Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include "e1000.h"
   5#include <linux/ethtool.h>
   6
   7static s32 e1000_wait_autoneg(struct e1000_hw *hw);
   8static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   9					  u16 *data, bool read, bool page_set);
  10static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  11static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  12					  u16 *data, bool read);
  13
  14/* Cable length tables */
  15static const u16 e1000_m88_cable_length_table[] = {
  16	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  17};
  18
  19#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  20		ARRAY_SIZE(e1000_m88_cable_length_table)
  21
  22static const u16 e1000_igp_2_cable_length_table[] = {
  23	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  24	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  25	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  26	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  27	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  28	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  29	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  30	124
  31};
  32
  33#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  34		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  35
  36/**
  37 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  38 *  @hw: pointer to the HW structure
  39 *
  40 *  Read the PHY management control register and check whether a PHY reset
  41 *  is blocked.  If a reset is not blocked return 0, otherwise
  42 *  return E1000_BLK_PHY_RESET (12).
  43 **/
  44s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  45{
  46	u32 manc;
  47
  48	manc = er32(MANC);
  49
  50	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  51}
  52
  53/**
  54 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  55 *  @hw: pointer to the HW structure
  56 *
  57 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  58 *  revision in the hardware structure.
  59 **/
  60s32 e1000e_get_phy_id(struct e1000_hw *hw)
  61{
  62	struct e1000_phy_info *phy = &hw->phy;
  63	s32 ret_val = 0;
  64	u16 phy_id;
  65	u16 retry_count = 0;
  66
  67	if (!phy->ops.read_reg)
  68		return 0;
  69
  70	while (retry_count < 2) {
  71		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  72		if (ret_val)
  73			return ret_val;
  74
  75		phy->id = (u32)(phy_id << 16);
  76		usleep_range(20, 40);
  77		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  78		if (ret_val)
  79			return ret_val;
  80
  81		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  82		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  83
  84		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  85			return 0;
  86
  87		retry_count++;
  88	}
  89
  90	return 0;
  91}
  92
  93/**
  94 *  e1000e_phy_reset_dsp - Reset PHY DSP
  95 *  @hw: pointer to the HW structure
  96 *
  97 *  Reset the digital signal processor.
  98 **/
  99s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 100{
 101	s32 ret_val;
 102
 103	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 104	if (ret_val)
 105		return ret_val;
 106
 107	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 108}
 109
 
 
 
 
 
 
 
 
 
 
 110/**
 111 *  e1000e_read_phy_reg_mdic - Read MDI control register
 112 *  @hw: pointer to the HW structure
 113 *  @offset: register offset to be read
 114 *  @data: pointer to the read data
 115 *
 116 *  Reads the MDI control register in the PHY at offset and stores the
 117 *  information read to data.
 118 **/
 119s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 120{
 
 121	struct e1000_phy_info *phy = &hw->phy;
 122	u32 i, mdic = 0;
 123
 124	if (offset > MAX_PHY_REG_ADDRESS) {
 125		e_dbg("PHY Address %d is out of range\n", offset);
 126		return -E1000_ERR_PARAM;
 127	}
 128
 
 
 129	/* Set up Op-code, Phy Address, and register offset in the MDI
 130	 * Control register.  The MAC will take care of interfacing with the
 131	 * PHY to retrieve the desired data.
 132	 */
 133	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 134		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 135		(E1000_MDIC_OP_READ));
 136
 137	ew32(MDIC, mdic);
 138
 139	/* Poll the ready bit to see if the MDI read completed
 140	 * Increasing the time out as testing showed failures with
 141	 * the lower time out
 142	 */
 143	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 144		udelay(50);
 145		mdic = er32(MDIC);
 146		if (mdic & E1000_MDIC_READY)
 147			break;
 148	}
 149	if (!(mdic & E1000_MDIC_READY)) {
 150		e_dbg("MDI Read PHY Reg Address %d did not complete\n", offset);
 151		return -E1000_ERR_PHY;
 152	}
 153	if (mdic & E1000_MDIC_ERROR) {
 154		e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
 155		return -E1000_ERR_PHY;
 156	}
 157	if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 158		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 159		      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 160		return -E1000_ERR_PHY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161	}
 162	*data = (u16)mdic;
 163
 164	/* Allow some time after each MDIC transaction to avoid
 165	 * reading duplicate data in the next MDIC transaction.
 166	 */
 167	if (hw->mac.type == e1000_pch2lan)
 168		udelay(100);
 169	return 0;
 170}
 171
 172/**
 173 *  e1000e_write_phy_reg_mdic - Write MDI control register
 174 *  @hw: pointer to the HW structure
 175 *  @offset: register offset to write to
 176 *  @data: data to write to register at offset
 177 *
 178 *  Writes data to MDI control register in the PHY at offset.
 179 **/
 180s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 181{
 
 182	struct e1000_phy_info *phy = &hw->phy;
 183	u32 i, mdic = 0;
 184
 185	if (offset > MAX_PHY_REG_ADDRESS) {
 186		e_dbg("PHY Address %d is out of range\n", offset);
 187		return -E1000_ERR_PARAM;
 188	}
 189
 
 
 190	/* Set up Op-code, Phy Address, and register offset in the MDI
 191	 * Control register.  The MAC will take care of interfacing with the
 192	 * PHY to retrieve the desired data.
 193	 */
 194	mdic = (((u32)data) |
 195		(offset << E1000_MDIC_REG_SHIFT) |
 196		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 197		(E1000_MDIC_OP_WRITE));
 198
 199	ew32(MDIC, mdic);
 200
 201	/* Poll the ready bit to see if the MDI read completed
 202	 * Increasing the time out as testing showed failures with
 203	 * the lower time out
 204	 */
 205	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 206		udelay(50);
 207		mdic = er32(MDIC);
 208		if (mdic & E1000_MDIC_READY)
 209			break;
 210	}
 211	if (!(mdic & E1000_MDIC_READY)) {
 212		e_dbg("MDI Write PHY Reg Address %d did not complete\n", offset);
 213		return -E1000_ERR_PHY;
 214	}
 215	if (mdic & E1000_MDIC_ERROR) {
 216		e_dbg("MDI Write PHY Red Address %d Error\n", offset);
 217		return -E1000_ERR_PHY;
 218	}
 219	if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 220		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 221		      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 222		return -E1000_ERR_PHY;
 223	}
 224
 225	/* Allow some time after each MDIC transaction to avoid
 226	 * reading duplicate data in the next MDIC transaction.
 227	 */
 228	if (hw->mac.type == e1000_pch2lan)
 229		udelay(100);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230
 231	return 0;
 232}
 233
 234/**
 235 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 236 *  @hw: pointer to the HW structure
 237 *  @offset: register offset to be read
 238 *  @data: pointer to the read data
 239 *
 240 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 241 *  and storing the retrieved information in data.  Release any acquired
 242 *  semaphores before exiting.
 243 **/
 244s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 245{
 246	s32 ret_val;
 247
 248	ret_val = hw->phy.ops.acquire(hw);
 249	if (ret_val)
 250		return ret_val;
 251
 252	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 253					   data);
 254
 255	hw->phy.ops.release(hw);
 256
 257	return ret_val;
 258}
 259
 260/**
 261 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 262 *  @hw: pointer to the HW structure
 263 *  @offset: register offset to write to
 264 *  @data: data to write at register offset
 265 *
 266 *  Acquires semaphore, if necessary, then writes the data to PHY register
 267 *  at the offset.  Release any acquired semaphores before exiting.
 268 **/
 269s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 270{
 271	s32 ret_val;
 272
 273	ret_val = hw->phy.ops.acquire(hw);
 274	if (ret_val)
 275		return ret_val;
 276
 277	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 278					    data);
 279
 280	hw->phy.ops.release(hw);
 281
 282	return ret_val;
 283}
 284
 285/**
 286 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 287 *  @hw: pointer to the HW structure
 288 *  @page: page to set (shifted left when necessary)
 289 *
 290 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 291 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 292 *  must set it appropriately (if necessary) after this function returns.
 293 **/
 294s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 295{
 296	e_dbg("Setting page 0x%x\n", page);
 297
 298	hw->phy.addr = 1;
 299
 300	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 301}
 302
 303/**
 304 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 305 *  @hw: pointer to the HW structure
 306 *  @offset: register offset to be read
 307 *  @data: pointer to the read data
 308 *  @locked: semaphore has already been acquired or not
 309 *
 310 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 311 *  and stores the retrieved information in data.  Release any acquired
 312 *  semaphores before exiting.
 313 **/
 314static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 315				     bool locked)
 316{
 317	s32 ret_val = 0;
 318
 319	if (!locked) {
 320		if (!hw->phy.ops.acquire)
 321			return 0;
 322
 323		ret_val = hw->phy.ops.acquire(hw);
 324		if (ret_val)
 325			return ret_val;
 326	}
 327
 328	if (offset > MAX_PHY_MULTI_PAGE_REG)
 329		ret_val = e1000e_write_phy_reg_mdic(hw,
 330						    IGP01E1000_PHY_PAGE_SELECT,
 331						    (u16)offset);
 332	if (!ret_val)
 333		ret_val = e1000e_read_phy_reg_mdic(hw,
 334						   MAX_PHY_REG_ADDRESS & offset,
 335						   data);
 336	if (!locked)
 337		hw->phy.ops.release(hw);
 338
 339	return ret_val;
 340}
 341
 342/**
 343 *  e1000e_read_phy_reg_igp - Read igp PHY register
 344 *  @hw: pointer to the HW structure
 345 *  @offset: register offset to be read
 346 *  @data: pointer to the read data
 347 *
 348 *  Acquires semaphore then reads the PHY register at offset and stores the
 349 *  retrieved information in data.
 350 *  Release the acquired semaphore before exiting.
 351 **/
 352s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 353{
 354	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 355}
 356
 357/**
 358 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 359 *  @hw: pointer to the HW structure
 360 *  @offset: register offset to be read
 361 *  @data: pointer to the read data
 362 *
 363 *  Reads the PHY register at offset and stores the retrieved information
 364 *  in data.  Assumes semaphore already acquired.
 365 **/
 366s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 367{
 368	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 369}
 370
 371/**
 372 *  __e1000e_write_phy_reg_igp - Write igp PHY register
 373 *  @hw: pointer to the HW structure
 374 *  @offset: register offset to write to
 375 *  @data: data to write at register offset
 376 *  @locked: semaphore has already been acquired or not
 377 *
 378 *  Acquires semaphore, if necessary, then writes the data to PHY register
 379 *  at the offset.  Release any acquired semaphores before exiting.
 380 **/
 381static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 382				      bool locked)
 383{
 384	s32 ret_val = 0;
 385
 386	if (!locked) {
 387		if (!hw->phy.ops.acquire)
 388			return 0;
 389
 390		ret_val = hw->phy.ops.acquire(hw);
 391		if (ret_val)
 392			return ret_val;
 393	}
 394
 395	if (offset > MAX_PHY_MULTI_PAGE_REG)
 396		ret_val = e1000e_write_phy_reg_mdic(hw,
 397						    IGP01E1000_PHY_PAGE_SELECT,
 398						    (u16)offset);
 399	if (!ret_val)
 400		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 401						    offset, data);
 402	if (!locked)
 403		hw->phy.ops.release(hw);
 404
 405	return ret_val;
 406}
 407
 408/**
 409 *  e1000e_write_phy_reg_igp - Write igp PHY register
 410 *  @hw: pointer to the HW structure
 411 *  @offset: register offset to write to
 412 *  @data: data to write at register offset
 413 *
 414 *  Acquires semaphore then writes the data to PHY register
 415 *  at the offset.  Release any acquired semaphores before exiting.
 416 **/
 417s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 418{
 419	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 420}
 421
 422/**
 423 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 424 *  @hw: pointer to the HW structure
 425 *  @offset: register offset to write to
 426 *  @data: data to write at register offset
 427 *
 428 *  Writes the data to PHY register at the offset.
 429 *  Assumes semaphore already acquired.
 430 **/
 431s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 432{
 433	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 434}
 435
 436/**
 437 *  __e1000_read_kmrn_reg - Read kumeran register
 438 *  @hw: pointer to the HW structure
 439 *  @offset: register offset to be read
 440 *  @data: pointer to the read data
 441 *  @locked: semaphore has already been acquired or not
 442 *
 443 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 444 *  using the kumeran interface.  The information retrieved is stored in data.
 445 *  Release any acquired semaphores before exiting.
 446 **/
 447static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 448				 bool locked)
 449{
 450	u32 kmrnctrlsta;
 451
 452	if (!locked) {
 453		s32 ret_val = 0;
 454
 455		if (!hw->phy.ops.acquire)
 456			return 0;
 457
 458		ret_val = hw->phy.ops.acquire(hw);
 459		if (ret_val)
 460			return ret_val;
 461	}
 462
 463	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
 464		      E1000_KMRNCTRLSTA_REN;
 465	ew32(KMRNCTRLSTA, kmrnctrlsta);
 466	e1e_flush();
 467
 468	udelay(2);
 469
 470	kmrnctrlsta = er32(KMRNCTRLSTA);
 471	*data = (u16)kmrnctrlsta;
 472
 473	if (!locked)
 474		hw->phy.ops.release(hw);
 475
 476	return 0;
 477}
 478
 479/**
 480 *  e1000e_read_kmrn_reg -  Read kumeran register
 481 *  @hw: pointer to the HW structure
 482 *  @offset: register offset to be read
 483 *  @data: pointer to the read data
 484 *
 485 *  Acquires semaphore then reads the PHY register at offset using the
 486 *  kumeran interface.  The information retrieved is stored in data.
 487 *  Release the acquired semaphore before exiting.
 488 **/
 489s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 490{
 491	return __e1000_read_kmrn_reg(hw, offset, data, false);
 492}
 493
 494/**
 495 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 496 *  @hw: pointer to the HW structure
 497 *  @offset: register offset to be read
 498 *  @data: pointer to the read data
 499 *
 500 *  Reads the PHY register at offset using the kumeran interface.  The
 501 *  information retrieved is stored in data.
 502 *  Assumes semaphore already acquired.
 503 **/
 504s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 505{
 506	return __e1000_read_kmrn_reg(hw, offset, data, true);
 507}
 508
 509/**
 510 *  __e1000_write_kmrn_reg - Write kumeran register
 511 *  @hw: pointer to the HW structure
 512 *  @offset: register offset to write to
 513 *  @data: data to write at register offset
 514 *  @locked: semaphore has already been acquired or not
 515 *
 516 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 517 *  at the offset using the kumeran interface.  Release any acquired semaphores
 518 *  before exiting.
 519 **/
 520static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 521				  bool locked)
 522{
 523	u32 kmrnctrlsta;
 524
 525	if (!locked) {
 526		s32 ret_val = 0;
 527
 528		if (!hw->phy.ops.acquire)
 529			return 0;
 530
 531		ret_val = hw->phy.ops.acquire(hw);
 532		if (ret_val)
 533			return ret_val;
 534	}
 535
 536	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
 537	ew32(KMRNCTRLSTA, kmrnctrlsta);
 538	e1e_flush();
 539
 540	udelay(2);
 541
 542	if (!locked)
 543		hw->phy.ops.release(hw);
 544
 545	return 0;
 546}
 547
 548/**
 549 *  e1000e_write_kmrn_reg -  Write kumeran register
 550 *  @hw: pointer to the HW structure
 551 *  @offset: register offset to write to
 552 *  @data: data to write at register offset
 553 *
 554 *  Acquires semaphore then writes the data to the PHY register at the offset
 555 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 556 **/
 557s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 558{
 559	return __e1000_write_kmrn_reg(hw, offset, data, false);
 560}
 561
 562/**
 563 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 564 *  @hw: pointer to the HW structure
 565 *  @offset: register offset to write to
 566 *  @data: data to write at register offset
 567 *
 568 *  Write the data to PHY register at the offset using the kumeran interface.
 569 *  Assumes semaphore already acquired.
 570 **/
 571s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 572{
 573	return __e1000_write_kmrn_reg(hw, offset, data, true);
 574}
 575
 576/**
 577 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 578 *  @hw: pointer to the HW structure
 579 *
 580 *  Sets up Master/slave mode
 581 **/
 582static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 583{
 584	s32 ret_val;
 585	u16 phy_data;
 586
 587	/* Resolve Master/Slave mode */
 588	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 589	if (ret_val)
 590		return ret_val;
 591
 592	/* load defaults for future use */
 593	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 594	    ((phy_data & CTL1000_AS_MASTER) ?
 595	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 596
 597	switch (hw->phy.ms_type) {
 598	case e1000_ms_force_master:
 599		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 600		break;
 601	case e1000_ms_force_slave:
 602		phy_data |= CTL1000_ENABLE_MASTER;
 603		phy_data &= ~(CTL1000_AS_MASTER);
 604		break;
 605	case e1000_ms_auto:
 606		phy_data &= ~CTL1000_ENABLE_MASTER;
 607		fallthrough;
 608	default:
 609		break;
 610	}
 611
 612	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 613}
 614
 615/**
 616 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 617 *  @hw: pointer to the HW structure
 618 *
 619 *  Sets up Carrier-sense on Transmit and downshift values.
 620 **/
 621s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 622{
 623	s32 ret_val;
 624	u16 phy_data;
 625
 626	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 627	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 628	if (ret_val)
 629		return ret_val;
 630
 631	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 632
 633	/* Enable downshift */
 634	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 635
 636	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 637	if (ret_val)
 638		return ret_val;
 639
 640	/* Set MDI/MDIX mode */
 641	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 642	if (ret_val)
 643		return ret_val;
 644	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 645	/* Options:
 646	 *   0 - Auto (default)
 647	 *   1 - MDI mode
 648	 *   2 - MDI-X mode
 649	 */
 650	switch (hw->phy.mdix) {
 651	case 1:
 652		break;
 653	case 2:
 654		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 655		break;
 656	case 0:
 657	default:
 658		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 659		break;
 660	}
 661	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 662	if (ret_val)
 663		return ret_val;
 664
 665	return e1000_set_master_slave_mode(hw);
 666}
 667
 668/**
 669 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 670 *  @hw: pointer to the HW structure
 671 *
 672 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 673 *  and downshift values are set also.
 674 **/
 675s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 676{
 677	struct e1000_phy_info *phy = &hw->phy;
 678	s32 ret_val;
 679	u16 phy_data;
 680
 681	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 682	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 683	if (ret_val)
 684		return ret_val;
 685
 686	/* For BM PHY this bit is downshift enable */
 687	if (phy->type != e1000_phy_bm)
 688		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 689
 690	/* Options:
 691	 *   MDI/MDI-X = 0 (default)
 692	 *   0 - Auto for all speeds
 693	 *   1 - MDI mode
 694	 *   2 - MDI-X mode
 695	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 696	 */
 697	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 698
 699	switch (phy->mdix) {
 700	case 1:
 701		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 702		break;
 703	case 2:
 704		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 705		break;
 706	case 3:
 707		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 708		break;
 709	case 0:
 710	default:
 711		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 712		break;
 713	}
 714
 715	/* Options:
 716	 *   disable_polarity_correction = 0 (default)
 717	 *       Automatic Correction for Reversed Cable Polarity
 718	 *   0 - Disabled
 719	 *   1 - Enabled
 720	 */
 721	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 722	if (phy->disable_polarity_correction)
 723		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 724
 725	/* Enable downshift on BM (disabled by default) */
 726	if (phy->type == e1000_phy_bm) {
 727		/* For 82574/82583, first disable then enable downshift */
 728		if (phy->id == BME1000_E_PHY_ID_R2) {
 729			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 730			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 731					   phy_data);
 732			if (ret_val)
 733				return ret_val;
 734			/* Commit the changes. */
 735			ret_val = phy->ops.commit(hw);
 736			if (ret_val) {
 737				e_dbg("Error committing the PHY changes\n");
 738				return ret_val;
 739			}
 740		}
 741
 742		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 743	}
 744
 745	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 746	if (ret_val)
 747		return ret_val;
 748
 749	if ((phy->type == e1000_phy_m88) &&
 750	    (phy->revision < E1000_REVISION_4) &&
 751	    (phy->id != BME1000_E_PHY_ID_R2)) {
 752		/* Force TX_CLK in the Extended PHY Specific Control Register
 753		 * to 25MHz clock.
 754		 */
 755		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 756		if (ret_val)
 757			return ret_val;
 758
 759		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 760
 761		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 762			/* 82573L PHY - set the downshift counter to 5x. */
 763			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 764			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 765		} else {
 766			/* Configure Master and Slave downshift values */
 767			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 768				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 769			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 770				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 771		}
 772		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 773		if (ret_val)
 774			return ret_val;
 775	}
 776
 777	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 778		/* Set PHY page 0, register 29 to 0x0003 */
 779		ret_val = e1e_wphy(hw, 29, 0x0003);
 780		if (ret_val)
 781			return ret_val;
 782
 783		/* Set PHY page 0, register 30 to 0x0000 */
 784		ret_val = e1e_wphy(hw, 30, 0x0000);
 785		if (ret_val)
 786			return ret_val;
 787	}
 788
 789	/* Commit the changes. */
 790	if (phy->ops.commit) {
 791		ret_val = phy->ops.commit(hw);
 792		if (ret_val) {
 793			e_dbg("Error committing the PHY changes\n");
 794			return ret_val;
 795		}
 796	}
 797
 798	if (phy->type == e1000_phy_82578) {
 799		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 800		if (ret_val)
 801			return ret_val;
 802
 803		/* 82578 PHY - set the downshift count to 1x. */
 804		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 805		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 806		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 807		if (ret_val)
 808			return ret_val;
 809	}
 810
 811	return 0;
 812}
 813
 814/**
 815 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 816 *  @hw: pointer to the HW structure
 817 *
 818 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 819 *  igp PHY's.
 820 **/
 821s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 822{
 823	struct e1000_phy_info *phy = &hw->phy;
 824	s32 ret_val;
 825	u16 data;
 826
 827	ret_val = e1000_phy_hw_reset(hw);
 828	if (ret_val) {
 829		e_dbg("Error resetting the PHY.\n");
 830		return ret_val;
 831	}
 832
 833	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 834	 * timeout issues when LFS is enabled.
 835	 */
 836	msleep(100);
 837
 838	/* disable lplu d0 during driver init */
 839	if (hw->phy.ops.set_d0_lplu_state) {
 840		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 841		if (ret_val) {
 842			e_dbg("Error Disabling LPLU D0\n");
 843			return ret_val;
 844		}
 845	}
 846	/* Configure mdi-mdix settings */
 847	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 848	if (ret_val)
 849		return ret_val;
 850
 851	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 852
 853	switch (phy->mdix) {
 854	case 1:
 855		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 856		break;
 857	case 2:
 858		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 859		break;
 860	case 0:
 861	default:
 862		data |= IGP01E1000_PSCR_AUTO_MDIX;
 863		break;
 864	}
 865	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 866	if (ret_val)
 867		return ret_val;
 868
 869	/* set auto-master slave resolution settings */
 870	if (hw->mac.autoneg) {
 871		/* when autonegotiation advertisement is only 1000Mbps then we
 872		 * should disable SmartSpeed and enable Auto MasterSlave
 873		 * resolution as hardware default.
 874		 */
 875		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 876			/* Disable SmartSpeed */
 877			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 878					   &data);
 879			if (ret_val)
 880				return ret_val;
 881
 882			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 883			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 884					   data);
 885			if (ret_val)
 886				return ret_val;
 887
 888			/* Set auto Master/Slave resolution process */
 889			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 890			if (ret_val)
 891				return ret_val;
 892
 893			data &= ~CTL1000_ENABLE_MASTER;
 894			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 895			if (ret_val)
 896				return ret_val;
 897		}
 898
 899		ret_val = e1000_set_master_slave_mode(hw);
 900	}
 901
 902	return ret_val;
 903}
 904
 905/**
 906 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 907 *  @hw: pointer to the HW structure
 908 *
 909 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 910 *  register and if the PHY is already setup for auto-negotiation, then
 911 *  return successful.  Otherwise, setup advertisement and flow control to
 912 *  the appropriate values for the wanted auto-negotiation.
 913 **/
 914static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 915{
 916	struct e1000_phy_info *phy = &hw->phy;
 917	s32 ret_val;
 918	u16 mii_autoneg_adv_reg;
 919	u16 mii_1000t_ctrl_reg = 0;
 920
 921	phy->autoneg_advertised &= phy->autoneg_mask;
 922
 923	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 924	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 925	if (ret_val)
 926		return ret_val;
 927
 928	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 929		/* Read the MII 1000Base-T Control Register (Address 9). */
 930		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 931		if (ret_val)
 932			return ret_val;
 933	}
 934
 935	/* Need to parse both autoneg_advertised and fc and set up
 936	 * the appropriate PHY registers.  First we will parse for
 937	 * autoneg_advertised software override.  Since we can advertise
 938	 * a plethora of combinations, we need to check each bit
 939	 * individually.
 940	 */
 941
 942	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 943	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 944	 * the  1000Base-T Control Register (Address 9).
 945	 */
 946	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 947				 ADVERTISE_100HALF |
 948				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 949	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 950
 951	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 952
 953	/* Do we want to advertise 10 Mb Half Duplex? */
 954	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 955		e_dbg("Advertise 10mb Half duplex\n");
 956		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 957	}
 958
 959	/* Do we want to advertise 10 Mb Full Duplex? */
 960	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 961		e_dbg("Advertise 10mb Full duplex\n");
 962		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 963	}
 964
 965	/* Do we want to advertise 100 Mb Half Duplex? */
 966	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 967		e_dbg("Advertise 100mb Half duplex\n");
 968		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 969	}
 970
 971	/* Do we want to advertise 100 Mb Full Duplex? */
 972	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 973		e_dbg("Advertise 100mb Full duplex\n");
 974		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 975	}
 976
 977	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 978	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 979		e_dbg("Advertise 1000mb Half duplex request denied!\n");
 980
 981	/* Do we want to advertise 1000 Mb Full Duplex? */
 982	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 983		e_dbg("Advertise 1000mb Full duplex\n");
 984		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
 985	}
 986
 987	/* Check for a software override of the flow control settings, and
 988	 * setup the PHY advertisement registers accordingly.  If
 989	 * auto-negotiation is enabled, then software will have to set the
 990	 * "PAUSE" bits to the correct value in the Auto-Negotiation
 991	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
 992	 * negotiation.
 993	 *
 994	 * The possible values of the "fc" parameter are:
 995	 *      0:  Flow control is completely disabled
 996	 *      1:  Rx flow control is enabled (we can receive pause frames
 997	 *          but not send pause frames).
 998	 *      2:  Tx flow control is enabled (we can send pause frames
 999	 *          but we do not support receiving pause frames).
1000	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1001	 *  other:  No software override.  The flow control configuration
1002	 *          in the EEPROM is used.
1003	 */
1004	switch (hw->fc.current_mode) {
1005	case e1000_fc_none:
1006		/* Flow control (Rx & Tx) is completely disabled by a
1007		 * software over-ride.
1008		 */
1009		mii_autoneg_adv_reg &=
1010		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1011		phy->autoneg_advertised &=
1012		    ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1013		break;
1014	case e1000_fc_rx_pause:
1015		/* Rx Flow control is enabled, and Tx Flow control is
1016		 * disabled, by a software over-ride.
1017		 *
1018		 * Since there really isn't a way to advertise that we are
1019		 * capable of Rx Pause ONLY, we will advertise that we
1020		 * support both symmetric and asymmetric Rx PAUSE.  Later
1021		 * (in e1000e_config_fc_after_link_up) we will disable the
1022		 * hw's ability to send PAUSE frames.
1023		 */
1024		mii_autoneg_adv_reg |=
1025		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1026		phy->autoneg_advertised |=
1027		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1028		break;
1029	case e1000_fc_tx_pause:
1030		/* Tx Flow control is enabled, and Rx Flow control is
1031		 * disabled, by a software over-ride.
1032		 */
1033		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1034		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1035		phy->autoneg_advertised |= ADVERTISED_Asym_Pause;
1036		phy->autoneg_advertised &= ~ADVERTISED_Pause;
1037		break;
1038	case e1000_fc_full:
1039		/* Flow control (both Rx and Tx) is enabled by a software
1040		 * over-ride.
1041		 */
1042		mii_autoneg_adv_reg |=
1043		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1044		phy->autoneg_advertised |=
1045		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1046		break;
1047	default:
1048		e_dbg("Flow control param set incorrectly\n");
1049		return -E1000_ERR_CONFIG;
1050	}
1051
1052	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1053	if (ret_val)
1054		return ret_val;
1055
1056	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1057
1058	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1059		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1060
1061	return ret_val;
1062}
1063
1064/**
1065 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1066 *  @hw: pointer to the HW structure
1067 *
1068 *  Performs initial bounds checking on autoneg advertisement parameter, then
1069 *  configure to advertise the full capability.  Setup the PHY to autoneg
1070 *  and restart the negotiation process between the link partner.  If
1071 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1072 **/
1073static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1074{
1075	struct e1000_phy_info *phy = &hw->phy;
1076	s32 ret_val;
1077	u16 phy_ctrl;
1078
1079	/* Perform some bounds checking on the autoneg advertisement
1080	 * parameter.
1081	 */
1082	phy->autoneg_advertised &= phy->autoneg_mask;
1083
1084	/* If autoneg_advertised is zero, we assume it was not defaulted
1085	 * by the calling code so we set to advertise full capability.
1086	 */
1087	if (!phy->autoneg_advertised)
1088		phy->autoneg_advertised = phy->autoneg_mask;
1089
1090	e_dbg("Reconfiguring auto-neg advertisement params\n");
1091	ret_val = e1000_phy_setup_autoneg(hw);
1092	if (ret_val) {
1093		e_dbg("Error Setting up Auto-Negotiation\n");
1094		return ret_val;
1095	}
1096	e_dbg("Restarting Auto-Neg\n");
1097
1098	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1099	 * the Auto Neg Restart bit in the PHY control register.
1100	 */
1101	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1102	if (ret_val)
1103		return ret_val;
1104
1105	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1106	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1107	if (ret_val)
1108		return ret_val;
1109
1110	/* Does the user want to wait for Auto-Neg to complete here, or
1111	 * check at a later time (for example, callback routine).
1112	 */
1113	if (phy->autoneg_wait_to_complete) {
1114		ret_val = e1000_wait_autoneg(hw);
1115		if (ret_val) {
1116			e_dbg("Error while waiting for autoneg to complete\n");
1117			return ret_val;
1118		}
1119	}
1120
1121	hw->mac.get_link_status = true;
1122
1123	return ret_val;
1124}
1125
1126/**
1127 *  e1000e_setup_copper_link - Configure copper link settings
1128 *  @hw: pointer to the HW structure
1129 *
1130 *  Calls the appropriate function to configure the link for auto-neg or forced
1131 *  speed and duplex.  Then we check for link, once link is established calls
1132 *  to configure collision distance and flow control are called.  If link is
1133 *  not established, we return -E1000_ERR_PHY (-2).
1134 **/
1135s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1136{
1137	s32 ret_val;
1138	bool link;
1139
1140	if (hw->mac.autoneg) {
1141		/* Setup autoneg and flow control advertisement and perform
1142		 * autonegotiation.
1143		 */
1144		ret_val = e1000_copper_link_autoneg(hw);
1145		if (ret_val)
1146			return ret_val;
1147	} else {
1148		/* PHY will be set to 10H, 10F, 100H or 100F
1149		 * depending on user settings.
1150		 */
1151		e_dbg("Forcing Speed and Duplex\n");
1152		ret_val = hw->phy.ops.force_speed_duplex(hw);
1153		if (ret_val) {
1154			e_dbg("Error Forcing Speed and Duplex\n");
1155			return ret_val;
1156		}
1157	}
1158
1159	/* Check link status. Wait up to 100 microseconds for link to become
1160	 * valid.
1161	 */
1162	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1163					      &link);
1164	if (ret_val)
1165		return ret_val;
1166
1167	if (link) {
1168		e_dbg("Valid link established!!!\n");
1169		hw->mac.ops.config_collision_dist(hw);
1170		ret_val = e1000e_config_fc_after_link_up(hw);
1171	} else {
1172		e_dbg("Unable to establish link!!!\n");
1173	}
1174
1175	return ret_val;
1176}
1177
1178/**
1179 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1180 *  @hw: pointer to the HW structure
1181 *
1182 *  Calls the PHY setup function to force speed and duplex.  Clears the
1183 *  auto-crossover to force MDI manually.  Waits for link and returns
1184 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1185 **/
1186s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1187{
1188	struct e1000_phy_info *phy = &hw->phy;
1189	s32 ret_val;
1190	u16 phy_data;
1191	bool link;
1192
1193	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1194	if (ret_val)
1195		return ret_val;
1196
1197	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1198
1199	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1200	if (ret_val)
1201		return ret_val;
1202
1203	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1204	 * forced whenever speed and duplex are forced.
1205	 */
1206	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1207	if (ret_val)
1208		return ret_val;
1209
1210	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1211	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1212
1213	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1214	if (ret_val)
1215		return ret_val;
1216
1217	e_dbg("IGP PSCR: %X\n", phy_data);
1218
1219	udelay(1);
1220
1221	if (phy->autoneg_wait_to_complete) {
1222		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1223
1224		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1225						      100000, &link);
1226		if (ret_val)
1227			return ret_val;
1228
1229		if (!link)
1230			e_dbg("Link taking longer than expected.\n");
1231
1232		/* Try once more */
1233		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1234						      100000, &link);
1235	}
1236
1237	return ret_val;
1238}
1239
1240/**
1241 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1242 *  @hw: pointer to the HW structure
1243 *
1244 *  Calls the PHY setup function to force speed and duplex.  Clears the
1245 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1246 *  changes.  If time expires while waiting for link up, we reset the DSP.
1247 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1248 *  successful completion, else return corresponding error code.
1249 **/
1250s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1251{
1252	struct e1000_phy_info *phy = &hw->phy;
1253	s32 ret_val;
1254	u16 phy_data;
1255	bool link;
1256
1257	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1258	 * forced whenever speed and duplex are forced.
1259	 */
1260	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1265	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1266	if (ret_val)
1267		return ret_val;
1268
1269	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1270
1271	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1272	if (ret_val)
1273		return ret_val;
1274
1275	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1276
1277	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1278	if (ret_val)
1279		return ret_val;
1280
1281	/* Reset the phy to commit changes. */
1282	if (hw->phy.ops.commit) {
1283		ret_val = hw->phy.ops.commit(hw);
1284		if (ret_val)
1285			return ret_val;
1286	}
1287
1288	if (phy->autoneg_wait_to_complete) {
1289		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1290
1291		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1292						      100000, &link);
1293		if (ret_val)
1294			return ret_val;
1295
1296		if (!link) {
1297			if (hw->phy.type != e1000_phy_m88) {
1298				e_dbg("Link taking longer than expected.\n");
1299			} else {
1300				/* We didn't get link.
1301				 * Reset the DSP and cross our fingers.
1302				 */
1303				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1304						   0x001d);
1305				if (ret_val)
1306					return ret_val;
1307				ret_val = e1000e_phy_reset_dsp(hw);
1308				if (ret_val)
1309					return ret_val;
1310			}
1311		}
1312
1313		/* Try once more */
1314		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1315						      100000, &link);
1316		if (ret_val)
1317			return ret_val;
1318	}
1319
1320	if (hw->phy.type != e1000_phy_m88)
1321		return 0;
1322
1323	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1324	if (ret_val)
1325		return ret_val;
1326
1327	/* Resetting the phy means we need to re-force TX_CLK in the
1328	 * Extended PHY Specific Control Register to 25MHz clock from
1329	 * the reset value of 2.5MHz.
1330	 */
1331	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1332	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1333	if (ret_val)
1334		return ret_val;
1335
1336	/* In addition, we must re-enable CRS on Tx for both half and full
1337	 * duplex.
1338	 */
1339	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1340	if (ret_val)
1341		return ret_val;
1342
1343	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1344	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1345
1346	return ret_val;
1347}
1348
1349/**
1350 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1351 *  @hw: pointer to the HW structure
1352 *
1353 *  Forces the speed and duplex settings of the PHY.
1354 *  This is a function pointer entry point only called by
1355 *  PHY setup routines.
1356 **/
1357s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1358{
1359	struct e1000_phy_info *phy = &hw->phy;
1360	s32 ret_val;
1361	u16 data;
1362	bool link;
1363
1364	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1365	if (ret_val)
1366		return ret_val;
1367
1368	e1000e_phy_force_speed_duplex_setup(hw, &data);
1369
1370	ret_val = e1e_wphy(hw, MII_BMCR, data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	/* Disable MDI-X support for 10/100 */
1375	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1376	if (ret_val)
1377		return ret_val;
1378
1379	data &= ~IFE_PMC_AUTO_MDIX;
1380	data &= ~IFE_PMC_FORCE_MDIX;
1381
1382	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1383	if (ret_val)
1384		return ret_val;
1385
1386	e_dbg("IFE PMC: %X\n", data);
1387
1388	udelay(1);
1389
1390	if (phy->autoneg_wait_to_complete) {
1391		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1392
1393		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1394						      100000, &link);
1395		if (ret_val)
1396			return ret_val;
1397
1398		if (!link)
1399			e_dbg("Link taking longer than expected.\n");
1400
1401		/* Try once more */
1402		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1403						      100000, &link);
1404		if (ret_val)
1405			return ret_val;
1406	}
1407
1408	return 0;
1409}
1410
1411/**
1412 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1413 *  @hw: pointer to the HW structure
1414 *  @phy_ctrl: pointer to current value of MII_BMCR
1415 *
1416 *  Forces speed and duplex on the PHY by doing the following: disable flow
1417 *  control, force speed/duplex on the MAC, disable auto speed detection,
1418 *  disable auto-negotiation, configure duplex, configure speed, configure
1419 *  the collision distance, write configuration to CTRL register.  The
1420 *  caller must write to the MII_BMCR register for these settings to
1421 *  take affect.
1422 **/
1423void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1424{
1425	struct e1000_mac_info *mac = &hw->mac;
1426	u32 ctrl;
1427
1428	/* Turn off flow control when forcing speed/duplex */
1429	hw->fc.current_mode = e1000_fc_none;
1430
1431	/* Force speed/duplex on the mac */
1432	ctrl = er32(CTRL);
1433	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1434	ctrl &= ~E1000_CTRL_SPD_SEL;
1435
1436	/* Disable Auto Speed Detection */
1437	ctrl &= ~E1000_CTRL_ASDE;
1438
1439	/* Disable autoneg on the phy */
1440	*phy_ctrl &= ~BMCR_ANENABLE;
1441
1442	/* Forcing Full or Half Duplex? */
1443	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1444		ctrl &= ~E1000_CTRL_FD;
1445		*phy_ctrl &= ~BMCR_FULLDPLX;
1446		e_dbg("Half Duplex\n");
1447	} else {
1448		ctrl |= E1000_CTRL_FD;
1449		*phy_ctrl |= BMCR_FULLDPLX;
1450		e_dbg("Full Duplex\n");
1451	}
1452
1453	/* Forcing 10mb or 100mb? */
1454	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1455		ctrl |= E1000_CTRL_SPD_100;
1456		*phy_ctrl |= BMCR_SPEED100;
1457		*phy_ctrl &= ~BMCR_SPEED1000;
1458		e_dbg("Forcing 100mb\n");
1459	} else {
1460		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1461		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1462		e_dbg("Forcing 10mb\n");
1463	}
1464
1465	hw->mac.ops.config_collision_dist(hw);
1466
1467	ew32(CTRL, ctrl);
1468}
1469
1470/**
1471 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1472 *  @hw: pointer to the HW structure
1473 *  @active: boolean used to enable/disable lplu
1474 *
1475 *  Success returns 0, Failure returns 1
1476 *
1477 *  The low power link up (lplu) state is set to the power management level D3
1478 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1479 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1480 *  is used during Dx states where the power conservation is most important.
1481 *  During driver activity, SmartSpeed should be enabled so performance is
1482 *  maintained.
1483 **/
1484s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1485{
1486	struct e1000_phy_info *phy = &hw->phy;
1487	s32 ret_val;
1488	u16 data;
1489
1490	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1491	if (ret_val)
1492		return ret_val;
1493
1494	if (!active) {
1495		data &= ~IGP02E1000_PM_D3_LPLU;
1496		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1497		if (ret_val)
1498			return ret_val;
1499		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1500		 * during Dx states where the power conservation is most
1501		 * important.  During driver activity we should enable
1502		 * SmartSpeed, so performance is maintained.
1503		 */
1504		if (phy->smart_speed == e1000_smart_speed_on) {
1505			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1506					   &data);
1507			if (ret_val)
1508				return ret_val;
1509
1510			data |= IGP01E1000_PSCFR_SMART_SPEED;
1511			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1512					   data);
1513			if (ret_val)
1514				return ret_val;
1515		} else if (phy->smart_speed == e1000_smart_speed_off) {
1516			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1517					   &data);
1518			if (ret_val)
1519				return ret_val;
1520
1521			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1522			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1523					   data);
1524			if (ret_val)
1525				return ret_val;
1526		}
1527	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1528		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1529		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1530		data |= IGP02E1000_PM_D3_LPLU;
1531		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1532		if (ret_val)
1533			return ret_val;
1534
1535		/* When LPLU is enabled, we should disable SmartSpeed */
1536		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1537		if (ret_val)
1538			return ret_val;
1539
1540		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1541		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1542	}
1543
1544	return ret_val;
1545}
1546
1547/**
1548 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1549 *  @hw: pointer to the HW structure
1550 *
1551 *  Success returns 0, Failure returns 1
1552 *
1553 *  A downshift is detected by querying the PHY link health.
1554 **/
1555s32 e1000e_check_downshift(struct e1000_hw *hw)
1556{
1557	struct e1000_phy_info *phy = &hw->phy;
1558	s32 ret_val;
1559	u16 phy_data, offset, mask;
1560
1561	switch (phy->type) {
1562	case e1000_phy_m88:
1563	case e1000_phy_gg82563:
1564	case e1000_phy_bm:
1565	case e1000_phy_82578:
1566		offset = M88E1000_PHY_SPEC_STATUS;
1567		mask = M88E1000_PSSR_DOWNSHIFT;
1568		break;
1569	case e1000_phy_igp_2:
1570	case e1000_phy_igp_3:
1571		offset = IGP01E1000_PHY_LINK_HEALTH;
1572		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1573		break;
1574	default:
1575		/* speed downshift not supported */
1576		phy->speed_downgraded = false;
1577		return 0;
1578	}
1579
1580	ret_val = e1e_rphy(hw, offset, &phy_data);
1581
1582	if (!ret_val)
1583		phy->speed_downgraded = !!(phy_data & mask);
1584
1585	return ret_val;
1586}
1587
1588/**
1589 *  e1000_check_polarity_m88 - Checks the polarity.
1590 *  @hw: pointer to the HW structure
1591 *
1592 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1593 *
1594 *  Polarity is determined based on the PHY specific status register.
1595 **/
1596s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1597{
1598	struct e1000_phy_info *phy = &hw->phy;
1599	s32 ret_val;
1600	u16 data;
1601
1602	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1603
1604	if (!ret_val)
1605		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1606				       ? e1000_rev_polarity_reversed
1607				       : e1000_rev_polarity_normal);
1608
1609	return ret_val;
1610}
1611
1612/**
1613 *  e1000_check_polarity_igp - Checks the polarity.
1614 *  @hw: pointer to the HW structure
1615 *
1616 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1617 *
1618 *  Polarity is determined based on the PHY port status register, and the
1619 *  current speed (since there is no polarity at 100Mbps).
1620 **/
1621s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1622{
1623	struct e1000_phy_info *phy = &hw->phy;
1624	s32 ret_val;
1625	u16 data, offset, mask;
1626
1627	/* Polarity is determined based on the speed of
1628	 * our connection.
1629	 */
1630	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1631	if (ret_val)
1632		return ret_val;
1633
1634	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1635	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1636		offset = IGP01E1000_PHY_PCS_INIT_REG;
1637		mask = IGP01E1000_PHY_POLARITY_MASK;
1638	} else {
1639		/* This really only applies to 10Mbps since
1640		 * there is no polarity for 100Mbps (always 0).
1641		 */
1642		offset = IGP01E1000_PHY_PORT_STATUS;
1643		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1644	}
1645
1646	ret_val = e1e_rphy(hw, offset, &data);
1647
1648	if (!ret_val)
1649		phy->cable_polarity = ((data & mask)
1650				       ? e1000_rev_polarity_reversed
1651				       : e1000_rev_polarity_normal);
1652
1653	return ret_val;
1654}
1655
1656/**
1657 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1658 *  @hw: pointer to the HW structure
1659 *
1660 *  Polarity is determined on the polarity reversal feature being enabled.
1661 **/
1662s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1663{
1664	struct e1000_phy_info *phy = &hw->phy;
1665	s32 ret_val;
1666	u16 phy_data, offset, mask;
1667
1668	/* Polarity is determined based on the reversal feature being enabled.
1669	 */
1670	if (phy->polarity_correction) {
1671		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1672		mask = IFE_PESC_POLARITY_REVERSED;
1673	} else {
1674		offset = IFE_PHY_SPECIAL_CONTROL;
1675		mask = IFE_PSC_FORCE_POLARITY;
1676	}
1677
1678	ret_val = e1e_rphy(hw, offset, &phy_data);
1679
1680	if (!ret_val)
1681		phy->cable_polarity = ((phy_data & mask)
1682				       ? e1000_rev_polarity_reversed
1683				       : e1000_rev_polarity_normal);
1684
1685	return ret_val;
1686}
1687
1688/**
1689 *  e1000_wait_autoneg - Wait for auto-neg completion
1690 *  @hw: pointer to the HW structure
1691 *
1692 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1693 *  limit to expire, which ever happens first.
1694 **/
1695static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1696{
1697	s32 ret_val = 0;
1698	u16 i, phy_status;
1699
1700	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1701	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1702		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1703		if (ret_val)
1704			break;
1705		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1706		if (ret_val)
1707			break;
1708		if (phy_status & BMSR_ANEGCOMPLETE)
1709			break;
1710		msleep(100);
1711	}
1712
1713	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1714	 * has completed.
1715	 */
1716	return ret_val;
1717}
1718
1719/**
1720 *  e1000e_phy_has_link_generic - Polls PHY for link
1721 *  @hw: pointer to the HW structure
1722 *  @iterations: number of times to poll for link
1723 *  @usec_interval: delay between polling attempts
1724 *  @success: pointer to whether polling was successful or not
1725 *
1726 *  Polls the PHY status register for link, 'iterations' number of times.
1727 **/
1728s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1729				u32 usec_interval, bool *success)
1730{
1731	s32 ret_val = 0;
1732	u16 i, phy_status;
1733
1734	*success = false;
1735	for (i = 0; i < iterations; i++) {
1736		/* Some PHYs require the MII_BMSR register to be read
1737		 * twice due to the link bit being sticky.  No harm doing
1738		 * it across the board.
1739		 */
1740		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1741		if (ret_val) {
1742			/* If the first read fails, another entity may have
1743			 * ownership of the resources, wait and try again to
1744			 * see if they have relinquished the resources yet.
1745			 */
1746			if (usec_interval >= 1000)
1747				msleep(usec_interval / 1000);
1748			else
1749				udelay(usec_interval);
1750		}
1751		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1752		if (ret_val)
1753			break;
1754		if (phy_status & BMSR_LSTATUS) {
1755			*success = true;
1756			break;
1757		}
1758		if (usec_interval >= 1000)
1759			msleep(usec_interval / 1000);
1760		else
1761			udelay(usec_interval);
1762	}
1763
1764	return ret_val;
1765}
1766
1767/**
1768 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1769 *  @hw: pointer to the HW structure
1770 *
1771 *  Reads the PHY specific status register to retrieve the cable length
1772 *  information.  The cable length is determined by averaging the minimum and
1773 *  maximum values to get the "average" cable length.  The m88 PHY has four
1774 *  possible cable length values, which are:
1775 *	Register Value		Cable Length
1776 *	0			< 50 meters
1777 *	1			50 - 80 meters
1778 *	2			80 - 110 meters
1779 *	3			110 - 140 meters
1780 *	4			> 140 meters
1781 **/
1782s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1783{
1784	struct e1000_phy_info *phy = &hw->phy;
1785	s32 ret_val;
1786	u16 phy_data, index;
1787
1788	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1789	if (ret_val)
1790		return ret_val;
1791
1792	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
1793
1794	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1795		return -E1000_ERR_PHY;
1796
1797	phy->min_cable_length = e1000_m88_cable_length_table[index];
1798	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1799
1800	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1801
1802	return 0;
1803}
1804
1805/**
1806 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1807 *  @hw: pointer to the HW structure
1808 *
1809 *  The automatic gain control (agc) normalizes the amplitude of the
1810 *  received signal, adjusting for the attenuation produced by the
1811 *  cable.  By reading the AGC registers, which represent the
1812 *  combination of coarse and fine gain value, the value can be put
1813 *  into a lookup table to obtain the approximate cable length
1814 *  for each channel.
1815 **/
1816s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1817{
1818	struct e1000_phy_info *phy = &hw->phy;
1819	s32 ret_val;
1820	u16 phy_data, i, agc_value = 0;
1821	u16 cur_agc_index, max_agc_index = 0;
1822	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1823	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1824		IGP02E1000_PHY_AGC_A,
1825		IGP02E1000_PHY_AGC_B,
1826		IGP02E1000_PHY_AGC_C,
1827		IGP02E1000_PHY_AGC_D
1828	};
1829
1830	/* Read the AGC registers for all channels */
1831	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1832		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1833		if (ret_val)
1834			return ret_val;
1835
1836		/* Getting bits 15:9, which represent the combination of
1837		 * coarse and fine gain values.  The result is a number
1838		 * that can be put into the lookup table to obtain the
1839		 * approximate cable length.
1840		 */
1841		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1842				 IGP02E1000_AGC_LENGTH_MASK);
1843
1844		/* Array index bound check. */
1845		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1846		    (cur_agc_index == 0))
1847			return -E1000_ERR_PHY;
1848
1849		/* Remove min & max AGC values from calculation. */
1850		if (e1000_igp_2_cable_length_table[min_agc_index] >
1851		    e1000_igp_2_cable_length_table[cur_agc_index])
1852			min_agc_index = cur_agc_index;
1853		if (e1000_igp_2_cable_length_table[max_agc_index] <
1854		    e1000_igp_2_cable_length_table[cur_agc_index])
1855			max_agc_index = cur_agc_index;
1856
1857		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1858	}
1859
1860	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1861		      e1000_igp_2_cable_length_table[max_agc_index]);
1862	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1863
1864	/* Calculate cable length with the error range of +/- 10 meters. */
1865	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1866				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1867	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1868
1869	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1870
1871	return 0;
1872}
1873
1874/**
1875 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1876 *  @hw: pointer to the HW structure
1877 *
1878 *  Valid for only copper links.  Read the PHY status register (sticky read)
1879 *  to verify that link is up.  Read the PHY special control register to
1880 *  determine the polarity and 10base-T extended distance.  Read the PHY
1881 *  special status register to determine MDI/MDIx and current speed.  If
1882 *  speed is 1000, then determine cable length, local and remote receiver.
1883 **/
1884s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1885{
1886	struct e1000_phy_info *phy = &hw->phy;
1887	s32 ret_val;
1888	u16 phy_data;
1889	bool link;
1890
1891	if (phy->media_type != e1000_media_type_copper) {
1892		e_dbg("Phy info is only valid for copper media\n");
1893		return -E1000_ERR_CONFIG;
1894	}
1895
1896	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1897	if (ret_val)
1898		return ret_val;
1899
1900	if (!link) {
1901		e_dbg("Phy info is only valid if link is up\n");
1902		return -E1000_ERR_CONFIG;
1903	}
1904
1905	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1906	if (ret_val)
1907		return ret_val;
1908
1909	phy->polarity_correction = !!(phy_data &
1910				      M88E1000_PSCR_POLARITY_REVERSAL);
1911
1912	ret_val = e1000_check_polarity_m88(hw);
1913	if (ret_val)
1914		return ret_val;
1915
1916	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1917	if (ret_val)
1918		return ret_val;
1919
1920	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1921
1922	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1923		ret_val = hw->phy.ops.get_cable_length(hw);
1924		if (ret_val)
1925			return ret_val;
1926
1927		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1928		if (ret_val)
1929			return ret_val;
1930
1931		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1932		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1933
1934		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1935		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1936	} else {
1937		/* Set values to "undefined" */
1938		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1939		phy->local_rx = e1000_1000t_rx_status_undefined;
1940		phy->remote_rx = e1000_1000t_rx_status_undefined;
1941	}
1942
1943	return ret_val;
1944}
1945
1946/**
1947 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1948 *  @hw: pointer to the HW structure
1949 *
1950 *  Read PHY status to determine if link is up.  If link is up, then
1951 *  set/determine 10base-T extended distance and polarity correction.  Read
1952 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1953 *  determine on the cable length, local and remote receiver.
1954 **/
1955s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1956{
1957	struct e1000_phy_info *phy = &hw->phy;
1958	s32 ret_val;
1959	u16 data;
1960	bool link;
1961
1962	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1963	if (ret_val)
1964		return ret_val;
1965
1966	if (!link) {
1967		e_dbg("Phy info is only valid if link is up\n");
1968		return -E1000_ERR_CONFIG;
1969	}
1970
1971	phy->polarity_correction = true;
1972
1973	ret_val = e1000_check_polarity_igp(hw);
1974	if (ret_val)
1975		return ret_val;
1976
1977	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1978	if (ret_val)
1979		return ret_val;
1980
1981	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1982
1983	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1984	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1985		ret_val = phy->ops.get_cable_length(hw);
1986		if (ret_val)
1987			return ret_val;
1988
1989		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
1990		if (ret_val)
1991			return ret_val;
1992
1993		phy->local_rx = (data & LPA_1000LOCALRXOK)
1994		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1995
1996		phy->remote_rx = (data & LPA_1000REMRXOK)
1997		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1998	} else {
1999		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2000		phy->local_rx = e1000_1000t_rx_status_undefined;
2001		phy->remote_rx = e1000_1000t_rx_status_undefined;
2002	}
2003
2004	return ret_val;
2005}
2006
2007/**
2008 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2009 *  @hw: pointer to the HW structure
2010 *
2011 *  Populates "phy" structure with various feature states.
2012 **/
2013s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2014{
2015	struct e1000_phy_info *phy = &hw->phy;
2016	s32 ret_val;
2017	u16 data;
2018	bool link;
2019
2020	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2021	if (ret_val)
2022		return ret_val;
2023
2024	if (!link) {
2025		e_dbg("Phy info is only valid if link is up\n");
2026		return -E1000_ERR_CONFIG;
2027	}
2028
2029	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2030	if (ret_val)
2031		return ret_val;
2032	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2033
2034	if (phy->polarity_correction) {
2035		ret_val = e1000_check_polarity_ife(hw);
2036		if (ret_val)
2037			return ret_val;
2038	} else {
2039		/* Polarity is forced */
2040		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2041				       ? e1000_rev_polarity_reversed
2042				       : e1000_rev_polarity_normal);
2043	}
2044
2045	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2046	if (ret_val)
2047		return ret_val;
2048
2049	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2050
2051	/* The following parameters are undefined for 10/100 operation. */
2052	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2053	phy->local_rx = e1000_1000t_rx_status_undefined;
2054	phy->remote_rx = e1000_1000t_rx_status_undefined;
2055
2056	return 0;
2057}
2058
2059/**
2060 *  e1000e_phy_sw_reset - PHY software reset
2061 *  @hw: pointer to the HW structure
2062 *
2063 *  Does a software reset of the PHY by reading the PHY control register and
2064 *  setting/write the control register reset bit to the PHY.
2065 **/
2066s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2067{
2068	s32 ret_val;
2069	u16 phy_ctrl;
2070
2071	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2072	if (ret_val)
2073		return ret_val;
2074
2075	phy_ctrl |= BMCR_RESET;
2076	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2077	if (ret_val)
2078		return ret_val;
2079
2080	udelay(1);
2081
2082	return ret_val;
2083}
2084
2085/**
2086 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2087 *  @hw: pointer to the HW structure
2088 *
2089 *  Verify the reset block is not blocking us from resetting.  Acquire
2090 *  semaphore (if necessary) and read/set/write the device control reset
2091 *  bit in the PHY.  Wait the appropriate delay time for the device to
2092 *  reset and release the semaphore (if necessary).
2093 **/
2094s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2095{
2096	struct e1000_phy_info *phy = &hw->phy;
2097	s32 ret_val;
2098	u32 ctrl;
2099
2100	if (phy->ops.check_reset_block) {
2101		ret_val = phy->ops.check_reset_block(hw);
2102		if (ret_val)
2103			return 0;
2104	}
2105
2106	ret_val = phy->ops.acquire(hw);
2107	if (ret_val)
2108		return ret_val;
2109
2110	ctrl = er32(CTRL);
2111	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2112	e1e_flush();
2113
2114	udelay(phy->reset_delay_us);
2115
2116	ew32(CTRL, ctrl);
2117	e1e_flush();
2118
2119	usleep_range(150, 300);
2120
2121	phy->ops.release(hw);
2122
2123	return phy->ops.get_cfg_done(hw);
2124}
2125
2126/**
2127 *  e1000e_get_cfg_done_generic - Generic configuration done
2128 *  @hw: pointer to the HW structure
2129 *
2130 *  Generic function to wait 10 milli-seconds for configuration to complete
2131 *  and return success.
2132 **/
2133s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2134{
2135	mdelay(10);
2136
2137	return 0;
2138}
2139
2140/**
2141 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2142 *  @hw: pointer to the HW structure
2143 *
2144 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2145 **/
2146s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2147{
2148	e_dbg("Running IGP 3 PHY init script\n");
2149
2150	/* PHY init IGP 3 */
2151	/* Enable rise/fall, 10-mode work in class-A */
2152	e1e_wphy(hw, 0x2F5B, 0x9018);
2153	/* Remove all caps from Replica path filter */
2154	e1e_wphy(hw, 0x2F52, 0x0000);
2155	/* Bias trimming for ADC, AFE and Driver (Default) */
2156	e1e_wphy(hw, 0x2FB1, 0x8B24);
2157	/* Increase Hybrid poly bias */
2158	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2159	/* Add 4% to Tx amplitude in Gig mode */
2160	e1e_wphy(hw, 0x2010, 0x10B0);
2161	/* Disable trimming (TTT) */
2162	e1e_wphy(hw, 0x2011, 0x0000);
2163	/* Poly DC correction to 94.6% + 2% for all channels */
2164	e1e_wphy(hw, 0x20DD, 0x249A);
2165	/* ABS DC correction to 95.9% */
2166	e1e_wphy(hw, 0x20DE, 0x00D3);
2167	/* BG temp curve trim */
2168	e1e_wphy(hw, 0x28B4, 0x04CE);
2169	/* Increasing ADC OPAMP stage 1 currents to max */
2170	e1e_wphy(hw, 0x2F70, 0x29E4);
2171	/* Force 1000 ( required for enabling PHY regs configuration) */
2172	e1e_wphy(hw, 0x0000, 0x0140);
2173	/* Set upd_freq to 6 */
2174	e1e_wphy(hw, 0x1F30, 0x1606);
2175	/* Disable NPDFE */
2176	e1e_wphy(hw, 0x1F31, 0xB814);
2177	/* Disable adaptive fixed FFE (Default) */
2178	e1e_wphy(hw, 0x1F35, 0x002A);
2179	/* Enable FFE hysteresis */
2180	e1e_wphy(hw, 0x1F3E, 0x0067);
2181	/* Fixed FFE for short cable lengths */
2182	e1e_wphy(hw, 0x1F54, 0x0065);
2183	/* Fixed FFE for medium cable lengths */
2184	e1e_wphy(hw, 0x1F55, 0x002A);
2185	/* Fixed FFE for long cable lengths */
2186	e1e_wphy(hw, 0x1F56, 0x002A);
2187	/* Enable Adaptive Clip Threshold */
2188	e1e_wphy(hw, 0x1F72, 0x3FB0);
2189	/* AHT reset limit to 1 */
2190	e1e_wphy(hw, 0x1F76, 0xC0FF);
2191	/* Set AHT master delay to 127 msec */
2192	e1e_wphy(hw, 0x1F77, 0x1DEC);
2193	/* Set scan bits for AHT */
2194	e1e_wphy(hw, 0x1F78, 0xF9EF);
2195	/* Set AHT Preset bits */
2196	e1e_wphy(hw, 0x1F79, 0x0210);
2197	/* Change integ_factor of channel A to 3 */
2198	e1e_wphy(hw, 0x1895, 0x0003);
2199	/* Change prop_factor of channels BCD to 8 */
2200	e1e_wphy(hw, 0x1796, 0x0008);
2201	/* Change cg_icount + enable integbp for channels BCD */
2202	e1e_wphy(hw, 0x1798, 0xD008);
2203	/* Change cg_icount + enable integbp + change prop_factor_master
2204	 * to 8 for channel A
2205	 */
2206	e1e_wphy(hw, 0x1898, 0xD918);
2207	/* Disable AHT in Slave mode on channel A */
2208	e1e_wphy(hw, 0x187A, 0x0800);
2209	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2210	 * Enable SPD+B2B
2211	 */
2212	e1e_wphy(hw, 0x0019, 0x008D);
2213	/* Enable restart AN on an1000_dis change */
2214	e1e_wphy(hw, 0x001B, 0x2080);
2215	/* Enable wh_fifo read clock in 10/100 modes */
2216	e1e_wphy(hw, 0x0014, 0x0045);
2217	/* Restart AN, Speed selection is 1000 */
2218	e1e_wphy(hw, 0x0000, 0x1340);
2219
2220	return 0;
2221}
2222
2223/**
2224 *  e1000e_get_phy_type_from_id - Get PHY type from id
2225 *  @phy_id: phy_id read from the phy
2226 *
2227 *  Returns the phy type from the id.
2228 **/
2229enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2230{
2231	enum e1000_phy_type phy_type = e1000_phy_unknown;
2232
2233	switch (phy_id) {
2234	case M88E1000_I_PHY_ID:
2235	case M88E1000_E_PHY_ID:
2236	case M88E1111_I_PHY_ID:
2237	case M88E1011_I_PHY_ID:
2238		phy_type = e1000_phy_m88;
2239		break;
2240	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2241		phy_type = e1000_phy_igp_2;
2242		break;
2243	case GG82563_E_PHY_ID:
2244		phy_type = e1000_phy_gg82563;
2245		break;
2246	case IGP03E1000_E_PHY_ID:
2247		phy_type = e1000_phy_igp_3;
2248		break;
2249	case IFE_E_PHY_ID:
2250	case IFE_PLUS_E_PHY_ID:
2251	case IFE_C_E_PHY_ID:
2252		phy_type = e1000_phy_ife;
2253		break;
2254	case BME1000_E_PHY_ID:
2255	case BME1000_E_PHY_ID_R2:
2256		phy_type = e1000_phy_bm;
2257		break;
2258	case I82578_E_PHY_ID:
2259		phy_type = e1000_phy_82578;
2260		break;
2261	case I82577_E_PHY_ID:
2262		phy_type = e1000_phy_82577;
2263		break;
2264	case I82579_E_PHY_ID:
2265		phy_type = e1000_phy_82579;
2266		break;
2267	case I217_E_PHY_ID:
2268		phy_type = e1000_phy_i217;
2269		break;
2270	default:
2271		phy_type = e1000_phy_unknown;
2272		break;
2273	}
2274	return phy_type;
2275}
2276
2277/**
2278 *  e1000e_determine_phy_address - Determines PHY address.
2279 *  @hw: pointer to the HW structure
2280 *
2281 *  This uses a trial and error method to loop through possible PHY
2282 *  addresses. It tests each by reading the PHY ID registers and
2283 *  checking for a match.
2284 **/
2285s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2286{
2287	u32 phy_addr = 0;
2288	u32 i;
2289	enum e1000_phy_type phy_type = e1000_phy_unknown;
2290
2291	hw->phy.id = phy_type;
2292
2293	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2294		hw->phy.addr = phy_addr;
2295		i = 0;
2296
2297		do {
2298			e1000e_get_phy_id(hw);
2299			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2300
2301			/* If phy_type is valid, break - we found our
2302			 * PHY address
2303			 */
2304			if (phy_type != e1000_phy_unknown)
2305				return 0;
2306
2307			usleep_range(1000, 2000);
2308			i++;
2309		} while (i < 10);
2310	}
2311
2312	return -E1000_ERR_PHY_TYPE;
2313}
2314
2315/**
2316 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2317 *  @page: page to access
2318 *  @reg: register to check
2319 *
2320 *  Returns the phy address for the page requested.
2321 **/
2322static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2323{
2324	u32 phy_addr = 2;
2325
2326	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2327		phy_addr = 1;
2328
2329	return phy_addr;
2330}
2331
2332/**
2333 *  e1000e_write_phy_reg_bm - Write BM PHY register
2334 *  @hw: pointer to the HW structure
2335 *  @offset: register offset to write to
2336 *  @data: data to write at register offset
2337 *
2338 *  Acquires semaphore, if necessary, then writes the data to PHY register
2339 *  at the offset.  Release any acquired semaphores before exiting.
2340 **/
2341s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2342{
2343	s32 ret_val;
2344	u32 page = offset >> IGP_PAGE_SHIFT;
2345
2346	ret_val = hw->phy.ops.acquire(hw);
2347	if (ret_val)
2348		return ret_val;
2349
2350	/* Page 800 works differently than the rest so it has its own func */
2351	if (page == BM_WUC_PAGE) {
2352		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2353							 false, false);
2354		goto release;
2355	}
2356
2357	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2358
2359	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2360		u32 page_shift, page_select;
2361
2362		/* Page select is register 31 for phy address 1 and 22 for
2363		 * phy address 2 and 3. Page select is shifted only for
2364		 * phy address 1.
2365		 */
2366		if (hw->phy.addr == 1) {
2367			page_shift = IGP_PAGE_SHIFT;
2368			page_select = IGP01E1000_PHY_PAGE_SELECT;
2369		} else {
2370			page_shift = 0;
2371			page_select = BM_PHY_PAGE_SELECT;
2372		}
2373
2374		/* Page is shifted left, PHY expects (page x 32) */
2375		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2376						    (page << page_shift));
2377		if (ret_val)
2378			goto release;
2379	}
2380
2381	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2382					    data);
2383
2384release:
2385	hw->phy.ops.release(hw);
2386	return ret_val;
2387}
2388
2389/**
2390 *  e1000e_read_phy_reg_bm - Read BM PHY register
2391 *  @hw: pointer to the HW structure
2392 *  @offset: register offset to be read
2393 *  @data: pointer to the read data
2394 *
2395 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2396 *  and storing the retrieved information in data.  Release any acquired
2397 *  semaphores before exiting.
2398 **/
2399s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2400{
2401	s32 ret_val;
2402	u32 page = offset >> IGP_PAGE_SHIFT;
2403
2404	ret_val = hw->phy.ops.acquire(hw);
2405	if (ret_val)
2406		return ret_val;
2407
2408	/* Page 800 works differently than the rest so it has its own func */
2409	if (page == BM_WUC_PAGE) {
2410		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2411							 true, false);
2412		goto release;
2413	}
2414
2415	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2416
2417	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2418		u32 page_shift, page_select;
2419
2420		/* Page select is register 31 for phy address 1 and 22 for
2421		 * phy address 2 and 3. Page select is shifted only for
2422		 * phy address 1.
2423		 */
2424		if (hw->phy.addr == 1) {
2425			page_shift = IGP_PAGE_SHIFT;
2426			page_select = IGP01E1000_PHY_PAGE_SELECT;
2427		} else {
2428			page_shift = 0;
2429			page_select = BM_PHY_PAGE_SELECT;
2430		}
2431
2432		/* Page is shifted left, PHY expects (page x 32) */
2433		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2434						    (page << page_shift));
2435		if (ret_val)
2436			goto release;
2437	}
2438
2439	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2440					   data);
2441release:
2442	hw->phy.ops.release(hw);
2443	return ret_val;
2444}
2445
2446/**
2447 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2448 *  @hw: pointer to the HW structure
2449 *  @offset: register offset to be read
2450 *  @data: pointer to the read data
2451 *
2452 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2453 *  and storing the retrieved information in data.  Release any acquired
2454 *  semaphores before exiting.
2455 **/
2456s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2457{
2458	s32 ret_val;
2459	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2460
2461	ret_val = hw->phy.ops.acquire(hw);
2462	if (ret_val)
2463		return ret_val;
2464
2465	/* Page 800 works differently than the rest so it has its own func */
2466	if (page == BM_WUC_PAGE) {
2467		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2468							 true, false);
2469		goto release;
2470	}
2471
2472	hw->phy.addr = 1;
2473
2474	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2475		/* Page is shifted left, PHY expects (page x 32) */
2476		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2477						    page);
2478
2479		if (ret_val)
2480			goto release;
2481	}
2482
2483	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2484					   data);
2485release:
2486	hw->phy.ops.release(hw);
2487	return ret_val;
2488}
2489
2490/**
2491 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2492 *  @hw: pointer to the HW structure
2493 *  @offset: register offset to write to
2494 *  @data: data to write at register offset
2495 *
2496 *  Acquires semaphore, if necessary, then writes the data to PHY register
2497 *  at the offset.  Release any acquired semaphores before exiting.
2498 **/
2499s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2500{
2501	s32 ret_val;
2502	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2503
2504	ret_val = hw->phy.ops.acquire(hw);
2505	if (ret_val)
2506		return ret_val;
2507
2508	/* Page 800 works differently than the rest so it has its own func */
2509	if (page == BM_WUC_PAGE) {
2510		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2511							 false, false);
2512		goto release;
2513	}
2514
2515	hw->phy.addr = 1;
2516
2517	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2518		/* Page is shifted left, PHY expects (page x 32) */
2519		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2520						    page);
2521
2522		if (ret_val)
2523			goto release;
2524	}
2525
2526	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2527					    data);
2528
2529release:
2530	hw->phy.ops.release(hw);
2531	return ret_val;
2532}
2533
2534/**
2535 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2536 *  @hw: pointer to the HW structure
2537 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2538 *
2539 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2540 *  address to store contents of the BM_WUC_ENABLE_REG register.
2541 **/
2542s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2543{
2544	s32 ret_val;
2545	u16 temp;
2546
2547	/* All page select, port ctrl and wakeup registers use phy address 1 */
2548	hw->phy.addr = 1;
2549
2550	/* Select Port Control Registers page */
2551	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2552	if (ret_val) {
2553		e_dbg("Could not set Port Control page\n");
2554		return ret_val;
2555	}
2556
2557	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2558	if (ret_val) {
2559		e_dbg("Could not read PHY register %d.%d\n",
2560		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2561		return ret_val;
2562	}
2563
2564	/* Enable both PHY wakeup mode and Wakeup register page writes.
2565	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2566	 */
2567	temp = *phy_reg;
2568	temp |= BM_WUC_ENABLE_BIT;
2569	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2570
2571	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2572	if (ret_val) {
2573		e_dbg("Could not write PHY register %d.%d\n",
2574		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2575		return ret_val;
2576	}
2577
2578	/* Select Host Wakeup Registers page - caller now able to write
2579	 * registers on the Wakeup registers page
2580	 */
2581	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2582}
2583
2584/**
2585 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2586 *  @hw: pointer to the HW structure
2587 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2588 *
2589 *  Restore BM_WUC_ENABLE_REG to its original value.
2590 *
2591 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2592 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2593 *  caller.
2594 **/
2595s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2596{
2597	s32 ret_val;
2598
2599	/* Select Port Control Registers page */
2600	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2601	if (ret_val) {
2602		e_dbg("Could not set Port Control page\n");
2603		return ret_val;
2604	}
2605
2606	/* Restore 769.17 to its original value */
2607	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2608	if (ret_val)
2609		e_dbg("Could not restore PHY register %d.%d\n",
2610		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2611
2612	return ret_val;
2613}
2614
2615/**
2616 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2617 *  @hw: pointer to the HW structure
2618 *  @offset: register offset to be read or written
2619 *  @data: pointer to the data to read or write
2620 *  @read: determines if operation is read or write
2621 *  @page_set: BM_WUC_PAGE already set and access enabled
2622 *
2623 *  Read the PHY register at offset and store the retrieved information in
2624 *  data, or write data to PHY register at offset.  Note the procedure to
2625 *  access the PHY wakeup registers is different than reading the other PHY
2626 *  registers. It works as such:
2627 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2628 *  2) Set page to 800 for host (801 if we were manageability)
2629 *  3) Write the address using the address opcode (0x11)
2630 *  4) Read or write the data using the data opcode (0x12)
2631 *  5) Restore 769.17.2 to its original value
2632 *
2633 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2634 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2635 *
2636 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2637 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2638 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2639 **/
2640static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2641					  u16 *data, bool read, bool page_set)
2642{
2643	s32 ret_val;
2644	u16 reg = BM_PHY_REG_NUM(offset);
2645	u16 page = BM_PHY_REG_PAGE(offset);
2646	u16 phy_reg = 0;
2647
2648	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2649	if ((hw->mac.type == e1000_pchlan) &&
2650	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2651		e_dbg("Attempting to access page %d while gig enabled.\n",
2652		      page);
2653
2654	if (!page_set) {
2655		/* Enable access to PHY wakeup registers */
2656		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2657		if (ret_val) {
2658			e_dbg("Could not enable PHY wakeup reg access\n");
2659			return ret_val;
2660		}
2661	}
2662
2663	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2664
2665	/* Write the Wakeup register page offset value using opcode 0x11 */
2666	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2667	if (ret_val) {
2668		e_dbg("Could not write address opcode to page %d\n", page);
2669		return ret_val;
2670	}
2671
2672	if (read) {
2673		/* Read the Wakeup register page value using opcode 0x12 */
2674		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2675						   data);
2676	} else {
2677		/* Write the Wakeup register page value using opcode 0x12 */
2678		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2679						    *data);
2680	}
2681
2682	if (ret_val) {
2683		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2684		return ret_val;
2685	}
2686
2687	if (!page_set)
2688		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2689
2690	return ret_val;
2691}
2692
2693/**
2694 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2695 * @hw: pointer to the HW structure
2696 *
2697 * In the case of a PHY power down to save power, or to turn off link during a
2698 * driver unload, or wake on lan is not enabled, restore the link to previous
2699 * settings.
2700 **/
2701void e1000_power_up_phy_copper(struct e1000_hw *hw)
2702{
2703	u16 mii_reg = 0;
2704	int ret;
2705
2706	/* The PHY will retain its settings across a power down/up cycle */
2707	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2708	if (ret) {
2709		e_dbg("Error reading PHY register\n");
2710		return;
2711	}
2712	mii_reg &= ~BMCR_PDOWN;
2713	e1e_wphy(hw, MII_BMCR, mii_reg);
2714}
2715
2716/**
2717 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2718 * @hw: pointer to the HW structure
2719 *
2720 * In the case of a PHY power down to save power, or to turn off link during a
2721 * driver unload, or wake on lan is not enabled, restore the link to previous
2722 * settings.
2723 **/
2724void e1000_power_down_phy_copper(struct e1000_hw *hw)
2725{
2726	u16 mii_reg = 0;
2727	int ret;
2728
2729	/* The PHY will retain its settings across a power down/up cycle */
2730	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2731	if (ret) {
2732		e_dbg("Error reading PHY register\n");
2733		return;
2734	}
2735	mii_reg |= BMCR_PDOWN;
2736	e1e_wphy(hw, MII_BMCR, mii_reg);
2737	usleep_range(1000, 2000);
2738}
2739
2740/**
2741 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2742 *  @hw: pointer to the HW structure
2743 *  @offset: register offset to be read
2744 *  @data: pointer to the read data
2745 *  @locked: semaphore has already been acquired or not
2746 *  @page_set: BM_WUC_PAGE already set and access enabled
2747 *
2748 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2749 *  and stores the retrieved information in data.  Release any acquired
2750 *  semaphore before exiting.
2751 **/
2752static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2753				   bool locked, bool page_set)
2754{
2755	s32 ret_val;
2756	u16 page = BM_PHY_REG_PAGE(offset);
2757	u16 reg = BM_PHY_REG_NUM(offset);
2758	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2759
2760	if (!locked) {
2761		ret_val = hw->phy.ops.acquire(hw);
2762		if (ret_val)
2763			return ret_val;
2764	}
2765
2766	/* Page 800 works differently than the rest so it has its own func */
2767	if (page == BM_WUC_PAGE) {
2768		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2769							 true, page_set);
2770		goto out;
2771	}
2772
2773	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2774		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2775							 data, true);
2776		goto out;
2777	}
2778
2779	if (!page_set) {
2780		if (page == HV_INTC_FC_PAGE_START)
2781			page = 0;
2782
2783		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2784			/* Page is shifted left, PHY expects (page x 32) */
2785			ret_val = e1000_set_page_igp(hw,
2786						     (page << IGP_PAGE_SHIFT));
2787
2788			hw->phy.addr = phy_addr;
2789
2790			if (ret_val)
2791				goto out;
2792		}
2793	}
2794
2795	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2796	      page << IGP_PAGE_SHIFT, reg);
2797
2798	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2799out:
2800	if (!locked)
2801		hw->phy.ops.release(hw);
2802
2803	return ret_val;
2804}
2805
2806/**
2807 *  e1000_read_phy_reg_hv -  Read HV PHY register
2808 *  @hw: pointer to the HW structure
2809 *  @offset: register offset to be read
2810 *  @data: pointer to the read data
2811 *
2812 *  Acquires semaphore then reads the PHY register at offset and stores
2813 *  the retrieved information in data.  Release the acquired semaphore
2814 *  before exiting.
2815 **/
2816s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2817{
2818	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2819}
2820
2821/**
2822 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2823 *  @hw: pointer to the HW structure
2824 *  @offset: register offset to be read
2825 *  @data: pointer to the read data
2826 *
2827 *  Reads the PHY register at offset and stores the retrieved information
2828 *  in data.  Assumes semaphore already acquired.
2829 **/
2830s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2831{
2832	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2833}
2834
2835/**
2836 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2837 *  @hw: pointer to the HW structure
2838 *  @offset: register offset to write to
2839 *  @data: data to write at register offset
2840 *
2841 *  Reads the PHY register at offset and stores the retrieved information
2842 *  in data.  Assumes semaphore already acquired and page already set.
2843 **/
2844s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2845{
2846	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2847}
2848
2849/**
2850 *  __e1000_write_phy_reg_hv - Write HV PHY register
2851 *  @hw: pointer to the HW structure
2852 *  @offset: register offset to write to
2853 *  @data: data to write at register offset
2854 *  @locked: semaphore has already been acquired or not
2855 *  @page_set: BM_WUC_PAGE already set and access enabled
2856 *
2857 *  Acquires semaphore, if necessary, then writes the data to PHY register
2858 *  at the offset.  Release any acquired semaphores before exiting.
2859 **/
2860static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2861				    bool locked, bool page_set)
2862{
2863	s32 ret_val;
2864	u16 page = BM_PHY_REG_PAGE(offset);
2865	u16 reg = BM_PHY_REG_NUM(offset);
2866	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2867
2868	if (!locked) {
2869		ret_val = hw->phy.ops.acquire(hw);
2870		if (ret_val)
2871			return ret_val;
2872	}
2873
2874	/* Page 800 works differently than the rest so it has its own func */
2875	if (page == BM_WUC_PAGE) {
2876		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2877							 false, page_set);
2878		goto out;
2879	}
2880
2881	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2882		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2883							 &data, false);
2884		goto out;
2885	}
2886
2887	if (!page_set) {
2888		if (page == HV_INTC_FC_PAGE_START)
2889			page = 0;
2890
2891		/* Workaround MDIO accesses being disabled after entering IEEE
2892		 * Power Down (when bit 11 of the PHY Control register is set)
2893		 */
2894		if ((hw->phy.type == e1000_phy_82578) &&
2895		    (hw->phy.revision >= 1) &&
2896		    (hw->phy.addr == 2) &&
2897		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2898			u16 data2 = 0x7EFF;
2899
2900			ret_val = e1000_access_phy_debug_regs_hv(hw,
2901								 BIT(6) | 0x3,
2902								 &data2, false);
2903			if (ret_val)
2904				goto out;
2905		}
2906
2907		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2908			/* Page is shifted left, PHY expects (page x 32) */
2909			ret_val = e1000_set_page_igp(hw,
2910						     (page << IGP_PAGE_SHIFT));
2911
2912			hw->phy.addr = phy_addr;
2913
2914			if (ret_val)
2915				goto out;
2916		}
2917	}
2918
2919	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2920	      page << IGP_PAGE_SHIFT, reg);
2921
2922	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2923					    data);
2924
2925out:
2926	if (!locked)
2927		hw->phy.ops.release(hw);
2928
2929	return ret_val;
2930}
2931
2932/**
2933 *  e1000_write_phy_reg_hv - Write HV PHY register
2934 *  @hw: pointer to the HW structure
2935 *  @offset: register offset to write to
2936 *  @data: data to write at register offset
2937 *
2938 *  Acquires semaphore then writes the data to PHY register at the offset.
2939 *  Release the acquired semaphores before exiting.
2940 **/
2941s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2942{
2943	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2944}
2945
2946/**
2947 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2948 *  @hw: pointer to the HW structure
2949 *  @offset: register offset to write to
2950 *  @data: data to write at register offset
2951 *
2952 *  Writes the data to PHY register at the offset.  Assumes semaphore
2953 *  already acquired.
2954 **/
2955s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2956{
2957	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2958}
2959
2960/**
2961 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2962 *  @hw: pointer to the HW structure
2963 *  @offset: register offset to write to
2964 *  @data: data to write at register offset
2965 *
2966 *  Writes the data to PHY register at the offset.  Assumes semaphore
2967 *  already acquired and page already set.
2968 **/
2969s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2970{
2971	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2972}
2973
2974/**
2975 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2976 *  @page: page to be accessed
2977 **/
2978static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2979{
2980	u32 phy_addr = 2;
2981
2982	if (page >= HV_INTC_FC_PAGE_START)
2983		phy_addr = 1;
2984
2985	return phy_addr;
2986}
2987
2988/**
2989 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2990 *  @hw: pointer to the HW structure
2991 *  @offset: register offset to be read or written
2992 *  @data: pointer to the data to be read or written
2993 *  @read: determines if operation is read or write
2994 *
2995 *  Reads the PHY register at offset and stores the retrieved information
2996 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2997 *  to access these regs uses the address port and data port to read/write.
2998 *  These accesses done with PHY address 2 and without using pages.
2999 **/
3000static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3001					  u16 *data, bool read)
3002{
3003	s32 ret_val;
3004	u32 addr_reg;
3005	u32 data_reg;
3006
3007	/* This takes care of the difference with desktop vs mobile phy */
3008	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3009		    I82578_ADDR_REG : I82577_ADDR_REG);
3010	data_reg = addr_reg + 1;
3011
3012	/* All operations in this function are phy address 2 */
3013	hw->phy.addr = 2;
3014
3015	/* masking with 0x3F to remove the page from offset */
3016	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3017	if (ret_val) {
3018		e_dbg("Could not write the Address Offset port register\n");
3019		return ret_val;
3020	}
3021
3022	/* Read or write the data value next */
3023	if (read)
3024		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3025	else
3026		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3027
3028	if (ret_val)
3029		e_dbg("Could not access the Data port register\n");
3030
3031	return ret_val;
3032}
3033
3034/**
3035 *  e1000_link_stall_workaround_hv - Si workaround
3036 *  @hw: pointer to the HW structure
3037 *
3038 *  This function works around a Si bug where the link partner can get
3039 *  a link up indication before the PHY does.  If small packets are sent
3040 *  by the link partner they can be placed in the packet buffer without
3041 *  being properly accounted for by the PHY and will stall preventing
3042 *  further packets from being received.  The workaround is to clear the
3043 *  packet buffer after the PHY detects link up.
3044 **/
3045s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3046{
3047	s32 ret_val = 0;
3048	u16 data;
3049
3050	if (hw->phy.type != e1000_phy_82578)
3051		return 0;
3052
3053	/* Do not apply workaround if in PHY loopback bit 14 set */
3054	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3055	if (ret_val) {
3056		e_dbg("Error reading PHY register\n");
3057		return ret_val;
3058	}
3059	if (data & BMCR_LOOPBACK)
3060		return 0;
3061
3062	/* check if link is up and at 1Gbps */
3063	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3064	if (ret_val)
3065		return ret_val;
3066
3067	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3068		 BM_CS_STATUS_SPEED_MASK);
3069
3070	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3071		     BM_CS_STATUS_SPEED_1000))
3072		return 0;
3073
3074	msleep(200);
3075
3076	/* flush the packets in the fifo buffer */
3077	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3078			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3079			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3080	if (ret_val)
3081		return ret_val;
3082
3083	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3084}
3085
3086/**
3087 *  e1000_check_polarity_82577 - Checks the polarity.
3088 *  @hw: pointer to the HW structure
3089 *
3090 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3091 *
3092 *  Polarity is determined based on the PHY specific status register.
3093 **/
3094s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3095{
3096	struct e1000_phy_info *phy = &hw->phy;
3097	s32 ret_val;
3098	u16 data;
3099
3100	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3101
3102	if (!ret_val)
3103		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3104				       ? e1000_rev_polarity_reversed
3105				       : e1000_rev_polarity_normal);
3106
3107	return ret_val;
3108}
3109
3110/**
3111 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3112 *  @hw: pointer to the HW structure
3113 *
3114 *  Calls the PHY setup function to force speed and duplex.
3115 **/
3116s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3117{
3118	struct e1000_phy_info *phy = &hw->phy;
3119	s32 ret_val;
3120	u16 phy_data;
3121	bool link;
3122
3123	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3124	if (ret_val)
3125		return ret_val;
3126
3127	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3128
3129	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3130	if (ret_val)
3131		return ret_val;
3132
3133	udelay(1);
3134
3135	if (phy->autoneg_wait_to_complete) {
3136		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3137
3138		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3139						      100000, &link);
3140		if (ret_val)
3141			return ret_val;
3142
3143		if (!link)
3144			e_dbg("Link taking longer than expected.\n");
3145
3146		/* Try once more */
3147		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3148						      100000, &link);
3149	}
3150
3151	return ret_val;
3152}
3153
3154/**
3155 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3156 *  @hw: pointer to the HW structure
3157 *
3158 *  Read PHY status to determine if link is up.  If link is up, then
3159 *  set/determine 10base-T extended distance and polarity correction.  Read
3160 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3161 *  determine on the cable length, local and remote receiver.
3162 **/
3163s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3164{
3165	struct e1000_phy_info *phy = &hw->phy;
3166	s32 ret_val;
3167	u16 data;
3168	bool link;
3169
3170	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3171	if (ret_val)
3172		return ret_val;
3173
3174	if (!link) {
3175		e_dbg("Phy info is only valid if link is up\n");
3176		return -E1000_ERR_CONFIG;
3177	}
3178
3179	phy->polarity_correction = true;
3180
3181	ret_val = e1000_check_polarity_82577(hw);
3182	if (ret_val)
3183		return ret_val;
3184
3185	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3186	if (ret_val)
3187		return ret_val;
3188
3189	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3190
3191	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3192	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3193		ret_val = hw->phy.ops.get_cable_length(hw);
3194		if (ret_val)
3195			return ret_val;
3196
3197		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3198		if (ret_val)
3199			return ret_val;
3200
3201		phy->local_rx = (data & LPA_1000LOCALRXOK)
3202		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3203
3204		phy->remote_rx = (data & LPA_1000REMRXOK)
3205		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3206	} else {
3207		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3208		phy->local_rx = e1000_1000t_rx_status_undefined;
3209		phy->remote_rx = e1000_1000t_rx_status_undefined;
3210	}
3211
3212	return 0;
3213}
3214
3215/**
3216 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3217 *  @hw: pointer to the HW structure
3218 *
3219 * Reads the diagnostic status register and verifies result is valid before
3220 * placing it in the phy_cable_length field.
3221 **/
3222s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3223{
3224	struct e1000_phy_info *phy = &hw->phy;
3225	s32 ret_val;
3226	u16 phy_data, length;
3227
3228	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3229	if (ret_val)
3230		return ret_val;
3231
3232	length = FIELD_GET(I82577_DSTATUS_CABLE_LENGTH, phy_data);
3233
3234	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3235		return -E1000_ERR_PHY;
3236
3237	phy->cable_length = length;
3238
3239	return 0;
3240}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include "e1000.h"
   5#include <linux/ethtool.h>
   6
   7static s32 e1000_wait_autoneg(struct e1000_hw *hw);
   8static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   9					  u16 *data, bool read, bool page_set);
  10static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  11static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  12					  u16 *data, bool read);
  13
  14/* Cable length tables */
  15static const u16 e1000_m88_cable_length_table[] = {
  16	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  17};
  18
  19#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  20		ARRAY_SIZE(e1000_m88_cable_length_table)
  21
  22static const u16 e1000_igp_2_cable_length_table[] = {
  23	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  24	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  25	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  26	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  27	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  28	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  29	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  30	124
  31};
  32
  33#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  34		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  35
  36/**
  37 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  38 *  @hw: pointer to the HW structure
  39 *
  40 *  Read the PHY management control register and check whether a PHY reset
  41 *  is blocked.  If a reset is not blocked return 0, otherwise
  42 *  return E1000_BLK_PHY_RESET (12).
  43 **/
  44s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  45{
  46	u32 manc;
  47
  48	manc = er32(MANC);
  49
  50	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  51}
  52
  53/**
  54 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  55 *  @hw: pointer to the HW structure
  56 *
  57 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  58 *  revision in the hardware structure.
  59 **/
  60s32 e1000e_get_phy_id(struct e1000_hw *hw)
  61{
  62	struct e1000_phy_info *phy = &hw->phy;
  63	s32 ret_val = 0;
  64	u16 phy_id;
  65	u16 retry_count = 0;
  66
  67	if (!phy->ops.read_reg)
  68		return 0;
  69
  70	while (retry_count < 2) {
  71		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  72		if (ret_val)
  73			return ret_val;
  74
  75		phy->id = (u32)(phy_id << 16);
  76		usleep_range(20, 40);
  77		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  78		if (ret_val)
  79			return ret_val;
  80
  81		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  82		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  83
  84		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  85			return 0;
  86
  87		retry_count++;
  88	}
  89
  90	return 0;
  91}
  92
  93/**
  94 *  e1000e_phy_reset_dsp - Reset PHY DSP
  95 *  @hw: pointer to the HW structure
  96 *
  97 *  Reset the digital signal processor.
  98 **/
  99s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 100{
 101	s32 ret_val;
 102
 103	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 104	if (ret_val)
 105		return ret_val;
 106
 107	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 108}
 109
 110void e1000e_disable_phy_retry(struct e1000_hw *hw)
 111{
 112	hw->phy.retry_enabled = false;
 113}
 114
 115void e1000e_enable_phy_retry(struct e1000_hw *hw)
 116{
 117	hw->phy.retry_enabled = true;
 118}
 119
 120/**
 121 *  e1000e_read_phy_reg_mdic - Read MDI control register
 122 *  @hw: pointer to the HW structure
 123 *  @offset: register offset to be read
 124 *  @data: pointer to the read data
 125 *
 126 *  Reads the MDI control register in the PHY at offset and stores the
 127 *  information read to data.
 128 **/
 129s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 130{
 131	u32 i, mdic = 0, retry_counter, retry_max;
 132	struct e1000_phy_info *phy = &hw->phy;
 133	bool success;
 134
 135	if (offset > MAX_PHY_REG_ADDRESS) {
 136		e_dbg("PHY Address %d is out of range\n", offset);
 137		return -E1000_ERR_PARAM;
 138	}
 139
 140	retry_max = phy->retry_enabled ? phy->retry_count : 0;
 141
 142	/* Set up Op-code, Phy Address, and register offset in the MDI
 143	 * Control register.  The MAC will take care of interfacing with the
 144	 * PHY to retrieve the desired data.
 145	 */
 146	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
 147		success = true;
 148
 149		mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 150			(phy->addr << E1000_MDIC_PHY_SHIFT) |
 151			(E1000_MDIC_OP_READ));
 152
 153		ew32(MDIC, mdic);
 154
 155		/* Poll the ready bit to see if the MDI read completed
 156		 * Increasing the time out as testing showed failures with
 157		 * the lower time out
 158		 */
 159		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 160			udelay(50);
 161			mdic = er32(MDIC);
 162			if (mdic & E1000_MDIC_READY)
 163				break;
 164		}
 165		if (!(mdic & E1000_MDIC_READY)) {
 166			e_dbg("MDI Read PHY Reg Address %d did not complete\n",
 167			      offset);
 168			success = false;
 169		}
 170		if (mdic & E1000_MDIC_ERROR) {
 171			e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
 172			success = false;
 173		}
 174		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 175			e_dbg("MDI Read offset error - requested %d, returned %d\n",
 176			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 177			success = false;
 178		}
 179
 180		/* Allow some time after each MDIC transaction to avoid
 181		 * reading duplicate data in the next MDIC transaction.
 182		 */
 183		if (hw->mac.type == e1000_pch2lan)
 184			udelay(100);
 185
 186		if (success) {
 187			*data = (u16)mdic;
 188			return 0;
 189		}
 190
 191		if (retry_counter != retry_max) {
 192			e_dbg("Perform retry on PHY transaction...\n");
 193			mdelay(10);
 194		}
 195	}
 
 196
 197	return -E1000_ERR_PHY;
 
 
 
 
 
 198}
 199
 200/**
 201 *  e1000e_write_phy_reg_mdic - Write MDI control register
 202 *  @hw: pointer to the HW structure
 203 *  @offset: register offset to write to
 204 *  @data: data to write to register at offset
 205 *
 206 *  Writes data to MDI control register in the PHY at offset.
 207 **/
 208s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 209{
 210	u32 i, mdic = 0, retry_counter, retry_max;
 211	struct e1000_phy_info *phy = &hw->phy;
 212	bool success;
 213
 214	if (offset > MAX_PHY_REG_ADDRESS) {
 215		e_dbg("PHY Address %d is out of range\n", offset);
 216		return -E1000_ERR_PARAM;
 217	}
 218
 219	retry_max = phy->retry_enabled ? phy->retry_count : 0;
 220
 221	/* Set up Op-code, Phy Address, and register offset in the MDI
 222	 * Control register.  The MAC will take care of interfacing with the
 223	 * PHY to retrieve the desired data.
 224	 */
 225	for (retry_counter = 0; retry_counter <= retry_max; retry_counter++) {
 226		success = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227
 228		mdic = (((u32)data) |
 229			(offset << E1000_MDIC_REG_SHIFT) |
 230			(phy->addr << E1000_MDIC_PHY_SHIFT) |
 231			(E1000_MDIC_OP_WRITE));
 232
 233		ew32(MDIC, mdic);
 234
 235		/* Poll the ready bit to see if the MDI read completed
 236		 * Increasing the time out as testing showed failures with
 237		 * the lower time out
 238		 */
 239		for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 240			udelay(50);
 241			mdic = er32(MDIC);
 242			if (mdic & E1000_MDIC_READY)
 243				break;
 244		}
 245		if (!(mdic & E1000_MDIC_READY)) {
 246			e_dbg("MDI Write PHY Reg Address %d did not complete\n",
 247			      offset);
 248			success = false;
 249		}
 250		if (mdic & E1000_MDIC_ERROR) {
 251			e_dbg("MDI Write PHY Reg Address %d Error\n", offset);
 252			success = false;
 253		}
 254		if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 255			e_dbg("MDI Write offset error - requested %d, returned %d\n",
 256			      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 257			success = false;
 258		}
 259
 260		/* Allow some time after each MDIC transaction to avoid
 261		 * reading duplicate data in the next MDIC transaction.
 262		 */
 263		if (hw->mac.type == e1000_pch2lan)
 264			udelay(100);
 265
 266		if (success)
 267			return 0;
 268
 269		if (retry_counter != retry_max) {
 270			e_dbg("Perform retry on PHY transaction...\n");
 271			mdelay(10);
 272		}
 273	}
 274
 275	return -E1000_ERR_PHY;
 276}
 277
 278/**
 279 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 280 *  @hw: pointer to the HW structure
 281 *  @offset: register offset to be read
 282 *  @data: pointer to the read data
 283 *
 284 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 285 *  and storing the retrieved information in data.  Release any acquired
 286 *  semaphores before exiting.
 287 **/
 288s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 289{
 290	s32 ret_val;
 291
 292	ret_val = hw->phy.ops.acquire(hw);
 293	if (ret_val)
 294		return ret_val;
 295
 296	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 297					   data);
 298
 299	hw->phy.ops.release(hw);
 300
 301	return ret_val;
 302}
 303
 304/**
 305 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 306 *  @hw: pointer to the HW structure
 307 *  @offset: register offset to write to
 308 *  @data: data to write at register offset
 309 *
 310 *  Acquires semaphore, if necessary, then writes the data to PHY register
 311 *  at the offset.  Release any acquired semaphores before exiting.
 312 **/
 313s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 314{
 315	s32 ret_val;
 316
 317	ret_val = hw->phy.ops.acquire(hw);
 318	if (ret_val)
 319		return ret_val;
 320
 321	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 322					    data);
 323
 324	hw->phy.ops.release(hw);
 325
 326	return ret_val;
 327}
 328
 329/**
 330 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 331 *  @hw: pointer to the HW structure
 332 *  @page: page to set (shifted left when necessary)
 333 *
 334 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 335 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 336 *  must set it appropriately (if necessary) after this function returns.
 337 **/
 338s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 339{
 340	e_dbg("Setting page 0x%x\n", page);
 341
 342	hw->phy.addr = 1;
 343
 344	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 345}
 346
 347/**
 348 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 349 *  @hw: pointer to the HW structure
 350 *  @offset: register offset to be read
 351 *  @data: pointer to the read data
 352 *  @locked: semaphore has already been acquired or not
 353 *
 354 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 355 *  and stores the retrieved information in data.  Release any acquired
 356 *  semaphores before exiting.
 357 **/
 358static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 359				     bool locked)
 360{
 361	s32 ret_val = 0;
 362
 363	if (!locked) {
 364		if (!hw->phy.ops.acquire)
 365			return 0;
 366
 367		ret_val = hw->phy.ops.acquire(hw);
 368		if (ret_val)
 369			return ret_val;
 370	}
 371
 372	if (offset > MAX_PHY_MULTI_PAGE_REG)
 373		ret_val = e1000e_write_phy_reg_mdic(hw,
 374						    IGP01E1000_PHY_PAGE_SELECT,
 375						    (u16)offset);
 376	if (!ret_val)
 377		ret_val = e1000e_read_phy_reg_mdic(hw,
 378						   MAX_PHY_REG_ADDRESS & offset,
 379						   data);
 380	if (!locked)
 381		hw->phy.ops.release(hw);
 382
 383	return ret_val;
 384}
 385
 386/**
 387 *  e1000e_read_phy_reg_igp - Read igp PHY register
 388 *  @hw: pointer to the HW structure
 389 *  @offset: register offset to be read
 390 *  @data: pointer to the read data
 391 *
 392 *  Acquires semaphore then reads the PHY register at offset and stores the
 393 *  retrieved information in data.
 394 *  Release the acquired semaphore before exiting.
 395 **/
 396s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 397{
 398	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 399}
 400
 401/**
 402 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 403 *  @hw: pointer to the HW structure
 404 *  @offset: register offset to be read
 405 *  @data: pointer to the read data
 406 *
 407 *  Reads the PHY register at offset and stores the retrieved information
 408 *  in data.  Assumes semaphore already acquired.
 409 **/
 410s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 411{
 412	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 413}
 414
 415/**
 416 *  __e1000e_write_phy_reg_igp - Write igp PHY register
 417 *  @hw: pointer to the HW structure
 418 *  @offset: register offset to write to
 419 *  @data: data to write at register offset
 420 *  @locked: semaphore has already been acquired or not
 421 *
 422 *  Acquires semaphore, if necessary, then writes the data to PHY register
 423 *  at the offset.  Release any acquired semaphores before exiting.
 424 **/
 425static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 426				      bool locked)
 427{
 428	s32 ret_val = 0;
 429
 430	if (!locked) {
 431		if (!hw->phy.ops.acquire)
 432			return 0;
 433
 434		ret_val = hw->phy.ops.acquire(hw);
 435		if (ret_val)
 436			return ret_val;
 437	}
 438
 439	if (offset > MAX_PHY_MULTI_PAGE_REG)
 440		ret_val = e1000e_write_phy_reg_mdic(hw,
 441						    IGP01E1000_PHY_PAGE_SELECT,
 442						    (u16)offset);
 443	if (!ret_val)
 444		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 445						    offset, data);
 446	if (!locked)
 447		hw->phy.ops.release(hw);
 448
 449	return ret_val;
 450}
 451
 452/**
 453 *  e1000e_write_phy_reg_igp - Write igp PHY register
 454 *  @hw: pointer to the HW structure
 455 *  @offset: register offset to write to
 456 *  @data: data to write at register offset
 457 *
 458 *  Acquires semaphore then writes the data to PHY register
 459 *  at the offset.  Release any acquired semaphores before exiting.
 460 **/
 461s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 462{
 463	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 464}
 465
 466/**
 467 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 468 *  @hw: pointer to the HW structure
 469 *  @offset: register offset to write to
 470 *  @data: data to write at register offset
 471 *
 472 *  Writes the data to PHY register at the offset.
 473 *  Assumes semaphore already acquired.
 474 **/
 475s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 476{
 477	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 478}
 479
 480/**
 481 *  __e1000_read_kmrn_reg - Read kumeran register
 482 *  @hw: pointer to the HW structure
 483 *  @offset: register offset to be read
 484 *  @data: pointer to the read data
 485 *  @locked: semaphore has already been acquired or not
 486 *
 487 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 488 *  using the kumeran interface.  The information retrieved is stored in data.
 489 *  Release any acquired semaphores before exiting.
 490 **/
 491static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 492				 bool locked)
 493{
 494	u32 kmrnctrlsta;
 495
 496	if (!locked) {
 497		s32 ret_val = 0;
 498
 499		if (!hw->phy.ops.acquire)
 500			return 0;
 501
 502		ret_val = hw->phy.ops.acquire(hw);
 503		if (ret_val)
 504			return ret_val;
 505	}
 506
 507	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
 508		      E1000_KMRNCTRLSTA_REN;
 509	ew32(KMRNCTRLSTA, kmrnctrlsta);
 510	e1e_flush();
 511
 512	udelay(2);
 513
 514	kmrnctrlsta = er32(KMRNCTRLSTA);
 515	*data = (u16)kmrnctrlsta;
 516
 517	if (!locked)
 518		hw->phy.ops.release(hw);
 519
 520	return 0;
 521}
 522
 523/**
 524 *  e1000e_read_kmrn_reg -  Read kumeran register
 525 *  @hw: pointer to the HW structure
 526 *  @offset: register offset to be read
 527 *  @data: pointer to the read data
 528 *
 529 *  Acquires semaphore then reads the PHY register at offset using the
 530 *  kumeran interface.  The information retrieved is stored in data.
 531 *  Release the acquired semaphore before exiting.
 532 **/
 533s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 534{
 535	return __e1000_read_kmrn_reg(hw, offset, data, false);
 536}
 537
 538/**
 539 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 540 *  @hw: pointer to the HW structure
 541 *  @offset: register offset to be read
 542 *  @data: pointer to the read data
 543 *
 544 *  Reads the PHY register at offset using the kumeran interface.  The
 545 *  information retrieved is stored in data.
 546 *  Assumes semaphore already acquired.
 547 **/
 548s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 549{
 550	return __e1000_read_kmrn_reg(hw, offset, data, true);
 551}
 552
 553/**
 554 *  __e1000_write_kmrn_reg - Write kumeran register
 555 *  @hw: pointer to the HW structure
 556 *  @offset: register offset to write to
 557 *  @data: data to write at register offset
 558 *  @locked: semaphore has already been acquired or not
 559 *
 560 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 561 *  at the offset using the kumeran interface.  Release any acquired semaphores
 562 *  before exiting.
 563 **/
 564static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 565				  bool locked)
 566{
 567	u32 kmrnctrlsta;
 568
 569	if (!locked) {
 570		s32 ret_val = 0;
 571
 572		if (!hw->phy.ops.acquire)
 573			return 0;
 574
 575		ret_val = hw->phy.ops.acquire(hw);
 576		if (ret_val)
 577			return ret_val;
 578	}
 579
 580	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
 581	ew32(KMRNCTRLSTA, kmrnctrlsta);
 582	e1e_flush();
 583
 584	udelay(2);
 585
 586	if (!locked)
 587		hw->phy.ops.release(hw);
 588
 589	return 0;
 590}
 591
 592/**
 593 *  e1000e_write_kmrn_reg -  Write kumeran register
 594 *  @hw: pointer to the HW structure
 595 *  @offset: register offset to write to
 596 *  @data: data to write at register offset
 597 *
 598 *  Acquires semaphore then writes the data to the PHY register at the offset
 599 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 600 **/
 601s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 602{
 603	return __e1000_write_kmrn_reg(hw, offset, data, false);
 604}
 605
 606/**
 607 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 608 *  @hw: pointer to the HW structure
 609 *  @offset: register offset to write to
 610 *  @data: data to write at register offset
 611 *
 612 *  Write the data to PHY register at the offset using the kumeran interface.
 613 *  Assumes semaphore already acquired.
 614 **/
 615s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 616{
 617	return __e1000_write_kmrn_reg(hw, offset, data, true);
 618}
 619
 620/**
 621 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 622 *  @hw: pointer to the HW structure
 623 *
 624 *  Sets up Master/slave mode
 625 **/
 626static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 627{
 628	s32 ret_val;
 629	u16 phy_data;
 630
 631	/* Resolve Master/Slave mode */
 632	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 633	if (ret_val)
 634		return ret_val;
 635
 636	/* load defaults for future use */
 637	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 638	    ((phy_data & CTL1000_AS_MASTER) ?
 639	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 640
 641	switch (hw->phy.ms_type) {
 642	case e1000_ms_force_master:
 643		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 644		break;
 645	case e1000_ms_force_slave:
 646		phy_data |= CTL1000_ENABLE_MASTER;
 647		phy_data &= ~(CTL1000_AS_MASTER);
 648		break;
 649	case e1000_ms_auto:
 650		phy_data &= ~CTL1000_ENABLE_MASTER;
 651		fallthrough;
 652	default:
 653		break;
 654	}
 655
 656	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 657}
 658
 659/**
 660 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 661 *  @hw: pointer to the HW structure
 662 *
 663 *  Sets up Carrier-sense on Transmit and downshift values.
 664 **/
 665s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 666{
 667	s32 ret_val;
 668	u16 phy_data;
 669
 670	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 671	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 672	if (ret_val)
 673		return ret_val;
 674
 675	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 676
 677	/* Enable downshift */
 678	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 679
 680	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 681	if (ret_val)
 682		return ret_val;
 683
 684	/* Set MDI/MDIX mode */
 685	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 686	if (ret_val)
 687		return ret_val;
 688	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 689	/* Options:
 690	 *   0 - Auto (default)
 691	 *   1 - MDI mode
 692	 *   2 - MDI-X mode
 693	 */
 694	switch (hw->phy.mdix) {
 695	case 1:
 696		break;
 697	case 2:
 698		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 699		break;
 700	case 0:
 701	default:
 702		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 703		break;
 704	}
 705	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 706	if (ret_val)
 707		return ret_val;
 708
 709	return e1000_set_master_slave_mode(hw);
 710}
 711
 712/**
 713 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 714 *  @hw: pointer to the HW structure
 715 *
 716 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 717 *  and downshift values are set also.
 718 **/
 719s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 720{
 721	struct e1000_phy_info *phy = &hw->phy;
 722	s32 ret_val;
 723	u16 phy_data;
 724
 725	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 726	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 727	if (ret_val)
 728		return ret_val;
 729
 730	/* For BM PHY this bit is downshift enable */
 731	if (phy->type != e1000_phy_bm)
 732		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 733
 734	/* Options:
 735	 *   MDI/MDI-X = 0 (default)
 736	 *   0 - Auto for all speeds
 737	 *   1 - MDI mode
 738	 *   2 - MDI-X mode
 739	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 740	 */
 741	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 742
 743	switch (phy->mdix) {
 744	case 1:
 745		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 746		break;
 747	case 2:
 748		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 749		break;
 750	case 3:
 751		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 752		break;
 753	case 0:
 754	default:
 755		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 756		break;
 757	}
 758
 759	/* Options:
 760	 *   disable_polarity_correction = 0 (default)
 761	 *       Automatic Correction for Reversed Cable Polarity
 762	 *   0 - Disabled
 763	 *   1 - Enabled
 764	 */
 765	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 766	if (phy->disable_polarity_correction)
 767		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 768
 769	/* Enable downshift on BM (disabled by default) */
 770	if (phy->type == e1000_phy_bm) {
 771		/* For 82574/82583, first disable then enable downshift */
 772		if (phy->id == BME1000_E_PHY_ID_R2) {
 773			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 774			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 775					   phy_data);
 776			if (ret_val)
 777				return ret_val;
 778			/* Commit the changes. */
 779			ret_val = phy->ops.commit(hw);
 780			if (ret_val) {
 781				e_dbg("Error committing the PHY changes\n");
 782				return ret_val;
 783			}
 784		}
 785
 786		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 787	}
 788
 789	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 790	if (ret_val)
 791		return ret_val;
 792
 793	if ((phy->type == e1000_phy_m88) &&
 794	    (phy->revision < E1000_REVISION_4) &&
 795	    (phy->id != BME1000_E_PHY_ID_R2)) {
 796		/* Force TX_CLK in the Extended PHY Specific Control Register
 797		 * to 25MHz clock.
 798		 */
 799		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 800		if (ret_val)
 801			return ret_val;
 802
 803		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 804
 805		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 806			/* 82573L PHY - set the downshift counter to 5x. */
 807			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 808			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 809		} else {
 810			/* Configure Master and Slave downshift values */
 811			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 812				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 813			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 814				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 815		}
 816		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 817		if (ret_val)
 818			return ret_val;
 819	}
 820
 821	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 822		/* Set PHY page 0, register 29 to 0x0003 */
 823		ret_val = e1e_wphy(hw, 29, 0x0003);
 824		if (ret_val)
 825			return ret_val;
 826
 827		/* Set PHY page 0, register 30 to 0x0000 */
 828		ret_val = e1e_wphy(hw, 30, 0x0000);
 829		if (ret_val)
 830			return ret_val;
 831	}
 832
 833	/* Commit the changes. */
 834	if (phy->ops.commit) {
 835		ret_val = phy->ops.commit(hw);
 836		if (ret_val) {
 837			e_dbg("Error committing the PHY changes\n");
 838			return ret_val;
 839		}
 840	}
 841
 842	if (phy->type == e1000_phy_82578) {
 843		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 844		if (ret_val)
 845			return ret_val;
 846
 847		/* 82578 PHY - set the downshift count to 1x. */
 848		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 849		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 850		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 851		if (ret_val)
 852			return ret_val;
 853	}
 854
 855	return 0;
 856}
 857
 858/**
 859 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 860 *  @hw: pointer to the HW structure
 861 *
 862 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 863 *  igp PHY's.
 864 **/
 865s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 866{
 867	struct e1000_phy_info *phy = &hw->phy;
 868	s32 ret_val;
 869	u16 data;
 870
 871	ret_val = e1000_phy_hw_reset(hw);
 872	if (ret_val) {
 873		e_dbg("Error resetting the PHY.\n");
 874		return ret_val;
 875	}
 876
 877	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 878	 * timeout issues when LFS is enabled.
 879	 */
 880	msleep(100);
 881
 882	/* disable lplu d0 during driver init */
 883	if (hw->phy.ops.set_d0_lplu_state) {
 884		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 885		if (ret_val) {
 886			e_dbg("Error Disabling LPLU D0\n");
 887			return ret_val;
 888		}
 889	}
 890	/* Configure mdi-mdix settings */
 891	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 892	if (ret_val)
 893		return ret_val;
 894
 895	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 896
 897	switch (phy->mdix) {
 898	case 1:
 899		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 900		break;
 901	case 2:
 902		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 903		break;
 904	case 0:
 905	default:
 906		data |= IGP01E1000_PSCR_AUTO_MDIX;
 907		break;
 908	}
 909	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 910	if (ret_val)
 911		return ret_val;
 912
 913	/* set auto-master slave resolution settings */
 914	if (hw->mac.autoneg) {
 915		/* when autonegotiation advertisement is only 1000Mbps then we
 916		 * should disable SmartSpeed and enable Auto MasterSlave
 917		 * resolution as hardware default.
 918		 */
 919		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 920			/* Disable SmartSpeed */
 921			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 922					   &data);
 923			if (ret_val)
 924				return ret_val;
 925
 926			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 927			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 928					   data);
 929			if (ret_val)
 930				return ret_val;
 931
 932			/* Set auto Master/Slave resolution process */
 933			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 934			if (ret_val)
 935				return ret_val;
 936
 937			data &= ~CTL1000_ENABLE_MASTER;
 938			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 939			if (ret_val)
 940				return ret_val;
 941		}
 942
 943		ret_val = e1000_set_master_slave_mode(hw);
 944	}
 945
 946	return ret_val;
 947}
 948
 949/**
 950 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 951 *  @hw: pointer to the HW structure
 952 *
 953 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 954 *  register and if the PHY is already setup for auto-negotiation, then
 955 *  return successful.  Otherwise, setup advertisement and flow control to
 956 *  the appropriate values for the wanted auto-negotiation.
 957 **/
 958static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 959{
 960	struct e1000_phy_info *phy = &hw->phy;
 961	s32 ret_val;
 962	u16 mii_autoneg_adv_reg;
 963	u16 mii_1000t_ctrl_reg = 0;
 964
 965	phy->autoneg_advertised &= phy->autoneg_mask;
 966
 967	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 968	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 969	if (ret_val)
 970		return ret_val;
 971
 972	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 973		/* Read the MII 1000Base-T Control Register (Address 9). */
 974		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 975		if (ret_val)
 976			return ret_val;
 977	}
 978
 979	/* Need to parse both autoneg_advertised and fc and set up
 980	 * the appropriate PHY registers.  First we will parse for
 981	 * autoneg_advertised software override.  Since we can advertise
 982	 * a plethora of combinations, we need to check each bit
 983	 * individually.
 984	 */
 985
 986	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 987	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 988	 * the  1000Base-T Control Register (Address 9).
 989	 */
 990	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 991				 ADVERTISE_100HALF |
 992				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 993	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 994
 995	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 996
 997	/* Do we want to advertise 10 Mb Half Duplex? */
 998	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 999		e_dbg("Advertise 10mb Half duplex\n");
1000		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
1001	}
1002
1003	/* Do we want to advertise 10 Mb Full Duplex? */
1004	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1005		e_dbg("Advertise 10mb Full duplex\n");
1006		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
1007	}
1008
1009	/* Do we want to advertise 100 Mb Half Duplex? */
1010	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1011		e_dbg("Advertise 100mb Half duplex\n");
1012		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
1013	}
1014
1015	/* Do we want to advertise 100 Mb Full Duplex? */
1016	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1017		e_dbg("Advertise 100mb Full duplex\n");
1018		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
1019	}
1020
1021	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1022	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1023		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1024
1025	/* Do we want to advertise 1000 Mb Full Duplex? */
1026	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1027		e_dbg("Advertise 1000mb Full duplex\n");
1028		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1029	}
1030
1031	/* Check for a software override of the flow control settings, and
1032	 * setup the PHY advertisement registers accordingly.  If
1033	 * auto-negotiation is enabled, then software will have to set the
1034	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1035	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1036	 * negotiation.
1037	 *
1038	 * The possible values of the "fc" parameter are:
1039	 *      0:  Flow control is completely disabled
1040	 *      1:  Rx flow control is enabled (we can receive pause frames
1041	 *          but not send pause frames).
1042	 *      2:  Tx flow control is enabled (we can send pause frames
1043	 *          but we do not support receiving pause frames).
1044	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1045	 *  other:  No software override.  The flow control configuration
1046	 *          in the EEPROM is used.
1047	 */
1048	switch (hw->fc.current_mode) {
1049	case e1000_fc_none:
1050		/* Flow control (Rx & Tx) is completely disabled by a
1051		 * software over-ride.
1052		 */
1053		mii_autoneg_adv_reg &=
1054		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1055		phy->autoneg_advertised &=
1056		    ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1057		break;
1058	case e1000_fc_rx_pause:
1059		/* Rx Flow control is enabled, and Tx Flow control is
1060		 * disabled, by a software over-ride.
1061		 *
1062		 * Since there really isn't a way to advertise that we are
1063		 * capable of Rx Pause ONLY, we will advertise that we
1064		 * support both symmetric and asymmetric Rx PAUSE.  Later
1065		 * (in e1000e_config_fc_after_link_up) we will disable the
1066		 * hw's ability to send PAUSE frames.
1067		 */
1068		mii_autoneg_adv_reg |=
1069		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1070		phy->autoneg_advertised |=
1071		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1072		break;
1073	case e1000_fc_tx_pause:
1074		/* Tx Flow control is enabled, and Rx Flow control is
1075		 * disabled, by a software over-ride.
1076		 */
1077		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1078		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1079		phy->autoneg_advertised |= ADVERTISED_Asym_Pause;
1080		phy->autoneg_advertised &= ~ADVERTISED_Pause;
1081		break;
1082	case e1000_fc_full:
1083		/* Flow control (both Rx and Tx) is enabled by a software
1084		 * over-ride.
1085		 */
1086		mii_autoneg_adv_reg |=
1087		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1088		phy->autoneg_advertised |=
1089		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1090		break;
1091	default:
1092		e_dbg("Flow control param set incorrectly\n");
1093		return -E1000_ERR_CONFIG;
1094	}
1095
1096	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1097	if (ret_val)
1098		return ret_val;
1099
1100	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1101
1102	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1103		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1104
1105	return ret_val;
1106}
1107
1108/**
1109 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1110 *  @hw: pointer to the HW structure
1111 *
1112 *  Performs initial bounds checking on autoneg advertisement parameter, then
1113 *  configure to advertise the full capability.  Setup the PHY to autoneg
1114 *  and restart the negotiation process between the link partner.  If
1115 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1116 **/
1117static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1118{
1119	struct e1000_phy_info *phy = &hw->phy;
1120	s32 ret_val;
1121	u16 phy_ctrl;
1122
1123	/* Perform some bounds checking on the autoneg advertisement
1124	 * parameter.
1125	 */
1126	phy->autoneg_advertised &= phy->autoneg_mask;
1127
1128	/* If autoneg_advertised is zero, we assume it was not defaulted
1129	 * by the calling code so we set to advertise full capability.
1130	 */
1131	if (!phy->autoneg_advertised)
1132		phy->autoneg_advertised = phy->autoneg_mask;
1133
1134	e_dbg("Reconfiguring auto-neg advertisement params\n");
1135	ret_val = e1000_phy_setup_autoneg(hw);
1136	if (ret_val) {
1137		e_dbg("Error Setting up Auto-Negotiation\n");
1138		return ret_val;
1139	}
1140	e_dbg("Restarting Auto-Neg\n");
1141
1142	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1143	 * the Auto Neg Restart bit in the PHY control register.
1144	 */
1145	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1146	if (ret_val)
1147		return ret_val;
1148
1149	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1150	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1151	if (ret_val)
1152		return ret_val;
1153
1154	/* Does the user want to wait for Auto-Neg to complete here, or
1155	 * check at a later time (for example, callback routine).
1156	 */
1157	if (phy->autoneg_wait_to_complete) {
1158		ret_val = e1000_wait_autoneg(hw);
1159		if (ret_val) {
1160			e_dbg("Error while waiting for autoneg to complete\n");
1161			return ret_val;
1162		}
1163	}
1164
1165	hw->mac.get_link_status = true;
1166
1167	return ret_val;
1168}
1169
1170/**
1171 *  e1000e_setup_copper_link - Configure copper link settings
1172 *  @hw: pointer to the HW structure
1173 *
1174 *  Calls the appropriate function to configure the link for auto-neg or forced
1175 *  speed and duplex.  Then we check for link, once link is established calls
1176 *  to configure collision distance and flow control are called.  If link is
1177 *  not established, we return -E1000_ERR_PHY (-2).
1178 **/
1179s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1180{
1181	s32 ret_val;
1182	bool link;
1183
1184	if (hw->mac.autoneg) {
1185		/* Setup autoneg and flow control advertisement and perform
1186		 * autonegotiation.
1187		 */
1188		ret_val = e1000_copper_link_autoneg(hw);
1189		if (ret_val)
1190			return ret_val;
1191	} else {
1192		/* PHY will be set to 10H, 10F, 100H or 100F
1193		 * depending on user settings.
1194		 */
1195		e_dbg("Forcing Speed and Duplex\n");
1196		ret_val = hw->phy.ops.force_speed_duplex(hw);
1197		if (ret_val) {
1198			e_dbg("Error Forcing Speed and Duplex\n");
1199			return ret_val;
1200		}
1201	}
1202
1203	/* Check link status. Wait up to 100 microseconds for link to become
1204	 * valid.
1205	 */
1206	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1207					      &link);
1208	if (ret_val)
1209		return ret_val;
1210
1211	if (link) {
1212		e_dbg("Valid link established!!!\n");
1213		hw->mac.ops.config_collision_dist(hw);
1214		ret_val = e1000e_config_fc_after_link_up(hw);
1215	} else {
1216		e_dbg("Unable to establish link!!!\n");
1217	}
1218
1219	return ret_val;
1220}
1221
1222/**
1223 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1224 *  @hw: pointer to the HW structure
1225 *
1226 *  Calls the PHY setup function to force speed and duplex.  Clears the
1227 *  auto-crossover to force MDI manually.  Waits for link and returns
1228 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1229 **/
1230s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1231{
1232	struct e1000_phy_info *phy = &hw->phy;
1233	s32 ret_val;
1234	u16 phy_data;
1235	bool link;
1236
1237	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1238	if (ret_val)
1239		return ret_val;
1240
1241	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1242
1243	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1244	if (ret_val)
1245		return ret_val;
1246
1247	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1248	 * forced whenever speed and duplex are forced.
1249	 */
1250	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1251	if (ret_val)
1252		return ret_val;
1253
1254	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1255	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1256
1257	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1258	if (ret_val)
1259		return ret_val;
1260
1261	e_dbg("IGP PSCR: %X\n", phy_data);
1262
1263	udelay(1);
1264
1265	if (phy->autoneg_wait_to_complete) {
1266		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1267
1268		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1269						      100000, &link);
1270		if (ret_val)
1271			return ret_val;
1272
1273		if (!link)
1274			e_dbg("Link taking longer than expected.\n");
1275
1276		/* Try once more */
1277		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1278						      100000, &link);
1279	}
1280
1281	return ret_val;
1282}
1283
1284/**
1285 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1286 *  @hw: pointer to the HW structure
1287 *
1288 *  Calls the PHY setup function to force speed and duplex.  Clears the
1289 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1290 *  changes.  If time expires while waiting for link up, we reset the DSP.
1291 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1292 *  successful completion, else return corresponding error code.
1293 **/
1294s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1295{
1296	struct e1000_phy_info *phy = &hw->phy;
1297	s32 ret_val;
1298	u16 phy_data;
1299	bool link;
1300
1301	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1302	 * forced whenever speed and duplex are forced.
1303	 */
1304	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1305	if (ret_val)
1306		return ret_val;
1307
1308	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1309	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1310	if (ret_val)
1311		return ret_val;
1312
1313	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1314
1315	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1316	if (ret_val)
1317		return ret_val;
1318
1319	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1320
1321	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1322	if (ret_val)
1323		return ret_val;
1324
1325	/* Reset the phy to commit changes. */
1326	if (hw->phy.ops.commit) {
1327		ret_val = hw->phy.ops.commit(hw);
1328		if (ret_val)
1329			return ret_val;
1330	}
1331
1332	if (phy->autoneg_wait_to_complete) {
1333		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1334
1335		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1336						      100000, &link);
1337		if (ret_val)
1338			return ret_val;
1339
1340		if (!link) {
1341			if (hw->phy.type != e1000_phy_m88) {
1342				e_dbg("Link taking longer than expected.\n");
1343			} else {
1344				/* We didn't get link.
1345				 * Reset the DSP and cross our fingers.
1346				 */
1347				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1348						   0x001d);
1349				if (ret_val)
1350					return ret_val;
1351				ret_val = e1000e_phy_reset_dsp(hw);
1352				if (ret_val)
1353					return ret_val;
1354			}
1355		}
1356
1357		/* Try once more */
1358		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1359						      100000, &link);
1360		if (ret_val)
1361			return ret_val;
1362	}
1363
1364	if (hw->phy.type != e1000_phy_m88)
1365		return 0;
1366
1367	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1368	if (ret_val)
1369		return ret_val;
1370
1371	/* Resetting the phy means we need to re-force TX_CLK in the
1372	 * Extended PHY Specific Control Register to 25MHz clock from
1373	 * the reset value of 2.5MHz.
1374	 */
1375	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1376	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1377	if (ret_val)
1378		return ret_val;
1379
1380	/* In addition, we must re-enable CRS on Tx for both half and full
1381	 * duplex.
1382	 */
1383	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1384	if (ret_val)
1385		return ret_val;
1386
1387	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1388	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1389
1390	return ret_val;
1391}
1392
1393/**
1394 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1395 *  @hw: pointer to the HW structure
1396 *
1397 *  Forces the speed and duplex settings of the PHY.
1398 *  This is a function pointer entry point only called by
1399 *  PHY setup routines.
1400 **/
1401s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1402{
1403	struct e1000_phy_info *phy = &hw->phy;
1404	s32 ret_val;
1405	u16 data;
1406	bool link;
1407
1408	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1409	if (ret_val)
1410		return ret_val;
1411
1412	e1000e_phy_force_speed_duplex_setup(hw, &data);
1413
1414	ret_val = e1e_wphy(hw, MII_BMCR, data);
1415	if (ret_val)
1416		return ret_val;
1417
1418	/* Disable MDI-X support for 10/100 */
1419	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1420	if (ret_val)
1421		return ret_val;
1422
1423	data &= ~IFE_PMC_AUTO_MDIX;
1424	data &= ~IFE_PMC_FORCE_MDIX;
1425
1426	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1427	if (ret_val)
1428		return ret_val;
1429
1430	e_dbg("IFE PMC: %X\n", data);
1431
1432	udelay(1);
1433
1434	if (phy->autoneg_wait_to_complete) {
1435		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1436
1437		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1438						      100000, &link);
1439		if (ret_val)
1440			return ret_val;
1441
1442		if (!link)
1443			e_dbg("Link taking longer than expected.\n");
1444
1445		/* Try once more */
1446		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1447						      100000, &link);
1448		if (ret_val)
1449			return ret_val;
1450	}
1451
1452	return 0;
1453}
1454
1455/**
1456 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1457 *  @hw: pointer to the HW structure
1458 *  @phy_ctrl: pointer to current value of MII_BMCR
1459 *
1460 *  Forces speed and duplex on the PHY by doing the following: disable flow
1461 *  control, force speed/duplex on the MAC, disable auto speed detection,
1462 *  disable auto-negotiation, configure duplex, configure speed, configure
1463 *  the collision distance, write configuration to CTRL register.  The
1464 *  caller must write to the MII_BMCR register for these settings to
1465 *  take affect.
1466 **/
1467void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1468{
1469	struct e1000_mac_info *mac = &hw->mac;
1470	u32 ctrl;
1471
1472	/* Turn off flow control when forcing speed/duplex */
1473	hw->fc.current_mode = e1000_fc_none;
1474
1475	/* Force speed/duplex on the mac */
1476	ctrl = er32(CTRL);
1477	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1478	ctrl &= ~E1000_CTRL_SPD_SEL;
1479
1480	/* Disable Auto Speed Detection */
1481	ctrl &= ~E1000_CTRL_ASDE;
1482
1483	/* Disable autoneg on the phy */
1484	*phy_ctrl &= ~BMCR_ANENABLE;
1485
1486	/* Forcing Full or Half Duplex? */
1487	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1488		ctrl &= ~E1000_CTRL_FD;
1489		*phy_ctrl &= ~BMCR_FULLDPLX;
1490		e_dbg("Half Duplex\n");
1491	} else {
1492		ctrl |= E1000_CTRL_FD;
1493		*phy_ctrl |= BMCR_FULLDPLX;
1494		e_dbg("Full Duplex\n");
1495	}
1496
1497	/* Forcing 10mb or 100mb? */
1498	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1499		ctrl |= E1000_CTRL_SPD_100;
1500		*phy_ctrl |= BMCR_SPEED100;
1501		*phy_ctrl &= ~BMCR_SPEED1000;
1502		e_dbg("Forcing 100mb\n");
1503	} else {
1504		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1505		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1506		e_dbg("Forcing 10mb\n");
1507	}
1508
1509	hw->mac.ops.config_collision_dist(hw);
1510
1511	ew32(CTRL, ctrl);
1512}
1513
1514/**
1515 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1516 *  @hw: pointer to the HW structure
1517 *  @active: boolean used to enable/disable lplu
1518 *
1519 *  Success returns 0, Failure returns 1
1520 *
1521 *  The low power link up (lplu) state is set to the power management level D3
1522 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1523 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1524 *  is used during Dx states where the power conservation is most important.
1525 *  During driver activity, SmartSpeed should be enabled so performance is
1526 *  maintained.
1527 **/
1528s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1529{
1530	struct e1000_phy_info *phy = &hw->phy;
1531	s32 ret_val;
1532	u16 data;
1533
1534	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1535	if (ret_val)
1536		return ret_val;
1537
1538	if (!active) {
1539		data &= ~IGP02E1000_PM_D3_LPLU;
1540		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1541		if (ret_val)
1542			return ret_val;
1543		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1544		 * during Dx states where the power conservation is most
1545		 * important.  During driver activity we should enable
1546		 * SmartSpeed, so performance is maintained.
1547		 */
1548		if (phy->smart_speed == e1000_smart_speed_on) {
1549			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1550					   &data);
1551			if (ret_val)
1552				return ret_val;
1553
1554			data |= IGP01E1000_PSCFR_SMART_SPEED;
1555			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1556					   data);
1557			if (ret_val)
1558				return ret_val;
1559		} else if (phy->smart_speed == e1000_smart_speed_off) {
1560			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1561					   &data);
1562			if (ret_val)
1563				return ret_val;
1564
1565			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1566			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1567					   data);
1568			if (ret_val)
1569				return ret_val;
1570		}
1571	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1572		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1573		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1574		data |= IGP02E1000_PM_D3_LPLU;
1575		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1576		if (ret_val)
1577			return ret_val;
1578
1579		/* When LPLU is enabled, we should disable SmartSpeed */
1580		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1581		if (ret_val)
1582			return ret_val;
1583
1584		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1585		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1586	}
1587
1588	return ret_val;
1589}
1590
1591/**
1592 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1593 *  @hw: pointer to the HW structure
1594 *
1595 *  Success returns 0, Failure returns 1
1596 *
1597 *  A downshift is detected by querying the PHY link health.
1598 **/
1599s32 e1000e_check_downshift(struct e1000_hw *hw)
1600{
1601	struct e1000_phy_info *phy = &hw->phy;
1602	s32 ret_val;
1603	u16 phy_data, offset, mask;
1604
1605	switch (phy->type) {
1606	case e1000_phy_m88:
1607	case e1000_phy_gg82563:
1608	case e1000_phy_bm:
1609	case e1000_phy_82578:
1610		offset = M88E1000_PHY_SPEC_STATUS;
1611		mask = M88E1000_PSSR_DOWNSHIFT;
1612		break;
1613	case e1000_phy_igp_2:
1614	case e1000_phy_igp_3:
1615		offset = IGP01E1000_PHY_LINK_HEALTH;
1616		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1617		break;
1618	default:
1619		/* speed downshift not supported */
1620		phy->speed_downgraded = false;
1621		return 0;
1622	}
1623
1624	ret_val = e1e_rphy(hw, offset, &phy_data);
1625
1626	if (!ret_val)
1627		phy->speed_downgraded = !!(phy_data & mask);
1628
1629	return ret_val;
1630}
1631
1632/**
1633 *  e1000_check_polarity_m88 - Checks the polarity.
1634 *  @hw: pointer to the HW structure
1635 *
1636 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1637 *
1638 *  Polarity is determined based on the PHY specific status register.
1639 **/
1640s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1641{
1642	struct e1000_phy_info *phy = &hw->phy;
1643	s32 ret_val;
1644	u16 data;
1645
1646	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1647
1648	if (!ret_val)
1649		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1650				       ? e1000_rev_polarity_reversed
1651				       : e1000_rev_polarity_normal);
1652
1653	return ret_val;
1654}
1655
1656/**
1657 *  e1000_check_polarity_igp - Checks the polarity.
1658 *  @hw: pointer to the HW structure
1659 *
1660 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1661 *
1662 *  Polarity is determined based on the PHY port status register, and the
1663 *  current speed (since there is no polarity at 100Mbps).
1664 **/
1665s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1666{
1667	struct e1000_phy_info *phy = &hw->phy;
1668	s32 ret_val;
1669	u16 data, offset, mask;
1670
1671	/* Polarity is determined based on the speed of
1672	 * our connection.
1673	 */
1674	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1675	if (ret_val)
1676		return ret_val;
1677
1678	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1679	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1680		offset = IGP01E1000_PHY_PCS_INIT_REG;
1681		mask = IGP01E1000_PHY_POLARITY_MASK;
1682	} else {
1683		/* This really only applies to 10Mbps since
1684		 * there is no polarity for 100Mbps (always 0).
1685		 */
1686		offset = IGP01E1000_PHY_PORT_STATUS;
1687		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1688	}
1689
1690	ret_val = e1e_rphy(hw, offset, &data);
1691
1692	if (!ret_val)
1693		phy->cable_polarity = ((data & mask)
1694				       ? e1000_rev_polarity_reversed
1695				       : e1000_rev_polarity_normal);
1696
1697	return ret_val;
1698}
1699
1700/**
1701 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1702 *  @hw: pointer to the HW structure
1703 *
1704 *  Polarity is determined on the polarity reversal feature being enabled.
1705 **/
1706s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1707{
1708	struct e1000_phy_info *phy = &hw->phy;
1709	s32 ret_val;
1710	u16 phy_data, offset, mask;
1711
1712	/* Polarity is determined based on the reversal feature being enabled.
1713	 */
1714	if (phy->polarity_correction) {
1715		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1716		mask = IFE_PESC_POLARITY_REVERSED;
1717	} else {
1718		offset = IFE_PHY_SPECIAL_CONTROL;
1719		mask = IFE_PSC_FORCE_POLARITY;
1720	}
1721
1722	ret_val = e1e_rphy(hw, offset, &phy_data);
1723
1724	if (!ret_val)
1725		phy->cable_polarity = ((phy_data & mask)
1726				       ? e1000_rev_polarity_reversed
1727				       : e1000_rev_polarity_normal);
1728
1729	return ret_val;
1730}
1731
1732/**
1733 *  e1000_wait_autoneg - Wait for auto-neg completion
1734 *  @hw: pointer to the HW structure
1735 *
1736 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1737 *  limit to expire, which ever happens first.
1738 **/
1739static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1740{
1741	s32 ret_val = 0;
1742	u16 i, phy_status;
1743
1744	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1745	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1746		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747		if (ret_val)
1748			break;
1749		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1750		if (ret_val)
1751			break;
1752		if (phy_status & BMSR_ANEGCOMPLETE)
1753			break;
1754		msleep(100);
1755	}
1756
1757	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1758	 * has completed.
1759	 */
1760	return ret_val;
1761}
1762
1763/**
1764 *  e1000e_phy_has_link_generic - Polls PHY for link
1765 *  @hw: pointer to the HW structure
1766 *  @iterations: number of times to poll for link
1767 *  @usec_interval: delay between polling attempts
1768 *  @success: pointer to whether polling was successful or not
1769 *
1770 *  Polls the PHY status register for link, 'iterations' number of times.
1771 **/
1772s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1773				u32 usec_interval, bool *success)
1774{
1775	s32 ret_val = 0;
1776	u16 i, phy_status;
1777
1778	*success = false;
1779	for (i = 0; i < iterations; i++) {
1780		/* Some PHYs require the MII_BMSR register to be read
1781		 * twice due to the link bit being sticky.  No harm doing
1782		 * it across the board.
1783		 */
1784		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1785		if (ret_val) {
1786			/* If the first read fails, another entity may have
1787			 * ownership of the resources, wait and try again to
1788			 * see if they have relinquished the resources yet.
1789			 */
1790			if (usec_interval >= 1000)
1791				msleep(usec_interval / 1000);
1792			else
1793				udelay(usec_interval);
1794		}
1795		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1796		if (ret_val)
1797			break;
1798		if (phy_status & BMSR_LSTATUS) {
1799			*success = true;
1800			break;
1801		}
1802		if (usec_interval >= 1000)
1803			msleep(usec_interval / 1000);
1804		else
1805			udelay(usec_interval);
1806	}
1807
1808	return ret_val;
1809}
1810
1811/**
1812 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1813 *  @hw: pointer to the HW structure
1814 *
1815 *  Reads the PHY specific status register to retrieve the cable length
1816 *  information.  The cable length is determined by averaging the minimum and
1817 *  maximum values to get the "average" cable length.  The m88 PHY has four
1818 *  possible cable length values, which are:
1819 *	Register Value		Cable Length
1820 *	0			< 50 meters
1821 *	1			50 - 80 meters
1822 *	2			80 - 110 meters
1823 *	3			110 - 140 meters
1824 *	4			> 140 meters
1825 **/
1826s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1827{
1828	struct e1000_phy_info *phy = &hw->phy;
1829	s32 ret_val;
1830	u16 phy_data, index;
1831
1832	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1833	if (ret_val)
1834		return ret_val;
1835
1836	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
1837
1838	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1839		return -E1000_ERR_PHY;
1840
1841	phy->min_cable_length = e1000_m88_cable_length_table[index];
1842	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1843
1844	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1845
1846	return 0;
1847}
1848
1849/**
1850 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1851 *  @hw: pointer to the HW structure
1852 *
1853 *  The automatic gain control (agc) normalizes the amplitude of the
1854 *  received signal, adjusting for the attenuation produced by the
1855 *  cable.  By reading the AGC registers, which represent the
1856 *  combination of coarse and fine gain value, the value can be put
1857 *  into a lookup table to obtain the approximate cable length
1858 *  for each channel.
1859 **/
1860s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1861{
1862	struct e1000_phy_info *phy = &hw->phy;
1863	s32 ret_val;
1864	u16 phy_data, i, agc_value = 0;
1865	u16 cur_agc_index, max_agc_index = 0;
1866	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1867	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1868		IGP02E1000_PHY_AGC_A,
1869		IGP02E1000_PHY_AGC_B,
1870		IGP02E1000_PHY_AGC_C,
1871		IGP02E1000_PHY_AGC_D
1872	};
1873
1874	/* Read the AGC registers for all channels */
1875	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1876		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1877		if (ret_val)
1878			return ret_val;
1879
1880		/* Getting bits 15:9, which represent the combination of
1881		 * coarse and fine gain values.  The result is a number
1882		 * that can be put into the lookup table to obtain the
1883		 * approximate cable length.
1884		 */
1885		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1886				 IGP02E1000_AGC_LENGTH_MASK);
1887
1888		/* Array index bound check. */
1889		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1890		    (cur_agc_index == 0))
1891			return -E1000_ERR_PHY;
1892
1893		/* Remove min & max AGC values from calculation. */
1894		if (e1000_igp_2_cable_length_table[min_agc_index] >
1895		    e1000_igp_2_cable_length_table[cur_agc_index])
1896			min_agc_index = cur_agc_index;
1897		if (e1000_igp_2_cable_length_table[max_agc_index] <
1898		    e1000_igp_2_cable_length_table[cur_agc_index])
1899			max_agc_index = cur_agc_index;
1900
1901		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1902	}
1903
1904	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1905		      e1000_igp_2_cable_length_table[max_agc_index]);
1906	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1907
1908	/* Calculate cable length with the error range of +/- 10 meters. */
1909	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1910				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1911	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1912
1913	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1914
1915	return 0;
1916}
1917
1918/**
1919 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1920 *  @hw: pointer to the HW structure
1921 *
1922 *  Valid for only copper links.  Read the PHY status register (sticky read)
1923 *  to verify that link is up.  Read the PHY special control register to
1924 *  determine the polarity and 10base-T extended distance.  Read the PHY
1925 *  special status register to determine MDI/MDIx and current speed.  If
1926 *  speed is 1000, then determine cable length, local and remote receiver.
1927 **/
1928s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1929{
1930	struct e1000_phy_info *phy = &hw->phy;
1931	s32 ret_val;
1932	u16 phy_data;
1933	bool link;
1934
1935	if (phy->media_type != e1000_media_type_copper) {
1936		e_dbg("Phy info is only valid for copper media\n");
1937		return -E1000_ERR_CONFIG;
1938	}
1939
1940	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1941	if (ret_val)
1942		return ret_val;
1943
1944	if (!link) {
1945		e_dbg("Phy info is only valid if link is up\n");
1946		return -E1000_ERR_CONFIG;
1947	}
1948
1949	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1950	if (ret_val)
1951		return ret_val;
1952
1953	phy->polarity_correction = !!(phy_data &
1954				      M88E1000_PSCR_POLARITY_REVERSAL);
1955
1956	ret_val = e1000_check_polarity_m88(hw);
1957	if (ret_val)
1958		return ret_val;
1959
1960	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1961	if (ret_val)
1962		return ret_val;
1963
1964	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1965
1966	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1967		ret_val = hw->phy.ops.get_cable_length(hw);
1968		if (ret_val)
1969			return ret_val;
1970
1971		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1972		if (ret_val)
1973			return ret_val;
1974
1975		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1976		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1977
1978		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1979		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1980	} else {
1981		/* Set values to "undefined" */
1982		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1983		phy->local_rx = e1000_1000t_rx_status_undefined;
1984		phy->remote_rx = e1000_1000t_rx_status_undefined;
1985	}
1986
1987	return ret_val;
1988}
1989
1990/**
1991 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1992 *  @hw: pointer to the HW structure
1993 *
1994 *  Read PHY status to determine if link is up.  If link is up, then
1995 *  set/determine 10base-T extended distance and polarity correction.  Read
1996 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1997 *  determine on the cable length, local and remote receiver.
1998 **/
1999s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2000{
2001	struct e1000_phy_info *phy = &hw->phy;
2002	s32 ret_val;
2003	u16 data;
2004	bool link;
2005
2006	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2007	if (ret_val)
2008		return ret_val;
2009
2010	if (!link) {
2011		e_dbg("Phy info is only valid if link is up\n");
2012		return -E1000_ERR_CONFIG;
2013	}
2014
2015	phy->polarity_correction = true;
2016
2017	ret_val = e1000_check_polarity_igp(hw);
2018	if (ret_val)
2019		return ret_val;
2020
2021	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2022	if (ret_val)
2023		return ret_val;
2024
2025	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2026
2027	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2028	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2029		ret_val = phy->ops.get_cable_length(hw);
2030		if (ret_val)
2031			return ret_val;
2032
2033		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2034		if (ret_val)
2035			return ret_val;
2036
2037		phy->local_rx = (data & LPA_1000LOCALRXOK)
2038		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2039
2040		phy->remote_rx = (data & LPA_1000REMRXOK)
2041		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2042	} else {
2043		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2044		phy->local_rx = e1000_1000t_rx_status_undefined;
2045		phy->remote_rx = e1000_1000t_rx_status_undefined;
2046	}
2047
2048	return ret_val;
2049}
2050
2051/**
2052 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2053 *  @hw: pointer to the HW structure
2054 *
2055 *  Populates "phy" structure with various feature states.
2056 **/
2057s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2058{
2059	struct e1000_phy_info *phy = &hw->phy;
2060	s32 ret_val;
2061	u16 data;
2062	bool link;
2063
2064	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2065	if (ret_val)
2066		return ret_val;
2067
2068	if (!link) {
2069		e_dbg("Phy info is only valid if link is up\n");
2070		return -E1000_ERR_CONFIG;
2071	}
2072
2073	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2074	if (ret_val)
2075		return ret_val;
2076	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2077
2078	if (phy->polarity_correction) {
2079		ret_val = e1000_check_polarity_ife(hw);
2080		if (ret_val)
2081			return ret_val;
2082	} else {
2083		/* Polarity is forced */
2084		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2085				       ? e1000_rev_polarity_reversed
2086				       : e1000_rev_polarity_normal);
2087	}
2088
2089	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2090	if (ret_val)
2091		return ret_val;
2092
2093	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2094
2095	/* The following parameters are undefined for 10/100 operation. */
2096	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2097	phy->local_rx = e1000_1000t_rx_status_undefined;
2098	phy->remote_rx = e1000_1000t_rx_status_undefined;
2099
2100	return 0;
2101}
2102
2103/**
2104 *  e1000e_phy_sw_reset - PHY software reset
2105 *  @hw: pointer to the HW structure
2106 *
2107 *  Does a software reset of the PHY by reading the PHY control register and
2108 *  setting/write the control register reset bit to the PHY.
2109 **/
2110s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2111{
2112	s32 ret_val;
2113	u16 phy_ctrl;
2114
2115	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2116	if (ret_val)
2117		return ret_val;
2118
2119	phy_ctrl |= BMCR_RESET;
2120	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2121	if (ret_val)
2122		return ret_val;
2123
2124	udelay(1);
2125
2126	return ret_val;
2127}
2128
2129/**
2130 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2131 *  @hw: pointer to the HW structure
2132 *
2133 *  Verify the reset block is not blocking us from resetting.  Acquire
2134 *  semaphore (if necessary) and read/set/write the device control reset
2135 *  bit in the PHY.  Wait the appropriate delay time for the device to
2136 *  reset and release the semaphore (if necessary).
2137 **/
2138s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2139{
2140	struct e1000_phy_info *phy = &hw->phy;
2141	s32 ret_val;
2142	u32 ctrl;
2143
2144	if (phy->ops.check_reset_block) {
2145		ret_val = phy->ops.check_reset_block(hw);
2146		if (ret_val)
2147			return 0;
2148	}
2149
2150	ret_val = phy->ops.acquire(hw);
2151	if (ret_val)
2152		return ret_val;
2153
2154	ctrl = er32(CTRL);
2155	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2156	e1e_flush();
2157
2158	udelay(phy->reset_delay_us);
2159
2160	ew32(CTRL, ctrl);
2161	e1e_flush();
2162
2163	usleep_range(150, 300);
2164
2165	phy->ops.release(hw);
2166
2167	return phy->ops.get_cfg_done(hw);
2168}
2169
2170/**
2171 *  e1000e_get_cfg_done_generic - Generic configuration done
2172 *  @hw: pointer to the HW structure
2173 *
2174 *  Generic function to wait 10 milli-seconds for configuration to complete
2175 *  and return success.
2176 **/
2177s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2178{
2179	mdelay(10);
2180
2181	return 0;
2182}
2183
2184/**
2185 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2186 *  @hw: pointer to the HW structure
2187 *
2188 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2189 **/
2190s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2191{
2192	e_dbg("Running IGP 3 PHY init script\n");
2193
2194	/* PHY init IGP 3 */
2195	/* Enable rise/fall, 10-mode work in class-A */
2196	e1e_wphy(hw, 0x2F5B, 0x9018);
2197	/* Remove all caps from Replica path filter */
2198	e1e_wphy(hw, 0x2F52, 0x0000);
2199	/* Bias trimming for ADC, AFE and Driver (Default) */
2200	e1e_wphy(hw, 0x2FB1, 0x8B24);
2201	/* Increase Hybrid poly bias */
2202	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2203	/* Add 4% to Tx amplitude in Gig mode */
2204	e1e_wphy(hw, 0x2010, 0x10B0);
2205	/* Disable trimming (TTT) */
2206	e1e_wphy(hw, 0x2011, 0x0000);
2207	/* Poly DC correction to 94.6% + 2% for all channels */
2208	e1e_wphy(hw, 0x20DD, 0x249A);
2209	/* ABS DC correction to 95.9% */
2210	e1e_wphy(hw, 0x20DE, 0x00D3);
2211	/* BG temp curve trim */
2212	e1e_wphy(hw, 0x28B4, 0x04CE);
2213	/* Increasing ADC OPAMP stage 1 currents to max */
2214	e1e_wphy(hw, 0x2F70, 0x29E4);
2215	/* Force 1000 ( required for enabling PHY regs configuration) */
2216	e1e_wphy(hw, 0x0000, 0x0140);
2217	/* Set upd_freq to 6 */
2218	e1e_wphy(hw, 0x1F30, 0x1606);
2219	/* Disable NPDFE */
2220	e1e_wphy(hw, 0x1F31, 0xB814);
2221	/* Disable adaptive fixed FFE (Default) */
2222	e1e_wphy(hw, 0x1F35, 0x002A);
2223	/* Enable FFE hysteresis */
2224	e1e_wphy(hw, 0x1F3E, 0x0067);
2225	/* Fixed FFE for short cable lengths */
2226	e1e_wphy(hw, 0x1F54, 0x0065);
2227	/* Fixed FFE for medium cable lengths */
2228	e1e_wphy(hw, 0x1F55, 0x002A);
2229	/* Fixed FFE for long cable lengths */
2230	e1e_wphy(hw, 0x1F56, 0x002A);
2231	/* Enable Adaptive Clip Threshold */
2232	e1e_wphy(hw, 0x1F72, 0x3FB0);
2233	/* AHT reset limit to 1 */
2234	e1e_wphy(hw, 0x1F76, 0xC0FF);
2235	/* Set AHT master delay to 127 msec */
2236	e1e_wphy(hw, 0x1F77, 0x1DEC);
2237	/* Set scan bits for AHT */
2238	e1e_wphy(hw, 0x1F78, 0xF9EF);
2239	/* Set AHT Preset bits */
2240	e1e_wphy(hw, 0x1F79, 0x0210);
2241	/* Change integ_factor of channel A to 3 */
2242	e1e_wphy(hw, 0x1895, 0x0003);
2243	/* Change prop_factor of channels BCD to 8 */
2244	e1e_wphy(hw, 0x1796, 0x0008);
2245	/* Change cg_icount + enable integbp for channels BCD */
2246	e1e_wphy(hw, 0x1798, 0xD008);
2247	/* Change cg_icount + enable integbp + change prop_factor_master
2248	 * to 8 for channel A
2249	 */
2250	e1e_wphy(hw, 0x1898, 0xD918);
2251	/* Disable AHT in Slave mode on channel A */
2252	e1e_wphy(hw, 0x187A, 0x0800);
2253	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2254	 * Enable SPD+B2B
2255	 */
2256	e1e_wphy(hw, 0x0019, 0x008D);
2257	/* Enable restart AN on an1000_dis change */
2258	e1e_wphy(hw, 0x001B, 0x2080);
2259	/* Enable wh_fifo read clock in 10/100 modes */
2260	e1e_wphy(hw, 0x0014, 0x0045);
2261	/* Restart AN, Speed selection is 1000 */
2262	e1e_wphy(hw, 0x0000, 0x1340);
2263
2264	return 0;
2265}
2266
2267/**
2268 *  e1000e_get_phy_type_from_id - Get PHY type from id
2269 *  @phy_id: phy_id read from the phy
2270 *
2271 *  Returns the phy type from the id.
2272 **/
2273enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2274{
2275	enum e1000_phy_type phy_type = e1000_phy_unknown;
2276
2277	switch (phy_id) {
2278	case M88E1000_I_PHY_ID:
2279	case M88E1000_E_PHY_ID:
2280	case M88E1111_I_PHY_ID:
2281	case M88E1011_I_PHY_ID:
2282		phy_type = e1000_phy_m88;
2283		break;
2284	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2285		phy_type = e1000_phy_igp_2;
2286		break;
2287	case GG82563_E_PHY_ID:
2288		phy_type = e1000_phy_gg82563;
2289		break;
2290	case IGP03E1000_E_PHY_ID:
2291		phy_type = e1000_phy_igp_3;
2292		break;
2293	case IFE_E_PHY_ID:
2294	case IFE_PLUS_E_PHY_ID:
2295	case IFE_C_E_PHY_ID:
2296		phy_type = e1000_phy_ife;
2297		break;
2298	case BME1000_E_PHY_ID:
2299	case BME1000_E_PHY_ID_R2:
2300		phy_type = e1000_phy_bm;
2301		break;
2302	case I82578_E_PHY_ID:
2303		phy_type = e1000_phy_82578;
2304		break;
2305	case I82577_E_PHY_ID:
2306		phy_type = e1000_phy_82577;
2307		break;
2308	case I82579_E_PHY_ID:
2309		phy_type = e1000_phy_82579;
2310		break;
2311	case I217_E_PHY_ID:
2312		phy_type = e1000_phy_i217;
2313		break;
2314	default:
2315		phy_type = e1000_phy_unknown;
2316		break;
2317	}
2318	return phy_type;
2319}
2320
2321/**
2322 *  e1000e_determine_phy_address - Determines PHY address.
2323 *  @hw: pointer to the HW structure
2324 *
2325 *  This uses a trial and error method to loop through possible PHY
2326 *  addresses. It tests each by reading the PHY ID registers and
2327 *  checking for a match.
2328 **/
2329s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2330{
2331	u32 phy_addr = 0;
2332	u32 i;
2333	enum e1000_phy_type phy_type = e1000_phy_unknown;
2334
2335	hw->phy.id = phy_type;
2336
2337	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2338		hw->phy.addr = phy_addr;
2339		i = 0;
2340
2341		do {
2342			e1000e_get_phy_id(hw);
2343			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2344
2345			/* If phy_type is valid, break - we found our
2346			 * PHY address
2347			 */
2348			if (phy_type != e1000_phy_unknown)
2349				return 0;
2350
2351			usleep_range(1000, 2000);
2352			i++;
2353		} while (i < 10);
2354	}
2355
2356	return -E1000_ERR_PHY_TYPE;
2357}
2358
2359/**
2360 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2361 *  @page: page to access
2362 *  @reg: register to check
2363 *
2364 *  Returns the phy address for the page requested.
2365 **/
2366static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2367{
2368	u32 phy_addr = 2;
2369
2370	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2371		phy_addr = 1;
2372
2373	return phy_addr;
2374}
2375
2376/**
2377 *  e1000e_write_phy_reg_bm - Write BM PHY register
2378 *  @hw: pointer to the HW structure
2379 *  @offset: register offset to write to
2380 *  @data: data to write at register offset
2381 *
2382 *  Acquires semaphore, if necessary, then writes the data to PHY register
2383 *  at the offset.  Release any acquired semaphores before exiting.
2384 **/
2385s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2386{
2387	s32 ret_val;
2388	u32 page = offset >> IGP_PAGE_SHIFT;
2389
2390	ret_val = hw->phy.ops.acquire(hw);
2391	if (ret_val)
2392		return ret_val;
2393
2394	/* Page 800 works differently than the rest so it has its own func */
2395	if (page == BM_WUC_PAGE) {
2396		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2397							 false, false);
2398		goto release;
2399	}
2400
2401	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2402
2403	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2404		u32 page_shift, page_select;
2405
2406		/* Page select is register 31 for phy address 1 and 22 for
2407		 * phy address 2 and 3. Page select is shifted only for
2408		 * phy address 1.
2409		 */
2410		if (hw->phy.addr == 1) {
2411			page_shift = IGP_PAGE_SHIFT;
2412			page_select = IGP01E1000_PHY_PAGE_SELECT;
2413		} else {
2414			page_shift = 0;
2415			page_select = BM_PHY_PAGE_SELECT;
2416		}
2417
2418		/* Page is shifted left, PHY expects (page x 32) */
2419		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2420						    (page << page_shift));
2421		if (ret_val)
2422			goto release;
2423	}
2424
2425	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2426					    data);
2427
2428release:
2429	hw->phy.ops.release(hw);
2430	return ret_val;
2431}
2432
2433/**
2434 *  e1000e_read_phy_reg_bm - Read BM PHY register
2435 *  @hw: pointer to the HW structure
2436 *  @offset: register offset to be read
2437 *  @data: pointer to the read data
2438 *
2439 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2440 *  and storing the retrieved information in data.  Release any acquired
2441 *  semaphores before exiting.
2442 **/
2443s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2444{
2445	s32 ret_val;
2446	u32 page = offset >> IGP_PAGE_SHIFT;
2447
2448	ret_val = hw->phy.ops.acquire(hw);
2449	if (ret_val)
2450		return ret_val;
2451
2452	/* Page 800 works differently than the rest so it has its own func */
2453	if (page == BM_WUC_PAGE) {
2454		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2455							 true, false);
2456		goto release;
2457	}
2458
2459	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2460
2461	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2462		u32 page_shift, page_select;
2463
2464		/* Page select is register 31 for phy address 1 and 22 for
2465		 * phy address 2 and 3. Page select is shifted only for
2466		 * phy address 1.
2467		 */
2468		if (hw->phy.addr == 1) {
2469			page_shift = IGP_PAGE_SHIFT;
2470			page_select = IGP01E1000_PHY_PAGE_SELECT;
2471		} else {
2472			page_shift = 0;
2473			page_select = BM_PHY_PAGE_SELECT;
2474		}
2475
2476		/* Page is shifted left, PHY expects (page x 32) */
2477		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2478						    (page << page_shift));
2479		if (ret_val)
2480			goto release;
2481	}
2482
2483	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2484					   data);
2485release:
2486	hw->phy.ops.release(hw);
2487	return ret_val;
2488}
2489
2490/**
2491 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2492 *  @hw: pointer to the HW structure
2493 *  @offset: register offset to be read
2494 *  @data: pointer to the read data
2495 *
2496 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2497 *  and storing the retrieved information in data.  Release any acquired
2498 *  semaphores before exiting.
2499 **/
2500s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2501{
2502	s32 ret_val;
2503	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2504
2505	ret_val = hw->phy.ops.acquire(hw);
2506	if (ret_val)
2507		return ret_val;
2508
2509	/* Page 800 works differently than the rest so it has its own func */
2510	if (page == BM_WUC_PAGE) {
2511		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2512							 true, false);
2513		goto release;
2514	}
2515
2516	hw->phy.addr = 1;
2517
2518	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2519		/* Page is shifted left, PHY expects (page x 32) */
2520		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2521						    page);
2522
2523		if (ret_val)
2524			goto release;
2525	}
2526
2527	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2528					   data);
2529release:
2530	hw->phy.ops.release(hw);
2531	return ret_val;
2532}
2533
2534/**
2535 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2536 *  @hw: pointer to the HW structure
2537 *  @offset: register offset to write to
2538 *  @data: data to write at register offset
2539 *
2540 *  Acquires semaphore, if necessary, then writes the data to PHY register
2541 *  at the offset.  Release any acquired semaphores before exiting.
2542 **/
2543s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2544{
2545	s32 ret_val;
2546	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2547
2548	ret_val = hw->phy.ops.acquire(hw);
2549	if (ret_val)
2550		return ret_val;
2551
2552	/* Page 800 works differently than the rest so it has its own func */
2553	if (page == BM_WUC_PAGE) {
2554		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2555							 false, false);
2556		goto release;
2557	}
2558
2559	hw->phy.addr = 1;
2560
2561	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2562		/* Page is shifted left, PHY expects (page x 32) */
2563		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2564						    page);
2565
2566		if (ret_val)
2567			goto release;
2568	}
2569
2570	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2571					    data);
2572
2573release:
2574	hw->phy.ops.release(hw);
2575	return ret_val;
2576}
2577
2578/**
2579 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2580 *  @hw: pointer to the HW structure
2581 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2582 *
2583 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2584 *  address to store contents of the BM_WUC_ENABLE_REG register.
2585 **/
2586s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2587{
2588	s32 ret_val;
2589	u16 temp;
2590
2591	/* All page select, port ctrl and wakeup registers use phy address 1 */
2592	hw->phy.addr = 1;
2593
2594	/* Select Port Control Registers page */
2595	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2596	if (ret_val) {
2597		e_dbg("Could not set Port Control page\n");
2598		return ret_val;
2599	}
2600
2601	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2602	if (ret_val) {
2603		e_dbg("Could not read PHY register %d.%d\n",
2604		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2605		return ret_val;
2606	}
2607
2608	/* Enable both PHY wakeup mode and Wakeup register page writes.
2609	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2610	 */
2611	temp = *phy_reg;
2612	temp |= BM_WUC_ENABLE_BIT;
2613	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2614
2615	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2616	if (ret_val) {
2617		e_dbg("Could not write PHY register %d.%d\n",
2618		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2619		return ret_val;
2620	}
2621
2622	/* Select Host Wakeup Registers page - caller now able to write
2623	 * registers on the Wakeup registers page
2624	 */
2625	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2626}
2627
2628/**
2629 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2630 *  @hw: pointer to the HW structure
2631 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2632 *
2633 *  Restore BM_WUC_ENABLE_REG to its original value.
2634 *
2635 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2636 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2637 *  caller.
2638 **/
2639s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2640{
2641	s32 ret_val;
2642
2643	/* Select Port Control Registers page */
2644	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2645	if (ret_val) {
2646		e_dbg("Could not set Port Control page\n");
2647		return ret_val;
2648	}
2649
2650	/* Restore 769.17 to its original value */
2651	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2652	if (ret_val)
2653		e_dbg("Could not restore PHY register %d.%d\n",
2654		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2655
2656	return ret_val;
2657}
2658
2659/**
2660 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2661 *  @hw: pointer to the HW structure
2662 *  @offset: register offset to be read or written
2663 *  @data: pointer to the data to read or write
2664 *  @read: determines if operation is read or write
2665 *  @page_set: BM_WUC_PAGE already set and access enabled
2666 *
2667 *  Read the PHY register at offset and store the retrieved information in
2668 *  data, or write data to PHY register at offset.  Note the procedure to
2669 *  access the PHY wakeup registers is different than reading the other PHY
2670 *  registers. It works as such:
2671 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2672 *  2) Set page to 800 for host (801 if we were manageability)
2673 *  3) Write the address using the address opcode (0x11)
2674 *  4) Read or write the data using the data opcode (0x12)
2675 *  5) Restore 769.17.2 to its original value
2676 *
2677 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2678 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2679 *
2680 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2681 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2682 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2683 **/
2684static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2685					  u16 *data, bool read, bool page_set)
2686{
2687	s32 ret_val;
2688	u16 reg = BM_PHY_REG_NUM(offset);
2689	u16 page = BM_PHY_REG_PAGE(offset);
2690	u16 phy_reg = 0;
2691
2692	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2693	if ((hw->mac.type == e1000_pchlan) &&
2694	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2695		e_dbg("Attempting to access page %d while gig enabled.\n",
2696		      page);
2697
2698	if (!page_set) {
2699		/* Enable access to PHY wakeup registers */
2700		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2701		if (ret_val) {
2702			e_dbg("Could not enable PHY wakeup reg access\n");
2703			return ret_val;
2704		}
2705	}
2706
2707	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2708
2709	/* Write the Wakeup register page offset value using opcode 0x11 */
2710	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2711	if (ret_val) {
2712		e_dbg("Could not write address opcode to page %d\n", page);
2713		return ret_val;
2714	}
2715
2716	if (read) {
2717		/* Read the Wakeup register page value using opcode 0x12 */
2718		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2719						   data);
2720	} else {
2721		/* Write the Wakeup register page value using opcode 0x12 */
2722		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2723						    *data);
2724	}
2725
2726	if (ret_val) {
2727		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2728		return ret_val;
2729	}
2730
2731	if (!page_set)
2732		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2733
2734	return ret_val;
2735}
2736
2737/**
2738 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2739 * @hw: pointer to the HW structure
2740 *
2741 * In the case of a PHY power down to save power, or to turn off link during a
2742 * driver unload, or wake on lan is not enabled, restore the link to previous
2743 * settings.
2744 **/
2745void e1000_power_up_phy_copper(struct e1000_hw *hw)
2746{
2747	u16 mii_reg = 0;
2748	int ret;
2749
2750	/* The PHY will retain its settings across a power down/up cycle */
2751	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2752	if (ret) {
2753		e_dbg("Error reading PHY register\n");
2754		return;
2755	}
2756	mii_reg &= ~BMCR_PDOWN;
2757	e1e_wphy(hw, MII_BMCR, mii_reg);
2758}
2759
2760/**
2761 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2762 * @hw: pointer to the HW structure
2763 *
2764 * In the case of a PHY power down to save power, or to turn off link during a
2765 * driver unload, or wake on lan is not enabled, restore the link to previous
2766 * settings.
2767 **/
2768void e1000_power_down_phy_copper(struct e1000_hw *hw)
2769{
2770	u16 mii_reg = 0;
2771	int ret;
2772
2773	/* The PHY will retain its settings across a power down/up cycle */
2774	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2775	if (ret) {
2776		e_dbg("Error reading PHY register\n");
2777		return;
2778	}
2779	mii_reg |= BMCR_PDOWN;
2780	e1e_wphy(hw, MII_BMCR, mii_reg);
2781	usleep_range(1000, 2000);
2782}
2783
2784/**
2785 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2786 *  @hw: pointer to the HW structure
2787 *  @offset: register offset to be read
2788 *  @data: pointer to the read data
2789 *  @locked: semaphore has already been acquired or not
2790 *  @page_set: BM_WUC_PAGE already set and access enabled
2791 *
2792 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2793 *  and stores the retrieved information in data.  Release any acquired
2794 *  semaphore before exiting.
2795 **/
2796static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2797				   bool locked, bool page_set)
2798{
2799	s32 ret_val;
2800	u16 page = BM_PHY_REG_PAGE(offset);
2801	u16 reg = BM_PHY_REG_NUM(offset);
2802	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2803
2804	if (!locked) {
2805		ret_val = hw->phy.ops.acquire(hw);
2806		if (ret_val)
2807			return ret_val;
2808	}
2809
2810	/* Page 800 works differently than the rest so it has its own func */
2811	if (page == BM_WUC_PAGE) {
2812		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2813							 true, page_set);
2814		goto out;
2815	}
2816
2817	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2818		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2819							 data, true);
2820		goto out;
2821	}
2822
2823	if (!page_set) {
2824		if (page == HV_INTC_FC_PAGE_START)
2825			page = 0;
2826
2827		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2828			/* Page is shifted left, PHY expects (page x 32) */
2829			ret_val = e1000_set_page_igp(hw,
2830						     (page << IGP_PAGE_SHIFT));
2831
2832			hw->phy.addr = phy_addr;
2833
2834			if (ret_val)
2835				goto out;
2836		}
2837	}
2838
2839	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2840	      page << IGP_PAGE_SHIFT, reg);
2841
2842	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2843out:
2844	if (!locked)
2845		hw->phy.ops.release(hw);
2846
2847	return ret_val;
2848}
2849
2850/**
2851 *  e1000_read_phy_reg_hv -  Read HV PHY register
2852 *  @hw: pointer to the HW structure
2853 *  @offset: register offset to be read
2854 *  @data: pointer to the read data
2855 *
2856 *  Acquires semaphore then reads the PHY register at offset and stores
2857 *  the retrieved information in data.  Release the acquired semaphore
2858 *  before exiting.
2859 **/
2860s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2861{
2862	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2863}
2864
2865/**
2866 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2867 *  @hw: pointer to the HW structure
2868 *  @offset: register offset to be read
2869 *  @data: pointer to the read data
2870 *
2871 *  Reads the PHY register at offset and stores the retrieved information
2872 *  in data.  Assumes semaphore already acquired.
2873 **/
2874s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2875{
2876	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2877}
2878
2879/**
2880 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2881 *  @hw: pointer to the HW structure
2882 *  @offset: register offset to write to
2883 *  @data: data to write at register offset
2884 *
2885 *  Reads the PHY register at offset and stores the retrieved information
2886 *  in data.  Assumes semaphore already acquired and page already set.
2887 **/
2888s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2889{
2890	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2891}
2892
2893/**
2894 *  __e1000_write_phy_reg_hv - Write HV PHY register
2895 *  @hw: pointer to the HW structure
2896 *  @offset: register offset to write to
2897 *  @data: data to write at register offset
2898 *  @locked: semaphore has already been acquired or not
2899 *  @page_set: BM_WUC_PAGE already set and access enabled
2900 *
2901 *  Acquires semaphore, if necessary, then writes the data to PHY register
2902 *  at the offset.  Release any acquired semaphores before exiting.
2903 **/
2904static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2905				    bool locked, bool page_set)
2906{
2907	s32 ret_val;
2908	u16 page = BM_PHY_REG_PAGE(offset);
2909	u16 reg = BM_PHY_REG_NUM(offset);
2910	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2911
2912	if (!locked) {
2913		ret_val = hw->phy.ops.acquire(hw);
2914		if (ret_val)
2915			return ret_val;
2916	}
2917
2918	/* Page 800 works differently than the rest so it has its own func */
2919	if (page == BM_WUC_PAGE) {
2920		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2921							 false, page_set);
2922		goto out;
2923	}
2924
2925	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2926		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2927							 &data, false);
2928		goto out;
2929	}
2930
2931	if (!page_set) {
2932		if (page == HV_INTC_FC_PAGE_START)
2933			page = 0;
2934
2935		/* Workaround MDIO accesses being disabled after entering IEEE
2936		 * Power Down (when bit 11 of the PHY Control register is set)
2937		 */
2938		if ((hw->phy.type == e1000_phy_82578) &&
2939		    (hw->phy.revision >= 1) &&
2940		    (hw->phy.addr == 2) &&
2941		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2942			u16 data2 = 0x7EFF;
2943
2944			ret_val = e1000_access_phy_debug_regs_hv(hw,
2945								 BIT(6) | 0x3,
2946								 &data2, false);
2947			if (ret_val)
2948				goto out;
2949		}
2950
2951		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2952			/* Page is shifted left, PHY expects (page x 32) */
2953			ret_val = e1000_set_page_igp(hw,
2954						     (page << IGP_PAGE_SHIFT));
2955
2956			hw->phy.addr = phy_addr;
2957
2958			if (ret_val)
2959				goto out;
2960		}
2961	}
2962
2963	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2964	      page << IGP_PAGE_SHIFT, reg);
2965
2966	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2967					    data);
2968
2969out:
2970	if (!locked)
2971		hw->phy.ops.release(hw);
2972
2973	return ret_val;
2974}
2975
2976/**
2977 *  e1000_write_phy_reg_hv - Write HV PHY register
2978 *  @hw: pointer to the HW structure
2979 *  @offset: register offset to write to
2980 *  @data: data to write at register offset
2981 *
2982 *  Acquires semaphore then writes the data to PHY register at the offset.
2983 *  Release the acquired semaphores before exiting.
2984 **/
2985s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2986{
2987	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2988}
2989
2990/**
2991 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2992 *  @hw: pointer to the HW structure
2993 *  @offset: register offset to write to
2994 *  @data: data to write at register offset
2995 *
2996 *  Writes the data to PHY register at the offset.  Assumes semaphore
2997 *  already acquired.
2998 **/
2999s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3000{
3001	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3002}
3003
3004/**
3005 *  e1000_write_phy_reg_page_hv - Write HV PHY register
3006 *  @hw: pointer to the HW structure
3007 *  @offset: register offset to write to
3008 *  @data: data to write at register offset
3009 *
3010 *  Writes the data to PHY register at the offset.  Assumes semaphore
3011 *  already acquired and page already set.
3012 **/
3013s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3014{
3015	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3016}
3017
3018/**
3019 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3020 *  @page: page to be accessed
3021 **/
3022static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3023{
3024	u32 phy_addr = 2;
3025
3026	if (page >= HV_INTC_FC_PAGE_START)
3027		phy_addr = 1;
3028
3029	return phy_addr;
3030}
3031
3032/**
3033 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3034 *  @hw: pointer to the HW structure
3035 *  @offset: register offset to be read or written
3036 *  @data: pointer to the data to be read or written
3037 *  @read: determines if operation is read or write
3038 *
3039 *  Reads the PHY register at offset and stores the retrieved information
3040 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3041 *  to access these regs uses the address port and data port to read/write.
3042 *  These accesses done with PHY address 2 and without using pages.
3043 **/
3044static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3045					  u16 *data, bool read)
3046{
3047	s32 ret_val;
3048	u32 addr_reg;
3049	u32 data_reg;
3050
3051	/* This takes care of the difference with desktop vs mobile phy */
3052	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3053		    I82578_ADDR_REG : I82577_ADDR_REG);
3054	data_reg = addr_reg + 1;
3055
3056	/* All operations in this function are phy address 2 */
3057	hw->phy.addr = 2;
3058
3059	/* masking with 0x3F to remove the page from offset */
3060	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3061	if (ret_val) {
3062		e_dbg("Could not write the Address Offset port register\n");
3063		return ret_val;
3064	}
3065
3066	/* Read or write the data value next */
3067	if (read)
3068		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3069	else
3070		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3071
3072	if (ret_val)
3073		e_dbg("Could not access the Data port register\n");
3074
3075	return ret_val;
3076}
3077
3078/**
3079 *  e1000_link_stall_workaround_hv - Si workaround
3080 *  @hw: pointer to the HW structure
3081 *
3082 *  This function works around a Si bug where the link partner can get
3083 *  a link up indication before the PHY does.  If small packets are sent
3084 *  by the link partner they can be placed in the packet buffer without
3085 *  being properly accounted for by the PHY and will stall preventing
3086 *  further packets from being received.  The workaround is to clear the
3087 *  packet buffer after the PHY detects link up.
3088 **/
3089s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3090{
3091	s32 ret_val = 0;
3092	u16 data;
3093
3094	if (hw->phy.type != e1000_phy_82578)
3095		return 0;
3096
3097	/* Do not apply workaround if in PHY loopback bit 14 set */
3098	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3099	if (ret_val) {
3100		e_dbg("Error reading PHY register\n");
3101		return ret_val;
3102	}
3103	if (data & BMCR_LOOPBACK)
3104		return 0;
3105
3106	/* check if link is up and at 1Gbps */
3107	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3108	if (ret_val)
3109		return ret_val;
3110
3111	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3112		 BM_CS_STATUS_SPEED_MASK);
3113
3114	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3115		     BM_CS_STATUS_SPEED_1000))
3116		return 0;
3117
3118	msleep(200);
3119
3120	/* flush the packets in the fifo buffer */
3121	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3122			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3123			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3124	if (ret_val)
3125		return ret_val;
3126
3127	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3128}
3129
3130/**
3131 *  e1000_check_polarity_82577 - Checks the polarity.
3132 *  @hw: pointer to the HW structure
3133 *
3134 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3135 *
3136 *  Polarity is determined based on the PHY specific status register.
3137 **/
3138s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3139{
3140	struct e1000_phy_info *phy = &hw->phy;
3141	s32 ret_val;
3142	u16 data;
3143
3144	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3145
3146	if (!ret_val)
3147		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3148				       ? e1000_rev_polarity_reversed
3149				       : e1000_rev_polarity_normal);
3150
3151	return ret_val;
3152}
3153
3154/**
3155 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3156 *  @hw: pointer to the HW structure
3157 *
3158 *  Calls the PHY setup function to force speed and duplex.
3159 **/
3160s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3161{
3162	struct e1000_phy_info *phy = &hw->phy;
3163	s32 ret_val;
3164	u16 phy_data;
3165	bool link;
3166
3167	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3168	if (ret_val)
3169		return ret_val;
3170
3171	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3172
3173	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3174	if (ret_val)
3175		return ret_val;
3176
3177	udelay(1);
3178
3179	if (phy->autoneg_wait_to_complete) {
3180		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3181
3182		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3183						      100000, &link);
3184		if (ret_val)
3185			return ret_val;
3186
3187		if (!link)
3188			e_dbg("Link taking longer than expected.\n");
3189
3190		/* Try once more */
3191		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3192						      100000, &link);
3193	}
3194
3195	return ret_val;
3196}
3197
3198/**
3199 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3200 *  @hw: pointer to the HW structure
3201 *
3202 *  Read PHY status to determine if link is up.  If link is up, then
3203 *  set/determine 10base-T extended distance and polarity correction.  Read
3204 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3205 *  determine on the cable length, local and remote receiver.
3206 **/
3207s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3208{
3209	struct e1000_phy_info *phy = &hw->phy;
3210	s32 ret_val;
3211	u16 data;
3212	bool link;
3213
3214	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3215	if (ret_val)
3216		return ret_val;
3217
3218	if (!link) {
3219		e_dbg("Phy info is only valid if link is up\n");
3220		return -E1000_ERR_CONFIG;
3221	}
3222
3223	phy->polarity_correction = true;
3224
3225	ret_val = e1000_check_polarity_82577(hw);
3226	if (ret_val)
3227		return ret_val;
3228
3229	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3230	if (ret_val)
3231		return ret_val;
3232
3233	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3234
3235	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3236	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3237		ret_val = hw->phy.ops.get_cable_length(hw);
3238		if (ret_val)
3239			return ret_val;
3240
3241		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3242		if (ret_val)
3243			return ret_val;
3244
3245		phy->local_rx = (data & LPA_1000LOCALRXOK)
3246		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3247
3248		phy->remote_rx = (data & LPA_1000REMRXOK)
3249		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3250	} else {
3251		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3252		phy->local_rx = e1000_1000t_rx_status_undefined;
3253		phy->remote_rx = e1000_1000t_rx_status_undefined;
3254	}
3255
3256	return 0;
3257}
3258
3259/**
3260 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3261 *  @hw: pointer to the HW structure
3262 *
3263 * Reads the diagnostic status register and verifies result is valid before
3264 * placing it in the phy_cable_length field.
3265 **/
3266s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3267{
3268	struct e1000_phy_info *phy = &hw->phy;
3269	s32 ret_val;
3270	u16 phy_data, length;
3271
3272	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3273	if (ret_val)
3274		return ret_val;
3275
3276	length = FIELD_GET(I82577_DSTATUS_CABLE_LENGTH, phy_data);
3277
3278	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3279		return -E1000_ERR_PHY;
3280
3281	phy->cable_length = length;
3282
3283	return 0;
3284}