Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2012-2013 Solarflare Communications Inc.
   5 */
   6
   7#include "net_driver.h"
   8#include "rx_common.h"
   9#include "tx_common.h"
  10#include "ef10_regs.h"
  11#include "io.h"
  12#include "mcdi.h"
  13#include "mcdi_pcol.h"
  14#include "mcdi_port.h"
  15#include "mcdi_port_common.h"
  16#include "mcdi_functions.h"
  17#include "nic.h"
  18#include "mcdi_filters.h"
  19#include "workarounds.h"
  20#include "selftest.h"
  21#include "ef10_sriov.h"
  22#include <linux/in.h>
  23#include <linux/jhash.h>
  24#include <linux/wait.h>
  25#include <linux/workqueue.h>
  26#include <net/udp_tunnel.h>
  27
  28/* Hardware control for EF10 architecture including 'Huntington'. */
  29
  30#define EFX_EF10_DRVGEN_EV		7
  31enum {
  32	EFX_EF10_TEST = 1,
  33	EFX_EF10_REFILL,
  34};
  35
  36/* VLAN list entry */
  37struct efx_ef10_vlan {
  38	struct list_head list;
  39	u16 vid;
  40};
  41
  42static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
  43static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
  44
  45static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
  46{
  47	efx_dword_t reg;
  48
  49	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
  50	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  51		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  52}
  53
  54/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
  55 * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
  56 * bar; PFs use BAR 0/1 for memory.
  57 */
  58static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
  59{
  60	switch (efx->pci_dev->device) {
  61	case 0x0b03: /* SFC9250 PF */
  62		return 0;
  63	default:
  64		return 2;
  65	}
  66}
  67
  68/* All VFs use BAR 0/1 for memory */
  69static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
  70{
  71	return 0;
  72}
  73
  74static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
  75{
  76	int bar;
  77
  78	bar = efx->type->mem_bar(efx);
  79	return resource_size(&efx->pci_dev->resource[bar]);
  80}
  81
  82static bool efx_ef10_is_vf(struct efx_nic *efx)
  83{
  84	return efx->type->is_vf;
  85}
  86
  87#ifdef CONFIG_SFC_SRIOV
  88static int efx_ef10_get_vf_index(struct efx_nic *efx)
  89{
  90	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
  91	struct efx_ef10_nic_data *nic_data = efx->nic_data;
  92	size_t outlen;
  93	int rc;
  94
  95	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
  96			  sizeof(outbuf), &outlen);
  97	if (rc)
  98		return rc;
  99	if (outlen < sizeof(outbuf))
 100		return -EIO;
 101
 102	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 103	return 0;
 104}
 105#endif
 106
 107static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 108{
 109	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
 110	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 111	size_t outlen;
 112	int rc;
 113
 114	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 115
 116	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 117			  outbuf, sizeof(outbuf), &outlen);
 118	if (rc)
 119		return rc;
 120	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 121		netif_err(efx, drv, efx->net_dev,
 122			  "unable to read datapath firmware capabilities\n");
 123		return -EIO;
 124	}
 125
 126	nic_data->datapath_caps =
 127		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 128
 129	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
 130		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 131				GET_CAPABILITIES_V2_OUT_FLAGS2);
 132		nic_data->piobuf_size = MCDI_WORD(outbuf,
 133				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
 134	} else {
 135		nic_data->datapath_caps2 = 0;
 136		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
 137	}
 138
 139	/* record the DPCPU firmware IDs to determine VEB vswitching support.
 140	 */
 141	nic_data->rx_dpcpu_fw_id =
 142		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 143	nic_data->tx_dpcpu_fw_id =
 144		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 145
 146	if (!(nic_data->datapath_caps &
 147	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 148		netif_err(efx, probe, efx->net_dev,
 149			  "current firmware does not support an RX prefix\n");
 150		return -ENODEV;
 151	}
 152
 153	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
 154		u8 vi_window_mode = MCDI_BYTE(outbuf,
 155				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 156
 157		rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
 158		if (rc)
 159			return rc;
 160	} else {
 161		/* keep default VI stride */
 162		netif_dbg(efx, probe, efx->net_dev,
 163			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
 164			  efx->vi_stride);
 165	}
 166
 167	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 168		efx->num_mac_stats = MCDI_WORD(outbuf,
 169				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 170		netif_dbg(efx, probe, efx->net_dev,
 171			  "firmware reports num_mac_stats = %u\n",
 172			  efx->num_mac_stats);
 173	} else {
 174		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
 175		netif_dbg(efx, probe, efx->net_dev,
 176			  "firmware did not report num_mac_stats, assuming %u\n",
 177			  efx->num_mac_stats);
 178	}
 179
 180	return 0;
 181}
 182
 183static void efx_ef10_read_licensed_features(struct efx_nic *efx)
 184{
 185	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
 186	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
 187	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 188	size_t outlen;
 189	int rc;
 190
 191	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
 192		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
 193	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
 194				outbuf, sizeof(outbuf), &outlen);
 195	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
 196		return;
 197
 198	nic_data->licensed_features = MCDI_QWORD(outbuf,
 199					 LICENSING_V3_OUT_LICENSED_FEATURES);
 200}
 201
 202static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 203{
 204	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 205	int rc;
 206
 207	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 208			  outbuf, sizeof(outbuf), NULL);
 209	if (rc)
 210		return rc;
 211	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 212	return rc > 0 ? rc : -ERANGE;
 213}
 214
 215static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 216{
 217	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 218	unsigned int implemented;
 219	unsigned int enabled;
 220	int rc;
 221
 222	nic_data->workaround_35388 = false;
 223	nic_data->workaround_61265 = false;
 224
 225	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 226
 227	if (rc == -ENOSYS) {
 228		/* Firmware without GET_WORKAROUNDS - not a problem. */
 229		rc = 0;
 230	} else if (rc == 0) {
 231		/* Bug61265 workaround is always enabled if implemented. */
 232		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 233			nic_data->workaround_61265 = true;
 234
 235		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 236			nic_data->workaround_35388 = true;
 237		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 238			/* Workaround is implemented but not enabled.
 239			 * Try to enable it.
 240			 */
 241			rc = efx_mcdi_set_workaround(efx,
 242						     MC_CMD_WORKAROUND_BUG35388,
 243						     true, NULL);
 244			if (rc == 0)
 245				nic_data->workaround_35388 = true;
 246			/* If we failed to set the workaround just carry on. */
 247			rc = 0;
 248		}
 249	}
 250
 251	netif_dbg(efx, probe, efx->net_dev,
 252		  "workaround for bug 35388 is %sabled\n",
 253		  nic_data->workaround_35388 ? "en" : "dis");
 254	netif_dbg(efx, probe, efx->net_dev,
 255		  "workaround for bug 61265 is %sabled\n",
 256		  nic_data->workaround_61265 ? "en" : "dis");
 257
 258	return rc;
 259}
 260
 261static void efx_ef10_process_timer_config(struct efx_nic *efx,
 262					  const efx_dword_t *data)
 263{
 264	unsigned int max_count;
 265
 266	if (EFX_EF10_WORKAROUND_61265(efx)) {
 267		efx->timer_quantum_ns = MCDI_DWORD(data,
 268			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 269		efx->timer_max_ns = MCDI_DWORD(data,
 270			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 271	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
 272		efx->timer_quantum_ns = MCDI_DWORD(data,
 273			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 274		max_count = MCDI_DWORD(data,
 275			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 276		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 277	} else {
 278		efx->timer_quantum_ns = MCDI_DWORD(data,
 279			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 280		max_count = MCDI_DWORD(data,
 281			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 282		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 283	}
 284
 285	netif_dbg(efx, probe, efx->net_dev,
 286		  "got timer properties from MC: quantum %u ns; max %u ns\n",
 287		  efx->timer_quantum_ns, efx->timer_max_ns);
 288}
 289
 290static int efx_ef10_get_timer_config(struct efx_nic *efx)
 291{
 292	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 293	int rc;
 294
 295	rc = efx_ef10_get_timer_workarounds(efx);
 296	if (rc)
 297		return rc;
 298
 299	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 300				outbuf, sizeof(outbuf), NULL);
 301
 302	if (rc == 0) {
 303		efx_ef10_process_timer_config(efx, outbuf);
 304	} else if (rc == -ENOSYS || rc == -EPERM) {
 305		/* Not available - fall back to Huntington defaults. */
 306		unsigned int quantum;
 307
 308		rc = efx_ef10_get_sysclk_freq(efx);
 309		if (rc < 0)
 310			return rc;
 311
 312		quantum = 1536000 / rc; /* 1536 cycles */
 313		efx->timer_quantum_ns = quantum;
 314		efx->timer_max_ns = efx->type->timer_period_max * quantum;
 315		rc = 0;
 316	} else {
 317		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 318				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 319				       NULL, 0, rc);
 320	}
 321
 322	return rc;
 323}
 324
 325static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 326{
 327	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 328	size_t outlen;
 329	int rc;
 330
 331	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 332
 333	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 334			  outbuf, sizeof(outbuf), &outlen);
 335	if (rc)
 336		return rc;
 337	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 338		return -EIO;
 339
 340	ether_addr_copy(mac_address,
 341			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 342	return 0;
 343}
 344
 345static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 346{
 347	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 348	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 349	size_t outlen;
 350	int num_addrs, rc;
 351
 352	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 353		       EVB_PORT_ID_ASSIGNED);
 354	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 355			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 356
 357	if (rc)
 358		return rc;
 359	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 360		return -EIO;
 361
 362	num_addrs = MCDI_DWORD(outbuf,
 363			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 364
 365	WARN_ON(num_addrs != 1);
 366
 367	ether_addr_copy(mac_address,
 368			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 369
 370	return 0;
 371}
 372
 373static ssize_t link_control_flag_show(struct device *dev,
 374				      struct device_attribute *attr,
 375				      char *buf)
 376{
 377	struct efx_nic *efx = dev_get_drvdata(dev);
 378
 379	return sprintf(buf, "%d\n",
 380		       ((efx->mcdi->fn_flags) &
 381			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 382		       ? 1 : 0);
 383}
 384
 385static ssize_t primary_flag_show(struct device *dev,
 386				 struct device_attribute *attr,
 387				 char *buf)
 388{
 389	struct efx_nic *efx = dev_get_drvdata(dev);
 390
 391	return sprintf(buf, "%d\n",
 392		       ((efx->mcdi->fn_flags) &
 393			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 394		       ? 1 : 0);
 395}
 396
 397static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 398{
 399	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 400	struct efx_ef10_vlan *vlan;
 401
 402	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 403
 404	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 405		if (vlan->vid == vid)
 406			return vlan;
 407	}
 408
 409	return NULL;
 410}
 411
 412static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 413{
 414	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 415	struct efx_ef10_vlan *vlan;
 416	int rc;
 417
 418	mutex_lock(&nic_data->vlan_lock);
 419
 420	vlan = efx_ef10_find_vlan(efx, vid);
 421	if (vlan) {
 422		/* We add VID 0 on init. 8021q adds it on module init
 423		 * for all interfaces with VLAN filtring feature.
 424		 */
 425		if (vid == 0)
 426			goto done_unlock;
 427		netif_warn(efx, drv, efx->net_dev,
 428			   "VLAN %u already added\n", vid);
 429		rc = -EALREADY;
 430		goto fail_exist;
 431	}
 432
 433	rc = -ENOMEM;
 434	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 435	if (!vlan)
 436		goto fail_alloc;
 437
 438	vlan->vid = vid;
 439
 440	list_add_tail(&vlan->list, &nic_data->vlan_list);
 441
 442	if (efx->filter_state) {
 443		mutex_lock(&efx->mac_lock);
 444		down_write(&efx->filter_sem);
 445		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
 446		up_write(&efx->filter_sem);
 447		mutex_unlock(&efx->mac_lock);
 448		if (rc)
 449			goto fail_filter_add_vlan;
 450	}
 451
 452done_unlock:
 453	mutex_unlock(&nic_data->vlan_lock);
 454	return 0;
 455
 456fail_filter_add_vlan:
 457	list_del(&vlan->list);
 458	kfree(vlan);
 459fail_alloc:
 460fail_exist:
 461	mutex_unlock(&nic_data->vlan_lock);
 462	return rc;
 463}
 464
 465static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 466				       struct efx_ef10_vlan *vlan)
 467{
 468	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 469
 470	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 471
 472	if (efx->filter_state) {
 473		down_write(&efx->filter_sem);
 474		efx_mcdi_filter_del_vlan(efx, vlan->vid);
 475		up_write(&efx->filter_sem);
 476	}
 477
 478	list_del(&vlan->list);
 479	kfree(vlan);
 480}
 481
 482static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 483{
 484	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 485	struct efx_ef10_vlan *vlan;
 486	int rc = 0;
 487
 488	/* 8021q removes VID 0 on module unload for all interfaces
 489	 * with VLAN filtering feature. We need to keep it to receive
 490	 * untagged traffic.
 491	 */
 492	if (vid == 0)
 493		return 0;
 494
 495	mutex_lock(&nic_data->vlan_lock);
 496
 497	vlan = efx_ef10_find_vlan(efx, vid);
 498	if (!vlan) {
 499		netif_err(efx, drv, efx->net_dev,
 500			  "VLAN %u to be deleted not found\n", vid);
 501		rc = -ENOENT;
 502	} else {
 503		efx_ef10_del_vlan_internal(efx, vlan);
 504	}
 505
 506	mutex_unlock(&nic_data->vlan_lock);
 507
 508	return rc;
 509}
 510
 511static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 512{
 513	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 514	struct efx_ef10_vlan *vlan, *next_vlan;
 515
 516	mutex_lock(&nic_data->vlan_lock);
 517	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 518		efx_ef10_del_vlan_internal(efx, vlan);
 519	mutex_unlock(&nic_data->vlan_lock);
 520}
 521
 522static DEVICE_ATTR_RO(link_control_flag);
 523static DEVICE_ATTR_RO(primary_flag);
 524
 525static int efx_ef10_probe(struct efx_nic *efx)
 526{
 527	struct efx_ef10_nic_data *nic_data;
 528	int i, rc;
 529
 530	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 531	if (!nic_data)
 532		return -ENOMEM;
 533	efx->nic_data = nic_data;
 534
 535	/* we assume later that we can copy from this buffer in dwords */
 536	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 537
 538	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 539				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 540	if (rc)
 541		goto fail1;
 542
 543	/* Get the MC's warm boot count.  In case it's rebooting right
 544	 * now, be prepared to retry.
 545	 */
 546	i = 0;
 547	for (;;) {
 548		rc = efx_ef10_get_warm_boot_count(efx);
 549		if (rc >= 0)
 550			break;
 551		if (++i == 5)
 552			goto fail2;
 553		ssleep(1);
 554	}
 555	nic_data->warm_boot_count = rc;
 556
 557	/* In case we're recovering from a crash (kexec), we want to
 558	 * cancel any outstanding request by the previous user of this
 559	 * function.  We send a special message using the least
 560	 * significant bits of the 'high' (doorbell) register.
 561	 */
 562	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 563
 564	rc = efx_mcdi_init(efx);
 565	if (rc)
 566		goto fail2;
 567
 568	mutex_init(&nic_data->udp_tunnels_lock);
 569	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
 570		nic_data->udp_tunnels[i].type =
 571			TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
 572
 573	/* Reset (most) configuration for this function */
 574	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 575	if (rc)
 576		goto fail3;
 577
 578	/* Enable event logging */
 579	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 580	if (rc)
 581		goto fail3;
 582
 583	rc = device_create_file(&efx->pci_dev->dev,
 584				&dev_attr_link_control_flag);
 585	if (rc)
 586		goto fail3;
 587
 588	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 589	if (rc)
 590		goto fail4;
 591
 592	rc = efx_get_pf_index(efx, &nic_data->pf_index);
 593	if (rc)
 594		goto fail5;
 595
 596	rc = efx_ef10_init_datapath_caps(efx);
 597	if (rc < 0)
 598		goto fail5;
 599
 600	efx_ef10_read_licensed_features(efx);
 601
 602	/* We can have one VI for each vi_stride-byte region.
 603	 * However, until we use TX option descriptors we need up to four
 604	 * TX queues per channel for different checksumming combinations.
 605	 */
 606	if (nic_data->datapath_caps &
 607	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
 608		efx->tx_queues_per_channel = 4;
 609	else
 610		efx->tx_queues_per_channel = 2;
 611	efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
 612	if (!efx->max_vis) {
 613		netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
 614		rc = -EIO;
 615		goto fail5;
 616	}
 617	efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
 618				  efx->max_vis / efx->tx_queues_per_channel);
 619	efx->max_tx_channels = efx->max_channels;
 620	if (WARN_ON(efx->max_channels == 0)) {
 621		rc = -EIO;
 622		goto fail5;
 623	}
 624
 625	efx->rx_packet_len_offset =
 626		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 627
 628	if (nic_data->datapath_caps &
 629	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
 630		efx->net_dev->hw_features |= NETIF_F_RXFCS;
 631
 632	rc = efx_mcdi_port_get_number(efx);
 633	if (rc < 0)
 634		goto fail5;
 635	efx->port_num = rc;
 636
 637	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 638	if (rc)
 639		goto fail5;
 640
 641	rc = efx_ef10_get_timer_config(efx);
 642	if (rc < 0)
 643		goto fail5;
 644
 645	rc = efx_mcdi_mon_probe(efx);
 646	if (rc && rc != -EPERM)
 647		goto fail5;
 648
 649	efx_ptp_defer_probe_with_channel(efx);
 650
 651#ifdef CONFIG_SFC_SRIOV
 652	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 653		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 654		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 655
 656		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 657	} else
 658#endif
 659		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 660
 661	INIT_LIST_HEAD(&nic_data->vlan_list);
 662	mutex_init(&nic_data->vlan_lock);
 663
 664	/* Add unspecified VID to support VLAN filtering being disabled */
 665	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 666	if (rc)
 667		goto fail_add_vid_unspec;
 668
 669	/* If VLAN filtering is enabled, we need VID 0 to get untagged
 670	 * traffic.  It is added automatically if 8021q module is loaded,
 671	 * but we can't rely on it since module may be not loaded.
 672	 */
 673	rc = efx_ef10_add_vlan(efx, 0);
 674	if (rc)
 675		goto fail_add_vid_0;
 676
 677	if (nic_data->datapath_caps &
 678	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
 679	    efx->mcdi->fn_flags &
 680	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
 681		efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
 682
 683	return 0;
 684
 685fail_add_vid_0:
 686	efx_ef10_cleanup_vlans(efx);
 687fail_add_vid_unspec:
 688	mutex_destroy(&nic_data->vlan_lock);
 689	efx_ptp_remove(efx);
 690	efx_mcdi_mon_remove(efx);
 691fail5:
 692	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 693fail4:
 694	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 695fail3:
 696	efx_mcdi_detach(efx);
 697
 698	mutex_lock(&nic_data->udp_tunnels_lock);
 699	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 700	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 701	mutex_unlock(&nic_data->udp_tunnels_lock);
 702	mutex_destroy(&nic_data->udp_tunnels_lock);
 703
 704	efx_mcdi_fini(efx);
 705fail2:
 706	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 707fail1:
 708	kfree(nic_data);
 709	efx->nic_data = NULL;
 710	return rc;
 711}
 712
 713#ifdef EFX_USE_PIO
 714
 715static void efx_ef10_free_piobufs(struct efx_nic *efx)
 716{
 717	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 718	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 719	unsigned int i;
 720	int rc;
 721
 722	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 723
 724	for (i = 0; i < nic_data->n_piobufs; i++) {
 725		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 726			       nic_data->piobuf_handle[i]);
 727		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 728				  NULL, 0, NULL);
 729		WARN_ON(rc);
 730	}
 731
 732	nic_data->n_piobufs = 0;
 733}
 734
 735static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 736{
 737	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 738	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 739	unsigned int i;
 740	size_t outlen;
 741	int rc = 0;
 742
 743	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 744
 745	for (i = 0; i < n; i++) {
 746		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 747					outbuf, sizeof(outbuf), &outlen);
 748		if (rc) {
 749			/* Don't display the MC error if we didn't have space
 750			 * for a VF.
 751			 */
 752			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 753				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 754						       0, outbuf, outlen, rc);
 755			break;
 756		}
 757		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 758			rc = -EIO;
 759			break;
 760		}
 761		nic_data->piobuf_handle[i] =
 762			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 763		netif_dbg(efx, probe, efx->net_dev,
 764			  "allocated PIO buffer %u handle %x\n", i,
 765			  nic_data->piobuf_handle[i]);
 766	}
 767
 768	nic_data->n_piobufs = i;
 769	if (rc)
 770		efx_ef10_free_piobufs(efx);
 771	return rc;
 772}
 773
 774static int efx_ef10_link_piobufs(struct efx_nic *efx)
 775{
 776	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 777	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
 778	struct efx_channel *channel;
 779	struct efx_tx_queue *tx_queue;
 780	unsigned int offset, index;
 781	int rc;
 782
 783	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 784	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 785
 786	/* Link a buffer to each VI in the write-combining mapping */
 787	for (index = 0; index < nic_data->n_piobufs; ++index) {
 788		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 789			       nic_data->piobuf_handle[index]);
 790		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 791			       nic_data->pio_write_vi_base + index);
 792		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 793				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 794				  NULL, 0, NULL);
 795		if (rc) {
 796			netif_err(efx, drv, efx->net_dev,
 797				  "failed to link VI %u to PIO buffer %u (%d)\n",
 798				  nic_data->pio_write_vi_base + index, index,
 799				  rc);
 800			goto fail;
 801		}
 802		netif_dbg(efx, probe, efx->net_dev,
 803			  "linked VI %u to PIO buffer %u\n",
 804			  nic_data->pio_write_vi_base + index, index);
 805	}
 806
 807	/* Link a buffer to each TX queue */
 808	efx_for_each_channel(channel, efx) {
 809		/* Extra channels, even those with TXQs (PTP), do not require
 810		 * PIO resources.
 811		 */
 812		if (!channel->type->want_pio ||
 813		    channel->channel >= efx->xdp_channel_offset)
 814			continue;
 815
 816		efx_for_each_channel_tx_queue(tx_queue, channel) {
 817			/* We assign the PIO buffers to queues in
 818			 * reverse order to allow for the following
 819			 * special case.
 820			 */
 821			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 822				   tx_queue->channel->channel - 1) *
 823				  efx_piobuf_size);
 824			index = offset / nic_data->piobuf_size;
 825			offset = offset % nic_data->piobuf_size;
 826
 827			/* When the host page size is 4K, the first
 828			 * host page in the WC mapping may be within
 829			 * the same VI page as the last TX queue.  We
 830			 * can only link one buffer to each VI.
 831			 */
 832			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 833				BUG_ON(index != 0);
 834				rc = 0;
 835			} else {
 836				MCDI_SET_DWORD(inbuf,
 837					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 838					       nic_data->piobuf_handle[index]);
 839				MCDI_SET_DWORD(inbuf,
 840					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 841					       tx_queue->queue);
 842				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 843						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 844						  NULL, 0, NULL);
 845			}
 846
 847			if (rc) {
 848				/* This is non-fatal; the TX path just
 849				 * won't use PIO for this queue
 850				 */
 851				netif_err(efx, drv, efx->net_dev,
 852					  "failed to link VI %u to PIO buffer %u (%d)\n",
 853					  tx_queue->queue, index, rc);
 854				tx_queue->piobuf = NULL;
 855			} else {
 856				tx_queue->piobuf =
 857					nic_data->pio_write_base +
 858					index * efx->vi_stride + offset;
 859				tx_queue->piobuf_offset = offset;
 860				netif_dbg(efx, probe, efx->net_dev,
 861					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 862					  tx_queue->queue, index,
 863					  tx_queue->piobuf_offset,
 864					  tx_queue->piobuf);
 865			}
 866		}
 867	}
 868
 869	return 0;
 870
 871fail:
 872	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
 873	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
 874	 */
 875	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
 876	while (index--) {
 877		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 878			       nic_data->pio_write_vi_base + index);
 879		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 880			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 881			     NULL, 0, NULL);
 882	}
 883	return rc;
 884}
 885
 886static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 887{
 888	struct efx_channel *channel;
 889	struct efx_tx_queue *tx_queue;
 890
 891	/* All our existing PIO buffers went away */
 892	efx_for_each_channel(channel, efx)
 893		efx_for_each_channel_tx_queue(tx_queue, channel)
 894			tx_queue->piobuf = NULL;
 895}
 896
 897#else /* !EFX_USE_PIO */
 898
 899static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 900{
 901	return n == 0 ? 0 : -ENOBUFS;
 902}
 903
 904static int efx_ef10_link_piobufs(struct efx_nic *efx)
 905{
 906	return 0;
 907}
 908
 909static void efx_ef10_free_piobufs(struct efx_nic *efx)
 910{
 911}
 912
 913static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 914{
 915}
 916
 917#endif /* EFX_USE_PIO */
 918
 919static void efx_ef10_remove(struct efx_nic *efx)
 920{
 921	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 922	int rc;
 923
 924#ifdef CONFIG_SFC_SRIOV
 925	struct efx_ef10_nic_data *nic_data_pf;
 926	struct pci_dev *pci_dev_pf;
 927	struct efx_nic *efx_pf;
 928	struct ef10_vf *vf;
 929
 930	if (efx->pci_dev->is_virtfn) {
 931		pci_dev_pf = efx->pci_dev->physfn;
 932		if (pci_dev_pf) {
 933			efx_pf = pci_get_drvdata(pci_dev_pf);
 934			nic_data_pf = efx_pf->nic_data;
 935			vf = nic_data_pf->vf + nic_data->vf_index;
 936			vf->efx = NULL;
 937		} else
 938			netif_info(efx, drv, efx->net_dev,
 939				   "Could not get the PF id from VF\n");
 940	}
 941#endif
 942
 943	efx_ef10_cleanup_vlans(efx);
 944	mutex_destroy(&nic_data->vlan_lock);
 945
 946	efx_ptp_remove(efx);
 947
 948	efx_mcdi_mon_remove(efx);
 949
 950	efx_mcdi_rx_free_indir_table(efx);
 951
 952	if (nic_data->wc_membase)
 953		iounmap(nic_data->wc_membase);
 954
 955	rc = efx_mcdi_free_vis(efx);
 956	WARN_ON(rc != 0);
 957
 958	if (!nic_data->must_restore_piobufs)
 959		efx_ef10_free_piobufs(efx);
 960
 961	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 962	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 963
 964	efx_mcdi_detach(efx);
 965
 966	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 967	mutex_lock(&nic_data->udp_tunnels_lock);
 968	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 969	mutex_unlock(&nic_data->udp_tunnels_lock);
 970
 971	mutex_destroy(&nic_data->udp_tunnels_lock);
 972
 973	efx_mcdi_fini(efx);
 974	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 975	kfree(nic_data);
 976}
 977
 978static int efx_ef10_probe_pf(struct efx_nic *efx)
 979{
 980	return efx_ef10_probe(efx);
 981}
 982
 983int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
 984			    u32 *port_flags, u32 *vadaptor_flags,
 985			    unsigned int *vlan_tags)
 986{
 987	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 988	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
 989	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
 990	size_t outlen;
 991	int rc;
 992
 993	if (nic_data->datapath_caps &
 994	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
 995		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
 996			       port_id);
 997
 998		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
 999				  outbuf, sizeof(outbuf), &outlen);
1000		if (rc)
1001			return rc;
1002
1003		if (outlen < sizeof(outbuf)) {
1004			rc = -EIO;
1005			return rc;
1006		}
1007	}
1008
1009	if (port_flags)
1010		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1011	if (vadaptor_flags)
1012		*vadaptor_flags =
1013			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014	if (vlan_tags)
1015		*vlan_tags =
1016			MCDI_DWORD(outbuf,
1017				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1018
1019	return 0;
1020}
1021
1022int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1023{
1024	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1025
1026	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028			    NULL, 0, NULL);
1029}
1030
1031int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1032{
1033	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1034
1035	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037			    NULL, 0, NULL);
1038}
1039
1040int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041			   unsigned int port_id, const u8 *mac)
1042{
1043	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1044
1045	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1047
1048	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049			    sizeof(inbuf), NULL, 0, NULL);
1050}
1051
1052int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053			   unsigned int port_id, const u8 *mac)
1054{
1055	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1056
1057	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1059
1060	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061			    sizeof(inbuf), NULL, 0, NULL);
1062}
1063
1064#ifdef CONFIG_SFC_SRIOV
1065static int efx_ef10_probe_vf(struct efx_nic *efx)
1066{
1067	int rc;
1068	struct pci_dev *pci_dev_pf;
1069
1070	/* If the parent PF has no VF data structure, it doesn't know about this
1071	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1072	 * if the PF driver was unloaded while any VF was assigned to a guest
1073	 * (using Xen, only).
1074	 */
1075	pci_dev_pf = efx->pci_dev->physfn;
1076	if (pci_dev_pf) {
1077		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079
1080		if (!nic_data_pf->vf) {
1081			netif_info(efx, drv, efx->net_dev,
1082				   "The VF cannot link to its parent PF; "
1083				   "please destroy and re-create the VF\n");
1084			return -EBUSY;
1085		}
1086	}
1087
1088	rc = efx_ef10_probe(efx);
1089	if (rc)
1090		return rc;
1091
1092	rc = efx_ef10_get_vf_index(efx);
1093	if (rc)
1094		goto fail;
1095
1096	if (efx->pci_dev->is_virtfn) {
1097		if (efx->pci_dev->physfn) {
1098			struct efx_nic *efx_pf =
1099				pci_get_drvdata(efx->pci_dev->physfn);
1100			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102
1103			nic_data_p->vf[nic_data->vf_index].efx = efx;
1104			nic_data_p->vf[nic_data->vf_index].pci_dev =
1105				efx->pci_dev;
1106		} else
1107			netif_info(efx, drv, efx->net_dev,
1108				   "Could not get the PF id from VF\n");
1109	}
1110
1111	return 0;
1112
1113fail:
1114	efx_ef10_remove(efx);
1115	return rc;
1116}
1117#else
1118static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119{
1120	return 0;
1121}
1122#endif
1123
1124static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125			      unsigned int min_vis, unsigned int max_vis)
1126{
1127	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1128
1129	return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130				  &nic_data->n_allocated_vis);
1131}
1132
1133/* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1135 */
1136static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137{
1138	unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139				     efx_separate_tx_channels ? 2 : 1);
1140	unsigned int channel_vis, pio_write_vi_base, max_vis;
1141	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142	unsigned int uc_mem_map_size, wc_mem_map_size;
1143	void __iomem *membase;
1144	int rc;
1145
1146	channel_vis = max(efx->n_channels,
1147			  ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148			   efx->tx_queues_per_channel) +
1149			   efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150	if (efx->max_vis && efx->max_vis < channel_vis) {
1151		netif_dbg(efx, drv, efx->net_dev,
1152			  "Reducing channel VIs from %u to %u\n",
1153			  channel_vis, efx->max_vis);
1154		channel_vis = efx->max_vis;
1155	}
1156
1157#ifdef EFX_USE_PIO
1158	/* Try to allocate PIO buffers if wanted and if the full
1159	 * number of PIO buffers would be sufficient to allocate one
1160	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1161	 * are only a small number of PIO buffers shared between all
1162	 * functions of the controller.
1163	 */
1164	if (efx_piobuf_size != 0 &&
1165	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166	    efx->n_tx_channels) {
1167		unsigned int n_piobufs =
1168			DIV_ROUND_UP(efx->n_tx_channels,
1169				     nic_data->piobuf_size / efx_piobuf_size);
1170
1171		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172		if (rc == -ENOSPC)
1173			netif_dbg(efx, probe, efx->net_dev,
1174				  "out of PIO buffers; cannot allocate more\n");
1175		else if (rc == -EPERM)
1176			netif_dbg(efx, probe, efx->net_dev,
1177				  "not permitted to allocate PIO buffers\n");
1178		else if (rc)
1179			netif_err(efx, probe, efx->net_dev,
1180				  "failed to allocate PIO buffers (%d)\n", rc);
1181		else
1182			netif_dbg(efx, probe, efx->net_dev,
1183				  "allocated %u PIO buffers\n", n_piobufs);
1184	}
1185#else
1186	nic_data->n_piobufs = 0;
1187#endif
1188
1189	/* PIO buffers should be mapped with write-combining enabled,
1190	 * and we want to make single UC and WC mappings rather than
1191	 * several of each (in fact that's the only option if host
1192	 * page size is >4K).  So we may allocate some extra VIs just
1193	 * for writing PIO buffers through.
1194	 *
1195	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196	 * first 4K of the next VI.  Then the WC mapping begins with
1197	 * the remainder of this last VI.
1198	 */
1199	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200				     ER_DZ_TX_PIOBUF);
1201	if (nic_data->n_piobufs) {
1202		/* pio_write_vi_base rounds down to give the number of complete
1203		 * VIs inside the UC mapping.
1204		 */
1205		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207					       nic_data->n_piobufs) *
1208					      efx->vi_stride) -
1209				   uc_mem_map_size);
1210		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211	} else {
1212		pio_write_vi_base = 0;
1213		wc_mem_map_size = 0;
1214		max_vis = channel_vis;
1215	}
1216
1217	/* In case the last attached driver failed to free VIs, do it now */
1218	rc = efx_mcdi_free_vis(efx);
1219	if (rc != 0)
1220		return rc;
1221
1222	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223	if (rc != 0)
1224		return rc;
1225
1226	if (nic_data->n_allocated_vis < channel_vis) {
1227		netif_info(efx, drv, efx->net_dev,
1228			   "Could not allocate enough VIs to satisfy RSS"
1229			   " requirements. Performance may not be optimal.\n");
1230		/* We didn't get the VIs to populate our channels.
1231		 * We could keep what we got but then we'd have more
1232		 * interrupts than we need.
1233		 * Instead calculate new max_channels and restart
1234		 */
1235		efx->max_channels = nic_data->n_allocated_vis;
1236		efx->max_tx_channels =
1237			nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238
1239		efx_mcdi_free_vis(efx);
1240		return -EAGAIN;
1241	}
1242
1243	/* If we didn't get enough VIs to map all the PIO buffers, free the
1244	 * PIO buffers
1245	 */
1246	if (nic_data->n_piobufs &&
1247	    nic_data->n_allocated_vis <
1248	    pio_write_vi_base + nic_data->n_piobufs) {
1249		netif_dbg(efx, probe, efx->net_dev,
1250			  "%u VIs are not sufficient to map %u PIO buffers\n",
1251			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1252		efx_ef10_free_piobufs(efx);
1253	}
1254
1255	/* Shrink the original UC mapping of the memory BAR */
1256	membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257	if (!membase) {
1258		netif_err(efx, probe, efx->net_dev,
1259			  "could not shrink memory BAR to %x\n",
1260			  uc_mem_map_size);
1261		return -ENOMEM;
1262	}
1263	iounmap(efx->membase);
1264	efx->membase = membase;
1265
1266	/* Set up the WC mapping if needed */
1267	if (wc_mem_map_size) {
1268		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269						  uc_mem_map_size,
1270						  wc_mem_map_size);
1271		if (!nic_data->wc_membase) {
1272			netif_err(efx, probe, efx->net_dev,
1273				  "could not allocate WC mapping of size %x\n",
1274				  wc_mem_map_size);
1275			return -ENOMEM;
1276		}
1277		nic_data->pio_write_vi_base = pio_write_vi_base;
1278		nic_data->pio_write_base =
1279			nic_data->wc_membase +
1280			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281			 uc_mem_map_size);
1282
1283		rc = efx_ef10_link_piobufs(efx);
1284		if (rc)
1285			efx_ef10_free_piobufs(efx);
1286	}
1287
1288	netif_dbg(efx, probe, efx->net_dev,
1289		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1291		  nic_data->wc_membase, wc_mem_map_size);
1292
1293	return 0;
1294}
1295
1296static void efx_ef10_fini_nic(struct efx_nic *efx)
1297{
1298	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299
1300	spin_lock_bh(&efx->stats_lock);
1301	kfree(nic_data->mc_stats);
1302	nic_data->mc_stats = NULL;
1303	spin_unlock_bh(&efx->stats_lock);
1304}
1305
1306static int efx_ef10_init_nic(struct efx_nic *efx)
1307{
1308	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1309	struct net_device *net_dev = efx->net_dev;
1310	netdev_features_t tun_feats, tso_feats;
1311	int rc;
1312
1313	if (nic_data->must_check_datapath_caps) {
1314		rc = efx_ef10_init_datapath_caps(efx);
1315		if (rc)
1316			return rc;
1317		nic_data->must_check_datapath_caps = false;
1318	}
1319
1320	if (efx->must_realloc_vis) {
1321		/* We cannot let the number of VIs change now */
1322		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1323					nic_data->n_allocated_vis);
1324		if (rc)
1325			return rc;
1326		efx->must_realloc_vis = false;
1327	}
1328
1329	nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1330				     GFP_KERNEL);
1331	if (!nic_data->mc_stats)
1332		return -ENOMEM;
1333
1334	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1335		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1336		if (rc == 0) {
1337			rc = efx_ef10_link_piobufs(efx);
1338			if (rc)
1339				efx_ef10_free_piobufs(efx);
1340		}
1341
1342		/* Log an error on failure, but this is non-fatal.
1343		 * Permission errors are less important - we've presumably
1344		 * had the PIO buffer licence removed.
1345		 */
1346		if (rc == -EPERM)
1347			netif_dbg(efx, drv, efx->net_dev,
1348				  "not permitted to restore PIO buffers\n");
1349		else if (rc)
1350			netif_err(efx, drv, efx->net_dev,
1351				  "failed to restore PIO buffers (%d)\n", rc);
1352		nic_data->must_restore_piobufs = false;
1353	}
1354
1355	/* encap features might change during reset if fw variant changed */
1356	if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1357		net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1358	else
1359		net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
 
1360
1361	tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1362		    NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1363	tso_feats = NETIF_F_TSO | NETIF_F_TSO6;
1364
1365	if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1366		/* If this is first nic_init, or if it is a reset and a new fw
1367		 * variant has added new features, enable them by default.
1368		 * If the features are not new, maintain their current value.
1369		 */
1370		if (!(net_dev->hw_features & tun_feats))
1371			net_dev->features |= tun_feats;
1372		net_dev->hw_enc_features |= tun_feats | tso_feats;
1373		net_dev->hw_features |= tun_feats;
1374	} else {
1375		net_dev->hw_enc_features &= ~(tun_feats | tso_feats);
1376		net_dev->hw_features &= ~tun_feats;
1377		net_dev->features &= ~tun_feats;
1378	}
 
1379
1380	/* don't fail init if RSS setup doesn't work */
1381	rc = efx->type->rx_push_rss_config(efx, false,
1382					   efx->rss_context.rx_indir_table, NULL);
1383
1384	return 0;
1385}
1386
1387static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1388{
1389	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1390#ifdef CONFIG_SFC_SRIOV
1391	unsigned int i;
1392#endif
1393
1394	/* All our allocations have been reset */
1395	efx->must_realloc_vis = true;
1396	efx_mcdi_filter_table_reset_mc_allocations(efx);
1397	nic_data->must_restore_piobufs = true;
1398	efx_ef10_forget_old_piobufs(efx);
1399	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1400
1401	/* Driver-created vswitches and vports must be re-created */
1402	nic_data->must_probe_vswitching = true;
1403	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1404#ifdef CONFIG_SFC_SRIOV
1405	if (nic_data->vf)
1406		for (i = 0; i < efx->vf_count; i++)
1407			nic_data->vf[i].vport_id = 0;
1408#endif
1409}
1410
1411static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1412{
1413	if (reason == RESET_TYPE_MC_FAILURE)
1414		return RESET_TYPE_DATAPATH;
1415
1416	return efx_mcdi_map_reset_reason(reason);
1417}
1418
1419static int efx_ef10_map_reset_flags(u32 *flags)
1420{
1421	enum {
1422		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1423				   ETH_RESET_SHARED_SHIFT),
1424		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1425				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1426				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1427				 ETH_RESET_SHARED_SHIFT)
1428	};
1429
1430	/* We assume for now that our PCI function is permitted to
1431	 * reset everything.
1432	 */
1433
1434	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1435		*flags &= ~EF10_RESET_MC;
1436		return RESET_TYPE_WORLD;
1437	}
1438
1439	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1440		*flags &= ~EF10_RESET_PORT;
1441		return RESET_TYPE_ALL;
1442	}
1443
1444	/* no invisible reset implemented */
1445
1446	return -EINVAL;
1447}
1448
1449static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1450{
1451	int rc = efx_mcdi_reset(efx, reset_type);
1452
1453	/* Unprivileged functions return -EPERM, but need to return success
1454	 * here so that the datapath is brought back up.
1455	 */
1456	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1457		rc = 0;
1458
1459	/* If it was a port reset, trigger reallocation of MC resources.
1460	 * Note that on an MC reset nothing needs to be done now because we'll
1461	 * detect the MC reset later and handle it then.
1462	 * For an FLR, we never get an MC reset event, but the MC has reset all
1463	 * resources assigned to us, so we have to trigger reallocation now.
1464	 */
1465	if ((reset_type == RESET_TYPE_ALL ||
1466	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1467		efx_ef10_table_reset_mc_allocations(efx);
1468	return rc;
1469}
1470
1471#define EF10_DMA_STAT(ext_name, mcdi_name)			\
1472	[EF10_STAT_ ## ext_name] =				\
1473	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1474#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1475	[EF10_STAT_ ## int_name] =				\
1476	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1477#define EF10_OTHER_STAT(ext_name)				\
1478	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1479
1480static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1481	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1482	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1483	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1484	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1485	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1486	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1487	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1488	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1489	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1490	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1491	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1492	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1493	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1494	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1495	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1496	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1497	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1498	EF10_OTHER_STAT(port_rx_good_bytes),
1499	EF10_OTHER_STAT(port_rx_bad_bytes),
1500	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1501	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1502	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1503	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1504	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1505	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1506	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1507	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1508	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1509	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1510	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1511	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1512	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1513	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1514	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1515	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1516	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1517	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1518	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1519	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1520	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1521	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1522	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1523	EFX_GENERIC_SW_STAT(rx_noskb_drops),
1524	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1525	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1526	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1527	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1528	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1529	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1530	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1531	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1532	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1533	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1534	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1535	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1536	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1537	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1538	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1539	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1540	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1541	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1542	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1543	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1544	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1545	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1546	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1547	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1548	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1549	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1550	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1551	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1552	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1553	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1554	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1555	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1556	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1557	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1558	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1559	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1560	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1561	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1562	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1563	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1564	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1565	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1566	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1567	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1568	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1569	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1570	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1571	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1572	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1573	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1574	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1575	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1576};
1577
1578#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1579			       (1ULL << EF10_STAT_port_tx_packets) |	\
1580			       (1ULL << EF10_STAT_port_tx_pause) |	\
1581			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1582			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1583			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1584			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1585			       (1ULL <<                                 \
1586				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1587			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1588			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1589			       (1ULL << EF10_STAT_port_rx_packets) |	\
1590			       (1ULL << EF10_STAT_port_rx_good) |	\
1591			       (1ULL << EF10_STAT_port_rx_bad) |	\
1592			       (1ULL << EF10_STAT_port_rx_pause) |	\
1593			       (1ULL << EF10_STAT_port_rx_control) |	\
1594			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1595			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1596			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1597			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1598			       (1ULL << EF10_STAT_port_rx_64) |		\
1599			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1600			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1601			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1602			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1603			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1604			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1605			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1606			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1607			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1608			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1609			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1610			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1611
1612/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1613 * For a 10G/40G switchable port we do not expose these because they might
1614 * not include all the packets they should.
1615 * On 8000 series NICs these statistics are always provided.
1616 */
1617#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1618				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1619				 (1ULL << EF10_STAT_port_tx_64) |	\
1620				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1621				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1622				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1623				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1624				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1625				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1626
1627/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1628 * switchable port we do expose these because the errors will otherwise
1629 * be silent.
1630 */
1631#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1632				  (1ULL << EF10_STAT_port_rx_length_error))
1633
1634/* These statistics are only provided if the firmware supports the
1635 * capability PM_AND_RXDP_COUNTERS.
1636 */
1637#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1638	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1639	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1640	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1641	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1642	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1643	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1644	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1645	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1646	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1647	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1648	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1649	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1650
1651/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1655 */
1656#define EF10_FEC_STAT_MASK (						\
1657	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1658	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1659	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1660	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1661	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1662	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1663
1664/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1665 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1666 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1667 * These bits are in the second u64 of the raw mask.
1668 */
1669#define EF10_CTPIO_STAT_MASK (						\
1670	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1671	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1672	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1673	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1674	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1675	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1676	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1677	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1678	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1679	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1680	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1681	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1682	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1683	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1684	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1685	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1686
1687static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1688{
1689	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1690	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1691	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1692
1693	if (!(efx->mcdi->fn_flags &
1694	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1695		return 0;
1696
1697	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1698		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1699		/* 8000 series have everything even at 40G */
1700		if (nic_data->datapath_caps2 &
1701		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1702			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1703	} else {
1704		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1705	}
1706
1707	if (nic_data->datapath_caps &
1708	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1709		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1710
1711	return raw_mask;
1712}
1713
1714static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1715{
1716	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1717	u64 raw_mask[2];
1718
1719	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1720
1721	/* Only show vadaptor stats when EVB capability is present */
1722	if (nic_data->datapath_caps &
1723	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1724		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1725		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1726	} else {
1727		raw_mask[1] = 0;
1728	}
1729	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1730	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1731		raw_mask[1] |= EF10_FEC_STAT_MASK;
1732
1733	/* CTPIO stats appear in V3. Only show them on devices that actually
1734	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1735	 * and we may be reporting the stats for the underlying port.
1736	 */
1737	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1738	    (nic_data->datapath_caps2 &
1739	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1740		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1741
1742#if BITS_PER_LONG == 64
1743	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1744	mask[0] = raw_mask[0];
1745	mask[1] = raw_mask[1];
1746#else
1747	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1748	mask[0] = raw_mask[0] & 0xffffffff;
1749	mask[1] = raw_mask[0] >> 32;
1750	mask[2] = raw_mask[1] & 0xffffffff;
1751#endif
1752}
1753
1754static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1755{
1756	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1757
1758	efx_ef10_get_stat_mask(efx, mask);
1759	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1760				      mask, names);
1761}
1762
1763static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1764				   struct ethtool_fec_stats *fec_stats)
1765{
1766	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1767	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1768	u64 *stats = nic_data->stats;
1769
1770	efx_ef10_get_stat_mask(efx, mask);
1771	if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1772		fec_stats->corrected_blocks.total =
1773			stats[EF10_STAT_fec_corrected_errors];
1774	if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1775		fec_stats->uncorrectable_blocks.total =
1776			stats[EF10_STAT_fec_uncorrected_errors];
1777}
1778
1779static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1780					   struct rtnl_link_stats64 *core_stats)
1781{
1782	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1783	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1784	u64 *stats = nic_data->stats;
1785	size_t stats_count = 0, index;
1786
1787	efx_ef10_get_stat_mask(efx, mask);
1788
1789	if (full_stats) {
1790		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1791			if (efx_ef10_stat_desc[index].name) {
1792				*full_stats++ = stats[index];
1793				++stats_count;
1794			}
1795		}
1796	}
1797
1798	if (!core_stats)
1799		return stats_count;
1800
1801	if (nic_data->datapath_caps &
1802			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1803		/* Use vadaptor stats. */
1804		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1805					 stats[EF10_STAT_rx_multicast] +
1806					 stats[EF10_STAT_rx_broadcast];
1807		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1808					 stats[EF10_STAT_tx_multicast] +
1809					 stats[EF10_STAT_tx_broadcast];
1810		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1811				       stats[EF10_STAT_rx_multicast_bytes] +
1812				       stats[EF10_STAT_rx_broadcast_bytes];
1813		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1814				       stats[EF10_STAT_tx_multicast_bytes] +
1815				       stats[EF10_STAT_tx_broadcast_bytes];
1816		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1817					 stats[GENERIC_STAT_rx_noskb_drops];
1818		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1819		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1820		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1821		core_stats->rx_errors = core_stats->rx_crc_errors;
1822		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1823	} else {
1824		/* Use port stats. */
1825		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1826		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1827		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1828		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1829		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1830					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1831					 stats[GENERIC_STAT_rx_noskb_drops];
1832		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1833		core_stats->rx_length_errors =
1834				stats[EF10_STAT_port_rx_gtjumbo] +
1835				stats[EF10_STAT_port_rx_length_error];
1836		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1837		core_stats->rx_frame_errors =
1838				stats[EF10_STAT_port_rx_align_error];
1839		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1840		core_stats->rx_errors = (core_stats->rx_length_errors +
1841					 core_stats->rx_crc_errors +
1842					 core_stats->rx_frame_errors);
1843	}
1844
1845	return stats_count;
1846}
1847
1848static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1849				       struct rtnl_link_stats64 *core_stats)
1850{
1851	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1852	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1853	u64 *stats = nic_data->stats;
1854
1855	efx_ef10_get_stat_mask(efx, mask);
1856
1857	/* If NIC was fini'd (probably resetting), then we can't read
1858	 * updated stats right now.
1859	 */
1860	if (nic_data->mc_stats) {
1861		efx_nic_copy_stats(efx, nic_data->mc_stats);
1862		efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1863				     mask, stats, nic_data->mc_stats, false);
1864	}
1865
1866	/* Update derived statistics */
1867	efx_nic_fix_nodesc_drop_stat(efx,
1868				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1869	/* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1870	 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1871	 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1872	 * Here we calculate port_rx_good_bytes.
1873	 */
1874	stats[EF10_STAT_port_rx_good_bytes] =
1875		stats[EF10_STAT_port_rx_bytes] -
1876		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1877
1878	/* The asynchronous reads used to calculate RX_BAD_BYTES in
1879	 * MC Firmware are done such that we should not see an increase in
1880	 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1881	 * does mean that the stat can decrease at times. Here we do not
1882	 * update the stat unless it has increased or has gone to zero
1883	 * (In the case of the NIC rebooting).
1884	 * Please see Bug 33781 for a discussion of why things work this way.
1885	 */
1886	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1887			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1888	efx_update_sw_stats(efx, stats);
1889
1890	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1891}
1892
1893static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1894	__must_hold(&efx->stats_lock)
1895{
1896	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1897	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1898	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1899	__le64 generation_start, generation_end;
1900	u64 *stats = nic_data->stats;
1901	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1902	struct efx_buffer stats_buf;
1903	__le64 *dma_stats;
1904	int rc;
1905
1906	spin_unlock_bh(&efx->stats_lock);
1907
1908	efx_ef10_get_stat_mask(efx, mask);
1909
1910	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1911	if (rc) {
1912		spin_lock_bh(&efx->stats_lock);
1913		return rc;
1914	}
1915
1916	dma_stats = stats_buf.addr;
1917	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1918
1919	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1920	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1921			      MAC_STATS_IN_DMA, 1);
1922	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1923	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1924
1925	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1926				NULL, 0, NULL);
1927	spin_lock_bh(&efx->stats_lock);
1928	if (rc) {
1929		/* Expect ENOENT if DMA queues have not been set up */
1930		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1931			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1932					       sizeof(inbuf), NULL, 0, rc);
1933		goto out;
1934	}
1935
1936	generation_end = dma_stats[efx->num_mac_stats - 1];
1937	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1938		WARN_ON_ONCE(1);
1939		goto out;
1940	}
1941	rmb();
1942	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1943			     stats, stats_buf.addr, false);
1944	rmb();
1945	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1946	if (generation_end != generation_start) {
1947		rc = -EAGAIN;
1948		goto out;
1949	}
1950
1951	efx_update_sw_stats(efx, stats);
1952out:
1953	/* releasing a DMA coherent buffer with BH disabled can panic */
1954	spin_unlock_bh(&efx->stats_lock);
1955	efx_nic_free_buffer(efx, &stats_buf);
1956	spin_lock_bh(&efx->stats_lock);
1957	return rc;
1958}
1959
1960static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1961				       struct rtnl_link_stats64 *core_stats)
1962{
1963	if (efx_ef10_try_update_nic_stats_vf(efx))
1964		return 0;
1965
1966	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1967}
1968
1969static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1970					      struct rtnl_link_stats64 *core_stats)
1971{
1972	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1973
1974	/* In atomic context, cannot update HW stats.  Just update the
1975	 * software stats and return so the caller can continue.
1976	 */
1977	efx_update_sw_stats(efx, nic_data->stats);
1978	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1979}
1980
1981static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1982{
1983	struct efx_nic *efx = channel->efx;
1984	unsigned int mode, usecs;
1985	efx_dword_t timer_cmd;
1986
1987	if (channel->irq_moderation_us) {
1988		mode = 3;
1989		usecs = channel->irq_moderation_us;
1990	} else {
1991		mode = 0;
1992		usecs = 0;
1993	}
1994
1995	if (EFX_EF10_WORKAROUND_61265(efx)) {
1996		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1997		unsigned int ns = usecs * 1000;
1998
1999		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2000			       channel->channel);
2001		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2002		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2003		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2004
2005		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2006				   inbuf, sizeof(inbuf), 0, NULL, 0);
2007	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
2008		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2009
2010		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2011				     EFE_DD_EVQ_IND_TIMER_FLAGS,
2012				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
2013				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2014		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2015				channel->channel);
2016	} else {
2017		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2018
2019		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2020				     ERF_DZ_TC_TIMER_VAL, ticks,
2021				     ERF_FZ_TC_TMR_REL_VAL, ticks);
2022		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2023				channel->channel);
2024	}
2025}
2026
2027static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2028				struct ethtool_wolinfo *wol) {}
2029
2030static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2031{
2032	return -EOPNOTSUPP;
2033}
2034
2035static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2036{
2037	wol->supported = 0;
2038	wol->wolopts = 0;
2039	memset(&wol->sopass, 0, sizeof(wol->sopass));
2040}
2041
2042static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2043{
2044	if (type != 0)
2045		return -EINVAL;
2046	return 0;
2047}
2048
2049static void efx_ef10_mcdi_request(struct efx_nic *efx,
2050				  const efx_dword_t *hdr, size_t hdr_len,
2051				  const efx_dword_t *sdu, size_t sdu_len)
2052{
2053	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2054	u8 *pdu = nic_data->mcdi_buf.addr;
2055
2056	memcpy(pdu, hdr, hdr_len);
2057	memcpy(pdu + hdr_len, sdu, sdu_len);
2058	wmb();
2059
2060	/* The hardware provides 'low' and 'high' (doorbell) registers
2061	 * for passing the 64-bit address of an MCDI request to
2062	 * firmware.  However the dwords are swapped by firmware.  The
2063	 * least significant bits of the doorbell are then 0 for all
2064	 * MCDI requests due to alignment.
2065	 */
2066	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2067		    ER_DZ_MC_DB_LWRD);
2068	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2069		    ER_DZ_MC_DB_HWRD);
2070}
2071
2072static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2073{
2074	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2075	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2076
2077	rmb();
2078	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2079}
2080
2081static void
2082efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2083			    size_t offset, size_t outlen)
2084{
2085	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2086	const u8 *pdu = nic_data->mcdi_buf.addr;
2087
2088	memcpy(outbuf, pdu + offset, outlen);
2089}
2090
2091static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2092{
2093	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2094
2095	/* All our allocations have been reset */
2096	efx_ef10_table_reset_mc_allocations(efx);
2097
2098	/* The datapath firmware might have been changed */
2099	nic_data->must_check_datapath_caps = true;
2100
2101	/* MAC statistics have been cleared on the NIC; clear the local
2102	 * statistic that we update with efx_update_diff_stat().
2103	 */
2104	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2105}
2106
2107static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2108{
2109	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2110	int rc;
2111
2112	rc = efx_ef10_get_warm_boot_count(efx);
2113	if (rc < 0) {
2114		/* The firmware is presumably in the process of
2115		 * rebooting.  However, we are supposed to report each
2116		 * reboot just once, so we must only do that once we
2117		 * can read and store the updated warm boot count.
2118		 */
2119		return 0;
2120	}
2121
2122	if (rc == nic_data->warm_boot_count)
2123		return 0;
2124
2125	nic_data->warm_boot_count = rc;
2126	efx_ef10_mcdi_reboot_detected(efx);
2127
2128	return -EIO;
2129}
2130
2131/* Handle an MSI interrupt
2132 *
2133 * Handle an MSI hardware interrupt.  This routine schedules event
2134 * queue processing.  No interrupt acknowledgement cycle is necessary.
2135 * Also, we never need to check that the interrupt is for us, since
2136 * MSI interrupts cannot be shared.
2137 */
2138static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2139{
2140	struct efx_msi_context *context = dev_id;
2141	struct efx_nic *efx = context->efx;
2142
2143	netif_vdbg(efx, intr, efx->net_dev,
2144		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2145
2146	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2147		/* Note test interrupts */
2148		if (context->index == efx->irq_level)
2149			efx->last_irq_cpu = raw_smp_processor_id();
2150
2151		/* Schedule processing of the channel */
2152		efx_schedule_channel_irq(efx->channel[context->index]);
2153	}
2154
2155	return IRQ_HANDLED;
2156}
2157
2158static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2159{
2160	struct efx_nic *efx = dev_id;
2161	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2162	struct efx_channel *channel;
2163	efx_dword_t reg;
2164	u32 queues;
2165
2166	/* Read the ISR which also ACKs the interrupts */
2167	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2168	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2169
2170	if (queues == 0)
2171		return IRQ_NONE;
2172
2173	if (likely(soft_enabled)) {
2174		/* Note test interrupts */
2175		if (queues & (1U << efx->irq_level))
2176			efx->last_irq_cpu = raw_smp_processor_id();
2177
2178		efx_for_each_channel(channel, efx) {
2179			if (queues & 1)
2180				efx_schedule_channel_irq(channel);
2181			queues >>= 1;
2182		}
2183	}
2184
2185	netif_vdbg(efx, intr, efx->net_dev,
2186		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2187		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2188
2189	return IRQ_HANDLED;
2190}
2191
2192static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2193{
2194	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2195
2196	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2197				    NULL) == 0)
2198		return -ENOTSUPP;
2199
2200	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2201
2202	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2203	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2204			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2205}
2206
2207static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2208{
2209	/* low two bits of label are what we want for type */
2210	BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2211	tx_queue->type = tx_queue->label & 3;
2212	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd,
2213				    (tx_queue->ptr_mask + 1) *
2214				    sizeof(efx_qword_t),
2215				    GFP_KERNEL);
2216}
2217
2218/* This writes to the TX_DESC_WPTR and also pushes data */
2219static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2220					 const efx_qword_t *txd)
2221{
2222	unsigned int write_ptr;
2223	efx_oword_t reg;
2224
2225	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2226	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2227	reg.qword[0] = *txd;
2228	efx_writeo_page(tx_queue->efx, &reg,
2229			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2230}
2231
2232/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2233 */
2234int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2235			 bool *data_mapped)
2236{
2237	struct efx_tx_buffer *buffer;
2238	u16 inner_ipv4_id = 0;
2239	u16 outer_ipv4_id = 0;
2240	struct tcphdr *tcp;
2241	struct iphdr *ip;
2242	u16 ip_tot_len;
2243	u32 seqnum;
2244	u32 mss;
2245
2246	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2247
2248	mss = skb_shinfo(skb)->gso_size;
2249
2250	if (unlikely(mss < 4)) {
2251		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2252		return -EINVAL;
2253	}
2254
2255	if (skb->encapsulation) {
2256		if (!tx_queue->tso_encap)
2257			return -EINVAL;
2258		ip = ip_hdr(skb);
2259		if (ip->version == 4)
2260			outer_ipv4_id = ntohs(ip->id);
2261
2262		ip = inner_ip_hdr(skb);
2263		tcp = inner_tcp_hdr(skb);
2264	} else {
2265		ip = ip_hdr(skb);
2266		tcp = tcp_hdr(skb);
2267	}
2268
2269	/* 8000-series EF10 hardware requires that IP Total Length be
2270	 * greater than or equal to the value it will have in each segment
2271	 * (which is at most mss + 208 + TCP header length), but also less
2272	 * than (0x10000 - inner_network_header).  Otherwise the TCP
2273	 * checksum calculation will be broken for encapsulated packets.
2274	 * We fill in ip->tot_len with 0xff30, which should satisfy the
2275	 * first requirement unless the MSS is ridiculously large (which
2276	 * should be impossible as the driver max MTU is 9216); it is
2277	 * guaranteed to satisfy the second as we only attempt TSO if
2278	 * inner_network_header <= 208.
2279	 */
2280	ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2281	EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2282				  (tcp->doff << 2u) > ip_tot_len);
2283
2284	if (ip->version == 4) {
2285		ip->tot_len = htons(ip_tot_len);
2286		ip->check = 0;
2287		inner_ipv4_id = ntohs(ip->id);
2288	} else {
2289		((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
2290	}
2291
2292	seqnum = ntohl(tcp->seq);
2293
2294	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2295
2296	buffer->flags = EFX_TX_BUF_OPTION;
2297	buffer->len = 0;
2298	buffer->unmap_len = 0;
2299	EFX_POPULATE_QWORD_5(buffer->option,
2300			ESF_DZ_TX_DESC_IS_OPT, 1,
2301			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2302			ESF_DZ_TX_TSO_OPTION_TYPE,
2303			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2304			ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2305			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2306			);
2307	++tx_queue->insert_count;
2308
2309	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2310
2311	buffer->flags = EFX_TX_BUF_OPTION;
2312	buffer->len = 0;
2313	buffer->unmap_len = 0;
2314	EFX_POPULATE_QWORD_5(buffer->option,
2315			ESF_DZ_TX_DESC_IS_OPT, 1,
2316			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2317			ESF_DZ_TX_TSO_OPTION_TYPE,
2318			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2319			ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2320			ESF_DZ_TX_TSO_TCP_MSS, mss
2321			);
2322	++tx_queue->insert_count;
2323
2324	return 0;
2325}
2326
2327static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2328{
2329	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2330	u32 tso_versions = 0;
2331
2332	if (nic_data->datapath_caps &
2333	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2334		tso_versions |= BIT(1);
2335	if (nic_data->datapath_caps2 &
2336	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2337		tso_versions |= BIT(2);
2338	return tso_versions;
2339}
2340
2341static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2342{
2343	bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2344	bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
2345	struct efx_channel *channel = tx_queue->channel;
2346	struct efx_nic *efx = tx_queue->efx;
2347	struct efx_ef10_nic_data *nic_data;
2348	efx_qword_t *txd;
2349	int rc;
2350
2351	nic_data = efx->nic_data;
2352
2353	/* Only attempt to enable TX timestamping if we have the license for it,
2354	 * otherwise TXQ init will fail
2355	 */
2356	if (!(nic_data->licensed_features &
2357	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2358		tx_queue->timestamping = false;
2359		/* Disable sync events on this channel. */
2360		if (efx->type->ptp_set_ts_sync_events)
2361			efx->type->ptp_set_ts_sync_events(efx, false, false);
2362	}
2363
2364	/* TSOv2 is a limited resource that can only be configured on a limited
2365	 * number of queues. TSO without checksum offload is not really a thing,
2366	 * so we only enable it for those queues.
2367	 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2368	 * for XDP tx.
2369	 */
2370	if (efx_has_cap(efx, TX_TSO_V2)) {
2371		if ((csum_offload || inner_csum) &&
2372		    !tx_queue->timestamping && !tx_queue->xdp_tx) {
2373			tx_queue->tso_version = 2;
2374			netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2375				  channel->channel);
2376		}
2377	} else if (efx_has_cap(efx, TX_TSO)) {
2378		tx_queue->tso_version = 1;
2379	}
2380
2381	rc = efx_mcdi_tx_init(tx_queue);
2382	if (rc)
2383		goto fail;
2384
2385	/* A previous user of this TX queue might have set us up the
2386	 * bomb by writing a descriptor to the TX push collector but
2387	 * not the doorbell.  (Each collector belongs to a port, not a
2388	 * queue or function, so cannot easily be reset.)  We must
2389	 * attempt to push a no-op descriptor in its place.
2390	 */
2391	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2392	tx_queue->insert_count = 1;
2393	txd = efx_tx_desc(tx_queue, 0);
2394	EFX_POPULATE_QWORD_7(*txd,
2395			     ESF_DZ_TX_DESC_IS_OPT, true,
2396			     ESF_DZ_TX_OPTION_TYPE,
2397			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2398			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2399			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2400			     ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2401			     ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2402			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2403	tx_queue->write_count = 1;
2404
2405	if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2406		tx_queue->tso_encap = true;
2407
2408	wmb();
2409	efx_ef10_push_tx_desc(tx_queue, txd);
2410
2411	return;
2412
2413fail:
2414	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2415		    tx_queue->queue);
2416}
2417
2418/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2419static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2420{
2421	unsigned int write_ptr;
2422	efx_dword_t reg;
2423
2424	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2425	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2426	efx_writed_page(tx_queue->efx, &reg,
2427			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2428}
2429
2430#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2431
2432static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2433					  dma_addr_t dma_addr, unsigned int len)
2434{
2435	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2436		/* If we need to break across multiple descriptors we should
2437		 * stop at a page boundary. This assumes the length limit is
2438		 * greater than the page size.
2439		 */
2440		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2441
2442		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2443		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2444	}
2445
2446	return len;
2447}
2448
2449static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2450{
2451	unsigned int old_write_count = tx_queue->write_count;
2452	struct efx_tx_buffer *buffer;
2453	unsigned int write_ptr;
2454	efx_qword_t *txd;
2455
2456	tx_queue->xmit_pending = false;
2457	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2458		return;
2459
2460	do {
2461		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2462		buffer = &tx_queue->buffer[write_ptr];
2463		txd = efx_tx_desc(tx_queue, write_ptr);
2464		++tx_queue->write_count;
2465
2466		/* Create TX descriptor ring entry */
2467		if (buffer->flags & EFX_TX_BUF_OPTION) {
2468			*txd = buffer->option;
2469			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2470				/* PIO descriptor */
2471				tx_queue->packet_write_count = tx_queue->write_count;
2472		} else {
2473			tx_queue->packet_write_count = tx_queue->write_count;
2474			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2475			EFX_POPULATE_QWORD_3(
2476				*txd,
2477				ESF_DZ_TX_KER_CONT,
2478				buffer->flags & EFX_TX_BUF_CONT,
2479				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2480				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2481		}
2482	} while (tx_queue->write_count != tx_queue->insert_count);
2483
2484	wmb(); /* Ensure descriptors are written before they are fetched */
2485
2486	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2487		txd = efx_tx_desc(tx_queue,
2488				  old_write_count & tx_queue->ptr_mask);
2489		efx_ef10_push_tx_desc(tx_queue, txd);
2490		++tx_queue->pushes;
2491	} else {
2492		efx_ef10_notify_tx_desc(tx_queue);
2493	}
2494}
2495
2496static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2497{
2498	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2499	unsigned int enabled, implemented;
2500	bool want_workaround_26807;
2501	int rc;
2502
2503	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2504	if (rc == -ENOSYS) {
2505		/* GET_WORKAROUNDS was implemented before this workaround,
2506		 * thus it must be unavailable in this firmware.
2507		 */
2508		nic_data->workaround_26807 = false;
2509		return 0;
2510	}
2511	if (rc)
2512		return rc;
2513	want_workaround_26807 =
2514		implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2515	nic_data->workaround_26807 =
2516		!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2517
2518	if (want_workaround_26807 && !nic_data->workaround_26807) {
2519		unsigned int flags;
2520
2521		rc = efx_mcdi_set_workaround(efx,
2522					     MC_CMD_WORKAROUND_BUG26807,
2523					     true, &flags);
2524		if (!rc) {
2525			if (flags &
2526			    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2527				netif_info(efx, drv, efx->net_dev,
2528					   "other functions on NIC have been reset\n");
2529
2530				/* With MCFW v4.6.x and earlier, the
2531				 * boot count will have incremented,
2532				 * so re-read the warm_boot_count
2533				 * value now to ensure this function
2534				 * doesn't think it has changed next
2535				 * time it checks.
2536				 */
2537				rc = efx_ef10_get_warm_boot_count(efx);
2538				if (rc >= 0) {
2539					nic_data->warm_boot_count = rc;
2540					rc = 0;
2541				}
2542			}
2543			nic_data->workaround_26807 = true;
2544		} else if (rc == -EPERM) {
2545			rc = 0;
2546		}
2547	}
2548	return rc;
2549}
2550
2551static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2552{
2553	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2554	int rc = efx_ef10_probe_multicast_chaining(efx);
2555	struct efx_mcdi_filter_vlan *vlan;
2556
2557	if (rc)
2558		return rc;
2559	down_write(&efx->filter_sem);
2560	rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2561
2562	if (rc)
2563		goto out_unlock;
2564
2565	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2566		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2567		if (rc)
2568			goto fail_add_vlan;
2569	}
2570	goto out_unlock;
2571
2572fail_add_vlan:
2573	efx_mcdi_filter_table_remove(efx);
2574out_unlock:
2575	up_write(&efx->filter_sem);
2576	return rc;
2577}
2578
2579static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2580{
2581	down_write(&efx->filter_sem);
2582	efx_mcdi_filter_table_remove(efx);
2583	up_write(&efx->filter_sem);
2584}
2585
2586/* This creates an entry in the RX descriptor queue */
2587static inline void
2588efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2589{
2590	struct efx_rx_buffer *rx_buf;
2591	efx_qword_t *rxd;
2592
2593	rxd = efx_rx_desc(rx_queue, index);
2594	rx_buf = efx_rx_buffer(rx_queue, index);
2595	EFX_POPULATE_QWORD_2(*rxd,
2596			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2597			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2598}
2599
2600static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2601{
2602	struct efx_nic *efx = rx_queue->efx;
2603	unsigned int write_count;
2604	efx_dword_t reg;
2605
2606	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2607	write_count = rx_queue->added_count & ~7;
2608	if (rx_queue->notified_count == write_count)
2609		return;
2610
2611	do
2612		efx_ef10_build_rx_desc(
2613			rx_queue,
2614			rx_queue->notified_count & rx_queue->ptr_mask);
2615	while (++rx_queue->notified_count != write_count);
2616
2617	wmb();
2618	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2619			     write_count & rx_queue->ptr_mask);
2620	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2621			efx_rx_queue_index(rx_queue));
2622}
2623
2624static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2625
2626static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2627{
2628	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2629	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2630	efx_qword_t event;
2631
2632	EFX_POPULATE_QWORD_2(event,
2633			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2634			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2635
2636	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2637
2638	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2639	 * already swapped the data to little-endian order.
2640	 */
2641	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2642	       sizeof(efx_qword_t));
2643
2644	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2645			   inbuf, sizeof(inbuf), 0,
2646			   efx_ef10_rx_defer_refill_complete, 0);
2647}
2648
2649static void
2650efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2651				  int rc, efx_dword_t *outbuf,
2652				  size_t outlen_actual)
2653{
2654	/* nothing to do */
2655}
2656
2657static int efx_ef10_ev_init(struct efx_channel *channel)
2658{
2659	struct efx_nic *efx = channel->efx;
2660	struct efx_ef10_nic_data *nic_data;
2661	bool use_v2, cut_thru;
2662
2663	nic_data = efx->nic_data;
2664	use_v2 = nic_data->datapath_caps2 &
2665			    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2666	cut_thru = !(nic_data->datapath_caps &
2667			      1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2668	return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2669}
2670
2671static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2672					   unsigned int rx_queue_label)
2673{
2674	struct efx_nic *efx = rx_queue->efx;
2675
2676	netif_info(efx, hw, efx->net_dev,
2677		   "rx event arrived on queue %d labeled as queue %u\n",
2678		   efx_rx_queue_index(rx_queue), rx_queue_label);
2679
2680	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2681}
2682
2683static void
2684efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2685			     unsigned int actual, unsigned int expected)
2686{
2687	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2688	struct efx_nic *efx = rx_queue->efx;
2689
2690	netif_info(efx, hw, efx->net_dev,
2691		   "dropped %d events (index=%d expected=%d)\n",
2692		   dropped, actual, expected);
2693
2694	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2695}
2696
2697/* partially received RX was aborted. clean up. */
2698static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2699{
2700	unsigned int rx_desc_ptr;
2701
2702	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2703		  "scattered RX aborted (dropping %u buffers)\n",
2704		  rx_queue->scatter_n);
2705
2706	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2707
2708	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2709		      0, EFX_RX_PKT_DISCARD);
2710
2711	rx_queue->removed_count += rx_queue->scatter_n;
2712	rx_queue->scatter_n = 0;
2713	rx_queue->scatter_len = 0;
2714	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2715}
2716
2717static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2718					   unsigned int n_packets,
2719					   unsigned int rx_encap_hdr,
2720					   unsigned int rx_l3_class,
2721					   unsigned int rx_l4_class,
2722					   const efx_qword_t *event)
2723{
2724	struct efx_nic *efx = channel->efx;
2725	bool handled = false;
2726
2727	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2728		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2729			if (!efx->loopback_selftest)
2730				channel->n_rx_eth_crc_err += n_packets;
2731			return EFX_RX_PKT_DISCARD;
2732		}
2733		handled = true;
2734	}
2735	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2736		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2737			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2738			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2739			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2740			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2741			netdev_WARN(efx->net_dev,
2742				    "invalid class for RX_IPCKSUM_ERR: event="
2743				    EFX_QWORD_FMT "\n",
2744				    EFX_QWORD_VAL(*event));
2745		if (!efx->loopback_selftest)
2746			*(rx_encap_hdr ?
2747			  &channel->n_rx_outer_ip_hdr_chksum_err :
2748			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2749		return 0;
2750	}
2751	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2752		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2753			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2754			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2755			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2756			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2757			netdev_WARN(efx->net_dev,
2758				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2759				    EFX_QWORD_FMT "\n",
2760				    EFX_QWORD_VAL(*event));
2761		if (!efx->loopback_selftest)
2762			*(rx_encap_hdr ?
2763			  &channel->n_rx_outer_tcp_udp_chksum_err :
2764			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2765		return 0;
2766	}
2767	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2768		if (unlikely(!rx_encap_hdr))
2769			netdev_WARN(efx->net_dev,
2770				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2771				    EFX_QWORD_FMT "\n",
2772				    EFX_QWORD_VAL(*event));
2773		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2774				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2775				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2776				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2777			netdev_WARN(efx->net_dev,
2778				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2779				    EFX_QWORD_FMT "\n",
2780				    EFX_QWORD_VAL(*event));
2781		if (!efx->loopback_selftest)
2782			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2783		return 0;
2784	}
2785	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2786		if (unlikely(!rx_encap_hdr))
2787			netdev_WARN(efx->net_dev,
2788				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2789				    EFX_QWORD_FMT "\n",
2790				    EFX_QWORD_VAL(*event));
2791		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2792				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2793				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2794				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2795			netdev_WARN(efx->net_dev,
2796				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2797				    EFX_QWORD_FMT "\n",
2798				    EFX_QWORD_VAL(*event));
2799		if (!efx->loopback_selftest)
2800			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2801		return 0;
2802	}
2803
2804	WARN_ON(!handled); /* No error bits were recognised */
2805	return 0;
2806}
2807
2808static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2809				    const efx_qword_t *event)
2810{
2811	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2812	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2813	unsigned int n_descs, n_packets, i;
2814	struct efx_nic *efx = channel->efx;
2815	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2816	struct efx_rx_queue *rx_queue;
2817	efx_qword_t errors;
2818	bool rx_cont;
2819	u16 flags = 0;
2820
2821	if (unlikely(READ_ONCE(efx->reset_pending)))
2822		return 0;
2823
2824	/* Basic packet information */
2825	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2826	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2827	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2828	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2829	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2830	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2831	rx_encap_hdr =
2832		nic_data->datapath_caps &
2833			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2834		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2835		ESE_EZ_ENCAP_HDR_NONE;
2836
2837	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2838		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2839			    EFX_QWORD_FMT "\n",
2840			    EFX_QWORD_VAL(*event));
2841
2842	rx_queue = efx_channel_get_rx_queue(channel);
2843
2844	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2845		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2846
2847	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2848		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2849
2850	if (n_descs != rx_queue->scatter_n + 1) {
2851		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2852
2853		/* detect rx abort */
2854		if (unlikely(n_descs == rx_queue->scatter_n)) {
2855			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2856				netdev_WARN(efx->net_dev,
2857					    "invalid RX abort: scatter_n=%u event="
2858					    EFX_QWORD_FMT "\n",
2859					    rx_queue->scatter_n,
2860					    EFX_QWORD_VAL(*event));
2861			efx_ef10_handle_rx_abort(rx_queue);
2862			return 0;
2863		}
2864
2865		/* Check that RX completion merging is valid, i.e.
2866		 * the current firmware supports it and this is a
2867		 * non-scattered packet.
2868		 */
2869		if (!(nic_data->datapath_caps &
2870		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2871		    rx_queue->scatter_n != 0 || rx_cont) {
2872			efx_ef10_handle_rx_bad_lbits(
2873				rx_queue, next_ptr_lbits,
2874				(rx_queue->removed_count +
2875				 rx_queue->scatter_n + 1) &
2876				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2877			return 0;
2878		}
2879
2880		/* Merged completion for multiple non-scattered packets */
2881		rx_queue->scatter_n = 1;
2882		rx_queue->scatter_len = 0;
2883		n_packets = n_descs;
2884		++channel->n_rx_merge_events;
2885		channel->n_rx_merge_packets += n_packets;
2886		flags |= EFX_RX_PKT_PREFIX_LEN;
2887	} else {
2888		++rx_queue->scatter_n;
2889		rx_queue->scatter_len += rx_bytes;
2890		if (rx_cont)
2891			return 0;
2892		n_packets = 1;
2893	}
2894
2895	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2896				     ESF_DZ_RX_IPCKSUM_ERR, 1,
2897				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2898				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2899				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2900	EFX_AND_QWORD(errors, *event, errors);
2901	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2902		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2903							 rx_encap_hdr,
2904							 rx_l3_class, rx_l4_class,
2905							 event);
2906	} else {
2907		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2908			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2909
2910		switch (rx_encap_hdr) {
2911		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2912			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2913			if (tcpudp)
2914				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2915			break;
2916		case ESE_EZ_ENCAP_HDR_GRE:
2917		case ESE_EZ_ENCAP_HDR_NONE:
2918			if (tcpudp)
2919				flags |= EFX_RX_PKT_CSUMMED;
2920			break;
2921		default:
2922			netdev_WARN(efx->net_dev,
2923				    "unknown encapsulation type: event="
2924				    EFX_QWORD_FMT "\n",
2925				    EFX_QWORD_VAL(*event));
2926		}
2927	}
2928
2929	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2930		flags |= EFX_RX_PKT_TCP;
2931
2932	channel->irq_mod_score += 2 * n_packets;
2933
2934	/* Handle received packet(s) */
2935	for (i = 0; i < n_packets; i++) {
2936		efx_rx_packet(rx_queue,
2937			      rx_queue->removed_count & rx_queue->ptr_mask,
2938			      rx_queue->scatter_n, rx_queue->scatter_len,
2939			      flags);
2940		rx_queue->removed_count += rx_queue->scatter_n;
2941	}
2942
2943	rx_queue->scatter_n = 0;
2944	rx_queue->scatter_len = 0;
2945
2946	return n_packets;
2947}
2948
2949static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2950{
2951	u32 tstamp;
2952
2953	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2954	tstamp <<= 16;
2955	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2956
2957	return tstamp;
2958}
2959
2960static int
2961efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2962{
2963	struct efx_nic *efx = channel->efx;
2964	struct efx_tx_queue *tx_queue;
2965	unsigned int tx_ev_desc_ptr;
2966	unsigned int tx_ev_q_label;
2967	unsigned int tx_ev_type;
2968	int work_done;
2969	u64 ts_part;
2970
2971	if (unlikely(READ_ONCE(efx->reset_pending)))
2972		return 0;
2973
2974	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2975		return 0;
2976
2977	/* Get the transmit queue */
2978	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2979	tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
2980
2981	if (!tx_queue->timestamping) {
2982		/* Transmit completion */
2983		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2984		return efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
 
2985	}
2986
2987	/* Transmit timestamps are only available for 8XXX series. They result
2988	 * in up to three events per packet. These occur in order, and are:
2989	 *  - the normal completion event (may be omitted)
2990	 *  - the low part of the timestamp
2991	 *  - the high part of the timestamp
2992	 *
2993	 * It's possible for multiple completion events to appear before the
2994	 * corresponding timestamps. So we can for example get:
2995	 *  COMP N
2996	 *  COMP N+1
2997	 *  TS_LO N
2998	 *  TS_HI N
2999	 *  TS_LO N+1
3000	 *  TS_HI N+1
3001	 *
3002	 * In addition it's also possible for the adjacent completions to be
3003	 * merged, so we may not see COMP N above. As such, the completion
3004	 * events are not very useful here.
3005	 *
3006	 * Each part of the timestamp is itself split across two 16 bit
3007	 * fields in the event.
3008	 */
3009	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3010	work_done = 0;
3011
3012	switch (tx_ev_type) {
3013	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3014		/* Ignore this event - see above. */
3015		break;
3016
3017	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3018		ts_part = efx_ef10_extract_event_ts(event);
3019		tx_queue->completed_timestamp_minor = ts_part;
3020		break;
3021
3022	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3023		ts_part = efx_ef10_extract_event_ts(event);
3024		tx_queue->completed_timestamp_major = ts_part;
3025
3026		efx_xmit_done_single(tx_queue);
3027		work_done = 1;
3028		break;
3029
3030	default:
3031		netif_err(efx, hw, efx->net_dev,
3032			  "channel %d unknown tx event type %d (data "
3033			  EFX_QWORD_FMT ")\n",
3034			  channel->channel, tx_ev_type,
3035			  EFX_QWORD_VAL(*event));
3036		break;
3037	}
3038
3039	return work_done;
3040}
3041
3042static void
3043efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3044{
3045	struct efx_nic *efx = channel->efx;
3046	int subcode;
3047
3048	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3049
3050	switch (subcode) {
3051	case ESE_DZ_DRV_TIMER_EV:
3052	case ESE_DZ_DRV_WAKE_UP_EV:
3053		break;
3054	case ESE_DZ_DRV_START_UP_EV:
3055		/* event queue init complete. ok. */
3056		break;
3057	default:
3058		netif_err(efx, hw, efx->net_dev,
3059			  "channel %d unknown driver event type %d"
3060			  " (data " EFX_QWORD_FMT ")\n",
3061			  channel->channel, subcode,
3062			  EFX_QWORD_VAL(*event));
3063
3064	}
3065}
3066
3067static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3068						   efx_qword_t *event)
3069{
3070	struct efx_nic *efx = channel->efx;
3071	u32 subcode;
3072
3073	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3074
3075	switch (subcode) {
3076	case EFX_EF10_TEST:
3077		channel->event_test_cpu = raw_smp_processor_id();
3078		break;
3079	case EFX_EF10_REFILL:
3080		/* The queue must be empty, so we won't receive any rx
3081		 * events, so efx_process_channel() won't refill the
3082		 * queue. Refill it here
3083		 */
3084		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3085		break;
3086	default:
3087		netif_err(efx, hw, efx->net_dev,
3088			  "channel %d unknown driver event type %u"
3089			  " (data " EFX_QWORD_FMT ")\n",
3090			  channel->channel, (unsigned) subcode,
3091			  EFX_QWORD_VAL(*event));
3092	}
3093}
3094
3095#define EFX_NAPI_MAX_TX 512
3096
3097static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3098{
3099	struct efx_nic *efx = channel->efx;
3100	efx_qword_t event, *p_event;
3101	unsigned int read_ptr;
3102	int spent_tx = 0;
3103	int spent = 0;
3104	int ev_code;
 
3105
3106	if (quota <= 0)
3107		return spent;
3108
3109	read_ptr = channel->eventq_read_ptr;
3110
3111	for (;;) {
3112		p_event = efx_event(channel, read_ptr);
3113		event = *p_event;
3114
3115		if (!efx_event_present(&event))
3116			break;
3117
3118		EFX_SET_QWORD(*p_event);
3119
3120		++read_ptr;
3121
3122		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3123
3124		netif_vdbg(efx, drv, efx->net_dev,
3125			   "processing event on %d " EFX_QWORD_FMT "\n",
3126			   channel->channel, EFX_QWORD_VAL(event));
3127
3128		switch (ev_code) {
3129		case ESE_DZ_EV_CODE_MCDI_EV:
3130			efx_mcdi_process_event(channel, &event);
3131			break;
3132		case ESE_DZ_EV_CODE_RX_EV:
3133			spent += efx_ef10_handle_rx_event(channel, &event);
3134			if (spent >= quota) {
3135				/* XXX can we split a merged event to
3136				 * avoid going over-quota?
3137				 */
3138				spent = quota;
3139				goto out;
3140			}
3141			break;
3142		case ESE_DZ_EV_CODE_TX_EV:
3143			spent_tx += efx_ef10_handle_tx_event(channel, &event);
3144			if (spent_tx >= EFX_NAPI_MAX_TX) {
3145				spent = quota;
3146				goto out;
3147			}
3148			break;
3149		case ESE_DZ_EV_CODE_DRIVER_EV:
3150			efx_ef10_handle_driver_event(channel, &event);
3151			if (++spent == quota)
3152				goto out;
3153			break;
3154		case EFX_EF10_DRVGEN_EV:
3155			efx_ef10_handle_driver_generated_event(channel, &event);
3156			break;
3157		default:
3158			netif_err(efx, hw, efx->net_dev,
3159				  "channel %d unknown event type %d"
3160				  " (data " EFX_QWORD_FMT ")\n",
3161				  channel->channel, ev_code,
3162				  EFX_QWORD_VAL(event));
3163		}
3164	}
3165
3166out:
3167	channel->eventq_read_ptr = read_ptr;
3168	return spent;
3169}
3170
3171static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3172{
3173	struct efx_nic *efx = channel->efx;
3174	efx_dword_t rptr;
3175
3176	if (EFX_EF10_WORKAROUND_35388(efx)) {
3177		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3178			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3179		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3180			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3181
3182		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3183				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3184				     ERF_DD_EVQ_IND_RPTR,
3185				     (channel->eventq_read_ptr &
3186				      channel->eventq_mask) >>
3187				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3188		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3189				channel->channel);
3190		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3191				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3192				     ERF_DD_EVQ_IND_RPTR,
3193				     channel->eventq_read_ptr &
3194				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3195		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3196				channel->channel);
3197	} else {
3198		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3199				     channel->eventq_read_ptr &
3200				     channel->eventq_mask);
3201		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3202	}
3203}
3204
3205static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3206{
3207	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3208	struct efx_nic *efx = channel->efx;
3209	efx_qword_t event;
3210	int rc;
3211
3212	EFX_POPULATE_QWORD_2(event,
3213			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3214			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3215
3216	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3217
3218	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3219	 * already swapped the data to little-endian order.
3220	 */
3221	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3222	       sizeof(efx_qword_t));
3223
3224	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3225			  NULL, 0, NULL);
3226	if (rc != 0)
3227		goto fail;
3228
3229	return;
3230
3231fail:
3232	WARN_ON(true);
3233	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3234}
3235
3236static void efx_ef10_prepare_flr(struct efx_nic *efx)
3237{
3238	atomic_set(&efx->active_queues, 0);
3239}
3240
3241static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3242{
3243	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3244	u8 mac_old[ETH_ALEN];
3245	int rc, rc2;
3246
3247	/* Only reconfigure a PF-created vport */
3248	if (is_zero_ether_addr(nic_data->vport_mac))
3249		return 0;
3250
3251	efx_device_detach_sync(efx);
3252	efx_net_stop(efx->net_dev);
3253	efx_ef10_filter_table_remove(efx);
3254
3255	rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3256	if (rc)
3257		goto restore_filters;
3258
3259	ether_addr_copy(mac_old, nic_data->vport_mac);
3260	rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3261				    nic_data->vport_mac);
3262	if (rc)
3263		goto restore_vadaptor;
3264
3265	rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3266				    efx->net_dev->dev_addr);
3267	if (!rc) {
3268		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3269	} else {
3270		rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3271		if (rc2) {
3272			/* Failed to add original MAC, so clear vport_mac */
3273			eth_zero_addr(nic_data->vport_mac);
3274			goto reset_nic;
3275		}
3276	}
3277
3278restore_vadaptor:
3279	rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3280	if (rc2)
3281		goto reset_nic;
3282restore_filters:
3283	rc2 = efx_ef10_filter_table_probe(efx);
3284	if (rc2)
3285		goto reset_nic;
3286
3287	rc2 = efx_net_open(efx->net_dev);
3288	if (rc2)
3289		goto reset_nic;
3290
3291	efx_device_attach_if_not_resetting(efx);
3292
3293	return rc;
3294
3295reset_nic:
3296	netif_err(efx, drv, efx->net_dev,
3297		  "Failed to restore when changing MAC address - scheduling reset\n");
3298	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3299
3300	return rc ? rc : rc2;
3301}
3302
3303static int efx_ef10_set_mac_address(struct efx_nic *efx)
3304{
3305	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3306	bool was_enabled = efx->port_enabled;
3307	int rc;
3308
3309#ifdef CONFIG_SFC_SRIOV
3310	/* If this function is a VF and we have access to the parent PF,
3311	 * then use the PF control path to attempt to change the VF MAC address.
3312	 */
3313	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3314		struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn);
3315		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3316		u8 mac[ETH_ALEN];
3317
3318		/* net_dev->dev_addr can be zeroed by efx_net_stop in
3319		 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
3320		 */
3321		ether_addr_copy(mac, efx->net_dev->dev_addr);
3322
3323		rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac);
3324		if (!rc)
3325			return 0;
3326
3327		netif_dbg(efx, drv, efx->net_dev,
3328			  "Updating VF mac via PF failed (%d), setting directly\n",
3329			  rc);
3330	}
3331#endif
3332
3333	efx_device_detach_sync(efx);
3334	efx_net_stop(efx->net_dev);
3335
3336	mutex_lock(&efx->mac_lock);
3337	efx_ef10_filter_table_remove(efx);
3338
3339	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3340			efx->net_dev->dev_addr);
3341	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3342		       efx->vport_id);
3343	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3344				sizeof(inbuf), NULL, 0, NULL);
3345
3346	efx_ef10_filter_table_probe(efx);
3347	mutex_unlock(&efx->mac_lock);
3348
3349	if (was_enabled)
3350		efx_net_open(efx->net_dev);
3351	efx_device_attach_if_not_resetting(efx);
3352
3353	if (rc == -EPERM) {
3354		netif_err(efx, drv, efx->net_dev,
3355			  "Cannot change MAC address; use sfboot to enable"
3356			  " mac-spoofing on this interface\n");
3357	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3358		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3359		 * fall-back to the method of changing the MAC address on the
3360		 * vport.  This only applies to PFs because such versions of
3361		 * MCFW do not support VFs.
3362		 */
3363		rc = efx_ef10_vport_set_mac_address(efx);
3364	} else if (rc) {
3365		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3366				       sizeof(inbuf), NULL, 0, rc);
3367	}
3368
3369	return rc;
3370}
3371
3372static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3373{
3374	WARN_ON(!mutex_is_locked(&efx->mac_lock));
3375
3376	efx_mcdi_filter_sync_rx_mode(efx);
3377
3378	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3379		return efx_mcdi_set_mtu(efx);
3380	return efx_mcdi_set_mac(efx);
3381}
3382
3383static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3384{
3385	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3386
3387	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3388	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3389			    NULL, 0, NULL);
3390}
3391
3392/* MC BISTs follow a different poll mechanism to phy BISTs.
3393 * The BIST is done in the poll handler on the MC, and the MCDI command
3394 * will block until the BIST is done.
3395 */
3396static int efx_ef10_poll_bist(struct efx_nic *efx)
3397{
3398	int rc;
3399	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3400	size_t outlen;
3401	u32 result;
3402
3403	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3404			   outbuf, sizeof(outbuf), &outlen);
3405	if (rc != 0)
3406		return rc;
3407
3408	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3409		return -EIO;
3410
3411	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3412	switch (result) {
3413	case MC_CMD_POLL_BIST_PASSED:
3414		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3415		return 0;
3416	case MC_CMD_POLL_BIST_TIMEOUT:
3417		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3418		return -EIO;
3419	case MC_CMD_POLL_BIST_FAILED:
3420		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3421		return -EIO;
3422	default:
3423		netif_err(efx, hw, efx->net_dev,
3424			  "BIST returned unknown result %u", result);
3425		return -EIO;
3426	}
3427}
3428
3429static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3430{
3431	int rc;
3432
3433	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3434
3435	rc = efx_ef10_start_bist(efx, bist_type);
3436	if (rc != 0)
3437		return rc;
3438
3439	return efx_ef10_poll_bist(efx);
3440}
3441
3442static int
3443efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3444{
3445	int rc, rc2;
3446
3447	efx_reset_down(efx, RESET_TYPE_WORLD);
3448
3449	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3450			  NULL, 0, NULL, 0, NULL);
3451	if (rc != 0)
3452		goto out;
3453
3454	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3455	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3456
3457	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3458
3459out:
3460	if (rc == -EPERM)
3461		rc = 0;
3462	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3463	return rc ? rc : rc2;
3464}
3465
3466#ifdef CONFIG_SFC_MTD
3467
3468struct efx_ef10_nvram_type_info {
3469	u16 type, type_mask;
3470	u8 port;
3471	const char *name;
3472};
3473
3474static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3475	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3476	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3477	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3478	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3479	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3480	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3481	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3482	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3483	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3484	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3485	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3486	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
3487	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
3488	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3489	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3490	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
3491	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
3492	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
3493};
3494#define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
3495
3496static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3497					struct efx_mcdi_mtd_partition *part,
3498					unsigned int type,
3499					unsigned long *found)
3500{
3501	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3502	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3503	const struct efx_ef10_nvram_type_info *info;
3504	size_t size, erase_size, outlen;
3505	int type_idx = 0;
3506	bool protected;
3507	int rc;
3508
3509	for (type_idx = 0; ; type_idx++) {
3510		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3511			return -ENODEV;
3512		info = efx_ef10_nvram_types + type_idx;
3513		if ((type & ~info->type_mask) == info->type)
3514			break;
3515	}
3516	if (info->port != efx_port_num(efx))
3517		return -ENODEV;
3518
3519	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3520	if (rc)
3521		return rc;
3522	if (protected &&
3523	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3524	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3525		/* Hide protected partitions that don't provide defaults. */
3526		return -ENODEV;
3527
3528	if (protected)
3529		/* Protected partitions are read only. */
3530		erase_size = 0;
3531
3532	/* If we've already exposed a partition of this type, hide this
3533	 * duplicate.  All operations on MTDs are keyed by the type anyway,
3534	 * so we can't act on the duplicate.
3535	 */
3536	if (__test_and_set_bit(type_idx, found))
3537		return -EEXIST;
3538
3539	part->nvram_type = type;
3540
3541	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3542	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3543			  outbuf, sizeof(outbuf), &outlen);
3544	if (rc)
3545		return rc;
3546	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3547		return -EIO;
3548	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3549	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3550		part->fw_subtype = MCDI_DWORD(outbuf,
3551					      NVRAM_METADATA_OUT_SUBTYPE);
3552
3553	part->common.dev_type_name = "EF10 NVRAM manager";
3554	part->common.type_name = info->name;
3555
3556	part->common.mtd.type = MTD_NORFLASH;
3557	part->common.mtd.flags = MTD_CAP_NORFLASH;
3558	part->common.mtd.size = size;
3559	part->common.mtd.erasesize = erase_size;
3560	/* sfc_status is read-only */
3561	if (!erase_size)
3562		part->common.mtd.flags |= MTD_NO_ERASE;
3563
3564	return 0;
3565}
3566
3567static int efx_ef10_mtd_probe(struct efx_nic *efx)
3568{
3569	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3570	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3571	struct efx_mcdi_mtd_partition *parts;
3572	size_t outlen, n_parts_total, i, n_parts;
3573	unsigned int type;
3574	int rc;
3575
3576	ASSERT_RTNL();
3577
3578	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3579	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3580			  outbuf, sizeof(outbuf), &outlen);
3581	if (rc)
3582		return rc;
3583	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3584		return -EIO;
3585
3586	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3587	if (n_parts_total >
3588	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3589		return -EIO;
3590
3591	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3592	if (!parts)
3593		return -ENOMEM;
3594
3595	n_parts = 0;
3596	for (i = 0; i < n_parts_total; i++) {
3597		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3598					i);
3599		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3600						  found);
3601		if (rc == -EEXIST || rc == -ENODEV)
3602			continue;
3603		if (rc)
3604			goto fail;
3605		n_parts++;
3606	}
3607
3608	if (!n_parts) {
3609		kfree(parts);
3610		return 0;
3611	}
3612
3613	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3614fail:
3615	if (rc)
3616		kfree(parts);
3617	return rc;
3618}
3619
3620#endif /* CONFIG_SFC_MTD */
3621
3622static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3623{
3624	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3625}
3626
3627static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3628					    u32 host_time) {}
3629
3630static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3631					   bool temp)
3632{
3633	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3634	int rc;
3635
3636	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3637	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3638	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3639		return 0;
3640	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3641
3642	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3643	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3644	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3645		       channel->channel);
3646
3647	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3648			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3649
3650	if (rc != 0)
3651		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3652						    SYNC_EVENTS_DISABLED;
3653
3654	return rc;
3655}
3656
3657static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3658					    bool temp)
3659{
3660	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3661	int rc;
3662
3663	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3664	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3665		return 0;
3666	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3667		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3668		return 0;
3669	}
3670	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3671					    SYNC_EVENTS_DISABLED;
3672
3673	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3674	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3675	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3676		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3677	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3678		       channel->channel);
3679
3680	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3681			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3682
3683	return rc;
3684}
3685
3686static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3687					   bool temp)
3688{
3689	int (*set)(struct efx_channel *channel, bool temp);
3690	struct efx_channel *channel;
3691
3692	set = en ?
3693	      efx_ef10_rx_enable_timestamping :
3694	      efx_ef10_rx_disable_timestamping;
3695
3696	channel = efx_ptp_channel(efx);
3697	if (channel) {
3698		int rc = set(channel, temp);
3699		if (en && rc != 0) {
3700			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3701			return rc;
3702		}
3703	}
3704
3705	return 0;
3706}
3707
3708static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3709					 struct kernel_hwtstamp_config *init)
3710{
3711	return -EOPNOTSUPP;
3712}
3713
3714static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3715				      struct kernel_hwtstamp_config *init)
3716{
3717	int rc;
3718
3719	switch (init->rx_filter) {
3720	case HWTSTAMP_FILTER_NONE:
3721		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3722		/* if TX timestamping is still requested then leave PTP on */
3723		return efx_ptp_change_mode(efx,
3724					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3725	case HWTSTAMP_FILTER_ALL:
3726	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3727	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3728	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3729	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3730	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3731	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3732	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3733	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3734	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3735	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3736	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3737	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3738	case HWTSTAMP_FILTER_NTP_ALL:
3739		init->rx_filter = HWTSTAMP_FILTER_ALL;
3740		rc = efx_ptp_change_mode(efx, true, 0);
3741		if (!rc)
3742			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3743		if (rc)
3744			efx_ptp_change_mode(efx, false, 0);
3745		return rc;
3746	default:
3747		return -ERANGE;
3748	}
3749}
3750
3751static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3752				     struct netdev_phys_item_id *ppid)
3753{
3754	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3755
3756	if (!is_valid_ether_addr(nic_data->port_id))
3757		return -EOPNOTSUPP;
3758
3759	ppid->id_len = ETH_ALEN;
3760	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3761
3762	return 0;
3763}
3764
3765static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3766{
3767	if (proto != htons(ETH_P_8021Q))
3768		return -EINVAL;
3769
3770	return efx_ef10_add_vlan(efx, vid);
3771}
3772
3773static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3774{
3775	if (proto != htons(ETH_P_8021Q))
3776		return -EINVAL;
3777
3778	return efx_ef10_del_vlan(efx, vid);
3779}
3780
3781/* We rely on the MCDI wiping out our TX rings if it made any changes to the
3782 * ports table, ensuring that any TSO descriptors that were made on a now-
3783 * removed tunnel port will be blown away and won't break things when we try
3784 * to transmit them using the new ports table.
3785 */
3786static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3787{
3788	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3789	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3790	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3791	bool will_reset = false;
3792	size_t num_entries = 0;
3793	size_t inlen, outlen;
3794	size_t i;
3795	int rc;
3796	efx_dword_t flags_and_num_entries;
3797
3798	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3799
3800	nic_data->udp_tunnels_dirty = false;
3801
3802	if (!(nic_data->datapath_caps &
3803	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3804		efx_device_attach_if_not_resetting(efx);
3805		return 0;
3806	}
3807
3808	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3809		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3810
3811	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3812		if (nic_data->udp_tunnels[i].type !=
3813		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3814			efx_dword_t entry;
3815
3816			EFX_POPULATE_DWORD_2(entry,
3817				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3818					ntohs(nic_data->udp_tunnels[i].port),
3819				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3820					nic_data->udp_tunnels[i].type);
3821			*_MCDI_ARRAY_DWORD(inbuf,
3822				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3823				num_entries++) = entry;
3824		}
3825	}
3826
3827	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3828		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3829		     EFX_WORD_1_LBN);
3830	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3831		     EFX_WORD_1_WIDTH);
3832	EFX_POPULATE_DWORD_2(flags_and_num_entries,
3833			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3834				!!unloading,
3835			     EFX_WORD_1, num_entries);
3836	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3837		flags_and_num_entries;
3838
3839	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3840
3841	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3842				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3843	if (rc == -EIO) {
3844		/* Most likely the MC rebooted due to another function also
3845		 * setting its tunnel port list. Mark the tunnel port list as
3846		 * dirty, so it will be pushed upon coming up from the reboot.
3847		 */
3848		nic_data->udp_tunnels_dirty = true;
3849		return 0;
3850	}
3851
3852	if (rc) {
3853		/* expected not available on unprivileged functions */
3854		if (rc != -EPERM)
3855			netif_warn(efx, drv, efx->net_dev,
3856				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3857	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3858		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3859		netif_info(efx, drv, efx->net_dev,
3860			   "Rebooting MC due to UDP tunnel port list change\n");
3861		will_reset = true;
3862		if (unloading)
3863			/* Delay for the MC reset to complete. This will make
3864			 * unloading other functions a bit smoother. This is a
3865			 * race, but the other unload will work whichever way
3866			 * it goes, this just avoids an unnecessary error
3867			 * message.
3868			 */
3869			msleep(100);
3870	}
3871	if (!will_reset && !unloading) {
3872		/* The caller will have detached, relying on the MC reset to
3873		 * trigger a re-attach.  Since there won't be an MC reset, we
3874		 * have to do the attach ourselves.
3875		 */
3876		efx_device_attach_if_not_resetting(efx);
3877	}
3878
3879	return rc;
3880}
3881
3882static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3883{
3884	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3885	int rc = 0;
3886
3887	mutex_lock(&nic_data->udp_tunnels_lock);
3888	if (nic_data->udp_tunnels_dirty) {
3889		/* Make sure all TX are stopped while we modify the table, else
3890		 * we might race against an efx_features_check().
3891		 */
3892		efx_device_detach_sync(efx);
3893		rc = efx_ef10_set_udp_tnl_ports(efx, false);
3894	}
3895	mutex_unlock(&nic_data->udp_tunnels_lock);
3896	return rc;
3897}
3898
3899static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3900				     unsigned int table, unsigned int entry,
3901				     struct udp_tunnel_info *ti)
3902{
3903	struct efx_nic *efx = efx_netdev_priv(dev);
3904	struct efx_ef10_nic_data *nic_data;
3905	int efx_tunnel_type, rc;
3906
3907	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3908		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3909	else
3910		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3911
3912	nic_data = efx->nic_data;
3913	if (!(nic_data->datapath_caps &
3914	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3915		return -EOPNOTSUPP;
3916
3917	mutex_lock(&nic_data->udp_tunnels_lock);
3918	/* Make sure all TX are stopped while we add to the table, else we
3919	 * might race against an efx_features_check().
3920	 */
3921	efx_device_detach_sync(efx);
3922	nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3923	nic_data->udp_tunnels[entry].port = ti->port;
3924	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3925	mutex_unlock(&nic_data->udp_tunnels_lock);
3926
3927	return rc;
3928}
3929
3930/* Called under the TX lock with the TX queue running, hence no-one can be
3931 * in the middle of updating the UDP tunnels table.  However, they could
3932 * have tried and failed the MCDI, in which case they'll have set the dirty
3933 * flag before dropping their locks.
3934 */
3935static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3936{
3937	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3938	size_t i;
3939
3940	if (!(nic_data->datapath_caps &
3941	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3942		return false;
3943
3944	if (nic_data->udp_tunnels_dirty)
3945		/* SW table may not match HW state, so just assume we can't
3946		 * use any UDP tunnel offloads.
3947		 */
3948		return false;
3949
3950	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3951		if (nic_data->udp_tunnels[i].type !=
3952		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3953		    nic_data->udp_tunnels[i].port == port)
3954			return true;
3955
3956	return false;
3957}
3958
3959static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3960				       unsigned int table, unsigned int entry,
3961				       struct udp_tunnel_info *ti)
3962{
3963	struct efx_nic *efx = efx_netdev_priv(dev);
3964	struct efx_ef10_nic_data *nic_data;
3965	int rc;
3966
3967	nic_data = efx->nic_data;
3968
3969	mutex_lock(&nic_data->udp_tunnels_lock);
3970	/* Make sure all TX are stopped while we remove from the table, else we
3971	 * might race against an efx_features_check().
3972	 */
3973	efx_device_detach_sync(efx);
3974	nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3975	nic_data->udp_tunnels[entry].port = 0;
3976	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3977	mutex_unlock(&nic_data->udp_tunnels_lock);
3978
3979	return rc;
3980}
3981
3982static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3983	.set_port	= efx_ef10_udp_tnl_set_port,
3984	.unset_port	= efx_ef10_udp_tnl_unset_port,
3985	.flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3986	.tables         = {
3987		{
3988			.n_entries = 16,
3989			.tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3990					UDP_TUNNEL_TYPE_GENEVE,
3991		},
3992	},
3993};
3994
3995/* EF10 may have multiple datapath firmware variants within a
3996 * single version.  Report which variants are running.
3997 */
3998static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3999					      size_t len)
4000{
4001	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4002
4003	return scnprintf(buf, len, " rx%x tx%x",
4004			 nic_data->rx_dpcpu_fw_id,
4005			 nic_data->tx_dpcpu_fw_id);
4006}
4007
4008static unsigned int ef10_check_caps(const struct efx_nic *efx,
4009				    u8 flag,
4010				    u32 offset)
4011{
4012	const struct efx_ef10_nic_data *nic_data = efx->nic_data;
4013
4014	switch (offset) {
4015	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
4016		return nic_data->datapath_caps & BIT_ULL(flag);
4017	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
4018		return nic_data->datapath_caps2 & BIT_ULL(flag);
4019	default:
4020		return 0;
4021	}
4022}
4023
4024static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx)
4025{
4026	unsigned int ret = EFX_RECYCLE_RING_SIZE_10G;
4027
4028	/* There is no difference between PFs and VFs. The side is based on
4029	 * the maximum link speed of a given NIC.
4030	 */
4031	switch (efx->pci_dev->device & 0xfff) {
4032	case 0x0903:	/* Farmingdale can do up to 10G */
4033		break;
4034	case 0x0923:	/* Greenport can do up to 40G */
4035	case 0x0a03:	/* Medford can do up to 40G */
4036		ret *= 4;
4037		break;
4038	default:	/* Medford2 can do up to 100G */
4039		ret *= 10;
4040	}
4041
4042	if (IS_ENABLED(CONFIG_PPC64))
4043		ret *= 4;
4044
4045	return ret;
4046}
4047
4048#define EF10_OFFLOAD_FEATURES		\
4049	(NETIF_F_IP_CSUM |		\
4050	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
4051	 NETIF_F_IPV6_CSUM |		\
4052	 NETIF_F_RXHASH |		\
4053	 NETIF_F_NTUPLE |		\
4054	 NETIF_F_SG |			\
4055	 NETIF_F_RXCSUM |		\
4056	 NETIF_F_RXALL)
4057
4058const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4059	.is_vf = true,
4060	.mem_bar = efx_ef10_vf_mem_bar,
4061	.mem_map_size = efx_ef10_mem_map_size,
4062	.probe = efx_ef10_probe_vf,
4063	.remove = efx_ef10_remove,
4064	.dimension_resources = efx_ef10_dimension_resources,
4065	.init = efx_ef10_init_nic,
4066	.fini = efx_ef10_fini_nic,
4067	.map_reset_reason = efx_ef10_map_reset_reason,
4068	.map_reset_flags = efx_ef10_map_reset_flags,
4069	.reset = efx_ef10_reset,
4070	.probe_port = efx_mcdi_port_probe,
4071	.remove_port = efx_mcdi_port_remove,
4072	.fini_dmaq = efx_fini_dmaq,
4073	.prepare_flr = efx_ef10_prepare_flr,
4074	.finish_flr = efx_port_dummy_op_void,
4075	.describe_stats = efx_ef10_describe_stats,
4076	.update_stats = efx_ef10_update_stats_vf,
4077	.update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4078	.start_stats = efx_port_dummy_op_void,
4079	.pull_stats = efx_port_dummy_op_void,
4080	.stop_stats = efx_port_dummy_op_void,
4081	.push_irq_moderation = efx_ef10_push_irq_moderation,
4082	.reconfigure_mac = efx_ef10_mac_reconfigure,
4083	.check_mac_fault = efx_mcdi_mac_check_fault,
4084	.reconfigure_port = efx_mcdi_port_reconfigure,
4085	.get_wol = efx_ef10_get_wol_vf,
4086	.set_wol = efx_ef10_set_wol_vf,
4087	.resume_wol = efx_port_dummy_op_void,
4088	.mcdi_request = efx_ef10_mcdi_request,
4089	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4090	.mcdi_read_response = efx_ef10_mcdi_read_response,
4091	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4092	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4093	.irq_enable_master = efx_port_dummy_op_void,
4094	.irq_test_generate = efx_ef10_irq_test_generate,
4095	.irq_disable_non_ev = efx_port_dummy_op_void,
4096	.irq_handle_msi = efx_ef10_msi_interrupt,
4097	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4098	.tx_probe = efx_ef10_tx_probe,
4099	.tx_init = efx_ef10_tx_init,
4100	.tx_remove = efx_mcdi_tx_remove,
4101	.tx_write = efx_ef10_tx_write,
4102	.tx_limit_len = efx_ef10_tx_limit_len,
4103	.tx_enqueue = __efx_enqueue_skb,
4104	.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4105	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4106	.rx_probe = efx_mcdi_rx_probe,
4107	.rx_init = efx_mcdi_rx_init,
4108	.rx_remove = efx_mcdi_rx_remove,
4109	.rx_write = efx_ef10_rx_write,
4110	.rx_defer_refill = efx_ef10_rx_defer_refill,
4111	.rx_packet = __efx_rx_packet,
4112	.ev_probe = efx_mcdi_ev_probe,
4113	.ev_init = efx_ef10_ev_init,
4114	.ev_fini = efx_mcdi_ev_fini,
4115	.ev_remove = efx_mcdi_ev_remove,
4116	.ev_process = efx_ef10_ev_process,
4117	.ev_read_ack = efx_ef10_ev_read_ack,
4118	.ev_test_generate = efx_ef10_ev_test_generate,
4119	.filter_table_probe = efx_ef10_filter_table_probe,
4120	.filter_table_restore = efx_mcdi_filter_table_restore,
4121	.filter_table_remove = efx_ef10_filter_table_remove,
4122	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4123	.filter_insert = efx_mcdi_filter_insert,
4124	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4125	.filter_get_safe = efx_mcdi_filter_get_safe,
4126	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4127	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4128	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4129	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4130#ifdef CONFIG_RFS_ACCEL
4131	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4132#endif
4133#ifdef CONFIG_SFC_MTD
4134	.mtd_probe = efx_port_dummy_op_int,
4135#endif
4136	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4137	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4138	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4139	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4140#ifdef CONFIG_SFC_SRIOV
4141	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4142	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4143	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4144#endif
4145	.get_mac_address = efx_ef10_get_mac_address_vf,
4146	.set_mac_address = efx_ef10_set_mac_address,
4147
4148	.get_phys_port_id = efx_ef10_get_phys_port_id,
4149	.revision = EFX_REV_HUNT_A0,
4150	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4151	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4152	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4153	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4154	.can_rx_scatter = true,
4155	.always_rx_scatter = true,
4156	.min_interrupt_mode = EFX_INT_MODE_MSIX,
4157	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4158	.offload_features = EF10_OFFLOAD_FEATURES,
4159	.mcdi_max_ver = 2,
4160	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4161	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4162			    1 << HWTSTAMP_FILTER_ALL,
4163	.rx_hash_key_size = 40,
4164	.check_caps = ef10_check_caps,
4165	.print_additional_fwver = efx_ef10_print_additional_fwver,
4166	.sensor_event = efx_mcdi_sensor_event,
4167	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4168};
4169
4170const struct efx_nic_type efx_hunt_a0_nic_type = {
4171	.is_vf = false,
4172	.mem_bar = efx_ef10_pf_mem_bar,
4173	.mem_map_size = efx_ef10_mem_map_size,
4174	.probe = efx_ef10_probe_pf,
4175	.remove = efx_ef10_remove,
4176	.dimension_resources = efx_ef10_dimension_resources,
4177	.init = efx_ef10_init_nic,
4178	.fini = efx_ef10_fini_nic,
4179	.map_reset_reason = efx_ef10_map_reset_reason,
4180	.map_reset_flags = efx_ef10_map_reset_flags,
4181	.reset = efx_ef10_reset,
4182	.probe_port = efx_mcdi_port_probe,
4183	.remove_port = efx_mcdi_port_remove,
4184	.fini_dmaq = efx_fini_dmaq,
4185	.prepare_flr = efx_ef10_prepare_flr,
4186	.finish_flr = efx_port_dummy_op_void,
4187	.describe_stats = efx_ef10_describe_stats,
4188	.update_stats = efx_ef10_update_stats_pf,
4189	.start_stats = efx_mcdi_mac_start_stats,
4190	.pull_stats = efx_mcdi_mac_pull_stats,
4191	.stop_stats = efx_mcdi_mac_stop_stats,
4192	.push_irq_moderation = efx_ef10_push_irq_moderation,
4193	.reconfigure_mac = efx_ef10_mac_reconfigure,
4194	.check_mac_fault = efx_mcdi_mac_check_fault,
4195	.reconfigure_port = efx_mcdi_port_reconfigure,
4196	.get_wol = efx_ef10_get_wol,
4197	.set_wol = efx_ef10_set_wol,
4198	.resume_wol = efx_port_dummy_op_void,
4199	.get_fec_stats = efx_ef10_get_fec_stats,
4200	.test_chip = efx_ef10_test_chip,
4201	.test_nvram = efx_mcdi_nvram_test_all,
4202	.mcdi_request = efx_ef10_mcdi_request,
4203	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4204	.mcdi_read_response = efx_ef10_mcdi_read_response,
4205	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4206	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4207	.irq_enable_master = efx_port_dummy_op_void,
4208	.irq_test_generate = efx_ef10_irq_test_generate,
4209	.irq_disable_non_ev = efx_port_dummy_op_void,
4210	.irq_handle_msi = efx_ef10_msi_interrupt,
4211	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4212	.tx_probe = efx_ef10_tx_probe,
4213	.tx_init = efx_ef10_tx_init,
4214	.tx_remove = efx_mcdi_tx_remove,
4215	.tx_write = efx_ef10_tx_write,
4216	.tx_limit_len = efx_ef10_tx_limit_len,
4217	.tx_enqueue = __efx_enqueue_skb,
4218	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4219	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4220	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4221	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4222	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4223	.rx_probe = efx_mcdi_rx_probe,
4224	.rx_init = efx_mcdi_rx_init,
4225	.rx_remove = efx_mcdi_rx_remove,
4226	.rx_write = efx_ef10_rx_write,
4227	.rx_defer_refill = efx_ef10_rx_defer_refill,
4228	.rx_packet = __efx_rx_packet,
4229	.ev_probe = efx_mcdi_ev_probe,
4230	.ev_init = efx_ef10_ev_init,
4231	.ev_fini = efx_mcdi_ev_fini,
4232	.ev_remove = efx_mcdi_ev_remove,
4233	.ev_process = efx_ef10_ev_process,
4234	.ev_read_ack = efx_ef10_ev_read_ack,
4235	.ev_test_generate = efx_ef10_ev_test_generate,
4236	.filter_table_probe = efx_ef10_filter_table_probe,
4237	.filter_table_restore = efx_mcdi_filter_table_restore,
4238	.filter_table_remove = efx_ef10_filter_table_remove,
4239	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4240	.filter_insert = efx_mcdi_filter_insert,
4241	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4242	.filter_get_safe = efx_mcdi_filter_get_safe,
4243	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4244	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4245	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4246	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4247#ifdef CONFIG_RFS_ACCEL
4248	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4249#endif
4250#ifdef CONFIG_SFC_MTD
4251	.mtd_probe = efx_ef10_mtd_probe,
4252	.mtd_rename = efx_mcdi_mtd_rename,
4253	.mtd_read = efx_mcdi_mtd_read,
4254	.mtd_erase = efx_mcdi_mtd_erase,
4255	.mtd_write = efx_mcdi_mtd_write,
4256	.mtd_sync = efx_mcdi_mtd_sync,
4257#endif
4258	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4259	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4260	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4261	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4262	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4263	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4264	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4265#ifdef CONFIG_SFC_SRIOV
4266	.sriov_configure = efx_ef10_sriov_configure,
4267	.sriov_init = efx_ef10_sriov_init,
4268	.sriov_fini = efx_ef10_sriov_fini,
4269	.sriov_wanted = efx_ef10_sriov_wanted,
 
 
4270	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4271	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4272	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4273	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4274	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4275	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4276	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4277	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4278#endif
4279	.get_mac_address = efx_ef10_get_mac_address_pf,
4280	.set_mac_address = efx_ef10_set_mac_address,
4281	.tso_versions = efx_ef10_tso_versions,
4282
4283	.get_phys_port_id = efx_ef10_get_phys_port_id,
4284	.revision = EFX_REV_HUNT_A0,
4285	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4286	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4287	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4288	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4289	.can_rx_scatter = true,
4290	.always_rx_scatter = true,
4291	.option_descriptors = true,
4292	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
4293	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4294	.offload_features = EF10_OFFLOAD_FEATURES,
4295	.mcdi_max_ver = 2,
4296	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4297	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4298			    1 << HWTSTAMP_FILTER_ALL,
4299	.rx_hash_key_size = 40,
4300	.check_caps = ef10_check_caps,
4301	.print_additional_fwver = efx_ef10_print_additional_fwver,
4302	.sensor_event = efx_mcdi_sensor_event,
4303	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4304};
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2012-2013 Solarflare Communications Inc.
   5 */
   6
   7#include "net_driver.h"
   8#include "rx_common.h"
   9#include "tx_common.h"
  10#include "ef10_regs.h"
  11#include "io.h"
  12#include "mcdi.h"
  13#include "mcdi_pcol.h"
  14#include "mcdi_port.h"
  15#include "mcdi_port_common.h"
  16#include "mcdi_functions.h"
  17#include "nic.h"
  18#include "mcdi_filters.h"
  19#include "workarounds.h"
  20#include "selftest.h"
  21#include "ef10_sriov.h"
  22#include <linux/in.h>
  23#include <linux/jhash.h>
  24#include <linux/wait.h>
  25#include <linux/workqueue.h>
  26#include <net/udp_tunnel.h>
  27
  28/* Hardware control for EF10 architecture including 'Huntington'. */
  29
  30#define EFX_EF10_DRVGEN_EV		7
  31enum {
  32	EFX_EF10_TEST = 1,
  33	EFX_EF10_REFILL,
  34};
  35
  36/* VLAN list entry */
  37struct efx_ef10_vlan {
  38	struct list_head list;
  39	u16 vid;
  40};
  41
  42static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
  43static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
  44
  45static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
  46{
  47	efx_dword_t reg;
  48
  49	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
  50	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  51		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  52}
  53
  54/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
  55 * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
  56 * bar; PFs use BAR 0/1 for memory.
  57 */
  58static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
  59{
  60	switch (efx->pci_dev->device) {
  61	case 0x0b03: /* SFC9250 PF */
  62		return 0;
  63	default:
  64		return 2;
  65	}
  66}
  67
  68/* All VFs use BAR 0/1 for memory */
  69static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
  70{
  71	return 0;
  72}
  73
  74static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
  75{
  76	int bar;
  77
  78	bar = efx->type->mem_bar(efx);
  79	return resource_size(&efx->pci_dev->resource[bar]);
  80}
  81
  82static bool efx_ef10_is_vf(struct efx_nic *efx)
  83{
  84	return efx->type->is_vf;
  85}
  86
  87#ifdef CONFIG_SFC_SRIOV
  88static int efx_ef10_get_vf_index(struct efx_nic *efx)
  89{
  90	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
  91	struct efx_ef10_nic_data *nic_data = efx->nic_data;
  92	size_t outlen;
  93	int rc;
  94
  95	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
  96			  sizeof(outbuf), &outlen);
  97	if (rc)
  98		return rc;
  99	if (outlen < sizeof(outbuf))
 100		return -EIO;
 101
 102	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 103	return 0;
 104}
 105#endif
 106
 107static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 108{
 109	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
 110	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 111	size_t outlen;
 112	int rc;
 113
 114	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 115
 116	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 117			  outbuf, sizeof(outbuf), &outlen);
 118	if (rc)
 119		return rc;
 120	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 121		netif_err(efx, drv, efx->net_dev,
 122			  "unable to read datapath firmware capabilities\n");
 123		return -EIO;
 124	}
 125
 126	nic_data->datapath_caps =
 127		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 128
 129	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
 130		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 131				GET_CAPABILITIES_V2_OUT_FLAGS2);
 132		nic_data->piobuf_size = MCDI_WORD(outbuf,
 133				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
 134	} else {
 135		nic_data->datapath_caps2 = 0;
 136		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
 137	}
 138
 139	/* record the DPCPU firmware IDs to determine VEB vswitching support.
 140	 */
 141	nic_data->rx_dpcpu_fw_id =
 142		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 143	nic_data->tx_dpcpu_fw_id =
 144		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 145
 146	if (!(nic_data->datapath_caps &
 147	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 148		netif_err(efx, probe, efx->net_dev,
 149			  "current firmware does not support an RX prefix\n");
 150		return -ENODEV;
 151	}
 152
 153	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
 154		u8 vi_window_mode = MCDI_BYTE(outbuf,
 155				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 156
 157		rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
 158		if (rc)
 159			return rc;
 160	} else {
 161		/* keep default VI stride */
 162		netif_dbg(efx, probe, efx->net_dev,
 163			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
 164			  efx->vi_stride);
 165	}
 166
 167	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 168		efx->num_mac_stats = MCDI_WORD(outbuf,
 169				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 170		netif_dbg(efx, probe, efx->net_dev,
 171			  "firmware reports num_mac_stats = %u\n",
 172			  efx->num_mac_stats);
 173	} else {
 174		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
 175		netif_dbg(efx, probe, efx->net_dev,
 176			  "firmware did not report num_mac_stats, assuming %u\n",
 177			  efx->num_mac_stats);
 178	}
 179
 180	return 0;
 181}
 182
 183static void efx_ef10_read_licensed_features(struct efx_nic *efx)
 184{
 185	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
 186	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
 187	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 188	size_t outlen;
 189	int rc;
 190
 191	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
 192		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
 193	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
 194				outbuf, sizeof(outbuf), &outlen);
 195	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
 196		return;
 197
 198	nic_data->licensed_features = MCDI_QWORD(outbuf,
 199					 LICENSING_V3_OUT_LICENSED_FEATURES);
 200}
 201
 202static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 203{
 204	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 205	int rc;
 206
 207	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 208			  outbuf, sizeof(outbuf), NULL);
 209	if (rc)
 210		return rc;
 211	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 212	return rc > 0 ? rc : -ERANGE;
 213}
 214
 215static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 216{
 217	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 218	unsigned int implemented;
 219	unsigned int enabled;
 220	int rc;
 221
 222	nic_data->workaround_35388 = false;
 223	nic_data->workaround_61265 = false;
 224
 225	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 226
 227	if (rc == -ENOSYS) {
 228		/* Firmware without GET_WORKAROUNDS - not a problem. */
 229		rc = 0;
 230	} else if (rc == 0) {
 231		/* Bug61265 workaround is always enabled if implemented. */
 232		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 233			nic_data->workaround_61265 = true;
 234
 235		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 236			nic_data->workaround_35388 = true;
 237		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 238			/* Workaround is implemented but not enabled.
 239			 * Try to enable it.
 240			 */
 241			rc = efx_mcdi_set_workaround(efx,
 242						     MC_CMD_WORKAROUND_BUG35388,
 243						     true, NULL);
 244			if (rc == 0)
 245				nic_data->workaround_35388 = true;
 246			/* If we failed to set the workaround just carry on. */
 247			rc = 0;
 248		}
 249	}
 250
 251	netif_dbg(efx, probe, efx->net_dev,
 252		  "workaround for bug 35388 is %sabled\n",
 253		  nic_data->workaround_35388 ? "en" : "dis");
 254	netif_dbg(efx, probe, efx->net_dev,
 255		  "workaround for bug 61265 is %sabled\n",
 256		  nic_data->workaround_61265 ? "en" : "dis");
 257
 258	return rc;
 259}
 260
 261static void efx_ef10_process_timer_config(struct efx_nic *efx,
 262					  const efx_dword_t *data)
 263{
 264	unsigned int max_count;
 265
 266	if (EFX_EF10_WORKAROUND_61265(efx)) {
 267		efx->timer_quantum_ns = MCDI_DWORD(data,
 268			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 269		efx->timer_max_ns = MCDI_DWORD(data,
 270			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 271	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
 272		efx->timer_quantum_ns = MCDI_DWORD(data,
 273			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 274		max_count = MCDI_DWORD(data,
 275			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 276		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 277	} else {
 278		efx->timer_quantum_ns = MCDI_DWORD(data,
 279			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 280		max_count = MCDI_DWORD(data,
 281			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 282		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 283	}
 284
 285	netif_dbg(efx, probe, efx->net_dev,
 286		  "got timer properties from MC: quantum %u ns; max %u ns\n",
 287		  efx->timer_quantum_ns, efx->timer_max_ns);
 288}
 289
 290static int efx_ef10_get_timer_config(struct efx_nic *efx)
 291{
 292	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 293	int rc;
 294
 295	rc = efx_ef10_get_timer_workarounds(efx);
 296	if (rc)
 297		return rc;
 298
 299	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 300				outbuf, sizeof(outbuf), NULL);
 301
 302	if (rc == 0) {
 303		efx_ef10_process_timer_config(efx, outbuf);
 304	} else if (rc == -ENOSYS || rc == -EPERM) {
 305		/* Not available - fall back to Huntington defaults. */
 306		unsigned int quantum;
 307
 308		rc = efx_ef10_get_sysclk_freq(efx);
 309		if (rc < 0)
 310			return rc;
 311
 312		quantum = 1536000 / rc; /* 1536 cycles */
 313		efx->timer_quantum_ns = quantum;
 314		efx->timer_max_ns = efx->type->timer_period_max * quantum;
 315		rc = 0;
 316	} else {
 317		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 318				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 319				       NULL, 0, rc);
 320	}
 321
 322	return rc;
 323}
 324
 325static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 326{
 327	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 328	size_t outlen;
 329	int rc;
 330
 331	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 332
 333	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 334			  outbuf, sizeof(outbuf), &outlen);
 335	if (rc)
 336		return rc;
 337	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 338		return -EIO;
 339
 340	ether_addr_copy(mac_address,
 341			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 342	return 0;
 343}
 344
 345static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 346{
 347	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 348	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 349	size_t outlen;
 350	int num_addrs, rc;
 351
 352	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 353		       EVB_PORT_ID_ASSIGNED);
 354	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 355			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 356
 357	if (rc)
 358		return rc;
 359	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 360		return -EIO;
 361
 362	num_addrs = MCDI_DWORD(outbuf,
 363			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 364
 365	WARN_ON(num_addrs != 1);
 366
 367	ether_addr_copy(mac_address,
 368			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 369
 370	return 0;
 371}
 372
 373static ssize_t link_control_flag_show(struct device *dev,
 374				      struct device_attribute *attr,
 375				      char *buf)
 376{
 377	struct efx_nic *efx = dev_get_drvdata(dev);
 378
 379	return sprintf(buf, "%d\n",
 380		       ((efx->mcdi->fn_flags) &
 381			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 382		       ? 1 : 0);
 383}
 384
 385static ssize_t primary_flag_show(struct device *dev,
 386				 struct device_attribute *attr,
 387				 char *buf)
 388{
 389	struct efx_nic *efx = dev_get_drvdata(dev);
 390
 391	return sprintf(buf, "%d\n",
 392		       ((efx->mcdi->fn_flags) &
 393			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 394		       ? 1 : 0);
 395}
 396
 397static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 398{
 399	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 400	struct efx_ef10_vlan *vlan;
 401
 402	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 403
 404	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 405		if (vlan->vid == vid)
 406			return vlan;
 407	}
 408
 409	return NULL;
 410}
 411
 412static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 413{
 414	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 415	struct efx_ef10_vlan *vlan;
 416	int rc;
 417
 418	mutex_lock(&nic_data->vlan_lock);
 419
 420	vlan = efx_ef10_find_vlan(efx, vid);
 421	if (vlan) {
 422		/* We add VID 0 on init. 8021q adds it on module init
 423		 * for all interfaces with VLAN filtring feature.
 424		 */
 425		if (vid == 0)
 426			goto done_unlock;
 427		netif_warn(efx, drv, efx->net_dev,
 428			   "VLAN %u already added\n", vid);
 429		rc = -EALREADY;
 430		goto fail_exist;
 431	}
 432
 433	rc = -ENOMEM;
 434	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 435	if (!vlan)
 436		goto fail_alloc;
 437
 438	vlan->vid = vid;
 439
 440	list_add_tail(&vlan->list, &nic_data->vlan_list);
 441
 442	if (efx->filter_state) {
 443		mutex_lock(&efx->mac_lock);
 444		down_write(&efx->filter_sem);
 445		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
 446		up_write(&efx->filter_sem);
 447		mutex_unlock(&efx->mac_lock);
 448		if (rc)
 449			goto fail_filter_add_vlan;
 450	}
 451
 452done_unlock:
 453	mutex_unlock(&nic_data->vlan_lock);
 454	return 0;
 455
 456fail_filter_add_vlan:
 457	list_del(&vlan->list);
 458	kfree(vlan);
 459fail_alloc:
 460fail_exist:
 461	mutex_unlock(&nic_data->vlan_lock);
 462	return rc;
 463}
 464
 465static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 466				       struct efx_ef10_vlan *vlan)
 467{
 468	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 469
 470	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 471
 472	if (efx->filter_state) {
 473		down_write(&efx->filter_sem);
 474		efx_mcdi_filter_del_vlan(efx, vlan->vid);
 475		up_write(&efx->filter_sem);
 476	}
 477
 478	list_del(&vlan->list);
 479	kfree(vlan);
 480}
 481
 482static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 483{
 484	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 485	struct efx_ef10_vlan *vlan;
 486	int rc = 0;
 487
 488	/* 8021q removes VID 0 on module unload for all interfaces
 489	 * with VLAN filtering feature. We need to keep it to receive
 490	 * untagged traffic.
 491	 */
 492	if (vid == 0)
 493		return 0;
 494
 495	mutex_lock(&nic_data->vlan_lock);
 496
 497	vlan = efx_ef10_find_vlan(efx, vid);
 498	if (!vlan) {
 499		netif_err(efx, drv, efx->net_dev,
 500			  "VLAN %u to be deleted not found\n", vid);
 501		rc = -ENOENT;
 502	} else {
 503		efx_ef10_del_vlan_internal(efx, vlan);
 504	}
 505
 506	mutex_unlock(&nic_data->vlan_lock);
 507
 508	return rc;
 509}
 510
 511static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 512{
 513	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 514	struct efx_ef10_vlan *vlan, *next_vlan;
 515
 516	mutex_lock(&nic_data->vlan_lock);
 517	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 518		efx_ef10_del_vlan_internal(efx, vlan);
 519	mutex_unlock(&nic_data->vlan_lock);
 520}
 521
 522static DEVICE_ATTR_RO(link_control_flag);
 523static DEVICE_ATTR_RO(primary_flag);
 524
 525static int efx_ef10_probe(struct efx_nic *efx)
 526{
 527	struct efx_ef10_nic_data *nic_data;
 528	int i, rc;
 529
 530	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 531	if (!nic_data)
 532		return -ENOMEM;
 533	efx->nic_data = nic_data;
 534
 535	/* we assume later that we can copy from this buffer in dwords */
 536	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 537
 538	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 539				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 540	if (rc)
 541		goto fail1;
 542
 543	/* Get the MC's warm boot count.  In case it's rebooting right
 544	 * now, be prepared to retry.
 545	 */
 546	i = 0;
 547	for (;;) {
 548		rc = efx_ef10_get_warm_boot_count(efx);
 549		if (rc >= 0)
 550			break;
 551		if (++i == 5)
 552			goto fail2;
 553		ssleep(1);
 554	}
 555	nic_data->warm_boot_count = rc;
 556
 557	/* In case we're recovering from a crash (kexec), we want to
 558	 * cancel any outstanding request by the previous user of this
 559	 * function.  We send a special message using the least
 560	 * significant bits of the 'high' (doorbell) register.
 561	 */
 562	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 563
 564	rc = efx_mcdi_init(efx);
 565	if (rc)
 566		goto fail2;
 567
 568	mutex_init(&nic_data->udp_tunnels_lock);
 569	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
 570		nic_data->udp_tunnels[i].type =
 571			TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
 572
 573	/* Reset (most) configuration for this function */
 574	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 575	if (rc)
 576		goto fail3;
 577
 578	/* Enable event logging */
 579	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 580	if (rc)
 581		goto fail3;
 582
 583	rc = device_create_file(&efx->pci_dev->dev,
 584				&dev_attr_link_control_flag);
 585	if (rc)
 586		goto fail3;
 587
 588	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 589	if (rc)
 590		goto fail4;
 591
 592	rc = efx_get_pf_index(efx, &nic_data->pf_index);
 593	if (rc)
 594		goto fail5;
 595
 596	rc = efx_ef10_init_datapath_caps(efx);
 597	if (rc < 0)
 598		goto fail5;
 599
 600	efx_ef10_read_licensed_features(efx);
 601
 602	/* We can have one VI for each vi_stride-byte region.
 603	 * However, until we use TX option descriptors we need up to four
 604	 * TX queues per channel for different checksumming combinations.
 605	 */
 606	if (nic_data->datapath_caps &
 607	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
 608		efx->tx_queues_per_channel = 4;
 609	else
 610		efx->tx_queues_per_channel = 2;
 611	efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
 612	if (!efx->max_vis) {
 613		netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
 614		rc = -EIO;
 615		goto fail5;
 616	}
 617	efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
 618				  efx->max_vis / efx->tx_queues_per_channel);
 619	efx->max_tx_channels = efx->max_channels;
 620	if (WARN_ON(efx->max_channels == 0)) {
 621		rc = -EIO;
 622		goto fail5;
 623	}
 624
 625	efx->rx_packet_len_offset =
 626		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 627
 628	if (nic_data->datapath_caps &
 629	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
 630		efx->net_dev->hw_features |= NETIF_F_RXFCS;
 631
 632	rc = efx_mcdi_port_get_number(efx);
 633	if (rc < 0)
 634		goto fail5;
 635	efx->port_num = rc;
 636
 637	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 638	if (rc)
 639		goto fail5;
 640
 641	rc = efx_ef10_get_timer_config(efx);
 642	if (rc < 0)
 643		goto fail5;
 644
 645	rc = efx_mcdi_mon_probe(efx);
 646	if (rc && rc != -EPERM)
 647		goto fail5;
 648
 649	efx_ptp_defer_probe_with_channel(efx);
 650
 651#ifdef CONFIG_SFC_SRIOV
 652	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 653		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 654		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 655
 656		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 657	} else
 658#endif
 659		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 660
 661	INIT_LIST_HEAD(&nic_data->vlan_list);
 662	mutex_init(&nic_data->vlan_lock);
 663
 664	/* Add unspecified VID to support VLAN filtering being disabled */
 665	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 666	if (rc)
 667		goto fail_add_vid_unspec;
 668
 669	/* If VLAN filtering is enabled, we need VID 0 to get untagged
 670	 * traffic.  It is added automatically if 8021q module is loaded,
 671	 * but we can't rely on it since module may be not loaded.
 672	 */
 673	rc = efx_ef10_add_vlan(efx, 0);
 674	if (rc)
 675		goto fail_add_vid_0;
 676
 677	if (nic_data->datapath_caps &
 678	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
 679	    efx->mcdi->fn_flags &
 680	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
 681		efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
 682
 683	return 0;
 684
 685fail_add_vid_0:
 686	efx_ef10_cleanup_vlans(efx);
 687fail_add_vid_unspec:
 688	mutex_destroy(&nic_data->vlan_lock);
 689	efx_ptp_remove(efx);
 690	efx_mcdi_mon_remove(efx);
 691fail5:
 692	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 693fail4:
 694	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 695fail3:
 696	efx_mcdi_detach(efx);
 697
 698	mutex_lock(&nic_data->udp_tunnels_lock);
 699	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 700	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 701	mutex_unlock(&nic_data->udp_tunnels_lock);
 702	mutex_destroy(&nic_data->udp_tunnels_lock);
 703
 704	efx_mcdi_fini(efx);
 705fail2:
 706	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 707fail1:
 708	kfree(nic_data);
 709	efx->nic_data = NULL;
 710	return rc;
 711}
 712
 713#ifdef EFX_USE_PIO
 714
 715static void efx_ef10_free_piobufs(struct efx_nic *efx)
 716{
 717	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 718	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 719	unsigned int i;
 720	int rc;
 721
 722	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 723
 724	for (i = 0; i < nic_data->n_piobufs; i++) {
 725		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 726			       nic_data->piobuf_handle[i]);
 727		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 728				  NULL, 0, NULL);
 729		WARN_ON(rc);
 730	}
 731
 732	nic_data->n_piobufs = 0;
 733}
 734
 735static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 736{
 737	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 738	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 739	unsigned int i;
 740	size_t outlen;
 741	int rc = 0;
 742
 743	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 744
 745	for (i = 0; i < n; i++) {
 746		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 747					outbuf, sizeof(outbuf), &outlen);
 748		if (rc) {
 749			/* Don't display the MC error if we didn't have space
 750			 * for a VF.
 751			 */
 752			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 753				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 754						       0, outbuf, outlen, rc);
 755			break;
 756		}
 757		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 758			rc = -EIO;
 759			break;
 760		}
 761		nic_data->piobuf_handle[i] =
 762			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 763		netif_dbg(efx, probe, efx->net_dev,
 764			  "allocated PIO buffer %u handle %x\n", i,
 765			  nic_data->piobuf_handle[i]);
 766	}
 767
 768	nic_data->n_piobufs = i;
 769	if (rc)
 770		efx_ef10_free_piobufs(efx);
 771	return rc;
 772}
 773
 774static int efx_ef10_link_piobufs(struct efx_nic *efx)
 775{
 776	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 777	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
 778	struct efx_channel *channel;
 779	struct efx_tx_queue *tx_queue;
 780	unsigned int offset, index;
 781	int rc;
 782
 783	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 784	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 785
 786	/* Link a buffer to each VI in the write-combining mapping */
 787	for (index = 0; index < nic_data->n_piobufs; ++index) {
 788		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 789			       nic_data->piobuf_handle[index]);
 790		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 791			       nic_data->pio_write_vi_base + index);
 792		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 793				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 794				  NULL, 0, NULL);
 795		if (rc) {
 796			netif_err(efx, drv, efx->net_dev,
 797				  "failed to link VI %u to PIO buffer %u (%d)\n",
 798				  nic_data->pio_write_vi_base + index, index,
 799				  rc);
 800			goto fail;
 801		}
 802		netif_dbg(efx, probe, efx->net_dev,
 803			  "linked VI %u to PIO buffer %u\n",
 804			  nic_data->pio_write_vi_base + index, index);
 805	}
 806
 807	/* Link a buffer to each TX queue */
 808	efx_for_each_channel(channel, efx) {
 809		/* Extra channels, even those with TXQs (PTP), do not require
 810		 * PIO resources.
 811		 */
 812		if (!channel->type->want_pio ||
 813		    channel->channel >= efx->xdp_channel_offset)
 814			continue;
 815
 816		efx_for_each_channel_tx_queue(tx_queue, channel) {
 817			/* We assign the PIO buffers to queues in
 818			 * reverse order to allow for the following
 819			 * special case.
 820			 */
 821			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 822				   tx_queue->channel->channel - 1) *
 823				  efx_piobuf_size);
 824			index = offset / nic_data->piobuf_size;
 825			offset = offset % nic_data->piobuf_size;
 826
 827			/* When the host page size is 4K, the first
 828			 * host page in the WC mapping may be within
 829			 * the same VI page as the last TX queue.  We
 830			 * can only link one buffer to each VI.
 831			 */
 832			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 833				BUG_ON(index != 0);
 834				rc = 0;
 835			} else {
 836				MCDI_SET_DWORD(inbuf,
 837					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 838					       nic_data->piobuf_handle[index]);
 839				MCDI_SET_DWORD(inbuf,
 840					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 841					       tx_queue->queue);
 842				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 843						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 844						  NULL, 0, NULL);
 845			}
 846
 847			if (rc) {
 848				/* This is non-fatal; the TX path just
 849				 * won't use PIO for this queue
 850				 */
 851				netif_err(efx, drv, efx->net_dev,
 852					  "failed to link VI %u to PIO buffer %u (%d)\n",
 853					  tx_queue->queue, index, rc);
 854				tx_queue->piobuf = NULL;
 855			} else {
 856				tx_queue->piobuf =
 857					nic_data->pio_write_base +
 858					index * efx->vi_stride + offset;
 859				tx_queue->piobuf_offset = offset;
 860				netif_dbg(efx, probe, efx->net_dev,
 861					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 862					  tx_queue->queue, index,
 863					  tx_queue->piobuf_offset,
 864					  tx_queue->piobuf);
 865			}
 866		}
 867	}
 868
 869	return 0;
 870
 871fail:
 872	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
 873	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
 874	 */
 875	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
 876	while (index--) {
 877		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 878			       nic_data->pio_write_vi_base + index);
 879		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 880			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 881			     NULL, 0, NULL);
 882	}
 883	return rc;
 884}
 885
 886static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 887{
 888	struct efx_channel *channel;
 889	struct efx_tx_queue *tx_queue;
 890
 891	/* All our existing PIO buffers went away */
 892	efx_for_each_channel(channel, efx)
 893		efx_for_each_channel_tx_queue(tx_queue, channel)
 894			tx_queue->piobuf = NULL;
 895}
 896
 897#else /* !EFX_USE_PIO */
 898
 899static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 900{
 901	return n == 0 ? 0 : -ENOBUFS;
 902}
 903
 904static int efx_ef10_link_piobufs(struct efx_nic *efx)
 905{
 906	return 0;
 907}
 908
 909static void efx_ef10_free_piobufs(struct efx_nic *efx)
 910{
 911}
 912
 913static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 914{
 915}
 916
 917#endif /* EFX_USE_PIO */
 918
 919static void efx_ef10_remove(struct efx_nic *efx)
 920{
 921	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 922	int rc;
 923
 924#ifdef CONFIG_SFC_SRIOV
 925	struct efx_ef10_nic_data *nic_data_pf;
 926	struct pci_dev *pci_dev_pf;
 927	struct efx_nic *efx_pf;
 928	struct ef10_vf *vf;
 929
 930	if (efx->pci_dev->is_virtfn) {
 931		pci_dev_pf = efx->pci_dev->physfn;
 932		if (pci_dev_pf) {
 933			efx_pf = pci_get_drvdata(pci_dev_pf);
 934			nic_data_pf = efx_pf->nic_data;
 935			vf = nic_data_pf->vf + nic_data->vf_index;
 936			vf->efx = NULL;
 937		} else
 938			netif_info(efx, drv, efx->net_dev,
 939				   "Could not get the PF id from VF\n");
 940	}
 941#endif
 942
 943	efx_ef10_cleanup_vlans(efx);
 944	mutex_destroy(&nic_data->vlan_lock);
 945
 946	efx_ptp_remove(efx);
 947
 948	efx_mcdi_mon_remove(efx);
 949
 950	efx_mcdi_rx_free_indir_table(efx);
 951
 952	if (nic_data->wc_membase)
 953		iounmap(nic_data->wc_membase);
 954
 955	rc = efx_mcdi_free_vis(efx);
 956	WARN_ON(rc != 0);
 957
 958	if (!nic_data->must_restore_piobufs)
 959		efx_ef10_free_piobufs(efx);
 960
 961	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 962	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 963
 964	efx_mcdi_detach(efx);
 965
 966	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 967	mutex_lock(&nic_data->udp_tunnels_lock);
 968	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 969	mutex_unlock(&nic_data->udp_tunnels_lock);
 970
 971	mutex_destroy(&nic_data->udp_tunnels_lock);
 972
 973	efx_mcdi_fini(efx);
 974	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 975	kfree(nic_data);
 976}
 977
 978static int efx_ef10_probe_pf(struct efx_nic *efx)
 979{
 980	return efx_ef10_probe(efx);
 981}
 982
 983int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
 984			    u32 *port_flags, u32 *vadaptor_flags,
 985			    unsigned int *vlan_tags)
 986{
 987	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 988	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
 989	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
 990	size_t outlen;
 991	int rc;
 992
 993	if (nic_data->datapath_caps &
 994	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
 995		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
 996			       port_id);
 997
 998		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
 999				  outbuf, sizeof(outbuf), &outlen);
1000		if (rc)
1001			return rc;
1002
1003		if (outlen < sizeof(outbuf)) {
1004			rc = -EIO;
1005			return rc;
1006		}
1007	}
1008
1009	if (port_flags)
1010		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1011	if (vadaptor_flags)
1012		*vadaptor_flags =
1013			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014	if (vlan_tags)
1015		*vlan_tags =
1016			MCDI_DWORD(outbuf,
1017				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1018
1019	return 0;
1020}
1021
1022int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1023{
1024	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1025
1026	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028			    NULL, 0, NULL);
1029}
1030
1031int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1032{
1033	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1034
1035	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037			    NULL, 0, NULL);
1038}
1039
1040int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041			   unsigned int port_id, const u8 *mac)
1042{
1043	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1044
1045	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1047
1048	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049			    sizeof(inbuf), NULL, 0, NULL);
1050}
1051
1052int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053			   unsigned int port_id, const u8 *mac)
1054{
1055	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1056
1057	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1059
1060	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061			    sizeof(inbuf), NULL, 0, NULL);
1062}
1063
1064#ifdef CONFIG_SFC_SRIOV
1065static int efx_ef10_probe_vf(struct efx_nic *efx)
1066{
1067	int rc;
1068	struct pci_dev *pci_dev_pf;
1069
1070	/* If the parent PF has no VF data structure, it doesn't know about this
1071	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1072	 * if the PF driver was unloaded while any VF was assigned to a guest
1073	 * (using Xen, only).
1074	 */
1075	pci_dev_pf = efx->pci_dev->physfn;
1076	if (pci_dev_pf) {
1077		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079
1080		if (!nic_data_pf->vf) {
1081			netif_info(efx, drv, efx->net_dev,
1082				   "The VF cannot link to its parent PF; "
1083				   "please destroy and re-create the VF\n");
1084			return -EBUSY;
1085		}
1086	}
1087
1088	rc = efx_ef10_probe(efx);
1089	if (rc)
1090		return rc;
1091
1092	rc = efx_ef10_get_vf_index(efx);
1093	if (rc)
1094		goto fail;
1095
1096	if (efx->pci_dev->is_virtfn) {
1097		if (efx->pci_dev->physfn) {
1098			struct efx_nic *efx_pf =
1099				pci_get_drvdata(efx->pci_dev->physfn);
1100			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102
1103			nic_data_p->vf[nic_data->vf_index].efx = efx;
1104			nic_data_p->vf[nic_data->vf_index].pci_dev =
1105				efx->pci_dev;
1106		} else
1107			netif_info(efx, drv, efx->net_dev,
1108				   "Could not get the PF id from VF\n");
1109	}
1110
1111	return 0;
1112
1113fail:
1114	efx_ef10_remove(efx);
1115	return rc;
1116}
1117#else
1118static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119{
1120	return 0;
1121}
1122#endif
1123
1124static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125			      unsigned int min_vis, unsigned int max_vis)
1126{
1127	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1128
1129	return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130				  &nic_data->n_allocated_vis);
1131}
1132
1133/* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1135 */
1136static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137{
1138	unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139				     efx_separate_tx_channels ? 2 : 1);
1140	unsigned int channel_vis, pio_write_vi_base, max_vis;
1141	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142	unsigned int uc_mem_map_size, wc_mem_map_size;
1143	void __iomem *membase;
1144	int rc;
1145
1146	channel_vis = max(efx->n_channels,
1147			  ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148			   efx->tx_queues_per_channel) +
1149			   efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150	if (efx->max_vis && efx->max_vis < channel_vis) {
1151		netif_dbg(efx, drv, efx->net_dev,
1152			  "Reducing channel VIs from %u to %u\n",
1153			  channel_vis, efx->max_vis);
1154		channel_vis = efx->max_vis;
1155	}
1156
1157#ifdef EFX_USE_PIO
1158	/* Try to allocate PIO buffers if wanted and if the full
1159	 * number of PIO buffers would be sufficient to allocate one
1160	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1161	 * are only a small number of PIO buffers shared between all
1162	 * functions of the controller.
1163	 */
1164	if (efx_piobuf_size != 0 &&
1165	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166	    efx->n_tx_channels) {
1167		unsigned int n_piobufs =
1168			DIV_ROUND_UP(efx->n_tx_channels,
1169				     nic_data->piobuf_size / efx_piobuf_size);
1170
1171		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172		if (rc == -ENOSPC)
1173			netif_dbg(efx, probe, efx->net_dev,
1174				  "out of PIO buffers; cannot allocate more\n");
1175		else if (rc == -EPERM)
1176			netif_dbg(efx, probe, efx->net_dev,
1177				  "not permitted to allocate PIO buffers\n");
1178		else if (rc)
1179			netif_err(efx, probe, efx->net_dev,
1180				  "failed to allocate PIO buffers (%d)\n", rc);
1181		else
1182			netif_dbg(efx, probe, efx->net_dev,
1183				  "allocated %u PIO buffers\n", n_piobufs);
1184	}
1185#else
1186	nic_data->n_piobufs = 0;
1187#endif
1188
1189	/* PIO buffers should be mapped with write-combining enabled,
1190	 * and we want to make single UC and WC mappings rather than
1191	 * several of each (in fact that's the only option if host
1192	 * page size is >4K).  So we may allocate some extra VIs just
1193	 * for writing PIO buffers through.
1194	 *
1195	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196	 * first 4K of the next VI.  Then the WC mapping begins with
1197	 * the remainder of this last VI.
1198	 */
1199	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200				     ER_DZ_TX_PIOBUF);
1201	if (nic_data->n_piobufs) {
1202		/* pio_write_vi_base rounds down to give the number of complete
1203		 * VIs inside the UC mapping.
1204		 */
1205		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207					       nic_data->n_piobufs) *
1208					      efx->vi_stride) -
1209				   uc_mem_map_size);
1210		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211	} else {
1212		pio_write_vi_base = 0;
1213		wc_mem_map_size = 0;
1214		max_vis = channel_vis;
1215	}
1216
1217	/* In case the last attached driver failed to free VIs, do it now */
1218	rc = efx_mcdi_free_vis(efx);
1219	if (rc != 0)
1220		return rc;
1221
1222	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223	if (rc != 0)
1224		return rc;
1225
1226	if (nic_data->n_allocated_vis < channel_vis) {
1227		netif_info(efx, drv, efx->net_dev,
1228			   "Could not allocate enough VIs to satisfy RSS"
1229			   " requirements. Performance may not be optimal.\n");
1230		/* We didn't get the VIs to populate our channels.
1231		 * We could keep what we got but then we'd have more
1232		 * interrupts than we need.
1233		 * Instead calculate new max_channels and restart
1234		 */
1235		efx->max_channels = nic_data->n_allocated_vis;
1236		efx->max_tx_channels =
1237			nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238
1239		efx_mcdi_free_vis(efx);
1240		return -EAGAIN;
1241	}
1242
1243	/* If we didn't get enough VIs to map all the PIO buffers, free the
1244	 * PIO buffers
1245	 */
1246	if (nic_data->n_piobufs &&
1247	    nic_data->n_allocated_vis <
1248	    pio_write_vi_base + nic_data->n_piobufs) {
1249		netif_dbg(efx, probe, efx->net_dev,
1250			  "%u VIs are not sufficient to map %u PIO buffers\n",
1251			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1252		efx_ef10_free_piobufs(efx);
1253	}
1254
1255	/* Shrink the original UC mapping of the memory BAR */
1256	membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257	if (!membase) {
1258		netif_err(efx, probe, efx->net_dev,
1259			  "could not shrink memory BAR to %x\n",
1260			  uc_mem_map_size);
1261		return -ENOMEM;
1262	}
1263	iounmap(efx->membase);
1264	efx->membase = membase;
1265
1266	/* Set up the WC mapping if needed */
1267	if (wc_mem_map_size) {
1268		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269						  uc_mem_map_size,
1270						  wc_mem_map_size);
1271		if (!nic_data->wc_membase) {
1272			netif_err(efx, probe, efx->net_dev,
1273				  "could not allocate WC mapping of size %x\n",
1274				  wc_mem_map_size);
1275			return -ENOMEM;
1276		}
1277		nic_data->pio_write_vi_base = pio_write_vi_base;
1278		nic_data->pio_write_base =
1279			nic_data->wc_membase +
1280			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281			 uc_mem_map_size);
1282
1283		rc = efx_ef10_link_piobufs(efx);
1284		if (rc)
1285			efx_ef10_free_piobufs(efx);
1286	}
1287
1288	netif_dbg(efx, probe, efx->net_dev,
1289		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1291		  nic_data->wc_membase, wc_mem_map_size);
1292
1293	return 0;
1294}
1295
1296static void efx_ef10_fini_nic(struct efx_nic *efx)
1297{
1298	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299
 
1300	kfree(nic_data->mc_stats);
1301	nic_data->mc_stats = NULL;
 
1302}
1303
1304static int efx_ef10_init_nic(struct efx_nic *efx)
1305{
1306	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1307	netdev_features_t hw_enc_features = 0;
 
1308	int rc;
1309
1310	if (nic_data->must_check_datapath_caps) {
1311		rc = efx_ef10_init_datapath_caps(efx);
1312		if (rc)
1313			return rc;
1314		nic_data->must_check_datapath_caps = false;
1315	}
1316
1317	if (efx->must_realloc_vis) {
1318		/* We cannot let the number of VIs change now */
1319		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1320					nic_data->n_allocated_vis);
1321		if (rc)
1322			return rc;
1323		efx->must_realloc_vis = false;
1324	}
1325
1326	nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1327				     GFP_KERNEL);
1328	if (!nic_data->mc_stats)
1329		return -ENOMEM;
1330
1331	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1332		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1333		if (rc == 0) {
1334			rc = efx_ef10_link_piobufs(efx);
1335			if (rc)
1336				efx_ef10_free_piobufs(efx);
1337		}
1338
1339		/* Log an error on failure, but this is non-fatal.
1340		 * Permission errors are less important - we've presumably
1341		 * had the PIO buffer licence removed.
1342		 */
1343		if (rc == -EPERM)
1344			netif_dbg(efx, drv, efx->net_dev,
1345				  "not permitted to restore PIO buffers\n");
1346		else if (rc)
1347			netif_err(efx, drv, efx->net_dev,
1348				  "failed to restore PIO buffers (%d)\n", rc);
1349		nic_data->must_restore_piobufs = false;
1350	}
1351
1352	/* add encapsulated checksum offload features */
1353	if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1354		hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1355	/* add encapsulated TSO features */
1356	if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1357		netdev_features_t encap_tso_features;
1358
1359		encap_tso_features = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1360			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
 
1361
1362		hw_enc_features |= encap_tso_features | NETIF_F_TSO;
1363		efx->net_dev->features |= encap_tso_features;
 
 
 
 
 
 
 
 
 
 
 
1364	}
1365	efx->net_dev->hw_enc_features = hw_enc_features;
1366
1367	/* don't fail init if RSS setup doesn't work */
1368	rc = efx->type->rx_push_rss_config(efx, false,
1369					   efx->rss_context.rx_indir_table, NULL);
1370
1371	return 0;
1372}
1373
1374static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1375{
1376	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1377#ifdef CONFIG_SFC_SRIOV
1378	unsigned int i;
1379#endif
1380
1381	/* All our allocations have been reset */
1382	efx->must_realloc_vis = true;
1383	efx_mcdi_filter_table_reset_mc_allocations(efx);
1384	nic_data->must_restore_piobufs = true;
1385	efx_ef10_forget_old_piobufs(efx);
1386	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1387
1388	/* Driver-created vswitches and vports must be re-created */
1389	nic_data->must_probe_vswitching = true;
1390	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1391#ifdef CONFIG_SFC_SRIOV
1392	if (nic_data->vf)
1393		for (i = 0; i < efx->vf_count; i++)
1394			nic_data->vf[i].vport_id = 0;
1395#endif
1396}
1397
1398static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1399{
1400	if (reason == RESET_TYPE_MC_FAILURE)
1401		return RESET_TYPE_DATAPATH;
1402
1403	return efx_mcdi_map_reset_reason(reason);
1404}
1405
1406static int efx_ef10_map_reset_flags(u32 *flags)
1407{
1408	enum {
1409		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1410				   ETH_RESET_SHARED_SHIFT),
1411		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1412				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1413				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1414				 ETH_RESET_SHARED_SHIFT)
1415	};
1416
1417	/* We assume for now that our PCI function is permitted to
1418	 * reset everything.
1419	 */
1420
1421	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1422		*flags &= ~EF10_RESET_MC;
1423		return RESET_TYPE_WORLD;
1424	}
1425
1426	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1427		*flags &= ~EF10_RESET_PORT;
1428		return RESET_TYPE_ALL;
1429	}
1430
1431	/* no invisible reset implemented */
1432
1433	return -EINVAL;
1434}
1435
1436static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1437{
1438	int rc = efx_mcdi_reset(efx, reset_type);
1439
1440	/* Unprivileged functions return -EPERM, but need to return success
1441	 * here so that the datapath is brought back up.
1442	 */
1443	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1444		rc = 0;
1445
1446	/* If it was a port reset, trigger reallocation of MC resources.
1447	 * Note that on an MC reset nothing needs to be done now because we'll
1448	 * detect the MC reset later and handle it then.
1449	 * For an FLR, we never get an MC reset event, but the MC has reset all
1450	 * resources assigned to us, so we have to trigger reallocation now.
1451	 */
1452	if ((reset_type == RESET_TYPE_ALL ||
1453	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1454		efx_ef10_table_reset_mc_allocations(efx);
1455	return rc;
1456}
1457
1458#define EF10_DMA_STAT(ext_name, mcdi_name)			\
1459	[EF10_STAT_ ## ext_name] =				\
1460	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1461#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1462	[EF10_STAT_ ## int_name] =				\
1463	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1464#define EF10_OTHER_STAT(ext_name)				\
1465	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1466
1467static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1468	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1469	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1470	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1471	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1472	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1473	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1474	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1475	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1476	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1477	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1478	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1479	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1480	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1481	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1482	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1483	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1484	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1485	EF10_OTHER_STAT(port_rx_good_bytes),
1486	EF10_OTHER_STAT(port_rx_bad_bytes),
1487	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1488	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1489	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1490	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1491	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1492	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1493	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1494	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1495	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1496	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1497	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1498	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1499	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1500	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1501	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1502	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1503	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1504	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1505	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1506	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1507	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1508	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1509	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1510	EFX_GENERIC_SW_STAT(rx_noskb_drops),
1511	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1512	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1513	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1514	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1515	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1516	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1517	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1518	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1519	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1520	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1521	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1522	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1523	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1524	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1525	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1526	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1527	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1528	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1529	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1530	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1531	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1532	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1533	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1534	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1535	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1536	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1537	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1538	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1539	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1540	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1541	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1542	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1543	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1544	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1545	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1546	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1547	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1548	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1549	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1550	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1551	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1552	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1553	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1554	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1555	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1556	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1557	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1558	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1559	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1560	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1561	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1562	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1563};
1564
1565#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1566			       (1ULL << EF10_STAT_port_tx_packets) |	\
1567			       (1ULL << EF10_STAT_port_tx_pause) |	\
1568			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1569			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1570			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1571			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1572			       (1ULL <<                                 \
1573				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1574			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1575			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1576			       (1ULL << EF10_STAT_port_rx_packets) |	\
1577			       (1ULL << EF10_STAT_port_rx_good) |	\
1578			       (1ULL << EF10_STAT_port_rx_bad) |	\
1579			       (1ULL << EF10_STAT_port_rx_pause) |	\
1580			       (1ULL << EF10_STAT_port_rx_control) |	\
1581			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1582			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1583			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1584			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1585			       (1ULL << EF10_STAT_port_rx_64) |		\
1586			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1587			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1588			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1589			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1590			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1591			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1592			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1593			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1594			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1595			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1596			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1597			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1598
1599/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1600 * For a 10G/40G switchable port we do not expose these because they might
1601 * not include all the packets they should.
1602 * On 8000 series NICs these statistics are always provided.
1603 */
1604#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1605				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1606				 (1ULL << EF10_STAT_port_tx_64) |	\
1607				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1608				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1609				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1610				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1611				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1612				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1613
1614/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1615 * switchable port we do expose these because the errors will otherwise
1616 * be silent.
1617 */
1618#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1619				  (1ULL << EF10_STAT_port_rx_length_error))
1620
1621/* These statistics are only provided if the firmware supports the
1622 * capability PM_AND_RXDP_COUNTERS.
1623 */
1624#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1625	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1626	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1627	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1628	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1629	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1630	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1631	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1632	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1633	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1634	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1635	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1636	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1637
1638/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1639 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1640 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1641 * These bits are in the second u64 of the raw mask.
1642 */
1643#define EF10_FEC_STAT_MASK (						\
1644	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1645	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1646	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1647	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1648	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1649	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1650
1651/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1655 */
1656#define EF10_CTPIO_STAT_MASK (						\
1657	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1658	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1659	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1660	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1661	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1662	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1663	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1664	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1665	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1666	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1667	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1668	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1669	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1670	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1671	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1672	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1673
1674static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1675{
1676	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1677	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1678	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1679
1680	if (!(efx->mcdi->fn_flags &
1681	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1682		return 0;
1683
1684	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1685		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1686		/* 8000 series have everything even at 40G */
1687		if (nic_data->datapath_caps2 &
1688		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1689			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1690	} else {
1691		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1692	}
1693
1694	if (nic_data->datapath_caps &
1695	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1696		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1697
1698	return raw_mask;
1699}
1700
1701static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1702{
1703	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1704	u64 raw_mask[2];
1705
1706	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1707
1708	/* Only show vadaptor stats when EVB capability is present */
1709	if (nic_data->datapath_caps &
1710	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1711		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1712		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1713	} else {
1714		raw_mask[1] = 0;
1715	}
1716	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1717	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1718		raw_mask[1] |= EF10_FEC_STAT_MASK;
1719
1720	/* CTPIO stats appear in V3. Only show them on devices that actually
1721	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1722	 * and we may be reporting the stats for the underlying port.
1723	 */
1724	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1725	    (nic_data->datapath_caps2 &
1726	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1727		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1728
1729#if BITS_PER_LONG == 64
1730	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1731	mask[0] = raw_mask[0];
1732	mask[1] = raw_mask[1];
1733#else
1734	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1735	mask[0] = raw_mask[0] & 0xffffffff;
1736	mask[1] = raw_mask[0] >> 32;
1737	mask[2] = raw_mask[1] & 0xffffffff;
1738#endif
1739}
1740
1741static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1742{
1743	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1744
1745	efx_ef10_get_stat_mask(efx, mask);
1746	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1747				      mask, names);
1748}
1749
1750static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1751				   struct ethtool_fec_stats *fec_stats)
1752{
1753	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1754	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1755	u64 *stats = nic_data->stats;
1756
1757	efx_ef10_get_stat_mask(efx, mask);
1758	if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1759		fec_stats->corrected_blocks.total =
1760			stats[EF10_STAT_fec_corrected_errors];
1761	if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1762		fec_stats->uncorrectable_blocks.total =
1763			stats[EF10_STAT_fec_uncorrected_errors];
1764}
1765
1766static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1767					   struct rtnl_link_stats64 *core_stats)
1768{
1769	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1770	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1771	u64 *stats = nic_data->stats;
1772	size_t stats_count = 0, index;
1773
1774	efx_ef10_get_stat_mask(efx, mask);
1775
1776	if (full_stats) {
1777		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1778			if (efx_ef10_stat_desc[index].name) {
1779				*full_stats++ = stats[index];
1780				++stats_count;
1781			}
1782		}
1783	}
1784
1785	if (!core_stats)
1786		return stats_count;
1787
1788	if (nic_data->datapath_caps &
1789			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1790		/* Use vadaptor stats. */
1791		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1792					 stats[EF10_STAT_rx_multicast] +
1793					 stats[EF10_STAT_rx_broadcast];
1794		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1795					 stats[EF10_STAT_tx_multicast] +
1796					 stats[EF10_STAT_tx_broadcast];
1797		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1798				       stats[EF10_STAT_rx_multicast_bytes] +
1799				       stats[EF10_STAT_rx_broadcast_bytes];
1800		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1801				       stats[EF10_STAT_tx_multicast_bytes] +
1802				       stats[EF10_STAT_tx_broadcast_bytes];
1803		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1804					 stats[GENERIC_STAT_rx_noskb_drops];
1805		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1806		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1807		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1808		core_stats->rx_errors = core_stats->rx_crc_errors;
1809		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1810	} else {
1811		/* Use port stats. */
1812		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1813		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1814		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1815		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1816		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1817					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1818					 stats[GENERIC_STAT_rx_noskb_drops];
1819		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1820		core_stats->rx_length_errors =
1821				stats[EF10_STAT_port_rx_gtjumbo] +
1822				stats[EF10_STAT_port_rx_length_error];
1823		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1824		core_stats->rx_frame_errors =
1825				stats[EF10_STAT_port_rx_align_error];
1826		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1827		core_stats->rx_errors = (core_stats->rx_length_errors +
1828					 core_stats->rx_crc_errors +
1829					 core_stats->rx_frame_errors);
1830	}
1831
1832	return stats_count;
1833}
1834
1835static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1836				       struct rtnl_link_stats64 *core_stats)
1837{
1838	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1839	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1840	u64 *stats = nic_data->stats;
1841
1842	efx_ef10_get_stat_mask(efx, mask);
1843
1844	efx_nic_copy_stats(efx, nic_data->mc_stats);
1845	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1846			     mask, stats, nic_data->mc_stats, false);
 
 
 
 
 
1847
1848	/* Update derived statistics */
1849	efx_nic_fix_nodesc_drop_stat(efx,
1850				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1851	/* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1852	 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1853	 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1854	 * Here we calculate port_rx_good_bytes.
1855	 */
1856	stats[EF10_STAT_port_rx_good_bytes] =
1857		stats[EF10_STAT_port_rx_bytes] -
1858		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1859
1860	/* The asynchronous reads used to calculate RX_BAD_BYTES in
1861	 * MC Firmware are done such that we should not see an increase in
1862	 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1863	 * does mean that the stat can decrease at times. Here we do not
1864	 * update the stat unless it has increased or has gone to zero
1865	 * (In the case of the NIC rebooting).
1866	 * Please see Bug 33781 for a discussion of why things work this way.
1867	 */
1868	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1869			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1870	efx_update_sw_stats(efx, stats);
1871
1872	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1873}
1874
1875static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1876	__must_hold(&efx->stats_lock)
1877{
1878	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1879	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1880	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1881	__le64 generation_start, generation_end;
1882	u64 *stats = nic_data->stats;
1883	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1884	struct efx_buffer stats_buf;
1885	__le64 *dma_stats;
1886	int rc;
1887
1888	spin_unlock_bh(&efx->stats_lock);
1889
1890	efx_ef10_get_stat_mask(efx, mask);
1891
1892	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1893	if (rc) {
1894		spin_lock_bh(&efx->stats_lock);
1895		return rc;
1896	}
1897
1898	dma_stats = stats_buf.addr;
1899	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1900
1901	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1902	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1903			      MAC_STATS_IN_DMA, 1);
1904	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1905	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1906
1907	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1908				NULL, 0, NULL);
1909	spin_lock_bh(&efx->stats_lock);
1910	if (rc) {
1911		/* Expect ENOENT if DMA queues have not been set up */
1912		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1913			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1914					       sizeof(inbuf), NULL, 0, rc);
1915		goto out;
1916	}
1917
1918	generation_end = dma_stats[efx->num_mac_stats - 1];
1919	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1920		WARN_ON_ONCE(1);
1921		goto out;
1922	}
1923	rmb();
1924	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1925			     stats, stats_buf.addr, false);
1926	rmb();
1927	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1928	if (generation_end != generation_start) {
1929		rc = -EAGAIN;
1930		goto out;
1931	}
1932
1933	efx_update_sw_stats(efx, stats);
1934out:
1935	/* releasing a DMA coherent buffer with BH disabled can panic */
1936	spin_unlock_bh(&efx->stats_lock);
1937	efx_nic_free_buffer(efx, &stats_buf);
1938	spin_lock_bh(&efx->stats_lock);
1939	return rc;
1940}
1941
1942static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1943				       struct rtnl_link_stats64 *core_stats)
1944{
1945	if (efx_ef10_try_update_nic_stats_vf(efx))
1946		return 0;
1947
1948	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1949}
1950
1951static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1952					      struct rtnl_link_stats64 *core_stats)
1953{
1954	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1955
1956	/* In atomic context, cannot update HW stats.  Just update the
1957	 * software stats and return so the caller can continue.
1958	 */
1959	efx_update_sw_stats(efx, nic_data->stats);
1960	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1961}
1962
1963static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1964{
1965	struct efx_nic *efx = channel->efx;
1966	unsigned int mode, usecs;
1967	efx_dword_t timer_cmd;
1968
1969	if (channel->irq_moderation_us) {
1970		mode = 3;
1971		usecs = channel->irq_moderation_us;
1972	} else {
1973		mode = 0;
1974		usecs = 0;
1975	}
1976
1977	if (EFX_EF10_WORKAROUND_61265(efx)) {
1978		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1979		unsigned int ns = usecs * 1000;
1980
1981		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1982			       channel->channel);
1983		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1984		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1985		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1986
1987		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1988				   inbuf, sizeof(inbuf), 0, NULL, 0);
1989	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
1990		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1991
1992		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1993				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1994				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1995				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1996		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1997				channel->channel);
1998	} else {
1999		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2000
2001		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2002				     ERF_DZ_TC_TIMER_VAL, ticks,
2003				     ERF_FZ_TC_TMR_REL_VAL, ticks);
2004		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2005				channel->channel);
2006	}
2007}
2008
2009static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2010				struct ethtool_wolinfo *wol) {}
2011
2012static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2013{
2014	return -EOPNOTSUPP;
2015}
2016
2017static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2018{
2019	wol->supported = 0;
2020	wol->wolopts = 0;
2021	memset(&wol->sopass, 0, sizeof(wol->sopass));
2022}
2023
2024static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2025{
2026	if (type != 0)
2027		return -EINVAL;
2028	return 0;
2029}
2030
2031static void efx_ef10_mcdi_request(struct efx_nic *efx,
2032				  const efx_dword_t *hdr, size_t hdr_len,
2033				  const efx_dword_t *sdu, size_t sdu_len)
2034{
2035	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2036	u8 *pdu = nic_data->mcdi_buf.addr;
2037
2038	memcpy(pdu, hdr, hdr_len);
2039	memcpy(pdu + hdr_len, sdu, sdu_len);
2040	wmb();
2041
2042	/* The hardware provides 'low' and 'high' (doorbell) registers
2043	 * for passing the 64-bit address of an MCDI request to
2044	 * firmware.  However the dwords are swapped by firmware.  The
2045	 * least significant bits of the doorbell are then 0 for all
2046	 * MCDI requests due to alignment.
2047	 */
2048	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2049		    ER_DZ_MC_DB_LWRD);
2050	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2051		    ER_DZ_MC_DB_HWRD);
2052}
2053
2054static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2055{
2056	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2057	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2058
2059	rmb();
2060	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2061}
2062
2063static void
2064efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2065			    size_t offset, size_t outlen)
2066{
2067	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2068	const u8 *pdu = nic_data->mcdi_buf.addr;
2069
2070	memcpy(outbuf, pdu + offset, outlen);
2071}
2072
2073static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2074{
2075	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2076
2077	/* All our allocations have been reset */
2078	efx_ef10_table_reset_mc_allocations(efx);
2079
2080	/* The datapath firmware might have been changed */
2081	nic_data->must_check_datapath_caps = true;
2082
2083	/* MAC statistics have been cleared on the NIC; clear the local
2084	 * statistic that we update with efx_update_diff_stat().
2085	 */
2086	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2087}
2088
2089static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2090{
2091	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2092	int rc;
2093
2094	rc = efx_ef10_get_warm_boot_count(efx);
2095	if (rc < 0) {
2096		/* The firmware is presumably in the process of
2097		 * rebooting.  However, we are supposed to report each
2098		 * reboot just once, so we must only do that once we
2099		 * can read and store the updated warm boot count.
2100		 */
2101		return 0;
2102	}
2103
2104	if (rc == nic_data->warm_boot_count)
2105		return 0;
2106
2107	nic_data->warm_boot_count = rc;
2108	efx_ef10_mcdi_reboot_detected(efx);
2109
2110	return -EIO;
2111}
2112
2113/* Handle an MSI interrupt
2114 *
2115 * Handle an MSI hardware interrupt.  This routine schedules event
2116 * queue processing.  No interrupt acknowledgement cycle is necessary.
2117 * Also, we never need to check that the interrupt is for us, since
2118 * MSI interrupts cannot be shared.
2119 */
2120static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2121{
2122	struct efx_msi_context *context = dev_id;
2123	struct efx_nic *efx = context->efx;
2124
2125	netif_vdbg(efx, intr, efx->net_dev,
2126		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2127
2128	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2129		/* Note test interrupts */
2130		if (context->index == efx->irq_level)
2131			efx->last_irq_cpu = raw_smp_processor_id();
2132
2133		/* Schedule processing of the channel */
2134		efx_schedule_channel_irq(efx->channel[context->index]);
2135	}
2136
2137	return IRQ_HANDLED;
2138}
2139
2140static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2141{
2142	struct efx_nic *efx = dev_id;
2143	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2144	struct efx_channel *channel;
2145	efx_dword_t reg;
2146	u32 queues;
2147
2148	/* Read the ISR which also ACKs the interrupts */
2149	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2150	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2151
2152	if (queues == 0)
2153		return IRQ_NONE;
2154
2155	if (likely(soft_enabled)) {
2156		/* Note test interrupts */
2157		if (queues & (1U << efx->irq_level))
2158			efx->last_irq_cpu = raw_smp_processor_id();
2159
2160		efx_for_each_channel(channel, efx) {
2161			if (queues & 1)
2162				efx_schedule_channel_irq(channel);
2163			queues >>= 1;
2164		}
2165	}
2166
2167	netif_vdbg(efx, intr, efx->net_dev,
2168		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2169		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2170
2171	return IRQ_HANDLED;
2172}
2173
2174static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2175{
2176	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2177
2178	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2179				    NULL) == 0)
2180		return -ENOTSUPP;
2181
2182	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2183
2184	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2185	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2186			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2187}
2188
2189static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2190{
2191	/* low two bits of label are what we want for type */
2192	BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2193	tx_queue->type = tx_queue->label & 3;
2194	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2195				    (tx_queue->ptr_mask + 1) *
2196				    sizeof(efx_qword_t),
2197				    GFP_KERNEL);
2198}
2199
2200/* This writes to the TX_DESC_WPTR and also pushes data */
2201static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2202					 const efx_qword_t *txd)
2203{
2204	unsigned int write_ptr;
2205	efx_oword_t reg;
2206
2207	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2208	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2209	reg.qword[0] = *txd;
2210	efx_writeo_page(tx_queue->efx, &reg,
2211			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2212}
2213
2214/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2215 */
2216int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2217			 bool *data_mapped)
2218{
2219	struct efx_tx_buffer *buffer;
2220	u16 inner_ipv4_id = 0;
2221	u16 outer_ipv4_id = 0;
2222	struct tcphdr *tcp;
2223	struct iphdr *ip;
2224	u16 ip_tot_len;
2225	u32 seqnum;
2226	u32 mss;
2227
2228	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2229
2230	mss = skb_shinfo(skb)->gso_size;
2231
2232	if (unlikely(mss < 4)) {
2233		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2234		return -EINVAL;
2235	}
2236
2237	if (skb->encapsulation) {
2238		if (!tx_queue->tso_encap)
2239			return -EINVAL;
2240		ip = ip_hdr(skb);
2241		if (ip->version == 4)
2242			outer_ipv4_id = ntohs(ip->id);
2243
2244		ip = inner_ip_hdr(skb);
2245		tcp = inner_tcp_hdr(skb);
2246	} else {
2247		ip = ip_hdr(skb);
2248		tcp = tcp_hdr(skb);
2249	}
2250
2251	/* 8000-series EF10 hardware requires that IP Total Length be
2252	 * greater than or equal to the value it will have in each segment
2253	 * (which is at most mss + 208 + TCP header length), but also less
2254	 * than (0x10000 - inner_network_header).  Otherwise the TCP
2255	 * checksum calculation will be broken for encapsulated packets.
2256	 * We fill in ip->tot_len with 0xff30, which should satisfy the
2257	 * first requirement unless the MSS is ridiculously large (which
2258	 * should be impossible as the driver max MTU is 9216); it is
2259	 * guaranteed to satisfy the second as we only attempt TSO if
2260	 * inner_network_header <= 208.
2261	 */
2262	ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2263	EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2264				  (tcp->doff << 2u) > ip_tot_len);
2265
2266	if (ip->version == 4) {
2267		ip->tot_len = htons(ip_tot_len);
2268		ip->check = 0;
2269		inner_ipv4_id = ntohs(ip->id);
2270	} else {
2271		((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
2272	}
2273
2274	seqnum = ntohl(tcp->seq);
2275
2276	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2277
2278	buffer->flags = EFX_TX_BUF_OPTION;
2279	buffer->len = 0;
2280	buffer->unmap_len = 0;
2281	EFX_POPULATE_QWORD_5(buffer->option,
2282			ESF_DZ_TX_DESC_IS_OPT, 1,
2283			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2284			ESF_DZ_TX_TSO_OPTION_TYPE,
2285			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2286			ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2287			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2288			);
2289	++tx_queue->insert_count;
2290
2291	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2292
2293	buffer->flags = EFX_TX_BUF_OPTION;
2294	buffer->len = 0;
2295	buffer->unmap_len = 0;
2296	EFX_POPULATE_QWORD_5(buffer->option,
2297			ESF_DZ_TX_DESC_IS_OPT, 1,
2298			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2299			ESF_DZ_TX_TSO_OPTION_TYPE,
2300			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2301			ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2302			ESF_DZ_TX_TSO_TCP_MSS, mss
2303			);
2304	++tx_queue->insert_count;
2305
2306	return 0;
2307}
2308
2309static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2310{
2311	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2312	u32 tso_versions = 0;
2313
2314	if (nic_data->datapath_caps &
2315	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2316		tso_versions |= BIT(1);
2317	if (nic_data->datapath_caps2 &
2318	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2319		tso_versions |= BIT(2);
2320	return tso_versions;
2321}
2322
2323static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2324{
2325	bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2326	bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
2327	struct efx_channel *channel = tx_queue->channel;
2328	struct efx_nic *efx = tx_queue->efx;
2329	struct efx_ef10_nic_data *nic_data;
2330	efx_qword_t *txd;
2331	int rc;
2332
2333	nic_data = efx->nic_data;
2334
2335	/* Only attempt to enable TX timestamping if we have the license for it,
2336	 * otherwise TXQ init will fail
2337	 */
2338	if (!(nic_data->licensed_features &
2339	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2340		tx_queue->timestamping = false;
2341		/* Disable sync events on this channel. */
2342		if (efx->type->ptp_set_ts_sync_events)
2343			efx->type->ptp_set_ts_sync_events(efx, false, false);
2344	}
2345
2346	/* TSOv2 is a limited resource that can only be configured on a limited
2347	 * number of queues. TSO without checksum offload is not really a thing,
2348	 * so we only enable it for those queues.
2349	 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2350	 * for XDP tx.
2351	 */
2352	if (efx_has_cap(efx, TX_TSO_V2)) {
2353		if ((csum_offload || inner_csum) &&
2354		    !tx_queue->timestamping && !tx_queue->xdp_tx) {
2355			tx_queue->tso_version = 2;
2356			netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2357				  channel->channel);
2358		}
2359	} else if (efx_has_cap(efx, TX_TSO)) {
2360		tx_queue->tso_version = 1;
2361	}
2362
2363	rc = efx_mcdi_tx_init(tx_queue);
2364	if (rc)
2365		goto fail;
2366
2367	/* A previous user of this TX queue might have set us up the
2368	 * bomb by writing a descriptor to the TX push collector but
2369	 * not the doorbell.  (Each collector belongs to a port, not a
2370	 * queue or function, so cannot easily be reset.)  We must
2371	 * attempt to push a no-op descriptor in its place.
2372	 */
2373	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2374	tx_queue->insert_count = 1;
2375	txd = efx_tx_desc(tx_queue, 0);
2376	EFX_POPULATE_QWORD_7(*txd,
2377			     ESF_DZ_TX_DESC_IS_OPT, true,
2378			     ESF_DZ_TX_OPTION_TYPE,
2379			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2380			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2381			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2382			     ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2383			     ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2384			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2385	tx_queue->write_count = 1;
2386
2387	if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2388		tx_queue->tso_encap = true;
2389
2390	wmb();
2391	efx_ef10_push_tx_desc(tx_queue, txd);
2392
2393	return;
2394
2395fail:
2396	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2397		    tx_queue->queue);
2398}
2399
2400/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2401static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2402{
2403	unsigned int write_ptr;
2404	efx_dword_t reg;
2405
2406	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2407	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2408	efx_writed_page(tx_queue->efx, &reg,
2409			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2410}
2411
2412#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2413
2414static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2415					  dma_addr_t dma_addr, unsigned int len)
2416{
2417	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2418		/* If we need to break across multiple descriptors we should
2419		 * stop at a page boundary. This assumes the length limit is
2420		 * greater than the page size.
2421		 */
2422		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2423
2424		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2425		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2426	}
2427
2428	return len;
2429}
2430
2431static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2432{
2433	unsigned int old_write_count = tx_queue->write_count;
2434	struct efx_tx_buffer *buffer;
2435	unsigned int write_ptr;
2436	efx_qword_t *txd;
2437
2438	tx_queue->xmit_pending = false;
2439	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2440		return;
2441
2442	do {
2443		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2444		buffer = &tx_queue->buffer[write_ptr];
2445		txd = efx_tx_desc(tx_queue, write_ptr);
2446		++tx_queue->write_count;
2447
2448		/* Create TX descriptor ring entry */
2449		if (buffer->flags & EFX_TX_BUF_OPTION) {
2450			*txd = buffer->option;
2451			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2452				/* PIO descriptor */
2453				tx_queue->packet_write_count = tx_queue->write_count;
2454		} else {
2455			tx_queue->packet_write_count = tx_queue->write_count;
2456			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2457			EFX_POPULATE_QWORD_3(
2458				*txd,
2459				ESF_DZ_TX_KER_CONT,
2460				buffer->flags & EFX_TX_BUF_CONT,
2461				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2462				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2463		}
2464	} while (tx_queue->write_count != tx_queue->insert_count);
2465
2466	wmb(); /* Ensure descriptors are written before they are fetched */
2467
2468	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2469		txd = efx_tx_desc(tx_queue,
2470				  old_write_count & tx_queue->ptr_mask);
2471		efx_ef10_push_tx_desc(tx_queue, txd);
2472		++tx_queue->pushes;
2473	} else {
2474		efx_ef10_notify_tx_desc(tx_queue);
2475	}
2476}
2477
2478static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2479{
2480	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2481	unsigned int enabled, implemented;
2482	bool want_workaround_26807;
2483	int rc;
2484
2485	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2486	if (rc == -ENOSYS) {
2487		/* GET_WORKAROUNDS was implemented before this workaround,
2488		 * thus it must be unavailable in this firmware.
2489		 */
2490		nic_data->workaround_26807 = false;
2491		return 0;
2492	}
2493	if (rc)
2494		return rc;
2495	want_workaround_26807 =
2496		implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2497	nic_data->workaround_26807 =
2498		!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2499
2500	if (want_workaround_26807 && !nic_data->workaround_26807) {
2501		unsigned int flags;
2502
2503		rc = efx_mcdi_set_workaround(efx,
2504					     MC_CMD_WORKAROUND_BUG26807,
2505					     true, &flags);
2506		if (!rc) {
2507			if (flags &
2508			    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2509				netif_info(efx, drv, efx->net_dev,
2510					   "other functions on NIC have been reset\n");
2511
2512				/* With MCFW v4.6.x and earlier, the
2513				 * boot count will have incremented,
2514				 * so re-read the warm_boot_count
2515				 * value now to ensure this function
2516				 * doesn't think it has changed next
2517				 * time it checks.
2518				 */
2519				rc = efx_ef10_get_warm_boot_count(efx);
2520				if (rc >= 0) {
2521					nic_data->warm_boot_count = rc;
2522					rc = 0;
2523				}
2524			}
2525			nic_data->workaround_26807 = true;
2526		} else if (rc == -EPERM) {
2527			rc = 0;
2528		}
2529	}
2530	return rc;
2531}
2532
2533static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2534{
2535	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2536	int rc = efx_ef10_probe_multicast_chaining(efx);
2537	struct efx_mcdi_filter_vlan *vlan;
2538
2539	if (rc)
2540		return rc;
2541	down_write(&efx->filter_sem);
2542	rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2543
2544	if (rc)
2545		goto out_unlock;
2546
2547	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2548		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2549		if (rc)
2550			goto fail_add_vlan;
2551	}
2552	goto out_unlock;
2553
2554fail_add_vlan:
2555	efx_mcdi_filter_table_remove(efx);
2556out_unlock:
2557	up_write(&efx->filter_sem);
2558	return rc;
2559}
2560
2561static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2562{
2563	down_write(&efx->filter_sem);
2564	efx_mcdi_filter_table_remove(efx);
2565	up_write(&efx->filter_sem);
2566}
2567
2568/* This creates an entry in the RX descriptor queue */
2569static inline void
2570efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2571{
2572	struct efx_rx_buffer *rx_buf;
2573	efx_qword_t *rxd;
2574
2575	rxd = efx_rx_desc(rx_queue, index);
2576	rx_buf = efx_rx_buffer(rx_queue, index);
2577	EFX_POPULATE_QWORD_2(*rxd,
2578			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2579			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2580}
2581
2582static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2583{
2584	struct efx_nic *efx = rx_queue->efx;
2585	unsigned int write_count;
2586	efx_dword_t reg;
2587
2588	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2589	write_count = rx_queue->added_count & ~7;
2590	if (rx_queue->notified_count == write_count)
2591		return;
2592
2593	do
2594		efx_ef10_build_rx_desc(
2595			rx_queue,
2596			rx_queue->notified_count & rx_queue->ptr_mask);
2597	while (++rx_queue->notified_count != write_count);
2598
2599	wmb();
2600	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2601			     write_count & rx_queue->ptr_mask);
2602	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2603			efx_rx_queue_index(rx_queue));
2604}
2605
2606static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2607
2608static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2609{
2610	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2611	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2612	efx_qword_t event;
2613
2614	EFX_POPULATE_QWORD_2(event,
2615			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2616			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2617
2618	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2619
2620	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2621	 * already swapped the data to little-endian order.
2622	 */
2623	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2624	       sizeof(efx_qword_t));
2625
2626	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2627			   inbuf, sizeof(inbuf), 0,
2628			   efx_ef10_rx_defer_refill_complete, 0);
2629}
2630
2631static void
2632efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2633				  int rc, efx_dword_t *outbuf,
2634				  size_t outlen_actual)
2635{
2636	/* nothing to do */
2637}
2638
2639static int efx_ef10_ev_init(struct efx_channel *channel)
2640{
2641	struct efx_nic *efx = channel->efx;
2642	struct efx_ef10_nic_data *nic_data;
2643	bool use_v2, cut_thru;
2644
2645	nic_data = efx->nic_data;
2646	use_v2 = nic_data->datapath_caps2 &
2647			    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2648	cut_thru = !(nic_data->datapath_caps &
2649			      1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2650	return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2651}
2652
2653static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2654					   unsigned int rx_queue_label)
2655{
2656	struct efx_nic *efx = rx_queue->efx;
2657
2658	netif_info(efx, hw, efx->net_dev,
2659		   "rx event arrived on queue %d labeled as queue %u\n",
2660		   efx_rx_queue_index(rx_queue), rx_queue_label);
2661
2662	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2663}
2664
2665static void
2666efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2667			     unsigned int actual, unsigned int expected)
2668{
2669	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2670	struct efx_nic *efx = rx_queue->efx;
2671
2672	netif_info(efx, hw, efx->net_dev,
2673		   "dropped %d events (index=%d expected=%d)\n",
2674		   dropped, actual, expected);
2675
2676	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2677}
2678
2679/* partially received RX was aborted. clean up. */
2680static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2681{
2682	unsigned int rx_desc_ptr;
2683
2684	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2685		  "scattered RX aborted (dropping %u buffers)\n",
2686		  rx_queue->scatter_n);
2687
2688	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2689
2690	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2691		      0, EFX_RX_PKT_DISCARD);
2692
2693	rx_queue->removed_count += rx_queue->scatter_n;
2694	rx_queue->scatter_n = 0;
2695	rx_queue->scatter_len = 0;
2696	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2697}
2698
2699static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2700					   unsigned int n_packets,
2701					   unsigned int rx_encap_hdr,
2702					   unsigned int rx_l3_class,
2703					   unsigned int rx_l4_class,
2704					   const efx_qword_t *event)
2705{
2706	struct efx_nic *efx = channel->efx;
2707	bool handled = false;
2708
2709	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2710		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2711			if (!efx->loopback_selftest)
2712				channel->n_rx_eth_crc_err += n_packets;
2713			return EFX_RX_PKT_DISCARD;
2714		}
2715		handled = true;
2716	}
2717	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2718		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2719			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2720			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2721			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2722			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2723			netdev_WARN(efx->net_dev,
2724				    "invalid class for RX_IPCKSUM_ERR: event="
2725				    EFX_QWORD_FMT "\n",
2726				    EFX_QWORD_VAL(*event));
2727		if (!efx->loopback_selftest)
2728			*(rx_encap_hdr ?
2729			  &channel->n_rx_outer_ip_hdr_chksum_err :
2730			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2731		return 0;
2732	}
2733	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2734		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2735			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2736			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2737			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2738			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2739			netdev_WARN(efx->net_dev,
2740				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2741				    EFX_QWORD_FMT "\n",
2742				    EFX_QWORD_VAL(*event));
2743		if (!efx->loopback_selftest)
2744			*(rx_encap_hdr ?
2745			  &channel->n_rx_outer_tcp_udp_chksum_err :
2746			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2747		return 0;
2748	}
2749	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2750		if (unlikely(!rx_encap_hdr))
2751			netdev_WARN(efx->net_dev,
2752				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2753				    EFX_QWORD_FMT "\n",
2754				    EFX_QWORD_VAL(*event));
2755		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2756				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2757				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2758				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2759			netdev_WARN(efx->net_dev,
2760				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2761				    EFX_QWORD_FMT "\n",
2762				    EFX_QWORD_VAL(*event));
2763		if (!efx->loopback_selftest)
2764			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2765		return 0;
2766	}
2767	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2768		if (unlikely(!rx_encap_hdr))
2769			netdev_WARN(efx->net_dev,
2770				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2771				    EFX_QWORD_FMT "\n",
2772				    EFX_QWORD_VAL(*event));
2773		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2774				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2775				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2776				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2777			netdev_WARN(efx->net_dev,
2778				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2779				    EFX_QWORD_FMT "\n",
2780				    EFX_QWORD_VAL(*event));
2781		if (!efx->loopback_selftest)
2782			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2783		return 0;
2784	}
2785
2786	WARN_ON(!handled); /* No error bits were recognised */
2787	return 0;
2788}
2789
2790static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2791				    const efx_qword_t *event)
2792{
2793	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2794	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2795	unsigned int n_descs, n_packets, i;
2796	struct efx_nic *efx = channel->efx;
2797	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2798	struct efx_rx_queue *rx_queue;
2799	efx_qword_t errors;
2800	bool rx_cont;
2801	u16 flags = 0;
2802
2803	if (unlikely(READ_ONCE(efx->reset_pending)))
2804		return 0;
2805
2806	/* Basic packet information */
2807	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2808	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2809	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2810	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2811	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2812	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2813	rx_encap_hdr =
2814		nic_data->datapath_caps &
2815			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2816		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2817		ESE_EZ_ENCAP_HDR_NONE;
2818
2819	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2820		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2821			    EFX_QWORD_FMT "\n",
2822			    EFX_QWORD_VAL(*event));
2823
2824	rx_queue = efx_channel_get_rx_queue(channel);
2825
2826	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2827		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2828
2829	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2830		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2831
2832	if (n_descs != rx_queue->scatter_n + 1) {
2833		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2834
2835		/* detect rx abort */
2836		if (unlikely(n_descs == rx_queue->scatter_n)) {
2837			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2838				netdev_WARN(efx->net_dev,
2839					    "invalid RX abort: scatter_n=%u event="
2840					    EFX_QWORD_FMT "\n",
2841					    rx_queue->scatter_n,
2842					    EFX_QWORD_VAL(*event));
2843			efx_ef10_handle_rx_abort(rx_queue);
2844			return 0;
2845		}
2846
2847		/* Check that RX completion merging is valid, i.e.
2848		 * the current firmware supports it and this is a
2849		 * non-scattered packet.
2850		 */
2851		if (!(nic_data->datapath_caps &
2852		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2853		    rx_queue->scatter_n != 0 || rx_cont) {
2854			efx_ef10_handle_rx_bad_lbits(
2855				rx_queue, next_ptr_lbits,
2856				(rx_queue->removed_count +
2857				 rx_queue->scatter_n + 1) &
2858				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2859			return 0;
2860		}
2861
2862		/* Merged completion for multiple non-scattered packets */
2863		rx_queue->scatter_n = 1;
2864		rx_queue->scatter_len = 0;
2865		n_packets = n_descs;
2866		++channel->n_rx_merge_events;
2867		channel->n_rx_merge_packets += n_packets;
2868		flags |= EFX_RX_PKT_PREFIX_LEN;
2869	} else {
2870		++rx_queue->scatter_n;
2871		rx_queue->scatter_len += rx_bytes;
2872		if (rx_cont)
2873			return 0;
2874		n_packets = 1;
2875	}
2876
2877	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2878				     ESF_DZ_RX_IPCKSUM_ERR, 1,
2879				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2880				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2881				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2882	EFX_AND_QWORD(errors, *event, errors);
2883	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2884		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2885							 rx_encap_hdr,
2886							 rx_l3_class, rx_l4_class,
2887							 event);
2888	} else {
2889		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2890			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2891
2892		switch (rx_encap_hdr) {
2893		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2894			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2895			if (tcpudp)
2896				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2897			break;
2898		case ESE_EZ_ENCAP_HDR_GRE:
2899		case ESE_EZ_ENCAP_HDR_NONE:
2900			if (tcpudp)
2901				flags |= EFX_RX_PKT_CSUMMED;
2902			break;
2903		default:
2904			netdev_WARN(efx->net_dev,
2905				    "unknown encapsulation type: event="
2906				    EFX_QWORD_FMT "\n",
2907				    EFX_QWORD_VAL(*event));
2908		}
2909	}
2910
2911	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2912		flags |= EFX_RX_PKT_TCP;
2913
2914	channel->irq_mod_score += 2 * n_packets;
2915
2916	/* Handle received packet(s) */
2917	for (i = 0; i < n_packets; i++) {
2918		efx_rx_packet(rx_queue,
2919			      rx_queue->removed_count & rx_queue->ptr_mask,
2920			      rx_queue->scatter_n, rx_queue->scatter_len,
2921			      flags);
2922		rx_queue->removed_count += rx_queue->scatter_n;
2923	}
2924
2925	rx_queue->scatter_n = 0;
2926	rx_queue->scatter_len = 0;
2927
2928	return n_packets;
2929}
2930
2931static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2932{
2933	u32 tstamp;
2934
2935	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2936	tstamp <<= 16;
2937	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2938
2939	return tstamp;
2940}
2941
2942static void
2943efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2944{
2945	struct efx_nic *efx = channel->efx;
2946	struct efx_tx_queue *tx_queue;
2947	unsigned int tx_ev_desc_ptr;
2948	unsigned int tx_ev_q_label;
2949	unsigned int tx_ev_type;
 
2950	u64 ts_part;
2951
2952	if (unlikely(READ_ONCE(efx->reset_pending)))
2953		return;
2954
2955	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2956		return;
2957
2958	/* Get the transmit queue */
2959	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2960	tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
2961
2962	if (!tx_queue->timestamping) {
2963		/* Transmit completion */
2964		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2965		efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2966		return;
2967	}
2968
2969	/* Transmit timestamps are only available for 8XXX series. They result
2970	 * in up to three events per packet. These occur in order, and are:
2971	 *  - the normal completion event (may be omitted)
2972	 *  - the low part of the timestamp
2973	 *  - the high part of the timestamp
2974	 *
2975	 * It's possible for multiple completion events to appear before the
2976	 * corresponding timestamps. So we can for example get:
2977	 *  COMP N
2978	 *  COMP N+1
2979	 *  TS_LO N
2980	 *  TS_HI N
2981	 *  TS_LO N+1
2982	 *  TS_HI N+1
2983	 *
2984	 * In addition it's also possible for the adjacent completions to be
2985	 * merged, so we may not see COMP N above. As such, the completion
2986	 * events are not very useful here.
2987	 *
2988	 * Each part of the timestamp is itself split across two 16 bit
2989	 * fields in the event.
2990	 */
2991	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
 
2992
2993	switch (tx_ev_type) {
2994	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
2995		/* Ignore this event - see above. */
2996		break;
2997
2998	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
2999		ts_part = efx_ef10_extract_event_ts(event);
3000		tx_queue->completed_timestamp_minor = ts_part;
3001		break;
3002
3003	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3004		ts_part = efx_ef10_extract_event_ts(event);
3005		tx_queue->completed_timestamp_major = ts_part;
3006
3007		efx_xmit_done_single(tx_queue);
 
3008		break;
3009
3010	default:
3011		netif_err(efx, hw, efx->net_dev,
3012			  "channel %d unknown tx event type %d (data "
3013			  EFX_QWORD_FMT ")\n",
3014			  channel->channel, tx_ev_type,
3015			  EFX_QWORD_VAL(*event));
3016		break;
3017	}
 
 
3018}
3019
3020static void
3021efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3022{
3023	struct efx_nic *efx = channel->efx;
3024	int subcode;
3025
3026	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3027
3028	switch (subcode) {
3029	case ESE_DZ_DRV_TIMER_EV:
3030	case ESE_DZ_DRV_WAKE_UP_EV:
3031		break;
3032	case ESE_DZ_DRV_START_UP_EV:
3033		/* event queue init complete. ok. */
3034		break;
3035	default:
3036		netif_err(efx, hw, efx->net_dev,
3037			  "channel %d unknown driver event type %d"
3038			  " (data " EFX_QWORD_FMT ")\n",
3039			  channel->channel, subcode,
3040			  EFX_QWORD_VAL(*event));
3041
3042	}
3043}
3044
3045static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3046						   efx_qword_t *event)
3047{
3048	struct efx_nic *efx = channel->efx;
3049	u32 subcode;
3050
3051	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3052
3053	switch (subcode) {
3054	case EFX_EF10_TEST:
3055		channel->event_test_cpu = raw_smp_processor_id();
3056		break;
3057	case EFX_EF10_REFILL:
3058		/* The queue must be empty, so we won't receive any rx
3059		 * events, so efx_process_channel() won't refill the
3060		 * queue. Refill it here
3061		 */
3062		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3063		break;
3064	default:
3065		netif_err(efx, hw, efx->net_dev,
3066			  "channel %d unknown driver event type %u"
3067			  " (data " EFX_QWORD_FMT ")\n",
3068			  channel->channel, (unsigned) subcode,
3069			  EFX_QWORD_VAL(*event));
3070	}
3071}
3072
 
 
3073static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3074{
3075	struct efx_nic *efx = channel->efx;
3076	efx_qword_t event, *p_event;
3077	unsigned int read_ptr;
 
 
3078	int ev_code;
3079	int spent = 0;
3080
3081	if (quota <= 0)
3082		return spent;
3083
3084	read_ptr = channel->eventq_read_ptr;
3085
3086	for (;;) {
3087		p_event = efx_event(channel, read_ptr);
3088		event = *p_event;
3089
3090		if (!efx_event_present(&event))
3091			break;
3092
3093		EFX_SET_QWORD(*p_event);
3094
3095		++read_ptr;
3096
3097		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3098
3099		netif_vdbg(efx, drv, efx->net_dev,
3100			   "processing event on %d " EFX_QWORD_FMT "\n",
3101			   channel->channel, EFX_QWORD_VAL(event));
3102
3103		switch (ev_code) {
3104		case ESE_DZ_EV_CODE_MCDI_EV:
3105			efx_mcdi_process_event(channel, &event);
3106			break;
3107		case ESE_DZ_EV_CODE_RX_EV:
3108			spent += efx_ef10_handle_rx_event(channel, &event);
3109			if (spent >= quota) {
3110				/* XXX can we split a merged event to
3111				 * avoid going over-quota?
3112				 */
3113				spent = quota;
3114				goto out;
3115			}
3116			break;
3117		case ESE_DZ_EV_CODE_TX_EV:
3118			efx_ef10_handle_tx_event(channel, &event);
 
 
 
 
3119			break;
3120		case ESE_DZ_EV_CODE_DRIVER_EV:
3121			efx_ef10_handle_driver_event(channel, &event);
3122			if (++spent == quota)
3123				goto out;
3124			break;
3125		case EFX_EF10_DRVGEN_EV:
3126			efx_ef10_handle_driver_generated_event(channel, &event);
3127			break;
3128		default:
3129			netif_err(efx, hw, efx->net_dev,
3130				  "channel %d unknown event type %d"
3131				  " (data " EFX_QWORD_FMT ")\n",
3132				  channel->channel, ev_code,
3133				  EFX_QWORD_VAL(event));
3134		}
3135	}
3136
3137out:
3138	channel->eventq_read_ptr = read_ptr;
3139	return spent;
3140}
3141
3142static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3143{
3144	struct efx_nic *efx = channel->efx;
3145	efx_dword_t rptr;
3146
3147	if (EFX_EF10_WORKAROUND_35388(efx)) {
3148		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3149			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3150		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3151			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3152
3153		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3154				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3155				     ERF_DD_EVQ_IND_RPTR,
3156				     (channel->eventq_read_ptr &
3157				      channel->eventq_mask) >>
3158				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3159		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3160				channel->channel);
3161		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3162				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3163				     ERF_DD_EVQ_IND_RPTR,
3164				     channel->eventq_read_ptr &
3165				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3166		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3167				channel->channel);
3168	} else {
3169		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3170				     channel->eventq_read_ptr &
3171				     channel->eventq_mask);
3172		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3173	}
3174}
3175
3176static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3177{
3178	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3179	struct efx_nic *efx = channel->efx;
3180	efx_qword_t event;
3181	int rc;
3182
3183	EFX_POPULATE_QWORD_2(event,
3184			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3185			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3186
3187	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3188
3189	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3190	 * already swapped the data to little-endian order.
3191	 */
3192	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3193	       sizeof(efx_qword_t));
3194
3195	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3196			  NULL, 0, NULL);
3197	if (rc != 0)
3198		goto fail;
3199
3200	return;
3201
3202fail:
3203	WARN_ON(true);
3204	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3205}
3206
3207static void efx_ef10_prepare_flr(struct efx_nic *efx)
3208{
3209	atomic_set(&efx->active_queues, 0);
3210}
3211
3212static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3213{
3214	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3215	u8 mac_old[ETH_ALEN];
3216	int rc, rc2;
3217
3218	/* Only reconfigure a PF-created vport */
3219	if (is_zero_ether_addr(nic_data->vport_mac))
3220		return 0;
3221
3222	efx_device_detach_sync(efx);
3223	efx_net_stop(efx->net_dev);
3224	efx_ef10_filter_table_remove(efx);
3225
3226	rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3227	if (rc)
3228		goto restore_filters;
3229
3230	ether_addr_copy(mac_old, nic_data->vport_mac);
3231	rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3232				    nic_data->vport_mac);
3233	if (rc)
3234		goto restore_vadaptor;
3235
3236	rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3237				    efx->net_dev->dev_addr);
3238	if (!rc) {
3239		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3240	} else {
3241		rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3242		if (rc2) {
3243			/* Failed to add original MAC, so clear vport_mac */
3244			eth_zero_addr(nic_data->vport_mac);
3245			goto reset_nic;
3246		}
3247	}
3248
3249restore_vadaptor:
3250	rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3251	if (rc2)
3252		goto reset_nic;
3253restore_filters:
3254	rc2 = efx_ef10_filter_table_probe(efx);
3255	if (rc2)
3256		goto reset_nic;
3257
3258	rc2 = efx_net_open(efx->net_dev);
3259	if (rc2)
3260		goto reset_nic;
3261
3262	efx_device_attach_if_not_resetting(efx);
3263
3264	return rc;
3265
3266reset_nic:
3267	netif_err(efx, drv, efx->net_dev,
3268		  "Failed to restore when changing MAC address - scheduling reset\n");
3269	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3270
3271	return rc ? rc : rc2;
3272}
3273
3274static int efx_ef10_set_mac_address(struct efx_nic *efx)
3275{
3276	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3277	bool was_enabled = efx->port_enabled;
3278	int rc;
3279
3280#ifdef CONFIG_SFC_SRIOV
3281	/* If this function is a VF and we have access to the parent PF,
3282	 * then use the PF control path to attempt to change the VF MAC address.
3283	 */
3284	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3285		struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn);
3286		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3287		u8 mac[ETH_ALEN];
3288
3289		/* net_dev->dev_addr can be zeroed by efx_net_stop in
3290		 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
3291		 */
3292		ether_addr_copy(mac, efx->net_dev->dev_addr);
3293
3294		rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac);
3295		if (!rc)
3296			return 0;
3297
3298		netif_dbg(efx, drv, efx->net_dev,
3299			  "Updating VF mac via PF failed (%d), setting directly\n",
3300			  rc);
3301	}
3302#endif
3303
3304	efx_device_detach_sync(efx);
3305	efx_net_stop(efx->net_dev);
3306
3307	mutex_lock(&efx->mac_lock);
3308	efx_ef10_filter_table_remove(efx);
3309
3310	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3311			efx->net_dev->dev_addr);
3312	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3313		       efx->vport_id);
3314	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3315				sizeof(inbuf), NULL, 0, NULL);
3316
3317	efx_ef10_filter_table_probe(efx);
3318	mutex_unlock(&efx->mac_lock);
3319
3320	if (was_enabled)
3321		efx_net_open(efx->net_dev);
3322	efx_device_attach_if_not_resetting(efx);
3323
3324	if (rc == -EPERM) {
3325		netif_err(efx, drv, efx->net_dev,
3326			  "Cannot change MAC address; use sfboot to enable"
3327			  " mac-spoofing on this interface\n");
3328	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3329		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3330		 * fall-back to the method of changing the MAC address on the
3331		 * vport.  This only applies to PFs because such versions of
3332		 * MCFW do not support VFs.
3333		 */
3334		rc = efx_ef10_vport_set_mac_address(efx);
3335	} else if (rc) {
3336		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3337				       sizeof(inbuf), NULL, 0, rc);
3338	}
3339
3340	return rc;
3341}
3342
3343static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3344{
3345	WARN_ON(!mutex_is_locked(&efx->mac_lock));
3346
3347	efx_mcdi_filter_sync_rx_mode(efx);
3348
3349	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3350		return efx_mcdi_set_mtu(efx);
3351	return efx_mcdi_set_mac(efx);
3352}
3353
3354static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3355{
3356	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3357
3358	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3359	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3360			    NULL, 0, NULL);
3361}
3362
3363/* MC BISTs follow a different poll mechanism to phy BISTs.
3364 * The BIST is done in the poll handler on the MC, and the MCDI command
3365 * will block until the BIST is done.
3366 */
3367static int efx_ef10_poll_bist(struct efx_nic *efx)
3368{
3369	int rc;
3370	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3371	size_t outlen;
3372	u32 result;
3373
3374	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3375			   outbuf, sizeof(outbuf), &outlen);
3376	if (rc != 0)
3377		return rc;
3378
3379	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3380		return -EIO;
3381
3382	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3383	switch (result) {
3384	case MC_CMD_POLL_BIST_PASSED:
3385		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3386		return 0;
3387	case MC_CMD_POLL_BIST_TIMEOUT:
3388		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3389		return -EIO;
3390	case MC_CMD_POLL_BIST_FAILED:
3391		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3392		return -EIO;
3393	default:
3394		netif_err(efx, hw, efx->net_dev,
3395			  "BIST returned unknown result %u", result);
3396		return -EIO;
3397	}
3398}
3399
3400static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3401{
3402	int rc;
3403
3404	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3405
3406	rc = efx_ef10_start_bist(efx, bist_type);
3407	if (rc != 0)
3408		return rc;
3409
3410	return efx_ef10_poll_bist(efx);
3411}
3412
3413static int
3414efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3415{
3416	int rc, rc2;
3417
3418	efx_reset_down(efx, RESET_TYPE_WORLD);
3419
3420	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3421			  NULL, 0, NULL, 0, NULL);
3422	if (rc != 0)
3423		goto out;
3424
3425	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3426	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3427
3428	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3429
3430out:
3431	if (rc == -EPERM)
3432		rc = 0;
3433	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3434	return rc ? rc : rc2;
3435}
3436
3437#ifdef CONFIG_SFC_MTD
3438
3439struct efx_ef10_nvram_type_info {
3440	u16 type, type_mask;
3441	u8 port;
3442	const char *name;
3443};
3444
3445static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3446	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3447	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3448	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3449	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3450	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3451	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3452	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3453	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3454	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3455	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3456	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3457	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
3458	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
3459	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3460	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3461	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
3462	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
3463	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
3464};
3465#define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
3466
3467static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3468					struct efx_mcdi_mtd_partition *part,
3469					unsigned int type,
3470					unsigned long *found)
3471{
3472	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3473	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3474	const struct efx_ef10_nvram_type_info *info;
3475	size_t size, erase_size, outlen;
3476	int type_idx = 0;
3477	bool protected;
3478	int rc;
3479
3480	for (type_idx = 0; ; type_idx++) {
3481		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3482			return -ENODEV;
3483		info = efx_ef10_nvram_types + type_idx;
3484		if ((type & ~info->type_mask) == info->type)
3485			break;
3486	}
3487	if (info->port != efx_port_num(efx))
3488		return -ENODEV;
3489
3490	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3491	if (rc)
3492		return rc;
3493	if (protected &&
3494	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3495	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3496		/* Hide protected partitions that don't provide defaults. */
3497		return -ENODEV;
3498
3499	if (protected)
3500		/* Protected partitions are read only. */
3501		erase_size = 0;
3502
3503	/* If we've already exposed a partition of this type, hide this
3504	 * duplicate.  All operations on MTDs are keyed by the type anyway,
3505	 * so we can't act on the duplicate.
3506	 */
3507	if (__test_and_set_bit(type_idx, found))
3508		return -EEXIST;
3509
3510	part->nvram_type = type;
3511
3512	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3513	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3514			  outbuf, sizeof(outbuf), &outlen);
3515	if (rc)
3516		return rc;
3517	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3518		return -EIO;
3519	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3520	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3521		part->fw_subtype = MCDI_DWORD(outbuf,
3522					      NVRAM_METADATA_OUT_SUBTYPE);
3523
3524	part->common.dev_type_name = "EF10 NVRAM manager";
3525	part->common.type_name = info->name;
3526
3527	part->common.mtd.type = MTD_NORFLASH;
3528	part->common.mtd.flags = MTD_CAP_NORFLASH;
3529	part->common.mtd.size = size;
3530	part->common.mtd.erasesize = erase_size;
3531	/* sfc_status is read-only */
3532	if (!erase_size)
3533		part->common.mtd.flags |= MTD_NO_ERASE;
3534
3535	return 0;
3536}
3537
3538static int efx_ef10_mtd_probe(struct efx_nic *efx)
3539{
3540	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3541	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3542	struct efx_mcdi_mtd_partition *parts;
3543	size_t outlen, n_parts_total, i, n_parts;
3544	unsigned int type;
3545	int rc;
3546
3547	ASSERT_RTNL();
3548
3549	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3550	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3551			  outbuf, sizeof(outbuf), &outlen);
3552	if (rc)
3553		return rc;
3554	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3555		return -EIO;
3556
3557	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3558	if (n_parts_total >
3559	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3560		return -EIO;
3561
3562	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3563	if (!parts)
3564		return -ENOMEM;
3565
3566	n_parts = 0;
3567	for (i = 0; i < n_parts_total; i++) {
3568		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3569					i);
3570		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3571						  found);
3572		if (rc == -EEXIST || rc == -ENODEV)
3573			continue;
3574		if (rc)
3575			goto fail;
3576		n_parts++;
3577	}
3578
3579	if (!n_parts) {
3580		kfree(parts);
3581		return 0;
3582	}
3583
3584	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3585fail:
3586	if (rc)
3587		kfree(parts);
3588	return rc;
3589}
3590
3591#endif /* CONFIG_SFC_MTD */
3592
3593static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3594{
3595	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3596}
3597
3598static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3599					    u32 host_time) {}
3600
3601static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3602					   bool temp)
3603{
3604	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3605	int rc;
3606
3607	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3608	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3609	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3610		return 0;
3611	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3612
3613	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3614	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3615	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3616		       channel->channel);
3617
3618	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3619			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3620
3621	if (rc != 0)
3622		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3623						    SYNC_EVENTS_DISABLED;
3624
3625	return rc;
3626}
3627
3628static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3629					    bool temp)
3630{
3631	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3632	int rc;
3633
3634	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3635	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3636		return 0;
3637	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3638		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3639		return 0;
3640	}
3641	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3642					    SYNC_EVENTS_DISABLED;
3643
3644	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3645	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3646	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3647		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3648	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3649		       channel->channel);
3650
3651	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3652			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3653
3654	return rc;
3655}
3656
3657static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3658					   bool temp)
3659{
3660	int (*set)(struct efx_channel *channel, bool temp);
3661	struct efx_channel *channel;
3662
3663	set = en ?
3664	      efx_ef10_rx_enable_timestamping :
3665	      efx_ef10_rx_disable_timestamping;
3666
3667	channel = efx_ptp_channel(efx);
3668	if (channel) {
3669		int rc = set(channel, temp);
3670		if (en && rc != 0) {
3671			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3672			return rc;
3673		}
3674	}
3675
3676	return 0;
3677}
3678
3679static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3680					 struct hwtstamp_config *init)
3681{
3682	return -EOPNOTSUPP;
3683}
3684
3685static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3686				      struct hwtstamp_config *init)
3687{
3688	int rc;
3689
3690	switch (init->rx_filter) {
3691	case HWTSTAMP_FILTER_NONE:
3692		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3693		/* if TX timestamping is still requested then leave PTP on */
3694		return efx_ptp_change_mode(efx,
3695					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3696	case HWTSTAMP_FILTER_ALL:
3697	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3698	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3699	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3700	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3701	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3702	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3703	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3704	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3705	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3706	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3707	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3708	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3709	case HWTSTAMP_FILTER_NTP_ALL:
3710		init->rx_filter = HWTSTAMP_FILTER_ALL;
3711		rc = efx_ptp_change_mode(efx, true, 0);
3712		if (!rc)
3713			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3714		if (rc)
3715			efx_ptp_change_mode(efx, false, 0);
3716		return rc;
3717	default:
3718		return -ERANGE;
3719	}
3720}
3721
3722static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3723				     struct netdev_phys_item_id *ppid)
3724{
3725	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3726
3727	if (!is_valid_ether_addr(nic_data->port_id))
3728		return -EOPNOTSUPP;
3729
3730	ppid->id_len = ETH_ALEN;
3731	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3732
3733	return 0;
3734}
3735
3736static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3737{
3738	if (proto != htons(ETH_P_8021Q))
3739		return -EINVAL;
3740
3741	return efx_ef10_add_vlan(efx, vid);
3742}
3743
3744static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3745{
3746	if (proto != htons(ETH_P_8021Q))
3747		return -EINVAL;
3748
3749	return efx_ef10_del_vlan(efx, vid);
3750}
3751
3752/* We rely on the MCDI wiping out our TX rings if it made any changes to the
3753 * ports table, ensuring that any TSO descriptors that were made on a now-
3754 * removed tunnel port will be blown away and won't break things when we try
3755 * to transmit them using the new ports table.
3756 */
3757static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3758{
3759	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3760	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3761	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3762	bool will_reset = false;
3763	size_t num_entries = 0;
3764	size_t inlen, outlen;
3765	size_t i;
3766	int rc;
3767	efx_dword_t flags_and_num_entries;
3768
3769	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3770
3771	nic_data->udp_tunnels_dirty = false;
3772
3773	if (!(nic_data->datapath_caps &
3774	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3775		efx_device_attach_if_not_resetting(efx);
3776		return 0;
3777	}
3778
3779	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3780		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3781
3782	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3783		if (nic_data->udp_tunnels[i].type !=
3784		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3785			efx_dword_t entry;
3786
3787			EFX_POPULATE_DWORD_2(entry,
3788				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3789					ntohs(nic_data->udp_tunnels[i].port),
3790				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3791					nic_data->udp_tunnels[i].type);
3792			*_MCDI_ARRAY_DWORD(inbuf,
3793				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3794				num_entries++) = entry;
3795		}
3796	}
3797
3798	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3799		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3800		     EFX_WORD_1_LBN);
3801	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3802		     EFX_WORD_1_WIDTH);
3803	EFX_POPULATE_DWORD_2(flags_and_num_entries,
3804			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3805				!!unloading,
3806			     EFX_WORD_1, num_entries);
3807	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3808		flags_and_num_entries;
3809
3810	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3811
3812	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3813				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3814	if (rc == -EIO) {
3815		/* Most likely the MC rebooted due to another function also
3816		 * setting its tunnel port list. Mark the tunnel port list as
3817		 * dirty, so it will be pushed upon coming up from the reboot.
3818		 */
3819		nic_data->udp_tunnels_dirty = true;
3820		return 0;
3821	}
3822
3823	if (rc) {
3824		/* expected not available on unprivileged functions */
3825		if (rc != -EPERM)
3826			netif_warn(efx, drv, efx->net_dev,
3827				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3828	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3829		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3830		netif_info(efx, drv, efx->net_dev,
3831			   "Rebooting MC due to UDP tunnel port list change\n");
3832		will_reset = true;
3833		if (unloading)
3834			/* Delay for the MC reset to complete. This will make
3835			 * unloading other functions a bit smoother. This is a
3836			 * race, but the other unload will work whichever way
3837			 * it goes, this just avoids an unnecessary error
3838			 * message.
3839			 */
3840			msleep(100);
3841	}
3842	if (!will_reset && !unloading) {
3843		/* The caller will have detached, relying on the MC reset to
3844		 * trigger a re-attach.  Since there won't be an MC reset, we
3845		 * have to do the attach ourselves.
3846		 */
3847		efx_device_attach_if_not_resetting(efx);
3848	}
3849
3850	return rc;
3851}
3852
3853static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3854{
3855	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3856	int rc = 0;
3857
3858	mutex_lock(&nic_data->udp_tunnels_lock);
3859	if (nic_data->udp_tunnels_dirty) {
3860		/* Make sure all TX are stopped while we modify the table, else
3861		 * we might race against an efx_features_check().
3862		 */
3863		efx_device_detach_sync(efx);
3864		rc = efx_ef10_set_udp_tnl_ports(efx, false);
3865	}
3866	mutex_unlock(&nic_data->udp_tunnels_lock);
3867	return rc;
3868}
3869
3870static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3871				     unsigned int table, unsigned int entry,
3872				     struct udp_tunnel_info *ti)
3873{
3874	struct efx_nic *efx = efx_netdev_priv(dev);
3875	struct efx_ef10_nic_data *nic_data;
3876	int efx_tunnel_type, rc;
3877
3878	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3879		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3880	else
3881		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3882
3883	nic_data = efx->nic_data;
3884	if (!(nic_data->datapath_caps &
3885	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3886		return -EOPNOTSUPP;
3887
3888	mutex_lock(&nic_data->udp_tunnels_lock);
3889	/* Make sure all TX are stopped while we add to the table, else we
3890	 * might race against an efx_features_check().
3891	 */
3892	efx_device_detach_sync(efx);
3893	nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3894	nic_data->udp_tunnels[entry].port = ti->port;
3895	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3896	mutex_unlock(&nic_data->udp_tunnels_lock);
3897
3898	return rc;
3899}
3900
3901/* Called under the TX lock with the TX queue running, hence no-one can be
3902 * in the middle of updating the UDP tunnels table.  However, they could
3903 * have tried and failed the MCDI, in which case they'll have set the dirty
3904 * flag before dropping their locks.
3905 */
3906static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3907{
3908	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3909	size_t i;
3910
3911	if (!(nic_data->datapath_caps &
3912	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3913		return false;
3914
3915	if (nic_data->udp_tunnels_dirty)
3916		/* SW table may not match HW state, so just assume we can't
3917		 * use any UDP tunnel offloads.
3918		 */
3919		return false;
3920
3921	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3922		if (nic_data->udp_tunnels[i].type !=
3923		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3924		    nic_data->udp_tunnels[i].port == port)
3925			return true;
3926
3927	return false;
3928}
3929
3930static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3931				       unsigned int table, unsigned int entry,
3932				       struct udp_tunnel_info *ti)
3933{
3934	struct efx_nic *efx = efx_netdev_priv(dev);
3935	struct efx_ef10_nic_data *nic_data;
3936	int rc;
3937
3938	nic_data = efx->nic_data;
3939
3940	mutex_lock(&nic_data->udp_tunnels_lock);
3941	/* Make sure all TX are stopped while we remove from the table, else we
3942	 * might race against an efx_features_check().
3943	 */
3944	efx_device_detach_sync(efx);
3945	nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3946	nic_data->udp_tunnels[entry].port = 0;
3947	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3948	mutex_unlock(&nic_data->udp_tunnels_lock);
3949
3950	return rc;
3951}
3952
3953static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3954	.set_port	= efx_ef10_udp_tnl_set_port,
3955	.unset_port	= efx_ef10_udp_tnl_unset_port,
3956	.flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3957	.tables         = {
3958		{
3959			.n_entries = 16,
3960			.tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3961					UDP_TUNNEL_TYPE_GENEVE,
3962		},
3963	},
3964};
3965
3966/* EF10 may have multiple datapath firmware variants within a
3967 * single version.  Report which variants are running.
3968 */
3969static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3970					      size_t len)
3971{
3972	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3973
3974	return scnprintf(buf, len, " rx%x tx%x",
3975			 nic_data->rx_dpcpu_fw_id,
3976			 nic_data->tx_dpcpu_fw_id);
3977}
3978
3979static unsigned int ef10_check_caps(const struct efx_nic *efx,
3980				    u8 flag,
3981				    u32 offset)
3982{
3983	const struct efx_ef10_nic_data *nic_data = efx->nic_data;
3984
3985	switch (offset) {
3986	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
3987		return nic_data->datapath_caps & BIT_ULL(flag);
3988	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
3989		return nic_data->datapath_caps2 & BIT_ULL(flag);
3990	default:
3991		return 0;
3992	}
3993}
3994
3995static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx)
3996{
3997	unsigned int ret = EFX_RECYCLE_RING_SIZE_10G;
3998
3999	/* There is no difference between PFs and VFs. The side is based on
4000	 * the maximum link speed of a given NIC.
4001	 */
4002	switch (efx->pci_dev->device & 0xfff) {
4003	case 0x0903:	/* Farmingdale can do up to 10G */
4004		break;
4005	case 0x0923:	/* Greenport can do up to 40G */
4006	case 0x0a03:	/* Medford can do up to 40G */
4007		ret *= 4;
4008		break;
4009	default:	/* Medford2 can do up to 100G */
4010		ret *= 10;
4011	}
4012
4013	if (IS_ENABLED(CONFIG_PPC64))
4014		ret *= 4;
4015
4016	return ret;
4017}
4018
4019#define EF10_OFFLOAD_FEATURES		\
4020	(NETIF_F_IP_CSUM |		\
4021	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
4022	 NETIF_F_IPV6_CSUM |		\
4023	 NETIF_F_RXHASH |		\
4024	 NETIF_F_NTUPLE)
 
 
 
4025
4026const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4027	.is_vf = true,
4028	.mem_bar = efx_ef10_vf_mem_bar,
4029	.mem_map_size = efx_ef10_mem_map_size,
4030	.probe = efx_ef10_probe_vf,
4031	.remove = efx_ef10_remove,
4032	.dimension_resources = efx_ef10_dimension_resources,
4033	.init = efx_ef10_init_nic,
4034	.fini = efx_ef10_fini_nic,
4035	.map_reset_reason = efx_ef10_map_reset_reason,
4036	.map_reset_flags = efx_ef10_map_reset_flags,
4037	.reset = efx_ef10_reset,
4038	.probe_port = efx_mcdi_port_probe,
4039	.remove_port = efx_mcdi_port_remove,
4040	.fini_dmaq = efx_fini_dmaq,
4041	.prepare_flr = efx_ef10_prepare_flr,
4042	.finish_flr = efx_port_dummy_op_void,
4043	.describe_stats = efx_ef10_describe_stats,
4044	.update_stats = efx_ef10_update_stats_vf,
4045	.update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4046	.start_stats = efx_port_dummy_op_void,
4047	.pull_stats = efx_port_dummy_op_void,
4048	.stop_stats = efx_port_dummy_op_void,
4049	.push_irq_moderation = efx_ef10_push_irq_moderation,
4050	.reconfigure_mac = efx_ef10_mac_reconfigure,
4051	.check_mac_fault = efx_mcdi_mac_check_fault,
4052	.reconfigure_port = efx_mcdi_port_reconfigure,
4053	.get_wol = efx_ef10_get_wol_vf,
4054	.set_wol = efx_ef10_set_wol_vf,
4055	.resume_wol = efx_port_dummy_op_void,
4056	.mcdi_request = efx_ef10_mcdi_request,
4057	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4058	.mcdi_read_response = efx_ef10_mcdi_read_response,
4059	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4060	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4061	.irq_enable_master = efx_port_dummy_op_void,
4062	.irq_test_generate = efx_ef10_irq_test_generate,
4063	.irq_disable_non_ev = efx_port_dummy_op_void,
4064	.irq_handle_msi = efx_ef10_msi_interrupt,
4065	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4066	.tx_probe = efx_ef10_tx_probe,
4067	.tx_init = efx_ef10_tx_init,
4068	.tx_remove = efx_mcdi_tx_remove,
4069	.tx_write = efx_ef10_tx_write,
4070	.tx_limit_len = efx_ef10_tx_limit_len,
4071	.tx_enqueue = __efx_enqueue_skb,
4072	.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4073	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4074	.rx_probe = efx_mcdi_rx_probe,
4075	.rx_init = efx_mcdi_rx_init,
4076	.rx_remove = efx_mcdi_rx_remove,
4077	.rx_write = efx_ef10_rx_write,
4078	.rx_defer_refill = efx_ef10_rx_defer_refill,
4079	.rx_packet = __efx_rx_packet,
4080	.ev_probe = efx_mcdi_ev_probe,
4081	.ev_init = efx_ef10_ev_init,
4082	.ev_fini = efx_mcdi_ev_fini,
4083	.ev_remove = efx_mcdi_ev_remove,
4084	.ev_process = efx_ef10_ev_process,
4085	.ev_read_ack = efx_ef10_ev_read_ack,
4086	.ev_test_generate = efx_ef10_ev_test_generate,
4087	.filter_table_probe = efx_ef10_filter_table_probe,
4088	.filter_table_restore = efx_mcdi_filter_table_restore,
4089	.filter_table_remove = efx_ef10_filter_table_remove,
4090	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4091	.filter_insert = efx_mcdi_filter_insert,
4092	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4093	.filter_get_safe = efx_mcdi_filter_get_safe,
4094	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4095	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4096	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4097	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4098#ifdef CONFIG_RFS_ACCEL
4099	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4100#endif
4101#ifdef CONFIG_SFC_MTD
4102	.mtd_probe = efx_port_dummy_op_int,
4103#endif
4104	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4105	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4106	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4107	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4108#ifdef CONFIG_SFC_SRIOV
4109	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4110	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4111	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4112#endif
4113	.get_mac_address = efx_ef10_get_mac_address_vf,
4114	.set_mac_address = efx_ef10_set_mac_address,
4115
4116	.get_phys_port_id = efx_ef10_get_phys_port_id,
4117	.revision = EFX_REV_HUNT_A0,
4118	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4119	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4120	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4121	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4122	.can_rx_scatter = true,
4123	.always_rx_scatter = true,
4124	.min_interrupt_mode = EFX_INT_MODE_MSIX,
4125	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4126	.offload_features = EF10_OFFLOAD_FEATURES,
4127	.mcdi_max_ver = 2,
4128	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4129	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4130			    1 << HWTSTAMP_FILTER_ALL,
4131	.rx_hash_key_size = 40,
4132	.check_caps = ef10_check_caps,
4133	.print_additional_fwver = efx_ef10_print_additional_fwver,
4134	.sensor_event = efx_mcdi_sensor_event,
4135	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4136};
4137
4138const struct efx_nic_type efx_hunt_a0_nic_type = {
4139	.is_vf = false,
4140	.mem_bar = efx_ef10_pf_mem_bar,
4141	.mem_map_size = efx_ef10_mem_map_size,
4142	.probe = efx_ef10_probe_pf,
4143	.remove = efx_ef10_remove,
4144	.dimension_resources = efx_ef10_dimension_resources,
4145	.init = efx_ef10_init_nic,
4146	.fini = efx_ef10_fini_nic,
4147	.map_reset_reason = efx_ef10_map_reset_reason,
4148	.map_reset_flags = efx_ef10_map_reset_flags,
4149	.reset = efx_ef10_reset,
4150	.probe_port = efx_mcdi_port_probe,
4151	.remove_port = efx_mcdi_port_remove,
4152	.fini_dmaq = efx_fini_dmaq,
4153	.prepare_flr = efx_ef10_prepare_flr,
4154	.finish_flr = efx_port_dummy_op_void,
4155	.describe_stats = efx_ef10_describe_stats,
4156	.update_stats = efx_ef10_update_stats_pf,
4157	.start_stats = efx_mcdi_mac_start_stats,
4158	.pull_stats = efx_mcdi_mac_pull_stats,
4159	.stop_stats = efx_mcdi_mac_stop_stats,
4160	.push_irq_moderation = efx_ef10_push_irq_moderation,
4161	.reconfigure_mac = efx_ef10_mac_reconfigure,
4162	.check_mac_fault = efx_mcdi_mac_check_fault,
4163	.reconfigure_port = efx_mcdi_port_reconfigure,
4164	.get_wol = efx_ef10_get_wol,
4165	.set_wol = efx_ef10_set_wol,
4166	.resume_wol = efx_port_dummy_op_void,
4167	.get_fec_stats = efx_ef10_get_fec_stats,
4168	.test_chip = efx_ef10_test_chip,
4169	.test_nvram = efx_mcdi_nvram_test_all,
4170	.mcdi_request = efx_ef10_mcdi_request,
4171	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4172	.mcdi_read_response = efx_ef10_mcdi_read_response,
4173	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4174	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4175	.irq_enable_master = efx_port_dummy_op_void,
4176	.irq_test_generate = efx_ef10_irq_test_generate,
4177	.irq_disable_non_ev = efx_port_dummy_op_void,
4178	.irq_handle_msi = efx_ef10_msi_interrupt,
4179	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4180	.tx_probe = efx_ef10_tx_probe,
4181	.tx_init = efx_ef10_tx_init,
4182	.tx_remove = efx_mcdi_tx_remove,
4183	.tx_write = efx_ef10_tx_write,
4184	.tx_limit_len = efx_ef10_tx_limit_len,
4185	.tx_enqueue = __efx_enqueue_skb,
4186	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4187	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4188	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4189	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4190	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4191	.rx_probe = efx_mcdi_rx_probe,
4192	.rx_init = efx_mcdi_rx_init,
4193	.rx_remove = efx_mcdi_rx_remove,
4194	.rx_write = efx_ef10_rx_write,
4195	.rx_defer_refill = efx_ef10_rx_defer_refill,
4196	.rx_packet = __efx_rx_packet,
4197	.ev_probe = efx_mcdi_ev_probe,
4198	.ev_init = efx_ef10_ev_init,
4199	.ev_fini = efx_mcdi_ev_fini,
4200	.ev_remove = efx_mcdi_ev_remove,
4201	.ev_process = efx_ef10_ev_process,
4202	.ev_read_ack = efx_ef10_ev_read_ack,
4203	.ev_test_generate = efx_ef10_ev_test_generate,
4204	.filter_table_probe = efx_ef10_filter_table_probe,
4205	.filter_table_restore = efx_mcdi_filter_table_restore,
4206	.filter_table_remove = efx_ef10_filter_table_remove,
4207	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4208	.filter_insert = efx_mcdi_filter_insert,
4209	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4210	.filter_get_safe = efx_mcdi_filter_get_safe,
4211	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4212	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4213	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4214	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4215#ifdef CONFIG_RFS_ACCEL
4216	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4217#endif
4218#ifdef CONFIG_SFC_MTD
4219	.mtd_probe = efx_ef10_mtd_probe,
4220	.mtd_rename = efx_mcdi_mtd_rename,
4221	.mtd_read = efx_mcdi_mtd_read,
4222	.mtd_erase = efx_mcdi_mtd_erase,
4223	.mtd_write = efx_mcdi_mtd_write,
4224	.mtd_sync = efx_mcdi_mtd_sync,
4225#endif
4226	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4227	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4228	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4229	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4230	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4231	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4232	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4233#ifdef CONFIG_SFC_SRIOV
4234	.sriov_configure = efx_ef10_sriov_configure,
4235	.sriov_init = efx_ef10_sriov_init,
4236	.sriov_fini = efx_ef10_sriov_fini,
4237	.sriov_wanted = efx_ef10_sriov_wanted,
4238	.sriov_reset = efx_ef10_sriov_reset,
4239	.sriov_flr = efx_ef10_sriov_flr,
4240	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4241	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4242	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4243	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4244	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4245	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4246	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4247	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4248#endif
4249	.get_mac_address = efx_ef10_get_mac_address_pf,
4250	.set_mac_address = efx_ef10_set_mac_address,
4251	.tso_versions = efx_ef10_tso_versions,
4252
4253	.get_phys_port_id = efx_ef10_get_phys_port_id,
4254	.revision = EFX_REV_HUNT_A0,
4255	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4256	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4257	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4258	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4259	.can_rx_scatter = true,
4260	.always_rx_scatter = true,
4261	.option_descriptors = true,
4262	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
4263	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4264	.offload_features = EF10_OFFLOAD_FEATURES,
4265	.mcdi_max_ver = 2,
4266	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4267	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4268			    1 << HWTSTAMP_FILTER_ALL,
4269	.rx_hash_key_size = 40,
4270	.check_caps = ef10_check_caps,
4271	.print_additional_fwver = efx_ef10_print_additional_fwver,
4272	.sensor_event = efx_mcdi_sensor_event,
4273	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4274};