Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7#include <linux/etherdevice.h>
8#include <linux/skbuff.h>
9#include "iwl-trans.h"
10#include "mvm.h"
11#include "fw-api.h"
12#include "time-sync.h"
13
14static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 int queue, struct ieee80211_sta *sta)
16{
17 struct iwl_mvm_sta *mvmsta;
18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 struct iwl_mvm_key_pn *ptk_pn;
21 int res;
22 u8 tid, keyidx;
23 u8 pn[IEEE80211_CCMP_PN_LEN];
24 u8 *extiv;
25
26 /* do PN checking */
27
28 /* multicast and non-data only arrives on default queue */
29 if (!ieee80211_is_data(hdr->frame_control) ||
30 is_multicast_ether_addr(hdr->addr1))
31 return 0;
32
33 /* do not check PN for open AP */
34 if (!(stats->flag & RX_FLAG_DECRYPTED))
35 return 0;
36
37 /*
38 * avoid checking for default queue - we don't want to replicate
39 * all the logic that's necessary for checking the PN on fragmented
40 * frames, leave that to mac80211
41 */
42 if (queue == 0)
43 return 0;
44
45 /* if we are here - this for sure is either CCMP or GCMP */
46 if (IS_ERR_OR_NULL(sta)) {
47 IWL_DEBUG_DROP(mvm,
48 "expected hw-decrypted unicast frame for station\n");
49 return -1;
50 }
51
52 mvmsta = iwl_mvm_sta_from_mac80211(sta);
53
54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 keyidx = extiv[3] >> 6;
56
57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 if (!ptk_pn)
59 return -1;
60
61 if (ieee80211_is_data_qos(hdr->frame_control))
62 tid = ieee80211_get_tid(hdr);
63 else
64 tid = 0;
65
66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 if (tid >= IWL_MAX_TID_COUNT)
68 return -1;
69
70 /* load pn */
71 pn[0] = extiv[7];
72 pn[1] = extiv[6];
73 pn[2] = extiv[5];
74 pn[3] = extiv[4];
75 pn[4] = extiv[1];
76 pn[5] = extiv[0];
77
78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 if (res < 0)
80 return -1;
81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 return -1;
83
84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 stats->flag |= RX_FLAG_PN_VALIDATED;
86
87 return 0;
88}
89
90/* iwl_mvm_create_skb Adds the rxb to a new skb */
91static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 struct iwl_rx_cmd_buffer *rxb)
94{
95 struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 unsigned int headlen, fraglen, pad_len = 0;
98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101
102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 len -= 2;
104 pad_len = 2;
105 }
106
107 /*
108 * For non monitor interface strip the bytes the RADA might not have
109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 * interface cannot exist with other interfaces, this removal is safe
111 * and sufficient, in monitor mode there's no decryption being done.
112 */
113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 len -= mic_crc_len;
115
116 /* If frame is small enough to fit in skb->head, pull it completely.
117 * If not, only pull ieee80211_hdr (including crypto if present, and
118 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 * splice() or TCP coalesce are more efficient.
120 *
121 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 * least 8 bytes (possibly more for mesh) we can do the same here
123 * to save the cost of doing it later. That still doesn't pull in
124 * the actual IP header since the typical case has a SNAP header.
125 * If the latter changes (there are efforts in the standards group
126 * to do so) we should revisit this and ieee80211_data_to_8023().
127 */
128 headlen = (len <= skb_tailroom(skb)) ? len :
129 hdrlen + crypt_len + 8;
130
131 /* The firmware may align the packet to DWORD.
132 * The padding is inserted after the IV.
133 * After copying the header + IV skip the padding if
134 * present before copying packet data.
135 */
136 hdrlen += crypt_len;
137
138 if (unlikely(headlen < hdrlen))
139 return -EINVAL;
140
141 /* Since data doesn't move data while putting data on skb and that is
142 * the only way we use, data + len is the next place that hdr would be put
143 */
144 skb_set_mac_header(skb, skb->len);
145 skb_put_data(skb, hdr, hdrlen);
146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147
148 /*
149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 * certain cases and starts the checksum after the SNAP. Check if
151 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 * in the cases the hardware didn't handle, since it's rare to see
153 * such packets, even though the hardware did calculate the checksum
154 * in this case, just starting after the MAC header instead.
155 *
156 * Starting from Bz hardware, it calculates starting directly after
157 * the MAC header, so that matches mac80211's expectation.
158 */
159 if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 struct {
161 u8 hdr[6];
162 __be16 type;
163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164
165 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 (shdr->type != htons(ETH_P_IP) &&
168 shdr->type != htons(ETH_P_ARP) &&
169 shdr->type != htons(ETH_P_IPV6) &&
170 shdr->type != htons(ETH_P_8021Q) &&
171 shdr->type != htons(ETH_P_PAE) &&
172 shdr->type != htons(ETH_P_TDLS))))
173 skb->ip_summed = CHECKSUM_NONE;
174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 /* mac80211 assumes full CSUM including SNAP header */
176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 }
178
179 fraglen = len - headlen;
180
181 if (fraglen) {
182 int offset = (u8 *)hdr + headlen + pad_len -
183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184
185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 fraglen, rxb->truesize);
187 }
188
189 return 0;
190}
191
192/* put a TLV on the skb and return data pointer
193 *
194 * Also pad to 4 the len and zero out all data part
195 */
196static void *
197iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198{
199 struct ieee80211_radiotap_tlv *tlv;
200
201 tlv = skb_put(skb, sizeof(*tlv));
202 tlv->type = cpu_to_le16(type);
203 tlv->len = cpu_to_le16(len);
204 return skb_put_zero(skb, ALIGN(len, 4));
205}
206
207static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 struct sk_buff *skb)
209{
210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 struct ieee80211_radiotap_vendor_content *radiotap;
212 const u16 vendor_data_len = sizeof(mvm->cur_aid);
213
214 if (!mvm->cur_aid)
215 return;
216
217 radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 sizeof(*radiotap) + vendor_data_len);
220
221 /* Intel OUI */
222 radiotap->oui[0] = 0xf6;
223 radiotap->oui[1] = 0x54;
224 radiotap->oui[2] = 0x25;
225 /* radiotap sniffer config sub-namespace */
226 radiotap->oui_subtype = 1;
227 radiotap->vendor_type = 0;
228
229 /* fill the data now */
230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231
232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233}
234
235/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 struct napi_struct *napi,
238 struct sk_buff *skb, int queue,
239 struct ieee80211_sta *sta,
240 struct ieee80211_link_sta *link_sta)
241{
242 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
243 kfree_skb(skb);
244 return;
245 }
246
247 if (sta && sta->valid_links && link_sta) {
248 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
249
250 rx_status->link_valid = 1;
251 rx_status->link_id = link_sta->link_id;
252 }
253
254 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
255}
256
257static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
258 struct ieee80211_rx_status *rx_status,
259 u32 rate_n_flags, int energy_a,
260 int energy_b)
261{
262 int max_energy;
263 u32 rate_flags = rate_n_flags;
264
265 energy_a = energy_a ? -energy_a : S8_MIN;
266 energy_b = energy_b ? -energy_b : S8_MIN;
267 max_energy = max(energy_a, energy_b);
268
269 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
270 energy_a, energy_b, max_energy);
271
272 rx_status->signal = max_energy;
273 rx_status->chains =
274 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
275 rx_status->chain_signal[0] = energy_a;
276 rx_status->chain_signal[1] = energy_b;
277}
278
279static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
280 struct ieee80211_hdr *hdr,
281 struct iwl_rx_mpdu_desc *desc,
282 u32 status,
283 struct ieee80211_rx_status *stats)
284{
285 struct iwl_mvm_sta *mvmsta;
286 struct iwl_mvm_vif *mvmvif;
287 u8 keyid;
288 struct ieee80211_key_conf *key;
289 u32 len = le16_to_cpu(desc->mpdu_len);
290 const u8 *frame = (void *)hdr;
291
292 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
293 return 0;
294
295 /*
296 * For non-beacon, we don't really care. But beacons may
297 * be filtered out, and we thus need the firmware's replay
298 * detection, otherwise beacons the firmware previously
299 * filtered could be replayed, or something like that, and
300 * it can filter a lot - though usually only if nothing has
301 * changed.
302 */
303 if (!ieee80211_is_beacon(hdr->frame_control))
304 return 0;
305
306 /* key mismatch - will also report !MIC_OK but we shouldn't count it */
307 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
308 return -1;
309
310 /* good cases */
311 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
312 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
313 stats->flag |= RX_FLAG_DECRYPTED;
314 return 0;
315 }
316
317 if (!sta)
318 return -1;
319
320 mvmsta = iwl_mvm_sta_from_mac80211(sta);
321
322 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
323
324 /*
325 * both keys will have the same cipher and MIC length, use
326 * whichever one is available
327 */
328 key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
329 if (!key) {
330 key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
331 if (!key)
332 return -1;
333 }
334
335 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
336 return -1;
337
338 /* get the real key ID */
339 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
340 /* and if that's the other key, look it up */
341 if (keyid != key->keyidx) {
342 /*
343 * shouldn't happen since firmware checked, but be safe
344 * in case the MIC length is wrong too, for example
345 */
346 if (keyid != 6 && keyid != 7)
347 return -1;
348 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
349 if (!key)
350 return -1;
351 }
352
353 /* Report status to mac80211 */
354 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
355 ieee80211_key_mic_failure(key);
356 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
357 ieee80211_key_replay(key);
358
359 return -1;
360}
361
362static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
363 struct ieee80211_hdr *hdr,
364 struct ieee80211_rx_status *stats, u16 phy_info,
365 struct iwl_rx_mpdu_desc *desc,
366 u32 pkt_flags, int queue, u8 *crypt_len)
367{
368 u32 status = le32_to_cpu(desc->status);
369
370 /*
371 * Drop UNKNOWN frames in aggregation, unless in monitor mode
372 * (where we don't have the keys).
373 * We limit this to aggregation because in TKIP this is a valid
374 * scenario, since we may not have the (correct) TTAK (phase 1
375 * key) in the firmware.
376 */
377 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
378 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
379 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) {
380 IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n");
381 return -1;
382 }
383
384 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
385 !ieee80211_has_protected(hdr->frame_control)))
386 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
387
388 if (!ieee80211_has_protected(hdr->frame_control) ||
389 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
390 IWL_RX_MPDU_STATUS_SEC_NONE)
391 return 0;
392
393 /* TODO: handle packets encrypted with unknown alg */
394
395 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
396 case IWL_RX_MPDU_STATUS_SEC_CCM:
397 case IWL_RX_MPDU_STATUS_SEC_GCM:
398 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
399 /* alg is CCM: check MIC only */
400 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
401 return -1;
402
403 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
404 *crypt_len = IEEE80211_CCMP_HDR_LEN;
405 return 0;
406 case IWL_RX_MPDU_STATUS_SEC_TKIP:
407 /* Don't drop the frame and decrypt it in SW */
408 if (!fw_has_api(&mvm->fw->ucode_capa,
409 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
410 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
411 return 0;
412
413 if (mvm->trans->trans_cfg->gen2 &&
414 !(status & RX_MPDU_RES_STATUS_MIC_OK))
415 stats->flag |= RX_FLAG_MMIC_ERROR;
416
417 *crypt_len = IEEE80211_TKIP_IV_LEN;
418 fallthrough;
419 case IWL_RX_MPDU_STATUS_SEC_WEP:
420 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
421 return -1;
422
423 stats->flag |= RX_FLAG_DECRYPTED;
424 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
425 IWL_RX_MPDU_STATUS_SEC_WEP)
426 *crypt_len = IEEE80211_WEP_IV_LEN;
427
428 if (pkt_flags & FH_RSCSR_RADA_EN) {
429 stats->flag |= RX_FLAG_ICV_STRIPPED;
430 if (mvm->trans->trans_cfg->gen2)
431 stats->flag |= RX_FLAG_MMIC_STRIPPED;
432 }
433
434 return 0;
435 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
436 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
437 return -1;
438 stats->flag |= RX_FLAG_DECRYPTED;
439 return 0;
440 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
441 break;
442 default:
443 /*
444 * Sometimes we can get frames that were not decrypted
445 * because the firmware didn't have the keys yet. This can
446 * happen after connection where we can get multicast frames
447 * before the GTK is installed.
448 * Silently drop those frames.
449 * Also drop un-decrypted frames in monitor mode.
450 */
451 if (!is_multicast_ether_addr(hdr->addr1) &&
452 !mvm->monitor_on && net_ratelimit())
453 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
454 }
455
456 return 0;
457}
458
459static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
460 struct ieee80211_sta *sta,
461 struct sk_buff *skb,
462 struct iwl_rx_packet *pkt)
463{
464 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
465
466 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
467 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
468 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
469
470 skb->ip_summed = CHECKSUM_COMPLETE;
471 skb->csum = csum_unfold(~(__force __sum16)hwsum);
472 }
473 } else {
474 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
475 struct iwl_mvm_vif *mvmvif;
476 u16 flags = le16_to_cpu(desc->l3l4_flags);
477 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
478 IWL_RX_L3_PROTO_POS);
479
480 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
481
482 if (mvmvif->features & NETIF_F_RXCSUM &&
483 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
484 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
485 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
486 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
487 skb->ip_summed = CHECKSUM_UNNECESSARY;
488 }
489}
490
491/*
492 * returns true if a packet is a duplicate or invalid tid and should be dropped.
493 * Updates AMSDU PN tracking info
494 */
495static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
496 struct ieee80211_rx_status *rx_status,
497 struct ieee80211_hdr *hdr,
498 struct iwl_rx_mpdu_desc *desc)
499{
500 struct iwl_mvm_sta *mvm_sta;
501 struct iwl_mvm_rxq_dup_data *dup_data;
502 u8 tid, sub_frame_idx;
503
504 if (WARN_ON(IS_ERR_OR_NULL(sta)))
505 return false;
506
507 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
508
509 if (WARN_ON_ONCE(!mvm_sta->dup_data))
510 return false;
511
512 dup_data = &mvm_sta->dup_data[queue];
513
514 /*
515 * Drop duplicate 802.11 retransmissions
516 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
517 */
518 if (ieee80211_is_ctl(hdr->frame_control) ||
519 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
520 is_multicast_ether_addr(hdr->addr1)) {
521 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
522 return false;
523 }
524
525 if (ieee80211_is_data_qos(hdr->frame_control)) {
526 /* frame has qos control */
527 tid = ieee80211_get_tid(hdr);
528 if (tid >= IWL_MAX_TID_COUNT)
529 return true;
530 } else {
531 tid = IWL_MAX_TID_COUNT;
532 }
533
534 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
535 sub_frame_idx = desc->amsdu_info &
536 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
537
538 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
539 dup_data->last_seq[tid] == hdr->seq_ctrl &&
540 dup_data->last_sub_frame[tid] >= sub_frame_idx))
541 return true;
542
543 /* Allow same PN as the first subframe for following sub frames */
544 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
545 sub_frame_idx > dup_data->last_sub_frame[tid] &&
546 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
547 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
548
549 dup_data->last_seq[tid] = hdr->seq_ctrl;
550 dup_data->last_sub_frame[tid] = sub_frame_idx;
551
552 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
553
554 return false;
555}
556
557static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
558 struct ieee80211_sta *sta,
559 struct napi_struct *napi,
560 struct iwl_mvm_baid_data *baid_data,
561 struct iwl_mvm_reorder_buffer *reorder_buf,
562 u16 nssn)
563{
564 struct iwl_mvm_reorder_buf_entry *entries =
565 &baid_data->entries[reorder_buf->queue *
566 baid_data->entries_per_queue];
567 u16 ssn = reorder_buf->head_sn;
568
569 lockdep_assert_held(&reorder_buf->lock);
570
571 while (ieee80211_sn_less(ssn, nssn)) {
572 int index = ssn % reorder_buf->buf_size;
573 struct sk_buff_head *skb_list = &entries[index].frames;
574 struct sk_buff *skb;
575
576 ssn = ieee80211_sn_inc(ssn);
577
578 /*
579 * Empty the list. Will have more than one frame for A-MSDU.
580 * Empty list is valid as well since nssn indicates frames were
581 * received.
582 */
583 while ((skb = __skb_dequeue(skb_list))) {
584 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
585 reorder_buf->queue,
586 sta, NULL /* FIXME */);
587 reorder_buf->num_stored--;
588 }
589 }
590 reorder_buf->head_sn = nssn;
591}
592
593static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
594 struct iwl_mvm_delba_data *data)
595{
596 struct iwl_mvm_baid_data *ba_data;
597 struct ieee80211_sta *sta;
598 struct iwl_mvm_reorder_buffer *reorder_buf;
599 u8 baid = data->baid;
600 u32 sta_id;
601
602 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
603 return;
604
605 rcu_read_lock();
606
607 ba_data = rcu_dereference(mvm->baid_map[baid]);
608 if (WARN_ON_ONCE(!ba_data))
609 goto out;
610
611 /* pick any STA ID to find the pointer */
612 sta_id = ffs(ba_data->sta_mask) - 1;
613 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
614 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
615 goto out;
616
617 reorder_buf = &ba_data->reorder_buf[queue];
618
619 /* release all frames that are in the reorder buffer to the stack */
620 spin_lock_bh(&reorder_buf->lock);
621 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
622 ieee80211_sn_add(reorder_buf->head_sn,
623 reorder_buf->buf_size));
624 spin_unlock_bh(&reorder_buf->lock);
625
626out:
627 rcu_read_unlock();
628}
629
630static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
631 struct napi_struct *napi,
632 u8 baid, u16 nssn, int queue)
633{
634 struct ieee80211_sta *sta;
635 struct iwl_mvm_reorder_buffer *reorder_buf;
636 struct iwl_mvm_baid_data *ba_data;
637 u32 sta_id;
638
639 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
640 baid, nssn);
641
642 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
643 baid >= ARRAY_SIZE(mvm->baid_map)))
644 return;
645
646 rcu_read_lock();
647
648 ba_data = rcu_dereference(mvm->baid_map[baid]);
649 if (!ba_data) {
650 WARN(true, "BAID %d not found in map\n", baid);
651 goto out;
652 }
653
654 /* pick any STA ID to find the pointer */
655 sta_id = ffs(ba_data->sta_mask) - 1;
656 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
657 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
658 goto out;
659
660 reorder_buf = &ba_data->reorder_buf[queue];
661
662 spin_lock_bh(&reorder_buf->lock);
663 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
664 reorder_buf, nssn);
665 spin_unlock_bh(&reorder_buf->lock);
666
667out:
668 rcu_read_unlock();
669}
670
671void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
672 struct iwl_rx_cmd_buffer *rxb, int queue)
673{
674 struct iwl_rx_packet *pkt = rxb_addr(rxb);
675 struct iwl_rxq_sync_notification *notif;
676 struct iwl_mvm_internal_rxq_notif *internal_notif;
677 u32 len = iwl_rx_packet_payload_len(pkt);
678
679 notif = (void *)pkt->data;
680 internal_notif = (void *)notif->payload;
681
682 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
683 "invalid notification size %d (%d)",
684 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
685 return;
686 len -= sizeof(*notif) + sizeof(*internal_notif);
687
688 if (internal_notif->sync &&
689 mvm->queue_sync_cookie != internal_notif->cookie) {
690 WARN_ONCE(1, "Received expired RX queue sync message\n");
691 return;
692 }
693
694 switch (internal_notif->type) {
695 case IWL_MVM_RXQ_EMPTY:
696 WARN_ONCE(len, "invalid empty notification size %d", len);
697 break;
698 case IWL_MVM_RXQ_NOTIF_DEL_BA:
699 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
700 "invalid delba notification size %d (%d)",
701 len, (int)sizeof(struct iwl_mvm_delba_data)))
702 break;
703 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
704 break;
705 default:
706 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
707 }
708
709 if (internal_notif->sync) {
710 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
711 "queue sync: queue %d responded a second time!\n",
712 queue);
713 if (READ_ONCE(mvm->queue_sync_state) == 0)
714 wake_up(&mvm->rx_sync_waitq);
715 }
716}
717
718/*
719 * Returns true if the MPDU was buffered\dropped, false if it should be passed
720 * to upper layer.
721 */
722static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
723 struct napi_struct *napi,
724 int queue,
725 struct ieee80211_sta *sta,
726 struct sk_buff *skb,
727 struct iwl_rx_mpdu_desc *desc)
728{
729 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
730 struct iwl_mvm_baid_data *baid_data;
731 struct iwl_mvm_reorder_buffer *buffer;
732 u32 reorder = le32_to_cpu(desc->reorder_data);
733 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
734 bool last_subframe =
735 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
736 u8 tid = ieee80211_get_tid(hdr);
737 u8 sub_frame_idx = desc->amsdu_info &
738 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
739 struct iwl_mvm_reorder_buf_entry *entries;
740 u32 sta_mask;
741 int index;
742 u16 nssn, sn;
743 u8 baid;
744
745 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
746 IWL_RX_MPDU_REORDER_BAID_SHIFT;
747
748 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000)
749 return false;
750
751 /*
752 * This also covers the case of receiving a Block Ack Request
753 * outside a BA session; we'll pass it to mac80211 and that
754 * then sends a delBA action frame.
755 * This also covers pure monitor mode, in which case we won't
756 * have any BA sessions.
757 */
758 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
759 return false;
760
761 /* no sta yet */
762 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
763 "Got valid BAID without a valid station assigned\n"))
764 return false;
765
766 /* not a data packet or a bar */
767 if (!ieee80211_is_back_req(hdr->frame_control) &&
768 (!ieee80211_is_data_qos(hdr->frame_control) ||
769 is_multicast_ether_addr(hdr->addr1)))
770 return false;
771
772 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
773 return false;
774
775 baid_data = rcu_dereference(mvm->baid_map[baid]);
776 if (!baid_data) {
777 IWL_DEBUG_RX(mvm,
778 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
779 baid, reorder);
780 return false;
781 }
782
783 rcu_read_lock();
784 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
785 rcu_read_unlock();
786
787 if (IWL_FW_CHECK(mvm,
788 tid != baid_data->tid ||
789 !(sta_mask & baid_data->sta_mask),
790 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
791 baid, baid_data->sta_mask, baid_data->tid,
792 sta_mask, tid))
793 return false;
794
795 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
796 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
797 IWL_RX_MPDU_REORDER_SN_SHIFT;
798
799 buffer = &baid_data->reorder_buf[queue];
800 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
801
802 spin_lock_bh(&buffer->lock);
803
804 if (!buffer->valid) {
805 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
806 spin_unlock_bh(&buffer->lock);
807 return false;
808 }
809 buffer->valid = true;
810 }
811
812 /* drop any duplicated packets */
813 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE))
814 goto drop;
815
816 /* drop any oudated packets */
817 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)
818 goto drop;
819
820 /* release immediately if allowed by nssn and no stored frames */
821 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
822 if (!amsdu || last_subframe)
823 buffer->head_sn = nssn;
824 /* No need to update AMSDU last SN - we are moving the head */
825 spin_unlock_bh(&buffer->lock);
826 return false;
827 }
828
829 /*
830 * release immediately if there are no stored frames, and the sn is
831 * equal to the head.
832 * This can happen due to reorder timer, where NSSN is behind head_sn.
833 * When we released everything, and we got the next frame in the
834 * sequence, according to the NSSN we can't release immediately,
835 * while technically there is no hole and we can move forward.
836 */
837 if (!buffer->num_stored && sn == buffer->head_sn) {
838 if (!amsdu || last_subframe)
839 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
840
841 /* No need to update AMSDU last SN - we are moving the head */
842 spin_unlock_bh(&buffer->lock);
843 return false;
844 }
845
846 /* put in reorder buffer */
847 index = sn % buffer->buf_size;
848 __skb_queue_tail(&entries[index].frames, skb);
849 buffer->num_stored++;
850
851 if (amsdu) {
852 buffer->last_amsdu = sn;
853 buffer->last_sub_index = sub_frame_idx;
854 }
855
856 /*
857 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
858 * The reason is that NSSN advances on the first sub-frame, and may
859 * cause the reorder buffer to advance before all the sub-frames arrive.
860 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
861 * SN 1. NSSN for first sub frame will be 3 with the result of driver
862 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
863 * already ahead and it will be dropped.
864 * If the last sub-frame is not on this queue - we will get frame
865 * release notification with up to date NSSN.
866 */
867 if (!amsdu || last_subframe)
868 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
869 buffer, nssn);
870
871 spin_unlock_bh(&buffer->lock);
872 return true;
873
874drop:
875 kfree_skb(skb);
876 spin_unlock_bh(&buffer->lock);
877 return true;
878}
879
880static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
881 u32 reorder_data, u8 baid)
882{
883 unsigned long now = jiffies;
884 unsigned long timeout;
885 struct iwl_mvm_baid_data *data;
886
887 rcu_read_lock();
888
889 data = rcu_dereference(mvm->baid_map[baid]);
890 if (!data) {
891 IWL_DEBUG_RX(mvm,
892 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
893 baid, reorder_data);
894 goto out;
895 }
896
897 if (!data->timeout)
898 goto out;
899
900 timeout = data->timeout;
901 /*
902 * Do not update last rx all the time to avoid cache bouncing
903 * between the rx queues.
904 * Update it every timeout. Worst case is the session will
905 * expire after ~ 2 * timeout, which doesn't matter that much.
906 */
907 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
908 /* Update is atomic */
909 data->last_rx = now;
910
911out:
912 rcu_read_unlock();
913}
914
915static void iwl_mvm_flip_address(u8 *addr)
916{
917 int i;
918 u8 mac_addr[ETH_ALEN];
919
920 for (i = 0; i < ETH_ALEN; i++)
921 mac_addr[i] = addr[ETH_ALEN - i - 1];
922 ether_addr_copy(addr, mac_addr);
923}
924
925struct iwl_mvm_rx_phy_data {
926 enum iwl_rx_phy_info_type info_type;
927 __le32 d0, d1, d2, d3, eht_d4, d5;
928 __le16 d4;
929 bool with_data;
930 bool first_subframe;
931 __le32 rx_vec[4];
932
933 u32 rate_n_flags;
934 u32 gp2_on_air_rise;
935 u16 phy_info;
936 u8 energy_a, energy_b;
937 u8 channel;
938};
939
940static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
941 struct iwl_mvm_rx_phy_data *phy_data,
942 struct ieee80211_radiotap_he_mu *he_mu)
943{
944 u32 phy_data2 = le32_to_cpu(phy_data->d2);
945 u32 phy_data3 = le32_to_cpu(phy_data->d3);
946 u16 phy_data4 = le16_to_cpu(phy_data->d4);
947 u32 rate_n_flags = phy_data->rate_n_flags;
948
949 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
950 he_mu->flags1 |=
951 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
952 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
953
954 he_mu->flags1 |=
955 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
956 phy_data4),
957 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
958
959 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
960 phy_data2);
961 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
962 phy_data3);
963 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
964 phy_data2);
965 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
966 phy_data3);
967 }
968
969 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
970 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
971 he_mu->flags1 |=
972 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
973 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
974
975 he_mu->flags2 |=
976 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
977 phy_data4),
978 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
979
980 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
981 phy_data2);
982 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
983 phy_data3);
984 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
985 phy_data2);
986 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
987 phy_data3);
988 }
989}
990
991static void
992iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
993 struct ieee80211_radiotap_he *he,
994 struct ieee80211_radiotap_he_mu *he_mu,
995 struct ieee80211_rx_status *rx_status)
996{
997 /*
998 * Unfortunately, we have to leave the mac80211 data
999 * incorrect for the case that we receive an HE-MU
1000 * transmission and *don't* have the HE phy data (due
1001 * to the bits being used for TSF). This shouldn't
1002 * happen though as management frames where we need
1003 * the TSF/timers are not be transmitted in HE-MU.
1004 */
1005 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1006 u32 rate_n_flags = phy_data->rate_n_flags;
1007 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1008 u8 offs = 0;
1009
1010 rx_status->bw = RATE_INFO_BW_HE_RU;
1011
1012 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1013
1014 switch (ru) {
1015 case 0 ... 36:
1016 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1017 offs = ru;
1018 break;
1019 case 37 ... 52:
1020 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1021 offs = ru - 37;
1022 break;
1023 case 53 ... 60:
1024 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1025 offs = ru - 53;
1026 break;
1027 case 61 ... 64:
1028 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1029 offs = ru - 61;
1030 break;
1031 case 65 ... 66:
1032 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1033 offs = ru - 65;
1034 break;
1035 case 67:
1036 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1037 break;
1038 case 68:
1039 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1040 break;
1041 }
1042 he->data2 |= le16_encode_bits(offs,
1043 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1044 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1045 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1046 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1047 he->data2 |=
1048 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1049
1050#define CHECK_BW(bw) \
1051 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1052 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1053 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1054 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1055 CHECK_BW(20);
1056 CHECK_BW(40);
1057 CHECK_BW(80);
1058 CHECK_BW(160);
1059
1060 if (he_mu)
1061 he_mu->flags2 |=
1062 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1063 rate_n_flags),
1064 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1065 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1066 he->data6 |=
1067 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1068 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1069 rate_n_flags),
1070 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1071}
1072
1073static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1074 struct iwl_mvm_rx_phy_data *phy_data,
1075 struct ieee80211_radiotap_he *he,
1076 struct ieee80211_radiotap_he_mu *he_mu,
1077 struct ieee80211_rx_status *rx_status,
1078 int queue)
1079{
1080 switch (phy_data->info_type) {
1081 case IWL_RX_PHY_INFO_TYPE_NONE:
1082 case IWL_RX_PHY_INFO_TYPE_CCK:
1083 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1084 case IWL_RX_PHY_INFO_TYPE_HT:
1085 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1086 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1087 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1088 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1089 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1090 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1091 return;
1092 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1093 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1094 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1095 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1096 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1097 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1098 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1099 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1100 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1101 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1102 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1103 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1104 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1105 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1106 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1107 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1108 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1109 fallthrough;
1110 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1111 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1112 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1113 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1114 /* HE common */
1115 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1116 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1117 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1118 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1119 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1120 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1121 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1122 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1123 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1124 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1125 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1126 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1127 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1128 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1129 IWL_RX_PHY_DATA0_HE_UPLINK),
1130 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1131 }
1132 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1133 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1134 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1135 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1136 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1137 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1138 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1139 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1140 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1141 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1142 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1143 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1144 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1145 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1146 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1147 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1148 IWL_RX_PHY_DATA0_HE_DOPPLER),
1149 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1150 break;
1151 }
1152
1153 switch (phy_data->info_type) {
1154 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1155 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1156 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1157 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1158 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1159 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1160 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1161 break;
1162 default:
1163 /* nothing here */
1164 break;
1165 }
1166
1167 switch (phy_data->info_type) {
1168 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1169 he_mu->flags1 |=
1170 le16_encode_bits(le16_get_bits(phy_data->d4,
1171 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1172 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1173 he_mu->flags1 |=
1174 le16_encode_bits(le16_get_bits(phy_data->d4,
1175 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1176 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1177 he_mu->flags2 |=
1178 le16_encode_bits(le16_get_bits(phy_data->d4,
1179 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1180 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1181 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1182 fallthrough;
1183 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1184 he_mu->flags2 |=
1185 le16_encode_bits(le32_get_bits(phy_data->d1,
1186 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1187 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1188 he_mu->flags2 |=
1189 le16_encode_bits(le32_get_bits(phy_data->d1,
1190 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1191 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1192 fallthrough;
1193 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1194 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1195 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1196 break;
1197 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1198 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1199 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1200 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1201 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1202 break;
1203 default:
1204 /* nothing */
1205 break;
1206 }
1207}
1208
1209#define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1210 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1211
1212#define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1213 typeof(enc_bits) _enc_bits = enc_bits; \
1214 typeof(usig) _usig = usig; \
1215 (_usig)->mask |= cpu_to_le32(_enc_bits); \
1216 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1217} while (0)
1218
1219#define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1220 eht->data[(rt_data)] |= \
1221 (cpu_to_le32 \
1222 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1223 LE32_DEC_ENC(data ## fw_data, \
1224 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1225 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1226
1227#define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1228 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1229
1230#define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1
1231#define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2
1232#define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2
1233#define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2
1234#define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3
1235#define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3
1236#define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3
1237#define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4
1238
1239#define IWL_RX_RU_DATA_A1 2
1240#define IWL_RX_RU_DATA_A2 2
1241#define IWL_RX_RU_DATA_B1 2
1242#define IWL_RX_RU_DATA_B2 4
1243#define IWL_RX_RU_DATA_C1 3
1244#define IWL_RX_RU_DATA_C2 3
1245#define IWL_RX_RU_DATA_D1 4
1246#define IWL_RX_RU_DATA_D2 4
1247
1248#define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \
1249 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \
1250 rt_ru, \
1251 IWL_RX_RU_DATA_ ## fw_ru, \
1252 fw_ru)
1253
1254static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1255 struct iwl_mvm_rx_phy_data *phy_data,
1256 struct ieee80211_rx_status *rx_status,
1257 struct ieee80211_radiotap_eht *eht,
1258 struct ieee80211_radiotap_eht_usig *usig)
1259{
1260 if (phy_data->with_data) {
1261 __le32 data1 = phy_data->d1;
1262 __le32 data2 = phy_data->d2;
1263 __le32 data3 = phy_data->d3;
1264 __le32 data4 = phy_data->eht_d4;
1265 __le32 data5 = phy_data->d5;
1266 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1267
1268 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1269 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1270 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1271 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1272 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1273 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1274 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1275 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1276 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1277 IWL_MVM_ENC_USIG_VALUE_MASK
1278 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1279 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1280
1281 eht->user_info[0] |=
1282 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1283 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1284 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1285
1286 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1287 eht->data[7] |= LE32_DEC_ENC
1288 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1289 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1290
1291 /*
1292 * Hardware labels the content channels/RU allocation values
1293 * as follows:
1294 * Content Channel 1 Content Channel 2
1295 * 20 MHz: A1
1296 * 40 MHz: A1 B1
1297 * 80 MHz: A1 C1 B1 D1
1298 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2
1299 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4
1300 *
1301 * However firmware can only give us A1-D2, so the higher
1302 * frequencies are missing.
1303 */
1304
1305 switch (phy_bw) {
1306 case RATE_MCS_CHAN_WIDTH_320:
1307 /* additional values are missing in RX metadata */
1308 case RATE_MCS_CHAN_WIDTH_160:
1309 /* content channel 1 */
1310 IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1311 IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1312 /* content channel 2 */
1313 IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1314 IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1315 fallthrough;
1316 case RATE_MCS_CHAN_WIDTH_80:
1317 /* content channel 1 */
1318 IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1319 /* content channel 2 */
1320 IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1321 fallthrough;
1322 case RATE_MCS_CHAN_WIDTH_40:
1323 /* content channel 2 */
1324 IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1325 fallthrough;
1326 case RATE_MCS_CHAN_WIDTH_20:
1327 IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1328 break;
1329 }
1330 } else {
1331 __le32 usig_a1 = phy_data->rx_vec[0];
1332 __le32 usig_a2 = phy_data->rx_vec[1];
1333
1334 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1335 IWL_RX_USIG_A1_DISREGARD,
1336 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1337 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1338 IWL_RX_USIG_A1_VALIDATE,
1339 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1340 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1341 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1342 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1343 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1344 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1345 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1346 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1347 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1348 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1349 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1350 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1351 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1352 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1353 IWL_RX_USIG_A2_EHT_SIG_MCS,
1354 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1355 IWL_MVM_ENC_USIG_VALUE_MASK
1356 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1357 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1358 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1359 IWL_RX_USIG_A2_EHT_CRC_OK,
1360 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1361 }
1362}
1363
1364static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1365 struct iwl_mvm_rx_phy_data *phy_data,
1366 struct ieee80211_rx_status *rx_status,
1367 struct ieee80211_radiotap_eht *eht,
1368 struct ieee80211_radiotap_eht_usig *usig)
1369{
1370 if (phy_data->with_data) {
1371 __le32 data5 = phy_data->d5;
1372
1373 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1374 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1375 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1376 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1377 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1378 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1379
1380 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1381 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1382 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1383 } else {
1384 __le32 usig_a1 = phy_data->rx_vec[0];
1385 __le32 usig_a2 = phy_data->rx_vec[1];
1386
1387 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1388 IWL_RX_USIG_A1_DISREGARD,
1389 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1390 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1391 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1392 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1393 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1394 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1395 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1396 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1397 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1398 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1399 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1400 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1401 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1402 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1403 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1404 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1405 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1406 IWL_RX_USIG_A2_EHT_CRC_OK,
1407 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1408 }
1409}
1410
1411static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1412 struct ieee80211_rx_status *rx_status,
1413 struct ieee80211_radiotap_eht *eht)
1414{
1415 u32 ru = le32_get_bits(eht->data[8],
1416 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1417 enum nl80211_eht_ru_alloc nl_ru;
1418
1419 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1420 * in an EHT variant User Info field
1421 */
1422
1423 switch (ru) {
1424 case 0 ... 36:
1425 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1426 break;
1427 case 37 ... 52:
1428 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1429 break;
1430 case 53 ... 60:
1431 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1432 break;
1433 case 61 ... 64:
1434 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1435 break;
1436 case 65 ... 66:
1437 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1438 break;
1439 case 67:
1440 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1441 break;
1442 case 68:
1443 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1444 break;
1445 case 69:
1446 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1447 break;
1448 case 70 ... 81:
1449 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1450 break;
1451 case 82 ... 89:
1452 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1453 break;
1454 case 90 ... 93:
1455 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1456 break;
1457 case 94 ... 95:
1458 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1459 break;
1460 case 96 ... 99:
1461 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1462 break;
1463 case 100 ... 103:
1464 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1465 break;
1466 case 104:
1467 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1468 break;
1469 case 105 ... 106:
1470 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1471 break;
1472 default:
1473 return;
1474 }
1475
1476 rx_status->bw = RATE_INFO_BW_EHT_RU;
1477 rx_status->eht.ru = nl_ru;
1478}
1479
1480static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1481 struct iwl_mvm_rx_phy_data *phy_data,
1482 struct ieee80211_rx_status *rx_status,
1483 struct ieee80211_radiotap_eht *eht,
1484 struct ieee80211_radiotap_eht_usig *usig)
1485
1486{
1487 __le32 data0 = phy_data->d0;
1488 __le32 data1 = phy_data->d1;
1489 __le32 usig_a1 = phy_data->rx_vec[0];
1490 u8 info_type = phy_data->info_type;
1491
1492 /* Not in EHT range */
1493 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1494 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1495 return;
1496
1497 usig->common |= cpu_to_le32
1498 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1499 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1500 if (phy_data->with_data) {
1501 usig->common |= LE32_DEC_ENC(data0,
1502 IWL_RX_PHY_DATA0_EHT_UPLINK,
1503 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1504 usig->common |= LE32_DEC_ENC(data0,
1505 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1506 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1507 } else {
1508 usig->common |= LE32_DEC_ENC(usig_a1,
1509 IWL_RX_USIG_A1_UL_FLAG,
1510 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1511 usig->common |= LE32_DEC_ENC(usig_a1,
1512 IWL_RX_USIG_A1_BSS_COLOR,
1513 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1514 }
1515
1516 if (fw_has_capa(&mvm->fw->ucode_capa,
1517 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1518 usig->common |=
1519 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1520 usig->common |=
1521 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1522 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1523 }
1524
1525 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1526 eht->data[0] |= LE32_DEC_ENC(data0,
1527 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1528 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1529
1530 /* All RU allocating size/index is in TB format */
1531 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1532 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1533 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1534 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1535 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1536 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1537 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1538
1539 iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1540
1541 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1542 * which is on only in case of monitor mode so no need to check monitor
1543 * mode
1544 */
1545 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1546 eht->data[1] |=
1547 le32_encode_bits(mvm->monitor_p80,
1548 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1549
1550 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1551 if (phy_data->with_data)
1552 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1553 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1554 else
1555 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1556 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1557
1558 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1559 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1560 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1561
1562 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1563 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1564 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1565
1566 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1567 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1568 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1569
1570 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1571
1572 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1573 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1574
1575 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1576 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1577 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1578
1579 /*
1580 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1581 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1582 */
1583
1584 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1585 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1586 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1587
1588 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1589 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1590 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1591
1592 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1593 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1594 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1595}
1596
1597static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1598 struct iwl_mvm_rx_phy_data *phy_data,
1599 int queue)
1600{
1601 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1602
1603 struct ieee80211_radiotap_eht *eht;
1604 struct ieee80211_radiotap_eht_usig *usig;
1605 size_t eht_len = sizeof(*eht);
1606
1607 u32 rate_n_flags = phy_data->rate_n_flags;
1608 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1609 /* EHT and HE have the same valus for LTF */
1610 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1611 u16 phy_info = phy_data->phy_info;
1612 u32 bw;
1613
1614 /* u32 for 1 user_info */
1615 if (phy_data->with_data)
1616 eht_len += sizeof(u32);
1617
1618 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1619
1620 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1621 sizeof(*usig));
1622 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1623 usig->common |=
1624 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1625
1626 /* specific handling for 320MHz */
1627 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1628 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1629 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1630 le32_to_cpu(phy_data->d0));
1631
1632 usig->common |= cpu_to_le32
1633 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1634
1635 /* report the AMPDU-EOF bit on single frames */
1636 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1637 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1638 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1639 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1640 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1641 }
1642
1643 /* update aggregation data for monitor sake on default queue */
1644 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1645 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1646 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1647 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1648 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1649 }
1650
1651 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1652 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1653
1654#define CHECK_TYPE(F) \
1655 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1656 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1657
1658 CHECK_TYPE(SU);
1659 CHECK_TYPE(EXT_SU);
1660 CHECK_TYPE(MU);
1661 CHECK_TYPE(TRIG);
1662
1663 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1664 case 0:
1665 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1666 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1667 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1668 } else {
1669 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1670 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1671 }
1672 break;
1673 case 1:
1674 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1675 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1676 break;
1677 case 2:
1678 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1679 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1680 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1681 else
1682 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1683 break;
1684 case 3:
1685 if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1686 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1687 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1688 }
1689 break;
1690 default:
1691 /* nothing here */
1692 break;
1693 }
1694
1695 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1696 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1697 eht->data[0] |= cpu_to_le32
1698 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1699 ltf) |
1700 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1701 rx_status->eht.gi));
1702 }
1703
1704
1705 if (!phy_data->with_data) {
1706 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1707 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1708 eht->data[7] |=
1709 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1710 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1711 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1712 if (rate_n_flags & RATE_MCS_BF_MSK)
1713 eht->data[7] |=
1714 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1715 } else {
1716 eht->user_info[0] |=
1717 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1718 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1719 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1720 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1721 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1722
1723 if (rate_n_flags & RATE_MCS_BF_MSK)
1724 eht->user_info[0] |=
1725 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1726
1727 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1728 eht->user_info[0] |=
1729 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1730
1731 eht->user_info[0] |= cpu_to_le32
1732 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1733 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1734 rate_n_flags)) |
1735 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1736 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1737 }
1738}
1739
1740static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1741 struct iwl_mvm_rx_phy_data *phy_data,
1742 int queue)
1743{
1744 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1745 struct ieee80211_radiotap_he *he = NULL;
1746 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1747 u32 rate_n_flags = phy_data->rate_n_flags;
1748 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1749 u8 ltf;
1750 static const struct ieee80211_radiotap_he known = {
1751 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1752 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1753 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1754 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1755 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1756 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1757 };
1758 static const struct ieee80211_radiotap_he_mu mu_known = {
1759 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1760 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1761 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1762 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1763 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1764 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1765 };
1766 u16 phy_info = phy_data->phy_info;
1767
1768 he = skb_put_data(skb, &known, sizeof(known));
1769 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1770
1771 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1772 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1773 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1774 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1775 }
1776
1777 /* report the AMPDU-EOF bit on single frames */
1778 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1779 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1780 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1781 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1782 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1783 }
1784
1785 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1786 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1787 queue);
1788
1789 /* update aggregation data for monitor sake on default queue */
1790 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1791 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1792 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1793 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1794 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1795 }
1796
1797 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1798 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1799 rx_status->bw = RATE_INFO_BW_HE_RU;
1800 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1801 }
1802
1803 /* actually data is filled in mac80211 */
1804 if (he_type == RATE_MCS_HE_TYPE_SU ||
1805 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1806 he->data1 |=
1807 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1808
1809#define CHECK_TYPE(F) \
1810 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1811 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1812
1813 CHECK_TYPE(SU);
1814 CHECK_TYPE(EXT_SU);
1815 CHECK_TYPE(MU);
1816 CHECK_TYPE(TRIG);
1817
1818 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1819
1820 if (rate_n_flags & RATE_MCS_BF_MSK)
1821 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1822
1823 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1824 RATE_MCS_HE_GI_LTF_POS) {
1825 case 0:
1826 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1827 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1828 else
1829 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1830 if (he_type == RATE_MCS_HE_TYPE_MU)
1831 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1832 else
1833 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1834 break;
1835 case 1:
1836 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1837 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1838 else
1839 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1840 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1841 break;
1842 case 2:
1843 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1844 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1845 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1846 } else {
1847 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1848 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1849 }
1850 break;
1851 case 3:
1852 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1853 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1854 break;
1855 case 4:
1856 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1857 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1858 break;
1859 default:
1860 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1861 }
1862
1863 he->data5 |= le16_encode_bits(ltf,
1864 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1865}
1866
1867static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1868 struct iwl_mvm_rx_phy_data *phy_data)
1869{
1870 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1871 struct ieee80211_radiotap_lsig *lsig;
1872
1873 switch (phy_data->info_type) {
1874 case IWL_RX_PHY_INFO_TYPE_HT:
1875 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1876 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1877 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1878 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1879 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1880 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1881 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1882 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1883 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1884 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1885 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1886 lsig = skb_put(skb, sizeof(*lsig));
1887 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1888 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1889 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1890 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1891 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1892 break;
1893 default:
1894 break;
1895 }
1896}
1897
1898static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1899{
1900 switch (phy_band) {
1901 case PHY_BAND_24:
1902 return NL80211_BAND_2GHZ;
1903 case PHY_BAND_5:
1904 return NL80211_BAND_5GHZ;
1905 case PHY_BAND_6:
1906 return NL80211_BAND_6GHZ;
1907 default:
1908 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1909 return NL80211_BAND_5GHZ;
1910 }
1911}
1912
1913struct iwl_rx_sta_csa {
1914 bool all_sta_unblocked;
1915 struct ieee80211_vif *vif;
1916};
1917
1918static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1919{
1920 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1921 struct iwl_rx_sta_csa *rx_sta_csa = data;
1922
1923 if (mvmsta->vif != rx_sta_csa->vif)
1924 return;
1925
1926 if (mvmsta->disable_tx)
1927 rx_sta_csa->all_sta_unblocked = false;
1928}
1929
1930/*
1931 * Note: requires also rx_status->band to be prefilled, as well
1932 * as phy_data (apart from phy_data->info_type)
1933 */
1934static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1935 struct sk_buff *skb,
1936 struct iwl_mvm_rx_phy_data *phy_data,
1937 int queue)
1938{
1939 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1940 u32 rate_n_flags = phy_data->rate_n_flags;
1941 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1942 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1943 bool is_sgi;
1944
1945 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1946
1947 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1948 phy_data->info_type =
1949 le32_get_bits(phy_data->d1,
1950 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1951
1952 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1953 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1954 case RATE_MCS_CHAN_WIDTH_20:
1955 break;
1956 case RATE_MCS_CHAN_WIDTH_40:
1957 rx_status->bw = RATE_INFO_BW_40;
1958 break;
1959 case RATE_MCS_CHAN_WIDTH_80:
1960 rx_status->bw = RATE_INFO_BW_80;
1961 break;
1962 case RATE_MCS_CHAN_WIDTH_160:
1963 rx_status->bw = RATE_INFO_BW_160;
1964 break;
1965 case RATE_MCS_CHAN_WIDTH_320:
1966 rx_status->bw = RATE_INFO_BW_320;
1967 break;
1968 }
1969
1970 /* must be before L-SIG data */
1971 if (format == RATE_MCS_HE_MSK)
1972 iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1973
1974 iwl_mvm_decode_lsig(skb, phy_data);
1975
1976 rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1977 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1978 rx_status->band);
1979 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1980 phy_data->energy_a, phy_data->energy_b);
1981
1982 /* using TLV format and must be after all fixed len fields */
1983 if (format == RATE_MCS_EHT_MSK)
1984 iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
1985
1986 if (unlikely(mvm->monitor_on))
1987 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1988
1989 is_sgi = format == RATE_MCS_HE_MSK ?
1990 iwl_he_is_sgi(rate_n_flags) :
1991 rate_n_flags & RATE_MCS_SGI_MSK;
1992
1993 if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
1994 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1995
1996 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1997 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1998
1999 switch (format) {
2000 case RATE_MCS_VHT_MSK:
2001 rx_status->encoding = RX_ENC_VHT;
2002 break;
2003 case RATE_MCS_HE_MSK:
2004 rx_status->encoding = RX_ENC_HE;
2005 rx_status->he_dcm =
2006 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2007 break;
2008 case RATE_MCS_EHT_MSK:
2009 rx_status->encoding = RX_ENC_EHT;
2010 break;
2011 }
2012
2013 switch (format) {
2014 case RATE_MCS_HT_MSK:
2015 rx_status->encoding = RX_ENC_HT;
2016 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2017 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2018 break;
2019 case RATE_MCS_VHT_MSK:
2020 case RATE_MCS_HE_MSK:
2021 case RATE_MCS_EHT_MSK:
2022 rx_status->nss =
2023 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2024 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2025 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2026 break;
2027 default: {
2028 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2029 rx_status->band);
2030
2031 rx_status->rate_idx = rate;
2032
2033 if ((rate < 0 || rate > 0xFF)) {
2034 rx_status->rate_idx = 0;
2035 if (net_ratelimit())
2036 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2037 rate_n_flags, rx_status->band);
2038 }
2039
2040 break;
2041 }
2042 }
2043}
2044
2045void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2046 struct iwl_rx_cmd_buffer *rxb, int queue)
2047{
2048 struct ieee80211_rx_status *rx_status;
2049 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2050 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2051 struct ieee80211_hdr *hdr;
2052 u32 len;
2053 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2054 struct ieee80211_sta *sta = NULL;
2055 struct ieee80211_link_sta *link_sta = NULL;
2056 struct sk_buff *skb;
2057 u8 crypt_len = 0;
2058 size_t desc_size;
2059 struct iwl_mvm_rx_phy_data phy_data = {};
2060 u32 format;
2061
2062 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2063 return;
2064
2065 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2066 desc_size = sizeof(*desc);
2067 else
2068 desc_size = IWL_RX_DESC_SIZE_V1;
2069
2070 if (unlikely(pkt_len < desc_size)) {
2071 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2072 return;
2073 }
2074
2075 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2076 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2077 phy_data.channel = desc->v3.channel;
2078 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2079 phy_data.energy_a = desc->v3.energy_a;
2080 phy_data.energy_b = desc->v3.energy_b;
2081
2082 phy_data.d0 = desc->v3.phy_data0;
2083 phy_data.d1 = desc->v3.phy_data1;
2084 phy_data.d2 = desc->v3.phy_data2;
2085 phy_data.d3 = desc->v3.phy_data3;
2086 phy_data.eht_d4 = desc->phy_eht_data4;
2087 phy_data.d5 = desc->v3.phy_data5;
2088 } else {
2089 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2090 phy_data.channel = desc->v1.channel;
2091 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2092 phy_data.energy_a = desc->v1.energy_a;
2093 phy_data.energy_b = desc->v1.energy_b;
2094
2095 phy_data.d0 = desc->v1.phy_data0;
2096 phy_data.d1 = desc->v1.phy_data1;
2097 phy_data.d2 = desc->v1.phy_data2;
2098 phy_data.d3 = desc->v1.phy_data3;
2099 }
2100
2101 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2102 REPLY_RX_MPDU_CMD, 0) < 4) {
2103 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2104 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2105 phy_data.rate_n_flags);
2106 }
2107
2108 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2109
2110 len = le16_to_cpu(desc->mpdu_len);
2111
2112 if (unlikely(len + desc_size > pkt_len)) {
2113 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2114 return;
2115 }
2116
2117 phy_data.with_data = true;
2118 phy_data.phy_info = le16_to_cpu(desc->phy_info);
2119 phy_data.d4 = desc->phy_data4;
2120
2121 hdr = (void *)(pkt->data + desc_size);
2122 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2123 * ieee80211_hdr pulled.
2124 */
2125 skb = alloc_skb(128, GFP_ATOMIC);
2126 if (!skb) {
2127 IWL_ERR(mvm, "alloc_skb failed\n");
2128 return;
2129 }
2130
2131 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2132 /*
2133 * If the device inserted padding it means that (it thought)
2134 * the 802.11 header wasn't a multiple of 4 bytes long. In
2135 * this case, reserve two bytes at the start of the SKB to
2136 * align the payload properly in case we end up copying it.
2137 */
2138 skb_reserve(skb, 2);
2139 }
2140
2141 rx_status = IEEE80211_SKB_RXCB(skb);
2142
2143 /*
2144 * Keep packets with CRC errors (and with overrun) for monitor mode
2145 * (otherwise the firmware discards them) but mark them as bad.
2146 */
2147 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2148 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2149 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2150 le32_to_cpu(desc->status));
2151 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2152 }
2153
2154 /* set the preamble flag if appropriate */
2155 if (format == RATE_MCS_CCK_MSK &&
2156 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2157 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2158
2159 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2160 u64 tsf_on_air_rise;
2161
2162 if (mvm->trans->trans_cfg->device_family >=
2163 IWL_DEVICE_FAMILY_AX210)
2164 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2165 else
2166 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2167
2168 rx_status->mactime = tsf_on_air_rise;
2169 /* TSF as indicated by the firmware is at INA time */
2170 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2171 }
2172
2173 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2174 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2175
2176 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2177 } else {
2178 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2179 NL80211_BAND_2GHZ;
2180 }
2181
2182 /* update aggregation data for monitor sake on default queue */
2183 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2184 bool toggle_bit;
2185
2186 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2187 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2188 /*
2189 * Toggle is switched whenever new aggregation starts. Make
2190 * sure ampdu_reference is never 0 so we can later use it to
2191 * see if the frame was really part of an A-MPDU or not.
2192 */
2193 if (toggle_bit != mvm->ampdu_toggle) {
2194 mvm->ampdu_ref++;
2195 if (mvm->ampdu_ref == 0)
2196 mvm->ampdu_ref++;
2197 mvm->ampdu_toggle = toggle_bit;
2198 phy_data.first_subframe = true;
2199 }
2200 rx_status->ampdu_reference = mvm->ampdu_ref;
2201 }
2202
2203 rcu_read_lock();
2204
2205 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2206 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2207
2208 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2209 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2210 if (IS_ERR(sta))
2211 sta = NULL;
2212 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2213 }
2214 } else if (!is_multicast_ether_addr(hdr->addr2)) {
2215 /*
2216 * This is fine since we prevent two stations with the same
2217 * address from being added.
2218 */
2219 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2220 }
2221
2222 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2223 le32_to_cpu(pkt->len_n_flags), queue,
2224 &crypt_len)) {
2225 kfree_skb(skb);
2226 goto out;
2227 }
2228
2229 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2230
2231 if (sta) {
2232 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2233 struct ieee80211_vif *tx_blocked_vif =
2234 rcu_dereference(mvm->csa_tx_blocked_vif);
2235 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2236 IWL_RX_MPDU_REORDER_BAID_MASK) >>
2237 IWL_RX_MPDU_REORDER_BAID_SHIFT);
2238 struct iwl_fw_dbg_trigger_tlv *trig;
2239 struct ieee80211_vif *vif = mvmsta->vif;
2240
2241 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2242 !is_multicast_ether_addr(hdr->addr1) &&
2243 ieee80211_is_data(hdr->frame_control) &&
2244 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2245 schedule_delayed_work(&mvm->tcm.work, 0);
2246
2247 /*
2248 * We have tx blocked stations (with CS bit). If we heard
2249 * frames from a blocked station on a new channel we can
2250 * TX to it again.
2251 */
2252 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2253 struct iwl_mvm_vif *mvmvif =
2254 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2255 struct iwl_rx_sta_csa rx_sta_csa = {
2256 .all_sta_unblocked = true,
2257 .vif = tx_blocked_vif,
2258 };
2259
2260 if (mvmvif->csa_target_freq == rx_status->freq)
2261 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2262 false);
2263 ieee80211_iterate_stations_atomic(mvm->hw,
2264 iwl_mvm_rx_get_sta_block_tx,
2265 &rx_sta_csa);
2266
2267 if (rx_sta_csa.all_sta_unblocked) {
2268 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2269 /* Unblock BCAST / MCAST station */
2270 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2271 cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2272 }
2273 }
2274
2275 rs_update_last_rssi(mvm, mvmsta, rx_status);
2276
2277 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2278 ieee80211_vif_to_wdev(vif),
2279 FW_DBG_TRIGGER_RSSI);
2280
2281 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2282 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2283 s32 rssi;
2284
2285 rssi_trig = (void *)trig->data;
2286 rssi = le32_to_cpu(rssi_trig->rssi);
2287
2288 if (rx_status->signal < rssi)
2289 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2290 NULL);
2291 }
2292
2293 if (ieee80211_is_data(hdr->frame_control))
2294 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2295
2296 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2297 IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n",
2298 le16_to_cpu(hdr->seq_ctrl));
2299 kfree_skb(skb);
2300 goto out;
2301 }
2302
2303 /*
2304 * Our hardware de-aggregates AMSDUs but copies the mac header
2305 * as it to the de-aggregated MPDUs. We need to turn off the
2306 * AMSDU bit in the QoS control ourselves.
2307 * In addition, HW reverses addr3 and addr4 - reverse it back.
2308 */
2309 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2310 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2311 u8 *qc = ieee80211_get_qos_ctl(hdr);
2312
2313 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2314
2315 if (mvm->trans->trans_cfg->device_family ==
2316 IWL_DEVICE_FAMILY_9000) {
2317 iwl_mvm_flip_address(hdr->addr3);
2318
2319 if (ieee80211_has_a4(hdr->frame_control))
2320 iwl_mvm_flip_address(hdr->addr4);
2321 }
2322 }
2323 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2324 u32 reorder_data = le32_to_cpu(desc->reorder_data);
2325
2326 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2327 }
2328 }
2329
2330 /* management stuff on default queue */
2331 if (!queue) {
2332 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2333 ieee80211_is_probe_resp(hdr->frame_control)) &&
2334 mvm->sched_scan_pass_all ==
2335 SCHED_SCAN_PASS_ALL_ENABLED))
2336 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2337
2338 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2339 ieee80211_is_probe_resp(hdr->frame_control)))
2340 rx_status->boottime_ns = ktime_get_boottime_ns();
2341 }
2342
2343 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2344 kfree_skb(skb);
2345 goto out;
2346 }
2347
2348 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2349 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2350 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
2351 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
2352 (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2353 !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
2354 rx_status->flag |= RX_FLAG_AMSDU_MORE;
2355
2356 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2357 link_sta);
2358 }
2359out:
2360 rcu_read_unlock();
2361}
2362
2363void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2364 struct iwl_rx_cmd_buffer *rxb, int queue)
2365{
2366 struct ieee80211_rx_status *rx_status;
2367 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2368 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2369 u32 rssi;
2370 u32 info_type;
2371 struct ieee80211_sta *sta = NULL;
2372 struct sk_buff *skb;
2373 struct iwl_mvm_rx_phy_data phy_data;
2374 u32 format;
2375
2376 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2377 return;
2378
2379 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2380 return;
2381
2382 rssi = le32_to_cpu(desc->rssi);
2383 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2384 phy_data.d0 = desc->phy_info[0];
2385 phy_data.d1 = desc->phy_info[1];
2386 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2387 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2388 phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2389 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2390 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2391 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2392 phy_data.with_data = false;
2393 phy_data.rx_vec[0] = desc->rx_vec[0];
2394 phy_data.rx_vec[1] = desc->rx_vec[1];
2395
2396 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2397 RX_NO_DATA_NOTIF, 0) < 2) {
2398 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2399 phy_data.rate_n_flags);
2400 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2401 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2402 phy_data.rate_n_flags);
2403 }
2404
2405 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2406
2407 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2408 RX_NO_DATA_NOTIF, 0) >= 3) {
2409 if (unlikely(iwl_rx_packet_payload_len(pkt) <
2410 sizeof(struct iwl_rx_no_data_ver_3)))
2411 /* invalid len for ver 3 */
2412 return;
2413 phy_data.rx_vec[2] = desc->rx_vec[2];
2414 phy_data.rx_vec[3] = desc->rx_vec[3];
2415 } else {
2416 if (format == RATE_MCS_EHT_MSK)
2417 /* no support for EHT before version 3 API */
2418 return;
2419 }
2420
2421 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2422 * ieee80211_hdr pulled.
2423 */
2424 skb = alloc_skb(128, GFP_ATOMIC);
2425 if (!skb) {
2426 IWL_ERR(mvm, "alloc_skb failed\n");
2427 return;
2428 }
2429
2430 rx_status = IEEE80211_SKB_RXCB(skb);
2431
2432 /* 0-length PSDU */
2433 rx_status->flag |= RX_FLAG_NO_PSDU;
2434
2435 switch (info_type) {
2436 case RX_NO_DATA_INFO_TYPE_NDP:
2437 rx_status->zero_length_psdu_type =
2438 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2439 break;
2440 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2441 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2442 rx_status->zero_length_psdu_type =
2443 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2444 break;
2445 default:
2446 rx_status->zero_length_psdu_type =
2447 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2448 break;
2449 }
2450
2451 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2452 NL80211_BAND_2GHZ;
2453
2454 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2455
2456 /* no more radio tap info should be put after this point.
2457 *
2458 * We mark it as mac header, for upper layers to know where
2459 * all radio tap header ends.
2460 */
2461 skb_reset_mac_header(skb);
2462
2463 /*
2464 * Override the nss from the rx_vec since the rate_n_flags has
2465 * only 2 bits for the nss which gives a max of 4 ss but there
2466 * may be up to 8 spatial streams.
2467 */
2468 switch (format) {
2469 case RATE_MCS_VHT_MSK:
2470 rx_status->nss =
2471 le32_get_bits(desc->rx_vec[0],
2472 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2473 break;
2474 case RATE_MCS_HE_MSK:
2475 rx_status->nss =
2476 le32_get_bits(desc->rx_vec[0],
2477 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2478 break;
2479 case RATE_MCS_EHT_MSK:
2480 rx_status->nss =
2481 le32_get_bits(desc->rx_vec[2],
2482 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2483 }
2484
2485 rcu_read_lock();
2486 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2487 rcu_read_unlock();
2488}
2489
2490void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2491 struct iwl_rx_cmd_buffer *rxb, int queue)
2492{
2493 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2494 struct iwl_frame_release *release = (void *)pkt->data;
2495
2496 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2497 return;
2498
2499 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2500 le16_to_cpu(release->nssn),
2501 queue);
2502}
2503
2504void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2505 struct iwl_rx_cmd_buffer *rxb, int queue)
2506{
2507 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2508 struct iwl_bar_frame_release *release = (void *)pkt->data;
2509 unsigned int baid = le32_get_bits(release->ba_info,
2510 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2511 unsigned int nssn = le32_get_bits(release->ba_info,
2512 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2513 unsigned int sta_id = le32_get_bits(release->sta_tid,
2514 IWL_BAR_FRAME_RELEASE_STA_MASK);
2515 unsigned int tid = le32_get_bits(release->sta_tid,
2516 IWL_BAR_FRAME_RELEASE_TID_MASK);
2517 struct iwl_mvm_baid_data *baid_data;
2518
2519 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2520 return;
2521
2522 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2523 baid >= ARRAY_SIZE(mvm->baid_map)))
2524 return;
2525
2526 rcu_read_lock();
2527 baid_data = rcu_dereference(mvm->baid_map[baid]);
2528 if (!baid_data) {
2529 IWL_DEBUG_RX(mvm,
2530 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2531 baid);
2532 goto out;
2533 }
2534
2535 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2536 !(baid_data->sta_mask & BIT(sta_id)),
2537 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2538 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2539 tid))
2540 goto out;
2541
2542 IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n",
2543 nssn);
2544
2545 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue);
2546out:
2547 rcu_read_unlock();
2548}
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
11 * Copyright(c) 2018 - 2019 Intel Corporation
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of version 2 of the GNU General Public License as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * The full GNU General Public License is included in this distribution
23 * in the file called COPYING.
24 *
25 * Contact Information:
26 * Intel Linux Wireless <linuxwifi@intel.com>
27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *
29 * BSD LICENSE
30 *
31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
34 * Copyright(c) 2018 - 2019 Intel Corporation
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 *
41 * * Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * * Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in
45 * the documentation and/or other materials provided with the
46 * distribution.
47 * * Neither the name Intel Corporation nor the names of its
48 * contributors may be used to endorse or promote products derived
49 * from this software without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
63#include <linux/etherdevice.h>
64#include <linux/skbuff.h>
65#include "iwl-trans.h"
66#include "mvm.h"
67#include "fw-api.h"
68
69static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
70{
71 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
72 u8 *data = skb->data;
73
74 /* Alignment concerns */
75 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
76 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
77 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
78 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
79
80 if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
81 data += sizeof(struct ieee80211_radiotap_he);
82 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
83 data += sizeof(struct ieee80211_radiotap_he_mu);
84 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
85 data += sizeof(struct ieee80211_radiotap_lsig);
86 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
87 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
88
89 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
90 }
91
92 return data;
93}
94
95static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
96 int queue, struct ieee80211_sta *sta)
97{
98 struct iwl_mvm_sta *mvmsta;
99 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
100 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
101 struct iwl_mvm_key_pn *ptk_pn;
102 int res;
103 u8 tid, keyidx;
104 u8 pn[IEEE80211_CCMP_PN_LEN];
105 u8 *extiv;
106
107 /* do PN checking */
108
109 /* multicast and non-data only arrives on default queue */
110 if (!ieee80211_is_data(hdr->frame_control) ||
111 is_multicast_ether_addr(hdr->addr1))
112 return 0;
113
114 /* do not check PN for open AP */
115 if (!(stats->flag & RX_FLAG_DECRYPTED))
116 return 0;
117
118 /*
119 * avoid checking for default queue - we don't want to replicate
120 * all the logic that's necessary for checking the PN on fragmented
121 * frames, leave that to mac80211
122 */
123 if (queue == 0)
124 return 0;
125
126 /* if we are here - this for sure is either CCMP or GCMP */
127 if (IS_ERR_OR_NULL(sta)) {
128 IWL_ERR(mvm,
129 "expected hw-decrypted unicast frame for station\n");
130 return -1;
131 }
132
133 mvmsta = iwl_mvm_sta_from_mac80211(sta);
134
135 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
136 keyidx = extiv[3] >> 6;
137
138 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
139 if (!ptk_pn)
140 return -1;
141
142 if (ieee80211_is_data_qos(hdr->frame_control))
143 tid = ieee80211_get_tid(hdr);
144 else
145 tid = 0;
146
147 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
148 if (tid >= IWL_MAX_TID_COUNT)
149 return -1;
150
151 /* load pn */
152 pn[0] = extiv[7];
153 pn[1] = extiv[6];
154 pn[2] = extiv[5];
155 pn[3] = extiv[4];
156 pn[4] = extiv[1];
157 pn[5] = extiv[0];
158
159 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
160 if (res < 0)
161 return -1;
162 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
163 return -1;
164
165 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
166 stats->flag |= RX_FLAG_PN_VALIDATED;
167
168 return 0;
169}
170
171/* iwl_mvm_create_skb Adds the rxb to a new skb */
172static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
173 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
174 struct iwl_rx_cmd_buffer *rxb)
175{
176 struct iwl_rx_packet *pkt = rxb_addr(rxb);
177 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
178 unsigned int headlen, fraglen, pad_len = 0;
179 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
180
181 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
182 len -= 2;
183 pad_len = 2;
184 }
185
186 /* If frame is small enough to fit in skb->head, pull it completely.
187 * If not, only pull ieee80211_hdr (including crypto if present, and
188 * an additional 8 bytes for SNAP/ethertype, see below) so that
189 * splice() or TCP coalesce are more efficient.
190 *
191 * Since, in addition, ieee80211_data_to_8023() always pull in at
192 * least 8 bytes (possibly more for mesh) we can do the same here
193 * to save the cost of doing it later. That still doesn't pull in
194 * the actual IP header since the typical case has a SNAP header.
195 * If the latter changes (there are efforts in the standards group
196 * to do so) we should revisit this and ieee80211_data_to_8023().
197 */
198 headlen = (len <= skb_tailroom(skb)) ? len :
199 hdrlen + crypt_len + 8;
200
201 /* The firmware may align the packet to DWORD.
202 * The padding is inserted after the IV.
203 * After copying the header + IV skip the padding if
204 * present before copying packet data.
205 */
206 hdrlen += crypt_len;
207
208 if (WARN_ONCE(headlen < hdrlen,
209 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
210 hdrlen, len, crypt_len)) {
211 /*
212 * We warn and trace because we want to be able to see
213 * it in trace-cmd as well.
214 */
215 IWL_DEBUG_RX(mvm,
216 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
217 hdrlen, len, crypt_len);
218 return -EINVAL;
219 }
220
221 skb_put_data(skb, hdr, hdrlen);
222 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
223
224 fraglen = len - headlen;
225
226 if (fraglen) {
227 int offset = (void *)hdr + headlen + pad_len -
228 rxb_addr(rxb) + rxb_offset(rxb);
229
230 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
231 fraglen, rxb->truesize);
232 }
233
234 return 0;
235}
236
237static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
238 struct sk_buff *skb)
239{
240 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
241 struct ieee80211_vendor_radiotap *radiotap;
242 const int size = sizeof(*radiotap) + sizeof(__le16);
243
244 if (!mvm->cur_aid)
245 return;
246
247 /* ensure alignment */
248 BUILD_BUG_ON((size + 2) % 4);
249
250 radiotap = skb_put(skb, size + 2);
251 radiotap->align = 1;
252 /* Intel OUI */
253 radiotap->oui[0] = 0xf6;
254 radiotap->oui[1] = 0x54;
255 radiotap->oui[2] = 0x25;
256 /* radiotap sniffer config sub-namespace */
257 radiotap->subns = 1;
258 radiotap->present = 0x1;
259 radiotap->len = size - sizeof(*radiotap);
260 radiotap->pad = 2;
261
262 /* fill the data now */
263 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
264 /* and clear the padding */
265 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
266
267 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
268}
269
270/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
271static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
272 struct napi_struct *napi,
273 struct sk_buff *skb, int queue,
274 struct ieee80211_sta *sta,
275 bool csi)
276{
277 if (iwl_mvm_check_pn(mvm, skb, queue, sta))
278 kfree_skb(skb);
279 else
280 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
281}
282
283static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
284 struct ieee80211_rx_status *rx_status,
285 u32 rate_n_flags, int energy_a,
286 int energy_b)
287{
288 int max_energy;
289 u32 rate_flags = rate_n_flags;
290
291 energy_a = energy_a ? -energy_a : S8_MIN;
292 energy_b = energy_b ? -energy_b : S8_MIN;
293 max_energy = max(energy_a, energy_b);
294
295 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
296 energy_a, energy_b, max_energy);
297
298 rx_status->signal = max_energy;
299 rx_status->chains =
300 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
301 rx_status->chain_signal[0] = energy_a;
302 rx_status->chain_signal[1] = energy_b;
303 rx_status->chain_signal[2] = S8_MIN;
304}
305
306static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
307 struct ieee80211_rx_status *stats, u16 phy_info,
308 struct iwl_rx_mpdu_desc *desc,
309 u32 pkt_flags, int queue, u8 *crypt_len)
310{
311 u16 status = le16_to_cpu(desc->status);
312
313 /*
314 * Drop UNKNOWN frames in aggregation, unless in monitor mode
315 * (where we don't have the keys).
316 * We limit this to aggregation because in TKIP this is a valid
317 * scenario, since we may not have the (correct) TTAK (phase 1
318 * key) in the firmware.
319 */
320 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
321 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
322 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
323 return -1;
324
325 if (!ieee80211_has_protected(hdr->frame_control) ||
326 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
327 IWL_RX_MPDU_STATUS_SEC_NONE)
328 return 0;
329
330 /* TODO: handle packets encrypted with unknown alg */
331
332 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
333 case IWL_RX_MPDU_STATUS_SEC_CCM:
334 case IWL_RX_MPDU_STATUS_SEC_GCM:
335 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
336 /* alg is CCM: check MIC only */
337 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
338 return -1;
339
340 stats->flag |= RX_FLAG_DECRYPTED;
341 if (pkt_flags & FH_RSCSR_RADA_EN)
342 stats->flag |= RX_FLAG_MIC_STRIPPED;
343 *crypt_len = IEEE80211_CCMP_HDR_LEN;
344 return 0;
345 case IWL_RX_MPDU_STATUS_SEC_TKIP:
346 /* Don't drop the frame and decrypt it in SW */
347 if (!fw_has_api(&mvm->fw->ucode_capa,
348 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
349 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
350 return 0;
351
352 if (mvm->trans->trans_cfg->gen2 &&
353 !(status & RX_MPDU_RES_STATUS_MIC_OK))
354 stats->flag |= RX_FLAG_MMIC_ERROR;
355
356 *crypt_len = IEEE80211_TKIP_IV_LEN;
357 /* fall through */
358 case IWL_RX_MPDU_STATUS_SEC_WEP:
359 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
360 return -1;
361
362 stats->flag |= RX_FLAG_DECRYPTED;
363 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
364 IWL_RX_MPDU_STATUS_SEC_WEP)
365 *crypt_len = IEEE80211_WEP_IV_LEN;
366
367 if (pkt_flags & FH_RSCSR_RADA_EN) {
368 stats->flag |= RX_FLAG_ICV_STRIPPED;
369 if (mvm->trans->trans_cfg->gen2)
370 stats->flag |= RX_FLAG_MMIC_STRIPPED;
371 }
372
373 return 0;
374 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
375 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
376 return -1;
377 stats->flag |= RX_FLAG_DECRYPTED;
378 return 0;
379 default:
380 /*
381 * Sometimes we can get frames that were not decrypted
382 * because the firmware didn't have the keys yet. This can
383 * happen after connection where we can get multicast frames
384 * before the GTK is installed.
385 * Silently drop those frames.
386 * Also drop un-decrypted frames in monitor mode.
387 */
388 if (!is_multicast_ether_addr(hdr->addr1) &&
389 !mvm->monitor_on && net_ratelimit())
390 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
391 }
392
393 return 0;
394}
395
396static void iwl_mvm_rx_csum(struct ieee80211_sta *sta,
397 struct sk_buff *skb,
398 struct iwl_rx_mpdu_desc *desc)
399{
400 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
401 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
402 u16 flags = le16_to_cpu(desc->l3l4_flags);
403 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
404 IWL_RX_L3_PROTO_POS);
405
406 if (mvmvif->features & NETIF_F_RXCSUM &&
407 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
408 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
409 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
410 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
411 skb->ip_summed = CHECKSUM_UNNECESSARY;
412}
413
414/*
415 * returns true if a packet is a duplicate and should be dropped.
416 * Updates AMSDU PN tracking info
417 */
418static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
419 struct ieee80211_rx_status *rx_status,
420 struct ieee80211_hdr *hdr,
421 struct iwl_rx_mpdu_desc *desc)
422{
423 struct iwl_mvm_sta *mvm_sta;
424 struct iwl_mvm_rxq_dup_data *dup_data;
425 u8 tid, sub_frame_idx;
426
427 if (WARN_ON(IS_ERR_OR_NULL(sta)))
428 return false;
429
430 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
431 dup_data = &mvm_sta->dup_data[queue];
432
433 /*
434 * Drop duplicate 802.11 retransmissions
435 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
436 */
437 if (ieee80211_is_ctl(hdr->frame_control) ||
438 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
439 is_multicast_ether_addr(hdr->addr1)) {
440 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
441 return false;
442 }
443
444 if (ieee80211_is_data_qos(hdr->frame_control))
445 /* frame has qos control */
446 tid = ieee80211_get_tid(hdr);
447 else
448 tid = IWL_MAX_TID_COUNT;
449
450 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
451 sub_frame_idx = desc->amsdu_info &
452 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
453
454 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
455 dup_data->last_seq[tid] == hdr->seq_ctrl &&
456 dup_data->last_sub_frame[tid] >= sub_frame_idx))
457 return true;
458
459 /* Allow same PN as the first subframe for following sub frames */
460 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
461 sub_frame_idx > dup_data->last_sub_frame[tid] &&
462 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
463 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
464
465 dup_data->last_seq[tid] = hdr->seq_ctrl;
466 dup_data->last_sub_frame[tid] = sub_frame_idx;
467
468 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
469
470 return false;
471}
472
473int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
474 const u8 *data, u32 count, bool async)
475{
476 u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
477 sizeof(struct iwl_mvm_rss_sync_notif)];
478 struct iwl_rxq_sync_cmd *cmd = (void *)buf;
479 u32 data_size = sizeof(*cmd) + count;
480 int ret;
481
482 /*
483 * size must be a multiple of DWORD
484 * Ensure we don't overflow buf
485 */
486 if (WARN_ON(count & 3 ||
487 count > sizeof(struct iwl_mvm_rss_sync_notif)))
488 return -EINVAL;
489
490 cmd->rxq_mask = cpu_to_le32(rxq_mask);
491 cmd->count = cpu_to_le32(count);
492 cmd->flags = 0;
493 memcpy(cmd->payload, data, count);
494
495 ret = iwl_mvm_send_cmd_pdu(mvm,
496 WIDE_ID(DATA_PATH_GROUP,
497 TRIGGER_RX_QUEUES_NOTIF_CMD),
498 async ? CMD_ASYNC : 0, data_size, cmd);
499
500 return ret;
501}
502
503/*
504 * Returns true if sn2 - buffer_size < sn1 < sn2.
505 * To be used only in order to compare reorder buffer head with NSSN.
506 * We fully trust NSSN unless it is behind us due to reorder timeout.
507 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
508 */
509static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
510{
511 return ieee80211_sn_less(sn1, sn2) &&
512 !ieee80211_sn_less(sn1, sn2 - buffer_size);
513}
514
515static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
516{
517 if (IWL_MVM_USE_NSSN_SYNC) {
518 struct iwl_mvm_rss_sync_notif notif = {
519 .metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
520 .metadata.sync = 0,
521 .nssn_sync.baid = baid,
522 .nssn_sync.nssn = nssn,
523 };
524
525 iwl_mvm_sync_rx_queues_internal(mvm, (void *)¬if,
526 sizeof(notif));
527 }
528}
529
530#define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
531
532enum iwl_mvm_release_flags {
533 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
534 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
535};
536
537static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
538 struct ieee80211_sta *sta,
539 struct napi_struct *napi,
540 struct iwl_mvm_baid_data *baid_data,
541 struct iwl_mvm_reorder_buffer *reorder_buf,
542 u16 nssn, u32 flags)
543{
544 struct iwl_mvm_reorder_buf_entry *entries =
545 &baid_data->entries[reorder_buf->queue *
546 baid_data->entries_per_queue];
547 u16 ssn = reorder_buf->head_sn;
548
549 lockdep_assert_held(&reorder_buf->lock);
550
551 /*
552 * We keep the NSSN not too far behind, if we are sync'ing it and it
553 * is more than 2048 ahead of us, it must be behind us. Discard it.
554 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
555 * behind and this queue already processed packets. The next if
556 * would have caught cases where this queue would have processed less
557 * than 64 packets, but it may have processed more than 64 packets.
558 */
559 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
560 ieee80211_sn_less(nssn, ssn))
561 goto set_timer;
562
563 /* ignore nssn smaller than head sn - this can happen due to timeout */
564 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
565 goto set_timer;
566
567 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
568 int index = ssn % reorder_buf->buf_size;
569 struct sk_buff_head *skb_list = &entries[index].e.frames;
570 struct sk_buff *skb;
571
572 ssn = ieee80211_sn_inc(ssn);
573 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
574 (ssn == 2048 || ssn == 0))
575 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
576
577 /*
578 * Empty the list. Will have more than one frame for A-MSDU.
579 * Empty list is valid as well since nssn indicates frames were
580 * received.
581 */
582 while ((skb = __skb_dequeue(skb_list))) {
583 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
584 reorder_buf->queue,
585 sta, false);
586 reorder_buf->num_stored--;
587 }
588 }
589 reorder_buf->head_sn = nssn;
590
591set_timer:
592 if (reorder_buf->num_stored && !reorder_buf->removed) {
593 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
594
595 while (skb_queue_empty(&entries[index].e.frames))
596 index = (index + 1) % reorder_buf->buf_size;
597 /* modify timer to match next frame's expiration time */
598 mod_timer(&reorder_buf->reorder_timer,
599 entries[index].e.reorder_time + 1 +
600 RX_REORDER_BUF_TIMEOUT_MQ);
601 } else {
602 del_timer(&reorder_buf->reorder_timer);
603 }
604}
605
606void iwl_mvm_reorder_timer_expired(struct timer_list *t)
607{
608 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
609 struct iwl_mvm_baid_data *baid_data =
610 iwl_mvm_baid_data_from_reorder_buf(buf);
611 struct iwl_mvm_reorder_buf_entry *entries =
612 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
613 int i;
614 u16 sn = 0, index = 0;
615 bool expired = false;
616 bool cont = false;
617
618 spin_lock(&buf->lock);
619
620 if (!buf->num_stored || buf->removed) {
621 spin_unlock(&buf->lock);
622 return;
623 }
624
625 for (i = 0; i < buf->buf_size ; i++) {
626 index = (buf->head_sn + i) % buf->buf_size;
627
628 if (skb_queue_empty(&entries[index].e.frames)) {
629 /*
630 * If there is a hole and the next frame didn't expire
631 * we want to break and not advance SN
632 */
633 cont = false;
634 continue;
635 }
636 if (!cont &&
637 !time_after(jiffies, entries[index].e.reorder_time +
638 RX_REORDER_BUF_TIMEOUT_MQ))
639 break;
640
641 expired = true;
642 /* continue until next hole after this expired frames */
643 cont = true;
644 sn = ieee80211_sn_add(buf->head_sn, i + 1);
645 }
646
647 if (expired) {
648 struct ieee80211_sta *sta;
649 struct iwl_mvm_sta *mvmsta;
650 u8 sta_id = baid_data->sta_id;
651
652 rcu_read_lock();
653 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
654 mvmsta = iwl_mvm_sta_from_mac80211(sta);
655
656 /* SN is set to the last expired frame + 1 */
657 IWL_DEBUG_HT(buf->mvm,
658 "Releasing expired frames for sta %u, sn %d\n",
659 sta_id, sn);
660 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
661 sta, baid_data->tid);
662 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
663 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
664 rcu_read_unlock();
665 } else {
666 /*
667 * If no frame expired and there are stored frames, index is now
668 * pointing to the first unexpired frame - modify timer
669 * accordingly to this frame.
670 */
671 mod_timer(&buf->reorder_timer,
672 entries[index].e.reorder_time +
673 1 + RX_REORDER_BUF_TIMEOUT_MQ);
674 }
675 spin_unlock(&buf->lock);
676}
677
678static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
679 struct iwl_mvm_delba_data *data)
680{
681 struct iwl_mvm_baid_data *ba_data;
682 struct ieee80211_sta *sta;
683 struct iwl_mvm_reorder_buffer *reorder_buf;
684 u8 baid = data->baid;
685
686 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
687 return;
688
689 rcu_read_lock();
690
691 ba_data = rcu_dereference(mvm->baid_map[baid]);
692 if (WARN_ON_ONCE(!ba_data))
693 goto out;
694
695 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
696 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
697 goto out;
698
699 reorder_buf = &ba_data->reorder_buf[queue];
700
701 /* release all frames that are in the reorder buffer to the stack */
702 spin_lock_bh(&reorder_buf->lock);
703 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
704 ieee80211_sn_add(reorder_buf->head_sn,
705 reorder_buf->buf_size),
706 0);
707 spin_unlock_bh(&reorder_buf->lock);
708 del_timer_sync(&reorder_buf->reorder_timer);
709
710out:
711 rcu_read_unlock();
712}
713
714static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
715 struct napi_struct *napi,
716 u8 baid, u16 nssn, int queue,
717 u32 flags)
718{
719 struct ieee80211_sta *sta;
720 struct iwl_mvm_reorder_buffer *reorder_buf;
721 struct iwl_mvm_baid_data *ba_data;
722
723 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
724 baid, nssn);
725
726 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
727 baid >= ARRAY_SIZE(mvm->baid_map)))
728 return;
729
730 rcu_read_lock();
731
732 ba_data = rcu_dereference(mvm->baid_map[baid]);
733 if (WARN_ON_ONCE(!ba_data))
734 goto out;
735
736 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
737 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
738 goto out;
739
740 reorder_buf = &ba_data->reorder_buf[queue];
741
742 spin_lock_bh(&reorder_buf->lock);
743 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
744 reorder_buf, nssn, flags);
745 spin_unlock_bh(&reorder_buf->lock);
746
747out:
748 rcu_read_unlock();
749}
750
751static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
752 struct napi_struct *napi, int queue,
753 const struct iwl_mvm_nssn_sync_data *data)
754{
755 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
756 data->nssn, queue,
757 IWL_MVM_RELEASE_FROM_RSS_SYNC);
758}
759
760void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
761 struct iwl_rx_cmd_buffer *rxb, int queue)
762{
763 struct iwl_rx_packet *pkt = rxb_addr(rxb);
764 struct iwl_rxq_sync_notification *notif;
765 struct iwl_mvm_internal_rxq_notif *internal_notif;
766
767 notif = (void *)pkt->data;
768 internal_notif = (void *)notif->payload;
769
770 if (internal_notif->sync &&
771 mvm->queue_sync_cookie != internal_notif->cookie) {
772 WARN_ONCE(1, "Received expired RX queue sync message\n");
773 return;
774 }
775
776 switch (internal_notif->type) {
777 case IWL_MVM_RXQ_EMPTY:
778 break;
779 case IWL_MVM_RXQ_NOTIF_DEL_BA:
780 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
781 break;
782 case IWL_MVM_RXQ_NSSN_SYNC:
783 iwl_mvm_nssn_sync(mvm, napi, queue,
784 (void *)internal_notif->data);
785 break;
786 default:
787 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
788 }
789
790 if (internal_notif->sync &&
791 !atomic_dec_return(&mvm->queue_sync_counter))
792 wake_up(&mvm->rx_sync_waitq);
793}
794
795static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
796 struct ieee80211_sta *sta, int tid,
797 struct iwl_mvm_reorder_buffer *buffer,
798 u32 reorder, u32 gp2, int queue)
799{
800 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
801
802 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
803 /* we have a new (A-)MPDU ... */
804
805 /*
806 * reset counter to 0 if we didn't have any oldsn in
807 * the last A-MPDU (as detected by GP2 being identical)
808 */
809 if (!buffer->consec_oldsn_prev_drop)
810 buffer->consec_oldsn_drops = 0;
811
812 /* either way, update our tracking state */
813 buffer->consec_oldsn_ampdu_gp2 = gp2;
814 } else if (buffer->consec_oldsn_prev_drop) {
815 /*
816 * tracking state didn't change, and we had an old SN
817 * indication before - do nothing in this case, we
818 * already noted this one down and are waiting for the
819 * next A-MPDU (by GP2)
820 */
821 return;
822 }
823
824 /* return unless this MPDU has old SN */
825 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
826 return;
827
828 /* update state */
829 buffer->consec_oldsn_prev_drop = 1;
830 buffer->consec_oldsn_drops++;
831
832 /* if limit is reached, send del BA and reset state */
833 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
834 IWL_WARN(mvm,
835 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
836 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
837 sta->addr, queue, tid);
838 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
839 buffer->consec_oldsn_prev_drop = 0;
840 buffer->consec_oldsn_drops = 0;
841 }
842}
843
844/*
845 * Returns true if the MPDU was buffered\dropped, false if it should be passed
846 * to upper layer.
847 */
848static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
849 struct napi_struct *napi,
850 int queue,
851 struct ieee80211_sta *sta,
852 struct sk_buff *skb,
853 struct iwl_rx_mpdu_desc *desc)
854{
855 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
856 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
857 struct iwl_mvm_sta *mvm_sta;
858 struct iwl_mvm_baid_data *baid_data;
859 struct iwl_mvm_reorder_buffer *buffer;
860 struct sk_buff *tail;
861 u32 reorder = le32_to_cpu(desc->reorder_data);
862 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
863 bool last_subframe =
864 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
865 u8 tid = ieee80211_get_tid(hdr);
866 u8 sub_frame_idx = desc->amsdu_info &
867 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
868 struct iwl_mvm_reorder_buf_entry *entries;
869 int index;
870 u16 nssn, sn;
871 u8 baid;
872
873 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
874 IWL_RX_MPDU_REORDER_BAID_SHIFT;
875
876 /*
877 * This also covers the case of receiving a Block Ack Request
878 * outside a BA session; we'll pass it to mac80211 and that
879 * then sends a delBA action frame.
880 * This also covers pure monitor mode, in which case we won't
881 * have any BA sessions.
882 */
883 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
884 return false;
885
886 /* no sta yet */
887 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
888 "Got valid BAID without a valid station assigned\n"))
889 return false;
890
891 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
892
893 /* not a data packet or a bar */
894 if (!ieee80211_is_back_req(hdr->frame_control) &&
895 (!ieee80211_is_data_qos(hdr->frame_control) ||
896 is_multicast_ether_addr(hdr->addr1)))
897 return false;
898
899 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
900 return false;
901
902 baid_data = rcu_dereference(mvm->baid_map[baid]);
903 if (!baid_data) {
904 IWL_DEBUG_RX(mvm,
905 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
906 baid, reorder);
907 return false;
908 }
909
910 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
911 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
912 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
913 tid))
914 return false;
915
916 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
917 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
918 IWL_RX_MPDU_REORDER_SN_SHIFT;
919
920 buffer = &baid_data->reorder_buf[queue];
921 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
922
923 spin_lock_bh(&buffer->lock);
924
925 if (!buffer->valid) {
926 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
927 spin_unlock_bh(&buffer->lock);
928 return false;
929 }
930 buffer->valid = true;
931 }
932
933 if (ieee80211_is_back_req(hdr->frame_control)) {
934 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
935 buffer, nssn, 0);
936 goto drop;
937 }
938
939 /*
940 * If there was a significant jump in the nssn - adjust.
941 * If the SN is smaller than the NSSN it might need to first go into
942 * the reorder buffer, in which case we just release up to it and the
943 * rest of the function will take care of storing it and releasing up to
944 * the nssn.
945 * This should not happen. This queue has been lagging and it should
946 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
947 * and update the other queues.
948 */
949 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
950 buffer->buf_size) ||
951 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
952 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
953
954 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
955 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
956 }
957
958 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
959 rx_status->device_timestamp, queue);
960
961 /* drop any oudated packets */
962 if (ieee80211_sn_less(sn, buffer->head_sn))
963 goto drop;
964
965 /* release immediately if allowed by nssn and no stored frames */
966 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
967 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
968 buffer->buf_size) &&
969 (!amsdu || last_subframe)) {
970 /*
971 * If we crossed the 2048 or 0 SN, notify all the
972 * queues. This is done in order to avoid having a
973 * head_sn that lags behind for too long. When that
974 * happens, we can get to a situation where the head_sn
975 * is within the interval [nssn - buf_size : nssn]
976 * which will make us think that the nssn is a packet
977 * that we already freed because of the reordering
978 * buffer and we will ignore it. So maintain the
979 * head_sn somewhat updated across all the queues:
980 * when it crosses 0 and 2048.
981 */
982 if (sn == 2048 || sn == 0)
983 iwl_mvm_sync_nssn(mvm, baid, sn);
984 buffer->head_sn = nssn;
985 }
986 /* No need to update AMSDU last SN - we are moving the head */
987 spin_unlock_bh(&buffer->lock);
988 return false;
989 }
990
991 /*
992 * release immediately if there are no stored frames, and the sn is
993 * equal to the head.
994 * This can happen due to reorder timer, where NSSN is behind head_sn.
995 * When we released everything, and we got the next frame in the
996 * sequence, according to the NSSN we can't release immediately,
997 * while technically there is no hole and we can move forward.
998 */
999 if (!buffer->num_stored && sn == buffer->head_sn) {
1000 if (!amsdu || last_subframe) {
1001 if (sn == 2048 || sn == 0)
1002 iwl_mvm_sync_nssn(mvm, baid, sn);
1003 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1004 }
1005 /* No need to update AMSDU last SN - we are moving the head */
1006 spin_unlock_bh(&buffer->lock);
1007 return false;
1008 }
1009
1010 index = sn % buffer->buf_size;
1011
1012 /*
1013 * Check if we already stored this frame
1014 * As AMSDU is either received or not as whole, logic is simple:
1015 * If we have frames in that position in the buffer and the last frame
1016 * originated from AMSDU had a different SN then it is a retransmission.
1017 * If it is the same SN then if the subframe index is incrementing it
1018 * is the same AMSDU - otherwise it is a retransmission.
1019 */
1020 tail = skb_peek_tail(&entries[index].e.frames);
1021 if (tail && !amsdu)
1022 goto drop;
1023 else if (tail && (sn != buffer->last_amsdu ||
1024 buffer->last_sub_index >= sub_frame_idx))
1025 goto drop;
1026
1027 /* put in reorder buffer */
1028 __skb_queue_tail(&entries[index].e.frames, skb);
1029 buffer->num_stored++;
1030 entries[index].e.reorder_time = jiffies;
1031
1032 if (amsdu) {
1033 buffer->last_amsdu = sn;
1034 buffer->last_sub_index = sub_frame_idx;
1035 }
1036
1037 /*
1038 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1039 * The reason is that NSSN advances on the first sub-frame, and may
1040 * cause the reorder buffer to advance before all the sub-frames arrive.
1041 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1042 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1043 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1044 * already ahead and it will be dropped.
1045 * If the last sub-frame is not on this queue - we will get frame
1046 * release notification with up to date NSSN.
1047 */
1048 if (!amsdu || last_subframe)
1049 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1050 buffer, nssn,
1051 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1052
1053 spin_unlock_bh(&buffer->lock);
1054 return true;
1055
1056drop:
1057 kfree_skb(skb);
1058 spin_unlock_bh(&buffer->lock);
1059 return true;
1060}
1061
1062static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1063 u32 reorder_data, u8 baid)
1064{
1065 unsigned long now = jiffies;
1066 unsigned long timeout;
1067 struct iwl_mvm_baid_data *data;
1068
1069 rcu_read_lock();
1070
1071 data = rcu_dereference(mvm->baid_map[baid]);
1072 if (!data) {
1073 IWL_DEBUG_RX(mvm,
1074 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1075 baid, reorder_data);
1076 goto out;
1077 }
1078
1079 if (!data->timeout)
1080 goto out;
1081
1082 timeout = data->timeout;
1083 /*
1084 * Do not update last rx all the time to avoid cache bouncing
1085 * between the rx queues.
1086 * Update it every timeout. Worst case is the session will
1087 * expire after ~ 2 * timeout, which doesn't matter that much.
1088 */
1089 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1090 /* Update is atomic */
1091 data->last_rx = now;
1092
1093out:
1094 rcu_read_unlock();
1095}
1096
1097static void iwl_mvm_flip_address(u8 *addr)
1098{
1099 int i;
1100 u8 mac_addr[ETH_ALEN];
1101
1102 for (i = 0; i < ETH_ALEN; i++)
1103 mac_addr[i] = addr[ETH_ALEN - i - 1];
1104 ether_addr_copy(addr, mac_addr);
1105}
1106
1107struct iwl_mvm_rx_phy_data {
1108 enum iwl_rx_phy_info_type info_type;
1109 __le32 d0, d1, d2, d3;
1110 __le16 d4;
1111};
1112
1113static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1114 struct iwl_mvm_rx_phy_data *phy_data,
1115 u32 rate_n_flags,
1116 struct ieee80211_radiotap_he_mu *he_mu)
1117{
1118 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1119 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1120 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1121
1122 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1123 he_mu->flags1 |=
1124 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1125 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1126
1127 he_mu->flags1 |=
1128 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1129 phy_data4),
1130 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1131
1132 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1133 phy_data2);
1134 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1135 phy_data3);
1136 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1137 phy_data2);
1138 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1139 phy_data3);
1140 }
1141
1142 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1143 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1144 he_mu->flags1 |=
1145 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1146 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1147
1148 he_mu->flags2 |=
1149 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1150 phy_data4),
1151 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1152
1153 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1154 phy_data2);
1155 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1156 phy_data3);
1157 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1158 phy_data2);
1159 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1160 phy_data3);
1161 }
1162}
1163
1164static void
1165iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1166 u32 rate_n_flags,
1167 struct ieee80211_radiotap_he *he,
1168 struct ieee80211_radiotap_he_mu *he_mu,
1169 struct ieee80211_rx_status *rx_status)
1170{
1171 /*
1172 * Unfortunately, we have to leave the mac80211 data
1173 * incorrect for the case that we receive an HE-MU
1174 * transmission and *don't* have the HE phy data (due
1175 * to the bits being used for TSF). This shouldn't
1176 * happen though as management frames where we need
1177 * the TSF/timers are not be transmitted in HE-MU.
1178 */
1179 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1180 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1181 u8 offs = 0;
1182
1183 rx_status->bw = RATE_INFO_BW_HE_RU;
1184
1185 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1186
1187 switch (ru) {
1188 case 0 ... 36:
1189 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1190 offs = ru;
1191 break;
1192 case 37 ... 52:
1193 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1194 offs = ru - 37;
1195 break;
1196 case 53 ... 60:
1197 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1198 offs = ru - 53;
1199 break;
1200 case 61 ... 64:
1201 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1202 offs = ru - 61;
1203 break;
1204 case 65 ... 66:
1205 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1206 offs = ru - 65;
1207 break;
1208 case 67:
1209 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1210 break;
1211 case 68:
1212 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1213 break;
1214 }
1215 he->data2 |= le16_encode_bits(offs,
1216 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1217 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1218 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1219 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1220 he->data2 |=
1221 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1222
1223#define CHECK_BW(bw) \
1224 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1225 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1226 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1227 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1228 CHECK_BW(20);
1229 CHECK_BW(40);
1230 CHECK_BW(80);
1231 CHECK_BW(160);
1232
1233 if (he_mu)
1234 he_mu->flags2 |=
1235 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1236 rate_n_flags),
1237 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1238 else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1239 he->data6 |=
1240 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1241 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1242 rate_n_flags),
1243 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1244}
1245
1246static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1247 struct iwl_mvm_rx_phy_data *phy_data,
1248 struct ieee80211_radiotap_he *he,
1249 struct ieee80211_radiotap_he_mu *he_mu,
1250 struct ieee80211_rx_status *rx_status,
1251 u32 rate_n_flags, int queue)
1252{
1253 switch (phy_data->info_type) {
1254 case IWL_RX_PHY_INFO_TYPE_NONE:
1255 case IWL_RX_PHY_INFO_TYPE_CCK:
1256 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1257 case IWL_RX_PHY_INFO_TYPE_HT:
1258 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1259 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1260 return;
1261 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1262 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1263 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1264 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1265 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1266 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1267 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1268 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1269 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1270 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1271 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1272 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1273 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1274 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1275 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1276 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1277 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1278 /* fall through */
1279 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1280 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1281 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1282 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1283 /* HE common */
1284 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1285 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1286 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1287 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1288 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1289 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1290 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1291 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1292 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1293 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1294 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1295 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1296 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1297 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1298 IWL_RX_PHY_DATA0_HE_UPLINK),
1299 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1300 }
1301 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1302 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1303 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1304 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1305 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1306 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1307 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1308 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1309 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1310 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1311 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1312 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1313 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1314 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1315 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1316 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1317 IWL_RX_PHY_DATA0_HE_DOPPLER),
1318 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1319 break;
1320 }
1321
1322 switch (phy_data->info_type) {
1323 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1324 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1325 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1326 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1327 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1328 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1329 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1330 break;
1331 default:
1332 /* nothing here */
1333 break;
1334 }
1335
1336 switch (phy_data->info_type) {
1337 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1338 he_mu->flags1 |=
1339 le16_encode_bits(le16_get_bits(phy_data->d4,
1340 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1341 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1342 he_mu->flags1 |=
1343 le16_encode_bits(le16_get_bits(phy_data->d4,
1344 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1345 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1346 he_mu->flags2 |=
1347 le16_encode_bits(le16_get_bits(phy_data->d4,
1348 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1349 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1350 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1351 /* fall through */
1352 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1353 he_mu->flags2 |=
1354 le16_encode_bits(le32_get_bits(phy_data->d1,
1355 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1356 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1357 he_mu->flags2 |=
1358 le16_encode_bits(le32_get_bits(phy_data->d1,
1359 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1360 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1361 /* fall through */
1362 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1363 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1364 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1365 he, he_mu, rx_status);
1366 break;
1367 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1368 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1369 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1370 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1371 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1372 break;
1373 default:
1374 /* nothing */
1375 break;
1376 }
1377}
1378
1379static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1380 struct iwl_mvm_rx_phy_data *phy_data,
1381 u32 rate_n_flags, u16 phy_info, int queue)
1382{
1383 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1384 struct ieee80211_radiotap_he *he = NULL;
1385 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1386 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1387 u8 stbc, ltf;
1388 static const struct ieee80211_radiotap_he known = {
1389 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1390 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1391 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1392 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1393 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1394 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1395 };
1396 static const struct ieee80211_radiotap_he_mu mu_known = {
1397 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1398 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1399 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1400 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1401 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1402 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1403 };
1404
1405 he = skb_put_data(skb, &known, sizeof(known));
1406 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1407
1408 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1409 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1410 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1411 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1412 }
1413
1414 /* report the AMPDU-EOF bit on single frames */
1415 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1416 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1417 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1418 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1419 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1420 }
1421
1422 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1423 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1424 rate_n_flags, queue);
1425
1426 /* update aggregation data for monitor sake on default queue */
1427 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1428 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1429 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1430
1431 /* toggle is switched whenever new aggregation starts */
1432 if (toggle_bit != mvm->ampdu_toggle) {
1433 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1434 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1435 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1436 }
1437 }
1438
1439 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1440 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1441 rx_status->bw = RATE_INFO_BW_HE_RU;
1442 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1443 }
1444
1445 /* actually data is filled in mac80211 */
1446 if (he_type == RATE_MCS_HE_TYPE_SU ||
1447 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1448 he->data1 |=
1449 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1450
1451 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1452 rx_status->nss =
1453 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1454 RATE_VHT_MCS_NSS_POS) + 1;
1455 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1456 rx_status->encoding = RX_ENC_HE;
1457 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1458 if (rate_n_flags & RATE_MCS_BF_MSK)
1459 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1460
1461 rx_status->he_dcm =
1462 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1463
1464#define CHECK_TYPE(F) \
1465 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1466 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1467
1468 CHECK_TYPE(SU);
1469 CHECK_TYPE(EXT_SU);
1470 CHECK_TYPE(MU);
1471 CHECK_TYPE(TRIG);
1472
1473 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1474
1475 if (rate_n_flags & RATE_MCS_BF_MSK)
1476 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1477
1478 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1479 RATE_MCS_HE_GI_LTF_POS) {
1480 case 0:
1481 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1482 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1483 else
1484 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1485 if (he_type == RATE_MCS_HE_TYPE_MU)
1486 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1487 else
1488 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1489 break;
1490 case 1:
1491 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1492 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1493 else
1494 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1495 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1496 break;
1497 case 2:
1498 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1499 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1500 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1501 } else {
1502 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1503 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1504 }
1505 break;
1506 case 3:
1507 if ((he_type == RATE_MCS_HE_TYPE_SU ||
1508 he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1509 rate_n_flags & RATE_MCS_SGI_MSK)
1510 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1511 else
1512 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1513 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1514 break;
1515 }
1516
1517 he->data5 |= le16_encode_bits(ltf,
1518 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1519}
1520
1521static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1522 struct iwl_mvm_rx_phy_data *phy_data)
1523{
1524 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1525 struct ieee80211_radiotap_lsig *lsig;
1526
1527 switch (phy_data->info_type) {
1528 case IWL_RX_PHY_INFO_TYPE_HT:
1529 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1530 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1531 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1532 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1533 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1534 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1535 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1536 lsig = skb_put(skb, sizeof(*lsig));
1537 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1538 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1539 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1540 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1541 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1542 break;
1543 default:
1544 break;
1545 }
1546}
1547
1548static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1549{
1550 switch (phy_band) {
1551 case PHY_BAND_24:
1552 return NL80211_BAND_2GHZ;
1553 case PHY_BAND_5:
1554 return NL80211_BAND_5GHZ;
1555 default:
1556 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1557 return NL80211_BAND_5GHZ;
1558 }
1559}
1560
1561void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1562 struct iwl_rx_cmd_buffer *rxb, int queue)
1563{
1564 struct ieee80211_rx_status *rx_status;
1565 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1566 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1567 struct ieee80211_hdr *hdr;
1568 u32 len = le16_to_cpu(desc->mpdu_len);
1569 u32 rate_n_flags, gp2_on_air_rise;
1570 u16 phy_info = le16_to_cpu(desc->phy_info);
1571 struct ieee80211_sta *sta = NULL;
1572 struct sk_buff *skb;
1573 u8 crypt_len = 0, channel, energy_a, energy_b;
1574 size_t desc_size;
1575 struct iwl_mvm_rx_phy_data phy_data = {
1576 .d4 = desc->phy_data4,
1577 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1578 };
1579 bool csi = false;
1580
1581 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1582 return;
1583
1584 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1585 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1586 channel = desc->v3.channel;
1587 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1588 energy_a = desc->v3.energy_a;
1589 energy_b = desc->v3.energy_b;
1590 desc_size = sizeof(*desc);
1591
1592 phy_data.d0 = desc->v3.phy_data0;
1593 phy_data.d1 = desc->v3.phy_data1;
1594 phy_data.d2 = desc->v3.phy_data2;
1595 phy_data.d3 = desc->v3.phy_data3;
1596 } else {
1597 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1598 channel = desc->v1.channel;
1599 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1600 energy_a = desc->v1.energy_a;
1601 energy_b = desc->v1.energy_b;
1602 desc_size = IWL_RX_DESC_SIZE_V1;
1603
1604 phy_data.d0 = desc->v1.phy_data0;
1605 phy_data.d1 = desc->v1.phy_data1;
1606 phy_data.d2 = desc->v1.phy_data2;
1607 phy_data.d3 = desc->v1.phy_data3;
1608 }
1609
1610 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1611 phy_data.info_type =
1612 le32_get_bits(phy_data.d1,
1613 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1614
1615 hdr = (void *)(pkt->data + desc_size);
1616 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1617 * ieee80211_hdr pulled.
1618 */
1619 skb = alloc_skb(128, GFP_ATOMIC);
1620 if (!skb) {
1621 IWL_ERR(mvm, "alloc_skb failed\n");
1622 return;
1623 }
1624
1625 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1626 /*
1627 * If the device inserted padding it means that (it thought)
1628 * the 802.11 header wasn't a multiple of 4 bytes long. In
1629 * this case, reserve two bytes at the start of the SKB to
1630 * align the payload properly in case we end up copying it.
1631 */
1632 skb_reserve(skb, 2);
1633 }
1634
1635 rx_status = IEEE80211_SKB_RXCB(skb);
1636
1637 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1638 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1639 case RATE_MCS_CHAN_WIDTH_20:
1640 break;
1641 case RATE_MCS_CHAN_WIDTH_40:
1642 rx_status->bw = RATE_INFO_BW_40;
1643 break;
1644 case RATE_MCS_CHAN_WIDTH_80:
1645 rx_status->bw = RATE_INFO_BW_80;
1646 break;
1647 case RATE_MCS_CHAN_WIDTH_160:
1648 rx_status->bw = RATE_INFO_BW_160;
1649 break;
1650 }
1651
1652 if (rate_n_flags & RATE_MCS_HE_MSK)
1653 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1654 phy_info, queue);
1655
1656 iwl_mvm_decode_lsig(skb, &phy_data);
1657
1658 rx_status = IEEE80211_SKB_RXCB(skb);
1659
1660 if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1661 le32_to_cpu(pkt->len_n_flags), queue,
1662 &crypt_len)) {
1663 kfree_skb(skb);
1664 return;
1665 }
1666
1667 /*
1668 * Keep packets with CRC errors (and with overrun) for monitor mode
1669 * (otherwise the firmware discards them) but mark them as bad.
1670 */
1671 if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1672 !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1673 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1674 le16_to_cpu(desc->status));
1675 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1676 }
1677 /* set the preamble flag if appropriate */
1678 if (rate_n_flags & RATE_MCS_CCK_MSK &&
1679 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1680 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1681
1682 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1683 u64 tsf_on_air_rise;
1684
1685 if (mvm->trans->trans_cfg->device_family >=
1686 IWL_DEVICE_FAMILY_AX210)
1687 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1688 else
1689 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1690
1691 rx_status->mactime = tsf_on_air_rise;
1692 /* TSF as indicated by the firmware is at INA time */
1693 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1694 }
1695
1696 rx_status->device_timestamp = gp2_on_air_rise;
1697 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1698 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1699
1700 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1701 } else {
1702 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1703 NL80211_BAND_2GHZ;
1704 }
1705 rx_status->freq = ieee80211_channel_to_frequency(channel,
1706 rx_status->band);
1707 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1708 energy_b);
1709
1710 /* update aggregation data for monitor sake on default queue */
1711 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1712 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1713
1714 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1715 /*
1716 * Toggle is switched whenever new aggregation starts. Make
1717 * sure ampdu_reference is never 0 so we can later use it to
1718 * see if the frame was really part of an A-MPDU or not.
1719 */
1720 if (toggle_bit != mvm->ampdu_toggle) {
1721 mvm->ampdu_ref++;
1722 if (mvm->ampdu_ref == 0)
1723 mvm->ampdu_ref++;
1724 mvm->ampdu_toggle = toggle_bit;
1725 }
1726 rx_status->ampdu_reference = mvm->ampdu_ref;
1727 }
1728
1729 if (unlikely(mvm->monitor_on))
1730 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1731
1732 rcu_read_lock();
1733
1734 if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1735 u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
1736
1737 if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
1738 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1739 if (IS_ERR(sta))
1740 sta = NULL;
1741 }
1742 } else if (!is_multicast_ether_addr(hdr->addr2)) {
1743 /*
1744 * This is fine since we prevent two stations with the same
1745 * address from being added.
1746 */
1747 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1748 }
1749
1750 if (sta) {
1751 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1752 struct ieee80211_vif *tx_blocked_vif =
1753 rcu_dereference(mvm->csa_tx_blocked_vif);
1754 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1755 IWL_RX_MPDU_REORDER_BAID_MASK) >>
1756 IWL_RX_MPDU_REORDER_BAID_SHIFT);
1757 struct iwl_fw_dbg_trigger_tlv *trig;
1758 struct ieee80211_vif *vif = mvmsta->vif;
1759
1760 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1761 !is_multicast_ether_addr(hdr->addr1) &&
1762 ieee80211_is_data(hdr->frame_control) &&
1763 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1764 schedule_delayed_work(&mvm->tcm.work, 0);
1765
1766 /*
1767 * We have tx blocked stations (with CS bit). If we heard
1768 * frames from a blocked station on a new channel we can
1769 * TX to it again.
1770 */
1771 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1772 struct iwl_mvm_vif *mvmvif =
1773 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1774
1775 if (mvmvif->csa_target_freq == rx_status->freq)
1776 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1777 false);
1778 }
1779
1780 rs_update_last_rssi(mvm, mvmsta, rx_status);
1781
1782 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1783 ieee80211_vif_to_wdev(vif),
1784 FW_DBG_TRIGGER_RSSI);
1785
1786 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1787 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1788 s32 rssi;
1789
1790 rssi_trig = (void *)trig->data;
1791 rssi = le32_to_cpu(rssi_trig->rssi);
1792
1793 if (rx_status->signal < rssi)
1794 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1795 NULL);
1796 }
1797
1798 if (ieee80211_is_data(hdr->frame_control))
1799 iwl_mvm_rx_csum(sta, skb, desc);
1800
1801 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1802 kfree_skb(skb);
1803 goto out;
1804 }
1805
1806 /*
1807 * Our hardware de-aggregates AMSDUs but copies the mac header
1808 * as it to the de-aggregated MPDUs. We need to turn off the
1809 * AMSDU bit in the QoS control ourselves.
1810 * In addition, HW reverses addr3 and addr4 - reverse it back.
1811 */
1812 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1813 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1814 u8 *qc = ieee80211_get_qos_ctl(hdr);
1815
1816 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1817
1818 if (mvm->trans->trans_cfg->device_family ==
1819 IWL_DEVICE_FAMILY_9000) {
1820 iwl_mvm_flip_address(hdr->addr3);
1821
1822 if (ieee80211_has_a4(hdr->frame_control))
1823 iwl_mvm_flip_address(hdr->addr4);
1824 }
1825 }
1826 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1827 u32 reorder_data = le32_to_cpu(desc->reorder_data);
1828
1829 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1830 }
1831 }
1832
1833 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1834 rate_n_flags & RATE_MCS_SGI_MSK)
1835 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1836 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1837 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1838 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1839 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1840 if (rate_n_flags & RATE_MCS_HT_MSK) {
1841 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1842 RATE_MCS_STBC_POS;
1843 rx_status->encoding = RX_ENC_HT;
1844 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1845 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1846 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1847 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1848 RATE_MCS_STBC_POS;
1849 rx_status->nss =
1850 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1851 RATE_VHT_MCS_NSS_POS) + 1;
1852 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1853 rx_status->encoding = RX_ENC_VHT;
1854 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1855 if (rate_n_flags & RATE_MCS_BF_MSK)
1856 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1857 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1858 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1859 rx_status->band);
1860
1861 if (WARN(rate < 0 || rate > 0xFF,
1862 "Invalid rate flags 0x%x, band %d,\n",
1863 rate_n_flags, rx_status->band)) {
1864 kfree_skb(skb);
1865 goto out;
1866 }
1867 rx_status->rate_idx = rate;
1868 }
1869
1870 /* management stuff on default queue */
1871 if (!queue) {
1872 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1873 ieee80211_is_probe_resp(hdr->frame_control)) &&
1874 mvm->sched_scan_pass_all ==
1875 SCHED_SCAN_PASS_ALL_ENABLED))
1876 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1877
1878 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1879 ieee80211_is_probe_resp(hdr->frame_control)))
1880 rx_status->boottime_ns = ktime_get_boottime_ns();
1881 }
1882
1883 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1884 kfree_skb(skb);
1885 goto out;
1886 }
1887
1888 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1889 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1890 sta, csi);
1891out:
1892 rcu_read_unlock();
1893}
1894
1895void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1896 struct iwl_rx_cmd_buffer *rxb, int queue)
1897{
1898 struct ieee80211_rx_status *rx_status;
1899 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1900 struct iwl_rx_no_data *desc = (void *)pkt->data;
1901 u32 rate_n_flags = le32_to_cpu(desc->rate);
1902 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1903 u32 rssi = le32_to_cpu(desc->rssi);
1904 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1905 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1906 struct ieee80211_sta *sta = NULL;
1907 struct sk_buff *skb;
1908 u8 channel, energy_a, energy_b;
1909 struct iwl_mvm_rx_phy_data phy_data = {
1910 .d0 = desc->phy_info[0],
1911 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1912 };
1913
1914 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1915 return;
1916
1917 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1918 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1919 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1920
1921 phy_data.info_type =
1922 le32_get_bits(desc->phy_info[1],
1923 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1924
1925 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1926 * ieee80211_hdr pulled.
1927 */
1928 skb = alloc_skb(128, GFP_ATOMIC);
1929 if (!skb) {
1930 IWL_ERR(mvm, "alloc_skb failed\n");
1931 return;
1932 }
1933
1934 rx_status = IEEE80211_SKB_RXCB(skb);
1935
1936 /* 0-length PSDU */
1937 rx_status->flag |= RX_FLAG_NO_PSDU;
1938
1939 switch (info_type) {
1940 case RX_NO_DATA_INFO_TYPE_NDP:
1941 rx_status->zero_length_psdu_type =
1942 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
1943 break;
1944 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
1945 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
1946 rx_status->zero_length_psdu_type =
1947 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
1948 break;
1949 default:
1950 rx_status->zero_length_psdu_type =
1951 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
1952 break;
1953 }
1954
1955 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1956 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1957 case RATE_MCS_CHAN_WIDTH_20:
1958 break;
1959 case RATE_MCS_CHAN_WIDTH_40:
1960 rx_status->bw = RATE_INFO_BW_40;
1961 break;
1962 case RATE_MCS_CHAN_WIDTH_80:
1963 rx_status->bw = RATE_INFO_BW_80;
1964 break;
1965 case RATE_MCS_CHAN_WIDTH_160:
1966 rx_status->bw = RATE_INFO_BW_160;
1967 break;
1968 }
1969
1970 if (rate_n_flags & RATE_MCS_HE_MSK)
1971 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1972 phy_info, queue);
1973
1974 iwl_mvm_decode_lsig(skb, &phy_data);
1975
1976 rx_status->device_timestamp = gp2_on_air_rise;
1977 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1978 NL80211_BAND_2GHZ;
1979 rx_status->freq = ieee80211_channel_to_frequency(channel,
1980 rx_status->band);
1981 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1982 energy_b);
1983
1984 rcu_read_lock();
1985
1986 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1987 rate_n_flags & RATE_MCS_SGI_MSK)
1988 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1989 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1990 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1991 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1992 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1993 if (rate_n_flags & RATE_MCS_HT_MSK) {
1994 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1995 RATE_MCS_STBC_POS;
1996 rx_status->encoding = RX_ENC_HT;
1997 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1998 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1999 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2000 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2001 RATE_MCS_STBC_POS;
2002 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2003 rx_status->encoding = RX_ENC_VHT;
2004 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2005 if (rate_n_flags & RATE_MCS_BF_MSK)
2006 rx_status->enc_flags |= RX_ENC_FLAG_BF;
2007 /*
2008 * take the nss from the rx_vec since the rate_n_flags has
2009 * only 2 bits for the nss which gives a max of 4 ss but
2010 * there may be up to 8 spatial streams
2011 */
2012 rx_status->nss =
2013 le32_get_bits(desc->rx_vec[0],
2014 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2015 } else if (rate_n_flags & RATE_MCS_HE_MSK) {
2016 rx_status->nss =
2017 le32_get_bits(desc->rx_vec[0],
2018 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2019 } else {
2020 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2021 rx_status->band);
2022
2023 if (WARN(rate < 0 || rate > 0xFF,
2024 "Invalid rate flags 0x%x, band %d,\n",
2025 rate_n_flags, rx_status->band)) {
2026 kfree_skb(skb);
2027 goto out;
2028 }
2029 rx_status->rate_idx = rate;
2030 }
2031
2032 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2033out:
2034 rcu_read_unlock();
2035}
2036
2037void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2038 struct iwl_rx_cmd_buffer *rxb, int queue)
2039{
2040 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2041 struct iwl_frame_release *release = (void *)pkt->data;
2042
2043 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2044 le16_to_cpu(release->nssn),
2045 queue, 0);
2046}
2047
2048void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2049 struct iwl_rx_cmd_buffer *rxb, int queue)
2050{
2051 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2052 struct iwl_bar_frame_release *release = (void *)pkt->data;
2053 unsigned int baid = le32_get_bits(release->ba_info,
2054 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2055 unsigned int nssn = le32_get_bits(release->ba_info,
2056 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2057 unsigned int sta_id = le32_get_bits(release->sta_tid,
2058 IWL_BAR_FRAME_RELEASE_STA_MASK);
2059 unsigned int tid = le32_get_bits(release->sta_tid,
2060 IWL_BAR_FRAME_RELEASE_TID_MASK);
2061 struct iwl_mvm_baid_data *baid_data;
2062
2063 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2064 baid >= ARRAY_SIZE(mvm->baid_map)))
2065 return;
2066
2067 rcu_read_lock();
2068 baid_data = rcu_dereference(mvm->baid_map[baid]);
2069 if (!baid_data) {
2070 IWL_DEBUG_RX(mvm,
2071 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2072 baid);
2073 goto out;
2074 }
2075
2076 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2077 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2078 baid, baid_data->sta_id, baid_data->tid, sta_id,
2079 tid))
2080 goto out;
2081
2082 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2083out:
2084 rcu_read_unlock();
2085}