Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 
 
 
 
 
 225			/* Unforce SMBus mode in PHY */
 226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 
 
 230			/* Unforce SMBus mode in MAC */
 231			mac_reg = er32(CTRL_EXT);
 232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233			ew32(CTRL_EXT, mac_reg);
 234		}
 235	}
 236
 237	return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249	u32 mac_reg;
 250
 251	/* Set Phy Config Counter to 50msec */
 252	mac_reg = er32(FEXTNVM3);
 253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255	ew32(FEXTNVM3, mac_reg);
 256
 257	/* Toggle LANPHYPC Value bit */
 258	mac_reg = er32(CTRL);
 259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261	ew32(CTRL, mac_reg);
 262	e1e_flush();
 263	usleep_range(10, 20);
 264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265	ew32(CTRL, mac_reg);
 266	e1e_flush();
 267
 268	if (hw->mac.type < e1000_pch_lpt) {
 269		msleep(50);
 270	} else {
 271		u16 count = 20;
 272
 273		do {
 274			usleep_range(5000, 6000);
 275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277		msleep(30);
 278	}
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290	struct e1000_adapter *adapter = hw->adapter;
 291	u32 mac_reg, fwsm = er32(FWSM);
 292	s32 ret_val;
 293
 294	/* Gate automatic PHY configuration by hardware on managed and
 295	 * non-managed 82579 and newer adapters.
 296	 */
 297	e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299	/* It is not possible to be certain of the current state of ULP
 300	 * so forcibly disable it.
 301	 */
 302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 304	if (ret_val)
 305		e_warn("Failed to disable ULP\n");
 306
 307	ret_val = hw->phy.ops.acquire(hw);
 308	if (ret_val) {
 309		e_dbg("Failed to initialize PHY flow\n");
 310		goto out;
 311	}
 312
 
 
 
 
 
 313	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 314	 * inaccessible and resetting the PHY is not blocked, toggle the
 315	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 316	 */
 317	switch (hw->mac.type) {
 318	case e1000_pch_lpt:
 319	case e1000_pch_spt:
 320	case e1000_pch_cnp:
 321	case e1000_pch_tgp:
 322	case e1000_pch_adp:
 323	case e1000_pch_mtp:
 324	case e1000_pch_lnp:
 325	case e1000_pch_ptp:
 326	case e1000_pch_nvp:
 327		if (e1000_phy_is_accessible_pchlan(hw))
 328			break;
 329
 330		/* Before toggling LANPHYPC, see if PHY is accessible by
 331		 * forcing MAC to SMBus mode first.
 332		 */
 333		mac_reg = er32(CTRL_EXT);
 334		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 335		ew32(CTRL_EXT, mac_reg);
 336
 337		/* Wait 50 milliseconds for MAC to finish any retries
 338		 * that it might be trying to perform from previous
 339		 * attempts to acknowledge any phy read requests.
 340		 */
 341		msleep(50);
 342
 343		fallthrough;
 344	case e1000_pch2lan:
 345		if (e1000_phy_is_accessible_pchlan(hw))
 346			break;
 347
 348		fallthrough;
 349	case e1000_pchlan:
 350		if ((hw->mac.type == e1000_pchlan) &&
 351		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 352			break;
 353
 354		if (hw->phy.ops.check_reset_block(hw)) {
 355			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 356			ret_val = -E1000_ERR_PHY;
 357			break;
 358		}
 359
 360		/* Toggle LANPHYPC Value bit */
 361		e1000_toggle_lanphypc_pch_lpt(hw);
 362		if (hw->mac.type >= e1000_pch_lpt) {
 363			if (e1000_phy_is_accessible_pchlan(hw))
 364				break;
 365
 366			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 367			 * so ensure that the MAC is also out of SMBus mode
 368			 */
 369			mac_reg = er32(CTRL_EXT);
 370			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 371			ew32(CTRL_EXT, mac_reg);
 372
 373			if (e1000_phy_is_accessible_pchlan(hw))
 374				break;
 375
 376			ret_val = -E1000_ERR_PHY;
 377		}
 378		break;
 379	default:
 380		break;
 381	}
 382
 
 
 383	hw->phy.ops.release(hw);
 384	if (!ret_val) {
 385
 386		/* Check to see if able to reset PHY.  Print error if not */
 387		if (hw->phy.ops.check_reset_block(hw)) {
 388			e_err("Reset blocked by ME\n");
 389			goto out;
 390		}
 391
 392		/* Reset the PHY before any access to it.  Doing so, ensures
 393		 * that the PHY is in a known good state before we read/write
 394		 * PHY registers.  The generic reset is sufficient here,
 395		 * because we haven't determined the PHY type yet.
 396		 */
 397		ret_val = e1000e_phy_hw_reset_generic(hw);
 398		if (ret_val)
 399			goto out;
 400
 401		/* On a successful reset, possibly need to wait for the PHY
 402		 * to quiesce to an accessible state before returning control
 403		 * to the calling function.  If the PHY does not quiesce, then
 404		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 405		 *  the PHY is in.
 406		 */
 407		ret_val = hw->phy.ops.check_reset_block(hw);
 408		if (ret_val)
 409			e_err("ME blocked access to PHY after reset\n");
 410	}
 411
 412out:
 413	/* Ungate automatic PHY configuration on non-managed 82579 */
 414	if ((hw->mac.type == e1000_pch2lan) &&
 415	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 416		usleep_range(10000, 11000);
 417		e1000_gate_hw_phy_config_ich8lan(hw, false);
 418	}
 419
 420	return ret_val;
 421}
 422
 423/**
 424 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 425 *  @hw: pointer to the HW structure
 426 *
 427 *  Initialize family-specific PHY parameters and function pointers.
 428 **/
 429static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 430{
 431	struct e1000_phy_info *phy = &hw->phy;
 432	s32 ret_val;
 433
 434	phy->addr = 1;
 435	phy->reset_delay_us = 100;
 436
 437	phy->ops.set_page = e1000_set_page_igp;
 438	phy->ops.read_reg = e1000_read_phy_reg_hv;
 439	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 440	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 441	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 442	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 443	phy->ops.write_reg = e1000_write_phy_reg_hv;
 444	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 445	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 446	phy->ops.power_up = e1000_power_up_phy_copper;
 447	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 448	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 449
 450	phy->id = e1000_phy_unknown;
 451
 
 
 
 
 
 452	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 453	if (ret_val)
 454		return ret_val;
 455
 456	if (phy->id == e1000_phy_unknown)
 457		switch (hw->mac.type) {
 458		default:
 459			ret_val = e1000e_get_phy_id(hw);
 460			if (ret_val)
 461				return ret_val;
 462			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 463				break;
 464			fallthrough;
 465		case e1000_pch2lan:
 466		case e1000_pch_lpt:
 467		case e1000_pch_spt:
 468		case e1000_pch_cnp:
 469		case e1000_pch_tgp:
 470		case e1000_pch_adp:
 471		case e1000_pch_mtp:
 472		case e1000_pch_lnp:
 473		case e1000_pch_ptp:
 474		case e1000_pch_nvp:
 475			/* In case the PHY needs to be in mdio slow mode,
 476			 * set slow mode and try to get the PHY id again.
 477			 */
 478			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 479			if (ret_val)
 480				return ret_val;
 481			ret_val = e1000e_get_phy_id(hw);
 482			if (ret_val)
 483				return ret_val;
 484			break;
 485		}
 486	phy->type = e1000e_get_phy_type_from_id(phy->id);
 487
 488	switch (phy->type) {
 489	case e1000_phy_82577:
 490	case e1000_phy_82579:
 491	case e1000_phy_i217:
 492		phy->ops.check_polarity = e1000_check_polarity_82577;
 493		phy->ops.force_speed_duplex =
 494		    e1000_phy_force_speed_duplex_82577;
 495		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 496		phy->ops.get_info = e1000_get_phy_info_82577;
 497		phy->ops.commit = e1000e_phy_sw_reset;
 498		break;
 499	case e1000_phy_82578:
 500		phy->ops.check_polarity = e1000_check_polarity_m88;
 501		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 502		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 503		phy->ops.get_info = e1000e_get_phy_info_m88;
 504		break;
 505	default:
 506		ret_val = -E1000_ERR_PHY;
 507		break;
 508	}
 509
 510	return ret_val;
 511}
 512
 513/**
 514 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 515 *  @hw: pointer to the HW structure
 516 *
 517 *  Initialize family-specific PHY parameters and function pointers.
 518 **/
 519static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 520{
 521	struct e1000_phy_info *phy = &hw->phy;
 522	s32 ret_val;
 523	u16 i = 0;
 524
 525	phy->addr = 1;
 526	phy->reset_delay_us = 100;
 527
 528	phy->ops.power_up = e1000_power_up_phy_copper;
 529	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 530
 531	/* We may need to do this twice - once for IGP and if that fails,
 532	 * we'll set BM func pointers and try again
 533	 */
 534	ret_val = e1000e_determine_phy_address(hw);
 535	if (ret_val) {
 536		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 537		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 538		ret_val = e1000e_determine_phy_address(hw);
 539		if (ret_val) {
 540			e_dbg("Cannot determine PHY addr. Erroring out\n");
 541			return ret_val;
 542		}
 543	}
 544
 545	phy->id = 0;
 546	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 547	       (i++ < 100)) {
 548		usleep_range(1000, 1100);
 549		ret_val = e1000e_get_phy_id(hw);
 550		if (ret_val)
 551			return ret_val;
 552	}
 553
 554	/* Verify phy id */
 555	switch (phy->id) {
 556	case IGP03E1000_E_PHY_ID:
 557		phy->type = e1000_phy_igp_3;
 558		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 559		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 560		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 561		phy->ops.get_info = e1000e_get_phy_info_igp;
 562		phy->ops.check_polarity = e1000_check_polarity_igp;
 563		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 564		break;
 565	case IFE_E_PHY_ID:
 566	case IFE_PLUS_E_PHY_ID:
 567	case IFE_C_E_PHY_ID:
 568		phy->type = e1000_phy_ife;
 569		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 570		phy->ops.get_info = e1000_get_phy_info_ife;
 571		phy->ops.check_polarity = e1000_check_polarity_ife;
 572		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 573		break;
 574	case BME1000_E_PHY_ID:
 575		phy->type = e1000_phy_bm;
 576		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 577		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 578		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 579		phy->ops.commit = e1000e_phy_sw_reset;
 580		phy->ops.get_info = e1000e_get_phy_info_m88;
 581		phy->ops.check_polarity = e1000_check_polarity_m88;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 583		break;
 584	default:
 585		return -E1000_ERR_PHY;
 586	}
 587
 588	return 0;
 589}
 590
 591/**
 592 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 593 *  @hw: pointer to the HW structure
 594 *
 595 *  Initialize family-specific NVM parameters and function
 596 *  pointers.
 597 **/
 598static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 599{
 600	struct e1000_nvm_info *nvm = &hw->nvm;
 601	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 602	u32 gfpreg, sector_base_addr, sector_end_addr;
 603	u16 i;
 604	u32 nvm_size;
 605
 606	nvm->type = e1000_nvm_flash_sw;
 607
 608	if (hw->mac.type >= e1000_pch_spt) {
 609		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 610		 * STRAP register. This is because in SPT the GbE Flash region
 611		 * is no longer accessed through the flash registers. Instead,
 612		 * the mechanism has changed, and the Flash region access
 613		 * registers are now implemented in GbE memory space.
 614		 */
 615		nvm->flash_base_addr = 0;
 616		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 617		    * NVM_SIZE_MULTIPLIER;
 618		nvm->flash_bank_size = nvm_size / 2;
 619		/* Adjust to word count */
 620		nvm->flash_bank_size /= sizeof(u16);
 621		/* Set the base address for flash register access */
 622		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 623	} else {
 624		/* Can't read flash registers if register set isn't mapped. */
 625		if (!hw->flash_address) {
 626			e_dbg("ERROR: Flash registers not mapped\n");
 627			return -E1000_ERR_CONFIG;
 628		}
 629
 630		gfpreg = er32flash(ICH_FLASH_GFPREG);
 631
 632		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 633		 * Add 1 to sector_end_addr since this sector is included in
 634		 * the overall size.
 635		 */
 636		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 637		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 638
 639		/* flash_base_addr is byte-aligned */
 640		nvm->flash_base_addr = sector_base_addr
 641		    << FLASH_SECTOR_ADDR_SHIFT;
 642
 643		/* find total size of the NVM, then cut in half since the total
 644		 * size represents two separate NVM banks.
 645		 */
 646		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 647					<< FLASH_SECTOR_ADDR_SHIFT);
 648		nvm->flash_bank_size /= 2;
 649		/* Adjust to word count */
 650		nvm->flash_bank_size /= sizeof(u16);
 651	}
 652
 653	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 654
 655	/* Clear shadow ram */
 656	for (i = 0; i < nvm->word_size; i++) {
 657		dev_spec->shadow_ram[i].modified = false;
 658		dev_spec->shadow_ram[i].value = 0xFFFF;
 659	}
 660
 661	return 0;
 662}
 663
 664/**
 665 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 666 *  @hw: pointer to the HW structure
 667 *
 668 *  Initialize family-specific MAC parameters and function
 669 *  pointers.
 670 **/
 671static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 672{
 673	struct e1000_mac_info *mac = &hw->mac;
 674
 675	/* Set media type function pointer */
 676	hw->phy.media_type = e1000_media_type_copper;
 677
 678	/* Set mta register count */
 679	mac->mta_reg_count = 32;
 680	/* Set rar entry count */
 681	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 682	if (mac->type == e1000_ich8lan)
 683		mac->rar_entry_count--;
 684	/* FWSM register */
 685	mac->has_fwsm = true;
 686	/* ARC subsystem not supported */
 687	mac->arc_subsystem_valid = false;
 688	/* Adaptive IFS supported */
 689	mac->adaptive_ifs = true;
 690
 691	/* LED and other operations */
 692	switch (mac->type) {
 693	case e1000_ich8lan:
 694	case e1000_ich9lan:
 695	case e1000_ich10lan:
 696		/* check management mode */
 697		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 698		/* ID LED init */
 699		mac->ops.id_led_init = e1000e_id_led_init_generic;
 700		/* blink LED */
 701		mac->ops.blink_led = e1000e_blink_led_generic;
 702		/* setup LED */
 703		mac->ops.setup_led = e1000e_setup_led_generic;
 704		/* cleanup LED */
 705		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 706		/* turn on/off LED */
 707		mac->ops.led_on = e1000_led_on_ich8lan;
 708		mac->ops.led_off = e1000_led_off_ich8lan;
 709		break;
 710	case e1000_pch2lan:
 711		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 712		mac->ops.rar_set = e1000_rar_set_pch2lan;
 713		fallthrough;
 714	case e1000_pch_lpt:
 715	case e1000_pch_spt:
 716	case e1000_pch_cnp:
 717	case e1000_pch_tgp:
 718	case e1000_pch_adp:
 719	case e1000_pch_mtp:
 720	case e1000_pch_lnp:
 721	case e1000_pch_ptp:
 722	case e1000_pch_nvp:
 723	case e1000_pchlan:
 724		/* check management mode */
 725		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 726		/* ID LED init */
 727		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 728		/* setup LED */
 729		mac->ops.setup_led = e1000_setup_led_pchlan;
 730		/* cleanup LED */
 731		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 732		/* turn on/off LED */
 733		mac->ops.led_on = e1000_led_on_pchlan;
 734		mac->ops.led_off = e1000_led_off_pchlan;
 735		break;
 736	default:
 737		break;
 738	}
 739
 740	if (mac->type >= e1000_pch_lpt) {
 741		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 742		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 743		mac->ops.setup_physical_interface =
 744		    e1000_setup_copper_link_pch_lpt;
 745		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 746	}
 747
 748	/* Enable PCS Lock-loss workaround for ICH8 */
 749	if (mac->type == e1000_ich8lan)
 750		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 751
 752	return 0;
 753}
 754
 755/**
 756 *  __e1000_access_emi_reg_locked - Read/write EMI register
 757 *  @hw: pointer to the HW structure
 758 *  @address: EMI address to program
 759 *  @data: pointer to value to read/write from/to the EMI address
 760 *  @read: boolean flag to indicate read or write
 761 *
 762 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 763 **/
 764static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 765					 u16 *data, bool read)
 766{
 767	s32 ret_val;
 768
 769	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 770	if (ret_val)
 771		return ret_val;
 772
 773	if (read)
 774		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 775	else
 776		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 777
 778	return ret_val;
 779}
 780
 781/**
 782 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 783 *  @hw: pointer to the HW structure
 784 *  @addr: EMI address to program
 785 *  @data: value to be read from the EMI address
 786 *
 787 *  Assumes the SW/FW/HW Semaphore is already acquired.
 788 **/
 789s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 790{
 791	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 792}
 793
 794/**
 795 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 796 *  @hw: pointer to the HW structure
 797 *  @addr: EMI address to program
 798 *  @data: value to be written to the EMI address
 799 *
 800 *  Assumes the SW/FW/HW Semaphore is already acquired.
 801 **/
 802s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 803{
 804	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 805}
 806
 807/**
 808 *  e1000_set_eee_pchlan - Enable/disable EEE support
 809 *  @hw: pointer to the HW structure
 810 *
 811 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 812 *  the link and the EEE capabilities of the link partner.  The LPI Control
 813 *  register bits will remain set only if/when link is up.
 814 *
 815 *  EEE LPI must not be asserted earlier than one second after link is up.
 816 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 817 *  can be link issues with some switches.  Other devices can have EEE LPI
 818 *  enabled immediately upon link up since they have a timer in hardware which
 819 *  prevents LPI from being asserted too early.
 820 **/
 821s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 822{
 823	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 824	s32 ret_val;
 825	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 826
 827	switch (hw->phy.type) {
 828	case e1000_phy_82579:
 829		lpa = I82579_EEE_LP_ABILITY;
 830		pcs_status = I82579_EEE_PCS_STATUS;
 831		adv_addr = I82579_EEE_ADVERTISEMENT;
 832		break;
 833	case e1000_phy_i217:
 834		lpa = I217_EEE_LP_ABILITY;
 835		pcs_status = I217_EEE_PCS_STATUS;
 836		adv_addr = I217_EEE_ADVERTISEMENT;
 837		break;
 838	default:
 839		return 0;
 840	}
 841
 842	ret_val = hw->phy.ops.acquire(hw);
 843	if (ret_val)
 844		return ret_val;
 845
 846	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 847	if (ret_val)
 848		goto release;
 849
 850	/* Clear bits that enable EEE in various speeds */
 851	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 852
 853	/* Enable EEE if not disabled by user */
 854	if (!dev_spec->eee_disable) {
 855		/* Save off link partner's EEE ability */
 856		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 857						    &dev_spec->eee_lp_ability);
 858		if (ret_val)
 859			goto release;
 860
 861		/* Read EEE advertisement */
 862		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 863		if (ret_val)
 864			goto release;
 865
 866		/* Enable EEE only for speeds in which the link partner is
 867		 * EEE capable and for which we advertise EEE.
 868		 */
 869		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 870			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 871
 872		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 873			e1e_rphy_locked(hw, MII_LPA, &data);
 874			if (data & LPA_100FULL)
 875				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 876			else
 877				/* EEE is not supported in 100Half, so ignore
 878				 * partner's EEE in 100 ability if full-duplex
 879				 * is not advertised.
 880				 */
 881				dev_spec->eee_lp_ability &=
 882				    ~I82579_EEE_100_SUPPORTED;
 883		}
 884	}
 885
 886	if (hw->phy.type == e1000_phy_82579) {
 887		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 888						    &data);
 889		if (ret_val)
 890			goto release;
 891
 892		data &= ~I82579_LPI_100_PLL_SHUT;
 893		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 894						     data);
 895	}
 896
 897	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 898	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 899	if (ret_val)
 900		goto release;
 901
 902	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 903release:
 904	hw->phy.ops.release(hw);
 905
 906	return ret_val;
 907}
 908
 909/**
 910 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 911 *  @hw:   pointer to the HW structure
 912 *  @link: link up bool flag
 913 *
 914 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 915 *  preventing further DMA write requests.  Workaround the issue by disabling
 916 *  the de-assertion of the clock request when in 1Gpbs mode.
 917 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 918 *  speeds in order to avoid Tx hangs.
 919 **/
 920static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 921{
 922	u32 fextnvm6 = er32(FEXTNVM6);
 923	u32 status = er32(STATUS);
 924	s32 ret_val = 0;
 925	u16 reg;
 926
 927	if (link && (status & E1000_STATUS_SPEED_1000)) {
 928		ret_val = hw->phy.ops.acquire(hw);
 929		if (ret_val)
 930			return ret_val;
 931
 932		ret_val =
 933		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 934						&reg);
 935		if (ret_val)
 936			goto release;
 937
 938		ret_val =
 939		    e1000e_write_kmrn_reg_locked(hw,
 940						 E1000_KMRNCTRLSTA_K1_CONFIG,
 941						 reg &
 942						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 943		if (ret_val)
 944			goto release;
 945
 946		usleep_range(10, 20);
 947
 948		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 949
 950		ret_val =
 951		    e1000e_write_kmrn_reg_locked(hw,
 952						 E1000_KMRNCTRLSTA_K1_CONFIG,
 953						 reg);
 954release:
 955		hw->phy.ops.release(hw);
 956	} else {
 957		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 958		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 959
 960		if ((hw->phy.revision > 5) || !link ||
 961		    ((status & E1000_STATUS_SPEED_100) &&
 962		     (status & E1000_STATUS_FD)))
 963			goto update_fextnvm6;
 964
 965		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 966		if (ret_val)
 967			return ret_val;
 968
 969		/* Clear link status transmit timeout */
 970		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 971
 972		if (status & E1000_STATUS_SPEED_100) {
 973			/* Set inband Tx timeout to 5x10us for 100Half */
 974			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 975
 976			/* Do not extend the K1 entry latency for 100Half */
 977			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 978		} else {
 979			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 980			reg |= 50 <<
 981			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 982
 983			/* Extend the K1 entry latency for 10 Mbps */
 984			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 985		}
 986
 987		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 988		if (ret_val)
 989			return ret_val;
 990
 991update_fextnvm6:
 992		ew32(FEXTNVM6, fextnvm6);
 993	}
 994
 995	return ret_val;
 996}
 997
 998/**
 999 *  e1000_platform_pm_pch_lpt - Set platform power management values
1000 *  @hw: pointer to the HW structure
1001 *  @link: bool indicating link status
1002 *
1003 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1004 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1005 *  when link is up (which must not exceed the maximum latency supported
1006 *  by the platform), otherwise specify there is no LTR requirement.
1007 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1008 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1009 *  Capability register set, on this device LTR is set by writing the
1010 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1011 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1012 *  message to the PMC.
1013 **/
1014static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1015{
1016	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1017	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1018	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1019	u32 lat_enc_d = 0;	/* latency decoded */
1020	u16 lat_enc = 0;	/* latency encoded */
1021
1022	if (link) {
1023		u16 speed, duplex, scale = 0;
1024		u16 max_snoop, max_nosnoop;
1025		u16 max_ltr_enc;	/* max LTR latency encoded */
1026		u64 value;
1027		u32 rxa;
1028
1029		if (!hw->adapter->max_frame_size) {
1030			e_dbg("max_frame_size not set.\n");
1031			return -E1000_ERR_CONFIG;
1032		}
1033
1034		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1035		if (!speed) {
1036			e_dbg("Speed not set.\n");
1037			return -E1000_ERR_CONFIG;
1038		}
1039
1040		/* Rx Packet Buffer Allocation size (KB) */
1041		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1042
1043		/* Determine the maximum latency tolerated by the device.
1044		 *
1045		 * Per the PCIe spec, the tolerated latencies are encoded as
1046		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1047		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1048		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1049		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1050		 */
1051		rxa *= 512;
1052		value = (rxa > hw->adapter->max_frame_size) ?
1053			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1054			0;
1055
1056		while (value > PCI_LTR_VALUE_MASK) {
1057			scale++;
1058			value = DIV_ROUND_UP(value, BIT(5));
1059		}
1060		if (scale > E1000_LTRV_SCALE_MAX) {
1061			e_dbg("Invalid LTR latency scale %d\n", scale);
1062			return -E1000_ERR_CONFIG;
1063		}
1064		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1065
1066		/* Determine the maximum latency tolerated by the platform */
1067		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1068				     &max_snoop);
1069		pci_read_config_word(hw->adapter->pdev,
1070				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1071		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1072
1073		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1074			     (1U << (E1000_LTRV_SCALE_FACTOR *
1075			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1076
1077		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1078			(1U << (E1000_LTRV_SCALE_FACTOR *
1079				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1080
1081		if (lat_enc_d > max_ltr_enc_d)
1082			lat_enc = max_ltr_enc;
1083	}
1084
1085	/* Set Snoop and No-Snoop latencies the same */
1086	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1087	ew32(LTRV, reg);
1088
1089	return 0;
1090}
1091
1092/**
1093 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1094 *  @hw: pointer to the HW structure
1095 *  @to_sx: boolean indicating a system power state transition to Sx
1096 *
1097 *  When link is down, configure ULP mode to significantly reduce the power
1098 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1099 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1100 *  system, configure the ULP mode by software.
1101 */
1102s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1103{
1104	u32 mac_reg;
1105	s32 ret_val = 0;
1106	u16 phy_reg;
1107	u16 oem_reg = 0;
1108
1109	if ((hw->mac.type < e1000_pch_lpt) ||
1110	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1111	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1112	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1113	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1114	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1115		return 0;
1116
1117	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1118		/* Request ME configure ULP mode in the PHY */
1119		mac_reg = er32(H2ME);
1120		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1121		ew32(H2ME, mac_reg);
1122
1123		goto out;
1124	}
1125
1126	if (!to_sx) {
1127		int i = 0;
1128
1129		/* Poll up to 5 seconds for Cable Disconnected indication */
1130		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1131			/* Bail if link is re-acquired */
1132			if (er32(STATUS) & E1000_STATUS_LU)
1133				return -E1000_ERR_PHY;
1134
1135			if (i++ == 100)
1136				break;
1137
1138			msleep(50);
1139		}
1140		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1141		      (er32(FEXT) &
1142		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1143	}
1144
1145	ret_val = hw->phy.ops.acquire(hw);
1146	if (ret_val)
1147		goto out;
1148
1149	/* Force SMBus mode in PHY */
1150	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1151	if (ret_val)
1152		goto release;
1153	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1154	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1155
1156	/* Force SMBus mode in MAC */
1157	mac_reg = er32(CTRL_EXT);
1158	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1159	ew32(CTRL_EXT, mac_reg);
1160
1161	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1162	 * LPLU and disable Gig speed when entering ULP
1163	 */
1164	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1165		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1166						       &oem_reg);
1167		if (ret_val)
1168			goto release;
1169
1170		phy_reg = oem_reg;
1171		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1172
1173		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1174							phy_reg);
1175
1176		if (ret_val)
1177			goto release;
1178	}
1179
1180	/* Set Inband ULP Exit, Reset to SMBus mode and
1181	 * Disable SMBus Release on PERST# in PHY
1182	 */
1183	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1184	if (ret_val)
1185		goto release;
1186	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1187		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1188	if (to_sx) {
1189		if (er32(WUFC) & E1000_WUFC_LNKC)
1190			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1191		else
1192			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1193
1194		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1195		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1196	} else {
1197		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1198		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1199		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200	}
1201	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1202
1203	/* Set Disable SMBus Release on PERST# in MAC */
1204	mac_reg = er32(FEXTNVM7);
1205	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1206	ew32(FEXTNVM7, mac_reg);
1207
1208	/* Commit ULP changes in PHY by starting auto ULP configuration */
1209	phy_reg |= I218_ULP_CONFIG1_START;
1210	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1211
1212	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1213	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1214		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1215							oem_reg);
1216		if (ret_val)
1217			goto release;
1218	}
1219
1220release:
1221	hw->phy.ops.release(hw);
1222out:
1223	if (ret_val)
1224		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1225	else
1226		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1227
1228	return ret_val;
1229}
1230
1231/**
1232 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1233 *  @hw: pointer to the HW structure
1234 *  @force: boolean indicating whether or not to force disabling ULP
1235 *
1236 *  Un-configure ULP mode when link is up, the system is transitioned from
1237 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1238 *  system, poll for an indication from ME that ULP has been un-configured.
1239 *  If not on an ME enabled system, un-configure the ULP mode by software.
1240 *
1241 *  During nominal operation, this function is called when link is acquired
1242 *  to disable ULP mode (force=false); otherwise, for example when unloading
1243 *  the driver or during Sx->S0 transitions, this is called with force=true
1244 *  to forcibly disable ULP.
1245 */
1246static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1247{
1248	s32 ret_val = 0;
1249	u32 mac_reg;
1250	u16 phy_reg;
1251	int i = 0;
1252
1253	if ((hw->mac.type < e1000_pch_lpt) ||
1254	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1255	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1256	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1257	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1258	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1259		return 0;
1260
1261	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1262		struct e1000_adapter *adapter = hw->adapter;
1263		bool firmware_bug = false;
1264
1265		if (force) {
1266			/* Request ME un-configure ULP mode in the PHY */
1267			mac_reg = er32(H2ME);
1268			mac_reg &= ~E1000_H2ME_ULP;
1269			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1270			ew32(H2ME, mac_reg);
1271		}
1272
1273		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1274		 * If this takes more than 1 second, show a warning indicating a
1275		 * firmware bug
1276		 */
1277		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1278			if (i++ == 250) {
1279				ret_val = -E1000_ERR_PHY;
1280				goto out;
1281			}
1282			if (i > 100 && !firmware_bug)
1283				firmware_bug = true;
1284
1285			usleep_range(10000, 11000);
1286		}
1287		if (firmware_bug)
1288			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1289			       i * 10);
1290		else
1291			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1292			      i * 10);
1293
1294		if (force) {
1295			mac_reg = er32(H2ME);
1296			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1297			ew32(H2ME, mac_reg);
1298		} else {
1299			/* Clear H2ME.ULP after ME ULP configuration */
1300			mac_reg = er32(H2ME);
1301			mac_reg &= ~E1000_H2ME_ULP;
1302			ew32(H2ME, mac_reg);
1303		}
1304
1305		goto out;
1306	}
1307
1308	ret_val = hw->phy.ops.acquire(hw);
1309	if (ret_val)
1310		goto out;
1311
1312	if (force)
1313		/* Toggle LANPHYPC Value bit */
1314		e1000_toggle_lanphypc_pch_lpt(hw);
1315
 
 
 
 
 
1316	/* Unforce SMBus mode in PHY */
1317	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1318	if (ret_val) {
1319		/* The MAC might be in PCIe mode, so temporarily force to
1320		 * SMBus mode in order to access the PHY.
1321		 */
1322		mac_reg = er32(CTRL_EXT);
1323		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1324		ew32(CTRL_EXT, mac_reg);
1325
1326		msleep(50);
1327
1328		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1329						       &phy_reg);
1330		if (ret_val)
1331			goto release;
1332	}
1333	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1334	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
 
 
1335
1336	/* Unforce SMBus mode in MAC */
1337	mac_reg = er32(CTRL_EXT);
1338	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1339	ew32(CTRL_EXT, mac_reg);
1340
1341	/* When ULP mode was previously entered, K1 was disabled by the
1342	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1343	 */
1344	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1345	if (ret_val)
1346		goto release;
1347	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1348	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1349
1350	/* Clear ULP enabled configuration */
1351	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1352	if (ret_val)
1353		goto release;
1354	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1355		     I218_ULP_CONFIG1_STICKY_ULP |
1356		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1357		     I218_ULP_CONFIG1_WOL_HOST |
1358		     I218_ULP_CONFIG1_INBAND_EXIT |
1359		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1360		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1361		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1362	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363
1364	/* Commit ULP changes by starting auto ULP configuration */
1365	phy_reg |= I218_ULP_CONFIG1_START;
1366	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1367
1368	/* Clear Disable SMBus Release on PERST# in MAC */
1369	mac_reg = er32(FEXTNVM7);
1370	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1371	ew32(FEXTNVM7, mac_reg);
1372
1373release:
1374	hw->phy.ops.release(hw);
1375	if (force) {
1376		e1000_phy_hw_reset(hw);
1377		msleep(50);
1378	}
1379out:
1380	if (ret_val)
1381		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1382	else
1383		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1384
1385	return ret_val;
1386}
1387
1388/**
1389 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1390 *  @hw: pointer to the HW structure
1391 *
1392 *  Checks to see of the link status of the hardware has changed.  If a
1393 *  change in link status has been detected, then we read the PHY registers
1394 *  to get the current speed/duplex if link exists.
1395 **/
1396static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1397{
1398	struct e1000_mac_info *mac = &hw->mac;
1399	s32 ret_val, tipg_reg = 0;
1400	u16 emi_addr, emi_val = 0;
1401	bool link;
1402	u16 phy_reg;
1403
1404	/* We only want to go out to the PHY registers to see if Auto-Neg
1405	 * has completed and/or if our link status has changed.  The
1406	 * get_link_status flag is set upon receiving a Link Status
1407	 * Change or Rx Sequence Error interrupt.
1408	 */
1409	if (!mac->get_link_status)
1410		return 0;
1411	mac->get_link_status = false;
1412
1413	/* First we want to see if the MII Status Register reports
1414	 * link.  If so, then we want to get the current speed/duplex
1415	 * of the PHY.
1416	 */
1417	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1418	if (ret_val)
1419		goto out;
1420
1421	if (hw->mac.type == e1000_pchlan) {
1422		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1423		if (ret_val)
1424			goto out;
1425	}
1426
1427	/* When connected at 10Mbps half-duplex, some parts are excessively
1428	 * aggressive resulting in many collisions. To avoid this, increase
1429	 * the IPG and reduce Rx latency in the PHY.
1430	 */
1431	if ((hw->mac.type >= e1000_pch2lan) && link) {
1432		u16 speed, duplex;
1433
1434		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1435		tipg_reg = er32(TIPG);
1436		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1437
1438		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1439			tipg_reg |= 0xFF;
1440			/* Reduce Rx latency in analog PHY */
1441			emi_val = 0;
1442		} else if (hw->mac.type >= e1000_pch_spt &&
1443			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1444			tipg_reg |= 0xC;
1445			emi_val = 1;
1446		} else {
1447
1448			/* Roll back the default values */
1449			tipg_reg |= 0x08;
1450			emi_val = 1;
1451		}
1452
1453		ew32(TIPG, tipg_reg);
1454
1455		ret_val = hw->phy.ops.acquire(hw);
1456		if (ret_val)
1457			goto out;
1458
1459		if (hw->mac.type == e1000_pch2lan)
1460			emi_addr = I82579_RX_CONFIG;
1461		else
1462			emi_addr = I217_RX_CONFIG;
1463		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1464
1465		if (hw->mac.type >= e1000_pch_lpt) {
1466			u16 phy_reg;
1467
1468			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1469			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1470			if (speed == SPEED_100 || speed == SPEED_10)
1471				phy_reg |= 0x3E8;
1472			else
1473				phy_reg |= 0xFA;
1474			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1475
1476			if (speed == SPEED_1000) {
1477				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1478							    &phy_reg);
1479
1480				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1481
1482				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1483							     phy_reg);
1484			}
1485		}
1486		hw->phy.ops.release(hw);
1487
1488		if (ret_val)
1489			goto out;
1490
1491		if (hw->mac.type >= e1000_pch_spt) {
1492			u16 data;
1493			u16 ptr_gap;
1494
1495			if (speed == SPEED_1000) {
1496				ret_val = hw->phy.ops.acquire(hw);
1497				if (ret_val)
1498					goto out;
1499
1500				ret_val = e1e_rphy_locked(hw,
1501							  PHY_REG(776, 20),
1502							  &data);
1503				if (ret_val) {
1504					hw->phy.ops.release(hw);
1505					goto out;
1506				}
1507
1508				ptr_gap = (data & (0x3FF << 2)) >> 2;
1509				if (ptr_gap < 0x18) {
1510					data &= ~(0x3FF << 2);
1511					data |= (0x18 << 2);
1512					ret_val =
1513					    e1e_wphy_locked(hw,
1514							    PHY_REG(776, 20),
1515							    data);
1516				}
1517				hw->phy.ops.release(hw);
1518				if (ret_val)
1519					goto out;
1520			} else {
1521				ret_val = hw->phy.ops.acquire(hw);
1522				if (ret_val)
1523					goto out;
1524
1525				ret_val = e1e_wphy_locked(hw,
1526							  PHY_REG(776, 20),
1527							  0xC023);
1528				hw->phy.ops.release(hw);
1529				if (ret_val)
1530					goto out;
1531
1532			}
1533		}
1534	}
1535
1536	/* I217 Packet Loss issue:
1537	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1538	 * on power up.
1539	 * Set the Beacon Duration for I217 to 8 usec
1540	 */
1541	if (hw->mac.type >= e1000_pch_lpt) {
1542		u32 mac_reg;
1543
1544		mac_reg = er32(FEXTNVM4);
1545		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1546		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1547		ew32(FEXTNVM4, mac_reg);
1548	}
1549
1550	/* Work-around I218 hang issue */
1551	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1552	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1553	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1554	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1555		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1556		if (ret_val)
1557			goto out;
1558	}
1559	if (hw->mac.type >= e1000_pch_lpt) {
1560		/* Set platform power management values for
1561		 * Latency Tolerance Reporting (LTR)
1562		 */
1563		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1564		if (ret_val)
1565			goto out;
1566	}
1567
1568	/* Clear link partner's EEE ability */
1569	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1570
1571	if (hw->mac.type >= e1000_pch_lpt) {
1572		u32 fextnvm6 = er32(FEXTNVM6);
1573
1574		if (hw->mac.type == e1000_pch_spt) {
1575			/* FEXTNVM6 K1-off workaround - for SPT only */
1576			u32 pcieanacfg = er32(PCIEANACFG);
1577
1578			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1579				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1580			else
1581				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1582		}
1583
1584		ew32(FEXTNVM6, fextnvm6);
1585	}
1586
1587	if (!link)
1588		goto out;
1589
1590	switch (hw->mac.type) {
1591	case e1000_pch2lan:
1592		ret_val = e1000_k1_workaround_lv(hw);
1593		if (ret_val)
1594			return ret_val;
1595		fallthrough;
1596	case e1000_pchlan:
1597		if (hw->phy.type == e1000_phy_82578) {
1598			ret_val = e1000_link_stall_workaround_hv(hw);
1599			if (ret_val)
1600				return ret_val;
1601		}
1602
1603		/* Workaround for PCHx parts in half-duplex:
1604		 * Set the number of preambles removed from the packet
1605		 * when it is passed from the PHY to the MAC to prevent
1606		 * the MAC from misinterpreting the packet type.
1607		 */
1608		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1609		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1610
1611		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1612			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1613
1614		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1615		break;
1616	default:
1617		break;
1618	}
1619
1620	/* Check if there was DownShift, must be checked
1621	 * immediately after link-up
1622	 */
1623	e1000e_check_downshift(hw);
1624
1625	/* Enable/Disable EEE after link up */
1626	if (hw->phy.type > e1000_phy_82579) {
1627		ret_val = e1000_set_eee_pchlan(hw);
1628		if (ret_val)
1629			return ret_val;
1630	}
1631
1632	/* If we are forcing speed/duplex, then we simply return since
1633	 * we have already determined whether we have link or not.
1634	 */
1635	if (!mac->autoneg)
1636		return -E1000_ERR_CONFIG;
1637
1638	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1639	 * of MAC speed/duplex configuration.  So we only need to
1640	 * configure Collision Distance in the MAC.
1641	 */
1642	mac->ops.config_collision_dist(hw);
1643
1644	/* Configure Flow Control now that Auto-Neg has completed.
1645	 * First, we need to restore the desired flow control
1646	 * settings because we may have had to re-autoneg with a
1647	 * different link partner.
1648	 */
1649	ret_val = e1000e_config_fc_after_link_up(hw);
1650	if (ret_val)
1651		e_dbg("Error configuring flow control\n");
1652
1653	return ret_val;
1654
1655out:
1656	mac->get_link_status = true;
1657	return ret_val;
1658}
1659
1660static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1661{
1662	struct e1000_hw *hw = &adapter->hw;
1663	s32 rc;
1664
1665	rc = e1000_init_mac_params_ich8lan(hw);
1666	if (rc)
1667		return rc;
1668
1669	rc = e1000_init_nvm_params_ich8lan(hw);
1670	if (rc)
1671		return rc;
1672
1673	switch (hw->mac.type) {
1674	case e1000_ich8lan:
1675	case e1000_ich9lan:
1676	case e1000_ich10lan:
1677		rc = e1000_init_phy_params_ich8lan(hw);
1678		break;
1679	case e1000_pchlan:
1680	case e1000_pch2lan:
1681	case e1000_pch_lpt:
1682	case e1000_pch_spt:
1683	case e1000_pch_cnp:
1684	case e1000_pch_tgp:
1685	case e1000_pch_adp:
1686	case e1000_pch_mtp:
1687	case e1000_pch_lnp:
1688	case e1000_pch_ptp:
1689	case e1000_pch_nvp:
1690		rc = e1000_init_phy_params_pchlan(hw);
1691		break;
1692	default:
1693		break;
1694	}
1695	if (rc)
1696		return rc;
1697
1698	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1699	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1700	 */
1701	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1702	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1703	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1704		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1705		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1706
1707		hw->mac.ops.blink_led = NULL;
1708	}
1709
1710	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1711	    (adapter->hw.phy.type != e1000_phy_ife))
1712		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1713
1714	/* Enable workaround for 82579 w/ ME enabled */
1715	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1716	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1717		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1718
1719	return 0;
1720}
1721
1722static DEFINE_MUTEX(nvm_mutex);
1723
1724/**
1725 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1726 *  @hw: pointer to the HW structure
1727 *
1728 *  Acquires the mutex for performing NVM operations.
1729 **/
1730static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1731{
1732	mutex_lock(&nvm_mutex);
1733
1734	return 0;
1735}
1736
1737/**
1738 *  e1000_release_nvm_ich8lan - Release NVM mutex
1739 *  @hw: pointer to the HW structure
1740 *
1741 *  Releases the mutex used while performing NVM operations.
1742 **/
1743static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1744{
1745	mutex_unlock(&nvm_mutex);
1746}
1747
1748/**
1749 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1750 *  @hw: pointer to the HW structure
1751 *
1752 *  Acquires the software control flag for performing PHY and select
1753 *  MAC CSR accesses.
1754 **/
1755static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1756{
1757	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1758	s32 ret_val = 0;
1759
1760	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1761			     &hw->adapter->state)) {
1762		e_dbg("contention for Phy access\n");
1763		return -E1000_ERR_PHY;
1764	}
1765
1766	while (timeout) {
1767		extcnf_ctrl = er32(EXTCNF_CTRL);
1768		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1769			break;
1770
1771		mdelay(1);
1772		timeout--;
1773	}
1774
1775	if (!timeout) {
1776		e_dbg("SW has already locked the resource.\n");
1777		ret_val = -E1000_ERR_CONFIG;
1778		goto out;
1779	}
1780
1781	timeout = SW_FLAG_TIMEOUT;
1782
1783	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1784	ew32(EXTCNF_CTRL, extcnf_ctrl);
1785
1786	while (timeout) {
1787		extcnf_ctrl = er32(EXTCNF_CTRL);
1788		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1789			break;
1790
1791		mdelay(1);
1792		timeout--;
1793	}
1794
1795	if (!timeout) {
1796		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1797		      er32(FWSM), extcnf_ctrl);
1798		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1799		ew32(EXTCNF_CTRL, extcnf_ctrl);
1800		ret_val = -E1000_ERR_CONFIG;
1801		goto out;
1802	}
1803
1804out:
1805	if (ret_val)
1806		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1807
1808	return ret_val;
1809}
1810
1811/**
1812 *  e1000_release_swflag_ich8lan - Release software control flag
1813 *  @hw: pointer to the HW structure
1814 *
1815 *  Releases the software control flag for performing PHY and select
1816 *  MAC CSR accesses.
1817 **/
1818static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1819{
1820	u32 extcnf_ctrl;
1821
1822	extcnf_ctrl = er32(EXTCNF_CTRL);
1823
1824	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1825		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1826		ew32(EXTCNF_CTRL, extcnf_ctrl);
1827	} else {
1828		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1829	}
1830
1831	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1832}
1833
1834/**
1835 *  e1000_check_mng_mode_ich8lan - Checks management mode
1836 *  @hw: pointer to the HW structure
1837 *
1838 *  This checks if the adapter has any manageability enabled.
1839 *  This is a function pointer entry point only called by read/write
1840 *  routines for the PHY and NVM parts.
1841 **/
1842static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1843{
1844	u32 fwsm;
1845
1846	fwsm = er32(FWSM);
1847	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1848		((fwsm & E1000_FWSM_MODE_MASK) ==
1849		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1850}
1851
1852/**
1853 *  e1000_check_mng_mode_pchlan - Checks management mode
1854 *  @hw: pointer to the HW structure
1855 *
1856 *  This checks if the adapter has iAMT enabled.
1857 *  This is a function pointer entry point only called by read/write
1858 *  routines for the PHY and NVM parts.
1859 **/
1860static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1861{
1862	u32 fwsm;
1863
1864	fwsm = er32(FWSM);
1865	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1866	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1867}
1868
1869/**
1870 *  e1000_rar_set_pch2lan - Set receive address register
1871 *  @hw: pointer to the HW structure
1872 *  @addr: pointer to the receive address
1873 *  @index: receive address array register
1874 *
1875 *  Sets the receive address array register at index to the address passed
1876 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1877 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1878 *  Use SHRA[0-3] in place of those reserved for ME.
1879 **/
1880static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1881{
1882	u32 rar_low, rar_high;
1883
1884	/* HW expects these in little endian so we reverse the byte order
1885	 * from network order (big endian) to little endian
1886	 */
1887	rar_low = ((u32)addr[0] |
1888		   ((u32)addr[1] << 8) |
1889		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1890
1891	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1892
1893	/* If MAC address zero, no need to set the AV bit */
1894	if (rar_low || rar_high)
1895		rar_high |= E1000_RAH_AV;
1896
1897	if (index == 0) {
1898		ew32(RAL(index), rar_low);
1899		e1e_flush();
1900		ew32(RAH(index), rar_high);
1901		e1e_flush();
1902		return 0;
1903	}
1904
1905	/* RAR[1-6] are owned by manageability.  Skip those and program the
1906	 * next address into the SHRA register array.
1907	 */
1908	if (index < (u32)(hw->mac.rar_entry_count)) {
1909		s32 ret_val;
1910
1911		ret_val = e1000_acquire_swflag_ich8lan(hw);
1912		if (ret_val)
1913			goto out;
1914
1915		ew32(SHRAL(index - 1), rar_low);
1916		e1e_flush();
1917		ew32(SHRAH(index - 1), rar_high);
1918		e1e_flush();
1919
1920		e1000_release_swflag_ich8lan(hw);
1921
1922		/* verify the register updates */
1923		if ((er32(SHRAL(index - 1)) == rar_low) &&
1924		    (er32(SHRAH(index - 1)) == rar_high))
1925			return 0;
1926
1927		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1928		      (index - 1), er32(FWSM));
1929	}
1930
1931out:
1932	e_dbg("Failed to write receive address at index %d\n", index);
1933	return -E1000_ERR_CONFIG;
1934}
1935
1936/**
1937 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1938 *  @hw: pointer to the HW structure
1939 *
1940 *  Get the number of available receive registers that the Host can
1941 *  program. SHRA[0-10] are the shared receive address registers
1942 *  that are shared between the Host and manageability engine (ME).
1943 *  ME can reserve any number of addresses and the host needs to be
1944 *  able to tell how many available registers it has access to.
1945 **/
1946static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1947{
1948	u32 wlock_mac;
1949	u32 num_entries;
1950
1951	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1952	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1953
1954	switch (wlock_mac) {
1955	case 0:
1956		/* All SHRA[0..10] and RAR[0] available */
1957		num_entries = hw->mac.rar_entry_count;
1958		break;
1959	case 1:
1960		/* Only RAR[0] available */
1961		num_entries = 1;
1962		break;
1963	default:
1964		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1965		num_entries = wlock_mac + 1;
1966		break;
1967	}
1968
1969	return num_entries;
1970}
1971
1972/**
1973 *  e1000_rar_set_pch_lpt - Set receive address registers
1974 *  @hw: pointer to the HW structure
1975 *  @addr: pointer to the receive address
1976 *  @index: receive address array register
1977 *
1978 *  Sets the receive address register array at index to the address passed
1979 *  in by addr. For LPT, RAR[0] is the base address register that is to
1980 *  contain the MAC address. SHRA[0-10] are the shared receive address
1981 *  registers that are shared between the Host and manageability engine (ME).
1982 **/
1983static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1984{
1985	u32 rar_low, rar_high;
1986	u32 wlock_mac;
1987
1988	/* HW expects these in little endian so we reverse the byte order
1989	 * from network order (big endian) to little endian
1990	 */
1991	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1992		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1993
1994	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1995
1996	/* If MAC address zero, no need to set the AV bit */
1997	if (rar_low || rar_high)
1998		rar_high |= E1000_RAH_AV;
1999
2000	if (index == 0) {
2001		ew32(RAL(index), rar_low);
2002		e1e_flush();
2003		ew32(RAH(index), rar_high);
2004		e1e_flush();
2005		return 0;
2006	}
2007
2008	/* The manageability engine (ME) can lock certain SHRAR registers that
2009	 * it is using - those registers are unavailable for use.
2010	 */
2011	if (index < hw->mac.rar_entry_count) {
2012		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2013		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2014
2015		/* Check if all SHRAR registers are locked */
2016		if (wlock_mac == 1)
2017			goto out;
2018
2019		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2020			s32 ret_val;
2021
2022			ret_val = e1000_acquire_swflag_ich8lan(hw);
2023
2024			if (ret_val)
2025				goto out;
2026
2027			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2028			e1e_flush();
2029			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2030			e1e_flush();
2031
2032			e1000_release_swflag_ich8lan(hw);
2033
2034			/* verify the register updates */
2035			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2036			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2037				return 0;
2038		}
2039	}
2040
2041out:
2042	e_dbg("Failed to write receive address at index %d\n", index);
2043	return -E1000_ERR_CONFIG;
2044}
2045
2046/**
2047 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2048 *  @hw: pointer to the HW structure
2049 *
2050 *  Checks if firmware is blocking the reset of the PHY.
2051 *  This is a function pointer entry point only called by
2052 *  reset routines.
2053 **/
2054static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2055{
2056	bool blocked = false;
2057	int i = 0;
2058
2059	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2060	       (i++ < 30))
2061		usleep_range(10000, 11000);
2062	return blocked ? E1000_BLK_PHY_RESET : 0;
2063}
2064
2065/**
2066 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2067 *  @hw: pointer to the HW structure
2068 *
2069 *  Assumes semaphore already acquired.
2070 *
2071 **/
2072static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2073{
2074	u16 phy_data;
2075	u32 strap = er32(STRAP);
2076	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2077	s32 ret_val;
2078
2079	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2080
2081	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2082	if (ret_val)
2083		return ret_val;
2084
2085	phy_data &= ~HV_SMB_ADDR_MASK;
2086	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2087	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2088
2089	if (hw->phy.type == e1000_phy_i217) {
2090		/* Restore SMBus frequency */
2091		if (freq--) {
2092			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2093			phy_data |= (freq & BIT(0)) <<
2094			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2095			phy_data |= (freq & BIT(1)) <<
2096			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2097		} else {
2098			e_dbg("Unsupported SMB frequency in PHY\n");
2099		}
2100	}
2101
2102	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2103}
2104
2105/**
2106 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2107 *  @hw:   pointer to the HW structure
2108 *
2109 *  SW should configure the LCD from the NVM extended configuration region
2110 *  as a workaround for certain parts.
2111 **/
2112static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2113{
2114	struct e1000_phy_info *phy = &hw->phy;
2115	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2116	s32 ret_val = 0;
2117	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2118
2119	/* Initialize the PHY from the NVM on ICH platforms.  This
2120	 * is needed due to an issue where the NVM configuration is
2121	 * not properly autoloaded after power transitions.
2122	 * Therefore, after each PHY reset, we will load the
2123	 * configuration data out of the NVM manually.
2124	 */
2125	switch (hw->mac.type) {
2126	case e1000_ich8lan:
2127		if (phy->type != e1000_phy_igp_3)
2128			return ret_val;
2129
2130		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2131		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2132			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2133			break;
2134		}
2135		fallthrough;
2136	case e1000_pchlan:
2137	case e1000_pch2lan:
2138	case e1000_pch_lpt:
2139	case e1000_pch_spt:
2140	case e1000_pch_cnp:
2141	case e1000_pch_tgp:
2142	case e1000_pch_adp:
2143	case e1000_pch_mtp:
2144	case e1000_pch_lnp:
2145	case e1000_pch_ptp:
2146	case e1000_pch_nvp:
2147		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2148		break;
2149	default:
2150		return ret_val;
2151	}
2152
2153	ret_val = hw->phy.ops.acquire(hw);
2154	if (ret_val)
2155		return ret_val;
2156
2157	data = er32(FEXTNVM);
2158	if (!(data & sw_cfg_mask))
2159		goto release;
2160
2161	/* Make sure HW does not configure LCD from PHY
2162	 * extended configuration before SW configuration
2163	 */
2164	data = er32(EXTCNF_CTRL);
2165	if ((hw->mac.type < e1000_pch2lan) &&
2166	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2167		goto release;
2168
2169	cnf_size = er32(EXTCNF_SIZE);
2170	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2171	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2172	if (!cnf_size)
2173		goto release;
2174
2175	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2176	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2177
2178	if (((hw->mac.type == e1000_pchlan) &&
2179	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2180	    (hw->mac.type > e1000_pchlan)) {
2181		/* HW configures the SMBus address and LEDs when the
2182		 * OEM and LCD Write Enable bits are set in the NVM.
2183		 * When both NVM bits are cleared, SW will configure
2184		 * them instead.
2185		 */
2186		ret_val = e1000_write_smbus_addr(hw);
2187		if (ret_val)
2188			goto release;
2189
2190		data = er32(LEDCTL);
2191		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2192							(u16)data);
2193		if (ret_val)
2194			goto release;
2195	}
2196
2197	/* Configure LCD from extended configuration region. */
2198
2199	/* cnf_base_addr is in DWORD */
2200	word_addr = (u16)(cnf_base_addr << 1);
2201
2202	for (i = 0; i < cnf_size; i++) {
2203		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2204		if (ret_val)
2205			goto release;
2206
2207		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2208					 1, &reg_addr);
2209		if (ret_val)
2210			goto release;
2211
2212		/* Save off the PHY page for future writes. */
2213		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2214			phy_page = reg_data;
2215			continue;
2216		}
2217
2218		reg_addr &= PHY_REG_MASK;
2219		reg_addr |= phy_page;
2220
2221		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2222		if (ret_val)
2223			goto release;
2224	}
2225
2226release:
2227	hw->phy.ops.release(hw);
2228	return ret_val;
2229}
2230
2231/**
2232 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2233 *  @hw:   pointer to the HW structure
2234 *  @link: link up bool flag
2235 *
2236 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2237 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2238 *  If link is down, the function will restore the default K1 setting located
2239 *  in the NVM.
2240 **/
2241static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2242{
2243	s32 ret_val = 0;
2244	u16 status_reg = 0;
2245	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2246
2247	if (hw->mac.type != e1000_pchlan)
2248		return 0;
2249
2250	/* Wrap the whole flow with the sw flag */
2251	ret_val = hw->phy.ops.acquire(hw);
2252	if (ret_val)
2253		return ret_val;
2254
2255	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2256	if (link) {
2257		if (hw->phy.type == e1000_phy_82578) {
2258			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2259						  &status_reg);
2260			if (ret_val)
2261				goto release;
2262
2263			status_reg &= (BM_CS_STATUS_LINK_UP |
2264				       BM_CS_STATUS_RESOLVED |
2265				       BM_CS_STATUS_SPEED_MASK);
2266
2267			if (status_reg == (BM_CS_STATUS_LINK_UP |
2268					   BM_CS_STATUS_RESOLVED |
2269					   BM_CS_STATUS_SPEED_1000))
2270				k1_enable = false;
2271		}
2272
2273		if (hw->phy.type == e1000_phy_82577) {
2274			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2275			if (ret_val)
2276				goto release;
2277
2278			status_reg &= (HV_M_STATUS_LINK_UP |
2279				       HV_M_STATUS_AUTONEG_COMPLETE |
2280				       HV_M_STATUS_SPEED_MASK);
2281
2282			if (status_reg == (HV_M_STATUS_LINK_UP |
2283					   HV_M_STATUS_AUTONEG_COMPLETE |
2284					   HV_M_STATUS_SPEED_1000))
2285				k1_enable = false;
2286		}
2287
2288		/* Link stall fix for link up */
2289		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2290		if (ret_val)
2291			goto release;
2292
2293	} else {
2294		/* Link stall fix for link down */
2295		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2296		if (ret_val)
2297			goto release;
2298	}
2299
2300	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2301
2302release:
2303	hw->phy.ops.release(hw);
2304
2305	return ret_val;
2306}
2307
2308/**
2309 *  e1000_configure_k1_ich8lan - Configure K1 power state
2310 *  @hw: pointer to the HW structure
2311 *  @k1_enable: K1 state to configure
2312 *
2313 *  Configure the K1 power state based on the provided parameter.
2314 *  Assumes semaphore already acquired.
2315 *
2316 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2317 **/
2318s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2319{
2320	s32 ret_val;
2321	u32 ctrl_reg = 0;
2322	u32 ctrl_ext = 0;
2323	u32 reg = 0;
2324	u16 kmrn_reg = 0;
2325
2326	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2327					      &kmrn_reg);
2328	if (ret_val)
2329		return ret_val;
2330
2331	if (k1_enable)
2332		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2333	else
2334		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2335
2336	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2337					       kmrn_reg);
2338	if (ret_val)
2339		return ret_val;
2340
2341	usleep_range(20, 40);
2342	ctrl_ext = er32(CTRL_EXT);
2343	ctrl_reg = er32(CTRL);
2344
2345	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2346	reg |= E1000_CTRL_FRCSPD;
2347	ew32(CTRL, reg);
2348
2349	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2350	e1e_flush();
2351	usleep_range(20, 40);
2352	ew32(CTRL, ctrl_reg);
2353	ew32(CTRL_EXT, ctrl_ext);
2354	e1e_flush();
2355	usleep_range(20, 40);
2356
2357	return 0;
2358}
2359
2360/**
2361 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2362 *  @hw:       pointer to the HW structure
2363 *  @d0_state: boolean if entering d0 or d3 device state
2364 *
2365 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2366 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2367 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2368 **/
2369static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2370{
2371	s32 ret_val = 0;
2372	u32 mac_reg;
2373	u16 oem_reg;
2374
2375	if (hw->mac.type < e1000_pchlan)
2376		return ret_val;
2377
2378	ret_val = hw->phy.ops.acquire(hw);
2379	if (ret_val)
2380		return ret_val;
2381
2382	if (hw->mac.type == e1000_pchlan) {
2383		mac_reg = er32(EXTCNF_CTRL);
2384		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2385			goto release;
2386	}
2387
2388	mac_reg = er32(FEXTNVM);
2389	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2390		goto release;
2391
2392	mac_reg = er32(PHY_CTRL);
2393
2394	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2395	if (ret_val)
2396		goto release;
2397
2398	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2399
2400	if (d0_state) {
2401		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2402			oem_reg |= HV_OEM_BITS_GBE_DIS;
2403
2404		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2405			oem_reg |= HV_OEM_BITS_LPLU;
2406	} else {
2407		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2408			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2409			oem_reg |= HV_OEM_BITS_GBE_DIS;
2410
2411		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2412			       E1000_PHY_CTRL_NOND0A_LPLU))
2413			oem_reg |= HV_OEM_BITS_LPLU;
2414	}
2415
2416	/* Set Restart auto-neg to activate the bits */
2417	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2418	    !hw->phy.ops.check_reset_block(hw))
2419		oem_reg |= HV_OEM_BITS_RESTART_AN;
2420
2421	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2422
2423release:
2424	hw->phy.ops.release(hw);
2425
2426	return ret_val;
2427}
2428
2429/**
2430 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2431 *  @hw:   pointer to the HW structure
2432 **/
2433static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2434{
2435	s32 ret_val;
2436	u16 data;
2437
2438	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2439	if (ret_val)
2440		return ret_val;
2441
2442	data |= HV_KMRN_MDIO_SLOW;
2443
2444	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2445
2446	return ret_val;
2447}
2448
2449/**
2450 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2451 *  @hw: pointer to the HW structure
2452 *
2453 *  A series of PHY workarounds to be done after every PHY reset.
2454 **/
2455static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2456{
2457	s32 ret_val = 0;
2458	u16 phy_data;
2459
2460	if (hw->mac.type != e1000_pchlan)
2461		return 0;
2462
2463	/* Set MDIO slow mode before any other MDIO access */
2464	if (hw->phy.type == e1000_phy_82577) {
2465		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2466		if (ret_val)
2467			return ret_val;
2468	}
2469
2470	if (((hw->phy.type == e1000_phy_82577) &&
2471	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2472	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2473		/* Disable generation of early preamble */
2474		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2475		if (ret_val)
2476			return ret_val;
2477
2478		/* Preamble tuning for SSC */
2479		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2480		if (ret_val)
2481			return ret_val;
2482	}
2483
2484	if (hw->phy.type == e1000_phy_82578) {
2485		/* Return registers to default by doing a soft reset then
2486		 * writing 0x3140 to the control register.
2487		 */
2488		if (hw->phy.revision < 2) {
2489			e1000e_phy_sw_reset(hw);
2490			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2491			if (ret_val)
2492				return ret_val;
2493		}
2494	}
2495
2496	/* Select page 0 */
2497	ret_val = hw->phy.ops.acquire(hw);
2498	if (ret_val)
2499		return ret_val;
2500
2501	hw->phy.addr = 1;
2502	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2503	hw->phy.ops.release(hw);
2504	if (ret_val)
2505		return ret_val;
2506
2507	/* Configure the K1 Si workaround during phy reset assuming there is
2508	 * link so that it disables K1 if link is in 1Gbps.
2509	 */
2510	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2511	if (ret_val)
2512		return ret_val;
2513
2514	/* Workaround for link disconnects on a busy hub in half duplex */
2515	ret_val = hw->phy.ops.acquire(hw);
2516	if (ret_val)
2517		return ret_val;
2518	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2519	if (ret_val)
2520		goto release;
2521	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2522	if (ret_val)
2523		goto release;
2524
2525	/* set MSE higher to enable link to stay up when noise is high */
2526	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2527release:
2528	hw->phy.ops.release(hw);
2529
2530	return ret_val;
2531}
2532
2533/**
2534 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2535 *  @hw:   pointer to the HW structure
2536 **/
2537void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2538{
2539	u32 mac_reg;
2540	u16 i, phy_reg = 0;
2541	s32 ret_val;
2542
2543	ret_val = hw->phy.ops.acquire(hw);
2544	if (ret_val)
2545		return;
2546	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547	if (ret_val)
2548		goto release;
2549
2550	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2551	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2552		mac_reg = er32(RAL(i));
2553		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2554					   (u16)(mac_reg & 0xFFFF));
2555		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2556					   (u16)((mac_reg >> 16) & 0xFFFF));
2557
2558		mac_reg = er32(RAH(i));
2559		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2560					   (u16)(mac_reg & 0xFFFF));
2561		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2562					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
2563	}
2564
2565	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2566
2567release:
2568	hw->phy.ops.release(hw);
2569}
2570
2571/**
2572 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2573 *  with 82579 PHY
2574 *  @hw: pointer to the HW structure
2575 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2576 **/
2577s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2578{
2579	s32 ret_val = 0;
2580	u16 phy_reg, data;
2581	u32 mac_reg;
2582	u16 i;
2583
2584	if (hw->mac.type < e1000_pch2lan)
2585		return 0;
2586
2587	/* disable Rx path while enabling/disabling workaround */
2588	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2589	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2590	if (ret_val)
2591		return ret_val;
2592
2593	if (enable) {
2594		/* Write Rx addresses (rar_entry_count for RAL/H, and
2595		 * SHRAL/H) and initial CRC values to the MAC
2596		 */
2597		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2598			u8 mac_addr[ETH_ALEN] = { 0 };
2599			u32 addr_high, addr_low;
2600
2601			addr_high = er32(RAH(i));
2602			if (!(addr_high & E1000_RAH_AV))
2603				continue;
2604			addr_low = er32(RAL(i));
2605			mac_addr[0] = (addr_low & 0xFF);
2606			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2607			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2608			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2609			mac_addr[4] = (addr_high & 0xFF);
2610			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2611
2612			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2613		}
2614
2615		/* Write Rx addresses to the PHY */
2616		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2617
2618		/* Enable jumbo frame workaround in the MAC */
2619		mac_reg = er32(FFLT_DBG);
2620		mac_reg &= ~BIT(14);
2621		mac_reg |= (7 << 15);
2622		ew32(FFLT_DBG, mac_reg);
2623
2624		mac_reg = er32(RCTL);
2625		mac_reg |= E1000_RCTL_SECRC;
2626		ew32(RCTL, mac_reg);
2627
2628		ret_val = e1000e_read_kmrn_reg(hw,
2629					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2630					       &data);
2631		if (ret_val)
2632			return ret_val;
2633		ret_val = e1000e_write_kmrn_reg(hw,
2634						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2635						data | BIT(0));
2636		if (ret_val)
2637			return ret_val;
2638		ret_val = e1000e_read_kmrn_reg(hw,
2639					       E1000_KMRNCTRLSTA_HD_CTRL,
2640					       &data);
2641		if (ret_val)
2642			return ret_val;
2643		data &= ~(0xF << 8);
2644		data |= (0xB << 8);
2645		ret_val = e1000e_write_kmrn_reg(hw,
2646						E1000_KMRNCTRLSTA_HD_CTRL,
2647						data);
2648		if (ret_val)
2649			return ret_val;
2650
2651		/* Enable jumbo frame workaround in the PHY */
2652		e1e_rphy(hw, PHY_REG(769, 23), &data);
2653		data &= ~(0x7F << 5);
2654		data |= (0x37 << 5);
2655		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2656		if (ret_val)
2657			return ret_val;
2658		e1e_rphy(hw, PHY_REG(769, 16), &data);
2659		data &= ~BIT(13);
2660		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2661		if (ret_val)
2662			return ret_val;
2663		e1e_rphy(hw, PHY_REG(776, 20), &data);
2664		data &= ~(0x3FF << 2);
2665		data |= (E1000_TX_PTR_GAP << 2);
2666		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2667		if (ret_val)
2668			return ret_val;
2669		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2670		if (ret_val)
2671			return ret_val;
2672		e1e_rphy(hw, HV_PM_CTRL, &data);
2673		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2674		if (ret_val)
2675			return ret_val;
2676	} else {
2677		/* Write MAC register values back to h/w defaults */
2678		mac_reg = er32(FFLT_DBG);
2679		mac_reg &= ~(0xF << 14);
2680		ew32(FFLT_DBG, mac_reg);
2681
2682		mac_reg = er32(RCTL);
2683		mac_reg &= ~E1000_RCTL_SECRC;
2684		ew32(RCTL, mac_reg);
2685
2686		ret_val = e1000e_read_kmrn_reg(hw,
2687					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2688					       &data);
2689		if (ret_val)
2690			return ret_val;
2691		ret_val = e1000e_write_kmrn_reg(hw,
2692						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2693						data & ~BIT(0));
2694		if (ret_val)
2695			return ret_val;
2696		ret_val = e1000e_read_kmrn_reg(hw,
2697					       E1000_KMRNCTRLSTA_HD_CTRL,
2698					       &data);
2699		if (ret_val)
2700			return ret_val;
2701		data &= ~(0xF << 8);
2702		data |= (0xB << 8);
2703		ret_val = e1000e_write_kmrn_reg(hw,
2704						E1000_KMRNCTRLSTA_HD_CTRL,
2705						data);
2706		if (ret_val)
2707			return ret_val;
2708
2709		/* Write PHY register values back to h/w defaults */
2710		e1e_rphy(hw, PHY_REG(769, 23), &data);
2711		data &= ~(0x7F << 5);
2712		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2713		if (ret_val)
2714			return ret_val;
2715		e1e_rphy(hw, PHY_REG(769, 16), &data);
2716		data |= BIT(13);
2717		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2718		if (ret_val)
2719			return ret_val;
2720		e1e_rphy(hw, PHY_REG(776, 20), &data);
2721		data &= ~(0x3FF << 2);
2722		data |= (0x8 << 2);
2723		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2724		if (ret_val)
2725			return ret_val;
2726		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2727		if (ret_val)
2728			return ret_val;
2729		e1e_rphy(hw, HV_PM_CTRL, &data);
2730		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2731		if (ret_val)
2732			return ret_val;
2733	}
2734
2735	/* re-enable Rx path after enabling/disabling workaround */
2736	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2737}
2738
2739/**
2740 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2741 *  @hw: pointer to the HW structure
2742 *
2743 *  A series of PHY workarounds to be done after every PHY reset.
2744 **/
2745static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2746{
2747	s32 ret_val = 0;
2748
2749	if (hw->mac.type != e1000_pch2lan)
2750		return 0;
2751
2752	/* Set MDIO slow mode before any other MDIO access */
2753	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2754	if (ret_val)
2755		return ret_val;
2756
2757	ret_val = hw->phy.ops.acquire(hw);
2758	if (ret_val)
2759		return ret_val;
2760	/* set MSE higher to enable link to stay up when noise is high */
2761	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2762	if (ret_val)
2763		goto release;
2764	/* drop link after 5 times MSE threshold was reached */
2765	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2766release:
2767	hw->phy.ops.release(hw);
2768
2769	return ret_val;
2770}
2771
2772/**
2773 *  e1000_k1_workaround_lv - K1 Si workaround
2774 *  @hw:   pointer to the HW structure
2775 *
2776 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2777 *  Disable K1 in 1000Mbps and 100Mbps
2778 **/
2779static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2780{
2781	s32 ret_val = 0;
2782	u16 status_reg = 0;
2783
2784	if (hw->mac.type != e1000_pch2lan)
2785		return 0;
2786
2787	/* Set K1 beacon duration based on 10Mbs speed */
2788	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2789	if (ret_val)
2790		return ret_val;
2791
2792	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2793	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2794		if (status_reg &
2795		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2796			u16 pm_phy_reg;
2797
2798			/* LV 1G/100 Packet drop issue wa  */
2799			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2800			if (ret_val)
2801				return ret_val;
2802			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2803			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2804			if (ret_val)
2805				return ret_val;
2806		} else {
2807			u32 mac_reg;
2808
2809			mac_reg = er32(FEXTNVM4);
2810			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2811			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2812			ew32(FEXTNVM4, mac_reg);
2813		}
2814	}
2815
2816	return ret_val;
2817}
2818
2819/**
2820 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2821 *  @hw:   pointer to the HW structure
2822 *  @gate: boolean set to true to gate, false to ungate
2823 *
2824 *  Gate/ungate the automatic PHY configuration via hardware; perform
2825 *  the configuration via software instead.
2826 **/
2827static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2828{
2829	u32 extcnf_ctrl;
2830
2831	if (hw->mac.type < e1000_pch2lan)
2832		return;
2833
2834	extcnf_ctrl = er32(EXTCNF_CTRL);
2835
2836	if (gate)
2837		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2838	else
2839		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2840
2841	ew32(EXTCNF_CTRL, extcnf_ctrl);
2842}
2843
2844/**
2845 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2846 *  @hw: pointer to the HW structure
2847 *
2848 *  Check the appropriate indication the MAC has finished configuring the
2849 *  PHY after a software reset.
2850 **/
2851static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2852{
2853	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2854
2855	/* Wait for basic configuration completes before proceeding */
2856	do {
2857		data = er32(STATUS);
2858		data &= E1000_STATUS_LAN_INIT_DONE;
2859		usleep_range(100, 200);
2860	} while ((!data) && --loop);
2861
2862	/* If basic configuration is incomplete before the above loop
2863	 * count reaches 0, loading the configuration from NVM will
2864	 * leave the PHY in a bad state possibly resulting in no link.
2865	 */
2866	if (loop == 0)
2867		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2868
2869	/* Clear the Init Done bit for the next init event */
2870	data = er32(STATUS);
2871	data &= ~E1000_STATUS_LAN_INIT_DONE;
2872	ew32(STATUS, data);
2873}
2874
2875/**
2876 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2877 *  @hw: pointer to the HW structure
2878 **/
2879static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2880{
2881	s32 ret_val = 0;
2882	u16 reg;
2883
2884	if (hw->phy.ops.check_reset_block(hw))
2885		return 0;
2886
2887	/* Allow time for h/w to get to quiescent state after reset */
2888	usleep_range(10000, 11000);
2889
2890	/* Perform any necessary post-reset workarounds */
2891	switch (hw->mac.type) {
2892	case e1000_pchlan:
2893		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2894		if (ret_val)
2895			return ret_val;
2896		break;
2897	case e1000_pch2lan:
2898		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2899		if (ret_val)
2900			return ret_val;
2901		break;
2902	default:
2903		break;
2904	}
2905
2906	/* Clear the host wakeup bit after lcd reset */
2907	if (hw->mac.type >= e1000_pchlan) {
2908		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2909		reg &= ~BM_WUC_HOST_WU_BIT;
2910		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2911	}
2912
2913	/* Configure the LCD with the extended configuration region in NVM */
2914	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2915	if (ret_val)
2916		return ret_val;
2917
2918	/* Configure the LCD with the OEM bits in NVM */
2919	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2920
2921	if (hw->mac.type == e1000_pch2lan) {
2922		/* Ungate automatic PHY configuration on non-managed 82579 */
2923		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2924			usleep_range(10000, 11000);
2925			e1000_gate_hw_phy_config_ich8lan(hw, false);
2926		}
2927
2928		/* Set EEE LPI Update Timer to 200usec */
2929		ret_val = hw->phy.ops.acquire(hw);
2930		if (ret_val)
2931			return ret_val;
2932		ret_val = e1000_write_emi_reg_locked(hw,
2933						     I82579_LPI_UPDATE_TIMER,
2934						     0x1387);
2935		hw->phy.ops.release(hw);
2936	}
2937
2938	return ret_val;
2939}
2940
2941/**
2942 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2943 *  @hw: pointer to the HW structure
2944 *
2945 *  Resets the PHY
2946 *  This is a function pointer entry point called by drivers
2947 *  or other shared routines.
2948 **/
2949static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2950{
2951	s32 ret_val = 0;
2952
2953	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2954	if ((hw->mac.type == e1000_pch2lan) &&
2955	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2956		e1000_gate_hw_phy_config_ich8lan(hw, true);
2957
2958	ret_val = e1000e_phy_hw_reset_generic(hw);
2959	if (ret_val)
2960		return ret_val;
2961
2962	return e1000_post_phy_reset_ich8lan(hw);
2963}
2964
2965/**
2966 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2967 *  @hw: pointer to the HW structure
2968 *  @active: true to enable LPLU, false to disable
2969 *
2970 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2971 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2972 *  the phy speed. This function will manually set the LPLU bit and restart
2973 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2974 *  since it configures the same bit.
2975 **/
2976static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2977{
2978	s32 ret_val;
2979	u16 oem_reg;
2980
2981	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2982	if (ret_val)
2983		return ret_val;
2984
2985	if (active)
2986		oem_reg |= HV_OEM_BITS_LPLU;
2987	else
2988		oem_reg &= ~HV_OEM_BITS_LPLU;
2989
2990	if (!hw->phy.ops.check_reset_block(hw))
2991		oem_reg |= HV_OEM_BITS_RESTART_AN;
2992
2993	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2994}
2995
2996/**
2997 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2998 *  @hw: pointer to the HW structure
2999 *  @active: true to enable LPLU, false to disable
3000 *
3001 *  Sets the LPLU D0 state according to the active flag.  When
3002 *  activating LPLU this function also disables smart speed
3003 *  and vice versa.  LPLU will not be activated unless the
3004 *  device autonegotiation advertisement meets standards of
3005 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3006 *  This is a function pointer entry point only called by
3007 *  PHY setup routines.
3008 **/
3009static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3010{
3011	struct e1000_phy_info *phy = &hw->phy;
3012	u32 phy_ctrl;
3013	s32 ret_val = 0;
3014	u16 data;
3015
3016	if (phy->type == e1000_phy_ife)
3017		return 0;
3018
3019	phy_ctrl = er32(PHY_CTRL);
3020
3021	if (active) {
3022		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3023		ew32(PHY_CTRL, phy_ctrl);
3024
3025		if (phy->type != e1000_phy_igp_3)
3026			return 0;
3027
3028		/* Call gig speed drop workaround on LPLU before accessing
3029		 * any PHY registers
3030		 */
3031		if (hw->mac.type == e1000_ich8lan)
3032			e1000e_gig_downshift_workaround_ich8lan(hw);
3033
3034		/* When LPLU is enabled, we should disable SmartSpeed */
3035		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3036		if (ret_val)
3037			return ret_val;
3038		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3039		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3040		if (ret_val)
3041			return ret_val;
3042	} else {
3043		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3044		ew32(PHY_CTRL, phy_ctrl);
3045
3046		if (phy->type != e1000_phy_igp_3)
3047			return 0;
3048
3049		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3050		 * during Dx states where the power conservation is most
3051		 * important.  During driver activity we should enable
3052		 * SmartSpeed, so performance is maintained.
3053		 */
3054		if (phy->smart_speed == e1000_smart_speed_on) {
3055			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3056					   &data);
3057			if (ret_val)
3058				return ret_val;
3059
3060			data |= IGP01E1000_PSCFR_SMART_SPEED;
3061			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3062					   data);
3063			if (ret_val)
3064				return ret_val;
3065		} else if (phy->smart_speed == e1000_smart_speed_off) {
3066			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067					   &data);
3068			if (ret_val)
3069				return ret_val;
3070
3071			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3072			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3073					   data);
3074			if (ret_val)
3075				return ret_val;
3076		}
3077	}
3078
3079	return 0;
3080}
3081
3082/**
3083 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3084 *  @hw: pointer to the HW structure
3085 *  @active: true to enable LPLU, false to disable
3086 *
3087 *  Sets the LPLU D3 state according to the active flag.  When
3088 *  activating LPLU this function also disables smart speed
3089 *  and vice versa.  LPLU will not be activated unless the
3090 *  device autonegotiation advertisement meets standards of
3091 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3092 *  This is a function pointer entry point only called by
3093 *  PHY setup routines.
3094 **/
3095static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3096{
3097	struct e1000_phy_info *phy = &hw->phy;
3098	u32 phy_ctrl;
3099	s32 ret_val = 0;
3100	u16 data;
3101
3102	phy_ctrl = er32(PHY_CTRL);
3103
3104	if (!active) {
3105		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3106		ew32(PHY_CTRL, phy_ctrl);
3107
3108		if (phy->type != e1000_phy_igp_3)
3109			return 0;
3110
3111		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3112		 * during Dx states where the power conservation is most
3113		 * important.  During driver activity we should enable
3114		 * SmartSpeed, so performance is maintained.
3115		 */
3116		if (phy->smart_speed == e1000_smart_speed_on) {
3117			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3118					   &data);
3119			if (ret_val)
3120				return ret_val;
3121
3122			data |= IGP01E1000_PSCFR_SMART_SPEED;
3123			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3124					   data);
3125			if (ret_val)
3126				return ret_val;
3127		} else if (phy->smart_speed == e1000_smart_speed_off) {
3128			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3129					   &data);
3130			if (ret_val)
3131				return ret_val;
3132
3133			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3134			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3135					   data);
3136			if (ret_val)
3137				return ret_val;
3138		}
3139	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3140		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3141		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3142		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3143		ew32(PHY_CTRL, phy_ctrl);
3144
3145		if (phy->type != e1000_phy_igp_3)
3146			return 0;
3147
3148		/* Call gig speed drop workaround on LPLU before accessing
3149		 * any PHY registers
3150		 */
3151		if (hw->mac.type == e1000_ich8lan)
3152			e1000e_gig_downshift_workaround_ich8lan(hw);
3153
3154		/* When LPLU is enabled, we should disable SmartSpeed */
3155		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3156		if (ret_val)
3157			return ret_val;
3158
3159		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3160		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3161	}
3162
3163	return ret_val;
3164}
3165
3166/**
3167 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3168 *  @hw: pointer to the HW structure
3169 *  @bank:  pointer to the variable that returns the active bank
3170 *
3171 *  Reads signature byte from the NVM using the flash access registers.
3172 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3173 **/
3174static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3175{
3176	u32 eecd;
3177	struct e1000_nvm_info *nvm = &hw->nvm;
3178	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3179	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3180	u32 nvm_dword = 0;
3181	u8 sig_byte = 0;
3182	s32 ret_val;
3183
3184	switch (hw->mac.type) {
3185	case e1000_pch_spt:
3186	case e1000_pch_cnp:
3187	case e1000_pch_tgp:
3188	case e1000_pch_adp:
3189	case e1000_pch_mtp:
3190	case e1000_pch_lnp:
3191	case e1000_pch_ptp:
3192	case e1000_pch_nvp:
3193		bank1_offset = nvm->flash_bank_size;
3194		act_offset = E1000_ICH_NVM_SIG_WORD;
3195
3196		/* set bank to 0 in case flash read fails */
3197		*bank = 0;
3198
3199		/* Check bank 0 */
3200		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3201							 &nvm_dword);
3202		if (ret_val)
3203			return ret_val;
3204		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3205		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3206		    E1000_ICH_NVM_SIG_VALUE) {
3207			*bank = 0;
3208			return 0;
3209		}
3210
3211		/* Check bank 1 */
3212		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3213							 bank1_offset,
3214							 &nvm_dword);
3215		if (ret_val)
3216			return ret_val;
3217		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3218		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3219		    E1000_ICH_NVM_SIG_VALUE) {
3220			*bank = 1;
3221			return 0;
3222		}
3223
3224		e_dbg("ERROR: No valid NVM bank present\n");
3225		return -E1000_ERR_NVM;
3226	case e1000_ich8lan:
3227	case e1000_ich9lan:
3228		eecd = er32(EECD);
3229		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3230		    E1000_EECD_SEC1VAL_VALID_MASK) {
3231			if (eecd & E1000_EECD_SEC1VAL)
3232				*bank = 1;
3233			else
3234				*bank = 0;
3235
3236			return 0;
3237		}
3238		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3239		fallthrough;
3240	default:
3241		/* set bank to 0 in case flash read fails */
3242		*bank = 0;
3243
3244		/* Check bank 0 */
3245		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3246							&sig_byte);
3247		if (ret_val)
3248			return ret_val;
3249		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3250		    E1000_ICH_NVM_SIG_VALUE) {
3251			*bank = 0;
3252			return 0;
3253		}
3254
3255		/* Check bank 1 */
3256		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3257							bank1_offset,
3258							&sig_byte);
3259		if (ret_val)
3260			return ret_val;
3261		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3262		    E1000_ICH_NVM_SIG_VALUE) {
3263			*bank = 1;
3264			return 0;
3265		}
3266
3267		e_dbg("ERROR: No valid NVM bank present\n");
3268		return -E1000_ERR_NVM;
3269	}
3270}
3271
3272/**
3273 *  e1000_read_nvm_spt - NVM access for SPT
3274 *  @hw: pointer to the HW structure
3275 *  @offset: The offset (in bytes) of the word(s) to read.
3276 *  @words: Size of data to read in words.
3277 *  @data: pointer to the word(s) to read at offset.
3278 *
3279 *  Reads a word(s) from the NVM
3280 **/
3281static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3282			      u16 *data)
3283{
3284	struct e1000_nvm_info *nvm = &hw->nvm;
3285	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3286	u32 act_offset;
3287	s32 ret_val = 0;
3288	u32 bank = 0;
3289	u32 dword = 0;
3290	u16 offset_to_read;
3291	u16 i;
3292
3293	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294	    (words == 0)) {
3295		e_dbg("nvm parameter(s) out of bounds\n");
3296		ret_val = -E1000_ERR_NVM;
3297		goto out;
3298	}
3299
3300	nvm->ops.acquire(hw);
3301
3302	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303	if (ret_val) {
3304		e_dbg("Could not detect valid bank, assuming bank 0\n");
3305		bank = 0;
3306	}
3307
3308	act_offset = (bank) ? nvm->flash_bank_size : 0;
3309	act_offset += offset;
3310
3311	ret_val = 0;
3312
3313	for (i = 0; i < words; i += 2) {
3314		if (words - i == 1) {
3315			if (dev_spec->shadow_ram[offset + i].modified) {
3316				data[i] =
3317				    dev_spec->shadow_ram[offset + i].value;
3318			} else {
3319				offset_to_read = act_offset + i -
3320				    ((act_offset + i) % 2);
3321				ret_val =
3322				  e1000_read_flash_dword_ich8lan(hw,
3323								 offset_to_read,
3324								 &dword);
3325				if (ret_val)
3326					break;
3327				if ((act_offset + i) % 2 == 0)
3328					data[i] = (u16)(dword & 0xFFFF);
3329				else
3330					data[i] = (u16)((dword >> 16) & 0xFFFF);
3331			}
3332		} else {
3333			offset_to_read = act_offset + i;
3334			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3335			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3336				ret_val =
3337				  e1000_read_flash_dword_ich8lan(hw,
3338								 offset_to_read,
3339								 &dword);
3340				if (ret_val)
3341					break;
3342			}
3343			if (dev_spec->shadow_ram[offset + i].modified)
3344				data[i] =
3345				    dev_spec->shadow_ram[offset + i].value;
3346			else
3347				data[i] = (u16)(dword & 0xFFFF);
3348			if (dev_spec->shadow_ram[offset + i].modified)
3349				data[i + 1] =
3350				    dev_spec->shadow_ram[offset + i + 1].value;
3351			else
3352				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3353		}
3354	}
3355
3356	nvm->ops.release(hw);
3357
3358out:
3359	if (ret_val)
3360		e_dbg("NVM read error: %d\n", ret_val);
3361
3362	return ret_val;
3363}
3364
3365/**
3366 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3367 *  @hw: pointer to the HW structure
3368 *  @offset: The offset (in bytes) of the word(s) to read.
3369 *  @words: Size of data to read in words
3370 *  @data: Pointer to the word(s) to read at offset.
3371 *
3372 *  Reads a word(s) from the NVM using the flash access registers.
3373 **/
3374static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3375				  u16 *data)
3376{
3377	struct e1000_nvm_info *nvm = &hw->nvm;
3378	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3379	u32 act_offset;
3380	s32 ret_val = 0;
3381	u32 bank = 0;
3382	u16 i, word;
3383
3384	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3385	    (words == 0)) {
3386		e_dbg("nvm parameter(s) out of bounds\n");
3387		ret_val = -E1000_ERR_NVM;
3388		goto out;
3389	}
3390
3391	nvm->ops.acquire(hw);
3392
3393	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3394	if (ret_val) {
3395		e_dbg("Could not detect valid bank, assuming bank 0\n");
3396		bank = 0;
3397	}
3398
3399	act_offset = (bank) ? nvm->flash_bank_size : 0;
3400	act_offset += offset;
3401
3402	ret_val = 0;
3403	for (i = 0; i < words; i++) {
3404		if (dev_spec->shadow_ram[offset + i].modified) {
3405			data[i] = dev_spec->shadow_ram[offset + i].value;
3406		} else {
3407			ret_val = e1000_read_flash_word_ich8lan(hw,
3408								act_offset + i,
3409								&word);
3410			if (ret_val)
3411				break;
3412			data[i] = word;
3413		}
3414	}
3415
3416	nvm->ops.release(hw);
3417
3418out:
3419	if (ret_val)
3420		e_dbg("NVM read error: %d\n", ret_val);
3421
3422	return ret_val;
3423}
3424
3425/**
3426 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3427 *  @hw: pointer to the HW structure
3428 *
3429 *  This function does initial flash setup so that a new read/write/erase cycle
3430 *  can be started.
3431 **/
3432static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3433{
3434	union ich8_hws_flash_status hsfsts;
3435	s32 ret_val = -E1000_ERR_NVM;
3436
3437	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3438
3439	/* Check if the flash descriptor is valid */
3440	if (!hsfsts.hsf_status.fldesvalid) {
3441		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3442		return -E1000_ERR_NVM;
3443	}
3444
3445	/* Clear FCERR and DAEL in hw status by writing 1 */
3446	hsfsts.hsf_status.flcerr = 1;
3447	hsfsts.hsf_status.dael = 1;
3448	if (hw->mac.type >= e1000_pch_spt)
3449		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3450	else
3451		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3452
3453	/* Either we should have a hardware SPI cycle in progress
3454	 * bit to check against, in order to start a new cycle or
3455	 * FDONE bit should be changed in the hardware so that it
3456	 * is 1 after hardware reset, which can then be used as an
3457	 * indication whether a cycle is in progress or has been
3458	 * completed.
3459	 */
3460
3461	if (!hsfsts.hsf_status.flcinprog) {
3462		/* There is no cycle running at present,
3463		 * so we can start a cycle.
3464		 * Begin by setting Flash Cycle Done.
3465		 */
3466		hsfsts.hsf_status.flcdone = 1;
3467		if (hw->mac.type >= e1000_pch_spt)
3468			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3469		else
3470			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3471		ret_val = 0;
3472	} else {
3473		s32 i;
3474
3475		/* Otherwise poll for sometime so the current
3476		 * cycle has a chance to end before giving up.
3477		 */
3478		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3479			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3480			if (!hsfsts.hsf_status.flcinprog) {
3481				ret_val = 0;
3482				break;
3483			}
3484			udelay(1);
3485		}
3486		if (!ret_val) {
3487			/* Successful in waiting for previous cycle to timeout,
3488			 * now set the Flash Cycle Done.
3489			 */
3490			hsfsts.hsf_status.flcdone = 1;
3491			if (hw->mac.type >= e1000_pch_spt)
3492				ew32flash(ICH_FLASH_HSFSTS,
3493					  hsfsts.regval & 0xFFFF);
3494			else
3495				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3496		} else {
3497			e_dbg("Flash controller busy, cannot get access\n");
3498		}
3499	}
3500
3501	return ret_val;
3502}
3503
3504/**
3505 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3506 *  @hw: pointer to the HW structure
3507 *  @timeout: maximum time to wait for completion
3508 *
3509 *  This function starts a flash cycle and waits for its completion.
3510 **/
3511static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3512{
3513	union ich8_hws_flash_ctrl hsflctl;
3514	union ich8_hws_flash_status hsfsts;
3515	u32 i = 0;
3516
3517	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3518	if (hw->mac.type >= e1000_pch_spt)
3519		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3520	else
3521		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3522	hsflctl.hsf_ctrl.flcgo = 1;
3523
3524	if (hw->mac.type >= e1000_pch_spt)
3525		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3526	else
3527		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3528
3529	/* wait till FDONE bit is set to 1 */
3530	do {
3531		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3532		if (hsfsts.hsf_status.flcdone)
3533			break;
3534		udelay(1);
3535	} while (i++ < timeout);
3536
3537	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3538		return 0;
3539
3540	return -E1000_ERR_NVM;
3541}
3542
3543/**
3544 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3545 *  @hw: pointer to the HW structure
3546 *  @offset: offset to data location
3547 *  @data: pointer to the location for storing the data
3548 *
3549 *  Reads the flash dword at offset into data.  Offset is converted
3550 *  to bytes before read.
3551 **/
3552static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3553					  u32 *data)
3554{
3555	/* Must convert word offset into bytes. */
3556	offset <<= 1;
3557	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3558}
3559
3560/**
3561 *  e1000_read_flash_word_ich8lan - Read word from flash
3562 *  @hw: pointer to the HW structure
3563 *  @offset: offset to data location
3564 *  @data: pointer to the location for storing the data
3565 *
3566 *  Reads the flash word at offset into data.  Offset is converted
3567 *  to bytes before read.
3568 **/
3569static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3570					 u16 *data)
3571{
3572	/* Must convert offset into bytes. */
3573	offset <<= 1;
3574
3575	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3576}
3577
3578/**
3579 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3580 *  @hw: pointer to the HW structure
3581 *  @offset: The offset of the byte to read.
3582 *  @data: Pointer to a byte to store the value read.
3583 *
3584 *  Reads a single byte from the NVM using the flash access registers.
3585 **/
3586static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3587					 u8 *data)
3588{
3589	s32 ret_val;
3590	u16 word = 0;
3591
3592	/* In SPT, only 32 bits access is supported,
3593	 * so this function should not be called.
3594	 */
3595	if (hw->mac.type >= e1000_pch_spt)
3596		return -E1000_ERR_NVM;
3597	else
3598		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3599
3600	if (ret_val)
3601		return ret_val;
3602
3603	*data = (u8)word;
3604
3605	return 0;
3606}
3607
3608/**
3609 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3610 *  @hw: pointer to the HW structure
3611 *  @offset: The offset (in bytes) of the byte or word to read.
3612 *  @size: Size of data to read, 1=byte 2=word
3613 *  @data: Pointer to the word to store the value read.
3614 *
3615 *  Reads a byte or word from the NVM using the flash access registers.
3616 **/
3617static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3618					 u8 size, u16 *data)
3619{
3620	union ich8_hws_flash_status hsfsts;
3621	union ich8_hws_flash_ctrl hsflctl;
3622	u32 flash_linear_addr;
3623	u32 flash_data = 0;
3624	s32 ret_val = -E1000_ERR_NVM;
3625	u8 count = 0;
3626
3627	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3628		return -E1000_ERR_NVM;
3629
3630	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3631			     hw->nvm.flash_base_addr);
3632
3633	do {
3634		udelay(1);
3635		/* Steps */
3636		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3637		if (ret_val)
3638			break;
3639
3640		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3641		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3642		hsflctl.hsf_ctrl.fldbcount = size - 1;
3643		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3644		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3645
3646		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3647
3648		ret_val =
3649		    e1000_flash_cycle_ich8lan(hw,
3650					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3651
3652		/* Check if FCERR is set to 1, if set to 1, clear it
3653		 * and try the whole sequence a few more times, else
3654		 * read in (shift in) the Flash Data0, the order is
3655		 * least significant byte first msb to lsb
3656		 */
3657		if (!ret_val) {
3658			flash_data = er32flash(ICH_FLASH_FDATA0);
3659			if (size == 1)
3660				*data = (u8)(flash_data & 0x000000FF);
3661			else if (size == 2)
3662				*data = (u16)(flash_data & 0x0000FFFF);
3663			break;
3664		} else {
3665			/* If we've gotten here, then things are probably
3666			 * completely hosed, but if the error condition is
3667			 * detected, it won't hurt to give it another try...
3668			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3669			 */
3670			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3671			if (hsfsts.hsf_status.flcerr) {
3672				/* Repeat for some time before giving up. */
3673				continue;
3674			} else if (!hsfsts.hsf_status.flcdone) {
3675				e_dbg("Timeout error - flash cycle did not complete.\n");
3676				break;
3677			}
3678		}
3679	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3680
3681	return ret_val;
3682}
3683
3684/**
3685 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3686 *  @hw: pointer to the HW structure
3687 *  @offset: The offset (in bytes) of the dword to read.
3688 *  @data: Pointer to the dword to store the value read.
3689 *
3690 *  Reads a byte or word from the NVM using the flash access registers.
3691 **/
3692
3693static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3694					   u32 *data)
3695{
3696	union ich8_hws_flash_status hsfsts;
3697	union ich8_hws_flash_ctrl hsflctl;
3698	u32 flash_linear_addr;
3699	s32 ret_val = -E1000_ERR_NVM;
3700	u8 count = 0;
3701
3702	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3703		return -E1000_ERR_NVM;
3704	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3705			     hw->nvm.flash_base_addr);
3706
3707	do {
3708		udelay(1);
3709		/* Steps */
3710		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3711		if (ret_val)
3712			break;
3713		/* In SPT, This register is in Lan memory space, not flash.
3714		 * Therefore, only 32 bit access is supported
3715		 */
3716		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3717
3718		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3719		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3720		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3721		/* In SPT, This register is in Lan memory space, not flash.
3722		 * Therefore, only 32 bit access is supported
3723		 */
3724		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3725		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3726
3727		ret_val =
3728		   e1000_flash_cycle_ich8lan(hw,
3729					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3730
3731		/* Check if FCERR is set to 1, if set to 1, clear it
3732		 * and try the whole sequence a few more times, else
3733		 * read in (shift in) the Flash Data0, the order is
3734		 * least significant byte first msb to lsb
3735		 */
3736		if (!ret_val) {
3737			*data = er32flash(ICH_FLASH_FDATA0);
3738			break;
3739		} else {
3740			/* If we've gotten here, then things are probably
3741			 * completely hosed, but if the error condition is
3742			 * detected, it won't hurt to give it another try...
3743			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3744			 */
3745			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3746			if (hsfsts.hsf_status.flcerr) {
3747				/* Repeat for some time before giving up. */
3748				continue;
3749			} else if (!hsfsts.hsf_status.flcdone) {
3750				e_dbg("Timeout error - flash cycle did not complete.\n");
3751				break;
3752			}
3753		}
3754	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3755
3756	return ret_val;
3757}
3758
3759/**
3760 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3761 *  @hw: pointer to the HW structure
3762 *  @offset: The offset (in bytes) of the word(s) to write.
3763 *  @words: Size of data to write in words
3764 *  @data: Pointer to the word(s) to write at offset.
3765 *
3766 *  Writes a byte or word to the NVM using the flash access registers.
3767 **/
3768static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3769				   u16 *data)
3770{
3771	struct e1000_nvm_info *nvm = &hw->nvm;
3772	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3773	u16 i;
3774
3775	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3776	    (words == 0)) {
3777		e_dbg("nvm parameter(s) out of bounds\n");
3778		return -E1000_ERR_NVM;
3779	}
3780
3781	nvm->ops.acquire(hw);
3782
3783	for (i = 0; i < words; i++) {
3784		dev_spec->shadow_ram[offset + i].modified = true;
3785		dev_spec->shadow_ram[offset + i].value = data[i];
3786	}
3787
3788	nvm->ops.release(hw);
3789
3790	return 0;
3791}
3792
3793/**
3794 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3795 *  @hw: pointer to the HW structure
3796 *
3797 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3798 *  which writes the checksum to the shadow ram.  The changes in the shadow
3799 *  ram are then committed to the EEPROM by processing each bank at a time
3800 *  checking for the modified bit and writing only the pending changes.
3801 *  After a successful commit, the shadow ram is cleared and is ready for
3802 *  future writes.
3803 **/
3804static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3805{
3806	struct e1000_nvm_info *nvm = &hw->nvm;
3807	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3808	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3809	s32 ret_val;
3810	u32 dword = 0;
3811
3812	ret_val = e1000e_update_nvm_checksum_generic(hw);
3813	if (ret_val)
3814		goto out;
3815
3816	if (nvm->type != e1000_nvm_flash_sw)
3817		goto out;
3818
3819	nvm->ops.acquire(hw);
3820
3821	/* We're writing to the opposite bank so if we're on bank 1,
3822	 * write to bank 0 etc.  We also need to erase the segment that
3823	 * is going to be written
3824	 */
3825	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3826	if (ret_val) {
3827		e_dbg("Could not detect valid bank, assuming bank 0\n");
3828		bank = 0;
3829	}
3830
3831	if (bank == 0) {
3832		new_bank_offset = nvm->flash_bank_size;
3833		old_bank_offset = 0;
3834		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3835		if (ret_val)
3836			goto release;
3837	} else {
3838		old_bank_offset = nvm->flash_bank_size;
3839		new_bank_offset = 0;
3840		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3841		if (ret_val)
3842			goto release;
3843	}
3844	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3845		/* Determine whether to write the value stored
3846		 * in the other NVM bank or a modified value stored
3847		 * in the shadow RAM
3848		 */
3849		ret_val = e1000_read_flash_dword_ich8lan(hw,
3850							 i + old_bank_offset,
3851							 &dword);
3852
3853		if (dev_spec->shadow_ram[i].modified) {
3854			dword &= 0xffff0000;
3855			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3856		}
3857		if (dev_spec->shadow_ram[i + 1].modified) {
3858			dword &= 0x0000ffff;
3859			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3860				  << 16);
3861		}
3862		if (ret_val)
3863			break;
3864
3865		/* If the word is 0x13, then make sure the signature bits
3866		 * (15:14) are 11b until the commit has completed.
3867		 * This will allow us to write 10b which indicates the
3868		 * signature is valid.  We want to do this after the write
3869		 * has completed so that we don't mark the segment valid
3870		 * while the write is still in progress
3871		 */
3872		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3873			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3874
3875		/* Convert offset to bytes. */
3876		act_offset = (i + new_bank_offset) << 1;
3877
3878		usleep_range(100, 200);
3879
3880		/* Write the data to the new bank. Offset in words */
3881		act_offset = i + new_bank_offset;
3882		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3883								dword);
3884		if (ret_val)
3885			break;
3886	}
3887
3888	/* Don't bother writing the segment valid bits if sector
3889	 * programming failed.
3890	 */
3891	if (ret_val) {
3892		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3893		e_dbg("Flash commit failed.\n");
3894		goto release;
3895	}
3896
3897	/* Finally validate the new segment by setting bit 15:14
3898	 * to 10b in word 0x13 , this can be done without an
3899	 * erase as well since these bits are 11 to start with
3900	 * and we need to change bit 14 to 0b
3901	 */
3902	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3903
3904	/*offset in words but we read dword */
3905	--act_offset;
3906	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3907
3908	if (ret_val)
3909		goto release;
3910
3911	dword &= 0xBFFFFFFF;
3912	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3913
3914	if (ret_val)
3915		goto release;
3916
3917	/* offset in words but we read dword */
3918	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3919	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3920
3921	if (ret_val)
3922		goto release;
3923
3924	dword &= 0x00FFFFFF;
3925	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3926
3927	if (ret_val)
3928		goto release;
3929
3930	/* Great!  Everything worked, we can now clear the cached entries. */
3931	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3932		dev_spec->shadow_ram[i].modified = false;
3933		dev_spec->shadow_ram[i].value = 0xFFFF;
3934	}
3935
3936release:
3937	nvm->ops.release(hw);
3938
3939	/* Reload the EEPROM, or else modifications will not appear
3940	 * until after the next adapter reset.
3941	 */
3942	if (!ret_val) {
3943		nvm->ops.reload(hw);
3944		usleep_range(10000, 11000);
3945	}
3946
3947out:
3948	if (ret_val)
3949		e_dbg("NVM update error: %d\n", ret_val);
3950
3951	return ret_val;
3952}
3953
3954/**
3955 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3956 *  @hw: pointer to the HW structure
3957 *
3958 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3959 *  which writes the checksum to the shadow ram.  The changes in the shadow
3960 *  ram are then committed to the EEPROM by processing each bank at a time
3961 *  checking for the modified bit and writing only the pending changes.
3962 *  After a successful commit, the shadow ram is cleared and is ready for
3963 *  future writes.
3964 **/
3965static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3966{
3967	struct e1000_nvm_info *nvm = &hw->nvm;
3968	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3969	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3970	s32 ret_val;
3971	u16 data = 0;
3972
3973	ret_val = e1000e_update_nvm_checksum_generic(hw);
3974	if (ret_val)
3975		goto out;
3976
3977	if (nvm->type != e1000_nvm_flash_sw)
3978		goto out;
3979
3980	nvm->ops.acquire(hw);
3981
3982	/* We're writing to the opposite bank so if we're on bank 1,
3983	 * write to bank 0 etc.  We also need to erase the segment that
3984	 * is going to be written
3985	 */
3986	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3987	if (ret_val) {
3988		e_dbg("Could not detect valid bank, assuming bank 0\n");
3989		bank = 0;
3990	}
3991
3992	if (bank == 0) {
3993		new_bank_offset = nvm->flash_bank_size;
3994		old_bank_offset = 0;
3995		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3996		if (ret_val)
3997			goto release;
3998	} else {
3999		old_bank_offset = nvm->flash_bank_size;
4000		new_bank_offset = 0;
4001		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4002		if (ret_val)
4003			goto release;
4004	}
4005	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4006		if (dev_spec->shadow_ram[i].modified) {
4007			data = dev_spec->shadow_ram[i].value;
4008		} else {
4009			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4010								old_bank_offset,
4011								&data);
4012			if (ret_val)
4013				break;
4014		}
4015
4016		/* If the word is 0x13, then make sure the signature bits
4017		 * (15:14) are 11b until the commit has completed.
4018		 * This will allow us to write 10b which indicates the
4019		 * signature is valid.  We want to do this after the write
4020		 * has completed so that we don't mark the segment valid
4021		 * while the write is still in progress
4022		 */
4023		if (i == E1000_ICH_NVM_SIG_WORD)
4024			data |= E1000_ICH_NVM_SIG_MASK;
4025
4026		/* Convert offset to bytes. */
4027		act_offset = (i + new_bank_offset) << 1;
4028
4029		usleep_range(100, 200);
4030		/* Write the bytes to the new bank. */
4031		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4032							       act_offset,
4033							       (u8)data);
4034		if (ret_val)
4035			break;
4036
4037		usleep_range(100, 200);
4038		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4039							       act_offset + 1,
4040							       (u8)(data >> 8));
4041		if (ret_val)
4042			break;
4043	}
4044
4045	/* Don't bother writing the segment valid bits if sector
4046	 * programming failed.
4047	 */
4048	if (ret_val) {
4049		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4050		e_dbg("Flash commit failed.\n");
4051		goto release;
4052	}
4053
4054	/* Finally validate the new segment by setting bit 15:14
4055	 * to 10b in word 0x13 , this can be done without an
4056	 * erase as well since these bits are 11 to start with
4057	 * and we need to change bit 14 to 0b
4058	 */
4059	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4060	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4061	if (ret_val)
4062		goto release;
4063
4064	data &= 0xBFFF;
4065	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4066						       act_offset * 2 + 1,
4067						       (u8)(data >> 8));
4068	if (ret_val)
4069		goto release;
4070
4071	/* And invalidate the previously valid segment by setting
4072	 * its signature word (0x13) high_byte to 0b. This can be
4073	 * done without an erase because flash erase sets all bits
4074	 * to 1's. We can write 1's to 0's without an erase
4075	 */
4076	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4077	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4078	if (ret_val)
4079		goto release;
4080
4081	/* Great!  Everything worked, we can now clear the cached entries. */
4082	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4083		dev_spec->shadow_ram[i].modified = false;
4084		dev_spec->shadow_ram[i].value = 0xFFFF;
4085	}
4086
4087release:
4088	nvm->ops.release(hw);
4089
4090	/* Reload the EEPROM, or else modifications will not appear
4091	 * until after the next adapter reset.
4092	 */
4093	if (!ret_val) {
4094		nvm->ops.reload(hw);
4095		usleep_range(10000, 11000);
4096	}
4097
4098out:
4099	if (ret_val)
4100		e_dbg("NVM update error: %d\n", ret_val);
4101
4102	return ret_val;
4103}
4104
4105/**
4106 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4107 *  @hw: pointer to the HW structure
4108 *
4109 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4110 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4111 *  calculated, in which case we need to calculate the checksum and set bit 6.
4112 **/
4113static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4114{
4115	s32 ret_val;
4116	u16 data;
4117	u16 word;
4118	u16 valid_csum_mask;
4119
4120	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4121	 * the checksum needs to be fixed.  This bit is an indication that
4122	 * the NVM was prepared by OEM software and did not calculate
4123	 * the checksum...a likely scenario.
4124	 */
4125	switch (hw->mac.type) {
4126	case e1000_pch_lpt:
4127	case e1000_pch_spt:
4128	case e1000_pch_cnp:
4129	case e1000_pch_tgp:
4130	case e1000_pch_adp:
4131	case e1000_pch_mtp:
4132	case e1000_pch_lnp:
4133	case e1000_pch_ptp:
4134	case e1000_pch_nvp:
4135		word = NVM_COMPAT;
4136		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4137		break;
4138	default:
4139		word = NVM_FUTURE_INIT_WORD1;
4140		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4141		break;
4142	}
4143
4144	ret_val = e1000_read_nvm(hw, word, 1, &data);
4145	if (ret_val)
4146		return ret_val;
4147
4148	if (!(data & valid_csum_mask)) {
4149		e_dbg("NVM Checksum valid bit not set\n");
4150
4151		if (hw->mac.type < e1000_pch_tgp) {
4152			data |= valid_csum_mask;
4153			ret_val = e1000_write_nvm(hw, word, 1, &data);
4154			if (ret_val)
4155				return ret_val;
4156			ret_val = e1000e_update_nvm_checksum(hw);
4157			if (ret_val)
4158				return ret_val;
4159		}
4160	}
4161
4162	return e1000e_validate_nvm_checksum_generic(hw);
4163}
4164
4165/**
4166 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4167 *  @hw: pointer to the HW structure
4168 *
4169 *  To prevent malicious write/erase of the NVM, set it to be read-only
4170 *  so that the hardware ignores all write/erase cycles of the NVM via
4171 *  the flash control registers.  The shadow-ram copy of the NVM will
4172 *  still be updated, however any updates to this copy will not stick
4173 *  across driver reloads.
4174 **/
4175void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4176{
4177	struct e1000_nvm_info *nvm = &hw->nvm;
4178	union ich8_flash_protected_range pr0;
4179	union ich8_hws_flash_status hsfsts;
4180	u32 gfpreg;
4181
4182	nvm->ops.acquire(hw);
4183
4184	gfpreg = er32flash(ICH_FLASH_GFPREG);
4185
4186	/* Write-protect GbE Sector of NVM */
4187	pr0.regval = er32flash(ICH_FLASH_PR0);
4188	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4189	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4190	pr0.range.wpe = true;
4191	ew32flash(ICH_FLASH_PR0, pr0.regval);
4192
4193	/* Lock down a subset of GbE Flash Control Registers, e.g.
4194	 * PR0 to prevent the write-protection from being lifted.
4195	 * Once FLOCKDN is set, the registers protected by it cannot
4196	 * be written until FLOCKDN is cleared by a hardware reset.
4197	 */
4198	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4199	hsfsts.hsf_status.flockdn = true;
4200	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4201
4202	nvm->ops.release(hw);
4203}
4204
4205/**
4206 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4207 *  @hw: pointer to the HW structure
4208 *  @offset: The offset (in bytes) of the byte/word to read.
4209 *  @size: Size of data to read, 1=byte 2=word
4210 *  @data: The byte(s) to write to the NVM.
4211 *
4212 *  Writes one/two bytes to the NVM using the flash access registers.
4213 **/
4214static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4215					  u8 size, u16 data)
4216{
4217	union ich8_hws_flash_status hsfsts;
4218	union ich8_hws_flash_ctrl hsflctl;
4219	u32 flash_linear_addr;
4220	u32 flash_data = 0;
4221	s32 ret_val;
4222	u8 count = 0;
4223
4224	if (hw->mac.type >= e1000_pch_spt) {
4225		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4226			return -E1000_ERR_NVM;
4227	} else {
4228		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4229			return -E1000_ERR_NVM;
4230	}
4231
4232	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4233			     hw->nvm.flash_base_addr);
4234
4235	do {
4236		udelay(1);
4237		/* Steps */
4238		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4239		if (ret_val)
4240			break;
4241		/* In SPT, This register is in Lan memory space, not
4242		 * flash.  Therefore, only 32 bit access is supported
4243		 */
4244		if (hw->mac.type >= e1000_pch_spt)
4245			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4246		else
4247			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4248
4249		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4250		hsflctl.hsf_ctrl.fldbcount = size - 1;
4251		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4252		/* In SPT, This register is in Lan memory space,
4253		 * not flash.  Therefore, only 32 bit access is
4254		 * supported
4255		 */
4256		if (hw->mac.type >= e1000_pch_spt)
4257			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4258		else
4259			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4260
4261		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4262
4263		if (size == 1)
4264			flash_data = (u32)data & 0x00FF;
4265		else
4266			flash_data = (u32)data;
4267
4268		ew32flash(ICH_FLASH_FDATA0, flash_data);
4269
4270		/* check if FCERR is set to 1 , if set to 1, clear it
4271		 * and try the whole sequence a few more times else done
4272		 */
4273		ret_val =
4274		    e1000_flash_cycle_ich8lan(hw,
4275					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4276		if (!ret_val)
4277			break;
4278
4279		/* If we're here, then things are most likely
4280		 * completely hosed, but if the error condition
4281		 * is detected, it won't hurt to give it another
4282		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4283		 */
4284		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4285		if (hsfsts.hsf_status.flcerr)
4286			/* Repeat for some time before giving up. */
4287			continue;
4288		if (!hsfsts.hsf_status.flcdone) {
4289			e_dbg("Timeout error - flash cycle did not complete.\n");
4290			break;
4291		}
4292	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4293
4294	return ret_val;
4295}
4296
4297/**
4298*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4299*  @hw: pointer to the HW structure
4300*  @offset: The offset (in bytes) of the dwords to read.
4301*  @data: The 4 bytes to write to the NVM.
4302*
4303*  Writes one/two/four bytes to the NVM using the flash access registers.
4304**/
4305static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4306					    u32 data)
4307{
4308	union ich8_hws_flash_status hsfsts;
4309	union ich8_hws_flash_ctrl hsflctl;
4310	u32 flash_linear_addr;
4311	s32 ret_val;
4312	u8 count = 0;
4313
4314	if (hw->mac.type >= e1000_pch_spt) {
4315		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4316			return -E1000_ERR_NVM;
4317	}
4318	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4319			     hw->nvm.flash_base_addr);
4320	do {
4321		udelay(1);
4322		/* Steps */
4323		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4324		if (ret_val)
4325			break;
4326
4327		/* In SPT, This register is in Lan memory space, not
4328		 * flash.  Therefore, only 32 bit access is supported
4329		 */
4330		if (hw->mac.type >= e1000_pch_spt)
4331			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4332			    >> 16;
4333		else
4334			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4335
4336		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4337		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4338
4339		/* In SPT, This register is in Lan memory space,
4340		 * not flash.  Therefore, only 32 bit access is
4341		 * supported
4342		 */
4343		if (hw->mac.type >= e1000_pch_spt)
4344			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4345		else
4346			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4347
4348		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4349
4350		ew32flash(ICH_FLASH_FDATA0, data);
4351
4352		/* check if FCERR is set to 1 , if set to 1, clear it
4353		 * and try the whole sequence a few more times else done
4354		 */
4355		ret_val =
4356		   e1000_flash_cycle_ich8lan(hw,
4357					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4358
4359		if (!ret_val)
4360			break;
4361
4362		/* If we're here, then things are most likely
4363		 * completely hosed, but if the error condition
4364		 * is detected, it won't hurt to give it another
4365		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4366		 */
4367		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4368
4369		if (hsfsts.hsf_status.flcerr)
4370			/* Repeat for some time before giving up. */
4371			continue;
4372		if (!hsfsts.hsf_status.flcdone) {
4373			e_dbg("Timeout error - flash cycle did not complete.\n");
4374			break;
4375		}
4376	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4377
4378	return ret_val;
4379}
4380
4381/**
4382 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4383 *  @hw: pointer to the HW structure
4384 *  @offset: The index of the byte to read.
4385 *  @data: The byte to write to the NVM.
4386 *
4387 *  Writes a single byte to the NVM using the flash access registers.
4388 **/
4389static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4390					  u8 data)
4391{
4392	u16 word = (u16)data;
4393
4394	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4395}
4396
4397/**
4398*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4399*  @hw: pointer to the HW structure
4400*  @offset: The offset of the word to write.
4401*  @dword: The dword to write to the NVM.
4402*
4403*  Writes a single dword to the NVM using the flash access registers.
4404*  Goes through a retry algorithm before giving up.
4405**/
4406static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4407						 u32 offset, u32 dword)
4408{
4409	s32 ret_val;
4410	u16 program_retries;
4411
4412	/* Must convert word offset into bytes. */
4413	offset <<= 1;
4414	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4415
4416	if (!ret_val)
4417		return ret_val;
4418	for (program_retries = 0; program_retries < 100; program_retries++) {
4419		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4420		usleep_range(100, 200);
4421		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4422		if (!ret_val)
4423			break;
4424	}
4425	if (program_retries == 100)
4426		return -E1000_ERR_NVM;
4427
4428	return 0;
4429}
4430
4431/**
4432 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4433 *  @hw: pointer to the HW structure
4434 *  @offset: The offset of the byte to write.
4435 *  @byte: The byte to write to the NVM.
4436 *
4437 *  Writes a single byte to the NVM using the flash access registers.
4438 *  Goes through a retry algorithm before giving up.
4439 **/
4440static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4441						u32 offset, u8 byte)
4442{
4443	s32 ret_val;
4444	u16 program_retries;
4445
4446	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4447	if (!ret_val)
4448		return ret_val;
4449
4450	for (program_retries = 0; program_retries < 100; program_retries++) {
4451		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4452		usleep_range(100, 200);
4453		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4454		if (!ret_val)
4455			break;
4456	}
4457	if (program_retries == 100)
4458		return -E1000_ERR_NVM;
4459
4460	return 0;
4461}
4462
4463/**
4464 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4465 *  @hw: pointer to the HW structure
4466 *  @bank: 0 for first bank, 1 for second bank, etc.
4467 *
4468 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4469 *  bank N is 4096 * N + flash_reg_addr.
4470 **/
4471static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4472{
4473	struct e1000_nvm_info *nvm = &hw->nvm;
4474	union ich8_hws_flash_status hsfsts;
4475	union ich8_hws_flash_ctrl hsflctl;
4476	u32 flash_linear_addr;
4477	/* bank size is in 16bit words - adjust to bytes */
4478	u32 flash_bank_size = nvm->flash_bank_size * 2;
4479	s32 ret_val;
4480	s32 count = 0;
4481	s32 j, iteration, sector_size;
4482
4483	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4484
4485	/* Determine HW Sector size: Read BERASE bits of hw flash status
4486	 * register
4487	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4488	 *     consecutive sectors.  The start index for the nth Hw sector
4489	 *     can be calculated as = bank * 4096 + n * 256
4490	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4491	 *     The start index for the nth Hw sector can be calculated
4492	 *     as = bank * 4096
4493	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4494	 *     (ich9 only, otherwise error condition)
4495	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4496	 */
4497	switch (hsfsts.hsf_status.berasesz) {
4498	case 0:
4499		/* Hw sector size 256 */
4500		sector_size = ICH_FLASH_SEG_SIZE_256;
4501		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4502		break;
4503	case 1:
4504		sector_size = ICH_FLASH_SEG_SIZE_4K;
4505		iteration = 1;
4506		break;
4507	case 2:
4508		sector_size = ICH_FLASH_SEG_SIZE_8K;
4509		iteration = 1;
4510		break;
4511	case 3:
4512		sector_size = ICH_FLASH_SEG_SIZE_64K;
4513		iteration = 1;
4514		break;
4515	default:
4516		return -E1000_ERR_NVM;
4517	}
4518
4519	/* Start with the base address, then add the sector offset. */
4520	flash_linear_addr = hw->nvm.flash_base_addr;
4521	flash_linear_addr += (bank) ? flash_bank_size : 0;
4522
4523	for (j = 0; j < iteration; j++) {
4524		do {
4525			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4526
4527			/* Steps */
4528			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4529			if (ret_val)
4530				return ret_val;
4531
4532			/* Write a value 11 (block Erase) in Flash
4533			 * Cycle field in hw flash control
4534			 */
4535			if (hw->mac.type >= e1000_pch_spt)
4536				hsflctl.regval =
4537				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4538			else
4539				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4540
4541			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4542			if (hw->mac.type >= e1000_pch_spt)
4543				ew32flash(ICH_FLASH_HSFSTS,
4544					  hsflctl.regval << 16);
4545			else
4546				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4547
4548			/* Write the last 24 bits of an index within the
4549			 * block into Flash Linear address field in Flash
4550			 * Address.
4551			 */
4552			flash_linear_addr += (j * sector_size);
4553			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4554
4555			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4556			if (!ret_val)
4557				break;
4558
4559			/* Check if FCERR is set to 1.  If 1,
4560			 * clear it and try the whole sequence
4561			 * a few more times else Done
4562			 */
4563			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4564			if (hsfsts.hsf_status.flcerr)
4565				/* repeat for some time before giving up */
4566				continue;
4567			else if (!hsfsts.hsf_status.flcdone)
4568				return ret_val;
4569		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4570	}
4571
4572	return 0;
4573}
4574
4575/**
4576 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4577 *  @hw: pointer to the HW structure
4578 *  @data: Pointer to the LED settings
4579 *
4580 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4581 *  settings is all 0's or F's, set the LED default to a valid LED default
4582 *  setting.
4583 **/
4584static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4585{
4586	s32 ret_val;
4587
4588	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4589	if (ret_val) {
4590		e_dbg("NVM Read Error\n");
4591		return ret_val;
4592	}
4593
4594	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4595		*data = ID_LED_DEFAULT_ICH8LAN;
4596
4597	return 0;
4598}
4599
4600/**
4601 *  e1000_id_led_init_pchlan - store LED configurations
4602 *  @hw: pointer to the HW structure
4603 *
4604 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4605 *  the PHY LED configuration register.
4606 *
4607 *  PCH also does not have an "always on" or "always off" mode which
4608 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4609 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4610 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4611 *  link based on logic in e1000_led_[on|off]_pchlan().
4612 **/
4613static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4614{
4615	struct e1000_mac_info *mac = &hw->mac;
4616	s32 ret_val;
4617	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4618	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4619	u16 data, i, temp, shift;
4620
4621	/* Get default ID LED modes */
4622	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4623	if (ret_val)
4624		return ret_val;
4625
4626	mac->ledctl_default = er32(LEDCTL);
4627	mac->ledctl_mode1 = mac->ledctl_default;
4628	mac->ledctl_mode2 = mac->ledctl_default;
4629
4630	for (i = 0; i < 4; i++) {
4631		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4632		shift = (i * 5);
4633		switch (temp) {
4634		case ID_LED_ON1_DEF2:
4635		case ID_LED_ON1_ON2:
4636		case ID_LED_ON1_OFF2:
4637			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4638			mac->ledctl_mode1 |= (ledctl_on << shift);
4639			break;
4640		case ID_LED_OFF1_DEF2:
4641		case ID_LED_OFF1_ON2:
4642		case ID_LED_OFF1_OFF2:
4643			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4644			mac->ledctl_mode1 |= (ledctl_off << shift);
4645			break;
4646		default:
4647			/* Do nothing */
4648			break;
4649		}
4650		switch (temp) {
4651		case ID_LED_DEF1_ON2:
4652		case ID_LED_ON1_ON2:
4653		case ID_LED_OFF1_ON2:
4654			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4655			mac->ledctl_mode2 |= (ledctl_on << shift);
4656			break;
4657		case ID_LED_DEF1_OFF2:
4658		case ID_LED_ON1_OFF2:
4659		case ID_LED_OFF1_OFF2:
4660			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4661			mac->ledctl_mode2 |= (ledctl_off << shift);
4662			break;
4663		default:
4664			/* Do nothing */
4665			break;
4666		}
4667	}
4668
4669	return 0;
4670}
4671
4672/**
4673 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4674 *  @hw: pointer to the HW structure
4675 *
4676 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4677 *  register, so the bus width is hard coded.
4678 **/
4679static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4680{
4681	struct e1000_bus_info *bus = &hw->bus;
4682	s32 ret_val;
4683
4684	ret_val = e1000e_get_bus_info_pcie(hw);
4685
4686	/* ICH devices are "PCI Express"-ish.  They have
4687	 * a configuration space, but do not contain
4688	 * PCI Express Capability registers, so bus width
4689	 * must be hardcoded.
4690	 */
4691	if (bus->width == e1000_bus_width_unknown)
4692		bus->width = e1000_bus_width_pcie_x1;
4693
4694	return ret_val;
4695}
4696
4697/**
4698 *  e1000_reset_hw_ich8lan - Reset the hardware
4699 *  @hw: pointer to the HW structure
4700 *
4701 *  Does a full reset of the hardware which includes a reset of the PHY and
4702 *  MAC.
4703 **/
4704static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4705{
4706	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4707	u16 kum_cfg;
4708	u32 ctrl, reg;
4709	s32 ret_val;
4710
4711	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4712	 * on the last TLP read/write transaction when MAC is reset.
4713	 */
4714	ret_val = e1000e_disable_pcie_master(hw);
4715	if (ret_val)
4716		e_dbg("PCI-E Master disable polling has failed.\n");
4717
4718	e_dbg("Masking off all interrupts\n");
4719	ew32(IMC, 0xffffffff);
4720
4721	/* Disable the Transmit and Receive units.  Then delay to allow
4722	 * any pending transactions to complete before we hit the MAC
4723	 * with the global reset.
4724	 */
4725	ew32(RCTL, 0);
4726	ew32(TCTL, E1000_TCTL_PSP);
4727	e1e_flush();
4728
4729	usleep_range(10000, 11000);
4730
4731	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4732	if (hw->mac.type == e1000_ich8lan) {
4733		/* Set Tx and Rx buffer allocation to 8k apiece. */
4734		ew32(PBA, E1000_PBA_8K);
4735		/* Set Packet Buffer Size to 16k. */
4736		ew32(PBS, E1000_PBS_16K);
4737	}
4738
4739	if (hw->mac.type == e1000_pchlan) {
4740		/* Save the NVM K1 bit setting */
4741		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4742		if (ret_val)
4743			return ret_val;
4744
4745		if (kum_cfg & E1000_NVM_K1_ENABLE)
4746			dev_spec->nvm_k1_enabled = true;
4747		else
4748			dev_spec->nvm_k1_enabled = false;
4749	}
4750
4751	ctrl = er32(CTRL);
4752
4753	if (!hw->phy.ops.check_reset_block(hw)) {
4754		/* Full-chip reset requires MAC and PHY reset at the same
4755		 * time to make sure the interface between MAC and the
4756		 * external PHY is reset.
4757		 */
4758		ctrl |= E1000_CTRL_PHY_RST;
4759
4760		/* Gate automatic PHY configuration by hardware on
4761		 * non-managed 82579
4762		 */
4763		if ((hw->mac.type == e1000_pch2lan) &&
4764		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4765			e1000_gate_hw_phy_config_ich8lan(hw, true);
4766	}
4767	ret_val = e1000_acquire_swflag_ich8lan(hw);
4768	e_dbg("Issuing a global reset to ich8lan\n");
4769	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4770	/* cannot issue a flush here because it hangs the hardware */
4771	msleep(20);
4772
4773	/* Set Phy Config Counter to 50msec */
4774	if (hw->mac.type == e1000_pch2lan) {
4775		reg = er32(FEXTNVM3);
4776		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4777		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4778		ew32(FEXTNVM3, reg);
4779	}
4780
4781	if (!ret_val)
4782		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4783
4784	if (ctrl & E1000_CTRL_PHY_RST) {
4785		ret_val = hw->phy.ops.get_cfg_done(hw);
4786		if (ret_val)
4787			return ret_val;
4788
4789		ret_val = e1000_post_phy_reset_ich8lan(hw);
4790		if (ret_val)
4791			return ret_val;
4792	}
4793
4794	/* For PCH, this write will make sure that any noise
4795	 * will be detected as a CRC error and be dropped rather than show up
4796	 * as a bad packet to the DMA engine.
4797	 */
4798	if (hw->mac.type == e1000_pchlan)
4799		ew32(CRC_OFFSET, 0x65656565);
4800
4801	ew32(IMC, 0xffffffff);
4802	er32(ICR);
4803
4804	reg = er32(KABGTXD);
4805	reg |= E1000_KABGTXD_BGSQLBIAS;
4806	ew32(KABGTXD, reg);
4807
4808	return 0;
4809}
4810
4811/**
4812 *  e1000_init_hw_ich8lan - Initialize the hardware
4813 *  @hw: pointer to the HW structure
4814 *
4815 *  Prepares the hardware for transmit and receive by doing the following:
4816 *   - initialize hardware bits
4817 *   - initialize LED identification
4818 *   - setup receive address registers
4819 *   - setup flow control
4820 *   - setup transmit descriptors
4821 *   - clear statistics
4822 **/
4823static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4824{
4825	struct e1000_mac_info *mac = &hw->mac;
4826	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4827	s32 ret_val;
4828	u16 i;
4829
4830	e1000_initialize_hw_bits_ich8lan(hw);
4831
4832	/* Initialize identification LED */
4833	ret_val = mac->ops.id_led_init(hw);
4834	/* An error is not fatal and we should not stop init due to this */
4835	if (ret_val)
4836		e_dbg("Error initializing identification LED\n");
4837
4838	/* Setup the receive address. */
4839	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4840
4841	/* Zero out the Multicast HASH table */
4842	e_dbg("Zeroing the MTA\n");
4843	for (i = 0; i < mac->mta_reg_count; i++)
4844		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4845
4846	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4847	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4848	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4849	 */
4850	if (hw->phy.type == e1000_phy_82578) {
4851		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4852		i &= ~BM_WUC_HOST_WU_BIT;
4853		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4854		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4855		if (ret_val)
4856			return ret_val;
4857	}
4858
4859	/* Setup link and flow control */
4860	ret_val = mac->ops.setup_link(hw);
4861
4862	/* Set the transmit descriptor write-back policy for both queues */
4863	txdctl = er32(TXDCTL(0));
4864	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4865		  E1000_TXDCTL_FULL_TX_DESC_WB);
4866	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4867		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4868	ew32(TXDCTL(0), txdctl);
4869	txdctl = er32(TXDCTL(1));
4870	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4871		  E1000_TXDCTL_FULL_TX_DESC_WB);
4872	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4873		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4874	ew32(TXDCTL(1), txdctl);
4875
4876	/* ICH8 has opposite polarity of no_snoop bits.
4877	 * By default, we should use snoop behavior.
4878	 */
4879	if (mac->type == e1000_ich8lan)
4880		snoop = PCIE_ICH8_SNOOP_ALL;
4881	else
4882		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4883	e1000e_set_pcie_no_snoop(hw, snoop);
4884
4885	/* Enable workaround for packet loss issue on TGP PCH
4886	 * Do not gate DMA clock from the modPHY block
4887	 */
4888	if (mac->type >= e1000_pch_tgp) {
4889		fflt_dbg = er32(FFLT_DBG);
4890		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4891		ew32(FFLT_DBG, fflt_dbg);
4892	}
4893
4894	ctrl_ext = er32(CTRL_EXT);
4895	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4896	ew32(CTRL_EXT, ctrl_ext);
4897
4898	/* Clear all of the statistics registers (clear on read).  It is
4899	 * important that we do this after we have tried to establish link
4900	 * because the symbol error count will increment wildly if there
4901	 * is no link.
4902	 */
4903	e1000_clear_hw_cntrs_ich8lan(hw);
4904
4905	return ret_val;
4906}
4907
4908/**
4909 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4910 *  @hw: pointer to the HW structure
4911 *
4912 *  Sets/Clears required hardware bits necessary for correctly setting up the
4913 *  hardware for transmit and receive.
4914 **/
4915static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4916{
4917	u32 reg;
4918
4919	/* Extended Device Control */
4920	reg = er32(CTRL_EXT);
4921	reg |= BIT(22);
4922	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4923	if (hw->mac.type >= e1000_pchlan)
4924		reg |= E1000_CTRL_EXT_PHYPDEN;
4925	ew32(CTRL_EXT, reg);
4926
4927	/* Transmit Descriptor Control 0 */
4928	reg = er32(TXDCTL(0));
4929	reg |= BIT(22);
4930	ew32(TXDCTL(0), reg);
4931
4932	/* Transmit Descriptor Control 1 */
4933	reg = er32(TXDCTL(1));
4934	reg |= BIT(22);
4935	ew32(TXDCTL(1), reg);
4936
4937	/* Transmit Arbitration Control 0 */
4938	reg = er32(TARC(0));
4939	if (hw->mac.type == e1000_ich8lan)
4940		reg |= BIT(28) | BIT(29);
4941	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4942	ew32(TARC(0), reg);
4943
4944	/* Transmit Arbitration Control 1 */
4945	reg = er32(TARC(1));
4946	if (er32(TCTL) & E1000_TCTL_MULR)
4947		reg &= ~BIT(28);
4948	else
4949		reg |= BIT(28);
4950	reg |= BIT(24) | BIT(26) | BIT(30);
4951	ew32(TARC(1), reg);
4952
4953	/* Device Status */
4954	if (hw->mac.type == e1000_ich8lan) {
4955		reg = er32(STATUS);
4956		reg &= ~BIT(31);
4957		ew32(STATUS, reg);
4958	}
4959
4960	/* work-around descriptor data corruption issue during nfs v2 udp
4961	 * traffic, just disable the nfs filtering capability
4962	 */
4963	reg = er32(RFCTL);
4964	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4965
4966	/* Disable IPv6 extension header parsing because some malformed
4967	 * IPv6 headers can hang the Rx.
4968	 */
4969	if (hw->mac.type == e1000_ich8lan)
4970		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4971	ew32(RFCTL, reg);
4972
4973	/* Enable ECC on Lynxpoint */
4974	if (hw->mac.type >= e1000_pch_lpt) {
4975		reg = er32(PBECCSTS);
4976		reg |= E1000_PBECCSTS_ECC_ENABLE;
4977		ew32(PBECCSTS, reg);
4978
4979		reg = er32(CTRL);
4980		reg |= E1000_CTRL_MEHE;
4981		ew32(CTRL, reg);
4982	}
4983}
4984
4985/**
4986 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4987 *  @hw: pointer to the HW structure
4988 *
4989 *  Determines which flow control settings to use, then configures flow
4990 *  control.  Calls the appropriate media-specific link configuration
4991 *  function.  Assuming the adapter has a valid link partner, a valid link
4992 *  should be established.  Assumes the hardware has previously been reset
4993 *  and the transmitter and receiver are not enabled.
4994 **/
4995static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4996{
4997	s32 ret_val;
4998
4999	if (hw->phy.ops.check_reset_block(hw))
5000		return 0;
5001
5002	/* ICH parts do not have a word in the NVM to determine
5003	 * the default flow control setting, so we explicitly
5004	 * set it to full.
5005	 */
5006	if (hw->fc.requested_mode == e1000_fc_default) {
5007		/* Workaround h/w hang when Tx flow control enabled */
5008		if (hw->mac.type == e1000_pchlan)
5009			hw->fc.requested_mode = e1000_fc_rx_pause;
5010		else
5011			hw->fc.requested_mode = e1000_fc_full;
5012	}
5013
5014	/* Save off the requested flow control mode for use later.  Depending
5015	 * on the link partner's capabilities, we may or may not use this mode.
5016	 */
5017	hw->fc.current_mode = hw->fc.requested_mode;
5018
5019	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5020
5021	/* Continue to configure the copper link. */
5022	ret_val = hw->mac.ops.setup_physical_interface(hw);
5023	if (ret_val)
5024		return ret_val;
5025
5026	ew32(FCTTV, hw->fc.pause_time);
5027	if ((hw->phy.type == e1000_phy_82578) ||
5028	    (hw->phy.type == e1000_phy_82579) ||
5029	    (hw->phy.type == e1000_phy_i217) ||
5030	    (hw->phy.type == e1000_phy_82577)) {
5031		ew32(FCRTV_PCH, hw->fc.refresh_time);
5032
5033		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5034				   hw->fc.pause_time);
5035		if (ret_val)
5036			return ret_val;
5037	}
5038
5039	return e1000e_set_fc_watermarks(hw);
5040}
5041
5042/**
5043 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5044 *  @hw: pointer to the HW structure
5045 *
5046 *  Configures the kumeran interface to the PHY to wait the appropriate time
5047 *  when polling the PHY, then call the generic setup_copper_link to finish
5048 *  configuring the copper link.
5049 **/
5050static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5051{
5052	u32 ctrl;
5053	s32 ret_val;
5054	u16 reg_data;
5055
5056	ctrl = er32(CTRL);
5057	ctrl |= E1000_CTRL_SLU;
5058	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5059	ew32(CTRL, ctrl);
5060
5061	/* Set the mac to wait the maximum time between each iteration
5062	 * and increase the max iterations when polling the phy;
5063	 * this fixes erroneous timeouts at 10Mbps.
5064	 */
5065	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5066	if (ret_val)
5067		return ret_val;
5068	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5069				       &reg_data);
5070	if (ret_val)
5071		return ret_val;
5072	reg_data |= 0x3F;
5073	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5074					reg_data);
5075	if (ret_val)
5076		return ret_val;
5077
5078	switch (hw->phy.type) {
5079	case e1000_phy_igp_3:
5080		ret_val = e1000e_copper_link_setup_igp(hw);
5081		if (ret_val)
5082			return ret_val;
5083		break;
5084	case e1000_phy_bm:
5085	case e1000_phy_82578:
5086		ret_val = e1000e_copper_link_setup_m88(hw);
5087		if (ret_val)
5088			return ret_val;
5089		break;
5090	case e1000_phy_82577:
5091	case e1000_phy_82579:
5092		ret_val = e1000_copper_link_setup_82577(hw);
5093		if (ret_val)
5094			return ret_val;
5095		break;
5096	case e1000_phy_ife:
5097		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5098		if (ret_val)
5099			return ret_val;
5100
5101		reg_data &= ~IFE_PMC_AUTO_MDIX;
5102
5103		switch (hw->phy.mdix) {
5104		case 1:
5105			reg_data &= ~IFE_PMC_FORCE_MDIX;
5106			break;
5107		case 2:
5108			reg_data |= IFE_PMC_FORCE_MDIX;
5109			break;
5110		case 0:
5111		default:
5112			reg_data |= IFE_PMC_AUTO_MDIX;
5113			break;
5114		}
5115		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5116		if (ret_val)
5117			return ret_val;
5118		break;
5119	default:
5120		break;
5121	}
5122
5123	return e1000e_setup_copper_link(hw);
5124}
5125
5126/**
5127 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5128 *  @hw: pointer to the HW structure
5129 *
5130 *  Calls the PHY specific link setup function and then calls the
5131 *  generic setup_copper_link to finish configuring the link for
5132 *  Lynxpoint PCH devices
5133 **/
5134static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5135{
5136	u32 ctrl;
5137	s32 ret_val;
5138
5139	ctrl = er32(CTRL);
5140	ctrl |= E1000_CTRL_SLU;
5141	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5142	ew32(CTRL, ctrl);
5143
5144	ret_val = e1000_copper_link_setup_82577(hw);
5145	if (ret_val)
5146		return ret_val;
5147
5148	return e1000e_setup_copper_link(hw);
5149}
5150
5151/**
5152 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5153 *  @hw: pointer to the HW structure
5154 *  @speed: pointer to store current link speed
5155 *  @duplex: pointer to store the current link duplex
5156 *
5157 *  Calls the generic get_speed_and_duplex to retrieve the current link
5158 *  information and then calls the Kumeran lock loss workaround for links at
5159 *  gigabit speeds.
5160 **/
5161static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5162					  u16 *duplex)
5163{
5164	s32 ret_val;
5165
5166	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5167	if (ret_val)
5168		return ret_val;
5169
5170	if ((hw->mac.type == e1000_ich8lan) &&
5171	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5172		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5173	}
5174
5175	return ret_val;
5176}
5177
5178/**
5179 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5180 *  @hw: pointer to the HW structure
5181 *
5182 *  Work-around for 82566 Kumeran PCS lock loss:
5183 *  On link status change (i.e. PCI reset, speed change) and link is up and
5184 *  speed is gigabit-
5185 *    0) if workaround is optionally disabled do nothing
5186 *    1) wait 1ms for Kumeran link to come up
5187 *    2) check Kumeran Diagnostic register PCS lock loss bit
5188 *    3) if not set the link is locked (all is good), otherwise...
5189 *    4) reset the PHY
5190 *    5) repeat up to 10 times
5191 *  Note: this is only called for IGP3 copper when speed is 1gb.
5192 **/
5193static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5194{
5195	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5196	u32 phy_ctrl;
5197	s32 ret_val;
5198	u16 i, data;
5199	bool link;
5200
5201	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5202		return 0;
5203
5204	/* Make sure link is up before proceeding.  If not just return.
5205	 * Attempting this while link is negotiating fouled up link
5206	 * stability
5207	 */
5208	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5209	if (!link)
5210		return 0;
5211
5212	for (i = 0; i < 10; i++) {
5213		/* read once to clear */
5214		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5215		if (ret_val)
5216			return ret_val;
5217		/* and again to get new status */
5218		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5219		if (ret_val)
5220			return ret_val;
5221
5222		/* check for PCS lock */
5223		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5224			return 0;
5225
5226		/* Issue PHY reset */
5227		e1000_phy_hw_reset(hw);
5228		mdelay(5);
5229	}
5230	/* Disable GigE link negotiation */
5231	phy_ctrl = er32(PHY_CTRL);
5232	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5233		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5234	ew32(PHY_CTRL, phy_ctrl);
5235
5236	/* Call gig speed drop workaround on Gig disable before accessing
5237	 * any PHY registers
5238	 */
5239	e1000e_gig_downshift_workaround_ich8lan(hw);
5240
5241	/* unable to acquire PCS lock */
5242	return -E1000_ERR_PHY;
5243}
5244
5245/**
5246 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5247 *  @hw: pointer to the HW structure
5248 *  @state: boolean value used to set the current Kumeran workaround state
5249 *
5250 *  If ICH8, set the current Kumeran workaround state (enabled - true
5251 *  /disabled - false).
5252 **/
5253void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5254						  bool state)
5255{
5256	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5257
5258	if (hw->mac.type != e1000_ich8lan) {
5259		e_dbg("Workaround applies to ICH8 only.\n");
5260		return;
5261	}
5262
5263	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5264}
5265
5266/**
5267 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5268 *  @hw: pointer to the HW structure
5269 *
5270 *  Workaround for 82566 power-down on D3 entry:
5271 *    1) disable gigabit link
5272 *    2) write VR power-down enable
5273 *    3) read it back
5274 *  Continue if successful, else issue LCD reset and repeat
5275 **/
5276void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5277{
5278	u32 reg;
5279	u16 data;
5280	u8 retry = 0;
5281
5282	if (hw->phy.type != e1000_phy_igp_3)
5283		return;
5284
5285	/* Try the workaround twice (if needed) */
5286	do {
5287		/* Disable link */
5288		reg = er32(PHY_CTRL);
5289		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5290			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5291		ew32(PHY_CTRL, reg);
5292
5293		/* Call gig speed drop workaround on Gig disable before
5294		 * accessing any PHY registers
5295		 */
5296		if (hw->mac.type == e1000_ich8lan)
5297			e1000e_gig_downshift_workaround_ich8lan(hw);
5298
5299		/* Write VR power-down enable */
5300		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5301		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5302		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5303
5304		/* Read it back and test */
5305		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5306		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5307		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5308			break;
5309
5310		/* Issue PHY reset and repeat at most one more time */
5311		reg = er32(CTRL);
5312		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5313		retry++;
5314	} while (retry);
5315}
5316
5317/**
5318 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5319 *  @hw: pointer to the HW structure
5320 *
5321 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5322 *  LPLU, Gig disable, MDIC PHY reset):
5323 *    1) Set Kumeran Near-end loopback
5324 *    2) Clear Kumeran Near-end loopback
5325 *  Should only be called for ICH8[m] devices with any 1G Phy.
5326 **/
5327void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5328{
5329	s32 ret_val;
5330	u16 reg_data;
5331
5332	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5333		return;
5334
5335	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5336				       &reg_data);
5337	if (ret_val)
5338		return;
5339	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5340	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5341					reg_data);
5342	if (ret_val)
5343		return;
5344	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5345	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5346}
5347
5348/**
5349 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5350 *  @hw: pointer to the HW structure
5351 *
5352 *  During S0 to Sx transition, it is possible the link remains at gig
5353 *  instead of negotiating to a lower speed.  Before going to Sx, set
5354 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5355 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5356 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5357 *  needs to be written.
5358 *  Parts that support (and are linked to a partner which support) EEE in
5359 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5360 *  than 10Mbps w/o EEE.
5361 **/
5362void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5363{
5364	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5365	u32 phy_ctrl;
5366	s32 ret_val;
5367
5368	phy_ctrl = er32(PHY_CTRL);
5369	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5370
5371	if (hw->phy.type == e1000_phy_i217) {
5372		u16 phy_reg, device_id = hw->adapter->pdev->device;
5373
5374		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5375		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5376		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5377		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5378		    (hw->mac.type >= e1000_pch_spt)) {
5379			u32 fextnvm6 = er32(FEXTNVM6);
5380
5381			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5382		}
5383
5384		ret_val = hw->phy.ops.acquire(hw);
5385		if (ret_val)
5386			goto out;
5387
5388		if (!dev_spec->eee_disable) {
5389			u16 eee_advert;
5390
5391			ret_val =
5392			    e1000_read_emi_reg_locked(hw,
5393						      I217_EEE_ADVERTISEMENT,
5394						      &eee_advert);
5395			if (ret_val)
5396				goto release;
5397
5398			/* Disable LPLU if both link partners support 100BaseT
5399			 * EEE and 100Full is advertised on both ends of the
5400			 * link, and enable Auto Enable LPI since there will
5401			 * be no driver to enable LPI while in Sx.
5402			 */
5403			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5404			    (dev_spec->eee_lp_ability &
5405			     I82579_EEE_100_SUPPORTED) &&
5406			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5407				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5408					      E1000_PHY_CTRL_NOND0A_LPLU);
5409
5410				/* Set Auto Enable LPI after link up */
5411				e1e_rphy_locked(hw,
5412						I217_LPI_GPIO_CTRL, &phy_reg);
5413				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5414				e1e_wphy_locked(hw,
5415						I217_LPI_GPIO_CTRL, phy_reg);
5416			}
5417		}
5418
5419		/* For i217 Intel Rapid Start Technology support,
5420		 * when the system is going into Sx and no manageability engine
5421		 * is present, the driver must configure proxy to reset only on
5422		 * power good.  LPI (Low Power Idle) state must also reset only
5423		 * on power good, as well as the MTA (Multicast table array).
5424		 * The SMBus release must also be disabled on LCD reset.
5425		 */
5426		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5427			/* Enable proxy to reset only on power good. */
5428			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5429			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5430			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5431
5432			/* Set bit enable LPI (EEE) to reset only on
5433			 * power good.
5434			 */
5435			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5436			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5437			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5438
5439			/* Disable the SMB release on LCD reset. */
5440			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5441			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5442			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5443		}
5444
5445		/* Enable MTA to reset for Intel Rapid Start Technology
5446		 * Support
5447		 */
5448		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5449		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5450		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5451
5452release:
5453		hw->phy.ops.release(hw);
5454	}
5455out:
5456	ew32(PHY_CTRL, phy_ctrl);
5457
5458	if (hw->mac.type == e1000_ich8lan)
5459		e1000e_gig_downshift_workaround_ich8lan(hw);
5460
5461	if (hw->mac.type >= e1000_pchlan) {
5462		e1000_oem_bits_config_ich8lan(hw, false);
5463
5464		/* Reset PHY to activate OEM bits on 82577/8 */
5465		if (hw->mac.type == e1000_pchlan)
5466			e1000e_phy_hw_reset_generic(hw);
5467
5468		ret_val = hw->phy.ops.acquire(hw);
5469		if (ret_val)
5470			return;
5471		e1000_write_smbus_addr(hw);
5472		hw->phy.ops.release(hw);
5473	}
5474}
5475
5476/**
5477 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5478 *  @hw: pointer to the HW structure
5479 *
5480 *  During Sx to S0 transitions on non-managed devices or managed devices
5481 *  on which PHY resets are not blocked, if the PHY registers cannot be
5482 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5483 *  the PHY.
5484 *  On i217, setup Intel Rapid Start Technology.
5485 **/
5486void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5487{
5488	s32 ret_val;
5489
5490	if (hw->mac.type < e1000_pch2lan)
5491		return;
5492
5493	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5494	if (ret_val) {
5495		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5496		return;
5497	}
5498
5499	/* For i217 Intel Rapid Start Technology support when the system
5500	 * is transitioning from Sx and no manageability engine is present
5501	 * configure SMBus to restore on reset, disable proxy, and enable
5502	 * the reset on MTA (Multicast table array).
5503	 */
5504	if (hw->phy.type == e1000_phy_i217) {
5505		u16 phy_reg;
5506
5507		ret_val = hw->phy.ops.acquire(hw);
5508		if (ret_val) {
5509			e_dbg("Failed to setup iRST\n");
5510			return;
5511		}
5512
5513		/* Clear Auto Enable LPI after link up */
5514		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5515		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5516		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5517
5518		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5519			/* Restore clear on SMB if no manageability engine
5520			 * is present
5521			 */
5522			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5523			if (ret_val)
5524				goto release;
5525			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5526			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5527
5528			/* Disable Proxy */
5529			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5530		}
5531		/* Enable reset on MTA */
5532		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5533		if (ret_val)
5534			goto release;
5535		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5536		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5537release:
5538		if (ret_val)
5539			e_dbg("Error %d in resume workarounds\n", ret_val);
5540		hw->phy.ops.release(hw);
5541	}
5542}
5543
5544/**
5545 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5546 *  @hw: pointer to the HW structure
5547 *
5548 *  Return the LED back to the default configuration.
5549 **/
5550static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5551{
5552	if (hw->phy.type == e1000_phy_ife)
5553		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5554
5555	ew32(LEDCTL, hw->mac.ledctl_default);
5556	return 0;
5557}
5558
5559/**
5560 *  e1000_led_on_ich8lan - Turn LEDs on
5561 *  @hw: pointer to the HW structure
5562 *
5563 *  Turn on the LEDs.
5564 **/
5565static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5566{
5567	if (hw->phy.type == e1000_phy_ife)
5568		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5569				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5570
5571	ew32(LEDCTL, hw->mac.ledctl_mode2);
5572	return 0;
5573}
5574
5575/**
5576 *  e1000_led_off_ich8lan - Turn LEDs off
5577 *  @hw: pointer to the HW structure
5578 *
5579 *  Turn off the LEDs.
5580 **/
5581static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5582{
5583	if (hw->phy.type == e1000_phy_ife)
5584		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5585				(IFE_PSCL_PROBE_MODE |
5586				 IFE_PSCL_PROBE_LEDS_OFF));
5587
5588	ew32(LEDCTL, hw->mac.ledctl_mode1);
5589	return 0;
5590}
5591
5592/**
5593 *  e1000_setup_led_pchlan - Configures SW controllable LED
5594 *  @hw: pointer to the HW structure
5595 *
5596 *  This prepares the SW controllable LED for use.
5597 **/
5598static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5599{
5600	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5601}
5602
5603/**
5604 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5605 *  @hw: pointer to the HW structure
5606 *
5607 *  Return the LED back to the default configuration.
5608 **/
5609static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5610{
5611	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5612}
5613
5614/**
5615 *  e1000_led_on_pchlan - Turn LEDs on
5616 *  @hw: pointer to the HW structure
5617 *
5618 *  Turn on the LEDs.
5619 **/
5620static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5621{
5622	u16 data = (u16)hw->mac.ledctl_mode2;
5623	u32 i, led;
5624
5625	/* If no link, then turn LED on by setting the invert bit
5626	 * for each LED that's mode is "link_up" in ledctl_mode2.
5627	 */
5628	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5629		for (i = 0; i < 3; i++) {
5630			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5631			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5632			    E1000_LEDCTL_MODE_LINK_UP)
5633				continue;
5634			if (led & E1000_PHY_LED0_IVRT)
5635				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5636			else
5637				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5638		}
5639	}
5640
5641	return e1e_wphy(hw, HV_LED_CONFIG, data);
5642}
5643
5644/**
5645 *  e1000_led_off_pchlan - Turn LEDs off
5646 *  @hw: pointer to the HW structure
5647 *
5648 *  Turn off the LEDs.
5649 **/
5650static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5651{
5652	u16 data = (u16)hw->mac.ledctl_mode1;
5653	u32 i, led;
5654
5655	/* If no link, then turn LED off by clearing the invert bit
5656	 * for each LED that's mode is "link_up" in ledctl_mode1.
5657	 */
5658	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5659		for (i = 0; i < 3; i++) {
5660			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5661			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5662			    E1000_LEDCTL_MODE_LINK_UP)
5663				continue;
5664			if (led & E1000_PHY_LED0_IVRT)
5665				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5666			else
5667				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5668		}
5669	}
5670
5671	return e1e_wphy(hw, HV_LED_CONFIG, data);
5672}
5673
5674/**
5675 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5676 *  @hw: pointer to the HW structure
5677 *
5678 *  Read appropriate register for the config done bit for completion status
5679 *  and configure the PHY through s/w for EEPROM-less parts.
5680 *
5681 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5682 *  config done bit, so only an error is logged and continues.  If we were
5683 *  to return with error, EEPROM-less silicon would not be able to be reset
5684 *  or change link.
5685 **/
5686static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5687{
5688	s32 ret_val = 0;
5689	u32 bank = 0;
5690	u32 status;
5691
5692	e1000e_get_cfg_done_generic(hw);
5693
5694	/* Wait for indication from h/w that it has completed basic config */
5695	if (hw->mac.type >= e1000_ich10lan) {
5696		e1000_lan_init_done_ich8lan(hw);
5697	} else {
5698		ret_val = e1000e_get_auto_rd_done(hw);
5699		if (ret_val) {
5700			/* When auto config read does not complete, do not
5701			 * return with an error. This can happen in situations
5702			 * where there is no eeprom and prevents getting link.
5703			 */
5704			e_dbg("Auto Read Done did not complete\n");
5705			ret_val = 0;
5706		}
5707	}
5708
5709	/* Clear PHY Reset Asserted bit */
5710	status = er32(STATUS);
5711	if (status & E1000_STATUS_PHYRA)
5712		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5713	else
5714		e_dbg("PHY Reset Asserted not set - needs delay\n");
5715
5716	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5717	if (hw->mac.type <= e1000_ich9lan) {
5718		if (!(er32(EECD) & E1000_EECD_PRES) &&
5719		    (hw->phy.type == e1000_phy_igp_3)) {
5720			e1000e_phy_init_script_igp3(hw);
5721		}
5722	} else {
5723		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5724			/* Maybe we should do a basic PHY config */
5725			e_dbg("EEPROM not present\n");
5726			ret_val = -E1000_ERR_CONFIG;
5727		}
5728	}
5729
5730	return ret_val;
5731}
5732
5733/**
5734 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5735 * @hw: pointer to the HW structure
5736 *
5737 * In the case of a PHY power down to save power, or to turn off link during a
5738 * driver unload, or wake on lan is not enabled, remove the link.
5739 **/
5740static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5741{
5742	/* If the management interface is not enabled, then power down */
5743	if (!(hw->mac.ops.check_mng_mode(hw) ||
5744	      hw->phy.ops.check_reset_block(hw)))
5745		e1000_power_down_phy_copper(hw);
5746}
5747
5748/**
5749 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5750 *  @hw: pointer to the HW structure
5751 *
5752 *  Clears hardware counters specific to the silicon family and calls
5753 *  clear_hw_cntrs_generic to clear all general purpose counters.
5754 **/
5755static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5756{
5757	u16 phy_data;
5758	s32 ret_val;
5759
5760	e1000e_clear_hw_cntrs_base(hw);
5761
5762	er32(ALGNERRC);
5763	er32(RXERRC);
5764	er32(TNCRS);
5765	er32(CEXTERR);
5766	er32(TSCTC);
5767	er32(TSCTFC);
5768
5769	er32(MGTPRC);
5770	er32(MGTPDC);
5771	er32(MGTPTC);
5772
5773	er32(IAC);
5774	er32(ICRXOC);
5775
5776	/* Clear PHY statistics registers */
5777	if ((hw->phy.type == e1000_phy_82578) ||
5778	    (hw->phy.type == e1000_phy_82579) ||
5779	    (hw->phy.type == e1000_phy_i217) ||
5780	    (hw->phy.type == e1000_phy_82577)) {
5781		ret_val = hw->phy.ops.acquire(hw);
5782		if (ret_val)
5783			return;
5784		ret_val = hw->phy.ops.set_page(hw,
5785					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5786		if (ret_val)
5787			goto release;
5788		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5789		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5790		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5791		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5792		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5793		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5794		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5795		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5796		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5797		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5798		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5799		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5800		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5801		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5802release:
5803		hw->phy.ops.release(hw);
5804	}
5805}
5806
5807static const struct e1000_mac_operations ich8_mac_ops = {
5808	/* check_mng_mode dependent on mac type */
5809	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5810	/* cleanup_led dependent on mac type */
5811	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5812	.get_bus_info		= e1000_get_bus_info_ich8lan,
5813	.set_lan_id		= e1000_set_lan_id_single_port,
5814	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5815	/* led_on dependent on mac type */
5816	/* led_off dependent on mac type */
5817	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5818	.reset_hw		= e1000_reset_hw_ich8lan,
5819	.init_hw		= e1000_init_hw_ich8lan,
5820	.setup_link		= e1000_setup_link_ich8lan,
5821	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5822	/* id_led_init dependent on mac type */
5823	.config_collision_dist	= e1000e_config_collision_dist_generic,
5824	.rar_set		= e1000e_rar_set_generic,
5825	.rar_get_count		= e1000e_rar_get_count_generic,
5826};
5827
5828static const struct e1000_phy_operations ich8_phy_ops = {
5829	.acquire		= e1000_acquire_swflag_ich8lan,
5830	.check_reset_block	= e1000_check_reset_block_ich8lan,
5831	.commit			= NULL,
5832	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5833	.get_cable_length	= e1000e_get_cable_length_igp_2,
5834	.read_reg		= e1000e_read_phy_reg_igp,
5835	.release		= e1000_release_swflag_ich8lan,
5836	.reset			= e1000_phy_hw_reset_ich8lan,
5837	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5838	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5839	.write_reg		= e1000e_write_phy_reg_igp,
5840};
5841
5842static const struct e1000_nvm_operations ich8_nvm_ops = {
5843	.acquire		= e1000_acquire_nvm_ich8lan,
5844	.read			= e1000_read_nvm_ich8lan,
5845	.release		= e1000_release_nvm_ich8lan,
5846	.reload			= e1000e_reload_nvm_generic,
5847	.update			= e1000_update_nvm_checksum_ich8lan,
5848	.valid_led_default	= e1000_valid_led_default_ich8lan,
5849	.validate		= e1000_validate_nvm_checksum_ich8lan,
5850	.write			= e1000_write_nvm_ich8lan,
5851};
5852
5853static const struct e1000_nvm_operations spt_nvm_ops = {
5854	.acquire		= e1000_acquire_nvm_ich8lan,
5855	.release		= e1000_release_nvm_ich8lan,
5856	.read			= e1000_read_nvm_spt,
5857	.update			= e1000_update_nvm_checksum_spt,
5858	.reload			= e1000e_reload_nvm_generic,
5859	.valid_led_default	= e1000_valid_led_default_ich8lan,
5860	.validate		= e1000_validate_nvm_checksum_ich8lan,
5861	.write			= e1000_write_nvm_ich8lan,
5862};
5863
5864const struct e1000_info e1000_ich8_info = {
5865	.mac			= e1000_ich8lan,
5866	.flags			= FLAG_HAS_WOL
5867				  | FLAG_IS_ICH
5868				  | FLAG_HAS_CTRLEXT_ON_LOAD
5869				  | FLAG_HAS_AMT
5870				  | FLAG_HAS_FLASH
5871				  | FLAG_APME_IN_WUC,
5872	.pba			= 8,
5873	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5874	.get_variants		= e1000_get_variants_ich8lan,
5875	.mac_ops		= &ich8_mac_ops,
5876	.phy_ops		= &ich8_phy_ops,
5877	.nvm_ops		= &ich8_nvm_ops,
5878};
5879
5880const struct e1000_info e1000_ich9_info = {
5881	.mac			= e1000_ich9lan,
5882	.flags			= FLAG_HAS_JUMBO_FRAMES
5883				  | FLAG_IS_ICH
5884				  | FLAG_HAS_WOL
5885				  | FLAG_HAS_CTRLEXT_ON_LOAD
5886				  | FLAG_HAS_AMT
5887				  | FLAG_HAS_FLASH
5888				  | FLAG_APME_IN_WUC,
5889	.pba			= 18,
5890	.max_hw_frame_size	= DEFAULT_JUMBO,
5891	.get_variants		= e1000_get_variants_ich8lan,
5892	.mac_ops		= &ich8_mac_ops,
5893	.phy_ops		= &ich8_phy_ops,
5894	.nvm_ops		= &ich8_nvm_ops,
5895};
5896
5897const struct e1000_info e1000_ich10_info = {
5898	.mac			= e1000_ich10lan,
5899	.flags			= FLAG_HAS_JUMBO_FRAMES
5900				  | FLAG_IS_ICH
5901				  | FLAG_HAS_WOL
5902				  | FLAG_HAS_CTRLEXT_ON_LOAD
5903				  | FLAG_HAS_AMT
5904				  | FLAG_HAS_FLASH
5905				  | FLAG_APME_IN_WUC,
5906	.pba			= 18,
5907	.max_hw_frame_size	= DEFAULT_JUMBO,
5908	.get_variants		= e1000_get_variants_ich8lan,
5909	.mac_ops		= &ich8_mac_ops,
5910	.phy_ops		= &ich8_phy_ops,
5911	.nvm_ops		= &ich8_nvm_ops,
5912};
5913
5914const struct e1000_info e1000_pch_info = {
5915	.mac			= e1000_pchlan,
5916	.flags			= FLAG_IS_ICH
5917				  | FLAG_HAS_WOL
5918				  | FLAG_HAS_CTRLEXT_ON_LOAD
5919				  | FLAG_HAS_AMT
5920				  | FLAG_HAS_FLASH
5921				  | FLAG_HAS_JUMBO_FRAMES
5922				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5923				  | FLAG_APME_IN_WUC,
5924	.flags2			= FLAG2_HAS_PHY_STATS,
5925	.pba			= 26,
5926	.max_hw_frame_size	= 4096,
5927	.get_variants		= e1000_get_variants_ich8lan,
5928	.mac_ops		= &ich8_mac_ops,
5929	.phy_ops		= &ich8_phy_ops,
5930	.nvm_ops		= &ich8_nvm_ops,
5931};
5932
5933const struct e1000_info e1000_pch2_info = {
5934	.mac			= e1000_pch2lan,
5935	.flags			= FLAG_IS_ICH
5936				  | FLAG_HAS_WOL
5937				  | FLAG_HAS_HW_TIMESTAMP
5938				  | FLAG_HAS_CTRLEXT_ON_LOAD
5939				  | FLAG_HAS_AMT
5940				  | FLAG_HAS_FLASH
5941				  | FLAG_HAS_JUMBO_FRAMES
5942				  | FLAG_APME_IN_WUC,
5943	.flags2			= FLAG2_HAS_PHY_STATS
5944				  | FLAG2_HAS_EEE
5945				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5946	.pba			= 26,
5947	.max_hw_frame_size	= 9022,
5948	.get_variants		= e1000_get_variants_ich8lan,
5949	.mac_ops		= &ich8_mac_ops,
5950	.phy_ops		= &ich8_phy_ops,
5951	.nvm_ops		= &ich8_nvm_ops,
5952};
5953
5954const struct e1000_info e1000_pch_lpt_info = {
5955	.mac			= e1000_pch_lpt,
5956	.flags			= FLAG_IS_ICH
5957				  | FLAG_HAS_WOL
5958				  | FLAG_HAS_HW_TIMESTAMP
5959				  | FLAG_HAS_CTRLEXT_ON_LOAD
5960				  | FLAG_HAS_AMT
5961				  | FLAG_HAS_FLASH
5962				  | FLAG_HAS_JUMBO_FRAMES
5963				  | FLAG_APME_IN_WUC,
5964	.flags2			= FLAG2_HAS_PHY_STATS
5965				  | FLAG2_HAS_EEE
5966				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5967	.pba			= 26,
5968	.max_hw_frame_size	= 9022,
5969	.get_variants		= e1000_get_variants_ich8lan,
5970	.mac_ops		= &ich8_mac_ops,
5971	.phy_ops		= &ich8_phy_ops,
5972	.nvm_ops		= &ich8_nvm_ops,
5973};
5974
5975const struct e1000_info e1000_pch_spt_info = {
5976	.mac			= e1000_pch_spt,
5977	.flags			= FLAG_IS_ICH
5978				  | FLAG_HAS_WOL
5979				  | FLAG_HAS_HW_TIMESTAMP
5980				  | FLAG_HAS_CTRLEXT_ON_LOAD
5981				  | FLAG_HAS_AMT
5982				  | FLAG_HAS_FLASH
5983				  | FLAG_HAS_JUMBO_FRAMES
5984				  | FLAG_APME_IN_WUC,
5985	.flags2			= FLAG2_HAS_PHY_STATS
5986				  | FLAG2_HAS_EEE,
5987	.pba			= 26,
5988	.max_hw_frame_size	= 9022,
5989	.get_variants		= e1000_get_variants_ich8lan,
5990	.mac_ops		= &ich8_mac_ops,
5991	.phy_ops		= &ich8_phy_ops,
5992	.nvm_ops		= &spt_nvm_ops,
5993};
5994
5995const struct e1000_info e1000_pch_cnp_info = {
5996	.mac			= e1000_pch_cnp,
5997	.flags			= FLAG_IS_ICH
5998				  | FLAG_HAS_WOL
5999				  | FLAG_HAS_HW_TIMESTAMP
6000				  | FLAG_HAS_CTRLEXT_ON_LOAD
6001				  | FLAG_HAS_AMT
6002				  | FLAG_HAS_FLASH
6003				  | FLAG_HAS_JUMBO_FRAMES
6004				  | FLAG_APME_IN_WUC,
6005	.flags2			= FLAG2_HAS_PHY_STATS
6006				  | FLAG2_HAS_EEE,
6007	.pba			= 26,
6008	.max_hw_frame_size	= 9022,
6009	.get_variants		= e1000_get_variants_ich8lan,
6010	.mac_ops		= &ich8_mac_ops,
6011	.phy_ops		= &ich8_phy_ops,
6012	.nvm_ops		= &spt_nvm_ops,
6013};
6014
6015const struct e1000_info e1000_pch_tgp_info = {
6016	.mac			= e1000_pch_tgp,
6017	.flags			= FLAG_IS_ICH
6018				  | FLAG_HAS_WOL
6019				  | FLAG_HAS_HW_TIMESTAMP
6020				  | FLAG_HAS_CTRLEXT_ON_LOAD
6021				  | FLAG_HAS_AMT
6022				  | FLAG_HAS_FLASH
6023				  | FLAG_HAS_JUMBO_FRAMES
6024				  | FLAG_APME_IN_WUC,
6025	.flags2			= FLAG2_HAS_PHY_STATS
6026				  | FLAG2_HAS_EEE,
6027	.pba			= 26,
6028	.max_hw_frame_size	= 9022,
6029	.get_variants		= e1000_get_variants_ich8lan,
6030	.mac_ops		= &ich8_mac_ops,
6031	.phy_ops		= &ich8_phy_ops,
6032	.nvm_ops		= &spt_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_adp_info = {
6036	.mac			= e1000_pch_adp,
6037	.flags			= FLAG_IS_ICH
6038				  | FLAG_HAS_WOL
6039				  | FLAG_HAS_HW_TIMESTAMP
6040				  | FLAG_HAS_CTRLEXT_ON_LOAD
6041				  | FLAG_HAS_AMT
6042				  | FLAG_HAS_FLASH
6043				  | FLAG_HAS_JUMBO_FRAMES
6044				  | FLAG_APME_IN_WUC,
6045	.flags2			= FLAG2_HAS_PHY_STATS
6046				  | FLAG2_HAS_EEE,
6047	.pba			= 26,
6048	.max_hw_frame_size	= 9022,
6049	.get_variants		= e1000_get_variants_ich8lan,
6050	.mac_ops		= &ich8_mac_ops,
6051	.phy_ops		= &ich8_phy_ops,
6052	.nvm_ops		= &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_mtp_info = {
6056	.mac			= e1000_pch_mtp,
6057	.flags			= FLAG_IS_ICH
6058				  | FLAG_HAS_WOL
6059				  | FLAG_HAS_HW_TIMESTAMP
6060				  | FLAG_HAS_CTRLEXT_ON_LOAD
6061				  | FLAG_HAS_AMT
6062				  | FLAG_HAS_FLASH
6063				  | FLAG_HAS_JUMBO_FRAMES
6064				  | FLAG_APME_IN_WUC,
6065	.flags2			= FLAG2_HAS_PHY_STATS
6066				  | FLAG2_HAS_EEE,
6067	.pba			= 26,
6068	.max_hw_frame_size	= 9022,
6069	.get_variants		= e1000_get_variants_ich8lan,
6070	.mac_ops		= &ich8_mac_ops,
6071	.phy_ops		= &ich8_phy_ops,
6072	.nvm_ops		= &spt_nvm_ops,
6073};
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Switching PHY interface always returns MDI error
 226			 * so disable retry mechanism to avoid wasting time
 227			 */
 228			e1000e_disable_phy_retry(hw);
 229
 230			/* Unforce SMBus mode in PHY */
 231			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 232			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 233			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 234
 235			e1000e_enable_phy_retry(hw);
 236
 237			/* Unforce SMBus mode in MAC */
 238			mac_reg = er32(CTRL_EXT);
 239			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 240			ew32(CTRL_EXT, mac_reg);
 241		}
 242	}
 243
 244	return true;
 245}
 246
 247/**
 248 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 249 *  @hw: pointer to the HW structure
 250 *
 251 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 252 *  used to reset the PHY to a quiescent state when necessary.
 253 **/
 254static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 255{
 256	u32 mac_reg;
 257
 258	/* Set Phy Config Counter to 50msec */
 259	mac_reg = er32(FEXTNVM3);
 260	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 261	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 262	ew32(FEXTNVM3, mac_reg);
 263
 264	/* Toggle LANPHYPC Value bit */
 265	mac_reg = er32(CTRL);
 266	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 267	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 268	ew32(CTRL, mac_reg);
 269	e1e_flush();
 270	usleep_range(10, 20);
 271	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 272	ew32(CTRL, mac_reg);
 273	e1e_flush();
 274
 275	if (hw->mac.type < e1000_pch_lpt) {
 276		msleep(50);
 277	} else {
 278		u16 count = 20;
 279
 280		do {
 281			usleep_range(5000, 6000);
 282		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 283
 284		msleep(30);
 285	}
 286}
 287
 288/**
 289 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 290 *  @hw: pointer to the HW structure
 291 *
 292 *  Workarounds/flow necessary for PHY initialization during driver load
 293 *  and resume paths.
 294 **/
 295static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 296{
 297	struct e1000_adapter *adapter = hw->adapter;
 298	u32 mac_reg, fwsm = er32(FWSM);
 299	s32 ret_val;
 300
 301	/* Gate automatic PHY configuration by hardware on managed and
 302	 * non-managed 82579 and newer adapters.
 303	 */
 304	e1000_gate_hw_phy_config_ich8lan(hw, true);
 305
 306	/* It is not possible to be certain of the current state of ULP
 307	 * so forcibly disable it.
 308	 */
 309	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 310	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 311	if (ret_val)
 312		e_warn("Failed to disable ULP\n");
 313
 314	ret_val = hw->phy.ops.acquire(hw);
 315	if (ret_val) {
 316		e_dbg("Failed to initialize PHY flow\n");
 317		goto out;
 318	}
 319
 320	/* There is no guarantee that the PHY is accessible at this time
 321	 * so disable retry mechanism to avoid wasting time
 322	 */
 323	e1000e_disable_phy_retry(hw);
 324
 325	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 326	 * inaccessible and resetting the PHY is not blocked, toggle the
 327	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 328	 */
 329	switch (hw->mac.type) {
 330	case e1000_pch_lpt:
 331	case e1000_pch_spt:
 332	case e1000_pch_cnp:
 333	case e1000_pch_tgp:
 334	case e1000_pch_adp:
 335	case e1000_pch_mtp:
 336	case e1000_pch_lnp:
 337	case e1000_pch_ptp:
 338	case e1000_pch_nvp:
 339		if (e1000_phy_is_accessible_pchlan(hw))
 340			break;
 341
 342		/* Before toggling LANPHYPC, see if PHY is accessible by
 343		 * forcing MAC to SMBus mode first.
 344		 */
 345		mac_reg = er32(CTRL_EXT);
 346		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 347		ew32(CTRL_EXT, mac_reg);
 348
 349		/* Wait 50 milliseconds for MAC to finish any retries
 350		 * that it might be trying to perform from previous
 351		 * attempts to acknowledge any phy read requests.
 352		 */
 353		msleep(50);
 354
 355		fallthrough;
 356	case e1000_pch2lan:
 357		if (e1000_phy_is_accessible_pchlan(hw))
 358			break;
 359
 360		fallthrough;
 361	case e1000_pchlan:
 362		if ((hw->mac.type == e1000_pchlan) &&
 363		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 364			break;
 365
 366		if (hw->phy.ops.check_reset_block(hw)) {
 367			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 368			ret_val = -E1000_ERR_PHY;
 369			break;
 370		}
 371
 372		/* Toggle LANPHYPC Value bit */
 373		e1000_toggle_lanphypc_pch_lpt(hw);
 374		if (hw->mac.type >= e1000_pch_lpt) {
 375			if (e1000_phy_is_accessible_pchlan(hw))
 376				break;
 377
 378			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 379			 * so ensure that the MAC is also out of SMBus mode
 380			 */
 381			mac_reg = er32(CTRL_EXT);
 382			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 383			ew32(CTRL_EXT, mac_reg);
 384
 385			if (e1000_phy_is_accessible_pchlan(hw))
 386				break;
 387
 388			ret_val = -E1000_ERR_PHY;
 389		}
 390		break;
 391	default:
 392		break;
 393	}
 394
 395	e1000e_enable_phy_retry(hw);
 396
 397	hw->phy.ops.release(hw);
 398	if (!ret_val) {
 399
 400		/* Check to see if able to reset PHY.  Print error if not */
 401		if (hw->phy.ops.check_reset_block(hw)) {
 402			e_err("Reset blocked by ME\n");
 403			goto out;
 404		}
 405
 406		/* Reset the PHY before any access to it.  Doing so, ensures
 407		 * that the PHY is in a known good state before we read/write
 408		 * PHY registers.  The generic reset is sufficient here,
 409		 * because we haven't determined the PHY type yet.
 410		 */
 411		ret_val = e1000e_phy_hw_reset_generic(hw);
 412		if (ret_val)
 413			goto out;
 414
 415		/* On a successful reset, possibly need to wait for the PHY
 416		 * to quiesce to an accessible state before returning control
 417		 * to the calling function.  If the PHY does not quiesce, then
 418		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 419		 *  the PHY is in.
 420		 */
 421		ret_val = hw->phy.ops.check_reset_block(hw);
 422		if (ret_val)
 423			e_err("ME blocked access to PHY after reset\n");
 424	}
 425
 426out:
 427	/* Ungate automatic PHY configuration on non-managed 82579 */
 428	if ((hw->mac.type == e1000_pch2lan) &&
 429	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 430		usleep_range(10000, 11000);
 431		e1000_gate_hw_phy_config_ich8lan(hw, false);
 432	}
 433
 434	return ret_val;
 435}
 436
 437/**
 438 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 439 *  @hw: pointer to the HW structure
 440 *
 441 *  Initialize family-specific PHY parameters and function pointers.
 442 **/
 443static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 444{
 445	struct e1000_phy_info *phy = &hw->phy;
 446	s32 ret_val;
 447
 448	phy->addr = 1;
 449	phy->reset_delay_us = 100;
 450
 451	phy->ops.set_page = e1000_set_page_igp;
 452	phy->ops.read_reg = e1000_read_phy_reg_hv;
 453	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 454	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 455	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 456	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 457	phy->ops.write_reg = e1000_write_phy_reg_hv;
 458	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 459	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 460	phy->ops.power_up = e1000_power_up_phy_copper;
 461	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 462	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 463
 464	phy->id = e1000_phy_unknown;
 465
 466	if (hw->mac.type == e1000_pch_mtp) {
 467		phy->retry_count = 2;
 468		e1000e_enable_phy_retry(hw);
 469	}
 470
 471	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 472	if (ret_val)
 473		return ret_val;
 474
 475	if (phy->id == e1000_phy_unknown)
 476		switch (hw->mac.type) {
 477		default:
 478			ret_val = e1000e_get_phy_id(hw);
 479			if (ret_val)
 480				return ret_val;
 481			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 482				break;
 483			fallthrough;
 484		case e1000_pch2lan:
 485		case e1000_pch_lpt:
 486		case e1000_pch_spt:
 487		case e1000_pch_cnp:
 488		case e1000_pch_tgp:
 489		case e1000_pch_adp:
 490		case e1000_pch_mtp:
 491		case e1000_pch_lnp:
 492		case e1000_pch_ptp:
 493		case e1000_pch_nvp:
 494			/* In case the PHY needs to be in mdio slow mode,
 495			 * set slow mode and try to get the PHY id again.
 496			 */
 497			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 498			if (ret_val)
 499				return ret_val;
 500			ret_val = e1000e_get_phy_id(hw);
 501			if (ret_val)
 502				return ret_val;
 503			break;
 504		}
 505	phy->type = e1000e_get_phy_type_from_id(phy->id);
 506
 507	switch (phy->type) {
 508	case e1000_phy_82577:
 509	case e1000_phy_82579:
 510	case e1000_phy_i217:
 511		phy->ops.check_polarity = e1000_check_polarity_82577;
 512		phy->ops.force_speed_duplex =
 513		    e1000_phy_force_speed_duplex_82577;
 514		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 515		phy->ops.get_info = e1000_get_phy_info_82577;
 516		phy->ops.commit = e1000e_phy_sw_reset;
 517		break;
 518	case e1000_phy_82578:
 519		phy->ops.check_polarity = e1000_check_polarity_m88;
 520		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 521		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 522		phy->ops.get_info = e1000e_get_phy_info_m88;
 523		break;
 524	default:
 525		ret_val = -E1000_ERR_PHY;
 526		break;
 527	}
 528
 529	return ret_val;
 530}
 531
 532/**
 533 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 534 *  @hw: pointer to the HW structure
 535 *
 536 *  Initialize family-specific PHY parameters and function pointers.
 537 **/
 538static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 539{
 540	struct e1000_phy_info *phy = &hw->phy;
 541	s32 ret_val;
 542	u16 i = 0;
 543
 544	phy->addr = 1;
 545	phy->reset_delay_us = 100;
 546
 547	phy->ops.power_up = e1000_power_up_phy_copper;
 548	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 549
 550	/* We may need to do this twice - once for IGP and if that fails,
 551	 * we'll set BM func pointers and try again
 552	 */
 553	ret_val = e1000e_determine_phy_address(hw);
 554	if (ret_val) {
 555		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 556		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 557		ret_val = e1000e_determine_phy_address(hw);
 558		if (ret_val) {
 559			e_dbg("Cannot determine PHY addr. Erroring out\n");
 560			return ret_val;
 561		}
 562	}
 563
 564	phy->id = 0;
 565	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 566	       (i++ < 100)) {
 567		usleep_range(1000, 1100);
 568		ret_val = e1000e_get_phy_id(hw);
 569		if (ret_val)
 570			return ret_val;
 571	}
 572
 573	/* Verify phy id */
 574	switch (phy->id) {
 575	case IGP03E1000_E_PHY_ID:
 576		phy->type = e1000_phy_igp_3;
 577		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 578		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 579		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 580		phy->ops.get_info = e1000e_get_phy_info_igp;
 581		phy->ops.check_polarity = e1000_check_polarity_igp;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 583		break;
 584	case IFE_E_PHY_ID:
 585	case IFE_PLUS_E_PHY_ID:
 586	case IFE_C_E_PHY_ID:
 587		phy->type = e1000_phy_ife;
 588		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 589		phy->ops.get_info = e1000_get_phy_info_ife;
 590		phy->ops.check_polarity = e1000_check_polarity_ife;
 591		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 592		break;
 593	case BME1000_E_PHY_ID:
 594		phy->type = e1000_phy_bm;
 595		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 596		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 597		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 598		phy->ops.commit = e1000e_phy_sw_reset;
 599		phy->ops.get_info = e1000e_get_phy_info_m88;
 600		phy->ops.check_polarity = e1000_check_polarity_m88;
 601		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 602		break;
 603	default:
 604		return -E1000_ERR_PHY;
 605	}
 606
 607	return 0;
 608}
 609
 610/**
 611 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 612 *  @hw: pointer to the HW structure
 613 *
 614 *  Initialize family-specific NVM parameters and function
 615 *  pointers.
 616 **/
 617static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 618{
 619	struct e1000_nvm_info *nvm = &hw->nvm;
 620	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 621	u32 gfpreg, sector_base_addr, sector_end_addr;
 622	u16 i;
 623	u32 nvm_size;
 624
 625	nvm->type = e1000_nvm_flash_sw;
 626
 627	if (hw->mac.type >= e1000_pch_spt) {
 628		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 629		 * STRAP register. This is because in SPT the GbE Flash region
 630		 * is no longer accessed through the flash registers. Instead,
 631		 * the mechanism has changed, and the Flash region access
 632		 * registers are now implemented in GbE memory space.
 633		 */
 634		nvm->flash_base_addr = 0;
 635		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 636		    * NVM_SIZE_MULTIPLIER;
 637		nvm->flash_bank_size = nvm_size / 2;
 638		/* Adjust to word count */
 639		nvm->flash_bank_size /= sizeof(u16);
 640		/* Set the base address for flash register access */
 641		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 642	} else {
 643		/* Can't read flash registers if register set isn't mapped. */
 644		if (!hw->flash_address) {
 645			e_dbg("ERROR: Flash registers not mapped\n");
 646			return -E1000_ERR_CONFIG;
 647		}
 648
 649		gfpreg = er32flash(ICH_FLASH_GFPREG);
 650
 651		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 652		 * Add 1 to sector_end_addr since this sector is included in
 653		 * the overall size.
 654		 */
 655		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 656		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 657
 658		/* flash_base_addr is byte-aligned */
 659		nvm->flash_base_addr = sector_base_addr
 660		    << FLASH_SECTOR_ADDR_SHIFT;
 661
 662		/* find total size of the NVM, then cut in half since the total
 663		 * size represents two separate NVM banks.
 664		 */
 665		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 666					<< FLASH_SECTOR_ADDR_SHIFT);
 667		nvm->flash_bank_size /= 2;
 668		/* Adjust to word count */
 669		nvm->flash_bank_size /= sizeof(u16);
 670	}
 671
 672	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 673
 674	/* Clear shadow ram */
 675	for (i = 0; i < nvm->word_size; i++) {
 676		dev_spec->shadow_ram[i].modified = false;
 677		dev_spec->shadow_ram[i].value = 0xFFFF;
 678	}
 679
 680	return 0;
 681}
 682
 683/**
 684 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 685 *  @hw: pointer to the HW structure
 686 *
 687 *  Initialize family-specific MAC parameters and function
 688 *  pointers.
 689 **/
 690static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 691{
 692	struct e1000_mac_info *mac = &hw->mac;
 693
 694	/* Set media type function pointer */
 695	hw->phy.media_type = e1000_media_type_copper;
 696
 697	/* Set mta register count */
 698	mac->mta_reg_count = 32;
 699	/* Set rar entry count */
 700	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 701	if (mac->type == e1000_ich8lan)
 702		mac->rar_entry_count--;
 703	/* FWSM register */
 704	mac->has_fwsm = true;
 705	/* ARC subsystem not supported */
 706	mac->arc_subsystem_valid = false;
 707	/* Adaptive IFS supported */
 708	mac->adaptive_ifs = true;
 709
 710	/* LED and other operations */
 711	switch (mac->type) {
 712	case e1000_ich8lan:
 713	case e1000_ich9lan:
 714	case e1000_ich10lan:
 715		/* check management mode */
 716		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 717		/* ID LED init */
 718		mac->ops.id_led_init = e1000e_id_led_init_generic;
 719		/* blink LED */
 720		mac->ops.blink_led = e1000e_blink_led_generic;
 721		/* setup LED */
 722		mac->ops.setup_led = e1000e_setup_led_generic;
 723		/* cleanup LED */
 724		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 725		/* turn on/off LED */
 726		mac->ops.led_on = e1000_led_on_ich8lan;
 727		mac->ops.led_off = e1000_led_off_ich8lan;
 728		break;
 729	case e1000_pch2lan:
 730		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 731		mac->ops.rar_set = e1000_rar_set_pch2lan;
 732		fallthrough;
 733	case e1000_pch_lpt:
 734	case e1000_pch_spt:
 735	case e1000_pch_cnp:
 736	case e1000_pch_tgp:
 737	case e1000_pch_adp:
 738	case e1000_pch_mtp:
 739	case e1000_pch_lnp:
 740	case e1000_pch_ptp:
 741	case e1000_pch_nvp:
 742	case e1000_pchlan:
 743		/* check management mode */
 744		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 745		/* ID LED init */
 746		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 747		/* setup LED */
 748		mac->ops.setup_led = e1000_setup_led_pchlan;
 749		/* cleanup LED */
 750		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 751		/* turn on/off LED */
 752		mac->ops.led_on = e1000_led_on_pchlan;
 753		mac->ops.led_off = e1000_led_off_pchlan;
 754		break;
 755	default:
 756		break;
 757	}
 758
 759	if (mac->type >= e1000_pch_lpt) {
 760		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 761		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 762		mac->ops.setup_physical_interface =
 763		    e1000_setup_copper_link_pch_lpt;
 764		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 765	}
 766
 767	/* Enable PCS Lock-loss workaround for ICH8 */
 768	if (mac->type == e1000_ich8lan)
 769		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 770
 771	return 0;
 772}
 773
 774/**
 775 *  __e1000_access_emi_reg_locked - Read/write EMI register
 776 *  @hw: pointer to the HW structure
 777 *  @address: EMI address to program
 778 *  @data: pointer to value to read/write from/to the EMI address
 779 *  @read: boolean flag to indicate read or write
 780 *
 781 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 782 **/
 783static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 784					 u16 *data, bool read)
 785{
 786	s32 ret_val;
 787
 788	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 789	if (ret_val)
 790		return ret_val;
 791
 792	if (read)
 793		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 794	else
 795		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 796
 797	return ret_val;
 798}
 799
 800/**
 801 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 802 *  @hw: pointer to the HW structure
 803 *  @addr: EMI address to program
 804 *  @data: value to be read from the EMI address
 805 *
 806 *  Assumes the SW/FW/HW Semaphore is already acquired.
 807 **/
 808s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 809{
 810	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 811}
 812
 813/**
 814 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 815 *  @hw: pointer to the HW structure
 816 *  @addr: EMI address to program
 817 *  @data: value to be written to the EMI address
 818 *
 819 *  Assumes the SW/FW/HW Semaphore is already acquired.
 820 **/
 821s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 822{
 823	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 824}
 825
 826/**
 827 *  e1000_set_eee_pchlan - Enable/disable EEE support
 828 *  @hw: pointer to the HW structure
 829 *
 830 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 831 *  the link and the EEE capabilities of the link partner.  The LPI Control
 832 *  register bits will remain set only if/when link is up.
 833 *
 834 *  EEE LPI must not be asserted earlier than one second after link is up.
 835 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 836 *  can be link issues with some switches.  Other devices can have EEE LPI
 837 *  enabled immediately upon link up since they have a timer in hardware which
 838 *  prevents LPI from being asserted too early.
 839 **/
 840s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 841{
 842	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 843	s32 ret_val;
 844	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 845
 846	switch (hw->phy.type) {
 847	case e1000_phy_82579:
 848		lpa = I82579_EEE_LP_ABILITY;
 849		pcs_status = I82579_EEE_PCS_STATUS;
 850		adv_addr = I82579_EEE_ADVERTISEMENT;
 851		break;
 852	case e1000_phy_i217:
 853		lpa = I217_EEE_LP_ABILITY;
 854		pcs_status = I217_EEE_PCS_STATUS;
 855		adv_addr = I217_EEE_ADVERTISEMENT;
 856		break;
 857	default:
 858		return 0;
 859	}
 860
 861	ret_val = hw->phy.ops.acquire(hw);
 862	if (ret_val)
 863		return ret_val;
 864
 865	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 866	if (ret_val)
 867		goto release;
 868
 869	/* Clear bits that enable EEE in various speeds */
 870	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 871
 872	/* Enable EEE if not disabled by user */
 873	if (!dev_spec->eee_disable) {
 874		/* Save off link partner's EEE ability */
 875		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 876						    &dev_spec->eee_lp_ability);
 877		if (ret_val)
 878			goto release;
 879
 880		/* Read EEE advertisement */
 881		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 882		if (ret_val)
 883			goto release;
 884
 885		/* Enable EEE only for speeds in which the link partner is
 886		 * EEE capable and for which we advertise EEE.
 887		 */
 888		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 889			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 890
 891		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 892			e1e_rphy_locked(hw, MII_LPA, &data);
 893			if (data & LPA_100FULL)
 894				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 895			else
 896				/* EEE is not supported in 100Half, so ignore
 897				 * partner's EEE in 100 ability if full-duplex
 898				 * is not advertised.
 899				 */
 900				dev_spec->eee_lp_ability &=
 901				    ~I82579_EEE_100_SUPPORTED;
 902		}
 903	}
 904
 905	if (hw->phy.type == e1000_phy_82579) {
 906		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 907						    &data);
 908		if (ret_val)
 909			goto release;
 910
 911		data &= ~I82579_LPI_100_PLL_SHUT;
 912		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 913						     data);
 914	}
 915
 916	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 917	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 918	if (ret_val)
 919		goto release;
 920
 921	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 922release:
 923	hw->phy.ops.release(hw);
 924
 925	return ret_val;
 926}
 927
 928/**
 929 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 930 *  @hw:   pointer to the HW structure
 931 *  @link: link up bool flag
 932 *
 933 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 934 *  preventing further DMA write requests.  Workaround the issue by disabling
 935 *  the de-assertion of the clock request when in 1Gpbs mode.
 936 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 937 *  speeds in order to avoid Tx hangs.
 938 **/
 939static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 940{
 941	u32 fextnvm6 = er32(FEXTNVM6);
 942	u32 status = er32(STATUS);
 943	s32 ret_val = 0;
 944	u16 reg;
 945
 946	if (link && (status & E1000_STATUS_SPEED_1000)) {
 947		ret_val = hw->phy.ops.acquire(hw);
 948		if (ret_val)
 949			return ret_val;
 950
 951		ret_val =
 952		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 953						&reg);
 954		if (ret_val)
 955			goto release;
 956
 957		ret_val =
 958		    e1000e_write_kmrn_reg_locked(hw,
 959						 E1000_KMRNCTRLSTA_K1_CONFIG,
 960						 reg &
 961						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 962		if (ret_val)
 963			goto release;
 964
 965		usleep_range(10, 20);
 966
 967		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 968
 969		ret_val =
 970		    e1000e_write_kmrn_reg_locked(hw,
 971						 E1000_KMRNCTRLSTA_K1_CONFIG,
 972						 reg);
 973release:
 974		hw->phy.ops.release(hw);
 975	} else {
 976		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 977		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 978
 979		if ((hw->phy.revision > 5) || !link ||
 980		    ((status & E1000_STATUS_SPEED_100) &&
 981		     (status & E1000_STATUS_FD)))
 982			goto update_fextnvm6;
 983
 984		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 985		if (ret_val)
 986			return ret_val;
 987
 988		/* Clear link status transmit timeout */
 989		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 990
 991		if (status & E1000_STATUS_SPEED_100) {
 992			/* Set inband Tx timeout to 5x10us for 100Half */
 993			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 994
 995			/* Do not extend the K1 entry latency for 100Half */
 996			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 997		} else {
 998			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 999			reg |= 50 <<
1000			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001
1002			/* Extend the K1 entry latency for 10 Mbps */
1003			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004		}
1005
1006		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007		if (ret_val)
1008			return ret_val;
1009
1010update_fextnvm6:
1011		ew32(FEXTNVM6, fextnvm6);
1012	}
1013
1014	return ret_val;
1015}
1016
1017/**
1018 *  e1000_platform_pm_pch_lpt - Set platform power management values
1019 *  @hw: pointer to the HW structure
1020 *  @link: bool indicating link status
1021 *
1022 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024 *  when link is up (which must not exceed the maximum latency supported
1025 *  by the platform), otherwise specify there is no LTR requirement.
1026 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028 *  Capability register set, on this device LTR is set by writing the
1029 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031 *  message to the PMC.
1032 **/
1033static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034{
1035	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1038	u32 lat_enc_d = 0;	/* latency decoded */
1039	u16 lat_enc = 0;	/* latency encoded */
1040
1041	if (link) {
1042		u16 speed, duplex, scale = 0;
1043		u16 max_snoop, max_nosnoop;
1044		u16 max_ltr_enc;	/* max LTR latency encoded */
1045		u64 value;
1046		u32 rxa;
1047
1048		if (!hw->adapter->max_frame_size) {
1049			e_dbg("max_frame_size not set.\n");
1050			return -E1000_ERR_CONFIG;
1051		}
1052
1053		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054		if (!speed) {
1055			e_dbg("Speed not set.\n");
1056			return -E1000_ERR_CONFIG;
1057		}
1058
1059		/* Rx Packet Buffer Allocation size (KB) */
1060		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061
1062		/* Determine the maximum latency tolerated by the device.
1063		 *
1064		 * Per the PCIe spec, the tolerated latencies are encoded as
1065		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069		 */
1070		rxa *= 512;
1071		value = (rxa > hw->adapter->max_frame_size) ?
1072			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073			0;
1074
1075		while (value > PCI_LTR_VALUE_MASK) {
1076			scale++;
1077			value = DIV_ROUND_UP(value, BIT(5));
1078		}
1079		if (scale > E1000_LTRV_SCALE_MAX) {
1080			e_dbg("Invalid LTR latency scale %d\n", scale);
1081			return -E1000_ERR_CONFIG;
1082		}
1083		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084
1085		/* Determine the maximum latency tolerated by the platform */
1086		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087				     &max_snoop);
1088		pci_read_config_word(hw->adapter->pdev,
1089				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091
1092		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093			     (1U << (E1000_LTRV_SCALE_FACTOR *
1094			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095
1096		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097			(1U << (E1000_LTRV_SCALE_FACTOR *
1098				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099
1100		if (lat_enc_d > max_ltr_enc_d)
1101			lat_enc = max_ltr_enc;
1102	}
1103
1104	/* Set Snoop and No-Snoop latencies the same */
1105	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106	ew32(LTRV, reg);
1107
1108	return 0;
1109}
1110
1111/**
1112 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1113 *  @hw: pointer to the HW structure
1114 *  @to_sx: boolean indicating a system power state transition to Sx
1115 *
1116 *  When link is down, configure ULP mode to significantly reduce the power
1117 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1118 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1119 *  system, configure the ULP mode by software.
1120 */
1121s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1122{
1123	u32 mac_reg;
1124	s32 ret_val = 0;
1125	u16 phy_reg;
1126	u16 oem_reg = 0;
1127
1128	if ((hw->mac.type < e1000_pch_lpt) ||
1129	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1130	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1131	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1132	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1133	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1134		return 0;
1135
1136	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1137		/* Request ME configure ULP mode in the PHY */
1138		mac_reg = er32(H2ME);
1139		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1140		ew32(H2ME, mac_reg);
1141
1142		goto out;
1143	}
1144
1145	if (!to_sx) {
1146		int i = 0;
1147
1148		/* Poll up to 5 seconds for Cable Disconnected indication */
1149		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1150			/* Bail if link is re-acquired */
1151			if (er32(STATUS) & E1000_STATUS_LU)
1152				return -E1000_ERR_PHY;
1153
1154			if (i++ == 100)
1155				break;
1156
1157			msleep(50);
1158		}
1159		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1160		      (er32(FEXT) &
1161		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1162	}
1163
1164	ret_val = hw->phy.ops.acquire(hw);
1165	if (ret_val)
1166		goto out;
1167
 
 
 
 
 
 
 
 
 
 
 
 
1168	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1169	 * LPLU and disable Gig speed when entering ULP
1170	 */
1171	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1172		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1173						       &oem_reg);
1174		if (ret_val)
1175			goto release;
1176
1177		phy_reg = oem_reg;
1178		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1179
1180		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1181							phy_reg);
1182
1183		if (ret_val)
1184			goto release;
1185	}
1186
1187	/* Set Inband ULP Exit, Reset to SMBus mode and
1188	 * Disable SMBus Release on PERST# in PHY
1189	 */
1190	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1191	if (ret_val)
1192		goto release;
1193	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1194		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1195	if (to_sx) {
1196		if (er32(WUFC) & E1000_WUFC_LNKC)
1197			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1198		else
1199			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200
1201		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1202		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1203	} else {
1204		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1205		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1206		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1207	}
1208	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1209
1210	/* Set Disable SMBus Release on PERST# in MAC */
1211	mac_reg = er32(FEXTNVM7);
1212	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1213	ew32(FEXTNVM7, mac_reg);
1214
1215	/* Commit ULP changes in PHY by starting auto ULP configuration */
1216	phy_reg |= I218_ULP_CONFIG1_START;
1217	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1218
1219	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1220	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1221		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1222							oem_reg);
1223		if (ret_val)
1224			goto release;
1225	}
1226
1227release:
1228	hw->phy.ops.release(hw);
1229out:
1230	if (ret_val)
1231		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1232	else
1233		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1234
1235	return ret_val;
1236}
1237
1238/**
1239 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1240 *  @hw: pointer to the HW structure
1241 *  @force: boolean indicating whether or not to force disabling ULP
1242 *
1243 *  Un-configure ULP mode when link is up, the system is transitioned from
1244 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1245 *  system, poll for an indication from ME that ULP has been un-configured.
1246 *  If not on an ME enabled system, un-configure the ULP mode by software.
1247 *
1248 *  During nominal operation, this function is called when link is acquired
1249 *  to disable ULP mode (force=false); otherwise, for example when unloading
1250 *  the driver or during Sx->S0 transitions, this is called with force=true
1251 *  to forcibly disable ULP.
1252 */
1253static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1254{
1255	s32 ret_val = 0;
1256	u32 mac_reg;
1257	u16 phy_reg;
1258	int i = 0;
1259
1260	if ((hw->mac.type < e1000_pch_lpt) ||
1261	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1262	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1263	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1264	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1265	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1266		return 0;
1267
1268	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1269		struct e1000_adapter *adapter = hw->adapter;
1270		bool firmware_bug = false;
1271
1272		if (force) {
1273			/* Request ME un-configure ULP mode in the PHY */
1274			mac_reg = er32(H2ME);
1275			mac_reg &= ~E1000_H2ME_ULP;
1276			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1277			ew32(H2ME, mac_reg);
1278		}
1279
1280		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1281		 * If this takes more than 1 second, show a warning indicating a
1282		 * firmware bug
1283		 */
1284		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1285			if (i++ == 250) {
1286				ret_val = -E1000_ERR_PHY;
1287				goto out;
1288			}
1289			if (i > 100 && !firmware_bug)
1290				firmware_bug = true;
1291
1292			usleep_range(10000, 11000);
1293		}
1294		if (firmware_bug)
1295			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1296			       i * 10);
1297		else
1298			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1299			      i * 10);
1300
1301		if (force) {
1302			mac_reg = er32(H2ME);
1303			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1304			ew32(H2ME, mac_reg);
1305		} else {
1306			/* Clear H2ME.ULP after ME ULP configuration */
1307			mac_reg = er32(H2ME);
1308			mac_reg &= ~E1000_H2ME_ULP;
1309			ew32(H2ME, mac_reg);
1310		}
1311
1312		goto out;
1313	}
1314
1315	ret_val = hw->phy.ops.acquire(hw);
1316	if (ret_val)
1317		goto out;
1318
1319	if (force)
1320		/* Toggle LANPHYPC Value bit */
1321		e1000_toggle_lanphypc_pch_lpt(hw);
1322
1323	/* Switching PHY interface always returns MDI error
1324	 * so disable retry mechanism to avoid wasting time
1325	 */
1326	e1000e_disable_phy_retry(hw);
1327
1328	/* Unforce SMBus mode in PHY */
1329	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1330	if (ret_val) {
1331		/* The MAC might be in PCIe mode, so temporarily force to
1332		 * SMBus mode in order to access the PHY.
1333		 */
1334		mac_reg = er32(CTRL_EXT);
1335		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1336		ew32(CTRL_EXT, mac_reg);
1337
1338		msleep(50);
1339
1340		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1341						       &phy_reg);
1342		if (ret_val)
1343			goto release;
1344	}
1345	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1346	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1347
1348	e1000e_enable_phy_retry(hw);
1349
1350	/* Unforce SMBus mode in MAC */
1351	mac_reg = er32(CTRL_EXT);
1352	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1353	ew32(CTRL_EXT, mac_reg);
1354
1355	/* When ULP mode was previously entered, K1 was disabled by the
1356	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1357	 */
1358	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1359	if (ret_val)
1360		goto release;
1361	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1362	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1363
1364	/* Clear ULP enabled configuration */
1365	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1366	if (ret_val)
1367		goto release;
1368	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1369		     I218_ULP_CONFIG1_STICKY_ULP |
1370		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1371		     I218_ULP_CONFIG1_WOL_HOST |
1372		     I218_ULP_CONFIG1_INBAND_EXIT |
1373		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1374		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1375		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1376	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1377
1378	/* Commit ULP changes by starting auto ULP configuration */
1379	phy_reg |= I218_ULP_CONFIG1_START;
1380	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1381
1382	/* Clear Disable SMBus Release on PERST# in MAC */
1383	mac_reg = er32(FEXTNVM7);
1384	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1385	ew32(FEXTNVM7, mac_reg);
1386
1387release:
1388	hw->phy.ops.release(hw);
1389	if (force) {
1390		e1000_phy_hw_reset(hw);
1391		msleep(50);
1392	}
1393out:
1394	if (ret_val)
1395		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1396	else
1397		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1398
1399	return ret_val;
1400}
1401
1402/**
1403 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1404 *  @hw: pointer to the HW structure
1405 *
1406 *  Checks to see of the link status of the hardware has changed.  If a
1407 *  change in link status has been detected, then we read the PHY registers
1408 *  to get the current speed/duplex if link exists.
1409 **/
1410static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1411{
1412	struct e1000_mac_info *mac = &hw->mac;
1413	s32 ret_val, tipg_reg = 0;
1414	u16 emi_addr, emi_val = 0;
1415	bool link;
1416	u16 phy_reg;
1417
1418	/* We only want to go out to the PHY registers to see if Auto-Neg
1419	 * has completed and/or if our link status has changed.  The
1420	 * get_link_status flag is set upon receiving a Link Status
1421	 * Change or Rx Sequence Error interrupt.
1422	 */
1423	if (!mac->get_link_status)
1424		return 0;
1425	mac->get_link_status = false;
1426
1427	/* First we want to see if the MII Status Register reports
1428	 * link.  If so, then we want to get the current speed/duplex
1429	 * of the PHY.
1430	 */
1431	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1432	if (ret_val)
1433		goto out;
1434
1435	if (hw->mac.type == e1000_pchlan) {
1436		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1437		if (ret_val)
1438			goto out;
1439	}
1440
1441	/* When connected at 10Mbps half-duplex, some parts are excessively
1442	 * aggressive resulting in many collisions. To avoid this, increase
1443	 * the IPG and reduce Rx latency in the PHY.
1444	 */
1445	if ((hw->mac.type >= e1000_pch2lan) && link) {
1446		u16 speed, duplex;
1447
1448		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1449		tipg_reg = er32(TIPG);
1450		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1451
1452		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1453			tipg_reg |= 0xFF;
1454			/* Reduce Rx latency in analog PHY */
1455			emi_val = 0;
1456		} else if (hw->mac.type >= e1000_pch_spt &&
1457			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1458			tipg_reg |= 0xC;
1459			emi_val = 1;
1460		} else {
1461
1462			/* Roll back the default values */
1463			tipg_reg |= 0x08;
1464			emi_val = 1;
1465		}
1466
1467		ew32(TIPG, tipg_reg);
1468
1469		ret_val = hw->phy.ops.acquire(hw);
1470		if (ret_val)
1471			goto out;
1472
1473		if (hw->mac.type == e1000_pch2lan)
1474			emi_addr = I82579_RX_CONFIG;
1475		else
1476			emi_addr = I217_RX_CONFIG;
1477		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1478
1479		if (hw->mac.type >= e1000_pch_lpt) {
1480			u16 phy_reg;
1481
1482			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1483			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1484			if (speed == SPEED_100 || speed == SPEED_10)
1485				phy_reg |= 0x3E8;
1486			else
1487				phy_reg |= 0xFA;
1488			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1489
1490			if (speed == SPEED_1000) {
1491				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1492							    &phy_reg);
1493
1494				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1495
1496				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1497							     phy_reg);
1498			}
1499		}
1500		hw->phy.ops.release(hw);
1501
1502		if (ret_val)
1503			goto out;
1504
1505		if (hw->mac.type >= e1000_pch_spt) {
1506			u16 data;
1507			u16 ptr_gap;
1508
1509			if (speed == SPEED_1000) {
1510				ret_val = hw->phy.ops.acquire(hw);
1511				if (ret_val)
1512					goto out;
1513
1514				ret_val = e1e_rphy_locked(hw,
1515							  PHY_REG(776, 20),
1516							  &data);
1517				if (ret_val) {
1518					hw->phy.ops.release(hw);
1519					goto out;
1520				}
1521
1522				ptr_gap = (data & (0x3FF << 2)) >> 2;
1523				if (ptr_gap < 0x18) {
1524					data &= ~(0x3FF << 2);
1525					data |= (0x18 << 2);
1526					ret_val =
1527					    e1e_wphy_locked(hw,
1528							    PHY_REG(776, 20),
1529							    data);
1530				}
1531				hw->phy.ops.release(hw);
1532				if (ret_val)
1533					goto out;
1534			} else {
1535				ret_val = hw->phy.ops.acquire(hw);
1536				if (ret_val)
1537					goto out;
1538
1539				ret_val = e1e_wphy_locked(hw,
1540							  PHY_REG(776, 20),
1541							  0xC023);
1542				hw->phy.ops.release(hw);
1543				if (ret_val)
1544					goto out;
1545
1546			}
1547		}
1548	}
1549
1550	/* I217 Packet Loss issue:
1551	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1552	 * on power up.
1553	 * Set the Beacon Duration for I217 to 8 usec
1554	 */
1555	if (hw->mac.type >= e1000_pch_lpt) {
1556		u32 mac_reg;
1557
1558		mac_reg = er32(FEXTNVM4);
1559		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1560		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1561		ew32(FEXTNVM4, mac_reg);
1562	}
1563
1564	/* Work-around I218 hang issue */
1565	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1566	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1567	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1568	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1569		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1570		if (ret_val)
1571			goto out;
1572	}
1573	if (hw->mac.type >= e1000_pch_lpt) {
1574		/* Set platform power management values for
1575		 * Latency Tolerance Reporting (LTR)
1576		 */
1577		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1578		if (ret_val)
1579			goto out;
1580	}
1581
1582	/* Clear link partner's EEE ability */
1583	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1584
1585	if (hw->mac.type >= e1000_pch_lpt) {
1586		u32 fextnvm6 = er32(FEXTNVM6);
1587
1588		if (hw->mac.type == e1000_pch_spt) {
1589			/* FEXTNVM6 K1-off workaround - for SPT only */
1590			u32 pcieanacfg = er32(PCIEANACFG);
1591
1592			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1593				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1594			else
1595				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1596		}
1597
1598		ew32(FEXTNVM6, fextnvm6);
1599	}
1600
1601	if (!link)
1602		goto out;
1603
1604	switch (hw->mac.type) {
1605	case e1000_pch2lan:
1606		ret_val = e1000_k1_workaround_lv(hw);
1607		if (ret_val)
1608			return ret_val;
1609		fallthrough;
1610	case e1000_pchlan:
1611		if (hw->phy.type == e1000_phy_82578) {
1612			ret_val = e1000_link_stall_workaround_hv(hw);
1613			if (ret_val)
1614				return ret_val;
1615		}
1616
1617		/* Workaround for PCHx parts in half-duplex:
1618		 * Set the number of preambles removed from the packet
1619		 * when it is passed from the PHY to the MAC to prevent
1620		 * the MAC from misinterpreting the packet type.
1621		 */
1622		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1623		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1624
1625		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1626			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1627
1628		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1629		break;
1630	default:
1631		break;
1632	}
1633
1634	/* Check if there was DownShift, must be checked
1635	 * immediately after link-up
1636	 */
1637	e1000e_check_downshift(hw);
1638
1639	/* Enable/Disable EEE after link up */
1640	if (hw->phy.type > e1000_phy_82579) {
1641		ret_val = e1000_set_eee_pchlan(hw);
1642		if (ret_val)
1643			return ret_val;
1644	}
1645
1646	/* If we are forcing speed/duplex, then we simply return since
1647	 * we have already determined whether we have link or not.
1648	 */
1649	if (!mac->autoneg)
1650		return -E1000_ERR_CONFIG;
1651
1652	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1653	 * of MAC speed/duplex configuration.  So we only need to
1654	 * configure Collision Distance in the MAC.
1655	 */
1656	mac->ops.config_collision_dist(hw);
1657
1658	/* Configure Flow Control now that Auto-Neg has completed.
1659	 * First, we need to restore the desired flow control
1660	 * settings because we may have had to re-autoneg with a
1661	 * different link partner.
1662	 */
1663	ret_val = e1000e_config_fc_after_link_up(hw);
1664	if (ret_val)
1665		e_dbg("Error configuring flow control\n");
1666
1667	return ret_val;
1668
1669out:
1670	mac->get_link_status = true;
1671	return ret_val;
1672}
1673
1674static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1675{
1676	struct e1000_hw *hw = &adapter->hw;
1677	s32 rc;
1678
1679	rc = e1000_init_mac_params_ich8lan(hw);
1680	if (rc)
1681		return rc;
1682
1683	rc = e1000_init_nvm_params_ich8lan(hw);
1684	if (rc)
1685		return rc;
1686
1687	switch (hw->mac.type) {
1688	case e1000_ich8lan:
1689	case e1000_ich9lan:
1690	case e1000_ich10lan:
1691		rc = e1000_init_phy_params_ich8lan(hw);
1692		break;
1693	case e1000_pchlan:
1694	case e1000_pch2lan:
1695	case e1000_pch_lpt:
1696	case e1000_pch_spt:
1697	case e1000_pch_cnp:
1698	case e1000_pch_tgp:
1699	case e1000_pch_adp:
1700	case e1000_pch_mtp:
1701	case e1000_pch_lnp:
1702	case e1000_pch_ptp:
1703	case e1000_pch_nvp:
1704		rc = e1000_init_phy_params_pchlan(hw);
1705		break;
1706	default:
1707		break;
1708	}
1709	if (rc)
1710		return rc;
1711
1712	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1713	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1714	 */
1715	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1716	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1717	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1718		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1719		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1720
1721		hw->mac.ops.blink_led = NULL;
1722	}
1723
1724	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1725	    (adapter->hw.phy.type != e1000_phy_ife))
1726		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1727
1728	/* Enable workaround for 82579 w/ ME enabled */
1729	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1730	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1731		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1732
1733	return 0;
1734}
1735
1736static DEFINE_MUTEX(nvm_mutex);
1737
1738/**
1739 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1740 *  @hw: pointer to the HW structure
1741 *
1742 *  Acquires the mutex for performing NVM operations.
1743 **/
1744static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1745{
1746	mutex_lock(&nvm_mutex);
1747
1748	return 0;
1749}
1750
1751/**
1752 *  e1000_release_nvm_ich8lan - Release NVM mutex
1753 *  @hw: pointer to the HW structure
1754 *
1755 *  Releases the mutex used while performing NVM operations.
1756 **/
1757static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1758{
1759	mutex_unlock(&nvm_mutex);
1760}
1761
1762/**
1763 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1764 *  @hw: pointer to the HW structure
1765 *
1766 *  Acquires the software control flag for performing PHY and select
1767 *  MAC CSR accesses.
1768 **/
1769static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1770{
1771	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1772	s32 ret_val = 0;
1773
1774	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1775			     &hw->adapter->state)) {
1776		e_dbg("contention for Phy access\n");
1777		return -E1000_ERR_PHY;
1778	}
1779
1780	while (timeout) {
1781		extcnf_ctrl = er32(EXTCNF_CTRL);
1782		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1783			break;
1784
1785		mdelay(1);
1786		timeout--;
1787	}
1788
1789	if (!timeout) {
1790		e_dbg("SW has already locked the resource.\n");
1791		ret_val = -E1000_ERR_CONFIG;
1792		goto out;
1793	}
1794
1795	timeout = SW_FLAG_TIMEOUT;
1796
1797	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1798	ew32(EXTCNF_CTRL, extcnf_ctrl);
1799
1800	while (timeout) {
1801		extcnf_ctrl = er32(EXTCNF_CTRL);
1802		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1803			break;
1804
1805		mdelay(1);
1806		timeout--;
1807	}
1808
1809	if (!timeout) {
1810		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1811		      er32(FWSM), extcnf_ctrl);
1812		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1813		ew32(EXTCNF_CTRL, extcnf_ctrl);
1814		ret_val = -E1000_ERR_CONFIG;
1815		goto out;
1816	}
1817
1818out:
1819	if (ret_val)
1820		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1821
1822	return ret_val;
1823}
1824
1825/**
1826 *  e1000_release_swflag_ich8lan - Release software control flag
1827 *  @hw: pointer to the HW structure
1828 *
1829 *  Releases the software control flag for performing PHY and select
1830 *  MAC CSR accesses.
1831 **/
1832static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1833{
1834	u32 extcnf_ctrl;
1835
1836	extcnf_ctrl = er32(EXTCNF_CTRL);
1837
1838	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1839		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1840		ew32(EXTCNF_CTRL, extcnf_ctrl);
1841	} else {
1842		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1843	}
1844
1845	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1846}
1847
1848/**
1849 *  e1000_check_mng_mode_ich8lan - Checks management mode
1850 *  @hw: pointer to the HW structure
1851 *
1852 *  This checks if the adapter has any manageability enabled.
1853 *  This is a function pointer entry point only called by read/write
1854 *  routines for the PHY and NVM parts.
1855 **/
1856static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1857{
1858	u32 fwsm;
1859
1860	fwsm = er32(FWSM);
1861	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1862		((fwsm & E1000_FWSM_MODE_MASK) ==
1863		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1864}
1865
1866/**
1867 *  e1000_check_mng_mode_pchlan - Checks management mode
1868 *  @hw: pointer to the HW structure
1869 *
1870 *  This checks if the adapter has iAMT enabled.
1871 *  This is a function pointer entry point only called by read/write
1872 *  routines for the PHY and NVM parts.
1873 **/
1874static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1875{
1876	u32 fwsm;
1877
1878	fwsm = er32(FWSM);
1879	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1880	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1881}
1882
1883/**
1884 *  e1000_rar_set_pch2lan - Set receive address register
1885 *  @hw: pointer to the HW structure
1886 *  @addr: pointer to the receive address
1887 *  @index: receive address array register
1888 *
1889 *  Sets the receive address array register at index to the address passed
1890 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1891 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1892 *  Use SHRA[0-3] in place of those reserved for ME.
1893 **/
1894static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1895{
1896	u32 rar_low, rar_high;
1897
1898	/* HW expects these in little endian so we reverse the byte order
1899	 * from network order (big endian) to little endian
1900	 */
1901	rar_low = ((u32)addr[0] |
1902		   ((u32)addr[1] << 8) |
1903		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1904
1905	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1906
1907	/* If MAC address zero, no need to set the AV bit */
1908	if (rar_low || rar_high)
1909		rar_high |= E1000_RAH_AV;
1910
1911	if (index == 0) {
1912		ew32(RAL(index), rar_low);
1913		e1e_flush();
1914		ew32(RAH(index), rar_high);
1915		e1e_flush();
1916		return 0;
1917	}
1918
1919	/* RAR[1-6] are owned by manageability.  Skip those and program the
1920	 * next address into the SHRA register array.
1921	 */
1922	if (index < (u32)(hw->mac.rar_entry_count)) {
1923		s32 ret_val;
1924
1925		ret_val = e1000_acquire_swflag_ich8lan(hw);
1926		if (ret_val)
1927			goto out;
1928
1929		ew32(SHRAL(index - 1), rar_low);
1930		e1e_flush();
1931		ew32(SHRAH(index - 1), rar_high);
1932		e1e_flush();
1933
1934		e1000_release_swflag_ich8lan(hw);
1935
1936		/* verify the register updates */
1937		if ((er32(SHRAL(index - 1)) == rar_low) &&
1938		    (er32(SHRAH(index - 1)) == rar_high))
1939			return 0;
1940
1941		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1942		      (index - 1), er32(FWSM));
1943	}
1944
1945out:
1946	e_dbg("Failed to write receive address at index %d\n", index);
1947	return -E1000_ERR_CONFIG;
1948}
1949
1950/**
1951 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1952 *  @hw: pointer to the HW structure
1953 *
1954 *  Get the number of available receive registers that the Host can
1955 *  program. SHRA[0-10] are the shared receive address registers
1956 *  that are shared between the Host and manageability engine (ME).
1957 *  ME can reserve any number of addresses and the host needs to be
1958 *  able to tell how many available registers it has access to.
1959 **/
1960static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1961{
1962	u32 wlock_mac;
1963	u32 num_entries;
1964
1965	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1966	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1967
1968	switch (wlock_mac) {
1969	case 0:
1970		/* All SHRA[0..10] and RAR[0] available */
1971		num_entries = hw->mac.rar_entry_count;
1972		break;
1973	case 1:
1974		/* Only RAR[0] available */
1975		num_entries = 1;
1976		break;
1977	default:
1978		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1979		num_entries = wlock_mac + 1;
1980		break;
1981	}
1982
1983	return num_entries;
1984}
1985
1986/**
1987 *  e1000_rar_set_pch_lpt - Set receive address registers
1988 *  @hw: pointer to the HW structure
1989 *  @addr: pointer to the receive address
1990 *  @index: receive address array register
1991 *
1992 *  Sets the receive address register array at index to the address passed
1993 *  in by addr. For LPT, RAR[0] is the base address register that is to
1994 *  contain the MAC address. SHRA[0-10] are the shared receive address
1995 *  registers that are shared between the Host and manageability engine (ME).
1996 **/
1997static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1998{
1999	u32 rar_low, rar_high;
2000	u32 wlock_mac;
2001
2002	/* HW expects these in little endian so we reverse the byte order
2003	 * from network order (big endian) to little endian
2004	 */
2005	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2006		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2007
2008	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2009
2010	/* If MAC address zero, no need to set the AV bit */
2011	if (rar_low || rar_high)
2012		rar_high |= E1000_RAH_AV;
2013
2014	if (index == 0) {
2015		ew32(RAL(index), rar_low);
2016		e1e_flush();
2017		ew32(RAH(index), rar_high);
2018		e1e_flush();
2019		return 0;
2020	}
2021
2022	/* The manageability engine (ME) can lock certain SHRAR registers that
2023	 * it is using - those registers are unavailable for use.
2024	 */
2025	if (index < hw->mac.rar_entry_count) {
2026		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2027		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2028
2029		/* Check if all SHRAR registers are locked */
2030		if (wlock_mac == 1)
2031			goto out;
2032
2033		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2034			s32 ret_val;
2035
2036			ret_val = e1000_acquire_swflag_ich8lan(hw);
2037
2038			if (ret_val)
2039				goto out;
2040
2041			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2042			e1e_flush();
2043			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2044			e1e_flush();
2045
2046			e1000_release_swflag_ich8lan(hw);
2047
2048			/* verify the register updates */
2049			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2050			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2051				return 0;
2052		}
2053	}
2054
2055out:
2056	e_dbg("Failed to write receive address at index %d\n", index);
2057	return -E1000_ERR_CONFIG;
2058}
2059
2060/**
2061 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2062 *  @hw: pointer to the HW structure
2063 *
2064 *  Checks if firmware is blocking the reset of the PHY.
2065 *  This is a function pointer entry point only called by
2066 *  reset routines.
2067 **/
2068static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2069{
2070	bool blocked = false;
2071	int i = 0;
2072
2073	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2074	       (i++ < 30))
2075		usleep_range(10000, 11000);
2076	return blocked ? E1000_BLK_PHY_RESET : 0;
2077}
2078
2079/**
2080 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2081 *  @hw: pointer to the HW structure
2082 *
2083 *  Assumes semaphore already acquired.
2084 *
2085 **/
2086static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2087{
2088	u16 phy_data;
2089	u32 strap = er32(STRAP);
2090	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2091	s32 ret_val;
2092
2093	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2094
2095	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2096	if (ret_val)
2097		return ret_val;
2098
2099	phy_data &= ~HV_SMB_ADDR_MASK;
2100	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2101	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2102
2103	if (hw->phy.type == e1000_phy_i217) {
2104		/* Restore SMBus frequency */
2105		if (freq--) {
2106			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2107			phy_data |= (freq & BIT(0)) <<
2108			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2109			phy_data |= (freq & BIT(1)) <<
2110			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2111		} else {
2112			e_dbg("Unsupported SMB frequency in PHY\n");
2113		}
2114	}
2115
2116	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2117}
2118
2119/**
2120 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2121 *  @hw:   pointer to the HW structure
2122 *
2123 *  SW should configure the LCD from the NVM extended configuration region
2124 *  as a workaround for certain parts.
2125 **/
2126static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2127{
2128	struct e1000_phy_info *phy = &hw->phy;
2129	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2130	s32 ret_val = 0;
2131	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2132
2133	/* Initialize the PHY from the NVM on ICH platforms.  This
2134	 * is needed due to an issue where the NVM configuration is
2135	 * not properly autoloaded after power transitions.
2136	 * Therefore, after each PHY reset, we will load the
2137	 * configuration data out of the NVM manually.
2138	 */
2139	switch (hw->mac.type) {
2140	case e1000_ich8lan:
2141		if (phy->type != e1000_phy_igp_3)
2142			return ret_val;
2143
2144		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2145		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2146			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2147			break;
2148		}
2149		fallthrough;
2150	case e1000_pchlan:
2151	case e1000_pch2lan:
2152	case e1000_pch_lpt:
2153	case e1000_pch_spt:
2154	case e1000_pch_cnp:
2155	case e1000_pch_tgp:
2156	case e1000_pch_adp:
2157	case e1000_pch_mtp:
2158	case e1000_pch_lnp:
2159	case e1000_pch_ptp:
2160	case e1000_pch_nvp:
2161		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2162		break;
2163	default:
2164		return ret_val;
2165	}
2166
2167	ret_val = hw->phy.ops.acquire(hw);
2168	if (ret_val)
2169		return ret_val;
2170
2171	data = er32(FEXTNVM);
2172	if (!(data & sw_cfg_mask))
2173		goto release;
2174
2175	/* Make sure HW does not configure LCD from PHY
2176	 * extended configuration before SW configuration
2177	 */
2178	data = er32(EXTCNF_CTRL);
2179	if ((hw->mac.type < e1000_pch2lan) &&
2180	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2181		goto release;
2182
2183	cnf_size = er32(EXTCNF_SIZE);
2184	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2185	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2186	if (!cnf_size)
2187		goto release;
2188
2189	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2190	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2191
2192	if (((hw->mac.type == e1000_pchlan) &&
2193	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2194	    (hw->mac.type > e1000_pchlan)) {
2195		/* HW configures the SMBus address and LEDs when the
2196		 * OEM and LCD Write Enable bits are set in the NVM.
2197		 * When both NVM bits are cleared, SW will configure
2198		 * them instead.
2199		 */
2200		ret_val = e1000_write_smbus_addr(hw);
2201		if (ret_val)
2202			goto release;
2203
2204		data = er32(LEDCTL);
2205		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2206							(u16)data);
2207		if (ret_val)
2208			goto release;
2209	}
2210
2211	/* Configure LCD from extended configuration region. */
2212
2213	/* cnf_base_addr is in DWORD */
2214	word_addr = (u16)(cnf_base_addr << 1);
2215
2216	for (i = 0; i < cnf_size; i++) {
2217		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2218		if (ret_val)
2219			goto release;
2220
2221		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2222					 1, &reg_addr);
2223		if (ret_val)
2224			goto release;
2225
2226		/* Save off the PHY page for future writes. */
2227		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2228			phy_page = reg_data;
2229			continue;
2230		}
2231
2232		reg_addr &= PHY_REG_MASK;
2233		reg_addr |= phy_page;
2234
2235		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2236		if (ret_val)
2237			goto release;
2238	}
2239
2240release:
2241	hw->phy.ops.release(hw);
2242	return ret_val;
2243}
2244
2245/**
2246 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2247 *  @hw:   pointer to the HW structure
2248 *  @link: link up bool flag
2249 *
2250 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2251 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2252 *  If link is down, the function will restore the default K1 setting located
2253 *  in the NVM.
2254 **/
2255static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2256{
2257	s32 ret_val = 0;
2258	u16 status_reg = 0;
2259	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2260
2261	if (hw->mac.type != e1000_pchlan)
2262		return 0;
2263
2264	/* Wrap the whole flow with the sw flag */
2265	ret_val = hw->phy.ops.acquire(hw);
2266	if (ret_val)
2267		return ret_val;
2268
2269	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2270	if (link) {
2271		if (hw->phy.type == e1000_phy_82578) {
2272			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2273						  &status_reg);
2274			if (ret_val)
2275				goto release;
2276
2277			status_reg &= (BM_CS_STATUS_LINK_UP |
2278				       BM_CS_STATUS_RESOLVED |
2279				       BM_CS_STATUS_SPEED_MASK);
2280
2281			if (status_reg == (BM_CS_STATUS_LINK_UP |
2282					   BM_CS_STATUS_RESOLVED |
2283					   BM_CS_STATUS_SPEED_1000))
2284				k1_enable = false;
2285		}
2286
2287		if (hw->phy.type == e1000_phy_82577) {
2288			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2289			if (ret_val)
2290				goto release;
2291
2292			status_reg &= (HV_M_STATUS_LINK_UP |
2293				       HV_M_STATUS_AUTONEG_COMPLETE |
2294				       HV_M_STATUS_SPEED_MASK);
2295
2296			if (status_reg == (HV_M_STATUS_LINK_UP |
2297					   HV_M_STATUS_AUTONEG_COMPLETE |
2298					   HV_M_STATUS_SPEED_1000))
2299				k1_enable = false;
2300		}
2301
2302		/* Link stall fix for link up */
2303		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2304		if (ret_val)
2305			goto release;
2306
2307	} else {
2308		/* Link stall fix for link down */
2309		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2310		if (ret_val)
2311			goto release;
2312	}
2313
2314	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2315
2316release:
2317	hw->phy.ops.release(hw);
2318
2319	return ret_val;
2320}
2321
2322/**
2323 *  e1000_configure_k1_ich8lan - Configure K1 power state
2324 *  @hw: pointer to the HW structure
2325 *  @k1_enable: K1 state to configure
2326 *
2327 *  Configure the K1 power state based on the provided parameter.
2328 *  Assumes semaphore already acquired.
2329 *
2330 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2331 **/
2332s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2333{
2334	s32 ret_val;
2335	u32 ctrl_reg = 0;
2336	u32 ctrl_ext = 0;
2337	u32 reg = 0;
2338	u16 kmrn_reg = 0;
2339
2340	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2341					      &kmrn_reg);
2342	if (ret_val)
2343		return ret_val;
2344
2345	if (k1_enable)
2346		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2347	else
2348		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2349
2350	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2351					       kmrn_reg);
2352	if (ret_val)
2353		return ret_val;
2354
2355	usleep_range(20, 40);
2356	ctrl_ext = er32(CTRL_EXT);
2357	ctrl_reg = er32(CTRL);
2358
2359	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2360	reg |= E1000_CTRL_FRCSPD;
2361	ew32(CTRL, reg);
2362
2363	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2364	e1e_flush();
2365	usleep_range(20, 40);
2366	ew32(CTRL, ctrl_reg);
2367	ew32(CTRL_EXT, ctrl_ext);
2368	e1e_flush();
2369	usleep_range(20, 40);
2370
2371	return 0;
2372}
2373
2374/**
2375 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2376 *  @hw:       pointer to the HW structure
2377 *  @d0_state: boolean if entering d0 or d3 device state
2378 *
2379 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2380 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2381 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2382 **/
2383static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2384{
2385	s32 ret_val = 0;
2386	u32 mac_reg;
2387	u16 oem_reg;
2388
2389	if (hw->mac.type < e1000_pchlan)
2390		return ret_val;
2391
2392	ret_val = hw->phy.ops.acquire(hw);
2393	if (ret_val)
2394		return ret_val;
2395
2396	if (hw->mac.type == e1000_pchlan) {
2397		mac_reg = er32(EXTCNF_CTRL);
2398		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2399			goto release;
2400	}
2401
2402	mac_reg = er32(FEXTNVM);
2403	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2404		goto release;
2405
2406	mac_reg = er32(PHY_CTRL);
2407
2408	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2409	if (ret_val)
2410		goto release;
2411
2412	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2413
2414	if (d0_state) {
2415		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2416			oem_reg |= HV_OEM_BITS_GBE_DIS;
2417
2418		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2419			oem_reg |= HV_OEM_BITS_LPLU;
2420	} else {
2421		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2422			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2423			oem_reg |= HV_OEM_BITS_GBE_DIS;
2424
2425		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2426			       E1000_PHY_CTRL_NOND0A_LPLU))
2427			oem_reg |= HV_OEM_BITS_LPLU;
2428	}
2429
2430	/* Set Restart auto-neg to activate the bits */
2431	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2432	    !hw->phy.ops.check_reset_block(hw))
2433		oem_reg |= HV_OEM_BITS_RESTART_AN;
2434
2435	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2436
2437release:
2438	hw->phy.ops.release(hw);
2439
2440	return ret_val;
2441}
2442
2443/**
2444 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2445 *  @hw:   pointer to the HW structure
2446 **/
2447static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2448{
2449	s32 ret_val;
2450	u16 data;
2451
2452	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2453	if (ret_val)
2454		return ret_val;
2455
2456	data |= HV_KMRN_MDIO_SLOW;
2457
2458	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2459
2460	return ret_val;
2461}
2462
2463/**
2464 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2465 *  @hw: pointer to the HW structure
2466 *
2467 *  A series of PHY workarounds to be done after every PHY reset.
2468 **/
2469static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2470{
2471	s32 ret_val = 0;
2472	u16 phy_data;
2473
2474	if (hw->mac.type != e1000_pchlan)
2475		return 0;
2476
2477	/* Set MDIO slow mode before any other MDIO access */
2478	if (hw->phy.type == e1000_phy_82577) {
2479		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2480		if (ret_val)
2481			return ret_val;
2482	}
2483
2484	if (((hw->phy.type == e1000_phy_82577) &&
2485	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2486	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2487		/* Disable generation of early preamble */
2488		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2489		if (ret_val)
2490			return ret_val;
2491
2492		/* Preamble tuning for SSC */
2493		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2494		if (ret_val)
2495			return ret_val;
2496	}
2497
2498	if (hw->phy.type == e1000_phy_82578) {
2499		/* Return registers to default by doing a soft reset then
2500		 * writing 0x3140 to the control register.
2501		 */
2502		if (hw->phy.revision < 2) {
2503			e1000e_phy_sw_reset(hw);
2504			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2505			if (ret_val)
2506				return ret_val;
2507		}
2508	}
2509
2510	/* Select page 0 */
2511	ret_val = hw->phy.ops.acquire(hw);
2512	if (ret_val)
2513		return ret_val;
2514
2515	hw->phy.addr = 1;
2516	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2517	hw->phy.ops.release(hw);
2518	if (ret_val)
2519		return ret_val;
2520
2521	/* Configure the K1 Si workaround during phy reset assuming there is
2522	 * link so that it disables K1 if link is in 1Gbps.
2523	 */
2524	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2525	if (ret_val)
2526		return ret_val;
2527
2528	/* Workaround for link disconnects on a busy hub in half duplex */
2529	ret_val = hw->phy.ops.acquire(hw);
2530	if (ret_val)
2531		return ret_val;
2532	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2533	if (ret_val)
2534		goto release;
2535	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2536	if (ret_val)
2537		goto release;
2538
2539	/* set MSE higher to enable link to stay up when noise is high */
2540	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2541release:
2542	hw->phy.ops.release(hw);
2543
2544	return ret_val;
2545}
2546
2547/**
2548 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2549 *  @hw:   pointer to the HW structure
2550 **/
2551void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2552{
2553	u32 mac_reg;
2554	u16 i, phy_reg = 0;
2555	s32 ret_val;
2556
2557	ret_val = hw->phy.ops.acquire(hw);
2558	if (ret_val)
2559		return;
2560	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2561	if (ret_val)
2562		goto release;
2563
2564	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2565	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2566		mac_reg = er32(RAL(i));
2567		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2568					   (u16)(mac_reg & 0xFFFF));
2569		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2570					   (u16)((mac_reg >> 16) & 0xFFFF));
2571
2572		mac_reg = er32(RAH(i));
2573		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2574					   (u16)(mac_reg & 0xFFFF));
2575		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2576					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
2577	}
2578
2579	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2580
2581release:
2582	hw->phy.ops.release(hw);
2583}
2584
2585/**
2586 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2587 *  with 82579 PHY
2588 *  @hw: pointer to the HW structure
2589 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2590 **/
2591s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2592{
2593	s32 ret_val = 0;
2594	u16 phy_reg, data;
2595	u32 mac_reg;
2596	u16 i;
2597
2598	if (hw->mac.type < e1000_pch2lan)
2599		return 0;
2600
2601	/* disable Rx path while enabling/disabling workaround */
2602	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2603	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2604	if (ret_val)
2605		return ret_val;
2606
2607	if (enable) {
2608		/* Write Rx addresses (rar_entry_count for RAL/H, and
2609		 * SHRAL/H) and initial CRC values to the MAC
2610		 */
2611		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2612			u8 mac_addr[ETH_ALEN] = { 0 };
2613			u32 addr_high, addr_low;
2614
2615			addr_high = er32(RAH(i));
2616			if (!(addr_high & E1000_RAH_AV))
2617				continue;
2618			addr_low = er32(RAL(i));
2619			mac_addr[0] = (addr_low & 0xFF);
2620			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2621			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2622			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2623			mac_addr[4] = (addr_high & 0xFF);
2624			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2625
2626			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2627		}
2628
2629		/* Write Rx addresses to the PHY */
2630		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2631
2632		/* Enable jumbo frame workaround in the MAC */
2633		mac_reg = er32(FFLT_DBG);
2634		mac_reg &= ~BIT(14);
2635		mac_reg |= (7 << 15);
2636		ew32(FFLT_DBG, mac_reg);
2637
2638		mac_reg = er32(RCTL);
2639		mac_reg |= E1000_RCTL_SECRC;
2640		ew32(RCTL, mac_reg);
2641
2642		ret_val = e1000e_read_kmrn_reg(hw,
2643					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2644					       &data);
2645		if (ret_val)
2646			return ret_val;
2647		ret_val = e1000e_write_kmrn_reg(hw,
2648						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2649						data | BIT(0));
2650		if (ret_val)
2651			return ret_val;
2652		ret_val = e1000e_read_kmrn_reg(hw,
2653					       E1000_KMRNCTRLSTA_HD_CTRL,
2654					       &data);
2655		if (ret_val)
2656			return ret_val;
2657		data &= ~(0xF << 8);
2658		data |= (0xB << 8);
2659		ret_val = e1000e_write_kmrn_reg(hw,
2660						E1000_KMRNCTRLSTA_HD_CTRL,
2661						data);
2662		if (ret_val)
2663			return ret_val;
2664
2665		/* Enable jumbo frame workaround in the PHY */
2666		e1e_rphy(hw, PHY_REG(769, 23), &data);
2667		data &= ~(0x7F << 5);
2668		data |= (0x37 << 5);
2669		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2670		if (ret_val)
2671			return ret_val;
2672		e1e_rphy(hw, PHY_REG(769, 16), &data);
2673		data &= ~BIT(13);
2674		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2675		if (ret_val)
2676			return ret_val;
2677		e1e_rphy(hw, PHY_REG(776, 20), &data);
2678		data &= ~(0x3FF << 2);
2679		data |= (E1000_TX_PTR_GAP << 2);
2680		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2681		if (ret_val)
2682			return ret_val;
2683		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2684		if (ret_val)
2685			return ret_val;
2686		e1e_rphy(hw, HV_PM_CTRL, &data);
2687		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2688		if (ret_val)
2689			return ret_val;
2690	} else {
2691		/* Write MAC register values back to h/w defaults */
2692		mac_reg = er32(FFLT_DBG);
2693		mac_reg &= ~(0xF << 14);
2694		ew32(FFLT_DBG, mac_reg);
2695
2696		mac_reg = er32(RCTL);
2697		mac_reg &= ~E1000_RCTL_SECRC;
2698		ew32(RCTL, mac_reg);
2699
2700		ret_val = e1000e_read_kmrn_reg(hw,
2701					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2702					       &data);
2703		if (ret_val)
2704			return ret_val;
2705		ret_val = e1000e_write_kmrn_reg(hw,
2706						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2707						data & ~BIT(0));
2708		if (ret_val)
2709			return ret_val;
2710		ret_val = e1000e_read_kmrn_reg(hw,
2711					       E1000_KMRNCTRLSTA_HD_CTRL,
2712					       &data);
2713		if (ret_val)
2714			return ret_val;
2715		data &= ~(0xF << 8);
2716		data |= (0xB << 8);
2717		ret_val = e1000e_write_kmrn_reg(hw,
2718						E1000_KMRNCTRLSTA_HD_CTRL,
2719						data);
2720		if (ret_val)
2721			return ret_val;
2722
2723		/* Write PHY register values back to h/w defaults */
2724		e1e_rphy(hw, PHY_REG(769, 23), &data);
2725		data &= ~(0x7F << 5);
2726		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2727		if (ret_val)
2728			return ret_val;
2729		e1e_rphy(hw, PHY_REG(769, 16), &data);
2730		data |= BIT(13);
2731		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2732		if (ret_val)
2733			return ret_val;
2734		e1e_rphy(hw, PHY_REG(776, 20), &data);
2735		data &= ~(0x3FF << 2);
2736		data |= (0x8 << 2);
2737		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2738		if (ret_val)
2739			return ret_val;
2740		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2741		if (ret_val)
2742			return ret_val;
2743		e1e_rphy(hw, HV_PM_CTRL, &data);
2744		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2745		if (ret_val)
2746			return ret_val;
2747	}
2748
2749	/* re-enable Rx path after enabling/disabling workaround */
2750	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2751}
2752
2753/**
2754 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2755 *  @hw: pointer to the HW structure
2756 *
2757 *  A series of PHY workarounds to be done after every PHY reset.
2758 **/
2759static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2760{
2761	s32 ret_val = 0;
2762
2763	if (hw->mac.type != e1000_pch2lan)
2764		return 0;
2765
2766	/* Set MDIO slow mode before any other MDIO access */
2767	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2768	if (ret_val)
2769		return ret_val;
2770
2771	ret_val = hw->phy.ops.acquire(hw);
2772	if (ret_val)
2773		return ret_val;
2774	/* set MSE higher to enable link to stay up when noise is high */
2775	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2776	if (ret_val)
2777		goto release;
2778	/* drop link after 5 times MSE threshold was reached */
2779	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2780release:
2781	hw->phy.ops.release(hw);
2782
2783	return ret_val;
2784}
2785
2786/**
2787 *  e1000_k1_workaround_lv - K1 Si workaround
2788 *  @hw:   pointer to the HW structure
2789 *
2790 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2791 *  Disable K1 in 1000Mbps and 100Mbps
2792 **/
2793static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2794{
2795	s32 ret_val = 0;
2796	u16 status_reg = 0;
2797
2798	if (hw->mac.type != e1000_pch2lan)
2799		return 0;
2800
2801	/* Set K1 beacon duration based on 10Mbs speed */
2802	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2803	if (ret_val)
2804		return ret_val;
2805
2806	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2807	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2808		if (status_reg &
2809		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2810			u16 pm_phy_reg;
2811
2812			/* LV 1G/100 Packet drop issue wa  */
2813			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2814			if (ret_val)
2815				return ret_val;
2816			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2817			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2818			if (ret_val)
2819				return ret_val;
2820		} else {
2821			u32 mac_reg;
2822
2823			mac_reg = er32(FEXTNVM4);
2824			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2825			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2826			ew32(FEXTNVM4, mac_reg);
2827		}
2828	}
2829
2830	return ret_val;
2831}
2832
2833/**
2834 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2835 *  @hw:   pointer to the HW structure
2836 *  @gate: boolean set to true to gate, false to ungate
2837 *
2838 *  Gate/ungate the automatic PHY configuration via hardware; perform
2839 *  the configuration via software instead.
2840 **/
2841static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2842{
2843	u32 extcnf_ctrl;
2844
2845	if (hw->mac.type < e1000_pch2lan)
2846		return;
2847
2848	extcnf_ctrl = er32(EXTCNF_CTRL);
2849
2850	if (gate)
2851		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2852	else
2853		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2854
2855	ew32(EXTCNF_CTRL, extcnf_ctrl);
2856}
2857
2858/**
2859 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2860 *  @hw: pointer to the HW structure
2861 *
2862 *  Check the appropriate indication the MAC has finished configuring the
2863 *  PHY after a software reset.
2864 **/
2865static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2866{
2867	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2868
2869	/* Wait for basic configuration completes before proceeding */
2870	do {
2871		data = er32(STATUS);
2872		data &= E1000_STATUS_LAN_INIT_DONE;
2873		usleep_range(100, 200);
2874	} while ((!data) && --loop);
2875
2876	/* If basic configuration is incomplete before the above loop
2877	 * count reaches 0, loading the configuration from NVM will
2878	 * leave the PHY in a bad state possibly resulting in no link.
2879	 */
2880	if (loop == 0)
2881		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2882
2883	/* Clear the Init Done bit for the next init event */
2884	data = er32(STATUS);
2885	data &= ~E1000_STATUS_LAN_INIT_DONE;
2886	ew32(STATUS, data);
2887}
2888
2889/**
2890 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2891 *  @hw: pointer to the HW structure
2892 **/
2893static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2894{
2895	s32 ret_val = 0;
2896	u16 reg;
2897
2898	if (hw->phy.ops.check_reset_block(hw))
2899		return 0;
2900
2901	/* Allow time for h/w to get to quiescent state after reset */
2902	usleep_range(10000, 11000);
2903
2904	/* Perform any necessary post-reset workarounds */
2905	switch (hw->mac.type) {
2906	case e1000_pchlan:
2907		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2908		if (ret_val)
2909			return ret_val;
2910		break;
2911	case e1000_pch2lan:
2912		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2913		if (ret_val)
2914			return ret_val;
2915		break;
2916	default:
2917		break;
2918	}
2919
2920	/* Clear the host wakeup bit after lcd reset */
2921	if (hw->mac.type >= e1000_pchlan) {
2922		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2923		reg &= ~BM_WUC_HOST_WU_BIT;
2924		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2925	}
2926
2927	/* Configure the LCD with the extended configuration region in NVM */
2928	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2929	if (ret_val)
2930		return ret_val;
2931
2932	/* Configure the LCD with the OEM bits in NVM */
2933	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2934
2935	if (hw->mac.type == e1000_pch2lan) {
2936		/* Ungate automatic PHY configuration on non-managed 82579 */
2937		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2938			usleep_range(10000, 11000);
2939			e1000_gate_hw_phy_config_ich8lan(hw, false);
2940		}
2941
2942		/* Set EEE LPI Update Timer to 200usec */
2943		ret_val = hw->phy.ops.acquire(hw);
2944		if (ret_val)
2945			return ret_val;
2946		ret_val = e1000_write_emi_reg_locked(hw,
2947						     I82579_LPI_UPDATE_TIMER,
2948						     0x1387);
2949		hw->phy.ops.release(hw);
2950	}
2951
2952	return ret_val;
2953}
2954
2955/**
2956 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2957 *  @hw: pointer to the HW structure
2958 *
2959 *  Resets the PHY
2960 *  This is a function pointer entry point called by drivers
2961 *  or other shared routines.
2962 **/
2963static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2964{
2965	s32 ret_val = 0;
2966
2967	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2968	if ((hw->mac.type == e1000_pch2lan) &&
2969	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2970		e1000_gate_hw_phy_config_ich8lan(hw, true);
2971
2972	ret_val = e1000e_phy_hw_reset_generic(hw);
2973	if (ret_val)
2974		return ret_val;
2975
2976	return e1000_post_phy_reset_ich8lan(hw);
2977}
2978
2979/**
2980 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2981 *  @hw: pointer to the HW structure
2982 *  @active: true to enable LPLU, false to disable
2983 *
2984 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2985 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2986 *  the phy speed. This function will manually set the LPLU bit and restart
2987 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2988 *  since it configures the same bit.
2989 **/
2990static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2991{
2992	s32 ret_val;
2993	u16 oem_reg;
2994
2995	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2996	if (ret_val)
2997		return ret_val;
2998
2999	if (active)
3000		oem_reg |= HV_OEM_BITS_LPLU;
3001	else
3002		oem_reg &= ~HV_OEM_BITS_LPLU;
3003
3004	if (!hw->phy.ops.check_reset_block(hw))
3005		oem_reg |= HV_OEM_BITS_RESTART_AN;
3006
3007	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3008}
3009
3010/**
3011 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3012 *  @hw: pointer to the HW structure
3013 *  @active: true to enable LPLU, false to disable
3014 *
3015 *  Sets the LPLU D0 state according to the active flag.  When
3016 *  activating LPLU this function also disables smart speed
3017 *  and vice versa.  LPLU will not be activated unless the
3018 *  device autonegotiation advertisement meets standards of
3019 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3020 *  This is a function pointer entry point only called by
3021 *  PHY setup routines.
3022 **/
3023static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3024{
3025	struct e1000_phy_info *phy = &hw->phy;
3026	u32 phy_ctrl;
3027	s32 ret_val = 0;
3028	u16 data;
3029
3030	if (phy->type == e1000_phy_ife)
3031		return 0;
3032
3033	phy_ctrl = er32(PHY_CTRL);
3034
3035	if (active) {
3036		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3037		ew32(PHY_CTRL, phy_ctrl);
3038
3039		if (phy->type != e1000_phy_igp_3)
3040			return 0;
3041
3042		/* Call gig speed drop workaround on LPLU before accessing
3043		 * any PHY registers
3044		 */
3045		if (hw->mac.type == e1000_ich8lan)
3046			e1000e_gig_downshift_workaround_ich8lan(hw);
3047
3048		/* When LPLU is enabled, we should disable SmartSpeed */
3049		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3050		if (ret_val)
3051			return ret_val;
3052		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3053		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3054		if (ret_val)
3055			return ret_val;
3056	} else {
3057		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3058		ew32(PHY_CTRL, phy_ctrl);
3059
3060		if (phy->type != e1000_phy_igp_3)
3061			return 0;
3062
3063		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3064		 * during Dx states where the power conservation is most
3065		 * important.  During driver activity we should enable
3066		 * SmartSpeed, so performance is maintained.
3067		 */
3068		if (phy->smart_speed == e1000_smart_speed_on) {
3069			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3070					   &data);
3071			if (ret_val)
3072				return ret_val;
3073
3074			data |= IGP01E1000_PSCFR_SMART_SPEED;
3075			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3076					   data);
3077			if (ret_val)
3078				return ret_val;
3079		} else if (phy->smart_speed == e1000_smart_speed_off) {
3080			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3081					   &data);
3082			if (ret_val)
3083				return ret_val;
3084
3085			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3086			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3087					   data);
3088			if (ret_val)
3089				return ret_val;
3090		}
3091	}
3092
3093	return 0;
3094}
3095
3096/**
3097 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3098 *  @hw: pointer to the HW structure
3099 *  @active: true to enable LPLU, false to disable
3100 *
3101 *  Sets the LPLU D3 state according to the active flag.  When
3102 *  activating LPLU this function also disables smart speed
3103 *  and vice versa.  LPLU will not be activated unless the
3104 *  device autonegotiation advertisement meets standards of
3105 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3106 *  This is a function pointer entry point only called by
3107 *  PHY setup routines.
3108 **/
3109static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3110{
3111	struct e1000_phy_info *phy = &hw->phy;
3112	u32 phy_ctrl;
3113	s32 ret_val = 0;
3114	u16 data;
3115
3116	phy_ctrl = er32(PHY_CTRL);
3117
3118	if (!active) {
3119		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3120		ew32(PHY_CTRL, phy_ctrl);
3121
3122		if (phy->type != e1000_phy_igp_3)
3123			return 0;
3124
3125		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3126		 * during Dx states where the power conservation is most
3127		 * important.  During driver activity we should enable
3128		 * SmartSpeed, so performance is maintained.
3129		 */
3130		if (phy->smart_speed == e1000_smart_speed_on) {
3131			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3132					   &data);
3133			if (ret_val)
3134				return ret_val;
3135
3136			data |= IGP01E1000_PSCFR_SMART_SPEED;
3137			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3138					   data);
3139			if (ret_val)
3140				return ret_val;
3141		} else if (phy->smart_speed == e1000_smart_speed_off) {
3142			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3143					   &data);
3144			if (ret_val)
3145				return ret_val;
3146
3147			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3148			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3149					   data);
3150			if (ret_val)
3151				return ret_val;
3152		}
3153	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3154		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3155		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3156		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3157		ew32(PHY_CTRL, phy_ctrl);
3158
3159		if (phy->type != e1000_phy_igp_3)
3160			return 0;
3161
3162		/* Call gig speed drop workaround on LPLU before accessing
3163		 * any PHY registers
3164		 */
3165		if (hw->mac.type == e1000_ich8lan)
3166			e1000e_gig_downshift_workaround_ich8lan(hw);
3167
3168		/* When LPLU is enabled, we should disable SmartSpeed */
3169		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3170		if (ret_val)
3171			return ret_val;
3172
3173		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3174		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3175	}
3176
3177	return ret_val;
3178}
3179
3180/**
3181 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3182 *  @hw: pointer to the HW structure
3183 *  @bank:  pointer to the variable that returns the active bank
3184 *
3185 *  Reads signature byte from the NVM using the flash access registers.
3186 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3187 **/
3188static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3189{
3190	u32 eecd;
3191	struct e1000_nvm_info *nvm = &hw->nvm;
3192	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3193	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3194	u32 nvm_dword = 0;
3195	u8 sig_byte = 0;
3196	s32 ret_val;
3197
3198	switch (hw->mac.type) {
3199	case e1000_pch_spt:
3200	case e1000_pch_cnp:
3201	case e1000_pch_tgp:
3202	case e1000_pch_adp:
3203	case e1000_pch_mtp:
3204	case e1000_pch_lnp:
3205	case e1000_pch_ptp:
3206	case e1000_pch_nvp:
3207		bank1_offset = nvm->flash_bank_size;
3208		act_offset = E1000_ICH_NVM_SIG_WORD;
3209
3210		/* set bank to 0 in case flash read fails */
3211		*bank = 0;
3212
3213		/* Check bank 0 */
3214		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3215							 &nvm_dword);
3216		if (ret_val)
3217			return ret_val;
3218		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3219		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3220		    E1000_ICH_NVM_SIG_VALUE) {
3221			*bank = 0;
3222			return 0;
3223		}
3224
3225		/* Check bank 1 */
3226		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3227							 bank1_offset,
3228							 &nvm_dword);
3229		if (ret_val)
3230			return ret_val;
3231		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3232		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3233		    E1000_ICH_NVM_SIG_VALUE) {
3234			*bank = 1;
3235			return 0;
3236		}
3237
3238		e_dbg("ERROR: No valid NVM bank present\n");
3239		return -E1000_ERR_NVM;
3240	case e1000_ich8lan:
3241	case e1000_ich9lan:
3242		eecd = er32(EECD);
3243		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3244		    E1000_EECD_SEC1VAL_VALID_MASK) {
3245			if (eecd & E1000_EECD_SEC1VAL)
3246				*bank = 1;
3247			else
3248				*bank = 0;
3249
3250			return 0;
3251		}
3252		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3253		fallthrough;
3254	default:
3255		/* set bank to 0 in case flash read fails */
3256		*bank = 0;
3257
3258		/* Check bank 0 */
3259		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3260							&sig_byte);
3261		if (ret_val)
3262			return ret_val;
3263		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3264		    E1000_ICH_NVM_SIG_VALUE) {
3265			*bank = 0;
3266			return 0;
3267		}
3268
3269		/* Check bank 1 */
3270		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3271							bank1_offset,
3272							&sig_byte);
3273		if (ret_val)
3274			return ret_val;
3275		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3276		    E1000_ICH_NVM_SIG_VALUE) {
3277			*bank = 1;
3278			return 0;
3279		}
3280
3281		e_dbg("ERROR: No valid NVM bank present\n");
3282		return -E1000_ERR_NVM;
3283	}
3284}
3285
3286/**
3287 *  e1000_read_nvm_spt - NVM access for SPT
3288 *  @hw: pointer to the HW structure
3289 *  @offset: The offset (in bytes) of the word(s) to read.
3290 *  @words: Size of data to read in words.
3291 *  @data: pointer to the word(s) to read at offset.
3292 *
3293 *  Reads a word(s) from the NVM
3294 **/
3295static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3296			      u16 *data)
3297{
3298	struct e1000_nvm_info *nvm = &hw->nvm;
3299	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3300	u32 act_offset;
3301	s32 ret_val = 0;
3302	u32 bank = 0;
3303	u32 dword = 0;
3304	u16 offset_to_read;
3305	u16 i;
3306
3307	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3308	    (words == 0)) {
3309		e_dbg("nvm parameter(s) out of bounds\n");
3310		ret_val = -E1000_ERR_NVM;
3311		goto out;
3312	}
3313
3314	nvm->ops.acquire(hw);
3315
3316	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3317	if (ret_val) {
3318		e_dbg("Could not detect valid bank, assuming bank 0\n");
3319		bank = 0;
3320	}
3321
3322	act_offset = (bank) ? nvm->flash_bank_size : 0;
3323	act_offset += offset;
3324
3325	ret_val = 0;
3326
3327	for (i = 0; i < words; i += 2) {
3328		if (words - i == 1) {
3329			if (dev_spec->shadow_ram[offset + i].modified) {
3330				data[i] =
3331				    dev_spec->shadow_ram[offset + i].value;
3332			} else {
3333				offset_to_read = act_offset + i -
3334				    ((act_offset + i) % 2);
3335				ret_val =
3336				  e1000_read_flash_dword_ich8lan(hw,
3337								 offset_to_read,
3338								 &dword);
3339				if (ret_val)
3340					break;
3341				if ((act_offset + i) % 2 == 0)
3342					data[i] = (u16)(dword & 0xFFFF);
3343				else
3344					data[i] = (u16)((dword >> 16) & 0xFFFF);
3345			}
3346		} else {
3347			offset_to_read = act_offset + i;
3348			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3349			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3350				ret_val =
3351				  e1000_read_flash_dword_ich8lan(hw,
3352								 offset_to_read,
3353								 &dword);
3354				if (ret_val)
3355					break;
3356			}
3357			if (dev_spec->shadow_ram[offset + i].modified)
3358				data[i] =
3359				    dev_spec->shadow_ram[offset + i].value;
3360			else
3361				data[i] = (u16)(dword & 0xFFFF);
3362			if (dev_spec->shadow_ram[offset + i].modified)
3363				data[i + 1] =
3364				    dev_spec->shadow_ram[offset + i + 1].value;
3365			else
3366				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3367		}
3368	}
3369
3370	nvm->ops.release(hw);
3371
3372out:
3373	if (ret_val)
3374		e_dbg("NVM read error: %d\n", ret_val);
3375
3376	return ret_val;
3377}
3378
3379/**
3380 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3381 *  @hw: pointer to the HW structure
3382 *  @offset: The offset (in bytes) of the word(s) to read.
3383 *  @words: Size of data to read in words
3384 *  @data: Pointer to the word(s) to read at offset.
3385 *
3386 *  Reads a word(s) from the NVM using the flash access registers.
3387 **/
3388static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3389				  u16 *data)
3390{
3391	struct e1000_nvm_info *nvm = &hw->nvm;
3392	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3393	u32 act_offset;
3394	s32 ret_val = 0;
3395	u32 bank = 0;
3396	u16 i, word;
3397
3398	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3399	    (words == 0)) {
3400		e_dbg("nvm parameter(s) out of bounds\n");
3401		ret_val = -E1000_ERR_NVM;
3402		goto out;
3403	}
3404
3405	nvm->ops.acquire(hw);
3406
3407	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3408	if (ret_val) {
3409		e_dbg("Could not detect valid bank, assuming bank 0\n");
3410		bank = 0;
3411	}
3412
3413	act_offset = (bank) ? nvm->flash_bank_size : 0;
3414	act_offset += offset;
3415
3416	ret_val = 0;
3417	for (i = 0; i < words; i++) {
3418		if (dev_spec->shadow_ram[offset + i].modified) {
3419			data[i] = dev_spec->shadow_ram[offset + i].value;
3420		} else {
3421			ret_val = e1000_read_flash_word_ich8lan(hw,
3422								act_offset + i,
3423								&word);
3424			if (ret_val)
3425				break;
3426			data[i] = word;
3427		}
3428	}
3429
3430	nvm->ops.release(hw);
3431
3432out:
3433	if (ret_val)
3434		e_dbg("NVM read error: %d\n", ret_val);
3435
3436	return ret_val;
3437}
3438
3439/**
3440 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3441 *  @hw: pointer to the HW structure
3442 *
3443 *  This function does initial flash setup so that a new read/write/erase cycle
3444 *  can be started.
3445 **/
3446static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3447{
3448	union ich8_hws_flash_status hsfsts;
3449	s32 ret_val = -E1000_ERR_NVM;
3450
3451	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3452
3453	/* Check if the flash descriptor is valid */
3454	if (!hsfsts.hsf_status.fldesvalid) {
3455		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3456		return -E1000_ERR_NVM;
3457	}
3458
3459	/* Clear FCERR and DAEL in hw status by writing 1 */
3460	hsfsts.hsf_status.flcerr = 1;
3461	hsfsts.hsf_status.dael = 1;
3462	if (hw->mac.type >= e1000_pch_spt)
3463		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3464	else
3465		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3466
3467	/* Either we should have a hardware SPI cycle in progress
3468	 * bit to check against, in order to start a new cycle or
3469	 * FDONE bit should be changed in the hardware so that it
3470	 * is 1 after hardware reset, which can then be used as an
3471	 * indication whether a cycle is in progress or has been
3472	 * completed.
3473	 */
3474
3475	if (!hsfsts.hsf_status.flcinprog) {
3476		/* There is no cycle running at present,
3477		 * so we can start a cycle.
3478		 * Begin by setting Flash Cycle Done.
3479		 */
3480		hsfsts.hsf_status.flcdone = 1;
3481		if (hw->mac.type >= e1000_pch_spt)
3482			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3483		else
3484			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3485		ret_val = 0;
3486	} else {
3487		s32 i;
3488
3489		/* Otherwise poll for sometime so the current
3490		 * cycle has a chance to end before giving up.
3491		 */
3492		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3493			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3494			if (!hsfsts.hsf_status.flcinprog) {
3495				ret_val = 0;
3496				break;
3497			}
3498			udelay(1);
3499		}
3500		if (!ret_val) {
3501			/* Successful in waiting for previous cycle to timeout,
3502			 * now set the Flash Cycle Done.
3503			 */
3504			hsfsts.hsf_status.flcdone = 1;
3505			if (hw->mac.type >= e1000_pch_spt)
3506				ew32flash(ICH_FLASH_HSFSTS,
3507					  hsfsts.regval & 0xFFFF);
3508			else
3509				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3510		} else {
3511			e_dbg("Flash controller busy, cannot get access\n");
3512		}
3513	}
3514
3515	return ret_val;
3516}
3517
3518/**
3519 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3520 *  @hw: pointer to the HW structure
3521 *  @timeout: maximum time to wait for completion
3522 *
3523 *  This function starts a flash cycle and waits for its completion.
3524 **/
3525static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3526{
3527	union ich8_hws_flash_ctrl hsflctl;
3528	union ich8_hws_flash_status hsfsts;
3529	u32 i = 0;
3530
3531	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3532	if (hw->mac.type >= e1000_pch_spt)
3533		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3534	else
3535		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3536	hsflctl.hsf_ctrl.flcgo = 1;
3537
3538	if (hw->mac.type >= e1000_pch_spt)
3539		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3540	else
3541		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3542
3543	/* wait till FDONE bit is set to 1 */
3544	do {
3545		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3546		if (hsfsts.hsf_status.flcdone)
3547			break;
3548		udelay(1);
3549	} while (i++ < timeout);
3550
3551	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3552		return 0;
3553
3554	return -E1000_ERR_NVM;
3555}
3556
3557/**
3558 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3559 *  @hw: pointer to the HW structure
3560 *  @offset: offset to data location
3561 *  @data: pointer to the location for storing the data
3562 *
3563 *  Reads the flash dword at offset into data.  Offset is converted
3564 *  to bytes before read.
3565 **/
3566static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3567					  u32 *data)
3568{
3569	/* Must convert word offset into bytes. */
3570	offset <<= 1;
3571	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3572}
3573
3574/**
3575 *  e1000_read_flash_word_ich8lan - Read word from flash
3576 *  @hw: pointer to the HW structure
3577 *  @offset: offset to data location
3578 *  @data: pointer to the location for storing the data
3579 *
3580 *  Reads the flash word at offset into data.  Offset is converted
3581 *  to bytes before read.
3582 **/
3583static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3584					 u16 *data)
3585{
3586	/* Must convert offset into bytes. */
3587	offset <<= 1;
3588
3589	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3590}
3591
3592/**
3593 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3594 *  @hw: pointer to the HW structure
3595 *  @offset: The offset of the byte to read.
3596 *  @data: Pointer to a byte to store the value read.
3597 *
3598 *  Reads a single byte from the NVM using the flash access registers.
3599 **/
3600static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3601					 u8 *data)
3602{
3603	s32 ret_val;
3604	u16 word = 0;
3605
3606	/* In SPT, only 32 bits access is supported,
3607	 * so this function should not be called.
3608	 */
3609	if (hw->mac.type >= e1000_pch_spt)
3610		return -E1000_ERR_NVM;
3611	else
3612		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3613
3614	if (ret_val)
3615		return ret_val;
3616
3617	*data = (u8)word;
3618
3619	return 0;
3620}
3621
3622/**
3623 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3624 *  @hw: pointer to the HW structure
3625 *  @offset: The offset (in bytes) of the byte or word to read.
3626 *  @size: Size of data to read, 1=byte 2=word
3627 *  @data: Pointer to the word to store the value read.
3628 *
3629 *  Reads a byte or word from the NVM using the flash access registers.
3630 **/
3631static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3632					 u8 size, u16 *data)
3633{
3634	union ich8_hws_flash_status hsfsts;
3635	union ich8_hws_flash_ctrl hsflctl;
3636	u32 flash_linear_addr;
3637	u32 flash_data = 0;
3638	s32 ret_val = -E1000_ERR_NVM;
3639	u8 count = 0;
3640
3641	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3642		return -E1000_ERR_NVM;
3643
3644	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3645			     hw->nvm.flash_base_addr);
3646
3647	do {
3648		udelay(1);
3649		/* Steps */
3650		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3651		if (ret_val)
3652			break;
3653
3654		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3655		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3656		hsflctl.hsf_ctrl.fldbcount = size - 1;
3657		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3658		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3659
3660		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3661
3662		ret_val =
3663		    e1000_flash_cycle_ich8lan(hw,
3664					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3665
3666		/* Check if FCERR is set to 1, if set to 1, clear it
3667		 * and try the whole sequence a few more times, else
3668		 * read in (shift in) the Flash Data0, the order is
3669		 * least significant byte first msb to lsb
3670		 */
3671		if (!ret_val) {
3672			flash_data = er32flash(ICH_FLASH_FDATA0);
3673			if (size == 1)
3674				*data = (u8)(flash_data & 0x000000FF);
3675			else if (size == 2)
3676				*data = (u16)(flash_data & 0x0000FFFF);
3677			break;
3678		} else {
3679			/* If we've gotten here, then things are probably
3680			 * completely hosed, but if the error condition is
3681			 * detected, it won't hurt to give it another try...
3682			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3683			 */
3684			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3685			if (hsfsts.hsf_status.flcerr) {
3686				/* Repeat for some time before giving up. */
3687				continue;
3688			} else if (!hsfsts.hsf_status.flcdone) {
3689				e_dbg("Timeout error - flash cycle did not complete.\n");
3690				break;
3691			}
3692		}
3693	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3694
3695	return ret_val;
3696}
3697
3698/**
3699 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3700 *  @hw: pointer to the HW structure
3701 *  @offset: The offset (in bytes) of the dword to read.
3702 *  @data: Pointer to the dword to store the value read.
3703 *
3704 *  Reads a byte or word from the NVM using the flash access registers.
3705 **/
3706
3707static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3708					   u32 *data)
3709{
3710	union ich8_hws_flash_status hsfsts;
3711	union ich8_hws_flash_ctrl hsflctl;
3712	u32 flash_linear_addr;
3713	s32 ret_val = -E1000_ERR_NVM;
3714	u8 count = 0;
3715
3716	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3717		return -E1000_ERR_NVM;
3718	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3719			     hw->nvm.flash_base_addr);
3720
3721	do {
3722		udelay(1);
3723		/* Steps */
3724		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3725		if (ret_val)
3726			break;
3727		/* In SPT, This register is in Lan memory space, not flash.
3728		 * Therefore, only 32 bit access is supported
3729		 */
3730		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3731
3732		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3733		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3734		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3735		/* In SPT, This register is in Lan memory space, not flash.
3736		 * Therefore, only 32 bit access is supported
3737		 */
3738		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3739		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3740
3741		ret_val =
3742		   e1000_flash_cycle_ich8lan(hw,
3743					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3744
3745		/* Check if FCERR is set to 1, if set to 1, clear it
3746		 * and try the whole sequence a few more times, else
3747		 * read in (shift in) the Flash Data0, the order is
3748		 * least significant byte first msb to lsb
3749		 */
3750		if (!ret_val) {
3751			*data = er32flash(ICH_FLASH_FDATA0);
3752			break;
3753		} else {
3754			/* If we've gotten here, then things are probably
3755			 * completely hosed, but if the error condition is
3756			 * detected, it won't hurt to give it another try...
3757			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3758			 */
3759			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3760			if (hsfsts.hsf_status.flcerr) {
3761				/* Repeat for some time before giving up. */
3762				continue;
3763			} else if (!hsfsts.hsf_status.flcdone) {
3764				e_dbg("Timeout error - flash cycle did not complete.\n");
3765				break;
3766			}
3767		}
3768	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3769
3770	return ret_val;
3771}
3772
3773/**
3774 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3775 *  @hw: pointer to the HW structure
3776 *  @offset: The offset (in bytes) of the word(s) to write.
3777 *  @words: Size of data to write in words
3778 *  @data: Pointer to the word(s) to write at offset.
3779 *
3780 *  Writes a byte or word to the NVM using the flash access registers.
3781 **/
3782static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3783				   u16 *data)
3784{
3785	struct e1000_nvm_info *nvm = &hw->nvm;
3786	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3787	u16 i;
3788
3789	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3790	    (words == 0)) {
3791		e_dbg("nvm parameter(s) out of bounds\n");
3792		return -E1000_ERR_NVM;
3793	}
3794
3795	nvm->ops.acquire(hw);
3796
3797	for (i = 0; i < words; i++) {
3798		dev_spec->shadow_ram[offset + i].modified = true;
3799		dev_spec->shadow_ram[offset + i].value = data[i];
3800	}
3801
3802	nvm->ops.release(hw);
3803
3804	return 0;
3805}
3806
3807/**
3808 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3809 *  @hw: pointer to the HW structure
3810 *
3811 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3812 *  which writes the checksum to the shadow ram.  The changes in the shadow
3813 *  ram are then committed to the EEPROM by processing each bank at a time
3814 *  checking for the modified bit and writing only the pending changes.
3815 *  After a successful commit, the shadow ram is cleared and is ready for
3816 *  future writes.
3817 **/
3818static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3819{
3820	struct e1000_nvm_info *nvm = &hw->nvm;
3821	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3822	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3823	s32 ret_val;
3824	u32 dword = 0;
3825
3826	ret_val = e1000e_update_nvm_checksum_generic(hw);
3827	if (ret_val)
3828		goto out;
3829
3830	if (nvm->type != e1000_nvm_flash_sw)
3831		goto out;
3832
3833	nvm->ops.acquire(hw);
3834
3835	/* We're writing to the opposite bank so if we're on bank 1,
3836	 * write to bank 0 etc.  We also need to erase the segment that
3837	 * is going to be written
3838	 */
3839	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3840	if (ret_val) {
3841		e_dbg("Could not detect valid bank, assuming bank 0\n");
3842		bank = 0;
3843	}
3844
3845	if (bank == 0) {
3846		new_bank_offset = nvm->flash_bank_size;
3847		old_bank_offset = 0;
3848		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3849		if (ret_val)
3850			goto release;
3851	} else {
3852		old_bank_offset = nvm->flash_bank_size;
3853		new_bank_offset = 0;
3854		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3855		if (ret_val)
3856			goto release;
3857	}
3858	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3859		/* Determine whether to write the value stored
3860		 * in the other NVM bank or a modified value stored
3861		 * in the shadow RAM
3862		 */
3863		ret_val = e1000_read_flash_dword_ich8lan(hw,
3864							 i + old_bank_offset,
3865							 &dword);
3866
3867		if (dev_spec->shadow_ram[i].modified) {
3868			dword &= 0xffff0000;
3869			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3870		}
3871		if (dev_spec->shadow_ram[i + 1].modified) {
3872			dword &= 0x0000ffff;
3873			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3874				  << 16);
3875		}
3876		if (ret_val)
3877			break;
3878
3879		/* If the word is 0x13, then make sure the signature bits
3880		 * (15:14) are 11b until the commit has completed.
3881		 * This will allow us to write 10b which indicates the
3882		 * signature is valid.  We want to do this after the write
3883		 * has completed so that we don't mark the segment valid
3884		 * while the write is still in progress
3885		 */
3886		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3887			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3888
3889		/* Convert offset to bytes. */
3890		act_offset = (i + new_bank_offset) << 1;
3891
3892		usleep_range(100, 200);
3893
3894		/* Write the data to the new bank. Offset in words */
3895		act_offset = i + new_bank_offset;
3896		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3897								dword);
3898		if (ret_val)
3899			break;
3900	}
3901
3902	/* Don't bother writing the segment valid bits if sector
3903	 * programming failed.
3904	 */
3905	if (ret_val) {
3906		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3907		e_dbg("Flash commit failed.\n");
3908		goto release;
3909	}
3910
3911	/* Finally validate the new segment by setting bit 15:14
3912	 * to 10b in word 0x13 , this can be done without an
3913	 * erase as well since these bits are 11 to start with
3914	 * and we need to change bit 14 to 0b
3915	 */
3916	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3917
3918	/*offset in words but we read dword */
3919	--act_offset;
3920	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3921
3922	if (ret_val)
3923		goto release;
3924
3925	dword &= 0xBFFFFFFF;
3926	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3927
3928	if (ret_val)
3929		goto release;
3930
3931	/* offset in words but we read dword */
3932	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3933	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3934
3935	if (ret_val)
3936		goto release;
3937
3938	dword &= 0x00FFFFFF;
3939	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3940
3941	if (ret_val)
3942		goto release;
3943
3944	/* Great!  Everything worked, we can now clear the cached entries. */
3945	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3946		dev_spec->shadow_ram[i].modified = false;
3947		dev_spec->shadow_ram[i].value = 0xFFFF;
3948	}
3949
3950release:
3951	nvm->ops.release(hw);
3952
3953	/* Reload the EEPROM, or else modifications will not appear
3954	 * until after the next adapter reset.
3955	 */
3956	if (!ret_val) {
3957		nvm->ops.reload(hw);
3958		usleep_range(10000, 11000);
3959	}
3960
3961out:
3962	if (ret_val)
3963		e_dbg("NVM update error: %d\n", ret_val);
3964
3965	return ret_val;
3966}
3967
3968/**
3969 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3970 *  @hw: pointer to the HW structure
3971 *
3972 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3973 *  which writes the checksum to the shadow ram.  The changes in the shadow
3974 *  ram are then committed to the EEPROM by processing each bank at a time
3975 *  checking for the modified bit and writing only the pending changes.
3976 *  After a successful commit, the shadow ram is cleared and is ready for
3977 *  future writes.
3978 **/
3979static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3980{
3981	struct e1000_nvm_info *nvm = &hw->nvm;
3982	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3983	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3984	s32 ret_val;
3985	u16 data = 0;
3986
3987	ret_val = e1000e_update_nvm_checksum_generic(hw);
3988	if (ret_val)
3989		goto out;
3990
3991	if (nvm->type != e1000_nvm_flash_sw)
3992		goto out;
3993
3994	nvm->ops.acquire(hw);
3995
3996	/* We're writing to the opposite bank so if we're on bank 1,
3997	 * write to bank 0 etc.  We also need to erase the segment that
3998	 * is going to be written
3999	 */
4000	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4001	if (ret_val) {
4002		e_dbg("Could not detect valid bank, assuming bank 0\n");
4003		bank = 0;
4004	}
4005
4006	if (bank == 0) {
4007		new_bank_offset = nvm->flash_bank_size;
4008		old_bank_offset = 0;
4009		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4010		if (ret_val)
4011			goto release;
4012	} else {
4013		old_bank_offset = nvm->flash_bank_size;
4014		new_bank_offset = 0;
4015		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4016		if (ret_val)
4017			goto release;
4018	}
4019	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4020		if (dev_spec->shadow_ram[i].modified) {
4021			data = dev_spec->shadow_ram[i].value;
4022		} else {
4023			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4024								old_bank_offset,
4025								&data);
4026			if (ret_val)
4027				break;
4028		}
4029
4030		/* If the word is 0x13, then make sure the signature bits
4031		 * (15:14) are 11b until the commit has completed.
4032		 * This will allow us to write 10b which indicates the
4033		 * signature is valid.  We want to do this after the write
4034		 * has completed so that we don't mark the segment valid
4035		 * while the write is still in progress
4036		 */
4037		if (i == E1000_ICH_NVM_SIG_WORD)
4038			data |= E1000_ICH_NVM_SIG_MASK;
4039
4040		/* Convert offset to bytes. */
4041		act_offset = (i + new_bank_offset) << 1;
4042
4043		usleep_range(100, 200);
4044		/* Write the bytes to the new bank. */
4045		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4046							       act_offset,
4047							       (u8)data);
4048		if (ret_val)
4049			break;
4050
4051		usleep_range(100, 200);
4052		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4053							       act_offset + 1,
4054							       (u8)(data >> 8));
4055		if (ret_val)
4056			break;
4057	}
4058
4059	/* Don't bother writing the segment valid bits if sector
4060	 * programming failed.
4061	 */
4062	if (ret_val) {
4063		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4064		e_dbg("Flash commit failed.\n");
4065		goto release;
4066	}
4067
4068	/* Finally validate the new segment by setting bit 15:14
4069	 * to 10b in word 0x13 , this can be done without an
4070	 * erase as well since these bits are 11 to start with
4071	 * and we need to change bit 14 to 0b
4072	 */
4073	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4074	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4075	if (ret_val)
4076		goto release;
4077
4078	data &= 0xBFFF;
4079	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4080						       act_offset * 2 + 1,
4081						       (u8)(data >> 8));
4082	if (ret_val)
4083		goto release;
4084
4085	/* And invalidate the previously valid segment by setting
4086	 * its signature word (0x13) high_byte to 0b. This can be
4087	 * done without an erase because flash erase sets all bits
4088	 * to 1's. We can write 1's to 0's without an erase
4089	 */
4090	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4091	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4092	if (ret_val)
4093		goto release;
4094
4095	/* Great!  Everything worked, we can now clear the cached entries. */
4096	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4097		dev_spec->shadow_ram[i].modified = false;
4098		dev_spec->shadow_ram[i].value = 0xFFFF;
4099	}
4100
4101release:
4102	nvm->ops.release(hw);
4103
4104	/* Reload the EEPROM, or else modifications will not appear
4105	 * until after the next adapter reset.
4106	 */
4107	if (!ret_val) {
4108		nvm->ops.reload(hw);
4109		usleep_range(10000, 11000);
4110	}
4111
4112out:
4113	if (ret_val)
4114		e_dbg("NVM update error: %d\n", ret_val);
4115
4116	return ret_val;
4117}
4118
4119/**
4120 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4121 *  @hw: pointer to the HW structure
4122 *
4123 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4124 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4125 *  calculated, in which case we need to calculate the checksum and set bit 6.
4126 **/
4127static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4128{
4129	s32 ret_val;
4130	u16 data;
4131	u16 word;
4132	u16 valid_csum_mask;
4133
4134	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4135	 * the checksum needs to be fixed.  This bit is an indication that
4136	 * the NVM was prepared by OEM software and did not calculate
4137	 * the checksum...a likely scenario.
4138	 */
4139	switch (hw->mac.type) {
4140	case e1000_pch_lpt:
4141	case e1000_pch_spt:
4142	case e1000_pch_cnp:
4143	case e1000_pch_tgp:
4144	case e1000_pch_adp:
4145	case e1000_pch_mtp:
4146	case e1000_pch_lnp:
4147	case e1000_pch_ptp:
4148	case e1000_pch_nvp:
4149		word = NVM_COMPAT;
4150		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4151		break;
4152	default:
4153		word = NVM_FUTURE_INIT_WORD1;
4154		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4155		break;
4156	}
4157
4158	ret_val = e1000_read_nvm(hw, word, 1, &data);
4159	if (ret_val)
4160		return ret_val;
4161
4162	if (!(data & valid_csum_mask)) {
4163		e_dbg("NVM Checksum valid bit not set\n");
4164
4165		if (hw->mac.type < e1000_pch_tgp) {
4166			data |= valid_csum_mask;
4167			ret_val = e1000_write_nvm(hw, word, 1, &data);
4168			if (ret_val)
4169				return ret_val;
4170			ret_val = e1000e_update_nvm_checksum(hw);
4171			if (ret_val)
4172				return ret_val;
4173		}
4174	}
4175
4176	return e1000e_validate_nvm_checksum_generic(hw);
4177}
4178
4179/**
4180 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4181 *  @hw: pointer to the HW structure
4182 *
4183 *  To prevent malicious write/erase of the NVM, set it to be read-only
4184 *  so that the hardware ignores all write/erase cycles of the NVM via
4185 *  the flash control registers.  The shadow-ram copy of the NVM will
4186 *  still be updated, however any updates to this copy will not stick
4187 *  across driver reloads.
4188 **/
4189void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4190{
4191	struct e1000_nvm_info *nvm = &hw->nvm;
4192	union ich8_flash_protected_range pr0;
4193	union ich8_hws_flash_status hsfsts;
4194	u32 gfpreg;
4195
4196	nvm->ops.acquire(hw);
4197
4198	gfpreg = er32flash(ICH_FLASH_GFPREG);
4199
4200	/* Write-protect GbE Sector of NVM */
4201	pr0.regval = er32flash(ICH_FLASH_PR0);
4202	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4203	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4204	pr0.range.wpe = true;
4205	ew32flash(ICH_FLASH_PR0, pr0.regval);
4206
4207	/* Lock down a subset of GbE Flash Control Registers, e.g.
4208	 * PR0 to prevent the write-protection from being lifted.
4209	 * Once FLOCKDN is set, the registers protected by it cannot
4210	 * be written until FLOCKDN is cleared by a hardware reset.
4211	 */
4212	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4213	hsfsts.hsf_status.flockdn = true;
4214	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4215
4216	nvm->ops.release(hw);
4217}
4218
4219/**
4220 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4221 *  @hw: pointer to the HW structure
4222 *  @offset: The offset (in bytes) of the byte/word to read.
4223 *  @size: Size of data to read, 1=byte 2=word
4224 *  @data: The byte(s) to write to the NVM.
4225 *
4226 *  Writes one/two bytes to the NVM using the flash access registers.
4227 **/
4228static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4229					  u8 size, u16 data)
4230{
4231	union ich8_hws_flash_status hsfsts;
4232	union ich8_hws_flash_ctrl hsflctl;
4233	u32 flash_linear_addr;
4234	u32 flash_data = 0;
4235	s32 ret_val;
4236	u8 count = 0;
4237
4238	if (hw->mac.type >= e1000_pch_spt) {
4239		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4240			return -E1000_ERR_NVM;
4241	} else {
4242		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4243			return -E1000_ERR_NVM;
4244	}
4245
4246	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4247			     hw->nvm.flash_base_addr);
4248
4249	do {
4250		udelay(1);
4251		/* Steps */
4252		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4253		if (ret_val)
4254			break;
4255		/* In SPT, This register is in Lan memory space, not
4256		 * flash.  Therefore, only 32 bit access is supported
4257		 */
4258		if (hw->mac.type >= e1000_pch_spt)
4259			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4260		else
4261			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4262
4263		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4264		hsflctl.hsf_ctrl.fldbcount = size - 1;
4265		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4266		/* In SPT, This register is in Lan memory space,
4267		 * not flash.  Therefore, only 32 bit access is
4268		 * supported
4269		 */
4270		if (hw->mac.type >= e1000_pch_spt)
4271			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4272		else
4273			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4274
4275		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4276
4277		if (size == 1)
4278			flash_data = (u32)data & 0x00FF;
4279		else
4280			flash_data = (u32)data;
4281
4282		ew32flash(ICH_FLASH_FDATA0, flash_data);
4283
4284		/* check if FCERR is set to 1 , if set to 1, clear it
4285		 * and try the whole sequence a few more times else done
4286		 */
4287		ret_val =
4288		    e1000_flash_cycle_ich8lan(hw,
4289					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4290		if (!ret_val)
4291			break;
4292
4293		/* If we're here, then things are most likely
4294		 * completely hosed, but if the error condition
4295		 * is detected, it won't hurt to give it another
4296		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4297		 */
4298		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4299		if (hsfsts.hsf_status.flcerr)
4300			/* Repeat for some time before giving up. */
4301			continue;
4302		if (!hsfsts.hsf_status.flcdone) {
4303			e_dbg("Timeout error - flash cycle did not complete.\n");
4304			break;
4305		}
4306	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4307
4308	return ret_val;
4309}
4310
4311/**
4312*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4313*  @hw: pointer to the HW structure
4314*  @offset: The offset (in bytes) of the dwords to read.
4315*  @data: The 4 bytes to write to the NVM.
4316*
4317*  Writes one/two/four bytes to the NVM using the flash access registers.
4318**/
4319static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4320					    u32 data)
4321{
4322	union ich8_hws_flash_status hsfsts;
4323	union ich8_hws_flash_ctrl hsflctl;
4324	u32 flash_linear_addr;
4325	s32 ret_val;
4326	u8 count = 0;
4327
4328	if (hw->mac.type >= e1000_pch_spt) {
4329		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4330			return -E1000_ERR_NVM;
4331	}
4332	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4333			     hw->nvm.flash_base_addr);
4334	do {
4335		udelay(1);
4336		/* Steps */
4337		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4338		if (ret_val)
4339			break;
4340
4341		/* In SPT, This register is in Lan memory space, not
4342		 * flash.  Therefore, only 32 bit access is supported
4343		 */
4344		if (hw->mac.type >= e1000_pch_spt)
4345			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4346			    >> 16;
4347		else
4348			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4349
4350		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4351		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4352
4353		/* In SPT, This register is in Lan memory space,
4354		 * not flash.  Therefore, only 32 bit access is
4355		 * supported
4356		 */
4357		if (hw->mac.type >= e1000_pch_spt)
4358			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4359		else
4360			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4361
4362		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4363
4364		ew32flash(ICH_FLASH_FDATA0, data);
4365
4366		/* check if FCERR is set to 1 , if set to 1, clear it
4367		 * and try the whole sequence a few more times else done
4368		 */
4369		ret_val =
4370		   e1000_flash_cycle_ich8lan(hw,
4371					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4372
4373		if (!ret_val)
4374			break;
4375
4376		/* If we're here, then things are most likely
4377		 * completely hosed, but if the error condition
4378		 * is detected, it won't hurt to give it another
4379		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4380		 */
4381		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4382
4383		if (hsfsts.hsf_status.flcerr)
4384			/* Repeat for some time before giving up. */
4385			continue;
4386		if (!hsfsts.hsf_status.flcdone) {
4387			e_dbg("Timeout error - flash cycle did not complete.\n");
4388			break;
4389		}
4390	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4391
4392	return ret_val;
4393}
4394
4395/**
4396 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4397 *  @hw: pointer to the HW structure
4398 *  @offset: The index of the byte to read.
4399 *  @data: The byte to write to the NVM.
4400 *
4401 *  Writes a single byte to the NVM using the flash access registers.
4402 **/
4403static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4404					  u8 data)
4405{
4406	u16 word = (u16)data;
4407
4408	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4409}
4410
4411/**
4412*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4413*  @hw: pointer to the HW structure
4414*  @offset: The offset of the word to write.
4415*  @dword: The dword to write to the NVM.
4416*
4417*  Writes a single dword to the NVM using the flash access registers.
4418*  Goes through a retry algorithm before giving up.
4419**/
4420static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4421						 u32 offset, u32 dword)
4422{
4423	s32 ret_val;
4424	u16 program_retries;
4425
4426	/* Must convert word offset into bytes. */
4427	offset <<= 1;
4428	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4429
4430	if (!ret_val)
4431		return ret_val;
4432	for (program_retries = 0; program_retries < 100; program_retries++) {
4433		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4434		usleep_range(100, 200);
4435		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4436		if (!ret_val)
4437			break;
4438	}
4439	if (program_retries == 100)
4440		return -E1000_ERR_NVM;
4441
4442	return 0;
4443}
4444
4445/**
4446 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4447 *  @hw: pointer to the HW structure
4448 *  @offset: The offset of the byte to write.
4449 *  @byte: The byte to write to the NVM.
4450 *
4451 *  Writes a single byte to the NVM using the flash access registers.
4452 *  Goes through a retry algorithm before giving up.
4453 **/
4454static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4455						u32 offset, u8 byte)
4456{
4457	s32 ret_val;
4458	u16 program_retries;
4459
4460	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4461	if (!ret_val)
4462		return ret_val;
4463
4464	for (program_retries = 0; program_retries < 100; program_retries++) {
4465		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4466		usleep_range(100, 200);
4467		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4468		if (!ret_val)
4469			break;
4470	}
4471	if (program_retries == 100)
4472		return -E1000_ERR_NVM;
4473
4474	return 0;
4475}
4476
4477/**
4478 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4479 *  @hw: pointer to the HW structure
4480 *  @bank: 0 for first bank, 1 for second bank, etc.
4481 *
4482 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4483 *  bank N is 4096 * N + flash_reg_addr.
4484 **/
4485static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4486{
4487	struct e1000_nvm_info *nvm = &hw->nvm;
4488	union ich8_hws_flash_status hsfsts;
4489	union ich8_hws_flash_ctrl hsflctl;
4490	u32 flash_linear_addr;
4491	/* bank size is in 16bit words - adjust to bytes */
4492	u32 flash_bank_size = nvm->flash_bank_size * 2;
4493	s32 ret_val;
4494	s32 count = 0;
4495	s32 j, iteration, sector_size;
4496
4497	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4498
4499	/* Determine HW Sector size: Read BERASE bits of hw flash status
4500	 * register
4501	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4502	 *     consecutive sectors.  The start index for the nth Hw sector
4503	 *     can be calculated as = bank * 4096 + n * 256
4504	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4505	 *     The start index for the nth Hw sector can be calculated
4506	 *     as = bank * 4096
4507	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4508	 *     (ich9 only, otherwise error condition)
4509	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4510	 */
4511	switch (hsfsts.hsf_status.berasesz) {
4512	case 0:
4513		/* Hw sector size 256 */
4514		sector_size = ICH_FLASH_SEG_SIZE_256;
4515		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4516		break;
4517	case 1:
4518		sector_size = ICH_FLASH_SEG_SIZE_4K;
4519		iteration = 1;
4520		break;
4521	case 2:
4522		sector_size = ICH_FLASH_SEG_SIZE_8K;
4523		iteration = 1;
4524		break;
4525	case 3:
4526		sector_size = ICH_FLASH_SEG_SIZE_64K;
4527		iteration = 1;
4528		break;
4529	default:
4530		return -E1000_ERR_NVM;
4531	}
4532
4533	/* Start with the base address, then add the sector offset. */
4534	flash_linear_addr = hw->nvm.flash_base_addr;
4535	flash_linear_addr += (bank) ? flash_bank_size : 0;
4536
4537	for (j = 0; j < iteration; j++) {
4538		do {
4539			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4540
4541			/* Steps */
4542			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4543			if (ret_val)
4544				return ret_val;
4545
4546			/* Write a value 11 (block Erase) in Flash
4547			 * Cycle field in hw flash control
4548			 */
4549			if (hw->mac.type >= e1000_pch_spt)
4550				hsflctl.regval =
4551				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4552			else
4553				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4554
4555			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4556			if (hw->mac.type >= e1000_pch_spt)
4557				ew32flash(ICH_FLASH_HSFSTS,
4558					  hsflctl.regval << 16);
4559			else
4560				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4561
4562			/* Write the last 24 bits of an index within the
4563			 * block into Flash Linear address field in Flash
4564			 * Address.
4565			 */
4566			flash_linear_addr += (j * sector_size);
4567			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4568
4569			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4570			if (!ret_val)
4571				break;
4572
4573			/* Check if FCERR is set to 1.  If 1,
4574			 * clear it and try the whole sequence
4575			 * a few more times else Done
4576			 */
4577			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4578			if (hsfsts.hsf_status.flcerr)
4579				/* repeat for some time before giving up */
4580				continue;
4581			else if (!hsfsts.hsf_status.flcdone)
4582				return ret_val;
4583		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4584	}
4585
4586	return 0;
4587}
4588
4589/**
4590 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4591 *  @hw: pointer to the HW structure
4592 *  @data: Pointer to the LED settings
4593 *
4594 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4595 *  settings is all 0's or F's, set the LED default to a valid LED default
4596 *  setting.
4597 **/
4598static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4599{
4600	s32 ret_val;
4601
4602	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4603	if (ret_val) {
4604		e_dbg("NVM Read Error\n");
4605		return ret_val;
4606	}
4607
4608	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4609		*data = ID_LED_DEFAULT_ICH8LAN;
4610
4611	return 0;
4612}
4613
4614/**
4615 *  e1000_id_led_init_pchlan - store LED configurations
4616 *  @hw: pointer to the HW structure
4617 *
4618 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4619 *  the PHY LED configuration register.
4620 *
4621 *  PCH also does not have an "always on" or "always off" mode which
4622 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4623 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4624 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4625 *  link based on logic in e1000_led_[on|off]_pchlan().
4626 **/
4627static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4628{
4629	struct e1000_mac_info *mac = &hw->mac;
4630	s32 ret_val;
4631	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4632	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4633	u16 data, i, temp, shift;
4634
4635	/* Get default ID LED modes */
4636	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4637	if (ret_val)
4638		return ret_val;
4639
4640	mac->ledctl_default = er32(LEDCTL);
4641	mac->ledctl_mode1 = mac->ledctl_default;
4642	mac->ledctl_mode2 = mac->ledctl_default;
4643
4644	for (i = 0; i < 4; i++) {
4645		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4646		shift = (i * 5);
4647		switch (temp) {
4648		case ID_LED_ON1_DEF2:
4649		case ID_LED_ON1_ON2:
4650		case ID_LED_ON1_OFF2:
4651			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4652			mac->ledctl_mode1 |= (ledctl_on << shift);
4653			break;
4654		case ID_LED_OFF1_DEF2:
4655		case ID_LED_OFF1_ON2:
4656		case ID_LED_OFF1_OFF2:
4657			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4658			mac->ledctl_mode1 |= (ledctl_off << shift);
4659			break;
4660		default:
4661			/* Do nothing */
4662			break;
4663		}
4664		switch (temp) {
4665		case ID_LED_DEF1_ON2:
4666		case ID_LED_ON1_ON2:
4667		case ID_LED_OFF1_ON2:
4668			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4669			mac->ledctl_mode2 |= (ledctl_on << shift);
4670			break;
4671		case ID_LED_DEF1_OFF2:
4672		case ID_LED_ON1_OFF2:
4673		case ID_LED_OFF1_OFF2:
4674			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4675			mac->ledctl_mode2 |= (ledctl_off << shift);
4676			break;
4677		default:
4678			/* Do nothing */
4679			break;
4680		}
4681	}
4682
4683	return 0;
4684}
4685
4686/**
4687 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4688 *  @hw: pointer to the HW structure
4689 *
4690 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4691 *  register, so the bus width is hard coded.
4692 **/
4693static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4694{
4695	struct e1000_bus_info *bus = &hw->bus;
4696	s32 ret_val;
4697
4698	ret_val = e1000e_get_bus_info_pcie(hw);
4699
4700	/* ICH devices are "PCI Express"-ish.  They have
4701	 * a configuration space, but do not contain
4702	 * PCI Express Capability registers, so bus width
4703	 * must be hardcoded.
4704	 */
4705	if (bus->width == e1000_bus_width_unknown)
4706		bus->width = e1000_bus_width_pcie_x1;
4707
4708	return ret_val;
4709}
4710
4711/**
4712 *  e1000_reset_hw_ich8lan - Reset the hardware
4713 *  @hw: pointer to the HW structure
4714 *
4715 *  Does a full reset of the hardware which includes a reset of the PHY and
4716 *  MAC.
4717 **/
4718static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4719{
4720	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4721	u16 kum_cfg;
4722	u32 ctrl, reg;
4723	s32 ret_val;
4724
4725	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4726	 * on the last TLP read/write transaction when MAC is reset.
4727	 */
4728	ret_val = e1000e_disable_pcie_master(hw);
4729	if (ret_val)
4730		e_dbg("PCI-E Master disable polling has failed.\n");
4731
4732	e_dbg("Masking off all interrupts\n");
4733	ew32(IMC, 0xffffffff);
4734
4735	/* Disable the Transmit and Receive units.  Then delay to allow
4736	 * any pending transactions to complete before we hit the MAC
4737	 * with the global reset.
4738	 */
4739	ew32(RCTL, 0);
4740	ew32(TCTL, E1000_TCTL_PSP);
4741	e1e_flush();
4742
4743	usleep_range(10000, 11000);
4744
4745	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4746	if (hw->mac.type == e1000_ich8lan) {
4747		/* Set Tx and Rx buffer allocation to 8k apiece. */
4748		ew32(PBA, E1000_PBA_8K);
4749		/* Set Packet Buffer Size to 16k. */
4750		ew32(PBS, E1000_PBS_16K);
4751	}
4752
4753	if (hw->mac.type == e1000_pchlan) {
4754		/* Save the NVM K1 bit setting */
4755		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4756		if (ret_val)
4757			return ret_val;
4758
4759		if (kum_cfg & E1000_NVM_K1_ENABLE)
4760			dev_spec->nvm_k1_enabled = true;
4761		else
4762			dev_spec->nvm_k1_enabled = false;
4763	}
4764
4765	ctrl = er32(CTRL);
4766
4767	if (!hw->phy.ops.check_reset_block(hw)) {
4768		/* Full-chip reset requires MAC and PHY reset at the same
4769		 * time to make sure the interface between MAC and the
4770		 * external PHY is reset.
4771		 */
4772		ctrl |= E1000_CTRL_PHY_RST;
4773
4774		/* Gate automatic PHY configuration by hardware on
4775		 * non-managed 82579
4776		 */
4777		if ((hw->mac.type == e1000_pch2lan) &&
4778		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4779			e1000_gate_hw_phy_config_ich8lan(hw, true);
4780	}
4781	ret_val = e1000_acquire_swflag_ich8lan(hw);
4782	e_dbg("Issuing a global reset to ich8lan\n");
4783	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4784	/* cannot issue a flush here because it hangs the hardware */
4785	msleep(20);
4786
4787	/* Set Phy Config Counter to 50msec */
4788	if (hw->mac.type == e1000_pch2lan) {
4789		reg = er32(FEXTNVM3);
4790		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4791		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4792		ew32(FEXTNVM3, reg);
4793	}
4794
4795	if (!ret_val)
4796		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4797
4798	if (ctrl & E1000_CTRL_PHY_RST) {
4799		ret_val = hw->phy.ops.get_cfg_done(hw);
4800		if (ret_val)
4801			return ret_val;
4802
4803		ret_val = e1000_post_phy_reset_ich8lan(hw);
4804		if (ret_val)
4805			return ret_val;
4806	}
4807
4808	/* For PCH, this write will make sure that any noise
4809	 * will be detected as a CRC error and be dropped rather than show up
4810	 * as a bad packet to the DMA engine.
4811	 */
4812	if (hw->mac.type == e1000_pchlan)
4813		ew32(CRC_OFFSET, 0x65656565);
4814
4815	ew32(IMC, 0xffffffff);
4816	er32(ICR);
4817
4818	reg = er32(KABGTXD);
4819	reg |= E1000_KABGTXD_BGSQLBIAS;
4820	ew32(KABGTXD, reg);
4821
4822	return 0;
4823}
4824
4825/**
4826 *  e1000_init_hw_ich8lan - Initialize the hardware
4827 *  @hw: pointer to the HW structure
4828 *
4829 *  Prepares the hardware for transmit and receive by doing the following:
4830 *   - initialize hardware bits
4831 *   - initialize LED identification
4832 *   - setup receive address registers
4833 *   - setup flow control
4834 *   - setup transmit descriptors
4835 *   - clear statistics
4836 **/
4837static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4838{
4839	struct e1000_mac_info *mac = &hw->mac;
4840	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4841	s32 ret_val;
4842	u16 i;
4843
4844	e1000_initialize_hw_bits_ich8lan(hw);
4845
4846	/* Initialize identification LED */
4847	ret_val = mac->ops.id_led_init(hw);
4848	/* An error is not fatal and we should not stop init due to this */
4849	if (ret_val)
4850		e_dbg("Error initializing identification LED\n");
4851
4852	/* Setup the receive address. */
4853	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4854
4855	/* Zero out the Multicast HASH table */
4856	e_dbg("Zeroing the MTA\n");
4857	for (i = 0; i < mac->mta_reg_count; i++)
4858		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4859
4860	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4861	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4862	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4863	 */
4864	if (hw->phy.type == e1000_phy_82578) {
4865		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4866		i &= ~BM_WUC_HOST_WU_BIT;
4867		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4868		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4869		if (ret_val)
4870			return ret_val;
4871	}
4872
4873	/* Setup link and flow control */
4874	ret_val = mac->ops.setup_link(hw);
4875
4876	/* Set the transmit descriptor write-back policy for both queues */
4877	txdctl = er32(TXDCTL(0));
4878	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4879		  E1000_TXDCTL_FULL_TX_DESC_WB);
4880	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4881		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4882	ew32(TXDCTL(0), txdctl);
4883	txdctl = er32(TXDCTL(1));
4884	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4885		  E1000_TXDCTL_FULL_TX_DESC_WB);
4886	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4887		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4888	ew32(TXDCTL(1), txdctl);
4889
4890	/* ICH8 has opposite polarity of no_snoop bits.
4891	 * By default, we should use snoop behavior.
4892	 */
4893	if (mac->type == e1000_ich8lan)
4894		snoop = PCIE_ICH8_SNOOP_ALL;
4895	else
4896		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4897	e1000e_set_pcie_no_snoop(hw, snoop);
4898
4899	/* Enable workaround for packet loss issue on TGP PCH
4900	 * Do not gate DMA clock from the modPHY block
4901	 */
4902	if (mac->type >= e1000_pch_tgp) {
4903		fflt_dbg = er32(FFLT_DBG);
4904		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4905		ew32(FFLT_DBG, fflt_dbg);
4906	}
4907
4908	ctrl_ext = er32(CTRL_EXT);
4909	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4910	ew32(CTRL_EXT, ctrl_ext);
4911
4912	/* Clear all of the statistics registers (clear on read).  It is
4913	 * important that we do this after we have tried to establish link
4914	 * because the symbol error count will increment wildly if there
4915	 * is no link.
4916	 */
4917	e1000_clear_hw_cntrs_ich8lan(hw);
4918
4919	return ret_val;
4920}
4921
4922/**
4923 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4924 *  @hw: pointer to the HW structure
4925 *
4926 *  Sets/Clears required hardware bits necessary for correctly setting up the
4927 *  hardware for transmit and receive.
4928 **/
4929static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4930{
4931	u32 reg;
4932
4933	/* Extended Device Control */
4934	reg = er32(CTRL_EXT);
4935	reg |= BIT(22);
4936	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4937	if (hw->mac.type >= e1000_pchlan)
4938		reg |= E1000_CTRL_EXT_PHYPDEN;
4939	ew32(CTRL_EXT, reg);
4940
4941	/* Transmit Descriptor Control 0 */
4942	reg = er32(TXDCTL(0));
4943	reg |= BIT(22);
4944	ew32(TXDCTL(0), reg);
4945
4946	/* Transmit Descriptor Control 1 */
4947	reg = er32(TXDCTL(1));
4948	reg |= BIT(22);
4949	ew32(TXDCTL(1), reg);
4950
4951	/* Transmit Arbitration Control 0 */
4952	reg = er32(TARC(0));
4953	if (hw->mac.type == e1000_ich8lan)
4954		reg |= BIT(28) | BIT(29);
4955	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4956	ew32(TARC(0), reg);
4957
4958	/* Transmit Arbitration Control 1 */
4959	reg = er32(TARC(1));
4960	if (er32(TCTL) & E1000_TCTL_MULR)
4961		reg &= ~BIT(28);
4962	else
4963		reg |= BIT(28);
4964	reg |= BIT(24) | BIT(26) | BIT(30);
4965	ew32(TARC(1), reg);
4966
4967	/* Device Status */
4968	if (hw->mac.type == e1000_ich8lan) {
4969		reg = er32(STATUS);
4970		reg &= ~BIT(31);
4971		ew32(STATUS, reg);
4972	}
4973
4974	/* work-around descriptor data corruption issue during nfs v2 udp
4975	 * traffic, just disable the nfs filtering capability
4976	 */
4977	reg = er32(RFCTL);
4978	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4979
4980	/* Disable IPv6 extension header parsing because some malformed
4981	 * IPv6 headers can hang the Rx.
4982	 */
4983	if (hw->mac.type == e1000_ich8lan)
4984		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4985	ew32(RFCTL, reg);
4986
4987	/* Enable ECC on Lynxpoint */
4988	if (hw->mac.type >= e1000_pch_lpt) {
4989		reg = er32(PBECCSTS);
4990		reg |= E1000_PBECCSTS_ECC_ENABLE;
4991		ew32(PBECCSTS, reg);
4992
4993		reg = er32(CTRL);
4994		reg |= E1000_CTRL_MEHE;
4995		ew32(CTRL, reg);
4996	}
4997}
4998
4999/**
5000 *  e1000_setup_link_ich8lan - Setup flow control and link settings
5001 *  @hw: pointer to the HW structure
5002 *
5003 *  Determines which flow control settings to use, then configures flow
5004 *  control.  Calls the appropriate media-specific link configuration
5005 *  function.  Assuming the adapter has a valid link partner, a valid link
5006 *  should be established.  Assumes the hardware has previously been reset
5007 *  and the transmitter and receiver are not enabled.
5008 **/
5009static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5010{
5011	s32 ret_val;
5012
5013	if (hw->phy.ops.check_reset_block(hw))
5014		return 0;
5015
5016	/* ICH parts do not have a word in the NVM to determine
5017	 * the default flow control setting, so we explicitly
5018	 * set it to full.
5019	 */
5020	if (hw->fc.requested_mode == e1000_fc_default) {
5021		/* Workaround h/w hang when Tx flow control enabled */
5022		if (hw->mac.type == e1000_pchlan)
5023			hw->fc.requested_mode = e1000_fc_rx_pause;
5024		else
5025			hw->fc.requested_mode = e1000_fc_full;
5026	}
5027
5028	/* Save off the requested flow control mode for use later.  Depending
5029	 * on the link partner's capabilities, we may or may not use this mode.
5030	 */
5031	hw->fc.current_mode = hw->fc.requested_mode;
5032
5033	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5034
5035	/* Continue to configure the copper link. */
5036	ret_val = hw->mac.ops.setup_physical_interface(hw);
5037	if (ret_val)
5038		return ret_val;
5039
5040	ew32(FCTTV, hw->fc.pause_time);
5041	if ((hw->phy.type == e1000_phy_82578) ||
5042	    (hw->phy.type == e1000_phy_82579) ||
5043	    (hw->phy.type == e1000_phy_i217) ||
5044	    (hw->phy.type == e1000_phy_82577)) {
5045		ew32(FCRTV_PCH, hw->fc.refresh_time);
5046
5047		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5048				   hw->fc.pause_time);
5049		if (ret_val)
5050			return ret_val;
5051	}
5052
5053	return e1000e_set_fc_watermarks(hw);
5054}
5055
5056/**
5057 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5058 *  @hw: pointer to the HW structure
5059 *
5060 *  Configures the kumeran interface to the PHY to wait the appropriate time
5061 *  when polling the PHY, then call the generic setup_copper_link to finish
5062 *  configuring the copper link.
5063 **/
5064static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5065{
5066	u32 ctrl;
5067	s32 ret_val;
5068	u16 reg_data;
5069
5070	ctrl = er32(CTRL);
5071	ctrl |= E1000_CTRL_SLU;
5072	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5073	ew32(CTRL, ctrl);
5074
5075	/* Set the mac to wait the maximum time between each iteration
5076	 * and increase the max iterations when polling the phy;
5077	 * this fixes erroneous timeouts at 10Mbps.
5078	 */
5079	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5080	if (ret_val)
5081		return ret_val;
5082	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5083				       &reg_data);
5084	if (ret_val)
5085		return ret_val;
5086	reg_data |= 0x3F;
5087	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5088					reg_data);
5089	if (ret_val)
5090		return ret_val;
5091
5092	switch (hw->phy.type) {
5093	case e1000_phy_igp_3:
5094		ret_val = e1000e_copper_link_setup_igp(hw);
5095		if (ret_val)
5096			return ret_val;
5097		break;
5098	case e1000_phy_bm:
5099	case e1000_phy_82578:
5100		ret_val = e1000e_copper_link_setup_m88(hw);
5101		if (ret_val)
5102			return ret_val;
5103		break;
5104	case e1000_phy_82577:
5105	case e1000_phy_82579:
5106		ret_val = e1000_copper_link_setup_82577(hw);
5107		if (ret_val)
5108			return ret_val;
5109		break;
5110	case e1000_phy_ife:
5111		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5112		if (ret_val)
5113			return ret_val;
5114
5115		reg_data &= ~IFE_PMC_AUTO_MDIX;
5116
5117		switch (hw->phy.mdix) {
5118		case 1:
5119			reg_data &= ~IFE_PMC_FORCE_MDIX;
5120			break;
5121		case 2:
5122			reg_data |= IFE_PMC_FORCE_MDIX;
5123			break;
5124		case 0:
5125		default:
5126			reg_data |= IFE_PMC_AUTO_MDIX;
5127			break;
5128		}
5129		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5130		if (ret_val)
5131			return ret_val;
5132		break;
5133	default:
5134		break;
5135	}
5136
5137	return e1000e_setup_copper_link(hw);
5138}
5139
5140/**
5141 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5142 *  @hw: pointer to the HW structure
5143 *
5144 *  Calls the PHY specific link setup function and then calls the
5145 *  generic setup_copper_link to finish configuring the link for
5146 *  Lynxpoint PCH devices
5147 **/
5148static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5149{
5150	u32 ctrl;
5151	s32 ret_val;
5152
5153	ctrl = er32(CTRL);
5154	ctrl |= E1000_CTRL_SLU;
5155	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5156	ew32(CTRL, ctrl);
5157
5158	ret_val = e1000_copper_link_setup_82577(hw);
5159	if (ret_val)
5160		return ret_val;
5161
5162	return e1000e_setup_copper_link(hw);
5163}
5164
5165/**
5166 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5167 *  @hw: pointer to the HW structure
5168 *  @speed: pointer to store current link speed
5169 *  @duplex: pointer to store the current link duplex
5170 *
5171 *  Calls the generic get_speed_and_duplex to retrieve the current link
5172 *  information and then calls the Kumeran lock loss workaround for links at
5173 *  gigabit speeds.
5174 **/
5175static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5176					  u16 *duplex)
5177{
5178	s32 ret_val;
5179
5180	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5181	if (ret_val)
5182		return ret_val;
5183
5184	if ((hw->mac.type == e1000_ich8lan) &&
5185	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5186		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5187	}
5188
5189	return ret_val;
5190}
5191
5192/**
5193 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5194 *  @hw: pointer to the HW structure
5195 *
5196 *  Work-around for 82566 Kumeran PCS lock loss:
5197 *  On link status change (i.e. PCI reset, speed change) and link is up and
5198 *  speed is gigabit-
5199 *    0) if workaround is optionally disabled do nothing
5200 *    1) wait 1ms for Kumeran link to come up
5201 *    2) check Kumeran Diagnostic register PCS lock loss bit
5202 *    3) if not set the link is locked (all is good), otherwise...
5203 *    4) reset the PHY
5204 *    5) repeat up to 10 times
5205 *  Note: this is only called for IGP3 copper when speed is 1gb.
5206 **/
5207static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5208{
5209	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5210	u32 phy_ctrl;
5211	s32 ret_val;
5212	u16 i, data;
5213	bool link;
5214
5215	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5216		return 0;
5217
5218	/* Make sure link is up before proceeding.  If not just return.
5219	 * Attempting this while link is negotiating fouled up link
5220	 * stability
5221	 */
5222	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5223	if (!link)
5224		return 0;
5225
5226	for (i = 0; i < 10; i++) {
5227		/* read once to clear */
5228		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5229		if (ret_val)
5230			return ret_val;
5231		/* and again to get new status */
5232		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5233		if (ret_val)
5234			return ret_val;
5235
5236		/* check for PCS lock */
5237		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5238			return 0;
5239
5240		/* Issue PHY reset */
5241		e1000_phy_hw_reset(hw);
5242		mdelay(5);
5243	}
5244	/* Disable GigE link negotiation */
5245	phy_ctrl = er32(PHY_CTRL);
5246	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5247		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5248	ew32(PHY_CTRL, phy_ctrl);
5249
5250	/* Call gig speed drop workaround on Gig disable before accessing
5251	 * any PHY registers
5252	 */
5253	e1000e_gig_downshift_workaround_ich8lan(hw);
5254
5255	/* unable to acquire PCS lock */
5256	return -E1000_ERR_PHY;
5257}
5258
5259/**
5260 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5261 *  @hw: pointer to the HW structure
5262 *  @state: boolean value used to set the current Kumeran workaround state
5263 *
5264 *  If ICH8, set the current Kumeran workaround state (enabled - true
5265 *  /disabled - false).
5266 **/
5267void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5268						  bool state)
5269{
5270	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5271
5272	if (hw->mac.type != e1000_ich8lan) {
5273		e_dbg("Workaround applies to ICH8 only.\n");
5274		return;
5275	}
5276
5277	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5278}
5279
5280/**
5281 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5282 *  @hw: pointer to the HW structure
5283 *
5284 *  Workaround for 82566 power-down on D3 entry:
5285 *    1) disable gigabit link
5286 *    2) write VR power-down enable
5287 *    3) read it back
5288 *  Continue if successful, else issue LCD reset and repeat
5289 **/
5290void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5291{
5292	u32 reg;
5293	u16 data;
5294	u8 retry = 0;
5295
5296	if (hw->phy.type != e1000_phy_igp_3)
5297		return;
5298
5299	/* Try the workaround twice (if needed) */
5300	do {
5301		/* Disable link */
5302		reg = er32(PHY_CTRL);
5303		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5304			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5305		ew32(PHY_CTRL, reg);
5306
5307		/* Call gig speed drop workaround on Gig disable before
5308		 * accessing any PHY registers
5309		 */
5310		if (hw->mac.type == e1000_ich8lan)
5311			e1000e_gig_downshift_workaround_ich8lan(hw);
5312
5313		/* Write VR power-down enable */
5314		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5315		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5316		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5317
5318		/* Read it back and test */
5319		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5320		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5321		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5322			break;
5323
5324		/* Issue PHY reset and repeat at most one more time */
5325		reg = er32(CTRL);
5326		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5327		retry++;
5328	} while (retry);
5329}
5330
5331/**
5332 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5333 *  @hw: pointer to the HW structure
5334 *
5335 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5336 *  LPLU, Gig disable, MDIC PHY reset):
5337 *    1) Set Kumeran Near-end loopback
5338 *    2) Clear Kumeran Near-end loopback
5339 *  Should only be called for ICH8[m] devices with any 1G Phy.
5340 **/
5341void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5342{
5343	s32 ret_val;
5344	u16 reg_data;
5345
5346	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5347		return;
5348
5349	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5350				       &reg_data);
5351	if (ret_val)
5352		return;
5353	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5354	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5355					reg_data);
5356	if (ret_val)
5357		return;
5358	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5359	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5360}
5361
5362/**
5363 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5364 *  @hw: pointer to the HW structure
5365 *
5366 *  During S0 to Sx transition, it is possible the link remains at gig
5367 *  instead of negotiating to a lower speed.  Before going to Sx, set
5368 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5369 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5370 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5371 *  needs to be written.
5372 *  Parts that support (and are linked to a partner which support) EEE in
5373 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5374 *  than 10Mbps w/o EEE.
5375 **/
5376void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5377{
5378	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5379	u32 phy_ctrl;
5380	s32 ret_val;
5381
5382	phy_ctrl = er32(PHY_CTRL);
5383	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5384
5385	if (hw->phy.type == e1000_phy_i217) {
5386		u16 phy_reg, device_id = hw->adapter->pdev->device;
5387
5388		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5389		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5390		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5391		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5392		    (hw->mac.type >= e1000_pch_spt)) {
5393			u32 fextnvm6 = er32(FEXTNVM6);
5394
5395			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5396		}
5397
5398		ret_val = hw->phy.ops.acquire(hw);
5399		if (ret_val)
5400			goto out;
5401
5402		if (!dev_spec->eee_disable) {
5403			u16 eee_advert;
5404
5405			ret_val =
5406			    e1000_read_emi_reg_locked(hw,
5407						      I217_EEE_ADVERTISEMENT,
5408						      &eee_advert);
5409			if (ret_val)
5410				goto release;
5411
5412			/* Disable LPLU if both link partners support 100BaseT
5413			 * EEE and 100Full is advertised on both ends of the
5414			 * link, and enable Auto Enable LPI since there will
5415			 * be no driver to enable LPI while in Sx.
5416			 */
5417			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5418			    (dev_spec->eee_lp_ability &
5419			     I82579_EEE_100_SUPPORTED) &&
5420			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5421				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5422					      E1000_PHY_CTRL_NOND0A_LPLU);
5423
5424				/* Set Auto Enable LPI after link up */
5425				e1e_rphy_locked(hw,
5426						I217_LPI_GPIO_CTRL, &phy_reg);
5427				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5428				e1e_wphy_locked(hw,
5429						I217_LPI_GPIO_CTRL, phy_reg);
5430			}
5431		}
5432
5433		/* For i217 Intel Rapid Start Technology support,
5434		 * when the system is going into Sx and no manageability engine
5435		 * is present, the driver must configure proxy to reset only on
5436		 * power good.  LPI (Low Power Idle) state must also reset only
5437		 * on power good, as well as the MTA (Multicast table array).
5438		 * The SMBus release must also be disabled on LCD reset.
5439		 */
5440		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5441			/* Enable proxy to reset only on power good. */
5442			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5443			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5444			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5445
5446			/* Set bit enable LPI (EEE) to reset only on
5447			 * power good.
5448			 */
5449			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5450			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5451			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5452
5453			/* Disable the SMB release on LCD reset. */
5454			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5455			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5456			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5457		}
5458
5459		/* Enable MTA to reset for Intel Rapid Start Technology
5460		 * Support
5461		 */
5462		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5463		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5464		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5465
5466release:
5467		hw->phy.ops.release(hw);
5468	}
5469out:
5470	ew32(PHY_CTRL, phy_ctrl);
5471
5472	if (hw->mac.type == e1000_ich8lan)
5473		e1000e_gig_downshift_workaround_ich8lan(hw);
5474
5475	if (hw->mac.type >= e1000_pchlan) {
5476		e1000_oem_bits_config_ich8lan(hw, false);
5477
5478		/* Reset PHY to activate OEM bits on 82577/8 */
5479		if (hw->mac.type == e1000_pchlan)
5480			e1000e_phy_hw_reset_generic(hw);
5481
5482		ret_val = hw->phy.ops.acquire(hw);
5483		if (ret_val)
5484			return;
5485		e1000_write_smbus_addr(hw);
5486		hw->phy.ops.release(hw);
5487	}
5488}
5489
5490/**
5491 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5492 *  @hw: pointer to the HW structure
5493 *
5494 *  During Sx to S0 transitions on non-managed devices or managed devices
5495 *  on which PHY resets are not blocked, if the PHY registers cannot be
5496 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5497 *  the PHY.
5498 *  On i217, setup Intel Rapid Start Technology.
5499 **/
5500void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5501{
5502	s32 ret_val;
5503
5504	if (hw->mac.type < e1000_pch2lan)
5505		return;
5506
5507	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5508	if (ret_val) {
5509		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5510		return;
5511	}
5512
5513	/* For i217 Intel Rapid Start Technology support when the system
5514	 * is transitioning from Sx and no manageability engine is present
5515	 * configure SMBus to restore on reset, disable proxy, and enable
5516	 * the reset on MTA (Multicast table array).
5517	 */
5518	if (hw->phy.type == e1000_phy_i217) {
5519		u16 phy_reg;
5520
5521		ret_val = hw->phy.ops.acquire(hw);
5522		if (ret_val) {
5523			e_dbg("Failed to setup iRST\n");
5524			return;
5525		}
5526
5527		/* Clear Auto Enable LPI after link up */
5528		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5529		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5530		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5531
5532		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5533			/* Restore clear on SMB if no manageability engine
5534			 * is present
5535			 */
5536			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5537			if (ret_val)
5538				goto release;
5539			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5540			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5541
5542			/* Disable Proxy */
5543			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5544		}
5545		/* Enable reset on MTA */
5546		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5547		if (ret_val)
5548			goto release;
5549		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5550		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5551release:
5552		if (ret_val)
5553			e_dbg("Error %d in resume workarounds\n", ret_val);
5554		hw->phy.ops.release(hw);
5555	}
5556}
5557
5558/**
5559 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5560 *  @hw: pointer to the HW structure
5561 *
5562 *  Return the LED back to the default configuration.
5563 **/
5564static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5565{
5566	if (hw->phy.type == e1000_phy_ife)
5567		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5568
5569	ew32(LEDCTL, hw->mac.ledctl_default);
5570	return 0;
5571}
5572
5573/**
5574 *  e1000_led_on_ich8lan - Turn LEDs on
5575 *  @hw: pointer to the HW structure
5576 *
5577 *  Turn on the LEDs.
5578 **/
5579static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5580{
5581	if (hw->phy.type == e1000_phy_ife)
5582		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5583				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5584
5585	ew32(LEDCTL, hw->mac.ledctl_mode2);
5586	return 0;
5587}
5588
5589/**
5590 *  e1000_led_off_ich8lan - Turn LEDs off
5591 *  @hw: pointer to the HW structure
5592 *
5593 *  Turn off the LEDs.
5594 **/
5595static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5596{
5597	if (hw->phy.type == e1000_phy_ife)
5598		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5599				(IFE_PSCL_PROBE_MODE |
5600				 IFE_PSCL_PROBE_LEDS_OFF));
5601
5602	ew32(LEDCTL, hw->mac.ledctl_mode1);
5603	return 0;
5604}
5605
5606/**
5607 *  e1000_setup_led_pchlan - Configures SW controllable LED
5608 *  @hw: pointer to the HW structure
5609 *
5610 *  This prepares the SW controllable LED for use.
5611 **/
5612static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5613{
5614	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5615}
5616
5617/**
5618 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5619 *  @hw: pointer to the HW structure
5620 *
5621 *  Return the LED back to the default configuration.
5622 **/
5623static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5624{
5625	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5626}
5627
5628/**
5629 *  e1000_led_on_pchlan - Turn LEDs on
5630 *  @hw: pointer to the HW structure
5631 *
5632 *  Turn on the LEDs.
5633 **/
5634static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5635{
5636	u16 data = (u16)hw->mac.ledctl_mode2;
5637	u32 i, led;
5638
5639	/* If no link, then turn LED on by setting the invert bit
5640	 * for each LED that's mode is "link_up" in ledctl_mode2.
5641	 */
5642	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5643		for (i = 0; i < 3; i++) {
5644			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5645			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5646			    E1000_LEDCTL_MODE_LINK_UP)
5647				continue;
5648			if (led & E1000_PHY_LED0_IVRT)
5649				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5650			else
5651				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5652		}
5653	}
5654
5655	return e1e_wphy(hw, HV_LED_CONFIG, data);
5656}
5657
5658/**
5659 *  e1000_led_off_pchlan - Turn LEDs off
5660 *  @hw: pointer to the HW structure
5661 *
5662 *  Turn off the LEDs.
5663 **/
5664static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5665{
5666	u16 data = (u16)hw->mac.ledctl_mode1;
5667	u32 i, led;
5668
5669	/* If no link, then turn LED off by clearing the invert bit
5670	 * for each LED that's mode is "link_up" in ledctl_mode1.
5671	 */
5672	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5673		for (i = 0; i < 3; i++) {
5674			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5675			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5676			    E1000_LEDCTL_MODE_LINK_UP)
5677				continue;
5678			if (led & E1000_PHY_LED0_IVRT)
5679				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5680			else
5681				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5682		}
5683	}
5684
5685	return e1e_wphy(hw, HV_LED_CONFIG, data);
5686}
5687
5688/**
5689 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5690 *  @hw: pointer to the HW structure
5691 *
5692 *  Read appropriate register for the config done bit for completion status
5693 *  and configure the PHY through s/w for EEPROM-less parts.
5694 *
5695 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5696 *  config done bit, so only an error is logged and continues.  If we were
5697 *  to return with error, EEPROM-less silicon would not be able to be reset
5698 *  or change link.
5699 **/
5700static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5701{
5702	s32 ret_val = 0;
5703	u32 bank = 0;
5704	u32 status;
5705
5706	e1000e_get_cfg_done_generic(hw);
5707
5708	/* Wait for indication from h/w that it has completed basic config */
5709	if (hw->mac.type >= e1000_ich10lan) {
5710		e1000_lan_init_done_ich8lan(hw);
5711	} else {
5712		ret_val = e1000e_get_auto_rd_done(hw);
5713		if (ret_val) {
5714			/* When auto config read does not complete, do not
5715			 * return with an error. This can happen in situations
5716			 * where there is no eeprom and prevents getting link.
5717			 */
5718			e_dbg("Auto Read Done did not complete\n");
5719			ret_val = 0;
5720		}
5721	}
5722
5723	/* Clear PHY Reset Asserted bit */
5724	status = er32(STATUS);
5725	if (status & E1000_STATUS_PHYRA)
5726		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5727	else
5728		e_dbg("PHY Reset Asserted not set - needs delay\n");
5729
5730	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5731	if (hw->mac.type <= e1000_ich9lan) {
5732		if (!(er32(EECD) & E1000_EECD_PRES) &&
5733		    (hw->phy.type == e1000_phy_igp_3)) {
5734			e1000e_phy_init_script_igp3(hw);
5735		}
5736	} else {
5737		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5738			/* Maybe we should do a basic PHY config */
5739			e_dbg("EEPROM not present\n");
5740			ret_val = -E1000_ERR_CONFIG;
5741		}
5742	}
5743
5744	return ret_val;
5745}
5746
5747/**
5748 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5749 * @hw: pointer to the HW structure
5750 *
5751 * In the case of a PHY power down to save power, or to turn off link during a
5752 * driver unload, or wake on lan is not enabled, remove the link.
5753 **/
5754static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5755{
5756	/* If the management interface is not enabled, then power down */
5757	if (!(hw->mac.ops.check_mng_mode(hw) ||
5758	      hw->phy.ops.check_reset_block(hw)))
5759		e1000_power_down_phy_copper(hw);
5760}
5761
5762/**
5763 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5764 *  @hw: pointer to the HW structure
5765 *
5766 *  Clears hardware counters specific to the silicon family and calls
5767 *  clear_hw_cntrs_generic to clear all general purpose counters.
5768 **/
5769static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5770{
5771	u16 phy_data;
5772	s32 ret_val;
5773
5774	e1000e_clear_hw_cntrs_base(hw);
5775
5776	er32(ALGNERRC);
5777	er32(RXERRC);
5778	er32(TNCRS);
5779	er32(CEXTERR);
5780	er32(TSCTC);
5781	er32(TSCTFC);
5782
5783	er32(MGTPRC);
5784	er32(MGTPDC);
5785	er32(MGTPTC);
5786
5787	er32(IAC);
5788	er32(ICRXOC);
5789
5790	/* Clear PHY statistics registers */
5791	if ((hw->phy.type == e1000_phy_82578) ||
5792	    (hw->phy.type == e1000_phy_82579) ||
5793	    (hw->phy.type == e1000_phy_i217) ||
5794	    (hw->phy.type == e1000_phy_82577)) {
5795		ret_val = hw->phy.ops.acquire(hw);
5796		if (ret_val)
5797			return;
5798		ret_val = hw->phy.ops.set_page(hw,
5799					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5800		if (ret_val)
5801			goto release;
5802		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5803		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5804		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5805		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5806		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5807		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5808		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5809		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5810		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5811		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5812		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5813		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5814		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5815		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5816release:
5817		hw->phy.ops.release(hw);
5818	}
5819}
5820
5821static const struct e1000_mac_operations ich8_mac_ops = {
5822	/* check_mng_mode dependent on mac type */
5823	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5824	/* cleanup_led dependent on mac type */
5825	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5826	.get_bus_info		= e1000_get_bus_info_ich8lan,
5827	.set_lan_id		= e1000_set_lan_id_single_port,
5828	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5829	/* led_on dependent on mac type */
5830	/* led_off dependent on mac type */
5831	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5832	.reset_hw		= e1000_reset_hw_ich8lan,
5833	.init_hw		= e1000_init_hw_ich8lan,
5834	.setup_link		= e1000_setup_link_ich8lan,
5835	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5836	/* id_led_init dependent on mac type */
5837	.config_collision_dist	= e1000e_config_collision_dist_generic,
5838	.rar_set		= e1000e_rar_set_generic,
5839	.rar_get_count		= e1000e_rar_get_count_generic,
5840};
5841
5842static const struct e1000_phy_operations ich8_phy_ops = {
5843	.acquire		= e1000_acquire_swflag_ich8lan,
5844	.check_reset_block	= e1000_check_reset_block_ich8lan,
5845	.commit			= NULL,
5846	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5847	.get_cable_length	= e1000e_get_cable_length_igp_2,
5848	.read_reg		= e1000e_read_phy_reg_igp,
5849	.release		= e1000_release_swflag_ich8lan,
5850	.reset			= e1000_phy_hw_reset_ich8lan,
5851	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5852	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5853	.write_reg		= e1000e_write_phy_reg_igp,
5854};
5855
5856static const struct e1000_nvm_operations ich8_nvm_ops = {
5857	.acquire		= e1000_acquire_nvm_ich8lan,
5858	.read			= e1000_read_nvm_ich8lan,
5859	.release		= e1000_release_nvm_ich8lan,
5860	.reload			= e1000e_reload_nvm_generic,
5861	.update			= e1000_update_nvm_checksum_ich8lan,
5862	.valid_led_default	= e1000_valid_led_default_ich8lan,
5863	.validate		= e1000_validate_nvm_checksum_ich8lan,
5864	.write			= e1000_write_nvm_ich8lan,
5865};
5866
5867static const struct e1000_nvm_operations spt_nvm_ops = {
5868	.acquire		= e1000_acquire_nvm_ich8lan,
5869	.release		= e1000_release_nvm_ich8lan,
5870	.read			= e1000_read_nvm_spt,
5871	.update			= e1000_update_nvm_checksum_spt,
5872	.reload			= e1000e_reload_nvm_generic,
5873	.valid_led_default	= e1000_valid_led_default_ich8lan,
5874	.validate		= e1000_validate_nvm_checksum_ich8lan,
5875	.write			= e1000_write_nvm_ich8lan,
5876};
5877
5878const struct e1000_info e1000_ich8_info = {
5879	.mac			= e1000_ich8lan,
5880	.flags			= FLAG_HAS_WOL
5881				  | FLAG_IS_ICH
5882				  | FLAG_HAS_CTRLEXT_ON_LOAD
5883				  | FLAG_HAS_AMT
5884				  | FLAG_HAS_FLASH
5885				  | FLAG_APME_IN_WUC,
5886	.pba			= 8,
5887	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5888	.get_variants		= e1000_get_variants_ich8lan,
5889	.mac_ops		= &ich8_mac_ops,
5890	.phy_ops		= &ich8_phy_ops,
5891	.nvm_ops		= &ich8_nvm_ops,
5892};
5893
5894const struct e1000_info e1000_ich9_info = {
5895	.mac			= e1000_ich9lan,
5896	.flags			= FLAG_HAS_JUMBO_FRAMES
5897				  | FLAG_IS_ICH
5898				  | FLAG_HAS_WOL
5899				  | FLAG_HAS_CTRLEXT_ON_LOAD
5900				  | FLAG_HAS_AMT
5901				  | FLAG_HAS_FLASH
5902				  | FLAG_APME_IN_WUC,
5903	.pba			= 18,
5904	.max_hw_frame_size	= DEFAULT_JUMBO,
5905	.get_variants		= e1000_get_variants_ich8lan,
5906	.mac_ops		= &ich8_mac_ops,
5907	.phy_ops		= &ich8_phy_ops,
5908	.nvm_ops		= &ich8_nvm_ops,
5909};
5910
5911const struct e1000_info e1000_ich10_info = {
5912	.mac			= e1000_ich10lan,
5913	.flags			= FLAG_HAS_JUMBO_FRAMES
5914				  | FLAG_IS_ICH
5915				  | FLAG_HAS_WOL
5916				  | FLAG_HAS_CTRLEXT_ON_LOAD
5917				  | FLAG_HAS_AMT
5918				  | FLAG_HAS_FLASH
5919				  | FLAG_APME_IN_WUC,
5920	.pba			= 18,
5921	.max_hw_frame_size	= DEFAULT_JUMBO,
5922	.get_variants		= e1000_get_variants_ich8lan,
5923	.mac_ops		= &ich8_mac_ops,
5924	.phy_ops		= &ich8_phy_ops,
5925	.nvm_ops		= &ich8_nvm_ops,
5926};
5927
5928const struct e1000_info e1000_pch_info = {
5929	.mac			= e1000_pchlan,
5930	.flags			= FLAG_IS_ICH
5931				  | FLAG_HAS_WOL
5932				  | FLAG_HAS_CTRLEXT_ON_LOAD
5933				  | FLAG_HAS_AMT
5934				  | FLAG_HAS_FLASH
5935				  | FLAG_HAS_JUMBO_FRAMES
5936				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5937				  | FLAG_APME_IN_WUC,
5938	.flags2			= FLAG2_HAS_PHY_STATS,
5939	.pba			= 26,
5940	.max_hw_frame_size	= 4096,
5941	.get_variants		= e1000_get_variants_ich8lan,
5942	.mac_ops		= &ich8_mac_ops,
5943	.phy_ops		= &ich8_phy_ops,
5944	.nvm_ops		= &ich8_nvm_ops,
5945};
5946
5947const struct e1000_info e1000_pch2_info = {
5948	.mac			= e1000_pch2lan,
5949	.flags			= FLAG_IS_ICH
5950				  | FLAG_HAS_WOL
5951				  | FLAG_HAS_HW_TIMESTAMP
5952				  | FLAG_HAS_CTRLEXT_ON_LOAD
5953				  | FLAG_HAS_AMT
5954				  | FLAG_HAS_FLASH
5955				  | FLAG_HAS_JUMBO_FRAMES
5956				  | FLAG_APME_IN_WUC,
5957	.flags2			= FLAG2_HAS_PHY_STATS
5958				  | FLAG2_HAS_EEE
5959				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5960	.pba			= 26,
5961	.max_hw_frame_size	= 9022,
5962	.get_variants		= e1000_get_variants_ich8lan,
5963	.mac_ops		= &ich8_mac_ops,
5964	.phy_ops		= &ich8_phy_ops,
5965	.nvm_ops		= &ich8_nvm_ops,
5966};
5967
5968const struct e1000_info e1000_pch_lpt_info = {
5969	.mac			= e1000_pch_lpt,
5970	.flags			= FLAG_IS_ICH
5971				  | FLAG_HAS_WOL
5972				  | FLAG_HAS_HW_TIMESTAMP
5973				  | FLAG_HAS_CTRLEXT_ON_LOAD
5974				  | FLAG_HAS_AMT
5975				  | FLAG_HAS_FLASH
5976				  | FLAG_HAS_JUMBO_FRAMES
5977				  | FLAG_APME_IN_WUC,
5978	.flags2			= FLAG2_HAS_PHY_STATS
5979				  | FLAG2_HAS_EEE
5980				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5981	.pba			= 26,
5982	.max_hw_frame_size	= 9022,
5983	.get_variants		= e1000_get_variants_ich8lan,
5984	.mac_ops		= &ich8_mac_ops,
5985	.phy_ops		= &ich8_phy_ops,
5986	.nvm_ops		= &ich8_nvm_ops,
5987};
5988
5989const struct e1000_info e1000_pch_spt_info = {
5990	.mac			= e1000_pch_spt,
5991	.flags			= FLAG_IS_ICH
5992				  | FLAG_HAS_WOL
5993				  | FLAG_HAS_HW_TIMESTAMP
5994				  | FLAG_HAS_CTRLEXT_ON_LOAD
5995				  | FLAG_HAS_AMT
5996				  | FLAG_HAS_FLASH
5997				  | FLAG_HAS_JUMBO_FRAMES
5998				  | FLAG_APME_IN_WUC,
5999	.flags2			= FLAG2_HAS_PHY_STATS
6000				  | FLAG2_HAS_EEE,
6001	.pba			= 26,
6002	.max_hw_frame_size	= 9022,
6003	.get_variants		= e1000_get_variants_ich8lan,
6004	.mac_ops		= &ich8_mac_ops,
6005	.phy_ops		= &ich8_phy_ops,
6006	.nvm_ops		= &spt_nvm_ops,
6007};
6008
6009const struct e1000_info e1000_pch_cnp_info = {
6010	.mac			= e1000_pch_cnp,
6011	.flags			= FLAG_IS_ICH
6012				  | FLAG_HAS_WOL
6013				  | FLAG_HAS_HW_TIMESTAMP
6014				  | FLAG_HAS_CTRLEXT_ON_LOAD
6015				  | FLAG_HAS_AMT
6016				  | FLAG_HAS_FLASH
6017				  | FLAG_HAS_JUMBO_FRAMES
6018				  | FLAG_APME_IN_WUC,
6019	.flags2			= FLAG2_HAS_PHY_STATS
6020				  | FLAG2_HAS_EEE,
6021	.pba			= 26,
6022	.max_hw_frame_size	= 9022,
6023	.get_variants		= e1000_get_variants_ich8lan,
6024	.mac_ops		= &ich8_mac_ops,
6025	.phy_ops		= &ich8_phy_ops,
6026	.nvm_ops		= &spt_nvm_ops,
6027};
6028
6029const struct e1000_info e1000_pch_tgp_info = {
6030	.mac			= e1000_pch_tgp,
6031	.flags			= FLAG_IS_ICH
6032				  | FLAG_HAS_WOL
6033				  | FLAG_HAS_HW_TIMESTAMP
6034				  | FLAG_HAS_CTRLEXT_ON_LOAD
6035				  | FLAG_HAS_AMT
6036				  | FLAG_HAS_FLASH
6037				  | FLAG_HAS_JUMBO_FRAMES
6038				  | FLAG_APME_IN_WUC,
6039	.flags2			= FLAG2_HAS_PHY_STATS
6040				  | FLAG2_HAS_EEE,
6041	.pba			= 26,
6042	.max_hw_frame_size	= 9022,
6043	.get_variants		= e1000_get_variants_ich8lan,
6044	.mac_ops		= &ich8_mac_ops,
6045	.phy_ops		= &ich8_phy_ops,
6046	.nvm_ops		= &spt_nvm_ops,
6047};
6048
6049const struct e1000_info e1000_pch_adp_info = {
6050	.mac			= e1000_pch_adp,
6051	.flags			= FLAG_IS_ICH
6052				  | FLAG_HAS_WOL
6053				  | FLAG_HAS_HW_TIMESTAMP
6054				  | FLAG_HAS_CTRLEXT_ON_LOAD
6055				  | FLAG_HAS_AMT
6056				  | FLAG_HAS_FLASH
6057				  | FLAG_HAS_JUMBO_FRAMES
6058				  | FLAG_APME_IN_WUC,
6059	.flags2			= FLAG2_HAS_PHY_STATS
6060				  | FLAG2_HAS_EEE,
6061	.pba			= 26,
6062	.max_hw_frame_size	= 9022,
6063	.get_variants		= e1000_get_variants_ich8lan,
6064	.mac_ops		= &ich8_mac_ops,
6065	.phy_ops		= &ich8_phy_ops,
6066	.nvm_ops		= &spt_nvm_ops,
6067};
6068
6069const struct e1000_info e1000_pch_mtp_info = {
6070	.mac			= e1000_pch_mtp,
6071	.flags			= FLAG_IS_ICH
6072				  | FLAG_HAS_WOL
6073				  | FLAG_HAS_HW_TIMESTAMP
6074				  | FLAG_HAS_CTRLEXT_ON_LOAD
6075				  | FLAG_HAS_AMT
6076				  | FLAG_HAS_FLASH
6077				  | FLAG_HAS_JUMBO_FRAMES
6078				  | FLAG_APME_IN_WUC,
6079	.flags2			= FLAG2_HAS_PHY_STATS
6080				  | FLAG2_HAS_EEE,
6081	.pba			= 26,
6082	.max_hw_frame_size	= 9022,
6083	.get_variants		= e1000_get_variants_ich8lan,
6084	.mac_ops		= &ich8_mac_ops,
6085	.phy_ops		= &ich8_phy_ops,
6086	.nvm_ops		= &spt_nvm_ops,
6087};