Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2012-2013 Solarflare Communications Inc.
5 */
6
7#include "net_driver.h"
8#include "rx_common.h"
9#include "tx_common.h"
10#include "ef10_regs.h"
11#include "io.h"
12#include "mcdi.h"
13#include "mcdi_pcol.h"
14#include "mcdi_port.h"
15#include "mcdi_port_common.h"
16#include "mcdi_functions.h"
17#include "nic.h"
18#include "mcdi_filters.h"
19#include "workarounds.h"
20#include "selftest.h"
21#include "ef10_sriov.h"
22#include <linux/in.h>
23#include <linux/jhash.h>
24#include <linux/wait.h>
25#include <linux/workqueue.h>
26#include <net/udp_tunnel.h>
27
28/* Hardware control for EF10 architecture including 'Huntington'. */
29
30#define EFX_EF10_DRVGEN_EV 7
31enum {
32 EFX_EF10_TEST = 1,
33 EFX_EF10_REFILL,
34};
35
36/* VLAN list entry */
37struct efx_ef10_vlan {
38 struct list_head list;
39 u16 vid;
40};
41
42static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
43static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
44
45static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
46{
47 efx_dword_t reg;
48
49 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
50 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
51 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
52}
53
54/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
55 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
56 * bar; PFs use BAR 0/1 for memory.
57 */
58static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
59{
60 switch (efx->pci_dev->device) {
61 case 0x0b03: /* SFC9250 PF */
62 return 0;
63 default:
64 return 2;
65 }
66}
67
68/* All VFs use BAR 0/1 for memory */
69static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
70{
71 return 0;
72}
73
74static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
75{
76 int bar;
77
78 bar = efx->type->mem_bar(efx);
79 return resource_size(&efx->pci_dev->resource[bar]);
80}
81
82static bool efx_ef10_is_vf(struct efx_nic *efx)
83{
84 return efx->type->is_vf;
85}
86
87#ifdef CONFIG_SFC_SRIOV
88static int efx_ef10_get_vf_index(struct efx_nic *efx)
89{
90 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
91 struct efx_ef10_nic_data *nic_data = efx->nic_data;
92 size_t outlen;
93 int rc;
94
95 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
96 sizeof(outbuf), &outlen);
97 if (rc)
98 return rc;
99 if (outlen < sizeof(outbuf))
100 return -EIO;
101
102 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
103 return 0;
104}
105#endif
106
107static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
108{
109 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
110 struct efx_ef10_nic_data *nic_data = efx->nic_data;
111 size_t outlen;
112 int rc;
113
114 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
115
116 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
117 outbuf, sizeof(outbuf), &outlen);
118 if (rc)
119 return rc;
120 if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
121 netif_err(efx, drv, efx->net_dev,
122 "unable to read datapath firmware capabilities\n");
123 return -EIO;
124 }
125
126 nic_data->datapath_caps =
127 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
128
129 if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
130 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
131 GET_CAPABILITIES_V2_OUT_FLAGS2);
132 nic_data->piobuf_size = MCDI_WORD(outbuf,
133 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
134 } else {
135 nic_data->datapath_caps2 = 0;
136 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
137 }
138
139 /* record the DPCPU firmware IDs to determine VEB vswitching support.
140 */
141 nic_data->rx_dpcpu_fw_id =
142 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
143 nic_data->tx_dpcpu_fw_id =
144 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
145
146 if (!(nic_data->datapath_caps &
147 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
148 netif_err(efx, probe, efx->net_dev,
149 "current firmware does not support an RX prefix\n");
150 return -ENODEV;
151 }
152
153 if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
154 u8 vi_window_mode = MCDI_BYTE(outbuf,
155 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
156
157 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
158 if (rc)
159 return rc;
160 } else {
161 /* keep default VI stride */
162 netif_dbg(efx, probe, efx->net_dev,
163 "firmware did not report VI window mode, assuming vi_stride = %u\n",
164 efx->vi_stride);
165 }
166
167 if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
168 efx->num_mac_stats = MCDI_WORD(outbuf,
169 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
170 netif_dbg(efx, probe, efx->net_dev,
171 "firmware reports num_mac_stats = %u\n",
172 efx->num_mac_stats);
173 } else {
174 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
175 netif_dbg(efx, probe, efx->net_dev,
176 "firmware did not report num_mac_stats, assuming %u\n",
177 efx->num_mac_stats);
178 }
179
180 return 0;
181}
182
183static void efx_ef10_read_licensed_features(struct efx_nic *efx)
184{
185 MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
186 MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
187 struct efx_ef10_nic_data *nic_data = efx->nic_data;
188 size_t outlen;
189 int rc;
190
191 MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
192 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
193 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
194 outbuf, sizeof(outbuf), &outlen);
195 if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
196 return;
197
198 nic_data->licensed_features = MCDI_QWORD(outbuf,
199 LICENSING_V3_OUT_LICENSED_FEATURES);
200}
201
202static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
203{
204 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
205 int rc;
206
207 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
208 outbuf, sizeof(outbuf), NULL);
209 if (rc)
210 return rc;
211 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
212 return rc > 0 ? rc : -ERANGE;
213}
214
215static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
216{
217 struct efx_ef10_nic_data *nic_data = efx->nic_data;
218 unsigned int implemented;
219 unsigned int enabled;
220 int rc;
221
222 nic_data->workaround_35388 = false;
223 nic_data->workaround_61265 = false;
224
225 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
226
227 if (rc == -ENOSYS) {
228 /* Firmware without GET_WORKAROUNDS - not a problem. */
229 rc = 0;
230 } else if (rc == 0) {
231 /* Bug61265 workaround is always enabled if implemented. */
232 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
233 nic_data->workaround_61265 = true;
234
235 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
236 nic_data->workaround_35388 = true;
237 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
238 /* Workaround is implemented but not enabled.
239 * Try to enable it.
240 */
241 rc = efx_mcdi_set_workaround(efx,
242 MC_CMD_WORKAROUND_BUG35388,
243 true, NULL);
244 if (rc == 0)
245 nic_data->workaround_35388 = true;
246 /* If we failed to set the workaround just carry on. */
247 rc = 0;
248 }
249 }
250
251 netif_dbg(efx, probe, efx->net_dev,
252 "workaround for bug 35388 is %sabled\n",
253 nic_data->workaround_35388 ? "en" : "dis");
254 netif_dbg(efx, probe, efx->net_dev,
255 "workaround for bug 61265 is %sabled\n",
256 nic_data->workaround_61265 ? "en" : "dis");
257
258 return rc;
259}
260
261static void efx_ef10_process_timer_config(struct efx_nic *efx,
262 const efx_dword_t *data)
263{
264 unsigned int max_count;
265
266 if (EFX_EF10_WORKAROUND_61265(efx)) {
267 efx->timer_quantum_ns = MCDI_DWORD(data,
268 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
269 efx->timer_max_ns = MCDI_DWORD(data,
270 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
271 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
272 efx->timer_quantum_ns = MCDI_DWORD(data,
273 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
274 max_count = MCDI_DWORD(data,
275 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
276 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
277 } else {
278 efx->timer_quantum_ns = MCDI_DWORD(data,
279 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
280 max_count = MCDI_DWORD(data,
281 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
282 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
283 }
284
285 netif_dbg(efx, probe, efx->net_dev,
286 "got timer properties from MC: quantum %u ns; max %u ns\n",
287 efx->timer_quantum_ns, efx->timer_max_ns);
288}
289
290static int efx_ef10_get_timer_config(struct efx_nic *efx)
291{
292 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
293 int rc;
294
295 rc = efx_ef10_get_timer_workarounds(efx);
296 if (rc)
297 return rc;
298
299 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
300 outbuf, sizeof(outbuf), NULL);
301
302 if (rc == 0) {
303 efx_ef10_process_timer_config(efx, outbuf);
304 } else if (rc == -ENOSYS || rc == -EPERM) {
305 /* Not available - fall back to Huntington defaults. */
306 unsigned int quantum;
307
308 rc = efx_ef10_get_sysclk_freq(efx);
309 if (rc < 0)
310 return rc;
311
312 quantum = 1536000 / rc; /* 1536 cycles */
313 efx->timer_quantum_ns = quantum;
314 efx->timer_max_ns = efx->type->timer_period_max * quantum;
315 rc = 0;
316 } else {
317 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
318 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
319 NULL, 0, rc);
320 }
321
322 return rc;
323}
324
325static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
326{
327 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
328 size_t outlen;
329 int rc;
330
331 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
332
333 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
334 outbuf, sizeof(outbuf), &outlen);
335 if (rc)
336 return rc;
337 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
338 return -EIO;
339
340 ether_addr_copy(mac_address,
341 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
342 return 0;
343}
344
345static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
346{
347 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
348 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
349 size_t outlen;
350 int num_addrs, rc;
351
352 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
353 EVB_PORT_ID_ASSIGNED);
354 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
355 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
356
357 if (rc)
358 return rc;
359 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
360 return -EIO;
361
362 num_addrs = MCDI_DWORD(outbuf,
363 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
364
365 WARN_ON(num_addrs != 1);
366
367 ether_addr_copy(mac_address,
368 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
369
370 return 0;
371}
372
373static ssize_t link_control_flag_show(struct device *dev,
374 struct device_attribute *attr,
375 char *buf)
376{
377 struct efx_nic *efx = dev_get_drvdata(dev);
378
379 return sprintf(buf, "%d\n",
380 ((efx->mcdi->fn_flags) &
381 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
382 ? 1 : 0);
383}
384
385static ssize_t primary_flag_show(struct device *dev,
386 struct device_attribute *attr,
387 char *buf)
388{
389 struct efx_nic *efx = dev_get_drvdata(dev);
390
391 return sprintf(buf, "%d\n",
392 ((efx->mcdi->fn_flags) &
393 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
394 ? 1 : 0);
395}
396
397static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
398{
399 struct efx_ef10_nic_data *nic_data = efx->nic_data;
400 struct efx_ef10_vlan *vlan;
401
402 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
403
404 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
405 if (vlan->vid == vid)
406 return vlan;
407 }
408
409 return NULL;
410}
411
412static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
413{
414 struct efx_ef10_nic_data *nic_data = efx->nic_data;
415 struct efx_ef10_vlan *vlan;
416 int rc;
417
418 mutex_lock(&nic_data->vlan_lock);
419
420 vlan = efx_ef10_find_vlan(efx, vid);
421 if (vlan) {
422 /* We add VID 0 on init. 8021q adds it on module init
423 * for all interfaces with VLAN filtring feature.
424 */
425 if (vid == 0)
426 goto done_unlock;
427 netif_warn(efx, drv, efx->net_dev,
428 "VLAN %u already added\n", vid);
429 rc = -EALREADY;
430 goto fail_exist;
431 }
432
433 rc = -ENOMEM;
434 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
435 if (!vlan)
436 goto fail_alloc;
437
438 vlan->vid = vid;
439
440 list_add_tail(&vlan->list, &nic_data->vlan_list);
441
442 if (efx->filter_state) {
443 mutex_lock(&efx->mac_lock);
444 down_write(&efx->filter_sem);
445 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
446 up_write(&efx->filter_sem);
447 mutex_unlock(&efx->mac_lock);
448 if (rc)
449 goto fail_filter_add_vlan;
450 }
451
452done_unlock:
453 mutex_unlock(&nic_data->vlan_lock);
454 return 0;
455
456fail_filter_add_vlan:
457 list_del(&vlan->list);
458 kfree(vlan);
459fail_alloc:
460fail_exist:
461 mutex_unlock(&nic_data->vlan_lock);
462 return rc;
463}
464
465static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
466 struct efx_ef10_vlan *vlan)
467{
468 struct efx_ef10_nic_data *nic_data = efx->nic_data;
469
470 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
471
472 if (efx->filter_state) {
473 down_write(&efx->filter_sem);
474 efx_mcdi_filter_del_vlan(efx, vlan->vid);
475 up_write(&efx->filter_sem);
476 }
477
478 list_del(&vlan->list);
479 kfree(vlan);
480}
481
482static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
483{
484 struct efx_ef10_nic_data *nic_data = efx->nic_data;
485 struct efx_ef10_vlan *vlan;
486 int rc = 0;
487
488 /* 8021q removes VID 0 on module unload for all interfaces
489 * with VLAN filtering feature. We need to keep it to receive
490 * untagged traffic.
491 */
492 if (vid == 0)
493 return 0;
494
495 mutex_lock(&nic_data->vlan_lock);
496
497 vlan = efx_ef10_find_vlan(efx, vid);
498 if (!vlan) {
499 netif_err(efx, drv, efx->net_dev,
500 "VLAN %u to be deleted not found\n", vid);
501 rc = -ENOENT;
502 } else {
503 efx_ef10_del_vlan_internal(efx, vlan);
504 }
505
506 mutex_unlock(&nic_data->vlan_lock);
507
508 return rc;
509}
510
511static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
512{
513 struct efx_ef10_nic_data *nic_data = efx->nic_data;
514 struct efx_ef10_vlan *vlan, *next_vlan;
515
516 mutex_lock(&nic_data->vlan_lock);
517 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
518 efx_ef10_del_vlan_internal(efx, vlan);
519 mutex_unlock(&nic_data->vlan_lock);
520}
521
522static DEVICE_ATTR_RO(link_control_flag);
523static DEVICE_ATTR_RO(primary_flag);
524
525static int efx_ef10_probe(struct efx_nic *efx)
526{
527 struct efx_ef10_nic_data *nic_data;
528 int i, rc;
529
530 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
531 if (!nic_data)
532 return -ENOMEM;
533 efx->nic_data = nic_data;
534
535 /* we assume later that we can copy from this buffer in dwords */
536 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
537
538 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
539 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
540 if (rc)
541 goto fail1;
542
543 /* Get the MC's warm boot count. In case it's rebooting right
544 * now, be prepared to retry.
545 */
546 i = 0;
547 for (;;) {
548 rc = efx_ef10_get_warm_boot_count(efx);
549 if (rc >= 0)
550 break;
551 if (++i == 5)
552 goto fail2;
553 ssleep(1);
554 }
555 nic_data->warm_boot_count = rc;
556
557 /* In case we're recovering from a crash (kexec), we want to
558 * cancel any outstanding request by the previous user of this
559 * function. We send a special message using the least
560 * significant bits of the 'high' (doorbell) register.
561 */
562 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
563
564 rc = efx_mcdi_init(efx);
565 if (rc)
566 goto fail2;
567
568 mutex_init(&nic_data->udp_tunnels_lock);
569 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
570 nic_data->udp_tunnels[i].type =
571 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
572
573 /* Reset (most) configuration for this function */
574 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
575 if (rc)
576 goto fail3;
577
578 /* Enable event logging */
579 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
580 if (rc)
581 goto fail3;
582
583 rc = device_create_file(&efx->pci_dev->dev,
584 &dev_attr_link_control_flag);
585 if (rc)
586 goto fail3;
587
588 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
589 if (rc)
590 goto fail4;
591
592 rc = efx_get_pf_index(efx, &nic_data->pf_index);
593 if (rc)
594 goto fail5;
595
596 rc = efx_ef10_init_datapath_caps(efx);
597 if (rc < 0)
598 goto fail5;
599
600 efx_ef10_read_licensed_features(efx);
601
602 /* We can have one VI for each vi_stride-byte region.
603 * However, until we use TX option descriptors we need up to four
604 * TX queues per channel for different checksumming combinations.
605 */
606 if (nic_data->datapath_caps &
607 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
608 efx->tx_queues_per_channel = 4;
609 else
610 efx->tx_queues_per_channel = 2;
611 efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
612 if (!efx->max_vis) {
613 netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
614 rc = -EIO;
615 goto fail5;
616 }
617 efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
618 efx->max_vis / efx->tx_queues_per_channel);
619 efx->max_tx_channels = efx->max_channels;
620 if (WARN_ON(efx->max_channels == 0)) {
621 rc = -EIO;
622 goto fail5;
623 }
624
625 efx->rx_packet_len_offset =
626 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
627
628 if (nic_data->datapath_caps &
629 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
630 efx->net_dev->hw_features |= NETIF_F_RXFCS;
631
632 rc = efx_mcdi_port_get_number(efx);
633 if (rc < 0)
634 goto fail5;
635 efx->port_num = rc;
636
637 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
638 if (rc)
639 goto fail5;
640
641 rc = efx_ef10_get_timer_config(efx);
642 if (rc < 0)
643 goto fail5;
644
645 rc = efx_mcdi_mon_probe(efx);
646 if (rc && rc != -EPERM)
647 goto fail5;
648
649 efx_ptp_defer_probe_with_channel(efx);
650
651#ifdef CONFIG_SFC_SRIOV
652 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
653 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
654 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
655
656 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
657 } else
658#endif
659 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
660
661 INIT_LIST_HEAD(&nic_data->vlan_list);
662 mutex_init(&nic_data->vlan_lock);
663
664 /* Add unspecified VID to support VLAN filtering being disabled */
665 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
666 if (rc)
667 goto fail_add_vid_unspec;
668
669 /* If VLAN filtering is enabled, we need VID 0 to get untagged
670 * traffic. It is added automatically if 8021q module is loaded,
671 * but we can't rely on it since module may be not loaded.
672 */
673 rc = efx_ef10_add_vlan(efx, 0);
674 if (rc)
675 goto fail_add_vid_0;
676
677 if (nic_data->datapath_caps &
678 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
679 efx->mcdi->fn_flags &
680 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
681 efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
682
683 return 0;
684
685fail_add_vid_0:
686 efx_ef10_cleanup_vlans(efx);
687fail_add_vid_unspec:
688 mutex_destroy(&nic_data->vlan_lock);
689 efx_ptp_remove(efx);
690 efx_mcdi_mon_remove(efx);
691fail5:
692 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
693fail4:
694 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
695fail3:
696 efx_mcdi_detach(efx);
697
698 mutex_lock(&nic_data->udp_tunnels_lock);
699 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
700 (void)efx_ef10_set_udp_tnl_ports(efx, true);
701 mutex_unlock(&nic_data->udp_tunnels_lock);
702 mutex_destroy(&nic_data->udp_tunnels_lock);
703
704 efx_mcdi_fini(efx);
705fail2:
706 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
707fail1:
708 kfree(nic_data);
709 efx->nic_data = NULL;
710 return rc;
711}
712
713#ifdef EFX_USE_PIO
714
715static void efx_ef10_free_piobufs(struct efx_nic *efx)
716{
717 struct efx_ef10_nic_data *nic_data = efx->nic_data;
718 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
719 unsigned int i;
720 int rc;
721
722 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
723
724 for (i = 0; i < nic_data->n_piobufs; i++) {
725 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
726 nic_data->piobuf_handle[i]);
727 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
728 NULL, 0, NULL);
729 WARN_ON(rc);
730 }
731
732 nic_data->n_piobufs = 0;
733}
734
735static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
736{
737 struct efx_ef10_nic_data *nic_data = efx->nic_data;
738 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
739 unsigned int i;
740 size_t outlen;
741 int rc = 0;
742
743 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
744
745 for (i = 0; i < n; i++) {
746 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
747 outbuf, sizeof(outbuf), &outlen);
748 if (rc) {
749 /* Don't display the MC error if we didn't have space
750 * for a VF.
751 */
752 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
753 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
754 0, outbuf, outlen, rc);
755 break;
756 }
757 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
758 rc = -EIO;
759 break;
760 }
761 nic_data->piobuf_handle[i] =
762 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
763 netif_dbg(efx, probe, efx->net_dev,
764 "allocated PIO buffer %u handle %x\n", i,
765 nic_data->piobuf_handle[i]);
766 }
767
768 nic_data->n_piobufs = i;
769 if (rc)
770 efx_ef10_free_piobufs(efx);
771 return rc;
772}
773
774static int efx_ef10_link_piobufs(struct efx_nic *efx)
775{
776 struct efx_ef10_nic_data *nic_data = efx->nic_data;
777 MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
778 struct efx_channel *channel;
779 struct efx_tx_queue *tx_queue;
780 unsigned int offset, index;
781 int rc;
782
783 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
784 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
785
786 /* Link a buffer to each VI in the write-combining mapping */
787 for (index = 0; index < nic_data->n_piobufs; ++index) {
788 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
789 nic_data->piobuf_handle[index]);
790 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
791 nic_data->pio_write_vi_base + index);
792 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
793 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
794 NULL, 0, NULL);
795 if (rc) {
796 netif_err(efx, drv, efx->net_dev,
797 "failed to link VI %u to PIO buffer %u (%d)\n",
798 nic_data->pio_write_vi_base + index, index,
799 rc);
800 goto fail;
801 }
802 netif_dbg(efx, probe, efx->net_dev,
803 "linked VI %u to PIO buffer %u\n",
804 nic_data->pio_write_vi_base + index, index);
805 }
806
807 /* Link a buffer to each TX queue */
808 efx_for_each_channel(channel, efx) {
809 /* Extra channels, even those with TXQs (PTP), do not require
810 * PIO resources.
811 */
812 if (!channel->type->want_pio ||
813 channel->channel >= efx->xdp_channel_offset)
814 continue;
815
816 efx_for_each_channel_tx_queue(tx_queue, channel) {
817 /* We assign the PIO buffers to queues in
818 * reverse order to allow for the following
819 * special case.
820 */
821 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
822 tx_queue->channel->channel - 1) *
823 efx_piobuf_size);
824 index = offset / nic_data->piobuf_size;
825 offset = offset % nic_data->piobuf_size;
826
827 /* When the host page size is 4K, the first
828 * host page in the WC mapping may be within
829 * the same VI page as the last TX queue. We
830 * can only link one buffer to each VI.
831 */
832 if (tx_queue->queue == nic_data->pio_write_vi_base) {
833 BUG_ON(index != 0);
834 rc = 0;
835 } else {
836 MCDI_SET_DWORD(inbuf,
837 LINK_PIOBUF_IN_PIOBUF_HANDLE,
838 nic_data->piobuf_handle[index]);
839 MCDI_SET_DWORD(inbuf,
840 LINK_PIOBUF_IN_TXQ_INSTANCE,
841 tx_queue->queue);
842 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
843 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
844 NULL, 0, NULL);
845 }
846
847 if (rc) {
848 /* This is non-fatal; the TX path just
849 * won't use PIO for this queue
850 */
851 netif_err(efx, drv, efx->net_dev,
852 "failed to link VI %u to PIO buffer %u (%d)\n",
853 tx_queue->queue, index, rc);
854 tx_queue->piobuf = NULL;
855 } else {
856 tx_queue->piobuf =
857 nic_data->pio_write_base +
858 index * efx->vi_stride + offset;
859 tx_queue->piobuf_offset = offset;
860 netif_dbg(efx, probe, efx->net_dev,
861 "linked VI %u to PIO buffer %u offset %x addr %p\n",
862 tx_queue->queue, index,
863 tx_queue->piobuf_offset,
864 tx_queue->piobuf);
865 }
866 }
867 }
868
869 return 0;
870
871fail:
872 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
873 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
874 */
875 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
876 while (index--) {
877 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
878 nic_data->pio_write_vi_base + index);
879 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
880 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
881 NULL, 0, NULL);
882 }
883 return rc;
884}
885
886static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
887{
888 struct efx_channel *channel;
889 struct efx_tx_queue *tx_queue;
890
891 /* All our existing PIO buffers went away */
892 efx_for_each_channel(channel, efx)
893 efx_for_each_channel_tx_queue(tx_queue, channel)
894 tx_queue->piobuf = NULL;
895}
896
897#else /* !EFX_USE_PIO */
898
899static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
900{
901 return n == 0 ? 0 : -ENOBUFS;
902}
903
904static int efx_ef10_link_piobufs(struct efx_nic *efx)
905{
906 return 0;
907}
908
909static void efx_ef10_free_piobufs(struct efx_nic *efx)
910{
911}
912
913static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
914{
915}
916
917#endif /* EFX_USE_PIO */
918
919static void efx_ef10_remove(struct efx_nic *efx)
920{
921 struct efx_ef10_nic_data *nic_data = efx->nic_data;
922 int rc;
923
924#ifdef CONFIG_SFC_SRIOV
925 struct efx_ef10_nic_data *nic_data_pf;
926 struct pci_dev *pci_dev_pf;
927 struct efx_nic *efx_pf;
928 struct ef10_vf *vf;
929
930 if (efx->pci_dev->is_virtfn) {
931 pci_dev_pf = efx->pci_dev->physfn;
932 if (pci_dev_pf) {
933 efx_pf = pci_get_drvdata(pci_dev_pf);
934 nic_data_pf = efx_pf->nic_data;
935 vf = nic_data_pf->vf + nic_data->vf_index;
936 vf->efx = NULL;
937 } else
938 netif_info(efx, drv, efx->net_dev,
939 "Could not get the PF id from VF\n");
940 }
941#endif
942
943 efx_ef10_cleanup_vlans(efx);
944 mutex_destroy(&nic_data->vlan_lock);
945
946 efx_ptp_remove(efx);
947
948 efx_mcdi_mon_remove(efx);
949
950 efx_mcdi_rx_free_indir_table(efx);
951
952 if (nic_data->wc_membase)
953 iounmap(nic_data->wc_membase);
954
955 rc = efx_mcdi_free_vis(efx);
956 WARN_ON(rc != 0);
957
958 if (!nic_data->must_restore_piobufs)
959 efx_ef10_free_piobufs(efx);
960
961 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
962 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
963
964 efx_mcdi_detach(efx);
965
966 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
967 mutex_lock(&nic_data->udp_tunnels_lock);
968 (void)efx_ef10_set_udp_tnl_ports(efx, true);
969 mutex_unlock(&nic_data->udp_tunnels_lock);
970
971 mutex_destroy(&nic_data->udp_tunnels_lock);
972
973 efx_mcdi_fini(efx);
974 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
975 kfree(nic_data);
976}
977
978static int efx_ef10_probe_pf(struct efx_nic *efx)
979{
980 return efx_ef10_probe(efx);
981}
982
983int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
984 u32 *port_flags, u32 *vadaptor_flags,
985 unsigned int *vlan_tags)
986{
987 struct efx_ef10_nic_data *nic_data = efx->nic_data;
988 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
989 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
990 size_t outlen;
991 int rc;
992
993 if (nic_data->datapath_caps &
994 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
995 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
996 port_id);
997
998 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
999 outbuf, sizeof(outbuf), &outlen);
1000 if (rc)
1001 return rc;
1002
1003 if (outlen < sizeof(outbuf)) {
1004 rc = -EIO;
1005 return rc;
1006 }
1007 }
1008
1009 if (port_flags)
1010 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1011 if (vadaptor_flags)
1012 *vadaptor_flags =
1013 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014 if (vlan_tags)
1015 *vlan_tags =
1016 MCDI_DWORD(outbuf,
1017 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1018
1019 return 0;
1020}
1021
1022int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1023{
1024 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1025
1026 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028 NULL, 0, NULL);
1029}
1030
1031int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1032{
1033 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1034
1035 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037 NULL, 0, NULL);
1038}
1039
1040int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041 unsigned int port_id, const u8 *mac)
1042{
1043 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1044
1045 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1047
1048 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049 sizeof(inbuf), NULL, 0, NULL);
1050}
1051
1052int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053 unsigned int port_id, const u8 *mac)
1054{
1055 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1056
1057 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1059
1060 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061 sizeof(inbuf), NULL, 0, NULL);
1062}
1063
1064#ifdef CONFIG_SFC_SRIOV
1065static int efx_ef10_probe_vf(struct efx_nic *efx)
1066{
1067 int rc;
1068 struct pci_dev *pci_dev_pf;
1069
1070 /* If the parent PF has no VF data structure, it doesn't know about this
1071 * VF so fail probe. The VF needs to be re-created. This can happen
1072 * if the PF driver was unloaded while any VF was assigned to a guest
1073 * (using Xen, only).
1074 */
1075 pci_dev_pf = efx->pci_dev->physfn;
1076 if (pci_dev_pf) {
1077 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079
1080 if (!nic_data_pf->vf) {
1081 netif_info(efx, drv, efx->net_dev,
1082 "The VF cannot link to its parent PF; "
1083 "please destroy and re-create the VF\n");
1084 return -EBUSY;
1085 }
1086 }
1087
1088 rc = efx_ef10_probe(efx);
1089 if (rc)
1090 return rc;
1091
1092 rc = efx_ef10_get_vf_index(efx);
1093 if (rc)
1094 goto fail;
1095
1096 if (efx->pci_dev->is_virtfn) {
1097 if (efx->pci_dev->physfn) {
1098 struct efx_nic *efx_pf =
1099 pci_get_drvdata(efx->pci_dev->physfn);
1100 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102
1103 nic_data_p->vf[nic_data->vf_index].efx = efx;
1104 nic_data_p->vf[nic_data->vf_index].pci_dev =
1105 efx->pci_dev;
1106 } else
1107 netif_info(efx, drv, efx->net_dev,
1108 "Could not get the PF id from VF\n");
1109 }
1110
1111 return 0;
1112
1113fail:
1114 efx_ef10_remove(efx);
1115 return rc;
1116}
1117#else
1118static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119{
1120 return 0;
1121}
1122#endif
1123
1124static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125 unsigned int min_vis, unsigned int max_vis)
1126{
1127 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1128
1129 return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130 &nic_data->n_allocated_vis);
1131}
1132
1133/* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1135 */
1136static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137{
1138 unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139 efx_separate_tx_channels ? 2 : 1);
1140 unsigned int channel_vis, pio_write_vi_base, max_vis;
1141 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142 unsigned int uc_mem_map_size, wc_mem_map_size;
1143 void __iomem *membase;
1144 int rc;
1145
1146 channel_vis = max(efx->n_channels,
1147 ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148 efx->tx_queues_per_channel) +
1149 efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150 if (efx->max_vis && efx->max_vis < channel_vis) {
1151 netif_dbg(efx, drv, efx->net_dev,
1152 "Reducing channel VIs from %u to %u\n",
1153 channel_vis, efx->max_vis);
1154 channel_vis = efx->max_vis;
1155 }
1156
1157#ifdef EFX_USE_PIO
1158 /* Try to allocate PIO buffers if wanted and if the full
1159 * number of PIO buffers would be sufficient to allocate one
1160 * copy-buffer per TX channel. Failure is non-fatal, as there
1161 * are only a small number of PIO buffers shared between all
1162 * functions of the controller.
1163 */
1164 if (efx_piobuf_size != 0 &&
1165 nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166 efx->n_tx_channels) {
1167 unsigned int n_piobufs =
1168 DIV_ROUND_UP(efx->n_tx_channels,
1169 nic_data->piobuf_size / efx_piobuf_size);
1170
1171 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172 if (rc == -ENOSPC)
1173 netif_dbg(efx, probe, efx->net_dev,
1174 "out of PIO buffers; cannot allocate more\n");
1175 else if (rc == -EPERM)
1176 netif_dbg(efx, probe, efx->net_dev,
1177 "not permitted to allocate PIO buffers\n");
1178 else if (rc)
1179 netif_err(efx, probe, efx->net_dev,
1180 "failed to allocate PIO buffers (%d)\n", rc);
1181 else
1182 netif_dbg(efx, probe, efx->net_dev,
1183 "allocated %u PIO buffers\n", n_piobufs);
1184 }
1185#else
1186 nic_data->n_piobufs = 0;
1187#endif
1188
1189 /* PIO buffers should be mapped with write-combining enabled,
1190 * and we want to make single UC and WC mappings rather than
1191 * several of each (in fact that's the only option if host
1192 * page size is >4K). So we may allocate some extra VIs just
1193 * for writing PIO buffers through.
1194 *
1195 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196 * first 4K of the next VI. Then the WC mapping begins with
1197 * the remainder of this last VI.
1198 */
1199 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200 ER_DZ_TX_PIOBUF);
1201 if (nic_data->n_piobufs) {
1202 /* pio_write_vi_base rounds down to give the number of complete
1203 * VIs inside the UC mapping.
1204 */
1205 pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207 nic_data->n_piobufs) *
1208 efx->vi_stride) -
1209 uc_mem_map_size);
1210 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211 } else {
1212 pio_write_vi_base = 0;
1213 wc_mem_map_size = 0;
1214 max_vis = channel_vis;
1215 }
1216
1217 /* In case the last attached driver failed to free VIs, do it now */
1218 rc = efx_mcdi_free_vis(efx);
1219 if (rc != 0)
1220 return rc;
1221
1222 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223 if (rc != 0)
1224 return rc;
1225
1226 if (nic_data->n_allocated_vis < channel_vis) {
1227 netif_info(efx, drv, efx->net_dev,
1228 "Could not allocate enough VIs to satisfy RSS"
1229 " requirements. Performance may not be optimal.\n");
1230 /* We didn't get the VIs to populate our channels.
1231 * We could keep what we got but then we'd have more
1232 * interrupts than we need.
1233 * Instead calculate new max_channels and restart
1234 */
1235 efx->max_channels = nic_data->n_allocated_vis;
1236 efx->max_tx_channels =
1237 nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238
1239 efx_mcdi_free_vis(efx);
1240 return -EAGAIN;
1241 }
1242
1243 /* If we didn't get enough VIs to map all the PIO buffers, free the
1244 * PIO buffers
1245 */
1246 if (nic_data->n_piobufs &&
1247 nic_data->n_allocated_vis <
1248 pio_write_vi_base + nic_data->n_piobufs) {
1249 netif_dbg(efx, probe, efx->net_dev,
1250 "%u VIs are not sufficient to map %u PIO buffers\n",
1251 nic_data->n_allocated_vis, nic_data->n_piobufs);
1252 efx_ef10_free_piobufs(efx);
1253 }
1254
1255 /* Shrink the original UC mapping of the memory BAR */
1256 membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257 if (!membase) {
1258 netif_err(efx, probe, efx->net_dev,
1259 "could not shrink memory BAR to %x\n",
1260 uc_mem_map_size);
1261 return -ENOMEM;
1262 }
1263 iounmap(efx->membase);
1264 efx->membase = membase;
1265
1266 /* Set up the WC mapping if needed */
1267 if (wc_mem_map_size) {
1268 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269 uc_mem_map_size,
1270 wc_mem_map_size);
1271 if (!nic_data->wc_membase) {
1272 netif_err(efx, probe, efx->net_dev,
1273 "could not allocate WC mapping of size %x\n",
1274 wc_mem_map_size);
1275 return -ENOMEM;
1276 }
1277 nic_data->pio_write_vi_base = pio_write_vi_base;
1278 nic_data->pio_write_base =
1279 nic_data->wc_membase +
1280 (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281 uc_mem_map_size);
1282
1283 rc = efx_ef10_link_piobufs(efx);
1284 if (rc)
1285 efx_ef10_free_piobufs(efx);
1286 }
1287
1288 netif_dbg(efx, probe, efx->net_dev,
1289 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290 &efx->membase_phys, efx->membase, uc_mem_map_size,
1291 nic_data->wc_membase, wc_mem_map_size);
1292
1293 return 0;
1294}
1295
1296static void efx_ef10_fini_nic(struct efx_nic *efx)
1297{
1298 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299
1300 spin_lock_bh(&efx->stats_lock);
1301 kfree(nic_data->mc_stats);
1302 nic_data->mc_stats = NULL;
1303 spin_unlock_bh(&efx->stats_lock);
1304}
1305
1306static int efx_ef10_init_nic(struct efx_nic *efx)
1307{
1308 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1309 struct net_device *net_dev = efx->net_dev;
1310 netdev_features_t tun_feats, tso_feats;
1311 int rc;
1312
1313 if (nic_data->must_check_datapath_caps) {
1314 rc = efx_ef10_init_datapath_caps(efx);
1315 if (rc)
1316 return rc;
1317 nic_data->must_check_datapath_caps = false;
1318 }
1319
1320 if (efx->must_realloc_vis) {
1321 /* We cannot let the number of VIs change now */
1322 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1323 nic_data->n_allocated_vis);
1324 if (rc)
1325 return rc;
1326 efx->must_realloc_vis = false;
1327 }
1328
1329 nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1330 GFP_KERNEL);
1331 if (!nic_data->mc_stats)
1332 return -ENOMEM;
1333
1334 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1335 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1336 if (rc == 0) {
1337 rc = efx_ef10_link_piobufs(efx);
1338 if (rc)
1339 efx_ef10_free_piobufs(efx);
1340 }
1341
1342 /* Log an error on failure, but this is non-fatal.
1343 * Permission errors are less important - we've presumably
1344 * had the PIO buffer licence removed.
1345 */
1346 if (rc == -EPERM)
1347 netif_dbg(efx, drv, efx->net_dev,
1348 "not permitted to restore PIO buffers\n");
1349 else if (rc)
1350 netif_err(efx, drv, efx->net_dev,
1351 "failed to restore PIO buffers (%d)\n", rc);
1352 nic_data->must_restore_piobufs = false;
1353 }
1354
1355 /* encap features might change during reset if fw variant changed */
1356 if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1357 net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1358 else
1359 net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1360
1361 tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1362 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1363 tso_feats = NETIF_F_TSO | NETIF_F_TSO6;
1364
1365 if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1366 /* If this is first nic_init, or if it is a reset and a new fw
1367 * variant has added new features, enable them by default.
1368 * If the features are not new, maintain their current value.
1369 */
1370 if (!(net_dev->hw_features & tun_feats))
1371 net_dev->features |= tun_feats;
1372 net_dev->hw_enc_features |= tun_feats | tso_feats;
1373 net_dev->hw_features |= tun_feats;
1374 } else {
1375 net_dev->hw_enc_features &= ~(tun_feats | tso_feats);
1376 net_dev->hw_features &= ~tun_feats;
1377 net_dev->features &= ~tun_feats;
1378 }
1379
1380 /* don't fail init if RSS setup doesn't work */
1381 rc = efx->type->rx_push_rss_config(efx, false,
1382 efx->rss_context.rx_indir_table, NULL);
1383
1384 return 0;
1385}
1386
1387static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1388{
1389 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1390#ifdef CONFIG_SFC_SRIOV
1391 unsigned int i;
1392#endif
1393
1394 /* All our allocations have been reset */
1395 efx->must_realloc_vis = true;
1396 efx_mcdi_filter_table_reset_mc_allocations(efx);
1397 nic_data->must_restore_piobufs = true;
1398 efx_ef10_forget_old_piobufs(efx);
1399 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1400
1401 /* Driver-created vswitches and vports must be re-created */
1402 nic_data->must_probe_vswitching = true;
1403 efx->vport_id = EVB_PORT_ID_ASSIGNED;
1404#ifdef CONFIG_SFC_SRIOV
1405 if (nic_data->vf)
1406 for (i = 0; i < efx->vf_count; i++)
1407 nic_data->vf[i].vport_id = 0;
1408#endif
1409}
1410
1411static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1412{
1413 if (reason == RESET_TYPE_MC_FAILURE)
1414 return RESET_TYPE_DATAPATH;
1415
1416 return efx_mcdi_map_reset_reason(reason);
1417}
1418
1419static int efx_ef10_map_reset_flags(u32 *flags)
1420{
1421 enum {
1422 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1423 ETH_RESET_SHARED_SHIFT),
1424 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1425 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1426 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1427 ETH_RESET_SHARED_SHIFT)
1428 };
1429
1430 /* We assume for now that our PCI function is permitted to
1431 * reset everything.
1432 */
1433
1434 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1435 *flags &= ~EF10_RESET_MC;
1436 return RESET_TYPE_WORLD;
1437 }
1438
1439 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1440 *flags &= ~EF10_RESET_PORT;
1441 return RESET_TYPE_ALL;
1442 }
1443
1444 /* no invisible reset implemented */
1445
1446 return -EINVAL;
1447}
1448
1449static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1450{
1451 int rc = efx_mcdi_reset(efx, reset_type);
1452
1453 /* Unprivileged functions return -EPERM, but need to return success
1454 * here so that the datapath is brought back up.
1455 */
1456 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1457 rc = 0;
1458
1459 /* If it was a port reset, trigger reallocation of MC resources.
1460 * Note that on an MC reset nothing needs to be done now because we'll
1461 * detect the MC reset later and handle it then.
1462 * For an FLR, we never get an MC reset event, but the MC has reset all
1463 * resources assigned to us, so we have to trigger reallocation now.
1464 */
1465 if ((reset_type == RESET_TYPE_ALL ||
1466 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1467 efx_ef10_table_reset_mc_allocations(efx);
1468 return rc;
1469}
1470
1471#define EF10_DMA_STAT(ext_name, mcdi_name) \
1472 [EF10_STAT_ ## ext_name] = \
1473 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1474#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1475 [EF10_STAT_ ## int_name] = \
1476 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1477#define EF10_OTHER_STAT(ext_name) \
1478 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1479
1480static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1481 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1482 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1483 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1484 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1485 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1486 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1487 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1488 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1489 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1490 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1491 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1492 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1493 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1494 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1495 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1496 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1497 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1498 EF10_OTHER_STAT(port_rx_good_bytes),
1499 EF10_OTHER_STAT(port_rx_bad_bytes),
1500 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1501 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1502 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1503 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1504 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1505 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1506 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1507 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1508 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1509 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1510 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1511 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1512 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1513 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1514 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1515 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1516 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1517 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1518 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1519 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1520 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1521 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1522 EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1523 EFX_GENERIC_SW_STAT(rx_noskb_drops),
1524 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1525 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1526 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1527 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1528 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1529 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1530 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1531 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1532 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1533 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1534 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1535 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1536 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1537 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1538 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1539 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1540 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1541 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1542 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1543 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1544 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1545 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1546 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1547 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1548 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1549 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1550 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1551 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1552 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1553 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1554 EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1555 EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1556 EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1557 EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1558 EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1559 EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1560 EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1561 EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1562 EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1563 EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1564 EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1565 EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1566 EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1567 EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1568 EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1569 EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1570 EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1571 EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1572 EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1573 EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1574 EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1575 EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1576};
1577
1578#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1579 (1ULL << EF10_STAT_port_tx_packets) | \
1580 (1ULL << EF10_STAT_port_tx_pause) | \
1581 (1ULL << EF10_STAT_port_tx_unicast) | \
1582 (1ULL << EF10_STAT_port_tx_multicast) | \
1583 (1ULL << EF10_STAT_port_tx_broadcast) | \
1584 (1ULL << EF10_STAT_port_rx_bytes) | \
1585 (1ULL << \
1586 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1587 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1588 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1589 (1ULL << EF10_STAT_port_rx_packets) | \
1590 (1ULL << EF10_STAT_port_rx_good) | \
1591 (1ULL << EF10_STAT_port_rx_bad) | \
1592 (1ULL << EF10_STAT_port_rx_pause) | \
1593 (1ULL << EF10_STAT_port_rx_control) | \
1594 (1ULL << EF10_STAT_port_rx_unicast) | \
1595 (1ULL << EF10_STAT_port_rx_multicast) | \
1596 (1ULL << EF10_STAT_port_rx_broadcast) | \
1597 (1ULL << EF10_STAT_port_rx_lt64) | \
1598 (1ULL << EF10_STAT_port_rx_64) | \
1599 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1600 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1601 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1602 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1603 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1604 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1605 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1606 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1607 (1ULL << EF10_STAT_port_rx_overflow) | \
1608 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1609 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1610 (1ULL << GENERIC_STAT_rx_noskb_drops))
1611
1612/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1613 * For a 10G/40G switchable port we do not expose these because they might
1614 * not include all the packets they should.
1615 * On 8000 series NICs these statistics are always provided.
1616 */
1617#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1618 (1ULL << EF10_STAT_port_tx_lt64) | \
1619 (1ULL << EF10_STAT_port_tx_64) | \
1620 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1621 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1622 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1623 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1624 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1625 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1626
1627/* These statistics are only provided by the 40G MAC. For a 10G/40G
1628 * switchable port we do expose these because the errors will otherwise
1629 * be silent.
1630 */
1631#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1632 (1ULL << EF10_STAT_port_rx_length_error))
1633
1634/* These statistics are only provided if the firmware supports the
1635 * capability PM_AND_RXDP_COUNTERS.
1636 */
1637#define HUNT_PM_AND_RXDP_STAT_MASK ( \
1638 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1639 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1640 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1641 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1642 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1643 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1644 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1645 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1646 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1647 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1648 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1649 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1650
1651/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1655 */
1656#define EF10_FEC_STAT_MASK ( \
1657 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1658 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1659 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1660 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1661 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1662 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1663
1664/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1665 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1666 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1667 * These bits are in the second u64 of the raw mask.
1668 */
1669#define EF10_CTPIO_STAT_MASK ( \
1670 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1671 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1672 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1673 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1674 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1675 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1676 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1677 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1678 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1679 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1680 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1681 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1682 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1683 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1684 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1685 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1686
1687static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1688{
1689 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1690 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1691 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1692
1693 if (!(efx->mcdi->fn_flags &
1694 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1695 return 0;
1696
1697 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1698 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1699 /* 8000 series have everything even at 40G */
1700 if (nic_data->datapath_caps2 &
1701 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1702 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1703 } else {
1704 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1705 }
1706
1707 if (nic_data->datapath_caps &
1708 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1709 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1710
1711 return raw_mask;
1712}
1713
1714static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1715{
1716 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1717 u64 raw_mask[2];
1718
1719 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1720
1721 /* Only show vadaptor stats when EVB capability is present */
1722 if (nic_data->datapath_caps &
1723 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1724 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1725 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1726 } else {
1727 raw_mask[1] = 0;
1728 }
1729 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1730 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1731 raw_mask[1] |= EF10_FEC_STAT_MASK;
1732
1733 /* CTPIO stats appear in V3. Only show them on devices that actually
1734 * support CTPIO. Although this driver doesn't use CTPIO others might,
1735 * and we may be reporting the stats for the underlying port.
1736 */
1737 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1738 (nic_data->datapath_caps2 &
1739 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1740 raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1741
1742#if BITS_PER_LONG == 64
1743 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1744 mask[0] = raw_mask[0];
1745 mask[1] = raw_mask[1];
1746#else
1747 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1748 mask[0] = raw_mask[0] & 0xffffffff;
1749 mask[1] = raw_mask[0] >> 32;
1750 mask[2] = raw_mask[1] & 0xffffffff;
1751#endif
1752}
1753
1754static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1755{
1756 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1757
1758 efx_ef10_get_stat_mask(efx, mask);
1759 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1760 mask, names);
1761}
1762
1763static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1764 struct ethtool_fec_stats *fec_stats)
1765{
1766 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1767 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1768 u64 *stats = nic_data->stats;
1769
1770 efx_ef10_get_stat_mask(efx, mask);
1771 if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1772 fec_stats->corrected_blocks.total =
1773 stats[EF10_STAT_fec_corrected_errors];
1774 if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1775 fec_stats->uncorrectable_blocks.total =
1776 stats[EF10_STAT_fec_uncorrected_errors];
1777}
1778
1779static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1780 struct rtnl_link_stats64 *core_stats)
1781{
1782 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1783 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1784 u64 *stats = nic_data->stats;
1785 size_t stats_count = 0, index;
1786
1787 efx_ef10_get_stat_mask(efx, mask);
1788
1789 if (full_stats) {
1790 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1791 if (efx_ef10_stat_desc[index].name) {
1792 *full_stats++ = stats[index];
1793 ++stats_count;
1794 }
1795 }
1796 }
1797
1798 if (!core_stats)
1799 return stats_count;
1800
1801 if (nic_data->datapath_caps &
1802 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1803 /* Use vadaptor stats. */
1804 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1805 stats[EF10_STAT_rx_multicast] +
1806 stats[EF10_STAT_rx_broadcast];
1807 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1808 stats[EF10_STAT_tx_multicast] +
1809 stats[EF10_STAT_tx_broadcast];
1810 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1811 stats[EF10_STAT_rx_multicast_bytes] +
1812 stats[EF10_STAT_rx_broadcast_bytes];
1813 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1814 stats[EF10_STAT_tx_multicast_bytes] +
1815 stats[EF10_STAT_tx_broadcast_bytes];
1816 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1817 stats[GENERIC_STAT_rx_noskb_drops];
1818 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1819 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1820 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1821 core_stats->rx_errors = core_stats->rx_crc_errors;
1822 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1823 } else {
1824 /* Use port stats. */
1825 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1826 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1827 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1828 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1829 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1830 stats[GENERIC_STAT_rx_nodesc_trunc] +
1831 stats[GENERIC_STAT_rx_noskb_drops];
1832 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1833 core_stats->rx_length_errors =
1834 stats[EF10_STAT_port_rx_gtjumbo] +
1835 stats[EF10_STAT_port_rx_length_error];
1836 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1837 core_stats->rx_frame_errors =
1838 stats[EF10_STAT_port_rx_align_error];
1839 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1840 core_stats->rx_errors = (core_stats->rx_length_errors +
1841 core_stats->rx_crc_errors +
1842 core_stats->rx_frame_errors);
1843 }
1844
1845 return stats_count;
1846}
1847
1848static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1849 struct rtnl_link_stats64 *core_stats)
1850{
1851 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1852 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1853 u64 *stats = nic_data->stats;
1854
1855 efx_ef10_get_stat_mask(efx, mask);
1856
1857 /* If NIC was fini'd (probably resetting), then we can't read
1858 * updated stats right now.
1859 */
1860 if (nic_data->mc_stats) {
1861 efx_nic_copy_stats(efx, nic_data->mc_stats);
1862 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1863 mask, stats, nic_data->mc_stats, false);
1864 }
1865
1866 /* Update derived statistics */
1867 efx_nic_fix_nodesc_drop_stat(efx,
1868 &stats[EF10_STAT_port_rx_nodesc_drops]);
1869 /* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1870 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1871 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1872 * Here we calculate port_rx_good_bytes.
1873 */
1874 stats[EF10_STAT_port_rx_good_bytes] =
1875 stats[EF10_STAT_port_rx_bytes] -
1876 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1877
1878 /* The asynchronous reads used to calculate RX_BAD_BYTES in
1879 * MC Firmware are done such that we should not see an increase in
1880 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1881 * does mean that the stat can decrease at times. Here we do not
1882 * update the stat unless it has increased or has gone to zero
1883 * (In the case of the NIC rebooting).
1884 * Please see Bug 33781 for a discussion of why things work this way.
1885 */
1886 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1887 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1888 efx_update_sw_stats(efx, stats);
1889
1890 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1891}
1892
1893static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1894 __must_hold(&efx->stats_lock)
1895{
1896 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1897 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1898 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1899 __le64 generation_start, generation_end;
1900 u64 *stats = nic_data->stats;
1901 u32 dma_len = efx->num_mac_stats * sizeof(u64);
1902 struct efx_buffer stats_buf;
1903 __le64 *dma_stats;
1904 int rc;
1905
1906 spin_unlock_bh(&efx->stats_lock);
1907
1908 efx_ef10_get_stat_mask(efx, mask);
1909
1910 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1911 if (rc) {
1912 spin_lock_bh(&efx->stats_lock);
1913 return rc;
1914 }
1915
1916 dma_stats = stats_buf.addr;
1917 dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1918
1919 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1920 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1921 MAC_STATS_IN_DMA, 1);
1922 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1923 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1924
1925 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1926 NULL, 0, NULL);
1927 spin_lock_bh(&efx->stats_lock);
1928 if (rc) {
1929 /* Expect ENOENT if DMA queues have not been set up */
1930 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1931 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1932 sizeof(inbuf), NULL, 0, rc);
1933 goto out;
1934 }
1935
1936 generation_end = dma_stats[efx->num_mac_stats - 1];
1937 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1938 WARN_ON_ONCE(1);
1939 goto out;
1940 }
1941 rmb();
1942 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1943 stats, stats_buf.addr, false);
1944 rmb();
1945 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1946 if (generation_end != generation_start) {
1947 rc = -EAGAIN;
1948 goto out;
1949 }
1950
1951 efx_update_sw_stats(efx, stats);
1952out:
1953 /* releasing a DMA coherent buffer with BH disabled can panic */
1954 spin_unlock_bh(&efx->stats_lock);
1955 efx_nic_free_buffer(efx, &stats_buf);
1956 spin_lock_bh(&efx->stats_lock);
1957 return rc;
1958}
1959
1960static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1961 struct rtnl_link_stats64 *core_stats)
1962{
1963 if (efx_ef10_try_update_nic_stats_vf(efx))
1964 return 0;
1965
1966 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1967}
1968
1969static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1970 struct rtnl_link_stats64 *core_stats)
1971{
1972 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1973
1974 /* In atomic context, cannot update HW stats. Just update the
1975 * software stats and return so the caller can continue.
1976 */
1977 efx_update_sw_stats(efx, nic_data->stats);
1978 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1979}
1980
1981static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1982{
1983 struct efx_nic *efx = channel->efx;
1984 unsigned int mode, usecs;
1985 efx_dword_t timer_cmd;
1986
1987 if (channel->irq_moderation_us) {
1988 mode = 3;
1989 usecs = channel->irq_moderation_us;
1990 } else {
1991 mode = 0;
1992 usecs = 0;
1993 }
1994
1995 if (EFX_EF10_WORKAROUND_61265(efx)) {
1996 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1997 unsigned int ns = usecs * 1000;
1998
1999 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2000 channel->channel);
2001 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2002 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2003 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2004
2005 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2006 inbuf, sizeof(inbuf), 0, NULL, 0);
2007 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
2008 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2009
2010 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2011 EFE_DD_EVQ_IND_TIMER_FLAGS,
2012 ERF_DD_EVQ_IND_TIMER_MODE, mode,
2013 ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2014 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2015 channel->channel);
2016 } else {
2017 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2018
2019 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2020 ERF_DZ_TC_TIMER_VAL, ticks,
2021 ERF_FZ_TC_TMR_REL_VAL, ticks);
2022 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2023 channel->channel);
2024 }
2025}
2026
2027static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2028 struct ethtool_wolinfo *wol) {}
2029
2030static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2031{
2032 return -EOPNOTSUPP;
2033}
2034
2035static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2036{
2037 wol->supported = 0;
2038 wol->wolopts = 0;
2039 memset(&wol->sopass, 0, sizeof(wol->sopass));
2040}
2041
2042static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2043{
2044 if (type != 0)
2045 return -EINVAL;
2046 return 0;
2047}
2048
2049static void efx_ef10_mcdi_request(struct efx_nic *efx,
2050 const efx_dword_t *hdr, size_t hdr_len,
2051 const efx_dword_t *sdu, size_t sdu_len)
2052{
2053 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2054 u8 *pdu = nic_data->mcdi_buf.addr;
2055
2056 memcpy(pdu, hdr, hdr_len);
2057 memcpy(pdu + hdr_len, sdu, sdu_len);
2058 wmb();
2059
2060 /* The hardware provides 'low' and 'high' (doorbell) registers
2061 * for passing the 64-bit address of an MCDI request to
2062 * firmware. However the dwords are swapped by firmware. The
2063 * least significant bits of the doorbell are then 0 for all
2064 * MCDI requests due to alignment.
2065 */
2066 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2067 ER_DZ_MC_DB_LWRD);
2068 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2069 ER_DZ_MC_DB_HWRD);
2070}
2071
2072static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2073{
2074 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2075 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2076
2077 rmb();
2078 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2079}
2080
2081static void
2082efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2083 size_t offset, size_t outlen)
2084{
2085 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2086 const u8 *pdu = nic_data->mcdi_buf.addr;
2087
2088 memcpy(outbuf, pdu + offset, outlen);
2089}
2090
2091static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2092{
2093 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2094
2095 /* All our allocations have been reset */
2096 efx_ef10_table_reset_mc_allocations(efx);
2097
2098 /* The datapath firmware might have been changed */
2099 nic_data->must_check_datapath_caps = true;
2100
2101 /* MAC statistics have been cleared on the NIC; clear the local
2102 * statistic that we update with efx_update_diff_stat().
2103 */
2104 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2105}
2106
2107static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2108{
2109 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2110 int rc;
2111
2112 rc = efx_ef10_get_warm_boot_count(efx);
2113 if (rc < 0) {
2114 /* The firmware is presumably in the process of
2115 * rebooting. However, we are supposed to report each
2116 * reboot just once, so we must only do that once we
2117 * can read and store the updated warm boot count.
2118 */
2119 return 0;
2120 }
2121
2122 if (rc == nic_data->warm_boot_count)
2123 return 0;
2124
2125 nic_data->warm_boot_count = rc;
2126 efx_ef10_mcdi_reboot_detected(efx);
2127
2128 return -EIO;
2129}
2130
2131/* Handle an MSI interrupt
2132 *
2133 * Handle an MSI hardware interrupt. This routine schedules event
2134 * queue processing. No interrupt acknowledgement cycle is necessary.
2135 * Also, we never need to check that the interrupt is for us, since
2136 * MSI interrupts cannot be shared.
2137 */
2138static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2139{
2140 struct efx_msi_context *context = dev_id;
2141 struct efx_nic *efx = context->efx;
2142
2143 netif_vdbg(efx, intr, efx->net_dev,
2144 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2145
2146 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2147 /* Note test interrupts */
2148 if (context->index == efx->irq_level)
2149 efx->last_irq_cpu = raw_smp_processor_id();
2150
2151 /* Schedule processing of the channel */
2152 efx_schedule_channel_irq(efx->channel[context->index]);
2153 }
2154
2155 return IRQ_HANDLED;
2156}
2157
2158static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2159{
2160 struct efx_nic *efx = dev_id;
2161 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2162 struct efx_channel *channel;
2163 efx_dword_t reg;
2164 u32 queues;
2165
2166 /* Read the ISR which also ACKs the interrupts */
2167 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
2168 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2169
2170 if (queues == 0)
2171 return IRQ_NONE;
2172
2173 if (likely(soft_enabled)) {
2174 /* Note test interrupts */
2175 if (queues & (1U << efx->irq_level))
2176 efx->last_irq_cpu = raw_smp_processor_id();
2177
2178 efx_for_each_channel(channel, efx) {
2179 if (queues & 1)
2180 efx_schedule_channel_irq(channel);
2181 queues >>= 1;
2182 }
2183 }
2184
2185 netif_vdbg(efx, intr, efx->net_dev,
2186 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2187 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2188
2189 return IRQ_HANDLED;
2190}
2191
2192static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2193{
2194 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2195
2196 if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2197 NULL) == 0)
2198 return -ENOTSUPP;
2199
2200 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2201
2202 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2203 return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2204 inbuf, sizeof(inbuf), NULL, 0, NULL);
2205}
2206
2207static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2208{
2209 /* low two bits of label are what we want for type */
2210 BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2211 tx_queue->type = tx_queue->label & 3;
2212 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd,
2213 (tx_queue->ptr_mask + 1) *
2214 sizeof(efx_qword_t),
2215 GFP_KERNEL);
2216}
2217
2218/* This writes to the TX_DESC_WPTR and also pushes data */
2219static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2220 const efx_qword_t *txd)
2221{
2222 unsigned int write_ptr;
2223 efx_oword_t reg;
2224
2225 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2226 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2227 reg.qword[0] = *txd;
2228 efx_writeo_page(tx_queue->efx, ®,
2229 ER_DZ_TX_DESC_UPD, tx_queue->queue);
2230}
2231
2232/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2233 */
2234int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2235 bool *data_mapped)
2236{
2237 struct efx_tx_buffer *buffer;
2238 u16 inner_ipv4_id = 0;
2239 u16 outer_ipv4_id = 0;
2240 struct tcphdr *tcp;
2241 struct iphdr *ip;
2242 u16 ip_tot_len;
2243 u32 seqnum;
2244 u32 mss;
2245
2246 EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2247
2248 mss = skb_shinfo(skb)->gso_size;
2249
2250 if (unlikely(mss < 4)) {
2251 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2252 return -EINVAL;
2253 }
2254
2255 if (skb->encapsulation) {
2256 if (!tx_queue->tso_encap)
2257 return -EINVAL;
2258 ip = ip_hdr(skb);
2259 if (ip->version == 4)
2260 outer_ipv4_id = ntohs(ip->id);
2261
2262 ip = inner_ip_hdr(skb);
2263 tcp = inner_tcp_hdr(skb);
2264 } else {
2265 ip = ip_hdr(skb);
2266 tcp = tcp_hdr(skb);
2267 }
2268
2269 /* 8000-series EF10 hardware requires that IP Total Length be
2270 * greater than or equal to the value it will have in each segment
2271 * (which is at most mss + 208 + TCP header length), but also less
2272 * than (0x10000 - inner_network_header). Otherwise the TCP
2273 * checksum calculation will be broken for encapsulated packets.
2274 * We fill in ip->tot_len with 0xff30, which should satisfy the
2275 * first requirement unless the MSS is ridiculously large (which
2276 * should be impossible as the driver max MTU is 9216); it is
2277 * guaranteed to satisfy the second as we only attempt TSO if
2278 * inner_network_header <= 208.
2279 */
2280 ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2281 EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2282 (tcp->doff << 2u) > ip_tot_len);
2283
2284 if (ip->version == 4) {
2285 ip->tot_len = htons(ip_tot_len);
2286 ip->check = 0;
2287 inner_ipv4_id = ntohs(ip->id);
2288 } else {
2289 ((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
2290 }
2291
2292 seqnum = ntohl(tcp->seq);
2293
2294 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2295
2296 buffer->flags = EFX_TX_BUF_OPTION;
2297 buffer->len = 0;
2298 buffer->unmap_len = 0;
2299 EFX_POPULATE_QWORD_5(buffer->option,
2300 ESF_DZ_TX_DESC_IS_OPT, 1,
2301 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2302 ESF_DZ_TX_TSO_OPTION_TYPE,
2303 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2304 ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2305 ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2306 );
2307 ++tx_queue->insert_count;
2308
2309 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2310
2311 buffer->flags = EFX_TX_BUF_OPTION;
2312 buffer->len = 0;
2313 buffer->unmap_len = 0;
2314 EFX_POPULATE_QWORD_5(buffer->option,
2315 ESF_DZ_TX_DESC_IS_OPT, 1,
2316 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2317 ESF_DZ_TX_TSO_OPTION_TYPE,
2318 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2319 ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2320 ESF_DZ_TX_TSO_TCP_MSS, mss
2321 );
2322 ++tx_queue->insert_count;
2323
2324 return 0;
2325}
2326
2327static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2328{
2329 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2330 u32 tso_versions = 0;
2331
2332 if (nic_data->datapath_caps &
2333 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2334 tso_versions |= BIT(1);
2335 if (nic_data->datapath_caps2 &
2336 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2337 tso_versions |= BIT(2);
2338 return tso_versions;
2339}
2340
2341static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2342{
2343 bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2344 bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
2345 struct efx_channel *channel = tx_queue->channel;
2346 struct efx_nic *efx = tx_queue->efx;
2347 struct efx_ef10_nic_data *nic_data;
2348 efx_qword_t *txd;
2349 int rc;
2350
2351 nic_data = efx->nic_data;
2352
2353 /* Only attempt to enable TX timestamping if we have the license for it,
2354 * otherwise TXQ init will fail
2355 */
2356 if (!(nic_data->licensed_features &
2357 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2358 tx_queue->timestamping = false;
2359 /* Disable sync events on this channel. */
2360 if (efx->type->ptp_set_ts_sync_events)
2361 efx->type->ptp_set_ts_sync_events(efx, false, false);
2362 }
2363
2364 /* TSOv2 is a limited resource that can only be configured on a limited
2365 * number of queues. TSO without checksum offload is not really a thing,
2366 * so we only enable it for those queues.
2367 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2368 * for XDP tx.
2369 */
2370 if (efx_has_cap(efx, TX_TSO_V2)) {
2371 if ((csum_offload || inner_csum) &&
2372 !tx_queue->timestamping && !tx_queue->xdp_tx) {
2373 tx_queue->tso_version = 2;
2374 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2375 channel->channel);
2376 }
2377 } else if (efx_has_cap(efx, TX_TSO)) {
2378 tx_queue->tso_version = 1;
2379 }
2380
2381 rc = efx_mcdi_tx_init(tx_queue);
2382 if (rc)
2383 goto fail;
2384
2385 /* A previous user of this TX queue might have set us up the
2386 * bomb by writing a descriptor to the TX push collector but
2387 * not the doorbell. (Each collector belongs to a port, not a
2388 * queue or function, so cannot easily be reset.) We must
2389 * attempt to push a no-op descriptor in its place.
2390 */
2391 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2392 tx_queue->insert_count = 1;
2393 txd = efx_tx_desc(tx_queue, 0);
2394 EFX_POPULATE_QWORD_7(*txd,
2395 ESF_DZ_TX_DESC_IS_OPT, true,
2396 ESF_DZ_TX_OPTION_TYPE,
2397 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2398 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2399 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2400 ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2401 ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2402 ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2403 tx_queue->write_count = 1;
2404
2405 if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2406 tx_queue->tso_encap = true;
2407
2408 wmb();
2409 efx_ef10_push_tx_desc(tx_queue, txd);
2410
2411 return;
2412
2413fail:
2414 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2415 tx_queue->queue);
2416}
2417
2418/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2419static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2420{
2421 unsigned int write_ptr;
2422 efx_dword_t reg;
2423
2424 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2425 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2426 efx_writed_page(tx_queue->efx, ®,
2427 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2428}
2429
2430#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2431
2432static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2433 dma_addr_t dma_addr, unsigned int len)
2434{
2435 if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2436 /* If we need to break across multiple descriptors we should
2437 * stop at a page boundary. This assumes the length limit is
2438 * greater than the page size.
2439 */
2440 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2441
2442 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2443 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2444 }
2445
2446 return len;
2447}
2448
2449static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2450{
2451 unsigned int old_write_count = tx_queue->write_count;
2452 struct efx_tx_buffer *buffer;
2453 unsigned int write_ptr;
2454 efx_qword_t *txd;
2455
2456 tx_queue->xmit_pending = false;
2457 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2458 return;
2459
2460 do {
2461 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2462 buffer = &tx_queue->buffer[write_ptr];
2463 txd = efx_tx_desc(tx_queue, write_ptr);
2464 ++tx_queue->write_count;
2465
2466 /* Create TX descriptor ring entry */
2467 if (buffer->flags & EFX_TX_BUF_OPTION) {
2468 *txd = buffer->option;
2469 if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2470 /* PIO descriptor */
2471 tx_queue->packet_write_count = tx_queue->write_count;
2472 } else {
2473 tx_queue->packet_write_count = tx_queue->write_count;
2474 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2475 EFX_POPULATE_QWORD_3(
2476 *txd,
2477 ESF_DZ_TX_KER_CONT,
2478 buffer->flags & EFX_TX_BUF_CONT,
2479 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2480 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2481 }
2482 } while (tx_queue->write_count != tx_queue->insert_count);
2483
2484 wmb(); /* Ensure descriptors are written before they are fetched */
2485
2486 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2487 txd = efx_tx_desc(tx_queue,
2488 old_write_count & tx_queue->ptr_mask);
2489 efx_ef10_push_tx_desc(tx_queue, txd);
2490 ++tx_queue->pushes;
2491 } else {
2492 efx_ef10_notify_tx_desc(tx_queue);
2493 }
2494}
2495
2496static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2497{
2498 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2499 unsigned int enabled, implemented;
2500 bool want_workaround_26807;
2501 int rc;
2502
2503 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2504 if (rc == -ENOSYS) {
2505 /* GET_WORKAROUNDS was implemented before this workaround,
2506 * thus it must be unavailable in this firmware.
2507 */
2508 nic_data->workaround_26807 = false;
2509 return 0;
2510 }
2511 if (rc)
2512 return rc;
2513 want_workaround_26807 =
2514 implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2515 nic_data->workaround_26807 =
2516 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2517
2518 if (want_workaround_26807 && !nic_data->workaround_26807) {
2519 unsigned int flags;
2520
2521 rc = efx_mcdi_set_workaround(efx,
2522 MC_CMD_WORKAROUND_BUG26807,
2523 true, &flags);
2524 if (!rc) {
2525 if (flags &
2526 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2527 netif_info(efx, drv, efx->net_dev,
2528 "other functions on NIC have been reset\n");
2529
2530 /* With MCFW v4.6.x and earlier, the
2531 * boot count will have incremented,
2532 * so re-read the warm_boot_count
2533 * value now to ensure this function
2534 * doesn't think it has changed next
2535 * time it checks.
2536 */
2537 rc = efx_ef10_get_warm_boot_count(efx);
2538 if (rc >= 0) {
2539 nic_data->warm_boot_count = rc;
2540 rc = 0;
2541 }
2542 }
2543 nic_data->workaround_26807 = true;
2544 } else if (rc == -EPERM) {
2545 rc = 0;
2546 }
2547 }
2548 return rc;
2549}
2550
2551static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2552{
2553 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2554 int rc = efx_ef10_probe_multicast_chaining(efx);
2555 struct efx_mcdi_filter_vlan *vlan;
2556
2557 if (rc)
2558 return rc;
2559 down_write(&efx->filter_sem);
2560 rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2561
2562 if (rc)
2563 goto out_unlock;
2564
2565 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2566 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2567 if (rc)
2568 goto fail_add_vlan;
2569 }
2570 goto out_unlock;
2571
2572fail_add_vlan:
2573 efx_mcdi_filter_table_remove(efx);
2574out_unlock:
2575 up_write(&efx->filter_sem);
2576 return rc;
2577}
2578
2579static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2580{
2581 down_write(&efx->filter_sem);
2582 efx_mcdi_filter_table_remove(efx);
2583 up_write(&efx->filter_sem);
2584}
2585
2586/* This creates an entry in the RX descriptor queue */
2587static inline void
2588efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2589{
2590 struct efx_rx_buffer *rx_buf;
2591 efx_qword_t *rxd;
2592
2593 rxd = efx_rx_desc(rx_queue, index);
2594 rx_buf = efx_rx_buffer(rx_queue, index);
2595 EFX_POPULATE_QWORD_2(*rxd,
2596 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2597 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2598}
2599
2600static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2601{
2602 struct efx_nic *efx = rx_queue->efx;
2603 unsigned int write_count;
2604 efx_dword_t reg;
2605
2606 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2607 write_count = rx_queue->added_count & ~7;
2608 if (rx_queue->notified_count == write_count)
2609 return;
2610
2611 do
2612 efx_ef10_build_rx_desc(
2613 rx_queue,
2614 rx_queue->notified_count & rx_queue->ptr_mask);
2615 while (++rx_queue->notified_count != write_count);
2616
2617 wmb();
2618 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2619 write_count & rx_queue->ptr_mask);
2620 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
2621 efx_rx_queue_index(rx_queue));
2622}
2623
2624static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2625
2626static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2627{
2628 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2629 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2630 efx_qword_t event;
2631
2632 EFX_POPULATE_QWORD_2(event,
2633 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2634 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2635
2636 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2637
2638 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2639 * already swapped the data to little-endian order.
2640 */
2641 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2642 sizeof(efx_qword_t));
2643
2644 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2645 inbuf, sizeof(inbuf), 0,
2646 efx_ef10_rx_defer_refill_complete, 0);
2647}
2648
2649static void
2650efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2651 int rc, efx_dword_t *outbuf,
2652 size_t outlen_actual)
2653{
2654 /* nothing to do */
2655}
2656
2657static int efx_ef10_ev_init(struct efx_channel *channel)
2658{
2659 struct efx_nic *efx = channel->efx;
2660 struct efx_ef10_nic_data *nic_data;
2661 bool use_v2, cut_thru;
2662
2663 nic_data = efx->nic_data;
2664 use_v2 = nic_data->datapath_caps2 &
2665 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2666 cut_thru = !(nic_data->datapath_caps &
2667 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2668 return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2669}
2670
2671static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2672 unsigned int rx_queue_label)
2673{
2674 struct efx_nic *efx = rx_queue->efx;
2675
2676 netif_info(efx, hw, efx->net_dev,
2677 "rx event arrived on queue %d labeled as queue %u\n",
2678 efx_rx_queue_index(rx_queue), rx_queue_label);
2679
2680 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2681}
2682
2683static void
2684efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2685 unsigned int actual, unsigned int expected)
2686{
2687 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2688 struct efx_nic *efx = rx_queue->efx;
2689
2690 netif_info(efx, hw, efx->net_dev,
2691 "dropped %d events (index=%d expected=%d)\n",
2692 dropped, actual, expected);
2693
2694 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2695}
2696
2697/* partially received RX was aborted. clean up. */
2698static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2699{
2700 unsigned int rx_desc_ptr;
2701
2702 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2703 "scattered RX aborted (dropping %u buffers)\n",
2704 rx_queue->scatter_n);
2705
2706 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2707
2708 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2709 0, EFX_RX_PKT_DISCARD);
2710
2711 rx_queue->removed_count += rx_queue->scatter_n;
2712 rx_queue->scatter_n = 0;
2713 rx_queue->scatter_len = 0;
2714 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2715}
2716
2717static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2718 unsigned int n_packets,
2719 unsigned int rx_encap_hdr,
2720 unsigned int rx_l3_class,
2721 unsigned int rx_l4_class,
2722 const efx_qword_t *event)
2723{
2724 struct efx_nic *efx = channel->efx;
2725 bool handled = false;
2726
2727 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2728 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2729 if (!efx->loopback_selftest)
2730 channel->n_rx_eth_crc_err += n_packets;
2731 return EFX_RX_PKT_DISCARD;
2732 }
2733 handled = true;
2734 }
2735 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2736 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2737 rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2738 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2739 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2740 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2741 netdev_WARN(efx->net_dev,
2742 "invalid class for RX_IPCKSUM_ERR: event="
2743 EFX_QWORD_FMT "\n",
2744 EFX_QWORD_VAL(*event));
2745 if (!efx->loopback_selftest)
2746 *(rx_encap_hdr ?
2747 &channel->n_rx_outer_ip_hdr_chksum_err :
2748 &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2749 return 0;
2750 }
2751 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2752 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2753 ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2754 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2755 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2756 rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2757 netdev_WARN(efx->net_dev,
2758 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2759 EFX_QWORD_FMT "\n",
2760 EFX_QWORD_VAL(*event));
2761 if (!efx->loopback_selftest)
2762 *(rx_encap_hdr ?
2763 &channel->n_rx_outer_tcp_udp_chksum_err :
2764 &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2765 return 0;
2766 }
2767 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2768 if (unlikely(!rx_encap_hdr))
2769 netdev_WARN(efx->net_dev,
2770 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2771 EFX_QWORD_FMT "\n",
2772 EFX_QWORD_VAL(*event));
2773 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2774 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2775 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2776 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2777 netdev_WARN(efx->net_dev,
2778 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2779 EFX_QWORD_FMT "\n",
2780 EFX_QWORD_VAL(*event));
2781 if (!efx->loopback_selftest)
2782 channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2783 return 0;
2784 }
2785 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2786 if (unlikely(!rx_encap_hdr))
2787 netdev_WARN(efx->net_dev,
2788 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2789 EFX_QWORD_FMT "\n",
2790 EFX_QWORD_VAL(*event));
2791 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2792 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2793 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2794 rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2795 netdev_WARN(efx->net_dev,
2796 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2797 EFX_QWORD_FMT "\n",
2798 EFX_QWORD_VAL(*event));
2799 if (!efx->loopback_selftest)
2800 channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2801 return 0;
2802 }
2803
2804 WARN_ON(!handled); /* No error bits were recognised */
2805 return 0;
2806}
2807
2808static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2809 const efx_qword_t *event)
2810{
2811 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2812 unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2813 unsigned int n_descs, n_packets, i;
2814 struct efx_nic *efx = channel->efx;
2815 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2816 struct efx_rx_queue *rx_queue;
2817 efx_qword_t errors;
2818 bool rx_cont;
2819 u16 flags = 0;
2820
2821 if (unlikely(READ_ONCE(efx->reset_pending)))
2822 return 0;
2823
2824 /* Basic packet information */
2825 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2826 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2827 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2828 rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2829 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2830 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2831 rx_encap_hdr =
2832 nic_data->datapath_caps &
2833 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2834 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2835 ESE_EZ_ENCAP_HDR_NONE;
2836
2837 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2838 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2839 EFX_QWORD_FMT "\n",
2840 EFX_QWORD_VAL(*event));
2841
2842 rx_queue = efx_channel_get_rx_queue(channel);
2843
2844 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2845 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2846
2847 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2848 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2849
2850 if (n_descs != rx_queue->scatter_n + 1) {
2851 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2852
2853 /* detect rx abort */
2854 if (unlikely(n_descs == rx_queue->scatter_n)) {
2855 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2856 netdev_WARN(efx->net_dev,
2857 "invalid RX abort: scatter_n=%u event="
2858 EFX_QWORD_FMT "\n",
2859 rx_queue->scatter_n,
2860 EFX_QWORD_VAL(*event));
2861 efx_ef10_handle_rx_abort(rx_queue);
2862 return 0;
2863 }
2864
2865 /* Check that RX completion merging is valid, i.e.
2866 * the current firmware supports it and this is a
2867 * non-scattered packet.
2868 */
2869 if (!(nic_data->datapath_caps &
2870 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2871 rx_queue->scatter_n != 0 || rx_cont) {
2872 efx_ef10_handle_rx_bad_lbits(
2873 rx_queue, next_ptr_lbits,
2874 (rx_queue->removed_count +
2875 rx_queue->scatter_n + 1) &
2876 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2877 return 0;
2878 }
2879
2880 /* Merged completion for multiple non-scattered packets */
2881 rx_queue->scatter_n = 1;
2882 rx_queue->scatter_len = 0;
2883 n_packets = n_descs;
2884 ++channel->n_rx_merge_events;
2885 channel->n_rx_merge_packets += n_packets;
2886 flags |= EFX_RX_PKT_PREFIX_LEN;
2887 } else {
2888 ++rx_queue->scatter_n;
2889 rx_queue->scatter_len += rx_bytes;
2890 if (rx_cont)
2891 return 0;
2892 n_packets = 1;
2893 }
2894
2895 EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2896 ESF_DZ_RX_IPCKSUM_ERR, 1,
2897 ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2898 ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2899 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2900 EFX_AND_QWORD(errors, *event, errors);
2901 if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2902 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2903 rx_encap_hdr,
2904 rx_l3_class, rx_l4_class,
2905 event);
2906 } else {
2907 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2908 rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2909
2910 switch (rx_encap_hdr) {
2911 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2912 flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2913 if (tcpudp)
2914 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2915 break;
2916 case ESE_EZ_ENCAP_HDR_GRE:
2917 case ESE_EZ_ENCAP_HDR_NONE:
2918 if (tcpudp)
2919 flags |= EFX_RX_PKT_CSUMMED;
2920 break;
2921 default:
2922 netdev_WARN(efx->net_dev,
2923 "unknown encapsulation type: event="
2924 EFX_QWORD_FMT "\n",
2925 EFX_QWORD_VAL(*event));
2926 }
2927 }
2928
2929 if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2930 flags |= EFX_RX_PKT_TCP;
2931
2932 channel->irq_mod_score += 2 * n_packets;
2933
2934 /* Handle received packet(s) */
2935 for (i = 0; i < n_packets; i++) {
2936 efx_rx_packet(rx_queue,
2937 rx_queue->removed_count & rx_queue->ptr_mask,
2938 rx_queue->scatter_n, rx_queue->scatter_len,
2939 flags);
2940 rx_queue->removed_count += rx_queue->scatter_n;
2941 }
2942
2943 rx_queue->scatter_n = 0;
2944 rx_queue->scatter_len = 0;
2945
2946 return n_packets;
2947}
2948
2949static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2950{
2951 u32 tstamp;
2952
2953 tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2954 tstamp <<= 16;
2955 tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2956
2957 return tstamp;
2958}
2959
2960static int
2961efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2962{
2963 struct efx_nic *efx = channel->efx;
2964 struct efx_tx_queue *tx_queue;
2965 unsigned int tx_ev_desc_ptr;
2966 unsigned int tx_ev_q_label;
2967 unsigned int tx_ev_type;
2968 int work_done;
2969 u64 ts_part;
2970
2971 if (unlikely(READ_ONCE(efx->reset_pending)))
2972 return 0;
2973
2974 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2975 return 0;
2976
2977 /* Get the transmit queue */
2978 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2979 tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
2980
2981 if (!tx_queue->timestamping) {
2982 /* Transmit completion */
2983 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2984 return efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2985 }
2986
2987 /* Transmit timestamps are only available for 8XXX series. They result
2988 * in up to three events per packet. These occur in order, and are:
2989 * - the normal completion event (may be omitted)
2990 * - the low part of the timestamp
2991 * - the high part of the timestamp
2992 *
2993 * It's possible for multiple completion events to appear before the
2994 * corresponding timestamps. So we can for example get:
2995 * COMP N
2996 * COMP N+1
2997 * TS_LO N
2998 * TS_HI N
2999 * TS_LO N+1
3000 * TS_HI N+1
3001 *
3002 * In addition it's also possible for the adjacent completions to be
3003 * merged, so we may not see COMP N above. As such, the completion
3004 * events are not very useful here.
3005 *
3006 * Each part of the timestamp is itself split across two 16 bit
3007 * fields in the event.
3008 */
3009 tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3010 work_done = 0;
3011
3012 switch (tx_ev_type) {
3013 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3014 /* Ignore this event - see above. */
3015 break;
3016
3017 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3018 ts_part = efx_ef10_extract_event_ts(event);
3019 tx_queue->completed_timestamp_minor = ts_part;
3020 break;
3021
3022 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3023 ts_part = efx_ef10_extract_event_ts(event);
3024 tx_queue->completed_timestamp_major = ts_part;
3025
3026 efx_xmit_done_single(tx_queue);
3027 work_done = 1;
3028 break;
3029
3030 default:
3031 netif_err(efx, hw, efx->net_dev,
3032 "channel %d unknown tx event type %d (data "
3033 EFX_QWORD_FMT ")\n",
3034 channel->channel, tx_ev_type,
3035 EFX_QWORD_VAL(*event));
3036 break;
3037 }
3038
3039 return work_done;
3040}
3041
3042static void
3043efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3044{
3045 struct efx_nic *efx = channel->efx;
3046 int subcode;
3047
3048 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3049
3050 switch (subcode) {
3051 case ESE_DZ_DRV_TIMER_EV:
3052 case ESE_DZ_DRV_WAKE_UP_EV:
3053 break;
3054 case ESE_DZ_DRV_START_UP_EV:
3055 /* event queue init complete. ok. */
3056 break;
3057 default:
3058 netif_err(efx, hw, efx->net_dev,
3059 "channel %d unknown driver event type %d"
3060 " (data " EFX_QWORD_FMT ")\n",
3061 channel->channel, subcode,
3062 EFX_QWORD_VAL(*event));
3063
3064 }
3065}
3066
3067static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3068 efx_qword_t *event)
3069{
3070 struct efx_nic *efx = channel->efx;
3071 u32 subcode;
3072
3073 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3074
3075 switch (subcode) {
3076 case EFX_EF10_TEST:
3077 channel->event_test_cpu = raw_smp_processor_id();
3078 break;
3079 case EFX_EF10_REFILL:
3080 /* The queue must be empty, so we won't receive any rx
3081 * events, so efx_process_channel() won't refill the
3082 * queue. Refill it here
3083 */
3084 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3085 break;
3086 default:
3087 netif_err(efx, hw, efx->net_dev,
3088 "channel %d unknown driver event type %u"
3089 " (data " EFX_QWORD_FMT ")\n",
3090 channel->channel, (unsigned) subcode,
3091 EFX_QWORD_VAL(*event));
3092 }
3093}
3094
3095#define EFX_NAPI_MAX_TX 512
3096
3097static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3098{
3099 struct efx_nic *efx = channel->efx;
3100 efx_qword_t event, *p_event;
3101 unsigned int read_ptr;
3102 int spent_tx = 0;
3103 int spent = 0;
3104 int ev_code;
3105
3106 if (quota <= 0)
3107 return spent;
3108
3109 read_ptr = channel->eventq_read_ptr;
3110
3111 for (;;) {
3112 p_event = efx_event(channel, read_ptr);
3113 event = *p_event;
3114
3115 if (!efx_event_present(&event))
3116 break;
3117
3118 EFX_SET_QWORD(*p_event);
3119
3120 ++read_ptr;
3121
3122 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3123
3124 netif_vdbg(efx, drv, efx->net_dev,
3125 "processing event on %d " EFX_QWORD_FMT "\n",
3126 channel->channel, EFX_QWORD_VAL(event));
3127
3128 switch (ev_code) {
3129 case ESE_DZ_EV_CODE_MCDI_EV:
3130 efx_mcdi_process_event(channel, &event);
3131 break;
3132 case ESE_DZ_EV_CODE_RX_EV:
3133 spent += efx_ef10_handle_rx_event(channel, &event);
3134 if (spent >= quota) {
3135 /* XXX can we split a merged event to
3136 * avoid going over-quota?
3137 */
3138 spent = quota;
3139 goto out;
3140 }
3141 break;
3142 case ESE_DZ_EV_CODE_TX_EV:
3143 spent_tx += efx_ef10_handle_tx_event(channel, &event);
3144 if (spent_tx >= EFX_NAPI_MAX_TX) {
3145 spent = quota;
3146 goto out;
3147 }
3148 break;
3149 case ESE_DZ_EV_CODE_DRIVER_EV:
3150 efx_ef10_handle_driver_event(channel, &event);
3151 if (++spent == quota)
3152 goto out;
3153 break;
3154 case EFX_EF10_DRVGEN_EV:
3155 efx_ef10_handle_driver_generated_event(channel, &event);
3156 break;
3157 default:
3158 netif_err(efx, hw, efx->net_dev,
3159 "channel %d unknown event type %d"
3160 " (data " EFX_QWORD_FMT ")\n",
3161 channel->channel, ev_code,
3162 EFX_QWORD_VAL(event));
3163 }
3164 }
3165
3166out:
3167 channel->eventq_read_ptr = read_ptr;
3168 return spent;
3169}
3170
3171static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3172{
3173 struct efx_nic *efx = channel->efx;
3174 efx_dword_t rptr;
3175
3176 if (EFX_EF10_WORKAROUND_35388(efx)) {
3177 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3178 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3179 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3180 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3181
3182 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3183 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3184 ERF_DD_EVQ_IND_RPTR,
3185 (channel->eventq_read_ptr &
3186 channel->eventq_mask) >>
3187 ERF_DD_EVQ_IND_RPTR_WIDTH);
3188 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3189 channel->channel);
3190 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3191 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3192 ERF_DD_EVQ_IND_RPTR,
3193 channel->eventq_read_ptr &
3194 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3195 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3196 channel->channel);
3197 } else {
3198 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3199 channel->eventq_read_ptr &
3200 channel->eventq_mask);
3201 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3202 }
3203}
3204
3205static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3206{
3207 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3208 struct efx_nic *efx = channel->efx;
3209 efx_qword_t event;
3210 int rc;
3211
3212 EFX_POPULATE_QWORD_2(event,
3213 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3214 ESF_DZ_EV_DATA, EFX_EF10_TEST);
3215
3216 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3217
3218 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3219 * already swapped the data to little-endian order.
3220 */
3221 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3222 sizeof(efx_qword_t));
3223
3224 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3225 NULL, 0, NULL);
3226 if (rc != 0)
3227 goto fail;
3228
3229 return;
3230
3231fail:
3232 WARN_ON(true);
3233 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3234}
3235
3236static void efx_ef10_prepare_flr(struct efx_nic *efx)
3237{
3238 atomic_set(&efx->active_queues, 0);
3239}
3240
3241static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3242{
3243 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3244 u8 mac_old[ETH_ALEN];
3245 int rc, rc2;
3246
3247 /* Only reconfigure a PF-created vport */
3248 if (is_zero_ether_addr(nic_data->vport_mac))
3249 return 0;
3250
3251 efx_device_detach_sync(efx);
3252 efx_net_stop(efx->net_dev);
3253 efx_ef10_filter_table_remove(efx);
3254
3255 rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3256 if (rc)
3257 goto restore_filters;
3258
3259 ether_addr_copy(mac_old, nic_data->vport_mac);
3260 rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3261 nic_data->vport_mac);
3262 if (rc)
3263 goto restore_vadaptor;
3264
3265 rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3266 efx->net_dev->dev_addr);
3267 if (!rc) {
3268 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3269 } else {
3270 rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3271 if (rc2) {
3272 /* Failed to add original MAC, so clear vport_mac */
3273 eth_zero_addr(nic_data->vport_mac);
3274 goto reset_nic;
3275 }
3276 }
3277
3278restore_vadaptor:
3279 rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3280 if (rc2)
3281 goto reset_nic;
3282restore_filters:
3283 rc2 = efx_ef10_filter_table_probe(efx);
3284 if (rc2)
3285 goto reset_nic;
3286
3287 rc2 = efx_net_open(efx->net_dev);
3288 if (rc2)
3289 goto reset_nic;
3290
3291 efx_device_attach_if_not_resetting(efx);
3292
3293 return rc;
3294
3295reset_nic:
3296 netif_err(efx, drv, efx->net_dev,
3297 "Failed to restore when changing MAC address - scheduling reset\n");
3298 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3299
3300 return rc ? rc : rc2;
3301}
3302
3303static int efx_ef10_set_mac_address(struct efx_nic *efx)
3304{
3305 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3306 bool was_enabled = efx->port_enabled;
3307 int rc;
3308
3309#ifdef CONFIG_SFC_SRIOV
3310 /* If this function is a VF and we have access to the parent PF,
3311 * then use the PF control path to attempt to change the VF MAC address.
3312 */
3313 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3314 struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn);
3315 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3316 u8 mac[ETH_ALEN];
3317
3318 /* net_dev->dev_addr can be zeroed by efx_net_stop in
3319 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
3320 */
3321 ether_addr_copy(mac, efx->net_dev->dev_addr);
3322
3323 rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac);
3324 if (!rc)
3325 return 0;
3326
3327 netif_dbg(efx, drv, efx->net_dev,
3328 "Updating VF mac via PF failed (%d), setting directly\n",
3329 rc);
3330 }
3331#endif
3332
3333 efx_device_detach_sync(efx);
3334 efx_net_stop(efx->net_dev);
3335
3336 mutex_lock(&efx->mac_lock);
3337 efx_ef10_filter_table_remove(efx);
3338
3339 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3340 efx->net_dev->dev_addr);
3341 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3342 efx->vport_id);
3343 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3344 sizeof(inbuf), NULL, 0, NULL);
3345
3346 efx_ef10_filter_table_probe(efx);
3347 mutex_unlock(&efx->mac_lock);
3348
3349 if (was_enabled)
3350 efx_net_open(efx->net_dev);
3351 efx_device_attach_if_not_resetting(efx);
3352
3353 if (rc == -EPERM) {
3354 netif_err(efx, drv, efx->net_dev,
3355 "Cannot change MAC address; use sfboot to enable"
3356 " mac-spoofing on this interface\n");
3357 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3358 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3359 * fall-back to the method of changing the MAC address on the
3360 * vport. This only applies to PFs because such versions of
3361 * MCFW do not support VFs.
3362 */
3363 rc = efx_ef10_vport_set_mac_address(efx);
3364 } else if (rc) {
3365 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3366 sizeof(inbuf), NULL, 0, rc);
3367 }
3368
3369 return rc;
3370}
3371
3372static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3373{
3374 WARN_ON(!mutex_is_locked(&efx->mac_lock));
3375
3376 efx_mcdi_filter_sync_rx_mode(efx);
3377
3378 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3379 return efx_mcdi_set_mtu(efx);
3380 return efx_mcdi_set_mac(efx);
3381}
3382
3383static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3384{
3385 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3386
3387 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3388 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3389 NULL, 0, NULL);
3390}
3391
3392/* MC BISTs follow a different poll mechanism to phy BISTs.
3393 * The BIST is done in the poll handler on the MC, and the MCDI command
3394 * will block until the BIST is done.
3395 */
3396static int efx_ef10_poll_bist(struct efx_nic *efx)
3397{
3398 int rc;
3399 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3400 size_t outlen;
3401 u32 result;
3402
3403 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3404 outbuf, sizeof(outbuf), &outlen);
3405 if (rc != 0)
3406 return rc;
3407
3408 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3409 return -EIO;
3410
3411 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3412 switch (result) {
3413 case MC_CMD_POLL_BIST_PASSED:
3414 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3415 return 0;
3416 case MC_CMD_POLL_BIST_TIMEOUT:
3417 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3418 return -EIO;
3419 case MC_CMD_POLL_BIST_FAILED:
3420 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3421 return -EIO;
3422 default:
3423 netif_err(efx, hw, efx->net_dev,
3424 "BIST returned unknown result %u", result);
3425 return -EIO;
3426 }
3427}
3428
3429static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3430{
3431 int rc;
3432
3433 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3434
3435 rc = efx_ef10_start_bist(efx, bist_type);
3436 if (rc != 0)
3437 return rc;
3438
3439 return efx_ef10_poll_bist(efx);
3440}
3441
3442static int
3443efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3444{
3445 int rc, rc2;
3446
3447 efx_reset_down(efx, RESET_TYPE_WORLD);
3448
3449 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3450 NULL, 0, NULL, 0, NULL);
3451 if (rc != 0)
3452 goto out;
3453
3454 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3455 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3456
3457 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3458
3459out:
3460 if (rc == -EPERM)
3461 rc = 0;
3462 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3463 return rc ? rc : rc2;
3464}
3465
3466#ifdef CONFIG_SFC_MTD
3467
3468struct efx_ef10_nvram_type_info {
3469 u16 type, type_mask;
3470 u8 port;
3471 const char *name;
3472};
3473
3474static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3475 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
3476 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
3477 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
3478 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
3479 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
3480 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
3481 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
3482 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
3483 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
3484 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
3485 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
3486 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" },
3487 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" },
3488 { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" },
3489 { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" },
3490 { NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" },
3491 { NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" },
3492 { NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" },
3493};
3494#define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
3495
3496static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3497 struct efx_mcdi_mtd_partition *part,
3498 unsigned int type,
3499 unsigned long *found)
3500{
3501 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3502 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3503 const struct efx_ef10_nvram_type_info *info;
3504 size_t size, erase_size, outlen;
3505 int type_idx = 0;
3506 bool protected;
3507 int rc;
3508
3509 for (type_idx = 0; ; type_idx++) {
3510 if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3511 return -ENODEV;
3512 info = efx_ef10_nvram_types + type_idx;
3513 if ((type & ~info->type_mask) == info->type)
3514 break;
3515 }
3516 if (info->port != efx_port_num(efx))
3517 return -ENODEV;
3518
3519 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3520 if (rc)
3521 return rc;
3522 if (protected &&
3523 (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3524 type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3525 /* Hide protected partitions that don't provide defaults. */
3526 return -ENODEV;
3527
3528 if (protected)
3529 /* Protected partitions are read only. */
3530 erase_size = 0;
3531
3532 /* If we've already exposed a partition of this type, hide this
3533 * duplicate. All operations on MTDs are keyed by the type anyway,
3534 * so we can't act on the duplicate.
3535 */
3536 if (__test_and_set_bit(type_idx, found))
3537 return -EEXIST;
3538
3539 part->nvram_type = type;
3540
3541 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3542 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3543 outbuf, sizeof(outbuf), &outlen);
3544 if (rc)
3545 return rc;
3546 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3547 return -EIO;
3548 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3549 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3550 part->fw_subtype = MCDI_DWORD(outbuf,
3551 NVRAM_METADATA_OUT_SUBTYPE);
3552
3553 part->common.dev_type_name = "EF10 NVRAM manager";
3554 part->common.type_name = info->name;
3555
3556 part->common.mtd.type = MTD_NORFLASH;
3557 part->common.mtd.flags = MTD_CAP_NORFLASH;
3558 part->common.mtd.size = size;
3559 part->common.mtd.erasesize = erase_size;
3560 /* sfc_status is read-only */
3561 if (!erase_size)
3562 part->common.mtd.flags |= MTD_NO_ERASE;
3563
3564 return 0;
3565}
3566
3567static int efx_ef10_mtd_probe(struct efx_nic *efx)
3568{
3569 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3570 DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3571 struct efx_mcdi_mtd_partition *parts;
3572 size_t outlen, n_parts_total, i, n_parts;
3573 unsigned int type;
3574 int rc;
3575
3576 ASSERT_RTNL();
3577
3578 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3579 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3580 outbuf, sizeof(outbuf), &outlen);
3581 if (rc)
3582 return rc;
3583 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3584 return -EIO;
3585
3586 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3587 if (n_parts_total >
3588 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3589 return -EIO;
3590
3591 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3592 if (!parts)
3593 return -ENOMEM;
3594
3595 n_parts = 0;
3596 for (i = 0; i < n_parts_total; i++) {
3597 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3598 i);
3599 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3600 found);
3601 if (rc == -EEXIST || rc == -ENODEV)
3602 continue;
3603 if (rc)
3604 goto fail;
3605 n_parts++;
3606 }
3607
3608 if (!n_parts) {
3609 kfree(parts);
3610 return 0;
3611 }
3612
3613 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3614fail:
3615 if (rc)
3616 kfree(parts);
3617 return rc;
3618}
3619
3620#endif /* CONFIG_SFC_MTD */
3621
3622static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3623{
3624 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3625}
3626
3627static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3628 u32 host_time) {}
3629
3630static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3631 bool temp)
3632{
3633 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3634 int rc;
3635
3636 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3637 channel->sync_events_state == SYNC_EVENTS_VALID ||
3638 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3639 return 0;
3640 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3641
3642 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3643 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3644 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3645 channel->channel);
3646
3647 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3648 inbuf, sizeof(inbuf), NULL, 0, NULL);
3649
3650 if (rc != 0)
3651 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3652 SYNC_EVENTS_DISABLED;
3653
3654 return rc;
3655}
3656
3657static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3658 bool temp)
3659{
3660 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3661 int rc;
3662
3663 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3664 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3665 return 0;
3666 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3667 channel->sync_events_state = SYNC_EVENTS_DISABLED;
3668 return 0;
3669 }
3670 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3671 SYNC_EVENTS_DISABLED;
3672
3673 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3674 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3675 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3676 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3677 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3678 channel->channel);
3679
3680 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3681 inbuf, sizeof(inbuf), NULL, 0, NULL);
3682
3683 return rc;
3684}
3685
3686static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3687 bool temp)
3688{
3689 int (*set)(struct efx_channel *channel, bool temp);
3690 struct efx_channel *channel;
3691
3692 set = en ?
3693 efx_ef10_rx_enable_timestamping :
3694 efx_ef10_rx_disable_timestamping;
3695
3696 channel = efx_ptp_channel(efx);
3697 if (channel) {
3698 int rc = set(channel, temp);
3699 if (en && rc != 0) {
3700 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3701 return rc;
3702 }
3703 }
3704
3705 return 0;
3706}
3707
3708static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3709 struct kernel_hwtstamp_config *init)
3710{
3711 return -EOPNOTSUPP;
3712}
3713
3714static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3715 struct kernel_hwtstamp_config *init)
3716{
3717 int rc;
3718
3719 switch (init->rx_filter) {
3720 case HWTSTAMP_FILTER_NONE:
3721 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3722 /* if TX timestamping is still requested then leave PTP on */
3723 return efx_ptp_change_mode(efx,
3724 init->tx_type != HWTSTAMP_TX_OFF, 0);
3725 case HWTSTAMP_FILTER_ALL:
3726 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3727 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3728 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3729 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3730 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3731 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3732 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3733 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3734 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3735 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3736 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3737 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3738 case HWTSTAMP_FILTER_NTP_ALL:
3739 init->rx_filter = HWTSTAMP_FILTER_ALL;
3740 rc = efx_ptp_change_mode(efx, true, 0);
3741 if (!rc)
3742 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3743 if (rc)
3744 efx_ptp_change_mode(efx, false, 0);
3745 return rc;
3746 default:
3747 return -ERANGE;
3748 }
3749}
3750
3751static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3752 struct netdev_phys_item_id *ppid)
3753{
3754 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3755
3756 if (!is_valid_ether_addr(nic_data->port_id))
3757 return -EOPNOTSUPP;
3758
3759 ppid->id_len = ETH_ALEN;
3760 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3761
3762 return 0;
3763}
3764
3765static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3766{
3767 if (proto != htons(ETH_P_8021Q))
3768 return -EINVAL;
3769
3770 return efx_ef10_add_vlan(efx, vid);
3771}
3772
3773static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3774{
3775 if (proto != htons(ETH_P_8021Q))
3776 return -EINVAL;
3777
3778 return efx_ef10_del_vlan(efx, vid);
3779}
3780
3781/* We rely on the MCDI wiping out our TX rings if it made any changes to the
3782 * ports table, ensuring that any TSO descriptors that were made on a now-
3783 * removed tunnel port will be blown away and won't break things when we try
3784 * to transmit them using the new ports table.
3785 */
3786static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3787{
3788 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3789 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3790 MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3791 bool will_reset = false;
3792 size_t num_entries = 0;
3793 size_t inlen, outlen;
3794 size_t i;
3795 int rc;
3796 efx_dword_t flags_and_num_entries;
3797
3798 WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3799
3800 nic_data->udp_tunnels_dirty = false;
3801
3802 if (!(nic_data->datapath_caps &
3803 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3804 efx_device_attach_if_not_resetting(efx);
3805 return 0;
3806 }
3807
3808 BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3809 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3810
3811 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3812 if (nic_data->udp_tunnels[i].type !=
3813 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3814 efx_dword_t entry;
3815
3816 EFX_POPULATE_DWORD_2(entry,
3817 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3818 ntohs(nic_data->udp_tunnels[i].port),
3819 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3820 nic_data->udp_tunnels[i].type);
3821 *_MCDI_ARRAY_DWORD(inbuf,
3822 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3823 num_entries++) = entry;
3824 }
3825 }
3826
3827 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3828 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3829 EFX_WORD_1_LBN);
3830 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3831 EFX_WORD_1_WIDTH);
3832 EFX_POPULATE_DWORD_2(flags_and_num_entries,
3833 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3834 !!unloading,
3835 EFX_WORD_1, num_entries);
3836 *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3837 flags_and_num_entries;
3838
3839 inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3840
3841 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3842 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3843 if (rc == -EIO) {
3844 /* Most likely the MC rebooted due to another function also
3845 * setting its tunnel port list. Mark the tunnel port list as
3846 * dirty, so it will be pushed upon coming up from the reboot.
3847 */
3848 nic_data->udp_tunnels_dirty = true;
3849 return 0;
3850 }
3851
3852 if (rc) {
3853 /* expected not available on unprivileged functions */
3854 if (rc != -EPERM)
3855 netif_warn(efx, drv, efx->net_dev,
3856 "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3857 } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3858 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3859 netif_info(efx, drv, efx->net_dev,
3860 "Rebooting MC due to UDP tunnel port list change\n");
3861 will_reset = true;
3862 if (unloading)
3863 /* Delay for the MC reset to complete. This will make
3864 * unloading other functions a bit smoother. This is a
3865 * race, but the other unload will work whichever way
3866 * it goes, this just avoids an unnecessary error
3867 * message.
3868 */
3869 msleep(100);
3870 }
3871 if (!will_reset && !unloading) {
3872 /* The caller will have detached, relying on the MC reset to
3873 * trigger a re-attach. Since there won't be an MC reset, we
3874 * have to do the attach ourselves.
3875 */
3876 efx_device_attach_if_not_resetting(efx);
3877 }
3878
3879 return rc;
3880}
3881
3882static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3883{
3884 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3885 int rc = 0;
3886
3887 mutex_lock(&nic_data->udp_tunnels_lock);
3888 if (nic_data->udp_tunnels_dirty) {
3889 /* Make sure all TX are stopped while we modify the table, else
3890 * we might race against an efx_features_check().
3891 */
3892 efx_device_detach_sync(efx);
3893 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3894 }
3895 mutex_unlock(&nic_data->udp_tunnels_lock);
3896 return rc;
3897}
3898
3899static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3900 unsigned int table, unsigned int entry,
3901 struct udp_tunnel_info *ti)
3902{
3903 struct efx_nic *efx = efx_netdev_priv(dev);
3904 struct efx_ef10_nic_data *nic_data;
3905 int efx_tunnel_type, rc;
3906
3907 if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3908 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3909 else
3910 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3911
3912 nic_data = efx->nic_data;
3913 if (!(nic_data->datapath_caps &
3914 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3915 return -EOPNOTSUPP;
3916
3917 mutex_lock(&nic_data->udp_tunnels_lock);
3918 /* Make sure all TX are stopped while we add to the table, else we
3919 * might race against an efx_features_check().
3920 */
3921 efx_device_detach_sync(efx);
3922 nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3923 nic_data->udp_tunnels[entry].port = ti->port;
3924 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3925 mutex_unlock(&nic_data->udp_tunnels_lock);
3926
3927 return rc;
3928}
3929
3930/* Called under the TX lock with the TX queue running, hence no-one can be
3931 * in the middle of updating the UDP tunnels table. However, they could
3932 * have tried and failed the MCDI, in which case they'll have set the dirty
3933 * flag before dropping their locks.
3934 */
3935static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3936{
3937 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3938 size_t i;
3939
3940 if (!(nic_data->datapath_caps &
3941 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3942 return false;
3943
3944 if (nic_data->udp_tunnels_dirty)
3945 /* SW table may not match HW state, so just assume we can't
3946 * use any UDP tunnel offloads.
3947 */
3948 return false;
3949
3950 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3951 if (nic_data->udp_tunnels[i].type !=
3952 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3953 nic_data->udp_tunnels[i].port == port)
3954 return true;
3955
3956 return false;
3957}
3958
3959static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3960 unsigned int table, unsigned int entry,
3961 struct udp_tunnel_info *ti)
3962{
3963 struct efx_nic *efx = efx_netdev_priv(dev);
3964 struct efx_ef10_nic_data *nic_data;
3965 int rc;
3966
3967 nic_data = efx->nic_data;
3968
3969 mutex_lock(&nic_data->udp_tunnels_lock);
3970 /* Make sure all TX are stopped while we remove from the table, else we
3971 * might race against an efx_features_check().
3972 */
3973 efx_device_detach_sync(efx);
3974 nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3975 nic_data->udp_tunnels[entry].port = 0;
3976 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3977 mutex_unlock(&nic_data->udp_tunnels_lock);
3978
3979 return rc;
3980}
3981
3982static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3983 .set_port = efx_ef10_udp_tnl_set_port,
3984 .unset_port = efx_ef10_udp_tnl_unset_port,
3985 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3986 .tables = {
3987 {
3988 .n_entries = 16,
3989 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3990 UDP_TUNNEL_TYPE_GENEVE,
3991 },
3992 },
3993};
3994
3995/* EF10 may have multiple datapath firmware variants within a
3996 * single version. Report which variants are running.
3997 */
3998static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3999 size_t len)
4000{
4001 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4002
4003 return scnprintf(buf, len, " rx%x tx%x",
4004 nic_data->rx_dpcpu_fw_id,
4005 nic_data->tx_dpcpu_fw_id);
4006}
4007
4008static unsigned int ef10_check_caps(const struct efx_nic *efx,
4009 u8 flag,
4010 u32 offset)
4011{
4012 const struct efx_ef10_nic_data *nic_data = efx->nic_data;
4013
4014 switch (offset) {
4015 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
4016 return nic_data->datapath_caps & BIT_ULL(flag);
4017 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
4018 return nic_data->datapath_caps2 & BIT_ULL(flag);
4019 default:
4020 return 0;
4021 }
4022}
4023
4024static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx)
4025{
4026 unsigned int ret = EFX_RECYCLE_RING_SIZE_10G;
4027
4028 /* There is no difference between PFs and VFs. The side is based on
4029 * the maximum link speed of a given NIC.
4030 */
4031 switch (efx->pci_dev->device & 0xfff) {
4032 case 0x0903: /* Farmingdale can do up to 10G */
4033 break;
4034 case 0x0923: /* Greenport can do up to 40G */
4035 case 0x0a03: /* Medford can do up to 40G */
4036 ret *= 4;
4037 break;
4038 default: /* Medford2 can do up to 100G */
4039 ret *= 10;
4040 }
4041
4042 if (IS_ENABLED(CONFIG_PPC64))
4043 ret *= 4;
4044
4045 return ret;
4046}
4047
4048#define EF10_OFFLOAD_FEATURES \
4049 (NETIF_F_IP_CSUM | \
4050 NETIF_F_HW_VLAN_CTAG_FILTER | \
4051 NETIF_F_IPV6_CSUM | \
4052 NETIF_F_RXHASH | \
4053 NETIF_F_NTUPLE | \
4054 NETIF_F_SG | \
4055 NETIF_F_RXCSUM | \
4056 NETIF_F_RXALL)
4057
4058const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4059 .is_vf = true,
4060 .mem_bar = efx_ef10_vf_mem_bar,
4061 .mem_map_size = efx_ef10_mem_map_size,
4062 .probe = efx_ef10_probe_vf,
4063 .remove = efx_ef10_remove,
4064 .dimension_resources = efx_ef10_dimension_resources,
4065 .init = efx_ef10_init_nic,
4066 .fini = efx_ef10_fini_nic,
4067 .map_reset_reason = efx_ef10_map_reset_reason,
4068 .map_reset_flags = efx_ef10_map_reset_flags,
4069 .reset = efx_ef10_reset,
4070 .probe_port = efx_mcdi_port_probe,
4071 .remove_port = efx_mcdi_port_remove,
4072 .fini_dmaq = efx_fini_dmaq,
4073 .prepare_flr = efx_ef10_prepare_flr,
4074 .finish_flr = efx_port_dummy_op_void,
4075 .describe_stats = efx_ef10_describe_stats,
4076 .update_stats = efx_ef10_update_stats_vf,
4077 .update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4078 .start_stats = efx_port_dummy_op_void,
4079 .pull_stats = efx_port_dummy_op_void,
4080 .stop_stats = efx_port_dummy_op_void,
4081 .push_irq_moderation = efx_ef10_push_irq_moderation,
4082 .reconfigure_mac = efx_ef10_mac_reconfigure,
4083 .check_mac_fault = efx_mcdi_mac_check_fault,
4084 .reconfigure_port = efx_mcdi_port_reconfigure,
4085 .get_wol = efx_ef10_get_wol_vf,
4086 .set_wol = efx_ef10_set_wol_vf,
4087 .resume_wol = efx_port_dummy_op_void,
4088 .mcdi_request = efx_ef10_mcdi_request,
4089 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4090 .mcdi_read_response = efx_ef10_mcdi_read_response,
4091 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4092 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4093 .irq_enable_master = efx_port_dummy_op_void,
4094 .irq_test_generate = efx_ef10_irq_test_generate,
4095 .irq_disable_non_ev = efx_port_dummy_op_void,
4096 .irq_handle_msi = efx_ef10_msi_interrupt,
4097 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4098 .tx_probe = efx_ef10_tx_probe,
4099 .tx_init = efx_ef10_tx_init,
4100 .tx_remove = efx_mcdi_tx_remove,
4101 .tx_write = efx_ef10_tx_write,
4102 .tx_limit_len = efx_ef10_tx_limit_len,
4103 .tx_enqueue = __efx_enqueue_skb,
4104 .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4105 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4106 .rx_probe = efx_mcdi_rx_probe,
4107 .rx_init = efx_mcdi_rx_init,
4108 .rx_remove = efx_mcdi_rx_remove,
4109 .rx_write = efx_ef10_rx_write,
4110 .rx_defer_refill = efx_ef10_rx_defer_refill,
4111 .rx_packet = __efx_rx_packet,
4112 .ev_probe = efx_mcdi_ev_probe,
4113 .ev_init = efx_ef10_ev_init,
4114 .ev_fini = efx_mcdi_ev_fini,
4115 .ev_remove = efx_mcdi_ev_remove,
4116 .ev_process = efx_ef10_ev_process,
4117 .ev_read_ack = efx_ef10_ev_read_ack,
4118 .ev_test_generate = efx_ef10_ev_test_generate,
4119 .filter_table_probe = efx_ef10_filter_table_probe,
4120 .filter_table_restore = efx_mcdi_filter_table_restore,
4121 .filter_table_remove = efx_ef10_filter_table_remove,
4122 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4123 .filter_insert = efx_mcdi_filter_insert,
4124 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4125 .filter_get_safe = efx_mcdi_filter_get_safe,
4126 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4127 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4128 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4129 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4130#ifdef CONFIG_RFS_ACCEL
4131 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4132#endif
4133#ifdef CONFIG_SFC_MTD
4134 .mtd_probe = efx_port_dummy_op_int,
4135#endif
4136 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4137 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4138 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4139 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4140#ifdef CONFIG_SFC_SRIOV
4141 .vswitching_probe = efx_ef10_vswitching_probe_vf,
4142 .vswitching_restore = efx_ef10_vswitching_restore_vf,
4143 .vswitching_remove = efx_ef10_vswitching_remove_vf,
4144#endif
4145 .get_mac_address = efx_ef10_get_mac_address_vf,
4146 .set_mac_address = efx_ef10_set_mac_address,
4147
4148 .get_phys_port_id = efx_ef10_get_phys_port_id,
4149 .revision = EFX_REV_HUNT_A0,
4150 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4151 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4152 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4153 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4154 .can_rx_scatter = true,
4155 .always_rx_scatter = true,
4156 .min_interrupt_mode = EFX_INT_MODE_MSIX,
4157 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4158 .offload_features = EF10_OFFLOAD_FEATURES,
4159 .mcdi_max_ver = 2,
4160 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4161 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4162 1 << HWTSTAMP_FILTER_ALL,
4163 .rx_hash_key_size = 40,
4164 .check_caps = ef10_check_caps,
4165 .print_additional_fwver = efx_ef10_print_additional_fwver,
4166 .sensor_event = efx_mcdi_sensor_event,
4167 .rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4168};
4169
4170const struct efx_nic_type efx_hunt_a0_nic_type = {
4171 .is_vf = false,
4172 .mem_bar = efx_ef10_pf_mem_bar,
4173 .mem_map_size = efx_ef10_mem_map_size,
4174 .probe = efx_ef10_probe_pf,
4175 .remove = efx_ef10_remove,
4176 .dimension_resources = efx_ef10_dimension_resources,
4177 .init = efx_ef10_init_nic,
4178 .fini = efx_ef10_fini_nic,
4179 .map_reset_reason = efx_ef10_map_reset_reason,
4180 .map_reset_flags = efx_ef10_map_reset_flags,
4181 .reset = efx_ef10_reset,
4182 .probe_port = efx_mcdi_port_probe,
4183 .remove_port = efx_mcdi_port_remove,
4184 .fini_dmaq = efx_fini_dmaq,
4185 .prepare_flr = efx_ef10_prepare_flr,
4186 .finish_flr = efx_port_dummy_op_void,
4187 .describe_stats = efx_ef10_describe_stats,
4188 .update_stats = efx_ef10_update_stats_pf,
4189 .start_stats = efx_mcdi_mac_start_stats,
4190 .pull_stats = efx_mcdi_mac_pull_stats,
4191 .stop_stats = efx_mcdi_mac_stop_stats,
4192 .push_irq_moderation = efx_ef10_push_irq_moderation,
4193 .reconfigure_mac = efx_ef10_mac_reconfigure,
4194 .check_mac_fault = efx_mcdi_mac_check_fault,
4195 .reconfigure_port = efx_mcdi_port_reconfigure,
4196 .get_wol = efx_ef10_get_wol,
4197 .set_wol = efx_ef10_set_wol,
4198 .resume_wol = efx_port_dummy_op_void,
4199 .get_fec_stats = efx_ef10_get_fec_stats,
4200 .test_chip = efx_ef10_test_chip,
4201 .test_nvram = efx_mcdi_nvram_test_all,
4202 .mcdi_request = efx_ef10_mcdi_request,
4203 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4204 .mcdi_read_response = efx_ef10_mcdi_read_response,
4205 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4206 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4207 .irq_enable_master = efx_port_dummy_op_void,
4208 .irq_test_generate = efx_ef10_irq_test_generate,
4209 .irq_disable_non_ev = efx_port_dummy_op_void,
4210 .irq_handle_msi = efx_ef10_msi_interrupt,
4211 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4212 .tx_probe = efx_ef10_tx_probe,
4213 .tx_init = efx_ef10_tx_init,
4214 .tx_remove = efx_mcdi_tx_remove,
4215 .tx_write = efx_ef10_tx_write,
4216 .tx_limit_len = efx_ef10_tx_limit_len,
4217 .tx_enqueue = __efx_enqueue_skb,
4218 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4219 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4220 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4221 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4222 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4223 .rx_probe = efx_mcdi_rx_probe,
4224 .rx_init = efx_mcdi_rx_init,
4225 .rx_remove = efx_mcdi_rx_remove,
4226 .rx_write = efx_ef10_rx_write,
4227 .rx_defer_refill = efx_ef10_rx_defer_refill,
4228 .rx_packet = __efx_rx_packet,
4229 .ev_probe = efx_mcdi_ev_probe,
4230 .ev_init = efx_ef10_ev_init,
4231 .ev_fini = efx_mcdi_ev_fini,
4232 .ev_remove = efx_mcdi_ev_remove,
4233 .ev_process = efx_ef10_ev_process,
4234 .ev_read_ack = efx_ef10_ev_read_ack,
4235 .ev_test_generate = efx_ef10_ev_test_generate,
4236 .filter_table_probe = efx_ef10_filter_table_probe,
4237 .filter_table_restore = efx_mcdi_filter_table_restore,
4238 .filter_table_remove = efx_ef10_filter_table_remove,
4239 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4240 .filter_insert = efx_mcdi_filter_insert,
4241 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4242 .filter_get_safe = efx_mcdi_filter_get_safe,
4243 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4244 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4245 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4246 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4247#ifdef CONFIG_RFS_ACCEL
4248 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4249#endif
4250#ifdef CONFIG_SFC_MTD
4251 .mtd_probe = efx_ef10_mtd_probe,
4252 .mtd_rename = efx_mcdi_mtd_rename,
4253 .mtd_read = efx_mcdi_mtd_read,
4254 .mtd_erase = efx_mcdi_mtd_erase,
4255 .mtd_write = efx_mcdi_mtd_write,
4256 .mtd_sync = efx_mcdi_mtd_sync,
4257#endif
4258 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4259 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4260 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4261 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4262 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4263 .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4264 .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4265#ifdef CONFIG_SFC_SRIOV
4266 .sriov_configure = efx_ef10_sriov_configure,
4267 .sriov_init = efx_ef10_sriov_init,
4268 .sriov_fini = efx_ef10_sriov_fini,
4269 .sriov_wanted = efx_ef10_sriov_wanted,
4270 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4271 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4272 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4273 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4274 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4275 .vswitching_probe = efx_ef10_vswitching_probe_pf,
4276 .vswitching_restore = efx_ef10_vswitching_restore_pf,
4277 .vswitching_remove = efx_ef10_vswitching_remove_pf,
4278#endif
4279 .get_mac_address = efx_ef10_get_mac_address_pf,
4280 .set_mac_address = efx_ef10_set_mac_address,
4281 .tso_versions = efx_ef10_tso_versions,
4282
4283 .get_phys_port_id = efx_ef10_get_phys_port_id,
4284 .revision = EFX_REV_HUNT_A0,
4285 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4286 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4287 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4288 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4289 .can_rx_scatter = true,
4290 .always_rx_scatter = true,
4291 .option_descriptors = true,
4292 .min_interrupt_mode = EFX_INT_MODE_LEGACY,
4293 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4294 .offload_features = EF10_OFFLOAD_FEATURES,
4295 .mcdi_max_ver = 2,
4296 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4297 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4298 1 << HWTSTAMP_FILTER_ALL,
4299 .rx_hash_key_size = 40,
4300 .check_caps = ef10_check_caps,
4301 .print_additional_fwver = efx_ef10_print_additional_fwver,
4302 .sensor_event = efx_mcdi_sensor_event,
4303 .rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4304};
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include "net_driver.h"
11#include "ef10_regs.h"
12#include "io.h"
13#include "mcdi.h"
14#include "mcdi_pcol.h"
15#include "nic.h"
16#include "workarounds.h"
17#include "selftest.h"
18#include "ef10_sriov.h"
19#include <linux/in.h>
20#include <linux/jhash.h>
21#include <linux/wait.h>
22#include <linux/workqueue.h>
23
24/* Hardware control for EF10 architecture including 'Huntington'. */
25
26#define EFX_EF10_DRVGEN_EV 7
27enum {
28 EFX_EF10_TEST = 1,
29 EFX_EF10_REFILL,
30};
31
32/* The reserved RSS context value */
33#define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
34/* The maximum size of a shared RSS context */
35/* TODO: this should really be from the mcdi protocol export */
36#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37
38/* The filter table(s) are managed by firmware and we have write-only
39 * access. When removing filters we must identify them to the
40 * firmware by a 64-bit handle, but this is too wide for Linux kernel
41 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
42 * be able to tell in advance whether a requested insertion will
43 * replace an existing filter. Therefore we maintain a software hash
44 * table, which should be at least as large as the hardware hash
45 * table.
46 *
47 * Huntington has a single 8K filter table shared between all filter
48 * types and both ports.
49 */
50#define HUNT_FILTER_TBL_ROWS 8192
51
52#define EFX_EF10_FILTER_ID_INVALID 0xffff
53struct efx_ef10_dev_addr {
54 u8 addr[ETH_ALEN];
55 u16 id;
56};
57
58struct efx_ef10_filter_table {
59/* The RX match field masks supported by this fw & hw, in order of priority */
60 enum efx_filter_match_flags rx_match_flags[
61 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
62 unsigned int rx_match_count;
63
64 struct {
65 unsigned long spec; /* pointer to spec plus flag bits */
66/* BUSY flag indicates that an update is in progress. AUTO_OLD is
67 * used to mark and sweep MAC filters for the device address lists.
68 */
69#define EFX_EF10_FILTER_FLAG_BUSY 1UL
70#define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
71#define EFX_EF10_FILTER_FLAGS 3UL
72 u64 handle; /* firmware handle */
73 } *entry;
74 wait_queue_head_t waitq;
75/* Shadow of net_device address lists, guarded by mac_lock */
76#define EFX_EF10_FILTER_DEV_UC_MAX 32
77#define EFX_EF10_FILTER_DEV_MC_MAX 256
78 struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
79 struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
80 int dev_uc_count;
81 int dev_mc_count;
82/* Indices (like efx_ef10_dev_addr.id) for promisc/allmulti filters */
83 u16 ucdef_id;
84 u16 bcast_id;
85 u16 mcdef_id;
86};
87
88/* An arbitrary search limit for the software hash table */
89#define EFX_EF10_FILTER_SEARCH_LIMIT 200
90
91static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
92static void efx_ef10_filter_table_remove(struct efx_nic *efx);
93
94static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
95{
96 efx_dword_t reg;
97
98 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
99 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
100 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
101}
102
103static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
104{
105 int bar;
106
107 bar = efx->type->mem_bar;
108 return resource_size(&efx->pci_dev->resource[bar]);
109}
110
111static bool efx_ef10_is_vf(struct efx_nic *efx)
112{
113 return efx->type->is_vf;
114}
115
116static int efx_ef10_get_pf_index(struct efx_nic *efx)
117{
118 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
119 struct efx_ef10_nic_data *nic_data = efx->nic_data;
120 size_t outlen;
121 int rc;
122
123 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
124 sizeof(outbuf), &outlen);
125 if (rc)
126 return rc;
127 if (outlen < sizeof(outbuf))
128 return -EIO;
129
130 nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
131 return 0;
132}
133
134#ifdef CONFIG_SFC_SRIOV
135static int efx_ef10_get_vf_index(struct efx_nic *efx)
136{
137 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
138 struct efx_ef10_nic_data *nic_data = efx->nic_data;
139 size_t outlen;
140 int rc;
141
142 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
143 sizeof(outbuf), &outlen);
144 if (rc)
145 return rc;
146 if (outlen < sizeof(outbuf))
147 return -EIO;
148
149 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
150 return 0;
151}
152#endif
153
154static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
155{
156 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
157 struct efx_ef10_nic_data *nic_data = efx->nic_data;
158 size_t outlen;
159 int rc;
160
161 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
162
163 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
164 outbuf, sizeof(outbuf), &outlen);
165 if (rc)
166 return rc;
167 if (outlen < sizeof(outbuf)) {
168 netif_err(efx, drv, efx->net_dev,
169 "unable to read datapath firmware capabilities\n");
170 return -EIO;
171 }
172
173 nic_data->datapath_caps =
174 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
175
176 /* record the DPCPU firmware IDs to determine VEB vswitching support.
177 */
178 nic_data->rx_dpcpu_fw_id =
179 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
180 nic_data->tx_dpcpu_fw_id =
181 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
182
183 if (!(nic_data->datapath_caps &
184 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
185 netif_err(efx, probe, efx->net_dev,
186 "current firmware does not support an RX prefix\n");
187 return -ENODEV;
188 }
189
190 return 0;
191}
192
193static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
194{
195 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
196 int rc;
197
198 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
199 outbuf, sizeof(outbuf), NULL);
200 if (rc)
201 return rc;
202 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
203 return rc > 0 ? rc : -ERANGE;
204}
205
206static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
207{
208 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
209 size_t outlen;
210 int rc;
211
212 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
213
214 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
215 outbuf, sizeof(outbuf), &outlen);
216 if (rc)
217 return rc;
218 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
219 return -EIO;
220
221 ether_addr_copy(mac_address,
222 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
223 return 0;
224}
225
226static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
227{
228 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
229 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
230 size_t outlen;
231 int num_addrs, rc;
232
233 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
234 EVB_PORT_ID_ASSIGNED);
235 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
236 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
237
238 if (rc)
239 return rc;
240 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
241 return -EIO;
242
243 num_addrs = MCDI_DWORD(outbuf,
244 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
245
246 WARN_ON(num_addrs != 1);
247
248 ether_addr_copy(mac_address,
249 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
250
251 return 0;
252}
253
254static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
255 struct device_attribute *attr,
256 char *buf)
257{
258 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
259
260 return sprintf(buf, "%d\n",
261 ((efx->mcdi->fn_flags) &
262 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
263 ? 1 : 0);
264}
265
266static ssize_t efx_ef10_show_primary_flag(struct device *dev,
267 struct device_attribute *attr,
268 char *buf)
269{
270 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
271
272 return sprintf(buf, "%d\n",
273 ((efx->mcdi->fn_flags) &
274 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
275 ? 1 : 0);
276}
277
278static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
279 NULL);
280static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
281
282static int efx_ef10_probe(struct efx_nic *efx)
283{
284 struct efx_ef10_nic_data *nic_data;
285 struct net_device *net_dev = efx->net_dev;
286 int i, rc;
287
288 /* We can have one VI for each 8K region. However, until we
289 * use TX option descriptors we need two TX queues per channel.
290 */
291 efx->max_channels = min_t(unsigned int,
292 EFX_MAX_CHANNELS,
293 efx_ef10_mem_map_size(efx) /
294 (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
295 efx->max_tx_channels = efx->max_channels;
296 if (WARN_ON(efx->max_channels == 0))
297 return -EIO;
298
299 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
300 if (!nic_data)
301 return -ENOMEM;
302 efx->nic_data = nic_data;
303
304 /* we assume later that we can copy from this buffer in dwords */
305 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
306
307 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
308 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
309 if (rc)
310 goto fail1;
311
312 /* Get the MC's warm boot count. In case it's rebooting right
313 * now, be prepared to retry.
314 */
315 i = 0;
316 for (;;) {
317 rc = efx_ef10_get_warm_boot_count(efx);
318 if (rc >= 0)
319 break;
320 if (++i == 5)
321 goto fail2;
322 ssleep(1);
323 }
324 nic_data->warm_boot_count = rc;
325
326 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
327
328 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
329
330 /* In case we're recovering from a crash (kexec), we want to
331 * cancel any outstanding request by the previous user of this
332 * function. We send a special message using the least
333 * significant bits of the 'high' (doorbell) register.
334 */
335 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
336
337 rc = efx_mcdi_init(efx);
338 if (rc)
339 goto fail2;
340
341 /* Reset (most) configuration for this function */
342 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
343 if (rc)
344 goto fail3;
345
346 /* Enable event logging */
347 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
348 if (rc)
349 goto fail3;
350
351 rc = device_create_file(&efx->pci_dev->dev,
352 &dev_attr_link_control_flag);
353 if (rc)
354 goto fail3;
355
356 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
357 if (rc)
358 goto fail4;
359
360 rc = efx_ef10_get_pf_index(efx);
361 if (rc)
362 goto fail5;
363
364 rc = efx_ef10_init_datapath_caps(efx);
365 if (rc < 0)
366 goto fail5;
367
368 efx->rx_packet_len_offset =
369 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
370
371 rc = efx_mcdi_port_get_number(efx);
372 if (rc < 0)
373 goto fail5;
374 efx->port_num = rc;
375 net_dev->dev_port = rc;
376
377 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
378 if (rc)
379 goto fail5;
380
381 rc = efx_ef10_get_sysclk_freq(efx);
382 if (rc < 0)
383 goto fail5;
384 efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
385
386 /* Check whether firmware supports bug 35388 workaround.
387 * First try to enable it, then if we get EPERM, just
388 * ask if it's already enabled
389 */
390 rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true, NULL);
391 if (rc == 0) {
392 nic_data->workaround_35388 = true;
393 } else if (rc == -EPERM) {
394 unsigned int enabled;
395
396 rc = efx_mcdi_get_workarounds(efx, NULL, &enabled);
397 if (rc)
398 goto fail3;
399 nic_data->workaround_35388 = enabled &
400 MC_CMD_GET_WORKAROUNDS_OUT_BUG35388;
401 } else if (rc != -ENOSYS && rc != -ENOENT) {
402 goto fail5;
403 }
404 netif_dbg(efx, probe, efx->net_dev,
405 "workaround for bug 35388 is %sabled\n",
406 nic_data->workaround_35388 ? "en" : "dis");
407
408 rc = efx_mcdi_mon_probe(efx);
409 if (rc && rc != -EPERM)
410 goto fail5;
411
412 efx_ptp_probe(efx, NULL);
413
414#ifdef CONFIG_SFC_SRIOV
415 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
416 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
417 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
418
419 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
420 } else
421#endif
422 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
423
424 return 0;
425
426fail5:
427 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
428fail4:
429 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
430fail3:
431 efx_mcdi_fini(efx);
432fail2:
433 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
434fail1:
435 kfree(nic_data);
436 efx->nic_data = NULL;
437 return rc;
438}
439
440static int efx_ef10_free_vis(struct efx_nic *efx)
441{
442 MCDI_DECLARE_BUF_ERR(outbuf);
443 size_t outlen;
444 int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
445 outbuf, sizeof(outbuf), &outlen);
446
447 /* -EALREADY means nothing to free, so ignore */
448 if (rc == -EALREADY)
449 rc = 0;
450 if (rc)
451 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
452 rc);
453 return rc;
454}
455
456#ifdef EFX_USE_PIO
457
458static void efx_ef10_free_piobufs(struct efx_nic *efx)
459{
460 struct efx_ef10_nic_data *nic_data = efx->nic_data;
461 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
462 unsigned int i;
463 int rc;
464
465 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
466
467 for (i = 0; i < nic_data->n_piobufs; i++) {
468 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
469 nic_data->piobuf_handle[i]);
470 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
471 NULL, 0, NULL);
472 WARN_ON(rc);
473 }
474
475 nic_data->n_piobufs = 0;
476}
477
478static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
479{
480 struct efx_ef10_nic_data *nic_data = efx->nic_data;
481 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
482 unsigned int i;
483 size_t outlen;
484 int rc = 0;
485
486 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
487
488 for (i = 0; i < n; i++) {
489 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
490 outbuf, sizeof(outbuf), &outlen);
491 if (rc) {
492 /* Don't display the MC error if we didn't have space
493 * for a VF.
494 */
495 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
496 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
497 0, outbuf, outlen, rc);
498 break;
499 }
500 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
501 rc = -EIO;
502 break;
503 }
504 nic_data->piobuf_handle[i] =
505 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
506 netif_dbg(efx, probe, efx->net_dev,
507 "allocated PIO buffer %u handle %x\n", i,
508 nic_data->piobuf_handle[i]);
509 }
510
511 nic_data->n_piobufs = i;
512 if (rc)
513 efx_ef10_free_piobufs(efx);
514 return rc;
515}
516
517static int efx_ef10_link_piobufs(struct efx_nic *efx)
518{
519 struct efx_ef10_nic_data *nic_data = efx->nic_data;
520 _MCDI_DECLARE_BUF(inbuf,
521 max(MC_CMD_LINK_PIOBUF_IN_LEN,
522 MC_CMD_UNLINK_PIOBUF_IN_LEN));
523 struct efx_channel *channel;
524 struct efx_tx_queue *tx_queue;
525 unsigned int offset, index;
526 int rc;
527
528 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
529 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
530
531 memset(inbuf, 0, sizeof(inbuf));
532
533 /* Link a buffer to each VI in the write-combining mapping */
534 for (index = 0; index < nic_data->n_piobufs; ++index) {
535 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
536 nic_data->piobuf_handle[index]);
537 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
538 nic_data->pio_write_vi_base + index);
539 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
540 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
541 NULL, 0, NULL);
542 if (rc) {
543 netif_err(efx, drv, efx->net_dev,
544 "failed to link VI %u to PIO buffer %u (%d)\n",
545 nic_data->pio_write_vi_base + index, index,
546 rc);
547 goto fail;
548 }
549 netif_dbg(efx, probe, efx->net_dev,
550 "linked VI %u to PIO buffer %u\n",
551 nic_data->pio_write_vi_base + index, index);
552 }
553
554 /* Link a buffer to each TX queue */
555 efx_for_each_channel(channel, efx) {
556 efx_for_each_channel_tx_queue(tx_queue, channel) {
557 /* We assign the PIO buffers to queues in
558 * reverse order to allow for the following
559 * special case.
560 */
561 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
562 tx_queue->channel->channel - 1) *
563 efx_piobuf_size);
564 index = offset / ER_DZ_TX_PIOBUF_SIZE;
565 offset = offset % ER_DZ_TX_PIOBUF_SIZE;
566
567 /* When the host page size is 4K, the first
568 * host page in the WC mapping may be within
569 * the same VI page as the last TX queue. We
570 * can only link one buffer to each VI.
571 */
572 if (tx_queue->queue == nic_data->pio_write_vi_base) {
573 BUG_ON(index != 0);
574 rc = 0;
575 } else {
576 MCDI_SET_DWORD(inbuf,
577 LINK_PIOBUF_IN_PIOBUF_HANDLE,
578 nic_data->piobuf_handle[index]);
579 MCDI_SET_DWORD(inbuf,
580 LINK_PIOBUF_IN_TXQ_INSTANCE,
581 tx_queue->queue);
582 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
583 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
584 NULL, 0, NULL);
585 }
586
587 if (rc) {
588 /* This is non-fatal; the TX path just
589 * won't use PIO for this queue
590 */
591 netif_err(efx, drv, efx->net_dev,
592 "failed to link VI %u to PIO buffer %u (%d)\n",
593 tx_queue->queue, index, rc);
594 tx_queue->piobuf = NULL;
595 } else {
596 tx_queue->piobuf =
597 nic_data->pio_write_base +
598 index * EFX_VI_PAGE_SIZE + offset;
599 tx_queue->piobuf_offset = offset;
600 netif_dbg(efx, probe, efx->net_dev,
601 "linked VI %u to PIO buffer %u offset %x addr %p\n",
602 tx_queue->queue, index,
603 tx_queue->piobuf_offset,
604 tx_queue->piobuf);
605 }
606 }
607 }
608
609 return 0;
610
611fail:
612 while (index--) {
613 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
614 nic_data->pio_write_vi_base + index);
615 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
616 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
617 NULL, 0, NULL);
618 }
619 return rc;
620}
621
622#else /* !EFX_USE_PIO */
623
624static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
625{
626 return n == 0 ? 0 : -ENOBUFS;
627}
628
629static int efx_ef10_link_piobufs(struct efx_nic *efx)
630{
631 return 0;
632}
633
634static void efx_ef10_free_piobufs(struct efx_nic *efx)
635{
636}
637
638#endif /* EFX_USE_PIO */
639
640static void efx_ef10_remove(struct efx_nic *efx)
641{
642 struct efx_ef10_nic_data *nic_data = efx->nic_data;
643 int rc;
644
645#ifdef CONFIG_SFC_SRIOV
646 struct efx_ef10_nic_data *nic_data_pf;
647 struct pci_dev *pci_dev_pf;
648 struct efx_nic *efx_pf;
649 struct ef10_vf *vf;
650
651 if (efx->pci_dev->is_virtfn) {
652 pci_dev_pf = efx->pci_dev->physfn;
653 if (pci_dev_pf) {
654 efx_pf = pci_get_drvdata(pci_dev_pf);
655 nic_data_pf = efx_pf->nic_data;
656 vf = nic_data_pf->vf + nic_data->vf_index;
657 vf->efx = NULL;
658 } else
659 netif_info(efx, drv, efx->net_dev,
660 "Could not get the PF id from VF\n");
661 }
662#endif
663
664 efx_ptp_remove(efx);
665
666 efx_mcdi_mon_remove(efx);
667
668 efx_ef10_rx_free_indir_table(efx);
669
670 if (nic_data->wc_membase)
671 iounmap(nic_data->wc_membase);
672
673 rc = efx_ef10_free_vis(efx);
674 WARN_ON(rc != 0);
675
676 if (!nic_data->must_restore_piobufs)
677 efx_ef10_free_piobufs(efx);
678
679 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
680 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
681
682 efx_mcdi_fini(efx);
683 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
684 kfree(nic_data);
685}
686
687static int efx_ef10_probe_pf(struct efx_nic *efx)
688{
689 return efx_ef10_probe(efx);
690}
691
692int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
693{
694 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
695
696 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
697 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
698 NULL, 0, NULL);
699}
700
701int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
702{
703 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
704
705 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
706 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
707 NULL, 0, NULL);
708}
709
710int efx_ef10_vport_add_mac(struct efx_nic *efx,
711 unsigned int port_id, u8 *mac)
712{
713 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
714
715 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
716 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
717
718 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
719 sizeof(inbuf), NULL, 0, NULL);
720}
721
722int efx_ef10_vport_del_mac(struct efx_nic *efx,
723 unsigned int port_id, u8 *mac)
724{
725 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
726
727 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
728 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
729
730 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
731 sizeof(inbuf), NULL, 0, NULL);
732}
733
734#ifdef CONFIG_SFC_SRIOV
735static int efx_ef10_probe_vf(struct efx_nic *efx)
736{
737 int rc;
738 struct pci_dev *pci_dev_pf;
739
740 /* If the parent PF has no VF data structure, it doesn't know about this
741 * VF so fail probe. The VF needs to be re-created. This can happen
742 * if the PF driver is unloaded while the VF is assigned to a guest.
743 */
744 pci_dev_pf = efx->pci_dev->physfn;
745 if (pci_dev_pf) {
746 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
747 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
748
749 if (!nic_data_pf->vf) {
750 netif_info(efx, drv, efx->net_dev,
751 "The VF cannot link to its parent PF; "
752 "please destroy and re-create the VF\n");
753 return -EBUSY;
754 }
755 }
756
757 rc = efx_ef10_probe(efx);
758 if (rc)
759 return rc;
760
761 rc = efx_ef10_get_vf_index(efx);
762 if (rc)
763 goto fail;
764
765 if (efx->pci_dev->is_virtfn) {
766 if (efx->pci_dev->physfn) {
767 struct efx_nic *efx_pf =
768 pci_get_drvdata(efx->pci_dev->physfn);
769 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
770 struct efx_ef10_nic_data *nic_data = efx->nic_data;
771
772 nic_data_p->vf[nic_data->vf_index].efx = efx;
773 nic_data_p->vf[nic_data->vf_index].pci_dev =
774 efx->pci_dev;
775 } else
776 netif_info(efx, drv, efx->net_dev,
777 "Could not get the PF id from VF\n");
778 }
779
780 return 0;
781
782fail:
783 efx_ef10_remove(efx);
784 return rc;
785}
786#else
787static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
788{
789 return 0;
790}
791#endif
792
793static int efx_ef10_alloc_vis(struct efx_nic *efx,
794 unsigned int min_vis, unsigned int max_vis)
795{
796 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
797 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
798 struct efx_ef10_nic_data *nic_data = efx->nic_data;
799 size_t outlen;
800 int rc;
801
802 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
803 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
804 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
805 outbuf, sizeof(outbuf), &outlen);
806 if (rc != 0)
807 return rc;
808
809 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
810 return -EIO;
811
812 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
813 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
814
815 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
816 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
817 return 0;
818}
819
820/* Note that the failure path of this function does not free
821 * resources, as this will be done by efx_ef10_remove().
822 */
823static int efx_ef10_dimension_resources(struct efx_nic *efx)
824{
825 struct efx_ef10_nic_data *nic_data = efx->nic_data;
826 unsigned int uc_mem_map_size, wc_mem_map_size;
827 unsigned int min_vis = max(EFX_TXQ_TYPES,
828 efx_separate_tx_channels ? 2 : 1);
829 unsigned int channel_vis, pio_write_vi_base, max_vis;
830 void __iomem *membase;
831 int rc;
832
833 channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
834
835#ifdef EFX_USE_PIO
836 /* Try to allocate PIO buffers if wanted and if the full
837 * number of PIO buffers would be sufficient to allocate one
838 * copy-buffer per TX channel. Failure is non-fatal, as there
839 * are only a small number of PIO buffers shared between all
840 * functions of the controller.
841 */
842 if (efx_piobuf_size != 0 &&
843 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
844 efx->n_tx_channels) {
845 unsigned int n_piobufs =
846 DIV_ROUND_UP(efx->n_tx_channels,
847 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
848
849 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
850 if (rc)
851 netif_err(efx, probe, efx->net_dev,
852 "failed to allocate PIO buffers (%d)\n", rc);
853 else
854 netif_dbg(efx, probe, efx->net_dev,
855 "allocated %u PIO buffers\n", n_piobufs);
856 }
857#else
858 nic_data->n_piobufs = 0;
859#endif
860
861 /* PIO buffers should be mapped with write-combining enabled,
862 * and we want to make single UC and WC mappings rather than
863 * several of each (in fact that's the only option if host
864 * page size is >4K). So we may allocate some extra VIs just
865 * for writing PIO buffers through.
866 *
867 * The UC mapping contains (channel_vis - 1) complete VIs and the
868 * first half of the next VI. Then the WC mapping begins with
869 * the second half of this last VI.
870 */
871 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
872 ER_DZ_TX_PIOBUF);
873 if (nic_data->n_piobufs) {
874 /* pio_write_vi_base rounds down to give the number of complete
875 * VIs inside the UC mapping.
876 */
877 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
878 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
879 nic_data->n_piobufs) *
880 EFX_VI_PAGE_SIZE) -
881 uc_mem_map_size);
882 max_vis = pio_write_vi_base + nic_data->n_piobufs;
883 } else {
884 pio_write_vi_base = 0;
885 wc_mem_map_size = 0;
886 max_vis = channel_vis;
887 }
888
889 /* In case the last attached driver failed to free VIs, do it now */
890 rc = efx_ef10_free_vis(efx);
891 if (rc != 0)
892 return rc;
893
894 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
895 if (rc != 0)
896 return rc;
897
898 if (nic_data->n_allocated_vis < channel_vis) {
899 netif_info(efx, drv, efx->net_dev,
900 "Could not allocate enough VIs to satisfy RSS"
901 " requirements. Performance may not be optimal.\n");
902 /* We didn't get the VIs to populate our channels.
903 * We could keep what we got but then we'd have more
904 * interrupts than we need.
905 * Instead calculate new max_channels and restart
906 */
907 efx->max_channels = nic_data->n_allocated_vis;
908 efx->max_tx_channels =
909 nic_data->n_allocated_vis / EFX_TXQ_TYPES;
910
911 efx_ef10_free_vis(efx);
912 return -EAGAIN;
913 }
914
915 /* If we didn't get enough VIs to map all the PIO buffers, free the
916 * PIO buffers
917 */
918 if (nic_data->n_piobufs &&
919 nic_data->n_allocated_vis <
920 pio_write_vi_base + nic_data->n_piobufs) {
921 netif_dbg(efx, probe, efx->net_dev,
922 "%u VIs are not sufficient to map %u PIO buffers\n",
923 nic_data->n_allocated_vis, nic_data->n_piobufs);
924 efx_ef10_free_piobufs(efx);
925 }
926
927 /* Shrink the original UC mapping of the memory BAR */
928 membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
929 if (!membase) {
930 netif_err(efx, probe, efx->net_dev,
931 "could not shrink memory BAR to %x\n",
932 uc_mem_map_size);
933 return -ENOMEM;
934 }
935 iounmap(efx->membase);
936 efx->membase = membase;
937
938 /* Set up the WC mapping if needed */
939 if (wc_mem_map_size) {
940 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
941 uc_mem_map_size,
942 wc_mem_map_size);
943 if (!nic_data->wc_membase) {
944 netif_err(efx, probe, efx->net_dev,
945 "could not allocate WC mapping of size %x\n",
946 wc_mem_map_size);
947 return -ENOMEM;
948 }
949 nic_data->pio_write_vi_base = pio_write_vi_base;
950 nic_data->pio_write_base =
951 nic_data->wc_membase +
952 (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
953 uc_mem_map_size);
954
955 rc = efx_ef10_link_piobufs(efx);
956 if (rc)
957 efx_ef10_free_piobufs(efx);
958 }
959
960 netif_dbg(efx, probe, efx->net_dev,
961 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
962 &efx->membase_phys, efx->membase, uc_mem_map_size,
963 nic_data->wc_membase, wc_mem_map_size);
964
965 return 0;
966}
967
968static int efx_ef10_init_nic(struct efx_nic *efx)
969{
970 struct efx_ef10_nic_data *nic_data = efx->nic_data;
971 int rc;
972
973 if (nic_data->must_check_datapath_caps) {
974 rc = efx_ef10_init_datapath_caps(efx);
975 if (rc)
976 return rc;
977 nic_data->must_check_datapath_caps = false;
978 }
979
980 if (nic_data->must_realloc_vis) {
981 /* We cannot let the number of VIs change now */
982 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
983 nic_data->n_allocated_vis);
984 if (rc)
985 return rc;
986 nic_data->must_realloc_vis = false;
987 }
988
989 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
990 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
991 if (rc == 0) {
992 rc = efx_ef10_link_piobufs(efx);
993 if (rc)
994 efx_ef10_free_piobufs(efx);
995 }
996
997 /* Log an error on failure, but this is non-fatal */
998 if (rc)
999 netif_err(efx, drv, efx->net_dev,
1000 "failed to restore PIO buffers (%d)\n", rc);
1001 nic_data->must_restore_piobufs = false;
1002 }
1003
1004 /* don't fail init if RSS setup doesn't work */
1005 efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
1006
1007 return 0;
1008}
1009
1010static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1011{
1012 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1013#ifdef CONFIG_SFC_SRIOV
1014 unsigned int i;
1015#endif
1016
1017 /* All our allocations have been reset */
1018 nic_data->must_realloc_vis = true;
1019 nic_data->must_restore_filters = true;
1020 nic_data->must_restore_piobufs = true;
1021 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1022
1023 /* Driver-created vswitches and vports must be re-created */
1024 nic_data->must_probe_vswitching = true;
1025 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1026#ifdef CONFIG_SFC_SRIOV
1027 if (nic_data->vf)
1028 for (i = 0; i < efx->vf_count; i++)
1029 nic_data->vf[i].vport_id = 0;
1030#endif
1031}
1032
1033static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1034{
1035 if (reason == RESET_TYPE_MC_FAILURE)
1036 return RESET_TYPE_DATAPATH;
1037
1038 return efx_mcdi_map_reset_reason(reason);
1039}
1040
1041static int efx_ef10_map_reset_flags(u32 *flags)
1042{
1043 enum {
1044 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1045 ETH_RESET_SHARED_SHIFT),
1046 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1047 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1048 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1049 ETH_RESET_SHARED_SHIFT)
1050 };
1051
1052 /* We assume for now that our PCI function is permitted to
1053 * reset everything.
1054 */
1055
1056 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1057 *flags &= ~EF10_RESET_MC;
1058 return RESET_TYPE_WORLD;
1059 }
1060
1061 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1062 *flags &= ~EF10_RESET_PORT;
1063 return RESET_TYPE_ALL;
1064 }
1065
1066 /* no invisible reset implemented */
1067
1068 return -EINVAL;
1069}
1070
1071static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1072{
1073 int rc = efx_mcdi_reset(efx, reset_type);
1074
1075 /* Unprivileged functions return -EPERM, but need to return success
1076 * here so that the datapath is brought back up.
1077 */
1078 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1079 rc = 0;
1080
1081 /* If it was a port reset, trigger reallocation of MC resources.
1082 * Note that on an MC reset nothing needs to be done now because we'll
1083 * detect the MC reset later and handle it then.
1084 * For an FLR, we never get an MC reset event, but the MC has reset all
1085 * resources assigned to us, so we have to trigger reallocation now.
1086 */
1087 if ((reset_type == RESET_TYPE_ALL ||
1088 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1089 efx_ef10_reset_mc_allocations(efx);
1090 return rc;
1091}
1092
1093#define EF10_DMA_STAT(ext_name, mcdi_name) \
1094 [EF10_STAT_ ## ext_name] = \
1095 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1096#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1097 [EF10_STAT_ ## int_name] = \
1098 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1099#define EF10_OTHER_STAT(ext_name) \
1100 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1101#define GENERIC_SW_STAT(ext_name) \
1102 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1103
1104static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1105 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1106 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1107 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1108 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1109 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1110 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1111 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1112 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1113 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1114 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1115 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1116 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1117 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1118 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1119 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1120 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1121 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1122 EF10_OTHER_STAT(port_rx_good_bytes),
1123 EF10_OTHER_STAT(port_rx_bad_bytes),
1124 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1125 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1126 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1127 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1128 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1129 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1130 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1131 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1132 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1133 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1134 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1135 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1136 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1137 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1138 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1139 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1140 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1141 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1142 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1143 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1144 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1145 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1146 GENERIC_SW_STAT(rx_nodesc_trunc),
1147 GENERIC_SW_STAT(rx_noskb_drops),
1148 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1149 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1150 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1151 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1152 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1153 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1154 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1155 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1156 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1157 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1158 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1159 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1160 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1161 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1162 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1163 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1164 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1165 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1166 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1167 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1168 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1169 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1170 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1171 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1172 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1173 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1174 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1175 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1176 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1177 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1178};
1179
1180#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1181 (1ULL << EF10_STAT_port_tx_packets) | \
1182 (1ULL << EF10_STAT_port_tx_pause) | \
1183 (1ULL << EF10_STAT_port_tx_unicast) | \
1184 (1ULL << EF10_STAT_port_tx_multicast) | \
1185 (1ULL << EF10_STAT_port_tx_broadcast) | \
1186 (1ULL << EF10_STAT_port_rx_bytes) | \
1187 (1ULL << \
1188 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1189 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1190 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1191 (1ULL << EF10_STAT_port_rx_packets) | \
1192 (1ULL << EF10_STAT_port_rx_good) | \
1193 (1ULL << EF10_STAT_port_rx_bad) | \
1194 (1ULL << EF10_STAT_port_rx_pause) | \
1195 (1ULL << EF10_STAT_port_rx_control) | \
1196 (1ULL << EF10_STAT_port_rx_unicast) | \
1197 (1ULL << EF10_STAT_port_rx_multicast) | \
1198 (1ULL << EF10_STAT_port_rx_broadcast) | \
1199 (1ULL << EF10_STAT_port_rx_lt64) | \
1200 (1ULL << EF10_STAT_port_rx_64) | \
1201 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1202 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1203 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1204 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1205 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1206 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1207 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1208 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1209 (1ULL << EF10_STAT_port_rx_overflow) | \
1210 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1211 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1212 (1ULL << GENERIC_STAT_rx_noskb_drops))
1213
1214/* These statistics are only provided by the 10G MAC. For a 10G/40G
1215 * switchable port we do not expose these because they might not
1216 * include all the packets they should.
1217 */
1218#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1219 (1ULL << EF10_STAT_port_tx_lt64) | \
1220 (1ULL << EF10_STAT_port_tx_64) | \
1221 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1222 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1223 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1224 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1225 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1226 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1227
1228/* These statistics are only provided by the 40G MAC. For a 10G/40G
1229 * switchable port we do expose these because the errors will otherwise
1230 * be silent.
1231 */
1232#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1233 (1ULL << EF10_STAT_port_rx_length_error))
1234
1235/* These statistics are only provided if the firmware supports the
1236 * capability PM_AND_RXDP_COUNTERS.
1237 */
1238#define HUNT_PM_AND_RXDP_STAT_MASK ( \
1239 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1240 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1241 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1242 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1243 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1244 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1245 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1246 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1247 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1248 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1249 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1250 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1251
1252static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1253{
1254 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1255 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1256 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1257
1258 if (!(efx->mcdi->fn_flags &
1259 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1260 return 0;
1261
1262 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
1263 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1264 else
1265 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1266
1267 if (nic_data->datapath_caps &
1268 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1269 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1270
1271 return raw_mask;
1272}
1273
1274static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1275{
1276 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1277 u64 raw_mask[2];
1278
1279 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1280
1281 /* Only show vadaptor stats when EVB capability is present */
1282 if (nic_data->datapath_caps &
1283 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1284 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1285 raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1286 } else {
1287 raw_mask[1] = 0;
1288 }
1289
1290#if BITS_PER_LONG == 64
1291 mask[0] = raw_mask[0];
1292 mask[1] = raw_mask[1];
1293#else
1294 mask[0] = raw_mask[0] & 0xffffffff;
1295 mask[1] = raw_mask[0] >> 32;
1296 mask[2] = raw_mask[1] & 0xffffffff;
1297 mask[3] = raw_mask[1] >> 32;
1298#endif
1299}
1300
1301static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1302{
1303 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1304
1305 efx_ef10_get_stat_mask(efx, mask);
1306 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1307 mask, names);
1308}
1309
1310static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1311 struct rtnl_link_stats64 *core_stats)
1312{
1313 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1314 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1315 u64 *stats = nic_data->stats;
1316 size_t stats_count = 0, index;
1317
1318 efx_ef10_get_stat_mask(efx, mask);
1319
1320 if (full_stats) {
1321 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1322 if (efx_ef10_stat_desc[index].name) {
1323 *full_stats++ = stats[index];
1324 ++stats_count;
1325 }
1326 }
1327 }
1328
1329 if (!core_stats)
1330 return stats_count;
1331
1332 if (nic_data->datapath_caps &
1333 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1334 /* Use vadaptor stats. */
1335 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1336 stats[EF10_STAT_rx_multicast] +
1337 stats[EF10_STAT_rx_broadcast];
1338 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1339 stats[EF10_STAT_tx_multicast] +
1340 stats[EF10_STAT_tx_broadcast];
1341 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1342 stats[EF10_STAT_rx_multicast_bytes] +
1343 stats[EF10_STAT_rx_broadcast_bytes];
1344 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1345 stats[EF10_STAT_tx_multicast_bytes] +
1346 stats[EF10_STAT_tx_broadcast_bytes];
1347 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1348 stats[GENERIC_STAT_rx_noskb_drops];
1349 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1350 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1351 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1352 core_stats->rx_errors = core_stats->rx_crc_errors;
1353 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1354 } else {
1355 /* Use port stats. */
1356 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1357 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1358 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1359 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1360 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1361 stats[GENERIC_STAT_rx_nodesc_trunc] +
1362 stats[GENERIC_STAT_rx_noskb_drops];
1363 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1364 core_stats->rx_length_errors =
1365 stats[EF10_STAT_port_rx_gtjumbo] +
1366 stats[EF10_STAT_port_rx_length_error];
1367 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1368 core_stats->rx_frame_errors =
1369 stats[EF10_STAT_port_rx_align_error];
1370 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1371 core_stats->rx_errors = (core_stats->rx_length_errors +
1372 core_stats->rx_crc_errors +
1373 core_stats->rx_frame_errors);
1374 }
1375
1376 return stats_count;
1377}
1378
1379static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1380{
1381 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1382 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1383 __le64 generation_start, generation_end;
1384 u64 *stats = nic_data->stats;
1385 __le64 *dma_stats;
1386
1387 efx_ef10_get_stat_mask(efx, mask);
1388
1389 dma_stats = efx->stats_buffer.addr;
1390 nic_data = efx->nic_data;
1391
1392 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1393 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1394 return 0;
1395 rmb();
1396 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1397 stats, efx->stats_buffer.addr, false);
1398 rmb();
1399 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1400 if (generation_end != generation_start)
1401 return -EAGAIN;
1402
1403 /* Update derived statistics */
1404 efx_nic_fix_nodesc_drop_stat(efx,
1405 &stats[EF10_STAT_port_rx_nodesc_drops]);
1406 stats[EF10_STAT_port_rx_good_bytes] =
1407 stats[EF10_STAT_port_rx_bytes] -
1408 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1409 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1410 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1411 efx_update_sw_stats(efx, stats);
1412 return 0;
1413}
1414
1415
1416static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1417 struct rtnl_link_stats64 *core_stats)
1418{
1419 int retry;
1420
1421 /* If we're unlucky enough to read statistics during the DMA, wait
1422 * up to 10ms for it to finish (typically takes <500us)
1423 */
1424 for (retry = 0; retry < 100; ++retry) {
1425 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1426 break;
1427 udelay(100);
1428 }
1429
1430 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1431}
1432
1433static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1434{
1435 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1436 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1437 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1438 __le64 generation_start, generation_end;
1439 u64 *stats = nic_data->stats;
1440 u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1441 struct efx_buffer stats_buf;
1442 __le64 *dma_stats;
1443 int rc;
1444
1445 spin_unlock_bh(&efx->stats_lock);
1446
1447 if (in_interrupt()) {
1448 /* If in atomic context, cannot update stats. Just update the
1449 * software stats and return so the caller can continue.
1450 */
1451 spin_lock_bh(&efx->stats_lock);
1452 efx_update_sw_stats(efx, stats);
1453 return 0;
1454 }
1455
1456 efx_ef10_get_stat_mask(efx, mask);
1457
1458 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1459 if (rc) {
1460 spin_lock_bh(&efx->stats_lock);
1461 return rc;
1462 }
1463
1464 dma_stats = stats_buf.addr;
1465 dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1466
1467 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1468 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1469 MAC_STATS_IN_DMA, 1);
1470 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1471 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1472
1473 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1474 NULL, 0, NULL);
1475 spin_lock_bh(&efx->stats_lock);
1476 if (rc) {
1477 /* Expect ENOENT if DMA queues have not been set up */
1478 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1479 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1480 sizeof(inbuf), NULL, 0, rc);
1481 goto out;
1482 }
1483
1484 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1485 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1486 WARN_ON_ONCE(1);
1487 goto out;
1488 }
1489 rmb();
1490 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1491 stats, stats_buf.addr, false);
1492 rmb();
1493 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1494 if (generation_end != generation_start) {
1495 rc = -EAGAIN;
1496 goto out;
1497 }
1498
1499 efx_update_sw_stats(efx, stats);
1500out:
1501 efx_nic_free_buffer(efx, &stats_buf);
1502 return rc;
1503}
1504
1505static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1506 struct rtnl_link_stats64 *core_stats)
1507{
1508 if (efx_ef10_try_update_nic_stats_vf(efx))
1509 return 0;
1510
1511 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1512}
1513
1514static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1515{
1516 struct efx_nic *efx = channel->efx;
1517 unsigned int mode, value;
1518 efx_dword_t timer_cmd;
1519
1520 if (channel->irq_moderation) {
1521 mode = 3;
1522 value = channel->irq_moderation - 1;
1523 } else {
1524 mode = 0;
1525 value = 0;
1526 }
1527
1528 if (EFX_EF10_WORKAROUND_35388(efx)) {
1529 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1530 EFE_DD_EVQ_IND_TIMER_FLAGS,
1531 ERF_DD_EVQ_IND_TIMER_MODE, mode,
1532 ERF_DD_EVQ_IND_TIMER_VAL, value);
1533 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1534 channel->channel);
1535 } else {
1536 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1537 ERF_DZ_TC_TIMER_VAL, value);
1538 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1539 channel->channel);
1540 }
1541}
1542
1543static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1544 struct ethtool_wolinfo *wol) {}
1545
1546static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1547{
1548 return -EOPNOTSUPP;
1549}
1550
1551static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1552{
1553 wol->supported = 0;
1554 wol->wolopts = 0;
1555 memset(&wol->sopass, 0, sizeof(wol->sopass));
1556}
1557
1558static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1559{
1560 if (type != 0)
1561 return -EINVAL;
1562 return 0;
1563}
1564
1565static void efx_ef10_mcdi_request(struct efx_nic *efx,
1566 const efx_dword_t *hdr, size_t hdr_len,
1567 const efx_dword_t *sdu, size_t sdu_len)
1568{
1569 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1570 u8 *pdu = nic_data->mcdi_buf.addr;
1571
1572 memcpy(pdu, hdr, hdr_len);
1573 memcpy(pdu + hdr_len, sdu, sdu_len);
1574 wmb();
1575
1576 /* The hardware provides 'low' and 'high' (doorbell) registers
1577 * for passing the 64-bit address of an MCDI request to
1578 * firmware. However the dwords are swapped by firmware. The
1579 * least significant bits of the doorbell are then 0 for all
1580 * MCDI requests due to alignment.
1581 */
1582 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1583 ER_DZ_MC_DB_LWRD);
1584 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1585 ER_DZ_MC_DB_HWRD);
1586}
1587
1588static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1589{
1590 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1591 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1592
1593 rmb();
1594 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1595}
1596
1597static void
1598efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1599 size_t offset, size_t outlen)
1600{
1601 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1602 const u8 *pdu = nic_data->mcdi_buf.addr;
1603
1604 memcpy(outbuf, pdu + offset, outlen);
1605}
1606
1607static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
1608{
1609 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1610
1611 /* All our allocations have been reset */
1612 efx_ef10_reset_mc_allocations(efx);
1613
1614 /* The datapath firmware might have been changed */
1615 nic_data->must_check_datapath_caps = true;
1616
1617 /* MAC statistics have been cleared on the NIC; clear the local
1618 * statistic that we update with efx_update_diff_stat().
1619 */
1620 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
1621}
1622
1623static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1624{
1625 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1626 int rc;
1627
1628 rc = efx_ef10_get_warm_boot_count(efx);
1629 if (rc < 0) {
1630 /* The firmware is presumably in the process of
1631 * rebooting. However, we are supposed to report each
1632 * reboot just once, so we must only do that once we
1633 * can read and store the updated warm boot count.
1634 */
1635 return 0;
1636 }
1637
1638 if (rc == nic_data->warm_boot_count)
1639 return 0;
1640
1641 nic_data->warm_boot_count = rc;
1642 efx_ef10_mcdi_reboot_detected(efx);
1643
1644 return -EIO;
1645}
1646
1647/* Handle an MSI interrupt
1648 *
1649 * Handle an MSI hardware interrupt. This routine schedules event
1650 * queue processing. No interrupt acknowledgement cycle is necessary.
1651 * Also, we never need to check that the interrupt is for us, since
1652 * MSI interrupts cannot be shared.
1653 */
1654static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1655{
1656 struct efx_msi_context *context = dev_id;
1657 struct efx_nic *efx = context->efx;
1658
1659 netif_vdbg(efx, intr, efx->net_dev,
1660 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1661
1662 if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1663 /* Note test interrupts */
1664 if (context->index == efx->irq_level)
1665 efx->last_irq_cpu = raw_smp_processor_id();
1666
1667 /* Schedule processing of the channel */
1668 efx_schedule_channel_irq(efx->channel[context->index]);
1669 }
1670
1671 return IRQ_HANDLED;
1672}
1673
1674static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1675{
1676 struct efx_nic *efx = dev_id;
1677 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1678 struct efx_channel *channel;
1679 efx_dword_t reg;
1680 u32 queues;
1681
1682 /* Read the ISR which also ACKs the interrupts */
1683 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
1684 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1685
1686 if (queues == 0)
1687 return IRQ_NONE;
1688
1689 if (likely(soft_enabled)) {
1690 /* Note test interrupts */
1691 if (queues & (1U << efx->irq_level))
1692 efx->last_irq_cpu = raw_smp_processor_id();
1693
1694 efx_for_each_channel(channel, efx) {
1695 if (queues & 1)
1696 efx_schedule_channel_irq(channel);
1697 queues >>= 1;
1698 }
1699 }
1700
1701 netif_vdbg(efx, intr, efx->net_dev,
1702 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1703 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1704
1705 return IRQ_HANDLED;
1706}
1707
1708static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1709{
1710 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1711
1712 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1713
1714 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1715 (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1716 inbuf, sizeof(inbuf), NULL, 0, NULL);
1717}
1718
1719static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1720{
1721 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1722 (tx_queue->ptr_mask + 1) *
1723 sizeof(efx_qword_t),
1724 GFP_KERNEL);
1725}
1726
1727/* This writes to the TX_DESC_WPTR and also pushes data */
1728static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1729 const efx_qword_t *txd)
1730{
1731 unsigned int write_ptr;
1732 efx_oword_t reg;
1733
1734 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1735 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1736 reg.qword[0] = *txd;
1737 efx_writeo_page(tx_queue->efx, ®,
1738 ER_DZ_TX_DESC_UPD, tx_queue->queue);
1739}
1740
1741static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1742{
1743 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1744 EFX_BUF_SIZE));
1745 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1746 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1747 struct efx_channel *channel = tx_queue->channel;
1748 struct efx_nic *efx = tx_queue->efx;
1749 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1750 size_t inlen;
1751 dma_addr_t dma_addr;
1752 efx_qword_t *txd;
1753 int rc;
1754 int i;
1755 BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
1756
1757 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1758 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1759 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1760 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1761 MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1762 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1763 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1764 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1765 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
1766
1767 dma_addr = tx_queue->txd.buf.dma_addr;
1768
1769 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1770 tx_queue->queue, entries, (u64)dma_addr);
1771
1772 for (i = 0; i < entries; ++i) {
1773 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1774 dma_addr += EFX_BUF_SIZE;
1775 }
1776
1777 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1778
1779 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1780 NULL, 0, NULL);
1781 if (rc)
1782 goto fail;
1783
1784 /* A previous user of this TX queue might have set us up the
1785 * bomb by writing a descriptor to the TX push collector but
1786 * not the doorbell. (Each collector belongs to a port, not a
1787 * queue or function, so cannot easily be reset.) We must
1788 * attempt to push a no-op descriptor in its place.
1789 */
1790 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1791 tx_queue->insert_count = 1;
1792 txd = efx_tx_desc(tx_queue, 0);
1793 EFX_POPULATE_QWORD_4(*txd,
1794 ESF_DZ_TX_DESC_IS_OPT, true,
1795 ESF_DZ_TX_OPTION_TYPE,
1796 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1797 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1798 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1799 tx_queue->write_count = 1;
1800
1801 if (nic_data->datapath_caps &
1802 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
1803 tx_queue->tso_version = 1;
1804 }
1805
1806 wmb();
1807 efx_ef10_push_tx_desc(tx_queue, txd);
1808
1809 return;
1810
1811fail:
1812 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1813 tx_queue->queue);
1814}
1815
1816static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1817{
1818 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1819 MCDI_DECLARE_BUF_ERR(outbuf);
1820 struct efx_nic *efx = tx_queue->efx;
1821 size_t outlen;
1822 int rc;
1823
1824 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1825 tx_queue->queue);
1826
1827 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1828 outbuf, sizeof(outbuf), &outlen);
1829
1830 if (rc && rc != -EALREADY)
1831 goto fail;
1832
1833 return;
1834
1835fail:
1836 efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1837 outbuf, outlen, rc);
1838}
1839
1840static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1841{
1842 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1843}
1844
1845/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1846static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1847{
1848 unsigned int write_ptr;
1849 efx_dword_t reg;
1850
1851 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1852 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1853 efx_writed_page(tx_queue->efx, ®,
1854 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1855}
1856
1857static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1858{
1859 unsigned int old_write_count = tx_queue->write_count;
1860 struct efx_tx_buffer *buffer;
1861 unsigned int write_ptr;
1862 efx_qword_t *txd;
1863
1864 tx_queue->xmit_more_available = false;
1865 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
1866 return;
1867
1868 do {
1869 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1870 buffer = &tx_queue->buffer[write_ptr];
1871 txd = efx_tx_desc(tx_queue, write_ptr);
1872 ++tx_queue->write_count;
1873
1874 /* Create TX descriptor ring entry */
1875 if (buffer->flags & EFX_TX_BUF_OPTION) {
1876 *txd = buffer->option;
1877 } else {
1878 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1879 EFX_POPULATE_QWORD_3(
1880 *txd,
1881 ESF_DZ_TX_KER_CONT,
1882 buffer->flags & EFX_TX_BUF_CONT,
1883 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1884 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1885 }
1886 } while (tx_queue->write_count != tx_queue->insert_count);
1887
1888 wmb(); /* Ensure descriptors are written before they are fetched */
1889
1890 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1891 txd = efx_tx_desc(tx_queue,
1892 old_write_count & tx_queue->ptr_mask);
1893 efx_ef10_push_tx_desc(tx_queue, txd);
1894 ++tx_queue->pushes;
1895 } else {
1896 efx_ef10_notify_tx_desc(tx_queue);
1897 }
1898}
1899
1900static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
1901 bool exclusive, unsigned *context_size)
1902{
1903 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1904 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1905 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1906 size_t outlen;
1907 int rc;
1908 u32 alloc_type = exclusive ?
1909 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
1910 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
1911 unsigned rss_spread = exclusive ?
1912 efx->rss_spread :
1913 min(rounddown_pow_of_two(efx->rss_spread),
1914 EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
1915
1916 if (!exclusive && rss_spread == 1) {
1917 *context = EFX_EF10_RSS_CONTEXT_INVALID;
1918 if (context_size)
1919 *context_size = 1;
1920 return 0;
1921 }
1922
1923 if (nic_data->datapath_caps &
1924 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
1925 return -EOPNOTSUPP;
1926
1927 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1928 nic_data->vport_id);
1929 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
1930 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
1931
1932 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1933 outbuf, sizeof(outbuf), &outlen);
1934 if (rc != 0)
1935 return rc;
1936
1937 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1938 return -EIO;
1939
1940 *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1941
1942 if (context_size)
1943 *context_size = rss_spread;
1944
1945 return 0;
1946}
1947
1948static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1949{
1950 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1951 int rc;
1952
1953 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1954 context);
1955
1956 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1957 NULL, 0, NULL);
1958 WARN_ON(rc != 0);
1959}
1960
1961static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
1962 const u32 *rx_indir_table)
1963{
1964 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1965 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1966 int i, rc;
1967
1968 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1969 context);
1970 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1971 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1972
1973 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1974 MCDI_PTR(tablebuf,
1975 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1976 (u8) rx_indir_table[i];
1977
1978 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1979 sizeof(tablebuf), NULL, 0, NULL);
1980 if (rc != 0)
1981 return rc;
1982
1983 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1984 context);
1985 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1986 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1987 for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1988 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1989 efx->rx_hash_key[i];
1990
1991 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1992 sizeof(keybuf), NULL, 0, NULL);
1993}
1994
1995static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1996{
1997 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1998
1999 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2000 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2001 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2002}
2003
2004static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2005 unsigned *context_size)
2006{
2007 u32 new_rx_rss_context;
2008 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2009 int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2010 false, context_size);
2011
2012 if (rc != 0)
2013 return rc;
2014
2015 nic_data->rx_rss_context = new_rx_rss_context;
2016 nic_data->rx_rss_context_exclusive = false;
2017 efx_set_default_rx_indir_table(efx);
2018 return 0;
2019}
2020
2021static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2022 const u32 *rx_indir_table)
2023{
2024 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2025 int rc;
2026 u32 new_rx_rss_context;
2027
2028 if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2029 !nic_data->rx_rss_context_exclusive) {
2030 rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2031 true, NULL);
2032 if (rc == -EOPNOTSUPP)
2033 return rc;
2034 else if (rc != 0)
2035 goto fail1;
2036 } else {
2037 new_rx_rss_context = nic_data->rx_rss_context;
2038 }
2039
2040 rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2041 rx_indir_table);
2042 if (rc != 0)
2043 goto fail2;
2044
2045 if (nic_data->rx_rss_context != new_rx_rss_context)
2046 efx_ef10_rx_free_indir_table(efx);
2047 nic_data->rx_rss_context = new_rx_rss_context;
2048 nic_data->rx_rss_context_exclusive = true;
2049 if (rx_indir_table != efx->rx_indir_table)
2050 memcpy(efx->rx_indir_table, rx_indir_table,
2051 sizeof(efx->rx_indir_table));
2052 return 0;
2053
2054fail2:
2055 if (new_rx_rss_context != nic_data->rx_rss_context)
2056 efx_ef10_free_rss_context(efx, new_rx_rss_context);
2057fail1:
2058 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2059 return rc;
2060}
2061
2062static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2063 const u32 *rx_indir_table)
2064{
2065 int rc;
2066
2067 if (efx->rss_spread == 1)
2068 return 0;
2069
2070 rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
2071
2072 if (rc == -ENOBUFS && !user) {
2073 unsigned context_size;
2074 bool mismatch = false;
2075 size_t i;
2076
2077 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2078 i++)
2079 mismatch = rx_indir_table[i] !=
2080 ethtool_rxfh_indir_default(i, efx->rss_spread);
2081
2082 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2083 if (rc == 0) {
2084 if (context_size != efx->rss_spread)
2085 netif_warn(efx, probe, efx->net_dev,
2086 "Could not allocate an exclusive RSS"
2087 " context; allocated a shared one of"
2088 " different size."
2089 " Wanted %u, got %u.\n",
2090 efx->rss_spread, context_size);
2091 else if (mismatch)
2092 netif_warn(efx, probe, efx->net_dev,
2093 "Could not allocate an exclusive RSS"
2094 " context; allocated a shared one but"
2095 " could not apply custom"
2096 " indirection.\n");
2097 else
2098 netif_info(efx, probe, efx->net_dev,
2099 "Could not allocate an exclusive RSS"
2100 " context; allocated a shared one.\n");
2101 }
2102 }
2103 return rc;
2104}
2105
2106static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2107 const u32 *rx_indir_table
2108 __attribute__ ((unused)))
2109{
2110 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2111
2112 if (user)
2113 return -EOPNOTSUPP;
2114 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2115 return 0;
2116 return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2117}
2118
2119static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2120{
2121 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2122 (rx_queue->ptr_mask + 1) *
2123 sizeof(efx_qword_t),
2124 GFP_KERNEL);
2125}
2126
2127static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2128{
2129 MCDI_DECLARE_BUF(inbuf,
2130 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2131 EFX_BUF_SIZE));
2132 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2133 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2134 struct efx_nic *efx = rx_queue->efx;
2135 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2136 size_t inlen;
2137 dma_addr_t dma_addr;
2138 int rc;
2139 int i;
2140 BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2141
2142 rx_queue->scatter_n = 0;
2143 rx_queue->scatter_len = 0;
2144
2145 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2146 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2147 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2148 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2149 efx_rx_queue_index(rx_queue));
2150 MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2151 INIT_RXQ_IN_FLAG_PREFIX, 1,
2152 INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2153 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2154 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2155
2156 dma_addr = rx_queue->rxd.buf.dma_addr;
2157
2158 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2159 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2160
2161 for (i = 0; i < entries; ++i) {
2162 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2163 dma_addr += EFX_BUF_SIZE;
2164 }
2165
2166 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2167
2168 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2169 NULL, 0, NULL);
2170 if (rc)
2171 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2172 efx_rx_queue_index(rx_queue));
2173}
2174
2175static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2176{
2177 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2178 MCDI_DECLARE_BUF_ERR(outbuf);
2179 struct efx_nic *efx = rx_queue->efx;
2180 size_t outlen;
2181 int rc;
2182
2183 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2184 efx_rx_queue_index(rx_queue));
2185
2186 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2187 outbuf, sizeof(outbuf), &outlen);
2188
2189 if (rc && rc != -EALREADY)
2190 goto fail;
2191
2192 return;
2193
2194fail:
2195 efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2196 outbuf, outlen, rc);
2197}
2198
2199static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2200{
2201 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2202}
2203
2204/* This creates an entry in the RX descriptor queue */
2205static inline void
2206efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2207{
2208 struct efx_rx_buffer *rx_buf;
2209 efx_qword_t *rxd;
2210
2211 rxd = efx_rx_desc(rx_queue, index);
2212 rx_buf = efx_rx_buffer(rx_queue, index);
2213 EFX_POPULATE_QWORD_2(*rxd,
2214 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2215 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2216}
2217
2218static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2219{
2220 struct efx_nic *efx = rx_queue->efx;
2221 unsigned int write_count;
2222 efx_dword_t reg;
2223
2224 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2225 write_count = rx_queue->added_count & ~7;
2226 if (rx_queue->notified_count == write_count)
2227 return;
2228
2229 do
2230 efx_ef10_build_rx_desc(
2231 rx_queue,
2232 rx_queue->notified_count & rx_queue->ptr_mask);
2233 while (++rx_queue->notified_count != write_count);
2234
2235 wmb();
2236 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2237 write_count & rx_queue->ptr_mask);
2238 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
2239 efx_rx_queue_index(rx_queue));
2240}
2241
2242static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2243
2244static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2245{
2246 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2247 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2248 efx_qword_t event;
2249
2250 EFX_POPULATE_QWORD_2(event,
2251 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2252 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2253
2254 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2255
2256 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2257 * already swapped the data to little-endian order.
2258 */
2259 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2260 sizeof(efx_qword_t));
2261
2262 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2263 inbuf, sizeof(inbuf), 0,
2264 efx_ef10_rx_defer_refill_complete, 0);
2265}
2266
2267static void
2268efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2269 int rc, efx_dword_t *outbuf,
2270 size_t outlen_actual)
2271{
2272 /* nothing to do */
2273}
2274
2275static int efx_ef10_ev_probe(struct efx_channel *channel)
2276{
2277 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2278 (channel->eventq_mask + 1) *
2279 sizeof(efx_qword_t),
2280 GFP_KERNEL);
2281}
2282
2283static void efx_ef10_ev_fini(struct efx_channel *channel)
2284{
2285 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2286 MCDI_DECLARE_BUF_ERR(outbuf);
2287 struct efx_nic *efx = channel->efx;
2288 size_t outlen;
2289 int rc;
2290
2291 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2292
2293 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
2294 outbuf, sizeof(outbuf), &outlen);
2295
2296 if (rc && rc != -EALREADY)
2297 goto fail;
2298
2299 return;
2300
2301fail:
2302 efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
2303 outbuf, outlen, rc);
2304}
2305
2306static int efx_ef10_ev_init(struct efx_channel *channel)
2307{
2308 MCDI_DECLARE_BUF(inbuf,
2309 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
2310 EFX_BUF_SIZE));
2311 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
2312 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
2313 struct efx_nic *efx = channel->efx;
2314 struct efx_ef10_nic_data *nic_data;
2315 bool supports_rx_merge;
2316 size_t inlen, outlen;
2317 unsigned int enabled, implemented;
2318 dma_addr_t dma_addr;
2319 int rc;
2320 int i;
2321
2322 nic_data = efx->nic_data;
2323 supports_rx_merge =
2324 !!(nic_data->datapath_caps &
2325 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2326
2327 /* Fill event queue with all ones (i.e. empty events) */
2328 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
2329
2330 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
2331 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
2332 /* INIT_EVQ expects index in vector table, not absolute */
2333 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
2334 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
2335 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
2336 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
2337 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
2338 INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
2339 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
2340 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
2341 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
2342 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
2343 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
2344 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
2345 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
2346
2347 dma_addr = channel->eventq.buf.dma_addr;
2348 for (i = 0; i < entries; ++i) {
2349 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
2350 dma_addr += EFX_BUF_SIZE;
2351 }
2352
2353 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
2354
2355 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
2356 outbuf, sizeof(outbuf), &outlen);
2357 /* IRQ return is ignored */
2358 if (channel->channel || rc)
2359 return rc;
2360
2361 /* Successfully created event queue on channel 0 */
2362 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2363 if (rc == -ENOSYS) {
2364 /* GET_WORKAROUNDS was implemented before the bug26807
2365 * workaround, thus the latter must be unavailable in this fw
2366 */
2367 nic_data->workaround_26807 = false;
2368 rc = 0;
2369 } else if (rc) {
2370 goto fail;
2371 } else {
2372 nic_data->workaround_26807 =
2373 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2374
2375 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2376 !nic_data->workaround_26807) {
2377 unsigned int flags;
2378
2379 rc = efx_mcdi_set_workaround(efx,
2380 MC_CMD_WORKAROUND_BUG26807,
2381 true, &flags);
2382
2383 if (!rc) {
2384 if (flags &
2385 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2386 netif_info(efx, drv, efx->net_dev,
2387 "other functions on NIC have been reset\n");
2388
2389 /* With MCFW v4.6.x and earlier, the
2390 * boot count will have incremented,
2391 * so re-read the warm_boot_count
2392 * value now to ensure this function
2393 * doesn't think it has changed next
2394 * time it checks.
2395 */
2396 rc = efx_ef10_get_warm_boot_count(efx);
2397 if (rc >= 0) {
2398 nic_data->warm_boot_count = rc;
2399 rc = 0;
2400 }
2401 }
2402 nic_data->workaround_26807 = true;
2403 } else if (rc == -EPERM) {
2404 rc = 0;
2405 }
2406 }
2407 }
2408
2409 if (!rc)
2410 return 0;
2411
2412fail:
2413 efx_ef10_ev_fini(channel);
2414 return rc;
2415}
2416
2417static void efx_ef10_ev_remove(struct efx_channel *channel)
2418{
2419 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
2420}
2421
2422static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2423 unsigned int rx_queue_label)
2424{
2425 struct efx_nic *efx = rx_queue->efx;
2426
2427 netif_info(efx, hw, efx->net_dev,
2428 "rx event arrived on queue %d labeled as queue %u\n",
2429 efx_rx_queue_index(rx_queue), rx_queue_label);
2430
2431 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2432}
2433
2434static void
2435efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2436 unsigned int actual, unsigned int expected)
2437{
2438 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2439 struct efx_nic *efx = rx_queue->efx;
2440
2441 netif_info(efx, hw, efx->net_dev,
2442 "dropped %d events (index=%d expected=%d)\n",
2443 dropped, actual, expected);
2444
2445 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2446}
2447
2448/* partially received RX was aborted. clean up. */
2449static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2450{
2451 unsigned int rx_desc_ptr;
2452
2453 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2454 "scattered RX aborted (dropping %u buffers)\n",
2455 rx_queue->scatter_n);
2456
2457 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2458
2459 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2460 0, EFX_RX_PKT_DISCARD);
2461
2462 rx_queue->removed_count += rx_queue->scatter_n;
2463 rx_queue->scatter_n = 0;
2464 rx_queue->scatter_len = 0;
2465 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2466}
2467
2468static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2469 const efx_qword_t *event)
2470{
2471 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
2472 unsigned int n_descs, n_packets, i;
2473 struct efx_nic *efx = channel->efx;
2474 struct efx_rx_queue *rx_queue;
2475 bool rx_cont;
2476 u16 flags = 0;
2477
2478 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2479 return 0;
2480
2481 /* Basic packet information */
2482 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2483 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2484 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2485 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
2486 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2487
2488 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2489 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2490 EFX_QWORD_FMT "\n",
2491 EFX_QWORD_VAL(*event));
2492
2493 rx_queue = efx_channel_get_rx_queue(channel);
2494
2495 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2496 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2497
2498 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2499 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2500
2501 if (n_descs != rx_queue->scatter_n + 1) {
2502 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2503
2504 /* detect rx abort */
2505 if (unlikely(n_descs == rx_queue->scatter_n)) {
2506 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2507 netdev_WARN(efx->net_dev,
2508 "invalid RX abort: scatter_n=%u event="
2509 EFX_QWORD_FMT "\n",
2510 rx_queue->scatter_n,
2511 EFX_QWORD_VAL(*event));
2512 efx_ef10_handle_rx_abort(rx_queue);
2513 return 0;
2514 }
2515
2516 /* Check that RX completion merging is valid, i.e.
2517 * the current firmware supports it and this is a
2518 * non-scattered packet.
2519 */
2520 if (!(nic_data->datapath_caps &
2521 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2522 rx_queue->scatter_n != 0 || rx_cont) {
2523 efx_ef10_handle_rx_bad_lbits(
2524 rx_queue, next_ptr_lbits,
2525 (rx_queue->removed_count +
2526 rx_queue->scatter_n + 1) &
2527 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2528 return 0;
2529 }
2530
2531 /* Merged completion for multiple non-scattered packets */
2532 rx_queue->scatter_n = 1;
2533 rx_queue->scatter_len = 0;
2534 n_packets = n_descs;
2535 ++channel->n_rx_merge_events;
2536 channel->n_rx_merge_packets += n_packets;
2537 flags |= EFX_RX_PKT_PREFIX_LEN;
2538 } else {
2539 ++rx_queue->scatter_n;
2540 rx_queue->scatter_len += rx_bytes;
2541 if (rx_cont)
2542 return 0;
2543 n_packets = 1;
2544 }
2545
2546 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
2547 flags |= EFX_RX_PKT_DISCARD;
2548
2549 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
2550 channel->n_rx_ip_hdr_chksum_err += n_packets;
2551 } else if (unlikely(EFX_QWORD_FIELD(*event,
2552 ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
2553 channel->n_rx_tcp_udp_chksum_err += n_packets;
2554 } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
2555 rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
2556 flags |= EFX_RX_PKT_CSUMMED;
2557 }
2558
2559 if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
2560 flags |= EFX_RX_PKT_TCP;
2561
2562 channel->irq_mod_score += 2 * n_packets;
2563
2564 /* Handle received packet(s) */
2565 for (i = 0; i < n_packets; i++) {
2566 efx_rx_packet(rx_queue,
2567 rx_queue->removed_count & rx_queue->ptr_mask,
2568 rx_queue->scatter_n, rx_queue->scatter_len,
2569 flags);
2570 rx_queue->removed_count += rx_queue->scatter_n;
2571 }
2572
2573 rx_queue->scatter_n = 0;
2574 rx_queue->scatter_len = 0;
2575
2576 return n_packets;
2577}
2578
2579static int
2580efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2581{
2582 struct efx_nic *efx = channel->efx;
2583 struct efx_tx_queue *tx_queue;
2584 unsigned int tx_ev_desc_ptr;
2585 unsigned int tx_ev_q_label;
2586 int tx_descs = 0;
2587
2588 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2589 return 0;
2590
2591 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2592 return 0;
2593
2594 /* Transmit completion */
2595 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2596 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2597 tx_queue = efx_channel_get_tx_queue(channel,
2598 tx_ev_q_label % EFX_TXQ_TYPES);
2599 tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
2600 tx_queue->ptr_mask);
2601 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2602
2603 return tx_descs;
2604}
2605
2606static void
2607efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2608{
2609 struct efx_nic *efx = channel->efx;
2610 int subcode;
2611
2612 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2613
2614 switch (subcode) {
2615 case ESE_DZ_DRV_TIMER_EV:
2616 case ESE_DZ_DRV_WAKE_UP_EV:
2617 break;
2618 case ESE_DZ_DRV_START_UP_EV:
2619 /* event queue init complete. ok. */
2620 break;
2621 default:
2622 netif_err(efx, hw, efx->net_dev,
2623 "channel %d unknown driver event type %d"
2624 " (data " EFX_QWORD_FMT ")\n",
2625 channel->channel, subcode,
2626 EFX_QWORD_VAL(*event));
2627
2628 }
2629}
2630
2631static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2632 efx_qword_t *event)
2633{
2634 struct efx_nic *efx = channel->efx;
2635 u32 subcode;
2636
2637 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2638
2639 switch (subcode) {
2640 case EFX_EF10_TEST:
2641 channel->event_test_cpu = raw_smp_processor_id();
2642 break;
2643 case EFX_EF10_REFILL:
2644 /* The queue must be empty, so we won't receive any rx
2645 * events, so efx_process_channel() won't refill the
2646 * queue. Refill it here
2647 */
2648 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2649 break;
2650 default:
2651 netif_err(efx, hw, efx->net_dev,
2652 "channel %d unknown driver event type %u"
2653 " (data " EFX_QWORD_FMT ")\n",
2654 channel->channel, (unsigned) subcode,
2655 EFX_QWORD_VAL(*event));
2656 }
2657}
2658
2659static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2660{
2661 struct efx_nic *efx = channel->efx;
2662 efx_qword_t event, *p_event;
2663 unsigned int read_ptr;
2664 int ev_code;
2665 int tx_descs = 0;
2666 int spent = 0;
2667
2668 if (quota <= 0)
2669 return spent;
2670
2671 read_ptr = channel->eventq_read_ptr;
2672
2673 for (;;) {
2674 p_event = efx_event(channel, read_ptr);
2675 event = *p_event;
2676
2677 if (!efx_event_present(&event))
2678 break;
2679
2680 EFX_SET_QWORD(*p_event);
2681
2682 ++read_ptr;
2683
2684 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
2685
2686 netif_vdbg(efx, drv, efx->net_dev,
2687 "processing event on %d " EFX_QWORD_FMT "\n",
2688 channel->channel, EFX_QWORD_VAL(event));
2689
2690 switch (ev_code) {
2691 case ESE_DZ_EV_CODE_MCDI_EV:
2692 efx_mcdi_process_event(channel, &event);
2693 break;
2694 case ESE_DZ_EV_CODE_RX_EV:
2695 spent += efx_ef10_handle_rx_event(channel, &event);
2696 if (spent >= quota) {
2697 /* XXX can we split a merged event to
2698 * avoid going over-quota?
2699 */
2700 spent = quota;
2701 goto out;
2702 }
2703 break;
2704 case ESE_DZ_EV_CODE_TX_EV:
2705 tx_descs += efx_ef10_handle_tx_event(channel, &event);
2706 if (tx_descs > efx->txq_entries) {
2707 spent = quota;
2708 goto out;
2709 } else if (++spent == quota) {
2710 goto out;
2711 }
2712 break;
2713 case ESE_DZ_EV_CODE_DRIVER_EV:
2714 efx_ef10_handle_driver_event(channel, &event);
2715 if (++spent == quota)
2716 goto out;
2717 break;
2718 case EFX_EF10_DRVGEN_EV:
2719 efx_ef10_handle_driver_generated_event(channel, &event);
2720 break;
2721 default:
2722 netif_err(efx, hw, efx->net_dev,
2723 "channel %d unknown event type %d"
2724 " (data " EFX_QWORD_FMT ")\n",
2725 channel->channel, ev_code,
2726 EFX_QWORD_VAL(event));
2727 }
2728 }
2729
2730out:
2731 channel->eventq_read_ptr = read_ptr;
2732 return spent;
2733}
2734
2735static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2736{
2737 struct efx_nic *efx = channel->efx;
2738 efx_dword_t rptr;
2739
2740 if (EFX_EF10_WORKAROUND_35388(efx)) {
2741 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2742 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2743 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2744 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2745
2746 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2747 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2748 ERF_DD_EVQ_IND_RPTR,
2749 (channel->eventq_read_ptr &
2750 channel->eventq_mask) >>
2751 ERF_DD_EVQ_IND_RPTR_WIDTH);
2752 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2753 channel->channel);
2754 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2755 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2756 ERF_DD_EVQ_IND_RPTR,
2757 channel->eventq_read_ptr &
2758 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2759 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2760 channel->channel);
2761 } else {
2762 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2763 channel->eventq_read_ptr &
2764 channel->eventq_mask);
2765 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2766 }
2767}
2768
2769static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2770{
2771 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2772 struct efx_nic *efx = channel->efx;
2773 efx_qword_t event;
2774 int rc;
2775
2776 EFX_POPULATE_QWORD_2(event,
2777 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2778 ESF_DZ_EV_DATA, EFX_EF10_TEST);
2779
2780 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2781
2782 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2783 * already swapped the data to little-endian order.
2784 */
2785 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2786 sizeof(efx_qword_t));
2787
2788 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2789 NULL, 0, NULL);
2790 if (rc != 0)
2791 goto fail;
2792
2793 return;
2794
2795fail:
2796 WARN_ON(true);
2797 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2798}
2799
2800void efx_ef10_handle_drain_event(struct efx_nic *efx)
2801{
2802 if (atomic_dec_and_test(&efx->active_queues))
2803 wake_up(&efx->flush_wq);
2804
2805 WARN_ON(atomic_read(&efx->active_queues) < 0);
2806}
2807
2808static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2809{
2810 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2811 struct efx_channel *channel;
2812 struct efx_tx_queue *tx_queue;
2813 struct efx_rx_queue *rx_queue;
2814 int pending;
2815
2816 /* If the MC has just rebooted, the TX/RX queues will have already been
2817 * torn down, but efx->active_queues needs to be set to zero.
2818 */
2819 if (nic_data->must_realloc_vis) {
2820 atomic_set(&efx->active_queues, 0);
2821 return 0;
2822 }
2823
2824 /* Do not attempt to write to the NIC during EEH recovery */
2825 if (efx->state != STATE_RECOVERY) {
2826 efx_for_each_channel(channel, efx) {
2827 efx_for_each_channel_rx_queue(rx_queue, channel)
2828 efx_ef10_rx_fini(rx_queue);
2829 efx_for_each_channel_tx_queue(tx_queue, channel)
2830 efx_ef10_tx_fini(tx_queue);
2831 }
2832
2833 wait_event_timeout(efx->flush_wq,
2834 atomic_read(&efx->active_queues) == 0,
2835 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2836 pending = atomic_read(&efx->active_queues);
2837 if (pending) {
2838 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2839 pending);
2840 return -ETIMEDOUT;
2841 }
2842 }
2843
2844 return 0;
2845}
2846
2847static void efx_ef10_prepare_flr(struct efx_nic *efx)
2848{
2849 atomic_set(&efx->active_queues, 0);
2850}
2851
2852static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2853 const struct efx_filter_spec *right)
2854{
2855 if ((left->match_flags ^ right->match_flags) |
2856 ((left->flags ^ right->flags) &
2857 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2858 return false;
2859
2860 return memcmp(&left->outer_vid, &right->outer_vid,
2861 sizeof(struct efx_filter_spec) -
2862 offsetof(struct efx_filter_spec, outer_vid)) == 0;
2863}
2864
2865static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2866{
2867 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2868 return jhash2((const u32 *)&spec->outer_vid,
2869 (sizeof(struct efx_filter_spec) -
2870 offsetof(struct efx_filter_spec, outer_vid)) / 4,
2871 0);
2872 /* XXX should we randomise the initval? */
2873}
2874
2875/* Decide whether a filter should be exclusive or else should allow
2876 * delivery to additional recipients. Currently we decide that
2877 * filters for specific local unicast MAC and IP addresses are
2878 * exclusive.
2879 */
2880static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2881{
2882 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2883 !is_multicast_ether_addr(spec->loc_mac))
2884 return true;
2885
2886 if ((spec->match_flags &
2887 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2888 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2889 if (spec->ether_type == htons(ETH_P_IP) &&
2890 !ipv4_is_multicast(spec->loc_host[0]))
2891 return true;
2892 if (spec->ether_type == htons(ETH_P_IPV6) &&
2893 ((const u8 *)spec->loc_host)[0] != 0xff)
2894 return true;
2895 }
2896
2897 return false;
2898}
2899
2900static struct efx_filter_spec *
2901efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2902 unsigned int filter_idx)
2903{
2904 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2905 ~EFX_EF10_FILTER_FLAGS);
2906}
2907
2908static unsigned int
2909efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2910 unsigned int filter_idx)
2911{
2912 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2913}
2914
2915static void
2916efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2917 unsigned int filter_idx,
2918 const struct efx_filter_spec *spec,
2919 unsigned int flags)
2920{
2921 table->entry[filter_idx].spec = (unsigned long)spec | flags;
2922}
2923
2924static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2925 const struct efx_filter_spec *spec,
2926 efx_dword_t *inbuf, u64 handle,
2927 bool replacing)
2928{
2929 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2930 u32 flags = spec->flags;
2931
2932 memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2933
2934 /* Remove RSS flag if we don't have an RSS context. */
2935 if (flags & EFX_FILTER_FLAG_RX_RSS &&
2936 spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
2937 nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
2938 flags &= ~EFX_FILTER_FLAG_RX_RSS;
2939
2940 if (replacing) {
2941 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2942 MC_CMD_FILTER_OP_IN_OP_REPLACE);
2943 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2944 } else {
2945 u32 match_fields = 0;
2946
2947 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2948 efx_ef10_filter_is_exclusive(spec) ?
2949 MC_CMD_FILTER_OP_IN_OP_INSERT :
2950 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2951
2952 /* Convert match flags and values. Unlike almost
2953 * everything else in MCDI, these fields are in
2954 * network byte order.
2955 */
2956 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2957 match_fields |=
2958 is_multicast_ether_addr(spec->loc_mac) ?
2959 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2960 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2961#define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
2962 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
2963 match_fields |= \
2964 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2965 mcdi_field ## _LBN; \
2966 BUILD_BUG_ON( \
2967 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2968 sizeof(spec->gen_field)); \
2969 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2970 &spec->gen_field, sizeof(spec->gen_field)); \
2971 }
2972 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2973 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2974 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2975 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2976 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2977 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2978 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2979 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2980 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2981 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2982#undef COPY_FIELD
2983 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2984 match_fields);
2985 }
2986
2987 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
2988 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2989 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2990 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2991 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2992 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
2993 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2994 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2995 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2996 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2997 0 : spec->dmaq_id);
2998 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2999 (flags & EFX_FILTER_FLAG_RX_RSS) ?
3000 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3001 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3002 if (flags & EFX_FILTER_FLAG_RX_RSS)
3003 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3004 spec->rss_context !=
3005 EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3006 spec->rss_context : nic_data->rx_rss_context);
3007}
3008
3009static int efx_ef10_filter_push(struct efx_nic *efx,
3010 const struct efx_filter_spec *spec,
3011 u64 *handle, bool replacing)
3012{
3013 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3014 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
3015 int rc;
3016
3017 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3018 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3019 outbuf, sizeof(outbuf), NULL);
3020 if (rc == 0)
3021 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3022 if (rc == -ENOSPC)
3023 rc = -EBUSY; /* to match efx_farch_filter_insert() */
3024 return rc;
3025}
3026
3027static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
3028 enum efx_filter_match_flags match_flags)
3029{
3030 unsigned int match_pri;
3031
3032 for (match_pri = 0;
3033 match_pri < table->rx_match_count;
3034 match_pri++)
3035 if (table->rx_match_flags[match_pri] == match_flags)
3036 return match_pri;
3037
3038 return -EPROTONOSUPPORT;
3039}
3040
3041static s32 efx_ef10_filter_insert(struct efx_nic *efx,
3042 struct efx_filter_spec *spec,
3043 bool replace_equal)
3044{
3045 struct efx_ef10_filter_table *table = efx->filter_state;
3046 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3047 struct efx_filter_spec *saved_spec;
3048 unsigned int match_pri, hash;
3049 unsigned int priv_flags;
3050 bool replacing = false;
3051 int ins_index = -1;
3052 DEFINE_WAIT(wait);
3053 bool is_mc_recip;
3054 s32 rc;
3055
3056 /* For now, only support RX filters */
3057 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
3058 EFX_FILTER_FLAG_RX)
3059 return -EINVAL;
3060
3061 rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
3062 if (rc < 0)
3063 return rc;
3064 match_pri = rc;
3065
3066 hash = efx_ef10_filter_hash(spec);
3067 is_mc_recip = efx_filter_is_mc_recipient(spec);
3068 if (is_mc_recip)
3069 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3070
3071 /* Find any existing filters with the same match tuple or
3072 * else a free slot to insert at. If any of them are busy,
3073 * we have to wait and retry.
3074 */
3075 for (;;) {
3076 unsigned int depth = 1;
3077 unsigned int i;
3078
3079 spin_lock_bh(&efx->filter_lock);
3080
3081 for (;;) {
3082 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3083 saved_spec = efx_ef10_filter_entry_spec(table, i);
3084
3085 if (!saved_spec) {
3086 if (ins_index < 0)
3087 ins_index = i;
3088 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
3089 if (table->entry[i].spec &
3090 EFX_EF10_FILTER_FLAG_BUSY)
3091 break;
3092 if (spec->priority < saved_spec->priority &&
3093 spec->priority != EFX_FILTER_PRI_AUTO) {
3094 rc = -EPERM;
3095 goto out_unlock;
3096 }
3097 if (!is_mc_recip) {
3098 /* This is the only one */
3099 if (spec->priority ==
3100 saved_spec->priority &&
3101 !replace_equal) {
3102 rc = -EEXIST;
3103 goto out_unlock;
3104 }
3105 ins_index = i;
3106 goto found;
3107 } else if (spec->priority >
3108 saved_spec->priority ||
3109 (spec->priority ==
3110 saved_spec->priority &&
3111 replace_equal)) {
3112 if (ins_index < 0)
3113 ins_index = i;
3114 else
3115 __set_bit(depth, mc_rem_map);
3116 }
3117 }
3118
3119 /* Once we reach the maximum search depth, use
3120 * the first suitable slot or return -EBUSY if
3121 * there was none
3122 */
3123 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3124 if (ins_index < 0) {
3125 rc = -EBUSY;
3126 goto out_unlock;
3127 }
3128 goto found;
3129 }
3130
3131 ++depth;
3132 }
3133
3134 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3135 spin_unlock_bh(&efx->filter_lock);
3136 schedule();
3137 }
3138
3139found:
3140 /* Create a software table entry if necessary, and mark it
3141 * busy. We might yet fail to insert, but any attempt to
3142 * insert a conflicting filter while we're waiting for the
3143 * firmware must find the busy entry.
3144 */
3145 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3146 if (saved_spec) {
3147 if (spec->priority == EFX_FILTER_PRI_AUTO &&
3148 saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3149 /* Just make sure it won't be removed */
3150 if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
3151 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3152 table->entry[ins_index].spec &=
3153 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3154 rc = ins_index;
3155 goto out_unlock;
3156 }
3157 replacing = true;
3158 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
3159 } else {
3160 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3161 if (!saved_spec) {
3162 rc = -ENOMEM;
3163 goto out_unlock;
3164 }
3165 *saved_spec = *spec;
3166 priv_flags = 0;
3167 }
3168 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3169 priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
3170
3171 /* Mark lower-priority multicast recipients busy prior to removal */
3172 if (is_mc_recip) {
3173 unsigned int depth, i;
3174
3175 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3176 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3177 if (test_bit(depth, mc_rem_map))
3178 table->entry[i].spec |=
3179 EFX_EF10_FILTER_FLAG_BUSY;
3180 }
3181 }
3182
3183 spin_unlock_bh(&efx->filter_lock);
3184
3185 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
3186 replacing);
3187
3188 /* Finalise the software table entry */
3189 spin_lock_bh(&efx->filter_lock);
3190 if (rc == 0) {
3191 if (replacing) {
3192 /* Update the fields that may differ */
3193 if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
3194 saved_spec->flags |=
3195 EFX_FILTER_FLAG_RX_OVER_AUTO;
3196 saved_spec->priority = spec->priority;
3197 saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3198 saved_spec->flags |= spec->flags;
3199 saved_spec->rss_context = spec->rss_context;
3200 saved_spec->dmaq_id = spec->dmaq_id;
3201 }
3202 } else if (!replacing) {
3203 kfree(saved_spec);
3204 saved_spec = NULL;
3205 }
3206 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
3207
3208 /* Remove and finalise entries for lower-priority multicast
3209 * recipients
3210 */
3211 if (is_mc_recip) {
3212 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3213 unsigned int depth, i;
3214
3215 memset(inbuf, 0, sizeof(inbuf));
3216
3217 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3218 if (!test_bit(depth, mc_rem_map))
3219 continue;
3220
3221 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3222 saved_spec = efx_ef10_filter_entry_spec(table, i);
3223 priv_flags = efx_ef10_filter_entry_flags(table, i);
3224
3225 if (rc == 0) {
3226 spin_unlock_bh(&efx->filter_lock);
3227 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3228 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3229 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3230 table->entry[i].handle);
3231 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3232 inbuf, sizeof(inbuf),
3233 NULL, 0, NULL);
3234 spin_lock_bh(&efx->filter_lock);
3235 }
3236
3237 if (rc == 0) {
3238 kfree(saved_spec);
3239 saved_spec = NULL;
3240 priv_flags = 0;
3241 } else {
3242 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
3243 }
3244 efx_ef10_filter_set_entry(table, i, saved_spec,
3245 priv_flags);
3246 }
3247 }
3248
3249 /* If successful, return the inserted filter ID */
3250 if (rc == 0)
3251 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
3252
3253 wake_up_all(&table->waitq);
3254out_unlock:
3255 spin_unlock_bh(&efx->filter_lock);
3256 finish_wait(&table->waitq, &wait);
3257 return rc;
3258}
3259
3260static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3261{
3262 /* no need to do anything here on EF10 */
3263}
3264
3265/* Remove a filter.
3266 * If !by_index, remove by ID
3267 * If by_index, remove by index
3268 * Filter ID may come from userland and must be range-checked.
3269 */
3270static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3271 unsigned int priority_mask,
3272 u32 filter_id, bool by_index)
3273{
3274 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3275 struct efx_ef10_filter_table *table = efx->filter_state;
3276 MCDI_DECLARE_BUF(inbuf,
3277 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3278 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3279 struct efx_filter_spec *spec;
3280 DEFINE_WAIT(wait);
3281 int rc;
3282
3283 /* Find the software table entry and mark it busy. Don't
3284 * remove it yet; any attempt to update while we're waiting
3285 * for the firmware must find the busy entry.
3286 */
3287 for (;;) {
3288 spin_lock_bh(&efx->filter_lock);
3289 if (!(table->entry[filter_idx].spec &
3290 EFX_EF10_FILTER_FLAG_BUSY))
3291 break;
3292 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3293 spin_unlock_bh(&efx->filter_lock);
3294 schedule();
3295 }
3296
3297 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3298 if (!spec ||
3299 (!by_index &&
3300 efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
3301 filter_id / HUNT_FILTER_TBL_ROWS)) {
3302 rc = -ENOENT;
3303 goto out_unlock;
3304 }
3305
3306 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3307 priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3308 /* Just remove flags */
3309 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3310 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3311 rc = 0;
3312 goto out_unlock;
3313 }
3314
3315 if (!(priority_mask & (1U << spec->priority))) {
3316 rc = -ENOENT;
3317 goto out_unlock;
3318 }
3319
3320 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3321 spin_unlock_bh(&efx->filter_lock);
3322
3323 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3324 /* Reset to an automatic filter */
3325
3326 struct efx_filter_spec new_spec = *spec;
3327
3328 new_spec.priority = EFX_FILTER_PRI_AUTO;
3329 new_spec.flags = (EFX_FILTER_FLAG_RX |
3330 (efx_rss_enabled(efx) ?
3331 EFX_FILTER_FLAG_RX_RSS : 0));
3332 new_spec.dmaq_id = 0;
3333 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
3334 rc = efx_ef10_filter_push(efx, &new_spec,
3335 &table->entry[filter_idx].handle,
3336 true);
3337
3338 spin_lock_bh(&efx->filter_lock);
3339 if (rc == 0)
3340 *spec = new_spec;
3341 } else {
3342 /* Really remove the filter */
3343
3344 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3345 efx_ef10_filter_is_exclusive(spec) ?
3346 MC_CMD_FILTER_OP_IN_OP_REMOVE :
3347 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3348 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3349 table->entry[filter_idx].handle);
3350 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3351 inbuf, sizeof(inbuf), NULL, 0, NULL);
3352
3353 spin_lock_bh(&efx->filter_lock);
3354 if (rc == 0) {
3355 kfree(spec);
3356 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3357 }
3358 }
3359
3360 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3361 wake_up_all(&table->waitq);
3362out_unlock:
3363 spin_unlock_bh(&efx->filter_lock);
3364 finish_wait(&table->waitq, &wait);
3365 return rc;
3366}
3367
3368static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
3369 enum efx_filter_priority priority,
3370 u32 filter_id)
3371{
3372 return efx_ef10_filter_remove_internal(efx, 1U << priority,
3373 filter_id, false);
3374}
3375
3376static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
3377{
3378 return filter_id % HUNT_FILTER_TBL_ROWS;
3379}
3380
3381static int efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
3382 enum efx_filter_priority priority,
3383 u32 filter_id)
3384{
3385 return efx_ef10_filter_remove_internal(efx, 1U << priority,
3386 filter_id, true);
3387}
3388
3389static int efx_ef10_filter_get_safe(struct efx_nic *efx,
3390 enum efx_filter_priority priority,
3391 u32 filter_id, struct efx_filter_spec *spec)
3392{
3393 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3394 struct efx_ef10_filter_table *table = efx->filter_state;
3395 const struct efx_filter_spec *saved_spec;
3396 int rc;
3397
3398 spin_lock_bh(&efx->filter_lock);
3399 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
3400 if (saved_spec && saved_spec->priority == priority &&
3401 efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
3402 filter_id / HUNT_FILTER_TBL_ROWS) {
3403 *spec = *saved_spec;
3404 rc = 0;
3405 } else {
3406 rc = -ENOENT;
3407 }
3408 spin_unlock_bh(&efx->filter_lock);
3409 return rc;
3410}
3411
3412static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
3413 enum efx_filter_priority priority)
3414{
3415 unsigned int priority_mask;
3416 unsigned int i;
3417 int rc;
3418
3419 priority_mask = (((1U << (priority + 1)) - 1) &
3420 ~(1U << EFX_FILTER_PRI_AUTO));
3421
3422 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3423 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
3424 i, true);
3425 if (rc && rc != -ENOENT)
3426 return rc;
3427 }
3428
3429 return 0;
3430}
3431
3432static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
3433 enum efx_filter_priority priority)
3434{
3435 struct efx_ef10_filter_table *table = efx->filter_state;
3436 unsigned int filter_idx;
3437 s32 count = 0;
3438
3439 spin_lock_bh(&efx->filter_lock);
3440 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3441 if (table->entry[filter_idx].spec &&
3442 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
3443 priority)
3444 ++count;
3445 }
3446 spin_unlock_bh(&efx->filter_lock);
3447 return count;
3448}
3449
3450static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
3451{
3452 struct efx_ef10_filter_table *table = efx->filter_state;
3453
3454 return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
3455}
3456
3457static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
3458 enum efx_filter_priority priority,
3459 u32 *buf, u32 size)
3460{
3461 struct efx_ef10_filter_table *table = efx->filter_state;
3462 struct efx_filter_spec *spec;
3463 unsigned int filter_idx;
3464 s32 count = 0;
3465
3466 spin_lock_bh(&efx->filter_lock);
3467 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3468 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3469 if (spec && spec->priority == priority) {
3470 if (count == size) {
3471 count = -EMSGSIZE;
3472 break;
3473 }
3474 buf[count++] = (efx_ef10_filter_rx_match_pri(
3475 table, spec->match_flags) *
3476 HUNT_FILTER_TBL_ROWS +
3477 filter_idx);
3478 }
3479 }
3480 spin_unlock_bh(&efx->filter_lock);
3481 return count;
3482}
3483
3484#ifdef CONFIG_RFS_ACCEL
3485
3486static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
3487
3488static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
3489 struct efx_filter_spec *spec)
3490{
3491 struct efx_ef10_filter_table *table = efx->filter_state;
3492 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3493 struct efx_filter_spec *saved_spec;
3494 unsigned int hash, i, depth = 1;
3495 bool replacing = false;
3496 int ins_index = -1;
3497 u64 cookie;
3498 s32 rc;
3499
3500 /* Must be an RX filter without RSS and not for a multicast
3501 * destination address (RFS only works for connected sockets).
3502 * These restrictions allow us to pass only a tiny amount of
3503 * data through to the completion function.
3504 */
3505 EFX_WARN_ON_PARANOID(spec->flags !=
3506 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
3507 EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
3508 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
3509
3510 hash = efx_ef10_filter_hash(spec);
3511
3512 spin_lock_bh(&efx->filter_lock);
3513
3514 /* Find any existing filter with the same match tuple or else
3515 * a free slot to insert at. If an existing filter is busy,
3516 * we have to give up.
3517 */
3518 for (;;) {
3519 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3520 saved_spec = efx_ef10_filter_entry_spec(table, i);
3521
3522 if (!saved_spec) {
3523 if (ins_index < 0)
3524 ins_index = i;
3525 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
3526 if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
3527 rc = -EBUSY;
3528 goto fail_unlock;
3529 }
3530 if (spec->priority < saved_spec->priority) {
3531 rc = -EPERM;
3532 goto fail_unlock;
3533 }
3534 ins_index = i;
3535 break;
3536 }
3537
3538 /* Once we reach the maximum search depth, use the
3539 * first suitable slot or return -EBUSY if there was
3540 * none
3541 */
3542 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3543 if (ins_index < 0) {
3544 rc = -EBUSY;
3545 goto fail_unlock;
3546 }
3547 break;
3548 }
3549
3550 ++depth;
3551 }
3552
3553 /* Create a software table entry if necessary, and mark it
3554 * busy. We might yet fail to insert, but any attempt to
3555 * insert a conflicting filter while we're waiting for the
3556 * firmware must find the busy entry.
3557 */
3558 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3559 if (saved_spec) {
3560 replacing = true;
3561 } else {
3562 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3563 if (!saved_spec) {
3564 rc = -ENOMEM;
3565 goto fail_unlock;
3566 }
3567 *saved_spec = *spec;
3568 }
3569 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3570 EFX_EF10_FILTER_FLAG_BUSY);
3571
3572 spin_unlock_bh(&efx->filter_lock);
3573
3574 /* Pack up the variables needed on completion */
3575 cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
3576
3577 efx_ef10_filter_push_prep(efx, spec, inbuf,
3578 table->entry[ins_index].handle, replacing);
3579 efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3580 MC_CMD_FILTER_OP_OUT_LEN,
3581 efx_ef10_filter_rfs_insert_complete, cookie);
3582
3583 return ins_index;
3584
3585fail_unlock:
3586 spin_unlock_bh(&efx->filter_lock);
3587 return rc;
3588}
3589
3590static void
3591efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
3592 int rc, efx_dword_t *outbuf,
3593 size_t outlen_actual)
3594{
3595 struct efx_ef10_filter_table *table = efx->filter_state;
3596 unsigned int ins_index, dmaq_id;
3597 struct efx_filter_spec *spec;
3598 bool replacing;
3599
3600 /* Unpack the cookie */
3601 replacing = cookie >> 31;
3602 ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
3603 dmaq_id = cookie & 0xffff;
3604
3605 spin_lock_bh(&efx->filter_lock);
3606 spec = efx_ef10_filter_entry_spec(table, ins_index);
3607 if (rc == 0) {
3608 table->entry[ins_index].handle =
3609 MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3610 if (replacing)
3611 spec->dmaq_id = dmaq_id;
3612 } else if (!replacing) {
3613 kfree(spec);
3614 spec = NULL;
3615 }
3616 efx_ef10_filter_set_entry(table, ins_index, spec, 0);
3617 spin_unlock_bh(&efx->filter_lock);
3618
3619 wake_up_all(&table->waitq);
3620}
3621
3622static void
3623efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3624 unsigned long filter_idx,
3625 int rc, efx_dword_t *outbuf,
3626 size_t outlen_actual);
3627
3628static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
3629 unsigned int filter_idx)
3630{
3631 struct efx_ef10_filter_table *table = efx->filter_state;
3632 struct efx_filter_spec *spec =
3633 efx_ef10_filter_entry_spec(table, filter_idx);
3634 MCDI_DECLARE_BUF(inbuf,
3635 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3636 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3637
3638 if (!spec ||
3639 (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
3640 spec->priority != EFX_FILTER_PRI_HINT ||
3641 !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
3642 flow_id, filter_idx))
3643 return false;
3644
3645 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3646 MC_CMD_FILTER_OP_IN_OP_REMOVE);
3647 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3648 table->entry[filter_idx].handle);
3649 if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
3650 efx_ef10_filter_rfs_expire_complete, filter_idx))
3651 return false;
3652
3653 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3654 return true;
3655}
3656
3657static void
3658efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3659 unsigned long filter_idx,
3660 int rc, efx_dword_t *outbuf,
3661 size_t outlen_actual)
3662{
3663 struct efx_ef10_filter_table *table = efx->filter_state;
3664 struct efx_filter_spec *spec =
3665 efx_ef10_filter_entry_spec(table, filter_idx);
3666
3667 spin_lock_bh(&efx->filter_lock);
3668 if (rc == 0) {
3669 kfree(spec);
3670 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3671 }
3672 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3673 wake_up_all(&table->waitq);
3674 spin_unlock_bh(&efx->filter_lock);
3675}
3676
3677#endif /* CONFIG_RFS_ACCEL */
3678
3679static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
3680{
3681 int match_flags = 0;
3682
3683#define MAP_FLAG(gen_flag, mcdi_field) { \
3684 u32 old_mcdi_flags = mcdi_flags; \
3685 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
3686 mcdi_field ## _LBN); \
3687 if (mcdi_flags != old_mcdi_flags) \
3688 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
3689 }
3690 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
3691 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
3692 MAP_FLAG(REM_HOST, SRC_IP);
3693 MAP_FLAG(LOC_HOST, DST_IP);
3694 MAP_FLAG(REM_MAC, SRC_MAC);
3695 MAP_FLAG(REM_PORT, SRC_PORT);
3696 MAP_FLAG(LOC_MAC, DST_MAC);
3697 MAP_FLAG(LOC_PORT, DST_PORT);
3698 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
3699 MAP_FLAG(INNER_VID, INNER_VLAN);
3700 MAP_FLAG(OUTER_VID, OUTER_VLAN);
3701 MAP_FLAG(IP_PROTO, IP_PROTO);
3702#undef MAP_FLAG
3703
3704 /* Did we map them all? */
3705 if (mcdi_flags)
3706 return -EINVAL;
3707
3708 return match_flags;
3709}
3710
3711static int efx_ef10_filter_table_probe(struct efx_nic *efx)
3712{
3713 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
3714 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
3715 unsigned int pd_match_pri, pd_match_count;
3716 struct efx_ef10_filter_table *table;
3717 size_t outlen;
3718 int rc;
3719
3720 table = kzalloc(sizeof(*table), GFP_KERNEL);
3721 if (!table)
3722 return -ENOMEM;
3723
3724 /* Find out which RX filter types are supported, and their priorities */
3725 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3726 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3727 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3728 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3729 &outlen);
3730 if (rc)
3731 goto fail;
3732 pd_match_count = MCDI_VAR_ARRAY_LEN(
3733 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3734 table->rx_match_count = 0;
3735
3736 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3737 u32 mcdi_flags =
3738 MCDI_ARRAY_DWORD(
3739 outbuf,
3740 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3741 pd_match_pri);
3742 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3743 if (rc < 0) {
3744 netif_dbg(efx, probe, efx->net_dev,
3745 "%s: fw flags %#x pri %u not supported in driver\n",
3746 __func__, mcdi_flags, pd_match_pri);
3747 } else {
3748 netif_dbg(efx, probe, efx->net_dev,
3749 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3750 __func__, mcdi_flags, pd_match_pri,
3751 rc, table->rx_match_count);
3752 table->rx_match_flags[table->rx_match_count++] = rc;
3753 }
3754 }
3755
3756 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3757 if (!table->entry) {
3758 rc = -ENOMEM;
3759 goto fail;
3760 }
3761
3762 table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
3763 table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
3764 table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
3765
3766 efx->filter_state = table;
3767 init_waitqueue_head(&table->waitq);
3768 return 0;
3769
3770fail:
3771 kfree(table);
3772 return rc;
3773}
3774
3775/* Caller must hold efx->filter_sem for read if race against
3776 * efx_ef10_filter_table_remove() is possible
3777 */
3778static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3779{
3780 struct efx_ef10_filter_table *table = efx->filter_state;
3781 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3782 struct efx_filter_spec *spec;
3783 unsigned int filter_idx;
3784 bool failed = false;
3785 int rc;
3786
3787 WARN_ON(!rwsem_is_locked(&efx->filter_sem));
3788
3789 if (!nic_data->must_restore_filters)
3790 return;
3791
3792 if (!table)
3793 return;
3794
3795 spin_lock_bh(&efx->filter_lock);
3796
3797 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3798 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3799 if (!spec)
3800 continue;
3801
3802 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3803 spin_unlock_bh(&efx->filter_lock);
3804
3805 rc = efx_ef10_filter_push(efx, spec,
3806 &table->entry[filter_idx].handle,
3807 false);
3808 if (rc)
3809 failed = true;
3810
3811 spin_lock_bh(&efx->filter_lock);
3812 if (rc) {
3813 kfree(spec);
3814 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3815 } else {
3816 table->entry[filter_idx].spec &=
3817 ~EFX_EF10_FILTER_FLAG_BUSY;
3818 }
3819 }
3820
3821 spin_unlock_bh(&efx->filter_lock);
3822
3823 if (failed)
3824 netif_err(efx, hw, efx->net_dev,
3825 "unable to restore all filters\n");
3826 else
3827 nic_data->must_restore_filters = false;
3828}
3829
3830/* Caller must hold efx->filter_sem for write */
3831static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3832{
3833 struct efx_ef10_filter_table *table = efx->filter_state;
3834 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3835 struct efx_filter_spec *spec;
3836 unsigned int filter_idx;
3837 int rc;
3838
3839 efx->filter_state = NULL;
3840 if (!table)
3841 return;
3842
3843 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3844 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3845 if (!spec)
3846 continue;
3847
3848 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3849 efx_ef10_filter_is_exclusive(spec) ?
3850 MC_CMD_FILTER_OP_IN_OP_REMOVE :
3851 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3852 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3853 table->entry[filter_idx].handle);
3854 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
3855 sizeof(inbuf), NULL, 0, NULL);
3856 if (rc)
3857 netif_info(efx, drv, efx->net_dev,
3858 "%s: filter %04x remove failed\n",
3859 __func__, filter_idx);
3860 kfree(spec);
3861 }
3862
3863 vfree(table->entry);
3864 kfree(table);
3865}
3866
3867#define EFX_EF10_FILTER_DO_MARK_OLD(id) \
3868 if (id != EFX_EF10_FILTER_ID_INVALID) { \
3869 filter_idx = efx_ef10_filter_get_unsafe_id(efx, id); \
3870 if (!table->entry[filter_idx].spec) \
3871 netif_dbg(efx, drv, efx->net_dev, \
3872 "%s: marked null spec old %04x:%04x\n", \
3873 __func__, id, filter_idx); \
3874 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;\
3875 }
3876static void efx_ef10_filter_mark_old(struct efx_nic *efx)
3877{
3878 struct efx_ef10_filter_table *table = efx->filter_state;
3879 unsigned int filter_idx, i;
3880
3881 if (!table)
3882 return;
3883
3884 /* Mark old filters that may need to be removed */
3885 spin_lock_bh(&efx->filter_lock);
3886 for (i = 0; i < table->dev_uc_count; i++)
3887 EFX_EF10_FILTER_DO_MARK_OLD(table->dev_uc_list[i].id);
3888 for (i = 0; i < table->dev_mc_count; i++)
3889 EFX_EF10_FILTER_DO_MARK_OLD(table->dev_mc_list[i].id);
3890 EFX_EF10_FILTER_DO_MARK_OLD(table->ucdef_id);
3891 EFX_EF10_FILTER_DO_MARK_OLD(table->bcast_id);
3892 EFX_EF10_FILTER_DO_MARK_OLD(table->mcdef_id);
3893 spin_unlock_bh(&efx->filter_lock);
3894}
3895#undef EFX_EF10_FILTER_DO_MARK_OLD
3896
3897static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx, bool *promisc)
3898{
3899 struct efx_ef10_filter_table *table = efx->filter_state;
3900 struct net_device *net_dev = efx->net_dev;
3901 struct netdev_hw_addr *uc;
3902 int addr_count;
3903 unsigned int i;
3904
3905 table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
3906 addr_count = netdev_uc_count(net_dev);
3907 if (net_dev->flags & IFF_PROMISC)
3908 *promisc = true;
3909 table->dev_uc_count = 1 + addr_count;
3910 ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3911 i = 1;
3912 netdev_for_each_uc_addr(uc, net_dev) {
3913 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
3914 *promisc = true;
3915 break;
3916 }
3917 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3918 table->dev_uc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
3919 i++;
3920 }
3921}
3922
3923static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx, bool *promisc)
3924{
3925 struct efx_ef10_filter_table *table = efx->filter_state;
3926 struct net_device *net_dev = efx->net_dev;
3927 struct netdev_hw_addr *mc;
3928 unsigned int i, addr_count;
3929
3930 table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
3931 table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
3932 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI))
3933 *promisc = true;
3934
3935 addr_count = netdev_mc_count(net_dev);
3936 i = 0;
3937 netdev_for_each_mc_addr(mc, net_dev) {
3938 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
3939 *promisc = true;
3940 break;
3941 }
3942 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3943 table->dev_mc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
3944 i++;
3945 }
3946
3947 table->dev_mc_count = i;
3948}
3949
3950static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
3951 bool multicast, bool rollback)
3952{
3953 struct efx_ef10_filter_table *table = efx->filter_state;
3954 struct efx_ef10_dev_addr *addr_list;
3955 enum efx_filter_flags filter_flags;
3956 struct efx_filter_spec spec;
3957 u8 baddr[ETH_ALEN];
3958 unsigned int i, j;
3959 int addr_count;
3960 int rc;
3961
3962 if (multicast) {
3963 addr_list = table->dev_mc_list;
3964 addr_count = table->dev_mc_count;
3965 } else {
3966 addr_list = table->dev_uc_list;
3967 addr_count = table->dev_uc_count;
3968 }
3969
3970 filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
3971
3972 /* Insert/renew filters */
3973 for (i = 0; i < addr_count; i++) {
3974 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
3975 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3976 addr_list[i].addr);
3977 rc = efx_ef10_filter_insert(efx, &spec, true);
3978 if (rc < 0) {
3979 if (rollback) {
3980 netif_info(efx, drv, efx->net_dev,
3981 "efx_ef10_filter_insert failed rc=%d\n",
3982 rc);
3983 /* Fall back to promiscuous */
3984 for (j = 0; j < i; j++) {
3985 if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
3986 continue;
3987 efx_ef10_filter_remove_unsafe(
3988 efx, EFX_FILTER_PRI_AUTO,
3989 addr_list[j].id);
3990 addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
3991 }
3992 return rc;
3993 } else {
3994 /* mark as not inserted, and carry on */
3995 rc = EFX_EF10_FILTER_ID_INVALID;
3996 }
3997 }
3998 addr_list[i].id = efx_ef10_filter_get_unsafe_id(efx, rc);
3999 }
4000
4001 if (multicast && rollback) {
4002 /* Also need an Ethernet broadcast filter */
4003 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4004 eth_broadcast_addr(baddr);
4005 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, baddr);
4006 rc = efx_ef10_filter_insert(efx, &spec, true);
4007 if (rc < 0) {
4008 netif_warn(efx, drv, efx->net_dev,
4009 "Broadcast filter insert failed rc=%d\n", rc);
4010 /* Fall back to promiscuous */
4011 for (j = 0; j < i; j++) {
4012 if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
4013 continue;
4014 efx_ef10_filter_remove_unsafe(
4015 efx, EFX_FILTER_PRI_AUTO,
4016 addr_list[j].id);
4017 addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
4018 }
4019 return rc;
4020 } else {
4021 table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4022 }
4023 }
4024
4025 return 0;
4026}
4027
4028static int efx_ef10_filter_insert_def(struct efx_nic *efx, bool multicast,
4029 bool rollback)
4030{
4031 struct efx_ef10_filter_table *table = efx->filter_state;
4032 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4033 enum efx_filter_flags filter_flags;
4034 struct efx_filter_spec spec;
4035 u8 baddr[ETH_ALEN];
4036 int rc;
4037
4038 filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4039
4040 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4041
4042 if (multicast)
4043 efx_filter_set_mc_def(&spec);
4044 else
4045 efx_filter_set_uc_def(&spec);
4046
4047 rc = efx_ef10_filter_insert(efx, &spec, true);
4048 if (rc < 0) {
4049 netif_printk(efx, drv, rc == -EPERM ? KERN_DEBUG : KERN_WARNING,
4050 efx->net_dev,
4051 "%scast mismatch filter insert failed rc=%d\n",
4052 multicast ? "Multi" : "Uni", rc);
4053 } else if (multicast) {
4054 table->mcdef_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4055 if (!nic_data->workaround_26807) {
4056 /* Also need an Ethernet broadcast filter */
4057 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
4058 filter_flags, 0);
4059 eth_broadcast_addr(baddr);
4060 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
4061 baddr);
4062 rc = efx_ef10_filter_insert(efx, &spec, true);
4063 if (rc < 0) {
4064 netif_warn(efx, drv, efx->net_dev,
4065 "Broadcast filter insert failed rc=%d\n",
4066 rc);
4067 if (rollback) {
4068 /* Roll back the mc_def filter */
4069 efx_ef10_filter_remove_unsafe(
4070 efx, EFX_FILTER_PRI_AUTO,
4071 table->mcdef_id);
4072 table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
4073 return rc;
4074 }
4075 } else {
4076 table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4077 }
4078 }
4079 rc = 0;
4080 } else {
4081 table->ucdef_id = rc;
4082 rc = 0;
4083 }
4084 return rc;
4085}
4086
4087/* Remove filters that weren't renewed. Since nothing else changes the AUTO_OLD
4088 * flag or removes these filters, we don't need to hold the filter_lock while
4089 * scanning for these filters.
4090 */
4091static void efx_ef10_filter_remove_old(struct efx_nic *efx)
4092{
4093 struct efx_ef10_filter_table *table = efx->filter_state;
4094 int remove_failed = 0;
4095 int remove_noent = 0;
4096 int rc;
4097 int i;
4098
4099 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4100 if (ACCESS_ONCE(table->entry[i].spec) &
4101 EFX_EF10_FILTER_FLAG_AUTO_OLD) {
4102 rc = efx_ef10_filter_remove_internal(efx,
4103 1U << EFX_FILTER_PRI_AUTO, i, true);
4104 if (rc == -ENOENT)
4105 remove_noent++;
4106 else if (rc)
4107 remove_failed++;
4108 }
4109 }
4110
4111 if (remove_failed)
4112 netif_info(efx, drv, efx->net_dev,
4113 "%s: failed to remove %d filters\n",
4114 __func__, remove_failed);
4115 if (remove_noent)
4116 netif_info(efx, drv, efx->net_dev,
4117 "%s: failed to remove %d non-existent filters\n",
4118 __func__, remove_noent);
4119}
4120
4121static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
4122{
4123 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4124 u8 mac_old[ETH_ALEN];
4125 int rc, rc2;
4126
4127 /* Only reconfigure a PF-created vport */
4128 if (is_zero_ether_addr(nic_data->vport_mac))
4129 return 0;
4130
4131 efx_device_detach_sync(efx);
4132 efx_net_stop(efx->net_dev);
4133 down_write(&efx->filter_sem);
4134 efx_ef10_filter_table_remove(efx);
4135 up_write(&efx->filter_sem);
4136
4137 rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
4138 if (rc)
4139 goto restore_filters;
4140
4141 ether_addr_copy(mac_old, nic_data->vport_mac);
4142 rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
4143 nic_data->vport_mac);
4144 if (rc)
4145 goto restore_vadaptor;
4146
4147 rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
4148 efx->net_dev->dev_addr);
4149 if (!rc) {
4150 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
4151 } else {
4152 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
4153 if (rc2) {
4154 /* Failed to add original MAC, so clear vport_mac */
4155 eth_zero_addr(nic_data->vport_mac);
4156 goto reset_nic;
4157 }
4158 }
4159
4160restore_vadaptor:
4161 rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
4162 if (rc2)
4163 goto reset_nic;
4164restore_filters:
4165 down_write(&efx->filter_sem);
4166 rc2 = efx_ef10_filter_table_probe(efx);
4167 up_write(&efx->filter_sem);
4168 if (rc2)
4169 goto reset_nic;
4170
4171 rc2 = efx_net_open(efx->net_dev);
4172 if (rc2)
4173 goto reset_nic;
4174
4175 netif_device_attach(efx->net_dev);
4176
4177 return rc;
4178
4179reset_nic:
4180 netif_err(efx, drv, efx->net_dev,
4181 "Failed to restore when changing MAC address - scheduling reset\n");
4182 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
4183
4184 return rc ? rc : rc2;
4185}
4186
4187/* Caller must hold efx->filter_sem for read if race against
4188 * efx_ef10_filter_table_remove() is possible
4189 */
4190static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
4191{
4192 struct efx_ef10_filter_table *table = efx->filter_state;
4193 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4194 struct net_device *net_dev = efx->net_dev;
4195 bool uc_promisc = false, mc_promisc = false;
4196
4197 if (!efx_dev_registered(efx))
4198 return;
4199
4200 if (!table)
4201 return;
4202
4203 efx_ef10_filter_mark_old(efx);
4204
4205 /* Copy/convert the address lists; add the primary station
4206 * address and broadcast address
4207 */
4208 netif_addr_lock_bh(net_dev);
4209 efx_ef10_filter_uc_addr_list(efx, &uc_promisc);
4210 efx_ef10_filter_mc_addr_list(efx, &mc_promisc);
4211 netif_addr_unlock_bh(net_dev);
4212
4213 /* Insert/renew unicast filters */
4214 if (uc_promisc) {
4215 efx_ef10_filter_insert_def(efx, false, false);
4216 efx_ef10_filter_insert_addr_list(efx, false, false);
4217 } else {
4218 /* If any of the filters failed to insert, fall back to
4219 * promiscuous mode - add in the uc_def filter. But keep
4220 * our individual unicast filters.
4221 */
4222 if (efx_ef10_filter_insert_addr_list(efx, false, false))
4223 efx_ef10_filter_insert_def(efx, false, false);
4224 }
4225
4226 /* Insert/renew multicast filters */
4227 /* If changing promiscuous state with cascaded multicast filters, remove
4228 * old filters first, so that packets are dropped rather than duplicated
4229 */
4230 if (nic_data->workaround_26807 && efx->mc_promisc != mc_promisc)
4231 efx_ef10_filter_remove_old(efx);
4232 if (mc_promisc) {
4233 if (nic_data->workaround_26807) {
4234 /* If we failed to insert promiscuous filters, rollback
4235 * and fall back to individual multicast filters
4236 */
4237 if (efx_ef10_filter_insert_def(efx, true, true)) {
4238 /* Changing promisc state, so remove old filters */
4239 efx_ef10_filter_remove_old(efx);
4240 efx_ef10_filter_insert_addr_list(efx, true, false);
4241 }
4242 } else {
4243 /* If we failed to insert promiscuous filters, don't
4244 * rollback. Regardless, also insert the mc_list
4245 */
4246 efx_ef10_filter_insert_def(efx, true, false);
4247 efx_ef10_filter_insert_addr_list(efx, true, false);
4248 }
4249 } else {
4250 /* If any filters failed to insert, rollback and fall back to
4251 * promiscuous mode - mc_def filter and maybe broadcast. If
4252 * that fails, roll back again and insert as many of our
4253 * individual multicast filters as we can.
4254 */
4255 if (efx_ef10_filter_insert_addr_list(efx, true, true)) {
4256 /* Changing promisc state, so remove old filters */
4257 if (nic_data->workaround_26807)
4258 efx_ef10_filter_remove_old(efx);
4259 if (efx_ef10_filter_insert_def(efx, true, true))
4260 efx_ef10_filter_insert_addr_list(efx, true, false);
4261 }
4262 }
4263
4264 efx_ef10_filter_remove_old(efx);
4265 efx->mc_promisc = mc_promisc;
4266}
4267
4268static int efx_ef10_set_mac_address(struct efx_nic *efx)
4269{
4270 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
4271 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4272 bool was_enabled = efx->port_enabled;
4273 int rc;
4274
4275 efx_device_detach_sync(efx);
4276 efx_net_stop(efx->net_dev);
4277 down_write(&efx->filter_sem);
4278 efx_ef10_filter_table_remove(efx);
4279
4280 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
4281 efx->net_dev->dev_addr);
4282 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
4283 nic_data->vport_id);
4284 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
4285 sizeof(inbuf), NULL, 0, NULL);
4286
4287 efx_ef10_filter_table_probe(efx);
4288 up_write(&efx->filter_sem);
4289 if (was_enabled)
4290 efx_net_open(efx->net_dev);
4291 netif_device_attach(efx->net_dev);
4292
4293#ifdef CONFIG_SFC_SRIOV
4294 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
4295 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
4296
4297 if (rc == -EPERM) {
4298 struct efx_nic *efx_pf;
4299
4300 /* Switch to PF and change MAC address on vport */
4301 efx_pf = pci_get_drvdata(pci_dev_pf);
4302
4303 rc = efx_ef10_sriov_set_vf_mac(efx_pf,
4304 nic_data->vf_index,
4305 efx->net_dev->dev_addr);
4306 } else if (!rc) {
4307 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
4308 struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
4309 unsigned int i;
4310
4311 /* MAC address successfully changed by VF (with MAC
4312 * spoofing) so update the parent PF if possible.
4313 */
4314 for (i = 0; i < efx_pf->vf_count; ++i) {
4315 struct ef10_vf *vf = nic_data->vf + i;
4316
4317 if (vf->efx == efx) {
4318 ether_addr_copy(vf->mac,
4319 efx->net_dev->dev_addr);
4320 return 0;
4321 }
4322 }
4323 }
4324 } else
4325#endif
4326 if (rc == -EPERM) {
4327 netif_err(efx, drv, efx->net_dev,
4328 "Cannot change MAC address; use sfboot to enable"
4329 " mac-spoofing on this interface\n");
4330 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
4331 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
4332 * fall-back to the method of changing the MAC address on the
4333 * vport. This only applies to PFs because such versions of
4334 * MCFW do not support VFs.
4335 */
4336 rc = efx_ef10_vport_set_mac_address(efx);
4337 } else {
4338 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
4339 sizeof(inbuf), NULL, 0, rc);
4340 }
4341
4342 return rc;
4343}
4344
4345static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
4346{
4347 efx_ef10_filter_sync_rx_mode(efx);
4348
4349 return efx_mcdi_set_mac(efx);
4350}
4351
4352static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
4353{
4354 efx_ef10_filter_sync_rx_mode(efx);
4355
4356 return 0;
4357}
4358
4359static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
4360{
4361 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
4362
4363 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
4364 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
4365 NULL, 0, NULL);
4366}
4367
4368/* MC BISTs follow a different poll mechanism to phy BISTs.
4369 * The BIST is done in the poll handler on the MC, and the MCDI command
4370 * will block until the BIST is done.
4371 */
4372static int efx_ef10_poll_bist(struct efx_nic *efx)
4373{
4374 int rc;
4375 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
4376 size_t outlen;
4377 u32 result;
4378
4379 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
4380 outbuf, sizeof(outbuf), &outlen);
4381 if (rc != 0)
4382 return rc;
4383
4384 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
4385 return -EIO;
4386
4387 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
4388 switch (result) {
4389 case MC_CMD_POLL_BIST_PASSED:
4390 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
4391 return 0;
4392 case MC_CMD_POLL_BIST_TIMEOUT:
4393 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
4394 return -EIO;
4395 case MC_CMD_POLL_BIST_FAILED:
4396 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
4397 return -EIO;
4398 default:
4399 netif_err(efx, hw, efx->net_dev,
4400 "BIST returned unknown result %u", result);
4401 return -EIO;
4402 }
4403}
4404
4405static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
4406{
4407 int rc;
4408
4409 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
4410
4411 rc = efx_ef10_start_bist(efx, bist_type);
4412 if (rc != 0)
4413 return rc;
4414
4415 return efx_ef10_poll_bist(efx);
4416}
4417
4418static int
4419efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
4420{
4421 int rc, rc2;
4422
4423 efx_reset_down(efx, RESET_TYPE_WORLD);
4424
4425 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
4426 NULL, 0, NULL, 0, NULL);
4427 if (rc != 0)
4428 goto out;
4429
4430 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
4431 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
4432
4433 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
4434
4435out:
4436 if (rc == -EPERM)
4437 rc = 0;
4438 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
4439 return rc ? rc : rc2;
4440}
4441
4442#ifdef CONFIG_SFC_MTD
4443
4444struct efx_ef10_nvram_type_info {
4445 u16 type, type_mask;
4446 u8 port;
4447 const char *name;
4448};
4449
4450static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
4451 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
4452 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
4453 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
4454 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
4455 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
4456 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
4457 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
4458 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
4459 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
4460 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
4461 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
4462};
4463
4464static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
4465 struct efx_mcdi_mtd_partition *part,
4466 unsigned int type)
4467{
4468 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
4469 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
4470 const struct efx_ef10_nvram_type_info *info;
4471 size_t size, erase_size, outlen;
4472 bool protected;
4473 int rc;
4474
4475 for (info = efx_ef10_nvram_types; ; info++) {
4476 if (info ==
4477 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
4478 return -ENODEV;
4479 if ((type & ~info->type_mask) == info->type)
4480 break;
4481 }
4482 if (info->port != efx_port_num(efx))
4483 return -ENODEV;
4484
4485 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
4486 if (rc)
4487 return rc;
4488 if (protected)
4489 return -ENODEV; /* hide it */
4490
4491 part->nvram_type = type;
4492
4493 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
4494 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
4495 outbuf, sizeof(outbuf), &outlen);
4496 if (rc)
4497 return rc;
4498 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
4499 return -EIO;
4500 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
4501 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
4502 part->fw_subtype = MCDI_DWORD(outbuf,
4503 NVRAM_METADATA_OUT_SUBTYPE);
4504
4505 part->common.dev_type_name = "EF10 NVRAM manager";
4506 part->common.type_name = info->name;
4507
4508 part->common.mtd.type = MTD_NORFLASH;
4509 part->common.mtd.flags = MTD_CAP_NORFLASH;
4510 part->common.mtd.size = size;
4511 part->common.mtd.erasesize = erase_size;
4512
4513 return 0;
4514}
4515
4516static int efx_ef10_mtd_probe(struct efx_nic *efx)
4517{
4518 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
4519 struct efx_mcdi_mtd_partition *parts;
4520 size_t outlen, n_parts_total, i, n_parts;
4521 unsigned int type;
4522 int rc;
4523
4524 ASSERT_RTNL();
4525
4526 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
4527 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
4528 outbuf, sizeof(outbuf), &outlen);
4529 if (rc)
4530 return rc;
4531 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
4532 return -EIO;
4533
4534 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
4535 if (n_parts_total >
4536 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
4537 return -EIO;
4538
4539 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
4540 if (!parts)
4541 return -ENOMEM;
4542
4543 n_parts = 0;
4544 for (i = 0; i < n_parts_total; i++) {
4545 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
4546 i);
4547 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
4548 if (rc == 0)
4549 n_parts++;
4550 else if (rc != -ENODEV)
4551 goto fail;
4552 }
4553
4554 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
4555fail:
4556 if (rc)
4557 kfree(parts);
4558 return rc;
4559}
4560
4561#endif /* CONFIG_SFC_MTD */
4562
4563static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
4564{
4565 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
4566}
4567
4568static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
4569 u32 host_time) {}
4570
4571static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
4572 bool temp)
4573{
4574 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
4575 int rc;
4576
4577 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
4578 channel->sync_events_state == SYNC_EVENTS_VALID ||
4579 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
4580 return 0;
4581 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
4582
4583 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
4584 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4585 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
4586 channel->channel);
4587
4588 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4589 inbuf, sizeof(inbuf), NULL, 0, NULL);
4590
4591 if (rc != 0)
4592 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4593 SYNC_EVENTS_DISABLED;
4594
4595 return rc;
4596}
4597
4598static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
4599 bool temp)
4600{
4601 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
4602 int rc;
4603
4604 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
4605 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
4606 return 0;
4607 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
4608 channel->sync_events_state = SYNC_EVENTS_DISABLED;
4609 return 0;
4610 }
4611 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4612 SYNC_EVENTS_DISABLED;
4613
4614 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
4615 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4616 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
4617 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
4618 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
4619 channel->channel);
4620
4621 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4622 inbuf, sizeof(inbuf), NULL, 0, NULL);
4623
4624 return rc;
4625}
4626
4627static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
4628 bool temp)
4629{
4630 int (*set)(struct efx_channel *channel, bool temp);
4631 struct efx_channel *channel;
4632
4633 set = en ?
4634 efx_ef10_rx_enable_timestamping :
4635 efx_ef10_rx_disable_timestamping;
4636
4637 efx_for_each_channel(channel, efx) {
4638 int rc = set(channel, temp);
4639 if (en && rc != 0) {
4640 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
4641 return rc;
4642 }
4643 }
4644
4645 return 0;
4646}
4647
4648static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
4649 struct hwtstamp_config *init)
4650{
4651 return -EOPNOTSUPP;
4652}
4653
4654static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
4655 struct hwtstamp_config *init)
4656{
4657 int rc;
4658
4659 switch (init->rx_filter) {
4660 case HWTSTAMP_FILTER_NONE:
4661 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
4662 /* if TX timestamping is still requested then leave PTP on */
4663 return efx_ptp_change_mode(efx,
4664 init->tx_type != HWTSTAMP_TX_OFF, 0);
4665 case HWTSTAMP_FILTER_ALL:
4666 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4667 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4668 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4669 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4670 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4671 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4672 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4673 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4674 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4675 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4676 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4677 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4678 init->rx_filter = HWTSTAMP_FILTER_ALL;
4679 rc = efx_ptp_change_mode(efx, true, 0);
4680 if (!rc)
4681 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
4682 if (rc)
4683 efx_ptp_change_mode(efx, false, 0);
4684 return rc;
4685 default:
4686 return -ERANGE;
4687 }
4688}
4689
4690const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4691 .is_vf = true,
4692 .mem_bar = EFX_MEM_VF_BAR,
4693 .mem_map_size = efx_ef10_mem_map_size,
4694 .probe = efx_ef10_probe_vf,
4695 .remove = efx_ef10_remove,
4696 .dimension_resources = efx_ef10_dimension_resources,
4697 .init = efx_ef10_init_nic,
4698 .fini = efx_port_dummy_op_void,
4699 .map_reset_reason = efx_ef10_map_reset_reason,
4700 .map_reset_flags = efx_ef10_map_reset_flags,
4701 .reset = efx_ef10_reset,
4702 .probe_port = efx_mcdi_port_probe,
4703 .remove_port = efx_mcdi_port_remove,
4704 .fini_dmaq = efx_ef10_fini_dmaq,
4705 .prepare_flr = efx_ef10_prepare_flr,
4706 .finish_flr = efx_port_dummy_op_void,
4707 .describe_stats = efx_ef10_describe_stats,
4708 .update_stats = efx_ef10_update_stats_vf,
4709 .start_stats = efx_port_dummy_op_void,
4710 .pull_stats = efx_port_dummy_op_void,
4711 .stop_stats = efx_port_dummy_op_void,
4712 .set_id_led = efx_mcdi_set_id_led,
4713 .push_irq_moderation = efx_ef10_push_irq_moderation,
4714 .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
4715 .check_mac_fault = efx_mcdi_mac_check_fault,
4716 .reconfigure_port = efx_mcdi_port_reconfigure,
4717 .get_wol = efx_ef10_get_wol_vf,
4718 .set_wol = efx_ef10_set_wol_vf,
4719 .resume_wol = efx_port_dummy_op_void,
4720 .mcdi_request = efx_ef10_mcdi_request,
4721 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4722 .mcdi_read_response = efx_ef10_mcdi_read_response,
4723 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4724 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4725 .irq_enable_master = efx_port_dummy_op_void,
4726 .irq_test_generate = efx_ef10_irq_test_generate,
4727 .irq_disable_non_ev = efx_port_dummy_op_void,
4728 .irq_handle_msi = efx_ef10_msi_interrupt,
4729 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4730 .tx_probe = efx_ef10_tx_probe,
4731 .tx_init = efx_ef10_tx_init,
4732 .tx_remove = efx_ef10_tx_remove,
4733 .tx_write = efx_ef10_tx_write,
4734 .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
4735 .rx_probe = efx_ef10_rx_probe,
4736 .rx_init = efx_ef10_rx_init,
4737 .rx_remove = efx_ef10_rx_remove,
4738 .rx_write = efx_ef10_rx_write,
4739 .rx_defer_refill = efx_ef10_rx_defer_refill,
4740 .ev_probe = efx_ef10_ev_probe,
4741 .ev_init = efx_ef10_ev_init,
4742 .ev_fini = efx_ef10_ev_fini,
4743 .ev_remove = efx_ef10_ev_remove,
4744 .ev_process = efx_ef10_ev_process,
4745 .ev_read_ack = efx_ef10_ev_read_ack,
4746 .ev_test_generate = efx_ef10_ev_test_generate,
4747 .filter_table_probe = efx_ef10_filter_table_probe,
4748 .filter_table_restore = efx_ef10_filter_table_restore,
4749 .filter_table_remove = efx_ef10_filter_table_remove,
4750 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4751 .filter_insert = efx_ef10_filter_insert,
4752 .filter_remove_safe = efx_ef10_filter_remove_safe,
4753 .filter_get_safe = efx_ef10_filter_get_safe,
4754 .filter_clear_rx = efx_ef10_filter_clear_rx,
4755 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
4756 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4757 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4758#ifdef CONFIG_RFS_ACCEL
4759 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
4760 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4761#endif
4762#ifdef CONFIG_SFC_MTD
4763 .mtd_probe = efx_port_dummy_op_int,
4764#endif
4765 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4766 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4767#ifdef CONFIG_SFC_SRIOV
4768 .vswitching_probe = efx_ef10_vswitching_probe_vf,
4769 .vswitching_restore = efx_ef10_vswitching_restore_vf,
4770 .vswitching_remove = efx_ef10_vswitching_remove_vf,
4771 .sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
4772#endif
4773 .get_mac_address = efx_ef10_get_mac_address_vf,
4774 .set_mac_address = efx_ef10_set_mac_address,
4775
4776 .revision = EFX_REV_HUNT_A0,
4777 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4778 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4779 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4780 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4781 .can_rx_scatter = true,
4782 .always_rx_scatter = true,
4783 .max_interrupt_mode = EFX_INT_MODE_MSIX,
4784 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4785 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4786 NETIF_F_RXHASH | NETIF_F_NTUPLE),
4787 .mcdi_max_ver = 2,
4788 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4789 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4790 1 << HWTSTAMP_FILTER_ALL,
4791};
4792
4793const struct efx_nic_type efx_hunt_a0_nic_type = {
4794 .is_vf = false,
4795 .mem_bar = EFX_MEM_BAR,
4796 .mem_map_size = efx_ef10_mem_map_size,
4797 .probe = efx_ef10_probe_pf,
4798 .remove = efx_ef10_remove,
4799 .dimension_resources = efx_ef10_dimension_resources,
4800 .init = efx_ef10_init_nic,
4801 .fini = efx_port_dummy_op_void,
4802 .map_reset_reason = efx_ef10_map_reset_reason,
4803 .map_reset_flags = efx_ef10_map_reset_flags,
4804 .reset = efx_ef10_reset,
4805 .probe_port = efx_mcdi_port_probe,
4806 .remove_port = efx_mcdi_port_remove,
4807 .fini_dmaq = efx_ef10_fini_dmaq,
4808 .prepare_flr = efx_ef10_prepare_flr,
4809 .finish_flr = efx_port_dummy_op_void,
4810 .describe_stats = efx_ef10_describe_stats,
4811 .update_stats = efx_ef10_update_stats_pf,
4812 .start_stats = efx_mcdi_mac_start_stats,
4813 .pull_stats = efx_mcdi_mac_pull_stats,
4814 .stop_stats = efx_mcdi_mac_stop_stats,
4815 .set_id_led = efx_mcdi_set_id_led,
4816 .push_irq_moderation = efx_ef10_push_irq_moderation,
4817 .reconfigure_mac = efx_ef10_mac_reconfigure,
4818 .check_mac_fault = efx_mcdi_mac_check_fault,
4819 .reconfigure_port = efx_mcdi_port_reconfigure,
4820 .get_wol = efx_ef10_get_wol,
4821 .set_wol = efx_ef10_set_wol,
4822 .resume_wol = efx_port_dummy_op_void,
4823 .test_chip = efx_ef10_test_chip,
4824 .test_nvram = efx_mcdi_nvram_test_all,
4825 .mcdi_request = efx_ef10_mcdi_request,
4826 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4827 .mcdi_read_response = efx_ef10_mcdi_read_response,
4828 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4829 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4830 .irq_enable_master = efx_port_dummy_op_void,
4831 .irq_test_generate = efx_ef10_irq_test_generate,
4832 .irq_disable_non_ev = efx_port_dummy_op_void,
4833 .irq_handle_msi = efx_ef10_msi_interrupt,
4834 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4835 .tx_probe = efx_ef10_tx_probe,
4836 .tx_init = efx_ef10_tx_init,
4837 .tx_remove = efx_ef10_tx_remove,
4838 .tx_write = efx_ef10_tx_write,
4839 .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
4840 .rx_probe = efx_ef10_rx_probe,
4841 .rx_init = efx_ef10_rx_init,
4842 .rx_remove = efx_ef10_rx_remove,
4843 .rx_write = efx_ef10_rx_write,
4844 .rx_defer_refill = efx_ef10_rx_defer_refill,
4845 .ev_probe = efx_ef10_ev_probe,
4846 .ev_init = efx_ef10_ev_init,
4847 .ev_fini = efx_ef10_ev_fini,
4848 .ev_remove = efx_ef10_ev_remove,
4849 .ev_process = efx_ef10_ev_process,
4850 .ev_read_ack = efx_ef10_ev_read_ack,
4851 .ev_test_generate = efx_ef10_ev_test_generate,
4852 .filter_table_probe = efx_ef10_filter_table_probe,
4853 .filter_table_restore = efx_ef10_filter_table_restore,
4854 .filter_table_remove = efx_ef10_filter_table_remove,
4855 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4856 .filter_insert = efx_ef10_filter_insert,
4857 .filter_remove_safe = efx_ef10_filter_remove_safe,
4858 .filter_get_safe = efx_ef10_filter_get_safe,
4859 .filter_clear_rx = efx_ef10_filter_clear_rx,
4860 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
4861 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4862 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4863#ifdef CONFIG_RFS_ACCEL
4864 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
4865 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4866#endif
4867#ifdef CONFIG_SFC_MTD
4868 .mtd_probe = efx_ef10_mtd_probe,
4869 .mtd_rename = efx_mcdi_mtd_rename,
4870 .mtd_read = efx_mcdi_mtd_read,
4871 .mtd_erase = efx_mcdi_mtd_erase,
4872 .mtd_write = efx_mcdi_mtd_write,
4873 .mtd_sync = efx_mcdi_mtd_sync,
4874#endif
4875 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4876 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4877 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4878#ifdef CONFIG_SFC_SRIOV
4879 .sriov_configure = efx_ef10_sriov_configure,
4880 .sriov_init = efx_ef10_sriov_init,
4881 .sriov_fini = efx_ef10_sriov_fini,
4882 .sriov_wanted = efx_ef10_sriov_wanted,
4883 .sriov_reset = efx_ef10_sriov_reset,
4884 .sriov_flr = efx_ef10_sriov_flr,
4885 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4886 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4887 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4888 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4889 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4890 .vswitching_probe = efx_ef10_vswitching_probe_pf,
4891 .vswitching_restore = efx_ef10_vswitching_restore_pf,
4892 .vswitching_remove = efx_ef10_vswitching_remove_pf,
4893#endif
4894 .get_mac_address = efx_ef10_get_mac_address_pf,
4895 .set_mac_address = efx_ef10_set_mac_address,
4896
4897 .revision = EFX_REV_HUNT_A0,
4898 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4899 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4900 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4901 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4902 .can_rx_scatter = true,
4903 .always_rx_scatter = true,
4904 .max_interrupt_mode = EFX_INT_MODE_MSIX,
4905 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4906 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4907 NETIF_F_RXHASH | NETIF_F_NTUPLE),
4908 .mcdi_max_ver = 2,
4909 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4910 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4911 1 << HWTSTAMP_FILTER_ALL,
4912};