Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7#include <linux/etherdevice.h>
8#include <linux/skbuff.h>
9#include "iwl-trans.h"
10#include "mvm.h"
11#include "fw-api.h"
12#include "time-sync.h"
13
14static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 int queue, struct ieee80211_sta *sta)
16{
17 struct iwl_mvm_sta *mvmsta;
18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 struct iwl_mvm_key_pn *ptk_pn;
21 int res;
22 u8 tid, keyidx;
23 u8 pn[IEEE80211_CCMP_PN_LEN];
24 u8 *extiv;
25
26 /* do PN checking */
27
28 /* multicast and non-data only arrives on default queue */
29 if (!ieee80211_is_data(hdr->frame_control) ||
30 is_multicast_ether_addr(hdr->addr1))
31 return 0;
32
33 /* do not check PN for open AP */
34 if (!(stats->flag & RX_FLAG_DECRYPTED))
35 return 0;
36
37 /*
38 * avoid checking for default queue - we don't want to replicate
39 * all the logic that's necessary for checking the PN on fragmented
40 * frames, leave that to mac80211
41 */
42 if (queue == 0)
43 return 0;
44
45 /* if we are here - this for sure is either CCMP or GCMP */
46 if (IS_ERR_OR_NULL(sta)) {
47 IWL_DEBUG_DROP(mvm,
48 "expected hw-decrypted unicast frame for station\n");
49 return -1;
50 }
51
52 mvmsta = iwl_mvm_sta_from_mac80211(sta);
53
54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 keyidx = extiv[3] >> 6;
56
57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 if (!ptk_pn)
59 return -1;
60
61 if (ieee80211_is_data_qos(hdr->frame_control))
62 tid = ieee80211_get_tid(hdr);
63 else
64 tid = 0;
65
66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 if (tid >= IWL_MAX_TID_COUNT)
68 return -1;
69
70 /* load pn */
71 pn[0] = extiv[7];
72 pn[1] = extiv[6];
73 pn[2] = extiv[5];
74 pn[3] = extiv[4];
75 pn[4] = extiv[1];
76 pn[5] = extiv[0];
77
78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 if (res < 0)
80 return -1;
81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 return -1;
83
84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 stats->flag |= RX_FLAG_PN_VALIDATED;
86
87 return 0;
88}
89
90/* iwl_mvm_create_skb Adds the rxb to a new skb */
91static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 struct iwl_rx_cmd_buffer *rxb)
94{
95 struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 unsigned int headlen, fraglen, pad_len = 0;
98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101
102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 len -= 2;
104 pad_len = 2;
105 }
106
107 /*
108 * For non monitor interface strip the bytes the RADA might not have
109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 * interface cannot exist with other interfaces, this removal is safe
111 * and sufficient, in monitor mode there's no decryption being done.
112 */
113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 len -= mic_crc_len;
115
116 /* If frame is small enough to fit in skb->head, pull it completely.
117 * If not, only pull ieee80211_hdr (including crypto if present, and
118 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 * splice() or TCP coalesce are more efficient.
120 *
121 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 * least 8 bytes (possibly more for mesh) we can do the same here
123 * to save the cost of doing it later. That still doesn't pull in
124 * the actual IP header since the typical case has a SNAP header.
125 * If the latter changes (there are efforts in the standards group
126 * to do so) we should revisit this and ieee80211_data_to_8023().
127 */
128 headlen = (len <= skb_tailroom(skb)) ? len :
129 hdrlen + crypt_len + 8;
130
131 /* The firmware may align the packet to DWORD.
132 * The padding is inserted after the IV.
133 * After copying the header + IV skip the padding if
134 * present before copying packet data.
135 */
136 hdrlen += crypt_len;
137
138 if (unlikely(headlen < hdrlen))
139 return -EINVAL;
140
141 /* Since data doesn't move data while putting data on skb and that is
142 * the only way we use, data + len is the next place that hdr would be put
143 */
144 skb_set_mac_header(skb, skb->len);
145 skb_put_data(skb, hdr, hdrlen);
146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147
148 /*
149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 * certain cases and starts the checksum after the SNAP. Check if
151 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 * in the cases the hardware didn't handle, since it's rare to see
153 * such packets, even though the hardware did calculate the checksum
154 * in this case, just starting after the MAC header instead.
155 *
156 * Starting from Bz hardware, it calculates starting directly after
157 * the MAC header, so that matches mac80211's expectation.
158 */
159 if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 struct {
161 u8 hdr[6];
162 __be16 type;
163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164
165 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 (shdr->type != htons(ETH_P_IP) &&
168 shdr->type != htons(ETH_P_ARP) &&
169 shdr->type != htons(ETH_P_IPV6) &&
170 shdr->type != htons(ETH_P_8021Q) &&
171 shdr->type != htons(ETH_P_PAE) &&
172 shdr->type != htons(ETH_P_TDLS))))
173 skb->ip_summed = CHECKSUM_NONE;
174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 /* mac80211 assumes full CSUM including SNAP header */
176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 }
178
179 fraglen = len - headlen;
180
181 if (fraglen) {
182 int offset = (u8 *)hdr + headlen + pad_len -
183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184
185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 fraglen, rxb->truesize);
187 }
188
189 return 0;
190}
191
192/* put a TLV on the skb and return data pointer
193 *
194 * Also pad to 4 the len and zero out all data part
195 */
196static void *
197iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198{
199 struct ieee80211_radiotap_tlv *tlv;
200
201 tlv = skb_put(skb, sizeof(*tlv));
202 tlv->type = cpu_to_le16(type);
203 tlv->len = cpu_to_le16(len);
204 return skb_put_zero(skb, ALIGN(len, 4));
205}
206
207static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 struct sk_buff *skb)
209{
210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 struct ieee80211_radiotap_vendor_content *radiotap;
212 const u16 vendor_data_len = sizeof(mvm->cur_aid);
213
214 if (!mvm->cur_aid)
215 return;
216
217 radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 sizeof(*radiotap) + vendor_data_len);
220
221 /* Intel OUI */
222 radiotap->oui[0] = 0xf6;
223 radiotap->oui[1] = 0x54;
224 radiotap->oui[2] = 0x25;
225 /* radiotap sniffer config sub-namespace */
226 radiotap->oui_subtype = 1;
227 radiotap->vendor_type = 0;
228
229 /* fill the data now */
230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231
232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233}
234
235/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 struct napi_struct *napi,
238 struct sk_buff *skb, int queue,
239 struct ieee80211_sta *sta,
240 struct ieee80211_link_sta *link_sta)
241{
242 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
243 kfree_skb(skb);
244 return;
245 }
246
247 if (sta && sta->valid_links && link_sta) {
248 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
249
250 rx_status->link_valid = 1;
251 rx_status->link_id = link_sta->link_id;
252 }
253
254 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
255}
256
257static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
258 struct ieee80211_rx_status *rx_status,
259 u32 rate_n_flags, int energy_a,
260 int energy_b)
261{
262 int max_energy;
263 u32 rate_flags = rate_n_flags;
264
265 energy_a = energy_a ? -energy_a : S8_MIN;
266 energy_b = energy_b ? -energy_b : S8_MIN;
267 max_energy = max(energy_a, energy_b);
268
269 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
270 energy_a, energy_b, max_energy);
271
272 rx_status->signal = max_energy;
273 rx_status->chains =
274 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
275 rx_status->chain_signal[0] = energy_a;
276 rx_status->chain_signal[1] = energy_b;
277}
278
279static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
280 struct ieee80211_hdr *hdr,
281 struct iwl_rx_mpdu_desc *desc,
282 u32 status,
283 struct ieee80211_rx_status *stats)
284{
285 struct iwl_mvm_sta *mvmsta;
286 struct iwl_mvm_vif *mvmvif;
287 u8 keyid;
288 struct ieee80211_key_conf *key;
289 u32 len = le16_to_cpu(desc->mpdu_len);
290 const u8 *frame = (void *)hdr;
291
292 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
293 return 0;
294
295 /*
296 * For non-beacon, we don't really care. But beacons may
297 * be filtered out, and we thus need the firmware's replay
298 * detection, otherwise beacons the firmware previously
299 * filtered could be replayed, or something like that, and
300 * it can filter a lot - though usually only if nothing has
301 * changed.
302 */
303 if (!ieee80211_is_beacon(hdr->frame_control))
304 return 0;
305
306 /* key mismatch - will also report !MIC_OK but we shouldn't count it */
307 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
308 return -1;
309
310 /* good cases */
311 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
312 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
313 stats->flag |= RX_FLAG_DECRYPTED;
314 return 0;
315 }
316
317 if (!sta)
318 return -1;
319
320 mvmsta = iwl_mvm_sta_from_mac80211(sta);
321
322 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
323
324 /*
325 * both keys will have the same cipher and MIC length, use
326 * whichever one is available
327 */
328 key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
329 if (!key) {
330 key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
331 if (!key)
332 return -1;
333 }
334
335 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
336 return -1;
337
338 /* get the real key ID */
339 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
340 /* and if that's the other key, look it up */
341 if (keyid != key->keyidx) {
342 /*
343 * shouldn't happen since firmware checked, but be safe
344 * in case the MIC length is wrong too, for example
345 */
346 if (keyid != 6 && keyid != 7)
347 return -1;
348 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
349 if (!key)
350 return -1;
351 }
352
353 /* Report status to mac80211 */
354 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
355 ieee80211_key_mic_failure(key);
356 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
357 ieee80211_key_replay(key);
358
359 return -1;
360}
361
362static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
363 struct ieee80211_hdr *hdr,
364 struct ieee80211_rx_status *stats, u16 phy_info,
365 struct iwl_rx_mpdu_desc *desc,
366 u32 pkt_flags, int queue, u8 *crypt_len)
367{
368 u32 status = le32_to_cpu(desc->status);
369
370 /*
371 * Drop UNKNOWN frames in aggregation, unless in monitor mode
372 * (where we don't have the keys).
373 * We limit this to aggregation because in TKIP this is a valid
374 * scenario, since we may not have the (correct) TTAK (phase 1
375 * key) in the firmware.
376 */
377 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
378 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
379 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) {
380 IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n");
381 return -1;
382 }
383
384 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
385 !ieee80211_has_protected(hdr->frame_control)))
386 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
387
388 if (!ieee80211_has_protected(hdr->frame_control) ||
389 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
390 IWL_RX_MPDU_STATUS_SEC_NONE)
391 return 0;
392
393 /* TODO: handle packets encrypted with unknown alg */
394
395 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
396 case IWL_RX_MPDU_STATUS_SEC_CCM:
397 case IWL_RX_MPDU_STATUS_SEC_GCM:
398 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
399 /* alg is CCM: check MIC only */
400 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
401 return -1;
402
403 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
404 *crypt_len = IEEE80211_CCMP_HDR_LEN;
405 return 0;
406 case IWL_RX_MPDU_STATUS_SEC_TKIP:
407 /* Don't drop the frame and decrypt it in SW */
408 if (!fw_has_api(&mvm->fw->ucode_capa,
409 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
410 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
411 return 0;
412
413 if (mvm->trans->trans_cfg->gen2 &&
414 !(status & RX_MPDU_RES_STATUS_MIC_OK))
415 stats->flag |= RX_FLAG_MMIC_ERROR;
416
417 *crypt_len = IEEE80211_TKIP_IV_LEN;
418 fallthrough;
419 case IWL_RX_MPDU_STATUS_SEC_WEP:
420 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
421 return -1;
422
423 stats->flag |= RX_FLAG_DECRYPTED;
424 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
425 IWL_RX_MPDU_STATUS_SEC_WEP)
426 *crypt_len = IEEE80211_WEP_IV_LEN;
427
428 if (pkt_flags & FH_RSCSR_RADA_EN) {
429 stats->flag |= RX_FLAG_ICV_STRIPPED;
430 if (mvm->trans->trans_cfg->gen2)
431 stats->flag |= RX_FLAG_MMIC_STRIPPED;
432 }
433
434 return 0;
435 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
436 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
437 return -1;
438 stats->flag |= RX_FLAG_DECRYPTED;
439 return 0;
440 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
441 break;
442 default:
443 /*
444 * Sometimes we can get frames that were not decrypted
445 * because the firmware didn't have the keys yet. This can
446 * happen after connection where we can get multicast frames
447 * before the GTK is installed.
448 * Silently drop those frames.
449 * Also drop un-decrypted frames in monitor mode.
450 */
451 if (!is_multicast_ether_addr(hdr->addr1) &&
452 !mvm->monitor_on && net_ratelimit())
453 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
454 }
455
456 return 0;
457}
458
459static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
460 struct ieee80211_sta *sta,
461 struct sk_buff *skb,
462 struct iwl_rx_packet *pkt)
463{
464 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
465
466 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
467 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
468 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
469
470 skb->ip_summed = CHECKSUM_COMPLETE;
471 skb->csum = csum_unfold(~(__force __sum16)hwsum);
472 }
473 } else {
474 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
475 struct iwl_mvm_vif *mvmvif;
476 u16 flags = le16_to_cpu(desc->l3l4_flags);
477 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
478 IWL_RX_L3_PROTO_POS);
479
480 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
481
482 if (mvmvif->features & NETIF_F_RXCSUM &&
483 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
484 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
485 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
486 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
487 skb->ip_summed = CHECKSUM_UNNECESSARY;
488 }
489}
490
491/*
492 * returns true if a packet is a duplicate or invalid tid and should be dropped.
493 * Updates AMSDU PN tracking info
494 */
495static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
496 struct ieee80211_rx_status *rx_status,
497 struct ieee80211_hdr *hdr,
498 struct iwl_rx_mpdu_desc *desc)
499{
500 struct iwl_mvm_sta *mvm_sta;
501 struct iwl_mvm_rxq_dup_data *dup_data;
502 u8 tid, sub_frame_idx;
503
504 if (WARN_ON(IS_ERR_OR_NULL(sta)))
505 return false;
506
507 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
508
509 if (WARN_ON_ONCE(!mvm_sta->dup_data))
510 return false;
511
512 dup_data = &mvm_sta->dup_data[queue];
513
514 /*
515 * Drop duplicate 802.11 retransmissions
516 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
517 */
518 if (ieee80211_is_ctl(hdr->frame_control) ||
519 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
520 is_multicast_ether_addr(hdr->addr1)) {
521 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
522 return false;
523 }
524
525 if (ieee80211_is_data_qos(hdr->frame_control)) {
526 /* frame has qos control */
527 tid = ieee80211_get_tid(hdr);
528 if (tid >= IWL_MAX_TID_COUNT)
529 return true;
530 } else {
531 tid = IWL_MAX_TID_COUNT;
532 }
533
534 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
535 sub_frame_idx = desc->amsdu_info &
536 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
537
538 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
539 dup_data->last_seq[tid] == hdr->seq_ctrl &&
540 dup_data->last_sub_frame[tid] >= sub_frame_idx))
541 return true;
542
543 /* Allow same PN as the first subframe for following sub frames */
544 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
545 sub_frame_idx > dup_data->last_sub_frame[tid] &&
546 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
547 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
548
549 dup_data->last_seq[tid] = hdr->seq_ctrl;
550 dup_data->last_sub_frame[tid] = sub_frame_idx;
551
552 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
553
554 return false;
555}
556
557static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
558 struct ieee80211_sta *sta,
559 struct napi_struct *napi,
560 struct iwl_mvm_baid_data *baid_data,
561 struct iwl_mvm_reorder_buffer *reorder_buf,
562 u16 nssn)
563{
564 struct iwl_mvm_reorder_buf_entry *entries =
565 &baid_data->entries[reorder_buf->queue *
566 baid_data->entries_per_queue];
567 u16 ssn = reorder_buf->head_sn;
568
569 lockdep_assert_held(&reorder_buf->lock);
570
571 while (ieee80211_sn_less(ssn, nssn)) {
572 int index = ssn % reorder_buf->buf_size;
573 struct sk_buff_head *skb_list = &entries[index].frames;
574 struct sk_buff *skb;
575
576 ssn = ieee80211_sn_inc(ssn);
577
578 /*
579 * Empty the list. Will have more than one frame for A-MSDU.
580 * Empty list is valid as well since nssn indicates frames were
581 * received.
582 */
583 while ((skb = __skb_dequeue(skb_list))) {
584 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
585 reorder_buf->queue,
586 sta, NULL /* FIXME */);
587 reorder_buf->num_stored--;
588 }
589 }
590 reorder_buf->head_sn = nssn;
591}
592
593static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
594 struct iwl_mvm_delba_data *data)
595{
596 struct iwl_mvm_baid_data *ba_data;
597 struct ieee80211_sta *sta;
598 struct iwl_mvm_reorder_buffer *reorder_buf;
599 u8 baid = data->baid;
600 u32 sta_id;
601
602 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
603 return;
604
605 rcu_read_lock();
606
607 ba_data = rcu_dereference(mvm->baid_map[baid]);
608 if (WARN_ON_ONCE(!ba_data))
609 goto out;
610
611 /* pick any STA ID to find the pointer */
612 sta_id = ffs(ba_data->sta_mask) - 1;
613 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
614 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
615 goto out;
616
617 reorder_buf = &ba_data->reorder_buf[queue];
618
619 /* release all frames that are in the reorder buffer to the stack */
620 spin_lock_bh(&reorder_buf->lock);
621 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
622 ieee80211_sn_add(reorder_buf->head_sn,
623 reorder_buf->buf_size));
624 spin_unlock_bh(&reorder_buf->lock);
625
626out:
627 rcu_read_unlock();
628}
629
630static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
631 struct napi_struct *napi,
632 u8 baid, u16 nssn, int queue)
633{
634 struct ieee80211_sta *sta;
635 struct iwl_mvm_reorder_buffer *reorder_buf;
636 struct iwl_mvm_baid_data *ba_data;
637 u32 sta_id;
638
639 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
640 baid, nssn);
641
642 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
643 baid >= ARRAY_SIZE(mvm->baid_map)))
644 return;
645
646 rcu_read_lock();
647
648 ba_data = rcu_dereference(mvm->baid_map[baid]);
649 if (!ba_data) {
650 WARN(true, "BAID %d not found in map\n", baid);
651 goto out;
652 }
653
654 /* pick any STA ID to find the pointer */
655 sta_id = ffs(ba_data->sta_mask) - 1;
656 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
657 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
658 goto out;
659
660 reorder_buf = &ba_data->reorder_buf[queue];
661
662 spin_lock_bh(&reorder_buf->lock);
663 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
664 reorder_buf, nssn);
665 spin_unlock_bh(&reorder_buf->lock);
666
667out:
668 rcu_read_unlock();
669}
670
671void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
672 struct iwl_rx_cmd_buffer *rxb, int queue)
673{
674 struct iwl_rx_packet *pkt = rxb_addr(rxb);
675 struct iwl_rxq_sync_notification *notif;
676 struct iwl_mvm_internal_rxq_notif *internal_notif;
677 u32 len = iwl_rx_packet_payload_len(pkt);
678
679 notif = (void *)pkt->data;
680 internal_notif = (void *)notif->payload;
681
682 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
683 "invalid notification size %d (%d)",
684 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
685 return;
686 len -= sizeof(*notif) + sizeof(*internal_notif);
687
688 if (internal_notif->sync &&
689 mvm->queue_sync_cookie != internal_notif->cookie) {
690 WARN_ONCE(1, "Received expired RX queue sync message\n");
691 return;
692 }
693
694 switch (internal_notif->type) {
695 case IWL_MVM_RXQ_EMPTY:
696 WARN_ONCE(len, "invalid empty notification size %d", len);
697 break;
698 case IWL_MVM_RXQ_NOTIF_DEL_BA:
699 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
700 "invalid delba notification size %d (%d)",
701 len, (int)sizeof(struct iwl_mvm_delba_data)))
702 break;
703 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
704 break;
705 default:
706 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
707 }
708
709 if (internal_notif->sync) {
710 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
711 "queue sync: queue %d responded a second time!\n",
712 queue);
713 if (READ_ONCE(mvm->queue_sync_state) == 0)
714 wake_up(&mvm->rx_sync_waitq);
715 }
716}
717
718/*
719 * Returns true if the MPDU was buffered\dropped, false if it should be passed
720 * to upper layer.
721 */
722static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
723 struct napi_struct *napi,
724 int queue,
725 struct ieee80211_sta *sta,
726 struct sk_buff *skb,
727 struct iwl_rx_mpdu_desc *desc)
728{
729 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
730 struct iwl_mvm_baid_data *baid_data;
731 struct iwl_mvm_reorder_buffer *buffer;
732 u32 reorder = le32_to_cpu(desc->reorder_data);
733 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
734 bool last_subframe =
735 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
736 u8 tid = ieee80211_get_tid(hdr);
737 u8 sub_frame_idx = desc->amsdu_info &
738 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
739 struct iwl_mvm_reorder_buf_entry *entries;
740 u32 sta_mask;
741 int index;
742 u16 nssn, sn;
743 u8 baid;
744
745 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
746 IWL_RX_MPDU_REORDER_BAID_SHIFT;
747
748 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000)
749 return false;
750
751 /*
752 * This also covers the case of receiving a Block Ack Request
753 * outside a BA session; we'll pass it to mac80211 and that
754 * then sends a delBA action frame.
755 * This also covers pure monitor mode, in which case we won't
756 * have any BA sessions.
757 */
758 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
759 return false;
760
761 /* no sta yet */
762 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
763 "Got valid BAID without a valid station assigned\n"))
764 return false;
765
766 /* not a data packet or a bar */
767 if (!ieee80211_is_back_req(hdr->frame_control) &&
768 (!ieee80211_is_data_qos(hdr->frame_control) ||
769 is_multicast_ether_addr(hdr->addr1)))
770 return false;
771
772 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
773 return false;
774
775 baid_data = rcu_dereference(mvm->baid_map[baid]);
776 if (!baid_data) {
777 IWL_DEBUG_RX(mvm,
778 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
779 baid, reorder);
780 return false;
781 }
782
783 rcu_read_lock();
784 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
785 rcu_read_unlock();
786
787 if (IWL_FW_CHECK(mvm,
788 tid != baid_data->tid ||
789 !(sta_mask & baid_data->sta_mask),
790 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
791 baid, baid_data->sta_mask, baid_data->tid,
792 sta_mask, tid))
793 return false;
794
795 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
796 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
797 IWL_RX_MPDU_REORDER_SN_SHIFT;
798
799 buffer = &baid_data->reorder_buf[queue];
800 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
801
802 spin_lock_bh(&buffer->lock);
803
804 if (!buffer->valid) {
805 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
806 spin_unlock_bh(&buffer->lock);
807 return false;
808 }
809 buffer->valid = true;
810 }
811
812 /* drop any duplicated packets */
813 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE))
814 goto drop;
815
816 /* drop any oudated packets */
817 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)
818 goto drop;
819
820 /* release immediately if allowed by nssn and no stored frames */
821 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
822 if (!amsdu || last_subframe)
823 buffer->head_sn = nssn;
824 /* No need to update AMSDU last SN - we are moving the head */
825 spin_unlock_bh(&buffer->lock);
826 return false;
827 }
828
829 /*
830 * release immediately if there are no stored frames, and the sn is
831 * equal to the head.
832 * This can happen due to reorder timer, where NSSN is behind head_sn.
833 * When we released everything, and we got the next frame in the
834 * sequence, according to the NSSN we can't release immediately,
835 * while technically there is no hole and we can move forward.
836 */
837 if (!buffer->num_stored && sn == buffer->head_sn) {
838 if (!amsdu || last_subframe)
839 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
840
841 /* No need to update AMSDU last SN - we are moving the head */
842 spin_unlock_bh(&buffer->lock);
843 return false;
844 }
845
846 /* put in reorder buffer */
847 index = sn % buffer->buf_size;
848 __skb_queue_tail(&entries[index].frames, skb);
849 buffer->num_stored++;
850
851 if (amsdu) {
852 buffer->last_amsdu = sn;
853 buffer->last_sub_index = sub_frame_idx;
854 }
855
856 /*
857 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
858 * The reason is that NSSN advances on the first sub-frame, and may
859 * cause the reorder buffer to advance before all the sub-frames arrive.
860 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
861 * SN 1. NSSN for first sub frame will be 3 with the result of driver
862 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
863 * already ahead and it will be dropped.
864 * If the last sub-frame is not on this queue - we will get frame
865 * release notification with up to date NSSN.
866 */
867 if (!amsdu || last_subframe)
868 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
869 buffer, nssn);
870
871 spin_unlock_bh(&buffer->lock);
872 return true;
873
874drop:
875 kfree_skb(skb);
876 spin_unlock_bh(&buffer->lock);
877 return true;
878}
879
880static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
881 u32 reorder_data, u8 baid)
882{
883 unsigned long now = jiffies;
884 unsigned long timeout;
885 struct iwl_mvm_baid_data *data;
886
887 rcu_read_lock();
888
889 data = rcu_dereference(mvm->baid_map[baid]);
890 if (!data) {
891 IWL_DEBUG_RX(mvm,
892 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
893 baid, reorder_data);
894 goto out;
895 }
896
897 if (!data->timeout)
898 goto out;
899
900 timeout = data->timeout;
901 /*
902 * Do not update last rx all the time to avoid cache bouncing
903 * between the rx queues.
904 * Update it every timeout. Worst case is the session will
905 * expire after ~ 2 * timeout, which doesn't matter that much.
906 */
907 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
908 /* Update is atomic */
909 data->last_rx = now;
910
911out:
912 rcu_read_unlock();
913}
914
915static void iwl_mvm_flip_address(u8 *addr)
916{
917 int i;
918 u8 mac_addr[ETH_ALEN];
919
920 for (i = 0; i < ETH_ALEN; i++)
921 mac_addr[i] = addr[ETH_ALEN - i - 1];
922 ether_addr_copy(addr, mac_addr);
923}
924
925struct iwl_mvm_rx_phy_data {
926 enum iwl_rx_phy_info_type info_type;
927 __le32 d0, d1, d2, d3, eht_d4, d5;
928 __le16 d4;
929 bool with_data;
930 bool first_subframe;
931 __le32 rx_vec[4];
932
933 u32 rate_n_flags;
934 u32 gp2_on_air_rise;
935 u16 phy_info;
936 u8 energy_a, energy_b;
937 u8 channel;
938};
939
940static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
941 struct iwl_mvm_rx_phy_data *phy_data,
942 struct ieee80211_radiotap_he_mu *he_mu)
943{
944 u32 phy_data2 = le32_to_cpu(phy_data->d2);
945 u32 phy_data3 = le32_to_cpu(phy_data->d3);
946 u16 phy_data4 = le16_to_cpu(phy_data->d4);
947 u32 rate_n_flags = phy_data->rate_n_flags;
948
949 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
950 he_mu->flags1 |=
951 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
952 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
953
954 he_mu->flags1 |=
955 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
956 phy_data4),
957 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
958
959 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
960 phy_data2);
961 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
962 phy_data3);
963 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
964 phy_data2);
965 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
966 phy_data3);
967 }
968
969 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
970 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
971 he_mu->flags1 |=
972 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
973 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
974
975 he_mu->flags2 |=
976 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
977 phy_data4),
978 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
979
980 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
981 phy_data2);
982 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
983 phy_data3);
984 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
985 phy_data2);
986 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
987 phy_data3);
988 }
989}
990
991static void
992iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
993 struct ieee80211_radiotap_he *he,
994 struct ieee80211_radiotap_he_mu *he_mu,
995 struct ieee80211_rx_status *rx_status)
996{
997 /*
998 * Unfortunately, we have to leave the mac80211 data
999 * incorrect for the case that we receive an HE-MU
1000 * transmission and *don't* have the HE phy data (due
1001 * to the bits being used for TSF). This shouldn't
1002 * happen though as management frames where we need
1003 * the TSF/timers are not be transmitted in HE-MU.
1004 */
1005 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1006 u32 rate_n_flags = phy_data->rate_n_flags;
1007 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1008 u8 offs = 0;
1009
1010 rx_status->bw = RATE_INFO_BW_HE_RU;
1011
1012 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1013
1014 switch (ru) {
1015 case 0 ... 36:
1016 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1017 offs = ru;
1018 break;
1019 case 37 ... 52:
1020 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1021 offs = ru - 37;
1022 break;
1023 case 53 ... 60:
1024 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1025 offs = ru - 53;
1026 break;
1027 case 61 ... 64:
1028 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1029 offs = ru - 61;
1030 break;
1031 case 65 ... 66:
1032 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1033 offs = ru - 65;
1034 break;
1035 case 67:
1036 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1037 break;
1038 case 68:
1039 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1040 break;
1041 }
1042 he->data2 |= le16_encode_bits(offs,
1043 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1044 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1045 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1046 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1047 he->data2 |=
1048 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1049
1050#define CHECK_BW(bw) \
1051 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1052 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1053 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1054 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1055 CHECK_BW(20);
1056 CHECK_BW(40);
1057 CHECK_BW(80);
1058 CHECK_BW(160);
1059
1060 if (he_mu)
1061 he_mu->flags2 |=
1062 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1063 rate_n_flags),
1064 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1065 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1066 he->data6 |=
1067 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1068 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1069 rate_n_flags),
1070 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1071}
1072
1073static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1074 struct iwl_mvm_rx_phy_data *phy_data,
1075 struct ieee80211_radiotap_he *he,
1076 struct ieee80211_radiotap_he_mu *he_mu,
1077 struct ieee80211_rx_status *rx_status,
1078 int queue)
1079{
1080 switch (phy_data->info_type) {
1081 case IWL_RX_PHY_INFO_TYPE_NONE:
1082 case IWL_RX_PHY_INFO_TYPE_CCK:
1083 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1084 case IWL_RX_PHY_INFO_TYPE_HT:
1085 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1086 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1087 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1088 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1089 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1090 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1091 return;
1092 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1093 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1094 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1095 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1096 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1097 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1098 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1099 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1100 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1101 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1102 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1103 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1104 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1105 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1106 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1107 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1108 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1109 fallthrough;
1110 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1111 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1112 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1113 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1114 /* HE common */
1115 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1116 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1117 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1118 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1119 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1120 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1121 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1122 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1123 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1124 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1125 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1126 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1127 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1128 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1129 IWL_RX_PHY_DATA0_HE_UPLINK),
1130 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1131 }
1132 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1133 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1134 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1135 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1136 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1137 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1138 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1139 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1140 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1141 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1142 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1143 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1144 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1145 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1146 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1147 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1148 IWL_RX_PHY_DATA0_HE_DOPPLER),
1149 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1150 break;
1151 }
1152
1153 switch (phy_data->info_type) {
1154 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1155 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1156 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1157 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1158 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1159 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1160 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1161 break;
1162 default:
1163 /* nothing here */
1164 break;
1165 }
1166
1167 switch (phy_data->info_type) {
1168 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1169 he_mu->flags1 |=
1170 le16_encode_bits(le16_get_bits(phy_data->d4,
1171 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1172 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1173 he_mu->flags1 |=
1174 le16_encode_bits(le16_get_bits(phy_data->d4,
1175 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1176 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1177 he_mu->flags2 |=
1178 le16_encode_bits(le16_get_bits(phy_data->d4,
1179 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1180 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1181 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1182 fallthrough;
1183 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1184 he_mu->flags2 |=
1185 le16_encode_bits(le32_get_bits(phy_data->d1,
1186 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1187 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1188 he_mu->flags2 |=
1189 le16_encode_bits(le32_get_bits(phy_data->d1,
1190 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1191 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1192 fallthrough;
1193 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1194 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1195 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1196 break;
1197 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1198 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1199 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1200 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1201 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1202 break;
1203 default:
1204 /* nothing */
1205 break;
1206 }
1207}
1208
1209#define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1210 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1211
1212#define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1213 typeof(enc_bits) _enc_bits = enc_bits; \
1214 typeof(usig) _usig = usig; \
1215 (_usig)->mask |= cpu_to_le32(_enc_bits); \
1216 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1217} while (0)
1218
1219#define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1220 eht->data[(rt_data)] |= \
1221 (cpu_to_le32 \
1222 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1223 LE32_DEC_ENC(data ## fw_data, \
1224 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1225 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1226
1227#define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1228 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1229
1230#define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1
1231#define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2
1232#define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2
1233#define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2
1234#define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3
1235#define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3
1236#define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3
1237#define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4
1238
1239#define IWL_RX_RU_DATA_A1 2
1240#define IWL_RX_RU_DATA_A2 2
1241#define IWL_RX_RU_DATA_B1 2
1242#define IWL_RX_RU_DATA_B2 4
1243#define IWL_RX_RU_DATA_C1 3
1244#define IWL_RX_RU_DATA_C2 3
1245#define IWL_RX_RU_DATA_D1 4
1246#define IWL_RX_RU_DATA_D2 4
1247
1248#define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \
1249 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \
1250 rt_ru, \
1251 IWL_RX_RU_DATA_ ## fw_ru, \
1252 fw_ru)
1253
1254static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1255 struct iwl_mvm_rx_phy_data *phy_data,
1256 struct ieee80211_rx_status *rx_status,
1257 struct ieee80211_radiotap_eht *eht,
1258 struct ieee80211_radiotap_eht_usig *usig)
1259{
1260 if (phy_data->with_data) {
1261 __le32 data1 = phy_data->d1;
1262 __le32 data2 = phy_data->d2;
1263 __le32 data3 = phy_data->d3;
1264 __le32 data4 = phy_data->eht_d4;
1265 __le32 data5 = phy_data->d5;
1266 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1267
1268 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1269 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1270 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1271 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1272 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1273 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1274 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1275 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1276 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1277 IWL_MVM_ENC_USIG_VALUE_MASK
1278 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1279 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1280
1281 eht->user_info[0] |=
1282 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1283 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1284 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1285
1286 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1287 eht->data[7] |= LE32_DEC_ENC
1288 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1289 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1290
1291 /*
1292 * Hardware labels the content channels/RU allocation values
1293 * as follows:
1294 * Content Channel 1 Content Channel 2
1295 * 20 MHz: A1
1296 * 40 MHz: A1 B1
1297 * 80 MHz: A1 C1 B1 D1
1298 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2
1299 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4
1300 *
1301 * However firmware can only give us A1-D2, so the higher
1302 * frequencies are missing.
1303 */
1304
1305 switch (phy_bw) {
1306 case RATE_MCS_CHAN_WIDTH_320:
1307 /* additional values are missing in RX metadata */
1308 case RATE_MCS_CHAN_WIDTH_160:
1309 /* content channel 1 */
1310 IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1311 IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1312 /* content channel 2 */
1313 IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1314 IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1315 fallthrough;
1316 case RATE_MCS_CHAN_WIDTH_80:
1317 /* content channel 1 */
1318 IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1319 /* content channel 2 */
1320 IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1321 fallthrough;
1322 case RATE_MCS_CHAN_WIDTH_40:
1323 /* content channel 2 */
1324 IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1325 fallthrough;
1326 case RATE_MCS_CHAN_WIDTH_20:
1327 IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1328 break;
1329 }
1330 } else {
1331 __le32 usig_a1 = phy_data->rx_vec[0];
1332 __le32 usig_a2 = phy_data->rx_vec[1];
1333
1334 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1335 IWL_RX_USIG_A1_DISREGARD,
1336 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1337 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1338 IWL_RX_USIG_A1_VALIDATE,
1339 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1340 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1341 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1342 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1343 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1344 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1345 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1346 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1347 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1348 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1349 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1350 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1351 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1352 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1353 IWL_RX_USIG_A2_EHT_SIG_MCS,
1354 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1355 IWL_MVM_ENC_USIG_VALUE_MASK
1356 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1357 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1358 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1359 IWL_RX_USIG_A2_EHT_CRC_OK,
1360 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1361 }
1362}
1363
1364static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1365 struct iwl_mvm_rx_phy_data *phy_data,
1366 struct ieee80211_rx_status *rx_status,
1367 struct ieee80211_radiotap_eht *eht,
1368 struct ieee80211_radiotap_eht_usig *usig)
1369{
1370 if (phy_data->with_data) {
1371 __le32 data5 = phy_data->d5;
1372
1373 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1374 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1375 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1376 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1377 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1378 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1379
1380 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1381 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1382 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1383 } else {
1384 __le32 usig_a1 = phy_data->rx_vec[0];
1385 __le32 usig_a2 = phy_data->rx_vec[1];
1386
1387 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1388 IWL_RX_USIG_A1_DISREGARD,
1389 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1390 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1391 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1392 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1393 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1394 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1395 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1396 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1397 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1398 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1399 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1400 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1401 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1402 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1403 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1404 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1405 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1406 IWL_RX_USIG_A2_EHT_CRC_OK,
1407 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1408 }
1409}
1410
1411static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1412 struct ieee80211_rx_status *rx_status,
1413 struct ieee80211_radiotap_eht *eht)
1414{
1415 u32 ru = le32_get_bits(eht->data[8],
1416 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1417 enum nl80211_eht_ru_alloc nl_ru;
1418
1419 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1420 * in an EHT variant User Info field
1421 */
1422
1423 switch (ru) {
1424 case 0 ... 36:
1425 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1426 break;
1427 case 37 ... 52:
1428 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1429 break;
1430 case 53 ... 60:
1431 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1432 break;
1433 case 61 ... 64:
1434 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1435 break;
1436 case 65 ... 66:
1437 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1438 break;
1439 case 67:
1440 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1441 break;
1442 case 68:
1443 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1444 break;
1445 case 69:
1446 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1447 break;
1448 case 70 ... 81:
1449 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1450 break;
1451 case 82 ... 89:
1452 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1453 break;
1454 case 90 ... 93:
1455 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1456 break;
1457 case 94 ... 95:
1458 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1459 break;
1460 case 96 ... 99:
1461 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1462 break;
1463 case 100 ... 103:
1464 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1465 break;
1466 case 104:
1467 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1468 break;
1469 case 105 ... 106:
1470 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1471 break;
1472 default:
1473 return;
1474 }
1475
1476 rx_status->bw = RATE_INFO_BW_EHT_RU;
1477 rx_status->eht.ru = nl_ru;
1478}
1479
1480static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1481 struct iwl_mvm_rx_phy_data *phy_data,
1482 struct ieee80211_rx_status *rx_status,
1483 struct ieee80211_radiotap_eht *eht,
1484 struct ieee80211_radiotap_eht_usig *usig)
1485
1486{
1487 __le32 data0 = phy_data->d0;
1488 __le32 data1 = phy_data->d1;
1489 __le32 usig_a1 = phy_data->rx_vec[0];
1490 u8 info_type = phy_data->info_type;
1491
1492 /* Not in EHT range */
1493 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1494 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1495 return;
1496
1497 usig->common |= cpu_to_le32
1498 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1499 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1500 if (phy_data->with_data) {
1501 usig->common |= LE32_DEC_ENC(data0,
1502 IWL_RX_PHY_DATA0_EHT_UPLINK,
1503 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1504 usig->common |= LE32_DEC_ENC(data0,
1505 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1506 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1507 } else {
1508 usig->common |= LE32_DEC_ENC(usig_a1,
1509 IWL_RX_USIG_A1_UL_FLAG,
1510 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1511 usig->common |= LE32_DEC_ENC(usig_a1,
1512 IWL_RX_USIG_A1_BSS_COLOR,
1513 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1514 }
1515
1516 if (fw_has_capa(&mvm->fw->ucode_capa,
1517 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1518 usig->common |=
1519 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1520 usig->common |=
1521 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1522 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1523 }
1524
1525 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1526 eht->data[0] |= LE32_DEC_ENC(data0,
1527 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1528 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1529
1530 /* All RU allocating size/index is in TB format */
1531 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1532 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1533 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1534 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1535 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1536 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1537 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1538
1539 iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1540
1541 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1542 * which is on only in case of monitor mode so no need to check monitor
1543 * mode
1544 */
1545 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1546 eht->data[1] |=
1547 le32_encode_bits(mvm->monitor_p80,
1548 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1549
1550 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1551 if (phy_data->with_data)
1552 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1553 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1554 else
1555 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1556 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1557
1558 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1559 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1560 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1561
1562 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1563 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1564 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1565
1566 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1567 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1568 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1569
1570 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1571
1572 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1573 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1574
1575 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1576 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1577 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1578
1579 /*
1580 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1581 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1582 */
1583
1584 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1585 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1586 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1587
1588 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1589 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1590 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1591
1592 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1593 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1594 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1595}
1596
1597static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1598 struct iwl_mvm_rx_phy_data *phy_data,
1599 int queue)
1600{
1601 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1602
1603 struct ieee80211_radiotap_eht *eht;
1604 struct ieee80211_radiotap_eht_usig *usig;
1605 size_t eht_len = sizeof(*eht);
1606
1607 u32 rate_n_flags = phy_data->rate_n_flags;
1608 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1609 /* EHT and HE have the same valus for LTF */
1610 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1611 u16 phy_info = phy_data->phy_info;
1612 u32 bw;
1613
1614 /* u32 for 1 user_info */
1615 if (phy_data->with_data)
1616 eht_len += sizeof(u32);
1617
1618 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1619
1620 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1621 sizeof(*usig));
1622 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1623 usig->common |=
1624 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1625
1626 /* specific handling for 320MHz */
1627 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1628 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1629 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1630 le32_to_cpu(phy_data->d0));
1631
1632 usig->common |= cpu_to_le32
1633 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1634
1635 /* report the AMPDU-EOF bit on single frames */
1636 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1637 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1638 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1639 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1640 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1641 }
1642
1643 /* update aggregation data for monitor sake on default queue */
1644 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1645 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1646 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1647 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1648 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1649 }
1650
1651 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1652 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1653
1654#define CHECK_TYPE(F) \
1655 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1656 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1657
1658 CHECK_TYPE(SU);
1659 CHECK_TYPE(EXT_SU);
1660 CHECK_TYPE(MU);
1661 CHECK_TYPE(TRIG);
1662
1663 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1664 case 0:
1665 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1666 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1667 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1668 } else {
1669 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1670 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1671 }
1672 break;
1673 case 1:
1674 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1675 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1676 break;
1677 case 2:
1678 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1679 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1680 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1681 else
1682 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1683 break;
1684 case 3:
1685 if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1686 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1687 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1688 }
1689 break;
1690 default:
1691 /* nothing here */
1692 break;
1693 }
1694
1695 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1696 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1697 eht->data[0] |= cpu_to_le32
1698 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1699 ltf) |
1700 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1701 rx_status->eht.gi));
1702 }
1703
1704
1705 if (!phy_data->with_data) {
1706 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1707 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1708 eht->data[7] |=
1709 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1710 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1711 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1712 if (rate_n_flags & RATE_MCS_BF_MSK)
1713 eht->data[7] |=
1714 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1715 } else {
1716 eht->user_info[0] |=
1717 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1718 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1719 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1720 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1721 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1722
1723 if (rate_n_flags & RATE_MCS_BF_MSK)
1724 eht->user_info[0] |=
1725 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1726
1727 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1728 eht->user_info[0] |=
1729 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1730
1731 eht->user_info[0] |= cpu_to_le32
1732 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1733 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1734 rate_n_flags)) |
1735 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1736 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1737 }
1738}
1739
1740static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1741 struct iwl_mvm_rx_phy_data *phy_data,
1742 int queue)
1743{
1744 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1745 struct ieee80211_radiotap_he *he = NULL;
1746 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1747 u32 rate_n_flags = phy_data->rate_n_flags;
1748 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1749 u8 ltf;
1750 static const struct ieee80211_radiotap_he known = {
1751 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1752 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1753 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1754 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1755 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1756 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1757 };
1758 static const struct ieee80211_radiotap_he_mu mu_known = {
1759 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1760 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1761 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1762 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1763 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1764 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1765 };
1766 u16 phy_info = phy_data->phy_info;
1767
1768 he = skb_put_data(skb, &known, sizeof(known));
1769 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1770
1771 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1772 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1773 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1774 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1775 }
1776
1777 /* report the AMPDU-EOF bit on single frames */
1778 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1779 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1780 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1781 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1782 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1783 }
1784
1785 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1786 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1787 queue);
1788
1789 /* update aggregation data for monitor sake on default queue */
1790 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1791 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1792 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1793 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1794 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1795 }
1796
1797 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1798 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1799 rx_status->bw = RATE_INFO_BW_HE_RU;
1800 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1801 }
1802
1803 /* actually data is filled in mac80211 */
1804 if (he_type == RATE_MCS_HE_TYPE_SU ||
1805 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1806 he->data1 |=
1807 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1808
1809#define CHECK_TYPE(F) \
1810 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1811 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1812
1813 CHECK_TYPE(SU);
1814 CHECK_TYPE(EXT_SU);
1815 CHECK_TYPE(MU);
1816 CHECK_TYPE(TRIG);
1817
1818 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1819
1820 if (rate_n_flags & RATE_MCS_BF_MSK)
1821 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1822
1823 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1824 RATE_MCS_HE_GI_LTF_POS) {
1825 case 0:
1826 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1827 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1828 else
1829 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1830 if (he_type == RATE_MCS_HE_TYPE_MU)
1831 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1832 else
1833 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1834 break;
1835 case 1:
1836 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1837 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1838 else
1839 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1840 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1841 break;
1842 case 2:
1843 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1844 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1845 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1846 } else {
1847 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1848 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1849 }
1850 break;
1851 case 3:
1852 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1853 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1854 break;
1855 case 4:
1856 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1857 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1858 break;
1859 default:
1860 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1861 }
1862
1863 he->data5 |= le16_encode_bits(ltf,
1864 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1865}
1866
1867static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1868 struct iwl_mvm_rx_phy_data *phy_data)
1869{
1870 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1871 struct ieee80211_radiotap_lsig *lsig;
1872
1873 switch (phy_data->info_type) {
1874 case IWL_RX_PHY_INFO_TYPE_HT:
1875 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1876 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1877 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1878 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1879 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1880 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1881 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1882 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1883 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1884 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1885 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1886 lsig = skb_put(skb, sizeof(*lsig));
1887 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1888 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1889 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1890 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1891 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1892 break;
1893 default:
1894 break;
1895 }
1896}
1897
1898static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1899{
1900 switch (phy_band) {
1901 case PHY_BAND_24:
1902 return NL80211_BAND_2GHZ;
1903 case PHY_BAND_5:
1904 return NL80211_BAND_5GHZ;
1905 case PHY_BAND_6:
1906 return NL80211_BAND_6GHZ;
1907 default:
1908 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1909 return NL80211_BAND_5GHZ;
1910 }
1911}
1912
1913struct iwl_rx_sta_csa {
1914 bool all_sta_unblocked;
1915 struct ieee80211_vif *vif;
1916};
1917
1918static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1919{
1920 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1921 struct iwl_rx_sta_csa *rx_sta_csa = data;
1922
1923 if (mvmsta->vif != rx_sta_csa->vif)
1924 return;
1925
1926 if (mvmsta->disable_tx)
1927 rx_sta_csa->all_sta_unblocked = false;
1928}
1929
1930/*
1931 * Note: requires also rx_status->band to be prefilled, as well
1932 * as phy_data (apart from phy_data->info_type)
1933 */
1934static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1935 struct sk_buff *skb,
1936 struct iwl_mvm_rx_phy_data *phy_data,
1937 int queue)
1938{
1939 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1940 u32 rate_n_flags = phy_data->rate_n_flags;
1941 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1942 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1943 bool is_sgi;
1944
1945 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1946
1947 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1948 phy_data->info_type =
1949 le32_get_bits(phy_data->d1,
1950 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1951
1952 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1953 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1954 case RATE_MCS_CHAN_WIDTH_20:
1955 break;
1956 case RATE_MCS_CHAN_WIDTH_40:
1957 rx_status->bw = RATE_INFO_BW_40;
1958 break;
1959 case RATE_MCS_CHAN_WIDTH_80:
1960 rx_status->bw = RATE_INFO_BW_80;
1961 break;
1962 case RATE_MCS_CHAN_WIDTH_160:
1963 rx_status->bw = RATE_INFO_BW_160;
1964 break;
1965 case RATE_MCS_CHAN_WIDTH_320:
1966 rx_status->bw = RATE_INFO_BW_320;
1967 break;
1968 }
1969
1970 /* must be before L-SIG data */
1971 if (format == RATE_MCS_HE_MSK)
1972 iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1973
1974 iwl_mvm_decode_lsig(skb, phy_data);
1975
1976 rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1977 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1978 rx_status->band);
1979 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1980 phy_data->energy_a, phy_data->energy_b);
1981
1982 /* using TLV format and must be after all fixed len fields */
1983 if (format == RATE_MCS_EHT_MSK)
1984 iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
1985
1986 if (unlikely(mvm->monitor_on))
1987 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1988
1989 is_sgi = format == RATE_MCS_HE_MSK ?
1990 iwl_he_is_sgi(rate_n_flags) :
1991 rate_n_flags & RATE_MCS_SGI_MSK;
1992
1993 if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
1994 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1995
1996 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1997 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1998
1999 switch (format) {
2000 case RATE_MCS_VHT_MSK:
2001 rx_status->encoding = RX_ENC_VHT;
2002 break;
2003 case RATE_MCS_HE_MSK:
2004 rx_status->encoding = RX_ENC_HE;
2005 rx_status->he_dcm =
2006 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2007 break;
2008 case RATE_MCS_EHT_MSK:
2009 rx_status->encoding = RX_ENC_EHT;
2010 break;
2011 }
2012
2013 switch (format) {
2014 case RATE_MCS_HT_MSK:
2015 rx_status->encoding = RX_ENC_HT;
2016 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2017 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2018 break;
2019 case RATE_MCS_VHT_MSK:
2020 case RATE_MCS_HE_MSK:
2021 case RATE_MCS_EHT_MSK:
2022 rx_status->nss =
2023 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2024 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2025 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2026 break;
2027 default: {
2028 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2029 rx_status->band);
2030
2031 rx_status->rate_idx = rate;
2032
2033 if ((rate < 0 || rate > 0xFF)) {
2034 rx_status->rate_idx = 0;
2035 if (net_ratelimit())
2036 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2037 rate_n_flags, rx_status->band);
2038 }
2039
2040 break;
2041 }
2042 }
2043}
2044
2045void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2046 struct iwl_rx_cmd_buffer *rxb, int queue)
2047{
2048 struct ieee80211_rx_status *rx_status;
2049 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2050 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2051 struct ieee80211_hdr *hdr;
2052 u32 len;
2053 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2054 struct ieee80211_sta *sta = NULL;
2055 struct ieee80211_link_sta *link_sta = NULL;
2056 struct sk_buff *skb;
2057 u8 crypt_len = 0;
2058 size_t desc_size;
2059 struct iwl_mvm_rx_phy_data phy_data = {};
2060 u32 format;
2061
2062 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2063 return;
2064
2065 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2066 desc_size = sizeof(*desc);
2067 else
2068 desc_size = IWL_RX_DESC_SIZE_V1;
2069
2070 if (unlikely(pkt_len < desc_size)) {
2071 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2072 return;
2073 }
2074
2075 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2076 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2077 phy_data.channel = desc->v3.channel;
2078 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2079 phy_data.energy_a = desc->v3.energy_a;
2080 phy_data.energy_b = desc->v3.energy_b;
2081
2082 phy_data.d0 = desc->v3.phy_data0;
2083 phy_data.d1 = desc->v3.phy_data1;
2084 phy_data.d2 = desc->v3.phy_data2;
2085 phy_data.d3 = desc->v3.phy_data3;
2086 phy_data.eht_d4 = desc->phy_eht_data4;
2087 phy_data.d5 = desc->v3.phy_data5;
2088 } else {
2089 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2090 phy_data.channel = desc->v1.channel;
2091 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2092 phy_data.energy_a = desc->v1.energy_a;
2093 phy_data.energy_b = desc->v1.energy_b;
2094
2095 phy_data.d0 = desc->v1.phy_data0;
2096 phy_data.d1 = desc->v1.phy_data1;
2097 phy_data.d2 = desc->v1.phy_data2;
2098 phy_data.d3 = desc->v1.phy_data3;
2099 }
2100
2101 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2102 REPLY_RX_MPDU_CMD, 0) < 4) {
2103 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2104 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2105 phy_data.rate_n_flags);
2106 }
2107
2108 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2109
2110 len = le16_to_cpu(desc->mpdu_len);
2111
2112 if (unlikely(len + desc_size > pkt_len)) {
2113 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2114 return;
2115 }
2116
2117 phy_data.with_data = true;
2118 phy_data.phy_info = le16_to_cpu(desc->phy_info);
2119 phy_data.d4 = desc->phy_data4;
2120
2121 hdr = (void *)(pkt->data + desc_size);
2122 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2123 * ieee80211_hdr pulled.
2124 */
2125 skb = alloc_skb(128, GFP_ATOMIC);
2126 if (!skb) {
2127 IWL_ERR(mvm, "alloc_skb failed\n");
2128 return;
2129 }
2130
2131 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2132 /*
2133 * If the device inserted padding it means that (it thought)
2134 * the 802.11 header wasn't a multiple of 4 bytes long. In
2135 * this case, reserve two bytes at the start of the SKB to
2136 * align the payload properly in case we end up copying it.
2137 */
2138 skb_reserve(skb, 2);
2139 }
2140
2141 rx_status = IEEE80211_SKB_RXCB(skb);
2142
2143 /*
2144 * Keep packets with CRC errors (and with overrun) for monitor mode
2145 * (otherwise the firmware discards them) but mark them as bad.
2146 */
2147 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2148 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2149 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2150 le32_to_cpu(desc->status));
2151 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2152 }
2153
2154 /* set the preamble flag if appropriate */
2155 if (format == RATE_MCS_CCK_MSK &&
2156 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2157 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2158
2159 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2160 u64 tsf_on_air_rise;
2161
2162 if (mvm->trans->trans_cfg->device_family >=
2163 IWL_DEVICE_FAMILY_AX210)
2164 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2165 else
2166 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2167
2168 rx_status->mactime = tsf_on_air_rise;
2169 /* TSF as indicated by the firmware is at INA time */
2170 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2171 }
2172
2173 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2174 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2175
2176 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2177 } else {
2178 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2179 NL80211_BAND_2GHZ;
2180 }
2181
2182 /* update aggregation data for monitor sake on default queue */
2183 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2184 bool toggle_bit;
2185
2186 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2187 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2188 /*
2189 * Toggle is switched whenever new aggregation starts. Make
2190 * sure ampdu_reference is never 0 so we can later use it to
2191 * see if the frame was really part of an A-MPDU or not.
2192 */
2193 if (toggle_bit != mvm->ampdu_toggle) {
2194 mvm->ampdu_ref++;
2195 if (mvm->ampdu_ref == 0)
2196 mvm->ampdu_ref++;
2197 mvm->ampdu_toggle = toggle_bit;
2198 phy_data.first_subframe = true;
2199 }
2200 rx_status->ampdu_reference = mvm->ampdu_ref;
2201 }
2202
2203 rcu_read_lock();
2204
2205 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2206 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2207
2208 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2209 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2210 if (IS_ERR(sta))
2211 sta = NULL;
2212 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2213 }
2214 } else if (!is_multicast_ether_addr(hdr->addr2)) {
2215 /*
2216 * This is fine since we prevent two stations with the same
2217 * address from being added.
2218 */
2219 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2220 }
2221
2222 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2223 le32_to_cpu(pkt->len_n_flags), queue,
2224 &crypt_len)) {
2225 kfree_skb(skb);
2226 goto out;
2227 }
2228
2229 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2230
2231 if (sta) {
2232 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2233 struct ieee80211_vif *tx_blocked_vif =
2234 rcu_dereference(mvm->csa_tx_blocked_vif);
2235 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2236 IWL_RX_MPDU_REORDER_BAID_MASK) >>
2237 IWL_RX_MPDU_REORDER_BAID_SHIFT);
2238 struct iwl_fw_dbg_trigger_tlv *trig;
2239 struct ieee80211_vif *vif = mvmsta->vif;
2240
2241 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2242 !is_multicast_ether_addr(hdr->addr1) &&
2243 ieee80211_is_data(hdr->frame_control) &&
2244 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2245 schedule_delayed_work(&mvm->tcm.work, 0);
2246
2247 /*
2248 * We have tx blocked stations (with CS bit). If we heard
2249 * frames from a blocked station on a new channel we can
2250 * TX to it again.
2251 */
2252 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2253 struct iwl_mvm_vif *mvmvif =
2254 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2255 struct iwl_rx_sta_csa rx_sta_csa = {
2256 .all_sta_unblocked = true,
2257 .vif = tx_blocked_vif,
2258 };
2259
2260 if (mvmvif->csa_target_freq == rx_status->freq)
2261 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2262 false);
2263 ieee80211_iterate_stations_atomic(mvm->hw,
2264 iwl_mvm_rx_get_sta_block_tx,
2265 &rx_sta_csa);
2266
2267 if (rx_sta_csa.all_sta_unblocked) {
2268 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2269 /* Unblock BCAST / MCAST station */
2270 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2271 cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2272 }
2273 }
2274
2275 rs_update_last_rssi(mvm, mvmsta, rx_status);
2276
2277 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2278 ieee80211_vif_to_wdev(vif),
2279 FW_DBG_TRIGGER_RSSI);
2280
2281 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2282 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2283 s32 rssi;
2284
2285 rssi_trig = (void *)trig->data;
2286 rssi = le32_to_cpu(rssi_trig->rssi);
2287
2288 if (rx_status->signal < rssi)
2289 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2290 NULL);
2291 }
2292
2293 if (ieee80211_is_data(hdr->frame_control))
2294 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2295
2296 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2297 IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n",
2298 le16_to_cpu(hdr->seq_ctrl));
2299 kfree_skb(skb);
2300 goto out;
2301 }
2302
2303 /*
2304 * Our hardware de-aggregates AMSDUs but copies the mac header
2305 * as it to the de-aggregated MPDUs. We need to turn off the
2306 * AMSDU bit in the QoS control ourselves.
2307 * In addition, HW reverses addr3 and addr4 - reverse it back.
2308 */
2309 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2310 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2311 u8 *qc = ieee80211_get_qos_ctl(hdr);
2312
2313 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2314
2315 if (mvm->trans->trans_cfg->device_family ==
2316 IWL_DEVICE_FAMILY_9000) {
2317 iwl_mvm_flip_address(hdr->addr3);
2318
2319 if (ieee80211_has_a4(hdr->frame_control))
2320 iwl_mvm_flip_address(hdr->addr4);
2321 }
2322 }
2323 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2324 u32 reorder_data = le32_to_cpu(desc->reorder_data);
2325
2326 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2327 }
2328 }
2329
2330 /* management stuff on default queue */
2331 if (!queue) {
2332 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2333 ieee80211_is_probe_resp(hdr->frame_control)) &&
2334 mvm->sched_scan_pass_all ==
2335 SCHED_SCAN_PASS_ALL_ENABLED))
2336 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2337
2338 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2339 ieee80211_is_probe_resp(hdr->frame_control)))
2340 rx_status->boottime_ns = ktime_get_boottime_ns();
2341 }
2342
2343 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2344 kfree_skb(skb);
2345 goto out;
2346 }
2347
2348 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2349 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2350 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
2351 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
2352 (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2353 !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
2354 rx_status->flag |= RX_FLAG_AMSDU_MORE;
2355
2356 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2357 link_sta);
2358 }
2359out:
2360 rcu_read_unlock();
2361}
2362
2363void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2364 struct iwl_rx_cmd_buffer *rxb, int queue)
2365{
2366 struct ieee80211_rx_status *rx_status;
2367 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2368 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2369 u32 rssi;
2370 u32 info_type;
2371 struct ieee80211_sta *sta = NULL;
2372 struct sk_buff *skb;
2373 struct iwl_mvm_rx_phy_data phy_data;
2374 u32 format;
2375
2376 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2377 return;
2378
2379 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2380 return;
2381
2382 rssi = le32_to_cpu(desc->rssi);
2383 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2384 phy_data.d0 = desc->phy_info[0];
2385 phy_data.d1 = desc->phy_info[1];
2386 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2387 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2388 phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2389 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2390 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2391 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2392 phy_data.with_data = false;
2393 phy_data.rx_vec[0] = desc->rx_vec[0];
2394 phy_data.rx_vec[1] = desc->rx_vec[1];
2395
2396 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2397 RX_NO_DATA_NOTIF, 0) < 2) {
2398 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2399 phy_data.rate_n_flags);
2400 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2401 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2402 phy_data.rate_n_flags);
2403 }
2404
2405 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2406
2407 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2408 RX_NO_DATA_NOTIF, 0) >= 3) {
2409 if (unlikely(iwl_rx_packet_payload_len(pkt) <
2410 sizeof(struct iwl_rx_no_data_ver_3)))
2411 /* invalid len for ver 3 */
2412 return;
2413 phy_data.rx_vec[2] = desc->rx_vec[2];
2414 phy_data.rx_vec[3] = desc->rx_vec[3];
2415 } else {
2416 if (format == RATE_MCS_EHT_MSK)
2417 /* no support for EHT before version 3 API */
2418 return;
2419 }
2420
2421 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2422 * ieee80211_hdr pulled.
2423 */
2424 skb = alloc_skb(128, GFP_ATOMIC);
2425 if (!skb) {
2426 IWL_ERR(mvm, "alloc_skb failed\n");
2427 return;
2428 }
2429
2430 rx_status = IEEE80211_SKB_RXCB(skb);
2431
2432 /* 0-length PSDU */
2433 rx_status->flag |= RX_FLAG_NO_PSDU;
2434
2435 switch (info_type) {
2436 case RX_NO_DATA_INFO_TYPE_NDP:
2437 rx_status->zero_length_psdu_type =
2438 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2439 break;
2440 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2441 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2442 rx_status->zero_length_psdu_type =
2443 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2444 break;
2445 default:
2446 rx_status->zero_length_psdu_type =
2447 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2448 break;
2449 }
2450
2451 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2452 NL80211_BAND_2GHZ;
2453
2454 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2455
2456 /* no more radio tap info should be put after this point.
2457 *
2458 * We mark it as mac header, for upper layers to know where
2459 * all radio tap header ends.
2460 */
2461 skb_reset_mac_header(skb);
2462
2463 /*
2464 * Override the nss from the rx_vec since the rate_n_flags has
2465 * only 2 bits for the nss which gives a max of 4 ss but there
2466 * may be up to 8 spatial streams.
2467 */
2468 switch (format) {
2469 case RATE_MCS_VHT_MSK:
2470 rx_status->nss =
2471 le32_get_bits(desc->rx_vec[0],
2472 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2473 break;
2474 case RATE_MCS_HE_MSK:
2475 rx_status->nss =
2476 le32_get_bits(desc->rx_vec[0],
2477 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2478 break;
2479 case RATE_MCS_EHT_MSK:
2480 rx_status->nss =
2481 le32_get_bits(desc->rx_vec[2],
2482 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2483 }
2484
2485 rcu_read_lock();
2486 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2487 rcu_read_unlock();
2488}
2489
2490void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2491 struct iwl_rx_cmd_buffer *rxb, int queue)
2492{
2493 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2494 struct iwl_frame_release *release = (void *)pkt->data;
2495
2496 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2497 return;
2498
2499 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2500 le16_to_cpu(release->nssn),
2501 queue);
2502}
2503
2504void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2505 struct iwl_rx_cmd_buffer *rxb, int queue)
2506{
2507 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2508 struct iwl_bar_frame_release *release = (void *)pkt->data;
2509 unsigned int baid = le32_get_bits(release->ba_info,
2510 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2511 unsigned int nssn = le32_get_bits(release->ba_info,
2512 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2513 unsigned int sta_id = le32_get_bits(release->sta_tid,
2514 IWL_BAR_FRAME_RELEASE_STA_MASK);
2515 unsigned int tid = le32_get_bits(release->sta_tid,
2516 IWL_BAR_FRAME_RELEASE_TID_MASK);
2517 struct iwl_mvm_baid_data *baid_data;
2518
2519 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2520 return;
2521
2522 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2523 baid >= ARRAY_SIZE(mvm->baid_map)))
2524 return;
2525
2526 rcu_read_lock();
2527 baid_data = rcu_dereference(mvm->baid_map[baid]);
2528 if (!baid_data) {
2529 IWL_DEBUG_RX(mvm,
2530 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2531 baid);
2532 goto out;
2533 }
2534
2535 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2536 !(baid_data->sta_mask & BIT(sta_id)),
2537 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2538 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2539 tid))
2540 goto out;
2541
2542 IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n",
2543 nssn);
2544
2545 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue);
2546out:
2547 rcu_read_unlock();
2548}
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2012-2014, 2018-2022 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7#include <linux/etherdevice.h>
8#include <linux/skbuff.h>
9#include "iwl-trans.h"
10#include "mvm.h"
11#include "fw-api.h"
12
13static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
14{
15 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
16 u8 *data = skb->data;
17
18 /* Alignment concerns */
19 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
20 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
21 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
22 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
23
24 if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
25 data += sizeof(struct ieee80211_radiotap_he);
26 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
27 data += sizeof(struct ieee80211_radiotap_he_mu);
28 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
29 data += sizeof(struct ieee80211_radiotap_lsig);
30 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
31 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
32
33 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
34 }
35
36 return data;
37}
38
39static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
40 int queue, struct ieee80211_sta *sta)
41{
42 struct iwl_mvm_sta *mvmsta;
43 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
44 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
45 struct iwl_mvm_key_pn *ptk_pn;
46 int res;
47 u8 tid, keyidx;
48 u8 pn[IEEE80211_CCMP_PN_LEN];
49 u8 *extiv;
50
51 /* do PN checking */
52
53 /* multicast and non-data only arrives on default queue */
54 if (!ieee80211_is_data(hdr->frame_control) ||
55 is_multicast_ether_addr(hdr->addr1))
56 return 0;
57
58 /* do not check PN for open AP */
59 if (!(stats->flag & RX_FLAG_DECRYPTED))
60 return 0;
61
62 /*
63 * avoid checking for default queue - we don't want to replicate
64 * all the logic that's necessary for checking the PN on fragmented
65 * frames, leave that to mac80211
66 */
67 if (queue == 0)
68 return 0;
69
70 /* if we are here - this for sure is either CCMP or GCMP */
71 if (IS_ERR_OR_NULL(sta)) {
72 IWL_DEBUG_DROP(mvm,
73 "expected hw-decrypted unicast frame for station\n");
74 return -1;
75 }
76
77 mvmsta = iwl_mvm_sta_from_mac80211(sta);
78
79 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
80 keyidx = extiv[3] >> 6;
81
82 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
83 if (!ptk_pn)
84 return -1;
85
86 if (ieee80211_is_data_qos(hdr->frame_control))
87 tid = ieee80211_get_tid(hdr);
88 else
89 tid = 0;
90
91 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
92 if (tid >= IWL_MAX_TID_COUNT)
93 return -1;
94
95 /* load pn */
96 pn[0] = extiv[7];
97 pn[1] = extiv[6];
98 pn[2] = extiv[5];
99 pn[3] = extiv[4];
100 pn[4] = extiv[1];
101 pn[5] = extiv[0];
102
103 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
104 if (res < 0)
105 return -1;
106 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
107 return -1;
108
109 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
110 stats->flag |= RX_FLAG_PN_VALIDATED;
111
112 return 0;
113}
114
115/* iwl_mvm_create_skb Adds the rxb to a new skb */
116static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
117 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
118 struct iwl_rx_cmd_buffer *rxb)
119{
120 struct iwl_rx_packet *pkt = rxb_addr(rxb);
121 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
122 unsigned int headlen, fraglen, pad_len = 0;
123 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
124 u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
125 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
126
127 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
128 len -= 2;
129 pad_len = 2;
130 }
131
132 /*
133 * For non monitor interface strip the bytes the RADA might not have
134 * removed. As monitor interface cannot exist with other interfaces
135 * this removal is safe.
136 */
137 if (mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) {
138 u32 pkt_flags = le32_to_cpu(pkt->len_n_flags);
139
140 /*
141 * If RADA was not enabled then decryption was not performed so
142 * the MIC cannot be removed.
143 */
144 if (!(pkt_flags & FH_RSCSR_RADA_EN)) {
145 if (WARN_ON(crypt_len > mic_crc_len))
146 return -EINVAL;
147
148 mic_crc_len -= crypt_len;
149 }
150
151 if (WARN_ON(mic_crc_len > len))
152 return -EINVAL;
153
154 len -= mic_crc_len;
155 }
156
157 /* If frame is small enough to fit in skb->head, pull it completely.
158 * If not, only pull ieee80211_hdr (including crypto if present, and
159 * an additional 8 bytes for SNAP/ethertype, see below) so that
160 * splice() or TCP coalesce are more efficient.
161 *
162 * Since, in addition, ieee80211_data_to_8023() always pull in at
163 * least 8 bytes (possibly more for mesh) we can do the same here
164 * to save the cost of doing it later. That still doesn't pull in
165 * the actual IP header since the typical case has a SNAP header.
166 * If the latter changes (there are efforts in the standards group
167 * to do so) we should revisit this and ieee80211_data_to_8023().
168 */
169 headlen = (len <= skb_tailroom(skb)) ? len :
170 hdrlen + crypt_len + 8;
171
172 /* The firmware may align the packet to DWORD.
173 * The padding is inserted after the IV.
174 * After copying the header + IV skip the padding if
175 * present before copying packet data.
176 */
177 hdrlen += crypt_len;
178
179 if (unlikely(headlen < hdrlen))
180 return -EINVAL;
181
182 skb_put_data(skb, hdr, hdrlen);
183 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
184
185 /*
186 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
187 * certain cases and starts the checksum after the SNAP. Check if
188 * this is the case - it's easier to just bail out to CHECKSUM_NONE
189 * in the cases the hardware didn't handle, since it's rare to see
190 * such packets, even though the hardware did calculate the checksum
191 * in this case, just starting after the MAC header instead.
192 *
193 * Starting from Bz hardware, it calculates starting directly after
194 * the MAC header, so that matches mac80211's expectation.
195 */
196 if (skb->ip_summed == CHECKSUM_COMPLETE &&
197 mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) {
198 struct {
199 u8 hdr[6];
200 __be16 type;
201 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
202
203 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
204 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
205 (shdr->type != htons(ETH_P_IP) &&
206 shdr->type != htons(ETH_P_ARP) &&
207 shdr->type != htons(ETH_P_IPV6) &&
208 shdr->type != htons(ETH_P_8021Q) &&
209 shdr->type != htons(ETH_P_PAE) &&
210 shdr->type != htons(ETH_P_TDLS))))
211 skb->ip_summed = CHECKSUM_NONE;
212 else
213 /* mac80211 assumes full CSUM including SNAP header */
214 skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
215 }
216
217 fraglen = len - headlen;
218
219 if (fraglen) {
220 int offset = (u8 *)hdr + headlen + pad_len -
221 (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
222
223 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
224 fraglen, rxb->truesize);
225 }
226
227 return 0;
228}
229
230static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
231 struct sk_buff *skb)
232{
233 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
234 struct ieee80211_vendor_radiotap *radiotap;
235 const int size = sizeof(*radiotap) + sizeof(__le16);
236
237 if (!mvm->cur_aid)
238 return;
239
240 /* ensure alignment */
241 BUILD_BUG_ON((size + 2) % 4);
242
243 radiotap = skb_put(skb, size + 2);
244 radiotap->align = 1;
245 /* Intel OUI */
246 radiotap->oui[0] = 0xf6;
247 radiotap->oui[1] = 0x54;
248 radiotap->oui[2] = 0x25;
249 /* radiotap sniffer config sub-namespace */
250 radiotap->subns = 1;
251 radiotap->present = 0x1;
252 radiotap->len = size - sizeof(*radiotap);
253 radiotap->pad = 2;
254
255 /* fill the data now */
256 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
257 /* and clear the padding */
258 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
259
260 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
261}
262
263/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
264static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
265 struct napi_struct *napi,
266 struct sk_buff *skb, int queue,
267 struct ieee80211_sta *sta)
268{
269 if (iwl_mvm_check_pn(mvm, skb, queue, sta))
270 kfree_skb(skb);
271 else
272 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
273}
274
275static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
276 struct ieee80211_rx_status *rx_status,
277 u32 rate_n_flags, int energy_a,
278 int energy_b)
279{
280 int max_energy;
281 u32 rate_flags = rate_n_flags;
282
283 energy_a = energy_a ? -energy_a : S8_MIN;
284 energy_b = energy_b ? -energy_b : S8_MIN;
285 max_energy = max(energy_a, energy_b);
286
287 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
288 energy_a, energy_b, max_energy);
289
290 rx_status->signal = max_energy;
291 rx_status->chains =
292 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
293 rx_status->chain_signal[0] = energy_a;
294 rx_status->chain_signal[1] = energy_b;
295}
296
297static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
298 struct ieee80211_hdr *hdr,
299 struct iwl_rx_mpdu_desc *desc,
300 u32 status)
301{
302 struct iwl_mvm_sta *mvmsta;
303 struct iwl_mvm_vif *mvmvif;
304 u8 keyid;
305 struct ieee80211_key_conf *key;
306 u32 len = le16_to_cpu(desc->mpdu_len);
307 const u8 *frame = (void *)hdr;
308
309 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
310 return 0;
311
312 /*
313 * For non-beacon, we don't really care. But beacons may
314 * be filtered out, and we thus need the firmware's replay
315 * detection, otherwise beacons the firmware previously
316 * filtered could be replayed, or something like that, and
317 * it can filter a lot - though usually only if nothing has
318 * changed.
319 */
320 if (!ieee80211_is_beacon(hdr->frame_control))
321 return 0;
322
323 /* key mismatch - will also report !MIC_OK but we shouldn't count it */
324 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
325 return -1;
326
327 /* good cases */
328 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
329 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)))
330 return 0;
331
332 if (!sta)
333 return -1;
334
335 mvmsta = iwl_mvm_sta_from_mac80211(sta);
336
337 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
338
339 /*
340 * both keys will have the same cipher and MIC length, use
341 * whichever one is available
342 */
343 key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
344 if (!key) {
345 key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
346 if (!key)
347 return -1;
348 }
349
350 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
351 return -1;
352
353 /* get the real key ID */
354 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
355 /* and if that's the other key, look it up */
356 if (keyid != key->keyidx) {
357 /*
358 * shouldn't happen since firmware checked, but be safe
359 * in case the MIC length is wrong too, for example
360 */
361 if (keyid != 6 && keyid != 7)
362 return -1;
363 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
364 if (!key)
365 return -1;
366 }
367
368 /* Report status to mac80211 */
369 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
370 ieee80211_key_mic_failure(key);
371 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
372 ieee80211_key_replay(key);
373
374 return -1;
375}
376
377static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
378 struct ieee80211_hdr *hdr,
379 struct ieee80211_rx_status *stats, u16 phy_info,
380 struct iwl_rx_mpdu_desc *desc,
381 u32 pkt_flags, int queue, u8 *crypt_len)
382{
383 u32 status = le32_to_cpu(desc->status);
384
385 /*
386 * Drop UNKNOWN frames in aggregation, unless in monitor mode
387 * (where we don't have the keys).
388 * We limit this to aggregation because in TKIP this is a valid
389 * scenario, since we may not have the (correct) TTAK (phase 1
390 * key) in the firmware.
391 */
392 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
393 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
394 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
395 return -1;
396
397 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
398 !ieee80211_has_protected(hdr->frame_control)))
399 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status);
400
401 if (!ieee80211_has_protected(hdr->frame_control) ||
402 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
403 IWL_RX_MPDU_STATUS_SEC_NONE)
404 return 0;
405
406 /* TODO: handle packets encrypted with unknown alg */
407
408 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
409 case IWL_RX_MPDU_STATUS_SEC_CCM:
410 case IWL_RX_MPDU_STATUS_SEC_GCM:
411 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
412 /* alg is CCM: check MIC only */
413 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
414 return -1;
415
416 stats->flag |= RX_FLAG_DECRYPTED;
417 if (pkt_flags & FH_RSCSR_RADA_EN)
418 stats->flag |= RX_FLAG_MIC_STRIPPED;
419 *crypt_len = IEEE80211_CCMP_HDR_LEN;
420 return 0;
421 case IWL_RX_MPDU_STATUS_SEC_TKIP:
422 /* Don't drop the frame and decrypt it in SW */
423 if (!fw_has_api(&mvm->fw->ucode_capa,
424 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
425 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
426 return 0;
427
428 if (mvm->trans->trans_cfg->gen2 &&
429 !(status & RX_MPDU_RES_STATUS_MIC_OK))
430 stats->flag |= RX_FLAG_MMIC_ERROR;
431
432 *crypt_len = IEEE80211_TKIP_IV_LEN;
433 fallthrough;
434 case IWL_RX_MPDU_STATUS_SEC_WEP:
435 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
436 return -1;
437
438 stats->flag |= RX_FLAG_DECRYPTED;
439 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
440 IWL_RX_MPDU_STATUS_SEC_WEP)
441 *crypt_len = IEEE80211_WEP_IV_LEN;
442
443 if (pkt_flags & FH_RSCSR_RADA_EN) {
444 stats->flag |= RX_FLAG_ICV_STRIPPED;
445 if (mvm->trans->trans_cfg->gen2)
446 stats->flag |= RX_FLAG_MMIC_STRIPPED;
447 }
448
449 return 0;
450 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
451 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
452 return -1;
453 stats->flag |= RX_FLAG_DECRYPTED;
454 return 0;
455 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
456 break;
457 default:
458 /*
459 * Sometimes we can get frames that were not decrypted
460 * because the firmware didn't have the keys yet. This can
461 * happen after connection where we can get multicast frames
462 * before the GTK is installed.
463 * Silently drop those frames.
464 * Also drop un-decrypted frames in monitor mode.
465 */
466 if (!is_multicast_ether_addr(hdr->addr1) &&
467 !mvm->monitor_on && net_ratelimit())
468 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
469 }
470
471 return 0;
472}
473
474static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
475 struct ieee80211_sta *sta,
476 struct sk_buff *skb,
477 struct iwl_rx_packet *pkt)
478{
479 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
480
481 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
482 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
483 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
484
485 skb->ip_summed = CHECKSUM_COMPLETE;
486 skb->csum = csum_unfold(~(__force __sum16)hwsum);
487 }
488 } else {
489 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
490 struct iwl_mvm_vif *mvmvif;
491 u16 flags = le16_to_cpu(desc->l3l4_flags);
492 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
493 IWL_RX_L3_PROTO_POS);
494
495 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
496
497 if (mvmvif->features & NETIF_F_RXCSUM &&
498 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
499 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
500 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
501 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
502 skb->ip_summed = CHECKSUM_UNNECESSARY;
503 }
504}
505
506/*
507 * returns true if a packet is a duplicate and should be dropped.
508 * Updates AMSDU PN tracking info
509 */
510static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
511 struct ieee80211_rx_status *rx_status,
512 struct ieee80211_hdr *hdr,
513 struct iwl_rx_mpdu_desc *desc)
514{
515 struct iwl_mvm_sta *mvm_sta;
516 struct iwl_mvm_rxq_dup_data *dup_data;
517 u8 tid, sub_frame_idx;
518
519 if (WARN_ON(IS_ERR_OR_NULL(sta)))
520 return false;
521
522 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
523 dup_data = &mvm_sta->dup_data[queue];
524
525 /*
526 * Drop duplicate 802.11 retransmissions
527 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
528 */
529 if (ieee80211_is_ctl(hdr->frame_control) ||
530 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
531 is_multicast_ether_addr(hdr->addr1)) {
532 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
533 return false;
534 }
535
536 if (ieee80211_is_data_qos(hdr->frame_control))
537 /* frame has qos control */
538 tid = ieee80211_get_tid(hdr);
539 else
540 tid = IWL_MAX_TID_COUNT;
541
542 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
543 sub_frame_idx = desc->amsdu_info &
544 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
545
546 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
547 dup_data->last_seq[tid] == hdr->seq_ctrl &&
548 dup_data->last_sub_frame[tid] >= sub_frame_idx))
549 return true;
550
551 /* Allow same PN as the first subframe for following sub frames */
552 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
553 sub_frame_idx > dup_data->last_sub_frame[tid] &&
554 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
555 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
556
557 dup_data->last_seq[tid] = hdr->seq_ctrl;
558 dup_data->last_sub_frame[tid] = sub_frame_idx;
559
560 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
561
562 return false;
563}
564
565/*
566 * Returns true if sn2 - buffer_size < sn1 < sn2.
567 * To be used only in order to compare reorder buffer head with NSSN.
568 * We fully trust NSSN unless it is behind us due to reorder timeout.
569 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
570 */
571static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
572{
573 return ieee80211_sn_less(sn1, sn2) &&
574 !ieee80211_sn_less(sn1, sn2 - buffer_size);
575}
576
577static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
578{
579 if (IWL_MVM_USE_NSSN_SYNC) {
580 struct iwl_mvm_nssn_sync_data notif = {
581 .baid = baid,
582 .nssn = nssn,
583 };
584
585 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
586 ¬if, sizeof(notif));
587 }
588}
589
590#define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
591
592enum iwl_mvm_release_flags {
593 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
594 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
595};
596
597static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
598 struct ieee80211_sta *sta,
599 struct napi_struct *napi,
600 struct iwl_mvm_baid_data *baid_data,
601 struct iwl_mvm_reorder_buffer *reorder_buf,
602 u16 nssn, u32 flags)
603{
604 struct iwl_mvm_reorder_buf_entry *entries =
605 &baid_data->entries[reorder_buf->queue *
606 baid_data->entries_per_queue];
607 u16 ssn = reorder_buf->head_sn;
608
609 lockdep_assert_held(&reorder_buf->lock);
610
611 /*
612 * We keep the NSSN not too far behind, if we are sync'ing it and it
613 * is more than 2048 ahead of us, it must be behind us. Discard it.
614 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
615 * behind and this queue already processed packets. The next if
616 * would have caught cases where this queue would have processed less
617 * than 64 packets, but it may have processed more than 64 packets.
618 */
619 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
620 ieee80211_sn_less(nssn, ssn))
621 goto set_timer;
622
623 /* ignore nssn smaller than head sn - this can happen due to timeout */
624 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
625 goto set_timer;
626
627 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
628 int index = ssn % reorder_buf->buf_size;
629 struct sk_buff_head *skb_list = &entries[index].e.frames;
630 struct sk_buff *skb;
631
632 ssn = ieee80211_sn_inc(ssn);
633 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
634 (ssn == 2048 || ssn == 0))
635 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
636
637 /*
638 * Empty the list. Will have more than one frame for A-MSDU.
639 * Empty list is valid as well since nssn indicates frames were
640 * received.
641 */
642 while ((skb = __skb_dequeue(skb_list))) {
643 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
644 reorder_buf->queue,
645 sta);
646 reorder_buf->num_stored--;
647 }
648 }
649 reorder_buf->head_sn = nssn;
650
651set_timer:
652 if (reorder_buf->num_stored && !reorder_buf->removed) {
653 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
654
655 while (skb_queue_empty(&entries[index].e.frames))
656 index = (index + 1) % reorder_buf->buf_size;
657 /* modify timer to match next frame's expiration time */
658 mod_timer(&reorder_buf->reorder_timer,
659 entries[index].e.reorder_time + 1 +
660 RX_REORDER_BUF_TIMEOUT_MQ);
661 } else {
662 del_timer(&reorder_buf->reorder_timer);
663 }
664}
665
666void iwl_mvm_reorder_timer_expired(struct timer_list *t)
667{
668 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
669 struct iwl_mvm_baid_data *baid_data =
670 iwl_mvm_baid_data_from_reorder_buf(buf);
671 struct iwl_mvm_reorder_buf_entry *entries =
672 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
673 int i;
674 u16 sn = 0, index = 0;
675 bool expired = false;
676 bool cont = false;
677
678 spin_lock(&buf->lock);
679
680 if (!buf->num_stored || buf->removed) {
681 spin_unlock(&buf->lock);
682 return;
683 }
684
685 for (i = 0; i < buf->buf_size ; i++) {
686 index = (buf->head_sn + i) % buf->buf_size;
687
688 if (skb_queue_empty(&entries[index].e.frames)) {
689 /*
690 * If there is a hole and the next frame didn't expire
691 * we want to break and not advance SN
692 */
693 cont = false;
694 continue;
695 }
696 if (!cont &&
697 !time_after(jiffies, entries[index].e.reorder_time +
698 RX_REORDER_BUF_TIMEOUT_MQ))
699 break;
700
701 expired = true;
702 /* continue until next hole after this expired frames */
703 cont = true;
704 sn = ieee80211_sn_add(buf->head_sn, i + 1);
705 }
706
707 if (expired) {
708 struct ieee80211_sta *sta;
709 struct iwl_mvm_sta *mvmsta;
710 u8 sta_id = baid_data->sta_id;
711
712 rcu_read_lock();
713 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
714 mvmsta = iwl_mvm_sta_from_mac80211(sta);
715
716 /* SN is set to the last expired frame + 1 */
717 IWL_DEBUG_HT(buf->mvm,
718 "Releasing expired frames for sta %u, sn %d\n",
719 sta_id, sn);
720 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
721 sta, baid_data->tid);
722 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
723 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
724 rcu_read_unlock();
725 } else {
726 /*
727 * If no frame expired and there are stored frames, index is now
728 * pointing to the first unexpired frame - modify timer
729 * accordingly to this frame.
730 */
731 mod_timer(&buf->reorder_timer,
732 entries[index].e.reorder_time +
733 1 + RX_REORDER_BUF_TIMEOUT_MQ);
734 }
735 spin_unlock(&buf->lock);
736}
737
738static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
739 struct iwl_mvm_delba_data *data)
740{
741 struct iwl_mvm_baid_data *ba_data;
742 struct ieee80211_sta *sta;
743 struct iwl_mvm_reorder_buffer *reorder_buf;
744 u8 baid = data->baid;
745
746 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
747 return;
748
749 rcu_read_lock();
750
751 ba_data = rcu_dereference(mvm->baid_map[baid]);
752 if (WARN_ON_ONCE(!ba_data))
753 goto out;
754
755 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
756 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
757 goto out;
758
759 reorder_buf = &ba_data->reorder_buf[queue];
760
761 /* release all frames that are in the reorder buffer to the stack */
762 spin_lock_bh(&reorder_buf->lock);
763 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
764 ieee80211_sn_add(reorder_buf->head_sn,
765 reorder_buf->buf_size),
766 0);
767 spin_unlock_bh(&reorder_buf->lock);
768 del_timer_sync(&reorder_buf->reorder_timer);
769
770out:
771 rcu_read_unlock();
772}
773
774static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
775 struct napi_struct *napi,
776 u8 baid, u16 nssn, int queue,
777 u32 flags)
778{
779 struct ieee80211_sta *sta;
780 struct iwl_mvm_reorder_buffer *reorder_buf;
781 struct iwl_mvm_baid_data *ba_data;
782
783 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
784 baid, nssn);
785
786 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
787 baid >= ARRAY_SIZE(mvm->baid_map)))
788 return;
789
790 rcu_read_lock();
791
792 ba_data = rcu_dereference(mvm->baid_map[baid]);
793 if (!ba_data) {
794 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
795 "BAID %d not found in map\n", baid);
796 goto out;
797 }
798
799 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
800 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
801 goto out;
802
803 reorder_buf = &ba_data->reorder_buf[queue];
804
805 spin_lock_bh(&reorder_buf->lock);
806 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
807 reorder_buf, nssn, flags);
808 spin_unlock_bh(&reorder_buf->lock);
809
810out:
811 rcu_read_unlock();
812}
813
814static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
815 struct napi_struct *napi, int queue,
816 const struct iwl_mvm_nssn_sync_data *data)
817{
818 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
819 data->nssn, queue,
820 IWL_MVM_RELEASE_FROM_RSS_SYNC);
821}
822
823void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
824 struct iwl_rx_cmd_buffer *rxb, int queue)
825{
826 struct iwl_rx_packet *pkt = rxb_addr(rxb);
827 struct iwl_rxq_sync_notification *notif;
828 struct iwl_mvm_internal_rxq_notif *internal_notif;
829 u32 len = iwl_rx_packet_payload_len(pkt);
830
831 notif = (void *)pkt->data;
832 internal_notif = (void *)notif->payload;
833
834 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
835 "invalid notification size %d (%d)",
836 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
837 return;
838 len -= sizeof(*notif) + sizeof(*internal_notif);
839
840 if (internal_notif->sync &&
841 mvm->queue_sync_cookie != internal_notif->cookie) {
842 WARN_ONCE(1, "Received expired RX queue sync message\n");
843 return;
844 }
845
846 switch (internal_notif->type) {
847 case IWL_MVM_RXQ_EMPTY:
848 WARN_ONCE(len, "invalid empty notification size %d", len);
849 break;
850 case IWL_MVM_RXQ_NOTIF_DEL_BA:
851 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
852 "invalid delba notification size %d (%d)",
853 len, (int)sizeof(struct iwl_mvm_delba_data)))
854 break;
855 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
856 break;
857 case IWL_MVM_RXQ_NSSN_SYNC:
858 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
859 "invalid nssn sync notification size %d (%d)",
860 len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
861 break;
862 iwl_mvm_nssn_sync(mvm, napi, queue,
863 (void *)internal_notif->data);
864 break;
865 default:
866 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
867 }
868
869 if (internal_notif->sync) {
870 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
871 "queue sync: queue %d responded a second time!\n",
872 queue);
873 if (READ_ONCE(mvm->queue_sync_state) == 0)
874 wake_up(&mvm->rx_sync_waitq);
875 }
876}
877
878static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
879 struct ieee80211_sta *sta, int tid,
880 struct iwl_mvm_reorder_buffer *buffer,
881 u32 reorder, u32 gp2, int queue)
882{
883 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
884
885 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
886 /* we have a new (A-)MPDU ... */
887
888 /*
889 * reset counter to 0 if we didn't have any oldsn in
890 * the last A-MPDU (as detected by GP2 being identical)
891 */
892 if (!buffer->consec_oldsn_prev_drop)
893 buffer->consec_oldsn_drops = 0;
894
895 /* either way, update our tracking state */
896 buffer->consec_oldsn_ampdu_gp2 = gp2;
897 } else if (buffer->consec_oldsn_prev_drop) {
898 /*
899 * tracking state didn't change, and we had an old SN
900 * indication before - do nothing in this case, we
901 * already noted this one down and are waiting for the
902 * next A-MPDU (by GP2)
903 */
904 return;
905 }
906
907 /* return unless this MPDU has old SN */
908 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
909 return;
910
911 /* update state */
912 buffer->consec_oldsn_prev_drop = 1;
913 buffer->consec_oldsn_drops++;
914
915 /* if limit is reached, send del BA and reset state */
916 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
917 IWL_WARN(mvm,
918 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
919 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
920 sta->addr, queue, tid);
921 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
922 buffer->consec_oldsn_prev_drop = 0;
923 buffer->consec_oldsn_drops = 0;
924 }
925}
926
927/*
928 * Returns true if the MPDU was buffered\dropped, false if it should be passed
929 * to upper layer.
930 */
931static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
932 struct napi_struct *napi,
933 int queue,
934 struct ieee80211_sta *sta,
935 struct sk_buff *skb,
936 struct iwl_rx_mpdu_desc *desc)
937{
938 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
939 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
940 struct iwl_mvm_sta *mvm_sta;
941 struct iwl_mvm_baid_data *baid_data;
942 struct iwl_mvm_reorder_buffer *buffer;
943 struct sk_buff *tail;
944 u32 reorder = le32_to_cpu(desc->reorder_data);
945 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
946 bool last_subframe =
947 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
948 u8 tid = ieee80211_get_tid(hdr);
949 u8 sub_frame_idx = desc->amsdu_info &
950 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
951 struct iwl_mvm_reorder_buf_entry *entries;
952 int index;
953 u16 nssn, sn;
954 u8 baid;
955
956 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
957 IWL_RX_MPDU_REORDER_BAID_SHIFT;
958
959 /*
960 * This also covers the case of receiving a Block Ack Request
961 * outside a BA session; we'll pass it to mac80211 and that
962 * then sends a delBA action frame.
963 * This also covers pure monitor mode, in which case we won't
964 * have any BA sessions.
965 */
966 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
967 return false;
968
969 /* no sta yet */
970 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
971 "Got valid BAID without a valid station assigned\n"))
972 return false;
973
974 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
975
976 /* not a data packet or a bar */
977 if (!ieee80211_is_back_req(hdr->frame_control) &&
978 (!ieee80211_is_data_qos(hdr->frame_control) ||
979 is_multicast_ether_addr(hdr->addr1)))
980 return false;
981
982 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
983 return false;
984
985 baid_data = rcu_dereference(mvm->baid_map[baid]);
986 if (!baid_data) {
987 IWL_DEBUG_RX(mvm,
988 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
989 baid, reorder);
990 return false;
991 }
992
993 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
994 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
995 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
996 tid))
997 return false;
998
999 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
1000 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
1001 IWL_RX_MPDU_REORDER_SN_SHIFT;
1002
1003 buffer = &baid_data->reorder_buf[queue];
1004 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
1005
1006 spin_lock_bh(&buffer->lock);
1007
1008 if (!buffer->valid) {
1009 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1010 spin_unlock_bh(&buffer->lock);
1011 return false;
1012 }
1013 buffer->valid = true;
1014 }
1015
1016 if (ieee80211_is_back_req(hdr->frame_control)) {
1017 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1018 buffer, nssn, 0);
1019 goto drop;
1020 }
1021
1022 /*
1023 * If there was a significant jump in the nssn - adjust.
1024 * If the SN is smaller than the NSSN it might need to first go into
1025 * the reorder buffer, in which case we just release up to it and the
1026 * rest of the function will take care of storing it and releasing up to
1027 * the nssn.
1028 * This should not happen. This queue has been lagging and it should
1029 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1030 * and update the other queues.
1031 */
1032 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1033 buffer->buf_size) ||
1034 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1035 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1036
1037 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1038 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1039 }
1040
1041 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1042 rx_status->device_timestamp, queue);
1043
1044 /* drop any oudated packets */
1045 if (ieee80211_sn_less(sn, buffer->head_sn))
1046 goto drop;
1047
1048 /* release immediately if allowed by nssn and no stored frames */
1049 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1050 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1051 buffer->buf_size) &&
1052 (!amsdu || last_subframe)) {
1053 /*
1054 * If we crossed the 2048 or 0 SN, notify all the
1055 * queues. This is done in order to avoid having a
1056 * head_sn that lags behind for too long. When that
1057 * happens, we can get to a situation where the head_sn
1058 * is within the interval [nssn - buf_size : nssn]
1059 * which will make us think that the nssn is a packet
1060 * that we already freed because of the reordering
1061 * buffer and we will ignore it. So maintain the
1062 * head_sn somewhat updated across all the queues:
1063 * when it crosses 0 and 2048.
1064 */
1065 if (sn == 2048 || sn == 0)
1066 iwl_mvm_sync_nssn(mvm, baid, sn);
1067 buffer->head_sn = nssn;
1068 }
1069 /* No need to update AMSDU last SN - we are moving the head */
1070 spin_unlock_bh(&buffer->lock);
1071 return false;
1072 }
1073
1074 /*
1075 * release immediately if there are no stored frames, and the sn is
1076 * equal to the head.
1077 * This can happen due to reorder timer, where NSSN is behind head_sn.
1078 * When we released everything, and we got the next frame in the
1079 * sequence, according to the NSSN we can't release immediately,
1080 * while technically there is no hole and we can move forward.
1081 */
1082 if (!buffer->num_stored && sn == buffer->head_sn) {
1083 if (!amsdu || last_subframe) {
1084 if (sn == 2048 || sn == 0)
1085 iwl_mvm_sync_nssn(mvm, baid, sn);
1086 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1087 }
1088 /* No need to update AMSDU last SN - we are moving the head */
1089 spin_unlock_bh(&buffer->lock);
1090 return false;
1091 }
1092
1093 index = sn % buffer->buf_size;
1094
1095 /*
1096 * Check if we already stored this frame
1097 * As AMSDU is either received or not as whole, logic is simple:
1098 * If we have frames in that position in the buffer and the last frame
1099 * originated from AMSDU had a different SN then it is a retransmission.
1100 * If it is the same SN then if the subframe index is incrementing it
1101 * is the same AMSDU - otherwise it is a retransmission.
1102 */
1103 tail = skb_peek_tail(&entries[index].e.frames);
1104 if (tail && !amsdu)
1105 goto drop;
1106 else if (tail && (sn != buffer->last_amsdu ||
1107 buffer->last_sub_index >= sub_frame_idx))
1108 goto drop;
1109
1110 /* put in reorder buffer */
1111 __skb_queue_tail(&entries[index].e.frames, skb);
1112 buffer->num_stored++;
1113 entries[index].e.reorder_time = jiffies;
1114
1115 if (amsdu) {
1116 buffer->last_amsdu = sn;
1117 buffer->last_sub_index = sub_frame_idx;
1118 }
1119
1120 /*
1121 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1122 * The reason is that NSSN advances on the first sub-frame, and may
1123 * cause the reorder buffer to advance before all the sub-frames arrive.
1124 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1125 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1126 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1127 * already ahead and it will be dropped.
1128 * If the last sub-frame is not on this queue - we will get frame
1129 * release notification with up to date NSSN.
1130 */
1131 if (!amsdu || last_subframe)
1132 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1133 buffer, nssn,
1134 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1135
1136 spin_unlock_bh(&buffer->lock);
1137 return true;
1138
1139drop:
1140 kfree_skb(skb);
1141 spin_unlock_bh(&buffer->lock);
1142 return true;
1143}
1144
1145static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1146 u32 reorder_data, u8 baid)
1147{
1148 unsigned long now = jiffies;
1149 unsigned long timeout;
1150 struct iwl_mvm_baid_data *data;
1151
1152 rcu_read_lock();
1153
1154 data = rcu_dereference(mvm->baid_map[baid]);
1155 if (!data) {
1156 IWL_DEBUG_RX(mvm,
1157 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1158 baid, reorder_data);
1159 goto out;
1160 }
1161
1162 if (!data->timeout)
1163 goto out;
1164
1165 timeout = data->timeout;
1166 /*
1167 * Do not update last rx all the time to avoid cache bouncing
1168 * between the rx queues.
1169 * Update it every timeout. Worst case is the session will
1170 * expire after ~ 2 * timeout, which doesn't matter that much.
1171 */
1172 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1173 /* Update is atomic */
1174 data->last_rx = now;
1175
1176out:
1177 rcu_read_unlock();
1178}
1179
1180static void iwl_mvm_flip_address(u8 *addr)
1181{
1182 int i;
1183 u8 mac_addr[ETH_ALEN];
1184
1185 for (i = 0; i < ETH_ALEN; i++)
1186 mac_addr[i] = addr[ETH_ALEN - i - 1];
1187 ether_addr_copy(addr, mac_addr);
1188}
1189
1190struct iwl_mvm_rx_phy_data {
1191 enum iwl_rx_phy_info_type info_type;
1192 __le32 d0, d1, d2, d3;
1193 __le16 d4;
1194
1195 u32 rate_n_flags;
1196 u32 gp2_on_air_rise;
1197 u16 phy_info;
1198 u8 energy_a, energy_b;
1199 u8 channel;
1200};
1201
1202static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1203 struct iwl_mvm_rx_phy_data *phy_data,
1204 struct ieee80211_radiotap_he_mu *he_mu)
1205{
1206 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1207 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1208 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1209 u32 rate_n_flags = phy_data->rate_n_flags;
1210
1211 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1212 he_mu->flags1 |=
1213 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1214 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1215
1216 he_mu->flags1 |=
1217 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1218 phy_data4),
1219 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1220
1221 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1222 phy_data2);
1223 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1224 phy_data3);
1225 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1226 phy_data2);
1227 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1228 phy_data3);
1229 }
1230
1231 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1232 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1233 he_mu->flags1 |=
1234 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1235 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1236
1237 he_mu->flags2 |=
1238 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1239 phy_data4),
1240 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1241
1242 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1243 phy_data2);
1244 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1245 phy_data3);
1246 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1247 phy_data2);
1248 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1249 phy_data3);
1250 }
1251}
1252
1253static void
1254iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1255 struct ieee80211_radiotap_he *he,
1256 struct ieee80211_radiotap_he_mu *he_mu,
1257 struct ieee80211_rx_status *rx_status)
1258{
1259 /*
1260 * Unfortunately, we have to leave the mac80211 data
1261 * incorrect for the case that we receive an HE-MU
1262 * transmission and *don't* have the HE phy data (due
1263 * to the bits being used for TSF). This shouldn't
1264 * happen though as management frames where we need
1265 * the TSF/timers are not be transmitted in HE-MU.
1266 */
1267 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1268 u32 rate_n_flags = phy_data->rate_n_flags;
1269 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1270 u8 offs = 0;
1271
1272 rx_status->bw = RATE_INFO_BW_HE_RU;
1273
1274 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1275
1276 switch (ru) {
1277 case 0 ... 36:
1278 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1279 offs = ru;
1280 break;
1281 case 37 ... 52:
1282 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1283 offs = ru - 37;
1284 break;
1285 case 53 ... 60:
1286 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1287 offs = ru - 53;
1288 break;
1289 case 61 ... 64:
1290 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1291 offs = ru - 61;
1292 break;
1293 case 65 ... 66:
1294 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1295 offs = ru - 65;
1296 break;
1297 case 67:
1298 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1299 break;
1300 case 68:
1301 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1302 break;
1303 }
1304 he->data2 |= le16_encode_bits(offs,
1305 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1306 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1307 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1308 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1309 he->data2 |=
1310 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1311
1312#define CHECK_BW(bw) \
1313 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1314 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1315 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1316 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1317 CHECK_BW(20);
1318 CHECK_BW(40);
1319 CHECK_BW(80);
1320 CHECK_BW(160);
1321
1322 if (he_mu)
1323 he_mu->flags2 |=
1324 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1325 rate_n_flags),
1326 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1327 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1328 he->data6 |=
1329 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1330 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1331 rate_n_flags),
1332 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1333}
1334
1335static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1336 struct iwl_mvm_rx_phy_data *phy_data,
1337 struct ieee80211_radiotap_he *he,
1338 struct ieee80211_radiotap_he_mu *he_mu,
1339 struct ieee80211_rx_status *rx_status,
1340 int queue)
1341{
1342 switch (phy_data->info_type) {
1343 case IWL_RX_PHY_INFO_TYPE_NONE:
1344 case IWL_RX_PHY_INFO_TYPE_CCK:
1345 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1346 case IWL_RX_PHY_INFO_TYPE_HT:
1347 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1348 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1349 return;
1350 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1351 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1352 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1353 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1354 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1355 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1356 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1357 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1358 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1359 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1360 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1361 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1362 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1363 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1364 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1365 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1366 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1367 fallthrough;
1368 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1369 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1370 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1371 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1372 /* HE common */
1373 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1374 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1375 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1376 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1377 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1378 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1379 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1380 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1381 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1382 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1383 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1384 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1385 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1386 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1387 IWL_RX_PHY_DATA0_HE_UPLINK),
1388 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1389 }
1390 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1391 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1392 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1393 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1394 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1395 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1396 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1397 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1398 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1399 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1400 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1401 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1402 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1403 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1404 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1405 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1406 IWL_RX_PHY_DATA0_HE_DOPPLER),
1407 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1408 break;
1409 }
1410
1411 switch (phy_data->info_type) {
1412 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1413 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1414 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1415 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1416 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1417 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1418 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1419 break;
1420 default:
1421 /* nothing here */
1422 break;
1423 }
1424
1425 switch (phy_data->info_type) {
1426 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1427 he_mu->flags1 |=
1428 le16_encode_bits(le16_get_bits(phy_data->d4,
1429 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1430 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1431 he_mu->flags1 |=
1432 le16_encode_bits(le16_get_bits(phy_data->d4,
1433 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1434 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1435 he_mu->flags2 |=
1436 le16_encode_bits(le16_get_bits(phy_data->d4,
1437 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1438 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1439 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1440 fallthrough;
1441 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1442 he_mu->flags2 |=
1443 le16_encode_bits(le32_get_bits(phy_data->d1,
1444 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1445 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1446 he_mu->flags2 |=
1447 le16_encode_bits(le32_get_bits(phy_data->d1,
1448 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1449 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1450 fallthrough;
1451 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1452 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1453 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1454 break;
1455 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1456 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1457 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1458 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1459 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1460 break;
1461 default:
1462 /* nothing */
1463 break;
1464 }
1465}
1466
1467static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1468 struct iwl_mvm_rx_phy_data *phy_data,
1469 int queue)
1470{
1471 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1472 struct ieee80211_radiotap_he *he = NULL;
1473 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1474 u32 rate_n_flags = phy_data->rate_n_flags;
1475 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1476 u8 ltf;
1477 static const struct ieee80211_radiotap_he known = {
1478 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1479 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1480 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1481 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1482 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1483 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1484 };
1485 static const struct ieee80211_radiotap_he_mu mu_known = {
1486 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1487 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1488 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1489 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1490 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1491 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1492 };
1493 u16 phy_info = phy_data->phy_info;
1494
1495 he = skb_put_data(skb, &known, sizeof(known));
1496 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1497
1498 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1499 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1500 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1501 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1502 }
1503
1504 /* report the AMPDU-EOF bit on single frames */
1505 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1506 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1507 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1508 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1509 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1510 }
1511
1512 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1513 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1514 queue);
1515
1516 /* update aggregation data for monitor sake on default queue */
1517 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1518 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1519 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1520
1521 /* toggle is switched whenever new aggregation starts */
1522 if (toggle_bit != mvm->ampdu_toggle) {
1523 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1524 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1525 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1526 }
1527 }
1528
1529 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1530 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1531 rx_status->bw = RATE_INFO_BW_HE_RU;
1532 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1533 }
1534
1535 /* actually data is filled in mac80211 */
1536 if (he_type == RATE_MCS_HE_TYPE_SU ||
1537 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1538 he->data1 |=
1539 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1540
1541#define CHECK_TYPE(F) \
1542 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1543 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1544
1545 CHECK_TYPE(SU);
1546 CHECK_TYPE(EXT_SU);
1547 CHECK_TYPE(MU);
1548 CHECK_TYPE(TRIG);
1549
1550 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1551
1552 if (rate_n_flags & RATE_MCS_BF_MSK)
1553 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1554
1555 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1556 RATE_MCS_HE_GI_LTF_POS) {
1557 case 0:
1558 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1559 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1560 else
1561 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1562 if (he_type == RATE_MCS_HE_TYPE_MU)
1563 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1564 else
1565 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1566 break;
1567 case 1:
1568 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1569 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1570 else
1571 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1572 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1573 break;
1574 case 2:
1575 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1576 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1577 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1578 } else {
1579 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1580 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1581 }
1582 break;
1583 case 3:
1584 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1585 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1586 break;
1587 case 4:
1588 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1589 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1590 break;
1591 default:
1592 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1593 }
1594
1595 he->data5 |= le16_encode_bits(ltf,
1596 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1597}
1598
1599static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1600 struct iwl_mvm_rx_phy_data *phy_data)
1601{
1602 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1603 struct ieee80211_radiotap_lsig *lsig;
1604
1605 switch (phy_data->info_type) {
1606 case IWL_RX_PHY_INFO_TYPE_HT:
1607 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1608 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1609 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1610 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1611 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1612 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1613 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1614 lsig = skb_put(skb, sizeof(*lsig));
1615 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1616 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1617 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1618 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1619 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1620 break;
1621 default:
1622 break;
1623 }
1624}
1625
1626static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1627{
1628 switch (phy_band) {
1629 case PHY_BAND_24:
1630 return NL80211_BAND_2GHZ;
1631 case PHY_BAND_5:
1632 return NL80211_BAND_5GHZ;
1633 case PHY_BAND_6:
1634 return NL80211_BAND_6GHZ;
1635 default:
1636 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1637 return NL80211_BAND_5GHZ;
1638 }
1639}
1640
1641struct iwl_rx_sta_csa {
1642 bool all_sta_unblocked;
1643 struct ieee80211_vif *vif;
1644};
1645
1646static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1647{
1648 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1649 struct iwl_rx_sta_csa *rx_sta_csa = data;
1650
1651 if (mvmsta->vif != rx_sta_csa->vif)
1652 return;
1653
1654 if (mvmsta->disable_tx)
1655 rx_sta_csa->all_sta_unblocked = false;
1656}
1657
1658/*
1659 * Note: requires also rx_status->band to be prefilled, as well
1660 * as phy_data (apart from phy_data->info_type)
1661 */
1662static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1663 struct sk_buff *skb,
1664 struct iwl_mvm_rx_phy_data *phy_data,
1665 int queue)
1666{
1667 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1668 u32 rate_n_flags = phy_data->rate_n_flags;
1669 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1670 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1671 bool is_sgi;
1672
1673 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1674
1675 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1676 phy_data->info_type =
1677 le32_get_bits(phy_data->d1,
1678 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1679
1680 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1681 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1682 case RATE_MCS_CHAN_WIDTH_20:
1683 break;
1684 case RATE_MCS_CHAN_WIDTH_40:
1685 rx_status->bw = RATE_INFO_BW_40;
1686 break;
1687 case RATE_MCS_CHAN_WIDTH_80:
1688 rx_status->bw = RATE_INFO_BW_80;
1689 break;
1690 case RATE_MCS_CHAN_WIDTH_160:
1691 rx_status->bw = RATE_INFO_BW_160;
1692 break;
1693 }
1694
1695 /* must be before L-SIG data */
1696 if (format == RATE_MCS_HE_MSK)
1697 iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1698
1699 iwl_mvm_decode_lsig(skb, phy_data);
1700
1701 rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1702 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1703 rx_status->band);
1704 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1705 phy_data->energy_a, phy_data->energy_b);
1706
1707 if (unlikely(mvm->monitor_on))
1708 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1709
1710 is_sgi = format == RATE_MCS_HE_MSK ?
1711 iwl_he_is_sgi(rate_n_flags) :
1712 rate_n_flags & RATE_MCS_SGI_MSK;
1713
1714 if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
1715 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1716
1717 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1718 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1719
1720 switch (format) {
1721 case RATE_MCS_VHT_MSK:
1722 rx_status->encoding = RX_ENC_VHT;
1723 break;
1724 case RATE_MCS_HE_MSK:
1725 rx_status->encoding = RX_ENC_HE;
1726 rx_status->he_dcm =
1727 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1728 break;
1729 }
1730
1731 switch (format) {
1732 case RATE_MCS_HT_MSK:
1733 rx_status->encoding = RX_ENC_HT;
1734 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
1735 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1736 break;
1737 case RATE_MCS_VHT_MSK:
1738 case RATE_MCS_HE_MSK:
1739 rx_status->nss =
1740 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
1741 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
1742 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1743 break;
1744 default: {
1745 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
1746 rx_status->band);
1747
1748 rx_status->rate_idx = rate;
1749
1750 if ((rate < 0 || rate > 0xFF) && net_ratelimit()) {
1751 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
1752 rate_n_flags, rx_status->band);
1753 rx_status->rate_idx = 0;
1754 }
1755
1756 break;
1757 }
1758 }
1759}
1760
1761void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1762 struct iwl_rx_cmd_buffer *rxb, int queue)
1763{
1764 struct ieee80211_rx_status *rx_status;
1765 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1766 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1767 struct ieee80211_hdr *hdr;
1768 u32 len;
1769 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
1770 struct ieee80211_sta *sta = NULL;
1771 struct sk_buff *skb;
1772 u8 crypt_len = 0;
1773 size_t desc_size;
1774 struct iwl_mvm_rx_phy_data phy_data = {};
1775 u32 format;
1776
1777 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1778 return;
1779
1780 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1781 desc_size = sizeof(*desc);
1782 else
1783 desc_size = IWL_RX_DESC_SIZE_V1;
1784
1785 if (unlikely(pkt_len < desc_size)) {
1786 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
1787 return;
1788 }
1789
1790 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1791 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1792 phy_data.channel = desc->v3.channel;
1793 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1794 phy_data.energy_a = desc->v3.energy_a;
1795 phy_data.energy_b = desc->v3.energy_b;
1796
1797 phy_data.d0 = desc->v3.phy_data0;
1798 phy_data.d1 = desc->v3.phy_data1;
1799 phy_data.d2 = desc->v3.phy_data2;
1800 phy_data.d3 = desc->v3.phy_data3;
1801 } else {
1802 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1803 phy_data.channel = desc->v1.channel;
1804 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1805 phy_data.energy_a = desc->v1.energy_a;
1806 phy_data.energy_b = desc->v1.energy_b;
1807
1808 phy_data.d0 = desc->v1.phy_data0;
1809 phy_data.d1 = desc->v1.phy_data1;
1810 phy_data.d2 = desc->v1.phy_data2;
1811 phy_data.d3 = desc->v1.phy_data3;
1812 }
1813
1814 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
1815 REPLY_RX_MPDU_CMD, 0) < 4) {
1816 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
1817 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
1818 phy_data.rate_n_flags);
1819 }
1820
1821 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1822
1823 len = le16_to_cpu(desc->mpdu_len);
1824
1825 if (unlikely(len + desc_size > pkt_len)) {
1826 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
1827 return;
1828 }
1829
1830 phy_data.phy_info = le16_to_cpu(desc->phy_info);
1831 phy_data.d4 = desc->phy_data4;
1832
1833 hdr = (void *)(pkt->data + desc_size);
1834 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1835 * ieee80211_hdr pulled.
1836 */
1837 skb = alloc_skb(128, GFP_ATOMIC);
1838 if (!skb) {
1839 IWL_ERR(mvm, "alloc_skb failed\n");
1840 return;
1841 }
1842
1843 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1844 /*
1845 * If the device inserted padding it means that (it thought)
1846 * the 802.11 header wasn't a multiple of 4 bytes long. In
1847 * this case, reserve two bytes at the start of the SKB to
1848 * align the payload properly in case we end up copying it.
1849 */
1850 skb_reserve(skb, 2);
1851 }
1852
1853 rx_status = IEEE80211_SKB_RXCB(skb);
1854
1855 /*
1856 * Keep packets with CRC errors (and with overrun) for monitor mode
1857 * (otherwise the firmware discards them) but mark them as bad.
1858 */
1859 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1860 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1861 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1862 le32_to_cpu(desc->status));
1863 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1864 }
1865
1866 /* set the preamble flag if appropriate */
1867 if (format == RATE_MCS_CCK_MSK &&
1868 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1869 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1870
1871 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1872 u64 tsf_on_air_rise;
1873
1874 if (mvm->trans->trans_cfg->device_family >=
1875 IWL_DEVICE_FAMILY_AX210)
1876 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1877 else
1878 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1879
1880 rx_status->mactime = tsf_on_air_rise;
1881 /* TSF as indicated by the firmware is at INA time */
1882 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1883 }
1884
1885 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1886 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1887
1888 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1889 } else {
1890 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
1891 NL80211_BAND_2GHZ;
1892 }
1893
1894 /* update aggregation data for monitor sake on default queue */
1895 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1896 bool toggle_bit;
1897
1898 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1899 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1900 /*
1901 * Toggle is switched whenever new aggregation starts. Make
1902 * sure ampdu_reference is never 0 so we can later use it to
1903 * see if the frame was really part of an A-MPDU or not.
1904 */
1905 if (toggle_bit != mvm->ampdu_toggle) {
1906 mvm->ampdu_ref++;
1907 if (mvm->ampdu_ref == 0)
1908 mvm->ampdu_ref++;
1909 mvm->ampdu_toggle = toggle_bit;
1910 }
1911 rx_status->ampdu_reference = mvm->ampdu_ref;
1912 }
1913
1914 rcu_read_lock();
1915
1916 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1917 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
1918
1919 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
1920 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1921 if (IS_ERR(sta))
1922 sta = NULL;
1923 }
1924 } else if (!is_multicast_ether_addr(hdr->addr2)) {
1925 /*
1926 * This is fine since we prevent two stations with the same
1927 * address from being added.
1928 */
1929 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1930 }
1931
1932 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
1933 le32_to_cpu(pkt->len_n_flags), queue,
1934 &crypt_len)) {
1935 kfree_skb(skb);
1936 goto out;
1937 }
1938
1939 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
1940
1941 if (sta) {
1942 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1943 struct ieee80211_vif *tx_blocked_vif =
1944 rcu_dereference(mvm->csa_tx_blocked_vif);
1945 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1946 IWL_RX_MPDU_REORDER_BAID_MASK) >>
1947 IWL_RX_MPDU_REORDER_BAID_SHIFT);
1948 struct iwl_fw_dbg_trigger_tlv *trig;
1949 struct ieee80211_vif *vif = mvmsta->vif;
1950
1951 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1952 !is_multicast_ether_addr(hdr->addr1) &&
1953 ieee80211_is_data(hdr->frame_control) &&
1954 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1955 schedule_delayed_work(&mvm->tcm.work, 0);
1956
1957 /*
1958 * We have tx blocked stations (with CS bit). If we heard
1959 * frames from a blocked station on a new channel we can
1960 * TX to it again.
1961 */
1962 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1963 struct iwl_mvm_vif *mvmvif =
1964 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1965 struct iwl_rx_sta_csa rx_sta_csa = {
1966 .all_sta_unblocked = true,
1967 .vif = tx_blocked_vif,
1968 };
1969
1970 if (mvmvif->csa_target_freq == rx_status->freq)
1971 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1972 false);
1973 ieee80211_iterate_stations_atomic(mvm->hw,
1974 iwl_mvm_rx_get_sta_block_tx,
1975 &rx_sta_csa);
1976
1977 if (rx_sta_csa.all_sta_unblocked) {
1978 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
1979 /* Unblock BCAST / MCAST station */
1980 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
1981 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork);
1982 }
1983 }
1984
1985 rs_update_last_rssi(mvm, mvmsta, rx_status);
1986
1987 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1988 ieee80211_vif_to_wdev(vif),
1989 FW_DBG_TRIGGER_RSSI);
1990
1991 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1992 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1993 s32 rssi;
1994
1995 rssi_trig = (void *)trig->data;
1996 rssi = le32_to_cpu(rssi_trig->rssi);
1997
1998 if (rx_status->signal < rssi)
1999 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2000 NULL);
2001 }
2002
2003 if (ieee80211_is_data(hdr->frame_control))
2004 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2005
2006 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2007 kfree_skb(skb);
2008 goto out;
2009 }
2010
2011 /*
2012 * Our hardware de-aggregates AMSDUs but copies the mac header
2013 * as it to the de-aggregated MPDUs. We need to turn off the
2014 * AMSDU bit in the QoS control ourselves.
2015 * In addition, HW reverses addr3 and addr4 - reverse it back.
2016 */
2017 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2018 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2019 u8 *qc = ieee80211_get_qos_ctl(hdr);
2020
2021 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2022
2023 if (mvm->trans->trans_cfg->device_family ==
2024 IWL_DEVICE_FAMILY_9000) {
2025 iwl_mvm_flip_address(hdr->addr3);
2026
2027 if (ieee80211_has_a4(hdr->frame_control))
2028 iwl_mvm_flip_address(hdr->addr4);
2029 }
2030 }
2031 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2032 u32 reorder_data = le32_to_cpu(desc->reorder_data);
2033
2034 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2035 }
2036 }
2037
2038 /* management stuff on default queue */
2039 if (!queue) {
2040 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2041 ieee80211_is_probe_resp(hdr->frame_control)) &&
2042 mvm->sched_scan_pass_all ==
2043 SCHED_SCAN_PASS_ALL_ENABLED))
2044 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2045
2046 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2047 ieee80211_is_probe_resp(hdr->frame_control)))
2048 rx_status->boottime_ns = ktime_get_boottime_ns();
2049 }
2050
2051 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2052 kfree_skb(skb);
2053 goto out;
2054 }
2055
2056 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
2057 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
2058 sta);
2059out:
2060 rcu_read_unlock();
2061}
2062
2063void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2064 struct iwl_rx_cmd_buffer *rxb, int queue)
2065{
2066 struct ieee80211_rx_status *rx_status;
2067 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2068 struct iwl_rx_no_data *desc = (void *)pkt->data;
2069 u32 rssi;
2070 u32 info_type;
2071 struct ieee80211_sta *sta = NULL;
2072 struct sk_buff *skb;
2073 struct iwl_mvm_rx_phy_data phy_data;
2074 u32 format;
2075
2076 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2077 return;
2078
2079 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2080 return;
2081
2082 rssi = le32_to_cpu(desc->rssi);
2083 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2084 phy_data.d0 = desc->phy_info[0];
2085 phy_data.d1 = desc->phy_info[1];
2086 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2087 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2088 phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2089 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2090 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2091 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2092
2093 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2094 RX_NO_DATA_NOTIF, 0) < 2) {
2095 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2096 phy_data.rate_n_flags);
2097 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2098 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2099 phy_data.rate_n_flags);
2100 }
2101
2102 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2103
2104 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2105 * ieee80211_hdr pulled.
2106 */
2107 skb = alloc_skb(128, GFP_ATOMIC);
2108 if (!skb) {
2109 IWL_ERR(mvm, "alloc_skb failed\n");
2110 return;
2111 }
2112
2113 rx_status = IEEE80211_SKB_RXCB(skb);
2114
2115 /* 0-length PSDU */
2116 rx_status->flag |= RX_FLAG_NO_PSDU;
2117
2118 switch (info_type) {
2119 case RX_NO_DATA_INFO_TYPE_NDP:
2120 rx_status->zero_length_psdu_type =
2121 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2122 break;
2123 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2124 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
2125 rx_status->zero_length_psdu_type =
2126 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2127 break;
2128 default:
2129 rx_status->zero_length_psdu_type =
2130 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2131 break;
2132 }
2133
2134 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2135 NL80211_BAND_2GHZ;
2136
2137 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2138
2139 /*
2140 * Override the nss from the rx_vec since the rate_n_flags has
2141 * only 2 bits for the nss which gives a max of 4 ss but there
2142 * may be up to 8 spatial streams.
2143 */
2144 switch (format) {
2145 case RATE_MCS_VHT_MSK:
2146 rx_status->nss =
2147 le32_get_bits(desc->rx_vec[0],
2148 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2149 break;
2150 case RATE_MCS_HE_MSK:
2151 rx_status->nss =
2152 le32_get_bits(desc->rx_vec[0],
2153 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2154 break;
2155 }
2156
2157 rcu_read_lock();
2158 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2159 rcu_read_unlock();
2160}
2161
2162void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2163 struct iwl_rx_cmd_buffer *rxb, int queue)
2164{
2165 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2166 struct iwl_frame_release *release = (void *)pkt->data;
2167
2168 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2169 return;
2170
2171 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2172 le16_to_cpu(release->nssn),
2173 queue, 0);
2174}
2175
2176void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2177 struct iwl_rx_cmd_buffer *rxb, int queue)
2178{
2179 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2180 struct iwl_bar_frame_release *release = (void *)pkt->data;
2181 unsigned int baid = le32_get_bits(release->ba_info,
2182 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2183 unsigned int nssn = le32_get_bits(release->ba_info,
2184 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2185 unsigned int sta_id = le32_get_bits(release->sta_tid,
2186 IWL_BAR_FRAME_RELEASE_STA_MASK);
2187 unsigned int tid = le32_get_bits(release->sta_tid,
2188 IWL_BAR_FRAME_RELEASE_TID_MASK);
2189 struct iwl_mvm_baid_data *baid_data;
2190
2191 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2192 return;
2193
2194 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2195 baid >= ARRAY_SIZE(mvm->baid_map)))
2196 return;
2197
2198 rcu_read_lock();
2199 baid_data = rcu_dereference(mvm->baid_map[baid]);
2200 if (!baid_data) {
2201 IWL_DEBUG_RX(mvm,
2202 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2203 baid);
2204 goto out;
2205 }
2206
2207 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2208 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2209 baid, baid_data->sta_id, baid_data->tid, sta_id,
2210 tid))
2211 goto out;
2212
2213 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2214out:
2215 rcu_read_unlock();
2216}