_inline);
 
 
 
 
1034	if (info->thread_pool_size !=  min_t(unsigned long,
1035					     num_online_cpus() + 2, 8))
1036		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1037	if (btrfs_test_opt(info, COMPRESS)) {
1038		compress_type = btrfs_compress_type2str(info->compress_type);
1039		if (btrfs_test_opt(info, FORCE_COMPRESS))
 
 
 
1040			seq_printf(seq, ",compress-force=%s", compress_type);
1041		else
1042			seq_printf(seq, ",compress=%s", compress_type);
1043		if (info->compress_level)
1044			seq_printf(seq, ":%d", info->compress_level);
1045	}
1046	if (btrfs_test_opt(info, NOSSD))
1047		seq_puts(seq, ",nossd");
1048	if (btrfs_test_opt(info, SSD_SPREAD))
1049		seq_puts(seq, ",ssd_spread");
1050	else if (btrfs_test_opt(info, SSD))
1051		seq_puts(seq, ",ssd");
1052	if (btrfs_test_opt(info, NOTREELOG))
1053		seq_puts(seq, ",notreelog");
1054	if (btrfs_test_opt(info, NOLOGREPLAY))
1055		print_rescue_option(seq, "nologreplay", &printed);
1056	if (btrfs_test_opt(info, USEBACKUPROOT))
1057		print_rescue_option(seq, "usebackuproot", &printed);
1058	if (btrfs_test_opt(info, IGNOREBADROOTS))
1059		print_rescue_option(seq, "ignorebadroots", &printed);
1060	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1061		print_rescue_option(seq, "ignoredatacsums", &printed);
1062	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1063		seq_puts(seq, ",flushoncommit");
1064	if (btrfs_test_opt(info, DISCARD_SYNC))
1065		seq_puts(seq, ",discard");
1066	if (btrfs_test_opt(info, DISCARD_ASYNC))
1067		seq_puts(seq, ",discard=async");
1068	if (!(info->sb->s_flags & SB_POSIXACL))
1069		seq_puts(seq, ",noacl");
1070	if (btrfs_free_space_cache_v1_active(info))
1071		seq_puts(seq, ",space_cache");
1072	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1073		seq_puts(seq, ",space_cache=v2");
1074	else
1075		seq_puts(seq, ",nospace_cache");
1076	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1077		seq_puts(seq, ",rescan_uuid_tree");
1078	if (btrfs_test_opt(info, CLEAR_CACHE))
1079		seq_puts(seq, ",clear_cache");
1080	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1081		seq_puts(seq, ",user_subvol_rm_allowed");
1082	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1083		seq_puts(seq, ",enospc_debug");
1084	if (btrfs_test_opt(info, AUTO_DEFRAG))
1085		seq_puts(seq, ",autodefrag");
1086	if (btrfs_test_opt(info, SKIP_BALANCE))
1087		seq_puts(seq, ",skip_balance");
1088	if (info->metadata_ratio)
1089		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1090	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1091		seq_puts(seq, ",fatal_errors=panic");
1092	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1093		seq_printf(seq, ",commit=%u", info->commit_interval);
1094#ifdef CONFIG_BTRFS_DEBUG
1095	if (btrfs_test_opt(info, FRAGMENT_DATA))
1096		seq_puts(seq, ",fragment=data");
1097	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1098		seq_puts(seq, ",fragment=metadata");
1099#endif
1100	if (btrfs_test_opt(info, REF_VERIFY))
1101		seq_puts(seq, ",ref_verify");
1102	seq_printf(seq, ",subvolid=%llu",
1103		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1104	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1105			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1106	if (!IS_ERR(subvol_name)) {
1107		seq_puts(seq, ",subvol=");
1108		seq_escape(seq, subvol_name, " \t\n\\");
1109		kfree(subvol_name);
1110	}
1111	return 0;
1112}
1113
1114/*
1115 * subvolumes are identified by ino 256
1116 */
1117static inline int is_subvolume_inode(struct inode *inode)
1118{
1119	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1120		return 1;
1121	return 0;
1122}
1123
1124static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1125				   struct vfsmount *mnt)
1126{
1127	struct dentry *root;
1128	int ret;
1129
1130	if (!subvol_name) {
1131		if (!subvol_objectid) {
1132			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1133							  &subvol_objectid);
1134			if (ret) {
1135				root = ERR_PTR(ret);
1136				goto out;
1137			}
1138		}
1139		subvol_name = btrfs_get_subvol_name_from_objectid(
1140					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1141		if (IS_ERR(subvol_name)) {
1142			root = ERR_CAST(subvol_name);
1143			subvol_name = NULL;
1144			goto out;
1145		}
1146
1147	}
1148
1149	root = mount_subtree(mnt, subvol_name);
1150	/* mount_subtree() drops our reference on the vfsmount. */
1151	mnt = NULL;
1152
1153	if (!IS_ERR(root)) {
1154		struct super_block *s = root->d_sb;
1155		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1156		struct inode *root_inode = d_inode(root);
1157		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1158
1159		ret = 0;
1160		if (!is_subvolume_inode(root_inode)) {
1161			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1162			       subvol_name);
1163			ret = -EINVAL;
1164		}
1165		if (subvol_objectid && root_objectid != subvol_objectid) {
1166			/*
1167			 * This will also catch a race condition where a
1168			 * subvolume which was passed by ID is renamed and
1169			 * another subvolume is renamed over the old location.
1170			 */
1171			btrfs_err(fs_info,
1172				  "subvol '%s' does not match subvolid %llu",
1173				  subvol_name, subvol_objectid);
1174			ret = -EINVAL;
1175		}
1176		if (ret) {
1177			dput(root);
1178			root = ERR_PTR(ret);
1179			deactivate_locked_super(s);
1180		}
1181	}
1182
1183out:
1184	mntput(mnt);
1185	kfree(subvol_name);
1186	return root;
 
 
 
1187}
1188
1189static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1190				     u32 new_pool_size, u32 old_pool_size)
1191{
1192	if (new_pool_size == old_pool_size)
1193		return;
1194
1195	fs_info->thread_pool_size = new_pool_size;
1196
1197	btrfs_info(fs_info, "resize thread pool %d -> %d",
1198	       old_pool_size, new_pool_size);
1199
1200	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1201	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1202	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1203	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1204	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1205	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1206	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1207	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1208}
1209
1210static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1211				       unsigned long old_opts, int flags)
1212{
1213	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1214	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1215	     (flags & SB_RDONLY))) {
1216		/* wait for any defraggers to finish */
1217		wait_event(fs_info->transaction_wait,
1218			   (atomic_read(&fs_info->defrag_running) == 0));
1219		if (flags & SB_RDONLY)
1220			sync_filesystem(fs_info->sb);
1221	}
1222}
1223
1224static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1225					 unsigned long old_opts)
 
 
 
 
 
 
1226{
1227	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228
1229	/*
1230	 * We need to cleanup all defragable inodes if the autodefragment is
1231	 * close or the filesystem is read only.
 
 
1232	 */
1233	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1234	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1235		btrfs_cleanup_defrag_inodes(fs_info);
 
 
1236	}
 
 
 
1237
1238	/* If we toggled discard async */
1239	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1240	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1241		btrfs_discard_resume(fs_info);
1242	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1243		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1244		btrfs_discard_cleanup(fs_info);
1245
1246	/* If we toggled space cache */
1247	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1248		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1249}
1250
1251static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1252{
1253	int ret;
 
 
 
1254
1255	if (BTRFS_FS_ERROR(fs_info)) {
1256		btrfs_err(fs_info,
1257			  "remounting read-write after error is not allowed");
1258		return -EINVAL;
1259	}
1260
1261	if (fs_info->fs_devices->rw_devices == 0)
1262		return -EACCES;
 
 
 
 
 
 
1263
1264	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1265		btrfs_warn(fs_info,
1266			   "too many missing devices, writable remount is not allowed");
1267		return -EACCES;
1268	}
1269
1270	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1271		btrfs_warn(fs_info,
1272			   "mount required to replay tree-log, cannot remount read-write");
1273		return -EINVAL;
1274	}
1275
1276	/*
1277	 * NOTE: when remounting with a change that does writes, don't put it
1278	 * anywhere above this point, as we are not sure to be safe to write
1279	 * until we pass the above checks.
1280	 */
1281	ret = btrfs_start_pre_rw_mount(fs_info);
1282	if (ret)
1283		return ret;
1284
1285	btrfs_clear_sb_rdonly(fs_info->sb);
 
 
 
1286
1287	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288
1289	/*
1290	 * If we've gone from readonly -> read-write, we need to get our
1291	 * sync/async discard lists in the right state.
1292	 */
1293	btrfs_discard_resume(fs_info);
1294
1295	return 0;
 
 
 
 
 
 
 
 
1296}
1297
1298static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1299{
1300	/*
1301	 * This also happens on 'umount -rf' or on shutdown, when the
1302	 * filesystem is busy.
1303	 */
1304	cancel_work_sync(&fs_info->async_reclaim_work);
1305	cancel_work_sync(&fs_info->async_data_reclaim_work);
1306
1307	btrfs_discard_cleanup(fs_info);
1308
1309	/* Wait for the uuid_scan task to finish */
1310	down(&fs_info->uuid_tree_rescan_sem);
1311	/* Avoid complains from lockdep et al. */
1312	up(&fs_info->uuid_tree_rescan_sem);
1313
1314	btrfs_set_sb_rdonly(fs_info->sb);
1315
1316	/*
1317	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1318	 * loop if it's already active.  If it's already asleep, we'll leave
1319	 * unused block groups on disk until we're mounted read-write again
1320	 * unless we clean them up here.
1321	 */
1322	btrfs_delete_unused_bgs(fs_info);
1323
1324	/*
1325	 * The cleaner task could be already running before we set the flag
1326	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1327	 * sure that after we finish the remount, i.e. after we call
1328	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1329	 * - either because it was dropping a dead root, running delayed iputs
1330	 *   or deleting an unused block group (the cleaner picked a block
1331	 *   group from the list of unused block groups before we were able to
1332	 *   in the previous call to btrfs_delete_unused_bgs()).
1333	 */
1334	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1335
1336	/*
1337	 * We've set the superblock to RO mode, so we might have made the
1338	 * cleaner task sleep without running all pending delayed iputs. Go
1339	 * through all the delayed iputs here, so that if an unmount happens
1340	 * without remounting RW we don't end up at finishing close_ctree()
1341	 * with a non-empty list of delayed iputs.
1342	 */
1343	btrfs_run_delayed_iputs(fs_info);
1344
1345	btrfs_dev_replace_suspend_for_unmount(fs_info);
1346	btrfs_scrub_cancel(fs_info);
1347	btrfs_pause_balance(fs_info);
1348
1349	/*
1350	 * Pause the qgroup rescan worker if it is running. We don't want it to
1351	 * be still running after we are in RO mode, as after that, by the time
1352	 * we unmount, it might have left a transaction open, so we would leak
1353	 * the transaction and/or crash.
1354	 */
1355	btrfs_qgroup_wait_for_completion(fs_info, false);
1356
1357	return btrfs_commit_super(fs_info);
1358}
 
1359
1360static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1361{
1362	fs_info->max_inline = ctx->max_inline;
1363	fs_info->commit_interval = ctx->commit_interval;
1364	fs_info->metadata_ratio = ctx->metadata_ratio;
1365	fs_info->thread_pool_size = ctx->thread_pool_size;
1366	fs_info->mount_opt = ctx->mount_opt;
1367	fs_info->compress_type = ctx->compress_type;
1368	fs_info->compress_level = ctx->compress_level;
1369}
1370
1371static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1372{
1373	ctx->max_inline = fs_info->max_inline;
1374	ctx->commit_interval = fs_info->commit_interval;
1375	ctx->metadata_ratio = fs_info->metadata_ratio;
1376	ctx->thread_pool_size = fs_info->thread_pool_size;
1377	ctx->mount_opt = fs_info->mount_opt;
1378	ctx->compress_type = fs_info->compress_type;
1379	ctx->compress_level = fs_info->compress_level;
1380}
1381
1382#define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1383do {										\
1384	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1385	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1386		btrfs_info(fs_info, fmt, ##args);				\
1387} while (0)
1388
1389#define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1390do {									\
1391	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1392	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1393		btrfs_info(fs_info, fmt, ##args);			\
1394} while (0)
1395
1396static void btrfs_emit_options(struct btrfs_fs_info *info,
1397			       struct btrfs_fs_context *old)
1398{
1399	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1400	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1401	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1402	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1403	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1404	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1405	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1406	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1407	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1408	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1409	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1410	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1411	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1412	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1413	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1414	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1415	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1416	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1417	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1418	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1419	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1420
1421	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1422	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1423	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1424	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1425	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1426	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1427	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1428	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1429	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1430
1431	/* Did the compression settings change? */
1432	if (btrfs_test_opt(info, COMPRESS) &&
1433	    (!old ||
1434	     old->compress_type != info->compress_type ||
1435	     old->compress_level != info->compress_level ||
1436	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1437	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1438		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1439
1440		btrfs_info(info, "%s %s compression, level %d",
1441			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1442			   compress_type, info->compress_level);
1443	}
1444
1445	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1446		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1447}
1448
1449static int btrfs_reconfigure(struct fs_context *fc)
1450{
1451	struct super_block *sb = fc->root->d_sb;
1452	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1453	struct btrfs_fs_context *ctx = fc->fs_private;
1454	struct btrfs_fs_context old_ctx;
1455	int ret = 0;
1456	bool mount_reconfigure = (fc->s_fs_info != NULL);
1457
1458	btrfs_info_to_ctx(fs_info, &old_ctx);
 
1459
1460	/*
1461	 * This is our "bind mount" trick, we don't want to allow the user to do
1462	 * anything other than mount a different ro/rw and a different subvol,
1463	 * all of the mount options should be maintained.
1464	 */
1465	if (mount_reconfigure)
1466		ctx->mount_opt = old_ctx.mount_opt;
1467
1468	sync_filesystem(sb);
1469	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1470
1471	if (!mount_reconfigure &&
1472	    !btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1473		return -EINVAL;
1474
1475	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1476	if (ret < 0)
1477		return ret;
1478
1479	btrfs_ctx_to_info(fs_info, ctx);
1480	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1481	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1482				 old_ctx.thread_pool_size);
1483
1484	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1485	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1486	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1487		btrfs_warn(fs_info,
1488		"remount supports changing free space tree only from RO to RW");
1489		/* Make sure free space cache options match the state on disk. */
1490		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1491			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1492			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1493		}
1494		if (btrfs_free_space_cache_v1_active(fs_info)) {
1495			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1496			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1497		}
1498	}
1499
1500	ret = 0;
1501	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1502		ret = btrfs_remount_ro(fs_info);
1503	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1504		ret = btrfs_remount_rw(fs_info);
1505	if (ret)
1506		goto restore;
1507
1508	/*
1509	 * If we set the mask during the parameter parsing VFS would reject the
1510	 * remount.  Here we can set the mask and the value will be updated
1511	 * appropriately.
1512	 */
1513	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1514		fc->sb_flags_mask |= SB_POSIXACL;
1515
1516	btrfs_emit_options(fs_info, &old_ctx);
1517	wake_up_process(fs_info->transaction_kthread);
1518	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1519	btrfs_clear_oneshot_options(fs_info);
1520	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1521
1522	return 0;
1523restore:
1524	btrfs_ctx_to_info(fs_info, &old_ctx);
1525	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1526	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1527	return ret;
1528}
1529
1530/* Used to sort the devices by max_avail(descending sort) */
1531static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
 
1532{
1533	const struct btrfs_device_info *dev_info1 = a;
1534	const struct btrfs_device_info *dev_info2 = b;
1535
1536	if (dev_info1->max_avail > dev_info2->max_avail)
1537		return -1;
1538	else if (dev_info1->max_avail < dev_info2->max_avail)
 
1539		return 1;
 
1540	return 0;
1541}
1542
1543/*
1544 * sort the devices by max_avail, in which max free extent size of each device
1545 * is stored.(Descending Sort)
1546 */
1547static inline void btrfs_descending_sort_devices(
1548					struct btrfs_device_info *devices,
1549					size_t nr_devices)
1550{
1551	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1552	     btrfs_cmp_device_free_bytes, NULL);
1553}
1554
1555/*
1556 * The helper to calc the free space on the devices that can be used to store
1557 * file data.
1558 */
1559static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1560					      u64 *free_bytes)
1561{
 
1562	struct btrfs_device_info *devices_info;
1563	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1564	struct btrfs_device *device;
 
1565	u64 type;
1566	u64 avail_space;
 
1567	u64 min_stripe_size;
1568	int num_stripes = 1;
1569	int i = 0, nr_devices;
1570	const struct btrfs_raid_attr *rattr;
1571
1572	/*
1573	 * We aren't under the device list lock, so this is racy-ish, but good
1574	 * enough for our purposes.
1575	 */
1576	nr_devices = fs_info->fs_devices->open_devices;
1577	if (!nr_devices) {
1578		smp_mb();
1579		nr_devices = fs_info->fs_devices->open_devices;
1580		ASSERT(nr_devices);
1581		if (!nr_devices) {
1582			*free_bytes = 0;
1583			return 0;
1584		}
1585	}
1586
1587	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1588			       GFP_KERNEL);
1589	if (!devices_info)
1590		return -ENOMEM;
1591
1592	/* calc min stripe number for data space allocation */
1593	type = btrfs_data_alloc_profile(fs_info);
1594	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1595
1596	if (type & BTRFS_BLOCK_GROUP_RAID0)
1597		num_stripes = nr_devices;
1598	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1599		num_stripes = rattr->ncopies;
1600	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1601		num_stripes = 4;
1602
1603	/* Adjust for more than 1 stripe per device */
1604	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
 
 
1605
1606	rcu_read_lock();
1607	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1608		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1609						&device->dev_state) ||
1610		    !device->bdev ||
1611		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1612			continue;
1613
1614		if (i >= nr_devices)
1615			break;
1616
1617		avail_space = device->total_bytes - device->bytes_used;
1618
1619		/* align with stripe_len */
1620		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
 
1621
1622		/*
1623		 * Ensure we have at least min_stripe_size on top of the
1624		 * reserved space on the device.
 
1625		 */
1626		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1627			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628
1629		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
 
 
 
 
 
 
 
 
 
 
 
 
 
1630
1631		devices_info[i].dev = device;
1632		devices_info[i].max_avail = avail_space;
1633
1634		i++;
1635	}
1636	rcu_read_unlock();
1637
1638	nr_devices = i;
1639
1640	btrfs_descending_sort_devices(devices_info, nr_devices);
1641
1642	i = nr_devices - 1;
1643	avail_space = 0;
1644	while (nr_devices >= rattr->devs_min) {
1645		num_stripes = min(num_stripes, nr_devices);
1646
1647		if (devices_info[i].max_avail >= min_stripe_size) {
1648			int j;
1649			u64 alloc_size;
1650
1651			avail_space += devices_info[i].max_avail * num_stripes;
1652			alloc_size = devices_info[i].max_avail;
1653			for (j = i + 1 - num_stripes; j <= i; j++)
1654				devices_info[j].max_avail -= alloc_size;
1655		}
1656		i--;
1657		nr_devices--;
1658	}
1659
1660	kfree(devices_info);
1661	*free_bytes = avail_space;
1662	return 0;
1663}
1664
1665/*
1666 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1667 *
1668 * If there's a redundant raid level at DATA block groups, use the respective
1669 * multiplier to scale the sizes.
1670 *
1671 * Unused device space usage is based on simulating the chunk allocator
1672 * algorithm that respects the device sizes and order of allocations.  This is
1673 * a close approximation of the actual use but there are other factors that may
1674 * change the result (like a new metadata chunk).
1675 *
1676 * If metadata is exhausted, f_bavail will be 0.
1677 */
1678static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1679{
1680	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1681	struct btrfs_super_block *disk_super = fs_info->super_copy;
 
1682	struct btrfs_space_info *found;
1683	u64 total_used = 0;
1684	u64 total_free_data = 0;
1685	u64 total_free_meta = 0;
1686	u32 bits = fs_info->sectorsize_bits;
1687	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1688	unsigned factor = 1;
1689	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1690	int ret;
1691	u64 thresh = 0;
1692	int mixed = 0;
1693
1694	list_for_each_entry(found, &fs_info->space_info, list) {
 
 
 
1695		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1696			int i;
1697
1698			total_free_data += found->disk_total - found->disk_used;
1699			total_free_data -=
1700				btrfs_account_ro_block_groups_free_space(found);
1701
1702			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1703				if (!list_empty(&found->block_groups[i]))
1704					factor = btrfs_bg_type_to_factor(
1705						btrfs_raid_array[i].bg_flag);
1706			}
1707		}
1708
1709		/*
1710		 * Metadata in mixed block group profiles are accounted in data
1711		 */
1712		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1713			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1714				mixed = 1;
1715			else
1716				total_free_meta += found->disk_total -
1717					found->disk_used;
1718		}
1719
1720		total_used += found->disk_used;
1721	}
 
1722
1723	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1724	buf->f_blocks >>= bits;
1725	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1726
1727	/* Account global block reserve as used, it's in logical size already */
1728	spin_lock(&block_rsv->lock);
1729	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1730	if (buf->f_bfree >= block_rsv->size >> bits)
1731		buf->f_bfree -= block_rsv->size >> bits;
1732	else
1733		buf->f_bfree = 0;
1734	spin_unlock(&block_rsv->lock);
1735
1736	buf->f_bavail = div_u64(total_free_data, factor);
1737	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1738	if (ret)
1739		return ret;
1740	buf->f_bavail += div_u64(total_free_data, factor);
 
1741	buf->f_bavail = buf->f_bavail >> bits;
1742
1743	/*
1744	 * We calculate the remaining metadata space minus global reserve. If
1745	 * this is (supposedly) smaller than zero, there's no space. But this
1746	 * does not hold in practice, the exhausted state happens where's still
1747	 * some positive delta. So we apply some guesswork and compare the
1748	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1749	 *
1750	 * We probably cannot calculate the exact threshold value because this
1751	 * depends on the internal reservations requested by various
1752	 * operations, so some operations that consume a few metadata will
1753	 * succeed even if the Avail is zero. But this is better than the other
1754	 * way around.
1755	 */
1756	thresh = SZ_4M;
1757
1758	/*
1759	 * We only want to claim there's no available space if we can no longer
1760	 * allocate chunks for our metadata profile and our global reserve will
1761	 * not fit in the free metadata space.  If we aren't ->full then we
1762	 * still can allocate chunks and thus are fine using the currently
1763	 * calculated f_bavail.
1764	 */
1765	if (!mixed && block_rsv->space_info->full &&
1766	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1767		buf->f_bavail = 0;
1768
1769	buf->f_type = BTRFS_SUPER_MAGIC;
1770	buf->f_bsize = dentry->d_sb->s_blocksize;
1771	buf->f_namelen = BTRFS_NAME_LEN;
1772
1773	/* We treat it as constant endianness (it doesn't matter _which_)
1774	   because we want the fsid to come out the same whether mounted
1775	   on a big-endian or little-endian host */
1776	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1777	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1778	/* Mask in the root object ID too, to disambiguate subvols */
1779	buf->f_fsid.val[0] ^=
1780		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
1781	buf->f_fsid.val[1] ^=
1782		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
1783
1784	return 0;
1785}
1786
1787static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1788{
1789	struct btrfs_fs_info *p = fc->s_fs_info;
1790	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1791
1792	return fs_info->fs_devices == p->fs_devices;
1793}
1794
1795static int btrfs_get_tree_super(struct fs_context *fc)
1796{
1797	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1798	struct btrfs_fs_context *ctx = fc->fs_private;
1799	struct btrfs_fs_devices *fs_devices = NULL;
1800	struct block_device *bdev;
1801	struct btrfs_device *device;
1802	struct super_block *sb;
1803	blk_mode_t mode = btrfs_open_mode(fc);
1804	int ret;
1805
1806	btrfs_ctx_to_info(fs_info, ctx);
1807	mutex_lock(&uuid_mutex);
1808
1809	/*
1810	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1811	 * either a valid device or an error.
1812	 */
1813	device = btrfs_scan_one_device(fc->source, mode, true);
1814	ASSERT(device != NULL);
1815	if (IS_ERR(device)) {
1816		mutex_unlock(&uuid_mutex);
1817		return PTR_ERR(device);
1818	}
1819
1820	fs_devices = device->fs_devices;
1821	fs_info->fs_devices = fs_devices;
1822
1823	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1824	mutex_unlock(&uuid_mutex);
1825	if (ret)
1826		return ret;
1827
1828	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1829		ret = -EACCES;
1830		goto error;
1831	}
1832
1833	bdev = fs_devices->latest_dev->bdev;
1834
1835	/*
1836	 * From now on the error handling is not straightforward.
1837	 *
1838	 * If successful, this will transfer the fs_info into the super block,
1839	 * and fc->s_fs_info will be NULL.  However if there's an existing
1840	 * super, we'll still have fc->s_fs_info populated.  If we error
1841	 * completely out it'll be cleaned up when we drop the fs_context,
1842	 * otherwise it's tied to the lifetime of the super_block.
1843	 */
1844	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1845	if (IS_ERR(sb)) {
1846		ret = PTR_ERR(sb);
1847		goto error;
1848	}
1849
1850	set_device_specific_options(fs_info);
1851
1852	if (sb->s_root) {
1853		btrfs_close_devices(fs_devices);
1854		if ((fc->sb_flags ^ sb->s_flags) & SB_RDONLY)
1855			ret = -EBUSY;
1856	} else {
1857		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1858		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1859		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1860		ret = btrfs_fill_super(sb, fs_devices, NULL);
1861	}
1862
1863	if (ret) {
1864		deactivate_locked_super(sb);
1865		return ret;
1866	}
1867
1868	btrfs_clear_oneshot_options(fs_info);
1869
1870	fc->root = dget(sb->s_root);
1871	return 0;
1872
1873error:
1874	btrfs_close_devices(fs_devices);
1875	return ret;
1876}
1877
1878/*
1879 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1880 * with different ro/rw options") the following works:
1881 *
1882 *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1883 *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1884 *
1885 * which looks nice and innocent but is actually pretty intricate and deserves
1886 * a long comment.
1887 *
1888 * On another filesystem a subvolume mount is close to something like:
1889 *
1890 *	(iii) # create rw superblock + initial mount
1891 *	      mount -t xfs /dev/sdb /opt/
1892 *
1893 *	      # create ro bind mount
1894 *	      mount --bind -o ro /opt/foo /mnt/foo
1895 *
1896 *	      # unmount initial mount
1897 *	      umount /opt
1898 *
1899 * Of course, there's some special subvolume sauce and there's the fact that the
1900 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1901 * it's very close and will help us understand the issue.
1902 *
1903 * The old mount API didn't cleanly distinguish between a mount being made ro
1904 * and a superblock being made ro.  The only way to change the ro state of
1905 * either object was by passing ms_rdonly. If a new mount was created via
1906 * mount(2) such as:
1907 *
1908 *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1909 *
1910 * the MS_RDONLY flag being specified had two effects:
1911 *
1912 * (1) MNT_READONLY was raised -> the resulting mount got
1913 *     @mnt->mnt_flags |= MNT_READONLY raised.
1914 *
1915 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1916 *     made the superblock ro. Note, how SB_RDONLY has the same value as
1917 *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1918 *
1919 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1920 * subtree mounted ro.
1921 *
1922 * But consider the effect on the old mount API on btrfs subvolume mounting
1923 * which combines the distinct step in (iii) into a single step.
1924 *
1925 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1926 * is issued the superblock is ro and thus even if the mount created for (ii) is
1927 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1928 * to rw for (ii) which it did using an internal remount call.
1929 *
1930 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1931 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1932 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1933 * passed by mount(8) to mount(2).
1934 *
1935 * Enter the new mount API. The new mount API disambiguates making a mount ro
1936 * and making a superblock ro.
1937 *
1938 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1939 *     fsmount() or mount_setattr() this is a pure VFS level change for a
1940 *     specific mount or mount tree that is never seen by the filesystem itself.
1941 *
1942 * (4) To turn a superblock ro the "ro" flag must be used with
1943 *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1944 *     in fc->sb_flags.
1945 *
1946 * This disambiguation has rather positive consequences.  Mounting a subvolume
1947 * ro will not also turn the superblock ro. Only the mount for the subvolume
1948 * will become ro.
1949 *
1950 * So, if the superblock creation request comes from the new mount API the
1951 * caller must have explicitly done:
1952 *
1953 *      fsconfig(FSCONFIG_SET_FLAG, "ro")
1954 *      fsmount/mount_setattr(MOUNT_ATTR_RDONLY)
1955 *
1956 * IOW, at some point the caller must have explicitly turned the whole
1957 * superblock ro and we shouldn't just undo it like we did for the old mount
1958 * API. In any case, it lets us avoid the hack in the new mount API.
1959 *
1960 * Consequently, the remounting hack must only be used for requests originating
1961 * from the old mount API and should be marked for full deprecation so it can be
1962 * turned off in a couple of years.
1963 *
1964 * The new mount API has no reason to support this hack.
1965 */
1966static struct vfsmount *btrfs_reconfigure_for_mount(struct fs_context *fc)
1967{
1968	struct vfsmount *mnt;
1969	int ret;
1970	const bool ro2rw = !(fc->sb_flags & SB_RDONLY);
1971
1972	/*
1973	 * We got an EBUSY because our SB_RDONLY flag didn't match the existing
1974	 * super block, so invert our setting here and retry the mount so we
1975	 * can get our vfsmount.
1976	 */
1977	if (ro2rw)
1978		fc->sb_flags |= SB_RDONLY;
1979	else
1980		fc->sb_flags &= ~SB_RDONLY;
1981
1982	mnt = fc_mount(fc);
1983	if (IS_ERR(mnt))
1984		return mnt;
1985
1986	if (!fc->oldapi || !ro2rw)
1987		return mnt;
1988
1989	/* We need to convert to rw, call reconfigure. */
1990	fc->sb_flags &= ~SB_RDONLY;
1991	down_write(&mnt->mnt_sb->s_umount);
1992	ret = btrfs_reconfigure(fc);
1993	up_write(&mnt->mnt_sb->s_umount);
1994	if (ret) {
1995		mntput(mnt);
1996		return ERR_PTR(ret);
1997	}
1998	return mnt;
1999}
2000
2001static int btrfs_get_tree_subvol(struct fs_context *fc)
2002{
2003	struct btrfs_fs_info *fs_info = NULL;
2004	struct btrfs_fs_context *ctx = fc->fs_private;
2005	struct fs_context *dup_fc;
2006	struct dentry *dentry;
2007	struct vfsmount *mnt;
2008
2009	/*
2010	 * Setup a dummy root and fs_info for test/set super.  This is because
2011	 * we don't actually fill this stuff out until open_ctree, but we need
2012	 * then open_ctree will properly initialize the file system specific
2013	 * settings later.  btrfs_init_fs_info initializes the static elements
2014	 * of the fs_info (locks and such) to make cleanup easier if we find a
2015	 * superblock with our given fs_devices later on at sget() time.
2016	 */
2017	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2018	if (!fs_info)
2019		return -ENOMEM;
2020
2021	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2022	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2023	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2024		btrfs_free_fs_info(fs_info);
2025		return -ENOMEM;
2026	}
2027	btrfs_init_fs_info(fs_info);
2028
2029	dup_fc = vfs_dup_fs_context(fc);
2030	if (IS_ERR(dup_fc)) {
2031		btrfs_free_fs_info(fs_info);
2032		return PTR_ERR(dup_fc);
2033	}
2034
2035	/*
2036	 * When we do the sget_fc this gets transferred to the sb, so we only
2037	 * need to set it on the dup_fc as this is what creates the super block.
2038	 */
2039	dup_fc->s_fs_info = fs_info;
2040
2041	/*
2042	 * We'll do the security settings in our btrfs_get_tree_super() mount
2043	 * loop, they were duplicated into dup_fc, we can drop the originals
2044	 * here.
2045	 */
2046	security_free_mnt_opts(&fc->security);
2047	fc->security = NULL;
2048
2049	mnt = fc_mount(dup_fc);
2050	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY)
2051		mnt = btrfs_reconfigure_for_mount(dup_fc);
2052	put_fs_context(dup_fc);
2053	if (IS_ERR(mnt))
2054		return PTR_ERR(mnt);
2055
2056	/*
2057	 * This free's ->subvol_name, because if it isn't set we have to
2058	 * allocate a buffer to hold the subvol_name, so we just drop our
2059	 * reference to it here.
2060	 */
2061	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2062	ctx->subvol_name = NULL;
2063	if (IS_ERR(dentry))
2064		return PTR_ERR(dentry);
2065
2066	fc->root = dentry;
2067	return 0;
2068}
2069
2070static int btrfs_get_tree(struct fs_context *fc)
2071{
2072	/*
2073	 * Since we use mount_subtree to mount the default/specified subvol, we
2074	 * have to do mounts in two steps.
2075	 *
2076	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2077	 * wrapper around fc_mount() to call back into here again, and this time
2078	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2079	 * everything to open the devices and file system.  Then we return back
2080	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2081	 * from there we can do our mount_subvol() call, which will lookup
2082	 * whichever subvol we're mounting and setup this fc with the
2083	 * appropriate dentry for the subvol.
2084	 */
2085	if (fc->s_fs_info)
2086		return btrfs_get_tree_super(fc);
2087	return btrfs_get_tree_subvol(fc);
2088}
2089
2090static void btrfs_kill_super(struct super_block *sb)
2091{
2092	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2093	kill_anon_super(sb);
2094	btrfs_free_fs_info(fs_info);
2095}
2096
2097static void btrfs_free_fs_context(struct fs_context *fc)
2098{
2099	struct btrfs_fs_context *ctx = fc->fs_private;
2100	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2101
2102	if (fs_info)
2103		btrfs_free_fs_info(fs_info);
2104
2105	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2106		kfree(ctx->subvol_name);
2107		kfree(ctx);
2108	}
2109}
2110
2111static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2112{
2113	struct btrfs_fs_context *ctx = src_fc->fs_private;
2114
2115	/*
2116	 * Give a ref to our ctx to this dup, as we want to keep it around for
2117	 * our original fc so we can have the subvolume name or objectid.
2118	 *
2119	 * We unset ->source in the original fc because the dup needs it for
2120	 * mounting, and then once we free the dup it'll free ->source, so we
2121	 * need to make sure we're only pointing to it in one fc.
2122	 */
2123	refcount_inc(&ctx->refs);
2124	fc->fs_private = ctx;
2125	fc->source = src_fc->source;
2126	src_fc->source = NULL;
2127	return 0;
2128}
2129
2130static const struct fs_context_operations btrfs_fs_context_ops = {
2131	.parse_param	= btrfs_parse_param,
2132	.reconfigure	= btrfs_reconfigure,
2133	.get_tree	= btrfs_get_tree,
2134	.dup		= btrfs_dup_fs_context,
2135	.free		= btrfs_free_fs_context,
2136};
2137
2138static int btrfs_init_fs_context(struct fs_context *fc)
2139{
2140	struct btrfs_fs_context *ctx;
2141
2142	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2143	if (!ctx)
2144		return -ENOMEM;
2145
2146	refcount_set(&ctx->refs, 1);
2147	fc->fs_private = ctx;
2148	fc->ops = &btrfs_fs_context_ops;
2149
2150	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2151		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2152	} else {
2153		ctx->thread_pool_size =
2154			min_t(unsigned long, num_online_cpus() + 2, 8);
2155		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2156		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2157	}
2158
2159#ifdef CONFIG_BTRFS_FS_POSIX_ACL
2160	fc->sb_flags |= SB_POSIXACL;
2161#endif
2162	fc->sb_flags |= SB_I_VERSION;
2163
2164	return 0;
2165}
2166
2167static struct file_system_type btrfs_fs_type = {
2168	.owner			= THIS_MODULE,
2169	.name			= "btrfs",
2170	.init_fs_context	= btrfs_init_fs_context,
2171	.parameters		= btrfs_fs_parameters,
2172	.kill_sb		= btrfs_kill_super,
2173	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2174 };
2175
2176MODULE_ALIAS_FS("btrfs");
2177
2178static int btrfs_control_open(struct inode *inode, struct file *file)
2179{
2180	/*
2181	 * The control file's private_data is used to hold the
2182	 * transaction when it is started and is used to keep
2183	 * track of whether a transaction is already in progress.
2184	 */
2185	file->private_data = NULL;
2186	return 0;
2187}
2188
2189/*
2190 * Used by /dev/btrfs-control for devices ioctls.
2191 */
2192static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2193				unsigned long arg)
2194{
2195	struct btrfs_ioctl_vol_args *vol;
2196	struct btrfs_device *device = NULL;
2197	dev_t devt = 0;
2198	int ret = -ENOTTY;
2199
2200	if (!capable(CAP_SYS_ADMIN))
2201		return -EPERM;
2202
2203	vol = memdup_user((void __user *)arg, sizeof(*vol));
2204	if (IS_ERR(vol))
2205		return PTR_ERR(vol);
2206	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2207
2208	switch (cmd) {
2209	case BTRFS_IOC_SCAN_DEV:
2210		mutex_lock(&uuid_mutex);
2211		/*
2212		 * Scanning outside of mount can return NULL which would turn
2213		 * into 0 error code.
2214		 */
2215		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2216		ret = PTR_ERR_OR_ZERO(device);
2217		mutex_unlock(&uuid_mutex);
2218		break;
2219	case BTRFS_IOC_FORGET_DEV:
2220		if (vol->name[0] != 0) {
2221			ret = lookup_bdev(vol->name, &devt);
2222			if (ret)
2223				break;
2224		}
2225		ret = btrfs_forget_devices(devt);
2226		break;
2227	case BTRFS_IOC_DEVICES_READY:
2228		mutex_lock(&uuid_mutex);
2229		/*
2230		 * Scanning outside of mount can return NULL which would turn
2231		 * into 0 error code.
2232		 */
2233		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2234		if (IS_ERR_OR_NULL(device)) {
2235			mutex_unlock(&uuid_mutex);
2236			ret = PTR_ERR(device);
2237			break;
2238		}
2239		ret = !(device->fs_devices->num_devices ==
2240			device->fs_devices->total_devices);
2241		mutex_unlock(&uuid_mutex);
2242		break;
2243	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2244		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2245		break;
2246	}
2247
2248	kfree(vol);
2249	return ret;
2250}
2251
2252static int btrfs_freeze(struct super_block *sb)
2253{
2254	struct btrfs_trans_handle *trans;
2255	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2256	struct btrfs_root *root = fs_info->tree_root;
2257
2258	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2259	/*
2260	 * We don't need a barrier here, we'll wait for any transaction that
2261	 * could be in progress on other threads (and do delayed iputs that
2262	 * we want to avoid on a frozen filesystem), or do the commit
2263	 * ourselves.
2264	 */
2265	trans = btrfs_attach_transaction_barrier(root);
2266	if (IS_ERR(trans)) {
2267		/* no transaction, don't bother */
2268		if (PTR_ERR(trans) == -ENOENT)
2269			return 0;
2270		return PTR_ERR(trans);
2271	}
2272	return btrfs_commit_transaction(trans);
2273}
2274
2275static int check_dev_super(struct btrfs_device *dev)
2276{
2277	struct btrfs_fs_info *fs_info = dev->fs_info;
2278	struct btrfs_super_block *sb;
2279	u64 last_trans;
2280	u16 csum_type;
2281	int ret = 0;
2282
2283	/* This should be called with fs still frozen. */
2284	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2285
2286	/* Missing dev, no need to check. */
2287	if (!dev->bdev)
2288		return 0;
2289
2290	/* Only need to check the primary super block. */
2291	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2292	if (IS_ERR(sb))
2293		return PTR_ERR(sb);
2294
2295	/* Verify the checksum. */
2296	csum_type = btrfs_super_csum_type(sb);
2297	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2298		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2299			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2300		ret = -EUCLEAN;
2301		goto out;
2302	}
2303
2304	if (btrfs_check_super_csum(fs_info, sb)) {
2305		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2306		ret = -EUCLEAN;
2307		goto out;
2308	}
2309
2310	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2311	ret = btrfs_validate_super(fs_info, sb, 0);
2312	if (ret < 0)
2313		goto out;
2314
2315	last_trans = btrfs_get_last_trans_committed(fs_info);
2316	if (btrfs_super_generation(sb) != last_trans) {
2317		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2318			  btrfs_super_generation(sb), last_trans);
2319		ret = -EUCLEAN;
2320		goto out;
2321	}
2322out:
2323	btrfs_release_disk_super(sb);
2324	return ret;
2325}
2326
2327static int btrfs_unfreeze(struct super_block *sb)
2328{
2329	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2330	struct btrfs_device *device;
2331	int ret = 0;
2332
2333	/*
2334	 * Make sure the fs is not changed by accident (like hibernation then
2335	 * modified by other OS).
2336	 * If we found anything wrong, we mark the fs error immediately.
2337	 *
2338	 * And since the fs is frozen, no one can modify the fs yet, thus
2339	 * we don't need to hold device_list_mutex.
2340	 */
2341	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2342		ret = check_dev_super(device);
2343		if (ret < 0) {
2344			btrfs_handle_fs_error(fs_info, ret,
2345				"super block on devid %llu got modified unexpectedly",
2346				device->devid);
2347			break;
2348		}
2349	}
2350	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2351
2352	/*
2353	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2354	 * above checks failed. Since the fs is either fine or read-only, we're
2355	 * safe to continue, without causing further damage.
2356	 */
2357	return 0;
2358}
2359
2360static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2361{
2362	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2363
2364	/*
2365	 * There should be always a valid pointer in latest_dev, it may be stale
2366	 * for a short moment in case it's being deleted but still valid until
2367	 * the end of RCU grace period.
2368	 */
2369	rcu_read_lock();
2370	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2371	rcu_read_unlock();
2372
2373	return 0;
2374}
2375
2376static const struct super_operations btrfs_super_ops = {
2377	.drop_inode	= btrfs_drop_inode,
2378	.evict_inode	= btrfs_evict_inode,
2379	.put_super	= btrfs_put_super,
2380	.sync_fs	= btrfs_sync_fs,
2381	.show_options	= btrfs_show_options,
2382	.show_devname	= btrfs_show_devname,
 
2383	.alloc_inode	= btrfs_alloc_inode,
2384	.destroy_inode	= btrfs_destroy_inode,
2385	.free_inode	= btrfs_free_inode,
2386	.statfs		= btrfs_statfs,
 
2387	.freeze_fs	= btrfs_freeze,
2388	.unfreeze_fs	= btrfs_unfreeze,
2389};
2390
2391static const struct file_operations btrfs_ctl_fops = {
2392	.open = btrfs_control_open,
2393	.unlocked_ioctl	 = btrfs_control_ioctl,
2394	.compat_ioctl = compat_ptr_ioctl,
2395	.owner	 = THIS_MODULE,
2396	.llseek = noop_llseek,
2397};
2398
2399static struct miscdevice btrfs_misc = {
2400	.minor		= BTRFS_MINOR,
2401	.name		= "btrfs-control",
2402	.fops		= &btrfs_ctl_fops
2403};
2404
2405MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2406MODULE_ALIAS("devname:btrfs-control");
2407
2408static int __init btrfs_interface_init(void)
2409{
2410	return misc_register(&btrfs_misc);
2411}
2412
2413static __cold void btrfs_interface_exit(void)
2414{
2415	misc_deregister(&btrfs_misc);
 
2416}
2417
2418static int __init btrfs_print_mod_info(void)
2419{
2420	static const char options[] = ""
2421#ifdef CONFIG_BTRFS_DEBUG
2422			", debug=on"
2423#endif
2424#ifdef CONFIG_BTRFS_ASSERT
2425			", assert=on"
2426#endif
2427#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2428			", ref-verify=on"
2429#endif
2430#ifdef CONFIG_BLK_DEV_ZONED
2431			", zoned=yes"
2432#else
2433			", zoned=no"
2434#endif
2435#ifdef CONFIG_FS_VERITY
2436			", fsverity=yes"
2437#else
2438			", fsverity=no"
2439#endif
2440			;
2441	pr_info("Btrfs loaded%s\n", options);
2442	return 0;
2443}
2444
2445static int register_btrfs(void)
2446{
2447	return register_filesystem(&btrfs_fs_type);
2448}
2449
2450static void unregister_btrfs(void)
2451{
2452	unregister_filesystem(&btrfs_fs_type);
2453}
2454
2455/* Helper structure for long init/exit functions. */
2456struct init_sequence {
2457	int (*init_func)(void);
2458	/* Can be NULL if the init_func doesn't need cleanup. */
2459	void (*exit_func)(void);
2460};
2461
2462static const struct init_sequence mod_init_seq[] = {
2463	{
2464		.init_func = btrfs_props_init,
2465		.exit_func = NULL,
2466	}, {
2467		.init_func = btrfs_init_sysfs,
2468		.exit_func = btrfs_exit_sysfs,
2469	}, {
2470		.init_func = btrfs_init_compress,
2471		.exit_func = btrfs_exit_compress,
2472	}, {
2473		.init_func = btrfs_init_cachep,
2474		.exit_func = btrfs_destroy_cachep,
2475	}, {
2476		.init_func = btrfs_transaction_init,
2477		.exit_func = btrfs_transaction_exit,
2478	}, {
2479		.init_func = btrfs_ctree_init,
2480		.exit_func = btrfs_ctree_exit,
2481	}, {
2482		.init_func = btrfs_free_space_init,
2483		.exit_func = btrfs_free_space_exit,
2484	}, {
2485		.init_func = extent_state_init_cachep,
2486		.exit_func = extent_state_free_cachep,
2487	}, {
2488		.init_func = extent_buffer_init_cachep,
2489		.exit_func = extent_buffer_free_cachep,
2490	}, {
2491		.init_func = btrfs_bioset_init,
2492		.exit_func = btrfs_bioset_exit,
2493	}, {
2494		.init_func = extent_map_init,
2495		.exit_func = extent_map_exit,
2496	}, {
2497		.init_func = ordered_data_init,
2498		.exit_func = ordered_data_exit,
2499	}, {
2500		.init_func = btrfs_delayed_inode_init,
2501		.exit_func = btrfs_delayed_inode_exit,
2502	}, {
2503		.init_func = btrfs_auto_defrag_init,
2504		.exit_func = btrfs_auto_defrag_exit,
2505	}, {
2506		.init_func = btrfs_delayed_ref_init,
2507		.exit_func = btrfs_delayed_ref_exit,
2508	}, {
2509		.init_func = btrfs_prelim_ref_init,
2510		.exit_func = btrfs_prelim_ref_exit,
2511	}, {
2512		.init_func = btrfs_interface_init,
2513		.exit_func = btrfs_interface_exit,
2514	}, {
2515		.init_func = btrfs_print_mod_info,
2516		.exit_func = NULL,
2517	}, {
2518		.init_func = btrfs_run_sanity_tests,
2519		.exit_func = NULL,
2520	}, {
2521		.init_func = register_btrfs,
2522		.exit_func = unregister_btrfs,
2523	}
2524};
2525
2526static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2527
2528static __always_inline void btrfs_exit_btrfs_fs(void)
2529{
2530	int i;
2531
2532	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2533		if (!mod_init_result[i])
2534			continue;
2535		if (mod_init_seq[i].exit_func)
2536			mod_init_seq[i].exit_func();
2537		mod_init_result[i] = false;
2538	}
 
 
 
 
 
 
 
 
2539}
2540
2541static void __exit exit_btrfs_fs(void)
2542{
2543	btrfs_exit_btrfs_fs();
 
 
 
 
 
 
2544	btrfs_cleanup_fs_uuids();
 
2545}
2546
2547static int __init init_btrfs_fs(void)
2548{
2549	int ret;
2550	int i;
2551
2552	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2553		ASSERT(!mod_init_result[i]);
2554		ret = mod_init_seq[i].init_func();
2555		if (ret < 0) {
2556			btrfs_exit_btrfs_fs();
2557			return ret;
2558		}
2559		mod_init_result[i] = true;
2560	}
2561	return 0;
2562}
2563
2564late_initcall(init_btrfs_fs);
2565module_exit(exit_btrfs_fs)
2566
2567MODULE_LICENSE("GPL");
2568MODULE_SOFTDEP("pre: crc32c");
2569MODULE_SOFTDEP("pre: xxhash64");
2570MODULE_SOFTDEP("pre: sha256");
2571MODULE_SOFTDEP("pre: blake2b-256");
v3.1
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
  43#include "compat.h"
 
 
 
 
  44#include "delayed-inode.h"
  45#include "ctree.h"
  46#include "disk-io.h"
  47#include "transaction.h"
  48#include "btrfs_inode.h"
  49#include "ioctl.h"
  50#include "print-tree.h"
 
  51#include "xattr.h"
  52#include "volumes.h"
  53#include "version.h"
  54#include "export.h"
  55#include "compression.h"
  56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/btrfs.h>
  59
  60static const struct super_operations btrfs_super_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
  63				      char nbuf[16])
  64{
  65	char *errstr = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66
  67	switch (errno) {
  68	case -EIO:
  69		errstr = "IO failure";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70		break;
  71	case -ENOMEM:
  72		errstr = "Out of memory";
 
 
  73		break;
  74	case -EROFS:
  75		errstr = "Readonly filesystem";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76		break;
  77	default:
  78		if (nbuf) {
  79			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
  80				errstr = nbuf;
 
 
 
 
 
 
 
 
 
 
 
 
 
  81		}
  82		break;
 
 
 
 
 
 
 
 
 
  83	}
  84
  85	return errstr;
  86}
  87
  88static void __save_error_info(struct btrfs_fs_info *fs_info)
 
 
 
 
 
  89{
  90	/*
  91	 * today we only save the error info into ram.  Long term we'll
  92	 * also send it down to the disk
  93	 */
  94	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
  95}
  96
  97/* NOTE:
  98 *	We move write_super stuff at umount in order to avoid deadlock
  99 *	for umount hold all lock.
 100 */
 101static void save_error_info(struct btrfs_fs_info *fs_info)
 102{
 103	__save_error_info(fs_info);
 
 
 
 
 
 104}
 105
 106/* btrfs handle error by forcing the filesystem readonly */
 107static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 108{
 109	struct super_block *sb = fs_info->sb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110
 111	if (sb->s_flags & MS_RDONLY)
 112		return;
 113
 114	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
 115		sb->s_flags |= MS_RDONLY;
 116		printk(KERN_INFO "btrfs is forced readonly\n");
 
 
 117	}
 
 
 118}
 119
 120/*
 121 * __btrfs_std_error decodes expected errors from the caller and
 122 * invokes the approciate error response.
 
 
 
 
 
 
 
 
 123 */
 124void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 125		     unsigned int line, int errno)
 126{
 127	struct super_block *sb = fs_info->sb;
 128	char nbuf[16];
 129	const char *errstr;
 
 
 
 
 
 
 130
 131	/*
 132	 * Special case: if the error is EROFS, and we're already
 133	 * under MS_RDONLY, then it is safe here.
 134	 */
 135	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 136		return;
 137
 138	errstr = btrfs_decode_error(fs_info, errno, nbuf);
 139	printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
 140		sb->s_id, function, line, errstr);
 141	save_error_info(fs_info);
 
 
 142
 143	btrfs_handle_error(fs_info);
 144}
 145
 146static void btrfs_put_super(struct super_block *sb)
 147{
 148	struct btrfs_root *root = btrfs_sb(sb);
 149	int ret;
 150
 151	ret = close_ctree(root);
 152	sb->s_fs_info = NULL;
 153
 154	(void)ret; /* FIXME: need to fix VFS to return error? */
 
 
 
 
 155}
 156
 157enum {
 158	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 159	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 160	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 161	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 162	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 163	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
 164	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
 165	Opt_inode_cache, Opt_err,
 166};
 167
 168static match_table_t tokens = {
 169	{Opt_degraded, "degraded"},
 170	{Opt_subvol, "subvol=%s"},
 171	{Opt_subvolid, "subvolid=%d"},
 172	{Opt_device, "device=%s"},
 173	{Opt_nodatasum, "nodatasum"},
 174	{Opt_nodatacow, "nodatacow"},
 175	{Opt_nobarrier, "nobarrier"},
 176	{Opt_max_inline, "max_inline=%s"},
 177	{Opt_alloc_start, "alloc_start=%s"},
 178	{Opt_thread_pool, "thread_pool=%d"},
 179	{Opt_compress, "compress"},
 180	{Opt_compress_type, "compress=%s"},
 181	{Opt_compress_force, "compress-force"},
 182	{Opt_compress_force_type, "compress-force=%s"},
 183	{Opt_ssd, "ssd"},
 184	{Opt_ssd_spread, "ssd_spread"},
 185	{Opt_nossd, "nossd"},
 186	{Opt_noacl, "noacl"},
 187	{Opt_notreelog, "notreelog"},
 188	{Opt_flushoncommit, "flushoncommit"},
 189	{Opt_ratio, "metadata_ratio=%d"},
 190	{Opt_discard, "discard"},
 191	{Opt_space_cache, "space_cache"},
 192	{Opt_clear_cache, "clear_cache"},
 193	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 194	{Opt_enospc_debug, "enospc_debug"},
 195	{Opt_subvolrootid, "subvolrootid=%d"},
 196	{Opt_defrag, "autodefrag"},
 197	{Opt_inode_cache, "inode_cache"},
 198	{Opt_err, NULL},
 199};
 200
 201/*
 202 * Regular mount options parser.  Everything that is needed only when
 203 * reading in a new superblock is parsed here.
 204 */
 205int btrfs_parse_options(struct btrfs_root *root, char *options)
 206{
 207	struct btrfs_fs_info *info = root->fs_info;
 208	substring_t args[MAX_OPT_ARGS];
 209	char *p, *num, *orig;
 210	int intarg;
 211	int ret = 0;
 212	char *compress_type;
 213	bool compress_force = false;
 214
 215	if (!options)
 216		return 0;
 217
 218	/*
 219	 * strsep changes the string, duplicate it because parse_options
 220	 * gets called twice
 
 
 
 
 
 221	 */
 222	options = kstrdup(options, GFP_NOFS);
 223	if (!options)
 224		return -ENOMEM;
 
 
 
 
 225
 226	orig = options;
 
 
 
 
 
 
 
 
 
 
 
 
 227
 228	while ((p = strsep(&options, ",")) != NULL) {
 229		int token;
 230		if (!*p)
 231			continue;
 
 232
 233		token = match_token(p, tokens, args);
 234		switch (token) {
 235		case Opt_degraded:
 236			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
 237			btrfs_set_opt(info->mount_opt, DEGRADED);
 238			break;
 239		case Opt_subvol:
 240		case Opt_subvolid:
 241		case Opt_subvolrootid:
 242		case Opt_device:
 243			/*
 244			 * These are parsed by btrfs_parse_early_options
 245			 * and can be happily ignored here.
 246			 */
 247			break;
 248		case Opt_nodatasum:
 249			printk(KERN_INFO "btrfs: setting nodatasum\n");
 250			btrfs_set_opt(info->mount_opt, NODATASUM);
 251			break;
 252		case Opt_nodatacow:
 253			printk(KERN_INFO "btrfs: setting nodatacow\n");
 254			btrfs_set_opt(info->mount_opt, NODATACOW);
 255			btrfs_set_opt(info->mount_opt, NODATASUM);
 256			break;
 257		case Opt_compress_force:
 258		case Opt_compress_force_type:
 259			compress_force = true;
 260		case Opt_compress:
 261		case Opt_compress_type:
 262			if (token == Opt_compress ||
 263			    token == Opt_compress_force ||
 264			    strcmp(args[0].from, "zlib") == 0) {
 265				compress_type = "zlib";
 266				info->compress_type = BTRFS_COMPRESS_ZLIB;
 267			} else if (strcmp(args[0].from, "lzo") == 0) {
 268				compress_type = "lzo";
 269				info->compress_type = BTRFS_COMPRESS_LZO;
 270			} else {
 271				ret = -EINVAL;
 272				goto out;
 273			}
 274
 275			btrfs_set_opt(info->mount_opt, COMPRESS);
 276			if (compress_force) {
 277				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 278				pr_info("btrfs: force %s compression\n",
 279					compress_type);
 280			} else
 281				pr_info("btrfs: use %s compression\n",
 282					compress_type);
 283			break;
 284		case Opt_ssd:
 285			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
 286			btrfs_set_opt(info->mount_opt, SSD);
 287			break;
 288		case Opt_ssd_spread:
 289			printk(KERN_INFO "btrfs: use spread ssd "
 290			       "allocation scheme\n");
 291			btrfs_set_opt(info->mount_opt, SSD);
 292			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
 293			break;
 294		case Opt_nossd:
 295			printk(KERN_INFO "btrfs: not using ssd allocation "
 296			       "scheme\n");
 297			btrfs_set_opt(info->mount_opt, NOSSD);
 298			btrfs_clear_opt(info->mount_opt, SSD);
 299			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
 300			break;
 301		case Opt_nobarrier:
 302			printk(KERN_INFO "btrfs: turning off barriers\n");
 303			btrfs_set_opt(info->mount_opt, NOBARRIER);
 304			break;
 305		case Opt_thread_pool:
 306			intarg = 0;
 307			match_int(&args[0], &intarg);
 308			if (intarg) {
 309				info->thread_pool_size = intarg;
 310				printk(KERN_INFO "btrfs: thread pool %d\n",
 311				       info->thread_pool_size);
 312			}
 313			break;
 314		case Opt_max_inline:
 315			num = match_strdup(&args[0]);
 316			if (num) {
 317				info->max_inline = memparse(num, NULL);
 318				kfree(num);
 319
 320				if (info->max_inline) {
 321					info->max_inline = max_t(u64,
 322						info->max_inline,
 323						root->sectorsize);
 324				}
 325				printk(KERN_INFO "btrfs: max_inline at %llu\n",
 326					(unsigned long long)info->max_inline);
 327			}
 328			break;
 329		case Opt_alloc_start:
 330			num = match_strdup(&args[0]);
 331			if (num) {
 332				info->alloc_start = memparse(num, NULL);
 333				kfree(num);
 334				printk(KERN_INFO
 335					"btrfs: allocations start at %llu\n",
 336					(unsigned long long)info->alloc_start);
 337			}
 338			break;
 339		case Opt_noacl:
 340			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
 341			break;
 342		case Opt_notreelog:
 343			printk(KERN_INFO "btrfs: disabling tree log\n");
 344			btrfs_set_opt(info->mount_opt, NOTREELOG);
 345			break;
 346		case Opt_flushoncommit:
 347			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
 348			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
 349			break;
 350		case Opt_ratio:
 351			intarg = 0;
 352			match_int(&args[0], &intarg);
 353			if (intarg) {
 354				info->metadata_ratio = intarg;
 355				printk(KERN_INFO "btrfs: metadata ratio %d\n",
 356				       info->metadata_ratio);
 357			}
 358			break;
 359		case Opt_discard:
 360			btrfs_set_opt(info->mount_opt, DISCARD);
 361			break;
 362		case Opt_space_cache:
 363			printk(KERN_INFO "btrfs: enabling disk space caching\n");
 364			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 365			break;
 366		case Opt_inode_cache:
 367			printk(KERN_INFO "btrfs: enabling inode map caching\n");
 368			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
 369			break;
 370		case Opt_clear_cache:
 371			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
 372			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
 373			break;
 374		case Opt_user_subvol_rm_allowed:
 375			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 376			break;
 377		case Opt_enospc_debug:
 378			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 379			break;
 380		case Opt_defrag:
 381			printk(KERN_INFO "btrfs: enabling auto defrag");
 382			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
 383			break;
 384		case Opt_err:
 385			printk(KERN_INFO "btrfs: unrecognized mount option "
 386			       "'%s'\n", p);
 387			ret = -EINVAL;
 388			goto out;
 389		default:
 390			break;
 391		}
 392	}
 393out:
 394	kfree(orig);
 395	return ret;
 396}
 397
 398/*
 399 * Parse mount options that are required early in the mount process.
 400 *
 401 * All other options will be parsed on much later in the mount process and
 402 * only when we need to allocate a new super block.
 403 */
 404static int btrfs_parse_early_options(const char *options, fmode_t flags,
 405		void *holder, char **subvol_name, u64 *subvol_objectid,
 406		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
 407{
 408	substring_t args[MAX_OPT_ARGS];
 409	char *opts, *orig, *p;
 410	int error = 0;
 411	int intarg;
 412
 413	if (!options)
 414		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415
 416	/*
 417	 * strsep changes the string, duplicate it because parse_options
 418	 * gets called twice
 419	 */
 420	opts = kstrdup(options, GFP_KERNEL);
 421	if (!opts)
 422		return -ENOMEM;
 423	orig = opts;
 
 
 
 
 
 
 
 
 424
 425	while ((p = strsep(&opts, ",")) != NULL) {
 426		int token;
 427		if (!*p)
 428			continue;
 429
 430		token = match_token(p, tokens, args);
 431		switch (token) {
 432		case Opt_subvol:
 433			*subvol_name = match_strdup(&args[0]);
 434			break;
 435		case Opt_subvolid:
 436			intarg = 0;
 437			error = match_int(&args[0], &intarg);
 438			if (!error) {
 439				/* we want the original fs_tree */
 440				if (!intarg)
 441					*subvol_objectid =
 442						BTRFS_FS_TREE_OBJECTID;
 443				else
 444					*subvol_objectid = intarg;
 445			}
 446			break;
 447		case Opt_subvolrootid:
 448			intarg = 0;
 449			error = match_int(&args[0], &intarg);
 450			if (!error) {
 451				/* we want the original fs_tree */
 452				if (!intarg)
 453					*subvol_rootid =
 454						BTRFS_FS_TREE_OBJECTID;
 455				else
 456					*subvol_rootid = intarg;
 457			}
 458			break;
 459		case Opt_device:
 460			error = btrfs_scan_one_device(match_strdup(&args[0]),
 461					flags, holder, fs_devices);
 462			if (error)
 463				goto out_free_opts;
 464			break;
 465		default:
 466			break;
 467		}
 
 
 468	}
 469
 470 out_free_opts:
 471	kfree(orig);
 472 out:
 473	/*
 474	 * If no subvolume name is specified we use the default one.  Allocate
 475	 * a copy of the string "." here so that code later in the
 476	 * mount path doesn't care if it's the default volume or another one.
 477	 */
 478	if (!*subvol_name) {
 479		*subvol_name = kstrdup(".", GFP_KERNEL);
 480		if (!*subvol_name)
 481			return -ENOMEM;
 482	}
 483	return error;
 
 
 
 
 
 
 484}
 485
 486static struct dentry *get_default_root(struct super_block *sb,
 487				       u64 subvol_objectid)
 488{
 489	struct btrfs_root *root = sb->s_fs_info;
 490	struct btrfs_root *new_root;
 491	struct btrfs_dir_item *di;
 492	struct btrfs_path *path;
 493	struct btrfs_key location;
 494	struct inode *inode;
 495	struct dentry *dentry;
 496	u64 dir_id;
 497	int new = 0;
 498
 499	/*
 500	 * We have a specific subvol we want to mount, just setup location and
 501	 * go look up the root.
 502	 */
 503	if (subvol_objectid) {
 504		location.objectid = subvol_objectid;
 505		location.type = BTRFS_ROOT_ITEM_KEY;
 506		location.offset = (u64)-1;
 507		goto find_root;
 508	}
 509
 510	path = btrfs_alloc_path();
 511	if (!path)
 512		return ERR_PTR(-ENOMEM);
 513	path->leave_spinning = 1;
 514
 515	/*
 516	 * Find the "default" dir item which points to the root item that we
 517	 * will mount by default if we haven't been given a specific subvolume
 518	 * to mount.
 519	 */
 520	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
 521	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
 522	if (IS_ERR(di)) {
 523		btrfs_free_path(path);
 524		return ERR_CAST(di);
 525	}
 526	if (!di) {
 527		/*
 528		 * Ok the default dir item isn't there.  This is weird since
 529		 * it's always been there, but don't freak out, just try and
 530		 * mount to root most subvolume.
 531		 */
 532		btrfs_free_path(path);
 533		dir_id = BTRFS_FIRST_FREE_OBJECTID;
 534		new_root = root->fs_info->fs_root;
 535		goto setup_root;
 536	}
 537
 538	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 539	btrfs_free_path(path);
 540
 541find_root:
 542	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
 543	if (IS_ERR(new_root))
 544		return ERR_CAST(new_root);
 545
 546	if (btrfs_root_refs(&new_root->root_item) == 0)
 547		return ERR_PTR(-ENOENT);
 548
 549	dir_id = btrfs_root_dirid(&new_root->root_item);
 550setup_root:
 551	location.objectid = dir_id;
 552	location.type = BTRFS_INODE_ITEM_KEY;
 553	location.offset = 0;
 554
 555	inode = btrfs_iget(sb, &location, new_root, &new);
 556	if (IS_ERR(inode))
 557		return ERR_CAST(inode);
 558
 559	/*
 560	 * If we're just mounting the root most subvol put the inode and return
 561	 * a reference to the dentry.  We will have already gotten a reference
 562	 * to the inode in btrfs_fill_super so we're good to go.
 563	 */
 564	if (!new && sb->s_root->d_inode == inode) {
 565		iput(inode);
 566		return dget(sb->s_root);
 567	}
 568
 569	if (new) {
 570		const struct qstr name = { .name = "/", .len = 1 };
 571
 572		/*
 573		 * New inode, we need to make the dentry a sibling of s_root so
 574		 * everything gets cleaned up properly on unmount.
 575		 */
 576		dentry = d_alloc(sb->s_root, &name);
 577		if (!dentry) {
 578			iput(inode);
 579			return ERR_PTR(-ENOMEM);
 580		}
 581		d_splice_alias(inode, dentry);
 582	} else {
 583		/*
 584		 * We found the inode in cache, just find a dentry for it and
 585		 * put the reference to the inode we just got.
 586		 */
 587		dentry = d_find_alias(inode);
 588		iput(inode);
 589	}
 590
 591	return dentry;
 592}
 593
 594static int btrfs_fill_super(struct super_block *sb,
 595			    struct btrfs_fs_devices *fs_devices,
 596			    void *data, int silent)
 597{
 598	struct inode *inode;
 599	struct dentry *root_dentry;
 600	struct btrfs_root *tree_root;
 601	struct btrfs_key key;
 602	int err;
 603
 604	sb->s_maxbytes = MAX_LFS_FILESIZE;
 605	sb->s_magic = BTRFS_SUPER_MAGIC;
 606	sb->s_op = &btrfs_super_ops;
 607	sb->s_d_op = &btrfs_dentry_operations;
 608	sb->s_export_op = &btrfs_export_ops;
 
 
 
 609	sb->s_xattr = btrfs_xattr_handlers;
 610	sb->s_time_gran = 1;
 611#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 612	sb->s_flags |= MS_POSIXACL;
 613#endif
 
 
 
 
 614
 615	tree_root = open_ctree(sb, fs_devices, (char *)data);
 
 
 
 
 616
 617	if (IS_ERR(tree_root)) {
 618		printk("btrfs: open_ctree failed\n");
 619		return PTR_ERR(tree_root);
 620	}
 621	sb->s_fs_info = tree_root;
 622
 623	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 624	key.type = BTRFS_INODE_ITEM_KEY;
 625	key.offset = 0;
 626	inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
 627	if (IS_ERR(inode)) {
 628		err = PTR_ERR(inode);
 
 629		goto fail_close;
 630	}
 631
 632	root_dentry = d_alloc_root(inode);
 633	if (!root_dentry) {
 634		iput(inode);
 635		err = -ENOMEM;
 636		goto fail_close;
 637	}
 638
 639	sb->s_root = root_dentry;
 640
 641	save_mount_options(sb, data);
 642	cleancache_init_fs(sb);
 643	return 0;
 644
 645fail_close:
 646	close_ctree(tree_root);
 647	return err;
 648}
 649
 650int btrfs_sync_fs(struct super_block *sb, int wait)
 651{
 652	struct btrfs_trans_handle *trans;
 653	struct btrfs_root *root = btrfs_sb(sb);
 654	int ret;
 655
 656	trace_btrfs_sync_fs(wait);
 657
 658	if (!wait) {
 659		filemap_flush(root->fs_info->btree_inode->i_mapping);
 660		return 0;
 661	}
 662
 663	btrfs_start_delalloc_inodes(root, 0);
 664	btrfs_wait_ordered_extents(root, 0, 0);
 665
 666	trans = btrfs_start_transaction(root, 0);
 667	if (IS_ERR(trans))
 668		return PTR_ERR(trans);
 669	ret = btrfs_commit_transaction(trans, root);
 670	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671}
 672
 673static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
 674{
 675	struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
 676	struct btrfs_fs_info *info = root->fs_info;
 677	char *compress_type;
 
 678
 679	if (btrfs_test_opt(root, DEGRADED))
 680		seq_puts(seq, ",degraded");
 681	if (btrfs_test_opt(root, NODATASUM))
 682		seq_puts(seq, ",nodatasum");
 683	if (btrfs_test_opt(root, NODATACOW))
 684		seq_puts(seq, ",nodatacow");
 685	if (btrfs_test_opt(root, NOBARRIER))
 686		seq_puts(seq, ",nobarrier");
 687	if (info->max_inline != 8192 * 1024)
 688		seq_printf(seq, ",max_inline=%llu",
 689			   (unsigned long long)info->max_inline);
 690	if (info->alloc_start != 0)
 691		seq_printf(seq, ",alloc_start=%llu",
 692			   (unsigned long long)info->alloc_start);
 693	if (info->thread_pool_size !=  min_t(unsigned long,
 694					     num_online_cpus() + 2, 8))
 695		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
 696	if (btrfs_test_opt(root, COMPRESS)) {
 697		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
 698			compress_type = "zlib";
 699		else
 700			compress_type = "lzo";
 701		if (btrfs_test_opt(root, FORCE_COMPRESS))
 702			seq_printf(seq, ",compress-force=%s", compress_type);
 703		else
 704			seq_printf(seq, ",compress=%s", compress_type);
 
 
 705	}
 706	if (btrfs_test_opt(root, NOSSD))
 707		seq_puts(seq, ",nossd");
 708	if (btrfs_test_opt(root, SSD_SPREAD))
 709		seq_puts(seq, ",ssd_spread");
 710	else if (btrfs_test_opt(root, SSD))
 711		seq_puts(seq, ",ssd");
 712	if (btrfs_test_opt(root, NOTREELOG))
 713		seq_puts(seq, ",notreelog");
 714	if (btrfs_test_opt(root, FLUSHONCOMMIT))
 
 
 
 
 
 
 
 
 715		seq_puts(seq, ",flushoncommit");
 716	if (btrfs_test_opt(root, DISCARD))
 717		seq_puts(seq, ",discard");
 718	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
 
 
 719		seq_puts(seq, ",noacl");
 720	if (btrfs_test_opt(root, SPACE_CACHE))
 721		seq_puts(seq, ",space_cache");
 722	if (btrfs_test_opt(root, CLEAR_CACHE))
 
 
 
 
 
 
 723		seq_puts(seq, ",clear_cache");
 724	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
 725		seq_puts(seq, ",user_subvol_rm_allowed");
 726	if (btrfs_test_opt(root, ENOSPC_DEBUG))
 727		seq_puts(seq, ",enospc_debug");
 728	if (btrfs_test_opt(root, AUTO_DEFRAG))
 729		seq_puts(seq, ",autodefrag");
 730	if (btrfs_test_opt(root, INODE_MAP_CACHE))
 731		seq_puts(seq, ",inode_cache");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732	return 0;
 733}
 734
 735static int btrfs_test_super(struct super_block *s, void *data)
 
 
 
 
 
 
 
 
 
 
 
 736{
 737	struct btrfs_root *test_root = data;
 738	struct btrfs_root *root = btrfs_sb(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739
 740	/*
 741	 * If this super block is going away, return false as it
 742	 * can't match as an existing super block.
 743	 */
 744	if (!atomic_read(&s->s_active))
 745		return 0;
 746	return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
 747}
 748
 749static int btrfs_set_super(struct super_block *s, void *data)
 
 750{
 751	s->s_fs_info = data;
 
 
 
 
 
 
 752
 753	return set_anon_super(s, data);
 
 
 
 
 
 
 
 754}
 755
 
 
 
 
 
 
 
 
 
 
 
 
 
 756
 757/*
 758 * Find a superblock for the given device / mount point.
 759 *
 760 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
 761 *	  for multiple device setup.  Make sure to keep it in sync.
 762 */
 763static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
 764		const char *device_name, void *data)
 765{
 766	struct block_device *bdev = NULL;
 767	struct super_block *s;
 768	struct dentry *root;
 769	struct btrfs_fs_devices *fs_devices = NULL;
 770	struct btrfs_root *tree_root = NULL;
 771	struct btrfs_fs_info *fs_info = NULL;
 772	fmode_t mode = FMODE_READ;
 773	char *subvol_name = NULL;
 774	u64 subvol_objectid = 0;
 775	u64 subvol_rootid = 0;
 776	int error = 0;
 777
 778	if (!(flags & MS_RDONLY))
 779		mode |= FMODE_WRITE;
 780
 781	error = btrfs_parse_early_options(data, mode, fs_type,
 782					  &subvol_name, &subvol_objectid,
 783					  &subvol_rootid, &fs_devices);
 784	if (error)
 785		return ERR_PTR(error);
 786
 787	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
 788	if (error)
 789		goto error_free_subvol_name;
 790
 791	error = btrfs_open_devices(fs_devices, mode, fs_type);
 792	if (error)
 793		goto error_free_subvol_name;
 794
 795	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
 796		error = -EACCES;
 797		goto error_close_devices;
 798	}
 799
 800	/*
 801	 * Setup a dummy root and fs_info for test/set super.  This is because
 802	 * we don't actually fill this stuff out until open_ctree, but we need
 803	 * it for searching for existing supers, so this lets us do that and
 804	 * then open_ctree will properly initialize everything later.
 805	 */
 806	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
 807	tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
 808	if (!fs_info || !tree_root) {
 809		error = -ENOMEM;
 810		goto error_close_devices;
 811	}
 812	fs_info->tree_root = tree_root;
 813	fs_info->fs_devices = fs_devices;
 814	tree_root->fs_info = fs_info;
 815
 816	bdev = fs_devices->latest_bdev;
 817	s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
 818	if (IS_ERR(s))
 819		goto error_s;
 
 
 
 
 
 
 
 
 820
 821	if (s->s_root) {
 822		if ((flags ^ s->s_flags) & MS_RDONLY) {
 823			deactivate_locked_super(s);
 824			error = -EBUSY;
 825			goto error_close_devices;
 826		}
 827
 828		btrfs_close_devices(fs_devices);
 829		kfree(fs_info);
 830		kfree(tree_root);
 831	} else {
 832		char b[BDEVNAME_SIZE];
 833
 834		s->s_flags = flags | MS_NOSEC;
 835		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 836		error = btrfs_fill_super(s, fs_devices, data,
 837					 flags & MS_SILENT ? 1 : 0);
 838		if (error) {
 839			deactivate_locked_super(s);
 840			goto error_free_subvol_name;
 841		}
 842
 843		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
 844		s->s_flags |= MS_ACTIVE;
 
 
 845	}
 846
 847	/* if they gave us a subvolume name bind mount into that */
 848	if (strcmp(subvol_name, ".")) {
 849		struct dentry *new_root;
 
 
 850
 851		root = get_default_root(s, subvol_rootid);
 852		if (IS_ERR(root)) {
 853			error = PTR_ERR(root);
 854			deactivate_locked_super(s);
 855			goto error_free_subvol_name;
 856		}
 
 
 857
 858		mutex_lock(&root->d_inode->i_mutex);
 859		new_root = lookup_one_len(subvol_name, root,
 860				      strlen(subvol_name));
 861		mutex_unlock(&root->d_inode->i_mutex);
 862
 863		if (IS_ERR(new_root)) {
 864			dput(root);
 865			deactivate_locked_super(s);
 866			error = PTR_ERR(new_root);
 867			goto error_free_subvol_name;
 868		}
 869		if (!new_root->d_inode) {
 870			dput(root);
 871			dput(new_root);
 872			deactivate_locked_super(s);
 873			error = -ENXIO;
 874			goto error_free_subvol_name;
 875		}
 876		dput(root);
 877		root = new_root;
 878	} else {
 879		root = get_default_root(s, subvol_objectid);
 880		if (IS_ERR(root)) {
 881			error = PTR_ERR(root);
 882			deactivate_locked_super(s);
 883			goto error_free_subvol_name;
 884		}
 885	}
 886
 887	kfree(subvol_name);
 888	return root;
 
 
 
 889
 890error_s:
 891	error = PTR_ERR(s);
 892error_close_devices:
 893	btrfs_close_devices(fs_devices);
 894	kfree(fs_info);
 895	kfree(tree_root);
 896error_free_subvol_name:
 897	kfree(subvol_name);
 898	return ERR_PTR(error);
 899}
 900
 901static int btrfs_remount(struct super_block *sb, int *flags, char *data)
 902{
 903	struct btrfs_root *root = btrfs_sb(sb);
 904	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906	ret = btrfs_parse_options(root, data);
 907	if (ret)
 908		return -EINVAL;
 909
 910	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 911		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912
 913	if (*flags & MS_RDONLY) {
 914		sb->s_flags |= MS_RDONLY;
 915
 916		ret =  btrfs_commit_super(root);
 917		WARN_ON(ret);
 918	} else {
 919		if (root->fs_info->fs_devices->rw_devices == 0)
 920			return -EACCES;
 
 
 921
 922		if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
 923			return -EINVAL;
 924
 925		ret = btrfs_cleanup_fs_roots(root->fs_info);
 926		WARN_ON(ret);
 
 927
 928		/* recover relocation */
 929		ret = btrfs_recover_relocation(root);
 930		WARN_ON(ret);
 931
 932		sb->s_flags &= ~MS_RDONLY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933	}
 934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935	return 0;
 
 
 
 
 
 936}
 937
 938/* Used to sort the devices by max_avail(descending sort) */
 939static int btrfs_cmp_device_free_bytes(const void *dev_info1,
 940				       const void *dev_info2)
 941{
 942	if (((struct btrfs_device_info *)dev_info1)->max_avail >
 943	    ((struct btrfs_device_info *)dev_info2)->max_avail)
 
 
 944		return -1;
 945	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
 946		 ((struct btrfs_device_info *)dev_info2)->max_avail)
 947		return 1;
 948	else
 949	return 0;
 950}
 951
 952/*
 953 * sort the devices by max_avail, in which max free extent size of each device
 954 * is stored.(Descending Sort)
 955 */
 956static inline void btrfs_descending_sort_devices(
 957					struct btrfs_device_info *devices,
 958					size_t nr_devices)
 959{
 960	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
 961	     btrfs_cmp_device_free_bytes, NULL);
 962}
 963
 964/*
 965 * The helper to calc the free space on the devices that can be used to store
 966 * file data.
 967 */
 968static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
 
 969{
 970	struct btrfs_fs_info *fs_info = root->fs_info;
 971	struct btrfs_device_info *devices_info;
 972	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 973	struct btrfs_device *device;
 974	u64 skip_space;
 975	u64 type;
 976	u64 avail_space;
 977	u64 used_space;
 978	u64 min_stripe_size;
 979	int min_stripes = 1;
 980	int i = 0, nr_devices;
 981	int ret;
 982
 983	nr_devices = fs_info->fs_devices->rw_devices;
 984	BUG_ON(!nr_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 985
 986	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
 987			       GFP_NOFS);
 988	if (!devices_info)
 989		return -ENOMEM;
 990
 991	/* calc min stripe number for data space alloction */
 992	type = btrfs_get_alloc_profile(root, 1);
 
 
 993	if (type & BTRFS_BLOCK_GROUP_RAID0)
 994		min_stripes = 2;
 995	else if (type & BTRFS_BLOCK_GROUP_RAID1)
 996		min_stripes = 2;
 997	else if (type & BTRFS_BLOCK_GROUP_RAID10)
 998		min_stripes = 4;
 999
1000	if (type & BTRFS_BLOCK_GROUP_DUP)
1001		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1002	else
1003		min_stripe_size = BTRFS_STRIPE_LEN;
1004
1005	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1006		if (!device->in_fs_metadata)
 
 
 
 
1007			continue;
1008
 
 
 
1009		avail_space = device->total_bytes - device->bytes_used;
1010
1011		/* align with stripe_len */
1012		do_div(avail_space, BTRFS_STRIPE_LEN);
1013		avail_space *= BTRFS_STRIPE_LEN;
1014
1015		/*
1016		 * In order to avoid overwritting the superblock on the drive,
1017		 * btrfs starts at an offset of at least 1MB when doing chunk
1018		 * allocation.
1019		 */
1020		skip_space = 1024 * 1024;
1021
1022		/* user can set the offset in fs_info->alloc_start. */
1023		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1024		    device->total_bytes)
1025			skip_space = max(fs_info->alloc_start, skip_space);
1026
1027		/*
1028		 * btrfs can not use the free space in [0, skip_space - 1],
1029		 * we must subtract it from the total. In order to implement
1030		 * it, we account the used space in this range first.
1031		 */
1032		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1033						     &used_space);
1034		if (ret) {
1035			kfree(devices_info);
1036			return ret;
1037		}
1038
1039		/* calc the free space in [0, skip_space - 1] */
1040		skip_space -= used_space;
1041
1042		/*
1043		 * we can use the free space in [0, skip_space - 1], subtract
1044		 * it from the total.
1045		 */
1046		if (avail_space && avail_space >= skip_space)
1047			avail_space -= skip_space;
1048		else
1049			avail_space = 0;
1050
1051		if (avail_space < min_stripe_size)
1052			continue;
1053
1054		devices_info[i].dev = device;
1055		devices_info[i].max_avail = avail_space;
1056
1057		i++;
1058	}
 
1059
1060	nr_devices = i;
1061
1062	btrfs_descending_sort_devices(devices_info, nr_devices);
1063
1064	i = nr_devices - 1;
1065	avail_space = 0;
1066	while (nr_devices >= min_stripes) {
 
 
1067		if (devices_info[i].max_avail >= min_stripe_size) {
1068			int j;
1069			u64 alloc_size;
1070
1071			avail_space += devices_info[i].max_avail * min_stripes;
1072			alloc_size = devices_info[i].max_avail;
1073			for (j = i + 1 - min_stripes; j <= i; j++)
1074				devices_info[j].max_avail -= alloc_size;
1075		}
1076		i--;
1077		nr_devices--;
1078	}
1079
1080	kfree(devices_info);
1081	*free_bytes = avail_space;
1082	return 0;
1083}
1084
 
 
 
 
 
 
 
 
 
 
 
 
 
1085static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1086{
1087	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1088	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1089	struct list_head *head = &root->fs_info->space_info;
1090	struct btrfs_space_info *found;
1091	u64 total_used = 0;
1092	u64 total_free_data = 0;
1093	int bits = dentry->d_sb->s_blocksize_bits;
1094	__be32 *fsid = (__be32 *)root->fs_info->fsid;
 
 
 
1095	int ret;
 
 
1096
1097	/* holding chunk_muext to avoid allocating new chunks */
1098	mutex_lock(&root->fs_info->chunk_mutex);
1099	rcu_read_lock();
1100	list_for_each_entry_rcu(found, head, list) {
1101		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
 
 
1102			total_free_data += found->disk_total - found->disk_used;
1103			total_free_data -=
1104				btrfs_account_ro_block_groups_free_space(found);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105		}
1106
1107		total_used += found->disk_used;
1108	}
1109	rcu_read_unlock();
1110
1111	buf->f_namelen = BTRFS_NAME_LEN;
1112	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1113	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1114	buf->f_bsize = dentry->d_sb->s_blocksize;
1115	buf->f_type = BTRFS_SUPER_MAGIC;
1116	buf->f_bavail = total_free_data;
1117	ret = btrfs_calc_avail_data_space(root, &total_free_data);
1118	if (ret) {
1119		mutex_unlock(&root->fs_info->chunk_mutex);
 
 
 
 
 
 
 
1120		return ret;
1121	}
1122	buf->f_bavail += total_free_data;
1123	buf->f_bavail = buf->f_bavail >> bits;
1124	mutex_unlock(&root->fs_info->chunk_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125
1126	/* We treat it as constant endianness (it doesn't matter _which_)
1127	   because we want the fsid to come out the same whether mounted
1128	   on a big-endian or little-endian host */
1129	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1130	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1131	/* Mask in the root object ID too, to disambiguate subvols */
1132	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1133	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134
1135	return 0;
1136}
1137
1138static struct file_system_type btrfs_fs_type = {
1139	.owner		= THIS_MODULE,
1140	.name		= "btrfs",
1141	.mount		= btrfs_mount,
1142	.kill_sb	= kill_anon_super,
1143	.fs_flags	= FS_REQUIRES_DEV,
1144};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145
1146/*
1147 * used by btrfsctl to scan devices when no FS is mounted
1148 */
1149static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1150				unsigned long arg)
1151{
1152	struct btrfs_ioctl_vol_args *vol;
1153	struct btrfs_fs_devices *fs_devices;
 
1154	int ret = -ENOTTY;
1155
1156	if (!capable(CAP_SYS_ADMIN))
1157		return -EPERM;
1158
1159	vol = memdup_user((void __user *)arg, sizeof(*vol));
1160	if (IS_ERR(vol))
1161		return PTR_ERR(vol);
 
1162
1163	switch (cmd) {
1164	case BTRFS_IOC_SCAN_DEV:
1165		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1166					    &btrfs_fs_type, &fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167		break;
1168	}
1169
1170	kfree(vol);
1171	return ret;
1172}
1173
1174static int btrfs_freeze(struct super_block *sb)
1175{
1176	struct btrfs_root *root = btrfs_sb(sb);
1177	mutex_lock(&root->fs_info->transaction_kthread_mutex);
1178	mutex_lock(&root->fs_info->cleaner_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179	return 0;
1180}
1181
1182static int btrfs_unfreeze(struct super_block *sb)
1183{
1184	struct btrfs_root *root = btrfs_sb(sb);
1185	mutex_unlock(&root->fs_info->cleaner_mutex);
1186	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
 
 
 
 
 
 
 
 
1187	return 0;
1188}
1189
1190static const struct super_operations btrfs_super_ops = {
1191	.drop_inode	= btrfs_drop_inode,
1192	.evict_inode	= btrfs_evict_inode,
1193	.put_super	= btrfs_put_super,
1194	.sync_fs	= btrfs_sync_fs,
1195	.show_options	= btrfs_show_options,
1196	.write_inode	= btrfs_write_inode,
1197	.dirty_inode	= btrfs_dirty_inode,
1198	.alloc_inode	= btrfs_alloc_inode,
1199	.destroy_inode	= btrfs_destroy_inode,
 
1200	.statfs		= btrfs_statfs,
1201	.remount_fs	= btrfs_remount,
1202	.freeze_fs	= btrfs_freeze,
1203	.unfreeze_fs	= btrfs_unfreeze,
1204};
1205
1206static const struct file_operations btrfs_ctl_fops = {
 
1207	.unlocked_ioctl	 = btrfs_control_ioctl,
1208	.compat_ioctl = btrfs_control_ioctl,
1209	.owner	 = THIS_MODULE,
1210	.llseek = noop_llseek,
1211};
1212
1213static struct miscdevice btrfs_misc = {
1214	.minor		= BTRFS_MINOR,
1215	.name		= "btrfs-control",
1216	.fops		= &btrfs_ctl_fops
1217};
1218
1219MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1220MODULE_ALIAS("devname:btrfs-control");
1221
1222static int btrfs_interface_init(void)
1223{
1224	return misc_register(&btrfs_misc);
1225}
1226
1227static void btrfs_interface_exit(void)
1228{
1229	if (misc_deregister(&btrfs_misc) < 0)
1230		printk(KERN_INFO "misc_deregister failed for control device");
1231}
1232
1233static int __init init_btrfs_fs(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234{
1235	int err;
 
 
 
 
 
 
 
 
1236
1237	err = btrfs_init_sysfs();
1238	if (err)
1239		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240
1241	err = btrfs_init_compress();
1242	if (err)
1243		goto free_sysfs;
1244
1245	err = btrfs_init_cachep();
1246	if (err)
1247		goto free_compress;
1248
1249	err = extent_io_init();
1250	if (err)
1251		goto free_cachep;
1252
1253	err = extent_map_init();
1254	if (err)
1255		goto free_extent_io;
1256
1257	err = btrfs_delayed_inode_init();
1258	if (err)
1259		goto free_extent_map;
1260
1261	err = btrfs_interface_init();
1262	if (err)
1263		goto free_delayed_inode;
1264
1265	err = register_filesystem(&btrfs_fs_type);
1266	if (err)
1267		goto unregister_ioctl;
1268
1269	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1270	return 0;
 
1271
1272unregister_ioctl:
1273	btrfs_interface_exit();
1274free_delayed_inode:
1275	btrfs_delayed_inode_exit();
1276free_extent_map:
1277	extent_map_exit();
1278free_extent_io:
1279	extent_io_exit();
1280free_cachep:
1281	btrfs_destroy_cachep();
1282free_compress:
1283	btrfs_exit_compress();
1284free_sysfs:
1285	btrfs_exit_sysfs();
1286	return err;
1287}
1288
1289static void __exit exit_btrfs_fs(void)
1290{
1291	btrfs_destroy_cachep();
1292	btrfs_delayed_inode_exit();
1293	extent_map_exit();
1294	extent_io_exit();
1295	btrfs_interface_exit();
1296	unregister_filesystem(&btrfs_fs_type);
1297	btrfs_exit_sysfs();
1298	btrfs_cleanup_fs_uuids();
1299	btrfs_exit_compress();
1300}
1301
1302module_init(init_btrfs_fs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303module_exit(exit_btrfs_fs)
1304
1305MODULE_LICENSE("GPL");