Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel Pulse Width Modulation Controller
4 *
5 * Copyright (C) 2013 Atmel Corporation
6 * Bo Shen <voice.shen@atmel.com>
7 *
8 * Links to reference manuals for the supported PWM chips can be found in
9 * Documentation/arch/arm/microchip.rst.
10 *
11 * Limitations:
12 * - Periods start with the inactive level.
13 * - Hardware has to be stopped in general to update settings.
14 *
15 * Software bugs/possible improvements:
16 * - When atmel_pwm_apply() is called with state->enabled=false a change in
17 * state->polarity isn't honored.
18 * - Instead of sleeping to wait for a completed period, the interrupt
19 * functionality could be used.
20 */
21
22#include <linux/clk.h>
23#include <linux/delay.h>
24#include <linux/err.h>
25#include <linux/io.h>
26#include <linux/module.h>
27#include <linux/of.h>
28#include <linux/platform_device.h>
29#include <linux/pwm.h>
30#include <linux/slab.h>
31
32/* The following is global registers for PWM controller */
33#define PWM_ENA 0x04
34#define PWM_DIS 0x08
35#define PWM_SR 0x0C
36#define PWM_ISR 0x1C
37/* Bit field in SR */
38#define PWM_SR_ALL_CH_MASK 0x0F
39
40/* The following register is PWM channel related registers */
41#define PWM_CH_REG_OFFSET 0x200
42#define PWM_CH_REG_SIZE 0x20
43
44#define PWM_CMR 0x0
45/* Bit field in CMR */
46#define PWM_CMR_CPOL (1 << 9)
47#define PWM_CMR_UPD_CDTY (1 << 10)
48#define PWM_CMR_CPRE_MSK 0xF
49
50/* The following registers for PWM v1 */
51#define PWMV1_CDTY 0x04
52#define PWMV1_CPRD 0x08
53#define PWMV1_CUPD 0x10
54
55/* The following registers for PWM v2 */
56#define PWMV2_CDTY 0x04
57#define PWMV2_CDTYUPD 0x08
58#define PWMV2_CPRD 0x0C
59#define PWMV2_CPRDUPD 0x10
60
61#define PWM_MAX_PRES 10
62
63struct atmel_pwm_registers {
64 u8 period;
65 u8 period_upd;
66 u8 duty;
67 u8 duty_upd;
68};
69
70struct atmel_pwm_config {
71 u32 period_bits;
72};
73
74struct atmel_pwm_data {
75 struct atmel_pwm_registers regs;
76 struct atmel_pwm_config cfg;
77};
78
79struct atmel_pwm_chip {
80 struct pwm_chip chip;
81 struct clk *clk;
82 void __iomem *base;
83 const struct atmel_pwm_data *data;
84
85 /*
86 * The hardware supports a mechanism to update a channel's duty cycle at
87 * the end of the currently running period. When such an update is
88 * pending we delay disabling the PWM until the new configuration is
89 * active because otherwise pmw_config(duty_cycle=0); pwm_disable();
90 * might not result in an inactive output.
91 * This bitmask tracks for which channels an update is pending in
92 * hardware.
93 */
94 u32 update_pending;
95
96 /* Protects .update_pending */
97 spinlock_t lock;
98};
99
100static inline struct atmel_pwm_chip *to_atmel_pwm_chip(struct pwm_chip *chip)
101{
102 return container_of(chip, struct atmel_pwm_chip, chip);
103}
104
105static inline u32 atmel_pwm_readl(struct atmel_pwm_chip *chip,
106 unsigned long offset)
107{
108 return readl_relaxed(chip->base + offset);
109}
110
111static inline void atmel_pwm_writel(struct atmel_pwm_chip *chip,
112 unsigned long offset, unsigned long val)
113{
114 writel_relaxed(val, chip->base + offset);
115}
116
117static inline u32 atmel_pwm_ch_readl(struct atmel_pwm_chip *chip,
118 unsigned int ch, unsigned long offset)
119{
120 unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
121
122 return atmel_pwm_readl(chip, base + offset);
123}
124
125static inline void atmel_pwm_ch_writel(struct atmel_pwm_chip *chip,
126 unsigned int ch, unsigned long offset,
127 unsigned long val)
128{
129 unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
130
131 atmel_pwm_writel(chip, base + offset, val);
132}
133
134static void atmel_pwm_update_pending(struct atmel_pwm_chip *chip)
135{
136 /*
137 * Each channel that has its bit in ISR set started a new period since
138 * ISR was cleared and so there is no more update pending. Note that
139 * reading ISR clears it, so this needs to handle all channels to not
140 * loose information.
141 */
142 u32 isr = atmel_pwm_readl(chip, PWM_ISR);
143
144 chip->update_pending &= ~isr;
145}
146
147static void atmel_pwm_set_pending(struct atmel_pwm_chip *chip, unsigned int ch)
148{
149 spin_lock(&chip->lock);
150
151 /*
152 * Clear pending flags in hardware because otherwise there might still
153 * be a stale flag in ISR.
154 */
155 atmel_pwm_update_pending(chip);
156
157 chip->update_pending |= (1 << ch);
158
159 spin_unlock(&chip->lock);
160}
161
162static int atmel_pwm_test_pending(struct atmel_pwm_chip *chip, unsigned int ch)
163{
164 int ret = 0;
165
166 spin_lock(&chip->lock);
167
168 if (chip->update_pending & (1 << ch)) {
169 atmel_pwm_update_pending(chip);
170
171 if (chip->update_pending & (1 << ch))
172 ret = 1;
173 }
174
175 spin_unlock(&chip->lock);
176
177 return ret;
178}
179
180static int atmel_pwm_wait_nonpending(struct atmel_pwm_chip *chip, unsigned int ch)
181{
182 unsigned long timeout = jiffies + 2 * HZ;
183 int ret;
184
185 while ((ret = atmel_pwm_test_pending(chip, ch)) &&
186 time_before(jiffies, timeout))
187 usleep_range(10, 100);
188
189 return ret ? -ETIMEDOUT : 0;
190}
191
192static int atmel_pwm_calculate_cprd_and_pres(struct pwm_chip *chip,
193 unsigned long clkrate,
194 const struct pwm_state *state,
195 unsigned long *cprd, u32 *pres)
196{
197 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
198 unsigned long long cycles = state->period;
199 int shift;
200
201 /* Calculate the period cycles and prescale value */
202 cycles *= clkrate;
203 do_div(cycles, NSEC_PER_SEC);
204
205 /*
206 * The register for the period length is cfg.period_bits bits wide.
207 * So for each bit the number of clock cycles is wider divide the input
208 * clock frequency by two using pres and shift cprd accordingly.
209 */
210 shift = fls(cycles) - atmel_pwm->data->cfg.period_bits;
211
212 if (shift > PWM_MAX_PRES) {
213 dev_err(chip->dev, "pres exceeds the maximum value\n");
214 return -EINVAL;
215 } else if (shift > 0) {
216 *pres = shift;
217 cycles >>= *pres;
218 } else {
219 *pres = 0;
220 }
221
222 *cprd = cycles;
223
224 return 0;
225}
226
227static void atmel_pwm_calculate_cdty(const struct pwm_state *state,
228 unsigned long clkrate, unsigned long cprd,
229 u32 pres, unsigned long *cdty)
230{
231 unsigned long long cycles = state->duty_cycle;
232
233 cycles *= clkrate;
234 do_div(cycles, NSEC_PER_SEC);
235 cycles >>= pres;
236 *cdty = cprd - cycles;
237}
238
239static void atmel_pwm_update_cdty(struct pwm_chip *chip, struct pwm_device *pwm,
240 unsigned long cdty)
241{
242 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
243 u32 val;
244
245 if (atmel_pwm->data->regs.duty_upd ==
246 atmel_pwm->data->regs.period_upd) {
247 val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
248 val &= ~PWM_CMR_UPD_CDTY;
249 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
250 }
251
252 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
253 atmel_pwm->data->regs.duty_upd, cdty);
254 atmel_pwm_set_pending(atmel_pwm, pwm->hwpwm);
255}
256
257static void atmel_pwm_set_cprd_cdty(struct pwm_chip *chip,
258 struct pwm_device *pwm,
259 unsigned long cprd, unsigned long cdty)
260{
261 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
262
263 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
264 atmel_pwm->data->regs.duty, cdty);
265 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
266 atmel_pwm->data->regs.period, cprd);
267}
268
269static void atmel_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm,
270 bool disable_clk)
271{
272 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
273 unsigned long timeout;
274
275 atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
276
277 atmel_pwm_writel(atmel_pwm, PWM_DIS, 1 << pwm->hwpwm);
278
279 /*
280 * Wait for the PWM channel disable operation to be effective before
281 * stopping the clock.
282 */
283 timeout = jiffies + 2 * HZ;
284
285 while ((atmel_pwm_readl(atmel_pwm, PWM_SR) & (1 << pwm->hwpwm)) &&
286 time_before(jiffies, timeout))
287 usleep_range(10, 100);
288
289 if (disable_clk)
290 clk_disable(atmel_pwm->clk);
291}
292
293static int atmel_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
294 const struct pwm_state *state)
295{
296 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
297 struct pwm_state cstate;
298 unsigned long cprd, cdty;
299 u32 pres, val;
300 int ret;
301
302 pwm_get_state(pwm, &cstate);
303
304 if (state->enabled) {
305 unsigned long clkrate = clk_get_rate(atmel_pwm->clk);
306
307 if (cstate.enabled &&
308 cstate.polarity == state->polarity &&
309 cstate.period == state->period) {
310 u32 cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
311
312 cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
313 atmel_pwm->data->regs.period);
314 pres = cmr & PWM_CMR_CPRE_MSK;
315
316 atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
317 atmel_pwm_update_cdty(chip, pwm, cdty);
318 return 0;
319 }
320
321 ret = atmel_pwm_calculate_cprd_and_pres(chip, clkrate, state, &cprd,
322 &pres);
323 if (ret) {
324 dev_err(chip->dev,
325 "failed to calculate cprd and prescaler\n");
326 return ret;
327 }
328
329 atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
330
331 if (cstate.enabled) {
332 atmel_pwm_disable(chip, pwm, false);
333 } else {
334 ret = clk_enable(atmel_pwm->clk);
335 if (ret) {
336 dev_err(chip->dev, "failed to enable clock\n");
337 return ret;
338 }
339 }
340
341 /* It is necessary to preserve CPOL, inside CMR */
342 val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
343 val = (val & ~PWM_CMR_CPRE_MSK) | (pres & PWM_CMR_CPRE_MSK);
344 if (state->polarity == PWM_POLARITY_NORMAL)
345 val &= ~PWM_CMR_CPOL;
346 else
347 val |= PWM_CMR_CPOL;
348 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
349 atmel_pwm_set_cprd_cdty(chip, pwm, cprd, cdty);
350 atmel_pwm_writel(atmel_pwm, PWM_ENA, 1 << pwm->hwpwm);
351 } else if (cstate.enabled) {
352 atmel_pwm_disable(chip, pwm, true);
353 }
354
355 return 0;
356}
357
358static int atmel_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
359 struct pwm_state *state)
360{
361 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
362 u32 sr, cmr;
363
364 sr = atmel_pwm_readl(atmel_pwm, PWM_SR);
365 cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
366
367 if (sr & (1 << pwm->hwpwm)) {
368 unsigned long rate = clk_get_rate(atmel_pwm->clk);
369 u32 cdty, cprd, pres;
370 u64 tmp;
371
372 pres = cmr & PWM_CMR_CPRE_MSK;
373
374 cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
375 atmel_pwm->data->regs.period);
376 tmp = (u64)cprd * NSEC_PER_SEC;
377 tmp <<= pres;
378 state->period = DIV64_U64_ROUND_UP(tmp, rate);
379
380 /* Wait for an updated duty_cycle queued in hardware */
381 atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
382
383 cdty = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
384 atmel_pwm->data->regs.duty);
385 tmp = (u64)(cprd - cdty) * NSEC_PER_SEC;
386 tmp <<= pres;
387 state->duty_cycle = DIV64_U64_ROUND_UP(tmp, rate);
388
389 state->enabled = true;
390 } else {
391 state->enabled = false;
392 }
393
394 if (cmr & PWM_CMR_CPOL)
395 state->polarity = PWM_POLARITY_INVERSED;
396 else
397 state->polarity = PWM_POLARITY_NORMAL;
398
399 return 0;
400}
401
402static const struct pwm_ops atmel_pwm_ops = {
403 .apply = atmel_pwm_apply,
404 .get_state = atmel_pwm_get_state,
405};
406
407static const struct atmel_pwm_data atmel_sam9rl_pwm_data = {
408 .regs = {
409 .period = PWMV1_CPRD,
410 .period_upd = PWMV1_CUPD,
411 .duty = PWMV1_CDTY,
412 .duty_upd = PWMV1_CUPD,
413 },
414 .cfg = {
415 /* 16 bits to keep period and duty. */
416 .period_bits = 16,
417 },
418};
419
420static const struct atmel_pwm_data atmel_sama5_pwm_data = {
421 .regs = {
422 .period = PWMV2_CPRD,
423 .period_upd = PWMV2_CPRDUPD,
424 .duty = PWMV2_CDTY,
425 .duty_upd = PWMV2_CDTYUPD,
426 },
427 .cfg = {
428 /* 16 bits to keep period and duty. */
429 .period_bits = 16,
430 },
431};
432
433static const struct atmel_pwm_data mchp_sam9x60_pwm_data = {
434 .regs = {
435 .period = PWMV1_CPRD,
436 .period_upd = PWMV1_CUPD,
437 .duty = PWMV1_CDTY,
438 .duty_upd = PWMV1_CUPD,
439 },
440 .cfg = {
441 /* 32 bits to keep period and duty. */
442 .period_bits = 32,
443 },
444};
445
446static const struct of_device_id atmel_pwm_dt_ids[] = {
447 {
448 .compatible = "atmel,at91sam9rl-pwm",
449 .data = &atmel_sam9rl_pwm_data,
450 }, {
451 .compatible = "atmel,sama5d3-pwm",
452 .data = &atmel_sama5_pwm_data,
453 }, {
454 .compatible = "atmel,sama5d2-pwm",
455 .data = &atmel_sama5_pwm_data,
456 }, {
457 .compatible = "microchip,sam9x60-pwm",
458 .data = &mchp_sam9x60_pwm_data,
459 }, {
460 /* sentinel */
461 },
462};
463MODULE_DEVICE_TABLE(of, atmel_pwm_dt_ids);
464
465static int atmel_pwm_enable_clk_if_on(struct atmel_pwm_chip *atmel_pwm, bool on)
466{
467 unsigned int i, cnt = 0;
468 unsigned long sr;
469 int ret = 0;
470
471 sr = atmel_pwm_readl(atmel_pwm, PWM_SR) & PWM_SR_ALL_CH_MASK;
472 if (!sr)
473 return 0;
474
475 cnt = bitmap_weight(&sr, atmel_pwm->chip.npwm);
476
477 if (!on)
478 goto disable_clk;
479
480 for (i = 0; i < cnt; i++) {
481 ret = clk_enable(atmel_pwm->clk);
482 if (ret) {
483 dev_err(atmel_pwm->chip.dev,
484 "failed to enable clock for pwm %pe\n",
485 ERR_PTR(ret));
486
487 cnt = i;
488 goto disable_clk;
489 }
490 }
491
492 return 0;
493
494disable_clk:
495 while (cnt--)
496 clk_disable(atmel_pwm->clk);
497
498 return ret;
499}
500
501static int atmel_pwm_probe(struct platform_device *pdev)
502{
503 struct atmel_pwm_chip *atmel_pwm;
504 int ret;
505
506 atmel_pwm = devm_kzalloc(&pdev->dev, sizeof(*atmel_pwm), GFP_KERNEL);
507 if (!atmel_pwm)
508 return -ENOMEM;
509
510 atmel_pwm->data = of_device_get_match_data(&pdev->dev);
511
512 atmel_pwm->update_pending = 0;
513 spin_lock_init(&atmel_pwm->lock);
514
515 atmel_pwm->base = devm_platform_ioremap_resource(pdev, 0);
516 if (IS_ERR(atmel_pwm->base))
517 return PTR_ERR(atmel_pwm->base);
518
519 atmel_pwm->clk = devm_clk_get_prepared(&pdev->dev, NULL);
520 if (IS_ERR(atmel_pwm->clk))
521 return dev_err_probe(&pdev->dev, PTR_ERR(atmel_pwm->clk),
522 "failed to get prepared PWM clock\n");
523
524 atmel_pwm->chip.dev = &pdev->dev;
525 atmel_pwm->chip.ops = &atmel_pwm_ops;
526 atmel_pwm->chip.npwm = 4;
527
528 ret = atmel_pwm_enable_clk_if_on(atmel_pwm, true);
529 if (ret < 0)
530 return ret;
531
532 ret = devm_pwmchip_add(&pdev->dev, &atmel_pwm->chip);
533 if (ret < 0) {
534 dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n");
535 goto disable_clk;
536 }
537
538 return 0;
539
540disable_clk:
541 atmel_pwm_enable_clk_if_on(atmel_pwm, false);
542
543 return ret;
544}
545
546static struct platform_driver atmel_pwm_driver = {
547 .driver = {
548 .name = "atmel-pwm",
549 .of_match_table = atmel_pwm_dt_ids,
550 },
551 .probe = atmel_pwm_probe,
552};
553module_platform_driver(atmel_pwm_driver);
554
555MODULE_ALIAS("platform:atmel-pwm");
556MODULE_AUTHOR("Bo Shen <voice.shen@atmel.com>");
557MODULE_DESCRIPTION("Atmel PWM driver");
558MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel Pulse Width Modulation Controller
4 *
5 * Copyright (C) 2013 Atmel Corporation
6 * Bo Shen <voice.shen@atmel.com>
7 *
8 * Links to reference manuals for the supported PWM chips can be found in
9 * Documentation/arm/microchip.rst.
10 *
11 * Limitations:
12 * - Periods start with the inactive level.
13 * - Hardware has to be stopped in general to update settings.
14 *
15 * Software bugs/possible improvements:
16 * - When atmel_pwm_apply() is called with state->enabled=false a change in
17 * state->polarity isn't honored.
18 * - Instead of sleeping to wait for a completed period, the interrupt
19 * functionality could be used.
20 */
21
22#include <linux/clk.h>
23#include <linux/delay.h>
24#include <linux/err.h>
25#include <linux/io.h>
26#include <linux/module.h>
27#include <linux/of.h>
28#include <linux/of_device.h>
29#include <linux/platform_device.h>
30#include <linux/pwm.h>
31#include <linux/slab.h>
32
33/* The following is global registers for PWM controller */
34#define PWM_ENA 0x04
35#define PWM_DIS 0x08
36#define PWM_SR 0x0C
37#define PWM_ISR 0x1C
38/* Bit field in SR */
39#define PWM_SR_ALL_CH_ON 0x0F
40
41/* The following register is PWM channel related registers */
42#define PWM_CH_REG_OFFSET 0x200
43#define PWM_CH_REG_SIZE 0x20
44
45#define PWM_CMR 0x0
46/* Bit field in CMR */
47#define PWM_CMR_CPOL (1 << 9)
48#define PWM_CMR_UPD_CDTY (1 << 10)
49#define PWM_CMR_CPRE_MSK 0xF
50
51/* The following registers for PWM v1 */
52#define PWMV1_CDTY 0x04
53#define PWMV1_CPRD 0x08
54#define PWMV1_CUPD 0x10
55
56/* The following registers for PWM v2 */
57#define PWMV2_CDTY 0x04
58#define PWMV2_CDTYUPD 0x08
59#define PWMV2_CPRD 0x0C
60#define PWMV2_CPRDUPD 0x10
61
62#define PWM_MAX_PRES 10
63
64struct atmel_pwm_registers {
65 u8 period;
66 u8 period_upd;
67 u8 duty;
68 u8 duty_upd;
69};
70
71struct atmel_pwm_config {
72 u32 period_bits;
73};
74
75struct atmel_pwm_data {
76 struct atmel_pwm_registers regs;
77 struct atmel_pwm_config cfg;
78};
79
80struct atmel_pwm_chip {
81 struct pwm_chip chip;
82 struct clk *clk;
83 void __iomem *base;
84 const struct atmel_pwm_data *data;
85
86 /*
87 * The hardware supports a mechanism to update a channel's duty cycle at
88 * the end of the currently running period. When such an update is
89 * pending we delay disabling the PWM until the new configuration is
90 * active because otherwise pmw_config(duty_cycle=0); pwm_disable();
91 * might not result in an inactive output.
92 * This bitmask tracks for which channels an update is pending in
93 * hardware.
94 */
95 u32 update_pending;
96
97 /* Protects .update_pending */
98 spinlock_t lock;
99};
100
101static inline struct atmel_pwm_chip *to_atmel_pwm_chip(struct pwm_chip *chip)
102{
103 return container_of(chip, struct atmel_pwm_chip, chip);
104}
105
106static inline u32 atmel_pwm_readl(struct atmel_pwm_chip *chip,
107 unsigned long offset)
108{
109 return readl_relaxed(chip->base + offset);
110}
111
112static inline void atmel_pwm_writel(struct atmel_pwm_chip *chip,
113 unsigned long offset, unsigned long val)
114{
115 writel_relaxed(val, chip->base + offset);
116}
117
118static inline u32 atmel_pwm_ch_readl(struct atmel_pwm_chip *chip,
119 unsigned int ch, unsigned long offset)
120{
121 unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
122
123 return atmel_pwm_readl(chip, base + offset);
124}
125
126static inline void atmel_pwm_ch_writel(struct atmel_pwm_chip *chip,
127 unsigned int ch, unsigned long offset,
128 unsigned long val)
129{
130 unsigned long base = PWM_CH_REG_OFFSET + ch * PWM_CH_REG_SIZE;
131
132 atmel_pwm_writel(chip, base + offset, val);
133}
134
135static void atmel_pwm_update_pending(struct atmel_pwm_chip *chip)
136{
137 /*
138 * Each channel that has its bit in ISR set started a new period since
139 * ISR was cleared and so there is no more update pending. Note that
140 * reading ISR clears it, so this needs to handle all channels to not
141 * loose information.
142 */
143 u32 isr = atmel_pwm_readl(chip, PWM_ISR);
144
145 chip->update_pending &= ~isr;
146}
147
148static void atmel_pwm_set_pending(struct atmel_pwm_chip *chip, unsigned int ch)
149{
150 spin_lock(&chip->lock);
151
152 /*
153 * Clear pending flags in hardware because otherwise there might still
154 * be a stale flag in ISR.
155 */
156 atmel_pwm_update_pending(chip);
157
158 chip->update_pending |= (1 << ch);
159
160 spin_unlock(&chip->lock);
161}
162
163static int atmel_pwm_test_pending(struct atmel_pwm_chip *chip, unsigned int ch)
164{
165 int ret = 0;
166
167 spin_lock(&chip->lock);
168
169 if (chip->update_pending & (1 << ch)) {
170 atmel_pwm_update_pending(chip);
171
172 if (chip->update_pending & (1 << ch))
173 ret = 1;
174 }
175
176 spin_unlock(&chip->lock);
177
178 return ret;
179}
180
181static int atmel_pwm_wait_nonpending(struct atmel_pwm_chip *chip, unsigned int ch)
182{
183 unsigned long timeout = jiffies + 2 * HZ;
184 int ret;
185
186 while ((ret = atmel_pwm_test_pending(chip, ch)) &&
187 time_before(jiffies, timeout))
188 usleep_range(10, 100);
189
190 return ret ? -ETIMEDOUT : 0;
191}
192
193static int atmel_pwm_calculate_cprd_and_pres(struct pwm_chip *chip,
194 unsigned long clkrate,
195 const struct pwm_state *state,
196 unsigned long *cprd, u32 *pres)
197{
198 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
199 unsigned long long cycles = state->period;
200 int shift;
201
202 /* Calculate the period cycles and prescale value */
203 cycles *= clkrate;
204 do_div(cycles, NSEC_PER_SEC);
205
206 /*
207 * The register for the period length is cfg.period_bits bits wide.
208 * So for each bit the number of clock cycles is wider divide the input
209 * clock frequency by two using pres and shift cprd accordingly.
210 */
211 shift = fls(cycles) - atmel_pwm->data->cfg.period_bits;
212
213 if (shift > PWM_MAX_PRES) {
214 dev_err(chip->dev, "pres exceeds the maximum value\n");
215 return -EINVAL;
216 } else if (shift > 0) {
217 *pres = shift;
218 cycles >>= *pres;
219 } else {
220 *pres = 0;
221 }
222
223 *cprd = cycles;
224
225 return 0;
226}
227
228static void atmel_pwm_calculate_cdty(const struct pwm_state *state,
229 unsigned long clkrate, unsigned long cprd,
230 u32 pres, unsigned long *cdty)
231{
232 unsigned long long cycles = state->duty_cycle;
233
234 cycles *= clkrate;
235 do_div(cycles, NSEC_PER_SEC);
236 cycles >>= pres;
237 *cdty = cprd - cycles;
238}
239
240static void atmel_pwm_update_cdty(struct pwm_chip *chip, struct pwm_device *pwm,
241 unsigned long cdty)
242{
243 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
244 u32 val;
245
246 if (atmel_pwm->data->regs.duty_upd ==
247 atmel_pwm->data->regs.period_upd) {
248 val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
249 val &= ~PWM_CMR_UPD_CDTY;
250 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
251 }
252
253 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
254 atmel_pwm->data->regs.duty_upd, cdty);
255 atmel_pwm_set_pending(atmel_pwm, pwm->hwpwm);
256}
257
258static void atmel_pwm_set_cprd_cdty(struct pwm_chip *chip,
259 struct pwm_device *pwm,
260 unsigned long cprd, unsigned long cdty)
261{
262 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
263
264 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
265 atmel_pwm->data->regs.duty, cdty);
266 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm,
267 atmel_pwm->data->regs.period, cprd);
268}
269
270static void atmel_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm,
271 bool disable_clk)
272{
273 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
274 unsigned long timeout;
275
276 atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
277
278 atmel_pwm_writel(atmel_pwm, PWM_DIS, 1 << pwm->hwpwm);
279
280 /*
281 * Wait for the PWM channel disable operation to be effective before
282 * stopping the clock.
283 */
284 timeout = jiffies + 2 * HZ;
285
286 while ((atmel_pwm_readl(atmel_pwm, PWM_SR) & (1 << pwm->hwpwm)) &&
287 time_before(jiffies, timeout))
288 usleep_range(10, 100);
289
290 if (disable_clk)
291 clk_disable(atmel_pwm->clk);
292}
293
294static int atmel_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
295 const struct pwm_state *state)
296{
297 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
298 struct pwm_state cstate;
299 unsigned long cprd, cdty;
300 u32 pres, val;
301 int ret;
302
303 pwm_get_state(pwm, &cstate);
304
305 if (state->enabled) {
306 unsigned long clkrate = clk_get_rate(atmel_pwm->clk);
307
308 if (cstate.enabled &&
309 cstate.polarity == state->polarity &&
310 cstate.period == state->period) {
311 u32 cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
312
313 cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
314 atmel_pwm->data->regs.period);
315 pres = cmr & PWM_CMR_CPRE_MSK;
316
317 atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
318 atmel_pwm_update_cdty(chip, pwm, cdty);
319 return 0;
320 }
321
322 ret = atmel_pwm_calculate_cprd_and_pres(chip, clkrate, state, &cprd,
323 &pres);
324 if (ret) {
325 dev_err(chip->dev,
326 "failed to calculate cprd and prescaler\n");
327 return ret;
328 }
329
330 atmel_pwm_calculate_cdty(state, clkrate, cprd, pres, &cdty);
331
332 if (cstate.enabled) {
333 atmel_pwm_disable(chip, pwm, false);
334 } else {
335 ret = clk_enable(atmel_pwm->clk);
336 if (ret) {
337 dev_err(chip->dev, "failed to enable clock\n");
338 return ret;
339 }
340 }
341
342 /* It is necessary to preserve CPOL, inside CMR */
343 val = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
344 val = (val & ~PWM_CMR_CPRE_MSK) | (pres & PWM_CMR_CPRE_MSK);
345 if (state->polarity == PWM_POLARITY_NORMAL)
346 val &= ~PWM_CMR_CPOL;
347 else
348 val |= PWM_CMR_CPOL;
349 atmel_pwm_ch_writel(atmel_pwm, pwm->hwpwm, PWM_CMR, val);
350 atmel_pwm_set_cprd_cdty(chip, pwm, cprd, cdty);
351 atmel_pwm_writel(atmel_pwm, PWM_ENA, 1 << pwm->hwpwm);
352 } else if (cstate.enabled) {
353 atmel_pwm_disable(chip, pwm, true);
354 }
355
356 return 0;
357}
358
359static int atmel_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
360 struct pwm_state *state)
361{
362 struct atmel_pwm_chip *atmel_pwm = to_atmel_pwm_chip(chip);
363 u32 sr, cmr;
364
365 sr = atmel_pwm_readl(atmel_pwm, PWM_SR);
366 cmr = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm, PWM_CMR);
367
368 if (sr & (1 << pwm->hwpwm)) {
369 unsigned long rate = clk_get_rate(atmel_pwm->clk);
370 u32 cdty, cprd, pres;
371 u64 tmp;
372
373 pres = cmr & PWM_CMR_CPRE_MSK;
374
375 cprd = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
376 atmel_pwm->data->regs.period);
377 tmp = (u64)cprd * NSEC_PER_SEC;
378 tmp <<= pres;
379 state->period = DIV64_U64_ROUND_UP(tmp, rate);
380
381 /* Wait for an updated duty_cycle queued in hardware */
382 atmel_pwm_wait_nonpending(atmel_pwm, pwm->hwpwm);
383
384 cdty = atmel_pwm_ch_readl(atmel_pwm, pwm->hwpwm,
385 atmel_pwm->data->regs.duty);
386 tmp = (u64)(cprd - cdty) * NSEC_PER_SEC;
387 tmp <<= pres;
388 state->duty_cycle = DIV64_U64_ROUND_UP(tmp, rate);
389
390 state->enabled = true;
391 } else {
392 state->enabled = false;
393 }
394
395 if (cmr & PWM_CMR_CPOL)
396 state->polarity = PWM_POLARITY_INVERSED;
397 else
398 state->polarity = PWM_POLARITY_NORMAL;
399
400 return 0;
401}
402
403static const struct pwm_ops atmel_pwm_ops = {
404 .apply = atmel_pwm_apply,
405 .get_state = atmel_pwm_get_state,
406 .owner = THIS_MODULE,
407};
408
409static const struct atmel_pwm_data atmel_sam9rl_pwm_data = {
410 .regs = {
411 .period = PWMV1_CPRD,
412 .period_upd = PWMV1_CUPD,
413 .duty = PWMV1_CDTY,
414 .duty_upd = PWMV1_CUPD,
415 },
416 .cfg = {
417 /* 16 bits to keep period and duty. */
418 .period_bits = 16,
419 },
420};
421
422static const struct atmel_pwm_data atmel_sama5_pwm_data = {
423 .regs = {
424 .period = PWMV2_CPRD,
425 .period_upd = PWMV2_CPRDUPD,
426 .duty = PWMV2_CDTY,
427 .duty_upd = PWMV2_CDTYUPD,
428 },
429 .cfg = {
430 /* 16 bits to keep period and duty. */
431 .period_bits = 16,
432 },
433};
434
435static const struct atmel_pwm_data mchp_sam9x60_pwm_data = {
436 .regs = {
437 .period = PWMV1_CPRD,
438 .period_upd = PWMV1_CUPD,
439 .duty = PWMV1_CDTY,
440 .duty_upd = PWMV1_CUPD,
441 },
442 .cfg = {
443 /* 32 bits to keep period and duty. */
444 .period_bits = 32,
445 },
446};
447
448static const struct of_device_id atmel_pwm_dt_ids[] = {
449 {
450 .compatible = "atmel,at91sam9rl-pwm",
451 .data = &atmel_sam9rl_pwm_data,
452 }, {
453 .compatible = "atmel,sama5d3-pwm",
454 .data = &atmel_sama5_pwm_data,
455 }, {
456 .compatible = "atmel,sama5d2-pwm",
457 .data = &atmel_sama5_pwm_data,
458 }, {
459 .compatible = "microchip,sam9x60-pwm",
460 .data = &mchp_sam9x60_pwm_data,
461 }, {
462 /* sentinel */
463 },
464};
465MODULE_DEVICE_TABLE(of, atmel_pwm_dt_ids);
466
467static int atmel_pwm_probe(struct platform_device *pdev)
468{
469 struct atmel_pwm_chip *atmel_pwm;
470 int ret;
471
472 atmel_pwm = devm_kzalloc(&pdev->dev, sizeof(*atmel_pwm), GFP_KERNEL);
473 if (!atmel_pwm)
474 return -ENOMEM;
475
476 atmel_pwm->data = of_device_get_match_data(&pdev->dev);
477
478 atmel_pwm->update_pending = 0;
479 spin_lock_init(&atmel_pwm->lock);
480
481 atmel_pwm->base = devm_platform_ioremap_resource(pdev, 0);
482 if (IS_ERR(atmel_pwm->base))
483 return PTR_ERR(atmel_pwm->base);
484
485 atmel_pwm->clk = devm_clk_get(&pdev->dev, NULL);
486 if (IS_ERR(atmel_pwm->clk))
487 return PTR_ERR(atmel_pwm->clk);
488
489 ret = clk_prepare(atmel_pwm->clk);
490 if (ret) {
491 dev_err(&pdev->dev, "failed to prepare PWM clock\n");
492 return ret;
493 }
494
495 atmel_pwm->chip.dev = &pdev->dev;
496 atmel_pwm->chip.ops = &atmel_pwm_ops;
497 atmel_pwm->chip.npwm = 4;
498
499 ret = pwmchip_add(&atmel_pwm->chip);
500 if (ret < 0) {
501 dev_err(&pdev->dev, "failed to add PWM chip %d\n", ret);
502 goto unprepare_clk;
503 }
504
505 platform_set_drvdata(pdev, atmel_pwm);
506
507 return ret;
508
509unprepare_clk:
510 clk_unprepare(atmel_pwm->clk);
511 return ret;
512}
513
514static int atmel_pwm_remove(struct platform_device *pdev)
515{
516 struct atmel_pwm_chip *atmel_pwm = platform_get_drvdata(pdev);
517
518 pwmchip_remove(&atmel_pwm->chip);
519
520 clk_unprepare(atmel_pwm->clk);
521
522 return 0;
523}
524
525static struct platform_driver atmel_pwm_driver = {
526 .driver = {
527 .name = "atmel-pwm",
528 .of_match_table = of_match_ptr(atmel_pwm_dt_ids),
529 },
530 .probe = atmel_pwm_probe,
531 .remove = atmel_pwm_remove,
532};
533module_platform_driver(atmel_pwm_driver);
534
535MODULE_ALIAS("platform:atmel-pwm");
536MODULE_AUTHOR("Bo Shen <voice.shen@atmel.com>");
537MODULE_DESCRIPTION("Atmel PWM driver");
538MODULE_LICENSE("GPL v2");