Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Unforce SMBus mode in PHY */
 226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 230			/* Unforce SMBus mode in MAC */
 231			mac_reg = er32(CTRL_EXT);
 232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233			ew32(CTRL_EXT, mac_reg);
 234		}
 235	}
 236
 237	return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249	u32 mac_reg;
 250
 251	/* Set Phy Config Counter to 50msec */
 252	mac_reg = er32(FEXTNVM3);
 253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255	ew32(FEXTNVM3, mac_reg);
 256
 257	/* Toggle LANPHYPC Value bit */
 258	mac_reg = er32(CTRL);
 259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261	ew32(CTRL, mac_reg);
 262	e1e_flush();
 263	usleep_range(10, 20);
 264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265	ew32(CTRL, mac_reg);
 266	e1e_flush();
 267
 268	if (hw->mac.type < e1000_pch_lpt) {
 269		msleep(50);
 270	} else {
 271		u16 count = 20;
 272
 273		do {
 274			usleep_range(5000, 6000);
 275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277		msleep(30);
 278	}
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290	struct e1000_adapter *adapter = hw->adapter;
 291	u32 mac_reg, fwsm = er32(FWSM);
 292	s32 ret_val;
 293
 294	/* Gate automatic PHY configuration by hardware on managed and
 295	 * non-managed 82579 and newer adapters.
 296	 */
 297	e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299	/* It is not possible to be certain of the current state of ULP
 300	 * so forcibly disable it.
 301	 */
 302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 304	if (ret_val)
 305		e_warn("Failed to disable ULP\n");
 306
 307	ret_val = hw->phy.ops.acquire(hw);
 308	if (ret_val) {
 309		e_dbg("Failed to initialize PHY flow\n");
 310		goto out;
 311	}
 312
 313	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 314	 * inaccessible and resetting the PHY is not blocked, toggle the
 315	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 316	 */
 317	switch (hw->mac.type) {
 318	case e1000_pch_lpt:
 319	case e1000_pch_spt:
 320	case e1000_pch_cnp:
 321	case e1000_pch_tgp:
 322	case e1000_pch_adp:
 323	case e1000_pch_mtp:
 324	case e1000_pch_lnp:
 325	case e1000_pch_ptp:
 326	case e1000_pch_nvp:
 327		if (e1000_phy_is_accessible_pchlan(hw))
 328			break;
 329
 330		/* Before toggling LANPHYPC, see if PHY is accessible by
 331		 * forcing MAC to SMBus mode first.
 332		 */
 333		mac_reg = er32(CTRL_EXT);
 334		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 335		ew32(CTRL_EXT, mac_reg);
 336
 337		/* Wait 50 milliseconds for MAC to finish any retries
 338		 * that it might be trying to perform from previous
 339		 * attempts to acknowledge any phy read requests.
 340		 */
 341		msleep(50);
 342
 343		fallthrough;
 344	case e1000_pch2lan:
 345		if (e1000_phy_is_accessible_pchlan(hw))
 346			break;
 347
 348		fallthrough;
 349	case e1000_pchlan:
 350		if ((hw->mac.type == e1000_pchlan) &&
 351		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 352			break;
 353
 354		if (hw->phy.ops.check_reset_block(hw)) {
 355			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 356			ret_val = -E1000_ERR_PHY;
 357			break;
 358		}
 359
 360		/* Toggle LANPHYPC Value bit */
 361		e1000_toggle_lanphypc_pch_lpt(hw);
 362		if (hw->mac.type >= e1000_pch_lpt) {
 363			if (e1000_phy_is_accessible_pchlan(hw))
 364				break;
 365
 366			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 367			 * so ensure that the MAC is also out of SMBus mode
 368			 */
 369			mac_reg = er32(CTRL_EXT);
 370			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 371			ew32(CTRL_EXT, mac_reg);
 372
 373			if (e1000_phy_is_accessible_pchlan(hw))
 374				break;
 375
 376			ret_val = -E1000_ERR_PHY;
 377		}
 378		break;
 379	default:
 380		break;
 381	}
 382
 383	hw->phy.ops.release(hw);
 384	if (!ret_val) {
 385
 386		/* Check to see if able to reset PHY.  Print error if not */
 387		if (hw->phy.ops.check_reset_block(hw)) {
 388			e_err("Reset blocked by ME\n");
 389			goto out;
 390		}
 391
 392		/* Reset the PHY before any access to it.  Doing so, ensures
 393		 * that the PHY is in a known good state before we read/write
 394		 * PHY registers.  The generic reset is sufficient here,
 395		 * because we haven't determined the PHY type yet.
 396		 */
 397		ret_val = e1000e_phy_hw_reset_generic(hw);
 398		if (ret_val)
 399			goto out;
 400
 401		/* On a successful reset, possibly need to wait for the PHY
 402		 * to quiesce to an accessible state before returning control
 403		 * to the calling function.  If the PHY does not quiesce, then
 404		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 405		 *  the PHY is in.
 406		 */
 407		ret_val = hw->phy.ops.check_reset_block(hw);
 408		if (ret_val)
 409			e_err("ME blocked access to PHY after reset\n");
 410	}
 411
 412out:
 413	/* Ungate automatic PHY configuration on non-managed 82579 */
 414	if ((hw->mac.type == e1000_pch2lan) &&
 415	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 416		usleep_range(10000, 11000);
 417		e1000_gate_hw_phy_config_ich8lan(hw, false);
 418	}
 419
 420	return ret_val;
 421}
 422
 423/**
 424 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 425 *  @hw: pointer to the HW structure
 426 *
 427 *  Initialize family-specific PHY parameters and function pointers.
 428 **/
 429static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 430{
 431	struct e1000_phy_info *phy = &hw->phy;
 432	s32 ret_val;
 433
 434	phy->addr = 1;
 435	phy->reset_delay_us = 100;
 436
 437	phy->ops.set_page = e1000_set_page_igp;
 438	phy->ops.read_reg = e1000_read_phy_reg_hv;
 439	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 440	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 441	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 442	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 443	phy->ops.write_reg = e1000_write_phy_reg_hv;
 444	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 445	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 446	phy->ops.power_up = e1000_power_up_phy_copper;
 447	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 448	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 449
 450	phy->id = e1000_phy_unknown;
 451
 452	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 453	if (ret_val)
 454		return ret_val;
 455
 456	if (phy->id == e1000_phy_unknown)
 457		switch (hw->mac.type) {
 458		default:
 459			ret_val = e1000e_get_phy_id(hw);
 460			if (ret_val)
 461				return ret_val;
 462			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 463				break;
 464			fallthrough;
 465		case e1000_pch2lan:
 466		case e1000_pch_lpt:
 467		case e1000_pch_spt:
 468		case e1000_pch_cnp:
 469		case e1000_pch_tgp:
 470		case e1000_pch_adp:
 471		case e1000_pch_mtp:
 472		case e1000_pch_lnp:
 473		case e1000_pch_ptp:
 474		case e1000_pch_nvp:
 475			/* In case the PHY needs to be in mdio slow mode,
 476			 * set slow mode and try to get the PHY id again.
 477			 */
 478			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 479			if (ret_val)
 480				return ret_val;
 481			ret_val = e1000e_get_phy_id(hw);
 482			if (ret_val)
 483				return ret_val;
 484			break;
 485		}
 486	phy->type = e1000e_get_phy_type_from_id(phy->id);
 487
 488	switch (phy->type) {
 489	case e1000_phy_82577:
 490	case e1000_phy_82579:
 491	case e1000_phy_i217:
 492		phy->ops.check_polarity = e1000_check_polarity_82577;
 493		phy->ops.force_speed_duplex =
 494		    e1000_phy_force_speed_duplex_82577;
 495		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 496		phy->ops.get_info = e1000_get_phy_info_82577;
 497		phy->ops.commit = e1000e_phy_sw_reset;
 498		break;
 499	case e1000_phy_82578:
 500		phy->ops.check_polarity = e1000_check_polarity_m88;
 501		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 502		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 503		phy->ops.get_info = e1000e_get_phy_info_m88;
 504		break;
 505	default:
 506		ret_val = -E1000_ERR_PHY;
 507		break;
 508	}
 509
 510	return ret_val;
 511}
 512
 513/**
 514 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 515 *  @hw: pointer to the HW structure
 516 *
 517 *  Initialize family-specific PHY parameters and function pointers.
 518 **/
 519static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 520{
 521	struct e1000_phy_info *phy = &hw->phy;
 522	s32 ret_val;
 523	u16 i = 0;
 524
 525	phy->addr = 1;
 526	phy->reset_delay_us = 100;
 527
 528	phy->ops.power_up = e1000_power_up_phy_copper;
 529	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 530
 531	/* We may need to do this twice - once for IGP and if that fails,
 532	 * we'll set BM func pointers and try again
 533	 */
 534	ret_val = e1000e_determine_phy_address(hw);
 535	if (ret_val) {
 536		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 537		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 538		ret_val = e1000e_determine_phy_address(hw);
 539		if (ret_val) {
 540			e_dbg("Cannot determine PHY addr. Erroring out\n");
 541			return ret_val;
 542		}
 543	}
 544
 545	phy->id = 0;
 546	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 547	       (i++ < 100)) {
 548		usleep_range(1000, 1100);
 549		ret_val = e1000e_get_phy_id(hw);
 550		if (ret_val)
 551			return ret_val;
 552	}
 553
 554	/* Verify phy id */
 555	switch (phy->id) {
 556	case IGP03E1000_E_PHY_ID:
 557		phy->type = e1000_phy_igp_3;
 558		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 559		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 560		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 561		phy->ops.get_info = e1000e_get_phy_info_igp;
 562		phy->ops.check_polarity = e1000_check_polarity_igp;
 563		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 564		break;
 565	case IFE_E_PHY_ID:
 566	case IFE_PLUS_E_PHY_ID:
 567	case IFE_C_E_PHY_ID:
 568		phy->type = e1000_phy_ife;
 569		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 570		phy->ops.get_info = e1000_get_phy_info_ife;
 571		phy->ops.check_polarity = e1000_check_polarity_ife;
 572		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 573		break;
 574	case BME1000_E_PHY_ID:
 575		phy->type = e1000_phy_bm;
 576		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 577		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 578		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 579		phy->ops.commit = e1000e_phy_sw_reset;
 580		phy->ops.get_info = e1000e_get_phy_info_m88;
 581		phy->ops.check_polarity = e1000_check_polarity_m88;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 583		break;
 584	default:
 585		return -E1000_ERR_PHY;
 586	}
 587
 588	return 0;
 589}
 590
 591/**
 592 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 593 *  @hw: pointer to the HW structure
 594 *
 595 *  Initialize family-specific NVM parameters and function
 596 *  pointers.
 597 **/
 598static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 599{
 600	struct e1000_nvm_info *nvm = &hw->nvm;
 601	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 602	u32 gfpreg, sector_base_addr, sector_end_addr;
 603	u16 i;
 604	u32 nvm_size;
 605
 606	nvm->type = e1000_nvm_flash_sw;
 607
 608	if (hw->mac.type >= e1000_pch_spt) {
 609		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 610		 * STRAP register. This is because in SPT the GbE Flash region
 611		 * is no longer accessed through the flash registers. Instead,
 612		 * the mechanism has changed, and the Flash region access
 613		 * registers are now implemented in GbE memory space.
 614		 */
 615		nvm->flash_base_addr = 0;
 616		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 617		    * NVM_SIZE_MULTIPLIER;
 618		nvm->flash_bank_size = nvm_size / 2;
 619		/* Adjust to word count */
 620		nvm->flash_bank_size /= sizeof(u16);
 621		/* Set the base address for flash register access */
 622		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 623	} else {
 624		/* Can't read flash registers if register set isn't mapped. */
 625		if (!hw->flash_address) {
 626			e_dbg("ERROR: Flash registers not mapped\n");
 627			return -E1000_ERR_CONFIG;
 628		}
 629
 630		gfpreg = er32flash(ICH_FLASH_GFPREG);
 631
 632		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 633		 * Add 1 to sector_end_addr since this sector is included in
 634		 * the overall size.
 635		 */
 636		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 637		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 638
 639		/* flash_base_addr is byte-aligned */
 640		nvm->flash_base_addr = sector_base_addr
 641		    << FLASH_SECTOR_ADDR_SHIFT;
 642
 643		/* find total size of the NVM, then cut in half since the total
 644		 * size represents two separate NVM banks.
 645		 */
 646		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 647					<< FLASH_SECTOR_ADDR_SHIFT);
 648		nvm->flash_bank_size /= 2;
 649		/* Adjust to word count */
 650		nvm->flash_bank_size /= sizeof(u16);
 651	}
 652
 653	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 654
 655	/* Clear shadow ram */
 656	for (i = 0; i < nvm->word_size; i++) {
 657		dev_spec->shadow_ram[i].modified = false;
 658		dev_spec->shadow_ram[i].value = 0xFFFF;
 659	}
 660
 661	return 0;
 662}
 663
 664/**
 665 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 666 *  @hw: pointer to the HW structure
 667 *
 668 *  Initialize family-specific MAC parameters and function
 669 *  pointers.
 670 **/
 671static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 672{
 673	struct e1000_mac_info *mac = &hw->mac;
 674
 675	/* Set media type function pointer */
 676	hw->phy.media_type = e1000_media_type_copper;
 677
 678	/* Set mta register count */
 679	mac->mta_reg_count = 32;
 680	/* Set rar entry count */
 681	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 682	if (mac->type == e1000_ich8lan)
 683		mac->rar_entry_count--;
 684	/* FWSM register */
 685	mac->has_fwsm = true;
 686	/* ARC subsystem not supported */
 687	mac->arc_subsystem_valid = false;
 688	/* Adaptive IFS supported */
 689	mac->adaptive_ifs = true;
 690
 691	/* LED and other operations */
 692	switch (mac->type) {
 693	case e1000_ich8lan:
 694	case e1000_ich9lan:
 695	case e1000_ich10lan:
 696		/* check management mode */
 697		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 698		/* ID LED init */
 699		mac->ops.id_led_init = e1000e_id_led_init_generic;
 700		/* blink LED */
 701		mac->ops.blink_led = e1000e_blink_led_generic;
 702		/* setup LED */
 703		mac->ops.setup_led = e1000e_setup_led_generic;
 704		/* cleanup LED */
 705		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 706		/* turn on/off LED */
 707		mac->ops.led_on = e1000_led_on_ich8lan;
 708		mac->ops.led_off = e1000_led_off_ich8lan;
 709		break;
 710	case e1000_pch2lan:
 711		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 712		mac->ops.rar_set = e1000_rar_set_pch2lan;
 713		fallthrough;
 714	case e1000_pch_lpt:
 715	case e1000_pch_spt:
 716	case e1000_pch_cnp:
 717	case e1000_pch_tgp:
 718	case e1000_pch_adp:
 719	case e1000_pch_mtp:
 720	case e1000_pch_lnp:
 721	case e1000_pch_ptp:
 722	case e1000_pch_nvp:
 723	case e1000_pchlan:
 724		/* check management mode */
 725		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 726		/* ID LED init */
 727		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 728		/* setup LED */
 729		mac->ops.setup_led = e1000_setup_led_pchlan;
 730		/* cleanup LED */
 731		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 732		/* turn on/off LED */
 733		mac->ops.led_on = e1000_led_on_pchlan;
 734		mac->ops.led_off = e1000_led_off_pchlan;
 735		break;
 736	default:
 737		break;
 738	}
 739
 740	if (mac->type >= e1000_pch_lpt) {
 741		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 742		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 743		mac->ops.setup_physical_interface =
 744		    e1000_setup_copper_link_pch_lpt;
 745		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 746	}
 747
 748	/* Enable PCS Lock-loss workaround for ICH8 */
 749	if (mac->type == e1000_ich8lan)
 750		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 751
 752	return 0;
 753}
 754
 755/**
 756 *  __e1000_access_emi_reg_locked - Read/write EMI register
 757 *  @hw: pointer to the HW structure
 758 *  @address: EMI address to program
 759 *  @data: pointer to value to read/write from/to the EMI address
 760 *  @read: boolean flag to indicate read or write
 761 *
 762 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 763 **/
 764static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 765					 u16 *data, bool read)
 766{
 767	s32 ret_val;
 768
 769	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 770	if (ret_val)
 771		return ret_val;
 772
 773	if (read)
 774		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 775	else
 776		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 777
 778	return ret_val;
 779}
 780
 781/**
 782 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 783 *  @hw: pointer to the HW structure
 784 *  @addr: EMI address to program
 785 *  @data: value to be read from the EMI address
 786 *
 787 *  Assumes the SW/FW/HW Semaphore is already acquired.
 788 **/
 789s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 790{
 791	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 792}
 793
 794/**
 795 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 796 *  @hw: pointer to the HW structure
 797 *  @addr: EMI address to program
 798 *  @data: value to be written to the EMI address
 799 *
 800 *  Assumes the SW/FW/HW Semaphore is already acquired.
 801 **/
 802s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 803{
 804	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 805}
 806
 807/**
 808 *  e1000_set_eee_pchlan - Enable/disable EEE support
 809 *  @hw: pointer to the HW structure
 810 *
 811 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 812 *  the link and the EEE capabilities of the link partner.  The LPI Control
 813 *  register bits will remain set only if/when link is up.
 814 *
 815 *  EEE LPI must not be asserted earlier than one second after link is up.
 816 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 817 *  can be link issues with some switches.  Other devices can have EEE LPI
 818 *  enabled immediately upon link up since they have a timer in hardware which
 819 *  prevents LPI from being asserted too early.
 820 **/
 821s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 822{
 823	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 824	s32 ret_val;
 825	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 826
 827	switch (hw->phy.type) {
 828	case e1000_phy_82579:
 829		lpa = I82579_EEE_LP_ABILITY;
 830		pcs_status = I82579_EEE_PCS_STATUS;
 831		adv_addr = I82579_EEE_ADVERTISEMENT;
 832		break;
 833	case e1000_phy_i217:
 834		lpa = I217_EEE_LP_ABILITY;
 835		pcs_status = I217_EEE_PCS_STATUS;
 836		adv_addr = I217_EEE_ADVERTISEMENT;
 837		break;
 838	default:
 839		return 0;
 840	}
 841
 842	ret_val = hw->phy.ops.acquire(hw);
 843	if (ret_val)
 844		return ret_val;
 845
 846	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 847	if (ret_val)
 848		goto release;
 849
 850	/* Clear bits that enable EEE in various speeds */
 851	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 852
 853	/* Enable EEE if not disabled by user */
 854	if (!dev_spec->eee_disable) {
 855		/* Save off link partner's EEE ability */
 856		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 857						    &dev_spec->eee_lp_ability);
 858		if (ret_val)
 859			goto release;
 860
 861		/* Read EEE advertisement */
 862		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 863		if (ret_val)
 864			goto release;
 865
 866		/* Enable EEE only for speeds in which the link partner is
 867		 * EEE capable and for which we advertise EEE.
 868		 */
 869		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 870			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 871
 872		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 873			e1e_rphy_locked(hw, MII_LPA, &data);
 874			if (data & LPA_100FULL)
 875				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 876			else
 877				/* EEE is not supported in 100Half, so ignore
 878				 * partner's EEE in 100 ability if full-duplex
 879				 * is not advertised.
 880				 */
 881				dev_spec->eee_lp_ability &=
 882				    ~I82579_EEE_100_SUPPORTED;
 883		}
 884	}
 885
 886	if (hw->phy.type == e1000_phy_82579) {
 887		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 888						    &data);
 889		if (ret_val)
 890			goto release;
 891
 892		data &= ~I82579_LPI_100_PLL_SHUT;
 893		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 894						     data);
 895	}
 896
 897	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 898	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 899	if (ret_val)
 900		goto release;
 901
 902	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 903release:
 904	hw->phy.ops.release(hw);
 905
 906	return ret_val;
 907}
 908
 909/**
 910 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 911 *  @hw:   pointer to the HW structure
 912 *  @link: link up bool flag
 913 *
 914 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 915 *  preventing further DMA write requests.  Workaround the issue by disabling
 916 *  the de-assertion of the clock request when in 1Gpbs mode.
 917 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 918 *  speeds in order to avoid Tx hangs.
 919 **/
 920static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 921{
 922	u32 fextnvm6 = er32(FEXTNVM6);
 923	u32 status = er32(STATUS);
 924	s32 ret_val = 0;
 925	u16 reg;
 926
 927	if (link && (status & E1000_STATUS_SPEED_1000)) {
 928		ret_val = hw->phy.ops.acquire(hw);
 929		if (ret_val)
 930			return ret_val;
 931
 932		ret_val =
 933		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 934						&reg);
 935		if (ret_val)
 936			goto release;
 937
 938		ret_val =
 939		    e1000e_write_kmrn_reg_locked(hw,
 940						 E1000_KMRNCTRLSTA_K1_CONFIG,
 941						 reg &
 942						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 943		if (ret_val)
 944			goto release;
 945
 946		usleep_range(10, 20);
 947
 948		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 949
 950		ret_val =
 951		    e1000e_write_kmrn_reg_locked(hw,
 952						 E1000_KMRNCTRLSTA_K1_CONFIG,
 953						 reg);
 954release:
 955		hw->phy.ops.release(hw);
 956	} else {
 957		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 958		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 959
 960		if ((hw->phy.revision > 5) || !link ||
 961		    ((status & E1000_STATUS_SPEED_100) &&
 962		     (status & E1000_STATUS_FD)))
 963			goto update_fextnvm6;
 964
 965		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 966		if (ret_val)
 967			return ret_val;
 968
 969		/* Clear link status transmit timeout */
 970		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 971
 972		if (status & E1000_STATUS_SPEED_100) {
 973			/* Set inband Tx timeout to 5x10us for 100Half */
 974			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 975
 976			/* Do not extend the K1 entry latency for 100Half */
 977			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 978		} else {
 979			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 980			reg |= 50 <<
 981			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 982
 983			/* Extend the K1 entry latency for 10 Mbps */
 984			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 985		}
 986
 987		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 988		if (ret_val)
 989			return ret_val;
 990
 991update_fextnvm6:
 992		ew32(FEXTNVM6, fextnvm6);
 993	}
 994
 995	return ret_val;
 996}
 997
 998/**
 999 *  e1000_platform_pm_pch_lpt - Set platform power management values
1000 *  @hw: pointer to the HW structure
1001 *  @link: bool indicating link status
1002 *
1003 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1004 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1005 *  when link is up (which must not exceed the maximum latency supported
1006 *  by the platform), otherwise specify there is no LTR requirement.
1007 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1008 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1009 *  Capability register set, on this device LTR is set by writing the
1010 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1011 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1012 *  message to the PMC.
1013 **/
1014static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1015{
1016	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1017	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1018	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1019	u32 lat_enc_d = 0;	/* latency decoded */
1020	u16 lat_enc = 0;	/* latency encoded */
1021
1022	if (link) {
1023		u16 speed, duplex, scale = 0;
1024		u16 max_snoop, max_nosnoop;
1025		u16 max_ltr_enc;	/* max LTR latency encoded */
1026		u64 value;
1027		u32 rxa;
1028
1029		if (!hw->adapter->max_frame_size) {
1030			e_dbg("max_frame_size not set.\n");
1031			return -E1000_ERR_CONFIG;
1032		}
1033
1034		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1035		if (!speed) {
1036			e_dbg("Speed not set.\n");
1037			return -E1000_ERR_CONFIG;
1038		}
1039
1040		/* Rx Packet Buffer Allocation size (KB) */
1041		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1042
1043		/* Determine the maximum latency tolerated by the device.
1044		 *
1045		 * Per the PCIe spec, the tolerated latencies are encoded as
1046		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1047		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1048		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1049		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1050		 */
1051		rxa *= 512;
1052		value = (rxa > hw->adapter->max_frame_size) ?
1053			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1054			0;
1055
1056		while (value > PCI_LTR_VALUE_MASK) {
1057			scale++;
1058			value = DIV_ROUND_UP(value, BIT(5));
1059		}
1060		if (scale > E1000_LTRV_SCALE_MAX) {
1061			e_dbg("Invalid LTR latency scale %d\n", scale);
1062			return -E1000_ERR_CONFIG;
1063		}
1064		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1065
1066		/* Determine the maximum latency tolerated by the platform */
1067		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1068				     &max_snoop);
1069		pci_read_config_word(hw->adapter->pdev,
1070				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1071		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1072
1073		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1074			     (1U << (E1000_LTRV_SCALE_FACTOR *
1075			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1076
1077		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1078			(1U << (E1000_LTRV_SCALE_FACTOR *
1079				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1080
1081		if (lat_enc_d > max_ltr_enc_d)
1082			lat_enc = max_ltr_enc;
1083	}
1084
1085	/* Set Snoop and No-Snoop latencies the same */
1086	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1087	ew32(LTRV, reg);
1088
1089	return 0;
1090}
1091
1092/**
1093 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1094 *  @hw: pointer to the HW structure
1095 *  @to_sx: boolean indicating a system power state transition to Sx
1096 *
1097 *  When link is down, configure ULP mode to significantly reduce the power
1098 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1099 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1100 *  system, configure the ULP mode by software.
1101 */
1102s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1103{
1104	u32 mac_reg;
1105	s32 ret_val = 0;
1106	u16 phy_reg;
1107	u16 oem_reg = 0;
1108
1109	if ((hw->mac.type < e1000_pch_lpt) ||
1110	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1111	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1112	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1113	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1114	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1115		return 0;
1116
1117	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1118		/* Request ME configure ULP mode in the PHY */
1119		mac_reg = er32(H2ME);
1120		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1121		ew32(H2ME, mac_reg);
1122
1123		goto out;
1124	}
1125
1126	if (!to_sx) {
1127		int i = 0;
1128
1129		/* Poll up to 5 seconds for Cable Disconnected indication */
1130		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1131			/* Bail if link is re-acquired */
1132			if (er32(STATUS) & E1000_STATUS_LU)
1133				return -E1000_ERR_PHY;
1134
1135			if (i++ == 100)
1136				break;
1137
1138			msleep(50);
1139		}
1140		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1141		      (er32(FEXT) &
1142		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1143	}
1144
1145	ret_val = hw->phy.ops.acquire(hw);
1146	if (ret_val)
1147		goto out;
1148
1149	/* Force SMBus mode in PHY */
1150	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1151	if (ret_val)
1152		goto release;
1153	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1154	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1155
1156	/* Force SMBus mode in MAC */
1157	mac_reg = er32(CTRL_EXT);
1158	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1159	ew32(CTRL_EXT, mac_reg);
1160
1161	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1162	 * LPLU and disable Gig speed when entering ULP
1163	 */
1164	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1165		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1166						       &oem_reg);
1167		if (ret_val)
1168			goto release;
1169
1170		phy_reg = oem_reg;
1171		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1172
1173		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1174							phy_reg);
1175
1176		if (ret_val)
1177			goto release;
1178	}
1179
1180	/* Set Inband ULP Exit, Reset to SMBus mode and
1181	 * Disable SMBus Release on PERST# in PHY
1182	 */
1183	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1184	if (ret_val)
1185		goto release;
1186	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1187		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1188	if (to_sx) {
1189		if (er32(WUFC) & E1000_WUFC_LNKC)
1190			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1191		else
1192			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1193
1194		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1195		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1196	} else {
1197		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1198		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1199		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200	}
1201	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1202
1203	/* Set Disable SMBus Release on PERST# in MAC */
1204	mac_reg = er32(FEXTNVM7);
1205	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1206	ew32(FEXTNVM7, mac_reg);
1207
1208	/* Commit ULP changes in PHY by starting auto ULP configuration */
1209	phy_reg |= I218_ULP_CONFIG1_START;
1210	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1211
1212	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1213	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1214		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1215							oem_reg);
1216		if (ret_val)
1217			goto release;
1218	}
1219
1220release:
1221	hw->phy.ops.release(hw);
1222out:
1223	if (ret_val)
1224		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1225	else
1226		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1227
1228	return ret_val;
1229}
1230
1231/**
1232 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1233 *  @hw: pointer to the HW structure
1234 *  @force: boolean indicating whether or not to force disabling ULP
1235 *
1236 *  Un-configure ULP mode when link is up, the system is transitioned from
1237 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1238 *  system, poll for an indication from ME that ULP has been un-configured.
1239 *  If not on an ME enabled system, un-configure the ULP mode by software.
1240 *
1241 *  During nominal operation, this function is called when link is acquired
1242 *  to disable ULP mode (force=false); otherwise, for example when unloading
1243 *  the driver or during Sx->S0 transitions, this is called with force=true
1244 *  to forcibly disable ULP.
1245 */
1246static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1247{
1248	s32 ret_val = 0;
1249	u32 mac_reg;
1250	u16 phy_reg;
1251	int i = 0;
1252
1253	if ((hw->mac.type < e1000_pch_lpt) ||
1254	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1255	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1256	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1257	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1258	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1259		return 0;
1260
1261	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1262		struct e1000_adapter *adapter = hw->adapter;
1263		bool firmware_bug = false;
1264
1265		if (force) {
1266			/* Request ME un-configure ULP mode in the PHY */
1267			mac_reg = er32(H2ME);
1268			mac_reg &= ~E1000_H2ME_ULP;
1269			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1270			ew32(H2ME, mac_reg);
1271		}
1272
1273		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1274		 * If this takes more than 1 second, show a warning indicating a
1275		 * firmware bug
1276		 */
1277		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1278			if (i++ == 250) {
1279				ret_val = -E1000_ERR_PHY;
1280				goto out;
1281			}
1282			if (i > 100 && !firmware_bug)
1283				firmware_bug = true;
1284
1285			usleep_range(10000, 11000);
1286		}
1287		if (firmware_bug)
1288			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1289			       i * 10);
1290		else
1291			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1292			      i * 10);
1293
1294		if (force) {
1295			mac_reg = er32(H2ME);
1296			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1297			ew32(H2ME, mac_reg);
1298		} else {
1299			/* Clear H2ME.ULP after ME ULP configuration */
1300			mac_reg = er32(H2ME);
1301			mac_reg &= ~E1000_H2ME_ULP;
1302			ew32(H2ME, mac_reg);
1303		}
1304
1305		goto out;
1306	}
1307
1308	ret_val = hw->phy.ops.acquire(hw);
1309	if (ret_val)
1310		goto out;
1311
1312	if (force)
1313		/* Toggle LANPHYPC Value bit */
1314		e1000_toggle_lanphypc_pch_lpt(hw);
1315
1316	/* Unforce SMBus mode in PHY */
1317	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1318	if (ret_val) {
1319		/* The MAC might be in PCIe mode, so temporarily force to
1320		 * SMBus mode in order to access the PHY.
1321		 */
1322		mac_reg = er32(CTRL_EXT);
1323		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1324		ew32(CTRL_EXT, mac_reg);
1325
1326		msleep(50);
1327
1328		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1329						       &phy_reg);
1330		if (ret_val)
1331			goto release;
1332	}
1333	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1334	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1335
1336	/* Unforce SMBus mode in MAC */
1337	mac_reg = er32(CTRL_EXT);
1338	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1339	ew32(CTRL_EXT, mac_reg);
1340
1341	/* When ULP mode was previously entered, K1 was disabled by the
1342	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1343	 */
1344	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1345	if (ret_val)
1346		goto release;
1347	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1348	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1349
1350	/* Clear ULP enabled configuration */
1351	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1352	if (ret_val)
1353		goto release;
1354	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1355		     I218_ULP_CONFIG1_STICKY_ULP |
1356		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1357		     I218_ULP_CONFIG1_WOL_HOST |
1358		     I218_ULP_CONFIG1_INBAND_EXIT |
1359		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1360		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1361		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1362	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363
1364	/* Commit ULP changes by starting auto ULP configuration */
1365	phy_reg |= I218_ULP_CONFIG1_START;
1366	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1367
1368	/* Clear Disable SMBus Release on PERST# in MAC */
1369	mac_reg = er32(FEXTNVM7);
1370	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1371	ew32(FEXTNVM7, mac_reg);
1372
1373release:
1374	hw->phy.ops.release(hw);
1375	if (force) {
1376		e1000_phy_hw_reset(hw);
1377		msleep(50);
1378	}
1379out:
1380	if (ret_val)
1381		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1382	else
1383		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1384
1385	return ret_val;
1386}
1387
1388/**
1389 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1390 *  @hw: pointer to the HW structure
1391 *
1392 *  Checks to see of the link status of the hardware has changed.  If a
1393 *  change in link status has been detected, then we read the PHY registers
1394 *  to get the current speed/duplex if link exists.
1395 **/
1396static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1397{
1398	struct e1000_mac_info *mac = &hw->mac;
1399	s32 ret_val, tipg_reg = 0;
1400	u16 emi_addr, emi_val = 0;
1401	bool link;
1402	u16 phy_reg;
1403
1404	/* We only want to go out to the PHY registers to see if Auto-Neg
1405	 * has completed and/or if our link status has changed.  The
1406	 * get_link_status flag is set upon receiving a Link Status
1407	 * Change or Rx Sequence Error interrupt.
1408	 */
1409	if (!mac->get_link_status)
1410		return 0;
1411	mac->get_link_status = false;
1412
1413	/* First we want to see if the MII Status Register reports
1414	 * link.  If so, then we want to get the current speed/duplex
1415	 * of the PHY.
1416	 */
1417	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1418	if (ret_val)
1419		goto out;
1420
1421	if (hw->mac.type == e1000_pchlan) {
1422		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1423		if (ret_val)
1424			goto out;
1425	}
1426
1427	/* When connected at 10Mbps half-duplex, some parts are excessively
1428	 * aggressive resulting in many collisions. To avoid this, increase
1429	 * the IPG and reduce Rx latency in the PHY.
1430	 */
1431	if ((hw->mac.type >= e1000_pch2lan) && link) {
1432		u16 speed, duplex;
1433
1434		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1435		tipg_reg = er32(TIPG);
1436		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1437
1438		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1439			tipg_reg |= 0xFF;
1440			/* Reduce Rx latency in analog PHY */
1441			emi_val = 0;
1442		} else if (hw->mac.type >= e1000_pch_spt &&
1443			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1444			tipg_reg |= 0xC;
1445			emi_val = 1;
1446		} else {
1447
1448			/* Roll back the default values */
1449			tipg_reg |= 0x08;
1450			emi_val = 1;
1451		}
1452
1453		ew32(TIPG, tipg_reg);
1454
1455		ret_val = hw->phy.ops.acquire(hw);
1456		if (ret_val)
1457			goto out;
1458
1459		if (hw->mac.type == e1000_pch2lan)
1460			emi_addr = I82579_RX_CONFIG;
1461		else
1462			emi_addr = I217_RX_CONFIG;
1463		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1464
1465		if (hw->mac.type >= e1000_pch_lpt) {
1466			u16 phy_reg;
1467
1468			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1469			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1470			if (speed == SPEED_100 || speed == SPEED_10)
1471				phy_reg |= 0x3E8;
1472			else
1473				phy_reg |= 0xFA;
1474			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1475
1476			if (speed == SPEED_1000) {
1477				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1478							    &phy_reg);
1479
1480				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1481
1482				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1483							     phy_reg);
1484			}
1485		}
1486		hw->phy.ops.release(hw);
1487
1488		if (ret_val)
1489			goto out;
1490
1491		if (hw->mac.type >= e1000_pch_spt) {
1492			u16 data;
1493			u16 ptr_gap;
1494
1495			if (speed == SPEED_1000) {
1496				ret_val = hw->phy.ops.acquire(hw);
1497				if (ret_val)
1498					goto out;
1499
1500				ret_val = e1e_rphy_locked(hw,
1501							  PHY_REG(776, 20),
1502							  &data);
1503				if (ret_val) {
1504					hw->phy.ops.release(hw);
1505					goto out;
1506				}
1507
1508				ptr_gap = (data & (0x3FF << 2)) >> 2;
1509				if (ptr_gap < 0x18) {
1510					data &= ~(0x3FF << 2);
1511					data |= (0x18 << 2);
1512					ret_val =
1513					    e1e_wphy_locked(hw,
1514							    PHY_REG(776, 20),
1515							    data);
1516				}
1517				hw->phy.ops.release(hw);
1518				if (ret_val)
1519					goto out;
1520			} else {
1521				ret_val = hw->phy.ops.acquire(hw);
1522				if (ret_val)
1523					goto out;
1524
1525				ret_val = e1e_wphy_locked(hw,
1526							  PHY_REG(776, 20),
1527							  0xC023);
1528				hw->phy.ops.release(hw);
1529				if (ret_val)
1530					goto out;
1531
1532			}
1533		}
1534	}
1535
1536	/* I217 Packet Loss issue:
1537	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1538	 * on power up.
1539	 * Set the Beacon Duration for I217 to 8 usec
1540	 */
1541	if (hw->mac.type >= e1000_pch_lpt) {
1542		u32 mac_reg;
1543
1544		mac_reg = er32(FEXTNVM4);
1545		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1546		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1547		ew32(FEXTNVM4, mac_reg);
1548	}
1549
1550	/* Work-around I218 hang issue */
1551	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1552	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1553	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1554	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1555		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1556		if (ret_val)
1557			goto out;
1558	}
1559	if (hw->mac.type >= e1000_pch_lpt) {
1560		/* Set platform power management values for
1561		 * Latency Tolerance Reporting (LTR)
1562		 */
1563		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1564		if (ret_val)
1565			goto out;
1566	}
1567
1568	/* Clear link partner's EEE ability */
1569	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1570
1571	if (hw->mac.type >= e1000_pch_lpt) {
1572		u32 fextnvm6 = er32(FEXTNVM6);
1573
1574		if (hw->mac.type == e1000_pch_spt) {
1575			/* FEXTNVM6 K1-off workaround - for SPT only */
1576			u32 pcieanacfg = er32(PCIEANACFG);
1577
1578			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1579				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1580			else
1581				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1582		}
1583
1584		ew32(FEXTNVM6, fextnvm6);
1585	}
1586
1587	if (!link)
1588		goto out;
1589
1590	switch (hw->mac.type) {
1591	case e1000_pch2lan:
1592		ret_val = e1000_k1_workaround_lv(hw);
1593		if (ret_val)
1594			return ret_val;
1595		fallthrough;
1596	case e1000_pchlan:
1597		if (hw->phy.type == e1000_phy_82578) {
1598			ret_val = e1000_link_stall_workaround_hv(hw);
1599			if (ret_val)
1600				return ret_val;
1601		}
1602
1603		/* Workaround for PCHx parts in half-duplex:
1604		 * Set the number of preambles removed from the packet
1605		 * when it is passed from the PHY to the MAC to prevent
1606		 * the MAC from misinterpreting the packet type.
1607		 */
1608		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1609		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1610
1611		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1612			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1613
1614		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1615		break;
1616	default:
1617		break;
1618	}
1619
1620	/* Check if there was DownShift, must be checked
1621	 * immediately after link-up
1622	 */
1623	e1000e_check_downshift(hw);
1624
1625	/* Enable/Disable EEE after link up */
1626	if (hw->phy.type > e1000_phy_82579) {
1627		ret_val = e1000_set_eee_pchlan(hw);
1628		if (ret_val)
1629			return ret_val;
1630	}
1631
1632	/* If we are forcing speed/duplex, then we simply return since
1633	 * we have already determined whether we have link or not.
1634	 */
1635	if (!mac->autoneg)
1636		return -E1000_ERR_CONFIG;
1637
1638	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1639	 * of MAC speed/duplex configuration.  So we only need to
1640	 * configure Collision Distance in the MAC.
1641	 */
1642	mac->ops.config_collision_dist(hw);
1643
1644	/* Configure Flow Control now that Auto-Neg has completed.
1645	 * First, we need to restore the desired flow control
1646	 * settings because we may have had to re-autoneg with a
1647	 * different link partner.
1648	 */
1649	ret_val = e1000e_config_fc_after_link_up(hw);
1650	if (ret_val)
1651		e_dbg("Error configuring flow control\n");
1652
1653	return ret_val;
1654
1655out:
1656	mac->get_link_status = true;
1657	return ret_val;
1658}
1659
1660static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1661{
1662	struct e1000_hw *hw = &adapter->hw;
1663	s32 rc;
1664
1665	rc = e1000_init_mac_params_ich8lan(hw);
1666	if (rc)
1667		return rc;
1668
1669	rc = e1000_init_nvm_params_ich8lan(hw);
1670	if (rc)
1671		return rc;
1672
1673	switch (hw->mac.type) {
1674	case e1000_ich8lan:
1675	case e1000_ich9lan:
1676	case e1000_ich10lan:
1677		rc = e1000_init_phy_params_ich8lan(hw);
1678		break;
1679	case e1000_pchlan:
1680	case e1000_pch2lan:
1681	case e1000_pch_lpt:
1682	case e1000_pch_spt:
1683	case e1000_pch_cnp:
1684	case e1000_pch_tgp:
1685	case e1000_pch_adp:
1686	case e1000_pch_mtp:
1687	case e1000_pch_lnp:
1688	case e1000_pch_ptp:
1689	case e1000_pch_nvp:
1690		rc = e1000_init_phy_params_pchlan(hw);
1691		break;
1692	default:
1693		break;
1694	}
1695	if (rc)
1696		return rc;
1697
1698	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1699	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1700	 */
1701	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1702	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1703	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1704		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1705		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1706
1707		hw->mac.ops.blink_led = NULL;
1708	}
1709
1710	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1711	    (adapter->hw.phy.type != e1000_phy_ife))
1712		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1713
1714	/* Enable workaround for 82579 w/ ME enabled */
1715	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1716	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1717		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1718
1719	return 0;
1720}
1721
1722static DEFINE_MUTEX(nvm_mutex);
1723
1724/**
1725 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1726 *  @hw: pointer to the HW structure
1727 *
1728 *  Acquires the mutex for performing NVM operations.
1729 **/
1730static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1731{
1732	mutex_lock(&nvm_mutex);
1733
1734	return 0;
1735}
1736
1737/**
1738 *  e1000_release_nvm_ich8lan - Release NVM mutex
1739 *  @hw: pointer to the HW structure
1740 *
1741 *  Releases the mutex used while performing NVM operations.
1742 **/
1743static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1744{
1745	mutex_unlock(&nvm_mutex);
1746}
1747
1748/**
1749 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1750 *  @hw: pointer to the HW structure
1751 *
1752 *  Acquires the software control flag for performing PHY and select
1753 *  MAC CSR accesses.
1754 **/
1755static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1756{
1757	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1758	s32 ret_val = 0;
1759
1760	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1761			     &hw->adapter->state)) {
1762		e_dbg("contention for Phy access\n");
1763		return -E1000_ERR_PHY;
1764	}
1765
1766	while (timeout) {
1767		extcnf_ctrl = er32(EXTCNF_CTRL);
1768		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1769			break;
1770
1771		mdelay(1);
1772		timeout--;
1773	}
1774
1775	if (!timeout) {
1776		e_dbg("SW has already locked the resource.\n");
1777		ret_val = -E1000_ERR_CONFIG;
1778		goto out;
1779	}
1780
1781	timeout = SW_FLAG_TIMEOUT;
1782
1783	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1784	ew32(EXTCNF_CTRL, extcnf_ctrl);
1785
1786	while (timeout) {
1787		extcnf_ctrl = er32(EXTCNF_CTRL);
1788		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1789			break;
1790
1791		mdelay(1);
1792		timeout--;
1793	}
1794
1795	if (!timeout) {
1796		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1797		      er32(FWSM), extcnf_ctrl);
1798		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1799		ew32(EXTCNF_CTRL, extcnf_ctrl);
1800		ret_val = -E1000_ERR_CONFIG;
1801		goto out;
1802	}
1803
1804out:
1805	if (ret_val)
1806		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1807
1808	return ret_val;
1809}
1810
1811/**
1812 *  e1000_release_swflag_ich8lan - Release software control flag
1813 *  @hw: pointer to the HW structure
1814 *
1815 *  Releases the software control flag for performing PHY and select
1816 *  MAC CSR accesses.
1817 **/
1818static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1819{
1820	u32 extcnf_ctrl;
1821
1822	extcnf_ctrl = er32(EXTCNF_CTRL);
1823
1824	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1825		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1826		ew32(EXTCNF_CTRL, extcnf_ctrl);
1827	} else {
1828		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1829	}
1830
1831	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1832}
1833
1834/**
1835 *  e1000_check_mng_mode_ich8lan - Checks management mode
1836 *  @hw: pointer to the HW structure
1837 *
1838 *  This checks if the adapter has any manageability enabled.
1839 *  This is a function pointer entry point only called by read/write
1840 *  routines for the PHY and NVM parts.
1841 **/
1842static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1843{
1844	u32 fwsm;
1845
1846	fwsm = er32(FWSM);
1847	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1848		((fwsm & E1000_FWSM_MODE_MASK) ==
1849		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1850}
1851
1852/**
1853 *  e1000_check_mng_mode_pchlan - Checks management mode
1854 *  @hw: pointer to the HW structure
1855 *
1856 *  This checks if the adapter has iAMT enabled.
1857 *  This is a function pointer entry point only called by read/write
1858 *  routines for the PHY and NVM parts.
1859 **/
1860static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1861{
1862	u32 fwsm;
1863
1864	fwsm = er32(FWSM);
1865	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1866	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1867}
1868
1869/**
1870 *  e1000_rar_set_pch2lan - Set receive address register
1871 *  @hw: pointer to the HW structure
1872 *  @addr: pointer to the receive address
1873 *  @index: receive address array register
1874 *
1875 *  Sets the receive address array register at index to the address passed
1876 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1877 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1878 *  Use SHRA[0-3] in place of those reserved for ME.
1879 **/
1880static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1881{
1882	u32 rar_low, rar_high;
1883
1884	/* HW expects these in little endian so we reverse the byte order
1885	 * from network order (big endian) to little endian
1886	 */
1887	rar_low = ((u32)addr[0] |
1888		   ((u32)addr[1] << 8) |
1889		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1890
1891	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1892
1893	/* If MAC address zero, no need to set the AV bit */
1894	if (rar_low || rar_high)
1895		rar_high |= E1000_RAH_AV;
1896
1897	if (index == 0) {
1898		ew32(RAL(index), rar_low);
1899		e1e_flush();
1900		ew32(RAH(index), rar_high);
1901		e1e_flush();
1902		return 0;
1903	}
1904
1905	/* RAR[1-6] are owned by manageability.  Skip those and program the
1906	 * next address into the SHRA register array.
1907	 */
1908	if (index < (u32)(hw->mac.rar_entry_count)) {
1909		s32 ret_val;
1910
1911		ret_val = e1000_acquire_swflag_ich8lan(hw);
1912		if (ret_val)
1913			goto out;
1914
1915		ew32(SHRAL(index - 1), rar_low);
1916		e1e_flush();
1917		ew32(SHRAH(index - 1), rar_high);
1918		e1e_flush();
1919
1920		e1000_release_swflag_ich8lan(hw);
1921
1922		/* verify the register updates */
1923		if ((er32(SHRAL(index - 1)) == rar_low) &&
1924		    (er32(SHRAH(index - 1)) == rar_high))
1925			return 0;
1926
1927		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1928		      (index - 1), er32(FWSM));
1929	}
1930
1931out:
1932	e_dbg("Failed to write receive address at index %d\n", index);
1933	return -E1000_ERR_CONFIG;
1934}
1935
1936/**
1937 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1938 *  @hw: pointer to the HW structure
1939 *
1940 *  Get the number of available receive registers that the Host can
1941 *  program. SHRA[0-10] are the shared receive address registers
1942 *  that are shared between the Host and manageability engine (ME).
1943 *  ME can reserve any number of addresses and the host needs to be
1944 *  able to tell how many available registers it has access to.
1945 **/
1946static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1947{
1948	u32 wlock_mac;
1949	u32 num_entries;
1950
1951	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1952	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1953
1954	switch (wlock_mac) {
1955	case 0:
1956		/* All SHRA[0..10] and RAR[0] available */
1957		num_entries = hw->mac.rar_entry_count;
1958		break;
1959	case 1:
1960		/* Only RAR[0] available */
1961		num_entries = 1;
1962		break;
1963	default:
1964		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1965		num_entries = wlock_mac + 1;
1966		break;
1967	}
1968
1969	return num_entries;
1970}
1971
1972/**
1973 *  e1000_rar_set_pch_lpt - Set receive address registers
1974 *  @hw: pointer to the HW structure
1975 *  @addr: pointer to the receive address
1976 *  @index: receive address array register
1977 *
1978 *  Sets the receive address register array at index to the address passed
1979 *  in by addr. For LPT, RAR[0] is the base address register that is to
1980 *  contain the MAC address. SHRA[0-10] are the shared receive address
1981 *  registers that are shared between the Host and manageability engine (ME).
1982 **/
1983static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1984{
1985	u32 rar_low, rar_high;
1986	u32 wlock_mac;
1987
1988	/* HW expects these in little endian so we reverse the byte order
1989	 * from network order (big endian) to little endian
1990	 */
1991	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1992		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1993
1994	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1995
1996	/* If MAC address zero, no need to set the AV bit */
1997	if (rar_low || rar_high)
1998		rar_high |= E1000_RAH_AV;
1999
2000	if (index == 0) {
2001		ew32(RAL(index), rar_low);
2002		e1e_flush();
2003		ew32(RAH(index), rar_high);
2004		e1e_flush();
2005		return 0;
2006	}
2007
2008	/* The manageability engine (ME) can lock certain SHRAR registers that
2009	 * it is using - those registers are unavailable for use.
2010	 */
2011	if (index < hw->mac.rar_entry_count) {
2012		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2013		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2014
2015		/* Check if all SHRAR registers are locked */
2016		if (wlock_mac == 1)
2017			goto out;
2018
2019		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2020			s32 ret_val;
2021
2022			ret_val = e1000_acquire_swflag_ich8lan(hw);
2023
2024			if (ret_val)
2025				goto out;
2026
2027			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2028			e1e_flush();
2029			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2030			e1e_flush();
2031
2032			e1000_release_swflag_ich8lan(hw);
2033
2034			/* verify the register updates */
2035			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2036			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2037				return 0;
2038		}
2039	}
2040
2041out:
2042	e_dbg("Failed to write receive address at index %d\n", index);
2043	return -E1000_ERR_CONFIG;
2044}
2045
2046/**
2047 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2048 *  @hw: pointer to the HW structure
2049 *
2050 *  Checks if firmware is blocking the reset of the PHY.
2051 *  This is a function pointer entry point only called by
2052 *  reset routines.
2053 **/
2054static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2055{
2056	bool blocked = false;
2057	int i = 0;
2058
2059	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2060	       (i++ < 30))
2061		usleep_range(10000, 11000);
2062	return blocked ? E1000_BLK_PHY_RESET : 0;
2063}
2064
2065/**
2066 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2067 *  @hw: pointer to the HW structure
2068 *
2069 *  Assumes semaphore already acquired.
2070 *
2071 **/
2072static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2073{
2074	u16 phy_data;
2075	u32 strap = er32(STRAP);
2076	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
 
2077	s32 ret_val;
2078
2079	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2080
2081	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2082	if (ret_val)
2083		return ret_val;
2084
2085	phy_data &= ~HV_SMB_ADDR_MASK;
2086	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2087	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2088
2089	if (hw->phy.type == e1000_phy_i217) {
2090		/* Restore SMBus frequency */
2091		if (freq--) {
2092			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2093			phy_data |= (freq & BIT(0)) <<
2094			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2095			phy_data |= (freq & BIT(1)) <<
2096			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2097		} else {
2098			e_dbg("Unsupported SMB frequency in PHY\n");
2099		}
2100	}
2101
2102	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2103}
2104
2105/**
2106 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2107 *  @hw:   pointer to the HW structure
2108 *
2109 *  SW should configure the LCD from the NVM extended configuration region
2110 *  as a workaround for certain parts.
2111 **/
2112static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2113{
2114	struct e1000_phy_info *phy = &hw->phy;
2115	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2116	s32 ret_val = 0;
2117	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2118
2119	/* Initialize the PHY from the NVM on ICH platforms.  This
2120	 * is needed due to an issue where the NVM configuration is
2121	 * not properly autoloaded after power transitions.
2122	 * Therefore, after each PHY reset, we will load the
2123	 * configuration data out of the NVM manually.
2124	 */
2125	switch (hw->mac.type) {
2126	case e1000_ich8lan:
2127		if (phy->type != e1000_phy_igp_3)
2128			return ret_val;
2129
2130		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2131		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2132			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2133			break;
2134		}
2135		fallthrough;
2136	case e1000_pchlan:
2137	case e1000_pch2lan:
2138	case e1000_pch_lpt:
2139	case e1000_pch_spt:
2140	case e1000_pch_cnp:
2141	case e1000_pch_tgp:
2142	case e1000_pch_adp:
2143	case e1000_pch_mtp:
2144	case e1000_pch_lnp:
2145	case e1000_pch_ptp:
2146	case e1000_pch_nvp:
2147		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2148		break;
2149	default:
2150		return ret_val;
2151	}
2152
2153	ret_val = hw->phy.ops.acquire(hw);
2154	if (ret_val)
2155		return ret_val;
2156
2157	data = er32(FEXTNVM);
2158	if (!(data & sw_cfg_mask))
2159		goto release;
2160
2161	/* Make sure HW does not configure LCD from PHY
2162	 * extended configuration before SW configuration
2163	 */
2164	data = er32(EXTCNF_CTRL);
2165	if ((hw->mac.type < e1000_pch2lan) &&
2166	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2167		goto release;
2168
2169	cnf_size = er32(EXTCNF_SIZE);
2170	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2171	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2172	if (!cnf_size)
2173		goto release;
2174
2175	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2176	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2177
2178	if (((hw->mac.type == e1000_pchlan) &&
2179	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2180	    (hw->mac.type > e1000_pchlan)) {
2181		/* HW configures the SMBus address and LEDs when the
2182		 * OEM and LCD Write Enable bits are set in the NVM.
2183		 * When both NVM bits are cleared, SW will configure
2184		 * them instead.
2185		 */
2186		ret_val = e1000_write_smbus_addr(hw);
2187		if (ret_val)
2188			goto release;
2189
2190		data = er32(LEDCTL);
2191		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2192							(u16)data);
2193		if (ret_val)
2194			goto release;
2195	}
2196
2197	/* Configure LCD from extended configuration region. */
2198
2199	/* cnf_base_addr is in DWORD */
2200	word_addr = (u16)(cnf_base_addr << 1);
2201
2202	for (i = 0; i < cnf_size; i++) {
2203		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2204		if (ret_val)
2205			goto release;
2206
2207		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2208					 1, &reg_addr);
2209		if (ret_val)
2210			goto release;
2211
2212		/* Save off the PHY page for future writes. */
2213		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2214			phy_page = reg_data;
2215			continue;
2216		}
2217
2218		reg_addr &= PHY_REG_MASK;
2219		reg_addr |= phy_page;
2220
2221		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2222		if (ret_val)
2223			goto release;
2224	}
2225
2226release:
2227	hw->phy.ops.release(hw);
2228	return ret_val;
2229}
2230
2231/**
2232 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2233 *  @hw:   pointer to the HW structure
2234 *  @link: link up bool flag
2235 *
2236 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2237 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2238 *  If link is down, the function will restore the default K1 setting located
2239 *  in the NVM.
2240 **/
2241static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2242{
2243	s32 ret_val = 0;
2244	u16 status_reg = 0;
2245	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2246
2247	if (hw->mac.type != e1000_pchlan)
2248		return 0;
2249
2250	/* Wrap the whole flow with the sw flag */
2251	ret_val = hw->phy.ops.acquire(hw);
2252	if (ret_val)
2253		return ret_val;
2254
2255	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2256	if (link) {
2257		if (hw->phy.type == e1000_phy_82578) {
2258			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2259						  &status_reg);
2260			if (ret_val)
2261				goto release;
2262
2263			status_reg &= (BM_CS_STATUS_LINK_UP |
2264				       BM_CS_STATUS_RESOLVED |
2265				       BM_CS_STATUS_SPEED_MASK);
2266
2267			if (status_reg == (BM_CS_STATUS_LINK_UP |
2268					   BM_CS_STATUS_RESOLVED |
2269					   BM_CS_STATUS_SPEED_1000))
2270				k1_enable = false;
2271		}
2272
2273		if (hw->phy.type == e1000_phy_82577) {
2274			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2275			if (ret_val)
2276				goto release;
2277
2278			status_reg &= (HV_M_STATUS_LINK_UP |
2279				       HV_M_STATUS_AUTONEG_COMPLETE |
2280				       HV_M_STATUS_SPEED_MASK);
2281
2282			if (status_reg == (HV_M_STATUS_LINK_UP |
2283					   HV_M_STATUS_AUTONEG_COMPLETE |
2284					   HV_M_STATUS_SPEED_1000))
2285				k1_enable = false;
2286		}
2287
2288		/* Link stall fix for link up */
2289		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2290		if (ret_val)
2291			goto release;
2292
2293	} else {
2294		/* Link stall fix for link down */
2295		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2296		if (ret_val)
2297			goto release;
2298	}
2299
2300	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2301
2302release:
2303	hw->phy.ops.release(hw);
2304
2305	return ret_val;
2306}
2307
2308/**
2309 *  e1000_configure_k1_ich8lan - Configure K1 power state
2310 *  @hw: pointer to the HW structure
2311 *  @k1_enable: K1 state to configure
2312 *
2313 *  Configure the K1 power state based on the provided parameter.
2314 *  Assumes semaphore already acquired.
2315 *
2316 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2317 **/
2318s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2319{
2320	s32 ret_val;
2321	u32 ctrl_reg = 0;
2322	u32 ctrl_ext = 0;
2323	u32 reg = 0;
2324	u16 kmrn_reg = 0;
2325
2326	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2327					      &kmrn_reg);
2328	if (ret_val)
2329		return ret_val;
2330
2331	if (k1_enable)
2332		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2333	else
2334		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2335
2336	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2337					       kmrn_reg);
2338	if (ret_val)
2339		return ret_val;
2340
2341	usleep_range(20, 40);
2342	ctrl_ext = er32(CTRL_EXT);
2343	ctrl_reg = er32(CTRL);
2344
2345	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2346	reg |= E1000_CTRL_FRCSPD;
2347	ew32(CTRL, reg);
2348
2349	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2350	e1e_flush();
2351	usleep_range(20, 40);
2352	ew32(CTRL, ctrl_reg);
2353	ew32(CTRL_EXT, ctrl_ext);
2354	e1e_flush();
2355	usleep_range(20, 40);
2356
2357	return 0;
2358}
2359
2360/**
2361 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2362 *  @hw:       pointer to the HW structure
2363 *  @d0_state: boolean if entering d0 or d3 device state
2364 *
2365 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2366 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2367 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2368 **/
2369static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2370{
2371	s32 ret_val = 0;
2372	u32 mac_reg;
2373	u16 oem_reg;
2374
2375	if (hw->mac.type < e1000_pchlan)
2376		return ret_val;
2377
2378	ret_val = hw->phy.ops.acquire(hw);
2379	if (ret_val)
2380		return ret_val;
2381
2382	if (hw->mac.type == e1000_pchlan) {
2383		mac_reg = er32(EXTCNF_CTRL);
2384		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2385			goto release;
2386	}
2387
2388	mac_reg = er32(FEXTNVM);
2389	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2390		goto release;
2391
2392	mac_reg = er32(PHY_CTRL);
2393
2394	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2395	if (ret_val)
2396		goto release;
2397
2398	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2399
2400	if (d0_state) {
2401		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2402			oem_reg |= HV_OEM_BITS_GBE_DIS;
2403
2404		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2405			oem_reg |= HV_OEM_BITS_LPLU;
2406	} else {
2407		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2408			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2409			oem_reg |= HV_OEM_BITS_GBE_DIS;
2410
2411		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2412			       E1000_PHY_CTRL_NOND0A_LPLU))
2413			oem_reg |= HV_OEM_BITS_LPLU;
2414	}
2415
2416	/* Set Restart auto-neg to activate the bits */
2417	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2418	    !hw->phy.ops.check_reset_block(hw))
2419		oem_reg |= HV_OEM_BITS_RESTART_AN;
2420
2421	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2422
2423release:
2424	hw->phy.ops.release(hw);
2425
2426	return ret_val;
2427}
2428
2429/**
2430 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2431 *  @hw:   pointer to the HW structure
2432 **/
2433static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2434{
2435	s32 ret_val;
2436	u16 data;
2437
2438	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2439	if (ret_val)
2440		return ret_val;
2441
2442	data |= HV_KMRN_MDIO_SLOW;
2443
2444	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2445
2446	return ret_val;
2447}
2448
2449/**
2450 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2451 *  @hw: pointer to the HW structure
2452 *
2453 *  A series of PHY workarounds to be done after every PHY reset.
2454 **/
2455static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2456{
2457	s32 ret_val = 0;
2458	u16 phy_data;
2459
2460	if (hw->mac.type != e1000_pchlan)
2461		return 0;
2462
2463	/* Set MDIO slow mode before any other MDIO access */
2464	if (hw->phy.type == e1000_phy_82577) {
2465		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2466		if (ret_val)
2467			return ret_val;
2468	}
2469
2470	if (((hw->phy.type == e1000_phy_82577) &&
2471	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2472	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2473		/* Disable generation of early preamble */
2474		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2475		if (ret_val)
2476			return ret_val;
2477
2478		/* Preamble tuning for SSC */
2479		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2480		if (ret_val)
2481			return ret_val;
2482	}
2483
2484	if (hw->phy.type == e1000_phy_82578) {
2485		/* Return registers to default by doing a soft reset then
2486		 * writing 0x3140 to the control register.
2487		 */
2488		if (hw->phy.revision < 2) {
2489			e1000e_phy_sw_reset(hw);
2490			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2491			if (ret_val)
2492				return ret_val;
2493		}
2494	}
2495
2496	/* Select page 0 */
2497	ret_val = hw->phy.ops.acquire(hw);
2498	if (ret_val)
2499		return ret_val;
2500
2501	hw->phy.addr = 1;
2502	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2503	hw->phy.ops.release(hw);
2504	if (ret_val)
2505		return ret_val;
2506
2507	/* Configure the K1 Si workaround during phy reset assuming there is
2508	 * link so that it disables K1 if link is in 1Gbps.
2509	 */
2510	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2511	if (ret_val)
2512		return ret_val;
2513
2514	/* Workaround for link disconnects on a busy hub in half duplex */
2515	ret_val = hw->phy.ops.acquire(hw);
2516	if (ret_val)
2517		return ret_val;
2518	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2519	if (ret_val)
2520		goto release;
2521	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2522	if (ret_val)
2523		goto release;
2524
2525	/* set MSE higher to enable link to stay up when noise is high */
2526	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2527release:
2528	hw->phy.ops.release(hw);
2529
2530	return ret_val;
2531}
2532
2533/**
2534 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2535 *  @hw:   pointer to the HW structure
2536 **/
2537void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2538{
2539	u32 mac_reg;
2540	u16 i, phy_reg = 0;
2541	s32 ret_val;
2542
2543	ret_val = hw->phy.ops.acquire(hw);
2544	if (ret_val)
2545		return;
2546	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547	if (ret_val)
2548		goto release;
2549
2550	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2551	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2552		mac_reg = er32(RAL(i));
2553		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2554					   (u16)(mac_reg & 0xFFFF));
2555		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2556					   (u16)((mac_reg >> 16) & 0xFFFF));
2557
2558		mac_reg = er32(RAH(i));
2559		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2560					   (u16)(mac_reg & 0xFFFF));
2561		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2562					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
 
2563	}
2564
2565	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2566
2567release:
2568	hw->phy.ops.release(hw);
2569}
2570
2571/**
2572 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2573 *  with 82579 PHY
2574 *  @hw: pointer to the HW structure
2575 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2576 **/
2577s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2578{
2579	s32 ret_val = 0;
2580	u16 phy_reg, data;
2581	u32 mac_reg;
2582	u16 i;
2583
2584	if (hw->mac.type < e1000_pch2lan)
2585		return 0;
2586
2587	/* disable Rx path while enabling/disabling workaround */
2588	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2589	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2590	if (ret_val)
2591		return ret_val;
2592
2593	if (enable) {
2594		/* Write Rx addresses (rar_entry_count for RAL/H, and
2595		 * SHRAL/H) and initial CRC values to the MAC
2596		 */
2597		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2598			u8 mac_addr[ETH_ALEN] = { 0 };
2599			u32 addr_high, addr_low;
2600
2601			addr_high = er32(RAH(i));
2602			if (!(addr_high & E1000_RAH_AV))
2603				continue;
2604			addr_low = er32(RAL(i));
2605			mac_addr[0] = (addr_low & 0xFF);
2606			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2607			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2608			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2609			mac_addr[4] = (addr_high & 0xFF);
2610			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2611
2612			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2613		}
2614
2615		/* Write Rx addresses to the PHY */
2616		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2617
2618		/* Enable jumbo frame workaround in the MAC */
2619		mac_reg = er32(FFLT_DBG);
2620		mac_reg &= ~BIT(14);
2621		mac_reg |= (7 << 15);
2622		ew32(FFLT_DBG, mac_reg);
2623
2624		mac_reg = er32(RCTL);
2625		mac_reg |= E1000_RCTL_SECRC;
2626		ew32(RCTL, mac_reg);
2627
2628		ret_val = e1000e_read_kmrn_reg(hw,
2629					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2630					       &data);
2631		if (ret_val)
2632			return ret_val;
2633		ret_val = e1000e_write_kmrn_reg(hw,
2634						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2635						data | BIT(0));
2636		if (ret_val)
2637			return ret_val;
2638		ret_val = e1000e_read_kmrn_reg(hw,
2639					       E1000_KMRNCTRLSTA_HD_CTRL,
2640					       &data);
2641		if (ret_val)
2642			return ret_val;
2643		data &= ~(0xF << 8);
2644		data |= (0xB << 8);
2645		ret_val = e1000e_write_kmrn_reg(hw,
2646						E1000_KMRNCTRLSTA_HD_CTRL,
2647						data);
2648		if (ret_val)
2649			return ret_val;
2650
2651		/* Enable jumbo frame workaround in the PHY */
2652		e1e_rphy(hw, PHY_REG(769, 23), &data);
2653		data &= ~(0x7F << 5);
2654		data |= (0x37 << 5);
2655		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2656		if (ret_val)
2657			return ret_val;
2658		e1e_rphy(hw, PHY_REG(769, 16), &data);
2659		data &= ~BIT(13);
2660		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2661		if (ret_val)
2662			return ret_val;
2663		e1e_rphy(hw, PHY_REG(776, 20), &data);
2664		data &= ~(0x3FF << 2);
2665		data |= (E1000_TX_PTR_GAP << 2);
2666		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2667		if (ret_val)
2668			return ret_val;
2669		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2670		if (ret_val)
2671			return ret_val;
2672		e1e_rphy(hw, HV_PM_CTRL, &data);
2673		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2674		if (ret_val)
2675			return ret_val;
2676	} else {
2677		/* Write MAC register values back to h/w defaults */
2678		mac_reg = er32(FFLT_DBG);
2679		mac_reg &= ~(0xF << 14);
2680		ew32(FFLT_DBG, mac_reg);
2681
2682		mac_reg = er32(RCTL);
2683		mac_reg &= ~E1000_RCTL_SECRC;
2684		ew32(RCTL, mac_reg);
2685
2686		ret_val = e1000e_read_kmrn_reg(hw,
2687					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2688					       &data);
2689		if (ret_val)
2690			return ret_val;
2691		ret_val = e1000e_write_kmrn_reg(hw,
2692						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2693						data & ~BIT(0));
2694		if (ret_val)
2695			return ret_val;
2696		ret_val = e1000e_read_kmrn_reg(hw,
2697					       E1000_KMRNCTRLSTA_HD_CTRL,
2698					       &data);
2699		if (ret_val)
2700			return ret_val;
2701		data &= ~(0xF << 8);
2702		data |= (0xB << 8);
2703		ret_val = e1000e_write_kmrn_reg(hw,
2704						E1000_KMRNCTRLSTA_HD_CTRL,
2705						data);
2706		if (ret_val)
2707			return ret_val;
2708
2709		/* Write PHY register values back to h/w defaults */
2710		e1e_rphy(hw, PHY_REG(769, 23), &data);
2711		data &= ~(0x7F << 5);
2712		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2713		if (ret_val)
2714			return ret_val;
2715		e1e_rphy(hw, PHY_REG(769, 16), &data);
2716		data |= BIT(13);
2717		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2718		if (ret_val)
2719			return ret_val;
2720		e1e_rphy(hw, PHY_REG(776, 20), &data);
2721		data &= ~(0x3FF << 2);
2722		data |= (0x8 << 2);
2723		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2724		if (ret_val)
2725			return ret_val;
2726		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2727		if (ret_val)
2728			return ret_val;
2729		e1e_rphy(hw, HV_PM_CTRL, &data);
2730		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2731		if (ret_val)
2732			return ret_val;
2733	}
2734
2735	/* re-enable Rx path after enabling/disabling workaround */
2736	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2737}
2738
2739/**
2740 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2741 *  @hw: pointer to the HW structure
2742 *
2743 *  A series of PHY workarounds to be done after every PHY reset.
2744 **/
2745static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2746{
2747	s32 ret_val = 0;
2748
2749	if (hw->mac.type != e1000_pch2lan)
2750		return 0;
2751
2752	/* Set MDIO slow mode before any other MDIO access */
2753	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2754	if (ret_val)
2755		return ret_val;
2756
2757	ret_val = hw->phy.ops.acquire(hw);
2758	if (ret_val)
2759		return ret_val;
2760	/* set MSE higher to enable link to stay up when noise is high */
2761	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2762	if (ret_val)
2763		goto release;
2764	/* drop link after 5 times MSE threshold was reached */
2765	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2766release:
2767	hw->phy.ops.release(hw);
2768
2769	return ret_val;
2770}
2771
2772/**
2773 *  e1000_k1_workaround_lv - K1 Si workaround
2774 *  @hw:   pointer to the HW structure
2775 *
2776 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2777 *  Disable K1 in 1000Mbps and 100Mbps
2778 **/
2779static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2780{
2781	s32 ret_val = 0;
2782	u16 status_reg = 0;
2783
2784	if (hw->mac.type != e1000_pch2lan)
2785		return 0;
2786
2787	/* Set K1 beacon duration based on 10Mbs speed */
2788	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2789	if (ret_val)
2790		return ret_val;
2791
2792	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2793	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2794		if (status_reg &
2795		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2796			u16 pm_phy_reg;
2797
2798			/* LV 1G/100 Packet drop issue wa  */
2799			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2800			if (ret_val)
2801				return ret_val;
2802			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2803			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2804			if (ret_val)
2805				return ret_val;
2806		} else {
2807			u32 mac_reg;
2808
2809			mac_reg = er32(FEXTNVM4);
2810			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2811			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2812			ew32(FEXTNVM4, mac_reg);
2813		}
2814	}
2815
2816	return ret_val;
2817}
2818
2819/**
2820 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2821 *  @hw:   pointer to the HW structure
2822 *  @gate: boolean set to true to gate, false to ungate
2823 *
2824 *  Gate/ungate the automatic PHY configuration via hardware; perform
2825 *  the configuration via software instead.
2826 **/
2827static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2828{
2829	u32 extcnf_ctrl;
2830
2831	if (hw->mac.type < e1000_pch2lan)
2832		return;
2833
2834	extcnf_ctrl = er32(EXTCNF_CTRL);
2835
2836	if (gate)
2837		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2838	else
2839		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2840
2841	ew32(EXTCNF_CTRL, extcnf_ctrl);
2842}
2843
2844/**
2845 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2846 *  @hw: pointer to the HW structure
2847 *
2848 *  Check the appropriate indication the MAC has finished configuring the
2849 *  PHY after a software reset.
2850 **/
2851static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2852{
2853	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2854
2855	/* Wait for basic configuration completes before proceeding */
2856	do {
2857		data = er32(STATUS);
2858		data &= E1000_STATUS_LAN_INIT_DONE;
2859		usleep_range(100, 200);
2860	} while ((!data) && --loop);
2861
2862	/* If basic configuration is incomplete before the above loop
2863	 * count reaches 0, loading the configuration from NVM will
2864	 * leave the PHY in a bad state possibly resulting in no link.
2865	 */
2866	if (loop == 0)
2867		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2868
2869	/* Clear the Init Done bit for the next init event */
2870	data = er32(STATUS);
2871	data &= ~E1000_STATUS_LAN_INIT_DONE;
2872	ew32(STATUS, data);
2873}
2874
2875/**
2876 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2877 *  @hw: pointer to the HW structure
2878 **/
2879static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2880{
2881	s32 ret_val = 0;
2882	u16 reg;
2883
2884	if (hw->phy.ops.check_reset_block(hw))
2885		return 0;
2886
2887	/* Allow time for h/w to get to quiescent state after reset */
2888	usleep_range(10000, 11000);
2889
2890	/* Perform any necessary post-reset workarounds */
2891	switch (hw->mac.type) {
2892	case e1000_pchlan:
2893		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2894		if (ret_val)
2895			return ret_val;
2896		break;
2897	case e1000_pch2lan:
2898		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2899		if (ret_val)
2900			return ret_val;
2901		break;
2902	default:
2903		break;
2904	}
2905
2906	/* Clear the host wakeup bit after lcd reset */
2907	if (hw->mac.type >= e1000_pchlan) {
2908		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2909		reg &= ~BM_WUC_HOST_WU_BIT;
2910		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2911	}
2912
2913	/* Configure the LCD with the extended configuration region in NVM */
2914	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2915	if (ret_val)
2916		return ret_val;
2917
2918	/* Configure the LCD with the OEM bits in NVM */
2919	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2920
2921	if (hw->mac.type == e1000_pch2lan) {
2922		/* Ungate automatic PHY configuration on non-managed 82579 */
2923		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2924			usleep_range(10000, 11000);
2925			e1000_gate_hw_phy_config_ich8lan(hw, false);
2926		}
2927
2928		/* Set EEE LPI Update Timer to 200usec */
2929		ret_val = hw->phy.ops.acquire(hw);
2930		if (ret_val)
2931			return ret_val;
2932		ret_val = e1000_write_emi_reg_locked(hw,
2933						     I82579_LPI_UPDATE_TIMER,
2934						     0x1387);
2935		hw->phy.ops.release(hw);
2936	}
2937
2938	return ret_val;
2939}
2940
2941/**
2942 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2943 *  @hw: pointer to the HW structure
2944 *
2945 *  Resets the PHY
2946 *  This is a function pointer entry point called by drivers
2947 *  or other shared routines.
2948 **/
2949static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2950{
2951	s32 ret_val = 0;
2952
2953	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2954	if ((hw->mac.type == e1000_pch2lan) &&
2955	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2956		e1000_gate_hw_phy_config_ich8lan(hw, true);
2957
2958	ret_val = e1000e_phy_hw_reset_generic(hw);
2959	if (ret_val)
2960		return ret_val;
2961
2962	return e1000_post_phy_reset_ich8lan(hw);
2963}
2964
2965/**
2966 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2967 *  @hw: pointer to the HW structure
2968 *  @active: true to enable LPLU, false to disable
2969 *
2970 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2971 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2972 *  the phy speed. This function will manually set the LPLU bit and restart
2973 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2974 *  since it configures the same bit.
2975 **/
2976static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2977{
2978	s32 ret_val;
2979	u16 oem_reg;
2980
2981	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2982	if (ret_val)
2983		return ret_val;
2984
2985	if (active)
2986		oem_reg |= HV_OEM_BITS_LPLU;
2987	else
2988		oem_reg &= ~HV_OEM_BITS_LPLU;
2989
2990	if (!hw->phy.ops.check_reset_block(hw))
2991		oem_reg |= HV_OEM_BITS_RESTART_AN;
2992
2993	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2994}
2995
2996/**
2997 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2998 *  @hw: pointer to the HW structure
2999 *  @active: true to enable LPLU, false to disable
3000 *
3001 *  Sets the LPLU D0 state according to the active flag.  When
3002 *  activating LPLU this function also disables smart speed
3003 *  and vice versa.  LPLU will not be activated unless the
3004 *  device autonegotiation advertisement meets standards of
3005 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3006 *  This is a function pointer entry point only called by
3007 *  PHY setup routines.
3008 **/
3009static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3010{
3011	struct e1000_phy_info *phy = &hw->phy;
3012	u32 phy_ctrl;
3013	s32 ret_val = 0;
3014	u16 data;
3015
3016	if (phy->type == e1000_phy_ife)
3017		return 0;
3018
3019	phy_ctrl = er32(PHY_CTRL);
3020
3021	if (active) {
3022		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3023		ew32(PHY_CTRL, phy_ctrl);
3024
3025		if (phy->type != e1000_phy_igp_3)
3026			return 0;
3027
3028		/* Call gig speed drop workaround on LPLU before accessing
3029		 * any PHY registers
3030		 */
3031		if (hw->mac.type == e1000_ich8lan)
3032			e1000e_gig_downshift_workaround_ich8lan(hw);
3033
3034		/* When LPLU is enabled, we should disable SmartSpeed */
3035		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3036		if (ret_val)
3037			return ret_val;
3038		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3039		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3040		if (ret_val)
3041			return ret_val;
3042	} else {
3043		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3044		ew32(PHY_CTRL, phy_ctrl);
3045
3046		if (phy->type != e1000_phy_igp_3)
3047			return 0;
3048
3049		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3050		 * during Dx states where the power conservation is most
3051		 * important.  During driver activity we should enable
3052		 * SmartSpeed, so performance is maintained.
3053		 */
3054		if (phy->smart_speed == e1000_smart_speed_on) {
3055			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3056					   &data);
3057			if (ret_val)
3058				return ret_val;
3059
3060			data |= IGP01E1000_PSCFR_SMART_SPEED;
3061			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3062					   data);
3063			if (ret_val)
3064				return ret_val;
3065		} else if (phy->smart_speed == e1000_smart_speed_off) {
3066			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067					   &data);
3068			if (ret_val)
3069				return ret_val;
3070
3071			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3072			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3073					   data);
3074			if (ret_val)
3075				return ret_val;
3076		}
3077	}
3078
3079	return 0;
3080}
3081
3082/**
3083 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3084 *  @hw: pointer to the HW structure
3085 *  @active: true to enable LPLU, false to disable
3086 *
3087 *  Sets the LPLU D3 state according to the active flag.  When
3088 *  activating LPLU this function also disables smart speed
3089 *  and vice versa.  LPLU will not be activated unless the
3090 *  device autonegotiation advertisement meets standards of
3091 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3092 *  This is a function pointer entry point only called by
3093 *  PHY setup routines.
3094 **/
3095static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3096{
3097	struct e1000_phy_info *phy = &hw->phy;
3098	u32 phy_ctrl;
3099	s32 ret_val = 0;
3100	u16 data;
3101
3102	phy_ctrl = er32(PHY_CTRL);
3103
3104	if (!active) {
3105		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3106		ew32(PHY_CTRL, phy_ctrl);
3107
3108		if (phy->type != e1000_phy_igp_3)
3109			return 0;
3110
3111		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3112		 * during Dx states where the power conservation is most
3113		 * important.  During driver activity we should enable
3114		 * SmartSpeed, so performance is maintained.
3115		 */
3116		if (phy->smart_speed == e1000_smart_speed_on) {
3117			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3118					   &data);
3119			if (ret_val)
3120				return ret_val;
3121
3122			data |= IGP01E1000_PSCFR_SMART_SPEED;
3123			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3124					   data);
3125			if (ret_val)
3126				return ret_val;
3127		} else if (phy->smart_speed == e1000_smart_speed_off) {
3128			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3129					   &data);
3130			if (ret_val)
3131				return ret_val;
3132
3133			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3134			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3135					   data);
3136			if (ret_val)
3137				return ret_val;
3138		}
3139	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3140		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3141		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3142		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3143		ew32(PHY_CTRL, phy_ctrl);
3144
3145		if (phy->type != e1000_phy_igp_3)
3146			return 0;
3147
3148		/* Call gig speed drop workaround on LPLU before accessing
3149		 * any PHY registers
3150		 */
3151		if (hw->mac.type == e1000_ich8lan)
3152			e1000e_gig_downshift_workaround_ich8lan(hw);
3153
3154		/* When LPLU is enabled, we should disable SmartSpeed */
3155		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3156		if (ret_val)
3157			return ret_val;
3158
3159		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3160		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3161	}
3162
3163	return ret_val;
3164}
3165
3166/**
3167 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3168 *  @hw: pointer to the HW structure
3169 *  @bank:  pointer to the variable that returns the active bank
3170 *
3171 *  Reads signature byte from the NVM using the flash access registers.
3172 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3173 **/
3174static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3175{
3176	u32 eecd;
3177	struct e1000_nvm_info *nvm = &hw->nvm;
3178	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3179	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3180	u32 nvm_dword = 0;
3181	u8 sig_byte = 0;
3182	s32 ret_val;
3183
3184	switch (hw->mac.type) {
3185	case e1000_pch_spt:
3186	case e1000_pch_cnp:
3187	case e1000_pch_tgp:
3188	case e1000_pch_adp:
3189	case e1000_pch_mtp:
3190	case e1000_pch_lnp:
3191	case e1000_pch_ptp:
3192	case e1000_pch_nvp:
3193		bank1_offset = nvm->flash_bank_size;
3194		act_offset = E1000_ICH_NVM_SIG_WORD;
3195
3196		/* set bank to 0 in case flash read fails */
3197		*bank = 0;
3198
3199		/* Check bank 0 */
3200		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3201							 &nvm_dword);
3202		if (ret_val)
3203			return ret_val;
3204		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3205		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3206		    E1000_ICH_NVM_SIG_VALUE) {
3207			*bank = 0;
3208			return 0;
3209		}
3210
3211		/* Check bank 1 */
3212		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3213							 bank1_offset,
3214							 &nvm_dword);
3215		if (ret_val)
3216			return ret_val;
3217		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3218		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3219		    E1000_ICH_NVM_SIG_VALUE) {
3220			*bank = 1;
3221			return 0;
3222		}
3223
3224		e_dbg("ERROR: No valid NVM bank present\n");
3225		return -E1000_ERR_NVM;
3226	case e1000_ich8lan:
3227	case e1000_ich9lan:
3228		eecd = er32(EECD);
3229		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3230		    E1000_EECD_SEC1VAL_VALID_MASK) {
3231			if (eecd & E1000_EECD_SEC1VAL)
3232				*bank = 1;
3233			else
3234				*bank = 0;
3235
3236			return 0;
3237		}
3238		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3239		fallthrough;
3240	default:
3241		/* set bank to 0 in case flash read fails */
3242		*bank = 0;
3243
3244		/* Check bank 0 */
3245		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3246							&sig_byte);
3247		if (ret_val)
3248			return ret_val;
3249		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3250		    E1000_ICH_NVM_SIG_VALUE) {
3251			*bank = 0;
3252			return 0;
3253		}
3254
3255		/* Check bank 1 */
3256		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3257							bank1_offset,
3258							&sig_byte);
3259		if (ret_val)
3260			return ret_val;
3261		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3262		    E1000_ICH_NVM_SIG_VALUE) {
3263			*bank = 1;
3264			return 0;
3265		}
3266
3267		e_dbg("ERROR: No valid NVM bank present\n");
3268		return -E1000_ERR_NVM;
3269	}
3270}
3271
3272/**
3273 *  e1000_read_nvm_spt - NVM access for SPT
3274 *  @hw: pointer to the HW structure
3275 *  @offset: The offset (in bytes) of the word(s) to read.
3276 *  @words: Size of data to read in words.
3277 *  @data: pointer to the word(s) to read at offset.
3278 *
3279 *  Reads a word(s) from the NVM
3280 **/
3281static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3282			      u16 *data)
3283{
3284	struct e1000_nvm_info *nvm = &hw->nvm;
3285	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3286	u32 act_offset;
3287	s32 ret_val = 0;
3288	u32 bank = 0;
3289	u32 dword = 0;
3290	u16 offset_to_read;
3291	u16 i;
3292
3293	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294	    (words == 0)) {
3295		e_dbg("nvm parameter(s) out of bounds\n");
3296		ret_val = -E1000_ERR_NVM;
3297		goto out;
3298	}
3299
3300	nvm->ops.acquire(hw);
3301
3302	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303	if (ret_val) {
3304		e_dbg("Could not detect valid bank, assuming bank 0\n");
3305		bank = 0;
3306	}
3307
3308	act_offset = (bank) ? nvm->flash_bank_size : 0;
3309	act_offset += offset;
3310
3311	ret_val = 0;
3312
3313	for (i = 0; i < words; i += 2) {
3314		if (words - i == 1) {
3315			if (dev_spec->shadow_ram[offset + i].modified) {
3316				data[i] =
3317				    dev_spec->shadow_ram[offset + i].value;
3318			} else {
3319				offset_to_read = act_offset + i -
3320				    ((act_offset + i) % 2);
3321				ret_val =
3322				  e1000_read_flash_dword_ich8lan(hw,
3323								 offset_to_read,
3324								 &dword);
3325				if (ret_val)
3326					break;
3327				if ((act_offset + i) % 2 == 0)
3328					data[i] = (u16)(dword & 0xFFFF);
3329				else
3330					data[i] = (u16)((dword >> 16) & 0xFFFF);
3331			}
3332		} else {
3333			offset_to_read = act_offset + i;
3334			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3335			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3336				ret_val =
3337				  e1000_read_flash_dword_ich8lan(hw,
3338								 offset_to_read,
3339								 &dword);
3340				if (ret_val)
3341					break;
3342			}
3343			if (dev_spec->shadow_ram[offset + i].modified)
3344				data[i] =
3345				    dev_spec->shadow_ram[offset + i].value;
3346			else
3347				data[i] = (u16)(dword & 0xFFFF);
3348			if (dev_spec->shadow_ram[offset + i].modified)
3349				data[i + 1] =
3350				    dev_spec->shadow_ram[offset + i + 1].value;
3351			else
3352				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3353		}
3354	}
3355
3356	nvm->ops.release(hw);
3357
3358out:
3359	if (ret_val)
3360		e_dbg("NVM read error: %d\n", ret_val);
3361
3362	return ret_val;
3363}
3364
3365/**
3366 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3367 *  @hw: pointer to the HW structure
3368 *  @offset: The offset (in bytes) of the word(s) to read.
3369 *  @words: Size of data to read in words
3370 *  @data: Pointer to the word(s) to read at offset.
3371 *
3372 *  Reads a word(s) from the NVM using the flash access registers.
3373 **/
3374static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3375				  u16 *data)
3376{
3377	struct e1000_nvm_info *nvm = &hw->nvm;
3378	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3379	u32 act_offset;
3380	s32 ret_val = 0;
3381	u32 bank = 0;
3382	u16 i, word;
3383
3384	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3385	    (words == 0)) {
3386		e_dbg("nvm parameter(s) out of bounds\n");
3387		ret_val = -E1000_ERR_NVM;
3388		goto out;
3389	}
3390
3391	nvm->ops.acquire(hw);
3392
3393	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3394	if (ret_val) {
3395		e_dbg("Could not detect valid bank, assuming bank 0\n");
3396		bank = 0;
3397	}
3398
3399	act_offset = (bank) ? nvm->flash_bank_size : 0;
3400	act_offset += offset;
3401
3402	ret_val = 0;
3403	for (i = 0; i < words; i++) {
3404		if (dev_spec->shadow_ram[offset + i].modified) {
3405			data[i] = dev_spec->shadow_ram[offset + i].value;
3406		} else {
3407			ret_val = e1000_read_flash_word_ich8lan(hw,
3408								act_offset + i,
3409								&word);
3410			if (ret_val)
3411				break;
3412			data[i] = word;
3413		}
3414	}
3415
3416	nvm->ops.release(hw);
3417
3418out:
3419	if (ret_val)
3420		e_dbg("NVM read error: %d\n", ret_val);
3421
3422	return ret_val;
3423}
3424
3425/**
3426 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3427 *  @hw: pointer to the HW structure
3428 *
3429 *  This function does initial flash setup so that a new read/write/erase cycle
3430 *  can be started.
3431 **/
3432static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3433{
3434	union ich8_hws_flash_status hsfsts;
3435	s32 ret_val = -E1000_ERR_NVM;
3436
3437	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3438
3439	/* Check if the flash descriptor is valid */
3440	if (!hsfsts.hsf_status.fldesvalid) {
3441		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3442		return -E1000_ERR_NVM;
3443	}
3444
3445	/* Clear FCERR and DAEL in hw status by writing 1 */
3446	hsfsts.hsf_status.flcerr = 1;
3447	hsfsts.hsf_status.dael = 1;
3448	if (hw->mac.type >= e1000_pch_spt)
3449		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3450	else
3451		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3452
3453	/* Either we should have a hardware SPI cycle in progress
3454	 * bit to check against, in order to start a new cycle or
3455	 * FDONE bit should be changed in the hardware so that it
3456	 * is 1 after hardware reset, which can then be used as an
3457	 * indication whether a cycle is in progress or has been
3458	 * completed.
3459	 */
3460
3461	if (!hsfsts.hsf_status.flcinprog) {
3462		/* There is no cycle running at present,
3463		 * so we can start a cycle.
3464		 * Begin by setting Flash Cycle Done.
3465		 */
3466		hsfsts.hsf_status.flcdone = 1;
3467		if (hw->mac.type >= e1000_pch_spt)
3468			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3469		else
3470			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3471		ret_val = 0;
3472	} else {
3473		s32 i;
3474
3475		/* Otherwise poll for sometime so the current
3476		 * cycle has a chance to end before giving up.
3477		 */
3478		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3479			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3480			if (!hsfsts.hsf_status.flcinprog) {
3481				ret_val = 0;
3482				break;
3483			}
3484			udelay(1);
3485		}
3486		if (!ret_val) {
3487			/* Successful in waiting for previous cycle to timeout,
3488			 * now set the Flash Cycle Done.
3489			 */
3490			hsfsts.hsf_status.flcdone = 1;
3491			if (hw->mac.type >= e1000_pch_spt)
3492				ew32flash(ICH_FLASH_HSFSTS,
3493					  hsfsts.regval & 0xFFFF);
3494			else
3495				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3496		} else {
3497			e_dbg("Flash controller busy, cannot get access\n");
3498		}
3499	}
3500
3501	return ret_val;
3502}
3503
3504/**
3505 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3506 *  @hw: pointer to the HW structure
3507 *  @timeout: maximum time to wait for completion
3508 *
3509 *  This function starts a flash cycle and waits for its completion.
3510 **/
3511static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3512{
3513	union ich8_hws_flash_ctrl hsflctl;
3514	union ich8_hws_flash_status hsfsts;
3515	u32 i = 0;
3516
3517	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3518	if (hw->mac.type >= e1000_pch_spt)
3519		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3520	else
3521		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3522	hsflctl.hsf_ctrl.flcgo = 1;
3523
3524	if (hw->mac.type >= e1000_pch_spt)
3525		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3526	else
3527		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3528
3529	/* wait till FDONE bit is set to 1 */
3530	do {
3531		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3532		if (hsfsts.hsf_status.flcdone)
3533			break;
3534		udelay(1);
3535	} while (i++ < timeout);
3536
3537	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3538		return 0;
3539
3540	return -E1000_ERR_NVM;
3541}
3542
3543/**
3544 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3545 *  @hw: pointer to the HW structure
3546 *  @offset: offset to data location
3547 *  @data: pointer to the location for storing the data
3548 *
3549 *  Reads the flash dword at offset into data.  Offset is converted
3550 *  to bytes before read.
3551 **/
3552static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3553					  u32 *data)
3554{
3555	/* Must convert word offset into bytes. */
3556	offset <<= 1;
3557	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3558}
3559
3560/**
3561 *  e1000_read_flash_word_ich8lan - Read word from flash
3562 *  @hw: pointer to the HW structure
3563 *  @offset: offset to data location
3564 *  @data: pointer to the location for storing the data
3565 *
3566 *  Reads the flash word at offset into data.  Offset is converted
3567 *  to bytes before read.
3568 **/
3569static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3570					 u16 *data)
3571{
3572	/* Must convert offset into bytes. */
3573	offset <<= 1;
3574
3575	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3576}
3577
3578/**
3579 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3580 *  @hw: pointer to the HW structure
3581 *  @offset: The offset of the byte to read.
3582 *  @data: Pointer to a byte to store the value read.
3583 *
3584 *  Reads a single byte from the NVM using the flash access registers.
3585 **/
3586static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3587					 u8 *data)
3588{
3589	s32 ret_val;
3590	u16 word = 0;
3591
3592	/* In SPT, only 32 bits access is supported,
3593	 * so this function should not be called.
3594	 */
3595	if (hw->mac.type >= e1000_pch_spt)
3596		return -E1000_ERR_NVM;
3597	else
3598		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3599
3600	if (ret_val)
3601		return ret_val;
3602
3603	*data = (u8)word;
3604
3605	return 0;
3606}
3607
3608/**
3609 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3610 *  @hw: pointer to the HW structure
3611 *  @offset: The offset (in bytes) of the byte or word to read.
3612 *  @size: Size of data to read, 1=byte 2=word
3613 *  @data: Pointer to the word to store the value read.
3614 *
3615 *  Reads a byte or word from the NVM using the flash access registers.
3616 **/
3617static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3618					 u8 size, u16 *data)
3619{
3620	union ich8_hws_flash_status hsfsts;
3621	union ich8_hws_flash_ctrl hsflctl;
3622	u32 flash_linear_addr;
3623	u32 flash_data = 0;
3624	s32 ret_val = -E1000_ERR_NVM;
3625	u8 count = 0;
3626
3627	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3628		return -E1000_ERR_NVM;
3629
3630	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3631			     hw->nvm.flash_base_addr);
3632
3633	do {
3634		udelay(1);
3635		/* Steps */
3636		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3637		if (ret_val)
3638			break;
3639
3640		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3641		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3642		hsflctl.hsf_ctrl.fldbcount = size - 1;
3643		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3644		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3645
3646		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3647
3648		ret_val =
3649		    e1000_flash_cycle_ich8lan(hw,
3650					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3651
3652		/* Check if FCERR is set to 1, if set to 1, clear it
3653		 * and try the whole sequence a few more times, else
3654		 * read in (shift in) the Flash Data0, the order is
3655		 * least significant byte first msb to lsb
3656		 */
3657		if (!ret_val) {
3658			flash_data = er32flash(ICH_FLASH_FDATA0);
3659			if (size == 1)
3660				*data = (u8)(flash_data & 0x000000FF);
3661			else if (size == 2)
3662				*data = (u16)(flash_data & 0x0000FFFF);
3663			break;
3664		} else {
3665			/* If we've gotten here, then things are probably
3666			 * completely hosed, but if the error condition is
3667			 * detected, it won't hurt to give it another try...
3668			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3669			 */
3670			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3671			if (hsfsts.hsf_status.flcerr) {
3672				/* Repeat for some time before giving up. */
3673				continue;
3674			} else if (!hsfsts.hsf_status.flcdone) {
3675				e_dbg("Timeout error - flash cycle did not complete.\n");
3676				break;
3677			}
3678		}
3679	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3680
3681	return ret_val;
3682}
3683
3684/**
3685 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3686 *  @hw: pointer to the HW structure
3687 *  @offset: The offset (in bytes) of the dword to read.
3688 *  @data: Pointer to the dword to store the value read.
3689 *
3690 *  Reads a byte or word from the NVM using the flash access registers.
3691 **/
3692
3693static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3694					   u32 *data)
3695{
3696	union ich8_hws_flash_status hsfsts;
3697	union ich8_hws_flash_ctrl hsflctl;
3698	u32 flash_linear_addr;
3699	s32 ret_val = -E1000_ERR_NVM;
3700	u8 count = 0;
3701
3702	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3703		return -E1000_ERR_NVM;
3704	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3705			     hw->nvm.flash_base_addr);
3706
3707	do {
3708		udelay(1);
3709		/* Steps */
3710		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3711		if (ret_val)
3712			break;
3713		/* In SPT, This register is in Lan memory space, not flash.
3714		 * Therefore, only 32 bit access is supported
3715		 */
3716		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3717
3718		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3719		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3720		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3721		/* In SPT, This register is in Lan memory space, not flash.
3722		 * Therefore, only 32 bit access is supported
3723		 */
3724		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3725		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3726
3727		ret_val =
3728		   e1000_flash_cycle_ich8lan(hw,
3729					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3730
3731		/* Check if FCERR is set to 1, if set to 1, clear it
3732		 * and try the whole sequence a few more times, else
3733		 * read in (shift in) the Flash Data0, the order is
3734		 * least significant byte first msb to lsb
3735		 */
3736		if (!ret_val) {
3737			*data = er32flash(ICH_FLASH_FDATA0);
3738			break;
3739		} else {
3740			/* If we've gotten here, then things are probably
3741			 * completely hosed, but if the error condition is
3742			 * detected, it won't hurt to give it another try...
3743			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3744			 */
3745			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3746			if (hsfsts.hsf_status.flcerr) {
3747				/* Repeat for some time before giving up. */
3748				continue;
3749			} else if (!hsfsts.hsf_status.flcdone) {
3750				e_dbg("Timeout error - flash cycle did not complete.\n");
3751				break;
3752			}
3753		}
3754	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3755
3756	return ret_val;
3757}
3758
3759/**
3760 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3761 *  @hw: pointer to the HW structure
3762 *  @offset: The offset (in bytes) of the word(s) to write.
3763 *  @words: Size of data to write in words
3764 *  @data: Pointer to the word(s) to write at offset.
3765 *
3766 *  Writes a byte or word to the NVM using the flash access registers.
3767 **/
3768static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3769				   u16 *data)
3770{
3771	struct e1000_nvm_info *nvm = &hw->nvm;
3772	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3773	u16 i;
3774
3775	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3776	    (words == 0)) {
3777		e_dbg("nvm parameter(s) out of bounds\n");
3778		return -E1000_ERR_NVM;
3779	}
3780
3781	nvm->ops.acquire(hw);
3782
3783	for (i = 0; i < words; i++) {
3784		dev_spec->shadow_ram[offset + i].modified = true;
3785		dev_spec->shadow_ram[offset + i].value = data[i];
3786	}
3787
3788	nvm->ops.release(hw);
3789
3790	return 0;
3791}
3792
3793/**
3794 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3795 *  @hw: pointer to the HW structure
3796 *
3797 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3798 *  which writes the checksum to the shadow ram.  The changes in the shadow
3799 *  ram are then committed to the EEPROM by processing each bank at a time
3800 *  checking for the modified bit and writing only the pending changes.
3801 *  After a successful commit, the shadow ram is cleared and is ready for
3802 *  future writes.
3803 **/
3804static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3805{
3806	struct e1000_nvm_info *nvm = &hw->nvm;
3807	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3808	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3809	s32 ret_val;
3810	u32 dword = 0;
3811
3812	ret_val = e1000e_update_nvm_checksum_generic(hw);
3813	if (ret_val)
3814		goto out;
3815
3816	if (nvm->type != e1000_nvm_flash_sw)
3817		goto out;
3818
3819	nvm->ops.acquire(hw);
3820
3821	/* We're writing to the opposite bank so if we're on bank 1,
3822	 * write to bank 0 etc.  We also need to erase the segment that
3823	 * is going to be written
3824	 */
3825	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3826	if (ret_val) {
3827		e_dbg("Could not detect valid bank, assuming bank 0\n");
3828		bank = 0;
3829	}
3830
3831	if (bank == 0) {
3832		new_bank_offset = nvm->flash_bank_size;
3833		old_bank_offset = 0;
3834		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3835		if (ret_val)
3836			goto release;
3837	} else {
3838		old_bank_offset = nvm->flash_bank_size;
3839		new_bank_offset = 0;
3840		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3841		if (ret_val)
3842			goto release;
3843	}
3844	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3845		/* Determine whether to write the value stored
3846		 * in the other NVM bank or a modified value stored
3847		 * in the shadow RAM
3848		 */
3849		ret_val = e1000_read_flash_dword_ich8lan(hw,
3850							 i + old_bank_offset,
3851							 &dword);
3852
3853		if (dev_spec->shadow_ram[i].modified) {
3854			dword &= 0xffff0000;
3855			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3856		}
3857		if (dev_spec->shadow_ram[i + 1].modified) {
3858			dword &= 0x0000ffff;
3859			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3860				  << 16);
3861		}
3862		if (ret_val)
3863			break;
3864
3865		/* If the word is 0x13, then make sure the signature bits
3866		 * (15:14) are 11b until the commit has completed.
3867		 * This will allow us to write 10b which indicates the
3868		 * signature is valid.  We want to do this after the write
3869		 * has completed so that we don't mark the segment valid
3870		 * while the write is still in progress
3871		 */
3872		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3873			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3874
3875		/* Convert offset to bytes. */
3876		act_offset = (i + new_bank_offset) << 1;
3877
3878		usleep_range(100, 200);
3879
3880		/* Write the data to the new bank. Offset in words */
3881		act_offset = i + new_bank_offset;
3882		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3883								dword);
3884		if (ret_val)
3885			break;
3886	}
3887
3888	/* Don't bother writing the segment valid bits if sector
3889	 * programming failed.
3890	 */
3891	if (ret_val) {
3892		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3893		e_dbg("Flash commit failed.\n");
3894		goto release;
3895	}
3896
3897	/* Finally validate the new segment by setting bit 15:14
3898	 * to 10b in word 0x13 , this can be done without an
3899	 * erase as well since these bits are 11 to start with
3900	 * and we need to change bit 14 to 0b
3901	 */
3902	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3903
3904	/*offset in words but we read dword */
3905	--act_offset;
3906	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3907
3908	if (ret_val)
3909		goto release;
3910
3911	dword &= 0xBFFFFFFF;
3912	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3913
3914	if (ret_val)
3915		goto release;
3916
 
 
 
 
 
 
 
3917	/* offset in words but we read dword */
3918	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3919	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3920
3921	if (ret_val)
3922		goto release;
3923
3924	dword &= 0x00FFFFFF;
3925	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3926
3927	if (ret_val)
3928		goto release;
3929
3930	/* Great!  Everything worked, we can now clear the cached entries. */
3931	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3932		dev_spec->shadow_ram[i].modified = false;
3933		dev_spec->shadow_ram[i].value = 0xFFFF;
3934	}
3935
3936release:
3937	nvm->ops.release(hw);
3938
3939	/* Reload the EEPROM, or else modifications will not appear
3940	 * until after the next adapter reset.
3941	 */
3942	if (!ret_val) {
3943		nvm->ops.reload(hw);
3944		usleep_range(10000, 11000);
3945	}
3946
3947out:
3948	if (ret_val)
3949		e_dbg("NVM update error: %d\n", ret_val);
3950
3951	return ret_val;
3952}
3953
3954/**
3955 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3956 *  @hw: pointer to the HW structure
3957 *
3958 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3959 *  which writes the checksum to the shadow ram.  The changes in the shadow
3960 *  ram are then committed to the EEPROM by processing each bank at a time
3961 *  checking for the modified bit and writing only the pending changes.
3962 *  After a successful commit, the shadow ram is cleared and is ready for
3963 *  future writes.
3964 **/
3965static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3966{
3967	struct e1000_nvm_info *nvm = &hw->nvm;
3968	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3969	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3970	s32 ret_val;
3971	u16 data = 0;
3972
3973	ret_val = e1000e_update_nvm_checksum_generic(hw);
3974	if (ret_val)
3975		goto out;
3976
3977	if (nvm->type != e1000_nvm_flash_sw)
3978		goto out;
3979
3980	nvm->ops.acquire(hw);
3981
3982	/* We're writing to the opposite bank so if we're on bank 1,
3983	 * write to bank 0 etc.  We also need to erase the segment that
3984	 * is going to be written
3985	 */
3986	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3987	if (ret_val) {
3988		e_dbg("Could not detect valid bank, assuming bank 0\n");
3989		bank = 0;
3990	}
3991
3992	if (bank == 0) {
3993		new_bank_offset = nvm->flash_bank_size;
3994		old_bank_offset = 0;
3995		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3996		if (ret_val)
3997			goto release;
3998	} else {
3999		old_bank_offset = nvm->flash_bank_size;
4000		new_bank_offset = 0;
4001		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4002		if (ret_val)
4003			goto release;
4004	}
4005	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4006		if (dev_spec->shadow_ram[i].modified) {
4007			data = dev_spec->shadow_ram[i].value;
4008		} else {
4009			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4010								old_bank_offset,
4011								&data);
4012			if (ret_val)
4013				break;
4014		}
4015
4016		/* If the word is 0x13, then make sure the signature bits
4017		 * (15:14) are 11b until the commit has completed.
4018		 * This will allow us to write 10b which indicates the
4019		 * signature is valid.  We want to do this after the write
4020		 * has completed so that we don't mark the segment valid
4021		 * while the write is still in progress
4022		 */
4023		if (i == E1000_ICH_NVM_SIG_WORD)
4024			data |= E1000_ICH_NVM_SIG_MASK;
4025
4026		/* Convert offset to bytes. */
4027		act_offset = (i + new_bank_offset) << 1;
4028
4029		usleep_range(100, 200);
4030		/* Write the bytes to the new bank. */
4031		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4032							       act_offset,
4033							       (u8)data);
4034		if (ret_val)
4035			break;
4036
4037		usleep_range(100, 200);
4038		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4039							       act_offset + 1,
4040							       (u8)(data >> 8));
4041		if (ret_val)
4042			break;
4043	}
4044
4045	/* Don't bother writing the segment valid bits if sector
4046	 * programming failed.
4047	 */
4048	if (ret_val) {
4049		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4050		e_dbg("Flash commit failed.\n");
4051		goto release;
4052	}
4053
4054	/* Finally validate the new segment by setting bit 15:14
4055	 * to 10b in word 0x13 , this can be done without an
4056	 * erase as well since these bits are 11 to start with
4057	 * and we need to change bit 14 to 0b
4058	 */
4059	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4060	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4061	if (ret_val)
4062		goto release;
4063
4064	data &= 0xBFFF;
4065	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4066						       act_offset * 2 + 1,
4067						       (u8)(data >> 8));
4068	if (ret_val)
4069		goto release;
4070
4071	/* And invalidate the previously valid segment by setting
4072	 * its signature word (0x13) high_byte to 0b. This can be
4073	 * done without an erase because flash erase sets all bits
4074	 * to 1's. We can write 1's to 0's without an erase
4075	 */
4076	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4077	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4078	if (ret_val)
4079		goto release;
4080
4081	/* Great!  Everything worked, we can now clear the cached entries. */
4082	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4083		dev_spec->shadow_ram[i].modified = false;
4084		dev_spec->shadow_ram[i].value = 0xFFFF;
4085	}
4086
4087release:
4088	nvm->ops.release(hw);
4089
4090	/* Reload the EEPROM, or else modifications will not appear
4091	 * until after the next adapter reset.
4092	 */
4093	if (!ret_val) {
4094		nvm->ops.reload(hw);
4095		usleep_range(10000, 11000);
4096	}
4097
4098out:
4099	if (ret_val)
4100		e_dbg("NVM update error: %d\n", ret_val);
4101
4102	return ret_val;
4103}
4104
4105/**
4106 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4107 *  @hw: pointer to the HW structure
4108 *
4109 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4110 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4111 *  calculated, in which case we need to calculate the checksum and set bit 6.
4112 **/
4113static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4114{
4115	s32 ret_val;
4116	u16 data;
4117	u16 word;
4118	u16 valid_csum_mask;
4119
4120	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4121	 * the checksum needs to be fixed.  This bit is an indication that
4122	 * the NVM was prepared by OEM software and did not calculate
4123	 * the checksum...a likely scenario.
4124	 */
4125	switch (hw->mac.type) {
4126	case e1000_pch_lpt:
4127	case e1000_pch_spt:
4128	case e1000_pch_cnp:
4129	case e1000_pch_tgp:
4130	case e1000_pch_adp:
4131	case e1000_pch_mtp:
4132	case e1000_pch_lnp:
4133	case e1000_pch_ptp:
4134	case e1000_pch_nvp:
4135		word = NVM_COMPAT;
4136		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4137		break;
4138	default:
4139		word = NVM_FUTURE_INIT_WORD1;
4140		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4141		break;
4142	}
4143
4144	ret_val = e1000_read_nvm(hw, word, 1, &data);
4145	if (ret_val)
4146		return ret_val;
4147
4148	if (!(data & valid_csum_mask)) {
4149		e_dbg("NVM Checksum valid bit not set\n");
4150
4151		if (hw->mac.type < e1000_pch_tgp) {
4152			data |= valid_csum_mask;
4153			ret_val = e1000_write_nvm(hw, word, 1, &data);
4154			if (ret_val)
4155				return ret_val;
4156			ret_val = e1000e_update_nvm_checksum(hw);
4157			if (ret_val)
4158				return ret_val;
4159		}
4160	}
4161
4162	return e1000e_validate_nvm_checksum_generic(hw);
4163}
4164
4165/**
4166 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4167 *  @hw: pointer to the HW structure
4168 *
4169 *  To prevent malicious write/erase of the NVM, set it to be read-only
4170 *  so that the hardware ignores all write/erase cycles of the NVM via
4171 *  the flash control registers.  The shadow-ram copy of the NVM will
4172 *  still be updated, however any updates to this copy will not stick
4173 *  across driver reloads.
4174 **/
4175void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4176{
4177	struct e1000_nvm_info *nvm = &hw->nvm;
4178	union ich8_flash_protected_range pr0;
4179	union ich8_hws_flash_status hsfsts;
4180	u32 gfpreg;
4181
4182	nvm->ops.acquire(hw);
4183
4184	gfpreg = er32flash(ICH_FLASH_GFPREG);
4185
4186	/* Write-protect GbE Sector of NVM */
4187	pr0.regval = er32flash(ICH_FLASH_PR0);
4188	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4189	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4190	pr0.range.wpe = true;
4191	ew32flash(ICH_FLASH_PR0, pr0.regval);
4192
4193	/* Lock down a subset of GbE Flash Control Registers, e.g.
4194	 * PR0 to prevent the write-protection from being lifted.
4195	 * Once FLOCKDN is set, the registers protected by it cannot
4196	 * be written until FLOCKDN is cleared by a hardware reset.
4197	 */
4198	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4199	hsfsts.hsf_status.flockdn = true;
4200	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4201
4202	nvm->ops.release(hw);
4203}
4204
4205/**
4206 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4207 *  @hw: pointer to the HW structure
4208 *  @offset: The offset (in bytes) of the byte/word to read.
4209 *  @size: Size of data to read, 1=byte 2=word
4210 *  @data: The byte(s) to write to the NVM.
4211 *
4212 *  Writes one/two bytes to the NVM using the flash access registers.
4213 **/
4214static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4215					  u8 size, u16 data)
4216{
4217	union ich8_hws_flash_status hsfsts;
4218	union ich8_hws_flash_ctrl hsflctl;
4219	u32 flash_linear_addr;
4220	u32 flash_data = 0;
4221	s32 ret_val;
4222	u8 count = 0;
4223
4224	if (hw->mac.type >= e1000_pch_spt) {
4225		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4226			return -E1000_ERR_NVM;
4227	} else {
4228		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4229			return -E1000_ERR_NVM;
4230	}
4231
4232	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4233			     hw->nvm.flash_base_addr);
4234
4235	do {
4236		udelay(1);
4237		/* Steps */
4238		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4239		if (ret_val)
4240			break;
4241		/* In SPT, This register is in Lan memory space, not
4242		 * flash.  Therefore, only 32 bit access is supported
4243		 */
4244		if (hw->mac.type >= e1000_pch_spt)
4245			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4246		else
4247			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4248
4249		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4250		hsflctl.hsf_ctrl.fldbcount = size - 1;
4251		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4252		/* In SPT, This register is in Lan memory space,
4253		 * not flash.  Therefore, only 32 bit access is
4254		 * supported
4255		 */
4256		if (hw->mac.type >= e1000_pch_spt)
4257			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4258		else
4259			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4260
4261		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4262
4263		if (size == 1)
4264			flash_data = (u32)data & 0x00FF;
4265		else
4266			flash_data = (u32)data;
4267
4268		ew32flash(ICH_FLASH_FDATA0, flash_data);
4269
4270		/* check if FCERR is set to 1 , if set to 1, clear it
4271		 * and try the whole sequence a few more times else done
4272		 */
4273		ret_val =
4274		    e1000_flash_cycle_ich8lan(hw,
4275					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4276		if (!ret_val)
4277			break;
4278
4279		/* If we're here, then things are most likely
4280		 * completely hosed, but if the error condition
4281		 * is detected, it won't hurt to give it another
4282		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4283		 */
4284		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4285		if (hsfsts.hsf_status.flcerr)
4286			/* Repeat for some time before giving up. */
4287			continue;
4288		if (!hsfsts.hsf_status.flcdone) {
4289			e_dbg("Timeout error - flash cycle did not complete.\n");
4290			break;
4291		}
4292	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4293
4294	return ret_val;
4295}
4296
4297/**
4298*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4299*  @hw: pointer to the HW structure
4300*  @offset: The offset (in bytes) of the dwords to read.
4301*  @data: The 4 bytes to write to the NVM.
4302*
4303*  Writes one/two/four bytes to the NVM using the flash access registers.
4304**/
4305static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4306					    u32 data)
4307{
4308	union ich8_hws_flash_status hsfsts;
4309	union ich8_hws_flash_ctrl hsflctl;
4310	u32 flash_linear_addr;
4311	s32 ret_val;
4312	u8 count = 0;
4313
4314	if (hw->mac.type >= e1000_pch_spt) {
4315		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4316			return -E1000_ERR_NVM;
4317	}
4318	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4319			     hw->nvm.flash_base_addr);
4320	do {
4321		udelay(1);
4322		/* Steps */
4323		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4324		if (ret_val)
4325			break;
4326
4327		/* In SPT, This register is in Lan memory space, not
4328		 * flash.  Therefore, only 32 bit access is supported
4329		 */
4330		if (hw->mac.type >= e1000_pch_spt)
4331			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4332			    >> 16;
4333		else
4334			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4335
4336		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4337		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4338
4339		/* In SPT, This register is in Lan memory space,
4340		 * not flash.  Therefore, only 32 bit access is
4341		 * supported
4342		 */
4343		if (hw->mac.type >= e1000_pch_spt)
4344			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4345		else
4346			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4347
4348		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4349
4350		ew32flash(ICH_FLASH_FDATA0, data);
4351
4352		/* check if FCERR is set to 1 , if set to 1, clear it
4353		 * and try the whole sequence a few more times else done
4354		 */
4355		ret_val =
4356		   e1000_flash_cycle_ich8lan(hw,
4357					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4358
4359		if (!ret_val)
4360			break;
4361
4362		/* If we're here, then things are most likely
4363		 * completely hosed, but if the error condition
4364		 * is detected, it won't hurt to give it another
4365		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4366		 */
4367		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4368
4369		if (hsfsts.hsf_status.flcerr)
4370			/* Repeat for some time before giving up. */
4371			continue;
4372		if (!hsfsts.hsf_status.flcdone) {
4373			e_dbg("Timeout error - flash cycle did not complete.\n");
4374			break;
4375		}
4376	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4377
4378	return ret_val;
4379}
4380
4381/**
4382 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4383 *  @hw: pointer to the HW structure
4384 *  @offset: The index of the byte to read.
4385 *  @data: The byte to write to the NVM.
4386 *
4387 *  Writes a single byte to the NVM using the flash access registers.
4388 **/
4389static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4390					  u8 data)
4391{
4392	u16 word = (u16)data;
4393
4394	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4395}
4396
4397/**
4398*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4399*  @hw: pointer to the HW structure
4400*  @offset: The offset of the word to write.
4401*  @dword: The dword to write to the NVM.
4402*
4403*  Writes a single dword to the NVM using the flash access registers.
4404*  Goes through a retry algorithm before giving up.
4405**/
4406static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4407						 u32 offset, u32 dword)
4408{
4409	s32 ret_val;
4410	u16 program_retries;
4411
4412	/* Must convert word offset into bytes. */
4413	offset <<= 1;
4414	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4415
4416	if (!ret_val)
4417		return ret_val;
4418	for (program_retries = 0; program_retries < 100; program_retries++) {
4419		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4420		usleep_range(100, 200);
4421		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4422		if (!ret_val)
4423			break;
4424	}
4425	if (program_retries == 100)
4426		return -E1000_ERR_NVM;
4427
4428	return 0;
4429}
4430
4431/**
4432 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4433 *  @hw: pointer to the HW structure
4434 *  @offset: The offset of the byte to write.
4435 *  @byte: The byte to write to the NVM.
4436 *
4437 *  Writes a single byte to the NVM using the flash access registers.
4438 *  Goes through a retry algorithm before giving up.
4439 **/
4440static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4441						u32 offset, u8 byte)
4442{
4443	s32 ret_val;
4444	u16 program_retries;
4445
4446	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4447	if (!ret_val)
4448		return ret_val;
4449
4450	for (program_retries = 0; program_retries < 100; program_retries++) {
4451		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4452		usleep_range(100, 200);
4453		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4454		if (!ret_val)
4455			break;
4456	}
4457	if (program_retries == 100)
4458		return -E1000_ERR_NVM;
4459
4460	return 0;
4461}
4462
4463/**
4464 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4465 *  @hw: pointer to the HW structure
4466 *  @bank: 0 for first bank, 1 for second bank, etc.
4467 *
4468 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4469 *  bank N is 4096 * N + flash_reg_addr.
4470 **/
4471static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4472{
4473	struct e1000_nvm_info *nvm = &hw->nvm;
4474	union ich8_hws_flash_status hsfsts;
4475	union ich8_hws_flash_ctrl hsflctl;
4476	u32 flash_linear_addr;
4477	/* bank size is in 16bit words - adjust to bytes */
4478	u32 flash_bank_size = nvm->flash_bank_size * 2;
4479	s32 ret_val;
4480	s32 count = 0;
4481	s32 j, iteration, sector_size;
4482
4483	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4484
4485	/* Determine HW Sector size: Read BERASE bits of hw flash status
4486	 * register
4487	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4488	 *     consecutive sectors.  The start index for the nth Hw sector
4489	 *     can be calculated as = bank * 4096 + n * 256
4490	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4491	 *     The start index for the nth Hw sector can be calculated
4492	 *     as = bank * 4096
4493	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4494	 *     (ich9 only, otherwise error condition)
4495	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4496	 */
4497	switch (hsfsts.hsf_status.berasesz) {
4498	case 0:
4499		/* Hw sector size 256 */
4500		sector_size = ICH_FLASH_SEG_SIZE_256;
4501		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4502		break;
4503	case 1:
4504		sector_size = ICH_FLASH_SEG_SIZE_4K;
4505		iteration = 1;
4506		break;
4507	case 2:
4508		sector_size = ICH_FLASH_SEG_SIZE_8K;
4509		iteration = 1;
4510		break;
4511	case 3:
4512		sector_size = ICH_FLASH_SEG_SIZE_64K;
4513		iteration = 1;
4514		break;
4515	default:
4516		return -E1000_ERR_NVM;
4517	}
4518
4519	/* Start with the base address, then add the sector offset. */
4520	flash_linear_addr = hw->nvm.flash_base_addr;
4521	flash_linear_addr += (bank) ? flash_bank_size : 0;
4522
4523	for (j = 0; j < iteration; j++) {
4524		do {
4525			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4526
4527			/* Steps */
4528			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4529			if (ret_val)
4530				return ret_val;
4531
4532			/* Write a value 11 (block Erase) in Flash
4533			 * Cycle field in hw flash control
4534			 */
4535			if (hw->mac.type >= e1000_pch_spt)
4536				hsflctl.regval =
4537				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4538			else
4539				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4540
4541			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4542			if (hw->mac.type >= e1000_pch_spt)
4543				ew32flash(ICH_FLASH_HSFSTS,
4544					  hsflctl.regval << 16);
4545			else
4546				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4547
4548			/* Write the last 24 bits of an index within the
4549			 * block into Flash Linear address field in Flash
4550			 * Address.
4551			 */
4552			flash_linear_addr += (j * sector_size);
4553			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4554
4555			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4556			if (!ret_val)
4557				break;
4558
4559			/* Check if FCERR is set to 1.  If 1,
4560			 * clear it and try the whole sequence
4561			 * a few more times else Done
4562			 */
4563			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4564			if (hsfsts.hsf_status.flcerr)
4565				/* repeat for some time before giving up */
4566				continue;
4567			else if (!hsfsts.hsf_status.flcdone)
4568				return ret_val;
4569		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4570	}
4571
4572	return 0;
4573}
4574
4575/**
4576 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4577 *  @hw: pointer to the HW structure
4578 *  @data: Pointer to the LED settings
4579 *
4580 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4581 *  settings is all 0's or F's, set the LED default to a valid LED default
4582 *  setting.
4583 **/
4584static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4585{
4586	s32 ret_val;
4587
4588	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4589	if (ret_val) {
4590		e_dbg("NVM Read Error\n");
4591		return ret_val;
4592	}
4593
4594	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4595		*data = ID_LED_DEFAULT_ICH8LAN;
4596
4597	return 0;
4598}
4599
4600/**
4601 *  e1000_id_led_init_pchlan - store LED configurations
4602 *  @hw: pointer to the HW structure
4603 *
4604 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4605 *  the PHY LED configuration register.
4606 *
4607 *  PCH also does not have an "always on" or "always off" mode which
4608 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4609 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4610 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4611 *  link based on logic in e1000_led_[on|off]_pchlan().
4612 **/
4613static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4614{
4615	struct e1000_mac_info *mac = &hw->mac;
4616	s32 ret_val;
4617	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4618	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4619	u16 data, i, temp, shift;
4620
4621	/* Get default ID LED modes */
4622	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4623	if (ret_val)
4624		return ret_val;
4625
4626	mac->ledctl_default = er32(LEDCTL);
4627	mac->ledctl_mode1 = mac->ledctl_default;
4628	mac->ledctl_mode2 = mac->ledctl_default;
4629
4630	for (i = 0; i < 4; i++) {
4631		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4632		shift = (i * 5);
4633		switch (temp) {
4634		case ID_LED_ON1_DEF2:
4635		case ID_LED_ON1_ON2:
4636		case ID_LED_ON1_OFF2:
4637			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4638			mac->ledctl_mode1 |= (ledctl_on << shift);
4639			break;
4640		case ID_LED_OFF1_DEF2:
4641		case ID_LED_OFF1_ON2:
4642		case ID_LED_OFF1_OFF2:
4643			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4644			mac->ledctl_mode1 |= (ledctl_off << shift);
4645			break;
4646		default:
4647			/* Do nothing */
4648			break;
4649		}
4650		switch (temp) {
4651		case ID_LED_DEF1_ON2:
4652		case ID_LED_ON1_ON2:
4653		case ID_LED_OFF1_ON2:
4654			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4655			mac->ledctl_mode2 |= (ledctl_on << shift);
4656			break;
4657		case ID_LED_DEF1_OFF2:
4658		case ID_LED_ON1_OFF2:
4659		case ID_LED_OFF1_OFF2:
4660			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4661			mac->ledctl_mode2 |= (ledctl_off << shift);
4662			break;
4663		default:
4664			/* Do nothing */
4665			break;
4666		}
4667	}
4668
4669	return 0;
4670}
4671
4672/**
4673 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4674 *  @hw: pointer to the HW structure
4675 *
4676 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4677 *  register, so the bus width is hard coded.
4678 **/
4679static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4680{
4681	struct e1000_bus_info *bus = &hw->bus;
4682	s32 ret_val;
4683
4684	ret_val = e1000e_get_bus_info_pcie(hw);
4685
4686	/* ICH devices are "PCI Express"-ish.  They have
4687	 * a configuration space, but do not contain
4688	 * PCI Express Capability registers, so bus width
4689	 * must be hardcoded.
4690	 */
4691	if (bus->width == e1000_bus_width_unknown)
4692		bus->width = e1000_bus_width_pcie_x1;
4693
4694	return ret_val;
4695}
4696
4697/**
4698 *  e1000_reset_hw_ich8lan - Reset the hardware
4699 *  @hw: pointer to the HW structure
4700 *
4701 *  Does a full reset of the hardware which includes a reset of the PHY and
4702 *  MAC.
4703 **/
4704static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4705{
4706	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4707	u16 kum_cfg;
4708	u32 ctrl, reg;
4709	s32 ret_val;
4710
4711	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4712	 * on the last TLP read/write transaction when MAC is reset.
4713	 */
4714	ret_val = e1000e_disable_pcie_master(hw);
4715	if (ret_val)
4716		e_dbg("PCI-E Master disable polling has failed.\n");
4717
4718	e_dbg("Masking off all interrupts\n");
4719	ew32(IMC, 0xffffffff);
4720
4721	/* Disable the Transmit and Receive units.  Then delay to allow
4722	 * any pending transactions to complete before we hit the MAC
4723	 * with the global reset.
4724	 */
4725	ew32(RCTL, 0);
4726	ew32(TCTL, E1000_TCTL_PSP);
4727	e1e_flush();
4728
4729	usleep_range(10000, 11000);
4730
4731	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4732	if (hw->mac.type == e1000_ich8lan) {
4733		/* Set Tx and Rx buffer allocation to 8k apiece. */
4734		ew32(PBA, E1000_PBA_8K);
4735		/* Set Packet Buffer Size to 16k. */
4736		ew32(PBS, E1000_PBS_16K);
4737	}
4738
4739	if (hw->mac.type == e1000_pchlan) {
4740		/* Save the NVM K1 bit setting */
4741		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4742		if (ret_val)
4743			return ret_val;
4744
4745		if (kum_cfg & E1000_NVM_K1_ENABLE)
4746			dev_spec->nvm_k1_enabled = true;
4747		else
4748			dev_spec->nvm_k1_enabled = false;
4749	}
4750
4751	ctrl = er32(CTRL);
4752
4753	if (!hw->phy.ops.check_reset_block(hw)) {
4754		/* Full-chip reset requires MAC and PHY reset at the same
4755		 * time to make sure the interface between MAC and the
4756		 * external PHY is reset.
4757		 */
4758		ctrl |= E1000_CTRL_PHY_RST;
4759
4760		/* Gate automatic PHY configuration by hardware on
4761		 * non-managed 82579
4762		 */
4763		if ((hw->mac.type == e1000_pch2lan) &&
4764		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4765			e1000_gate_hw_phy_config_ich8lan(hw, true);
4766	}
4767	ret_val = e1000_acquire_swflag_ich8lan(hw);
4768	e_dbg("Issuing a global reset to ich8lan\n");
4769	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4770	/* cannot issue a flush here because it hangs the hardware */
4771	msleep(20);
4772
4773	/* Set Phy Config Counter to 50msec */
4774	if (hw->mac.type == e1000_pch2lan) {
4775		reg = er32(FEXTNVM3);
4776		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4777		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4778		ew32(FEXTNVM3, reg);
4779	}
4780
4781	if (!ret_val)
4782		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4783
4784	if (ctrl & E1000_CTRL_PHY_RST) {
4785		ret_val = hw->phy.ops.get_cfg_done(hw);
4786		if (ret_val)
4787			return ret_val;
4788
4789		ret_val = e1000_post_phy_reset_ich8lan(hw);
4790		if (ret_val)
4791			return ret_val;
4792	}
4793
4794	/* For PCH, this write will make sure that any noise
4795	 * will be detected as a CRC error and be dropped rather than show up
4796	 * as a bad packet to the DMA engine.
4797	 */
4798	if (hw->mac.type == e1000_pchlan)
4799		ew32(CRC_OFFSET, 0x65656565);
4800
4801	ew32(IMC, 0xffffffff);
4802	er32(ICR);
4803
4804	reg = er32(KABGTXD);
4805	reg |= E1000_KABGTXD_BGSQLBIAS;
4806	ew32(KABGTXD, reg);
4807
4808	return 0;
4809}
4810
4811/**
4812 *  e1000_init_hw_ich8lan - Initialize the hardware
4813 *  @hw: pointer to the HW structure
4814 *
4815 *  Prepares the hardware for transmit and receive by doing the following:
4816 *   - initialize hardware bits
4817 *   - initialize LED identification
4818 *   - setup receive address registers
4819 *   - setup flow control
4820 *   - setup transmit descriptors
4821 *   - clear statistics
4822 **/
4823static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4824{
4825	struct e1000_mac_info *mac = &hw->mac;
4826	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4827	s32 ret_val;
4828	u16 i;
4829
4830	e1000_initialize_hw_bits_ich8lan(hw);
4831
4832	/* Initialize identification LED */
4833	ret_val = mac->ops.id_led_init(hw);
4834	/* An error is not fatal and we should not stop init due to this */
4835	if (ret_val)
4836		e_dbg("Error initializing identification LED\n");
4837
4838	/* Setup the receive address. */
4839	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4840
4841	/* Zero out the Multicast HASH table */
4842	e_dbg("Zeroing the MTA\n");
4843	for (i = 0; i < mac->mta_reg_count; i++)
4844		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4845
4846	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4847	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4848	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4849	 */
4850	if (hw->phy.type == e1000_phy_82578) {
4851		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4852		i &= ~BM_WUC_HOST_WU_BIT;
4853		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4854		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4855		if (ret_val)
4856			return ret_val;
4857	}
4858
4859	/* Setup link and flow control */
4860	ret_val = mac->ops.setup_link(hw);
4861
4862	/* Set the transmit descriptor write-back policy for both queues */
4863	txdctl = er32(TXDCTL(0));
4864	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4865		  E1000_TXDCTL_FULL_TX_DESC_WB);
4866	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4867		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4868	ew32(TXDCTL(0), txdctl);
4869	txdctl = er32(TXDCTL(1));
4870	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4871		  E1000_TXDCTL_FULL_TX_DESC_WB);
4872	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4873		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4874	ew32(TXDCTL(1), txdctl);
4875
4876	/* ICH8 has opposite polarity of no_snoop bits.
4877	 * By default, we should use snoop behavior.
4878	 */
4879	if (mac->type == e1000_ich8lan)
4880		snoop = PCIE_ICH8_SNOOP_ALL;
4881	else
4882		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4883	e1000e_set_pcie_no_snoop(hw, snoop);
4884
4885	/* Enable workaround for packet loss issue on TGP PCH
4886	 * Do not gate DMA clock from the modPHY block
4887	 */
4888	if (mac->type >= e1000_pch_tgp) {
4889		fflt_dbg = er32(FFLT_DBG);
4890		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4891		ew32(FFLT_DBG, fflt_dbg);
4892	}
4893
4894	ctrl_ext = er32(CTRL_EXT);
4895	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4896	ew32(CTRL_EXT, ctrl_ext);
4897
4898	/* Clear all of the statistics registers (clear on read).  It is
4899	 * important that we do this after we have tried to establish link
4900	 * because the symbol error count will increment wildly if there
4901	 * is no link.
4902	 */
4903	e1000_clear_hw_cntrs_ich8lan(hw);
4904
4905	return ret_val;
4906}
4907
4908/**
4909 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4910 *  @hw: pointer to the HW structure
4911 *
4912 *  Sets/Clears required hardware bits necessary for correctly setting up the
4913 *  hardware for transmit and receive.
4914 **/
4915static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4916{
4917	u32 reg;
4918
4919	/* Extended Device Control */
4920	reg = er32(CTRL_EXT);
4921	reg |= BIT(22);
4922	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4923	if (hw->mac.type >= e1000_pchlan)
4924		reg |= E1000_CTRL_EXT_PHYPDEN;
4925	ew32(CTRL_EXT, reg);
4926
4927	/* Transmit Descriptor Control 0 */
4928	reg = er32(TXDCTL(0));
4929	reg |= BIT(22);
4930	ew32(TXDCTL(0), reg);
4931
4932	/* Transmit Descriptor Control 1 */
4933	reg = er32(TXDCTL(1));
4934	reg |= BIT(22);
4935	ew32(TXDCTL(1), reg);
4936
4937	/* Transmit Arbitration Control 0 */
4938	reg = er32(TARC(0));
4939	if (hw->mac.type == e1000_ich8lan)
4940		reg |= BIT(28) | BIT(29);
4941	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4942	ew32(TARC(0), reg);
4943
4944	/* Transmit Arbitration Control 1 */
4945	reg = er32(TARC(1));
4946	if (er32(TCTL) & E1000_TCTL_MULR)
4947		reg &= ~BIT(28);
4948	else
4949		reg |= BIT(28);
4950	reg |= BIT(24) | BIT(26) | BIT(30);
4951	ew32(TARC(1), reg);
4952
4953	/* Device Status */
4954	if (hw->mac.type == e1000_ich8lan) {
4955		reg = er32(STATUS);
4956		reg &= ~BIT(31);
4957		ew32(STATUS, reg);
4958	}
4959
4960	/* work-around descriptor data corruption issue during nfs v2 udp
4961	 * traffic, just disable the nfs filtering capability
4962	 */
4963	reg = er32(RFCTL);
4964	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4965
4966	/* Disable IPv6 extension header parsing because some malformed
4967	 * IPv6 headers can hang the Rx.
4968	 */
4969	if (hw->mac.type == e1000_ich8lan)
4970		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4971	ew32(RFCTL, reg);
4972
4973	/* Enable ECC on Lynxpoint */
4974	if (hw->mac.type >= e1000_pch_lpt) {
4975		reg = er32(PBECCSTS);
4976		reg |= E1000_PBECCSTS_ECC_ENABLE;
4977		ew32(PBECCSTS, reg);
4978
4979		reg = er32(CTRL);
4980		reg |= E1000_CTRL_MEHE;
4981		ew32(CTRL, reg);
4982	}
4983}
4984
4985/**
4986 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4987 *  @hw: pointer to the HW structure
4988 *
4989 *  Determines which flow control settings to use, then configures flow
4990 *  control.  Calls the appropriate media-specific link configuration
4991 *  function.  Assuming the adapter has a valid link partner, a valid link
4992 *  should be established.  Assumes the hardware has previously been reset
4993 *  and the transmitter and receiver are not enabled.
4994 **/
4995static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4996{
4997	s32 ret_val;
4998
4999	if (hw->phy.ops.check_reset_block(hw))
5000		return 0;
5001
5002	/* ICH parts do not have a word in the NVM to determine
5003	 * the default flow control setting, so we explicitly
5004	 * set it to full.
5005	 */
5006	if (hw->fc.requested_mode == e1000_fc_default) {
5007		/* Workaround h/w hang when Tx flow control enabled */
5008		if (hw->mac.type == e1000_pchlan)
5009			hw->fc.requested_mode = e1000_fc_rx_pause;
5010		else
5011			hw->fc.requested_mode = e1000_fc_full;
5012	}
5013
5014	/* Save off the requested flow control mode for use later.  Depending
5015	 * on the link partner's capabilities, we may or may not use this mode.
5016	 */
5017	hw->fc.current_mode = hw->fc.requested_mode;
5018
5019	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5020
5021	/* Continue to configure the copper link. */
5022	ret_val = hw->mac.ops.setup_physical_interface(hw);
5023	if (ret_val)
5024		return ret_val;
5025
5026	ew32(FCTTV, hw->fc.pause_time);
5027	if ((hw->phy.type == e1000_phy_82578) ||
5028	    (hw->phy.type == e1000_phy_82579) ||
5029	    (hw->phy.type == e1000_phy_i217) ||
5030	    (hw->phy.type == e1000_phy_82577)) {
5031		ew32(FCRTV_PCH, hw->fc.refresh_time);
5032
5033		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5034				   hw->fc.pause_time);
5035		if (ret_val)
5036			return ret_val;
5037	}
5038
5039	return e1000e_set_fc_watermarks(hw);
5040}
5041
5042/**
5043 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5044 *  @hw: pointer to the HW structure
5045 *
5046 *  Configures the kumeran interface to the PHY to wait the appropriate time
5047 *  when polling the PHY, then call the generic setup_copper_link to finish
5048 *  configuring the copper link.
5049 **/
5050static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5051{
5052	u32 ctrl;
5053	s32 ret_val;
5054	u16 reg_data;
5055
5056	ctrl = er32(CTRL);
5057	ctrl |= E1000_CTRL_SLU;
5058	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5059	ew32(CTRL, ctrl);
5060
5061	/* Set the mac to wait the maximum time between each iteration
5062	 * and increase the max iterations when polling the phy;
5063	 * this fixes erroneous timeouts at 10Mbps.
5064	 */
5065	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5066	if (ret_val)
5067		return ret_val;
5068	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5069				       &reg_data);
5070	if (ret_val)
5071		return ret_val;
5072	reg_data |= 0x3F;
5073	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5074					reg_data);
5075	if (ret_val)
5076		return ret_val;
5077
5078	switch (hw->phy.type) {
5079	case e1000_phy_igp_3:
5080		ret_val = e1000e_copper_link_setup_igp(hw);
5081		if (ret_val)
5082			return ret_val;
5083		break;
5084	case e1000_phy_bm:
5085	case e1000_phy_82578:
5086		ret_val = e1000e_copper_link_setup_m88(hw);
5087		if (ret_val)
5088			return ret_val;
5089		break;
5090	case e1000_phy_82577:
5091	case e1000_phy_82579:
5092		ret_val = e1000_copper_link_setup_82577(hw);
5093		if (ret_val)
5094			return ret_val;
5095		break;
5096	case e1000_phy_ife:
5097		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5098		if (ret_val)
5099			return ret_val;
5100
5101		reg_data &= ~IFE_PMC_AUTO_MDIX;
5102
5103		switch (hw->phy.mdix) {
5104		case 1:
5105			reg_data &= ~IFE_PMC_FORCE_MDIX;
5106			break;
5107		case 2:
5108			reg_data |= IFE_PMC_FORCE_MDIX;
5109			break;
5110		case 0:
5111		default:
5112			reg_data |= IFE_PMC_AUTO_MDIX;
5113			break;
5114		}
5115		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5116		if (ret_val)
5117			return ret_val;
5118		break;
5119	default:
5120		break;
5121	}
5122
5123	return e1000e_setup_copper_link(hw);
5124}
5125
5126/**
5127 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5128 *  @hw: pointer to the HW structure
5129 *
5130 *  Calls the PHY specific link setup function and then calls the
5131 *  generic setup_copper_link to finish configuring the link for
5132 *  Lynxpoint PCH devices
5133 **/
5134static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5135{
5136	u32 ctrl;
5137	s32 ret_val;
5138
5139	ctrl = er32(CTRL);
5140	ctrl |= E1000_CTRL_SLU;
5141	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5142	ew32(CTRL, ctrl);
5143
5144	ret_val = e1000_copper_link_setup_82577(hw);
5145	if (ret_val)
5146		return ret_val;
5147
5148	return e1000e_setup_copper_link(hw);
5149}
5150
5151/**
5152 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5153 *  @hw: pointer to the HW structure
5154 *  @speed: pointer to store current link speed
5155 *  @duplex: pointer to store the current link duplex
5156 *
5157 *  Calls the generic get_speed_and_duplex to retrieve the current link
5158 *  information and then calls the Kumeran lock loss workaround for links at
5159 *  gigabit speeds.
5160 **/
5161static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5162					  u16 *duplex)
5163{
5164	s32 ret_val;
5165
5166	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5167	if (ret_val)
5168		return ret_val;
5169
5170	if ((hw->mac.type == e1000_ich8lan) &&
5171	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5172		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5173	}
5174
5175	return ret_val;
5176}
5177
5178/**
5179 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5180 *  @hw: pointer to the HW structure
5181 *
5182 *  Work-around for 82566 Kumeran PCS lock loss:
5183 *  On link status change (i.e. PCI reset, speed change) and link is up and
5184 *  speed is gigabit-
5185 *    0) if workaround is optionally disabled do nothing
5186 *    1) wait 1ms for Kumeran link to come up
5187 *    2) check Kumeran Diagnostic register PCS lock loss bit
5188 *    3) if not set the link is locked (all is good), otherwise...
5189 *    4) reset the PHY
5190 *    5) repeat up to 10 times
5191 *  Note: this is only called for IGP3 copper when speed is 1gb.
5192 **/
5193static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5194{
5195	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5196	u32 phy_ctrl;
5197	s32 ret_val;
5198	u16 i, data;
5199	bool link;
5200
5201	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5202		return 0;
5203
5204	/* Make sure link is up before proceeding.  If not just return.
5205	 * Attempting this while link is negotiating fouled up link
5206	 * stability
5207	 */
5208	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5209	if (!link)
5210		return 0;
5211
5212	for (i = 0; i < 10; i++) {
5213		/* read once to clear */
5214		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5215		if (ret_val)
5216			return ret_val;
5217		/* and again to get new status */
5218		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5219		if (ret_val)
5220			return ret_val;
5221
5222		/* check for PCS lock */
5223		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5224			return 0;
5225
5226		/* Issue PHY reset */
5227		e1000_phy_hw_reset(hw);
5228		mdelay(5);
5229	}
5230	/* Disable GigE link negotiation */
5231	phy_ctrl = er32(PHY_CTRL);
5232	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5233		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5234	ew32(PHY_CTRL, phy_ctrl);
5235
5236	/* Call gig speed drop workaround on Gig disable before accessing
5237	 * any PHY registers
5238	 */
5239	e1000e_gig_downshift_workaround_ich8lan(hw);
5240
5241	/* unable to acquire PCS lock */
5242	return -E1000_ERR_PHY;
5243}
5244
5245/**
5246 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5247 *  @hw: pointer to the HW structure
5248 *  @state: boolean value used to set the current Kumeran workaround state
5249 *
5250 *  If ICH8, set the current Kumeran workaround state (enabled - true
5251 *  /disabled - false).
5252 **/
5253void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5254						  bool state)
5255{
5256	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5257
5258	if (hw->mac.type != e1000_ich8lan) {
5259		e_dbg("Workaround applies to ICH8 only.\n");
5260		return;
5261	}
5262
5263	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5264}
5265
5266/**
5267 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5268 *  @hw: pointer to the HW structure
5269 *
5270 *  Workaround for 82566 power-down on D3 entry:
5271 *    1) disable gigabit link
5272 *    2) write VR power-down enable
5273 *    3) read it back
5274 *  Continue if successful, else issue LCD reset and repeat
5275 **/
5276void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5277{
5278	u32 reg;
5279	u16 data;
5280	u8 retry = 0;
5281
5282	if (hw->phy.type != e1000_phy_igp_3)
5283		return;
5284
5285	/* Try the workaround twice (if needed) */
5286	do {
5287		/* Disable link */
5288		reg = er32(PHY_CTRL);
5289		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5290			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5291		ew32(PHY_CTRL, reg);
5292
5293		/* Call gig speed drop workaround on Gig disable before
5294		 * accessing any PHY registers
5295		 */
5296		if (hw->mac.type == e1000_ich8lan)
5297			e1000e_gig_downshift_workaround_ich8lan(hw);
5298
5299		/* Write VR power-down enable */
5300		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5301		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5302		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5303
5304		/* Read it back and test */
5305		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5306		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5307		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5308			break;
5309
5310		/* Issue PHY reset and repeat at most one more time */
5311		reg = er32(CTRL);
5312		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5313		retry++;
5314	} while (retry);
5315}
5316
5317/**
5318 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5319 *  @hw: pointer to the HW structure
5320 *
5321 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5322 *  LPLU, Gig disable, MDIC PHY reset):
5323 *    1) Set Kumeran Near-end loopback
5324 *    2) Clear Kumeran Near-end loopback
5325 *  Should only be called for ICH8[m] devices with any 1G Phy.
5326 **/
5327void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5328{
5329	s32 ret_val;
5330	u16 reg_data;
5331
5332	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5333		return;
5334
5335	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5336				       &reg_data);
5337	if (ret_val)
5338		return;
5339	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5340	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5341					reg_data);
5342	if (ret_val)
5343		return;
5344	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5345	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5346}
5347
5348/**
5349 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5350 *  @hw: pointer to the HW structure
5351 *
5352 *  During S0 to Sx transition, it is possible the link remains at gig
5353 *  instead of negotiating to a lower speed.  Before going to Sx, set
5354 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5355 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5356 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5357 *  needs to be written.
5358 *  Parts that support (and are linked to a partner which support) EEE in
5359 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5360 *  than 10Mbps w/o EEE.
5361 **/
5362void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5363{
5364	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5365	u32 phy_ctrl;
5366	s32 ret_val;
5367
5368	phy_ctrl = er32(PHY_CTRL);
5369	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5370
5371	if (hw->phy.type == e1000_phy_i217) {
5372		u16 phy_reg, device_id = hw->adapter->pdev->device;
5373
5374		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5375		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5376		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5377		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5378		    (hw->mac.type >= e1000_pch_spt)) {
5379			u32 fextnvm6 = er32(FEXTNVM6);
5380
5381			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5382		}
5383
5384		ret_val = hw->phy.ops.acquire(hw);
5385		if (ret_val)
5386			goto out;
5387
5388		if (!dev_spec->eee_disable) {
5389			u16 eee_advert;
5390
5391			ret_val =
5392			    e1000_read_emi_reg_locked(hw,
5393						      I217_EEE_ADVERTISEMENT,
5394						      &eee_advert);
5395			if (ret_val)
5396				goto release;
5397
5398			/* Disable LPLU if both link partners support 100BaseT
5399			 * EEE and 100Full is advertised on both ends of the
5400			 * link, and enable Auto Enable LPI since there will
5401			 * be no driver to enable LPI while in Sx.
5402			 */
5403			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5404			    (dev_spec->eee_lp_ability &
5405			     I82579_EEE_100_SUPPORTED) &&
5406			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5407				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5408					      E1000_PHY_CTRL_NOND0A_LPLU);
5409
5410				/* Set Auto Enable LPI after link up */
5411				e1e_rphy_locked(hw,
5412						I217_LPI_GPIO_CTRL, &phy_reg);
5413				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5414				e1e_wphy_locked(hw,
5415						I217_LPI_GPIO_CTRL, phy_reg);
5416			}
5417		}
5418
5419		/* For i217 Intel Rapid Start Technology support,
5420		 * when the system is going into Sx and no manageability engine
5421		 * is present, the driver must configure proxy to reset only on
5422		 * power good.  LPI (Low Power Idle) state must also reset only
5423		 * on power good, as well as the MTA (Multicast table array).
5424		 * The SMBus release must also be disabled on LCD reset.
5425		 */
5426		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5427			/* Enable proxy to reset only on power good. */
5428			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5429			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5430			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5431
5432			/* Set bit enable LPI (EEE) to reset only on
5433			 * power good.
5434			 */
5435			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5436			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5437			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5438
5439			/* Disable the SMB release on LCD reset. */
5440			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5441			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5442			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5443		}
5444
5445		/* Enable MTA to reset for Intel Rapid Start Technology
5446		 * Support
5447		 */
5448		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5449		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5450		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5451
5452release:
5453		hw->phy.ops.release(hw);
5454	}
5455out:
5456	ew32(PHY_CTRL, phy_ctrl);
5457
5458	if (hw->mac.type == e1000_ich8lan)
5459		e1000e_gig_downshift_workaround_ich8lan(hw);
5460
5461	if (hw->mac.type >= e1000_pchlan) {
5462		e1000_oem_bits_config_ich8lan(hw, false);
5463
5464		/* Reset PHY to activate OEM bits on 82577/8 */
5465		if (hw->mac.type == e1000_pchlan)
5466			e1000e_phy_hw_reset_generic(hw);
5467
5468		ret_val = hw->phy.ops.acquire(hw);
5469		if (ret_val)
5470			return;
5471		e1000_write_smbus_addr(hw);
5472		hw->phy.ops.release(hw);
5473	}
5474}
5475
5476/**
5477 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5478 *  @hw: pointer to the HW structure
5479 *
5480 *  During Sx to S0 transitions on non-managed devices or managed devices
5481 *  on which PHY resets are not blocked, if the PHY registers cannot be
5482 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5483 *  the PHY.
5484 *  On i217, setup Intel Rapid Start Technology.
5485 **/
5486void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5487{
5488	s32 ret_val;
5489
5490	if (hw->mac.type < e1000_pch2lan)
5491		return;
5492
5493	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5494	if (ret_val) {
5495		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5496		return;
5497	}
5498
5499	/* For i217 Intel Rapid Start Technology support when the system
5500	 * is transitioning from Sx and no manageability engine is present
5501	 * configure SMBus to restore on reset, disable proxy, and enable
5502	 * the reset on MTA (Multicast table array).
5503	 */
5504	if (hw->phy.type == e1000_phy_i217) {
5505		u16 phy_reg;
5506
5507		ret_val = hw->phy.ops.acquire(hw);
5508		if (ret_val) {
5509			e_dbg("Failed to setup iRST\n");
5510			return;
5511		}
5512
5513		/* Clear Auto Enable LPI after link up */
5514		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5515		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5516		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5517
5518		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5519			/* Restore clear on SMB if no manageability engine
5520			 * is present
5521			 */
5522			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5523			if (ret_val)
5524				goto release;
5525			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5526			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5527
5528			/* Disable Proxy */
5529			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5530		}
5531		/* Enable reset on MTA */
5532		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5533		if (ret_val)
5534			goto release;
5535		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5536		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5537release:
5538		if (ret_val)
5539			e_dbg("Error %d in resume workarounds\n", ret_val);
5540		hw->phy.ops.release(hw);
5541	}
5542}
5543
5544/**
5545 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5546 *  @hw: pointer to the HW structure
5547 *
5548 *  Return the LED back to the default configuration.
5549 **/
5550static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5551{
5552	if (hw->phy.type == e1000_phy_ife)
5553		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5554
5555	ew32(LEDCTL, hw->mac.ledctl_default);
5556	return 0;
5557}
5558
5559/**
5560 *  e1000_led_on_ich8lan - Turn LEDs on
5561 *  @hw: pointer to the HW structure
5562 *
5563 *  Turn on the LEDs.
5564 **/
5565static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5566{
5567	if (hw->phy.type == e1000_phy_ife)
5568		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5569				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5570
5571	ew32(LEDCTL, hw->mac.ledctl_mode2);
5572	return 0;
5573}
5574
5575/**
5576 *  e1000_led_off_ich8lan - Turn LEDs off
5577 *  @hw: pointer to the HW structure
5578 *
5579 *  Turn off the LEDs.
5580 **/
5581static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5582{
5583	if (hw->phy.type == e1000_phy_ife)
5584		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5585				(IFE_PSCL_PROBE_MODE |
5586				 IFE_PSCL_PROBE_LEDS_OFF));
5587
5588	ew32(LEDCTL, hw->mac.ledctl_mode1);
5589	return 0;
5590}
5591
5592/**
5593 *  e1000_setup_led_pchlan - Configures SW controllable LED
5594 *  @hw: pointer to the HW structure
5595 *
5596 *  This prepares the SW controllable LED for use.
5597 **/
5598static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5599{
5600	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5601}
5602
5603/**
5604 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5605 *  @hw: pointer to the HW structure
5606 *
5607 *  Return the LED back to the default configuration.
5608 **/
5609static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5610{
5611	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5612}
5613
5614/**
5615 *  e1000_led_on_pchlan - Turn LEDs on
5616 *  @hw: pointer to the HW structure
5617 *
5618 *  Turn on the LEDs.
5619 **/
5620static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5621{
5622	u16 data = (u16)hw->mac.ledctl_mode2;
5623	u32 i, led;
5624
5625	/* If no link, then turn LED on by setting the invert bit
5626	 * for each LED that's mode is "link_up" in ledctl_mode2.
5627	 */
5628	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5629		for (i = 0; i < 3; i++) {
5630			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5631			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5632			    E1000_LEDCTL_MODE_LINK_UP)
5633				continue;
5634			if (led & E1000_PHY_LED0_IVRT)
5635				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5636			else
5637				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5638		}
5639	}
5640
5641	return e1e_wphy(hw, HV_LED_CONFIG, data);
5642}
5643
5644/**
5645 *  e1000_led_off_pchlan - Turn LEDs off
5646 *  @hw: pointer to the HW structure
5647 *
5648 *  Turn off the LEDs.
5649 **/
5650static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5651{
5652	u16 data = (u16)hw->mac.ledctl_mode1;
5653	u32 i, led;
5654
5655	/* If no link, then turn LED off by clearing the invert bit
5656	 * for each LED that's mode is "link_up" in ledctl_mode1.
5657	 */
5658	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5659		for (i = 0; i < 3; i++) {
5660			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5661			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5662			    E1000_LEDCTL_MODE_LINK_UP)
5663				continue;
5664			if (led & E1000_PHY_LED0_IVRT)
5665				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5666			else
5667				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5668		}
5669	}
5670
5671	return e1e_wphy(hw, HV_LED_CONFIG, data);
5672}
5673
5674/**
5675 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5676 *  @hw: pointer to the HW structure
5677 *
5678 *  Read appropriate register for the config done bit for completion status
5679 *  and configure the PHY through s/w for EEPROM-less parts.
5680 *
5681 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5682 *  config done bit, so only an error is logged and continues.  If we were
5683 *  to return with error, EEPROM-less silicon would not be able to be reset
5684 *  or change link.
5685 **/
5686static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5687{
5688	s32 ret_val = 0;
5689	u32 bank = 0;
5690	u32 status;
5691
5692	e1000e_get_cfg_done_generic(hw);
5693
5694	/* Wait for indication from h/w that it has completed basic config */
5695	if (hw->mac.type >= e1000_ich10lan) {
5696		e1000_lan_init_done_ich8lan(hw);
5697	} else {
5698		ret_val = e1000e_get_auto_rd_done(hw);
5699		if (ret_val) {
5700			/* When auto config read does not complete, do not
5701			 * return with an error. This can happen in situations
5702			 * where there is no eeprom and prevents getting link.
5703			 */
5704			e_dbg("Auto Read Done did not complete\n");
5705			ret_val = 0;
5706		}
5707	}
5708
5709	/* Clear PHY Reset Asserted bit */
5710	status = er32(STATUS);
5711	if (status & E1000_STATUS_PHYRA)
5712		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5713	else
5714		e_dbg("PHY Reset Asserted not set - needs delay\n");
5715
5716	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5717	if (hw->mac.type <= e1000_ich9lan) {
5718		if (!(er32(EECD) & E1000_EECD_PRES) &&
5719		    (hw->phy.type == e1000_phy_igp_3)) {
5720			e1000e_phy_init_script_igp3(hw);
5721		}
5722	} else {
5723		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5724			/* Maybe we should do a basic PHY config */
5725			e_dbg("EEPROM not present\n");
5726			ret_val = -E1000_ERR_CONFIG;
5727		}
5728	}
5729
5730	return ret_val;
5731}
5732
5733/**
5734 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5735 * @hw: pointer to the HW structure
5736 *
5737 * In the case of a PHY power down to save power, or to turn off link during a
5738 * driver unload, or wake on lan is not enabled, remove the link.
5739 **/
5740static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5741{
5742	/* If the management interface is not enabled, then power down */
5743	if (!(hw->mac.ops.check_mng_mode(hw) ||
5744	      hw->phy.ops.check_reset_block(hw)))
5745		e1000_power_down_phy_copper(hw);
5746}
5747
5748/**
5749 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5750 *  @hw: pointer to the HW structure
5751 *
5752 *  Clears hardware counters specific to the silicon family and calls
5753 *  clear_hw_cntrs_generic to clear all general purpose counters.
5754 **/
5755static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5756{
5757	u16 phy_data;
5758	s32 ret_val;
5759
5760	e1000e_clear_hw_cntrs_base(hw);
5761
5762	er32(ALGNERRC);
5763	er32(RXERRC);
5764	er32(TNCRS);
5765	er32(CEXTERR);
5766	er32(TSCTC);
5767	er32(TSCTFC);
5768
5769	er32(MGTPRC);
5770	er32(MGTPDC);
5771	er32(MGTPTC);
5772
5773	er32(IAC);
5774	er32(ICRXOC);
5775
5776	/* Clear PHY statistics registers */
5777	if ((hw->phy.type == e1000_phy_82578) ||
5778	    (hw->phy.type == e1000_phy_82579) ||
5779	    (hw->phy.type == e1000_phy_i217) ||
5780	    (hw->phy.type == e1000_phy_82577)) {
5781		ret_val = hw->phy.ops.acquire(hw);
5782		if (ret_val)
5783			return;
5784		ret_val = hw->phy.ops.set_page(hw,
5785					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5786		if (ret_val)
5787			goto release;
5788		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5789		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5790		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5791		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5792		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5793		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5794		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5795		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5796		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5797		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5798		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5799		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5800		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5801		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5802release:
5803		hw->phy.ops.release(hw);
5804	}
5805}
5806
5807static const struct e1000_mac_operations ich8_mac_ops = {
5808	/* check_mng_mode dependent on mac type */
5809	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5810	/* cleanup_led dependent on mac type */
5811	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5812	.get_bus_info		= e1000_get_bus_info_ich8lan,
5813	.set_lan_id		= e1000_set_lan_id_single_port,
5814	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5815	/* led_on dependent on mac type */
5816	/* led_off dependent on mac type */
5817	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5818	.reset_hw		= e1000_reset_hw_ich8lan,
5819	.init_hw		= e1000_init_hw_ich8lan,
5820	.setup_link		= e1000_setup_link_ich8lan,
5821	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5822	/* id_led_init dependent on mac type */
5823	.config_collision_dist	= e1000e_config_collision_dist_generic,
5824	.rar_set		= e1000e_rar_set_generic,
5825	.rar_get_count		= e1000e_rar_get_count_generic,
5826};
5827
5828static const struct e1000_phy_operations ich8_phy_ops = {
5829	.acquire		= e1000_acquire_swflag_ich8lan,
5830	.check_reset_block	= e1000_check_reset_block_ich8lan,
5831	.commit			= NULL,
5832	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5833	.get_cable_length	= e1000e_get_cable_length_igp_2,
5834	.read_reg		= e1000e_read_phy_reg_igp,
5835	.release		= e1000_release_swflag_ich8lan,
5836	.reset			= e1000_phy_hw_reset_ich8lan,
5837	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5838	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5839	.write_reg		= e1000e_write_phy_reg_igp,
5840};
5841
5842static const struct e1000_nvm_operations ich8_nvm_ops = {
5843	.acquire		= e1000_acquire_nvm_ich8lan,
5844	.read			= e1000_read_nvm_ich8lan,
5845	.release		= e1000_release_nvm_ich8lan,
5846	.reload			= e1000e_reload_nvm_generic,
5847	.update			= e1000_update_nvm_checksum_ich8lan,
5848	.valid_led_default	= e1000_valid_led_default_ich8lan,
5849	.validate		= e1000_validate_nvm_checksum_ich8lan,
5850	.write			= e1000_write_nvm_ich8lan,
5851};
5852
5853static const struct e1000_nvm_operations spt_nvm_ops = {
5854	.acquire		= e1000_acquire_nvm_ich8lan,
5855	.release		= e1000_release_nvm_ich8lan,
5856	.read			= e1000_read_nvm_spt,
5857	.update			= e1000_update_nvm_checksum_spt,
5858	.reload			= e1000e_reload_nvm_generic,
5859	.valid_led_default	= e1000_valid_led_default_ich8lan,
5860	.validate		= e1000_validate_nvm_checksum_ich8lan,
5861	.write			= e1000_write_nvm_ich8lan,
5862};
5863
5864const struct e1000_info e1000_ich8_info = {
5865	.mac			= e1000_ich8lan,
5866	.flags			= FLAG_HAS_WOL
5867				  | FLAG_IS_ICH
5868				  | FLAG_HAS_CTRLEXT_ON_LOAD
5869				  | FLAG_HAS_AMT
5870				  | FLAG_HAS_FLASH
5871				  | FLAG_APME_IN_WUC,
5872	.pba			= 8,
5873	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5874	.get_variants		= e1000_get_variants_ich8lan,
5875	.mac_ops		= &ich8_mac_ops,
5876	.phy_ops		= &ich8_phy_ops,
5877	.nvm_ops		= &ich8_nvm_ops,
5878};
5879
5880const struct e1000_info e1000_ich9_info = {
5881	.mac			= e1000_ich9lan,
5882	.flags			= FLAG_HAS_JUMBO_FRAMES
5883				  | FLAG_IS_ICH
5884				  | FLAG_HAS_WOL
5885				  | FLAG_HAS_CTRLEXT_ON_LOAD
5886				  | FLAG_HAS_AMT
5887				  | FLAG_HAS_FLASH
5888				  | FLAG_APME_IN_WUC,
5889	.pba			= 18,
5890	.max_hw_frame_size	= DEFAULT_JUMBO,
5891	.get_variants		= e1000_get_variants_ich8lan,
5892	.mac_ops		= &ich8_mac_ops,
5893	.phy_ops		= &ich8_phy_ops,
5894	.nvm_ops		= &ich8_nvm_ops,
5895};
5896
5897const struct e1000_info e1000_ich10_info = {
5898	.mac			= e1000_ich10lan,
5899	.flags			= FLAG_HAS_JUMBO_FRAMES
5900				  | FLAG_IS_ICH
5901				  | FLAG_HAS_WOL
5902				  | FLAG_HAS_CTRLEXT_ON_LOAD
5903				  | FLAG_HAS_AMT
5904				  | FLAG_HAS_FLASH
5905				  | FLAG_APME_IN_WUC,
5906	.pba			= 18,
5907	.max_hw_frame_size	= DEFAULT_JUMBO,
5908	.get_variants		= e1000_get_variants_ich8lan,
5909	.mac_ops		= &ich8_mac_ops,
5910	.phy_ops		= &ich8_phy_ops,
5911	.nvm_ops		= &ich8_nvm_ops,
5912};
5913
5914const struct e1000_info e1000_pch_info = {
5915	.mac			= e1000_pchlan,
5916	.flags			= FLAG_IS_ICH
5917				  | FLAG_HAS_WOL
5918				  | FLAG_HAS_CTRLEXT_ON_LOAD
5919				  | FLAG_HAS_AMT
5920				  | FLAG_HAS_FLASH
5921				  | FLAG_HAS_JUMBO_FRAMES
5922				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5923				  | FLAG_APME_IN_WUC,
5924	.flags2			= FLAG2_HAS_PHY_STATS,
5925	.pba			= 26,
5926	.max_hw_frame_size	= 4096,
5927	.get_variants		= e1000_get_variants_ich8lan,
5928	.mac_ops		= &ich8_mac_ops,
5929	.phy_ops		= &ich8_phy_ops,
5930	.nvm_ops		= &ich8_nvm_ops,
5931};
5932
5933const struct e1000_info e1000_pch2_info = {
5934	.mac			= e1000_pch2lan,
5935	.flags			= FLAG_IS_ICH
5936				  | FLAG_HAS_WOL
5937				  | FLAG_HAS_HW_TIMESTAMP
5938				  | FLAG_HAS_CTRLEXT_ON_LOAD
5939				  | FLAG_HAS_AMT
5940				  | FLAG_HAS_FLASH
5941				  | FLAG_HAS_JUMBO_FRAMES
5942				  | FLAG_APME_IN_WUC,
5943	.flags2			= FLAG2_HAS_PHY_STATS
5944				  | FLAG2_HAS_EEE
5945				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5946	.pba			= 26,
5947	.max_hw_frame_size	= 9022,
5948	.get_variants		= e1000_get_variants_ich8lan,
5949	.mac_ops		= &ich8_mac_ops,
5950	.phy_ops		= &ich8_phy_ops,
5951	.nvm_ops		= &ich8_nvm_ops,
5952};
5953
5954const struct e1000_info e1000_pch_lpt_info = {
5955	.mac			= e1000_pch_lpt,
5956	.flags			= FLAG_IS_ICH
5957				  | FLAG_HAS_WOL
5958				  | FLAG_HAS_HW_TIMESTAMP
5959				  | FLAG_HAS_CTRLEXT_ON_LOAD
5960				  | FLAG_HAS_AMT
5961				  | FLAG_HAS_FLASH
5962				  | FLAG_HAS_JUMBO_FRAMES
5963				  | FLAG_APME_IN_WUC,
5964	.flags2			= FLAG2_HAS_PHY_STATS
5965				  | FLAG2_HAS_EEE
5966				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5967	.pba			= 26,
5968	.max_hw_frame_size	= 9022,
5969	.get_variants		= e1000_get_variants_ich8lan,
5970	.mac_ops		= &ich8_mac_ops,
5971	.phy_ops		= &ich8_phy_ops,
5972	.nvm_ops		= &ich8_nvm_ops,
5973};
5974
5975const struct e1000_info e1000_pch_spt_info = {
5976	.mac			= e1000_pch_spt,
5977	.flags			= FLAG_IS_ICH
5978				  | FLAG_HAS_WOL
5979				  | FLAG_HAS_HW_TIMESTAMP
5980				  | FLAG_HAS_CTRLEXT_ON_LOAD
5981				  | FLAG_HAS_AMT
5982				  | FLAG_HAS_FLASH
5983				  | FLAG_HAS_JUMBO_FRAMES
5984				  | FLAG_APME_IN_WUC,
5985	.flags2			= FLAG2_HAS_PHY_STATS
5986				  | FLAG2_HAS_EEE,
5987	.pba			= 26,
5988	.max_hw_frame_size	= 9022,
5989	.get_variants		= e1000_get_variants_ich8lan,
5990	.mac_ops		= &ich8_mac_ops,
5991	.phy_ops		= &ich8_phy_ops,
5992	.nvm_ops		= &spt_nvm_ops,
5993};
5994
5995const struct e1000_info e1000_pch_cnp_info = {
5996	.mac			= e1000_pch_cnp,
5997	.flags			= FLAG_IS_ICH
5998				  | FLAG_HAS_WOL
5999				  | FLAG_HAS_HW_TIMESTAMP
6000				  | FLAG_HAS_CTRLEXT_ON_LOAD
6001				  | FLAG_HAS_AMT
6002				  | FLAG_HAS_FLASH
6003				  | FLAG_HAS_JUMBO_FRAMES
6004				  | FLAG_APME_IN_WUC,
6005	.flags2			= FLAG2_HAS_PHY_STATS
6006				  | FLAG2_HAS_EEE,
6007	.pba			= 26,
6008	.max_hw_frame_size	= 9022,
6009	.get_variants		= e1000_get_variants_ich8lan,
6010	.mac_ops		= &ich8_mac_ops,
6011	.phy_ops		= &ich8_phy_ops,
6012	.nvm_ops		= &spt_nvm_ops,
6013};
6014
6015const struct e1000_info e1000_pch_tgp_info = {
6016	.mac			= e1000_pch_tgp,
6017	.flags			= FLAG_IS_ICH
6018				  | FLAG_HAS_WOL
6019				  | FLAG_HAS_HW_TIMESTAMP
6020				  | FLAG_HAS_CTRLEXT_ON_LOAD
6021				  | FLAG_HAS_AMT
6022				  | FLAG_HAS_FLASH
6023				  | FLAG_HAS_JUMBO_FRAMES
6024				  | FLAG_APME_IN_WUC,
6025	.flags2			= FLAG2_HAS_PHY_STATS
6026				  | FLAG2_HAS_EEE,
6027	.pba			= 26,
6028	.max_hw_frame_size	= 9022,
6029	.get_variants		= e1000_get_variants_ich8lan,
6030	.mac_ops		= &ich8_mac_ops,
6031	.phy_ops		= &ich8_phy_ops,
6032	.nvm_ops		= &spt_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_adp_info = {
6036	.mac			= e1000_pch_adp,
6037	.flags			= FLAG_IS_ICH
6038				  | FLAG_HAS_WOL
6039				  | FLAG_HAS_HW_TIMESTAMP
6040				  | FLAG_HAS_CTRLEXT_ON_LOAD
6041				  | FLAG_HAS_AMT
6042				  | FLAG_HAS_FLASH
6043				  | FLAG_HAS_JUMBO_FRAMES
6044				  | FLAG_APME_IN_WUC,
6045	.flags2			= FLAG2_HAS_PHY_STATS
6046				  | FLAG2_HAS_EEE,
6047	.pba			= 26,
6048	.max_hw_frame_size	= 9022,
6049	.get_variants		= e1000_get_variants_ich8lan,
6050	.mac_ops		= &ich8_mac_ops,
6051	.phy_ops		= &ich8_phy_ops,
6052	.nvm_ops		= &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_mtp_info = {
6056	.mac			= e1000_pch_mtp,
6057	.flags			= FLAG_IS_ICH
6058				  | FLAG_HAS_WOL
6059				  | FLAG_HAS_HW_TIMESTAMP
6060				  | FLAG_HAS_CTRLEXT_ON_LOAD
6061				  | FLAG_HAS_AMT
6062				  | FLAG_HAS_FLASH
6063				  | FLAG_HAS_JUMBO_FRAMES
6064				  | FLAG_APME_IN_WUC,
6065	.flags2			= FLAG2_HAS_PHY_STATS
6066				  | FLAG2_HAS_EEE,
6067	.pba			= 26,
6068	.max_hw_frame_size	= 9022,
6069	.get_variants		= e1000_get_variants_ich8lan,
6070	.mac_ops		= &ich8_mac_ops,
6071	.phy_ops		= &ich8_phy_ops,
6072	.nvm_ops		= &spt_nvm_ops,
6073};
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23/* 82562G 10/100 Network Connection
  24 * 82562G-2 10/100 Network Connection
  25 * 82562GT 10/100 Network Connection
  26 * 82562GT-2 10/100 Network Connection
  27 * 82562V 10/100 Network Connection
  28 * 82562V-2 10/100 Network Connection
  29 * 82566DC-2 Gigabit Network Connection
  30 * 82566DC Gigabit Network Connection
  31 * 82566DM-2 Gigabit Network Connection
  32 * 82566DM Gigabit Network Connection
  33 * 82566MC Gigabit Network Connection
  34 * 82566MM Gigabit Network Connection
  35 * 82567LM Gigabit Network Connection
  36 * 82567LF Gigabit Network Connection
  37 * 82567V Gigabit Network Connection
  38 * 82567LM-2 Gigabit Network Connection
  39 * 82567LF-2 Gigabit Network Connection
  40 * 82567V-2 Gigabit Network Connection
  41 * 82567LF-3 Gigabit Network Connection
  42 * 82567LM-3 Gigabit Network Connection
  43 * 82567LM-4 Gigabit Network Connection
  44 * 82577LM Gigabit Network Connection
  45 * 82577LC Gigabit Network Connection
  46 * 82578DM Gigabit Network Connection
  47 * 82578DC Gigabit Network Connection
  48 * 82579LM Gigabit Network Connection
  49 * 82579V Gigabit Network Connection
  50 * Ethernet Connection I217-LM
  51 * Ethernet Connection I217-V
  52 * Ethernet Connection I218-V
  53 * Ethernet Connection I218-LM
  54 * Ethernet Connection (2) I218-LM
  55 * Ethernet Connection (2) I218-V
  56 * Ethernet Connection (3) I218-LM
  57 * Ethernet Connection (3) I218-V
  58 */
  59
  60#include "e1000.h"
  61
  62/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  63/* Offset 04h HSFSTS */
  64union ich8_hws_flash_status {
  65	struct ich8_hsfsts {
  66		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  67		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  68		u16 dael:1;	/* bit 2 Direct Access error Log */
  69		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  70		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  71		u16 reserved1:2;	/* bit 13:6 Reserved */
  72		u16 reserved2:6;	/* bit 13:6 Reserved */
  73		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  74		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  75	} hsf_status;
  76	u16 regval;
  77};
  78
  79/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  80/* Offset 06h FLCTL */
  81union ich8_hws_flash_ctrl {
  82	struct ich8_hsflctl {
  83		u16 flcgo:1;	/* 0 Flash Cycle Go */
  84		u16 flcycle:2;	/* 2:1 Flash Cycle */
  85		u16 reserved:5;	/* 7:3 Reserved  */
  86		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  87		u16 flockdn:6;	/* 15:10 Reserved */
  88	} hsf_ctrl;
  89	u16 regval;
  90};
  91
  92/* ICH Flash Region Access Permissions */
  93union ich8_hws_flash_regacc {
  94	struct ich8_flracc {
  95		u32 grra:8;	/* 0:7 GbE region Read Access */
  96		u32 grwa:8;	/* 8:15 GbE region Write Access */
  97		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  98		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  99	} hsf_flregacc;
 100	u16 regval;
 101};
 102
 103/* ICH Flash Protected Region */
 104union ich8_flash_protected_range {
 105	struct ich8_pr {
 106		u32 base:13;	/* 0:12 Protected Range Base */
 107		u32 reserved1:2;	/* 13:14 Reserved */
 108		u32 rpe:1;	/* 15 Read Protection Enable */
 109		u32 limit:13;	/* 16:28 Protected Range Limit */
 110		u32 reserved2:2;	/* 29:30 Reserved */
 111		u32 wpe:1;	/* 31 Write Protection Enable */
 112	} range;
 113	u32 regval;
 114};
 115
 116static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 117static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 119static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 120						u32 offset, u8 byte);
 121static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 122					 u8 *data);
 123static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 124					 u16 *data);
 125static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 126					 u8 size, u16 *data);
 127static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 128					   u32 *data);
 129static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 130					  u32 offset, u32 *data);
 131static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 132					    u32 offset, u32 data);
 133static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 134						 u32 offset, u32 dword);
 135static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 136static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 137static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 138static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 139static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 140static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 141static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 142static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 143static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 144static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 145static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 146static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 147static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 148static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 149static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 150static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 151static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 152static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 153static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 154static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 155static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 156static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 157static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 158static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 159
 160static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 161{
 162	return readw(hw->flash_address + reg);
 163}
 164
 165static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 166{
 167	return readl(hw->flash_address + reg);
 168}
 169
 170static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 171{
 172	writew(val, hw->flash_address + reg);
 173}
 174
 175static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 176{
 177	writel(val, hw->flash_address + reg);
 178}
 179
 180#define er16flash(reg)		__er16flash(hw, (reg))
 181#define er32flash(reg)		__er32flash(hw, (reg))
 182#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 183#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 184
 185/**
 186 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 187 *  @hw: pointer to the HW structure
 188 *
 189 *  Test access to the PHY registers by reading the PHY ID registers.  If
 190 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 191 *  otherwise assume the read PHY ID is correct if it is valid.
 192 *
 193 *  Assumes the sw/fw/hw semaphore is already acquired.
 194 **/
 195static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 196{
 197	u16 phy_reg = 0;
 198	u32 phy_id = 0;
 199	s32 ret_val = 0;
 200	u16 retry_count;
 201	u32 mac_reg = 0;
 202
 203	for (retry_count = 0; retry_count < 2; retry_count++) {
 204		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 205		if (ret_val || (phy_reg == 0xFFFF))
 206			continue;
 207		phy_id = (u32)(phy_reg << 16);
 208
 209		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 210		if (ret_val || (phy_reg == 0xFFFF)) {
 211			phy_id = 0;
 212			continue;
 213		}
 214		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 215		break;
 216	}
 217
 218	if (hw->phy.id) {
 219		if (hw->phy.id == phy_id)
 220			goto out;
 221	} else if (phy_id) {
 222		hw->phy.id = phy_id;
 223		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 224		goto out;
 225	}
 226
 227	/* In case the PHY needs to be in mdio slow mode,
 228	 * set slow mode and try to get the PHY id again.
 229	 */
 230	if (hw->mac.type < e1000_pch_lpt) {
 231		hw->phy.ops.release(hw);
 232		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 233		if (!ret_val)
 234			ret_val = e1000e_get_phy_id(hw);
 235		hw->phy.ops.acquire(hw);
 236	}
 237
 238	if (ret_val)
 239		return false;
 240out:
 241	if (hw->mac.type >= e1000_pch_lpt) {
 242		/* Only unforce SMBus if ME is not active */
 243		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 244			/* Unforce SMBus mode in PHY */
 245			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 246			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 247			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 248
 249			/* Unforce SMBus mode in MAC */
 250			mac_reg = er32(CTRL_EXT);
 251			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 252			ew32(CTRL_EXT, mac_reg);
 253		}
 254	}
 255
 256	return true;
 257}
 258
 259/**
 260 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 261 *  @hw: pointer to the HW structure
 262 *
 263 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 264 *  used to reset the PHY to a quiescent state when necessary.
 265 **/
 266static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 267{
 268	u32 mac_reg;
 269
 270	/* Set Phy Config Counter to 50msec */
 271	mac_reg = er32(FEXTNVM3);
 272	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 273	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 274	ew32(FEXTNVM3, mac_reg);
 275
 276	/* Toggle LANPHYPC Value bit */
 277	mac_reg = er32(CTRL);
 278	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 279	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 280	ew32(CTRL, mac_reg);
 281	e1e_flush();
 282	usleep_range(10, 20);
 283	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 284	ew32(CTRL, mac_reg);
 285	e1e_flush();
 286
 287	if (hw->mac.type < e1000_pch_lpt) {
 288		msleep(50);
 289	} else {
 290		u16 count = 20;
 291
 292		do {
 293			usleep_range(5000, 10000);
 294		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 295
 296		msleep(30);
 297	}
 298}
 299
 300/**
 301 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 302 *  @hw: pointer to the HW structure
 303 *
 304 *  Workarounds/flow necessary for PHY initialization during driver load
 305 *  and resume paths.
 306 **/
 307static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 308{
 309	struct e1000_adapter *adapter = hw->adapter;
 310	u32 mac_reg, fwsm = er32(FWSM);
 311	s32 ret_val;
 312
 313	/* Gate automatic PHY configuration by hardware on managed and
 314	 * non-managed 82579 and newer adapters.
 315	 */
 316	e1000_gate_hw_phy_config_ich8lan(hw, true);
 317
 318	/* It is not possible to be certain of the current state of ULP
 319	 * so forcibly disable it.
 320	 */
 321	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 322	e1000_disable_ulp_lpt_lp(hw, true);
 
 
 323
 324	ret_val = hw->phy.ops.acquire(hw);
 325	if (ret_val) {
 326		e_dbg("Failed to initialize PHY flow\n");
 327		goto out;
 328	}
 329
 330	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 331	 * inaccessible and resetting the PHY is not blocked, toggle the
 332	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 333	 */
 334	switch (hw->mac.type) {
 335	case e1000_pch_lpt:
 336	case e1000_pch_spt:
 337	case e1000_pch_cnp:
 
 
 
 
 
 
 338		if (e1000_phy_is_accessible_pchlan(hw))
 339			break;
 340
 341		/* Before toggling LANPHYPC, see if PHY is accessible by
 342		 * forcing MAC to SMBus mode first.
 343		 */
 344		mac_reg = er32(CTRL_EXT);
 345		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 346		ew32(CTRL_EXT, mac_reg);
 347
 348		/* Wait 50 milliseconds for MAC to finish any retries
 349		 * that it might be trying to perform from previous
 350		 * attempts to acknowledge any phy read requests.
 351		 */
 352		msleep(50);
 353
 354		/* fall-through */
 355	case e1000_pch2lan:
 356		if (e1000_phy_is_accessible_pchlan(hw))
 357			break;
 358
 359		/* fall-through */
 360	case e1000_pchlan:
 361		if ((hw->mac.type == e1000_pchlan) &&
 362		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 363			break;
 364
 365		if (hw->phy.ops.check_reset_block(hw)) {
 366			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 367			ret_val = -E1000_ERR_PHY;
 368			break;
 369		}
 370
 371		/* Toggle LANPHYPC Value bit */
 372		e1000_toggle_lanphypc_pch_lpt(hw);
 373		if (hw->mac.type >= e1000_pch_lpt) {
 374			if (e1000_phy_is_accessible_pchlan(hw))
 375				break;
 376
 377			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 378			 * so ensure that the MAC is also out of SMBus mode
 379			 */
 380			mac_reg = er32(CTRL_EXT);
 381			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 382			ew32(CTRL_EXT, mac_reg);
 383
 384			if (e1000_phy_is_accessible_pchlan(hw))
 385				break;
 386
 387			ret_val = -E1000_ERR_PHY;
 388		}
 389		break;
 390	default:
 391		break;
 392	}
 393
 394	hw->phy.ops.release(hw);
 395	if (!ret_val) {
 396
 397		/* Check to see if able to reset PHY.  Print error if not */
 398		if (hw->phy.ops.check_reset_block(hw)) {
 399			e_err("Reset blocked by ME\n");
 400			goto out;
 401		}
 402
 403		/* Reset the PHY before any access to it.  Doing so, ensures
 404		 * that the PHY is in a known good state before we read/write
 405		 * PHY registers.  The generic reset is sufficient here,
 406		 * because we haven't determined the PHY type yet.
 407		 */
 408		ret_val = e1000e_phy_hw_reset_generic(hw);
 409		if (ret_val)
 410			goto out;
 411
 412		/* On a successful reset, possibly need to wait for the PHY
 413		 * to quiesce to an accessible state before returning control
 414		 * to the calling function.  If the PHY does not quiesce, then
 415		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 416		 *  the PHY is in.
 417		 */
 418		ret_val = hw->phy.ops.check_reset_block(hw);
 419		if (ret_val)
 420			e_err("ME blocked access to PHY after reset\n");
 421	}
 422
 423out:
 424	/* Ungate automatic PHY configuration on non-managed 82579 */
 425	if ((hw->mac.type == e1000_pch2lan) &&
 426	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 427		usleep_range(10000, 20000);
 428		e1000_gate_hw_phy_config_ich8lan(hw, false);
 429	}
 430
 431	return ret_val;
 432}
 433
 434/**
 435 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 436 *  @hw: pointer to the HW structure
 437 *
 438 *  Initialize family-specific PHY parameters and function pointers.
 439 **/
 440static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 441{
 442	struct e1000_phy_info *phy = &hw->phy;
 443	s32 ret_val;
 444
 445	phy->addr = 1;
 446	phy->reset_delay_us = 100;
 447
 448	phy->ops.set_page = e1000_set_page_igp;
 449	phy->ops.read_reg = e1000_read_phy_reg_hv;
 450	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 451	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 452	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 453	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 454	phy->ops.write_reg = e1000_write_phy_reg_hv;
 455	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 456	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 457	phy->ops.power_up = e1000_power_up_phy_copper;
 458	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 459	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 460
 461	phy->id = e1000_phy_unknown;
 462
 463	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 464	if (ret_val)
 465		return ret_val;
 466
 467	if (phy->id == e1000_phy_unknown)
 468		switch (hw->mac.type) {
 469		default:
 470			ret_val = e1000e_get_phy_id(hw);
 471			if (ret_val)
 472				return ret_val;
 473			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 474				break;
 475			/* fall-through */
 476		case e1000_pch2lan:
 477		case e1000_pch_lpt:
 478		case e1000_pch_spt:
 479		case e1000_pch_cnp:
 
 
 
 
 
 
 480			/* In case the PHY needs to be in mdio slow mode,
 481			 * set slow mode and try to get the PHY id again.
 482			 */
 483			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 484			if (ret_val)
 485				return ret_val;
 486			ret_val = e1000e_get_phy_id(hw);
 487			if (ret_val)
 488				return ret_val;
 489			break;
 490		}
 491	phy->type = e1000e_get_phy_type_from_id(phy->id);
 492
 493	switch (phy->type) {
 494	case e1000_phy_82577:
 495	case e1000_phy_82579:
 496	case e1000_phy_i217:
 497		phy->ops.check_polarity = e1000_check_polarity_82577;
 498		phy->ops.force_speed_duplex =
 499		    e1000_phy_force_speed_duplex_82577;
 500		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 501		phy->ops.get_info = e1000_get_phy_info_82577;
 502		phy->ops.commit = e1000e_phy_sw_reset;
 503		break;
 504	case e1000_phy_82578:
 505		phy->ops.check_polarity = e1000_check_polarity_m88;
 506		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 507		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 508		phy->ops.get_info = e1000e_get_phy_info_m88;
 509		break;
 510	default:
 511		ret_val = -E1000_ERR_PHY;
 512		break;
 513	}
 514
 515	return ret_val;
 516}
 517
 518/**
 519 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 520 *  @hw: pointer to the HW structure
 521 *
 522 *  Initialize family-specific PHY parameters and function pointers.
 523 **/
 524static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 525{
 526	struct e1000_phy_info *phy = &hw->phy;
 527	s32 ret_val;
 528	u16 i = 0;
 529
 530	phy->addr = 1;
 531	phy->reset_delay_us = 100;
 532
 533	phy->ops.power_up = e1000_power_up_phy_copper;
 534	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 535
 536	/* We may need to do this twice - once for IGP and if that fails,
 537	 * we'll set BM func pointers and try again
 538	 */
 539	ret_val = e1000e_determine_phy_address(hw);
 540	if (ret_val) {
 541		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 542		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 543		ret_val = e1000e_determine_phy_address(hw);
 544		if (ret_val) {
 545			e_dbg("Cannot determine PHY addr. Erroring out\n");
 546			return ret_val;
 547		}
 548	}
 549
 550	phy->id = 0;
 551	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 552	       (i++ < 100)) {
 553		usleep_range(1000, 2000);
 554		ret_val = e1000e_get_phy_id(hw);
 555		if (ret_val)
 556			return ret_val;
 557	}
 558
 559	/* Verify phy id */
 560	switch (phy->id) {
 561	case IGP03E1000_E_PHY_ID:
 562		phy->type = e1000_phy_igp_3;
 563		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 564		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 565		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 566		phy->ops.get_info = e1000e_get_phy_info_igp;
 567		phy->ops.check_polarity = e1000_check_polarity_igp;
 568		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 569		break;
 570	case IFE_E_PHY_ID:
 571	case IFE_PLUS_E_PHY_ID:
 572	case IFE_C_E_PHY_ID:
 573		phy->type = e1000_phy_ife;
 574		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 575		phy->ops.get_info = e1000_get_phy_info_ife;
 576		phy->ops.check_polarity = e1000_check_polarity_ife;
 577		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 578		break;
 579	case BME1000_E_PHY_ID:
 580		phy->type = e1000_phy_bm;
 581		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 582		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 583		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 584		phy->ops.commit = e1000e_phy_sw_reset;
 585		phy->ops.get_info = e1000e_get_phy_info_m88;
 586		phy->ops.check_polarity = e1000_check_polarity_m88;
 587		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 588		break;
 589	default:
 590		return -E1000_ERR_PHY;
 591	}
 592
 593	return 0;
 594}
 595
 596/**
 597 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 598 *  @hw: pointer to the HW structure
 599 *
 600 *  Initialize family-specific NVM parameters and function
 601 *  pointers.
 602 **/
 603static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 604{
 605	struct e1000_nvm_info *nvm = &hw->nvm;
 606	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 607	u32 gfpreg, sector_base_addr, sector_end_addr;
 608	u16 i;
 609	u32 nvm_size;
 610
 611	nvm->type = e1000_nvm_flash_sw;
 612
 613	if (hw->mac.type >= e1000_pch_spt) {
 614		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 615		 * STRAP register. This is because in SPT the GbE Flash region
 616		 * is no longer accessed through the flash registers. Instead,
 617		 * the mechanism has changed, and the Flash region access
 618		 * registers are now implemented in GbE memory space.
 619		 */
 620		nvm->flash_base_addr = 0;
 621		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 622		    * NVM_SIZE_MULTIPLIER;
 623		nvm->flash_bank_size = nvm_size / 2;
 624		/* Adjust to word count */
 625		nvm->flash_bank_size /= sizeof(u16);
 626		/* Set the base address for flash register access */
 627		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 628	} else {
 629		/* Can't read flash registers if register set isn't mapped. */
 630		if (!hw->flash_address) {
 631			e_dbg("ERROR: Flash registers not mapped\n");
 632			return -E1000_ERR_CONFIG;
 633		}
 634
 635		gfpreg = er32flash(ICH_FLASH_GFPREG);
 636
 637		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 638		 * Add 1 to sector_end_addr since this sector is included in
 639		 * the overall size.
 640		 */
 641		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 642		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 643
 644		/* flash_base_addr is byte-aligned */
 645		nvm->flash_base_addr = sector_base_addr
 646		    << FLASH_SECTOR_ADDR_SHIFT;
 647
 648		/* find total size of the NVM, then cut in half since the total
 649		 * size represents two separate NVM banks.
 650		 */
 651		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 652					<< FLASH_SECTOR_ADDR_SHIFT);
 653		nvm->flash_bank_size /= 2;
 654		/* Adjust to word count */
 655		nvm->flash_bank_size /= sizeof(u16);
 656	}
 657
 658	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 659
 660	/* Clear shadow ram */
 661	for (i = 0; i < nvm->word_size; i++) {
 662		dev_spec->shadow_ram[i].modified = false;
 663		dev_spec->shadow_ram[i].value = 0xFFFF;
 664	}
 665
 666	return 0;
 667}
 668
 669/**
 670 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 671 *  @hw: pointer to the HW structure
 672 *
 673 *  Initialize family-specific MAC parameters and function
 674 *  pointers.
 675 **/
 676static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 677{
 678	struct e1000_mac_info *mac = &hw->mac;
 679
 680	/* Set media type function pointer */
 681	hw->phy.media_type = e1000_media_type_copper;
 682
 683	/* Set mta register count */
 684	mac->mta_reg_count = 32;
 685	/* Set rar entry count */
 686	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 687	if (mac->type == e1000_ich8lan)
 688		mac->rar_entry_count--;
 689	/* FWSM register */
 690	mac->has_fwsm = true;
 691	/* ARC subsystem not supported */
 692	mac->arc_subsystem_valid = false;
 693	/* Adaptive IFS supported */
 694	mac->adaptive_ifs = true;
 695
 696	/* LED and other operations */
 697	switch (mac->type) {
 698	case e1000_ich8lan:
 699	case e1000_ich9lan:
 700	case e1000_ich10lan:
 701		/* check management mode */
 702		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 703		/* ID LED init */
 704		mac->ops.id_led_init = e1000e_id_led_init_generic;
 705		/* blink LED */
 706		mac->ops.blink_led = e1000e_blink_led_generic;
 707		/* setup LED */
 708		mac->ops.setup_led = e1000e_setup_led_generic;
 709		/* cleanup LED */
 710		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 711		/* turn on/off LED */
 712		mac->ops.led_on = e1000_led_on_ich8lan;
 713		mac->ops.led_off = e1000_led_off_ich8lan;
 714		break;
 715	case e1000_pch2lan:
 716		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 717		mac->ops.rar_set = e1000_rar_set_pch2lan;
 718		/* fall-through */
 719	case e1000_pch_lpt:
 720	case e1000_pch_spt:
 721	case e1000_pch_cnp:
 
 
 
 
 
 
 722	case e1000_pchlan:
 723		/* check management mode */
 724		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 725		/* ID LED init */
 726		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 727		/* setup LED */
 728		mac->ops.setup_led = e1000_setup_led_pchlan;
 729		/* cleanup LED */
 730		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 731		/* turn on/off LED */
 732		mac->ops.led_on = e1000_led_on_pchlan;
 733		mac->ops.led_off = e1000_led_off_pchlan;
 734		break;
 735	default:
 736		break;
 737	}
 738
 739	if (mac->type >= e1000_pch_lpt) {
 740		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 741		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 742		mac->ops.setup_physical_interface =
 743		    e1000_setup_copper_link_pch_lpt;
 744		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 745	}
 746
 747	/* Enable PCS Lock-loss workaround for ICH8 */
 748	if (mac->type == e1000_ich8lan)
 749		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 750
 751	return 0;
 752}
 753
 754/**
 755 *  __e1000_access_emi_reg_locked - Read/write EMI register
 756 *  @hw: pointer to the HW structure
 757 *  @addr: EMI address to program
 758 *  @data: pointer to value to read/write from/to the EMI address
 759 *  @read: boolean flag to indicate read or write
 760 *
 761 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 762 **/
 763static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 764					 u16 *data, bool read)
 765{
 766	s32 ret_val;
 767
 768	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 769	if (ret_val)
 770		return ret_val;
 771
 772	if (read)
 773		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 774	else
 775		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 776
 777	return ret_val;
 778}
 779
 780/**
 781 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 782 *  @hw: pointer to the HW structure
 783 *  @addr: EMI address to program
 784 *  @data: value to be read from the EMI address
 785 *
 786 *  Assumes the SW/FW/HW Semaphore is already acquired.
 787 **/
 788s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 789{
 790	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 791}
 792
 793/**
 794 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 795 *  @hw: pointer to the HW structure
 796 *  @addr: EMI address to program
 797 *  @data: value to be written to the EMI address
 798 *
 799 *  Assumes the SW/FW/HW Semaphore is already acquired.
 800 **/
 801s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 802{
 803	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 804}
 805
 806/**
 807 *  e1000_set_eee_pchlan - Enable/disable EEE support
 808 *  @hw: pointer to the HW structure
 809 *
 810 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 811 *  the link and the EEE capabilities of the link partner.  The LPI Control
 812 *  register bits will remain set only if/when link is up.
 813 *
 814 *  EEE LPI must not be asserted earlier than one second after link is up.
 815 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 816 *  can be link issues with some switches.  Other devices can have EEE LPI
 817 *  enabled immediately upon link up since they have a timer in hardware which
 818 *  prevents LPI from being asserted too early.
 819 **/
 820s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 821{
 822	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 823	s32 ret_val;
 824	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 825
 826	switch (hw->phy.type) {
 827	case e1000_phy_82579:
 828		lpa = I82579_EEE_LP_ABILITY;
 829		pcs_status = I82579_EEE_PCS_STATUS;
 830		adv_addr = I82579_EEE_ADVERTISEMENT;
 831		break;
 832	case e1000_phy_i217:
 833		lpa = I217_EEE_LP_ABILITY;
 834		pcs_status = I217_EEE_PCS_STATUS;
 835		adv_addr = I217_EEE_ADVERTISEMENT;
 836		break;
 837	default:
 838		return 0;
 839	}
 840
 841	ret_val = hw->phy.ops.acquire(hw);
 842	if (ret_val)
 843		return ret_val;
 844
 845	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 846	if (ret_val)
 847		goto release;
 848
 849	/* Clear bits that enable EEE in various speeds */
 850	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 851
 852	/* Enable EEE if not disabled by user */
 853	if (!dev_spec->eee_disable) {
 854		/* Save off link partner's EEE ability */
 855		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 856						    &dev_spec->eee_lp_ability);
 857		if (ret_val)
 858			goto release;
 859
 860		/* Read EEE advertisement */
 861		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 862		if (ret_val)
 863			goto release;
 864
 865		/* Enable EEE only for speeds in which the link partner is
 866		 * EEE capable and for which we advertise EEE.
 867		 */
 868		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 869			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 870
 871		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 872			e1e_rphy_locked(hw, MII_LPA, &data);
 873			if (data & LPA_100FULL)
 874				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 875			else
 876				/* EEE is not supported in 100Half, so ignore
 877				 * partner's EEE in 100 ability if full-duplex
 878				 * is not advertised.
 879				 */
 880				dev_spec->eee_lp_ability &=
 881				    ~I82579_EEE_100_SUPPORTED;
 882		}
 883	}
 884
 885	if (hw->phy.type == e1000_phy_82579) {
 886		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 887						    &data);
 888		if (ret_val)
 889			goto release;
 890
 891		data &= ~I82579_LPI_100_PLL_SHUT;
 892		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 893						     data);
 894	}
 895
 896	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 897	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 898	if (ret_val)
 899		goto release;
 900
 901	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 902release:
 903	hw->phy.ops.release(hw);
 904
 905	return ret_val;
 906}
 907
 908/**
 909 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 910 *  @hw:   pointer to the HW structure
 911 *  @link: link up bool flag
 912 *
 913 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 914 *  preventing further DMA write requests.  Workaround the issue by disabling
 915 *  the de-assertion of the clock request when in 1Gpbs mode.
 916 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 917 *  speeds in order to avoid Tx hangs.
 918 **/
 919static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 920{
 921	u32 fextnvm6 = er32(FEXTNVM6);
 922	u32 status = er32(STATUS);
 923	s32 ret_val = 0;
 924	u16 reg;
 925
 926	if (link && (status & E1000_STATUS_SPEED_1000)) {
 927		ret_val = hw->phy.ops.acquire(hw);
 928		if (ret_val)
 929			return ret_val;
 930
 931		ret_val =
 932		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 933						&reg);
 934		if (ret_val)
 935			goto release;
 936
 937		ret_val =
 938		    e1000e_write_kmrn_reg_locked(hw,
 939						 E1000_KMRNCTRLSTA_K1_CONFIG,
 940						 reg &
 941						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 942		if (ret_val)
 943			goto release;
 944
 945		usleep_range(10, 20);
 946
 947		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 948
 949		ret_val =
 950		    e1000e_write_kmrn_reg_locked(hw,
 951						 E1000_KMRNCTRLSTA_K1_CONFIG,
 952						 reg);
 953release:
 954		hw->phy.ops.release(hw);
 955	} else {
 956		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 957		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 958
 959		if ((hw->phy.revision > 5) || !link ||
 960		    ((status & E1000_STATUS_SPEED_100) &&
 961		     (status & E1000_STATUS_FD)))
 962			goto update_fextnvm6;
 963
 964		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 965		if (ret_val)
 966			return ret_val;
 967
 968		/* Clear link status transmit timeout */
 969		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 970
 971		if (status & E1000_STATUS_SPEED_100) {
 972			/* Set inband Tx timeout to 5x10us for 100Half */
 973			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 974
 975			/* Do not extend the K1 entry latency for 100Half */
 976			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 977		} else {
 978			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 979			reg |= 50 <<
 980			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 981
 982			/* Extend the K1 entry latency for 10 Mbps */
 983			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 984		}
 985
 986		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 987		if (ret_val)
 988			return ret_val;
 989
 990update_fextnvm6:
 991		ew32(FEXTNVM6, fextnvm6);
 992	}
 993
 994	return ret_val;
 995}
 996
 997/**
 998 *  e1000_platform_pm_pch_lpt - Set platform power management values
 999 *  @hw: pointer to the HW structure
1000 *  @link: bool indicating link status
1001 *
1002 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1003 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1004 *  when link is up (which must not exceed the maximum latency supported
1005 *  by the platform), otherwise specify there is no LTR requirement.
1006 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1007 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1008 *  Capability register set, on this device LTR is set by writing the
1009 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1010 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1011 *  message to the PMC.
1012 **/
1013static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1014{
1015	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1016	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
 
 
1017	u16 lat_enc = 0;	/* latency encoded */
1018
1019	if (link) {
1020		u16 speed, duplex, scale = 0;
1021		u16 max_snoop, max_nosnoop;
1022		u16 max_ltr_enc;	/* max LTR latency encoded */
1023		u64 value;
1024		u32 rxa;
1025
1026		if (!hw->adapter->max_frame_size) {
1027			e_dbg("max_frame_size not set.\n");
1028			return -E1000_ERR_CONFIG;
1029		}
1030
1031		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1032		if (!speed) {
1033			e_dbg("Speed not set.\n");
1034			return -E1000_ERR_CONFIG;
1035		}
1036
1037		/* Rx Packet Buffer Allocation size (KB) */
1038		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1039
1040		/* Determine the maximum latency tolerated by the device.
1041		 *
1042		 * Per the PCIe spec, the tolerated latencies are encoded as
1043		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1044		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1045		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1046		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1047		 */
1048		rxa *= 512;
1049		value = (rxa > hw->adapter->max_frame_size) ?
1050			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1051			0;
1052
1053		while (value > PCI_LTR_VALUE_MASK) {
1054			scale++;
1055			value = DIV_ROUND_UP(value, BIT(5));
1056		}
1057		if (scale > E1000_LTRV_SCALE_MAX) {
1058			e_dbg("Invalid LTR latency scale %d\n", scale);
1059			return -E1000_ERR_CONFIG;
1060		}
1061		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1062
1063		/* Determine the maximum latency tolerated by the platform */
1064		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1065				     &max_snoop);
1066		pci_read_config_word(hw->adapter->pdev,
1067				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1068		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1069
1070		if (lat_enc > max_ltr_enc)
 
 
 
 
 
 
 
 
1071			lat_enc = max_ltr_enc;
1072	}
1073
1074	/* Set Snoop and No-Snoop latencies the same */
1075	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1076	ew32(LTRV, reg);
1077
1078	return 0;
1079}
1080
1081/**
1082 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1083 *  @hw: pointer to the HW structure
1084 *  @to_sx: boolean indicating a system power state transition to Sx
1085 *
1086 *  When link is down, configure ULP mode to significantly reduce the power
1087 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1088 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1089 *  system, configure the ULP mode by software.
1090 */
1091s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1092{
1093	u32 mac_reg;
1094	s32 ret_val = 0;
1095	u16 phy_reg;
1096	u16 oem_reg = 0;
1097
1098	if ((hw->mac.type < e1000_pch_lpt) ||
1099	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1100	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1101	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1102	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1103	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1104		return 0;
1105
1106	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1107		/* Request ME configure ULP mode in the PHY */
1108		mac_reg = er32(H2ME);
1109		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1110		ew32(H2ME, mac_reg);
1111
1112		goto out;
1113	}
1114
1115	if (!to_sx) {
1116		int i = 0;
1117
1118		/* Poll up to 5 seconds for Cable Disconnected indication */
1119		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1120			/* Bail if link is re-acquired */
1121			if (er32(STATUS) & E1000_STATUS_LU)
1122				return -E1000_ERR_PHY;
1123
1124			if (i++ == 100)
1125				break;
1126
1127			msleep(50);
1128		}
1129		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1130		      (er32(FEXT) &
1131		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1132	}
1133
1134	ret_val = hw->phy.ops.acquire(hw);
1135	if (ret_val)
1136		goto out;
1137
1138	/* Force SMBus mode in PHY */
1139	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1140	if (ret_val)
1141		goto release;
1142	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1143	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1144
1145	/* Force SMBus mode in MAC */
1146	mac_reg = er32(CTRL_EXT);
1147	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1148	ew32(CTRL_EXT, mac_reg);
1149
1150	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1151	 * LPLU and disable Gig speed when entering ULP
1152	 */
1153	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1154		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1155						       &oem_reg);
1156		if (ret_val)
1157			goto release;
1158
1159		phy_reg = oem_reg;
1160		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1161
1162		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1163							phy_reg);
1164
1165		if (ret_val)
1166			goto release;
1167	}
1168
1169	/* Set Inband ULP Exit, Reset to SMBus mode and
1170	 * Disable SMBus Release on PERST# in PHY
1171	 */
1172	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1173	if (ret_val)
1174		goto release;
1175	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1176		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1177	if (to_sx) {
1178		if (er32(WUFC) & E1000_WUFC_LNKC)
1179			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1180		else
1181			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1182
1183		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1184		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1185	} else {
1186		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1187		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1188		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1189	}
1190	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1191
1192	/* Set Disable SMBus Release on PERST# in MAC */
1193	mac_reg = er32(FEXTNVM7);
1194	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1195	ew32(FEXTNVM7, mac_reg);
1196
1197	/* Commit ULP changes in PHY by starting auto ULP configuration */
1198	phy_reg |= I218_ULP_CONFIG1_START;
1199	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1200
1201	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1202	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1203		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1204							oem_reg);
1205		if (ret_val)
1206			goto release;
1207	}
1208
1209release:
1210	hw->phy.ops.release(hw);
1211out:
1212	if (ret_val)
1213		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1214	else
1215		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1216
1217	return ret_val;
1218}
1219
1220/**
1221 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1222 *  @hw: pointer to the HW structure
1223 *  @force: boolean indicating whether or not to force disabling ULP
1224 *
1225 *  Un-configure ULP mode when link is up, the system is transitioned from
1226 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1227 *  system, poll for an indication from ME that ULP has been un-configured.
1228 *  If not on an ME enabled system, un-configure the ULP mode by software.
1229 *
1230 *  During nominal operation, this function is called when link is acquired
1231 *  to disable ULP mode (force=false); otherwise, for example when unloading
1232 *  the driver or during Sx->S0 transitions, this is called with force=true
1233 *  to forcibly disable ULP.
1234 */
1235static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1236{
1237	s32 ret_val = 0;
1238	u32 mac_reg;
1239	u16 phy_reg;
1240	int i = 0;
1241
1242	if ((hw->mac.type < e1000_pch_lpt) ||
1243	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1244	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1245	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1246	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1247	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1248		return 0;
1249
1250	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
 
 
 
1251		if (force) {
1252			/* Request ME un-configure ULP mode in the PHY */
1253			mac_reg = er32(H2ME);
1254			mac_reg &= ~E1000_H2ME_ULP;
1255			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1256			ew32(H2ME, mac_reg);
1257		}
1258
1259		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
 
 
 
1260		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1261			if (i++ == 30) {
1262				ret_val = -E1000_ERR_PHY;
1263				goto out;
1264			}
 
 
1265
1266			usleep_range(10000, 20000);
1267		}
1268		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
 
 
 
 
 
1269
1270		if (force) {
1271			mac_reg = er32(H2ME);
1272			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1273			ew32(H2ME, mac_reg);
1274		} else {
1275			/* Clear H2ME.ULP after ME ULP configuration */
1276			mac_reg = er32(H2ME);
1277			mac_reg &= ~E1000_H2ME_ULP;
1278			ew32(H2ME, mac_reg);
1279		}
1280
1281		goto out;
1282	}
1283
1284	ret_val = hw->phy.ops.acquire(hw);
1285	if (ret_val)
1286		goto out;
1287
1288	if (force)
1289		/* Toggle LANPHYPC Value bit */
1290		e1000_toggle_lanphypc_pch_lpt(hw);
1291
1292	/* Unforce SMBus mode in PHY */
1293	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1294	if (ret_val) {
1295		/* The MAC might be in PCIe mode, so temporarily force to
1296		 * SMBus mode in order to access the PHY.
1297		 */
1298		mac_reg = er32(CTRL_EXT);
1299		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1300		ew32(CTRL_EXT, mac_reg);
1301
1302		msleep(50);
1303
1304		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1305						       &phy_reg);
1306		if (ret_val)
1307			goto release;
1308	}
1309	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1310	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1311
1312	/* Unforce SMBus mode in MAC */
1313	mac_reg = er32(CTRL_EXT);
1314	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1315	ew32(CTRL_EXT, mac_reg);
1316
1317	/* When ULP mode was previously entered, K1 was disabled by the
1318	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1319	 */
1320	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1321	if (ret_val)
1322		goto release;
1323	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1324	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1325
1326	/* Clear ULP enabled configuration */
1327	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1328	if (ret_val)
1329		goto release;
1330	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1331		     I218_ULP_CONFIG1_STICKY_ULP |
1332		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1333		     I218_ULP_CONFIG1_WOL_HOST |
1334		     I218_ULP_CONFIG1_INBAND_EXIT |
1335		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1336		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1337		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1338	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1339
1340	/* Commit ULP changes by starting auto ULP configuration */
1341	phy_reg |= I218_ULP_CONFIG1_START;
1342	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1343
1344	/* Clear Disable SMBus Release on PERST# in MAC */
1345	mac_reg = er32(FEXTNVM7);
1346	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1347	ew32(FEXTNVM7, mac_reg);
1348
1349release:
1350	hw->phy.ops.release(hw);
1351	if (force) {
1352		e1000_phy_hw_reset(hw);
1353		msleep(50);
1354	}
1355out:
1356	if (ret_val)
1357		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1358	else
1359		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1360
1361	return ret_val;
1362}
1363
1364/**
1365 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1366 *  @hw: pointer to the HW structure
1367 *
1368 *  Checks to see of the link status of the hardware has changed.  If a
1369 *  change in link status has been detected, then we read the PHY registers
1370 *  to get the current speed/duplex if link exists.
1371 **/
1372static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1373{
1374	struct e1000_mac_info *mac = &hw->mac;
1375	s32 ret_val, tipg_reg = 0;
1376	u16 emi_addr, emi_val = 0;
1377	bool link;
1378	u16 phy_reg;
1379
1380	/* We only want to go out to the PHY registers to see if Auto-Neg
1381	 * has completed and/or if our link status has changed.  The
1382	 * get_link_status flag is set upon receiving a Link Status
1383	 * Change or Rx Sequence Error interrupt.
1384	 */
1385	if (!mac->get_link_status)
1386		return 0;
1387	mac->get_link_status = false;
1388
1389	/* First we want to see if the MII Status Register reports
1390	 * link.  If so, then we want to get the current speed/duplex
1391	 * of the PHY.
1392	 */
1393	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1394	if (ret_val)
1395		goto out;
1396
1397	if (hw->mac.type == e1000_pchlan) {
1398		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1399		if (ret_val)
1400			goto out;
1401	}
1402
1403	/* When connected at 10Mbps half-duplex, some parts are excessively
1404	 * aggressive resulting in many collisions. To avoid this, increase
1405	 * the IPG and reduce Rx latency in the PHY.
1406	 */
1407	if ((hw->mac.type >= e1000_pch2lan) && link) {
1408		u16 speed, duplex;
1409
1410		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1411		tipg_reg = er32(TIPG);
1412		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1413
1414		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1415			tipg_reg |= 0xFF;
1416			/* Reduce Rx latency in analog PHY */
1417			emi_val = 0;
1418		} else if (hw->mac.type >= e1000_pch_spt &&
1419			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1420			tipg_reg |= 0xC;
1421			emi_val = 1;
1422		} else {
1423
1424			/* Roll back the default values */
1425			tipg_reg |= 0x08;
1426			emi_val = 1;
1427		}
1428
1429		ew32(TIPG, tipg_reg);
1430
1431		ret_val = hw->phy.ops.acquire(hw);
1432		if (ret_val)
1433			goto out;
1434
1435		if (hw->mac.type == e1000_pch2lan)
1436			emi_addr = I82579_RX_CONFIG;
1437		else
1438			emi_addr = I217_RX_CONFIG;
1439		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1440
1441		if (hw->mac.type >= e1000_pch_lpt) {
1442			u16 phy_reg;
1443
1444			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1445			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1446			if (speed == SPEED_100 || speed == SPEED_10)
1447				phy_reg |= 0x3E8;
1448			else
1449				phy_reg |= 0xFA;
1450			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
 
 
 
 
 
 
 
 
 
 
1451		}
1452		hw->phy.ops.release(hw);
1453
1454		if (ret_val)
1455			goto out;
1456
1457		if (hw->mac.type >= e1000_pch_spt) {
1458			u16 data;
1459			u16 ptr_gap;
1460
1461			if (speed == SPEED_1000) {
1462				ret_val = hw->phy.ops.acquire(hw);
1463				if (ret_val)
1464					goto out;
1465
1466				ret_val = e1e_rphy_locked(hw,
1467							  PHY_REG(776, 20),
1468							  &data);
1469				if (ret_val) {
1470					hw->phy.ops.release(hw);
1471					goto out;
1472				}
1473
1474				ptr_gap = (data & (0x3FF << 2)) >> 2;
1475				if (ptr_gap < 0x18) {
1476					data &= ~(0x3FF << 2);
1477					data |= (0x18 << 2);
1478					ret_val =
1479					    e1e_wphy_locked(hw,
1480							    PHY_REG(776, 20),
1481							    data);
1482				}
1483				hw->phy.ops.release(hw);
1484				if (ret_val)
1485					goto out;
1486			} else {
1487				ret_val = hw->phy.ops.acquire(hw);
1488				if (ret_val)
1489					goto out;
1490
1491				ret_val = e1e_wphy_locked(hw,
1492							  PHY_REG(776, 20),
1493							  0xC023);
1494				hw->phy.ops.release(hw);
1495				if (ret_val)
1496					goto out;
1497
1498			}
1499		}
1500	}
1501
1502	/* I217 Packet Loss issue:
1503	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1504	 * on power up.
1505	 * Set the Beacon Duration for I217 to 8 usec
1506	 */
1507	if (hw->mac.type >= e1000_pch_lpt) {
1508		u32 mac_reg;
1509
1510		mac_reg = er32(FEXTNVM4);
1511		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1512		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1513		ew32(FEXTNVM4, mac_reg);
1514	}
1515
1516	/* Work-around I218 hang issue */
1517	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1518	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1519	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1520	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1521		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1522		if (ret_val)
1523			goto out;
1524	}
1525	if (hw->mac.type >= e1000_pch_lpt) {
1526		/* Set platform power management values for
1527		 * Latency Tolerance Reporting (LTR)
1528		 */
1529		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1530		if (ret_val)
1531			goto out;
1532	}
1533
1534	/* Clear link partner's EEE ability */
1535	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1536
1537	if (hw->mac.type >= e1000_pch_lpt) {
1538		u32 fextnvm6 = er32(FEXTNVM6);
1539
1540		if (hw->mac.type == e1000_pch_spt) {
1541			/* FEXTNVM6 K1-off workaround - for SPT only */
1542			u32 pcieanacfg = er32(PCIEANACFG);
1543
1544			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1545				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1546			else
1547				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1548		}
1549
1550		ew32(FEXTNVM6, fextnvm6);
1551	}
1552
1553	if (!link)
1554		goto out;
1555
1556	switch (hw->mac.type) {
1557	case e1000_pch2lan:
1558		ret_val = e1000_k1_workaround_lv(hw);
1559		if (ret_val)
1560			return ret_val;
1561		/* fall-thru */
1562	case e1000_pchlan:
1563		if (hw->phy.type == e1000_phy_82578) {
1564			ret_val = e1000_link_stall_workaround_hv(hw);
1565			if (ret_val)
1566				return ret_val;
1567		}
1568
1569		/* Workaround for PCHx parts in half-duplex:
1570		 * Set the number of preambles removed from the packet
1571		 * when it is passed from the PHY to the MAC to prevent
1572		 * the MAC from misinterpreting the packet type.
1573		 */
1574		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1575		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1576
1577		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1578			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1579
1580		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1581		break;
1582	default:
1583		break;
1584	}
1585
1586	/* Check if there was DownShift, must be checked
1587	 * immediately after link-up
1588	 */
1589	e1000e_check_downshift(hw);
1590
1591	/* Enable/Disable EEE after link up */
1592	if (hw->phy.type > e1000_phy_82579) {
1593		ret_val = e1000_set_eee_pchlan(hw);
1594		if (ret_val)
1595			return ret_val;
1596	}
1597
1598	/* If we are forcing speed/duplex, then we simply return since
1599	 * we have already determined whether we have link or not.
1600	 */
1601	if (!mac->autoneg)
1602		return -E1000_ERR_CONFIG;
1603
1604	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1605	 * of MAC speed/duplex configuration.  So we only need to
1606	 * configure Collision Distance in the MAC.
1607	 */
1608	mac->ops.config_collision_dist(hw);
1609
1610	/* Configure Flow Control now that Auto-Neg has completed.
1611	 * First, we need to restore the desired flow control
1612	 * settings because we may have had to re-autoneg with a
1613	 * different link partner.
1614	 */
1615	ret_val = e1000e_config_fc_after_link_up(hw);
1616	if (ret_val)
1617		e_dbg("Error configuring flow control\n");
1618
1619	return ret_val;
1620
1621out:
1622	mac->get_link_status = true;
1623	return ret_val;
1624}
1625
1626static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1627{
1628	struct e1000_hw *hw = &adapter->hw;
1629	s32 rc;
1630
1631	rc = e1000_init_mac_params_ich8lan(hw);
1632	if (rc)
1633		return rc;
1634
1635	rc = e1000_init_nvm_params_ich8lan(hw);
1636	if (rc)
1637		return rc;
1638
1639	switch (hw->mac.type) {
1640	case e1000_ich8lan:
1641	case e1000_ich9lan:
1642	case e1000_ich10lan:
1643		rc = e1000_init_phy_params_ich8lan(hw);
1644		break;
1645	case e1000_pchlan:
1646	case e1000_pch2lan:
1647	case e1000_pch_lpt:
1648	case e1000_pch_spt:
1649	case e1000_pch_cnp:
 
 
 
 
 
 
1650		rc = e1000_init_phy_params_pchlan(hw);
1651		break;
1652	default:
1653		break;
1654	}
1655	if (rc)
1656		return rc;
1657
1658	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1659	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1660	 */
1661	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1662	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1663	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1664		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1665		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1666
1667		hw->mac.ops.blink_led = NULL;
1668	}
1669
1670	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1671	    (adapter->hw.phy.type != e1000_phy_ife))
1672		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1673
1674	/* Enable workaround for 82579 w/ ME enabled */
1675	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1676	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1677		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1678
1679	return 0;
1680}
1681
1682static DEFINE_MUTEX(nvm_mutex);
1683
1684/**
1685 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1686 *  @hw: pointer to the HW structure
1687 *
1688 *  Acquires the mutex for performing NVM operations.
1689 **/
1690static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1691{
1692	mutex_lock(&nvm_mutex);
1693
1694	return 0;
1695}
1696
1697/**
1698 *  e1000_release_nvm_ich8lan - Release NVM mutex
1699 *  @hw: pointer to the HW structure
1700 *
1701 *  Releases the mutex used while performing NVM operations.
1702 **/
1703static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1704{
1705	mutex_unlock(&nvm_mutex);
1706}
1707
1708/**
1709 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1710 *  @hw: pointer to the HW structure
1711 *
1712 *  Acquires the software control flag for performing PHY and select
1713 *  MAC CSR accesses.
1714 **/
1715static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1716{
1717	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1718	s32 ret_val = 0;
1719
1720	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1721			     &hw->adapter->state)) {
1722		e_dbg("contention for Phy access\n");
1723		return -E1000_ERR_PHY;
1724	}
1725
1726	while (timeout) {
1727		extcnf_ctrl = er32(EXTCNF_CTRL);
1728		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1729			break;
1730
1731		mdelay(1);
1732		timeout--;
1733	}
1734
1735	if (!timeout) {
1736		e_dbg("SW has already locked the resource.\n");
1737		ret_val = -E1000_ERR_CONFIG;
1738		goto out;
1739	}
1740
1741	timeout = SW_FLAG_TIMEOUT;
1742
1743	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1744	ew32(EXTCNF_CTRL, extcnf_ctrl);
1745
1746	while (timeout) {
1747		extcnf_ctrl = er32(EXTCNF_CTRL);
1748		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1749			break;
1750
1751		mdelay(1);
1752		timeout--;
1753	}
1754
1755	if (!timeout) {
1756		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1757		      er32(FWSM), extcnf_ctrl);
1758		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1759		ew32(EXTCNF_CTRL, extcnf_ctrl);
1760		ret_val = -E1000_ERR_CONFIG;
1761		goto out;
1762	}
1763
1764out:
1765	if (ret_val)
1766		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1767
1768	return ret_val;
1769}
1770
1771/**
1772 *  e1000_release_swflag_ich8lan - Release software control flag
1773 *  @hw: pointer to the HW structure
1774 *
1775 *  Releases the software control flag for performing PHY and select
1776 *  MAC CSR accesses.
1777 **/
1778static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1779{
1780	u32 extcnf_ctrl;
1781
1782	extcnf_ctrl = er32(EXTCNF_CTRL);
1783
1784	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1785		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1786		ew32(EXTCNF_CTRL, extcnf_ctrl);
1787	} else {
1788		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1789	}
1790
1791	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1792}
1793
1794/**
1795 *  e1000_check_mng_mode_ich8lan - Checks management mode
1796 *  @hw: pointer to the HW structure
1797 *
1798 *  This checks if the adapter has any manageability enabled.
1799 *  This is a function pointer entry point only called by read/write
1800 *  routines for the PHY and NVM parts.
1801 **/
1802static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1803{
1804	u32 fwsm;
1805
1806	fwsm = er32(FWSM);
1807	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1808		((fwsm & E1000_FWSM_MODE_MASK) ==
1809		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1810}
1811
1812/**
1813 *  e1000_check_mng_mode_pchlan - Checks management mode
1814 *  @hw: pointer to the HW structure
1815 *
1816 *  This checks if the adapter has iAMT enabled.
1817 *  This is a function pointer entry point only called by read/write
1818 *  routines for the PHY and NVM parts.
1819 **/
1820static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1821{
1822	u32 fwsm;
1823
1824	fwsm = er32(FWSM);
1825	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1826	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1827}
1828
1829/**
1830 *  e1000_rar_set_pch2lan - Set receive address register
1831 *  @hw: pointer to the HW structure
1832 *  @addr: pointer to the receive address
1833 *  @index: receive address array register
1834 *
1835 *  Sets the receive address array register at index to the address passed
1836 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1837 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1838 *  Use SHRA[0-3] in place of those reserved for ME.
1839 **/
1840static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1841{
1842	u32 rar_low, rar_high;
1843
1844	/* HW expects these in little endian so we reverse the byte order
1845	 * from network order (big endian) to little endian
1846	 */
1847	rar_low = ((u32)addr[0] |
1848		   ((u32)addr[1] << 8) |
1849		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1850
1851	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1852
1853	/* If MAC address zero, no need to set the AV bit */
1854	if (rar_low || rar_high)
1855		rar_high |= E1000_RAH_AV;
1856
1857	if (index == 0) {
1858		ew32(RAL(index), rar_low);
1859		e1e_flush();
1860		ew32(RAH(index), rar_high);
1861		e1e_flush();
1862		return 0;
1863	}
1864
1865	/* RAR[1-6] are owned by manageability.  Skip those and program the
1866	 * next address into the SHRA register array.
1867	 */
1868	if (index < (u32)(hw->mac.rar_entry_count)) {
1869		s32 ret_val;
1870
1871		ret_val = e1000_acquire_swflag_ich8lan(hw);
1872		if (ret_val)
1873			goto out;
1874
1875		ew32(SHRAL(index - 1), rar_low);
1876		e1e_flush();
1877		ew32(SHRAH(index - 1), rar_high);
1878		e1e_flush();
1879
1880		e1000_release_swflag_ich8lan(hw);
1881
1882		/* verify the register updates */
1883		if ((er32(SHRAL(index - 1)) == rar_low) &&
1884		    (er32(SHRAH(index - 1)) == rar_high))
1885			return 0;
1886
1887		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1888		      (index - 1), er32(FWSM));
1889	}
1890
1891out:
1892	e_dbg("Failed to write receive address at index %d\n", index);
1893	return -E1000_ERR_CONFIG;
1894}
1895
1896/**
1897 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1898 *  @hw: pointer to the HW structure
1899 *
1900 *  Get the number of available receive registers that the Host can
1901 *  program. SHRA[0-10] are the shared receive address registers
1902 *  that are shared between the Host and manageability engine (ME).
1903 *  ME can reserve any number of addresses and the host needs to be
1904 *  able to tell how many available registers it has access to.
1905 **/
1906static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1907{
1908	u32 wlock_mac;
1909	u32 num_entries;
1910
1911	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1912	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1913
1914	switch (wlock_mac) {
1915	case 0:
1916		/* All SHRA[0..10] and RAR[0] available */
1917		num_entries = hw->mac.rar_entry_count;
1918		break;
1919	case 1:
1920		/* Only RAR[0] available */
1921		num_entries = 1;
1922		break;
1923	default:
1924		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1925		num_entries = wlock_mac + 1;
1926		break;
1927	}
1928
1929	return num_entries;
1930}
1931
1932/**
1933 *  e1000_rar_set_pch_lpt - Set receive address registers
1934 *  @hw: pointer to the HW structure
1935 *  @addr: pointer to the receive address
1936 *  @index: receive address array register
1937 *
1938 *  Sets the receive address register array at index to the address passed
1939 *  in by addr. For LPT, RAR[0] is the base address register that is to
1940 *  contain the MAC address. SHRA[0-10] are the shared receive address
1941 *  registers that are shared between the Host and manageability engine (ME).
1942 **/
1943static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1944{
1945	u32 rar_low, rar_high;
1946	u32 wlock_mac;
1947
1948	/* HW expects these in little endian so we reverse the byte order
1949	 * from network order (big endian) to little endian
1950	 */
1951	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1952		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1953
1954	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1955
1956	/* If MAC address zero, no need to set the AV bit */
1957	if (rar_low || rar_high)
1958		rar_high |= E1000_RAH_AV;
1959
1960	if (index == 0) {
1961		ew32(RAL(index), rar_low);
1962		e1e_flush();
1963		ew32(RAH(index), rar_high);
1964		e1e_flush();
1965		return 0;
1966	}
1967
1968	/* The manageability engine (ME) can lock certain SHRAR registers that
1969	 * it is using - those registers are unavailable for use.
1970	 */
1971	if (index < hw->mac.rar_entry_count) {
1972		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1973		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1974
1975		/* Check if all SHRAR registers are locked */
1976		if (wlock_mac == 1)
1977			goto out;
1978
1979		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1980			s32 ret_val;
1981
1982			ret_val = e1000_acquire_swflag_ich8lan(hw);
1983
1984			if (ret_val)
1985				goto out;
1986
1987			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1988			e1e_flush();
1989			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1990			e1e_flush();
1991
1992			e1000_release_swflag_ich8lan(hw);
1993
1994			/* verify the register updates */
1995			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1996			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1997				return 0;
1998		}
1999	}
2000
2001out:
2002	e_dbg("Failed to write receive address at index %d\n", index);
2003	return -E1000_ERR_CONFIG;
2004}
2005
2006/**
2007 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2008 *  @hw: pointer to the HW structure
2009 *
2010 *  Checks if firmware is blocking the reset of the PHY.
2011 *  This is a function pointer entry point only called by
2012 *  reset routines.
2013 **/
2014static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2015{
2016	bool blocked = false;
2017	int i = 0;
2018
2019	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2020	       (i++ < 30))
2021		usleep_range(10000, 20000);
2022	return blocked ? E1000_BLK_PHY_RESET : 0;
2023}
2024
2025/**
2026 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2027 *  @hw: pointer to the HW structure
2028 *
2029 *  Assumes semaphore already acquired.
2030 *
2031 **/
2032static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2033{
2034	u16 phy_data;
2035	u32 strap = er32(STRAP);
2036	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2037	    E1000_STRAP_SMT_FREQ_SHIFT;
2038	s32 ret_val;
2039
2040	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2041
2042	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2043	if (ret_val)
2044		return ret_val;
2045
2046	phy_data &= ~HV_SMB_ADDR_MASK;
2047	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2048	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2049
2050	if (hw->phy.type == e1000_phy_i217) {
2051		/* Restore SMBus frequency */
2052		if (freq--) {
2053			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2054			phy_data |= (freq & BIT(0)) <<
2055			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2056			phy_data |= (freq & BIT(1)) <<
2057			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2058		} else {
2059			e_dbg("Unsupported SMB frequency in PHY\n");
2060		}
2061	}
2062
2063	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2064}
2065
2066/**
2067 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2068 *  @hw:   pointer to the HW structure
2069 *
2070 *  SW should configure the LCD from the NVM extended configuration region
2071 *  as a workaround for certain parts.
2072 **/
2073static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2074{
2075	struct e1000_phy_info *phy = &hw->phy;
2076	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2077	s32 ret_val = 0;
2078	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2079
2080	/* Initialize the PHY from the NVM on ICH platforms.  This
2081	 * is needed due to an issue where the NVM configuration is
2082	 * not properly autoloaded after power transitions.
2083	 * Therefore, after each PHY reset, we will load the
2084	 * configuration data out of the NVM manually.
2085	 */
2086	switch (hw->mac.type) {
2087	case e1000_ich8lan:
2088		if (phy->type != e1000_phy_igp_3)
2089			return ret_val;
2090
2091		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2092		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2093			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2094			break;
2095		}
2096		/* Fall-thru */
2097	case e1000_pchlan:
2098	case e1000_pch2lan:
2099	case e1000_pch_lpt:
2100	case e1000_pch_spt:
2101	case e1000_pch_cnp:
 
 
 
 
 
 
2102		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2103		break;
2104	default:
2105		return ret_val;
2106	}
2107
2108	ret_val = hw->phy.ops.acquire(hw);
2109	if (ret_val)
2110		return ret_val;
2111
2112	data = er32(FEXTNVM);
2113	if (!(data & sw_cfg_mask))
2114		goto release;
2115
2116	/* Make sure HW does not configure LCD from PHY
2117	 * extended configuration before SW configuration
2118	 */
2119	data = er32(EXTCNF_CTRL);
2120	if ((hw->mac.type < e1000_pch2lan) &&
2121	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2122		goto release;
2123
2124	cnf_size = er32(EXTCNF_SIZE);
2125	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2126	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2127	if (!cnf_size)
2128		goto release;
2129
2130	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2131	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2132
2133	if (((hw->mac.type == e1000_pchlan) &&
2134	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2135	    (hw->mac.type > e1000_pchlan)) {
2136		/* HW configures the SMBus address and LEDs when the
2137		 * OEM and LCD Write Enable bits are set in the NVM.
2138		 * When both NVM bits are cleared, SW will configure
2139		 * them instead.
2140		 */
2141		ret_val = e1000_write_smbus_addr(hw);
2142		if (ret_val)
2143			goto release;
2144
2145		data = er32(LEDCTL);
2146		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2147							(u16)data);
2148		if (ret_val)
2149			goto release;
2150	}
2151
2152	/* Configure LCD from extended configuration region. */
2153
2154	/* cnf_base_addr is in DWORD */
2155	word_addr = (u16)(cnf_base_addr << 1);
2156
2157	for (i = 0; i < cnf_size; i++) {
2158		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2159		if (ret_val)
2160			goto release;
2161
2162		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2163					 1, &reg_addr);
2164		if (ret_val)
2165			goto release;
2166
2167		/* Save off the PHY page for future writes. */
2168		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2169			phy_page = reg_data;
2170			continue;
2171		}
2172
2173		reg_addr &= PHY_REG_MASK;
2174		reg_addr |= phy_page;
2175
2176		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2177		if (ret_val)
2178			goto release;
2179	}
2180
2181release:
2182	hw->phy.ops.release(hw);
2183	return ret_val;
2184}
2185
2186/**
2187 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2188 *  @hw:   pointer to the HW structure
2189 *  @link: link up bool flag
2190 *
2191 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2192 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2193 *  If link is down, the function will restore the default K1 setting located
2194 *  in the NVM.
2195 **/
2196static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2197{
2198	s32 ret_val = 0;
2199	u16 status_reg = 0;
2200	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2201
2202	if (hw->mac.type != e1000_pchlan)
2203		return 0;
2204
2205	/* Wrap the whole flow with the sw flag */
2206	ret_val = hw->phy.ops.acquire(hw);
2207	if (ret_val)
2208		return ret_val;
2209
2210	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2211	if (link) {
2212		if (hw->phy.type == e1000_phy_82578) {
2213			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2214						  &status_reg);
2215			if (ret_val)
2216				goto release;
2217
2218			status_reg &= (BM_CS_STATUS_LINK_UP |
2219				       BM_CS_STATUS_RESOLVED |
2220				       BM_CS_STATUS_SPEED_MASK);
2221
2222			if (status_reg == (BM_CS_STATUS_LINK_UP |
2223					   BM_CS_STATUS_RESOLVED |
2224					   BM_CS_STATUS_SPEED_1000))
2225				k1_enable = false;
2226		}
2227
2228		if (hw->phy.type == e1000_phy_82577) {
2229			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2230			if (ret_val)
2231				goto release;
2232
2233			status_reg &= (HV_M_STATUS_LINK_UP |
2234				       HV_M_STATUS_AUTONEG_COMPLETE |
2235				       HV_M_STATUS_SPEED_MASK);
2236
2237			if (status_reg == (HV_M_STATUS_LINK_UP |
2238					   HV_M_STATUS_AUTONEG_COMPLETE |
2239					   HV_M_STATUS_SPEED_1000))
2240				k1_enable = false;
2241		}
2242
2243		/* Link stall fix for link up */
2244		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2245		if (ret_val)
2246			goto release;
2247
2248	} else {
2249		/* Link stall fix for link down */
2250		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2251		if (ret_val)
2252			goto release;
2253	}
2254
2255	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2256
2257release:
2258	hw->phy.ops.release(hw);
2259
2260	return ret_val;
2261}
2262
2263/**
2264 *  e1000_configure_k1_ich8lan - Configure K1 power state
2265 *  @hw: pointer to the HW structure
2266 *  @enable: K1 state to configure
2267 *
2268 *  Configure the K1 power state based on the provided parameter.
2269 *  Assumes semaphore already acquired.
2270 *
2271 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2272 **/
2273s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2274{
2275	s32 ret_val;
2276	u32 ctrl_reg = 0;
2277	u32 ctrl_ext = 0;
2278	u32 reg = 0;
2279	u16 kmrn_reg = 0;
2280
2281	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2282					      &kmrn_reg);
2283	if (ret_val)
2284		return ret_val;
2285
2286	if (k1_enable)
2287		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2288	else
2289		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2290
2291	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2292					       kmrn_reg);
2293	if (ret_val)
2294		return ret_val;
2295
2296	usleep_range(20, 40);
2297	ctrl_ext = er32(CTRL_EXT);
2298	ctrl_reg = er32(CTRL);
2299
2300	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2301	reg |= E1000_CTRL_FRCSPD;
2302	ew32(CTRL, reg);
2303
2304	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2305	e1e_flush();
2306	usleep_range(20, 40);
2307	ew32(CTRL, ctrl_reg);
2308	ew32(CTRL_EXT, ctrl_ext);
2309	e1e_flush();
2310	usleep_range(20, 40);
2311
2312	return 0;
2313}
2314
2315/**
2316 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2317 *  @hw:       pointer to the HW structure
2318 *  @d0_state: boolean if entering d0 or d3 device state
2319 *
2320 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2321 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2322 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2323 **/
2324static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2325{
2326	s32 ret_val = 0;
2327	u32 mac_reg;
2328	u16 oem_reg;
2329
2330	if (hw->mac.type < e1000_pchlan)
2331		return ret_val;
2332
2333	ret_val = hw->phy.ops.acquire(hw);
2334	if (ret_val)
2335		return ret_val;
2336
2337	if (hw->mac.type == e1000_pchlan) {
2338		mac_reg = er32(EXTCNF_CTRL);
2339		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2340			goto release;
2341	}
2342
2343	mac_reg = er32(FEXTNVM);
2344	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2345		goto release;
2346
2347	mac_reg = er32(PHY_CTRL);
2348
2349	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2350	if (ret_val)
2351		goto release;
2352
2353	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2354
2355	if (d0_state) {
2356		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2357			oem_reg |= HV_OEM_BITS_GBE_DIS;
2358
2359		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2360			oem_reg |= HV_OEM_BITS_LPLU;
2361	} else {
2362		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2363			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2364			oem_reg |= HV_OEM_BITS_GBE_DIS;
2365
2366		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2367			       E1000_PHY_CTRL_NOND0A_LPLU))
2368			oem_reg |= HV_OEM_BITS_LPLU;
2369	}
2370
2371	/* Set Restart auto-neg to activate the bits */
2372	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2373	    !hw->phy.ops.check_reset_block(hw))
2374		oem_reg |= HV_OEM_BITS_RESTART_AN;
2375
2376	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2377
2378release:
2379	hw->phy.ops.release(hw);
2380
2381	return ret_val;
2382}
2383
2384/**
2385 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2386 *  @hw:   pointer to the HW structure
2387 **/
2388static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2389{
2390	s32 ret_val;
2391	u16 data;
2392
2393	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2394	if (ret_val)
2395		return ret_val;
2396
2397	data |= HV_KMRN_MDIO_SLOW;
2398
2399	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2400
2401	return ret_val;
2402}
2403
2404/**
2405 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2406 *  done after every PHY reset.
 
 
2407 **/
2408static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2409{
2410	s32 ret_val = 0;
2411	u16 phy_data;
2412
2413	if (hw->mac.type != e1000_pchlan)
2414		return 0;
2415
2416	/* Set MDIO slow mode before any other MDIO access */
2417	if (hw->phy.type == e1000_phy_82577) {
2418		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2419		if (ret_val)
2420			return ret_val;
2421	}
2422
2423	if (((hw->phy.type == e1000_phy_82577) &&
2424	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2425	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2426		/* Disable generation of early preamble */
2427		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2428		if (ret_val)
2429			return ret_val;
2430
2431		/* Preamble tuning for SSC */
2432		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2433		if (ret_val)
2434			return ret_val;
2435	}
2436
2437	if (hw->phy.type == e1000_phy_82578) {
2438		/* Return registers to default by doing a soft reset then
2439		 * writing 0x3140 to the control register.
2440		 */
2441		if (hw->phy.revision < 2) {
2442			e1000e_phy_sw_reset(hw);
2443			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2444			if (ret_val)
2445				return ret_val;
2446		}
2447	}
2448
2449	/* Select page 0 */
2450	ret_val = hw->phy.ops.acquire(hw);
2451	if (ret_val)
2452		return ret_val;
2453
2454	hw->phy.addr = 1;
2455	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2456	hw->phy.ops.release(hw);
2457	if (ret_val)
2458		return ret_val;
2459
2460	/* Configure the K1 Si workaround during phy reset assuming there is
2461	 * link so that it disables K1 if link is in 1Gbps.
2462	 */
2463	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2464	if (ret_val)
2465		return ret_val;
2466
2467	/* Workaround for link disconnects on a busy hub in half duplex */
2468	ret_val = hw->phy.ops.acquire(hw);
2469	if (ret_val)
2470		return ret_val;
2471	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2472	if (ret_val)
2473		goto release;
2474	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2475	if (ret_val)
2476		goto release;
2477
2478	/* set MSE higher to enable link to stay up when noise is high */
2479	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2480release:
2481	hw->phy.ops.release(hw);
2482
2483	return ret_val;
2484}
2485
2486/**
2487 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2488 *  @hw:   pointer to the HW structure
2489 **/
2490void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2491{
2492	u32 mac_reg;
2493	u16 i, phy_reg = 0;
2494	s32 ret_val;
2495
2496	ret_val = hw->phy.ops.acquire(hw);
2497	if (ret_val)
2498		return;
2499	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2500	if (ret_val)
2501		goto release;
2502
2503	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2504	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2505		mac_reg = er32(RAL(i));
2506		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2507					   (u16)(mac_reg & 0xFFFF));
2508		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2509					   (u16)((mac_reg >> 16) & 0xFFFF));
2510
2511		mac_reg = er32(RAH(i));
2512		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2513					   (u16)(mac_reg & 0xFFFF));
2514		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2515					   (u16)((mac_reg & E1000_RAH_AV)
2516						 >> 16));
2517	}
2518
2519	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2520
2521release:
2522	hw->phy.ops.release(hw);
2523}
2524
2525/**
2526 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2527 *  with 82579 PHY
2528 *  @hw: pointer to the HW structure
2529 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2530 **/
2531s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2532{
2533	s32 ret_val = 0;
2534	u16 phy_reg, data;
2535	u32 mac_reg;
2536	u16 i;
2537
2538	if (hw->mac.type < e1000_pch2lan)
2539		return 0;
2540
2541	/* disable Rx path while enabling/disabling workaround */
2542	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2543	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2544	if (ret_val)
2545		return ret_val;
2546
2547	if (enable) {
2548		/* Write Rx addresses (rar_entry_count for RAL/H, and
2549		 * SHRAL/H) and initial CRC values to the MAC
2550		 */
2551		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2552			u8 mac_addr[ETH_ALEN] = { 0 };
2553			u32 addr_high, addr_low;
2554
2555			addr_high = er32(RAH(i));
2556			if (!(addr_high & E1000_RAH_AV))
2557				continue;
2558			addr_low = er32(RAL(i));
2559			mac_addr[0] = (addr_low & 0xFF);
2560			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2561			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2562			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2563			mac_addr[4] = (addr_high & 0xFF);
2564			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2565
2566			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2567		}
2568
2569		/* Write Rx addresses to the PHY */
2570		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2571
2572		/* Enable jumbo frame workaround in the MAC */
2573		mac_reg = er32(FFLT_DBG);
2574		mac_reg &= ~BIT(14);
2575		mac_reg |= (7 << 15);
2576		ew32(FFLT_DBG, mac_reg);
2577
2578		mac_reg = er32(RCTL);
2579		mac_reg |= E1000_RCTL_SECRC;
2580		ew32(RCTL, mac_reg);
2581
2582		ret_val = e1000e_read_kmrn_reg(hw,
2583					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2584					       &data);
2585		if (ret_val)
2586			return ret_val;
2587		ret_val = e1000e_write_kmrn_reg(hw,
2588						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2589						data | BIT(0));
2590		if (ret_val)
2591			return ret_val;
2592		ret_val = e1000e_read_kmrn_reg(hw,
2593					       E1000_KMRNCTRLSTA_HD_CTRL,
2594					       &data);
2595		if (ret_val)
2596			return ret_val;
2597		data &= ~(0xF << 8);
2598		data |= (0xB << 8);
2599		ret_val = e1000e_write_kmrn_reg(hw,
2600						E1000_KMRNCTRLSTA_HD_CTRL,
2601						data);
2602		if (ret_val)
2603			return ret_val;
2604
2605		/* Enable jumbo frame workaround in the PHY */
2606		e1e_rphy(hw, PHY_REG(769, 23), &data);
2607		data &= ~(0x7F << 5);
2608		data |= (0x37 << 5);
2609		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2610		if (ret_val)
2611			return ret_val;
2612		e1e_rphy(hw, PHY_REG(769, 16), &data);
2613		data &= ~BIT(13);
2614		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2615		if (ret_val)
2616			return ret_val;
2617		e1e_rphy(hw, PHY_REG(776, 20), &data);
2618		data &= ~(0x3FF << 2);
2619		data |= (E1000_TX_PTR_GAP << 2);
2620		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2621		if (ret_val)
2622			return ret_val;
2623		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2624		if (ret_val)
2625			return ret_val;
2626		e1e_rphy(hw, HV_PM_CTRL, &data);
2627		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2628		if (ret_val)
2629			return ret_val;
2630	} else {
2631		/* Write MAC register values back to h/w defaults */
2632		mac_reg = er32(FFLT_DBG);
2633		mac_reg &= ~(0xF << 14);
2634		ew32(FFLT_DBG, mac_reg);
2635
2636		mac_reg = er32(RCTL);
2637		mac_reg &= ~E1000_RCTL_SECRC;
2638		ew32(RCTL, mac_reg);
2639
2640		ret_val = e1000e_read_kmrn_reg(hw,
2641					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2642					       &data);
2643		if (ret_val)
2644			return ret_val;
2645		ret_val = e1000e_write_kmrn_reg(hw,
2646						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2647						data & ~BIT(0));
2648		if (ret_val)
2649			return ret_val;
2650		ret_val = e1000e_read_kmrn_reg(hw,
2651					       E1000_KMRNCTRLSTA_HD_CTRL,
2652					       &data);
2653		if (ret_val)
2654			return ret_val;
2655		data &= ~(0xF << 8);
2656		data |= (0xB << 8);
2657		ret_val = e1000e_write_kmrn_reg(hw,
2658						E1000_KMRNCTRLSTA_HD_CTRL,
2659						data);
2660		if (ret_val)
2661			return ret_val;
2662
2663		/* Write PHY register values back to h/w defaults */
2664		e1e_rphy(hw, PHY_REG(769, 23), &data);
2665		data &= ~(0x7F << 5);
2666		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2667		if (ret_val)
2668			return ret_val;
2669		e1e_rphy(hw, PHY_REG(769, 16), &data);
2670		data |= BIT(13);
2671		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2672		if (ret_val)
2673			return ret_val;
2674		e1e_rphy(hw, PHY_REG(776, 20), &data);
2675		data &= ~(0x3FF << 2);
2676		data |= (0x8 << 2);
2677		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2678		if (ret_val)
2679			return ret_val;
2680		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2681		if (ret_val)
2682			return ret_val;
2683		e1e_rphy(hw, HV_PM_CTRL, &data);
2684		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2685		if (ret_val)
2686			return ret_val;
2687	}
2688
2689	/* re-enable Rx path after enabling/disabling workaround */
2690	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2691}
2692
2693/**
2694 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2695 *  done after every PHY reset.
 
 
2696 **/
2697static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2698{
2699	s32 ret_val = 0;
2700
2701	if (hw->mac.type != e1000_pch2lan)
2702		return 0;
2703
2704	/* Set MDIO slow mode before any other MDIO access */
2705	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2706	if (ret_val)
2707		return ret_val;
2708
2709	ret_val = hw->phy.ops.acquire(hw);
2710	if (ret_val)
2711		return ret_val;
2712	/* set MSE higher to enable link to stay up when noise is high */
2713	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2714	if (ret_val)
2715		goto release;
2716	/* drop link after 5 times MSE threshold was reached */
2717	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2718release:
2719	hw->phy.ops.release(hw);
2720
2721	return ret_val;
2722}
2723
2724/**
2725 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2726 *  @hw:   pointer to the HW structure
2727 *
2728 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2729 *  Disable K1 in 1000Mbps and 100Mbps
2730 **/
2731static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2732{
2733	s32 ret_val = 0;
2734	u16 status_reg = 0;
2735
2736	if (hw->mac.type != e1000_pch2lan)
2737		return 0;
2738
2739	/* Set K1 beacon duration based on 10Mbs speed */
2740	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2741	if (ret_val)
2742		return ret_val;
2743
2744	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2745	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2746		if (status_reg &
2747		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2748			u16 pm_phy_reg;
2749
2750			/* LV 1G/100 Packet drop issue wa  */
2751			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2752			if (ret_val)
2753				return ret_val;
2754			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2755			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2756			if (ret_val)
2757				return ret_val;
2758		} else {
2759			u32 mac_reg;
2760
2761			mac_reg = er32(FEXTNVM4);
2762			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2763			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2764			ew32(FEXTNVM4, mac_reg);
2765		}
2766	}
2767
2768	return ret_val;
2769}
2770
2771/**
2772 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2773 *  @hw:   pointer to the HW structure
2774 *  @gate: boolean set to true to gate, false to ungate
2775 *
2776 *  Gate/ungate the automatic PHY configuration via hardware; perform
2777 *  the configuration via software instead.
2778 **/
2779static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2780{
2781	u32 extcnf_ctrl;
2782
2783	if (hw->mac.type < e1000_pch2lan)
2784		return;
2785
2786	extcnf_ctrl = er32(EXTCNF_CTRL);
2787
2788	if (gate)
2789		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2790	else
2791		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2792
2793	ew32(EXTCNF_CTRL, extcnf_ctrl);
2794}
2795
2796/**
2797 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2798 *  @hw: pointer to the HW structure
2799 *
2800 *  Check the appropriate indication the MAC has finished configuring the
2801 *  PHY after a software reset.
2802 **/
2803static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2804{
2805	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2806
2807	/* Wait for basic configuration completes before proceeding */
2808	do {
2809		data = er32(STATUS);
2810		data &= E1000_STATUS_LAN_INIT_DONE;
2811		usleep_range(100, 200);
2812	} while ((!data) && --loop);
2813
2814	/* If basic configuration is incomplete before the above loop
2815	 * count reaches 0, loading the configuration from NVM will
2816	 * leave the PHY in a bad state possibly resulting in no link.
2817	 */
2818	if (loop == 0)
2819		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2820
2821	/* Clear the Init Done bit for the next init event */
2822	data = er32(STATUS);
2823	data &= ~E1000_STATUS_LAN_INIT_DONE;
2824	ew32(STATUS, data);
2825}
2826
2827/**
2828 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2829 *  @hw: pointer to the HW structure
2830 **/
2831static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2832{
2833	s32 ret_val = 0;
2834	u16 reg;
2835
2836	if (hw->phy.ops.check_reset_block(hw))
2837		return 0;
2838
2839	/* Allow time for h/w to get to quiescent state after reset */
2840	usleep_range(10000, 20000);
2841
2842	/* Perform any necessary post-reset workarounds */
2843	switch (hw->mac.type) {
2844	case e1000_pchlan:
2845		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2846		if (ret_val)
2847			return ret_val;
2848		break;
2849	case e1000_pch2lan:
2850		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2851		if (ret_val)
2852			return ret_val;
2853		break;
2854	default:
2855		break;
2856	}
2857
2858	/* Clear the host wakeup bit after lcd reset */
2859	if (hw->mac.type >= e1000_pchlan) {
2860		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2861		reg &= ~BM_WUC_HOST_WU_BIT;
2862		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2863	}
2864
2865	/* Configure the LCD with the extended configuration region in NVM */
2866	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2867	if (ret_val)
2868		return ret_val;
2869
2870	/* Configure the LCD with the OEM bits in NVM */
2871	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2872
2873	if (hw->mac.type == e1000_pch2lan) {
2874		/* Ungate automatic PHY configuration on non-managed 82579 */
2875		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2876			usleep_range(10000, 20000);
2877			e1000_gate_hw_phy_config_ich8lan(hw, false);
2878		}
2879
2880		/* Set EEE LPI Update Timer to 200usec */
2881		ret_val = hw->phy.ops.acquire(hw);
2882		if (ret_val)
2883			return ret_val;
2884		ret_val = e1000_write_emi_reg_locked(hw,
2885						     I82579_LPI_UPDATE_TIMER,
2886						     0x1387);
2887		hw->phy.ops.release(hw);
2888	}
2889
2890	return ret_val;
2891}
2892
2893/**
2894 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2895 *  @hw: pointer to the HW structure
2896 *
2897 *  Resets the PHY
2898 *  This is a function pointer entry point called by drivers
2899 *  or other shared routines.
2900 **/
2901static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2902{
2903	s32 ret_val = 0;
2904
2905	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2906	if ((hw->mac.type == e1000_pch2lan) &&
2907	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2908		e1000_gate_hw_phy_config_ich8lan(hw, true);
2909
2910	ret_val = e1000e_phy_hw_reset_generic(hw);
2911	if (ret_val)
2912		return ret_val;
2913
2914	return e1000_post_phy_reset_ich8lan(hw);
2915}
2916
2917/**
2918 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2919 *  @hw: pointer to the HW structure
2920 *  @active: true to enable LPLU, false to disable
2921 *
2922 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2923 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2924 *  the phy speed. This function will manually set the LPLU bit and restart
2925 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2926 *  since it configures the same bit.
2927 **/
2928static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2929{
2930	s32 ret_val;
2931	u16 oem_reg;
2932
2933	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2934	if (ret_val)
2935		return ret_val;
2936
2937	if (active)
2938		oem_reg |= HV_OEM_BITS_LPLU;
2939	else
2940		oem_reg &= ~HV_OEM_BITS_LPLU;
2941
2942	if (!hw->phy.ops.check_reset_block(hw))
2943		oem_reg |= HV_OEM_BITS_RESTART_AN;
2944
2945	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2946}
2947
2948/**
2949 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2950 *  @hw: pointer to the HW structure
2951 *  @active: true to enable LPLU, false to disable
2952 *
2953 *  Sets the LPLU D0 state according to the active flag.  When
2954 *  activating LPLU this function also disables smart speed
2955 *  and vice versa.  LPLU will not be activated unless the
2956 *  device autonegotiation advertisement meets standards of
2957 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2958 *  This is a function pointer entry point only called by
2959 *  PHY setup routines.
2960 **/
2961static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2962{
2963	struct e1000_phy_info *phy = &hw->phy;
2964	u32 phy_ctrl;
2965	s32 ret_val = 0;
2966	u16 data;
2967
2968	if (phy->type == e1000_phy_ife)
2969		return 0;
2970
2971	phy_ctrl = er32(PHY_CTRL);
2972
2973	if (active) {
2974		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2975		ew32(PHY_CTRL, phy_ctrl);
2976
2977		if (phy->type != e1000_phy_igp_3)
2978			return 0;
2979
2980		/* Call gig speed drop workaround on LPLU before accessing
2981		 * any PHY registers
2982		 */
2983		if (hw->mac.type == e1000_ich8lan)
2984			e1000e_gig_downshift_workaround_ich8lan(hw);
2985
2986		/* When LPLU is enabled, we should disable SmartSpeed */
2987		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2988		if (ret_val)
2989			return ret_val;
2990		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2991		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2992		if (ret_val)
2993			return ret_val;
2994	} else {
2995		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2996		ew32(PHY_CTRL, phy_ctrl);
2997
2998		if (phy->type != e1000_phy_igp_3)
2999			return 0;
3000
3001		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3002		 * during Dx states where the power conservation is most
3003		 * important.  During driver activity we should enable
3004		 * SmartSpeed, so performance is maintained.
3005		 */
3006		if (phy->smart_speed == e1000_smart_speed_on) {
3007			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3008					   &data);
3009			if (ret_val)
3010				return ret_val;
3011
3012			data |= IGP01E1000_PSCFR_SMART_SPEED;
3013			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3014					   data);
3015			if (ret_val)
3016				return ret_val;
3017		} else if (phy->smart_speed == e1000_smart_speed_off) {
3018			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3019					   &data);
3020			if (ret_val)
3021				return ret_val;
3022
3023			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3024			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3025					   data);
3026			if (ret_val)
3027				return ret_val;
3028		}
3029	}
3030
3031	return 0;
3032}
3033
3034/**
3035 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3036 *  @hw: pointer to the HW structure
3037 *  @active: true to enable LPLU, false to disable
3038 *
3039 *  Sets the LPLU D3 state according to the active flag.  When
3040 *  activating LPLU this function also disables smart speed
3041 *  and vice versa.  LPLU will not be activated unless the
3042 *  device autonegotiation advertisement meets standards of
3043 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3044 *  This is a function pointer entry point only called by
3045 *  PHY setup routines.
3046 **/
3047static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3048{
3049	struct e1000_phy_info *phy = &hw->phy;
3050	u32 phy_ctrl;
3051	s32 ret_val = 0;
3052	u16 data;
3053
3054	phy_ctrl = er32(PHY_CTRL);
3055
3056	if (!active) {
3057		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3058		ew32(PHY_CTRL, phy_ctrl);
3059
3060		if (phy->type != e1000_phy_igp_3)
3061			return 0;
3062
3063		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3064		 * during Dx states where the power conservation is most
3065		 * important.  During driver activity we should enable
3066		 * SmartSpeed, so performance is maintained.
3067		 */
3068		if (phy->smart_speed == e1000_smart_speed_on) {
3069			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3070					   &data);
3071			if (ret_val)
3072				return ret_val;
3073
3074			data |= IGP01E1000_PSCFR_SMART_SPEED;
3075			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3076					   data);
3077			if (ret_val)
3078				return ret_val;
3079		} else if (phy->smart_speed == e1000_smart_speed_off) {
3080			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3081					   &data);
3082			if (ret_val)
3083				return ret_val;
3084
3085			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3086			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3087					   data);
3088			if (ret_val)
3089				return ret_val;
3090		}
3091	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3092		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3093		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3094		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3095		ew32(PHY_CTRL, phy_ctrl);
3096
3097		if (phy->type != e1000_phy_igp_3)
3098			return 0;
3099
3100		/* Call gig speed drop workaround on LPLU before accessing
3101		 * any PHY registers
3102		 */
3103		if (hw->mac.type == e1000_ich8lan)
3104			e1000e_gig_downshift_workaround_ich8lan(hw);
3105
3106		/* When LPLU is enabled, we should disable SmartSpeed */
3107		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3108		if (ret_val)
3109			return ret_val;
3110
3111		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3112		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3113	}
3114
3115	return ret_val;
3116}
3117
3118/**
3119 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3120 *  @hw: pointer to the HW structure
3121 *  @bank:  pointer to the variable that returns the active bank
3122 *
3123 *  Reads signature byte from the NVM using the flash access registers.
3124 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3125 **/
3126static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3127{
3128	u32 eecd;
3129	struct e1000_nvm_info *nvm = &hw->nvm;
3130	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3131	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3132	u32 nvm_dword = 0;
3133	u8 sig_byte = 0;
3134	s32 ret_val;
3135
3136	switch (hw->mac.type) {
3137	case e1000_pch_spt:
3138	case e1000_pch_cnp:
 
 
 
 
 
 
3139		bank1_offset = nvm->flash_bank_size;
3140		act_offset = E1000_ICH_NVM_SIG_WORD;
3141
3142		/* set bank to 0 in case flash read fails */
3143		*bank = 0;
3144
3145		/* Check bank 0 */
3146		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3147							 &nvm_dword);
3148		if (ret_val)
3149			return ret_val;
3150		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3151		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3152		    E1000_ICH_NVM_SIG_VALUE) {
3153			*bank = 0;
3154			return 0;
3155		}
3156
3157		/* Check bank 1 */
3158		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3159							 bank1_offset,
3160							 &nvm_dword);
3161		if (ret_val)
3162			return ret_val;
3163		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3164		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3165		    E1000_ICH_NVM_SIG_VALUE) {
3166			*bank = 1;
3167			return 0;
3168		}
3169
3170		e_dbg("ERROR: No valid NVM bank present\n");
3171		return -E1000_ERR_NVM;
3172	case e1000_ich8lan:
3173	case e1000_ich9lan:
3174		eecd = er32(EECD);
3175		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3176		    E1000_EECD_SEC1VAL_VALID_MASK) {
3177			if (eecd & E1000_EECD_SEC1VAL)
3178				*bank = 1;
3179			else
3180				*bank = 0;
3181
3182			return 0;
3183		}
3184		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3185		/* fall-thru */
3186	default:
3187		/* set bank to 0 in case flash read fails */
3188		*bank = 0;
3189
3190		/* Check bank 0 */
3191		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3192							&sig_byte);
3193		if (ret_val)
3194			return ret_val;
3195		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3196		    E1000_ICH_NVM_SIG_VALUE) {
3197			*bank = 0;
3198			return 0;
3199		}
3200
3201		/* Check bank 1 */
3202		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3203							bank1_offset,
3204							&sig_byte);
3205		if (ret_val)
3206			return ret_val;
3207		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3208		    E1000_ICH_NVM_SIG_VALUE) {
3209			*bank = 1;
3210			return 0;
3211		}
3212
3213		e_dbg("ERROR: No valid NVM bank present\n");
3214		return -E1000_ERR_NVM;
3215	}
3216}
3217
3218/**
3219 *  e1000_read_nvm_spt - NVM access for SPT
3220 *  @hw: pointer to the HW structure
3221 *  @offset: The offset (in bytes) of the word(s) to read.
3222 *  @words: Size of data to read in words.
3223 *  @data: pointer to the word(s) to read at offset.
3224 *
3225 *  Reads a word(s) from the NVM
3226 **/
3227static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3228			      u16 *data)
3229{
3230	struct e1000_nvm_info *nvm = &hw->nvm;
3231	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3232	u32 act_offset;
3233	s32 ret_val = 0;
3234	u32 bank = 0;
3235	u32 dword = 0;
3236	u16 offset_to_read;
3237	u16 i;
3238
3239	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3240	    (words == 0)) {
3241		e_dbg("nvm parameter(s) out of bounds\n");
3242		ret_val = -E1000_ERR_NVM;
3243		goto out;
3244	}
3245
3246	nvm->ops.acquire(hw);
3247
3248	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3249	if (ret_val) {
3250		e_dbg("Could not detect valid bank, assuming bank 0\n");
3251		bank = 0;
3252	}
3253
3254	act_offset = (bank) ? nvm->flash_bank_size : 0;
3255	act_offset += offset;
3256
3257	ret_val = 0;
3258
3259	for (i = 0; i < words; i += 2) {
3260		if (words - i == 1) {
3261			if (dev_spec->shadow_ram[offset + i].modified) {
3262				data[i] =
3263				    dev_spec->shadow_ram[offset + i].value;
3264			} else {
3265				offset_to_read = act_offset + i -
3266				    ((act_offset + i) % 2);
3267				ret_val =
3268				  e1000_read_flash_dword_ich8lan(hw,
3269								 offset_to_read,
3270								 &dword);
3271				if (ret_val)
3272					break;
3273				if ((act_offset + i) % 2 == 0)
3274					data[i] = (u16)(dword & 0xFFFF);
3275				else
3276					data[i] = (u16)((dword >> 16) & 0xFFFF);
3277			}
3278		} else {
3279			offset_to_read = act_offset + i;
3280			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3281			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3282				ret_val =
3283				  e1000_read_flash_dword_ich8lan(hw,
3284								 offset_to_read,
3285								 &dword);
3286				if (ret_val)
3287					break;
3288			}
3289			if (dev_spec->shadow_ram[offset + i].modified)
3290				data[i] =
3291				    dev_spec->shadow_ram[offset + i].value;
3292			else
3293				data[i] = (u16)(dword & 0xFFFF);
3294			if (dev_spec->shadow_ram[offset + i].modified)
3295				data[i + 1] =
3296				    dev_spec->shadow_ram[offset + i + 1].value;
3297			else
3298				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3299		}
3300	}
3301
3302	nvm->ops.release(hw);
3303
3304out:
3305	if (ret_val)
3306		e_dbg("NVM read error: %d\n", ret_val);
3307
3308	return ret_val;
3309}
3310
3311/**
3312 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3313 *  @hw: pointer to the HW structure
3314 *  @offset: The offset (in bytes) of the word(s) to read.
3315 *  @words: Size of data to read in words
3316 *  @data: Pointer to the word(s) to read at offset.
3317 *
3318 *  Reads a word(s) from the NVM using the flash access registers.
3319 **/
3320static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3321				  u16 *data)
3322{
3323	struct e1000_nvm_info *nvm = &hw->nvm;
3324	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3325	u32 act_offset;
3326	s32 ret_val = 0;
3327	u32 bank = 0;
3328	u16 i, word;
3329
3330	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3331	    (words == 0)) {
3332		e_dbg("nvm parameter(s) out of bounds\n");
3333		ret_val = -E1000_ERR_NVM;
3334		goto out;
3335	}
3336
3337	nvm->ops.acquire(hw);
3338
3339	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3340	if (ret_val) {
3341		e_dbg("Could not detect valid bank, assuming bank 0\n");
3342		bank = 0;
3343	}
3344
3345	act_offset = (bank) ? nvm->flash_bank_size : 0;
3346	act_offset += offset;
3347
3348	ret_val = 0;
3349	for (i = 0; i < words; i++) {
3350		if (dev_spec->shadow_ram[offset + i].modified) {
3351			data[i] = dev_spec->shadow_ram[offset + i].value;
3352		} else {
3353			ret_val = e1000_read_flash_word_ich8lan(hw,
3354								act_offset + i,
3355								&word);
3356			if (ret_val)
3357				break;
3358			data[i] = word;
3359		}
3360	}
3361
3362	nvm->ops.release(hw);
3363
3364out:
3365	if (ret_val)
3366		e_dbg("NVM read error: %d\n", ret_val);
3367
3368	return ret_val;
3369}
3370
3371/**
3372 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3373 *  @hw: pointer to the HW structure
3374 *
3375 *  This function does initial flash setup so that a new read/write/erase cycle
3376 *  can be started.
3377 **/
3378static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3379{
3380	union ich8_hws_flash_status hsfsts;
3381	s32 ret_val = -E1000_ERR_NVM;
3382
3383	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3384
3385	/* Check if the flash descriptor is valid */
3386	if (!hsfsts.hsf_status.fldesvalid) {
3387		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3388		return -E1000_ERR_NVM;
3389	}
3390
3391	/* Clear FCERR and DAEL in hw status by writing 1 */
3392	hsfsts.hsf_status.flcerr = 1;
3393	hsfsts.hsf_status.dael = 1;
3394	if (hw->mac.type >= e1000_pch_spt)
3395		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3396	else
3397		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3398
3399	/* Either we should have a hardware SPI cycle in progress
3400	 * bit to check against, in order to start a new cycle or
3401	 * FDONE bit should be changed in the hardware so that it
3402	 * is 1 after hardware reset, which can then be used as an
3403	 * indication whether a cycle is in progress or has been
3404	 * completed.
3405	 */
3406
3407	if (!hsfsts.hsf_status.flcinprog) {
3408		/* There is no cycle running at present,
3409		 * so we can start a cycle.
3410		 * Begin by setting Flash Cycle Done.
3411		 */
3412		hsfsts.hsf_status.flcdone = 1;
3413		if (hw->mac.type >= e1000_pch_spt)
3414			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3415		else
3416			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3417		ret_val = 0;
3418	} else {
3419		s32 i;
3420
3421		/* Otherwise poll for sometime so the current
3422		 * cycle has a chance to end before giving up.
3423		 */
3424		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3425			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3426			if (!hsfsts.hsf_status.flcinprog) {
3427				ret_val = 0;
3428				break;
3429			}
3430			udelay(1);
3431		}
3432		if (!ret_val) {
3433			/* Successful in waiting for previous cycle to timeout,
3434			 * now set the Flash Cycle Done.
3435			 */
3436			hsfsts.hsf_status.flcdone = 1;
3437			if (hw->mac.type >= e1000_pch_spt)
3438				ew32flash(ICH_FLASH_HSFSTS,
3439					  hsfsts.regval & 0xFFFF);
3440			else
3441				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3442		} else {
3443			e_dbg("Flash controller busy, cannot get access\n");
3444		}
3445	}
3446
3447	return ret_val;
3448}
3449
3450/**
3451 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3452 *  @hw: pointer to the HW structure
3453 *  @timeout: maximum time to wait for completion
3454 *
3455 *  This function starts a flash cycle and waits for its completion.
3456 **/
3457static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3458{
3459	union ich8_hws_flash_ctrl hsflctl;
3460	union ich8_hws_flash_status hsfsts;
3461	u32 i = 0;
3462
3463	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3464	if (hw->mac.type >= e1000_pch_spt)
3465		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3466	else
3467		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3468	hsflctl.hsf_ctrl.flcgo = 1;
3469
3470	if (hw->mac.type >= e1000_pch_spt)
3471		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3472	else
3473		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3474
3475	/* wait till FDONE bit is set to 1 */
3476	do {
3477		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3478		if (hsfsts.hsf_status.flcdone)
3479			break;
3480		udelay(1);
3481	} while (i++ < timeout);
3482
3483	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3484		return 0;
3485
3486	return -E1000_ERR_NVM;
3487}
3488
3489/**
3490 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3491 *  @hw: pointer to the HW structure
3492 *  @offset: offset to data location
3493 *  @data: pointer to the location for storing the data
3494 *
3495 *  Reads the flash dword at offset into data.  Offset is converted
3496 *  to bytes before read.
3497 **/
3498static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3499					  u32 *data)
3500{
3501	/* Must convert word offset into bytes. */
3502	offset <<= 1;
3503	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3504}
3505
3506/**
3507 *  e1000_read_flash_word_ich8lan - Read word from flash
3508 *  @hw: pointer to the HW structure
3509 *  @offset: offset to data location
3510 *  @data: pointer to the location for storing the data
3511 *
3512 *  Reads the flash word at offset into data.  Offset is converted
3513 *  to bytes before read.
3514 **/
3515static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3516					 u16 *data)
3517{
3518	/* Must convert offset into bytes. */
3519	offset <<= 1;
3520
3521	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3522}
3523
3524/**
3525 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3526 *  @hw: pointer to the HW structure
3527 *  @offset: The offset of the byte to read.
3528 *  @data: Pointer to a byte to store the value read.
3529 *
3530 *  Reads a single byte from the NVM using the flash access registers.
3531 **/
3532static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3533					 u8 *data)
3534{
3535	s32 ret_val;
3536	u16 word = 0;
3537
3538	/* In SPT, only 32 bits access is supported,
3539	 * so this function should not be called.
3540	 */
3541	if (hw->mac.type >= e1000_pch_spt)
3542		return -E1000_ERR_NVM;
3543	else
3544		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3545
3546	if (ret_val)
3547		return ret_val;
3548
3549	*data = (u8)word;
3550
3551	return 0;
3552}
3553
3554/**
3555 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3556 *  @hw: pointer to the HW structure
3557 *  @offset: The offset (in bytes) of the byte or word to read.
3558 *  @size: Size of data to read, 1=byte 2=word
3559 *  @data: Pointer to the word to store the value read.
3560 *
3561 *  Reads a byte or word from the NVM using the flash access registers.
3562 **/
3563static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3564					 u8 size, u16 *data)
3565{
3566	union ich8_hws_flash_status hsfsts;
3567	union ich8_hws_flash_ctrl hsflctl;
3568	u32 flash_linear_addr;
3569	u32 flash_data = 0;
3570	s32 ret_val = -E1000_ERR_NVM;
3571	u8 count = 0;
3572
3573	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3574		return -E1000_ERR_NVM;
3575
3576	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3577			     hw->nvm.flash_base_addr);
3578
3579	do {
3580		udelay(1);
3581		/* Steps */
3582		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3583		if (ret_val)
3584			break;
3585
3586		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3587		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3588		hsflctl.hsf_ctrl.fldbcount = size - 1;
3589		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3590		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3591
3592		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3593
3594		ret_val =
3595		    e1000_flash_cycle_ich8lan(hw,
3596					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3597
3598		/* Check if FCERR is set to 1, if set to 1, clear it
3599		 * and try the whole sequence a few more times, else
3600		 * read in (shift in) the Flash Data0, the order is
3601		 * least significant byte first msb to lsb
3602		 */
3603		if (!ret_val) {
3604			flash_data = er32flash(ICH_FLASH_FDATA0);
3605			if (size == 1)
3606				*data = (u8)(flash_data & 0x000000FF);
3607			else if (size == 2)
3608				*data = (u16)(flash_data & 0x0000FFFF);
3609			break;
3610		} else {
3611			/* If we've gotten here, then things are probably
3612			 * completely hosed, but if the error condition is
3613			 * detected, it won't hurt to give it another try...
3614			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3615			 */
3616			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3617			if (hsfsts.hsf_status.flcerr) {
3618				/* Repeat for some time before giving up. */
3619				continue;
3620			} else if (!hsfsts.hsf_status.flcdone) {
3621				e_dbg("Timeout error - flash cycle did not complete.\n");
3622				break;
3623			}
3624		}
3625	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3626
3627	return ret_val;
3628}
3629
3630/**
3631 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3632 *  @hw: pointer to the HW structure
3633 *  @offset: The offset (in bytes) of the dword to read.
3634 *  @data: Pointer to the dword to store the value read.
3635 *
3636 *  Reads a byte or word from the NVM using the flash access registers.
3637 **/
3638
3639static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3640					   u32 *data)
3641{
3642	union ich8_hws_flash_status hsfsts;
3643	union ich8_hws_flash_ctrl hsflctl;
3644	u32 flash_linear_addr;
3645	s32 ret_val = -E1000_ERR_NVM;
3646	u8 count = 0;
3647
3648	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3649		return -E1000_ERR_NVM;
3650	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3651			     hw->nvm.flash_base_addr);
3652
3653	do {
3654		udelay(1);
3655		/* Steps */
3656		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3657		if (ret_val)
3658			break;
3659		/* In SPT, This register is in Lan memory space, not flash.
3660		 * Therefore, only 32 bit access is supported
3661		 */
3662		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3663
3664		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3665		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3666		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3667		/* In SPT, This register is in Lan memory space, not flash.
3668		 * Therefore, only 32 bit access is supported
3669		 */
3670		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3671		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3672
3673		ret_val =
3674		   e1000_flash_cycle_ich8lan(hw,
3675					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3676
3677		/* Check if FCERR is set to 1, if set to 1, clear it
3678		 * and try the whole sequence a few more times, else
3679		 * read in (shift in) the Flash Data0, the order is
3680		 * least significant byte first msb to lsb
3681		 */
3682		if (!ret_val) {
3683			*data = er32flash(ICH_FLASH_FDATA0);
3684			break;
3685		} else {
3686			/* If we've gotten here, then things are probably
3687			 * completely hosed, but if the error condition is
3688			 * detected, it won't hurt to give it another try...
3689			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3690			 */
3691			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3692			if (hsfsts.hsf_status.flcerr) {
3693				/* Repeat for some time before giving up. */
3694				continue;
3695			} else if (!hsfsts.hsf_status.flcdone) {
3696				e_dbg("Timeout error - flash cycle did not complete.\n");
3697				break;
3698			}
3699		}
3700	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3701
3702	return ret_val;
3703}
3704
3705/**
3706 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3707 *  @hw: pointer to the HW structure
3708 *  @offset: The offset (in bytes) of the word(s) to write.
3709 *  @words: Size of data to write in words
3710 *  @data: Pointer to the word(s) to write at offset.
3711 *
3712 *  Writes a byte or word to the NVM using the flash access registers.
3713 **/
3714static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3715				   u16 *data)
3716{
3717	struct e1000_nvm_info *nvm = &hw->nvm;
3718	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3719	u16 i;
3720
3721	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3722	    (words == 0)) {
3723		e_dbg("nvm parameter(s) out of bounds\n");
3724		return -E1000_ERR_NVM;
3725	}
3726
3727	nvm->ops.acquire(hw);
3728
3729	for (i = 0; i < words; i++) {
3730		dev_spec->shadow_ram[offset + i].modified = true;
3731		dev_spec->shadow_ram[offset + i].value = data[i];
3732	}
3733
3734	nvm->ops.release(hw);
3735
3736	return 0;
3737}
3738
3739/**
3740 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3741 *  @hw: pointer to the HW structure
3742 *
3743 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3744 *  which writes the checksum to the shadow ram.  The changes in the shadow
3745 *  ram are then committed to the EEPROM by processing each bank at a time
3746 *  checking for the modified bit and writing only the pending changes.
3747 *  After a successful commit, the shadow ram is cleared and is ready for
3748 *  future writes.
3749 **/
3750static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3751{
3752	struct e1000_nvm_info *nvm = &hw->nvm;
3753	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3754	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3755	s32 ret_val;
3756	u32 dword = 0;
3757
3758	ret_val = e1000e_update_nvm_checksum_generic(hw);
3759	if (ret_val)
3760		goto out;
3761
3762	if (nvm->type != e1000_nvm_flash_sw)
3763		goto out;
3764
3765	nvm->ops.acquire(hw);
3766
3767	/* We're writing to the opposite bank so if we're on bank 1,
3768	 * write to bank 0 etc.  We also need to erase the segment that
3769	 * is going to be written
3770	 */
3771	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3772	if (ret_val) {
3773		e_dbg("Could not detect valid bank, assuming bank 0\n");
3774		bank = 0;
3775	}
3776
3777	if (bank == 0) {
3778		new_bank_offset = nvm->flash_bank_size;
3779		old_bank_offset = 0;
3780		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3781		if (ret_val)
3782			goto release;
3783	} else {
3784		old_bank_offset = nvm->flash_bank_size;
3785		new_bank_offset = 0;
3786		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3787		if (ret_val)
3788			goto release;
3789	}
3790	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3791		/* Determine whether to write the value stored
3792		 * in the other NVM bank or a modified value stored
3793		 * in the shadow RAM
3794		 */
3795		ret_val = e1000_read_flash_dword_ich8lan(hw,
3796							 i + old_bank_offset,
3797							 &dword);
3798
3799		if (dev_spec->shadow_ram[i].modified) {
3800			dword &= 0xffff0000;
3801			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3802		}
3803		if (dev_spec->shadow_ram[i + 1].modified) {
3804			dword &= 0x0000ffff;
3805			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3806				  << 16);
3807		}
3808		if (ret_val)
3809			break;
3810
3811		/* If the word is 0x13, then make sure the signature bits
3812		 * (15:14) are 11b until the commit has completed.
3813		 * This will allow us to write 10b which indicates the
3814		 * signature is valid.  We want to do this after the write
3815		 * has completed so that we don't mark the segment valid
3816		 * while the write is still in progress
3817		 */
3818		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3819			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3820
3821		/* Convert offset to bytes. */
3822		act_offset = (i + new_bank_offset) << 1;
3823
3824		usleep_range(100, 200);
3825
3826		/* Write the data to the new bank. Offset in words */
3827		act_offset = i + new_bank_offset;
3828		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3829								dword);
3830		if (ret_val)
3831			break;
3832	}
3833
3834	/* Don't bother writing the segment valid bits if sector
3835	 * programming failed.
3836	 */
3837	if (ret_val) {
3838		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3839		e_dbg("Flash commit failed.\n");
3840		goto release;
3841	}
3842
3843	/* Finally validate the new segment by setting bit 15:14
3844	 * to 10b in word 0x13 , this can be done without an
3845	 * erase as well since these bits are 11 to start with
3846	 * and we need to change bit 14 to 0b
3847	 */
3848	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3849
3850	/*offset in words but we read dword */
3851	--act_offset;
3852	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3853
3854	if (ret_val)
3855		goto release;
3856
3857	dword &= 0xBFFFFFFF;
3858	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3859
3860	if (ret_val)
3861		goto release;
3862
3863	/* And invalidate the previously valid segment by setting
3864	 * its signature word (0x13) high_byte to 0b. This can be
3865	 * done without an erase because flash erase sets all bits
3866	 * to 1's. We can write 1's to 0's without an erase
3867	 */
3868	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3869
3870	/* offset in words but we read dword */
3871	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3872	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3873
3874	if (ret_val)
3875		goto release;
3876
3877	dword &= 0x00FFFFFF;
3878	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3879
3880	if (ret_val)
3881		goto release;
3882
3883	/* Great!  Everything worked, we can now clear the cached entries. */
3884	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3885		dev_spec->shadow_ram[i].modified = false;
3886		dev_spec->shadow_ram[i].value = 0xFFFF;
3887	}
3888
3889release:
3890	nvm->ops.release(hw);
3891
3892	/* Reload the EEPROM, or else modifications will not appear
3893	 * until after the next adapter reset.
3894	 */
3895	if (!ret_val) {
3896		nvm->ops.reload(hw);
3897		usleep_range(10000, 20000);
3898	}
3899
3900out:
3901	if (ret_val)
3902		e_dbg("NVM update error: %d\n", ret_val);
3903
3904	return ret_val;
3905}
3906
3907/**
3908 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3909 *  @hw: pointer to the HW structure
3910 *
3911 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3912 *  which writes the checksum to the shadow ram.  The changes in the shadow
3913 *  ram are then committed to the EEPROM by processing each bank at a time
3914 *  checking for the modified bit and writing only the pending changes.
3915 *  After a successful commit, the shadow ram is cleared and is ready for
3916 *  future writes.
3917 **/
3918static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3919{
3920	struct e1000_nvm_info *nvm = &hw->nvm;
3921	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3922	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3923	s32 ret_val;
3924	u16 data = 0;
3925
3926	ret_val = e1000e_update_nvm_checksum_generic(hw);
3927	if (ret_val)
3928		goto out;
3929
3930	if (nvm->type != e1000_nvm_flash_sw)
3931		goto out;
3932
3933	nvm->ops.acquire(hw);
3934
3935	/* We're writing to the opposite bank so if we're on bank 1,
3936	 * write to bank 0 etc.  We also need to erase the segment that
3937	 * is going to be written
3938	 */
3939	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3940	if (ret_val) {
3941		e_dbg("Could not detect valid bank, assuming bank 0\n");
3942		bank = 0;
3943	}
3944
3945	if (bank == 0) {
3946		new_bank_offset = nvm->flash_bank_size;
3947		old_bank_offset = 0;
3948		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3949		if (ret_val)
3950			goto release;
3951	} else {
3952		old_bank_offset = nvm->flash_bank_size;
3953		new_bank_offset = 0;
3954		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3955		if (ret_val)
3956			goto release;
3957	}
3958	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3959		if (dev_spec->shadow_ram[i].modified) {
3960			data = dev_spec->shadow_ram[i].value;
3961		} else {
3962			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3963								old_bank_offset,
3964								&data);
3965			if (ret_val)
3966				break;
3967		}
3968
3969		/* If the word is 0x13, then make sure the signature bits
3970		 * (15:14) are 11b until the commit has completed.
3971		 * This will allow us to write 10b which indicates the
3972		 * signature is valid.  We want to do this after the write
3973		 * has completed so that we don't mark the segment valid
3974		 * while the write is still in progress
3975		 */
3976		if (i == E1000_ICH_NVM_SIG_WORD)
3977			data |= E1000_ICH_NVM_SIG_MASK;
3978
3979		/* Convert offset to bytes. */
3980		act_offset = (i + new_bank_offset) << 1;
3981
3982		usleep_range(100, 200);
3983		/* Write the bytes to the new bank. */
3984		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3985							       act_offset,
3986							       (u8)data);
3987		if (ret_val)
3988			break;
3989
3990		usleep_range(100, 200);
3991		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3992							       act_offset + 1,
3993							       (u8)(data >> 8));
3994		if (ret_val)
3995			break;
3996	}
3997
3998	/* Don't bother writing the segment valid bits if sector
3999	 * programming failed.
4000	 */
4001	if (ret_val) {
4002		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4003		e_dbg("Flash commit failed.\n");
4004		goto release;
4005	}
4006
4007	/* Finally validate the new segment by setting bit 15:14
4008	 * to 10b in word 0x13 , this can be done without an
4009	 * erase as well since these bits are 11 to start with
4010	 * and we need to change bit 14 to 0b
4011	 */
4012	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4013	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4014	if (ret_val)
4015		goto release;
4016
4017	data &= 0xBFFF;
4018	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4019						       act_offset * 2 + 1,
4020						       (u8)(data >> 8));
4021	if (ret_val)
4022		goto release;
4023
4024	/* And invalidate the previously valid segment by setting
4025	 * its signature word (0x13) high_byte to 0b. This can be
4026	 * done without an erase because flash erase sets all bits
4027	 * to 1's. We can write 1's to 0's without an erase
4028	 */
4029	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4030	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4031	if (ret_val)
4032		goto release;
4033
4034	/* Great!  Everything worked, we can now clear the cached entries. */
4035	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4036		dev_spec->shadow_ram[i].modified = false;
4037		dev_spec->shadow_ram[i].value = 0xFFFF;
4038	}
4039
4040release:
4041	nvm->ops.release(hw);
4042
4043	/* Reload the EEPROM, or else modifications will not appear
4044	 * until after the next adapter reset.
4045	 */
4046	if (!ret_val) {
4047		nvm->ops.reload(hw);
4048		usleep_range(10000, 20000);
4049	}
4050
4051out:
4052	if (ret_val)
4053		e_dbg("NVM update error: %d\n", ret_val);
4054
4055	return ret_val;
4056}
4057
4058/**
4059 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4060 *  @hw: pointer to the HW structure
4061 *
4062 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4063 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4064 *  calculated, in which case we need to calculate the checksum and set bit 6.
4065 **/
4066static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4067{
4068	s32 ret_val;
4069	u16 data;
4070	u16 word;
4071	u16 valid_csum_mask;
4072
4073	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4074	 * the checksum needs to be fixed.  This bit is an indication that
4075	 * the NVM was prepared by OEM software and did not calculate
4076	 * the checksum...a likely scenario.
4077	 */
4078	switch (hw->mac.type) {
4079	case e1000_pch_lpt:
4080	case e1000_pch_spt:
4081	case e1000_pch_cnp:
 
 
 
 
 
 
4082		word = NVM_COMPAT;
4083		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4084		break;
4085	default:
4086		word = NVM_FUTURE_INIT_WORD1;
4087		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4088		break;
4089	}
4090
4091	ret_val = e1000_read_nvm(hw, word, 1, &data);
4092	if (ret_val)
4093		return ret_val;
4094
4095	if (!(data & valid_csum_mask)) {
4096		data |= valid_csum_mask;
4097		ret_val = e1000_write_nvm(hw, word, 1, &data);
4098		if (ret_val)
4099			return ret_val;
4100		ret_val = e1000e_update_nvm_checksum(hw);
4101		if (ret_val)
4102			return ret_val;
 
 
 
 
4103	}
4104
4105	return e1000e_validate_nvm_checksum_generic(hw);
4106}
4107
4108/**
4109 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4110 *  @hw: pointer to the HW structure
4111 *
4112 *  To prevent malicious write/erase of the NVM, set it to be read-only
4113 *  so that the hardware ignores all write/erase cycles of the NVM via
4114 *  the flash control registers.  The shadow-ram copy of the NVM will
4115 *  still be updated, however any updates to this copy will not stick
4116 *  across driver reloads.
4117 **/
4118void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4119{
4120	struct e1000_nvm_info *nvm = &hw->nvm;
4121	union ich8_flash_protected_range pr0;
4122	union ich8_hws_flash_status hsfsts;
4123	u32 gfpreg;
4124
4125	nvm->ops.acquire(hw);
4126
4127	gfpreg = er32flash(ICH_FLASH_GFPREG);
4128
4129	/* Write-protect GbE Sector of NVM */
4130	pr0.regval = er32flash(ICH_FLASH_PR0);
4131	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4132	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4133	pr0.range.wpe = true;
4134	ew32flash(ICH_FLASH_PR0, pr0.regval);
4135
4136	/* Lock down a subset of GbE Flash Control Registers, e.g.
4137	 * PR0 to prevent the write-protection from being lifted.
4138	 * Once FLOCKDN is set, the registers protected by it cannot
4139	 * be written until FLOCKDN is cleared by a hardware reset.
4140	 */
4141	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4142	hsfsts.hsf_status.flockdn = true;
4143	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4144
4145	nvm->ops.release(hw);
4146}
4147
4148/**
4149 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4150 *  @hw: pointer to the HW structure
4151 *  @offset: The offset (in bytes) of the byte/word to read.
4152 *  @size: Size of data to read, 1=byte 2=word
4153 *  @data: The byte(s) to write to the NVM.
4154 *
4155 *  Writes one/two bytes to the NVM using the flash access registers.
4156 **/
4157static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4158					  u8 size, u16 data)
4159{
4160	union ich8_hws_flash_status hsfsts;
4161	union ich8_hws_flash_ctrl hsflctl;
4162	u32 flash_linear_addr;
4163	u32 flash_data = 0;
4164	s32 ret_val;
4165	u8 count = 0;
4166
4167	if (hw->mac.type >= e1000_pch_spt) {
4168		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4169			return -E1000_ERR_NVM;
4170	} else {
4171		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4172			return -E1000_ERR_NVM;
4173	}
4174
4175	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4176			     hw->nvm.flash_base_addr);
4177
4178	do {
4179		udelay(1);
4180		/* Steps */
4181		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4182		if (ret_val)
4183			break;
4184		/* In SPT, This register is in Lan memory space, not
4185		 * flash.  Therefore, only 32 bit access is supported
4186		 */
4187		if (hw->mac.type >= e1000_pch_spt)
4188			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4189		else
4190			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4191
4192		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4193		hsflctl.hsf_ctrl.fldbcount = size - 1;
4194		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4195		/* In SPT, This register is in Lan memory space,
4196		 * not flash.  Therefore, only 32 bit access is
4197		 * supported
4198		 */
4199		if (hw->mac.type >= e1000_pch_spt)
4200			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4201		else
4202			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4203
4204		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4205
4206		if (size == 1)
4207			flash_data = (u32)data & 0x00FF;
4208		else
4209			flash_data = (u32)data;
4210
4211		ew32flash(ICH_FLASH_FDATA0, flash_data);
4212
4213		/* check if FCERR is set to 1 , if set to 1, clear it
4214		 * and try the whole sequence a few more times else done
4215		 */
4216		ret_val =
4217		    e1000_flash_cycle_ich8lan(hw,
4218					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4219		if (!ret_val)
4220			break;
4221
4222		/* If we're here, then things are most likely
4223		 * completely hosed, but if the error condition
4224		 * is detected, it won't hurt to give it another
4225		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4226		 */
4227		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4228		if (hsfsts.hsf_status.flcerr)
4229			/* Repeat for some time before giving up. */
4230			continue;
4231		if (!hsfsts.hsf_status.flcdone) {
4232			e_dbg("Timeout error - flash cycle did not complete.\n");
4233			break;
4234		}
4235	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4236
4237	return ret_val;
4238}
4239
4240/**
4241*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4242*  @hw: pointer to the HW structure
4243*  @offset: The offset (in bytes) of the dwords to read.
4244*  @data: The 4 bytes to write to the NVM.
4245*
4246*  Writes one/two/four bytes to the NVM using the flash access registers.
4247**/
4248static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4249					    u32 data)
4250{
4251	union ich8_hws_flash_status hsfsts;
4252	union ich8_hws_flash_ctrl hsflctl;
4253	u32 flash_linear_addr;
4254	s32 ret_val;
4255	u8 count = 0;
4256
4257	if (hw->mac.type >= e1000_pch_spt) {
4258		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4259			return -E1000_ERR_NVM;
4260	}
4261	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4262			     hw->nvm.flash_base_addr);
4263	do {
4264		udelay(1);
4265		/* Steps */
4266		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4267		if (ret_val)
4268			break;
4269
4270		/* In SPT, This register is in Lan memory space, not
4271		 * flash.  Therefore, only 32 bit access is supported
4272		 */
4273		if (hw->mac.type >= e1000_pch_spt)
4274			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4275			    >> 16;
4276		else
4277			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4278
4279		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4280		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4281
4282		/* In SPT, This register is in Lan memory space,
4283		 * not flash.  Therefore, only 32 bit access is
4284		 * supported
4285		 */
4286		if (hw->mac.type >= e1000_pch_spt)
4287			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4288		else
4289			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4290
4291		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4292
4293		ew32flash(ICH_FLASH_FDATA0, data);
4294
4295		/* check if FCERR is set to 1 , if set to 1, clear it
4296		 * and try the whole sequence a few more times else done
4297		 */
4298		ret_val =
4299		   e1000_flash_cycle_ich8lan(hw,
4300					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4301
4302		if (!ret_val)
4303			break;
4304
4305		/* If we're here, then things are most likely
4306		 * completely hosed, but if the error condition
4307		 * is detected, it won't hurt to give it another
4308		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4309		 */
4310		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4311
4312		if (hsfsts.hsf_status.flcerr)
4313			/* Repeat for some time before giving up. */
4314			continue;
4315		if (!hsfsts.hsf_status.flcdone) {
4316			e_dbg("Timeout error - flash cycle did not complete.\n");
4317			break;
4318		}
4319	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4320
4321	return ret_val;
4322}
4323
4324/**
4325 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4326 *  @hw: pointer to the HW structure
4327 *  @offset: The index of the byte to read.
4328 *  @data: The byte to write to the NVM.
4329 *
4330 *  Writes a single byte to the NVM using the flash access registers.
4331 **/
4332static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4333					  u8 data)
4334{
4335	u16 word = (u16)data;
4336
4337	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4338}
4339
4340/**
4341*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4342*  @hw: pointer to the HW structure
4343*  @offset: The offset of the word to write.
4344*  @dword: The dword to write to the NVM.
4345*
4346*  Writes a single dword to the NVM using the flash access registers.
4347*  Goes through a retry algorithm before giving up.
4348**/
4349static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4350						 u32 offset, u32 dword)
4351{
4352	s32 ret_val;
4353	u16 program_retries;
4354
4355	/* Must convert word offset into bytes. */
4356	offset <<= 1;
4357	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4358
4359	if (!ret_val)
4360		return ret_val;
4361	for (program_retries = 0; program_retries < 100; program_retries++) {
4362		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4363		usleep_range(100, 200);
4364		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4365		if (!ret_val)
4366			break;
4367	}
4368	if (program_retries == 100)
4369		return -E1000_ERR_NVM;
4370
4371	return 0;
4372}
4373
4374/**
4375 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4376 *  @hw: pointer to the HW structure
4377 *  @offset: The offset of the byte to write.
4378 *  @byte: The byte to write to the NVM.
4379 *
4380 *  Writes a single byte to the NVM using the flash access registers.
4381 *  Goes through a retry algorithm before giving up.
4382 **/
4383static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4384						u32 offset, u8 byte)
4385{
4386	s32 ret_val;
4387	u16 program_retries;
4388
4389	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4390	if (!ret_val)
4391		return ret_val;
4392
4393	for (program_retries = 0; program_retries < 100; program_retries++) {
4394		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4395		usleep_range(100, 200);
4396		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4397		if (!ret_val)
4398			break;
4399	}
4400	if (program_retries == 100)
4401		return -E1000_ERR_NVM;
4402
4403	return 0;
4404}
4405
4406/**
4407 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4408 *  @hw: pointer to the HW structure
4409 *  @bank: 0 for first bank, 1 for second bank, etc.
4410 *
4411 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4412 *  bank N is 4096 * N + flash_reg_addr.
4413 **/
4414static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4415{
4416	struct e1000_nvm_info *nvm = &hw->nvm;
4417	union ich8_hws_flash_status hsfsts;
4418	union ich8_hws_flash_ctrl hsflctl;
4419	u32 flash_linear_addr;
4420	/* bank size is in 16bit words - adjust to bytes */
4421	u32 flash_bank_size = nvm->flash_bank_size * 2;
4422	s32 ret_val;
4423	s32 count = 0;
4424	s32 j, iteration, sector_size;
4425
4426	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4427
4428	/* Determine HW Sector size: Read BERASE bits of hw flash status
4429	 * register
4430	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4431	 *     consecutive sectors.  The start index for the nth Hw sector
4432	 *     can be calculated as = bank * 4096 + n * 256
4433	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4434	 *     The start index for the nth Hw sector can be calculated
4435	 *     as = bank * 4096
4436	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4437	 *     (ich9 only, otherwise error condition)
4438	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4439	 */
4440	switch (hsfsts.hsf_status.berasesz) {
4441	case 0:
4442		/* Hw sector size 256 */
4443		sector_size = ICH_FLASH_SEG_SIZE_256;
4444		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4445		break;
4446	case 1:
4447		sector_size = ICH_FLASH_SEG_SIZE_4K;
4448		iteration = 1;
4449		break;
4450	case 2:
4451		sector_size = ICH_FLASH_SEG_SIZE_8K;
4452		iteration = 1;
4453		break;
4454	case 3:
4455		sector_size = ICH_FLASH_SEG_SIZE_64K;
4456		iteration = 1;
4457		break;
4458	default:
4459		return -E1000_ERR_NVM;
4460	}
4461
4462	/* Start with the base address, then add the sector offset. */
4463	flash_linear_addr = hw->nvm.flash_base_addr;
4464	flash_linear_addr += (bank) ? flash_bank_size : 0;
4465
4466	for (j = 0; j < iteration; j++) {
4467		do {
4468			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4469
4470			/* Steps */
4471			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4472			if (ret_val)
4473				return ret_val;
4474
4475			/* Write a value 11 (block Erase) in Flash
4476			 * Cycle field in hw flash control
4477			 */
4478			if (hw->mac.type >= e1000_pch_spt)
4479				hsflctl.regval =
4480				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4481			else
4482				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4483
4484			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4485			if (hw->mac.type >= e1000_pch_spt)
4486				ew32flash(ICH_FLASH_HSFSTS,
4487					  hsflctl.regval << 16);
4488			else
4489				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4490
4491			/* Write the last 24 bits of an index within the
4492			 * block into Flash Linear address field in Flash
4493			 * Address.
4494			 */
4495			flash_linear_addr += (j * sector_size);
4496			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4497
4498			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4499			if (!ret_val)
4500				break;
4501
4502			/* Check if FCERR is set to 1.  If 1,
4503			 * clear it and try the whole sequence
4504			 * a few more times else Done
4505			 */
4506			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4507			if (hsfsts.hsf_status.flcerr)
4508				/* repeat for some time before giving up */
4509				continue;
4510			else if (!hsfsts.hsf_status.flcdone)
4511				return ret_val;
4512		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4513	}
4514
4515	return 0;
4516}
4517
4518/**
4519 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4520 *  @hw: pointer to the HW structure
4521 *  @data: Pointer to the LED settings
4522 *
4523 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4524 *  settings is all 0's or F's, set the LED default to a valid LED default
4525 *  setting.
4526 **/
4527static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4528{
4529	s32 ret_val;
4530
4531	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4532	if (ret_val) {
4533		e_dbg("NVM Read Error\n");
4534		return ret_val;
4535	}
4536
4537	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4538		*data = ID_LED_DEFAULT_ICH8LAN;
4539
4540	return 0;
4541}
4542
4543/**
4544 *  e1000_id_led_init_pchlan - store LED configurations
4545 *  @hw: pointer to the HW structure
4546 *
4547 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4548 *  the PHY LED configuration register.
4549 *
4550 *  PCH also does not have an "always on" or "always off" mode which
4551 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4552 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4553 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4554 *  link based on logic in e1000_led_[on|off]_pchlan().
4555 **/
4556static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4557{
4558	struct e1000_mac_info *mac = &hw->mac;
4559	s32 ret_val;
4560	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4561	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4562	u16 data, i, temp, shift;
4563
4564	/* Get default ID LED modes */
4565	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4566	if (ret_val)
4567		return ret_val;
4568
4569	mac->ledctl_default = er32(LEDCTL);
4570	mac->ledctl_mode1 = mac->ledctl_default;
4571	mac->ledctl_mode2 = mac->ledctl_default;
4572
4573	for (i = 0; i < 4; i++) {
4574		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4575		shift = (i * 5);
4576		switch (temp) {
4577		case ID_LED_ON1_DEF2:
4578		case ID_LED_ON1_ON2:
4579		case ID_LED_ON1_OFF2:
4580			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4581			mac->ledctl_mode1 |= (ledctl_on << shift);
4582			break;
4583		case ID_LED_OFF1_DEF2:
4584		case ID_LED_OFF1_ON2:
4585		case ID_LED_OFF1_OFF2:
4586			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4587			mac->ledctl_mode1 |= (ledctl_off << shift);
4588			break;
4589		default:
4590			/* Do nothing */
4591			break;
4592		}
4593		switch (temp) {
4594		case ID_LED_DEF1_ON2:
4595		case ID_LED_ON1_ON2:
4596		case ID_LED_OFF1_ON2:
4597			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4598			mac->ledctl_mode2 |= (ledctl_on << shift);
4599			break;
4600		case ID_LED_DEF1_OFF2:
4601		case ID_LED_ON1_OFF2:
4602		case ID_LED_OFF1_OFF2:
4603			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4604			mac->ledctl_mode2 |= (ledctl_off << shift);
4605			break;
4606		default:
4607			/* Do nothing */
4608			break;
4609		}
4610	}
4611
4612	return 0;
4613}
4614
4615/**
4616 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4617 *  @hw: pointer to the HW structure
4618 *
4619 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4620 *  register, so the the bus width is hard coded.
4621 **/
4622static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4623{
4624	struct e1000_bus_info *bus = &hw->bus;
4625	s32 ret_val;
4626
4627	ret_val = e1000e_get_bus_info_pcie(hw);
4628
4629	/* ICH devices are "PCI Express"-ish.  They have
4630	 * a configuration space, but do not contain
4631	 * PCI Express Capability registers, so bus width
4632	 * must be hardcoded.
4633	 */
4634	if (bus->width == e1000_bus_width_unknown)
4635		bus->width = e1000_bus_width_pcie_x1;
4636
4637	return ret_val;
4638}
4639
4640/**
4641 *  e1000_reset_hw_ich8lan - Reset the hardware
4642 *  @hw: pointer to the HW structure
4643 *
4644 *  Does a full reset of the hardware which includes a reset of the PHY and
4645 *  MAC.
4646 **/
4647static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4648{
4649	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4650	u16 kum_cfg;
4651	u32 ctrl, reg;
4652	s32 ret_val;
4653
4654	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4655	 * on the last TLP read/write transaction when MAC is reset.
4656	 */
4657	ret_val = e1000e_disable_pcie_master(hw);
4658	if (ret_val)
4659		e_dbg("PCI-E Master disable polling has failed.\n");
4660
4661	e_dbg("Masking off all interrupts\n");
4662	ew32(IMC, 0xffffffff);
4663
4664	/* Disable the Transmit and Receive units.  Then delay to allow
4665	 * any pending transactions to complete before we hit the MAC
4666	 * with the global reset.
4667	 */
4668	ew32(RCTL, 0);
4669	ew32(TCTL, E1000_TCTL_PSP);
4670	e1e_flush();
4671
4672	usleep_range(10000, 20000);
4673
4674	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4675	if (hw->mac.type == e1000_ich8lan) {
4676		/* Set Tx and Rx buffer allocation to 8k apiece. */
4677		ew32(PBA, E1000_PBA_8K);
4678		/* Set Packet Buffer Size to 16k. */
4679		ew32(PBS, E1000_PBS_16K);
4680	}
4681
4682	if (hw->mac.type == e1000_pchlan) {
4683		/* Save the NVM K1 bit setting */
4684		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4685		if (ret_val)
4686			return ret_val;
4687
4688		if (kum_cfg & E1000_NVM_K1_ENABLE)
4689			dev_spec->nvm_k1_enabled = true;
4690		else
4691			dev_spec->nvm_k1_enabled = false;
4692	}
4693
4694	ctrl = er32(CTRL);
4695
4696	if (!hw->phy.ops.check_reset_block(hw)) {
4697		/* Full-chip reset requires MAC and PHY reset at the same
4698		 * time to make sure the interface between MAC and the
4699		 * external PHY is reset.
4700		 */
4701		ctrl |= E1000_CTRL_PHY_RST;
4702
4703		/* Gate automatic PHY configuration by hardware on
4704		 * non-managed 82579
4705		 */
4706		if ((hw->mac.type == e1000_pch2lan) &&
4707		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4708			e1000_gate_hw_phy_config_ich8lan(hw, true);
4709	}
4710	ret_val = e1000_acquire_swflag_ich8lan(hw);
4711	e_dbg("Issuing a global reset to ich8lan\n");
4712	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4713	/* cannot issue a flush here because it hangs the hardware */
4714	msleep(20);
4715
4716	/* Set Phy Config Counter to 50msec */
4717	if (hw->mac.type == e1000_pch2lan) {
4718		reg = er32(FEXTNVM3);
4719		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4720		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4721		ew32(FEXTNVM3, reg);
4722	}
4723
4724	if (!ret_val)
4725		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4726
4727	if (ctrl & E1000_CTRL_PHY_RST) {
4728		ret_val = hw->phy.ops.get_cfg_done(hw);
4729		if (ret_val)
4730			return ret_val;
4731
4732		ret_val = e1000_post_phy_reset_ich8lan(hw);
4733		if (ret_val)
4734			return ret_val;
4735	}
4736
4737	/* For PCH, this write will make sure that any noise
4738	 * will be detected as a CRC error and be dropped rather than show up
4739	 * as a bad packet to the DMA engine.
4740	 */
4741	if (hw->mac.type == e1000_pchlan)
4742		ew32(CRC_OFFSET, 0x65656565);
4743
4744	ew32(IMC, 0xffffffff);
4745	er32(ICR);
4746
4747	reg = er32(KABGTXD);
4748	reg |= E1000_KABGTXD_BGSQLBIAS;
4749	ew32(KABGTXD, reg);
4750
4751	return 0;
4752}
4753
4754/**
4755 *  e1000_init_hw_ich8lan - Initialize the hardware
4756 *  @hw: pointer to the HW structure
4757 *
4758 *  Prepares the hardware for transmit and receive by doing the following:
4759 *   - initialize hardware bits
4760 *   - initialize LED identification
4761 *   - setup receive address registers
4762 *   - setup flow control
4763 *   - setup transmit descriptors
4764 *   - clear statistics
4765 **/
4766static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4767{
4768	struct e1000_mac_info *mac = &hw->mac;
4769	u32 ctrl_ext, txdctl, snoop;
4770	s32 ret_val;
4771	u16 i;
4772
4773	e1000_initialize_hw_bits_ich8lan(hw);
4774
4775	/* Initialize identification LED */
4776	ret_val = mac->ops.id_led_init(hw);
4777	/* An error is not fatal and we should not stop init due to this */
4778	if (ret_val)
4779		e_dbg("Error initializing identification LED\n");
4780
4781	/* Setup the receive address. */
4782	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4783
4784	/* Zero out the Multicast HASH table */
4785	e_dbg("Zeroing the MTA\n");
4786	for (i = 0; i < mac->mta_reg_count; i++)
4787		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4788
4789	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4790	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4791	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4792	 */
4793	if (hw->phy.type == e1000_phy_82578) {
4794		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4795		i &= ~BM_WUC_HOST_WU_BIT;
4796		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4797		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4798		if (ret_val)
4799			return ret_val;
4800	}
4801
4802	/* Setup link and flow control */
4803	ret_val = mac->ops.setup_link(hw);
4804
4805	/* Set the transmit descriptor write-back policy for both queues */
4806	txdctl = er32(TXDCTL(0));
4807	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4808		  E1000_TXDCTL_FULL_TX_DESC_WB);
4809	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4810		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4811	ew32(TXDCTL(0), txdctl);
4812	txdctl = er32(TXDCTL(1));
4813	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4814		  E1000_TXDCTL_FULL_TX_DESC_WB);
4815	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4816		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4817	ew32(TXDCTL(1), txdctl);
4818
4819	/* ICH8 has opposite polarity of no_snoop bits.
4820	 * By default, we should use snoop behavior.
4821	 */
4822	if (mac->type == e1000_ich8lan)
4823		snoop = PCIE_ICH8_SNOOP_ALL;
4824	else
4825		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4826	e1000e_set_pcie_no_snoop(hw, snoop);
4827
 
 
 
 
 
 
 
 
 
4828	ctrl_ext = er32(CTRL_EXT);
4829	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4830	ew32(CTRL_EXT, ctrl_ext);
4831
4832	/* Clear all of the statistics registers (clear on read).  It is
4833	 * important that we do this after we have tried to establish link
4834	 * because the symbol error count will increment wildly if there
4835	 * is no link.
4836	 */
4837	e1000_clear_hw_cntrs_ich8lan(hw);
4838
4839	return ret_val;
4840}
4841
4842/**
4843 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4844 *  @hw: pointer to the HW structure
4845 *
4846 *  Sets/Clears required hardware bits necessary for correctly setting up the
4847 *  hardware for transmit and receive.
4848 **/
4849static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4850{
4851	u32 reg;
4852
4853	/* Extended Device Control */
4854	reg = er32(CTRL_EXT);
4855	reg |= BIT(22);
4856	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4857	if (hw->mac.type >= e1000_pchlan)
4858		reg |= E1000_CTRL_EXT_PHYPDEN;
4859	ew32(CTRL_EXT, reg);
4860
4861	/* Transmit Descriptor Control 0 */
4862	reg = er32(TXDCTL(0));
4863	reg |= BIT(22);
4864	ew32(TXDCTL(0), reg);
4865
4866	/* Transmit Descriptor Control 1 */
4867	reg = er32(TXDCTL(1));
4868	reg |= BIT(22);
4869	ew32(TXDCTL(1), reg);
4870
4871	/* Transmit Arbitration Control 0 */
4872	reg = er32(TARC(0));
4873	if (hw->mac.type == e1000_ich8lan)
4874		reg |= BIT(28) | BIT(29);
4875	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4876	ew32(TARC(0), reg);
4877
4878	/* Transmit Arbitration Control 1 */
4879	reg = er32(TARC(1));
4880	if (er32(TCTL) & E1000_TCTL_MULR)
4881		reg &= ~BIT(28);
4882	else
4883		reg |= BIT(28);
4884	reg |= BIT(24) | BIT(26) | BIT(30);
4885	ew32(TARC(1), reg);
4886
4887	/* Device Status */
4888	if (hw->mac.type == e1000_ich8lan) {
4889		reg = er32(STATUS);
4890		reg &= ~BIT(31);
4891		ew32(STATUS, reg);
4892	}
4893
4894	/* work-around descriptor data corruption issue during nfs v2 udp
4895	 * traffic, just disable the nfs filtering capability
4896	 */
4897	reg = er32(RFCTL);
4898	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4899
4900	/* Disable IPv6 extension header parsing because some malformed
4901	 * IPv6 headers can hang the Rx.
4902	 */
4903	if (hw->mac.type == e1000_ich8lan)
4904		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4905	ew32(RFCTL, reg);
4906
4907	/* Enable ECC on Lynxpoint */
4908	if (hw->mac.type >= e1000_pch_lpt) {
4909		reg = er32(PBECCSTS);
4910		reg |= E1000_PBECCSTS_ECC_ENABLE;
4911		ew32(PBECCSTS, reg);
4912
4913		reg = er32(CTRL);
4914		reg |= E1000_CTRL_MEHE;
4915		ew32(CTRL, reg);
4916	}
4917}
4918
4919/**
4920 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4921 *  @hw: pointer to the HW structure
4922 *
4923 *  Determines which flow control settings to use, then configures flow
4924 *  control.  Calls the appropriate media-specific link configuration
4925 *  function.  Assuming the adapter has a valid link partner, a valid link
4926 *  should be established.  Assumes the hardware has previously been reset
4927 *  and the transmitter and receiver are not enabled.
4928 **/
4929static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4930{
4931	s32 ret_val;
4932
4933	if (hw->phy.ops.check_reset_block(hw))
4934		return 0;
4935
4936	/* ICH parts do not have a word in the NVM to determine
4937	 * the default flow control setting, so we explicitly
4938	 * set it to full.
4939	 */
4940	if (hw->fc.requested_mode == e1000_fc_default) {
4941		/* Workaround h/w hang when Tx flow control enabled */
4942		if (hw->mac.type == e1000_pchlan)
4943			hw->fc.requested_mode = e1000_fc_rx_pause;
4944		else
4945			hw->fc.requested_mode = e1000_fc_full;
4946	}
4947
4948	/* Save off the requested flow control mode for use later.  Depending
4949	 * on the link partner's capabilities, we may or may not use this mode.
4950	 */
4951	hw->fc.current_mode = hw->fc.requested_mode;
4952
4953	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4954
4955	/* Continue to configure the copper link. */
4956	ret_val = hw->mac.ops.setup_physical_interface(hw);
4957	if (ret_val)
4958		return ret_val;
4959
4960	ew32(FCTTV, hw->fc.pause_time);
4961	if ((hw->phy.type == e1000_phy_82578) ||
4962	    (hw->phy.type == e1000_phy_82579) ||
4963	    (hw->phy.type == e1000_phy_i217) ||
4964	    (hw->phy.type == e1000_phy_82577)) {
4965		ew32(FCRTV_PCH, hw->fc.refresh_time);
4966
4967		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4968				   hw->fc.pause_time);
4969		if (ret_val)
4970			return ret_val;
4971	}
4972
4973	return e1000e_set_fc_watermarks(hw);
4974}
4975
4976/**
4977 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4978 *  @hw: pointer to the HW structure
4979 *
4980 *  Configures the kumeran interface to the PHY to wait the appropriate time
4981 *  when polling the PHY, then call the generic setup_copper_link to finish
4982 *  configuring the copper link.
4983 **/
4984static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4985{
4986	u32 ctrl;
4987	s32 ret_val;
4988	u16 reg_data;
4989
4990	ctrl = er32(CTRL);
4991	ctrl |= E1000_CTRL_SLU;
4992	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4993	ew32(CTRL, ctrl);
4994
4995	/* Set the mac to wait the maximum time between each iteration
4996	 * and increase the max iterations when polling the phy;
4997	 * this fixes erroneous timeouts at 10Mbps.
4998	 */
4999	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5000	if (ret_val)
5001		return ret_val;
5002	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5003				       &reg_data);
5004	if (ret_val)
5005		return ret_val;
5006	reg_data |= 0x3F;
5007	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5008					reg_data);
5009	if (ret_val)
5010		return ret_val;
5011
5012	switch (hw->phy.type) {
5013	case e1000_phy_igp_3:
5014		ret_val = e1000e_copper_link_setup_igp(hw);
5015		if (ret_val)
5016			return ret_val;
5017		break;
5018	case e1000_phy_bm:
5019	case e1000_phy_82578:
5020		ret_val = e1000e_copper_link_setup_m88(hw);
5021		if (ret_val)
5022			return ret_val;
5023		break;
5024	case e1000_phy_82577:
5025	case e1000_phy_82579:
5026		ret_val = e1000_copper_link_setup_82577(hw);
5027		if (ret_val)
5028			return ret_val;
5029		break;
5030	case e1000_phy_ife:
5031		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5032		if (ret_val)
5033			return ret_val;
5034
5035		reg_data &= ~IFE_PMC_AUTO_MDIX;
5036
5037		switch (hw->phy.mdix) {
5038		case 1:
5039			reg_data &= ~IFE_PMC_FORCE_MDIX;
5040			break;
5041		case 2:
5042			reg_data |= IFE_PMC_FORCE_MDIX;
5043			break;
5044		case 0:
5045		default:
5046			reg_data |= IFE_PMC_AUTO_MDIX;
5047			break;
5048		}
5049		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5050		if (ret_val)
5051			return ret_val;
5052		break;
5053	default:
5054		break;
5055	}
5056
5057	return e1000e_setup_copper_link(hw);
5058}
5059
5060/**
5061 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5062 *  @hw: pointer to the HW structure
5063 *
5064 *  Calls the PHY specific link setup function and then calls the
5065 *  generic setup_copper_link to finish configuring the link for
5066 *  Lynxpoint PCH devices
5067 **/
5068static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5069{
5070	u32 ctrl;
5071	s32 ret_val;
5072
5073	ctrl = er32(CTRL);
5074	ctrl |= E1000_CTRL_SLU;
5075	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5076	ew32(CTRL, ctrl);
5077
5078	ret_val = e1000_copper_link_setup_82577(hw);
5079	if (ret_val)
5080		return ret_val;
5081
5082	return e1000e_setup_copper_link(hw);
5083}
5084
5085/**
5086 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5087 *  @hw: pointer to the HW structure
5088 *  @speed: pointer to store current link speed
5089 *  @duplex: pointer to store the current link duplex
5090 *
5091 *  Calls the generic get_speed_and_duplex to retrieve the current link
5092 *  information and then calls the Kumeran lock loss workaround for links at
5093 *  gigabit speeds.
5094 **/
5095static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5096					  u16 *duplex)
5097{
5098	s32 ret_val;
5099
5100	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5101	if (ret_val)
5102		return ret_val;
5103
5104	if ((hw->mac.type == e1000_ich8lan) &&
5105	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5106		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5107	}
5108
5109	return ret_val;
5110}
5111
5112/**
5113 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5114 *  @hw: pointer to the HW structure
5115 *
5116 *  Work-around for 82566 Kumeran PCS lock loss:
5117 *  On link status change (i.e. PCI reset, speed change) and link is up and
5118 *  speed is gigabit-
5119 *    0) if workaround is optionally disabled do nothing
5120 *    1) wait 1ms for Kumeran link to come up
5121 *    2) check Kumeran Diagnostic register PCS lock loss bit
5122 *    3) if not set the link is locked (all is good), otherwise...
5123 *    4) reset the PHY
5124 *    5) repeat up to 10 times
5125 *  Note: this is only called for IGP3 copper when speed is 1gb.
5126 **/
5127static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5128{
5129	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5130	u32 phy_ctrl;
5131	s32 ret_val;
5132	u16 i, data;
5133	bool link;
5134
5135	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5136		return 0;
5137
5138	/* Make sure link is up before proceeding.  If not just return.
5139	 * Attempting this while link is negotiating fouled up link
5140	 * stability
5141	 */
5142	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5143	if (!link)
5144		return 0;
5145
5146	for (i = 0; i < 10; i++) {
5147		/* read once to clear */
5148		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5149		if (ret_val)
5150			return ret_val;
5151		/* and again to get new status */
5152		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5153		if (ret_val)
5154			return ret_val;
5155
5156		/* check for PCS lock */
5157		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5158			return 0;
5159
5160		/* Issue PHY reset */
5161		e1000_phy_hw_reset(hw);
5162		mdelay(5);
5163	}
5164	/* Disable GigE link negotiation */
5165	phy_ctrl = er32(PHY_CTRL);
5166	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5167		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5168	ew32(PHY_CTRL, phy_ctrl);
5169
5170	/* Call gig speed drop workaround on Gig disable before accessing
5171	 * any PHY registers
5172	 */
5173	e1000e_gig_downshift_workaround_ich8lan(hw);
5174
5175	/* unable to acquire PCS lock */
5176	return -E1000_ERR_PHY;
5177}
5178
5179/**
5180 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5181 *  @hw: pointer to the HW structure
5182 *  @state: boolean value used to set the current Kumeran workaround state
5183 *
5184 *  If ICH8, set the current Kumeran workaround state (enabled - true
5185 *  /disabled - false).
5186 **/
5187void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5188						  bool state)
5189{
5190	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5191
5192	if (hw->mac.type != e1000_ich8lan) {
5193		e_dbg("Workaround applies to ICH8 only.\n");
5194		return;
5195	}
5196
5197	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5198}
5199
5200/**
5201 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5202 *  @hw: pointer to the HW structure
5203 *
5204 *  Workaround for 82566 power-down on D3 entry:
5205 *    1) disable gigabit link
5206 *    2) write VR power-down enable
5207 *    3) read it back
5208 *  Continue if successful, else issue LCD reset and repeat
5209 **/
5210void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5211{
5212	u32 reg;
5213	u16 data;
5214	u8 retry = 0;
5215
5216	if (hw->phy.type != e1000_phy_igp_3)
5217		return;
5218
5219	/* Try the workaround twice (if needed) */
5220	do {
5221		/* Disable link */
5222		reg = er32(PHY_CTRL);
5223		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5224			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5225		ew32(PHY_CTRL, reg);
5226
5227		/* Call gig speed drop workaround on Gig disable before
5228		 * accessing any PHY registers
5229		 */
5230		if (hw->mac.type == e1000_ich8lan)
5231			e1000e_gig_downshift_workaround_ich8lan(hw);
5232
5233		/* Write VR power-down enable */
5234		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5235		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5236		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5237
5238		/* Read it back and test */
5239		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5240		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5241		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5242			break;
5243
5244		/* Issue PHY reset and repeat at most one more time */
5245		reg = er32(CTRL);
5246		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5247		retry++;
5248	} while (retry);
5249}
5250
5251/**
5252 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5253 *  @hw: pointer to the HW structure
5254 *
5255 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5256 *  LPLU, Gig disable, MDIC PHY reset):
5257 *    1) Set Kumeran Near-end loopback
5258 *    2) Clear Kumeran Near-end loopback
5259 *  Should only be called for ICH8[m] devices with any 1G Phy.
5260 **/
5261void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5262{
5263	s32 ret_val;
5264	u16 reg_data;
5265
5266	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5267		return;
5268
5269	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5270				       &reg_data);
5271	if (ret_val)
5272		return;
5273	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5274	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5275					reg_data);
5276	if (ret_val)
5277		return;
5278	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5279	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5280}
5281
5282/**
5283 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5284 *  @hw: pointer to the HW structure
5285 *
5286 *  During S0 to Sx transition, it is possible the link remains at gig
5287 *  instead of negotiating to a lower speed.  Before going to Sx, set
5288 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5289 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5290 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5291 *  needs to be written.
5292 *  Parts that support (and are linked to a partner which support) EEE in
5293 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5294 *  than 10Mbps w/o EEE.
5295 **/
5296void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5297{
5298	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5299	u32 phy_ctrl;
5300	s32 ret_val;
5301
5302	phy_ctrl = er32(PHY_CTRL);
5303	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5304
5305	if (hw->phy.type == e1000_phy_i217) {
5306		u16 phy_reg, device_id = hw->adapter->pdev->device;
5307
5308		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5309		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5310		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5311		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5312		    (hw->mac.type >= e1000_pch_spt)) {
5313			u32 fextnvm6 = er32(FEXTNVM6);
5314
5315			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5316		}
5317
5318		ret_val = hw->phy.ops.acquire(hw);
5319		if (ret_val)
5320			goto out;
5321
5322		if (!dev_spec->eee_disable) {
5323			u16 eee_advert;
5324
5325			ret_val =
5326			    e1000_read_emi_reg_locked(hw,
5327						      I217_EEE_ADVERTISEMENT,
5328						      &eee_advert);
5329			if (ret_val)
5330				goto release;
5331
5332			/* Disable LPLU if both link partners support 100BaseT
5333			 * EEE and 100Full is advertised on both ends of the
5334			 * link, and enable Auto Enable LPI since there will
5335			 * be no driver to enable LPI while in Sx.
5336			 */
5337			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5338			    (dev_spec->eee_lp_ability &
5339			     I82579_EEE_100_SUPPORTED) &&
5340			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5341				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5342					      E1000_PHY_CTRL_NOND0A_LPLU);
5343
5344				/* Set Auto Enable LPI after link up */
5345				e1e_rphy_locked(hw,
5346						I217_LPI_GPIO_CTRL, &phy_reg);
5347				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5348				e1e_wphy_locked(hw,
5349						I217_LPI_GPIO_CTRL, phy_reg);
5350			}
5351		}
5352
5353		/* For i217 Intel Rapid Start Technology support,
5354		 * when the system is going into Sx and no manageability engine
5355		 * is present, the driver must configure proxy to reset only on
5356		 * power good.  LPI (Low Power Idle) state must also reset only
5357		 * on power good, as well as the MTA (Multicast table array).
5358		 * The SMBus release must also be disabled on LCD reset.
5359		 */
5360		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5361			/* Enable proxy to reset only on power good. */
5362			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5363			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5364			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5365
5366			/* Set bit enable LPI (EEE) to reset only on
5367			 * power good.
5368			 */
5369			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5370			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5371			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5372
5373			/* Disable the SMB release on LCD reset. */
5374			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5375			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5376			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5377		}
5378
5379		/* Enable MTA to reset for Intel Rapid Start Technology
5380		 * Support
5381		 */
5382		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5383		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5384		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5385
5386release:
5387		hw->phy.ops.release(hw);
5388	}
5389out:
5390	ew32(PHY_CTRL, phy_ctrl);
5391
5392	if (hw->mac.type == e1000_ich8lan)
5393		e1000e_gig_downshift_workaround_ich8lan(hw);
5394
5395	if (hw->mac.type >= e1000_pchlan) {
5396		e1000_oem_bits_config_ich8lan(hw, false);
5397
5398		/* Reset PHY to activate OEM bits on 82577/8 */
5399		if (hw->mac.type == e1000_pchlan)
5400			e1000e_phy_hw_reset_generic(hw);
5401
5402		ret_val = hw->phy.ops.acquire(hw);
5403		if (ret_val)
5404			return;
5405		e1000_write_smbus_addr(hw);
5406		hw->phy.ops.release(hw);
5407	}
5408}
5409
5410/**
5411 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5412 *  @hw: pointer to the HW structure
5413 *
5414 *  During Sx to S0 transitions on non-managed devices or managed devices
5415 *  on which PHY resets are not blocked, if the PHY registers cannot be
5416 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5417 *  the PHY.
5418 *  On i217, setup Intel Rapid Start Technology.
5419 **/
5420void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5421{
5422	s32 ret_val;
5423
5424	if (hw->mac.type < e1000_pch2lan)
5425		return;
5426
5427	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5428	if (ret_val) {
5429		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5430		return;
5431	}
5432
5433	/* For i217 Intel Rapid Start Technology support when the system
5434	 * is transitioning from Sx and no manageability engine is present
5435	 * configure SMBus to restore on reset, disable proxy, and enable
5436	 * the reset on MTA (Multicast table array).
5437	 */
5438	if (hw->phy.type == e1000_phy_i217) {
5439		u16 phy_reg;
5440
5441		ret_val = hw->phy.ops.acquire(hw);
5442		if (ret_val) {
5443			e_dbg("Failed to setup iRST\n");
5444			return;
5445		}
5446
5447		/* Clear Auto Enable LPI after link up */
5448		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5449		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5450		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5451
5452		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5453			/* Restore clear on SMB if no manageability engine
5454			 * is present
5455			 */
5456			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5457			if (ret_val)
5458				goto release;
5459			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5460			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5461
5462			/* Disable Proxy */
5463			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5464		}
5465		/* Enable reset on MTA */
5466		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5467		if (ret_val)
5468			goto release;
5469		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5470		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5471release:
5472		if (ret_val)
5473			e_dbg("Error %d in resume workarounds\n", ret_val);
5474		hw->phy.ops.release(hw);
5475	}
5476}
5477
5478/**
5479 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5480 *  @hw: pointer to the HW structure
5481 *
5482 *  Return the LED back to the default configuration.
5483 **/
5484static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5485{
5486	if (hw->phy.type == e1000_phy_ife)
5487		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5488
5489	ew32(LEDCTL, hw->mac.ledctl_default);
5490	return 0;
5491}
5492
5493/**
5494 *  e1000_led_on_ich8lan - Turn LEDs on
5495 *  @hw: pointer to the HW structure
5496 *
5497 *  Turn on the LEDs.
5498 **/
5499static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5500{
5501	if (hw->phy.type == e1000_phy_ife)
5502		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5503				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5504
5505	ew32(LEDCTL, hw->mac.ledctl_mode2);
5506	return 0;
5507}
5508
5509/**
5510 *  e1000_led_off_ich8lan - Turn LEDs off
5511 *  @hw: pointer to the HW structure
5512 *
5513 *  Turn off the LEDs.
5514 **/
5515static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5516{
5517	if (hw->phy.type == e1000_phy_ife)
5518		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5519				(IFE_PSCL_PROBE_MODE |
5520				 IFE_PSCL_PROBE_LEDS_OFF));
5521
5522	ew32(LEDCTL, hw->mac.ledctl_mode1);
5523	return 0;
5524}
5525
5526/**
5527 *  e1000_setup_led_pchlan - Configures SW controllable LED
5528 *  @hw: pointer to the HW structure
5529 *
5530 *  This prepares the SW controllable LED for use.
5531 **/
5532static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5533{
5534	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5535}
5536
5537/**
5538 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5539 *  @hw: pointer to the HW structure
5540 *
5541 *  Return the LED back to the default configuration.
5542 **/
5543static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5544{
5545	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5546}
5547
5548/**
5549 *  e1000_led_on_pchlan - Turn LEDs on
5550 *  @hw: pointer to the HW structure
5551 *
5552 *  Turn on the LEDs.
5553 **/
5554static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5555{
5556	u16 data = (u16)hw->mac.ledctl_mode2;
5557	u32 i, led;
5558
5559	/* If no link, then turn LED on by setting the invert bit
5560	 * for each LED that's mode is "link_up" in ledctl_mode2.
5561	 */
5562	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5563		for (i = 0; i < 3; i++) {
5564			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5565			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5566			    E1000_LEDCTL_MODE_LINK_UP)
5567				continue;
5568			if (led & E1000_PHY_LED0_IVRT)
5569				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5570			else
5571				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5572		}
5573	}
5574
5575	return e1e_wphy(hw, HV_LED_CONFIG, data);
5576}
5577
5578/**
5579 *  e1000_led_off_pchlan - Turn LEDs off
5580 *  @hw: pointer to the HW structure
5581 *
5582 *  Turn off the LEDs.
5583 **/
5584static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5585{
5586	u16 data = (u16)hw->mac.ledctl_mode1;
5587	u32 i, led;
5588
5589	/* If no link, then turn LED off by clearing the invert bit
5590	 * for each LED that's mode is "link_up" in ledctl_mode1.
5591	 */
5592	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5593		for (i = 0; i < 3; i++) {
5594			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5595			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5596			    E1000_LEDCTL_MODE_LINK_UP)
5597				continue;
5598			if (led & E1000_PHY_LED0_IVRT)
5599				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5600			else
5601				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5602		}
5603	}
5604
5605	return e1e_wphy(hw, HV_LED_CONFIG, data);
5606}
5607
5608/**
5609 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5610 *  @hw: pointer to the HW structure
5611 *
5612 *  Read appropriate register for the config done bit for completion status
5613 *  and configure the PHY through s/w for EEPROM-less parts.
5614 *
5615 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5616 *  config done bit, so only an error is logged and continues.  If we were
5617 *  to return with error, EEPROM-less silicon would not be able to be reset
5618 *  or change link.
5619 **/
5620static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5621{
5622	s32 ret_val = 0;
5623	u32 bank = 0;
5624	u32 status;
5625
5626	e1000e_get_cfg_done_generic(hw);
5627
5628	/* Wait for indication from h/w that it has completed basic config */
5629	if (hw->mac.type >= e1000_ich10lan) {
5630		e1000_lan_init_done_ich8lan(hw);
5631	} else {
5632		ret_val = e1000e_get_auto_rd_done(hw);
5633		if (ret_val) {
5634			/* When auto config read does not complete, do not
5635			 * return with an error. This can happen in situations
5636			 * where there is no eeprom and prevents getting link.
5637			 */
5638			e_dbg("Auto Read Done did not complete\n");
5639			ret_val = 0;
5640		}
5641	}
5642
5643	/* Clear PHY Reset Asserted bit */
5644	status = er32(STATUS);
5645	if (status & E1000_STATUS_PHYRA)
5646		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5647	else
5648		e_dbg("PHY Reset Asserted not set - needs delay\n");
5649
5650	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5651	if (hw->mac.type <= e1000_ich9lan) {
5652		if (!(er32(EECD) & E1000_EECD_PRES) &&
5653		    (hw->phy.type == e1000_phy_igp_3)) {
5654			e1000e_phy_init_script_igp3(hw);
5655		}
5656	} else {
5657		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5658			/* Maybe we should do a basic PHY config */
5659			e_dbg("EEPROM not present\n");
5660			ret_val = -E1000_ERR_CONFIG;
5661		}
5662	}
5663
5664	return ret_val;
5665}
5666
5667/**
5668 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5669 * @hw: pointer to the HW structure
5670 *
5671 * In the case of a PHY power down to save power, or to turn off link during a
5672 * driver unload, or wake on lan is not enabled, remove the link.
5673 **/
5674static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5675{
5676	/* If the management interface is not enabled, then power down */
5677	if (!(hw->mac.ops.check_mng_mode(hw) ||
5678	      hw->phy.ops.check_reset_block(hw)))
5679		e1000_power_down_phy_copper(hw);
5680}
5681
5682/**
5683 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5684 *  @hw: pointer to the HW structure
5685 *
5686 *  Clears hardware counters specific to the silicon family and calls
5687 *  clear_hw_cntrs_generic to clear all general purpose counters.
5688 **/
5689static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5690{
5691	u16 phy_data;
5692	s32 ret_val;
5693
5694	e1000e_clear_hw_cntrs_base(hw);
5695
5696	er32(ALGNERRC);
5697	er32(RXERRC);
5698	er32(TNCRS);
5699	er32(CEXTERR);
5700	er32(TSCTC);
5701	er32(TSCTFC);
5702
5703	er32(MGTPRC);
5704	er32(MGTPDC);
5705	er32(MGTPTC);
5706
5707	er32(IAC);
5708	er32(ICRXOC);
5709
5710	/* Clear PHY statistics registers */
5711	if ((hw->phy.type == e1000_phy_82578) ||
5712	    (hw->phy.type == e1000_phy_82579) ||
5713	    (hw->phy.type == e1000_phy_i217) ||
5714	    (hw->phy.type == e1000_phy_82577)) {
5715		ret_val = hw->phy.ops.acquire(hw);
5716		if (ret_val)
5717			return;
5718		ret_val = hw->phy.ops.set_page(hw,
5719					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5720		if (ret_val)
5721			goto release;
5722		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5723		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5724		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5725		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5726		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5727		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5728		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5729		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5730		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5731		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5732		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5733		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5734		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5735		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5736release:
5737		hw->phy.ops.release(hw);
5738	}
5739}
5740
5741static const struct e1000_mac_operations ich8_mac_ops = {
5742	/* check_mng_mode dependent on mac type */
5743	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5744	/* cleanup_led dependent on mac type */
5745	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5746	.get_bus_info		= e1000_get_bus_info_ich8lan,
5747	.set_lan_id		= e1000_set_lan_id_single_port,
5748	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5749	/* led_on dependent on mac type */
5750	/* led_off dependent on mac type */
5751	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5752	.reset_hw		= e1000_reset_hw_ich8lan,
5753	.init_hw		= e1000_init_hw_ich8lan,
5754	.setup_link		= e1000_setup_link_ich8lan,
5755	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5756	/* id_led_init dependent on mac type */
5757	.config_collision_dist	= e1000e_config_collision_dist_generic,
5758	.rar_set		= e1000e_rar_set_generic,
5759	.rar_get_count		= e1000e_rar_get_count_generic,
5760};
5761
5762static const struct e1000_phy_operations ich8_phy_ops = {
5763	.acquire		= e1000_acquire_swflag_ich8lan,
5764	.check_reset_block	= e1000_check_reset_block_ich8lan,
5765	.commit			= NULL,
5766	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5767	.get_cable_length	= e1000e_get_cable_length_igp_2,
5768	.read_reg		= e1000e_read_phy_reg_igp,
5769	.release		= e1000_release_swflag_ich8lan,
5770	.reset			= e1000_phy_hw_reset_ich8lan,
5771	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5772	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5773	.write_reg		= e1000e_write_phy_reg_igp,
5774};
5775
5776static const struct e1000_nvm_operations ich8_nvm_ops = {
5777	.acquire		= e1000_acquire_nvm_ich8lan,
5778	.read			= e1000_read_nvm_ich8lan,
5779	.release		= e1000_release_nvm_ich8lan,
5780	.reload			= e1000e_reload_nvm_generic,
5781	.update			= e1000_update_nvm_checksum_ich8lan,
5782	.valid_led_default	= e1000_valid_led_default_ich8lan,
5783	.validate		= e1000_validate_nvm_checksum_ich8lan,
5784	.write			= e1000_write_nvm_ich8lan,
5785};
5786
5787static const struct e1000_nvm_operations spt_nvm_ops = {
5788	.acquire		= e1000_acquire_nvm_ich8lan,
5789	.release		= e1000_release_nvm_ich8lan,
5790	.read			= e1000_read_nvm_spt,
5791	.update			= e1000_update_nvm_checksum_spt,
5792	.reload			= e1000e_reload_nvm_generic,
5793	.valid_led_default	= e1000_valid_led_default_ich8lan,
5794	.validate		= e1000_validate_nvm_checksum_ich8lan,
5795	.write			= e1000_write_nvm_ich8lan,
5796};
5797
5798const struct e1000_info e1000_ich8_info = {
5799	.mac			= e1000_ich8lan,
5800	.flags			= FLAG_HAS_WOL
5801				  | FLAG_IS_ICH
5802				  | FLAG_HAS_CTRLEXT_ON_LOAD
5803				  | FLAG_HAS_AMT
5804				  | FLAG_HAS_FLASH
5805				  | FLAG_APME_IN_WUC,
5806	.pba			= 8,
5807	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5808	.get_variants		= e1000_get_variants_ich8lan,
5809	.mac_ops		= &ich8_mac_ops,
5810	.phy_ops		= &ich8_phy_ops,
5811	.nvm_ops		= &ich8_nvm_ops,
5812};
5813
5814const struct e1000_info e1000_ich9_info = {
5815	.mac			= e1000_ich9lan,
5816	.flags			= FLAG_HAS_JUMBO_FRAMES
5817				  | FLAG_IS_ICH
5818				  | FLAG_HAS_WOL
5819				  | FLAG_HAS_CTRLEXT_ON_LOAD
5820				  | FLAG_HAS_AMT
5821				  | FLAG_HAS_FLASH
5822				  | FLAG_APME_IN_WUC,
5823	.pba			= 18,
5824	.max_hw_frame_size	= DEFAULT_JUMBO,
5825	.get_variants		= e1000_get_variants_ich8lan,
5826	.mac_ops		= &ich8_mac_ops,
5827	.phy_ops		= &ich8_phy_ops,
5828	.nvm_ops		= &ich8_nvm_ops,
5829};
5830
5831const struct e1000_info e1000_ich10_info = {
5832	.mac			= e1000_ich10lan,
5833	.flags			= FLAG_HAS_JUMBO_FRAMES
5834				  | FLAG_IS_ICH
5835				  | FLAG_HAS_WOL
5836				  | FLAG_HAS_CTRLEXT_ON_LOAD
5837				  | FLAG_HAS_AMT
5838				  | FLAG_HAS_FLASH
5839				  | FLAG_APME_IN_WUC,
5840	.pba			= 18,
5841	.max_hw_frame_size	= DEFAULT_JUMBO,
5842	.get_variants		= e1000_get_variants_ich8lan,
5843	.mac_ops		= &ich8_mac_ops,
5844	.phy_ops		= &ich8_phy_ops,
5845	.nvm_ops		= &ich8_nvm_ops,
5846};
5847
5848const struct e1000_info e1000_pch_info = {
5849	.mac			= e1000_pchlan,
5850	.flags			= FLAG_IS_ICH
5851				  | FLAG_HAS_WOL
5852				  | FLAG_HAS_CTRLEXT_ON_LOAD
5853				  | FLAG_HAS_AMT
5854				  | FLAG_HAS_FLASH
5855				  | FLAG_HAS_JUMBO_FRAMES
5856				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5857				  | FLAG_APME_IN_WUC,
5858	.flags2			= FLAG2_HAS_PHY_STATS,
5859	.pba			= 26,
5860	.max_hw_frame_size	= 4096,
5861	.get_variants		= e1000_get_variants_ich8lan,
5862	.mac_ops		= &ich8_mac_ops,
5863	.phy_ops		= &ich8_phy_ops,
5864	.nvm_ops		= &ich8_nvm_ops,
5865};
5866
5867const struct e1000_info e1000_pch2_info = {
5868	.mac			= e1000_pch2lan,
5869	.flags			= FLAG_IS_ICH
5870				  | FLAG_HAS_WOL
5871				  | FLAG_HAS_HW_TIMESTAMP
5872				  | FLAG_HAS_CTRLEXT_ON_LOAD
5873				  | FLAG_HAS_AMT
5874				  | FLAG_HAS_FLASH
5875				  | FLAG_HAS_JUMBO_FRAMES
5876				  | FLAG_APME_IN_WUC,
5877	.flags2			= FLAG2_HAS_PHY_STATS
5878				  | FLAG2_HAS_EEE
5879				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5880	.pba			= 26,
5881	.max_hw_frame_size	= 9022,
5882	.get_variants		= e1000_get_variants_ich8lan,
5883	.mac_ops		= &ich8_mac_ops,
5884	.phy_ops		= &ich8_phy_ops,
5885	.nvm_ops		= &ich8_nvm_ops,
5886};
5887
5888const struct e1000_info e1000_pch_lpt_info = {
5889	.mac			= e1000_pch_lpt,
5890	.flags			= FLAG_IS_ICH
5891				  | FLAG_HAS_WOL
5892				  | FLAG_HAS_HW_TIMESTAMP
5893				  | FLAG_HAS_CTRLEXT_ON_LOAD
5894				  | FLAG_HAS_AMT
5895				  | FLAG_HAS_FLASH
5896				  | FLAG_HAS_JUMBO_FRAMES
5897				  | FLAG_APME_IN_WUC,
5898	.flags2			= FLAG2_HAS_PHY_STATS
5899				  | FLAG2_HAS_EEE
5900				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5901	.pba			= 26,
5902	.max_hw_frame_size	= 9022,
5903	.get_variants		= e1000_get_variants_ich8lan,
5904	.mac_ops		= &ich8_mac_ops,
5905	.phy_ops		= &ich8_phy_ops,
5906	.nvm_ops		= &ich8_nvm_ops,
5907};
5908
5909const struct e1000_info e1000_pch_spt_info = {
5910	.mac			= e1000_pch_spt,
5911	.flags			= FLAG_IS_ICH
5912				  | FLAG_HAS_WOL
5913				  | FLAG_HAS_HW_TIMESTAMP
5914				  | FLAG_HAS_CTRLEXT_ON_LOAD
5915				  | FLAG_HAS_AMT
5916				  | FLAG_HAS_FLASH
5917				  | FLAG_HAS_JUMBO_FRAMES
5918				  | FLAG_APME_IN_WUC,
5919	.flags2			= FLAG2_HAS_PHY_STATS
5920				  | FLAG2_HAS_EEE,
5921	.pba			= 26,
5922	.max_hw_frame_size	= 9022,
5923	.get_variants		= e1000_get_variants_ich8lan,
5924	.mac_ops		= &ich8_mac_ops,
5925	.phy_ops		= &ich8_phy_ops,
5926	.nvm_ops		= &spt_nvm_ops,
5927};
5928
5929const struct e1000_info e1000_pch_cnp_info = {
5930	.mac			= e1000_pch_cnp,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5931	.flags			= FLAG_IS_ICH
5932				  | FLAG_HAS_WOL
5933				  | FLAG_HAS_HW_TIMESTAMP
5934				  | FLAG_HAS_CTRLEXT_ON_LOAD
5935				  | FLAG_HAS_AMT
5936				  | FLAG_HAS_FLASH
5937				  | FLAG_HAS_JUMBO_FRAMES
5938				  | FLAG_APME_IN_WUC,
5939	.flags2			= FLAG2_HAS_PHY_STATS
5940				  | FLAG2_HAS_EEE,
5941	.pba			= 26,
5942	.max_hw_frame_size	= 9022,
5943	.get_variants		= e1000_get_variants_ich8lan,
5944	.mac_ops		= &ich8_mac_ops,
5945	.phy_ops		= &ich8_phy_ops,
5946	.nvm_ops		= &spt_nvm_ops,
5947};