Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include "e1000.h"
   5#include <linux/ethtool.h>
   6
   7static s32 e1000_wait_autoneg(struct e1000_hw *hw);
   8static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   9					  u16 *data, bool read, bool page_set);
  10static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  11static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  12					  u16 *data, bool read);
  13
  14/* Cable length tables */
  15static const u16 e1000_m88_cable_length_table[] = {
  16	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  17};
  18
  19#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  20		ARRAY_SIZE(e1000_m88_cable_length_table)
  21
  22static const u16 e1000_igp_2_cable_length_table[] = {
  23	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  24	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  25	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  26	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  27	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  28	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  29	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  30	124
  31};
  32
  33#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  34		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  35
  36/**
  37 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  38 *  @hw: pointer to the HW structure
  39 *
  40 *  Read the PHY management control register and check whether a PHY reset
  41 *  is blocked.  If a reset is not blocked return 0, otherwise
  42 *  return E1000_BLK_PHY_RESET (12).
  43 **/
  44s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  45{
  46	u32 manc;
  47
  48	manc = er32(MANC);
  49
  50	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  51}
  52
  53/**
  54 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  55 *  @hw: pointer to the HW structure
  56 *
  57 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  58 *  revision in the hardware structure.
  59 **/
  60s32 e1000e_get_phy_id(struct e1000_hw *hw)
  61{
  62	struct e1000_phy_info *phy = &hw->phy;
  63	s32 ret_val = 0;
  64	u16 phy_id;
  65	u16 retry_count = 0;
  66
  67	if (!phy->ops.read_reg)
  68		return 0;
  69
  70	while (retry_count < 2) {
  71		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  72		if (ret_val)
  73			return ret_val;
  74
  75		phy->id = (u32)(phy_id << 16);
  76		usleep_range(20, 40);
  77		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  78		if (ret_val)
  79			return ret_val;
  80
  81		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  82		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  83
  84		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  85			return 0;
  86
  87		retry_count++;
  88	}
  89
  90	return 0;
  91}
  92
  93/**
  94 *  e1000e_phy_reset_dsp - Reset PHY DSP
  95 *  @hw: pointer to the HW structure
  96 *
  97 *  Reset the digital signal processor.
  98 **/
  99s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 100{
 101	s32 ret_val;
 102
 103	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 104	if (ret_val)
 105		return ret_val;
 106
 107	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 108}
 109
 110/**
 111 *  e1000e_read_phy_reg_mdic - Read MDI control register
 112 *  @hw: pointer to the HW structure
 113 *  @offset: register offset to be read
 114 *  @data: pointer to the read data
 115 *
 116 *  Reads the MDI control register in the PHY at offset and stores the
 117 *  information read to data.
 118 **/
 119s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 120{
 121	struct e1000_phy_info *phy = &hw->phy;
 122	u32 i, mdic = 0;
 123
 124	if (offset > MAX_PHY_REG_ADDRESS) {
 125		e_dbg("PHY Address %d is out of range\n", offset);
 126		return -E1000_ERR_PARAM;
 127	}
 128
 129	/* Set up Op-code, Phy Address, and register offset in the MDI
 130	 * Control register.  The MAC will take care of interfacing with the
 131	 * PHY to retrieve the desired data.
 132	 */
 133	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 134		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 135		(E1000_MDIC_OP_READ));
 136
 137	ew32(MDIC, mdic);
 138
 139	/* Poll the ready bit to see if the MDI read completed
 140	 * Increasing the time out as testing showed failures with
 141	 * the lower time out
 142	 */
 143	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 144		udelay(50);
 145		mdic = er32(MDIC);
 146		if (mdic & E1000_MDIC_READY)
 147			break;
 148	}
 149	if (!(mdic & E1000_MDIC_READY)) {
 150		e_dbg("MDI Read PHY Reg Address %d did not complete\n", offset);
 151		return -E1000_ERR_PHY;
 152	}
 153	if (mdic & E1000_MDIC_ERROR) {
 154		e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
 155		return -E1000_ERR_PHY;
 156	}
 157	if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 158		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 159		      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 
 160		return -E1000_ERR_PHY;
 161	}
 162	*data = (u16)mdic;
 163
 164	/* Allow some time after each MDIC transaction to avoid
 165	 * reading duplicate data in the next MDIC transaction.
 166	 */
 167	if (hw->mac.type == e1000_pch2lan)
 168		udelay(100);
 
 169	return 0;
 170}
 171
 172/**
 173 *  e1000e_write_phy_reg_mdic - Write MDI control register
 174 *  @hw: pointer to the HW structure
 175 *  @offset: register offset to write to
 176 *  @data: data to write to register at offset
 177 *
 178 *  Writes data to MDI control register in the PHY at offset.
 179 **/
 180s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 181{
 182	struct e1000_phy_info *phy = &hw->phy;
 183	u32 i, mdic = 0;
 184
 185	if (offset > MAX_PHY_REG_ADDRESS) {
 186		e_dbg("PHY Address %d is out of range\n", offset);
 187		return -E1000_ERR_PARAM;
 188	}
 189
 190	/* Set up Op-code, Phy Address, and register offset in the MDI
 191	 * Control register.  The MAC will take care of interfacing with the
 192	 * PHY to retrieve the desired data.
 193	 */
 194	mdic = (((u32)data) |
 195		(offset << E1000_MDIC_REG_SHIFT) |
 196		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 197		(E1000_MDIC_OP_WRITE));
 198
 199	ew32(MDIC, mdic);
 200
 201	/* Poll the ready bit to see if the MDI read completed
 202	 * Increasing the time out as testing showed failures with
 203	 * the lower time out
 204	 */
 205	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 206		udelay(50);
 207		mdic = er32(MDIC);
 208		if (mdic & E1000_MDIC_READY)
 209			break;
 210	}
 211	if (!(mdic & E1000_MDIC_READY)) {
 212		e_dbg("MDI Write PHY Reg Address %d did not complete\n", offset);
 213		return -E1000_ERR_PHY;
 214	}
 215	if (mdic & E1000_MDIC_ERROR) {
 216		e_dbg("MDI Write PHY Red Address %d Error\n", offset);
 217		return -E1000_ERR_PHY;
 218	}
 219	if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 220		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 221		      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 
 222		return -E1000_ERR_PHY;
 223	}
 224
 225	/* Allow some time after each MDIC transaction to avoid
 226	 * reading duplicate data in the next MDIC transaction.
 227	 */
 228	if (hw->mac.type == e1000_pch2lan)
 229		udelay(100);
 230
 231	return 0;
 232}
 233
 234/**
 235 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 236 *  @hw: pointer to the HW structure
 237 *  @offset: register offset to be read
 238 *  @data: pointer to the read data
 239 *
 240 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 241 *  and storing the retrieved information in data.  Release any acquired
 242 *  semaphores before exiting.
 243 **/
 244s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 245{
 246	s32 ret_val;
 247
 248	ret_val = hw->phy.ops.acquire(hw);
 249	if (ret_val)
 250		return ret_val;
 251
 252	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 253					   data);
 254
 255	hw->phy.ops.release(hw);
 256
 257	return ret_val;
 258}
 259
 260/**
 261 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 262 *  @hw: pointer to the HW structure
 263 *  @offset: register offset to write to
 264 *  @data: data to write at register offset
 265 *
 266 *  Acquires semaphore, if necessary, then writes the data to PHY register
 267 *  at the offset.  Release any acquired semaphores before exiting.
 268 **/
 269s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 270{
 271	s32 ret_val;
 272
 273	ret_val = hw->phy.ops.acquire(hw);
 274	if (ret_val)
 275		return ret_val;
 276
 277	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 278					    data);
 279
 280	hw->phy.ops.release(hw);
 281
 282	return ret_val;
 283}
 284
 285/**
 286 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 287 *  @hw: pointer to the HW structure
 288 *  @page: page to set (shifted left when necessary)
 289 *
 290 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 291 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 292 *  must set it appropriately (if necessary) after this function returns.
 293 **/
 294s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 295{
 296	e_dbg("Setting page 0x%x\n", page);
 297
 298	hw->phy.addr = 1;
 299
 300	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 301}
 302
 303/**
 304 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 305 *  @hw: pointer to the HW structure
 306 *  @offset: register offset to be read
 307 *  @data: pointer to the read data
 308 *  @locked: semaphore has already been acquired or not
 309 *
 310 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 311 *  and stores the retrieved information in data.  Release any acquired
 312 *  semaphores before exiting.
 313 **/
 314static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 315				     bool locked)
 316{
 317	s32 ret_val = 0;
 318
 319	if (!locked) {
 320		if (!hw->phy.ops.acquire)
 321			return 0;
 322
 323		ret_val = hw->phy.ops.acquire(hw);
 324		if (ret_val)
 325			return ret_val;
 326	}
 327
 328	if (offset > MAX_PHY_MULTI_PAGE_REG)
 329		ret_val = e1000e_write_phy_reg_mdic(hw,
 330						    IGP01E1000_PHY_PAGE_SELECT,
 331						    (u16)offset);
 332	if (!ret_val)
 333		ret_val = e1000e_read_phy_reg_mdic(hw,
 334						   MAX_PHY_REG_ADDRESS & offset,
 335						   data);
 336	if (!locked)
 337		hw->phy.ops.release(hw);
 338
 339	return ret_val;
 340}
 341
 342/**
 343 *  e1000e_read_phy_reg_igp - Read igp PHY register
 344 *  @hw: pointer to the HW structure
 345 *  @offset: register offset to be read
 346 *  @data: pointer to the read data
 347 *
 348 *  Acquires semaphore then reads the PHY register at offset and stores the
 349 *  retrieved information in data.
 350 *  Release the acquired semaphore before exiting.
 351 **/
 352s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 353{
 354	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 355}
 356
 357/**
 358 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 359 *  @hw: pointer to the HW structure
 360 *  @offset: register offset to be read
 361 *  @data: pointer to the read data
 362 *
 363 *  Reads the PHY register at offset and stores the retrieved information
 364 *  in data.  Assumes semaphore already acquired.
 365 **/
 366s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 367{
 368	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 369}
 370
 371/**
 372 *  __e1000e_write_phy_reg_igp - Write igp PHY register
 373 *  @hw: pointer to the HW structure
 374 *  @offset: register offset to write to
 375 *  @data: data to write at register offset
 376 *  @locked: semaphore has already been acquired or not
 377 *
 378 *  Acquires semaphore, if necessary, then writes the data to PHY register
 379 *  at the offset.  Release any acquired semaphores before exiting.
 380 **/
 381static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 382				      bool locked)
 383{
 384	s32 ret_val = 0;
 385
 386	if (!locked) {
 387		if (!hw->phy.ops.acquire)
 388			return 0;
 389
 390		ret_val = hw->phy.ops.acquire(hw);
 391		if (ret_val)
 392			return ret_val;
 393	}
 394
 395	if (offset > MAX_PHY_MULTI_PAGE_REG)
 396		ret_val = e1000e_write_phy_reg_mdic(hw,
 397						    IGP01E1000_PHY_PAGE_SELECT,
 398						    (u16)offset);
 399	if (!ret_val)
 400		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 401						    offset, data);
 402	if (!locked)
 403		hw->phy.ops.release(hw);
 404
 405	return ret_val;
 406}
 407
 408/**
 409 *  e1000e_write_phy_reg_igp - Write igp PHY register
 410 *  @hw: pointer to the HW structure
 411 *  @offset: register offset to write to
 412 *  @data: data to write at register offset
 413 *
 414 *  Acquires semaphore then writes the data to PHY register
 415 *  at the offset.  Release any acquired semaphores before exiting.
 416 **/
 417s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 418{
 419	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 420}
 421
 422/**
 423 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 424 *  @hw: pointer to the HW structure
 425 *  @offset: register offset to write to
 426 *  @data: data to write at register offset
 427 *
 428 *  Writes the data to PHY register at the offset.
 429 *  Assumes semaphore already acquired.
 430 **/
 431s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 432{
 433	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 434}
 435
 436/**
 437 *  __e1000_read_kmrn_reg - Read kumeran register
 438 *  @hw: pointer to the HW structure
 439 *  @offset: register offset to be read
 440 *  @data: pointer to the read data
 441 *  @locked: semaphore has already been acquired or not
 442 *
 443 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 444 *  using the kumeran interface.  The information retrieved is stored in data.
 445 *  Release any acquired semaphores before exiting.
 446 **/
 447static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 448				 bool locked)
 449{
 450	u32 kmrnctrlsta;
 451
 452	if (!locked) {
 453		s32 ret_val = 0;
 454
 455		if (!hw->phy.ops.acquire)
 456			return 0;
 457
 458		ret_val = hw->phy.ops.acquire(hw);
 459		if (ret_val)
 460			return ret_val;
 461	}
 462
 463	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
 464		      E1000_KMRNCTRLSTA_REN;
 465	ew32(KMRNCTRLSTA, kmrnctrlsta);
 466	e1e_flush();
 467
 468	udelay(2);
 469
 470	kmrnctrlsta = er32(KMRNCTRLSTA);
 471	*data = (u16)kmrnctrlsta;
 472
 473	if (!locked)
 474		hw->phy.ops.release(hw);
 475
 476	return 0;
 477}
 478
 479/**
 480 *  e1000e_read_kmrn_reg -  Read kumeran register
 481 *  @hw: pointer to the HW structure
 482 *  @offset: register offset to be read
 483 *  @data: pointer to the read data
 484 *
 485 *  Acquires semaphore then reads the PHY register at offset using the
 486 *  kumeran interface.  The information retrieved is stored in data.
 487 *  Release the acquired semaphore before exiting.
 488 **/
 489s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 490{
 491	return __e1000_read_kmrn_reg(hw, offset, data, false);
 492}
 493
 494/**
 495 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 496 *  @hw: pointer to the HW structure
 497 *  @offset: register offset to be read
 498 *  @data: pointer to the read data
 499 *
 500 *  Reads the PHY register at offset using the kumeran interface.  The
 501 *  information retrieved is stored in data.
 502 *  Assumes semaphore already acquired.
 503 **/
 504s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 505{
 506	return __e1000_read_kmrn_reg(hw, offset, data, true);
 507}
 508
 509/**
 510 *  __e1000_write_kmrn_reg - Write kumeran register
 511 *  @hw: pointer to the HW structure
 512 *  @offset: register offset to write to
 513 *  @data: data to write at register offset
 514 *  @locked: semaphore has already been acquired or not
 515 *
 516 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 517 *  at the offset using the kumeran interface.  Release any acquired semaphores
 518 *  before exiting.
 519 **/
 520static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 521				  bool locked)
 522{
 523	u32 kmrnctrlsta;
 524
 525	if (!locked) {
 526		s32 ret_val = 0;
 527
 528		if (!hw->phy.ops.acquire)
 529			return 0;
 530
 531		ret_val = hw->phy.ops.acquire(hw);
 532		if (ret_val)
 533			return ret_val;
 534	}
 535
 536	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
 
 537	ew32(KMRNCTRLSTA, kmrnctrlsta);
 538	e1e_flush();
 539
 540	udelay(2);
 541
 542	if (!locked)
 543		hw->phy.ops.release(hw);
 544
 545	return 0;
 546}
 547
 548/**
 549 *  e1000e_write_kmrn_reg -  Write kumeran register
 550 *  @hw: pointer to the HW structure
 551 *  @offset: register offset to write to
 552 *  @data: data to write at register offset
 553 *
 554 *  Acquires semaphore then writes the data to the PHY register at the offset
 555 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 556 **/
 557s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 558{
 559	return __e1000_write_kmrn_reg(hw, offset, data, false);
 560}
 561
 562/**
 563 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 564 *  @hw: pointer to the HW structure
 565 *  @offset: register offset to write to
 566 *  @data: data to write at register offset
 567 *
 568 *  Write the data to PHY register at the offset using the kumeran interface.
 569 *  Assumes semaphore already acquired.
 570 **/
 571s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 572{
 573	return __e1000_write_kmrn_reg(hw, offset, data, true);
 574}
 575
 576/**
 577 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 578 *  @hw: pointer to the HW structure
 579 *
 580 *  Sets up Master/slave mode
 581 **/
 582static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 583{
 584	s32 ret_val;
 585	u16 phy_data;
 586
 587	/* Resolve Master/Slave mode */
 588	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 589	if (ret_val)
 590		return ret_val;
 591
 592	/* load defaults for future use */
 593	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 594	    ((phy_data & CTL1000_AS_MASTER) ?
 595	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 596
 597	switch (hw->phy.ms_type) {
 598	case e1000_ms_force_master:
 599		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 600		break;
 601	case e1000_ms_force_slave:
 602		phy_data |= CTL1000_ENABLE_MASTER;
 603		phy_data &= ~(CTL1000_AS_MASTER);
 604		break;
 605	case e1000_ms_auto:
 606		phy_data &= ~CTL1000_ENABLE_MASTER;
 607		fallthrough;
 608	default:
 609		break;
 610	}
 611
 612	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 613}
 614
 615/**
 616 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 617 *  @hw: pointer to the HW structure
 618 *
 619 *  Sets up Carrier-sense on Transmit and downshift values.
 620 **/
 621s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 622{
 623	s32 ret_val;
 624	u16 phy_data;
 625
 626	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 627	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 628	if (ret_val)
 629		return ret_val;
 630
 631	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 632
 633	/* Enable downshift */
 634	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 635
 636	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 637	if (ret_val)
 638		return ret_val;
 639
 640	/* Set MDI/MDIX mode */
 641	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 642	if (ret_val)
 643		return ret_val;
 644	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 645	/* Options:
 646	 *   0 - Auto (default)
 647	 *   1 - MDI mode
 648	 *   2 - MDI-X mode
 649	 */
 650	switch (hw->phy.mdix) {
 651	case 1:
 652		break;
 653	case 2:
 654		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 655		break;
 656	case 0:
 657	default:
 658		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 659		break;
 660	}
 661	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 662	if (ret_val)
 663		return ret_val;
 664
 665	return e1000_set_master_slave_mode(hw);
 666}
 667
 668/**
 669 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 670 *  @hw: pointer to the HW structure
 671 *
 672 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 673 *  and downshift values are set also.
 674 **/
 675s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 676{
 677	struct e1000_phy_info *phy = &hw->phy;
 678	s32 ret_val;
 679	u16 phy_data;
 680
 681	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 682	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 683	if (ret_val)
 684		return ret_val;
 685
 686	/* For BM PHY this bit is downshift enable */
 687	if (phy->type != e1000_phy_bm)
 688		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 689
 690	/* Options:
 691	 *   MDI/MDI-X = 0 (default)
 692	 *   0 - Auto for all speeds
 693	 *   1 - MDI mode
 694	 *   2 - MDI-X mode
 695	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 696	 */
 697	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 698
 699	switch (phy->mdix) {
 700	case 1:
 701		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 702		break;
 703	case 2:
 704		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 705		break;
 706	case 3:
 707		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 708		break;
 709	case 0:
 710	default:
 711		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 712		break;
 713	}
 714
 715	/* Options:
 716	 *   disable_polarity_correction = 0 (default)
 717	 *       Automatic Correction for Reversed Cable Polarity
 718	 *   0 - Disabled
 719	 *   1 - Enabled
 720	 */
 721	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 722	if (phy->disable_polarity_correction)
 723		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 724
 725	/* Enable downshift on BM (disabled by default) */
 726	if (phy->type == e1000_phy_bm) {
 727		/* For 82574/82583, first disable then enable downshift */
 728		if (phy->id == BME1000_E_PHY_ID_R2) {
 729			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 730			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 731					   phy_data);
 732			if (ret_val)
 733				return ret_val;
 734			/* Commit the changes. */
 735			ret_val = phy->ops.commit(hw);
 736			if (ret_val) {
 737				e_dbg("Error committing the PHY changes\n");
 738				return ret_val;
 739			}
 740		}
 741
 742		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 743	}
 744
 745	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 746	if (ret_val)
 747		return ret_val;
 748
 749	if ((phy->type == e1000_phy_m88) &&
 750	    (phy->revision < E1000_REVISION_4) &&
 751	    (phy->id != BME1000_E_PHY_ID_R2)) {
 752		/* Force TX_CLK in the Extended PHY Specific Control Register
 753		 * to 25MHz clock.
 754		 */
 755		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 756		if (ret_val)
 757			return ret_val;
 758
 759		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 760
 761		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 762			/* 82573L PHY - set the downshift counter to 5x. */
 763			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 764			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 765		} else {
 766			/* Configure Master and Slave downshift values */
 767			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 768				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 769			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 770				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 771		}
 772		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 773		if (ret_val)
 774			return ret_val;
 775	}
 776
 777	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 778		/* Set PHY page 0, register 29 to 0x0003 */
 779		ret_val = e1e_wphy(hw, 29, 0x0003);
 780		if (ret_val)
 781			return ret_val;
 782
 783		/* Set PHY page 0, register 30 to 0x0000 */
 784		ret_val = e1e_wphy(hw, 30, 0x0000);
 785		if (ret_val)
 786			return ret_val;
 787	}
 788
 789	/* Commit the changes. */
 790	if (phy->ops.commit) {
 791		ret_val = phy->ops.commit(hw);
 792		if (ret_val) {
 793			e_dbg("Error committing the PHY changes\n");
 794			return ret_val;
 795		}
 796	}
 797
 798	if (phy->type == e1000_phy_82578) {
 799		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 800		if (ret_val)
 801			return ret_val;
 802
 803		/* 82578 PHY - set the downshift count to 1x. */
 804		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 805		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 806		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 807		if (ret_val)
 808			return ret_val;
 809	}
 810
 811	return 0;
 812}
 813
 814/**
 815 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 816 *  @hw: pointer to the HW structure
 817 *
 818 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 819 *  igp PHY's.
 820 **/
 821s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 822{
 823	struct e1000_phy_info *phy = &hw->phy;
 824	s32 ret_val;
 825	u16 data;
 826
 827	ret_val = e1000_phy_hw_reset(hw);
 828	if (ret_val) {
 829		e_dbg("Error resetting the PHY.\n");
 830		return ret_val;
 831	}
 832
 833	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 834	 * timeout issues when LFS is enabled.
 835	 */
 836	msleep(100);
 837
 838	/* disable lplu d0 during driver init */
 839	if (hw->phy.ops.set_d0_lplu_state) {
 840		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 841		if (ret_val) {
 842			e_dbg("Error Disabling LPLU D0\n");
 843			return ret_val;
 844		}
 845	}
 846	/* Configure mdi-mdix settings */
 847	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 848	if (ret_val)
 849		return ret_val;
 850
 851	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 852
 853	switch (phy->mdix) {
 854	case 1:
 855		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 856		break;
 857	case 2:
 858		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 859		break;
 860	case 0:
 861	default:
 862		data |= IGP01E1000_PSCR_AUTO_MDIX;
 863		break;
 864	}
 865	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 866	if (ret_val)
 867		return ret_val;
 868
 869	/* set auto-master slave resolution settings */
 870	if (hw->mac.autoneg) {
 871		/* when autonegotiation advertisement is only 1000Mbps then we
 872		 * should disable SmartSpeed and enable Auto MasterSlave
 873		 * resolution as hardware default.
 874		 */
 875		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 876			/* Disable SmartSpeed */
 877			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 878					   &data);
 879			if (ret_val)
 880				return ret_val;
 881
 882			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 883			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 884					   data);
 885			if (ret_val)
 886				return ret_val;
 887
 888			/* Set auto Master/Slave resolution process */
 889			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 890			if (ret_val)
 891				return ret_val;
 892
 893			data &= ~CTL1000_ENABLE_MASTER;
 894			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 895			if (ret_val)
 896				return ret_val;
 897		}
 898
 899		ret_val = e1000_set_master_slave_mode(hw);
 900	}
 901
 902	return ret_val;
 903}
 904
 905/**
 906 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 907 *  @hw: pointer to the HW structure
 908 *
 909 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 910 *  register and if the PHY is already setup for auto-negotiation, then
 911 *  return successful.  Otherwise, setup advertisement and flow control to
 912 *  the appropriate values for the wanted auto-negotiation.
 913 **/
 914static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 915{
 916	struct e1000_phy_info *phy = &hw->phy;
 917	s32 ret_val;
 918	u16 mii_autoneg_adv_reg;
 919	u16 mii_1000t_ctrl_reg = 0;
 920
 921	phy->autoneg_advertised &= phy->autoneg_mask;
 922
 923	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 924	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 925	if (ret_val)
 926		return ret_val;
 927
 928	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 929		/* Read the MII 1000Base-T Control Register (Address 9). */
 930		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 931		if (ret_val)
 932			return ret_val;
 933	}
 934
 935	/* Need to parse both autoneg_advertised and fc and set up
 936	 * the appropriate PHY registers.  First we will parse for
 937	 * autoneg_advertised software override.  Since we can advertise
 938	 * a plethora of combinations, we need to check each bit
 939	 * individually.
 940	 */
 941
 942	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 943	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 944	 * the  1000Base-T Control Register (Address 9).
 945	 */
 946	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 947				 ADVERTISE_100HALF |
 948				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 949	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 950
 951	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 952
 953	/* Do we want to advertise 10 Mb Half Duplex? */
 954	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 955		e_dbg("Advertise 10mb Half duplex\n");
 956		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 957	}
 958
 959	/* Do we want to advertise 10 Mb Full Duplex? */
 960	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 961		e_dbg("Advertise 10mb Full duplex\n");
 962		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 963	}
 964
 965	/* Do we want to advertise 100 Mb Half Duplex? */
 966	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 967		e_dbg("Advertise 100mb Half duplex\n");
 968		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 969	}
 970
 971	/* Do we want to advertise 100 Mb Full Duplex? */
 972	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 973		e_dbg("Advertise 100mb Full duplex\n");
 974		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 975	}
 976
 977	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 978	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 979		e_dbg("Advertise 1000mb Half duplex request denied!\n");
 980
 981	/* Do we want to advertise 1000 Mb Full Duplex? */
 982	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 983		e_dbg("Advertise 1000mb Full duplex\n");
 984		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
 985	}
 986
 987	/* Check for a software override of the flow control settings, and
 988	 * setup the PHY advertisement registers accordingly.  If
 989	 * auto-negotiation is enabled, then software will have to set the
 990	 * "PAUSE" bits to the correct value in the Auto-Negotiation
 991	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
 992	 * negotiation.
 993	 *
 994	 * The possible values of the "fc" parameter are:
 995	 *      0:  Flow control is completely disabled
 996	 *      1:  Rx flow control is enabled (we can receive pause frames
 997	 *          but not send pause frames).
 998	 *      2:  Tx flow control is enabled (we can send pause frames
 999	 *          but we do not support receiving pause frames).
1000	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1001	 *  other:  No software override.  The flow control configuration
1002	 *          in the EEPROM is used.
1003	 */
1004	switch (hw->fc.current_mode) {
1005	case e1000_fc_none:
1006		/* Flow control (Rx & Tx) is completely disabled by a
1007		 * software over-ride.
1008		 */
1009		mii_autoneg_adv_reg &=
1010		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1011		phy->autoneg_advertised &=
1012		    ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1013		break;
1014	case e1000_fc_rx_pause:
1015		/* Rx Flow control is enabled, and Tx Flow control is
1016		 * disabled, by a software over-ride.
1017		 *
1018		 * Since there really isn't a way to advertise that we are
1019		 * capable of Rx Pause ONLY, we will advertise that we
1020		 * support both symmetric and asymmetric Rx PAUSE.  Later
1021		 * (in e1000e_config_fc_after_link_up) we will disable the
1022		 * hw's ability to send PAUSE frames.
1023		 */
1024		mii_autoneg_adv_reg |=
1025		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1026		phy->autoneg_advertised |=
1027		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1028		break;
1029	case e1000_fc_tx_pause:
1030		/* Tx Flow control is enabled, and Rx Flow control is
1031		 * disabled, by a software over-ride.
1032		 */
1033		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1034		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1035		phy->autoneg_advertised |= ADVERTISED_Asym_Pause;
1036		phy->autoneg_advertised &= ~ADVERTISED_Pause;
1037		break;
1038	case e1000_fc_full:
1039		/* Flow control (both Rx and Tx) is enabled by a software
1040		 * over-ride.
1041		 */
1042		mii_autoneg_adv_reg |=
1043		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1044		phy->autoneg_advertised |=
1045		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1046		break;
1047	default:
1048		e_dbg("Flow control param set incorrectly\n");
1049		return -E1000_ERR_CONFIG;
1050	}
1051
1052	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1053	if (ret_val)
1054		return ret_val;
1055
1056	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1057
1058	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1059		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1060
1061	return ret_val;
1062}
1063
1064/**
1065 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1066 *  @hw: pointer to the HW structure
1067 *
1068 *  Performs initial bounds checking on autoneg advertisement parameter, then
1069 *  configure to advertise the full capability.  Setup the PHY to autoneg
1070 *  and restart the negotiation process between the link partner.  If
1071 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1072 **/
1073static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1074{
1075	struct e1000_phy_info *phy = &hw->phy;
1076	s32 ret_val;
1077	u16 phy_ctrl;
1078
1079	/* Perform some bounds checking on the autoneg advertisement
1080	 * parameter.
1081	 */
1082	phy->autoneg_advertised &= phy->autoneg_mask;
1083
1084	/* If autoneg_advertised is zero, we assume it was not defaulted
1085	 * by the calling code so we set to advertise full capability.
1086	 */
1087	if (!phy->autoneg_advertised)
1088		phy->autoneg_advertised = phy->autoneg_mask;
1089
1090	e_dbg("Reconfiguring auto-neg advertisement params\n");
1091	ret_val = e1000_phy_setup_autoneg(hw);
1092	if (ret_val) {
1093		e_dbg("Error Setting up Auto-Negotiation\n");
1094		return ret_val;
1095	}
1096	e_dbg("Restarting Auto-Neg\n");
1097
1098	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1099	 * the Auto Neg Restart bit in the PHY control register.
1100	 */
1101	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1102	if (ret_val)
1103		return ret_val;
1104
1105	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1106	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1107	if (ret_val)
1108		return ret_val;
1109
1110	/* Does the user want to wait for Auto-Neg to complete here, or
1111	 * check at a later time (for example, callback routine).
1112	 */
1113	if (phy->autoneg_wait_to_complete) {
1114		ret_val = e1000_wait_autoneg(hw);
1115		if (ret_val) {
1116			e_dbg("Error while waiting for autoneg to complete\n");
1117			return ret_val;
1118		}
1119	}
1120
1121	hw->mac.get_link_status = true;
1122
1123	return ret_val;
1124}
1125
1126/**
1127 *  e1000e_setup_copper_link - Configure copper link settings
1128 *  @hw: pointer to the HW structure
1129 *
1130 *  Calls the appropriate function to configure the link for auto-neg or forced
1131 *  speed and duplex.  Then we check for link, once link is established calls
1132 *  to configure collision distance and flow control are called.  If link is
1133 *  not established, we return -E1000_ERR_PHY (-2).
1134 **/
1135s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1136{
1137	s32 ret_val;
1138	bool link;
1139
1140	if (hw->mac.autoneg) {
1141		/* Setup autoneg and flow control advertisement and perform
1142		 * autonegotiation.
1143		 */
1144		ret_val = e1000_copper_link_autoneg(hw);
1145		if (ret_val)
1146			return ret_val;
1147	} else {
1148		/* PHY will be set to 10H, 10F, 100H or 100F
1149		 * depending on user settings.
1150		 */
1151		e_dbg("Forcing Speed and Duplex\n");
1152		ret_val = hw->phy.ops.force_speed_duplex(hw);
1153		if (ret_val) {
1154			e_dbg("Error Forcing Speed and Duplex\n");
1155			return ret_val;
1156		}
1157	}
1158
1159	/* Check link status. Wait up to 100 microseconds for link to become
1160	 * valid.
1161	 */
1162	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1163					      &link);
1164	if (ret_val)
1165		return ret_val;
1166
1167	if (link) {
1168		e_dbg("Valid link established!!!\n");
1169		hw->mac.ops.config_collision_dist(hw);
1170		ret_val = e1000e_config_fc_after_link_up(hw);
1171	} else {
1172		e_dbg("Unable to establish link!!!\n");
1173	}
1174
1175	return ret_val;
1176}
1177
1178/**
1179 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1180 *  @hw: pointer to the HW structure
1181 *
1182 *  Calls the PHY setup function to force speed and duplex.  Clears the
1183 *  auto-crossover to force MDI manually.  Waits for link and returns
1184 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1185 **/
1186s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1187{
1188	struct e1000_phy_info *phy = &hw->phy;
1189	s32 ret_val;
1190	u16 phy_data;
1191	bool link;
1192
1193	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1194	if (ret_val)
1195		return ret_val;
1196
1197	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1198
1199	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1200	if (ret_val)
1201		return ret_val;
1202
1203	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1204	 * forced whenever speed and duplex are forced.
1205	 */
1206	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1207	if (ret_val)
1208		return ret_val;
1209
1210	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1211	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1212
1213	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1214	if (ret_val)
1215		return ret_val;
1216
1217	e_dbg("IGP PSCR: %X\n", phy_data);
1218
1219	udelay(1);
1220
1221	if (phy->autoneg_wait_to_complete) {
1222		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1223
1224		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1225						      100000, &link);
1226		if (ret_val)
1227			return ret_val;
1228
1229		if (!link)
1230			e_dbg("Link taking longer than expected.\n");
1231
1232		/* Try once more */
1233		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1234						      100000, &link);
1235	}
1236
1237	return ret_val;
1238}
1239
1240/**
1241 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1242 *  @hw: pointer to the HW structure
1243 *
1244 *  Calls the PHY setup function to force speed and duplex.  Clears the
1245 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1246 *  changes.  If time expires while waiting for link up, we reset the DSP.
1247 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1248 *  successful completion, else return corresponding error code.
1249 **/
1250s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1251{
1252	struct e1000_phy_info *phy = &hw->phy;
1253	s32 ret_val;
1254	u16 phy_data;
1255	bool link;
1256
1257	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1258	 * forced whenever speed and duplex are forced.
1259	 */
1260	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1265	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1266	if (ret_val)
1267		return ret_val;
1268
1269	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1270
1271	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1272	if (ret_val)
1273		return ret_val;
1274
1275	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1276
1277	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1278	if (ret_val)
1279		return ret_val;
1280
1281	/* Reset the phy to commit changes. */
1282	if (hw->phy.ops.commit) {
1283		ret_val = hw->phy.ops.commit(hw);
1284		if (ret_val)
1285			return ret_val;
1286	}
1287
1288	if (phy->autoneg_wait_to_complete) {
1289		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1290
1291		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1292						      100000, &link);
1293		if (ret_val)
1294			return ret_val;
1295
1296		if (!link) {
1297			if (hw->phy.type != e1000_phy_m88) {
1298				e_dbg("Link taking longer than expected.\n");
1299			} else {
1300				/* We didn't get link.
1301				 * Reset the DSP and cross our fingers.
1302				 */
1303				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1304						   0x001d);
1305				if (ret_val)
1306					return ret_val;
1307				ret_val = e1000e_phy_reset_dsp(hw);
1308				if (ret_val)
1309					return ret_val;
1310			}
1311		}
1312
1313		/* Try once more */
1314		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1315						      100000, &link);
1316		if (ret_val)
1317			return ret_val;
1318	}
1319
1320	if (hw->phy.type != e1000_phy_m88)
1321		return 0;
1322
1323	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1324	if (ret_val)
1325		return ret_val;
1326
1327	/* Resetting the phy means we need to re-force TX_CLK in the
1328	 * Extended PHY Specific Control Register to 25MHz clock from
1329	 * the reset value of 2.5MHz.
1330	 */
1331	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1332	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1333	if (ret_val)
1334		return ret_val;
1335
1336	/* In addition, we must re-enable CRS on Tx for both half and full
1337	 * duplex.
1338	 */
1339	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1340	if (ret_val)
1341		return ret_val;
1342
1343	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1344	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1345
1346	return ret_val;
1347}
1348
1349/**
1350 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1351 *  @hw: pointer to the HW structure
1352 *
1353 *  Forces the speed and duplex settings of the PHY.
1354 *  This is a function pointer entry point only called by
1355 *  PHY setup routines.
1356 **/
1357s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1358{
1359	struct e1000_phy_info *phy = &hw->phy;
1360	s32 ret_val;
1361	u16 data;
1362	bool link;
1363
1364	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1365	if (ret_val)
1366		return ret_val;
1367
1368	e1000e_phy_force_speed_duplex_setup(hw, &data);
1369
1370	ret_val = e1e_wphy(hw, MII_BMCR, data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	/* Disable MDI-X support for 10/100 */
1375	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1376	if (ret_val)
1377		return ret_val;
1378
1379	data &= ~IFE_PMC_AUTO_MDIX;
1380	data &= ~IFE_PMC_FORCE_MDIX;
1381
1382	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1383	if (ret_val)
1384		return ret_val;
1385
1386	e_dbg("IFE PMC: %X\n", data);
1387
1388	udelay(1);
1389
1390	if (phy->autoneg_wait_to_complete) {
1391		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1392
1393		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1394						      100000, &link);
1395		if (ret_val)
1396			return ret_val;
1397
1398		if (!link)
1399			e_dbg("Link taking longer than expected.\n");
1400
1401		/* Try once more */
1402		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1403						      100000, &link);
1404		if (ret_val)
1405			return ret_val;
1406	}
1407
1408	return 0;
1409}
1410
1411/**
1412 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1413 *  @hw: pointer to the HW structure
1414 *  @phy_ctrl: pointer to current value of MII_BMCR
1415 *
1416 *  Forces speed and duplex on the PHY by doing the following: disable flow
1417 *  control, force speed/duplex on the MAC, disable auto speed detection,
1418 *  disable auto-negotiation, configure duplex, configure speed, configure
1419 *  the collision distance, write configuration to CTRL register.  The
1420 *  caller must write to the MII_BMCR register for these settings to
1421 *  take affect.
1422 **/
1423void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1424{
1425	struct e1000_mac_info *mac = &hw->mac;
1426	u32 ctrl;
1427
1428	/* Turn off flow control when forcing speed/duplex */
1429	hw->fc.current_mode = e1000_fc_none;
1430
1431	/* Force speed/duplex on the mac */
1432	ctrl = er32(CTRL);
1433	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1434	ctrl &= ~E1000_CTRL_SPD_SEL;
1435
1436	/* Disable Auto Speed Detection */
1437	ctrl &= ~E1000_CTRL_ASDE;
1438
1439	/* Disable autoneg on the phy */
1440	*phy_ctrl &= ~BMCR_ANENABLE;
1441
1442	/* Forcing Full or Half Duplex? */
1443	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1444		ctrl &= ~E1000_CTRL_FD;
1445		*phy_ctrl &= ~BMCR_FULLDPLX;
1446		e_dbg("Half Duplex\n");
1447	} else {
1448		ctrl |= E1000_CTRL_FD;
1449		*phy_ctrl |= BMCR_FULLDPLX;
1450		e_dbg("Full Duplex\n");
1451	}
1452
1453	/* Forcing 10mb or 100mb? */
1454	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1455		ctrl |= E1000_CTRL_SPD_100;
1456		*phy_ctrl |= BMCR_SPEED100;
1457		*phy_ctrl &= ~BMCR_SPEED1000;
1458		e_dbg("Forcing 100mb\n");
1459	} else {
1460		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1461		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1462		e_dbg("Forcing 10mb\n");
1463	}
1464
1465	hw->mac.ops.config_collision_dist(hw);
1466
1467	ew32(CTRL, ctrl);
1468}
1469
1470/**
1471 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1472 *  @hw: pointer to the HW structure
1473 *  @active: boolean used to enable/disable lplu
1474 *
1475 *  Success returns 0, Failure returns 1
1476 *
1477 *  The low power link up (lplu) state is set to the power management level D3
1478 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1479 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1480 *  is used during Dx states where the power conservation is most important.
1481 *  During driver activity, SmartSpeed should be enabled so performance is
1482 *  maintained.
1483 **/
1484s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1485{
1486	struct e1000_phy_info *phy = &hw->phy;
1487	s32 ret_val;
1488	u16 data;
1489
1490	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1491	if (ret_val)
1492		return ret_val;
1493
1494	if (!active) {
1495		data &= ~IGP02E1000_PM_D3_LPLU;
1496		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1497		if (ret_val)
1498			return ret_val;
1499		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1500		 * during Dx states where the power conservation is most
1501		 * important.  During driver activity we should enable
1502		 * SmartSpeed, so performance is maintained.
1503		 */
1504		if (phy->smart_speed == e1000_smart_speed_on) {
1505			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1506					   &data);
1507			if (ret_val)
1508				return ret_val;
1509
1510			data |= IGP01E1000_PSCFR_SMART_SPEED;
1511			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1512					   data);
1513			if (ret_val)
1514				return ret_val;
1515		} else if (phy->smart_speed == e1000_smart_speed_off) {
1516			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1517					   &data);
1518			if (ret_val)
1519				return ret_val;
1520
1521			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1522			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1523					   data);
1524			if (ret_val)
1525				return ret_val;
1526		}
1527	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1528		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1529		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1530		data |= IGP02E1000_PM_D3_LPLU;
1531		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1532		if (ret_val)
1533			return ret_val;
1534
1535		/* When LPLU is enabled, we should disable SmartSpeed */
1536		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1537		if (ret_val)
1538			return ret_val;
1539
1540		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1541		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1542	}
1543
1544	return ret_val;
1545}
1546
1547/**
1548 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1549 *  @hw: pointer to the HW structure
1550 *
1551 *  Success returns 0, Failure returns 1
1552 *
1553 *  A downshift is detected by querying the PHY link health.
1554 **/
1555s32 e1000e_check_downshift(struct e1000_hw *hw)
1556{
1557	struct e1000_phy_info *phy = &hw->phy;
1558	s32 ret_val;
1559	u16 phy_data, offset, mask;
1560
1561	switch (phy->type) {
1562	case e1000_phy_m88:
1563	case e1000_phy_gg82563:
1564	case e1000_phy_bm:
1565	case e1000_phy_82578:
1566		offset = M88E1000_PHY_SPEC_STATUS;
1567		mask = M88E1000_PSSR_DOWNSHIFT;
1568		break;
1569	case e1000_phy_igp_2:
1570	case e1000_phy_igp_3:
1571		offset = IGP01E1000_PHY_LINK_HEALTH;
1572		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1573		break;
1574	default:
1575		/* speed downshift not supported */
1576		phy->speed_downgraded = false;
1577		return 0;
1578	}
1579
1580	ret_val = e1e_rphy(hw, offset, &phy_data);
1581
1582	if (!ret_val)
1583		phy->speed_downgraded = !!(phy_data & mask);
1584
1585	return ret_val;
1586}
1587
1588/**
1589 *  e1000_check_polarity_m88 - Checks the polarity.
1590 *  @hw: pointer to the HW structure
1591 *
1592 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1593 *
1594 *  Polarity is determined based on the PHY specific status register.
1595 **/
1596s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1597{
1598	struct e1000_phy_info *phy = &hw->phy;
1599	s32 ret_val;
1600	u16 data;
1601
1602	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1603
1604	if (!ret_val)
1605		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1606				       ? e1000_rev_polarity_reversed
1607				       : e1000_rev_polarity_normal);
1608
1609	return ret_val;
1610}
1611
1612/**
1613 *  e1000_check_polarity_igp - Checks the polarity.
1614 *  @hw: pointer to the HW structure
1615 *
1616 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1617 *
1618 *  Polarity is determined based on the PHY port status register, and the
1619 *  current speed (since there is no polarity at 100Mbps).
1620 **/
1621s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1622{
1623	struct e1000_phy_info *phy = &hw->phy;
1624	s32 ret_val;
1625	u16 data, offset, mask;
1626
1627	/* Polarity is determined based on the speed of
1628	 * our connection.
1629	 */
1630	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1631	if (ret_val)
1632		return ret_val;
1633
1634	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1635	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1636		offset = IGP01E1000_PHY_PCS_INIT_REG;
1637		mask = IGP01E1000_PHY_POLARITY_MASK;
1638	} else {
1639		/* This really only applies to 10Mbps since
1640		 * there is no polarity for 100Mbps (always 0).
1641		 */
1642		offset = IGP01E1000_PHY_PORT_STATUS;
1643		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1644	}
1645
1646	ret_val = e1e_rphy(hw, offset, &data);
1647
1648	if (!ret_val)
1649		phy->cable_polarity = ((data & mask)
1650				       ? e1000_rev_polarity_reversed
1651				       : e1000_rev_polarity_normal);
1652
1653	return ret_val;
1654}
1655
1656/**
1657 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1658 *  @hw: pointer to the HW structure
1659 *
1660 *  Polarity is determined on the polarity reversal feature being enabled.
1661 **/
1662s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1663{
1664	struct e1000_phy_info *phy = &hw->phy;
1665	s32 ret_val;
1666	u16 phy_data, offset, mask;
1667
1668	/* Polarity is determined based on the reversal feature being enabled.
1669	 */
1670	if (phy->polarity_correction) {
1671		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1672		mask = IFE_PESC_POLARITY_REVERSED;
1673	} else {
1674		offset = IFE_PHY_SPECIAL_CONTROL;
1675		mask = IFE_PSC_FORCE_POLARITY;
1676	}
1677
1678	ret_val = e1e_rphy(hw, offset, &phy_data);
1679
1680	if (!ret_val)
1681		phy->cable_polarity = ((phy_data & mask)
1682				       ? e1000_rev_polarity_reversed
1683				       : e1000_rev_polarity_normal);
1684
1685	return ret_val;
1686}
1687
1688/**
1689 *  e1000_wait_autoneg - Wait for auto-neg completion
1690 *  @hw: pointer to the HW structure
1691 *
1692 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1693 *  limit to expire, which ever happens first.
1694 **/
1695static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1696{
1697	s32 ret_val = 0;
1698	u16 i, phy_status;
1699
1700	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1701	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1702		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1703		if (ret_val)
1704			break;
1705		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1706		if (ret_val)
1707			break;
1708		if (phy_status & BMSR_ANEGCOMPLETE)
1709			break;
1710		msleep(100);
1711	}
1712
1713	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1714	 * has completed.
1715	 */
1716	return ret_val;
1717}
1718
1719/**
1720 *  e1000e_phy_has_link_generic - Polls PHY for link
1721 *  @hw: pointer to the HW structure
1722 *  @iterations: number of times to poll for link
1723 *  @usec_interval: delay between polling attempts
1724 *  @success: pointer to whether polling was successful or not
1725 *
1726 *  Polls the PHY status register for link, 'iterations' number of times.
1727 **/
1728s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1729				u32 usec_interval, bool *success)
1730{
1731	s32 ret_val = 0;
1732	u16 i, phy_status;
1733
1734	*success = false;
1735	for (i = 0; i < iterations; i++) {
1736		/* Some PHYs require the MII_BMSR register to be read
1737		 * twice due to the link bit being sticky.  No harm doing
1738		 * it across the board.
1739		 */
1740		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1741		if (ret_val) {
1742			/* If the first read fails, another entity may have
1743			 * ownership of the resources, wait and try again to
1744			 * see if they have relinquished the resources yet.
1745			 */
1746			if (usec_interval >= 1000)
1747				msleep(usec_interval / 1000);
1748			else
1749				udelay(usec_interval);
1750		}
1751		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1752		if (ret_val)
1753			break;
1754		if (phy_status & BMSR_LSTATUS) {
1755			*success = true;
1756			break;
1757		}
1758		if (usec_interval >= 1000)
1759			msleep(usec_interval / 1000);
1760		else
1761			udelay(usec_interval);
1762	}
1763
1764	return ret_val;
1765}
1766
1767/**
1768 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1769 *  @hw: pointer to the HW structure
1770 *
1771 *  Reads the PHY specific status register to retrieve the cable length
1772 *  information.  The cable length is determined by averaging the minimum and
1773 *  maximum values to get the "average" cable length.  The m88 PHY has four
1774 *  possible cable length values, which are:
1775 *	Register Value		Cable Length
1776 *	0			< 50 meters
1777 *	1			50 - 80 meters
1778 *	2			80 - 110 meters
1779 *	3			110 - 140 meters
1780 *	4			> 140 meters
1781 **/
1782s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1783{
1784	struct e1000_phy_info *phy = &hw->phy;
1785	s32 ret_val;
1786	u16 phy_data, index;
1787
1788	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1789	if (ret_val)
1790		return ret_val;
1791
1792	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
 
1793
1794	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1795		return -E1000_ERR_PHY;
1796
1797	phy->min_cable_length = e1000_m88_cable_length_table[index];
1798	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1799
1800	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1801
1802	return 0;
1803}
1804
1805/**
1806 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1807 *  @hw: pointer to the HW structure
1808 *
1809 *  The automatic gain control (agc) normalizes the amplitude of the
1810 *  received signal, adjusting for the attenuation produced by the
1811 *  cable.  By reading the AGC registers, which represent the
1812 *  combination of coarse and fine gain value, the value can be put
1813 *  into a lookup table to obtain the approximate cable length
1814 *  for each channel.
1815 **/
1816s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1817{
1818	struct e1000_phy_info *phy = &hw->phy;
1819	s32 ret_val;
1820	u16 phy_data, i, agc_value = 0;
1821	u16 cur_agc_index, max_agc_index = 0;
1822	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1823	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1824		IGP02E1000_PHY_AGC_A,
1825		IGP02E1000_PHY_AGC_B,
1826		IGP02E1000_PHY_AGC_C,
1827		IGP02E1000_PHY_AGC_D
1828	};
1829
1830	/* Read the AGC registers for all channels */
1831	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1832		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1833		if (ret_val)
1834			return ret_val;
1835
1836		/* Getting bits 15:9, which represent the combination of
1837		 * coarse and fine gain values.  The result is a number
1838		 * that can be put into the lookup table to obtain the
1839		 * approximate cable length.
1840		 */
1841		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1842				 IGP02E1000_AGC_LENGTH_MASK);
1843
1844		/* Array index bound check. */
1845		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1846		    (cur_agc_index == 0))
1847			return -E1000_ERR_PHY;
1848
1849		/* Remove min & max AGC values from calculation. */
1850		if (e1000_igp_2_cable_length_table[min_agc_index] >
1851		    e1000_igp_2_cable_length_table[cur_agc_index])
1852			min_agc_index = cur_agc_index;
1853		if (e1000_igp_2_cable_length_table[max_agc_index] <
1854		    e1000_igp_2_cable_length_table[cur_agc_index])
1855			max_agc_index = cur_agc_index;
1856
1857		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1858	}
1859
1860	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1861		      e1000_igp_2_cable_length_table[max_agc_index]);
1862	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1863
1864	/* Calculate cable length with the error range of +/- 10 meters. */
1865	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1866				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1867	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1868
1869	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1870
1871	return 0;
1872}
1873
1874/**
1875 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1876 *  @hw: pointer to the HW structure
1877 *
1878 *  Valid for only copper links.  Read the PHY status register (sticky read)
1879 *  to verify that link is up.  Read the PHY special control register to
1880 *  determine the polarity and 10base-T extended distance.  Read the PHY
1881 *  special status register to determine MDI/MDIx and current speed.  If
1882 *  speed is 1000, then determine cable length, local and remote receiver.
1883 **/
1884s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1885{
1886	struct e1000_phy_info *phy = &hw->phy;
1887	s32 ret_val;
1888	u16 phy_data;
1889	bool link;
1890
1891	if (phy->media_type != e1000_media_type_copper) {
1892		e_dbg("Phy info is only valid for copper media\n");
1893		return -E1000_ERR_CONFIG;
1894	}
1895
1896	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1897	if (ret_val)
1898		return ret_val;
1899
1900	if (!link) {
1901		e_dbg("Phy info is only valid if link is up\n");
1902		return -E1000_ERR_CONFIG;
1903	}
1904
1905	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1906	if (ret_val)
1907		return ret_val;
1908
1909	phy->polarity_correction = !!(phy_data &
1910				      M88E1000_PSCR_POLARITY_REVERSAL);
1911
1912	ret_val = e1000_check_polarity_m88(hw);
1913	if (ret_val)
1914		return ret_val;
1915
1916	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1917	if (ret_val)
1918		return ret_val;
1919
1920	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1921
1922	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1923		ret_val = hw->phy.ops.get_cable_length(hw);
1924		if (ret_val)
1925			return ret_val;
1926
1927		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1928		if (ret_val)
1929			return ret_val;
1930
1931		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1932		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1933
1934		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1935		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1936	} else {
1937		/* Set values to "undefined" */
1938		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1939		phy->local_rx = e1000_1000t_rx_status_undefined;
1940		phy->remote_rx = e1000_1000t_rx_status_undefined;
1941	}
1942
1943	return ret_val;
1944}
1945
1946/**
1947 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1948 *  @hw: pointer to the HW structure
1949 *
1950 *  Read PHY status to determine if link is up.  If link is up, then
1951 *  set/determine 10base-T extended distance and polarity correction.  Read
1952 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1953 *  determine on the cable length, local and remote receiver.
1954 **/
1955s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1956{
1957	struct e1000_phy_info *phy = &hw->phy;
1958	s32 ret_val;
1959	u16 data;
1960	bool link;
1961
1962	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1963	if (ret_val)
1964		return ret_val;
1965
1966	if (!link) {
1967		e_dbg("Phy info is only valid if link is up\n");
1968		return -E1000_ERR_CONFIG;
1969	}
1970
1971	phy->polarity_correction = true;
1972
1973	ret_val = e1000_check_polarity_igp(hw);
1974	if (ret_val)
1975		return ret_val;
1976
1977	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1978	if (ret_val)
1979		return ret_val;
1980
1981	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1982
1983	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1984	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1985		ret_val = phy->ops.get_cable_length(hw);
1986		if (ret_val)
1987			return ret_val;
1988
1989		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
1990		if (ret_val)
1991			return ret_val;
1992
1993		phy->local_rx = (data & LPA_1000LOCALRXOK)
1994		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1995
1996		phy->remote_rx = (data & LPA_1000REMRXOK)
1997		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1998	} else {
1999		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2000		phy->local_rx = e1000_1000t_rx_status_undefined;
2001		phy->remote_rx = e1000_1000t_rx_status_undefined;
2002	}
2003
2004	return ret_val;
2005}
2006
2007/**
2008 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2009 *  @hw: pointer to the HW structure
2010 *
2011 *  Populates "phy" structure with various feature states.
2012 **/
2013s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2014{
2015	struct e1000_phy_info *phy = &hw->phy;
2016	s32 ret_val;
2017	u16 data;
2018	bool link;
2019
2020	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2021	if (ret_val)
2022		return ret_val;
2023
2024	if (!link) {
2025		e_dbg("Phy info is only valid if link is up\n");
2026		return -E1000_ERR_CONFIG;
2027	}
2028
2029	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2030	if (ret_val)
2031		return ret_val;
2032	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2033
2034	if (phy->polarity_correction) {
2035		ret_val = e1000_check_polarity_ife(hw);
2036		if (ret_val)
2037			return ret_val;
2038	} else {
2039		/* Polarity is forced */
2040		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2041				       ? e1000_rev_polarity_reversed
2042				       : e1000_rev_polarity_normal);
2043	}
2044
2045	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2046	if (ret_val)
2047		return ret_val;
2048
2049	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2050
2051	/* The following parameters are undefined for 10/100 operation. */
2052	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2053	phy->local_rx = e1000_1000t_rx_status_undefined;
2054	phy->remote_rx = e1000_1000t_rx_status_undefined;
2055
2056	return 0;
2057}
2058
2059/**
2060 *  e1000e_phy_sw_reset - PHY software reset
2061 *  @hw: pointer to the HW structure
2062 *
2063 *  Does a software reset of the PHY by reading the PHY control register and
2064 *  setting/write the control register reset bit to the PHY.
2065 **/
2066s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2067{
2068	s32 ret_val;
2069	u16 phy_ctrl;
2070
2071	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2072	if (ret_val)
2073		return ret_val;
2074
2075	phy_ctrl |= BMCR_RESET;
2076	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2077	if (ret_val)
2078		return ret_val;
2079
2080	udelay(1);
2081
2082	return ret_val;
2083}
2084
2085/**
2086 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2087 *  @hw: pointer to the HW structure
2088 *
2089 *  Verify the reset block is not blocking us from resetting.  Acquire
2090 *  semaphore (if necessary) and read/set/write the device control reset
2091 *  bit in the PHY.  Wait the appropriate delay time for the device to
2092 *  reset and release the semaphore (if necessary).
2093 **/
2094s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2095{
2096	struct e1000_phy_info *phy = &hw->phy;
2097	s32 ret_val;
2098	u32 ctrl;
2099
2100	if (phy->ops.check_reset_block) {
2101		ret_val = phy->ops.check_reset_block(hw);
2102		if (ret_val)
2103			return 0;
2104	}
2105
2106	ret_val = phy->ops.acquire(hw);
2107	if (ret_val)
2108		return ret_val;
2109
2110	ctrl = er32(CTRL);
2111	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2112	e1e_flush();
2113
2114	udelay(phy->reset_delay_us);
2115
2116	ew32(CTRL, ctrl);
2117	e1e_flush();
2118
2119	usleep_range(150, 300);
2120
2121	phy->ops.release(hw);
2122
2123	return phy->ops.get_cfg_done(hw);
2124}
2125
2126/**
2127 *  e1000e_get_cfg_done_generic - Generic configuration done
2128 *  @hw: pointer to the HW structure
2129 *
2130 *  Generic function to wait 10 milli-seconds for configuration to complete
2131 *  and return success.
2132 **/
2133s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2134{
2135	mdelay(10);
2136
2137	return 0;
2138}
2139
2140/**
2141 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2142 *  @hw: pointer to the HW structure
2143 *
2144 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2145 **/
2146s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2147{
2148	e_dbg("Running IGP 3 PHY init script\n");
2149
2150	/* PHY init IGP 3 */
2151	/* Enable rise/fall, 10-mode work in class-A */
2152	e1e_wphy(hw, 0x2F5B, 0x9018);
2153	/* Remove all caps from Replica path filter */
2154	e1e_wphy(hw, 0x2F52, 0x0000);
2155	/* Bias trimming for ADC, AFE and Driver (Default) */
2156	e1e_wphy(hw, 0x2FB1, 0x8B24);
2157	/* Increase Hybrid poly bias */
2158	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2159	/* Add 4% to Tx amplitude in Gig mode */
2160	e1e_wphy(hw, 0x2010, 0x10B0);
2161	/* Disable trimming (TTT) */
2162	e1e_wphy(hw, 0x2011, 0x0000);
2163	/* Poly DC correction to 94.6% + 2% for all channels */
2164	e1e_wphy(hw, 0x20DD, 0x249A);
2165	/* ABS DC correction to 95.9% */
2166	e1e_wphy(hw, 0x20DE, 0x00D3);
2167	/* BG temp curve trim */
2168	e1e_wphy(hw, 0x28B4, 0x04CE);
2169	/* Increasing ADC OPAMP stage 1 currents to max */
2170	e1e_wphy(hw, 0x2F70, 0x29E4);
2171	/* Force 1000 ( required for enabling PHY regs configuration) */
2172	e1e_wphy(hw, 0x0000, 0x0140);
2173	/* Set upd_freq to 6 */
2174	e1e_wphy(hw, 0x1F30, 0x1606);
2175	/* Disable NPDFE */
2176	e1e_wphy(hw, 0x1F31, 0xB814);
2177	/* Disable adaptive fixed FFE (Default) */
2178	e1e_wphy(hw, 0x1F35, 0x002A);
2179	/* Enable FFE hysteresis */
2180	e1e_wphy(hw, 0x1F3E, 0x0067);
2181	/* Fixed FFE for short cable lengths */
2182	e1e_wphy(hw, 0x1F54, 0x0065);
2183	/* Fixed FFE for medium cable lengths */
2184	e1e_wphy(hw, 0x1F55, 0x002A);
2185	/* Fixed FFE for long cable lengths */
2186	e1e_wphy(hw, 0x1F56, 0x002A);
2187	/* Enable Adaptive Clip Threshold */
2188	e1e_wphy(hw, 0x1F72, 0x3FB0);
2189	/* AHT reset limit to 1 */
2190	e1e_wphy(hw, 0x1F76, 0xC0FF);
2191	/* Set AHT master delay to 127 msec */
2192	e1e_wphy(hw, 0x1F77, 0x1DEC);
2193	/* Set scan bits for AHT */
2194	e1e_wphy(hw, 0x1F78, 0xF9EF);
2195	/* Set AHT Preset bits */
2196	e1e_wphy(hw, 0x1F79, 0x0210);
2197	/* Change integ_factor of channel A to 3 */
2198	e1e_wphy(hw, 0x1895, 0x0003);
2199	/* Change prop_factor of channels BCD to 8 */
2200	e1e_wphy(hw, 0x1796, 0x0008);
2201	/* Change cg_icount + enable integbp for channels BCD */
2202	e1e_wphy(hw, 0x1798, 0xD008);
2203	/* Change cg_icount + enable integbp + change prop_factor_master
2204	 * to 8 for channel A
2205	 */
2206	e1e_wphy(hw, 0x1898, 0xD918);
2207	/* Disable AHT in Slave mode on channel A */
2208	e1e_wphy(hw, 0x187A, 0x0800);
2209	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2210	 * Enable SPD+B2B
2211	 */
2212	e1e_wphy(hw, 0x0019, 0x008D);
2213	/* Enable restart AN on an1000_dis change */
2214	e1e_wphy(hw, 0x001B, 0x2080);
2215	/* Enable wh_fifo read clock in 10/100 modes */
2216	e1e_wphy(hw, 0x0014, 0x0045);
2217	/* Restart AN, Speed selection is 1000 */
2218	e1e_wphy(hw, 0x0000, 0x1340);
2219
2220	return 0;
2221}
2222
2223/**
2224 *  e1000e_get_phy_type_from_id - Get PHY type from id
2225 *  @phy_id: phy_id read from the phy
2226 *
2227 *  Returns the phy type from the id.
2228 **/
2229enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2230{
2231	enum e1000_phy_type phy_type = e1000_phy_unknown;
2232
2233	switch (phy_id) {
2234	case M88E1000_I_PHY_ID:
2235	case M88E1000_E_PHY_ID:
2236	case M88E1111_I_PHY_ID:
2237	case M88E1011_I_PHY_ID:
2238		phy_type = e1000_phy_m88;
2239		break;
2240	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2241		phy_type = e1000_phy_igp_2;
2242		break;
2243	case GG82563_E_PHY_ID:
2244		phy_type = e1000_phy_gg82563;
2245		break;
2246	case IGP03E1000_E_PHY_ID:
2247		phy_type = e1000_phy_igp_3;
2248		break;
2249	case IFE_E_PHY_ID:
2250	case IFE_PLUS_E_PHY_ID:
2251	case IFE_C_E_PHY_ID:
2252		phy_type = e1000_phy_ife;
2253		break;
2254	case BME1000_E_PHY_ID:
2255	case BME1000_E_PHY_ID_R2:
2256		phy_type = e1000_phy_bm;
2257		break;
2258	case I82578_E_PHY_ID:
2259		phy_type = e1000_phy_82578;
2260		break;
2261	case I82577_E_PHY_ID:
2262		phy_type = e1000_phy_82577;
2263		break;
2264	case I82579_E_PHY_ID:
2265		phy_type = e1000_phy_82579;
2266		break;
2267	case I217_E_PHY_ID:
2268		phy_type = e1000_phy_i217;
2269		break;
2270	default:
2271		phy_type = e1000_phy_unknown;
2272		break;
2273	}
2274	return phy_type;
2275}
2276
2277/**
2278 *  e1000e_determine_phy_address - Determines PHY address.
2279 *  @hw: pointer to the HW structure
2280 *
2281 *  This uses a trial and error method to loop through possible PHY
2282 *  addresses. It tests each by reading the PHY ID registers and
2283 *  checking for a match.
2284 **/
2285s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2286{
2287	u32 phy_addr = 0;
2288	u32 i;
2289	enum e1000_phy_type phy_type = e1000_phy_unknown;
2290
2291	hw->phy.id = phy_type;
2292
2293	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2294		hw->phy.addr = phy_addr;
2295		i = 0;
2296
2297		do {
2298			e1000e_get_phy_id(hw);
2299			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2300
2301			/* If phy_type is valid, break - we found our
2302			 * PHY address
2303			 */
2304			if (phy_type != e1000_phy_unknown)
2305				return 0;
2306
2307			usleep_range(1000, 2000);
2308			i++;
2309		} while (i < 10);
2310	}
2311
2312	return -E1000_ERR_PHY_TYPE;
2313}
2314
2315/**
2316 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2317 *  @page: page to access
2318 *  @reg: register to check
2319 *
2320 *  Returns the phy address for the page requested.
2321 **/
2322static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2323{
2324	u32 phy_addr = 2;
2325
2326	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2327		phy_addr = 1;
2328
2329	return phy_addr;
2330}
2331
2332/**
2333 *  e1000e_write_phy_reg_bm - Write BM PHY register
2334 *  @hw: pointer to the HW structure
2335 *  @offset: register offset to write to
2336 *  @data: data to write at register offset
2337 *
2338 *  Acquires semaphore, if necessary, then writes the data to PHY register
2339 *  at the offset.  Release any acquired semaphores before exiting.
2340 **/
2341s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2342{
2343	s32 ret_val;
2344	u32 page = offset >> IGP_PAGE_SHIFT;
2345
2346	ret_val = hw->phy.ops.acquire(hw);
2347	if (ret_val)
2348		return ret_val;
2349
2350	/* Page 800 works differently than the rest so it has its own func */
2351	if (page == BM_WUC_PAGE) {
2352		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2353							 false, false);
2354		goto release;
2355	}
2356
2357	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2358
2359	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2360		u32 page_shift, page_select;
2361
2362		/* Page select is register 31 for phy address 1 and 22 for
2363		 * phy address 2 and 3. Page select is shifted only for
2364		 * phy address 1.
2365		 */
2366		if (hw->phy.addr == 1) {
2367			page_shift = IGP_PAGE_SHIFT;
2368			page_select = IGP01E1000_PHY_PAGE_SELECT;
2369		} else {
2370			page_shift = 0;
2371			page_select = BM_PHY_PAGE_SELECT;
2372		}
2373
2374		/* Page is shifted left, PHY expects (page x 32) */
2375		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2376						    (page << page_shift));
2377		if (ret_val)
2378			goto release;
2379	}
2380
2381	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2382					    data);
2383
2384release:
2385	hw->phy.ops.release(hw);
2386	return ret_val;
2387}
2388
2389/**
2390 *  e1000e_read_phy_reg_bm - Read BM PHY register
2391 *  @hw: pointer to the HW structure
2392 *  @offset: register offset to be read
2393 *  @data: pointer to the read data
2394 *
2395 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2396 *  and storing the retrieved information in data.  Release any acquired
2397 *  semaphores before exiting.
2398 **/
2399s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2400{
2401	s32 ret_val;
2402	u32 page = offset >> IGP_PAGE_SHIFT;
2403
2404	ret_val = hw->phy.ops.acquire(hw);
2405	if (ret_val)
2406		return ret_val;
2407
2408	/* Page 800 works differently than the rest so it has its own func */
2409	if (page == BM_WUC_PAGE) {
2410		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2411							 true, false);
2412		goto release;
2413	}
2414
2415	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2416
2417	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2418		u32 page_shift, page_select;
2419
2420		/* Page select is register 31 for phy address 1 and 22 for
2421		 * phy address 2 and 3. Page select is shifted only for
2422		 * phy address 1.
2423		 */
2424		if (hw->phy.addr == 1) {
2425			page_shift = IGP_PAGE_SHIFT;
2426			page_select = IGP01E1000_PHY_PAGE_SELECT;
2427		} else {
2428			page_shift = 0;
2429			page_select = BM_PHY_PAGE_SELECT;
2430		}
2431
2432		/* Page is shifted left, PHY expects (page x 32) */
2433		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2434						    (page << page_shift));
2435		if (ret_val)
2436			goto release;
2437	}
2438
2439	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2440					   data);
2441release:
2442	hw->phy.ops.release(hw);
2443	return ret_val;
2444}
2445
2446/**
2447 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2448 *  @hw: pointer to the HW structure
2449 *  @offset: register offset to be read
2450 *  @data: pointer to the read data
2451 *
2452 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2453 *  and storing the retrieved information in data.  Release any acquired
2454 *  semaphores before exiting.
2455 **/
2456s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2457{
2458	s32 ret_val;
2459	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2460
2461	ret_val = hw->phy.ops.acquire(hw);
2462	if (ret_val)
2463		return ret_val;
2464
2465	/* Page 800 works differently than the rest so it has its own func */
2466	if (page == BM_WUC_PAGE) {
2467		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2468							 true, false);
2469		goto release;
2470	}
2471
2472	hw->phy.addr = 1;
2473
2474	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2475		/* Page is shifted left, PHY expects (page x 32) */
2476		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2477						    page);
2478
2479		if (ret_val)
2480			goto release;
2481	}
2482
2483	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2484					   data);
2485release:
2486	hw->phy.ops.release(hw);
2487	return ret_val;
2488}
2489
2490/**
2491 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2492 *  @hw: pointer to the HW structure
2493 *  @offset: register offset to write to
2494 *  @data: data to write at register offset
2495 *
2496 *  Acquires semaphore, if necessary, then writes the data to PHY register
2497 *  at the offset.  Release any acquired semaphores before exiting.
2498 **/
2499s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2500{
2501	s32 ret_val;
2502	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2503
2504	ret_val = hw->phy.ops.acquire(hw);
2505	if (ret_val)
2506		return ret_val;
2507
2508	/* Page 800 works differently than the rest so it has its own func */
2509	if (page == BM_WUC_PAGE) {
2510		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2511							 false, false);
2512		goto release;
2513	}
2514
2515	hw->phy.addr = 1;
2516
2517	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2518		/* Page is shifted left, PHY expects (page x 32) */
2519		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2520						    page);
2521
2522		if (ret_val)
2523			goto release;
2524	}
2525
2526	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2527					    data);
2528
2529release:
2530	hw->phy.ops.release(hw);
2531	return ret_val;
2532}
2533
2534/**
2535 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2536 *  @hw: pointer to the HW structure
2537 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2538 *
2539 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2540 *  address to store contents of the BM_WUC_ENABLE_REG register.
2541 **/
2542s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2543{
2544	s32 ret_val;
2545	u16 temp;
2546
2547	/* All page select, port ctrl and wakeup registers use phy address 1 */
2548	hw->phy.addr = 1;
2549
2550	/* Select Port Control Registers page */
2551	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2552	if (ret_val) {
2553		e_dbg("Could not set Port Control page\n");
2554		return ret_val;
2555	}
2556
2557	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2558	if (ret_val) {
2559		e_dbg("Could not read PHY register %d.%d\n",
2560		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2561		return ret_val;
2562	}
2563
2564	/* Enable both PHY wakeup mode and Wakeup register page writes.
2565	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2566	 */
2567	temp = *phy_reg;
2568	temp |= BM_WUC_ENABLE_BIT;
2569	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2570
2571	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2572	if (ret_val) {
2573		e_dbg("Could not write PHY register %d.%d\n",
2574		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2575		return ret_val;
2576	}
2577
2578	/* Select Host Wakeup Registers page - caller now able to write
2579	 * registers on the Wakeup registers page
2580	 */
2581	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2582}
2583
2584/**
2585 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2586 *  @hw: pointer to the HW structure
2587 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2588 *
2589 *  Restore BM_WUC_ENABLE_REG to its original value.
2590 *
2591 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2592 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2593 *  caller.
2594 **/
2595s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2596{
2597	s32 ret_val;
2598
2599	/* Select Port Control Registers page */
2600	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2601	if (ret_val) {
2602		e_dbg("Could not set Port Control page\n");
2603		return ret_val;
2604	}
2605
2606	/* Restore 769.17 to its original value */
2607	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2608	if (ret_val)
2609		e_dbg("Could not restore PHY register %d.%d\n",
2610		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2611
2612	return ret_val;
2613}
2614
2615/**
2616 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2617 *  @hw: pointer to the HW structure
2618 *  @offset: register offset to be read or written
2619 *  @data: pointer to the data to read or write
2620 *  @read: determines if operation is read or write
2621 *  @page_set: BM_WUC_PAGE already set and access enabled
2622 *
2623 *  Read the PHY register at offset and store the retrieved information in
2624 *  data, or write data to PHY register at offset.  Note the procedure to
2625 *  access the PHY wakeup registers is different than reading the other PHY
2626 *  registers. It works as such:
2627 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2628 *  2) Set page to 800 for host (801 if we were manageability)
2629 *  3) Write the address using the address opcode (0x11)
2630 *  4) Read or write the data using the data opcode (0x12)
2631 *  5) Restore 769.17.2 to its original value
2632 *
2633 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2634 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2635 *
2636 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2637 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2638 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2639 **/
2640static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2641					  u16 *data, bool read, bool page_set)
2642{
2643	s32 ret_val;
2644	u16 reg = BM_PHY_REG_NUM(offset);
2645	u16 page = BM_PHY_REG_PAGE(offset);
2646	u16 phy_reg = 0;
2647
2648	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2649	if ((hw->mac.type == e1000_pchlan) &&
2650	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2651		e_dbg("Attempting to access page %d while gig enabled.\n",
2652		      page);
2653
2654	if (!page_set) {
2655		/* Enable access to PHY wakeup registers */
2656		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2657		if (ret_val) {
2658			e_dbg("Could not enable PHY wakeup reg access\n");
2659			return ret_val;
2660		}
2661	}
2662
2663	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2664
2665	/* Write the Wakeup register page offset value using opcode 0x11 */
2666	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2667	if (ret_val) {
2668		e_dbg("Could not write address opcode to page %d\n", page);
2669		return ret_val;
2670	}
2671
2672	if (read) {
2673		/* Read the Wakeup register page value using opcode 0x12 */
2674		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2675						   data);
2676	} else {
2677		/* Write the Wakeup register page value using opcode 0x12 */
2678		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2679						    *data);
2680	}
2681
2682	if (ret_val) {
2683		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2684		return ret_val;
2685	}
2686
2687	if (!page_set)
2688		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2689
2690	return ret_val;
2691}
2692
2693/**
2694 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2695 * @hw: pointer to the HW structure
2696 *
2697 * In the case of a PHY power down to save power, or to turn off link during a
2698 * driver unload, or wake on lan is not enabled, restore the link to previous
2699 * settings.
2700 **/
2701void e1000_power_up_phy_copper(struct e1000_hw *hw)
2702{
2703	u16 mii_reg = 0;
2704	int ret;
2705
2706	/* The PHY will retain its settings across a power down/up cycle */
2707	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2708	if (ret) {
2709		e_dbg("Error reading PHY register\n");
2710		return;
2711	}
2712	mii_reg &= ~BMCR_PDOWN;
2713	e1e_wphy(hw, MII_BMCR, mii_reg);
2714}
2715
2716/**
2717 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2718 * @hw: pointer to the HW structure
2719 *
2720 * In the case of a PHY power down to save power, or to turn off link during a
2721 * driver unload, or wake on lan is not enabled, restore the link to previous
2722 * settings.
2723 **/
2724void e1000_power_down_phy_copper(struct e1000_hw *hw)
2725{
2726	u16 mii_reg = 0;
2727	int ret;
2728
2729	/* The PHY will retain its settings across a power down/up cycle */
2730	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2731	if (ret) {
2732		e_dbg("Error reading PHY register\n");
2733		return;
2734	}
2735	mii_reg |= BMCR_PDOWN;
2736	e1e_wphy(hw, MII_BMCR, mii_reg);
2737	usleep_range(1000, 2000);
2738}
2739
2740/**
2741 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2742 *  @hw: pointer to the HW structure
2743 *  @offset: register offset to be read
2744 *  @data: pointer to the read data
2745 *  @locked: semaphore has already been acquired or not
2746 *  @page_set: BM_WUC_PAGE already set and access enabled
2747 *
2748 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2749 *  and stores the retrieved information in data.  Release any acquired
2750 *  semaphore before exiting.
2751 **/
2752static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2753				   bool locked, bool page_set)
2754{
2755	s32 ret_val;
2756	u16 page = BM_PHY_REG_PAGE(offset);
2757	u16 reg = BM_PHY_REG_NUM(offset);
2758	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2759
2760	if (!locked) {
2761		ret_val = hw->phy.ops.acquire(hw);
2762		if (ret_val)
2763			return ret_val;
2764	}
2765
2766	/* Page 800 works differently than the rest so it has its own func */
2767	if (page == BM_WUC_PAGE) {
2768		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2769							 true, page_set);
2770		goto out;
2771	}
2772
2773	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2774		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2775							 data, true);
2776		goto out;
2777	}
2778
2779	if (!page_set) {
2780		if (page == HV_INTC_FC_PAGE_START)
2781			page = 0;
2782
2783		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2784			/* Page is shifted left, PHY expects (page x 32) */
2785			ret_val = e1000_set_page_igp(hw,
2786						     (page << IGP_PAGE_SHIFT));
2787
2788			hw->phy.addr = phy_addr;
2789
2790			if (ret_val)
2791				goto out;
2792		}
2793	}
2794
2795	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2796	      page << IGP_PAGE_SHIFT, reg);
2797
2798	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2799out:
2800	if (!locked)
2801		hw->phy.ops.release(hw);
2802
2803	return ret_val;
2804}
2805
2806/**
2807 *  e1000_read_phy_reg_hv -  Read HV PHY register
2808 *  @hw: pointer to the HW structure
2809 *  @offset: register offset to be read
2810 *  @data: pointer to the read data
2811 *
2812 *  Acquires semaphore then reads the PHY register at offset and stores
2813 *  the retrieved information in data.  Release the acquired semaphore
2814 *  before exiting.
2815 **/
2816s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2817{
2818	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2819}
2820
2821/**
2822 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2823 *  @hw: pointer to the HW structure
2824 *  @offset: register offset to be read
2825 *  @data: pointer to the read data
2826 *
2827 *  Reads the PHY register at offset and stores the retrieved information
2828 *  in data.  Assumes semaphore already acquired.
2829 **/
2830s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2831{
2832	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2833}
2834
2835/**
2836 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2837 *  @hw: pointer to the HW structure
2838 *  @offset: register offset to write to
2839 *  @data: data to write at register offset
2840 *
2841 *  Reads the PHY register at offset and stores the retrieved information
2842 *  in data.  Assumes semaphore already acquired and page already set.
2843 **/
2844s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2845{
2846	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2847}
2848
2849/**
2850 *  __e1000_write_phy_reg_hv - Write HV PHY register
2851 *  @hw: pointer to the HW structure
2852 *  @offset: register offset to write to
2853 *  @data: data to write at register offset
2854 *  @locked: semaphore has already been acquired or not
2855 *  @page_set: BM_WUC_PAGE already set and access enabled
2856 *
2857 *  Acquires semaphore, if necessary, then writes the data to PHY register
2858 *  at the offset.  Release any acquired semaphores before exiting.
2859 **/
2860static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2861				    bool locked, bool page_set)
2862{
2863	s32 ret_val;
2864	u16 page = BM_PHY_REG_PAGE(offset);
2865	u16 reg = BM_PHY_REG_NUM(offset);
2866	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2867
2868	if (!locked) {
2869		ret_val = hw->phy.ops.acquire(hw);
2870		if (ret_val)
2871			return ret_val;
2872	}
2873
2874	/* Page 800 works differently than the rest so it has its own func */
2875	if (page == BM_WUC_PAGE) {
2876		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2877							 false, page_set);
2878		goto out;
2879	}
2880
2881	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2882		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2883							 &data, false);
2884		goto out;
2885	}
2886
2887	if (!page_set) {
2888		if (page == HV_INTC_FC_PAGE_START)
2889			page = 0;
2890
2891		/* Workaround MDIO accesses being disabled after entering IEEE
2892		 * Power Down (when bit 11 of the PHY Control register is set)
2893		 */
2894		if ((hw->phy.type == e1000_phy_82578) &&
2895		    (hw->phy.revision >= 1) &&
2896		    (hw->phy.addr == 2) &&
2897		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2898			u16 data2 = 0x7EFF;
2899
2900			ret_val = e1000_access_phy_debug_regs_hv(hw,
2901								 BIT(6) | 0x3,
2902								 &data2, false);
2903			if (ret_val)
2904				goto out;
2905		}
2906
2907		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2908			/* Page is shifted left, PHY expects (page x 32) */
2909			ret_val = e1000_set_page_igp(hw,
2910						     (page << IGP_PAGE_SHIFT));
2911
2912			hw->phy.addr = phy_addr;
2913
2914			if (ret_val)
2915				goto out;
2916		}
2917	}
2918
2919	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2920	      page << IGP_PAGE_SHIFT, reg);
2921
2922	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2923					    data);
2924
2925out:
2926	if (!locked)
2927		hw->phy.ops.release(hw);
2928
2929	return ret_val;
2930}
2931
2932/**
2933 *  e1000_write_phy_reg_hv - Write HV PHY register
2934 *  @hw: pointer to the HW structure
2935 *  @offset: register offset to write to
2936 *  @data: data to write at register offset
2937 *
2938 *  Acquires semaphore then writes the data to PHY register at the offset.
2939 *  Release the acquired semaphores before exiting.
2940 **/
2941s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2942{
2943	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2944}
2945
2946/**
2947 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2948 *  @hw: pointer to the HW structure
2949 *  @offset: register offset to write to
2950 *  @data: data to write at register offset
2951 *
2952 *  Writes the data to PHY register at the offset.  Assumes semaphore
2953 *  already acquired.
2954 **/
2955s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2956{
2957	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2958}
2959
2960/**
2961 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2962 *  @hw: pointer to the HW structure
2963 *  @offset: register offset to write to
2964 *  @data: data to write at register offset
2965 *
2966 *  Writes the data to PHY register at the offset.  Assumes semaphore
2967 *  already acquired and page already set.
2968 **/
2969s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2970{
2971	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2972}
2973
2974/**
2975 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2976 *  @page: page to be accessed
2977 **/
2978static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2979{
2980	u32 phy_addr = 2;
2981
2982	if (page >= HV_INTC_FC_PAGE_START)
2983		phy_addr = 1;
2984
2985	return phy_addr;
2986}
2987
2988/**
2989 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2990 *  @hw: pointer to the HW structure
2991 *  @offset: register offset to be read or written
2992 *  @data: pointer to the data to be read or written
2993 *  @read: determines if operation is read or write
2994 *
2995 *  Reads the PHY register at offset and stores the retrieved information
2996 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2997 *  to access these regs uses the address port and data port to read/write.
2998 *  These accesses done with PHY address 2 and without using pages.
2999 **/
3000static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3001					  u16 *data, bool read)
3002{
3003	s32 ret_val;
3004	u32 addr_reg;
3005	u32 data_reg;
3006
3007	/* This takes care of the difference with desktop vs mobile phy */
3008	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3009		    I82578_ADDR_REG : I82577_ADDR_REG);
3010	data_reg = addr_reg + 1;
3011
3012	/* All operations in this function are phy address 2 */
3013	hw->phy.addr = 2;
3014
3015	/* masking with 0x3F to remove the page from offset */
3016	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3017	if (ret_val) {
3018		e_dbg("Could not write the Address Offset port register\n");
3019		return ret_val;
3020	}
3021
3022	/* Read or write the data value next */
3023	if (read)
3024		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3025	else
3026		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3027
3028	if (ret_val)
3029		e_dbg("Could not access the Data port register\n");
3030
3031	return ret_val;
3032}
3033
3034/**
3035 *  e1000_link_stall_workaround_hv - Si workaround
3036 *  @hw: pointer to the HW structure
3037 *
3038 *  This function works around a Si bug where the link partner can get
3039 *  a link up indication before the PHY does.  If small packets are sent
3040 *  by the link partner they can be placed in the packet buffer without
3041 *  being properly accounted for by the PHY and will stall preventing
3042 *  further packets from being received.  The workaround is to clear the
3043 *  packet buffer after the PHY detects link up.
3044 **/
3045s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3046{
3047	s32 ret_val = 0;
3048	u16 data;
3049
3050	if (hw->phy.type != e1000_phy_82578)
3051		return 0;
3052
3053	/* Do not apply workaround if in PHY loopback bit 14 set */
3054	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3055	if (ret_val) {
3056		e_dbg("Error reading PHY register\n");
3057		return ret_val;
3058	}
3059	if (data & BMCR_LOOPBACK)
3060		return 0;
3061
3062	/* check if link is up and at 1Gbps */
3063	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3064	if (ret_val)
3065		return ret_val;
3066
3067	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3068		 BM_CS_STATUS_SPEED_MASK);
3069
3070	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3071		     BM_CS_STATUS_SPEED_1000))
3072		return 0;
3073
3074	msleep(200);
3075
3076	/* flush the packets in the fifo buffer */
3077	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3078			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3079			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3080	if (ret_val)
3081		return ret_val;
3082
3083	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3084}
3085
3086/**
3087 *  e1000_check_polarity_82577 - Checks the polarity.
3088 *  @hw: pointer to the HW structure
3089 *
3090 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3091 *
3092 *  Polarity is determined based on the PHY specific status register.
3093 **/
3094s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3095{
3096	struct e1000_phy_info *phy = &hw->phy;
3097	s32 ret_val;
3098	u16 data;
3099
3100	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3101
3102	if (!ret_val)
3103		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3104				       ? e1000_rev_polarity_reversed
3105				       : e1000_rev_polarity_normal);
3106
3107	return ret_val;
3108}
3109
3110/**
3111 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3112 *  @hw: pointer to the HW structure
3113 *
3114 *  Calls the PHY setup function to force speed and duplex.
3115 **/
3116s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3117{
3118	struct e1000_phy_info *phy = &hw->phy;
3119	s32 ret_val;
3120	u16 phy_data;
3121	bool link;
3122
3123	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3124	if (ret_val)
3125		return ret_val;
3126
3127	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3128
3129	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3130	if (ret_val)
3131		return ret_val;
3132
3133	udelay(1);
3134
3135	if (phy->autoneg_wait_to_complete) {
3136		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3137
3138		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3139						      100000, &link);
3140		if (ret_val)
3141			return ret_val;
3142
3143		if (!link)
3144			e_dbg("Link taking longer than expected.\n");
3145
3146		/* Try once more */
3147		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3148						      100000, &link);
3149	}
3150
3151	return ret_val;
3152}
3153
3154/**
3155 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3156 *  @hw: pointer to the HW structure
3157 *
3158 *  Read PHY status to determine if link is up.  If link is up, then
3159 *  set/determine 10base-T extended distance and polarity correction.  Read
3160 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3161 *  determine on the cable length, local and remote receiver.
3162 **/
3163s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3164{
3165	struct e1000_phy_info *phy = &hw->phy;
3166	s32 ret_val;
3167	u16 data;
3168	bool link;
3169
3170	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3171	if (ret_val)
3172		return ret_val;
3173
3174	if (!link) {
3175		e_dbg("Phy info is only valid if link is up\n");
3176		return -E1000_ERR_CONFIG;
3177	}
3178
3179	phy->polarity_correction = true;
3180
3181	ret_val = e1000_check_polarity_82577(hw);
3182	if (ret_val)
3183		return ret_val;
3184
3185	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3186	if (ret_val)
3187		return ret_val;
3188
3189	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3190
3191	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3192	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3193		ret_val = hw->phy.ops.get_cable_length(hw);
3194		if (ret_val)
3195			return ret_val;
3196
3197		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3198		if (ret_val)
3199			return ret_val;
3200
3201		phy->local_rx = (data & LPA_1000LOCALRXOK)
3202		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3203
3204		phy->remote_rx = (data & LPA_1000REMRXOK)
3205		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3206	} else {
3207		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3208		phy->local_rx = e1000_1000t_rx_status_undefined;
3209		phy->remote_rx = e1000_1000t_rx_status_undefined;
3210	}
3211
3212	return 0;
3213}
3214
3215/**
3216 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3217 *  @hw: pointer to the HW structure
3218 *
3219 * Reads the diagnostic status register and verifies result is valid before
3220 * placing it in the phy_cable_length field.
3221 **/
3222s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3223{
3224	struct e1000_phy_info *phy = &hw->phy;
3225	s32 ret_val;
3226	u16 phy_data, length;
3227
3228	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3229	if (ret_val)
3230		return ret_val;
3231
3232	length = FIELD_GET(I82577_DSTATUS_CABLE_LENGTH, phy_data);
 
3233
3234	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3235		return -E1000_ERR_PHY;
3236
3237	phy->cable_length = length;
3238
3239	return 0;
3240}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include "e1000.h"
 
   5
   6static s32 e1000_wait_autoneg(struct e1000_hw *hw);
   7static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   8					  u16 *data, bool read, bool page_set);
   9static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  10static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  11					  u16 *data, bool read);
  12
  13/* Cable length tables */
  14static const u16 e1000_m88_cable_length_table[] = {
  15	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  16};
  17
  18#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  19		ARRAY_SIZE(e1000_m88_cable_length_table)
  20
  21static const u16 e1000_igp_2_cable_length_table[] = {
  22	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  23	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  24	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  25	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  26	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  27	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  28	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  29	124
  30};
  31
  32#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  33		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  34
  35/**
  36 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  37 *  @hw: pointer to the HW structure
  38 *
  39 *  Read the PHY management control register and check whether a PHY reset
  40 *  is blocked.  If a reset is not blocked return 0, otherwise
  41 *  return E1000_BLK_PHY_RESET (12).
  42 **/
  43s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  44{
  45	u32 manc;
  46
  47	manc = er32(MANC);
  48
  49	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
  50}
  51
  52/**
  53 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  54 *  @hw: pointer to the HW structure
  55 *
  56 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  57 *  revision in the hardware structure.
  58 **/
  59s32 e1000e_get_phy_id(struct e1000_hw *hw)
  60{
  61	struct e1000_phy_info *phy = &hw->phy;
  62	s32 ret_val = 0;
  63	u16 phy_id;
  64	u16 retry_count = 0;
  65
  66	if (!phy->ops.read_reg)
  67		return 0;
  68
  69	while (retry_count < 2) {
  70		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  71		if (ret_val)
  72			return ret_val;
  73
  74		phy->id = (u32)(phy_id << 16);
  75		usleep_range(20, 40);
  76		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  77		if (ret_val)
  78			return ret_val;
  79
  80		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  81		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  82
  83		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  84			return 0;
  85
  86		retry_count++;
  87	}
  88
  89	return 0;
  90}
  91
  92/**
  93 *  e1000e_phy_reset_dsp - Reset PHY DSP
  94 *  @hw: pointer to the HW structure
  95 *
  96 *  Reset the digital signal processor.
  97 **/
  98s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
  99{
 100	s32 ret_val;
 101
 102	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 103	if (ret_val)
 104		return ret_val;
 105
 106	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 107}
 108
 109/**
 110 *  e1000e_read_phy_reg_mdic - Read MDI control register
 111 *  @hw: pointer to the HW structure
 112 *  @offset: register offset to be read
 113 *  @data: pointer to the read data
 114 *
 115 *  Reads the MDI control register in the PHY at offset and stores the
 116 *  information read to data.
 117 **/
 118s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 119{
 120	struct e1000_phy_info *phy = &hw->phy;
 121	u32 i, mdic = 0;
 122
 123	if (offset > MAX_PHY_REG_ADDRESS) {
 124		e_dbg("PHY Address %d is out of range\n", offset);
 125		return -E1000_ERR_PARAM;
 126	}
 127
 128	/* Set up Op-code, Phy Address, and register offset in the MDI
 129	 * Control register.  The MAC will take care of interfacing with the
 130	 * PHY to retrieve the desired data.
 131	 */
 132	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 133		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 134		(E1000_MDIC_OP_READ));
 135
 136	ew32(MDIC, mdic);
 137
 138	/* Poll the ready bit to see if the MDI read completed
 139	 * Increasing the time out as testing showed failures with
 140	 * the lower time out
 141	 */
 142	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 143		udelay(50);
 144		mdic = er32(MDIC);
 145		if (mdic & E1000_MDIC_READY)
 146			break;
 147	}
 148	if (!(mdic & E1000_MDIC_READY)) {
 149		e_dbg("MDI Read PHY Reg Address %d did not complete\n", offset);
 150		return -E1000_ERR_PHY;
 151	}
 152	if (mdic & E1000_MDIC_ERROR) {
 153		e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
 154		return -E1000_ERR_PHY;
 155	}
 156	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 157		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 158		      offset,
 159		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 160		return -E1000_ERR_PHY;
 161	}
 162	*data = (u16)mdic;
 163
 164	/* Allow some time after each MDIC transaction to avoid
 165	 * reading duplicate data in the next MDIC transaction.
 166	 */
 167	if (hw->mac.type == e1000_pch2lan)
 168		udelay(100);
 169
 170	return 0;
 171}
 172
 173/**
 174 *  e1000e_write_phy_reg_mdic - Write MDI control register
 175 *  @hw: pointer to the HW structure
 176 *  @offset: register offset to write to
 177 *  @data: data to write to register at offset
 178 *
 179 *  Writes data to MDI control register in the PHY at offset.
 180 **/
 181s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 182{
 183	struct e1000_phy_info *phy = &hw->phy;
 184	u32 i, mdic = 0;
 185
 186	if (offset > MAX_PHY_REG_ADDRESS) {
 187		e_dbg("PHY Address %d is out of range\n", offset);
 188		return -E1000_ERR_PARAM;
 189	}
 190
 191	/* Set up Op-code, Phy Address, and register offset in the MDI
 192	 * Control register.  The MAC will take care of interfacing with the
 193	 * PHY to retrieve the desired data.
 194	 */
 195	mdic = (((u32)data) |
 196		(offset << E1000_MDIC_REG_SHIFT) |
 197		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 198		(E1000_MDIC_OP_WRITE));
 199
 200	ew32(MDIC, mdic);
 201
 202	/* Poll the ready bit to see if the MDI read completed
 203	 * Increasing the time out as testing showed failures with
 204	 * the lower time out
 205	 */
 206	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 207		udelay(50);
 208		mdic = er32(MDIC);
 209		if (mdic & E1000_MDIC_READY)
 210			break;
 211	}
 212	if (!(mdic & E1000_MDIC_READY)) {
 213		e_dbg("MDI Write PHY Reg Address %d did not complete\n", offset);
 214		return -E1000_ERR_PHY;
 215	}
 216	if (mdic & E1000_MDIC_ERROR) {
 217		e_dbg("MDI Write PHY Red Address %d Error\n", offset);
 218		return -E1000_ERR_PHY;
 219	}
 220	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
 221		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 222		      offset,
 223		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
 224		return -E1000_ERR_PHY;
 225	}
 226
 227	/* Allow some time after each MDIC transaction to avoid
 228	 * reading duplicate data in the next MDIC transaction.
 229	 */
 230	if (hw->mac.type == e1000_pch2lan)
 231		udelay(100);
 232
 233	return 0;
 234}
 235
 236/**
 237 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 238 *  @hw: pointer to the HW structure
 239 *  @offset: register offset to be read
 240 *  @data: pointer to the read data
 241 *
 242 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 243 *  and storing the retrieved information in data.  Release any acquired
 244 *  semaphores before exiting.
 245 **/
 246s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 247{
 248	s32 ret_val;
 249
 250	ret_val = hw->phy.ops.acquire(hw);
 251	if (ret_val)
 252		return ret_val;
 253
 254	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 255					   data);
 256
 257	hw->phy.ops.release(hw);
 258
 259	return ret_val;
 260}
 261
 262/**
 263 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 264 *  @hw: pointer to the HW structure
 265 *  @offset: register offset to write to
 266 *  @data: data to write at register offset
 267 *
 268 *  Acquires semaphore, if necessary, then writes the data to PHY register
 269 *  at the offset.  Release any acquired semaphores before exiting.
 270 **/
 271s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 272{
 273	s32 ret_val;
 274
 275	ret_val = hw->phy.ops.acquire(hw);
 276	if (ret_val)
 277		return ret_val;
 278
 279	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 280					    data);
 281
 282	hw->phy.ops.release(hw);
 283
 284	return ret_val;
 285}
 286
 287/**
 288 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 289 *  @hw: pointer to the HW structure
 290 *  @page: page to set (shifted left when necessary)
 291 *
 292 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 293 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 294 *  must set it appropriately (if necessary) after this function returns.
 295 **/
 296s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 297{
 298	e_dbg("Setting page 0x%x\n", page);
 299
 300	hw->phy.addr = 1;
 301
 302	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 303}
 304
 305/**
 306 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 307 *  @hw: pointer to the HW structure
 308 *  @offset: register offset to be read
 309 *  @data: pointer to the read data
 310 *  @locked: semaphore has already been acquired or not
 311 *
 312 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 313 *  and stores the retrieved information in data.  Release any acquired
 314 *  semaphores before exiting.
 315 **/
 316static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 317				     bool locked)
 318{
 319	s32 ret_val = 0;
 320
 321	if (!locked) {
 322		if (!hw->phy.ops.acquire)
 323			return 0;
 324
 325		ret_val = hw->phy.ops.acquire(hw);
 326		if (ret_val)
 327			return ret_val;
 328	}
 329
 330	if (offset > MAX_PHY_MULTI_PAGE_REG)
 331		ret_val = e1000e_write_phy_reg_mdic(hw,
 332						    IGP01E1000_PHY_PAGE_SELECT,
 333						    (u16)offset);
 334	if (!ret_val)
 335		ret_val = e1000e_read_phy_reg_mdic(hw,
 336						   MAX_PHY_REG_ADDRESS & offset,
 337						   data);
 338	if (!locked)
 339		hw->phy.ops.release(hw);
 340
 341	return ret_val;
 342}
 343
 344/**
 345 *  e1000e_read_phy_reg_igp - Read igp PHY register
 346 *  @hw: pointer to the HW structure
 347 *  @offset: register offset to be read
 348 *  @data: pointer to the read data
 349 *
 350 *  Acquires semaphore then reads the PHY register at offset and stores the
 351 *  retrieved information in data.
 352 *  Release the acquired semaphore before exiting.
 353 **/
 354s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 355{
 356	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 357}
 358
 359/**
 360 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 361 *  @hw: pointer to the HW structure
 362 *  @offset: register offset to be read
 363 *  @data: pointer to the read data
 364 *
 365 *  Reads the PHY register at offset and stores the retrieved information
 366 *  in data.  Assumes semaphore already acquired.
 367 **/
 368s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 369{
 370	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 371}
 372
 373/**
 374 *  __e1000e_write_phy_reg_igp - Write igp PHY register
 375 *  @hw: pointer to the HW structure
 376 *  @offset: register offset to write to
 377 *  @data: data to write at register offset
 378 *  @locked: semaphore has already been acquired or not
 379 *
 380 *  Acquires semaphore, if necessary, then writes the data to PHY register
 381 *  at the offset.  Release any acquired semaphores before exiting.
 382 **/
 383static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 384				      bool locked)
 385{
 386	s32 ret_val = 0;
 387
 388	if (!locked) {
 389		if (!hw->phy.ops.acquire)
 390			return 0;
 391
 392		ret_val = hw->phy.ops.acquire(hw);
 393		if (ret_val)
 394			return ret_val;
 395	}
 396
 397	if (offset > MAX_PHY_MULTI_PAGE_REG)
 398		ret_val = e1000e_write_phy_reg_mdic(hw,
 399						    IGP01E1000_PHY_PAGE_SELECT,
 400						    (u16)offset);
 401	if (!ret_val)
 402		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 403						    offset, data);
 404	if (!locked)
 405		hw->phy.ops.release(hw);
 406
 407	return ret_val;
 408}
 409
 410/**
 411 *  e1000e_write_phy_reg_igp - Write igp PHY register
 412 *  @hw: pointer to the HW structure
 413 *  @offset: register offset to write to
 414 *  @data: data to write at register offset
 415 *
 416 *  Acquires semaphore then writes the data to PHY register
 417 *  at the offset.  Release any acquired semaphores before exiting.
 418 **/
 419s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 420{
 421	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 422}
 423
 424/**
 425 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 426 *  @hw: pointer to the HW structure
 427 *  @offset: register offset to write to
 428 *  @data: data to write at register offset
 429 *
 430 *  Writes the data to PHY register at the offset.
 431 *  Assumes semaphore already acquired.
 432 **/
 433s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 434{
 435	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 436}
 437
 438/**
 439 *  __e1000_read_kmrn_reg - Read kumeran register
 440 *  @hw: pointer to the HW structure
 441 *  @offset: register offset to be read
 442 *  @data: pointer to the read data
 443 *  @locked: semaphore has already been acquired or not
 444 *
 445 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 446 *  using the kumeran interface.  The information retrieved is stored in data.
 447 *  Release any acquired semaphores before exiting.
 448 **/
 449static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 450				 bool locked)
 451{
 452	u32 kmrnctrlsta;
 453
 454	if (!locked) {
 455		s32 ret_val = 0;
 456
 457		if (!hw->phy.ops.acquire)
 458			return 0;
 459
 460		ret_val = hw->phy.ops.acquire(hw);
 461		if (ret_val)
 462			return ret_val;
 463	}
 464
 465	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 466		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 467	ew32(KMRNCTRLSTA, kmrnctrlsta);
 468	e1e_flush();
 469
 470	udelay(2);
 471
 472	kmrnctrlsta = er32(KMRNCTRLSTA);
 473	*data = (u16)kmrnctrlsta;
 474
 475	if (!locked)
 476		hw->phy.ops.release(hw);
 477
 478	return 0;
 479}
 480
 481/**
 482 *  e1000e_read_kmrn_reg -  Read kumeran register
 483 *  @hw: pointer to the HW structure
 484 *  @offset: register offset to be read
 485 *  @data: pointer to the read data
 486 *
 487 *  Acquires semaphore then reads the PHY register at offset using the
 488 *  kumeran interface.  The information retrieved is stored in data.
 489 *  Release the acquired semaphore before exiting.
 490 **/
 491s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 492{
 493	return __e1000_read_kmrn_reg(hw, offset, data, false);
 494}
 495
 496/**
 497 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 498 *  @hw: pointer to the HW structure
 499 *  @offset: register offset to be read
 500 *  @data: pointer to the read data
 501 *
 502 *  Reads the PHY register at offset using the kumeran interface.  The
 503 *  information retrieved is stored in data.
 504 *  Assumes semaphore already acquired.
 505 **/
 506s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 507{
 508	return __e1000_read_kmrn_reg(hw, offset, data, true);
 509}
 510
 511/**
 512 *  __e1000_write_kmrn_reg - Write kumeran register
 513 *  @hw: pointer to the HW structure
 514 *  @offset: register offset to write to
 515 *  @data: data to write at register offset
 516 *  @locked: semaphore has already been acquired or not
 517 *
 518 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 519 *  at the offset using the kumeran interface.  Release any acquired semaphores
 520 *  before exiting.
 521 **/
 522static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 523				  bool locked)
 524{
 525	u32 kmrnctrlsta;
 526
 527	if (!locked) {
 528		s32 ret_val = 0;
 529
 530		if (!hw->phy.ops.acquire)
 531			return 0;
 532
 533		ret_val = hw->phy.ops.acquire(hw);
 534		if (ret_val)
 535			return ret_val;
 536	}
 537
 538	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 539		       E1000_KMRNCTRLSTA_OFFSET) | data;
 540	ew32(KMRNCTRLSTA, kmrnctrlsta);
 541	e1e_flush();
 542
 543	udelay(2);
 544
 545	if (!locked)
 546		hw->phy.ops.release(hw);
 547
 548	return 0;
 549}
 550
 551/**
 552 *  e1000e_write_kmrn_reg -  Write kumeran register
 553 *  @hw: pointer to the HW structure
 554 *  @offset: register offset to write to
 555 *  @data: data to write at register offset
 556 *
 557 *  Acquires semaphore then writes the data to the PHY register at the offset
 558 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 559 **/
 560s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 561{
 562	return __e1000_write_kmrn_reg(hw, offset, data, false);
 563}
 564
 565/**
 566 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 567 *  @hw: pointer to the HW structure
 568 *  @offset: register offset to write to
 569 *  @data: data to write at register offset
 570 *
 571 *  Write the data to PHY register at the offset using the kumeran interface.
 572 *  Assumes semaphore already acquired.
 573 **/
 574s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 575{
 576	return __e1000_write_kmrn_reg(hw, offset, data, true);
 577}
 578
 579/**
 580 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 581 *  @hw: pointer to the HW structure
 582 *
 583 *  Sets up Master/slave mode
 584 **/
 585static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 586{
 587	s32 ret_val;
 588	u16 phy_data;
 589
 590	/* Resolve Master/Slave mode */
 591	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 592	if (ret_val)
 593		return ret_val;
 594
 595	/* load defaults for future use */
 596	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 597	    ((phy_data & CTL1000_AS_MASTER) ?
 598	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 599
 600	switch (hw->phy.ms_type) {
 601	case e1000_ms_force_master:
 602		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 603		break;
 604	case e1000_ms_force_slave:
 605		phy_data |= CTL1000_ENABLE_MASTER;
 606		phy_data &= ~(CTL1000_AS_MASTER);
 607		break;
 608	case e1000_ms_auto:
 609		phy_data &= ~CTL1000_ENABLE_MASTER;
 610		fallthrough;
 611	default:
 612		break;
 613	}
 614
 615	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 616}
 617
 618/**
 619 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 620 *  @hw: pointer to the HW structure
 621 *
 622 *  Sets up Carrier-sense on Transmit and downshift values.
 623 **/
 624s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 625{
 626	s32 ret_val;
 627	u16 phy_data;
 628
 629	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 630	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 631	if (ret_val)
 632		return ret_val;
 633
 634	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 635
 636	/* Enable downshift */
 637	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 638
 639	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 640	if (ret_val)
 641		return ret_val;
 642
 643	/* Set MDI/MDIX mode */
 644	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 645	if (ret_val)
 646		return ret_val;
 647	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 648	/* Options:
 649	 *   0 - Auto (default)
 650	 *   1 - MDI mode
 651	 *   2 - MDI-X mode
 652	 */
 653	switch (hw->phy.mdix) {
 654	case 1:
 655		break;
 656	case 2:
 657		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 658		break;
 659	case 0:
 660	default:
 661		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 662		break;
 663	}
 664	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 665	if (ret_val)
 666		return ret_val;
 667
 668	return e1000_set_master_slave_mode(hw);
 669}
 670
 671/**
 672 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 673 *  @hw: pointer to the HW structure
 674 *
 675 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 676 *  and downshift values are set also.
 677 **/
 678s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 679{
 680	struct e1000_phy_info *phy = &hw->phy;
 681	s32 ret_val;
 682	u16 phy_data;
 683
 684	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 685	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 686	if (ret_val)
 687		return ret_val;
 688
 689	/* For BM PHY this bit is downshift enable */
 690	if (phy->type != e1000_phy_bm)
 691		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 692
 693	/* Options:
 694	 *   MDI/MDI-X = 0 (default)
 695	 *   0 - Auto for all speeds
 696	 *   1 - MDI mode
 697	 *   2 - MDI-X mode
 698	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 699	 */
 700	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 701
 702	switch (phy->mdix) {
 703	case 1:
 704		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 705		break;
 706	case 2:
 707		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 708		break;
 709	case 3:
 710		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 711		break;
 712	case 0:
 713	default:
 714		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 715		break;
 716	}
 717
 718	/* Options:
 719	 *   disable_polarity_correction = 0 (default)
 720	 *       Automatic Correction for Reversed Cable Polarity
 721	 *   0 - Disabled
 722	 *   1 - Enabled
 723	 */
 724	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 725	if (phy->disable_polarity_correction)
 726		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 727
 728	/* Enable downshift on BM (disabled by default) */
 729	if (phy->type == e1000_phy_bm) {
 730		/* For 82574/82583, first disable then enable downshift */
 731		if (phy->id == BME1000_E_PHY_ID_R2) {
 732			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 733			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 734					   phy_data);
 735			if (ret_val)
 736				return ret_val;
 737			/* Commit the changes. */
 738			ret_val = phy->ops.commit(hw);
 739			if (ret_val) {
 740				e_dbg("Error committing the PHY changes\n");
 741				return ret_val;
 742			}
 743		}
 744
 745		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 746	}
 747
 748	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 749	if (ret_val)
 750		return ret_val;
 751
 752	if ((phy->type == e1000_phy_m88) &&
 753	    (phy->revision < E1000_REVISION_4) &&
 754	    (phy->id != BME1000_E_PHY_ID_R2)) {
 755		/* Force TX_CLK in the Extended PHY Specific Control Register
 756		 * to 25MHz clock.
 757		 */
 758		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 759		if (ret_val)
 760			return ret_val;
 761
 762		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 763
 764		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 765			/* 82573L PHY - set the downshift counter to 5x. */
 766			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 767			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 768		} else {
 769			/* Configure Master and Slave downshift values */
 770			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 771				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 772			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 773				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 774		}
 775		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 776		if (ret_val)
 777			return ret_val;
 778	}
 779
 780	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 781		/* Set PHY page 0, register 29 to 0x0003 */
 782		ret_val = e1e_wphy(hw, 29, 0x0003);
 783		if (ret_val)
 784			return ret_val;
 785
 786		/* Set PHY page 0, register 30 to 0x0000 */
 787		ret_val = e1e_wphy(hw, 30, 0x0000);
 788		if (ret_val)
 789			return ret_val;
 790	}
 791
 792	/* Commit the changes. */
 793	if (phy->ops.commit) {
 794		ret_val = phy->ops.commit(hw);
 795		if (ret_val) {
 796			e_dbg("Error committing the PHY changes\n");
 797			return ret_val;
 798		}
 799	}
 800
 801	if (phy->type == e1000_phy_82578) {
 802		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 803		if (ret_val)
 804			return ret_val;
 805
 806		/* 82578 PHY - set the downshift count to 1x. */
 807		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 808		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 809		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 810		if (ret_val)
 811			return ret_val;
 812	}
 813
 814	return 0;
 815}
 816
 817/**
 818 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 819 *  @hw: pointer to the HW structure
 820 *
 821 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 822 *  igp PHY's.
 823 **/
 824s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 825{
 826	struct e1000_phy_info *phy = &hw->phy;
 827	s32 ret_val;
 828	u16 data;
 829
 830	ret_val = e1000_phy_hw_reset(hw);
 831	if (ret_val) {
 832		e_dbg("Error resetting the PHY.\n");
 833		return ret_val;
 834	}
 835
 836	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 837	 * timeout issues when LFS is enabled.
 838	 */
 839	msleep(100);
 840
 841	/* disable lplu d0 during driver init */
 842	if (hw->phy.ops.set_d0_lplu_state) {
 843		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 844		if (ret_val) {
 845			e_dbg("Error Disabling LPLU D0\n");
 846			return ret_val;
 847		}
 848	}
 849	/* Configure mdi-mdix settings */
 850	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 851	if (ret_val)
 852		return ret_val;
 853
 854	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 855
 856	switch (phy->mdix) {
 857	case 1:
 858		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 859		break;
 860	case 2:
 861		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 862		break;
 863	case 0:
 864	default:
 865		data |= IGP01E1000_PSCR_AUTO_MDIX;
 866		break;
 867	}
 868	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 869	if (ret_val)
 870		return ret_val;
 871
 872	/* set auto-master slave resolution settings */
 873	if (hw->mac.autoneg) {
 874		/* when autonegotiation advertisement is only 1000Mbps then we
 875		 * should disable SmartSpeed and enable Auto MasterSlave
 876		 * resolution as hardware default.
 877		 */
 878		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 879			/* Disable SmartSpeed */
 880			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 881					   &data);
 882			if (ret_val)
 883				return ret_val;
 884
 885			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 886			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 887					   data);
 888			if (ret_val)
 889				return ret_val;
 890
 891			/* Set auto Master/Slave resolution process */
 892			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 893			if (ret_val)
 894				return ret_val;
 895
 896			data &= ~CTL1000_ENABLE_MASTER;
 897			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 898			if (ret_val)
 899				return ret_val;
 900		}
 901
 902		ret_val = e1000_set_master_slave_mode(hw);
 903	}
 904
 905	return ret_val;
 906}
 907
 908/**
 909 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 910 *  @hw: pointer to the HW structure
 911 *
 912 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 913 *  register and if the PHY is already setup for auto-negotiation, then
 914 *  return successful.  Otherwise, setup advertisement and flow control to
 915 *  the appropriate values for the wanted auto-negotiation.
 916 **/
 917static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 918{
 919	struct e1000_phy_info *phy = &hw->phy;
 920	s32 ret_val;
 921	u16 mii_autoneg_adv_reg;
 922	u16 mii_1000t_ctrl_reg = 0;
 923
 924	phy->autoneg_advertised &= phy->autoneg_mask;
 925
 926	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 927	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 928	if (ret_val)
 929		return ret_val;
 930
 931	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 932		/* Read the MII 1000Base-T Control Register (Address 9). */
 933		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 934		if (ret_val)
 935			return ret_val;
 936	}
 937
 938	/* Need to parse both autoneg_advertised and fc and set up
 939	 * the appropriate PHY registers.  First we will parse for
 940	 * autoneg_advertised software override.  Since we can advertise
 941	 * a plethora of combinations, we need to check each bit
 942	 * individually.
 943	 */
 944
 945	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 946	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 947	 * the  1000Base-T Control Register (Address 9).
 948	 */
 949	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 950				 ADVERTISE_100HALF |
 951				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 952	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 953
 954	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 955
 956	/* Do we want to advertise 10 Mb Half Duplex? */
 957	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 958		e_dbg("Advertise 10mb Half duplex\n");
 959		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 960	}
 961
 962	/* Do we want to advertise 10 Mb Full Duplex? */
 963	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 964		e_dbg("Advertise 10mb Full duplex\n");
 965		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 966	}
 967
 968	/* Do we want to advertise 100 Mb Half Duplex? */
 969	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 970		e_dbg("Advertise 100mb Half duplex\n");
 971		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 972	}
 973
 974	/* Do we want to advertise 100 Mb Full Duplex? */
 975	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 976		e_dbg("Advertise 100mb Full duplex\n");
 977		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 978	}
 979
 980	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 981	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 982		e_dbg("Advertise 1000mb Half duplex request denied!\n");
 983
 984	/* Do we want to advertise 1000 Mb Full Duplex? */
 985	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 986		e_dbg("Advertise 1000mb Full duplex\n");
 987		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
 988	}
 989
 990	/* Check for a software override of the flow control settings, and
 991	 * setup the PHY advertisement registers accordingly.  If
 992	 * auto-negotiation is enabled, then software will have to set the
 993	 * "PAUSE" bits to the correct value in the Auto-Negotiation
 994	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
 995	 * negotiation.
 996	 *
 997	 * The possible values of the "fc" parameter are:
 998	 *      0:  Flow control is completely disabled
 999	 *      1:  Rx flow control is enabled (we can receive pause frames
1000	 *          but not send pause frames).
1001	 *      2:  Tx flow control is enabled (we can send pause frames
1002	 *          but we do not support receiving pause frames).
1003	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1004	 *  other:  No software override.  The flow control configuration
1005	 *          in the EEPROM is used.
1006	 */
1007	switch (hw->fc.current_mode) {
1008	case e1000_fc_none:
1009		/* Flow control (Rx & Tx) is completely disabled by a
1010		 * software over-ride.
1011		 */
1012		mii_autoneg_adv_reg &=
1013		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
 
 
1014		break;
1015	case e1000_fc_rx_pause:
1016		/* Rx Flow control is enabled, and Tx Flow control is
1017		 * disabled, by a software over-ride.
1018		 *
1019		 * Since there really isn't a way to advertise that we are
1020		 * capable of Rx Pause ONLY, we will advertise that we
1021		 * support both symmetric and asymmetric Rx PAUSE.  Later
1022		 * (in e1000e_config_fc_after_link_up) we will disable the
1023		 * hw's ability to send PAUSE frames.
1024		 */
1025		mii_autoneg_adv_reg |=
1026		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
 
 
1027		break;
1028	case e1000_fc_tx_pause:
1029		/* Tx Flow control is enabled, and Rx Flow control is
1030		 * disabled, by a software over-ride.
1031		 */
1032		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1033		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
 
 
1034		break;
1035	case e1000_fc_full:
1036		/* Flow control (both Rx and Tx) is enabled by a software
1037		 * over-ride.
1038		 */
1039		mii_autoneg_adv_reg |=
1040		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
 
 
1041		break;
1042	default:
1043		e_dbg("Flow control param set incorrectly\n");
1044		return -E1000_ERR_CONFIG;
1045	}
1046
1047	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1048	if (ret_val)
1049		return ret_val;
1050
1051	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1052
1053	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1054		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1055
1056	return ret_val;
1057}
1058
1059/**
1060 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1061 *  @hw: pointer to the HW structure
1062 *
1063 *  Performs initial bounds checking on autoneg advertisement parameter, then
1064 *  configure to advertise the full capability.  Setup the PHY to autoneg
1065 *  and restart the negotiation process between the link partner.  If
1066 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1067 **/
1068static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1069{
1070	struct e1000_phy_info *phy = &hw->phy;
1071	s32 ret_val;
1072	u16 phy_ctrl;
1073
1074	/* Perform some bounds checking on the autoneg advertisement
1075	 * parameter.
1076	 */
1077	phy->autoneg_advertised &= phy->autoneg_mask;
1078
1079	/* If autoneg_advertised is zero, we assume it was not defaulted
1080	 * by the calling code so we set to advertise full capability.
1081	 */
1082	if (!phy->autoneg_advertised)
1083		phy->autoneg_advertised = phy->autoneg_mask;
1084
1085	e_dbg("Reconfiguring auto-neg advertisement params\n");
1086	ret_val = e1000_phy_setup_autoneg(hw);
1087	if (ret_val) {
1088		e_dbg("Error Setting up Auto-Negotiation\n");
1089		return ret_val;
1090	}
1091	e_dbg("Restarting Auto-Neg\n");
1092
1093	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1094	 * the Auto Neg Restart bit in the PHY control register.
1095	 */
1096	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1097	if (ret_val)
1098		return ret_val;
1099
1100	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1101	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1102	if (ret_val)
1103		return ret_val;
1104
1105	/* Does the user want to wait for Auto-Neg to complete here, or
1106	 * check at a later time (for example, callback routine).
1107	 */
1108	if (phy->autoneg_wait_to_complete) {
1109		ret_val = e1000_wait_autoneg(hw);
1110		if (ret_val) {
1111			e_dbg("Error while waiting for autoneg to complete\n");
1112			return ret_val;
1113		}
1114	}
1115
1116	hw->mac.get_link_status = true;
1117
1118	return ret_val;
1119}
1120
1121/**
1122 *  e1000e_setup_copper_link - Configure copper link settings
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Calls the appropriate function to configure the link for auto-neg or forced
1126 *  speed and duplex.  Then we check for link, once link is established calls
1127 *  to configure collision distance and flow control are called.  If link is
1128 *  not established, we return -E1000_ERR_PHY (-2).
1129 **/
1130s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1131{
1132	s32 ret_val;
1133	bool link;
1134
1135	if (hw->mac.autoneg) {
1136		/* Setup autoneg and flow control advertisement and perform
1137		 * autonegotiation.
1138		 */
1139		ret_val = e1000_copper_link_autoneg(hw);
1140		if (ret_val)
1141			return ret_val;
1142	} else {
1143		/* PHY will be set to 10H, 10F, 100H or 100F
1144		 * depending on user settings.
1145		 */
1146		e_dbg("Forcing Speed and Duplex\n");
1147		ret_val = hw->phy.ops.force_speed_duplex(hw);
1148		if (ret_val) {
1149			e_dbg("Error Forcing Speed and Duplex\n");
1150			return ret_val;
1151		}
1152	}
1153
1154	/* Check link status. Wait up to 100 microseconds for link to become
1155	 * valid.
1156	 */
1157	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1158					      &link);
1159	if (ret_val)
1160		return ret_val;
1161
1162	if (link) {
1163		e_dbg("Valid link established!!!\n");
1164		hw->mac.ops.config_collision_dist(hw);
1165		ret_val = e1000e_config_fc_after_link_up(hw);
1166	} else {
1167		e_dbg("Unable to establish link!!!\n");
1168	}
1169
1170	return ret_val;
1171}
1172
1173/**
1174 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1175 *  @hw: pointer to the HW structure
1176 *
1177 *  Calls the PHY setup function to force speed and duplex.  Clears the
1178 *  auto-crossover to force MDI manually.  Waits for link and returns
1179 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1180 **/
1181s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1182{
1183	struct e1000_phy_info *phy = &hw->phy;
1184	s32 ret_val;
1185	u16 phy_data;
1186	bool link;
1187
1188	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1189	if (ret_val)
1190		return ret_val;
1191
1192	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1193
1194	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1195	if (ret_val)
1196		return ret_val;
1197
1198	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1199	 * forced whenever speed and duplex are forced.
1200	 */
1201	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1202	if (ret_val)
1203		return ret_val;
1204
1205	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1206	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1207
1208	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1209	if (ret_val)
1210		return ret_val;
1211
1212	e_dbg("IGP PSCR: %X\n", phy_data);
1213
1214	udelay(1);
1215
1216	if (phy->autoneg_wait_to_complete) {
1217		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1218
1219		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1220						      100000, &link);
1221		if (ret_val)
1222			return ret_val;
1223
1224		if (!link)
1225			e_dbg("Link taking longer than expected.\n");
1226
1227		/* Try once more */
1228		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1229						      100000, &link);
1230	}
1231
1232	return ret_val;
1233}
1234
1235/**
1236 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1237 *  @hw: pointer to the HW structure
1238 *
1239 *  Calls the PHY setup function to force speed and duplex.  Clears the
1240 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1241 *  changes.  If time expires while waiting for link up, we reset the DSP.
1242 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1243 *  successful completion, else return corresponding error code.
1244 **/
1245s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1246{
1247	struct e1000_phy_info *phy = &hw->phy;
1248	s32 ret_val;
1249	u16 phy_data;
1250	bool link;
1251
1252	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1253	 * forced whenever speed and duplex are forced.
1254	 */
1255	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1256	if (ret_val)
1257		return ret_val;
1258
1259	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1260	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1265
1266	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1267	if (ret_val)
1268		return ret_val;
1269
1270	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1271
1272	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1273	if (ret_val)
1274		return ret_val;
1275
1276	/* Reset the phy to commit changes. */
1277	if (hw->phy.ops.commit) {
1278		ret_val = hw->phy.ops.commit(hw);
1279		if (ret_val)
1280			return ret_val;
1281	}
1282
1283	if (phy->autoneg_wait_to_complete) {
1284		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1285
1286		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1287						      100000, &link);
1288		if (ret_val)
1289			return ret_val;
1290
1291		if (!link) {
1292			if (hw->phy.type != e1000_phy_m88) {
1293				e_dbg("Link taking longer than expected.\n");
1294			} else {
1295				/* We didn't get link.
1296				 * Reset the DSP and cross our fingers.
1297				 */
1298				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1299						   0x001d);
1300				if (ret_val)
1301					return ret_val;
1302				ret_val = e1000e_phy_reset_dsp(hw);
1303				if (ret_val)
1304					return ret_val;
1305			}
1306		}
1307
1308		/* Try once more */
1309		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1310						      100000, &link);
1311		if (ret_val)
1312			return ret_val;
1313	}
1314
1315	if (hw->phy.type != e1000_phy_m88)
1316		return 0;
1317
1318	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1319	if (ret_val)
1320		return ret_val;
1321
1322	/* Resetting the phy means we need to re-force TX_CLK in the
1323	 * Extended PHY Specific Control Register to 25MHz clock from
1324	 * the reset value of 2.5MHz.
1325	 */
1326	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1327	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1328	if (ret_val)
1329		return ret_val;
1330
1331	/* In addition, we must re-enable CRS on Tx for both half and full
1332	 * duplex.
1333	 */
1334	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1335	if (ret_val)
1336		return ret_val;
1337
1338	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1339	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1340
1341	return ret_val;
1342}
1343
1344/**
1345 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1346 *  @hw: pointer to the HW structure
1347 *
1348 *  Forces the speed and duplex settings of the PHY.
1349 *  This is a function pointer entry point only called by
1350 *  PHY setup routines.
1351 **/
1352s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1353{
1354	struct e1000_phy_info *phy = &hw->phy;
1355	s32 ret_val;
1356	u16 data;
1357	bool link;
1358
1359	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1360	if (ret_val)
1361		return ret_val;
1362
1363	e1000e_phy_force_speed_duplex_setup(hw, &data);
1364
1365	ret_val = e1e_wphy(hw, MII_BMCR, data);
1366	if (ret_val)
1367		return ret_val;
1368
1369	/* Disable MDI-X support for 10/100 */
1370	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	data &= ~IFE_PMC_AUTO_MDIX;
1375	data &= ~IFE_PMC_FORCE_MDIX;
1376
1377	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1378	if (ret_val)
1379		return ret_val;
1380
1381	e_dbg("IFE PMC: %X\n", data);
1382
1383	udelay(1);
1384
1385	if (phy->autoneg_wait_to_complete) {
1386		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1387
1388		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1389						      100000, &link);
1390		if (ret_val)
1391			return ret_val;
1392
1393		if (!link)
1394			e_dbg("Link taking longer than expected.\n");
1395
1396		/* Try once more */
1397		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1398						      100000, &link);
1399		if (ret_val)
1400			return ret_val;
1401	}
1402
1403	return 0;
1404}
1405
1406/**
1407 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1408 *  @hw: pointer to the HW structure
1409 *  @phy_ctrl: pointer to current value of MII_BMCR
1410 *
1411 *  Forces speed and duplex on the PHY by doing the following: disable flow
1412 *  control, force speed/duplex on the MAC, disable auto speed detection,
1413 *  disable auto-negotiation, configure duplex, configure speed, configure
1414 *  the collision distance, write configuration to CTRL register.  The
1415 *  caller must write to the MII_BMCR register for these settings to
1416 *  take affect.
1417 **/
1418void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1419{
1420	struct e1000_mac_info *mac = &hw->mac;
1421	u32 ctrl;
1422
1423	/* Turn off flow control when forcing speed/duplex */
1424	hw->fc.current_mode = e1000_fc_none;
1425
1426	/* Force speed/duplex on the mac */
1427	ctrl = er32(CTRL);
1428	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1429	ctrl &= ~E1000_CTRL_SPD_SEL;
1430
1431	/* Disable Auto Speed Detection */
1432	ctrl &= ~E1000_CTRL_ASDE;
1433
1434	/* Disable autoneg on the phy */
1435	*phy_ctrl &= ~BMCR_ANENABLE;
1436
1437	/* Forcing Full or Half Duplex? */
1438	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1439		ctrl &= ~E1000_CTRL_FD;
1440		*phy_ctrl &= ~BMCR_FULLDPLX;
1441		e_dbg("Half Duplex\n");
1442	} else {
1443		ctrl |= E1000_CTRL_FD;
1444		*phy_ctrl |= BMCR_FULLDPLX;
1445		e_dbg("Full Duplex\n");
1446	}
1447
1448	/* Forcing 10mb or 100mb? */
1449	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1450		ctrl |= E1000_CTRL_SPD_100;
1451		*phy_ctrl |= BMCR_SPEED100;
1452		*phy_ctrl &= ~BMCR_SPEED1000;
1453		e_dbg("Forcing 100mb\n");
1454	} else {
1455		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1456		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1457		e_dbg("Forcing 10mb\n");
1458	}
1459
1460	hw->mac.ops.config_collision_dist(hw);
1461
1462	ew32(CTRL, ctrl);
1463}
1464
1465/**
1466 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1467 *  @hw: pointer to the HW structure
1468 *  @active: boolean used to enable/disable lplu
1469 *
1470 *  Success returns 0, Failure returns 1
1471 *
1472 *  The low power link up (lplu) state is set to the power management level D3
1473 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1474 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1475 *  is used during Dx states where the power conservation is most important.
1476 *  During driver activity, SmartSpeed should be enabled so performance is
1477 *  maintained.
1478 **/
1479s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1480{
1481	struct e1000_phy_info *phy = &hw->phy;
1482	s32 ret_val;
1483	u16 data;
1484
1485	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1486	if (ret_val)
1487		return ret_val;
1488
1489	if (!active) {
1490		data &= ~IGP02E1000_PM_D3_LPLU;
1491		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1492		if (ret_val)
1493			return ret_val;
1494		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1495		 * during Dx states where the power conservation is most
1496		 * important.  During driver activity we should enable
1497		 * SmartSpeed, so performance is maintained.
1498		 */
1499		if (phy->smart_speed == e1000_smart_speed_on) {
1500			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1501					   &data);
1502			if (ret_val)
1503				return ret_val;
1504
1505			data |= IGP01E1000_PSCFR_SMART_SPEED;
1506			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1507					   data);
1508			if (ret_val)
1509				return ret_val;
1510		} else if (phy->smart_speed == e1000_smart_speed_off) {
1511			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1512					   &data);
1513			if (ret_val)
1514				return ret_val;
1515
1516			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1517			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1518					   data);
1519			if (ret_val)
1520				return ret_val;
1521		}
1522	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1523		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1524		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1525		data |= IGP02E1000_PM_D3_LPLU;
1526		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1527		if (ret_val)
1528			return ret_val;
1529
1530		/* When LPLU is enabled, we should disable SmartSpeed */
1531		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1532		if (ret_val)
1533			return ret_val;
1534
1535		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1536		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1537	}
1538
1539	return ret_val;
1540}
1541
1542/**
1543 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1544 *  @hw: pointer to the HW structure
1545 *
1546 *  Success returns 0, Failure returns 1
1547 *
1548 *  A downshift is detected by querying the PHY link health.
1549 **/
1550s32 e1000e_check_downshift(struct e1000_hw *hw)
1551{
1552	struct e1000_phy_info *phy = &hw->phy;
1553	s32 ret_val;
1554	u16 phy_data, offset, mask;
1555
1556	switch (phy->type) {
1557	case e1000_phy_m88:
1558	case e1000_phy_gg82563:
1559	case e1000_phy_bm:
1560	case e1000_phy_82578:
1561		offset = M88E1000_PHY_SPEC_STATUS;
1562		mask = M88E1000_PSSR_DOWNSHIFT;
1563		break;
1564	case e1000_phy_igp_2:
1565	case e1000_phy_igp_3:
1566		offset = IGP01E1000_PHY_LINK_HEALTH;
1567		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1568		break;
1569	default:
1570		/* speed downshift not supported */
1571		phy->speed_downgraded = false;
1572		return 0;
1573	}
1574
1575	ret_val = e1e_rphy(hw, offset, &phy_data);
1576
1577	if (!ret_val)
1578		phy->speed_downgraded = !!(phy_data & mask);
1579
1580	return ret_val;
1581}
1582
1583/**
1584 *  e1000_check_polarity_m88 - Checks the polarity.
1585 *  @hw: pointer to the HW structure
1586 *
1587 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1588 *
1589 *  Polarity is determined based on the PHY specific status register.
1590 **/
1591s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1592{
1593	struct e1000_phy_info *phy = &hw->phy;
1594	s32 ret_val;
1595	u16 data;
1596
1597	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1598
1599	if (!ret_val)
1600		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1601				       ? e1000_rev_polarity_reversed
1602				       : e1000_rev_polarity_normal);
1603
1604	return ret_val;
1605}
1606
1607/**
1608 *  e1000_check_polarity_igp - Checks the polarity.
1609 *  @hw: pointer to the HW structure
1610 *
1611 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1612 *
1613 *  Polarity is determined based on the PHY port status register, and the
1614 *  current speed (since there is no polarity at 100Mbps).
1615 **/
1616s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1617{
1618	struct e1000_phy_info *phy = &hw->phy;
1619	s32 ret_val;
1620	u16 data, offset, mask;
1621
1622	/* Polarity is determined based on the speed of
1623	 * our connection.
1624	 */
1625	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1626	if (ret_val)
1627		return ret_val;
1628
1629	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1630	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1631		offset = IGP01E1000_PHY_PCS_INIT_REG;
1632		mask = IGP01E1000_PHY_POLARITY_MASK;
1633	} else {
1634		/* This really only applies to 10Mbps since
1635		 * there is no polarity for 100Mbps (always 0).
1636		 */
1637		offset = IGP01E1000_PHY_PORT_STATUS;
1638		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1639	}
1640
1641	ret_val = e1e_rphy(hw, offset, &data);
1642
1643	if (!ret_val)
1644		phy->cable_polarity = ((data & mask)
1645				       ? e1000_rev_polarity_reversed
1646				       : e1000_rev_polarity_normal);
1647
1648	return ret_val;
1649}
1650
1651/**
1652 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1653 *  @hw: pointer to the HW structure
1654 *
1655 *  Polarity is determined on the polarity reversal feature being enabled.
1656 **/
1657s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1658{
1659	struct e1000_phy_info *phy = &hw->phy;
1660	s32 ret_val;
1661	u16 phy_data, offset, mask;
1662
1663	/* Polarity is determined based on the reversal feature being enabled.
1664	 */
1665	if (phy->polarity_correction) {
1666		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1667		mask = IFE_PESC_POLARITY_REVERSED;
1668	} else {
1669		offset = IFE_PHY_SPECIAL_CONTROL;
1670		mask = IFE_PSC_FORCE_POLARITY;
1671	}
1672
1673	ret_val = e1e_rphy(hw, offset, &phy_data);
1674
1675	if (!ret_val)
1676		phy->cable_polarity = ((phy_data & mask)
1677				       ? e1000_rev_polarity_reversed
1678				       : e1000_rev_polarity_normal);
1679
1680	return ret_val;
1681}
1682
1683/**
1684 *  e1000_wait_autoneg - Wait for auto-neg completion
1685 *  @hw: pointer to the HW structure
1686 *
1687 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1688 *  limit to expire, which ever happens first.
1689 **/
1690static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1691{
1692	s32 ret_val = 0;
1693	u16 i, phy_status;
1694
1695	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1696	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1697		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1698		if (ret_val)
1699			break;
1700		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1701		if (ret_val)
1702			break;
1703		if (phy_status & BMSR_ANEGCOMPLETE)
1704			break;
1705		msleep(100);
1706	}
1707
1708	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1709	 * has completed.
1710	 */
1711	return ret_val;
1712}
1713
1714/**
1715 *  e1000e_phy_has_link_generic - Polls PHY for link
1716 *  @hw: pointer to the HW structure
1717 *  @iterations: number of times to poll for link
1718 *  @usec_interval: delay between polling attempts
1719 *  @success: pointer to whether polling was successful or not
1720 *
1721 *  Polls the PHY status register for link, 'iterations' number of times.
1722 **/
1723s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1724				u32 usec_interval, bool *success)
1725{
1726	s32 ret_val = 0;
1727	u16 i, phy_status;
1728
1729	*success = false;
1730	for (i = 0; i < iterations; i++) {
1731		/* Some PHYs require the MII_BMSR register to be read
1732		 * twice due to the link bit being sticky.  No harm doing
1733		 * it across the board.
1734		 */
1735		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1736		if (ret_val) {
1737			/* If the first read fails, another entity may have
1738			 * ownership of the resources, wait and try again to
1739			 * see if they have relinquished the resources yet.
1740			 */
1741			if (usec_interval >= 1000)
1742				msleep(usec_interval / 1000);
1743			else
1744				udelay(usec_interval);
1745		}
1746		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747		if (ret_val)
1748			break;
1749		if (phy_status & BMSR_LSTATUS) {
1750			*success = true;
1751			break;
1752		}
1753		if (usec_interval >= 1000)
1754			msleep(usec_interval / 1000);
1755		else
1756			udelay(usec_interval);
1757	}
1758
1759	return ret_val;
1760}
1761
1762/**
1763 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1764 *  @hw: pointer to the HW structure
1765 *
1766 *  Reads the PHY specific status register to retrieve the cable length
1767 *  information.  The cable length is determined by averaging the minimum and
1768 *  maximum values to get the "average" cable length.  The m88 PHY has four
1769 *  possible cable length values, which are:
1770 *	Register Value		Cable Length
1771 *	0			< 50 meters
1772 *	1			50 - 80 meters
1773 *	2			80 - 110 meters
1774 *	3			110 - 140 meters
1775 *	4			> 140 meters
1776 **/
1777s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1778{
1779	struct e1000_phy_info *phy = &hw->phy;
1780	s32 ret_val;
1781	u16 phy_data, index;
1782
1783	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1784	if (ret_val)
1785		return ret_val;
1786
1787	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1788		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1789
1790	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1791		return -E1000_ERR_PHY;
1792
1793	phy->min_cable_length = e1000_m88_cable_length_table[index];
1794	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1795
1796	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1797
1798	return 0;
1799}
1800
1801/**
1802 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1803 *  @hw: pointer to the HW structure
1804 *
1805 *  The automatic gain control (agc) normalizes the amplitude of the
1806 *  received signal, adjusting for the attenuation produced by the
1807 *  cable.  By reading the AGC registers, which represent the
1808 *  combination of coarse and fine gain value, the value can be put
1809 *  into a lookup table to obtain the approximate cable length
1810 *  for each channel.
1811 **/
1812s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1813{
1814	struct e1000_phy_info *phy = &hw->phy;
1815	s32 ret_val;
1816	u16 phy_data, i, agc_value = 0;
1817	u16 cur_agc_index, max_agc_index = 0;
1818	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1819	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1820		IGP02E1000_PHY_AGC_A,
1821		IGP02E1000_PHY_AGC_B,
1822		IGP02E1000_PHY_AGC_C,
1823		IGP02E1000_PHY_AGC_D
1824	};
1825
1826	/* Read the AGC registers for all channels */
1827	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1828		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1829		if (ret_val)
1830			return ret_val;
1831
1832		/* Getting bits 15:9, which represent the combination of
1833		 * coarse and fine gain values.  The result is a number
1834		 * that can be put into the lookup table to obtain the
1835		 * approximate cable length.
1836		 */
1837		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1838				 IGP02E1000_AGC_LENGTH_MASK);
1839
1840		/* Array index bound check. */
1841		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1842		    (cur_agc_index == 0))
1843			return -E1000_ERR_PHY;
1844
1845		/* Remove min & max AGC values from calculation. */
1846		if (e1000_igp_2_cable_length_table[min_agc_index] >
1847		    e1000_igp_2_cable_length_table[cur_agc_index])
1848			min_agc_index = cur_agc_index;
1849		if (e1000_igp_2_cable_length_table[max_agc_index] <
1850		    e1000_igp_2_cable_length_table[cur_agc_index])
1851			max_agc_index = cur_agc_index;
1852
1853		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1854	}
1855
1856	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1857		      e1000_igp_2_cable_length_table[max_agc_index]);
1858	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1859
1860	/* Calculate cable length with the error range of +/- 10 meters. */
1861	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1862				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1863	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1864
1865	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1866
1867	return 0;
1868}
1869
1870/**
1871 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1872 *  @hw: pointer to the HW structure
1873 *
1874 *  Valid for only copper links.  Read the PHY status register (sticky read)
1875 *  to verify that link is up.  Read the PHY special control register to
1876 *  determine the polarity and 10base-T extended distance.  Read the PHY
1877 *  special status register to determine MDI/MDIx and current speed.  If
1878 *  speed is 1000, then determine cable length, local and remote receiver.
1879 **/
1880s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1881{
1882	struct e1000_phy_info *phy = &hw->phy;
1883	s32 ret_val;
1884	u16 phy_data;
1885	bool link;
1886
1887	if (phy->media_type != e1000_media_type_copper) {
1888		e_dbg("Phy info is only valid for copper media\n");
1889		return -E1000_ERR_CONFIG;
1890	}
1891
1892	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1893	if (ret_val)
1894		return ret_val;
1895
1896	if (!link) {
1897		e_dbg("Phy info is only valid if link is up\n");
1898		return -E1000_ERR_CONFIG;
1899	}
1900
1901	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1902	if (ret_val)
1903		return ret_val;
1904
1905	phy->polarity_correction = !!(phy_data &
1906				      M88E1000_PSCR_POLARITY_REVERSAL);
1907
1908	ret_val = e1000_check_polarity_m88(hw);
1909	if (ret_val)
1910		return ret_val;
1911
1912	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1913	if (ret_val)
1914		return ret_val;
1915
1916	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1917
1918	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1919		ret_val = hw->phy.ops.get_cable_length(hw);
1920		if (ret_val)
1921			return ret_val;
1922
1923		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1924		if (ret_val)
1925			return ret_val;
1926
1927		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1928		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1929
1930		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1931		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1932	} else {
1933		/* Set values to "undefined" */
1934		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1935		phy->local_rx = e1000_1000t_rx_status_undefined;
1936		phy->remote_rx = e1000_1000t_rx_status_undefined;
1937	}
1938
1939	return ret_val;
1940}
1941
1942/**
1943 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1944 *  @hw: pointer to the HW structure
1945 *
1946 *  Read PHY status to determine if link is up.  If link is up, then
1947 *  set/determine 10base-T extended distance and polarity correction.  Read
1948 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1949 *  determine on the cable length, local and remote receiver.
1950 **/
1951s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1952{
1953	struct e1000_phy_info *phy = &hw->phy;
1954	s32 ret_val;
1955	u16 data;
1956	bool link;
1957
1958	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1959	if (ret_val)
1960		return ret_val;
1961
1962	if (!link) {
1963		e_dbg("Phy info is only valid if link is up\n");
1964		return -E1000_ERR_CONFIG;
1965	}
1966
1967	phy->polarity_correction = true;
1968
1969	ret_val = e1000_check_polarity_igp(hw);
1970	if (ret_val)
1971		return ret_val;
1972
1973	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1974	if (ret_val)
1975		return ret_val;
1976
1977	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1978
1979	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1980	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1981		ret_val = phy->ops.get_cable_length(hw);
1982		if (ret_val)
1983			return ret_val;
1984
1985		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
1986		if (ret_val)
1987			return ret_val;
1988
1989		phy->local_rx = (data & LPA_1000LOCALRXOK)
1990		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1991
1992		phy->remote_rx = (data & LPA_1000REMRXOK)
1993		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1994	} else {
1995		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1996		phy->local_rx = e1000_1000t_rx_status_undefined;
1997		phy->remote_rx = e1000_1000t_rx_status_undefined;
1998	}
1999
2000	return ret_val;
2001}
2002
2003/**
2004 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2005 *  @hw: pointer to the HW structure
2006 *
2007 *  Populates "phy" structure with various feature states.
2008 **/
2009s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2010{
2011	struct e1000_phy_info *phy = &hw->phy;
2012	s32 ret_val;
2013	u16 data;
2014	bool link;
2015
2016	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2017	if (ret_val)
2018		return ret_val;
2019
2020	if (!link) {
2021		e_dbg("Phy info is only valid if link is up\n");
2022		return -E1000_ERR_CONFIG;
2023	}
2024
2025	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2026	if (ret_val)
2027		return ret_val;
2028	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2029
2030	if (phy->polarity_correction) {
2031		ret_val = e1000_check_polarity_ife(hw);
2032		if (ret_val)
2033			return ret_val;
2034	} else {
2035		/* Polarity is forced */
2036		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2037				       ? e1000_rev_polarity_reversed
2038				       : e1000_rev_polarity_normal);
2039	}
2040
2041	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2042	if (ret_val)
2043		return ret_val;
2044
2045	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2046
2047	/* The following parameters are undefined for 10/100 operation. */
2048	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2049	phy->local_rx = e1000_1000t_rx_status_undefined;
2050	phy->remote_rx = e1000_1000t_rx_status_undefined;
2051
2052	return 0;
2053}
2054
2055/**
2056 *  e1000e_phy_sw_reset - PHY software reset
2057 *  @hw: pointer to the HW structure
2058 *
2059 *  Does a software reset of the PHY by reading the PHY control register and
2060 *  setting/write the control register reset bit to the PHY.
2061 **/
2062s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2063{
2064	s32 ret_val;
2065	u16 phy_ctrl;
2066
2067	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2068	if (ret_val)
2069		return ret_val;
2070
2071	phy_ctrl |= BMCR_RESET;
2072	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2073	if (ret_val)
2074		return ret_val;
2075
2076	udelay(1);
2077
2078	return ret_val;
2079}
2080
2081/**
2082 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2083 *  @hw: pointer to the HW structure
2084 *
2085 *  Verify the reset block is not blocking us from resetting.  Acquire
2086 *  semaphore (if necessary) and read/set/write the device control reset
2087 *  bit in the PHY.  Wait the appropriate delay time for the device to
2088 *  reset and release the semaphore (if necessary).
2089 **/
2090s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2091{
2092	struct e1000_phy_info *phy = &hw->phy;
2093	s32 ret_val;
2094	u32 ctrl;
2095
2096	if (phy->ops.check_reset_block) {
2097		ret_val = phy->ops.check_reset_block(hw);
2098		if (ret_val)
2099			return 0;
2100	}
2101
2102	ret_val = phy->ops.acquire(hw);
2103	if (ret_val)
2104		return ret_val;
2105
2106	ctrl = er32(CTRL);
2107	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2108	e1e_flush();
2109
2110	udelay(phy->reset_delay_us);
2111
2112	ew32(CTRL, ctrl);
2113	e1e_flush();
2114
2115	usleep_range(150, 300);
2116
2117	phy->ops.release(hw);
2118
2119	return phy->ops.get_cfg_done(hw);
2120}
2121
2122/**
2123 *  e1000e_get_cfg_done_generic - Generic configuration done
2124 *  @hw: pointer to the HW structure
2125 *
2126 *  Generic function to wait 10 milli-seconds for configuration to complete
2127 *  and return success.
2128 **/
2129s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2130{
2131	mdelay(10);
2132
2133	return 0;
2134}
2135
2136/**
2137 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2138 *  @hw: pointer to the HW structure
2139 *
2140 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2141 **/
2142s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2143{
2144	e_dbg("Running IGP 3 PHY init script\n");
2145
2146	/* PHY init IGP 3 */
2147	/* Enable rise/fall, 10-mode work in class-A */
2148	e1e_wphy(hw, 0x2F5B, 0x9018);
2149	/* Remove all caps from Replica path filter */
2150	e1e_wphy(hw, 0x2F52, 0x0000);
2151	/* Bias trimming for ADC, AFE and Driver (Default) */
2152	e1e_wphy(hw, 0x2FB1, 0x8B24);
2153	/* Increase Hybrid poly bias */
2154	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2155	/* Add 4% to Tx amplitude in Gig mode */
2156	e1e_wphy(hw, 0x2010, 0x10B0);
2157	/* Disable trimming (TTT) */
2158	e1e_wphy(hw, 0x2011, 0x0000);
2159	/* Poly DC correction to 94.6% + 2% for all channels */
2160	e1e_wphy(hw, 0x20DD, 0x249A);
2161	/* ABS DC correction to 95.9% */
2162	e1e_wphy(hw, 0x20DE, 0x00D3);
2163	/* BG temp curve trim */
2164	e1e_wphy(hw, 0x28B4, 0x04CE);
2165	/* Increasing ADC OPAMP stage 1 currents to max */
2166	e1e_wphy(hw, 0x2F70, 0x29E4);
2167	/* Force 1000 ( required for enabling PHY regs configuration) */
2168	e1e_wphy(hw, 0x0000, 0x0140);
2169	/* Set upd_freq to 6 */
2170	e1e_wphy(hw, 0x1F30, 0x1606);
2171	/* Disable NPDFE */
2172	e1e_wphy(hw, 0x1F31, 0xB814);
2173	/* Disable adaptive fixed FFE (Default) */
2174	e1e_wphy(hw, 0x1F35, 0x002A);
2175	/* Enable FFE hysteresis */
2176	e1e_wphy(hw, 0x1F3E, 0x0067);
2177	/* Fixed FFE for short cable lengths */
2178	e1e_wphy(hw, 0x1F54, 0x0065);
2179	/* Fixed FFE for medium cable lengths */
2180	e1e_wphy(hw, 0x1F55, 0x002A);
2181	/* Fixed FFE for long cable lengths */
2182	e1e_wphy(hw, 0x1F56, 0x002A);
2183	/* Enable Adaptive Clip Threshold */
2184	e1e_wphy(hw, 0x1F72, 0x3FB0);
2185	/* AHT reset limit to 1 */
2186	e1e_wphy(hw, 0x1F76, 0xC0FF);
2187	/* Set AHT master delay to 127 msec */
2188	e1e_wphy(hw, 0x1F77, 0x1DEC);
2189	/* Set scan bits for AHT */
2190	e1e_wphy(hw, 0x1F78, 0xF9EF);
2191	/* Set AHT Preset bits */
2192	e1e_wphy(hw, 0x1F79, 0x0210);
2193	/* Change integ_factor of channel A to 3 */
2194	e1e_wphy(hw, 0x1895, 0x0003);
2195	/* Change prop_factor of channels BCD to 8 */
2196	e1e_wphy(hw, 0x1796, 0x0008);
2197	/* Change cg_icount + enable integbp for channels BCD */
2198	e1e_wphy(hw, 0x1798, 0xD008);
2199	/* Change cg_icount + enable integbp + change prop_factor_master
2200	 * to 8 for channel A
2201	 */
2202	e1e_wphy(hw, 0x1898, 0xD918);
2203	/* Disable AHT in Slave mode on channel A */
2204	e1e_wphy(hw, 0x187A, 0x0800);
2205	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2206	 * Enable SPD+B2B
2207	 */
2208	e1e_wphy(hw, 0x0019, 0x008D);
2209	/* Enable restart AN on an1000_dis change */
2210	e1e_wphy(hw, 0x001B, 0x2080);
2211	/* Enable wh_fifo read clock in 10/100 modes */
2212	e1e_wphy(hw, 0x0014, 0x0045);
2213	/* Restart AN, Speed selection is 1000 */
2214	e1e_wphy(hw, 0x0000, 0x1340);
2215
2216	return 0;
2217}
2218
2219/**
2220 *  e1000e_get_phy_type_from_id - Get PHY type from id
2221 *  @phy_id: phy_id read from the phy
2222 *
2223 *  Returns the phy type from the id.
2224 **/
2225enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2226{
2227	enum e1000_phy_type phy_type = e1000_phy_unknown;
2228
2229	switch (phy_id) {
2230	case M88E1000_I_PHY_ID:
2231	case M88E1000_E_PHY_ID:
2232	case M88E1111_I_PHY_ID:
2233	case M88E1011_I_PHY_ID:
2234		phy_type = e1000_phy_m88;
2235		break;
2236	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2237		phy_type = e1000_phy_igp_2;
2238		break;
2239	case GG82563_E_PHY_ID:
2240		phy_type = e1000_phy_gg82563;
2241		break;
2242	case IGP03E1000_E_PHY_ID:
2243		phy_type = e1000_phy_igp_3;
2244		break;
2245	case IFE_E_PHY_ID:
2246	case IFE_PLUS_E_PHY_ID:
2247	case IFE_C_E_PHY_ID:
2248		phy_type = e1000_phy_ife;
2249		break;
2250	case BME1000_E_PHY_ID:
2251	case BME1000_E_PHY_ID_R2:
2252		phy_type = e1000_phy_bm;
2253		break;
2254	case I82578_E_PHY_ID:
2255		phy_type = e1000_phy_82578;
2256		break;
2257	case I82577_E_PHY_ID:
2258		phy_type = e1000_phy_82577;
2259		break;
2260	case I82579_E_PHY_ID:
2261		phy_type = e1000_phy_82579;
2262		break;
2263	case I217_E_PHY_ID:
2264		phy_type = e1000_phy_i217;
2265		break;
2266	default:
2267		phy_type = e1000_phy_unknown;
2268		break;
2269	}
2270	return phy_type;
2271}
2272
2273/**
2274 *  e1000e_determine_phy_address - Determines PHY address.
2275 *  @hw: pointer to the HW structure
2276 *
2277 *  This uses a trial and error method to loop through possible PHY
2278 *  addresses. It tests each by reading the PHY ID registers and
2279 *  checking for a match.
2280 **/
2281s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2282{
2283	u32 phy_addr = 0;
2284	u32 i;
2285	enum e1000_phy_type phy_type = e1000_phy_unknown;
2286
2287	hw->phy.id = phy_type;
2288
2289	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2290		hw->phy.addr = phy_addr;
2291		i = 0;
2292
2293		do {
2294			e1000e_get_phy_id(hw);
2295			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2296
2297			/* If phy_type is valid, break - we found our
2298			 * PHY address
2299			 */
2300			if (phy_type != e1000_phy_unknown)
2301				return 0;
2302
2303			usleep_range(1000, 2000);
2304			i++;
2305		} while (i < 10);
2306	}
2307
2308	return -E1000_ERR_PHY_TYPE;
2309}
2310
2311/**
2312 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2313 *  @page: page to access
2314 *  @reg: register to check
2315 *
2316 *  Returns the phy address for the page requested.
2317 **/
2318static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2319{
2320	u32 phy_addr = 2;
2321
2322	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2323		phy_addr = 1;
2324
2325	return phy_addr;
2326}
2327
2328/**
2329 *  e1000e_write_phy_reg_bm - Write BM PHY register
2330 *  @hw: pointer to the HW structure
2331 *  @offset: register offset to write to
2332 *  @data: data to write at register offset
2333 *
2334 *  Acquires semaphore, if necessary, then writes the data to PHY register
2335 *  at the offset.  Release any acquired semaphores before exiting.
2336 **/
2337s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2338{
2339	s32 ret_val;
2340	u32 page = offset >> IGP_PAGE_SHIFT;
2341
2342	ret_val = hw->phy.ops.acquire(hw);
2343	if (ret_val)
2344		return ret_val;
2345
2346	/* Page 800 works differently than the rest so it has its own func */
2347	if (page == BM_WUC_PAGE) {
2348		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2349							 false, false);
2350		goto release;
2351	}
2352
2353	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2354
2355	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2356		u32 page_shift, page_select;
2357
2358		/* Page select is register 31 for phy address 1 and 22 for
2359		 * phy address 2 and 3. Page select is shifted only for
2360		 * phy address 1.
2361		 */
2362		if (hw->phy.addr == 1) {
2363			page_shift = IGP_PAGE_SHIFT;
2364			page_select = IGP01E1000_PHY_PAGE_SELECT;
2365		} else {
2366			page_shift = 0;
2367			page_select = BM_PHY_PAGE_SELECT;
2368		}
2369
2370		/* Page is shifted left, PHY expects (page x 32) */
2371		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2372						    (page << page_shift));
2373		if (ret_val)
2374			goto release;
2375	}
2376
2377	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2378					    data);
2379
2380release:
2381	hw->phy.ops.release(hw);
2382	return ret_val;
2383}
2384
2385/**
2386 *  e1000e_read_phy_reg_bm - Read BM PHY register
2387 *  @hw: pointer to the HW structure
2388 *  @offset: register offset to be read
2389 *  @data: pointer to the read data
2390 *
2391 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2392 *  and storing the retrieved information in data.  Release any acquired
2393 *  semaphores before exiting.
2394 **/
2395s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2396{
2397	s32 ret_val;
2398	u32 page = offset >> IGP_PAGE_SHIFT;
2399
2400	ret_val = hw->phy.ops.acquire(hw);
2401	if (ret_val)
2402		return ret_val;
2403
2404	/* Page 800 works differently than the rest so it has its own func */
2405	if (page == BM_WUC_PAGE) {
2406		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2407							 true, false);
2408		goto release;
2409	}
2410
2411	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2412
2413	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2414		u32 page_shift, page_select;
2415
2416		/* Page select is register 31 for phy address 1 and 22 for
2417		 * phy address 2 and 3. Page select is shifted only for
2418		 * phy address 1.
2419		 */
2420		if (hw->phy.addr == 1) {
2421			page_shift = IGP_PAGE_SHIFT;
2422			page_select = IGP01E1000_PHY_PAGE_SELECT;
2423		} else {
2424			page_shift = 0;
2425			page_select = BM_PHY_PAGE_SELECT;
2426		}
2427
2428		/* Page is shifted left, PHY expects (page x 32) */
2429		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2430						    (page << page_shift));
2431		if (ret_val)
2432			goto release;
2433	}
2434
2435	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2436					   data);
2437release:
2438	hw->phy.ops.release(hw);
2439	return ret_val;
2440}
2441
2442/**
2443 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2444 *  @hw: pointer to the HW structure
2445 *  @offset: register offset to be read
2446 *  @data: pointer to the read data
2447 *
2448 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2449 *  and storing the retrieved information in data.  Release any acquired
2450 *  semaphores before exiting.
2451 **/
2452s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2453{
2454	s32 ret_val;
2455	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2456
2457	ret_val = hw->phy.ops.acquire(hw);
2458	if (ret_val)
2459		return ret_val;
2460
2461	/* Page 800 works differently than the rest so it has its own func */
2462	if (page == BM_WUC_PAGE) {
2463		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2464							 true, false);
2465		goto release;
2466	}
2467
2468	hw->phy.addr = 1;
2469
2470	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2471		/* Page is shifted left, PHY expects (page x 32) */
2472		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2473						    page);
2474
2475		if (ret_val)
2476			goto release;
2477	}
2478
2479	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2480					   data);
2481release:
2482	hw->phy.ops.release(hw);
2483	return ret_val;
2484}
2485
2486/**
2487 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2488 *  @hw: pointer to the HW structure
2489 *  @offset: register offset to write to
2490 *  @data: data to write at register offset
2491 *
2492 *  Acquires semaphore, if necessary, then writes the data to PHY register
2493 *  at the offset.  Release any acquired semaphores before exiting.
2494 **/
2495s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2496{
2497	s32 ret_val;
2498	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2499
2500	ret_val = hw->phy.ops.acquire(hw);
2501	if (ret_val)
2502		return ret_val;
2503
2504	/* Page 800 works differently than the rest so it has its own func */
2505	if (page == BM_WUC_PAGE) {
2506		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2507							 false, false);
2508		goto release;
2509	}
2510
2511	hw->phy.addr = 1;
2512
2513	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2514		/* Page is shifted left, PHY expects (page x 32) */
2515		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2516						    page);
2517
2518		if (ret_val)
2519			goto release;
2520	}
2521
2522	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2523					    data);
2524
2525release:
2526	hw->phy.ops.release(hw);
2527	return ret_val;
2528}
2529
2530/**
2531 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2532 *  @hw: pointer to the HW structure
2533 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2534 *
2535 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2536 *  address to store contents of the BM_WUC_ENABLE_REG register.
2537 **/
2538s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2539{
2540	s32 ret_val;
2541	u16 temp;
2542
2543	/* All page select, port ctrl and wakeup registers use phy address 1 */
2544	hw->phy.addr = 1;
2545
2546	/* Select Port Control Registers page */
2547	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2548	if (ret_val) {
2549		e_dbg("Could not set Port Control page\n");
2550		return ret_val;
2551	}
2552
2553	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2554	if (ret_val) {
2555		e_dbg("Could not read PHY register %d.%d\n",
2556		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2557		return ret_val;
2558	}
2559
2560	/* Enable both PHY wakeup mode and Wakeup register page writes.
2561	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2562	 */
2563	temp = *phy_reg;
2564	temp |= BM_WUC_ENABLE_BIT;
2565	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2566
2567	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2568	if (ret_val) {
2569		e_dbg("Could not write PHY register %d.%d\n",
2570		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2571		return ret_val;
2572	}
2573
2574	/* Select Host Wakeup Registers page - caller now able to write
2575	 * registers on the Wakeup registers page
2576	 */
2577	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2578}
2579
2580/**
2581 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2582 *  @hw: pointer to the HW structure
2583 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2584 *
2585 *  Restore BM_WUC_ENABLE_REG to its original value.
2586 *
2587 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2588 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2589 *  caller.
2590 **/
2591s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2592{
2593	s32 ret_val;
2594
2595	/* Select Port Control Registers page */
2596	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2597	if (ret_val) {
2598		e_dbg("Could not set Port Control page\n");
2599		return ret_val;
2600	}
2601
2602	/* Restore 769.17 to its original value */
2603	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2604	if (ret_val)
2605		e_dbg("Could not restore PHY register %d.%d\n",
2606		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2607
2608	return ret_val;
2609}
2610
2611/**
2612 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2613 *  @hw: pointer to the HW structure
2614 *  @offset: register offset to be read or written
2615 *  @data: pointer to the data to read or write
2616 *  @read: determines if operation is read or write
2617 *  @page_set: BM_WUC_PAGE already set and access enabled
2618 *
2619 *  Read the PHY register at offset and store the retrieved information in
2620 *  data, or write data to PHY register at offset.  Note the procedure to
2621 *  access the PHY wakeup registers is different than reading the other PHY
2622 *  registers. It works as such:
2623 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2624 *  2) Set page to 800 for host (801 if we were manageability)
2625 *  3) Write the address using the address opcode (0x11)
2626 *  4) Read or write the data using the data opcode (0x12)
2627 *  5) Restore 769.17.2 to its original value
2628 *
2629 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2630 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2631 *
2632 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2633 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2634 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2635 **/
2636static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2637					  u16 *data, bool read, bool page_set)
2638{
2639	s32 ret_val;
2640	u16 reg = BM_PHY_REG_NUM(offset);
2641	u16 page = BM_PHY_REG_PAGE(offset);
2642	u16 phy_reg = 0;
2643
2644	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2645	if ((hw->mac.type == e1000_pchlan) &&
2646	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2647		e_dbg("Attempting to access page %d while gig enabled.\n",
2648		      page);
2649
2650	if (!page_set) {
2651		/* Enable access to PHY wakeup registers */
2652		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2653		if (ret_val) {
2654			e_dbg("Could not enable PHY wakeup reg access\n");
2655			return ret_val;
2656		}
2657	}
2658
2659	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2660
2661	/* Write the Wakeup register page offset value using opcode 0x11 */
2662	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2663	if (ret_val) {
2664		e_dbg("Could not write address opcode to page %d\n", page);
2665		return ret_val;
2666	}
2667
2668	if (read) {
2669		/* Read the Wakeup register page value using opcode 0x12 */
2670		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2671						   data);
2672	} else {
2673		/* Write the Wakeup register page value using opcode 0x12 */
2674		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2675						    *data);
2676	}
2677
2678	if (ret_val) {
2679		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2680		return ret_val;
2681	}
2682
2683	if (!page_set)
2684		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2685
2686	return ret_val;
2687}
2688
2689/**
2690 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2691 * @hw: pointer to the HW structure
2692 *
2693 * In the case of a PHY power down to save power, or to turn off link during a
2694 * driver unload, or wake on lan is not enabled, restore the link to previous
2695 * settings.
2696 **/
2697void e1000_power_up_phy_copper(struct e1000_hw *hw)
2698{
2699	u16 mii_reg = 0;
2700	int ret;
2701
2702	/* The PHY will retain its settings across a power down/up cycle */
2703	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2704	if (ret) {
2705		e_dbg("Error reading PHY register\n");
2706		return;
2707	}
2708	mii_reg &= ~BMCR_PDOWN;
2709	e1e_wphy(hw, MII_BMCR, mii_reg);
2710}
2711
2712/**
2713 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2714 * @hw: pointer to the HW structure
2715 *
2716 * In the case of a PHY power down to save power, or to turn off link during a
2717 * driver unload, or wake on lan is not enabled, restore the link to previous
2718 * settings.
2719 **/
2720void e1000_power_down_phy_copper(struct e1000_hw *hw)
2721{
2722	u16 mii_reg = 0;
2723	int ret;
2724
2725	/* The PHY will retain its settings across a power down/up cycle */
2726	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2727	if (ret) {
2728		e_dbg("Error reading PHY register\n");
2729		return;
2730	}
2731	mii_reg |= BMCR_PDOWN;
2732	e1e_wphy(hw, MII_BMCR, mii_reg);
2733	usleep_range(1000, 2000);
2734}
2735
2736/**
2737 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2738 *  @hw: pointer to the HW structure
2739 *  @offset: register offset to be read
2740 *  @data: pointer to the read data
2741 *  @locked: semaphore has already been acquired or not
2742 *  @page_set: BM_WUC_PAGE already set and access enabled
2743 *
2744 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2745 *  and stores the retrieved information in data.  Release any acquired
2746 *  semaphore before exiting.
2747 **/
2748static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2749				   bool locked, bool page_set)
2750{
2751	s32 ret_val;
2752	u16 page = BM_PHY_REG_PAGE(offset);
2753	u16 reg = BM_PHY_REG_NUM(offset);
2754	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2755
2756	if (!locked) {
2757		ret_val = hw->phy.ops.acquire(hw);
2758		if (ret_val)
2759			return ret_val;
2760	}
2761
2762	/* Page 800 works differently than the rest so it has its own func */
2763	if (page == BM_WUC_PAGE) {
2764		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2765							 true, page_set);
2766		goto out;
2767	}
2768
2769	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2770		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2771							 data, true);
2772		goto out;
2773	}
2774
2775	if (!page_set) {
2776		if (page == HV_INTC_FC_PAGE_START)
2777			page = 0;
2778
2779		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2780			/* Page is shifted left, PHY expects (page x 32) */
2781			ret_val = e1000_set_page_igp(hw,
2782						     (page << IGP_PAGE_SHIFT));
2783
2784			hw->phy.addr = phy_addr;
2785
2786			if (ret_val)
2787				goto out;
2788		}
2789	}
2790
2791	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2792	      page << IGP_PAGE_SHIFT, reg);
2793
2794	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2795out:
2796	if (!locked)
2797		hw->phy.ops.release(hw);
2798
2799	return ret_val;
2800}
2801
2802/**
2803 *  e1000_read_phy_reg_hv -  Read HV PHY register
2804 *  @hw: pointer to the HW structure
2805 *  @offset: register offset to be read
2806 *  @data: pointer to the read data
2807 *
2808 *  Acquires semaphore then reads the PHY register at offset and stores
2809 *  the retrieved information in data.  Release the acquired semaphore
2810 *  before exiting.
2811 **/
2812s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2813{
2814	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2815}
2816
2817/**
2818 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2819 *  @hw: pointer to the HW structure
2820 *  @offset: register offset to be read
2821 *  @data: pointer to the read data
2822 *
2823 *  Reads the PHY register at offset and stores the retrieved information
2824 *  in data.  Assumes semaphore already acquired.
2825 **/
2826s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2827{
2828	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2829}
2830
2831/**
2832 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2833 *  @hw: pointer to the HW structure
2834 *  @offset: register offset to write to
2835 *  @data: data to write at register offset
2836 *
2837 *  Reads the PHY register at offset and stores the retrieved information
2838 *  in data.  Assumes semaphore already acquired and page already set.
2839 **/
2840s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2841{
2842	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2843}
2844
2845/**
2846 *  __e1000_write_phy_reg_hv - Write HV PHY register
2847 *  @hw: pointer to the HW structure
2848 *  @offset: register offset to write to
2849 *  @data: data to write at register offset
2850 *  @locked: semaphore has already been acquired or not
2851 *  @page_set: BM_WUC_PAGE already set and access enabled
2852 *
2853 *  Acquires semaphore, if necessary, then writes the data to PHY register
2854 *  at the offset.  Release any acquired semaphores before exiting.
2855 **/
2856static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2857				    bool locked, bool page_set)
2858{
2859	s32 ret_val;
2860	u16 page = BM_PHY_REG_PAGE(offset);
2861	u16 reg = BM_PHY_REG_NUM(offset);
2862	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2863
2864	if (!locked) {
2865		ret_val = hw->phy.ops.acquire(hw);
2866		if (ret_val)
2867			return ret_val;
2868	}
2869
2870	/* Page 800 works differently than the rest so it has its own func */
2871	if (page == BM_WUC_PAGE) {
2872		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2873							 false, page_set);
2874		goto out;
2875	}
2876
2877	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2878		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2879							 &data, false);
2880		goto out;
2881	}
2882
2883	if (!page_set) {
2884		if (page == HV_INTC_FC_PAGE_START)
2885			page = 0;
2886
2887		/* Workaround MDIO accesses being disabled after entering IEEE
2888		 * Power Down (when bit 11 of the PHY Control register is set)
2889		 */
2890		if ((hw->phy.type == e1000_phy_82578) &&
2891		    (hw->phy.revision >= 1) &&
2892		    (hw->phy.addr == 2) &&
2893		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2894			u16 data2 = 0x7EFF;
2895
2896			ret_val = e1000_access_phy_debug_regs_hv(hw,
2897								 BIT(6) | 0x3,
2898								 &data2, false);
2899			if (ret_val)
2900				goto out;
2901		}
2902
2903		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2904			/* Page is shifted left, PHY expects (page x 32) */
2905			ret_val = e1000_set_page_igp(hw,
2906						     (page << IGP_PAGE_SHIFT));
2907
2908			hw->phy.addr = phy_addr;
2909
2910			if (ret_val)
2911				goto out;
2912		}
2913	}
2914
2915	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2916	      page << IGP_PAGE_SHIFT, reg);
2917
2918	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2919					    data);
2920
2921out:
2922	if (!locked)
2923		hw->phy.ops.release(hw);
2924
2925	return ret_val;
2926}
2927
2928/**
2929 *  e1000_write_phy_reg_hv - Write HV PHY register
2930 *  @hw: pointer to the HW structure
2931 *  @offset: register offset to write to
2932 *  @data: data to write at register offset
2933 *
2934 *  Acquires semaphore then writes the data to PHY register at the offset.
2935 *  Release the acquired semaphores before exiting.
2936 **/
2937s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2938{
2939	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2940}
2941
2942/**
2943 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2944 *  @hw: pointer to the HW structure
2945 *  @offset: register offset to write to
2946 *  @data: data to write at register offset
2947 *
2948 *  Writes the data to PHY register at the offset.  Assumes semaphore
2949 *  already acquired.
2950 **/
2951s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2952{
2953	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2954}
2955
2956/**
2957 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2958 *  @hw: pointer to the HW structure
2959 *  @offset: register offset to write to
2960 *  @data: data to write at register offset
2961 *
2962 *  Writes the data to PHY register at the offset.  Assumes semaphore
2963 *  already acquired and page already set.
2964 **/
2965s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2966{
2967	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2968}
2969
2970/**
2971 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2972 *  @page: page to be accessed
2973 **/
2974static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2975{
2976	u32 phy_addr = 2;
2977
2978	if (page >= HV_INTC_FC_PAGE_START)
2979		phy_addr = 1;
2980
2981	return phy_addr;
2982}
2983
2984/**
2985 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2986 *  @hw: pointer to the HW structure
2987 *  @offset: register offset to be read or written
2988 *  @data: pointer to the data to be read or written
2989 *  @read: determines if operation is read or write
2990 *
2991 *  Reads the PHY register at offset and stores the retrieved information
2992 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2993 *  to access these regs uses the address port and data port to read/write.
2994 *  These accesses done with PHY address 2 and without using pages.
2995 **/
2996static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
2997					  u16 *data, bool read)
2998{
2999	s32 ret_val;
3000	u32 addr_reg;
3001	u32 data_reg;
3002
3003	/* This takes care of the difference with desktop vs mobile phy */
3004	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3005		    I82578_ADDR_REG : I82577_ADDR_REG);
3006	data_reg = addr_reg + 1;
3007
3008	/* All operations in this function are phy address 2 */
3009	hw->phy.addr = 2;
3010
3011	/* masking with 0x3F to remove the page from offset */
3012	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3013	if (ret_val) {
3014		e_dbg("Could not write the Address Offset port register\n");
3015		return ret_val;
3016	}
3017
3018	/* Read or write the data value next */
3019	if (read)
3020		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3021	else
3022		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3023
3024	if (ret_val)
3025		e_dbg("Could not access the Data port register\n");
3026
3027	return ret_val;
3028}
3029
3030/**
3031 *  e1000_link_stall_workaround_hv - Si workaround
3032 *  @hw: pointer to the HW structure
3033 *
3034 *  This function works around a Si bug where the link partner can get
3035 *  a link up indication before the PHY does.  If small packets are sent
3036 *  by the link partner they can be placed in the packet buffer without
3037 *  being properly accounted for by the PHY and will stall preventing
3038 *  further packets from being received.  The workaround is to clear the
3039 *  packet buffer after the PHY detects link up.
3040 **/
3041s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3042{
3043	s32 ret_val = 0;
3044	u16 data;
3045
3046	if (hw->phy.type != e1000_phy_82578)
3047		return 0;
3048
3049	/* Do not apply workaround if in PHY loopback bit 14 set */
3050	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3051	if (ret_val) {
3052		e_dbg("Error reading PHY register\n");
3053		return ret_val;
3054	}
3055	if (data & BMCR_LOOPBACK)
3056		return 0;
3057
3058	/* check if link is up and at 1Gbps */
3059	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3060	if (ret_val)
3061		return ret_val;
3062
3063	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3064		 BM_CS_STATUS_SPEED_MASK);
3065
3066	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3067		     BM_CS_STATUS_SPEED_1000))
3068		return 0;
3069
3070	msleep(200);
3071
3072	/* flush the packets in the fifo buffer */
3073	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3074			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3075			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3076	if (ret_val)
3077		return ret_val;
3078
3079	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3080}
3081
3082/**
3083 *  e1000_check_polarity_82577 - Checks the polarity.
3084 *  @hw: pointer to the HW structure
3085 *
3086 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3087 *
3088 *  Polarity is determined based on the PHY specific status register.
3089 **/
3090s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3091{
3092	struct e1000_phy_info *phy = &hw->phy;
3093	s32 ret_val;
3094	u16 data;
3095
3096	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3097
3098	if (!ret_val)
3099		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3100				       ? e1000_rev_polarity_reversed
3101				       : e1000_rev_polarity_normal);
3102
3103	return ret_val;
3104}
3105
3106/**
3107 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3108 *  @hw: pointer to the HW structure
3109 *
3110 *  Calls the PHY setup function to force speed and duplex.
3111 **/
3112s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3113{
3114	struct e1000_phy_info *phy = &hw->phy;
3115	s32 ret_val;
3116	u16 phy_data;
3117	bool link;
3118
3119	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3120	if (ret_val)
3121		return ret_val;
3122
3123	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3124
3125	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3126	if (ret_val)
3127		return ret_val;
3128
3129	udelay(1);
3130
3131	if (phy->autoneg_wait_to_complete) {
3132		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3133
3134		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3135						      100000, &link);
3136		if (ret_val)
3137			return ret_val;
3138
3139		if (!link)
3140			e_dbg("Link taking longer than expected.\n");
3141
3142		/* Try once more */
3143		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3144						      100000, &link);
3145	}
3146
3147	return ret_val;
3148}
3149
3150/**
3151 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3152 *  @hw: pointer to the HW structure
3153 *
3154 *  Read PHY status to determine if link is up.  If link is up, then
3155 *  set/determine 10base-T extended distance and polarity correction.  Read
3156 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3157 *  determine on the cable length, local and remote receiver.
3158 **/
3159s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3160{
3161	struct e1000_phy_info *phy = &hw->phy;
3162	s32 ret_val;
3163	u16 data;
3164	bool link;
3165
3166	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3167	if (ret_val)
3168		return ret_val;
3169
3170	if (!link) {
3171		e_dbg("Phy info is only valid if link is up\n");
3172		return -E1000_ERR_CONFIG;
3173	}
3174
3175	phy->polarity_correction = true;
3176
3177	ret_val = e1000_check_polarity_82577(hw);
3178	if (ret_val)
3179		return ret_val;
3180
3181	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3182	if (ret_val)
3183		return ret_val;
3184
3185	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3186
3187	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3188	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3189		ret_val = hw->phy.ops.get_cable_length(hw);
3190		if (ret_val)
3191			return ret_val;
3192
3193		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3194		if (ret_val)
3195			return ret_val;
3196
3197		phy->local_rx = (data & LPA_1000LOCALRXOK)
3198		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3199
3200		phy->remote_rx = (data & LPA_1000REMRXOK)
3201		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3202	} else {
3203		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3204		phy->local_rx = e1000_1000t_rx_status_undefined;
3205		phy->remote_rx = e1000_1000t_rx_status_undefined;
3206	}
3207
3208	return 0;
3209}
3210
3211/**
3212 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3213 *  @hw: pointer to the HW structure
3214 *
3215 * Reads the diagnostic status register and verifies result is valid before
3216 * placing it in the phy_cable_length field.
3217 **/
3218s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3219{
3220	struct e1000_phy_info *phy = &hw->phy;
3221	s32 ret_val;
3222	u16 phy_data, length;
3223
3224	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3225	if (ret_val)
3226		return ret_val;
3227
3228	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3229		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3230
3231	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3232		return -E1000_ERR_PHY;
3233
3234	phy->cable_length = length;
3235
3236	return 0;
3237}