Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/phy.h>
19
20struct fwnode_handle *__dev_fwnode(struct device *dev)
21{
22 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 of_fwnode_handle(dev->of_node) : dev->fwnode;
24}
25EXPORT_SYMBOL_GPL(__dev_fwnode);
26
27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28{
29 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 of_fwnode_handle(dev->of_node) : dev->fwnode;
31}
32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33
34/**
35 * device_property_present - check if a property of a device is present
36 * @dev: Device whose property is being checked
37 * @propname: Name of the property
38 *
39 * Check if property @propname is present in the device firmware description.
40 *
41 * Return: true if property @propname is present. Otherwise, returns false.
42 */
43bool device_property_present(const struct device *dev, const char *propname)
44{
45 return fwnode_property_present(dev_fwnode(dev), propname);
46}
47EXPORT_SYMBOL_GPL(device_property_present);
48
49/**
50 * fwnode_property_present - check if a property of a firmware node is present
51 * @fwnode: Firmware node whose property to check
52 * @propname: Name of the property
53 *
54 * Return: true if property @propname is present. Otherwise, returns false.
55 */
56bool fwnode_property_present(const struct fwnode_handle *fwnode,
57 const char *propname)
58{
59 bool ret;
60
61 if (IS_ERR_OR_NULL(fwnode))
62 return false;
63
64 ret = fwnode_call_bool_op(fwnode, property_present, propname);
65 if (ret)
66 return ret;
67
68 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
69}
70EXPORT_SYMBOL_GPL(fwnode_property_present);
71
72/**
73 * device_property_read_u8_array - return a u8 array property of a device
74 * @dev: Device to get the property of
75 * @propname: Name of the property
76 * @val: The values are stored here or %NULL to return the number of values
77 * @nval: Size of the @val array
78 *
79 * Function reads an array of u8 properties with @propname from the device
80 * firmware description and stores them to @val if found.
81 *
82 * It's recommended to call device_property_count_u8() instead of calling
83 * this function with @val equals %NULL and @nval equals 0.
84 *
85 * Return: number of values if @val was %NULL,
86 * %0 if the property was found (success),
87 * %-EINVAL if given arguments are not valid,
88 * %-ENODATA if the property does not have a value,
89 * %-EPROTO if the property is not an array of numbers,
90 * %-EOVERFLOW if the size of the property is not as expected.
91 * %-ENXIO if no suitable firmware interface is present.
92 */
93int device_property_read_u8_array(const struct device *dev, const char *propname,
94 u8 *val, size_t nval)
95{
96 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
97}
98EXPORT_SYMBOL_GPL(device_property_read_u8_array);
99
100/**
101 * device_property_read_u16_array - return a u16 array property of a device
102 * @dev: Device to get the property of
103 * @propname: Name of the property
104 * @val: The values are stored here or %NULL to return the number of values
105 * @nval: Size of the @val array
106 *
107 * Function reads an array of u16 properties with @propname from the device
108 * firmware description and stores them to @val if found.
109 *
110 * It's recommended to call device_property_count_u16() instead of calling
111 * this function with @val equals %NULL and @nval equals 0.
112 *
113 * Return: number of values if @val was %NULL,
114 * %0 if the property was found (success),
115 * %-EINVAL if given arguments are not valid,
116 * %-ENODATA if the property does not have a value,
117 * %-EPROTO if the property is not an array of numbers,
118 * %-EOVERFLOW if the size of the property is not as expected.
119 * %-ENXIO if no suitable firmware interface is present.
120 */
121int device_property_read_u16_array(const struct device *dev, const char *propname,
122 u16 *val, size_t nval)
123{
124 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
125}
126EXPORT_SYMBOL_GPL(device_property_read_u16_array);
127
128/**
129 * device_property_read_u32_array - return a u32 array property of a device
130 * @dev: Device to get the property of
131 * @propname: Name of the property
132 * @val: The values are stored here or %NULL to return the number of values
133 * @nval: Size of the @val array
134 *
135 * Function reads an array of u32 properties with @propname from the device
136 * firmware description and stores them to @val if found.
137 *
138 * It's recommended to call device_property_count_u32() instead of calling
139 * this function with @val equals %NULL and @nval equals 0.
140 *
141 * Return: number of values if @val was %NULL,
142 * %0 if the property was found (success),
143 * %-EINVAL if given arguments are not valid,
144 * %-ENODATA if the property does not have a value,
145 * %-EPROTO if the property is not an array of numbers,
146 * %-EOVERFLOW if the size of the property is not as expected.
147 * %-ENXIO if no suitable firmware interface is present.
148 */
149int device_property_read_u32_array(const struct device *dev, const char *propname,
150 u32 *val, size_t nval)
151{
152 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
153}
154EXPORT_SYMBOL_GPL(device_property_read_u32_array);
155
156/**
157 * device_property_read_u64_array - return a u64 array property of a device
158 * @dev: Device to get the property of
159 * @propname: Name of the property
160 * @val: The values are stored here or %NULL to return the number of values
161 * @nval: Size of the @val array
162 *
163 * Function reads an array of u64 properties with @propname from the device
164 * firmware description and stores them to @val if found.
165 *
166 * It's recommended to call device_property_count_u64() instead of calling
167 * this function with @val equals %NULL and @nval equals 0.
168 *
169 * Return: number of values if @val was %NULL,
170 * %0 if the property was found (success),
171 * %-EINVAL if given arguments are not valid,
172 * %-ENODATA if the property does not have a value,
173 * %-EPROTO if the property is not an array of numbers,
174 * %-EOVERFLOW if the size of the property is not as expected.
175 * %-ENXIO if no suitable firmware interface is present.
176 */
177int device_property_read_u64_array(const struct device *dev, const char *propname,
178 u64 *val, size_t nval)
179{
180 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
181}
182EXPORT_SYMBOL_GPL(device_property_read_u64_array);
183
184/**
185 * device_property_read_string_array - return a string array property of device
186 * @dev: Device to get the property of
187 * @propname: Name of the property
188 * @val: The values are stored here or %NULL to return the number of values
189 * @nval: Size of the @val array
190 *
191 * Function reads an array of string properties with @propname from the device
192 * firmware description and stores them to @val if found.
193 *
194 * It's recommended to call device_property_string_array_count() instead of calling
195 * this function with @val equals %NULL and @nval equals 0.
196 *
197 * Return: number of values read on success if @val is non-NULL,
198 * number of values available on success if @val is NULL,
199 * %-EINVAL if given arguments are not valid,
200 * %-ENODATA if the property does not have a value,
201 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
202 * %-EOVERFLOW if the size of the property is not as expected.
203 * %-ENXIO if no suitable firmware interface is present.
204 */
205int device_property_read_string_array(const struct device *dev, const char *propname,
206 const char **val, size_t nval)
207{
208 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
209}
210EXPORT_SYMBOL_GPL(device_property_read_string_array);
211
212/**
213 * device_property_read_string - return a string property of a device
214 * @dev: Device to get the property of
215 * @propname: Name of the property
216 * @val: The value is stored here
217 *
218 * Function reads property @propname from the device firmware description and
219 * stores the value into @val if found. The value is checked to be a string.
220 *
221 * Return: %0 if the property was found (success),
222 * %-EINVAL if given arguments are not valid,
223 * %-ENODATA if the property does not have a value,
224 * %-EPROTO or %-EILSEQ if the property type is not a string.
225 * %-ENXIO if no suitable firmware interface is present.
226 */
227int device_property_read_string(const struct device *dev, const char *propname,
228 const char **val)
229{
230 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
231}
232EXPORT_SYMBOL_GPL(device_property_read_string);
233
234/**
235 * device_property_match_string - find a string in an array and return index
236 * @dev: Device to get the property of
237 * @propname: Name of the property holding the array
238 * @string: String to look for
239 *
240 * Find a given string in a string array and if it is found return the
241 * index back.
242 *
243 * Return: index, starting from %0, if the property was found (success),
244 * %-EINVAL if given arguments are not valid,
245 * %-ENODATA if the property does not have a value,
246 * %-EPROTO if the property is not an array of strings,
247 * %-ENXIO if no suitable firmware interface is present.
248 */
249int device_property_match_string(const struct device *dev, const char *propname,
250 const char *string)
251{
252 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
253}
254EXPORT_SYMBOL_GPL(device_property_match_string);
255
256static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
257 const char *propname,
258 unsigned int elem_size, void *val,
259 size_t nval)
260{
261 int ret;
262
263 if (IS_ERR_OR_NULL(fwnode))
264 return -EINVAL;
265
266 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
267 elem_size, val, nval);
268 if (ret != -EINVAL)
269 return ret;
270
271 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
272 elem_size, val, nval);
273}
274
275/**
276 * fwnode_property_read_u8_array - return a u8 array property of firmware node
277 * @fwnode: Firmware node to get the property of
278 * @propname: Name of the property
279 * @val: The values are stored here or %NULL to return the number of values
280 * @nval: Size of the @val array
281 *
282 * Read an array of u8 properties with @propname from @fwnode and stores them to
283 * @val if found.
284 *
285 * It's recommended to call fwnode_property_count_u8() instead of calling
286 * this function with @val equals %NULL and @nval equals 0.
287 *
288 * Return: number of values if @val was %NULL,
289 * %0 if the property was found (success),
290 * %-EINVAL if given arguments are not valid,
291 * %-ENODATA if the property does not have a value,
292 * %-EPROTO if the property is not an array of numbers,
293 * %-EOVERFLOW if the size of the property is not as expected,
294 * %-ENXIO if no suitable firmware interface is present.
295 */
296int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
297 const char *propname, u8 *val, size_t nval)
298{
299 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
300 val, nval);
301}
302EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
303
304/**
305 * fwnode_property_read_u16_array - return a u16 array property of firmware node
306 * @fwnode: Firmware node to get the property of
307 * @propname: Name of the property
308 * @val: The values are stored here or %NULL to return the number of values
309 * @nval: Size of the @val array
310 *
311 * Read an array of u16 properties with @propname from @fwnode and store them to
312 * @val if found.
313 *
314 * It's recommended to call fwnode_property_count_u16() instead of calling
315 * this function with @val equals %NULL and @nval equals 0.
316 *
317 * Return: number of values if @val was %NULL,
318 * %0 if the property was found (success),
319 * %-EINVAL if given arguments are not valid,
320 * %-ENODATA if the property does not have a value,
321 * %-EPROTO if the property is not an array of numbers,
322 * %-EOVERFLOW if the size of the property is not as expected,
323 * %-ENXIO if no suitable firmware interface is present.
324 */
325int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
326 const char *propname, u16 *val, size_t nval)
327{
328 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
329 val, nval);
330}
331EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
332
333/**
334 * fwnode_property_read_u32_array - return a u32 array property of firmware node
335 * @fwnode: Firmware node to get the property of
336 * @propname: Name of the property
337 * @val: The values are stored here or %NULL to return the number of values
338 * @nval: Size of the @val array
339 *
340 * Read an array of u32 properties with @propname from @fwnode store them to
341 * @val if found.
342 *
343 * It's recommended to call fwnode_property_count_u32() instead of calling
344 * this function with @val equals %NULL and @nval equals 0.
345 *
346 * Return: number of values if @val was %NULL,
347 * %0 if the property was found (success),
348 * %-EINVAL if given arguments are not valid,
349 * %-ENODATA if the property does not have a value,
350 * %-EPROTO if the property is not an array of numbers,
351 * %-EOVERFLOW if the size of the property is not as expected,
352 * %-ENXIO if no suitable firmware interface is present.
353 */
354int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
355 const char *propname, u32 *val, size_t nval)
356{
357 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
358 val, nval);
359}
360EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
361
362/**
363 * fwnode_property_read_u64_array - return a u64 array property firmware node
364 * @fwnode: Firmware node to get the property of
365 * @propname: Name of the property
366 * @val: The values are stored here or %NULL to return the number of values
367 * @nval: Size of the @val array
368 *
369 * Read an array of u64 properties with @propname from @fwnode and store them to
370 * @val if found.
371 *
372 * It's recommended to call fwnode_property_count_u64() instead of calling
373 * this function with @val equals %NULL and @nval equals 0.
374 *
375 * Return: number of values if @val was %NULL,
376 * %0 if the property was found (success),
377 * %-EINVAL if given arguments are not valid,
378 * %-ENODATA if the property does not have a value,
379 * %-EPROTO if the property is not an array of numbers,
380 * %-EOVERFLOW if the size of the property is not as expected,
381 * %-ENXIO if no suitable firmware interface is present.
382 */
383int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
384 const char *propname, u64 *val, size_t nval)
385{
386 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
387 val, nval);
388}
389EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
390
391/**
392 * fwnode_property_read_string_array - return string array property of a node
393 * @fwnode: Firmware node to get the property of
394 * @propname: Name of the property
395 * @val: The values are stored here or %NULL to return the number of values
396 * @nval: Size of the @val array
397 *
398 * Read an string list property @propname from the given firmware node and store
399 * them to @val if found.
400 *
401 * It's recommended to call fwnode_property_string_array_count() instead of calling
402 * this function with @val equals %NULL and @nval equals 0.
403 *
404 * Return: number of values read on success if @val is non-NULL,
405 * number of values available on success if @val is NULL,
406 * %-EINVAL if given arguments are not valid,
407 * %-ENODATA if the property does not have a value,
408 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
409 * %-EOVERFLOW if the size of the property is not as expected,
410 * %-ENXIO if no suitable firmware interface is present.
411 */
412int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
413 const char *propname, const char **val,
414 size_t nval)
415{
416 int ret;
417
418 if (IS_ERR_OR_NULL(fwnode))
419 return -EINVAL;
420
421 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
422 val, nval);
423 if (ret != -EINVAL)
424 return ret;
425
426 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
427 val, nval);
428}
429EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
430
431/**
432 * fwnode_property_read_string - return a string property of a firmware node
433 * @fwnode: Firmware node to get the property of
434 * @propname: Name of the property
435 * @val: The value is stored here
436 *
437 * Read property @propname from the given firmware node and store the value into
438 * @val if found. The value is checked to be a string.
439 *
440 * Return: %0 if the property was found (success),
441 * %-EINVAL if given arguments are not valid,
442 * %-ENODATA if the property does not have a value,
443 * %-EPROTO or %-EILSEQ if the property is not a string,
444 * %-ENXIO if no suitable firmware interface is present.
445 */
446int fwnode_property_read_string(const struct fwnode_handle *fwnode,
447 const char *propname, const char **val)
448{
449 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
450
451 return ret < 0 ? ret : 0;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_read_string);
454
455/**
456 * fwnode_property_match_string - find a string in an array and return index
457 * @fwnode: Firmware node to get the property of
458 * @propname: Name of the property holding the array
459 * @string: String to look for
460 *
461 * Find a given string in a string array and if it is found return the
462 * index back.
463 *
464 * Return: index, starting from %0, if the property was found (success),
465 * %-EINVAL if given arguments are not valid,
466 * %-ENODATA if the property does not have a value,
467 * %-EPROTO if the property is not an array of strings,
468 * %-ENXIO if no suitable firmware interface is present.
469 */
470int fwnode_property_match_string(const struct fwnode_handle *fwnode,
471 const char *propname, const char *string)
472{
473 const char **values;
474 int nval, ret;
475
476 nval = fwnode_property_string_array_count(fwnode, propname);
477 if (nval < 0)
478 return nval;
479
480 if (nval == 0)
481 return -ENODATA;
482
483 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
484 if (!values)
485 return -ENOMEM;
486
487 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
488 if (ret < 0)
489 goto out_free;
490
491 ret = match_string(values, nval, string);
492 if (ret < 0)
493 ret = -ENODATA;
494
495out_free:
496 kfree(values);
497 return ret;
498}
499EXPORT_SYMBOL_GPL(fwnode_property_match_string);
500
501/**
502 * fwnode_property_match_property_string - find a property string value in an array and return index
503 * @fwnode: Firmware node to get the property of
504 * @propname: Name of the property holding the string value
505 * @array: String array to search in
506 * @n: Size of the @array
507 *
508 * Find a property string value in a given @array and if it is found return
509 * the index back.
510 *
511 * Return: index, starting from %0, if the string value was found in the @array (success),
512 * %-ENOENT when the string value was not found in the @array,
513 * %-EINVAL if given arguments are not valid,
514 * %-ENODATA if the property does not have a value,
515 * %-EPROTO or %-EILSEQ if the property is not a string,
516 * %-ENXIO if no suitable firmware interface is present.
517 */
518int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
519 const char *propname, const char * const *array, size_t n)
520{
521 const char *string;
522 int ret;
523
524 ret = fwnode_property_read_string(fwnode, propname, &string);
525 if (ret)
526 return ret;
527
528 ret = match_string(array, n, string);
529 if (ret < 0)
530 ret = -ENOENT;
531
532 return ret;
533}
534EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
535
536/**
537 * fwnode_property_get_reference_args() - Find a reference with arguments
538 * @fwnode: Firmware node where to look for the reference
539 * @prop: The name of the property
540 * @nargs_prop: The name of the property telling the number of
541 * arguments in the referred node. NULL if @nargs is known,
542 * otherwise @nargs is ignored. Only relevant on OF.
543 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
544 * @index: Index of the reference, from zero onwards.
545 * @args: Result structure with reference and integer arguments.
546 * May be NULL.
547 *
548 * Obtain a reference based on a named property in an fwnode, with
549 * integer arguments.
550 *
551 * The caller is responsible for calling fwnode_handle_put() on the returned
552 * @args->fwnode pointer.
553 *
554 * Return: %0 on success
555 * %-ENOENT when the index is out of bounds, the index has an empty
556 * reference or the property was not found
557 * %-EINVAL on parse error
558 */
559int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
560 const char *prop, const char *nargs_prop,
561 unsigned int nargs, unsigned int index,
562 struct fwnode_reference_args *args)
563{
564 int ret;
565
566 if (IS_ERR_OR_NULL(fwnode))
567 return -ENOENT;
568
569 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
570 nargs, index, args);
571 if (ret == 0)
572 return ret;
573
574 if (IS_ERR_OR_NULL(fwnode->secondary))
575 return ret;
576
577 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
578 nargs, index, args);
579}
580EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
581
582/**
583 * fwnode_find_reference - Find named reference to a fwnode_handle
584 * @fwnode: Firmware node where to look for the reference
585 * @name: The name of the reference
586 * @index: Index of the reference
587 *
588 * @index can be used when the named reference holds a table of references.
589 *
590 * The caller is responsible for calling fwnode_handle_put() on the returned
591 * fwnode pointer.
592 *
593 * Return: a pointer to the reference fwnode, when found. Otherwise,
594 * returns an error pointer.
595 */
596struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
597 const char *name,
598 unsigned int index)
599{
600 struct fwnode_reference_args args;
601 int ret;
602
603 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
604 &args);
605 return ret ? ERR_PTR(ret) : args.fwnode;
606}
607EXPORT_SYMBOL_GPL(fwnode_find_reference);
608
609/**
610 * fwnode_get_name - Return the name of a node
611 * @fwnode: The firmware node
612 *
613 * Return: a pointer to the node name, or %NULL.
614 */
615const char *fwnode_get_name(const struct fwnode_handle *fwnode)
616{
617 return fwnode_call_ptr_op(fwnode, get_name);
618}
619EXPORT_SYMBOL_GPL(fwnode_get_name);
620
621/**
622 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
623 * @fwnode: The firmware node
624 *
625 * Return: the prefix of a node, intended to be printed right before the node.
626 * The prefix works also as a separator between the nodes.
627 */
628const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
629{
630 return fwnode_call_ptr_op(fwnode, get_name_prefix);
631}
632
633/**
634 * fwnode_name_eq - Return true if node name is equal
635 * @fwnode: The firmware node
636 * @name: The name to which to compare the node name
637 *
638 * Compare the name provided as an argument to the name of the node, stopping
639 * the comparison at either NUL or '@' character, whichever comes first. This
640 * function is generally used for comparing node names while ignoring the
641 * possible unit address of the node.
642 *
643 * Return: true if the node name matches with the name provided in the @name
644 * argument, false otherwise.
645 */
646bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
647{
648 const char *node_name;
649 ptrdiff_t len;
650
651 node_name = fwnode_get_name(fwnode);
652 if (!node_name)
653 return false;
654
655 len = strchrnul(node_name, '@') - node_name;
656
657 return str_has_prefix(node_name, name) == len;
658}
659EXPORT_SYMBOL_GPL(fwnode_name_eq);
660
661/**
662 * fwnode_get_parent - Return parent firwmare node
663 * @fwnode: Firmware whose parent is retrieved
664 *
665 * The caller is responsible for calling fwnode_handle_put() on the returned
666 * fwnode pointer.
667 *
668 * Return: parent firmware node of the given node if possible or %NULL if no
669 * parent was available.
670 */
671struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
672{
673 return fwnode_call_ptr_op(fwnode, get_parent);
674}
675EXPORT_SYMBOL_GPL(fwnode_get_parent);
676
677/**
678 * fwnode_get_next_parent - Iterate to the node's parent
679 * @fwnode: Firmware whose parent is retrieved
680 *
681 * This is like fwnode_get_parent() except that it drops the refcount
682 * on the passed node, making it suitable for iterating through a
683 * node's parents.
684 *
685 * The caller is responsible for calling fwnode_handle_put() on the returned
686 * fwnode pointer. Note that this function also puts a reference to @fwnode
687 * unconditionally.
688 *
689 * Return: parent firmware node of the given node if possible or %NULL if no
690 * parent was available.
691 */
692struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
693{
694 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
695
696 fwnode_handle_put(fwnode);
697
698 return parent;
699}
700EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
701
702/**
703 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
704 * @fwnode: firmware node
705 *
706 * Given a firmware node (@fwnode), this function finds its closest ancestor
707 * firmware node that has a corresponding struct device and returns that struct
708 * device.
709 *
710 * The caller is responsible for calling put_device() on the returned device
711 * pointer.
712 *
713 * Return: a pointer to the device of the @fwnode's closest ancestor.
714 */
715struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
716{
717 struct fwnode_handle *parent;
718 struct device *dev;
719
720 fwnode_for_each_parent_node(fwnode, parent) {
721 dev = get_dev_from_fwnode(parent);
722 if (dev) {
723 fwnode_handle_put(parent);
724 return dev;
725 }
726 }
727 return NULL;
728}
729
730/**
731 * fwnode_count_parents - Return the number of parents a node has
732 * @fwnode: The node the parents of which are to be counted
733 *
734 * Return: the number of parents a node has.
735 */
736unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
737{
738 struct fwnode_handle *parent;
739 unsigned int count = 0;
740
741 fwnode_for_each_parent_node(fwnode, parent)
742 count++;
743
744 return count;
745}
746EXPORT_SYMBOL_GPL(fwnode_count_parents);
747
748/**
749 * fwnode_get_nth_parent - Return an nth parent of a node
750 * @fwnode: The node the parent of which is requested
751 * @depth: Distance of the parent from the node
752 *
753 * The caller is responsible for calling fwnode_handle_put() on the returned
754 * fwnode pointer.
755 *
756 * Return: the nth parent of a node. If there is no parent at the requested
757 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
758 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
759 */
760struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
761 unsigned int depth)
762{
763 struct fwnode_handle *parent;
764
765 if (depth == 0)
766 return fwnode_handle_get(fwnode);
767
768 fwnode_for_each_parent_node(fwnode, parent) {
769 if (--depth == 0)
770 return parent;
771 }
772 return NULL;
773}
774EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
775
776/**
777 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
778 * @ancestor: Firmware which is tested for being an ancestor
779 * @child: Firmware which is tested for being the child
780 *
781 * A node is considered an ancestor of itself too.
782 *
783 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
784 */
785bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child)
786{
787 struct fwnode_handle *parent;
788
789 if (IS_ERR_OR_NULL(ancestor))
790 return false;
791
792 if (child == ancestor)
793 return true;
794
795 fwnode_for_each_parent_node(child, parent) {
796 if (parent == ancestor) {
797 fwnode_handle_put(parent);
798 return true;
799 }
800 }
801 return false;
802}
803
804/**
805 * fwnode_get_next_child_node - Return the next child node handle for a node
806 * @fwnode: Firmware node to find the next child node for.
807 * @child: Handle to one of the node's child nodes or a %NULL handle.
808 *
809 * The caller is responsible for calling fwnode_handle_put() on the returned
810 * fwnode pointer. Note that this function also puts a reference to @child
811 * unconditionally.
812 */
813struct fwnode_handle *
814fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
815 struct fwnode_handle *child)
816{
817 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
818}
819EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
820
821/**
822 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
823 * @fwnode: Firmware node to find the next child node for.
824 * @child: Handle to one of the node's child nodes or a %NULL handle.
825 *
826 * The caller is responsible for calling fwnode_handle_put() on the returned
827 * fwnode pointer. Note that this function also puts a reference to @child
828 * unconditionally.
829 */
830struct fwnode_handle *
831fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
832 struct fwnode_handle *child)
833{
834 struct fwnode_handle *next_child = child;
835
836 if (IS_ERR_OR_NULL(fwnode))
837 return NULL;
838
839 do {
840 next_child = fwnode_get_next_child_node(fwnode, next_child);
841 if (!next_child)
842 return NULL;
843 } while (!fwnode_device_is_available(next_child));
844
845 return next_child;
846}
847EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
848
849/**
850 * device_get_next_child_node - Return the next child node handle for a device
851 * @dev: Device to find the next child node for.
852 * @child: Handle to one of the device's child nodes or a %NULL handle.
853 *
854 * The caller is responsible for calling fwnode_handle_put() on the returned
855 * fwnode pointer. Note that this function also puts a reference to @child
856 * unconditionally.
857 */
858struct fwnode_handle *device_get_next_child_node(const struct device *dev,
859 struct fwnode_handle *child)
860{
861 const struct fwnode_handle *fwnode = dev_fwnode(dev);
862 struct fwnode_handle *next;
863
864 if (IS_ERR_OR_NULL(fwnode))
865 return NULL;
866
867 /* Try to find a child in primary fwnode */
868 next = fwnode_get_next_child_node(fwnode, child);
869 if (next)
870 return next;
871
872 /* When no more children in primary, continue with secondary */
873 return fwnode_get_next_child_node(fwnode->secondary, child);
874}
875EXPORT_SYMBOL_GPL(device_get_next_child_node);
876
877/**
878 * fwnode_get_named_child_node - Return first matching named child node handle
879 * @fwnode: Firmware node to find the named child node for.
880 * @childname: String to match child node name against.
881 *
882 * The caller is responsible for calling fwnode_handle_put() on the returned
883 * fwnode pointer.
884 */
885struct fwnode_handle *
886fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
887 const char *childname)
888{
889 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
890}
891EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
892
893/**
894 * device_get_named_child_node - Return first matching named child node handle
895 * @dev: Device to find the named child node for.
896 * @childname: String to match child node name against.
897 *
898 * The caller is responsible for calling fwnode_handle_put() on the returned
899 * fwnode pointer.
900 */
901struct fwnode_handle *device_get_named_child_node(const struct device *dev,
902 const char *childname)
903{
904 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
905}
906EXPORT_SYMBOL_GPL(device_get_named_child_node);
907
908/**
909 * fwnode_handle_get - Obtain a reference to a device node
910 * @fwnode: Pointer to the device node to obtain the reference to.
911 *
912 * The caller is responsible for calling fwnode_handle_put() on the returned
913 * fwnode pointer.
914 *
915 * Return: the fwnode handle.
916 */
917struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
918{
919 if (!fwnode_has_op(fwnode, get))
920 return fwnode;
921
922 return fwnode_call_ptr_op(fwnode, get);
923}
924EXPORT_SYMBOL_GPL(fwnode_handle_get);
925
926/**
927 * fwnode_handle_put - Drop reference to a device node
928 * @fwnode: Pointer to the device node to drop the reference to.
929 *
930 * This has to be used when terminating device_for_each_child_node() iteration
931 * with break or return to prevent stale device node references from being left
932 * behind.
933 */
934void fwnode_handle_put(struct fwnode_handle *fwnode)
935{
936 fwnode_call_void_op(fwnode, put);
937}
938EXPORT_SYMBOL_GPL(fwnode_handle_put);
939
940/**
941 * fwnode_device_is_available - check if a device is available for use
942 * @fwnode: Pointer to the fwnode of the device.
943 *
944 * Return: true if device is available for use. Otherwise, returns false.
945 *
946 * For fwnode node types that don't implement the .device_is_available()
947 * operation, this function returns true.
948 */
949bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
950{
951 if (IS_ERR_OR_NULL(fwnode))
952 return false;
953
954 if (!fwnode_has_op(fwnode, device_is_available))
955 return true;
956
957 return fwnode_call_bool_op(fwnode, device_is_available);
958}
959EXPORT_SYMBOL_GPL(fwnode_device_is_available);
960
961/**
962 * device_get_child_node_count - return the number of child nodes for device
963 * @dev: Device to cound the child nodes for
964 *
965 * Return: the number of child nodes for a given device.
966 */
967unsigned int device_get_child_node_count(const struct device *dev)
968{
969 struct fwnode_handle *child;
970 unsigned int count = 0;
971
972 device_for_each_child_node(dev, child)
973 count++;
974
975 return count;
976}
977EXPORT_SYMBOL_GPL(device_get_child_node_count);
978
979bool device_dma_supported(const struct device *dev)
980{
981 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
982}
983EXPORT_SYMBOL_GPL(device_dma_supported);
984
985enum dev_dma_attr device_get_dma_attr(const struct device *dev)
986{
987 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
988 return DEV_DMA_NOT_SUPPORTED;
989
990 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
991}
992EXPORT_SYMBOL_GPL(device_get_dma_attr);
993
994/**
995 * fwnode_get_phy_mode - Get phy mode for given firmware node
996 * @fwnode: Pointer to the given node
997 *
998 * The function gets phy interface string from property 'phy-mode' or
999 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1000 * error case.
1001 */
1002int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
1003{
1004 const char *pm;
1005 int err, i;
1006
1007 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1008 if (err < 0)
1009 err = fwnode_property_read_string(fwnode,
1010 "phy-connection-type", &pm);
1011 if (err < 0)
1012 return err;
1013
1014 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1015 if (!strcasecmp(pm, phy_modes(i)))
1016 return i;
1017
1018 return -ENODEV;
1019}
1020EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1021
1022/**
1023 * device_get_phy_mode - Get phy mode for given device
1024 * @dev: Pointer to the given device
1025 *
1026 * The function gets phy interface string from property 'phy-mode' or
1027 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1028 * error case.
1029 */
1030int device_get_phy_mode(struct device *dev)
1031{
1032 return fwnode_get_phy_mode(dev_fwnode(dev));
1033}
1034EXPORT_SYMBOL_GPL(device_get_phy_mode);
1035
1036/**
1037 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
1038 * @fwnode: Pointer to the firmware node
1039 * @index: Index of the IO range
1040 *
1041 * Return: a pointer to the mapped memory.
1042 */
1043void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
1044{
1045 return fwnode_call_ptr_op(fwnode, iomap, index);
1046}
1047EXPORT_SYMBOL(fwnode_iomap);
1048
1049/**
1050 * fwnode_irq_get - Get IRQ directly from a fwnode
1051 * @fwnode: Pointer to the firmware node
1052 * @index: Zero-based index of the IRQ
1053 *
1054 * Return: Linux IRQ number on success. Negative errno on failure.
1055 */
1056int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1057{
1058 int ret;
1059
1060 ret = fwnode_call_int_op(fwnode, irq_get, index);
1061 /* We treat mapping errors as invalid case */
1062 if (ret == 0)
1063 return -EINVAL;
1064
1065 return ret;
1066}
1067EXPORT_SYMBOL(fwnode_irq_get);
1068
1069/**
1070 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1071 * @fwnode: Pointer to the firmware node
1072 * @name: IRQ name
1073 *
1074 * Description:
1075 * Find a match to the string @name in the 'interrupt-names' string array
1076 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1077 * number of the IRQ resource corresponding to the index of the matched
1078 * string.
1079 *
1080 * Return: Linux IRQ number on success, or negative errno otherwise.
1081 */
1082int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1083{
1084 int index;
1085
1086 if (!name)
1087 return -EINVAL;
1088
1089 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
1090 if (index < 0)
1091 return index;
1092
1093 return fwnode_irq_get(fwnode, index);
1094}
1095EXPORT_SYMBOL(fwnode_irq_get_byname);
1096
1097/**
1098 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1099 * @fwnode: Pointer to the parent firmware node
1100 * @prev: Previous endpoint node or %NULL to get the first
1101 *
1102 * The caller is responsible for calling fwnode_handle_put() on the returned
1103 * fwnode pointer. Note that this function also puts a reference to @prev
1104 * unconditionally.
1105 *
1106 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1107 * are available.
1108 */
1109struct fwnode_handle *
1110fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1111 struct fwnode_handle *prev)
1112{
1113 struct fwnode_handle *ep, *port_parent = NULL;
1114 const struct fwnode_handle *parent;
1115
1116 /*
1117 * If this function is in a loop and the previous iteration returned
1118 * an endpoint from fwnode->secondary, then we need to use the secondary
1119 * as parent rather than @fwnode.
1120 */
1121 if (prev) {
1122 port_parent = fwnode_graph_get_port_parent(prev);
1123 parent = port_parent;
1124 } else {
1125 parent = fwnode;
1126 }
1127 if (IS_ERR_OR_NULL(parent))
1128 return NULL;
1129
1130 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1131 if (ep)
1132 goto out_put_port_parent;
1133
1134 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1135
1136out_put_port_parent:
1137 fwnode_handle_put(port_parent);
1138 return ep;
1139}
1140EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1141
1142/**
1143 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1144 * @endpoint: Endpoint firmware node of the port
1145 *
1146 * The caller is responsible for calling fwnode_handle_put() on the returned
1147 * fwnode pointer.
1148 *
1149 * Return: the firmware node of the device the @endpoint belongs to.
1150 */
1151struct fwnode_handle *
1152fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1153{
1154 struct fwnode_handle *port, *parent;
1155
1156 port = fwnode_get_parent(endpoint);
1157 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1158
1159 fwnode_handle_put(port);
1160
1161 return parent;
1162}
1163EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1164
1165/**
1166 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1167 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1168 *
1169 * Extracts firmware node of a remote device the @fwnode points to.
1170 *
1171 * The caller is responsible for calling fwnode_handle_put() on the returned
1172 * fwnode pointer.
1173 */
1174struct fwnode_handle *
1175fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1176{
1177 struct fwnode_handle *endpoint, *parent;
1178
1179 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1180 parent = fwnode_graph_get_port_parent(endpoint);
1181
1182 fwnode_handle_put(endpoint);
1183
1184 return parent;
1185}
1186EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1187
1188/**
1189 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1190 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1191 *
1192 * Extracts firmware node of a remote port the @fwnode points to.
1193 *
1194 * The caller is responsible for calling fwnode_handle_put() on the returned
1195 * fwnode pointer.
1196 */
1197struct fwnode_handle *
1198fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1199{
1200 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1201}
1202EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1203
1204/**
1205 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1206 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1207 *
1208 * Extracts firmware node of a remote endpoint the @fwnode points to.
1209 *
1210 * The caller is responsible for calling fwnode_handle_put() on the returned
1211 * fwnode pointer.
1212 */
1213struct fwnode_handle *
1214fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1215{
1216 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1217}
1218EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1219
1220static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1221{
1222 struct fwnode_handle *dev_node;
1223 bool available;
1224
1225 dev_node = fwnode_graph_get_remote_port_parent(ep);
1226 available = fwnode_device_is_available(dev_node);
1227 fwnode_handle_put(dev_node);
1228
1229 return available;
1230}
1231
1232/**
1233 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1234 * @fwnode: parent fwnode_handle containing the graph
1235 * @port: identifier of the port node
1236 * @endpoint: identifier of the endpoint node under the port node
1237 * @flags: fwnode lookup flags
1238 *
1239 * The caller is responsible for calling fwnode_handle_put() on the returned
1240 * fwnode pointer.
1241 *
1242 * Return: the fwnode handle of the local endpoint corresponding the port and
1243 * endpoint IDs or %NULL if not found.
1244 *
1245 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1246 * has not been found, look for the closest endpoint ID greater than the
1247 * specified one and return the endpoint that corresponds to it, if present.
1248 *
1249 * Does not return endpoints that belong to disabled devices or endpoints that
1250 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1251 */
1252struct fwnode_handle *
1253fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1254 u32 port, u32 endpoint, unsigned long flags)
1255{
1256 struct fwnode_handle *ep, *best_ep = NULL;
1257 unsigned int best_ep_id = 0;
1258 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1259 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1260
1261 fwnode_graph_for_each_endpoint(fwnode, ep) {
1262 struct fwnode_endpoint fwnode_ep = { 0 };
1263 int ret;
1264
1265 if (enabled_only && !fwnode_graph_remote_available(ep))
1266 continue;
1267
1268 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1269 if (ret < 0)
1270 continue;
1271
1272 if (fwnode_ep.port != port)
1273 continue;
1274
1275 if (fwnode_ep.id == endpoint)
1276 return ep;
1277
1278 if (!endpoint_next)
1279 continue;
1280
1281 /*
1282 * If the endpoint that has just been found is not the first
1283 * matching one and the ID of the one found previously is closer
1284 * to the requested endpoint ID, skip it.
1285 */
1286 if (fwnode_ep.id < endpoint ||
1287 (best_ep && best_ep_id < fwnode_ep.id))
1288 continue;
1289
1290 fwnode_handle_put(best_ep);
1291 best_ep = fwnode_handle_get(ep);
1292 best_ep_id = fwnode_ep.id;
1293 }
1294
1295 return best_ep;
1296}
1297EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1298
1299/**
1300 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1301 * @fwnode: The node related to a device
1302 * @flags: fwnode lookup flags
1303 * Count endpoints in a device node.
1304 *
1305 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1306 * and endpoints connected to disabled devices are counted.
1307 */
1308unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1309 unsigned long flags)
1310{
1311 struct fwnode_handle *ep;
1312 unsigned int count = 0;
1313
1314 fwnode_graph_for_each_endpoint(fwnode, ep) {
1315 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1316 fwnode_graph_remote_available(ep))
1317 count++;
1318 }
1319
1320 return count;
1321}
1322EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1323
1324/**
1325 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1326 * @fwnode: pointer to endpoint fwnode_handle
1327 * @endpoint: pointer to the fwnode endpoint data structure
1328 *
1329 * Parse @fwnode representing a graph endpoint node and store the
1330 * information in @endpoint. The caller must hold a reference to
1331 * @fwnode.
1332 */
1333int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1334 struct fwnode_endpoint *endpoint)
1335{
1336 memset(endpoint, 0, sizeof(*endpoint));
1337
1338 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1339}
1340EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1341
1342const void *device_get_match_data(const struct device *dev)
1343{
1344 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1345}
1346EXPORT_SYMBOL_GPL(device_get_match_data);
1347
1348static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1349 const char *con_id, void *data,
1350 devcon_match_fn_t match,
1351 void **matches,
1352 unsigned int matches_len)
1353{
1354 struct fwnode_handle *node;
1355 struct fwnode_handle *ep;
1356 unsigned int count = 0;
1357 void *ret;
1358
1359 fwnode_graph_for_each_endpoint(fwnode, ep) {
1360 if (matches && count >= matches_len) {
1361 fwnode_handle_put(ep);
1362 break;
1363 }
1364
1365 node = fwnode_graph_get_remote_port_parent(ep);
1366 if (!fwnode_device_is_available(node)) {
1367 fwnode_handle_put(node);
1368 continue;
1369 }
1370
1371 ret = match(node, con_id, data);
1372 fwnode_handle_put(node);
1373 if (ret) {
1374 if (matches)
1375 matches[count] = ret;
1376 count++;
1377 }
1378 }
1379 return count;
1380}
1381
1382static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1383 const char *con_id, void *data,
1384 devcon_match_fn_t match,
1385 void **matches,
1386 unsigned int matches_len)
1387{
1388 struct fwnode_handle *node;
1389 unsigned int count = 0;
1390 unsigned int i;
1391 void *ret;
1392
1393 for (i = 0; ; i++) {
1394 if (matches && count >= matches_len)
1395 break;
1396
1397 node = fwnode_find_reference(fwnode, con_id, i);
1398 if (IS_ERR(node))
1399 break;
1400
1401 ret = match(node, NULL, data);
1402 fwnode_handle_put(node);
1403 if (ret) {
1404 if (matches)
1405 matches[count] = ret;
1406 count++;
1407 }
1408 }
1409
1410 return count;
1411}
1412
1413/**
1414 * fwnode_connection_find_match - Find connection from a device node
1415 * @fwnode: Device node with the connection
1416 * @con_id: Identifier for the connection
1417 * @data: Data for the match function
1418 * @match: Function to check and convert the connection description
1419 *
1420 * Find a connection with unique identifier @con_id between @fwnode and another
1421 * device node. @match will be used to convert the connection description to
1422 * data the caller is expecting to be returned.
1423 */
1424void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1425 const char *con_id, void *data,
1426 devcon_match_fn_t match)
1427{
1428 unsigned int count;
1429 void *ret;
1430
1431 if (!fwnode || !match)
1432 return NULL;
1433
1434 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1435 if (count)
1436 return ret;
1437
1438 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1439 return count ? ret : NULL;
1440}
1441EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1442
1443/**
1444 * fwnode_connection_find_matches - Find connections from a device node
1445 * @fwnode: Device node with the connection
1446 * @con_id: Identifier for the connection
1447 * @data: Data for the match function
1448 * @match: Function to check and convert the connection description
1449 * @matches: (Optional) array of pointers to fill with matches
1450 * @matches_len: Length of @matches
1451 *
1452 * Find up to @matches_len connections with unique identifier @con_id between
1453 * @fwnode and other device nodes. @match will be used to convert the
1454 * connection description to data the caller is expecting to be returned
1455 * through the @matches array.
1456 *
1457 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1458 * matches is returned.
1459 *
1460 * Return: Number of matches resolved, or negative errno.
1461 */
1462int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1463 const char *con_id, void *data,
1464 devcon_match_fn_t match,
1465 void **matches, unsigned int matches_len)
1466{
1467 unsigned int count_graph;
1468 unsigned int count_ref;
1469
1470 if (!fwnode || !match)
1471 return -EINVAL;
1472
1473 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1474 matches, matches_len);
1475
1476 if (matches) {
1477 matches += count_graph;
1478 matches_len -= count_graph;
1479 }
1480
1481 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1482 matches, matches_len);
1483
1484 return count_graph + count_ref;
1485}
1486EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/phy.h>
19
20struct fwnode_handle *__dev_fwnode(struct device *dev)
21{
22 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 of_fwnode_handle(dev->of_node) : dev->fwnode;
24}
25EXPORT_SYMBOL_GPL(__dev_fwnode);
26
27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28{
29 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 of_fwnode_handle(dev->of_node) : dev->fwnode;
31}
32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33
34/**
35 * device_property_present - check if a property of a device is present
36 * @dev: Device whose property is being checked
37 * @propname: Name of the property
38 *
39 * Check if property @propname is present in the device firmware description.
40 */
41bool device_property_present(struct device *dev, const char *propname)
42{
43 return fwnode_property_present(dev_fwnode(dev), propname);
44}
45EXPORT_SYMBOL_GPL(device_property_present);
46
47/**
48 * fwnode_property_present - check if a property of a firmware node is present
49 * @fwnode: Firmware node whose property to check
50 * @propname: Name of the property
51 */
52bool fwnode_property_present(const struct fwnode_handle *fwnode,
53 const char *propname)
54{
55 bool ret;
56
57 if (IS_ERR_OR_NULL(fwnode))
58 return false;
59
60 ret = fwnode_call_bool_op(fwnode, property_present, propname);
61 if (ret)
62 return ret;
63
64 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
65}
66EXPORT_SYMBOL_GPL(fwnode_property_present);
67
68/**
69 * device_property_read_u8_array - return a u8 array property of a device
70 * @dev: Device to get the property of
71 * @propname: Name of the property
72 * @val: The values are stored here or %NULL to return the number of values
73 * @nval: Size of the @val array
74 *
75 * Function reads an array of u8 properties with @propname from the device
76 * firmware description and stores them to @val if found.
77 *
78 * It's recommended to call device_property_count_u8() instead of calling
79 * this function with @val equals %NULL and @nval equals 0.
80 *
81 * Return: number of values if @val was %NULL,
82 * %0 if the property was found (success),
83 * %-EINVAL if given arguments are not valid,
84 * %-ENODATA if the property does not have a value,
85 * %-EPROTO if the property is not an array of numbers,
86 * %-EOVERFLOW if the size of the property is not as expected.
87 * %-ENXIO if no suitable firmware interface is present.
88 */
89int device_property_read_u8_array(struct device *dev, const char *propname,
90 u8 *val, size_t nval)
91{
92 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
93}
94EXPORT_SYMBOL_GPL(device_property_read_u8_array);
95
96/**
97 * device_property_read_u16_array - return a u16 array property of a device
98 * @dev: Device to get the property of
99 * @propname: Name of the property
100 * @val: The values are stored here or %NULL to return the number of values
101 * @nval: Size of the @val array
102 *
103 * Function reads an array of u16 properties with @propname from the device
104 * firmware description and stores them to @val if found.
105 *
106 * It's recommended to call device_property_count_u16() instead of calling
107 * this function with @val equals %NULL and @nval equals 0.
108 *
109 * Return: number of values if @val was %NULL,
110 * %0 if the property was found (success),
111 * %-EINVAL if given arguments are not valid,
112 * %-ENODATA if the property does not have a value,
113 * %-EPROTO if the property is not an array of numbers,
114 * %-EOVERFLOW if the size of the property is not as expected.
115 * %-ENXIO if no suitable firmware interface is present.
116 */
117int device_property_read_u16_array(struct device *dev, const char *propname,
118 u16 *val, size_t nval)
119{
120 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
121}
122EXPORT_SYMBOL_GPL(device_property_read_u16_array);
123
124/**
125 * device_property_read_u32_array - return a u32 array property of a device
126 * @dev: Device to get the property of
127 * @propname: Name of the property
128 * @val: The values are stored here or %NULL to return the number of values
129 * @nval: Size of the @val array
130 *
131 * Function reads an array of u32 properties with @propname from the device
132 * firmware description and stores them to @val if found.
133 *
134 * It's recommended to call device_property_count_u32() instead of calling
135 * this function with @val equals %NULL and @nval equals 0.
136 *
137 * Return: number of values if @val was %NULL,
138 * %0 if the property was found (success),
139 * %-EINVAL if given arguments are not valid,
140 * %-ENODATA if the property does not have a value,
141 * %-EPROTO if the property is not an array of numbers,
142 * %-EOVERFLOW if the size of the property is not as expected.
143 * %-ENXIO if no suitable firmware interface is present.
144 */
145int device_property_read_u32_array(struct device *dev, const char *propname,
146 u32 *val, size_t nval)
147{
148 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
149}
150EXPORT_SYMBOL_GPL(device_property_read_u32_array);
151
152/**
153 * device_property_read_u64_array - return a u64 array property of a device
154 * @dev: Device to get the property of
155 * @propname: Name of the property
156 * @val: The values are stored here or %NULL to return the number of values
157 * @nval: Size of the @val array
158 *
159 * Function reads an array of u64 properties with @propname from the device
160 * firmware description and stores them to @val if found.
161 *
162 * It's recommended to call device_property_count_u64() instead of calling
163 * this function with @val equals %NULL and @nval equals 0.
164 *
165 * Return: number of values if @val was %NULL,
166 * %0 if the property was found (success),
167 * %-EINVAL if given arguments are not valid,
168 * %-ENODATA if the property does not have a value,
169 * %-EPROTO if the property is not an array of numbers,
170 * %-EOVERFLOW if the size of the property is not as expected.
171 * %-ENXIO if no suitable firmware interface is present.
172 */
173int device_property_read_u64_array(struct device *dev, const char *propname,
174 u64 *val, size_t nval)
175{
176 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
177}
178EXPORT_SYMBOL_GPL(device_property_read_u64_array);
179
180/**
181 * device_property_read_string_array - return a string array property of device
182 * @dev: Device to get the property of
183 * @propname: Name of the property
184 * @val: The values are stored here or %NULL to return the number of values
185 * @nval: Size of the @val array
186 *
187 * Function reads an array of string properties with @propname from the device
188 * firmware description and stores them to @val if found.
189 *
190 * It's recommended to call device_property_string_array_count() instead of calling
191 * this function with @val equals %NULL and @nval equals 0.
192 *
193 * Return: number of values read on success if @val is non-NULL,
194 * number of values available on success if @val is NULL,
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
198 * %-EOVERFLOW if the size of the property is not as expected.
199 * %-ENXIO if no suitable firmware interface is present.
200 */
201int device_property_read_string_array(struct device *dev, const char *propname,
202 const char **val, size_t nval)
203{
204 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
205}
206EXPORT_SYMBOL_GPL(device_property_read_string_array);
207
208/**
209 * device_property_read_string - return a string property of a device
210 * @dev: Device to get the property of
211 * @propname: Name of the property
212 * @val: The value is stored here
213 *
214 * Function reads property @propname from the device firmware description and
215 * stores the value into @val if found. The value is checked to be a string.
216 *
217 * Return: %0 if the property was found (success),
218 * %-EINVAL if given arguments are not valid,
219 * %-ENODATA if the property does not have a value,
220 * %-EPROTO or %-EILSEQ if the property type is not a string.
221 * %-ENXIO if no suitable firmware interface is present.
222 */
223int device_property_read_string(struct device *dev, const char *propname,
224 const char **val)
225{
226 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
227}
228EXPORT_SYMBOL_GPL(device_property_read_string);
229
230/**
231 * device_property_match_string - find a string in an array and return index
232 * @dev: Device to get the property of
233 * @propname: Name of the property holding the array
234 * @string: String to look for
235 *
236 * Find a given string in a string array and if it is found return the
237 * index back.
238 *
239 * Return: index, starting from %0, if the property was found (success),
240 * %-EINVAL if given arguments are not valid,
241 * %-ENODATA if the property does not have a value,
242 * %-EPROTO if the property is not an array of strings,
243 * %-ENXIO if no suitable firmware interface is present.
244 */
245int device_property_match_string(struct device *dev, const char *propname,
246 const char *string)
247{
248 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
249}
250EXPORT_SYMBOL_GPL(device_property_match_string);
251
252static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
253 const char *propname,
254 unsigned int elem_size, void *val,
255 size_t nval)
256{
257 int ret;
258
259 if (IS_ERR_OR_NULL(fwnode))
260 return -EINVAL;
261
262 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
263 elem_size, val, nval);
264 if (ret != -EINVAL)
265 return ret;
266
267 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
268 elem_size, val, nval);
269}
270
271/**
272 * fwnode_property_read_u8_array - return a u8 array property of firmware node
273 * @fwnode: Firmware node to get the property of
274 * @propname: Name of the property
275 * @val: The values are stored here or %NULL to return the number of values
276 * @nval: Size of the @val array
277 *
278 * Read an array of u8 properties with @propname from @fwnode and stores them to
279 * @val if found.
280 *
281 * It's recommended to call fwnode_property_count_u8() instead of calling
282 * this function with @val equals %NULL and @nval equals 0.
283 *
284 * Return: number of values if @val was %NULL,
285 * %0 if the property was found (success),
286 * %-EINVAL if given arguments are not valid,
287 * %-ENODATA if the property does not have a value,
288 * %-EPROTO if the property is not an array of numbers,
289 * %-EOVERFLOW if the size of the property is not as expected,
290 * %-ENXIO if no suitable firmware interface is present.
291 */
292int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
293 const char *propname, u8 *val, size_t nval)
294{
295 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
296 val, nval);
297}
298EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
299
300/**
301 * fwnode_property_read_u16_array - return a u16 array property of firmware node
302 * @fwnode: Firmware node to get the property of
303 * @propname: Name of the property
304 * @val: The values are stored here or %NULL to return the number of values
305 * @nval: Size of the @val array
306 *
307 * Read an array of u16 properties with @propname from @fwnode and store them to
308 * @val if found.
309 *
310 * It's recommended to call fwnode_property_count_u16() instead of calling
311 * this function with @val equals %NULL and @nval equals 0.
312 *
313 * Return: number of values if @val was %NULL,
314 * %0 if the property was found (success),
315 * %-EINVAL if given arguments are not valid,
316 * %-ENODATA if the property does not have a value,
317 * %-EPROTO if the property is not an array of numbers,
318 * %-EOVERFLOW if the size of the property is not as expected,
319 * %-ENXIO if no suitable firmware interface is present.
320 */
321int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
322 const char *propname, u16 *val, size_t nval)
323{
324 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
325 val, nval);
326}
327EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
328
329/**
330 * fwnode_property_read_u32_array - return a u32 array property of firmware node
331 * @fwnode: Firmware node to get the property of
332 * @propname: Name of the property
333 * @val: The values are stored here or %NULL to return the number of values
334 * @nval: Size of the @val array
335 *
336 * Read an array of u32 properties with @propname from @fwnode store them to
337 * @val if found.
338 *
339 * It's recommended to call fwnode_property_count_u32() instead of calling
340 * this function with @val equals %NULL and @nval equals 0.
341 *
342 * Return: number of values if @val was %NULL,
343 * %0 if the property was found (success),
344 * %-EINVAL if given arguments are not valid,
345 * %-ENODATA if the property does not have a value,
346 * %-EPROTO if the property is not an array of numbers,
347 * %-EOVERFLOW if the size of the property is not as expected,
348 * %-ENXIO if no suitable firmware interface is present.
349 */
350int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
351 const char *propname, u32 *val, size_t nval)
352{
353 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
354 val, nval);
355}
356EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
357
358/**
359 * fwnode_property_read_u64_array - return a u64 array property firmware node
360 * @fwnode: Firmware node to get the property of
361 * @propname: Name of the property
362 * @val: The values are stored here or %NULL to return the number of values
363 * @nval: Size of the @val array
364 *
365 * Read an array of u64 properties with @propname from @fwnode and store them to
366 * @val if found.
367 *
368 * It's recommended to call fwnode_property_count_u64() instead of calling
369 * this function with @val equals %NULL and @nval equals 0.
370 *
371 * Return: number of values if @val was %NULL,
372 * %0 if the property was found (success),
373 * %-EINVAL if given arguments are not valid,
374 * %-ENODATA if the property does not have a value,
375 * %-EPROTO if the property is not an array of numbers,
376 * %-EOVERFLOW if the size of the property is not as expected,
377 * %-ENXIO if no suitable firmware interface is present.
378 */
379int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
380 const char *propname, u64 *val, size_t nval)
381{
382 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
383 val, nval);
384}
385EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
386
387/**
388 * fwnode_property_read_string_array - return string array property of a node
389 * @fwnode: Firmware node to get the property of
390 * @propname: Name of the property
391 * @val: The values are stored here or %NULL to return the number of values
392 * @nval: Size of the @val array
393 *
394 * Read an string list property @propname from the given firmware node and store
395 * them to @val if found.
396 *
397 * It's recommended to call fwnode_property_string_array_count() instead of calling
398 * this function with @val equals %NULL and @nval equals 0.
399 *
400 * Return: number of values read on success if @val is non-NULL,
401 * number of values available on success if @val is NULL,
402 * %-EINVAL if given arguments are not valid,
403 * %-ENODATA if the property does not have a value,
404 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
405 * %-EOVERFLOW if the size of the property is not as expected,
406 * %-ENXIO if no suitable firmware interface is present.
407 */
408int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
409 const char *propname, const char **val,
410 size_t nval)
411{
412 int ret;
413
414 if (IS_ERR_OR_NULL(fwnode))
415 return -EINVAL;
416
417 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
418 val, nval);
419 if (ret != -EINVAL)
420 return ret;
421
422 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
423 val, nval);
424}
425EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
426
427/**
428 * fwnode_property_read_string - return a string property of a firmware node
429 * @fwnode: Firmware node to get the property of
430 * @propname: Name of the property
431 * @val: The value is stored here
432 *
433 * Read property @propname from the given firmware node and store the value into
434 * @val if found. The value is checked to be a string.
435 *
436 * Return: %0 if the property was found (success),
437 * %-EINVAL if given arguments are not valid,
438 * %-ENODATA if the property does not have a value,
439 * %-EPROTO or %-EILSEQ if the property is not a string,
440 * %-ENXIO if no suitable firmware interface is present.
441 */
442int fwnode_property_read_string(const struct fwnode_handle *fwnode,
443 const char *propname, const char **val)
444{
445 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
446
447 return ret < 0 ? ret : 0;
448}
449EXPORT_SYMBOL_GPL(fwnode_property_read_string);
450
451/**
452 * fwnode_property_match_string - find a string in an array and return index
453 * @fwnode: Firmware node to get the property of
454 * @propname: Name of the property holding the array
455 * @string: String to look for
456 *
457 * Find a given string in a string array and if it is found return the
458 * index back.
459 *
460 * Return: index, starting from %0, if the property was found (success),
461 * %-EINVAL if given arguments are not valid,
462 * %-ENODATA if the property does not have a value,
463 * %-EPROTO if the property is not an array of strings,
464 * %-ENXIO if no suitable firmware interface is present.
465 */
466int fwnode_property_match_string(const struct fwnode_handle *fwnode,
467 const char *propname, const char *string)
468{
469 const char **values;
470 int nval, ret;
471
472 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
473 if (nval < 0)
474 return nval;
475
476 if (nval == 0)
477 return -ENODATA;
478
479 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
480 if (!values)
481 return -ENOMEM;
482
483 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
484 if (ret < 0)
485 goto out_free;
486
487 ret = match_string(values, nval, string);
488 if (ret < 0)
489 ret = -ENODATA;
490
491out_free:
492 kfree(values);
493 return ret;
494}
495EXPORT_SYMBOL_GPL(fwnode_property_match_string);
496
497/**
498 * fwnode_property_get_reference_args() - Find a reference with arguments
499 * @fwnode: Firmware node where to look for the reference
500 * @prop: The name of the property
501 * @nargs_prop: The name of the property telling the number of
502 * arguments in the referred node. NULL if @nargs is known,
503 * otherwise @nargs is ignored. Only relevant on OF.
504 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
505 * @index: Index of the reference, from zero onwards.
506 * @args: Result structure with reference and integer arguments.
507 *
508 * Obtain a reference based on a named property in an fwnode, with
509 * integer arguments.
510 *
511 * Caller is responsible to call fwnode_handle_put() on the returned
512 * args->fwnode pointer.
513 *
514 * Returns: %0 on success
515 * %-ENOENT when the index is out of bounds, the index has an empty
516 * reference or the property was not found
517 * %-EINVAL on parse error
518 */
519int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
520 const char *prop, const char *nargs_prop,
521 unsigned int nargs, unsigned int index,
522 struct fwnode_reference_args *args)
523{
524 int ret;
525
526 if (IS_ERR_OR_NULL(fwnode))
527 return -ENOENT;
528
529 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
530 nargs, index, args);
531 if (ret == 0)
532 return ret;
533
534 if (IS_ERR_OR_NULL(fwnode->secondary))
535 return ret;
536
537 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
538 nargs, index, args);
539}
540EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
541
542/**
543 * fwnode_find_reference - Find named reference to a fwnode_handle
544 * @fwnode: Firmware node where to look for the reference
545 * @name: The name of the reference
546 * @index: Index of the reference
547 *
548 * @index can be used when the named reference holds a table of references.
549 *
550 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
551 * call fwnode_handle_put() on the returned fwnode pointer.
552 */
553struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
554 const char *name,
555 unsigned int index)
556{
557 struct fwnode_reference_args args;
558 int ret;
559
560 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
561 &args);
562 return ret ? ERR_PTR(ret) : args.fwnode;
563}
564EXPORT_SYMBOL_GPL(fwnode_find_reference);
565
566/**
567 * fwnode_get_name - Return the name of a node
568 * @fwnode: The firmware node
569 *
570 * Returns a pointer to the node name.
571 */
572const char *fwnode_get_name(const struct fwnode_handle *fwnode)
573{
574 return fwnode_call_ptr_op(fwnode, get_name);
575}
576EXPORT_SYMBOL_GPL(fwnode_get_name);
577
578/**
579 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
580 * @fwnode: The firmware node
581 *
582 * Returns the prefix of a node, intended to be printed right before the node.
583 * The prefix works also as a separator between the nodes.
584 */
585const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
586{
587 return fwnode_call_ptr_op(fwnode, get_name_prefix);
588}
589
590/**
591 * fwnode_get_parent - Return parent firwmare node
592 * @fwnode: Firmware whose parent is retrieved
593 *
594 * Return parent firmware node of the given node if possible or %NULL if no
595 * parent was available.
596 */
597struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
598{
599 return fwnode_call_ptr_op(fwnode, get_parent);
600}
601EXPORT_SYMBOL_GPL(fwnode_get_parent);
602
603/**
604 * fwnode_get_next_parent - Iterate to the node's parent
605 * @fwnode: Firmware whose parent is retrieved
606 *
607 * This is like fwnode_get_parent() except that it drops the refcount
608 * on the passed node, making it suitable for iterating through a
609 * node's parents.
610 *
611 * Returns a node pointer with refcount incremented, use
612 * fwnode_handle_put() on it when done.
613 */
614struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
615{
616 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
617
618 fwnode_handle_put(fwnode);
619
620 return parent;
621}
622EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
623
624/**
625 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
626 * @fwnode: firmware node
627 *
628 * Given a firmware node (@fwnode), this function finds its closest ancestor
629 * firmware node that has a corresponding struct device and returns that struct
630 * device.
631 *
632 * The caller of this function is expected to call put_device() on the returned
633 * device when they are done.
634 */
635struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
636{
637 struct fwnode_handle *parent;
638 struct device *dev;
639
640 fwnode_for_each_parent_node(fwnode, parent) {
641 dev = get_dev_from_fwnode(parent);
642 if (dev) {
643 fwnode_handle_put(parent);
644 return dev;
645 }
646 }
647 return NULL;
648}
649
650/**
651 * fwnode_count_parents - Return the number of parents a node has
652 * @fwnode: The node the parents of which are to be counted
653 *
654 * Returns the number of parents a node has.
655 */
656unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
657{
658 struct fwnode_handle *parent;
659 unsigned int count = 0;
660
661 fwnode_for_each_parent_node(fwnode, parent)
662 count++;
663
664 return count;
665}
666EXPORT_SYMBOL_GPL(fwnode_count_parents);
667
668/**
669 * fwnode_get_nth_parent - Return an nth parent of a node
670 * @fwnode: The node the parent of which is requested
671 * @depth: Distance of the parent from the node
672 *
673 * Returns the nth parent of a node. If there is no parent at the requested
674 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
675 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
676 *
677 * The caller is responsible for calling fwnode_handle_put() for the returned
678 * node.
679 */
680struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
681 unsigned int depth)
682{
683 struct fwnode_handle *parent;
684
685 if (depth == 0)
686 return fwnode_handle_get(fwnode);
687
688 fwnode_for_each_parent_node(fwnode, parent) {
689 if (--depth == 0)
690 return parent;
691 }
692 return NULL;
693}
694EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
695
696/**
697 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
698 * @ancestor: Firmware which is tested for being an ancestor
699 * @child: Firmware which is tested for being the child
700 *
701 * A node is considered an ancestor of itself too.
702 *
703 * Returns true if @ancestor is an ancestor of @child. Otherwise, returns false.
704 */
705bool fwnode_is_ancestor_of(struct fwnode_handle *ancestor, struct fwnode_handle *child)
706{
707 struct fwnode_handle *parent;
708
709 if (IS_ERR_OR_NULL(ancestor))
710 return false;
711
712 if (child == ancestor)
713 return true;
714
715 fwnode_for_each_parent_node(child, parent) {
716 if (parent == ancestor) {
717 fwnode_handle_put(parent);
718 return true;
719 }
720 }
721 return false;
722}
723
724/**
725 * fwnode_get_next_child_node - Return the next child node handle for a node
726 * @fwnode: Firmware node to find the next child node for.
727 * @child: Handle to one of the node's child nodes or a %NULL handle.
728 */
729struct fwnode_handle *
730fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
731 struct fwnode_handle *child)
732{
733 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
734}
735EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
736
737/**
738 * fwnode_get_next_available_child_node - Return the next
739 * available child node handle for a node
740 * @fwnode: Firmware node to find the next child node for.
741 * @child: Handle to one of the node's child nodes or a %NULL handle.
742 */
743struct fwnode_handle *
744fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
745 struct fwnode_handle *child)
746{
747 struct fwnode_handle *next_child = child;
748
749 if (IS_ERR_OR_NULL(fwnode))
750 return NULL;
751
752 do {
753 next_child = fwnode_get_next_child_node(fwnode, next_child);
754 if (!next_child)
755 return NULL;
756 } while (!fwnode_device_is_available(next_child));
757
758 return next_child;
759}
760EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
761
762/**
763 * device_get_next_child_node - Return the next child node handle for a device
764 * @dev: Device to find the next child node for.
765 * @child: Handle to one of the device's child nodes or a null handle.
766 */
767struct fwnode_handle *device_get_next_child_node(const struct device *dev,
768 struct fwnode_handle *child)
769{
770 const struct fwnode_handle *fwnode = dev_fwnode(dev);
771 struct fwnode_handle *next;
772
773 if (IS_ERR_OR_NULL(fwnode))
774 return NULL;
775
776 /* Try to find a child in primary fwnode */
777 next = fwnode_get_next_child_node(fwnode, child);
778 if (next)
779 return next;
780
781 /* When no more children in primary, continue with secondary */
782 return fwnode_get_next_child_node(fwnode->secondary, child);
783}
784EXPORT_SYMBOL_GPL(device_get_next_child_node);
785
786/**
787 * fwnode_get_named_child_node - Return first matching named child node handle
788 * @fwnode: Firmware node to find the named child node for.
789 * @childname: String to match child node name against.
790 */
791struct fwnode_handle *
792fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
793 const char *childname)
794{
795 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
796}
797EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
798
799/**
800 * device_get_named_child_node - Return first matching named child node handle
801 * @dev: Device to find the named child node for.
802 * @childname: String to match child node name against.
803 */
804struct fwnode_handle *device_get_named_child_node(const struct device *dev,
805 const char *childname)
806{
807 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
808}
809EXPORT_SYMBOL_GPL(device_get_named_child_node);
810
811/**
812 * fwnode_handle_get - Obtain a reference to a device node
813 * @fwnode: Pointer to the device node to obtain the reference to.
814 *
815 * Returns the fwnode handle.
816 */
817struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
818{
819 if (!fwnode_has_op(fwnode, get))
820 return fwnode;
821
822 return fwnode_call_ptr_op(fwnode, get);
823}
824EXPORT_SYMBOL_GPL(fwnode_handle_get);
825
826/**
827 * fwnode_handle_put - Drop reference to a device node
828 * @fwnode: Pointer to the device node to drop the reference to.
829 *
830 * This has to be used when terminating device_for_each_child_node() iteration
831 * with break or return to prevent stale device node references from being left
832 * behind.
833 */
834void fwnode_handle_put(struct fwnode_handle *fwnode)
835{
836 fwnode_call_void_op(fwnode, put);
837}
838EXPORT_SYMBOL_GPL(fwnode_handle_put);
839
840/**
841 * fwnode_device_is_available - check if a device is available for use
842 * @fwnode: Pointer to the fwnode of the device.
843 *
844 * For fwnode node types that don't implement the .device_is_available()
845 * operation, this function returns true.
846 */
847bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
848{
849 if (IS_ERR_OR_NULL(fwnode))
850 return false;
851
852 if (!fwnode_has_op(fwnode, device_is_available))
853 return true;
854
855 return fwnode_call_bool_op(fwnode, device_is_available);
856}
857EXPORT_SYMBOL_GPL(fwnode_device_is_available);
858
859/**
860 * device_get_child_node_count - return the number of child nodes for device
861 * @dev: Device to cound the child nodes for
862 */
863unsigned int device_get_child_node_count(const struct device *dev)
864{
865 struct fwnode_handle *child;
866 unsigned int count = 0;
867
868 device_for_each_child_node(dev, child)
869 count++;
870
871 return count;
872}
873EXPORT_SYMBOL_GPL(device_get_child_node_count);
874
875bool device_dma_supported(const struct device *dev)
876{
877 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
878}
879EXPORT_SYMBOL_GPL(device_dma_supported);
880
881enum dev_dma_attr device_get_dma_attr(const struct device *dev)
882{
883 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
884 return DEV_DMA_NOT_SUPPORTED;
885
886 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
887}
888EXPORT_SYMBOL_GPL(device_get_dma_attr);
889
890/**
891 * fwnode_get_phy_mode - Get phy mode for given firmware node
892 * @fwnode: Pointer to the given node
893 *
894 * The function gets phy interface string from property 'phy-mode' or
895 * 'phy-connection-type', and return its index in phy_modes table, or errno in
896 * error case.
897 */
898int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
899{
900 const char *pm;
901 int err, i;
902
903 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
904 if (err < 0)
905 err = fwnode_property_read_string(fwnode,
906 "phy-connection-type", &pm);
907 if (err < 0)
908 return err;
909
910 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
911 if (!strcasecmp(pm, phy_modes(i)))
912 return i;
913
914 return -ENODEV;
915}
916EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
917
918/**
919 * device_get_phy_mode - Get phy mode for given device
920 * @dev: Pointer to the given device
921 *
922 * The function gets phy interface string from property 'phy-mode' or
923 * 'phy-connection-type', and return its index in phy_modes table, or errno in
924 * error case.
925 */
926int device_get_phy_mode(struct device *dev)
927{
928 return fwnode_get_phy_mode(dev_fwnode(dev));
929}
930EXPORT_SYMBOL_GPL(device_get_phy_mode);
931
932/**
933 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
934 * @fwnode: Pointer to the firmware node
935 * @index: Index of the IO range
936 *
937 * Returns a pointer to the mapped memory.
938 */
939void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
940{
941 return fwnode_call_ptr_op(fwnode, iomap, index);
942}
943EXPORT_SYMBOL(fwnode_iomap);
944
945/**
946 * fwnode_irq_get - Get IRQ directly from a fwnode
947 * @fwnode: Pointer to the firmware node
948 * @index: Zero-based index of the IRQ
949 *
950 * Returns Linux IRQ number on success. Other values are determined
951 * accordingly to acpi_/of_ irq_get() operation.
952 */
953int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
954{
955 return fwnode_call_int_op(fwnode, irq_get, index);
956}
957EXPORT_SYMBOL(fwnode_irq_get);
958
959/**
960 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
961 * @fwnode: Pointer to the firmware node
962 * @name: IRQ name
963 *
964 * Description:
965 * Find a match to the string @name in the 'interrupt-names' string array
966 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
967 * number of the IRQ resource corresponding to the index of the matched
968 * string.
969 *
970 * Return:
971 * Linux IRQ number on success, or negative errno otherwise.
972 */
973int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
974{
975 int index;
976
977 if (!name)
978 return -EINVAL;
979
980 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
981 if (index < 0)
982 return index;
983
984 return fwnode_irq_get(fwnode, index);
985}
986EXPORT_SYMBOL(fwnode_irq_get_byname);
987
988/**
989 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
990 * @fwnode: Pointer to the parent firmware node
991 * @prev: Previous endpoint node or %NULL to get the first
992 *
993 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
994 * are available.
995 */
996struct fwnode_handle *
997fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
998 struct fwnode_handle *prev)
999{
1000 struct fwnode_handle *ep, *port_parent = NULL;
1001 const struct fwnode_handle *parent;
1002
1003 /*
1004 * If this function is in a loop and the previous iteration returned
1005 * an endpoint from fwnode->secondary, then we need to use the secondary
1006 * as parent rather than @fwnode.
1007 */
1008 if (prev) {
1009 port_parent = fwnode_graph_get_port_parent(prev);
1010 parent = port_parent;
1011 } else {
1012 parent = fwnode;
1013 }
1014 if (IS_ERR_OR_NULL(parent))
1015 return NULL;
1016
1017 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1018 if (ep)
1019 goto out_put_port_parent;
1020
1021 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1022
1023out_put_port_parent:
1024 fwnode_handle_put(port_parent);
1025 return ep;
1026}
1027EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1028
1029/**
1030 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1031 * @endpoint: Endpoint firmware node of the port
1032 *
1033 * Return: the firmware node of the device the @endpoint belongs to.
1034 */
1035struct fwnode_handle *
1036fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1037{
1038 struct fwnode_handle *port, *parent;
1039
1040 port = fwnode_get_parent(endpoint);
1041 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1042
1043 fwnode_handle_put(port);
1044
1045 return parent;
1046}
1047EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1048
1049/**
1050 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1051 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1052 *
1053 * Extracts firmware node of a remote device the @fwnode points to.
1054 */
1055struct fwnode_handle *
1056fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1057{
1058 struct fwnode_handle *endpoint, *parent;
1059
1060 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1061 parent = fwnode_graph_get_port_parent(endpoint);
1062
1063 fwnode_handle_put(endpoint);
1064
1065 return parent;
1066}
1067EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1068
1069/**
1070 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1071 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1072 *
1073 * Extracts firmware node of a remote port the @fwnode points to.
1074 */
1075struct fwnode_handle *
1076fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1077{
1078 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1079}
1080EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1081
1082/**
1083 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1084 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1085 *
1086 * Extracts firmware node of a remote endpoint the @fwnode points to.
1087 */
1088struct fwnode_handle *
1089fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1090{
1091 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1092}
1093EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1094
1095static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1096{
1097 struct fwnode_handle *dev_node;
1098 bool available;
1099
1100 dev_node = fwnode_graph_get_remote_port_parent(ep);
1101 available = fwnode_device_is_available(dev_node);
1102 fwnode_handle_put(dev_node);
1103
1104 return available;
1105}
1106
1107/**
1108 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1109 * @fwnode: parent fwnode_handle containing the graph
1110 * @port: identifier of the port node
1111 * @endpoint: identifier of the endpoint node under the port node
1112 * @flags: fwnode lookup flags
1113 *
1114 * Return the fwnode handle of the local endpoint corresponding the port and
1115 * endpoint IDs or NULL if not found.
1116 *
1117 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1118 * has not been found, look for the closest endpoint ID greater than the
1119 * specified one and return the endpoint that corresponds to it, if present.
1120 *
1121 * Does not return endpoints that belong to disabled devices or endpoints that
1122 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1123 *
1124 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1125 * it when it is not needed any more.
1126 */
1127struct fwnode_handle *
1128fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1129 u32 port, u32 endpoint, unsigned long flags)
1130{
1131 struct fwnode_handle *ep, *best_ep = NULL;
1132 unsigned int best_ep_id = 0;
1133 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1134 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1135
1136 fwnode_graph_for_each_endpoint(fwnode, ep) {
1137 struct fwnode_endpoint fwnode_ep = { 0 };
1138 int ret;
1139
1140 if (enabled_only && !fwnode_graph_remote_available(ep))
1141 continue;
1142
1143 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1144 if (ret < 0)
1145 continue;
1146
1147 if (fwnode_ep.port != port)
1148 continue;
1149
1150 if (fwnode_ep.id == endpoint)
1151 return ep;
1152
1153 if (!endpoint_next)
1154 continue;
1155
1156 /*
1157 * If the endpoint that has just been found is not the first
1158 * matching one and the ID of the one found previously is closer
1159 * to the requested endpoint ID, skip it.
1160 */
1161 if (fwnode_ep.id < endpoint ||
1162 (best_ep && best_ep_id < fwnode_ep.id))
1163 continue;
1164
1165 fwnode_handle_put(best_ep);
1166 best_ep = fwnode_handle_get(ep);
1167 best_ep_id = fwnode_ep.id;
1168 }
1169
1170 return best_ep;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1173
1174/**
1175 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1176 * @fwnode: The node related to a device
1177 * @flags: fwnode lookup flags
1178 * Count endpoints in a device node.
1179 *
1180 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1181 * and endpoints connected to disabled devices are counted.
1182 */
1183unsigned int fwnode_graph_get_endpoint_count(struct fwnode_handle *fwnode,
1184 unsigned long flags)
1185{
1186 struct fwnode_handle *ep;
1187 unsigned int count = 0;
1188
1189 fwnode_graph_for_each_endpoint(fwnode, ep) {
1190 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1191 fwnode_graph_remote_available(ep))
1192 count++;
1193 }
1194
1195 return count;
1196}
1197EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1198
1199/**
1200 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1201 * @fwnode: pointer to endpoint fwnode_handle
1202 * @endpoint: pointer to the fwnode endpoint data structure
1203 *
1204 * Parse @fwnode representing a graph endpoint node and store the
1205 * information in @endpoint. The caller must hold a reference to
1206 * @fwnode.
1207 */
1208int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1209 struct fwnode_endpoint *endpoint)
1210{
1211 memset(endpoint, 0, sizeof(*endpoint));
1212
1213 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1214}
1215EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1216
1217const void *device_get_match_data(const struct device *dev)
1218{
1219 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1220}
1221EXPORT_SYMBOL_GPL(device_get_match_data);
1222
1223static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1224 const char *con_id, void *data,
1225 devcon_match_fn_t match,
1226 void **matches,
1227 unsigned int matches_len)
1228{
1229 struct fwnode_handle *node;
1230 struct fwnode_handle *ep;
1231 unsigned int count = 0;
1232 void *ret;
1233
1234 fwnode_graph_for_each_endpoint(fwnode, ep) {
1235 if (matches && count >= matches_len) {
1236 fwnode_handle_put(ep);
1237 break;
1238 }
1239
1240 node = fwnode_graph_get_remote_port_parent(ep);
1241 if (!fwnode_device_is_available(node)) {
1242 fwnode_handle_put(node);
1243 continue;
1244 }
1245
1246 ret = match(node, con_id, data);
1247 fwnode_handle_put(node);
1248 if (ret) {
1249 if (matches)
1250 matches[count] = ret;
1251 count++;
1252 }
1253 }
1254 return count;
1255}
1256
1257static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1258 const char *con_id, void *data,
1259 devcon_match_fn_t match,
1260 void **matches,
1261 unsigned int matches_len)
1262{
1263 struct fwnode_handle *node;
1264 unsigned int count = 0;
1265 unsigned int i;
1266 void *ret;
1267
1268 for (i = 0; ; i++) {
1269 if (matches && count >= matches_len)
1270 break;
1271
1272 node = fwnode_find_reference(fwnode, con_id, i);
1273 if (IS_ERR(node))
1274 break;
1275
1276 ret = match(node, NULL, data);
1277 fwnode_handle_put(node);
1278 if (ret) {
1279 if (matches)
1280 matches[count] = ret;
1281 count++;
1282 }
1283 }
1284
1285 return count;
1286}
1287
1288/**
1289 * fwnode_connection_find_match - Find connection from a device node
1290 * @fwnode: Device node with the connection
1291 * @con_id: Identifier for the connection
1292 * @data: Data for the match function
1293 * @match: Function to check and convert the connection description
1294 *
1295 * Find a connection with unique identifier @con_id between @fwnode and another
1296 * device node. @match will be used to convert the connection description to
1297 * data the caller is expecting to be returned.
1298 */
1299void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1300 const char *con_id, void *data,
1301 devcon_match_fn_t match)
1302{
1303 unsigned int count;
1304 void *ret;
1305
1306 if (!fwnode || !match)
1307 return NULL;
1308
1309 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1310 if (count)
1311 return ret;
1312
1313 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1314 return count ? ret : NULL;
1315}
1316EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1317
1318/**
1319 * fwnode_connection_find_matches - Find connections from a device node
1320 * @fwnode: Device node with the connection
1321 * @con_id: Identifier for the connection
1322 * @data: Data for the match function
1323 * @match: Function to check and convert the connection description
1324 * @matches: (Optional) array of pointers to fill with matches
1325 * @matches_len: Length of @matches
1326 *
1327 * Find up to @matches_len connections with unique identifier @con_id between
1328 * @fwnode and other device nodes. @match will be used to convert the
1329 * connection description to data the caller is expecting to be returned
1330 * through the @matches array.
1331 * If @matches is NULL @matches_len is ignored and the total number of resolved
1332 * matches is returned.
1333 *
1334 * Return: Number of matches resolved, or negative errno.
1335 */
1336int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1337 const char *con_id, void *data,
1338 devcon_match_fn_t match,
1339 void **matches, unsigned int matches_len)
1340{
1341 unsigned int count_graph;
1342 unsigned int count_ref;
1343
1344 if (!fwnode || !match)
1345 return -EINVAL;
1346
1347 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1348 matches, matches_len);
1349
1350 if (matches) {
1351 matches += count_graph;
1352 matches_len -= count_graph;
1353 }
1354
1355 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1356 matches, matches_len);
1357
1358 return count_graph + count_ref;
1359}
1360EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);