Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
   4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
   5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
   6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7#include <linux/etherdevice.h>
   8#include <linux/skbuff.h>
   9#include "iwl-trans.h"
  10#include "mvm.h"
  11#include "fw-api.h"
  12#include "time-sync.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  13
  14static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
  15				   int queue, struct ieee80211_sta *sta)
  16{
  17	struct iwl_mvm_sta *mvmsta;
  18	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
  19	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
  20	struct iwl_mvm_key_pn *ptk_pn;
  21	int res;
  22	u8 tid, keyidx;
  23	u8 pn[IEEE80211_CCMP_PN_LEN];
  24	u8 *extiv;
  25
  26	/* do PN checking */
  27
  28	/* multicast and non-data only arrives on default queue */
  29	if (!ieee80211_is_data(hdr->frame_control) ||
  30	    is_multicast_ether_addr(hdr->addr1))
  31		return 0;
  32
  33	/* do not check PN for open AP */
  34	if (!(stats->flag & RX_FLAG_DECRYPTED))
  35		return 0;
  36
  37	/*
  38	 * avoid checking for default queue - we don't want to replicate
  39	 * all the logic that's necessary for checking the PN on fragmented
  40	 * frames, leave that to mac80211
  41	 */
  42	if (queue == 0)
  43		return 0;
  44
  45	/* if we are here - this for sure is either CCMP or GCMP */
  46	if (IS_ERR_OR_NULL(sta)) {
  47		IWL_DEBUG_DROP(mvm,
  48			       "expected hw-decrypted unicast frame for station\n");
  49		return -1;
  50	}
  51
  52	mvmsta = iwl_mvm_sta_from_mac80211(sta);
  53
  54	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
  55	keyidx = extiv[3] >> 6;
  56
  57	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
  58	if (!ptk_pn)
  59		return -1;
  60
  61	if (ieee80211_is_data_qos(hdr->frame_control))
  62		tid = ieee80211_get_tid(hdr);
  63	else
  64		tid = 0;
  65
  66	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
  67	if (tid >= IWL_MAX_TID_COUNT)
  68		return -1;
  69
  70	/* load pn */
  71	pn[0] = extiv[7];
  72	pn[1] = extiv[6];
  73	pn[2] = extiv[5];
  74	pn[3] = extiv[4];
  75	pn[4] = extiv[1];
  76	pn[5] = extiv[0];
  77
  78	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
  79	if (res < 0)
  80		return -1;
  81	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
  82		return -1;
  83
  84	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
  85	stats->flag |= RX_FLAG_PN_VALIDATED;
  86
  87	return 0;
  88}
  89
  90/* iwl_mvm_create_skb Adds the rxb to a new skb */
  91static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
  92			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
  93			      struct iwl_rx_cmd_buffer *rxb)
  94{
  95	struct iwl_rx_packet *pkt = rxb_addr(rxb);
  96	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
  97	unsigned int headlen, fraglen, pad_len = 0;
  98	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
  99	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
 100				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
 101
 102	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
 103		len -= 2;
 104		pad_len = 2;
 105	}
 106
 107	/*
 108	 * For non monitor interface strip the bytes the RADA might not have
 109	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
 110	 * interface cannot exist with other interfaces, this removal is safe
 111	 * and sufficient, in monitor mode there's no decryption being done.
 112	 */
 113	if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
 114		len -= mic_crc_len;
 115
 116	/* If frame is small enough to fit in skb->head, pull it completely.
 117	 * If not, only pull ieee80211_hdr (including crypto if present, and
 118	 * an additional 8 bytes for SNAP/ethertype, see below) so that
 119	 * splice() or TCP coalesce are more efficient.
 120	 *
 121	 * Since, in addition, ieee80211_data_to_8023() always pull in at
 122	 * least 8 bytes (possibly more for mesh) we can do the same here
 123	 * to save the cost of doing it later. That still doesn't pull in
 124	 * the actual IP header since the typical case has a SNAP header.
 125	 * If the latter changes (there are efforts in the standards group
 126	 * to do so) we should revisit this and ieee80211_data_to_8023().
 127	 */
 128	headlen = (len <= skb_tailroom(skb)) ? len :
 129					       hdrlen + crypt_len + 8;
 130
 131	/* The firmware may align the packet to DWORD.
 132	 * The padding is inserted after the IV.
 133	 * After copying the header + IV skip the padding if
 134	 * present before copying packet data.
 135	 */
 136	hdrlen += crypt_len;
 137
 138	if (unlikely(headlen < hdrlen))
 
 
 
 
 
 
 
 
 
 139		return -EINVAL;
 
 140
 141	/* Since data doesn't move data while putting data on skb and that is
 142	 * the only way we use, data + len is the next place that hdr would be put
 143	 */
 144	skb_set_mac_header(skb, skb->len);
 145	skb_put_data(skb, hdr, hdrlen);
 146	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
 147
 148	/*
 149	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
 150	 * certain cases and starts the checksum after the SNAP. Check if
 151	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
 152	 * in the cases the hardware didn't handle, since it's rare to see
 153	 * such packets, even though the hardware did calculate the checksum
 154	 * in this case, just starting after the MAC header instead.
 155	 *
 156	 * Starting from Bz hardware, it calculates starting directly after
 157	 * the MAC header, so that matches mac80211's expectation.
 158	 */
 159	if (skb->ip_summed == CHECKSUM_COMPLETE) {
 160		struct {
 161			u8 hdr[6];
 162			__be16 type;
 163		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
 164
 165		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
 166			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
 167			     (shdr->type != htons(ETH_P_IP) &&
 168			      shdr->type != htons(ETH_P_ARP) &&
 169			      shdr->type != htons(ETH_P_IPV6) &&
 170			      shdr->type != htons(ETH_P_8021Q) &&
 171			      shdr->type != htons(ETH_P_PAE) &&
 172			      shdr->type != htons(ETH_P_TDLS))))
 173			skb->ip_summed = CHECKSUM_NONE;
 174		else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
 175			/* mac80211 assumes full CSUM including SNAP header */
 176			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
 177	}
 178
 179	fraglen = len - headlen;
 180
 181	if (fraglen) {
 182		int offset = (u8 *)hdr + headlen + pad_len -
 183			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
 184
 185		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
 186				fraglen, rxb->truesize);
 187	}
 188
 189	return 0;
 190}
 191
 192/* put a TLV on the skb and return data pointer
 193 *
 194 * Also pad to 4 the len and zero out all data part
 195 */
 196static void *
 197iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
 198{
 199	struct ieee80211_radiotap_tlv *tlv;
 200
 201	tlv = skb_put(skb, sizeof(*tlv));
 202	tlv->type = cpu_to_le16(type);
 203	tlv->len = cpu_to_le16(len);
 204	return skb_put_zero(skb, ALIGN(len, 4));
 205}
 206
 207static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
 208					    struct sk_buff *skb)
 209{
 210	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
 211	struct ieee80211_radiotap_vendor_content *radiotap;
 212	const u16 vendor_data_len = sizeof(mvm->cur_aid);
 213
 214	if (!mvm->cur_aid)
 215		return;
 216
 217	radiotap = iwl_mvm_radiotap_put_tlv(skb,
 218					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
 219					    sizeof(*radiotap) + vendor_data_len);
 220
 
 
 221	/* Intel OUI */
 222	radiotap->oui[0] = 0xf6;
 223	radiotap->oui[1] = 0x54;
 224	radiotap->oui[2] = 0x25;
 225	/* radiotap sniffer config sub-namespace */
 226	radiotap->oui_subtype = 1;
 227	radiotap->vendor_type = 0;
 
 
 228
 229	/* fill the data now */
 230	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
 
 
 231
 232	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
 233}
 234
 235/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
 236static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
 237					    struct napi_struct *napi,
 238					    struct sk_buff *skb, int queue,
 239					    struct ieee80211_sta *sta,
 240					    struct ieee80211_link_sta *link_sta)
 241{
 242	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
 243		kfree_skb(skb);
 244		return;
 245	}
 246
 247	if (sta && sta->valid_links && link_sta) {
 248		struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
 249
 250		rx_status->link_valid = 1;
 251		rx_status->link_id = link_sta->link_id;
 252	}
 253
 254	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
 255}
 256
 257static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
 258					struct ieee80211_rx_status *rx_status,
 259					u32 rate_n_flags, int energy_a,
 260					int energy_b)
 261{
 262	int max_energy;
 263	u32 rate_flags = rate_n_flags;
 264
 265	energy_a = energy_a ? -energy_a : S8_MIN;
 266	energy_b = energy_b ? -energy_b : S8_MIN;
 267	max_energy = max(energy_a, energy_b);
 268
 269	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
 270			energy_a, energy_b, max_energy);
 271
 272	rx_status->signal = max_energy;
 273	rx_status->chains =
 274		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
 275	rx_status->chain_signal[0] = energy_a;
 276	rx_status->chain_signal[1] = energy_b;
 
 277}
 278
 279static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
 280				struct ieee80211_hdr *hdr,
 281				struct iwl_rx_mpdu_desc *desc,
 282				u32 status,
 283				struct ieee80211_rx_status *stats)
 284{
 285	struct iwl_mvm_sta *mvmsta;
 286	struct iwl_mvm_vif *mvmvif;
 287	u8 keyid;
 288	struct ieee80211_key_conf *key;
 289	u32 len = le16_to_cpu(desc->mpdu_len);
 290	const u8 *frame = (void *)hdr;
 291
 292	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
 293		return 0;
 294
 295	/*
 296	 * For non-beacon, we don't really care. But beacons may
 297	 * be filtered out, and we thus need the firmware's replay
 298	 * detection, otherwise beacons the firmware previously
 299	 * filtered could be replayed, or something like that, and
 300	 * it can filter a lot - though usually only if nothing has
 301	 * changed.
 302	 */
 303	if (!ieee80211_is_beacon(hdr->frame_control))
 304		return 0;
 305
 306	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
 307	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
 308		return -1;
 309
 310	/* good cases */
 311	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
 312		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
 313		stats->flag |= RX_FLAG_DECRYPTED;
 314		return 0;
 315	}
 316
 317	if (!sta)
 318		return -1;
 319
 320	mvmsta = iwl_mvm_sta_from_mac80211(sta);
 321
 322	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
 323
 324	/*
 325	 * both keys will have the same cipher and MIC length, use
 326	 * whichever one is available
 327	 */
 328	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
 329	if (!key) {
 330		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
 331		if (!key)
 332			return -1;
 333	}
 334
 335	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
 336		return -1;
 337
 338	/* get the real key ID */
 339	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
 340	/* and if that's the other key, look it up */
 341	if (keyid != key->keyidx) {
 342		/*
 343		 * shouldn't happen since firmware checked, but be safe
 344		 * in case the MIC length is wrong too, for example
 345		 */
 346		if (keyid != 6 && keyid != 7)
 347			return -1;
 348		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
 349		if (!key)
 350			return -1;
 351	}
 352
 353	/* Report status to mac80211 */
 354	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
 355		ieee80211_key_mic_failure(key);
 356	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
 357		ieee80211_key_replay(key);
 358
 359	return -1;
 360}
 361
 362static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
 363			     struct ieee80211_hdr *hdr,
 364			     struct ieee80211_rx_status *stats, u16 phy_info,
 365			     struct iwl_rx_mpdu_desc *desc,
 366			     u32 pkt_flags, int queue, u8 *crypt_len)
 367{
 368	u32 status = le32_to_cpu(desc->status);
 369
 370	/*
 371	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
 372	 * (where we don't have the keys).
 373	 * We limit this to aggregation because in TKIP this is a valid
 374	 * scenario, since we may not have the (correct) TTAK (phase 1
 375	 * key) in the firmware.
 376	 */
 377	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
 378	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 379	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) {
 380		IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n");
 381		return -1;
 382	}
 383
 384	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
 385		     !ieee80211_has_protected(hdr->frame_control)))
 386		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
 387
 388	if (!ieee80211_has_protected(hdr->frame_control) ||
 389	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 390	    IWL_RX_MPDU_STATUS_SEC_NONE)
 391		return 0;
 392
 393	/* TODO: handle packets encrypted with unknown alg */
 394
 395	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
 396	case IWL_RX_MPDU_STATUS_SEC_CCM:
 397	case IWL_RX_MPDU_STATUS_SEC_GCM:
 398		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
 399		/* alg is CCM: check MIC only */
 400		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
 401			return -1;
 402
 403		stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
 
 
 404		*crypt_len = IEEE80211_CCMP_HDR_LEN;
 405		return 0;
 406	case IWL_RX_MPDU_STATUS_SEC_TKIP:
 407		/* Don't drop the frame and decrypt it in SW */
 408		if (!fw_has_api(&mvm->fw->ucode_capa,
 409				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
 410		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
 411			return 0;
 412
 413		if (mvm->trans->trans_cfg->gen2 &&
 414		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
 415			stats->flag |= RX_FLAG_MMIC_ERROR;
 416
 417		*crypt_len = IEEE80211_TKIP_IV_LEN;
 418		fallthrough;
 419	case IWL_RX_MPDU_STATUS_SEC_WEP:
 420		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
 421			return -1;
 422
 423		stats->flag |= RX_FLAG_DECRYPTED;
 424		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 425				IWL_RX_MPDU_STATUS_SEC_WEP)
 426			*crypt_len = IEEE80211_WEP_IV_LEN;
 427
 428		if (pkt_flags & FH_RSCSR_RADA_EN) {
 429			stats->flag |= RX_FLAG_ICV_STRIPPED;
 430			if (mvm->trans->trans_cfg->gen2)
 431				stats->flag |= RX_FLAG_MMIC_STRIPPED;
 432		}
 433
 434		return 0;
 435	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
 436		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
 437			return -1;
 438		stats->flag |= RX_FLAG_DECRYPTED;
 439		return 0;
 440	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
 441		break;
 442	default:
 443		/*
 444		 * Sometimes we can get frames that were not decrypted
 445		 * because the firmware didn't have the keys yet. This can
 446		 * happen after connection where we can get multicast frames
 447		 * before the GTK is installed.
 448		 * Silently drop those frames.
 449		 * Also drop un-decrypted frames in monitor mode.
 450		 */
 451		if (!is_multicast_ether_addr(hdr->addr1) &&
 452		    !mvm->monitor_on && net_ratelimit())
 453			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
 454	}
 455
 456	return 0;
 457}
 458
 459static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
 460			    struct ieee80211_sta *sta,
 461			    struct sk_buff *skb,
 462			    struct iwl_rx_packet *pkt)
 463{
 464	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
 465
 466	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
 467		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
 468			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
 469
 470			skb->ip_summed = CHECKSUM_COMPLETE;
 471			skb->csum = csum_unfold(~(__force __sum16)hwsum);
 472		}
 473	} else {
 474		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
 475		struct iwl_mvm_vif *mvmvif;
 476		u16 flags = le16_to_cpu(desc->l3l4_flags);
 477		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
 478				  IWL_RX_L3_PROTO_POS);
 479
 480		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
 481
 482		if (mvmvif->features & NETIF_F_RXCSUM &&
 483		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
 484		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
 485		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
 486		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
 487			skb->ip_summed = CHECKSUM_UNNECESSARY;
 488	}
 489}
 490
 491/*
 492 * returns true if a packet is a duplicate or invalid tid and should be dropped.
 493 * Updates AMSDU PN tracking info
 494 */
 495static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
 496			   struct ieee80211_rx_status *rx_status,
 497			   struct ieee80211_hdr *hdr,
 498			   struct iwl_rx_mpdu_desc *desc)
 499{
 500	struct iwl_mvm_sta *mvm_sta;
 501	struct iwl_mvm_rxq_dup_data *dup_data;
 502	u8 tid, sub_frame_idx;
 503
 504	if (WARN_ON(IS_ERR_OR_NULL(sta)))
 505		return false;
 506
 507	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
 508
 509	if (WARN_ON_ONCE(!mvm_sta->dup_data))
 510		return false;
 511
 512	dup_data = &mvm_sta->dup_data[queue];
 513
 514	/*
 515	 * Drop duplicate 802.11 retransmissions
 516	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
 517	 */
 518	if (ieee80211_is_ctl(hdr->frame_control) ||
 519	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
 520	    is_multicast_ether_addr(hdr->addr1)) {
 521		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
 522		return false;
 523	}
 524
 525	if (ieee80211_is_data_qos(hdr->frame_control)) {
 526		/* frame has qos control */
 527		tid = ieee80211_get_tid(hdr);
 528		if (tid >= IWL_MAX_TID_COUNT)
 529			return true;
 530	} else {
 531		tid = IWL_MAX_TID_COUNT;
 532	}
 533
 534	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
 535	sub_frame_idx = desc->amsdu_info &
 536		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
 537
 538	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
 539		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
 540		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
 541		return true;
 542
 543	/* Allow same PN as the first subframe for following sub frames */
 544	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
 545	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
 546	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
 547		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
 548
 549	dup_data->last_seq[tid] = hdr->seq_ctrl;
 550	dup_data->last_sub_frame[tid] = sub_frame_idx;
 551
 552	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
 553
 554	return false;
 555}
 556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 557static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
 558				   struct ieee80211_sta *sta,
 559				   struct napi_struct *napi,
 560				   struct iwl_mvm_baid_data *baid_data,
 561				   struct iwl_mvm_reorder_buffer *reorder_buf,
 562				   u16 nssn)
 563{
 564	struct iwl_mvm_reorder_buf_entry *entries =
 565		&baid_data->entries[reorder_buf->queue *
 566				    baid_data->entries_per_queue];
 567	u16 ssn = reorder_buf->head_sn;
 568
 569	lockdep_assert_held(&reorder_buf->lock);
 570
 571	while (ieee80211_sn_less(ssn, nssn)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572		int index = ssn % reorder_buf->buf_size;
 573		struct sk_buff_head *skb_list = &entries[index].frames;
 574		struct sk_buff *skb;
 575
 576		ssn = ieee80211_sn_inc(ssn);
 
 
 
 577
 578		/*
 579		 * Empty the list. Will have more than one frame for A-MSDU.
 580		 * Empty list is valid as well since nssn indicates frames were
 581		 * received.
 582		 */
 583		while ((skb = __skb_dequeue(skb_list))) {
 584			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
 585							reorder_buf->queue,
 586							sta, NULL /* FIXME */);
 587			reorder_buf->num_stored--;
 588		}
 589	}
 590	reorder_buf->head_sn = nssn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591}
 592
 593static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
 594			   struct iwl_mvm_delba_data *data)
 595{
 596	struct iwl_mvm_baid_data *ba_data;
 597	struct ieee80211_sta *sta;
 598	struct iwl_mvm_reorder_buffer *reorder_buf;
 599	u8 baid = data->baid;
 600	u32 sta_id;
 601
 602	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
 603		return;
 604
 605	rcu_read_lock();
 606
 607	ba_data = rcu_dereference(mvm->baid_map[baid]);
 608	if (WARN_ON_ONCE(!ba_data))
 609		goto out;
 610
 611	/* pick any STA ID to find the pointer */
 612	sta_id = ffs(ba_data->sta_mask) - 1;
 613	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
 614	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
 615		goto out;
 616
 617	reorder_buf = &ba_data->reorder_buf[queue];
 618
 619	/* release all frames that are in the reorder buffer to the stack */
 620	spin_lock_bh(&reorder_buf->lock);
 621	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
 622			       ieee80211_sn_add(reorder_buf->head_sn,
 623						reorder_buf->buf_size));
 
 624	spin_unlock_bh(&reorder_buf->lock);
 
 625
 626out:
 627	rcu_read_unlock();
 628}
 629
 630static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
 631					      struct napi_struct *napi,
 632					      u8 baid, u16 nssn, int queue)
 
 633{
 634	struct ieee80211_sta *sta;
 635	struct iwl_mvm_reorder_buffer *reorder_buf;
 636	struct iwl_mvm_baid_data *ba_data;
 637	u32 sta_id;
 638
 639	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
 640		     baid, nssn);
 641
 642	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
 643			 baid >= ARRAY_SIZE(mvm->baid_map)))
 644		return;
 645
 646	rcu_read_lock();
 647
 648	ba_data = rcu_dereference(mvm->baid_map[baid]);
 649	if (!ba_data) {
 650		WARN(true, "BAID %d not found in map\n", baid);
 651		goto out;
 652	}
 653
 654	/* pick any STA ID to find the pointer */
 655	sta_id = ffs(ba_data->sta_mask) - 1;
 656	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
 657	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
 658		goto out;
 659
 660	reorder_buf = &ba_data->reorder_buf[queue];
 661
 662	spin_lock_bh(&reorder_buf->lock);
 663	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
 664			       reorder_buf, nssn);
 665	spin_unlock_bh(&reorder_buf->lock);
 666
 667out:
 668	rcu_read_unlock();
 669}
 670
 
 
 
 
 
 
 
 
 
 671void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
 672			    struct iwl_rx_cmd_buffer *rxb, int queue)
 673{
 674	struct iwl_rx_packet *pkt = rxb_addr(rxb);
 675	struct iwl_rxq_sync_notification *notif;
 676	struct iwl_mvm_internal_rxq_notif *internal_notif;
 677	u32 len = iwl_rx_packet_payload_len(pkt);
 678
 679	notif = (void *)pkt->data;
 680	internal_notif = (void *)notif->payload;
 681
 682	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
 683		      "invalid notification size %d (%d)",
 684		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
 685		return;
 686	len -= sizeof(*notif) + sizeof(*internal_notif);
 687
 688	if (internal_notif->sync &&
 689	    mvm->queue_sync_cookie != internal_notif->cookie) {
 690		WARN_ONCE(1, "Received expired RX queue sync message\n");
 691		return;
 692	}
 693
 694	switch (internal_notif->type) {
 695	case IWL_MVM_RXQ_EMPTY:
 696		WARN_ONCE(len, "invalid empty notification size %d", len);
 697		break;
 698	case IWL_MVM_RXQ_NOTIF_DEL_BA:
 699		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
 700			      "invalid delba notification size %d (%d)",
 701			      len, (int)sizeof(struct iwl_mvm_delba_data)))
 702			break;
 703		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
 704		break;
 
 
 
 
 705	default:
 706		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
 707	}
 708
 709	if (internal_notif->sync) {
 710		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
 711			  "queue sync: queue %d responded a second time!\n",
 712			  queue);
 713		if (READ_ONCE(mvm->queue_sync_state) == 0)
 714			wake_up(&mvm->rx_sync_waitq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715	}
 716}
 717
 718/*
 719 * Returns true if the MPDU was buffered\dropped, false if it should be passed
 720 * to upper layer.
 721 */
 722static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
 723			    struct napi_struct *napi,
 724			    int queue,
 725			    struct ieee80211_sta *sta,
 726			    struct sk_buff *skb,
 727			    struct iwl_rx_mpdu_desc *desc)
 728{
 729	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
 
 
 730	struct iwl_mvm_baid_data *baid_data;
 731	struct iwl_mvm_reorder_buffer *buffer;
 
 732	u32 reorder = le32_to_cpu(desc->reorder_data);
 733	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
 734	bool last_subframe =
 735		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
 736	u8 tid = ieee80211_get_tid(hdr);
 737	u8 sub_frame_idx = desc->amsdu_info &
 738			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
 739	struct iwl_mvm_reorder_buf_entry *entries;
 740	u32 sta_mask;
 741	int index;
 742	u16 nssn, sn;
 743	u8 baid;
 744
 745	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
 746		IWL_RX_MPDU_REORDER_BAID_SHIFT;
 747
 748	if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000)
 749		return false;
 750
 751	/*
 752	 * This also covers the case of receiving a Block Ack Request
 753	 * outside a BA session; we'll pass it to mac80211 and that
 754	 * then sends a delBA action frame.
 755	 * This also covers pure monitor mode, in which case we won't
 756	 * have any BA sessions.
 757	 */
 758	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
 759		return false;
 760
 761	/* no sta yet */
 762	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
 763		      "Got valid BAID without a valid station assigned\n"))
 764		return false;
 765
 
 
 766	/* not a data packet or a bar */
 767	if (!ieee80211_is_back_req(hdr->frame_control) &&
 768	    (!ieee80211_is_data_qos(hdr->frame_control) ||
 769	     is_multicast_ether_addr(hdr->addr1)))
 770		return false;
 771
 772	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 773		return false;
 774
 775	baid_data = rcu_dereference(mvm->baid_map[baid]);
 776	if (!baid_data) {
 777		IWL_DEBUG_RX(mvm,
 778			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
 779			      baid, reorder);
 780		return false;
 781	}
 782
 783	rcu_read_lock();
 784	sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
 785	rcu_read_unlock();
 786
 787	if (IWL_FW_CHECK(mvm,
 788			 tid != baid_data->tid ||
 789			 !(sta_mask & baid_data->sta_mask),
 790			 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
 791			 baid, baid_data->sta_mask, baid_data->tid,
 792			 sta_mask, tid))
 793		return false;
 794
 795	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
 796	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
 797		IWL_RX_MPDU_REORDER_SN_SHIFT;
 798
 799	buffer = &baid_data->reorder_buf[queue];
 800	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
 801
 802	spin_lock_bh(&buffer->lock);
 803
 804	if (!buffer->valid) {
 805		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
 806			spin_unlock_bh(&buffer->lock);
 807			return false;
 808		}
 809		buffer->valid = true;
 810	}
 811
 812	/* drop any duplicated packets */
 813	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE))
 
 814		goto drop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815
 816	/* drop any oudated packets */
 817	if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)
 818		goto drop;
 819
 820	/* release immediately if allowed by nssn and no stored frames */
 821	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
 822		if (!amsdu || last_subframe)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823			buffer->head_sn = nssn;
 
 824		/* No need to update AMSDU last SN - we are moving the head */
 825		spin_unlock_bh(&buffer->lock);
 826		return false;
 827	}
 828
 829	/*
 830	 * release immediately if there are no stored frames, and the sn is
 831	 * equal to the head.
 832	 * This can happen due to reorder timer, where NSSN is behind head_sn.
 833	 * When we released everything, and we got the next frame in the
 834	 * sequence, according to the NSSN we can't release immediately,
 835	 * while technically there is no hole and we can move forward.
 836	 */
 837	if (!buffer->num_stored && sn == buffer->head_sn) {
 838		if (!amsdu || last_subframe)
 
 
 839			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
 840
 841		/* No need to update AMSDU last SN - we are moving the head */
 842		spin_unlock_bh(&buffer->lock);
 843		return false;
 844	}
 845
 846	/* put in reorder buffer */
 847	index = sn % buffer->buf_size;
 848	__skb_queue_tail(&entries[index].frames, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849	buffer->num_stored++;
 
 850
 851	if (amsdu) {
 852		buffer->last_amsdu = sn;
 853		buffer->last_sub_index = sub_frame_idx;
 854	}
 855
 856	/*
 857	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
 858	 * The reason is that NSSN advances on the first sub-frame, and may
 859	 * cause the reorder buffer to advance before all the sub-frames arrive.
 860	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
 861	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
 862	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
 863	 * already ahead and it will be dropped.
 864	 * If the last sub-frame is not on this queue - we will get frame
 865	 * release notification with up to date NSSN.
 866	 */
 867	if (!amsdu || last_subframe)
 868		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
 869				       buffer, nssn);
 
 870
 871	spin_unlock_bh(&buffer->lock);
 872	return true;
 873
 874drop:
 875	kfree_skb(skb);
 876	spin_unlock_bh(&buffer->lock);
 877	return true;
 878}
 879
 880static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
 881				    u32 reorder_data, u8 baid)
 882{
 883	unsigned long now = jiffies;
 884	unsigned long timeout;
 885	struct iwl_mvm_baid_data *data;
 886
 887	rcu_read_lock();
 888
 889	data = rcu_dereference(mvm->baid_map[baid]);
 890	if (!data) {
 891		IWL_DEBUG_RX(mvm,
 892			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
 893			      baid, reorder_data);
 894		goto out;
 895	}
 896
 897	if (!data->timeout)
 898		goto out;
 899
 900	timeout = data->timeout;
 901	/*
 902	 * Do not update last rx all the time to avoid cache bouncing
 903	 * between the rx queues.
 904	 * Update it every timeout. Worst case is the session will
 905	 * expire after ~ 2 * timeout, which doesn't matter that much.
 906	 */
 907	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
 908		/* Update is atomic */
 909		data->last_rx = now;
 910
 911out:
 912	rcu_read_unlock();
 913}
 914
 915static void iwl_mvm_flip_address(u8 *addr)
 916{
 917	int i;
 918	u8 mac_addr[ETH_ALEN];
 919
 920	for (i = 0; i < ETH_ALEN; i++)
 921		mac_addr[i] = addr[ETH_ALEN - i - 1];
 922	ether_addr_copy(addr, mac_addr);
 923}
 924
 925struct iwl_mvm_rx_phy_data {
 926	enum iwl_rx_phy_info_type info_type;
 927	__le32 d0, d1, d2, d3, eht_d4, d5;
 928	__le16 d4;
 929	bool with_data;
 930	bool first_subframe;
 931	__le32 rx_vec[4];
 932
 933	u32 rate_n_flags;
 934	u32 gp2_on_air_rise;
 935	u16 phy_info;
 936	u8 energy_a, energy_b;
 937	u8 channel;
 938};
 939
 940static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
 941				     struct iwl_mvm_rx_phy_data *phy_data,
 
 942				     struct ieee80211_radiotap_he_mu *he_mu)
 943{
 944	u32 phy_data2 = le32_to_cpu(phy_data->d2);
 945	u32 phy_data3 = le32_to_cpu(phy_data->d3);
 946	u16 phy_data4 = le16_to_cpu(phy_data->d4);
 947	u32 rate_n_flags = phy_data->rate_n_flags;
 948
 949	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
 950		he_mu->flags1 |=
 951			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
 952				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
 953
 954		he_mu->flags1 |=
 955			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
 956						   phy_data4),
 957					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
 958
 959		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
 960					     phy_data2);
 961		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
 962					     phy_data3);
 963		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
 964					     phy_data2);
 965		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
 966					     phy_data3);
 967	}
 968
 969	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
 970	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
 971		he_mu->flags1 |=
 972			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
 973				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
 974
 975		he_mu->flags2 |=
 976			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
 977						   phy_data4),
 978					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
 979
 980		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
 981					     phy_data2);
 982		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
 983					     phy_data3);
 984		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
 985					     phy_data2);
 986		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
 987					     phy_data3);
 988	}
 989}
 990
 991static void
 992iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
 
 993			       struct ieee80211_radiotap_he *he,
 994			       struct ieee80211_radiotap_he_mu *he_mu,
 995			       struct ieee80211_rx_status *rx_status)
 996{
 997	/*
 998	 * Unfortunately, we have to leave the mac80211 data
 999	 * incorrect for the case that we receive an HE-MU
1000	 * transmission and *don't* have the HE phy data (due
1001	 * to the bits being used for TSF). This shouldn't
1002	 * happen though as management frames where we need
1003	 * the TSF/timers are not be transmitted in HE-MU.
1004	 */
1005	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1006	u32 rate_n_flags = phy_data->rate_n_flags;
1007	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1008	u8 offs = 0;
1009
1010	rx_status->bw = RATE_INFO_BW_HE_RU;
1011
1012	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1013
1014	switch (ru) {
1015	case 0 ... 36:
1016		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1017		offs = ru;
1018		break;
1019	case 37 ... 52:
1020		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1021		offs = ru - 37;
1022		break;
1023	case 53 ... 60:
1024		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1025		offs = ru - 53;
1026		break;
1027	case 61 ... 64:
1028		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1029		offs = ru - 61;
1030		break;
1031	case 65 ... 66:
1032		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1033		offs = ru - 65;
1034		break;
1035	case 67:
1036		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1037		break;
1038	case 68:
1039		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1040		break;
1041	}
1042	he->data2 |= le16_encode_bits(offs,
1043				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1044	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1045				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1046	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1047		he->data2 |=
1048			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1049
1050#define CHECK_BW(bw) \
1051	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1052		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1053	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1054		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1055	CHECK_BW(20);
1056	CHECK_BW(40);
1057	CHECK_BW(80);
1058	CHECK_BW(160);
1059
1060	if (he_mu)
1061		he_mu->flags2 |=
1062			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1063						   rate_n_flags),
1064					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1065	else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1066		he->data6 |=
1067			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1068			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1069						   rate_n_flags),
1070					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1071}
1072
1073static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1074				       struct iwl_mvm_rx_phy_data *phy_data,
1075				       struct ieee80211_radiotap_he *he,
1076				       struct ieee80211_radiotap_he_mu *he_mu,
1077				       struct ieee80211_rx_status *rx_status,
1078				       int queue)
1079{
1080	switch (phy_data->info_type) {
1081	case IWL_RX_PHY_INFO_TYPE_NONE:
1082	case IWL_RX_PHY_INFO_TYPE_CCK:
1083	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1084	case IWL_RX_PHY_INFO_TYPE_HT:
1085	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1086	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1087	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1088	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1089	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1090	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1091		return;
1092	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1093		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1094					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1095					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1096					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1097		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1098							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1099					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1100		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1101							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1102					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1103		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1104							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1105					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1106		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1107							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1108					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1109		fallthrough;
1110	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1111	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1112	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1113	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1114		/* HE common */
1115		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1116					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1117					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1118		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1119					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1120					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1121					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1122		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1123							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1124					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1125		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1126		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1127			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1128			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1129							    IWL_RX_PHY_DATA0_HE_UPLINK),
1130						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1131		}
1132		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1133							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1134					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1135		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1136							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1137					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1138		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1139							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1140					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1141		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1142							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1143					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1144		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1145							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1146					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1147		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1148							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1149					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1150		break;
1151	}
1152
1153	switch (phy_data->info_type) {
1154	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1155	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1156	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1157		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1158		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1159							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1160					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1161		break;
1162	default:
1163		/* nothing here */
1164		break;
1165	}
1166
1167	switch (phy_data->info_type) {
1168	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1169		he_mu->flags1 |=
1170			le16_encode_bits(le16_get_bits(phy_data->d4,
1171						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1172					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1173		he_mu->flags1 |=
1174			le16_encode_bits(le16_get_bits(phy_data->d4,
1175						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1176					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1177		he_mu->flags2 |=
1178			le16_encode_bits(le16_get_bits(phy_data->d4,
1179						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1180					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1181		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1182		fallthrough;
1183	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1184		he_mu->flags2 |=
1185			le16_encode_bits(le32_get_bits(phy_data->d1,
1186						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1187					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1188		he_mu->flags2 |=
1189			le16_encode_bits(le32_get_bits(phy_data->d1,
1190						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1191					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1192		fallthrough;
1193	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1194	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1195		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
 
1196		break;
1197	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1198		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1199		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1200							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1201					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1202		break;
1203	default:
1204		/* nothing */
1205		break;
1206	}
1207}
1208
1209#define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1210	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1211
1212#define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1213	typeof(enc_bits) _enc_bits = enc_bits; \
1214	typeof(usig) _usig = usig; \
1215	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1216	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1217} while (0)
1218
1219#define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1220	eht->data[(rt_data)] |= \
1221		(cpu_to_le32 \
1222		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1223		 LE32_DEC_ENC(data ## fw_data, \
1224			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1225			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1226
1227#define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1228	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1229
1230#define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1231#define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1232#define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1233#define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1234#define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1235#define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1236#define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1237#define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1238
1239#define IWL_RX_RU_DATA_A1			2
1240#define IWL_RX_RU_DATA_A2			2
1241#define IWL_RX_RU_DATA_B1			2
1242#define IWL_RX_RU_DATA_B2			4
1243#define IWL_RX_RU_DATA_C1			3
1244#define IWL_RX_RU_DATA_C2			3
1245#define IWL_RX_RU_DATA_D1			4
1246#define IWL_RX_RU_DATA_D2			4
1247
1248#define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1249	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1250			    rt_ru,					\
1251			    IWL_RX_RU_DATA_ ## fw_ru,			\
1252			    fw_ru)
1253
1254static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1255				      struct iwl_mvm_rx_phy_data *phy_data,
1256				      struct ieee80211_rx_status *rx_status,
1257				      struct ieee80211_radiotap_eht *eht,
1258				      struct ieee80211_radiotap_eht_usig *usig)
1259{
1260	if (phy_data->with_data) {
1261		__le32 data1 = phy_data->d1;
1262		__le32 data2 = phy_data->d2;
1263		__le32 data3 = phy_data->d3;
1264		__le32 data4 = phy_data->eht_d4;
1265		__le32 data5 = phy_data->d5;
1266		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1267
1268		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1269					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1270					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1271		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1272					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1273					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1274		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1275					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1276					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1277		IWL_MVM_ENC_USIG_VALUE_MASK
1278			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1279			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1280
1281		eht->user_info[0] |=
1282			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1283			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1284				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1285
1286		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1287		eht->data[7] |= LE32_DEC_ENC
1288			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1289			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1290
1291		/*
1292		 * Hardware labels the content channels/RU allocation values
1293		 * as follows:
1294		 *           Content Channel 1		Content Channel 2
1295		 *   20 MHz: A1
1296		 *   40 MHz: A1				B1
1297		 *   80 MHz: A1 C1			B1 D1
1298		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1299		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1300		 *
1301		 * However firmware can only give us A1-D2, so the higher
1302		 * frequencies are missing.
1303		 */
1304
1305		switch (phy_bw) {
1306		case RATE_MCS_CHAN_WIDTH_320:
1307			/* additional values are missing in RX metadata */
1308		case RATE_MCS_CHAN_WIDTH_160:
1309			/* content channel 1 */
1310			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1311			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1312			/* content channel 2 */
1313			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1314			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1315			fallthrough;
1316		case RATE_MCS_CHAN_WIDTH_80:
1317			/* content channel 1 */
1318			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1319			/* content channel 2 */
1320			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1321			fallthrough;
1322		case RATE_MCS_CHAN_WIDTH_40:
1323			/* content channel 2 */
1324			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1325			fallthrough;
1326		case RATE_MCS_CHAN_WIDTH_20:
1327			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1328			break;
1329		}
1330	} else {
1331		__le32 usig_a1 = phy_data->rx_vec[0];
1332		__le32 usig_a2 = phy_data->rx_vec[1];
1333
1334		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1335					    IWL_RX_USIG_A1_DISREGARD,
1336					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1337		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1338					    IWL_RX_USIG_A1_VALIDATE,
1339					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1340		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1341					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1342					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1343		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1344					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1345					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1346		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1347					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1348					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1349		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1350					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1351					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1352		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1353					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1354					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1355		IWL_MVM_ENC_USIG_VALUE_MASK
1356			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1357			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1358		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1359					    IWL_RX_USIG_A2_EHT_CRC_OK,
1360					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1361	}
1362}
1363
1364static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1365				      struct iwl_mvm_rx_phy_data *phy_data,
1366				      struct ieee80211_rx_status *rx_status,
1367				      struct ieee80211_radiotap_eht *eht,
1368				      struct ieee80211_radiotap_eht_usig *usig)
1369{
1370	if (phy_data->with_data) {
1371		__le32 data5 = phy_data->d5;
1372
1373		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1374					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1375					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1376		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1377					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1378					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1379
1380		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1381					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1382					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1383	} else {
1384		__le32 usig_a1 = phy_data->rx_vec[0];
1385		__le32 usig_a2 = phy_data->rx_vec[1];
1386
1387		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1388					    IWL_RX_USIG_A1_DISREGARD,
1389					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1390		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1391					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1392					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1393		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1394					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1395					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1396		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1397					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1398					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1399		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1400					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1401					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1402		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1403					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1404					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1405		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1406					    IWL_RX_USIG_A2_EHT_CRC_OK,
1407					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1408	}
1409}
1410
1411static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1412				  struct ieee80211_rx_status *rx_status,
1413				  struct ieee80211_radiotap_eht *eht)
1414{
1415	u32 ru = le32_get_bits(eht->data[8],
1416			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1417	enum nl80211_eht_ru_alloc nl_ru;
1418
1419	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1420	 * in an EHT variant User Info field
1421	 */
1422
1423	switch (ru) {
1424	case 0 ... 36:
1425		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1426		break;
1427	case 37 ... 52:
1428		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1429		break;
1430	case 53 ... 60:
1431		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1432		break;
1433	case 61 ... 64:
1434		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1435		break;
1436	case 65 ... 66:
1437		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1438		break;
1439	case 67:
1440		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1441		break;
1442	case 68:
1443		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1444		break;
1445	case 69:
1446		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1447		break;
1448	case 70 ... 81:
1449		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1450		break;
1451	case 82 ... 89:
1452		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1453		break;
1454	case 90 ... 93:
1455		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1456		break;
1457	case 94 ... 95:
1458		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1459		break;
1460	case 96 ... 99:
1461		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1462		break;
1463	case 100 ... 103:
1464		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1465		break;
1466	case 104:
1467		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1468		break;
1469	case 105 ... 106:
1470		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1471		break;
1472	default:
1473		return;
1474	}
1475
1476	rx_status->bw = RATE_INFO_BW_EHT_RU;
1477	rx_status->eht.ru = nl_ru;
1478}
1479
1480static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1481					struct iwl_mvm_rx_phy_data *phy_data,
1482					struct ieee80211_rx_status *rx_status,
1483					struct ieee80211_radiotap_eht *eht,
1484					struct ieee80211_radiotap_eht_usig *usig)
1485
1486{
1487	__le32 data0 = phy_data->d0;
1488	__le32 data1 = phy_data->d1;
1489	__le32 usig_a1 = phy_data->rx_vec[0];
1490	u8 info_type = phy_data->info_type;
1491
1492	/* Not in EHT range */
1493	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1494	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1495		return;
1496
1497	usig->common |= cpu_to_le32
1498		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1499		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1500	if (phy_data->with_data) {
1501		usig->common |= LE32_DEC_ENC(data0,
1502					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1503					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1504		usig->common |= LE32_DEC_ENC(data0,
1505					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1506					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1507	} else {
1508		usig->common |= LE32_DEC_ENC(usig_a1,
1509					     IWL_RX_USIG_A1_UL_FLAG,
1510					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1511		usig->common |= LE32_DEC_ENC(usig_a1,
1512					     IWL_RX_USIG_A1_BSS_COLOR,
1513					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1514	}
1515
1516	if (fw_has_capa(&mvm->fw->ucode_capa,
1517			IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1518		usig->common |=
1519			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1520		usig->common |=
1521			LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1522				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1523	}
1524
1525	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1526	eht->data[0] |= LE32_DEC_ENC(data0,
1527				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1528				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1529
1530	/* All RU allocating size/index is in TB format */
1531	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1532	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1533				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1534	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1535				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1536	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1537				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1538
1539	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1540
1541	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1542	 * which is on only in case of monitor mode so no need to check monitor
1543	 * mode
1544	 */
1545	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1546	eht->data[1] |=
1547		le32_encode_bits(mvm->monitor_p80,
1548				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1549
1550	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1551	if (phy_data->with_data)
1552		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1553					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1554	else
1555		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1556					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1557
1558	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1559	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1560				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1561
1562	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1563	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1564				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1565
1566	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1567	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1568				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1569
1570	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1571
1572	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1573		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1574
1575	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1576	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1577				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1578
1579	/*
1580	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1581	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1582	 */
1583
1584	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1585	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1586				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1587
1588	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1589	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1590		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1591
1592	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1593	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1594		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1595}
1596
1597static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1598			   struct iwl_mvm_rx_phy_data *phy_data,
1599			   int queue)
1600{
1601	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1602
1603	struct ieee80211_radiotap_eht *eht;
1604	struct ieee80211_radiotap_eht_usig *usig;
1605	size_t eht_len = sizeof(*eht);
1606
1607	u32 rate_n_flags = phy_data->rate_n_flags;
1608	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1609	/* EHT and HE have the same valus for LTF */
1610	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1611	u16 phy_info = phy_data->phy_info;
1612	u32 bw;
1613
1614	/* u32 for 1 user_info */
1615	if (phy_data->with_data)
1616		eht_len += sizeof(u32);
1617
1618	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1619
1620	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1621					sizeof(*usig));
1622	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1623	usig->common |=
1624		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1625
1626	/* specific handling for 320MHz */
1627	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1628	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1629		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1630				le32_to_cpu(phy_data->d0));
1631
1632	usig->common |= cpu_to_le32
1633		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1634
1635	/* report the AMPDU-EOF bit on single frames */
1636	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1637		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1638		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1639		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1640			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1641	}
1642
1643	/* update aggregation data for monitor sake on default queue */
1644	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1645	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1646		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1647		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1648			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1649	}
1650
1651	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1652		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1653
1654#define CHECK_TYPE(F)							\
1655	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1656		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1657
1658	CHECK_TYPE(SU);
1659	CHECK_TYPE(EXT_SU);
1660	CHECK_TYPE(MU);
1661	CHECK_TYPE(TRIG);
1662
1663	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1664	case 0:
1665		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1666			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1667			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1668		} else {
1669			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1670			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1671		}
1672		break;
1673	case 1:
1674		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1675		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1676		break;
1677	case 2:
1678		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1679		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1680			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1681		else
1682			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1683		break;
1684	case 3:
1685		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1686			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1687			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1688		}
1689		break;
1690	default:
1691		/* nothing here */
1692		break;
1693	}
1694
1695	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1696		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1697		eht->data[0] |= cpu_to_le32
1698			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1699				    ltf) |
1700			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1701				    rx_status->eht.gi));
1702	}
1703
1704
1705	if (!phy_data->with_data) {
1706		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1707					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1708		eht->data[7] |=
1709			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1710						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1711					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1712		if (rate_n_flags & RATE_MCS_BF_MSK)
1713			eht->data[7] |=
1714				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1715	} else {
1716		eht->user_info[0] |=
1717			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1718				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1719				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1720				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1721				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1722
1723		if (rate_n_flags & RATE_MCS_BF_MSK)
1724			eht->user_info[0] |=
1725				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1726
1727		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1728			eht->user_info[0] |=
1729				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1730
1731		eht->user_info[0] |= cpu_to_le32
1732			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1733				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1734					      rate_n_flags)) |
1735			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1736				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1737	}
1738}
1739
1740static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1741			  struct iwl_mvm_rx_phy_data *phy_data,
1742			  int queue)
1743{
1744	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1745	struct ieee80211_radiotap_he *he = NULL;
1746	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1747	u32 rate_n_flags = phy_data->rate_n_flags;
1748	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1749	u8 ltf;
1750	static const struct ieee80211_radiotap_he known = {
1751		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1752				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1753				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1754				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1755		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1756				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1757	};
1758	static const struct ieee80211_radiotap_he_mu mu_known = {
1759		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1760				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1761				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1762				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1763		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1764				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1765	};
1766	u16 phy_info = phy_data->phy_info;
1767
1768	he = skb_put_data(skb, &known, sizeof(known));
1769	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1770
1771	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1772	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1773		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1774		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1775	}
1776
1777	/* report the AMPDU-EOF bit on single frames */
1778	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1779		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1780		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1781		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1782			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1783	}
1784
1785	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1786		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1787					   queue);
1788
1789	/* update aggregation data for monitor sake on default queue */
1790	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1791	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1792		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1793		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1794			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
 
 
 
 
 
1795	}
1796
1797	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1798	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1799		rx_status->bw = RATE_INFO_BW_HE_RU;
1800		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1801	}
1802
1803	/* actually data is filled in mac80211 */
1804	if (he_type == RATE_MCS_HE_TYPE_SU ||
1805	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1806		he->data1 |=
1807			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1808
 
 
 
 
 
 
 
 
 
 
 
 
 
1809#define CHECK_TYPE(F)							\
1810	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1811		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1812
1813	CHECK_TYPE(SU);
1814	CHECK_TYPE(EXT_SU);
1815	CHECK_TYPE(MU);
1816	CHECK_TYPE(TRIG);
1817
1818	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1819
1820	if (rate_n_flags & RATE_MCS_BF_MSK)
1821		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1822
1823	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1824		RATE_MCS_HE_GI_LTF_POS) {
1825	case 0:
1826		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1827			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1828		else
1829			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1830		if (he_type == RATE_MCS_HE_TYPE_MU)
1831			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1832		else
1833			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1834		break;
1835	case 1:
1836		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1837			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1838		else
1839			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1840		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1841		break;
1842	case 2:
1843		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1844			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1845			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1846		} else {
1847			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1848			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1849		}
1850		break;
1851	case 3:
1852		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1853		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1854		break;
1855	case 4:
1856		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
 
1857		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1858		break;
1859	default:
1860		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1861	}
1862
1863	he->data5 |= le16_encode_bits(ltf,
1864				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1865}
1866
1867static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1868				struct iwl_mvm_rx_phy_data *phy_data)
1869{
1870	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1871	struct ieee80211_radiotap_lsig *lsig;
1872
1873	switch (phy_data->info_type) {
1874	case IWL_RX_PHY_INFO_TYPE_HT:
1875	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1876	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1877	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1878	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1879	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1880	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1881	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1882	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1883	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1884	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1885	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1886		lsig = skb_put(skb, sizeof(*lsig));
1887		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1888		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1889							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1890					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1891		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1892		break;
1893	default:
1894		break;
1895	}
1896}
1897
1898static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1899{
1900	switch (phy_band) {
1901	case PHY_BAND_24:
1902		return NL80211_BAND_2GHZ;
1903	case PHY_BAND_5:
1904		return NL80211_BAND_5GHZ;
1905	case PHY_BAND_6:
1906		return NL80211_BAND_6GHZ;
1907	default:
1908		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1909		return NL80211_BAND_5GHZ;
1910	}
1911}
1912
1913struct iwl_rx_sta_csa {
1914	bool all_sta_unblocked;
1915	struct ieee80211_vif *vif;
1916};
1917
1918static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1919{
1920	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1921	struct iwl_rx_sta_csa *rx_sta_csa = data;
1922
1923	if (mvmsta->vif != rx_sta_csa->vif)
1924		return;
1925
1926	if (mvmsta->disable_tx)
1927		rx_sta_csa->all_sta_unblocked = false;
1928}
1929
1930/*
1931 * Note: requires also rx_status->band to be prefilled, as well
1932 * as phy_data (apart from phy_data->info_type)
1933 */
1934static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1935				   struct sk_buff *skb,
1936				   struct iwl_mvm_rx_phy_data *phy_data,
1937				   int queue)
1938{
1939	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1940	u32 rate_n_flags = phy_data->rate_n_flags;
1941	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1942	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1943	bool is_sgi;
1944
1945	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1946
1947	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1948		phy_data->info_type =
1949			le32_get_bits(phy_data->d1,
1950				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1951
1952	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1953	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1954	case RATE_MCS_CHAN_WIDTH_20:
1955		break;
1956	case RATE_MCS_CHAN_WIDTH_40:
1957		rx_status->bw = RATE_INFO_BW_40;
1958		break;
1959	case RATE_MCS_CHAN_WIDTH_80:
1960		rx_status->bw = RATE_INFO_BW_80;
1961		break;
1962	case RATE_MCS_CHAN_WIDTH_160:
1963		rx_status->bw = RATE_INFO_BW_160;
1964		break;
1965	case RATE_MCS_CHAN_WIDTH_320:
1966		rx_status->bw = RATE_INFO_BW_320;
1967		break;
1968	}
1969
1970	/* must be before L-SIG data */
1971	if (format == RATE_MCS_HE_MSK)
1972		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1973
1974	iwl_mvm_decode_lsig(skb, phy_data);
1975
1976	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1977	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1978							 rx_status->band);
1979	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1980				    phy_data->energy_a, phy_data->energy_b);
1981
1982	/* using TLV format and must be after all fixed len fields */
1983	if (format == RATE_MCS_EHT_MSK)
1984		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
1985
1986	if (unlikely(mvm->monitor_on))
1987		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1988
1989	is_sgi = format == RATE_MCS_HE_MSK ?
1990		iwl_he_is_sgi(rate_n_flags) :
1991		rate_n_flags & RATE_MCS_SGI_MSK;
1992
1993	if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
1994		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1995
1996	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1997		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1998
1999	switch (format) {
2000	case RATE_MCS_VHT_MSK:
2001		rx_status->encoding = RX_ENC_VHT;
2002		break;
2003	case RATE_MCS_HE_MSK:
2004		rx_status->encoding = RX_ENC_HE;
2005		rx_status->he_dcm =
2006			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2007		break;
2008	case RATE_MCS_EHT_MSK:
2009		rx_status->encoding = RX_ENC_EHT;
2010		break;
2011	}
2012
2013	switch (format) {
2014	case RATE_MCS_HT_MSK:
2015		rx_status->encoding = RX_ENC_HT;
2016		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2017		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2018		break;
2019	case RATE_MCS_VHT_MSK:
2020	case RATE_MCS_HE_MSK:
2021	case RATE_MCS_EHT_MSK:
2022		rx_status->nss =
2023			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2024		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2025		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2026		break;
2027	default: {
2028		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2029								 rx_status->band);
2030
2031		rx_status->rate_idx = rate;
2032
2033		if ((rate < 0 || rate > 0xFF)) {
2034			rx_status->rate_idx = 0;
2035			if (net_ratelimit())
2036				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2037					rate_n_flags, rx_status->band);
2038		}
2039
2040		break;
2041		}
2042	}
2043}
2044
2045void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2046			struct iwl_rx_cmd_buffer *rxb, int queue)
2047{
2048	struct ieee80211_rx_status *rx_status;
2049	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2050	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2051	struct ieee80211_hdr *hdr;
2052	u32 len;
2053	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
 
2054	struct ieee80211_sta *sta = NULL;
2055	struct ieee80211_link_sta *link_sta = NULL;
2056	struct sk_buff *skb;
2057	u8 crypt_len = 0;
2058	size_t desc_size;
2059	struct iwl_mvm_rx_phy_data phy_data = {};
2060	u32 format;
 
 
 
2061
2062	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2063		return;
2064
2065	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2066		desc_size = sizeof(*desc);
2067	else
2068		desc_size = IWL_RX_DESC_SIZE_V1;
2069
2070	if (unlikely(pkt_len < desc_size)) {
2071		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2072		return;
2073	}
2074
2075	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2076		phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2077		phy_data.channel = desc->v3.channel;
2078		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2079		phy_data.energy_a = desc->v3.energy_a;
2080		phy_data.energy_b = desc->v3.energy_b;
 
2081
2082		phy_data.d0 = desc->v3.phy_data0;
2083		phy_data.d1 = desc->v3.phy_data1;
2084		phy_data.d2 = desc->v3.phy_data2;
2085		phy_data.d3 = desc->v3.phy_data3;
2086		phy_data.eht_d4 = desc->phy_eht_data4;
2087		phy_data.d5 = desc->v3.phy_data5;
2088	} else {
2089		phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2090		phy_data.channel = desc->v1.channel;
2091		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2092		phy_data.energy_a = desc->v1.energy_a;
2093		phy_data.energy_b = desc->v1.energy_b;
 
2094
2095		phy_data.d0 = desc->v1.phy_data0;
2096		phy_data.d1 = desc->v1.phy_data1;
2097		phy_data.d2 = desc->v1.phy_data2;
2098		phy_data.d3 = desc->v1.phy_data3;
2099	}
2100
2101	if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2102				    REPLY_RX_MPDU_CMD, 0) < 4) {
2103		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2104		IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2105			       phy_data.rate_n_flags);
2106	}
2107
2108	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2109
2110	len = le16_to_cpu(desc->mpdu_len);
2111
2112	if (unlikely(len + desc_size > pkt_len)) {
2113		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2114		return;
2115	}
2116
2117	phy_data.with_data = true;
2118	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2119	phy_data.d4 = desc->phy_data4;
2120
2121	hdr = (void *)(pkt->data + desc_size);
2122	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2123	 * ieee80211_hdr pulled.
2124	 */
2125	skb = alloc_skb(128, GFP_ATOMIC);
2126	if (!skb) {
2127		IWL_ERR(mvm, "alloc_skb failed\n");
2128		return;
2129	}
2130
2131	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2132		/*
2133		 * If the device inserted padding it means that (it thought)
2134		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2135		 * this case, reserve two bytes at the start of the SKB to
2136		 * align the payload properly in case we end up copying it.
2137		 */
2138		skb_reserve(skb, 2);
2139	}
2140
2141	rx_status = IEEE80211_SKB_RXCB(skb);
2142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2143	/*
2144	 * Keep packets with CRC errors (and with overrun) for monitor mode
2145	 * (otherwise the firmware discards them) but mark them as bad.
2146	 */
2147	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2148	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2149		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2150			     le32_to_cpu(desc->status));
2151		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2152	}
2153
2154	/* set the preamble flag if appropriate */
2155	if (format == RATE_MCS_CCK_MSK &&
2156	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2157		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2158
2159	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2160		u64 tsf_on_air_rise;
2161
2162		if (mvm->trans->trans_cfg->device_family >=
2163		    IWL_DEVICE_FAMILY_AX210)
2164			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2165		else
2166			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2167
2168		rx_status->mactime = tsf_on_air_rise;
2169		/* TSF as indicated by the firmware is at INA time */
2170		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2171	}
2172
 
2173	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2174		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2175
2176		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2177	} else {
2178		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2179			NL80211_BAND_2GHZ;
2180	}
 
 
 
 
2181
2182	/* update aggregation data for monitor sake on default queue */
2183	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2184		bool toggle_bit;
2185
2186		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2187		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2188		/*
2189		 * Toggle is switched whenever new aggregation starts. Make
2190		 * sure ampdu_reference is never 0 so we can later use it to
2191		 * see if the frame was really part of an A-MPDU or not.
2192		 */
2193		if (toggle_bit != mvm->ampdu_toggle) {
2194			mvm->ampdu_ref++;
2195			if (mvm->ampdu_ref == 0)
2196				mvm->ampdu_ref++;
2197			mvm->ampdu_toggle = toggle_bit;
2198			phy_data.first_subframe = true;
2199		}
2200		rx_status->ampdu_reference = mvm->ampdu_ref;
2201	}
2202
 
 
 
2203	rcu_read_lock();
2204
2205	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2206		u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2207
2208		if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2209			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2210			if (IS_ERR(sta))
2211				sta = NULL;
2212			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2213		}
2214	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2215		/*
2216		 * This is fine since we prevent two stations with the same
2217		 * address from being added.
2218		 */
2219		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2220	}
2221
2222	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2223			      le32_to_cpu(pkt->len_n_flags), queue,
2224			      &crypt_len)) {
2225		kfree_skb(skb);
2226		goto out;
2227	}
2228
2229	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2230
2231	if (sta) {
2232		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2233		struct ieee80211_vif *tx_blocked_vif =
2234			rcu_dereference(mvm->csa_tx_blocked_vif);
2235		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2236			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2237			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2238		struct iwl_fw_dbg_trigger_tlv *trig;
2239		struct ieee80211_vif *vif = mvmsta->vif;
2240
2241		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2242		    !is_multicast_ether_addr(hdr->addr1) &&
2243		    ieee80211_is_data(hdr->frame_control) &&
2244		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2245			schedule_delayed_work(&mvm->tcm.work, 0);
2246
2247		/*
2248		 * We have tx blocked stations (with CS bit). If we heard
2249		 * frames from a blocked station on a new channel we can
2250		 * TX to it again.
2251		 */
2252		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2253			struct iwl_mvm_vif *mvmvif =
2254				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2255			struct iwl_rx_sta_csa rx_sta_csa = {
2256				.all_sta_unblocked = true,
2257				.vif = tx_blocked_vif,
2258			};
2259
2260			if (mvmvif->csa_target_freq == rx_status->freq)
2261				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2262								 false);
2263			ieee80211_iterate_stations_atomic(mvm->hw,
2264							  iwl_mvm_rx_get_sta_block_tx,
2265							  &rx_sta_csa);
2266
2267			if (rx_sta_csa.all_sta_unblocked) {
2268				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2269				/* Unblock BCAST / MCAST station */
2270				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2271				cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2272			}
2273		}
2274
2275		rs_update_last_rssi(mvm, mvmsta, rx_status);
2276
2277		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2278					     ieee80211_vif_to_wdev(vif),
2279					     FW_DBG_TRIGGER_RSSI);
2280
2281		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2282			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2283			s32 rssi;
2284
2285			rssi_trig = (void *)trig->data;
2286			rssi = le32_to_cpu(rssi_trig->rssi);
2287
2288			if (rx_status->signal < rssi)
2289				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2290							NULL);
2291		}
2292
2293		if (ieee80211_is_data(hdr->frame_control))
2294			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2295
2296		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2297			IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n",
2298				       le16_to_cpu(hdr->seq_ctrl));
2299			kfree_skb(skb);
2300			goto out;
2301		}
2302
2303		/*
2304		 * Our hardware de-aggregates AMSDUs but copies the mac header
2305		 * as it to the de-aggregated MPDUs. We need to turn off the
2306		 * AMSDU bit in the QoS control ourselves.
2307		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2308		 */
2309		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2310		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2311			u8 *qc = ieee80211_get_qos_ctl(hdr);
2312
2313			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2314
2315			if (mvm->trans->trans_cfg->device_family ==
2316			    IWL_DEVICE_FAMILY_9000) {
2317				iwl_mvm_flip_address(hdr->addr3);
2318
2319				if (ieee80211_has_a4(hdr->frame_control))
2320					iwl_mvm_flip_address(hdr->addr4);
2321			}
2322		}
2323		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2324			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2325
2326			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2327		}
2328	}
2329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330	/* management stuff on default queue */
2331	if (!queue) {
2332		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2333			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2334			     mvm->sched_scan_pass_all ==
2335			     SCHED_SCAN_PASS_ALL_ENABLED))
2336			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2337
2338		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2339			     ieee80211_is_probe_resp(hdr->frame_control)))
2340			rx_status->boottime_ns = ktime_get_boottime_ns();
2341	}
2342
2343	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2344		kfree_skb(skb);
2345		goto out;
2346	}
2347
2348	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2349	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2350	    likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
2351		if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
2352		    (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2353		    !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
2354			rx_status->flag |= RX_FLAG_AMSDU_MORE;
2355
2356		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2357						link_sta);
2358	}
2359out:
2360	rcu_read_unlock();
2361}
2362
2363void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2364				struct iwl_rx_cmd_buffer *rxb, int queue)
2365{
2366	struct ieee80211_rx_status *rx_status;
2367	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2368	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2369	u32 rssi;
2370	u32 info_type;
 
 
 
2371	struct ieee80211_sta *sta = NULL;
2372	struct sk_buff *skb;
2373	struct iwl_mvm_rx_phy_data phy_data;
2374	u32 format;
 
 
 
2375
2376	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2377		return;
2378
2379	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2380		return;
2381
2382	rssi = le32_to_cpu(desc->rssi);
2383	info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2384	phy_data.d0 = desc->phy_info[0];
2385	phy_data.d1 = desc->phy_info[1];
2386	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2387	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2388	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2389	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2390	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2391	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2392	phy_data.with_data = false;
2393	phy_data.rx_vec[0] = desc->rx_vec[0];
2394	phy_data.rx_vec[1] = desc->rx_vec[1];
2395
2396	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2397				    RX_NO_DATA_NOTIF, 0) < 2) {
2398		IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2399			       phy_data.rate_n_flags);
2400		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2401		IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2402			       phy_data.rate_n_flags);
2403	}
2404
2405	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2406
2407	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2408				    RX_NO_DATA_NOTIF, 0) >= 3) {
2409		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2410		    sizeof(struct iwl_rx_no_data_ver_3)))
2411		/* invalid len for ver 3 */
2412			return;
2413		phy_data.rx_vec[2] = desc->rx_vec[2];
2414		phy_data.rx_vec[3] = desc->rx_vec[3];
2415	} else {
2416		if (format == RATE_MCS_EHT_MSK)
2417			/* no support for EHT before version 3 API */
2418			return;
2419	}
2420
2421	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2422	 * ieee80211_hdr pulled.
2423	 */
2424	skb = alloc_skb(128, GFP_ATOMIC);
2425	if (!skb) {
2426		IWL_ERR(mvm, "alloc_skb failed\n");
2427		return;
2428	}
2429
2430	rx_status = IEEE80211_SKB_RXCB(skb);
2431
2432	/* 0-length PSDU */
2433	rx_status->flag |= RX_FLAG_NO_PSDU;
2434
2435	switch (info_type) {
2436	case RX_NO_DATA_INFO_TYPE_NDP:
2437		rx_status->zero_length_psdu_type =
2438			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2439		break;
2440	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2441	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2442		rx_status->zero_length_psdu_type =
2443			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2444		break;
2445	default:
2446		rx_status->zero_length_psdu_type =
2447			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2448		break;
2449	}
2450
2451	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2452		NL80211_BAND_2GHZ;
 
 
 
 
 
 
 
 
 
 
 
 
2453
2454	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
 
 
2455
2456	/* no more radio tap info should be put after this point.
2457	 *
2458	 * We mark it as mac header, for upper layers to know where
2459	 * all radio tap header ends.
2460	 */
2461	skb_reset_mac_header(skb);
2462
2463	/*
2464	 * Override the nss from the rx_vec since the rate_n_flags has
2465	 * only 2 bits for the nss which gives a max of 4 ss but there
2466	 * may be up to 8 spatial streams.
2467	 */
2468	switch (format) {
2469	case RATE_MCS_VHT_MSK:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2470		rx_status->nss =
2471			le32_get_bits(desc->rx_vec[0],
2472				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2473		break;
2474	case RATE_MCS_HE_MSK:
2475		rx_status->nss =
2476			le32_get_bits(desc->rx_vec[0],
2477				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2478		break;
2479	case RATE_MCS_EHT_MSK:
2480		rx_status->nss =
2481			le32_get_bits(desc->rx_vec[2],
2482				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
 
 
 
 
 
 
2483	}
2484
2485	rcu_read_lock();
2486	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
 
2487	rcu_read_unlock();
2488}
2489
2490void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2491			      struct iwl_rx_cmd_buffer *rxb, int queue)
2492{
2493	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2494	struct iwl_frame_release *release = (void *)pkt->data;
2495
2496	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2497		return;
2498
2499	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2500					  le16_to_cpu(release->nssn),
2501					  queue);
2502}
2503
2504void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2505				  struct iwl_rx_cmd_buffer *rxb, int queue)
2506{
2507	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2508	struct iwl_bar_frame_release *release = (void *)pkt->data;
2509	unsigned int baid = le32_get_bits(release->ba_info,
2510					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2511	unsigned int nssn = le32_get_bits(release->ba_info,
2512					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2513	unsigned int sta_id = le32_get_bits(release->sta_tid,
2514					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2515	unsigned int tid = le32_get_bits(release->sta_tid,
2516					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2517	struct iwl_mvm_baid_data *baid_data;
2518
2519	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2520		return;
2521
2522	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2523			 baid >= ARRAY_SIZE(mvm->baid_map)))
2524		return;
2525
2526	rcu_read_lock();
2527	baid_data = rcu_dereference(mvm->baid_map[baid]);
2528	if (!baid_data) {
2529		IWL_DEBUG_RX(mvm,
2530			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2531			      baid);
2532		goto out;
2533	}
2534
2535	if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2536		 !(baid_data->sta_mask & BIT(sta_id)),
2537		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2538		 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2539		 tid))
2540		goto out;
2541
2542	IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n",
2543		       nssn);
2544
2545	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue);
2546out:
2547	rcu_read_unlock();
2548}
v5.9
   1/******************************************************************************
   2 *
   3 * This file is provided under a dual BSD/GPLv2 license.  When using or
   4 * redistributing this file, you may do so under either license.
   5 *
   6 * GPL LICENSE SUMMARY
   7 *
   8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
   9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
  11 * Copyright(c) 2018 - 2019 Intel Corporation
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of version 2 of the GNU General Public License as
  15 * published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope that it will be useful, but
  18 * WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  20 * General Public License for more details.
  21 *
  22 * The full GNU General Public License is included in this distribution
  23 * in the file called COPYING.
  24 *
  25 * Contact Information:
  26 *  Intel Linux Wireless <linuxwifi@intel.com>
  27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  28 *
  29 * BSD LICENSE
  30 *
  31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
  32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
  33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
  34 * Copyright(c) 2018 - 2019 Intel Corporation
  35 * All rights reserved.
  36 *
  37 * Redistribution and use in source and binary forms, with or without
  38 * modification, are permitted provided that the following conditions
  39 * are met:
  40 *
  41 *  * Redistributions of source code must retain the above copyright
  42 *    notice, this list of conditions and the following disclaimer.
  43 *  * Redistributions in binary form must reproduce the above copyright
  44 *    notice, this list of conditions and the following disclaimer in
  45 *    the documentation and/or other materials provided with the
  46 *    distribution.
  47 *  * Neither the name Intel Corporation nor the names of its
  48 *    contributors may be used to endorse or promote products derived
  49 *    from this software without specific prior written permission.
  50 *
  51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  62 *****************************************************************************/
  63#include <linux/etherdevice.h>
  64#include <linux/skbuff.h>
  65#include "iwl-trans.h"
  66#include "mvm.h"
  67#include "fw-api.h"
  68
  69static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
  70{
  71	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
  72	u8 *data = skb->data;
  73
  74	/* Alignment concerns */
  75	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
  76	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
  77	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
  78	BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
  79
  80	if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
  81		data += sizeof(struct ieee80211_radiotap_he);
  82	if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
  83		data += sizeof(struct ieee80211_radiotap_he_mu);
  84	if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
  85		data += sizeof(struct ieee80211_radiotap_lsig);
  86	if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
  87		struct ieee80211_vendor_radiotap *radiotap = (void *)data;
  88
  89		data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
  90	}
  91
  92	return data;
  93}
  94
  95static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
  96				   int queue, struct ieee80211_sta *sta)
  97{
  98	struct iwl_mvm_sta *mvmsta;
  99	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
 100	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
 101	struct iwl_mvm_key_pn *ptk_pn;
 102	int res;
 103	u8 tid, keyidx;
 104	u8 pn[IEEE80211_CCMP_PN_LEN];
 105	u8 *extiv;
 106
 107	/* do PN checking */
 108
 109	/* multicast and non-data only arrives on default queue */
 110	if (!ieee80211_is_data(hdr->frame_control) ||
 111	    is_multicast_ether_addr(hdr->addr1))
 112		return 0;
 113
 114	/* do not check PN for open AP */
 115	if (!(stats->flag & RX_FLAG_DECRYPTED))
 116		return 0;
 117
 118	/*
 119	 * avoid checking for default queue - we don't want to replicate
 120	 * all the logic that's necessary for checking the PN on fragmented
 121	 * frames, leave that to mac80211
 122	 */
 123	if (queue == 0)
 124		return 0;
 125
 126	/* if we are here - this for sure is either CCMP or GCMP */
 127	if (IS_ERR_OR_NULL(sta)) {
 128		IWL_ERR(mvm,
 129			"expected hw-decrypted unicast frame for station\n");
 130		return -1;
 131	}
 132
 133	mvmsta = iwl_mvm_sta_from_mac80211(sta);
 134
 135	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
 136	keyidx = extiv[3] >> 6;
 137
 138	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
 139	if (!ptk_pn)
 140		return -1;
 141
 142	if (ieee80211_is_data_qos(hdr->frame_control))
 143		tid = ieee80211_get_tid(hdr);
 144	else
 145		tid = 0;
 146
 147	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
 148	if (tid >= IWL_MAX_TID_COUNT)
 149		return -1;
 150
 151	/* load pn */
 152	pn[0] = extiv[7];
 153	pn[1] = extiv[6];
 154	pn[2] = extiv[5];
 155	pn[3] = extiv[4];
 156	pn[4] = extiv[1];
 157	pn[5] = extiv[0];
 158
 159	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
 160	if (res < 0)
 161		return -1;
 162	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
 163		return -1;
 164
 165	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
 166	stats->flag |= RX_FLAG_PN_VALIDATED;
 167
 168	return 0;
 169}
 170
 171/* iwl_mvm_create_skb Adds the rxb to a new skb */
 172static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
 173			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
 174			      struct iwl_rx_cmd_buffer *rxb)
 175{
 176	struct iwl_rx_packet *pkt = rxb_addr(rxb);
 177	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
 178	unsigned int headlen, fraglen, pad_len = 0;
 179	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
 
 
 180
 181	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
 182		len -= 2;
 183		pad_len = 2;
 184	}
 185
 
 
 
 
 
 
 
 
 
 186	/* If frame is small enough to fit in skb->head, pull it completely.
 187	 * If not, only pull ieee80211_hdr (including crypto if present, and
 188	 * an additional 8 bytes for SNAP/ethertype, see below) so that
 189	 * splice() or TCP coalesce are more efficient.
 190	 *
 191	 * Since, in addition, ieee80211_data_to_8023() always pull in at
 192	 * least 8 bytes (possibly more for mesh) we can do the same here
 193	 * to save the cost of doing it later. That still doesn't pull in
 194	 * the actual IP header since the typical case has a SNAP header.
 195	 * If the latter changes (there are efforts in the standards group
 196	 * to do so) we should revisit this and ieee80211_data_to_8023().
 197	 */
 198	headlen = (len <= skb_tailroom(skb)) ? len :
 199					       hdrlen + crypt_len + 8;
 200
 201	/* The firmware may align the packet to DWORD.
 202	 * The padding is inserted after the IV.
 203	 * After copying the header + IV skip the padding if
 204	 * present before copying packet data.
 205	 */
 206	hdrlen += crypt_len;
 207
 208	if (WARN_ONCE(headlen < hdrlen,
 209		      "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
 210		      hdrlen, len, crypt_len)) {
 211		/*
 212		 * We warn and trace because we want to be able to see
 213		 * it in trace-cmd as well.
 214		 */
 215		IWL_DEBUG_RX(mvm,
 216			     "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
 217			     hdrlen, len, crypt_len);
 218		return -EINVAL;
 219	}
 220
 
 
 
 
 221	skb_put_data(skb, hdr, hdrlen);
 222	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
 223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224	fraglen = len - headlen;
 225
 226	if (fraglen) {
 227		int offset = (void *)hdr + headlen + pad_len -
 228			     rxb_addr(rxb) + rxb_offset(rxb);
 229
 230		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
 231				fraglen, rxb->truesize);
 232	}
 233
 234	return 0;
 235}
 236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
 238					    struct sk_buff *skb)
 239{
 240	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
 241	struct ieee80211_vendor_radiotap *radiotap;
 242	const int size = sizeof(*radiotap) + sizeof(__le16);
 243
 244	if (!mvm->cur_aid)
 245		return;
 246
 247	/* ensure alignment */
 248	BUILD_BUG_ON((size + 2) % 4);
 
 249
 250	radiotap = skb_put(skb, size + 2);
 251	radiotap->align = 1;
 252	/* Intel OUI */
 253	radiotap->oui[0] = 0xf6;
 254	radiotap->oui[1] = 0x54;
 255	radiotap->oui[2] = 0x25;
 256	/* radiotap sniffer config sub-namespace */
 257	radiotap->subns = 1;
 258	radiotap->present = 0x1;
 259	radiotap->len = size - sizeof(*radiotap);
 260	radiotap->pad = 2;
 261
 262	/* fill the data now */
 263	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
 264	/* and clear the padding */
 265	memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
 266
 267	rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
 268}
 269
 270/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
 271static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
 272					    struct napi_struct *napi,
 273					    struct sk_buff *skb, int queue,
 274					    struct ieee80211_sta *sta,
 275					    bool csi)
 276{
 277	if (iwl_mvm_check_pn(mvm, skb, queue, sta))
 278		kfree_skb(skb);
 279	else
 280		ieee80211_rx_napi(mvm->hw, sta, skb, napi);
 
 
 
 
 
 
 
 
 
 281}
 282
 283static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
 284					struct ieee80211_rx_status *rx_status,
 285					u32 rate_n_flags, int energy_a,
 286					int energy_b)
 287{
 288	int max_energy;
 289	u32 rate_flags = rate_n_flags;
 290
 291	energy_a = energy_a ? -energy_a : S8_MIN;
 292	energy_b = energy_b ? -energy_b : S8_MIN;
 293	max_energy = max(energy_a, energy_b);
 294
 295	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
 296			energy_a, energy_b, max_energy);
 297
 298	rx_status->signal = max_energy;
 299	rx_status->chains =
 300		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
 301	rx_status->chain_signal[0] = energy_a;
 302	rx_status->chain_signal[1] = energy_b;
 303	rx_status->chain_signal[2] = S8_MIN;
 304}
 305
 306static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307			     struct ieee80211_rx_status *stats, u16 phy_info,
 308			     struct iwl_rx_mpdu_desc *desc,
 309			     u32 pkt_flags, int queue, u8 *crypt_len)
 310{
 311	u16 status = le16_to_cpu(desc->status);
 312
 313	/*
 314	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
 315	 * (where we don't have the keys).
 316	 * We limit this to aggregation because in TKIP this is a valid
 317	 * scenario, since we may not have the (correct) TTAK (phase 1
 318	 * key) in the firmware.
 319	 */
 320	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
 321	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 322	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
 
 323		return -1;
 
 
 
 
 
 324
 325	if (!ieee80211_has_protected(hdr->frame_control) ||
 326	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 327	    IWL_RX_MPDU_STATUS_SEC_NONE)
 328		return 0;
 329
 330	/* TODO: handle packets encrypted with unknown alg */
 331
 332	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
 333	case IWL_RX_MPDU_STATUS_SEC_CCM:
 334	case IWL_RX_MPDU_STATUS_SEC_GCM:
 335		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
 336		/* alg is CCM: check MIC only */
 337		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
 338			return -1;
 339
 340		stats->flag |= RX_FLAG_DECRYPTED;
 341		if (pkt_flags & FH_RSCSR_RADA_EN)
 342			stats->flag |= RX_FLAG_MIC_STRIPPED;
 343		*crypt_len = IEEE80211_CCMP_HDR_LEN;
 344		return 0;
 345	case IWL_RX_MPDU_STATUS_SEC_TKIP:
 346		/* Don't drop the frame and decrypt it in SW */
 347		if (!fw_has_api(&mvm->fw->ucode_capa,
 348				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
 349		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
 350			return 0;
 351
 352		if (mvm->trans->trans_cfg->gen2 &&
 353		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
 354			stats->flag |= RX_FLAG_MMIC_ERROR;
 355
 356		*crypt_len = IEEE80211_TKIP_IV_LEN;
 357		/* fall through */
 358	case IWL_RX_MPDU_STATUS_SEC_WEP:
 359		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
 360			return -1;
 361
 362		stats->flag |= RX_FLAG_DECRYPTED;
 363		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
 364				IWL_RX_MPDU_STATUS_SEC_WEP)
 365			*crypt_len = IEEE80211_WEP_IV_LEN;
 366
 367		if (pkt_flags & FH_RSCSR_RADA_EN) {
 368			stats->flag |= RX_FLAG_ICV_STRIPPED;
 369			if (mvm->trans->trans_cfg->gen2)
 370				stats->flag |= RX_FLAG_MMIC_STRIPPED;
 371		}
 372
 373		return 0;
 374	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
 375		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
 376			return -1;
 377		stats->flag |= RX_FLAG_DECRYPTED;
 378		return 0;
 
 
 379	default:
 380		/*
 381		 * Sometimes we can get frames that were not decrypted
 382		 * because the firmware didn't have the keys yet. This can
 383		 * happen after connection where we can get multicast frames
 384		 * before the GTK is installed.
 385		 * Silently drop those frames.
 386		 * Also drop un-decrypted frames in monitor mode.
 387		 */
 388		if (!is_multicast_ether_addr(hdr->addr1) &&
 389		    !mvm->monitor_on && net_ratelimit())
 390			IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
 391	}
 392
 393	return 0;
 394}
 395
 396static void iwl_mvm_rx_csum(struct ieee80211_sta *sta,
 
 397			    struct sk_buff *skb,
 398			    struct iwl_rx_mpdu_desc *desc)
 399{
 400	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
 401	struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
 402	u16 flags = le16_to_cpu(desc->l3l4_flags);
 403	u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
 404			  IWL_RX_L3_PROTO_POS);
 405
 406	if (mvmvif->features & NETIF_F_RXCSUM &&
 407	    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
 408	    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
 409	     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
 410	     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
 411		skb->ip_summed = CHECKSUM_UNNECESSARY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 412}
 413
 414/*
 415 * returns true if a packet is a duplicate and should be dropped.
 416 * Updates AMSDU PN tracking info
 417 */
 418static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
 419			   struct ieee80211_rx_status *rx_status,
 420			   struct ieee80211_hdr *hdr,
 421			   struct iwl_rx_mpdu_desc *desc)
 422{
 423	struct iwl_mvm_sta *mvm_sta;
 424	struct iwl_mvm_rxq_dup_data *dup_data;
 425	u8 tid, sub_frame_idx;
 426
 427	if (WARN_ON(IS_ERR_OR_NULL(sta)))
 428		return false;
 429
 430	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
 
 
 
 
 431	dup_data = &mvm_sta->dup_data[queue];
 432
 433	/*
 434	 * Drop duplicate 802.11 retransmissions
 435	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
 436	 */
 437	if (ieee80211_is_ctl(hdr->frame_control) ||
 438	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
 439	    is_multicast_ether_addr(hdr->addr1)) {
 440		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
 441		return false;
 442	}
 443
 444	if (ieee80211_is_data_qos(hdr->frame_control))
 445		/* frame has qos control */
 446		tid = ieee80211_get_tid(hdr);
 447	else
 
 
 448		tid = IWL_MAX_TID_COUNT;
 
 449
 450	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
 451	sub_frame_idx = desc->amsdu_info &
 452		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
 453
 454	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
 455		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
 456		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
 457		return true;
 458
 459	/* Allow same PN as the first subframe for following sub frames */
 460	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
 461	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
 462	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
 463		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
 464
 465	dup_data->last_seq[tid] = hdr->seq_ctrl;
 466	dup_data->last_sub_frame[tid] = sub_frame_idx;
 467
 468	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
 469
 470	return false;
 471}
 472
 473int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
 474			    const u8 *data, u32 count, bool async)
 475{
 476	u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
 477	       sizeof(struct iwl_mvm_rss_sync_notif)];
 478	struct iwl_rxq_sync_cmd *cmd = (void *)buf;
 479	u32 data_size = sizeof(*cmd) + count;
 480	int ret;
 481
 482	/*
 483	 * size must be a multiple of DWORD
 484	 * Ensure we don't overflow buf
 485	 */
 486	if (WARN_ON(count & 3 ||
 487		    count > sizeof(struct iwl_mvm_rss_sync_notif)))
 488		return -EINVAL;
 489
 490	cmd->rxq_mask = cpu_to_le32(rxq_mask);
 491	cmd->count =  cpu_to_le32(count);
 492	cmd->flags = 0;
 493	memcpy(cmd->payload, data, count);
 494
 495	ret = iwl_mvm_send_cmd_pdu(mvm,
 496				   WIDE_ID(DATA_PATH_GROUP,
 497					   TRIGGER_RX_QUEUES_NOTIF_CMD),
 498				   async ? CMD_ASYNC : 0, data_size, cmd);
 499
 500	return ret;
 501}
 502
 503/*
 504 * Returns true if sn2 - buffer_size < sn1 < sn2.
 505 * To be used only in order to compare reorder buffer head with NSSN.
 506 * We fully trust NSSN unless it is behind us due to reorder timeout.
 507 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
 508 */
 509static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
 510{
 511	return ieee80211_sn_less(sn1, sn2) &&
 512	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
 513}
 514
 515static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
 516{
 517	if (IWL_MVM_USE_NSSN_SYNC) {
 518		struct iwl_mvm_rss_sync_notif notif = {
 519			.metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
 520			.metadata.sync = 0,
 521			.nssn_sync.baid = baid,
 522			.nssn_sync.nssn = nssn,
 523		};
 524
 525		iwl_mvm_sync_rx_queues_internal(mvm, (void *)&notif,
 526						sizeof(notif));
 527	}
 528}
 529
 530#define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
 531
 532enum iwl_mvm_release_flags {
 533	IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
 534	IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
 535};
 536
 537static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
 538				   struct ieee80211_sta *sta,
 539				   struct napi_struct *napi,
 540				   struct iwl_mvm_baid_data *baid_data,
 541				   struct iwl_mvm_reorder_buffer *reorder_buf,
 542				   u16 nssn, u32 flags)
 543{
 544	struct iwl_mvm_reorder_buf_entry *entries =
 545		&baid_data->entries[reorder_buf->queue *
 546				    baid_data->entries_per_queue];
 547	u16 ssn = reorder_buf->head_sn;
 548
 549	lockdep_assert_held(&reorder_buf->lock);
 550
 551	/*
 552	 * We keep the NSSN not too far behind, if we are sync'ing it and it
 553	 * is more than 2048 ahead of us, it must be behind us. Discard it.
 554	 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
 555	 * behind and this queue already processed packets. The next if
 556	 * would have caught cases where this queue would have processed less
 557	 * than 64 packets, but it may have processed more than 64 packets.
 558	 */
 559	if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
 560	    ieee80211_sn_less(nssn, ssn))
 561		goto set_timer;
 562
 563	/* ignore nssn smaller than head sn - this can happen due to timeout */
 564	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
 565		goto set_timer;
 566
 567	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
 568		int index = ssn % reorder_buf->buf_size;
 569		struct sk_buff_head *skb_list = &entries[index].e.frames;
 570		struct sk_buff *skb;
 571
 572		ssn = ieee80211_sn_inc(ssn);
 573		if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
 574		    (ssn == 2048 || ssn == 0))
 575			iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
 576
 577		/*
 578		 * Empty the list. Will have more than one frame for A-MSDU.
 579		 * Empty list is valid as well since nssn indicates frames were
 580		 * received.
 581		 */
 582		while ((skb = __skb_dequeue(skb_list))) {
 583			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
 584							reorder_buf->queue,
 585							sta, false);
 586			reorder_buf->num_stored--;
 587		}
 588	}
 589	reorder_buf->head_sn = nssn;
 590
 591set_timer:
 592	if (reorder_buf->num_stored && !reorder_buf->removed) {
 593		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
 594
 595		while (skb_queue_empty(&entries[index].e.frames))
 596			index = (index + 1) % reorder_buf->buf_size;
 597		/* modify timer to match next frame's expiration time */
 598		mod_timer(&reorder_buf->reorder_timer,
 599			  entries[index].e.reorder_time + 1 +
 600			  RX_REORDER_BUF_TIMEOUT_MQ);
 601	} else {
 602		del_timer(&reorder_buf->reorder_timer);
 603	}
 604}
 605
 606void iwl_mvm_reorder_timer_expired(struct timer_list *t)
 607{
 608	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
 609	struct iwl_mvm_baid_data *baid_data =
 610		iwl_mvm_baid_data_from_reorder_buf(buf);
 611	struct iwl_mvm_reorder_buf_entry *entries =
 612		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
 613	int i;
 614	u16 sn = 0, index = 0;
 615	bool expired = false;
 616	bool cont = false;
 617
 618	spin_lock(&buf->lock);
 619
 620	if (!buf->num_stored || buf->removed) {
 621		spin_unlock(&buf->lock);
 622		return;
 623	}
 624
 625	for (i = 0; i < buf->buf_size ; i++) {
 626		index = (buf->head_sn + i) % buf->buf_size;
 627
 628		if (skb_queue_empty(&entries[index].e.frames)) {
 629			/*
 630			 * If there is a hole and the next frame didn't expire
 631			 * we want to break and not advance SN
 632			 */
 633			cont = false;
 634			continue;
 635		}
 636		if (!cont &&
 637		    !time_after(jiffies, entries[index].e.reorder_time +
 638					 RX_REORDER_BUF_TIMEOUT_MQ))
 639			break;
 640
 641		expired = true;
 642		/* continue until next hole after this expired frames */
 643		cont = true;
 644		sn = ieee80211_sn_add(buf->head_sn, i + 1);
 645	}
 646
 647	if (expired) {
 648		struct ieee80211_sta *sta;
 649		struct iwl_mvm_sta *mvmsta;
 650		u8 sta_id = baid_data->sta_id;
 651
 652		rcu_read_lock();
 653		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
 654		mvmsta = iwl_mvm_sta_from_mac80211(sta);
 655
 656		/* SN is set to the last expired frame + 1 */
 657		IWL_DEBUG_HT(buf->mvm,
 658			     "Releasing expired frames for sta %u, sn %d\n",
 659			     sta_id, sn);
 660		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
 661						     sta, baid_data->tid);
 662		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
 663				       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
 664		rcu_read_unlock();
 665	} else {
 666		/*
 667		 * If no frame expired and there are stored frames, index is now
 668		 * pointing to the first unexpired frame - modify timer
 669		 * accordingly to this frame.
 670		 */
 671		mod_timer(&buf->reorder_timer,
 672			  entries[index].e.reorder_time +
 673			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
 674	}
 675	spin_unlock(&buf->lock);
 676}
 677
 678static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
 679			   struct iwl_mvm_delba_data *data)
 680{
 681	struct iwl_mvm_baid_data *ba_data;
 682	struct ieee80211_sta *sta;
 683	struct iwl_mvm_reorder_buffer *reorder_buf;
 684	u8 baid = data->baid;
 
 685
 686	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
 687		return;
 688
 689	rcu_read_lock();
 690
 691	ba_data = rcu_dereference(mvm->baid_map[baid]);
 692	if (WARN_ON_ONCE(!ba_data))
 693		goto out;
 694
 695	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
 
 
 696	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
 697		goto out;
 698
 699	reorder_buf = &ba_data->reorder_buf[queue];
 700
 701	/* release all frames that are in the reorder buffer to the stack */
 702	spin_lock_bh(&reorder_buf->lock);
 703	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
 704			       ieee80211_sn_add(reorder_buf->head_sn,
 705						reorder_buf->buf_size),
 706			       0);
 707	spin_unlock_bh(&reorder_buf->lock);
 708	del_timer_sync(&reorder_buf->reorder_timer);
 709
 710out:
 711	rcu_read_unlock();
 712}
 713
 714static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
 715					      struct napi_struct *napi,
 716					      u8 baid, u16 nssn, int queue,
 717					      u32 flags)
 718{
 719	struct ieee80211_sta *sta;
 720	struct iwl_mvm_reorder_buffer *reorder_buf;
 721	struct iwl_mvm_baid_data *ba_data;
 
 722
 723	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
 724		     baid, nssn);
 725
 726	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
 727			 baid >= ARRAY_SIZE(mvm->baid_map)))
 728		return;
 729
 730	rcu_read_lock();
 731
 732	ba_data = rcu_dereference(mvm->baid_map[baid]);
 733	if (WARN_ON_ONCE(!ba_data))
 
 734		goto out;
 
 735
 736	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
 
 
 737	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
 738		goto out;
 739
 740	reorder_buf = &ba_data->reorder_buf[queue];
 741
 742	spin_lock_bh(&reorder_buf->lock);
 743	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
 744			       reorder_buf, nssn, flags);
 745	spin_unlock_bh(&reorder_buf->lock);
 746
 747out:
 748	rcu_read_unlock();
 749}
 750
 751static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
 752			      struct napi_struct *napi, int queue,
 753			      const struct iwl_mvm_nssn_sync_data *data)
 754{
 755	iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
 756					  data->nssn, queue,
 757					  IWL_MVM_RELEASE_FROM_RSS_SYNC);
 758}
 759
 760void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
 761			    struct iwl_rx_cmd_buffer *rxb, int queue)
 762{
 763	struct iwl_rx_packet *pkt = rxb_addr(rxb);
 764	struct iwl_rxq_sync_notification *notif;
 765	struct iwl_mvm_internal_rxq_notif *internal_notif;
 
 766
 767	notif = (void *)pkt->data;
 768	internal_notif = (void *)notif->payload;
 769
 
 
 
 
 
 
 770	if (internal_notif->sync &&
 771	    mvm->queue_sync_cookie != internal_notif->cookie) {
 772		WARN_ONCE(1, "Received expired RX queue sync message\n");
 773		return;
 774	}
 775
 776	switch (internal_notif->type) {
 777	case IWL_MVM_RXQ_EMPTY:
 
 778		break;
 779	case IWL_MVM_RXQ_NOTIF_DEL_BA:
 
 
 
 
 780		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
 781		break;
 782	case IWL_MVM_RXQ_NSSN_SYNC:
 783		iwl_mvm_nssn_sync(mvm, napi, queue,
 784				  (void *)internal_notif->data);
 785		break;
 786	default:
 787		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
 788	}
 789
 790	if (internal_notif->sync &&
 791	    !atomic_dec_return(&mvm->queue_sync_counter))
 792		wake_up(&mvm->rx_sync_waitq);
 793}
 794
 795static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
 796				     struct ieee80211_sta *sta, int tid,
 797				     struct iwl_mvm_reorder_buffer *buffer,
 798				     u32 reorder, u32 gp2, int queue)
 799{
 800	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
 801
 802	if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
 803		/* we have a new (A-)MPDU ... */
 804
 805		/*
 806		 * reset counter to 0 if we didn't have any oldsn in
 807		 * the last A-MPDU (as detected by GP2 being identical)
 808		 */
 809		if (!buffer->consec_oldsn_prev_drop)
 810			buffer->consec_oldsn_drops = 0;
 811
 812		/* either way, update our tracking state */
 813		buffer->consec_oldsn_ampdu_gp2 = gp2;
 814	} else if (buffer->consec_oldsn_prev_drop) {
 815		/*
 816		 * tracking state didn't change, and we had an old SN
 817		 * indication before - do nothing in this case, we
 818		 * already noted this one down and are waiting for the
 819		 * next A-MPDU (by GP2)
 820		 */
 821		return;
 822	}
 823
 824	/* return unless this MPDU has old SN */
 825	if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
 826		return;
 827
 828	/* update state */
 829	buffer->consec_oldsn_prev_drop = 1;
 830	buffer->consec_oldsn_drops++;
 831
 832	/* if limit is reached, send del BA and reset state */
 833	if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
 834		IWL_WARN(mvm,
 835			 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
 836			 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
 837			 sta->addr, queue, tid);
 838		ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
 839		buffer->consec_oldsn_prev_drop = 0;
 840		buffer->consec_oldsn_drops = 0;
 841	}
 842}
 843
 844/*
 845 * Returns true if the MPDU was buffered\dropped, false if it should be passed
 846 * to upper layer.
 847 */
 848static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
 849			    struct napi_struct *napi,
 850			    int queue,
 851			    struct ieee80211_sta *sta,
 852			    struct sk_buff *skb,
 853			    struct iwl_rx_mpdu_desc *desc)
 854{
 855	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
 856	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
 857	struct iwl_mvm_sta *mvm_sta;
 858	struct iwl_mvm_baid_data *baid_data;
 859	struct iwl_mvm_reorder_buffer *buffer;
 860	struct sk_buff *tail;
 861	u32 reorder = le32_to_cpu(desc->reorder_data);
 862	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
 863	bool last_subframe =
 864		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
 865	u8 tid = ieee80211_get_tid(hdr);
 866	u8 sub_frame_idx = desc->amsdu_info &
 867			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
 868	struct iwl_mvm_reorder_buf_entry *entries;
 
 869	int index;
 870	u16 nssn, sn;
 871	u8 baid;
 872
 873	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
 874		IWL_RX_MPDU_REORDER_BAID_SHIFT;
 875
 
 
 
 876	/*
 877	 * This also covers the case of receiving a Block Ack Request
 878	 * outside a BA session; we'll pass it to mac80211 and that
 879	 * then sends a delBA action frame.
 880	 * This also covers pure monitor mode, in which case we won't
 881	 * have any BA sessions.
 882	 */
 883	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
 884		return false;
 885
 886	/* no sta yet */
 887	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
 888		      "Got valid BAID without a valid station assigned\n"))
 889		return false;
 890
 891	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
 892
 893	/* not a data packet or a bar */
 894	if (!ieee80211_is_back_req(hdr->frame_control) &&
 895	    (!ieee80211_is_data_qos(hdr->frame_control) ||
 896	     is_multicast_ether_addr(hdr->addr1)))
 897		return false;
 898
 899	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 900		return false;
 901
 902	baid_data = rcu_dereference(mvm->baid_map[baid]);
 903	if (!baid_data) {
 904		IWL_DEBUG_RX(mvm,
 905			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
 906			      baid, reorder);
 907		return false;
 908	}
 909
 910	if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
 911		 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
 912		 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
 913		 tid))
 
 
 
 
 
 
 914		return false;
 915
 916	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
 917	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
 918		IWL_RX_MPDU_REORDER_SN_SHIFT;
 919
 920	buffer = &baid_data->reorder_buf[queue];
 921	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
 922
 923	spin_lock_bh(&buffer->lock);
 924
 925	if (!buffer->valid) {
 926		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
 927			spin_unlock_bh(&buffer->lock);
 928			return false;
 929		}
 930		buffer->valid = true;
 931	}
 932
 933	if (ieee80211_is_back_req(hdr->frame_control)) {
 934		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
 935				       buffer, nssn, 0);
 936		goto drop;
 937	}
 938
 939	/*
 940	 * If there was a significant jump in the nssn - adjust.
 941	 * If the SN is smaller than the NSSN it might need to first go into
 942	 * the reorder buffer, in which case we just release up to it and the
 943	 * rest of the function will take care of storing it and releasing up to
 944	 * the nssn.
 945	 * This should not happen. This queue has been lagging and it should
 946	 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
 947	 * and update the other queues.
 948	 */
 949	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
 950				buffer->buf_size) ||
 951	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
 952		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
 953
 954		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
 955				       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
 956	}
 957
 958	iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
 959				 rx_status->device_timestamp, queue);
 960
 961	/* drop any oudated packets */
 962	if (ieee80211_sn_less(sn, buffer->head_sn))
 963		goto drop;
 964
 965	/* release immediately if allowed by nssn and no stored frames */
 966	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
 967		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
 968				       buffer->buf_size) &&
 969		   (!amsdu || last_subframe)) {
 970			/*
 971			 * If we crossed the 2048 or 0 SN, notify all the
 972			 * queues. This is done in order to avoid having a
 973			 * head_sn that lags behind for too long. When that
 974			 * happens, we can get to a situation where the head_sn
 975			 * is within the interval [nssn - buf_size : nssn]
 976			 * which will make us think that the nssn is a packet
 977			 * that we already freed because of the reordering
 978			 * buffer and we will ignore it. So maintain the
 979			 * head_sn somewhat updated across all the queues:
 980			 * when it crosses 0 and 2048.
 981			 */
 982			if (sn == 2048 || sn == 0)
 983				iwl_mvm_sync_nssn(mvm, baid, sn);
 984			buffer->head_sn = nssn;
 985		}
 986		/* No need to update AMSDU last SN - we are moving the head */
 987		spin_unlock_bh(&buffer->lock);
 988		return false;
 989	}
 990
 991	/*
 992	 * release immediately if there are no stored frames, and the sn is
 993	 * equal to the head.
 994	 * This can happen due to reorder timer, where NSSN is behind head_sn.
 995	 * When we released everything, and we got the next frame in the
 996	 * sequence, according to the NSSN we can't release immediately,
 997	 * while technically there is no hole and we can move forward.
 998	 */
 999	if (!buffer->num_stored && sn == buffer->head_sn) {
1000		if (!amsdu || last_subframe) {
1001			if (sn == 2048 || sn == 0)
1002				iwl_mvm_sync_nssn(mvm, baid, sn);
1003			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1004		}
1005		/* No need to update AMSDU last SN - we are moving the head */
1006		spin_unlock_bh(&buffer->lock);
1007		return false;
1008	}
1009
 
1010	index = sn % buffer->buf_size;
1011
1012	/*
1013	 * Check if we already stored this frame
1014	 * As AMSDU is either received or not as whole, logic is simple:
1015	 * If we have frames in that position in the buffer and the last frame
1016	 * originated from AMSDU had a different SN then it is a retransmission.
1017	 * If it is the same SN then if the subframe index is incrementing it
1018	 * is the same AMSDU - otherwise it is a retransmission.
1019	 */
1020	tail = skb_peek_tail(&entries[index].e.frames);
1021	if (tail && !amsdu)
1022		goto drop;
1023	else if (tail && (sn != buffer->last_amsdu ||
1024			  buffer->last_sub_index >= sub_frame_idx))
1025		goto drop;
1026
1027	/* put in reorder buffer */
1028	__skb_queue_tail(&entries[index].e.frames, skb);
1029	buffer->num_stored++;
1030	entries[index].e.reorder_time = jiffies;
1031
1032	if (amsdu) {
1033		buffer->last_amsdu = sn;
1034		buffer->last_sub_index = sub_frame_idx;
1035	}
1036
1037	/*
1038	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1039	 * The reason is that NSSN advances on the first sub-frame, and may
1040	 * cause the reorder buffer to advance before all the sub-frames arrive.
1041	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1042	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1043	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1044	 * already ahead and it will be dropped.
1045	 * If the last sub-frame is not on this queue - we will get frame
1046	 * release notification with up to date NSSN.
1047	 */
1048	if (!amsdu || last_subframe)
1049		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1050				       buffer, nssn,
1051				       IWL_MVM_RELEASE_SEND_RSS_SYNC);
1052
1053	spin_unlock_bh(&buffer->lock);
1054	return true;
1055
1056drop:
1057	kfree_skb(skb);
1058	spin_unlock_bh(&buffer->lock);
1059	return true;
1060}
1061
1062static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1063				    u32 reorder_data, u8 baid)
1064{
1065	unsigned long now = jiffies;
1066	unsigned long timeout;
1067	struct iwl_mvm_baid_data *data;
1068
1069	rcu_read_lock();
1070
1071	data = rcu_dereference(mvm->baid_map[baid]);
1072	if (!data) {
1073		IWL_DEBUG_RX(mvm,
1074			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1075			      baid, reorder_data);
1076		goto out;
1077	}
1078
1079	if (!data->timeout)
1080		goto out;
1081
1082	timeout = data->timeout;
1083	/*
1084	 * Do not update last rx all the time to avoid cache bouncing
1085	 * between the rx queues.
1086	 * Update it every timeout. Worst case is the session will
1087	 * expire after ~ 2 * timeout, which doesn't matter that much.
1088	 */
1089	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1090		/* Update is atomic */
1091		data->last_rx = now;
1092
1093out:
1094	rcu_read_unlock();
1095}
1096
1097static void iwl_mvm_flip_address(u8 *addr)
1098{
1099	int i;
1100	u8 mac_addr[ETH_ALEN];
1101
1102	for (i = 0; i < ETH_ALEN; i++)
1103		mac_addr[i] = addr[ETH_ALEN - i - 1];
1104	ether_addr_copy(addr, mac_addr);
1105}
1106
1107struct iwl_mvm_rx_phy_data {
1108	enum iwl_rx_phy_info_type info_type;
1109	__le32 d0, d1, d2, d3;
1110	__le16 d4;
 
 
 
 
 
 
 
 
 
1111};
1112
1113static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1114				     struct iwl_mvm_rx_phy_data *phy_data,
1115				     u32 rate_n_flags,
1116				     struct ieee80211_radiotap_he_mu *he_mu)
1117{
1118	u32 phy_data2 = le32_to_cpu(phy_data->d2);
1119	u32 phy_data3 = le32_to_cpu(phy_data->d3);
1120	u16 phy_data4 = le16_to_cpu(phy_data->d4);
 
1121
1122	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1123		he_mu->flags1 |=
1124			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1125				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1126
1127		he_mu->flags1 |=
1128			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1129						   phy_data4),
1130					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1131
1132		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1133					     phy_data2);
1134		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1135					     phy_data3);
1136		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1137					     phy_data2);
1138		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1139					     phy_data3);
1140	}
1141
1142	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1143	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1144		he_mu->flags1 |=
1145			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1146				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1147
1148		he_mu->flags2 |=
1149			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1150						   phy_data4),
1151					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1152
1153		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1154					     phy_data2);
1155		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1156					     phy_data3);
1157		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1158					     phy_data2);
1159		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1160					     phy_data3);
1161	}
1162}
1163
1164static void
1165iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1166			       u32 rate_n_flags,
1167			       struct ieee80211_radiotap_he *he,
1168			       struct ieee80211_radiotap_he_mu *he_mu,
1169			       struct ieee80211_rx_status *rx_status)
1170{
1171	/*
1172	 * Unfortunately, we have to leave the mac80211 data
1173	 * incorrect for the case that we receive an HE-MU
1174	 * transmission and *don't* have the HE phy data (due
1175	 * to the bits being used for TSF). This shouldn't
1176	 * happen though as management frames where we need
1177	 * the TSF/timers are not be transmitted in HE-MU.
1178	 */
1179	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1180	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
 
1181	u8 offs = 0;
1182
1183	rx_status->bw = RATE_INFO_BW_HE_RU;
1184
1185	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1186
1187	switch (ru) {
1188	case 0 ... 36:
1189		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1190		offs = ru;
1191		break;
1192	case 37 ... 52:
1193		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1194		offs = ru - 37;
1195		break;
1196	case 53 ... 60:
1197		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1198		offs = ru - 53;
1199		break;
1200	case 61 ... 64:
1201		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1202		offs = ru - 61;
1203		break;
1204	case 65 ... 66:
1205		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1206		offs = ru - 65;
1207		break;
1208	case 67:
1209		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1210		break;
1211	case 68:
1212		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1213		break;
1214	}
1215	he->data2 |= le16_encode_bits(offs,
1216				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1217	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1218				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1219	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1220		he->data2 |=
1221			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1222
1223#define CHECK_BW(bw) \
1224	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1225		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1226	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1227		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1228	CHECK_BW(20);
1229	CHECK_BW(40);
1230	CHECK_BW(80);
1231	CHECK_BW(160);
1232
1233	if (he_mu)
1234		he_mu->flags2 |=
1235			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1236						   rate_n_flags),
1237					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1238	else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1239		he->data6 |=
1240			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1241			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1242						   rate_n_flags),
1243					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1244}
1245
1246static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1247				       struct iwl_mvm_rx_phy_data *phy_data,
1248				       struct ieee80211_radiotap_he *he,
1249				       struct ieee80211_radiotap_he_mu *he_mu,
1250				       struct ieee80211_rx_status *rx_status,
1251				       u32 rate_n_flags, int queue)
1252{
1253	switch (phy_data->info_type) {
1254	case IWL_RX_PHY_INFO_TYPE_NONE:
1255	case IWL_RX_PHY_INFO_TYPE_CCK:
1256	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1257	case IWL_RX_PHY_INFO_TYPE_HT:
1258	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1259	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
 
 
 
 
1260		return;
1261	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1262		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1263					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1264					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1265					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1266		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1267							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1268					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1269		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1270							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1271					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1272		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1273							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1274					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1275		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1276							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1277					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1278		/* fall through */
1279	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1280	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1281	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1282	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1283		/* HE common */
1284		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1285					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1286					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1287		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1288					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1289					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1290					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1291		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1292							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1293					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1294		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1295		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1296			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1297			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1298							    IWL_RX_PHY_DATA0_HE_UPLINK),
1299						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1300		}
1301		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1302							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1303					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1304		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1305							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1306					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1307		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1308							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1309					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1310		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1311							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1312					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1313		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1314							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1315					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1316		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1317							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1318					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1319		break;
1320	}
1321
1322	switch (phy_data->info_type) {
1323	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1324	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1325	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1326		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1327		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1328							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1329					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1330		break;
1331	default:
1332		/* nothing here */
1333		break;
1334	}
1335
1336	switch (phy_data->info_type) {
1337	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1338		he_mu->flags1 |=
1339			le16_encode_bits(le16_get_bits(phy_data->d4,
1340						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1341					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1342		he_mu->flags1 |=
1343			le16_encode_bits(le16_get_bits(phy_data->d4,
1344						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1345					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1346		he_mu->flags2 |=
1347			le16_encode_bits(le16_get_bits(phy_data->d4,
1348						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1349					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1350		iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1351		/* fall through */
1352	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1353		he_mu->flags2 |=
1354			le16_encode_bits(le32_get_bits(phy_data->d1,
1355						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1356					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1357		he_mu->flags2 |=
1358			le16_encode_bits(le32_get_bits(phy_data->d1,
1359						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1360					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1361		/* fall through */
1362	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1363	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1364		iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1365					       he, he_mu, rx_status);
1366		break;
1367	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1368		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1369		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1370							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1371					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1372		break;
1373	default:
1374		/* nothing */
1375		break;
1376	}
1377}
1378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1380			  struct iwl_mvm_rx_phy_data *phy_data,
1381			  u32 rate_n_flags, u16 phy_info, int queue)
1382{
1383	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1384	struct ieee80211_radiotap_he *he = NULL;
1385	struct ieee80211_radiotap_he_mu *he_mu = NULL;
 
1386	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1387	u8 stbc, ltf;
1388	static const struct ieee80211_radiotap_he known = {
1389		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1390				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1391				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1392				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1393		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1394				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1395	};
1396	static const struct ieee80211_radiotap_he_mu mu_known = {
1397		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1398				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1399				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1400				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1401		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1402				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1403	};
 
1404
1405	he = skb_put_data(skb, &known, sizeof(known));
1406	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1407
1408	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1409	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1410		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1411		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1412	}
1413
1414	/* report the AMPDU-EOF bit on single frames */
1415	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1416		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1417		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1418		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1419			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1420	}
1421
1422	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1423		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1424					   rate_n_flags, queue);
1425
1426	/* update aggregation data for monitor sake on default queue */
1427	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1428	    (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1429		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1430
1431		/* toggle is switched whenever new aggregation starts */
1432		if (toggle_bit != mvm->ampdu_toggle) {
1433			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1434			if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1435				rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1436		}
1437	}
1438
1439	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1440	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1441		rx_status->bw = RATE_INFO_BW_HE_RU;
1442		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1443	}
1444
1445	/* actually data is filled in mac80211 */
1446	if (he_type == RATE_MCS_HE_TYPE_SU ||
1447	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1448		he->data1 |=
1449			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1450
1451	stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1452	rx_status->nss =
1453		((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1454					RATE_VHT_MCS_NSS_POS) + 1;
1455	rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1456	rx_status->encoding = RX_ENC_HE;
1457	rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1458	if (rate_n_flags & RATE_MCS_BF_MSK)
1459		rx_status->enc_flags |= RX_ENC_FLAG_BF;
1460
1461	rx_status->he_dcm =
1462		!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1463
1464#define CHECK_TYPE(F)							\
1465	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1466		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1467
1468	CHECK_TYPE(SU);
1469	CHECK_TYPE(EXT_SU);
1470	CHECK_TYPE(MU);
1471	CHECK_TYPE(TRIG);
1472
1473	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1474
1475	if (rate_n_flags & RATE_MCS_BF_MSK)
1476		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1477
1478	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1479		RATE_MCS_HE_GI_LTF_POS) {
1480	case 0:
1481		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1482			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1483		else
1484			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1485		if (he_type == RATE_MCS_HE_TYPE_MU)
1486			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1487		else
1488			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1489		break;
1490	case 1:
1491		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1492			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1493		else
1494			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1495		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1496		break;
1497	case 2:
1498		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1499			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1500			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1501		} else {
1502			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1503			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1504		}
1505		break;
1506	case 3:
1507		if ((he_type == RATE_MCS_HE_TYPE_SU ||
1508		     he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1509		    rate_n_flags & RATE_MCS_SGI_MSK)
1510			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1511		else
1512			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1513		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1514		break;
 
 
1515	}
1516
1517	he->data5 |= le16_encode_bits(ltf,
1518				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1519}
1520
1521static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1522				struct iwl_mvm_rx_phy_data *phy_data)
1523{
1524	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1525	struct ieee80211_radiotap_lsig *lsig;
1526
1527	switch (phy_data->info_type) {
1528	case IWL_RX_PHY_INFO_TYPE_HT:
1529	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1530	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1531	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1532	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1533	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1534	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1535	case IWL_RX_PHY_INFO_TYPE_HE_TB:
 
 
 
 
1536		lsig = skb_put(skb, sizeof(*lsig));
1537		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1538		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1539							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1540					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1541		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1542		break;
1543	default:
1544		break;
1545	}
1546}
1547
1548static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1549{
1550	switch (phy_band) {
1551	case PHY_BAND_24:
1552		return NL80211_BAND_2GHZ;
1553	case PHY_BAND_5:
1554		return NL80211_BAND_5GHZ;
 
 
1555	default:
1556		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1557		return NL80211_BAND_5GHZ;
1558	}
1559}
1560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1562			struct iwl_rx_cmd_buffer *rxb, int queue)
1563{
1564	struct ieee80211_rx_status *rx_status;
1565	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1566	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1567	struct ieee80211_hdr *hdr;
1568	u32 len = le16_to_cpu(desc->mpdu_len);
1569	u32 rate_n_flags, gp2_on_air_rise;
1570	u16 phy_info = le16_to_cpu(desc->phy_info);
1571	struct ieee80211_sta *sta = NULL;
 
1572	struct sk_buff *skb;
1573	u8 crypt_len = 0, channel, energy_a, energy_b;
1574	size_t desc_size;
1575	struct iwl_mvm_rx_phy_data phy_data = {
1576		.d4 = desc->phy_data4,
1577		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1578	};
1579	bool csi = false;
1580
1581	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1582		return;
1583
 
 
 
 
 
 
 
 
 
 
1584	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1585		rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1586		channel = desc->v3.channel;
1587		gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1588		energy_a = desc->v3.energy_a;
1589		energy_b = desc->v3.energy_b;
1590		desc_size = sizeof(*desc);
1591
1592		phy_data.d0 = desc->v3.phy_data0;
1593		phy_data.d1 = desc->v3.phy_data1;
1594		phy_data.d2 = desc->v3.phy_data2;
1595		phy_data.d3 = desc->v3.phy_data3;
 
 
1596	} else {
1597		rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1598		channel = desc->v1.channel;
1599		gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1600		energy_a = desc->v1.energy_a;
1601		energy_b = desc->v1.energy_b;
1602		desc_size = IWL_RX_DESC_SIZE_V1;
1603
1604		phy_data.d0 = desc->v1.phy_data0;
1605		phy_data.d1 = desc->v1.phy_data1;
1606		phy_data.d2 = desc->v1.phy_data2;
1607		phy_data.d3 = desc->v1.phy_data3;
1608	}
1609
1610	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1611		phy_data.info_type =
1612			le32_get_bits(phy_data.d1,
1613				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614
1615	hdr = (void *)(pkt->data + desc_size);
1616	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1617	 * ieee80211_hdr pulled.
1618	 */
1619	skb = alloc_skb(128, GFP_ATOMIC);
1620	if (!skb) {
1621		IWL_ERR(mvm, "alloc_skb failed\n");
1622		return;
1623	}
1624
1625	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1626		/*
1627		 * If the device inserted padding it means that (it thought)
1628		 * the 802.11 header wasn't a multiple of 4 bytes long. In
1629		 * this case, reserve two bytes at the start of the SKB to
1630		 * align the payload properly in case we end up copying it.
1631		 */
1632		skb_reserve(skb, 2);
1633	}
1634
1635	rx_status = IEEE80211_SKB_RXCB(skb);
1636
1637	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1638	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1639	case RATE_MCS_CHAN_WIDTH_20:
1640		break;
1641	case RATE_MCS_CHAN_WIDTH_40:
1642		rx_status->bw = RATE_INFO_BW_40;
1643		break;
1644	case RATE_MCS_CHAN_WIDTH_80:
1645		rx_status->bw = RATE_INFO_BW_80;
1646		break;
1647	case RATE_MCS_CHAN_WIDTH_160:
1648		rx_status->bw = RATE_INFO_BW_160;
1649		break;
1650	}
1651
1652	if (rate_n_flags & RATE_MCS_HE_MSK)
1653		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1654			      phy_info, queue);
1655
1656	iwl_mvm_decode_lsig(skb, &phy_data);
1657
1658	rx_status = IEEE80211_SKB_RXCB(skb);
1659
1660	if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1661			      le32_to_cpu(pkt->len_n_flags), queue,
1662			      &crypt_len)) {
1663		kfree_skb(skb);
1664		return;
1665	}
1666
1667	/*
1668	 * Keep packets with CRC errors (and with overrun) for monitor mode
1669	 * (otherwise the firmware discards them) but mark them as bad.
1670	 */
1671	if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1672	    !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1673		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1674			     le16_to_cpu(desc->status));
1675		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1676	}
 
1677	/* set the preamble flag if appropriate */
1678	if (rate_n_flags & RATE_MCS_CCK_MSK &&
1679	    phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1680		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1681
1682	if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1683		u64 tsf_on_air_rise;
1684
1685		if (mvm->trans->trans_cfg->device_family >=
1686		    IWL_DEVICE_FAMILY_AX210)
1687			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1688		else
1689			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1690
1691		rx_status->mactime = tsf_on_air_rise;
1692		/* TSF as indicated by the firmware is at INA time */
1693		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1694	}
1695
1696	rx_status->device_timestamp = gp2_on_air_rise;
1697	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1698		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1699
1700		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1701	} else {
1702		rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1703			NL80211_BAND_2GHZ;
1704	}
1705	rx_status->freq = ieee80211_channel_to_frequency(channel,
1706							 rx_status->band);
1707	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1708				    energy_b);
1709
1710	/* update aggregation data for monitor sake on default queue */
1711	if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1712		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1713
 
1714		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1715		/*
1716		 * Toggle is switched whenever new aggregation starts. Make
1717		 * sure ampdu_reference is never 0 so we can later use it to
1718		 * see if the frame was really part of an A-MPDU or not.
1719		 */
1720		if (toggle_bit != mvm->ampdu_toggle) {
1721			mvm->ampdu_ref++;
1722			if (mvm->ampdu_ref == 0)
1723				mvm->ampdu_ref++;
1724			mvm->ampdu_toggle = toggle_bit;
 
1725		}
1726		rx_status->ampdu_reference = mvm->ampdu_ref;
1727	}
1728
1729	if (unlikely(mvm->monitor_on))
1730		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1731
1732	rcu_read_lock();
1733
1734	if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1735		u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
1736
1737		if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
1738			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1739			if (IS_ERR(sta))
1740				sta = NULL;
 
1741		}
1742	} else if (!is_multicast_ether_addr(hdr->addr2)) {
1743		/*
1744		 * This is fine since we prevent two stations with the same
1745		 * address from being added.
1746		 */
1747		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1748	}
1749
 
 
 
 
 
 
 
 
 
1750	if (sta) {
1751		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1752		struct ieee80211_vif *tx_blocked_vif =
1753			rcu_dereference(mvm->csa_tx_blocked_vif);
1754		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1755			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
1756			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
1757		struct iwl_fw_dbg_trigger_tlv *trig;
1758		struct ieee80211_vif *vif = mvmsta->vif;
1759
1760		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1761		    !is_multicast_ether_addr(hdr->addr1) &&
1762		    ieee80211_is_data(hdr->frame_control) &&
1763		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1764			schedule_delayed_work(&mvm->tcm.work, 0);
1765
1766		/*
1767		 * We have tx blocked stations (with CS bit). If we heard
1768		 * frames from a blocked station on a new channel we can
1769		 * TX to it again.
1770		 */
1771		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1772			struct iwl_mvm_vif *mvmvif =
1773				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
 
 
 
 
1774
1775			if (mvmvif->csa_target_freq == rx_status->freq)
1776				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1777								 false);
 
 
 
 
 
 
 
 
 
 
1778		}
1779
1780		rs_update_last_rssi(mvm, mvmsta, rx_status);
1781
1782		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1783					     ieee80211_vif_to_wdev(vif),
1784					     FW_DBG_TRIGGER_RSSI);
1785
1786		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1787			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1788			s32 rssi;
1789
1790			rssi_trig = (void *)trig->data;
1791			rssi = le32_to_cpu(rssi_trig->rssi);
1792
1793			if (rx_status->signal < rssi)
1794				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1795							NULL);
1796		}
1797
1798		if (ieee80211_is_data(hdr->frame_control))
1799			iwl_mvm_rx_csum(sta, skb, desc);
1800
1801		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
 
 
1802			kfree_skb(skb);
1803			goto out;
1804		}
1805
1806		/*
1807		 * Our hardware de-aggregates AMSDUs but copies the mac header
1808		 * as it to the de-aggregated MPDUs. We need to turn off the
1809		 * AMSDU bit in the QoS control ourselves.
1810		 * In addition, HW reverses addr3 and addr4 - reverse it back.
1811		 */
1812		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1813		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1814			u8 *qc = ieee80211_get_qos_ctl(hdr);
1815
1816			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1817
1818			if (mvm->trans->trans_cfg->device_family ==
1819			    IWL_DEVICE_FAMILY_9000) {
1820				iwl_mvm_flip_address(hdr->addr3);
1821
1822				if (ieee80211_has_a4(hdr->frame_control))
1823					iwl_mvm_flip_address(hdr->addr4);
1824			}
1825		}
1826		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1827			u32 reorder_data = le32_to_cpu(desc->reorder_data);
1828
1829			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1830		}
1831	}
1832
1833	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1834	    rate_n_flags & RATE_MCS_SGI_MSK)
1835		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1836	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1837		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1838	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1839		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1840	if (rate_n_flags & RATE_MCS_HT_MSK) {
1841		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1842				RATE_MCS_STBC_POS;
1843		rx_status->encoding = RX_ENC_HT;
1844		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1845		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1846	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1847		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1848				RATE_MCS_STBC_POS;
1849		rx_status->nss =
1850			((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1851						RATE_VHT_MCS_NSS_POS) + 1;
1852		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1853		rx_status->encoding = RX_ENC_VHT;
1854		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1855		if (rate_n_flags & RATE_MCS_BF_MSK)
1856			rx_status->enc_flags |= RX_ENC_FLAG_BF;
1857	} else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1858		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1859							       rx_status->band);
1860
1861		if (WARN(rate < 0 || rate > 0xFF,
1862			 "Invalid rate flags 0x%x, band %d,\n",
1863			 rate_n_flags, rx_status->band)) {
1864			kfree_skb(skb);
1865			goto out;
1866		}
1867		rx_status->rate_idx = rate;
1868	}
1869
1870	/* management stuff on default queue */
1871	if (!queue) {
1872		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1873			      ieee80211_is_probe_resp(hdr->frame_control)) &&
1874			     mvm->sched_scan_pass_all ==
1875			     SCHED_SCAN_PASS_ALL_ENABLED))
1876			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1877
1878		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1879			     ieee80211_is_probe_resp(hdr->frame_control)))
1880			rx_status->boottime_ns = ktime_get_boottime_ns();
1881	}
1882
1883	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1884		kfree_skb(skb);
1885		goto out;
1886	}
1887
1888	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1889		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1890						sta, csi);
 
 
 
 
 
 
 
 
1891out:
1892	rcu_read_unlock();
1893}
1894
1895void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1896				struct iwl_rx_cmd_buffer *rxb, int queue)
1897{
1898	struct ieee80211_rx_status *rx_status;
1899	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1900	struct iwl_rx_no_data *desc = (void *)pkt->data;
1901	u32 rate_n_flags = le32_to_cpu(desc->rate);
1902	u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1903	u32 rssi = le32_to_cpu(desc->rssi);
1904	u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1905	u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1906	struct ieee80211_sta *sta = NULL;
1907	struct sk_buff *skb;
1908	u8 channel, energy_a, energy_b;
1909	struct iwl_mvm_rx_phy_data phy_data = {
1910		.d0 = desc->phy_info[0],
1911		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1912	};
1913
1914	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1915		return;
1916
1917	energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1918	energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1919	channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1920
1921	phy_data.info_type =
1922		le32_get_bits(desc->phy_info[1],
1923			      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1924
1925	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1926	 * ieee80211_hdr pulled.
1927	 */
1928	skb = alloc_skb(128, GFP_ATOMIC);
1929	if (!skb) {
1930		IWL_ERR(mvm, "alloc_skb failed\n");
1931		return;
1932	}
1933
1934	rx_status = IEEE80211_SKB_RXCB(skb);
1935
1936	/* 0-length PSDU */
1937	rx_status->flag |= RX_FLAG_NO_PSDU;
1938
1939	switch (info_type) {
1940	case RX_NO_DATA_INFO_TYPE_NDP:
1941		rx_status->zero_length_psdu_type =
1942			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
1943		break;
1944	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
1945	case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
1946		rx_status->zero_length_psdu_type =
1947			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
1948		break;
1949	default:
1950		rx_status->zero_length_psdu_type =
1951			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
1952		break;
1953	}
1954
1955	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1956	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1957	case RATE_MCS_CHAN_WIDTH_20:
1958		break;
1959	case RATE_MCS_CHAN_WIDTH_40:
1960		rx_status->bw = RATE_INFO_BW_40;
1961		break;
1962	case RATE_MCS_CHAN_WIDTH_80:
1963		rx_status->bw = RATE_INFO_BW_80;
1964		break;
1965	case RATE_MCS_CHAN_WIDTH_160:
1966		rx_status->bw = RATE_INFO_BW_160;
1967		break;
1968	}
1969
1970	if (rate_n_flags & RATE_MCS_HE_MSK)
1971		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1972			      phy_info, queue);
1973
1974	iwl_mvm_decode_lsig(skb, &phy_data);
 
 
 
 
 
1975
1976	rx_status->device_timestamp = gp2_on_air_rise;
1977	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1978		NL80211_BAND_2GHZ;
1979	rx_status->freq = ieee80211_channel_to_frequency(channel,
1980							 rx_status->band);
1981	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1982				    energy_b);
1983
1984	rcu_read_lock();
1985
1986	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1987	    rate_n_flags & RATE_MCS_SGI_MSK)
1988		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1989	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1990		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1991	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1992		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1993	if (rate_n_flags & RATE_MCS_HT_MSK) {
1994		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1995				RATE_MCS_STBC_POS;
1996		rx_status->encoding = RX_ENC_HT;
1997		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1998		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1999	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2000		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2001				RATE_MCS_STBC_POS;
2002		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2003		rx_status->encoding = RX_ENC_VHT;
2004		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2005		if (rate_n_flags & RATE_MCS_BF_MSK)
2006			rx_status->enc_flags |= RX_ENC_FLAG_BF;
2007		/*
2008		 * take the nss from the rx_vec since the rate_n_flags has
2009		 * only 2 bits for the nss which gives a max of 4 ss but
2010		 * there may be up to 8 spatial streams
2011		 */
2012		rx_status->nss =
2013			le32_get_bits(desc->rx_vec[0],
2014				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2015	} else if (rate_n_flags & RATE_MCS_HE_MSK) {
 
2016		rx_status->nss =
2017			le32_get_bits(desc->rx_vec[0],
2018				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2019	} else {
2020		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2021							       rx_status->band);
2022
2023		if (WARN(rate < 0 || rate > 0xFF,
2024			 "Invalid rate flags 0x%x, band %d,\n",
2025			 rate_n_flags, rx_status->band)) {
2026			kfree_skb(skb);
2027			goto out;
2028		}
2029		rx_status->rate_idx = rate;
2030	}
2031
 
2032	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2033out:
2034	rcu_read_unlock();
2035}
2036
2037void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2038			      struct iwl_rx_cmd_buffer *rxb, int queue)
2039{
2040	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2041	struct iwl_frame_release *release = (void *)pkt->data;
2042
 
 
 
2043	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2044					  le16_to_cpu(release->nssn),
2045					  queue, 0);
2046}
2047
2048void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2049				  struct iwl_rx_cmd_buffer *rxb, int queue)
2050{
2051	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2052	struct iwl_bar_frame_release *release = (void *)pkt->data;
2053	unsigned int baid = le32_get_bits(release->ba_info,
2054					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2055	unsigned int nssn = le32_get_bits(release->ba_info,
2056					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2057	unsigned int sta_id = le32_get_bits(release->sta_tid,
2058					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2059	unsigned int tid = le32_get_bits(release->sta_tid,
2060					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2061	struct iwl_mvm_baid_data *baid_data;
2062
 
 
 
2063	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2064			 baid >= ARRAY_SIZE(mvm->baid_map)))
2065		return;
2066
2067	rcu_read_lock();
2068	baid_data = rcu_dereference(mvm->baid_map[baid]);
2069	if (!baid_data) {
2070		IWL_DEBUG_RX(mvm,
2071			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2072			      baid);
2073		goto out;
2074	}
2075
2076	if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2077		 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2078		 baid, baid_data->sta_id, baid_data->tid, sta_id,
 
2079		 tid))
2080		goto out;
2081
2082	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
 
 
 
2083out:
2084	rcu_read_unlock();
2085}