Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/phy.h>
19
20struct fwnode_handle *__dev_fwnode(struct device *dev)
21{
22 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 of_fwnode_handle(dev->of_node) : dev->fwnode;
24}
25EXPORT_SYMBOL_GPL(__dev_fwnode);
26
27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28{
29 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 of_fwnode_handle(dev->of_node) : dev->fwnode;
31}
32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33
34/**
35 * device_property_present - check if a property of a device is present
36 * @dev: Device whose property is being checked
37 * @propname: Name of the property
38 *
39 * Check if property @propname is present in the device firmware description.
40 *
41 * Return: true if property @propname is present. Otherwise, returns false.
42 */
43bool device_property_present(const struct device *dev, const char *propname)
44{
45 return fwnode_property_present(dev_fwnode(dev), propname);
46}
47EXPORT_SYMBOL_GPL(device_property_present);
48
49/**
50 * fwnode_property_present - check if a property of a firmware node is present
51 * @fwnode: Firmware node whose property to check
52 * @propname: Name of the property
53 *
54 * Return: true if property @propname is present. Otherwise, returns false.
55 */
56bool fwnode_property_present(const struct fwnode_handle *fwnode,
57 const char *propname)
58{
59 bool ret;
60
61 if (IS_ERR_OR_NULL(fwnode))
62 return false;
63
64 ret = fwnode_call_bool_op(fwnode, property_present, propname);
65 if (ret)
66 return ret;
67
68 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
69}
70EXPORT_SYMBOL_GPL(fwnode_property_present);
71
72/**
73 * device_property_read_u8_array - return a u8 array property of a device
74 * @dev: Device to get the property of
75 * @propname: Name of the property
76 * @val: The values are stored here or %NULL to return the number of values
77 * @nval: Size of the @val array
78 *
79 * Function reads an array of u8 properties with @propname from the device
80 * firmware description and stores them to @val if found.
81 *
82 * It's recommended to call device_property_count_u8() instead of calling
83 * this function with @val equals %NULL and @nval equals 0.
84 *
85 * Return: number of values if @val was %NULL,
86 * %0 if the property was found (success),
87 * %-EINVAL if given arguments are not valid,
88 * %-ENODATA if the property does not have a value,
89 * %-EPROTO if the property is not an array of numbers,
90 * %-EOVERFLOW if the size of the property is not as expected.
91 * %-ENXIO if no suitable firmware interface is present.
92 */
93int device_property_read_u8_array(const struct device *dev, const char *propname,
94 u8 *val, size_t nval)
95{
96 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
97}
98EXPORT_SYMBOL_GPL(device_property_read_u8_array);
99
100/**
101 * device_property_read_u16_array - return a u16 array property of a device
102 * @dev: Device to get the property of
103 * @propname: Name of the property
104 * @val: The values are stored here or %NULL to return the number of values
105 * @nval: Size of the @val array
106 *
107 * Function reads an array of u16 properties with @propname from the device
108 * firmware description and stores them to @val if found.
109 *
110 * It's recommended to call device_property_count_u16() instead of calling
111 * this function with @val equals %NULL and @nval equals 0.
112 *
113 * Return: number of values if @val was %NULL,
114 * %0 if the property was found (success),
115 * %-EINVAL if given arguments are not valid,
116 * %-ENODATA if the property does not have a value,
117 * %-EPROTO if the property is not an array of numbers,
118 * %-EOVERFLOW if the size of the property is not as expected.
119 * %-ENXIO if no suitable firmware interface is present.
120 */
121int device_property_read_u16_array(const struct device *dev, const char *propname,
122 u16 *val, size_t nval)
123{
124 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
125}
126EXPORT_SYMBOL_GPL(device_property_read_u16_array);
127
128/**
129 * device_property_read_u32_array - return a u32 array property of a device
130 * @dev: Device to get the property of
131 * @propname: Name of the property
132 * @val: The values are stored here or %NULL to return the number of values
133 * @nval: Size of the @val array
134 *
135 * Function reads an array of u32 properties with @propname from the device
136 * firmware description and stores them to @val if found.
137 *
138 * It's recommended to call device_property_count_u32() instead of calling
139 * this function with @val equals %NULL and @nval equals 0.
140 *
141 * Return: number of values if @val was %NULL,
142 * %0 if the property was found (success),
143 * %-EINVAL if given arguments are not valid,
144 * %-ENODATA if the property does not have a value,
145 * %-EPROTO if the property is not an array of numbers,
146 * %-EOVERFLOW if the size of the property is not as expected.
147 * %-ENXIO if no suitable firmware interface is present.
148 */
149int device_property_read_u32_array(const struct device *dev, const char *propname,
150 u32 *val, size_t nval)
151{
152 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
153}
154EXPORT_SYMBOL_GPL(device_property_read_u32_array);
155
156/**
157 * device_property_read_u64_array - return a u64 array property of a device
158 * @dev: Device to get the property of
159 * @propname: Name of the property
160 * @val: The values are stored here or %NULL to return the number of values
161 * @nval: Size of the @val array
162 *
163 * Function reads an array of u64 properties with @propname from the device
164 * firmware description and stores them to @val if found.
165 *
166 * It's recommended to call device_property_count_u64() instead of calling
167 * this function with @val equals %NULL and @nval equals 0.
168 *
169 * Return: number of values if @val was %NULL,
170 * %0 if the property was found (success),
171 * %-EINVAL if given arguments are not valid,
172 * %-ENODATA if the property does not have a value,
173 * %-EPROTO if the property is not an array of numbers,
174 * %-EOVERFLOW if the size of the property is not as expected.
175 * %-ENXIO if no suitable firmware interface is present.
176 */
177int device_property_read_u64_array(const struct device *dev, const char *propname,
178 u64 *val, size_t nval)
179{
180 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
181}
182EXPORT_SYMBOL_GPL(device_property_read_u64_array);
183
184/**
185 * device_property_read_string_array - return a string array property of device
186 * @dev: Device to get the property of
187 * @propname: Name of the property
188 * @val: The values are stored here or %NULL to return the number of values
189 * @nval: Size of the @val array
190 *
191 * Function reads an array of string properties with @propname from the device
192 * firmware description and stores them to @val if found.
193 *
194 * It's recommended to call device_property_string_array_count() instead of calling
195 * this function with @val equals %NULL and @nval equals 0.
196 *
197 * Return: number of values read on success if @val is non-NULL,
198 * number of values available on success if @val is NULL,
199 * %-EINVAL if given arguments are not valid,
200 * %-ENODATA if the property does not have a value,
201 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
202 * %-EOVERFLOW if the size of the property is not as expected.
203 * %-ENXIO if no suitable firmware interface is present.
204 */
205int device_property_read_string_array(const struct device *dev, const char *propname,
206 const char **val, size_t nval)
207{
208 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
209}
210EXPORT_SYMBOL_GPL(device_property_read_string_array);
211
212/**
213 * device_property_read_string - return a string property of a device
214 * @dev: Device to get the property of
215 * @propname: Name of the property
216 * @val: The value is stored here
217 *
218 * Function reads property @propname from the device firmware description and
219 * stores the value into @val if found. The value is checked to be a string.
220 *
221 * Return: %0 if the property was found (success),
222 * %-EINVAL if given arguments are not valid,
223 * %-ENODATA if the property does not have a value,
224 * %-EPROTO or %-EILSEQ if the property type is not a string.
225 * %-ENXIO if no suitable firmware interface is present.
226 */
227int device_property_read_string(const struct device *dev, const char *propname,
228 const char **val)
229{
230 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
231}
232EXPORT_SYMBOL_GPL(device_property_read_string);
233
234/**
235 * device_property_match_string - find a string in an array and return index
236 * @dev: Device to get the property of
237 * @propname: Name of the property holding the array
238 * @string: String to look for
239 *
240 * Find a given string in a string array and if it is found return the
241 * index back.
242 *
243 * Return: index, starting from %0, if the property was found (success),
244 * %-EINVAL if given arguments are not valid,
245 * %-ENODATA if the property does not have a value,
246 * %-EPROTO if the property is not an array of strings,
247 * %-ENXIO if no suitable firmware interface is present.
248 */
249int device_property_match_string(const struct device *dev, const char *propname,
250 const char *string)
251{
252 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
253}
254EXPORT_SYMBOL_GPL(device_property_match_string);
255
256static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
257 const char *propname,
258 unsigned int elem_size, void *val,
259 size_t nval)
260{
261 int ret;
262
263 if (IS_ERR_OR_NULL(fwnode))
264 return -EINVAL;
265
266 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
267 elem_size, val, nval);
268 if (ret != -EINVAL)
269 return ret;
270
271 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
272 elem_size, val, nval);
273}
274
275/**
276 * fwnode_property_read_u8_array - return a u8 array property of firmware node
277 * @fwnode: Firmware node to get the property of
278 * @propname: Name of the property
279 * @val: The values are stored here or %NULL to return the number of values
280 * @nval: Size of the @val array
281 *
282 * Read an array of u8 properties with @propname from @fwnode and stores them to
283 * @val if found.
284 *
285 * It's recommended to call fwnode_property_count_u8() instead of calling
286 * this function with @val equals %NULL and @nval equals 0.
287 *
288 * Return: number of values if @val was %NULL,
289 * %0 if the property was found (success),
290 * %-EINVAL if given arguments are not valid,
291 * %-ENODATA if the property does not have a value,
292 * %-EPROTO if the property is not an array of numbers,
293 * %-EOVERFLOW if the size of the property is not as expected,
294 * %-ENXIO if no suitable firmware interface is present.
295 */
296int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
297 const char *propname, u8 *val, size_t nval)
298{
299 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
300 val, nval);
301}
302EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
303
304/**
305 * fwnode_property_read_u16_array - return a u16 array property of firmware node
306 * @fwnode: Firmware node to get the property of
307 * @propname: Name of the property
308 * @val: The values are stored here or %NULL to return the number of values
309 * @nval: Size of the @val array
310 *
311 * Read an array of u16 properties with @propname from @fwnode and store them to
312 * @val if found.
313 *
314 * It's recommended to call fwnode_property_count_u16() instead of calling
315 * this function with @val equals %NULL and @nval equals 0.
316 *
317 * Return: number of values if @val was %NULL,
318 * %0 if the property was found (success),
319 * %-EINVAL if given arguments are not valid,
320 * %-ENODATA if the property does not have a value,
321 * %-EPROTO if the property is not an array of numbers,
322 * %-EOVERFLOW if the size of the property is not as expected,
323 * %-ENXIO if no suitable firmware interface is present.
324 */
325int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
326 const char *propname, u16 *val, size_t nval)
327{
328 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
329 val, nval);
330}
331EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
332
333/**
334 * fwnode_property_read_u32_array - return a u32 array property of firmware node
335 * @fwnode: Firmware node to get the property of
336 * @propname: Name of the property
337 * @val: The values are stored here or %NULL to return the number of values
338 * @nval: Size of the @val array
339 *
340 * Read an array of u32 properties with @propname from @fwnode store them to
341 * @val if found.
342 *
343 * It's recommended to call fwnode_property_count_u32() instead of calling
344 * this function with @val equals %NULL and @nval equals 0.
345 *
346 * Return: number of values if @val was %NULL,
347 * %0 if the property was found (success),
348 * %-EINVAL if given arguments are not valid,
349 * %-ENODATA if the property does not have a value,
350 * %-EPROTO if the property is not an array of numbers,
351 * %-EOVERFLOW if the size of the property is not as expected,
352 * %-ENXIO if no suitable firmware interface is present.
353 */
354int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
355 const char *propname, u32 *val, size_t nval)
356{
357 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
358 val, nval);
359}
360EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
361
362/**
363 * fwnode_property_read_u64_array - return a u64 array property firmware node
364 * @fwnode: Firmware node to get the property of
365 * @propname: Name of the property
366 * @val: The values are stored here or %NULL to return the number of values
367 * @nval: Size of the @val array
368 *
369 * Read an array of u64 properties with @propname from @fwnode and store them to
370 * @val if found.
371 *
372 * It's recommended to call fwnode_property_count_u64() instead of calling
373 * this function with @val equals %NULL and @nval equals 0.
374 *
375 * Return: number of values if @val was %NULL,
376 * %0 if the property was found (success),
377 * %-EINVAL if given arguments are not valid,
378 * %-ENODATA if the property does not have a value,
379 * %-EPROTO if the property is not an array of numbers,
380 * %-EOVERFLOW if the size of the property is not as expected,
381 * %-ENXIO if no suitable firmware interface is present.
382 */
383int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
384 const char *propname, u64 *val, size_t nval)
385{
386 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
387 val, nval);
388}
389EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
390
391/**
392 * fwnode_property_read_string_array - return string array property of a node
393 * @fwnode: Firmware node to get the property of
394 * @propname: Name of the property
395 * @val: The values are stored here or %NULL to return the number of values
396 * @nval: Size of the @val array
397 *
398 * Read an string list property @propname from the given firmware node and store
399 * them to @val if found.
400 *
401 * It's recommended to call fwnode_property_string_array_count() instead of calling
402 * this function with @val equals %NULL and @nval equals 0.
403 *
404 * Return: number of values read on success if @val is non-NULL,
405 * number of values available on success if @val is NULL,
406 * %-EINVAL if given arguments are not valid,
407 * %-ENODATA if the property does not have a value,
408 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
409 * %-EOVERFLOW if the size of the property is not as expected,
410 * %-ENXIO if no suitable firmware interface is present.
411 */
412int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
413 const char *propname, const char **val,
414 size_t nval)
415{
416 int ret;
417
418 if (IS_ERR_OR_NULL(fwnode))
419 return -EINVAL;
420
421 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
422 val, nval);
423 if (ret != -EINVAL)
424 return ret;
425
426 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
427 val, nval);
428}
429EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
430
431/**
432 * fwnode_property_read_string - return a string property of a firmware node
433 * @fwnode: Firmware node to get the property of
434 * @propname: Name of the property
435 * @val: The value is stored here
436 *
437 * Read property @propname from the given firmware node and store the value into
438 * @val if found. The value is checked to be a string.
439 *
440 * Return: %0 if the property was found (success),
441 * %-EINVAL if given arguments are not valid,
442 * %-ENODATA if the property does not have a value,
443 * %-EPROTO or %-EILSEQ if the property is not a string,
444 * %-ENXIO if no suitable firmware interface is present.
445 */
446int fwnode_property_read_string(const struct fwnode_handle *fwnode,
447 const char *propname, const char **val)
448{
449 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
450
451 return ret < 0 ? ret : 0;
452}
453EXPORT_SYMBOL_GPL(fwnode_property_read_string);
454
455/**
456 * fwnode_property_match_string - find a string in an array and return index
457 * @fwnode: Firmware node to get the property of
458 * @propname: Name of the property holding the array
459 * @string: String to look for
460 *
461 * Find a given string in a string array and if it is found return the
462 * index back.
463 *
464 * Return: index, starting from %0, if the property was found (success),
465 * %-EINVAL if given arguments are not valid,
466 * %-ENODATA if the property does not have a value,
467 * %-EPROTO if the property is not an array of strings,
468 * %-ENXIO if no suitable firmware interface is present.
469 */
470int fwnode_property_match_string(const struct fwnode_handle *fwnode,
471 const char *propname, const char *string)
472{
473 const char **values;
474 int nval, ret;
475
476 nval = fwnode_property_string_array_count(fwnode, propname);
477 if (nval < 0)
478 return nval;
479
480 if (nval == 0)
481 return -ENODATA;
482
483 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
484 if (!values)
485 return -ENOMEM;
486
487 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
488 if (ret < 0)
489 goto out_free;
490
491 ret = match_string(values, nval, string);
492 if (ret < 0)
493 ret = -ENODATA;
494
495out_free:
496 kfree(values);
497 return ret;
498}
499EXPORT_SYMBOL_GPL(fwnode_property_match_string);
500
501/**
502 * fwnode_property_match_property_string - find a property string value in an array and return index
503 * @fwnode: Firmware node to get the property of
504 * @propname: Name of the property holding the string value
505 * @array: String array to search in
506 * @n: Size of the @array
507 *
508 * Find a property string value in a given @array and if it is found return
509 * the index back.
510 *
511 * Return: index, starting from %0, if the string value was found in the @array (success),
512 * %-ENOENT when the string value was not found in the @array,
513 * %-EINVAL if given arguments are not valid,
514 * %-ENODATA if the property does not have a value,
515 * %-EPROTO or %-EILSEQ if the property is not a string,
516 * %-ENXIO if no suitable firmware interface is present.
517 */
518int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
519 const char *propname, const char * const *array, size_t n)
520{
521 const char *string;
522 int ret;
523
524 ret = fwnode_property_read_string(fwnode, propname, &string);
525 if (ret)
526 return ret;
527
528 ret = match_string(array, n, string);
529 if (ret < 0)
530 ret = -ENOENT;
531
532 return ret;
533}
534EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
535
536/**
537 * fwnode_property_get_reference_args() - Find a reference with arguments
538 * @fwnode: Firmware node where to look for the reference
539 * @prop: The name of the property
540 * @nargs_prop: The name of the property telling the number of
541 * arguments in the referred node. NULL if @nargs is known,
542 * otherwise @nargs is ignored. Only relevant on OF.
543 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
544 * @index: Index of the reference, from zero onwards.
545 * @args: Result structure with reference and integer arguments.
546 * May be NULL.
547 *
548 * Obtain a reference based on a named property in an fwnode, with
549 * integer arguments.
550 *
551 * The caller is responsible for calling fwnode_handle_put() on the returned
552 * @args->fwnode pointer.
553 *
554 * Return: %0 on success
555 * %-ENOENT when the index is out of bounds, the index has an empty
556 * reference or the property was not found
557 * %-EINVAL on parse error
558 */
559int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
560 const char *prop, const char *nargs_prop,
561 unsigned int nargs, unsigned int index,
562 struct fwnode_reference_args *args)
563{
564 int ret;
565
566 if (IS_ERR_OR_NULL(fwnode))
567 return -ENOENT;
568
569 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
570 nargs, index, args);
571 if (ret == 0)
572 return ret;
573
574 if (IS_ERR_OR_NULL(fwnode->secondary))
575 return ret;
576
577 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
578 nargs, index, args);
579}
580EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
581
582/**
583 * fwnode_find_reference - Find named reference to a fwnode_handle
584 * @fwnode: Firmware node where to look for the reference
585 * @name: The name of the reference
586 * @index: Index of the reference
587 *
588 * @index can be used when the named reference holds a table of references.
589 *
590 * The caller is responsible for calling fwnode_handle_put() on the returned
591 * fwnode pointer.
592 *
593 * Return: a pointer to the reference fwnode, when found. Otherwise,
594 * returns an error pointer.
595 */
596struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
597 const char *name,
598 unsigned int index)
599{
600 struct fwnode_reference_args args;
601 int ret;
602
603 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
604 &args);
605 return ret ? ERR_PTR(ret) : args.fwnode;
606}
607EXPORT_SYMBOL_GPL(fwnode_find_reference);
608
609/**
610 * fwnode_get_name - Return the name of a node
611 * @fwnode: The firmware node
612 *
613 * Return: a pointer to the node name, or %NULL.
614 */
615const char *fwnode_get_name(const struct fwnode_handle *fwnode)
616{
617 return fwnode_call_ptr_op(fwnode, get_name);
618}
619EXPORT_SYMBOL_GPL(fwnode_get_name);
620
621/**
622 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
623 * @fwnode: The firmware node
624 *
625 * Return: the prefix of a node, intended to be printed right before the node.
626 * The prefix works also as a separator between the nodes.
627 */
628const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
629{
630 return fwnode_call_ptr_op(fwnode, get_name_prefix);
631}
632
633/**
634 * fwnode_name_eq - Return true if node name is equal
635 * @fwnode: The firmware node
636 * @name: The name to which to compare the node name
637 *
638 * Compare the name provided as an argument to the name of the node, stopping
639 * the comparison at either NUL or '@' character, whichever comes first. This
640 * function is generally used for comparing node names while ignoring the
641 * possible unit address of the node.
642 *
643 * Return: true if the node name matches with the name provided in the @name
644 * argument, false otherwise.
645 */
646bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
647{
648 const char *node_name;
649 ptrdiff_t len;
650
651 node_name = fwnode_get_name(fwnode);
652 if (!node_name)
653 return false;
654
655 len = strchrnul(node_name, '@') - node_name;
656
657 return str_has_prefix(node_name, name) == len;
658}
659EXPORT_SYMBOL_GPL(fwnode_name_eq);
660
661/**
662 * fwnode_get_parent - Return parent firwmare node
663 * @fwnode: Firmware whose parent is retrieved
664 *
665 * The caller is responsible for calling fwnode_handle_put() on the returned
666 * fwnode pointer.
667 *
668 * Return: parent firmware node of the given node if possible or %NULL if no
669 * parent was available.
670 */
671struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
672{
673 return fwnode_call_ptr_op(fwnode, get_parent);
674}
675EXPORT_SYMBOL_GPL(fwnode_get_parent);
676
677/**
678 * fwnode_get_next_parent - Iterate to the node's parent
679 * @fwnode: Firmware whose parent is retrieved
680 *
681 * This is like fwnode_get_parent() except that it drops the refcount
682 * on the passed node, making it suitable for iterating through a
683 * node's parents.
684 *
685 * The caller is responsible for calling fwnode_handle_put() on the returned
686 * fwnode pointer. Note that this function also puts a reference to @fwnode
687 * unconditionally.
688 *
689 * Return: parent firmware node of the given node if possible or %NULL if no
690 * parent was available.
691 */
692struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
693{
694 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
695
696 fwnode_handle_put(fwnode);
697
698 return parent;
699}
700EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
701
702/**
703 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
704 * @fwnode: firmware node
705 *
706 * Given a firmware node (@fwnode), this function finds its closest ancestor
707 * firmware node that has a corresponding struct device and returns that struct
708 * device.
709 *
710 * The caller is responsible for calling put_device() on the returned device
711 * pointer.
712 *
713 * Return: a pointer to the device of the @fwnode's closest ancestor.
714 */
715struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
716{
717 struct fwnode_handle *parent;
718 struct device *dev;
719
720 fwnode_for_each_parent_node(fwnode, parent) {
721 dev = get_dev_from_fwnode(parent);
722 if (dev) {
723 fwnode_handle_put(parent);
724 return dev;
725 }
726 }
727 return NULL;
728}
729
730/**
731 * fwnode_count_parents - Return the number of parents a node has
732 * @fwnode: The node the parents of which are to be counted
733 *
734 * Return: the number of parents a node has.
735 */
736unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
737{
738 struct fwnode_handle *parent;
739 unsigned int count = 0;
740
741 fwnode_for_each_parent_node(fwnode, parent)
742 count++;
743
744 return count;
745}
746EXPORT_SYMBOL_GPL(fwnode_count_parents);
747
748/**
749 * fwnode_get_nth_parent - Return an nth parent of a node
750 * @fwnode: The node the parent of which is requested
751 * @depth: Distance of the parent from the node
752 *
753 * The caller is responsible for calling fwnode_handle_put() on the returned
754 * fwnode pointer.
755 *
756 * Return: the nth parent of a node. If there is no parent at the requested
757 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
758 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
759 */
760struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
761 unsigned int depth)
762{
763 struct fwnode_handle *parent;
764
765 if (depth == 0)
766 return fwnode_handle_get(fwnode);
767
768 fwnode_for_each_parent_node(fwnode, parent) {
769 if (--depth == 0)
770 return parent;
771 }
772 return NULL;
773}
774EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
775
776/**
777 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
778 * @ancestor: Firmware which is tested for being an ancestor
779 * @child: Firmware which is tested for being the child
780 *
781 * A node is considered an ancestor of itself too.
782 *
783 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
784 */
785bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child)
786{
787 struct fwnode_handle *parent;
788
789 if (IS_ERR_OR_NULL(ancestor))
790 return false;
791
792 if (child == ancestor)
793 return true;
794
795 fwnode_for_each_parent_node(child, parent) {
796 if (parent == ancestor) {
797 fwnode_handle_put(parent);
798 return true;
799 }
800 }
801 return false;
802}
803
804/**
805 * fwnode_get_next_child_node - Return the next child node handle for a node
806 * @fwnode: Firmware node to find the next child node for.
807 * @child: Handle to one of the node's child nodes or a %NULL handle.
808 *
809 * The caller is responsible for calling fwnode_handle_put() on the returned
810 * fwnode pointer. Note that this function also puts a reference to @child
811 * unconditionally.
812 */
813struct fwnode_handle *
814fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
815 struct fwnode_handle *child)
816{
817 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
818}
819EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
820
821/**
822 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
823 * @fwnode: Firmware node to find the next child node for.
824 * @child: Handle to one of the node's child nodes or a %NULL handle.
825 *
826 * The caller is responsible for calling fwnode_handle_put() on the returned
827 * fwnode pointer. Note that this function also puts a reference to @child
828 * unconditionally.
829 */
830struct fwnode_handle *
831fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
832 struct fwnode_handle *child)
833{
834 struct fwnode_handle *next_child = child;
835
836 if (IS_ERR_OR_NULL(fwnode))
837 return NULL;
838
839 do {
840 next_child = fwnode_get_next_child_node(fwnode, next_child);
841 if (!next_child)
842 return NULL;
843 } while (!fwnode_device_is_available(next_child));
844
845 return next_child;
846}
847EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
848
849/**
850 * device_get_next_child_node - Return the next child node handle for a device
851 * @dev: Device to find the next child node for.
852 * @child: Handle to one of the device's child nodes or a %NULL handle.
853 *
854 * The caller is responsible for calling fwnode_handle_put() on the returned
855 * fwnode pointer. Note that this function also puts a reference to @child
856 * unconditionally.
857 */
858struct fwnode_handle *device_get_next_child_node(const struct device *dev,
859 struct fwnode_handle *child)
860{
861 const struct fwnode_handle *fwnode = dev_fwnode(dev);
862 struct fwnode_handle *next;
863
864 if (IS_ERR_OR_NULL(fwnode))
865 return NULL;
866
867 /* Try to find a child in primary fwnode */
868 next = fwnode_get_next_child_node(fwnode, child);
869 if (next)
870 return next;
871
872 /* When no more children in primary, continue with secondary */
873 return fwnode_get_next_child_node(fwnode->secondary, child);
874}
875EXPORT_SYMBOL_GPL(device_get_next_child_node);
876
877/**
878 * fwnode_get_named_child_node - Return first matching named child node handle
879 * @fwnode: Firmware node to find the named child node for.
880 * @childname: String to match child node name against.
881 *
882 * The caller is responsible for calling fwnode_handle_put() on the returned
883 * fwnode pointer.
884 */
885struct fwnode_handle *
886fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
887 const char *childname)
888{
889 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
890}
891EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
892
893/**
894 * device_get_named_child_node - Return first matching named child node handle
895 * @dev: Device to find the named child node for.
896 * @childname: String to match child node name against.
897 *
898 * The caller is responsible for calling fwnode_handle_put() on the returned
899 * fwnode pointer.
900 */
901struct fwnode_handle *device_get_named_child_node(const struct device *dev,
902 const char *childname)
903{
904 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
905}
906EXPORT_SYMBOL_GPL(device_get_named_child_node);
907
908/**
909 * fwnode_handle_get - Obtain a reference to a device node
910 * @fwnode: Pointer to the device node to obtain the reference to.
911 *
912 * The caller is responsible for calling fwnode_handle_put() on the returned
913 * fwnode pointer.
914 *
915 * Return: the fwnode handle.
916 */
917struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
918{
919 if (!fwnode_has_op(fwnode, get))
920 return fwnode;
921
922 return fwnode_call_ptr_op(fwnode, get);
923}
924EXPORT_SYMBOL_GPL(fwnode_handle_get);
925
926/**
927 * fwnode_handle_put - Drop reference to a device node
928 * @fwnode: Pointer to the device node to drop the reference to.
929 *
930 * This has to be used when terminating device_for_each_child_node() iteration
931 * with break or return to prevent stale device node references from being left
932 * behind.
933 */
934void fwnode_handle_put(struct fwnode_handle *fwnode)
935{
936 fwnode_call_void_op(fwnode, put);
937}
938EXPORT_SYMBOL_GPL(fwnode_handle_put);
939
940/**
941 * fwnode_device_is_available - check if a device is available for use
942 * @fwnode: Pointer to the fwnode of the device.
943 *
944 * Return: true if device is available for use. Otherwise, returns false.
945 *
946 * For fwnode node types that don't implement the .device_is_available()
947 * operation, this function returns true.
948 */
949bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
950{
951 if (IS_ERR_OR_NULL(fwnode))
952 return false;
953
954 if (!fwnode_has_op(fwnode, device_is_available))
955 return true;
956
957 return fwnode_call_bool_op(fwnode, device_is_available);
958}
959EXPORT_SYMBOL_GPL(fwnode_device_is_available);
960
961/**
962 * device_get_child_node_count - return the number of child nodes for device
963 * @dev: Device to cound the child nodes for
964 *
965 * Return: the number of child nodes for a given device.
966 */
967unsigned int device_get_child_node_count(const struct device *dev)
968{
969 struct fwnode_handle *child;
970 unsigned int count = 0;
971
972 device_for_each_child_node(dev, child)
973 count++;
974
975 return count;
976}
977EXPORT_SYMBOL_GPL(device_get_child_node_count);
978
979bool device_dma_supported(const struct device *dev)
980{
981 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
982}
983EXPORT_SYMBOL_GPL(device_dma_supported);
984
985enum dev_dma_attr device_get_dma_attr(const struct device *dev)
986{
987 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
988 return DEV_DMA_NOT_SUPPORTED;
989
990 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
991}
992EXPORT_SYMBOL_GPL(device_get_dma_attr);
993
994/**
995 * fwnode_get_phy_mode - Get phy mode for given firmware node
996 * @fwnode: Pointer to the given node
997 *
998 * The function gets phy interface string from property 'phy-mode' or
999 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1000 * error case.
1001 */
1002int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
1003{
1004 const char *pm;
1005 int err, i;
1006
1007 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1008 if (err < 0)
1009 err = fwnode_property_read_string(fwnode,
1010 "phy-connection-type", &pm);
1011 if (err < 0)
1012 return err;
1013
1014 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1015 if (!strcasecmp(pm, phy_modes(i)))
1016 return i;
1017
1018 return -ENODEV;
1019}
1020EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1021
1022/**
1023 * device_get_phy_mode - Get phy mode for given device
1024 * @dev: Pointer to the given device
1025 *
1026 * The function gets phy interface string from property 'phy-mode' or
1027 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1028 * error case.
1029 */
1030int device_get_phy_mode(struct device *dev)
1031{
1032 return fwnode_get_phy_mode(dev_fwnode(dev));
1033}
1034EXPORT_SYMBOL_GPL(device_get_phy_mode);
1035
1036/**
1037 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
1038 * @fwnode: Pointer to the firmware node
1039 * @index: Index of the IO range
1040 *
1041 * Return: a pointer to the mapped memory.
1042 */
1043void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
1044{
1045 return fwnode_call_ptr_op(fwnode, iomap, index);
1046}
1047EXPORT_SYMBOL(fwnode_iomap);
1048
1049/**
1050 * fwnode_irq_get - Get IRQ directly from a fwnode
1051 * @fwnode: Pointer to the firmware node
1052 * @index: Zero-based index of the IRQ
1053 *
1054 * Return: Linux IRQ number on success. Negative errno on failure.
1055 */
1056int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1057{
1058 int ret;
1059
1060 ret = fwnode_call_int_op(fwnode, irq_get, index);
1061 /* We treat mapping errors as invalid case */
1062 if (ret == 0)
1063 return -EINVAL;
1064
1065 return ret;
1066}
1067EXPORT_SYMBOL(fwnode_irq_get);
1068
1069/**
1070 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1071 * @fwnode: Pointer to the firmware node
1072 * @name: IRQ name
1073 *
1074 * Description:
1075 * Find a match to the string @name in the 'interrupt-names' string array
1076 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1077 * number of the IRQ resource corresponding to the index of the matched
1078 * string.
1079 *
1080 * Return: Linux IRQ number on success, or negative errno otherwise.
1081 */
1082int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1083{
1084 int index;
1085
1086 if (!name)
1087 return -EINVAL;
1088
1089 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
1090 if (index < 0)
1091 return index;
1092
1093 return fwnode_irq_get(fwnode, index);
1094}
1095EXPORT_SYMBOL(fwnode_irq_get_byname);
1096
1097/**
1098 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1099 * @fwnode: Pointer to the parent firmware node
1100 * @prev: Previous endpoint node or %NULL to get the first
1101 *
1102 * The caller is responsible for calling fwnode_handle_put() on the returned
1103 * fwnode pointer. Note that this function also puts a reference to @prev
1104 * unconditionally.
1105 *
1106 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1107 * are available.
1108 */
1109struct fwnode_handle *
1110fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1111 struct fwnode_handle *prev)
1112{
1113 struct fwnode_handle *ep, *port_parent = NULL;
1114 const struct fwnode_handle *parent;
1115
1116 /*
1117 * If this function is in a loop and the previous iteration returned
1118 * an endpoint from fwnode->secondary, then we need to use the secondary
1119 * as parent rather than @fwnode.
1120 */
1121 if (prev) {
1122 port_parent = fwnode_graph_get_port_parent(prev);
1123 parent = port_parent;
1124 } else {
1125 parent = fwnode;
1126 }
1127 if (IS_ERR_OR_NULL(parent))
1128 return NULL;
1129
1130 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1131 if (ep)
1132 goto out_put_port_parent;
1133
1134 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1135
1136out_put_port_parent:
1137 fwnode_handle_put(port_parent);
1138 return ep;
1139}
1140EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1141
1142/**
1143 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1144 * @endpoint: Endpoint firmware node of the port
1145 *
1146 * The caller is responsible for calling fwnode_handle_put() on the returned
1147 * fwnode pointer.
1148 *
1149 * Return: the firmware node of the device the @endpoint belongs to.
1150 */
1151struct fwnode_handle *
1152fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1153{
1154 struct fwnode_handle *port, *parent;
1155
1156 port = fwnode_get_parent(endpoint);
1157 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1158
1159 fwnode_handle_put(port);
1160
1161 return parent;
1162}
1163EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1164
1165/**
1166 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1167 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1168 *
1169 * Extracts firmware node of a remote device the @fwnode points to.
1170 *
1171 * The caller is responsible for calling fwnode_handle_put() on the returned
1172 * fwnode pointer.
1173 */
1174struct fwnode_handle *
1175fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1176{
1177 struct fwnode_handle *endpoint, *parent;
1178
1179 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1180 parent = fwnode_graph_get_port_parent(endpoint);
1181
1182 fwnode_handle_put(endpoint);
1183
1184 return parent;
1185}
1186EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1187
1188/**
1189 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1190 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1191 *
1192 * Extracts firmware node of a remote port the @fwnode points to.
1193 *
1194 * The caller is responsible for calling fwnode_handle_put() on the returned
1195 * fwnode pointer.
1196 */
1197struct fwnode_handle *
1198fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1199{
1200 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1201}
1202EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1203
1204/**
1205 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1206 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1207 *
1208 * Extracts firmware node of a remote endpoint the @fwnode points to.
1209 *
1210 * The caller is responsible for calling fwnode_handle_put() on the returned
1211 * fwnode pointer.
1212 */
1213struct fwnode_handle *
1214fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1215{
1216 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1217}
1218EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1219
1220static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1221{
1222 struct fwnode_handle *dev_node;
1223 bool available;
1224
1225 dev_node = fwnode_graph_get_remote_port_parent(ep);
1226 available = fwnode_device_is_available(dev_node);
1227 fwnode_handle_put(dev_node);
1228
1229 return available;
1230}
1231
1232/**
1233 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1234 * @fwnode: parent fwnode_handle containing the graph
1235 * @port: identifier of the port node
1236 * @endpoint: identifier of the endpoint node under the port node
1237 * @flags: fwnode lookup flags
1238 *
1239 * The caller is responsible for calling fwnode_handle_put() on the returned
1240 * fwnode pointer.
1241 *
1242 * Return: the fwnode handle of the local endpoint corresponding the port and
1243 * endpoint IDs or %NULL if not found.
1244 *
1245 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1246 * has not been found, look for the closest endpoint ID greater than the
1247 * specified one and return the endpoint that corresponds to it, if present.
1248 *
1249 * Does not return endpoints that belong to disabled devices or endpoints that
1250 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1251 */
1252struct fwnode_handle *
1253fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1254 u32 port, u32 endpoint, unsigned long flags)
1255{
1256 struct fwnode_handle *ep, *best_ep = NULL;
1257 unsigned int best_ep_id = 0;
1258 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1259 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1260
1261 fwnode_graph_for_each_endpoint(fwnode, ep) {
1262 struct fwnode_endpoint fwnode_ep = { 0 };
1263 int ret;
1264
1265 if (enabled_only && !fwnode_graph_remote_available(ep))
1266 continue;
1267
1268 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1269 if (ret < 0)
1270 continue;
1271
1272 if (fwnode_ep.port != port)
1273 continue;
1274
1275 if (fwnode_ep.id == endpoint)
1276 return ep;
1277
1278 if (!endpoint_next)
1279 continue;
1280
1281 /*
1282 * If the endpoint that has just been found is not the first
1283 * matching one and the ID of the one found previously is closer
1284 * to the requested endpoint ID, skip it.
1285 */
1286 if (fwnode_ep.id < endpoint ||
1287 (best_ep && best_ep_id < fwnode_ep.id))
1288 continue;
1289
1290 fwnode_handle_put(best_ep);
1291 best_ep = fwnode_handle_get(ep);
1292 best_ep_id = fwnode_ep.id;
1293 }
1294
1295 return best_ep;
1296}
1297EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1298
1299/**
1300 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1301 * @fwnode: The node related to a device
1302 * @flags: fwnode lookup flags
1303 * Count endpoints in a device node.
1304 *
1305 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1306 * and endpoints connected to disabled devices are counted.
1307 */
1308unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1309 unsigned long flags)
1310{
1311 struct fwnode_handle *ep;
1312 unsigned int count = 0;
1313
1314 fwnode_graph_for_each_endpoint(fwnode, ep) {
1315 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1316 fwnode_graph_remote_available(ep))
1317 count++;
1318 }
1319
1320 return count;
1321}
1322EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1323
1324/**
1325 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1326 * @fwnode: pointer to endpoint fwnode_handle
1327 * @endpoint: pointer to the fwnode endpoint data structure
1328 *
1329 * Parse @fwnode representing a graph endpoint node and store the
1330 * information in @endpoint. The caller must hold a reference to
1331 * @fwnode.
1332 */
1333int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1334 struct fwnode_endpoint *endpoint)
1335{
1336 memset(endpoint, 0, sizeof(*endpoint));
1337
1338 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1339}
1340EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1341
1342const void *device_get_match_data(const struct device *dev)
1343{
1344 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1345}
1346EXPORT_SYMBOL_GPL(device_get_match_data);
1347
1348static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1349 const char *con_id, void *data,
1350 devcon_match_fn_t match,
1351 void **matches,
1352 unsigned int matches_len)
1353{
1354 struct fwnode_handle *node;
1355 struct fwnode_handle *ep;
1356 unsigned int count = 0;
1357 void *ret;
1358
1359 fwnode_graph_for_each_endpoint(fwnode, ep) {
1360 if (matches && count >= matches_len) {
1361 fwnode_handle_put(ep);
1362 break;
1363 }
1364
1365 node = fwnode_graph_get_remote_port_parent(ep);
1366 if (!fwnode_device_is_available(node)) {
1367 fwnode_handle_put(node);
1368 continue;
1369 }
1370
1371 ret = match(node, con_id, data);
1372 fwnode_handle_put(node);
1373 if (ret) {
1374 if (matches)
1375 matches[count] = ret;
1376 count++;
1377 }
1378 }
1379 return count;
1380}
1381
1382static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1383 const char *con_id, void *data,
1384 devcon_match_fn_t match,
1385 void **matches,
1386 unsigned int matches_len)
1387{
1388 struct fwnode_handle *node;
1389 unsigned int count = 0;
1390 unsigned int i;
1391 void *ret;
1392
1393 for (i = 0; ; i++) {
1394 if (matches && count >= matches_len)
1395 break;
1396
1397 node = fwnode_find_reference(fwnode, con_id, i);
1398 if (IS_ERR(node))
1399 break;
1400
1401 ret = match(node, NULL, data);
1402 fwnode_handle_put(node);
1403 if (ret) {
1404 if (matches)
1405 matches[count] = ret;
1406 count++;
1407 }
1408 }
1409
1410 return count;
1411}
1412
1413/**
1414 * fwnode_connection_find_match - Find connection from a device node
1415 * @fwnode: Device node with the connection
1416 * @con_id: Identifier for the connection
1417 * @data: Data for the match function
1418 * @match: Function to check and convert the connection description
1419 *
1420 * Find a connection with unique identifier @con_id between @fwnode and another
1421 * device node. @match will be used to convert the connection description to
1422 * data the caller is expecting to be returned.
1423 */
1424void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1425 const char *con_id, void *data,
1426 devcon_match_fn_t match)
1427{
1428 unsigned int count;
1429 void *ret;
1430
1431 if (!fwnode || !match)
1432 return NULL;
1433
1434 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1435 if (count)
1436 return ret;
1437
1438 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1439 return count ? ret : NULL;
1440}
1441EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1442
1443/**
1444 * fwnode_connection_find_matches - Find connections from a device node
1445 * @fwnode: Device node with the connection
1446 * @con_id: Identifier for the connection
1447 * @data: Data for the match function
1448 * @match: Function to check and convert the connection description
1449 * @matches: (Optional) array of pointers to fill with matches
1450 * @matches_len: Length of @matches
1451 *
1452 * Find up to @matches_len connections with unique identifier @con_id between
1453 * @fwnode and other device nodes. @match will be used to convert the
1454 * connection description to data the caller is expecting to be returned
1455 * through the @matches array.
1456 *
1457 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1458 * matches is returned.
1459 *
1460 * Return: Number of matches resolved, or negative errno.
1461 */
1462int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1463 const char *con_id, void *data,
1464 devcon_match_fn_t match,
1465 void **matches, unsigned int matches_len)
1466{
1467 unsigned int count_graph;
1468 unsigned int count_ref;
1469
1470 if (!fwnode || !match)
1471 return -EINVAL;
1472
1473 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1474 matches, matches_len);
1475
1476 if (matches) {
1477 matches += count_graph;
1478 matches_len -= count_graph;
1479 }
1480
1481 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1482 matches, matches_len);
1483
1484 return count_graph + count_ref;
1485}
1486EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/device.h>
11#include <linux/err.h>
12#include <linux/export.h>
13#include <linux/kconfig.h>
14#include <linux/of.h>
15#include <linux/property.h>
16#include <linux/phy.h>
17#include <linux/slab.h>
18#include <linux/string.h>
19#include <linux/types.h>
20
21struct fwnode_handle *__dev_fwnode(struct device *dev)
22{
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 of_fwnode_handle(dev->of_node) : dev->fwnode;
25}
26EXPORT_SYMBOL_GPL(__dev_fwnode);
27
28const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
29{
30 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
31 of_fwnode_handle(dev->of_node) : dev->fwnode;
32}
33EXPORT_SYMBOL_GPL(__dev_fwnode_const);
34
35/**
36 * device_property_present - check if a property of a device is present
37 * @dev: Device whose property is being checked
38 * @propname: Name of the property
39 *
40 * Check if property @propname is present in the device firmware description.
41 *
42 * Return: true if property @propname is present. Otherwise, returns false.
43 */
44bool device_property_present(const struct device *dev, const char *propname)
45{
46 return fwnode_property_present(dev_fwnode(dev), propname);
47}
48EXPORT_SYMBOL_GPL(device_property_present);
49
50/**
51 * fwnode_property_present - check if a property of a firmware node is present
52 * @fwnode: Firmware node whose property to check
53 * @propname: Name of the property
54 *
55 * Return: true if property @propname is present. Otherwise, returns false.
56 */
57bool fwnode_property_present(const struct fwnode_handle *fwnode,
58 const char *propname)
59{
60 bool ret;
61
62 if (IS_ERR_OR_NULL(fwnode))
63 return false;
64
65 ret = fwnode_call_bool_op(fwnode, property_present, propname);
66 if (ret)
67 return ret;
68
69 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
70}
71EXPORT_SYMBOL_GPL(fwnode_property_present);
72
73/**
74 * device_property_read_u8_array - return a u8 array property of a device
75 * @dev: Device to get the property of
76 * @propname: Name of the property
77 * @val: The values are stored here or %NULL to return the number of values
78 * @nval: Size of the @val array
79 *
80 * Function reads an array of u8 properties with @propname from the device
81 * firmware description and stores them to @val if found.
82 *
83 * It's recommended to call device_property_count_u8() instead of calling
84 * this function with @val equals %NULL and @nval equals 0.
85 *
86 * Return: number of values if @val was %NULL,
87 * %0 if the property was found (success),
88 * %-EINVAL if given arguments are not valid,
89 * %-ENODATA if the property does not have a value,
90 * %-EPROTO if the property is not an array of numbers,
91 * %-EOVERFLOW if the size of the property is not as expected.
92 * %-ENXIO if no suitable firmware interface is present.
93 */
94int device_property_read_u8_array(const struct device *dev, const char *propname,
95 u8 *val, size_t nval)
96{
97 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
98}
99EXPORT_SYMBOL_GPL(device_property_read_u8_array);
100
101/**
102 * device_property_read_u16_array - return a u16 array property of a device
103 * @dev: Device to get the property of
104 * @propname: Name of the property
105 * @val: The values are stored here or %NULL to return the number of values
106 * @nval: Size of the @val array
107 *
108 * Function reads an array of u16 properties with @propname from the device
109 * firmware description and stores them to @val if found.
110 *
111 * It's recommended to call device_property_count_u16() instead of calling
112 * this function with @val equals %NULL and @nval equals 0.
113 *
114 * Return: number of values if @val was %NULL,
115 * %0 if the property was found (success),
116 * %-EINVAL if given arguments are not valid,
117 * %-ENODATA if the property does not have a value,
118 * %-EPROTO if the property is not an array of numbers,
119 * %-EOVERFLOW if the size of the property is not as expected.
120 * %-ENXIO if no suitable firmware interface is present.
121 */
122int device_property_read_u16_array(const struct device *dev, const char *propname,
123 u16 *val, size_t nval)
124{
125 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
126}
127EXPORT_SYMBOL_GPL(device_property_read_u16_array);
128
129/**
130 * device_property_read_u32_array - return a u32 array property of a device
131 * @dev: Device to get the property of
132 * @propname: Name of the property
133 * @val: The values are stored here or %NULL to return the number of values
134 * @nval: Size of the @val array
135 *
136 * Function reads an array of u32 properties with @propname from the device
137 * firmware description and stores them to @val if found.
138 *
139 * It's recommended to call device_property_count_u32() instead of calling
140 * this function with @val equals %NULL and @nval equals 0.
141 *
142 * Return: number of values if @val was %NULL,
143 * %0 if the property was found (success),
144 * %-EINVAL if given arguments are not valid,
145 * %-ENODATA if the property does not have a value,
146 * %-EPROTO if the property is not an array of numbers,
147 * %-EOVERFLOW if the size of the property is not as expected.
148 * %-ENXIO if no suitable firmware interface is present.
149 */
150int device_property_read_u32_array(const struct device *dev, const char *propname,
151 u32 *val, size_t nval)
152{
153 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
154}
155EXPORT_SYMBOL_GPL(device_property_read_u32_array);
156
157/**
158 * device_property_read_u64_array - return a u64 array property of a device
159 * @dev: Device to get the property of
160 * @propname: Name of the property
161 * @val: The values are stored here or %NULL to return the number of values
162 * @nval: Size of the @val array
163 *
164 * Function reads an array of u64 properties with @propname from the device
165 * firmware description and stores them to @val if found.
166 *
167 * It's recommended to call device_property_count_u64() instead of calling
168 * this function with @val equals %NULL and @nval equals 0.
169 *
170 * Return: number of values if @val was %NULL,
171 * %0 if the property was found (success),
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO if the property is not an array of numbers,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178int device_property_read_u64_array(const struct device *dev, const char *propname,
179 u64 *val, size_t nval)
180{
181 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
182}
183EXPORT_SYMBOL_GPL(device_property_read_u64_array);
184
185/**
186 * device_property_read_string_array - return a string array property of device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The values are stored here or %NULL to return the number of values
190 * @nval: Size of the @val array
191 *
192 * Function reads an array of string properties with @propname from the device
193 * firmware description and stores them to @val if found.
194 *
195 * It's recommended to call device_property_string_array_count() instead of calling
196 * this function with @val equals %NULL and @nval equals 0.
197 *
198 * Return: number of values read on success if @val is non-NULL,
199 * number of values available on success if @val is NULL,
200 * %-EINVAL if given arguments are not valid,
201 * %-ENODATA if the property does not have a value,
202 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
203 * %-EOVERFLOW if the size of the property is not as expected.
204 * %-ENXIO if no suitable firmware interface is present.
205 */
206int device_property_read_string_array(const struct device *dev, const char *propname,
207 const char **val, size_t nval)
208{
209 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
210}
211EXPORT_SYMBOL_GPL(device_property_read_string_array);
212
213/**
214 * device_property_read_string - return a string property of a device
215 * @dev: Device to get the property of
216 * @propname: Name of the property
217 * @val: The value is stored here
218 *
219 * Function reads property @propname from the device firmware description and
220 * stores the value into @val if found. The value is checked to be a string.
221 *
222 * Return: %0 if the property was found (success),
223 * %-EINVAL if given arguments are not valid,
224 * %-ENODATA if the property does not have a value,
225 * %-EPROTO or %-EILSEQ if the property type is not a string.
226 * %-ENXIO if no suitable firmware interface is present.
227 */
228int device_property_read_string(const struct device *dev, const char *propname,
229 const char **val)
230{
231 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
232}
233EXPORT_SYMBOL_GPL(device_property_read_string);
234
235/**
236 * device_property_match_string - find a string in an array and return index
237 * @dev: Device to get the property of
238 * @propname: Name of the property holding the array
239 * @string: String to look for
240 *
241 * Find a given string in a string array and if it is found return the
242 * index back.
243 *
244 * Return: index, starting from %0, if the property was found (success),
245 * %-EINVAL if given arguments are not valid,
246 * %-ENODATA if the property does not have a value,
247 * %-EPROTO if the property is not an array of strings,
248 * %-ENXIO if no suitable firmware interface is present.
249 */
250int device_property_match_string(const struct device *dev, const char *propname,
251 const char *string)
252{
253 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
254}
255EXPORT_SYMBOL_GPL(device_property_match_string);
256
257static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
258 const char *propname,
259 unsigned int elem_size, void *val,
260 size_t nval)
261{
262 int ret;
263
264 if (IS_ERR_OR_NULL(fwnode))
265 return -EINVAL;
266
267 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
268 elem_size, val, nval);
269 if (ret != -EINVAL)
270 return ret;
271
272 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
273 elem_size, val, nval);
274}
275
276/**
277 * fwnode_property_read_u8_array - return a u8 array property of firmware node
278 * @fwnode: Firmware node to get the property of
279 * @propname: Name of the property
280 * @val: The values are stored here or %NULL to return the number of values
281 * @nval: Size of the @val array
282 *
283 * Read an array of u8 properties with @propname from @fwnode and stores them to
284 * @val if found.
285 *
286 * It's recommended to call fwnode_property_count_u8() instead of calling
287 * this function with @val equals %NULL and @nval equals 0.
288 *
289 * Return: number of values if @val was %NULL,
290 * %0 if the property was found (success),
291 * %-EINVAL if given arguments are not valid,
292 * %-ENODATA if the property does not have a value,
293 * %-EPROTO if the property is not an array of numbers,
294 * %-EOVERFLOW if the size of the property is not as expected,
295 * %-ENXIO if no suitable firmware interface is present.
296 */
297int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
298 const char *propname, u8 *val, size_t nval)
299{
300 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
301 val, nval);
302}
303EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
304
305/**
306 * fwnode_property_read_u16_array - return a u16 array property of firmware node
307 * @fwnode: Firmware node to get the property of
308 * @propname: Name of the property
309 * @val: The values are stored here or %NULL to return the number of values
310 * @nval: Size of the @val array
311 *
312 * Read an array of u16 properties with @propname from @fwnode and store them to
313 * @val if found.
314 *
315 * It's recommended to call fwnode_property_count_u16() instead of calling
316 * this function with @val equals %NULL and @nval equals 0.
317 *
318 * Return: number of values if @val was %NULL,
319 * %0 if the property was found (success),
320 * %-EINVAL if given arguments are not valid,
321 * %-ENODATA if the property does not have a value,
322 * %-EPROTO if the property is not an array of numbers,
323 * %-EOVERFLOW if the size of the property is not as expected,
324 * %-ENXIO if no suitable firmware interface is present.
325 */
326int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
327 const char *propname, u16 *val, size_t nval)
328{
329 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
330 val, nval);
331}
332EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
333
334/**
335 * fwnode_property_read_u32_array - return a u32 array property of firmware node
336 * @fwnode: Firmware node to get the property of
337 * @propname: Name of the property
338 * @val: The values are stored here or %NULL to return the number of values
339 * @nval: Size of the @val array
340 *
341 * Read an array of u32 properties with @propname from @fwnode store them to
342 * @val if found.
343 *
344 * It's recommended to call fwnode_property_count_u32() instead of calling
345 * this function with @val equals %NULL and @nval equals 0.
346 *
347 * Return: number of values if @val was %NULL,
348 * %0 if the property was found (success),
349 * %-EINVAL if given arguments are not valid,
350 * %-ENODATA if the property does not have a value,
351 * %-EPROTO if the property is not an array of numbers,
352 * %-EOVERFLOW if the size of the property is not as expected,
353 * %-ENXIO if no suitable firmware interface is present.
354 */
355int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
356 const char *propname, u32 *val, size_t nval)
357{
358 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
359 val, nval);
360}
361EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
362
363/**
364 * fwnode_property_read_u64_array - return a u64 array property firmware node
365 * @fwnode: Firmware node to get the property of
366 * @propname: Name of the property
367 * @val: The values are stored here or %NULL to return the number of values
368 * @nval: Size of the @val array
369 *
370 * Read an array of u64 properties with @propname from @fwnode and store them to
371 * @val if found.
372 *
373 * It's recommended to call fwnode_property_count_u64() instead of calling
374 * this function with @val equals %NULL and @nval equals 0.
375 *
376 * Return: number of values if @val was %NULL,
377 * %0 if the property was found (success),
378 * %-EINVAL if given arguments are not valid,
379 * %-ENODATA if the property does not have a value,
380 * %-EPROTO if the property is not an array of numbers,
381 * %-EOVERFLOW if the size of the property is not as expected,
382 * %-ENXIO if no suitable firmware interface is present.
383 */
384int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
385 const char *propname, u64 *val, size_t nval)
386{
387 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
388 val, nval);
389}
390EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
391
392/**
393 * fwnode_property_read_string_array - return string array property of a node
394 * @fwnode: Firmware node to get the property of
395 * @propname: Name of the property
396 * @val: The values are stored here or %NULL to return the number of values
397 * @nval: Size of the @val array
398 *
399 * Read an string list property @propname from the given firmware node and store
400 * them to @val if found.
401 *
402 * It's recommended to call fwnode_property_string_array_count() instead of calling
403 * this function with @val equals %NULL and @nval equals 0.
404 *
405 * Return: number of values read on success if @val is non-NULL,
406 * number of values available on success if @val is NULL,
407 * %-EINVAL if given arguments are not valid,
408 * %-ENODATA if the property does not have a value,
409 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
410 * %-EOVERFLOW if the size of the property is not as expected,
411 * %-ENXIO if no suitable firmware interface is present.
412 */
413int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
414 const char *propname, const char **val,
415 size_t nval)
416{
417 int ret;
418
419 if (IS_ERR_OR_NULL(fwnode))
420 return -EINVAL;
421
422 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
423 val, nval);
424 if (ret != -EINVAL)
425 return ret;
426
427 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
428 val, nval);
429}
430EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
431
432/**
433 * fwnode_property_read_string - return a string property of a firmware node
434 * @fwnode: Firmware node to get the property of
435 * @propname: Name of the property
436 * @val: The value is stored here
437 *
438 * Read property @propname from the given firmware node and store the value into
439 * @val if found. The value is checked to be a string.
440 *
441 * Return: %0 if the property was found (success),
442 * %-EINVAL if given arguments are not valid,
443 * %-ENODATA if the property does not have a value,
444 * %-EPROTO or %-EILSEQ if the property is not a string,
445 * %-ENXIO if no suitable firmware interface is present.
446 */
447int fwnode_property_read_string(const struct fwnode_handle *fwnode,
448 const char *propname, const char **val)
449{
450 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
451
452 return ret < 0 ? ret : 0;
453}
454EXPORT_SYMBOL_GPL(fwnode_property_read_string);
455
456/**
457 * fwnode_property_match_string - find a string in an array and return index
458 * @fwnode: Firmware node to get the property of
459 * @propname: Name of the property holding the array
460 * @string: String to look for
461 *
462 * Find a given string in a string array and if it is found return the
463 * index back.
464 *
465 * Return: index, starting from %0, if the property was found (success),
466 * %-EINVAL if given arguments are not valid,
467 * %-ENODATA if the property does not have a value,
468 * %-EPROTO if the property is not an array of strings,
469 * %-ENXIO if no suitable firmware interface is present.
470 */
471int fwnode_property_match_string(const struct fwnode_handle *fwnode,
472 const char *propname, const char *string)
473{
474 const char **values;
475 int nval, ret;
476
477 nval = fwnode_property_string_array_count(fwnode, propname);
478 if (nval < 0)
479 return nval;
480
481 if (nval == 0)
482 return -ENODATA;
483
484 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
485 if (!values)
486 return -ENOMEM;
487
488 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
489 if (ret < 0)
490 goto out_free;
491
492 ret = match_string(values, nval, string);
493 if (ret < 0)
494 ret = -ENODATA;
495
496out_free:
497 kfree(values);
498 return ret;
499}
500EXPORT_SYMBOL_GPL(fwnode_property_match_string);
501
502/**
503 * fwnode_property_match_property_string - find a property string value in an array and return index
504 * @fwnode: Firmware node to get the property of
505 * @propname: Name of the property holding the string value
506 * @array: String array to search in
507 * @n: Size of the @array
508 *
509 * Find a property string value in a given @array and if it is found return
510 * the index back.
511 *
512 * Return: index, starting from %0, if the string value was found in the @array (success),
513 * %-ENOENT when the string value was not found in the @array,
514 * %-EINVAL if given arguments are not valid,
515 * %-ENODATA if the property does not have a value,
516 * %-EPROTO or %-EILSEQ if the property is not a string,
517 * %-ENXIO if no suitable firmware interface is present.
518 */
519int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
520 const char *propname, const char * const *array, size_t n)
521{
522 const char *string;
523 int ret;
524
525 ret = fwnode_property_read_string(fwnode, propname, &string);
526 if (ret)
527 return ret;
528
529 ret = match_string(array, n, string);
530 if (ret < 0)
531 ret = -ENOENT;
532
533 return ret;
534}
535EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
536
537/**
538 * fwnode_property_get_reference_args() - Find a reference with arguments
539 * @fwnode: Firmware node where to look for the reference
540 * @prop: The name of the property
541 * @nargs_prop: The name of the property telling the number of
542 * arguments in the referred node. NULL if @nargs is known,
543 * otherwise @nargs is ignored. Only relevant on OF.
544 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
545 * @index: Index of the reference, from zero onwards.
546 * @args: Result structure with reference and integer arguments.
547 * May be NULL.
548 *
549 * Obtain a reference based on a named property in an fwnode, with
550 * integer arguments.
551 *
552 * The caller is responsible for calling fwnode_handle_put() on the returned
553 * @args->fwnode pointer.
554 *
555 * Return: %0 on success
556 * %-ENOENT when the index is out of bounds, the index has an empty
557 * reference or the property was not found
558 * %-EINVAL on parse error
559 */
560int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
561 const char *prop, const char *nargs_prop,
562 unsigned int nargs, unsigned int index,
563 struct fwnode_reference_args *args)
564{
565 int ret;
566
567 if (IS_ERR_OR_NULL(fwnode))
568 return -ENOENT;
569
570 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
571 nargs, index, args);
572 if (ret == 0)
573 return ret;
574
575 if (IS_ERR_OR_NULL(fwnode->secondary))
576 return ret;
577
578 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
579 nargs, index, args);
580}
581EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
582
583/**
584 * fwnode_find_reference - Find named reference to a fwnode_handle
585 * @fwnode: Firmware node where to look for the reference
586 * @name: The name of the reference
587 * @index: Index of the reference
588 *
589 * @index can be used when the named reference holds a table of references.
590 *
591 * The caller is responsible for calling fwnode_handle_put() on the returned
592 * fwnode pointer.
593 *
594 * Return: a pointer to the reference fwnode, when found. Otherwise,
595 * returns an error pointer.
596 */
597struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
598 const char *name,
599 unsigned int index)
600{
601 struct fwnode_reference_args args;
602 int ret;
603
604 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
605 &args);
606 return ret ? ERR_PTR(ret) : args.fwnode;
607}
608EXPORT_SYMBOL_GPL(fwnode_find_reference);
609
610/**
611 * fwnode_get_name - Return the name of a node
612 * @fwnode: The firmware node
613 *
614 * Return: a pointer to the node name, or %NULL.
615 */
616const char *fwnode_get_name(const struct fwnode_handle *fwnode)
617{
618 return fwnode_call_ptr_op(fwnode, get_name);
619}
620EXPORT_SYMBOL_GPL(fwnode_get_name);
621
622/**
623 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
624 * @fwnode: The firmware node
625 *
626 * Return: the prefix of a node, intended to be printed right before the node.
627 * The prefix works also as a separator between the nodes.
628 */
629const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
630{
631 return fwnode_call_ptr_op(fwnode, get_name_prefix);
632}
633
634/**
635 * fwnode_name_eq - Return true if node name is equal
636 * @fwnode: The firmware node
637 * @name: The name to which to compare the node name
638 *
639 * Compare the name provided as an argument to the name of the node, stopping
640 * the comparison at either NUL or '@' character, whichever comes first. This
641 * function is generally used for comparing node names while ignoring the
642 * possible unit address of the node.
643 *
644 * Return: true if the node name matches with the name provided in the @name
645 * argument, false otherwise.
646 */
647bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
648{
649 const char *node_name;
650 ptrdiff_t len;
651
652 node_name = fwnode_get_name(fwnode);
653 if (!node_name)
654 return false;
655
656 len = strchrnul(node_name, '@') - node_name;
657
658 return str_has_prefix(node_name, name) == len;
659}
660EXPORT_SYMBOL_GPL(fwnode_name_eq);
661
662/**
663 * fwnode_get_parent - Return parent firwmare node
664 * @fwnode: Firmware whose parent is retrieved
665 *
666 * The caller is responsible for calling fwnode_handle_put() on the returned
667 * fwnode pointer.
668 *
669 * Return: parent firmware node of the given node if possible or %NULL if no
670 * parent was available.
671 */
672struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
673{
674 return fwnode_call_ptr_op(fwnode, get_parent);
675}
676EXPORT_SYMBOL_GPL(fwnode_get_parent);
677
678/**
679 * fwnode_get_next_parent - Iterate to the node's parent
680 * @fwnode: Firmware whose parent is retrieved
681 *
682 * This is like fwnode_get_parent() except that it drops the refcount
683 * on the passed node, making it suitable for iterating through a
684 * node's parents.
685 *
686 * The caller is responsible for calling fwnode_handle_put() on the returned
687 * fwnode pointer. Note that this function also puts a reference to @fwnode
688 * unconditionally.
689 *
690 * Return: parent firmware node of the given node if possible or %NULL if no
691 * parent was available.
692 */
693struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
694{
695 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
696
697 fwnode_handle_put(fwnode);
698
699 return parent;
700}
701EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
702
703/**
704 * fwnode_count_parents - Return the number of parents a node has
705 * @fwnode: The node the parents of which are to be counted
706 *
707 * Return: the number of parents a node has.
708 */
709unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
710{
711 struct fwnode_handle *parent;
712 unsigned int count = 0;
713
714 fwnode_for_each_parent_node(fwnode, parent)
715 count++;
716
717 return count;
718}
719EXPORT_SYMBOL_GPL(fwnode_count_parents);
720
721/**
722 * fwnode_get_nth_parent - Return an nth parent of a node
723 * @fwnode: The node the parent of which is requested
724 * @depth: Distance of the parent from the node
725 *
726 * The caller is responsible for calling fwnode_handle_put() on the returned
727 * fwnode pointer.
728 *
729 * Return: the nth parent of a node. If there is no parent at the requested
730 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
731 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
732 */
733struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
734 unsigned int depth)
735{
736 struct fwnode_handle *parent;
737
738 if (depth == 0)
739 return fwnode_handle_get(fwnode);
740
741 fwnode_for_each_parent_node(fwnode, parent) {
742 if (--depth == 0)
743 return parent;
744 }
745 return NULL;
746}
747EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
748
749/**
750 * fwnode_get_next_child_node - Return the next child node handle for a node
751 * @fwnode: Firmware node to find the next child node for.
752 * @child: Handle to one of the node's child nodes or a %NULL handle.
753 *
754 * The caller is responsible for calling fwnode_handle_put() on the returned
755 * fwnode pointer. Note that this function also puts a reference to @child
756 * unconditionally.
757 */
758struct fwnode_handle *
759fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
760 struct fwnode_handle *child)
761{
762 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
763}
764EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
765
766/**
767 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
768 * @fwnode: Firmware node to find the next child node for.
769 * @child: Handle to one of the node's child nodes or a %NULL handle.
770 *
771 * The caller is responsible for calling fwnode_handle_put() on the returned
772 * fwnode pointer. Note that this function also puts a reference to @child
773 * unconditionally.
774 */
775struct fwnode_handle *
776fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
777 struct fwnode_handle *child)
778{
779 struct fwnode_handle *next_child = child;
780
781 if (IS_ERR_OR_NULL(fwnode))
782 return NULL;
783
784 do {
785 next_child = fwnode_get_next_child_node(fwnode, next_child);
786 if (!next_child)
787 return NULL;
788 } while (!fwnode_device_is_available(next_child));
789
790 return next_child;
791}
792EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
793
794/**
795 * device_get_next_child_node - Return the next child node handle for a device
796 * @dev: Device to find the next child node for.
797 * @child: Handle to one of the device's child nodes or a %NULL handle.
798 *
799 * The caller is responsible for calling fwnode_handle_put() on the returned
800 * fwnode pointer. Note that this function also puts a reference to @child
801 * unconditionally.
802 */
803struct fwnode_handle *device_get_next_child_node(const struct device *dev,
804 struct fwnode_handle *child)
805{
806 const struct fwnode_handle *fwnode = dev_fwnode(dev);
807 struct fwnode_handle *next;
808
809 if (IS_ERR_OR_NULL(fwnode))
810 return NULL;
811
812 /* Try to find a child in primary fwnode */
813 next = fwnode_get_next_child_node(fwnode, child);
814 if (next)
815 return next;
816
817 /* When no more children in primary, continue with secondary */
818 return fwnode_get_next_child_node(fwnode->secondary, child);
819}
820EXPORT_SYMBOL_GPL(device_get_next_child_node);
821
822/**
823 * fwnode_get_named_child_node - Return first matching named child node handle
824 * @fwnode: Firmware node to find the named child node for.
825 * @childname: String to match child node name against.
826 *
827 * The caller is responsible for calling fwnode_handle_put() on the returned
828 * fwnode pointer.
829 */
830struct fwnode_handle *
831fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
832 const char *childname)
833{
834 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
835}
836EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
837
838/**
839 * device_get_named_child_node - Return first matching named child node handle
840 * @dev: Device to find the named child node for.
841 * @childname: String to match child node name against.
842 *
843 * The caller is responsible for calling fwnode_handle_put() on the returned
844 * fwnode pointer.
845 */
846struct fwnode_handle *device_get_named_child_node(const struct device *dev,
847 const char *childname)
848{
849 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
850}
851EXPORT_SYMBOL_GPL(device_get_named_child_node);
852
853/**
854 * fwnode_handle_get - Obtain a reference to a device node
855 * @fwnode: Pointer to the device node to obtain the reference to.
856 *
857 * The caller is responsible for calling fwnode_handle_put() on the returned
858 * fwnode pointer.
859 *
860 * Return: the fwnode handle.
861 */
862struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
863{
864 if (!fwnode_has_op(fwnode, get))
865 return fwnode;
866
867 return fwnode_call_ptr_op(fwnode, get);
868}
869EXPORT_SYMBOL_GPL(fwnode_handle_get);
870
871/**
872 * fwnode_device_is_available - check if a device is available for use
873 * @fwnode: Pointer to the fwnode of the device.
874 *
875 * Return: true if device is available for use. Otherwise, returns false.
876 *
877 * For fwnode node types that don't implement the .device_is_available()
878 * operation, this function returns true.
879 */
880bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
881{
882 if (IS_ERR_OR_NULL(fwnode))
883 return false;
884
885 if (!fwnode_has_op(fwnode, device_is_available))
886 return true;
887
888 return fwnode_call_bool_op(fwnode, device_is_available);
889}
890EXPORT_SYMBOL_GPL(fwnode_device_is_available);
891
892/**
893 * device_get_child_node_count - return the number of child nodes for device
894 * @dev: Device to count the child nodes for
895 *
896 * Return: the number of child nodes for a given device.
897 */
898unsigned int device_get_child_node_count(const struct device *dev)
899{
900 struct fwnode_handle *child;
901 unsigned int count = 0;
902
903 device_for_each_child_node(dev, child)
904 count++;
905
906 return count;
907}
908EXPORT_SYMBOL_GPL(device_get_child_node_count);
909
910bool device_dma_supported(const struct device *dev)
911{
912 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
913}
914EXPORT_SYMBOL_GPL(device_dma_supported);
915
916enum dev_dma_attr device_get_dma_attr(const struct device *dev)
917{
918 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
919 return DEV_DMA_NOT_SUPPORTED;
920
921 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
922}
923EXPORT_SYMBOL_GPL(device_get_dma_attr);
924
925/**
926 * fwnode_get_phy_mode - Get phy mode for given firmware node
927 * @fwnode: Pointer to the given node
928 *
929 * The function gets phy interface string from property 'phy-mode' or
930 * 'phy-connection-type', and return its index in phy_modes table, or errno in
931 * error case.
932 */
933int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
934{
935 const char *pm;
936 int err, i;
937
938 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
939 if (err < 0)
940 err = fwnode_property_read_string(fwnode,
941 "phy-connection-type", &pm);
942 if (err < 0)
943 return err;
944
945 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
946 if (!strcasecmp(pm, phy_modes(i)))
947 return i;
948
949 return -ENODEV;
950}
951EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
952
953/**
954 * device_get_phy_mode - Get phy mode for given device
955 * @dev: Pointer to the given device
956 *
957 * The function gets phy interface string from property 'phy-mode' or
958 * 'phy-connection-type', and return its index in phy_modes table, or errno in
959 * error case.
960 */
961int device_get_phy_mode(struct device *dev)
962{
963 return fwnode_get_phy_mode(dev_fwnode(dev));
964}
965EXPORT_SYMBOL_GPL(device_get_phy_mode);
966
967/**
968 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
969 * @fwnode: Pointer to the firmware node
970 * @index: Index of the IO range
971 *
972 * Return: a pointer to the mapped memory.
973 */
974void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
975{
976 return fwnode_call_ptr_op(fwnode, iomap, index);
977}
978EXPORT_SYMBOL(fwnode_iomap);
979
980/**
981 * fwnode_irq_get - Get IRQ directly from a fwnode
982 * @fwnode: Pointer to the firmware node
983 * @index: Zero-based index of the IRQ
984 *
985 * Return: Linux IRQ number on success. Negative errno on failure.
986 */
987int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
988{
989 int ret;
990
991 ret = fwnode_call_int_op(fwnode, irq_get, index);
992 /* We treat mapping errors as invalid case */
993 if (ret == 0)
994 return -EINVAL;
995
996 return ret;
997}
998EXPORT_SYMBOL(fwnode_irq_get);
999
1000/**
1001 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1002 * @fwnode: Pointer to the firmware node
1003 * @name: IRQ name
1004 *
1005 * Description:
1006 * Find a match to the string @name in the 'interrupt-names' string array
1007 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1008 * number of the IRQ resource corresponding to the index of the matched
1009 * string.
1010 *
1011 * Return: Linux IRQ number on success, or negative errno otherwise.
1012 */
1013int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1014{
1015 int index;
1016
1017 if (!name)
1018 return -EINVAL;
1019
1020 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
1021 if (index < 0)
1022 return index;
1023
1024 return fwnode_irq_get(fwnode, index);
1025}
1026EXPORT_SYMBOL(fwnode_irq_get_byname);
1027
1028/**
1029 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1030 * @fwnode: Pointer to the parent firmware node
1031 * @prev: Previous endpoint node or %NULL to get the first
1032 *
1033 * The caller is responsible for calling fwnode_handle_put() on the returned
1034 * fwnode pointer. Note that this function also puts a reference to @prev
1035 * unconditionally.
1036 *
1037 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1038 * are available.
1039 */
1040struct fwnode_handle *
1041fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1042 struct fwnode_handle *prev)
1043{
1044 struct fwnode_handle *ep, *port_parent = NULL;
1045 const struct fwnode_handle *parent;
1046
1047 /*
1048 * If this function is in a loop and the previous iteration returned
1049 * an endpoint from fwnode->secondary, then we need to use the secondary
1050 * as parent rather than @fwnode.
1051 */
1052 if (prev) {
1053 port_parent = fwnode_graph_get_port_parent(prev);
1054 parent = port_parent;
1055 } else {
1056 parent = fwnode;
1057 }
1058 if (IS_ERR_OR_NULL(parent))
1059 return NULL;
1060
1061 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1062 if (ep)
1063 goto out_put_port_parent;
1064
1065 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1066
1067out_put_port_parent:
1068 fwnode_handle_put(port_parent);
1069 return ep;
1070}
1071EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1072
1073/**
1074 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1075 * @endpoint: Endpoint firmware node of the port
1076 *
1077 * The caller is responsible for calling fwnode_handle_put() on the returned
1078 * fwnode pointer.
1079 *
1080 * Return: the firmware node of the device the @endpoint belongs to.
1081 */
1082struct fwnode_handle *
1083fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1084{
1085 struct fwnode_handle *port, *parent;
1086
1087 port = fwnode_get_parent(endpoint);
1088 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1089
1090 fwnode_handle_put(port);
1091
1092 return parent;
1093}
1094EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1095
1096/**
1097 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1098 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1099 *
1100 * Extracts firmware node of a remote device the @fwnode points to.
1101 *
1102 * The caller is responsible for calling fwnode_handle_put() on the returned
1103 * fwnode pointer.
1104 */
1105struct fwnode_handle *
1106fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1107{
1108 struct fwnode_handle *endpoint, *parent;
1109
1110 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1111 parent = fwnode_graph_get_port_parent(endpoint);
1112
1113 fwnode_handle_put(endpoint);
1114
1115 return parent;
1116}
1117EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1118
1119/**
1120 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1121 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1122 *
1123 * Extracts firmware node of a remote port the @fwnode points to.
1124 *
1125 * The caller is responsible for calling fwnode_handle_put() on the returned
1126 * fwnode pointer.
1127 */
1128struct fwnode_handle *
1129fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1130{
1131 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1132}
1133EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1134
1135/**
1136 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1137 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1138 *
1139 * Extracts firmware node of a remote endpoint the @fwnode points to.
1140 *
1141 * The caller is responsible for calling fwnode_handle_put() on the returned
1142 * fwnode pointer.
1143 */
1144struct fwnode_handle *
1145fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1146{
1147 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1148}
1149EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1150
1151static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1152{
1153 struct fwnode_handle *dev_node;
1154 bool available;
1155
1156 dev_node = fwnode_graph_get_remote_port_parent(ep);
1157 available = fwnode_device_is_available(dev_node);
1158 fwnode_handle_put(dev_node);
1159
1160 return available;
1161}
1162
1163/**
1164 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1165 * @fwnode: parent fwnode_handle containing the graph
1166 * @port: identifier of the port node
1167 * @endpoint: identifier of the endpoint node under the port node
1168 * @flags: fwnode lookup flags
1169 *
1170 * The caller is responsible for calling fwnode_handle_put() on the returned
1171 * fwnode pointer.
1172 *
1173 * Return: the fwnode handle of the local endpoint corresponding the port and
1174 * endpoint IDs or %NULL if not found.
1175 *
1176 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1177 * has not been found, look for the closest endpoint ID greater than the
1178 * specified one and return the endpoint that corresponds to it, if present.
1179 *
1180 * Does not return endpoints that belong to disabled devices or endpoints that
1181 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1182 */
1183struct fwnode_handle *
1184fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1185 u32 port, u32 endpoint, unsigned long flags)
1186{
1187 struct fwnode_handle *ep, *best_ep = NULL;
1188 unsigned int best_ep_id = 0;
1189 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1190 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1191
1192 fwnode_graph_for_each_endpoint(fwnode, ep) {
1193 struct fwnode_endpoint fwnode_ep = { 0 };
1194 int ret;
1195
1196 if (enabled_only && !fwnode_graph_remote_available(ep))
1197 continue;
1198
1199 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1200 if (ret < 0)
1201 continue;
1202
1203 if (fwnode_ep.port != port)
1204 continue;
1205
1206 if (fwnode_ep.id == endpoint)
1207 return ep;
1208
1209 if (!endpoint_next)
1210 continue;
1211
1212 /*
1213 * If the endpoint that has just been found is not the first
1214 * matching one and the ID of the one found previously is closer
1215 * to the requested endpoint ID, skip it.
1216 */
1217 if (fwnode_ep.id < endpoint ||
1218 (best_ep && best_ep_id < fwnode_ep.id))
1219 continue;
1220
1221 fwnode_handle_put(best_ep);
1222 best_ep = fwnode_handle_get(ep);
1223 best_ep_id = fwnode_ep.id;
1224 }
1225
1226 return best_ep;
1227}
1228EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1229
1230/**
1231 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1232 * @fwnode: The node related to a device
1233 * @flags: fwnode lookup flags
1234 * Count endpoints in a device node.
1235 *
1236 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1237 * and endpoints connected to disabled devices are counted.
1238 */
1239unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1240 unsigned long flags)
1241{
1242 struct fwnode_handle *ep;
1243 unsigned int count = 0;
1244
1245 fwnode_graph_for_each_endpoint(fwnode, ep) {
1246 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1247 fwnode_graph_remote_available(ep))
1248 count++;
1249 }
1250
1251 return count;
1252}
1253EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1254
1255/**
1256 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1257 * @fwnode: pointer to endpoint fwnode_handle
1258 * @endpoint: pointer to the fwnode endpoint data structure
1259 *
1260 * Parse @fwnode representing a graph endpoint node and store the
1261 * information in @endpoint. The caller must hold a reference to
1262 * @fwnode.
1263 */
1264int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1265 struct fwnode_endpoint *endpoint)
1266{
1267 memset(endpoint, 0, sizeof(*endpoint));
1268
1269 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1270}
1271EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1272
1273const void *device_get_match_data(const struct device *dev)
1274{
1275 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1276}
1277EXPORT_SYMBOL_GPL(device_get_match_data);
1278
1279static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1280 const char *con_id, void *data,
1281 devcon_match_fn_t match,
1282 void **matches,
1283 unsigned int matches_len)
1284{
1285 struct fwnode_handle *node;
1286 struct fwnode_handle *ep;
1287 unsigned int count = 0;
1288 void *ret;
1289
1290 fwnode_graph_for_each_endpoint(fwnode, ep) {
1291 if (matches && count >= matches_len) {
1292 fwnode_handle_put(ep);
1293 break;
1294 }
1295
1296 node = fwnode_graph_get_remote_port_parent(ep);
1297 if (!fwnode_device_is_available(node)) {
1298 fwnode_handle_put(node);
1299 continue;
1300 }
1301
1302 ret = match(node, con_id, data);
1303 fwnode_handle_put(node);
1304 if (ret) {
1305 if (matches)
1306 matches[count] = ret;
1307 count++;
1308 }
1309 }
1310 return count;
1311}
1312
1313static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1314 const char *con_id, void *data,
1315 devcon_match_fn_t match,
1316 void **matches,
1317 unsigned int matches_len)
1318{
1319 struct fwnode_handle *node;
1320 unsigned int count = 0;
1321 unsigned int i;
1322 void *ret;
1323
1324 for (i = 0; ; i++) {
1325 if (matches && count >= matches_len)
1326 break;
1327
1328 node = fwnode_find_reference(fwnode, con_id, i);
1329 if (IS_ERR(node))
1330 break;
1331
1332 ret = match(node, NULL, data);
1333 fwnode_handle_put(node);
1334 if (ret) {
1335 if (matches)
1336 matches[count] = ret;
1337 count++;
1338 }
1339 }
1340
1341 return count;
1342}
1343
1344/**
1345 * fwnode_connection_find_match - Find connection from a device node
1346 * @fwnode: Device node with the connection
1347 * @con_id: Identifier for the connection
1348 * @data: Data for the match function
1349 * @match: Function to check and convert the connection description
1350 *
1351 * Find a connection with unique identifier @con_id between @fwnode and another
1352 * device node. @match will be used to convert the connection description to
1353 * data the caller is expecting to be returned.
1354 */
1355void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1356 const char *con_id, void *data,
1357 devcon_match_fn_t match)
1358{
1359 unsigned int count;
1360 void *ret;
1361
1362 if (!fwnode || !match)
1363 return NULL;
1364
1365 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1366 if (count)
1367 return ret;
1368
1369 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1370 return count ? ret : NULL;
1371}
1372EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1373
1374/**
1375 * fwnode_connection_find_matches - Find connections from a device node
1376 * @fwnode: Device node with the connection
1377 * @con_id: Identifier for the connection
1378 * @data: Data for the match function
1379 * @match: Function to check and convert the connection description
1380 * @matches: (Optional) array of pointers to fill with matches
1381 * @matches_len: Length of @matches
1382 *
1383 * Find up to @matches_len connections with unique identifier @con_id between
1384 * @fwnode and other device nodes. @match will be used to convert the
1385 * connection description to data the caller is expecting to be returned
1386 * through the @matches array.
1387 *
1388 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1389 * matches is returned.
1390 *
1391 * Return: Number of matches resolved, or negative errno.
1392 */
1393int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1394 const char *con_id, void *data,
1395 devcon_match_fn_t match,
1396 void **matches, unsigned int matches_len)
1397{
1398 unsigned int count_graph;
1399 unsigned int count_ref;
1400
1401 if (!fwnode || !match)
1402 return -EINVAL;
1403
1404 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1405 matches, matches_len);
1406
1407 if (matches) {
1408 matches += count_graph;
1409 matches_len -= count_graph;
1410 }
1411
1412 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1413 matches, matches_len);
1414
1415 return count_graph + count_ref;
1416}
1417EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);