Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
 292{
 293	put_unaligned_be24(val << shift, buf);
 294}
 295
 296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 297{
 298	put_unaligned_be32(val << shift, buf);
 299}
 300
 301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 302{
 303	put_unaligned_le32(val << shift, buf);
 304}
 305
 306static void regmap_format_32_native(void *buf, unsigned int val,
 307				    unsigned int shift)
 308{
 309	u32 v = val << shift;
 310
 311	memcpy(buf, &v, sizeof(v));
 312}
 313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314static void regmap_parse_inplace_noop(void *buf)
 315{
 316}
 317
 318static unsigned int regmap_parse_8(const void *buf)
 319{
 320	const u8 *b = buf;
 321
 322	return b[0];
 323}
 324
 325static unsigned int regmap_parse_16_be(const void *buf)
 326{
 327	return get_unaligned_be16(buf);
 328}
 329
 330static unsigned int regmap_parse_16_le(const void *buf)
 331{
 332	return get_unaligned_le16(buf);
 333}
 334
 335static void regmap_parse_16_be_inplace(void *buf)
 336{
 337	u16 v = get_unaligned_be16(buf);
 338
 339	memcpy(buf, &v, sizeof(v));
 340}
 341
 342static void regmap_parse_16_le_inplace(void *buf)
 343{
 344	u16 v = get_unaligned_le16(buf);
 345
 346	memcpy(buf, &v, sizeof(v));
 347}
 348
 349static unsigned int regmap_parse_16_native(const void *buf)
 350{
 351	u16 v;
 352
 353	memcpy(&v, buf, sizeof(v));
 354	return v;
 355}
 356
 357static unsigned int regmap_parse_24_be(const void *buf)
 358{
 359	return get_unaligned_be24(buf);
 360}
 361
 362static unsigned int regmap_parse_32_be(const void *buf)
 363{
 364	return get_unaligned_be32(buf);
 365}
 366
 367static unsigned int regmap_parse_32_le(const void *buf)
 368{
 369	return get_unaligned_le32(buf);
 370}
 371
 372static void regmap_parse_32_be_inplace(void *buf)
 373{
 374	u32 v = get_unaligned_be32(buf);
 375
 376	memcpy(buf, &v, sizeof(v));
 377}
 378
 379static void regmap_parse_32_le_inplace(void *buf)
 380{
 381	u32 v = get_unaligned_le32(buf);
 382
 383	memcpy(buf, &v, sizeof(v));
 384}
 385
 386static unsigned int regmap_parse_32_native(const void *buf)
 387{
 388	u32 v;
 389
 390	memcpy(&v, buf, sizeof(v));
 391	return v;
 392}
 393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394static void regmap_lock_hwlock(void *__map)
 395{
 396	struct regmap *map = __map;
 397
 398	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 399}
 400
 401static void regmap_lock_hwlock_irq(void *__map)
 402{
 403	struct regmap *map = __map;
 404
 405	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 406}
 407
 408static void regmap_lock_hwlock_irqsave(void *__map)
 409{
 410	struct regmap *map = __map;
 411
 412	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 413				    &map->spinlock_flags);
 414}
 415
 416static void regmap_unlock_hwlock(void *__map)
 417{
 418	struct regmap *map = __map;
 419
 420	hwspin_unlock(map->hwlock);
 421}
 422
 423static void regmap_unlock_hwlock_irq(void *__map)
 424{
 425	struct regmap *map = __map;
 426
 427	hwspin_unlock_irq(map->hwlock);
 428}
 429
 430static void regmap_unlock_hwlock_irqrestore(void *__map)
 431{
 432	struct regmap *map = __map;
 433
 434	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 435}
 436
 437static void regmap_lock_unlock_none(void *__map)
 438{
 439
 440}
 441
 442static void regmap_lock_mutex(void *__map)
 443{
 444	struct regmap *map = __map;
 445	mutex_lock(&map->mutex);
 446}
 447
 448static void regmap_unlock_mutex(void *__map)
 449{
 450	struct regmap *map = __map;
 451	mutex_unlock(&map->mutex);
 452}
 453
 454static void regmap_lock_spinlock(void *__map)
 455__acquires(&map->spinlock)
 456{
 457	struct regmap *map = __map;
 458	unsigned long flags;
 459
 460	spin_lock_irqsave(&map->spinlock, flags);
 461	map->spinlock_flags = flags;
 462}
 463
 464static void regmap_unlock_spinlock(void *__map)
 465__releases(&map->spinlock)
 466{
 467	struct regmap *map = __map;
 468	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 469}
 470
 471static void regmap_lock_raw_spinlock(void *__map)
 472__acquires(&map->raw_spinlock)
 473{
 474	struct regmap *map = __map;
 475	unsigned long flags;
 476
 477	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
 478	map->raw_spinlock_flags = flags;
 479}
 480
 481static void regmap_unlock_raw_spinlock(void *__map)
 482__releases(&map->raw_spinlock)
 483{
 484	struct regmap *map = __map;
 485	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
 486}
 487
 488static void dev_get_regmap_release(struct device *dev, void *res)
 489{
 490	/*
 491	 * We don't actually have anything to do here; the goal here
 492	 * is not to manage the regmap but to provide a simple way to
 493	 * get the regmap back given a struct device.
 494	 */
 495}
 496
 497static bool _regmap_range_add(struct regmap *map,
 498			      struct regmap_range_node *data)
 499{
 500	struct rb_root *root = &map->range_tree;
 501	struct rb_node **new = &(root->rb_node), *parent = NULL;
 502
 503	while (*new) {
 504		struct regmap_range_node *this =
 505			rb_entry(*new, struct regmap_range_node, node);
 506
 507		parent = *new;
 508		if (data->range_max < this->range_min)
 509			new = &((*new)->rb_left);
 510		else if (data->range_min > this->range_max)
 511			new = &((*new)->rb_right);
 512		else
 513			return false;
 514	}
 515
 516	rb_link_node(&data->node, parent, new);
 517	rb_insert_color(&data->node, root);
 518
 519	return true;
 520}
 521
 522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 523						      unsigned int reg)
 524{
 525	struct rb_node *node = map->range_tree.rb_node;
 526
 527	while (node) {
 528		struct regmap_range_node *this =
 529			rb_entry(node, struct regmap_range_node, node);
 530
 531		if (reg < this->range_min)
 532			node = node->rb_left;
 533		else if (reg > this->range_max)
 534			node = node->rb_right;
 535		else
 536			return this;
 537	}
 538
 539	return NULL;
 540}
 541
 542static void regmap_range_exit(struct regmap *map)
 543{
 544	struct rb_node *next;
 545	struct regmap_range_node *range_node;
 546
 547	next = rb_first(&map->range_tree);
 548	while (next) {
 549		range_node = rb_entry(next, struct regmap_range_node, node);
 550		next = rb_next(&range_node->node);
 551		rb_erase(&range_node->node, &map->range_tree);
 552		kfree(range_node);
 553	}
 554
 555	kfree(map->selector_work_buf);
 556}
 557
 558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 559{
 560	if (config->name) {
 561		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 562
 563		if (!name)
 564			return -ENOMEM;
 565
 566		kfree_const(map->name);
 567		map->name = name;
 568	}
 569
 570	return 0;
 571}
 572
 573int regmap_attach_dev(struct device *dev, struct regmap *map,
 574		      const struct regmap_config *config)
 575{
 576	struct regmap **m;
 577	int ret;
 578
 579	map->dev = dev;
 580
 581	ret = regmap_set_name(map, config);
 582	if (ret)
 583		return ret;
 584
 585	regmap_debugfs_exit(map);
 586	regmap_debugfs_init(map);
 587
 588	/* Add a devres resource for dev_get_regmap() */
 589	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 590	if (!m) {
 591		regmap_debugfs_exit(map);
 592		return -ENOMEM;
 593	}
 594	*m = map;
 595	devres_add(dev, m);
 596
 597	return 0;
 598}
 599EXPORT_SYMBOL_GPL(regmap_attach_dev);
 600
 601static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 602					const struct regmap_config *config)
 603{
 604	enum regmap_endian endian;
 605
 606	/* Retrieve the endianness specification from the regmap config */
 607	endian = config->reg_format_endian;
 608
 609	/* If the regmap config specified a non-default value, use that */
 610	if (endian != REGMAP_ENDIAN_DEFAULT)
 611		return endian;
 612
 613	/* Retrieve the endianness specification from the bus config */
 614	if (bus && bus->reg_format_endian_default)
 615		endian = bus->reg_format_endian_default;
 616
 617	/* If the bus specified a non-default value, use that */
 618	if (endian != REGMAP_ENDIAN_DEFAULT)
 619		return endian;
 620
 621	/* Use this if no other value was found */
 622	return REGMAP_ENDIAN_BIG;
 623}
 624
 625enum regmap_endian regmap_get_val_endian(struct device *dev,
 626					 const struct regmap_bus *bus,
 627					 const struct regmap_config *config)
 628{
 629	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 630	enum regmap_endian endian;
 631
 632	/* Retrieve the endianness specification from the regmap config */
 633	endian = config->val_format_endian;
 634
 635	/* If the regmap config specified a non-default value, use that */
 636	if (endian != REGMAP_ENDIAN_DEFAULT)
 637		return endian;
 638
 639	/* If the firmware node exist try to get endianness from it */
 640	if (fwnode_property_read_bool(fwnode, "big-endian"))
 641		endian = REGMAP_ENDIAN_BIG;
 642	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 643		endian = REGMAP_ENDIAN_LITTLE;
 644	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 645		endian = REGMAP_ENDIAN_NATIVE;
 646
 647	/* If the endianness was specified in fwnode, use that */
 648	if (endian != REGMAP_ENDIAN_DEFAULT)
 649		return endian;
 650
 651	/* Retrieve the endianness specification from the bus config */
 652	if (bus && bus->val_format_endian_default)
 653		endian = bus->val_format_endian_default;
 654
 655	/* If the bus specified a non-default value, use that */
 656	if (endian != REGMAP_ENDIAN_DEFAULT)
 657		return endian;
 658
 659	/* Use this if no other value was found */
 660	return REGMAP_ENDIAN_BIG;
 661}
 662EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 663
 664struct regmap *__regmap_init(struct device *dev,
 665			     const struct regmap_bus *bus,
 666			     void *bus_context,
 667			     const struct regmap_config *config,
 668			     struct lock_class_key *lock_key,
 669			     const char *lock_name)
 670{
 671	struct regmap *map;
 672	int ret = -EINVAL;
 673	enum regmap_endian reg_endian, val_endian;
 674	int i, j;
 675
 676	if (!config)
 677		goto err;
 678
 679	map = kzalloc(sizeof(*map), GFP_KERNEL);
 680	if (map == NULL) {
 681		ret = -ENOMEM;
 682		goto err;
 683	}
 684
 685	ret = regmap_set_name(map, config);
 686	if (ret)
 687		goto err_map;
 688
 689	ret = -EINVAL; /* Later error paths rely on this */
 690
 691	if (config->disable_locking) {
 692		map->lock = map->unlock = regmap_lock_unlock_none;
 693		map->can_sleep = config->can_sleep;
 694		regmap_debugfs_disable(map);
 695	} else if (config->lock && config->unlock) {
 696		map->lock = config->lock;
 697		map->unlock = config->unlock;
 698		map->lock_arg = config->lock_arg;
 699		map->can_sleep = config->can_sleep;
 700	} else if (config->use_hwlock) {
 701		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 702		if (!map->hwlock) {
 703			ret = -ENXIO;
 704			goto err_name;
 705		}
 706
 707		switch (config->hwlock_mode) {
 708		case HWLOCK_IRQSTATE:
 709			map->lock = regmap_lock_hwlock_irqsave;
 710			map->unlock = regmap_unlock_hwlock_irqrestore;
 711			break;
 712		case HWLOCK_IRQ:
 713			map->lock = regmap_lock_hwlock_irq;
 714			map->unlock = regmap_unlock_hwlock_irq;
 715			break;
 716		default:
 717			map->lock = regmap_lock_hwlock;
 718			map->unlock = regmap_unlock_hwlock;
 719			break;
 720		}
 721
 722		map->lock_arg = map;
 723	} else {
 724		if ((bus && bus->fast_io) ||
 725		    config->fast_io) {
 726			if (config->use_raw_spinlock) {
 727				raw_spin_lock_init(&map->raw_spinlock);
 728				map->lock = regmap_lock_raw_spinlock;
 729				map->unlock = regmap_unlock_raw_spinlock;
 730				lockdep_set_class_and_name(&map->raw_spinlock,
 731							   lock_key, lock_name);
 732			} else {
 733				spin_lock_init(&map->spinlock);
 734				map->lock = regmap_lock_spinlock;
 735				map->unlock = regmap_unlock_spinlock;
 736				lockdep_set_class_and_name(&map->spinlock,
 737							   lock_key, lock_name);
 738			}
 739		} else {
 740			mutex_init(&map->mutex);
 741			map->lock = regmap_lock_mutex;
 742			map->unlock = regmap_unlock_mutex;
 743			map->can_sleep = true;
 744			lockdep_set_class_and_name(&map->mutex,
 745						   lock_key, lock_name);
 746		}
 747		map->lock_arg = map;
 748	}
 749
 750	/*
 751	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 752	 * scratch buffers with sleeping allocations.
 753	 */
 754	if ((bus && bus->fast_io) || config->fast_io)
 755		map->alloc_flags = GFP_ATOMIC;
 756	else
 757		map->alloc_flags = GFP_KERNEL;
 758
 759	map->reg_base = config->reg_base;
 760
 761	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 762	map->format.pad_bytes = config->pad_bits / 8;
 763	map->format.reg_shift = config->reg_shift;
 764	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 765	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 766			config->val_bits + config->pad_bits, 8);
 767	map->reg_shift = config->pad_bits % 8;
 768	if (config->reg_stride)
 769		map->reg_stride = config->reg_stride;
 770	else
 771		map->reg_stride = 1;
 772	if (is_power_of_2(map->reg_stride))
 773		map->reg_stride_order = ilog2(map->reg_stride);
 774	else
 775		map->reg_stride_order = -1;
 776	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
 777	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
 778	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
 779	if (bus) {
 780		map->max_raw_read = bus->max_raw_read;
 781		map->max_raw_write = bus->max_raw_write;
 782	} else if (config->max_raw_read && config->max_raw_write) {
 783		map->max_raw_read = config->max_raw_read;
 784		map->max_raw_write = config->max_raw_write;
 785	}
 786	map->dev = dev;
 787	map->bus = bus;
 788	map->bus_context = bus_context;
 789	map->max_register = config->max_register;
 790	map->wr_table = config->wr_table;
 791	map->rd_table = config->rd_table;
 792	map->volatile_table = config->volatile_table;
 793	map->precious_table = config->precious_table;
 794	map->wr_noinc_table = config->wr_noinc_table;
 795	map->rd_noinc_table = config->rd_noinc_table;
 796	map->writeable_reg = config->writeable_reg;
 797	map->readable_reg = config->readable_reg;
 798	map->volatile_reg = config->volatile_reg;
 799	map->precious_reg = config->precious_reg;
 800	map->writeable_noinc_reg = config->writeable_noinc_reg;
 801	map->readable_noinc_reg = config->readable_noinc_reg;
 802	map->cache_type = config->cache_type;
 803
 804	spin_lock_init(&map->async_lock);
 805	INIT_LIST_HEAD(&map->async_list);
 806	INIT_LIST_HEAD(&map->async_free);
 807	init_waitqueue_head(&map->async_waitq);
 808
 809	if (config->read_flag_mask ||
 810	    config->write_flag_mask ||
 811	    config->zero_flag_mask) {
 812		map->read_flag_mask = config->read_flag_mask;
 813		map->write_flag_mask = config->write_flag_mask;
 814	} else if (bus) {
 815		map->read_flag_mask = bus->read_flag_mask;
 816	}
 817
 818	if (config && config->read && config->write) {
 819		map->reg_read  = _regmap_bus_read;
 820		if (config->reg_update_bits)
 821			map->reg_update_bits = config->reg_update_bits;
 822
 823		/* Bulk read/write */
 824		map->read = config->read;
 825		map->write = config->write;
 826
 827		reg_endian = REGMAP_ENDIAN_NATIVE;
 828		val_endian = REGMAP_ENDIAN_NATIVE;
 829	} else if (!bus) {
 830		map->reg_read  = config->reg_read;
 831		map->reg_write = config->reg_write;
 832		map->reg_update_bits = config->reg_update_bits;
 833
 834		map->defer_caching = false;
 835		goto skip_format_initialization;
 836	} else if (!bus->read || !bus->write) {
 837		map->reg_read = _regmap_bus_reg_read;
 838		map->reg_write = _regmap_bus_reg_write;
 839		map->reg_update_bits = bus->reg_update_bits;
 840
 841		map->defer_caching = false;
 842		goto skip_format_initialization;
 843	} else {
 844		map->reg_read  = _regmap_bus_read;
 845		map->reg_update_bits = bus->reg_update_bits;
 846		/* Bulk read/write */
 847		map->read = bus->read;
 848		map->write = bus->write;
 849
 850		reg_endian = regmap_get_reg_endian(bus, config);
 851		val_endian = regmap_get_val_endian(dev, bus, config);
 852	}
 853
 854	switch (config->reg_bits + map->reg_shift) {
 855	case 2:
 856		switch (config->val_bits) {
 857		case 6:
 858			map->format.format_write = regmap_format_2_6_write;
 859			break;
 860		default:
 861			goto err_hwlock;
 862		}
 863		break;
 864
 865	case 4:
 866		switch (config->val_bits) {
 867		case 12:
 868			map->format.format_write = regmap_format_4_12_write;
 869			break;
 870		default:
 871			goto err_hwlock;
 872		}
 873		break;
 874
 875	case 7:
 876		switch (config->val_bits) {
 877		case 9:
 878			map->format.format_write = regmap_format_7_9_write;
 879			break;
 880		case 17:
 881			map->format.format_write = regmap_format_7_17_write;
 882			break;
 883		default:
 884			goto err_hwlock;
 885		}
 886		break;
 887
 888	case 10:
 889		switch (config->val_bits) {
 890		case 14:
 891			map->format.format_write = regmap_format_10_14_write;
 892			break;
 893		default:
 894			goto err_hwlock;
 895		}
 896		break;
 897
 898	case 12:
 899		switch (config->val_bits) {
 900		case 20:
 901			map->format.format_write = regmap_format_12_20_write;
 902			break;
 903		default:
 904			goto err_hwlock;
 905		}
 906		break;
 907
 908	case 8:
 909		map->format.format_reg = regmap_format_8;
 910		break;
 911
 912	case 16:
 913		switch (reg_endian) {
 914		case REGMAP_ENDIAN_BIG:
 915			map->format.format_reg = regmap_format_16_be;
 916			break;
 917		case REGMAP_ENDIAN_LITTLE:
 918			map->format.format_reg = regmap_format_16_le;
 919			break;
 920		case REGMAP_ENDIAN_NATIVE:
 921			map->format.format_reg = regmap_format_16_native;
 922			break;
 923		default:
 924			goto err_hwlock;
 925		}
 926		break;
 927
 928	case 24:
 929		switch (reg_endian) {
 930		case REGMAP_ENDIAN_BIG:
 931			map->format.format_reg = regmap_format_24_be;
 932			break;
 933		default:
 934			goto err_hwlock;
 935		}
 936		break;
 937
 938	case 32:
 939		switch (reg_endian) {
 940		case REGMAP_ENDIAN_BIG:
 941			map->format.format_reg = regmap_format_32_be;
 942			break;
 943		case REGMAP_ENDIAN_LITTLE:
 944			map->format.format_reg = regmap_format_32_le;
 945			break;
 946		case REGMAP_ENDIAN_NATIVE:
 947			map->format.format_reg = regmap_format_32_native;
 948			break;
 949		default:
 950			goto err_hwlock;
 951		}
 952		break;
 953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954	default:
 955		goto err_hwlock;
 956	}
 957
 958	if (val_endian == REGMAP_ENDIAN_NATIVE)
 959		map->format.parse_inplace = regmap_parse_inplace_noop;
 960
 961	switch (config->val_bits) {
 962	case 8:
 963		map->format.format_val = regmap_format_8;
 964		map->format.parse_val = regmap_parse_8;
 965		map->format.parse_inplace = regmap_parse_inplace_noop;
 966		break;
 967	case 16:
 968		switch (val_endian) {
 969		case REGMAP_ENDIAN_BIG:
 970			map->format.format_val = regmap_format_16_be;
 971			map->format.parse_val = regmap_parse_16_be;
 972			map->format.parse_inplace = regmap_parse_16_be_inplace;
 973			break;
 974		case REGMAP_ENDIAN_LITTLE:
 975			map->format.format_val = regmap_format_16_le;
 976			map->format.parse_val = regmap_parse_16_le;
 977			map->format.parse_inplace = regmap_parse_16_le_inplace;
 978			break;
 979		case REGMAP_ENDIAN_NATIVE:
 980			map->format.format_val = regmap_format_16_native;
 981			map->format.parse_val = regmap_parse_16_native;
 982			break;
 983		default:
 984			goto err_hwlock;
 985		}
 986		break;
 987	case 24:
 988		switch (val_endian) {
 989		case REGMAP_ENDIAN_BIG:
 990			map->format.format_val = regmap_format_24_be;
 991			map->format.parse_val = regmap_parse_24_be;
 992			break;
 993		default:
 994			goto err_hwlock;
 995		}
 996		break;
 997	case 32:
 998		switch (val_endian) {
 999		case REGMAP_ENDIAN_BIG:
1000			map->format.format_val = regmap_format_32_be;
1001			map->format.parse_val = regmap_parse_32_be;
1002			map->format.parse_inplace = regmap_parse_32_be_inplace;
1003			break;
1004		case REGMAP_ENDIAN_LITTLE:
1005			map->format.format_val = regmap_format_32_le;
1006			map->format.parse_val = regmap_parse_32_le;
1007			map->format.parse_inplace = regmap_parse_32_le_inplace;
1008			break;
1009		case REGMAP_ENDIAN_NATIVE:
1010			map->format.format_val = regmap_format_32_native;
1011			map->format.parse_val = regmap_parse_32_native;
1012			break;
1013		default:
1014			goto err_hwlock;
1015		}
1016		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017	}
1018
1019	if (map->format.format_write) {
1020		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1021		    (val_endian != REGMAP_ENDIAN_BIG))
1022			goto err_hwlock;
1023		map->use_single_write = true;
1024	}
1025
1026	if (!map->format.format_write &&
1027	    !(map->format.format_reg && map->format.format_val))
1028		goto err_hwlock;
1029
1030	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1031	if (map->work_buf == NULL) {
1032		ret = -ENOMEM;
1033		goto err_hwlock;
1034	}
1035
1036	if (map->format.format_write) {
1037		map->defer_caching = false;
1038		map->reg_write = _regmap_bus_formatted_write;
1039	} else if (map->format.format_val) {
1040		map->defer_caching = true;
1041		map->reg_write = _regmap_bus_raw_write;
1042	}
1043
1044skip_format_initialization:
1045
1046	map->range_tree = RB_ROOT;
1047	for (i = 0; i < config->num_ranges; i++) {
1048		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1049		struct regmap_range_node *new;
1050
1051		/* Sanity check */
1052		if (range_cfg->range_max < range_cfg->range_min) {
1053			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1054				range_cfg->range_max, range_cfg->range_min);
1055			goto err_range;
1056		}
1057
1058		if (range_cfg->range_max > map->max_register) {
1059			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1060				range_cfg->range_max, map->max_register);
1061			goto err_range;
1062		}
1063
1064		if (range_cfg->selector_reg > map->max_register) {
1065			dev_err(map->dev,
1066				"Invalid range %d: selector out of map\n", i);
1067			goto err_range;
1068		}
1069
1070		if (range_cfg->window_len == 0) {
1071			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1072				i);
1073			goto err_range;
1074		}
1075
1076		/* Make sure, that this register range has no selector
1077		   or data window within its boundary */
1078		for (j = 0; j < config->num_ranges; j++) {
1079			unsigned int sel_reg = config->ranges[j].selector_reg;
1080			unsigned int win_min = config->ranges[j].window_start;
1081			unsigned int win_max = win_min +
1082					       config->ranges[j].window_len - 1;
1083
1084			/* Allow data window inside its own virtual range */
1085			if (j == i)
1086				continue;
1087
1088			if (range_cfg->range_min <= sel_reg &&
1089			    sel_reg <= range_cfg->range_max) {
1090				dev_err(map->dev,
1091					"Range %d: selector for %d in window\n",
1092					i, j);
1093				goto err_range;
1094			}
1095
1096			if (!(win_max < range_cfg->range_min ||
1097			      win_min > range_cfg->range_max)) {
1098				dev_err(map->dev,
1099					"Range %d: window for %d in window\n",
1100					i, j);
1101				goto err_range;
1102			}
1103		}
1104
1105		new = kzalloc(sizeof(*new), GFP_KERNEL);
1106		if (new == NULL) {
1107			ret = -ENOMEM;
1108			goto err_range;
1109		}
1110
1111		new->map = map;
1112		new->name = range_cfg->name;
1113		new->range_min = range_cfg->range_min;
1114		new->range_max = range_cfg->range_max;
1115		new->selector_reg = range_cfg->selector_reg;
1116		new->selector_mask = range_cfg->selector_mask;
1117		new->selector_shift = range_cfg->selector_shift;
1118		new->window_start = range_cfg->window_start;
1119		new->window_len = range_cfg->window_len;
1120
1121		if (!_regmap_range_add(map, new)) {
1122			dev_err(map->dev, "Failed to add range %d\n", i);
1123			kfree(new);
1124			goto err_range;
1125		}
1126
1127		if (map->selector_work_buf == NULL) {
1128			map->selector_work_buf =
1129				kzalloc(map->format.buf_size, GFP_KERNEL);
1130			if (map->selector_work_buf == NULL) {
1131				ret = -ENOMEM;
1132				goto err_range;
1133			}
1134		}
1135	}
1136
1137	ret = regcache_init(map, config);
1138	if (ret != 0)
1139		goto err_range;
1140
1141	if (dev) {
1142		ret = regmap_attach_dev(dev, map, config);
1143		if (ret != 0)
1144			goto err_regcache;
1145	} else {
1146		regmap_debugfs_init(map);
1147	}
1148
1149	return map;
1150
1151err_regcache:
1152	regcache_exit(map);
1153err_range:
1154	regmap_range_exit(map);
1155	kfree(map->work_buf);
1156err_hwlock:
1157	if (map->hwlock)
1158		hwspin_lock_free(map->hwlock);
1159err_name:
1160	kfree_const(map->name);
1161err_map:
1162	kfree(map);
1163err:
1164	return ERR_PTR(ret);
1165}
1166EXPORT_SYMBOL_GPL(__regmap_init);
1167
1168static void devm_regmap_release(struct device *dev, void *res)
1169{
1170	regmap_exit(*(struct regmap **)res);
1171}
1172
1173struct regmap *__devm_regmap_init(struct device *dev,
1174				  const struct regmap_bus *bus,
1175				  void *bus_context,
1176				  const struct regmap_config *config,
1177				  struct lock_class_key *lock_key,
1178				  const char *lock_name)
1179{
1180	struct regmap **ptr, *regmap;
1181
1182	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1183	if (!ptr)
1184		return ERR_PTR(-ENOMEM);
1185
1186	regmap = __regmap_init(dev, bus, bus_context, config,
1187			       lock_key, lock_name);
1188	if (!IS_ERR(regmap)) {
1189		*ptr = regmap;
1190		devres_add(dev, ptr);
1191	} else {
1192		devres_free(ptr);
1193	}
1194
1195	return regmap;
1196}
1197EXPORT_SYMBOL_GPL(__devm_regmap_init);
1198
1199static void regmap_field_init(struct regmap_field *rm_field,
1200	struct regmap *regmap, struct reg_field reg_field)
1201{
1202	rm_field->regmap = regmap;
1203	rm_field->reg = reg_field.reg;
1204	rm_field->shift = reg_field.lsb;
1205	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1206
1207	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1208
1209	rm_field->id_size = reg_field.id_size;
1210	rm_field->id_offset = reg_field.id_offset;
1211}
1212
1213/**
1214 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1215 *
1216 * @dev: Device that will be interacted with
1217 * @regmap: regmap bank in which this register field is located.
1218 * @reg_field: Register field with in the bank.
1219 *
1220 * The return value will be an ERR_PTR() on error or a valid pointer
1221 * to a struct regmap_field. The regmap_field will be automatically freed
1222 * by the device management code.
1223 */
1224struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1225		struct regmap *regmap, struct reg_field reg_field)
1226{
1227	struct regmap_field *rm_field = devm_kzalloc(dev,
1228					sizeof(*rm_field), GFP_KERNEL);
1229	if (!rm_field)
1230		return ERR_PTR(-ENOMEM);
1231
1232	regmap_field_init(rm_field, regmap, reg_field);
1233
1234	return rm_field;
1235
1236}
1237EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1238
1239
1240/**
1241 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1242 *
1243 * @regmap: regmap bank in which this register field is located.
1244 * @rm_field: regmap register fields within the bank.
1245 * @reg_field: Register fields within the bank.
1246 * @num_fields: Number of register fields.
1247 *
1248 * The return value will be an -ENOMEM on error or zero for success.
1249 * Newly allocated regmap_fields should be freed by calling
1250 * regmap_field_bulk_free()
1251 */
1252int regmap_field_bulk_alloc(struct regmap *regmap,
1253			    struct regmap_field **rm_field,
1254			    const struct reg_field *reg_field,
1255			    int num_fields)
1256{
1257	struct regmap_field *rf;
1258	int i;
1259
1260	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1261	if (!rf)
1262		return -ENOMEM;
1263
1264	for (i = 0; i < num_fields; i++) {
1265		regmap_field_init(&rf[i], regmap, reg_field[i]);
1266		rm_field[i] = &rf[i];
1267	}
1268
1269	return 0;
1270}
1271EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1272
1273/**
1274 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1275 * fields.
1276 *
1277 * @dev: Device that will be interacted with
1278 * @regmap: regmap bank in which this register field is located.
1279 * @rm_field: regmap register fields within the bank.
1280 * @reg_field: Register fields within the bank.
1281 * @num_fields: Number of register fields.
1282 *
1283 * The return value will be an -ENOMEM on error or zero for success.
1284 * Newly allocated regmap_fields will be automatically freed by the
1285 * device management code.
1286 */
1287int devm_regmap_field_bulk_alloc(struct device *dev,
1288				 struct regmap *regmap,
1289				 struct regmap_field **rm_field,
1290				 const struct reg_field *reg_field,
1291				 int num_fields)
1292{
1293	struct regmap_field *rf;
1294	int i;
1295
1296	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1297	if (!rf)
1298		return -ENOMEM;
1299
1300	for (i = 0; i < num_fields; i++) {
1301		regmap_field_init(&rf[i], regmap, reg_field[i]);
1302		rm_field[i] = &rf[i];
1303	}
1304
1305	return 0;
1306}
1307EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1308
1309/**
1310 * regmap_field_bulk_free() - Free register field allocated using
1311 *                       regmap_field_bulk_alloc.
1312 *
1313 * @field: regmap fields which should be freed.
1314 */
1315void regmap_field_bulk_free(struct regmap_field *field)
1316{
1317	kfree(field);
1318}
1319EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1320
1321/**
1322 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1323 *                            devm_regmap_field_bulk_alloc.
1324 *
1325 * @dev: Device that will be interacted with
1326 * @field: regmap field which should be freed.
1327 *
1328 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1329 * drivers need not call this function, as the memory allocated via devm
1330 * will be freed as per device-driver life-cycle.
1331 */
1332void devm_regmap_field_bulk_free(struct device *dev,
1333				 struct regmap_field *field)
1334{
1335	devm_kfree(dev, field);
1336}
1337EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1338
1339/**
1340 * devm_regmap_field_free() - Free a register field allocated using
1341 *                            devm_regmap_field_alloc.
1342 *
1343 * @dev: Device that will be interacted with
1344 * @field: regmap field which should be freed.
1345 *
1346 * Free register field allocated using devm_regmap_field_alloc(). Usually
1347 * drivers need not call this function, as the memory allocated via devm
1348 * will be freed as per device-driver life-cyle.
1349 */
1350void devm_regmap_field_free(struct device *dev,
1351	struct regmap_field *field)
1352{
1353	devm_kfree(dev, field);
1354}
1355EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1356
1357/**
1358 * regmap_field_alloc() - Allocate and initialise a register field.
1359 *
1360 * @regmap: regmap bank in which this register field is located.
1361 * @reg_field: Register field with in the bank.
1362 *
1363 * The return value will be an ERR_PTR() on error or a valid pointer
1364 * to a struct regmap_field. The regmap_field should be freed by the
1365 * user once its finished working with it using regmap_field_free().
1366 */
1367struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1368		struct reg_field reg_field)
1369{
1370	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1371
1372	if (!rm_field)
1373		return ERR_PTR(-ENOMEM);
1374
1375	regmap_field_init(rm_field, regmap, reg_field);
1376
1377	return rm_field;
1378}
1379EXPORT_SYMBOL_GPL(regmap_field_alloc);
1380
1381/**
1382 * regmap_field_free() - Free register field allocated using
1383 *                       regmap_field_alloc.
1384 *
1385 * @field: regmap field which should be freed.
1386 */
1387void regmap_field_free(struct regmap_field *field)
1388{
1389	kfree(field);
1390}
1391EXPORT_SYMBOL_GPL(regmap_field_free);
1392
1393/**
1394 * regmap_reinit_cache() - Reinitialise the current register cache
1395 *
1396 * @map: Register map to operate on.
1397 * @config: New configuration.  Only the cache data will be used.
1398 *
1399 * Discard any existing register cache for the map and initialize a
1400 * new cache.  This can be used to restore the cache to defaults or to
1401 * update the cache configuration to reflect runtime discovery of the
1402 * hardware.
1403 *
1404 * No explicit locking is done here, the user needs to ensure that
1405 * this function will not race with other calls to regmap.
1406 */
1407int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1408{
1409	int ret;
1410
1411	regcache_exit(map);
1412	regmap_debugfs_exit(map);
1413
1414	map->max_register = config->max_register;
1415	map->writeable_reg = config->writeable_reg;
1416	map->readable_reg = config->readable_reg;
1417	map->volatile_reg = config->volatile_reg;
1418	map->precious_reg = config->precious_reg;
1419	map->writeable_noinc_reg = config->writeable_noinc_reg;
1420	map->readable_noinc_reg = config->readable_noinc_reg;
1421	map->cache_type = config->cache_type;
1422
1423	ret = regmap_set_name(map, config);
1424	if (ret)
1425		return ret;
1426
1427	regmap_debugfs_init(map);
1428
1429	map->cache_bypass = false;
1430	map->cache_only = false;
1431
1432	return regcache_init(map, config);
1433}
1434EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1435
1436/**
1437 * regmap_exit() - Free a previously allocated register map
1438 *
1439 * @map: Register map to operate on.
1440 */
1441void regmap_exit(struct regmap *map)
1442{
1443	struct regmap_async *async;
1444
1445	regcache_exit(map);
1446	regmap_debugfs_exit(map);
1447	regmap_range_exit(map);
1448	if (map->bus && map->bus->free_context)
1449		map->bus->free_context(map->bus_context);
1450	kfree(map->work_buf);
1451	while (!list_empty(&map->async_free)) {
1452		async = list_first_entry_or_null(&map->async_free,
1453						 struct regmap_async,
1454						 list);
1455		list_del(&async->list);
1456		kfree(async->work_buf);
1457		kfree(async);
1458	}
1459	if (map->hwlock)
1460		hwspin_lock_free(map->hwlock);
1461	if (map->lock == regmap_lock_mutex)
1462		mutex_destroy(&map->mutex);
1463	kfree_const(map->name);
1464	kfree(map->patch);
1465	if (map->bus && map->bus->free_on_exit)
1466		kfree(map->bus);
1467	kfree(map);
1468}
1469EXPORT_SYMBOL_GPL(regmap_exit);
1470
1471static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1472{
1473	struct regmap **r = res;
1474	if (!r || !*r) {
1475		WARN_ON(!r || !*r);
1476		return 0;
1477	}
1478
1479	/* If the user didn't specify a name match any */
1480	if (data)
1481		return (*r)->name && !strcmp((*r)->name, data);
1482	else
1483		return 1;
1484}
1485
1486/**
1487 * dev_get_regmap() - Obtain the regmap (if any) for a device
1488 *
1489 * @dev: Device to retrieve the map for
1490 * @name: Optional name for the register map, usually NULL.
1491 *
1492 * Returns the regmap for the device if one is present, or NULL.  If
1493 * name is specified then it must match the name specified when
1494 * registering the device, if it is NULL then the first regmap found
1495 * will be used.  Devices with multiple register maps are very rare,
1496 * generic code should normally not need to specify a name.
1497 */
1498struct regmap *dev_get_regmap(struct device *dev, const char *name)
1499{
1500	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1501					dev_get_regmap_match, (void *)name);
1502
1503	if (!r)
1504		return NULL;
1505	return *r;
1506}
1507EXPORT_SYMBOL_GPL(dev_get_regmap);
1508
1509/**
1510 * regmap_get_device() - Obtain the device from a regmap
1511 *
1512 * @map: Register map to operate on.
1513 *
1514 * Returns the underlying device that the regmap has been created for.
1515 */
1516struct device *regmap_get_device(struct regmap *map)
1517{
1518	return map->dev;
1519}
1520EXPORT_SYMBOL_GPL(regmap_get_device);
1521
1522static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1523			       struct regmap_range_node *range,
1524			       unsigned int val_num)
1525{
1526	void *orig_work_buf;
1527	unsigned int win_offset;
1528	unsigned int win_page;
1529	bool page_chg;
1530	int ret;
1531
1532	win_offset = (*reg - range->range_min) % range->window_len;
1533	win_page = (*reg - range->range_min) / range->window_len;
1534
1535	if (val_num > 1) {
1536		/* Bulk write shouldn't cross range boundary */
1537		if (*reg + val_num - 1 > range->range_max)
1538			return -EINVAL;
1539
1540		/* ... or single page boundary */
1541		if (val_num > range->window_len - win_offset)
1542			return -EINVAL;
1543	}
1544
1545	/* It is possible to have selector register inside data window.
1546	   In that case, selector register is located on every page and
1547	   it needs no page switching, when accessed alone. */
1548	if (val_num > 1 ||
1549	    range->window_start + win_offset != range->selector_reg) {
1550		/* Use separate work_buf during page switching */
1551		orig_work_buf = map->work_buf;
1552		map->work_buf = map->selector_work_buf;
1553
1554		ret = _regmap_update_bits(map, range->selector_reg,
1555					  range->selector_mask,
1556					  win_page << range->selector_shift,
1557					  &page_chg, false);
1558
1559		map->work_buf = orig_work_buf;
1560
1561		if (ret != 0)
1562			return ret;
1563	}
1564
1565	*reg = range->window_start + win_offset;
1566
1567	return 0;
1568}
1569
1570static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1571					  unsigned long mask)
1572{
1573	u8 *buf;
1574	int i;
1575
1576	if (!mask || !map->work_buf)
1577		return;
1578
1579	buf = map->work_buf;
1580
1581	for (i = 0; i < max_bytes; i++)
1582		buf[i] |= (mask >> (8 * i)) & 0xff;
1583}
1584
1585static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1586{
1587	reg += map->reg_base;
1588
1589	if (map->format.reg_shift > 0)
1590		reg >>= map->format.reg_shift;
1591	else if (map->format.reg_shift < 0)
1592		reg <<= -(map->format.reg_shift);
1593
1594	return reg;
1595}
1596
1597static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1598				  const void *val, size_t val_len, bool noinc)
1599{
1600	struct regmap_range_node *range;
1601	unsigned long flags;
1602	void *work_val = map->work_buf + map->format.reg_bytes +
1603		map->format.pad_bytes;
1604	void *buf;
1605	int ret = -ENOTSUPP;
1606	size_t len;
1607	int i;
1608
1609	/* Check for unwritable or noinc registers in range
1610	 * before we start
1611	 */
1612	if (!regmap_writeable_noinc(map, reg)) {
1613		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1614			unsigned int element =
1615				reg + regmap_get_offset(map, i);
1616			if (!regmap_writeable(map, element) ||
1617				regmap_writeable_noinc(map, element))
1618				return -EINVAL;
1619		}
1620	}
1621
1622	if (!map->cache_bypass && map->format.parse_val) {
1623		unsigned int ival, offset;
1624		int val_bytes = map->format.val_bytes;
1625
1626		/* Cache the last written value for noinc writes */
1627		i = noinc ? val_len - val_bytes : 0;
1628		for (; i < val_len; i += val_bytes) {
1629			ival = map->format.parse_val(val + i);
1630			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1631			ret = regcache_write(map, reg + offset, ival);
1632			if (ret) {
1633				dev_err(map->dev,
1634					"Error in caching of register: %x ret: %d\n",
1635					reg + offset, ret);
1636				return ret;
1637			}
1638		}
1639		if (map->cache_only) {
1640			map->cache_dirty = true;
1641			return 0;
1642		}
1643	}
1644
1645	range = _regmap_range_lookup(map, reg);
1646	if (range) {
1647		int val_num = val_len / map->format.val_bytes;
1648		int win_offset = (reg - range->range_min) % range->window_len;
1649		int win_residue = range->window_len - win_offset;
1650
1651		/* If the write goes beyond the end of the window split it */
1652		while (val_num > win_residue) {
1653			dev_dbg(map->dev, "Writing window %d/%zu\n",
1654				win_residue, val_len / map->format.val_bytes);
1655			ret = _regmap_raw_write_impl(map, reg, val,
1656						     win_residue *
1657						     map->format.val_bytes, noinc);
1658			if (ret != 0)
1659				return ret;
1660
1661			reg += win_residue;
1662			val_num -= win_residue;
1663			val += win_residue * map->format.val_bytes;
1664			val_len -= win_residue * map->format.val_bytes;
1665
1666			win_offset = (reg - range->range_min) %
1667				range->window_len;
1668			win_residue = range->window_len - win_offset;
1669		}
1670
1671		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1672		if (ret != 0)
1673			return ret;
1674	}
1675
1676	reg = regmap_reg_addr(map, reg);
 
1677	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1678	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1679				      map->write_flag_mask);
1680
1681	/*
1682	 * Essentially all I/O mechanisms will be faster with a single
1683	 * buffer to write.  Since register syncs often generate raw
1684	 * writes of single registers optimise that case.
1685	 */
1686	if (val != work_val && val_len == map->format.val_bytes) {
1687		memcpy(work_val, val, map->format.val_bytes);
1688		val = work_val;
1689	}
1690
1691	if (map->async && map->bus && map->bus->async_write) {
1692		struct regmap_async *async;
1693
1694		trace_regmap_async_write_start(map, reg, val_len);
1695
1696		spin_lock_irqsave(&map->async_lock, flags);
1697		async = list_first_entry_or_null(&map->async_free,
1698						 struct regmap_async,
1699						 list);
1700		if (async)
1701			list_del(&async->list);
1702		spin_unlock_irqrestore(&map->async_lock, flags);
1703
1704		if (!async) {
1705			async = map->bus->async_alloc();
1706			if (!async)
1707				return -ENOMEM;
1708
1709			async->work_buf = kzalloc(map->format.buf_size,
1710						  GFP_KERNEL | GFP_DMA);
1711			if (!async->work_buf) {
1712				kfree(async);
1713				return -ENOMEM;
1714			}
1715		}
1716
1717		async->map = map;
1718
1719		/* If the caller supplied the value we can use it safely. */
1720		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1721		       map->format.reg_bytes + map->format.val_bytes);
1722
1723		spin_lock_irqsave(&map->async_lock, flags);
1724		list_add_tail(&async->list, &map->async_list);
1725		spin_unlock_irqrestore(&map->async_lock, flags);
1726
1727		if (val != work_val)
1728			ret = map->bus->async_write(map->bus_context,
1729						    async->work_buf,
1730						    map->format.reg_bytes +
1731						    map->format.pad_bytes,
1732						    val, val_len, async);
1733		else
1734			ret = map->bus->async_write(map->bus_context,
1735						    async->work_buf,
1736						    map->format.reg_bytes +
1737						    map->format.pad_bytes +
1738						    val_len, NULL, 0, async);
1739
1740		if (ret != 0) {
1741			dev_err(map->dev, "Failed to schedule write: %d\n",
1742				ret);
1743
1744			spin_lock_irqsave(&map->async_lock, flags);
1745			list_move(&async->list, &map->async_free);
1746			spin_unlock_irqrestore(&map->async_lock, flags);
1747		}
1748
1749		return ret;
1750	}
1751
1752	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1753
1754	/* If we're doing a single register write we can probably just
1755	 * send the work_buf directly, otherwise try to do a gather
1756	 * write.
1757	 */
1758	if (val == work_val)
1759		ret = map->write(map->bus_context, map->work_buf,
1760				 map->format.reg_bytes +
1761				 map->format.pad_bytes +
1762				 val_len);
1763	else if (map->bus && map->bus->gather_write)
1764		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1765					     map->format.reg_bytes +
1766					     map->format.pad_bytes,
1767					     val, val_len);
1768	else
1769		ret = -ENOTSUPP;
1770
1771	/* If that didn't work fall back on linearising by hand. */
1772	if (ret == -ENOTSUPP) {
1773		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1774		buf = kzalloc(len, GFP_KERNEL);
1775		if (!buf)
1776			return -ENOMEM;
1777
1778		memcpy(buf, map->work_buf, map->format.reg_bytes);
1779		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1780		       val, val_len);
1781		ret = map->write(map->bus_context, buf, len);
1782
1783		kfree(buf);
1784	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1785		/* regcache_drop_region() takes lock that we already have,
1786		 * thus call map->cache_ops->drop() directly
1787		 */
1788		if (map->cache_ops && map->cache_ops->drop)
1789			map->cache_ops->drop(map, reg, reg + 1);
1790	}
1791
1792	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1793
1794	return ret;
1795}
1796
1797/**
1798 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1799 *
1800 * @map: Map to check.
1801 */
1802bool regmap_can_raw_write(struct regmap *map)
1803{
1804	return map->write && map->format.format_val && map->format.format_reg;
1805}
1806EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1807
1808/**
1809 * regmap_get_raw_read_max - Get the maximum size we can read
1810 *
1811 * @map: Map to check.
1812 */
1813size_t regmap_get_raw_read_max(struct regmap *map)
1814{
1815	return map->max_raw_read;
1816}
1817EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1818
1819/**
1820 * regmap_get_raw_write_max - Get the maximum size we can read
1821 *
1822 * @map: Map to check.
1823 */
1824size_t regmap_get_raw_write_max(struct regmap *map)
1825{
1826	return map->max_raw_write;
1827}
1828EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1829
1830static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1831				       unsigned int val)
1832{
1833	int ret;
1834	struct regmap_range_node *range;
1835	struct regmap *map = context;
1836
1837	WARN_ON(!map->format.format_write);
1838
1839	range = _regmap_range_lookup(map, reg);
1840	if (range) {
1841		ret = _regmap_select_page(map, &reg, range, 1);
1842		if (ret != 0)
1843			return ret;
1844	}
1845
1846	reg = regmap_reg_addr(map, reg);
 
1847	map->format.format_write(map, reg, val);
1848
1849	trace_regmap_hw_write_start(map, reg, 1);
1850
1851	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1852
1853	trace_regmap_hw_write_done(map, reg, 1);
1854
1855	return ret;
1856}
1857
1858static int _regmap_bus_reg_write(void *context, unsigned int reg,
1859				 unsigned int val)
1860{
1861	struct regmap *map = context;
1862	struct regmap_range_node *range;
1863	int ret;
1864
1865	range = _regmap_range_lookup(map, reg);
1866	if (range) {
1867		ret = _regmap_select_page(map, &reg, range, 1);
1868		if (ret != 0)
1869			return ret;
1870	}
1871
1872	reg = regmap_reg_addr(map, reg);
1873	return map->bus->reg_write(map->bus_context, reg, val);
1874}
1875
1876static int _regmap_bus_raw_write(void *context, unsigned int reg,
1877				 unsigned int val)
1878{
1879	struct regmap *map = context;
1880
1881	WARN_ON(!map->format.format_val);
1882
1883	map->format.format_val(map->work_buf + map->format.reg_bytes
1884			       + map->format.pad_bytes, val, 0);
1885	return _regmap_raw_write_impl(map, reg,
1886				      map->work_buf +
1887				      map->format.reg_bytes +
1888				      map->format.pad_bytes,
1889				      map->format.val_bytes,
1890				      false);
1891}
1892
1893static inline void *_regmap_map_get_context(struct regmap *map)
1894{
1895	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1896}
1897
1898int _regmap_write(struct regmap *map, unsigned int reg,
1899		  unsigned int val)
1900{
1901	int ret;
1902	void *context = _regmap_map_get_context(map);
1903
1904	if (!regmap_writeable(map, reg))
1905		return -EIO;
1906
1907	if (!map->cache_bypass && !map->defer_caching) {
1908		ret = regcache_write(map, reg, val);
1909		if (ret != 0)
1910			return ret;
1911		if (map->cache_only) {
1912			map->cache_dirty = true;
1913			return 0;
1914		}
1915	}
1916
1917	ret = map->reg_write(context, reg, val);
1918	if (ret == 0) {
1919		if (regmap_should_log(map))
1920			dev_info(map->dev, "%x <= %x\n", reg, val);
1921
1922		trace_regmap_reg_write(map, reg, val);
1923	}
1924
1925	return ret;
1926}
1927
1928/**
1929 * regmap_write() - Write a value to a single register
1930 *
1931 * @map: Register map to write to
1932 * @reg: Register to write to
1933 * @val: Value to be written
1934 *
1935 * A value of zero will be returned on success, a negative errno will
1936 * be returned in error cases.
1937 */
1938int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1939{
1940	int ret;
1941
1942	if (!IS_ALIGNED(reg, map->reg_stride))
1943		return -EINVAL;
1944
1945	map->lock(map->lock_arg);
1946
1947	ret = _regmap_write(map, reg, val);
1948
1949	map->unlock(map->lock_arg);
1950
1951	return ret;
1952}
1953EXPORT_SYMBOL_GPL(regmap_write);
1954
1955/**
1956 * regmap_write_async() - Write a value to a single register asynchronously
1957 *
1958 * @map: Register map to write to
1959 * @reg: Register to write to
1960 * @val: Value to be written
1961 *
1962 * A value of zero will be returned on success, a negative errno will
1963 * be returned in error cases.
1964 */
1965int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1966{
1967	int ret;
1968
1969	if (!IS_ALIGNED(reg, map->reg_stride))
1970		return -EINVAL;
1971
1972	map->lock(map->lock_arg);
1973
1974	map->async = true;
1975
1976	ret = _regmap_write(map, reg, val);
1977
1978	map->async = false;
1979
1980	map->unlock(map->lock_arg);
1981
1982	return ret;
1983}
1984EXPORT_SYMBOL_GPL(regmap_write_async);
1985
1986int _regmap_raw_write(struct regmap *map, unsigned int reg,
1987		      const void *val, size_t val_len, bool noinc)
1988{
1989	size_t val_bytes = map->format.val_bytes;
1990	size_t val_count = val_len / val_bytes;
1991	size_t chunk_count, chunk_bytes;
1992	size_t chunk_regs = val_count;
1993	int ret, i;
1994
1995	if (!val_count)
1996		return -EINVAL;
1997
1998	if (map->use_single_write)
1999		chunk_regs = 1;
2000	else if (map->max_raw_write && val_len > map->max_raw_write)
2001		chunk_regs = map->max_raw_write / val_bytes;
2002
2003	chunk_count = val_count / chunk_regs;
2004	chunk_bytes = chunk_regs * val_bytes;
2005
2006	/* Write as many bytes as possible with chunk_size */
2007	for (i = 0; i < chunk_count; i++) {
2008		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2009		if (ret)
2010			return ret;
2011
2012		reg += regmap_get_offset(map, chunk_regs);
2013		val += chunk_bytes;
2014		val_len -= chunk_bytes;
2015	}
2016
2017	/* Write remaining bytes */
2018	if (val_len)
2019		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2020
2021	return ret;
2022}
2023
2024/**
2025 * regmap_raw_write() - Write raw values to one or more registers
2026 *
2027 * @map: Register map to write to
2028 * @reg: Initial register to write to
2029 * @val: Block of data to be written, laid out for direct transmission to the
2030 *       device
2031 * @val_len: Length of data pointed to by val.
2032 *
2033 * This function is intended to be used for things like firmware
2034 * download where a large block of data needs to be transferred to the
2035 * device.  No formatting will be done on the data provided.
2036 *
2037 * A value of zero will be returned on success, a negative errno will
2038 * be returned in error cases.
2039 */
2040int regmap_raw_write(struct regmap *map, unsigned int reg,
2041		     const void *val, size_t val_len)
2042{
2043	int ret;
2044
2045	if (!regmap_can_raw_write(map))
2046		return -EINVAL;
2047	if (val_len % map->format.val_bytes)
2048		return -EINVAL;
2049
2050	map->lock(map->lock_arg);
2051
2052	ret = _regmap_raw_write(map, reg, val, val_len, false);
2053
2054	map->unlock(map->lock_arg);
2055
2056	return ret;
2057}
2058EXPORT_SYMBOL_GPL(regmap_raw_write);
2059
2060static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2061				  void *val, unsigned int val_len, bool write)
2062{
2063	size_t val_bytes = map->format.val_bytes;
2064	size_t val_count = val_len / val_bytes;
2065	unsigned int lastval;
2066	u8 *u8p;
2067	u16 *u16p;
2068	u32 *u32p;
 
 
 
2069	int ret;
2070	int i;
2071
2072	switch (val_bytes) {
2073	case 1:
2074		u8p = val;
2075		if (write)
2076			lastval = (unsigned int)u8p[val_count - 1];
2077		break;
2078	case 2:
2079		u16p = val;
2080		if (write)
2081			lastval = (unsigned int)u16p[val_count - 1];
2082		break;
2083	case 4:
2084		u32p = val;
2085		if (write)
2086			lastval = (unsigned int)u32p[val_count - 1];
2087		break;
 
 
 
 
 
 
 
2088	default:
2089		return -EINVAL;
2090	}
2091
2092	/*
2093	 * Update the cache with the last value we write, the rest is just
2094	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2095	 * sure a single read from the cache will work.
2096	 */
2097	if (write) {
2098		if (!map->cache_bypass && !map->defer_caching) {
2099			ret = regcache_write(map, reg, lastval);
2100			if (ret != 0)
2101				return ret;
2102			if (map->cache_only) {
2103				map->cache_dirty = true;
2104				return 0;
2105			}
2106		}
2107		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2108	} else {
2109		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2110	}
2111
2112	if (!ret && regmap_should_log(map)) {
2113		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2114		for (i = 0; i < val_count; i++) {
2115			switch (val_bytes) {
2116			case 1:
2117				pr_cont("%x", u8p[i]);
2118				break;
2119			case 2:
2120				pr_cont("%x", u16p[i]);
2121				break;
2122			case 4:
2123				pr_cont("%x", u32p[i]);
2124				break;
 
 
 
 
 
2125			default:
2126				break;
2127			}
2128			if (i == (val_count - 1))
2129				pr_cont("]\n");
2130			else
2131				pr_cont(",");
2132		}
2133	}
2134
2135	return 0;
2136}
2137
2138/**
2139 * regmap_noinc_write(): Write data to a register without incrementing the
2140 *			register number
2141 *
2142 * @map: Register map to write to
2143 * @reg: Register to write to
2144 * @val: Pointer to data buffer
2145 * @val_len: Length of output buffer in bytes.
2146 *
2147 * The regmap API usually assumes that bulk bus write operations will write a
2148 * range of registers. Some devices have certain registers for which a write
2149 * operation can write to an internal FIFO.
2150 *
2151 * The target register must be volatile but registers after it can be
2152 * completely unrelated cacheable registers.
2153 *
2154 * This will attempt multiple writes as required to write val_len bytes.
2155 *
2156 * A value of zero will be returned on success, a negative errno will be
2157 * returned in error cases.
2158 */
2159int regmap_noinc_write(struct regmap *map, unsigned int reg,
2160		      const void *val, size_t val_len)
2161{
2162	size_t write_len;
2163	int ret;
2164
2165	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2166		return -EINVAL;
2167	if (val_len % map->format.val_bytes)
2168		return -EINVAL;
2169	if (!IS_ALIGNED(reg, map->reg_stride))
2170		return -EINVAL;
2171	if (val_len == 0)
2172		return -EINVAL;
2173
2174	map->lock(map->lock_arg);
2175
2176	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2177		ret = -EINVAL;
2178		goto out_unlock;
2179	}
2180
2181	/*
2182	 * Use the accelerated operation if we can. The val drops the const
2183	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2184	 */
2185	if (map->bus->reg_noinc_write) {
2186		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2187		goto out_unlock;
2188	}
2189
2190	while (val_len) {
2191		if (map->max_raw_write && map->max_raw_write < val_len)
2192			write_len = map->max_raw_write;
2193		else
2194			write_len = val_len;
2195		ret = _regmap_raw_write(map, reg, val, write_len, true);
2196		if (ret)
2197			goto out_unlock;
2198		val = ((u8 *)val) + write_len;
2199		val_len -= write_len;
2200	}
2201
2202out_unlock:
2203	map->unlock(map->lock_arg);
2204	return ret;
2205}
2206EXPORT_SYMBOL_GPL(regmap_noinc_write);
2207
2208/**
2209 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2210 *                                   register field.
2211 *
2212 * @field: Register field to write to
2213 * @mask: Bitmask to change
2214 * @val: Value to be written
2215 * @change: Boolean indicating if a write was done
2216 * @async: Boolean indicating asynchronously
2217 * @force: Boolean indicating use force update
2218 *
2219 * Perform a read/modify/write cycle on the register field with change,
2220 * async, force option.
2221 *
2222 * A value of zero will be returned on success, a negative errno will
2223 * be returned in error cases.
2224 */
2225int regmap_field_update_bits_base(struct regmap_field *field,
2226				  unsigned int mask, unsigned int val,
2227				  bool *change, bool async, bool force)
2228{
2229	mask = (mask << field->shift) & field->mask;
2230
2231	return regmap_update_bits_base(field->regmap, field->reg,
2232				       mask, val << field->shift,
2233				       change, async, force);
2234}
2235EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2236
2237/**
2238 * regmap_field_test_bits() - Check if all specified bits are set in a
2239 *                            register field.
2240 *
2241 * @field: Register field to operate on
2242 * @bits: Bits to test
2243 *
2244 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2245 * tested bits is not set and 1 if all tested bits are set.
2246 */
2247int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2248{
2249	unsigned int val, ret;
2250
2251	ret = regmap_field_read(field, &val);
2252	if (ret)
2253		return ret;
2254
2255	return (val & bits) == bits;
2256}
2257EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2258
2259/**
2260 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2261 *                                    register field with port ID
2262 *
2263 * @field: Register field to write to
2264 * @id: port ID
2265 * @mask: Bitmask to change
2266 * @val: Value to be written
2267 * @change: Boolean indicating if a write was done
2268 * @async: Boolean indicating asynchronously
2269 * @force: Boolean indicating use force update
2270 *
2271 * A value of zero will be returned on success, a negative errno will
2272 * be returned in error cases.
2273 */
2274int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2275				   unsigned int mask, unsigned int val,
2276				   bool *change, bool async, bool force)
2277{
2278	if (id >= field->id_size)
2279		return -EINVAL;
2280
2281	mask = (mask << field->shift) & field->mask;
2282
2283	return regmap_update_bits_base(field->regmap,
2284				       field->reg + (field->id_offset * id),
2285				       mask, val << field->shift,
2286				       change, async, force);
2287}
2288EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2289
2290/**
2291 * regmap_bulk_write() - Write multiple registers to the device
2292 *
2293 * @map: Register map to write to
2294 * @reg: First register to be write from
2295 * @val: Block of data to be written, in native register size for device
2296 * @val_count: Number of registers to write
2297 *
2298 * This function is intended to be used for writing a large block of
2299 * data to the device either in single transfer or multiple transfer.
2300 *
2301 * A value of zero will be returned on success, a negative errno will
2302 * be returned in error cases.
2303 */
2304int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2305		     size_t val_count)
2306{
2307	int ret = 0, i;
2308	size_t val_bytes = map->format.val_bytes;
2309
2310	if (!IS_ALIGNED(reg, map->reg_stride))
2311		return -EINVAL;
2312
2313	/*
2314	 * Some devices don't support bulk write, for them we have a series of
2315	 * single write operations.
2316	 */
2317	if (!map->write || !map->format.parse_inplace) {
2318		map->lock(map->lock_arg);
2319		for (i = 0; i < val_count; i++) {
2320			unsigned int ival;
2321
2322			switch (val_bytes) {
2323			case 1:
2324				ival = *(u8 *)(val + (i * val_bytes));
2325				break;
2326			case 2:
2327				ival = *(u16 *)(val + (i * val_bytes));
2328				break;
2329			case 4:
2330				ival = *(u32 *)(val + (i * val_bytes));
2331				break;
 
 
 
 
 
2332			default:
2333				ret = -EINVAL;
2334				goto out;
2335			}
2336
2337			ret = _regmap_write(map,
2338					    reg + regmap_get_offset(map, i),
2339					    ival);
2340			if (ret != 0)
2341				goto out;
2342		}
2343out:
2344		map->unlock(map->lock_arg);
2345	} else {
2346		void *wval;
2347
2348		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2349		if (!wval)
2350			return -ENOMEM;
2351
2352		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2353			map->format.parse_inplace(wval + i);
2354
2355		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2356
2357		kfree(wval);
2358	}
2359
2360	if (!ret)
2361		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2362
2363	return ret;
2364}
2365EXPORT_SYMBOL_GPL(regmap_bulk_write);
2366
2367/*
2368 * _regmap_raw_multi_reg_write()
2369 *
2370 * the (register,newvalue) pairs in regs have not been formatted, but
2371 * they are all in the same page and have been changed to being page
2372 * relative. The page register has been written if that was necessary.
2373 */
2374static int _regmap_raw_multi_reg_write(struct regmap *map,
2375				       const struct reg_sequence *regs,
2376				       size_t num_regs)
2377{
2378	int ret;
2379	void *buf;
2380	int i;
2381	u8 *u8;
2382	size_t val_bytes = map->format.val_bytes;
2383	size_t reg_bytes = map->format.reg_bytes;
2384	size_t pad_bytes = map->format.pad_bytes;
2385	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2386	size_t len = pair_size * num_regs;
2387
2388	if (!len)
2389		return -EINVAL;
2390
2391	buf = kzalloc(len, GFP_KERNEL);
2392	if (!buf)
2393		return -ENOMEM;
2394
2395	/* We have to linearise by hand. */
2396
2397	u8 = buf;
2398
2399	for (i = 0; i < num_regs; i++) {
2400		unsigned int reg = regs[i].reg;
2401		unsigned int val = regs[i].def;
2402		trace_regmap_hw_write_start(map, reg, 1);
2403		reg = regmap_reg_addr(map, reg);
 
2404		map->format.format_reg(u8, reg, map->reg_shift);
2405		u8 += reg_bytes + pad_bytes;
2406		map->format.format_val(u8, val, 0);
2407		u8 += val_bytes;
2408	}
2409	u8 = buf;
2410	*u8 |= map->write_flag_mask;
2411
2412	ret = map->write(map->bus_context, buf, len);
2413
2414	kfree(buf);
2415
2416	for (i = 0; i < num_regs; i++) {
2417		int reg = regs[i].reg;
2418		trace_regmap_hw_write_done(map, reg, 1);
2419	}
2420	return ret;
2421}
2422
2423static unsigned int _regmap_register_page(struct regmap *map,
2424					  unsigned int reg,
2425					  struct regmap_range_node *range)
2426{
2427	unsigned int win_page = (reg - range->range_min) / range->window_len;
2428
2429	return win_page;
2430}
2431
2432static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2433					       struct reg_sequence *regs,
2434					       size_t num_regs)
2435{
2436	int ret;
2437	int i, n;
2438	struct reg_sequence *base;
2439	unsigned int this_page = 0;
2440	unsigned int page_change = 0;
2441	/*
2442	 * the set of registers are not neccessarily in order, but
2443	 * since the order of write must be preserved this algorithm
2444	 * chops the set each time the page changes. This also applies
2445	 * if there is a delay required at any point in the sequence.
2446	 */
2447	base = regs;
2448	for (i = 0, n = 0; i < num_regs; i++, n++) {
2449		unsigned int reg = regs[i].reg;
2450		struct regmap_range_node *range;
2451
2452		range = _regmap_range_lookup(map, reg);
2453		if (range) {
2454			unsigned int win_page = _regmap_register_page(map, reg,
2455								      range);
2456
2457			if (i == 0)
2458				this_page = win_page;
2459			if (win_page != this_page) {
2460				this_page = win_page;
2461				page_change = 1;
2462			}
2463		}
2464
2465		/* If we have both a page change and a delay make sure to
2466		 * write the regs and apply the delay before we change the
2467		 * page.
2468		 */
2469
2470		if (page_change || regs[i].delay_us) {
2471
2472				/* For situations where the first write requires
2473				 * a delay we need to make sure we don't call
2474				 * raw_multi_reg_write with n=0
2475				 * This can't occur with page breaks as we
2476				 * never write on the first iteration
2477				 */
2478				if (regs[i].delay_us && i == 0)
2479					n = 1;
2480
2481				ret = _regmap_raw_multi_reg_write(map, base, n);
2482				if (ret != 0)
2483					return ret;
2484
2485				if (regs[i].delay_us) {
2486					if (map->can_sleep)
2487						fsleep(regs[i].delay_us);
2488					else
2489						udelay(regs[i].delay_us);
2490				}
2491
2492				base += n;
2493				n = 0;
2494
2495				if (page_change) {
2496					ret = _regmap_select_page(map,
2497								  &base[n].reg,
2498								  range, 1);
2499					if (ret != 0)
2500						return ret;
2501
2502					page_change = 0;
2503				}
2504
2505		}
2506
2507	}
2508	if (n > 0)
2509		return _regmap_raw_multi_reg_write(map, base, n);
2510	return 0;
2511}
2512
2513static int _regmap_multi_reg_write(struct regmap *map,
2514				   const struct reg_sequence *regs,
2515				   size_t num_regs)
2516{
2517	int i;
2518	int ret;
2519
2520	if (!map->can_multi_write) {
2521		for (i = 0; i < num_regs; i++) {
2522			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2523			if (ret != 0)
2524				return ret;
2525
2526			if (regs[i].delay_us) {
2527				if (map->can_sleep)
2528					fsleep(regs[i].delay_us);
2529				else
2530					udelay(regs[i].delay_us);
2531			}
2532		}
2533		return 0;
2534	}
2535
2536	if (!map->format.parse_inplace)
2537		return -EINVAL;
2538
2539	if (map->writeable_reg)
2540		for (i = 0; i < num_regs; i++) {
2541			int reg = regs[i].reg;
2542			if (!map->writeable_reg(map->dev, reg))
2543				return -EINVAL;
2544			if (!IS_ALIGNED(reg, map->reg_stride))
2545				return -EINVAL;
2546		}
2547
2548	if (!map->cache_bypass) {
2549		for (i = 0; i < num_regs; i++) {
2550			unsigned int val = regs[i].def;
2551			unsigned int reg = regs[i].reg;
2552			ret = regcache_write(map, reg, val);
2553			if (ret) {
2554				dev_err(map->dev,
2555				"Error in caching of register: %x ret: %d\n",
2556								reg, ret);
2557				return ret;
2558			}
2559		}
2560		if (map->cache_only) {
2561			map->cache_dirty = true;
2562			return 0;
2563		}
2564	}
2565
2566	WARN_ON(!map->bus);
2567
2568	for (i = 0; i < num_regs; i++) {
2569		unsigned int reg = regs[i].reg;
2570		struct regmap_range_node *range;
2571
2572		/* Coalesce all the writes between a page break or a delay
2573		 * in a sequence
2574		 */
2575		range = _regmap_range_lookup(map, reg);
2576		if (range || regs[i].delay_us) {
2577			size_t len = sizeof(struct reg_sequence)*num_regs;
2578			struct reg_sequence *base = kmemdup(regs, len,
2579							   GFP_KERNEL);
2580			if (!base)
2581				return -ENOMEM;
2582			ret = _regmap_range_multi_paged_reg_write(map, base,
2583								  num_regs);
2584			kfree(base);
2585
2586			return ret;
2587		}
2588	}
2589	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2590}
2591
2592/**
2593 * regmap_multi_reg_write() - Write multiple registers to the device
2594 *
2595 * @map: Register map to write to
2596 * @regs: Array of structures containing register,value to be written
2597 * @num_regs: Number of registers to write
2598 *
2599 * Write multiple registers to the device where the set of register, value
2600 * pairs are supplied in any order, possibly not all in a single range.
2601 *
2602 * The 'normal' block write mode will send ultimately send data on the
2603 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2604 * addressed. However, this alternative block multi write mode will send
2605 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2606 * must of course support the mode.
2607 *
2608 * A value of zero will be returned on success, a negative errno will be
2609 * returned in error cases.
2610 */
2611int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2612			   int num_regs)
2613{
2614	int ret;
2615
2616	map->lock(map->lock_arg);
2617
2618	ret = _regmap_multi_reg_write(map, regs, num_regs);
2619
2620	map->unlock(map->lock_arg);
2621
2622	return ret;
2623}
2624EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2625
2626/**
2627 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2628 *                                     device but not the cache
2629 *
2630 * @map: Register map to write to
2631 * @regs: Array of structures containing register,value to be written
2632 * @num_regs: Number of registers to write
2633 *
2634 * Write multiple registers to the device but not the cache where the set
2635 * of register are supplied in any order.
2636 *
2637 * This function is intended to be used for writing a large block of data
2638 * atomically to the device in single transfer for those I2C client devices
2639 * that implement this alternative block write mode.
2640 *
2641 * A value of zero will be returned on success, a negative errno will
2642 * be returned in error cases.
2643 */
2644int regmap_multi_reg_write_bypassed(struct regmap *map,
2645				    const struct reg_sequence *regs,
2646				    int num_regs)
2647{
2648	int ret;
2649	bool bypass;
2650
2651	map->lock(map->lock_arg);
2652
2653	bypass = map->cache_bypass;
2654	map->cache_bypass = true;
2655
2656	ret = _regmap_multi_reg_write(map, regs, num_regs);
2657
2658	map->cache_bypass = bypass;
2659
2660	map->unlock(map->lock_arg);
2661
2662	return ret;
2663}
2664EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2665
2666/**
2667 * regmap_raw_write_async() - Write raw values to one or more registers
2668 *                            asynchronously
2669 *
2670 * @map: Register map to write to
2671 * @reg: Initial register to write to
2672 * @val: Block of data to be written, laid out for direct transmission to the
2673 *       device.  Must be valid until regmap_async_complete() is called.
2674 * @val_len: Length of data pointed to by val.
2675 *
2676 * This function is intended to be used for things like firmware
2677 * download where a large block of data needs to be transferred to the
2678 * device.  No formatting will be done on the data provided.
2679 *
2680 * If supported by the underlying bus the write will be scheduled
2681 * asynchronously, helping maximise I/O speed on higher speed buses
2682 * like SPI.  regmap_async_complete() can be called to ensure that all
2683 * asynchrnous writes have been completed.
2684 *
2685 * A value of zero will be returned on success, a negative errno will
2686 * be returned in error cases.
2687 */
2688int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2689			   const void *val, size_t val_len)
2690{
2691	int ret;
2692
2693	if (val_len % map->format.val_bytes)
2694		return -EINVAL;
2695	if (!IS_ALIGNED(reg, map->reg_stride))
2696		return -EINVAL;
2697
2698	map->lock(map->lock_arg);
2699
2700	map->async = true;
2701
2702	ret = _regmap_raw_write(map, reg, val, val_len, false);
2703
2704	map->async = false;
2705
2706	map->unlock(map->lock_arg);
2707
2708	return ret;
2709}
2710EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2711
2712static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2713			    unsigned int val_len, bool noinc)
2714{
2715	struct regmap_range_node *range;
2716	int ret;
2717
2718	if (!map->read)
2719		return -EINVAL;
2720
2721	range = _regmap_range_lookup(map, reg);
2722	if (range) {
2723		ret = _regmap_select_page(map, &reg, range,
2724					  noinc ? 1 : val_len / map->format.val_bytes);
2725		if (ret != 0)
2726			return ret;
2727	}
2728
2729	reg = regmap_reg_addr(map, reg);
 
2730	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2731	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2732				      map->read_flag_mask);
2733	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2734
2735	ret = map->read(map->bus_context, map->work_buf,
2736			map->format.reg_bytes + map->format.pad_bytes,
2737			val, val_len);
2738
2739	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2740
2741	return ret;
2742}
2743
2744static int _regmap_bus_reg_read(void *context, unsigned int reg,
2745				unsigned int *val)
2746{
2747	struct regmap *map = context;
2748	struct regmap_range_node *range;
2749	int ret;
2750
2751	range = _regmap_range_lookup(map, reg);
2752	if (range) {
2753		ret = _regmap_select_page(map, &reg, range, 1);
2754		if (ret != 0)
2755			return ret;
2756	}
2757
2758	reg = regmap_reg_addr(map, reg);
2759	return map->bus->reg_read(map->bus_context, reg, val);
2760}
2761
2762static int _regmap_bus_read(void *context, unsigned int reg,
2763			    unsigned int *val)
2764{
2765	int ret;
2766	struct regmap *map = context;
2767	void *work_val = map->work_buf + map->format.reg_bytes +
2768		map->format.pad_bytes;
2769
2770	if (!map->format.parse_val)
2771		return -EINVAL;
2772
2773	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2774	if (ret == 0)
2775		*val = map->format.parse_val(work_val);
2776
2777	return ret;
2778}
2779
2780static int _regmap_read(struct regmap *map, unsigned int reg,
2781			unsigned int *val)
2782{
2783	int ret;
2784	void *context = _regmap_map_get_context(map);
2785
2786	if (!map->cache_bypass) {
2787		ret = regcache_read(map, reg, val);
2788		if (ret == 0)
2789			return 0;
2790	}
2791
2792	if (map->cache_only)
2793		return -EBUSY;
2794
2795	if (!regmap_readable(map, reg))
2796		return -EIO;
2797
2798	ret = map->reg_read(context, reg, val);
2799	if (ret == 0) {
2800		if (regmap_should_log(map))
2801			dev_info(map->dev, "%x => %x\n", reg, *val);
2802
2803		trace_regmap_reg_read(map, reg, *val);
2804
2805		if (!map->cache_bypass)
2806			regcache_write(map, reg, *val);
2807	}
2808
2809	return ret;
2810}
2811
2812/**
2813 * regmap_read() - Read a value from a single register
2814 *
2815 * @map: Register map to read from
2816 * @reg: Register to be read from
2817 * @val: Pointer to store read value
2818 *
2819 * A value of zero will be returned on success, a negative errno will
2820 * be returned in error cases.
2821 */
2822int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2823{
2824	int ret;
2825
2826	if (!IS_ALIGNED(reg, map->reg_stride))
2827		return -EINVAL;
2828
2829	map->lock(map->lock_arg);
2830
2831	ret = _regmap_read(map, reg, val);
2832
2833	map->unlock(map->lock_arg);
2834
2835	return ret;
2836}
2837EXPORT_SYMBOL_GPL(regmap_read);
2838
2839/**
2840 * regmap_raw_read() - Read raw data from the device
2841 *
2842 * @map: Register map to read from
2843 * @reg: First register to be read from
2844 * @val: Pointer to store read value
2845 * @val_len: Size of data to read
2846 *
2847 * A value of zero will be returned on success, a negative errno will
2848 * be returned in error cases.
2849 */
2850int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2851		    size_t val_len)
2852{
2853	size_t val_bytes = map->format.val_bytes;
2854	size_t val_count = val_len / val_bytes;
2855	unsigned int v;
2856	int ret, i;
2857
2858	if (val_len % map->format.val_bytes)
2859		return -EINVAL;
2860	if (!IS_ALIGNED(reg, map->reg_stride))
2861		return -EINVAL;
2862	if (val_count == 0)
2863		return -EINVAL;
2864
2865	map->lock(map->lock_arg);
2866
2867	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2868	    map->cache_type == REGCACHE_NONE) {
2869		size_t chunk_count, chunk_bytes;
2870		size_t chunk_regs = val_count;
2871
2872		if (!map->cache_bypass && map->cache_only) {
2873			ret = -EBUSY;
2874			goto out;
2875		}
2876
2877		if (!map->read) {
2878			ret = -ENOTSUPP;
2879			goto out;
2880		}
2881
2882		if (map->use_single_read)
2883			chunk_regs = 1;
2884		else if (map->max_raw_read && val_len > map->max_raw_read)
2885			chunk_regs = map->max_raw_read / val_bytes;
2886
2887		chunk_count = val_count / chunk_regs;
2888		chunk_bytes = chunk_regs * val_bytes;
2889
2890		/* Read bytes that fit into whole chunks */
2891		for (i = 0; i < chunk_count; i++) {
2892			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2893			if (ret != 0)
2894				goto out;
2895
2896			reg += regmap_get_offset(map, chunk_regs);
2897			val += chunk_bytes;
2898			val_len -= chunk_bytes;
2899		}
2900
2901		/* Read remaining bytes */
2902		if (val_len) {
2903			ret = _regmap_raw_read(map, reg, val, val_len, false);
2904			if (ret != 0)
2905				goto out;
2906		}
2907	} else {
2908		/* Otherwise go word by word for the cache; should be low
2909		 * cost as we expect to hit the cache.
2910		 */
2911		for (i = 0; i < val_count; i++) {
2912			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2913					   &v);
2914			if (ret != 0)
2915				goto out;
2916
2917			map->format.format_val(val + (i * val_bytes), v, 0);
2918		}
2919	}
2920
2921 out:
2922	map->unlock(map->lock_arg);
2923
2924	return ret;
2925}
2926EXPORT_SYMBOL_GPL(regmap_raw_read);
2927
2928/**
2929 * regmap_noinc_read(): Read data from a register without incrementing the
2930 *			register number
2931 *
2932 * @map: Register map to read from
2933 * @reg: Register to read from
2934 * @val: Pointer to data buffer
2935 * @val_len: Length of output buffer in bytes.
2936 *
2937 * The regmap API usually assumes that bulk read operations will read a
2938 * range of registers. Some devices have certain registers for which a read
2939 * operation read will read from an internal FIFO.
2940 *
2941 * The target register must be volatile but registers after it can be
2942 * completely unrelated cacheable registers.
2943 *
2944 * This will attempt multiple reads as required to read val_len bytes.
2945 *
2946 * A value of zero will be returned on success, a negative errno will be
2947 * returned in error cases.
2948 */
2949int regmap_noinc_read(struct regmap *map, unsigned int reg,
2950		      void *val, size_t val_len)
2951{
2952	size_t read_len;
2953	int ret;
2954
2955	if (!map->read)
2956		return -ENOTSUPP;
2957
2958	if (val_len % map->format.val_bytes)
2959		return -EINVAL;
2960	if (!IS_ALIGNED(reg, map->reg_stride))
2961		return -EINVAL;
2962	if (val_len == 0)
2963		return -EINVAL;
2964
2965	map->lock(map->lock_arg);
2966
2967	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2968		ret = -EINVAL;
2969		goto out_unlock;
2970	}
2971
2972	/*
2973	 * We have not defined the FIFO semantics for cache, as the
2974	 * cache is just one value deep. Should we return the last
2975	 * written value? Just avoid this by always reading the FIFO
2976	 * even when using cache. Cache only will not work.
2977	 */
2978	if (!map->cache_bypass && map->cache_only) {
2979		ret = -EBUSY;
2980		goto out_unlock;
2981	}
2982
2983	/* Use the accelerated operation if we can */
2984	if (map->bus->reg_noinc_read) {
 
 
 
 
 
 
 
 
 
 
2985		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
2986		goto out_unlock;
2987	}
2988
2989	while (val_len) {
2990		if (map->max_raw_read && map->max_raw_read < val_len)
2991			read_len = map->max_raw_read;
2992		else
2993			read_len = val_len;
2994		ret = _regmap_raw_read(map, reg, val, read_len, true);
2995		if (ret)
2996			goto out_unlock;
2997		val = ((u8 *)val) + read_len;
2998		val_len -= read_len;
2999	}
3000
3001out_unlock:
3002	map->unlock(map->lock_arg);
3003	return ret;
3004}
3005EXPORT_SYMBOL_GPL(regmap_noinc_read);
3006
3007/**
3008 * regmap_field_read(): Read a value to a single register field
3009 *
3010 * @field: Register field to read from
3011 * @val: Pointer to store read value
3012 *
3013 * A value of zero will be returned on success, a negative errno will
3014 * be returned in error cases.
3015 */
3016int regmap_field_read(struct regmap_field *field, unsigned int *val)
3017{
3018	int ret;
3019	unsigned int reg_val;
3020	ret = regmap_read(field->regmap, field->reg, &reg_val);
3021	if (ret != 0)
3022		return ret;
3023
3024	reg_val &= field->mask;
3025	reg_val >>= field->shift;
3026	*val = reg_val;
3027
3028	return ret;
3029}
3030EXPORT_SYMBOL_GPL(regmap_field_read);
3031
3032/**
3033 * regmap_fields_read() - Read a value to a single register field with port ID
3034 *
3035 * @field: Register field to read from
3036 * @id: port ID
3037 * @val: Pointer to store read value
3038 *
3039 * A value of zero will be returned on success, a negative errno will
3040 * be returned in error cases.
3041 */
3042int regmap_fields_read(struct regmap_field *field, unsigned int id,
3043		       unsigned int *val)
3044{
3045	int ret;
3046	unsigned int reg_val;
3047
3048	if (id >= field->id_size)
3049		return -EINVAL;
3050
3051	ret = regmap_read(field->regmap,
3052			  field->reg + (field->id_offset * id),
3053			  &reg_val);
3054	if (ret != 0)
3055		return ret;
3056
3057	reg_val &= field->mask;
3058	reg_val >>= field->shift;
3059	*val = reg_val;
3060
3061	return ret;
3062}
3063EXPORT_SYMBOL_GPL(regmap_fields_read);
3064
3065/**
3066 * regmap_bulk_read() - Read multiple registers from the device
3067 *
3068 * @map: Register map to read from
3069 * @reg: First register to be read from
3070 * @val: Pointer to store read value, in native register size for device
3071 * @val_count: Number of registers to read
3072 *
3073 * A value of zero will be returned on success, a negative errno will
3074 * be returned in error cases.
3075 */
3076int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3077		     size_t val_count)
3078{
3079	int ret, i;
3080	size_t val_bytes = map->format.val_bytes;
3081	bool vol = regmap_volatile_range(map, reg, val_count);
3082
3083	if (!IS_ALIGNED(reg, map->reg_stride))
3084		return -EINVAL;
3085	if (val_count == 0)
3086		return -EINVAL;
3087
3088	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3089		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3090		if (ret != 0)
3091			return ret;
3092
3093		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3094			map->format.parse_inplace(val + i);
3095	} else {
 
 
 
3096		u32 *u32 = val;
3097		u16 *u16 = val;
3098		u8 *u8 = val;
3099
3100		map->lock(map->lock_arg);
3101
3102		for (i = 0; i < val_count; i++) {
3103			unsigned int ival;
3104
3105			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3106					   &ival);
3107			if (ret != 0)
3108				goto out;
3109
3110			switch (map->format.val_bytes) {
 
 
 
 
 
3111			case 4:
3112				u32[i] = ival;
3113				break;
3114			case 2:
3115				u16[i] = ival;
3116				break;
3117			case 1:
3118				u8[i] = ival;
3119				break;
3120			default:
3121				ret = -EINVAL;
3122				goto out;
3123			}
3124		}
3125
3126out:
3127		map->unlock(map->lock_arg);
3128	}
3129
3130	if (!ret)
3131		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3132
3133	return ret;
3134}
3135EXPORT_SYMBOL_GPL(regmap_bulk_read);
3136
3137static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3138			       unsigned int mask, unsigned int val,
3139			       bool *change, bool force_write)
3140{
3141	int ret;
3142	unsigned int tmp, orig;
3143
3144	if (change)
3145		*change = false;
3146
3147	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3148		reg = regmap_reg_addr(map, reg);
3149		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3150		if (ret == 0 && change)
3151			*change = true;
3152	} else {
3153		ret = _regmap_read(map, reg, &orig);
3154		if (ret != 0)
3155			return ret;
3156
3157		tmp = orig & ~mask;
3158		tmp |= val & mask;
3159
3160		if (force_write || (tmp != orig) || map->force_write_field) {
3161			ret = _regmap_write(map, reg, tmp);
3162			if (ret == 0 && change)
3163				*change = true;
3164		}
3165	}
3166
3167	return ret;
3168}
3169
3170/**
3171 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3172 *
3173 * @map: Register map to update
3174 * @reg: Register to update
3175 * @mask: Bitmask to change
3176 * @val: New value for bitmask
3177 * @change: Boolean indicating if a write was done
3178 * @async: Boolean indicating asynchronously
3179 * @force: Boolean indicating use force update
3180 *
3181 * Perform a read/modify/write cycle on a register map with change, async, force
3182 * options.
3183 *
3184 * If async is true:
3185 *
3186 * With most buses the read must be done synchronously so this is most useful
3187 * for devices with a cache which do not need to interact with the hardware to
3188 * determine the current register value.
3189 *
3190 * Returns zero for success, a negative number on error.
3191 */
3192int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3193			    unsigned int mask, unsigned int val,
3194			    bool *change, bool async, bool force)
3195{
3196	int ret;
3197
3198	map->lock(map->lock_arg);
3199
3200	map->async = async;
3201
3202	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3203
3204	map->async = false;
3205
3206	map->unlock(map->lock_arg);
3207
3208	return ret;
3209}
3210EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3211
3212/**
3213 * regmap_test_bits() - Check if all specified bits are set in a register.
3214 *
3215 * @map: Register map to operate on
3216 * @reg: Register to read from
3217 * @bits: Bits to test
3218 *
3219 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3220 * bits are set and a negative error number if the underlying regmap_read()
3221 * fails.
3222 */
3223int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3224{
3225	unsigned int val, ret;
3226
3227	ret = regmap_read(map, reg, &val);
3228	if (ret)
3229		return ret;
3230
3231	return (val & bits) == bits;
3232}
3233EXPORT_SYMBOL_GPL(regmap_test_bits);
3234
3235void regmap_async_complete_cb(struct regmap_async *async, int ret)
3236{
3237	struct regmap *map = async->map;
3238	bool wake;
3239
3240	trace_regmap_async_io_complete(map);
3241
3242	spin_lock(&map->async_lock);
3243	list_move(&async->list, &map->async_free);
3244	wake = list_empty(&map->async_list);
3245
3246	if (ret != 0)
3247		map->async_ret = ret;
3248
3249	spin_unlock(&map->async_lock);
3250
3251	if (wake)
3252		wake_up(&map->async_waitq);
3253}
3254EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3255
3256static int regmap_async_is_done(struct regmap *map)
3257{
3258	unsigned long flags;
3259	int ret;
3260
3261	spin_lock_irqsave(&map->async_lock, flags);
3262	ret = list_empty(&map->async_list);
3263	spin_unlock_irqrestore(&map->async_lock, flags);
3264
3265	return ret;
3266}
3267
3268/**
3269 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3270 *
3271 * @map: Map to operate on.
3272 *
3273 * Blocks until any pending asynchronous I/O has completed.  Returns
3274 * an error code for any failed I/O operations.
3275 */
3276int regmap_async_complete(struct regmap *map)
3277{
3278	unsigned long flags;
3279	int ret;
3280
3281	/* Nothing to do with no async support */
3282	if (!map->bus || !map->bus->async_write)
3283		return 0;
3284
3285	trace_regmap_async_complete_start(map);
3286
3287	wait_event(map->async_waitq, regmap_async_is_done(map));
3288
3289	spin_lock_irqsave(&map->async_lock, flags);
3290	ret = map->async_ret;
3291	map->async_ret = 0;
3292	spin_unlock_irqrestore(&map->async_lock, flags);
3293
3294	trace_regmap_async_complete_done(map);
3295
3296	return ret;
3297}
3298EXPORT_SYMBOL_GPL(regmap_async_complete);
3299
3300/**
3301 * regmap_register_patch - Register and apply register updates to be applied
3302 *                         on device initialistion
3303 *
3304 * @map: Register map to apply updates to.
3305 * @regs: Values to update.
3306 * @num_regs: Number of entries in regs.
3307 *
3308 * Register a set of register updates to be applied to the device
3309 * whenever the device registers are synchronised with the cache and
3310 * apply them immediately.  Typically this is used to apply
3311 * corrections to be applied to the device defaults on startup, such
3312 * as the updates some vendors provide to undocumented registers.
3313 *
3314 * The caller must ensure that this function cannot be called
3315 * concurrently with either itself or regcache_sync().
3316 */
3317int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3318			  int num_regs)
3319{
3320	struct reg_sequence *p;
3321	int ret;
3322	bool bypass;
3323
3324	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3325	    num_regs))
3326		return 0;
3327
3328	p = krealloc(map->patch,
3329		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3330		     GFP_KERNEL);
3331	if (p) {
3332		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3333		map->patch = p;
3334		map->patch_regs += num_regs;
3335	} else {
3336		return -ENOMEM;
3337	}
3338
3339	map->lock(map->lock_arg);
3340
3341	bypass = map->cache_bypass;
3342
3343	map->cache_bypass = true;
3344	map->async = true;
3345
3346	ret = _regmap_multi_reg_write(map, regs, num_regs);
3347
3348	map->async = false;
3349	map->cache_bypass = bypass;
3350
3351	map->unlock(map->lock_arg);
3352
3353	regmap_async_complete(map);
3354
3355	return ret;
3356}
3357EXPORT_SYMBOL_GPL(regmap_register_patch);
3358
3359/**
3360 * regmap_get_val_bytes() - Report the size of a register value
3361 *
3362 * @map: Register map to operate on.
3363 *
3364 * Report the size of a register value, mainly intended to for use by
3365 * generic infrastructure built on top of regmap.
3366 */
3367int regmap_get_val_bytes(struct regmap *map)
3368{
3369	if (map->format.format_write)
3370		return -EINVAL;
3371
3372	return map->format.val_bytes;
3373}
3374EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3375
3376/**
3377 * regmap_get_max_register() - Report the max register value
3378 *
3379 * @map: Register map to operate on.
3380 *
3381 * Report the max register value, mainly intended to for use by
3382 * generic infrastructure built on top of regmap.
3383 */
3384int regmap_get_max_register(struct regmap *map)
3385{
3386	return map->max_register ? map->max_register : -EINVAL;
3387}
3388EXPORT_SYMBOL_GPL(regmap_get_max_register);
3389
3390/**
3391 * regmap_get_reg_stride() - Report the register address stride
3392 *
3393 * @map: Register map to operate on.
3394 *
3395 * Report the register address stride, mainly intended to for use by
3396 * generic infrastructure built on top of regmap.
3397 */
3398int regmap_get_reg_stride(struct regmap *map)
3399{
3400	return map->reg_stride;
3401}
3402EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3403
3404/**
3405 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3406 *
3407 * @map: Register map to operate on.
3408 *
3409 * Returns true if an access to the register might sleep, else false.
3410 */
3411bool regmap_might_sleep(struct regmap *map)
3412{
3413	return map->can_sleep;
3414}
3415EXPORT_SYMBOL_GPL(regmap_might_sleep);
3416
3417int regmap_parse_val(struct regmap *map, const void *buf,
3418			unsigned int *val)
3419{
3420	if (!map->format.parse_val)
3421		return -EINVAL;
3422
3423	*val = map->format.parse_val(buf);
3424
3425	return 0;
3426}
3427EXPORT_SYMBOL_GPL(regmap_parse_val);
3428
3429static int __init regmap_initcall(void)
3430{
3431	regmap_debugfs_initcall();
3432
3433	return 0;
3434}
3435postcore_initcall(regmap_initcall);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
 292{
 293	put_unaligned_be24(val << shift, buf);
 294}
 295
 296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 297{
 298	put_unaligned_be32(val << shift, buf);
 299}
 300
 301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 302{
 303	put_unaligned_le32(val << shift, buf);
 304}
 305
 306static void regmap_format_32_native(void *buf, unsigned int val,
 307				    unsigned int shift)
 308{
 309	u32 v = val << shift;
 310
 311	memcpy(buf, &v, sizeof(v));
 312}
 313
 314#ifdef CONFIG_64BIT
 315static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 316{
 317	put_unaligned_be64((u64) val << shift, buf);
 318}
 319
 320static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 321{
 322	put_unaligned_le64((u64) val << shift, buf);
 323}
 324
 325static void regmap_format_64_native(void *buf, unsigned int val,
 326				    unsigned int shift)
 327{
 328	u64 v = (u64) val << shift;
 329
 330	memcpy(buf, &v, sizeof(v));
 331}
 332#endif
 333
 334static void regmap_parse_inplace_noop(void *buf)
 335{
 336}
 337
 338static unsigned int regmap_parse_8(const void *buf)
 339{
 340	const u8 *b = buf;
 341
 342	return b[0];
 343}
 344
 345static unsigned int regmap_parse_16_be(const void *buf)
 346{
 347	return get_unaligned_be16(buf);
 348}
 349
 350static unsigned int regmap_parse_16_le(const void *buf)
 351{
 352	return get_unaligned_le16(buf);
 353}
 354
 355static void regmap_parse_16_be_inplace(void *buf)
 356{
 357	u16 v = get_unaligned_be16(buf);
 358
 359	memcpy(buf, &v, sizeof(v));
 360}
 361
 362static void regmap_parse_16_le_inplace(void *buf)
 363{
 364	u16 v = get_unaligned_le16(buf);
 365
 366	memcpy(buf, &v, sizeof(v));
 367}
 368
 369static unsigned int regmap_parse_16_native(const void *buf)
 370{
 371	u16 v;
 372
 373	memcpy(&v, buf, sizeof(v));
 374	return v;
 375}
 376
 377static unsigned int regmap_parse_24_be(const void *buf)
 378{
 379	return get_unaligned_be24(buf);
 380}
 381
 382static unsigned int regmap_parse_32_be(const void *buf)
 383{
 384	return get_unaligned_be32(buf);
 385}
 386
 387static unsigned int regmap_parse_32_le(const void *buf)
 388{
 389	return get_unaligned_le32(buf);
 390}
 391
 392static void regmap_parse_32_be_inplace(void *buf)
 393{
 394	u32 v = get_unaligned_be32(buf);
 395
 396	memcpy(buf, &v, sizeof(v));
 397}
 398
 399static void regmap_parse_32_le_inplace(void *buf)
 400{
 401	u32 v = get_unaligned_le32(buf);
 402
 403	memcpy(buf, &v, sizeof(v));
 404}
 405
 406static unsigned int regmap_parse_32_native(const void *buf)
 407{
 408	u32 v;
 409
 410	memcpy(&v, buf, sizeof(v));
 411	return v;
 412}
 413
 414#ifdef CONFIG_64BIT
 415static unsigned int regmap_parse_64_be(const void *buf)
 416{
 417	return get_unaligned_be64(buf);
 418}
 419
 420static unsigned int regmap_parse_64_le(const void *buf)
 421{
 422	return get_unaligned_le64(buf);
 423}
 424
 425static void regmap_parse_64_be_inplace(void *buf)
 426{
 427	u64 v =  get_unaligned_be64(buf);
 428
 429	memcpy(buf, &v, sizeof(v));
 430}
 431
 432static void regmap_parse_64_le_inplace(void *buf)
 433{
 434	u64 v = get_unaligned_le64(buf);
 435
 436	memcpy(buf, &v, sizeof(v));
 437}
 438
 439static unsigned int regmap_parse_64_native(const void *buf)
 440{
 441	u64 v;
 442
 443	memcpy(&v, buf, sizeof(v));
 444	return v;
 445}
 446#endif
 447
 448static void regmap_lock_hwlock(void *__map)
 449{
 450	struct regmap *map = __map;
 451
 452	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 453}
 454
 455static void regmap_lock_hwlock_irq(void *__map)
 456{
 457	struct regmap *map = __map;
 458
 459	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 460}
 461
 462static void regmap_lock_hwlock_irqsave(void *__map)
 463{
 464	struct regmap *map = __map;
 465
 466	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 467				    &map->spinlock_flags);
 468}
 469
 470static void regmap_unlock_hwlock(void *__map)
 471{
 472	struct regmap *map = __map;
 473
 474	hwspin_unlock(map->hwlock);
 475}
 476
 477static void regmap_unlock_hwlock_irq(void *__map)
 478{
 479	struct regmap *map = __map;
 480
 481	hwspin_unlock_irq(map->hwlock);
 482}
 483
 484static void regmap_unlock_hwlock_irqrestore(void *__map)
 485{
 486	struct regmap *map = __map;
 487
 488	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 489}
 490
 491static void regmap_lock_unlock_none(void *__map)
 492{
 493
 494}
 495
 496static void regmap_lock_mutex(void *__map)
 497{
 498	struct regmap *map = __map;
 499	mutex_lock(&map->mutex);
 500}
 501
 502static void regmap_unlock_mutex(void *__map)
 503{
 504	struct regmap *map = __map;
 505	mutex_unlock(&map->mutex);
 506}
 507
 508static void regmap_lock_spinlock(void *__map)
 509__acquires(&map->spinlock)
 510{
 511	struct regmap *map = __map;
 512	unsigned long flags;
 513
 514	spin_lock_irqsave(&map->spinlock, flags);
 515	map->spinlock_flags = flags;
 516}
 517
 518static void regmap_unlock_spinlock(void *__map)
 519__releases(&map->spinlock)
 520{
 521	struct regmap *map = __map;
 522	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 523}
 524
 525static void regmap_lock_raw_spinlock(void *__map)
 526__acquires(&map->raw_spinlock)
 527{
 528	struct regmap *map = __map;
 529	unsigned long flags;
 530
 531	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
 532	map->raw_spinlock_flags = flags;
 533}
 534
 535static void regmap_unlock_raw_spinlock(void *__map)
 536__releases(&map->raw_spinlock)
 537{
 538	struct regmap *map = __map;
 539	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
 540}
 541
 542static void dev_get_regmap_release(struct device *dev, void *res)
 543{
 544	/*
 545	 * We don't actually have anything to do here; the goal here
 546	 * is not to manage the regmap but to provide a simple way to
 547	 * get the regmap back given a struct device.
 548	 */
 549}
 550
 551static bool _regmap_range_add(struct regmap *map,
 552			      struct regmap_range_node *data)
 553{
 554	struct rb_root *root = &map->range_tree;
 555	struct rb_node **new = &(root->rb_node), *parent = NULL;
 556
 557	while (*new) {
 558		struct regmap_range_node *this =
 559			rb_entry(*new, struct regmap_range_node, node);
 560
 561		parent = *new;
 562		if (data->range_max < this->range_min)
 563			new = &((*new)->rb_left);
 564		else if (data->range_min > this->range_max)
 565			new = &((*new)->rb_right);
 566		else
 567			return false;
 568	}
 569
 570	rb_link_node(&data->node, parent, new);
 571	rb_insert_color(&data->node, root);
 572
 573	return true;
 574}
 575
 576static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 577						      unsigned int reg)
 578{
 579	struct rb_node *node = map->range_tree.rb_node;
 580
 581	while (node) {
 582		struct regmap_range_node *this =
 583			rb_entry(node, struct regmap_range_node, node);
 584
 585		if (reg < this->range_min)
 586			node = node->rb_left;
 587		else if (reg > this->range_max)
 588			node = node->rb_right;
 589		else
 590			return this;
 591	}
 592
 593	return NULL;
 594}
 595
 596static void regmap_range_exit(struct regmap *map)
 597{
 598	struct rb_node *next;
 599	struct regmap_range_node *range_node;
 600
 601	next = rb_first(&map->range_tree);
 602	while (next) {
 603		range_node = rb_entry(next, struct regmap_range_node, node);
 604		next = rb_next(&range_node->node);
 605		rb_erase(&range_node->node, &map->range_tree);
 606		kfree(range_node);
 607	}
 608
 609	kfree(map->selector_work_buf);
 610}
 611
 612static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 613{
 614	if (config->name) {
 615		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 616
 617		if (!name)
 618			return -ENOMEM;
 619
 620		kfree_const(map->name);
 621		map->name = name;
 622	}
 623
 624	return 0;
 625}
 626
 627int regmap_attach_dev(struct device *dev, struct regmap *map,
 628		      const struct regmap_config *config)
 629{
 630	struct regmap **m;
 631	int ret;
 632
 633	map->dev = dev;
 634
 635	ret = regmap_set_name(map, config);
 636	if (ret)
 637		return ret;
 638
 639	regmap_debugfs_exit(map);
 640	regmap_debugfs_init(map);
 641
 642	/* Add a devres resource for dev_get_regmap() */
 643	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 644	if (!m) {
 645		regmap_debugfs_exit(map);
 646		return -ENOMEM;
 647	}
 648	*m = map;
 649	devres_add(dev, m);
 650
 651	return 0;
 652}
 653EXPORT_SYMBOL_GPL(regmap_attach_dev);
 654
 655static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 656					const struct regmap_config *config)
 657{
 658	enum regmap_endian endian;
 659
 660	/* Retrieve the endianness specification from the regmap config */
 661	endian = config->reg_format_endian;
 662
 663	/* If the regmap config specified a non-default value, use that */
 664	if (endian != REGMAP_ENDIAN_DEFAULT)
 665		return endian;
 666
 667	/* Retrieve the endianness specification from the bus config */
 668	if (bus && bus->reg_format_endian_default)
 669		endian = bus->reg_format_endian_default;
 670
 671	/* If the bus specified a non-default value, use that */
 672	if (endian != REGMAP_ENDIAN_DEFAULT)
 673		return endian;
 674
 675	/* Use this if no other value was found */
 676	return REGMAP_ENDIAN_BIG;
 677}
 678
 679enum regmap_endian regmap_get_val_endian(struct device *dev,
 680					 const struct regmap_bus *bus,
 681					 const struct regmap_config *config)
 682{
 683	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 684	enum regmap_endian endian;
 685
 686	/* Retrieve the endianness specification from the regmap config */
 687	endian = config->val_format_endian;
 688
 689	/* If the regmap config specified a non-default value, use that */
 690	if (endian != REGMAP_ENDIAN_DEFAULT)
 691		return endian;
 692
 693	/* If the firmware node exist try to get endianness from it */
 694	if (fwnode_property_read_bool(fwnode, "big-endian"))
 695		endian = REGMAP_ENDIAN_BIG;
 696	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 697		endian = REGMAP_ENDIAN_LITTLE;
 698	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 699		endian = REGMAP_ENDIAN_NATIVE;
 700
 701	/* If the endianness was specified in fwnode, use that */
 702	if (endian != REGMAP_ENDIAN_DEFAULT)
 703		return endian;
 704
 705	/* Retrieve the endianness specification from the bus config */
 706	if (bus && bus->val_format_endian_default)
 707		endian = bus->val_format_endian_default;
 708
 709	/* If the bus specified a non-default value, use that */
 710	if (endian != REGMAP_ENDIAN_DEFAULT)
 711		return endian;
 712
 713	/* Use this if no other value was found */
 714	return REGMAP_ENDIAN_BIG;
 715}
 716EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 717
 718struct regmap *__regmap_init(struct device *dev,
 719			     const struct regmap_bus *bus,
 720			     void *bus_context,
 721			     const struct regmap_config *config,
 722			     struct lock_class_key *lock_key,
 723			     const char *lock_name)
 724{
 725	struct regmap *map;
 726	int ret = -EINVAL;
 727	enum regmap_endian reg_endian, val_endian;
 728	int i, j;
 729
 730	if (!config)
 731		goto err;
 732
 733	map = kzalloc(sizeof(*map), GFP_KERNEL);
 734	if (map == NULL) {
 735		ret = -ENOMEM;
 736		goto err;
 737	}
 738
 739	ret = regmap_set_name(map, config);
 740	if (ret)
 741		goto err_map;
 742
 743	ret = -EINVAL; /* Later error paths rely on this */
 744
 745	if (config->disable_locking) {
 746		map->lock = map->unlock = regmap_lock_unlock_none;
 747		map->can_sleep = config->can_sleep;
 748		regmap_debugfs_disable(map);
 749	} else if (config->lock && config->unlock) {
 750		map->lock = config->lock;
 751		map->unlock = config->unlock;
 752		map->lock_arg = config->lock_arg;
 753		map->can_sleep = config->can_sleep;
 754	} else if (config->use_hwlock) {
 755		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 756		if (!map->hwlock) {
 757			ret = -ENXIO;
 758			goto err_name;
 759		}
 760
 761		switch (config->hwlock_mode) {
 762		case HWLOCK_IRQSTATE:
 763			map->lock = regmap_lock_hwlock_irqsave;
 764			map->unlock = regmap_unlock_hwlock_irqrestore;
 765			break;
 766		case HWLOCK_IRQ:
 767			map->lock = regmap_lock_hwlock_irq;
 768			map->unlock = regmap_unlock_hwlock_irq;
 769			break;
 770		default:
 771			map->lock = regmap_lock_hwlock;
 772			map->unlock = regmap_unlock_hwlock;
 773			break;
 774		}
 775
 776		map->lock_arg = map;
 777	} else {
 778		if ((bus && bus->fast_io) ||
 779		    config->fast_io) {
 780			if (config->use_raw_spinlock) {
 781				raw_spin_lock_init(&map->raw_spinlock);
 782				map->lock = regmap_lock_raw_spinlock;
 783				map->unlock = regmap_unlock_raw_spinlock;
 784				lockdep_set_class_and_name(&map->raw_spinlock,
 785							   lock_key, lock_name);
 786			} else {
 787				spin_lock_init(&map->spinlock);
 788				map->lock = regmap_lock_spinlock;
 789				map->unlock = regmap_unlock_spinlock;
 790				lockdep_set_class_and_name(&map->spinlock,
 791							   lock_key, lock_name);
 792			}
 793		} else {
 794			mutex_init(&map->mutex);
 795			map->lock = regmap_lock_mutex;
 796			map->unlock = regmap_unlock_mutex;
 797			map->can_sleep = true;
 798			lockdep_set_class_and_name(&map->mutex,
 799						   lock_key, lock_name);
 800		}
 801		map->lock_arg = map;
 802	}
 803
 804	/*
 805	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 806	 * scratch buffers with sleeping allocations.
 807	 */
 808	if ((bus && bus->fast_io) || config->fast_io)
 809		map->alloc_flags = GFP_ATOMIC;
 810	else
 811		map->alloc_flags = GFP_KERNEL;
 812
 813	map->reg_base = config->reg_base;
 814
 815	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 816	map->format.pad_bytes = config->pad_bits / 8;
 817	map->format.reg_downshift = config->reg_downshift;
 818	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 819	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 820			config->val_bits + config->pad_bits, 8);
 821	map->reg_shift = config->pad_bits % 8;
 822	if (config->reg_stride)
 823		map->reg_stride = config->reg_stride;
 824	else
 825		map->reg_stride = 1;
 826	if (is_power_of_2(map->reg_stride))
 827		map->reg_stride_order = ilog2(map->reg_stride);
 828	else
 829		map->reg_stride_order = -1;
 830	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
 831	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
 832	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
 833	if (bus) {
 834		map->max_raw_read = bus->max_raw_read;
 835		map->max_raw_write = bus->max_raw_write;
 836	} else if (config->max_raw_read && config->max_raw_write) {
 837		map->max_raw_read = config->max_raw_read;
 838		map->max_raw_write = config->max_raw_write;
 839	}
 840	map->dev = dev;
 841	map->bus = bus;
 842	map->bus_context = bus_context;
 843	map->max_register = config->max_register;
 844	map->wr_table = config->wr_table;
 845	map->rd_table = config->rd_table;
 846	map->volatile_table = config->volatile_table;
 847	map->precious_table = config->precious_table;
 848	map->wr_noinc_table = config->wr_noinc_table;
 849	map->rd_noinc_table = config->rd_noinc_table;
 850	map->writeable_reg = config->writeable_reg;
 851	map->readable_reg = config->readable_reg;
 852	map->volatile_reg = config->volatile_reg;
 853	map->precious_reg = config->precious_reg;
 854	map->writeable_noinc_reg = config->writeable_noinc_reg;
 855	map->readable_noinc_reg = config->readable_noinc_reg;
 856	map->cache_type = config->cache_type;
 857
 858	spin_lock_init(&map->async_lock);
 859	INIT_LIST_HEAD(&map->async_list);
 860	INIT_LIST_HEAD(&map->async_free);
 861	init_waitqueue_head(&map->async_waitq);
 862
 863	if (config->read_flag_mask ||
 864	    config->write_flag_mask ||
 865	    config->zero_flag_mask) {
 866		map->read_flag_mask = config->read_flag_mask;
 867		map->write_flag_mask = config->write_flag_mask;
 868	} else if (bus) {
 869		map->read_flag_mask = bus->read_flag_mask;
 870	}
 871
 872	if (config && config->read && config->write) {
 873		map->reg_read  = _regmap_bus_read;
 874		if (config->reg_update_bits)
 875			map->reg_update_bits = config->reg_update_bits;
 876
 877		/* Bulk read/write */
 878		map->read = config->read;
 879		map->write = config->write;
 880
 881		reg_endian = REGMAP_ENDIAN_NATIVE;
 882		val_endian = REGMAP_ENDIAN_NATIVE;
 883	} else if (!bus) {
 884		map->reg_read  = config->reg_read;
 885		map->reg_write = config->reg_write;
 886		map->reg_update_bits = config->reg_update_bits;
 887
 888		map->defer_caching = false;
 889		goto skip_format_initialization;
 890	} else if (!bus->read || !bus->write) {
 891		map->reg_read = _regmap_bus_reg_read;
 892		map->reg_write = _regmap_bus_reg_write;
 893		map->reg_update_bits = bus->reg_update_bits;
 894
 895		map->defer_caching = false;
 896		goto skip_format_initialization;
 897	} else {
 898		map->reg_read  = _regmap_bus_read;
 899		map->reg_update_bits = bus->reg_update_bits;
 900		/* Bulk read/write */
 901		map->read = bus->read;
 902		map->write = bus->write;
 903
 904		reg_endian = regmap_get_reg_endian(bus, config);
 905		val_endian = regmap_get_val_endian(dev, bus, config);
 906	}
 907
 908	switch (config->reg_bits + map->reg_shift) {
 909	case 2:
 910		switch (config->val_bits) {
 911		case 6:
 912			map->format.format_write = regmap_format_2_6_write;
 913			break;
 914		default:
 915			goto err_hwlock;
 916		}
 917		break;
 918
 919	case 4:
 920		switch (config->val_bits) {
 921		case 12:
 922			map->format.format_write = regmap_format_4_12_write;
 923			break;
 924		default:
 925			goto err_hwlock;
 926		}
 927		break;
 928
 929	case 7:
 930		switch (config->val_bits) {
 931		case 9:
 932			map->format.format_write = regmap_format_7_9_write;
 933			break;
 934		case 17:
 935			map->format.format_write = regmap_format_7_17_write;
 936			break;
 937		default:
 938			goto err_hwlock;
 939		}
 940		break;
 941
 942	case 10:
 943		switch (config->val_bits) {
 944		case 14:
 945			map->format.format_write = regmap_format_10_14_write;
 946			break;
 947		default:
 948			goto err_hwlock;
 949		}
 950		break;
 951
 952	case 12:
 953		switch (config->val_bits) {
 954		case 20:
 955			map->format.format_write = regmap_format_12_20_write;
 956			break;
 957		default:
 958			goto err_hwlock;
 959		}
 960		break;
 961
 962	case 8:
 963		map->format.format_reg = regmap_format_8;
 964		break;
 965
 966	case 16:
 967		switch (reg_endian) {
 968		case REGMAP_ENDIAN_BIG:
 969			map->format.format_reg = regmap_format_16_be;
 970			break;
 971		case REGMAP_ENDIAN_LITTLE:
 972			map->format.format_reg = regmap_format_16_le;
 973			break;
 974		case REGMAP_ENDIAN_NATIVE:
 975			map->format.format_reg = regmap_format_16_native;
 976			break;
 977		default:
 978			goto err_hwlock;
 979		}
 980		break;
 981
 982	case 24:
 983		switch (reg_endian) {
 984		case REGMAP_ENDIAN_BIG:
 985			map->format.format_reg = regmap_format_24_be;
 986			break;
 987		default:
 988			goto err_hwlock;
 989		}
 990		break;
 991
 992	case 32:
 993		switch (reg_endian) {
 994		case REGMAP_ENDIAN_BIG:
 995			map->format.format_reg = regmap_format_32_be;
 996			break;
 997		case REGMAP_ENDIAN_LITTLE:
 998			map->format.format_reg = regmap_format_32_le;
 999			break;
1000		case REGMAP_ENDIAN_NATIVE:
1001			map->format.format_reg = regmap_format_32_native;
1002			break;
1003		default:
1004			goto err_hwlock;
1005		}
1006		break;
1007
1008#ifdef CONFIG_64BIT
1009	case 64:
1010		switch (reg_endian) {
1011		case REGMAP_ENDIAN_BIG:
1012			map->format.format_reg = regmap_format_64_be;
1013			break;
1014		case REGMAP_ENDIAN_LITTLE:
1015			map->format.format_reg = regmap_format_64_le;
1016			break;
1017		case REGMAP_ENDIAN_NATIVE:
1018			map->format.format_reg = regmap_format_64_native;
1019			break;
1020		default:
1021			goto err_hwlock;
1022		}
1023		break;
1024#endif
1025
1026	default:
1027		goto err_hwlock;
1028	}
1029
1030	if (val_endian == REGMAP_ENDIAN_NATIVE)
1031		map->format.parse_inplace = regmap_parse_inplace_noop;
1032
1033	switch (config->val_bits) {
1034	case 8:
1035		map->format.format_val = regmap_format_8;
1036		map->format.parse_val = regmap_parse_8;
1037		map->format.parse_inplace = regmap_parse_inplace_noop;
1038		break;
1039	case 16:
1040		switch (val_endian) {
1041		case REGMAP_ENDIAN_BIG:
1042			map->format.format_val = regmap_format_16_be;
1043			map->format.parse_val = regmap_parse_16_be;
1044			map->format.parse_inplace = regmap_parse_16_be_inplace;
1045			break;
1046		case REGMAP_ENDIAN_LITTLE:
1047			map->format.format_val = regmap_format_16_le;
1048			map->format.parse_val = regmap_parse_16_le;
1049			map->format.parse_inplace = regmap_parse_16_le_inplace;
1050			break;
1051		case REGMAP_ENDIAN_NATIVE:
1052			map->format.format_val = regmap_format_16_native;
1053			map->format.parse_val = regmap_parse_16_native;
1054			break;
1055		default:
1056			goto err_hwlock;
1057		}
1058		break;
1059	case 24:
1060		switch (val_endian) {
1061		case REGMAP_ENDIAN_BIG:
1062			map->format.format_val = regmap_format_24_be;
1063			map->format.parse_val = regmap_parse_24_be;
1064			break;
1065		default:
1066			goto err_hwlock;
1067		}
1068		break;
1069	case 32:
1070		switch (val_endian) {
1071		case REGMAP_ENDIAN_BIG:
1072			map->format.format_val = regmap_format_32_be;
1073			map->format.parse_val = regmap_parse_32_be;
1074			map->format.parse_inplace = regmap_parse_32_be_inplace;
1075			break;
1076		case REGMAP_ENDIAN_LITTLE:
1077			map->format.format_val = regmap_format_32_le;
1078			map->format.parse_val = regmap_parse_32_le;
1079			map->format.parse_inplace = regmap_parse_32_le_inplace;
1080			break;
1081		case REGMAP_ENDIAN_NATIVE:
1082			map->format.format_val = regmap_format_32_native;
1083			map->format.parse_val = regmap_parse_32_native;
1084			break;
1085		default:
1086			goto err_hwlock;
1087		}
1088		break;
1089#ifdef CONFIG_64BIT
1090	case 64:
1091		switch (val_endian) {
1092		case REGMAP_ENDIAN_BIG:
1093			map->format.format_val = regmap_format_64_be;
1094			map->format.parse_val = regmap_parse_64_be;
1095			map->format.parse_inplace = regmap_parse_64_be_inplace;
1096			break;
1097		case REGMAP_ENDIAN_LITTLE:
1098			map->format.format_val = regmap_format_64_le;
1099			map->format.parse_val = regmap_parse_64_le;
1100			map->format.parse_inplace = regmap_parse_64_le_inplace;
1101			break;
1102		case REGMAP_ENDIAN_NATIVE:
1103			map->format.format_val = regmap_format_64_native;
1104			map->format.parse_val = regmap_parse_64_native;
1105			break;
1106		default:
1107			goto err_hwlock;
1108		}
1109		break;
1110#endif
1111	}
1112
1113	if (map->format.format_write) {
1114		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115		    (val_endian != REGMAP_ENDIAN_BIG))
1116			goto err_hwlock;
1117		map->use_single_write = true;
1118	}
1119
1120	if (!map->format.format_write &&
1121	    !(map->format.format_reg && map->format.format_val))
1122		goto err_hwlock;
1123
1124	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125	if (map->work_buf == NULL) {
1126		ret = -ENOMEM;
1127		goto err_hwlock;
1128	}
1129
1130	if (map->format.format_write) {
1131		map->defer_caching = false;
1132		map->reg_write = _regmap_bus_formatted_write;
1133	} else if (map->format.format_val) {
1134		map->defer_caching = true;
1135		map->reg_write = _regmap_bus_raw_write;
1136	}
1137
1138skip_format_initialization:
1139
1140	map->range_tree = RB_ROOT;
1141	for (i = 0; i < config->num_ranges; i++) {
1142		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143		struct regmap_range_node *new;
1144
1145		/* Sanity check */
1146		if (range_cfg->range_max < range_cfg->range_min) {
1147			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148				range_cfg->range_max, range_cfg->range_min);
1149			goto err_range;
1150		}
1151
1152		if (range_cfg->range_max > map->max_register) {
1153			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154				range_cfg->range_max, map->max_register);
1155			goto err_range;
1156		}
1157
1158		if (range_cfg->selector_reg > map->max_register) {
1159			dev_err(map->dev,
1160				"Invalid range %d: selector out of map\n", i);
1161			goto err_range;
1162		}
1163
1164		if (range_cfg->window_len == 0) {
1165			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1166				i);
1167			goto err_range;
1168		}
1169
1170		/* Make sure, that this register range has no selector
1171		   or data window within its boundary */
1172		for (j = 0; j < config->num_ranges; j++) {
1173			unsigned int sel_reg = config->ranges[j].selector_reg;
1174			unsigned int win_min = config->ranges[j].window_start;
1175			unsigned int win_max = win_min +
1176					       config->ranges[j].window_len - 1;
1177
1178			/* Allow data window inside its own virtual range */
1179			if (j == i)
1180				continue;
1181
1182			if (range_cfg->range_min <= sel_reg &&
1183			    sel_reg <= range_cfg->range_max) {
1184				dev_err(map->dev,
1185					"Range %d: selector for %d in window\n",
1186					i, j);
1187				goto err_range;
1188			}
1189
1190			if (!(win_max < range_cfg->range_min ||
1191			      win_min > range_cfg->range_max)) {
1192				dev_err(map->dev,
1193					"Range %d: window for %d in window\n",
1194					i, j);
1195				goto err_range;
1196			}
1197		}
1198
1199		new = kzalloc(sizeof(*new), GFP_KERNEL);
1200		if (new == NULL) {
1201			ret = -ENOMEM;
1202			goto err_range;
1203		}
1204
1205		new->map = map;
1206		new->name = range_cfg->name;
1207		new->range_min = range_cfg->range_min;
1208		new->range_max = range_cfg->range_max;
1209		new->selector_reg = range_cfg->selector_reg;
1210		new->selector_mask = range_cfg->selector_mask;
1211		new->selector_shift = range_cfg->selector_shift;
1212		new->window_start = range_cfg->window_start;
1213		new->window_len = range_cfg->window_len;
1214
1215		if (!_regmap_range_add(map, new)) {
1216			dev_err(map->dev, "Failed to add range %d\n", i);
1217			kfree(new);
1218			goto err_range;
1219		}
1220
1221		if (map->selector_work_buf == NULL) {
1222			map->selector_work_buf =
1223				kzalloc(map->format.buf_size, GFP_KERNEL);
1224			if (map->selector_work_buf == NULL) {
1225				ret = -ENOMEM;
1226				goto err_range;
1227			}
1228		}
1229	}
1230
1231	ret = regcache_init(map, config);
1232	if (ret != 0)
1233		goto err_range;
1234
1235	if (dev) {
1236		ret = regmap_attach_dev(dev, map, config);
1237		if (ret != 0)
1238			goto err_regcache;
1239	} else {
1240		regmap_debugfs_init(map);
1241	}
1242
1243	return map;
1244
1245err_regcache:
1246	regcache_exit(map);
1247err_range:
1248	regmap_range_exit(map);
1249	kfree(map->work_buf);
1250err_hwlock:
1251	if (map->hwlock)
1252		hwspin_lock_free(map->hwlock);
1253err_name:
1254	kfree_const(map->name);
1255err_map:
1256	kfree(map);
1257err:
1258	return ERR_PTR(ret);
1259}
1260EXPORT_SYMBOL_GPL(__regmap_init);
1261
1262static void devm_regmap_release(struct device *dev, void *res)
1263{
1264	regmap_exit(*(struct regmap **)res);
1265}
1266
1267struct regmap *__devm_regmap_init(struct device *dev,
1268				  const struct regmap_bus *bus,
1269				  void *bus_context,
1270				  const struct regmap_config *config,
1271				  struct lock_class_key *lock_key,
1272				  const char *lock_name)
1273{
1274	struct regmap **ptr, *regmap;
1275
1276	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1277	if (!ptr)
1278		return ERR_PTR(-ENOMEM);
1279
1280	regmap = __regmap_init(dev, bus, bus_context, config,
1281			       lock_key, lock_name);
1282	if (!IS_ERR(regmap)) {
1283		*ptr = regmap;
1284		devres_add(dev, ptr);
1285	} else {
1286		devres_free(ptr);
1287	}
1288
1289	return regmap;
1290}
1291EXPORT_SYMBOL_GPL(__devm_regmap_init);
1292
1293static void regmap_field_init(struct regmap_field *rm_field,
1294	struct regmap *regmap, struct reg_field reg_field)
1295{
1296	rm_field->regmap = regmap;
1297	rm_field->reg = reg_field.reg;
1298	rm_field->shift = reg_field.lsb;
1299	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1300
1301	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1302
1303	rm_field->id_size = reg_field.id_size;
1304	rm_field->id_offset = reg_field.id_offset;
1305}
1306
1307/**
1308 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1309 *
1310 * @dev: Device that will be interacted with
1311 * @regmap: regmap bank in which this register field is located.
1312 * @reg_field: Register field with in the bank.
1313 *
1314 * The return value will be an ERR_PTR() on error or a valid pointer
1315 * to a struct regmap_field. The regmap_field will be automatically freed
1316 * by the device management code.
1317 */
1318struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319		struct regmap *regmap, struct reg_field reg_field)
1320{
1321	struct regmap_field *rm_field = devm_kzalloc(dev,
1322					sizeof(*rm_field), GFP_KERNEL);
1323	if (!rm_field)
1324		return ERR_PTR(-ENOMEM);
1325
1326	regmap_field_init(rm_field, regmap, reg_field);
1327
1328	return rm_field;
1329
1330}
1331EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1332
1333
1334/**
1335 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1336 *
1337 * @regmap: regmap bank in which this register field is located.
1338 * @rm_field: regmap register fields within the bank.
1339 * @reg_field: Register fields within the bank.
1340 * @num_fields: Number of register fields.
1341 *
1342 * The return value will be an -ENOMEM on error or zero for success.
1343 * Newly allocated regmap_fields should be freed by calling
1344 * regmap_field_bulk_free()
1345 */
1346int regmap_field_bulk_alloc(struct regmap *regmap,
1347			    struct regmap_field **rm_field,
1348			    const struct reg_field *reg_field,
1349			    int num_fields)
1350{
1351	struct regmap_field *rf;
1352	int i;
1353
1354	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1355	if (!rf)
1356		return -ENOMEM;
1357
1358	for (i = 0; i < num_fields; i++) {
1359		regmap_field_init(&rf[i], regmap, reg_field[i]);
1360		rm_field[i] = &rf[i];
1361	}
1362
1363	return 0;
1364}
1365EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1366
1367/**
1368 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1369 * fields.
1370 *
1371 * @dev: Device that will be interacted with
1372 * @regmap: regmap bank in which this register field is located.
1373 * @rm_field: regmap register fields within the bank.
1374 * @reg_field: Register fields within the bank.
1375 * @num_fields: Number of register fields.
1376 *
1377 * The return value will be an -ENOMEM on error or zero for success.
1378 * Newly allocated regmap_fields will be automatically freed by the
1379 * device management code.
1380 */
1381int devm_regmap_field_bulk_alloc(struct device *dev,
1382				 struct regmap *regmap,
1383				 struct regmap_field **rm_field,
1384				 const struct reg_field *reg_field,
1385				 int num_fields)
1386{
1387	struct regmap_field *rf;
1388	int i;
1389
1390	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1391	if (!rf)
1392		return -ENOMEM;
1393
1394	for (i = 0; i < num_fields; i++) {
1395		regmap_field_init(&rf[i], regmap, reg_field[i]);
1396		rm_field[i] = &rf[i];
1397	}
1398
1399	return 0;
1400}
1401EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1402
1403/**
1404 * regmap_field_bulk_free() - Free register field allocated using
1405 *                       regmap_field_bulk_alloc.
1406 *
1407 * @field: regmap fields which should be freed.
1408 */
1409void regmap_field_bulk_free(struct regmap_field *field)
1410{
1411	kfree(field);
1412}
1413EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1414
1415/**
1416 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417 *                            devm_regmap_field_bulk_alloc.
1418 *
1419 * @dev: Device that will be interacted with
1420 * @field: regmap field which should be freed.
1421 *
1422 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423 * drivers need not call this function, as the memory allocated via devm
1424 * will be freed as per device-driver life-cycle.
1425 */
1426void devm_regmap_field_bulk_free(struct device *dev,
1427				 struct regmap_field *field)
1428{
1429	devm_kfree(dev, field);
1430}
1431EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1432
1433/**
1434 * devm_regmap_field_free() - Free a register field allocated using
1435 *                            devm_regmap_field_alloc.
1436 *
1437 * @dev: Device that will be interacted with
1438 * @field: regmap field which should be freed.
1439 *
1440 * Free register field allocated using devm_regmap_field_alloc(). Usually
1441 * drivers need not call this function, as the memory allocated via devm
1442 * will be freed as per device-driver life-cyle.
1443 */
1444void devm_regmap_field_free(struct device *dev,
1445	struct regmap_field *field)
1446{
1447	devm_kfree(dev, field);
1448}
1449EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1450
1451/**
1452 * regmap_field_alloc() - Allocate and initialise a register field.
1453 *
1454 * @regmap: regmap bank in which this register field is located.
1455 * @reg_field: Register field with in the bank.
1456 *
1457 * The return value will be an ERR_PTR() on error or a valid pointer
1458 * to a struct regmap_field. The regmap_field should be freed by the
1459 * user once its finished working with it using regmap_field_free().
1460 */
1461struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462		struct reg_field reg_field)
1463{
1464	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1465
1466	if (!rm_field)
1467		return ERR_PTR(-ENOMEM);
1468
1469	regmap_field_init(rm_field, regmap, reg_field);
1470
1471	return rm_field;
1472}
1473EXPORT_SYMBOL_GPL(regmap_field_alloc);
1474
1475/**
1476 * regmap_field_free() - Free register field allocated using
1477 *                       regmap_field_alloc.
1478 *
1479 * @field: regmap field which should be freed.
1480 */
1481void regmap_field_free(struct regmap_field *field)
1482{
1483	kfree(field);
1484}
1485EXPORT_SYMBOL_GPL(regmap_field_free);
1486
1487/**
1488 * regmap_reinit_cache() - Reinitialise the current register cache
1489 *
1490 * @map: Register map to operate on.
1491 * @config: New configuration.  Only the cache data will be used.
1492 *
1493 * Discard any existing register cache for the map and initialize a
1494 * new cache.  This can be used to restore the cache to defaults or to
1495 * update the cache configuration to reflect runtime discovery of the
1496 * hardware.
1497 *
1498 * No explicit locking is done here, the user needs to ensure that
1499 * this function will not race with other calls to regmap.
1500 */
1501int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1502{
1503	int ret;
1504
1505	regcache_exit(map);
1506	regmap_debugfs_exit(map);
1507
1508	map->max_register = config->max_register;
1509	map->writeable_reg = config->writeable_reg;
1510	map->readable_reg = config->readable_reg;
1511	map->volatile_reg = config->volatile_reg;
1512	map->precious_reg = config->precious_reg;
1513	map->writeable_noinc_reg = config->writeable_noinc_reg;
1514	map->readable_noinc_reg = config->readable_noinc_reg;
1515	map->cache_type = config->cache_type;
1516
1517	ret = regmap_set_name(map, config);
1518	if (ret)
1519		return ret;
1520
1521	regmap_debugfs_init(map);
1522
1523	map->cache_bypass = false;
1524	map->cache_only = false;
1525
1526	return regcache_init(map, config);
1527}
1528EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1529
1530/**
1531 * regmap_exit() - Free a previously allocated register map
1532 *
1533 * @map: Register map to operate on.
1534 */
1535void regmap_exit(struct regmap *map)
1536{
1537	struct regmap_async *async;
1538
1539	regcache_exit(map);
1540	regmap_debugfs_exit(map);
1541	regmap_range_exit(map);
1542	if (map->bus && map->bus->free_context)
1543		map->bus->free_context(map->bus_context);
1544	kfree(map->work_buf);
1545	while (!list_empty(&map->async_free)) {
1546		async = list_first_entry_or_null(&map->async_free,
1547						 struct regmap_async,
1548						 list);
1549		list_del(&async->list);
1550		kfree(async->work_buf);
1551		kfree(async);
1552	}
1553	if (map->hwlock)
1554		hwspin_lock_free(map->hwlock);
1555	if (map->lock == regmap_lock_mutex)
1556		mutex_destroy(&map->mutex);
1557	kfree_const(map->name);
1558	kfree(map->patch);
1559	if (map->bus && map->bus->free_on_exit)
1560		kfree(map->bus);
1561	kfree(map);
1562}
1563EXPORT_SYMBOL_GPL(regmap_exit);
1564
1565static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1566{
1567	struct regmap **r = res;
1568	if (!r || !*r) {
1569		WARN_ON(!r || !*r);
1570		return 0;
1571	}
1572
1573	/* If the user didn't specify a name match any */
1574	if (data)
1575		return !strcmp((*r)->name, data);
1576	else
1577		return 1;
1578}
1579
1580/**
1581 * dev_get_regmap() - Obtain the regmap (if any) for a device
1582 *
1583 * @dev: Device to retrieve the map for
1584 * @name: Optional name for the register map, usually NULL.
1585 *
1586 * Returns the regmap for the device if one is present, or NULL.  If
1587 * name is specified then it must match the name specified when
1588 * registering the device, if it is NULL then the first regmap found
1589 * will be used.  Devices with multiple register maps are very rare,
1590 * generic code should normally not need to specify a name.
1591 */
1592struct regmap *dev_get_regmap(struct device *dev, const char *name)
1593{
1594	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595					dev_get_regmap_match, (void *)name);
1596
1597	if (!r)
1598		return NULL;
1599	return *r;
1600}
1601EXPORT_SYMBOL_GPL(dev_get_regmap);
1602
1603/**
1604 * regmap_get_device() - Obtain the device from a regmap
1605 *
1606 * @map: Register map to operate on.
1607 *
1608 * Returns the underlying device that the regmap has been created for.
1609 */
1610struct device *regmap_get_device(struct regmap *map)
1611{
1612	return map->dev;
1613}
1614EXPORT_SYMBOL_GPL(regmap_get_device);
1615
1616static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617			       struct regmap_range_node *range,
1618			       unsigned int val_num)
1619{
1620	void *orig_work_buf;
1621	unsigned int win_offset;
1622	unsigned int win_page;
1623	bool page_chg;
1624	int ret;
1625
1626	win_offset = (*reg - range->range_min) % range->window_len;
1627	win_page = (*reg - range->range_min) / range->window_len;
1628
1629	if (val_num > 1) {
1630		/* Bulk write shouldn't cross range boundary */
1631		if (*reg + val_num - 1 > range->range_max)
1632			return -EINVAL;
1633
1634		/* ... or single page boundary */
1635		if (val_num > range->window_len - win_offset)
1636			return -EINVAL;
1637	}
1638
1639	/* It is possible to have selector register inside data window.
1640	   In that case, selector register is located on every page and
1641	   it needs no page switching, when accessed alone. */
1642	if (val_num > 1 ||
1643	    range->window_start + win_offset != range->selector_reg) {
1644		/* Use separate work_buf during page switching */
1645		orig_work_buf = map->work_buf;
1646		map->work_buf = map->selector_work_buf;
1647
1648		ret = _regmap_update_bits(map, range->selector_reg,
1649					  range->selector_mask,
1650					  win_page << range->selector_shift,
1651					  &page_chg, false);
1652
1653		map->work_buf = orig_work_buf;
1654
1655		if (ret != 0)
1656			return ret;
1657	}
1658
1659	*reg = range->window_start + win_offset;
1660
1661	return 0;
1662}
1663
1664static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1665					  unsigned long mask)
1666{
1667	u8 *buf;
1668	int i;
1669
1670	if (!mask || !map->work_buf)
1671		return;
1672
1673	buf = map->work_buf;
1674
1675	for (i = 0; i < max_bytes; i++)
1676		buf[i] |= (mask >> (8 * i)) & 0xff;
1677}
1678
 
 
 
 
 
 
 
 
 
 
 
 
1679static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1680				  const void *val, size_t val_len, bool noinc)
1681{
1682	struct regmap_range_node *range;
1683	unsigned long flags;
1684	void *work_val = map->work_buf + map->format.reg_bytes +
1685		map->format.pad_bytes;
1686	void *buf;
1687	int ret = -ENOTSUPP;
1688	size_t len;
1689	int i;
1690
1691	/* Check for unwritable or noinc registers in range
1692	 * before we start
1693	 */
1694	if (!regmap_writeable_noinc(map, reg)) {
1695		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1696			unsigned int element =
1697				reg + regmap_get_offset(map, i);
1698			if (!regmap_writeable(map, element) ||
1699				regmap_writeable_noinc(map, element))
1700				return -EINVAL;
1701		}
1702	}
1703
1704	if (!map->cache_bypass && map->format.parse_val) {
1705		unsigned int ival;
1706		int val_bytes = map->format.val_bytes;
1707		for (i = 0; i < val_len / val_bytes; i++) {
1708			ival = map->format.parse_val(val + (i * val_bytes));
1709			ret = regcache_write(map,
1710					     reg + regmap_get_offset(map, i),
1711					     ival);
 
 
1712			if (ret) {
1713				dev_err(map->dev,
1714					"Error in caching of register: %x ret: %d\n",
1715					reg + regmap_get_offset(map, i), ret);
1716				return ret;
1717			}
1718		}
1719		if (map->cache_only) {
1720			map->cache_dirty = true;
1721			return 0;
1722		}
1723	}
1724
1725	range = _regmap_range_lookup(map, reg);
1726	if (range) {
1727		int val_num = val_len / map->format.val_bytes;
1728		int win_offset = (reg - range->range_min) % range->window_len;
1729		int win_residue = range->window_len - win_offset;
1730
1731		/* If the write goes beyond the end of the window split it */
1732		while (val_num > win_residue) {
1733			dev_dbg(map->dev, "Writing window %d/%zu\n",
1734				win_residue, val_len / map->format.val_bytes);
1735			ret = _regmap_raw_write_impl(map, reg, val,
1736						     win_residue *
1737						     map->format.val_bytes, noinc);
1738			if (ret != 0)
1739				return ret;
1740
1741			reg += win_residue;
1742			val_num -= win_residue;
1743			val += win_residue * map->format.val_bytes;
1744			val_len -= win_residue * map->format.val_bytes;
1745
1746			win_offset = (reg - range->range_min) %
1747				range->window_len;
1748			win_residue = range->window_len - win_offset;
1749		}
1750
1751		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1752		if (ret != 0)
1753			return ret;
1754	}
1755
1756	reg += map->reg_base;
1757	reg >>= map->format.reg_downshift;
1758	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1759	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1760				      map->write_flag_mask);
1761
1762	/*
1763	 * Essentially all I/O mechanisms will be faster with a single
1764	 * buffer to write.  Since register syncs often generate raw
1765	 * writes of single registers optimise that case.
1766	 */
1767	if (val != work_val && val_len == map->format.val_bytes) {
1768		memcpy(work_val, val, map->format.val_bytes);
1769		val = work_val;
1770	}
1771
1772	if (map->async && map->bus && map->bus->async_write) {
1773		struct regmap_async *async;
1774
1775		trace_regmap_async_write_start(map, reg, val_len);
1776
1777		spin_lock_irqsave(&map->async_lock, flags);
1778		async = list_first_entry_or_null(&map->async_free,
1779						 struct regmap_async,
1780						 list);
1781		if (async)
1782			list_del(&async->list);
1783		spin_unlock_irqrestore(&map->async_lock, flags);
1784
1785		if (!async) {
1786			async = map->bus->async_alloc();
1787			if (!async)
1788				return -ENOMEM;
1789
1790			async->work_buf = kzalloc(map->format.buf_size,
1791						  GFP_KERNEL | GFP_DMA);
1792			if (!async->work_buf) {
1793				kfree(async);
1794				return -ENOMEM;
1795			}
1796		}
1797
1798		async->map = map;
1799
1800		/* If the caller supplied the value we can use it safely. */
1801		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1802		       map->format.reg_bytes + map->format.val_bytes);
1803
1804		spin_lock_irqsave(&map->async_lock, flags);
1805		list_add_tail(&async->list, &map->async_list);
1806		spin_unlock_irqrestore(&map->async_lock, flags);
1807
1808		if (val != work_val)
1809			ret = map->bus->async_write(map->bus_context,
1810						    async->work_buf,
1811						    map->format.reg_bytes +
1812						    map->format.pad_bytes,
1813						    val, val_len, async);
1814		else
1815			ret = map->bus->async_write(map->bus_context,
1816						    async->work_buf,
1817						    map->format.reg_bytes +
1818						    map->format.pad_bytes +
1819						    val_len, NULL, 0, async);
1820
1821		if (ret != 0) {
1822			dev_err(map->dev, "Failed to schedule write: %d\n",
1823				ret);
1824
1825			spin_lock_irqsave(&map->async_lock, flags);
1826			list_move(&async->list, &map->async_free);
1827			spin_unlock_irqrestore(&map->async_lock, flags);
1828		}
1829
1830		return ret;
1831	}
1832
1833	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1834
1835	/* If we're doing a single register write we can probably just
1836	 * send the work_buf directly, otherwise try to do a gather
1837	 * write.
1838	 */
1839	if (val == work_val)
1840		ret = map->write(map->bus_context, map->work_buf,
1841				 map->format.reg_bytes +
1842				 map->format.pad_bytes +
1843				 val_len);
1844	else if (map->bus && map->bus->gather_write)
1845		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1846					     map->format.reg_bytes +
1847					     map->format.pad_bytes,
1848					     val, val_len);
1849	else
1850		ret = -ENOTSUPP;
1851
1852	/* If that didn't work fall back on linearising by hand. */
1853	if (ret == -ENOTSUPP) {
1854		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1855		buf = kzalloc(len, GFP_KERNEL);
1856		if (!buf)
1857			return -ENOMEM;
1858
1859		memcpy(buf, map->work_buf, map->format.reg_bytes);
1860		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1861		       val, val_len);
1862		ret = map->write(map->bus_context, buf, len);
1863
1864		kfree(buf);
1865	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1866		/* regcache_drop_region() takes lock that we already have,
1867		 * thus call map->cache_ops->drop() directly
1868		 */
1869		if (map->cache_ops && map->cache_ops->drop)
1870			map->cache_ops->drop(map, reg, reg + 1);
1871	}
1872
1873	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1874
1875	return ret;
1876}
1877
1878/**
1879 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1880 *
1881 * @map: Map to check.
1882 */
1883bool regmap_can_raw_write(struct regmap *map)
1884{
1885	return map->write && map->format.format_val && map->format.format_reg;
1886}
1887EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1888
1889/**
1890 * regmap_get_raw_read_max - Get the maximum size we can read
1891 *
1892 * @map: Map to check.
1893 */
1894size_t regmap_get_raw_read_max(struct regmap *map)
1895{
1896	return map->max_raw_read;
1897}
1898EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1899
1900/**
1901 * regmap_get_raw_write_max - Get the maximum size we can read
1902 *
1903 * @map: Map to check.
1904 */
1905size_t regmap_get_raw_write_max(struct regmap *map)
1906{
1907	return map->max_raw_write;
1908}
1909EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1910
1911static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1912				       unsigned int val)
1913{
1914	int ret;
1915	struct regmap_range_node *range;
1916	struct regmap *map = context;
1917
1918	WARN_ON(!map->format.format_write);
1919
1920	range = _regmap_range_lookup(map, reg);
1921	if (range) {
1922		ret = _regmap_select_page(map, &reg, range, 1);
1923		if (ret != 0)
1924			return ret;
1925	}
1926
1927	reg += map->reg_base;
1928	reg >>= map->format.reg_downshift;
1929	map->format.format_write(map, reg, val);
1930
1931	trace_regmap_hw_write_start(map, reg, 1);
1932
1933	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1934
1935	trace_regmap_hw_write_done(map, reg, 1);
1936
1937	return ret;
1938}
1939
1940static int _regmap_bus_reg_write(void *context, unsigned int reg,
1941				 unsigned int val)
1942{
1943	struct regmap *map = context;
 
 
1944
 
 
 
 
 
 
 
 
1945	return map->bus->reg_write(map->bus_context, reg, val);
1946}
1947
1948static int _regmap_bus_raw_write(void *context, unsigned int reg,
1949				 unsigned int val)
1950{
1951	struct regmap *map = context;
1952
1953	WARN_ON(!map->format.format_val);
1954
1955	map->format.format_val(map->work_buf + map->format.reg_bytes
1956			       + map->format.pad_bytes, val, 0);
1957	return _regmap_raw_write_impl(map, reg,
1958				      map->work_buf +
1959				      map->format.reg_bytes +
1960				      map->format.pad_bytes,
1961				      map->format.val_bytes,
1962				      false);
1963}
1964
1965static inline void *_regmap_map_get_context(struct regmap *map)
1966{
1967	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1968}
1969
1970int _regmap_write(struct regmap *map, unsigned int reg,
1971		  unsigned int val)
1972{
1973	int ret;
1974	void *context = _regmap_map_get_context(map);
1975
1976	if (!regmap_writeable(map, reg))
1977		return -EIO;
1978
1979	if (!map->cache_bypass && !map->defer_caching) {
1980		ret = regcache_write(map, reg, val);
1981		if (ret != 0)
1982			return ret;
1983		if (map->cache_only) {
1984			map->cache_dirty = true;
1985			return 0;
1986		}
1987	}
1988
1989	ret = map->reg_write(context, reg, val);
1990	if (ret == 0) {
1991		if (regmap_should_log(map))
1992			dev_info(map->dev, "%x <= %x\n", reg, val);
1993
1994		trace_regmap_reg_write(map, reg, val);
1995	}
1996
1997	return ret;
1998}
1999
2000/**
2001 * regmap_write() - Write a value to a single register
2002 *
2003 * @map: Register map to write to
2004 * @reg: Register to write to
2005 * @val: Value to be written
2006 *
2007 * A value of zero will be returned on success, a negative errno will
2008 * be returned in error cases.
2009 */
2010int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2011{
2012	int ret;
2013
2014	if (!IS_ALIGNED(reg, map->reg_stride))
2015		return -EINVAL;
2016
2017	map->lock(map->lock_arg);
2018
2019	ret = _regmap_write(map, reg, val);
2020
2021	map->unlock(map->lock_arg);
2022
2023	return ret;
2024}
2025EXPORT_SYMBOL_GPL(regmap_write);
2026
2027/**
2028 * regmap_write_async() - Write a value to a single register asynchronously
2029 *
2030 * @map: Register map to write to
2031 * @reg: Register to write to
2032 * @val: Value to be written
2033 *
2034 * A value of zero will be returned on success, a negative errno will
2035 * be returned in error cases.
2036 */
2037int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2038{
2039	int ret;
2040
2041	if (!IS_ALIGNED(reg, map->reg_stride))
2042		return -EINVAL;
2043
2044	map->lock(map->lock_arg);
2045
2046	map->async = true;
2047
2048	ret = _regmap_write(map, reg, val);
2049
2050	map->async = false;
2051
2052	map->unlock(map->lock_arg);
2053
2054	return ret;
2055}
2056EXPORT_SYMBOL_GPL(regmap_write_async);
2057
2058int _regmap_raw_write(struct regmap *map, unsigned int reg,
2059		      const void *val, size_t val_len, bool noinc)
2060{
2061	size_t val_bytes = map->format.val_bytes;
2062	size_t val_count = val_len / val_bytes;
2063	size_t chunk_count, chunk_bytes;
2064	size_t chunk_regs = val_count;
2065	int ret, i;
2066
2067	if (!val_count)
2068		return -EINVAL;
2069
2070	if (map->use_single_write)
2071		chunk_regs = 1;
2072	else if (map->max_raw_write && val_len > map->max_raw_write)
2073		chunk_regs = map->max_raw_write / val_bytes;
2074
2075	chunk_count = val_count / chunk_regs;
2076	chunk_bytes = chunk_regs * val_bytes;
2077
2078	/* Write as many bytes as possible with chunk_size */
2079	for (i = 0; i < chunk_count; i++) {
2080		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2081		if (ret)
2082			return ret;
2083
2084		reg += regmap_get_offset(map, chunk_regs);
2085		val += chunk_bytes;
2086		val_len -= chunk_bytes;
2087	}
2088
2089	/* Write remaining bytes */
2090	if (val_len)
2091		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2092
2093	return ret;
2094}
2095
2096/**
2097 * regmap_raw_write() - Write raw values to one or more registers
2098 *
2099 * @map: Register map to write to
2100 * @reg: Initial register to write to
2101 * @val: Block of data to be written, laid out for direct transmission to the
2102 *       device
2103 * @val_len: Length of data pointed to by val.
2104 *
2105 * This function is intended to be used for things like firmware
2106 * download where a large block of data needs to be transferred to the
2107 * device.  No formatting will be done on the data provided.
2108 *
2109 * A value of zero will be returned on success, a negative errno will
2110 * be returned in error cases.
2111 */
2112int regmap_raw_write(struct regmap *map, unsigned int reg,
2113		     const void *val, size_t val_len)
2114{
2115	int ret;
2116
2117	if (!regmap_can_raw_write(map))
2118		return -EINVAL;
2119	if (val_len % map->format.val_bytes)
2120		return -EINVAL;
2121
2122	map->lock(map->lock_arg);
2123
2124	ret = _regmap_raw_write(map, reg, val, val_len, false);
2125
2126	map->unlock(map->lock_arg);
2127
2128	return ret;
2129}
2130EXPORT_SYMBOL_GPL(regmap_raw_write);
2131
2132static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2133				  void *val, unsigned int val_len, bool write)
2134{
2135	size_t val_bytes = map->format.val_bytes;
2136	size_t val_count = val_len / val_bytes;
2137	unsigned int lastval;
2138	u8 *u8p;
2139	u16 *u16p;
2140	u32 *u32p;
2141#ifdef CONFIG_64BIT
2142	u64 *u64p;
2143#endif
2144	int ret;
2145	int i;
2146
2147	switch (val_bytes) {
2148	case 1:
2149		u8p = val;
2150		if (write)
2151			lastval = (unsigned int)u8p[val_count - 1];
2152		break;
2153	case 2:
2154		u16p = val;
2155		if (write)
2156			lastval = (unsigned int)u16p[val_count - 1];
2157		break;
2158	case 4:
2159		u32p = val;
2160		if (write)
2161			lastval = (unsigned int)u32p[val_count - 1];
2162		break;
2163#ifdef CONFIG_64BIT
2164	case 8:
2165		u64p = val;
2166		if (write)
2167			lastval = (unsigned int)u64p[val_count - 1];
2168		break;
2169#endif
2170	default:
2171		return -EINVAL;
2172	}
2173
2174	/*
2175	 * Update the cache with the last value we write, the rest is just
2176	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2177	 * sure a single read from the cache will work.
2178	 */
2179	if (write) {
2180		if (!map->cache_bypass && !map->defer_caching) {
2181			ret = regcache_write(map, reg, lastval);
2182			if (ret != 0)
2183				return ret;
2184			if (map->cache_only) {
2185				map->cache_dirty = true;
2186				return 0;
2187			}
2188		}
2189		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2190	} else {
2191		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2192	}
2193
2194	if (!ret && regmap_should_log(map)) {
2195		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2196		for (i = 0; i < val_count; i++) {
2197			switch (val_bytes) {
2198			case 1:
2199				pr_cont("%x", u8p[i]);
2200				break;
2201			case 2:
2202				pr_cont("%x", u16p[i]);
2203				break;
2204			case 4:
2205				pr_cont("%x", u32p[i]);
2206				break;
2207#ifdef CONFIG_64BIT
2208			case 8:
2209				pr_cont("%llx", u64p[i]);
2210				break;
2211#endif
2212			default:
2213				break;
2214			}
2215			if (i == (val_count - 1))
2216				pr_cont("]\n");
2217			else
2218				pr_cont(",");
2219		}
2220	}
2221
2222	return 0;
2223}
2224
2225/**
2226 * regmap_noinc_write(): Write data from a register without incrementing the
2227 *			register number
2228 *
2229 * @map: Register map to write to
2230 * @reg: Register to write to
2231 * @val: Pointer to data buffer
2232 * @val_len: Length of output buffer in bytes.
2233 *
2234 * The regmap API usually assumes that bulk bus write operations will write a
2235 * range of registers. Some devices have certain registers for which a write
2236 * operation can write to an internal FIFO.
2237 *
2238 * The target register must be volatile but registers after it can be
2239 * completely unrelated cacheable registers.
2240 *
2241 * This will attempt multiple writes as required to write val_len bytes.
2242 *
2243 * A value of zero will be returned on success, a negative errno will be
2244 * returned in error cases.
2245 */
2246int regmap_noinc_write(struct regmap *map, unsigned int reg,
2247		      const void *val, size_t val_len)
2248{
2249	size_t write_len;
2250	int ret;
2251
2252	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2253		return -EINVAL;
2254	if (val_len % map->format.val_bytes)
2255		return -EINVAL;
2256	if (!IS_ALIGNED(reg, map->reg_stride))
2257		return -EINVAL;
2258	if (val_len == 0)
2259		return -EINVAL;
2260
2261	map->lock(map->lock_arg);
2262
2263	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2264		ret = -EINVAL;
2265		goto out_unlock;
2266	}
2267
2268	/*
2269	 * Use the accelerated operation if we can. The val drops the const
2270	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2271	 */
2272	if (map->bus->reg_noinc_write) {
2273		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2274		goto out_unlock;
2275	}
2276
2277	while (val_len) {
2278		if (map->max_raw_write && map->max_raw_write < val_len)
2279			write_len = map->max_raw_write;
2280		else
2281			write_len = val_len;
2282		ret = _regmap_raw_write(map, reg, val, write_len, true);
2283		if (ret)
2284			goto out_unlock;
2285		val = ((u8 *)val) + write_len;
2286		val_len -= write_len;
2287	}
2288
2289out_unlock:
2290	map->unlock(map->lock_arg);
2291	return ret;
2292}
2293EXPORT_SYMBOL_GPL(regmap_noinc_write);
2294
2295/**
2296 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2297 *                                   register field.
2298 *
2299 * @field: Register field to write to
2300 * @mask: Bitmask to change
2301 * @val: Value to be written
2302 * @change: Boolean indicating if a write was done
2303 * @async: Boolean indicating asynchronously
2304 * @force: Boolean indicating use force update
2305 *
2306 * Perform a read/modify/write cycle on the register field with change,
2307 * async, force option.
2308 *
2309 * A value of zero will be returned on success, a negative errno will
2310 * be returned in error cases.
2311 */
2312int regmap_field_update_bits_base(struct regmap_field *field,
2313				  unsigned int mask, unsigned int val,
2314				  bool *change, bool async, bool force)
2315{
2316	mask = (mask << field->shift) & field->mask;
2317
2318	return regmap_update_bits_base(field->regmap, field->reg,
2319				       mask, val << field->shift,
2320				       change, async, force);
2321}
2322EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2323
2324/**
2325 * regmap_field_test_bits() - Check if all specified bits are set in a
2326 *                            register field.
2327 *
2328 * @field: Register field to operate on
2329 * @bits: Bits to test
2330 *
2331 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2332 * tested bits is not set and 1 if all tested bits are set.
2333 */
2334int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2335{
2336	unsigned int val, ret;
2337
2338	ret = regmap_field_read(field, &val);
2339	if (ret)
2340		return ret;
2341
2342	return (val & bits) == bits;
2343}
2344EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2345
2346/**
2347 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2348 *                                    register field with port ID
2349 *
2350 * @field: Register field to write to
2351 * @id: port ID
2352 * @mask: Bitmask to change
2353 * @val: Value to be written
2354 * @change: Boolean indicating if a write was done
2355 * @async: Boolean indicating asynchronously
2356 * @force: Boolean indicating use force update
2357 *
2358 * A value of zero will be returned on success, a negative errno will
2359 * be returned in error cases.
2360 */
2361int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2362				   unsigned int mask, unsigned int val,
2363				   bool *change, bool async, bool force)
2364{
2365	if (id >= field->id_size)
2366		return -EINVAL;
2367
2368	mask = (mask << field->shift) & field->mask;
2369
2370	return regmap_update_bits_base(field->regmap,
2371				       field->reg + (field->id_offset * id),
2372				       mask, val << field->shift,
2373				       change, async, force);
2374}
2375EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2376
2377/**
2378 * regmap_bulk_write() - Write multiple registers to the device
2379 *
2380 * @map: Register map to write to
2381 * @reg: First register to be write from
2382 * @val: Block of data to be written, in native register size for device
2383 * @val_count: Number of registers to write
2384 *
2385 * This function is intended to be used for writing a large block of
2386 * data to the device either in single transfer or multiple transfer.
2387 *
2388 * A value of zero will be returned on success, a negative errno will
2389 * be returned in error cases.
2390 */
2391int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2392		     size_t val_count)
2393{
2394	int ret = 0, i;
2395	size_t val_bytes = map->format.val_bytes;
2396
2397	if (!IS_ALIGNED(reg, map->reg_stride))
2398		return -EINVAL;
2399
2400	/*
2401	 * Some devices don't support bulk write, for them we have a series of
2402	 * single write operations.
2403	 */
2404	if (!map->write || !map->format.parse_inplace) {
2405		map->lock(map->lock_arg);
2406		for (i = 0; i < val_count; i++) {
2407			unsigned int ival;
2408
2409			switch (val_bytes) {
2410			case 1:
2411				ival = *(u8 *)(val + (i * val_bytes));
2412				break;
2413			case 2:
2414				ival = *(u16 *)(val + (i * val_bytes));
2415				break;
2416			case 4:
2417				ival = *(u32 *)(val + (i * val_bytes));
2418				break;
2419#ifdef CONFIG_64BIT
2420			case 8:
2421				ival = *(u64 *)(val + (i * val_bytes));
2422				break;
2423#endif
2424			default:
2425				ret = -EINVAL;
2426				goto out;
2427			}
2428
2429			ret = _regmap_write(map,
2430					    reg + regmap_get_offset(map, i),
2431					    ival);
2432			if (ret != 0)
2433				goto out;
2434		}
2435out:
2436		map->unlock(map->lock_arg);
2437	} else {
2438		void *wval;
2439
2440		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2441		if (!wval)
2442			return -ENOMEM;
2443
2444		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2445			map->format.parse_inplace(wval + i);
2446
2447		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2448
2449		kfree(wval);
2450	}
2451
2452	if (!ret)
2453		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2454
2455	return ret;
2456}
2457EXPORT_SYMBOL_GPL(regmap_bulk_write);
2458
2459/*
2460 * _regmap_raw_multi_reg_write()
2461 *
2462 * the (register,newvalue) pairs in regs have not been formatted, but
2463 * they are all in the same page and have been changed to being page
2464 * relative. The page register has been written if that was necessary.
2465 */
2466static int _regmap_raw_multi_reg_write(struct regmap *map,
2467				       const struct reg_sequence *regs,
2468				       size_t num_regs)
2469{
2470	int ret;
2471	void *buf;
2472	int i;
2473	u8 *u8;
2474	size_t val_bytes = map->format.val_bytes;
2475	size_t reg_bytes = map->format.reg_bytes;
2476	size_t pad_bytes = map->format.pad_bytes;
2477	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2478	size_t len = pair_size * num_regs;
2479
2480	if (!len)
2481		return -EINVAL;
2482
2483	buf = kzalloc(len, GFP_KERNEL);
2484	if (!buf)
2485		return -ENOMEM;
2486
2487	/* We have to linearise by hand. */
2488
2489	u8 = buf;
2490
2491	for (i = 0; i < num_regs; i++) {
2492		unsigned int reg = regs[i].reg;
2493		unsigned int val = regs[i].def;
2494		trace_regmap_hw_write_start(map, reg, 1);
2495		reg += map->reg_base;
2496		reg >>= map->format.reg_downshift;
2497		map->format.format_reg(u8, reg, map->reg_shift);
2498		u8 += reg_bytes + pad_bytes;
2499		map->format.format_val(u8, val, 0);
2500		u8 += val_bytes;
2501	}
2502	u8 = buf;
2503	*u8 |= map->write_flag_mask;
2504
2505	ret = map->write(map->bus_context, buf, len);
2506
2507	kfree(buf);
2508
2509	for (i = 0; i < num_regs; i++) {
2510		int reg = regs[i].reg;
2511		trace_regmap_hw_write_done(map, reg, 1);
2512	}
2513	return ret;
2514}
2515
2516static unsigned int _regmap_register_page(struct regmap *map,
2517					  unsigned int reg,
2518					  struct regmap_range_node *range)
2519{
2520	unsigned int win_page = (reg - range->range_min) / range->window_len;
2521
2522	return win_page;
2523}
2524
2525static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2526					       struct reg_sequence *regs,
2527					       size_t num_regs)
2528{
2529	int ret;
2530	int i, n;
2531	struct reg_sequence *base;
2532	unsigned int this_page = 0;
2533	unsigned int page_change = 0;
2534	/*
2535	 * the set of registers are not neccessarily in order, but
2536	 * since the order of write must be preserved this algorithm
2537	 * chops the set each time the page changes. This also applies
2538	 * if there is a delay required at any point in the sequence.
2539	 */
2540	base = regs;
2541	for (i = 0, n = 0; i < num_regs; i++, n++) {
2542		unsigned int reg = regs[i].reg;
2543		struct regmap_range_node *range;
2544
2545		range = _regmap_range_lookup(map, reg);
2546		if (range) {
2547			unsigned int win_page = _regmap_register_page(map, reg,
2548								      range);
2549
2550			if (i == 0)
2551				this_page = win_page;
2552			if (win_page != this_page) {
2553				this_page = win_page;
2554				page_change = 1;
2555			}
2556		}
2557
2558		/* If we have both a page change and a delay make sure to
2559		 * write the regs and apply the delay before we change the
2560		 * page.
2561		 */
2562
2563		if (page_change || regs[i].delay_us) {
2564
2565				/* For situations where the first write requires
2566				 * a delay we need to make sure we don't call
2567				 * raw_multi_reg_write with n=0
2568				 * This can't occur with page breaks as we
2569				 * never write on the first iteration
2570				 */
2571				if (regs[i].delay_us && i == 0)
2572					n = 1;
2573
2574				ret = _regmap_raw_multi_reg_write(map, base, n);
2575				if (ret != 0)
2576					return ret;
2577
2578				if (regs[i].delay_us) {
2579					if (map->can_sleep)
2580						fsleep(regs[i].delay_us);
2581					else
2582						udelay(regs[i].delay_us);
2583				}
2584
2585				base += n;
2586				n = 0;
2587
2588				if (page_change) {
2589					ret = _regmap_select_page(map,
2590								  &base[n].reg,
2591								  range, 1);
2592					if (ret != 0)
2593						return ret;
2594
2595					page_change = 0;
2596				}
2597
2598		}
2599
2600	}
2601	if (n > 0)
2602		return _regmap_raw_multi_reg_write(map, base, n);
2603	return 0;
2604}
2605
2606static int _regmap_multi_reg_write(struct regmap *map,
2607				   const struct reg_sequence *regs,
2608				   size_t num_regs)
2609{
2610	int i;
2611	int ret;
2612
2613	if (!map->can_multi_write) {
2614		for (i = 0; i < num_regs; i++) {
2615			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2616			if (ret != 0)
2617				return ret;
2618
2619			if (regs[i].delay_us) {
2620				if (map->can_sleep)
2621					fsleep(regs[i].delay_us);
2622				else
2623					udelay(regs[i].delay_us);
2624			}
2625		}
2626		return 0;
2627	}
2628
2629	if (!map->format.parse_inplace)
2630		return -EINVAL;
2631
2632	if (map->writeable_reg)
2633		for (i = 0; i < num_regs; i++) {
2634			int reg = regs[i].reg;
2635			if (!map->writeable_reg(map->dev, reg))
2636				return -EINVAL;
2637			if (!IS_ALIGNED(reg, map->reg_stride))
2638				return -EINVAL;
2639		}
2640
2641	if (!map->cache_bypass) {
2642		for (i = 0; i < num_regs; i++) {
2643			unsigned int val = regs[i].def;
2644			unsigned int reg = regs[i].reg;
2645			ret = regcache_write(map, reg, val);
2646			if (ret) {
2647				dev_err(map->dev,
2648				"Error in caching of register: %x ret: %d\n",
2649								reg, ret);
2650				return ret;
2651			}
2652		}
2653		if (map->cache_only) {
2654			map->cache_dirty = true;
2655			return 0;
2656		}
2657	}
2658
2659	WARN_ON(!map->bus);
2660
2661	for (i = 0; i < num_regs; i++) {
2662		unsigned int reg = regs[i].reg;
2663		struct regmap_range_node *range;
2664
2665		/* Coalesce all the writes between a page break or a delay
2666		 * in a sequence
2667		 */
2668		range = _regmap_range_lookup(map, reg);
2669		if (range || regs[i].delay_us) {
2670			size_t len = sizeof(struct reg_sequence)*num_regs;
2671			struct reg_sequence *base = kmemdup(regs, len,
2672							   GFP_KERNEL);
2673			if (!base)
2674				return -ENOMEM;
2675			ret = _regmap_range_multi_paged_reg_write(map, base,
2676								  num_regs);
2677			kfree(base);
2678
2679			return ret;
2680		}
2681	}
2682	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2683}
2684
2685/**
2686 * regmap_multi_reg_write() - Write multiple registers to the device
2687 *
2688 * @map: Register map to write to
2689 * @regs: Array of structures containing register,value to be written
2690 * @num_regs: Number of registers to write
2691 *
2692 * Write multiple registers to the device where the set of register, value
2693 * pairs are supplied in any order, possibly not all in a single range.
2694 *
2695 * The 'normal' block write mode will send ultimately send data on the
2696 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2697 * addressed. However, this alternative block multi write mode will send
2698 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2699 * must of course support the mode.
2700 *
2701 * A value of zero will be returned on success, a negative errno will be
2702 * returned in error cases.
2703 */
2704int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2705			   int num_regs)
2706{
2707	int ret;
2708
2709	map->lock(map->lock_arg);
2710
2711	ret = _regmap_multi_reg_write(map, regs, num_regs);
2712
2713	map->unlock(map->lock_arg);
2714
2715	return ret;
2716}
2717EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2718
2719/**
2720 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2721 *                                     device but not the cache
2722 *
2723 * @map: Register map to write to
2724 * @regs: Array of structures containing register,value to be written
2725 * @num_regs: Number of registers to write
2726 *
2727 * Write multiple registers to the device but not the cache where the set
2728 * of register are supplied in any order.
2729 *
2730 * This function is intended to be used for writing a large block of data
2731 * atomically to the device in single transfer for those I2C client devices
2732 * that implement this alternative block write mode.
2733 *
2734 * A value of zero will be returned on success, a negative errno will
2735 * be returned in error cases.
2736 */
2737int regmap_multi_reg_write_bypassed(struct regmap *map,
2738				    const struct reg_sequence *regs,
2739				    int num_regs)
2740{
2741	int ret;
2742	bool bypass;
2743
2744	map->lock(map->lock_arg);
2745
2746	bypass = map->cache_bypass;
2747	map->cache_bypass = true;
2748
2749	ret = _regmap_multi_reg_write(map, regs, num_regs);
2750
2751	map->cache_bypass = bypass;
2752
2753	map->unlock(map->lock_arg);
2754
2755	return ret;
2756}
2757EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2758
2759/**
2760 * regmap_raw_write_async() - Write raw values to one or more registers
2761 *                            asynchronously
2762 *
2763 * @map: Register map to write to
2764 * @reg: Initial register to write to
2765 * @val: Block of data to be written, laid out for direct transmission to the
2766 *       device.  Must be valid until regmap_async_complete() is called.
2767 * @val_len: Length of data pointed to by val.
2768 *
2769 * This function is intended to be used for things like firmware
2770 * download where a large block of data needs to be transferred to the
2771 * device.  No formatting will be done on the data provided.
2772 *
2773 * If supported by the underlying bus the write will be scheduled
2774 * asynchronously, helping maximise I/O speed on higher speed buses
2775 * like SPI.  regmap_async_complete() can be called to ensure that all
2776 * asynchrnous writes have been completed.
2777 *
2778 * A value of zero will be returned on success, a negative errno will
2779 * be returned in error cases.
2780 */
2781int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2782			   const void *val, size_t val_len)
2783{
2784	int ret;
2785
2786	if (val_len % map->format.val_bytes)
2787		return -EINVAL;
2788	if (!IS_ALIGNED(reg, map->reg_stride))
2789		return -EINVAL;
2790
2791	map->lock(map->lock_arg);
2792
2793	map->async = true;
2794
2795	ret = _regmap_raw_write(map, reg, val, val_len, false);
2796
2797	map->async = false;
2798
2799	map->unlock(map->lock_arg);
2800
2801	return ret;
2802}
2803EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2804
2805static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2806			    unsigned int val_len, bool noinc)
2807{
2808	struct regmap_range_node *range;
2809	int ret;
2810
2811	if (!map->read)
2812		return -EINVAL;
2813
2814	range = _regmap_range_lookup(map, reg);
2815	if (range) {
2816		ret = _regmap_select_page(map, &reg, range,
2817					  noinc ? 1 : val_len / map->format.val_bytes);
2818		if (ret != 0)
2819			return ret;
2820	}
2821
2822	reg += map->reg_base;
2823	reg >>= map->format.reg_downshift;
2824	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2825	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2826				      map->read_flag_mask);
2827	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2828
2829	ret = map->read(map->bus_context, map->work_buf,
2830			map->format.reg_bytes + map->format.pad_bytes,
2831			val, val_len);
2832
2833	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2834
2835	return ret;
2836}
2837
2838static int _regmap_bus_reg_read(void *context, unsigned int reg,
2839				unsigned int *val)
2840{
2841	struct regmap *map = context;
 
 
2842
 
 
 
 
 
 
 
 
2843	return map->bus->reg_read(map->bus_context, reg, val);
2844}
2845
2846static int _regmap_bus_read(void *context, unsigned int reg,
2847			    unsigned int *val)
2848{
2849	int ret;
2850	struct regmap *map = context;
2851	void *work_val = map->work_buf + map->format.reg_bytes +
2852		map->format.pad_bytes;
2853
2854	if (!map->format.parse_val)
2855		return -EINVAL;
2856
2857	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2858	if (ret == 0)
2859		*val = map->format.parse_val(work_val);
2860
2861	return ret;
2862}
2863
2864static int _regmap_read(struct regmap *map, unsigned int reg,
2865			unsigned int *val)
2866{
2867	int ret;
2868	void *context = _regmap_map_get_context(map);
2869
2870	if (!map->cache_bypass) {
2871		ret = regcache_read(map, reg, val);
2872		if (ret == 0)
2873			return 0;
2874	}
2875
2876	if (map->cache_only)
2877		return -EBUSY;
2878
2879	if (!regmap_readable(map, reg))
2880		return -EIO;
2881
2882	ret = map->reg_read(context, reg, val);
2883	if (ret == 0) {
2884		if (regmap_should_log(map))
2885			dev_info(map->dev, "%x => %x\n", reg, *val);
2886
2887		trace_regmap_reg_read(map, reg, *val);
2888
2889		if (!map->cache_bypass)
2890			regcache_write(map, reg, *val);
2891	}
2892
2893	return ret;
2894}
2895
2896/**
2897 * regmap_read() - Read a value from a single register
2898 *
2899 * @map: Register map to read from
2900 * @reg: Register to be read from
2901 * @val: Pointer to store read value
2902 *
2903 * A value of zero will be returned on success, a negative errno will
2904 * be returned in error cases.
2905 */
2906int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2907{
2908	int ret;
2909
2910	if (!IS_ALIGNED(reg, map->reg_stride))
2911		return -EINVAL;
2912
2913	map->lock(map->lock_arg);
2914
2915	ret = _regmap_read(map, reg, val);
2916
2917	map->unlock(map->lock_arg);
2918
2919	return ret;
2920}
2921EXPORT_SYMBOL_GPL(regmap_read);
2922
2923/**
2924 * regmap_raw_read() - Read raw data from the device
2925 *
2926 * @map: Register map to read from
2927 * @reg: First register to be read from
2928 * @val: Pointer to store read value
2929 * @val_len: Size of data to read
2930 *
2931 * A value of zero will be returned on success, a negative errno will
2932 * be returned in error cases.
2933 */
2934int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2935		    size_t val_len)
2936{
2937	size_t val_bytes = map->format.val_bytes;
2938	size_t val_count = val_len / val_bytes;
2939	unsigned int v;
2940	int ret, i;
2941
2942	if (val_len % map->format.val_bytes)
2943		return -EINVAL;
2944	if (!IS_ALIGNED(reg, map->reg_stride))
2945		return -EINVAL;
2946	if (val_count == 0)
2947		return -EINVAL;
2948
2949	map->lock(map->lock_arg);
2950
2951	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2952	    map->cache_type == REGCACHE_NONE) {
2953		size_t chunk_count, chunk_bytes;
2954		size_t chunk_regs = val_count;
2955
 
 
 
 
 
2956		if (!map->read) {
2957			ret = -ENOTSUPP;
2958			goto out;
2959		}
2960
2961		if (map->use_single_read)
2962			chunk_regs = 1;
2963		else if (map->max_raw_read && val_len > map->max_raw_read)
2964			chunk_regs = map->max_raw_read / val_bytes;
2965
2966		chunk_count = val_count / chunk_regs;
2967		chunk_bytes = chunk_regs * val_bytes;
2968
2969		/* Read bytes that fit into whole chunks */
2970		for (i = 0; i < chunk_count; i++) {
2971			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2972			if (ret != 0)
2973				goto out;
2974
2975			reg += regmap_get_offset(map, chunk_regs);
2976			val += chunk_bytes;
2977			val_len -= chunk_bytes;
2978		}
2979
2980		/* Read remaining bytes */
2981		if (val_len) {
2982			ret = _regmap_raw_read(map, reg, val, val_len, false);
2983			if (ret != 0)
2984				goto out;
2985		}
2986	} else {
2987		/* Otherwise go word by word for the cache; should be low
2988		 * cost as we expect to hit the cache.
2989		 */
2990		for (i = 0; i < val_count; i++) {
2991			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2992					   &v);
2993			if (ret != 0)
2994				goto out;
2995
2996			map->format.format_val(val + (i * val_bytes), v, 0);
2997		}
2998	}
2999
3000 out:
3001	map->unlock(map->lock_arg);
3002
3003	return ret;
3004}
3005EXPORT_SYMBOL_GPL(regmap_raw_read);
3006
3007/**
3008 * regmap_noinc_read(): Read data from a register without incrementing the
3009 *			register number
3010 *
3011 * @map: Register map to read from
3012 * @reg: Register to read from
3013 * @val: Pointer to data buffer
3014 * @val_len: Length of output buffer in bytes.
3015 *
3016 * The regmap API usually assumes that bulk read operations will read a
3017 * range of registers. Some devices have certain registers for which a read
3018 * operation read will read from an internal FIFO.
3019 *
3020 * The target register must be volatile but registers after it can be
3021 * completely unrelated cacheable registers.
3022 *
3023 * This will attempt multiple reads as required to read val_len bytes.
3024 *
3025 * A value of zero will be returned on success, a negative errno will be
3026 * returned in error cases.
3027 */
3028int regmap_noinc_read(struct regmap *map, unsigned int reg,
3029		      void *val, size_t val_len)
3030{
3031	size_t read_len;
3032	int ret;
3033
3034	if (!map->read)
3035		return -ENOTSUPP;
3036
3037	if (val_len % map->format.val_bytes)
3038		return -EINVAL;
3039	if (!IS_ALIGNED(reg, map->reg_stride))
3040		return -EINVAL;
3041	if (val_len == 0)
3042		return -EINVAL;
3043
3044	map->lock(map->lock_arg);
3045
3046	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3047		ret = -EINVAL;
3048		goto out_unlock;
3049	}
3050
 
 
 
 
 
 
 
 
 
 
 
3051	/* Use the accelerated operation if we can */
3052	if (map->bus->reg_noinc_read) {
3053		/*
3054		 * We have not defined the FIFO semantics for cache, as the
3055		 * cache is just one value deep. Should we return the last
3056		 * written value? Just avoid this by always reading the FIFO
3057		 * even when using cache. Cache only will not work.
3058		 */
3059		if (map->cache_only) {
3060			ret = -EBUSY;
3061			goto out_unlock;
3062		}
3063		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3064		goto out_unlock;
3065	}
3066
3067	while (val_len) {
3068		if (map->max_raw_read && map->max_raw_read < val_len)
3069			read_len = map->max_raw_read;
3070		else
3071			read_len = val_len;
3072		ret = _regmap_raw_read(map, reg, val, read_len, true);
3073		if (ret)
3074			goto out_unlock;
3075		val = ((u8 *)val) + read_len;
3076		val_len -= read_len;
3077	}
3078
3079out_unlock:
3080	map->unlock(map->lock_arg);
3081	return ret;
3082}
3083EXPORT_SYMBOL_GPL(regmap_noinc_read);
3084
3085/**
3086 * regmap_field_read(): Read a value to a single register field
3087 *
3088 * @field: Register field to read from
3089 * @val: Pointer to store read value
3090 *
3091 * A value of zero will be returned on success, a negative errno will
3092 * be returned in error cases.
3093 */
3094int regmap_field_read(struct regmap_field *field, unsigned int *val)
3095{
3096	int ret;
3097	unsigned int reg_val;
3098	ret = regmap_read(field->regmap, field->reg, &reg_val);
3099	if (ret != 0)
3100		return ret;
3101
3102	reg_val &= field->mask;
3103	reg_val >>= field->shift;
3104	*val = reg_val;
3105
3106	return ret;
3107}
3108EXPORT_SYMBOL_GPL(regmap_field_read);
3109
3110/**
3111 * regmap_fields_read() - Read a value to a single register field with port ID
3112 *
3113 * @field: Register field to read from
3114 * @id: port ID
3115 * @val: Pointer to store read value
3116 *
3117 * A value of zero will be returned on success, a negative errno will
3118 * be returned in error cases.
3119 */
3120int regmap_fields_read(struct regmap_field *field, unsigned int id,
3121		       unsigned int *val)
3122{
3123	int ret;
3124	unsigned int reg_val;
3125
3126	if (id >= field->id_size)
3127		return -EINVAL;
3128
3129	ret = regmap_read(field->regmap,
3130			  field->reg + (field->id_offset * id),
3131			  &reg_val);
3132	if (ret != 0)
3133		return ret;
3134
3135	reg_val &= field->mask;
3136	reg_val >>= field->shift;
3137	*val = reg_val;
3138
3139	return ret;
3140}
3141EXPORT_SYMBOL_GPL(regmap_fields_read);
3142
3143/**
3144 * regmap_bulk_read() - Read multiple registers from the device
3145 *
3146 * @map: Register map to read from
3147 * @reg: First register to be read from
3148 * @val: Pointer to store read value, in native register size for device
3149 * @val_count: Number of registers to read
3150 *
3151 * A value of zero will be returned on success, a negative errno will
3152 * be returned in error cases.
3153 */
3154int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3155		     size_t val_count)
3156{
3157	int ret, i;
3158	size_t val_bytes = map->format.val_bytes;
3159	bool vol = regmap_volatile_range(map, reg, val_count);
3160
3161	if (!IS_ALIGNED(reg, map->reg_stride))
3162		return -EINVAL;
3163	if (val_count == 0)
3164		return -EINVAL;
3165
3166	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3167		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3168		if (ret != 0)
3169			return ret;
3170
3171		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3172			map->format.parse_inplace(val + i);
3173	} else {
3174#ifdef CONFIG_64BIT
3175		u64 *u64 = val;
3176#endif
3177		u32 *u32 = val;
3178		u16 *u16 = val;
3179		u8 *u8 = val;
3180
3181		map->lock(map->lock_arg);
3182
3183		for (i = 0; i < val_count; i++) {
3184			unsigned int ival;
3185
3186			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3187					   &ival);
3188			if (ret != 0)
3189				goto out;
3190
3191			switch (map->format.val_bytes) {
3192#ifdef CONFIG_64BIT
3193			case 8:
3194				u64[i] = ival;
3195				break;
3196#endif
3197			case 4:
3198				u32[i] = ival;
3199				break;
3200			case 2:
3201				u16[i] = ival;
3202				break;
3203			case 1:
3204				u8[i] = ival;
3205				break;
3206			default:
3207				ret = -EINVAL;
3208				goto out;
3209			}
3210		}
3211
3212out:
3213		map->unlock(map->lock_arg);
3214	}
3215
3216	if (!ret)
3217		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3218
3219	return ret;
3220}
3221EXPORT_SYMBOL_GPL(regmap_bulk_read);
3222
3223static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3224			       unsigned int mask, unsigned int val,
3225			       bool *change, bool force_write)
3226{
3227	int ret;
3228	unsigned int tmp, orig;
3229
3230	if (change)
3231		*change = false;
3232
3233	if (regmap_volatile(map, reg) && map->reg_update_bits) {
 
3234		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3235		if (ret == 0 && change)
3236			*change = true;
3237	} else {
3238		ret = _regmap_read(map, reg, &orig);
3239		if (ret != 0)
3240			return ret;
3241
3242		tmp = orig & ~mask;
3243		tmp |= val & mask;
3244
3245		if (force_write || (tmp != orig)) {
3246			ret = _regmap_write(map, reg, tmp);
3247			if (ret == 0 && change)
3248				*change = true;
3249		}
3250	}
3251
3252	return ret;
3253}
3254
3255/**
3256 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3257 *
3258 * @map: Register map to update
3259 * @reg: Register to update
3260 * @mask: Bitmask to change
3261 * @val: New value for bitmask
3262 * @change: Boolean indicating if a write was done
3263 * @async: Boolean indicating asynchronously
3264 * @force: Boolean indicating use force update
3265 *
3266 * Perform a read/modify/write cycle on a register map with change, async, force
3267 * options.
3268 *
3269 * If async is true:
3270 *
3271 * With most buses the read must be done synchronously so this is most useful
3272 * for devices with a cache which do not need to interact with the hardware to
3273 * determine the current register value.
3274 *
3275 * Returns zero for success, a negative number on error.
3276 */
3277int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3278			    unsigned int mask, unsigned int val,
3279			    bool *change, bool async, bool force)
3280{
3281	int ret;
3282
3283	map->lock(map->lock_arg);
3284
3285	map->async = async;
3286
3287	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3288
3289	map->async = false;
3290
3291	map->unlock(map->lock_arg);
3292
3293	return ret;
3294}
3295EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3296
3297/**
3298 * regmap_test_bits() - Check if all specified bits are set in a register.
3299 *
3300 * @map: Register map to operate on
3301 * @reg: Register to read from
3302 * @bits: Bits to test
3303 *
3304 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3305 * bits are set and a negative error number if the underlying regmap_read()
3306 * fails.
3307 */
3308int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3309{
3310	unsigned int val, ret;
3311
3312	ret = regmap_read(map, reg, &val);
3313	if (ret)
3314		return ret;
3315
3316	return (val & bits) == bits;
3317}
3318EXPORT_SYMBOL_GPL(regmap_test_bits);
3319
3320void regmap_async_complete_cb(struct regmap_async *async, int ret)
3321{
3322	struct regmap *map = async->map;
3323	bool wake;
3324
3325	trace_regmap_async_io_complete(map);
3326
3327	spin_lock(&map->async_lock);
3328	list_move(&async->list, &map->async_free);
3329	wake = list_empty(&map->async_list);
3330
3331	if (ret != 0)
3332		map->async_ret = ret;
3333
3334	spin_unlock(&map->async_lock);
3335
3336	if (wake)
3337		wake_up(&map->async_waitq);
3338}
3339EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3340
3341static int regmap_async_is_done(struct regmap *map)
3342{
3343	unsigned long flags;
3344	int ret;
3345
3346	spin_lock_irqsave(&map->async_lock, flags);
3347	ret = list_empty(&map->async_list);
3348	spin_unlock_irqrestore(&map->async_lock, flags);
3349
3350	return ret;
3351}
3352
3353/**
3354 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3355 *
3356 * @map: Map to operate on.
3357 *
3358 * Blocks until any pending asynchronous I/O has completed.  Returns
3359 * an error code for any failed I/O operations.
3360 */
3361int regmap_async_complete(struct regmap *map)
3362{
3363	unsigned long flags;
3364	int ret;
3365
3366	/* Nothing to do with no async support */
3367	if (!map->bus || !map->bus->async_write)
3368		return 0;
3369
3370	trace_regmap_async_complete_start(map);
3371
3372	wait_event(map->async_waitq, regmap_async_is_done(map));
3373
3374	spin_lock_irqsave(&map->async_lock, flags);
3375	ret = map->async_ret;
3376	map->async_ret = 0;
3377	spin_unlock_irqrestore(&map->async_lock, flags);
3378
3379	trace_regmap_async_complete_done(map);
3380
3381	return ret;
3382}
3383EXPORT_SYMBOL_GPL(regmap_async_complete);
3384
3385/**
3386 * regmap_register_patch - Register and apply register updates to be applied
3387 *                         on device initialistion
3388 *
3389 * @map: Register map to apply updates to.
3390 * @regs: Values to update.
3391 * @num_regs: Number of entries in regs.
3392 *
3393 * Register a set of register updates to be applied to the device
3394 * whenever the device registers are synchronised with the cache and
3395 * apply them immediately.  Typically this is used to apply
3396 * corrections to be applied to the device defaults on startup, such
3397 * as the updates some vendors provide to undocumented registers.
3398 *
3399 * The caller must ensure that this function cannot be called
3400 * concurrently with either itself or regcache_sync().
3401 */
3402int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3403			  int num_regs)
3404{
3405	struct reg_sequence *p;
3406	int ret;
3407	bool bypass;
3408
3409	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3410	    num_regs))
3411		return 0;
3412
3413	p = krealloc(map->patch,
3414		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3415		     GFP_KERNEL);
3416	if (p) {
3417		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3418		map->patch = p;
3419		map->patch_regs += num_regs;
3420	} else {
3421		return -ENOMEM;
3422	}
3423
3424	map->lock(map->lock_arg);
3425
3426	bypass = map->cache_bypass;
3427
3428	map->cache_bypass = true;
3429	map->async = true;
3430
3431	ret = _regmap_multi_reg_write(map, regs, num_regs);
3432
3433	map->async = false;
3434	map->cache_bypass = bypass;
3435
3436	map->unlock(map->lock_arg);
3437
3438	regmap_async_complete(map);
3439
3440	return ret;
3441}
3442EXPORT_SYMBOL_GPL(regmap_register_patch);
3443
3444/**
3445 * regmap_get_val_bytes() - Report the size of a register value
3446 *
3447 * @map: Register map to operate on.
3448 *
3449 * Report the size of a register value, mainly intended to for use by
3450 * generic infrastructure built on top of regmap.
3451 */
3452int regmap_get_val_bytes(struct regmap *map)
3453{
3454	if (map->format.format_write)
3455		return -EINVAL;
3456
3457	return map->format.val_bytes;
3458}
3459EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3460
3461/**
3462 * regmap_get_max_register() - Report the max register value
3463 *
3464 * @map: Register map to operate on.
3465 *
3466 * Report the max register value, mainly intended to for use by
3467 * generic infrastructure built on top of regmap.
3468 */
3469int regmap_get_max_register(struct regmap *map)
3470{
3471	return map->max_register ? map->max_register : -EINVAL;
3472}
3473EXPORT_SYMBOL_GPL(regmap_get_max_register);
3474
3475/**
3476 * regmap_get_reg_stride() - Report the register address stride
3477 *
3478 * @map: Register map to operate on.
3479 *
3480 * Report the register address stride, mainly intended to for use by
3481 * generic infrastructure built on top of regmap.
3482 */
3483int regmap_get_reg_stride(struct regmap *map)
3484{
3485	return map->reg_stride;
3486}
3487EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3488
3489/**
3490 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3491 *
3492 * @map: Register map to operate on.
3493 *
3494 * Returns true if an access to the register might sleep, else false.
3495 */
3496bool regmap_might_sleep(struct regmap *map)
3497{
3498	return map->can_sleep;
3499}
3500EXPORT_SYMBOL_GPL(regmap_might_sleep);
3501
3502int regmap_parse_val(struct regmap *map, const void *buf,
3503			unsigned int *val)
3504{
3505	if (!map->format.parse_val)
3506		return -EINVAL;
3507
3508	*val = map->format.parse_val(buf);
3509
3510	return 0;
3511}
3512EXPORT_SYMBOL_GPL(regmap_parse_val);
3513
3514static int __init regmap_initcall(void)
3515{
3516	regmap_debugfs_initcall();
3517
3518	return 0;
3519}
3520postcore_initcall(regmap_initcall);