Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   8 */
   9
  10#include <linux/acpi.h>
 
  11#include <linux/export.h>
  12#include <linux/kernel.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_graph.h>
  16#include <linux/of_irq.h>
  17#include <linux/property.h>
  18#include <linux/phy.h>
 
 
 
  19
  20struct fwnode_handle *__dev_fwnode(struct device *dev)
  21{
  22	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  23		of_fwnode_handle(dev->of_node) : dev->fwnode;
  24}
  25EXPORT_SYMBOL_GPL(__dev_fwnode);
  26
  27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
  28{
  29	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  30		of_fwnode_handle(dev->of_node) : dev->fwnode;
  31}
  32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
  33
  34/**
  35 * device_property_present - check if a property of a device is present
  36 * @dev: Device whose property is being checked
  37 * @propname: Name of the property
  38 *
  39 * Check if property @propname is present in the device firmware description.
  40 *
  41 * Return: true if property @propname is present. Otherwise, returns false.
  42 */
  43bool device_property_present(const struct device *dev, const char *propname)
  44{
  45	return fwnode_property_present(dev_fwnode(dev), propname);
  46}
  47EXPORT_SYMBOL_GPL(device_property_present);
  48
  49/**
  50 * fwnode_property_present - check if a property of a firmware node is present
  51 * @fwnode: Firmware node whose property to check
  52 * @propname: Name of the property
  53 *
  54 * Return: true if property @propname is present. Otherwise, returns false.
  55 */
  56bool fwnode_property_present(const struct fwnode_handle *fwnode,
  57			     const char *propname)
  58{
  59	bool ret;
  60
  61	if (IS_ERR_OR_NULL(fwnode))
  62		return false;
  63
  64	ret = fwnode_call_bool_op(fwnode, property_present, propname);
  65	if (ret)
  66		return ret;
  67
  68	return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
  69}
  70EXPORT_SYMBOL_GPL(fwnode_property_present);
  71
  72/**
  73 * device_property_read_u8_array - return a u8 array property of a device
  74 * @dev: Device to get the property of
  75 * @propname: Name of the property
  76 * @val: The values are stored here or %NULL to return the number of values
  77 * @nval: Size of the @val array
  78 *
  79 * Function reads an array of u8 properties with @propname from the device
  80 * firmware description and stores them to @val if found.
  81 *
  82 * It's recommended to call device_property_count_u8() instead of calling
  83 * this function with @val equals %NULL and @nval equals 0.
  84 *
  85 * Return: number of values if @val was %NULL,
  86 *         %0 if the property was found (success),
  87 *	   %-EINVAL if given arguments are not valid,
  88 *	   %-ENODATA if the property does not have a value,
  89 *	   %-EPROTO if the property is not an array of numbers,
  90 *	   %-EOVERFLOW if the size of the property is not as expected.
  91 *	   %-ENXIO if no suitable firmware interface is present.
  92 */
  93int device_property_read_u8_array(const struct device *dev, const char *propname,
  94				  u8 *val, size_t nval)
  95{
  96	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
  97}
  98EXPORT_SYMBOL_GPL(device_property_read_u8_array);
  99
 100/**
 101 * device_property_read_u16_array - return a u16 array property of a device
 102 * @dev: Device to get the property of
 103 * @propname: Name of the property
 104 * @val: The values are stored here or %NULL to return the number of values
 105 * @nval: Size of the @val array
 106 *
 107 * Function reads an array of u16 properties with @propname from the device
 108 * firmware description and stores them to @val if found.
 109 *
 110 * It's recommended to call device_property_count_u16() instead of calling
 111 * this function with @val equals %NULL and @nval equals 0.
 112 *
 113 * Return: number of values if @val was %NULL,
 114 *         %0 if the property was found (success),
 115 *	   %-EINVAL if given arguments are not valid,
 116 *	   %-ENODATA if the property does not have a value,
 117 *	   %-EPROTO if the property is not an array of numbers,
 118 *	   %-EOVERFLOW if the size of the property is not as expected.
 119 *	   %-ENXIO if no suitable firmware interface is present.
 120 */
 121int device_property_read_u16_array(const struct device *dev, const char *propname,
 122				   u16 *val, size_t nval)
 123{
 124	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 125}
 126EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 127
 128/**
 129 * device_property_read_u32_array - return a u32 array property of a device
 130 * @dev: Device to get the property of
 131 * @propname: Name of the property
 132 * @val: The values are stored here or %NULL to return the number of values
 133 * @nval: Size of the @val array
 134 *
 135 * Function reads an array of u32 properties with @propname from the device
 136 * firmware description and stores them to @val if found.
 137 *
 138 * It's recommended to call device_property_count_u32() instead of calling
 139 * this function with @val equals %NULL and @nval equals 0.
 140 *
 141 * Return: number of values if @val was %NULL,
 142 *         %0 if the property was found (success),
 143 *	   %-EINVAL if given arguments are not valid,
 144 *	   %-ENODATA if the property does not have a value,
 145 *	   %-EPROTO if the property is not an array of numbers,
 146 *	   %-EOVERFLOW if the size of the property is not as expected.
 147 *	   %-ENXIO if no suitable firmware interface is present.
 148 */
 149int device_property_read_u32_array(const struct device *dev, const char *propname,
 150				   u32 *val, size_t nval)
 151{
 152	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 153}
 154EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 155
 156/**
 157 * device_property_read_u64_array - return a u64 array property of a device
 158 * @dev: Device to get the property of
 159 * @propname: Name of the property
 160 * @val: The values are stored here or %NULL to return the number of values
 161 * @nval: Size of the @val array
 162 *
 163 * Function reads an array of u64 properties with @propname from the device
 164 * firmware description and stores them to @val if found.
 165 *
 166 * It's recommended to call device_property_count_u64() instead of calling
 167 * this function with @val equals %NULL and @nval equals 0.
 168 *
 169 * Return: number of values if @val was %NULL,
 170 *         %0 if the property was found (success),
 171 *	   %-EINVAL if given arguments are not valid,
 172 *	   %-ENODATA if the property does not have a value,
 173 *	   %-EPROTO if the property is not an array of numbers,
 174 *	   %-EOVERFLOW if the size of the property is not as expected.
 175 *	   %-ENXIO if no suitable firmware interface is present.
 176 */
 177int device_property_read_u64_array(const struct device *dev, const char *propname,
 178				   u64 *val, size_t nval)
 179{
 180	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 181}
 182EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 183
 184/**
 185 * device_property_read_string_array - return a string array property of device
 186 * @dev: Device to get the property of
 187 * @propname: Name of the property
 188 * @val: The values are stored here or %NULL to return the number of values
 189 * @nval: Size of the @val array
 190 *
 191 * Function reads an array of string properties with @propname from the device
 192 * firmware description and stores them to @val if found.
 193 *
 194 * It's recommended to call device_property_string_array_count() instead of calling
 195 * this function with @val equals %NULL and @nval equals 0.
 196 *
 197 * Return: number of values read on success if @val is non-NULL,
 198 *	   number of values available on success if @val is NULL,
 199 *	   %-EINVAL if given arguments are not valid,
 200 *	   %-ENODATA if the property does not have a value,
 201 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 202 *	   %-EOVERFLOW if the size of the property is not as expected.
 203 *	   %-ENXIO if no suitable firmware interface is present.
 204 */
 205int device_property_read_string_array(const struct device *dev, const char *propname,
 206				      const char **val, size_t nval)
 207{
 208	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 209}
 210EXPORT_SYMBOL_GPL(device_property_read_string_array);
 211
 212/**
 213 * device_property_read_string - return a string property of a device
 214 * @dev: Device to get the property of
 215 * @propname: Name of the property
 216 * @val: The value is stored here
 217 *
 218 * Function reads property @propname from the device firmware description and
 219 * stores the value into @val if found. The value is checked to be a string.
 220 *
 221 * Return: %0 if the property was found (success),
 222 *	   %-EINVAL if given arguments are not valid,
 223 *	   %-ENODATA if the property does not have a value,
 224 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 225 *	   %-ENXIO if no suitable firmware interface is present.
 226 */
 227int device_property_read_string(const struct device *dev, const char *propname,
 228				const char **val)
 229{
 230	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 231}
 232EXPORT_SYMBOL_GPL(device_property_read_string);
 233
 234/**
 235 * device_property_match_string - find a string in an array and return index
 236 * @dev: Device to get the property of
 237 * @propname: Name of the property holding the array
 238 * @string: String to look for
 239 *
 240 * Find a given string in a string array and if it is found return the
 241 * index back.
 242 *
 243 * Return: index, starting from %0, if the property was found (success),
 244 *	   %-EINVAL if given arguments are not valid,
 245 *	   %-ENODATA if the property does not have a value,
 246 *	   %-EPROTO if the property is not an array of strings,
 247 *	   %-ENXIO if no suitable firmware interface is present.
 248 */
 249int device_property_match_string(const struct device *dev, const char *propname,
 250				 const char *string)
 251{
 252	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 253}
 254EXPORT_SYMBOL_GPL(device_property_match_string);
 255
 256static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 257					  const char *propname,
 258					  unsigned int elem_size, void *val,
 259					  size_t nval)
 260{
 261	int ret;
 262
 263	if (IS_ERR_OR_NULL(fwnode))
 264		return -EINVAL;
 265
 266	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 267				 elem_size, val, nval);
 268	if (ret != -EINVAL)
 269		return ret;
 270
 271	return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
 272				  elem_size, val, nval);
 273}
 274
 275/**
 276 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 277 * @fwnode: Firmware node to get the property of
 278 * @propname: Name of the property
 279 * @val: The values are stored here or %NULL to return the number of values
 280 * @nval: Size of the @val array
 281 *
 282 * Read an array of u8 properties with @propname from @fwnode and stores them to
 283 * @val if found.
 284 *
 285 * It's recommended to call fwnode_property_count_u8() instead of calling
 286 * this function with @val equals %NULL and @nval equals 0.
 287 *
 288 * Return: number of values if @val was %NULL,
 289 *         %0 if the property was found (success),
 290 *	   %-EINVAL if given arguments are not valid,
 291 *	   %-ENODATA if the property does not have a value,
 292 *	   %-EPROTO if the property is not an array of numbers,
 293 *	   %-EOVERFLOW if the size of the property is not as expected,
 294 *	   %-ENXIO if no suitable firmware interface is present.
 295 */
 296int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 297				  const char *propname, u8 *val, size_t nval)
 298{
 299	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 300					      val, nval);
 301}
 302EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 303
 304/**
 305 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 306 * @fwnode: Firmware node to get the property of
 307 * @propname: Name of the property
 308 * @val: The values are stored here or %NULL to return the number of values
 309 * @nval: Size of the @val array
 310 *
 311 * Read an array of u16 properties with @propname from @fwnode and store them to
 312 * @val if found.
 313 *
 314 * It's recommended to call fwnode_property_count_u16() instead of calling
 315 * this function with @val equals %NULL and @nval equals 0.
 316 *
 317 * Return: number of values if @val was %NULL,
 318 *         %0 if the property was found (success),
 319 *	   %-EINVAL if given arguments are not valid,
 320 *	   %-ENODATA if the property does not have a value,
 321 *	   %-EPROTO if the property is not an array of numbers,
 322 *	   %-EOVERFLOW if the size of the property is not as expected,
 323 *	   %-ENXIO if no suitable firmware interface is present.
 324 */
 325int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 326				   const char *propname, u16 *val, size_t nval)
 327{
 328	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 329					      val, nval);
 330}
 331EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 332
 333/**
 334 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 335 * @fwnode: Firmware node to get the property of
 336 * @propname: Name of the property
 337 * @val: The values are stored here or %NULL to return the number of values
 338 * @nval: Size of the @val array
 339 *
 340 * Read an array of u32 properties with @propname from @fwnode store them to
 341 * @val if found.
 342 *
 343 * It's recommended to call fwnode_property_count_u32() instead of calling
 344 * this function with @val equals %NULL and @nval equals 0.
 345 *
 346 * Return: number of values if @val was %NULL,
 347 *         %0 if the property was found (success),
 348 *	   %-EINVAL if given arguments are not valid,
 349 *	   %-ENODATA if the property does not have a value,
 350 *	   %-EPROTO if the property is not an array of numbers,
 351 *	   %-EOVERFLOW if the size of the property is not as expected,
 352 *	   %-ENXIO if no suitable firmware interface is present.
 353 */
 354int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 355				   const char *propname, u32 *val, size_t nval)
 356{
 357	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 358					      val, nval);
 359}
 360EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 361
 362/**
 363 * fwnode_property_read_u64_array - return a u64 array property firmware node
 364 * @fwnode: Firmware node to get the property of
 365 * @propname: Name of the property
 366 * @val: The values are stored here or %NULL to return the number of values
 367 * @nval: Size of the @val array
 368 *
 369 * Read an array of u64 properties with @propname from @fwnode and store them to
 370 * @val if found.
 371 *
 372 * It's recommended to call fwnode_property_count_u64() instead of calling
 373 * this function with @val equals %NULL and @nval equals 0.
 374 *
 375 * Return: number of values if @val was %NULL,
 376 *         %0 if the property was found (success),
 377 *	   %-EINVAL if given arguments are not valid,
 378 *	   %-ENODATA if the property does not have a value,
 379 *	   %-EPROTO if the property is not an array of numbers,
 380 *	   %-EOVERFLOW if the size of the property is not as expected,
 381 *	   %-ENXIO if no suitable firmware interface is present.
 382 */
 383int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 384				   const char *propname, u64 *val, size_t nval)
 385{
 386	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 387					      val, nval);
 388}
 389EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 390
 391/**
 392 * fwnode_property_read_string_array - return string array property of a node
 393 * @fwnode: Firmware node to get the property of
 394 * @propname: Name of the property
 395 * @val: The values are stored here or %NULL to return the number of values
 396 * @nval: Size of the @val array
 397 *
 398 * Read an string list property @propname from the given firmware node and store
 399 * them to @val if found.
 400 *
 401 * It's recommended to call fwnode_property_string_array_count() instead of calling
 402 * this function with @val equals %NULL and @nval equals 0.
 403 *
 404 * Return: number of values read on success if @val is non-NULL,
 405 *	   number of values available on success if @val is NULL,
 406 *	   %-EINVAL if given arguments are not valid,
 407 *	   %-ENODATA if the property does not have a value,
 408 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 409 *	   %-EOVERFLOW if the size of the property is not as expected,
 410 *	   %-ENXIO if no suitable firmware interface is present.
 411 */
 412int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 413				      const char *propname, const char **val,
 414				      size_t nval)
 415{
 416	int ret;
 417
 418	if (IS_ERR_OR_NULL(fwnode))
 419		return -EINVAL;
 420
 421	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 422				 val, nval);
 423	if (ret != -EINVAL)
 424		return ret;
 425
 426	return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
 427				  val, nval);
 428}
 429EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 430
 431/**
 432 * fwnode_property_read_string - return a string property of a firmware node
 433 * @fwnode: Firmware node to get the property of
 434 * @propname: Name of the property
 435 * @val: The value is stored here
 436 *
 437 * Read property @propname from the given firmware node and store the value into
 438 * @val if found.  The value is checked to be a string.
 439 *
 440 * Return: %0 if the property was found (success),
 441 *	   %-EINVAL if given arguments are not valid,
 442 *	   %-ENODATA if the property does not have a value,
 443 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 444 *	   %-ENXIO if no suitable firmware interface is present.
 445 */
 446int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 447				const char *propname, const char **val)
 448{
 449	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 450
 451	return ret < 0 ? ret : 0;
 452}
 453EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 454
 455/**
 456 * fwnode_property_match_string - find a string in an array and return index
 457 * @fwnode: Firmware node to get the property of
 458 * @propname: Name of the property holding the array
 459 * @string: String to look for
 460 *
 461 * Find a given string in a string array and if it is found return the
 462 * index back.
 463 *
 464 * Return: index, starting from %0, if the property was found (success),
 465 *	   %-EINVAL if given arguments are not valid,
 466 *	   %-ENODATA if the property does not have a value,
 467 *	   %-EPROTO if the property is not an array of strings,
 468 *	   %-ENXIO if no suitable firmware interface is present.
 469 */
 470int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 471	const char *propname, const char *string)
 472{
 473	const char **values;
 474	int nval, ret;
 475
 476	nval = fwnode_property_string_array_count(fwnode, propname);
 477	if (nval < 0)
 478		return nval;
 479
 480	if (nval == 0)
 481		return -ENODATA;
 482
 483	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 484	if (!values)
 485		return -ENOMEM;
 486
 487	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 488	if (ret < 0)
 489		goto out_free;
 490
 491	ret = match_string(values, nval, string);
 492	if (ret < 0)
 493		ret = -ENODATA;
 494
 495out_free:
 496	kfree(values);
 497	return ret;
 498}
 499EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 500
 501/**
 502 * fwnode_property_match_property_string - find a property string value in an array and return index
 503 * @fwnode: Firmware node to get the property of
 504 * @propname: Name of the property holding the string value
 505 * @array: String array to search in
 506 * @n: Size of the @array
 507 *
 508 * Find a property string value in a given @array and if it is found return
 509 * the index back.
 510 *
 511 * Return: index, starting from %0, if the string value was found in the @array (success),
 512 *	   %-ENOENT when the string value was not found in the @array,
 513 *	   %-EINVAL if given arguments are not valid,
 514 *	   %-ENODATA if the property does not have a value,
 515 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 516 *	   %-ENXIO if no suitable firmware interface is present.
 517 */
 518int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
 519	const char *propname, const char * const *array, size_t n)
 520{
 521	const char *string;
 522	int ret;
 523
 524	ret = fwnode_property_read_string(fwnode, propname, &string);
 525	if (ret)
 526		return ret;
 527
 528	ret = match_string(array, n, string);
 529	if (ret < 0)
 530		ret = -ENOENT;
 531
 532	return ret;
 533}
 534EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
 535
 536/**
 537 * fwnode_property_get_reference_args() - Find a reference with arguments
 538 * @fwnode:	Firmware node where to look for the reference
 539 * @prop:	The name of the property
 540 * @nargs_prop:	The name of the property telling the number of
 541 *		arguments in the referred node. NULL if @nargs is known,
 542 *		otherwise @nargs is ignored. Only relevant on OF.
 543 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 544 * @index:	Index of the reference, from zero onwards.
 545 * @args:	Result structure with reference and integer arguments.
 546 *		May be NULL.
 547 *
 548 * Obtain a reference based on a named property in an fwnode, with
 549 * integer arguments.
 550 *
 551 * The caller is responsible for calling fwnode_handle_put() on the returned
 552 * @args->fwnode pointer.
 553 *
 554 * Return: %0 on success
 555 *	    %-ENOENT when the index is out of bounds, the index has an empty
 556 *		     reference or the property was not found
 557 *	    %-EINVAL on parse error
 558 */
 559int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 560				       const char *prop, const char *nargs_prop,
 561				       unsigned int nargs, unsigned int index,
 562				       struct fwnode_reference_args *args)
 563{
 564	int ret;
 565
 566	if (IS_ERR_OR_NULL(fwnode))
 567		return -ENOENT;
 568
 569	ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 570				 nargs, index, args);
 571	if (ret == 0)
 572		return ret;
 573
 574	if (IS_ERR_OR_NULL(fwnode->secondary))
 575		return ret;
 576
 577	return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
 578				  nargs, index, args);
 579}
 580EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 581
 582/**
 583 * fwnode_find_reference - Find named reference to a fwnode_handle
 584 * @fwnode: Firmware node where to look for the reference
 585 * @name: The name of the reference
 586 * @index: Index of the reference
 587 *
 588 * @index can be used when the named reference holds a table of references.
 589 *
 590 * The caller is responsible for calling fwnode_handle_put() on the returned
 591 * fwnode pointer.
 592 *
 593 * Return: a pointer to the reference fwnode, when found. Otherwise,
 594 * returns an error pointer.
 595 */
 596struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
 597					    const char *name,
 598					    unsigned int index)
 599{
 600	struct fwnode_reference_args args;
 601	int ret;
 602
 603	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
 604						 &args);
 605	return ret ? ERR_PTR(ret) : args.fwnode;
 606}
 607EXPORT_SYMBOL_GPL(fwnode_find_reference);
 608
 609/**
 610 * fwnode_get_name - Return the name of a node
 611 * @fwnode: The firmware node
 612 *
 613 * Return: a pointer to the node name, or %NULL.
 614 */
 615const char *fwnode_get_name(const struct fwnode_handle *fwnode)
 616{
 617	return fwnode_call_ptr_op(fwnode, get_name);
 618}
 619EXPORT_SYMBOL_GPL(fwnode_get_name);
 620
 621/**
 622 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
 623 * @fwnode: The firmware node
 624 *
 625 * Return: the prefix of a node, intended to be printed right before the node.
 626 * The prefix works also as a separator between the nodes.
 627 */
 628const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 629{
 630	return fwnode_call_ptr_op(fwnode, get_name_prefix);
 631}
 632
 633/**
 634 * fwnode_name_eq - Return true if node name is equal
 635 * @fwnode: The firmware node
 636 * @name: The name to which to compare the node name
 637 *
 638 * Compare the name provided as an argument to the name of the node, stopping
 639 * the comparison at either NUL or '@' character, whichever comes first. This
 640 * function is generally used for comparing node names while ignoring the
 641 * possible unit address of the node.
 642 *
 643 * Return: true if the node name matches with the name provided in the @name
 644 * argument, false otherwise.
 645 */
 646bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
 647{
 648	const char *node_name;
 649	ptrdiff_t len;
 650
 651	node_name = fwnode_get_name(fwnode);
 652	if (!node_name)
 653		return false;
 654
 655	len = strchrnul(node_name, '@') - node_name;
 656
 657	return str_has_prefix(node_name, name) == len;
 658}
 659EXPORT_SYMBOL_GPL(fwnode_name_eq);
 660
 661/**
 662 * fwnode_get_parent - Return parent firwmare node
 663 * @fwnode: Firmware whose parent is retrieved
 664 *
 665 * The caller is responsible for calling fwnode_handle_put() on the returned
 666 * fwnode pointer.
 667 *
 668 * Return: parent firmware node of the given node if possible or %NULL if no
 669 * parent was available.
 670 */
 671struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 672{
 673	return fwnode_call_ptr_op(fwnode, get_parent);
 674}
 675EXPORT_SYMBOL_GPL(fwnode_get_parent);
 676
 677/**
 678 * fwnode_get_next_parent - Iterate to the node's parent
 679 * @fwnode: Firmware whose parent is retrieved
 680 *
 681 * This is like fwnode_get_parent() except that it drops the refcount
 682 * on the passed node, making it suitable for iterating through a
 683 * node's parents.
 684 *
 685 * The caller is responsible for calling fwnode_handle_put() on the returned
 686 * fwnode pointer. Note that this function also puts a reference to @fwnode
 687 * unconditionally.
 688 *
 689 * Return: parent firmware node of the given node if possible or %NULL if no
 690 * parent was available.
 691 */
 692struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 693{
 694	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 695
 696	fwnode_handle_put(fwnode);
 697
 698	return parent;
 699}
 700EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 701
 702/**
 703 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
 704 * @fwnode: firmware node
 705 *
 706 * Given a firmware node (@fwnode), this function finds its closest ancestor
 707 * firmware node that has a corresponding struct device and returns that struct
 708 * device.
 709 *
 710 * The caller is responsible for calling put_device() on the returned device
 711 * pointer.
 712 *
 713 * Return: a pointer to the device of the @fwnode's closest ancestor.
 714 */
 715struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
 716{
 717	struct fwnode_handle *parent;
 718	struct device *dev;
 719
 720	fwnode_for_each_parent_node(fwnode, parent) {
 721		dev = get_dev_from_fwnode(parent);
 722		if (dev) {
 723			fwnode_handle_put(parent);
 724			return dev;
 725		}
 726	}
 727	return NULL;
 728}
 729
 730/**
 731 * fwnode_count_parents - Return the number of parents a node has
 732 * @fwnode: The node the parents of which are to be counted
 733 *
 734 * Return: the number of parents a node has.
 735 */
 736unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
 737{
 738	struct fwnode_handle *parent;
 739	unsigned int count = 0;
 740
 741	fwnode_for_each_parent_node(fwnode, parent)
 742		count++;
 743
 744	return count;
 745}
 746EXPORT_SYMBOL_GPL(fwnode_count_parents);
 747
 748/**
 749 * fwnode_get_nth_parent - Return an nth parent of a node
 750 * @fwnode: The node the parent of which is requested
 751 * @depth: Distance of the parent from the node
 752 *
 753 * The caller is responsible for calling fwnode_handle_put() on the returned
 754 * fwnode pointer.
 755 *
 756 * Return: the nth parent of a node. If there is no parent at the requested
 757 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
 758 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
 759 */
 760struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
 761					    unsigned int depth)
 762{
 763	struct fwnode_handle *parent;
 764
 765	if (depth == 0)
 766		return fwnode_handle_get(fwnode);
 767
 768	fwnode_for_each_parent_node(fwnode, parent) {
 769		if (--depth == 0)
 770			return parent;
 771	}
 772	return NULL;
 773}
 774EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
 775
 776/**
 777 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
 778 * @ancestor: Firmware which is tested for being an ancestor
 779 * @child: Firmware which is tested for being the child
 780 *
 781 * A node is considered an ancestor of itself too.
 782 *
 783 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
 784 */
 785bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor, const struct fwnode_handle *child)
 786{
 787	struct fwnode_handle *parent;
 788
 789	if (IS_ERR_OR_NULL(ancestor))
 790		return false;
 791
 792	if (child == ancestor)
 793		return true;
 794
 795	fwnode_for_each_parent_node(child, parent) {
 796		if (parent == ancestor) {
 797			fwnode_handle_put(parent);
 798			return true;
 799		}
 800	}
 801	return false;
 802}
 803
 804/**
 805 * fwnode_get_next_child_node - Return the next child node handle for a node
 806 * @fwnode: Firmware node to find the next child node for.
 807 * @child: Handle to one of the node's child nodes or a %NULL handle.
 808 *
 809 * The caller is responsible for calling fwnode_handle_put() on the returned
 810 * fwnode pointer. Note that this function also puts a reference to @child
 811 * unconditionally.
 812 */
 813struct fwnode_handle *
 814fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 815			   struct fwnode_handle *child)
 816{
 817	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 818}
 819EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 820
 821/**
 822 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
 823 * @fwnode: Firmware node to find the next child node for.
 824 * @child: Handle to one of the node's child nodes or a %NULL handle.
 825 *
 826 * The caller is responsible for calling fwnode_handle_put() on the returned
 827 * fwnode pointer. Note that this function also puts a reference to @child
 828 * unconditionally.
 829 */
 830struct fwnode_handle *
 831fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 832				     struct fwnode_handle *child)
 833{
 834	struct fwnode_handle *next_child = child;
 835
 836	if (IS_ERR_OR_NULL(fwnode))
 837		return NULL;
 838
 839	do {
 840		next_child = fwnode_get_next_child_node(fwnode, next_child);
 841		if (!next_child)
 842			return NULL;
 843	} while (!fwnode_device_is_available(next_child));
 844
 845	return next_child;
 846}
 847EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
 848
 849/**
 850 * device_get_next_child_node - Return the next child node handle for a device
 851 * @dev: Device to find the next child node for.
 852 * @child: Handle to one of the device's child nodes or a %NULL handle.
 853 *
 854 * The caller is responsible for calling fwnode_handle_put() on the returned
 855 * fwnode pointer. Note that this function also puts a reference to @child
 856 * unconditionally.
 857 */
 858struct fwnode_handle *device_get_next_child_node(const struct device *dev,
 859						 struct fwnode_handle *child)
 860{
 861	const struct fwnode_handle *fwnode = dev_fwnode(dev);
 862	struct fwnode_handle *next;
 863
 864	if (IS_ERR_OR_NULL(fwnode))
 865		return NULL;
 866
 867	/* Try to find a child in primary fwnode */
 868	next = fwnode_get_next_child_node(fwnode, child);
 869	if (next)
 870		return next;
 871
 872	/* When no more children in primary, continue with secondary */
 873	return fwnode_get_next_child_node(fwnode->secondary, child);
 874}
 875EXPORT_SYMBOL_GPL(device_get_next_child_node);
 876
 877/**
 878 * fwnode_get_named_child_node - Return first matching named child node handle
 879 * @fwnode: Firmware node to find the named child node for.
 880 * @childname: String to match child node name against.
 881 *
 882 * The caller is responsible for calling fwnode_handle_put() on the returned
 883 * fwnode pointer.
 884 */
 885struct fwnode_handle *
 886fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 887			    const char *childname)
 888{
 889	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
 890}
 891EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
 892
 893/**
 894 * device_get_named_child_node - Return first matching named child node handle
 895 * @dev: Device to find the named child node for.
 896 * @childname: String to match child node name against.
 897 *
 898 * The caller is responsible for calling fwnode_handle_put() on the returned
 899 * fwnode pointer.
 900 */
 901struct fwnode_handle *device_get_named_child_node(const struct device *dev,
 902						  const char *childname)
 903{
 904	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
 905}
 906EXPORT_SYMBOL_GPL(device_get_named_child_node);
 907
 908/**
 909 * fwnode_handle_get - Obtain a reference to a device node
 910 * @fwnode: Pointer to the device node to obtain the reference to.
 911 *
 912 * The caller is responsible for calling fwnode_handle_put() on the returned
 913 * fwnode pointer.
 914 *
 915 * Return: the fwnode handle.
 916 */
 917struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
 918{
 919	if (!fwnode_has_op(fwnode, get))
 920		return fwnode;
 921
 922	return fwnode_call_ptr_op(fwnode, get);
 923}
 924EXPORT_SYMBOL_GPL(fwnode_handle_get);
 925
 926/**
 927 * fwnode_handle_put - Drop reference to a device node
 928 * @fwnode: Pointer to the device node to drop the reference to.
 929 *
 930 * This has to be used when terminating device_for_each_child_node() iteration
 931 * with break or return to prevent stale device node references from being left
 932 * behind.
 933 */
 934void fwnode_handle_put(struct fwnode_handle *fwnode)
 935{
 936	fwnode_call_void_op(fwnode, put);
 937}
 938EXPORT_SYMBOL_GPL(fwnode_handle_put);
 939
 940/**
 941 * fwnode_device_is_available - check if a device is available for use
 942 * @fwnode: Pointer to the fwnode of the device.
 943 *
 944 * Return: true if device is available for use. Otherwise, returns false.
 945 *
 946 * For fwnode node types that don't implement the .device_is_available()
 947 * operation, this function returns true.
 948 */
 949bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
 950{
 951	if (IS_ERR_OR_NULL(fwnode))
 952		return false;
 953
 954	if (!fwnode_has_op(fwnode, device_is_available))
 955		return true;
 956
 957	return fwnode_call_bool_op(fwnode, device_is_available);
 958}
 959EXPORT_SYMBOL_GPL(fwnode_device_is_available);
 960
 961/**
 962 * device_get_child_node_count - return the number of child nodes for device
 963 * @dev: Device to cound the child nodes for
 964 *
 965 * Return: the number of child nodes for a given device.
 966 */
 967unsigned int device_get_child_node_count(const struct device *dev)
 968{
 969	struct fwnode_handle *child;
 970	unsigned int count = 0;
 971
 972	device_for_each_child_node(dev, child)
 973		count++;
 974
 975	return count;
 976}
 977EXPORT_SYMBOL_GPL(device_get_child_node_count);
 978
 979bool device_dma_supported(const struct device *dev)
 980{
 981	return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
 982}
 983EXPORT_SYMBOL_GPL(device_dma_supported);
 984
 985enum dev_dma_attr device_get_dma_attr(const struct device *dev)
 986{
 987	if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
 988		return DEV_DMA_NOT_SUPPORTED;
 989
 990	return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
 991}
 992EXPORT_SYMBOL_GPL(device_get_dma_attr);
 993
 994/**
 995 * fwnode_get_phy_mode - Get phy mode for given firmware node
 996 * @fwnode:	Pointer to the given node
 997 *
 998 * The function gets phy interface string from property 'phy-mode' or
 999 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1000 * error case.
1001 */
1002int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
1003{
1004	const char *pm;
1005	int err, i;
1006
1007	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
1008	if (err < 0)
1009		err = fwnode_property_read_string(fwnode,
1010						  "phy-connection-type", &pm);
1011	if (err < 0)
1012		return err;
1013
1014	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1015		if (!strcasecmp(pm, phy_modes(i)))
1016			return i;
1017
1018	return -ENODEV;
1019}
1020EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
1021
1022/**
1023 * device_get_phy_mode - Get phy mode for given device
1024 * @dev:	Pointer to the given device
1025 *
1026 * The function gets phy interface string from property 'phy-mode' or
1027 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1028 * error case.
1029 */
1030int device_get_phy_mode(struct device *dev)
1031{
1032	return fwnode_get_phy_mode(dev_fwnode(dev));
1033}
1034EXPORT_SYMBOL_GPL(device_get_phy_mode);
1035
1036/**
1037 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
1038 * @fwnode:	Pointer to the firmware node
1039 * @index:	Index of the IO range
1040 *
1041 * Return: a pointer to the mapped memory.
1042 */
1043void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
1044{
1045	return fwnode_call_ptr_op(fwnode, iomap, index);
1046}
1047EXPORT_SYMBOL(fwnode_iomap);
1048
1049/**
1050 * fwnode_irq_get - Get IRQ directly from a fwnode
1051 * @fwnode:	Pointer to the firmware node
1052 * @index:	Zero-based index of the IRQ
1053 *
1054 * Return: Linux IRQ number on success. Negative errno on failure.
1055 */
1056int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1057{
1058	int ret;
1059
1060	ret = fwnode_call_int_op(fwnode, irq_get, index);
1061	/* We treat mapping errors as invalid case */
1062	if (ret == 0)
1063		return -EINVAL;
1064
1065	return ret;
1066}
1067EXPORT_SYMBOL(fwnode_irq_get);
1068
1069/**
1070 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1071 * @fwnode:	Pointer to the firmware node
1072 * @name:	IRQ name
1073 *
1074 * Description:
1075 * Find a match to the string @name in the 'interrupt-names' string array
1076 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1077 * number of the IRQ resource corresponding to the index of the matched
1078 * string.
1079 *
1080 * Return: Linux IRQ number on success, or negative errno otherwise.
1081 */
1082int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1083{
1084	int index;
1085
1086	if (!name)
1087		return -EINVAL;
1088
1089	index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
1090	if (index < 0)
1091		return index;
1092
1093	return fwnode_irq_get(fwnode, index);
1094}
1095EXPORT_SYMBOL(fwnode_irq_get_byname);
1096
1097/**
1098 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1099 * @fwnode: Pointer to the parent firmware node
1100 * @prev: Previous endpoint node or %NULL to get the first
1101 *
1102 * The caller is responsible for calling fwnode_handle_put() on the returned
1103 * fwnode pointer. Note that this function also puts a reference to @prev
1104 * unconditionally.
1105 *
1106 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1107 * are available.
1108 */
1109struct fwnode_handle *
1110fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1111			       struct fwnode_handle *prev)
1112{
1113	struct fwnode_handle *ep, *port_parent = NULL;
1114	const struct fwnode_handle *parent;
1115
1116	/*
1117	 * If this function is in a loop and the previous iteration returned
1118	 * an endpoint from fwnode->secondary, then we need to use the secondary
1119	 * as parent rather than @fwnode.
1120	 */
1121	if (prev) {
1122		port_parent = fwnode_graph_get_port_parent(prev);
1123		parent = port_parent;
1124	} else {
1125		parent = fwnode;
1126	}
1127	if (IS_ERR_OR_NULL(parent))
1128		return NULL;
1129
1130	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1131	if (ep)
1132		goto out_put_port_parent;
1133
1134	ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1135
1136out_put_port_parent:
1137	fwnode_handle_put(port_parent);
1138	return ep;
1139}
1140EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1141
1142/**
1143 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1144 * @endpoint: Endpoint firmware node of the port
1145 *
1146 * The caller is responsible for calling fwnode_handle_put() on the returned
1147 * fwnode pointer.
1148 *
1149 * Return: the firmware node of the device the @endpoint belongs to.
1150 */
1151struct fwnode_handle *
1152fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1153{
1154	struct fwnode_handle *port, *parent;
1155
1156	port = fwnode_get_parent(endpoint);
1157	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1158
1159	fwnode_handle_put(port);
1160
1161	return parent;
1162}
1163EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1164
1165/**
1166 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1167 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1168 *
1169 * Extracts firmware node of a remote device the @fwnode points to.
1170 *
1171 * The caller is responsible for calling fwnode_handle_put() on the returned
1172 * fwnode pointer.
1173 */
1174struct fwnode_handle *
1175fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1176{
1177	struct fwnode_handle *endpoint, *parent;
1178
1179	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1180	parent = fwnode_graph_get_port_parent(endpoint);
1181
1182	fwnode_handle_put(endpoint);
1183
1184	return parent;
1185}
1186EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1187
1188/**
1189 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1190 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1191 *
1192 * Extracts firmware node of a remote port the @fwnode points to.
1193 *
1194 * The caller is responsible for calling fwnode_handle_put() on the returned
1195 * fwnode pointer.
1196 */
1197struct fwnode_handle *
1198fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1199{
1200	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1201}
1202EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1203
1204/**
1205 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1206 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1207 *
1208 * Extracts firmware node of a remote endpoint the @fwnode points to.
1209 *
1210 * The caller is responsible for calling fwnode_handle_put() on the returned
1211 * fwnode pointer.
1212 */
1213struct fwnode_handle *
1214fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1215{
1216	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1217}
1218EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1219
1220static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1221{
1222	struct fwnode_handle *dev_node;
1223	bool available;
1224
1225	dev_node = fwnode_graph_get_remote_port_parent(ep);
1226	available = fwnode_device_is_available(dev_node);
1227	fwnode_handle_put(dev_node);
1228
1229	return available;
1230}
1231
1232/**
1233 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1234 * @fwnode: parent fwnode_handle containing the graph
1235 * @port: identifier of the port node
1236 * @endpoint: identifier of the endpoint node under the port node
1237 * @flags: fwnode lookup flags
1238 *
1239 * The caller is responsible for calling fwnode_handle_put() on the returned
1240 * fwnode pointer.
1241 *
1242 * Return: the fwnode handle of the local endpoint corresponding the port and
1243 * endpoint IDs or %NULL if not found.
1244 *
1245 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1246 * has not been found, look for the closest endpoint ID greater than the
1247 * specified one and return the endpoint that corresponds to it, if present.
1248 *
1249 * Does not return endpoints that belong to disabled devices or endpoints that
1250 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1251 */
1252struct fwnode_handle *
1253fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1254				u32 port, u32 endpoint, unsigned long flags)
1255{
1256	struct fwnode_handle *ep, *best_ep = NULL;
1257	unsigned int best_ep_id = 0;
1258	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1259	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1260
1261	fwnode_graph_for_each_endpoint(fwnode, ep) {
1262		struct fwnode_endpoint fwnode_ep = { 0 };
1263		int ret;
1264
1265		if (enabled_only && !fwnode_graph_remote_available(ep))
1266			continue;
1267
1268		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1269		if (ret < 0)
1270			continue;
1271
1272		if (fwnode_ep.port != port)
1273			continue;
1274
1275		if (fwnode_ep.id == endpoint)
1276			return ep;
1277
1278		if (!endpoint_next)
1279			continue;
1280
1281		/*
1282		 * If the endpoint that has just been found is not the first
1283		 * matching one and the ID of the one found previously is closer
1284		 * to the requested endpoint ID, skip it.
1285		 */
1286		if (fwnode_ep.id < endpoint ||
1287		    (best_ep && best_ep_id < fwnode_ep.id))
1288			continue;
1289
1290		fwnode_handle_put(best_ep);
1291		best_ep = fwnode_handle_get(ep);
1292		best_ep_id = fwnode_ep.id;
1293	}
1294
1295	return best_ep;
1296}
1297EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1298
1299/**
1300 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1301 * @fwnode: The node related to a device
1302 * @flags: fwnode lookup flags
1303 * Count endpoints in a device node.
1304 *
1305 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1306 * and endpoints connected to disabled devices are counted.
1307 */
1308unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1309					     unsigned long flags)
1310{
1311	struct fwnode_handle *ep;
1312	unsigned int count = 0;
1313
1314	fwnode_graph_for_each_endpoint(fwnode, ep) {
1315		if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1316		    fwnode_graph_remote_available(ep))
1317			count++;
1318	}
1319
1320	return count;
1321}
1322EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1323
1324/**
1325 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1326 * @fwnode: pointer to endpoint fwnode_handle
1327 * @endpoint: pointer to the fwnode endpoint data structure
1328 *
1329 * Parse @fwnode representing a graph endpoint node and store the
1330 * information in @endpoint. The caller must hold a reference to
1331 * @fwnode.
1332 */
1333int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1334				struct fwnode_endpoint *endpoint)
1335{
1336	memset(endpoint, 0, sizeof(*endpoint));
1337
1338	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1339}
1340EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1341
1342const void *device_get_match_data(const struct device *dev)
1343{
1344	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1345}
1346EXPORT_SYMBOL_GPL(device_get_match_data);
1347
1348static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1349						const char *con_id, void *data,
1350						devcon_match_fn_t match,
1351						void **matches,
1352						unsigned int matches_len)
1353{
1354	struct fwnode_handle *node;
1355	struct fwnode_handle *ep;
1356	unsigned int count = 0;
1357	void *ret;
1358
1359	fwnode_graph_for_each_endpoint(fwnode, ep) {
1360		if (matches && count >= matches_len) {
1361			fwnode_handle_put(ep);
1362			break;
1363		}
1364
1365		node = fwnode_graph_get_remote_port_parent(ep);
1366		if (!fwnode_device_is_available(node)) {
1367			fwnode_handle_put(node);
1368			continue;
1369		}
1370
1371		ret = match(node, con_id, data);
1372		fwnode_handle_put(node);
1373		if (ret) {
1374			if (matches)
1375				matches[count] = ret;
1376			count++;
1377		}
1378	}
1379	return count;
1380}
1381
1382static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1383					  const char *con_id, void *data,
1384					  devcon_match_fn_t match,
1385					  void **matches,
1386					  unsigned int matches_len)
1387{
1388	struct fwnode_handle *node;
1389	unsigned int count = 0;
1390	unsigned int i;
1391	void *ret;
1392
1393	for (i = 0; ; i++) {
1394		if (matches && count >= matches_len)
1395			break;
1396
1397		node = fwnode_find_reference(fwnode, con_id, i);
1398		if (IS_ERR(node))
1399			break;
1400
1401		ret = match(node, NULL, data);
1402		fwnode_handle_put(node);
1403		if (ret) {
1404			if (matches)
1405				matches[count] = ret;
1406			count++;
1407		}
1408	}
1409
1410	return count;
1411}
1412
1413/**
1414 * fwnode_connection_find_match - Find connection from a device node
1415 * @fwnode: Device node with the connection
1416 * @con_id: Identifier for the connection
1417 * @data: Data for the match function
1418 * @match: Function to check and convert the connection description
1419 *
1420 * Find a connection with unique identifier @con_id between @fwnode and another
1421 * device node. @match will be used to convert the connection description to
1422 * data the caller is expecting to be returned.
1423 */
1424void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1425				   const char *con_id, void *data,
1426				   devcon_match_fn_t match)
1427{
1428	unsigned int count;
1429	void *ret;
1430
1431	if (!fwnode || !match)
1432		return NULL;
1433
1434	count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1435	if (count)
1436		return ret;
1437
1438	count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1439	return count ? ret : NULL;
1440}
1441EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1442
1443/**
1444 * fwnode_connection_find_matches - Find connections from a device node
1445 * @fwnode: Device node with the connection
1446 * @con_id: Identifier for the connection
1447 * @data: Data for the match function
1448 * @match: Function to check and convert the connection description
1449 * @matches: (Optional) array of pointers to fill with matches
1450 * @matches_len: Length of @matches
1451 *
1452 * Find up to @matches_len connections with unique identifier @con_id between
1453 * @fwnode and other device nodes. @match will be used to convert the
1454 * connection description to data the caller is expecting to be returned
1455 * through the @matches array.
1456 *
1457 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1458 * matches is returned.
1459 *
1460 * Return: Number of matches resolved, or negative errno.
1461 */
1462int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1463				   const char *con_id, void *data,
1464				   devcon_match_fn_t match,
1465				   void **matches, unsigned int matches_len)
1466{
1467	unsigned int count_graph;
1468	unsigned int count_ref;
1469
1470	if (!fwnode || !match)
1471		return -EINVAL;
1472
1473	count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1474						  matches, matches_len);
1475
1476	if (matches) {
1477		matches += count_graph;
1478		matches_len -= count_graph;
1479	}
1480
1481	count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1482					  matches, matches_len);
1483
1484	return count_graph + count_ref;
1485}
1486EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   8 */
   9
  10#include <linux/device.h>
  11#include <linux/err.h>
  12#include <linux/export.h>
  13#include <linux/kconfig.h>
  14#include <linux/of.h>
 
 
 
  15#include <linux/property.h>
  16#include <linux/phy.h>
  17#include <linux/slab.h>
  18#include <linux/string.h>
  19#include <linux/types.h>
  20
  21struct fwnode_handle *__dev_fwnode(struct device *dev)
  22{
  23	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  24		of_fwnode_handle(dev->of_node) : dev->fwnode;
  25}
  26EXPORT_SYMBOL_GPL(__dev_fwnode);
  27
  28const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
  29{
  30	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  31		of_fwnode_handle(dev->of_node) : dev->fwnode;
  32}
  33EXPORT_SYMBOL_GPL(__dev_fwnode_const);
  34
  35/**
  36 * device_property_present - check if a property of a device is present
  37 * @dev: Device whose property is being checked
  38 * @propname: Name of the property
  39 *
  40 * Check if property @propname is present in the device firmware description.
  41 *
  42 * Return: true if property @propname is present. Otherwise, returns false.
  43 */
  44bool device_property_present(const struct device *dev, const char *propname)
  45{
  46	return fwnode_property_present(dev_fwnode(dev), propname);
  47}
  48EXPORT_SYMBOL_GPL(device_property_present);
  49
  50/**
  51 * fwnode_property_present - check if a property of a firmware node is present
  52 * @fwnode: Firmware node whose property to check
  53 * @propname: Name of the property
  54 *
  55 * Return: true if property @propname is present. Otherwise, returns false.
  56 */
  57bool fwnode_property_present(const struct fwnode_handle *fwnode,
  58			     const char *propname)
  59{
  60	bool ret;
  61
  62	if (IS_ERR_OR_NULL(fwnode))
  63		return false;
  64
  65	ret = fwnode_call_bool_op(fwnode, property_present, propname);
  66	if (ret)
  67		return ret;
  68
  69	return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
  70}
  71EXPORT_SYMBOL_GPL(fwnode_property_present);
  72
  73/**
  74 * device_property_read_u8_array - return a u8 array property of a device
  75 * @dev: Device to get the property of
  76 * @propname: Name of the property
  77 * @val: The values are stored here or %NULL to return the number of values
  78 * @nval: Size of the @val array
  79 *
  80 * Function reads an array of u8 properties with @propname from the device
  81 * firmware description and stores them to @val if found.
  82 *
  83 * It's recommended to call device_property_count_u8() instead of calling
  84 * this function with @val equals %NULL and @nval equals 0.
  85 *
  86 * Return: number of values if @val was %NULL,
  87 *         %0 if the property was found (success),
  88 *	   %-EINVAL if given arguments are not valid,
  89 *	   %-ENODATA if the property does not have a value,
  90 *	   %-EPROTO if the property is not an array of numbers,
  91 *	   %-EOVERFLOW if the size of the property is not as expected.
  92 *	   %-ENXIO if no suitable firmware interface is present.
  93 */
  94int device_property_read_u8_array(const struct device *dev, const char *propname,
  95				  u8 *val, size_t nval)
  96{
  97	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
  98}
  99EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 100
 101/**
 102 * device_property_read_u16_array - return a u16 array property of a device
 103 * @dev: Device to get the property of
 104 * @propname: Name of the property
 105 * @val: The values are stored here or %NULL to return the number of values
 106 * @nval: Size of the @val array
 107 *
 108 * Function reads an array of u16 properties with @propname from the device
 109 * firmware description and stores them to @val if found.
 110 *
 111 * It's recommended to call device_property_count_u16() instead of calling
 112 * this function with @val equals %NULL and @nval equals 0.
 113 *
 114 * Return: number of values if @val was %NULL,
 115 *         %0 if the property was found (success),
 116 *	   %-EINVAL if given arguments are not valid,
 117 *	   %-ENODATA if the property does not have a value,
 118 *	   %-EPROTO if the property is not an array of numbers,
 119 *	   %-EOVERFLOW if the size of the property is not as expected.
 120 *	   %-ENXIO if no suitable firmware interface is present.
 121 */
 122int device_property_read_u16_array(const struct device *dev, const char *propname,
 123				   u16 *val, size_t nval)
 124{
 125	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 126}
 127EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 128
 129/**
 130 * device_property_read_u32_array - return a u32 array property of a device
 131 * @dev: Device to get the property of
 132 * @propname: Name of the property
 133 * @val: The values are stored here or %NULL to return the number of values
 134 * @nval: Size of the @val array
 135 *
 136 * Function reads an array of u32 properties with @propname from the device
 137 * firmware description and stores them to @val if found.
 138 *
 139 * It's recommended to call device_property_count_u32() instead of calling
 140 * this function with @val equals %NULL and @nval equals 0.
 141 *
 142 * Return: number of values if @val was %NULL,
 143 *         %0 if the property was found (success),
 144 *	   %-EINVAL if given arguments are not valid,
 145 *	   %-ENODATA if the property does not have a value,
 146 *	   %-EPROTO if the property is not an array of numbers,
 147 *	   %-EOVERFLOW if the size of the property is not as expected.
 148 *	   %-ENXIO if no suitable firmware interface is present.
 149 */
 150int device_property_read_u32_array(const struct device *dev, const char *propname,
 151				   u32 *val, size_t nval)
 152{
 153	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 154}
 155EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 156
 157/**
 158 * device_property_read_u64_array - return a u64 array property of a device
 159 * @dev: Device to get the property of
 160 * @propname: Name of the property
 161 * @val: The values are stored here or %NULL to return the number of values
 162 * @nval: Size of the @val array
 163 *
 164 * Function reads an array of u64 properties with @propname from the device
 165 * firmware description and stores them to @val if found.
 166 *
 167 * It's recommended to call device_property_count_u64() instead of calling
 168 * this function with @val equals %NULL and @nval equals 0.
 169 *
 170 * Return: number of values if @val was %NULL,
 171 *         %0 if the property was found (success),
 172 *	   %-EINVAL if given arguments are not valid,
 173 *	   %-ENODATA if the property does not have a value,
 174 *	   %-EPROTO if the property is not an array of numbers,
 175 *	   %-EOVERFLOW if the size of the property is not as expected.
 176 *	   %-ENXIO if no suitable firmware interface is present.
 177 */
 178int device_property_read_u64_array(const struct device *dev, const char *propname,
 179				   u64 *val, size_t nval)
 180{
 181	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 182}
 183EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 184
 185/**
 186 * device_property_read_string_array - return a string array property of device
 187 * @dev: Device to get the property of
 188 * @propname: Name of the property
 189 * @val: The values are stored here or %NULL to return the number of values
 190 * @nval: Size of the @val array
 191 *
 192 * Function reads an array of string properties with @propname from the device
 193 * firmware description and stores them to @val if found.
 194 *
 195 * It's recommended to call device_property_string_array_count() instead of calling
 196 * this function with @val equals %NULL and @nval equals 0.
 197 *
 198 * Return: number of values read on success if @val is non-NULL,
 199 *	   number of values available on success if @val is NULL,
 200 *	   %-EINVAL if given arguments are not valid,
 201 *	   %-ENODATA if the property does not have a value,
 202 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 203 *	   %-EOVERFLOW if the size of the property is not as expected.
 204 *	   %-ENXIO if no suitable firmware interface is present.
 205 */
 206int device_property_read_string_array(const struct device *dev, const char *propname,
 207				      const char **val, size_t nval)
 208{
 209	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 210}
 211EXPORT_SYMBOL_GPL(device_property_read_string_array);
 212
 213/**
 214 * device_property_read_string - return a string property of a device
 215 * @dev: Device to get the property of
 216 * @propname: Name of the property
 217 * @val: The value is stored here
 218 *
 219 * Function reads property @propname from the device firmware description and
 220 * stores the value into @val if found. The value is checked to be a string.
 221 *
 222 * Return: %0 if the property was found (success),
 223 *	   %-EINVAL if given arguments are not valid,
 224 *	   %-ENODATA if the property does not have a value,
 225 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 226 *	   %-ENXIO if no suitable firmware interface is present.
 227 */
 228int device_property_read_string(const struct device *dev, const char *propname,
 229				const char **val)
 230{
 231	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 232}
 233EXPORT_SYMBOL_GPL(device_property_read_string);
 234
 235/**
 236 * device_property_match_string - find a string in an array and return index
 237 * @dev: Device to get the property of
 238 * @propname: Name of the property holding the array
 239 * @string: String to look for
 240 *
 241 * Find a given string in a string array and if it is found return the
 242 * index back.
 243 *
 244 * Return: index, starting from %0, if the property was found (success),
 245 *	   %-EINVAL if given arguments are not valid,
 246 *	   %-ENODATA if the property does not have a value,
 247 *	   %-EPROTO if the property is not an array of strings,
 248 *	   %-ENXIO if no suitable firmware interface is present.
 249 */
 250int device_property_match_string(const struct device *dev, const char *propname,
 251				 const char *string)
 252{
 253	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 254}
 255EXPORT_SYMBOL_GPL(device_property_match_string);
 256
 257static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 258					  const char *propname,
 259					  unsigned int elem_size, void *val,
 260					  size_t nval)
 261{
 262	int ret;
 263
 264	if (IS_ERR_OR_NULL(fwnode))
 265		return -EINVAL;
 266
 267	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 268				 elem_size, val, nval);
 269	if (ret != -EINVAL)
 270		return ret;
 271
 272	return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
 273				  elem_size, val, nval);
 274}
 275
 276/**
 277 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 278 * @fwnode: Firmware node to get the property of
 279 * @propname: Name of the property
 280 * @val: The values are stored here or %NULL to return the number of values
 281 * @nval: Size of the @val array
 282 *
 283 * Read an array of u8 properties with @propname from @fwnode and stores them to
 284 * @val if found.
 285 *
 286 * It's recommended to call fwnode_property_count_u8() instead of calling
 287 * this function with @val equals %NULL and @nval equals 0.
 288 *
 289 * Return: number of values if @val was %NULL,
 290 *         %0 if the property was found (success),
 291 *	   %-EINVAL if given arguments are not valid,
 292 *	   %-ENODATA if the property does not have a value,
 293 *	   %-EPROTO if the property is not an array of numbers,
 294 *	   %-EOVERFLOW if the size of the property is not as expected,
 295 *	   %-ENXIO if no suitable firmware interface is present.
 296 */
 297int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 298				  const char *propname, u8 *val, size_t nval)
 299{
 300	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 301					      val, nval);
 302}
 303EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 304
 305/**
 306 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 307 * @fwnode: Firmware node to get the property of
 308 * @propname: Name of the property
 309 * @val: The values are stored here or %NULL to return the number of values
 310 * @nval: Size of the @val array
 311 *
 312 * Read an array of u16 properties with @propname from @fwnode and store them to
 313 * @val if found.
 314 *
 315 * It's recommended to call fwnode_property_count_u16() instead of calling
 316 * this function with @val equals %NULL and @nval equals 0.
 317 *
 318 * Return: number of values if @val was %NULL,
 319 *         %0 if the property was found (success),
 320 *	   %-EINVAL if given arguments are not valid,
 321 *	   %-ENODATA if the property does not have a value,
 322 *	   %-EPROTO if the property is not an array of numbers,
 323 *	   %-EOVERFLOW if the size of the property is not as expected,
 324 *	   %-ENXIO if no suitable firmware interface is present.
 325 */
 326int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 327				   const char *propname, u16 *val, size_t nval)
 328{
 329	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 330					      val, nval);
 331}
 332EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 333
 334/**
 335 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 336 * @fwnode: Firmware node to get the property of
 337 * @propname: Name of the property
 338 * @val: The values are stored here or %NULL to return the number of values
 339 * @nval: Size of the @val array
 340 *
 341 * Read an array of u32 properties with @propname from @fwnode store them to
 342 * @val if found.
 343 *
 344 * It's recommended to call fwnode_property_count_u32() instead of calling
 345 * this function with @val equals %NULL and @nval equals 0.
 346 *
 347 * Return: number of values if @val was %NULL,
 348 *         %0 if the property was found (success),
 349 *	   %-EINVAL if given arguments are not valid,
 350 *	   %-ENODATA if the property does not have a value,
 351 *	   %-EPROTO if the property is not an array of numbers,
 352 *	   %-EOVERFLOW if the size of the property is not as expected,
 353 *	   %-ENXIO if no suitable firmware interface is present.
 354 */
 355int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 356				   const char *propname, u32 *val, size_t nval)
 357{
 358	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 359					      val, nval);
 360}
 361EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 362
 363/**
 364 * fwnode_property_read_u64_array - return a u64 array property firmware node
 365 * @fwnode: Firmware node to get the property of
 366 * @propname: Name of the property
 367 * @val: The values are stored here or %NULL to return the number of values
 368 * @nval: Size of the @val array
 369 *
 370 * Read an array of u64 properties with @propname from @fwnode and store them to
 371 * @val if found.
 372 *
 373 * It's recommended to call fwnode_property_count_u64() instead of calling
 374 * this function with @val equals %NULL and @nval equals 0.
 375 *
 376 * Return: number of values if @val was %NULL,
 377 *         %0 if the property was found (success),
 378 *	   %-EINVAL if given arguments are not valid,
 379 *	   %-ENODATA if the property does not have a value,
 380 *	   %-EPROTO if the property is not an array of numbers,
 381 *	   %-EOVERFLOW if the size of the property is not as expected,
 382 *	   %-ENXIO if no suitable firmware interface is present.
 383 */
 384int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 385				   const char *propname, u64 *val, size_t nval)
 386{
 387	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 388					      val, nval);
 389}
 390EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 391
 392/**
 393 * fwnode_property_read_string_array - return string array property of a node
 394 * @fwnode: Firmware node to get the property of
 395 * @propname: Name of the property
 396 * @val: The values are stored here or %NULL to return the number of values
 397 * @nval: Size of the @val array
 398 *
 399 * Read an string list property @propname from the given firmware node and store
 400 * them to @val if found.
 401 *
 402 * It's recommended to call fwnode_property_string_array_count() instead of calling
 403 * this function with @val equals %NULL and @nval equals 0.
 404 *
 405 * Return: number of values read on success if @val is non-NULL,
 406 *	   number of values available on success if @val is NULL,
 407 *	   %-EINVAL if given arguments are not valid,
 408 *	   %-ENODATA if the property does not have a value,
 409 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 410 *	   %-EOVERFLOW if the size of the property is not as expected,
 411 *	   %-ENXIO if no suitable firmware interface is present.
 412 */
 413int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 414				      const char *propname, const char **val,
 415				      size_t nval)
 416{
 417	int ret;
 418
 419	if (IS_ERR_OR_NULL(fwnode))
 420		return -EINVAL;
 421
 422	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 423				 val, nval);
 424	if (ret != -EINVAL)
 425		return ret;
 426
 427	return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
 428				  val, nval);
 429}
 430EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 431
 432/**
 433 * fwnode_property_read_string - return a string property of a firmware node
 434 * @fwnode: Firmware node to get the property of
 435 * @propname: Name of the property
 436 * @val: The value is stored here
 437 *
 438 * Read property @propname from the given firmware node and store the value into
 439 * @val if found.  The value is checked to be a string.
 440 *
 441 * Return: %0 if the property was found (success),
 442 *	   %-EINVAL if given arguments are not valid,
 443 *	   %-ENODATA if the property does not have a value,
 444 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 445 *	   %-ENXIO if no suitable firmware interface is present.
 446 */
 447int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 448				const char *propname, const char **val)
 449{
 450	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 451
 452	return ret < 0 ? ret : 0;
 453}
 454EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 455
 456/**
 457 * fwnode_property_match_string - find a string in an array and return index
 458 * @fwnode: Firmware node to get the property of
 459 * @propname: Name of the property holding the array
 460 * @string: String to look for
 461 *
 462 * Find a given string in a string array and if it is found return the
 463 * index back.
 464 *
 465 * Return: index, starting from %0, if the property was found (success),
 466 *	   %-EINVAL if given arguments are not valid,
 467 *	   %-ENODATA if the property does not have a value,
 468 *	   %-EPROTO if the property is not an array of strings,
 469 *	   %-ENXIO if no suitable firmware interface is present.
 470 */
 471int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 472	const char *propname, const char *string)
 473{
 474	const char **values;
 475	int nval, ret;
 476
 477	nval = fwnode_property_string_array_count(fwnode, propname);
 478	if (nval < 0)
 479		return nval;
 480
 481	if (nval == 0)
 482		return -ENODATA;
 483
 484	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 485	if (!values)
 486		return -ENOMEM;
 487
 488	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 489	if (ret < 0)
 490		goto out_free;
 491
 492	ret = match_string(values, nval, string);
 493	if (ret < 0)
 494		ret = -ENODATA;
 495
 496out_free:
 497	kfree(values);
 498	return ret;
 499}
 500EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 501
 502/**
 503 * fwnode_property_match_property_string - find a property string value in an array and return index
 504 * @fwnode: Firmware node to get the property of
 505 * @propname: Name of the property holding the string value
 506 * @array: String array to search in
 507 * @n: Size of the @array
 508 *
 509 * Find a property string value in a given @array and if it is found return
 510 * the index back.
 511 *
 512 * Return: index, starting from %0, if the string value was found in the @array (success),
 513 *	   %-ENOENT when the string value was not found in the @array,
 514 *	   %-EINVAL if given arguments are not valid,
 515 *	   %-ENODATA if the property does not have a value,
 516 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 517 *	   %-ENXIO if no suitable firmware interface is present.
 518 */
 519int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
 520	const char *propname, const char * const *array, size_t n)
 521{
 522	const char *string;
 523	int ret;
 524
 525	ret = fwnode_property_read_string(fwnode, propname, &string);
 526	if (ret)
 527		return ret;
 528
 529	ret = match_string(array, n, string);
 530	if (ret < 0)
 531		ret = -ENOENT;
 532
 533	return ret;
 534}
 535EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
 536
 537/**
 538 * fwnode_property_get_reference_args() - Find a reference with arguments
 539 * @fwnode:	Firmware node where to look for the reference
 540 * @prop:	The name of the property
 541 * @nargs_prop:	The name of the property telling the number of
 542 *		arguments in the referred node. NULL if @nargs is known,
 543 *		otherwise @nargs is ignored. Only relevant on OF.
 544 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 545 * @index:	Index of the reference, from zero onwards.
 546 * @args:	Result structure with reference and integer arguments.
 547 *		May be NULL.
 548 *
 549 * Obtain a reference based on a named property in an fwnode, with
 550 * integer arguments.
 551 *
 552 * The caller is responsible for calling fwnode_handle_put() on the returned
 553 * @args->fwnode pointer.
 554 *
 555 * Return: %0 on success
 556 *	    %-ENOENT when the index is out of bounds, the index has an empty
 557 *		     reference or the property was not found
 558 *	    %-EINVAL on parse error
 559 */
 560int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 561				       const char *prop, const char *nargs_prop,
 562				       unsigned int nargs, unsigned int index,
 563				       struct fwnode_reference_args *args)
 564{
 565	int ret;
 566
 567	if (IS_ERR_OR_NULL(fwnode))
 568		return -ENOENT;
 569
 570	ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 571				 nargs, index, args);
 572	if (ret == 0)
 573		return ret;
 574
 575	if (IS_ERR_OR_NULL(fwnode->secondary))
 576		return ret;
 577
 578	return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
 579				  nargs, index, args);
 580}
 581EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 582
 583/**
 584 * fwnode_find_reference - Find named reference to a fwnode_handle
 585 * @fwnode: Firmware node where to look for the reference
 586 * @name: The name of the reference
 587 * @index: Index of the reference
 588 *
 589 * @index can be used when the named reference holds a table of references.
 590 *
 591 * The caller is responsible for calling fwnode_handle_put() on the returned
 592 * fwnode pointer.
 593 *
 594 * Return: a pointer to the reference fwnode, when found. Otherwise,
 595 * returns an error pointer.
 596 */
 597struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
 598					    const char *name,
 599					    unsigned int index)
 600{
 601	struct fwnode_reference_args args;
 602	int ret;
 603
 604	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
 605						 &args);
 606	return ret ? ERR_PTR(ret) : args.fwnode;
 607}
 608EXPORT_SYMBOL_GPL(fwnode_find_reference);
 609
 610/**
 611 * fwnode_get_name - Return the name of a node
 612 * @fwnode: The firmware node
 613 *
 614 * Return: a pointer to the node name, or %NULL.
 615 */
 616const char *fwnode_get_name(const struct fwnode_handle *fwnode)
 617{
 618	return fwnode_call_ptr_op(fwnode, get_name);
 619}
 620EXPORT_SYMBOL_GPL(fwnode_get_name);
 621
 622/**
 623 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
 624 * @fwnode: The firmware node
 625 *
 626 * Return: the prefix of a node, intended to be printed right before the node.
 627 * The prefix works also as a separator between the nodes.
 628 */
 629const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 630{
 631	return fwnode_call_ptr_op(fwnode, get_name_prefix);
 632}
 633
 634/**
 635 * fwnode_name_eq - Return true if node name is equal
 636 * @fwnode: The firmware node
 637 * @name: The name to which to compare the node name
 638 *
 639 * Compare the name provided as an argument to the name of the node, stopping
 640 * the comparison at either NUL or '@' character, whichever comes first. This
 641 * function is generally used for comparing node names while ignoring the
 642 * possible unit address of the node.
 643 *
 644 * Return: true if the node name matches with the name provided in the @name
 645 * argument, false otherwise.
 646 */
 647bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
 648{
 649	const char *node_name;
 650	ptrdiff_t len;
 651
 652	node_name = fwnode_get_name(fwnode);
 653	if (!node_name)
 654		return false;
 655
 656	len = strchrnul(node_name, '@') - node_name;
 657
 658	return str_has_prefix(node_name, name) == len;
 659}
 660EXPORT_SYMBOL_GPL(fwnode_name_eq);
 661
 662/**
 663 * fwnode_get_parent - Return parent firwmare node
 664 * @fwnode: Firmware whose parent is retrieved
 665 *
 666 * The caller is responsible for calling fwnode_handle_put() on the returned
 667 * fwnode pointer.
 668 *
 669 * Return: parent firmware node of the given node if possible or %NULL if no
 670 * parent was available.
 671 */
 672struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 673{
 674	return fwnode_call_ptr_op(fwnode, get_parent);
 675}
 676EXPORT_SYMBOL_GPL(fwnode_get_parent);
 677
 678/**
 679 * fwnode_get_next_parent - Iterate to the node's parent
 680 * @fwnode: Firmware whose parent is retrieved
 681 *
 682 * This is like fwnode_get_parent() except that it drops the refcount
 683 * on the passed node, making it suitable for iterating through a
 684 * node's parents.
 685 *
 686 * The caller is responsible for calling fwnode_handle_put() on the returned
 687 * fwnode pointer. Note that this function also puts a reference to @fwnode
 688 * unconditionally.
 689 *
 690 * Return: parent firmware node of the given node if possible or %NULL if no
 691 * parent was available.
 692 */
 693struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 694{
 695	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 696
 697	fwnode_handle_put(fwnode);
 698
 699	return parent;
 700}
 701EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 702
 703/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704 * fwnode_count_parents - Return the number of parents a node has
 705 * @fwnode: The node the parents of which are to be counted
 706 *
 707 * Return: the number of parents a node has.
 708 */
 709unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
 710{
 711	struct fwnode_handle *parent;
 712	unsigned int count = 0;
 713
 714	fwnode_for_each_parent_node(fwnode, parent)
 715		count++;
 716
 717	return count;
 718}
 719EXPORT_SYMBOL_GPL(fwnode_count_parents);
 720
 721/**
 722 * fwnode_get_nth_parent - Return an nth parent of a node
 723 * @fwnode: The node the parent of which is requested
 724 * @depth: Distance of the parent from the node
 725 *
 726 * The caller is responsible for calling fwnode_handle_put() on the returned
 727 * fwnode pointer.
 728 *
 729 * Return: the nth parent of a node. If there is no parent at the requested
 730 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
 731 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
 732 */
 733struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
 734					    unsigned int depth)
 735{
 736	struct fwnode_handle *parent;
 737
 738	if (depth == 0)
 739		return fwnode_handle_get(fwnode);
 740
 741	fwnode_for_each_parent_node(fwnode, parent) {
 742		if (--depth == 0)
 743			return parent;
 744	}
 745	return NULL;
 746}
 747EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
 748
 749/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750 * fwnode_get_next_child_node - Return the next child node handle for a node
 751 * @fwnode: Firmware node to find the next child node for.
 752 * @child: Handle to one of the node's child nodes or a %NULL handle.
 753 *
 754 * The caller is responsible for calling fwnode_handle_put() on the returned
 755 * fwnode pointer. Note that this function also puts a reference to @child
 756 * unconditionally.
 757 */
 758struct fwnode_handle *
 759fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 760			   struct fwnode_handle *child)
 761{
 762	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 763}
 764EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 765
 766/**
 767 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
 768 * @fwnode: Firmware node to find the next child node for.
 769 * @child: Handle to one of the node's child nodes or a %NULL handle.
 770 *
 771 * The caller is responsible for calling fwnode_handle_put() on the returned
 772 * fwnode pointer. Note that this function also puts a reference to @child
 773 * unconditionally.
 774 */
 775struct fwnode_handle *
 776fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 777				     struct fwnode_handle *child)
 778{
 779	struct fwnode_handle *next_child = child;
 780
 781	if (IS_ERR_OR_NULL(fwnode))
 782		return NULL;
 783
 784	do {
 785		next_child = fwnode_get_next_child_node(fwnode, next_child);
 786		if (!next_child)
 787			return NULL;
 788	} while (!fwnode_device_is_available(next_child));
 789
 790	return next_child;
 791}
 792EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
 793
 794/**
 795 * device_get_next_child_node - Return the next child node handle for a device
 796 * @dev: Device to find the next child node for.
 797 * @child: Handle to one of the device's child nodes or a %NULL handle.
 798 *
 799 * The caller is responsible for calling fwnode_handle_put() on the returned
 800 * fwnode pointer. Note that this function also puts a reference to @child
 801 * unconditionally.
 802 */
 803struct fwnode_handle *device_get_next_child_node(const struct device *dev,
 804						 struct fwnode_handle *child)
 805{
 806	const struct fwnode_handle *fwnode = dev_fwnode(dev);
 807	struct fwnode_handle *next;
 808
 809	if (IS_ERR_OR_NULL(fwnode))
 810		return NULL;
 811
 812	/* Try to find a child in primary fwnode */
 813	next = fwnode_get_next_child_node(fwnode, child);
 814	if (next)
 815		return next;
 816
 817	/* When no more children in primary, continue with secondary */
 818	return fwnode_get_next_child_node(fwnode->secondary, child);
 819}
 820EXPORT_SYMBOL_GPL(device_get_next_child_node);
 821
 822/**
 823 * fwnode_get_named_child_node - Return first matching named child node handle
 824 * @fwnode: Firmware node to find the named child node for.
 825 * @childname: String to match child node name against.
 826 *
 827 * The caller is responsible for calling fwnode_handle_put() on the returned
 828 * fwnode pointer.
 829 */
 830struct fwnode_handle *
 831fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 832			    const char *childname)
 833{
 834	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
 835}
 836EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
 837
 838/**
 839 * device_get_named_child_node - Return first matching named child node handle
 840 * @dev: Device to find the named child node for.
 841 * @childname: String to match child node name against.
 842 *
 843 * The caller is responsible for calling fwnode_handle_put() on the returned
 844 * fwnode pointer.
 845 */
 846struct fwnode_handle *device_get_named_child_node(const struct device *dev,
 847						  const char *childname)
 848{
 849	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
 850}
 851EXPORT_SYMBOL_GPL(device_get_named_child_node);
 852
 853/**
 854 * fwnode_handle_get - Obtain a reference to a device node
 855 * @fwnode: Pointer to the device node to obtain the reference to.
 856 *
 857 * The caller is responsible for calling fwnode_handle_put() on the returned
 858 * fwnode pointer.
 859 *
 860 * Return: the fwnode handle.
 861 */
 862struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
 863{
 864	if (!fwnode_has_op(fwnode, get))
 865		return fwnode;
 866
 867	return fwnode_call_ptr_op(fwnode, get);
 868}
 869EXPORT_SYMBOL_GPL(fwnode_handle_get);
 870
 871/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872 * fwnode_device_is_available - check if a device is available for use
 873 * @fwnode: Pointer to the fwnode of the device.
 874 *
 875 * Return: true if device is available for use. Otherwise, returns false.
 876 *
 877 * For fwnode node types that don't implement the .device_is_available()
 878 * operation, this function returns true.
 879 */
 880bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
 881{
 882	if (IS_ERR_OR_NULL(fwnode))
 883		return false;
 884
 885	if (!fwnode_has_op(fwnode, device_is_available))
 886		return true;
 887
 888	return fwnode_call_bool_op(fwnode, device_is_available);
 889}
 890EXPORT_SYMBOL_GPL(fwnode_device_is_available);
 891
 892/**
 893 * device_get_child_node_count - return the number of child nodes for device
 894 * @dev: Device to count the child nodes for
 895 *
 896 * Return: the number of child nodes for a given device.
 897 */
 898unsigned int device_get_child_node_count(const struct device *dev)
 899{
 900	struct fwnode_handle *child;
 901	unsigned int count = 0;
 902
 903	device_for_each_child_node(dev, child)
 904		count++;
 905
 906	return count;
 907}
 908EXPORT_SYMBOL_GPL(device_get_child_node_count);
 909
 910bool device_dma_supported(const struct device *dev)
 911{
 912	return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
 913}
 914EXPORT_SYMBOL_GPL(device_dma_supported);
 915
 916enum dev_dma_attr device_get_dma_attr(const struct device *dev)
 917{
 918	if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
 919		return DEV_DMA_NOT_SUPPORTED;
 920
 921	return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
 922}
 923EXPORT_SYMBOL_GPL(device_get_dma_attr);
 924
 925/**
 926 * fwnode_get_phy_mode - Get phy mode for given firmware node
 927 * @fwnode:	Pointer to the given node
 928 *
 929 * The function gets phy interface string from property 'phy-mode' or
 930 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 931 * error case.
 932 */
 933int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
 934{
 935	const char *pm;
 936	int err, i;
 937
 938	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
 939	if (err < 0)
 940		err = fwnode_property_read_string(fwnode,
 941						  "phy-connection-type", &pm);
 942	if (err < 0)
 943		return err;
 944
 945	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 946		if (!strcasecmp(pm, phy_modes(i)))
 947			return i;
 948
 949	return -ENODEV;
 950}
 951EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
 952
 953/**
 954 * device_get_phy_mode - Get phy mode for given device
 955 * @dev:	Pointer to the given device
 956 *
 957 * The function gets phy interface string from property 'phy-mode' or
 958 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 959 * error case.
 960 */
 961int device_get_phy_mode(struct device *dev)
 962{
 963	return fwnode_get_phy_mode(dev_fwnode(dev));
 964}
 965EXPORT_SYMBOL_GPL(device_get_phy_mode);
 966
 967/**
 968 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
 969 * @fwnode:	Pointer to the firmware node
 970 * @index:	Index of the IO range
 971 *
 972 * Return: a pointer to the mapped memory.
 973 */
 974void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
 975{
 976	return fwnode_call_ptr_op(fwnode, iomap, index);
 977}
 978EXPORT_SYMBOL(fwnode_iomap);
 979
 980/**
 981 * fwnode_irq_get - Get IRQ directly from a fwnode
 982 * @fwnode:	Pointer to the firmware node
 983 * @index:	Zero-based index of the IRQ
 984 *
 985 * Return: Linux IRQ number on success. Negative errno on failure.
 986 */
 987int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
 988{
 989	int ret;
 990
 991	ret = fwnode_call_int_op(fwnode, irq_get, index);
 992	/* We treat mapping errors as invalid case */
 993	if (ret == 0)
 994		return -EINVAL;
 995
 996	return ret;
 997}
 998EXPORT_SYMBOL(fwnode_irq_get);
 999
1000/**
1001 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1002 * @fwnode:	Pointer to the firmware node
1003 * @name:	IRQ name
1004 *
1005 * Description:
1006 * Find a match to the string @name in the 'interrupt-names' string array
1007 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1008 * number of the IRQ resource corresponding to the index of the matched
1009 * string.
1010 *
1011 * Return: Linux IRQ number on success, or negative errno otherwise.
1012 */
1013int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1014{
1015	int index;
1016
1017	if (!name)
1018		return -EINVAL;
1019
1020	index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
1021	if (index < 0)
1022		return index;
1023
1024	return fwnode_irq_get(fwnode, index);
1025}
1026EXPORT_SYMBOL(fwnode_irq_get_byname);
1027
1028/**
1029 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1030 * @fwnode: Pointer to the parent firmware node
1031 * @prev: Previous endpoint node or %NULL to get the first
1032 *
1033 * The caller is responsible for calling fwnode_handle_put() on the returned
1034 * fwnode pointer. Note that this function also puts a reference to @prev
1035 * unconditionally.
1036 *
1037 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1038 * are available.
1039 */
1040struct fwnode_handle *
1041fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1042			       struct fwnode_handle *prev)
1043{
1044	struct fwnode_handle *ep, *port_parent = NULL;
1045	const struct fwnode_handle *parent;
1046
1047	/*
1048	 * If this function is in a loop and the previous iteration returned
1049	 * an endpoint from fwnode->secondary, then we need to use the secondary
1050	 * as parent rather than @fwnode.
1051	 */
1052	if (prev) {
1053		port_parent = fwnode_graph_get_port_parent(prev);
1054		parent = port_parent;
1055	} else {
1056		parent = fwnode;
1057	}
1058	if (IS_ERR_OR_NULL(parent))
1059		return NULL;
1060
1061	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1062	if (ep)
1063		goto out_put_port_parent;
1064
1065	ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1066
1067out_put_port_parent:
1068	fwnode_handle_put(port_parent);
1069	return ep;
1070}
1071EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1072
1073/**
1074 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1075 * @endpoint: Endpoint firmware node of the port
1076 *
1077 * The caller is responsible for calling fwnode_handle_put() on the returned
1078 * fwnode pointer.
1079 *
1080 * Return: the firmware node of the device the @endpoint belongs to.
1081 */
1082struct fwnode_handle *
1083fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1084{
1085	struct fwnode_handle *port, *parent;
1086
1087	port = fwnode_get_parent(endpoint);
1088	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1089
1090	fwnode_handle_put(port);
1091
1092	return parent;
1093}
1094EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1095
1096/**
1097 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1098 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1099 *
1100 * Extracts firmware node of a remote device the @fwnode points to.
1101 *
1102 * The caller is responsible for calling fwnode_handle_put() on the returned
1103 * fwnode pointer.
1104 */
1105struct fwnode_handle *
1106fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1107{
1108	struct fwnode_handle *endpoint, *parent;
1109
1110	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1111	parent = fwnode_graph_get_port_parent(endpoint);
1112
1113	fwnode_handle_put(endpoint);
1114
1115	return parent;
1116}
1117EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1118
1119/**
1120 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1121 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1122 *
1123 * Extracts firmware node of a remote port the @fwnode points to.
1124 *
1125 * The caller is responsible for calling fwnode_handle_put() on the returned
1126 * fwnode pointer.
1127 */
1128struct fwnode_handle *
1129fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1130{
1131	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1132}
1133EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1134
1135/**
1136 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1137 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1138 *
1139 * Extracts firmware node of a remote endpoint the @fwnode points to.
1140 *
1141 * The caller is responsible for calling fwnode_handle_put() on the returned
1142 * fwnode pointer.
1143 */
1144struct fwnode_handle *
1145fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1146{
1147	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1148}
1149EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1150
1151static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1152{
1153	struct fwnode_handle *dev_node;
1154	bool available;
1155
1156	dev_node = fwnode_graph_get_remote_port_parent(ep);
1157	available = fwnode_device_is_available(dev_node);
1158	fwnode_handle_put(dev_node);
1159
1160	return available;
1161}
1162
1163/**
1164 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1165 * @fwnode: parent fwnode_handle containing the graph
1166 * @port: identifier of the port node
1167 * @endpoint: identifier of the endpoint node under the port node
1168 * @flags: fwnode lookup flags
1169 *
1170 * The caller is responsible for calling fwnode_handle_put() on the returned
1171 * fwnode pointer.
1172 *
1173 * Return: the fwnode handle of the local endpoint corresponding the port and
1174 * endpoint IDs or %NULL if not found.
1175 *
1176 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1177 * has not been found, look for the closest endpoint ID greater than the
1178 * specified one and return the endpoint that corresponds to it, if present.
1179 *
1180 * Does not return endpoints that belong to disabled devices or endpoints that
1181 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1182 */
1183struct fwnode_handle *
1184fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1185				u32 port, u32 endpoint, unsigned long flags)
1186{
1187	struct fwnode_handle *ep, *best_ep = NULL;
1188	unsigned int best_ep_id = 0;
1189	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1190	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1191
1192	fwnode_graph_for_each_endpoint(fwnode, ep) {
1193		struct fwnode_endpoint fwnode_ep = { 0 };
1194		int ret;
1195
1196		if (enabled_only && !fwnode_graph_remote_available(ep))
1197			continue;
1198
1199		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1200		if (ret < 0)
1201			continue;
1202
1203		if (fwnode_ep.port != port)
1204			continue;
1205
1206		if (fwnode_ep.id == endpoint)
1207			return ep;
1208
1209		if (!endpoint_next)
1210			continue;
1211
1212		/*
1213		 * If the endpoint that has just been found is not the first
1214		 * matching one and the ID of the one found previously is closer
1215		 * to the requested endpoint ID, skip it.
1216		 */
1217		if (fwnode_ep.id < endpoint ||
1218		    (best_ep && best_ep_id < fwnode_ep.id))
1219			continue;
1220
1221		fwnode_handle_put(best_ep);
1222		best_ep = fwnode_handle_get(ep);
1223		best_ep_id = fwnode_ep.id;
1224	}
1225
1226	return best_ep;
1227}
1228EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1229
1230/**
1231 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1232 * @fwnode: The node related to a device
1233 * @flags: fwnode lookup flags
1234 * Count endpoints in a device node.
1235 *
1236 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1237 * and endpoints connected to disabled devices are counted.
1238 */
1239unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1240					     unsigned long flags)
1241{
1242	struct fwnode_handle *ep;
1243	unsigned int count = 0;
1244
1245	fwnode_graph_for_each_endpoint(fwnode, ep) {
1246		if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1247		    fwnode_graph_remote_available(ep))
1248			count++;
1249	}
1250
1251	return count;
1252}
1253EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1254
1255/**
1256 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1257 * @fwnode: pointer to endpoint fwnode_handle
1258 * @endpoint: pointer to the fwnode endpoint data structure
1259 *
1260 * Parse @fwnode representing a graph endpoint node and store the
1261 * information in @endpoint. The caller must hold a reference to
1262 * @fwnode.
1263 */
1264int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1265				struct fwnode_endpoint *endpoint)
1266{
1267	memset(endpoint, 0, sizeof(*endpoint));
1268
1269	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1270}
1271EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1272
1273const void *device_get_match_data(const struct device *dev)
1274{
1275	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1276}
1277EXPORT_SYMBOL_GPL(device_get_match_data);
1278
1279static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1280						const char *con_id, void *data,
1281						devcon_match_fn_t match,
1282						void **matches,
1283						unsigned int matches_len)
1284{
1285	struct fwnode_handle *node;
1286	struct fwnode_handle *ep;
1287	unsigned int count = 0;
1288	void *ret;
1289
1290	fwnode_graph_for_each_endpoint(fwnode, ep) {
1291		if (matches && count >= matches_len) {
1292			fwnode_handle_put(ep);
1293			break;
1294		}
1295
1296		node = fwnode_graph_get_remote_port_parent(ep);
1297		if (!fwnode_device_is_available(node)) {
1298			fwnode_handle_put(node);
1299			continue;
1300		}
1301
1302		ret = match(node, con_id, data);
1303		fwnode_handle_put(node);
1304		if (ret) {
1305			if (matches)
1306				matches[count] = ret;
1307			count++;
1308		}
1309	}
1310	return count;
1311}
1312
1313static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1314					  const char *con_id, void *data,
1315					  devcon_match_fn_t match,
1316					  void **matches,
1317					  unsigned int matches_len)
1318{
1319	struct fwnode_handle *node;
1320	unsigned int count = 0;
1321	unsigned int i;
1322	void *ret;
1323
1324	for (i = 0; ; i++) {
1325		if (matches && count >= matches_len)
1326			break;
1327
1328		node = fwnode_find_reference(fwnode, con_id, i);
1329		if (IS_ERR(node))
1330			break;
1331
1332		ret = match(node, NULL, data);
1333		fwnode_handle_put(node);
1334		if (ret) {
1335			if (matches)
1336				matches[count] = ret;
1337			count++;
1338		}
1339	}
1340
1341	return count;
1342}
1343
1344/**
1345 * fwnode_connection_find_match - Find connection from a device node
1346 * @fwnode: Device node with the connection
1347 * @con_id: Identifier for the connection
1348 * @data: Data for the match function
1349 * @match: Function to check and convert the connection description
1350 *
1351 * Find a connection with unique identifier @con_id between @fwnode and another
1352 * device node. @match will be used to convert the connection description to
1353 * data the caller is expecting to be returned.
1354 */
1355void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1356				   const char *con_id, void *data,
1357				   devcon_match_fn_t match)
1358{
1359	unsigned int count;
1360	void *ret;
1361
1362	if (!fwnode || !match)
1363		return NULL;
1364
1365	count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1366	if (count)
1367		return ret;
1368
1369	count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1370	return count ? ret : NULL;
1371}
1372EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1373
1374/**
1375 * fwnode_connection_find_matches - Find connections from a device node
1376 * @fwnode: Device node with the connection
1377 * @con_id: Identifier for the connection
1378 * @data: Data for the match function
1379 * @match: Function to check and convert the connection description
1380 * @matches: (Optional) array of pointers to fill with matches
1381 * @matches_len: Length of @matches
1382 *
1383 * Find up to @matches_len connections with unique identifier @con_id between
1384 * @fwnode and other device nodes. @match will be used to convert the
1385 * connection description to data the caller is expecting to be returned
1386 * through the @matches array.
1387 *
1388 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1389 * matches is returned.
1390 *
1391 * Return: Number of matches resolved, or negative errno.
1392 */
1393int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1394				   const char *con_id, void *data,
1395				   devcon_match_fn_t match,
1396				   void **matches, unsigned int matches_len)
1397{
1398	unsigned int count_graph;
1399	unsigned int count_ref;
1400
1401	if (!fwnode || !match)
1402		return -EINVAL;
1403
1404	count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1405						  matches, matches_len);
1406
1407	if (matches) {
1408		matches += count_graph;
1409		matches_len -= count_graph;
1410	}
1411
1412	count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1413					  matches, matches_len);
1414
1415	return count_graph + count_ref;
1416}
1417EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);