Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7#include <linux/etherdevice.h>
8#include <linux/skbuff.h>
9#include "iwl-trans.h"
10#include "mvm.h"
11#include "fw-api.h"
12#include "time-sync.h"
13
14static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 int queue, struct ieee80211_sta *sta)
16{
17 struct iwl_mvm_sta *mvmsta;
18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 struct iwl_mvm_key_pn *ptk_pn;
21 int res;
22 u8 tid, keyidx;
23 u8 pn[IEEE80211_CCMP_PN_LEN];
24 u8 *extiv;
25
26 /* do PN checking */
27
28 /* multicast and non-data only arrives on default queue */
29 if (!ieee80211_is_data(hdr->frame_control) ||
30 is_multicast_ether_addr(hdr->addr1))
31 return 0;
32
33 /* do not check PN for open AP */
34 if (!(stats->flag & RX_FLAG_DECRYPTED))
35 return 0;
36
37 /*
38 * avoid checking for default queue - we don't want to replicate
39 * all the logic that's necessary for checking the PN on fragmented
40 * frames, leave that to mac80211
41 */
42 if (queue == 0)
43 return 0;
44
45 /* if we are here - this for sure is either CCMP or GCMP */
46 if (IS_ERR_OR_NULL(sta)) {
47 IWL_DEBUG_DROP(mvm,
48 "expected hw-decrypted unicast frame for station\n");
49 return -1;
50 }
51
52 mvmsta = iwl_mvm_sta_from_mac80211(sta);
53
54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 keyidx = extiv[3] >> 6;
56
57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 if (!ptk_pn)
59 return -1;
60
61 if (ieee80211_is_data_qos(hdr->frame_control))
62 tid = ieee80211_get_tid(hdr);
63 else
64 tid = 0;
65
66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 if (tid >= IWL_MAX_TID_COUNT)
68 return -1;
69
70 /* load pn */
71 pn[0] = extiv[7];
72 pn[1] = extiv[6];
73 pn[2] = extiv[5];
74 pn[3] = extiv[4];
75 pn[4] = extiv[1];
76 pn[5] = extiv[0];
77
78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 if (res < 0)
80 return -1;
81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 return -1;
83
84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 stats->flag |= RX_FLAG_PN_VALIDATED;
86
87 return 0;
88}
89
90/* iwl_mvm_create_skb Adds the rxb to a new skb */
91static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 struct iwl_rx_cmd_buffer *rxb)
94{
95 struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 unsigned int headlen, fraglen, pad_len = 0;
98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101
102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 len -= 2;
104 pad_len = 2;
105 }
106
107 /*
108 * For non monitor interface strip the bytes the RADA might not have
109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 * interface cannot exist with other interfaces, this removal is safe
111 * and sufficient, in monitor mode there's no decryption being done.
112 */
113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 len -= mic_crc_len;
115
116 /* If frame is small enough to fit in skb->head, pull it completely.
117 * If not, only pull ieee80211_hdr (including crypto if present, and
118 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 * splice() or TCP coalesce are more efficient.
120 *
121 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 * least 8 bytes (possibly more for mesh) we can do the same here
123 * to save the cost of doing it later. That still doesn't pull in
124 * the actual IP header since the typical case has a SNAP header.
125 * If the latter changes (there are efforts in the standards group
126 * to do so) we should revisit this and ieee80211_data_to_8023().
127 */
128 headlen = (len <= skb_tailroom(skb)) ? len :
129 hdrlen + crypt_len + 8;
130
131 /* The firmware may align the packet to DWORD.
132 * The padding is inserted after the IV.
133 * After copying the header + IV skip the padding if
134 * present before copying packet data.
135 */
136 hdrlen += crypt_len;
137
138 if (unlikely(headlen < hdrlen))
139 return -EINVAL;
140
141 /* Since data doesn't move data while putting data on skb and that is
142 * the only way we use, data + len is the next place that hdr would be put
143 */
144 skb_set_mac_header(skb, skb->len);
145 skb_put_data(skb, hdr, hdrlen);
146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147
148 /*
149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 * certain cases and starts the checksum after the SNAP. Check if
151 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 * in the cases the hardware didn't handle, since it's rare to see
153 * such packets, even though the hardware did calculate the checksum
154 * in this case, just starting after the MAC header instead.
155 *
156 * Starting from Bz hardware, it calculates starting directly after
157 * the MAC header, so that matches mac80211's expectation.
158 */
159 if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 struct {
161 u8 hdr[6];
162 __be16 type;
163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164
165 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 (shdr->type != htons(ETH_P_IP) &&
168 shdr->type != htons(ETH_P_ARP) &&
169 shdr->type != htons(ETH_P_IPV6) &&
170 shdr->type != htons(ETH_P_8021Q) &&
171 shdr->type != htons(ETH_P_PAE) &&
172 shdr->type != htons(ETH_P_TDLS))))
173 skb->ip_summed = CHECKSUM_NONE;
174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 /* mac80211 assumes full CSUM including SNAP header */
176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 }
178
179 fraglen = len - headlen;
180
181 if (fraglen) {
182 int offset = (u8 *)hdr + headlen + pad_len -
183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184
185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 fraglen, rxb->truesize);
187 }
188
189 return 0;
190}
191
192/* put a TLV on the skb and return data pointer
193 *
194 * Also pad to 4 the len and zero out all data part
195 */
196static void *
197iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198{
199 struct ieee80211_radiotap_tlv *tlv;
200
201 tlv = skb_put(skb, sizeof(*tlv));
202 tlv->type = cpu_to_le16(type);
203 tlv->len = cpu_to_le16(len);
204 return skb_put_zero(skb, ALIGN(len, 4));
205}
206
207static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 struct sk_buff *skb)
209{
210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 struct ieee80211_radiotap_vendor_content *radiotap;
212 const u16 vendor_data_len = sizeof(mvm->cur_aid);
213
214 if (!mvm->cur_aid)
215 return;
216
217 radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 sizeof(*radiotap) + vendor_data_len);
220
221 /* Intel OUI */
222 radiotap->oui[0] = 0xf6;
223 radiotap->oui[1] = 0x54;
224 radiotap->oui[2] = 0x25;
225 /* radiotap sniffer config sub-namespace */
226 radiotap->oui_subtype = 1;
227 radiotap->vendor_type = 0;
228
229 /* fill the data now */
230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231
232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233}
234
235/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 struct napi_struct *napi,
238 struct sk_buff *skb, int queue,
239 struct ieee80211_sta *sta,
240 struct ieee80211_link_sta *link_sta)
241{
242 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
243 kfree_skb(skb);
244 return;
245 }
246
247 if (sta && sta->valid_links && link_sta) {
248 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
249
250 rx_status->link_valid = 1;
251 rx_status->link_id = link_sta->link_id;
252 }
253
254 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
255}
256
257static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
258 struct ieee80211_rx_status *rx_status,
259 u32 rate_n_flags, int energy_a,
260 int energy_b)
261{
262 int max_energy;
263 u32 rate_flags = rate_n_flags;
264
265 energy_a = energy_a ? -energy_a : S8_MIN;
266 energy_b = energy_b ? -energy_b : S8_MIN;
267 max_energy = max(energy_a, energy_b);
268
269 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
270 energy_a, energy_b, max_energy);
271
272 rx_status->signal = max_energy;
273 rx_status->chains =
274 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
275 rx_status->chain_signal[0] = energy_a;
276 rx_status->chain_signal[1] = energy_b;
277}
278
279static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
280 struct ieee80211_hdr *hdr,
281 struct iwl_rx_mpdu_desc *desc,
282 u32 status,
283 struct ieee80211_rx_status *stats)
284{
285 struct iwl_mvm_sta *mvmsta;
286 struct iwl_mvm_vif *mvmvif;
287 u8 keyid;
288 struct ieee80211_key_conf *key;
289 u32 len = le16_to_cpu(desc->mpdu_len);
290 const u8 *frame = (void *)hdr;
291
292 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
293 return 0;
294
295 /*
296 * For non-beacon, we don't really care. But beacons may
297 * be filtered out, and we thus need the firmware's replay
298 * detection, otherwise beacons the firmware previously
299 * filtered could be replayed, or something like that, and
300 * it can filter a lot - though usually only if nothing has
301 * changed.
302 */
303 if (!ieee80211_is_beacon(hdr->frame_control))
304 return 0;
305
306 /* key mismatch - will also report !MIC_OK but we shouldn't count it */
307 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
308 return -1;
309
310 /* good cases */
311 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
312 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
313 stats->flag |= RX_FLAG_DECRYPTED;
314 return 0;
315 }
316
317 if (!sta)
318 return -1;
319
320 mvmsta = iwl_mvm_sta_from_mac80211(sta);
321
322 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
323
324 /*
325 * both keys will have the same cipher and MIC length, use
326 * whichever one is available
327 */
328 key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
329 if (!key) {
330 key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
331 if (!key)
332 return -1;
333 }
334
335 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
336 return -1;
337
338 /* get the real key ID */
339 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
340 /* and if that's the other key, look it up */
341 if (keyid != key->keyidx) {
342 /*
343 * shouldn't happen since firmware checked, but be safe
344 * in case the MIC length is wrong too, for example
345 */
346 if (keyid != 6 && keyid != 7)
347 return -1;
348 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
349 if (!key)
350 return -1;
351 }
352
353 /* Report status to mac80211 */
354 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
355 ieee80211_key_mic_failure(key);
356 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
357 ieee80211_key_replay(key);
358
359 return -1;
360}
361
362static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
363 struct ieee80211_hdr *hdr,
364 struct ieee80211_rx_status *stats, u16 phy_info,
365 struct iwl_rx_mpdu_desc *desc,
366 u32 pkt_flags, int queue, u8 *crypt_len)
367{
368 u32 status = le32_to_cpu(desc->status);
369
370 /*
371 * Drop UNKNOWN frames in aggregation, unless in monitor mode
372 * (where we don't have the keys).
373 * We limit this to aggregation because in TKIP this is a valid
374 * scenario, since we may not have the (correct) TTAK (phase 1
375 * key) in the firmware.
376 */
377 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
378 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
379 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) {
380 IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n");
381 return -1;
382 }
383
384 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
385 !ieee80211_has_protected(hdr->frame_control)))
386 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
387
388 if (!ieee80211_has_protected(hdr->frame_control) ||
389 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
390 IWL_RX_MPDU_STATUS_SEC_NONE)
391 return 0;
392
393 /* TODO: handle packets encrypted with unknown alg */
394
395 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
396 case IWL_RX_MPDU_STATUS_SEC_CCM:
397 case IWL_RX_MPDU_STATUS_SEC_GCM:
398 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
399 /* alg is CCM: check MIC only */
400 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
401 return -1;
402
403 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
404 *crypt_len = IEEE80211_CCMP_HDR_LEN;
405 return 0;
406 case IWL_RX_MPDU_STATUS_SEC_TKIP:
407 /* Don't drop the frame and decrypt it in SW */
408 if (!fw_has_api(&mvm->fw->ucode_capa,
409 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
410 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
411 return 0;
412
413 if (mvm->trans->trans_cfg->gen2 &&
414 !(status & RX_MPDU_RES_STATUS_MIC_OK))
415 stats->flag |= RX_FLAG_MMIC_ERROR;
416
417 *crypt_len = IEEE80211_TKIP_IV_LEN;
418 fallthrough;
419 case IWL_RX_MPDU_STATUS_SEC_WEP:
420 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
421 return -1;
422
423 stats->flag |= RX_FLAG_DECRYPTED;
424 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
425 IWL_RX_MPDU_STATUS_SEC_WEP)
426 *crypt_len = IEEE80211_WEP_IV_LEN;
427
428 if (pkt_flags & FH_RSCSR_RADA_EN) {
429 stats->flag |= RX_FLAG_ICV_STRIPPED;
430 if (mvm->trans->trans_cfg->gen2)
431 stats->flag |= RX_FLAG_MMIC_STRIPPED;
432 }
433
434 return 0;
435 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
436 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
437 return -1;
438 stats->flag |= RX_FLAG_DECRYPTED;
439 return 0;
440 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
441 break;
442 default:
443 /*
444 * Sometimes we can get frames that were not decrypted
445 * because the firmware didn't have the keys yet. This can
446 * happen after connection where we can get multicast frames
447 * before the GTK is installed.
448 * Silently drop those frames.
449 * Also drop un-decrypted frames in monitor mode.
450 */
451 if (!is_multicast_ether_addr(hdr->addr1) &&
452 !mvm->monitor_on && net_ratelimit())
453 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
454 }
455
456 return 0;
457}
458
459static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
460 struct ieee80211_sta *sta,
461 struct sk_buff *skb,
462 struct iwl_rx_packet *pkt)
463{
464 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
465
466 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
467 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
468 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
469
470 skb->ip_summed = CHECKSUM_COMPLETE;
471 skb->csum = csum_unfold(~(__force __sum16)hwsum);
472 }
473 } else {
474 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
475 struct iwl_mvm_vif *mvmvif;
476 u16 flags = le16_to_cpu(desc->l3l4_flags);
477 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
478 IWL_RX_L3_PROTO_POS);
479
480 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
481
482 if (mvmvif->features & NETIF_F_RXCSUM &&
483 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
484 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
485 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
486 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
487 skb->ip_summed = CHECKSUM_UNNECESSARY;
488 }
489}
490
491/*
492 * returns true if a packet is a duplicate or invalid tid and should be dropped.
493 * Updates AMSDU PN tracking info
494 */
495static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
496 struct ieee80211_rx_status *rx_status,
497 struct ieee80211_hdr *hdr,
498 struct iwl_rx_mpdu_desc *desc)
499{
500 struct iwl_mvm_sta *mvm_sta;
501 struct iwl_mvm_rxq_dup_data *dup_data;
502 u8 tid, sub_frame_idx;
503
504 if (WARN_ON(IS_ERR_OR_NULL(sta)))
505 return false;
506
507 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
508
509 if (WARN_ON_ONCE(!mvm_sta->dup_data))
510 return false;
511
512 dup_data = &mvm_sta->dup_data[queue];
513
514 /*
515 * Drop duplicate 802.11 retransmissions
516 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
517 */
518 if (ieee80211_is_ctl(hdr->frame_control) ||
519 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
520 is_multicast_ether_addr(hdr->addr1)) {
521 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
522 return false;
523 }
524
525 if (ieee80211_is_data_qos(hdr->frame_control)) {
526 /* frame has qos control */
527 tid = ieee80211_get_tid(hdr);
528 if (tid >= IWL_MAX_TID_COUNT)
529 return true;
530 } else {
531 tid = IWL_MAX_TID_COUNT;
532 }
533
534 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
535 sub_frame_idx = desc->amsdu_info &
536 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
537
538 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
539 dup_data->last_seq[tid] == hdr->seq_ctrl &&
540 dup_data->last_sub_frame[tid] >= sub_frame_idx))
541 return true;
542
543 /* Allow same PN as the first subframe for following sub frames */
544 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
545 sub_frame_idx > dup_data->last_sub_frame[tid] &&
546 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
547 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
548
549 dup_data->last_seq[tid] = hdr->seq_ctrl;
550 dup_data->last_sub_frame[tid] = sub_frame_idx;
551
552 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
553
554 return false;
555}
556
557static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
558 struct ieee80211_sta *sta,
559 struct napi_struct *napi,
560 struct iwl_mvm_baid_data *baid_data,
561 struct iwl_mvm_reorder_buffer *reorder_buf,
562 u16 nssn)
563{
564 struct iwl_mvm_reorder_buf_entry *entries =
565 &baid_data->entries[reorder_buf->queue *
566 baid_data->entries_per_queue];
567 u16 ssn = reorder_buf->head_sn;
568
569 lockdep_assert_held(&reorder_buf->lock);
570
571 while (ieee80211_sn_less(ssn, nssn)) {
572 int index = ssn % reorder_buf->buf_size;
573 struct sk_buff_head *skb_list = &entries[index].frames;
574 struct sk_buff *skb;
575
576 ssn = ieee80211_sn_inc(ssn);
577
578 /*
579 * Empty the list. Will have more than one frame for A-MSDU.
580 * Empty list is valid as well since nssn indicates frames were
581 * received.
582 */
583 while ((skb = __skb_dequeue(skb_list))) {
584 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
585 reorder_buf->queue,
586 sta, NULL /* FIXME */);
587 reorder_buf->num_stored--;
588 }
589 }
590 reorder_buf->head_sn = nssn;
591}
592
593static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
594 struct iwl_mvm_delba_data *data)
595{
596 struct iwl_mvm_baid_data *ba_data;
597 struct ieee80211_sta *sta;
598 struct iwl_mvm_reorder_buffer *reorder_buf;
599 u8 baid = data->baid;
600 u32 sta_id;
601
602 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
603 return;
604
605 rcu_read_lock();
606
607 ba_data = rcu_dereference(mvm->baid_map[baid]);
608 if (WARN_ON_ONCE(!ba_data))
609 goto out;
610
611 /* pick any STA ID to find the pointer */
612 sta_id = ffs(ba_data->sta_mask) - 1;
613 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
614 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
615 goto out;
616
617 reorder_buf = &ba_data->reorder_buf[queue];
618
619 /* release all frames that are in the reorder buffer to the stack */
620 spin_lock_bh(&reorder_buf->lock);
621 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
622 ieee80211_sn_add(reorder_buf->head_sn,
623 reorder_buf->buf_size));
624 spin_unlock_bh(&reorder_buf->lock);
625
626out:
627 rcu_read_unlock();
628}
629
630static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
631 struct napi_struct *napi,
632 u8 baid, u16 nssn, int queue)
633{
634 struct ieee80211_sta *sta;
635 struct iwl_mvm_reorder_buffer *reorder_buf;
636 struct iwl_mvm_baid_data *ba_data;
637 u32 sta_id;
638
639 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
640 baid, nssn);
641
642 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
643 baid >= ARRAY_SIZE(mvm->baid_map)))
644 return;
645
646 rcu_read_lock();
647
648 ba_data = rcu_dereference(mvm->baid_map[baid]);
649 if (!ba_data) {
650 WARN(true, "BAID %d not found in map\n", baid);
651 goto out;
652 }
653
654 /* pick any STA ID to find the pointer */
655 sta_id = ffs(ba_data->sta_mask) - 1;
656 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
657 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
658 goto out;
659
660 reorder_buf = &ba_data->reorder_buf[queue];
661
662 spin_lock_bh(&reorder_buf->lock);
663 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
664 reorder_buf, nssn);
665 spin_unlock_bh(&reorder_buf->lock);
666
667out:
668 rcu_read_unlock();
669}
670
671void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
672 struct iwl_rx_cmd_buffer *rxb, int queue)
673{
674 struct iwl_rx_packet *pkt = rxb_addr(rxb);
675 struct iwl_rxq_sync_notification *notif;
676 struct iwl_mvm_internal_rxq_notif *internal_notif;
677 u32 len = iwl_rx_packet_payload_len(pkt);
678
679 notif = (void *)pkt->data;
680 internal_notif = (void *)notif->payload;
681
682 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
683 "invalid notification size %d (%d)",
684 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
685 return;
686 len -= sizeof(*notif) + sizeof(*internal_notif);
687
688 if (internal_notif->sync &&
689 mvm->queue_sync_cookie != internal_notif->cookie) {
690 WARN_ONCE(1, "Received expired RX queue sync message\n");
691 return;
692 }
693
694 switch (internal_notif->type) {
695 case IWL_MVM_RXQ_EMPTY:
696 WARN_ONCE(len, "invalid empty notification size %d", len);
697 break;
698 case IWL_MVM_RXQ_NOTIF_DEL_BA:
699 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
700 "invalid delba notification size %d (%d)",
701 len, (int)sizeof(struct iwl_mvm_delba_data)))
702 break;
703 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
704 break;
705 default:
706 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
707 }
708
709 if (internal_notif->sync) {
710 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
711 "queue sync: queue %d responded a second time!\n",
712 queue);
713 if (READ_ONCE(mvm->queue_sync_state) == 0)
714 wake_up(&mvm->rx_sync_waitq);
715 }
716}
717
718/*
719 * Returns true if the MPDU was buffered\dropped, false if it should be passed
720 * to upper layer.
721 */
722static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
723 struct napi_struct *napi,
724 int queue,
725 struct ieee80211_sta *sta,
726 struct sk_buff *skb,
727 struct iwl_rx_mpdu_desc *desc)
728{
729 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
730 struct iwl_mvm_baid_data *baid_data;
731 struct iwl_mvm_reorder_buffer *buffer;
732 u32 reorder = le32_to_cpu(desc->reorder_data);
733 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
734 bool last_subframe =
735 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
736 u8 tid = ieee80211_get_tid(hdr);
737 u8 sub_frame_idx = desc->amsdu_info &
738 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
739 struct iwl_mvm_reorder_buf_entry *entries;
740 u32 sta_mask;
741 int index;
742 u16 nssn, sn;
743 u8 baid;
744
745 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
746 IWL_RX_MPDU_REORDER_BAID_SHIFT;
747
748 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000)
749 return false;
750
751 /*
752 * This also covers the case of receiving a Block Ack Request
753 * outside a BA session; we'll pass it to mac80211 and that
754 * then sends a delBA action frame.
755 * This also covers pure monitor mode, in which case we won't
756 * have any BA sessions.
757 */
758 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
759 return false;
760
761 /* no sta yet */
762 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
763 "Got valid BAID without a valid station assigned\n"))
764 return false;
765
766 /* not a data packet or a bar */
767 if (!ieee80211_is_back_req(hdr->frame_control) &&
768 (!ieee80211_is_data_qos(hdr->frame_control) ||
769 is_multicast_ether_addr(hdr->addr1)))
770 return false;
771
772 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
773 return false;
774
775 baid_data = rcu_dereference(mvm->baid_map[baid]);
776 if (!baid_data) {
777 IWL_DEBUG_RX(mvm,
778 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
779 baid, reorder);
780 return false;
781 }
782
783 rcu_read_lock();
784 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
785 rcu_read_unlock();
786
787 if (IWL_FW_CHECK(mvm,
788 tid != baid_data->tid ||
789 !(sta_mask & baid_data->sta_mask),
790 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
791 baid, baid_data->sta_mask, baid_data->tid,
792 sta_mask, tid))
793 return false;
794
795 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
796 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
797 IWL_RX_MPDU_REORDER_SN_SHIFT;
798
799 buffer = &baid_data->reorder_buf[queue];
800 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
801
802 spin_lock_bh(&buffer->lock);
803
804 if (!buffer->valid) {
805 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
806 spin_unlock_bh(&buffer->lock);
807 return false;
808 }
809 buffer->valid = true;
810 }
811
812 /* drop any duplicated packets */
813 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE))
814 goto drop;
815
816 /* drop any oudated packets */
817 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)
818 goto drop;
819
820 /* release immediately if allowed by nssn and no stored frames */
821 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
822 if (!amsdu || last_subframe)
823 buffer->head_sn = nssn;
824 /* No need to update AMSDU last SN - we are moving the head */
825 spin_unlock_bh(&buffer->lock);
826 return false;
827 }
828
829 /*
830 * release immediately if there are no stored frames, and the sn is
831 * equal to the head.
832 * This can happen due to reorder timer, where NSSN is behind head_sn.
833 * When we released everything, and we got the next frame in the
834 * sequence, according to the NSSN we can't release immediately,
835 * while technically there is no hole and we can move forward.
836 */
837 if (!buffer->num_stored && sn == buffer->head_sn) {
838 if (!amsdu || last_subframe)
839 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
840
841 /* No need to update AMSDU last SN - we are moving the head */
842 spin_unlock_bh(&buffer->lock);
843 return false;
844 }
845
846 /* put in reorder buffer */
847 index = sn % buffer->buf_size;
848 __skb_queue_tail(&entries[index].frames, skb);
849 buffer->num_stored++;
850
851 if (amsdu) {
852 buffer->last_amsdu = sn;
853 buffer->last_sub_index = sub_frame_idx;
854 }
855
856 /*
857 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
858 * The reason is that NSSN advances on the first sub-frame, and may
859 * cause the reorder buffer to advance before all the sub-frames arrive.
860 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
861 * SN 1. NSSN for first sub frame will be 3 with the result of driver
862 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
863 * already ahead and it will be dropped.
864 * If the last sub-frame is not on this queue - we will get frame
865 * release notification with up to date NSSN.
866 */
867 if (!amsdu || last_subframe)
868 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
869 buffer, nssn);
870
871 spin_unlock_bh(&buffer->lock);
872 return true;
873
874drop:
875 kfree_skb(skb);
876 spin_unlock_bh(&buffer->lock);
877 return true;
878}
879
880static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
881 u32 reorder_data, u8 baid)
882{
883 unsigned long now = jiffies;
884 unsigned long timeout;
885 struct iwl_mvm_baid_data *data;
886
887 rcu_read_lock();
888
889 data = rcu_dereference(mvm->baid_map[baid]);
890 if (!data) {
891 IWL_DEBUG_RX(mvm,
892 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
893 baid, reorder_data);
894 goto out;
895 }
896
897 if (!data->timeout)
898 goto out;
899
900 timeout = data->timeout;
901 /*
902 * Do not update last rx all the time to avoid cache bouncing
903 * between the rx queues.
904 * Update it every timeout. Worst case is the session will
905 * expire after ~ 2 * timeout, which doesn't matter that much.
906 */
907 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
908 /* Update is atomic */
909 data->last_rx = now;
910
911out:
912 rcu_read_unlock();
913}
914
915static void iwl_mvm_flip_address(u8 *addr)
916{
917 int i;
918 u8 mac_addr[ETH_ALEN];
919
920 for (i = 0; i < ETH_ALEN; i++)
921 mac_addr[i] = addr[ETH_ALEN - i - 1];
922 ether_addr_copy(addr, mac_addr);
923}
924
925struct iwl_mvm_rx_phy_data {
926 enum iwl_rx_phy_info_type info_type;
927 __le32 d0, d1, d2, d3, eht_d4, d5;
928 __le16 d4;
929 bool with_data;
930 bool first_subframe;
931 __le32 rx_vec[4];
932
933 u32 rate_n_flags;
934 u32 gp2_on_air_rise;
935 u16 phy_info;
936 u8 energy_a, energy_b;
937 u8 channel;
938};
939
940static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
941 struct iwl_mvm_rx_phy_data *phy_data,
942 struct ieee80211_radiotap_he_mu *he_mu)
943{
944 u32 phy_data2 = le32_to_cpu(phy_data->d2);
945 u32 phy_data3 = le32_to_cpu(phy_data->d3);
946 u16 phy_data4 = le16_to_cpu(phy_data->d4);
947 u32 rate_n_flags = phy_data->rate_n_flags;
948
949 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
950 he_mu->flags1 |=
951 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
952 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
953
954 he_mu->flags1 |=
955 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
956 phy_data4),
957 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
958
959 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
960 phy_data2);
961 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
962 phy_data3);
963 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
964 phy_data2);
965 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
966 phy_data3);
967 }
968
969 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
970 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
971 he_mu->flags1 |=
972 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
973 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
974
975 he_mu->flags2 |=
976 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
977 phy_data4),
978 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
979
980 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
981 phy_data2);
982 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
983 phy_data3);
984 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
985 phy_data2);
986 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
987 phy_data3);
988 }
989}
990
991static void
992iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
993 struct ieee80211_radiotap_he *he,
994 struct ieee80211_radiotap_he_mu *he_mu,
995 struct ieee80211_rx_status *rx_status)
996{
997 /*
998 * Unfortunately, we have to leave the mac80211 data
999 * incorrect for the case that we receive an HE-MU
1000 * transmission and *don't* have the HE phy data (due
1001 * to the bits being used for TSF). This shouldn't
1002 * happen though as management frames where we need
1003 * the TSF/timers are not be transmitted in HE-MU.
1004 */
1005 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1006 u32 rate_n_flags = phy_data->rate_n_flags;
1007 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1008 u8 offs = 0;
1009
1010 rx_status->bw = RATE_INFO_BW_HE_RU;
1011
1012 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1013
1014 switch (ru) {
1015 case 0 ... 36:
1016 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1017 offs = ru;
1018 break;
1019 case 37 ... 52:
1020 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1021 offs = ru - 37;
1022 break;
1023 case 53 ... 60:
1024 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1025 offs = ru - 53;
1026 break;
1027 case 61 ... 64:
1028 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1029 offs = ru - 61;
1030 break;
1031 case 65 ... 66:
1032 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1033 offs = ru - 65;
1034 break;
1035 case 67:
1036 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1037 break;
1038 case 68:
1039 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1040 break;
1041 }
1042 he->data2 |= le16_encode_bits(offs,
1043 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1044 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1045 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1046 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1047 he->data2 |=
1048 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1049
1050#define CHECK_BW(bw) \
1051 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1052 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1053 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1054 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1055 CHECK_BW(20);
1056 CHECK_BW(40);
1057 CHECK_BW(80);
1058 CHECK_BW(160);
1059
1060 if (he_mu)
1061 he_mu->flags2 |=
1062 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1063 rate_n_flags),
1064 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1065 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1066 he->data6 |=
1067 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1068 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1069 rate_n_flags),
1070 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1071}
1072
1073static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1074 struct iwl_mvm_rx_phy_data *phy_data,
1075 struct ieee80211_radiotap_he *he,
1076 struct ieee80211_radiotap_he_mu *he_mu,
1077 struct ieee80211_rx_status *rx_status,
1078 int queue)
1079{
1080 switch (phy_data->info_type) {
1081 case IWL_RX_PHY_INFO_TYPE_NONE:
1082 case IWL_RX_PHY_INFO_TYPE_CCK:
1083 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1084 case IWL_RX_PHY_INFO_TYPE_HT:
1085 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1086 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1087 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1088 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1089 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1090 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1091 return;
1092 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1093 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1094 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1095 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1096 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1097 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1098 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1099 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1100 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1101 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1102 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1103 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1104 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1105 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1106 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1107 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1108 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1109 fallthrough;
1110 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1111 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1112 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1113 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1114 /* HE common */
1115 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1116 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1117 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1118 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1119 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1120 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1121 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1122 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1123 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1124 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1125 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1126 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1127 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1128 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1129 IWL_RX_PHY_DATA0_HE_UPLINK),
1130 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1131 }
1132 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1133 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1134 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1135 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1136 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1137 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1138 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1139 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1140 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1141 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1142 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1143 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1144 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1145 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1146 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1147 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1148 IWL_RX_PHY_DATA0_HE_DOPPLER),
1149 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1150 break;
1151 }
1152
1153 switch (phy_data->info_type) {
1154 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1155 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1156 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1157 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1158 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1159 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1160 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1161 break;
1162 default:
1163 /* nothing here */
1164 break;
1165 }
1166
1167 switch (phy_data->info_type) {
1168 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1169 he_mu->flags1 |=
1170 le16_encode_bits(le16_get_bits(phy_data->d4,
1171 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1172 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1173 he_mu->flags1 |=
1174 le16_encode_bits(le16_get_bits(phy_data->d4,
1175 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1176 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1177 he_mu->flags2 |=
1178 le16_encode_bits(le16_get_bits(phy_data->d4,
1179 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1180 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1181 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1182 fallthrough;
1183 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1184 he_mu->flags2 |=
1185 le16_encode_bits(le32_get_bits(phy_data->d1,
1186 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1187 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1188 he_mu->flags2 |=
1189 le16_encode_bits(le32_get_bits(phy_data->d1,
1190 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1191 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1192 fallthrough;
1193 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1194 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1195 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1196 break;
1197 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1198 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1199 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1200 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1201 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1202 break;
1203 default:
1204 /* nothing */
1205 break;
1206 }
1207}
1208
1209#define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1210 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1211
1212#define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1213 typeof(enc_bits) _enc_bits = enc_bits; \
1214 typeof(usig) _usig = usig; \
1215 (_usig)->mask |= cpu_to_le32(_enc_bits); \
1216 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1217} while (0)
1218
1219#define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1220 eht->data[(rt_data)] |= \
1221 (cpu_to_le32 \
1222 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1223 LE32_DEC_ENC(data ## fw_data, \
1224 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1225 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1226
1227#define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1228 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1229
1230#define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1
1231#define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2
1232#define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2
1233#define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2
1234#define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3
1235#define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3
1236#define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3
1237#define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4
1238
1239#define IWL_RX_RU_DATA_A1 2
1240#define IWL_RX_RU_DATA_A2 2
1241#define IWL_RX_RU_DATA_B1 2
1242#define IWL_RX_RU_DATA_B2 4
1243#define IWL_RX_RU_DATA_C1 3
1244#define IWL_RX_RU_DATA_C2 3
1245#define IWL_RX_RU_DATA_D1 4
1246#define IWL_RX_RU_DATA_D2 4
1247
1248#define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \
1249 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \
1250 rt_ru, \
1251 IWL_RX_RU_DATA_ ## fw_ru, \
1252 fw_ru)
1253
1254static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1255 struct iwl_mvm_rx_phy_data *phy_data,
1256 struct ieee80211_rx_status *rx_status,
1257 struct ieee80211_radiotap_eht *eht,
1258 struct ieee80211_radiotap_eht_usig *usig)
1259{
1260 if (phy_data->with_data) {
1261 __le32 data1 = phy_data->d1;
1262 __le32 data2 = phy_data->d2;
1263 __le32 data3 = phy_data->d3;
1264 __le32 data4 = phy_data->eht_d4;
1265 __le32 data5 = phy_data->d5;
1266 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1267
1268 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1269 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1270 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1271 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1272 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1273 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1274 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1275 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1276 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1277 IWL_MVM_ENC_USIG_VALUE_MASK
1278 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1279 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1280
1281 eht->user_info[0] |=
1282 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1283 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1284 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1285
1286 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1287 eht->data[7] |= LE32_DEC_ENC
1288 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1289 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1290
1291 /*
1292 * Hardware labels the content channels/RU allocation values
1293 * as follows:
1294 * Content Channel 1 Content Channel 2
1295 * 20 MHz: A1
1296 * 40 MHz: A1 B1
1297 * 80 MHz: A1 C1 B1 D1
1298 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2
1299 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4
1300 *
1301 * However firmware can only give us A1-D2, so the higher
1302 * frequencies are missing.
1303 */
1304
1305 switch (phy_bw) {
1306 case RATE_MCS_CHAN_WIDTH_320:
1307 /* additional values are missing in RX metadata */
1308 case RATE_MCS_CHAN_WIDTH_160:
1309 /* content channel 1 */
1310 IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1311 IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1312 /* content channel 2 */
1313 IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1314 IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1315 fallthrough;
1316 case RATE_MCS_CHAN_WIDTH_80:
1317 /* content channel 1 */
1318 IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1319 /* content channel 2 */
1320 IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1321 fallthrough;
1322 case RATE_MCS_CHAN_WIDTH_40:
1323 /* content channel 2 */
1324 IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1325 fallthrough;
1326 case RATE_MCS_CHAN_WIDTH_20:
1327 IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1328 break;
1329 }
1330 } else {
1331 __le32 usig_a1 = phy_data->rx_vec[0];
1332 __le32 usig_a2 = phy_data->rx_vec[1];
1333
1334 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1335 IWL_RX_USIG_A1_DISREGARD,
1336 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1337 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1338 IWL_RX_USIG_A1_VALIDATE,
1339 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1340 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1341 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1342 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1343 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1344 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1345 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1346 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1347 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1348 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1349 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1350 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1351 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1352 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1353 IWL_RX_USIG_A2_EHT_SIG_MCS,
1354 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1355 IWL_MVM_ENC_USIG_VALUE_MASK
1356 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1357 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1358 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1359 IWL_RX_USIG_A2_EHT_CRC_OK,
1360 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1361 }
1362}
1363
1364static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1365 struct iwl_mvm_rx_phy_data *phy_data,
1366 struct ieee80211_rx_status *rx_status,
1367 struct ieee80211_radiotap_eht *eht,
1368 struct ieee80211_radiotap_eht_usig *usig)
1369{
1370 if (phy_data->with_data) {
1371 __le32 data5 = phy_data->d5;
1372
1373 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1374 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1375 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1376 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1377 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1378 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1379
1380 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1381 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1382 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1383 } else {
1384 __le32 usig_a1 = phy_data->rx_vec[0];
1385 __le32 usig_a2 = phy_data->rx_vec[1];
1386
1387 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1388 IWL_RX_USIG_A1_DISREGARD,
1389 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1390 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1391 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1392 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1393 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1394 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1395 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1396 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1397 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1398 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1399 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1400 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1401 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1402 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1403 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1404 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1405 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1406 IWL_RX_USIG_A2_EHT_CRC_OK,
1407 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1408 }
1409}
1410
1411static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1412 struct ieee80211_rx_status *rx_status,
1413 struct ieee80211_radiotap_eht *eht)
1414{
1415 u32 ru = le32_get_bits(eht->data[8],
1416 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1417 enum nl80211_eht_ru_alloc nl_ru;
1418
1419 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1420 * in an EHT variant User Info field
1421 */
1422
1423 switch (ru) {
1424 case 0 ... 36:
1425 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1426 break;
1427 case 37 ... 52:
1428 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1429 break;
1430 case 53 ... 60:
1431 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1432 break;
1433 case 61 ... 64:
1434 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1435 break;
1436 case 65 ... 66:
1437 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1438 break;
1439 case 67:
1440 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1441 break;
1442 case 68:
1443 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1444 break;
1445 case 69:
1446 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1447 break;
1448 case 70 ... 81:
1449 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1450 break;
1451 case 82 ... 89:
1452 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1453 break;
1454 case 90 ... 93:
1455 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1456 break;
1457 case 94 ... 95:
1458 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1459 break;
1460 case 96 ... 99:
1461 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1462 break;
1463 case 100 ... 103:
1464 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1465 break;
1466 case 104:
1467 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1468 break;
1469 case 105 ... 106:
1470 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1471 break;
1472 default:
1473 return;
1474 }
1475
1476 rx_status->bw = RATE_INFO_BW_EHT_RU;
1477 rx_status->eht.ru = nl_ru;
1478}
1479
1480static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1481 struct iwl_mvm_rx_phy_data *phy_data,
1482 struct ieee80211_rx_status *rx_status,
1483 struct ieee80211_radiotap_eht *eht,
1484 struct ieee80211_radiotap_eht_usig *usig)
1485
1486{
1487 __le32 data0 = phy_data->d0;
1488 __le32 data1 = phy_data->d1;
1489 __le32 usig_a1 = phy_data->rx_vec[0];
1490 u8 info_type = phy_data->info_type;
1491
1492 /* Not in EHT range */
1493 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1494 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1495 return;
1496
1497 usig->common |= cpu_to_le32
1498 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1499 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1500 if (phy_data->with_data) {
1501 usig->common |= LE32_DEC_ENC(data0,
1502 IWL_RX_PHY_DATA0_EHT_UPLINK,
1503 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1504 usig->common |= LE32_DEC_ENC(data0,
1505 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1506 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1507 } else {
1508 usig->common |= LE32_DEC_ENC(usig_a1,
1509 IWL_RX_USIG_A1_UL_FLAG,
1510 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1511 usig->common |= LE32_DEC_ENC(usig_a1,
1512 IWL_RX_USIG_A1_BSS_COLOR,
1513 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1514 }
1515
1516 if (fw_has_capa(&mvm->fw->ucode_capa,
1517 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1518 usig->common |=
1519 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1520 usig->common |=
1521 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1522 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1523 }
1524
1525 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1526 eht->data[0] |= LE32_DEC_ENC(data0,
1527 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1528 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1529
1530 /* All RU allocating size/index is in TB format */
1531 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1532 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1533 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1534 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1535 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1536 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1537 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1538
1539 iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1540
1541 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1542 * which is on only in case of monitor mode so no need to check monitor
1543 * mode
1544 */
1545 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1546 eht->data[1] |=
1547 le32_encode_bits(mvm->monitor_p80,
1548 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1549
1550 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1551 if (phy_data->with_data)
1552 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1553 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1554 else
1555 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1556 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1557
1558 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1559 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1560 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1561
1562 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1563 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1564 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1565
1566 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1567 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1568 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1569
1570 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1571
1572 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1573 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1574
1575 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1576 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1577 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1578
1579 /*
1580 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1581 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1582 */
1583
1584 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1585 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1586 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1587
1588 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1589 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1590 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1591
1592 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1593 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1594 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1595}
1596
1597static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1598 struct iwl_mvm_rx_phy_data *phy_data,
1599 int queue)
1600{
1601 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1602
1603 struct ieee80211_radiotap_eht *eht;
1604 struct ieee80211_radiotap_eht_usig *usig;
1605 size_t eht_len = sizeof(*eht);
1606
1607 u32 rate_n_flags = phy_data->rate_n_flags;
1608 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1609 /* EHT and HE have the same valus for LTF */
1610 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1611 u16 phy_info = phy_data->phy_info;
1612 u32 bw;
1613
1614 /* u32 for 1 user_info */
1615 if (phy_data->with_data)
1616 eht_len += sizeof(u32);
1617
1618 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1619
1620 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1621 sizeof(*usig));
1622 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1623 usig->common |=
1624 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1625
1626 /* specific handling for 320MHz */
1627 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1628 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1629 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1630 le32_to_cpu(phy_data->d0));
1631
1632 usig->common |= cpu_to_le32
1633 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1634
1635 /* report the AMPDU-EOF bit on single frames */
1636 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1637 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1638 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1639 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1640 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1641 }
1642
1643 /* update aggregation data for monitor sake on default queue */
1644 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1645 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1646 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1647 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1648 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1649 }
1650
1651 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1652 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1653
1654#define CHECK_TYPE(F) \
1655 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1656 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1657
1658 CHECK_TYPE(SU);
1659 CHECK_TYPE(EXT_SU);
1660 CHECK_TYPE(MU);
1661 CHECK_TYPE(TRIG);
1662
1663 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1664 case 0:
1665 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1666 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1667 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1668 } else {
1669 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1670 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1671 }
1672 break;
1673 case 1:
1674 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1675 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1676 break;
1677 case 2:
1678 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1679 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1680 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1681 else
1682 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1683 break;
1684 case 3:
1685 if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1686 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1687 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1688 }
1689 break;
1690 default:
1691 /* nothing here */
1692 break;
1693 }
1694
1695 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1696 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1697 eht->data[0] |= cpu_to_le32
1698 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1699 ltf) |
1700 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1701 rx_status->eht.gi));
1702 }
1703
1704
1705 if (!phy_data->with_data) {
1706 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1707 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1708 eht->data[7] |=
1709 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1710 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1711 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1712 if (rate_n_flags & RATE_MCS_BF_MSK)
1713 eht->data[7] |=
1714 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1715 } else {
1716 eht->user_info[0] |=
1717 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1718 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1719 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1720 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1721 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1722
1723 if (rate_n_flags & RATE_MCS_BF_MSK)
1724 eht->user_info[0] |=
1725 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1726
1727 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1728 eht->user_info[0] |=
1729 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1730
1731 eht->user_info[0] |= cpu_to_le32
1732 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1733 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1734 rate_n_flags)) |
1735 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1736 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1737 }
1738}
1739
1740static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1741 struct iwl_mvm_rx_phy_data *phy_data,
1742 int queue)
1743{
1744 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1745 struct ieee80211_radiotap_he *he = NULL;
1746 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1747 u32 rate_n_flags = phy_data->rate_n_flags;
1748 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1749 u8 ltf;
1750 static const struct ieee80211_radiotap_he known = {
1751 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1752 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1753 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1754 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1755 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1756 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1757 };
1758 static const struct ieee80211_radiotap_he_mu mu_known = {
1759 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1760 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1761 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1762 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1763 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1764 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1765 };
1766 u16 phy_info = phy_data->phy_info;
1767
1768 he = skb_put_data(skb, &known, sizeof(known));
1769 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1770
1771 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1772 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1773 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1774 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1775 }
1776
1777 /* report the AMPDU-EOF bit on single frames */
1778 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1779 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1780 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1781 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1782 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1783 }
1784
1785 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1786 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1787 queue);
1788
1789 /* update aggregation data for monitor sake on default queue */
1790 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1791 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1792 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1793 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1794 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1795 }
1796
1797 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1798 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1799 rx_status->bw = RATE_INFO_BW_HE_RU;
1800 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1801 }
1802
1803 /* actually data is filled in mac80211 */
1804 if (he_type == RATE_MCS_HE_TYPE_SU ||
1805 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1806 he->data1 |=
1807 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1808
1809#define CHECK_TYPE(F) \
1810 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1811 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1812
1813 CHECK_TYPE(SU);
1814 CHECK_TYPE(EXT_SU);
1815 CHECK_TYPE(MU);
1816 CHECK_TYPE(TRIG);
1817
1818 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1819
1820 if (rate_n_flags & RATE_MCS_BF_MSK)
1821 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1822
1823 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1824 RATE_MCS_HE_GI_LTF_POS) {
1825 case 0:
1826 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1827 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1828 else
1829 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1830 if (he_type == RATE_MCS_HE_TYPE_MU)
1831 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1832 else
1833 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1834 break;
1835 case 1:
1836 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1837 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1838 else
1839 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1840 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1841 break;
1842 case 2:
1843 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1844 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1845 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1846 } else {
1847 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1848 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1849 }
1850 break;
1851 case 3:
1852 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1853 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1854 break;
1855 case 4:
1856 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1857 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1858 break;
1859 default:
1860 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1861 }
1862
1863 he->data5 |= le16_encode_bits(ltf,
1864 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1865}
1866
1867static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1868 struct iwl_mvm_rx_phy_data *phy_data)
1869{
1870 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1871 struct ieee80211_radiotap_lsig *lsig;
1872
1873 switch (phy_data->info_type) {
1874 case IWL_RX_PHY_INFO_TYPE_HT:
1875 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1876 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1877 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1878 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1879 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1880 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1881 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1882 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1883 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1884 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1885 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1886 lsig = skb_put(skb, sizeof(*lsig));
1887 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1888 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1889 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1890 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1891 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1892 break;
1893 default:
1894 break;
1895 }
1896}
1897
1898static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1899{
1900 switch (phy_band) {
1901 case PHY_BAND_24:
1902 return NL80211_BAND_2GHZ;
1903 case PHY_BAND_5:
1904 return NL80211_BAND_5GHZ;
1905 case PHY_BAND_6:
1906 return NL80211_BAND_6GHZ;
1907 default:
1908 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1909 return NL80211_BAND_5GHZ;
1910 }
1911}
1912
1913struct iwl_rx_sta_csa {
1914 bool all_sta_unblocked;
1915 struct ieee80211_vif *vif;
1916};
1917
1918static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1919{
1920 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1921 struct iwl_rx_sta_csa *rx_sta_csa = data;
1922
1923 if (mvmsta->vif != rx_sta_csa->vif)
1924 return;
1925
1926 if (mvmsta->disable_tx)
1927 rx_sta_csa->all_sta_unblocked = false;
1928}
1929
1930/*
1931 * Note: requires also rx_status->band to be prefilled, as well
1932 * as phy_data (apart from phy_data->info_type)
1933 */
1934static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1935 struct sk_buff *skb,
1936 struct iwl_mvm_rx_phy_data *phy_data,
1937 int queue)
1938{
1939 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1940 u32 rate_n_flags = phy_data->rate_n_flags;
1941 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1942 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1943 bool is_sgi;
1944
1945 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1946
1947 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1948 phy_data->info_type =
1949 le32_get_bits(phy_data->d1,
1950 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1951
1952 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1953 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1954 case RATE_MCS_CHAN_WIDTH_20:
1955 break;
1956 case RATE_MCS_CHAN_WIDTH_40:
1957 rx_status->bw = RATE_INFO_BW_40;
1958 break;
1959 case RATE_MCS_CHAN_WIDTH_80:
1960 rx_status->bw = RATE_INFO_BW_80;
1961 break;
1962 case RATE_MCS_CHAN_WIDTH_160:
1963 rx_status->bw = RATE_INFO_BW_160;
1964 break;
1965 case RATE_MCS_CHAN_WIDTH_320:
1966 rx_status->bw = RATE_INFO_BW_320;
1967 break;
1968 }
1969
1970 /* must be before L-SIG data */
1971 if (format == RATE_MCS_HE_MSK)
1972 iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1973
1974 iwl_mvm_decode_lsig(skb, phy_data);
1975
1976 rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1977 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1978 rx_status->band);
1979 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1980 phy_data->energy_a, phy_data->energy_b);
1981
1982 /* using TLV format and must be after all fixed len fields */
1983 if (format == RATE_MCS_EHT_MSK)
1984 iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
1985
1986 if (unlikely(mvm->monitor_on))
1987 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1988
1989 is_sgi = format == RATE_MCS_HE_MSK ?
1990 iwl_he_is_sgi(rate_n_flags) :
1991 rate_n_flags & RATE_MCS_SGI_MSK;
1992
1993 if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
1994 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1995
1996 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1997 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1998
1999 switch (format) {
2000 case RATE_MCS_VHT_MSK:
2001 rx_status->encoding = RX_ENC_VHT;
2002 break;
2003 case RATE_MCS_HE_MSK:
2004 rx_status->encoding = RX_ENC_HE;
2005 rx_status->he_dcm =
2006 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2007 break;
2008 case RATE_MCS_EHT_MSK:
2009 rx_status->encoding = RX_ENC_EHT;
2010 break;
2011 }
2012
2013 switch (format) {
2014 case RATE_MCS_HT_MSK:
2015 rx_status->encoding = RX_ENC_HT;
2016 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2017 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2018 break;
2019 case RATE_MCS_VHT_MSK:
2020 case RATE_MCS_HE_MSK:
2021 case RATE_MCS_EHT_MSK:
2022 rx_status->nss =
2023 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2024 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2025 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2026 break;
2027 default: {
2028 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2029 rx_status->band);
2030
2031 rx_status->rate_idx = rate;
2032
2033 if ((rate < 0 || rate > 0xFF)) {
2034 rx_status->rate_idx = 0;
2035 if (net_ratelimit())
2036 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2037 rate_n_flags, rx_status->band);
2038 }
2039
2040 break;
2041 }
2042 }
2043}
2044
2045void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2046 struct iwl_rx_cmd_buffer *rxb, int queue)
2047{
2048 struct ieee80211_rx_status *rx_status;
2049 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2050 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2051 struct ieee80211_hdr *hdr;
2052 u32 len;
2053 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2054 struct ieee80211_sta *sta = NULL;
2055 struct ieee80211_link_sta *link_sta = NULL;
2056 struct sk_buff *skb;
2057 u8 crypt_len = 0;
2058 size_t desc_size;
2059 struct iwl_mvm_rx_phy_data phy_data = {};
2060 u32 format;
2061
2062 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2063 return;
2064
2065 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2066 desc_size = sizeof(*desc);
2067 else
2068 desc_size = IWL_RX_DESC_SIZE_V1;
2069
2070 if (unlikely(pkt_len < desc_size)) {
2071 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2072 return;
2073 }
2074
2075 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2076 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2077 phy_data.channel = desc->v3.channel;
2078 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2079 phy_data.energy_a = desc->v3.energy_a;
2080 phy_data.energy_b = desc->v3.energy_b;
2081
2082 phy_data.d0 = desc->v3.phy_data0;
2083 phy_data.d1 = desc->v3.phy_data1;
2084 phy_data.d2 = desc->v3.phy_data2;
2085 phy_data.d3 = desc->v3.phy_data3;
2086 phy_data.eht_d4 = desc->phy_eht_data4;
2087 phy_data.d5 = desc->v3.phy_data5;
2088 } else {
2089 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2090 phy_data.channel = desc->v1.channel;
2091 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2092 phy_data.energy_a = desc->v1.energy_a;
2093 phy_data.energy_b = desc->v1.energy_b;
2094
2095 phy_data.d0 = desc->v1.phy_data0;
2096 phy_data.d1 = desc->v1.phy_data1;
2097 phy_data.d2 = desc->v1.phy_data2;
2098 phy_data.d3 = desc->v1.phy_data3;
2099 }
2100
2101 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2102 REPLY_RX_MPDU_CMD, 0) < 4) {
2103 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2104 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2105 phy_data.rate_n_flags);
2106 }
2107
2108 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2109
2110 len = le16_to_cpu(desc->mpdu_len);
2111
2112 if (unlikely(len + desc_size > pkt_len)) {
2113 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2114 return;
2115 }
2116
2117 phy_data.with_data = true;
2118 phy_data.phy_info = le16_to_cpu(desc->phy_info);
2119 phy_data.d4 = desc->phy_data4;
2120
2121 hdr = (void *)(pkt->data + desc_size);
2122 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2123 * ieee80211_hdr pulled.
2124 */
2125 skb = alloc_skb(128, GFP_ATOMIC);
2126 if (!skb) {
2127 IWL_ERR(mvm, "alloc_skb failed\n");
2128 return;
2129 }
2130
2131 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2132 /*
2133 * If the device inserted padding it means that (it thought)
2134 * the 802.11 header wasn't a multiple of 4 bytes long. In
2135 * this case, reserve two bytes at the start of the SKB to
2136 * align the payload properly in case we end up copying it.
2137 */
2138 skb_reserve(skb, 2);
2139 }
2140
2141 rx_status = IEEE80211_SKB_RXCB(skb);
2142
2143 /*
2144 * Keep packets with CRC errors (and with overrun) for monitor mode
2145 * (otherwise the firmware discards them) but mark them as bad.
2146 */
2147 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2148 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2149 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2150 le32_to_cpu(desc->status));
2151 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2152 }
2153
2154 /* set the preamble flag if appropriate */
2155 if (format == RATE_MCS_CCK_MSK &&
2156 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2157 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2158
2159 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2160 u64 tsf_on_air_rise;
2161
2162 if (mvm->trans->trans_cfg->device_family >=
2163 IWL_DEVICE_FAMILY_AX210)
2164 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2165 else
2166 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2167
2168 rx_status->mactime = tsf_on_air_rise;
2169 /* TSF as indicated by the firmware is at INA time */
2170 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2171 }
2172
2173 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2174 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2175
2176 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2177 } else {
2178 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2179 NL80211_BAND_2GHZ;
2180 }
2181
2182 /* update aggregation data for monitor sake on default queue */
2183 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2184 bool toggle_bit;
2185
2186 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2187 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2188 /*
2189 * Toggle is switched whenever new aggregation starts. Make
2190 * sure ampdu_reference is never 0 so we can later use it to
2191 * see if the frame was really part of an A-MPDU or not.
2192 */
2193 if (toggle_bit != mvm->ampdu_toggle) {
2194 mvm->ampdu_ref++;
2195 if (mvm->ampdu_ref == 0)
2196 mvm->ampdu_ref++;
2197 mvm->ampdu_toggle = toggle_bit;
2198 phy_data.first_subframe = true;
2199 }
2200 rx_status->ampdu_reference = mvm->ampdu_ref;
2201 }
2202
2203 rcu_read_lock();
2204
2205 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2206 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2207
2208 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2209 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2210 if (IS_ERR(sta))
2211 sta = NULL;
2212 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2213 }
2214 } else if (!is_multicast_ether_addr(hdr->addr2)) {
2215 /*
2216 * This is fine since we prevent two stations with the same
2217 * address from being added.
2218 */
2219 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2220 }
2221
2222 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2223 le32_to_cpu(pkt->len_n_flags), queue,
2224 &crypt_len)) {
2225 kfree_skb(skb);
2226 goto out;
2227 }
2228
2229 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2230
2231 if (sta) {
2232 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2233 struct ieee80211_vif *tx_blocked_vif =
2234 rcu_dereference(mvm->csa_tx_blocked_vif);
2235 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2236 IWL_RX_MPDU_REORDER_BAID_MASK) >>
2237 IWL_RX_MPDU_REORDER_BAID_SHIFT);
2238 struct iwl_fw_dbg_trigger_tlv *trig;
2239 struct ieee80211_vif *vif = mvmsta->vif;
2240
2241 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2242 !is_multicast_ether_addr(hdr->addr1) &&
2243 ieee80211_is_data(hdr->frame_control) &&
2244 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2245 schedule_delayed_work(&mvm->tcm.work, 0);
2246
2247 /*
2248 * We have tx blocked stations (with CS bit). If we heard
2249 * frames from a blocked station on a new channel we can
2250 * TX to it again.
2251 */
2252 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2253 struct iwl_mvm_vif *mvmvif =
2254 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2255 struct iwl_rx_sta_csa rx_sta_csa = {
2256 .all_sta_unblocked = true,
2257 .vif = tx_blocked_vif,
2258 };
2259
2260 if (mvmvif->csa_target_freq == rx_status->freq)
2261 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2262 false);
2263 ieee80211_iterate_stations_atomic(mvm->hw,
2264 iwl_mvm_rx_get_sta_block_tx,
2265 &rx_sta_csa);
2266
2267 if (rx_sta_csa.all_sta_unblocked) {
2268 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2269 /* Unblock BCAST / MCAST station */
2270 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2271 cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2272 }
2273 }
2274
2275 rs_update_last_rssi(mvm, mvmsta, rx_status);
2276
2277 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2278 ieee80211_vif_to_wdev(vif),
2279 FW_DBG_TRIGGER_RSSI);
2280
2281 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2282 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2283 s32 rssi;
2284
2285 rssi_trig = (void *)trig->data;
2286 rssi = le32_to_cpu(rssi_trig->rssi);
2287
2288 if (rx_status->signal < rssi)
2289 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2290 NULL);
2291 }
2292
2293 if (ieee80211_is_data(hdr->frame_control))
2294 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2295
2296 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2297 IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n",
2298 le16_to_cpu(hdr->seq_ctrl));
2299 kfree_skb(skb);
2300 goto out;
2301 }
2302
2303 /*
2304 * Our hardware de-aggregates AMSDUs but copies the mac header
2305 * as it to the de-aggregated MPDUs. We need to turn off the
2306 * AMSDU bit in the QoS control ourselves.
2307 * In addition, HW reverses addr3 and addr4 - reverse it back.
2308 */
2309 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2310 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2311 u8 *qc = ieee80211_get_qos_ctl(hdr);
2312
2313 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2314
2315 if (mvm->trans->trans_cfg->device_family ==
2316 IWL_DEVICE_FAMILY_9000) {
2317 iwl_mvm_flip_address(hdr->addr3);
2318
2319 if (ieee80211_has_a4(hdr->frame_control))
2320 iwl_mvm_flip_address(hdr->addr4);
2321 }
2322 }
2323 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2324 u32 reorder_data = le32_to_cpu(desc->reorder_data);
2325
2326 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2327 }
2328 }
2329
2330 /* management stuff on default queue */
2331 if (!queue) {
2332 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2333 ieee80211_is_probe_resp(hdr->frame_control)) &&
2334 mvm->sched_scan_pass_all ==
2335 SCHED_SCAN_PASS_ALL_ENABLED))
2336 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2337
2338 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2339 ieee80211_is_probe_resp(hdr->frame_control)))
2340 rx_status->boottime_ns = ktime_get_boottime_ns();
2341 }
2342
2343 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2344 kfree_skb(skb);
2345 goto out;
2346 }
2347
2348 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2349 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2350 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
2351 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
2352 (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2353 !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
2354 rx_status->flag |= RX_FLAG_AMSDU_MORE;
2355
2356 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2357 link_sta);
2358 }
2359out:
2360 rcu_read_unlock();
2361}
2362
2363void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2364 struct iwl_rx_cmd_buffer *rxb, int queue)
2365{
2366 struct ieee80211_rx_status *rx_status;
2367 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2368 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2369 u32 rssi;
2370 u32 info_type;
2371 struct ieee80211_sta *sta = NULL;
2372 struct sk_buff *skb;
2373 struct iwl_mvm_rx_phy_data phy_data;
2374 u32 format;
2375
2376 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2377 return;
2378
2379 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2380 return;
2381
2382 rssi = le32_to_cpu(desc->rssi);
2383 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2384 phy_data.d0 = desc->phy_info[0];
2385 phy_data.d1 = desc->phy_info[1];
2386 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2387 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2388 phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2389 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2390 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2391 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2392 phy_data.with_data = false;
2393 phy_data.rx_vec[0] = desc->rx_vec[0];
2394 phy_data.rx_vec[1] = desc->rx_vec[1];
2395
2396 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2397 RX_NO_DATA_NOTIF, 0) < 2) {
2398 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2399 phy_data.rate_n_flags);
2400 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2401 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2402 phy_data.rate_n_flags);
2403 }
2404
2405 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2406
2407 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2408 RX_NO_DATA_NOTIF, 0) >= 3) {
2409 if (unlikely(iwl_rx_packet_payload_len(pkt) <
2410 sizeof(struct iwl_rx_no_data_ver_3)))
2411 /* invalid len for ver 3 */
2412 return;
2413 phy_data.rx_vec[2] = desc->rx_vec[2];
2414 phy_data.rx_vec[3] = desc->rx_vec[3];
2415 } else {
2416 if (format == RATE_MCS_EHT_MSK)
2417 /* no support for EHT before version 3 API */
2418 return;
2419 }
2420
2421 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2422 * ieee80211_hdr pulled.
2423 */
2424 skb = alloc_skb(128, GFP_ATOMIC);
2425 if (!skb) {
2426 IWL_ERR(mvm, "alloc_skb failed\n");
2427 return;
2428 }
2429
2430 rx_status = IEEE80211_SKB_RXCB(skb);
2431
2432 /* 0-length PSDU */
2433 rx_status->flag |= RX_FLAG_NO_PSDU;
2434
2435 switch (info_type) {
2436 case RX_NO_DATA_INFO_TYPE_NDP:
2437 rx_status->zero_length_psdu_type =
2438 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2439 break;
2440 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2441 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2442 rx_status->zero_length_psdu_type =
2443 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2444 break;
2445 default:
2446 rx_status->zero_length_psdu_type =
2447 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2448 break;
2449 }
2450
2451 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2452 NL80211_BAND_2GHZ;
2453
2454 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2455
2456 /* no more radio tap info should be put after this point.
2457 *
2458 * We mark it as mac header, for upper layers to know where
2459 * all radio tap header ends.
2460 */
2461 skb_reset_mac_header(skb);
2462
2463 /*
2464 * Override the nss from the rx_vec since the rate_n_flags has
2465 * only 2 bits for the nss which gives a max of 4 ss but there
2466 * may be up to 8 spatial streams.
2467 */
2468 switch (format) {
2469 case RATE_MCS_VHT_MSK:
2470 rx_status->nss =
2471 le32_get_bits(desc->rx_vec[0],
2472 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2473 break;
2474 case RATE_MCS_HE_MSK:
2475 rx_status->nss =
2476 le32_get_bits(desc->rx_vec[0],
2477 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2478 break;
2479 case RATE_MCS_EHT_MSK:
2480 rx_status->nss =
2481 le32_get_bits(desc->rx_vec[2],
2482 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2483 }
2484
2485 rcu_read_lock();
2486 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2487 rcu_read_unlock();
2488}
2489
2490void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2491 struct iwl_rx_cmd_buffer *rxb, int queue)
2492{
2493 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2494 struct iwl_frame_release *release = (void *)pkt->data;
2495
2496 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2497 return;
2498
2499 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2500 le16_to_cpu(release->nssn),
2501 queue);
2502}
2503
2504void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2505 struct iwl_rx_cmd_buffer *rxb, int queue)
2506{
2507 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2508 struct iwl_bar_frame_release *release = (void *)pkt->data;
2509 unsigned int baid = le32_get_bits(release->ba_info,
2510 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2511 unsigned int nssn = le32_get_bits(release->ba_info,
2512 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2513 unsigned int sta_id = le32_get_bits(release->sta_tid,
2514 IWL_BAR_FRAME_RELEASE_STA_MASK);
2515 unsigned int tid = le32_get_bits(release->sta_tid,
2516 IWL_BAR_FRAME_RELEASE_TID_MASK);
2517 struct iwl_mvm_baid_data *baid_data;
2518
2519 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2520 return;
2521
2522 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2523 baid >= ARRAY_SIZE(mvm->baid_map)))
2524 return;
2525
2526 rcu_read_lock();
2527 baid_data = rcu_dereference(mvm->baid_map[baid]);
2528 if (!baid_data) {
2529 IWL_DEBUG_RX(mvm,
2530 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2531 baid);
2532 goto out;
2533 }
2534
2535 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2536 !(baid_data->sta_mask & BIT(sta_id)),
2537 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2538 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2539 tid))
2540 goto out;
2541
2542 IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n",
2543 nssn);
2544
2545 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue);
2546out:
2547 rcu_read_unlock();
2548}
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2012-2014, 2018-2024 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7#include <linux/etherdevice.h>
8#include <linux/skbuff.h>
9#include "iwl-trans.h"
10#include "mvm.h"
11#include "fw-api.h"
12#include "time-sync.h"
13
14static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 int queue, struct ieee80211_sta *sta)
16{
17 struct iwl_mvm_sta *mvmsta;
18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 struct iwl_mvm_key_pn *ptk_pn;
21 int res;
22 u8 tid, keyidx;
23 u8 pn[IEEE80211_CCMP_PN_LEN];
24 u8 *extiv;
25
26 /* do PN checking */
27
28 /* multicast and non-data only arrives on default queue */
29 if (!ieee80211_is_data(hdr->frame_control) ||
30 is_multicast_ether_addr(hdr->addr1))
31 return 0;
32
33 /* do not check PN for open AP */
34 if (!(stats->flag & RX_FLAG_DECRYPTED))
35 return 0;
36
37 /*
38 * avoid checking for default queue - we don't want to replicate
39 * all the logic that's necessary for checking the PN on fragmented
40 * frames, leave that to mac80211
41 */
42 if (queue == 0)
43 return 0;
44
45 /* if we are here - this for sure is either CCMP or GCMP */
46 if (IS_ERR_OR_NULL(sta)) {
47 IWL_DEBUG_DROP(mvm,
48 "expected hw-decrypted unicast frame for station\n");
49 return -1;
50 }
51
52 mvmsta = iwl_mvm_sta_from_mac80211(sta);
53
54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 keyidx = extiv[3] >> 6;
56
57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 if (!ptk_pn)
59 return -1;
60
61 if (ieee80211_is_data_qos(hdr->frame_control))
62 tid = ieee80211_get_tid(hdr);
63 else
64 tid = 0;
65
66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 if (tid >= IWL_MAX_TID_COUNT)
68 return -1;
69
70 /* load pn */
71 pn[0] = extiv[7];
72 pn[1] = extiv[6];
73 pn[2] = extiv[5];
74 pn[3] = extiv[4];
75 pn[4] = extiv[1];
76 pn[5] = extiv[0];
77
78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 if (res < 0)
80 return -1;
81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 return -1;
83
84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 stats->flag |= RX_FLAG_PN_VALIDATED;
86
87 return 0;
88}
89
90/* iwl_mvm_create_skb Adds the rxb to a new skb */
91static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 struct iwl_rx_cmd_buffer *rxb)
94{
95 struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 unsigned int headlen, fraglen, pad_len = 0;
98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101
102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 len -= 2;
104 pad_len = 2;
105 }
106
107 /*
108 * For non monitor interface strip the bytes the RADA might not have
109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 * interface cannot exist with other interfaces, this removal is safe
111 * and sufficient, in monitor mode there's no decryption being done.
112 */
113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 len -= mic_crc_len;
115
116 /* If frame is small enough to fit in skb->head, pull it completely.
117 * If not, only pull ieee80211_hdr (including crypto if present, and
118 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 * splice() or TCP coalesce are more efficient.
120 *
121 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 * least 8 bytes (possibly more for mesh) we can do the same here
123 * to save the cost of doing it later. That still doesn't pull in
124 * the actual IP header since the typical case has a SNAP header.
125 * If the latter changes (there are efforts in the standards group
126 * to do so) we should revisit this and ieee80211_data_to_8023().
127 */
128 headlen = (len <= skb_tailroom(skb)) ? len :
129 hdrlen + crypt_len + 8;
130
131 /* The firmware may align the packet to DWORD.
132 * The padding is inserted after the IV.
133 * After copying the header + IV skip the padding if
134 * present before copying packet data.
135 */
136 hdrlen += crypt_len;
137
138 if (unlikely(headlen < hdrlen))
139 return -EINVAL;
140
141 /* Since data doesn't move data while putting data on skb and that is
142 * the only way we use, data + len is the next place that hdr would be put
143 */
144 skb_set_mac_header(skb, skb->len);
145 skb_put_data(skb, hdr, hdrlen);
146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147
148 /*
149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 * certain cases and starts the checksum after the SNAP. Check if
151 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 * in the cases the hardware didn't handle, since it's rare to see
153 * such packets, even though the hardware did calculate the checksum
154 * in this case, just starting after the MAC header instead.
155 *
156 * Starting from Bz hardware, it calculates starting directly after
157 * the MAC header, so that matches mac80211's expectation.
158 */
159 if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 struct {
161 u8 hdr[6];
162 __be16 type;
163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164
165 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 (shdr->type != htons(ETH_P_IP) &&
168 shdr->type != htons(ETH_P_ARP) &&
169 shdr->type != htons(ETH_P_IPV6) &&
170 shdr->type != htons(ETH_P_8021Q) &&
171 shdr->type != htons(ETH_P_PAE) &&
172 shdr->type != htons(ETH_P_TDLS))))
173 skb->ip_summed = CHECKSUM_NONE;
174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 /* mac80211 assumes full CSUM including SNAP header */
176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 }
178
179 fraglen = len - headlen;
180
181 if (fraglen) {
182 int offset = (u8 *)hdr + headlen + pad_len -
183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184
185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 fraglen, rxb->truesize);
187 }
188
189 return 0;
190}
191
192/* put a TLV on the skb and return data pointer
193 *
194 * Also pad to 4 the len and zero out all data part
195 */
196static void *
197iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198{
199 struct ieee80211_radiotap_tlv *tlv;
200
201 tlv = skb_put(skb, sizeof(*tlv));
202 tlv->type = cpu_to_le16(type);
203 tlv->len = cpu_to_le16(len);
204 return skb_put_zero(skb, ALIGN(len, 4));
205}
206
207static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 struct sk_buff *skb)
209{
210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 struct ieee80211_radiotap_vendor_content *radiotap;
212 const u16 vendor_data_len = sizeof(mvm->cur_aid);
213
214 if (!mvm->cur_aid)
215 return;
216
217 radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 sizeof(*radiotap) + vendor_data_len);
220
221 /* Intel OUI */
222 radiotap->oui[0] = 0xf6;
223 radiotap->oui[1] = 0x54;
224 radiotap->oui[2] = 0x25;
225 /* radiotap sniffer config sub-namespace */
226 radiotap->oui_subtype = 1;
227 radiotap->vendor_type = 0;
228
229 /* fill the data now */
230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231
232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233}
234
235/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 struct napi_struct *napi,
238 struct sk_buff *skb, int queue,
239 struct ieee80211_sta *sta)
240{
241 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
242 kfree_skb(skb);
243 return;
244 }
245
246 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
247}
248
249static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
250 struct ieee80211_rx_status *rx_status,
251 u32 rate_n_flags, int energy_a,
252 int energy_b)
253{
254 int max_energy;
255 u32 rate_flags = rate_n_flags;
256
257 energy_a = energy_a ? -energy_a : S8_MIN;
258 energy_b = energy_b ? -energy_b : S8_MIN;
259 max_energy = max(energy_a, energy_b);
260
261 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
262 energy_a, energy_b, max_energy);
263
264 rx_status->signal = max_energy;
265 rx_status->chains =
266 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
267 rx_status->chain_signal[0] = energy_a;
268 rx_status->chain_signal[1] = energy_b;
269}
270
271static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
272 struct ieee80211_hdr *hdr,
273 struct iwl_rx_mpdu_desc *desc,
274 u32 status,
275 struct ieee80211_rx_status *stats)
276{
277 struct wireless_dev *wdev;
278 struct iwl_mvm_sta *mvmsta;
279 struct iwl_mvm_vif *mvmvif;
280 u8 keyid;
281 struct ieee80211_key_conf *key;
282 u32 len = le16_to_cpu(desc->mpdu_len);
283 const u8 *frame = (void *)hdr;
284
285 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
286 return 0;
287
288 /*
289 * For non-beacon, we don't really care. But beacons may
290 * be filtered out, and we thus need the firmware's replay
291 * detection, otherwise beacons the firmware previously
292 * filtered could be replayed, or something like that, and
293 * it can filter a lot - though usually only if nothing has
294 * changed.
295 */
296 if (!ieee80211_is_beacon(hdr->frame_control))
297 return 0;
298
299 if (!sta)
300 return -1;
301
302 mvmsta = iwl_mvm_sta_from_mac80211(sta);
303 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
304
305 /* key mismatch - will also report !MIC_OK but we shouldn't count it */
306 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
307 goto report;
308
309 /* good cases */
310 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
311 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
312 stats->flag |= RX_FLAG_DECRYPTED;
313 return 0;
314 }
315
316 /*
317 * both keys will have the same cipher and MIC length, use
318 * whichever one is available
319 */
320 key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
321 if (!key) {
322 key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
323 if (!key)
324 goto report;
325 }
326
327 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
328 goto report;
329
330 /* get the real key ID */
331 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
332 /* and if that's the other key, look it up */
333 if (keyid != key->keyidx) {
334 /*
335 * shouldn't happen since firmware checked, but be safe
336 * in case the MIC length is wrong too, for example
337 */
338 if (keyid != 6 && keyid != 7)
339 return -1;
340 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
341 if (!key)
342 goto report;
343 }
344
345 /* Report status to mac80211 */
346 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
347 ieee80211_key_mic_failure(key);
348 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
349 ieee80211_key_replay(key);
350report:
351 wdev = ieee80211_vif_to_wdev(mvmsta->vif);
352 if (wdev->netdev)
353 cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len);
354
355 return -1;
356}
357
358static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
359 struct ieee80211_hdr *hdr,
360 struct ieee80211_rx_status *stats, u16 phy_info,
361 struct iwl_rx_mpdu_desc *desc,
362 u32 pkt_flags, int queue, u8 *crypt_len)
363{
364 u32 status = le32_to_cpu(desc->status);
365
366 /*
367 * Drop UNKNOWN frames in aggregation, unless in monitor mode
368 * (where we don't have the keys).
369 * We limit this to aggregation because in TKIP this is a valid
370 * scenario, since we may not have the (correct) TTAK (phase 1
371 * key) in the firmware.
372 */
373 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
374 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
375 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) {
376 IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n");
377 return -1;
378 }
379
380 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
381 !ieee80211_has_protected(hdr->frame_control)))
382 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
383
384 if (!ieee80211_has_protected(hdr->frame_control) ||
385 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
386 IWL_RX_MPDU_STATUS_SEC_NONE)
387 return 0;
388
389 /* TODO: handle packets encrypted with unknown alg */
390
391 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
392 case IWL_RX_MPDU_STATUS_SEC_CCM:
393 case IWL_RX_MPDU_STATUS_SEC_GCM:
394 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
395 /* alg is CCM: check MIC only */
396 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
397 IWL_DEBUG_DROP(mvm,
398 "Dropping packet, bad MIC (CCM/GCM)\n");
399 return -1;
400 }
401
402 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
403 *crypt_len = IEEE80211_CCMP_HDR_LEN;
404 return 0;
405 case IWL_RX_MPDU_STATUS_SEC_TKIP:
406 /* Don't drop the frame and decrypt it in SW */
407 if (!fw_has_api(&mvm->fw->ucode_capa,
408 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
409 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
410 return 0;
411
412 if (mvm->trans->trans_cfg->gen2 &&
413 !(status & RX_MPDU_RES_STATUS_MIC_OK))
414 stats->flag |= RX_FLAG_MMIC_ERROR;
415
416 *crypt_len = IEEE80211_TKIP_IV_LEN;
417 fallthrough;
418 case IWL_RX_MPDU_STATUS_SEC_WEP:
419 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
420 return -1;
421
422 stats->flag |= RX_FLAG_DECRYPTED;
423 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
424 IWL_RX_MPDU_STATUS_SEC_WEP)
425 *crypt_len = IEEE80211_WEP_IV_LEN;
426
427 if (pkt_flags & FH_RSCSR_RADA_EN) {
428 stats->flag |= RX_FLAG_ICV_STRIPPED;
429 if (mvm->trans->trans_cfg->gen2)
430 stats->flag |= RX_FLAG_MMIC_STRIPPED;
431 }
432
433 return 0;
434 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
435 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
436 return -1;
437 stats->flag |= RX_FLAG_DECRYPTED;
438 return 0;
439 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
440 break;
441 default:
442 /*
443 * Sometimes we can get frames that were not decrypted
444 * because the firmware didn't have the keys yet. This can
445 * happen after connection where we can get multicast frames
446 * before the GTK is installed.
447 * Silently drop those frames.
448 * Also drop un-decrypted frames in monitor mode.
449 */
450 if (!is_multicast_ether_addr(hdr->addr1) &&
451 !mvm->monitor_on && net_ratelimit())
452 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
453 }
454
455 return 0;
456}
457
458static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
459 struct ieee80211_sta *sta,
460 struct sk_buff *skb,
461 struct iwl_rx_packet *pkt)
462{
463 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
464
465 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
466 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
467 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
468
469 skb->ip_summed = CHECKSUM_COMPLETE;
470 skb->csum = csum_unfold(~(__force __sum16)hwsum);
471 }
472 } else {
473 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
474 struct iwl_mvm_vif *mvmvif;
475 u16 flags = le16_to_cpu(desc->l3l4_flags);
476 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
477 IWL_RX_L3_PROTO_POS);
478
479 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
480
481 if (mvmvif->features & NETIF_F_RXCSUM &&
482 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
483 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
484 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
485 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
486 skb->ip_summed = CHECKSUM_UNNECESSARY;
487 }
488}
489
490/*
491 * returns true if a packet is a duplicate or invalid tid and should be dropped.
492 * Updates AMSDU PN tracking info
493 */
494static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
495 struct ieee80211_rx_status *rx_status,
496 struct ieee80211_hdr *hdr,
497 struct iwl_rx_mpdu_desc *desc)
498{
499 struct iwl_mvm_sta *mvm_sta;
500 struct iwl_mvm_rxq_dup_data *dup_data;
501 u8 tid, sub_frame_idx;
502
503 if (WARN_ON(IS_ERR_OR_NULL(sta)))
504 return false;
505
506 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
507
508 if (WARN_ON_ONCE(!mvm_sta->dup_data))
509 return false;
510
511 dup_data = &mvm_sta->dup_data[queue];
512
513 /*
514 * Drop duplicate 802.11 retransmissions
515 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
516 */
517 if (ieee80211_is_ctl(hdr->frame_control) ||
518 ieee80211_is_any_nullfunc(hdr->frame_control) ||
519 is_multicast_ether_addr(hdr->addr1))
520 return false;
521
522 if (ieee80211_is_data_qos(hdr->frame_control)) {
523 /* frame has qos control */
524 tid = ieee80211_get_tid(hdr);
525 if (tid >= IWL_MAX_TID_COUNT)
526 return true;
527 } else {
528 tid = IWL_MAX_TID_COUNT;
529 }
530
531 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
532 sub_frame_idx = desc->amsdu_info &
533 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
534
535 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
536 dup_data->last_seq[tid] == hdr->seq_ctrl &&
537 dup_data->last_sub_frame[tid] >= sub_frame_idx))
538 return true;
539
540 /* Allow same PN as the first subframe for following sub frames */
541 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
542 sub_frame_idx > dup_data->last_sub_frame[tid] &&
543 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
544 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
545
546 dup_data->last_seq[tid] = hdr->seq_ctrl;
547 dup_data->last_sub_frame[tid] = sub_frame_idx;
548
549 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
550
551 return false;
552}
553
554static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
555 struct ieee80211_sta *sta,
556 struct napi_struct *napi,
557 struct iwl_mvm_baid_data *baid_data,
558 struct iwl_mvm_reorder_buffer *reorder_buf,
559 u16 nssn)
560{
561 struct iwl_mvm_reorder_buf_entry *entries =
562 &baid_data->entries[reorder_buf->queue *
563 baid_data->entries_per_queue];
564 u16 ssn = reorder_buf->head_sn;
565
566 lockdep_assert_held(&reorder_buf->lock);
567
568 while (ieee80211_sn_less(ssn, nssn)) {
569 int index = ssn % reorder_buf->buf_size;
570 struct sk_buff_head *skb_list = &entries[index].frames;
571 struct sk_buff *skb;
572
573 ssn = ieee80211_sn_inc(ssn);
574
575 /*
576 * Empty the list. Will have more than one frame for A-MSDU.
577 * Empty list is valid as well since nssn indicates frames were
578 * received.
579 */
580 while ((skb = __skb_dequeue(skb_list))) {
581 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
582 reorder_buf->queue,
583 sta);
584 reorder_buf->num_stored--;
585 }
586 }
587 reorder_buf->head_sn = nssn;
588}
589
590static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
591 struct iwl_mvm_delba_data *data)
592{
593 struct iwl_mvm_baid_data *ba_data;
594 struct ieee80211_sta *sta;
595 struct iwl_mvm_reorder_buffer *reorder_buf;
596 u8 baid = data->baid;
597 u32 sta_id;
598
599 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
600 return;
601
602 rcu_read_lock();
603
604 ba_data = rcu_dereference(mvm->baid_map[baid]);
605 if (WARN_ON_ONCE(!ba_data))
606 goto out;
607
608 /* pick any STA ID to find the pointer */
609 sta_id = ffs(ba_data->sta_mask) - 1;
610 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
611 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
612 goto out;
613
614 reorder_buf = &ba_data->reorder_buf[queue];
615
616 /* release all frames that are in the reorder buffer to the stack */
617 spin_lock_bh(&reorder_buf->lock);
618 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
619 ieee80211_sn_add(reorder_buf->head_sn,
620 reorder_buf->buf_size));
621 spin_unlock_bh(&reorder_buf->lock);
622
623out:
624 rcu_read_unlock();
625}
626
627static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
628 struct napi_struct *napi,
629 u8 baid, u16 nssn, int queue)
630{
631 struct ieee80211_sta *sta;
632 struct iwl_mvm_reorder_buffer *reorder_buf;
633 struct iwl_mvm_baid_data *ba_data;
634 u32 sta_id;
635
636 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
637 baid, nssn);
638
639 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
640 baid >= ARRAY_SIZE(mvm->baid_map)))
641 return;
642
643 rcu_read_lock();
644
645 ba_data = rcu_dereference(mvm->baid_map[baid]);
646 if (WARN(!ba_data, "BAID %d not found in map\n", baid))
647 goto out;
648
649 /* pick any STA ID to find the pointer */
650 sta_id = ffs(ba_data->sta_mask) - 1;
651 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
652 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
653 goto out;
654
655 reorder_buf = &ba_data->reorder_buf[queue];
656
657 spin_lock_bh(&reorder_buf->lock);
658 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
659 reorder_buf, nssn);
660 spin_unlock_bh(&reorder_buf->lock);
661
662out:
663 rcu_read_unlock();
664}
665
666void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
667 struct iwl_rx_cmd_buffer *rxb, int queue)
668{
669 struct iwl_rx_packet *pkt = rxb_addr(rxb);
670 struct iwl_rxq_sync_notification *notif;
671 struct iwl_mvm_internal_rxq_notif *internal_notif;
672 u32 len = iwl_rx_packet_payload_len(pkt);
673
674 notif = (void *)pkt->data;
675 internal_notif = (void *)notif->payload;
676
677 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
678 "invalid notification size %d (%d)",
679 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
680 return;
681 len -= sizeof(*notif) + sizeof(*internal_notif);
682
683 if (WARN_ONCE(internal_notif->sync &&
684 mvm->queue_sync_cookie != internal_notif->cookie,
685 "Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n",
686 internal_notif->cookie, mvm->queue_sync_cookie, queue))
687 return;
688
689 switch (internal_notif->type) {
690 case IWL_MVM_RXQ_EMPTY:
691 WARN_ONCE(len, "invalid empty notification size %d", len);
692 break;
693 case IWL_MVM_RXQ_NOTIF_DEL_BA:
694 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
695 "invalid delba notification size %d (%d)",
696 len, (int)sizeof(struct iwl_mvm_delba_data)))
697 break;
698 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
699 break;
700 default:
701 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
702 }
703
704 if (internal_notif->sync) {
705 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
706 "queue sync: queue %d responded a second time!\n",
707 queue);
708 if (READ_ONCE(mvm->queue_sync_state) == 0)
709 wake_up(&mvm->rx_sync_waitq);
710 }
711}
712
713/*
714 * Returns true if the MPDU was buffered\dropped, false if it should be passed
715 * to upper layer.
716 */
717static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
718 struct napi_struct *napi,
719 int queue,
720 struct ieee80211_sta *sta,
721 struct sk_buff *skb,
722 struct iwl_rx_mpdu_desc *desc)
723{
724 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
725 struct iwl_mvm_baid_data *baid_data;
726 struct iwl_mvm_reorder_buffer *buffer;
727 u32 reorder = le32_to_cpu(desc->reorder_data);
728 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
729 bool last_subframe =
730 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
731 u8 tid = ieee80211_get_tid(hdr);
732 u8 sub_frame_idx = desc->amsdu_info &
733 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
734 struct iwl_mvm_reorder_buf_entry *entries;
735 u32 sta_mask;
736 int index;
737 u16 nssn, sn;
738 u8 baid;
739
740 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
741 IWL_RX_MPDU_REORDER_BAID_SHIFT;
742
743 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000)
744 return false;
745
746 /*
747 * This also covers the case of receiving a Block Ack Request
748 * outside a BA session; we'll pass it to mac80211 and that
749 * then sends a delBA action frame.
750 * This also covers pure monitor mode, in which case we won't
751 * have any BA sessions.
752 */
753 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
754 return false;
755
756 /* no sta yet */
757 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
758 "Got valid BAID without a valid station assigned\n"))
759 return false;
760
761 /* not a data packet or a bar */
762 if (!ieee80211_is_back_req(hdr->frame_control) &&
763 (!ieee80211_is_data_qos(hdr->frame_control) ||
764 is_multicast_ether_addr(hdr->addr1)))
765 return false;
766
767 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
768 return false;
769
770 baid_data = rcu_dereference(mvm->baid_map[baid]);
771 if (!baid_data) {
772 IWL_DEBUG_RX(mvm,
773 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
774 baid, reorder);
775 return false;
776 }
777
778 rcu_read_lock();
779 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
780 rcu_read_unlock();
781
782 if (IWL_FW_CHECK(mvm,
783 tid != baid_data->tid ||
784 !(sta_mask & baid_data->sta_mask),
785 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
786 baid, baid_data->sta_mask, baid_data->tid,
787 sta_mask, tid))
788 return false;
789
790 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
791 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
792 IWL_RX_MPDU_REORDER_SN_SHIFT;
793
794 buffer = &baid_data->reorder_buf[queue];
795 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
796
797 spin_lock_bh(&buffer->lock);
798
799 if (!buffer->valid) {
800 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
801 spin_unlock_bh(&buffer->lock);
802 return false;
803 }
804 buffer->valid = true;
805 }
806
807 /* drop any duplicated packets */
808 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE))
809 goto drop;
810
811 /* drop any oudated packets */
812 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)
813 goto drop;
814
815 /* release immediately if allowed by nssn and no stored frames */
816 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
817 if (!amsdu || last_subframe)
818 buffer->head_sn = nssn;
819 /* No need to update AMSDU last SN - we are moving the head */
820 spin_unlock_bh(&buffer->lock);
821 return false;
822 }
823
824 /*
825 * release immediately if there are no stored frames, and the sn is
826 * equal to the head.
827 * This can happen due to reorder timer, where NSSN is behind head_sn.
828 * When we released everything, and we got the next frame in the
829 * sequence, according to the NSSN we can't release immediately,
830 * while technically there is no hole and we can move forward.
831 */
832 if (!buffer->num_stored && sn == buffer->head_sn) {
833 if (!amsdu || last_subframe)
834 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
835
836 /* No need to update AMSDU last SN - we are moving the head */
837 spin_unlock_bh(&buffer->lock);
838 return false;
839 }
840
841 /* put in reorder buffer */
842 index = sn % buffer->buf_size;
843 __skb_queue_tail(&entries[index].frames, skb);
844 buffer->num_stored++;
845
846 if (amsdu) {
847 buffer->last_amsdu = sn;
848 buffer->last_sub_index = sub_frame_idx;
849 }
850
851 /*
852 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
853 * The reason is that NSSN advances on the first sub-frame, and may
854 * cause the reorder buffer to advance before all the sub-frames arrive.
855 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
856 * SN 1. NSSN for first sub frame will be 3 with the result of driver
857 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
858 * already ahead and it will be dropped.
859 * If the last sub-frame is not on this queue - we will get frame
860 * release notification with up to date NSSN.
861 */
862 if (!amsdu || last_subframe)
863 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
864 buffer, nssn);
865
866 spin_unlock_bh(&buffer->lock);
867 return true;
868
869drop:
870 kfree_skb(skb);
871 spin_unlock_bh(&buffer->lock);
872 return true;
873}
874
875static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
876 u32 reorder_data, u8 baid)
877{
878 unsigned long now = jiffies;
879 unsigned long timeout;
880 struct iwl_mvm_baid_data *data;
881
882 rcu_read_lock();
883
884 data = rcu_dereference(mvm->baid_map[baid]);
885 if (!data) {
886 IWL_DEBUG_RX(mvm,
887 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
888 baid, reorder_data);
889 goto out;
890 }
891
892 if (!data->timeout)
893 goto out;
894
895 timeout = data->timeout;
896 /*
897 * Do not update last rx all the time to avoid cache bouncing
898 * between the rx queues.
899 * Update it every timeout. Worst case is the session will
900 * expire after ~ 2 * timeout, which doesn't matter that much.
901 */
902 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
903 /* Update is atomic */
904 data->last_rx = now;
905
906out:
907 rcu_read_unlock();
908}
909
910static void iwl_mvm_flip_address(u8 *addr)
911{
912 int i;
913 u8 mac_addr[ETH_ALEN];
914
915 for (i = 0; i < ETH_ALEN; i++)
916 mac_addr[i] = addr[ETH_ALEN - i - 1];
917 ether_addr_copy(addr, mac_addr);
918}
919
920struct iwl_mvm_rx_phy_data {
921 enum iwl_rx_phy_info_type info_type;
922 __le32 d0, d1, d2, d3, eht_d4, d5;
923 __le16 d4;
924 bool with_data;
925 bool first_subframe;
926 __le32 rx_vec[4];
927
928 u32 rate_n_flags;
929 u32 gp2_on_air_rise;
930 u16 phy_info;
931 u8 energy_a, energy_b;
932 u8 channel;
933};
934
935static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
936 struct iwl_mvm_rx_phy_data *phy_data,
937 struct ieee80211_radiotap_he_mu *he_mu)
938{
939 u32 phy_data2 = le32_to_cpu(phy_data->d2);
940 u32 phy_data3 = le32_to_cpu(phy_data->d3);
941 u16 phy_data4 = le16_to_cpu(phy_data->d4);
942 u32 rate_n_flags = phy_data->rate_n_flags;
943
944 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
945 he_mu->flags1 |=
946 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
947 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
948
949 he_mu->flags1 |=
950 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
951 phy_data4),
952 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
953
954 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
955 phy_data2);
956 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
957 phy_data3);
958 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
959 phy_data2);
960 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
961 phy_data3);
962 }
963
964 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
965 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
966 he_mu->flags1 |=
967 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
968 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
969
970 he_mu->flags2 |=
971 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
972 phy_data4),
973 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
974
975 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
976 phy_data2);
977 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
978 phy_data3);
979 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
980 phy_data2);
981 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
982 phy_data3);
983 }
984}
985
986static void
987iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
988 struct ieee80211_radiotap_he *he,
989 struct ieee80211_radiotap_he_mu *he_mu,
990 struct ieee80211_rx_status *rx_status)
991{
992 /*
993 * Unfortunately, we have to leave the mac80211 data
994 * incorrect for the case that we receive an HE-MU
995 * transmission and *don't* have the HE phy data (due
996 * to the bits being used for TSF). This shouldn't
997 * happen though as management frames where we need
998 * the TSF/timers are not be transmitted in HE-MU.
999 */
1000 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1001 u32 rate_n_flags = phy_data->rate_n_flags;
1002 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1003 u8 offs = 0;
1004
1005 rx_status->bw = RATE_INFO_BW_HE_RU;
1006
1007 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1008
1009 switch (ru) {
1010 case 0 ... 36:
1011 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1012 offs = ru;
1013 break;
1014 case 37 ... 52:
1015 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1016 offs = ru - 37;
1017 break;
1018 case 53 ... 60:
1019 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1020 offs = ru - 53;
1021 break;
1022 case 61 ... 64:
1023 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1024 offs = ru - 61;
1025 break;
1026 case 65 ... 66:
1027 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1028 offs = ru - 65;
1029 break;
1030 case 67:
1031 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1032 break;
1033 case 68:
1034 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1035 break;
1036 }
1037 he->data2 |= le16_encode_bits(offs,
1038 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1039 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1040 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1041 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1042 he->data2 |=
1043 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1044
1045#define CHECK_BW(bw) \
1046 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1047 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1048 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1049 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1050 CHECK_BW(20);
1051 CHECK_BW(40);
1052 CHECK_BW(80);
1053 CHECK_BW(160);
1054
1055 if (he_mu)
1056 he_mu->flags2 |=
1057 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1058 rate_n_flags),
1059 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1060 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1061 he->data6 |=
1062 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1063 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1064 rate_n_flags),
1065 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1066}
1067
1068static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1069 struct iwl_mvm_rx_phy_data *phy_data,
1070 struct ieee80211_radiotap_he *he,
1071 struct ieee80211_radiotap_he_mu *he_mu,
1072 struct ieee80211_rx_status *rx_status,
1073 int queue)
1074{
1075 switch (phy_data->info_type) {
1076 case IWL_RX_PHY_INFO_TYPE_NONE:
1077 case IWL_RX_PHY_INFO_TYPE_CCK:
1078 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1079 case IWL_RX_PHY_INFO_TYPE_HT:
1080 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1081 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1082 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1083 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1084 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1085 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1086 return;
1087 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1088 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1089 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1090 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1091 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1092 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1093 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1094 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1095 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1096 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1097 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1098 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1099 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1100 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1101 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1102 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1103 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1104 fallthrough;
1105 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1106 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1107 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1108 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1109 /* HE common */
1110 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1111 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1112 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1113 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1114 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1115 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1116 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1117 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1118 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1119 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1120 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1121 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1122 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1123 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1124 IWL_RX_PHY_DATA0_HE_UPLINK),
1125 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1126 }
1127 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1128 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1129 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1130 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1131 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1132 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1133 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1134 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1135 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1136 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1137 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1138 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1139 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1140 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1141 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1142 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1143 IWL_RX_PHY_DATA0_HE_DOPPLER),
1144 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1145 break;
1146 }
1147
1148 switch (phy_data->info_type) {
1149 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1150 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1151 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1152 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1153 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1154 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1155 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1156 break;
1157 default:
1158 /* nothing here */
1159 break;
1160 }
1161
1162 switch (phy_data->info_type) {
1163 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1164 he_mu->flags1 |=
1165 le16_encode_bits(le16_get_bits(phy_data->d4,
1166 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1167 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1168 he_mu->flags1 |=
1169 le16_encode_bits(le16_get_bits(phy_data->d4,
1170 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1171 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1172 he_mu->flags2 |=
1173 le16_encode_bits(le16_get_bits(phy_data->d4,
1174 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1175 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1176 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1177 fallthrough;
1178 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1179 he_mu->flags2 |=
1180 le16_encode_bits(le32_get_bits(phy_data->d1,
1181 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1182 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1183 he_mu->flags2 |=
1184 le16_encode_bits(le32_get_bits(phy_data->d1,
1185 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1186 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1187 fallthrough;
1188 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1189 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1190 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1191 break;
1192 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1193 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1194 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1195 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1196 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1197 break;
1198 default:
1199 /* nothing */
1200 break;
1201 }
1202}
1203
1204#define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1205 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1206
1207#define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1208 typeof(enc_bits) _enc_bits = enc_bits; \
1209 typeof(usig) _usig = usig; \
1210 (_usig)->mask |= cpu_to_le32(_enc_bits); \
1211 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1212} while (0)
1213
1214#define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1215 eht->data[(rt_data)] |= \
1216 (cpu_to_le32 \
1217 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1218 LE32_DEC_ENC(data ## fw_data, \
1219 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1220 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1221
1222#define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1223 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1224
1225#define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1
1226#define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2
1227#define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2
1228#define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2
1229#define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3
1230#define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3
1231#define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3
1232#define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4
1233
1234#define IWL_RX_RU_DATA_A1 2
1235#define IWL_RX_RU_DATA_A2 2
1236#define IWL_RX_RU_DATA_B1 2
1237#define IWL_RX_RU_DATA_B2 4
1238#define IWL_RX_RU_DATA_C1 3
1239#define IWL_RX_RU_DATA_C2 3
1240#define IWL_RX_RU_DATA_D1 4
1241#define IWL_RX_RU_DATA_D2 4
1242
1243#define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \
1244 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \
1245 rt_ru, \
1246 IWL_RX_RU_DATA_ ## fw_ru, \
1247 fw_ru)
1248
1249static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1250 struct iwl_mvm_rx_phy_data *phy_data,
1251 struct ieee80211_rx_status *rx_status,
1252 struct ieee80211_radiotap_eht *eht,
1253 struct ieee80211_radiotap_eht_usig *usig)
1254{
1255 if (phy_data->with_data) {
1256 __le32 data1 = phy_data->d1;
1257 __le32 data2 = phy_data->d2;
1258 __le32 data3 = phy_data->d3;
1259 __le32 data4 = phy_data->eht_d4;
1260 __le32 data5 = phy_data->d5;
1261 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1262
1263 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1264 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1265 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1266 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1267 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1268 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1269 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1270 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1271 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1272 IWL_MVM_ENC_USIG_VALUE_MASK
1273 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1274 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1275
1276 eht->user_info[0] |=
1277 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1278 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1279 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1280
1281 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1282 eht->data[7] |= LE32_DEC_ENC
1283 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1284 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1285
1286 /*
1287 * Hardware labels the content channels/RU allocation values
1288 * as follows:
1289 * Content Channel 1 Content Channel 2
1290 * 20 MHz: A1
1291 * 40 MHz: A1 B1
1292 * 80 MHz: A1 C1 B1 D1
1293 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2
1294 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4
1295 *
1296 * However firmware can only give us A1-D2, so the higher
1297 * frequencies are missing.
1298 */
1299
1300 switch (phy_bw) {
1301 case RATE_MCS_CHAN_WIDTH_320:
1302 /* additional values are missing in RX metadata */
1303 case RATE_MCS_CHAN_WIDTH_160:
1304 /* content channel 1 */
1305 IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1306 IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1307 /* content channel 2 */
1308 IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1309 IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1310 fallthrough;
1311 case RATE_MCS_CHAN_WIDTH_80:
1312 /* content channel 1 */
1313 IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1314 /* content channel 2 */
1315 IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1316 fallthrough;
1317 case RATE_MCS_CHAN_WIDTH_40:
1318 /* content channel 2 */
1319 IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1320 fallthrough;
1321 case RATE_MCS_CHAN_WIDTH_20:
1322 IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1323 break;
1324 }
1325 } else {
1326 __le32 usig_a1 = phy_data->rx_vec[0];
1327 __le32 usig_a2 = phy_data->rx_vec[1];
1328
1329 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1330 IWL_RX_USIG_A1_DISREGARD,
1331 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1332 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1333 IWL_RX_USIG_A1_VALIDATE,
1334 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1335 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1336 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1337 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1338 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1339 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1340 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1341 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1342 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1343 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1344 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1345 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1346 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1347 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1348 IWL_RX_USIG_A2_EHT_SIG_MCS,
1349 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1350 IWL_MVM_ENC_USIG_VALUE_MASK
1351 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1352 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1353 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1354 IWL_RX_USIG_A2_EHT_CRC_OK,
1355 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1356 }
1357}
1358
1359static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1360 struct iwl_mvm_rx_phy_data *phy_data,
1361 struct ieee80211_rx_status *rx_status,
1362 struct ieee80211_radiotap_eht *eht,
1363 struct ieee80211_radiotap_eht_usig *usig)
1364{
1365 if (phy_data->with_data) {
1366 __le32 data5 = phy_data->d5;
1367
1368 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1369 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1370 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1371 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1372 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1373 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1374
1375 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1376 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1377 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1378 } else {
1379 __le32 usig_a1 = phy_data->rx_vec[0];
1380 __le32 usig_a2 = phy_data->rx_vec[1];
1381
1382 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1383 IWL_RX_USIG_A1_DISREGARD,
1384 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1385 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1386 IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1387 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1388 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1389 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1390 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1391 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1392 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1393 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1394 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1395 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1396 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1397 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1398 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1399 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1400 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1401 IWL_RX_USIG_A2_EHT_CRC_OK,
1402 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1403 }
1404}
1405
1406static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1407 struct ieee80211_rx_status *rx_status,
1408 struct ieee80211_radiotap_eht *eht)
1409{
1410 u32 ru = le32_get_bits(eht->data[8],
1411 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1412 enum nl80211_eht_ru_alloc nl_ru;
1413
1414 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1415 * in an EHT variant User Info field
1416 */
1417
1418 switch (ru) {
1419 case 0 ... 36:
1420 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1421 break;
1422 case 37 ... 52:
1423 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1424 break;
1425 case 53 ... 60:
1426 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1427 break;
1428 case 61 ... 64:
1429 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1430 break;
1431 case 65 ... 66:
1432 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1433 break;
1434 case 67:
1435 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1436 break;
1437 case 68:
1438 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1439 break;
1440 case 69:
1441 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1442 break;
1443 case 70 ... 81:
1444 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1445 break;
1446 case 82 ... 89:
1447 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1448 break;
1449 case 90 ... 93:
1450 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1451 break;
1452 case 94 ... 95:
1453 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1454 break;
1455 case 96 ... 99:
1456 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1457 break;
1458 case 100 ... 103:
1459 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1460 break;
1461 case 104:
1462 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1463 break;
1464 case 105 ... 106:
1465 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1466 break;
1467 default:
1468 return;
1469 }
1470
1471 rx_status->bw = RATE_INFO_BW_EHT_RU;
1472 rx_status->eht.ru = nl_ru;
1473}
1474
1475static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1476 struct iwl_mvm_rx_phy_data *phy_data,
1477 struct ieee80211_rx_status *rx_status,
1478 struct ieee80211_radiotap_eht *eht,
1479 struct ieee80211_radiotap_eht_usig *usig)
1480
1481{
1482 __le32 data0 = phy_data->d0;
1483 __le32 data1 = phy_data->d1;
1484 __le32 usig_a1 = phy_data->rx_vec[0];
1485 u8 info_type = phy_data->info_type;
1486
1487 /* Not in EHT range */
1488 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1489 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1490 return;
1491
1492 usig->common |= cpu_to_le32
1493 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1494 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1495 if (phy_data->with_data) {
1496 usig->common |= LE32_DEC_ENC(data0,
1497 IWL_RX_PHY_DATA0_EHT_UPLINK,
1498 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1499 usig->common |= LE32_DEC_ENC(data0,
1500 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1501 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1502 } else {
1503 usig->common |= LE32_DEC_ENC(usig_a1,
1504 IWL_RX_USIG_A1_UL_FLAG,
1505 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1506 usig->common |= LE32_DEC_ENC(usig_a1,
1507 IWL_RX_USIG_A1_BSS_COLOR,
1508 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1509 }
1510
1511 if (fw_has_capa(&mvm->fw->ucode_capa,
1512 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1513 usig->common |=
1514 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1515 usig->common |=
1516 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1517 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1518 }
1519
1520 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1521 eht->data[0] |= LE32_DEC_ENC(data0,
1522 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1523 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1524
1525 /* All RU allocating size/index is in TB format */
1526 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1527 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1528 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1529 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1530 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1531 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1532 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1533
1534 iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1535
1536 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1537 * which is on only in case of monitor mode so no need to check monitor
1538 * mode
1539 */
1540 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1541 eht->data[1] |=
1542 le32_encode_bits(mvm->monitor_p80,
1543 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1544
1545 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1546 if (phy_data->with_data)
1547 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1548 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1549 else
1550 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1551 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1552
1553 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1554 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1555 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1556
1557 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1558 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1559 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1560
1561 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1562 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1563 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1564
1565 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1566
1567 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1568 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1569
1570 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1571 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1572 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1573
1574 /*
1575 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1576 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1577 */
1578
1579 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1580 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1581 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1582
1583 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1584 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1585 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1586
1587 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1588 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1589 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1590}
1591
1592static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1593 struct iwl_mvm_rx_phy_data *phy_data,
1594 int queue)
1595{
1596 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1597
1598 struct ieee80211_radiotap_eht *eht;
1599 struct ieee80211_radiotap_eht_usig *usig;
1600 size_t eht_len = sizeof(*eht);
1601
1602 u32 rate_n_flags = phy_data->rate_n_flags;
1603 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1604 /* EHT and HE have the same valus for LTF */
1605 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1606 u16 phy_info = phy_data->phy_info;
1607 u32 bw;
1608
1609 /* u32 for 1 user_info */
1610 if (phy_data->with_data)
1611 eht_len += sizeof(u32);
1612
1613 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1614
1615 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1616 sizeof(*usig));
1617 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1618 usig->common |=
1619 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1620
1621 /* specific handling for 320MHz */
1622 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1623 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1624 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1625 le32_to_cpu(phy_data->d0));
1626
1627 usig->common |= cpu_to_le32
1628 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1629
1630 /* report the AMPDU-EOF bit on single frames */
1631 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1632 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1633 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1634 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1635 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1636 }
1637
1638 /* update aggregation data for monitor sake on default queue */
1639 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1640 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1641 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1642 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1643 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1644 }
1645
1646 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1647 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1648
1649#define CHECK_TYPE(F) \
1650 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1651 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1652
1653 CHECK_TYPE(SU);
1654 CHECK_TYPE(EXT_SU);
1655 CHECK_TYPE(MU);
1656 CHECK_TYPE(TRIG);
1657
1658 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1659 case 0:
1660 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1661 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1662 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1663 } else {
1664 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1665 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1666 }
1667 break;
1668 case 1:
1669 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1670 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1671 break;
1672 case 2:
1673 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1674 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1675 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1676 else
1677 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1678 break;
1679 case 3:
1680 if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1681 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1682 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1683 }
1684 break;
1685 default:
1686 /* nothing here */
1687 break;
1688 }
1689
1690 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1691 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1692 eht->data[0] |= cpu_to_le32
1693 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1694 ltf) |
1695 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1696 rx_status->eht.gi));
1697 }
1698
1699
1700 if (!phy_data->with_data) {
1701 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1702 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1703 eht->data[7] |=
1704 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1705 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1706 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1707 if (rate_n_flags & RATE_MCS_BF_MSK)
1708 eht->data[7] |=
1709 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1710 } else {
1711 eht->user_info[0] |=
1712 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1713 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1714 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1715 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1716 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1717
1718 if (rate_n_flags & RATE_MCS_BF_MSK)
1719 eht->user_info[0] |=
1720 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1721
1722 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1723 eht->user_info[0] |=
1724 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1725
1726 eht->user_info[0] |= cpu_to_le32
1727 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1728 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1729 rate_n_flags)) |
1730 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1731 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1732 }
1733}
1734
1735static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1736 struct iwl_mvm_rx_phy_data *phy_data,
1737 int queue)
1738{
1739 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1740 struct ieee80211_radiotap_he *he = NULL;
1741 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1742 u32 rate_n_flags = phy_data->rate_n_flags;
1743 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1744 u8 ltf;
1745 static const struct ieee80211_radiotap_he known = {
1746 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1747 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1748 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1749 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1750 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1751 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1752 };
1753 static const struct ieee80211_radiotap_he_mu mu_known = {
1754 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1755 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1756 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1757 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1758 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1759 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1760 };
1761 u16 phy_info = phy_data->phy_info;
1762
1763 he = skb_put_data(skb, &known, sizeof(known));
1764 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1765
1766 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1767 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1768 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1769 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1770 }
1771
1772 /* report the AMPDU-EOF bit on single frames */
1773 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1774 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1775 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1776 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1777 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1778 }
1779
1780 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1781 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1782 queue);
1783
1784 /* update aggregation data for monitor sake on default queue */
1785 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1786 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1787 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1788 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1789 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1790 }
1791
1792 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1793 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1794 rx_status->bw = RATE_INFO_BW_HE_RU;
1795 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1796 }
1797
1798 /* actually data is filled in mac80211 */
1799 if (he_type == RATE_MCS_HE_TYPE_SU ||
1800 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1801 he->data1 |=
1802 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1803
1804#define CHECK_TYPE(F) \
1805 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1806 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1807
1808 CHECK_TYPE(SU);
1809 CHECK_TYPE(EXT_SU);
1810 CHECK_TYPE(MU);
1811 CHECK_TYPE(TRIG);
1812
1813 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1814
1815 if (rate_n_flags & RATE_MCS_BF_MSK)
1816 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1817
1818 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1819 RATE_MCS_HE_GI_LTF_POS) {
1820 case 0:
1821 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1822 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1823 else
1824 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1825 if (he_type == RATE_MCS_HE_TYPE_MU)
1826 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1827 else
1828 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1829 break;
1830 case 1:
1831 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1832 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1833 else
1834 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1835 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1836 break;
1837 case 2:
1838 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1839 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1840 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1841 } else {
1842 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1843 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1844 }
1845 break;
1846 case 3:
1847 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1848 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1849 break;
1850 case 4:
1851 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1852 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1853 break;
1854 default:
1855 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1856 }
1857
1858 he->data5 |= le16_encode_bits(ltf,
1859 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1860}
1861
1862static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1863 struct iwl_mvm_rx_phy_data *phy_data)
1864{
1865 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1866 struct ieee80211_radiotap_lsig *lsig;
1867
1868 switch (phy_data->info_type) {
1869 case IWL_RX_PHY_INFO_TYPE_HT:
1870 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1871 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1872 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1873 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1874 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1875 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1876 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1877 case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1878 case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1879 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1880 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1881 lsig = skb_put(skb, sizeof(*lsig));
1882 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1883 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1884 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1885 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1886 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1887 break;
1888 default:
1889 break;
1890 }
1891}
1892
1893static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1894{
1895 switch (phy_band) {
1896 case PHY_BAND_24:
1897 return NL80211_BAND_2GHZ;
1898 case PHY_BAND_5:
1899 return NL80211_BAND_5GHZ;
1900 case PHY_BAND_6:
1901 return NL80211_BAND_6GHZ;
1902 default:
1903 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1904 return NL80211_BAND_5GHZ;
1905 }
1906}
1907
1908struct iwl_rx_sta_csa {
1909 bool all_sta_unblocked;
1910 struct ieee80211_vif *vif;
1911};
1912
1913static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1914{
1915 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1916 struct iwl_rx_sta_csa *rx_sta_csa = data;
1917
1918 if (mvmsta->vif != rx_sta_csa->vif)
1919 return;
1920
1921 if (mvmsta->disable_tx)
1922 rx_sta_csa->all_sta_unblocked = false;
1923}
1924
1925/*
1926 * Note: requires also rx_status->band to be prefilled, as well
1927 * as phy_data (apart from phy_data->info_type)
1928 */
1929static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1930 struct sk_buff *skb,
1931 struct iwl_mvm_rx_phy_data *phy_data,
1932 int queue)
1933{
1934 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1935 u32 rate_n_flags = phy_data->rate_n_flags;
1936 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1937 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1938 bool is_sgi;
1939
1940 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1941
1942 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1943 phy_data->info_type =
1944 le32_get_bits(phy_data->d1,
1945 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1946
1947 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1948 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1949 case RATE_MCS_CHAN_WIDTH_20:
1950 break;
1951 case RATE_MCS_CHAN_WIDTH_40:
1952 rx_status->bw = RATE_INFO_BW_40;
1953 break;
1954 case RATE_MCS_CHAN_WIDTH_80:
1955 rx_status->bw = RATE_INFO_BW_80;
1956 break;
1957 case RATE_MCS_CHAN_WIDTH_160:
1958 rx_status->bw = RATE_INFO_BW_160;
1959 break;
1960 case RATE_MCS_CHAN_WIDTH_320:
1961 rx_status->bw = RATE_INFO_BW_320;
1962 break;
1963 }
1964
1965 /* must be before L-SIG data */
1966 if (format == RATE_MCS_HE_MSK)
1967 iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1968
1969 iwl_mvm_decode_lsig(skb, phy_data);
1970
1971 rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1972 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1973 rx_status->band);
1974 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1975 phy_data->energy_a, phy_data->energy_b);
1976
1977 /* using TLV format and must be after all fixed len fields */
1978 if (format == RATE_MCS_EHT_MSK)
1979 iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
1980
1981 if (unlikely(mvm->monitor_on))
1982 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1983
1984 is_sgi = format == RATE_MCS_HE_MSK ?
1985 iwl_he_is_sgi(rate_n_flags) :
1986 rate_n_flags & RATE_MCS_SGI_MSK;
1987
1988 if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
1989 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1990
1991 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1992 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1993
1994 switch (format) {
1995 case RATE_MCS_VHT_MSK:
1996 rx_status->encoding = RX_ENC_VHT;
1997 break;
1998 case RATE_MCS_HE_MSK:
1999 rx_status->encoding = RX_ENC_HE;
2000 rx_status->he_dcm =
2001 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2002 break;
2003 case RATE_MCS_EHT_MSK:
2004 rx_status->encoding = RX_ENC_EHT;
2005 break;
2006 }
2007
2008 switch (format) {
2009 case RATE_MCS_HT_MSK:
2010 rx_status->encoding = RX_ENC_HT;
2011 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2012 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2013 break;
2014 case RATE_MCS_VHT_MSK:
2015 case RATE_MCS_HE_MSK:
2016 case RATE_MCS_EHT_MSK:
2017 rx_status->nss =
2018 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2019 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2020 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2021 break;
2022 default: {
2023 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2024 rx_status->band);
2025
2026 rx_status->rate_idx = rate;
2027
2028 if ((rate < 0 || rate > 0xFF)) {
2029 rx_status->rate_idx = 0;
2030 if (net_ratelimit())
2031 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2032 rate_n_flags, rx_status->band);
2033 }
2034
2035 break;
2036 }
2037 }
2038}
2039
2040void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2041 struct iwl_rx_cmd_buffer *rxb, int queue)
2042{
2043 struct ieee80211_rx_status *rx_status;
2044 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2045 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2046 struct ieee80211_hdr *hdr;
2047 u32 len;
2048 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2049 struct ieee80211_sta *sta = NULL;
2050 struct ieee80211_link_sta *link_sta = NULL;
2051 struct sk_buff *skb;
2052 u8 crypt_len = 0;
2053 size_t desc_size;
2054 struct iwl_mvm_rx_phy_data phy_data = {};
2055 u32 format;
2056
2057 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2058 return;
2059
2060 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2061 desc_size = sizeof(*desc);
2062 else
2063 desc_size = IWL_RX_DESC_SIZE_V1;
2064
2065 if (unlikely(pkt_len < desc_size)) {
2066 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2067 return;
2068 }
2069
2070 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2071 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2072 phy_data.channel = desc->v3.channel;
2073 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2074 phy_data.energy_a = desc->v3.energy_a;
2075 phy_data.energy_b = desc->v3.energy_b;
2076
2077 phy_data.d0 = desc->v3.phy_data0;
2078 phy_data.d1 = desc->v3.phy_data1;
2079 phy_data.d2 = desc->v3.phy_data2;
2080 phy_data.d3 = desc->v3.phy_data3;
2081 phy_data.eht_d4 = desc->phy_eht_data4;
2082 phy_data.d5 = desc->v3.phy_data5;
2083 } else {
2084 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2085 phy_data.channel = desc->v1.channel;
2086 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2087 phy_data.energy_a = desc->v1.energy_a;
2088 phy_data.energy_b = desc->v1.energy_b;
2089
2090 phy_data.d0 = desc->v1.phy_data0;
2091 phy_data.d1 = desc->v1.phy_data1;
2092 phy_data.d2 = desc->v1.phy_data2;
2093 phy_data.d3 = desc->v1.phy_data3;
2094 }
2095
2096 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2097 REPLY_RX_MPDU_CMD, 0) < 4) {
2098 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2099 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2100 phy_data.rate_n_flags);
2101 }
2102
2103 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2104
2105 len = le16_to_cpu(desc->mpdu_len);
2106
2107 if (unlikely(len + desc_size > pkt_len)) {
2108 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2109 return;
2110 }
2111
2112 phy_data.with_data = true;
2113 phy_data.phy_info = le16_to_cpu(desc->phy_info);
2114 phy_data.d4 = desc->phy_data4;
2115
2116 hdr = (void *)(pkt->data + desc_size);
2117 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2118 * ieee80211_hdr pulled.
2119 */
2120 skb = alloc_skb(128, GFP_ATOMIC);
2121 if (!skb) {
2122 IWL_ERR(mvm, "alloc_skb failed\n");
2123 return;
2124 }
2125
2126 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2127 /*
2128 * If the device inserted padding it means that (it thought)
2129 * the 802.11 header wasn't a multiple of 4 bytes long. In
2130 * this case, reserve two bytes at the start of the SKB to
2131 * align the payload properly in case we end up copying it.
2132 */
2133 skb_reserve(skb, 2);
2134 }
2135
2136 rx_status = IEEE80211_SKB_RXCB(skb);
2137
2138 /*
2139 * Keep packets with CRC errors (and with overrun) for monitor mode
2140 * (otherwise the firmware discards them) but mark them as bad.
2141 */
2142 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2143 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2144 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2145 le32_to_cpu(desc->status));
2146 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2147 }
2148
2149 /* set the preamble flag if appropriate */
2150 if (format == RATE_MCS_CCK_MSK &&
2151 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2152 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2153
2154 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2155 u64 tsf_on_air_rise;
2156
2157 if (mvm->trans->trans_cfg->device_family >=
2158 IWL_DEVICE_FAMILY_AX210)
2159 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2160 else
2161 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2162
2163 rx_status->mactime = tsf_on_air_rise;
2164 /* TSF as indicated by the firmware is at INA time */
2165 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2166 }
2167
2168 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2169 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2170
2171 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2172 } else {
2173 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2174 NL80211_BAND_2GHZ;
2175 }
2176
2177 /* update aggregation data for monitor sake on default queue */
2178 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2179 bool toggle_bit;
2180
2181 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2182 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2183 /*
2184 * Toggle is switched whenever new aggregation starts. Make
2185 * sure ampdu_reference is never 0 so we can later use it to
2186 * see if the frame was really part of an A-MPDU or not.
2187 */
2188 if (toggle_bit != mvm->ampdu_toggle) {
2189 mvm->ampdu_ref++;
2190 if (mvm->ampdu_ref == 0)
2191 mvm->ampdu_ref++;
2192 mvm->ampdu_toggle = toggle_bit;
2193 phy_data.first_subframe = true;
2194 }
2195 rx_status->ampdu_reference = mvm->ampdu_ref;
2196 }
2197
2198 rcu_read_lock();
2199
2200 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2201 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2202
2203 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2204 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2205 if (IS_ERR(sta))
2206 sta = NULL;
2207 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2208
2209 if (sta && sta->valid_links && link_sta) {
2210 rx_status->link_valid = 1;
2211 rx_status->link_id = link_sta->link_id;
2212 }
2213 }
2214 } else if (!is_multicast_ether_addr(hdr->addr2)) {
2215 /*
2216 * This is fine since we prevent two stations with the same
2217 * address from being added.
2218 */
2219 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2220 }
2221
2222 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2223 le32_to_cpu(pkt->len_n_flags), queue,
2224 &crypt_len)) {
2225 kfree_skb(skb);
2226 goto out;
2227 }
2228
2229 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2230
2231 if (sta) {
2232 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2233 struct ieee80211_vif *tx_blocked_vif =
2234 rcu_dereference(mvm->csa_tx_blocked_vif);
2235 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2236 IWL_RX_MPDU_REORDER_BAID_MASK) >>
2237 IWL_RX_MPDU_REORDER_BAID_SHIFT);
2238 struct iwl_fw_dbg_trigger_tlv *trig;
2239 struct ieee80211_vif *vif = mvmsta->vif;
2240
2241 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2242 !is_multicast_ether_addr(hdr->addr1) &&
2243 ieee80211_is_data(hdr->frame_control) &&
2244 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2245 schedule_delayed_work(&mvm->tcm.work, 0);
2246
2247 /*
2248 * We have tx blocked stations (with CS bit). If we heard
2249 * frames from a blocked station on a new channel we can
2250 * TX to it again.
2251 */
2252 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2253 struct iwl_mvm_vif *mvmvif =
2254 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2255 struct iwl_rx_sta_csa rx_sta_csa = {
2256 .all_sta_unblocked = true,
2257 .vif = tx_blocked_vif,
2258 };
2259
2260 if (mvmvif->csa_target_freq == rx_status->freq)
2261 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2262 false);
2263 ieee80211_iterate_stations_atomic(mvm->hw,
2264 iwl_mvm_rx_get_sta_block_tx,
2265 &rx_sta_csa);
2266
2267 if (rx_sta_csa.all_sta_unblocked) {
2268 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2269 /* Unblock BCAST / MCAST station */
2270 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2271 cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2272 }
2273 }
2274
2275 rs_update_last_rssi(mvm, mvmsta, rx_status);
2276
2277 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2278 ieee80211_vif_to_wdev(vif),
2279 FW_DBG_TRIGGER_RSSI);
2280
2281 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2282 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2283 s32 rssi;
2284
2285 rssi_trig = (void *)trig->data;
2286 rssi = le32_to_cpu(rssi_trig->rssi);
2287
2288 if (rx_status->signal < rssi)
2289 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2290 NULL);
2291 }
2292
2293 if (ieee80211_is_data(hdr->frame_control))
2294 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2295
2296 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2297 IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n",
2298 le16_to_cpu(hdr->seq_ctrl));
2299 kfree_skb(skb);
2300 goto out;
2301 }
2302
2303 /*
2304 * Our hardware de-aggregates AMSDUs but copies the mac header
2305 * as it to the de-aggregated MPDUs. We need to turn off the
2306 * AMSDU bit in the QoS control ourselves.
2307 * In addition, HW reverses addr3 and addr4 - reverse it back.
2308 */
2309 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2310 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2311 u8 *qc = ieee80211_get_qos_ctl(hdr);
2312
2313 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2314
2315 if (mvm->trans->trans_cfg->device_family ==
2316 IWL_DEVICE_FAMILY_9000) {
2317 iwl_mvm_flip_address(hdr->addr3);
2318
2319 if (ieee80211_has_a4(hdr->frame_control))
2320 iwl_mvm_flip_address(hdr->addr4);
2321 }
2322 }
2323 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2324 u32 reorder_data = le32_to_cpu(desc->reorder_data);
2325
2326 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2327 }
2328 }
2329
2330 /* management stuff on default queue */
2331 if (!queue) {
2332 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2333 ieee80211_is_probe_resp(hdr->frame_control)) &&
2334 mvm->sched_scan_pass_all ==
2335 SCHED_SCAN_PASS_ALL_ENABLED))
2336 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2337
2338 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2339 ieee80211_is_probe_resp(hdr->frame_control)))
2340 rx_status->boottime_ns = ktime_get_boottime_ns();
2341 }
2342
2343 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2344 kfree_skb(skb);
2345 goto out;
2346 }
2347
2348 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2349 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2350 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
2351 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
2352 (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2353 !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
2354 rx_status->flag |= RX_FLAG_AMSDU_MORE;
2355
2356 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta);
2357 }
2358out:
2359 rcu_read_unlock();
2360}
2361
2362void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2363 struct iwl_rx_cmd_buffer *rxb, int queue)
2364{
2365 struct ieee80211_rx_status *rx_status;
2366 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2367 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2368 u32 rssi;
2369 u32 info_type;
2370 struct ieee80211_sta *sta = NULL;
2371 struct sk_buff *skb;
2372 struct iwl_mvm_rx_phy_data phy_data;
2373 u32 format;
2374
2375 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2376 return;
2377
2378 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2379 return;
2380
2381 rssi = le32_to_cpu(desc->rssi);
2382 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2383 phy_data.d0 = desc->phy_info[0];
2384 phy_data.d1 = desc->phy_info[1];
2385 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2386 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2387 phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2388 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2389 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2390 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2391 phy_data.with_data = false;
2392 phy_data.rx_vec[0] = desc->rx_vec[0];
2393 phy_data.rx_vec[1] = desc->rx_vec[1];
2394
2395 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2396 RX_NO_DATA_NOTIF, 0) < 2) {
2397 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2398 phy_data.rate_n_flags);
2399 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2400 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2401 phy_data.rate_n_flags);
2402 }
2403
2404 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2405
2406 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2407 RX_NO_DATA_NOTIF, 0) >= 3) {
2408 if (unlikely(iwl_rx_packet_payload_len(pkt) <
2409 sizeof(struct iwl_rx_no_data_ver_3)))
2410 /* invalid len for ver 3 */
2411 return;
2412 phy_data.rx_vec[2] = desc->rx_vec[2];
2413 phy_data.rx_vec[3] = desc->rx_vec[3];
2414 } else {
2415 if (format == RATE_MCS_EHT_MSK)
2416 /* no support for EHT before version 3 API */
2417 return;
2418 }
2419
2420 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2421 * ieee80211_hdr pulled.
2422 */
2423 skb = alloc_skb(128, GFP_ATOMIC);
2424 if (!skb) {
2425 IWL_ERR(mvm, "alloc_skb failed\n");
2426 return;
2427 }
2428
2429 rx_status = IEEE80211_SKB_RXCB(skb);
2430
2431 /* 0-length PSDU */
2432 rx_status->flag |= RX_FLAG_NO_PSDU;
2433
2434 switch (info_type) {
2435 case RX_NO_DATA_INFO_TYPE_NDP:
2436 rx_status->zero_length_psdu_type =
2437 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2438 break;
2439 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2440 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2441 rx_status->zero_length_psdu_type =
2442 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2443 break;
2444 default:
2445 rx_status->zero_length_psdu_type =
2446 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2447 break;
2448 }
2449
2450 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2451 NL80211_BAND_2GHZ;
2452
2453 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2454
2455 /* no more radio tap info should be put after this point.
2456 *
2457 * We mark it as mac header, for upper layers to know where
2458 * all radio tap header ends.
2459 */
2460 skb_reset_mac_header(skb);
2461
2462 /*
2463 * Override the nss from the rx_vec since the rate_n_flags has
2464 * only 2 bits for the nss which gives a max of 4 ss but there
2465 * may be up to 8 spatial streams.
2466 */
2467 switch (format) {
2468 case RATE_MCS_VHT_MSK:
2469 rx_status->nss =
2470 le32_get_bits(desc->rx_vec[0],
2471 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2472 break;
2473 case RATE_MCS_HE_MSK:
2474 rx_status->nss =
2475 le32_get_bits(desc->rx_vec[0],
2476 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2477 break;
2478 case RATE_MCS_EHT_MSK:
2479 rx_status->nss =
2480 le32_get_bits(desc->rx_vec[2],
2481 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2482 }
2483
2484 rcu_read_lock();
2485 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2486 rcu_read_unlock();
2487}
2488
2489void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2490 struct iwl_rx_cmd_buffer *rxb, int queue)
2491{
2492 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2493 struct iwl_frame_release *release = (void *)pkt->data;
2494
2495 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2496 return;
2497
2498 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2499 le16_to_cpu(release->nssn),
2500 queue);
2501}
2502
2503void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2504 struct iwl_rx_cmd_buffer *rxb, int queue)
2505{
2506 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2507 struct iwl_bar_frame_release *release = (void *)pkt->data;
2508 unsigned int baid = le32_get_bits(release->ba_info,
2509 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2510 unsigned int nssn = le32_get_bits(release->ba_info,
2511 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2512 unsigned int sta_id = le32_get_bits(release->sta_tid,
2513 IWL_BAR_FRAME_RELEASE_STA_MASK);
2514 unsigned int tid = le32_get_bits(release->sta_tid,
2515 IWL_BAR_FRAME_RELEASE_TID_MASK);
2516 struct iwl_mvm_baid_data *baid_data;
2517
2518 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2519 return;
2520
2521 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2522 baid >= ARRAY_SIZE(mvm->baid_map)))
2523 return;
2524
2525 rcu_read_lock();
2526 baid_data = rcu_dereference(mvm->baid_map[baid]);
2527 if (!baid_data) {
2528 IWL_DEBUG_RX(mvm,
2529 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2530 baid);
2531 goto out;
2532 }
2533
2534 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2535 !(baid_data->sta_mask & BIT(sta_id)),
2536 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2537 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2538 tid))
2539 goto out;
2540
2541 IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n",
2542 nssn);
2543
2544 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue);
2545out:
2546 rcu_read_unlock();
2547}