Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/phy.h>
19
20struct fwnode_handle *__dev_fwnode(struct device *dev)
21{
22 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 of_fwnode_handle(dev->of_node) : dev->fwnode;
24}
25EXPORT_SYMBOL_GPL(__dev_fwnode);
26
27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28{
29 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 of_fwnode_handle(dev->of_node) : dev->fwnode;
31}
32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33
34/**
35 * device_property_present - check if a property of a device is present
36 * @dev: Device whose property is being checked
37 * @propname: Name of the property
38 *
39 * Check if property @propname is present in the device firmware description.
40 *
41 * Return: true if property @propname is present. Otherwise, returns false.
42 */
43bool device_property_present(const struct device *dev, const char *propname)
44{
45 return fwnode_property_present(dev_fwnode(dev), propname);
46}
47EXPORT_SYMBOL_GPL(device_property_present);
48
49/**
50 * fwnode_property_present - check if a property of a firmware node is present
51 * @fwnode: Firmware node whose property to check
52 * @propname: Name of the property
53 *
54 * Return: true if property @propname is present. Otherwise, returns false.
55 */
56bool fwnode_property_present(const struct fwnode_handle *fwnode,
57 const char *propname)
58{
59 bool ret;
60
61 if (IS_ERR_OR_NULL(fwnode))
62 return false;
63
64 ret = fwnode_call_bool_op(fwnode, property_present, propname);
65 if (ret)
66 return ret;
67
68 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
69}
70EXPORT_SYMBOL_GPL(fwnode_property_present);
71
72/**
73 * device_property_read_u8_array - return a u8 array property of a device
74 * @dev: Device to get the property of
75 * @propname: Name of the property
76 * @val: The values are stored here or %NULL to return the number of values
77 * @nval: Size of the @val array
78 *
79 * Function reads an array of u8 properties with @propname from the device
80 * firmware description and stores them to @val if found.
81 *
82 * It's recommended to call device_property_count_u8() instead of calling
83 * this function with @val equals %NULL and @nval equals 0.
84 *
85 * Return: number of values if @val was %NULL,
86 * %0 if the property was found (success),
87 * %-EINVAL if given arguments are not valid,
88 * %-ENODATA if the property does not have a value,
89 * %-EPROTO if the property is not an array of numbers,
90 * %-EOVERFLOW if the size of the property is not as expected.
91 * %-ENXIO if no suitable firmware interface is present.
92 */
93int device_property_read_u8_array(const struct device *dev, const char *propname,
94 u8 *val, size_t nval)
95{
96 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
97}
98EXPORT_SYMBOL_GPL(device_property_read_u8_array);
99
100/**
101 * device_property_read_u16_array - return a u16 array property of a device
102 * @dev: Device to get the property of
103 * @propname: Name of the property
104 * @val: The values are stored here or %NULL to return the number of values
105 * @nval: Size of the @val array
106 *
107 * Function reads an array of u16 properties with @propname from the device
108 * firmware description and stores them to @val if found.
109 *
110 * It's recommended to call device_property_count_u16() instead of calling
111 * this function with @val equals %NULL and @nval equals 0.
112 *
113 * Return: number of values if @val was %NULL,
114 * %0 if the property was found (success),
115 * %-EINVAL if given arguments are not valid,
116 * %-ENODATA if the property does not have a value,
117 * %-EPROTO if the property is not an array of numbers,
118 * %-EOVERFLOW if the size of the property is not as expected.
119 * %-ENXIO if no suitable firmware interface is present.
120 */
121int device_property_read_u16_array(const struct device *dev, const char *propname,
122 u16 *val, size_t nval)
123{
124 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
125}
126EXPORT_SYMBOL_GPL(device_property_read_u16_array);
127
128/**
129 * device_property_read_u32_array - return a u32 array property of a device
130 * @dev: Device to get the property of
131 * @propname: Name of the property
132 * @val: The values are stored here or %NULL to return the number of values
133 * @nval: Size of the @val array
134 *
135 * Function reads an array of u32 properties with @propname from the device
136 * firmware description and stores them to @val if found.
137 *
138 * It's recommended to call device_property_count_u32() instead of calling
139 * this function with @val equals %NULL and @nval equals 0.
140 *
141 * Return: number of values if @val was %NULL,
142 * %0 if the property was found (success),
143 * %-EINVAL if given arguments are not valid,
144 * %-ENODATA if the property does not have a value,
145 * %-EPROTO if the property is not an array of numbers,
146 * %-EOVERFLOW if the size of the property is not as expected.
147 * %-ENXIO if no suitable firmware interface is present.
148 */
149int device_property_read_u32_array(const struct device *dev, const char *propname,
150 u32 *val, size_t nval)
151{
152 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
153}
154EXPORT_SYMBOL_GPL(device_property_read_u32_array);
155
156/**
157 * device_property_read_u64_array - return a u64 array property of a device
158 * @dev: Device to get the property of
159 * @propname: Name of the property
160 * @val: The values are stored here or %NULL to return the number of values
161 * @nval: Size of the @val array
162 *
163 * Function reads an array of u64 properties with @propname from the device
164 * firmware description and stores them to @val if found.
165 *
166 * It's recommended to call device_property_count_u64() instead of calling
167 * this function with @val equals %NULL and @nval equals 0.
168 *
169 * Return: number of values if @val was %NULL,
170 * %0 if the property was found (success),
171 * %-EINVAL if given arguments are not valid,
172 * %-ENODATA if the property does not have a value,
173 * %-EPROTO if the property is not an array of numbers,
174 * %-EOVERFLOW if the size of the property is not as expected.
175 * %-ENXIO if no suitable firmware interface is present.
176 */
177int device_property_read_u64_array(const struct device *dev, const char *propname,
178 u64 *val, size_t nval)
179{
180 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
181}
182EXPORT_SYMBOL_GPL(device_property_read_u64_array);
183
184/**
185 * device_property_read_string_array - return a string array property of device
186 * @dev: Device to get the property of
187 * @propname: Name of the property
188 * @val: The values are stored here or %NULL to return the number of values
189 * @nval: Size of the @val array
190 *
191 * Function reads an array of string properties with @propname from the device
192 * firmware description and stores them to @val if found.
193 *
194 * It's recommended to call device_property_string_array_count() instead of calling
195 * this function with @val equals %NULL and @nval equals 0.
196 *
197 * Return: number of values read on success if @val is non-NULL,
198 * number of values available on success if @val is NULL,
199 * %-EINVAL if given arguments are not valid,
200 * %-ENODATA if the property does not have a value,
201 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
202 * %-EOVERFLOW if the size of the property is not as expected.
203 * %-ENXIO if no suitable firmware interface is present.
204 */
205int device_property_read_string_array(const struct device *dev, const char *propname,
206 const char **val, size_t nval)
207{
208 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
209}
210EXPORT_SYMBOL_GPL(device_property_read_string_array);
211
212/**
213 * device_property_read_string - return a string property of a device
214 * @dev: Device to get the property of
215 * @propname: Name of the property
216 * @val: The value is stored here
217 *
218 * Function reads property @propname from the device firmware description and
219 * stores the value into @val if found. The value is checked to be a string.
220 *
221 * Return: %0 if the property was found (success),
222 * %-EINVAL if given arguments are not valid,
223 * %-ENODATA if the property does not have a value,
224 * %-EPROTO or %-EILSEQ if the property type is not a string.
225 * %-ENXIO if no suitable firmware interface is present.
226 */
227int device_property_read_string(const struct device *dev, const char *propname,
228 const char **val)
229{
230 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
231}
232EXPORT_SYMBOL_GPL(device_property_read_string);
233
234/**
235 * device_property_match_string - find a string in an array and return index
236 * @dev: Device to get the property of
237 * @propname: Name of the property holding the array
238 * @string: String to look for
239 *
240 * Find a given string in a string array and if it is found return the
241 * index back.
242 *
243 * Return: index, starting from %0, if the property was found (success),
244 * %-EINVAL if given arguments are not valid,
245 * %-ENODATA if the property does not have a value,
246 * %-EPROTO if the property is not an array of strings,
247 * %-ENXIO if no suitable firmware interface is present.
248 */
249int device_property_match_string(const struct device *dev, const char *propname,
250 const char *string)
251{
252 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
253}
254EXPORT_SYMBOL_GPL(device_property_match_string);
255
256static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
257 const char *propname,
258 unsigned int elem_size, void *val,
259 size_t nval)
260{
261 int ret;
262
263 if (IS_ERR_OR_NULL(fwnode))
264 return -EINVAL;
265
266 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
267 elem_size, val, nval);
268 if (ret != -EINVAL)
269 return ret;
270
271 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
272 elem_size, val, nval);
273}
274
275/**
276 * fwnode_property_read_u8_array - return a u8 array property of firmware node
277 * @fwnode: Firmware node to get the property of
278 * @propname: Name of the property
279 * @val: The values are stored here or %NULL to return the number of values
280 * @nval: Size of the @val array
281 *
282 * Read an array of u8 properties with @propname from @fwnode and stores them to
283 * @val if found.
284 *
285 * It's recommended to call fwnode_property_count_u8() instead of calling
286 * this function with @val equals %NULL and @nval equals 0.
287 *
288 * Return: number of values if @val was %NULL,
289 * %0 if the property was found (success),
290 * %-EINVAL if given arguments are not valid,
291 * %-ENODATA if the property does not have a value,
292 * %-EPROTO if the property is not an array of numbers,
293 * %-EOVERFLOW if the size of the property is not as expected,
294 * %-ENXIO if no suitable firmware interface is present.
295 */
296int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
297 const char *propname, u8 *val, size_t nval)
298{
299 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
300 val, nval);
301}
302EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
303
304/**
305 * fwnode_property_read_u16_array - return a u16 array property of firmware node
306 * @fwnode: Firmware node to get the property of
307 * @propname: Name of the property
308 * @val: The values are stored here or %NULL to return the number of values
309 * @nval: Size of the @val array
310 *
311 * Read an array of u16 properties with @propname from @fwnode and store them to
312 * @val if found.
313 *
314 * It's recommended to call fwnode_property_count_u16() instead of calling
315 * this function with @val equals %NULL and @nval equals 0.
316 *
317 * Return: number of values if @val was %NULL,
318 * %0 if the property was found (success),
319 * %-EINVAL if given arguments are not valid,
320 * %-ENODATA if the property does not have a value,
321 * %-EPROTO if the property is not an array of numbers,
322 * %-EOVERFLOW if the size of the property is not as expected,
323 * %-ENXIO if no suitable firmware interface is present.
324 */
325int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
326 const char *propname, u16 *val, size_t nval)
327{
328 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
329 val, nval);
330}
331EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
332
333/**
334 * fwnode_property_read_u32_array - return a u32 array property of firmware node
335 * @fwnode: Firmware node to get the property of
336 * @propname: Name of the property
337 * @val: The values are stored here or %NULL to return the number of values
338 * @nval: Size of the @val array
339 *
340 * Read an array of u32 properties with @propname from @fwnode store them to
341 * @val if found.
342 *
343 * It's recommended to call fwnode_property_count_u32() instead of calling
344 * this function with @val equals %NULL and @nval equals 0.
345 *
346 * Return: number of values if @val was %NULL,
347 * %0 if the property was found (success),
348 * %-EINVAL if given arguments are not valid,
349 * %-ENODATA if the property does not have a value,
350 * %-EPROTO if the property is not an array of numbers,
351 * %-EOVERFLOW if the size of the property is not as expected,
352 * %-ENXIO if no suitable firmware interface is present.
353 */
354int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
355 const char *propname, u32 *val, size_t nval)
356{
357 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
358 val, nval);
359}
360EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
361
362/**
363 * fwnode_property_read_u64_array - return a u64 array property firmware node
364 * @fwnode: Firmware node to get the property of
365 * @propname: Name of the property
366 * @val: The values are stored here or %NULL to return the number of values
367 * @nval: Size of the @val array
368 *
369 * Read an array of u64 properties with @propname from @fwnode and store them to
370 * @val if found.
371 *
372 * It's recommended to call fwnode_property_count_u64() instead of calling
373 * this function with @val equals %NULL and @nval equals 0.
374 *
375 * Return: number of values if @val was %NULL,
376 * %0 if the property was found (success),
377 * %-EINVAL if given arguments are not valid,
378 * %-ENODATA if the property does not have a value,
379 * %-EPROTO if the property is not an array of numbers,
380 * %-EOVERFLOW if the size of the property is not as expected,
381 * %-ENXIO if no suitable firmware interface is present.
382 */
383int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
384 const char *propname, u64 *val, size_t nval)
385{
386 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
387 val, nval);
388}
389EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
390
391/**
392 * fwnode_property_read_string_array - return string array property of a node
393 * @fwnode: Firmware node to get the property of
394 * @propname: Name of the property
395 * @val: The values are stored here or %NULL to return the number of values
396 * @nval: Size of the @val array
397 *
398 * Read an string list property @propname from the given firmware node and store
399 * them to @val if found.
400 *
401 * It's recommended to call fwnode_property_string_array_count() instead of calling
402 * this function with @val equals %NULL and @nval equals 0.
403 *
404 * Return: number of values read on success if @val is non-NULL,
405 * number of values available on success if @val is NULL,
406 * %-EINVAL if given arguments are not valid,
407 * %-ENODATA if the property does not have a value,
408 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
409 * %-EOVERFLOW if the size of the property is not as expected,
410 * %-ENXIO if no suitable firmware interface is present.
411 */
412int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
413 const char *propname, const char **val,
414 size_t nval)
415{
416 int ret;
417
418 if (IS_ERR_OR_NULL(fwnode))
419 return -EINVAL;
420
421 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
422 val, nval);
423 if (ret != -EINVAL)
424 return ret;
425
426 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
427 val, nval);
428}
429EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
430
431/**
432 * fwnode_property_read_string - return a string property of a firmware node
433 * @fwnode: Firmware node to get the property of
434 * @propname: Name of the property
435 * @val: The value is stored here
436 *
437 * Read property @propname from the given firmware node and store the value into
438 * @val if found. The value is checked to be a string.
439 *
440 * Return: %0 if the property was found (success),
441 * %-EINVAL if given arguments are not valid,
442 * %-ENODATA if the property does not have a value,
443 * %-EPROTO or %-EILSEQ if the property is not a string,
444 * %-ENXIO if no suitable firmware interface is present.
445 */
446int fwnode_property_read_string(const struct fwnode_handle *fwnode,
447 const char *propname, const char **val)
448{
449 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
450
451 return ret < 0 ? ret : 0;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_read_string);
454
455/**
456 * fwnode_property_match_string - find a string in an array and return index
457 * @fwnode: Firmware node to get the property of
458 * @propname: Name of the property holding the array
459 * @string: String to look for
460 *
461 * Find a given string in a string array and if it is found return the
462 * index back.
463 *
464 * Return: index, starting from %0, if the property was found (success),
465 * %-EINVAL if given arguments are not valid,
466 * %-ENODATA if the property does not have a value,
467 * %-EPROTO if the property is not an array of strings,
468 * %-ENXIO if no suitable firmware interface is present.
469 */
470int fwnode_property_match_string(const struct fwnode_handle *fwnode,
471 const char *propname, const char *string)
472{
473 const char **values;
474 int nval, ret;
475
476 nval = fwnode_property_string_array_count(fwnode, propname);
477 if (nval < 0)
478 return nval;
479
480 if (nval == 0)
481 return -ENODATA;
482
483 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
484 if (!values)
485 return -ENOMEM;
486
487 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
488 if (ret < 0)
489 goto out_free;
490
491 ret = match_string(values, nval, string);
492 if (ret < 0)
493 ret = -ENODATA;
494
495out_free:
496 kfree(values);
497 return ret;
498}
499EXPORT_SYMBOL_GPL(fwnode_property_match_string);
500
501/**
502 * fwnode_property_match_property_string - find a property string value in an array and return index
503 * @fwnode: Firmware node to get the property of
504 * @propname: Name of the property holding the string value
505 * @array: String array to search in
506 * @n: Size of the @array
507 *
508 * Find a property string value in a given @array and if it is found return
509 * the index back.
510 *
511 * Return: index, starting from %0, if the string value was found in the @array (success),
512 * %-ENOENT when the string value was not found in the @array,
513 * %-EINVAL if given arguments are not valid,
514 * %-ENODATA if the property does not have a value,
515 * %-EPROTO or %-EILSEQ if the property is not a string,
516 * %-ENXIO if no suitable firmware interface is present.
517 */
518int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
519 const char *propname, const char * const *array, size_t n)
520{
521 const char *string;
522 int ret;
523
524 ret = fwnode_property_read_string(fwnode, propname, &string);
525 if (ret)
526 return ret;
527
528 ret = match_string(array, n, string);
529 if (ret < 0)
530 ret = -ENOENT;
531
532 return ret;
533}
534EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
535
536/**
537 * fwnode_property_get_reference_args() - Find a reference with arguments
538 * @fwnode: Firmware node where to look for the reference
539 * @prop: The name of the property
540 * @nargs_prop: The name of the property telling the number of
541 * arguments in the referred node. NULL if @nargs is known,
542 * otherwise @nargs is ignored. Only relevant on OF.
543 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
544 * @index: Index of the reference, from zero onwards.
545 * @args: Result structure with reference and integer arguments.
546 * May be NULL.
547 *
548 * Obtain a reference based on a named property in an fwnode, with
549 * integer arguments.
550 *
551 * The caller is responsible for calling fwnode_handle_put() on the returned
552 * @args->fwnode pointer.
553 *
554 * Return: %0 on success
555 * %-ENOENT when the index is out of bounds, the index has an empty
556 * reference or the property was not found
557 * %-EINVAL on parse error
558 */
559int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
560 const char *prop, const char *nargs_prop,
561 unsigned int nargs, unsigned int index,
562 struct fwnode_reference_args *args)
563{
564 int ret;
565
566 if (IS_ERR_OR_NULL(fwnode))
567 return -ENOENT;
568
569 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
570 nargs, index, args);
571 if (ret == 0)
572 return ret;
573
574 if (IS_ERR_OR_NULL(fwnode->secondary))
575 return ret;
576
577 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
578 nargs, index, args);
579}
580EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
581
582/**
583 * fwnode_find_reference - Find named reference to a fwnode_handle
584 * @fwnode: Firmware node where to look for the reference
585 * @name: The name of the reference
586 * @index: Index of the reference
587 *
588 * @index can be used when the named reference holds a table of references.
589 *
590 * The caller is responsible for calling fwnode_handle_put() on the returned
591 * fwnode pointer.
592 *
593 * Return: a pointer to the reference fwnode, when found. Otherwise,
594 * returns an error pointer.
595 */
596struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
597 const char *name,
598 unsigned int index)
599{
600 struct fwnode_reference_args args;
601 int ret;
602
603 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
604 &args);
605 return ret ? ERR_PTR(ret) : args.fwnode;
606}
607EXPORT_SYMBOL_GPL(fwnode_find_reference);
608
609/**
610 * fwnode_get_name - Return the name of a node
611 * @fwnode: The firmware node
612 *
613 * Return: a pointer to the node name, or %NULL.
614 */
615const char *fwnode_get_name(const struct fwnode_handle *fwnode)
616{
617 return fwnode_call_ptr_op(fwnode, get_name);
618}
619EXPORT_SYMBOL_GPL(fwnode_get_name);
620
621/**
622 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
623 * @fwnode: The firmware node
624 *
625 * Return: the prefix of a node, intended to be printed right before the node.
626 * The prefix works also as a separator between the nodes.
627 */
628const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
629{
630 return fwnode_call_ptr_op(fwnode, get_name_prefix);
631}
632
633/**
634 * fwnode_name_eq - Return true if node name is equal
635 * @fwnode: The firmware node
636 * @name: The name to which to compare the node name
637 *
638 * Compare the name provided as an argument to the name of the node, stopping
639 * the comparison at either NUL or '@' character, whichever comes first. This
640 * function is generally used for comparing node names while ignoring the
641 * possible unit address of the node.
642 *
643 * Return: true if the node name matches with the name provided in the @name
644 * argument, false otherwise.
645 */
646bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
647{
648 const char *node_name;
649 ptrdiff_t len;
650
651 node_name = fwnode_get_name(fwnode);
652 if (!node_name)
653 return false;
654
655 len = strchrnul(node_name, '@') - node_name;
656
657 return str_has_prefix(node_name, name) == len;
658}
659EXPORT_SYMBOL_GPL(fwnode_name_eq);
660
661/**
662 * fwnode_get_parent - Return parent firwmare node
663 * @fwnode: Firmware whose parent is retrieved
664 *
665 * The caller is responsible for calling fwnode_handle_put() on the returned
666 * fwnode pointer.
667 *
668 * Return: parent firmware node of the given node if possible or %NULL if no
669 * parent was available.
670 */
671struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
672{
673 return fwnode_call_ptr_op(fwnode, get_parent);
674}
675EXPORT_SYMBOL_GPL(fwnode_get_parent);
676
677/**
678 * fwnode_get_next_parent - Iterate to the node's parent
679 * @fwnode: Firmware whose parent is retrieved
680 *
681 * This is like fwnode_get_parent() except that it drops the refcount
682 * on the passed node, making it suitable for iterating through a
683 * node's parents.
684 *
685 * The caller is responsible for calling fwnode_handle_put() on the returned
686 * fwnode pointer. Note that this function also puts a reference to @fwnode
687 * unconditionally.
688 *
689 * Return: parent firmware node of the given node if possible or %NULL if no
690 * parent was available.
691 */
692struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
693{
694 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
695
696 fwnode_handle_put(fwnode);
697
698 return parent;
699}
700EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
701
702/**
703 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
704 * @fwnode: firmware node
705 *
706 * Given a firmware node (@fwnode), this function finds its closest ancestor
707 * firmware node that has a corresponding struct device and returns that struct
708 * device.
709 *
710 * The caller is responsible for calling put_device() on the returned device
711 * pointer.
712 *
713 * Return: a pointer to the device of the @fwnode's closest ancestor.
714 */
715struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
716{
717 struct fwnode_handle *parent;
718 struct device *dev;
719
720 fwnode_for_each_parent_node(fwnode, parent) {
721 dev = get_dev_from_fwnode(parent);
722 if (dev) {
723 fwnode_handle_put(parent);
724 return dev;
725 }
726 }
727 return NULL;
728}
729
730/**
731 * fwnode_count_parents - Return the number of parents a node has
732 * @fwnode: The node the parents of which are to be counted
733 *
734 * Return: the number of parents a node has.
735 */
736unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
737{
738 struct fwnode_handle *parent;
739 unsigned int count = 0;
740
741 fwnode_for_each_parent_node(fwnode, parent)
742 count++;
743
744 return count;
745}
746EXPORT_SYMBOL_GPL(fwnode_count_parents);
747
748/**
749 * fwnode_get_nth_parent - Return an nth parent of a node
750 * @fwnode: The node the parent of which is requested
751 * @depth: Distance of the parent from the node
752 *
753 * The caller is responsible for calling fwnode_handle_put() on the returned
754 * fwnode pointer.
755 *
756 * Return: the nth parent of a node. If there is no parent at the requested
757 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
758 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
759 */
760struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
761 unsigned int depth)
762{
763 struct fwnode_handle *parent;
764
765 if (depth == 0)
766 return fwnode_handle_get(fwnode);
767
768 fwnode_for_each_parent_node(fwnode, parent) {
769 if (--depth == 0)
770 return parent;
771 }
772 return NULL;
773}
774EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
775
776/**
777 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
778 * @ancestor: Firmware which is tested for being an ancestor
779 * @child: Firmware which is tested for being the child
780 *
781 * A node is considered an ancestor of itself too.
782 *
783 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
784 */
785bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child)
786{
787 struct fwnode_handle *parent;
788
789 if (IS_ERR_OR_NULL(ancestor))
790 return false;
791
792 if (child == ancestor)
793 return true;
794
795 fwnode_for_each_parent_node(child, parent) {
796 if (parent == ancestor) {
797 fwnode_handle_put(parent);
798 return true;
799 }
800 }
801 return false;
802}
803
804/**
805 * fwnode_get_next_child_node - Return the next child node handle for a node
806 * @fwnode: Firmware node to find the next child node for.
807 * @child: Handle to one of the node's child nodes or a %NULL handle.
808 *
809 * The caller is responsible for calling fwnode_handle_put() on the returned
810 * fwnode pointer. Note that this function also puts a reference to @child
811 * unconditionally.
812 */
813struct fwnode_handle *
814fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
815 struct fwnode_handle *child)
816{
817 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
818}
819EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
820
821/**
822 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
823 * @fwnode: Firmware node to find the next child node for.
824 * @child: Handle to one of the node's child nodes or a %NULL handle.
825 *
826 * The caller is responsible for calling fwnode_handle_put() on the returned
827 * fwnode pointer. Note that this function also puts a reference to @child
828 * unconditionally.
829 */
830struct fwnode_handle *
831fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
832 struct fwnode_handle *child)
833{
834 struct fwnode_handle *next_child = child;
835
836 if (IS_ERR_OR_NULL(fwnode))
837 return NULL;
838
839 do {
840 next_child = fwnode_get_next_child_node(fwnode, next_child);
841 if (!next_child)
842 return NULL;
843 } while (!fwnode_device_is_available(next_child));
844
845 return next_child;
846}
847EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
848
849/**
850 * device_get_next_child_node - Return the next child node handle for a device
851 * @dev: Device to find the next child node for.
852 * @child: Handle to one of the device's child nodes or a %NULL handle.
853 *
854 * The caller is responsible for calling fwnode_handle_put() on the returned
855 * fwnode pointer. Note that this function also puts a reference to @child
856 * unconditionally.
857 */
858struct fwnode_handle *device_get_next_child_node(const struct device *dev,
859 struct fwnode_handle *child)
860{
861 const struct fwnode_handle *fwnode = dev_fwnode(dev);
862 struct fwnode_handle *next;
863
864 if (IS_ERR_OR_NULL(fwnode))
865 return NULL;
866
867 /* Try to find a child in primary fwnode */
868 next = fwnode_get_next_child_node(fwnode, child);
869 if (next)
870 return next;
871
872 /* When no more children in primary, continue with secondary */
873 return fwnode_get_next_child_node(fwnode->secondary, child);
874}
875EXPORT_SYMBOL_GPL(device_get_next_child_node);
876
877/**
878 * fwnode_get_named_child_node - Return first matching named child node handle
879 * @fwnode: Firmware node to find the named child node for.
880 * @childname: String to match child node name against.
881 *
882 * The caller is responsible for calling fwnode_handle_put() on the returned
883 * fwnode pointer.
884 */
885struct fwnode_handle *
886fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
887 const char *childname)
888{
889 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
890}
891EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
892
893/**
894 * device_get_named_child_node - Return first matching named child node handle
895 * @dev: Device to find the named child node for.
896 * @childname: String to match child node name against.
897 *
898 * The caller is responsible for calling fwnode_handle_put() on the returned
899 * fwnode pointer.
900 */
901struct fwnode_handle *device_get_named_child_node(const struct device *dev,
902 const char *childname)
903{
904 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
905}
906EXPORT_SYMBOL_GPL(device_get_named_child_node);
907
908/**
909 * fwnode_handle_get - Obtain a reference to a device node
910 * @fwnode: Pointer to the device node to obtain the reference to.
911 *
912 * The caller is responsible for calling fwnode_handle_put() on the returned
913 * fwnode pointer.
914 *
915 * Return: the fwnode handle.
916 */
917struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
918{
919 if (!fwnode_has_op(fwnode, get))
920 return fwnode;
921
922 return fwnode_call_ptr_op(fwnode, get);
923}
924EXPORT_SYMBOL_GPL(fwnode_handle_get);
925
926/**
927 * fwnode_handle_put - Drop reference to a device node
928 * @fwnode: Pointer to the device node to drop the reference to.
929 *
930 * This has to be used when terminating device_for_each_child_node() iteration
931 * with break or return to prevent stale device node references from being left
932 * behind.
933 */
934void fwnode_handle_put(struct fwnode_handle *fwnode)
935{
936 fwnode_call_void_op(fwnode, put);
937}
938EXPORT_SYMBOL_GPL(fwnode_handle_put);
939
940/**
941 * fwnode_device_is_available - check if a device is available for use
942 * @fwnode: Pointer to the fwnode of the device.
943 *
944 * Return: true if device is available for use. Otherwise, returns false.
945 *
946 * For fwnode node types that don't implement the .device_is_available()
947 * operation, this function returns true.
948 */
949bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
950{
951 if (IS_ERR_OR_NULL(fwnode))
952 return false;
953
954 if (!fwnode_has_op(fwnode, device_is_available))
955 return true;
956
957 return fwnode_call_bool_op(fwnode, device_is_available);
958}
959EXPORT_SYMBOL_GPL(fwnode_device_is_available);
960
961/**
962 * device_get_child_node_count - return the number of child nodes for device
963 * @dev: Device to cound the child nodes for
964 *
965 * Return: the number of child nodes for a given device.
966 */
967unsigned int device_get_child_node_count(const struct device *dev)
968{
969 struct fwnode_handle *child;
970 unsigned int count = 0;
971
972 device_for_each_child_node(dev, child)
973 count++;
974
975 return count;
976}
977EXPORT_SYMBOL_GPL(device_get_child_node_count);
978
979bool device_dma_supported(const struct device *dev)
980{
981 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
982}
983EXPORT_SYMBOL_GPL(device_dma_supported);
984
985enum dev_dma_attr device_get_dma_attr(const struct device *dev)
986{
987 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
988 return DEV_DMA_NOT_SUPPORTED;
989
990 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
991}
992EXPORT_SYMBOL_GPL(device_get_dma_attr);
993
994/**
995 * fwnode_get_phy_mode - Get phy mode for given firmware node
996 * @fwnode: Pointer to the given node
997 *
998 * The function gets phy interface string from property 'phy-mode' or
999 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1000 * error case.
1001 */
1002int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
1003{
1004 const char *pm;
1005 int err, i;
1006
1007 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1008 if (err < 0)
1009 err = fwnode_property_read_string(fwnode,
1010 "phy-connection-type", &pm);
1011 if (err < 0)
1012 return err;
1013
1014 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1015 if (!strcasecmp(pm, phy_modes(i)))
1016 return i;
1017
1018 return -ENODEV;
1019}
1020EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1021
1022/**
1023 * device_get_phy_mode - Get phy mode for given device
1024 * @dev: Pointer to the given device
1025 *
1026 * The function gets phy interface string from property 'phy-mode' or
1027 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1028 * error case.
1029 */
1030int device_get_phy_mode(struct device *dev)
1031{
1032 return fwnode_get_phy_mode(dev_fwnode(dev));
1033}
1034EXPORT_SYMBOL_GPL(device_get_phy_mode);
1035
1036/**
1037 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
1038 * @fwnode: Pointer to the firmware node
1039 * @index: Index of the IO range
1040 *
1041 * Return: a pointer to the mapped memory.
1042 */
1043void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
1044{
1045 return fwnode_call_ptr_op(fwnode, iomap, index);
1046}
1047EXPORT_SYMBOL(fwnode_iomap);
1048
1049/**
1050 * fwnode_irq_get - Get IRQ directly from a fwnode
1051 * @fwnode: Pointer to the firmware node
1052 * @index: Zero-based index of the IRQ
1053 *
1054 * Return: Linux IRQ number on success. Negative errno on failure.
1055 */
1056int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1057{
1058 int ret;
1059
1060 ret = fwnode_call_int_op(fwnode, irq_get, index);
1061 /* We treat mapping errors as invalid case */
1062 if (ret == 0)
1063 return -EINVAL;
1064
1065 return ret;
1066}
1067EXPORT_SYMBOL(fwnode_irq_get);
1068
1069/**
1070 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1071 * @fwnode: Pointer to the firmware node
1072 * @name: IRQ name
1073 *
1074 * Description:
1075 * Find a match to the string @name in the 'interrupt-names' string array
1076 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1077 * number of the IRQ resource corresponding to the index of the matched
1078 * string.
1079 *
1080 * Return: Linux IRQ number on success, or negative errno otherwise.
1081 */
1082int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1083{
1084 int index;
1085
1086 if (!name)
1087 return -EINVAL;
1088
1089 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
1090 if (index < 0)
1091 return index;
1092
1093 return fwnode_irq_get(fwnode, index);
1094}
1095EXPORT_SYMBOL(fwnode_irq_get_byname);
1096
1097/**
1098 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1099 * @fwnode: Pointer to the parent firmware node
1100 * @prev: Previous endpoint node or %NULL to get the first
1101 *
1102 * The caller is responsible for calling fwnode_handle_put() on the returned
1103 * fwnode pointer. Note that this function also puts a reference to @prev
1104 * unconditionally.
1105 *
1106 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1107 * are available.
1108 */
1109struct fwnode_handle *
1110fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1111 struct fwnode_handle *prev)
1112{
1113 struct fwnode_handle *ep, *port_parent = NULL;
1114 const struct fwnode_handle *parent;
1115
1116 /*
1117 * If this function is in a loop and the previous iteration returned
1118 * an endpoint from fwnode->secondary, then we need to use the secondary
1119 * as parent rather than @fwnode.
1120 */
1121 if (prev) {
1122 port_parent = fwnode_graph_get_port_parent(prev);
1123 parent = port_parent;
1124 } else {
1125 parent = fwnode;
1126 }
1127 if (IS_ERR_OR_NULL(parent))
1128 return NULL;
1129
1130 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1131 if (ep)
1132 goto out_put_port_parent;
1133
1134 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1135
1136out_put_port_parent:
1137 fwnode_handle_put(port_parent);
1138 return ep;
1139}
1140EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1141
1142/**
1143 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1144 * @endpoint: Endpoint firmware node of the port
1145 *
1146 * The caller is responsible for calling fwnode_handle_put() on the returned
1147 * fwnode pointer.
1148 *
1149 * Return: the firmware node of the device the @endpoint belongs to.
1150 */
1151struct fwnode_handle *
1152fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1153{
1154 struct fwnode_handle *port, *parent;
1155
1156 port = fwnode_get_parent(endpoint);
1157 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1158
1159 fwnode_handle_put(port);
1160
1161 return parent;
1162}
1163EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1164
1165/**
1166 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1167 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1168 *
1169 * Extracts firmware node of a remote device the @fwnode points to.
1170 *
1171 * The caller is responsible for calling fwnode_handle_put() on the returned
1172 * fwnode pointer.
1173 */
1174struct fwnode_handle *
1175fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1176{
1177 struct fwnode_handle *endpoint, *parent;
1178
1179 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1180 parent = fwnode_graph_get_port_parent(endpoint);
1181
1182 fwnode_handle_put(endpoint);
1183
1184 return parent;
1185}
1186EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1187
1188/**
1189 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1190 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1191 *
1192 * Extracts firmware node of a remote port the @fwnode points to.
1193 *
1194 * The caller is responsible for calling fwnode_handle_put() on the returned
1195 * fwnode pointer.
1196 */
1197struct fwnode_handle *
1198fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1199{
1200 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1201}
1202EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1203
1204/**
1205 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1206 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1207 *
1208 * Extracts firmware node of a remote endpoint the @fwnode points to.
1209 *
1210 * The caller is responsible for calling fwnode_handle_put() on the returned
1211 * fwnode pointer.
1212 */
1213struct fwnode_handle *
1214fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1215{
1216 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1217}
1218EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1219
1220static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1221{
1222 struct fwnode_handle *dev_node;
1223 bool available;
1224
1225 dev_node = fwnode_graph_get_remote_port_parent(ep);
1226 available = fwnode_device_is_available(dev_node);
1227 fwnode_handle_put(dev_node);
1228
1229 return available;
1230}
1231
1232/**
1233 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1234 * @fwnode: parent fwnode_handle containing the graph
1235 * @port: identifier of the port node
1236 * @endpoint: identifier of the endpoint node under the port node
1237 * @flags: fwnode lookup flags
1238 *
1239 * The caller is responsible for calling fwnode_handle_put() on the returned
1240 * fwnode pointer.
1241 *
1242 * Return: the fwnode handle of the local endpoint corresponding the port and
1243 * endpoint IDs or %NULL if not found.
1244 *
1245 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1246 * has not been found, look for the closest endpoint ID greater than the
1247 * specified one and return the endpoint that corresponds to it, if present.
1248 *
1249 * Does not return endpoints that belong to disabled devices or endpoints that
1250 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1251 */
1252struct fwnode_handle *
1253fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1254 u32 port, u32 endpoint, unsigned long flags)
1255{
1256 struct fwnode_handle *ep, *best_ep = NULL;
1257 unsigned int best_ep_id = 0;
1258 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1259 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1260
1261 fwnode_graph_for_each_endpoint(fwnode, ep) {
1262 struct fwnode_endpoint fwnode_ep = { 0 };
1263 int ret;
1264
1265 if (enabled_only && !fwnode_graph_remote_available(ep))
1266 continue;
1267
1268 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1269 if (ret < 0)
1270 continue;
1271
1272 if (fwnode_ep.port != port)
1273 continue;
1274
1275 if (fwnode_ep.id == endpoint)
1276 return ep;
1277
1278 if (!endpoint_next)
1279 continue;
1280
1281 /*
1282 * If the endpoint that has just been found is not the first
1283 * matching one and the ID of the one found previously is closer
1284 * to the requested endpoint ID, skip it.
1285 */
1286 if (fwnode_ep.id < endpoint ||
1287 (best_ep && best_ep_id < fwnode_ep.id))
1288 continue;
1289
1290 fwnode_handle_put(best_ep);
1291 best_ep = fwnode_handle_get(ep);
1292 best_ep_id = fwnode_ep.id;
1293 }
1294
1295 return best_ep;
1296}
1297EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1298
1299/**
1300 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1301 * @fwnode: The node related to a device
1302 * @flags: fwnode lookup flags
1303 * Count endpoints in a device node.
1304 *
1305 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1306 * and endpoints connected to disabled devices are counted.
1307 */
1308unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1309 unsigned long flags)
1310{
1311 struct fwnode_handle *ep;
1312 unsigned int count = 0;
1313
1314 fwnode_graph_for_each_endpoint(fwnode, ep) {
1315 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1316 fwnode_graph_remote_available(ep))
1317 count++;
1318 }
1319
1320 return count;
1321}
1322EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1323
1324/**
1325 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1326 * @fwnode: pointer to endpoint fwnode_handle
1327 * @endpoint: pointer to the fwnode endpoint data structure
1328 *
1329 * Parse @fwnode representing a graph endpoint node and store the
1330 * information in @endpoint. The caller must hold a reference to
1331 * @fwnode.
1332 */
1333int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1334 struct fwnode_endpoint *endpoint)
1335{
1336 memset(endpoint, 0, sizeof(*endpoint));
1337
1338 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1339}
1340EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1341
1342const void *device_get_match_data(const struct device *dev)
1343{
1344 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1345}
1346EXPORT_SYMBOL_GPL(device_get_match_data);
1347
1348static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1349 const char *con_id, void *data,
1350 devcon_match_fn_t match,
1351 void **matches,
1352 unsigned int matches_len)
1353{
1354 struct fwnode_handle *node;
1355 struct fwnode_handle *ep;
1356 unsigned int count = 0;
1357 void *ret;
1358
1359 fwnode_graph_for_each_endpoint(fwnode, ep) {
1360 if (matches && count >= matches_len) {
1361 fwnode_handle_put(ep);
1362 break;
1363 }
1364
1365 node = fwnode_graph_get_remote_port_parent(ep);
1366 if (!fwnode_device_is_available(node)) {
1367 fwnode_handle_put(node);
1368 continue;
1369 }
1370
1371 ret = match(node, con_id, data);
1372 fwnode_handle_put(node);
1373 if (ret) {
1374 if (matches)
1375 matches[count] = ret;
1376 count++;
1377 }
1378 }
1379 return count;
1380}
1381
1382static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1383 const char *con_id, void *data,
1384 devcon_match_fn_t match,
1385 void **matches,
1386 unsigned int matches_len)
1387{
1388 struct fwnode_handle *node;
1389 unsigned int count = 0;
1390 unsigned int i;
1391 void *ret;
1392
1393 for (i = 0; ; i++) {
1394 if (matches && count >= matches_len)
1395 break;
1396
1397 node = fwnode_find_reference(fwnode, con_id, i);
1398 if (IS_ERR(node))
1399 break;
1400
1401 ret = match(node, NULL, data);
1402 fwnode_handle_put(node);
1403 if (ret) {
1404 if (matches)
1405 matches[count] = ret;
1406 count++;
1407 }
1408 }
1409
1410 return count;
1411}
1412
1413/**
1414 * fwnode_connection_find_match - Find connection from a device node
1415 * @fwnode: Device node with the connection
1416 * @con_id: Identifier for the connection
1417 * @data: Data for the match function
1418 * @match: Function to check and convert the connection description
1419 *
1420 * Find a connection with unique identifier @con_id between @fwnode and another
1421 * device node. @match will be used to convert the connection description to
1422 * data the caller is expecting to be returned.
1423 */
1424void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1425 const char *con_id, void *data,
1426 devcon_match_fn_t match)
1427{
1428 unsigned int count;
1429 void *ret;
1430
1431 if (!fwnode || !match)
1432 return NULL;
1433
1434 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1435 if (count)
1436 return ret;
1437
1438 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1439 return count ? ret : NULL;
1440}
1441EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1442
1443/**
1444 * fwnode_connection_find_matches - Find connections from a device node
1445 * @fwnode: Device node with the connection
1446 * @con_id: Identifier for the connection
1447 * @data: Data for the match function
1448 * @match: Function to check and convert the connection description
1449 * @matches: (Optional) array of pointers to fill with matches
1450 * @matches_len: Length of @matches
1451 *
1452 * Find up to @matches_len connections with unique identifier @con_id between
1453 * @fwnode and other device nodes. @match will be used to convert the
1454 * connection description to data the caller is expecting to be returned
1455 * through the @matches array.
1456 *
1457 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1458 * matches is returned.
1459 *
1460 * Return: Number of matches resolved, or negative errno.
1461 */
1462int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1463 const char *con_id, void *data,
1464 devcon_match_fn_t match,
1465 void **matches, unsigned int matches_len)
1466{
1467 unsigned int count_graph;
1468 unsigned int count_ref;
1469
1470 if (!fwnode || !match)
1471 return -EINVAL;
1472
1473 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1474 matches, matches_len);
1475
1476 if (matches) {
1477 matches += count_graph;
1478 matches_len -= count_graph;
1479 }
1480
1481 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1482 matches, matches_len);
1483
1484 return count_graph + count_ref;
1485}
1486EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
1/*
2 * property.c - Unified device property interface.
3 *
4 * Copyright (C) 2014, Intel Corporation
5 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6 * Mika Westerberg <mika.westerberg@linux.intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/acpi.h>
14#include <linux/export.h>
15#include <linux/kernel.h>
16#include <linux/of.h>
17#include <linux/of_address.h>
18#include <linux/property.h>
19#include <linux/etherdevice.h>
20#include <linux/phy.h>
21
22static inline bool is_pset_node(struct fwnode_handle *fwnode)
23{
24 return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
25}
26
27static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
28{
29 return is_pset_node(fwnode) ?
30 container_of(fwnode, struct property_set, fwnode) : NULL;
31}
32
33static struct property_entry *pset_prop_get(struct property_set *pset,
34 const char *name)
35{
36 struct property_entry *prop;
37
38 if (!pset || !pset->properties)
39 return NULL;
40
41 for (prop = pset->properties; prop->name; prop++)
42 if (!strcmp(name, prop->name))
43 return prop;
44
45 return NULL;
46}
47
48static void *pset_prop_find(struct property_set *pset, const char *propname,
49 size_t length)
50{
51 struct property_entry *prop;
52 void *pointer;
53
54 prop = pset_prop_get(pset, propname);
55 if (!prop)
56 return ERR_PTR(-EINVAL);
57 if (prop->is_array)
58 pointer = prop->pointer.raw_data;
59 else
60 pointer = &prop->value.raw_data;
61 if (!pointer)
62 return ERR_PTR(-ENODATA);
63 if (length > prop->length)
64 return ERR_PTR(-EOVERFLOW);
65 return pointer;
66}
67
68static int pset_prop_read_u8_array(struct property_set *pset,
69 const char *propname,
70 u8 *values, size_t nval)
71{
72 void *pointer;
73 size_t length = nval * sizeof(*values);
74
75 pointer = pset_prop_find(pset, propname, length);
76 if (IS_ERR(pointer))
77 return PTR_ERR(pointer);
78
79 memcpy(values, pointer, length);
80 return 0;
81}
82
83static int pset_prop_read_u16_array(struct property_set *pset,
84 const char *propname,
85 u16 *values, size_t nval)
86{
87 void *pointer;
88 size_t length = nval * sizeof(*values);
89
90 pointer = pset_prop_find(pset, propname, length);
91 if (IS_ERR(pointer))
92 return PTR_ERR(pointer);
93
94 memcpy(values, pointer, length);
95 return 0;
96}
97
98static int pset_prop_read_u32_array(struct property_set *pset,
99 const char *propname,
100 u32 *values, size_t nval)
101{
102 void *pointer;
103 size_t length = nval * sizeof(*values);
104
105 pointer = pset_prop_find(pset, propname, length);
106 if (IS_ERR(pointer))
107 return PTR_ERR(pointer);
108
109 memcpy(values, pointer, length);
110 return 0;
111}
112
113static int pset_prop_read_u64_array(struct property_set *pset,
114 const char *propname,
115 u64 *values, size_t nval)
116{
117 void *pointer;
118 size_t length = nval * sizeof(*values);
119
120 pointer = pset_prop_find(pset, propname, length);
121 if (IS_ERR(pointer))
122 return PTR_ERR(pointer);
123
124 memcpy(values, pointer, length);
125 return 0;
126}
127
128static int pset_prop_count_elems_of_size(struct property_set *pset,
129 const char *propname, size_t length)
130{
131 struct property_entry *prop;
132
133 prop = pset_prop_get(pset, propname);
134 if (!prop)
135 return -EINVAL;
136
137 return prop->length / length;
138}
139
140static int pset_prop_read_string_array(struct property_set *pset,
141 const char *propname,
142 const char **strings, size_t nval)
143{
144 void *pointer;
145 size_t length = nval * sizeof(*strings);
146
147 pointer = pset_prop_find(pset, propname, length);
148 if (IS_ERR(pointer))
149 return PTR_ERR(pointer);
150
151 memcpy(strings, pointer, length);
152 return 0;
153}
154
155static int pset_prop_read_string(struct property_set *pset,
156 const char *propname, const char **strings)
157{
158 struct property_entry *prop;
159 const char **pointer;
160
161 prop = pset_prop_get(pset, propname);
162 if (!prop)
163 return -EINVAL;
164 if (!prop->is_string)
165 return -EILSEQ;
166 if (prop->is_array) {
167 pointer = prop->pointer.str;
168 if (!pointer)
169 return -ENODATA;
170 } else {
171 pointer = &prop->value.str;
172 if (*pointer && strnlen(*pointer, prop->length) >= prop->length)
173 return -EILSEQ;
174 }
175
176 *strings = *pointer;
177 return 0;
178}
179
180static inline struct fwnode_handle *dev_fwnode(struct device *dev)
181{
182 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
183 &dev->of_node->fwnode : dev->fwnode;
184}
185
186/**
187 * device_property_present - check if a property of a device is present
188 * @dev: Device whose property is being checked
189 * @propname: Name of the property
190 *
191 * Check if property @propname is present in the device firmware description.
192 */
193bool device_property_present(struct device *dev, const char *propname)
194{
195 return fwnode_property_present(dev_fwnode(dev), propname);
196}
197EXPORT_SYMBOL_GPL(device_property_present);
198
199static bool __fwnode_property_present(struct fwnode_handle *fwnode,
200 const char *propname)
201{
202 if (is_of_node(fwnode))
203 return of_property_read_bool(to_of_node(fwnode), propname);
204 else if (is_acpi_node(fwnode))
205 return !acpi_node_prop_get(fwnode, propname, NULL);
206 else if (is_pset_node(fwnode))
207 return !!pset_prop_get(to_pset_node(fwnode), propname);
208 return false;
209}
210
211/**
212 * fwnode_property_present - check if a property of a firmware node is present
213 * @fwnode: Firmware node whose property to check
214 * @propname: Name of the property
215 */
216bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
217{
218 bool ret;
219
220 ret = __fwnode_property_present(fwnode, propname);
221 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
222 !IS_ERR_OR_NULL(fwnode->secondary))
223 ret = __fwnode_property_present(fwnode->secondary, propname);
224 return ret;
225}
226EXPORT_SYMBOL_GPL(fwnode_property_present);
227
228/**
229 * device_property_read_u8_array - return a u8 array property of a device
230 * @dev: Device to get the property of
231 * @propname: Name of the property
232 * @val: The values are stored here or %NULL to return the number of values
233 * @nval: Size of the @val array
234 *
235 * Function reads an array of u8 properties with @propname from the device
236 * firmware description and stores them to @val if found.
237 *
238 * Return: number of values if @val was %NULL,
239 * %0 if the property was found (success),
240 * %-EINVAL if given arguments are not valid,
241 * %-ENODATA if the property does not have a value,
242 * %-EPROTO if the property is not an array of numbers,
243 * %-EOVERFLOW if the size of the property is not as expected.
244 * %-ENXIO if no suitable firmware interface is present.
245 */
246int device_property_read_u8_array(struct device *dev, const char *propname,
247 u8 *val, size_t nval)
248{
249 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
250}
251EXPORT_SYMBOL_GPL(device_property_read_u8_array);
252
253/**
254 * device_property_read_u16_array - return a u16 array property of a device
255 * @dev: Device to get the property of
256 * @propname: Name of the property
257 * @val: The values are stored here or %NULL to return the number of values
258 * @nval: Size of the @val array
259 *
260 * Function reads an array of u16 properties with @propname from the device
261 * firmware description and stores them to @val if found.
262 *
263 * Return: number of values if @val was %NULL,
264 * %0 if the property was found (success),
265 * %-EINVAL if given arguments are not valid,
266 * %-ENODATA if the property does not have a value,
267 * %-EPROTO if the property is not an array of numbers,
268 * %-EOVERFLOW if the size of the property is not as expected.
269 * %-ENXIO if no suitable firmware interface is present.
270 */
271int device_property_read_u16_array(struct device *dev, const char *propname,
272 u16 *val, size_t nval)
273{
274 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
275}
276EXPORT_SYMBOL_GPL(device_property_read_u16_array);
277
278/**
279 * device_property_read_u32_array - return a u32 array property of a device
280 * @dev: Device to get the property of
281 * @propname: Name of the property
282 * @val: The values are stored here or %NULL to return the number of values
283 * @nval: Size of the @val array
284 *
285 * Function reads an array of u32 properties with @propname from the device
286 * firmware description and stores them to @val if found.
287 *
288 * Return: number of values if @val was %NULL,
289 * %0 if the property was found (success),
290 * %-EINVAL if given arguments are not valid,
291 * %-ENODATA if the property does not have a value,
292 * %-EPROTO if the property is not an array of numbers,
293 * %-EOVERFLOW if the size of the property is not as expected.
294 * %-ENXIO if no suitable firmware interface is present.
295 */
296int device_property_read_u32_array(struct device *dev, const char *propname,
297 u32 *val, size_t nval)
298{
299 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
300}
301EXPORT_SYMBOL_GPL(device_property_read_u32_array);
302
303/**
304 * device_property_read_u64_array - return a u64 array property of a device
305 * @dev: Device to get the property of
306 * @propname: Name of the property
307 * @val: The values are stored here or %NULL to return the number of values
308 * @nval: Size of the @val array
309 *
310 * Function reads an array of u64 properties with @propname from the device
311 * firmware description and stores them to @val if found.
312 *
313 * Return: number of values if @val was %NULL,
314 * %0 if the property was found (success),
315 * %-EINVAL if given arguments are not valid,
316 * %-ENODATA if the property does not have a value,
317 * %-EPROTO if the property is not an array of numbers,
318 * %-EOVERFLOW if the size of the property is not as expected.
319 * %-ENXIO if no suitable firmware interface is present.
320 */
321int device_property_read_u64_array(struct device *dev, const char *propname,
322 u64 *val, size_t nval)
323{
324 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
325}
326EXPORT_SYMBOL_GPL(device_property_read_u64_array);
327
328/**
329 * device_property_read_string_array - return a string array property of device
330 * @dev: Device to get the property of
331 * @propname: Name of the property
332 * @val: The values are stored here or %NULL to return the number of values
333 * @nval: Size of the @val array
334 *
335 * Function reads an array of string properties with @propname from the device
336 * firmware description and stores them to @val if found.
337 *
338 * Return: number of values if @val was %NULL,
339 * %0 if the property was found (success),
340 * %-EINVAL if given arguments are not valid,
341 * %-ENODATA if the property does not have a value,
342 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
343 * %-EOVERFLOW if the size of the property is not as expected.
344 * %-ENXIO if no suitable firmware interface is present.
345 */
346int device_property_read_string_array(struct device *dev, const char *propname,
347 const char **val, size_t nval)
348{
349 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
350}
351EXPORT_SYMBOL_GPL(device_property_read_string_array);
352
353/**
354 * device_property_read_string - return a string property of a device
355 * @dev: Device to get the property of
356 * @propname: Name of the property
357 * @val: The value is stored here
358 *
359 * Function reads property @propname from the device firmware description and
360 * stores the value into @val if found. The value is checked to be a string.
361 *
362 * Return: %0 if the property was found (success),
363 * %-EINVAL if given arguments are not valid,
364 * %-ENODATA if the property does not have a value,
365 * %-EPROTO or %-EILSEQ if the property type is not a string.
366 * %-ENXIO if no suitable firmware interface is present.
367 */
368int device_property_read_string(struct device *dev, const char *propname,
369 const char **val)
370{
371 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
372}
373EXPORT_SYMBOL_GPL(device_property_read_string);
374
375/**
376 * device_property_match_string - find a string in an array and return index
377 * @dev: Device to get the property of
378 * @propname: Name of the property holding the array
379 * @string: String to look for
380 *
381 * Find a given string in a string array and if it is found return the
382 * index back.
383 *
384 * Return: %0 if the property was found (success),
385 * %-EINVAL if given arguments are not valid,
386 * %-ENODATA if the property does not have a value,
387 * %-EPROTO if the property is not an array of strings,
388 * %-ENXIO if no suitable firmware interface is present.
389 */
390int device_property_match_string(struct device *dev, const char *propname,
391 const char *string)
392{
393 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
394}
395EXPORT_SYMBOL_GPL(device_property_match_string);
396
397#define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval) \
398 (val) ? of_property_read_##type##_array((node), (propname), (val), (nval)) \
399 : of_property_count_elems_of_size((node), (propname), sizeof(type))
400
401#define PSET_PROP_READ_ARRAY(node, propname, type, val, nval) \
402 (val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval)) \
403 : pset_prop_count_elems_of_size((node), (propname), sizeof(type))
404
405#define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_) \
406({ \
407 int _ret_; \
408 if (is_of_node(_fwnode_)) \
409 _ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_, \
410 _type_, _val_, _nval_); \
411 else if (is_acpi_node(_fwnode_)) \
412 _ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_, \
413 _val_, _nval_); \
414 else if (is_pset_node(_fwnode_)) \
415 _ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_, \
416 _type_, _val_, _nval_); \
417 else \
418 _ret_ = -ENXIO; \
419 _ret_; \
420})
421
422#define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_) \
423({ \
424 int _ret_; \
425 _ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, \
426 _val_, _nval_); \
427 if (_ret_ == -EINVAL && !IS_ERR_OR_NULL(_fwnode_) && \
428 !IS_ERR_OR_NULL(_fwnode_->secondary)) \
429 _ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_, \
430 _proptype_, _val_, _nval_); \
431 _ret_; \
432})
433
434/**
435 * fwnode_property_read_u8_array - return a u8 array property of firmware node
436 * @fwnode: Firmware node to get the property of
437 * @propname: Name of the property
438 * @val: The values are stored here or %NULL to return the number of values
439 * @nval: Size of the @val array
440 *
441 * Read an array of u8 properties with @propname from @fwnode and stores them to
442 * @val if found.
443 *
444 * Return: number of values if @val was %NULL,
445 * %0 if the property was found (success),
446 * %-EINVAL if given arguments are not valid,
447 * %-ENODATA if the property does not have a value,
448 * %-EPROTO if the property is not an array of numbers,
449 * %-EOVERFLOW if the size of the property is not as expected,
450 * %-ENXIO if no suitable firmware interface is present.
451 */
452int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
453 const char *propname, u8 *val, size_t nval)
454{
455 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
456 val, nval);
457}
458EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
459
460/**
461 * fwnode_property_read_u16_array - return a u16 array property of firmware node
462 * @fwnode: Firmware node to get the property of
463 * @propname: Name of the property
464 * @val: The values are stored here or %NULL to return the number of values
465 * @nval: Size of the @val array
466 *
467 * Read an array of u16 properties with @propname from @fwnode and store them to
468 * @val if found.
469 *
470 * Return: number of values if @val was %NULL,
471 * %0 if the property was found (success),
472 * %-EINVAL if given arguments are not valid,
473 * %-ENODATA if the property does not have a value,
474 * %-EPROTO if the property is not an array of numbers,
475 * %-EOVERFLOW if the size of the property is not as expected,
476 * %-ENXIO if no suitable firmware interface is present.
477 */
478int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
479 const char *propname, u16 *val, size_t nval)
480{
481 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
482 val, nval);
483}
484EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
485
486/**
487 * fwnode_property_read_u32_array - return a u32 array property of firmware node
488 * @fwnode: Firmware node to get the property of
489 * @propname: Name of the property
490 * @val: The values are stored here or %NULL to return the number of values
491 * @nval: Size of the @val array
492 *
493 * Read an array of u32 properties with @propname from @fwnode store them to
494 * @val if found.
495 *
496 * Return: number of values if @val was %NULL,
497 * %0 if the property was found (success),
498 * %-EINVAL if given arguments are not valid,
499 * %-ENODATA if the property does not have a value,
500 * %-EPROTO if the property is not an array of numbers,
501 * %-EOVERFLOW if the size of the property is not as expected,
502 * %-ENXIO if no suitable firmware interface is present.
503 */
504int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
505 const char *propname, u32 *val, size_t nval)
506{
507 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
508 val, nval);
509}
510EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
511
512/**
513 * fwnode_property_read_u64_array - return a u64 array property firmware node
514 * @fwnode: Firmware node to get the property of
515 * @propname: Name of the property
516 * @val: The values are stored here or %NULL to return the number of values
517 * @nval: Size of the @val array
518 *
519 * Read an array of u64 properties with @propname from @fwnode and store them to
520 * @val if found.
521 *
522 * Return: number of values if @val was %NULL,
523 * %0 if the property was found (success),
524 * %-EINVAL if given arguments are not valid,
525 * %-ENODATA if the property does not have a value,
526 * %-EPROTO if the property is not an array of numbers,
527 * %-EOVERFLOW if the size of the property is not as expected,
528 * %-ENXIO if no suitable firmware interface is present.
529 */
530int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
531 const char *propname, u64 *val, size_t nval)
532{
533 return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
534 val, nval);
535}
536EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
537
538static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
539 const char *propname,
540 const char **val, size_t nval)
541{
542 if (is_of_node(fwnode))
543 return val ?
544 of_property_read_string_array(to_of_node(fwnode),
545 propname, val, nval) :
546 of_property_count_strings(to_of_node(fwnode), propname);
547 else if (is_acpi_node(fwnode))
548 return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
549 val, nval);
550 else if (is_pset_node(fwnode))
551 return val ?
552 pset_prop_read_string_array(to_pset_node(fwnode),
553 propname, val, nval) :
554 pset_prop_count_elems_of_size(to_pset_node(fwnode),
555 propname,
556 sizeof(const char *));
557 return -ENXIO;
558}
559
560static int __fwnode_property_read_string(struct fwnode_handle *fwnode,
561 const char *propname, const char **val)
562{
563 if (is_of_node(fwnode))
564 return of_property_read_string(to_of_node(fwnode), propname, val);
565 else if (is_acpi_node(fwnode))
566 return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
567 val, 1);
568 else if (is_pset_node(fwnode))
569 return pset_prop_read_string(to_pset_node(fwnode), propname, val);
570 return -ENXIO;
571}
572
573/**
574 * fwnode_property_read_string_array - return string array property of a node
575 * @fwnode: Firmware node to get the property of
576 * @propname: Name of the property
577 * @val: The values are stored here or %NULL to return the number of values
578 * @nval: Size of the @val array
579 *
580 * Read an string list property @propname from the given firmware node and store
581 * them to @val if found.
582 *
583 * Return: number of values if @val was %NULL,
584 * %0 if the property was found (success),
585 * %-EINVAL if given arguments are not valid,
586 * %-ENODATA if the property does not have a value,
587 * %-EPROTO if the property is not an array of strings,
588 * %-EOVERFLOW if the size of the property is not as expected,
589 * %-ENXIO if no suitable firmware interface is present.
590 */
591int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
592 const char *propname, const char **val,
593 size_t nval)
594{
595 int ret;
596
597 ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
598 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
599 !IS_ERR_OR_NULL(fwnode->secondary))
600 ret = __fwnode_property_read_string_array(fwnode->secondary,
601 propname, val, nval);
602 return ret;
603}
604EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
605
606/**
607 * fwnode_property_read_string - return a string property of a firmware node
608 * @fwnode: Firmware node to get the property of
609 * @propname: Name of the property
610 * @val: The value is stored here
611 *
612 * Read property @propname from the given firmware node and store the value into
613 * @val if found. The value is checked to be a string.
614 *
615 * Return: %0 if the property was found (success),
616 * %-EINVAL if given arguments are not valid,
617 * %-ENODATA if the property does not have a value,
618 * %-EPROTO or %-EILSEQ if the property is not a string,
619 * %-ENXIO if no suitable firmware interface is present.
620 */
621int fwnode_property_read_string(struct fwnode_handle *fwnode,
622 const char *propname, const char **val)
623{
624 int ret;
625
626 ret = __fwnode_property_read_string(fwnode, propname, val);
627 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
628 !IS_ERR_OR_NULL(fwnode->secondary))
629 ret = __fwnode_property_read_string(fwnode->secondary,
630 propname, val);
631 return ret;
632}
633EXPORT_SYMBOL_GPL(fwnode_property_read_string);
634
635/**
636 * fwnode_property_match_string - find a string in an array and return index
637 * @fwnode: Firmware node to get the property of
638 * @propname: Name of the property holding the array
639 * @string: String to look for
640 *
641 * Find a given string in a string array and if it is found return the
642 * index back.
643 *
644 * Return: %0 if the property was found (success),
645 * %-EINVAL if given arguments are not valid,
646 * %-ENODATA if the property does not have a value,
647 * %-EPROTO if the property is not an array of strings,
648 * %-ENXIO if no suitable firmware interface is present.
649 */
650int fwnode_property_match_string(struct fwnode_handle *fwnode,
651 const char *propname, const char *string)
652{
653 const char **values;
654 int nval, ret;
655
656 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
657 if (nval < 0)
658 return nval;
659
660 if (nval == 0)
661 return -ENODATA;
662
663 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
664 if (!values)
665 return -ENOMEM;
666
667 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
668 if (ret < 0)
669 goto out;
670
671 ret = match_string(values, nval, string);
672 if (ret < 0)
673 ret = -ENODATA;
674out:
675 kfree(values);
676 return ret;
677}
678EXPORT_SYMBOL_GPL(fwnode_property_match_string);
679
680/**
681 * pset_free_set - releases memory allocated for copied property set
682 * @pset: Property set to release
683 *
684 * Function takes previously copied property set and releases all the
685 * memory allocated to it.
686 */
687static void pset_free_set(struct property_set *pset)
688{
689 const struct property_entry *prop;
690 size_t i, nval;
691
692 if (!pset)
693 return;
694
695 for (prop = pset->properties; prop->name; prop++) {
696 if (prop->is_array) {
697 if (prop->is_string && prop->pointer.str) {
698 nval = prop->length / sizeof(const char *);
699 for (i = 0; i < nval; i++)
700 kfree(prop->pointer.str[i]);
701 }
702 kfree(prop->pointer.raw_data);
703 } else if (prop->is_string) {
704 kfree(prop->value.str);
705 }
706 kfree(prop->name);
707 }
708
709 kfree(pset->properties);
710 kfree(pset);
711}
712
713static int pset_copy_entry(struct property_entry *dst,
714 const struct property_entry *src)
715{
716 const char **d, **s;
717 size_t i, nval;
718
719 dst->name = kstrdup(src->name, GFP_KERNEL);
720 if (!dst->name)
721 return -ENOMEM;
722
723 if (src->is_array) {
724 if (!src->length)
725 return -ENODATA;
726
727 if (src->is_string) {
728 nval = src->length / sizeof(const char *);
729 dst->pointer.str = kcalloc(nval, sizeof(const char *),
730 GFP_KERNEL);
731 if (!dst->pointer.str)
732 return -ENOMEM;
733
734 d = dst->pointer.str;
735 s = src->pointer.str;
736 for (i = 0; i < nval; i++) {
737 d[i] = kstrdup(s[i], GFP_KERNEL);
738 if (!d[i] && s[i])
739 return -ENOMEM;
740 }
741 } else {
742 dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
743 src->length, GFP_KERNEL);
744 if (!dst->pointer.raw_data)
745 return -ENOMEM;
746 }
747 } else if (src->is_string) {
748 dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
749 if (!dst->value.str && src->value.str)
750 return -ENOMEM;
751 } else {
752 dst->value.raw_data = src->value.raw_data;
753 }
754
755 dst->length = src->length;
756 dst->is_array = src->is_array;
757 dst->is_string = src->is_string;
758
759 return 0;
760}
761
762/**
763 * pset_copy_set - copies property set
764 * @pset: Property set to copy
765 *
766 * This function takes a deep copy of the given property set and returns
767 * pointer to the copy. Call device_free_property_set() to free resources
768 * allocated in this function.
769 *
770 * Return: Pointer to the new property set or error pointer.
771 */
772static struct property_set *pset_copy_set(const struct property_set *pset)
773{
774 const struct property_entry *entry;
775 struct property_set *p;
776 size_t i, n = 0;
777
778 p = kzalloc(sizeof(*p), GFP_KERNEL);
779 if (!p)
780 return ERR_PTR(-ENOMEM);
781
782 while (pset->properties[n].name)
783 n++;
784
785 p->properties = kcalloc(n + 1, sizeof(*entry), GFP_KERNEL);
786 if (!p->properties) {
787 kfree(p);
788 return ERR_PTR(-ENOMEM);
789 }
790
791 for (i = 0; i < n; i++) {
792 int ret = pset_copy_entry(&p->properties[i],
793 &pset->properties[i]);
794 if (ret) {
795 pset_free_set(p);
796 return ERR_PTR(ret);
797 }
798 }
799
800 return p;
801}
802
803/**
804 * device_remove_property_set - Remove properties from a device object.
805 * @dev: Device whose properties to remove.
806 *
807 * The function removes properties previously associated to the device
808 * secondary firmware node with device_add_property_set(). Memory allocated
809 * to the properties will also be released.
810 */
811void device_remove_property_set(struct device *dev)
812{
813 struct fwnode_handle *fwnode;
814
815 fwnode = dev_fwnode(dev);
816 if (!fwnode)
817 return;
818 /*
819 * Pick either primary or secondary node depending which one holds
820 * the pset. If there is no real firmware node (ACPI/DT) primary
821 * will hold the pset.
822 */
823 if (is_pset_node(fwnode)) {
824 set_primary_fwnode(dev, NULL);
825 pset_free_set(to_pset_node(fwnode));
826 } else {
827 fwnode = fwnode->secondary;
828 if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
829 set_secondary_fwnode(dev, NULL);
830 pset_free_set(to_pset_node(fwnode));
831 }
832 }
833}
834EXPORT_SYMBOL_GPL(device_remove_property_set);
835
836/**
837 * device_add_property_set - Add a collection of properties to a device object.
838 * @dev: Device to add properties to.
839 * @pset: Collection of properties to add.
840 *
841 * Associate a collection of device properties represented by @pset with @dev
842 * as its secondary firmware node. The function takes a copy of @pset.
843 */
844int device_add_property_set(struct device *dev, const struct property_set *pset)
845{
846 struct property_set *p;
847
848 if (!pset)
849 return -EINVAL;
850
851 p = pset_copy_set(pset);
852 if (IS_ERR(p))
853 return PTR_ERR(p);
854
855 p->fwnode.type = FWNODE_PDATA;
856 set_secondary_fwnode(dev, &p->fwnode);
857 return 0;
858}
859EXPORT_SYMBOL_GPL(device_add_property_set);
860
861/**
862 * device_get_next_child_node - Return the next child node handle for a device
863 * @dev: Device to find the next child node for.
864 * @child: Handle to one of the device's child nodes or a null handle.
865 */
866struct fwnode_handle *device_get_next_child_node(struct device *dev,
867 struct fwnode_handle *child)
868{
869 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
870 struct device_node *node;
871
872 node = of_get_next_available_child(dev->of_node, to_of_node(child));
873 if (node)
874 return &node->fwnode;
875 } else if (IS_ENABLED(CONFIG_ACPI)) {
876 return acpi_get_next_subnode(dev, child);
877 }
878 return NULL;
879}
880EXPORT_SYMBOL_GPL(device_get_next_child_node);
881
882/**
883 * fwnode_handle_put - Drop reference to a device node
884 * @fwnode: Pointer to the device node to drop the reference to.
885 *
886 * This has to be used when terminating device_for_each_child_node() iteration
887 * with break or return to prevent stale device node references from being left
888 * behind.
889 */
890void fwnode_handle_put(struct fwnode_handle *fwnode)
891{
892 if (is_of_node(fwnode))
893 of_node_put(to_of_node(fwnode));
894}
895EXPORT_SYMBOL_GPL(fwnode_handle_put);
896
897/**
898 * device_get_child_node_count - return the number of child nodes for device
899 * @dev: Device to cound the child nodes for
900 */
901unsigned int device_get_child_node_count(struct device *dev)
902{
903 struct fwnode_handle *child;
904 unsigned int count = 0;
905
906 device_for_each_child_node(dev, child)
907 count++;
908
909 return count;
910}
911EXPORT_SYMBOL_GPL(device_get_child_node_count);
912
913bool device_dma_supported(struct device *dev)
914{
915 /* For DT, this is always supported.
916 * For ACPI, this depends on CCA, which
917 * is determined by the acpi_dma_supported().
918 */
919 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
920 return true;
921
922 return acpi_dma_supported(ACPI_COMPANION(dev));
923}
924EXPORT_SYMBOL_GPL(device_dma_supported);
925
926enum dev_dma_attr device_get_dma_attr(struct device *dev)
927{
928 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
929
930 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
931 if (of_dma_is_coherent(dev->of_node))
932 attr = DEV_DMA_COHERENT;
933 else
934 attr = DEV_DMA_NON_COHERENT;
935 } else
936 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
937
938 return attr;
939}
940EXPORT_SYMBOL_GPL(device_get_dma_attr);
941
942/**
943 * device_get_phy_mode - Get phy mode for given device
944 * @dev: Pointer to the given device
945 *
946 * The function gets phy interface string from property 'phy-mode' or
947 * 'phy-connection-type', and return its index in phy_modes table, or errno in
948 * error case.
949 */
950int device_get_phy_mode(struct device *dev)
951{
952 const char *pm;
953 int err, i;
954
955 err = device_property_read_string(dev, "phy-mode", &pm);
956 if (err < 0)
957 err = device_property_read_string(dev,
958 "phy-connection-type", &pm);
959 if (err < 0)
960 return err;
961
962 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
963 if (!strcasecmp(pm, phy_modes(i)))
964 return i;
965
966 return -ENODEV;
967}
968EXPORT_SYMBOL_GPL(device_get_phy_mode);
969
970static void *device_get_mac_addr(struct device *dev,
971 const char *name, char *addr,
972 int alen)
973{
974 int ret = device_property_read_u8_array(dev, name, addr, alen);
975
976 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
977 return addr;
978 return NULL;
979}
980
981/**
982 * device_get_mac_address - Get the MAC for a given device
983 * @dev: Pointer to the device
984 * @addr: Address of buffer to store the MAC in
985 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
986 *
987 * Search the firmware node for the best MAC address to use. 'mac-address' is
988 * checked first, because that is supposed to contain to "most recent" MAC
989 * address. If that isn't set, then 'local-mac-address' is checked next,
990 * because that is the default address. If that isn't set, then the obsolete
991 * 'address' is checked, just in case we're using an old device tree.
992 *
993 * Note that the 'address' property is supposed to contain a virtual address of
994 * the register set, but some DTS files have redefined that property to be the
995 * MAC address.
996 *
997 * All-zero MAC addresses are rejected, because those could be properties that
998 * exist in the firmware tables, but were not updated by the firmware. For
999 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1000 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
1001 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1002 * exists but is all zeros.
1003*/
1004void *device_get_mac_address(struct device *dev, char *addr, int alen)
1005{
1006 char *res;
1007
1008 res = device_get_mac_addr(dev, "mac-address", addr, alen);
1009 if (res)
1010 return res;
1011
1012 res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1013 if (res)
1014 return res;
1015
1016 return device_get_mac_addr(dev, "address", addr, alen);
1017}
1018EXPORT_SYMBOL(device_get_mac_address);