Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2012-2013 Solarflare Communications Inc.
   5 */
   6
   7#include "net_driver.h"
   8#include "rx_common.h"
   9#include "tx_common.h"
  10#include "ef10_regs.h"
  11#include "io.h"
  12#include "mcdi.h"
  13#include "mcdi_pcol.h"
  14#include "mcdi_port.h"
  15#include "mcdi_port_common.h"
  16#include "mcdi_functions.h"
  17#include "nic.h"
  18#include "mcdi_filters.h"
  19#include "workarounds.h"
  20#include "selftest.h"
  21#include "ef10_sriov.h"
  22#include <linux/in.h>
  23#include <linux/jhash.h>
  24#include <linux/wait.h>
  25#include <linux/workqueue.h>
  26#include <net/udp_tunnel.h>
  27
  28/* Hardware control for EF10 architecture including 'Huntington'. */
  29
  30#define EFX_EF10_DRVGEN_EV		7
  31enum {
  32	EFX_EF10_TEST = 1,
  33	EFX_EF10_REFILL,
  34};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35
  36/* VLAN list entry */
  37struct efx_ef10_vlan {
  38	struct list_head list;
  39	u16 vid;
  40};
  41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
  43static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44
  45static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
  46{
  47	efx_dword_t reg;
  48
  49	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
  50	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  51		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  52}
  53
  54/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
  55 * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
  56 * bar; PFs use BAR 0/1 for memory.
  57 */
  58static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
  59{
  60	switch (efx->pci_dev->device) {
  61	case 0x0b03: /* SFC9250 PF */
  62		return 0;
  63	default:
  64		return 2;
  65	}
  66}
  67
  68/* All VFs use BAR 0/1 for memory */
  69static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
  70{
  71	return 0;
  72}
  73
  74static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
  75{
  76	int bar;
  77
  78	bar = efx->type->mem_bar(efx);
  79	return resource_size(&efx->pci_dev->resource[bar]);
  80}
  81
  82static bool efx_ef10_is_vf(struct efx_nic *efx)
  83{
  84	return efx->type->is_vf;
  85}
  86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87#ifdef CONFIG_SFC_SRIOV
  88static int efx_ef10_get_vf_index(struct efx_nic *efx)
  89{
  90	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
  91	struct efx_ef10_nic_data *nic_data = efx->nic_data;
  92	size_t outlen;
  93	int rc;
  94
  95	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
  96			  sizeof(outbuf), &outlen);
  97	if (rc)
  98		return rc;
  99	if (outlen < sizeof(outbuf))
 100		return -EIO;
 101
 102	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 103	return 0;
 104}
 105#endif
 106
 107static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 108{
 109	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
 110	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 111	size_t outlen;
 112	int rc;
 113
 114	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 115
 116	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 117			  outbuf, sizeof(outbuf), &outlen);
 118	if (rc)
 119		return rc;
 120	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 121		netif_err(efx, drv, efx->net_dev,
 122			  "unable to read datapath firmware capabilities\n");
 123		return -EIO;
 124	}
 125
 126	nic_data->datapath_caps =
 127		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 128
 129	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
 130		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 131				GET_CAPABILITIES_V2_OUT_FLAGS2);
 132		nic_data->piobuf_size = MCDI_WORD(outbuf,
 133				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
 134	} else {
 135		nic_data->datapath_caps2 = 0;
 136		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
 137	}
 138
 139	/* record the DPCPU firmware IDs to determine VEB vswitching support.
 140	 */
 141	nic_data->rx_dpcpu_fw_id =
 142		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 143	nic_data->tx_dpcpu_fw_id =
 144		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 145
 146	if (!(nic_data->datapath_caps &
 147	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 148		netif_err(efx, probe, efx->net_dev,
 149			  "current firmware does not support an RX prefix\n");
 150		return -ENODEV;
 151	}
 152
 153	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
 154		u8 vi_window_mode = MCDI_BYTE(outbuf,
 155				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 156
 157		rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
 158		if (rc)
 159			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	} else {
 161		/* keep default VI stride */
 162		netif_dbg(efx, probe, efx->net_dev,
 163			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
 164			  efx->vi_stride);
 165	}
 166
 167	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 168		efx->num_mac_stats = MCDI_WORD(outbuf,
 169				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 170		netif_dbg(efx, probe, efx->net_dev,
 171			  "firmware reports num_mac_stats = %u\n",
 172			  efx->num_mac_stats);
 173	} else {
 174		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
 175		netif_dbg(efx, probe, efx->net_dev,
 176			  "firmware did not report num_mac_stats, assuming %u\n",
 177			  efx->num_mac_stats);
 178	}
 179
 180	return 0;
 181}
 182
 183static void efx_ef10_read_licensed_features(struct efx_nic *efx)
 184{
 185	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
 186	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
 187	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 188	size_t outlen;
 189	int rc;
 190
 191	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
 192		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
 193	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
 194				outbuf, sizeof(outbuf), &outlen);
 195	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
 196		return;
 197
 198	nic_data->licensed_features = MCDI_QWORD(outbuf,
 199					 LICENSING_V3_OUT_LICENSED_FEATURES);
 200}
 201
 202static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 203{
 204	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 205	int rc;
 206
 207	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 208			  outbuf, sizeof(outbuf), NULL);
 209	if (rc)
 210		return rc;
 211	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 212	return rc > 0 ? rc : -ERANGE;
 213}
 214
 215static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 216{
 217	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 218	unsigned int implemented;
 219	unsigned int enabled;
 220	int rc;
 221
 222	nic_data->workaround_35388 = false;
 223	nic_data->workaround_61265 = false;
 224
 225	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 226
 227	if (rc == -ENOSYS) {
 228		/* Firmware without GET_WORKAROUNDS - not a problem. */
 229		rc = 0;
 230	} else if (rc == 0) {
 231		/* Bug61265 workaround is always enabled if implemented. */
 232		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 233			nic_data->workaround_61265 = true;
 234
 235		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 236			nic_data->workaround_35388 = true;
 237		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 238			/* Workaround is implemented but not enabled.
 239			 * Try to enable it.
 240			 */
 241			rc = efx_mcdi_set_workaround(efx,
 242						     MC_CMD_WORKAROUND_BUG35388,
 243						     true, NULL);
 244			if (rc == 0)
 245				nic_data->workaround_35388 = true;
 246			/* If we failed to set the workaround just carry on. */
 247			rc = 0;
 248		}
 249	}
 250
 251	netif_dbg(efx, probe, efx->net_dev,
 252		  "workaround for bug 35388 is %sabled\n",
 253		  nic_data->workaround_35388 ? "en" : "dis");
 254	netif_dbg(efx, probe, efx->net_dev,
 255		  "workaround for bug 61265 is %sabled\n",
 256		  nic_data->workaround_61265 ? "en" : "dis");
 257
 258	return rc;
 259}
 260
 261static void efx_ef10_process_timer_config(struct efx_nic *efx,
 262					  const efx_dword_t *data)
 263{
 264	unsigned int max_count;
 265
 266	if (EFX_EF10_WORKAROUND_61265(efx)) {
 267		efx->timer_quantum_ns = MCDI_DWORD(data,
 268			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 269		efx->timer_max_ns = MCDI_DWORD(data,
 270			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 271	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
 272		efx->timer_quantum_ns = MCDI_DWORD(data,
 273			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 274		max_count = MCDI_DWORD(data,
 275			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 276		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 277	} else {
 278		efx->timer_quantum_ns = MCDI_DWORD(data,
 279			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 280		max_count = MCDI_DWORD(data,
 281			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 282		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 283	}
 284
 285	netif_dbg(efx, probe, efx->net_dev,
 286		  "got timer properties from MC: quantum %u ns; max %u ns\n",
 287		  efx->timer_quantum_ns, efx->timer_max_ns);
 288}
 289
 290static int efx_ef10_get_timer_config(struct efx_nic *efx)
 291{
 292	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 293	int rc;
 294
 295	rc = efx_ef10_get_timer_workarounds(efx);
 296	if (rc)
 297		return rc;
 298
 299	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 300				outbuf, sizeof(outbuf), NULL);
 301
 302	if (rc == 0) {
 303		efx_ef10_process_timer_config(efx, outbuf);
 304	} else if (rc == -ENOSYS || rc == -EPERM) {
 305		/* Not available - fall back to Huntington defaults. */
 306		unsigned int quantum;
 307
 308		rc = efx_ef10_get_sysclk_freq(efx);
 309		if (rc < 0)
 310			return rc;
 311
 312		quantum = 1536000 / rc; /* 1536 cycles */
 313		efx->timer_quantum_ns = quantum;
 314		efx->timer_max_ns = efx->type->timer_period_max * quantum;
 315		rc = 0;
 316	} else {
 317		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 318				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 319				       NULL, 0, rc);
 320	}
 321
 322	return rc;
 323}
 324
 325static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 326{
 327	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 328	size_t outlen;
 329	int rc;
 330
 331	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 332
 333	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 334			  outbuf, sizeof(outbuf), &outlen);
 335	if (rc)
 336		return rc;
 337	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 338		return -EIO;
 339
 340	ether_addr_copy(mac_address,
 341			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 342	return 0;
 343}
 344
 345static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 346{
 347	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 348	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 349	size_t outlen;
 350	int num_addrs, rc;
 351
 352	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 353		       EVB_PORT_ID_ASSIGNED);
 354	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 355			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 356
 357	if (rc)
 358		return rc;
 359	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 360		return -EIO;
 361
 362	num_addrs = MCDI_DWORD(outbuf,
 363			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 364
 365	WARN_ON(num_addrs != 1);
 366
 367	ether_addr_copy(mac_address,
 368			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 369
 370	return 0;
 371}
 372
 373static ssize_t link_control_flag_show(struct device *dev,
 374				      struct device_attribute *attr,
 375				      char *buf)
 376{
 377	struct efx_nic *efx = dev_get_drvdata(dev);
 378
 379	return sprintf(buf, "%d\n",
 380		       ((efx->mcdi->fn_flags) &
 381			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 382		       ? 1 : 0);
 383}
 384
 385static ssize_t primary_flag_show(struct device *dev,
 386				 struct device_attribute *attr,
 387				 char *buf)
 388{
 389	struct efx_nic *efx = dev_get_drvdata(dev);
 390
 391	return sprintf(buf, "%d\n",
 392		       ((efx->mcdi->fn_flags) &
 393			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 394		       ? 1 : 0);
 395}
 396
 397static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 398{
 399	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 400	struct efx_ef10_vlan *vlan;
 401
 402	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 403
 404	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 405		if (vlan->vid == vid)
 406			return vlan;
 407	}
 408
 409	return NULL;
 410}
 411
 412static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 413{
 414	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 415	struct efx_ef10_vlan *vlan;
 416	int rc;
 417
 418	mutex_lock(&nic_data->vlan_lock);
 419
 420	vlan = efx_ef10_find_vlan(efx, vid);
 421	if (vlan) {
 422		/* We add VID 0 on init. 8021q adds it on module init
 423		 * for all interfaces with VLAN filtring feature.
 424		 */
 425		if (vid == 0)
 426			goto done_unlock;
 427		netif_warn(efx, drv, efx->net_dev,
 428			   "VLAN %u already added\n", vid);
 429		rc = -EALREADY;
 430		goto fail_exist;
 431	}
 432
 433	rc = -ENOMEM;
 434	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 435	if (!vlan)
 436		goto fail_alloc;
 437
 438	vlan->vid = vid;
 439
 440	list_add_tail(&vlan->list, &nic_data->vlan_list);
 441
 442	if (efx->filter_state) {
 443		mutex_lock(&efx->mac_lock);
 444		down_write(&efx->filter_sem);
 445		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
 446		up_write(&efx->filter_sem);
 447		mutex_unlock(&efx->mac_lock);
 448		if (rc)
 449			goto fail_filter_add_vlan;
 450	}
 451
 452done_unlock:
 453	mutex_unlock(&nic_data->vlan_lock);
 454	return 0;
 455
 456fail_filter_add_vlan:
 457	list_del(&vlan->list);
 458	kfree(vlan);
 459fail_alloc:
 460fail_exist:
 461	mutex_unlock(&nic_data->vlan_lock);
 462	return rc;
 463}
 464
 465static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 466				       struct efx_ef10_vlan *vlan)
 467{
 468	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 469
 470	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 471
 472	if (efx->filter_state) {
 473		down_write(&efx->filter_sem);
 474		efx_mcdi_filter_del_vlan(efx, vlan->vid);
 475		up_write(&efx->filter_sem);
 476	}
 477
 478	list_del(&vlan->list);
 479	kfree(vlan);
 480}
 481
 482static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 483{
 484	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 485	struct efx_ef10_vlan *vlan;
 486	int rc = 0;
 487
 488	/* 8021q removes VID 0 on module unload for all interfaces
 489	 * with VLAN filtering feature. We need to keep it to receive
 490	 * untagged traffic.
 491	 */
 492	if (vid == 0)
 493		return 0;
 494
 495	mutex_lock(&nic_data->vlan_lock);
 496
 497	vlan = efx_ef10_find_vlan(efx, vid);
 498	if (!vlan) {
 499		netif_err(efx, drv, efx->net_dev,
 500			  "VLAN %u to be deleted not found\n", vid);
 501		rc = -ENOENT;
 502	} else {
 503		efx_ef10_del_vlan_internal(efx, vlan);
 504	}
 505
 506	mutex_unlock(&nic_data->vlan_lock);
 507
 508	return rc;
 509}
 510
 511static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 512{
 513	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 514	struct efx_ef10_vlan *vlan, *next_vlan;
 515
 516	mutex_lock(&nic_data->vlan_lock);
 517	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 518		efx_ef10_del_vlan_internal(efx, vlan);
 519	mutex_unlock(&nic_data->vlan_lock);
 520}
 521
 522static DEVICE_ATTR_RO(link_control_flag);
 523static DEVICE_ATTR_RO(primary_flag);
 
 524
 525static int efx_ef10_probe(struct efx_nic *efx)
 526{
 527	struct efx_ef10_nic_data *nic_data;
 528	int i, rc;
 529
 530	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 531	if (!nic_data)
 532		return -ENOMEM;
 533	efx->nic_data = nic_data;
 534
 535	/* we assume later that we can copy from this buffer in dwords */
 536	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 537
 538	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 539				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 540	if (rc)
 541		goto fail1;
 542
 543	/* Get the MC's warm boot count.  In case it's rebooting right
 544	 * now, be prepared to retry.
 545	 */
 546	i = 0;
 547	for (;;) {
 548		rc = efx_ef10_get_warm_boot_count(efx);
 549		if (rc >= 0)
 550			break;
 551		if (++i == 5)
 552			goto fail2;
 553		ssleep(1);
 554	}
 555	nic_data->warm_boot_count = rc;
 556
 
 
 
 
 557	/* In case we're recovering from a crash (kexec), we want to
 558	 * cancel any outstanding request by the previous user of this
 559	 * function.  We send a special message using the least
 560	 * significant bits of the 'high' (doorbell) register.
 561	 */
 562	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 563
 564	rc = efx_mcdi_init(efx);
 565	if (rc)
 566		goto fail2;
 567
 568	mutex_init(&nic_data->udp_tunnels_lock);
 569	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
 570		nic_data->udp_tunnels[i].type =
 571			TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
 572
 573	/* Reset (most) configuration for this function */
 574	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 575	if (rc)
 576		goto fail3;
 577
 578	/* Enable event logging */
 579	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 580	if (rc)
 581		goto fail3;
 582
 583	rc = device_create_file(&efx->pci_dev->dev,
 584				&dev_attr_link_control_flag);
 585	if (rc)
 586		goto fail3;
 587
 588	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 589	if (rc)
 590		goto fail4;
 591
 592	rc = efx_get_pf_index(efx, &nic_data->pf_index);
 593	if (rc)
 594		goto fail5;
 595
 596	rc = efx_ef10_init_datapath_caps(efx);
 597	if (rc < 0)
 598		goto fail5;
 599
 600	efx_ef10_read_licensed_features(efx);
 601
 602	/* We can have one VI for each vi_stride-byte region.
 603	 * However, until we use TX option descriptors we need up to four
 604	 * TX queues per channel for different checksumming combinations.
 605	 */
 606	if (nic_data->datapath_caps &
 607	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
 608		efx->tx_queues_per_channel = 4;
 609	else
 610		efx->tx_queues_per_channel = 2;
 611	efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
 612	if (!efx->max_vis) {
 613		netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
 614		rc = -EIO;
 615		goto fail5;
 616	}
 617	efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
 618				  efx->max_vis / efx->tx_queues_per_channel);
 619	efx->max_tx_channels = efx->max_channels;
 620	if (WARN_ON(efx->max_channels == 0)) {
 621		rc = -EIO;
 622		goto fail5;
 623	}
 624
 625	efx->rx_packet_len_offset =
 626		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 627
 628	if (nic_data->datapath_caps &
 629	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
 630		efx->net_dev->hw_features |= NETIF_F_RXFCS;
 631
 632	rc = efx_mcdi_port_get_number(efx);
 633	if (rc < 0)
 634		goto fail5;
 635	efx->port_num = rc;
 636
 637	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 638	if (rc)
 639		goto fail5;
 640
 641	rc = efx_ef10_get_timer_config(efx);
 642	if (rc < 0)
 643		goto fail5;
 644
 645	rc = efx_mcdi_mon_probe(efx);
 646	if (rc && rc != -EPERM)
 647		goto fail5;
 648
 649	efx_ptp_defer_probe_with_channel(efx);
 650
 651#ifdef CONFIG_SFC_SRIOV
 652	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 653		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 654		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 655
 656		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 657	} else
 658#endif
 659		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 660
 661	INIT_LIST_HEAD(&nic_data->vlan_list);
 662	mutex_init(&nic_data->vlan_lock);
 663
 664	/* Add unspecified VID to support VLAN filtering being disabled */
 665	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 666	if (rc)
 667		goto fail_add_vid_unspec;
 668
 669	/* If VLAN filtering is enabled, we need VID 0 to get untagged
 670	 * traffic.  It is added automatically if 8021q module is loaded,
 671	 * but we can't rely on it since module may be not loaded.
 672	 */
 673	rc = efx_ef10_add_vlan(efx, 0);
 674	if (rc)
 675		goto fail_add_vid_0;
 676
 677	if (nic_data->datapath_caps &
 678	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
 679	    efx->mcdi->fn_flags &
 680	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
 681		efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
 682
 683	return 0;
 684
 685fail_add_vid_0:
 686	efx_ef10_cleanup_vlans(efx);
 687fail_add_vid_unspec:
 688	mutex_destroy(&nic_data->vlan_lock);
 689	efx_ptp_remove(efx);
 690	efx_mcdi_mon_remove(efx);
 691fail5:
 692	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 693fail4:
 694	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 695fail3:
 696	efx_mcdi_detach(efx);
 697
 698	mutex_lock(&nic_data->udp_tunnels_lock);
 699	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 700	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 701	mutex_unlock(&nic_data->udp_tunnels_lock);
 702	mutex_destroy(&nic_data->udp_tunnels_lock);
 703
 704	efx_mcdi_fini(efx);
 705fail2:
 706	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 707fail1:
 708	kfree(nic_data);
 709	efx->nic_data = NULL;
 710	return rc;
 711}
 712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713#ifdef EFX_USE_PIO
 714
 715static void efx_ef10_free_piobufs(struct efx_nic *efx)
 716{
 717	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 718	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 719	unsigned int i;
 720	int rc;
 721
 722	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 723
 724	for (i = 0; i < nic_data->n_piobufs; i++) {
 725		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 726			       nic_data->piobuf_handle[i]);
 727		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 728				  NULL, 0, NULL);
 729		WARN_ON(rc);
 730	}
 731
 732	nic_data->n_piobufs = 0;
 733}
 734
 735static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 736{
 737	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 738	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 739	unsigned int i;
 740	size_t outlen;
 741	int rc = 0;
 742
 743	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 744
 745	for (i = 0; i < n; i++) {
 746		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 747					outbuf, sizeof(outbuf), &outlen);
 748		if (rc) {
 749			/* Don't display the MC error if we didn't have space
 750			 * for a VF.
 751			 */
 752			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 753				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 754						       0, outbuf, outlen, rc);
 755			break;
 756		}
 757		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 758			rc = -EIO;
 759			break;
 760		}
 761		nic_data->piobuf_handle[i] =
 762			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 763		netif_dbg(efx, probe, efx->net_dev,
 764			  "allocated PIO buffer %u handle %x\n", i,
 765			  nic_data->piobuf_handle[i]);
 766	}
 767
 768	nic_data->n_piobufs = i;
 769	if (rc)
 770		efx_ef10_free_piobufs(efx);
 771	return rc;
 772}
 773
 774static int efx_ef10_link_piobufs(struct efx_nic *efx)
 775{
 776	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 777	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
 778	struct efx_channel *channel;
 779	struct efx_tx_queue *tx_queue;
 780	unsigned int offset, index;
 781	int rc;
 782
 783	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 784	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 785
 786	/* Link a buffer to each VI in the write-combining mapping */
 787	for (index = 0; index < nic_data->n_piobufs; ++index) {
 788		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 789			       nic_data->piobuf_handle[index]);
 790		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 791			       nic_data->pio_write_vi_base + index);
 792		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 793				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 794				  NULL, 0, NULL);
 795		if (rc) {
 796			netif_err(efx, drv, efx->net_dev,
 797				  "failed to link VI %u to PIO buffer %u (%d)\n",
 798				  nic_data->pio_write_vi_base + index, index,
 799				  rc);
 800			goto fail;
 801		}
 802		netif_dbg(efx, probe, efx->net_dev,
 803			  "linked VI %u to PIO buffer %u\n",
 804			  nic_data->pio_write_vi_base + index, index);
 805	}
 806
 807	/* Link a buffer to each TX queue */
 808	efx_for_each_channel(channel, efx) {
 809		/* Extra channels, even those with TXQs (PTP), do not require
 810		 * PIO resources.
 811		 */
 812		if (!channel->type->want_pio ||
 813		    channel->channel >= efx->xdp_channel_offset)
 814			continue;
 815
 816		efx_for_each_channel_tx_queue(tx_queue, channel) {
 817			/* We assign the PIO buffers to queues in
 818			 * reverse order to allow for the following
 819			 * special case.
 820			 */
 821			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 822				   tx_queue->channel->channel - 1) *
 823				  efx_piobuf_size);
 824			index = offset / nic_data->piobuf_size;
 825			offset = offset % nic_data->piobuf_size;
 826
 827			/* When the host page size is 4K, the first
 828			 * host page in the WC mapping may be within
 829			 * the same VI page as the last TX queue.  We
 830			 * can only link one buffer to each VI.
 831			 */
 832			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 833				BUG_ON(index != 0);
 834				rc = 0;
 835			} else {
 836				MCDI_SET_DWORD(inbuf,
 837					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 838					       nic_data->piobuf_handle[index]);
 839				MCDI_SET_DWORD(inbuf,
 840					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 841					       tx_queue->queue);
 842				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 843						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 844						  NULL, 0, NULL);
 845			}
 846
 847			if (rc) {
 848				/* This is non-fatal; the TX path just
 849				 * won't use PIO for this queue
 850				 */
 851				netif_err(efx, drv, efx->net_dev,
 852					  "failed to link VI %u to PIO buffer %u (%d)\n",
 853					  tx_queue->queue, index, rc);
 854				tx_queue->piobuf = NULL;
 855			} else {
 856				tx_queue->piobuf =
 857					nic_data->pio_write_base +
 858					index * efx->vi_stride + offset;
 859				tx_queue->piobuf_offset = offset;
 860				netif_dbg(efx, probe, efx->net_dev,
 861					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 862					  tx_queue->queue, index,
 863					  tx_queue->piobuf_offset,
 864					  tx_queue->piobuf);
 865			}
 866		}
 867	}
 868
 869	return 0;
 870
 871fail:
 872	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
 873	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
 874	 */
 875	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
 876	while (index--) {
 877		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 878			       nic_data->pio_write_vi_base + index);
 879		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 880			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 881			     NULL, 0, NULL);
 882	}
 883	return rc;
 884}
 885
 886static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 887{
 888	struct efx_channel *channel;
 889	struct efx_tx_queue *tx_queue;
 890
 891	/* All our existing PIO buffers went away */
 892	efx_for_each_channel(channel, efx)
 893		efx_for_each_channel_tx_queue(tx_queue, channel)
 894			tx_queue->piobuf = NULL;
 895}
 896
 897#else /* !EFX_USE_PIO */
 898
 899static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 900{
 901	return n == 0 ? 0 : -ENOBUFS;
 902}
 903
 904static int efx_ef10_link_piobufs(struct efx_nic *efx)
 905{
 906	return 0;
 907}
 908
 909static void efx_ef10_free_piobufs(struct efx_nic *efx)
 910{
 911}
 912
 913static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 914{
 915}
 916
 917#endif /* EFX_USE_PIO */
 918
 919static void efx_ef10_remove(struct efx_nic *efx)
 920{
 921	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 922	int rc;
 923
 924#ifdef CONFIG_SFC_SRIOV
 925	struct efx_ef10_nic_data *nic_data_pf;
 926	struct pci_dev *pci_dev_pf;
 927	struct efx_nic *efx_pf;
 928	struct ef10_vf *vf;
 929
 930	if (efx->pci_dev->is_virtfn) {
 931		pci_dev_pf = efx->pci_dev->physfn;
 932		if (pci_dev_pf) {
 933			efx_pf = pci_get_drvdata(pci_dev_pf);
 934			nic_data_pf = efx_pf->nic_data;
 935			vf = nic_data_pf->vf + nic_data->vf_index;
 936			vf->efx = NULL;
 937		} else
 938			netif_info(efx, drv, efx->net_dev,
 939				   "Could not get the PF id from VF\n");
 940	}
 941#endif
 942
 943	efx_ef10_cleanup_vlans(efx);
 944	mutex_destroy(&nic_data->vlan_lock);
 945
 946	efx_ptp_remove(efx);
 947
 948	efx_mcdi_mon_remove(efx);
 949
 950	efx_mcdi_rx_free_indir_table(efx);
 951
 952	if (nic_data->wc_membase)
 953		iounmap(nic_data->wc_membase);
 954
 955	rc = efx_mcdi_free_vis(efx);
 956	WARN_ON(rc != 0);
 957
 958	if (!nic_data->must_restore_piobufs)
 959		efx_ef10_free_piobufs(efx);
 960
 961	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 962	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 963
 964	efx_mcdi_detach(efx);
 965
 966	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 967	mutex_lock(&nic_data->udp_tunnels_lock);
 968	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 969	mutex_unlock(&nic_data->udp_tunnels_lock);
 970
 971	mutex_destroy(&nic_data->udp_tunnels_lock);
 972
 973	efx_mcdi_fini(efx);
 974	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 975	kfree(nic_data);
 976}
 977
 978static int efx_ef10_probe_pf(struct efx_nic *efx)
 979{
 980	return efx_ef10_probe(efx);
 981}
 982
 983int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
 984			    u32 *port_flags, u32 *vadaptor_flags,
 985			    unsigned int *vlan_tags)
 986{
 987	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 988	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
 989	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
 990	size_t outlen;
 991	int rc;
 992
 993	if (nic_data->datapath_caps &
 994	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
 995		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
 996			       port_id);
 997
 998		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
 999				  outbuf, sizeof(outbuf), &outlen);
1000		if (rc)
1001			return rc;
1002
1003		if (outlen < sizeof(outbuf)) {
1004			rc = -EIO;
1005			return rc;
1006		}
1007	}
1008
1009	if (port_flags)
1010		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1011	if (vadaptor_flags)
1012		*vadaptor_flags =
1013			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014	if (vlan_tags)
1015		*vlan_tags =
1016			MCDI_DWORD(outbuf,
1017				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1018
1019	return 0;
1020}
1021
1022int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1023{
1024	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1025
1026	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028			    NULL, 0, NULL);
1029}
1030
1031int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1032{
1033	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1034
1035	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037			    NULL, 0, NULL);
1038}
1039
1040int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041			   unsigned int port_id, const u8 *mac)
1042{
1043	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1044
1045	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1047
1048	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049			    sizeof(inbuf), NULL, 0, NULL);
1050}
1051
1052int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053			   unsigned int port_id, const u8 *mac)
1054{
1055	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1056
1057	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1059
1060	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061			    sizeof(inbuf), NULL, 0, NULL);
1062}
1063
1064#ifdef CONFIG_SFC_SRIOV
1065static int efx_ef10_probe_vf(struct efx_nic *efx)
1066{
1067	int rc;
1068	struct pci_dev *pci_dev_pf;
1069
1070	/* If the parent PF has no VF data structure, it doesn't know about this
1071	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1072	 * if the PF driver was unloaded while any VF was assigned to a guest
1073	 * (using Xen, only).
1074	 */
1075	pci_dev_pf = efx->pci_dev->physfn;
1076	if (pci_dev_pf) {
1077		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079
1080		if (!nic_data_pf->vf) {
1081			netif_info(efx, drv, efx->net_dev,
1082				   "The VF cannot link to its parent PF; "
1083				   "please destroy and re-create the VF\n");
1084			return -EBUSY;
1085		}
1086	}
1087
1088	rc = efx_ef10_probe(efx);
1089	if (rc)
1090		return rc;
1091
1092	rc = efx_ef10_get_vf_index(efx);
1093	if (rc)
1094		goto fail;
1095
1096	if (efx->pci_dev->is_virtfn) {
1097		if (efx->pci_dev->physfn) {
1098			struct efx_nic *efx_pf =
1099				pci_get_drvdata(efx->pci_dev->physfn);
1100			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102
1103			nic_data_p->vf[nic_data->vf_index].efx = efx;
1104			nic_data_p->vf[nic_data->vf_index].pci_dev =
1105				efx->pci_dev;
1106		} else
1107			netif_info(efx, drv, efx->net_dev,
1108				   "Could not get the PF id from VF\n");
1109	}
1110
1111	return 0;
1112
1113fail:
1114	efx_ef10_remove(efx);
1115	return rc;
1116}
1117#else
1118static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119{
1120	return 0;
1121}
1122#endif
1123
1124static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125			      unsigned int min_vis, unsigned int max_vis)
1126{
 
 
1127	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
1128
1129	return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130				  &nic_data->n_allocated_vis);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131}
1132
1133/* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1135 */
1136static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137{
1138	unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139				     efx_separate_tx_channels ? 2 : 1);
1140	unsigned int channel_vis, pio_write_vi_base, max_vis;
1141	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142	unsigned int uc_mem_map_size, wc_mem_map_size;
 
 
 
1143	void __iomem *membase;
1144	int rc;
1145
1146	channel_vis = max(efx->n_channels,
1147			  ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148			   efx->tx_queues_per_channel) +
1149			   efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150	if (efx->max_vis && efx->max_vis < channel_vis) {
1151		netif_dbg(efx, drv, efx->net_dev,
1152			  "Reducing channel VIs from %u to %u\n",
1153			  channel_vis, efx->max_vis);
1154		channel_vis = efx->max_vis;
1155	}
1156
1157#ifdef EFX_USE_PIO
1158	/* Try to allocate PIO buffers if wanted and if the full
1159	 * number of PIO buffers would be sufficient to allocate one
1160	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1161	 * are only a small number of PIO buffers shared between all
1162	 * functions of the controller.
1163	 */
1164	if (efx_piobuf_size != 0 &&
1165	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166	    efx->n_tx_channels) {
1167		unsigned int n_piobufs =
1168			DIV_ROUND_UP(efx->n_tx_channels,
1169				     nic_data->piobuf_size / efx_piobuf_size);
1170
1171		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172		if (rc == -ENOSPC)
1173			netif_dbg(efx, probe, efx->net_dev,
1174				  "out of PIO buffers; cannot allocate more\n");
1175		else if (rc == -EPERM)
1176			netif_dbg(efx, probe, efx->net_dev,
1177				  "not permitted to allocate PIO buffers\n");
1178		else if (rc)
1179			netif_err(efx, probe, efx->net_dev,
1180				  "failed to allocate PIO buffers (%d)\n", rc);
1181		else
1182			netif_dbg(efx, probe, efx->net_dev,
1183				  "allocated %u PIO buffers\n", n_piobufs);
1184	}
1185#else
1186	nic_data->n_piobufs = 0;
1187#endif
1188
1189	/* PIO buffers should be mapped with write-combining enabled,
1190	 * and we want to make single UC and WC mappings rather than
1191	 * several of each (in fact that's the only option if host
1192	 * page size is >4K).  So we may allocate some extra VIs just
1193	 * for writing PIO buffers through.
1194	 *
1195	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196	 * first 4K of the next VI.  Then the WC mapping begins with
1197	 * the remainder of this last VI.
1198	 */
1199	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200				     ER_DZ_TX_PIOBUF);
1201	if (nic_data->n_piobufs) {
1202		/* pio_write_vi_base rounds down to give the number of complete
1203		 * VIs inside the UC mapping.
1204		 */
1205		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207					       nic_data->n_piobufs) *
1208					      efx->vi_stride) -
1209				   uc_mem_map_size);
1210		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211	} else {
1212		pio_write_vi_base = 0;
1213		wc_mem_map_size = 0;
1214		max_vis = channel_vis;
1215	}
1216
1217	/* In case the last attached driver failed to free VIs, do it now */
1218	rc = efx_mcdi_free_vis(efx);
1219	if (rc != 0)
1220		return rc;
1221
1222	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223	if (rc != 0)
1224		return rc;
1225
1226	if (nic_data->n_allocated_vis < channel_vis) {
1227		netif_info(efx, drv, efx->net_dev,
1228			   "Could not allocate enough VIs to satisfy RSS"
1229			   " requirements. Performance may not be optimal.\n");
1230		/* We didn't get the VIs to populate our channels.
1231		 * We could keep what we got but then we'd have more
1232		 * interrupts than we need.
1233		 * Instead calculate new max_channels and restart
1234		 */
1235		efx->max_channels = nic_data->n_allocated_vis;
1236		efx->max_tx_channels =
1237			nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238
1239		efx_mcdi_free_vis(efx);
1240		return -EAGAIN;
1241	}
1242
1243	/* If we didn't get enough VIs to map all the PIO buffers, free the
1244	 * PIO buffers
1245	 */
1246	if (nic_data->n_piobufs &&
1247	    nic_data->n_allocated_vis <
1248	    pio_write_vi_base + nic_data->n_piobufs) {
1249		netif_dbg(efx, probe, efx->net_dev,
1250			  "%u VIs are not sufficient to map %u PIO buffers\n",
1251			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1252		efx_ef10_free_piobufs(efx);
1253	}
1254
1255	/* Shrink the original UC mapping of the memory BAR */
1256	membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257	if (!membase) {
1258		netif_err(efx, probe, efx->net_dev,
1259			  "could not shrink memory BAR to %x\n",
1260			  uc_mem_map_size);
1261		return -ENOMEM;
1262	}
1263	iounmap(efx->membase);
1264	efx->membase = membase;
1265
1266	/* Set up the WC mapping if needed */
1267	if (wc_mem_map_size) {
1268		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269						  uc_mem_map_size,
1270						  wc_mem_map_size);
1271		if (!nic_data->wc_membase) {
1272			netif_err(efx, probe, efx->net_dev,
1273				  "could not allocate WC mapping of size %x\n",
1274				  wc_mem_map_size);
1275			return -ENOMEM;
1276		}
1277		nic_data->pio_write_vi_base = pio_write_vi_base;
1278		nic_data->pio_write_base =
1279			nic_data->wc_membase +
1280			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281			 uc_mem_map_size);
1282
1283		rc = efx_ef10_link_piobufs(efx);
1284		if (rc)
1285			efx_ef10_free_piobufs(efx);
1286	}
1287
1288	netif_dbg(efx, probe, efx->net_dev,
1289		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1291		  nic_data->wc_membase, wc_mem_map_size);
1292
1293	return 0;
1294}
1295
1296static void efx_ef10_fini_nic(struct efx_nic *efx)
1297{
1298	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299
1300	spin_lock_bh(&efx->stats_lock);
1301	kfree(nic_data->mc_stats);
1302	nic_data->mc_stats = NULL;
1303	spin_unlock_bh(&efx->stats_lock);
1304}
1305
1306static int efx_ef10_init_nic(struct efx_nic *efx)
1307{
1308	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1309	struct net_device *net_dev = efx->net_dev;
1310	netdev_features_t tun_feats, tso_feats;
1311	int rc;
1312
1313	if (nic_data->must_check_datapath_caps) {
1314		rc = efx_ef10_init_datapath_caps(efx);
1315		if (rc)
1316			return rc;
1317		nic_data->must_check_datapath_caps = false;
1318	}
1319
1320	if (efx->must_realloc_vis) {
1321		/* We cannot let the number of VIs change now */
1322		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1323					nic_data->n_allocated_vis);
1324		if (rc)
1325			return rc;
1326		efx->must_realloc_vis = false;
1327	}
1328
1329	nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1330				     GFP_KERNEL);
1331	if (!nic_data->mc_stats)
1332		return -ENOMEM;
1333
1334	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1335		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1336		if (rc == 0) {
1337			rc = efx_ef10_link_piobufs(efx);
1338			if (rc)
1339				efx_ef10_free_piobufs(efx);
1340		}
1341
1342		/* Log an error on failure, but this is non-fatal.
1343		 * Permission errors are less important - we've presumably
1344		 * had the PIO buffer licence removed.
1345		 */
1346		if (rc == -EPERM)
1347			netif_dbg(efx, drv, efx->net_dev,
1348				  "not permitted to restore PIO buffers\n");
1349		else if (rc)
1350			netif_err(efx, drv, efx->net_dev,
1351				  "failed to restore PIO buffers (%d)\n", rc);
1352		nic_data->must_restore_piobufs = false;
1353	}
1354
1355	/* encap features might change during reset if fw variant changed */
1356	if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1357		net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1358	else
1359		net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1360
1361	tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1362		    NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1363	tso_feats = NETIF_F_TSO | NETIF_F_TSO6;
1364
1365	if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1366		/* If this is first nic_init, or if it is a reset and a new fw
1367		 * variant has added new features, enable them by default.
1368		 * If the features are not new, maintain their current value.
1369		 */
1370		if (!(net_dev->hw_features & tun_feats))
1371			net_dev->features |= tun_feats;
1372		net_dev->hw_enc_features |= tun_feats | tso_feats;
1373		net_dev->hw_features |= tun_feats;
1374	} else {
1375		net_dev->hw_enc_features &= ~(tun_feats | tso_feats);
1376		net_dev->hw_features &= ~tun_feats;
1377		net_dev->features &= ~tun_feats;
1378	}
1379
1380	/* don't fail init if RSS setup doesn't work */
1381	rc = efx->type->rx_push_rss_config(efx, false,
1382					   efx->rss_context.rx_indir_table, NULL);
1383
1384	return 0;
1385}
1386
1387static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1388{
1389	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1390#ifdef CONFIG_SFC_SRIOV
1391	unsigned int i;
1392#endif
1393
1394	/* All our allocations have been reset */
1395	efx->must_realloc_vis = true;
1396	efx_mcdi_filter_table_reset_mc_allocations(efx);
 
1397	nic_data->must_restore_piobufs = true;
1398	efx_ef10_forget_old_piobufs(efx);
1399	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1400
1401	/* Driver-created vswitches and vports must be re-created */
1402	nic_data->must_probe_vswitching = true;
1403	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1404#ifdef CONFIG_SFC_SRIOV
1405	if (nic_data->vf)
1406		for (i = 0; i < efx->vf_count; i++)
1407			nic_data->vf[i].vport_id = 0;
1408#endif
1409}
1410
1411static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1412{
1413	if (reason == RESET_TYPE_MC_FAILURE)
1414		return RESET_TYPE_DATAPATH;
1415
1416	return efx_mcdi_map_reset_reason(reason);
1417}
1418
1419static int efx_ef10_map_reset_flags(u32 *flags)
1420{
1421	enum {
1422		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1423				   ETH_RESET_SHARED_SHIFT),
1424		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1425				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1426				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1427				 ETH_RESET_SHARED_SHIFT)
1428	};
1429
1430	/* We assume for now that our PCI function is permitted to
1431	 * reset everything.
1432	 */
1433
1434	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1435		*flags &= ~EF10_RESET_MC;
1436		return RESET_TYPE_WORLD;
1437	}
1438
1439	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1440		*flags &= ~EF10_RESET_PORT;
1441		return RESET_TYPE_ALL;
1442	}
1443
1444	/* no invisible reset implemented */
1445
1446	return -EINVAL;
1447}
1448
1449static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1450{
1451	int rc = efx_mcdi_reset(efx, reset_type);
1452
1453	/* Unprivileged functions return -EPERM, but need to return success
1454	 * here so that the datapath is brought back up.
1455	 */
1456	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1457		rc = 0;
1458
1459	/* If it was a port reset, trigger reallocation of MC resources.
1460	 * Note that on an MC reset nothing needs to be done now because we'll
1461	 * detect the MC reset later and handle it then.
1462	 * For an FLR, we never get an MC reset event, but the MC has reset all
1463	 * resources assigned to us, so we have to trigger reallocation now.
1464	 */
1465	if ((reset_type == RESET_TYPE_ALL ||
1466	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1467		efx_ef10_table_reset_mc_allocations(efx);
1468	return rc;
1469}
1470
1471#define EF10_DMA_STAT(ext_name, mcdi_name)			\
1472	[EF10_STAT_ ## ext_name] =				\
1473	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1474#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1475	[EF10_STAT_ ## int_name] =				\
1476	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1477#define EF10_OTHER_STAT(ext_name)				\
1478	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 
 
1479
1480static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1481	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1482	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1483	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1484	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1485	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1486	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1487	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1488	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1489	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1490	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1491	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1492	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1493	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1494	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1495	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1496	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1497	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1498	EF10_OTHER_STAT(port_rx_good_bytes),
1499	EF10_OTHER_STAT(port_rx_bad_bytes),
1500	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1501	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1502	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1503	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1504	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1505	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1506	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1507	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1508	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1509	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1510	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1511	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1512	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1513	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1514	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1515	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1516	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1517	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1518	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1519	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1520	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1521	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1522	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1523	EFX_GENERIC_SW_STAT(rx_noskb_drops),
1524	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1525	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1526	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1527	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1528	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1529	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1530	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1531	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1532	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1533	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1534	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1535	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1536	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1537	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1538	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1539	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1540	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1541	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1542	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1543	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1544	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1545	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1546	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1547	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1548	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1549	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1550	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1551	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1552	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1553	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1554	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1555	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1556	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1557	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1558	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1559	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1560	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1561	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1562	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1563	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1564	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1565	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1566	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1567	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1568	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1569	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1570	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1571	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1572	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1573	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1574	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1575	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1576};
1577
1578#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1579			       (1ULL << EF10_STAT_port_tx_packets) |	\
1580			       (1ULL << EF10_STAT_port_tx_pause) |	\
1581			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1582			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1583			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1584			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1585			       (1ULL <<                                 \
1586				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1587			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1588			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1589			       (1ULL << EF10_STAT_port_rx_packets) |	\
1590			       (1ULL << EF10_STAT_port_rx_good) |	\
1591			       (1ULL << EF10_STAT_port_rx_bad) |	\
1592			       (1ULL << EF10_STAT_port_rx_pause) |	\
1593			       (1ULL << EF10_STAT_port_rx_control) |	\
1594			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1595			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1596			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1597			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1598			       (1ULL << EF10_STAT_port_rx_64) |		\
1599			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1600			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1601			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1602			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1603			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1604			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1605			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1606			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1607			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1608			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1609			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1610			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1611
1612/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1613 * For a 10G/40G switchable port we do not expose these because they might
1614 * not include all the packets they should.
1615 * On 8000 series NICs these statistics are always provided.
1616 */
1617#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1618				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1619				 (1ULL << EF10_STAT_port_tx_64) |	\
1620				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1621				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1622				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1623				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1624				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1625				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1626
1627/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1628 * switchable port we do expose these because the errors will otherwise
1629 * be silent.
1630 */
1631#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1632				  (1ULL << EF10_STAT_port_rx_length_error))
1633
1634/* These statistics are only provided if the firmware supports the
1635 * capability PM_AND_RXDP_COUNTERS.
1636 */
1637#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1638	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1639	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1640	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1641	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1642	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1643	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1644	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1645	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1646	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1647	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1648	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1649	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1650
1651/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1655 */
1656#define EF10_FEC_STAT_MASK (						\
1657	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1658	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1659	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1660	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1661	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1662	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1663
1664/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1665 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1666 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1667 * These bits are in the second u64 of the raw mask.
1668 */
1669#define EF10_CTPIO_STAT_MASK (						\
1670	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1671	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1672	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1673	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1674	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1675	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1676	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1677	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1678	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1679	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1680	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1681	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1682	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1683	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1684	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1685	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1686
1687static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1688{
1689	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1690	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1691	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1692
1693	if (!(efx->mcdi->fn_flags &
1694	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1695		return 0;
1696
1697	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1698		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1699		/* 8000 series have everything even at 40G */
1700		if (nic_data->datapath_caps2 &
1701		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1702			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1703	} else {
1704		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1705	}
1706
1707	if (nic_data->datapath_caps &
1708	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1709		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1710
1711	return raw_mask;
1712}
1713
1714static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1715{
1716	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1717	u64 raw_mask[2];
1718
1719	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1720
1721	/* Only show vadaptor stats when EVB capability is present */
1722	if (nic_data->datapath_caps &
1723	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1724		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1725		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1726	} else {
1727		raw_mask[1] = 0;
1728	}
1729	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1730	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1731		raw_mask[1] |= EF10_FEC_STAT_MASK;
1732
1733	/* CTPIO stats appear in V3. Only show them on devices that actually
1734	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1735	 * and we may be reporting the stats for the underlying port.
1736	 */
1737	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1738	    (nic_data->datapath_caps2 &
1739	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1740		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1741
1742#if BITS_PER_LONG == 64
1743	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1744	mask[0] = raw_mask[0];
1745	mask[1] = raw_mask[1];
1746#else
1747	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1748	mask[0] = raw_mask[0] & 0xffffffff;
1749	mask[1] = raw_mask[0] >> 32;
1750	mask[2] = raw_mask[1] & 0xffffffff;
1751#endif
1752}
1753
1754static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1755{
1756	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1757
1758	efx_ef10_get_stat_mask(efx, mask);
1759	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1760				      mask, names);
1761}
1762
1763static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1764				   struct ethtool_fec_stats *fec_stats)
1765{
1766	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1767	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1768	u64 *stats = nic_data->stats;
1769
1770	efx_ef10_get_stat_mask(efx, mask);
1771	if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1772		fec_stats->corrected_blocks.total =
1773			stats[EF10_STAT_fec_corrected_errors];
1774	if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1775		fec_stats->uncorrectable_blocks.total =
1776			stats[EF10_STAT_fec_uncorrected_errors];
1777}
1778
1779static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1780					   struct rtnl_link_stats64 *core_stats)
1781{
1782	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1783	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1784	u64 *stats = nic_data->stats;
1785	size_t stats_count = 0, index;
1786
1787	efx_ef10_get_stat_mask(efx, mask);
1788
1789	if (full_stats) {
1790		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1791			if (efx_ef10_stat_desc[index].name) {
1792				*full_stats++ = stats[index];
1793				++stats_count;
1794			}
1795		}
1796	}
1797
1798	if (!core_stats)
1799		return stats_count;
1800
1801	if (nic_data->datapath_caps &
1802			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1803		/* Use vadaptor stats. */
1804		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1805					 stats[EF10_STAT_rx_multicast] +
1806					 stats[EF10_STAT_rx_broadcast];
1807		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1808					 stats[EF10_STAT_tx_multicast] +
1809					 stats[EF10_STAT_tx_broadcast];
1810		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1811				       stats[EF10_STAT_rx_multicast_bytes] +
1812				       stats[EF10_STAT_rx_broadcast_bytes];
1813		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1814				       stats[EF10_STAT_tx_multicast_bytes] +
1815				       stats[EF10_STAT_tx_broadcast_bytes];
1816		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1817					 stats[GENERIC_STAT_rx_noskb_drops];
1818		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1819		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1820		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1821		core_stats->rx_errors = core_stats->rx_crc_errors;
1822		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1823	} else {
1824		/* Use port stats. */
1825		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1826		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1827		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1828		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1829		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1830					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1831					 stats[GENERIC_STAT_rx_noskb_drops];
1832		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1833		core_stats->rx_length_errors =
1834				stats[EF10_STAT_port_rx_gtjumbo] +
1835				stats[EF10_STAT_port_rx_length_error];
1836		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1837		core_stats->rx_frame_errors =
1838				stats[EF10_STAT_port_rx_align_error];
1839		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1840		core_stats->rx_errors = (core_stats->rx_length_errors +
1841					 core_stats->rx_crc_errors +
1842					 core_stats->rx_frame_errors);
1843	}
1844
1845	return stats_count;
1846}
1847
1848static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1849				       struct rtnl_link_stats64 *core_stats)
1850{
1851	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1852	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
 
1853	u64 *stats = nic_data->stats;
 
1854
1855	efx_ef10_get_stat_mask(efx, mask);
1856
1857	/* If NIC was fini'd (probably resetting), then we can't read
1858	 * updated stats right now.
1859	 */
1860	if (nic_data->mc_stats) {
1861		efx_nic_copy_stats(efx, nic_data->mc_stats);
1862		efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1863				     mask, stats, nic_data->mc_stats, false);
1864	}
 
 
 
 
1865
1866	/* Update derived statistics */
1867	efx_nic_fix_nodesc_drop_stat(efx,
1868				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1869	/* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1870	 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1871	 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1872	 * Here we calculate port_rx_good_bytes.
1873	 */
1874	stats[EF10_STAT_port_rx_good_bytes] =
1875		stats[EF10_STAT_port_rx_bytes] -
1876		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1877
1878	/* The asynchronous reads used to calculate RX_BAD_BYTES in
1879	 * MC Firmware are done such that we should not see an increase in
1880	 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1881	 * does mean that the stat can decrease at times. Here we do not
1882	 * update the stat unless it has increased or has gone to zero
1883	 * (In the case of the NIC rebooting).
1884	 * Please see Bug 33781 for a discussion of why things work this way.
1885	 */
1886	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1887			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1888	efx_update_sw_stats(efx, stats);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889
1890	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1891}
1892
1893static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1894	__must_hold(&efx->stats_lock)
1895{
1896	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1897	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1898	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1899	__le64 generation_start, generation_end;
1900	u64 *stats = nic_data->stats;
1901	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1902	struct efx_buffer stats_buf;
1903	__le64 *dma_stats;
1904	int rc;
1905
1906	spin_unlock_bh(&efx->stats_lock);
1907
 
 
 
 
 
 
 
 
 
1908	efx_ef10_get_stat_mask(efx, mask);
1909
1910	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1911	if (rc) {
1912		spin_lock_bh(&efx->stats_lock);
1913		return rc;
1914	}
1915
1916	dma_stats = stats_buf.addr;
1917	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1918
1919	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1920	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1921			      MAC_STATS_IN_DMA, 1);
1922	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1923	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1924
1925	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1926				NULL, 0, NULL);
1927	spin_lock_bh(&efx->stats_lock);
1928	if (rc) {
1929		/* Expect ENOENT if DMA queues have not been set up */
1930		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1931			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1932					       sizeof(inbuf), NULL, 0, rc);
1933		goto out;
1934	}
1935
1936	generation_end = dma_stats[efx->num_mac_stats - 1];
1937	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1938		WARN_ON_ONCE(1);
1939		goto out;
1940	}
1941	rmb();
1942	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1943			     stats, stats_buf.addr, false);
1944	rmb();
1945	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1946	if (generation_end != generation_start) {
1947		rc = -EAGAIN;
1948		goto out;
1949	}
1950
1951	efx_update_sw_stats(efx, stats);
1952out:
1953	/* releasing a DMA coherent buffer with BH disabled can panic */
1954	spin_unlock_bh(&efx->stats_lock);
1955	efx_nic_free_buffer(efx, &stats_buf);
1956	spin_lock_bh(&efx->stats_lock);
1957	return rc;
1958}
1959
1960static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1961				       struct rtnl_link_stats64 *core_stats)
1962{
1963	if (efx_ef10_try_update_nic_stats_vf(efx))
1964		return 0;
1965
1966	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1967}
1968
1969static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1970					      struct rtnl_link_stats64 *core_stats)
1971{
1972	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1973
1974	/* In atomic context, cannot update HW stats.  Just update the
1975	 * software stats and return so the caller can continue.
1976	 */
1977	efx_update_sw_stats(efx, nic_data->stats);
1978	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1979}
1980
1981static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1982{
1983	struct efx_nic *efx = channel->efx;
1984	unsigned int mode, usecs;
1985	efx_dword_t timer_cmd;
1986
1987	if (channel->irq_moderation_us) {
1988		mode = 3;
1989		usecs = channel->irq_moderation_us;
1990	} else {
1991		mode = 0;
1992		usecs = 0;
1993	}
1994
1995	if (EFX_EF10_WORKAROUND_61265(efx)) {
1996		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1997		unsigned int ns = usecs * 1000;
1998
1999		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2000			       channel->channel);
2001		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2002		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2003		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2004
2005		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2006				   inbuf, sizeof(inbuf), 0, NULL, 0);
2007	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
2008		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2009
2010		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2011				     EFE_DD_EVQ_IND_TIMER_FLAGS,
2012				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
2013				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2014		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2015				channel->channel);
2016	} else {
2017		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2018
2019		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2020				     ERF_DZ_TC_TIMER_VAL, ticks,
2021				     ERF_FZ_TC_TMR_REL_VAL, ticks);
2022		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2023				channel->channel);
2024	}
2025}
2026
2027static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2028				struct ethtool_wolinfo *wol) {}
2029
2030static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2031{
2032	return -EOPNOTSUPP;
2033}
2034
2035static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2036{
2037	wol->supported = 0;
2038	wol->wolopts = 0;
2039	memset(&wol->sopass, 0, sizeof(wol->sopass));
2040}
2041
2042static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2043{
2044	if (type != 0)
2045		return -EINVAL;
2046	return 0;
2047}
2048
2049static void efx_ef10_mcdi_request(struct efx_nic *efx,
2050				  const efx_dword_t *hdr, size_t hdr_len,
2051				  const efx_dword_t *sdu, size_t sdu_len)
2052{
2053	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2054	u8 *pdu = nic_data->mcdi_buf.addr;
2055
2056	memcpy(pdu, hdr, hdr_len);
2057	memcpy(pdu + hdr_len, sdu, sdu_len);
2058	wmb();
2059
2060	/* The hardware provides 'low' and 'high' (doorbell) registers
2061	 * for passing the 64-bit address of an MCDI request to
2062	 * firmware.  However the dwords are swapped by firmware.  The
2063	 * least significant bits of the doorbell are then 0 for all
2064	 * MCDI requests due to alignment.
2065	 */
2066	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2067		    ER_DZ_MC_DB_LWRD);
2068	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2069		    ER_DZ_MC_DB_HWRD);
2070}
2071
2072static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2073{
2074	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2075	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2076
2077	rmb();
2078	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2079}
2080
2081static void
2082efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2083			    size_t offset, size_t outlen)
2084{
2085	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2086	const u8 *pdu = nic_data->mcdi_buf.addr;
2087
2088	memcpy(outbuf, pdu + offset, outlen);
2089}
2090
2091static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2092{
2093	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2094
2095	/* All our allocations have been reset */
2096	efx_ef10_table_reset_mc_allocations(efx);
2097
2098	/* The datapath firmware might have been changed */
2099	nic_data->must_check_datapath_caps = true;
2100
2101	/* MAC statistics have been cleared on the NIC; clear the local
2102	 * statistic that we update with efx_update_diff_stat().
2103	 */
2104	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2105}
2106
2107static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2108{
2109	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2110	int rc;
2111
2112	rc = efx_ef10_get_warm_boot_count(efx);
2113	if (rc < 0) {
2114		/* The firmware is presumably in the process of
2115		 * rebooting.  However, we are supposed to report each
2116		 * reboot just once, so we must only do that once we
2117		 * can read and store the updated warm boot count.
2118		 */
2119		return 0;
2120	}
2121
2122	if (rc == nic_data->warm_boot_count)
2123		return 0;
2124
2125	nic_data->warm_boot_count = rc;
2126	efx_ef10_mcdi_reboot_detected(efx);
2127
2128	return -EIO;
2129}
2130
2131/* Handle an MSI interrupt
2132 *
2133 * Handle an MSI hardware interrupt.  This routine schedules event
2134 * queue processing.  No interrupt acknowledgement cycle is necessary.
2135 * Also, we never need to check that the interrupt is for us, since
2136 * MSI interrupts cannot be shared.
2137 */
2138static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2139{
2140	struct efx_msi_context *context = dev_id;
2141	struct efx_nic *efx = context->efx;
2142
2143	netif_vdbg(efx, intr, efx->net_dev,
2144		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2145
2146	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2147		/* Note test interrupts */
2148		if (context->index == efx->irq_level)
2149			efx->last_irq_cpu = raw_smp_processor_id();
2150
2151		/* Schedule processing of the channel */
2152		efx_schedule_channel_irq(efx->channel[context->index]);
2153	}
2154
2155	return IRQ_HANDLED;
2156}
2157
2158static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2159{
2160	struct efx_nic *efx = dev_id;
2161	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2162	struct efx_channel *channel;
2163	efx_dword_t reg;
2164	u32 queues;
2165
2166	/* Read the ISR which also ACKs the interrupts */
2167	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2168	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2169
2170	if (queues == 0)
2171		return IRQ_NONE;
2172
2173	if (likely(soft_enabled)) {
2174		/* Note test interrupts */
2175		if (queues & (1U << efx->irq_level))
2176			efx->last_irq_cpu = raw_smp_processor_id();
2177
2178		efx_for_each_channel(channel, efx) {
2179			if (queues & 1)
2180				efx_schedule_channel_irq(channel);
2181			queues >>= 1;
2182		}
2183	}
2184
2185	netif_vdbg(efx, intr, efx->net_dev,
2186		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2187		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2188
2189	return IRQ_HANDLED;
2190}
2191
2192static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2193{
2194	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2195
2196	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2197				    NULL) == 0)
2198		return -ENOTSUPP;
2199
2200	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2201
2202	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2203	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2204			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2205}
2206
2207static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2208{
2209	/* low two bits of label are what we want for type */
2210	BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2211	tx_queue->type = tx_queue->label & 3;
2212	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd,
2213				    (tx_queue->ptr_mask + 1) *
2214				    sizeof(efx_qword_t),
2215				    GFP_KERNEL);
2216}
2217
2218/* This writes to the TX_DESC_WPTR and also pushes data */
2219static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2220					 const efx_qword_t *txd)
2221{
2222	unsigned int write_ptr;
2223	efx_oword_t reg;
2224
2225	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2226	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2227	reg.qword[0] = *txd;
2228	efx_writeo_page(tx_queue->efx, &reg,
2229			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2230}
2231
2232/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2233 */
2234int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2235			 bool *data_mapped)
 
2236{
2237	struct efx_tx_buffer *buffer;
2238	u16 inner_ipv4_id = 0;
2239	u16 outer_ipv4_id = 0;
2240	struct tcphdr *tcp;
2241	struct iphdr *ip;
2242	u16 ip_tot_len;
 
2243	u32 seqnum;
2244	u32 mss;
2245
2246	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2247
2248	mss = skb_shinfo(skb)->gso_size;
2249
2250	if (unlikely(mss < 4)) {
2251		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2252		return -EINVAL;
2253	}
2254
2255	if (skb->encapsulation) {
2256		if (!tx_queue->tso_encap)
2257			return -EINVAL;
2258		ip = ip_hdr(skb);
2259		if (ip->version == 4)
2260			outer_ipv4_id = ntohs(ip->id);
2261
2262		ip = inner_ip_hdr(skb);
2263		tcp = inner_tcp_hdr(skb);
2264	} else {
2265		ip = ip_hdr(skb);
2266		tcp = tcp_hdr(skb);
2267	}
2268
2269	/* 8000-series EF10 hardware requires that IP Total Length be
2270	 * greater than or equal to the value it will have in each segment
2271	 * (which is at most mss + 208 + TCP header length), but also less
2272	 * than (0x10000 - inner_network_header).  Otherwise the TCP
2273	 * checksum calculation will be broken for encapsulated packets.
2274	 * We fill in ip->tot_len with 0xff30, which should satisfy the
2275	 * first requirement unless the MSS is ridiculously large (which
2276	 * should be impossible as the driver max MTU is 9216); it is
2277	 * guaranteed to satisfy the second as we only attempt TSO if
2278	 * inner_network_header <= 208.
2279	 */
2280	ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2281	EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2282				  (tcp->doff << 2u) > ip_tot_len);
2283
2284	if (ip->version == 4) {
2285		ip->tot_len = htons(ip_tot_len);
 
2286		ip->check = 0;
2287		inner_ipv4_id = ntohs(ip->id);
2288	} else {
2289		((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
 
 
 
 
2290	}
2291
 
2292	seqnum = ntohl(tcp->seq);
2293
2294	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2295
2296	buffer->flags = EFX_TX_BUF_OPTION;
2297	buffer->len = 0;
2298	buffer->unmap_len = 0;
2299	EFX_POPULATE_QWORD_5(buffer->option,
2300			ESF_DZ_TX_DESC_IS_OPT, 1,
2301			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2302			ESF_DZ_TX_TSO_OPTION_TYPE,
2303			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2304			ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2305			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2306			);
2307	++tx_queue->insert_count;
2308
2309	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2310
2311	buffer->flags = EFX_TX_BUF_OPTION;
2312	buffer->len = 0;
2313	buffer->unmap_len = 0;
2314	EFX_POPULATE_QWORD_5(buffer->option,
2315			ESF_DZ_TX_DESC_IS_OPT, 1,
2316			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2317			ESF_DZ_TX_TSO_OPTION_TYPE,
2318			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2319			ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2320			ESF_DZ_TX_TSO_TCP_MSS, mss
2321			);
2322	++tx_queue->insert_count;
2323
2324	return 0;
2325}
2326
2327static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2328{
2329	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2330	u32 tso_versions = 0;
2331
2332	if (nic_data->datapath_caps &
2333	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2334		tso_versions |= BIT(1);
2335	if (nic_data->datapath_caps2 &
2336	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2337		tso_versions |= BIT(2);
2338	return tso_versions;
2339}
2340
2341static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2342{
2343	bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2344	bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
 
 
2345	struct efx_channel *channel = tx_queue->channel;
2346	struct efx_nic *efx = tx_queue->efx;
2347	struct efx_ef10_nic_data *nic_data;
 
 
 
2348	efx_qword_t *txd;
2349	int rc;
2350
2351	nic_data = efx->nic_data;
2352
2353	/* Only attempt to enable TX timestamping if we have the license for it,
2354	 * otherwise TXQ init will fail
2355	 */
2356	if (!(nic_data->licensed_features &
2357	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2358		tx_queue->timestamping = false;
2359		/* Disable sync events on this channel. */
2360		if (efx->type->ptp_set_ts_sync_events)
2361			efx->type->ptp_set_ts_sync_events(efx, false, false);
2362	}
2363
2364	/* TSOv2 is a limited resource that can only be configured on a limited
2365	 * number of queues. TSO without checksum offload is not really a thing,
2366	 * so we only enable it for those queues.
2367	 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2368	 * for XDP tx.
2369	 */
2370	if (efx_has_cap(efx, TX_TSO_V2)) {
2371		if ((csum_offload || inner_csum) &&
2372		    !tx_queue->timestamping && !tx_queue->xdp_tx) {
2373			tx_queue->tso_version = 2;
2374			netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2375				  channel->channel);
2376		}
2377	} else if (efx_has_cap(efx, TX_TSO)) {
2378		tx_queue->tso_version = 1;
2379	}
2380
2381	rc = efx_mcdi_tx_init(tx_queue);
2382	if (rc)
2383		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384
2385	/* A previous user of this TX queue might have set us up the
2386	 * bomb by writing a descriptor to the TX push collector but
2387	 * not the doorbell.  (Each collector belongs to a port, not a
2388	 * queue or function, so cannot easily be reset.)  We must
2389	 * attempt to push a no-op descriptor in its place.
2390	 */
2391	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2392	tx_queue->insert_count = 1;
2393	txd = efx_tx_desc(tx_queue, 0);
2394	EFX_POPULATE_QWORD_7(*txd,
2395			     ESF_DZ_TX_DESC_IS_OPT, true,
2396			     ESF_DZ_TX_OPTION_TYPE,
2397			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2398			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2399			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2400			     ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2401			     ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2402			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2403	tx_queue->write_count = 1;
2404
2405	if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2406		tx_queue->tso_encap = true;
 
 
 
 
 
2407
2408	wmb();
2409	efx_ef10_push_tx_desc(tx_queue, txd);
2410
2411	return;
2412
2413fail:
2414	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2415		    tx_queue->queue);
2416}
2417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2419static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2420{
2421	unsigned int write_ptr;
2422	efx_dword_t reg;
2423
2424	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2425	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2426	efx_writed_page(tx_queue->efx, &reg,
2427			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2428}
2429
2430#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2431
2432static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2433					  dma_addr_t dma_addr, unsigned int len)
2434{
2435	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2436		/* If we need to break across multiple descriptors we should
2437		 * stop at a page boundary. This assumes the length limit is
2438		 * greater than the page size.
2439		 */
2440		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2441
2442		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2443		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2444	}
2445
2446	return len;
2447}
2448
2449static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2450{
2451	unsigned int old_write_count = tx_queue->write_count;
2452	struct efx_tx_buffer *buffer;
2453	unsigned int write_ptr;
2454	efx_qword_t *txd;
2455
2456	tx_queue->xmit_pending = false;
2457	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2458		return;
2459
2460	do {
2461		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2462		buffer = &tx_queue->buffer[write_ptr];
2463		txd = efx_tx_desc(tx_queue, write_ptr);
2464		++tx_queue->write_count;
2465
2466		/* Create TX descriptor ring entry */
2467		if (buffer->flags & EFX_TX_BUF_OPTION) {
2468			*txd = buffer->option;
2469			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2470				/* PIO descriptor */
2471				tx_queue->packet_write_count = tx_queue->write_count;
2472		} else {
2473			tx_queue->packet_write_count = tx_queue->write_count;
2474			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2475			EFX_POPULATE_QWORD_3(
2476				*txd,
2477				ESF_DZ_TX_KER_CONT,
2478				buffer->flags & EFX_TX_BUF_CONT,
2479				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2480				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2481		}
2482	} while (tx_queue->write_count != tx_queue->insert_count);
2483
2484	wmb(); /* Ensure descriptors are written before they are fetched */
2485
2486	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2487		txd = efx_tx_desc(tx_queue,
2488				  old_write_count & tx_queue->ptr_mask);
2489		efx_ef10_push_tx_desc(tx_queue, txd);
2490		++tx_queue->pushes;
2491	} else {
2492		efx_ef10_notify_tx_desc(tx_queue);
2493	}
2494}
2495
2496static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2499	unsigned int enabled, implemented;
2500	bool want_workaround_26807;
2501	int rc;
2502
2503	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2504	if (rc == -ENOSYS) {
2505		/* GET_WORKAROUNDS was implemented before this workaround,
2506		 * thus it must be unavailable in this firmware.
2507		 */
2508		nic_data->workaround_26807 = false;
 
 
 
 
 
2509		return 0;
2510	}
2511	if (rc)
 
 
 
 
 
 
 
 
 
 
 
 
2512		return rc;
2513	want_workaround_26807 =
2514		implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2515	nic_data->workaround_26807 =
2516		!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2517
2518	if (want_workaround_26807 && !nic_data->workaround_26807) {
2519		unsigned int flags;
2520
2521		rc = efx_mcdi_set_workaround(efx,
2522					     MC_CMD_WORKAROUND_BUG26807,
2523					     true, &flags);
2524		if (!rc) {
2525			if (flags &
2526			    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2527				netif_info(efx, drv, efx->net_dev,
2528					   "other functions on NIC have been reset\n");
2529
2530				/* With MCFW v4.6.x and earlier, the
2531				 * boot count will have incremented,
2532				 * so re-read the warm_boot_count
2533				 * value now to ensure this function
2534				 * doesn't think it has changed next
2535				 * time it checks.
2536				 */
2537				rc = efx_ef10_get_warm_boot_count(efx);
2538				if (rc >= 0) {
2539					nic_data->warm_boot_count = rc;
2540					rc = 0;
2541				}
2542			}
2543			nic_data->workaround_26807 = true;
2544		} else if (rc == -EPERM) {
2545			rc = 0;
2546		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547	}
2548	return rc;
2549}
2550
2551static int efx_ef10_filter_table_probe(struct efx_nic *efx)
 
2552{
2553	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2554	int rc = efx_ef10_probe_multicast_chaining(efx);
2555	struct efx_mcdi_filter_vlan *vlan;
2556
2557	if (rc)
2558		return rc;
2559	down_write(&efx->filter_sem);
2560	rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2562	if (rc)
2563		goto out_unlock;
2564
2565	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2566		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2567		if (rc)
2568			goto fail_add_vlan;
 
 
 
2569	}
2570	goto out_unlock;
 
2571
2572fail_add_vlan:
2573	efx_mcdi_filter_table_remove(efx);
2574out_unlock:
2575	up_write(&efx->filter_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2576	return rc;
2577}
2578
2579static void efx_ef10_filter_table_remove(struct efx_nic *efx)
 
 
 
 
2580{
2581	down_write(&efx->filter_sem);
2582	efx_mcdi_filter_table_remove(efx);
2583	up_write(&efx->filter_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584}
2585
2586/* This creates an entry in the RX descriptor queue */
2587static inline void
2588efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2589{
2590	struct efx_rx_buffer *rx_buf;
2591	efx_qword_t *rxd;
2592
2593	rxd = efx_rx_desc(rx_queue, index);
2594	rx_buf = efx_rx_buffer(rx_queue, index);
2595	EFX_POPULATE_QWORD_2(*rxd,
2596			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2597			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2598}
2599
2600static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2601{
2602	struct efx_nic *efx = rx_queue->efx;
2603	unsigned int write_count;
2604	efx_dword_t reg;
2605
2606	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2607	write_count = rx_queue->added_count & ~7;
2608	if (rx_queue->notified_count == write_count)
2609		return;
2610
2611	do
2612		efx_ef10_build_rx_desc(
2613			rx_queue,
2614			rx_queue->notified_count & rx_queue->ptr_mask);
2615	while (++rx_queue->notified_count != write_count);
2616
2617	wmb();
2618	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2619			     write_count & rx_queue->ptr_mask);
2620	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2621			efx_rx_queue_index(rx_queue));
2622}
2623
2624static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2625
2626static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2627{
2628	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2629	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2630	efx_qword_t event;
2631
2632	EFX_POPULATE_QWORD_2(event,
2633			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2634			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2635
2636	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2637
2638	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2639	 * already swapped the data to little-endian order.
2640	 */
2641	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2642	       sizeof(efx_qword_t));
2643
2644	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2645			   inbuf, sizeof(inbuf), 0,
2646			   efx_ef10_rx_defer_refill_complete, 0);
2647}
2648
2649static void
2650efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2651				  int rc, efx_dword_t *outbuf,
2652				  size_t outlen_actual)
2653{
2654	/* nothing to do */
2655}
2656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2657static int efx_ef10_ev_init(struct efx_channel *channel)
2658{
 
 
 
 
 
2659	struct efx_nic *efx = channel->efx;
2660	struct efx_ef10_nic_data *nic_data;
2661	bool use_v2, cut_thru;
 
 
 
 
2662
2663	nic_data = efx->nic_data;
2664	use_v2 = nic_data->datapath_caps2 &
2665			    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2666	cut_thru = !(nic_data->datapath_caps &
2667			      1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2668	return efx_mcdi_ev_init(channel, cut_thru, use_v2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2669}
2670
2671static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2672					   unsigned int rx_queue_label)
2673{
2674	struct efx_nic *efx = rx_queue->efx;
2675
2676	netif_info(efx, hw, efx->net_dev,
2677		   "rx event arrived on queue %d labeled as queue %u\n",
2678		   efx_rx_queue_index(rx_queue), rx_queue_label);
2679
2680	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2681}
2682
2683static void
2684efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2685			     unsigned int actual, unsigned int expected)
2686{
2687	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2688	struct efx_nic *efx = rx_queue->efx;
2689
2690	netif_info(efx, hw, efx->net_dev,
2691		   "dropped %d events (index=%d expected=%d)\n",
2692		   dropped, actual, expected);
2693
2694	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2695}
2696
2697/* partially received RX was aborted. clean up. */
2698static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2699{
2700	unsigned int rx_desc_ptr;
2701
2702	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2703		  "scattered RX aborted (dropping %u buffers)\n",
2704		  rx_queue->scatter_n);
2705
2706	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2707
2708	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2709		      0, EFX_RX_PKT_DISCARD);
2710
2711	rx_queue->removed_count += rx_queue->scatter_n;
2712	rx_queue->scatter_n = 0;
2713	rx_queue->scatter_len = 0;
2714	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2715}
2716
2717static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2718					   unsigned int n_packets,
2719					   unsigned int rx_encap_hdr,
2720					   unsigned int rx_l3_class,
2721					   unsigned int rx_l4_class,
2722					   const efx_qword_t *event)
2723{
2724	struct efx_nic *efx = channel->efx;
2725	bool handled = false;
2726
2727	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2728		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2729			if (!efx->loopback_selftest)
2730				channel->n_rx_eth_crc_err += n_packets;
2731			return EFX_RX_PKT_DISCARD;
2732		}
2733		handled = true;
2734	}
2735	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2736		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2737			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2738			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2739			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2740			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2741			netdev_WARN(efx->net_dev,
2742				    "invalid class for RX_IPCKSUM_ERR: event="
2743				    EFX_QWORD_FMT "\n",
2744				    EFX_QWORD_VAL(*event));
2745		if (!efx->loopback_selftest)
2746			*(rx_encap_hdr ?
2747			  &channel->n_rx_outer_ip_hdr_chksum_err :
2748			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2749		return 0;
2750	}
2751	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2752		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2753			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2754			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2755			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2756			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2757			netdev_WARN(efx->net_dev,
2758				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2759				    EFX_QWORD_FMT "\n",
2760				    EFX_QWORD_VAL(*event));
2761		if (!efx->loopback_selftest)
2762			*(rx_encap_hdr ?
2763			  &channel->n_rx_outer_tcp_udp_chksum_err :
2764			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2765		return 0;
2766	}
2767	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2768		if (unlikely(!rx_encap_hdr))
2769			netdev_WARN(efx->net_dev,
2770				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2771				    EFX_QWORD_FMT "\n",
2772				    EFX_QWORD_VAL(*event));
2773		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2774				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2775				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2776				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2777			netdev_WARN(efx->net_dev,
2778				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2779				    EFX_QWORD_FMT "\n",
2780				    EFX_QWORD_VAL(*event));
2781		if (!efx->loopback_selftest)
2782			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2783		return 0;
2784	}
2785	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2786		if (unlikely(!rx_encap_hdr))
2787			netdev_WARN(efx->net_dev,
2788				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2789				    EFX_QWORD_FMT "\n",
2790				    EFX_QWORD_VAL(*event));
2791		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2792				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2793				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2794				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2795			netdev_WARN(efx->net_dev,
2796				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2797				    EFX_QWORD_FMT "\n",
2798				    EFX_QWORD_VAL(*event));
2799		if (!efx->loopback_selftest)
2800			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2801		return 0;
2802	}
2803
2804	WARN_ON(!handled); /* No error bits were recognised */
2805	return 0;
2806}
2807
2808static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2809				    const efx_qword_t *event)
2810{
2811	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2812	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2813	unsigned int n_descs, n_packets, i;
2814	struct efx_nic *efx = channel->efx;
2815	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2816	struct efx_rx_queue *rx_queue;
2817	efx_qword_t errors;
2818	bool rx_cont;
2819	u16 flags = 0;
2820
2821	if (unlikely(READ_ONCE(efx->reset_pending)))
2822		return 0;
2823
2824	/* Basic packet information */
2825	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2826	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2827	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2828	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2829	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2830	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2831	rx_encap_hdr =
2832		nic_data->datapath_caps &
2833			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2834		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2835		ESE_EZ_ENCAP_HDR_NONE;
2836
2837	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2838		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2839			    EFX_QWORD_FMT "\n",
2840			    EFX_QWORD_VAL(*event));
2841
2842	rx_queue = efx_channel_get_rx_queue(channel);
2843
2844	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2845		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2846
2847	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2848		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2849
2850	if (n_descs != rx_queue->scatter_n + 1) {
2851		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2852
2853		/* detect rx abort */
2854		if (unlikely(n_descs == rx_queue->scatter_n)) {
2855			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2856				netdev_WARN(efx->net_dev,
2857					    "invalid RX abort: scatter_n=%u event="
2858					    EFX_QWORD_FMT "\n",
2859					    rx_queue->scatter_n,
2860					    EFX_QWORD_VAL(*event));
2861			efx_ef10_handle_rx_abort(rx_queue);
2862			return 0;
2863		}
2864
2865		/* Check that RX completion merging is valid, i.e.
2866		 * the current firmware supports it and this is a
2867		 * non-scattered packet.
2868		 */
2869		if (!(nic_data->datapath_caps &
2870		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2871		    rx_queue->scatter_n != 0 || rx_cont) {
2872			efx_ef10_handle_rx_bad_lbits(
2873				rx_queue, next_ptr_lbits,
2874				(rx_queue->removed_count +
2875				 rx_queue->scatter_n + 1) &
2876				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2877			return 0;
2878		}
2879
2880		/* Merged completion for multiple non-scattered packets */
2881		rx_queue->scatter_n = 1;
2882		rx_queue->scatter_len = 0;
2883		n_packets = n_descs;
2884		++channel->n_rx_merge_events;
2885		channel->n_rx_merge_packets += n_packets;
2886		flags |= EFX_RX_PKT_PREFIX_LEN;
2887	} else {
2888		++rx_queue->scatter_n;
2889		rx_queue->scatter_len += rx_bytes;
2890		if (rx_cont)
2891			return 0;
2892		n_packets = 1;
2893	}
2894
2895	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2896				     ESF_DZ_RX_IPCKSUM_ERR, 1,
2897				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2898				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2899				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2900	EFX_AND_QWORD(errors, *event, errors);
2901	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2902		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2903							 rx_encap_hdr,
2904							 rx_l3_class, rx_l4_class,
2905							 event);
2906	} else {
2907		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2908			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2909
2910		switch (rx_encap_hdr) {
2911		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2912			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2913			if (tcpudp)
2914				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2915			break;
2916		case ESE_EZ_ENCAP_HDR_GRE:
2917		case ESE_EZ_ENCAP_HDR_NONE:
2918			if (tcpudp)
2919				flags |= EFX_RX_PKT_CSUMMED;
2920			break;
2921		default:
2922			netdev_WARN(efx->net_dev,
2923				    "unknown encapsulation type: event="
2924				    EFX_QWORD_FMT "\n",
2925				    EFX_QWORD_VAL(*event));
2926		}
2927	}
2928
2929	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2930		flags |= EFX_RX_PKT_TCP;
2931
2932	channel->irq_mod_score += 2 * n_packets;
2933
2934	/* Handle received packet(s) */
2935	for (i = 0; i < n_packets; i++) {
2936		efx_rx_packet(rx_queue,
2937			      rx_queue->removed_count & rx_queue->ptr_mask,
2938			      rx_queue->scatter_n, rx_queue->scatter_len,
2939			      flags);
2940		rx_queue->removed_count += rx_queue->scatter_n;
2941	}
2942
2943	rx_queue->scatter_n = 0;
2944	rx_queue->scatter_len = 0;
2945
2946	return n_packets;
2947}
2948
2949static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2950{
2951	u32 tstamp;
2952
2953	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2954	tstamp <<= 16;
2955	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2956
2957	return tstamp;
2958}
2959
2960static int
2961efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2962{
2963	struct efx_nic *efx = channel->efx;
2964	struct efx_tx_queue *tx_queue;
2965	unsigned int tx_ev_desc_ptr;
2966	unsigned int tx_ev_q_label;
2967	unsigned int tx_ev_type;
2968	int work_done;
2969	u64 ts_part;
2970
2971	if (unlikely(READ_ONCE(efx->reset_pending)))
2972		return 0;
2973
2974	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2975		return 0;
2976
2977	/* Get the transmit queue */
2978	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2979	tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
 
2980
2981	if (!tx_queue->timestamping) {
2982		/* Transmit completion */
2983		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2984		return efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
 
2985	}
2986
2987	/* Transmit timestamps are only available for 8XXX series. They result
2988	 * in up to three events per packet. These occur in order, and are:
2989	 *  - the normal completion event (may be omitted)
2990	 *  - the low part of the timestamp
2991	 *  - the high part of the timestamp
2992	 *
2993	 * It's possible for multiple completion events to appear before the
2994	 * corresponding timestamps. So we can for example get:
2995	 *  COMP N
2996	 *  COMP N+1
2997	 *  TS_LO N
2998	 *  TS_HI N
2999	 *  TS_LO N+1
3000	 *  TS_HI N+1
3001	 *
3002	 * In addition it's also possible for the adjacent completions to be
3003	 * merged, so we may not see COMP N above. As such, the completion
3004	 * events are not very useful here.
3005	 *
3006	 * Each part of the timestamp is itself split across two 16 bit
3007	 * fields in the event.
3008	 */
3009	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3010	work_done = 0;
3011
3012	switch (tx_ev_type) {
3013	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3014		/* Ignore this event - see above. */
 
 
 
 
 
 
 
 
 
 
3015		break;
3016
3017	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3018		ts_part = efx_ef10_extract_event_ts(event);
3019		tx_queue->completed_timestamp_minor = ts_part;
3020		break;
3021
3022	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3023		ts_part = efx_ef10_extract_event_ts(event);
3024		tx_queue->completed_timestamp_major = ts_part;
3025
3026		efx_xmit_done_single(tx_queue);
3027		work_done = 1;
3028		break;
3029
3030	default:
3031		netif_err(efx, hw, efx->net_dev,
3032			  "channel %d unknown tx event type %d (data "
3033			  EFX_QWORD_FMT ")\n",
3034			  channel->channel, tx_ev_type,
3035			  EFX_QWORD_VAL(*event));
3036		break;
3037	}
3038
3039	return work_done;
3040}
3041
3042static void
3043efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3044{
3045	struct efx_nic *efx = channel->efx;
3046	int subcode;
3047
3048	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3049
3050	switch (subcode) {
3051	case ESE_DZ_DRV_TIMER_EV:
3052	case ESE_DZ_DRV_WAKE_UP_EV:
3053		break;
3054	case ESE_DZ_DRV_START_UP_EV:
3055		/* event queue init complete. ok. */
3056		break;
3057	default:
3058		netif_err(efx, hw, efx->net_dev,
3059			  "channel %d unknown driver event type %d"
3060			  " (data " EFX_QWORD_FMT ")\n",
3061			  channel->channel, subcode,
3062			  EFX_QWORD_VAL(*event));
3063
3064	}
3065}
3066
3067static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3068						   efx_qword_t *event)
3069{
3070	struct efx_nic *efx = channel->efx;
3071	u32 subcode;
3072
3073	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3074
3075	switch (subcode) {
3076	case EFX_EF10_TEST:
3077		channel->event_test_cpu = raw_smp_processor_id();
3078		break;
3079	case EFX_EF10_REFILL:
3080		/* The queue must be empty, so we won't receive any rx
3081		 * events, so efx_process_channel() won't refill the
3082		 * queue. Refill it here
3083		 */
3084		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3085		break;
3086	default:
3087		netif_err(efx, hw, efx->net_dev,
3088			  "channel %d unknown driver event type %u"
3089			  " (data " EFX_QWORD_FMT ")\n",
3090			  channel->channel, (unsigned) subcode,
3091			  EFX_QWORD_VAL(*event));
3092	}
3093}
3094
3095#define EFX_NAPI_MAX_TX 512
3096
3097static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3098{
3099	struct efx_nic *efx = channel->efx;
3100	efx_qword_t event, *p_event;
3101	unsigned int read_ptr;
3102	int spent_tx = 0;
3103	int spent = 0;
3104	int ev_code;
 
3105
3106	if (quota <= 0)
3107		return spent;
3108
3109	read_ptr = channel->eventq_read_ptr;
3110
3111	for (;;) {
3112		p_event = efx_event(channel, read_ptr);
3113		event = *p_event;
3114
3115		if (!efx_event_present(&event))
3116			break;
3117
3118		EFX_SET_QWORD(*p_event);
3119
3120		++read_ptr;
3121
3122		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3123
3124		netif_vdbg(efx, drv, efx->net_dev,
3125			   "processing event on %d " EFX_QWORD_FMT "\n",
3126			   channel->channel, EFX_QWORD_VAL(event));
3127
3128		switch (ev_code) {
3129		case ESE_DZ_EV_CODE_MCDI_EV:
3130			efx_mcdi_process_event(channel, &event);
3131			break;
3132		case ESE_DZ_EV_CODE_RX_EV:
3133			spent += efx_ef10_handle_rx_event(channel, &event);
3134			if (spent >= quota) {
3135				/* XXX can we split a merged event to
3136				 * avoid going over-quota?
3137				 */
3138				spent = quota;
3139				goto out;
3140			}
3141			break;
3142		case ESE_DZ_EV_CODE_TX_EV:
3143			spent_tx += efx_ef10_handle_tx_event(channel, &event);
3144			if (spent_tx >= EFX_NAPI_MAX_TX) {
3145				spent = quota;
3146				goto out;
3147			}
3148			break;
3149		case ESE_DZ_EV_CODE_DRIVER_EV:
3150			efx_ef10_handle_driver_event(channel, &event);
3151			if (++spent == quota)
3152				goto out;
3153			break;
3154		case EFX_EF10_DRVGEN_EV:
3155			efx_ef10_handle_driver_generated_event(channel, &event);
3156			break;
3157		default:
3158			netif_err(efx, hw, efx->net_dev,
3159				  "channel %d unknown event type %d"
3160				  " (data " EFX_QWORD_FMT ")\n",
3161				  channel->channel, ev_code,
3162				  EFX_QWORD_VAL(event));
3163		}
3164	}
3165
3166out:
3167	channel->eventq_read_ptr = read_ptr;
3168	return spent;
3169}
3170
3171static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3172{
3173	struct efx_nic *efx = channel->efx;
3174	efx_dword_t rptr;
3175
3176	if (EFX_EF10_WORKAROUND_35388(efx)) {
3177		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3178			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3179		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3180			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3181
3182		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3183				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3184				     ERF_DD_EVQ_IND_RPTR,
3185				     (channel->eventq_read_ptr &
3186				      channel->eventq_mask) >>
3187				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3188		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3189				channel->channel);
3190		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3191				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3192				     ERF_DD_EVQ_IND_RPTR,
3193				     channel->eventq_read_ptr &
3194				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3195		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3196				channel->channel);
3197	} else {
3198		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3199				     channel->eventq_read_ptr &
3200				     channel->eventq_mask);
3201		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3202	}
3203}
3204
3205static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3206{
3207	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3208	struct efx_nic *efx = channel->efx;
3209	efx_qword_t event;
3210	int rc;
3211
3212	EFX_POPULATE_QWORD_2(event,
3213			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3214			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3215
3216	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3217
3218	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3219	 * already swapped the data to little-endian order.
3220	 */
3221	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3222	       sizeof(efx_qword_t));
3223
3224	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3225			  NULL, 0, NULL);
3226	if (rc != 0)
3227		goto fail;
3228
3229	return;
3230
3231fail:
3232	WARN_ON(true);
3233	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3234}
3235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3236static void efx_ef10_prepare_flr(struct efx_nic *efx)
3237{
3238	atomic_set(&efx->active_queues, 0);
3239}
3240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3241static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3242{
3243	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3244	u8 mac_old[ETH_ALEN];
3245	int rc, rc2;
3246
3247	/* Only reconfigure a PF-created vport */
3248	if (is_zero_ether_addr(nic_data->vport_mac))
3249		return 0;
3250
3251	efx_device_detach_sync(efx);
3252	efx_net_stop(efx->net_dev);
 
3253	efx_ef10_filter_table_remove(efx);
 
3254
3255	rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3256	if (rc)
3257		goto restore_filters;
3258
3259	ether_addr_copy(mac_old, nic_data->vport_mac);
3260	rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3261				    nic_data->vport_mac);
3262	if (rc)
3263		goto restore_vadaptor;
3264
3265	rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3266				    efx->net_dev->dev_addr);
3267	if (!rc) {
3268		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3269	} else {
3270		rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3271		if (rc2) {
3272			/* Failed to add original MAC, so clear vport_mac */
3273			eth_zero_addr(nic_data->vport_mac);
3274			goto reset_nic;
3275		}
3276	}
3277
3278restore_vadaptor:
3279	rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3280	if (rc2)
3281		goto reset_nic;
3282restore_filters:
 
3283	rc2 = efx_ef10_filter_table_probe(efx);
 
3284	if (rc2)
3285		goto reset_nic;
3286
3287	rc2 = efx_net_open(efx->net_dev);
3288	if (rc2)
3289		goto reset_nic;
3290
3291	efx_device_attach_if_not_resetting(efx);
3292
3293	return rc;
3294
3295reset_nic:
3296	netif_err(efx, drv, efx->net_dev,
3297		  "Failed to restore when changing MAC address - scheduling reset\n");
3298	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3299
3300	return rc ? rc : rc2;
3301}
3302
3303static int efx_ef10_set_mac_address(struct efx_nic *efx)
 
 
 
 
3304{
3305	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3306	bool was_enabled = efx->port_enabled;
3307	int rc;
3308
3309#ifdef CONFIG_SFC_SRIOV
3310	/* If this function is a VF and we have access to the parent PF,
3311	 * then use the PF control path to attempt to change the VF MAC address.
3312	 */
3313	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3314		struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn);
3315		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3316		u8 mac[ETH_ALEN];
3317
3318		/* net_dev->dev_addr can be zeroed by efx_net_stop in
3319		 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320		 */
3321		ether_addr_copy(mac, efx->net_dev->dev_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3322
3323		rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac);
3324		if (!rc)
3325			return 0;
 
 
 
 
 
 
3326
3327		netif_dbg(efx, drv, efx->net_dev,
3328			  "Updating VF mac via PF failed (%d), setting directly\n",
3329			  rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3330	}
3331#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3332
3333	efx_device_detach_sync(efx);
3334	efx_net_stop(efx->net_dev);
3335
3336	mutex_lock(&efx->mac_lock);
 
3337	efx_ef10_filter_table_remove(efx);
3338
3339	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3340			efx->net_dev->dev_addr);
3341	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3342		       efx->vport_id);
3343	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3344				sizeof(inbuf), NULL, 0, NULL);
3345
3346	efx_ef10_filter_table_probe(efx);
 
3347	mutex_unlock(&efx->mac_lock);
3348
3349	if (was_enabled)
3350		efx_net_open(efx->net_dev);
3351	efx_device_attach_if_not_resetting(efx);
3352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353	if (rc == -EPERM) {
3354		netif_err(efx, drv, efx->net_dev,
3355			  "Cannot change MAC address; use sfboot to enable"
3356			  " mac-spoofing on this interface\n");
3357	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3358		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3359		 * fall-back to the method of changing the MAC address on the
3360		 * vport.  This only applies to PFs because such versions of
3361		 * MCFW do not support VFs.
3362		 */
3363		rc = efx_ef10_vport_set_mac_address(efx);
3364	} else if (rc) {
3365		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3366				       sizeof(inbuf), NULL, 0, rc);
3367	}
3368
3369	return rc;
3370}
3371
3372static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3373{
3374	WARN_ON(!mutex_is_locked(&efx->mac_lock));
3375
3376	efx_mcdi_filter_sync_rx_mode(efx);
3377
3378	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3379		return efx_mcdi_set_mtu(efx);
3380	return efx_mcdi_set_mac(efx);
3381}
3382
 
 
 
 
 
 
 
3383static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3384{
3385	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3386
3387	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3388	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3389			    NULL, 0, NULL);
3390}
3391
3392/* MC BISTs follow a different poll mechanism to phy BISTs.
3393 * The BIST is done in the poll handler on the MC, and the MCDI command
3394 * will block until the BIST is done.
3395 */
3396static int efx_ef10_poll_bist(struct efx_nic *efx)
3397{
3398	int rc;
3399	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3400	size_t outlen;
3401	u32 result;
3402
3403	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3404			   outbuf, sizeof(outbuf), &outlen);
3405	if (rc != 0)
3406		return rc;
3407
3408	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3409		return -EIO;
3410
3411	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3412	switch (result) {
3413	case MC_CMD_POLL_BIST_PASSED:
3414		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3415		return 0;
3416	case MC_CMD_POLL_BIST_TIMEOUT:
3417		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3418		return -EIO;
3419	case MC_CMD_POLL_BIST_FAILED:
3420		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3421		return -EIO;
3422	default:
3423		netif_err(efx, hw, efx->net_dev,
3424			  "BIST returned unknown result %u", result);
3425		return -EIO;
3426	}
3427}
3428
3429static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3430{
3431	int rc;
3432
3433	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3434
3435	rc = efx_ef10_start_bist(efx, bist_type);
3436	if (rc != 0)
3437		return rc;
3438
3439	return efx_ef10_poll_bist(efx);
3440}
3441
3442static int
3443efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3444{
3445	int rc, rc2;
3446
3447	efx_reset_down(efx, RESET_TYPE_WORLD);
3448
3449	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3450			  NULL, 0, NULL, 0, NULL);
3451	if (rc != 0)
3452		goto out;
3453
3454	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3455	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3456
3457	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3458
3459out:
3460	if (rc == -EPERM)
3461		rc = 0;
3462	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3463	return rc ? rc : rc2;
3464}
3465
3466#ifdef CONFIG_SFC_MTD
3467
3468struct efx_ef10_nvram_type_info {
3469	u16 type, type_mask;
3470	u8 port;
3471	const char *name;
3472};
3473
3474static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3475	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3476	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3477	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3478	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3479	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3480	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3481	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3482	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3483	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3484	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3485	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3486	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
3487	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
3488	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3489	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3490	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
3491	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
3492	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
3493};
3494#define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
3495
3496static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3497					struct efx_mcdi_mtd_partition *part,
3498					unsigned int type,
3499					unsigned long *found)
3500{
3501	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3502	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3503	const struct efx_ef10_nvram_type_info *info;
3504	size_t size, erase_size, outlen;
3505	int type_idx = 0;
3506	bool protected;
3507	int rc;
3508
3509	for (type_idx = 0; ; type_idx++) {
3510		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3511			return -ENODEV;
3512		info = efx_ef10_nvram_types + type_idx;
3513		if ((type & ~info->type_mask) == info->type)
3514			break;
3515	}
3516	if (info->port != efx_port_num(efx))
3517		return -ENODEV;
3518
3519	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3520	if (rc)
3521		return rc;
3522	if (protected &&
3523	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3524	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3525		/* Hide protected partitions that don't provide defaults. */
3526		return -ENODEV;
3527
3528	if (protected)
3529		/* Protected partitions are read only. */
3530		erase_size = 0;
3531
3532	/* If we've already exposed a partition of this type, hide this
3533	 * duplicate.  All operations on MTDs are keyed by the type anyway,
3534	 * so we can't act on the duplicate.
3535	 */
3536	if (__test_and_set_bit(type_idx, found))
3537		return -EEXIST;
3538
3539	part->nvram_type = type;
3540
3541	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3542	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3543			  outbuf, sizeof(outbuf), &outlen);
3544	if (rc)
3545		return rc;
3546	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3547		return -EIO;
3548	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3549	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3550		part->fw_subtype = MCDI_DWORD(outbuf,
3551					      NVRAM_METADATA_OUT_SUBTYPE);
3552
3553	part->common.dev_type_name = "EF10 NVRAM manager";
3554	part->common.type_name = info->name;
3555
3556	part->common.mtd.type = MTD_NORFLASH;
3557	part->common.mtd.flags = MTD_CAP_NORFLASH;
3558	part->common.mtd.size = size;
3559	part->common.mtd.erasesize = erase_size;
3560	/* sfc_status is read-only */
3561	if (!erase_size)
3562		part->common.mtd.flags |= MTD_NO_ERASE;
3563
3564	return 0;
3565}
3566
3567static int efx_ef10_mtd_probe(struct efx_nic *efx)
3568{
3569	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3570	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3571	struct efx_mcdi_mtd_partition *parts;
3572	size_t outlen, n_parts_total, i, n_parts;
3573	unsigned int type;
3574	int rc;
3575
3576	ASSERT_RTNL();
3577
3578	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3579	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3580			  outbuf, sizeof(outbuf), &outlen);
3581	if (rc)
3582		return rc;
3583	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3584		return -EIO;
3585
3586	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3587	if (n_parts_total >
3588	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3589		return -EIO;
3590
3591	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3592	if (!parts)
3593		return -ENOMEM;
3594
3595	n_parts = 0;
3596	for (i = 0; i < n_parts_total; i++) {
3597		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3598					i);
3599		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3600						  found);
3601		if (rc == -EEXIST || rc == -ENODEV)
3602			continue;
3603		if (rc)
3604			goto fail;
3605		n_parts++;
3606	}
3607
3608	if (!n_parts) {
3609		kfree(parts);
3610		return 0;
3611	}
3612
3613	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3614fail:
3615	if (rc)
3616		kfree(parts);
3617	return rc;
3618}
3619
3620#endif /* CONFIG_SFC_MTD */
3621
3622static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3623{
3624	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3625}
3626
3627static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3628					    u32 host_time) {}
3629
3630static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3631					   bool temp)
3632{
3633	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3634	int rc;
3635
3636	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3637	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3638	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3639		return 0;
3640	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3641
3642	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3643	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3644	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3645		       channel->channel);
3646
3647	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3648			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3649
3650	if (rc != 0)
3651		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3652						    SYNC_EVENTS_DISABLED;
3653
3654	return rc;
3655}
3656
3657static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3658					    bool temp)
3659{
3660	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3661	int rc;
3662
3663	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3664	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3665		return 0;
3666	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3667		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3668		return 0;
3669	}
3670	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3671					    SYNC_EVENTS_DISABLED;
3672
3673	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3674	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3675	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3676		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3677	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3678		       channel->channel);
3679
3680	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3681			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3682
3683	return rc;
3684}
3685
3686static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3687					   bool temp)
3688{
3689	int (*set)(struct efx_channel *channel, bool temp);
3690	struct efx_channel *channel;
3691
3692	set = en ?
3693	      efx_ef10_rx_enable_timestamping :
3694	      efx_ef10_rx_disable_timestamping;
3695
3696	channel = efx_ptp_channel(efx);
3697	if (channel) {
3698		int rc = set(channel, temp);
3699		if (en && rc != 0) {
3700			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3701			return rc;
3702		}
3703	}
3704
3705	return 0;
3706}
3707
3708static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3709					 struct kernel_hwtstamp_config *init)
3710{
3711	return -EOPNOTSUPP;
3712}
3713
3714static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3715				      struct kernel_hwtstamp_config *init)
3716{
3717	int rc;
3718
3719	switch (init->rx_filter) {
3720	case HWTSTAMP_FILTER_NONE:
3721		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3722		/* if TX timestamping is still requested then leave PTP on */
3723		return efx_ptp_change_mode(efx,
3724					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3725	case HWTSTAMP_FILTER_ALL:
3726	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3727	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3728	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3729	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3730	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3731	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3732	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3733	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3734	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3735	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3736	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3737	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3738	case HWTSTAMP_FILTER_NTP_ALL:
3739		init->rx_filter = HWTSTAMP_FILTER_ALL;
3740		rc = efx_ptp_change_mode(efx, true, 0);
3741		if (!rc)
3742			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3743		if (rc)
3744			efx_ptp_change_mode(efx, false, 0);
3745		return rc;
3746	default:
3747		return -ERANGE;
3748	}
3749}
3750
3751static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3752				     struct netdev_phys_item_id *ppid)
3753{
3754	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3755
3756	if (!is_valid_ether_addr(nic_data->port_id))
3757		return -EOPNOTSUPP;
3758
3759	ppid->id_len = ETH_ALEN;
3760	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3761
3762	return 0;
3763}
3764
3765static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3766{
3767	if (proto != htons(ETH_P_8021Q))
3768		return -EINVAL;
3769
3770	return efx_ef10_add_vlan(efx, vid);
3771}
3772
3773static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3774{
3775	if (proto != htons(ETH_P_8021Q))
3776		return -EINVAL;
3777
3778	return efx_ef10_del_vlan(efx, vid);
3779}
3780
3781/* We rely on the MCDI wiping out our TX rings if it made any changes to the
3782 * ports table, ensuring that any TSO descriptors that were made on a now-
3783 * removed tunnel port will be blown away and won't break things when we try
3784 * to transmit them using the new ports table.
3785 */
3786static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3787{
3788	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3789	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3790	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3791	bool will_reset = false;
3792	size_t num_entries = 0;
3793	size_t inlen, outlen;
3794	size_t i;
3795	int rc;
3796	efx_dword_t flags_and_num_entries;
3797
3798	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3799
3800	nic_data->udp_tunnels_dirty = false;
3801
3802	if (!(nic_data->datapath_caps &
3803	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3804		efx_device_attach_if_not_resetting(efx);
3805		return 0;
3806	}
3807
3808	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3809		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3810
3811	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3812		if (nic_data->udp_tunnels[i].type !=
3813		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3814			efx_dword_t entry;
3815
3816			EFX_POPULATE_DWORD_2(entry,
3817				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3818					ntohs(nic_data->udp_tunnels[i].port),
3819				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3820					nic_data->udp_tunnels[i].type);
3821			*_MCDI_ARRAY_DWORD(inbuf,
3822				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3823				num_entries++) = entry;
3824		}
3825	}
3826
3827	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3828		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3829		     EFX_WORD_1_LBN);
3830	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3831		     EFX_WORD_1_WIDTH);
3832	EFX_POPULATE_DWORD_2(flags_and_num_entries,
3833			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3834				!!unloading,
3835			     EFX_WORD_1, num_entries);
3836	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3837		flags_and_num_entries;
3838
3839	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3840
3841	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3842				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3843	if (rc == -EIO) {
3844		/* Most likely the MC rebooted due to another function also
3845		 * setting its tunnel port list. Mark the tunnel port list as
3846		 * dirty, so it will be pushed upon coming up from the reboot.
3847		 */
3848		nic_data->udp_tunnels_dirty = true;
3849		return 0;
3850	}
3851
3852	if (rc) {
3853		/* expected not available on unprivileged functions */
3854		if (rc != -EPERM)
3855			netif_warn(efx, drv, efx->net_dev,
3856				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3857	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3858		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3859		netif_info(efx, drv, efx->net_dev,
3860			   "Rebooting MC due to UDP tunnel port list change\n");
3861		will_reset = true;
3862		if (unloading)
3863			/* Delay for the MC reset to complete. This will make
3864			 * unloading other functions a bit smoother. This is a
3865			 * race, but the other unload will work whichever way
3866			 * it goes, this just avoids an unnecessary error
3867			 * message.
3868			 */
3869			msleep(100);
3870	}
3871	if (!will_reset && !unloading) {
3872		/* The caller will have detached, relying on the MC reset to
3873		 * trigger a re-attach.  Since there won't be an MC reset, we
3874		 * have to do the attach ourselves.
3875		 */
3876		efx_device_attach_if_not_resetting(efx);
3877	}
3878
3879	return rc;
3880}
3881
3882static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3883{
3884	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3885	int rc = 0;
3886
3887	mutex_lock(&nic_data->udp_tunnels_lock);
3888	if (nic_data->udp_tunnels_dirty) {
3889		/* Make sure all TX are stopped while we modify the table, else
3890		 * we might race against an efx_features_check().
3891		 */
3892		efx_device_detach_sync(efx);
3893		rc = efx_ef10_set_udp_tnl_ports(efx, false);
3894	}
3895	mutex_unlock(&nic_data->udp_tunnels_lock);
3896	return rc;
3897}
3898
3899static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3900				     unsigned int table, unsigned int entry,
3901				     struct udp_tunnel_info *ti)
3902{
3903	struct efx_nic *efx = efx_netdev_priv(dev);
3904	struct efx_ef10_nic_data *nic_data;
3905	int efx_tunnel_type, rc;
3906
3907	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3908		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3909	else
3910		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
 
 
 
 
 
 
 
 
 
 
 
 
 
3911
3912	nic_data = efx->nic_data;
3913	if (!(nic_data->datapath_caps &
3914	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3915		return -EOPNOTSUPP;
 
 
 
 
3916
3917	mutex_lock(&nic_data->udp_tunnels_lock);
3918	/* Make sure all TX are stopped while we add to the table, else we
3919	 * might race against an efx_features_check().
3920	 */
3921	efx_device_detach_sync(efx);
3922	nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3923	nic_data->udp_tunnels[entry].port = ti->port;
3924	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3925	mutex_unlock(&nic_data->udp_tunnels_lock);
3926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3927	return rc;
3928}
3929
3930/* Called under the TX lock with the TX queue running, hence no-one can be
3931 * in the middle of updating the UDP tunnels table.  However, they could
3932 * have tried and failed the MCDI, in which case they'll have set the dirty
3933 * flag before dropping their locks.
3934 */
3935static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3936{
3937	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3938	size_t i;
3939
3940	if (!(nic_data->datapath_caps &
3941	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3942		return false;
3943
3944	if (nic_data->udp_tunnels_dirty)
3945		/* SW table may not match HW state, so just assume we can't
3946		 * use any UDP tunnel offloads.
3947		 */
3948		return false;
3949
3950	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3951		if (nic_data->udp_tunnels[i].type !=
3952		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3953		    nic_data->udp_tunnels[i].port == port)
3954			return true;
3955
3956	return false;
3957}
3958
3959static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3960				       unsigned int table, unsigned int entry,
3961				       struct udp_tunnel_info *ti)
3962{
3963	struct efx_nic *efx = efx_netdev_priv(dev);
3964	struct efx_ef10_nic_data *nic_data;
 
3965	int rc;
3966
3967	nic_data = efx->nic_data;
 
 
 
 
 
 
3968
3969	mutex_lock(&nic_data->udp_tunnels_lock);
3970	/* Make sure all TX are stopped while we remove from the table, else we
3971	 * might race against an efx_features_check().
3972	 */
3973	efx_device_detach_sync(efx);
3974	nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3975	nic_data->udp_tunnels[entry].port = 0;
3976	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3977	mutex_unlock(&nic_data->udp_tunnels_lock);
3978
3979	return rc;
3980}
3981
3982static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3983	.set_port	= efx_ef10_udp_tnl_set_port,
3984	.unset_port	= efx_ef10_udp_tnl_unset_port,
3985	.flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3986	.tables         = {
3987		{
3988			.n_entries = 16,
3989			.tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3990					UDP_TUNNEL_TYPE_GENEVE,
3991		},
3992	},
3993};
3994
3995/* EF10 may have multiple datapath firmware variants within a
3996 * single version.  Report which variants are running.
3997 */
3998static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3999					      size_t len)
4000{
4001	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4002
4003	return scnprintf(buf, len, " rx%x tx%x",
4004			 nic_data->rx_dpcpu_fw_id,
4005			 nic_data->tx_dpcpu_fw_id);
4006}
4007
4008static unsigned int ef10_check_caps(const struct efx_nic *efx,
4009				    u8 flag,
4010				    u32 offset)
4011{
4012	const struct efx_ef10_nic_data *nic_data = efx->nic_data;
4013
4014	switch (offset) {
4015	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
4016		return nic_data->datapath_caps & BIT_ULL(flag);
4017	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
4018		return nic_data->datapath_caps2 & BIT_ULL(flag);
4019	default:
4020		return 0;
4021	}
4022}
4023
4024static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx)
4025{
4026	unsigned int ret = EFX_RECYCLE_RING_SIZE_10G;
4027
4028	/* There is no difference between PFs and VFs. The side is based on
4029	 * the maximum link speed of a given NIC.
4030	 */
4031	switch (efx->pci_dev->device & 0xfff) {
4032	case 0x0903:	/* Farmingdale can do up to 10G */
4033		break;
4034	case 0x0923:	/* Greenport can do up to 40G */
4035	case 0x0a03:	/* Medford can do up to 40G */
4036		ret *= 4;
4037		break;
4038	default:	/* Medford2 can do up to 100G */
4039		ret *= 10;
 
 
 
 
 
 
 
4040	}
 
4041
4042	if (IS_ENABLED(CONFIG_PPC64))
4043		ret *= 4;
4044
4045	return ret;
4046}
4047
4048#define EF10_OFFLOAD_FEATURES		\
4049	(NETIF_F_IP_CSUM |		\
4050	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
4051	 NETIF_F_IPV6_CSUM |		\
4052	 NETIF_F_RXHASH |		\
4053	 NETIF_F_NTUPLE |		\
4054	 NETIF_F_SG |			\
4055	 NETIF_F_RXCSUM |		\
4056	 NETIF_F_RXALL)
4057
4058const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4059	.is_vf = true,
4060	.mem_bar = efx_ef10_vf_mem_bar,
4061	.mem_map_size = efx_ef10_mem_map_size,
4062	.probe = efx_ef10_probe_vf,
4063	.remove = efx_ef10_remove,
4064	.dimension_resources = efx_ef10_dimension_resources,
4065	.init = efx_ef10_init_nic,
4066	.fini = efx_ef10_fini_nic,
4067	.map_reset_reason = efx_ef10_map_reset_reason,
4068	.map_reset_flags = efx_ef10_map_reset_flags,
4069	.reset = efx_ef10_reset,
4070	.probe_port = efx_mcdi_port_probe,
4071	.remove_port = efx_mcdi_port_remove,
4072	.fini_dmaq = efx_fini_dmaq,
4073	.prepare_flr = efx_ef10_prepare_flr,
4074	.finish_flr = efx_port_dummy_op_void,
4075	.describe_stats = efx_ef10_describe_stats,
4076	.update_stats = efx_ef10_update_stats_vf,
4077	.update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4078	.start_stats = efx_port_dummy_op_void,
4079	.pull_stats = efx_port_dummy_op_void,
4080	.stop_stats = efx_port_dummy_op_void,
 
4081	.push_irq_moderation = efx_ef10_push_irq_moderation,
4082	.reconfigure_mac = efx_ef10_mac_reconfigure,
4083	.check_mac_fault = efx_mcdi_mac_check_fault,
4084	.reconfigure_port = efx_mcdi_port_reconfigure,
4085	.get_wol = efx_ef10_get_wol_vf,
4086	.set_wol = efx_ef10_set_wol_vf,
4087	.resume_wol = efx_port_dummy_op_void,
4088	.mcdi_request = efx_ef10_mcdi_request,
4089	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4090	.mcdi_read_response = efx_ef10_mcdi_read_response,
4091	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4092	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4093	.irq_enable_master = efx_port_dummy_op_void,
4094	.irq_test_generate = efx_ef10_irq_test_generate,
4095	.irq_disable_non_ev = efx_port_dummy_op_void,
4096	.irq_handle_msi = efx_ef10_msi_interrupt,
4097	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4098	.tx_probe = efx_ef10_tx_probe,
4099	.tx_init = efx_ef10_tx_init,
4100	.tx_remove = efx_mcdi_tx_remove,
4101	.tx_write = efx_ef10_tx_write,
4102	.tx_limit_len = efx_ef10_tx_limit_len,
4103	.tx_enqueue = __efx_enqueue_skb,
4104	.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4105	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4106	.rx_probe = efx_mcdi_rx_probe,
4107	.rx_init = efx_mcdi_rx_init,
4108	.rx_remove = efx_mcdi_rx_remove,
4109	.rx_write = efx_ef10_rx_write,
4110	.rx_defer_refill = efx_ef10_rx_defer_refill,
4111	.rx_packet = __efx_rx_packet,
4112	.ev_probe = efx_mcdi_ev_probe,
4113	.ev_init = efx_ef10_ev_init,
4114	.ev_fini = efx_mcdi_ev_fini,
4115	.ev_remove = efx_mcdi_ev_remove,
4116	.ev_process = efx_ef10_ev_process,
4117	.ev_read_ack = efx_ef10_ev_read_ack,
4118	.ev_test_generate = efx_ef10_ev_test_generate,
4119	.filter_table_probe = efx_ef10_filter_table_probe,
4120	.filter_table_restore = efx_mcdi_filter_table_restore,
4121	.filter_table_remove = efx_ef10_filter_table_remove,
4122	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4123	.filter_insert = efx_mcdi_filter_insert,
4124	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4125	.filter_get_safe = efx_mcdi_filter_get_safe,
4126	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4127	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4128	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4129	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4130#ifdef CONFIG_RFS_ACCEL
4131	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4132#endif
4133#ifdef CONFIG_SFC_MTD
4134	.mtd_probe = efx_port_dummy_op_int,
4135#endif
4136	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4137	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4138	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4139	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4140#ifdef CONFIG_SFC_SRIOV
4141	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4142	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4143	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4144#endif
4145	.get_mac_address = efx_ef10_get_mac_address_vf,
4146	.set_mac_address = efx_ef10_set_mac_address,
4147
4148	.get_phys_port_id = efx_ef10_get_phys_port_id,
4149	.revision = EFX_REV_HUNT_A0,
4150	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4151	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4152	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4153	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4154	.can_rx_scatter = true,
4155	.always_rx_scatter = true,
4156	.min_interrupt_mode = EFX_INT_MODE_MSIX,
 
4157	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4158	.offload_features = EF10_OFFLOAD_FEATURES,
4159	.mcdi_max_ver = 2,
4160	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4161	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4162			    1 << HWTSTAMP_FILTER_ALL,
4163	.rx_hash_key_size = 40,
4164	.check_caps = ef10_check_caps,
4165	.print_additional_fwver = efx_ef10_print_additional_fwver,
4166	.sensor_event = efx_mcdi_sensor_event,
4167	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4168};
4169
4170const struct efx_nic_type efx_hunt_a0_nic_type = {
4171	.is_vf = false,
4172	.mem_bar = efx_ef10_pf_mem_bar,
4173	.mem_map_size = efx_ef10_mem_map_size,
4174	.probe = efx_ef10_probe_pf,
4175	.remove = efx_ef10_remove,
4176	.dimension_resources = efx_ef10_dimension_resources,
4177	.init = efx_ef10_init_nic,
4178	.fini = efx_ef10_fini_nic,
4179	.map_reset_reason = efx_ef10_map_reset_reason,
4180	.map_reset_flags = efx_ef10_map_reset_flags,
4181	.reset = efx_ef10_reset,
4182	.probe_port = efx_mcdi_port_probe,
4183	.remove_port = efx_mcdi_port_remove,
4184	.fini_dmaq = efx_fini_dmaq,
4185	.prepare_flr = efx_ef10_prepare_flr,
4186	.finish_flr = efx_port_dummy_op_void,
4187	.describe_stats = efx_ef10_describe_stats,
4188	.update_stats = efx_ef10_update_stats_pf,
4189	.start_stats = efx_mcdi_mac_start_stats,
4190	.pull_stats = efx_mcdi_mac_pull_stats,
4191	.stop_stats = efx_mcdi_mac_stop_stats,
 
4192	.push_irq_moderation = efx_ef10_push_irq_moderation,
4193	.reconfigure_mac = efx_ef10_mac_reconfigure,
4194	.check_mac_fault = efx_mcdi_mac_check_fault,
4195	.reconfigure_port = efx_mcdi_port_reconfigure,
4196	.get_wol = efx_ef10_get_wol,
4197	.set_wol = efx_ef10_set_wol,
4198	.resume_wol = efx_port_dummy_op_void,
4199	.get_fec_stats = efx_ef10_get_fec_stats,
4200	.test_chip = efx_ef10_test_chip,
4201	.test_nvram = efx_mcdi_nvram_test_all,
4202	.mcdi_request = efx_ef10_mcdi_request,
4203	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4204	.mcdi_read_response = efx_ef10_mcdi_read_response,
4205	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4206	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4207	.irq_enable_master = efx_port_dummy_op_void,
4208	.irq_test_generate = efx_ef10_irq_test_generate,
4209	.irq_disable_non_ev = efx_port_dummy_op_void,
4210	.irq_handle_msi = efx_ef10_msi_interrupt,
4211	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4212	.tx_probe = efx_ef10_tx_probe,
4213	.tx_init = efx_ef10_tx_init,
4214	.tx_remove = efx_mcdi_tx_remove,
4215	.tx_write = efx_ef10_tx_write,
4216	.tx_limit_len = efx_ef10_tx_limit_len,
4217	.tx_enqueue = __efx_enqueue_skb,
4218	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4219	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4220	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4221	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4222	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4223	.rx_probe = efx_mcdi_rx_probe,
4224	.rx_init = efx_mcdi_rx_init,
4225	.rx_remove = efx_mcdi_rx_remove,
4226	.rx_write = efx_ef10_rx_write,
4227	.rx_defer_refill = efx_ef10_rx_defer_refill,
4228	.rx_packet = __efx_rx_packet,
4229	.ev_probe = efx_mcdi_ev_probe,
4230	.ev_init = efx_ef10_ev_init,
4231	.ev_fini = efx_mcdi_ev_fini,
4232	.ev_remove = efx_mcdi_ev_remove,
4233	.ev_process = efx_ef10_ev_process,
4234	.ev_read_ack = efx_ef10_ev_read_ack,
4235	.ev_test_generate = efx_ef10_ev_test_generate,
4236	.filter_table_probe = efx_ef10_filter_table_probe,
4237	.filter_table_restore = efx_mcdi_filter_table_restore,
4238	.filter_table_remove = efx_ef10_filter_table_remove,
4239	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4240	.filter_insert = efx_mcdi_filter_insert,
4241	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4242	.filter_get_safe = efx_mcdi_filter_get_safe,
4243	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4244	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4245	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4246	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4247#ifdef CONFIG_RFS_ACCEL
4248	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4249#endif
4250#ifdef CONFIG_SFC_MTD
4251	.mtd_probe = efx_ef10_mtd_probe,
4252	.mtd_rename = efx_mcdi_mtd_rename,
4253	.mtd_read = efx_mcdi_mtd_read,
4254	.mtd_erase = efx_mcdi_mtd_erase,
4255	.mtd_write = efx_mcdi_mtd_write,
4256	.mtd_sync = efx_mcdi_mtd_sync,
4257#endif
4258	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4259	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4260	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4261	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4262	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4263	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
 
4264	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
 
4265#ifdef CONFIG_SFC_SRIOV
4266	.sriov_configure = efx_ef10_sriov_configure,
4267	.sriov_init = efx_ef10_sriov_init,
4268	.sriov_fini = efx_ef10_sriov_fini,
4269	.sriov_wanted = efx_ef10_sriov_wanted,
 
 
4270	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4271	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4272	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4273	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4274	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4275	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4276	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4277	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4278#endif
4279	.get_mac_address = efx_ef10_get_mac_address_pf,
4280	.set_mac_address = efx_ef10_set_mac_address,
4281	.tso_versions = efx_ef10_tso_versions,
4282
4283	.get_phys_port_id = efx_ef10_get_phys_port_id,
4284	.revision = EFX_REV_HUNT_A0,
4285	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4286	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4287	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4288	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4289	.can_rx_scatter = true,
4290	.always_rx_scatter = true,
4291	.option_descriptors = true,
4292	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
 
4293	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4294	.offload_features = EF10_OFFLOAD_FEATURES,
4295	.mcdi_max_ver = 2,
4296	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4297	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4298			    1 << HWTSTAMP_FILTER_ALL,
4299	.rx_hash_key_size = 40,
4300	.check_caps = ef10_check_caps,
4301	.print_additional_fwver = efx_ef10_print_additional_fwver,
4302	.sensor_event = efx_mcdi_sensor_event,
4303	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4304};
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2012-2013 Solarflare Communications Inc.
   5 */
   6
   7#include "net_driver.h"
 
 
   8#include "ef10_regs.h"
   9#include "io.h"
  10#include "mcdi.h"
  11#include "mcdi_pcol.h"
 
 
 
  12#include "nic.h"
 
  13#include "workarounds.h"
  14#include "selftest.h"
  15#include "ef10_sriov.h"
  16#include <linux/in.h>
  17#include <linux/jhash.h>
  18#include <linux/wait.h>
  19#include <linux/workqueue.h>
 
  20
  21/* Hardware control for EF10 architecture including 'Huntington'. */
  22
  23#define EFX_EF10_DRVGEN_EV		7
  24enum {
  25	EFX_EF10_TEST = 1,
  26	EFX_EF10_REFILL,
  27};
  28/* The maximum size of a shared RSS context */
  29/* TODO: this should really be from the mcdi protocol export */
  30#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
  31
  32/* The filter table(s) are managed by firmware and we have write-only
  33 * access.  When removing filters we must identify them to the
  34 * firmware by a 64-bit handle, but this is too wide for Linux kernel
  35 * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
  36 * be able to tell in advance whether a requested insertion will
  37 * replace an existing filter.  Therefore we maintain a software hash
  38 * table, which should be at least as large as the hardware hash
  39 * table.
  40 *
  41 * Huntington has a single 8K filter table shared between all filter
  42 * types and both ports.
  43 */
  44#define HUNT_FILTER_TBL_ROWS 8192
  45
  46#define EFX_EF10_FILTER_ID_INVALID 0xffff
  47
  48#define EFX_EF10_FILTER_DEV_UC_MAX	32
  49#define EFX_EF10_FILTER_DEV_MC_MAX	256
  50
  51/* VLAN list entry */
  52struct efx_ef10_vlan {
  53	struct list_head list;
  54	u16 vid;
  55};
  56
  57enum efx_ef10_default_filters {
  58	EFX_EF10_BCAST,
  59	EFX_EF10_UCDEF,
  60	EFX_EF10_MCDEF,
  61	EFX_EF10_VXLAN4_UCDEF,
  62	EFX_EF10_VXLAN4_MCDEF,
  63	EFX_EF10_VXLAN6_UCDEF,
  64	EFX_EF10_VXLAN6_MCDEF,
  65	EFX_EF10_NVGRE4_UCDEF,
  66	EFX_EF10_NVGRE4_MCDEF,
  67	EFX_EF10_NVGRE6_UCDEF,
  68	EFX_EF10_NVGRE6_MCDEF,
  69	EFX_EF10_GENEVE4_UCDEF,
  70	EFX_EF10_GENEVE4_MCDEF,
  71	EFX_EF10_GENEVE6_UCDEF,
  72	EFX_EF10_GENEVE6_MCDEF,
  73
  74	EFX_EF10_NUM_DEFAULT_FILTERS
  75};
  76
  77/* Per-VLAN filters information */
  78struct efx_ef10_filter_vlan {
  79	struct list_head list;
  80	u16 vid;
  81	u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
  82	u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
  83	u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
  84};
  85
  86struct efx_ef10_dev_addr {
  87	u8 addr[ETH_ALEN];
  88};
  89
  90struct efx_ef10_filter_table {
  91/* The MCDI match masks supported by this fw & hw, in order of priority */
  92	u32 rx_match_mcdi_flags[
  93		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
  94	unsigned int rx_match_count;
  95
  96	struct rw_semaphore lock; /* Protects entries */
  97	struct {
  98		unsigned long spec;	/* pointer to spec plus flag bits */
  99/* AUTO_OLD is used to mark and sweep MAC filters for the device address lists. */
 100/* unused flag	1UL */
 101#define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
 102#define EFX_EF10_FILTER_FLAGS		3UL
 103		u64 handle;		/* firmware handle */
 104	} *entry;
 105/* Shadow of net_device address lists, guarded by mac_lock */
 106	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
 107	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
 108	int dev_uc_count;
 109	int dev_mc_count;
 110	bool uc_promisc;
 111	bool mc_promisc;
 112/* Whether in multicast promiscuous mode when last changed */
 113	bool mc_promisc_last;
 114	bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */
 115	bool vlan_filter;
 116	struct list_head vlan_list;
 117};
 118
 119/* An arbitrary search limit for the software hash table */
 120#define EFX_EF10_FILTER_SEARCH_LIMIT 200
 121
 122static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
 123static void efx_ef10_filter_table_remove(struct efx_nic *efx);
 124static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
 125static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
 126					      struct efx_ef10_filter_vlan *vlan);
 127static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
 128static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
 129
 130static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
 131{
 132	WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
 133	return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
 134}
 135
 136static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
 137{
 138	return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
 139}
 140
 141static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
 142{
 143	return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
 144}
 145
 146static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
 147{
 148	efx_dword_t reg;
 149
 150	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
 151	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
 152		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
 153}
 154
 155/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
 156 * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
 157 * bar; PFs use BAR 0/1 for memory.
 158 */
 159static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
 160{
 161	switch (efx->pci_dev->device) {
 162	case 0x0b03: /* SFC9250 PF */
 163		return 0;
 164	default:
 165		return 2;
 166	}
 167}
 168
 169/* All VFs use BAR 0/1 for memory */
 170static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
 171{
 172	return 0;
 173}
 174
 175static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
 176{
 177	int bar;
 178
 179	bar = efx->type->mem_bar(efx);
 180	return resource_size(&efx->pci_dev->resource[bar]);
 181}
 182
 183static bool efx_ef10_is_vf(struct efx_nic *efx)
 184{
 185	return efx->type->is_vf;
 186}
 187
 188static int efx_ef10_get_pf_index(struct efx_nic *efx)
 189{
 190	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
 191	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 192	size_t outlen;
 193	int rc;
 194
 195	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
 196			  sizeof(outbuf), &outlen);
 197	if (rc)
 198		return rc;
 199	if (outlen < sizeof(outbuf))
 200		return -EIO;
 201
 202	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
 203	return 0;
 204}
 205
 206#ifdef CONFIG_SFC_SRIOV
 207static int efx_ef10_get_vf_index(struct efx_nic *efx)
 208{
 209	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
 210	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 211	size_t outlen;
 212	int rc;
 213
 214	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
 215			  sizeof(outbuf), &outlen);
 216	if (rc)
 217		return rc;
 218	if (outlen < sizeof(outbuf))
 219		return -EIO;
 220
 221	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 222	return 0;
 223}
 224#endif
 225
 226static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 227{
 228	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
 229	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 230	size_t outlen;
 231	int rc;
 232
 233	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 234
 235	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 236			  outbuf, sizeof(outbuf), &outlen);
 237	if (rc)
 238		return rc;
 239	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 240		netif_err(efx, drv, efx->net_dev,
 241			  "unable to read datapath firmware capabilities\n");
 242		return -EIO;
 243	}
 244
 245	nic_data->datapath_caps =
 246		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 247
 248	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
 249		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 250				GET_CAPABILITIES_V2_OUT_FLAGS2);
 251		nic_data->piobuf_size = MCDI_WORD(outbuf,
 252				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
 253	} else {
 254		nic_data->datapath_caps2 = 0;
 255		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
 256	}
 257
 258	/* record the DPCPU firmware IDs to determine VEB vswitching support.
 259	 */
 260	nic_data->rx_dpcpu_fw_id =
 261		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 262	nic_data->tx_dpcpu_fw_id =
 263		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 264
 265	if (!(nic_data->datapath_caps &
 266	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 267		netif_err(efx, probe, efx->net_dev,
 268			  "current firmware does not support an RX prefix\n");
 269		return -ENODEV;
 270	}
 271
 272	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
 273		u8 vi_window_mode = MCDI_BYTE(outbuf,
 274				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 275
 276		switch (vi_window_mode) {
 277		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
 278			efx->vi_stride = 8192;
 279			break;
 280		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
 281			efx->vi_stride = 16384;
 282			break;
 283		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
 284			efx->vi_stride = 65536;
 285			break;
 286		default:
 287			netif_err(efx, probe, efx->net_dev,
 288				  "Unrecognised VI window mode %d\n",
 289				  vi_window_mode);
 290			return -EIO;
 291		}
 292		netif_dbg(efx, probe, efx->net_dev, "vi_stride = %u\n",
 293			  efx->vi_stride);
 294	} else {
 295		/* keep default VI stride */
 296		netif_dbg(efx, probe, efx->net_dev,
 297			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
 298			  efx->vi_stride);
 299	}
 300
 301	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 302		efx->num_mac_stats = MCDI_WORD(outbuf,
 303				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 304		netif_dbg(efx, probe, efx->net_dev,
 305			  "firmware reports num_mac_stats = %u\n",
 306			  efx->num_mac_stats);
 307	} else {
 308		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
 309		netif_dbg(efx, probe, efx->net_dev,
 310			  "firmware did not report num_mac_stats, assuming %u\n",
 311			  efx->num_mac_stats);
 312	}
 313
 314	return 0;
 315}
 316
 317static void efx_ef10_read_licensed_features(struct efx_nic *efx)
 318{
 319	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
 320	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
 321	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 322	size_t outlen;
 323	int rc;
 324
 325	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
 326		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
 327	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
 328				outbuf, sizeof(outbuf), &outlen);
 329	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
 330		return;
 331
 332	nic_data->licensed_features = MCDI_QWORD(outbuf,
 333					 LICENSING_V3_OUT_LICENSED_FEATURES);
 334}
 335
 336static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 337{
 338	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 339	int rc;
 340
 341	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 342			  outbuf, sizeof(outbuf), NULL);
 343	if (rc)
 344		return rc;
 345	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 346	return rc > 0 ? rc : -ERANGE;
 347}
 348
 349static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 350{
 351	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 352	unsigned int implemented;
 353	unsigned int enabled;
 354	int rc;
 355
 356	nic_data->workaround_35388 = false;
 357	nic_data->workaround_61265 = false;
 358
 359	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 360
 361	if (rc == -ENOSYS) {
 362		/* Firmware without GET_WORKAROUNDS - not a problem. */
 363		rc = 0;
 364	} else if (rc == 0) {
 365		/* Bug61265 workaround is always enabled if implemented. */
 366		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 367			nic_data->workaround_61265 = true;
 368
 369		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 370			nic_data->workaround_35388 = true;
 371		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 372			/* Workaround is implemented but not enabled.
 373			 * Try to enable it.
 374			 */
 375			rc = efx_mcdi_set_workaround(efx,
 376						     MC_CMD_WORKAROUND_BUG35388,
 377						     true, NULL);
 378			if (rc == 0)
 379				nic_data->workaround_35388 = true;
 380			/* If we failed to set the workaround just carry on. */
 381			rc = 0;
 382		}
 383	}
 384
 385	netif_dbg(efx, probe, efx->net_dev,
 386		  "workaround for bug 35388 is %sabled\n",
 387		  nic_data->workaround_35388 ? "en" : "dis");
 388	netif_dbg(efx, probe, efx->net_dev,
 389		  "workaround for bug 61265 is %sabled\n",
 390		  nic_data->workaround_61265 ? "en" : "dis");
 391
 392	return rc;
 393}
 394
 395static void efx_ef10_process_timer_config(struct efx_nic *efx,
 396					  const efx_dword_t *data)
 397{
 398	unsigned int max_count;
 399
 400	if (EFX_EF10_WORKAROUND_61265(efx)) {
 401		efx->timer_quantum_ns = MCDI_DWORD(data,
 402			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 403		efx->timer_max_ns = MCDI_DWORD(data,
 404			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 405	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
 406		efx->timer_quantum_ns = MCDI_DWORD(data,
 407			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 408		max_count = MCDI_DWORD(data,
 409			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 410		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 411	} else {
 412		efx->timer_quantum_ns = MCDI_DWORD(data,
 413			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 414		max_count = MCDI_DWORD(data,
 415			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 416		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 417	}
 418
 419	netif_dbg(efx, probe, efx->net_dev,
 420		  "got timer properties from MC: quantum %u ns; max %u ns\n",
 421		  efx->timer_quantum_ns, efx->timer_max_ns);
 422}
 423
 424static int efx_ef10_get_timer_config(struct efx_nic *efx)
 425{
 426	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 427	int rc;
 428
 429	rc = efx_ef10_get_timer_workarounds(efx);
 430	if (rc)
 431		return rc;
 432
 433	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 434				outbuf, sizeof(outbuf), NULL);
 435
 436	if (rc == 0) {
 437		efx_ef10_process_timer_config(efx, outbuf);
 438	} else if (rc == -ENOSYS || rc == -EPERM) {
 439		/* Not available - fall back to Huntington defaults. */
 440		unsigned int quantum;
 441
 442		rc = efx_ef10_get_sysclk_freq(efx);
 443		if (rc < 0)
 444			return rc;
 445
 446		quantum = 1536000 / rc; /* 1536 cycles */
 447		efx->timer_quantum_ns = quantum;
 448		efx->timer_max_ns = efx->type->timer_period_max * quantum;
 449		rc = 0;
 450	} else {
 451		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 452				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 453				       NULL, 0, rc);
 454	}
 455
 456	return rc;
 457}
 458
 459static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 460{
 461	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 462	size_t outlen;
 463	int rc;
 464
 465	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 466
 467	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 468			  outbuf, sizeof(outbuf), &outlen);
 469	if (rc)
 470		return rc;
 471	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 472		return -EIO;
 473
 474	ether_addr_copy(mac_address,
 475			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 476	return 0;
 477}
 478
 479static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 480{
 481	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 482	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 483	size_t outlen;
 484	int num_addrs, rc;
 485
 486	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 487		       EVB_PORT_ID_ASSIGNED);
 488	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 489			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 490
 491	if (rc)
 492		return rc;
 493	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 494		return -EIO;
 495
 496	num_addrs = MCDI_DWORD(outbuf,
 497			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 498
 499	WARN_ON(num_addrs != 1);
 500
 501	ether_addr_copy(mac_address,
 502			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 503
 504	return 0;
 505}
 506
 507static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
 508					       struct device_attribute *attr,
 509					       char *buf)
 510{
 511	struct efx_nic *efx = dev_get_drvdata(dev);
 512
 513	return sprintf(buf, "%d\n",
 514		       ((efx->mcdi->fn_flags) &
 515			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 516		       ? 1 : 0);
 517}
 518
 519static ssize_t efx_ef10_show_primary_flag(struct device *dev,
 520					  struct device_attribute *attr,
 521					  char *buf)
 522{
 523	struct efx_nic *efx = dev_get_drvdata(dev);
 524
 525	return sprintf(buf, "%d\n",
 526		       ((efx->mcdi->fn_flags) &
 527			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 528		       ? 1 : 0);
 529}
 530
 531static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 532{
 533	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 534	struct efx_ef10_vlan *vlan;
 535
 536	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 537
 538	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 539		if (vlan->vid == vid)
 540			return vlan;
 541	}
 542
 543	return NULL;
 544}
 545
 546static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 547{
 548	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 549	struct efx_ef10_vlan *vlan;
 550	int rc;
 551
 552	mutex_lock(&nic_data->vlan_lock);
 553
 554	vlan = efx_ef10_find_vlan(efx, vid);
 555	if (vlan) {
 556		/* We add VID 0 on init. 8021q adds it on module init
 557		 * for all interfaces with VLAN filtring feature.
 558		 */
 559		if (vid == 0)
 560			goto done_unlock;
 561		netif_warn(efx, drv, efx->net_dev,
 562			   "VLAN %u already added\n", vid);
 563		rc = -EALREADY;
 564		goto fail_exist;
 565	}
 566
 567	rc = -ENOMEM;
 568	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 569	if (!vlan)
 570		goto fail_alloc;
 571
 572	vlan->vid = vid;
 573
 574	list_add_tail(&vlan->list, &nic_data->vlan_list);
 575
 576	if (efx->filter_state) {
 577		mutex_lock(&efx->mac_lock);
 578		down_write(&efx->filter_sem);
 579		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
 580		up_write(&efx->filter_sem);
 581		mutex_unlock(&efx->mac_lock);
 582		if (rc)
 583			goto fail_filter_add_vlan;
 584	}
 585
 586done_unlock:
 587	mutex_unlock(&nic_data->vlan_lock);
 588	return 0;
 589
 590fail_filter_add_vlan:
 591	list_del(&vlan->list);
 592	kfree(vlan);
 593fail_alloc:
 594fail_exist:
 595	mutex_unlock(&nic_data->vlan_lock);
 596	return rc;
 597}
 598
 599static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 600				       struct efx_ef10_vlan *vlan)
 601{
 602	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 603
 604	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 605
 606	if (efx->filter_state) {
 607		down_write(&efx->filter_sem);
 608		efx_ef10_filter_del_vlan(efx, vlan->vid);
 609		up_write(&efx->filter_sem);
 610	}
 611
 612	list_del(&vlan->list);
 613	kfree(vlan);
 614}
 615
 616static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 617{
 618	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 619	struct efx_ef10_vlan *vlan;
 620	int rc = 0;
 621
 622	/* 8021q removes VID 0 on module unload for all interfaces
 623	 * with VLAN filtering feature. We need to keep it to receive
 624	 * untagged traffic.
 625	 */
 626	if (vid == 0)
 627		return 0;
 628
 629	mutex_lock(&nic_data->vlan_lock);
 630
 631	vlan = efx_ef10_find_vlan(efx, vid);
 632	if (!vlan) {
 633		netif_err(efx, drv, efx->net_dev,
 634			  "VLAN %u to be deleted not found\n", vid);
 635		rc = -ENOENT;
 636	} else {
 637		efx_ef10_del_vlan_internal(efx, vlan);
 638	}
 639
 640	mutex_unlock(&nic_data->vlan_lock);
 641
 642	return rc;
 643}
 644
 645static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 646{
 647	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 648	struct efx_ef10_vlan *vlan, *next_vlan;
 649
 650	mutex_lock(&nic_data->vlan_lock);
 651	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 652		efx_ef10_del_vlan_internal(efx, vlan);
 653	mutex_unlock(&nic_data->vlan_lock);
 654}
 655
 656static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
 657		   NULL);
 658static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
 659
 660static int efx_ef10_probe(struct efx_nic *efx)
 661{
 662	struct efx_ef10_nic_data *nic_data;
 663	int i, rc;
 664
 665	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 666	if (!nic_data)
 667		return -ENOMEM;
 668	efx->nic_data = nic_data;
 669
 670	/* we assume later that we can copy from this buffer in dwords */
 671	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 672
 673	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 674				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 675	if (rc)
 676		goto fail1;
 677
 678	/* Get the MC's warm boot count.  In case it's rebooting right
 679	 * now, be prepared to retry.
 680	 */
 681	i = 0;
 682	for (;;) {
 683		rc = efx_ef10_get_warm_boot_count(efx);
 684		if (rc >= 0)
 685			break;
 686		if (++i == 5)
 687			goto fail2;
 688		ssleep(1);
 689	}
 690	nic_data->warm_boot_count = rc;
 691
 692	efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
 693
 694	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
 695
 696	/* In case we're recovering from a crash (kexec), we want to
 697	 * cancel any outstanding request by the previous user of this
 698	 * function.  We send a special message using the least
 699	 * significant bits of the 'high' (doorbell) register.
 700	 */
 701	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 702
 703	rc = efx_mcdi_init(efx);
 704	if (rc)
 705		goto fail2;
 706
 707	mutex_init(&nic_data->udp_tunnels_lock);
 
 
 
 708
 709	/* Reset (most) configuration for this function */
 710	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 711	if (rc)
 712		goto fail3;
 713
 714	/* Enable event logging */
 715	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 716	if (rc)
 717		goto fail3;
 718
 719	rc = device_create_file(&efx->pci_dev->dev,
 720				&dev_attr_link_control_flag);
 721	if (rc)
 722		goto fail3;
 723
 724	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 725	if (rc)
 726		goto fail4;
 727
 728	rc = efx_ef10_get_pf_index(efx);
 729	if (rc)
 730		goto fail5;
 731
 732	rc = efx_ef10_init_datapath_caps(efx);
 733	if (rc < 0)
 734		goto fail5;
 735
 736	efx_ef10_read_licensed_features(efx);
 737
 738	/* We can have one VI for each vi_stride-byte region.
 739	 * However, until we use TX option descriptors we need two TX queues
 740	 * per channel.
 741	 */
 742	efx->max_channels = min_t(unsigned int,
 743				  EFX_MAX_CHANNELS,
 744				  efx_ef10_mem_map_size(efx) /
 745				  (efx->vi_stride * EFX_TXQ_TYPES));
 
 
 
 
 
 
 
 
 
 746	efx->max_tx_channels = efx->max_channels;
 747	if (WARN_ON(efx->max_channels == 0)) {
 748		rc = -EIO;
 749		goto fail5;
 750	}
 751
 752	efx->rx_packet_len_offset =
 753		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 754
 755	if (nic_data->datapath_caps &
 756	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
 757		efx->net_dev->hw_features |= NETIF_F_RXFCS;
 758
 759	rc = efx_mcdi_port_get_number(efx);
 760	if (rc < 0)
 761		goto fail5;
 762	efx->port_num = rc;
 763
 764	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 765	if (rc)
 766		goto fail5;
 767
 768	rc = efx_ef10_get_timer_config(efx);
 769	if (rc < 0)
 770		goto fail5;
 771
 772	rc = efx_mcdi_mon_probe(efx);
 773	if (rc && rc != -EPERM)
 774		goto fail5;
 775
 776	efx_ptp_defer_probe_with_channel(efx);
 777
 778#ifdef CONFIG_SFC_SRIOV
 779	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 780		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 781		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 782
 783		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 784	} else
 785#endif
 786		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 787
 788	INIT_LIST_HEAD(&nic_data->vlan_list);
 789	mutex_init(&nic_data->vlan_lock);
 790
 791	/* Add unspecified VID to support VLAN filtering being disabled */
 792	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 793	if (rc)
 794		goto fail_add_vid_unspec;
 795
 796	/* If VLAN filtering is enabled, we need VID 0 to get untagged
 797	 * traffic.  It is added automatically if 8021q module is loaded,
 798	 * but we can't rely on it since module may be not loaded.
 799	 */
 800	rc = efx_ef10_add_vlan(efx, 0);
 801	if (rc)
 802		goto fail_add_vid_0;
 803
 
 
 
 
 
 
 804	return 0;
 805
 806fail_add_vid_0:
 807	efx_ef10_cleanup_vlans(efx);
 808fail_add_vid_unspec:
 809	mutex_destroy(&nic_data->vlan_lock);
 810	efx_ptp_remove(efx);
 811	efx_mcdi_mon_remove(efx);
 812fail5:
 813	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 814fail4:
 815	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 816fail3:
 817	efx_mcdi_detach(efx);
 818
 819	mutex_lock(&nic_data->udp_tunnels_lock);
 820	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 821	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 822	mutex_unlock(&nic_data->udp_tunnels_lock);
 823	mutex_destroy(&nic_data->udp_tunnels_lock);
 824
 825	efx_mcdi_fini(efx);
 826fail2:
 827	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 828fail1:
 829	kfree(nic_data);
 830	efx->nic_data = NULL;
 831	return rc;
 832}
 833
 834static int efx_ef10_free_vis(struct efx_nic *efx)
 835{
 836	MCDI_DECLARE_BUF_ERR(outbuf);
 837	size_t outlen;
 838	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
 839				    outbuf, sizeof(outbuf), &outlen);
 840
 841	/* -EALREADY means nothing to free, so ignore */
 842	if (rc == -EALREADY)
 843		rc = 0;
 844	if (rc)
 845		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
 846				       rc);
 847	return rc;
 848}
 849
 850#ifdef EFX_USE_PIO
 851
 852static void efx_ef10_free_piobufs(struct efx_nic *efx)
 853{
 854	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 855	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 856	unsigned int i;
 857	int rc;
 858
 859	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 860
 861	for (i = 0; i < nic_data->n_piobufs; i++) {
 862		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 863			       nic_data->piobuf_handle[i]);
 864		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 865				  NULL, 0, NULL);
 866		WARN_ON(rc);
 867	}
 868
 869	nic_data->n_piobufs = 0;
 870}
 871
 872static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 873{
 874	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 875	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 876	unsigned int i;
 877	size_t outlen;
 878	int rc = 0;
 879
 880	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 881
 882	for (i = 0; i < n; i++) {
 883		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 884					outbuf, sizeof(outbuf), &outlen);
 885		if (rc) {
 886			/* Don't display the MC error if we didn't have space
 887			 * for a VF.
 888			 */
 889			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 890				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 891						       0, outbuf, outlen, rc);
 892			break;
 893		}
 894		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 895			rc = -EIO;
 896			break;
 897		}
 898		nic_data->piobuf_handle[i] =
 899			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 900		netif_dbg(efx, probe, efx->net_dev,
 901			  "allocated PIO buffer %u handle %x\n", i,
 902			  nic_data->piobuf_handle[i]);
 903	}
 904
 905	nic_data->n_piobufs = i;
 906	if (rc)
 907		efx_ef10_free_piobufs(efx);
 908	return rc;
 909}
 910
 911static int efx_ef10_link_piobufs(struct efx_nic *efx)
 912{
 913	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 914	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
 915	struct efx_channel *channel;
 916	struct efx_tx_queue *tx_queue;
 917	unsigned int offset, index;
 918	int rc;
 919
 920	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 921	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 922
 923	/* Link a buffer to each VI in the write-combining mapping */
 924	for (index = 0; index < nic_data->n_piobufs; ++index) {
 925		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 926			       nic_data->piobuf_handle[index]);
 927		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 928			       nic_data->pio_write_vi_base + index);
 929		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 930				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 931				  NULL, 0, NULL);
 932		if (rc) {
 933			netif_err(efx, drv, efx->net_dev,
 934				  "failed to link VI %u to PIO buffer %u (%d)\n",
 935				  nic_data->pio_write_vi_base + index, index,
 936				  rc);
 937			goto fail;
 938		}
 939		netif_dbg(efx, probe, efx->net_dev,
 940			  "linked VI %u to PIO buffer %u\n",
 941			  nic_data->pio_write_vi_base + index, index);
 942	}
 943
 944	/* Link a buffer to each TX queue */
 945	efx_for_each_channel(channel, efx) {
 946		/* Extra channels, even those with TXQs (PTP), do not require
 947		 * PIO resources.
 948		 */
 949		if (!channel->type->want_pio)
 
 950			continue;
 
 951		efx_for_each_channel_tx_queue(tx_queue, channel) {
 952			/* We assign the PIO buffers to queues in
 953			 * reverse order to allow for the following
 954			 * special case.
 955			 */
 956			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 957				   tx_queue->channel->channel - 1) *
 958				  efx_piobuf_size);
 959			index = offset / nic_data->piobuf_size;
 960			offset = offset % nic_data->piobuf_size;
 961
 962			/* When the host page size is 4K, the first
 963			 * host page in the WC mapping may be within
 964			 * the same VI page as the last TX queue.  We
 965			 * can only link one buffer to each VI.
 966			 */
 967			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 968				BUG_ON(index != 0);
 969				rc = 0;
 970			} else {
 971				MCDI_SET_DWORD(inbuf,
 972					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 973					       nic_data->piobuf_handle[index]);
 974				MCDI_SET_DWORD(inbuf,
 975					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 976					       tx_queue->queue);
 977				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 978						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 979						  NULL, 0, NULL);
 980			}
 981
 982			if (rc) {
 983				/* This is non-fatal; the TX path just
 984				 * won't use PIO for this queue
 985				 */
 986				netif_err(efx, drv, efx->net_dev,
 987					  "failed to link VI %u to PIO buffer %u (%d)\n",
 988					  tx_queue->queue, index, rc);
 989				tx_queue->piobuf = NULL;
 990			} else {
 991				tx_queue->piobuf =
 992					nic_data->pio_write_base +
 993					index * efx->vi_stride + offset;
 994				tx_queue->piobuf_offset = offset;
 995				netif_dbg(efx, probe, efx->net_dev,
 996					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 997					  tx_queue->queue, index,
 998					  tx_queue->piobuf_offset,
 999					  tx_queue->piobuf);
1000			}
1001		}
1002	}
1003
1004	return 0;
1005
1006fail:
1007	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
1008	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
1009	 */
1010	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
1011	while (index--) {
1012		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
1013			       nic_data->pio_write_vi_base + index);
1014		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
1015			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
1016			     NULL, 0, NULL);
1017	}
1018	return rc;
1019}
1020
1021static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1022{
1023	struct efx_channel *channel;
1024	struct efx_tx_queue *tx_queue;
1025
1026	/* All our existing PIO buffers went away */
1027	efx_for_each_channel(channel, efx)
1028		efx_for_each_channel_tx_queue(tx_queue, channel)
1029			tx_queue->piobuf = NULL;
1030}
1031
1032#else /* !EFX_USE_PIO */
1033
1034static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
1035{
1036	return n == 0 ? 0 : -ENOBUFS;
1037}
1038
1039static int efx_ef10_link_piobufs(struct efx_nic *efx)
1040{
1041	return 0;
1042}
1043
1044static void efx_ef10_free_piobufs(struct efx_nic *efx)
1045{
1046}
1047
1048static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1049{
1050}
1051
1052#endif /* EFX_USE_PIO */
1053
1054static void efx_ef10_remove(struct efx_nic *efx)
1055{
1056	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1057	int rc;
1058
1059#ifdef CONFIG_SFC_SRIOV
1060	struct efx_ef10_nic_data *nic_data_pf;
1061	struct pci_dev *pci_dev_pf;
1062	struct efx_nic *efx_pf;
1063	struct ef10_vf *vf;
1064
1065	if (efx->pci_dev->is_virtfn) {
1066		pci_dev_pf = efx->pci_dev->physfn;
1067		if (pci_dev_pf) {
1068			efx_pf = pci_get_drvdata(pci_dev_pf);
1069			nic_data_pf = efx_pf->nic_data;
1070			vf = nic_data_pf->vf + nic_data->vf_index;
1071			vf->efx = NULL;
1072		} else
1073			netif_info(efx, drv, efx->net_dev,
1074				   "Could not get the PF id from VF\n");
1075	}
1076#endif
1077
1078	efx_ef10_cleanup_vlans(efx);
1079	mutex_destroy(&nic_data->vlan_lock);
1080
1081	efx_ptp_remove(efx);
1082
1083	efx_mcdi_mon_remove(efx);
1084
1085	efx_ef10_rx_free_indir_table(efx);
1086
1087	if (nic_data->wc_membase)
1088		iounmap(nic_data->wc_membase);
1089
1090	rc = efx_ef10_free_vis(efx);
1091	WARN_ON(rc != 0);
1092
1093	if (!nic_data->must_restore_piobufs)
1094		efx_ef10_free_piobufs(efx);
1095
1096	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1097	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1098
1099	efx_mcdi_detach(efx);
1100
1101	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1102	mutex_lock(&nic_data->udp_tunnels_lock);
1103	(void)efx_ef10_set_udp_tnl_ports(efx, true);
1104	mutex_unlock(&nic_data->udp_tunnels_lock);
1105
1106	mutex_destroy(&nic_data->udp_tunnels_lock);
1107
1108	efx_mcdi_fini(efx);
1109	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1110	kfree(nic_data);
1111}
1112
1113static int efx_ef10_probe_pf(struct efx_nic *efx)
1114{
1115	return efx_ef10_probe(efx);
1116}
1117
1118int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1119			    u32 *port_flags, u32 *vadaptor_flags,
1120			    unsigned int *vlan_tags)
1121{
1122	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1123	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1124	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1125	size_t outlen;
1126	int rc;
1127
1128	if (nic_data->datapath_caps &
1129	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1130		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1131			       port_id);
1132
1133		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1134				  outbuf, sizeof(outbuf), &outlen);
1135		if (rc)
1136			return rc;
1137
1138		if (outlen < sizeof(outbuf)) {
1139			rc = -EIO;
1140			return rc;
1141		}
1142	}
1143
1144	if (port_flags)
1145		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1146	if (vadaptor_flags)
1147		*vadaptor_flags =
1148			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1149	if (vlan_tags)
1150		*vlan_tags =
1151			MCDI_DWORD(outbuf,
1152				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1153
1154	return 0;
1155}
1156
1157int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1158{
1159	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1160
1161	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1162	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1163			    NULL, 0, NULL);
1164}
1165
1166int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1167{
1168	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1169
1170	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1171	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1172			    NULL, 0, NULL);
1173}
1174
1175int efx_ef10_vport_add_mac(struct efx_nic *efx,
1176			   unsigned int port_id, u8 *mac)
1177{
1178	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1179
1180	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1181	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1182
1183	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1184			    sizeof(inbuf), NULL, 0, NULL);
1185}
1186
1187int efx_ef10_vport_del_mac(struct efx_nic *efx,
1188			   unsigned int port_id, u8 *mac)
1189{
1190	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1191
1192	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1193	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1194
1195	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1196			    sizeof(inbuf), NULL, 0, NULL);
1197}
1198
1199#ifdef CONFIG_SFC_SRIOV
1200static int efx_ef10_probe_vf(struct efx_nic *efx)
1201{
1202	int rc;
1203	struct pci_dev *pci_dev_pf;
1204
1205	/* If the parent PF has no VF data structure, it doesn't know about this
1206	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1207	 * if the PF driver is unloaded while the VF is assigned to a guest.
 
1208	 */
1209	pci_dev_pf = efx->pci_dev->physfn;
1210	if (pci_dev_pf) {
1211		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1212		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1213
1214		if (!nic_data_pf->vf) {
1215			netif_info(efx, drv, efx->net_dev,
1216				   "The VF cannot link to its parent PF; "
1217				   "please destroy and re-create the VF\n");
1218			return -EBUSY;
1219		}
1220	}
1221
1222	rc = efx_ef10_probe(efx);
1223	if (rc)
1224		return rc;
1225
1226	rc = efx_ef10_get_vf_index(efx);
1227	if (rc)
1228		goto fail;
1229
1230	if (efx->pci_dev->is_virtfn) {
1231		if (efx->pci_dev->physfn) {
1232			struct efx_nic *efx_pf =
1233				pci_get_drvdata(efx->pci_dev->physfn);
1234			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1235			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1236
1237			nic_data_p->vf[nic_data->vf_index].efx = efx;
1238			nic_data_p->vf[nic_data->vf_index].pci_dev =
1239				efx->pci_dev;
1240		} else
1241			netif_info(efx, drv, efx->net_dev,
1242				   "Could not get the PF id from VF\n");
1243	}
1244
1245	return 0;
1246
1247fail:
1248	efx_ef10_remove(efx);
1249	return rc;
1250}
1251#else
1252static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1253{
1254	return 0;
1255}
1256#endif
1257
1258static int efx_ef10_alloc_vis(struct efx_nic *efx,
1259			      unsigned int min_vis, unsigned int max_vis)
1260{
1261	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1262	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1263	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1264	size_t outlen;
1265	int rc;
1266
1267	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1268	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1269	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1270			  outbuf, sizeof(outbuf), &outlen);
1271	if (rc != 0)
1272		return rc;
1273
1274	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1275		return -EIO;
1276
1277	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1278		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1279
1280	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1281	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1282	return 0;
1283}
1284
1285/* Note that the failure path of this function does not free
1286 * resources, as this will be done by efx_ef10_remove().
1287 */
1288static int efx_ef10_dimension_resources(struct efx_nic *efx)
1289{
 
 
 
1290	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1291	unsigned int uc_mem_map_size, wc_mem_map_size;
1292	unsigned int min_vis = max(EFX_TXQ_TYPES,
1293				   efx_separate_tx_channels ? 2 : 1);
1294	unsigned int channel_vis, pio_write_vi_base, max_vis;
1295	void __iomem *membase;
1296	int rc;
1297
1298	channel_vis = max(efx->n_channels,
1299			  (efx->n_tx_channels + efx->n_extra_tx_channels) *
1300			  EFX_TXQ_TYPES);
 
 
 
 
 
 
 
1301
1302#ifdef EFX_USE_PIO
1303	/* Try to allocate PIO buffers if wanted and if the full
1304	 * number of PIO buffers would be sufficient to allocate one
1305	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1306	 * are only a small number of PIO buffers shared between all
1307	 * functions of the controller.
1308	 */
1309	if (efx_piobuf_size != 0 &&
1310	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1311	    efx->n_tx_channels) {
1312		unsigned int n_piobufs =
1313			DIV_ROUND_UP(efx->n_tx_channels,
1314				     nic_data->piobuf_size / efx_piobuf_size);
1315
1316		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1317		if (rc == -ENOSPC)
1318			netif_dbg(efx, probe, efx->net_dev,
1319				  "out of PIO buffers; cannot allocate more\n");
1320		else if (rc == -EPERM)
1321			netif_dbg(efx, probe, efx->net_dev,
1322				  "not permitted to allocate PIO buffers\n");
1323		else if (rc)
1324			netif_err(efx, probe, efx->net_dev,
1325				  "failed to allocate PIO buffers (%d)\n", rc);
1326		else
1327			netif_dbg(efx, probe, efx->net_dev,
1328				  "allocated %u PIO buffers\n", n_piobufs);
1329	}
1330#else
1331	nic_data->n_piobufs = 0;
1332#endif
1333
1334	/* PIO buffers should be mapped with write-combining enabled,
1335	 * and we want to make single UC and WC mappings rather than
1336	 * several of each (in fact that's the only option if host
1337	 * page size is >4K).  So we may allocate some extra VIs just
1338	 * for writing PIO buffers through.
1339	 *
1340	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1341	 * first 4K of the next VI.  Then the WC mapping begins with
1342	 * the remainder of this last VI.
1343	 */
1344	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1345				     ER_DZ_TX_PIOBUF);
1346	if (nic_data->n_piobufs) {
1347		/* pio_write_vi_base rounds down to give the number of complete
1348		 * VIs inside the UC mapping.
1349		 */
1350		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1351		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1352					       nic_data->n_piobufs) *
1353					      efx->vi_stride) -
1354				   uc_mem_map_size);
1355		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1356	} else {
1357		pio_write_vi_base = 0;
1358		wc_mem_map_size = 0;
1359		max_vis = channel_vis;
1360	}
1361
1362	/* In case the last attached driver failed to free VIs, do it now */
1363	rc = efx_ef10_free_vis(efx);
1364	if (rc != 0)
1365		return rc;
1366
1367	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1368	if (rc != 0)
1369		return rc;
1370
1371	if (nic_data->n_allocated_vis < channel_vis) {
1372		netif_info(efx, drv, efx->net_dev,
1373			   "Could not allocate enough VIs to satisfy RSS"
1374			   " requirements. Performance may not be optimal.\n");
1375		/* We didn't get the VIs to populate our channels.
1376		 * We could keep what we got but then we'd have more
1377		 * interrupts than we need.
1378		 * Instead calculate new max_channels and restart
1379		 */
1380		efx->max_channels = nic_data->n_allocated_vis;
1381		efx->max_tx_channels =
1382			nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1383
1384		efx_ef10_free_vis(efx);
1385		return -EAGAIN;
1386	}
1387
1388	/* If we didn't get enough VIs to map all the PIO buffers, free the
1389	 * PIO buffers
1390	 */
1391	if (nic_data->n_piobufs &&
1392	    nic_data->n_allocated_vis <
1393	    pio_write_vi_base + nic_data->n_piobufs) {
1394		netif_dbg(efx, probe, efx->net_dev,
1395			  "%u VIs are not sufficient to map %u PIO buffers\n",
1396			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1397		efx_ef10_free_piobufs(efx);
1398	}
1399
1400	/* Shrink the original UC mapping of the memory BAR */
1401	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1402	if (!membase) {
1403		netif_err(efx, probe, efx->net_dev,
1404			  "could not shrink memory BAR to %x\n",
1405			  uc_mem_map_size);
1406		return -ENOMEM;
1407	}
1408	iounmap(efx->membase);
1409	efx->membase = membase;
1410
1411	/* Set up the WC mapping if needed */
1412	if (wc_mem_map_size) {
1413		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1414						  uc_mem_map_size,
1415						  wc_mem_map_size);
1416		if (!nic_data->wc_membase) {
1417			netif_err(efx, probe, efx->net_dev,
1418				  "could not allocate WC mapping of size %x\n",
1419				  wc_mem_map_size);
1420			return -ENOMEM;
1421		}
1422		nic_data->pio_write_vi_base = pio_write_vi_base;
1423		nic_data->pio_write_base =
1424			nic_data->wc_membase +
1425			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1426			 uc_mem_map_size);
1427
1428		rc = efx_ef10_link_piobufs(efx);
1429		if (rc)
1430			efx_ef10_free_piobufs(efx);
1431	}
1432
1433	netif_dbg(efx, probe, efx->net_dev,
1434		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1435		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1436		  nic_data->wc_membase, wc_mem_map_size);
1437
1438	return 0;
1439}
1440
 
 
 
 
 
 
 
 
 
 
1441static int efx_ef10_init_nic(struct efx_nic *efx)
1442{
1443	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
1444	int rc;
1445
1446	if (nic_data->must_check_datapath_caps) {
1447		rc = efx_ef10_init_datapath_caps(efx);
1448		if (rc)
1449			return rc;
1450		nic_data->must_check_datapath_caps = false;
1451	}
1452
1453	if (nic_data->must_realloc_vis) {
1454		/* We cannot let the number of VIs change now */
1455		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1456					nic_data->n_allocated_vis);
1457		if (rc)
1458			return rc;
1459		nic_data->must_realloc_vis = false;
1460	}
1461
 
 
 
 
 
1462	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1463		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1464		if (rc == 0) {
1465			rc = efx_ef10_link_piobufs(efx);
1466			if (rc)
1467				efx_ef10_free_piobufs(efx);
1468		}
1469
1470		/* Log an error on failure, but this is non-fatal.
1471		 * Permission errors are less important - we've presumably
1472		 * had the PIO buffer licence removed.
1473		 */
1474		if (rc == -EPERM)
1475			netif_dbg(efx, drv, efx->net_dev,
1476				  "not permitted to restore PIO buffers\n");
1477		else if (rc)
1478			netif_err(efx, drv, efx->net_dev,
1479				  "failed to restore PIO buffers (%d)\n", rc);
1480		nic_data->must_restore_piobufs = false;
1481	}
1482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483	/* don't fail init if RSS setup doesn't work */
1484	rc = efx->type->rx_push_rss_config(efx, false,
1485					   efx->rss_context.rx_indir_table, NULL);
1486
1487	return 0;
1488}
1489
1490static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1491{
1492	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1493#ifdef CONFIG_SFC_SRIOV
1494	unsigned int i;
1495#endif
1496
1497	/* All our allocations have been reset */
1498	nic_data->must_realloc_vis = true;
1499	nic_data->must_restore_rss_contexts = true;
1500	nic_data->must_restore_filters = true;
1501	nic_data->must_restore_piobufs = true;
1502	efx_ef10_forget_old_piobufs(efx);
1503	efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
1504
1505	/* Driver-created vswitches and vports must be re-created */
1506	nic_data->must_probe_vswitching = true;
1507	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1508#ifdef CONFIG_SFC_SRIOV
1509	if (nic_data->vf)
1510		for (i = 0; i < efx->vf_count; i++)
1511			nic_data->vf[i].vport_id = 0;
1512#endif
1513}
1514
1515static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1516{
1517	if (reason == RESET_TYPE_MC_FAILURE)
1518		return RESET_TYPE_DATAPATH;
1519
1520	return efx_mcdi_map_reset_reason(reason);
1521}
1522
1523static int efx_ef10_map_reset_flags(u32 *flags)
1524{
1525	enum {
1526		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1527				   ETH_RESET_SHARED_SHIFT),
1528		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1529				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1530				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1531				 ETH_RESET_SHARED_SHIFT)
1532	};
1533
1534	/* We assume for now that our PCI function is permitted to
1535	 * reset everything.
1536	 */
1537
1538	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1539		*flags &= ~EF10_RESET_MC;
1540		return RESET_TYPE_WORLD;
1541	}
1542
1543	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1544		*flags &= ~EF10_RESET_PORT;
1545		return RESET_TYPE_ALL;
1546	}
1547
1548	/* no invisible reset implemented */
1549
1550	return -EINVAL;
1551}
1552
1553static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1554{
1555	int rc = efx_mcdi_reset(efx, reset_type);
1556
1557	/* Unprivileged functions return -EPERM, but need to return success
1558	 * here so that the datapath is brought back up.
1559	 */
1560	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1561		rc = 0;
1562
1563	/* If it was a port reset, trigger reallocation of MC resources.
1564	 * Note that on an MC reset nothing needs to be done now because we'll
1565	 * detect the MC reset later and handle it then.
1566	 * For an FLR, we never get an MC reset event, but the MC has reset all
1567	 * resources assigned to us, so we have to trigger reallocation now.
1568	 */
1569	if ((reset_type == RESET_TYPE_ALL ||
1570	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1571		efx_ef10_reset_mc_allocations(efx);
1572	return rc;
1573}
1574
1575#define EF10_DMA_STAT(ext_name, mcdi_name)			\
1576	[EF10_STAT_ ## ext_name] =				\
1577	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1578#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1579	[EF10_STAT_ ## int_name] =				\
1580	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1581#define EF10_OTHER_STAT(ext_name)				\
1582	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1583#define GENERIC_SW_STAT(ext_name)				\
1584	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1585
1586static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1587	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1588	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1589	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1590	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1591	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1592	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1593	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1594	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1595	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1596	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1597	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1598	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1599	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1600	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1601	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1602	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1603	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1604	EF10_OTHER_STAT(port_rx_good_bytes),
1605	EF10_OTHER_STAT(port_rx_bad_bytes),
1606	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1607	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1608	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1609	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1610	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1611	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1612	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1613	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1614	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1615	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1616	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1617	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1618	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1619	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1620	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1621	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1622	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1623	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1624	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1625	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1626	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1627	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1628	GENERIC_SW_STAT(rx_nodesc_trunc),
1629	GENERIC_SW_STAT(rx_noskb_drops),
1630	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1631	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1632	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1633	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1634	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1635	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1636	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1637	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1638	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1639	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1640	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1641	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1642	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1643	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1644	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1645	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1646	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1647	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1648	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1649	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1650	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1651	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1652	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1653	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1654	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1655	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1656	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1657	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1658	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1659	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1660	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1661	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1662	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1663	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1664	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1665	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1666	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1667	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1668	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1669	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1670	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1671	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1672	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1673	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1674	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1675	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1676	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1677	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1678	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1679	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1680	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1681	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1682};
1683
1684#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1685			       (1ULL << EF10_STAT_port_tx_packets) |	\
1686			       (1ULL << EF10_STAT_port_tx_pause) |	\
1687			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1688			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1689			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1690			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1691			       (1ULL <<                                 \
1692				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1693			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1694			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1695			       (1ULL << EF10_STAT_port_rx_packets) |	\
1696			       (1ULL << EF10_STAT_port_rx_good) |	\
1697			       (1ULL << EF10_STAT_port_rx_bad) |	\
1698			       (1ULL << EF10_STAT_port_rx_pause) |	\
1699			       (1ULL << EF10_STAT_port_rx_control) |	\
1700			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1701			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1702			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1703			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1704			       (1ULL << EF10_STAT_port_rx_64) |		\
1705			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1706			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1707			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1708			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1709			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1710			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1711			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1712			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1713			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1714			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1715			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1716			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1717
1718/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1719 * For a 10G/40G switchable port we do not expose these because they might
1720 * not include all the packets they should.
1721 * On 8000 series NICs these statistics are always provided.
1722 */
1723#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1724				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1725				 (1ULL << EF10_STAT_port_tx_64) |	\
1726				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1727				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1728				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1729				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1730				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1731				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1732
1733/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1734 * switchable port we do expose these because the errors will otherwise
1735 * be silent.
1736 */
1737#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1738				  (1ULL << EF10_STAT_port_rx_length_error))
1739
1740/* These statistics are only provided if the firmware supports the
1741 * capability PM_AND_RXDP_COUNTERS.
1742 */
1743#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1744	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1745	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1746	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1747	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1748	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1749	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1750	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1751	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1752	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1753	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1754	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1755	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1756
1757/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1758 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1759 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1760 * These bits are in the second u64 of the raw mask.
1761 */
1762#define EF10_FEC_STAT_MASK (						\
1763	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1764	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1765	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1766	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1767	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1768	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1769
1770/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1771 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1772 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1773 * These bits are in the second u64 of the raw mask.
1774 */
1775#define EF10_CTPIO_STAT_MASK (						\
1776	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1777	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1778	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1779	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1780	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1781	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1782	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1783	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1784	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1785	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1786	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1787	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1788	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1789	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1790	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1791	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1792
1793static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1794{
1795	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1796	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1797	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1798
1799	if (!(efx->mcdi->fn_flags &
1800	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1801		return 0;
1802
1803	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1804		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1805		/* 8000 series have everything even at 40G */
1806		if (nic_data->datapath_caps2 &
1807		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1808			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1809	} else {
1810		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1811	}
1812
1813	if (nic_data->datapath_caps &
1814	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1815		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1816
1817	return raw_mask;
1818}
1819
1820static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1821{
1822	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1823	u64 raw_mask[2];
1824
1825	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1826
1827	/* Only show vadaptor stats when EVB capability is present */
1828	if (nic_data->datapath_caps &
1829	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1830		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1831		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1832	} else {
1833		raw_mask[1] = 0;
1834	}
1835	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1836	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1837		raw_mask[1] |= EF10_FEC_STAT_MASK;
1838
1839	/* CTPIO stats appear in V3. Only show them on devices that actually
1840	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1841	 * and we may be reporting the stats for the underlying port.
1842	 */
1843	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1844	    (nic_data->datapath_caps2 &
1845	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1846		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1847
1848#if BITS_PER_LONG == 64
1849	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1850	mask[0] = raw_mask[0];
1851	mask[1] = raw_mask[1];
1852#else
1853	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1854	mask[0] = raw_mask[0] & 0xffffffff;
1855	mask[1] = raw_mask[0] >> 32;
1856	mask[2] = raw_mask[1] & 0xffffffff;
1857#endif
1858}
1859
1860static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1861{
1862	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1863
1864	efx_ef10_get_stat_mask(efx, mask);
1865	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1866				      mask, names);
1867}
1868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1869static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1870					   struct rtnl_link_stats64 *core_stats)
1871{
1872	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1873	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1874	u64 *stats = nic_data->stats;
1875	size_t stats_count = 0, index;
1876
1877	efx_ef10_get_stat_mask(efx, mask);
1878
1879	if (full_stats) {
1880		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1881			if (efx_ef10_stat_desc[index].name) {
1882				*full_stats++ = stats[index];
1883				++stats_count;
1884			}
1885		}
1886	}
1887
1888	if (!core_stats)
1889		return stats_count;
1890
1891	if (nic_data->datapath_caps &
1892			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1893		/* Use vadaptor stats. */
1894		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1895					 stats[EF10_STAT_rx_multicast] +
1896					 stats[EF10_STAT_rx_broadcast];
1897		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1898					 stats[EF10_STAT_tx_multicast] +
1899					 stats[EF10_STAT_tx_broadcast];
1900		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1901				       stats[EF10_STAT_rx_multicast_bytes] +
1902				       stats[EF10_STAT_rx_broadcast_bytes];
1903		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1904				       stats[EF10_STAT_tx_multicast_bytes] +
1905				       stats[EF10_STAT_tx_broadcast_bytes];
1906		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1907					 stats[GENERIC_STAT_rx_noskb_drops];
1908		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1909		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1910		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1911		core_stats->rx_errors = core_stats->rx_crc_errors;
1912		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1913	} else {
1914		/* Use port stats. */
1915		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1916		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1917		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1918		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1919		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1920					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1921					 stats[GENERIC_STAT_rx_noskb_drops];
1922		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1923		core_stats->rx_length_errors =
1924				stats[EF10_STAT_port_rx_gtjumbo] +
1925				stats[EF10_STAT_port_rx_length_error];
1926		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1927		core_stats->rx_frame_errors =
1928				stats[EF10_STAT_port_rx_align_error];
1929		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1930		core_stats->rx_errors = (core_stats->rx_length_errors +
1931					 core_stats->rx_crc_errors +
1932					 core_stats->rx_frame_errors);
1933	}
1934
1935	return stats_count;
1936}
1937
1938static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
 
1939{
1940	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1941	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1942	__le64 generation_start, generation_end;
1943	u64 *stats = nic_data->stats;
1944	__le64 *dma_stats;
1945
1946	efx_ef10_get_stat_mask(efx, mask);
1947
1948	dma_stats = efx->stats_buffer.addr;
1949
1950	generation_end = dma_stats[efx->num_mac_stats - 1];
1951	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1952		return 0;
1953	rmb();
1954	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1955			     stats, efx->stats_buffer.addr, false);
1956	rmb();
1957	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1958	if (generation_end != generation_start)
1959		return -EAGAIN;
1960
1961	/* Update derived statistics */
1962	efx_nic_fix_nodesc_drop_stat(efx,
1963				     &stats[EF10_STAT_port_rx_nodesc_drops]);
 
 
 
 
 
1964	stats[EF10_STAT_port_rx_good_bytes] =
1965		stats[EF10_STAT_port_rx_bytes] -
1966		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
 
 
 
 
 
 
 
 
 
1967	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1968			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1969	efx_update_sw_stats(efx, stats);
1970	return 0;
1971}
1972
1973
1974static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1975				       struct rtnl_link_stats64 *core_stats)
1976{
1977	int retry;
1978
1979	/* If we're unlucky enough to read statistics during the DMA, wait
1980	 * up to 10ms for it to finish (typically takes <500us)
1981	 */
1982	for (retry = 0; retry < 100; ++retry) {
1983		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1984			break;
1985		udelay(100);
1986	}
1987
1988	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1989}
1990
1991static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
 
1992{
1993	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1994	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1995	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1996	__le64 generation_start, generation_end;
1997	u64 *stats = nic_data->stats;
1998	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1999	struct efx_buffer stats_buf;
2000	__le64 *dma_stats;
2001	int rc;
2002
2003	spin_unlock_bh(&efx->stats_lock);
2004
2005	if (in_interrupt()) {
2006		/* If in atomic context, cannot update stats.  Just update the
2007		 * software stats and return so the caller can continue.
2008		 */
2009		spin_lock_bh(&efx->stats_lock);
2010		efx_update_sw_stats(efx, stats);
2011		return 0;
2012	}
2013
2014	efx_ef10_get_stat_mask(efx, mask);
2015
2016	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
2017	if (rc) {
2018		spin_lock_bh(&efx->stats_lock);
2019		return rc;
2020	}
2021
2022	dma_stats = stats_buf.addr;
2023	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
2024
2025	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
2026	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
2027			      MAC_STATS_IN_DMA, 1);
2028	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
2029	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2030
2031	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
2032				NULL, 0, NULL);
2033	spin_lock_bh(&efx->stats_lock);
2034	if (rc) {
2035		/* Expect ENOENT if DMA queues have not been set up */
2036		if (rc != -ENOENT || atomic_read(&efx->active_queues))
2037			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
2038					       sizeof(inbuf), NULL, 0, rc);
2039		goto out;
2040	}
2041
2042	generation_end = dma_stats[efx->num_mac_stats - 1];
2043	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
2044		WARN_ON_ONCE(1);
2045		goto out;
2046	}
2047	rmb();
2048	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
2049			     stats, stats_buf.addr, false);
2050	rmb();
2051	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
2052	if (generation_end != generation_start) {
2053		rc = -EAGAIN;
2054		goto out;
2055	}
2056
2057	efx_update_sw_stats(efx, stats);
2058out:
 
 
2059	efx_nic_free_buffer(efx, &stats_buf);
 
2060	return rc;
2061}
2062
2063static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
2064				       struct rtnl_link_stats64 *core_stats)
2065{
2066	if (efx_ef10_try_update_nic_stats_vf(efx))
2067		return 0;
2068
2069	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
2070}
2071
 
 
 
 
 
 
 
 
 
 
 
 
2072static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
2073{
2074	struct efx_nic *efx = channel->efx;
2075	unsigned int mode, usecs;
2076	efx_dword_t timer_cmd;
2077
2078	if (channel->irq_moderation_us) {
2079		mode = 3;
2080		usecs = channel->irq_moderation_us;
2081	} else {
2082		mode = 0;
2083		usecs = 0;
2084	}
2085
2086	if (EFX_EF10_WORKAROUND_61265(efx)) {
2087		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
2088		unsigned int ns = usecs * 1000;
2089
2090		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2091			       channel->channel);
2092		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2093		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2094		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2095
2096		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2097				   inbuf, sizeof(inbuf), 0, NULL, 0);
2098	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
2099		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2100
2101		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2102				     EFE_DD_EVQ_IND_TIMER_FLAGS,
2103				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
2104				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2105		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2106				channel->channel);
2107	} else {
2108		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2109
2110		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2111				     ERF_DZ_TC_TIMER_VAL, ticks,
2112				     ERF_FZ_TC_TMR_REL_VAL, ticks);
2113		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2114				channel->channel);
2115	}
2116}
2117
2118static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2119				struct ethtool_wolinfo *wol) {}
2120
2121static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2122{
2123	return -EOPNOTSUPP;
2124}
2125
2126static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2127{
2128	wol->supported = 0;
2129	wol->wolopts = 0;
2130	memset(&wol->sopass, 0, sizeof(wol->sopass));
2131}
2132
2133static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2134{
2135	if (type != 0)
2136		return -EINVAL;
2137	return 0;
2138}
2139
2140static void efx_ef10_mcdi_request(struct efx_nic *efx,
2141				  const efx_dword_t *hdr, size_t hdr_len,
2142				  const efx_dword_t *sdu, size_t sdu_len)
2143{
2144	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2145	u8 *pdu = nic_data->mcdi_buf.addr;
2146
2147	memcpy(pdu, hdr, hdr_len);
2148	memcpy(pdu + hdr_len, sdu, sdu_len);
2149	wmb();
2150
2151	/* The hardware provides 'low' and 'high' (doorbell) registers
2152	 * for passing the 64-bit address of an MCDI request to
2153	 * firmware.  However the dwords are swapped by firmware.  The
2154	 * least significant bits of the doorbell are then 0 for all
2155	 * MCDI requests due to alignment.
2156	 */
2157	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2158		    ER_DZ_MC_DB_LWRD);
2159	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2160		    ER_DZ_MC_DB_HWRD);
2161}
2162
2163static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2164{
2165	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2166	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2167
2168	rmb();
2169	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2170}
2171
2172static void
2173efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2174			    size_t offset, size_t outlen)
2175{
2176	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2177	const u8 *pdu = nic_data->mcdi_buf.addr;
2178
2179	memcpy(outbuf, pdu + offset, outlen);
2180}
2181
2182static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2183{
2184	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2185
2186	/* All our allocations have been reset */
2187	efx_ef10_reset_mc_allocations(efx);
2188
2189	/* The datapath firmware might have been changed */
2190	nic_data->must_check_datapath_caps = true;
2191
2192	/* MAC statistics have been cleared on the NIC; clear the local
2193	 * statistic that we update with efx_update_diff_stat().
2194	 */
2195	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2196}
2197
2198static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2199{
2200	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2201	int rc;
2202
2203	rc = efx_ef10_get_warm_boot_count(efx);
2204	if (rc < 0) {
2205		/* The firmware is presumably in the process of
2206		 * rebooting.  However, we are supposed to report each
2207		 * reboot just once, so we must only do that once we
2208		 * can read and store the updated warm boot count.
2209		 */
2210		return 0;
2211	}
2212
2213	if (rc == nic_data->warm_boot_count)
2214		return 0;
2215
2216	nic_data->warm_boot_count = rc;
2217	efx_ef10_mcdi_reboot_detected(efx);
2218
2219	return -EIO;
2220}
2221
2222/* Handle an MSI interrupt
2223 *
2224 * Handle an MSI hardware interrupt.  This routine schedules event
2225 * queue processing.  No interrupt acknowledgement cycle is necessary.
2226 * Also, we never need to check that the interrupt is for us, since
2227 * MSI interrupts cannot be shared.
2228 */
2229static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2230{
2231	struct efx_msi_context *context = dev_id;
2232	struct efx_nic *efx = context->efx;
2233
2234	netif_vdbg(efx, intr, efx->net_dev,
2235		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2236
2237	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2238		/* Note test interrupts */
2239		if (context->index == efx->irq_level)
2240			efx->last_irq_cpu = raw_smp_processor_id();
2241
2242		/* Schedule processing of the channel */
2243		efx_schedule_channel_irq(efx->channel[context->index]);
2244	}
2245
2246	return IRQ_HANDLED;
2247}
2248
2249static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2250{
2251	struct efx_nic *efx = dev_id;
2252	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2253	struct efx_channel *channel;
2254	efx_dword_t reg;
2255	u32 queues;
2256
2257	/* Read the ISR which also ACKs the interrupts */
2258	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2259	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2260
2261	if (queues == 0)
2262		return IRQ_NONE;
2263
2264	if (likely(soft_enabled)) {
2265		/* Note test interrupts */
2266		if (queues & (1U << efx->irq_level))
2267			efx->last_irq_cpu = raw_smp_processor_id();
2268
2269		efx_for_each_channel(channel, efx) {
2270			if (queues & 1)
2271				efx_schedule_channel_irq(channel);
2272			queues >>= 1;
2273		}
2274	}
2275
2276	netif_vdbg(efx, intr, efx->net_dev,
2277		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2278		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2279
2280	return IRQ_HANDLED;
2281}
2282
2283static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2284{
2285	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2286
2287	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2288				    NULL) == 0)
2289		return -ENOTSUPP;
2290
2291	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2292
2293	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2294	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2295			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2296}
2297
2298static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2299{
2300	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
 
 
 
2301				    (tx_queue->ptr_mask + 1) *
2302				    sizeof(efx_qword_t),
2303				    GFP_KERNEL);
2304}
2305
2306/* This writes to the TX_DESC_WPTR and also pushes data */
2307static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2308					 const efx_qword_t *txd)
2309{
2310	unsigned int write_ptr;
2311	efx_oword_t reg;
2312
2313	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2314	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2315	reg.qword[0] = *txd;
2316	efx_writeo_page(tx_queue->efx, &reg,
2317			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2318}
2319
2320/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2321 */
2322static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2323				struct sk_buff *skb,
2324				bool *data_mapped)
2325{
2326	struct efx_tx_buffer *buffer;
 
 
2327	struct tcphdr *tcp;
2328	struct iphdr *ip;
2329
2330	u16 ipv4_id;
2331	u32 seqnum;
2332	u32 mss;
2333
2334	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2335
2336	mss = skb_shinfo(skb)->gso_size;
2337
2338	if (unlikely(mss < 4)) {
2339		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2340		return -EINVAL;
2341	}
2342
2343	ip = ip_hdr(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2344	if (ip->version == 4) {
2345		/* Modify IPv4 header if needed. */
2346		ip->tot_len = 0;
2347		ip->check = 0;
2348		ipv4_id = ntohs(ip->id);
2349	} else {
2350		/* Modify IPv6 header if needed. */
2351		struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2352
2353		ipv6->payload_len = 0;
2354		ipv4_id = 0;
2355	}
2356
2357	tcp = tcp_hdr(skb);
2358	seqnum = ntohl(tcp->seq);
2359
2360	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2361
2362	buffer->flags = EFX_TX_BUF_OPTION;
2363	buffer->len = 0;
2364	buffer->unmap_len = 0;
2365	EFX_POPULATE_QWORD_5(buffer->option,
2366			ESF_DZ_TX_DESC_IS_OPT, 1,
2367			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2368			ESF_DZ_TX_TSO_OPTION_TYPE,
2369			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2370			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2371			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2372			);
2373	++tx_queue->insert_count;
2374
2375	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2376
2377	buffer->flags = EFX_TX_BUF_OPTION;
2378	buffer->len = 0;
2379	buffer->unmap_len = 0;
2380	EFX_POPULATE_QWORD_4(buffer->option,
2381			ESF_DZ_TX_DESC_IS_OPT, 1,
2382			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2383			ESF_DZ_TX_TSO_OPTION_TYPE,
2384			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
 
2385			ESF_DZ_TX_TSO_TCP_MSS, mss
2386			);
2387	++tx_queue->insert_count;
2388
2389	return 0;
2390}
2391
2392static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2393{
2394	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2395	u32 tso_versions = 0;
2396
2397	if (nic_data->datapath_caps &
2398	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2399		tso_versions |= BIT(1);
2400	if (nic_data->datapath_caps2 &
2401	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2402		tso_versions |= BIT(2);
2403	return tso_versions;
2404}
2405
2406static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2407{
2408	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2409						       EFX_BUF_SIZE));
2410	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2411	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2412	struct efx_channel *channel = tx_queue->channel;
2413	struct efx_nic *efx = tx_queue->efx;
2414	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2415	bool tso_v2 = false;
2416	size_t inlen;
2417	dma_addr_t dma_addr;
2418	efx_qword_t *txd;
2419	int rc;
2420	int i;
2421	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2422
2423	/* Only attempt to enable TX timestamping if we have the license for it,
2424	 * otherwise TXQ init will fail
2425	 */
2426	if (!(nic_data->licensed_features &
2427	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2428		tx_queue->timestamping = false;
2429		/* Disable sync events on this channel. */
2430		if (efx->type->ptp_set_ts_sync_events)
2431			efx->type->ptp_set_ts_sync_events(efx, false, false);
2432	}
2433
2434	/* TSOv2 is a limited resource that can only be configured on a limited
2435	 * number of queues. TSO without checksum offload is not really a thing,
2436	 * so we only enable it for those queues.
2437	 * TSOv2 cannot be used with Hardware timestamping.
 
2438	 */
2439	if (csum_offload && (nic_data->datapath_caps2 &
2440			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2441	    !tx_queue->timestamping) {
2442		tso_v2 = true;
2443		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2444				channel->channel);
 
 
 
2445	}
2446
2447	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2448	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2449	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2450	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2451	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2452	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2453
2454	dma_addr = tx_queue->txd.buf.dma_addr;
2455
2456	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2457		  tx_queue->queue, entries, (u64)dma_addr);
2458
2459	for (i = 0; i < entries; ++i) {
2460		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2461		dma_addr += EFX_BUF_SIZE;
2462	}
2463
2464	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2465
2466	do {
2467		MCDI_POPULATE_DWORD_4(inbuf, INIT_TXQ_IN_FLAGS,
2468				/* This flag was removed from mcdi_pcol.h for
2469				 * the non-_EXT version of INIT_TXQ.  However,
2470				 * firmware still honours it.
2471				 */
2472				INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2473				INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2474				INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload,
2475				INIT_TXQ_EXT_IN_FLAG_TIMESTAMP,
2476						tx_queue->timestamping);
2477
2478		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2479					NULL, 0, NULL);
2480		if (rc == -ENOSPC && tso_v2) {
2481			/* Retry without TSOv2 if we're short on contexts. */
2482			tso_v2 = false;
2483			netif_warn(efx, probe, efx->net_dev,
2484				   "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2485		} else if (rc) {
2486			efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2487					       MC_CMD_INIT_TXQ_EXT_IN_LEN,
2488					       NULL, 0, rc);
2489			goto fail;
2490		}
2491	} while (rc);
2492
2493	/* A previous user of this TX queue might have set us up the
2494	 * bomb by writing a descriptor to the TX push collector but
2495	 * not the doorbell.  (Each collector belongs to a port, not a
2496	 * queue or function, so cannot easily be reset.)  We must
2497	 * attempt to push a no-op descriptor in its place.
2498	 */
2499	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2500	tx_queue->insert_count = 1;
2501	txd = efx_tx_desc(tx_queue, 0);
2502	EFX_POPULATE_QWORD_5(*txd,
2503			     ESF_DZ_TX_DESC_IS_OPT, true,
2504			     ESF_DZ_TX_OPTION_TYPE,
2505			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2506			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2507			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
 
 
2508			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2509	tx_queue->write_count = 1;
2510
2511	if (tso_v2) {
2512		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2513		tx_queue->tso_version = 2;
2514	} else if (nic_data->datapath_caps &
2515			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2516		tx_queue->tso_version = 1;
2517	}
2518
2519	wmb();
2520	efx_ef10_push_tx_desc(tx_queue, txd);
2521
2522	return;
2523
2524fail:
2525	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2526		    tx_queue->queue);
2527}
2528
2529static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2530{
2531	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2532	MCDI_DECLARE_BUF_ERR(outbuf);
2533	struct efx_nic *efx = tx_queue->efx;
2534	size_t outlen;
2535	int rc;
2536
2537	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2538		       tx_queue->queue);
2539
2540	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2541			  outbuf, sizeof(outbuf), &outlen);
2542
2543	if (rc && rc != -EALREADY)
2544		goto fail;
2545
2546	return;
2547
2548fail:
2549	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2550			       outbuf, outlen, rc);
2551}
2552
2553static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2554{
2555	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2556}
2557
2558/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2559static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2560{
2561	unsigned int write_ptr;
2562	efx_dword_t reg;
2563
2564	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2565	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2566	efx_writed_page(tx_queue->efx, &reg,
2567			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2568}
2569
2570#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2571
2572static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2573					  dma_addr_t dma_addr, unsigned int len)
2574{
2575	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2576		/* If we need to break across multiple descriptors we should
2577		 * stop at a page boundary. This assumes the length limit is
2578		 * greater than the page size.
2579		 */
2580		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2581
2582		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2583		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2584	}
2585
2586	return len;
2587}
2588
2589static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2590{
2591	unsigned int old_write_count = tx_queue->write_count;
2592	struct efx_tx_buffer *buffer;
2593	unsigned int write_ptr;
2594	efx_qword_t *txd;
2595
2596	tx_queue->xmit_more_available = false;
2597	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2598		return;
2599
2600	do {
2601		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2602		buffer = &tx_queue->buffer[write_ptr];
2603		txd = efx_tx_desc(tx_queue, write_ptr);
2604		++tx_queue->write_count;
2605
2606		/* Create TX descriptor ring entry */
2607		if (buffer->flags & EFX_TX_BUF_OPTION) {
2608			*txd = buffer->option;
2609			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2610				/* PIO descriptor */
2611				tx_queue->packet_write_count = tx_queue->write_count;
2612		} else {
2613			tx_queue->packet_write_count = tx_queue->write_count;
2614			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2615			EFX_POPULATE_QWORD_3(
2616				*txd,
2617				ESF_DZ_TX_KER_CONT,
2618				buffer->flags & EFX_TX_BUF_CONT,
2619				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2620				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2621		}
2622	} while (tx_queue->write_count != tx_queue->insert_count);
2623
2624	wmb(); /* Ensure descriptors are written before they are fetched */
2625
2626	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2627		txd = efx_tx_desc(tx_queue,
2628				  old_write_count & tx_queue->ptr_mask);
2629		efx_ef10_push_tx_desc(tx_queue, txd);
2630		++tx_queue->pushes;
2631	} else {
2632		efx_ef10_notify_tx_desc(tx_queue);
2633	}
2634}
2635
2636#define RSS_MODE_HASH_ADDRS	(1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2637				 1 << RSS_MODE_HASH_DST_ADDR_LBN)
2638#define RSS_MODE_HASH_PORTS	(1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2639				 1 << RSS_MODE_HASH_DST_PORT_LBN)
2640#define RSS_CONTEXT_FLAGS_DEFAULT	(1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2641					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2642					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2643					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2644					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2645					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2646					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2647					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2648					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2649					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2650
2651static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2652{
2653	/* Firmware had a bug (sfc bug 61952) where it would not actually
2654	 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2655	 * This meant that it would always contain whatever was previously
2656	 * in the MCDI buffer.  Fortunately, all firmware versions with
2657	 * this bug have the same default flags value for a newly-allocated
2658	 * RSS context, and the only time we want to get the flags is just
2659	 * after allocating.  Moreover, the response has a 32-bit hole
2660	 * where the context ID would be in the request, so we can use an
2661	 * overlength buffer in the request and pre-fill the flags field
2662	 * with what we believe the default to be.  Thus if the firmware
2663	 * has the bug, it will leave our pre-filled value in the flags
2664	 * field of the response, and we will get the right answer.
2665	 *
2666	 * However, this does mean that this function should NOT be used if
2667	 * the RSS context flags might not be their defaults - it is ONLY
2668	 * reliably correct for a newly-allocated RSS context.
2669	 */
2670	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2671	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2672	size_t outlen;
2673	int rc;
2674
2675	/* Check we have a hole for the context ID */
2676	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2677	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2678	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2679		       RSS_CONTEXT_FLAGS_DEFAULT);
2680	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2681			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2682	if (rc == 0) {
2683		if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2684			rc = -EIO;
2685		else
2686			*flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2687	}
2688	return rc;
2689}
2690
2691/* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2692 * If we fail, we just leave the RSS context at its default hash settings,
2693 * which is safe but may slightly reduce performance.
2694 * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2695 * just need to set the UDP ports flags (for both IP versions).
2696 */
2697static void efx_ef10_set_rss_flags(struct efx_nic *efx,
2698				   struct efx_rss_context *ctx)
2699{
2700	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2701	u32 flags;
2702
2703	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2704
2705	if (efx_ef10_get_rss_flags(efx, ctx->context_id, &flags) != 0)
2706		return;
2707	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID,
2708		       ctx->context_id);
2709	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2710	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2711	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2712	if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2713			  NULL, 0, NULL))
2714		/* Succeeded, so UDP 4-tuple is now enabled */
2715		ctx->rx_hash_udp_4tuple = true;
2716}
2717
2718static int efx_ef10_alloc_rss_context(struct efx_nic *efx, bool exclusive,
2719				      struct efx_rss_context *ctx,
2720				      unsigned *context_size)
2721{
2722	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2723	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2724	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2725	size_t outlen;
 
2726	int rc;
2727	u32 alloc_type = exclusive ?
2728				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2729				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2730	unsigned rss_spread = exclusive ?
2731				efx->rss_spread :
2732				min(rounddown_pow_of_two(efx->rss_spread),
2733				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2734
2735	if (!exclusive && rss_spread == 1) {
2736		ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2737		if (context_size)
2738			*context_size = 1;
2739		return 0;
2740	}
2741
2742	if (nic_data->datapath_caps &
2743	    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2744		return -EOPNOTSUPP;
2745
2746	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2747		       nic_data->vport_id);
2748	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2749	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2750
2751	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2752		outbuf, sizeof(outbuf), &outlen);
2753	if (rc != 0)
2754		return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2755
2756	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2757		return -EIO;
2758
2759	ctx->context_id = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2760
2761	if (context_size)
2762		*context_size = rss_spread;
2763
2764	if (nic_data->datapath_caps &
2765	    1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2766		efx_ef10_set_rss_flags(efx, ctx);
2767
2768	return 0;
2769}
2770
2771static int efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2772{
2773	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2774
2775	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2776		       context);
2777	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2778			    NULL, 0, NULL);
2779}
2780
2781static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2782				       const u32 *rx_indir_table, const u8 *key)
2783{
2784	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2785	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2786	int i, rc;
2787
2788	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2789		       context);
2790	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
2791		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2792
2793	/* This iterates over the length of efx->rss_context.rx_indir_table, but
2794	 * copies bytes from rx_indir_table.  That's because the latter is a
2795	 * pointer rather than an array, but should have the same length.
2796	 * The efx->rss_context.rx_hash_key loop below is similar.
2797	 */
2798	for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_indir_table); ++i)
2799		MCDI_PTR(tablebuf,
2800			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2801				(u8) rx_indir_table[i];
2802
2803	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2804			  sizeof(tablebuf), NULL, 0, NULL);
2805	if (rc != 0)
2806		return rc;
2807
2808	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2809		       context);
2810	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_hash_key) !=
2811		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2812	for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_hash_key); ++i)
2813		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2814
2815	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2816			    sizeof(keybuf), NULL, 0, NULL);
2817}
2818
2819static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2820{
2821	int rc;
2822
2823	if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID) {
2824		rc = efx_ef10_free_rss_context(efx, efx->rss_context.context_id);
2825		WARN_ON(rc != 0);
2826	}
2827	efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2828}
2829
2830static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2831					      unsigned *context_size)
2832{
2833	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2834	int rc = efx_ef10_alloc_rss_context(efx, false, &efx->rss_context,
2835					    context_size);
2836
2837	if (rc != 0)
2838		return rc;
 
 
2839
2840	nic_data->rx_rss_context_exclusive = false;
2841	efx_set_default_rx_indir_table(efx, &efx->rss_context);
2842	return 0;
2843}
2844
2845static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2846						 const u32 *rx_indir_table,
2847						 const u8 *key)
2848{
2849	u32 old_rx_rss_context = efx->rss_context.context_id;
2850	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2851	int rc;
2852
2853	if (efx->rss_context.context_id == EFX_EF10_RSS_CONTEXT_INVALID ||
2854	    !nic_data->rx_rss_context_exclusive) {
2855		rc = efx_ef10_alloc_rss_context(efx, true, &efx->rss_context,
2856						NULL);
2857		if (rc == -EOPNOTSUPP)
2858			return rc;
2859		else if (rc != 0)
2860			goto fail1;
2861	}
2862
2863	rc = efx_ef10_populate_rss_table(efx, efx->rss_context.context_id,
2864					 rx_indir_table, key);
2865	if (rc != 0)
2866		goto fail2;
2867
2868	if (efx->rss_context.context_id != old_rx_rss_context &&
2869	    old_rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2870		WARN_ON(efx_ef10_free_rss_context(efx, old_rx_rss_context) != 0);
2871	nic_data->rx_rss_context_exclusive = true;
2872	if (rx_indir_table != efx->rss_context.rx_indir_table)
2873		memcpy(efx->rss_context.rx_indir_table, rx_indir_table,
2874		       sizeof(efx->rss_context.rx_indir_table));
2875	if (key != efx->rss_context.rx_hash_key)
2876		memcpy(efx->rss_context.rx_hash_key, key,
2877		       efx->type->rx_hash_key_size);
2878
2879	return 0;
2880
2881fail2:
2882	if (old_rx_rss_context != efx->rss_context.context_id) {
2883		WARN_ON(efx_ef10_free_rss_context(efx, efx->rss_context.context_id) != 0);
2884		efx->rss_context.context_id = old_rx_rss_context;
2885	}
2886fail1:
2887	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2888	return rc;
2889}
2890
2891static int efx_ef10_rx_push_rss_context_config(struct efx_nic *efx,
2892					       struct efx_rss_context *ctx,
2893					       const u32 *rx_indir_table,
2894					       const u8 *key)
2895{
2896	int rc;
2897
2898	WARN_ON(!mutex_is_locked(&efx->rss_lock));
2899
2900	if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
2901		rc = efx_ef10_alloc_rss_context(efx, true, ctx, NULL);
2902		if (rc)
2903			return rc;
2904	}
2905
2906	if (!rx_indir_table) /* Delete this context */
2907		return efx_ef10_free_rss_context(efx, ctx->context_id);
2908
2909	rc = efx_ef10_populate_rss_table(efx, ctx->context_id,
2910					 rx_indir_table, key);
2911	if (rc)
2912		return rc;
2913
2914	memcpy(ctx->rx_indir_table, rx_indir_table,
2915	       sizeof(efx->rss_context.rx_indir_table));
2916	memcpy(ctx->rx_hash_key, key, efx->type->rx_hash_key_size);
2917
2918	return 0;
2919}
2920
2921static int efx_ef10_rx_pull_rss_context_config(struct efx_nic *efx,
2922					       struct efx_rss_context *ctx)
2923{
2924	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2925	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2926	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2927	size_t outlen;
2928	int rc, i;
2929
2930	WARN_ON(!mutex_is_locked(&efx->rss_lock));
2931
2932	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2933		     MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2934
2935	if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID)
2936		return -ENOENT;
2937
2938	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2939		       ctx->context_id);
2940	BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_indir_table) !=
2941		     MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2942	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2943			  tablebuf, sizeof(tablebuf), &outlen);
2944	if (rc != 0)
2945		return rc;
2946
2947	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2948		return -EIO;
2949
2950	for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
2951		ctx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2952				RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2953
2954	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2955		       ctx->context_id);
2956	BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_hash_key) !=
2957		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2958	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2959			  keybuf, sizeof(keybuf), &outlen);
2960	if (rc != 0)
2961		return rc;
2962
2963	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2964		return -EIO;
2965
2966	for (i = 0; i < ARRAY_SIZE(ctx->rx_hash_key); ++i)
2967		ctx->rx_hash_key[i] = MCDI_PTR(
2968				keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2969
2970	return 0;
2971}
2972
2973static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2974{
2975	int rc;
2976
2977	mutex_lock(&efx->rss_lock);
2978	rc = efx_ef10_rx_pull_rss_context_config(efx, &efx->rss_context);
2979	mutex_unlock(&efx->rss_lock);
2980	return rc;
2981}
2982
2983static void efx_ef10_rx_restore_rss_contexts(struct efx_nic *efx)
2984{
2985	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2986	struct efx_rss_context *ctx;
2987	int rc;
2988
2989	WARN_ON(!mutex_is_locked(&efx->rss_lock));
2990
2991	if (!nic_data->must_restore_rss_contexts)
2992		return;
2993
2994	list_for_each_entry(ctx, &efx->rss_context.list, list) {
2995		/* previous NIC RSS context is gone */
2996		ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2997		/* so try to allocate a new one */
2998		rc = efx_ef10_rx_push_rss_context_config(efx, ctx,
2999							 ctx->rx_indir_table,
3000							 ctx->rx_hash_key);
3001		if (rc)
3002			netif_warn(efx, probe, efx->net_dev,
3003				   "failed to restore RSS context %u, rc=%d"
3004				   "; RSS filters may fail to be applied\n",
3005				   ctx->user_id, rc);
3006	}
3007	nic_data->must_restore_rss_contexts = false;
3008}
3009
3010static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
3011					  const u32 *rx_indir_table,
3012					  const u8 *key)
3013{
3014	int rc;
3015
3016	if (efx->rss_spread == 1)
3017		return 0;
3018
3019	if (!key)
3020		key = efx->rss_context.rx_hash_key;
3021
3022	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
3023
3024	if (rc == -ENOBUFS && !user) {
3025		unsigned context_size;
3026		bool mismatch = false;
3027		size_t i;
3028
3029		for (i = 0;
3030		     i < ARRAY_SIZE(efx->rss_context.rx_indir_table) && !mismatch;
3031		     i++)
3032			mismatch = rx_indir_table[i] !=
3033				ethtool_rxfh_indir_default(i, efx->rss_spread);
3034
3035		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
3036		if (rc == 0) {
3037			if (context_size != efx->rss_spread)
3038				netif_warn(efx, probe, efx->net_dev,
3039					   "Could not allocate an exclusive RSS"
3040					   " context; allocated a shared one of"
3041					   " different size."
3042					   " Wanted %u, got %u.\n",
3043					   efx->rss_spread, context_size);
3044			else if (mismatch)
3045				netif_warn(efx, probe, efx->net_dev,
3046					   "Could not allocate an exclusive RSS"
3047					   " context; allocated a shared one but"
3048					   " could not apply custom"
3049					   " indirection.\n");
3050			else
3051				netif_info(efx, probe, efx->net_dev,
3052					   "Could not allocate an exclusive RSS"
3053					   " context; allocated a shared one.\n");
3054		}
3055	}
3056	return rc;
3057}
3058
3059static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
3060					  const u32 *rx_indir_table
3061					  __attribute__ ((unused)),
3062					  const u8 *key
3063					  __attribute__ ((unused)))
3064{
3065	if (user)
3066		return -EOPNOTSUPP;
3067	if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID)
3068		return 0;
3069	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
3070}
3071
3072static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
3073{
3074	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
3075				    (rx_queue->ptr_mask + 1) *
3076				    sizeof(efx_qword_t),
3077				    GFP_KERNEL);
3078}
3079
3080static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
3081{
3082	MCDI_DECLARE_BUF(inbuf,
3083			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
3084						EFX_BUF_SIZE));
3085	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3086	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
3087	struct efx_nic *efx = rx_queue->efx;
3088	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3089	size_t inlen;
3090	dma_addr_t dma_addr;
3091	int rc;
3092	int i;
3093	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
3094
3095	rx_queue->scatter_n = 0;
3096	rx_queue->scatter_len = 0;
3097
3098	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
3099	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
3100	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
3101	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
3102		       efx_rx_queue_index(rx_queue));
3103	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
3104			      INIT_RXQ_IN_FLAG_PREFIX, 1,
3105			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
3106	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
3107	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
3108
3109	dma_addr = rx_queue->rxd.buf.dma_addr;
3110
3111	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
3112		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
3113
3114	for (i = 0; i < entries; ++i) {
3115		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
3116		dma_addr += EFX_BUF_SIZE;
3117	}
3118
3119	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
3120
3121	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
3122			  NULL, 0, NULL);
3123	if (rc)
3124		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
3125			    efx_rx_queue_index(rx_queue));
3126}
3127
3128static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
3129{
3130	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
3131	MCDI_DECLARE_BUF_ERR(outbuf);
3132	struct efx_nic *efx = rx_queue->efx;
3133	size_t outlen;
3134	int rc;
3135
3136	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
3137		       efx_rx_queue_index(rx_queue));
3138
3139	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
3140			  outbuf, sizeof(outbuf), &outlen);
3141
3142	if (rc && rc != -EALREADY)
3143		goto fail;
3144
3145	return;
3146
3147fail:
3148	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
3149			       outbuf, outlen, rc);
3150}
3151
3152static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
3153{
3154	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
3155}
3156
3157/* This creates an entry in the RX descriptor queue */
3158static inline void
3159efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
3160{
3161	struct efx_rx_buffer *rx_buf;
3162	efx_qword_t *rxd;
3163
3164	rxd = efx_rx_desc(rx_queue, index);
3165	rx_buf = efx_rx_buffer(rx_queue, index);
3166	EFX_POPULATE_QWORD_2(*rxd,
3167			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
3168			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
3169}
3170
3171static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
3172{
3173	struct efx_nic *efx = rx_queue->efx;
3174	unsigned int write_count;
3175	efx_dword_t reg;
3176
3177	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
3178	write_count = rx_queue->added_count & ~7;
3179	if (rx_queue->notified_count == write_count)
3180		return;
3181
3182	do
3183		efx_ef10_build_rx_desc(
3184			rx_queue,
3185			rx_queue->notified_count & rx_queue->ptr_mask);
3186	while (++rx_queue->notified_count != write_count);
3187
3188	wmb();
3189	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
3190			     write_count & rx_queue->ptr_mask);
3191	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
3192			efx_rx_queue_index(rx_queue));
3193}
3194
3195static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
3196
3197static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
3198{
3199	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3200	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3201	efx_qword_t event;
3202
3203	EFX_POPULATE_QWORD_2(event,
3204			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3205			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
3206
3207	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3208
3209	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3210	 * already swapped the data to little-endian order.
3211	 */
3212	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3213	       sizeof(efx_qword_t));
3214
3215	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
3216			   inbuf, sizeof(inbuf), 0,
3217			   efx_ef10_rx_defer_refill_complete, 0);
3218}
3219
3220static void
3221efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
3222				  int rc, efx_dword_t *outbuf,
3223				  size_t outlen_actual)
3224{
3225	/* nothing to do */
3226}
3227
3228static int efx_ef10_ev_probe(struct efx_channel *channel)
3229{
3230	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
3231				    (channel->eventq_mask + 1) *
3232				    sizeof(efx_qword_t),
3233				    GFP_KERNEL);
3234}
3235
3236static void efx_ef10_ev_fini(struct efx_channel *channel)
3237{
3238	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
3239	MCDI_DECLARE_BUF_ERR(outbuf);
3240	struct efx_nic *efx = channel->efx;
3241	size_t outlen;
3242	int rc;
3243
3244	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
3245
3246	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3247			  outbuf, sizeof(outbuf), &outlen);
3248
3249	if (rc && rc != -EALREADY)
3250		goto fail;
3251
3252	return;
3253
3254fail:
3255	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3256			       outbuf, outlen, rc);
3257}
3258
3259static int efx_ef10_ev_init(struct efx_channel *channel)
3260{
3261	MCDI_DECLARE_BUF(inbuf,
3262			 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3263						   EFX_BUF_SIZE));
3264	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3265	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3266	struct efx_nic *efx = channel->efx;
3267	struct efx_ef10_nic_data *nic_data;
3268	size_t inlen, outlen;
3269	unsigned int enabled, implemented;
3270	dma_addr_t dma_addr;
3271	int rc;
3272	int i;
3273
3274	nic_data = efx->nic_data;
3275
3276	/* Fill event queue with all ones (i.e. empty events) */
3277	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3278
3279	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3280	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3281	/* INIT_EVQ expects index in vector table, not absolute */
3282	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3283	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3284		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3285	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3286	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3287	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3288		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3289	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3290
3291	if (nic_data->datapath_caps2 &
3292	    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3293		/* Use the new generic approach to specifying event queue
3294		 * configuration, requesting lower latency or higher throughput.
3295		 * The options that actually get used appear in the output.
3296		 */
3297		MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3298				      INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3299				      INIT_EVQ_V2_IN_FLAG_TYPE,
3300				      MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3301	} else {
3302		bool cut_thru = !(nic_data->datapath_caps &
3303			1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3304
3305		MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3306				      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3307				      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3308				      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3309				      INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3310	}
3311
3312	dma_addr = channel->eventq.buf.dma_addr;
3313	for (i = 0; i < entries; ++i) {
3314		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3315		dma_addr += EFX_BUF_SIZE;
3316	}
3317
3318	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3319
3320	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3321			  outbuf, sizeof(outbuf), &outlen);
3322
3323	if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3324		netif_dbg(efx, drv, efx->net_dev,
3325			  "Channel %d using event queue flags %08x\n",
3326			  channel->channel,
3327			  MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3328
3329	/* IRQ return is ignored */
3330	if (channel->channel || rc)
3331		return rc;
3332
3333	/* Successfully created event queue on channel 0 */
3334	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3335	if (rc == -ENOSYS) {
3336		/* GET_WORKAROUNDS was implemented before this workaround,
3337		 * thus it must be unavailable in this firmware.
3338		 */
3339		nic_data->workaround_26807 = false;
3340		rc = 0;
3341	} else if (rc) {
3342		goto fail;
3343	} else {
3344		nic_data->workaround_26807 =
3345			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3346
3347		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3348		    !nic_data->workaround_26807) {
3349			unsigned int flags;
3350
3351			rc = efx_mcdi_set_workaround(efx,
3352						     MC_CMD_WORKAROUND_BUG26807,
3353						     true, &flags);
3354
3355			if (!rc) {
3356				if (flags &
3357				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3358					netif_info(efx, drv, efx->net_dev,
3359						   "other functions on NIC have been reset\n");
3360
3361					/* With MCFW v4.6.x and earlier, the
3362					 * boot count will have incremented,
3363					 * so re-read the warm_boot_count
3364					 * value now to ensure this function
3365					 * doesn't think it has changed next
3366					 * time it checks.
3367					 */
3368					rc = efx_ef10_get_warm_boot_count(efx);
3369					if (rc >= 0) {
3370						nic_data->warm_boot_count = rc;
3371						rc = 0;
3372					}
3373				}
3374				nic_data->workaround_26807 = true;
3375			} else if (rc == -EPERM) {
3376				rc = 0;
3377			}
3378		}
3379	}
3380
3381	if (!rc)
3382		return 0;
3383
3384fail:
3385	efx_ef10_ev_fini(channel);
3386	return rc;
3387}
3388
3389static void efx_ef10_ev_remove(struct efx_channel *channel)
3390{
3391	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3392}
3393
3394static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3395					   unsigned int rx_queue_label)
3396{
3397	struct efx_nic *efx = rx_queue->efx;
3398
3399	netif_info(efx, hw, efx->net_dev,
3400		   "rx event arrived on queue %d labeled as queue %u\n",
3401		   efx_rx_queue_index(rx_queue), rx_queue_label);
3402
3403	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3404}
3405
3406static void
3407efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3408			     unsigned int actual, unsigned int expected)
3409{
3410	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3411	struct efx_nic *efx = rx_queue->efx;
3412
3413	netif_info(efx, hw, efx->net_dev,
3414		   "dropped %d events (index=%d expected=%d)\n",
3415		   dropped, actual, expected);
3416
3417	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3418}
3419
3420/* partially received RX was aborted. clean up. */
3421static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3422{
3423	unsigned int rx_desc_ptr;
3424
3425	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3426		  "scattered RX aborted (dropping %u buffers)\n",
3427		  rx_queue->scatter_n);
3428
3429	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3430
3431	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3432		      0, EFX_RX_PKT_DISCARD);
3433
3434	rx_queue->removed_count += rx_queue->scatter_n;
3435	rx_queue->scatter_n = 0;
3436	rx_queue->scatter_len = 0;
3437	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3438}
3439
3440static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3441					   unsigned int n_packets,
3442					   unsigned int rx_encap_hdr,
3443					   unsigned int rx_l3_class,
3444					   unsigned int rx_l4_class,
3445					   const efx_qword_t *event)
3446{
3447	struct efx_nic *efx = channel->efx;
3448	bool handled = false;
3449
3450	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3451		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
3452			if (!efx->loopback_selftest)
3453				channel->n_rx_eth_crc_err += n_packets;
3454			return EFX_RX_PKT_DISCARD;
3455		}
3456		handled = true;
3457	}
3458	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3459		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3460			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3461			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3462			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3463			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3464			netdev_WARN(efx->net_dev,
3465				    "invalid class for RX_IPCKSUM_ERR: event="
3466				    EFX_QWORD_FMT "\n",
3467				    EFX_QWORD_VAL(*event));
3468		if (!efx->loopback_selftest)
3469			*(rx_encap_hdr ?
3470			  &channel->n_rx_outer_ip_hdr_chksum_err :
3471			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3472		return 0;
3473	}
3474	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3475		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3476			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3477			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3478			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3479			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
3480			netdev_WARN(efx->net_dev,
3481				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3482				    EFX_QWORD_FMT "\n",
3483				    EFX_QWORD_VAL(*event));
3484		if (!efx->loopback_selftest)
3485			*(rx_encap_hdr ?
3486			  &channel->n_rx_outer_tcp_udp_chksum_err :
3487			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3488		return 0;
3489	}
3490	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3491		if (unlikely(!rx_encap_hdr))
3492			netdev_WARN(efx->net_dev,
3493				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3494				    EFX_QWORD_FMT "\n",
3495				    EFX_QWORD_VAL(*event));
3496		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3497				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3498				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3499				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3500			netdev_WARN(efx->net_dev,
3501				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3502				    EFX_QWORD_FMT "\n",
3503				    EFX_QWORD_VAL(*event));
3504		if (!efx->loopback_selftest)
3505			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3506		return 0;
3507	}
3508	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3509		if (unlikely(!rx_encap_hdr))
3510			netdev_WARN(efx->net_dev,
3511				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3512				    EFX_QWORD_FMT "\n",
3513				    EFX_QWORD_VAL(*event));
3514		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3515				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3516				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3517				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
3518			netdev_WARN(efx->net_dev,
3519				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3520				    EFX_QWORD_FMT "\n",
3521				    EFX_QWORD_VAL(*event));
3522		if (!efx->loopback_selftest)
3523			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3524		return 0;
3525	}
3526
3527	WARN_ON(!handled); /* No error bits were recognised */
3528	return 0;
3529}
3530
3531static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3532				    const efx_qword_t *event)
3533{
3534	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3535	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3536	unsigned int n_descs, n_packets, i;
3537	struct efx_nic *efx = channel->efx;
3538	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3539	struct efx_rx_queue *rx_queue;
3540	efx_qword_t errors;
3541	bool rx_cont;
3542	u16 flags = 0;
3543
3544	if (unlikely(READ_ONCE(efx->reset_pending)))
3545		return 0;
3546
3547	/* Basic packet information */
3548	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3549	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3550	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3551	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3552	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
3553	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3554	rx_encap_hdr =
3555		nic_data->datapath_caps &
3556			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3557		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3558		ESE_EZ_ENCAP_HDR_NONE;
3559
3560	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3561		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3562			    EFX_QWORD_FMT "\n",
3563			    EFX_QWORD_VAL(*event));
3564
3565	rx_queue = efx_channel_get_rx_queue(channel);
3566
3567	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3568		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3569
3570	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3571		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3572
3573	if (n_descs != rx_queue->scatter_n + 1) {
3574		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3575
3576		/* detect rx abort */
3577		if (unlikely(n_descs == rx_queue->scatter_n)) {
3578			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3579				netdev_WARN(efx->net_dev,
3580					    "invalid RX abort: scatter_n=%u event="
3581					    EFX_QWORD_FMT "\n",
3582					    rx_queue->scatter_n,
3583					    EFX_QWORD_VAL(*event));
3584			efx_ef10_handle_rx_abort(rx_queue);
3585			return 0;
3586		}
3587
3588		/* Check that RX completion merging is valid, i.e.
3589		 * the current firmware supports it and this is a
3590		 * non-scattered packet.
3591		 */
3592		if (!(nic_data->datapath_caps &
3593		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3594		    rx_queue->scatter_n != 0 || rx_cont) {
3595			efx_ef10_handle_rx_bad_lbits(
3596				rx_queue, next_ptr_lbits,
3597				(rx_queue->removed_count +
3598				 rx_queue->scatter_n + 1) &
3599				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3600			return 0;
3601		}
3602
3603		/* Merged completion for multiple non-scattered packets */
3604		rx_queue->scatter_n = 1;
3605		rx_queue->scatter_len = 0;
3606		n_packets = n_descs;
3607		++channel->n_rx_merge_events;
3608		channel->n_rx_merge_packets += n_packets;
3609		flags |= EFX_RX_PKT_PREFIX_LEN;
3610	} else {
3611		++rx_queue->scatter_n;
3612		rx_queue->scatter_len += rx_bytes;
3613		if (rx_cont)
3614			return 0;
3615		n_packets = 1;
3616	}
3617
3618	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3619				     ESF_DZ_RX_IPCKSUM_ERR, 1,
3620				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3621				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3622				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3623	EFX_AND_QWORD(errors, *event, errors);
3624	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3625		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3626							 rx_encap_hdr,
3627							 rx_l3_class, rx_l4_class,
3628							 event);
3629	} else {
3630		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
3631			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
3632
3633		switch (rx_encap_hdr) {
3634		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3635			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3636			if (tcpudp)
3637				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3638			break;
3639		case ESE_EZ_ENCAP_HDR_GRE:
3640		case ESE_EZ_ENCAP_HDR_NONE:
3641			if (tcpudp)
3642				flags |= EFX_RX_PKT_CSUMMED;
3643			break;
3644		default:
3645			netdev_WARN(efx->net_dev,
3646				    "unknown encapsulation type: event="
3647				    EFX_QWORD_FMT "\n",
3648				    EFX_QWORD_VAL(*event));
3649		}
3650	}
3651
3652	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
3653		flags |= EFX_RX_PKT_TCP;
3654
3655	channel->irq_mod_score += 2 * n_packets;
3656
3657	/* Handle received packet(s) */
3658	for (i = 0; i < n_packets; i++) {
3659		efx_rx_packet(rx_queue,
3660			      rx_queue->removed_count & rx_queue->ptr_mask,
3661			      rx_queue->scatter_n, rx_queue->scatter_len,
3662			      flags);
3663		rx_queue->removed_count += rx_queue->scatter_n;
3664	}
3665
3666	rx_queue->scatter_n = 0;
3667	rx_queue->scatter_len = 0;
3668
3669	return n_packets;
3670}
3671
3672static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
3673{
3674	u32 tstamp;
3675
3676	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
3677	tstamp <<= 16;
3678	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
3679
3680	return tstamp;
3681}
3682
3683static void
3684efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3685{
3686	struct efx_nic *efx = channel->efx;
3687	struct efx_tx_queue *tx_queue;
3688	unsigned int tx_ev_desc_ptr;
3689	unsigned int tx_ev_q_label;
3690	unsigned int tx_ev_type;
 
3691	u64 ts_part;
3692
3693	if (unlikely(READ_ONCE(efx->reset_pending)))
3694		return;
3695
3696	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3697		return;
3698
3699	/* Get the transmit queue */
3700	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3701	tx_queue = efx_channel_get_tx_queue(channel,
3702					    tx_ev_q_label % EFX_TXQ_TYPES);
3703
3704	if (!tx_queue->timestamping) {
3705		/* Transmit completion */
3706		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3707		efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3708		return;
3709	}
3710
3711	/* Transmit timestamps are only available for 8XXX series. They result
3712	 * in three events per packet. These occur in order, and are:
3713	 *  - the normal completion event
3714	 *  - the low part of the timestamp
3715	 *  - the high part of the timestamp
3716	 *
 
 
 
 
 
 
 
 
 
 
 
 
 
3717	 * Each part of the timestamp is itself split across two 16 bit
3718	 * fields in the event.
3719	 */
3720	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
 
3721
3722	switch (tx_ev_type) {
3723	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3724		/* In case of Queue flush or FLR, we might have received
3725		 * the previous TX completion event but not the Timestamp
3726		 * events.
3727		 */
3728		if (tx_queue->completed_desc_ptr != tx_queue->ptr_mask)
3729			efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3730
3731		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event,
3732						 ESF_DZ_TX_DESCR_INDX);
3733		tx_queue->completed_desc_ptr =
3734					tx_ev_desc_ptr & tx_queue->ptr_mask;
3735		break;
3736
3737	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3738		ts_part = efx_ef10_extract_event_ts(event);
3739		tx_queue->completed_timestamp_minor = ts_part;
3740		break;
3741
3742	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3743		ts_part = efx_ef10_extract_event_ts(event);
3744		tx_queue->completed_timestamp_major = ts_part;
3745
3746		efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3747		tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
3748		break;
3749
3750	default:
3751		netif_err(efx, hw, efx->net_dev,
3752			  "channel %d unknown tx event type %d (data "
3753			  EFX_QWORD_FMT ")\n",
3754			  channel->channel, tx_ev_type,
3755			  EFX_QWORD_VAL(*event));
3756		break;
3757	}
 
 
3758}
3759
3760static void
3761efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3762{
3763	struct efx_nic *efx = channel->efx;
3764	int subcode;
3765
3766	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3767
3768	switch (subcode) {
3769	case ESE_DZ_DRV_TIMER_EV:
3770	case ESE_DZ_DRV_WAKE_UP_EV:
3771		break;
3772	case ESE_DZ_DRV_START_UP_EV:
3773		/* event queue init complete. ok. */
3774		break;
3775	default:
3776		netif_err(efx, hw, efx->net_dev,
3777			  "channel %d unknown driver event type %d"
3778			  " (data " EFX_QWORD_FMT ")\n",
3779			  channel->channel, subcode,
3780			  EFX_QWORD_VAL(*event));
3781
3782	}
3783}
3784
3785static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3786						   efx_qword_t *event)
3787{
3788	struct efx_nic *efx = channel->efx;
3789	u32 subcode;
3790
3791	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3792
3793	switch (subcode) {
3794	case EFX_EF10_TEST:
3795		channel->event_test_cpu = raw_smp_processor_id();
3796		break;
3797	case EFX_EF10_REFILL:
3798		/* The queue must be empty, so we won't receive any rx
3799		 * events, so efx_process_channel() won't refill the
3800		 * queue. Refill it here
3801		 */
3802		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3803		break;
3804	default:
3805		netif_err(efx, hw, efx->net_dev,
3806			  "channel %d unknown driver event type %u"
3807			  " (data " EFX_QWORD_FMT ")\n",
3808			  channel->channel, (unsigned) subcode,
3809			  EFX_QWORD_VAL(*event));
3810	}
3811}
3812
 
 
3813static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3814{
3815	struct efx_nic *efx = channel->efx;
3816	efx_qword_t event, *p_event;
3817	unsigned int read_ptr;
 
 
3818	int ev_code;
3819	int spent = 0;
3820
3821	if (quota <= 0)
3822		return spent;
3823
3824	read_ptr = channel->eventq_read_ptr;
3825
3826	for (;;) {
3827		p_event = efx_event(channel, read_ptr);
3828		event = *p_event;
3829
3830		if (!efx_event_present(&event))
3831			break;
3832
3833		EFX_SET_QWORD(*p_event);
3834
3835		++read_ptr;
3836
3837		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3838
3839		netif_vdbg(efx, drv, efx->net_dev,
3840			   "processing event on %d " EFX_QWORD_FMT "\n",
3841			   channel->channel, EFX_QWORD_VAL(event));
3842
3843		switch (ev_code) {
3844		case ESE_DZ_EV_CODE_MCDI_EV:
3845			efx_mcdi_process_event(channel, &event);
3846			break;
3847		case ESE_DZ_EV_CODE_RX_EV:
3848			spent += efx_ef10_handle_rx_event(channel, &event);
3849			if (spent >= quota) {
3850				/* XXX can we split a merged event to
3851				 * avoid going over-quota?
3852				 */
3853				spent = quota;
3854				goto out;
3855			}
3856			break;
3857		case ESE_DZ_EV_CODE_TX_EV:
3858			efx_ef10_handle_tx_event(channel, &event);
 
 
 
 
3859			break;
3860		case ESE_DZ_EV_CODE_DRIVER_EV:
3861			efx_ef10_handle_driver_event(channel, &event);
3862			if (++spent == quota)
3863				goto out;
3864			break;
3865		case EFX_EF10_DRVGEN_EV:
3866			efx_ef10_handle_driver_generated_event(channel, &event);
3867			break;
3868		default:
3869			netif_err(efx, hw, efx->net_dev,
3870				  "channel %d unknown event type %d"
3871				  " (data " EFX_QWORD_FMT ")\n",
3872				  channel->channel, ev_code,
3873				  EFX_QWORD_VAL(event));
3874		}
3875	}
3876
3877out:
3878	channel->eventq_read_ptr = read_ptr;
3879	return spent;
3880}
3881
3882static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3883{
3884	struct efx_nic *efx = channel->efx;
3885	efx_dword_t rptr;
3886
3887	if (EFX_EF10_WORKAROUND_35388(efx)) {
3888		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3889			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3890		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3891			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3892
3893		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3894				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3895				     ERF_DD_EVQ_IND_RPTR,
3896				     (channel->eventq_read_ptr &
3897				      channel->eventq_mask) >>
3898				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3899		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3900				channel->channel);
3901		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3902				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3903				     ERF_DD_EVQ_IND_RPTR,
3904				     channel->eventq_read_ptr &
3905				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3906		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3907				channel->channel);
3908	} else {
3909		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3910				     channel->eventq_read_ptr &
3911				     channel->eventq_mask);
3912		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3913	}
3914}
3915
3916static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3917{
3918	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3919	struct efx_nic *efx = channel->efx;
3920	efx_qword_t event;
3921	int rc;
3922
3923	EFX_POPULATE_QWORD_2(event,
3924			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3925			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3926
3927	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3928
3929	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3930	 * already swapped the data to little-endian order.
3931	 */
3932	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3933	       sizeof(efx_qword_t));
3934
3935	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3936			  NULL, 0, NULL);
3937	if (rc != 0)
3938		goto fail;
3939
3940	return;
3941
3942fail:
3943	WARN_ON(true);
3944	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3945}
3946
3947void efx_ef10_handle_drain_event(struct efx_nic *efx)
3948{
3949	if (atomic_dec_and_test(&efx->active_queues))
3950		wake_up(&efx->flush_wq);
3951
3952	WARN_ON(atomic_read(&efx->active_queues) < 0);
3953}
3954
3955static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3956{
3957	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3958	struct efx_channel *channel;
3959	struct efx_tx_queue *tx_queue;
3960	struct efx_rx_queue *rx_queue;
3961	int pending;
3962
3963	/* If the MC has just rebooted, the TX/RX queues will have already been
3964	 * torn down, but efx->active_queues needs to be set to zero.
3965	 */
3966	if (nic_data->must_realloc_vis) {
3967		atomic_set(&efx->active_queues, 0);
3968		return 0;
3969	}
3970
3971	/* Do not attempt to write to the NIC during EEH recovery */
3972	if (efx->state != STATE_RECOVERY) {
3973		efx_for_each_channel(channel, efx) {
3974			efx_for_each_channel_rx_queue(rx_queue, channel)
3975				efx_ef10_rx_fini(rx_queue);
3976			efx_for_each_channel_tx_queue(tx_queue, channel)
3977				efx_ef10_tx_fini(tx_queue);
3978		}
3979
3980		wait_event_timeout(efx->flush_wq,
3981				   atomic_read(&efx->active_queues) == 0,
3982				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3983		pending = atomic_read(&efx->active_queues);
3984		if (pending) {
3985			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3986				  pending);
3987			return -ETIMEDOUT;
3988		}
3989	}
3990
3991	return 0;
3992}
3993
3994static void efx_ef10_prepare_flr(struct efx_nic *efx)
3995{
3996	atomic_set(&efx->active_queues, 0);
3997}
3998
3999/* Decide whether a filter should be exclusive or else should allow
4000 * delivery to additional recipients.  Currently we decide that
4001 * filters for specific local unicast MAC and IP addresses are
4002 * exclusive.
4003 */
4004static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
4005{
4006	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
4007	    !is_multicast_ether_addr(spec->loc_mac))
4008		return true;
4009
4010	if ((spec->match_flags &
4011	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
4012	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
4013		if (spec->ether_type == htons(ETH_P_IP) &&
4014		    !ipv4_is_multicast(spec->loc_host[0]))
4015			return true;
4016		if (spec->ether_type == htons(ETH_P_IPV6) &&
4017		    ((const u8 *)spec->loc_host)[0] != 0xff)
4018			return true;
4019	}
4020
4021	return false;
4022}
4023
4024static struct efx_filter_spec *
4025efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
4026			   unsigned int filter_idx)
4027{
4028	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
4029					  ~EFX_EF10_FILTER_FLAGS);
4030}
4031
4032static unsigned int
4033efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
4034			   unsigned int filter_idx)
4035{
4036	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
4037}
4038
4039static void
4040efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
4041			  unsigned int filter_idx,
4042			  const struct efx_filter_spec *spec,
4043			  unsigned int flags)
4044{
4045	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
4046}
4047
4048static void
4049efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
4050					   const struct efx_filter_spec *spec,
4051					   efx_dword_t *inbuf)
4052{
4053	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4054	u32 match_fields = 0, uc_match, mc_match;
4055
4056	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4057		       efx_ef10_filter_is_exclusive(spec) ?
4058		       MC_CMD_FILTER_OP_IN_OP_INSERT :
4059		       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
4060
4061	/* Convert match flags and values.  Unlike almost
4062	 * everything else in MCDI, these fields are in
4063	 * network byte order.
4064	 */
4065#define COPY_VALUE(value, mcdi_field)					     \
4066	do {							     \
4067		match_fields |=					     \
4068			1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
4069			mcdi_field ## _LBN;			     \
4070		BUILD_BUG_ON(					     \
4071			MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
4072			sizeof(value));				     \
4073		memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
4074		       &value, sizeof(value));			     \
4075	} while (0)
4076#define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
4077	if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
4078		COPY_VALUE(spec->gen_field, mcdi_field);	     \
4079	}
4080	/* Handle encap filters first.  They will always be mismatch
4081	 * (unknown UC or MC) filters
4082	 */
4083	if (encap_type) {
4084		/* ether_type and outer_ip_proto need to be variables
4085		 * because COPY_VALUE wants to memcpy them
4086		 */
4087		__be16 ether_type =
4088			htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
4089			      ETH_P_IPV6 : ETH_P_IP);
4090		u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
4091		u8 outer_ip_proto;
4092
4093		switch (encap_type & EFX_ENCAP_TYPES_MASK) {
4094		case EFX_ENCAP_TYPE_VXLAN:
4095			vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
4096			/* fallthrough */
4097		case EFX_ENCAP_TYPE_GENEVE:
4098			COPY_VALUE(ether_type, ETHER_TYPE);
4099			outer_ip_proto = IPPROTO_UDP;
4100			COPY_VALUE(outer_ip_proto, IP_PROTO);
4101			/* We always need to set the type field, even
4102			 * though we're not matching on the TNI.
4103			 */
4104			MCDI_POPULATE_DWORD_1(inbuf,
4105				FILTER_OP_EXT_IN_VNI_OR_VSID,
4106				FILTER_OP_EXT_IN_VNI_TYPE,
4107				vni_type);
4108			break;
4109		case EFX_ENCAP_TYPE_NVGRE:
4110			COPY_VALUE(ether_type, ETHER_TYPE);
4111			outer_ip_proto = IPPROTO_GRE;
4112			COPY_VALUE(outer_ip_proto, IP_PROTO);
4113			break;
4114		default:
4115			WARN_ON(1);
4116		}
4117
4118		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4119		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4120	} else {
4121		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4122		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4123	}
4124
4125	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
4126		match_fields |=
4127			is_multicast_ether_addr(spec->loc_mac) ?
4128			1 << mc_match :
4129			1 << uc_match;
4130	COPY_FIELD(REM_HOST, rem_host, SRC_IP);
4131	COPY_FIELD(LOC_HOST, loc_host, DST_IP);
4132	COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
4133	COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
4134	COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
4135	COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
4136	COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
4137	COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
4138	COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
4139	COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
4140#undef COPY_FIELD
4141#undef COPY_VALUE
4142	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
4143		       match_fields);
4144}
4145
4146static void efx_ef10_filter_push_prep(struct efx_nic *efx,
4147				      const struct efx_filter_spec *spec,
4148				      efx_dword_t *inbuf, u64 handle,
4149				      struct efx_rss_context *ctx,
4150				      bool replacing)
4151{
4152	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4153	u32 flags = spec->flags;
4154
4155	memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
4156
4157	/* If RSS filter, caller better have given us an RSS context */
4158	if (flags & EFX_FILTER_FLAG_RX_RSS) {
4159		/* We don't have the ability to return an error, so we'll just
4160		 * log a warning and disable RSS for the filter.
4161		 */
4162		if (WARN_ON_ONCE(!ctx))
4163			flags &= ~EFX_FILTER_FLAG_RX_RSS;
4164		else if (WARN_ON_ONCE(ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID))
4165			flags &= ~EFX_FILTER_FLAG_RX_RSS;
4166	}
4167
4168	if (replacing) {
4169		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4170			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
4171		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
4172	} else {
4173		efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
4174	}
4175
4176	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
4177	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
4178		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4179		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
4180		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
4181	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
4182	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
4183		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
4184	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
4185		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4186		       0 : spec->dmaq_id);
4187	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
4188		       (flags & EFX_FILTER_FLAG_RX_RSS) ?
4189		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
4190		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
4191	if (flags & EFX_FILTER_FLAG_RX_RSS)
4192		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT, ctx->context_id);
4193}
4194
4195static int efx_ef10_filter_push(struct efx_nic *efx,
4196				const struct efx_filter_spec *spec, u64 *handle,
4197				struct efx_rss_context *ctx, bool replacing)
4198{
4199	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4200	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
4201	int rc;
4202
4203	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, ctx, replacing);
4204	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4205			  outbuf, sizeof(outbuf), NULL);
4206	if (rc == 0)
4207		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4208	if (rc == -ENOSPC)
4209		rc = -EBUSY; /* to match efx_farch_filter_insert() */
4210	return rc;
4211}
4212
4213static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
4214{
4215	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4216	unsigned int match_flags = spec->match_flags;
4217	unsigned int uc_match, mc_match;
4218	u32 mcdi_flags = 0;
4219
4220#define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) {		\
4221		unsigned int  old_match_flags = match_flags;		\
4222		match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;		\
4223		if (match_flags != old_match_flags)			\
4224			mcdi_flags |=					\
4225				(1 << ((encap) ?			\
4226				       MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
4227				       mcdi_field ## _LBN :		\
4228				       MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
4229				       mcdi_field ## _LBN));		\
4230	}
4231	/* inner or outer based on encap type */
4232	MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
4233	MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
4234	MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
4235	MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
4236	MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
4237	MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
4238	MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
4239	MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
4240	/* always outer */
4241	MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
4242	MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
4243#undef MAP_FILTER_TO_MCDI_FLAG
4244
4245	/* special handling for encap type, and mismatch */
4246	if (encap_type) {
4247		match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
4248		mcdi_flags |=
4249			(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4250		mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4251
4252		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4253		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4254	} else {
4255		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4256		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4257	}
4258
4259	if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
4260		match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
4261		mcdi_flags |=
4262			is_multicast_ether_addr(spec->loc_mac) ?
4263			1 << mc_match :
4264			1 << uc_match;
4265	}
4266
4267	/* Did we map them all? */
4268	WARN_ON_ONCE(match_flags);
4269
4270	return mcdi_flags;
4271}
4272
4273static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
4274			       const struct efx_filter_spec *spec)
4275{
4276	u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4277	unsigned int match_pri;
4278
4279	for (match_pri = 0;
4280	     match_pri < table->rx_match_count;
4281	     match_pri++)
4282		if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
4283			return match_pri;
4284
4285	return -EPROTONOSUPPORT;
4286}
4287
4288static s32 efx_ef10_filter_insert_locked(struct efx_nic *efx,
4289					 struct efx_filter_spec *spec,
4290					 bool replace_equal)
4291{
4292	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4293	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4294	struct efx_ef10_filter_table *table;
4295	struct efx_filter_spec *saved_spec;
4296	struct efx_rss_context *ctx = NULL;
4297	unsigned int match_pri, hash;
4298	unsigned int priv_flags;
4299	bool rss_locked = false;
4300	bool replacing = false;
4301	unsigned int depth, i;
4302	int ins_index = -1;
4303	DEFINE_WAIT(wait);
4304	bool is_mc_recip;
4305	s32 rc;
4306
4307	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4308	table = efx->filter_state;
4309	down_write(&table->lock);
4310
4311	/* For now, only support RX filters */
4312	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4313	    EFX_FILTER_FLAG_RX) {
4314		rc = -EINVAL;
4315		goto out_unlock;
4316	}
4317
4318	rc = efx_ef10_filter_pri(table, spec);
4319	if (rc < 0)
4320		goto out_unlock;
4321	match_pri = rc;
4322
4323	hash = efx_filter_spec_hash(spec);
4324	is_mc_recip = efx_filter_is_mc_recipient(spec);
4325	if (is_mc_recip)
4326		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4327
4328	if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
4329		mutex_lock(&efx->rss_lock);
4330		rss_locked = true;
4331		if (spec->rss_context)
4332			ctx = efx_find_rss_context_entry(efx, spec->rss_context);
4333		else
4334			ctx = &efx->rss_context;
4335		if (!ctx) {
4336			rc = -ENOENT;
4337			goto out_unlock;
4338		}
4339		if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
4340			rc = -EOPNOTSUPP;
4341			goto out_unlock;
4342		}
4343	}
4344
4345	/* Find any existing filters with the same match tuple or
4346	 * else a free slot to insert at.
4347	 */
4348	for (depth = 1; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4349		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4350		saved_spec = efx_ef10_filter_entry_spec(table, i);
4351
4352		if (!saved_spec) {
4353			if (ins_index < 0)
4354				ins_index = i;
4355		} else if (efx_filter_spec_equal(spec, saved_spec)) {
4356			if (spec->priority < saved_spec->priority &&
4357			    spec->priority != EFX_FILTER_PRI_AUTO) {
4358				rc = -EPERM;
4359				goto out_unlock;
4360			}
4361			if (!is_mc_recip) {
4362				/* This is the only one */
4363				if (spec->priority ==
4364				    saved_spec->priority &&
4365				    !replace_equal) {
4366					rc = -EEXIST;
4367					goto out_unlock;
4368				}
4369				ins_index = i;
4370				break;
4371			} else if (spec->priority >
4372				   saved_spec->priority ||
4373				   (spec->priority ==
4374				    saved_spec->priority &&
4375				    replace_equal)) {
4376				if (ins_index < 0)
4377					ins_index = i;
4378				else
4379					__set_bit(depth, mc_rem_map);
4380			}
4381		}
4382	}
4383
4384	/* Once we reach the maximum search depth, use the first suitable
4385	 * slot, or return -EBUSY if there was none
4386	 */
4387	if (ins_index < 0) {
4388		rc = -EBUSY;
4389		goto out_unlock;
4390	}
4391
4392	/* Create a software table entry if necessary. */
4393	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4394	if (saved_spec) {
4395		if (spec->priority == EFX_FILTER_PRI_AUTO &&
4396		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4397			/* Just make sure it won't be removed */
4398			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4399				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4400			table->entry[ins_index].spec &=
4401				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4402			rc = ins_index;
4403			goto out_unlock;
4404		}
4405		replacing = true;
4406		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4407	} else {
4408		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4409		if (!saved_spec) {
4410			rc = -ENOMEM;
4411			goto out_unlock;
4412		}
4413		*saved_spec = *spec;
4414		priv_flags = 0;
4415	}
4416	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4417
4418	/* Actually insert the filter on the HW */
4419	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4420				  ctx, replacing);
4421
4422	if (rc == -EINVAL && nic_data->must_realloc_vis)
4423		/* The MC rebooted under us, causing it to reject our filter
4424		 * insertion as pointing to an invalid VI (spec->dmaq_id).
4425		 */
4426		rc = -EAGAIN;
4427
4428	/* Finalise the software table entry */
4429	if (rc == 0) {
4430		if (replacing) {
4431			/* Update the fields that may differ */
4432			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4433				saved_spec->flags |=
4434					EFX_FILTER_FLAG_RX_OVER_AUTO;
4435			saved_spec->priority = spec->priority;
4436			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4437			saved_spec->flags |= spec->flags;
4438			saved_spec->rss_context = spec->rss_context;
4439			saved_spec->dmaq_id = spec->dmaq_id;
4440		}
4441	} else if (!replacing) {
4442		kfree(saved_spec);
4443		saved_spec = NULL;
4444	} else {
4445		/* We failed to replace, so the old filter is still present.
4446		 * Roll back the software table to reflect this.  In fact the
4447		 * efx_ef10_filter_set_entry() call below will do the right
4448		 * thing, so nothing extra is needed here.
4449		 */
4450	}
4451	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4452
4453	/* Remove and finalise entries for lower-priority multicast
4454	 * recipients
4455	 */
4456	if (is_mc_recip) {
4457		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4458		unsigned int depth, i;
4459
4460		memset(inbuf, 0, sizeof(inbuf));
4461
4462		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4463			if (!test_bit(depth, mc_rem_map))
4464				continue;
4465
4466			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4467			saved_spec = efx_ef10_filter_entry_spec(table, i);
4468			priv_flags = efx_ef10_filter_entry_flags(table, i);
4469
4470			if (rc == 0) {
4471				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4472					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4473				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4474					       table->entry[i].handle);
4475				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4476						  inbuf, sizeof(inbuf),
4477						  NULL, 0, NULL);
4478			}
4479
4480			if (rc == 0) {
4481				kfree(saved_spec);
4482				saved_spec = NULL;
4483				priv_flags = 0;
4484			}
4485			efx_ef10_filter_set_entry(table, i, saved_spec,
4486						  priv_flags);
4487		}
4488	}
4489
4490	/* If successful, return the inserted filter ID */
4491	if (rc == 0)
4492		rc = efx_ef10_make_filter_id(match_pri, ins_index);
4493
4494out_unlock:
4495	if (rss_locked)
4496		mutex_unlock(&efx->rss_lock);
4497	up_write(&table->lock);
4498	return rc;
4499}
4500
4501static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4502				  struct efx_filter_spec *spec,
4503				  bool replace_equal)
4504{
4505	s32 ret;
4506
4507	down_read(&efx->filter_sem);
4508	ret = efx_ef10_filter_insert_locked(efx, spec, replace_equal);
4509	up_read(&efx->filter_sem);
4510
4511	return ret;
4512}
4513
4514static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4515{
4516	/* no need to do anything here on EF10 */
4517}
4518
4519/* Remove a filter.
4520 * If !by_index, remove by ID
4521 * If by_index, remove by index
4522 * Filter ID may come from userland and must be range-checked.
4523 * Caller must hold efx->filter_sem for read, and efx->filter_state->lock
4524 * for write.
4525 */
4526static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4527					   unsigned int priority_mask,
4528					   u32 filter_id, bool by_index)
4529{
4530	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4531	struct efx_ef10_filter_table *table = efx->filter_state;
4532	MCDI_DECLARE_BUF(inbuf,
4533			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4534			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4535	struct efx_filter_spec *spec;
4536	DEFINE_WAIT(wait);
4537	int rc;
4538
4539	spec = efx_ef10_filter_entry_spec(table, filter_idx);
4540	if (!spec ||
4541	    (!by_index &&
4542	     efx_ef10_filter_pri(table, spec) !=
4543	     efx_ef10_filter_get_unsafe_pri(filter_id)))
4544		return -ENOENT;
4545
4546	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4547	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4548		/* Just remove flags */
4549		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4550		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4551		return 0;
4552	}
4553
4554	if (!(priority_mask & (1U << spec->priority)))
4555		return -ENOENT;
4556
4557	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4558		/* Reset to an automatic filter */
4559
4560		struct efx_filter_spec new_spec = *spec;
4561
4562		new_spec.priority = EFX_FILTER_PRI_AUTO;
4563		new_spec.flags = (EFX_FILTER_FLAG_RX |
4564				  (efx_rss_active(&efx->rss_context) ?
4565				   EFX_FILTER_FLAG_RX_RSS : 0));
4566		new_spec.dmaq_id = 0;
4567		new_spec.rss_context = 0;
4568		rc = efx_ef10_filter_push(efx, &new_spec,
4569					  &table->entry[filter_idx].handle,
4570					  &efx->rss_context,
4571					  true);
4572
4573		if (rc == 0)
4574			*spec = new_spec;
4575	} else {
4576		/* Really remove the filter */
4577
4578		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4579			       efx_ef10_filter_is_exclusive(spec) ?
4580			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
4581			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4582		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4583			       table->entry[filter_idx].handle);
4584		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4585					inbuf, sizeof(inbuf), NULL, 0, NULL);
4586
4587		if ((rc == 0) || (rc == -ENOENT)) {
4588			/* Filter removed OK or didn't actually exist */
4589			kfree(spec);
4590			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4591		} else {
4592			efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4593					       MC_CMD_FILTER_OP_EXT_IN_LEN,
4594					       NULL, 0, rc);
4595		}
4596	}
4597
4598	return rc;
4599}
4600
4601static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4602				       enum efx_filter_priority priority,
4603				       u32 filter_id)
4604{
4605	struct efx_ef10_filter_table *table;
4606	int rc;
4607
4608	down_read(&efx->filter_sem);
4609	table = efx->filter_state;
4610	down_write(&table->lock);
4611	rc = efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4612					     false);
4613	up_write(&table->lock);
4614	up_read(&efx->filter_sem);
4615	return rc;
4616}
4617
4618/* Caller must hold efx->filter_sem for read */
4619static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4620					  enum efx_filter_priority priority,
4621					  u32 filter_id)
4622{
4623	struct efx_ef10_filter_table *table = efx->filter_state;
4624
4625	if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4626		return;
4627
4628	down_write(&table->lock);
4629	efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4630					true);
4631	up_write(&table->lock);
4632}
4633
4634static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4635				    enum efx_filter_priority priority,
4636				    u32 filter_id, struct efx_filter_spec *spec)
4637{
4638	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4639	const struct efx_filter_spec *saved_spec;
4640	struct efx_ef10_filter_table *table;
4641	int rc;
4642
4643	down_read(&efx->filter_sem);
4644	table = efx->filter_state;
4645	down_read(&table->lock);
4646	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4647	if (saved_spec && saved_spec->priority == priority &&
4648	    efx_ef10_filter_pri(table, saved_spec) ==
4649	    efx_ef10_filter_get_unsafe_pri(filter_id)) {
4650		*spec = *saved_spec;
4651		rc = 0;
4652	} else {
4653		rc = -ENOENT;
4654	}
4655	up_read(&table->lock);
4656	up_read(&efx->filter_sem);
4657	return rc;
4658}
4659
4660static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4661				    enum efx_filter_priority priority)
4662{
4663	struct efx_ef10_filter_table *table;
4664	unsigned int priority_mask;
4665	unsigned int i;
4666	int rc;
4667
4668	priority_mask = (((1U << (priority + 1)) - 1) &
4669			 ~(1U << EFX_FILTER_PRI_AUTO));
4670
4671	down_read(&efx->filter_sem);
4672	table = efx->filter_state;
4673	down_write(&table->lock);
4674	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4675		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4676						     i, true);
4677		if (rc && rc != -ENOENT)
4678			break;
4679		rc = 0;
4680	}
4681
4682	up_write(&table->lock);
4683	up_read(&efx->filter_sem);
4684	return rc;
4685}
4686
4687static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4688					 enum efx_filter_priority priority)
4689{
4690	struct efx_ef10_filter_table *table;
4691	unsigned int filter_idx;
4692	s32 count = 0;
4693
4694	down_read(&efx->filter_sem);
4695	table = efx->filter_state;
4696	down_read(&table->lock);
4697	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4698		if (table->entry[filter_idx].spec &&
4699		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4700		    priority)
4701			++count;
4702	}
4703	up_read(&table->lock);
4704	up_read(&efx->filter_sem);
4705	return count;
4706}
4707
4708static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4709{
4710	struct efx_ef10_filter_table *table = efx->filter_state;
4711
4712	return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4713}
4714
4715static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4716				      enum efx_filter_priority priority,
4717				      u32 *buf, u32 size)
4718{
4719	struct efx_ef10_filter_table *table;
4720	struct efx_filter_spec *spec;
4721	unsigned int filter_idx;
4722	s32 count = 0;
4723
4724	down_read(&efx->filter_sem);
4725	table = efx->filter_state;
4726	down_read(&table->lock);
4727
4728	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4729		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4730		if (spec && spec->priority == priority) {
4731			if (count == size) {
4732				count = -EMSGSIZE;
4733				break;
4734			}
4735			buf[count++] =
4736				efx_ef10_make_filter_id(
4737					efx_ef10_filter_pri(table, spec),
4738					filter_idx);
4739		}
4740	}
4741	up_read(&table->lock);
4742	up_read(&efx->filter_sem);
4743	return count;
4744}
4745
4746#ifdef CONFIG_RFS_ACCEL
4747
4748static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4749					   unsigned int filter_idx)
4750{
4751	struct efx_filter_spec *spec, saved_spec;
4752	struct efx_ef10_filter_table *table;
4753	struct efx_arfs_rule *rule = NULL;
4754	bool ret = true, force = false;
4755	u16 arfs_id;
4756
4757	down_read(&efx->filter_sem);
4758	table = efx->filter_state;
4759	down_write(&table->lock);
4760	spec = efx_ef10_filter_entry_spec(table, filter_idx);
4761
4762	if (!spec || spec->priority != EFX_FILTER_PRI_HINT)
4763		goto out_unlock;
4764
4765	spin_lock_bh(&efx->rps_hash_lock);
4766	if (!efx->rps_hash_table) {
4767		/* In the absence of the table, we always return 0 to ARFS. */
4768		arfs_id = 0;
4769	} else {
4770		rule = efx_rps_hash_find(efx, spec);
4771		if (!rule)
4772			/* ARFS table doesn't know of this filter, so remove it */
4773			goto expire;
4774		arfs_id = rule->arfs_id;
4775		ret = efx_rps_check_rule(rule, filter_idx, &force);
4776		if (force)
4777			goto expire;
4778		if (!ret) {
4779			spin_unlock_bh(&efx->rps_hash_lock);
4780			goto out_unlock;
4781		}
4782	}
4783	if (!rps_may_expire_flow(efx->net_dev, spec->dmaq_id, flow_id, arfs_id))
4784		ret = false;
4785	else if (rule)
4786		rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
4787expire:
4788	saved_spec = *spec; /* remove operation will kfree spec */
4789	spin_unlock_bh(&efx->rps_hash_lock);
4790	/* At this point (since we dropped the lock), another thread might queue
4791	 * up a fresh insertion request (but the actual insertion will be held
4792	 * up by our possession of the filter table lock).  In that case, it
4793	 * will set rule->filter_id to EFX_ARFS_FILTER_ID_PENDING, meaning that
4794	 * the rule is not removed by efx_rps_hash_del() below.
4795	 */
4796	if (ret)
4797		ret = efx_ef10_filter_remove_internal(efx, 1U << spec->priority,
4798						      filter_idx, true) == 0;
4799	/* While we can't safely dereference rule (we dropped the lock), we can
4800	 * still test it for NULL.
4801	 */
4802	if (ret && rule) {
4803		/* Expiring, so remove entry from ARFS table */
4804		spin_lock_bh(&efx->rps_hash_lock);
4805		efx_rps_hash_del(efx, &saved_spec);
4806		spin_unlock_bh(&efx->rps_hash_lock);
4807	}
4808out_unlock:
4809	up_write(&table->lock);
4810	up_read(&efx->filter_sem);
4811	return ret;
4812}
4813
4814#endif /* CONFIG_RFS_ACCEL */
4815
4816static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4817{
4818	int match_flags = 0;
4819
4820#define MAP_FLAG(gen_flag, mcdi_field) do {				\
4821		u32 old_mcdi_flags = mcdi_flags;			\
4822		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##	\
4823				     mcdi_field ## _LBN);		\
4824		if (mcdi_flags != old_mcdi_flags)			\
4825			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
4826	} while (0)
4827
4828	if (encap) {
4829		/* encap filters must specify encap type */
4830		match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4831		/* and imply ethertype and ip proto */
4832		mcdi_flags &=
4833			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4834		mcdi_flags &=
4835			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4836		/* VLAN tags refer to the outer packet */
4837		MAP_FLAG(INNER_VID, INNER_VLAN);
4838		MAP_FLAG(OUTER_VID, OUTER_VLAN);
4839		/* everything else refers to the inner packet */
4840		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4841		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4842		MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4843		MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4844		MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4845		MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4846		MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4847		MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4848		MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4849		MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4850	} else {
4851		MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4852		MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4853		MAP_FLAG(REM_HOST, SRC_IP);
4854		MAP_FLAG(LOC_HOST, DST_IP);
4855		MAP_FLAG(REM_MAC, SRC_MAC);
4856		MAP_FLAG(REM_PORT, SRC_PORT);
4857		MAP_FLAG(LOC_MAC, DST_MAC);
4858		MAP_FLAG(LOC_PORT, DST_PORT);
4859		MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4860		MAP_FLAG(INNER_VID, INNER_VLAN);
4861		MAP_FLAG(OUTER_VID, OUTER_VLAN);
4862		MAP_FLAG(IP_PROTO, IP_PROTO);
4863	}
4864#undef MAP_FLAG
4865
4866	/* Did we map them all? */
4867	if (mcdi_flags)
4868		return -EINVAL;
4869
4870	return match_flags;
4871}
4872
4873static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4874{
4875	struct efx_ef10_filter_table *table = efx->filter_state;
4876	struct efx_ef10_filter_vlan *vlan, *next_vlan;
4877
4878	/* See comment in efx_ef10_filter_table_remove() */
4879	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4880		return;
4881
4882	if (!table)
4883		return;
4884
4885	list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4886		efx_ef10_filter_del_vlan_internal(efx, vlan);
4887}
4888
4889static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4890					    bool encap,
4891					    enum efx_filter_match_flags match_flags)
4892{
4893	unsigned int match_pri;
4894	int mf;
4895
4896	for (match_pri = 0;
4897	     match_pri < table->rx_match_count;
4898	     match_pri++) {
4899		mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4900				table->rx_match_mcdi_flags[match_pri]);
4901		if (mf == match_flags)
4902			return true;
4903	}
4904
4905	return false;
4906}
4907
4908static int
4909efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4910				    struct efx_ef10_filter_table *table,
4911				    bool encap)
4912{
4913	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4914	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4915	unsigned int pd_match_pri, pd_match_count;
4916	size_t outlen;
4917	int rc;
4918
4919	/* Find out which RX filter types are supported, and their priorities */
4920	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4921		       encap ?
4922		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4923		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4924	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4925			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4926			  &outlen);
4927	if (rc)
4928		return rc;
4929
4930	pd_match_count = MCDI_VAR_ARRAY_LEN(
4931		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4932
4933	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4934		u32 mcdi_flags =
4935			MCDI_ARRAY_DWORD(
4936				outbuf,
4937				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4938				pd_match_pri);
4939		rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4940		if (rc < 0) {
4941			netif_dbg(efx, probe, efx->net_dev,
4942				  "%s: fw flags %#x pri %u not supported in driver\n",
4943				  __func__, mcdi_flags, pd_match_pri);
4944		} else {
4945			netif_dbg(efx, probe, efx->net_dev,
4946				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4947				  __func__, mcdi_flags, pd_match_pri,
4948				  rc, table->rx_match_count);
4949			table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4950			table->rx_match_count++;
4951		}
4952	}
4953
4954	return 0;
4955}
4956
4957static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4958{
4959	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4960	struct net_device *net_dev = efx->net_dev;
4961	struct efx_ef10_filter_table *table;
4962	struct efx_ef10_vlan *vlan;
4963	int rc;
4964
4965	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4966		return -EINVAL;
4967
4968	if (efx->filter_state) /* already probed */
4969		return 0;
4970
4971	table = kzalloc(sizeof(*table), GFP_KERNEL);
4972	if (!table)
4973		return -ENOMEM;
4974
4975	table->rx_match_count = 0;
4976	rc = efx_ef10_filter_table_probe_matches(efx, table, false);
4977	if (rc)
4978		goto fail;
4979	if (nic_data->datapath_caps &
4980		   (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
4981		rc = efx_ef10_filter_table_probe_matches(efx, table, true);
4982	if (rc)
4983		goto fail;
4984	if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4985	    !(efx_ef10_filter_match_supported(table, false,
4986		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4987	      efx_ef10_filter_match_supported(table, false,
4988		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4989		netif_info(efx, probe, net_dev,
4990			   "VLAN filters are not supported in this firmware variant\n");
4991		net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4992		efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4993		net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4994	}
4995
4996	table->entry = vzalloc(array_size(HUNT_FILTER_TBL_ROWS,
4997					  sizeof(*table->entry)));
4998	if (!table->entry) {
4999		rc = -ENOMEM;
5000		goto fail;
5001	}
5002
5003	table->mc_promisc_last = false;
5004	table->vlan_filter =
5005		!!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5006	INIT_LIST_HEAD(&table->vlan_list);
5007	init_rwsem(&table->lock);
5008
5009	efx->filter_state = table;
5010
5011	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
5012		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
5013		if (rc)
5014			goto fail_add_vlan;
5015	}
5016
5017	return 0;
5018
5019fail_add_vlan:
5020	efx_ef10_filter_cleanup_vlans(efx);
5021	efx->filter_state = NULL;
5022fail:
5023	kfree(table);
5024	return rc;
5025}
5026
5027/* Caller must hold efx->filter_sem for read if race against
5028 * efx_ef10_filter_table_remove() is possible
5029 */
5030static void efx_ef10_filter_table_restore(struct efx_nic *efx)
5031{
5032	struct efx_ef10_filter_table *table = efx->filter_state;
5033	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5034	unsigned int invalid_filters = 0, failed = 0;
5035	struct efx_ef10_filter_vlan *vlan;
5036	struct efx_filter_spec *spec;
5037	struct efx_rss_context *ctx;
5038	unsigned int filter_idx;
5039	u32 mcdi_flags;
5040	int match_pri;
5041	int rc, i;
5042
5043	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5044
5045	if (!nic_data->must_restore_filters)
5046		return;
5047
5048	if (!table)
5049		return;
5050
5051	down_write(&table->lock);
5052	mutex_lock(&efx->rss_lock);
5053
5054	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5055		spec = efx_ef10_filter_entry_spec(table, filter_idx);
5056		if (!spec)
5057			continue;
5058
5059		mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
5060		match_pri = 0;
5061		while (match_pri < table->rx_match_count &&
5062		       table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
5063			++match_pri;
5064		if (match_pri >= table->rx_match_count) {
5065			invalid_filters++;
5066			goto not_restored;
5067		}
5068		if (spec->rss_context)
5069			ctx = efx_find_rss_context_entry(efx, spec->rss_context);
5070		else
5071			ctx = &efx->rss_context;
5072		if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
5073			if (!ctx) {
5074				netif_warn(efx, drv, efx->net_dev,
5075					   "Warning: unable to restore a filter with nonexistent RSS context %u.\n",
5076					   spec->rss_context);
5077				invalid_filters++;
5078				goto not_restored;
5079			}
5080			if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
5081				netif_warn(efx, drv, efx->net_dev,
5082					   "Warning: unable to restore a filter with RSS context %u as it was not created.\n",
5083					   spec->rss_context);
5084				invalid_filters++;
5085				goto not_restored;
5086			}
5087		}
5088
5089		rc = efx_ef10_filter_push(efx, spec,
5090					  &table->entry[filter_idx].handle,
5091					  ctx, false);
5092		if (rc)
5093			failed++;
5094
5095		if (rc) {
5096not_restored:
5097			list_for_each_entry(vlan, &table->vlan_list, list)
5098				for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
5099					if (vlan->default_filters[i] == filter_idx)
5100						vlan->default_filters[i] =
5101							EFX_EF10_FILTER_ID_INVALID;
5102
5103			kfree(spec);
5104			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
5105		}
5106	}
5107
5108	mutex_unlock(&efx->rss_lock);
5109	up_write(&table->lock);
5110
5111	/* This can happen validly if the MC's capabilities have changed, so
5112	 * is not an error.
5113	 */
5114	if (invalid_filters)
5115		netif_dbg(efx, drv, efx->net_dev,
5116			  "Did not restore %u filters that are now unsupported.\n",
5117			  invalid_filters);
5118
5119	if (failed)
5120		netif_err(efx, hw, efx->net_dev,
5121			  "unable to restore %u filters\n", failed);
5122	else
5123		nic_data->must_restore_filters = false;
5124}
5125
5126static void efx_ef10_filter_table_remove(struct efx_nic *efx)
5127{
5128	struct efx_ef10_filter_table *table = efx->filter_state;
5129	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
5130	struct efx_filter_spec *spec;
5131	unsigned int filter_idx;
5132	int rc;
5133
5134	efx_ef10_filter_cleanup_vlans(efx);
5135	efx->filter_state = NULL;
5136	/* If we were called without locking, then it's not safe to free
5137	 * the table as others might be using it.  So we just WARN, leak
5138	 * the memory, and potentially get an inconsistent filter table
5139	 * state.
5140	 * This should never actually happen.
5141	 */
5142	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5143		return;
5144
5145	if (!table)
5146		return;
5147
5148	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5149		spec = efx_ef10_filter_entry_spec(table, filter_idx);
5150		if (!spec)
5151			continue;
5152
5153		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
5154			       efx_ef10_filter_is_exclusive(spec) ?
5155			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
5156			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
5157		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
5158			       table->entry[filter_idx].handle);
5159		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
5160					sizeof(inbuf), NULL, 0, NULL);
5161		if (rc)
5162			netif_info(efx, drv, efx->net_dev,
5163				   "%s: filter %04x remove failed\n",
5164				   __func__, filter_idx);
5165		kfree(spec);
5166	}
5167
5168	vfree(table->entry);
5169	kfree(table);
5170}
5171
5172static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
5173{
5174	struct efx_ef10_filter_table *table = efx->filter_state;
5175	unsigned int filter_idx;
5176
5177	efx_rwsem_assert_write_locked(&table->lock);
5178
5179	if (*id != EFX_EF10_FILTER_ID_INVALID) {
5180		filter_idx = efx_ef10_filter_get_unsafe_id(*id);
5181		if (!table->entry[filter_idx].spec)
5182			netif_dbg(efx, drv, efx->net_dev,
5183				  "marked null spec old %04x:%04x\n", *id,
5184				  filter_idx);
5185		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
5186		*id = EFX_EF10_FILTER_ID_INVALID;
5187	}
5188}
5189
5190/* Mark old per-VLAN filters that may need to be removed */
5191static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5192					   struct efx_ef10_filter_vlan *vlan)
5193{
5194	struct efx_ef10_filter_table *table = efx->filter_state;
5195	unsigned int i;
5196
5197	for (i = 0; i < table->dev_uc_count; i++)
5198		efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5199	for (i = 0; i < table->dev_mc_count; i++)
5200		efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5201	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5202		efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5203}
5204
5205/* Mark old filters that may need to be removed.
5206 * Caller must hold efx->filter_sem for read if race against
5207 * efx_ef10_filter_table_remove() is possible
5208 */
5209static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5210{
5211	struct efx_ef10_filter_table *table = efx->filter_state;
5212	struct efx_ef10_filter_vlan *vlan;
5213
5214	down_write(&table->lock);
5215	list_for_each_entry(vlan, &table->vlan_list, list)
5216		_efx_ef10_filter_vlan_mark_old(efx, vlan);
5217	up_write(&table->lock);
5218}
5219
5220static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5221{
5222	struct efx_ef10_filter_table *table = efx->filter_state;
5223	struct net_device *net_dev = efx->net_dev;
5224	struct netdev_hw_addr *uc;
5225	unsigned int i;
5226
5227	table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5228	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5229	i = 1;
5230	netdev_for_each_uc_addr(uc, net_dev) {
5231		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5232			table->uc_promisc = true;
5233			break;
5234		}
5235		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5236		i++;
5237	}
5238
5239	table->dev_uc_count = i;
5240}
5241
5242static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5243{
5244	struct efx_ef10_filter_table *table = efx->filter_state;
5245	struct net_device *net_dev = efx->net_dev;
5246	struct netdev_hw_addr *mc;
5247	unsigned int i;
5248
5249	table->mc_overflow = false;
5250	table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5251
5252	i = 0;
5253	netdev_for_each_mc_addr(mc, net_dev) {
5254		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5255			table->mc_promisc = true;
5256			table->mc_overflow = true;
5257			break;
5258		}
5259		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5260		i++;
5261	}
5262
5263	table->dev_mc_count = i;
5264}
5265
5266static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5267					    struct efx_ef10_filter_vlan *vlan,
5268					    bool multicast, bool rollback)
5269{
5270	struct efx_ef10_filter_table *table = efx->filter_state;
5271	struct efx_ef10_dev_addr *addr_list;
5272	enum efx_filter_flags filter_flags;
5273	struct efx_filter_spec spec;
5274	u8 baddr[ETH_ALEN];
5275	unsigned int i, j;
5276	int addr_count;
5277	u16 *ids;
5278	int rc;
5279
5280	if (multicast) {
5281		addr_list = table->dev_mc_list;
5282		addr_count = table->dev_mc_count;
5283		ids = vlan->mc;
5284	} else {
5285		addr_list = table->dev_uc_list;
5286		addr_count = table->dev_uc_count;
5287		ids = vlan->uc;
5288	}
5289
5290	filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5291
5292	/* Insert/renew filters */
5293	for (i = 0; i < addr_count; i++) {
5294		EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID);
5295		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5296		efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5297		rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5298		if (rc < 0) {
5299			if (rollback) {
5300				netif_info(efx, drv, efx->net_dev,
5301					   "efx_ef10_filter_insert failed rc=%d\n",
5302					   rc);
5303				/* Fall back to promiscuous */
5304				for (j = 0; j < i; j++) {
5305					efx_ef10_filter_remove_unsafe(
5306						efx, EFX_FILTER_PRI_AUTO,
5307						ids[j]);
5308					ids[j] = EFX_EF10_FILTER_ID_INVALID;
5309				}
5310				return rc;
5311			} else {
5312				/* keep invalid ID, and carry on */
5313			}
5314		} else {
5315			ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5316		}
5317	}
5318
5319	if (multicast && rollback) {
5320		/* Also need an Ethernet broadcast filter */
5321		EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5322				     EFX_EF10_FILTER_ID_INVALID);
5323		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5324		eth_broadcast_addr(baddr);
5325		efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5326		rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5327		if (rc < 0) {
5328			netif_warn(efx, drv, efx->net_dev,
5329				   "Broadcast filter insert failed rc=%d\n", rc);
5330			/* Fall back to promiscuous */
5331			for (j = 0; j < i; j++) {
5332				efx_ef10_filter_remove_unsafe(
5333					efx, EFX_FILTER_PRI_AUTO,
5334					ids[j]);
5335				ids[j] = EFX_EF10_FILTER_ID_INVALID;
5336			}
5337			return rc;
5338		} else {
5339			vlan->default_filters[EFX_EF10_BCAST] =
5340				efx_ef10_filter_get_unsafe_id(rc);
5341		}
5342	}
5343
5344	return 0;
5345}
5346
5347static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5348				      struct efx_ef10_filter_vlan *vlan,
5349				      enum efx_encap_type encap_type,
5350				      bool multicast, bool rollback)
5351{
5352	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5353	enum efx_filter_flags filter_flags;
5354	struct efx_filter_spec spec;
5355	u8 baddr[ETH_ALEN];
5356	int rc;
5357	u16 *id;
5358
5359	filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5360
5361	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5362
5363	if (multicast)
5364		efx_filter_set_mc_def(&spec);
5365	else
5366		efx_filter_set_uc_def(&spec);
5367
5368	if (encap_type) {
5369		if (nic_data->datapath_caps &
5370		    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5371			efx_filter_set_encap_type(&spec, encap_type);
5372		else
5373			/* don't insert encap filters on non-supporting
5374			 * platforms. ID will be left as INVALID.
5375			 */
5376			return 0;
5377	}
5378
5379	if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5380		efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5381
5382	rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5383	if (rc < 0) {
5384		const char *um = multicast ? "Multicast" : "Unicast";
5385		const char *encap_name = "";
5386		const char *encap_ipv = "";
5387
5388		if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5389		    EFX_ENCAP_TYPE_VXLAN)
5390			encap_name = "VXLAN ";
5391		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5392			 EFX_ENCAP_TYPE_NVGRE)
5393			encap_name = "NVGRE ";
5394		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5395			 EFX_ENCAP_TYPE_GENEVE)
5396			encap_name = "GENEVE ";
5397		if (encap_type & EFX_ENCAP_FLAG_IPV6)
5398			encap_ipv = "IPv6 ";
5399		else if (encap_type)
5400			encap_ipv = "IPv4 ";
5401
5402		/* unprivileged functions can't insert mismatch filters
5403		 * for encapsulated or unicast traffic, so downgrade
5404		 * those warnings to debug.
5405		 */
5406		netif_cond_dbg(efx, drv, efx->net_dev,
5407			       rc == -EPERM && (encap_type || !multicast), warn,
5408			       "%s%s%s mismatch filter insert failed rc=%d\n",
5409			       encap_name, encap_ipv, um, rc);
5410	} else if (multicast) {
5411		/* mapping from encap types to default filter IDs (multicast) */
5412		static enum efx_ef10_default_filters map[] = {
5413			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5414			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5415			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5416			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5417			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5418				EFX_EF10_VXLAN6_MCDEF,
5419			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5420				EFX_EF10_NVGRE6_MCDEF,
5421			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5422				EFX_EF10_GENEVE6_MCDEF,
5423		};
5424
5425		/* quick bounds check (BCAST result impossible) */
5426		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5427		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5428			WARN_ON(1);
5429			return -EINVAL;
5430		}
5431		/* then follow map */
5432		id = &vlan->default_filters[map[encap_type]];
5433
5434		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5435		*id = efx_ef10_filter_get_unsafe_id(rc);
5436		if (!nic_data->workaround_26807 && !encap_type) {
5437			/* Also need an Ethernet broadcast filter */
5438			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5439					   filter_flags, 0);
5440			eth_broadcast_addr(baddr);
5441			efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5442			rc = efx_ef10_filter_insert_locked(efx, &spec, true);
5443			if (rc < 0) {
5444				netif_warn(efx, drv, efx->net_dev,
5445					   "Broadcast filter insert failed rc=%d\n",
5446					   rc);
5447				if (rollback) {
5448					/* Roll back the mc_def filter */
5449					efx_ef10_filter_remove_unsafe(
5450							efx, EFX_FILTER_PRI_AUTO,
5451							*id);
5452					*id = EFX_EF10_FILTER_ID_INVALID;
5453					return rc;
5454				}
5455			} else {
5456				EFX_WARN_ON_PARANOID(
5457					vlan->default_filters[EFX_EF10_BCAST] !=
5458					EFX_EF10_FILTER_ID_INVALID);
5459				vlan->default_filters[EFX_EF10_BCAST] =
5460					efx_ef10_filter_get_unsafe_id(rc);
5461			}
5462		}
5463		rc = 0;
5464	} else {
5465		/* mapping from encap types to default filter IDs (unicast) */
5466		static enum efx_ef10_default_filters map[] = {
5467			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5468			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5469			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5470			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5471			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5472				EFX_EF10_VXLAN6_UCDEF,
5473			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5474				EFX_EF10_NVGRE6_UCDEF,
5475			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5476				EFX_EF10_GENEVE6_UCDEF,
5477		};
5478
5479		/* quick bounds check (BCAST result impossible) */
5480		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5481		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5482			WARN_ON(1);
5483			return -EINVAL;
5484		}
5485		/* then follow map */
5486		id = &vlan->default_filters[map[encap_type]];
5487		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5488		*id = rc;
5489		rc = 0;
5490	}
5491	return rc;
5492}
5493
5494/* Remove filters that weren't renewed. */
5495static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5496{
5497	struct efx_ef10_filter_table *table = efx->filter_state;
5498	int remove_failed = 0;
5499	int remove_noent = 0;
5500	int rc;
5501	int i;
5502
5503	down_write(&table->lock);
5504	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5505		if (READ_ONCE(table->entry[i].spec) &
5506		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5507			rc = efx_ef10_filter_remove_internal(efx,
5508					1U << EFX_FILTER_PRI_AUTO, i, true);
5509			if (rc == -ENOENT)
5510				remove_noent++;
5511			else if (rc)
5512				remove_failed++;
5513		}
5514	}
5515	up_write(&table->lock);
5516
5517	if (remove_failed)
5518		netif_info(efx, drv, efx->net_dev,
5519			   "%s: failed to remove %d filters\n",
5520			   __func__, remove_failed);
5521	if (remove_noent)
5522		netif_info(efx, drv, efx->net_dev,
5523			   "%s: failed to remove %d non-existent filters\n",
5524			   __func__, remove_noent);
5525}
5526
5527static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5528{
5529	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5530	u8 mac_old[ETH_ALEN];
5531	int rc, rc2;
5532
5533	/* Only reconfigure a PF-created vport */
5534	if (is_zero_ether_addr(nic_data->vport_mac))
5535		return 0;
5536
5537	efx_device_detach_sync(efx);
5538	efx_net_stop(efx->net_dev);
5539	down_write(&efx->filter_sem);
5540	efx_ef10_filter_table_remove(efx);
5541	up_write(&efx->filter_sem);
5542
5543	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5544	if (rc)
5545		goto restore_filters;
5546
5547	ether_addr_copy(mac_old, nic_data->vport_mac);
5548	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5549				    nic_data->vport_mac);
5550	if (rc)
5551		goto restore_vadaptor;
5552
5553	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5554				    efx->net_dev->dev_addr);
5555	if (!rc) {
5556		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5557	} else {
5558		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5559		if (rc2) {
5560			/* Failed to add original MAC, so clear vport_mac */
5561			eth_zero_addr(nic_data->vport_mac);
5562			goto reset_nic;
5563		}
5564	}
5565
5566restore_vadaptor:
5567	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5568	if (rc2)
5569		goto reset_nic;
5570restore_filters:
5571	down_write(&efx->filter_sem);
5572	rc2 = efx_ef10_filter_table_probe(efx);
5573	up_write(&efx->filter_sem);
5574	if (rc2)
5575		goto reset_nic;
5576
5577	rc2 = efx_net_open(efx->net_dev);
5578	if (rc2)
5579		goto reset_nic;
5580
5581	efx_device_attach_if_not_resetting(efx);
5582
5583	return rc;
5584
5585reset_nic:
5586	netif_err(efx, drv, efx->net_dev,
5587		  "Failed to restore when changing MAC address - scheduling reset\n");
5588	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5589
5590	return rc ? rc : rc2;
5591}
5592
5593/* Caller must hold efx->filter_sem for read if race against
5594 * efx_ef10_filter_table_remove() is possible
5595 */
5596static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5597					      struct efx_ef10_filter_vlan *vlan)
5598{
5599	struct efx_ef10_filter_table *table = efx->filter_state;
5600	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
5601
5602	/* Do not install unspecified VID if VLAN filtering is enabled.
5603	 * Do not install all specified VIDs if VLAN filtering is disabled.
 
5604	 */
5605	if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5606		return;
 
 
5607
5608	/* Insert/renew unicast filters */
5609	if (table->uc_promisc) {
5610		efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5611					   false, false);
5612		efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5613	} else {
5614		/* If any of the filters failed to insert, fall back to
5615		 * promiscuous mode - add in the uc_def filter.  But keep
5616		 * our individual unicast filters.
5617		 */
5618		if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5619			efx_ef10_filter_insert_def(efx, vlan,
5620						   EFX_ENCAP_TYPE_NONE,
5621						   false, false);
5622	}
5623	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5624				   false, false);
5625	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5626					      EFX_ENCAP_FLAG_IPV6,
5627				   false, false);
5628	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5629				   false, false);
5630	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5631					      EFX_ENCAP_FLAG_IPV6,
5632				   false, false);
5633	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5634				   false, false);
5635	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5636					      EFX_ENCAP_FLAG_IPV6,
5637				   false, false);
5638
5639	/* Insert/renew multicast filters */
5640	/* If changing promiscuous state with cascaded multicast filters, remove
5641	 * old filters first, so that packets are dropped rather than duplicated
5642	 */
5643	if (nic_data->workaround_26807 &&
5644	    table->mc_promisc_last != table->mc_promisc)
5645		efx_ef10_filter_remove_old(efx);
5646	if (table->mc_promisc) {
5647		if (nic_data->workaround_26807) {
5648			/* If we failed to insert promiscuous filters, rollback
5649			 * and fall back to individual multicast filters
5650			 */
5651			if (efx_ef10_filter_insert_def(efx, vlan,
5652						       EFX_ENCAP_TYPE_NONE,
5653						       true, true)) {
5654				/* Changing promisc state, so remove old filters */
5655				efx_ef10_filter_remove_old(efx);
5656				efx_ef10_filter_insert_addr_list(efx, vlan,
5657								 true, false);
5658			}
5659		} else {
5660			/* If we failed to insert promiscuous filters, don't
5661			 * rollback.  Regardless, also insert the mc_list,
5662			 * unless it's incomplete due to overflow
5663			 */
5664			efx_ef10_filter_insert_def(efx, vlan,
5665						   EFX_ENCAP_TYPE_NONE,
5666						   true, false);
5667			if (!table->mc_overflow)
5668				efx_ef10_filter_insert_addr_list(efx, vlan,
5669								 true, false);
5670		}
5671	} else {
5672		/* If any filters failed to insert, rollback and fall back to
5673		 * promiscuous mode - mc_def filter and maybe broadcast.  If
5674		 * that fails, roll back again and insert as many of our
5675		 * individual multicast filters as we can.
5676		 */
5677		if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5678			/* Changing promisc state, so remove old filters */
5679			if (nic_data->workaround_26807)
5680				efx_ef10_filter_remove_old(efx);
5681			if (efx_ef10_filter_insert_def(efx, vlan,
5682						       EFX_ENCAP_TYPE_NONE,
5683						       true, true))
5684				efx_ef10_filter_insert_addr_list(efx, vlan,
5685								 true, false);
5686		}
5687	}
5688	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5689				   true, false);
5690	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5691					      EFX_ENCAP_FLAG_IPV6,
5692				   true, false);
5693	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5694				   true, false);
5695	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5696					      EFX_ENCAP_FLAG_IPV6,
5697				   true, false);
5698	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5699				   true, false);
5700	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5701					      EFX_ENCAP_FLAG_IPV6,
5702				   true, false);
5703}
5704
5705/* Caller must hold efx->filter_sem for read if race against
5706 * efx_ef10_filter_table_remove() is possible
5707 */
5708static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5709{
5710	struct efx_ef10_filter_table *table = efx->filter_state;
5711	struct net_device *net_dev = efx->net_dev;
5712	struct efx_ef10_filter_vlan *vlan;
5713	bool vlan_filter;
5714
5715	if (!efx_dev_registered(efx))
5716		return;
5717
5718	if (!table)
5719		return;
5720
5721	efx_ef10_filter_mark_old(efx);
5722
5723	/* Copy/convert the address lists; add the primary station
5724	 * address and broadcast address
5725	 */
5726	netif_addr_lock_bh(net_dev);
5727	efx_ef10_filter_uc_addr_list(efx);
5728	efx_ef10_filter_mc_addr_list(efx);
5729	netif_addr_unlock_bh(net_dev);
5730
5731	/* If VLAN filtering changes, all old filters are finally removed.
5732	 * Do it in advance to avoid conflicts for unicast untagged and
5733	 * VLAN 0 tagged filters.
5734	 */
5735	vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5736	if (table->vlan_filter != vlan_filter) {
5737		table->vlan_filter = vlan_filter;
5738		efx_ef10_filter_remove_old(efx);
5739	}
5740
5741	list_for_each_entry(vlan, &table->vlan_list, list)
5742		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5743
5744	efx_ef10_filter_remove_old(efx);
5745	table->mc_promisc_last = table->mc_promisc;
5746}
5747
5748static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5749{
5750	struct efx_ef10_filter_table *table = efx->filter_state;
5751	struct efx_ef10_filter_vlan *vlan;
5752
5753	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5754
5755	list_for_each_entry(vlan, &table->vlan_list, list) {
5756		if (vlan->vid == vid)
5757			return vlan;
5758	}
5759
5760	return NULL;
5761}
5762
5763static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5764{
5765	struct efx_ef10_filter_table *table = efx->filter_state;
5766	struct efx_ef10_filter_vlan *vlan;
5767	unsigned int i;
5768
5769	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5770		return -EINVAL;
5771
5772	vlan = efx_ef10_filter_find_vlan(efx, vid);
5773	if (WARN_ON(vlan)) {
5774		netif_err(efx, drv, efx->net_dev,
5775			  "VLAN %u already added\n", vid);
5776		return -EALREADY;
5777	}
5778
5779	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5780	if (!vlan)
5781		return -ENOMEM;
5782
5783	vlan->vid = vid;
5784
5785	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5786		vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5787	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5788		vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5789	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5790		vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5791
5792	list_add_tail(&vlan->list, &table->vlan_list);
5793
5794	if (efx_dev_registered(efx))
5795		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5796
5797	return 0;
5798}
5799
5800static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5801					      struct efx_ef10_filter_vlan *vlan)
5802{
5803	unsigned int i;
5804
5805	/* See comment in efx_ef10_filter_table_remove() */
5806	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5807		return;
5808
5809	list_del(&vlan->list);
5810
5811	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5812		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5813					      vlan->uc[i]);
5814	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5815		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5816					      vlan->mc[i]);
5817	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5818		if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5819			efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5820						      vlan->default_filters[i]);
5821
5822	kfree(vlan);
5823}
5824
5825static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5826{
5827	struct efx_ef10_filter_vlan *vlan;
5828
5829	/* See comment in efx_ef10_filter_table_remove() */
5830	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5831		return;
5832
5833	vlan = efx_ef10_filter_find_vlan(efx, vid);
5834	if (!vlan) {
5835		netif_err(efx, drv, efx->net_dev,
5836			  "VLAN %u not found in filter state\n", vid);
5837		return;
5838	}
5839
5840	efx_ef10_filter_del_vlan_internal(efx, vlan);
5841}
5842
5843static int efx_ef10_set_mac_address(struct efx_nic *efx)
5844{
5845	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5846	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5847	bool was_enabled = efx->port_enabled;
5848	int rc;
5849
5850	efx_device_detach_sync(efx);
5851	efx_net_stop(efx->net_dev);
5852
5853	mutex_lock(&efx->mac_lock);
5854	down_write(&efx->filter_sem);
5855	efx_ef10_filter_table_remove(efx);
5856
5857	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5858			efx->net_dev->dev_addr);
5859	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5860		       nic_data->vport_id);
5861	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5862				sizeof(inbuf), NULL, 0, NULL);
5863
5864	efx_ef10_filter_table_probe(efx);
5865	up_write(&efx->filter_sem);
5866	mutex_unlock(&efx->mac_lock);
5867
5868	if (was_enabled)
5869		efx_net_open(efx->net_dev);
5870	efx_device_attach_if_not_resetting(efx);
5871
5872#ifdef CONFIG_SFC_SRIOV
5873	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5874		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5875
5876		if (rc == -EPERM) {
5877			struct efx_nic *efx_pf;
5878
5879			/* Switch to PF and change MAC address on vport */
5880			efx_pf = pci_get_drvdata(pci_dev_pf);
5881
5882			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5883						       nic_data->vf_index,
5884						       efx->net_dev->dev_addr);
5885		} else if (!rc) {
5886			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5887			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5888			unsigned int i;
5889
5890			/* MAC address successfully changed by VF (with MAC
5891			 * spoofing) so update the parent PF if possible.
5892			 */
5893			for (i = 0; i < efx_pf->vf_count; ++i) {
5894				struct ef10_vf *vf = nic_data->vf + i;
5895
5896				if (vf->efx == efx) {
5897					ether_addr_copy(vf->mac,
5898							efx->net_dev->dev_addr);
5899					return 0;
5900				}
5901			}
5902		}
5903	} else
5904#endif
5905	if (rc == -EPERM) {
5906		netif_err(efx, drv, efx->net_dev,
5907			  "Cannot change MAC address; use sfboot to enable"
5908			  " mac-spoofing on this interface\n");
5909	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5910		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5911		 * fall-back to the method of changing the MAC address on the
5912		 * vport.  This only applies to PFs because such versions of
5913		 * MCFW do not support VFs.
5914		 */
5915		rc = efx_ef10_vport_set_mac_address(efx);
5916	} else if (rc) {
5917		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5918				       sizeof(inbuf), NULL, 0, rc);
5919	}
5920
5921	return rc;
5922}
5923
5924static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5925{
5926	efx_ef10_filter_sync_rx_mode(efx);
 
 
5927
 
 
5928	return efx_mcdi_set_mac(efx);
5929}
5930
5931static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5932{
5933	efx_ef10_filter_sync_rx_mode(efx);
5934
5935	return 0;
5936}
5937
5938static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5939{
5940	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5941
5942	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5943	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5944			    NULL, 0, NULL);
5945}
5946
5947/* MC BISTs follow a different poll mechanism to phy BISTs.
5948 * The BIST is done in the poll handler on the MC, and the MCDI command
5949 * will block until the BIST is done.
5950 */
5951static int efx_ef10_poll_bist(struct efx_nic *efx)
5952{
5953	int rc;
5954	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5955	size_t outlen;
5956	u32 result;
5957
5958	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5959			   outbuf, sizeof(outbuf), &outlen);
5960	if (rc != 0)
5961		return rc;
5962
5963	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5964		return -EIO;
5965
5966	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5967	switch (result) {
5968	case MC_CMD_POLL_BIST_PASSED:
5969		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5970		return 0;
5971	case MC_CMD_POLL_BIST_TIMEOUT:
5972		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5973		return -EIO;
5974	case MC_CMD_POLL_BIST_FAILED:
5975		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5976		return -EIO;
5977	default:
5978		netif_err(efx, hw, efx->net_dev,
5979			  "BIST returned unknown result %u", result);
5980		return -EIO;
5981	}
5982}
5983
5984static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5985{
5986	int rc;
5987
5988	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5989
5990	rc = efx_ef10_start_bist(efx, bist_type);
5991	if (rc != 0)
5992		return rc;
5993
5994	return efx_ef10_poll_bist(efx);
5995}
5996
5997static int
5998efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5999{
6000	int rc, rc2;
6001
6002	efx_reset_down(efx, RESET_TYPE_WORLD);
6003
6004	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
6005			  NULL, 0, NULL, 0, NULL);
6006	if (rc != 0)
6007		goto out;
6008
6009	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
6010	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
6011
6012	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
6013
6014out:
6015	if (rc == -EPERM)
6016		rc = 0;
6017	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
6018	return rc ? rc : rc2;
6019}
6020
6021#ifdef CONFIG_SFC_MTD
6022
6023struct efx_ef10_nvram_type_info {
6024	u16 type, type_mask;
6025	u8 port;
6026	const char *name;
6027};
6028
6029static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
6030	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
6031	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
6032	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
6033	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
6034	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
6035	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
6036	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
6037	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
6038	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
6039	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
6040	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
6041	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
6042	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
6043	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
6044	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
6045	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
6046	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
6047	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
6048};
6049#define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
6050
6051static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
6052					struct efx_mcdi_mtd_partition *part,
6053					unsigned int type,
6054					unsigned long *found)
6055{
6056	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
6057	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
6058	const struct efx_ef10_nvram_type_info *info;
6059	size_t size, erase_size, outlen;
6060	int type_idx = 0;
6061	bool protected;
6062	int rc;
6063
6064	for (type_idx = 0; ; type_idx++) {
6065		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
6066			return -ENODEV;
6067		info = efx_ef10_nvram_types + type_idx;
6068		if ((type & ~info->type_mask) == info->type)
6069			break;
6070	}
6071	if (info->port != efx_port_num(efx))
6072		return -ENODEV;
6073
6074	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
6075	if (rc)
6076		return rc;
6077	if (protected &&
6078	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
6079	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
6080		/* Hide protected partitions that don't provide defaults. */
6081		return -ENODEV;
6082
6083	if (protected)
6084		/* Protected partitions are read only. */
6085		erase_size = 0;
6086
6087	/* If we've already exposed a partition of this type, hide this
6088	 * duplicate.  All operations on MTDs are keyed by the type anyway,
6089	 * so we can't act on the duplicate.
6090	 */
6091	if (__test_and_set_bit(type_idx, found))
6092		return -EEXIST;
6093
6094	part->nvram_type = type;
6095
6096	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
6097	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
6098			  outbuf, sizeof(outbuf), &outlen);
6099	if (rc)
6100		return rc;
6101	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
6102		return -EIO;
6103	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
6104	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
6105		part->fw_subtype = MCDI_DWORD(outbuf,
6106					      NVRAM_METADATA_OUT_SUBTYPE);
6107
6108	part->common.dev_type_name = "EF10 NVRAM manager";
6109	part->common.type_name = info->name;
6110
6111	part->common.mtd.type = MTD_NORFLASH;
6112	part->common.mtd.flags = MTD_CAP_NORFLASH;
6113	part->common.mtd.size = size;
6114	part->common.mtd.erasesize = erase_size;
6115	/* sfc_status is read-only */
6116	if (!erase_size)
6117		part->common.mtd.flags |= MTD_NO_ERASE;
6118
6119	return 0;
6120}
6121
6122static int efx_ef10_mtd_probe(struct efx_nic *efx)
6123{
6124	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
6125	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
6126	struct efx_mcdi_mtd_partition *parts;
6127	size_t outlen, n_parts_total, i, n_parts;
6128	unsigned int type;
6129	int rc;
6130
6131	ASSERT_RTNL();
6132
6133	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
6134	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
6135			  outbuf, sizeof(outbuf), &outlen);
6136	if (rc)
6137		return rc;
6138	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
6139		return -EIO;
6140
6141	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
6142	if (n_parts_total >
6143	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
6144		return -EIO;
6145
6146	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
6147	if (!parts)
6148		return -ENOMEM;
6149
6150	n_parts = 0;
6151	for (i = 0; i < n_parts_total; i++) {
6152		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
6153					i);
6154		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
6155						  found);
6156		if (rc == -EEXIST || rc == -ENODEV)
6157			continue;
6158		if (rc)
6159			goto fail;
6160		n_parts++;
6161	}
6162
 
 
 
 
 
6163	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
6164fail:
6165	if (rc)
6166		kfree(parts);
6167	return rc;
6168}
6169
6170#endif /* CONFIG_SFC_MTD */
6171
6172static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
6173{
6174	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
6175}
6176
6177static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
6178					    u32 host_time) {}
6179
6180static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
6181					   bool temp)
6182{
6183	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
6184	int rc;
6185
6186	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
6187	    channel->sync_events_state == SYNC_EVENTS_VALID ||
6188	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
6189		return 0;
6190	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
6191
6192	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
6193	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6194	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
6195		       channel->channel);
6196
6197	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6198			  inbuf, sizeof(inbuf), NULL, 0, NULL);
6199
6200	if (rc != 0)
6201		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6202						    SYNC_EVENTS_DISABLED;
6203
6204	return rc;
6205}
6206
6207static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
6208					    bool temp)
6209{
6210	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
6211	int rc;
6212
6213	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
6214	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
6215		return 0;
6216	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
6217		channel->sync_events_state = SYNC_EVENTS_DISABLED;
6218		return 0;
6219	}
6220	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6221					    SYNC_EVENTS_DISABLED;
6222
6223	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6224	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6225	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6226		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6227	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6228		       channel->channel);
6229
6230	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6231			  inbuf, sizeof(inbuf), NULL, 0, NULL);
6232
6233	return rc;
6234}
6235
6236static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6237					   bool temp)
6238{
6239	int (*set)(struct efx_channel *channel, bool temp);
6240	struct efx_channel *channel;
6241
6242	set = en ?
6243	      efx_ef10_rx_enable_timestamping :
6244	      efx_ef10_rx_disable_timestamping;
6245
6246	channel = efx_ptp_channel(efx);
6247	if (channel) {
6248		int rc = set(channel, temp);
6249		if (en && rc != 0) {
6250			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6251			return rc;
6252		}
6253	}
6254
6255	return 0;
6256}
6257
6258static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6259					 struct hwtstamp_config *init)
6260{
6261	return -EOPNOTSUPP;
6262}
6263
6264static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6265				      struct hwtstamp_config *init)
6266{
6267	int rc;
6268
6269	switch (init->rx_filter) {
6270	case HWTSTAMP_FILTER_NONE:
6271		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6272		/* if TX timestamping is still requested then leave PTP on */
6273		return efx_ptp_change_mode(efx,
6274					   init->tx_type != HWTSTAMP_TX_OFF, 0);
6275	case HWTSTAMP_FILTER_ALL:
6276	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6277	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6278	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6279	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6280	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6281	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6282	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6283	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6284	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6285	case HWTSTAMP_FILTER_PTP_V2_EVENT:
6286	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6287	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6288	case HWTSTAMP_FILTER_NTP_ALL:
6289		init->rx_filter = HWTSTAMP_FILTER_ALL;
6290		rc = efx_ptp_change_mode(efx, true, 0);
6291		if (!rc)
6292			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6293		if (rc)
6294			efx_ptp_change_mode(efx, false, 0);
6295		return rc;
6296	default:
6297		return -ERANGE;
6298	}
6299}
6300
6301static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6302				     struct netdev_phys_item_id *ppid)
6303{
6304	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6305
6306	if (!is_valid_ether_addr(nic_data->port_id))
6307		return -EOPNOTSUPP;
6308
6309	ppid->id_len = ETH_ALEN;
6310	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6311
6312	return 0;
6313}
6314
6315static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6316{
6317	if (proto != htons(ETH_P_8021Q))
6318		return -EINVAL;
6319
6320	return efx_ef10_add_vlan(efx, vid);
6321}
6322
6323static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6324{
6325	if (proto != htons(ETH_P_8021Q))
6326		return -EINVAL;
6327
6328	return efx_ef10_del_vlan(efx, vid);
6329}
6330
6331/* We rely on the MCDI wiping out our TX rings if it made any changes to the
6332 * ports table, ensuring that any TSO descriptors that were made on a now-
6333 * removed tunnel port will be blown away and won't break things when we try
6334 * to transmit them using the new ports table.
6335 */
6336static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6337{
6338	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6339	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6340	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6341	bool will_reset = false;
6342	size_t num_entries = 0;
6343	size_t inlen, outlen;
6344	size_t i;
6345	int rc;
6346	efx_dword_t flags_and_num_entries;
6347
6348	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6349
6350	nic_data->udp_tunnels_dirty = false;
6351
6352	if (!(nic_data->datapath_caps &
6353	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6354		efx_device_attach_if_not_resetting(efx);
6355		return 0;
6356	}
6357
6358	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6359		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6360
6361	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6362		if (nic_data->udp_tunnels[i].count &&
6363		    nic_data->udp_tunnels[i].port) {
6364			efx_dword_t entry;
6365
6366			EFX_POPULATE_DWORD_2(entry,
6367				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6368					ntohs(nic_data->udp_tunnels[i].port),
6369				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6370					nic_data->udp_tunnels[i].type);
6371			*_MCDI_ARRAY_DWORD(inbuf,
6372				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6373				num_entries++) = entry;
6374		}
6375	}
6376
6377	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6378		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6379		     EFX_WORD_1_LBN);
6380	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6381		     EFX_WORD_1_WIDTH);
6382	EFX_POPULATE_DWORD_2(flags_and_num_entries,
6383			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6384				!!unloading,
6385			     EFX_WORD_1, num_entries);
6386	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6387		flags_and_num_entries;
6388
6389	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6390
6391	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6392				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6393	if (rc == -EIO) {
6394		/* Most likely the MC rebooted due to another function also
6395		 * setting its tunnel port list. Mark the tunnel port list as
6396		 * dirty, so it will be pushed upon coming up from the reboot.
6397		 */
6398		nic_data->udp_tunnels_dirty = true;
6399		return 0;
6400	}
6401
6402	if (rc) {
6403		/* expected not available on unprivileged functions */
6404		if (rc != -EPERM)
6405			netif_warn(efx, drv, efx->net_dev,
6406				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6407	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6408		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6409		netif_info(efx, drv, efx->net_dev,
6410			   "Rebooting MC due to UDP tunnel port list change\n");
6411		will_reset = true;
6412		if (unloading)
6413			/* Delay for the MC reset to complete. This will make
6414			 * unloading other functions a bit smoother. This is a
6415			 * race, but the other unload will work whichever way
6416			 * it goes, this just avoids an unnecessary error
6417			 * message.
6418			 */
6419			msleep(100);
6420	}
6421	if (!will_reset && !unloading) {
6422		/* The caller will have detached, relying on the MC reset to
6423		 * trigger a re-attach.  Since there won't be an MC reset, we
6424		 * have to do the attach ourselves.
6425		 */
6426		efx_device_attach_if_not_resetting(efx);
6427	}
6428
6429	return rc;
6430}
6431
6432static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6433{
6434	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6435	int rc = 0;
6436
6437	mutex_lock(&nic_data->udp_tunnels_lock);
6438	if (nic_data->udp_tunnels_dirty) {
6439		/* Make sure all TX are stopped while we modify the table, else
6440		 * we might race against an efx_features_check().
6441		 */
6442		efx_device_detach_sync(efx);
6443		rc = efx_ef10_set_udp_tnl_ports(efx, false);
6444	}
6445	mutex_unlock(&nic_data->udp_tunnels_lock);
6446	return rc;
6447}
6448
6449static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6450							     __be16 port)
 
6451{
6452	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6453	size_t i;
 
6454
6455	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6456		if (!nic_data->udp_tunnels[i].count)
6457			continue;
6458		if (nic_data->udp_tunnels[i].port == port)
6459			return &nic_data->udp_tunnels[i];
6460	}
6461	return NULL;
6462}
6463
6464static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6465				     struct efx_udp_tunnel tnl)
6466{
6467	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6468	struct efx_udp_tunnel *match;
6469	char typebuf[8];
6470	size_t i;
6471	int rc;
6472
 
6473	if (!(nic_data->datapath_caps &
6474	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6475		return 0;
6476
6477	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6478	netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6479		  typebuf, ntohs(tnl.port));
6480
6481	mutex_lock(&nic_data->udp_tunnels_lock);
6482	/* Make sure all TX are stopped while we add to the table, else we
6483	 * might race against an efx_features_check().
6484	 */
6485	efx_device_detach_sync(efx);
 
 
 
 
6486
6487	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6488	if (match != NULL) {
6489		if (match->type == tnl.type) {
6490			netif_dbg(efx, drv, efx->net_dev,
6491				  "Referencing existing tunnel entry\n");
6492			match->count++;
6493			/* No need to cause an MCDI update */
6494			rc = 0;
6495			goto unlock_out;
6496		}
6497		efx_get_udp_tunnel_type_name(match->type,
6498					     typebuf, sizeof(typebuf));
6499		netif_dbg(efx, drv, efx->net_dev,
6500			  "UDP port %d is already in use by %s\n",
6501			  ntohs(tnl.port), typebuf);
6502		rc = -EEXIST;
6503		goto unlock_out;
6504	}
6505
6506	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6507		if (!nic_data->udp_tunnels[i].count) {
6508			nic_data->udp_tunnels[i] = tnl;
6509			nic_data->udp_tunnels[i].count = 1;
6510			rc = efx_ef10_set_udp_tnl_ports(efx, false);
6511			goto unlock_out;
6512		}
6513
6514	netif_dbg(efx, drv, efx->net_dev,
6515		  "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6516		  typebuf, ntohs(tnl.port));
6517
6518	rc = -ENOMEM;
6519
6520unlock_out:
6521	mutex_unlock(&nic_data->udp_tunnels_lock);
6522	return rc;
6523}
6524
6525/* Called under the TX lock with the TX queue running, hence no-one can be
6526 * in the middle of updating the UDP tunnels table.  However, they could
6527 * have tried and failed the MCDI, in which case they'll have set the dirty
6528 * flag before dropping their locks.
6529 */
6530static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6531{
6532	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
6533
6534	if (!(nic_data->datapath_caps &
6535	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6536		return false;
6537
6538	if (nic_data->udp_tunnels_dirty)
6539		/* SW table may not match HW state, so just assume we can't
6540		 * use any UDP tunnel offloads.
6541		 */
6542		return false;
6543
6544	return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
 
 
 
 
 
 
6545}
6546
6547static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6548				     struct efx_udp_tunnel tnl)
 
6549{
6550	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6551	struct efx_udp_tunnel *match;
6552	char typebuf[8];
6553	int rc;
6554
6555	if (!(nic_data->datapath_caps &
6556	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6557		return 0;
6558
6559	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6560	netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6561		  typebuf, ntohs(tnl.port));
6562
6563	mutex_lock(&nic_data->udp_tunnels_lock);
6564	/* Make sure all TX are stopped while we remove from the table, else we
6565	 * might race against an efx_features_check().
6566	 */
6567	efx_device_detach_sync(efx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6568
6569	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6570	if (match != NULL) {
6571		if (match->type == tnl.type) {
6572			if (--match->count) {
6573				/* Port is still in use, so nothing to do */
6574				netif_dbg(efx, drv, efx->net_dev,
6575					  "UDP tunnel port %d remains active\n",
6576					  ntohs(tnl.port));
6577				rc = 0;
6578				goto out_unlock;
6579			}
6580			rc = efx_ef10_set_udp_tnl_ports(efx, false);
6581			goto out_unlock;
6582		}
6583		efx_get_udp_tunnel_type_name(match->type,
6584					     typebuf, sizeof(typebuf));
6585		netif_warn(efx, drv, efx->net_dev,
6586			   "UDP port %d is actually in use by %s, not removing\n",
6587			   ntohs(tnl.port), typebuf);
6588	}
6589	rc = -ENOENT;
6590
6591out_unlock:
6592	mutex_unlock(&nic_data->udp_tunnels_lock);
6593	return rc;
 
6594}
6595
6596#define EF10_OFFLOAD_FEATURES		\
6597	(NETIF_F_IP_CSUM |		\
6598	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
6599	 NETIF_F_IPV6_CSUM |		\
6600	 NETIF_F_RXHASH |		\
6601	 NETIF_F_NTUPLE)
 
 
 
6602
6603const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6604	.is_vf = true,
6605	.mem_bar = efx_ef10_vf_mem_bar,
6606	.mem_map_size = efx_ef10_mem_map_size,
6607	.probe = efx_ef10_probe_vf,
6608	.remove = efx_ef10_remove,
6609	.dimension_resources = efx_ef10_dimension_resources,
6610	.init = efx_ef10_init_nic,
6611	.fini = efx_port_dummy_op_void,
6612	.map_reset_reason = efx_ef10_map_reset_reason,
6613	.map_reset_flags = efx_ef10_map_reset_flags,
6614	.reset = efx_ef10_reset,
6615	.probe_port = efx_mcdi_port_probe,
6616	.remove_port = efx_mcdi_port_remove,
6617	.fini_dmaq = efx_ef10_fini_dmaq,
6618	.prepare_flr = efx_ef10_prepare_flr,
6619	.finish_flr = efx_port_dummy_op_void,
6620	.describe_stats = efx_ef10_describe_stats,
6621	.update_stats = efx_ef10_update_stats_vf,
 
6622	.start_stats = efx_port_dummy_op_void,
6623	.pull_stats = efx_port_dummy_op_void,
6624	.stop_stats = efx_port_dummy_op_void,
6625	.set_id_led = efx_mcdi_set_id_led,
6626	.push_irq_moderation = efx_ef10_push_irq_moderation,
6627	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6628	.check_mac_fault = efx_mcdi_mac_check_fault,
6629	.reconfigure_port = efx_mcdi_port_reconfigure,
6630	.get_wol = efx_ef10_get_wol_vf,
6631	.set_wol = efx_ef10_set_wol_vf,
6632	.resume_wol = efx_port_dummy_op_void,
6633	.mcdi_request = efx_ef10_mcdi_request,
6634	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
6635	.mcdi_read_response = efx_ef10_mcdi_read_response,
6636	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6637	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6638	.irq_enable_master = efx_port_dummy_op_void,
6639	.irq_test_generate = efx_ef10_irq_test_generate,
6640	.irq_disable_non_ev = efx_port_dummy_op_void,
6641	.irq_handle_msi = efx_ef10_msi_interrupt,
6642	.irq_handle_legacy = efx_ef10_legacy_interrupt,
6643	.tx_probe = efx_ef10_tx_probe,
6644	.tx_init = efx_ef10_tx_init,
6645	.tx_remove = efx_ef10_tx_remove,
6646	.tx_write = efx_ef10_tx_write,
6647	.tx_limit_len = efx_ef10_tx_limit_len,
6648	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6649	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6650	.rx_probe = efx_ef10_rx_probe,
6651	.rx_init = efx_ef10_rx_init,
6652	.rx_remove = efx_ef10_rx_remove,
 
6653	.rx_write = efx_ef10_rx_write,
6654	.rx_defer_refill = efx_ef10_rx_defer_refill,
6655	.ev_probe = efx_ef10_ev_probe,
 
6656	.ev_init = efx_ef10_ev_init,
6657	.ev_fini = efx_ef10_ev_fini,
6658	.ev_remove = efx_ef10_ev_remove,
6659	.ev_process = efx_ef10_ev_process,
6660	.ev_read_ack = efx_ef10_ev_read_ack,
6661	.ev_test_generate = efx_ef10_ev_test_generate,
6662	.filter_table_probe = efx_ef10_filter_table_probe,
6663	.filter_table_restore = efx_ef10_filter_table_restore,
6664	.filter_table_remove = efx_ef10_filter_table_remove,
6665	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6666	.filter_insert = efx_ef10_filter_insert,
6667	.filter_remove_safe = efx_ef10_filter_remove_safe,
6668	.filter_get_safe = efx_ef10_filter_get_safe,
6669	.filter_clear_rx = efx_ef10_filter_clear_rx,
6670	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
6671	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6672	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6673#ifdef CONFIG_RFS_ACCEL
6674	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6675#endif
6676#ifdef CONFIG_SFC_MTD
6677	.mtd_probe = efx_port_dummy_op_int,
6678#endif
6679	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6680	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6681	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6682	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6683#ifdef CONFIG_SFC_SRIOV
6684	.vswitching_probe = efx_ef10_vswitching_probe_vf,
6685	.vswitching_restore = efx_ef10_vswitching_restore_vf,
6686	.vswitching_remove = efx_ef10_vswitching_remove_vf,
6687#endif
6688	.get_mac_address = efx_ef10_get_mac_address_vf,
6689	.set_mac_address = efx_ef10_set_mac_address,
6690
6691	.get_phys_port_id = efx_ef10_get_phys_port_id,
6692	.revision = EFX_REV_HUNT_A0,
6693	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6694	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6695	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6696	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6697	.can_rx_scatter = true,
6698	.always_rx_scatter = true,
6699	.min_interrupt_mode = EFX_INT_MODE_MSIX,
6700	.max_interrupt_mode = EFX_INT_MODE_MSIX,
6701	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6702	.offload_features = EF10_OFFLOAD_FEATURES,
6703	.mcdi_max_ver = 2,
6704	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6705	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6706			    1 << HWTSTAMP_FILTER_ALL,
6707	.rx_hash_key_size = 40,
 
 
 
 
6708};
6709
6710const struct efx_nic_type efx_hunt_a0_nic_type = {
6711	.is_vf = false,
6712	.mem_bar = efx_ef10_pf_mem_bar,
6713	.mem_map_size = efx_ef10_mem_map_size,
6714	.probe = efx_ef10_probe_pf,
6715	.remove = efx_ef10_remove,
6716	.dimension_resources = efx_ef10_dimension_resources,
6717	.init = efx_ef10_init_nic,
6718	.fini = efx_port_dummy_op_void,
6719	.map_reset_reason = efx_ef10_map_reset_reason,
6720	.map_reset_flags = efx_ef10_map_reset_flags,
6721	.reset = efx_ef10_reset,
6722	.probe_port = efx_mcdi_port_probe,
6723	.remove_port = efx_mcdi_port_remove,
6724	.fini_dmaq = efx_ef10_fini_dmaq,
6725	.prepare_flr = efx_ef10_prepare_flr,
6726	.finish_flr = efx_port_dummy_op_void,
6727	.describe_stats = efx_ef10_describe_stats,
6728	.update_stats = efx_ef10_update_stats_pf,
6729	.start_stats = efx_mcdi_mac_start_stats,
6730	.pull_stats = efx_mcdi_mac_pull_stats,
6731	.stop_stats = efx_mcdi_mac_stop_stats,
6732	.set_id_led = efx_mcdi_set_id_led,
6733	.push_irq_moderation = efx_ef10_push_irq_moderation,
6734	.reconfigure_mac = efx_ef10_mac_reconfigure,
6735	.check_mac_fault = efx_mcdi_mac_check_fault,
6736	.reconfigure_port = efx_mcdi_port_reconfigure,
6737	.get_wol = efx_ef10_get_wol,
6738	.set_wol = efx_ef10_set_wol,
6739	.resume_wol = efx_port_dummy_op_void,
 
6740	.test_chip = efx_ef10_test_chip,
6741	.test_nvram = efx_mcdi_nvram_test_all,
6742	.mcdi_request = efx_ef10_mcdi_request,
6743	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
6744	.mcdi_read_response = efx_ef10_mcdi_read_response,
6745	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6746	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6747	.irq_enable_master = efx_port_dummy_op_void,
6748	.irq_test_generate = efx_ef10_irq_test_generate,
6749	.irq_disable_non_ev = efx_port_dummy_op_void,
6750	.irq_handle_msi = efx_ef10_msi_interrupt,
6751	.irq_handle_legacy = efx_ef10_legacy_interrupt,
6752	.tx_probe = efx_ef10_tx_probe,
6753	.tx_init = efx_ef10_tx_init,
6754	.tx_remove = efx_ef10_tx_remove,
6755	.tx_write = efx_ef10_tx_write,
6756	.tx_limit_len = efx_ef10_tx_limit_len,
6757	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6758	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6759	.rx_push_rss_context_config = efx_ef10_rx_push_rss_context_config,
6760	.rx_pull_rss_context_config = efx_ef10_rx_pull_rss_context_config,
6761	.rx_restore_rss_contexts = efx_ef10_rx_restore_rss_contexts,
6762	.rx_probe = efx_ef10_rx_probe,
6763	.rx_init = efx_ef10_rx_init,
6764	.rx_remove = efx_ef10_rx_remove,
 
6765	.rx_write = efx_ef10_rx_write,
6766	.rx_defer_refill = efx_ef10_rx_defer_refill,
6767	.ev_probe = efx_ef10_ev_probe,
 
6768	.ev_init = efx_ef10_ev_init,
6769	.ev_fini = efx_ef10_ev_fini,
6770	.ev_remove = efx_ef10_ev_remove,
6771	.ev_process = efx_ef10_ev_process,
6772	.ev_read_ack = efx_ef10_ev_read_ack,
6773	.ev_test_generate = efx_ef10_ev_test_generate,
6774	.filter_table_probe = efx_ef10_filter_table_probe,
6775	.filter_table_restore = efx_ef10_filter_table_restore,
6776	.filter_table_remove = efx_ef10_filter_table_remove,
6777	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6778	.filter_insert = efx_ef10_filter_insert,
6779	.filter_remove_safe = efx_ef10_filter_remove_safe,
6780	.filter_get_safe = efx_ef10_filter_get_safe,
6781	.filter_clear_rx = efx_ef10_filter_clear_rx,
6782	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
6783	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6784	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6785#ifdef CONFIG_RFS_ACCEL
6786	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6787#endif
6788#ifdef CONFIG_SFC_MTD
6789	.mtd_probe = efx_ef10_mtd_probe,
6790	.mtd_rename = efx_mcdi_mtd_rename,
6791	.mtd_read = efx_mcdi_mtd_read,
6792	.mtd_erase = efx_mcdi_mtd_erase,
6793	.mtd_write = efx_mcdi_mtd_write,
6794	.mtd_sync = efx_mcdi_mtd_sync,
6795#endif
6796	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
6797	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6798	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6799	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6800	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6801	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6802	.udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6803	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6804	.udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6805#ifdef CONFIG_SFC_SRIOV
6806	.sriov_configure = efx_ef10_sriov_configure,
6807	.sriov_init = efx_ef10_sriov_init,
6808	.sriov_fini = efx_ef10_sriov_fini,
6809	.sriov_wanted = efx_ef10_sriov_wanted,
6810	.sriov_reset = efx_ef10_sriov_reset,
6811	.sriov_flr = efx_ef10_sriov_flr,
6812	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6813	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6814	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6815	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6816	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6817	.vswitching_probe = efx_ef10_vswitching_probe_pf,
6818	.vswitching_restore = efx_ef10_vswitching_restore_pf,
6819	.vswitching_remove = efx_ef10_vswitching_remove_pf,
6820#endif
6821	.get_mac_address = efx_ef10_get_mac_address_pf,
6822	.set_mac_address = efx_ef10_set_mac_address,
6823	.tso_versions = efx_ef10_tso_versions,
6824
6825	.get_phys_port_id = efx_ef10_get_phys_port_id,
6826	.revision = EFX_REV_HUNT_A0,
6827	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6828	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6829	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6830	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6831	.can_rx_scatter = true,
6832	.always_rx_scatter = true,
6833	.option_descriptors = true,
6834	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
6835	.max_interrupt_mode = EFX_INT_MODE_MSIX,
6836	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6837	.offload_features = EF10_OFFLOAD_FEATURES,
6838	.mcdi_max_ver = 2,
6839	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6840	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6841			    1 << HWTSTAMP_FILTER_ALL,
6842	.rx_hash_key_size = 40,
 
 
 
 
6843};