Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/bitfield.h>
62#include <linux/if_vlan.h>
63#include <linux/mpls.h>
64#include <linux/kcov.h>
65#include <linux/iov_iter.h>
66
67#include <net/protocol.h>
68#include <net/dst.h>
69#include <net/sock.h>
70#include <net/checksum.h>
71#include <net/gso.h>
72#include <net/ip6_checksum.h>
73#include <net/xfrm.h>
74#include <net/mpls.h>
75#include <net/mptcp.h>
76#include <net/mctp.h>
77#include <net/page_pool/helpers.h>
78#include <net/dropreason.h>
79
80#include <linux/uaccess.h>
81#include <trace/events/skb.h>
82#include <linux/highmem.h>
83#include <linux/capability.h>
84#include <linux/user_namespace.h>
85#include <linux/indirect_call_wrapper.h>
86#include <linux/textsearch.h>
87
88#include "dev.h"
89#include "sock_destructor.h"
90
91struct kmem_cache *skbuff_cache __ro_after_init;
92static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
93#ifdef CONFIG_SKB_EXTENSIONS
94static struct kmem_cache *skbuff_ext_cache __ro_after_init;
95#endif
96
97
98static struct kmem_cache *skb_small_head_cache __ro_after_init;
99
100#define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
101
102/* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
103 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
104 * size, and we can differentiate heads from skb_small_head_cache
105 * vs system slabs by looking at their size (skb_end_offset()).
106 */
107#define SKB_SMALL_HEAD_CACHE_SIZE \
108 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
109 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
110 SKB_SMALL_HEAD_SIZE)
111
112#define SKB_SMALL_HEAD_HEADROOM \
113 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
114
115int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
116EXPORT_SYMBOL(sysctl_max_skb_frags);
117
118#undef FN
119#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
120static const char * const drop_reasons[] = {
121 [SKB_CONSUMED] = "CONSUMED",
122 DEFINE_DROP_REASON(FN, FN)
123};
124
125static const struct drop_reason_list drop_reasons_core = {
126 .reasons = drop_reasons,
127 .n_reasons = ARRAY_SIZE(drop_reasons),
128};
129
130const struct drop_reason_list __rcu *
131drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
132 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
133};
134EXPORT_SYMBOL(drop_reasons_by_subsys);
135
136/**
137 * drop_reasons_register_subsys - register another drop reason subsystem
138 * @subsys: the subsystem to register, must not be the core
139 * @list: the list of drop reasons within the subsystem, must point to
140 * a statically initialized list
141 */
142void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
143 const struct drop_reason_list *list)
144{
145 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
146 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
147 "invalid subsystem %d\n", subsys))
148 return;
149
150 /* must point to statically allocated memory, so INIT is OK */
151 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
152}
153EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
154
155/**
156 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
157 * @subsys: the subsystem to remove, must not be the core
158 *
159 * Note: This will synchronize_rcu() to ensure no users when it returns.
160 */
161void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
162{
163 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
164 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
165 "invalid subsystem %d\n", subsys))
166 return;
167
168 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
169
170 synchronize_rcu();
171}
172EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
173
174/**
175 * skb_panic - private function for out-of-line support
176 * @skb: buffer
177 * @sz: size
178 * @addr: address
179 * @msg: skb_over_panic or skb_under_panic
180 *
181 * Out-of-line support for skb_put() and skb_push().
182 * Called via the wrapper skb_over_panic() or skb_under_panic().
183 * Keep out of line to prevent kernel bloat.
184 * __builtin_return_address is not used because it is not always reliable.
185 */
186static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
187 const char msg[])
188{
189 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
190 msg, addr, skb->len, sz, skb->head, skb->data,
191 (unsigned long)skb->tail, (unsigned long)skb->end,
192 skb->dev ? skb->dev->name : "<NULL>");
193 BUG();
194}
195
196static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
197{
198 skb_panic(skb, sz, addr, __func__);
199}
200
201static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
202{
203 skb_panic(skb, sz, addr, __func__);
204}
205
206#define NAPI_SKB_CACHE_SIZE 64
207#define NAPI_SKB_CACHE_BULK 16
208#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
209
210#if PAGE_SIZE == SZ_4K
211
212#define NAPI_HAS_SMALL_PAGE_FRAG 1
213#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
214
215/* specialized page frag allocator using a single order 0 page
216 * and slicing it into 1K sized fragment. Constrained to systems
217 * with a very limited amount of 1K fragments fitting a single
218 * page - to avoid excessive truesize underestimation
219 */
220
221struct page_frag_1k {
222 void *va;
223 u16 offset;
224 bool pfmemalloc;
225};
226
227static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
228{
229 struct page *page;
230 int offset;
231
232 offset = nc->offset - SZ_1K;
233 if (likely(offset >= 0))
234 goto use_frag;
235
236 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
237 if (!page)
238 return NULL;
239
240 nc->va = page_address(page);
241 nc->pfmemalloc = page_is_pfmemalloc(page);
242 offset = PAGE_SIZE - SZ_1K;
243 page_ref_add(page, offset / SZ_1K);
244
245use_frag:
246 nc->offset = offset;
247 return nc->va + offset;
248}
249#else
250
251/* the small page is actually unused in this build; add dummy helpers
252 * to please the compiler and avoid later preprocessor's conditionals
253 */
254#define NAPI_HAS_SMALL_PAGE_FRAG 0
255#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
256
257struct page_frag_1k {
258};
259
260static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
261{
262 return NULL;
263}
264
265#endif
266
267struct napi_alloc_cache {
268 struct page_frag_cache page;
269 struct page_frag_1k page_small;
270 unsigned int skb_count;
271 void *skb_cache[NAPI_SKB_CACHE_SIZE];
272};
273
274static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
275static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
276
277/* Double check that napi_get_frags() allocates skbs with
278 * skb->head being backed by slab, not a page fragment.
279 * This is to make sure bug fixed in 3226b158e67c
280 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
281 * does not accidentally come back.
282 */
283void napi_get_frags_check(struct napi_struct *napi)
284{
285 struct sk_buff *skb;
286
287 local_bh_disable();
288 skb = napi_get_frags(napi);
289 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
290 napi_free_frags(napi);
291 local_bh_enable();
292}
293
294void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
295{
296 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
297
298 fragsz = SKB_DATA_ALIGN(fragsz);
299
300 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
301}
302EXPORT_SYMBOL(__napi_alloc_frag_align);
303
304void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
305{
306 void *data;
307
308 fragsz = SKB_DATA_ALIGN(fragsz);
309 if (in_hardirq() || irqs_disabled()) {
310 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
311
312 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
313 } else {
314 struct napi_alloc_cache *nc;
315
316 local_bh_disable();
317 nc = this_cpu_ptr(&napi_alloc_cache);
318 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
319 local_bh_enable();
320 }
321 return data;
322}
323EXPORT_SYMBOL(__netdev_alloc_frag_align);
324
325static struct sk_buff *napi_skb_cache_get(void)
326{
327 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
328 struct sk_buff *skb;
329
330 if (unlikely(!nc->skb_count)) {
331 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
332 GFP_ATOMIC,
333 NAPI_SKB_CACHE_BULK,
334 nc->skb_cache);
335 if (unlikely(!nc->skb_count))
336 return NULL;
337 }
338
339 skb = nc->skb_cache[--nc->skb_count];
340 kasan_mempool_unpoison_object(skb, kmem_cache_size(skbuff_cache));
341
342 return skb;
343}
344
345static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
346 unsigned int size)
347{
348 struct skb_shared_info *shinfo;
349
350 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
351
352 /* Assumes caller memset cleared SKB */
353 skb->truesize = SKB_TRUESIZE(size);
354 refcount_set(&skb->users, 1);
355 skb->head = data;
356 skb->data = data;
357 skb_reset_tail_pointer(skb);
358 skb_set_end_offset(skb, size);
359 skb->mac_header = (typeof(skb->mac_header))~0U;
360 skb->transport_header = (typeof(skb->transport_header))~0U;
361 skb->alloc_cpu = raw_smp_processor_id();
362 /* make sure we initialize shinfo sequentially */
363 shinfo = skb_shinfo(skb);
364 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
365 atomic_set(&shinfo->dataref, 1);
366
367 skb_set_kcov_handle(skb, kcov_common_handle());
368}
369
370static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
371 unsigned int *size)
372{
373 void *resized;
374
375 /* Must find the allocation size (and grow it to match). */
376 *size = ksize(data);
377 /* krealloc() will immediately return "data" when
378 * "ksize(data)" is requested: it is the existing upper
379 * bounds. As a result, GFP_ATOMIC will be ignored. Note
380 * that this "new" pointer needs to be passed back to the
381 * caller for use so the __alloc_size hinting will be
382 * tracked correctly.
383 */
384 resized = krealloc(data, *size, GFP_ATOMIC);
385 WARN_ON_ONCE(resized != data);
386 return resized;
387}
388
389/* build_skb() variant which can operate on slab buffers.
390 * Note that this should be used sparingly as slab buffers
391 * cannot be combined efficiently by GRO!
392 */
393struct sk_buff *slab_build_skb(void *data)
394{
395 struct sk_buff *skb;
396 unsigned int size;
397
398 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
399 if (unlikely(!skb))
400 return NULL;
401
402 memset(skb, 0, offsetof(struct sk_buff, tail));
403 data = __slab_build_skb(skb, data, &size);
404 __finalize_skb_around(skb, data, size);
405
406 return skb;
407}
408EXPORT_SYMBOL(slab_build_skb);
409
410/* Caller must provide SKB that is memset cleared */
411static void __build_skb_around(struct sk_buff *skb, void *data,
412 unsigned int frag_size)
413{
414 unsigned int size = frag_size;
415
416 /* frag_size == 0 is considered deprecated now. Callers
417 * using slab buffer should use slab_build_skb() instead.
418 */
419 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
420 data = __slab_build_skb(skb, data, &size);
421
422 __finalize_skb_around(skb, data, size);
423}
424
425/**
426 * __build_skb - build a network buffer
427 * @data: data buffer provided by caller
428 * @frag_size: size of data (must not be 0)
429 *
430 * Allocate a new &sk_buff. Caller provides space holding head and
431 * skb_shared_info. @data must have been allocated from the page
432 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
433 * allocation is deprecated, and callers should use slab_build_skb()
434 * instead.)
435 * The return is the new skb buffer.
436 * On a failure the return is %NULL, and @data is not freed.
437 * Notes :
438 * Before IO, driver allocates only data buffer where NIC put incoming frame
439 * Driver should add room at head (NET_SKB_PAD) and
440 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
441 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
442 * before giving packet to stack.
443 * RX rings only contains data buffers, not full skbs.
444 */
445struct sk_buff *__build_skb(void *data, unsigned int frag_size)
446{
447 struct sk_buff *skb;
448
449 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
450 if (unlikely(!skb))
451 return NULL;
452
453 memset(skb, 0, offsetof(struct sk_buff, tail));
454 __build_skb_around(skb, data, frag_size);
455
456 return skb;
457}
458
459/* build_skb() is wrapper over __build_skb(), that specifically
460 * takes care of skb->head and skb->pfmemalloc
461 */
462struct sk_buff *build_skb(void *data, unsigned int frag_size)
463{
464 struct sk_buff *skb = __build_skb(data, frag_size);
465
466 if (likely(skb && frag_size)) {
467 skb->head_frag = 1;
468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 }
470 return skb;
471}
472EXPORT_SYMBOL(build_skb);
473
474/**
475 * build_skb_around - build a network buffer around provided skb
476 * @skb: sk_buff provide by caller, must be memset cleared
477 * @data: data buffer provided by caller
478 * @frag_size: size of data
479 */
480struct sk_buff *build_skb_around(struct sk_buff *skb,
481 void *data, unsigned int frag_size)
482{
483 if (unlikely(!skb))
484 return NULL;
485
486 __build_skb_around(skb, data, frag_size);
487
488 if (frag_size) {
489 skb->head_frag = 1;
490 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
491 }
492 return skb;
493}
494EXPORT_SYMBOL(build_skb_around);
495
496/**
497 * __napi_build_skb - build a network buffer
498 * @data: data buffer provided by caller
499 * @frag_size: size of data
500 *
501 * Version of __build_skb() that uses NAPI percpu caches to obtain
502 * skbuff_head instead of inplace allocation.
503 *
504 * Returns a new &sk_buff on success, %NULL on allocation failure.
505 */
506static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
507{
508 struct sk_buff *skb;
509
510 skb = napi_skb_cache_get();
511 if (unlikely(!skb))
512 return NULL;
513
514 memset(skb, 0, offsetof(struct sk_buff, tail));
515 __build_skb_around(skb, data, frag_size);
516
517 return skb;
518}
519
520/**
521 * napi_build_skb - build a network buffer
522 * @data: data buffer provided by caller
523 * @frag_size: size of data
524 *
525 * Version of __napi_build_skb() that takes care of skb->head_frag
526 * and skb->pfmemalloc when the data is a page or page fragment.
527 *
528 * Returns a new &sk_buff on success, %NULL on allocation failure.
529 */
530struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
531{
532 struct sk_buff *skb = __napi_build_skb(data, frag_size);
533
534 if (likely(skb) && frag_size) {
535 skb->head_frag = 1;
536 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
537 }
538
539 return skb;
540}
541EXPORT_SYMBOL(napi_build_skb);
542
543/*
544 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
545 * the caller if emergency pfmemalloc reserves are being used. If it is and
546 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
547 * may be used. Otherwise, the packet data may be discarded until enough
548 * memory is free
549 */
550static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
551 bool *pfmemalloc)
552{
553 bool ret_pfmemalloc = false;
554 size_t obj_size;
555 void *obj;
556
557 obj_size = SKB_HEAD_ALIGN(*size);
558 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
559 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
560 obj = kmem_cache_alloc_node(skb_small_head_cache,
561 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
562 node);
563 *size = SKB_SMALL_HEAD_CACHE_SIZE;
564 if (obj || !(gfp_pfmemalloc_allowed(flags)))
565 goto out;
566 /* Try again but now we are using pfmemalloc reserves */
567 ret_pfmemalloc = true;
568 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
569 goto out;
570 }
571
572 obj_size = kmalloc_size_roundup(obj_size);
573 /* The following cast might truncate high-order bits of obj_size, this
574 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
575 */
576 *size = (unsigned int)obj_size;
577
578 /*
579 * Try a regular allocation, when that fails and we're not entitled
580 * to the reserves, fail.
581 */
582 obj = kmalloc_node_track_caller(obj_size,
583 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
584 node);
585 if (obj || !(gfp_pfmemalloc_allowed(flags)))
586 goto out;
587
588 /* Try again but now we are using pfmemalloc reserves */
589 ret_pfmemalloc = true;
590 obj = kmalloc_node_track_caller(obj_size, flags, node);
591
592out:
593 if (pfmemalloc)
594 *pfmemalloc = ret_pfmemalloc;
595
596 return obj;
597}
598
599/* Allocate a new skbuff. We do this ourselves so we can fill in a few
600 * 'private' fields and also do memory statistics to find all the
601 * [BEEP] leaks.
602 *
603 */
604
605/**
606 * __alloc_skb - allocate a network buffer
607 * @size: size to allocate
608 * @gfp_mask: allocation mask
609 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
610 * instead of head cache and allocate a cloned (child) skb.
611 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
612 * allocations in case the data is required for writeback
613 * @node: numa node to allocate memory on
614 *
615 * Allocate a new &sk_buff. The returned buffer has no headroom and a
616 * tail room of at least size bytes. The object has a reference count
617 * of one. The return is the buffer. On a failure the return is %NULL.
618 *
619 * Buffers may only be allocated from interrupts using a @gfp_mask of
620 * %GFP_ATOMIC.
621 */
622struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
623 int flags, int node)
624{
625 struct kmem_cache *cache;
626 struct sk_buff *skb;
627 bool pfmemalloc;
628 u8 *data;
629
630 cache = (flags & SKB_ALLOC_FCLONE)
631 ? skbuff_fclone_cache : skbuff_cache;
632
633 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
634 gfp_mask |= __GFP_MEMALLOC;
635
636 /* Get the HEAD */
637 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
638 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
639 skb = napi_skb_cache_get();
640 else
641 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
642 if (unlikely(!skb))
643 return NULL;
644 prefetchw(skb);
645
646 /* We do our best to align skb_shared_info on a separate cache
647 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
648 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
649 * Both skb->head and skb_shared_info are cache line aligned.
650 */
651 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
652 if (unlikely(!data))
653 goto nodata;
654 /* kmalloc_size_roundup() might give us more room than requested.
655 * Put skb_shared_info exactly at the end of allocated zone,
656 * to allow max possible filling before reallocation.
657 */
658 prefetchw(data + SKB_WITH_OVERHEAD(size));
659
660 /*
661 * Only clear those fields we need to clear, not those that we will
662 * actually initialise below. Hence, don't put any more fields after
663 * the tail pointer in struct sk_buff!
664 */
665 memset(skb, 0, offsetof(struct sk_buff, tail));
666 __build_skb_around(skb, data, size);
667 skb->pfmemalloc = pfmemalloc;
668
669 if (flags & SKB_ALLOC_FCLONE) {
670 struct sk_buff_fclones *fclones;
671
672 fclones = container_of(skb, struct sk_buff_fclones, skb1);
673
674 skb->fclone = SKB_FCLONE_ORIG;
675 refcount_set(&fclones->fclone_ref, 1);
676 }
677
678 return skb;
679
680nodata:
681 kmem_cache_free(cache, skb);
682 return NULL;
683}
684EXPORT_SYMBOL(__alloc_skb);
685
686/**
687 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
688 * @dev: network device to receive on
689 * @len: length to allocate
690 * @gfp_mask: get_free_pages mask, passed to alloc_skb
691 *
692 * Allocate a new &sk_buff and assign it a usage count of one. The
693 * buffer has NET_SKB_PAD headroom built in. Users should allocate
694 * the headroom they think they need without accounting for the
695 * built in space. The built in space is used for optimisations.
696 *
697 * %NULL is returned if there is no free memory.
698 */
699struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
700 gfp_t gfp_mask)
701{
702 struct page_frag_cache *nc;
703 struct sk_buff *skb;
704 bool pfmemalloc;
705 void *data;
706
707 len += NET_SKB_PAD;
708
709 /* If requested length is either too small or too big,
710 * we use kmalloc() for skb->head allocation.
711 */
712 if (len <= SKB_WITH_OVERHEAD(1024) ||
713 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
714 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
715 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
716 if (!skb)
717 goto skb_fail;
718 goto skb_success;
719 }
720
721 len = SKB_HEAD_ALIGN(len);
722
723 if (sk_memalloc_socks())
724 gfp_mask |= __GFP_MEMALLOC;
725
726 if (in_hardirq() || irqs_disabled()) {
727 nc = this_cpu_ptr(&netdev_alloc_cache);
728 data = page_frag_alloc(nc, len, gfp_mask);
729 pfmemalloc = nc->pfmemalloc;
730 } else {
731 local_bh_disable();
732 nc = this_cpu_ptr(&napi_alloc_cache.page);
733 data = page_frag_alloc(nc, len, gfp_mask);
734 pfmemalloc = nc->pfmemalloc;
735 local_bh_enable();
736 }
737
738 if (unlikely(!data))
739 return NULL;
740
741 skb = __build_skb(data, len);
742 if (unlikely(!skb)) {
743 skb_free_frag(data);
744 return NULL;
745 }
746
747 if (pfmemalloc)
748 skb->pfmemalloc = 1;
749 skb->head_frag = 1;
750
751skb_success:
752 skb_reserve(skb, NET_SKB_PAD);
753 skb->dev = dev;
754
755skb_fail:
756 return skb;
757}
758EXPORT_SYMBOL(__netdev_alloc_skb);
759
760/**
761 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
762 * @napi: napi instance this buffer was allocated for
763 * @len: length to allocate
764 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
765 *
766 * Allocate a new sk_buff for use in NAPI receive. This buffer will
767 * attempt to allocate the head from a special reserved region used
768 * only for NAPI Rx allocation. By doing this we can save several
769 * CPU cycles by avoiding having to disable and re-enable IRQs.
770 *
771 * %NULL is returned if there is no free memory.
772 */
773struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
774 gfp_t gfp_mask)
775{
776 struct napi_alloc_cache *nc;
777 struct sk_buff *skb;
778 bool pfmemalloc;
779 void *data;
780
781 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
782 len += NET_SKB_PAD + NET_IP_ALIGN;
783
784 /* If requested length is either too small or too big,
785 * we use kmalloc() for skb->head allocation.
786 * When the small frag allocator is available, prefer it over kmalloc
787 * for small fragments
788 */
789 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
790 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
791 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
792 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
793 NUMA_NO_NODE);
794 if (!skb)
795 goto skb_fail;
796 goto skb_success;
797 }
798
799 nc = this_cpu_ptr(&napi_alloc_cache);
800
801 if (sk_memalloc_socks())
802 gfp_mask |= __GFP_MEMALLOC;
803
804 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
805 /* we are artificially inflating the allocation size, but
806 * that is not as bad as it may look like, as:
807 * - 'len' less than GRO_MAX_HEAD makes little sense
808 * - On most systems, larger 'len' values lead to fragment
809 * size above 512 bytes
810 * - kmalloc would use the kmalloc-1k slab for such values
811 * - Builds with smaller GRO_MAX_HEAD will very likely do
812 * little networking, as that implies no WiFi and no
813 * tunnels support, and 32 bits arches.
814 */
815 len = SZ_1K;
816
817 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
818 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
819 } else {
820 len = SKB_HEAD_ALIGN(len);
821
822 data = page_frag_alloc(&nc->page, len, gfp_mask);
823 pfmemalloc = nc->page.pfmemalloc;
824 }
825
826 if (unlikely(!data))
827 return NULL;
828
829 skb = __napi_build_skb(data, len);
830 if (unlikely(!skb)) {
831 skb_free_frag(data);
832 return NULL;
833 }
834
835 if (pfmemalloc)
836 skb->pfmemalloc = 1;
837 skb->head_frag = 1;
838
839skb_success:
840 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
841 skb->dev = napi->dev;
842
843skb_fail:
844 return skb;
845}
846EXPORT_SYMBOL(__napi_alloc_skb);
847
848void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
849 int size, unsigned int truesize)
850{
851 DEBUG_NET_WARN_ON_ONCE(size > truesize);
852
853 skb_fill_page_desc(skb, i, page, off, size);
854 skb->len += size;
855 skb->data_len += size;
856 skb->truesize += truesize;
857}
858EXPORT_SYMBOL(skb_add_rx_frag);
859
860void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
861 unsigned int truesize)
862{
863 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
864
865 DEBUG_NET_WARN_ON_ONCE(size > truesize);
866
867 skb_frag_size_add(frag, size);
868 skb->len += size;
869 skb->data_len += size;
870 skb->truesize += truesize;
871}
872EXPORT_SYMBOL(skb_coalesce_rx_frag);
873
874static void skb_drop_list(struct sk_buff **listp)
875{
876 kfree_skb_list(*listp);
877 *listp = NULL;
878}
879
880static inline void skb_drop_fraglist(struct sk_buff *skb)
881{
882 skb_drop_list(&skb_shinfo(skb)->frag_list);
883}
884
885static void skb_clone_fraglist(struct sk_buff *skb)
886{
887 struct sk_buff *list;
888
889 skb_walk_frags(skb, list)
890 skb_get(list);
891}
892
893static bool is_pp_page(struct page *page)
894{
895 return (page->pp_magic & ~0x3UL) == PP_SIGNATURE;
896}
897
898#if IS_ENABLED(CONFIG_PAGE_POOL)
899bool napi_pp_put_page(struct page *page, bool napi_safe)
900{
901 bool allow_direct = false;
902 struct page_pool *pp;
903
904 page = compound_head(page);
905
906 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
907 * in order to preserve any existing bits, such as bit 0 for the
908 * head page of compound page and bit 1 for pfmemalloc page, so
909 * mask those bits for freeing side when doing below checking,
910 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
911 * to avoid recycling the pfmemalloc page.
912 */
913 if (unlikely(!is_pp_page(page)))
914 return false;
915
916 pp = page->pp;
917
918 /* Allow direct recycle if we have reasons to believe that we are
919 * in the same context as the consumer would run, so there's
920 * no possible race.
921 * __page_pool_put_page() makes sure we're not in hardirq context
922 * and interrupts are enabled prior to accessing the cache.
923 */
924 if (napi_safe || in_softirq()) {
925 const struct napi_struct *napi = READ_ONCE(pp->p.napi);
926
927 allow_direct = napi &&
928 READ_ONCE(napi->list_owner) == smp_processor_id();
929 }
930
931 /* Driver set this to memory recycling info. Reset it on recycle.
932 * This will *not* work for NIC using a split-page memory model.
933 * The page will be returned to the pool here regardless of the
934 * 'flipped' fragment being in use or not.
935 */
936 page_pool_put_full_page(pp, page, allow_direct);
937
938 return true;
939}
940EXPORT_SYMBOL(napi_pp_put_page);
941#endif
942
943static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
944{
945 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
946 return false;
947 return napi_pp_put_page(virt_to_page(data), napi_safe);
948}
949
950/**
951 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb
952 * @skb: page pool aware skb
953 *
954 * Increase the fragment reference count (pp_ref_count) of a skb. This is
955 * intended to gain fragment references only for page pool aware skbs,
956 * i.e. when skb->pp_recycle is true, and not for fragments in a
957 * non-pp-recycling skb. It has a fallback to increase references on normal
958 * pages, as page pool aware skbs may also have normal page fragments.
959 */
960static int skb_pp_frag_ref(struct sk_buff *skb)
961{
962 struct skb_shared_info *shinfo;
963 struct page *head_page;
964 int i;
965
966 if (!skb->pp_recycle)
967 return -EINVAL;
968
969 shinfo = skb_shinfo(skb);
970
971 for (i = 0; i < shinfo->nr_frags; i++) {
972 head_page = compound_head(skb_frag_page(&shinfo->frags[i]));
973 if (likely(is_pp_page(head_page)))
974 page_pool_ref_page(head_page);
975 else
976 page_ref_inc(head_page);
977 }
978 return 0;
979}
980
981static void skb_kfree_head(void *head, unsigned int end_offset)
982{
983 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
984 kmem_cache_free(skb_small_head_cache, head);
985 else
986 kfree(head);
987}
988
989static void skb_free_head(struct sk_buff *skb, bool napi_safe)
990{
991 unsigned char *head = skb->head;
992
993 if (skb->head_frag) {
994 if (skb_pp_recycle(skb, head, napi_safe))
995 return;
996 skb_free_frag(head);
997 } else {
998 skb_kfree_head(head, skb_end_offset(skb));
999 }
1000}
1001
1002static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
1003 bool napi_safe)
1004{
1005 struct skb_shared_info *shinfo = skb_shinfo(skb);
1006 int i;
1007
1008 if (skb->cloned &&
1009 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
1010 &shinfo->dataref))
1011 goto exit;
1012
1013 if (skb_zcopy(skb)) {
1014 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
1015
1016 skb_zcopy_clear(skb, true);
1017 if (skip_unref)
1018 goto free_head;
1019 }
1020
1021 for (i = 0; i < shinfo->nr_frags; i++)
1022 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
1023
1024free_head:
1025 if (shinfo->frag_list)
1026 kfree_skb_list_reason(shinfo->frag_list, reason);
1027
1028 skb_free_head(skb, napi_safe);
1029exit:
1030 /* When we clone an SKB we copy the reycling bit. The pp_recycle
1031 * bit is only set on the head though, so in order to avoid races
1032 * while trying to recycle fragments on __skb_frag_unref() we need
1033 * to make one SKB responsible for triggering the recycle path.
1034 * So disable the recycling bit if an SKB is cloned and we have
1035 * additional references to the fragmented part of the SKB.
1036 * Eventually the last SKB will have the recycling bit set and it's
1037 * dataref set to 0, which will trigger the recycling
1038 */
1039 skb->pp_recycle = 0;
1040}
1041
1042/*
1043 * Free an skbuff by memory without cleaning the state.
1044 */
1045static void kfree_skbmem(struct sk_buff *skb)
1046{
1047 struct sk_buff_fclones *fclones;
1048
1049 switch (skb->fclone) {
1050 case SKB_FCLONE_UNAVAILABLE:
1051 kmem_cache_free(skbuff_cache, skb);
1052 return;
1053
1054 case SKB_FCLONE_ORIG:
1055 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1056
1057 /* We usually free the clone (TX completion) before original skb
1058 * This test would have no chance to be true for the clone,
1059 * while here, branch prediction will be good.
1060 */
1061 if (refcount_read(&fclones->fclone_ref) == 1)
1062 goto fastpath;
1063 break;
1064
1065 default: /* SKB_FCLONE_CLONE */
1066 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1067 break;
1068 }
1069 if (!refcount_dec_and_test(&fclones->fclone_ref))
1070 return;
1071fastpath:
1072 kmem_cache_free(skbuff_fclone_cache, fclones);
1073}
1074
1075void skb_release_head_state(struct sk_buff *skb)
1076{
1077 skb_dst_drop(skb);
1078 if (skb->destructor) {
1079 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1080 skb->destructor(skb);
1081 }
1082#if IS_ENABLED(CONFIG_NF_CONNTRACK)
1083 nf_conntrack_put(skb_nfct(skb));
1084#endif
1085 skb_ext_put(skb);
1086}
1087
1088/* Free everything but the sk_buff shell. */
1089static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1090 bool napi_safe)
1091{
1092 skb_release_head_state(skb);
1093 if (likely(skb->head))
1094 skb_release_data(skb, reason, napi_safe);
1095}
1096
1097/**
1098 * __kfree_skb - private function
1099 * @skb: buffer
1100 *
1101 * Free an sk_buff. Release anything attached to the buffer.
1102 * Clean the state. This is an internal helper function. Users should
1103 * always call kfree_skb
1104 */
1105
1106void __kfree_skb(struct sk_buff *skb)
1107{
1108 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1109 kfree_skbmem(skb);
1110}
1111EXPORT_SYMBOL(__kfree_skb);
1112
1113static __always_inline
1114bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1115{
1116 if (unlikely(!skb_unref(skb)))
1117 return false;
1118
1119 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1120 u32_get_bits(reason,
1121 SKB_DROP_REASON_SUBSYS_MASK) >=
1122 SKB_DROP_REASON_SUBSYS_NUM);
1123
1124 if (reason == SKB_CONSUMED)
1125 trace_consume_skb(skb, __builtin_return_address(0));
1126 else
1127 trace_kfree_skb(skb, __builtin_return_address(0), reason);
1128 return true;
1129}
1130
1131/**
1132 * kfree_skb_reason - free an sk_buff with special reason
1133 * @skb: buffer to free
1134 * @reason: reason why this skb is dropped
1135 *
1136 * Drop a reference to the buffer and free it if the usage count has
1137 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1138 * tracepoint.
1139 */
1140void __fix_address
1141kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1142{
1143 if (__kfree_skb_reason(skb, reason))
1144 __kfree_skb(skb);
1145}
1146EXPORT_SYMBOL(kfree_skb_reason);
1147
1148#define KFREE_SKB_BULK_SIZE 16
1149
1150struct skb_free_array {
1151 unsigned int skb_count;
1152 void *skb_array[KFREE_SKB_BULK_SIZE];
1153};
1154
1155static void kfree_skb_add_bulk(struct sk_buff *skb,
1156 struct skb_free_array *sa,
1157 enum skb_drop_reason reason)
1158{
1159 /* if SKB is a clone, don't handle this case */
1160 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1161 __kfree_skb(skb);
1162 return;
1163 }
1164
1165 skb_release_all(skb, reason, false);
1166 sa->skb_array[sa->skb_count++] = skb;
1167
1168 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1169 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1170 sa->skb_array);
1171 sa->skb_count = 0;
1172 }
1173}
1174
1175void __fix_address
1176kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1177{
1178 struct skb_free_array sa;
1179
1180 sa.skb_count = 0;
1181
1182 while (segs) {
1183 struct sk_buff *next = segs->next;
1184
1185 if (__kfree_skb_reason(segs, reason)) {
1186 skb_poison_list(segs);
1187 kfree_skb_add_bulk(segs, &sa, reason);
1188 }
1189
1190 segs = next;
1191 }
1192
1193 if (sa.skb_count)
1194 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1195}
1196EXPORT_SYMBOL(kfree_skb_list_reason);
1197
1198/* Dump skb information and contents.
1199 *
1200 * Must only be called from net_ratelimit()-ed paths.
1201 *
1202 * Dumps whole packets if full_pkt, only headers otherwise.
1203 */
1204void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1205{
1206 struct skb_shared_info *sh = skb_shinfo(skb);
1207 struct net_device *dev = skb->dev;
1208 struct sock *sk = skb->sk;
1209 struct sk_buff *list_skb;
1210 bool has_mac, has_trans;
1211 int headroom, tailroom;
1212 int i, len, seg_len;
1213
1214 if (full_pkt)
1215 len = skb->len;
1216 else
1217 len = min_t(int, skb->len, MAX_HEADER + 128);
1218
1219 headroom = skb_headroom(skb);
1220 tailroom = skb_tailroom(skb);
1221
1222 has_mac = skb_mac_header_was_set(skb);
1223 has_trans = skb_transport_header_was_set(skb);
1224
1225 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1226 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1227 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1228 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1229 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1230 level, skb->len, headroom, skb_headlen(skb), tailroom,
1231 has_mac ? skb->mac_header : -1,
1232 has_mac ? skb_mac_header_len(skb) : -1,
1233 skb->network_header,
1234 has_trans ? skb_network_header_len(skb) : -1,
1235 has_trans ? skb->transport_header : -1,
1236 sh->tx_flags, sh->nr_frags,
1237 sh->gso_size, sh->gso_type, sh->gso_segs,
1238 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1239 skb->csum_valid, skb->csum_level,
1240 skb->hash, skb->sw_hash, skb->l4_hash,
1241 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1242
1243 if (dev)
1244 printk("%sdev name=%s feat=%pNF\n",
1245 level, dev->name, &dev->features);
1246 if (sk)
1247 printk("%ssk family=%hu type=%u proto=%u\n",
1248 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1249
1250 if (full_pkt && headroom)
1251 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1252 16, 1, skb->head, headroom, false);
1253
1254 seg_len = min_t(int, skb_headlen(skb), len);
1255 if (seg_len)
1256 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1257 16, 1, skb->data, seg_len, false);
1258 len -= seg_len;
1259
1260 if (full_pkt && tailroom)
1261 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1262 16, 1, skb_tail_pointer(skb), tailroom, false);
1263
1264 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1265 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1266 u32 p_off, p_len, copied;
1267 struct page *p;
1268 u8 *vaddr;
1269
1270 skb_frag_foreach_page(frag, skb_frag_off(frag),
1271 skb_frag_size(frag), p, p_off, p_len,
1272 copied) {
1273 seg_len = min_t(int, p_len, len);
1274 vaddr = kmap_atomic(p);
1275 print_hex_dump(level, "skb frag: ",
1276 DUMP_PREFIX_OFFSET,
1277 16, 1, vaddr + p_off, seg_len, false);
1278 kunmap_atomic(vaddr);
1279 len -= seg_len;
1280 if (!len)
1281 break;
1282 }
1283 }
1284
1285 if (full_pkt && skb_has_frag_list(skb)) {
1286 printk("skb fraglist:\n");
1287 skb_walk_frags(skb, list_skb)
1288 skb_dump(level, list_skb, true);
1289 }
1290}
1291EXPORT_SYMBOL(skb_dump);
1292
1293/**
1294 * skb_tx_error - report an sk_buff xmit error
1295 * @skb: buffer that triggered an error
1296 *
1297 * Report xmit error if a device callback is tracking this skb.
1298 * skb must be freed afterwards.
1299 */
1300void skb_tx_error(struct sk_buff *skb)
1301{
1302 if (skb) {
1303 skb_zcopy_downgrade_managed(skb);
1304 skb_zcopy_clear(skb, true);
1305 }
1306}
1307EXPORT_SYMBOL(skb_tx_error);
1308
1309#ifdef CONFIG_TRACEPOINTS
1310/**
1311 * consume_skb - free an skbuff
1312 * @skb: buffer to free
1313 *
1314 * Drop a ref to the buffer and free it if the usage count has hit zero
1315 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1316 * is being dropped after a failure and notes that
1317 */
1318void consume_skb(struct sk_buff *skb)
1319{
1320 if (!skb_unref(skb))
1321 return;
1322
1323 trace_consume_skb(skb, __builtin_return_address(0));
1324 __kfree_skb(skb);
1325}
1326EXPORT_SYMBOL(consume_skb);
1327#endif
1328
1329/**
1330 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1331 * @skb: buffer to free
1332 *
1333 * Alike consume_skb(), but this variant assumes that this is the last
1334 * skb reference and all the head states have been already dropped
1335 */
1336void __consume_stateless_skb(struct sk_buff *skb)
1337{
1338 trace_consume_skb(skb, __builtin_return_address(0));
1339 skb_release_data(skb, SKB_CONSUMED, false);
1340 kfree_skbmem(skb);
1341}
1342
1343static void napi_skb_cache_put(struct sk_buff *skb)
1344{
1345 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1346 u32 i;
1347
1348 if (!kasan_mempool_poison_object(skb))
1349 return;
1350
1351 nc->skb_cache[nc->skb_count++] = skb;
1352
1353 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1354 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1355 kasan_mempool_unpoison_object(nc->skb_cache[i],
1356 kmem_cache_size(skbuff_cache));
1357
1358 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1359 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1360 nc->skb_count = NAPI_SKB_CACHE_HALF;
1361 }
1362}
1363
1364void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1365{
1366 skb_release_all(skb, reason, true);
1367 napi_skb_cache_put(skb);
1368}
1369
1370void napi_skb_free_stolen_head(struct sk_buff *skb)
1371{
1372 if (unlikely(skb->slow_gro)) {
1373 nf_reset_ct(skb);
1374 skb_dst_drop(skb);
1375 skb_ext_put(skb);
1376 skb_orphan(skb);
1377 skb->slow_gro = 0;
1378 }
1379 napi_skb_cache_put(skb);
1380}
1381
1382void napi_consume_skb(struct sk_buff *skb, int budget)
1383{
1384 /* Zero budget indicate non-NAPI context called us, like netpoll */
1385 if (unlikely(!budget)) {
1386 dev_consume_skb_any(skb);
1387 return;
1388 }
1389
1390 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1391
1392 if (!skb_unref(skb))
1393 return;
1394
1395 /* if reaching here SKB is ready to free */
1396 trace_consume_skb(skb, __builtin_return_address(0));
1397
1398 /* if SKB is a clone, don't handle this case */
1399 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1400 __kfree_skb(skb);
1401 return;
1402 }
1403
1404 skb_release_all(skb, SKB_CONSUMED, !!budget);
1405 napi_skb_cache_put(skb);
1406}
1407EXPORT_SYMBOL(napi_consume_skb);
1408
1409/* Make sure a field is contained by headers group */
1410#define CHECK_SKB_FIELD(field) \
1411 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1412 offsetof(struct sk_buff, headers.field)); \
1413
1414static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1415{
1416 new->tstamp = old->tstamp;
1417 /* We do not copy old->sk */
1418 new->dev = old->dev;
1419 memcpy(new->cb, old->cb, sizeof(old->cb));
1420 skb_dst_copy(new, old);
1421 __skb_ext_copy(new, old);
1422 __nf_copy(new, old, false);
1423
1424 /* Note : this field could be in the headers group.
1425 * It is not yet because we do not want to have a 16 bit hole
1426 */
1427 new->queue_mapping = old->queue_mapping;
1428
1429 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1430 CHECK_SKB_FIELD(protocol);
1431 CHECK_SKB_FIELD(csum);
1432 CHECK_SKB_FIELD(hash);
1433 CHECK_SKB_FIELD(priority);
1434 CHECK_SKB_FIELD(skb_iif);
1435 CHECK_SKB_FIELD(vlan_proto);
1436 CHECK_SKB_FIELD(vlan_tci);
1437 CHECK_SKB_FIELD(transport_header);
1438 CHECK_SKB_FIELD(network_header);
1439 CHECK_SKB_FIELD(mac_header);
1440 CHECK_SKB_FIELD(inner_protocol);
1441 CHECK_SKB_FIELD(inner_transport_header);
1442 CHECK_SKB_FIELD(inner_network_header);
1443 CHECK_SKB_FIELD(inner_mac_header);
1444 CHECK_SKB_FIELD(mark);
1445#ifdef CONFIG_NETWORK_SECMARK
1446 CHECK_SKB_FIELD(secmark);
1447#endif
1448#ifdef CONFIG_NET_RX_BUSY_POLL
1449 CHECK_SKB_FIELD(napi_id);
1450#endif
1451 CHECK_SKB_FIELD(alloc_cpu);
1452#ifdef CONFIG_XPS
1453 CHECK_SKB_FIELD(sender_cpu);
1454#endif
1455#ifdef CONFIG_NET_SCHED
1456 CHECK_SKB_FIELD(tc_index);
1457#endif
1458
1459}
1460
1461/*
1462 * You should not add any new code to this function. Add it to
1463 * __copy_skb_header above instead.
1464 */
1465static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1466{
1467#define C(x) n->x = skb->x
1468
1469 n->next = n->prev = NULL;
1470 n->sk = NULL;
1471 __copy_skb_header(n, skb);
1472
1473 C(len);
1474 C(data_len);
1475 C(mac_len);
1476 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1477 n->cloned = 1;
1478 n->nohdr = 0;
1479 n->peeked = 0;
1480 C(pfmemalloc);
1481 C(pp_recycle);
1482 n->destructor = NULL;
1483 C(tail);
1484 C(end);
1485 C(head);
1486 C(head_frag);
1487 C(data);
1488 C(truesize);
1489 refcount_set(&n->users, 1);
1490
1491 atomic_inc(&(skb_shinfo(skb)->dataref));
1492 skb->cloned = 1;
1493
1494 return n;
1495#undef C
1496}
1497
1498/**
1499 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1500 * @first: first sk_buff of the msg
1501 */
1502struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1503{
1504 struct sk_buff *n;
1505
1506 n = alloc_skb(0, GFP_ATOMIC);
1507 if (!n)
1508 return NULL;
1509
1510 n->len = first->len;
1511 n->data_len = first->len;
1512 n->truesize = first->truesize;
1513
1514 skb_shinfo(n)->frag_list = first;
1515
1516 __copy_skb_header(n, first);
1517 n->destructor = NULL;
1518
1519 return n;
1520}
1521EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1522
1523/**
1524 * skb_morph - morph one skb into another
1525 * @dst: the skb to receive the contents
1526 * @src: the skb to supply the contents
1527 *
1528 * This is identical to skb_clone except that the target skb is
1529 * supplied by the user.
1530 *
1531 * The target skb is returned upon exit.
1532 */
1533struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1534{
1535 skb_release_all(dst, SKB_CONSUMED, false);
1536 return __skb_clone(dst, src);
1537}
1538EXPORT_SYMBOL_GPL(skb_morph);
1539
1540int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1541{
1542 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1543 struct user_struct *user;
1544
1545 if (capable(CAP_IPC_LOCK) || !size)
1546 return 0;
1547
1548 rlim = rlimit(RLIMIT_MEMLOCK);
1549 if (rlim == RLIM_INFINITY)
1550 return 0;
1551
1552 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1553 max_pg = rlim >> PAGE_SHIFT;
1554 user = mmp->user ? : current_user();
1555
1556 old_pg = atomic_long_read(&user->locked_vm);
1557 do {
1558 new_pg = old_pg + num_pg;
1559 if (new_pg > max_pg)
1560 return -ENOBUFS;
1561 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1562
1563 if (!mmp->user) {
1564 mmp->user = get_uid(user);
1565 mmp->num_pg = num_pg;
1566 } else {
1567 mmp->num_pg += num_pg;
1568 }
1569
1570 return 0;
1571}
1572EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1573
1574void mm_unaccount_pinned_pages(struct mmpin *mmp)
1575{
1576 if (mmp->user) {
1577 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1578 free_uid(mmp->user);
1579 }
1580}
1581EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1582
1583static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1584{
1585 struct ubuf_info_msgzc *uarg;
1586 struct sk_buff *skb;
1587
1588 WARN_ON_ONCE(!in_task());
1589
1590 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1591 if (!skb)
1592 return NULL;
1593
1594 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1595 uarg = (void *)skb->cb;
1596 uarg->mmp.user = NULL;
1597
1598 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1599 kfree_skb(skb);
1600 return NULL;
1601 }
1602
1603 uarg->ubuf.callback = msg_zerocopy_callback;
1604 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1605 uarg->len = 1;
1606 uarg->bytelen = size;
1607 uarg->zerocopy = 1;
1608 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1609 refcount_set(&uarg->ubuf.refcnt, 1);
1610 sock_hold(sk);
1611
1612 return &uarg->ubuf;
1613}
1614
1615static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1616{
1617 return container_of((void *)uarg, struct sk_buff, cb);
1618}
1619
1620struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1621 struct ubuf_info *uarg)
1622{
1623 if (uarg) {
1624 struct ubuf_info_msgzc *uarg_zc;
1625 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1626 u32 bytelen, next;
1627
1628 /* there might be non MSG_ZEROCOPY users */
1629 if (uarg->callback != msg_zerocopy_callback)
1630 return NULL;
1631
1632 /* realloc only when socket is locked (TCP, UDP cork),
1633 * so uarg->len and sk_zckey access is serialized
1634 */
1635 if (!sock_owned_by_user(sk)) {
1636 WARN_ON_ONCE(1);
1637 return NULL;
1638 }
1639
1640 uarg_zc = uarg_to_msgzc(uarg);
1641 bytelen = uarg_zc->bytelen + size;
1642 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1643 /* TCP can create new skb to attach new uarg */
1644 if (sk->sk_type == SOCK_STREAM)
1645 goto new_alloc;
1646 return NULL;
1647 }
1648
1649 next = (u32)atomic_read(&sk->sk_zckey);
1650 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1651 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1652 return NULL;
1653 uarg_zc->len++;
1654 uarg_zc->bytelen = bytelen;
1655 atomic_set(&sk->sk_zckey, ++next);
1656
1657 /* no extra ref when appending to datagram (MSG_MORE) */
1658 if (sk->sk_type == SOCK_STREAM)
1659 net_zcopy_get(uarg);
1660
1661 return uarg;
1662 }
1663 }
1664
1665new_alloc:
1666 return msg_zerocopy_alloc(sk, size);
1667}
1668EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1669
1670static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1671{
1672 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1673 u32 old_lo, old_hi;
1674 u64 sum_len;
1675
1676 old_lo = serr->ee.ee_info;
1677 old_hi = serr->ee.ee_data;
1678 sum_len = old_hi - old_lo + 1ULL + len;
1679
1680 if (sum_len >= (1ULL << 32))
1681 return false;
1682
1683 if (lo != old_hi + 1)
1684 return false;
1685
1686 serr->ee.ee_data += len;
1687 return true;
1688}
1689
1690static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1691{
1692 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1693 struct sock_exterr_skb *serr;
1694 struct sock *sk = skb->sk;
1695 struct sk_buff_head *q;
1696 unsigned long flags;
1697 bool is_zerocopy;
1698 u32 lo, hi;
1699 u16 len;
1700
1701 mm_unaccount_pinned_pages(&uarg->mmp);
1702
1703 /* if !len, there was only 1 call, and it was aborted
1704 * so do not queue a completion notification
1705 */
1706 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1707 goto release;
1708
1709 len = uarg->len;
1710 lo = uarg->id;
1711 hi = uarg->id + len - 1;
1712 is_zerocopy = uarg->zerocopy;
1713
1714 serr = SKB_EXT_ERR(skb);
1715 memset(serr, 0, sizeof(*serr));
1716 serr->ee.ee_errno = 0;
1717 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1718 serr->ee.ee_data = hi;
1719 serr->ee.ee_info = lo;
1720 if (!is_zerocopy)
1721 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1722
1723 q = &sk->sk_error_queue;
1724 spin_lock_irqsave(&q->lock, flags);
1725 tail = skb_peek_tail(q);
1726 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1727 !skb_zerocopy_notify_extend(tail, lo, len)) {
1728 __skb_queue_tail(q, skb);
1729 skb = NULL;
1730 }
1731 spin_unlock_irqrestore(&q->lock, flags);
1732
1733 sk_error_report(sk);
1734
1735release:
1736 consume_skb(skb);
1737 sock_put(sk);
1738}
1739
1740void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1741 bool success)
1742{
1743 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1744
1745 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1746
1747 if (refcount_dec_and_test(&uarg->refcnt))
1748 __msg_zerocopy_callback(uarg_zc);
1749}
1750EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1751
1752void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1753{
1754 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1755
1756 atomic_dec(&sk->sk_zckey);
1757 uarg_to_msgzc(uarg)->len--;
1758
1759 if (have_uref)
1760 msg_zerocopy_callback(NULL, uarg, true);
1761}
1762EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1763
1764int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1765 struct msghdr *msg, int len,
1766 struct ubuf_info *uarg)
1767{
1768 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1769 int err, orig_len = skb->len;
1770
1771 /* An skb can only point to one uarg. This edge case happens when
1772 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1773 */
1774 if (orig_uarg && uarg != orig_uarg)
1775 return -EEXIST;
1776
1777 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1778 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1779 struct sock *save_sk = skb->sk;
1780
1781 /* Streams do not free skb on error. Reset to prev state. */
1782 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1783 skb->sk = sk;
1784 ___pskb_trim(skb, orig_len);
1785 skb->sk = save_sk;
1786 return err;
1787 }
1788
1789 skb_zcopy_set(skb, uarg, NULL);
1790 return skb->len - orig_len;
1791}
1792EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1793
1794void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1795{
1796 int i;
1797
1798 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1799 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1800 skb_frag_ref(skb, i);
1801}
1802EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1803
1804static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1805 gfp_t gfp_mask)
1806{
1807 if (skb_zcopy(orig)) {
1808 if (skb_zcopy(nskb)) {
1809 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1810 if (!gfp_mask) {
1811 WARN_ON_ONCE(1);
1812 return -ENOMEM;
1813 }
1814 if (skb_uarg(nskb) == skb_uarg(orig))
1815 return 0;
1816 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1817 return -EIO;
1818 }
1819 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1820 }
1821 return 0;
1822}
1823
1824/**
1825 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1826 * @skb: the skb to modify
1827 * @gfp_mask: allocation priority
1828 *
1829 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1830 * It will copy all frags into kernel and drop the reference
1831 * to userspace pages.
1832 *
1833 * If this function is called from an interrupt gfp_mask() must be
1834 * %GFP_ATOMIC.
1835 *
1836 * Returns 0 on success or a negative error code on failure
1837 * to allocate kernel memory to copy to.
1838 */
1839int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1840{
1841 int num_frags = skb_shinfo(skb)->nr_frags;
1842 struct page *page, *head = NULL;
1843 int i, order, psize, new_frags;
1844 u32 d_off;
1845
1846 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1847 return -EINVAL;
1848
1849 if (!num_frags)
1850 goto release;
1851
1852 /* We might have to allocate high order pages, so compute what minimum
1853 * page order is needed.
1854 */
1855 order = 0;
1856 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1857 order++;
1858 psize = (PAGE_SIZE << order);
1859
1860 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1861 for (i = 0; i < new_frags; i++) {
1862 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1863 if (!page) {
1864 while (head) {
1865 struct page *next = (struct page *)page_private(head);
1866 put_page(head);
1867 head = next;
1868 }
1869 return -ENOMEM;
1870 }
1871 set_page_private(page, (unsigned long)head);
1872 head = page;
1873 }
1874
1875 page = head;
1876 d_off = 0;
1877 for (i = 0; i < num_frags; i++) {
1878 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1879 u32 p_off, p_len, copied;
1880 struct page *p;
1881 u8 *vaddr;
1882
1883 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1884 p, p_off, p_len, copied) {
1885 u32 copy, done = 0;
1886 vaddr = kmap_atomic(p);
1887
1888 while (done < p_len) {
1889 if (d_off == psize) {
1890 d_off = 0;
1891 page = (struct page *)page_private(page);
1892 }
1893 copy = min_t(u32, psize - d_off, p_len - done);
1894 memcpy(page_address(page) + d_off,
1895 vaddr + p_off + done, copy);
1896 done += copy;
1897 d_off += copy;
1898 }
1899 kunmap_atomic(vaddr);
1900 }
1901 }
1902
1903 /* skb frags release userspace buffers */
1904 for (i = 0; i < num_frags; i++)
1905 skb_frag_unref(skb, i);
1906
1907 /* skb frags point to kernel buffers */
1908 for (i = 0; i < new_frags - 1; i++) {
1909 __skb_fill_page_desc(skb, i, head, 0, psize);
1910 head = (struct page *)page_private(head);
1911 }
1912 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1913 skb_shinfo(skb)->nr_frags = new_frags;
1914
1915release:
1916 skb_zcopy_clear(skb, false);
1917 return 0;
1918}
1919EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1920
1921/**
1922 * skb_clone - duplicate an sk_buff
1923 * @skb: buffer to clone
1924 * @gfp_mask: allocation priority
1925 *
1926 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1927 * copies share the same packet data but not structure. The new
1928 * buffer has a reference count of 1. If the allocation fails the
1929 * function returns %NULL otherwise the new buffer is returned.
1930 *
1931 * If this function is called from an interrupt gfp_mask() must be
1932 * %GFP_ATOMIC.
1933 */
1934
1935struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1936{
1937 struct sk_buff_fclones *fclones = container_of(skb,
1938 struct sk_buff_fclones,
1939 skb1);
1940 struct sk_buff *n;
1941
1942 if (skb_orphan_frags(skb, gfp_mask))
1943 return NULL;
1944
1945 if (skb->fclone == SKB_FCLONE_ORIG &&
1946 refcount_read(&fclones->fclone_ref) == 1) {
1947 n = &fclones->skb2;
1948 refcount_set(&fclones->fclone_ref, 2);
1949 n->fclone = SKB_FCLONE_CLONE;
1950 } else {
1951 if (skb_pfmemalloc(skb))
1952 gfp_mask |= __GFP_MEMALLOC;
1953
1954 n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1955 if (!n)
1956 return NULL;
1957
1958 n->fclone = SKB_FCLONE_UNAVAILABLE;
1959 }
1960
1961 return __skb_clone(n, skb);
1962}
1963EXPORT_SYMBOL(skb_clone);
1964
1965void skb_headers_offset_update(struct sk_buff *skb, int off)
1966{
1967 /* Only adjust this if it actually is csum_start rather than csum */
1968 if (skb->ip_summed == CHECKSUM_PARTIAL)
1969 skb->csum_start += off;
1970 /* {transport,network,mac}_header and tail are relative to skb->head */
1971 skb->transport_header += off;
1972 skb->network_header += off;
1973 if (skb_mac_header_was_set(skb))
1974 skb->mac_header += off;
1975 skb->inner_transport_header += off;
1976 skb->inner_network_header += off;
1977 skb->inner_mac_header += off;
1978}
1979EXPORT_SYMBOL(skb_headers_offset_update);
1980
1981void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1982{
1983 __copy_skb_header(new, old);
1984
1985 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1986 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1987 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1988}
1989EXPORT_SYMBOL(skb_copy_header);
1990
1991static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1992{
1993 if (skb_pfmemalloc(skb))
1994 return SKB_ALLOC_RX;
1995 return 0;
1996}
1997
1998/**
1999 * skb_copy - create private copy of an sk_buff
2000 * @skb: buffer to copy
2001 * @gfp_mask: allocation priority
2002 *
2003 * Make a copy of both an &sk_buff and its data. This is used when the
2004 * caller wishes to modify the data and needs a private copy of the
2005 * data to alter. Returns %NULL on failure or the pointer to the buffer
2006 * on success. The returned buffer has a reference count of 1.
2007 *
2008 * As by-product this function converts non-linear &sk_buff to linear
2009 * one, so that &sk_buff becomes completely private and caller is allowed
2010 * to modify all the data of returned buffer. This means that this
2011 * function is not recommended for use in circumstances when only
2012 * header is going to be modified. Use pskb_copy() instead.
2013 */
2014
2015struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
2016{
2017 int headerlen = skb_headroom(skb);
2018 unsigned int size = skb_end_offset(skb) + skb->data_len;
2019 struct sk_buff *n = __alloc_skb(size, gfp_mask,
2020 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
2021
2022 if (!n)
2023 return NULL;
2024
2025 /* Set the data pointer */
2026 skb_reserve(n, headerlen);
2027 /* Set the tail pointer and length */
2028 skb_put(n, skb->len);
2029
2030 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
2031
2032 skb_copy_header(n, skb);
2033 return n;
2034}
2035EXPORT_SYMBOL(skb_copy);
2036
2037/**
2038 * __pskb_copy_fclone - create copy of an sk_buff with private head.
2039 * @skb: buffer to copy
2040 * @headroom: headroom of new skb
2041 * @gfp_mask: allocation priority
2042 * @fclone: if true allocate the copy of the skb from the fclone
2043 * cache instead of the head cache; it is recommended to set this
2044 * to true for the cases where the copy will likely be cloned
2045 *
2046 * Make a copy of both an &sk_buff and part of its data, located
2047 * in header. Fragmented data remain shared. This is used when
2048 * the caller wishes to modify only header of &sk_buff and needs
2049 * private copy of the header to alter. Returns %NULL on failure
2050 * or the pointer to the buffer on success.
2051 * The returned buffer has a reference count of 1.
2052 */
2053
2054struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2055 gfp_t gfp_mask, bool fclone)
2056{
2057 unsigned int size = skb_headlen(skb) + headroom;
2058 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2059 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2060
2061 if (!n)
2062 goto out;
2063
2064 /* Set the data pointer */
2065 skb_reserve(n, headroom);
2066 /* Set the tail pointer and length */
2067 skb_put(n, skb_headlen(skb));
2068 /* Copy the bytes */
2069 skb_copy_from_linear_data(skb, n->data, n->len);
2070
2071 n->truesize += skb->data_len;
2072 n->data_len = skb->data_len;
2073 n->len = skb->len;
2074
2075 if (skb_shinfo(skb)->nr_frags) {
2076 int i;
2077
2078 if (skb_orphan_frags(skb, gfp_mask) ||
2079 skb_zerocopy_clone(n, skb, gfp_mask)) {
2080 kfree_skb(n);
2081 n = NULL;
2082 goto out;
2083 }
2084 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2085 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2086 skb_frag_ref(skb, i);
2087 }
2088 skb_shinfo(n)->nr_frags = i;
2089 }
2090
2091 if (skb_has_frag_list(skb)) {
2092 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2093 skb_clone_fraglist(n);
2094 }
2095
2096 skb_copy_header(n, skb);
2097out:
2098 return n;
2099}
2100EXPORT_SYMBOL(__pskb_copy_fclone);
2101
2102/**
2103 * pskb_expand_head - reallocate header of &sk_buff
2104 * @skb: buffer to reallocate
2105 * @nhead: room to add at head
2106 * @ntail: room to add at tail
2107 * @gfp_mask: allocation priority
2108 *
2109 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2110 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2111 * reference count of 1. Returns zero in the case of success or error,
2112 * if expansion failed. In the last case, &sk_buff is not changed.
2113 *
2114 * All the pointers pointing into skb header may change and must be
2115 * reloaded after call to this function.
2116 */
2117
2118int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2119 gfp_t gfp_mask)
2120{
2121 unsigned int osize = skb_end_offset(skb);
2122 unsigned int size = osize + nhead + ntail;
2123 long off;
2124 u8 *data;
2125 int i;
2126
2127 BUG_ON(nhead < 0);
2128
2129 BUG_ON(skb_shared(skb));
2130
2131 skb_zcopy_downgrade_managed(skb);
2132
2133 if (skb_pfmemalloc(skb))
2134 gfp_mask |= __GFP_MEMALLOC;
2135
2136 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2137 if (!data)
2138 goto nodata;
2139 size = SKB_WITH_OVERHEAD(size);
2140
2141 /* Copy only real data... and, alas, header. This should be
2142 * optimized for the cases when header is void.
2143 */
2144 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2145
2146 memcpy((struct skb_shared_info *)(data + size),
2147 skb_shinfo(skb),
2148 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2149
2150 /*
2151 * if shinfo is shared we must drop the old head gracefully, but if it
2152 * is not we can just drop the old head and let the existing refcount
2153 * be since all we did is relocate the values
2154 */
2155 if (skb_cloned(skb)) {
2156 if (skb_orphan_frags(skb, gfp_mask))
2157 goto nofrags;
2158 if (skb_zcopy(skb))
2159 refcount_inc(&skb_uarg(skb)->refcnt);
2160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2161 skb_frag_ref(skb, i);
2162
2163 if (skb_has_frag_list(skb))
2164 skb_clone_fraglist(skb);
2165
2166 skb_release_data(skb, SKB_CONSUMED, false);
2167 } else {
2168 skb_free_head(skb, false);
2169 }
2170 off = (data + nhead) - skb->head;
2171
2172 skb->head = data;
2173 skb->head_frag = 0;
2174 skb->data += off;
2175
2176 skb_set_end_offset(skb, size);
2177#ifdef NET_SKBUFF_DATA_USES_OFFSET
2178 off = nhead;
2179#endif
2180 skb->tail += off;
2181 skb_headers_offset_update(skb, nhead);
2182 skb->cloned = 0;
2183 skb->hdr_len = 0;
2184 skb->nohdr = 0;
2185 atomic_set(&skb_shinfo(skb)->dataref, 1);
2186
2187 skb_metadata_clear(skb);
2188
2189 /* It is not generally safe to change skb->truesize.
2190 * For the moment, we really care of rx path, or
2191 * when skb is orphaned (not attached to a socket).
2192 */
2193 if (!skb->sk || skb->destructor == sock_edemux)
2194 skb->truesize += size - osize;
2195
2196 return 0;
2197
2198nofrags:
2199 skb_kfree_head(data, size);
2200nodata:
2201 return -ENOMEM;
2202}
2203EXPORT_SYMBOL(pskb_expand_head);
2204
2205/* Make private copy of skb with writable head and some headroom */
2206
2207struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2208{
2209 struct sk_buff *skb2;
2210 int delta = headroom - skb_headroom(skb);
2211
2212 if (delta <= 0)
2213 skb2 = pskb_copy(skb, GFP_ATOMIC);
2214 else {
2215 skb2 = skb_clone(skb, GFP_ATOMIC);
2216 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2217 GFP_ATOMIC)) {
2218 kfree_skb(skb2);
2219 skb2 = NULL;
2220 }
2221 }
2222 return skb2;
2223}
2224EXPORT_SYMBOL(skb_realloc_headroom);
2225
2226/* Note: We plan to rework this in linux-6.4 */
2227int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2228{
2229 unsigned int saved_end_offset, saved_truesize;
2230 struct skb_shared_info *shinfo;
2231 int res;
2232
2233 saved_end_offset = skb_end_offset(skb);
2234 saved_truesize = skb->truesize;
2235
2236 res = pskb_expand_head(skb, 0, 0, pri);
2237 if (res)
2238 return res;
2239
2240 skb->truesize = saved_truesize;
2241
2242 if (likely(skb_end_offset(skb) == saved_end_offset))
2243 return 0;
2244
2245 /* We can not change skb->end if the original or new value
2246 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2247 */
2248 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2249 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2250 /* We think this path should not be taken.
2251 * Add a temporary trace to warn us just in case.
2252 */
2253 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2254 saved_end_offset, skb_end_offset(skb));
2255 WARN_ON_ONCE(1);
2256 return 0;
2257 }
2258
2259 shinfo = skb_shinfo(skb);
2260
2261 /* We are about to change back skb->end,
2262 * we need to move skb_shinfo() to its new location.
2263 */
2264 memmove(skb->head + saved_end_offset,
2265 shinfo,
2266 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2267
2268 skb_set_end_offset(skb, saved_end_offset);
2269
2270 return 0;
2271}
2272
2273/**
2274 * skb_expand_head - reallocate header of &sk_buff
2275 * @skb: buffer to reallocate
2276 * @headroom: needed headroom
2277 *
2278 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2279 * if possible; copies skb->sk to new skb as needed
2280 * and frees original skb in case of failures.
2281 *
2282 * It expect increased headroom and generates warning otherwise.
2283 */
2284
2285struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2286{
2287 int delta = headroom - skb_headroom(skb);
2288 int osize = skb_end_offset(skb);
2289 struct sock *sk = skb->sk;
2290
2291 if (WARN_ONCE(delta <= 0,
2292 "%s is expecting an increase in the headroom", __func__))
2293 return skb;
2294
2295 delta = SKB_DATA_ALIGN(delta);
2296 /* pskb_expand_head() might crash, if skb is shared. */
2297 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2298 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2299
2300 if (unlikely(!nskb))
2301 goto fail;
2302
2303 if (sk)
2304 skb_set_owner_w(nskb, sk);
2305 consume_skb(skb);
2306 skb = nskb;
2307 }
2308 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2309 goto fail;
2310
2311 if (sk && is_skb_wmem(skb)) {
2312 delta = skb_end_offset(skb) - osize;
2313 refcount_add(delta, &sk->sk_wmem_alloc);
2314 skb->truesize += delta;
2315 }
2316 return skb;
2317
2318fail:
2319 kfree_skb(skb);
2320 return NULL;
2321}
2322EXPORT_SYMBOL(skb_expand_head);
2323
2324/**
2325 * skb_copy_expand - copy and expand sk_buff
2326 * @skb: buffer to copy
2327 * @newheadroom: new free bytes at head
2328 * @newtailroom: new free bytes at tail
2329 * @gfp_mask: allocation priority
2330 *
2331 * Make a copy of both an &sk_buff and its data and while doing so
2332 * allocate additional space.
2333 *
2334 * This is used when the caller wishes to modify the data and needs a
2335 * private copy of the data to alter as well as more space for new fields.
2336 * Returns %NULL on failure or the pointer to the buffer
2337 * on success. The returned buffer has a reference count of 1.
2338 *
2339 * You must pass %GFP_ATOMIC as the allocation priority if this function
2340 * is called from an interrupt.
2341 */
2342struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2343 int newheadroom, int newtailroom,
2344 gfp_t gfp_mask)
2345{
2346 /*
2347 * Allocate the copy buffer
2348 */
2349 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2350 gfp_mask, skb_alloc_rx_flag(skb),
2351 NUMA_NO_NODE);
2352 int oldheadroom = skb_headroom(skb);
2353 int head_copy_len, head_copy_off;
2354
2355 if (!n)
2356 return NULL;
2357
2358 skb_reserve(n, newheadroom);
2359
2360 /* Set the tail pointer and length */
2361 skb_put(n, skb->len);
2362
2363 head_copy_len = oldheadroom;
2364 head_copy_off = 0;
2365 if (newheadroom <= head_copy_len)
2366 head_copy_len = newheadroom;
2367 else
2368 head_copy_off = newheadroom - head_copy_len;
2369
2370 /* Copy the linear header and data. */
2371 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2372 skb->len + head_copy_len));
2373
2374 skb_copy_header(n, skb);
2375
2376 skb_headers_offset_update(n, newheadroom - oldheadroom);
2377
2378 return n;
2379}
2380EXPORT_SYMBOL(skb_copy_expand);
2381
2382/**
2383 * __skb_pad - zero pad the tail of an skb
2384 * @skb: buffer to pad
2385 * @pad: space to pad
2386 * @free_on_error: free buffer on error
2387 *
2388 * Ensure that a buffer is followed by a padding area that is zero
2389 * filled. Used by network drivers which may DMA or transfer data
2390 * beyond the buffer end onto the wire.
2391 *
2392 * May return error in out of memory cases. The skb is freed on error
2393 * if @free_on_error is true.
2394 */
2395
2396int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2397{
2398 int err;
2399 int ntail;
2400
2401 /* If the skbuff is non linear tailroom is always zero.. */
2402 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2403 memset(skb->data+skb->len, 0, pad);
2404 return 0;
2405 }
2406
2407 ntail = skb->data_len + pad - (skb->end - skb->tail);
2408 if (likely(skb_cloned(skb) || ntail > 0)) {
2409 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2410 if (unlikely(err))
2411 goto free_skb;
2412 }
2413
2414 /* FIXME: The use of this function with non-linear skb's really needs
2415 * to be audited.
2416 */
2417 err = skb_linearize(skb);
2418 if (unlikely(err))
2419 goto free_skb;
2420
2421 memset(skb->data + skb->len, 0, pad);
2422 return 0;
2423
2424free_skb:
2425 if (free_on_error)
2426 kfree_skb(skb);
2427 return err;
2428}
2429EXPORT_SYMBOL(__skb_pad);
2430
2431/**
2432 * pskb_put - add data to the tail of a potentially fragmented buffer
2433 * @skb: start of the buffer to use
2434 * @tail: tail fragment of the buffer to use
2435 * @len: amount of data to add
2436 *
2437 * This function extends the used data area of the potentially
2438 * fragmented buffer. @tail must be the last fragment of @skb -- or
2439 * @skb itself. If this would exceed the total buffer size the kernel
2440 * will panic. A pointer to the first byte of the extra data is
2441 * returned.
2442 */
2443
2444void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2445{
2446 if (tail != skb) {
2447 skb->data_len += len;
2448 skb->len += len;
2449 }
2450 return skb_put(tail, len);
2451}
2452EXPORT_SYMBOL_GPL(pskb_put);
2453
2454/**
2455 * skb_put - add data to a buffer
2456 * @skb: buffer to use
2457 * @len: amount of data to add
2458 *
2459 * This function extends the used data area of the buffer. If this would
2460 * exceed the total buffer size the kernel will panic. A pointer to the
2461 * first byte of the extra data is returned.
2462 */
2463void *skb_put(struct sk_buff *skb, unsigned int len)
2464{
2465 void *tmp = skb_tail_pointer(skb);
2466 SKB_LINEAR_ASSERT(skb);
2467 skb->tail += len;
2468 skb->len += len;
2469 if (unlikely(skb->tail > skb->end))
2470 skb_over_panic(skb, len, __builtin_return_address(0));
2471 return tmp;
2472}
2473EXPORT_SYMBOL(skb_put);
2474
2475/**
2476 * skb_push - add data to the start of a buffer
2477 * @skb: buffer to use
2478 * @len: amount of data to add
2479 *
2480 * This function extends the used data area of the buffer at the buffer
2481 * start. If this would exceed the total buffer headroom the kernel will
2482 * panic. A pointer to the first byte of the extra data is returned.
2483 */
2484void *skb_push(struct sk_buff *skb, unsigned int len)
2485{
2486 skb->data -= len;
2487 skb->len += len;
2488 if (unlikely(skb->data < skb->head))
2489 skb_under_panic(skb, len, __builtin_return_address(0));
2490 return skb->data;
2491}
2492EXPORT_SYMBOL(skb_push);
2493
2494/**
2495 * skb_pull - remove data from the start of a buffer
2496 * @skb: buffer to use
2497 * @len: amount of data to remove
2498 *
2499 * This function removes data from the start of a buffer, returning
2500 * the memory to the headroom. A pointer to the next data in the buffer
2501 * is returned. Once the data has been pulled future pushes will overwrite
2502 * the old data.
2503 */
2504void *skb_pull(struct sk_buff *skb, unsigned int len)
2505{
2506 return skb_pull_inline(skb, len);
2507}
2508EXPORT_SYMBOL(skb_pull);
2509
2510/**
2511 * skb_pull_data - remove data from the start of a buffer returning its
2512 * original position.
2513 * @skb: buffer to use
2514 * @len: amount of data to remove
2515 *
2516 * This function removes data from the start of a buffer, returning
2517 * the memory to the headroom. A pointer to the original data in the buffer
2518 * is returned after checking if there is enough data to pull. Once the
2519 * data has been pulled future pushes will overwrite the old data.
2520 */
2521void *skb_pull_data(struct sk_buff *skb, size_t len)
2522{
2523 void *data = skb->data;
2524
2525 if (skb->len < len)
2526 return NULL;
2527
2528 skb_pull(skb, len);
2529
2530 return data;
2531}
2532EXPORT_SYMBOL(skb_pull_data);
2533
2534/**
2535 * skb_trim - remove end from a buffer
2536 * @skb: buffer to alter
2537 * @len: new length
2538 *
2539 * Cut the length of a buffer down by removing data from the tail. If
2540 * the buffer is already under the length specified it is not modified.
2541 * The skb must be linear.
2542 */
2543void skb_trim(struct sk_buff *skb, unsigned int len)
2544{
2545 if (skb->len > len)
2546 __skb_trim(skb, len);
2547}
2548EXPORT_SYMBOL(skb_trim);
2549
2550/* Trims skb to length len. It can change skb pointers.
2551 */
2552
2553int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2554{
2555 struct sk_buff **fragp;
2556 struct sk_buff *frag;
2557 int offset = skb_headlen(skb);
2558 int nfrags = skb_shinfo(skb)->nr_frags;
2559 int i;
2560 int err;
2561
2562 if (skb_cloned(skb) &&
2563 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2564 return err;
2565
2566 i = 0;
2567 if (offset >= len)
2568 goto drop_pages;
2569
2570 for (; i < nfrags; i++) {
2571 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2572
2573 if (end < len) {
2574 offset = end;
2575 continue;
2576 }
2577
2578 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2579
2580drop_pages:
2581 skb_shinfo(skb)->nr_frags = i;
2582
2583 for (; i < nfrags; i++)
2584 skb_frag_unref(skb, i);
2585
2586 if (skb_has_frag_list(skb))
2587 skb_drop_fraglist(skb);
2588 goto done;
2589 }
2590
2591 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2592 fragp = &frag->next) {
2593 int end = offset + frag->len;
2594
2595 if (skb_shared(frag)) {
2596 struct sk_buff *nfrag;
2597
2598 nfrag = skb_clone(frag, GFP_ATOMIC);
2599 if (unlikely(!nfrag))
2600 return -ENOMEM;
2601
2602 nfrag->next = frag->next;
2603 consume_skb(frag);
2604 frag = nfrag;
2605 *fragp = frag;
2606 }
2607
2608 if (end < len) {
2609 offset = end;
2610 continue;
2611 }
2612
2613 if (end > len &&
2614 unlikely((err = pskb_trim(frag, len - offset))))
2615 return err;
2616
2617 if (frag->next)
2618 skb_drop_list(&frag->next);
2619 break;
2620 }
2621
2622done:
2623 if (len > skb_headlen(skb)) {
2624 skb->data_len -= skb->len - len;
2625 skb->len = len;
2626 } else {
2627 skb->len = len;
2628 skb->data_len = 0;
2629 skb_set_tail_pointer(skb, len);
2630 }
2631
2632 if (!skb->sk || skb->destructor == sock_edemux)
2633 skb_condense(skb);
2634 return 0;
2635}
2636EXPORT_SYMBOL(___pskb_trim);
2637
2638/* Note : use pskb_trim_rcsum() instead of calling this directly
2639 */
2640int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2641{
2642 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2643 int delta = skb->len - len;
2644
2645 skb->csum = csum_block_sub(skb->csum,
2646 skb_checksum(skb, len, delta, 0),
2647 len);
2648 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2649 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2650 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2651
2652 if (offset + sizeof(__sum16) > hdlen)
2653 return -EINVAL;
2654 }
2655 return __pskb_trim(skb, len);
2656}
2657EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2658
2659/**
2660 * __pskb_pull_tail - advance tail of skb header
2661 * @skb: buffer to reallocate
2662 * @delta: number of bytes to advance tail
2663 *
2664 * The function makes a sense only on a fragmented &sk_buff,
2665 * it expands header moving its tail forward and copying necessary
2666 * data from fragmented part.
2667 *
2668 * &sk_buff MUST have reference count of 1.
2669 *
2670 * Returns %NULL (and &sk_buff does not change) if pull failed
2671 * or value of new tail of skb in the case of success.
2672 *
2673 * All the pointers pointing into skb header may change and must be
2674 * reloaded after call to this function.
2675 */
2676
2677/* Moves tail of skb head forward, copying data from fragmented part,
2678 * when it is necessary.
2679 * 1. It may fail due to malloc failure.
2680 * 2. It may change skb pointers.
2681 *
2682 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2683 */
2684void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2685{
2686 /* If skb has not enough free space at tail, get new one
2687 * plus 128 bytes for future expansions. If we have enough
2688 * room at tail, reallocate without expansion only if skb is cloned.
2689 */
2690 int i, k, eat = (skb->tail + delta) - skb->end;
2691
2692 if (eat > 0 || skb_cloned(skb)) {
2693 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2694 GFP_ATOMIC))
2695 return NULL;
2696 }
2697
2698 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2699 skb_tail_pointer(skb), delta));
2700
2701 /* Optimization: no fragments, no reasons to preestimate
2702 * size of pulled pages. Superb.
2703 */
2704 if (!skb_has_frag_list(skb))
2705 goto pull_pages;
2706
2707 /* Estimate size of pulled pages. */
2708 eat = delta;
2709 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2710 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2711
2712 if (size >= eat)
2713 goto pull_pages;
2714 eat -= size;
2715 }
2716
2717 /* If we need update frag list, we are in troubles.
2718 * Certainly, it is possible to add an offset to skb data,
2719 * but taking into account that pulling is expected to
2720 * be very rare operation, it is worth to fight against
2721 * further bloating skb head and crucify ourselves here instead.
2722 * Pure masohism, indeed. 8)8)
2723 */
2724 if (eat) {
2725 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2726 struct sk_buff *clone = NULL;
2727 struct sk_buff *insp = NULL;
2728
2729 do {
2730 if (list->len <= eat) {
2731 /* Eaten as whole. */
2732 eat -= list->len;
2733 list = list->next;
2734 insp = list;
2735 } else {
2736 /* Eaten partially. */
2737 if (skb_is_gso(skb) && !list->head_frag &&
2738 skb_headlen(list))
2739 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2740
2741 if (skb_shared(list)) {
2742 /* Sucks! We need to fork list. :-( */
2743 clone = skb_clone(list, GFP_ATOMIC);
2744 if (!clone)
2745 return NULL;
2746 insp = list->next;
2747 list = clone;
2748 } else {
2749 /* This may be pulled without
2750 * problems. */
2751 insp = list;
2752 }
2753 if (!pskb_pull(list, eat)) {
2754 kfree_skb(clone);
2755 return NULL;
2756 }
2757 break;
2758 }
2759 } while (eat);
2760
2761 /* Free pulled out fragments. */
2762 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2763 skb_shinfo(skb)->frag_list = list->next;
2764 consume_skb(list);
2765 }
2766 /* And insert new clone at head. */
2767 if (clone) {
2768 clone->next = list;
2769 skb_shinfo(skb)->frag_list = clone;
2770 }
2771 }
2772 /* Success! Now we may commit changes to skb data. */
2773
2774pull_pages:
2775 eat = delta;
2776 k = 0;
2777 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2778 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2779
2780 if (size <= eat) {
2781 skb_frag_unref(skb, i);
2782 eat -= size;
2783 } else {
2784 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2785
2786 *frag = skb_shinfo(skb)->frags[i];
2787 if (eat) {
2788 skb_frag_off_add(frag, eat);
2789 skb_frag_size_sub(frag, eat);
2790 if (!i)
2791 goto end;
2792 eat = 0;
2793 }
2794 k++;
2795 }
2796 }
2797 skb_shinfo(skb)->nr_frags = k;
2798
2799end:
2800 skb->tail += delta;
2801 skb->data_len -= delta;
2802
2803 if (!skb->data_len)
2804 skb_zcopy_clear(skb, false);
2805
2806 return skb_tail_pointer(skb);
2807}
2808EXPORT_SYMBOL(__pskb_pull_tail);
2809
2810/**
2811 * skb_copy_bits - copy bits from skb to kernel buffer
2812 * @skb: source skb
2813 * @offset: offset in source
2814 * @to: destination buffer
2815 * @len: number of bytes to copy
2816 *
2817 * Copy the specified number of bytes from the source skb to the
2818 * destination buffer.
2819 *
2820 * CAUTION ! :
2821 * If its prototype is ever changed,
2822 * check arch/{*}/net/{*}.S files,
2823 * since it is called from BPF assembly code.
2824 */
2825int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2826{
2827 int start = skb_headlen(skb);
2828 struct sk_buff *frag_iter;
2829 int i, copy;
2830
2831 if (offset > (int)skb->len - len)
2832 goto fault;
2833
2834 /* Copy header. */
2835 if ((copy = start - offset) > 0) {
2836 if (copy > len)
2837 copy = len;
2838 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2839 if ((len -= copy) == 0)
2840 return 0;
2841 offset += copy;
2842 to += copy;
2843 }
2844
2845 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2846 int end;
2847 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2848
2849 WARN_ON(start > offset + len);
2850
2851 end = start + skb_frag_size(f);
2852 if ((copy = end - offset) > 0) {
2853 u32 p_off, p_len, copied;
2854 struct page *p;
2855 u8 *vaddr;
2856
2857 if (copy > len)
2858 copy = len;
2859
2860 skb_frag_foreach_page(f,
2861 skb_frag_off(f) + offset - start,
2862 copy, p, p_off, p_len, copied) {
2863 vaddr = kmap_atomic(p);
2864 memcpy(to + copied, vaddr + p_off, p_len);
2865 kunmap_atomic(vaddr);
2866 }
2867
2868 if ((len -= copy) == 0)
2869 return 0;
2870 offset += copy;
2871 to += copy;
2872 }
2873 start = end;
2874 }
2875
2876 skb_walk_frags(skb, frag_iter) {
2877 int end;
2878
2879 WARN_ON(start > offset + len);
2880
2881 end = start + frag_iter->len;
2882 if ((copy = end - offset) > 0) {
2883 if (copy > len)
2884 copy = len;
2885 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2886 goto fault;
2887 if ((len -= copy) == 0)
2888 return 0;
2889 offset += copy;
2890 to += copy;
2891 }
2892 start = end;
2893 }
2894
2895 if (!len)
2896 return 0;
2897
2898fault:
2899 return -EFAULT;
2900}
2901EXPORT_SYMBOL(skb_copy_bits);
2902
2903/*
2904 * Callback from splice_to_pipe(), if we need to release some pages
2905 * at the end of the spd in case we error'ed out in filling the pipe.
2906 */
2907static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2908{
2909 put_page(spd->pages[i]);
2910}
2911
2912static struct page *linear_to_page(struct page *page, unsigned int *len,
2913 unsigned int *offset,
2914 struct sock *sk)
2915{
2916 struct page_frag *pfrag = sk_page_frag(sk);
2917
2918 if (!sk_page_frag_refill(sk, pfrag))
2919 return NULL;
2920
2921 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2922
2923 memcpy(page_address(pfrag->page) + pfrag->offset,
2924 page_address(page) + *offset, *len);
2925 *offset = pfrag->offset;
2926 pfrag->offset += *len;
2927
2928 return pfrag->page;
2929}
2930
2931static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2932 struct page *page,
2933 unsigned int offset)
2934{
2935 return spd->nr_pages &&
2936 spd->pages[spd->nr_pages - 1] == page &&
2937 (spd->partial[spd->nr_pages - 1].offset +
2938 spd->partial[spd->nr_pages - 1].len == offset);
2939}
2940
2941/*
2942 * Fill page/offset/length into spd, if it can hold more pages.
2943 */
2944static bool spd_fill_page(struct splice_pipe_desc *spd,
2945 struct pipe_inode_info *pipe, struct page *page,
2946 unsigned int *len, unsigned int offset,
2947 bool linear,
2948 struct sock *sk)
2949{
2950 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2951 return true;
2952
2953 if (linear) {
2954 page = linear_to_page(page, len, &offset, sk);
2955 if (!page)
2956 return true;
2957 }
2958 if (spd_can_coalesce(spd, page, offset)) {
2959 spd->partial[spd->nr_pages - 1].len += *len;
2960 return false;
2961 }
2962 get_page(page);
2963 spd->pages[spd->nr_pages] = page;
2964 spd->partial[spd->nr_pages].len = *len;
2965 spd->partial[spd->nr_pages].offset = offset;
2966 spd->nr_pages++;
2967
2968 return false;
2969}
2970
2971static bool __splice_segment(struct page *page, unsigned int poff,
2972 unsigned int plen, unsigned int *off,
2973 unsigned int *len,
2974 struct splice_pipe_desc *spd, bool linear,
2975 struct sock *sk,
2976 struct pipe_inode_info *pipe)
2977{
2978 if (!*len)
2979 return true;
2980
2981 /* skip this segment if already processed */
2982 if (*off >= plen) {
2983 *off -= plen;
2984 return false;
2985 }
2986
2987 /* ignore any bits we already processed */
2988 poff += *off;
2989 plen -= *off;
2990 *off = 0;
2991
2992 do {
2993 unsigned int flen = min(*len, plen);
2994
2995 if (spd_fill_page(spd, pipe, page, &flen, poff,
2996 linear, sk))
2997 return true;
2998 poff += flen;
2999 plen -= flen;
3000 *len -= flen;
3001 } while (*len && plen);
3002
3003 return false;
3004}
3005
3006/*
3007 * Map linear and fragment data from the skb to spd. It reports true if the
3008 * pipe is full or if we already spliced the requested length.
3009 */
3010static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
3011 unsigned int *offset, unsigned int *len,
3012 struct splice_pipe_desc *spd, struct sock *sk)
3013{
3014 int seg;
3015 struct sk_buff *iter;
3016
3017 /* map the linear part :
3018 * If skb->head_frag is set, this 'linear' part is backed by a
3019 * fragment, and if the head is not shared with any clones then
3020 * we can avoid a copy since we own the head portion of this page.
3021 */
3022 if (__splice_segment(virt_to_page(skb->data),
3023 (unsigned long) skb->data & (PAGE_SIZE - 1),
3024 skb_headlen(skb),
3025 offset, len, spd,
3026 skb_head_is_locked(skb),
3027 sk, pipe))
3028 return true;
3029
3030 /*
3031 * then map the fragments
3032 */
3033 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
3034 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
3035
3036 if (__splice_segment(skb_frag_page(f),
3037 skb_frag_off(f), skb_frag_size(f),
3038 offset, len, spd, false, sk, pipe))
3039 return true;
3040 }
3041
3042 skb_walk_frags(skb, iter) {
3043 if (*offset >= iter->len) {
3044 *offset -= iter->len;
3045 continue;
3046 }
3047 /* __skb_splice_bits() only fails if the output has no room
3048 * left, so no point in going over the frag_list for the error
3049 * case.
3050 */
3051 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3052 return true;
3053 }
3054
3055 return false;
3056}
3057
3058/*
3059 * Map data from the skb to a pipe. Should handle both the linear part,
3060 * the fragments, and the frag list.
3061 */
3062int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3063 struct pipe_inode_info *pipe, unsigned int tlen,
3064 unsigned int flags)
3065{
3066 struct partial_page partial[MAX_SKB_FRAGS];
3067 struct page *pages[MAX_SKB_FRAGS];
3068 struct splice_pipe_desc spd = {
3069 .pages = pages,
3070 .partial = partial,
3071 .nr_pages_max = MAX_SKB_FRAGS,
3072 .ops = &nosteal_pipe_buf_ops,
3073 .spd_release = sock_spd_release,
3074 };
3075 int ret = 0;
3076
3077 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3078
3079 if (spd.nr_pages)
3080 ret = splice_to_pipe(pipe, &spd);
3081
3082 return ret;
3083}
3084EXPORT_SYMBOL_GPL(skb_splice_bits);
3085
3086static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3087{
3088 struct socket *sock = sk->sk_socket;
3089 size_t size = msg_data_left(msg);
3090
3091 if (!sock)
3092 return -EINVAL;
3093
3094 if (!sock->ops->sendmsg_locked)
3095 return sock_no_sendmsg_locked(sk, msg, size);
3096
3097 return sock->ops->sendmsg_locked(sk, msg, size);
3098}
3099
3100static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3101{
3102 struct socket *sock = sk->sk_socket;
3103
3104 if (!sock)
3105 return -EINVAL;
3106 return sock_sendmsg(sock, msg);
3107}
3108
3109typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3110static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3111 int len, sendmsg_func sendmsg)
3112{
3113 unsigned int orig_len = len;
3114 struct sk_buff *head = skb;
3115 unsigned short fragidx;
3116 int slen, ret;
3117
3118do_frag_list:
3119
3120 /* Deal with head data */
3121 while (offset < skb_headlen(skb) && len) {
3122 struct kvec kv;
3123 struct msghdr msg;
3124
3125 slen = min_t(int, len, skb_headlen(skb) - offset);
3126 kv.iov_base = skb->data + offset;
3127 kv.iov_len = slen;
3128 memset(&msg, 0, sizeof(msg));
3129 msg.msg_flags = MSG_DONTWAIT;
3130
3131 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3132 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3133 sendmsg_unlocked, sk, &msg);
3134 if (ret <= 0)
3135 goto error;
3136
3137 offset += ret;
3138 len -= ret;
3139 }
3140
3141 /* All the data was skb head? */
3142 if (!len)
3143 goto out;
3144
3145 /* Make offset relative to start of frags */
3146 offset -= skb_headlen(skb);
3147
3148 /* Find where we are in frag list */
3149 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3150 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3151
3152 if (offset < skb_frag_size(frag))
3153 break;
3154
3155 offset -= skb_frag_size(frag);
3156 }
3157
3158 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3159 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3160
3161 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3162
3163 while (slen) {
3164 struct bio_vec bvec;
3165 struct msghdr msg = {
3166 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3167 };
3168
3169 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3170 skb_frag_off(frag) + offset);
3171 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3172 slen);
3173
3174 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3175 sendmsg_unlocked, sk, &msg);
3176 if (ret <= 0)
3177 goto error;
3178
3179 len -= ret;
3180 offset += ret;
3181 slen -= ret;
3182 }
3183
3184 offset = 0;
3185 }
3186
3187 if (len) {
3188 /* Process any frag lists */
3189
3190 if (skb == head) {
3191 if (skb_has_frag_list(skb)) {
3192 skb = skb_shinfo(skb)->frag_list;
3193 goto do_frag_list;
3194 }
3195 } else if (skb->next) {
3196 skb = skb->next;
3197 goto do_frag_list;
3198 }
3199 }
3200
3201out:
3202 return orig_len - len;
3203
3204error:
3205 return orig_len == len ? ret : orig_len - len;
3206}
3207
3208/* Send skb data on a socket. Socket must be locked. */
3209int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3210 int len)
3211{
3212 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3213}
3214EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3215
3216/* Send skb data on a socket. Socket must be unlocked. */
3217int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3218{
3219 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3220}
3221
3222/**
3223 * skb_store_bits - store bits from kernel buffer to skb
3224 * @skb: destination buffer
3225 * @offset: offset in destination
3226 * @from: source buffer
3227 * @len: number of bytes to copy
3228 *
3229 * Copy the specified number of bytes from the source buffer to the
3230 * destination skb. This function handles all the messy bits of
3231 * traversing fragment lists and such.
3232 */
3233
3234int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3235{
3236 int start = skb_headlen(skb);
3237 struct sk_buff *frag_iter;
3238 int i, copy;
3239
3240 if (offset > (int)skb->len - len)
3241 goto fault;
3242
3243 if ((copy = start - offset) > 0) {
3244 if (copy > len)
3245 copy = len;
3246 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3247 if ((len -= copy) == 0)
3248 return 0;
3249 offset += copy;
3250 from += copy;
3251 }
3252
3253 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3254 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3255 int end;
3256
3257 WARN_ON(start > offset + len);
3258
3259 end = start + skb_frag_size(frag);
3260 if ((copy = end - offset) > 0) {
3261 u32 p_off, p_len, copied;
3262 struct page *p;
3263 u8 *vaddr;
3264
3265 if (copy > len)
3266 copy = len;
3267
3268 skb_frag_foreach_page(frag,
3269 skb_frag_off(frag) + offset - start,
3270 copy, p, p_off, p_len, copied) {
3271 vaddr = kmap_atomic(p);
3272 memcpy(vaddr + p_off, from + copied, p_len);
3273 kunmap_atomic(vaddr);
3274 }
3275
3276 if ((len -= copy) == 0)
3277 return 0;
3278 offset += copy;
3279 from += copy;
3280 }
3281 start = end;
3282 }
3283
3284 skb_walk_frags(skb, frag_iter) {
3285 int end;
3286
3287 WARN_ON(start > offset + len);
3288
3289 end = start + frag_iter->len;
3290 if ((copy = end - offset) > 0) {
3291 if (copy > len)
3292 copy = len;
3293 if (skb_store_bits(frag_iter, offset - start,
3294 from, copy))
3295 goto fault;
3296 if ((len -= copy) == 0)
3297 return 0;
3298 offset += copy;
3299 from += copy;
3300 }
3301 start = end;
3302 }
3303 if (!len)
3304 return 0;
3305
3306fault:
3307 return -EFAULT;
3308}
3309EXPORT_SYMBOL(skb_store_bits);
3310
3311/* Checksum skb data. */
3312__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3313 __wsum csum, const struct skb_checksum_ops *ops)
3314{
3315 int start = skb_headlen(skb);
3316 int i, copy = start - offset;
3317 struct sk_buff *frag_iter;
3318 int pos = 0;
3319
3320 /* Checksum header. */
3321 if (copy > 0) {
3322 if (copy > len)
3323 copy = len;
3324 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3325 skb->data + offset, copy, csum);
3326 if ((len -= copy) == 0)
3327 return csum;
3328 offset += copy;
3329 pos = copy;
3330 }
3331
3332 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3333 int end;
3334 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3335
3336 WARN_ON(start > offset + len);
3337
3338 end = start + skb_frag_size(frag);
3339 if ((copy = end - offset) > 0) {
3340 u32 p_off, p_len, copied;
3341 struct page *p;
3342 __wsum csum2;
3343 u8 *vaddr;
3344
3345 if (copy > len)
3346 copy = len;
3347
3348 skb_frag_foreach_page(frag,
3349 skb_frag_off(frag) + offset - start,
3350 copy, p, p_off, p_len, copied) {
3351 vaddr = kmap_atomic(p);
3352 csum2 = INDIRECT_CALL_1(ops->update,
3353 csum_partial_ext,
3354 vaddr + p_off, p_len, 0);
3355 kunmap_atomic(vaddr);
3356 csum = INDIRECT_CALL_1(ops->combine,
3357 csum_block_add_ext, csum,
3358 csum2, pos, p_len);
3359 pos += p_len;
3360 }
3361
3362 if (!(len -= copy))
3363 return csum;
3364 offset += copy;
3365 }
3366 start = end;
3367 }
3368
3369 skb_walk_frags(skb, frag_iter) {
3370 int end;
3371
3372 WARN_ON(start > offset + len);
3373
3374 end = start + frag_iter->len;
3375 if ((copy = end - offset) > 0) {
3376 __wsum csum2;
3377 if (copy > len)
3378 copy = len;
3379 csum2 = __skb_checksum(frag_iter, offset - start,
3380 copy, 0, ops);
3381 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3382 csum, csum2, pos, copy);
3383 if ((len -= copy) == 0)
3384 return csum;
3385 offset += copy;
3386 pos += copy;
3387 }
3388 start = end;
3389 }
3390 BUG_ON(len);
3391
3392 return csum;
3393}
3394EXPORT_SYMBOL(__skb_checksum);
3395
3396__wsum skb_checksum(const struct sk_buff *skb, int offset,
3397 int len, __wsum csum)
3398{
3399 const struct skb_checksum_ops ops = {
3400 .update = csum_partial_ext,
3401 .combine = csum_block_add_ext,
3402 };
3403
3404 return __skb_checksum(skb, offset, len, csum, &ops);
3405}
3406EXPORT_SYMBOL(skb_checksum);
3407
3408/* Both of above in one bottle. */
3409
3410__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3411 u8 *to, int len)
3412{
3413 int start = skb_headlen(skb);
3414 int i, copy = start - offset;
3415 struct sk_buff *frag_iter;
3416 int pos = 0;
3417 __wsum csum = 0;
3418
3419 /* Copy header. */
3420 if (copy > 0) {
3421 if (copy > len)
3422 copy = len;
3423 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3424 copy);
3425 if ((len -= copy) == 0)
3426 return csum;
3427 offset += copy;
3428 to += copy;
3429 pos = copy;
3430 }
3431
3432 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3433 int end;
3434
3435 WARN_ON(start > offset + len);
3436
3437 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3438 if ((copy = end - offset) > 0) {
3439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440 u32 p_off, p_len, copied;
3441 struct page *p;
3442 __wsum csum2;
3443 u8 *vaddr;
3444
3445 if (copy > len)
3446 copy = len;
3447
3448 skb_frag_foreach_page(frag,
3449 skb_frag_off(frag) + offset - start,
3450 copy, p, p_off, p_len, copied) {
3451 vaddr = kmap_atomic(p);
3452 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3453 to + copied,
3454 p_len);
3455 kunmap_atomic(vaddr);
3456 csum = csum_block_add(csum, csum2, pos);
3457 pos += p_len;
3458 }
3459
3460 if (!(len -= copy))
3461 return csum;
3462 offset += copy;
3463 to += copy;
3464 }
3465 start = end;
3466 }
3467
3468 skb_walk_frags(skb, frag_iter) {
3469 __wsum csum2;
3470 int end;
3471
3472 WARN_ON(start > offset + len);
3473
3474 end = start + frag_iter->len;
3475 if ((copy = end - offset) > 0) {
3476 if (copy > len)
3477 copy = len;
3478 csum2 = skb_copy_and_csum_bits(frag_iter,
3479 offset - start,
3480 to, copy);
3481 csum = csum_block_add(csum, csum2, pos);
3482 if ((len -= copy) == 0)
3483 return csum;
3484 offset += copy;
3485 to += copy;
3486 pos += copy;
3487 }
3488 start = end;
3489 }
3490 BUG_ON(len);
3491 return csum;
3492}
3493EXPORT_SYMBOL(skb_copy_and_csum_bits);
3494
3495__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3496{
3497 __sum16 sum;
3498
3499 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3500 /* See comments in __skb_checksum_complete(). */
3501 if (likely(!sum)) {
3502 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3503 !skb->csum_complete_sw)
3504 netdev_rx_csum_fault(skb->dev, skb);
3505 }
3506 if (!skb_shared(skb))
3507 skb->csum_valid = !sum;
3508 return sum;
3509}
3510EXPORT_SYMBOL(__skb_checksum_complete_head);
3511
3512/* This function assumes skb->csum already holds pseudo header's checksum,
3513 * which has been changed from the hardware checksum, for example, by
3514 * __skb_checksum_validate_complete(). And, the original skb->csum must
3515 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3516 *
3517 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3518 * zero. The new checksum is stored back into skb->csum unless the skb is
3519 * shared.
3520 */
3521__sum16 __skb_checksum_complete(struct sk_buff *skb)
3522{
3523 __wsum csum;
3524 __sum16 sum;
3525
3526 csum = skb_checksum(skb, 0, skb->len, 0);
3527
3528 sum = csum_fold(csum_add(skb->csum, csum));
3529 /* This check is inverted, because we already knew the hardware
3530 * checksum is invalid before calling this function. So, if the
3531 * re-computed checksum is valid instead, then we have a mismatch
3532 * between the original skb->csum and skb_checksum(). This means either
3533 * the original hardware checksum is incorrect or we screw up skb->csum
3534 * when moving skb->data around.
3535 */
3536 if (likely(!sum)) {
3537 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3538 !skb->csum_complete_sw)
3539 netdev_rx_csum_fault(skb->dev, skb);
3540 }
3541
3542 if (!skb_shared(skb)) {
3543 /* Save full packet checksum */
3544 skb->csum = csum;
3545 skb->ip_summed = CHECKSUM_COMPLETE;
3546 skb->csum_complete_sw = 1;
3547 skb->csum_valid = !sum;
3548 }
3549
3550 return sum;
3551}
3552EXPORT_SYMBOL(__skb_checksum_complete);
3553
3554static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3555{
3556 net_warn_ratelimited(
3557 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3558 __func__);
3559 return 0;
3560}
3561
3562static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3563 int offset, int len)
3564{
3565 net_warn_ratelimited(
3566 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3567 __func__);
3568 return 0;
3569}
3570
3571static const struct skb_checksum_ops default_crc32c_ops = {
3572 .update = warn_crc32c_csum_update,
3573 .combine = warn_crc32c_csum_combine,
3574};
3575
3576const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3577 &default_crc32c_ops;
3578EXPORT_SYMBOL(crc32c_csum_stub);
3579
3580 /**
3581 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3582 * @from: source buffer
3583 *
3584 * Calculates the amount of linear headroom needed in the 'to' skb passed
3585 * into skb_zerocopy().
3586 */
3587unsigned int
3588skb_zerocopy_headlen(const struct sk_buff *from)
3589{
3590 unsigned int hlen = 0;
3591
3592 if (!from->head_frag ||
3593 skb_headlen(from) < L1_CACHE_BYTES ||
3594 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3595 hlen = skb_headlen(from);
3596 if (!hlen)
3597 hlen = from->len;
3598 }
3599
3600 if (skb_has_frag_list(from))
3601 hlen = from->len;
3602
3603 return hlen;
3604}
3605EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3606
3607/**
3608 * skb_zerocopy - Zero copy skb to skb
3609 * @to: destination buffer
3610 * @from: source buffer
3611 * @len: number of bytes to copy from source buffer
3612 * @hlen: size of linear headroom in destination buffer
3613 *
3614 * Copies up to `len` bytes from `from` to `to` by creating references
3615 * to the frags in the source buffer.
3616 *
3617 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3618 * headroom in the `to` buffer.
3619 *
3620 * Return value:
3621 * 0: everything is OK
3622 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3623 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3624 */
3625int
3626skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3627{
3628 int i, j = 0;
3629 int plen = 0; /* length of skb->head fragment */
3630 int ret;
3631 struct page *page;
3632 unsigned int offset;
3633
3634 BUG_ON(!from->head_frag && !hlen);
3635
3636 /* dont bother with small payloads */
3637 if (len <= skb_tailroom(to))
3638 return skb_copy_bits(from, 0, skb_put(to, len), len);
3639
3640 if (hlen) {
3641 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3642 if (unlikely(ret))
3643 return ret;
3644 len -= hlen;
3645 } else {
3646 plen = min_t(int, skb_headlen(from), len);
3647 if (plen) {
3648 page = virt_to_head_page(from->head);
3649 offset = from->data - (unsigned char *)page_address(page);
3650 __skb_fill_page_desc(to, 0, page, offset, plen);
3651 get_page(page);
3652 j = 1;
3653 len -= plen;
3654 }
3655 }
3656
3657 skb_len_add(to, len + plen);
3658
3659 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3660 skb_tx_error(from);
3661 return -ENOMEM;
3662 }
3663 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3664
3665 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3666 int size;
3667
3668 if (!len)
3669 break;
3670 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3671 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3672 len);
3673 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3674 len -= size;
3675 skb_frag_ref(to, j);
3676 j++;
3677 }
3678 skb_shinfo(to)->nr_frags = j;
3679
3680 return 0;
3681}
3682EXPORT_SYMBOL_GPL(skb_zerocopy);
3683
3684void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3685{
3686 __wsum csum;
3687 long csstart;
3688
3689 if (skb->ip_summed == CHECKSUM_PARTIAL)
3690 csstart = skb_checksum_start_offset(skb);
3691 else
3692 csstart = skb_headlen(skb);
3693
3694 BUG_ON(csstart > skb_headlen(skb));
3695
3696 skb_copy_from_linear_data(skb, to, csstart);
3697
3698 csum = 0;
3699 if (csstart != skb->len)
3700 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3701 skb->len - csstart);
3702
3703 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3704 long csstuff = csstart + skb->csum_offset;
3705
3706 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3707 }
3708}
3709EXPORT_SYMBOL(skb_copy_and_csum_dev);
3710
3711/**
3712 * skb_dequeue - remove from the head of the queue
3713 * @list: list to dequeue from
3714 *
3715 * Remove the head of the list. The list lock is taken so the function
3716 * may be used safely with other locking list functions. The head item is
3717 * returned or %NULL if the list is empty.
3718 */
3719
3720struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3721{
3722 unsigned long flags;
3723 struct sk_buff *result;
3724
3725 spin_lock_irqsave(&list->lock, flags);
3726 result = __skb_dequeue(list);
3727 spin_unlock_irqrestore(&list->lock, flags);
3728 return result;
3729}
3730EXPORT_SYMBOL(skb_dequeue);
3731
3732/**
3733 * skb_dequeue_tail - remove from the tail of the queue
3734 * @list: list to dequeue from
3735 *
3736 * Remove the tail of the list. The list lock is taken so the function
3737 * may be used safely with other locking list functions. The tail item is
3738 * returned or %NULL if the list is empty.
3739 */
3740struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3741{
3742 unsigned long flags;
3743 struct sk_buff *result;
3744
3745 spin_lock_irqsave(&list->lock, flags);
3746 result = __skb_dequeue_tail(list);
3747 spin_unlock_irqrestore(&list->lock, flags);
3748 return result;
3749}
3750EXPORT_SYMBOL(skb_dequeue_tail);
3751
3752/**
3753 * skb_queue_purge_reason - empty a list
3754 * @list: list to empty
3755 * @reason: drop reason
3756 *
3757 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3758 * the list and one reference dropped. This function takes the list
3759 * lock and is atomic with respect to other list locking functions.
3760 */
3761void skb_queue_purge_reason(struct sk_buff_head *list,
3762 enum skb_drop_reason reason)
3763{
3764 struct sk_buff_head tmp;
3765 unsigned long flags;
3766
3767 if (skb_queue_empty_lockless(list))
3768 return;
3769
3770 __skb_queue_head_init(&tmp);
3771
3772 spin_lock_irqsave(&list->lock, flags);
3773 skb_queue_splice_init(list, &tmp);
3774 spin_unlock_irqrestore(&list->lock, flags);
3775
3776 __skb_queue_purge_reason(&tmp, reason);
3777}
3778EXPORT_SYMBOL(skb_queue_purge_reason);
3779
3780/**
3781 * skb_rbtree_purge - empty a skb rbtree
3782 * @root: root of the rbtree to empty
3783 * Return value: the sum of truesizes of all purged skbs.
3784 *
3785 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3786 * the list and one reference dropped. This function does not take
3787 * any lock. Synchronization should be handled by the caller (e.g., TCP
3788 * out-of-order queue is protected by the socket lock).
3789 */
3790unsigned int skb_rbtree_purge(struct rb_root *root)
3791{
3792 struct rb_node *p = rb_first(root);
3793 unsigned int sum = 0;
3794
3795 while (p) {
3796 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3797
3798 p = rb_next(p);
3799 rb_erase(&skb->rbnode, root);
3800 sum += skb->truesize;
3801 kfree_skb(skb);
3802 }
3803 return sum;
3804}
3805
3806void skb_errqueue_purge(struct sk_buff_head *list)
3807{
3808 struct sk_buff *skb, *next;
3809 struct sk_buff_head kill;
3810 unsigned long flags;
3811
3812 __skb_queue_head_init(&kill);
3813
3814 spin_lock_irqsave(&list->lock, flags);
3815 skb_queue_walk_safe(list, skb, next) {
3816 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3817 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3818 continue;
3819 __skb_unlink(skb, list);
3820 __skb_queue_tail(&kill, skb);
3821 }
3822 spin_unlock_irqrestore(&list->lock, flags);
3823 __skb_queue_purge(&kill);
3824}
3825EXPORT_SYMBOL(skb_errqueue_purge);
3826
3827/**
3828 * skb_queue_head - queue a buffer at the list head
3829 * @list: list to use
3830 * @newsk: buffer to queue
3831 *
3832 * Queue a buffer at the start of the list. This function takes the
3833 * list lock and can be used safely with other locking &sk_buff functions
3834 * safely.
3835 *
3836 * A buffer cannot be placed on two lists at the same time.
3837 */
3838void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3839{
3840 unsigned long flags;
3841
3842 spin_lock_irqsave(&list->lock, flags);
3843 __skb_queue_head(list, newsk);
3844 spin_unlock_irqrestore(&list->lock, flags);
3845}
3846EXPORT_SYMBOL(skb_queue_head);
3847
3848/**
3849 * skb_queue_tail - queue a buffer at the list tail
3850 * @list: list to use
3851 * @newsk: buffer to queue
3852 *
3853 * Queue a buffer at the tail of the list. This function takes the
3854 * list lock and can be used safely with other locking &sk_buff functions
3855 * safely.
3856 *
3857 * A buffer cannot be placed on two lists at the same time.
3858 */
3859void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3860{
3861 unsigned long flags;
3862
3863 spin_lock_irqsave(&list->lock, flags);
3864 __skb_queue_tail(list, newsk);
3865 spin_unlock_irqrestore(&list->lock, flags);
3866}
3867EXPORT_SYMBOL(skb_queue_tail);
3868
3869/**
3870 * skb_unlink - remove a buffer from a list
3871 * @skb: buffer to remove
3872 * @list: list to use
3873 *
3874 * Remove a packet from a list. The list locks are taken and this
3875 * function is atomic with respect to other list locked calls
3876 *
3877 * You must know what list the SKB is on.
3878 */
3879void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3880{
3881 unsigned long flags;
3882
3883 spin_lock_irqsave(&list->lock, flags);
3884 __skb_unlink(skb, list);
3885 spin_unlock_irqrestore(&list->lock, flags);
3886}
3887EXPORT_SYMBOL(skb_unlink);
3888
3889/**
3890 * skb_append - append a buffer
3891 * @old: buffer to insert after
3892 * @newsk: buffer to insert
3893 * @list: list to use
3894 *
3895 * Place a packet after a given packet in a list. The list locks are taken
3896 * and this function is atomic with respect to other list locked calls.
3897 * A buffer cannot be placed on two lists at the same time.
3898 */
3899void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3900{
3901 unsigned long flags;
3902
3903 spin_lock_irqsave(&list->lock, flags);
3904 __skb_queue_after(list, old, newsk);
3905 spin_unlock_irqrestore(&list->lock, flags);
3906}
3907EXPORT_SYMBOL(skb_append);
3908
3909static inline void skb_split_inside_header(struct sk_buff *skb,
3910 struct sk_buff* skb1,
3911 const u32 len, const int pos)
3912{
3913 int i;
3914
3915 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3916 pos - len);
3917 /* And move data appendix as is. */
3918 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3919 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3920
3921 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3922 skb_shinfo(skb)->nr_frags = 0;
3923 skb1->data_len = skb->data_len;
3924 skb1->len += skb1->data_len;
3925 skb->data_len = 0;
3926 skb->len = len;
3927 skb_set_tail_pointer(skb, len);
3928}
3929
3930static inline void skb_split_no_header(struct sk_buff *skb,
3931 struct sk_buff* skb1,
3932 const u32 len, int pos)
3933{
3934 int i, k = 0;
3935 const int nfrags = skb_shinfo(skb)->nr_frags;
3936
3937 skb_shinfo(skb)->nr_frags = 0;
3938 skb1->len = skb1->data_len = skb->len - len;
3939 skb->len = len;
3940 skb->data_len = len - pos;
3941
3942 for (i = 0; i < nfrags; i++) {
3943 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3944
3945 if (pos + size > len) {
3946 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3947
3948 if (pos < len) {
3949 /* Split frag.
3950 * We have two variants in this case:
3951 * 1. Move all the frag to the second
3952 * part, if it is possible. F.e.
3953 * this approach is mandatory for TUX,
3954 * where splitting is expensive.
3955 * 2. Split is accurately. We make this.
3956 */
3957 skb_frag_ref(skb, i);
3958 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3959 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3960 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3961 skb_shinfo(skb)->nr_frags++;
3962 }
3963 k++;
3964 } else
3965 skb_shinfo(skb)->nr_frags++;
3966 pos += size;
3967 }
3968 skb_shinfo(skb1)->nr_frags = k;
3969}
3970
3971/**
3972 * skb_split - Split fragmented skb to two parts at length len.
3973 * @skb: the buffer to split
3974 * @skb1: the buffer to receive the second part
3975 * @len: new length for skb
3976 */
3977void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3978{
3979 int pos = skb_headlen(skb);
3980 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3981
3982 skb_zcopy_downgrade_managed(skb);
3983
3984 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3985 skb_zerocopy_clone(skb1, skb, 0);
3986 if (len < pos) /* Split line is inside header. */
3987 skb_split_inside_header(skb, skb1, len, pos);
3988 else /* Second chunk has no header, nothing to copy. */
3989 skb_split_no_header(skb, skb1, len, pos);
3990}
3991EXPORT_SYMBOL(skb_split);
3992
3993/* Shifting from/to a cloned skb is a no-go.
3994 *
3995 * Caller cannot keep skb_shinfo related pointers past calling here!
3996 */
3997static int skb_prepare_for_shift(struct sk_buff *skb)
3998{
3999 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
4000}
4001
4002/**
4003 * skb_shift - Shifts paged data partially from skb to another
4004 * @tgt: buffer into which tail data gets added
4005 * @skb: buffer from which the paged data comes from
4006 * @shiftlen: shift up to this many bytes
4007 *
4008 * Attempts to shift up to shiftlen worth of bytes, which may be less than
4009 * the length of the skb, from skb to tgt. Returns number bytes shifted.
4010 * It's up to caller to free skb if everything was shifted.
4011 *
4012 * If @tgt runs out of frags, the whole operation is aborted.
4013 *
4014 * Skb cannot include anything else but paged data while tgt is allowed
4015 * to have non-paged data as well.
4016 *
4017 * TODO: full sized shift could be optimized but that would need
4018 * specialized skb free'er to handle frags without up-to-date nr_frags.
4019 */
4020int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
4021{
4022 int from, to, merge, todo;
4023 skb_frag_t *fragfrom, *fragto;
4024
4025 BUG_ON(shiftlen > skb->len);
4026
4027 if (skb_headlen(skb))
4028 return 0;
4029 if (skb_zcopy(tgt) || skb_zcopy(skb))
4030 return 0;
4031
4032 todo = shiftlen;
4033 from = 0;
4034 to = skb_shinfo(tgt)->nr_frags;
4035 fragfrom = &skb_shinfo(skb)->frags[from];
4036
4037 /* Actual merge is delayed until the point when we know we can
4038 * commit all, so that we don't have to undo partial changes
4039 */
4040 if (!to ||
4041 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
4042 skb_frag_off(fragfrom))) {
4043 merge = -1;
4044 } else {
4045 merge = to - 1;
4046
4047 todo -= skb_frag_size(fragfrom);
4048 if (todo < 0) {
4049 if (skb_prepare_for_shift(skb) ||
4050 skb_prepare_for_shift(tgt))
4051 return 0;
4052
4053 /* All previous frag pointers might be stale! */
4054 fragfrom = &skb_shinfo(skb)->frags[from];
4055 fragto = &skb_shinfo(tgt)->frags[merge];
4056
4057 skb_frag_size_add(fragto, shiftlen);
4058 skb_frag_size_sub(fragfrom, shiftlen);
4059 skb_frag_off_add(fragfrom, shiftlen);
4060
4061 goto onlymerged;
4062 }
4063
4064 from++;
4065 }
4066
4067 /* Skip full, not-fitting skb to avoid expensive operations */
4068 if ((shiftlen == skb->len) &&
4069 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4070 return 0;
4071
4072 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4073 return 0;
4074
4075 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4076 if (to == MAX_SKB_FRAGS)
4077 return 0;
4078
4079 fragfrom = &skb_shinfo(skb)->frags[from];
4080 fragto = &skb_shinfo(tgt)->frags[to];
4081
4082 if (todo >= skb_frag_size(fragfrom)) {
4083 *fragto = *fragfrom;
4084 todo -= skb_frag_size(fragfrom);
4085 from++;
4086 to++;
4087
4088 } else {
4089 __skb_frag_ref(fragfrom);
4090 skb_frag_page_copy(fragto, fragfrom);
4091 skb_frag_off_copy(fragto, fragfrom);
4092 skb_frag_size_set(fragto, todo);
4093
4094 skb_frag_off_add(fragfrom, todo);
4095 skb_frag_size_sub(fragfrom, todo);
4096 todo = 0;
4097
4098 to++;
4099 break;
4100 }
4101 }
4102
4103 /* Ready to "commit" this state change to tgt */
4104 skb_shinfo(tgt)->nr_frags = to;
4105
4106 if (merge >= 0) {
4107 fragfrom = &skb_shinfo(skb)->frags[0];
4108 fragto = &skb_shinfo(tgt)->frags[merge];
4109
4110 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4111 __skb_frag_unref(fragfrom, skb->pp_recycle);
4112 }
4113
4114 /* Reposition in the original skb */
4115 to = 0;
4116 while (from < skb_shinfo(skb)->nr_frags)
4117 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4118 skb_shinfo(skb)->nr_frags = to;
4119
4120 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4121
4122onlymerged:
4123 /* Most likely the tgt won't ever need its checksum anymore, skb on
4124 * the other hand might need it if it needs to be resent
4125 */
4126 tgt->ip_summed = CHECKSUM_PARTIAL;
4127 skb->ip_summed = CHECKSUM_PARTIAL;
4128
4129 skb_len_add(skb, -shiftlen);
4130 skb_len_add(tgt, shiftlen);
4131
4132 return shiftlen;
4133}
4134
4135/**
4136 * skb_prepare_seq_read - Prepare a sequential read of skb data
4137 * @skb: the buffer to read
4138 * @from: lower offset of data to be read
4139 * @to: upper offset of data to be read
4140 * @st: state variable
4141 *
4142 * Initializes the specified state variable. Must be called before
4143 * invoking skb_seq_read() for the first time.
4144 */
4145void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4146 unsigned int to, struct skb_seq_state *st)
4147{
4148 st->lower_offset = from;
4149 st->upper_offset = to;
4150 st->root_skb = st->cur_skb = skb;
4151 st->frag_idx = st->stepped_offset = 0;
4152 st->frag_data = NULL;
4153 st->frag_off = 0;
4154}
4155EXPORT_SYMBOL(skb_prepare_seq_read);
4156
4157/**
4158 * skb_seq_read - Sequentially read skb data
4159 * @consumed: number of bytes consumed by the caller so far
4160 * @data: destination pointer for data to be returned
4161 * @st: state variable
4162 *
4163 * Reads a block of skb data at @consumed relative to the
4164 * lower offset specified to skb_prepare_seq_read(). Assigns
4165 * the head of the data block to @data and returns the length
4166 * of the block or 0 if the end of the skb data or the upper
4167 * offset has been reached.
4168 *
4169 * The caller is not required to consume all of the data
4170 * returned, i.e. @consumed is typically set to the number
4171 * of bytes already consumed and the next call to
4172 * skb_seq_read() will return the remaining part of the block.
4173 *
4174 * Note 1: The size of each block of data returned can be arbitrary,
4175 * this limitation is the cost for zerocopy sequential
4176 * reads of potentially non linear data.
4177 *
4178 * Note 2: Fragment lists within fragments are not implemented
4179 * at the moment, state->root_skb could be replaced with
4180 * a stack for this purpose.
4181 */
4182unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4183 struct skb_seq_state *st)
4184{
4185 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4186 skb_frag_t *frag;
4187
4188 if (unlikely(abs_offset >= st->upper_offset)) {
4189 if (st->frag_data) {
4190 kunmap_atomic(st->frag_data);
4191 st->frag_data = NULL;
4192 }
4193 return 0;
4194 }
4195
4196next_skb:
4197 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4198
4199 if (abs_offset < block_limit && !st->frag_data) {
4200 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4201 return block_limit - abs_offset;
4202 }
4203
4204 if (st->frag_idx == 0 && !st->frag_data)
4205 st->stepped_offset += skb_headlen(st->cur_skb);
4206
4207 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4208 unsigned int pg_idx, pg_off, pg_sz;
4209
4210 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4211
4212 pg_idx = 0;
4213 pg_off = skb_frag_off(frag);
4214 pg_sz = skb_frag_size(frag);
4215
4216 if (skb_frag_must_loop(skb_frag_page(frag))) {
4217 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4218 pg_off = offset_in_page(pg_off + st->frag_off);
4219 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4220 PAGE_SIZE - pg_off);
4221 }
4222
4223 block_limit = pg_sz + st->stepped_offset;
4224 if (abs_offset < block_limit) {
4225 if (!st->frag_data)
4226 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4227
4228 *data = (u8 *)st->frag_data + pg_off +
4229 (abs_offset - st->stepped_offset);
4230
4231 return block_limit - abs_offset;
4232 }
4233
4234 if (st->frag_data) {
4235 kunmap_atomic(st->frag_data);
4236 st->frag_data = NULL;
4237 }
4238
4239 st->stepped_offset += pg_sz;
4240 st->frag_off += pg_sz;
4241 if (st->frag_off == skb_frag_size(frag)) {
4242 st->frag_off = 0;
4243 st->frag_idx++;
4244 }
4245 }
4246
4247 if (st->frag_data) {
4248 kunmap_atomic(st->frag_data);
4249 st->frag_data = NULL;
4250 }
4251
4252 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4253 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4254 st->frag_idx = 0;
4255 goto next_skb;
4256 } else if (st->cur_skb->next) {
4257 st->cur_skb = st->cur_skb->next;
4258 st->frag_idx = 0;
4259 goto next_skb;
4260 }
4261
4262 return 0;
4263}
4264EXPORT_SYMBOL(skb_seq_read);
4265
4266/**
4267 * skb_abort_seq_read - Abort a sequential read of skb data
4268 * @st: state variable
4269 *
4270 * Must be called if skb_seq_read() was not called until it
4271 * returned 0.
4272 */
4273void skb_abort_seq_read(struct skb_seq_state *st)
4274{
4275 if (st->frag_data)
4276 kunmap_atomic(st->frag_data);
4277}
4278EXPORT_SYMBOL(skb_abort_seq_read);
4279
4280#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4281
4282static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4283 struct ts_config *conf,
4284 struct ts_state *state)
4285{
4286 return skb_seq_read(offset, text, TS_SKB_CB(state));
4287}
4288
4289static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4290{
4291 skb_abort_seq_read(TS_SKB_CB(state));
4292}
4293
4294/**
4295 * skb_find_text - Find a text pattern in skb data
4296 * @skb: the buffer to look in
4297 * @from: search offset
4298 * @to: search limit
4299 * @config: textsearch configuration
4300 *
4301 * Finds a pattern in the skb data according to the specified
4302 * textsearch configuration. Use textsearch_next() to retrieve
4303 * subsequent occurrences of the pattern. Returns the offset
4304 * to the first occurrence or UINT_MAX if no match was found.
4305 */
4306unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4307 unsigned int to, struct ts_config *config)
4308{
4309 unsigned int patlen = config->ops->get_pattern_len(config);
4310 struct ts_state state;
4311 unsigned int ret;
4312
4313 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4314
4315 config->get_next_block = skb_ts_get_next_block;
4316 config->finish = skb_ts_finish;
4317
4318 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4319
4320 ret = textsearch_find(config, &state);
4321 return (ret + patlen <= to - from ? ret : UINT_MAX);
4322}
4323EXPORT_SYMBOL(skb_find_text);
4324
4325int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4326 int offset, size_t size, size_t max_frags)
4327{
4328 int i = skb_shinfo(skb)->nr_frags;
4329
4330 if (skb_can_coalesce(skb, i, page, offset)) {
4331 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4332 } else if (i < max_frags) {
4333 skb_zcopy_downgrade_managed(skb);
4334 get_page(page);
4335 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4336 } else {
4337 return -EMSGSIZE;
4338 }
4339
4340 return 0;
4341}
4342EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4343
4344/**
4345 * skb_pull_rcsum - pull skb and update receive checksum
4346 * @skb: buffer to update
4347 * @len: length of data pulled
4348 *
4349 * This function performs an skb_pull on the packet and updates
4350 * the CHECKSUM_COMPLETE checksum. It should be used on
4351 * receive path processing instead of skb_pull unless you know
4352 * that the checksum difference is zero (e.g., a valid IP header)
4353 * or you are setting ip_summed to CHECKSUM_NONE.
4354 */
4355void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4356{
4357 unsigned char *data = skb->data;
4358
4359 BUG_ON(len > skb->len);
4360 __skb_pull(skb, len);
4361 skb_postpull_rcsum(skb, data, len);
4362 return skb->data;
4363}
4364EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4365
4366static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4367{
4368 skb_frag_t head_frag;
4369 struct page *page;
4370
4371 page = virt_to_head_page(frag_skb->head);
4372 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4373 (unsigned char *)page_address(page),
4374 skb_headlen(frag_skb));
4375 return head_frag;
4376}
4377
4378struct sk_buff *skb_segment_list(struct sk_buff *skb,
4379 netdev_features_t features,
4380 unsigned int offset)
4381{
4382 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4383 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4384 unsigned int delta_truesize = 0;
4385 unsigned int delta_len = 0;
4386 struct sk_buff *tail = NULL;
4387 struct sk_buff *nskb, *tmp;
4388 int len_diff, err;
4389
4390 skb_push(skb, -skb_network_offset(skb) + offset);
4391
4392 /* Ensure the head is writeable before touching the shared info */
4393 err = skb_unclone(skb, GFP_ATOMIC);
4394 if (err)
4395 goto err_linearize;
4396
4397 skb_shinfo(skb)->frag_list = NULL;
4398
4399 while (list_skb) {
4400 nskb = list_skb;
4401 list_skb = list_skb->next;
4402
4403 err = 0;
4404 delta_truesize += nskb->truesize;
4405 if (skb_shared(nskb)) {
4406 tmp = skb_clone(nskb, GFP_ATOMIC);
4407 if (tmp) {
4408 consume_skb(nskb);
4409 nskb = tmp;
4410 err = skb_unclone(nskb, GFP_ATOMIC);
4411 } else {
4412 err = -ENOMEM;
4413 }
4414 }
4415
4416 if (!tail)
4417 skb->next = nskb;
4418 else
4419 tail->next = nskb;
4420
4421 if (unlikely(err)) {
4422 nskb->next = list_skb;
4423 goto err_linearize;
4424 }
4425
4426 tail = nskb;
4427
4428 delta_len += nskb->len;
4429
4430 skb_push(nskb, -skb_network_offset(nskb) + offset);
4431
4432 skb_release_head_state(nskb);
4433 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4434 __copy_skb_header(nskb, skb);
4435
4436 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4437 nskb->transport_header += len_diff;
4438 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4439 nskb->data - tnl_hlen,
4440 offset + tnl_hlen);
4441
4442 if (skb_needs_linearize(nskb, features) &&
4443 __skb_linearize(nskb))
4444 goto err_linearize;
4445 }
4446
4447 skb->truesize = skb->truesize - delta_truesize;
4448 skb->data_len = skb->data_len - delta_len;
4449 skb->len = skb->len - delta_len;
4450
4451 skb_gso_reset(skb);
4452
4453 skb->prev = tail;
4454
4455 if (skb_needs_linearize(skb, features) &&
4456 __skb_linearize(skb))
4457 goto err_linearize;
4458
4459 skb_get(skb);
4460
4461 return skb;
4462
4463err_linearize:
4464 kfree_skb_list(skb->next);
4465 skb->next = NULL;
4466 return ERR_PTR(-ENOMEM);
4467}
4468EXPORT_SYMBOL_GPL(skb_segment_list);
4469
4470/**
4471 * skb_segment - Perform protocol segmentation on skb.
4472 * @head_skb: buffer to segment
4473 * @features: features for the output path (see dev->features)
4474 *
4475 * This function performs segmentation on the given skb. It returns
4476 * a pointer to the first in a list of new skbs for the segments.
4477 * In case of error it returns ERR_PTR(err).
4478 */
4479struct sk_buff *skb_segment(struct sk_buff *head_skb,
4480 netdev_features_t features)
4481{
4482 struct sk_buff *segs = NULL;
4483 struct sk_buff *tail = NULL;
4484 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4485 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4486 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4487 unsigned int offset = doffset;
4488 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4489 unsigned int partial_segs = 0;
4490 unsigned int headroom;
4491 unsigned int len = head_skb->len;
4492 struct sk_buff *frag_skb;
4493 skb_frag_t *frag;
4494 __be16 proto;
4495 bool csum, sg;
4496 int err = -ENOMEM;
4497 int i = 0;
4498 int nfrags, pos;
4499
4500 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4501 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4502 struct sk_buff *check_skb;
4503
4504 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4505 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4506 /* gso_size is untrusted, and we have a frag_list with
4507 * a linear non head_frag item.
4508 *
4509 * If head_skb's headlen does not fit requested gso_size,
4510 * it means that the frag_list members do NOT terminate
4511 * on exact gso_size boundaries. Hence we cannot perform
4512 * skb_frag_t page sharing. Therefore we must fallback to
4513 * copying the frag_list skbs; we do so by disabling SG.
4514 */
4515 features &= ~NETIF_F_SG;
4516 break;
4517 }
4518 }
4519 }
4520
4521 __skb_push(head_skb, doffset);
4522 proto = skb_network_protocol(head_skb, NULL);
4523 if (unlikely(!proto))
4524 return ERR_PTR(-EINVAL);
4525
4526 sg = !!(features & NETIF_F_SG);
4527 csum = !!can_checksum_protocol(features, proto);
4528
4529 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4530 if (!(features & NETIF_F_GSO_PARTIAL)) {
4531 struct sk_buff *iter;
4532 unsigned int frag_len;
4533
4534 if (!list_skb ||
4535 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4536 goto normal;
4537
4538 /* If we get here then all the required
4539 * GSO features except frag_list are supported.
4540 * Try to split the SKB to multiple GSO SKBs
4541 * with no frag_list.
4542 * Currently we can do that only when the buffers don't
4543 * have a linear part and all the buffers except
4544 * the last are of the same length.
4545 */
4546 frag_len = list_skb->len;
4547 skb_walk_frags(head_skb, iter) {
4548 if (frag_len != iter->len && iter->next)
4549 goto normal;
4550 if (skb_headlen(iter) && !iter->head_frag)
4551 goto normal;
4552
4553 len -= iter->len;
4554 }
4555
4556 if (len != frag_len)
4557 goto normal;
4558 }
4559
4560 /* GSO partial only requires that we trim off any excess that
4561 * doesn't fit into an MSS sized block, so take care of that
4562 * now.
4563 * Cap len to not accidentally hit GSO_BY_FRAGS.
4564 */
4565 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss;
4566 if (partial_segs > 1)
4567 mss *= partial_segs;
4568 else
4569 partial_segs = 0;
4570 }
4571
4572normal:
4573 headroom = skb_headroom(head_skb);
4574 pos = skb_headlen(head_skb);
4575
4576 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4577 return ERR_PTR(-ENOMEM);
4578
4579 nfrags = skb_shinfo(head_skb)->nr_frags;
4580 frag = skb_shinfo(head_skb)->frags;
4581 frag_skb = head_skb;
4582
4583 do {
4584 struct sk_buff *nskb;
4585 skb_frag_t *nskb_frag;
4586 int hsize;
4587 int size;
4588
4589 if (unlikely(mss == GSO_BY_FRAGS)) {
4590 len = list_skb->len;
4591 } else {
4592 len = head_skb->len - offset;
4593 if (len > mss)
4594 len = mss;
4595 }
4596
4597 hsize = skb_headlen(head_skb) - offset;
4598
4599 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4600 (skb_headlen(list_skb) == len || sg)) {
4601 BUG_ON(skb_headlen(list_skb) > len);
4602
4603 nskb = skb_clone(list_skb, GFP_ATOMIC);
4604 if (unlikely(!nskb))
4605 goto err;
4606
4607 i = 0;
4608 nfrags = skb_shinfo(list_skb)->nr_frags;
4609 frag = skb_shinfo(list_skb)->frags;
4610 frag_skb = list_skb;
4611 pos += skb_headlen(list_skb);
4612
4613 while (pos < offset + len) {
4614 BUG_ON(i >= nfrags);
4615
4616 size = skb_frag_size(frag);
4617 if (pos + size > offset + len)
4618 break;
4619
4620 i++;
4621 pos += size;
4622 frag++;
4623 }
4624
4625 list_skb = list_skb->next;
4626
4627 if (unlikely(pskb_trim(nskb, len))) {
4628 kfree_skb(nskb);
4629 goto err;
4630 }
4631
4632 hsize = skb_end_offset(nskb);
4633 if (skb_cow_head(nskb, doffset + headroom)) {
4634 kfree_skb(nskb);
4635 goto err;
4636 }
4637
4638 nskb->truesize += skb_end_offset(nskb) - hsize;
4639 skb_release_head_state(nskb);
4640 __skb_push(nskb, doffset);
4641 } else {
4642 if (hsize < 0)
4643 hsize = 0;
4644 if (hsize > len || !sg)
4645 hsize = len;
4646
4647 nskb = __alloc_skb(hsize + doffset + headroom,
4648 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4649 NUMA_NO_NODE);
4650
4651 if (unlikely(!nskb))
4652 goto err;
4653
4654 skb_reserve(nskb, headroom);
4655 __skb_put(nskb, doffset);
4656 }
4657
4658 if (segs)
4659 tail->next = nskb;
4660 else
4661 segs = nskb;
4662 tail = nskb;
4663
4664 __copy_skb_header(nskb, head_skb);
4665
4666 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4667 skb_reset_mac_len(nskb);
4668
4669 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4670 nskb->data - tnl_hlen,
4671 doffset + tnl_hlen);
4672
4673 if (nskb->len == len + doffset)
4674 goto perform_csum_check;
4675
4676 if (!sg) {
4677 if (!csum) {
4678 if (!nskb->remcsum_offload)
4679 nskb->ip_summed = CHECKSUM_NONE;
4680 SKB_GSO_CB(nskb)->csum =
4681 skb_copy_and_csum_bits(head_skb, offset,
4682 skb_put(nskb,
4683 len),
4684 len);
4685 SKB_GSO_CB(nskb)->csum_start =
4686 skb_headroom(nskb) + doffset;
4687 } else {
4688 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4689 goto err;
4690 }
4691 continue;
4692 }
4693
4694 nskb_frag = skb_shinfo(nskb)->frags;
4695
4696 skb_copy_from_linear_data_offset(head_skb, offset,
4697 skb_put(nskb, hsize), hsize);
4698
4699 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4700 SKBFL_SHARED_FRAG;
4701
4702 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4703 goto err;
4704
4705 while (pos < offset + len) {
4706 if (i >= nfrags) {
4707 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4708 skb_zerocopy_clone(nskb, list_skb,
4709 GFP_ATOMIC))
4710 goto err;
4711
4712 i = 0;
4713 nfrags = skb_shinfo(list_skb)->nr_frags;
4714 frag = skb_shinfo(list_skb)->frags;
4715 frag_skb = list_skb;
4716 if (!skb_headlen(list_skb)) {
4717 BUG_ON(!nfrags);
4718 } else {
4719 BUG_ON(!list_skb->head_frag);
4720
4721 /* to make room for head_frag. */
4722 i--;
4723 frag--;
4724 }
4725
4726 list_skb = list_skb->next;
4727 }
4728
4729 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4730 MAX_SKB_FRAGS)) {
4731 net_warn_ratelimited(
4732 "skb_segment: too many frags: %u %u\n",
4733 pos, mss);
4734 err = -EINVAL;
4735 goto err;
4736 }
4737
4738 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4739 __skb_frag_ref(nskb_frag);
4740 size = skb_frag_size(nskb_frag);
4741
4742 if (pos < offset) {
4743 skb_frag_off_add(nskb_frag, offset - pos);
4744 skb_frag_size_sub(nskb_frag, offset - pos);
4745 }
4746
4747 skb_shinfo(nskb)->nr_frags++;
4748
4749 if (pos + size <= offset + len) {
4750 i++;
4751 frag++;
4752 pos += size;
4753 } else {
4754 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4755 goto skip_fraglist;
4756 }
4757
4758 nskb_frag++;
4759 }
4760
4761skip_fraglist:
4762 nskb->data_len = len - hsize;
4763 nskb->len += nskb->data_len;
4764 nskb->truesize += nskb->data_len;
4765
4766perform_csum_check:
4767 if (!csum) {
4768 if (skb_has_shared_frag(nskb) &&
4769 __skb_linearize(nskb))
4770 goto err;
4771
4772 if (!nskb->remcsum_offload)
4773 nskb->ip_summed = CHECKSUM_NONE;
4774 SKB_GSO_CB(nskb)->csum =
4775 skb_checksum(nskb, doffset,
4776 nskb->len - doffset, 0);
4777 SKB_GSO_CB(nskb)->csum_start =
4778 skb_headroom(nskb) + doffset;
4779 }
4780 } while ((offset += len) < head_skb->len);
4781
4782 /* Some callers want to get the end of the list.
4783 * Put it in segs->prev to avoid walking the list.
4784 * (see validate_xmit_skb_list() for example)
4785 */
4786 segs->prev = tail;
4787
4788 if (partial_segs) {
4789 struct sk_buff *iter;
4790 int type = skb_shinfo(head_skb)->gso_type;
4791 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4792
4793 /* Update type to add partial and then remove dodgy if set */
4794 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4795 type &= ~SKB_GSO_DODGY;
4796
4797 /* Update GSO info and prepare to start updating headers on
4798 * our way back down the stack of protocols.
4799 */
4800 for (iter = segs; iter; iter = iter->next) {
4801 skb_shinfo(iter)->gso_size = gso_size;
4802 skb_shinfo(iter)->gso_segs = partial_segs;
4803 skb_shinfo(iter)->gso_type = type;
4804 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4805 }
4806
4807 if (tail->len - doffset <= gso_size)
4808 skb_shinfo(tail)->gso_size = 0;
4809 else if (tail != segs)
4810 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4811 }
4812
4813 /* Following permits correct backpressure, for protocols
4814 * using skb_set_owner_w().
4815 * Idea is to tranfert ownership from head_skb to last segment.
4816 */
4817 if (head_skb->destructor == sock_wfree) {
4818 swap(tail->truesize, head_skb->truesize);
4819 swap(tail->destructor, head_skb->destructor);
4820 swap(tail->sk, head_skb->sk);
4821 }
4822 return segs;
4823
4824err:
4825 kfree_skb_list(segs);
4826 return ERR_PTR(err);
4827}
4828EXPORT_SYMBOL_GPL(skb_segment);
4829
4830#ifdef CONFIG_SKB_EXTENSIONS
4831#define SKB_EXT_ALIGN_VALUE 8
4832#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4833
4834static const u8 skb_ext_type_len[] = {
4835#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4836 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4837#endif
4838#ifdef CONFIG_XFRM
4839 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4840#endif
4841#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4842 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4843#endif
4844#if IS_ENABLED(CONFIG_MPTCP)
4845 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4846#endif
4847#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4848 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4849#endif
4850};
4851
4852static __always_inline unsigned int skb_ext_total_length(void)
4853{
4854 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4855 int i;
4856
4857 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4858 l += skb_ext_type_len[i];
4859
4860 return l;
4861}
4862
4863static void skb_extensions_init(void)
4864{
4865 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4866#if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4867 BUILD_BUG_ON(skb_ext_total_length() > 255);
4868#endif
4869
4870 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4871 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4872 0,
4873 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4874 NULL);
4875}
4876#else
4877static void skb_extensions_init(void) {}
4878#endif
4879
4880/* The SKB kmem_cache slab is critical for network performance. Never
4881 * merge/alias the slab with similar sized objects. This avoids fragmentation
4882 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4883 */
4884#ifndef CONFIG_SLUB_TINY
4885#define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
4886#else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4887#define FLAG_SKB_NO_MERGE 0
4888#endif
4889
4890void __init skb_init(void)
4891{
4892 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4893 sizeof(struct sk_buff),
4894 0,
4895 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4896 FLAG_SKB_NO_MERGE,
4897 offsetof(struct sk_buff, cb),
4898 sizeof_field(struct sk_buff, cb),
4899 NULL);
4900 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4901 sizeof(struct sk_buff_fclones),
4902 0,
4903 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4904 NULL);
4905 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4906 * struct skb_shared_info is located at the end of skb->head,
4907 * and should not be copied to/from user.
4908 */
4909 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4910 SKB_SMALL_HEAD_CACHE_SIZE,
4911 0,
4912 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4913 0,
4914 SKB_SMALL_HEAD_HEADROOM,
4915 NULL);
4916 skb_extensions_init();
4917}
4918
4919static int
4920__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4921 unsigned int recursion_level)
4922{
4923 int start = skb_headlen(skb);
4924 int i, copy = start - offset;
4925 struct sk_buff *frag_iter;
4926 int elt = 0;
4927
4928 if (unlikely(recursion_level >= 24))
4929 return -EMSGSIZE;
4930
4931 if (copy > 0) {
4932 if (copy > len)
4933 copy = len;
4934 sg_set_buf(sg, skb->data + offset, copy);
4935 elt++;
4936 if ((len -= copy) == 0)
4937 return elt;
4938 offset += copy;
4939 }
4940
4941 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4942 int end;
4943
4944 WARN_ON(start > offset + len);
4945
4946 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4947 if ((copy = end - offset) > 0) {
4948 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4949 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4950 return -EMSGSIZE;
4951
4952 if (copy > len)
4953 copy = len;
4954 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4955 skb_frag_off(frag) + offset - start);
4956 elt++;
4957 if (!(len -= copy))
4958 return elt;
4959 offset += copy;
4960 }
4961 start = end;
4962 }
4963
4964 skb_walk_frags(skb, frag_iter) {
4965 int end, ret;
4966
4967 WARN_ON(start > offset + len);
4968
4969 end = start + frag_iter->len;
4970 if ((copy = end - offset) > 0) {
4971 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4972 return -EMSGSIZE;
4973
4974 if (copy > len)
4975 copy = len;
4976 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4977 copy, recursion_level + 1);
4978 if (unlikely(ret < 0))
4979 return ret;
4980 elt += ret;
4981 if ((len -= copy) == 0)
4982 return elt;
4983 offset += copy;
4984 }
4985 start = end;
4986 }
4987 BUG_ON(len);
4988 return elt;
4989}
4990
4991/**
4992 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4993 * @skb: Socket buffer containing the buffers to be mapped
4994 * @sg: The scatter-gather list to map into
4995 * @offset: The offset into the buffer's contents to start mapping
4996 * @len: Length of buffer space to be mapped
4997 *
4998 * Fill the specified scatter-gather list with mappings/pointers into a
4999 * region of the buffer space attached to a socket buffer. Returns either
5000 * the number of scatterlist items used, or -EMSGSIZE if the contents
5001 * could not fit.
5002 */
5003int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
5004{
5005 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
5006
5007 if (nsg <= 0)
5008 return nsg;
5009
5010 sg_mark_end(&sg[nsg - 1]);
5011
5012 return nsg;
5013}
5014EXPORT_SYMBOL_GPL(skb_to_sgvec);
5015
5016/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
5017 * sglist without mark the sg which contain last skb data as the end.
5018 * So the caller can mannipulate sg list as will when padding new data after
5019 * the first call without calling sg_unmark_end to expend sg list.
5020 *
5021 * Scenario to use skb_to_sgvec_nomark:
5022 * 1. sg_init_table
5023 * 2. skb_to_sgvec_nomark(payload1)
5024 * 3. skb_to_sgvec_nomark(payload2)
5025 *
5026 * This is equivalent to:
5027 * 1. sg_init_table
5028 * 2. skb_to_sgvec(payload1)
5029 * 3. sg_unmark_end
5030 * 4. skb_to_sgvec(payload2)
5031 *
5032 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
5033 * is more preferable.
5034 */
5035int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
5036 int offset, int len)
5037{
5038 return __skb_to_sgvec(skb, sg, offset, len, 0);
5039}
5040EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
5041
5042
5043
5044/**
5045 * skb_cow_data - Check that a socket buffer's data buffers are writable
5046 * @skb: The socket buffer to check.
5047 * @tailbits: Amount of trailing space to be added
5048 * @trailer: Returned pointer to the skb where the @tailbits space begins
5049 *
5050 * Make sure that the data buffers attached to a socket buffer are
5051 * writable. If they are not, private copies are made of the data buffers
5052 * and the socket buffer is set to use these instead.
5053 *
5054 * If @tailbits is given, make sure that there is space to write @tailbits
5055 * bytes of data beyond current end of socket buffer. @trailer will be
5056 * set to point to the skb in which this space begins.
5057 *
5058 * The number of scatterlist elements required to completely map the
5059 * COW'd and extended socket buffer will be returned.
5060 */
5061int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5062{
5063 int copyflag;
5064 int elt;
5065 struct sk_buff *skb1, **skb_p;
5066
5067 /* If skb is cloned or its head is paged, reallocate
5068 * head pulling out all the pages (pages are considered not writable
5069 * at the moment even if they are anonymous).
5070 */
5071 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5072 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5073 return -ENOMEM;
5074
5075 /* Easy case. Most of packets will go this way. */
5076 if (!skb_has_frag_list(skb)) {
5077 /* A little of trouble, not enough of space for trailer.
5078 * This should not happen, when stack is tuned to generate
5079 * good frames. OK, on miss we reallocate and reserve even more
5080 * space, 128 bytes is fair. */
5081
5082 if (skb_tailroom(skb) < tailbits &&
5083 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5084 return -ENOMEM;
5085
5086 /* Voila! */
5087 *trailer = skb;
5088 return 1;
5089 }
5090
5091 /* Misery. We are in troubles, going to mincer fragments... */
5092
5093 elt = 1;
5094 skb_p = &skb_shinfo(skb)->frag_list;
5095 copyflag = 0;
5096
5097 while ((skb1 = *skb_p) != NULL) {
5098 int ntail = 0;
5099
5100 /* The fragment is partially pulled by someone,
5101 * this can happen on input. Copy it and everything
5102 * after it. */
5103
5104 if (skb_shared(skb1))
5105 copyflag = 1;
5106
5107 /* If the skb is the last, worry about trailer. */
5108
5109 if (skb1->next == NULL && tailbits) {
5110 if (skb_shinfo(skb1)->nr_frags ||
5111 skb_has_frag_list(skb1) ||
5112 skb_tailroom(skb1) < tailbits)
5113 ntail = tailbits + 128;
5114 }
5115
5116 if (copyflag ||
5117 skb_cloned(skb1) ||
5118 ntail ||
5119 skb_shinfo(skb1)->nr_frags ||
5120 skb_has_frag_list(skb1)) {
5121 struct sk_buff *skb2;
5122
5123 /* Fuck, we are miserable poor guys... */
5124 if (ntail == 0)
5125 skb2 = skb_copy(skb1, GFP_ATOMIC);
5126 else
5127 skb2 = skb_copy_expand(skb1,
5128 skb_headroom(skb1),
5129 ntail,
5130 GFP_ATOMIC);
5131 if (unlikely(skb2 == NULL))
5132 return -ENOMEM;
5133
5134 if (skb1->sk)
5135 skb_set_owner_w(skb2, skb1->sk);
5136
5137 /* Looking around. Are we still alive?
5138 * OK, link new skb, drop old one */
5139
5140 skb2->next = skb1->next;
5141 *skb_p = skb2;
5142 kfree_skb(skb1);
5143 skb1 = skb2;
5144 }
5145 elt++;
5146 *trailer = skb1;
5147 skb_p = &skb1->next;
5148 }
5149
5150 return elt;
5151}
5152EXPORT_SYMBOL_GPL(skb_cow_data);
5153
5154static void sock_rmem_free(struct sk_buff *skb)
5155{
5156 struct sock *sk = skb->sk;
5157
5158 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5159}
5160
5161static void skb_set_err_queue(struct sk_buff *skb)
5162{
5163 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5164 * So, it is safe to (mis)use it to mark skbs on the error queue.
5165 */
5166 skb->pkt_type = PACKET_OUTGOING;
5167 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5168}
5169
5170/*
5171 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5172 */
5173int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5174{
5175 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5176 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5177 return -ENOMEM;
5178
5179 skb_orphan(skb);
5180 skb->sk = sk;
5181 skb->destructor = sock_rmem_free;
5182 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5183 skb_set_err_queue(skb);
5184
5185 /* before exiting rcu section, make sure dst is refcounted */
5186 skb_dst_force(skb);
5187
5188 skb_queue_tail(&sk->sk_error_queue, skb);
5189 if (!sock_flag(sk, SOCK_DEAD))
5190 sk_error_report(sk);
5191 return 0;
5192}
5193EXPORT_SYMBOL(sock_queue_err_skb);
5194
5195static bool is_icmp_err_skb(const struct sk_buff *skb)
5196{
5197 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5198 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5199}
5200
5201struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5202{
5203 struct sk_buff_head *q = &sk->sk_error_queue;
5204 struct sk_buff *skb, *skb_next = NULL;
5205 bool icmp_next = false;
5206 unsigned long flags;
5207
5208 if (skb_queue_empty_lockless(q))
5209 return NULL;
5210
5211 spin_lock_irqsave(&q->lock, flags);
5212 skb = __skb_dequeue(q);
5213 if (skb && (skb_next = skb_peek(q))) {
5214 icmp_next = is_icmp_err_skb(skb_next);
5215 if (icmp_next)
5216 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5217 }
5218 spin_unlock_irqrestore(&q->lock, flags);
5219
5220 if (is_icmp_err_skb(skb) && !icmp_next)
5221 sk->sk_err = 0;
5222
5223 if (skb_next)
5224 sk_error_report(sk);
5225
5226 return skb;
5227}
5228EXPORT_SYMBOL(sock_dequeue_err_skb);
5229
5230/**
5231 * skb_clone_sk - create clone of skb, and take reference to socket
5232 * @skb: the skb to clone
5233 *
5234 * This function creates a clone of a buffer that holds a reference on
5235 * sk_refcnt. Buffers created via this function are meant to be
5236 * returned using sock_queue_err_skb, or free via kfree_skb.
5237 *
5238 * When passing buffers allocated with this function to sock_queue_err_skb
5239 * it is necessary to wrap the call with sock_hold/sock_put in order to
5240 * prevent the socket from being released prior to being enqueued on
5241 * the sk_error_queue.
5242 */
5243struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5244{
5245 struct sock *sk = skb->sk;
5246 struct sk_buff *clone;
5247
5248 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5249 return NULL;
5250
5251 clone = skb_clone(skb, GFP_ATOMIC);
5252 if (!clone) {
5253 sock_put(sk);
5254 return NULL;
5255 }
5256
5257 clone->sk = sk;
5258 clone->destructor = sock_efree;
5259
5260 return clone;
5261}
5262EXPORT_SYMBOL(skb_clone_sk);
5263
5264static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5265 struct sock *sk,
5266 int tstype,
5267 bool opt_stats)
5268{
5269 struct sock_exterr_skb *serr;
5270 int err;
5271
5272 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5273
5274 serr = SKB_EXT_ERR(skb);
5275 memset(serr, 0, sizeof(*serr));
5276 serr->ee.ee_errno = ENOMSG;
5277 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5278 serr->ee.ee_info = tstype;
5279 serr->opt_stats = opt_stats;
5280 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5281 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5282 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5283 if (sk_is_tcp(sk))
5284 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5285 }
5286
5287 err = sock_queue_err_skb(sk, skb);
5288
5289 if (err)
5290 kfree_skb(skb);
5291}
5292
5293static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5294{
5295 bool ret;
5296
5297 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5298 return true;
5299
5300 read_lock_bh(&sk->sk_callback_lock);
5301 ret = sk->sk_socket && sk->sk_socket->file &&
5302 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5303 read_unlock_bh(&sk->sk_callback_lock);
5304 return ret;
5305}
5306
5307void skb_complete_tx_timestamp(struct sk_buff *skb,
5308 struct skb_shared_hwtstamps *hwtstamps)
5309{
5310 struct sock *sk = skb->sk;
5311
5312 if (!skb_may_tx_timestamp(sk, false))
5313 goto err;
5314
5315 /* Take a reference to prevent skb_orphan() from freeing the socket,
5316 * but only if the socket refcount is not zero.
5317 */
5318 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5319 *skb_hwtstamps(skb) = *hwtstamps;
5320 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5321 sock_put(sk);
5322 return;
5323 }
5324
5325err:
5326 kfree_skb(skb);
5327}
5328EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5329
5330void __skb_tstamp_tx(struct sk_buff *orig_skb,
5331 const struct sk_buff *ack_skb,
5332 struct skb_shared_hwtstamps *hwtstamps,
5333 struct sock *sk, int tstype)
5334{
5335 struct sk_buff *skb;
5336 bool tsonly, opt_stats = false;
5337 u32 tsflags;
5338
5339 if (!sk)
5340 return;
5341
5342 tsflags = READ_ONCE(sk->sk_tsflags);
5343 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5344 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5345 return;
5346
5347 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5348 if (!skb_may_tx_timestamp(sk, tsonly))
5349 return;
5350
5351 if (tsonly) {
5352#ifdef CONFIG_INET
5353 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5354 sk_is_tcp(sk)) {
5355 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5356 ack_skb);
5357 opt_stats = true;
5358 } else
5359#endif
5360 skb = alloc_skb(0, GFP_ATOMIC);
5361 } else {
5362 skb = skb_clone(orig_skb, GFP_ATOMIC);
5363
5364 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5365 kfree_skb(skb);
5366 return;
5367 }
5368 }
5369 if (!skb)
5370 return;
5371
5372 if (tsonly) {
5373 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5374 SKBTX_ANY_TSTAMP;
5375 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5376 }
5377
5378 if (hwtstamps)
5379 *skb_hwtstamps(skb) = *hwtstamps;
5380 else
5381 __net_timestamp(skb);
5382
5383 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5384}
5385EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5386
5387void skb_tstamp_tx(struct sk_buff *orig_skb,
5388 struct skb_shared_hwtstamps *hwtstamps)
5389{
5390 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5391 SCM_TSTAMP_SND);
5392}
5393EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5394
5395#ifdef CONFIG_WIRELESS
5396void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5397{
5398 struct sock *sk = skb->sk;
5399 struct sock_exterr_skb *serr;
5400 int err = 1;
5401
5402 skb->wifi_acked_valid = 1;
5403 skb->wifi_acked = acked;
5404
5405 serr = SKB_EXT_ERR(skb);
5406 memset(serr, 0, sizeof(*serr));
5407 serr->ee.ee_errno = ENOMSG;
5408 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5409
5410 /* Take a reference to prevent skb_orphan() from freeing the socket,
5411 * but only if the socket refcount is not zero.
5412 */
5413 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5414 err = sock_queue_err_skb(sk, skb);
5415 sock_put(sk);
5416 }
5417 if (err)
5418 kfree_skb(skb);
5419}
5420EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5421#endif /* CONFIG_WIRELESS */
5422
5423/**
5424 * skb_partial_csum_set - set up and verify partial csum values for packet
5425 * @skb: the skb to set
5426 * @start: the number of bytes after skb->data to start checksumming.
5427 * @off: the offset from start to place the checksum.
5428 *
5429 * For untrusted partially-checksummed packets, we need to make sure the values
5430 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5431 *
5432 * This function checks and sets those values and skb->ip_summed: if this
5433 * returns false you should drop the packet.
5434 */
5435bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5436{
5437 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5438 u32 csum_start = skb_headroom(skb) + (u32)start;
5439
5440 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5441 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5442 start, off, skb_headroom(skb), skb_headlen(skb));
5443 return false;
5444 }
5445 skb->ip_summed = CHECKSUM_PARTIAL;
5446 skb->csum_start = csum_start;
5447 skb->csum_offset = off;
5448 skb->transport_header = csum_start;
5449 return true;
5450}
5451EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5452
5453static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5454 unsigned int max)
5455{
5456 if (skb_headlen(skb) >= len)
5457 return 0;
5458
5459 /* If we need to pullup then pullup to the max, so we
5460 * won't need to do it again.
5461 */
5462 if (max > skb->len)
5463 max = skb->len;
5464
5465 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5466 return -ENOMEM;
5467
5468 if (skb_headlen(skb) < len)
5469 return -EPROTO;
5470
5471 return 0;
5472}
5473
5474#define MAX_TCP_HDR_LEN (15 * 4)
5475
5476static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5477 typeof(IPPROTO_IP) proto,
5478 unsigned int off)
5479{
5480 int err;
5481
5482 switch (proto) {
5483 case IPPROTO_TCP:
5484 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5485 off + MAX_TCP_HDR_LEN);
5486 if (!err && !skb_partial_csum_set(skb, off,
5487 offsetof(struct tcphdr,
5488 check)))
5489 err = -EPROTO;
5490 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5491
5492 case IPPROTO_UDP:
5493 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5494 off + sizeof(struct udphdr));
5495 if (!err && !skb_partial_csum_set(skb, off,
5496 offsetof(struct udphdr,
5497 check)))
5498 err = -EPROTO;
5499 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5500 }
5501
5502 return ERR_PTR(-EPROTO);
5503}
5504
5505/* This value should be large enough to cover a tagged ethernet header plus
5506 * maximally sized IP and TCP or UDP headers.
5507 */
5508#define MAX_IP_HDR_LEN 128
5509
5510static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5511{
5512 unsigned int off;
5513 bool fragment;
5514 __sum16 *csum;
5515 int err;
5516
5517 fragment = false;
5518
5519 err = skb_maybe_pull_tail(skb,
5520 sizeof(struct iphdr),
5521 MAX_IP_HDR_LEN);
5522 if (err < 0)
5523 goto out;
5524
5525 if (ip_is_fragment(ip_hdr(skb)))
5526 fragment = true;
5527
5528 off = ip_hdrlen(skb);
5529
5530 err = -EPROTO;
5531
5532 if (fragment)
5533 goto out;
5534
5535 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5536 if (IS_ERR(csum))
5537 return PTR_ERR(csum);
5538
5539 if (recalculate)
5540 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5541 ip_hdr(skb)->daddr,
5542 skb->len - off,
5543 ip_hdr(skb)->protocol, 0);
5544 err = 0;
5545
5546out:
5547 return err;
5548}
5549
5550/* This value should be large enough to cover a tagged ethernet header plus
5551 * an IPv6 header, all options, and a maximal TCP or UDP header.
5552 */
5553#define MAX_IPV6_HDR_LEN 256
5554
5555#define OPT_HDR(type, skb, off) \
5556 (type *)(skb_network_header(skb) + (off))
5557
5558static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5559{
5560 int err;
5561 u8 nexthdr;
5562 unsigned int off;
5563 unsigned int len;
5564 bool fragment;
5565 bool done;
5566 __sum16 *csum;
5567
5568 fragment = false;
5569 done = false;
5570
5571 off = sizeof(struct ipv6hdr);
5572
5573 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5574 if (err < 0)
5575 goto out;
5576
5577 nexthdr = ipv6_hdr(skb)->nexthdr;
5578
5579 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5580 while (off <= len && !done) {
5581 switch (nexthdr) {
5582 case IPPROTO_DSTOPTS:
5583 case IPPROTO_HOPOPTS:
5584 case IPPROTO_ROUTING: {
5585 struct ipv6_opt_hdr *hp;
5586
5587 err = skb_maybe_pull_tail(skb,
5588 off +
5589 sizeof(struct ipv6_opt_hdr),
5590 MAX_IPV6_HDR_LEN);
5591 if (err < 0)
5592 goto out;
5593
5594 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5595 nexthdr = hp->nexthdr;
5596 off += ipv6_optlen(hp);
5597 break;
5598 }
5599 case IPPROTO_AH: {
5600 struct ip_auth_hdr *hp;
5601
5602 err = skb_maybe_pull_tail(skb,
5603 off +
5604 sizeof(struct ip_auth_hdr),
5605 MAX_IPV6_HDR_LEN);
5606 if (err < 0)
5607 goto out;
5608
5609 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5610 nexthdr = hp->nexthdr;
5611 off += ipv6_authlen(hp);
5612 break;
5613 }
5614 case IPPROTO_FRAGMENT: {
5615 struct frag_hdr *hp;
5616
5617 err = skb_maybe_pull_tail(skb,
5618 off +
5619 sizeof(struct frag_hdr),
5620 MAX_IPV6_HDR_LEN);
5621 if (err < 0)
5622 goto out;
5623
5624 hp = OPT_HDR(struct frag_hdr, skb, off);
5625
5626 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5627 fragment = true;
5628
5629 nexthdr = hp->nexthdr;
5630 off += sizeof(struct frag_hdr);
5631 break;
5632 }
5633 default:
5634 done = true;
5635 break;
5636 }
5637 }
5638
5639 err = -EPROTO;
5640
5641 if (!done || fragment)
5642 goto out;
5643
5644 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5645 if (IS_ERR(csum))
5646 return PTR_ERR(csum);
5647
5648 if (recalculate)
5649 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5650 &ipv6_hdr(skb)->daddr,
5651 skb->len - off, nexthdr, 0);
5652 err = 0;
5653
5654out:
5655 return err;
5656}
5657
5658/**
5659 * skb_checksum_setup - set up partial checksum offset
5660 * @skb: the skb to set up
5661 * @recalculate: if true the pseudo-header checksum will be recalculated
5662 */
5663int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5664{
5665 int err;
5666
5667 switch (skb->protocol) {
5668 case htons(ETH_P_IP):
5669 err = skb_checksum_setup_ipv4(skb, recalculate);
5670 break;
5671
5672 case htons(ETH_P_IPV6):
5673 err = skb_checksum_setup_ipv6(skb, recalculate);
5674 break;
5675
5676 default:
5677 err = -EPROTO;
5678 break;
5679 }
5680
5681 return err;
5682}
5683EXPORT_SYMBOL(skb_checksum_setup);
5684
5685/**
5686 * skb_checksum_maybe_trim - maybe trims the given skb
5687 * @skb: the skb to check
5688 * @transport_len: the data length beyond the network header
5689 *
5690 * Checks whether the given skb has data beyond the given transport length.
5691 * If so, returns a cloned skb trimmed to this transport length.
5692 * Otherwise returns the provided skb. Returns NULL in error cases
5693 * (e.g. transport_len exceeds skb length or out-of-memory).
5694 *
5695 * Caller needs to set the skb transport header and free any returned skb if it
5696 * differs from the provided skb.
5697 */
5698static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5699 unsigned int transport_len)
5700{
5701 struct sk_buff *skb_chk;
5702 unsigned int len = skb_transport_offset(skb) + transport_len;
5703 int ret;
5704
5705 if (skb->len < len)
5706 return NULL;
5707 else if (skb->len == len)
5708 return skb;
5709
5710 skb_chk = skb_clone(skb, GFP_ATOMIC);
5711 if (!skb_chk)
5712 return NULL;
5713
5714 ret = pskb_trim_rcsum(skb_chk, len);
5715 if (ret) {
5716 kfree_skb(skb_chk);
5717 return NULL;
5718 }
5719
5720 return skb_chk;
5721}
5722
5723/**
5724 * skb_checksum_trimmed - validate checksum of an skb
5725 * @skb: the skb to check
5726 * @transport_len: the data length beyond the network header
5727 * @skb_chkf: checksum function to use
5728 *
5729 * Applies the given checksum function skb_chkf to the provided skb.
5730 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5731 *
5732 * If the skb has data beyond the given transport length, then a
5733 * trimmed & cloned skb is checked and returned.
5734 *
5735 * Caller needs to set the skb transport header and free any returned skb if it
5736 * differs from the provided skb.
5737 */
5738struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5739 unsigned int transport_len,
5740 __sum16(*skb_chkf)(struct sk_buff *skb))
5741{
5742 struct sk_buff *skb_chk;
5743 unsigned int offset = skb_transport_offset(skb);
5744 __sum16 ret;
5745
5746 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5747 if (!skb_chk)
5748 goto err;
5749
5750 if (!pskb_may_pull(skb_chk, offset))
5751 goto err;
5752
5753 skb_pull_rcsum(skb_chk, offset);
5754 ret = skb_chkf(skb_chk);
5755 skb_push_rcsum(skb_chk, offset);
5756
5757 if (ret)
5758 goto err;
5759
5760 return skb_chk;
5761
5762err:
5763 if (skb_chk && skb_chk != skb)
5764 kfree_skb(skb_chk);
5765
5766 return NULL;
5767
5768}
5769EXPORT_SYMBOL(skb_checksum_trimmed);
5770
5771void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5772{
5773 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5774 skb->dev->name);
5775}
5776EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5777
5778void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5779{
5780 if (head_stolen) {
5781 skb_release_head_state(skb);
5782 kmem_cache_free(skbuff_cache, skb);
5783 } else {
5784 __kfree_skb(skb);
5785 }
5786}
5787EXPORT_SYMBOL(kfree_skb_partial);
5788
5789/**
5790 * skb_try_coalesce - try to merge skb to prior one
5791 * @to: prior buffer
5792 * @from: buffer to add
5793 * @fragstolen: pointer to boolean
5794 * @delta_truesize: how much more was allocated than was requested
5795 */
5796bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5797 bool *fragstolen, int *delta_truesize)
5798{
5799 struct skb_shared_info *to_shinfo, *from_shinfo;
5800 int i, delta, len = from->len;
5801
5802 *fragstolen = false;
5803
5804 if (skb_cloned(to))
5805 return false;
5806
5807 /* In general, avoid mixing page_pool and non-page_pool allocated
5808 * pages within the same SKB. In theory we could take full
5809 * references if @from is cloned and !@to->pp_recycle but its
5810 * tricky (due to potential race with the clone disappearing) and
5811 * rare, so not worth dealing with.
5812 */
5813 if (to->pp_recycle != from->pp_recycle)
5814 return false;
5815
5816 if (len <= skb_tailroom(to)) {
5817 if (len)
5818 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5819 *delta_truesize = 0;
5820 return true;
5821 }
5822
5823 to_shinfo = skb_shinfo(to);
5824 from_shinfo = skb_shinfo(from);
5825 if (to_shinfo->frag_list || from_shinfo->frag_list)
5826 return false;
5827 if (skb_zcopy(to) || skb_zcopy(from))
5828 return false;
5829
5830 if (skb_headlen(from) != 0) {
5831 struct page *page;
5832 unsigned int offset;
5833
5834 if (to_shinfo->nr_frags +
5835 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5836 return false;
5837
5838 if (skb_head_is_locked(from))
5839 return false;
5840
5841 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5842
5843 page = virt_to_head_page(from->head);
5844 offset = from->data - (unsigned char *)page_address(page);
5845
5846 skb_fill_page_desc(to, to_shinfo->nr_frags,
5847 page, offset, skb_headlen(from));
5848 *fragstolen = true;
5849 } else {
5850 if (to_shinfo->nr_frags +
5851 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5852 return false;
5853
5854 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5855 }
5856
5857 WARN_ON_ONCE(delta < len);
5858
5859 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5860 from_shinfo->frags,
5861 from_shinfo->nr_frags * sizeof(skb_frag_t));
5862 to_shinfo->nr_frags += from_shinfo->nr_frags;
5863
5864 if (!skb_cloned(from))
5865 from_shinfo->nr_frags = 0;
5866
5867 /* if the skb is not cloned this does nothing
5868 * since we set nr_frags to 0.
5869 */
5870 if (skb_pp_frag_ref(from)) {
5871 for (i = 0; i < from_shinfo->nr_frags; i++)
5872 __skb_frag_ref(&from_shinfo->frags[i]);
5873 }
5874
5875 to->truesize += delta;
5876 to->len += len;
5877 to->data_len += len;
5878
5879 *delta_truesize = delta;
5880 return true;
5881}
5882EXPORT_SYMBOL(skb_try_coalesce);
5883
5884/**
5885 * skb_scrub_packet - scrub an skb
5886 *
5887 * @skb: buffer to clean
5888 * @xnet: packet is crossing netns
5889 *
5890 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5891 * into/from a tunnel. Some information have to be cleared during these
5892 * operations.
5893 * skb_scrub_packet can also be used to clean a skb before injecting it in
5894 * another namespace (@xnet == true). We have to clear all information in the
5895 * skb that could impact namespace isolation.
5896 */
5897void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5898{
5899 skb->pkt_type = PACKET_HOST;
5900 skb->skb_iif = 0;
5901 skb->ignore_df = 0;
5902 skb_dst_drop(skb);
5903 skb_ext_reset(skb);
5904 nf_reset_ct(skb);
5905 nf_reset_trace(skb);
5906
5907#ifdef CONFIG_NET_SWITCHDEV
5908 skb->offload_fwd_mark = 0;
5909 skb->offload_l3_fwd_mark = 0;
5910#endif
5911
5912 if (!xnet)
5913 return;
5914
5915 ipvs_reset(skb);
5916 skb->mark = 0;
5917 skb_clear_tstamp(skb);
5918}
5919EXPORT_SYMBOL_GPL(skb_scrub_packet);
5920
5921static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5922{
5923 int mac_len, meta_len;
5924 void *meta;
5925
5926 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5927 kfree_skb(skb);
5928 return NULL;
5929 }
5930
5931 mac_len = skb->data - skb_mac_header(skb);
5932 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5933 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5934 mac_len - VLAN_HLEN - ETH_TLEN);
5935 }
5936
5937 meta_len = skb_metadata_len(skb);
5938 if (meta_len) {
5939 meta = skb_metadata_end(skb) - meta_len;
5940 memmove(meta + VLAN_HLEN, meta, meta_len);
5941 }
5942
5943 skb->mac_header += VLAN_HLEN;
5944 return skb;
5945}
5946
5947struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5948{
5949 struct vlan_hdr *vhdr;
5950 u16 vlan_tci;
5951
5952 if (unlikely(skb_vlan_tag_present(skb))) {
5953 /* vlan_tci is already set-up so leave this for another time */
5954 return skb;
5955 }
5956
5957 skb = skb_share_check(skb, GFP_ATOMIC);
5958 if (unlikely(!skb))
5959 goto err_free;
5960 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5961 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5962 goto err_free;
5963
5964 vhdr = (struct vlan_hdr *)skb->data;
5965 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5966 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5967
5968 skb_pull_rcsum(skb, VLAN_HLEN);
5969 vlan_set_encap_proto(skb, vhdr);
5970
5971 skb = skb_reorder_vlan_header(skb);
5972 if (unlikely(!skb))
5973 goto err_free;
5974
5975 skb_reset_network_header(skb);
5976 if (!skb_transport_header_was_set(skb))
5977 skb_reset_transport_header(skb);
5978 skb_reset_mac_len(skb);
5979
5980 return skb;
5981
5982err_free:
5983 kfree_skb(skb);
5984 return NULL;
5985}
5986EXPORT_SYMBOL(skb_vlan_untag);
5987
5988int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5989{
5990 if (!pskb_may_pull(skb, write_len))
5991 return -ENOMEM;
5992
5993 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5994 return 0;
5995
5996 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5997}
5998EXPORT_SYMBOL(skb_ensure_writable);
5999
6000int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev)
6001{
6002 int needed_headroom = dev->needed_headroom;
6003 int needed_tailroom = dev->needed_tailroom;
6004
6005 /* For tail taggers, we need to pad short frames ourselves, to ensure
6006 * that the tail tag does not fail at its role of being at the end of
6007 * the packet, once the conduit interface pads the frame. Account for
6008 * that pad length here, and pad later.
6009 */
6010 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN))
6011 needed_tailroom += ETH_ZLEN - skb->len;
6012 /* skb_headroom() returns unsigned int... */
6013 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0);
6014 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0);
6015
6016 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb)))
6017 /* No reallocation needed, yay! */
6018 return 0;
6019
6020 return pskb_expand_head(skb, needed_headroom, needed_tailroom,
6021 GFP_ATOMIC);
6022}
6023EXPORT_SYMBOL(skb_ensure_writable_head_tail);
6024
6025/* remove VLAN header from packet and update csum accordingly.
6026 * expects a non skb_vlan_tag_present skb with a vlan tag payload
6027 */
6028int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
6029{
6030 int offset = skb->data - skb_mac_header(skb);
6031 int err;
6032
6033 if (WARN_ONCE(offset,
6034 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
6035 offset)) {
6036 return -EINVAL;
6037 }
6038
6039 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
6040 if (unlikely(err))
6041 return err;
6042
6043 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6044
6045 vlan_remove_tag(skb, vlan_tci);
6046
6047 skb->mac_header += VLAN_HLEN;
6048
6049 if (skb_network_offset(skb) < ETH_HLEN)
6050 skb_set_network_header(skb, ETH_HLEN);
6051
6052 skb_reset_mac_len(skb);
6053
6054 return err;
6055}
6056EXPORT_SYMBOL(__skb_vlan_pop);
6057
6058/* Pop a vlan tag either from hwaccel or from payload.
6059 * Expects skb->data at mac header.
6060 */
6061int skb_vlan_pop(struct sk_buff *skb)
6062{
6063 u16 vlan_tci;
6064 __be16 vlan_proto;
6065 int err;
6066
6067 if (likely(skb_vlan_tag_present(skb))) {
6068 __vlan_hwaccel_clear_tag(skb);
6069 } else {
6070 if (unlikely(!eth_type_vlan(skb->protocol)))
6071 return 0;
6072
6073 err = __skb_vlan_pop(skb, &vlan_tci);
6074 if (err)
6075 return err;
6076 }
6077 /* move next vlan tag to hw accel tag */
6078 if (likely(!eth_type_vlan(skb->protocol)))
6079 return 0;
6080
6081 vlan_proto = skb->protocol;
6082 err = __skb_vlan_pop(skb, &vlan_tci);
6083 if (unlikely(err))
6084 return err;
6085
6086 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6087 return 0;
6088}
6089EXPORT_SYMBOL(skb_vlan_pop);
6090
6091/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6092 * Expects skb->data at mac header.
6093 */
6094int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6095{
6096 if (skb_vlan_tag_present(skb)) {
6097 int offset = skb->data - skb_mac_header(skb);
6098 int err;
6099
6100 if (WARN_ONCE(offset,
6101 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6102 offset)) {
6103 return -EINVAL;
6104 }
6105
6106 err = __vlan_insert_tag(skb, skb->vlan_proto,
6107 skb_vlan_tag_get(skb));
6108 if (err)
6109 return err;
6110
6111 skb->protocol = skb->vlan_proto;
6112 skb->mac_len += VLAN_HLEN;
6113
6114 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6115 }
6116 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6117 return 0;
6118}
6119EXPORT_SYMBOL(skb_vlan_push);
6120
6121/**
6122 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6123 *
6124 * @skb: Socket buffer to modify
6125 *
6126 * Drop the Ethernet header of @skb.
6127 *
6128 * Expects that skb->data points to the mac header and that no VLAN tags are
6129 * present.
6130 *
6131 * Returns 0 on success, -errno otherwise.
6132 */
6133int skb_eth_pop(struct sk_buff *skb)
6134{
6135 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6136 skb_network_offset(skb) < ETH_HLEN)
6137 return -EPROTO;
6138
6139 skb_pull_rcsum(skb, ETH_HLEN);
6140 skb_reset_mac_header(skb);
6141 skb_reset_mac_len(skb);
6142
6143 return 0;
6144}
6145EXPORT_SYMBOL(skb_eth_pop);
6146
6147/**
6148 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6149 *
6150 * @skb: Socket buffer to modify
6151 * @dst: Destination MAC address of the new header
6152 * @src: Source MAC address of the new header
6153 *
6154 * Prepend @skb with a new Ethernet header.
6155 *
6156 * Expects that skb->data points to the mac header, which must be empty.
6157 *
6158 * Returns 0 on success, -errno otherwise.
6159 */
6160int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6161 const unsigned char *src)
6162{
6163 struct ethhdr *eth;
6164 int err;
6165
6166 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6167 return -EPROTO;
6168
6169 err = skb_cow_head(skb, sizeof(*eth));
6170 if (err < 0)
6171 return err;
6172
6173 skb_push(skb, sizeof(*eth));
6174 skb_reset_mac_header(skb);
6175 skb_reset_mac_len(skb);
6176
6177 eth = eth_hdr(skb);
6178 ether_addr_copy(eth->h_dest, dst);
6179 ether_addr_copy(eth->h_source, src);
6180 eth->h_proto = skb->protocol;
6181
6182 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6183
6184 return 0;
6185}
6186EXPORT_SYMBOL(skb_eth_push);
6187
6188/* Update the ethertype of hdr and the skb csum value if required. */
6189static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6190 __be16 ethertype)
6191{
6192 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6193 __be16 diff[] = { ~hdr->h_proto, ethertype };
6194
6195 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6196 }
6197
6198 hdr->h_proto = ethertype;
6199}
6200
6201/**
6202 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6203 * the packet
6204 *
6205 * @skb: buffer
6206 * @mpls_lse: MPLS label stack entry to push
6207 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6208 * @mac_len: length of the MAC header
6209 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6210 * ethernet
6211 *
6212 * Expects skb->data at mac header.
6213 *
6214 * Returns 0 on success, -errno otherwise.
6215 */
6216int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6217 int mac_len, bool ethernet)
6218{
6219 struct mpls_shim_hdr *lse;
6220 int err;
6221
6222 if (unlikely(!eth_p_mpls(mpls_proto)))
6223 return -EINVAL;
6224
6225 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6226 if (skb->encapsulation)
6227 return -EINVAL;
6228
6229 err = skb_cow_head(skb, MPLS_HLEN);
6230 if (unlikely(err))
6231 return err;
6232
6233 if (!skb->inner_protocol) {
6234 skb_set_inner_network_header(skb, skb_network_offset(skb));
6235 skb_set_inner_protocol(skb, skb->protocol);
6236 }
6237
6238 skb_push(skb, MPLS_HLEN);
6239 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6240 mac_len);
6241 skb_reset_mac_header(skb);
6242 skb_set_network_header(skb, mac_len);
6243 skb_reset_mac_len(skb);
6244
6245 lse = mpls_hdr(skb);
6246 lse->label_stack_entry = mpls_lse;
6247 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6248
6249 if (ethernet && mac_len >= ETH_HLEN)
6250 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6251 skb->protocol = mpls_proto;
6252
6253 return 0;
6254}
6255EXPORT_SYMBOL_GPL(skb_mpls_push);
6256
6257/**
6258 * skb_mpls_pop() - pop the outermost MPLS header
6259 *
6260 * @skb: buffer
6261 * @next_proto: ethertype of header after popped MPLS header
6262 * @mac_len: length of the MAC header
6263 * @ethernet: flag to indicate if the packet is ethernet
6264 *
6265 * Expects skb->data at mac header.
6266 *
6267 * Returns 0 on success, -errno otherwise.
6268 */
6269int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6270 bool ethernet)
6271{
6272 int err;
6273
6274 if (unlikely(!eth_p_mpls(skb->protocol)))
6275 return 0;
6276
6277 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6278 if (unlikely(err))
6279 return err;
6280
6281 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6282 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6283 mac_len);
6284
6285 __skb_pull(skb, MPLS_HLEN);
6286 skb_reset_mac_header(skb);
6287 skb_set_network_header(skb, mac_len);
6288
6289 if (ethernet && mac_len >= ETH_HLEN) {
6290 struct ethhdr *hdr;
6291
6292 /* use mpls_hdr() to get ethertype to account for VLANs. */
6293 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6294 skb_mod_eth_type(skb, hdr, next_proto);
6295 }
6296 skb->protocol = next_proto;
6297
6298 return 0;
6299}
6300EXPORT_SYMBOL_GPL(skb_mpls_pop);
6301
6302/**
6303 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6304 *
6305 * @skb: buffer
6306 * @mpls_lse: new MPLS label stack entry to update to
6307 *
6308 * Expects skb->data at mac header.
6309 *
6310 * Returns 0 on success, -errno otherwise.
6311 */
6312int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6313{
6314 int err;
6315
6316 if (unlikely(!eth_p_mpls(skb->protocol)))
6317 return -EINVAL;
6318
6319 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6320 if (unlikely(err))
6321 return err;
6322
6323 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6324 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6325
6326 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6327 }
6328
6329 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6330
6331 return 0;
6332}
6333EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6334
6335/**
6336 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6337 *
6338 * @skb: buffer
6339 *
6340 * Expects skb->data at mac header.
6341 *
6342 * Returns 0 on success, -errno otherwise.
6343 */
6344int skb_mpls_dec_ttl(struct sk_buff *skb)
6345{
6346 u32 lse;
6347 u8 ttl;
6348
6349 if (unlikely(!eth_p_mpls(skb->protocol)))
6350 return -EINVAL;
6351
6352 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6353 return -ENOMEM;
6354
6355 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6356 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6357 if (!--ttl)
6358 return -EINVAL;
6359
6360 lse &= ~MPLS_LS_TTL_MASK;
6361 lse |= ttl << MPLS_LS_TTL_SHIFT;
6362
6363 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6364}
6365EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6366
6367/**
6368 * alloc_skb_with_frags - allocate skb with page frags
6369 *
6370 * @header_len: size of linear part
6371 * @data_len: needed length in frags
6372 * @order: max page order desired.
6373 * @errcode: pointer to error code if any
6374 * @gfp_mask: allocation mask
6375 *
6376 * This can be used to allocate a paged skb, given a maximal order for frags.
6377 */
6378struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6379 unsigned long data_len,
6380 int order,
6381 int *errcode,
6382 gfp_t gfp_mask)
6383{
6384 unsigned long chunk;
6385 struct sk_buff *skb;
6386 struct page *page;
6387 int nr_frags = 0;
6388
6389 *errcode = -EMSGSIZE;
6390 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6391 return NULL;
6392
6393 *errcode = -ENOBUFS;
6394 skb = alloc_skb(header_len, gfp_mask);
6395 if (!skb)
6396 return NULL;
6397
6398 while (data_len) {
6399 if (nr_frags == MAX_SKB_FRAGS - 1)
6400 goto failure;
6401 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6402 order--;
6403
6404 if (order) {
6405 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6406 __GFP_COMP |
6407 __GFP_NOWARN,
6408 order);
6409 if (!page) {
6410 order--;
6411 continue;
6412 }
6413 } else {
6414 page = alloc_page(gfp_mask);
6415 if (!page)
6416 goto failure;
6417 }
6418 chunk = min_t(unsigned long, data_len,
6419 PAGE_SIZE << order);
6420 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6421 nr_frags++;
6422 skb->truesize += (PAGE_SIZE << order);
6423 data_len -= chunk;
6424 }
6425 return skb;
6426
6427failure:
6428 kfree_skb(skb);
6429 return NULL;
6430}
6431EXPORT_SYMBOL(alloc_skb_with_frags);
6432
6433/* carve out the first off bytes from skb when off < headlen */
6434static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6435 const int headlen, gfp_t gfp_mask)
6436{
6437 int i;
6438 unsigned int size = skb_end_offset(skb);
6439 int new_hlen = headlen - off;
6440 u8 *data;
6441
6442 if (skb_pfmemalloc(skb))
6443 gfp_mask |= __GFP_MEMALLOC;
6444
6445 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6446 if (!data)
6447 return -ENOMEM;
6448 size = SKB_WITH_OVERHEAD(size);
6449
6450 /* Copy real data, and all frags */
6451 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6452 skb->len -= off;
6453
6454 memcpy((struct skb_shared_info *)(data + size),
6455 skb_shinfo(skb),
6456 offsetof(struct skb_shared_info,
6457 frags[skb_shinfo(skb)->nr_frags]));
6458 if (skb_cloned(skb)) {
6459 /* drop the old head gracefully */
6460 if (skb_orphan_frags(skb, gfp_mask)) {
6461 skb_kfree_head(data, size);
6462 return -ENOMEM;
6463 }
6464 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6465 skb_frag_ref(skb, i);
6466 if (skb_has_frag_list(skb))
6467 skb_clone_fraglist(skb);
6468 skb_release_data(skb, SKB_CONSUMED, false);
6469 } else {
6470 /* we can reuse existing recount- all we did was
6471 * relocate values
6472 */
6473 skb_free_head(skb, false);
6474 }
6475
6476 skb->head = data;
6477 skb->data = data;
6478 skb->head_frag = 0;
6479 skb_set_end_offset(skb, size);
6480 skb_set_tail_pointer(skb, skb_headlen(skb));
6481 skb_headers_offset_update(skb, 0);
6482 skb->cloned = 0;
6483 skb->hdr_len = 0;
6484 skb->nohdr = 0;
6485 atomic_set(&skb_shinfo(skb)->dataref, 1);
6486
6487 return 0;
6488}
6489
6490static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6491
6492/* carve out the first eat bytes from skb's frag_list. May recurse into
6493 * pskb_carve()
6494 */
6495static int pskb_carve_frag_list(struct sk_buff *skb,
6496 struct skb_shared_info *shinfo, int eat,
6497 gfp_t gfp_mask)
6498{
6499 struct sk_buff *list = shinfo->frag_list;
6500 struct sk_buff *clone = NULL;
6501 struct sk_buff *insp = NULL;
6502
6503 do {
6504 if (!list) {
6505 pr_err("Not enough bytes to eat. Want %d\n", eat);
6506 return -EFAULT;
6507 }
6508 if (list->len <= eat) {
6509 /* Eaten as whole. */
6510 eat -= list->len;
6511 list = list->next;
6512 insp = list;
6513 } else {
6514 /* Eaten partially. */
6515 if (skb_shared(list)) {
6516 clone = skb_clone(list, gfp_mask);
6517 if (!clone)
6518 return -ENOMEM;
6519 insp = list->next;
6520 list = clone;
6521 } else {
6522 /* This may be pulled without problems. */
6523 insp = list;
6524 }
6525 if (pskb_carve(list, eat, gfp_mask) < 0) {
6526 kfree_skb(clone);
6527 return -ENOMEM;
6528 }
6529 break;
6530 }
6531 } while (eat);
6532
6533 /* Free pulled out fragments. */
6534 while ((list = shinfo->frag_list) != insp) {
6535 shinfo->frag_list = list->next;
6536 consume_skb(list);
6537 }
6538 /* And insert new clone at head. */
6539 if (clone) {
6540 clone->next = list;
6541 shinfo->frag_list = clone;
6542 }
6543 return 0;
6544}
6545
6546/* carve off first len bytes from skb. Split line (off) is in the
6547 * non-linear part of skb
6548 */
6549static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6550 int pos, gfp_t gfp_mask)
6551{
6552 int i, k = 0;
6553 unsigned int size = skb_end_offset(skb);
6554 u8 *data;
6555 const int nfrags = skb_shinfo(skb)->nr_frags;
6556 struct skb_shared_info *shinfo;
6557
6558 if (skb_pfmemalloc(skb))
6559 gfp_mask |= __GFP_MEMALLOC;
6560
6561 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6562 if (!data)
6563 return -ENOMEM;
6564 size = SKB_WITH_OVERHEAD(size);
6565
6566 memcpy((struct skb_shared_info *)(data + size),
6567 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6568 if (skb_orphan_frags(skb, gfp_mask)) {
6569 skb_kfree_head(data, size);
6570 return -ENOMEM;
6571 }
6572 shinfo = (struct skb_shared_info *)(data + size);
6573 for (i = 0; i < nfrags; i++) {
6574 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6575
6576 if (pos + fsize > off) {
6577 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6578
6579 if (pos < off) {
6580 /* Split frag.
6581 * We have two variants in this case:
6582 * 1. Move all the frag to the second
6583 * part, if it is possible. F.e.
6584 * this approach is mandatory for TUX,
6585 * where splitting is expensive.
6586 * 2. Split is accurately. We make this.
6587 */
6588 skb_frag_off_add(&shinfo->frags[0], off - pos);
6589 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6590 }
6591 skb_frag_ref(skb, i);
6592 k++;
6593 }
6594 pos += fsize;
6595 }
6596 shinfo->nr_frags = k;
6597 if (skb_has_frag_list(skb))
6598 skb_clone_fraglist(skb);
6599
6600 /* split line is in frag list */
6601 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6602 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6603 if (skb_has_frag_list(skb))
6604 kfree_skb_list(skb_shinfo(skb)->frag_list);
6605 skb_kfree_head(data, size);
6606 return -ENOMEM;
6607 }
6608 skb_release_data(skb, SKB_CONSUMED, false);
6609
6610 skb->head = data;
6611 skb->head_frag = 0;
6612 skb->data = data;
6613 skb_set_end_offset(skb, size);
6614 skb_reset_tail_pointer(skb);
6615 skb_headers_offset_update(skb, 0);
6616 skb->cloned = 0;
6617 skb->hdr_len = 0;
6618 skb->nohdr = 0;
6619 skb->len -= off;
6620 skb->data_len = skb->len;
6621 atomic_set(&skb_shinfo(skb)->dataref, 1);
6622 return 0;
6623}
6624
6625/* remove len bytes from the beginning of the skb */
6626static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6627{
6628 int headlen = skb_headlen(skb);
6629
6630 if (len < headlen)
6631 return pskb_carve_inside_header(skb, len, headlen, gfp);
6632 else
6633 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6634}
6635
6636/* Extract to_copy bytes starting at off from skb, and return this in
6637 * a new skb
6638 */
6639struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6640 int to_copy, gfp_t gfp)
6641{
6642 struct sk_buff *clone = skb_clone(skb, gfp);
6643
6644 if (!clone)
6645 return NULL;
6646
6647 if (pskb_carve(clone, off, gfp) < 0 ||
6648 pskb_trim(clone, to_copy)) {
6649 kfree_skb(clone);
6650 return NULL;
6651 }
6652 return clone;
6653}
6654EXPORT_SYMBOL(pskb_extract);
6655
6656/**
6657 * skb_condense - try to get rid of fragments/frag_list if possible
6658 * @skb: buffer
6659 *
6660 * Can be used to save memory before skb is added to a busy queue.
6661 * If packet has bytes in frags and enough tail room in skb->head,
6662 * pull all of them, so that we can free the frags right now and adjust
6663 * truesize.
6664 * Notes:
6665 * We do not reallocate skb->head thus can not fail.
6666 * Caller must re-evaluate skb->truesize if needed.
6667 */
6668void skb_condense(struct sk_buff *skb)
6669{
6670 if (skb->data_len) {
6671 if (skb->data_len > skb->end - skb->tail ||
6672 skb_cloned(skb))
6673 return;
6674
6675 /* Nice, we can free page frag(s) right now */
6676 __pskb_pull_tail(skb, skb->data_len);
6677 }
6678 /* At this point, skb->truesize might be over estimated,
6679 * because skb had a fragment, and fragments do not tell
6680 * their truesize.
6681 * When we pulled its content into skb->head, fragment
6682 * was freed, but __pskb_pull_tail() could not possibly
6683 * adjust skb->truesize, not knowing the frag truesize.
6684 */
6685 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6686}
6687EXPORT_SYMBOL(skb_condense);
6688
6689#ifdef CONFIG_SKB_EXTENSIONS
6690static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6691{
6692 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6693}
6694
6695/**
6696 * __skb_ext_alloc - allocate a new skb extensions storage
6697 *
6698 * @flags: See kmalloc().
6699 *
6700 * Returns the newly allocated pointer. The pointer can later attached to a
6701 * skb via __skb_ext_set().
6702 * Note: caller must handle the skb_ext as an opaque data.
6703 */
6704struct skb_ext *__skb_ext_alloc(gfp_t flags)
6705{
6706 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6707
6708 if (new) {
6709 memset(new->offset, 0, sizeof(new->offset));
6710 refcount_set(&new->refcnt, 1);
6711 }
6712
6713 return new;
6714}
6715
6716static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6717 unsigned int old_active)
6718{
6719 struct skb_ext *new;
6720
6721 if (refcount_read(&old->refcnt) == 1)
6722 return old;
6723
6724 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6725 if (!new)
6726 return NULL;
6727
6728 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6729 refcount_set(&new->refcnt, 1);
6730
6731#ifdef CONFIG_XFRM
6732 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6733 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6734 unsigned int i;
6735
6736 for (i = 0; i < sp->len; i++)
6737 xfrm_state_hold(sp->xvec[i]);
6738 }
6739#endif
6740 __skb_ext_put(old);
6741 return new;
6742}
6743
6744/**
6745 * __skb_ext_set - attach the specified extension storage to this skb
6746 * @skb: buffer
6747 * @id: extension id
6748 * @ext: extension storage previously allocated via __skb_ext_alloc()
6749 *
6750 * Existing extensions, if any, are cleared.
6751 *
6752 * Returns the pointer to the extension.
6753 */
6754void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6755 struct skb_ext *ext)
6756{
6757 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6758
6759 skb_ext_put(skb);
6760 newlen = newoff + skb_ext_type_len[id];
6761 ext->chunks = newlen;
6762 ext->offset[id] = newoff;
6763 skb->extensions = ext;
6764 skb->active_extensions = 1 << id;
6765 return skb_ext_get_ptr(ext, id);
6766}
6767
6768/**
6769 * skb_ext_add - allocate space for given extension, COW if needed
6770 * @skb: buffer
6771 * @id: extension to allocate space for
6772 *
6773 * Allocates enough space for the given extension.
6774 * If the extension is already present, a pointer to that extension
6775 * is returned.
6776 *
6777 * If the skb was cloned, COW applies and the returned memory can be
6778 * modified without changing the extension space of clones buffers.
6779 *
6780 * Returns pointer to the extension or NULL on allocation failure.
6781 */
6782void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6783{
6784 struct skb_ext *new, *old = NULL;
6785 unsigned int newlen, newoff;
6786
6787 if (skb->active_extensions) {
6788 old = skb->extensions;
6789
6790 new = skb_ext_maybe_cow(old, skb->active_extensions);
6791 if (!new)
6792 return NULL;
6793
6794 if (__skb_ext_exist(new, id))
6795 goto set_active;
6796
6797 newoff = new->chunks;
6798 } else {
6799 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6800
6801 new = __skb_ext_alloc(GFP_ATOMIC);
6802 if (!new)
6803 return NULL;
6804 }
6805
6806 newlen = newoff + skb_ext_type_len[id];
6807 new->chunks = newlen;
6808 new->offset[id] = newoff;
6809set_active:
6810 skb->slow_gro = 1;
6811 skb->extensions = new;
6812 skb->active_extensions |= 1 << id;
6813 return skb_ext_get_ptr(new, id);
6814}
6815EXPORT_SYMBOL(skb_ext_add);
6816
6817#ifdef CONFIG_XFRM
6818static void skb_ext_put_sp(struct sec_path *sp)
6819{
6820 unsigned int i;
6821
6822 for (i = 0; i < sp->len; i++)
6823 xfrm_state_put(sp->xvec[i]);
6824}
6825#endif
6826
6827#ifdef CONFIG_MCTP_FLOWS
6828static void skb_ext_put_mctp(struct mctp_flow *flow)
6829{
6830 if (flow->key)
6831 mctp_key_unref(flow->key);
6832}
6833#endif
6834
6835void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6836{
6837 struct skb_ext *ext = skb->extensions;
6838
6839 skb->active_extensions &= ~(1 << id);
6840 if (skb->active_extensions == 0) {
6841 skb->extensions = NULL;
6842 __skb_ext_put(ext);
6843#ifdef CONFIG_XFRM
6844 } else if (id == SKB_EXT_SEC_PATH &&
6845 refcount_read(&ext->refcnt) == 1) {
6846 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6847
6848 skb_ext_put_sp(sp);
6849 sp->len = 0;
6850#endif
6851 }
6852}
6853EXPORT_SYMBOL(__skb_ext_del);
6854
6855void __skb_ext_put(struct skb_ext *ext)
6856{
6857 /* If this is last clone, nothing can increment
6858 * it after check passes. Avoids one atomic op.
6859 */
6860 if (refcount_read(&ext->refcnt) == 1)
6861 goto free_now;
6862
6863 if (!refcount_dec_and_test(&ext->refcnt))
6864 return;
6865free_now:
6866#ifdef CONFIG_XFRM
6867 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6868 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6869#endif
6870#ifdef CONFIG_MCTP_FLOWS
6871 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6872 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6873#endif
6874
6875 kmem_cache_free(skbuff_ext_cache, ext);
6876}
6877EXPORT_SYMBOL(__skb_ext_put);
6878#endif /* CONFIG_SKB_EXTENSIONS */
6879
6880/**
6881 * skb_attempt_defer_free - queue skb for remote freeing
6882 * @skb: buffer
6883 *
6884 * Put @skb in a per-cpu list, using the cpu which
6885 * allocated the skb/pages to reduce false sharing
6886 * and memory zone spinlock contention.
6887 */
6888void skb_attempt_defer_free(struct sk_buff *skb)
6889{
6890 int cpu = skb->alloc_cpu;
6891 struct softnet_data *sd;
6892 unsigned int defer_max;
6893 bool kick;
6894
6895 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6896 !cpu_online(cpu) ||
6897 cpu == raw_smp_processor_id()) {
6898nodefer: __kfree_skb(skb);
6899 return;
6900 }
6901
6902 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6903 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6904
6905 sd = &per_cpu(softnet_data, cpu);
6906 defer_max = READ_ONCE(sysctl_skb_defer_max);
6907 if (READ_ONCE(sd->defer_count) >= defer_max)
6908 goto nodefer;
6909
6910 spin_lock_bh(&sd->defer_lock);
6911 /* Send an IPI every time queue reaches half capacity. */
6912 kick = sd->defer_count == (defer_max >> 1);
6913 /* Paired with the READ_ONCE() few lines above */
6914 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6915
6916 skb->next = sd->defer_list;
6917 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6918 WRITE_ONCE(sd->defer_list, skb);
6919 spin_unlock_bh(&sd->defer_lock);
6920
6921 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6922 * if we are unlucky enough (this seems very unlikely).
6923 */
6924 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6925 smp_call_function_single_async(cpu, &sd->defer_csd);
6926}
6927
6928static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6929 size_t offset, size_t len)
6930{
6931 const char *kaddr;
6932 __wsum csum;
6933
6934 kaddr = kmap_local_page(page);
6935 csum = csum_partial(kaddr + offset, len, 0);
6936 kunmap_local(kaddr);
6937 skb->csum = csum_block_add(skb->csum, csum, skb->len);
6938}
6939
6940/**
6941 * skb_splice_from_iter - Splice (or copy) pages to skbuff
6942 * @skb: The buffer to add pages to
6943 * @iter: Iterator representing the pages to be added
6944 * @maxsize: Maximum amount of pages to be added
6945 * @gfp: Allocation flags
6946 *
6947 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
6948 * extracts pages from an iterator and adds them to the socket buffer if
6949 * possible, copying them to fragments if not possible (such as if they're slab
6950 * pages).
6951 *
6952 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6953 * insufficient space in the buffer to transfer anything.
6954 */
6955ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6956 ssize_t maxsize, gfp_t gfp)
6957{
6958 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6959 struct page *pages[8], **ppages = pages;
6960 ssize_t spliced = 0, ret = 0;
6961 unsigned int i;
6962
6963 while (iter->count > 0) {
6964 ssize_t space, nr, len;
6965 size_t off;
6966
6967 ret = -EMSGSIZE;
6968 space = frag_limit - skb_shinfo(skb)->nr_frags;
6969 if (space < 0)
6970 break;
6971
6972 /* We might be able to coalesce without increasing nr_frags */
6973 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6974
6975 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6976 if (len <= 0) {
6977 ret = len ?: -EIO;
6978 break;
6979 }
6980
6981 i = 0;
6982 do {
6983 struct page *page = pages[i++];
6984 size_t part = min_t(size_t, PAGE_SIZE - off, len);
6985
6986 ret = -EIO;
6987 if (WARN_ON_ONCE(!sendpage_ok(page)))
6988 goto out;
6989
6990 ret = skb_append_pagefrags(skb, page, off, part,
6991 frag_limit);
6992 if (ret < 0) {
6993 iov_iter_revert(iter, len);
6994 goto out;
6995 }
6996
6997 if (skb->ip_summed == CHECKSUM_NONE)
6998 skb_splice_csum_page(skb, page, off, part);
6999
7000 off = 0;
7001 spliced += part;
7002 maxsize -= part;
7003 len -= part;
7004 } while (len > 0);
7005
7006 if (maxsize <= 0)
7007 break;
7008 }
7009
7010out:
7011 skb_len_add(skb, spliced);
7012 return spliced ?: ret;
7013}
7014EXPORT_SYMBOL(skb_splice_from_iter);
7015
7016static __always_inline
7017size_t memcpy_from_iter_csum(void *iter_from, size_t progress,
7018 size_t len, void *to, void *priv2)
7019{
7020 __wsum *csum = priv2;
7021 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len);
7022
7023 *csum = csum_block_add(*csum, next, progress);
7024 return 0;
7025}
7026
7027static __always_inline
7028size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress,
7029 size_t len, void *to, void *priv2)
7030{
7031 __wsum next, *csum = priv2;
7032
7033 next = csum_and_copy_from_user(iter_from, to + progress, len);
7034 *csum = csum_block_add(*csum, next, progress);
7035 return next ? 0 : len;
7036}
7037
7038bool csum_and_copy_from_iter_full(void *addr, size_t bytes,
7039 __wsum *csum, struct iov_iter *i)
7040{
7041 size_t copied;
7042
7043 if (WARN_ON_ONCE(!i->data_source))
7044 return false;
7045 copied = iterate_and_advance2(i, bytes, addr, csum,
7046 copy_from_user_iter_csum,
7047 memcpy_from_iter_csum);
7048 if (likely(copied == bytes))
7049 return true;
7050 iov_iter_revert(i, copied);
7051 return false;
7052}
7053EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/if_vlan.h>
62#include <linux/mpls.h>
63#include <linux/kcov.h>
64
65#include <net/protocol.h>
66#include <net/dst.h>
67#include <net/sock.h>
68#include <net/checksum.h>
69#include <net/ip6_checksum.h>
70#include <net/xfrm.h>
71#include <net/mpls.h>
72#include <net/mptcp.h>
73#include <net/mctp.h>
74#include <net/page_pool.h>
75
76#include <linux/uaccess.h>
77#include <trace/events/skb.h>
78#include <linux/highmem.h>
79#include <linux/capability.h>
80#include <linux/user_namespace.h>
81#include <linux/indirect_call_wrapper.h>
82
83#include "dev.h"
84#include "sock_destructor.h"
85
86struct kmem_cache *skbuff_head_cache __ro_after_init;
87static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88#ifdef CONFIG_SKB_EXTENSIONS
89static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90#endif
91int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92EXPORT_SYMBOL(sysctl_max_skb_frags);
93
94#undef FN
95#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96const char * const drop_reasons[] = {
97 [SKB_CONSUMED] = "CONSUMED",
98 DEFINE_DROP_REASON(FN, FN)
99};
100EXPORT_SYMBOL(drop_reasons);
101
102/**
103 * skb_panic - private function for out-of-line support
104 * @skb: buffer
105 * @sz: size
106 * @addr: address
107 * @msg: skb_over_panic or skb_under_panic
108 *
109 * Out-of-line support for skb_put() and skb_push().
110 * Called via the wrapper skb_over_panic() or skb_under_panic().
111 * Keep out of line to prevent kernel bloat.
112 * __builtin_return_address is not used because it is not always reliable.
113 */
114static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
115 const char msg[])
116{
117 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
118 msg, addr, skb->len, sz, skb->head, skb->data,
119 (unsigned long)skb->tail, (unsigned long)skb->end,
120 skb->dev ? skb->dev->name : "<NULL>");
121 BUG();
122}
123
124static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
125{
126 skb_panic(skb, sz, addr, __func__);
127}
128
129static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
130{
131 skb_panic(skb, sz, addr, __func__);
132}
133
134#define NAPI_SKB_CACHE_SIZE 64
135#define NAPI_SKB_CACHE_BULK 16
136#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
137
138#if PAGE_SIZE == SZ_4K
139
140#define NAPI_HAS_SMALL_PAGE_FRAG 1
141#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
142
143/* specialized page frag allocator using a single order 0 page
144 * and slicing it into 1K sized fragment. Constrained to systems
145 * with a very limited amount of 1K fragments fitting a single
146 * page - to avoid excessive truesize underestimation
147 */
148
149struct page_frag_1k {
150 void *va;
151 u16 offset;
152 bool pfmemalloc;
153};
154
155static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
156{
157 struct page *page;
158 int offset;
159
160 offset = nc->offset - SZ_1K;
161 if (likely(offset >= 0))
162 goto use_frag;
163
164 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
165 if (!page)
166 return NULL;
167
168 nc->va = page_address(page);
169 nc->pfmemalloc = page_is_pfmemalloc(page);
170 offset = PAGE_SIZE - SZ_1K;
171 page_ref_add(page, offset / SZ_1K);
172
173use_frag:
174 nc->offset = offset;
175 return nc->va + offset;
176}
177#else
178
179/* the small page is actually unused in this build; add dummy helpers
180 * to please the compiler and avoid later preprocessor's conditionals
181 */
182#define NAPI_HAS_SMALL_PAGE_FRAG 0
183#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
184
185struct page_frag_1k {
186};
187
188static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
189{
190 return NULL;
191}
192
193#endif
194
195struct napi_alloc_cache {
196 struct page_frag_cache page;
197 struct page_frag_1k page_small;
198 unsigned int skb_count;
199 void *skb_cache[NAPI_SKB_CACHE_SIZE];
200};
201
202static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
203static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
204
205/* Double check that napi_get_frags() allocates skbs with
206 * skb->head being backed by slab, not a page fragment.
207 * This is to make sure bug fixed in 3226b158e67c
208 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
209 * does not accidentally come back.
210 */
211void napi_get_frags_check(struct napi_struct *napi)
212{
213 struct sk_buff *skb;
214
215 local_bh_disable();
216 skb = napi_get_frags(napi);
217 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
218 napi_free_frags(napi);
219 local_bh_enable();
220}
221
222void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
223{
224 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
225
226 fragsz = SKB_DATA_ALIGN(fragsz);
227
228 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
229}
230EXPORT_SYMBOL(__napi_alloc_frag_align);
231
232void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
233{
234 void *data;
235
236 fragsz = SKB_DATA_ALIGN(fragsz);
237 if (in_hardirq() || irqs_disabled()) {
238 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
239
240 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
241 } else {
242 struct napi_alloc_cache *nc;
243
244 local_bh_disable();
245 nc = this_cpu_ptr(&napi_alloc_cache);
246 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
247 local_bh_enable();
248 }
249 return data;
250}
251EXPORT_SYMBOL(__netdev_alloc_frag_align);
252
253static struct sk_buff *napi_skb_cache_get(void)
254{
255 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
256 struct sk_buff *skb;
257
258 if (unlikely(!nc->skb_count)) {
259 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
260 GFP_ATOMIC,
261 NAPI_SKB_CACHE_BULK,
262 nc->skb_cache);
263 if (unlikely(!nc->skb_count))
264 return NULL;
265 }
266
267 skb = nc->skb_cache[--nc->skb_count];
268 kasan_unpoison_object_data(skbuff_head_cache, skb);
269
270 return skb;
271}
272
273static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
274 unsigned int size)
275{
276 struct skb_shared_info *shinfo;
277
278 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
279
280 /* Assumes caller memset cleared SKB */
281 skb->truesize = SKB_TRUESIZE(size);
282 refcount_set(&skb->users, 1);
283 skb->head = data;
284 skb->data = data;
285 skb_reset_tail_pointer(skb);
286 skb_set_end_offset(skb, size);
287 skb->mac_header = (typeof(skb->mac_header))~0U;
288 skb->transport_header = (typeof(skb->transport_header))~0U;
289 skb->alloc_cpu = raw_smp_processor_id();
290 /* make sure we initialize shinfo sequentially */
291 shinfo = skb_shinfo(skb);
292 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
293 atomic_set(&shinfo->dataref, 1);
294
295 skb_set_kcov_handle(skb, kcov_common_handle());
296}
297
298static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
299 unsigned int *size)
300{
301 void *resized;
302
303 /* Must find the allocation size (and grow it to match). */
304 *size = ksize(data);
305 /* krealloc() will immediately return "data" when
306 * "ksize(data)" is requested: it is the existing upper
307 * bounds. As a result, GFP_ATOMIC will be ignored. Note
308 * that this "new" pointer needs to be passed back to the
309 * caller for use so the __alloc_size hinting will be
310 * tracked correctly.
311 */
312 resized = krealloc(data, *size, GFP_ATOMIC);
313 WARN_ON_ONCE(resized != data);
314 return resized;
315}
316
317/* build_skb() variant which can operate on slab buffers.
318 * Note that this should be used sparingly as slab buffers
319 * cannot be combined efficiently by GRO!
320 */
321struct sk_buff *slab_build_skb(void *data)
322{
323 struct sk_buff *skb;
324 unsigned int size;
325
326 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
327 if (unlikely(!skb))
328 return NULL;
329
330 memset(skb, 0, offsetof(struct sk_buff, tail));
331 data = __slab_build_skb(skb, data, &size);
332 __finalize_skb_around(skb, data, size);
333
334 return skb;
335}
336EXPORT_SYMBOL(slab_build_skb);
337
338/* Caller must provide SKB that is memset cleared */
339static void __build_skb_around(struct sk_buff *skb, void *data,
340 unsigned int frag_size)
341{
342 unsigned int size = frag_size;
343
344 /* frag_size == 0 is considered deprecated now. Callers
345 * using slab buffer should use slab_build_skb() instead.
346 */
347 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
348 data = __slab_build_skb(skb, data, &size);
349
350 __finalize_skb_around(skb, data, size);
351}
352
353/**
354 * __build_skb - build a network buffer
355 * @data: data buffer provided by caller
356 * @frag_size: size of data (must not be 0)
357 *
358 * Allocate a new &sk_buff. Caller provides space holding head and
359 * skb_shared_info. @data must have been allocated from the page
360 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
361 * allocation is deprecated, and callers should use slab_build_skb()
362 * instead.)
363 * The return is the new skb buffer.
364 * On a failure the return is %NULL, and @data is not freed.
365 * Notes :
366 * Before IO, driver allocates only data buffer where NIC put incoming frame
367 * Driver should add room at head (NET_SKB_PAD) and
368 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
369 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
370 * before giving packet to stack.
371 * RX rings only contains data buffers, not full skbs.
372 */
373struct sk_buff *__build_skb(void *data, unsigned int frag_size)
374{
375 struct sk_buff *skb;
376
377 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
378 if (unlikely(!skb))
379 return NULL;
380
381 memset(skb, 0, offsetof(struct sk_buff, tail));
382 __build_skb_around(skb, data, frag_size);
383
384 return skb;
385}
386
387/* build_skb() is wrapper over __build_skb(), that specifically
388 * takes care of skb->head and skb->pfmemalloc
389 * This means that if @frag_size is not zero, then @data must be backed
390 * by a page fragment, not kmalloc() or vmalloc()
391 */
392struct sk_buff *build_skb(void *data, unsigned int frag_size)
393{
394 struct sk_buff *skb = __build_skb(data, frag_size);
395
396 if (skb && frag_size) {
397 skb->head_frag = 1;
398 if (page_is_pfmemalloc(virt_to_head_page(data)))
399 skb->pfmemalloc = 1;
400 }
401 return skb;
402}
403EXPORT_SYMBOL(build_skb);
404
405/**
406 * build_skb_around - build a network buffer around provided skb
407 * @skb: sk_buff provide by caller, must be memset cleared
408 * @data: data buffer provided by caller
409 * @frag_size: size of data, or 0 if head was kmalloced
410 */
411struct sk_buff *build_skb_around(struct sk_buff *skb,
412 void *data, unsigned int frag_size)
413{
414 if (unlikely(!skb))
415 return NULL;
416
417 __build_skb_around(skb, data, frag_size);
418
419 if (frag_size) {
420 skb->head_frag = 1;
421 if (page_is_pfmemalloc(virt_to_head_page(data)))
422 skb->pfmemalloc = 1;
423 }
424 return skb;
425}
426EXPORT_SYMBOL(build_skb_around);
427
428/**
429 * __napi_build_skb - build a network buffer
430 * @data: data buffer provided by caller
431 * @frag_size: size of data, or 0 if head was kmalloced
432 *
433 * Version of __build_skb() that uses NAPI percpu caches to obtain
434 * skbuff_head instead of inplace allocation.
435 *
436 * Returns a new &sk_buff on success, %NULL on allocation failure.
437 */
438static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
439{
440 struct sk_buff *skb;
441
442 skb = napi_skb_cache_get();
443 if (unlikely(!skb))
444 return NULL;
445
446 memset(skb, 0, offsetof(struct sk_buff, tail));
447 __build_skb_around(skb, data, frag_size);
448
449 return skb;
450}
451
452/**
453 * napi_build_skb - build a network buffer
454 * @data: data buffer provided by caller
455 * @frag_size: size of data, or 0 if head was kmalloced
456 *
457 * Version of __napi_build_skb() that takes care of skb->head_frag
458 * and skb->pfmemalloc when the data is a page or page fragment.
459 *
460 * Returns a new &sk_buff on success, %NULL on allocation failure.
461 */
462struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
463{
464 struct sk_buff *skb = __napi_build_skb(data, frag_size);
465
466 if (likely(skb) && frag_size) {
467 skb->head_frag = 1;
468 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
469 }
470
471 return skb;
472}
473EXPORT_SYMBOL(napi_build_skb);
474
475/*
476 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
477 * the caller if emergency pfmemalloc reserves are being used. If it is and
478 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
479 * may be used. Otherwise, the packet data may be discarded until enough
480 * memory is free
481 */
482static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
483 bool *pfmemalloc)
484{
485 void *obj;
486 bool ret_pfmemalloc = false;
487
488 /*
489 * Try a regular allocation, when that fails and we're not entitled
490 * to the reserves, fail.
491 */
492 obj = kmalloc_node_track_caller(size,
493 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
494 node);
495 if (obj || !(gfp_pfmemalloc_allowed(flags)))
496 goto out;
497
498 /* Try again but now we are using pfmemalloc reserves */
499 ret_pfmemalloc = true;
500 obj = kmalloc_node_track_caller(size, flags, node);
501
502out:
503 if (pfmemalloc)
504 *pfmemalloc = ret_pfmemalloc;
505
506 return obj;
507}
508
509/* Allocate a new skbuff. We do this ourselves so we can fill in a few
510 * 'private' fields and also do memory statistics to find all the
511 * [BEEP] leaks.
512 *
513 */
514
515/**
516 * __alloc_skb - allocate a network buffer
517 * @size: size to allocate
518 * @gfp_mask: allocation mask
519 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
520 * instead of head cache and allocate a cloned (child) skb.
521 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
522 * allocations in case the data is required for writeback
523 * @node: numa node to allocate memory on
524 *
525 * Allocate a new &sk_buff. The returned buffer has no headroom and a
526 * tail room of at least size bytes. The object has a reference count
527 * of one. The return is the buffer. On a failure the return is %NULL.
528 *
529 * Buffers may only be allocated from interrupts using a @gfp_mask of
530 * %GFP_ATOMIC.
531 */
532struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
533 int flags, int node)
534{
535 struct kmem_cache *cache;
536 struct sk_buff *skb;
537 unsigned int osize;
538 bool pfmemalloc;
539 u8 *data;
540
541 cache = (flags & SKB_ALLOC_FCLONE)
542 ? skbuff_fclone_cache : skbuff_head_cache;
543
544 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
545 gfp_mask |= __GFP_MEMALLOC;
546
547 /* Get the HEAD */
548 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
549 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
550 skb = napi_skb_cache_get();
551 else
552 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
553 if (unlikely(!skb))
554 return NULL;
555 prefetchw(skb);
556
557 /* We do our best to align skb_shared_info on a separate cache
558 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
559 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
560 * Both skb->head and skb_shared_info are cache line aligned.
561 */
562 size = SKB_DATA_ALIGN(size);
563 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
564 osize = kmalloc_size_roundup(size);
565 data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc);
566 if (unlikely(!data))
567 goto nodata;
568 /* kmalloc_size_roundup() might give us more room than requested.
569 * Put skb_shared_info exactly at the end of allocated zone,
570 * to allow max possible filling before reallocation.
571 */
572 size = SKB_WITH_OVERHEAD(osize);
573 prefetchw(data + size);
574
575 /*
576 * Only clear those fields we need to clear, not those that we will
577 * actually initialise below. Hence, don't put any more fields after
578 * the tail pointer in struct sk_buff!
579 */
580 memset(skb, 0, offsetof(struct sk_buff, tail));
581 __build_skb_around(skb, data, osize);
582 skb->pfmemalloc = pfmemalloc;
583
584 if (flags & SKB_ALLOC_FCLONE) {
585 struct sk_buff_fclones *fclones;
586
587 fclones = container_of(skb, struct sk_buff_fclones, skb1);
588
589 skb->fclone = SKB_FCLONE_ORIG;
590 refcount_set(&fclones->fclone_ref, 1);
591 }
592
593 return skb;
594
595nodata:
596 kmem_cache_free(cache, skb);
597 return NULL;
598}
599EXPORT_SYMBOL(__alloc_skb);
600
601/**
602 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
603 * @dev: network device to receive on
604 * @len: length to allocate
605 * @gfp_mask: get_free_pages mask, passed to alloc_skb
606 *
607 * Allocate a new &sk_buff and assign it a usage count of one. The
608 * buffer has NET_SKB_PAD headroom built in. Users should allocate
609 * the headroom they think they need without accounting for the
610 * built in space. The built in space is used for optimisations.
611 *
612 * %NULL is returned if there is no free memory.
613 */
614struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
615 gfp_t gfp_mask)
616{
617 struct page_frag_cache *nc;
618 struct sk_buff *skb;
619 bool pfmemalloc;
620 void *data;
621
622 len += NET_SKB_PAD;
623
624 /* If requested length is either too small or too big,
625 * we use kmalloc() for skb->head allocation.
626 */
627 if (len <= SKB_WITH_OVERHEAD(1024) ||
628 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
629 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
630 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
631 if (!skb)
632 goto skb_fail;
633 goto skb_success;
634 }
635
636 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
637 len = SKB_DATA_ALIGN(len);
638
639 if (sk_memalloc_socks())
640 gfp_mask |= __GFP_MEMALLOC;
641
642 if (in_hardirq() || irqs_disabled()) {
643 nc = this_cpu_ptr(&netdev_alloc_cache);
644 data = page_frag_alloc(nc, len, gfp_mask);
645 pfmemalloc = nc->pfmemalloc;
646 } else {
647 local_bh_disable();
648 nc = this_cpu_ptr(&napi_alloc_cache.page);
649 data = page_frag_alloc(nc, len, gfp_mask);
650 pfmemalloc = nc->pfmemalloc;
651 local_bh_enable();
652 }
653
654 if (unlikely(!data))
655 return NULL;
656
657 skb = __build_skb(data, len);
658 if (unlikely(!skb)) {
659 skb_free_frag(data);
660 return NULL;
661 }
662
663 if (pfmemalloc)
664 skb->pfmemalloc = 1;
665 skb->head_frag = 1;
666
667skb_success:
668 skb_reserve(skb, NET_SKB_PAD);
669 skb->dev = dev;
670
671skb_fail:
672 return skb;
673}
674EXPORT_SYMBOL(__netdev_alloc_skb);
675
676/**
677 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
678 * @napi: napi instance this buffer was allocated for
679 * @len: length to allocate
680 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
681 *
682 * Allocate a new sk_buff for use in NAPI receive. This buffer will
683 * attempt to allocate the head from a special reserved region used
684 * only for NAPI Rx allocation. By doing this we can save several
685 * CPU cycles by avoiding having to disable and re-enable IRQs.
686 *
687 * %NULL is returned if there is no free memory.
688 */
689struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
690 gfp_t gfp_mask)
691{
692 struct napi_alloc_cache *nc;
693 struct sk_buff *skb;
694 bool pfmemalloc;
695 void *data;
696
697 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
698 len += NET_SKB_PAD + NET_IP_ALIGN;
699
700 /* If requested length is either too small or too big,
701 * we use kmalloc() for skb->head allocation.
702 * When the small frag allocator is available, prefer it over kmalloc
703 * for small fragments
704 */
705 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
706 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
707 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
708 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
709 NUMA_NO_NODE);
710 if (!skb)
711 goto skb_fail;
712 goto skb_success;
713 }
714
715 nc = this_cpu_ptr(&napi_alloc_cache);
716
717 if (sk_memalloc_socks())
718 gfp_mask |= __GFP_MEMALLOC;
719
720 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
721 /* we are artificially inflating the allocation size, but
722 * that is not as bad as it may look like, as:
723 * - 'len' less than GRO_MAX_HEAD makes little sense
724 * - On most systems, larger 'len' values lead to fragment
725 * size above 512 bytes
726 * - kmalloc would use the kmalloc-1k slab for such values
727 * - Builds with smaller GRO_MAX_HEAD will very likely do
728 * little networking, as that implies no WiFi and no
729 * tunnels support, and 32 bits arches.
730 */
731 len = SZ_1K;
732
733 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
734 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
735 } else {
736 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
737 len = SKB_DATA_ALIGN(len);
738
739 data = page_frag_alloc(&nc->page, len, gfp_mask);
740 pfmemalloc = nc->page.pfmemalloc;
741 }
742
743 if (unlikely(!data))
744 return NULL;
745
746 skb = __napi_build_skb(data, len);
747 if (unlikely(!skb)) {
748 skb_free_frag(data);
749 return NULL;
750 }
751
752 if (pfmemalloc)
753 skb->pfmemalloc = 1;
754 skb->head_frag = 1;
755
756skb_success:
757 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
758 skb->dev = napi->dev;
759
760skb_fail:
761 return skb;
762}
763EXPORT_SYMBOL(__napi_alloc_skb);
764
765void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
766 int size, unsigned int truesize)
767{
768 skb_fill_page_desc(skb, i, page, off, size);
769 skb->len += size;
770 skb->data_len += size;
771 skb->truesize += truesize;
772}
773EXPORT_SYMBOL(skb_add_rx_frag);
774
775void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
776 unsigned int truesize)
777{
778 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
779
780 skb_frag_size_add(frag, size);
781 skb->len += size;
782 skb->data_len += size;
783 skb->truesize += truesize;
784}
785EXPORT_SYMBOL(skb_coalesce_rx_frag);
786
787static void skb_drop_list(struct sk_buff **listp)
788{
789 kfree_skb_list(*listp);
790 *listp = NULL;
791}
792
793static inline void skb_drop_fraglist(struct sk_buff *skb)
794{
795 skb_drop_list(&skb_shinfo(skb)->frag_list);
796}
797
798static void skb_clone_fraglist(struct sk_buff *skb)
799{
800 struct sk_buff *list;
801
802 skb_walk_frags(skb, list)
803 skb_get(list);
804}
805
806static bool skb_pp_recycle(struct sk_buff *skb, void *data)
807{
808 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
809 return false;
810 return page_pool_return_skb_page(virt_to_page(data));
811}
812
813static void skb_free_head(struct sk_buff *skb)
814{
815 unsigned char *head = skb->head;
816
817 if (skb->head_frag) {
818 if (skb_pp_recycle(skb, head))
819 return;
820 skb_free_frag(head);
821 } else {
822 kfree(head);
823 }
824}
825
826static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
827{
828 struct skb_shared_info *shinfo = skb_shinfo(skb);
829 int i;
830
831 if (skb->cloned &&
832 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
833 &shinfo->dataref))
834 goto exit;
835
836 if (skb_zcopy(skb)) {
837 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
838
839 skb_zcopy_clear(skb, true);
840 if (skip_unref)
841 goto free_head;
842 }
843
844 for (i = 0; i < shinfo->nr_frags; i++)
845 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
846
847free_head:
848 if (shinfo->frag_list)
849 kfree_skb_list_reason(shinfo->frag_list, reason);
850
851 skb_free_head(skb);
852exit:
853 /* When we clone an SKB we copy the reycling bit. The pp_recycle
854 * bit is only set on the head though, so in order to avoid races
855 * while trying to recycle fragments on __skb_frag_unref() we need
856 * to make one SKB responsible for triggering the recycle path.
857 * So disable the recycling bit if an SKB is cloned and we have
858 * additional references to the fragmented part of the SKB.
859 * Eventually the last SKB will have the recycling bit set and it's
860 * dataref set to 0, which will trigger the recycling
861 */
862 skb->pp_recycle = 0;
863}
864
865/*
866 * Free an skbuff by memory without cleaning the state.
867 */
868static void kfree_skbmem(struct sk_buff *skb)
869{
870 struct sk_buff_fclones *fclones;
871
872 switch (skb->fclone) {
873 case SKB_FCLONE_UNAVAILABLE:
874 kmem_cache_free(skbuff_head_cache, skb);
875 return;
876
877 case SKB_FCLONE_ORIG:
878 fclones = container_of(skb, struct sk_buff_fclones, skb1);
879
880 /* We usually free the clone (TX completion) before original skb
881 * This test would have no chance to be true for the clone,
882 * while here, branch prediction will be good.
883 */
884 if (refcount_read(&fclones->fclone_ref) == 1)
885 goto fastpath;
886 break;
887
888 default: /* SKB_FCLONE_CLONE */
889 fclones = container_of(skb, struct sk_buff_fclones, skb2);
890 break;
891 }
892 if (!refcount_dec_and_test(&fclones->fclone_ref))
893 return;
894fastpath:
895 kmem_cache_free(skbuff_fclone_cache, fclones);
896}
897
898void skb_release_head_state(struct sk_buff *skb)
899{
900 skb_dst_drop(skb);
901 if (skb->destructor) {
902 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
903 skb->destructor(skb);
904 }
905#if IS_ENABLED(CONFIG_NF_CONNTRACK)
906 nf_conntrack_put(skb_nfct(skb));
907#endif
908 skb_ext_put(skb);
909}
910
911/* Free everything but the sk_buff shell. */
912static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
913{
914 skb_release_head_state(skb);
915 if (likely(skb->head))
916 skb_release_data(skb, reason);
917}
918
919/**
920 * __kfree_skb - private function
921 * @skb: buffer
922 *
923 * Free an sk_buff. Release anything attached to the buffer.
924 * Clean the state. This is an internal helper function. Users should
925 * always call kfree_skb
926 */
927
928void __kfree_skb(struct sk_buff *skb)
929{
930 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
931 kfree_skbmem(skb);
932}
933EXPORT_SYMBOL(__kfree_skb);
934
935/**
936 * kfree_skb_reason - free an sk_buff with special reason
937 * @skb: buffer to free
938 * @reason: reason why this skb is dropped
939 *
940 * Drop a reference to the buffer and free it if the usage count has
941 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
942 * tracepoint.
943 */
944void __fix_address
945kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
946{
947 if (unlikely(!skb_unref(skb)))
948 return;
949
950 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
951
952 if (reason == SKB_CONSUMED)
953 trace_consume_skb(skb);
954 else
955 trace_kfree_skb(skb, __builtin_return_address(0), reason);
956 __kfree_skb(skb);
957}
958EXPORT_SYMBOL(kfree_skb_reason);
959
960void kfree_skb_list_reason(struct sk_buff *segs,
961 enum skb_drop_reason reason)
962{
963 while (segs) {
964 struct sk_buff *next = segs->next;
965
966 kfree_skb_reason(segs, reason);
967 segs = next;
968 }
969}
970EXPORT_SYMBOL(kfree_skb_list_reason);
971
972/* Dump skb information and contents.
973 *
974 * Must only be called from net_ratelimit()-ed paths.
975 *
976 * Dumps whole packets if full_pkt, only headers otherwise.
977 */
978void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
979{
980 struct skb_shared_info *sh = skb_shinfo(skb);
981 struct net_device *dev = skb->dev;
982 struct sock *sk = skb->sk;
983 struct sk_buff *list_skb;
984 bool has_mac, has_trans;
985 int headroom, tailroom;
986 int i, len, seg_len;
987
988 if (full_pkt)
989 len = skb->len;
990 else
991 len = min_t(int, skb->len, MAX_HEADER + 128);
992
993 headroom = skb_headroom(skb);
994 tailroom = skb_tailroom(skb);
995
996 has_mac = skb_mac_header_was_set(skb);
997 has_trans = skb_transport_header_was_set(skb);
998
999 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1000 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1001 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1002 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1003 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1004 level, skb->len, headroom, skb_headlen(skb), tailroom,
1005 has_mac ? skb->mac_header : -1,
1006 has_mac ? skb_mac_header_len(skb) : -1,
1007 skb->network_header,
1008 has_trans ? skb_network_header_len(skb) : -1,
1009 has_trans ? skb->transport_header : -1,
1010 sh->tx_flags, sh->nr_frags,
1011 sh->gso_size, sh->gso_type, sh->gso_segs,
1012 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1013 skb->csum_valid, skb->csum_level,
1014 skb->hash, skb->sw_hash, skb->l4_hash,
1015 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1016
1017 if (dev)
1018 printk("%sdev name=%s feat=%pNF\n",
1019 level, dev->name, &dev->features);
1020 if (sk)
1021 printk("%ssk family=%hu type=%u proto=%u\n",
1022 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1023
1024 if (full_pkt && headroom)
1025 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1026 16, 1, skb->head, headroom, false);
1027
1028 seg_len = min_t(int, skb_headlen(skb), len);
1029 if (seg_len)
1030 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1031 16, 1, skb->data, seg_len, false);
1032 len -= seg_len;
1033
1034 if (full_pkt && tailroom)
1035 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1036 16, 1, skb_tail_pointer(skb), tailroom, false);
1037
1038 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1039 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1040 u32 p_off, p_len, copied;
1041 struct page *p;
1042 u8 *vaddr;
1043
1044 skb_frag_foreach_page(frag, skb_frag_off(frag),
1045 skb_frag_size(frag), p, p_off, p_len,
1046 copied) {
1047 seg_len = min_t(int, p_len, len);
1048 vaddr = kmap_atomic(p);
1049 print_hex_dump(level, "skb frag: ",
1050 DUMP_PREFIX_OFFSET,
1051 16, 1, vaddr + p_off, seg_len, false);
1052 kunmap_atomic(vaddr);
1053 len -= seg_len;
1054 if (!len)
1055 break;
1056 }
1057 }
1058
1059 if (full_pkt && skb_has_frag_list(skb)) {
1060 printk("skb fraglist:\n");
1061 skb_walk_frags(skb, list_skb)
1062 skb_dump(level, list_skb, true);
1063 }
1064}
1065EXPORT_SYMBOL(skb_dump);
1066
1067/**
1068 * skb_tx_error - report an sk_buff xmit error
1069 * @skb: buffer that triggered an error
1070 *
1071 * Report xmit error if a device callback is tracking this skb.
1072 * skb must be freed afterwards.
1073 */
1074void skb_tx_error(struct sk_buff *skb)
1075{
1076 if (skb) {
1077 skb_zcopy_downgrade_managed(skb);
1078 skb_zcopy_clear(skb, true);
1079 }
1080}
1081EXPORT_SYMBOL(skb_tx_error);
1082
1083#ifdef CONFIG_TRACEPOINTS
1084/**
1085 * consume_skb - free an skbuff
1086 * @skb: buffer to free
1087 *
1088 * Drop a ref to the buffer and free it if the usage count has hit zero
1089 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1090 * is being dropped after a failure and notes that
1091 */
1092void consume_skb(struct sk_buff *skb)
1093{
1094 if (!skb_unref(skb))
1095 return;
1096
1097 trace_consume_skb(skb);
1098 __kfree_skb(skb);
1099}
1100EXPORT_SYMBOL(consume_skb);
1101#endif
1102
1103/**
1104 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1105 * @skb: buffer to free
1106 *
1107 * Alike consume_skb(), but this variant assumes that this is the last
1108 * skb reference and all the head states have been already dropped
1109 */
1110void __consume_stateless_skb(struct sk_buff *skb)
1111{
1112 trace_consume_skb(skb);
1113 skb_release_data(skb, SKB_CONSUMED);
1114 kfree_skbmem(skb);
1115}
1116
1117static void napi_skb_cache_put(struct sk_buff *skb)
1118{
1119 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1120 u32 i;
1121
1122 kasan_poison_object_data(skbuff_head_cache, skb);
1123 nc->skb_cache[nc->skb_count++] = skb;
1124
1125 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1126 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1127 kasan_unpoison_object_data(skbuff_head_cache,
1128 nc->skb_cache[i]);
1129
1130 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1131 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1132 nc->skb_count = NAPI_SKB_CACHE_HALF;
1133 }
1134}
1135
1136void __kfree_skb_defer(struct sk_buff *skb)
1137{
1138 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1139 napi_skb_cache_put(skb);
1140}
1141
1142void napi_skb_free_stolen_head(struct sk_buff *skb)
1143{
1144 if (unlikely(skb->slow_gro)) {
1145 nf_reset_ct(skb);
1146 skb_dst_drop(skb);
1147 skb_ext_put(skb);
1148 skb_orphan(skb);
1149 skb->slow_gro = 0;
1150 }
1151 napi_skb_cache_put(skb);
1152}
1153
1154void napi_consume_skb(struct sk_buff *skb, int budget)
1155{
1156 /* Zero budget indicate non-NAPI context called us, like netpoll */
1157 if (unlikely(!budget)) {
1158 dev_consume_skb_any(skb);
1159 return;
1160 }
1161
1162 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1163
1164 if (!skb_unref(skb))
1165 return;
1166
1167 /* if reaching here SKB is ready to free */
1168 trace_consume_skb(skb);
1169
1170 /* if SKB is a clone, don't handle this case */
1171 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1172 __kfree_skb(skb);
1173 return;
1174 }
1175
1176 skb_release_all(skb, SKB_CONSUMED);
1177 napi_skb_cache_put(skb);
1178}
1179EXPORT_SYMBOL(napi_consume_skb);
1180
1181/* Make sure a field is contained by headers group */
1182#define CHECK_SKB_FIELD(field) \
1183 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1184 offsetof(struct sk_buff, headers.field)); \
1185
1186static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1187{
1188 new->tstamp = old->tstamp;
1189 /* We do not copy old->sk */
1190 new->dev = old->dev;
1191 memcpy(new->cb, old->cb, sizeof(old->cb));
1192 skb_dst_copy(new, old);
1193 __skb_ext_copy(new, old);
1194 __nf_copy(new, old, false);
1195
1196 /* Note : this field could be in the headers group.
1197 * It is not yet because we do not want to have a 16 bit hole
1198 */
1199 new->queue_mapping = old->queue_mapping;
1200
1201 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1202 CHECK_SKB_FIELD(protocol);
1203 CHECK_SKB_FIELD(csum);
1204 CHECK_SKB_FIELD(hash);
1205 CHECK_SKB_FIELD(priority);
1206 CHECK_SKB_FIELD(skb_iif);
1207 CHECK_SKB_FIELD(vlan_proto);
1208 CHECK_SKB_FIELD(vlan_tci);
1209 CHECK_SKB_FIELD(transport_header);
1210 CHECK_SKB_FIELD(network_header);
1211 CHECK_SKB_FIELD(mac_header);
1212 CHECK_SKB_FIELD(inner_protocol);
1213 CHECK_SKB_FIELD(inner_transport_header);
1214 CHECK_SKB_FIELD(inner_network_header);
1215 CHECK_SKB_FIELD(inner_mac_header);
1216 CHECK_SKB_FIELD(mark);
1217#ifdef CONFIG_NETWORK_SECMARK
1218 CHECK_SKB_FIELD(secmark);
1219#endif
1220#ifdef CONFIG_NET_RX_BUSY_POLL
1221 CHECK_SKB_FIELD(napi_id);
1222#endif
1223 CHECK_SKB_FIELD(alloc_cpu);
1224#ifdef CONFIG_XPS
1225 CHECK_SKB_FIELD(sender_cpu);
1226#endif
1227#ifdef CONFIG_NET_SCHED
1228 CHECK_SKB_FIELD(tc_index);
1229#endif
1230
1231}
1232
1233/*
1234 * You should not add any new code to this function. Add it to
1235 * __copy_skb_header above instead.
1236 */
1237static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1238{
1239#define C(x) n->x = skb->x
1240
1241 n->next = n->prev = NULL;
1242 n->sk = NULL;
1243 __copy_skb_header(n, skb);
1244
1245 C(len);
1246 C(data_len);
1247 C(mac_len);
1248 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1249 n->cloned = 1;
1250 n->nohdr = 0;
1251 n->peeked = 0;
1252 C(pfmemalloc);
1253 C(pp_recycle);
1254 n->destructor = NULL;
1255 C(tail);
1256 C(end);
1257 C(head);
1258 C(head_frag);
1259 C(data);
1260 C(truesize);
1261 refcount_set(&n->users, 1);
1262
1263 atomic_inc(&(skb_shinfo(skb)->dataref));
1264 skb->cloned = 1;
1265
1266 return n;
1267#undef C
1268}
1269
1270/**
1271 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1272 * @first: first sk_buff of the msg
1273 */
1274struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1275{
1276 struct sk_buff *n;
1277
1278 n = alloc_skb(0, GFP_ATOMIC);
1279 if (!n)
1280 return NULL;
1281
1282 n->len = first->len;
1283 n->data_len = first->len;
1284 n->truesize = first->truesize;
1285
1286 skb_shinfo(n)->frag_list = first;
1287
1288 __copy_skb_header(n, first);
1289 n->destructor = NULL;
1290
1291 return n;
1292}
1293EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1294
1295/**
1296 * skb_morph - morph one skb into another
1297 * @dst: the skb to receive the contents
1298 * @src: the skb to supply the contents
1299 *
1300 * This is identical to skb_clone except that the target skb is
1301 * supplied by the user.
1302 *
1303 * The target skb is returned upon exit.
1304 */
1305struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1306{
1307 skb_release_all(dst, SKB_CONSUMED);
1308 return __skb_clone(dst, src);
1309}
1310EXPORT_SYMBOL_GPL(skb_morph);
1311
1312int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1313{
1314 unsigned long max_pg, num_pg, new_pg, old_pg;
1315 struct user_struct *user;
1316
1317 if (capable(CAP_IPC_LOCK) || !size)
1318 return 0;
1319
1320 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1321 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1322 user = mmp->user ? : current_user();
1323
1324 old_pg = atomic_long_read(&user->locked_vm);
1325 do {
1326 new_pg = old_pg + num_pg;
1327 if (new_pg > max_pg)
1328 return -ENOBUFS;
1329 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1330
1331 if (!mmp->user) {
1332 mmp->user = get_uid(user);
1333 mmp->num_pg = num_pg;
1334 } else {
1335 mmp->num_pg += num_pg;
1336 }
1337
1338 return 0;
1339}
1340EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1341
1342void mm_unaccount_pinned_pages(struct mmpin *mmp)
1343{
1344 if (mmp->user) {
1345 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1346 free_uid(mmp->user);
1347 }
1348}
1349EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1350
1351static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1352{
1353 struct ubuf_info_msgzc *uarg;
1354 struct sk_buff *skb;
1355
1356 WARN_ON_ONCE(!in_task());
1357
1358 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1359 if (!skb)
1360 return NULL;
1361
1362 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1363 uarg = (void *)skb->cb;
1364 uarg->mmp.user = NULL;
1365
1366 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1367 kfree_skb(skb);
1368 return NULL;
1369 }
1370
1371 uarg->ubuf.callback = msg_zerocopy_callback;
1372 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1373 uarg->len = 1;
1374 uarg->bytelen = size;
1375 uarg->zerocopy = 1;
1376 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1377 refcount_set(&uarg->ubuf.refcnt, 1);
1378 sock_hold(sk);
1379
1380 return &uarg->ubuf;
1381}
1382
1383static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1384{
1385 return container_of((void *)uarg, struct sk_buff, cb);
1386}
1387
1388struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1389 struct ubuf_info *uarg)
1390{
1391 if (uarg) {
1392 struct ubuf_info_msgzc *uarg_zc;
1393 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1394 u32 bytelen, next;
1395
1396 /* there might be non MSG_ZEROCOPY users */
1397 if (uarg->callback != msg_zerocopy_callback)
1398 return NULL;
1399
1400 /* realloc only when socket is locked (TCP, UDP cork),
1401 * so uarg->len and sk_zckey access is serialized
1402 */
1403 if (!sock_owned_by_user(sk)) {
1404 WARN_ON_ONCE(1);
1405 return NULL;
1406 }
1407
1408 uarg_zc = uarg_to_msgzc(uarg);
1409 bytelen = uarg_zc->bytelen + size;
1410 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1411 /* TCP can create new skb to attach new uarg */
1412 if (sk->sk_type == SOCK_STREAM)
1413 goto new_alloc;
1414 return NULL;
1415 }
1416
1417 next = (u32)atomic_read(&sk->sk_zckey);
1418 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1419 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1420 return NULL;
1421 uarg_zc->len++;
1422 uarg_zc->bytelen = bytelen;
1423 atomic_set(&sk->sk_zckey, ++next);
1424
1425 /* no extra ref when appending to datagram (MSG_MORE) */
1426 if (sk->sk_type == SOCK_STREAM)
1427 net_zcopy_get(uarg);
1428
1429 return uarg;
1430 }
1431 }
1432
1433new_alloc:
1434 return msg_zerocopy_alloc(sk, size);
1435}
1436EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1437
1438static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1439{
1440 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1441 u32 old_lo, old_hi;
1442 u64 sum_len;
1443
1444 old_lo = serr->ee.ee_info;
1445 old_hi = serr->ee.ee_data;
1446 sum_len = old_hi - old_lo + 1ULL + len;
1447
1448 if (sum_len >= (1ULL << 32))
1449 return false;
1450
1451 if (lo != old_hi + 1)
1452 return false;
1453
1454 serr->ee.ee_data += len;
1455 return true;
1456}
1457
1458static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1459{
1460 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1461 struct sock_exterr_skb *serr;
1462 struct sock *sk = skb->sk;
1463 struct sk_buff_head *q;
1464 unsigned long flags;
1465 bool is_zerocopy;
1466 u32 lo, hi;
1467 u16 len;
1468
1469 mm_unaccount_pinned_pages(&uarg->mmp);
1470
1471 /* if !len, there was only 1 call, and it was aborted
1472 * so do not queue a completion notification
1473 */
1474 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1475 goto release;
1476
1477 len = uarg->len;
1478 lo = uarg->id;
1479 hi = uarg->id + len - 1;
1480 is_zerocopy = uarg->zerocopy;
1481
1482 serr = SKB_EXT_ERR(skb);
1483 memset(serr, 0, sizeof(*serr));
1484 serr->ee.ee_errno = 0;
1485 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1486 serr->ee.ee_data = hi;
1487 serr->ee.ee_info = lo;
1488 if (!is_zerocopy)
1489 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1490
1491 q = &sk->sk_error_queue;
1492 spin_lock_irqsave(&q->lock, flags);
1493 tail = skb_peek_tail(q);
1494 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1495 !skb_zerocopy_notify_extend(tail, lo, len)) {
1496 __skb_queue_tail(q, skb);
1497 skb = NULL;
1498 }
1499 spin_unlock_irqrestore(&q->lock, flags);
1500
1501 sk_error_report(sk);
1502
1503release:
1504 consume_skb(skb);
1505 sock_put(sk);
1506}
1507
1508void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1509 bool success)
1510{
1511 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1512
1513 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1514
1515 if (refcount_dec_and_test(&uarg->refcnt))
1516 __msg_zerocopy_callback(uarg_zc);
1517}
1518EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1519
1520void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1521{
1522 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1523
1524 atomic_dec(&sk->sk_zckey);
1525 uarg_to_msgzc(uarg)->len--;
1526
1527 if (have_uref)
1528 msg_zerocopy_callback(NULL, uarg, true);
1529}
1530EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1531
1532int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1533 struct msghdr *msg, int len,
1534 struct ubuf_info *uarg)
1535{
1536 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1537 int err, orig_len = skb->len;
1538
1539 /* An skb can only point to one uarg. This edge case happens when
1540 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1541 */
1542 if (orig_uarg && uarg != orig_uarg)
1543 return -EEXIST;
1544
1545 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1546 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1547 struct sock *save_sk = skb->sk;
1548
1549 /* Streams do not free skb on error. Reset to prev state. */
1550 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1551 skb->sk = sk;
1552 ___pskb_trim(skb, orig_len);
1553 skb->sk = save_sk;
1554 return err;
1555 }
1556
1557 skb_zcopy_set(skb, uarg, NULL);
1558 return skb->len - orig_len;
1559}
1560EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1561
1562void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1563{
1564 int i;
1565
1566 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1567 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1568 skb_frag_ref(skb, i);
1569}
1570EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1571
1572static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1573 gfp_t gfp_mask)
1574{
1575 if (skb_zcopy(orig)) {
1576 if (skb_zcopy(nskb)) {
1577 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1578 if (!gfp_mask) {
1579 WARN_ON_ONCE(1);
1580 return -ENOMEM;
1581 }
1582 if (skb_uarg(nskb) == skb_uarg(orig))
1583 return 0;
1584 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1585 return -EIO;
1586 }
1587 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1588 }
1589 return 0;
1590}
1591
1592/**
1593 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1594 * @skb: the skb to modify
1595 * @gfp_mask: allocation priority
1596 *
1597 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1598 * It will copy all frags into kernel and drop the reference
1599 * to userspace pages.
1600 *
1601 * If this function is called from an interrupt gfp_mask() must be
1602 * %GFP_ATOMIC.
1603 *
1604 * Returns 0 on success or a negative error code on failure
1605 * to allocate kernel memory to copy to.
1606 */
1607int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1608{
1609 int num_frags = skb_shinfo(skb)->nr_frags;
1610 struct page *page, *head = NULL;
1611 int i, new_frags;
1612 u32 d_off;
1613
1614 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1615 return -EINVAL;
1616
1617 if (!num_frags)
1618 goto release;
1619
1620 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1621 for (i = 0; i < new_frags; i++) {
1622 page = alloc_page(gfp_mask);
1623 if (!page) {
1624 while (head) {
1625 struct page *next = (struct page *)page_private(head);
1626 put_page(head);
1627 head = next;
1628 }
1629 return -ENOMEM;
1630 }
1631 set_page_private(page, (unsigned long)head);
1632 head = page;
1633 }
1634
1635 page = head;
1636 d_off = 0;
1637 for (i = 0; i < num_frags; i++) {
1638 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1639 u32 p_off, p_len, copied;
1640 struct page *p;
1641 u8 *vaddr;
1642
1643 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1644 p, p_off, p_len, copied) {
1645 u32 copy, done = 0;
1646 vaddr = kmap_atomic(p);
1647
1648 while (done < p_len) {
1649 if (d_off == PAGE_SIZE) {
1650 d_off = 0;
1651 page = (struct page *)page_private(page);
1652 }
1653 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1654 memcpy(page_address(page) + d_off,
1655 vaddr + p_off + done, copy);
1656 done += copy;
1657 d_off += copy;
1658 }
1659 kunmap_atomic(vaddr);
1660 }
1661 }
1662
1663 /* skb frags release userspace buffers */
1664 for (i = 0; i < num_frags; i++)
1665 skb_frag_unref(skb, i);
1666
1667 /* skb frags point to kernel buffers */
1668 for (i = 0; i < new_frags - 1; i++) {
1669 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1670 head = (struct page *)page_private(head);
1671 }
1672 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1673 skb_shinfo(skb)->nr_frags = new_frags;
1674
1675release:
1676 skb_zcopy_clear(skb, false);
1677 return 0;
1678}
1679EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1680
1681/**
1682 * skb_clone - duplicate an sk_buff
1683 * @skb: buffer to clone
1684 * @gfp_mask: allocation priority
1685 *
1686 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1687 * copies share the same packet data but not structure. The new
1688 * buffer has a reference count of 1. If the allocation fails the
1689 * function returns %NULL otherwise the new buffer is returned.
1690 *
1691 * If this function is called from an interrupt gfp_mask() must be
1692 * %GFP_ATOMIC.
1693 */
1694
1695struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1696{
1697 struct sk_buff_fclones *fclones = container_of(skb,
1698 struct sk_buff_fclones,
1699 skb1);
1700 struct sk_buff *n;
1701
1702 if (skb_orphan_frags(skb, gfp_mask))
1703 return NULL;
1704
1705 if (skb->fclone == SKB_FCLONE_ORIG &&
1706 refcount_read(&fclones->fclone_ref) == 1) {
1707 n = &fclones->skb2;
1708 refcount_set(&fclones->fclone_ref, 2);
1709 n->fclone = SKB_FCLONE_CLONE;
1710 } else {
1711 if (skb_pfmemalloc(skb))
1712 gfp_mask |= __GFP_MEMALLOC;
1713
1714 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1715 if (!n)
1716 return NULL;
1717
1718 n->fclone = SKB_FCLONE_UNAVAILABLE;
1719 }
1720
1721 return __skb_clone(n, skb);
1722}
1723EXPORT_SYMBOL(skb_clone);
1724
1725void skb_headers_offset_update(struct sk_buff *skb, int off)
1726{
1727 /* Only adjust this if it actually is csum_start rather than csum */
1728 if (skb->ip_summed == CHECKSUM_PARTIAL)
1729 skb->csum_start += off;
1730 /* {transport,network,mac}_header and tail are relative to skb->head */
1731 skb->transport_header += off;
1732 skb->network_header += off;
1733 if (skb_mac_header_was_set(skb))
1734 skb->mac_header += off;
1735 skb->inner_transport_header += off;
1736 skb->inner_network_header += off;
1737 skb->inner_mac_header += off;
1738}
1739EXPORT_SYMBOL(skb_headers_offset_update);
1740
1741void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1742{
1743 __copy_skb_header(new, old);
1744
1745 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1746 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1747 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1748}
1749EXPORT_SYMBOL(skb_copy_header);
1750
1751static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1752{
1753 if (skb_pfmemalloc(skb))
1754 return SKB_ALLOC_RX;
1755 return 0;
1756}
1757
1758/**
1759 * skb_copy - create private copy of an sk_buff
1760 * @skb: buffer to copy
1761 * @gfp_mask: allocation priority
1762 *
1763 * Make a copy of both an &sk_buff and its data. This is used when the
1764 * caller wishes to modify the data and needs a private copy of the
1765 * data to alter. Returns %NULL on failure or the pointer to the buffer
1766 * on success. The returned buffer has a reference count of 1.
1767 *
1768 * As by-product this function converts non-linear &sk_buff to linear
1769 * one, so that &sk_buff becomes completely private and caller is allowed
1770 * to modify all the data of returned buffer. This means that this
1771 * function is not recommended for use in circumstances when only
1772 * header is going to be modified. Use pskb_copy() instead.
1773 */
1774
1775struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1776{
1777 int headerlen = skb_headroom(skb);
1778 unsigned int size = skb_end_offset(skb) + skb->data_len;
1779 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1780 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1781
1782 if (!n)
1783 return NULL;
1784
1785 /* Set the data pointer */
1786 skb_reserve(n, headerlen);
1787 /* Set the tail pointer and length */
1788 skb_put(n, skb->len);
1789
1790 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1791
1792 skb_copy_header(n, skb);
1793 return n;
1794}
1795EXPORT_SYMBOL(skb_copy);
1796
1797/**
1798 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1799 * @skb: buffer to copy
1800 * @headroom: headroom of new skb
1801 * @gfp_mask: allocation priority
1802 * @fclone: if true allocate the copy of the skb from the fclone
1803 * cache instead of the head cache; it is recommended to set this
1804 * to true for the cases where the copy will likely be cloned
1805 *
1806 * Make a copy of both an &sk_buff and part of its data, located
1807 * in header. Fragmented data remain shared. This is used when
1808 * the caller wishes to modify only header of &sk_buff and needs
1809 * private copy of the header to alter. Returns %NULL on failure
1810 * or the pointer to the buffer on success.
1811 * The returned buffer has a reference count of 1.
1812 */
1813
1814struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1815 gfp_t gfp_mask, bool fclone)
1816{
1817 unsigned int size = skb_headlen(skb) + headroom;
1818 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1819 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1820
1821 if (!n)
1822 goto out;
1823
1824 /* Set the data pointer */
1825 skb_reserve(n, headroom);
1826 /* Set the tail pointer and length */
1827 skb_put(n, skb_headlen(skb));
1828 /* Copy the bytes */
1829 skb_copy_from_linear_data(skb, n->data, n->len);
1830
1831 n->truesize += skb->data_len;
1832 n->data_len = skb->data_len;
1833 n->len = skb->len;
1834
1835 if (skb_shinfo(skb)->nr_frags) {
1836 int i;
1837
1838 if (skb_orphan_frags(skb, gfp_mask) ||
1839 skb_zerocopy_clone(n, skb, gfp_mask)) {
1840 kfree_skb(n);
1841 n = NULL;
1842 goto out;
1843 }
1844 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1845 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1846 skb_frag_ref(skb, i);
1847 }
1848 skb_shinfo(n)->nr_frags = i;
1849 }
1850
1851 if (skb_has_frag_list(skb)) {
1852 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1853 skb_clone_fraglist(n);
1854 }
1855
1856 skb_copy_header(n, skb);
1857out:
1858 return n;
1859}
1860EXPORT_SYMBOL(__pskb_copy_fclone);
1861
1862/**
1863 * pskb_expand_head - reallocate header of &sk_buff
1864 * @skb: buffer to reallocate
1865 * @nhead: room to add at head
1866 * @ntail: room to add at tail
1867 * @gfp_mask: allocation priority
1868 *
1869 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1870 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1871 * reference count of 1. Returns zero in the case of success or error,
1872 * if expansion failed. In the last case, &sk_buff is not changed.
1873 *
1874 * All the pointers pointing into skb header may change and must be
1875 * reloaded after call to this function.
1876 */
1877
1878int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1879 gfp_t gfp_mask)
1880{
1881 unsigned int osize = skb_end_offset(skb);
1882 unsigned int size = osize + nhead + ntail;
1883 long off;
1884 u8 *data;
1885 int i;
1886
1887 BUG_ON(nhead < 0);
1888
1889 BUG_ON(skb_shared(skb));
1890
1891 skb_zcopy_downgrade_managed(skb);
1892
1893 if (skb_pfmemalloc(skb))
1894 gfp_mask |= __GFP_MEMALLOC;
1895
1896 size = SKB_DATA_ALIGN(size);
1897 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1898 size = kmalloc_size_roundup(size);
1899 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
1900 if (!data)
1901 goto nodata;
1902 size = SKB_WITH_OVERHEAD(size);
1903
1904 /* Copy only real data... and, alas, header. This should be
1905 * optimized for the cases when header is void.
1906 */
1907 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1908
1909 memcpy((struct skb_shared_info *)(data + size),
1910 skb_shinfo(skb),
1911 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1912
1913 /*
1914 * if shinfo is shared we must drop the old head gracefully, but if it
1915 * is not we can just drop the old head and let the existing refcount
1916 * be since all we did is relocate the values
1917 */
1918 if (skb_cloned(skb)) {
1919 if (skb_orphan_frags(skb, gfp_mask))
1920 goto nofrags;
1921 if (skb_zcopy(skb))
1922 refcount_inc(&skb_uarg(skb)->refcnt);
1923 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1924 skb_frag_ref(skb, i);
1925
1926 if (skb_has_frag_list(skb))
1927 skb_clone_fraglist(skb);
1928
1929 skb_release_data(skb, SKB_CONSUMED);
1930 } else {
1931 skb_free_head(skb);
1932 }
1933 off = (data + nhead) - skb->head;
1934
1935 skb->head = data;
1936 skb->head_frag = 0;
1937 skb->data += off;
1938
1939 skb_set_end_offset(skb, size);
1940#ifdef NET_SKBUFF_DATA_USES_OFFSET
1941 off = nhead;
1942#endif
1943 skb->tail += off;
1944 skb_headers_offset_update(skb, nhead);
1945 skb->cloned = 0;
1946 skb->hdr_len = 0;
1947 skb->nohdr = 0;
1948 atomic_set(&skb_shinfo(skb)->dataref, 1);
1949
1950 skb_metadata_clear(skb);
1951
1952 /* It is not generally safe to change skb->truesize.
1953 * For the moment, we really care of rx path, or
1954 * when skb is orphaned (not attached to a socket).
1955 */
1956 if (!skb->sk || skb->destructor == sock_edemux)
1957 skb->truesize += size - osize;
1958
1959 return 0;
1960
1961nofrags:
1962 kfree(data);
1963nodata:
1964 return -ENOMEM;
1965}
1966EXPORT_SYMBOL(pskb_expand_head);
1967
1968/* Make private copy of skb with writable head and some headroom */
1969
1970struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1971{
1972 struct sk_buff *skb2;
1973 int delta = headroom - skb_headroom(skb);
1974
1975 if (delta <= 0)
1976 skb2 = pskb_copy(skb, GFP_ATOMIC);
1977 else {
1978 skb2 = skb_clone(skb, GFP_ATOMIC);
1979 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1980 GFP_ATOMIC)) {
1981 kfree_skb(skb2);
1982 skb2 = NULL;
1983 }
1984 }
1985 return skb2;
1986}
1987EXPORT_SYMBOL(skb_realloc_headroom);
1988
1989int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1990{
1991 unsigned int saved_end_offset, saved_truesize;
1992 struct skb_shared_info *shinfo;
1993 int res;
1994
1995 saved_end_offset = skb_end_offset(skb);
1996 saved_truesize = skb->truesize;
1997
1998 res = pskb_expand_head(skb, 0, 0, pri);
1999 if (res)
2000 return res;
2001
2002 skb->truesize = saved_truesize;
2003
2004 if (likely(skb_end_offset(skb) == saved_end_offset))
2005 return 0;
2006
2007 shinfo = skb_shinfo(skb);
2008
2009 /* We are about to change back skb->end,
2010 * we need to move skb_shinfo() to its new location.
2011 */
2012 memmove(skb->head + saved_end_offset,
2013 shinfo,
2014 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2015
2016 skb_set_end_offset(skb, saved_end_offset);
2017
2018 return 0;
2019}
2020
2021/**
2022 * skb_expand_head - reallocate header of &sk_buff
2023 * @skb: buffer to reallocate
2024 * @headroom: needed headroom
2025 *
2026 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2027 * if possible; copies skb->sk to new skb as needed
2028 * and frees original skb in case of failures.
2029 *
2030 * It expect increased headroom and generates warning otherwise.
2031 */
2032
2033struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2034{
2035 int delta = headroom - skb_headroom(skb);
2036 int osize = skb_end_offset(skb);
2037 struct sock *sk = skb->sk;
2038
2039 if (WARN_ONCE(delta <= 0,
2040 "%s is expecting an increase in the headroom", __func__))
2041 return skb;
2042
2043 delta = SKB_DATA_ALIGN(delta);
2044 /* pskb_expand_head() might crash, if skb is shared. */
2045 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2046 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2047
2048 if (unlikely(!nskb))
2049 goto fail;
2050
2051 if (sk)
2052 skb_set_owner_w(nskb, sk);
2053 consume_skb(skb);
2054 skb = nskb;
2055 }
2056 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2057 goto fail;
2058
2059 if (sk && is_skb_wmem(skb)) {
2060 delta = skb_end_offset(skb) - osize;
2061 refcount_add(delta, &sk->sk_wmem_alloc);
2062 skb->truesize += delta;
2063 }
2064 return skb;
2065
2066fail:
2067 kfree_skb(skb);
2068 return NULL;
2069}
2070EXPORT_SYMBOL(skb_expand_head);
2071
2072/**
2073 * skb_copy_expand - copy and expand sk_buff
2074 * @skb: buffer to copy
2075 * @newheadroom: new free bytes at head
2076 * @newtailroom: new free bytes at tail
2077 * @gfp_mask: allocation priority
2078 *
2079 * Make a copy of both an &sk_buff and its data and while doing so
2080 * allocate additional space.
2081 *
2082 * This is used when the caller wishes to modify the data and needs a
2083 * private copy of the data to alter as well as more space for new fields.
2084 * Returns %NULL on failure or the pointer to the buffer
2085 * on success. The returned buffer has a reference count of 1.
2086 *
2087 * You must pass %GFP_ATOMIC as the allocation priority if this function
2088 * is called from an interrupt.
2089 */
2090struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2091 int newheadroom, int newtailroom,
2092 gfp_t gfp_mask)
2093{
2094 /*
2095 * Allocate the copy buffer
2096 */
2097 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2098 gfp_mask, skb_alloc_rx_flag(skb),
2099 NUMA_NO_NODE);
2100 int oldheadroom = skb_headroom(skb);
2101 int head_copy_len, head_copy_off;
2102
2103 if (!n)
2104 return NULL;
2105
2106 skb_reserve(n, newheadroom);
2107
2108 /* Set the tail pointer and length */
2109 skb_put(n, skb->len);
2110
2111 head_copy_len = oldheadroom;
2112 head_copy_off = 0;
2113 if (newheadroom <= head_copy_len)
2114 head_copy_len = newheadroom;
2115 else
2116 head_copy_off = newheadroom - head_copy_len;
2117
2118 /* Copy the linear header and data. */
2119 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2120 skb->len + head_copy_len));
2121
2122 skb_copy_header(n, skb);
2123
2124 skb_headers_offset_update(n, newheadroom - oldheadroom);
2125
2126 return n;
2127}
2128EXPORT_SYMBOL(skb_copy_expand);
2129
2130/**
2131 * __skb_pad - zero pad the tail of an skb
2132 * @skb: buffer to pad
2133 * @pad: space to pad
2134 * @free_on_error: free buffer on error
2135 *
2136 * Ensure that a buffer is followed by a padding area that is zero
2137 * filled. Used by network drivers which may DMA or transfer data
2138 * beyond the buffer end onto the wire.
2139 *
2140 * May return error in out of memory cases. The skb is freed on error
2141 * if @free_on_error is true.
2142 */
2143
2144int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2145{
2146 int err;
2147 int ntail;
2148
2149 /* If the skbuff is non linear tailroom is always zero.. */
2150 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2151 memset(skb->data+skb->len, 0, pad);
2152 return 0;
2153 }
2154
2155 ntail = skb->data_len + pad - (skb->end - skb->tail);
2156 if (likely(skb_cloned(skb) || ntail > 0)) {
2157 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2158 if (unlikely(err))
2159 goto free_skb;
2160 }
2161
2162 /* FIXME: The use of this function with non-linear skb's really needs
2163 * to be audited.
2164 */
2165 err = skb_linearize(skb);
2166 if (unlikely(err))
2167 goto free_skb;
2168
2169 memset(skb->data + skb->len, 0, pad);
2170 return 0;
2171
2172free_skb:
2173 if (free_on_error)
2174 kfree_skb(skb);
2175 return err;
2176}
2177EXPORT_SYMBOL(__skb_pad);
2178
2179/**
2180 * pskb_put - add data to the tail of a potentially fragmented buffer
2181 * @skb: start of the buffer to use
2182 * @tail: tail fragment of the buffer to use
2183 * @len: amount of data to add
2184 *
2185 * This function extends the used data area of the potentially
2186 * fragmented buffer. @tail must be the last fragment of @skb -- or
2187 * @skb itself. If this would exceed the total buffer size the kernel
2188 * will panic. A pointer to the first byte of the extra data is
2189 * returned.
2190 */
2191
2192void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2193{
2194 if (tail != skb) {
2195 skb->data_len += len;
2196 skb->len += len;
2197 }
2198 return skb_put(tail, len);
2199}
2200EXPORT_SYMBOL_GPL(pskb_put);
2201
2202/**
2203 * skb_put - add data to a buffer
2204 * @skb: buffer to use
2205 * @len: amount of data to add
2206 *
2207 * This function extends the used data area of the buffer. If this would
2208 * exceed the total buffer size the kernel will panic. A pointer to the
2209 * first byte of the extra data is returned.
2210 */
2211void *skb_put(struct sk_buff *skb, unsigned int len)
2212{
2213 void *tmp = skb_tail_pointer(skb);
2214 SKB_LINEAR_ASSERT(skb);
2215 skb->tail += len;
2216 skb->len += len;
2217 if (unlikely(skb->tail > skb->end))
2218 skb_over_panic(skb, len, __builtin_return_address(0));
2219 return tmp;
2220}
2221EXPORT_SYMBOL(skb_put);
2222
2223/**
2224 * skb_push - add data to the start of a buffer
2225 * @skb: buffer to use
2226 * @len: amount of data to add
2227 *
2228 * This function extends the used data area of the buffer at the buffer
2229 * start. If this would exceed the total buffer headroom the kernel will
2230 * panic. A pointer to the first byte of the extra data is returned.
2231 */
2232void *skb_push(struct sk_buff *skb, unsigned int len)
2233{
2234 skb->data -= len;
2235 skb->len += len;
2236 if (unlikely(skb->data < skb->head))
2237 skb_under_panic(skb, len, __builtin_return_address(0));
2238 return skb->data;
2239}
2240EXPORT_SYMBOL(skb_push);
2241
2242/**
2243 * skb_pull - remove data from the start of a buffer
2244 * @skb: buffer to use
2245 * @len: amount of data to remove
2246 *
2247 * This function removes data from the start of a buffer, returning
2248 * the memory to the headroom. A pointer to the next data in the buffer
2249 * is returned. Once the data has been pulled future pushes will overwrite
2250 * the old data.
2251 */
2252void *skb_pull(struct sk_buff *skb, unsigned int len)
2253{
2254 return skb_pull_inline(skb, len);
2255}
2256EXPORT_SYMBOL(skb_pull);
2257
2258/**
2259 * skb_pull_data - remove data from the start of a buffer returning its
2260 * original position.
2261 * @skb: buffer to use
2262 * @len: amount of data to remove
2263 *
2264 * This function removes data from the start of a buffer, returning
2265 * the memory to the headroom. A pointer to the original data in the buffer
2266 * is returned after checking if there is enough data to pull. Once the
2267 * data has been pulled future pushes will overwrite the old data.
2268 */
2269void *skb_pull_data(struct sk_buff *skb, size_t len)
2270{
2271 void *data = skb->data;
2272
2273 if (skb->len < len)
2274 return NULL;
2275
2276 skb_pull(skb, len);
2277
2278 return data;
2279}
2280EXPORT_SYMBOL(skb_pull_data);
2281
2282/**
2283 * skb_trim - remove end from a buffer
2284 * @skb: buffer to alter
2285 * @len: new length
2286 *
2287 * Cut the length of a buffer down by removing data from the tail. If
2288 * the buffer is already under the length specified it is not modified.
2289 * The skb must be linear.
2290 */
2291void skb_trim(struct sk_buff *skb, unsigned int len)
2292{
2293 if (skb->len > len)
2294 __skb_trim(skb, len);
2295}
2296EXPORT_SYMBOL(skb_trim);
2297
2298/* Trims skb to length len. It can change skb pointers.
2299 */
2300
2301int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2302{
2303 struct sk_buff **fragp;
2304 struct sk_buff *frag;
2305 int offset = skb_headlen(skb);
2306 int nfrags = skb_shinfo(skb)->nr_frags;
2307 int i;
2308 int err;
2309
2310 if (skb_cloned(skb) &&
2311 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2312 return err;
2313
2314 i = 0;
2315 if (offset >= len)
2316 goto drop_pages;
2317
2318 for (; i < nfrags; i++) {
2319 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2320
2321 if (end < len) {
2322 offset = end;
2323 continue;
2324 }
2325
2326 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2327
2328drop_pages:
2329 skb_shinfo(skb)->nr_frags = i;
2330
2331 for (; i < nfrags; i++)
2332 skb_frag_unref(skb, i);
2333
2334 if (skb_has_frag_list(skb))
2335 skb_drop_fraglist(skb);
2336 goto done;
2337 }
2338
2339 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2340 fragp = &frag->next) {
2341 int end = offset + frag->len;
2342
2343 if (skb_shared(frag)) {
2344 struct sk_buff *nfrag;
2345
2346 nfrag = skb_clone(frag, GFP_ATOMIC);
2347 if (unlikely(!nfrag))
2348 return -ENOMEM;
2349
2350 nfrag->next = frag->next;
2351 consume_skb(frag);
2352 frag = nfrag;
2353 *fragp = frag;
2354 }
2355
2356 if (end < len) {
2357 offset = end;
2358 continue;
2359 }
2360
2361 if (end > len &&
2362 unlikely((err = pskb_trim(frag, len - offset))))
2363 return err;
2364
2365 if (frag->next)
2366 skb_drop_list(&frag->next);
2367 break;
2368 }
2369
2370done:
2371 if (len > skb_headlen(skb)) {
2372 skb->data_len -= skb->len - len;
2373 skb->len = len;
2374 } else {
2375 skb->len = len;
2376 skb->data_len = 0;
2377 skb_set_tail_pointer(skb, len);
2378 }
2379
2380 if (!skb->sk || skb->destructor == sock_edemux)
2381 skb_condense(skb);
2382 return 0;
2383}
2384EXPORT_SYMBOL(___pskb_trim);
2385
2386/* Note : use pskb_trim_rcsum() instead of calling this directly
2387 */
2388int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2389{
2390 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2391 int delta = skb->len - len;
2392
2393 skb->csum = csum_block_sub(skb->csum,
2394 skb_checksum(skb, len, delta, 0),
2395 len);
2396 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2397 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2398 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2399
2400 if (offset + sizeof(__sum16) > hdlen)
2401 return -EINVAL;
2402 }
2403 return __pskb_trim(skb, len);
2404}
2405EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2406
2407/**
2408 * __pskb_pull_tail - advance tail of skb header
2409 * @skb: buffer to reallocate
2410 * @delta: number of bytes to advance tail
2411 *
2412 * The function makes a sense only on a fragmented &sk_buff,
2413 * it expands header moving its tail forward and copying necessary
2414 * data from fragmented part.
2415 *
2416 * &sk_buff MUST have reference count of 1.
2417 *
2418 * Returns %NULL (and &sk_buff does not change) if pull failed
2419 * or value of new tail of skb in the case of success.
2420 *
2421 * All the pointers pointing into skb header may change and must be
2422 * reloaded after call to this function.
2423 */
2424
2425/* Moves tail of skb head forward, copying data from fragmented part,
2426 * when it is necessary.
2427 * 1. It may fail due to malloc failure.
2428 * 2. It may change skb pointers.
2429 *
2430 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2431 */
2432void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2433{
2434 /* If skb has not enough free space at tail, get new one
2435 * plus 128 bytes for future expansions. If we have enough
2436 * room at tail, reallocate without expansion only if skb is cloned.
2437 */
2438 int i, k, eat = (skb->tail + delta) - skb->end;
2439
2440 if (eat > 0 || skb_cloned(skb)) {
2441 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2442 GFP_ATOMIC))
2443 return NULL;
2444 }
2445
2446 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2447 skb_tail_pointer(skb), delta));
2448
2449 /* Optimization: no fragments, no reasons to preestimate
2450 * size of pulled pages. Superb.
2451 */
2452 if (!skb_has_frag_list(skb))
2453 goto pull_pages;
2454
2455 /* Estimate size of pulled pages. */
2456 eat = delta;
2457 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2458 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2459
2460 if (size >= eat)
2461 goto pull_pages;
2462 eat -= size;
2463 }
2464
2465 /* If we need update frag list, we are in troubles.
2466 * Certainly, it is possible to add an offset to skb data,
2467 * but taking into account that pulling is expected to
2468 * be very rare operation, it is worth to fight against
2469 * further bloating skb head and crucify ourselves here instead.
2470 * Pure masohism, indeed. 8)8)
2471 */
2472 if (eat) {
2473 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2474 struct sk_buff *clone = NULL;
2475 struct sk_buff *insp = NULL;
2476
2477 do {
2478 if (list->len <= eat) {
2479 /* Eaten as whole. */
2480 eat -= list->len;
2481 list = list->next;
2482 insp = list;
2483 } else {
2484 /* Eaten partially. */
2485 if (skb_is_gso(skb) && !list->head_frag &&
2486 skb_headlen(list))
2487 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2488
2489 if (skb_shared(list)) {
2490 /* Sucks! We need to fork list. :-( */
2491 clone = skb_clone(list, GFP_ATOMIC);
2492 if (!clone)
2493 return NULL;
2494 insp = list->next;
2495 list = clone;
2496 } else {
2497 /* This may be pulled without
2498 * problems. */
2499 insp = list;
2500 }
2501 if (!pskb_pull(list, eat)) {
2502 kfree_skb(clone);
2503 return NULL;
2504 }
2505 break;
2506 }
2507 } while (eat);
2508
2509 /* Free pulled out fragments. */
2510 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2511 skb_shinfo(skb)->frag_list = list->next;
2512 consume_skb(list);
2513 }
2514 /* And insert new clone at head. */
2515 if (clone) {
2516 clone->next = list;
2517 skb_shinfo(skb)->frag_list = clone;
2518 }
2519 }
2520 /* Success! Now we may commit changes to skb data. */
2521
2522pull_pages:
2523 eat = delta;
2524 k = 0;
2525 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2526 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2527
2528 if (size <= eat) {
2529 skb_frag_unref(skb, i);
2530 eat -= size;
2531 } else {
2532 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2533
2534 *frag = skb_shinfo(skb)->frags[i];
2535 if (eat) {
2536 skb_frag_off_add(frag, eat);
2537 skb_frag_size_sub(frag, eat);
2538 if (!i)
2539 goto end;
2540 eat = 0;
2541 }
2542 k++;
2543 }
2544 }
2545 skb_shinfo(skb)->nr_frags = k;
2546
2547end:
2548 skb->tail += delta;
2549 skb->data_len -= delta;
2550
2551 if (!skb->data_len)
2552 skb_zcopy_clear(skb, false);
2553
2554 return skb_tail_pointer(skb);
2555}
2556EXPORT_SYMBOL(__pskb_pull_tail);
2557
2558/**
2559 * skb_copy_bits - copy bits from skb to kernel buffer
2560 * @skb: source skb
2561 * @offset: offset in source
2562 * @to: destination buffer
2563 * @len: number of bytes to copy
2564 *
2565 * Copy the specified number of bytes from the source skb to the
2566 * destination buffer.
2567 *
2568 * CAUTION ! :
2569 * If its prototype is ever changed,
2570 * check arch/{*}/net/{*}.S files,
2571 * since it is called from BPF assembly code.
2572 */
2573int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2574{
2575 int start = skb_headlen(skb);
2576 struct sk_buff *frag_iter;
2577 int i, copy;
2578
2579 if (offset > (int)skb->len - len)
2580 goto fault;
2581
2582 /* Copy header. */
2583 if ((copy = start - offset) > 0) {
2584 if (copy > len)
2585 copy = len;
2586 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2587 if ((len -= copy) == 0)
2588 return 0;
2589 offset += copy;
2590 to += copy;
2591 }
2592
2593 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2594 int end;
2595 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2596
2597 WARN_ON(start > offset + len);
2598
2599 end = start + skb_frag_size(f);
2600 if ((copy = end - offset) > 0) {
2601 u32 p_off, p_len, copied;
2602 struct page *p;
2603 u8 *vaddr;
2604
2605 if (copy > len)
2606 copy = len;
2607
2608 skb_frag_foreach_page(f,
2609 skb_frag_off(f) + offset - start,
2610 copy, p, p_off, p_len, copied) {
2611 vaddr = kmap_atomic(p);
2612 memcpy(to + copied, vaddr + p_off, p_len);
2613 kunmap_atomic(vaddr);
2614 }
2615
2616 if ((len -= copy) == 0)
2617 return 0;
2618 offset += copy;
2619 to += copy;
2620 }
2621 start = end;
2622 }
2623
2624 skb_walk_frags(skb, frag_iter) {
2625 int end;
2626
2627 WARN_ON(start > offset + len);
2628
2629 end = start + frag_iter->len;
2630 if ((copy = end - offset) > 0) {
2631 if (copy > len)
2632 copy = len;
2633 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2634 goto fault;
2635 if ((len -= copy) == 0)
2636 return 0;
2637 offset += copy;
2638 to += copy;
2639 }
2640 start = end;
2641 }
2642
2643 if (!len)
2644 return 0;
2645
2646fault:
2647 return -EFAULT;
2648}
2649EXPORT_SYMBOL(skb_copy_bits);
2650
2651/*
2652 * Callback from splice_to_pipe(), if we need to release some pages
2653 * at the end of the spd in case we error'ed out in filling the pipe.
2654 */
2655static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2656{
2657 put_page(spd->pages[i]);
2658}
2659
2660static struct page *linear_to_page(struct page *page, unsigned int *len,
2661 unsigned int *offset,
2662 struct sock *sk)
2663{
2664 struct page_frag *pfrag = sk_page_frag(sk);
2665
2666 if (!sk_page_frag_refill(sk, pfrag))
2667 return NULL;
2668
2669 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2670
2671 memcpy(page_address(pfrag->page) + pfrag->offset,
2672 page_address(page) + *offset, *len);
2673 *offset = pfrag->offset;
2674 pfrag->offset += *len;
2675
2676 return pfrag->page;
2677}
2678
2679static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2680 struct page *page,
2681 unsigned int offset)
2682{
2683 return spd->nr_pages &&
2684 spd->pages[spd->nr_pages - 1] == page &&
2685 (spd->partial[spd->nr_pages - 1].offset +
2686 spd->partial[spd->nr_pages - 1].len == offset);
2687}
2688
2689/*
2690 * Fill page/offset/length into spd, if it can hold more pages.
2691 */
2692static bool spd_fill_page(struct splice_pipe_desc *spd,
2693 struct pipe_inode_info *pipe, struct page *page,
2694 unsigned int *len, unsigned int offset,
2695 bool linear,
2696 struct sock *sk)
2697{
2698 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2699 return true;
2700
2701 if (linear) {
2702 page = linear_to_page(page, len, &offset, sk);
2703 if (!page)
2704 return true;
2705 }
2706 if (spd_can_coalesce(spd, page, offset)) {
2707 spd->partial[spd->nr_pages - 1].len += *len;
2708 return false;
2709 }
2710 get_page(page);
2711 spd->pages[spd->nr_pages] = page;
2712 spd->partial[spd->nr_pages].len = *len;
2713 spd->partial[spd->nr_pages].offset = offset;
2714 spd->nr_pages++;
2715
2716 return false;
2717}
2718
2719static bool __splice_segment(struct page *page, unsigned int poff,
2720 unsigned int plen, unsigned int *off,
2721 unsigned int *len,
2722 struct splice_pipe_desc *spd, bool linear,
2723 struct sock *sk,
2724 struct pipe_inode_info *pipe)
2725{
2726 if (!*len)
2727 return true;
2728
2729 /* skip this segment if already processed */
2730 if (*off >= plen) {
2731 *off -= plen;
2732 return false;
2733 }
2734
2735 /* ignore any bits we already processed */
2736 poff += *off;
2737 plen -= *off;
2738 *off = 0;
2739
2740 do {
2741 unsigned int flen = min(*len, plen);
2742
2743 if (spd_fill_page(spd, pipe, page, &flen, poff,
2744 linear, sk))
2745 return true;
2746 poff += flen;
2747 plen -= flen;
2748 *len -= flen;
2749 } while (*len && plen);
2750
2751 return false;
2752}
2753
2754/*
2755 * Map linear and fragment data from the skb to spd. It reports true if the
2756 * pipe is full or if we already spliced the requested length.
2757 */
2758static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2759 unsigned int *offset, unsigned int *len,
2760 struct splice_pipe_desc *spd, struct sock *sk)
2761{
2762 int seg;
2763 struct sk_buff *iter;
2764
2765 /* map the linear part :
2766 * If skb->head_frag is set, this 'linear' part is backed by a
2767 * fragment, and if the head is not shared with any clones then
2768 * we can avoid a copy since we own the head portion of this page.
2769 */
2770 if (__splice_segment(virt_to_page(skb->data),
2771 (unsigned long) skb->data & (PAGE_SIZE - 1),
2772 skb_headlen(skb),
2773 offset, len, spd,
2774 skb_head_is_locked(skb),
2775 sk, pipe))
2776 return true;
2777
2778 /*
2779 * then map the fragments
2780 */
2781 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2782 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2783
2784 if (__splice_segment(skb_frag_page(f),
2785 skb_frag_off(f), skb_frag_size(f),
2786 offset, len, spd, false, sk, pipe))
2787 return true;
2788 }
2789
2790 skb_walk_frags(skb, iter) {
2791 if (*offset >= iter->len) {
2792 *offset -= iter->len;
2793 continue;
2794 }
2795 /* __skb_splice_bits() only fails if the output has no room
2796 * left, so no point in going over the frag_list for the error
2797 * case.
2798 */
2799 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2800 return true;
2801 }
2802
2803 return false;
2804}
2805
2806/*
2807 * Map data from the skb to a pipe. Should handle both the linear part,
2808 * the fragments, and the frag list.
2809 */
2810int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2811 struct pipe_inode_info *pipe, unsigned int tlen,
2812 unsigned int flags)
2813{
2814 struct partial_page partial[MAX_SKB_FRAGS];
2815 struct page *pages[MAX_SKB_FRAGS];
2816 struct splice_pipe_desc spd = {
2817 .pages = pages,
2818 .partial = partial,
2819 .nr_pages_max = MAX_SKB_FRAGS,
2820 .ops = &nosteal_pipe_buf_ops,
2821 .spd_release = sock_spd_release,
2822 };
2823 int ret = 0;
2824
2825 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2826
2827 if (spd.nr_pages)
2828 ret = splice_to_pipe(pipe, &spd);
2829
2830 return ret;
2831}
2832EXPORT_SYMBOL_GPL(skb_splice_bits);
2833
2834static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2835 struct kvec *vec, size_t num, size_t size)
2836{
2837 struct socket *sock = sk->sk_socket;
2838
2839 if (!sock)
2840 return -EINVAL;
2841 return kernel_sendmsg(sock, msg, vec, num, size);
2842}
2843
2844static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2845 size_t size, int flags)
2846{
2847 struct socket *sock = sk->sk_socket;
2848
2849 if (!sock)
2850 return -EINVAL;
2851 return kernel_sendpage(sock, page, offset, size, flags);
2852}
2853
2854typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2855 struct kvec *vec, size_t num, size_t size);
2856typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2857 size_t size, int flags);
2858static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2859 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2860{
2861 unsigned int orig_len = len;
2862 struct sk_buff *head = skb;
2863 unsigned short fragidx;
2864 int slen, ret;
2865
2866do_frag_list:
2867
2868 /* Deal with head data */
2869 while (offset < skb_headlen(skb) && len) {
2870 struct kvec kv;
2871 struct msghdr msg;
2872
2873 slen = min_t(int, len, skb_headlen(skb) - offset);
2874 kv.iov_base = skb->data + offset;
2875 kv.iov_len = slen;
2876 memset(&msg, 0, sizeof(msg));
2877 msg.msg_flags = MSG_DONTWAIT;
2878
2879 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2880 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2881 if (ret <= 0)
2882 goto error;
2883
2884 offset += ret;
2885 len -= ret;
2886 }
2887
2888 /* All the data was skb head? */
2889 if (!len)
2890 goto out;
2891
2892 /* Make offset relative to start of frags */
2893 offset -= skb_headlen(skb);
2894
2895 /* Find where we are in frag list */
2896 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2897 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2898
2899 if (offset < skb_frag_size(frag))
2900 break;
2901
2902 offset -= skb_frag_size(frag);
2903 }
2904
2905 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2906 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2907
2908 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2909
2910 while (slen) {
2911 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2912 sendpage_unlocked, sk,
2913 skb_frag_page(frag),
2914 skb_frag_off(frag) + offset,
2915 slen, MSG_DONTWAIT);
2916 if (ret <= 0)
2917 goto error;
2918
2919 len -= ret;
2920 offset += ret;
2921 slen -= ret;
2922 }
2923
2924 offset = 0;
2925 }
2926
2927 if (len) {
2928 /* Process any frag lists */
2929
2930 if (skb == head) {
2931 if (skb_has_frag_list(skb)) {
2932 skb = skb_shinfo(skb)->frag_list;
2933 goto do_frag_list;
2934 }
2935 } else if (skb->next) {
2936 skb = skb->next;
2937 goto do_frag_list;
2938 }
2939 }
2940
2941out:
2942 return orig_len - len;
2943
2944error:
2945 return orig_len == len ? ret : orig_len - len;
2946}
2947
2948/* Send skb data on a socket. Socket must be locked. */
2949int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2950 int len)
2951{
2952 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2953 kernel_sendpage_locked);
2954}
2955EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2956
2957/* Send skb data on a socket. Socket must be unlocked. */
2958int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2959{
2960 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2961 sendpage_unlocked);
2962}
2963
2964/**
2965 * skb_store_bits - store bits from kernel buffer to skb
2966 * @skb: destination buffer
2967 * @offset: offset in destination
2968 * @from: source buffer
2969 * @len: number of bytes to copy
2970 *
2971 * Copy the specified number of bytes from the source buffer to the
2972 * destination skb. This function handles all the messy bits of
2973 * traversing fragment lists and such.
2974 */
2975
2976int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2977{
2978 int start = skb_headlen(skb);
2979 struct sk_buff *frag_iter;
2980 int i, copy;
2981
2982 if (offset > (int)skb->len - len)
2983 goto fault;
2984
2985 if ((copy = start - offset) > 0) {
2986 if (copy > len)
2987 copy = len;
2988 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2989 if ((len -= copy) == 0)
2990 return 0;
2991 offset += copy;
2992 from += copy;
2993 }
2994
2995 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2996 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2997 int end;
2998
2999 WARN_ON(start > offset + len);
3000
3001 end = start + skb_frag_size(frag);
3002 if ((copy = end - offset) > 0) {
3003 u32 p_off, p_len, copied;
3004 struct page *p;
3005 u8 *vaddr;
3006
3007 if (copy > len)
3008 copy = len;
3009
3010 skb_frag_foreach_page(frag,
3011 skb_frag_off(frag) + offset - start,
3012 copy, p, p_off, p_len, copied) {
3013 vaddr = kmap_atomic(p);
3014 memcpy(vaddr + p_off, from + copied, p_len);
3015 kunmap_atomic(vaddr);
3016 }
3017
3018 if ((len -= copy) == 0)
3019 return 0;
3020 offset += copy;
3021 from += copy;
3022 }
3023 start = end;
3024 }
3025
3026 skb_walk_frags(skb, frag_iter) {
3027 int end;
3028
3029 WARN_ON(start > offset + len);
3030
3031 end = start + frag_iter->len;
3032 if ((copy = end - offset) > 0) {
3033 if (copy > len)
3034 copy = len;
3035 if (skb_store_bits(frag_iter, offset - start,
3036 from, copy))
3037 goto fault;
3038 if ((len -= copy) == 0)
3039 return 0;
3040 offset += copy;
3041 from += copy;
3042 }
3043 start = end;
3044 }
3045 if (!len)
3046 return 0;
3047
3048fault:
3049 return -EFAULT;
3050}
3051EXPORT_SYMBOL(skb_store_bits);
3052
3053/* Checksum skb data. */
3054__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3055 __wsum csum, const struct skb_checksum_ops *ops)
3056{
3057 int start = skb_headlen(skb);
3058 int i, copy = start - offset;
3059 struct sk_buff *frag_iter;
3060 int pos = 0;
3061
3062 /* Checksum header. */
3063 if (copy > 0) {
3064 if (copy > len)
3065 copy = len;
3066 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3067 skb->data + offset, copy, csum);
3068 if ((len -= copy) == 0)
3069 return csum;
3070 offset += copy;
3071 pos = copy;
3072 }
3073
3074 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3075 int end;
3076 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3077
3078 WARN_ON(start > offset + len);
3079
3080 end = start + skb_frag_size(frag);
3081 if ((copy = end - offset) > 0) {
3082 u32 p_off, p_len, copied;
3083 struct page *p;
3084 __wsum csum2;
3085 u8 *vaddr;
3086
3087 if (copy > len)
3088 copy = len;
3089
3090 skb_frag_foreach_page(frag,
3091 skb_frag_off(frag) + offset - start,
3092 copy, p, p_off, p_len, copied) {
3093 vaddr = kmap_atomic(p);
3094 csum2 = INDIRECT_CALL_1(ops->update,
3095 csum_partial_ext,
3096 vaddr + p_off, p_len, 0);
3097 kunmap_atomic(vaddr);
3098 csum = INDIRECT_CALL_1(ops->combine,
3099 csum_block_add_ext, csum,
3100 csum2, pos, p_len);
3101 pos += p_len;
3102 }
3103
3104 if (!(len -= copy))
3105 return csum;
3106 offset += copy;
3107 }
3108 start = end;
3109 }
3110
3111 skb_walk_frags(skb, frag_iter) {
3112 int end;
3113
3114 WARN_ON(start > offset + len);
3115
3116 end = start + frag_iter->len;
3117 if ((copy = end - offset) > 0) {
3118 __wsum csum2;
3119 if (copy > len)
3120 copy = len;
3121 csum2 = __skb_checksum(frag_iter, offset - start,
3122 copy, 0, ops);
3123 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3124 csum, csum2, pos, copy);
3125 if ((len -= copy) == 0)
3126 return csum;
3127 offset += copy;
3128 pos += copy;
3129 }
3130 start = end;
3131 }
3132 BUG_ON(len);
3133
3134 return csum;
3135}
3136EXPORT_SYMBOL(__skb_checksum);
3137
3138__wsum skb_checksum(const struct sk_buff *skb, int offset,
3139 int len, __wsum csum)
3140{
3141 const struct skb_checksum_ops ops = {
3142 .update = csum_partial_ext,
3143 .combine = csum_block_add_ext,
3144 };
3145
3146 return __skb_checksum(skb, offset, len, csum, &ops);
3147}
3148EXPORT_SYMBOL(skb_checksum);
3149
3150/* Both of above in one bottle. */
3151
3152__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3153 u8 *to, int len)
3154{
3155 int start = skb_headlen(skb);
3156 int i, copy = start - offset;
3157 struct sk_buff *frag_iter;
3158 int pos = 0;
3159 __wsum csum = 0;
3160
3161 /* Copy header. */
3162 if (copy > 0) {
3163 if (copy > len)
3164 copy = len;
3165 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3166 copy);
3167 if ((len -= copy) == 0)
3168 return csum;
3169 offset += copy;
3170 to += copy;
3171 pos = copy;
3172 }
3173
3174 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3175 int end;
3176
3177 WARN_ON(start > offset + len);
3178
3179 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3180 if ((copy = end - offset) > 0) {
3181 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3182 u32 p_off, p_len, copied;
3183 struct page *p;
3184 __wsum csum2;
3185 u8 *vaddr;
3186
3187 if (copy > len)
3188 copy = len;
3189
3190 skb_frag_foreach_page(frag,
3191 skb_frag_off(frag) + offset - start,
3192 copy, p, p_off, p_len, copied) {
3193 vaddr = kmap_atomic(p);
3194 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3195 to + copied,
3196 p_len);
3197 kunmap_atomic(vaddr);
3198 csum = csum_block_add(csum, csum2, pos);
3199 pos += p_len;
3200 }
3201
3202 if (!(len -= copy))
3203 return csum;
3204 offset += copy;
3205 to += copy;
3206 }
3207 start = end;
3208 }
3209
3210 skb_walk_frags(skb, frag_iter) {
3211 __wsum csum2;
3212 int end;
3213
3214 WARN_ON(start > offset + len);
3215
3216 end = start + frag_iter->len;
3217 if ((copy = end - offset) > 0) {
3218 if (copy > len)
3219 copy = len;
3220 csum2 = skb_copy_and_csum_bits(frag_iter,
3221 offset - start,
3222 to, copy);
3223 csum = csum_block_add(csum, csum2, pos);
3224 if ((len -= copy) == 0)
3225 return csum;
3226 offset += copy;
3227 to += copy;
3228 pos += copy;
3229 }
3230 start = end;
3231 }
3232 BUG_ON(len);
3233 return csum;
3234}
3235EXPORT_SYMBOL(skb_copy_and_csum_bits);
3236
3237__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3238{
3239 __sum16 sum;
3240
3241 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3242 /* See comments in __skb_checksum_complete(). */
3243 if (likely(!sum)) {
3244 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3245 !skb->csum_complete_sw)
3246 netdev_rx_csum_fault(skb->dev, skb);
3247 }
3248 if (!skb_shared(skb))
3249 skb->csum_valid = !sum;
3250 return sum;
3251}
3252EXPORT_SYMBOL(__skb_checksum_complete_head);
3253
3254/* This function assumes skb->csum already holds pseudo header's checksum,
3255 * which has been changed from the hardware checksum, for example, by
3256 * __skb_checksum_validate_complete(). And, the original skb->csum must
3257 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3258 *
3259 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3260 * zero. The new checksum is stored back into skb->csum unless the skb is
3261 * shared.
3262 */
3263__sum16 __skb_checksum_complete(struct sk_buff *skb)
3264{
3265 __wsum csum;
3266 __sum16 sum;
3267
3268 csum = skb_checksum(skb, 0, skb->len, 0);
3269
3270 sum = csum_fold(csum_add(skb->csum, csum));
3271 /* This check is inverted, because we already knew the hardware
3272 * checksum is invalid before calling this function. So, if the
3273 * re-computed checksum is valid instead, then we have a mismatch
3274 * between the original skb->csum and skb_checksum(). This means either
3275 * the original hardware checksum is incorrect or we screw up skb->csum
3276 * when moving skb->data around.
3277 */
3278 if (likely(!sum)) {
3279 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3280 !skb->csum_complete_sw)
3281 netdev_rx_csum_fault(skb->dev, skb);
3282 }
3283
3284 if (!skb_shared(skb)) {
3285 /* Save full packet checksum */
3286 skb->csum = csum;
3287 skb->ip_summed = CHECKSUM_COMPLETE;
3288 skb->csum_complete_sw = 1;
3289 skb->csum_valid = !sum;
3290 }
3291
3292 return sum;
3293}
3294EXPORT_SYMBOL(__skb_checksum_complete);
3295
3296static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3297{
3298 net_warn_ratelimited(
3299 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3300 __func__);
3301 return 0;
3302}
3303
3304static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3305 int offset, int len)
3306{
3307 net_warn_ratelimited(
3308 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3309 __func__);
3310 return 0;
3311}
3312
3313static const struct skb_checksum_ops default_crc32c_ops = {
3314 .update = warn_crc32c_csum_update,
3315 .combine = warn_crc32c_csum_combine,
3316};
3317
3318const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3319 &default_crc32c_ops;
3320EXPORT_SYMBOL(crc32c_csum_stub);
3321
3322 /**
3323 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3324 * @from: source buffer
3325 *
3326 * Calculates the amount of linear headroom needed in the 'to' skb passed
3327 * into skb_zerocopy().
3328 */
3329unsigned int
3330skb_zerocopy_headlen(const struct sk_buff *from)
3331{
3332 unsigned int hlen = 0;
3333
3334 if (!from->head_frag ||
3335 skb_headlen(from) < L1_CACHE_BYTES ||
3336 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3337 hlen = skb_headlen(from);
3338 if (!hlen)
3339 hlen = from->len;
3340 }
3341
3342 if (skb_has_frag_list(from))
3343 hlen = from->len;
3344
3345 return hlen;
3346}
3347EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3348
3349/**
3350 * skb_zerocopy - Zero copy skb to skb
3351 * @to: destination buffer
3352 * @from: source buffer
3353 * @len: number of bytes to copy from source buffer
3354 * @hlen: size of linear headroom in destination buffer
3355 *
3356 * Copies up to `len` bytes from `from` to `to` by creating references
3357 * to the frags in the source buffer.
3358 *
3359 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3360 * headroom in the `to` buffer.
3361 *
3362 * Return value:
3363 * 0: everything is OK
3364 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3365 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3366 */
3367int
3368skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3369{
3370 int i, j = 0;
3371 int plen = 0; /* length of skb->head fragment */
3372 int ret;
3373 struct page *page;
3374 unsigned int offset;
3375
3376 BUG_ON(!from->head_frag && !hlen);
3377
3378 /* dont bother with small payloads */
3379 if (len <= skb_tailroom(to))
3380 return skb_copy_bits(from, 0, skb_put(to, len), len);
3381
3382 if (hlen) {
3383 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3384 if (unlikely(ret))
3385 return ret;
3386 len -= hlen;
3387 } else {
3388 plen = min_t(int, skb_headlen(from), len);
3389 if (plen) {
3390 page = virt_to_head_page(from->head);
3391 offset = from->data - (unsigned char *)page_address(page);
3392 __skb_fill_page_desc(to, 0, page, offset, plen);
3393 get_page(page);
3394 j = 1;
3395 len -= plen;
3396 }
3397 }
3398
3399 skb_len_add(to, len + plen);
3400
3401 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3402 skb_tx_error(from);
3403 return -ENOMEM;
3404 }
3405 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3406
3407 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3408 int size;
3409
3410 if (!len)
3411 break;
3412 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3413 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3414 len);
3415 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3416 len -= size;
3417 skb_frag_ref(to, j);
3418 j++;
3419 }
3420 skb_shinfo(to)->nr_frags = j;
3421
3422 return 0;
3423}
3424EXPORT_SYMBOL_GPL(skb_zerocopy);
3425
3426void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3427{
3428 __wsum csum;
3429 long csstart;
3430
3431 if (skb->ip_summed == CHECKSUM_PARTIAL)
3432 csstart = skb_checksum_start_offset(skb);
3433 else
3434 csstart = skb_headlen(skb);
3435
3436 BUG_ON(csstart > skb_headlen(skb));
3437
3438 skb_copy_from_linear_data(skb, to, csstart);
3439
3440 csum = 0;
3441 if (csstart != skb->len)
3442 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3443 skb->len - csstart);
3444
3445 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3446 long csstuff = csstart + skb->csum_offset;
3447
3448 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3449 }
3450}
3451EXPORT_SYMBOL(skb_copy_and_csum_dev);
3452
3453/**
3454 * skb_dequeue - remove from the head of the queue
3455 * @list: list to dequeue from
3456 *
3457 * Remove the head of the list. The list lock is taken so the function
3458 * may be used safely with other locking list functions. The head item is
3459 * returned or %NULL if the list is empty.
3460 */
3461
3462struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3463{
3464 unsigned long flags;
3465 struct sk_buff *result;
3466
3467 spin_lock_irqsave(&list->lock, flags);
3468 result = __skb_dequeue(list);
3469 spin_unlock_irqrestore(&list->lock, flags);
3470 return result;
3471}
3472EXPORT_SYMBOL(skb_dequeue);
3473
3474/**
3475 * skb_dequeue_tail - remove from the tail of the queue
3476 * @list: list to dequeue from
3477 *
3478 * Remove the tail of the list. The list lock is taken so the function
3479 * may be used safely with other locking list functions. The tail item is
3480 * returned or %NULL if the list is empty.
3481 */
3482struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3483{
3484 unsigned long flags;
3485 struct sk_buff *result;
3486
3487 spin_lock_irqsave(&list->lock, flags);
3488 result = __skb_dequeue_tail(list);
3489 spin_unlock_irqrestore(&list->lock, flags);
3490 return result;
3491}
3492EXPORT_SYMBOL(skb_dequeue_tail);
3493
3494/**
3495 * skb_queue_purge - empty a list
3496 * @list: list to empty
3497 *
3498 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3499 * the list and one reference dropped. This function takes the list
3500 * lock and is atomic with respect to other list locking functions.
3501 */
3502void skb_queue_purge(struct sk_buff_head *list)
3503{
3504 struct sk_buff *skb;
3505 while ((skb = skb_dequeue(list)) != NULL)
3506 kfree_skb(skb);
3507}
3508EXPORT_SYMBOL(skb_queue_purge);
3509
3510/**
3511 * skb_rbtree_purge - empty a skb rbtree
3512 * @root: root of the rbtree to empty
3513 * Return value: the sum of truesizes of all purged skbs.
3514 *
3515 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3516 * the list and one reference dropped. This function does not take
3517 * any lock. Synchronization should be handled by the caller (e.g., TCP
3518 * out-of-order queue is protected by the socket lock).
3519 */
3520unsigned int skb_rbtree_purge(struct rb_root *root)
3521{
3522 struct rb_node *p = rb_first(root);
3523 unsigned int sum = 0;
3524
3525 while (p) {
3526 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3527
3528 p = rb_next(p);
3529 rb_erase(&skb->rbnode, root);
3530 sum += skb->truesize;
3531 kfree_skb(skb);
3532 }
3533 return sum;
3534}
3535
3536/**
3537 * skb_queue_head - queue a buffer at the list head
3538 * @list: list to use
3539 * @newsk: buffer to queue
3540 *
3541 * Queue a buffer at the start of the list. This function takes the
3542 * list lock and can be used safely with other locking &sk_buff functions
3543 * safely.
3544 *
3545 * A buffer cannot be placed on two lists at the same time.
3546 */
3547void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3548{
3549 unsigned long flags;
3550
3551 spin_lock_irqsave(&list->lock, flags);
3552 __skb_queue_head(list, newsk);
3553 spin_unlock_irqrestore(&list->lock, flags);
3554}
3555EXPORT_SYMBOL(skb_queue_head);
3556
3557/**
3558 * skb_queue_tail - queue a buffer at the list tail
3559 * @list: list to use
3560 * @newsk: buffer to queue
3561 *
3562 * Queue a buffer at the tail of the list. This function takes the
3563 * list lock and can be used safely with other locking &sk_buff functions
3564 * safely.
3565 *
3566 * A buffer cannot be placed on two lists at the same time.
3567 */
3568void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3569{
3570 unsigned long flags;
3571
3572 spin_lock_irqsave(&list->lock, flags);
3573 __skb_queue_tail(list, newsk);
3574 spin_unlock_irqrestore(&list->lock, flags);
3575}
3576EXPORT_SYMBOL(skb_queue_tail);
3577
3578/**
3579 * skb_unlink - remove a buffer from a list
3580 * @skb: buffer to remove
3581 * @list: list to use
3582 *
3583 * Remove a packet from a list. The list locks are taken and this
3584 * function is atomic with respect to other list locked calls
3585 *
3586 * You must know what list the SKB is on.
3587 */
3588void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3589{
3590 unsigned long flags;
3591
3592 spin_lock_irqsave(&list->lock, flags);
3593 __skb_unlink(skb, list);
3594 spin_unlock_irqrestore(&list->lock, flags);
3595}
3596EXPORT_SYMBOL(skb_unlink);
3597
3598/**
3599 * skb_append - append a buffer
3600 * @old: buffer to insert after
3601 * @newsk: buffer to insert
3602 * @list: list to use
3603 *
3604 * Place a packet after a given packet in a list. The list locks are taken
3605 * and this function is atomic with respect to other list locked calls.
3606 * A buffer cannot be placed on two lists at the same time.
3607 */
3608void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3609{
3610 unsigned long flags;
3611
3612 spin_lock_irqsave(&list->lock, flags);
3613 __skb_queue_after(list, old, newsk);
3614 spin_unlock_irqrestore(&list->lock, flags);
3615}
3616EXPORT_SYMBOL(skb_append);
3617
3618static inline void skb_split_inside_header(struct sk_buff *skb,
3619 struct sk_buff* skb1,
3620 const u32 len, const int pos)
3621{
3622 int i;
3623
3624 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3625 pos - len);
3626 /* And move data appendix as is. */
3627 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3628 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3629
3630 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3631 skb_shinfo(skb)->nr_frags = 0;
3632 skb1->data_len = skb->data_len;
3633 skb1->len += skb1->data_len;
3634 skb->data_len = 0;
3635 skb->len = len;
3636 skb_set_tail_pointer(skb, len);
3637}
3638
3639static inline void skb_split_no_header(struct sk_buff *skb,
3640 struct sk_buff* skb1,
3641 const u32 len, int pos)
3642{
3643 int i, k = 0;
3644 const int nfrags = skb_shinfo(skb)->nr_frags;
3645
3646 skb_shinfo(skb)->nr_frags = 0;
3647 skb1->len = skb1->data_len = skb->len - len;
3648 skb->len = len;
3649 skb->data_len = len - pos;
3650
3651 for (i = 0; i < nfrags; i++) {
3652 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3653
3654 if (pos + size > len) {
3655 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3656
3657 if (pos < len) {
3658 /* Split frag.
3659 * We have two variants in this case:
3660 * 1. Move all the frag to the second
3661 * part, if it is possible. F.e.
3662 * this approach is mandatory for TUX,
3663 * where splitting is expensive.
3664 * 2. Split is accurately. We make this.
3665 */
3666 skb_frag_ref(skb, i);
3667 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3668 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3669 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3670 skb_shinfo(skb)->nr_frags++;
3671 }
3672 k++;
3673 } else
3674 skb_shinfo(skb)->nr_frags++;
3675 pos += size;
3676 }
3677 skb_shinfo(skb1)->nr_frags = k;
3678}
3679
3680/**
3681 * skb_split - Split fragmented skb to two parts at length len.
3682 * @skb: the buffer to split
3683 * @skb1: the buffer to receive the second part
3684 * @len: new length for skb
3685 */
3686void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3687{
3688 int pos = skb_headlen(skb);
3689 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3690
3691 skb_zcopy_downgrade_managed(skb);
3692
3693 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3694 skb_zerocopy_clone(skb1, skb, 0);
3695 if (len < pos) /* Split line is inside header. */
3696 skb_split_inside_header(skb, skb1, len, pos);
3697 else /* Second chunk has no header, nothing to copy. */
3698 skb_split_no_header(skb, skb1, len, pos);
3699}
3700EXPORT_SYMBOL(skb_split);
3701
3702/* Shifting from/to a cloned skb is a no-go.
3703 *
3704 * Caller cannot keep skb_shinfo related pointers past calling here!
3705 */
3706static int skb_prepare_for_shift(struct sk_buff *skb)
3707{
3708 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3709}
3710
3711/**
3712 * skb_shift - Shifts paged data partially from skb to another
3713 * @tgt: buffer into which tail data gets added
3714 * @skb: buffer from which the paged data comes from
3715 * @shiftlen: shift up to this many bytes
3716 *
3717 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3718 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3719 * It's up to caller to free skb if everything was shifted.
3720 *
3721 * If @tgt runs out of frags, the whole operation is aborted.
3722 *
3723 * Skb cannot include anything else but paged data while tgt is allowed
3724 * to have non-paged data as well.
3725 *
3726 * TODO: full sized shift could be optimized but that would need
3727 * specialized skb free'er to handle frags without up-to-date nr_frags.
3728 */
3729int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3730{
3731 int from, to, merge, todo;
3732 skb_frag_t *fragfrom, *fragto;
3733
3734 BUG_ON(shiftlen > skb->len);
3735
3736 if (skb_headlen(skb))
3737 return 0;
3738 if (skb_zcopy(tgt) || skb_zcopy(skb))
3739 return 0;
3740
3741 todo = shiftlen;
3742 from = 0;
3743 to = skb_shinfo(tgt)->nr_frags;
3744 fragfrom = &skb_shinfo(skb)->frags[from];
3745
3746 /* Actual merge is delayed until the point when we know we can
3747 * commit all, so that we don't have to undo partial changes
3748 */
3749 if (!to ||
3750 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3751 skb_frag_off(fragfrom))) {
3752 merge = -1;
3753 } else {
3754 merge = to - 1;
3755
3756 todo -= skb_frag_size(fragfrom);
3757 if (todo < 0) {
3758 if (skb_prepare_for_shift(skb) ||
3759 skb_prepare_for_shift(tgt))
3760 return 0;
3761
3762 /* All previous frag pointers might be stale! */
3763 fragfrom = &skb_shinfo(skb)->frags[from];
3764 fragto = &skb_shinfo(tgt)->frags[merge];
3765
3766 skb_frag_size_add(fragto, shiftlen);
3767 skb_frag_size_sub(fragfrom, shiftlen);
3768 skb_frag_off_add(fragfrom, shiftlen);
3769
3770 goto onlymerged;
3771 }
3772
3773 from++;
3774 }
3775
3776 /* Skip full, not-fitting skb to avoid expensive operations */
3777 if ((shiftlen == skb->len) &&
3778 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3779 return 0;
3780
3781 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3782 return 0;
3783
3784 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3785 if (to == MAX_SKB_FRAGS)
3786 return 0;
3787
3788 fragfrom = &skb_shinfo(skb)->frags[from];
3789 fragto = &skb_shinfo(tgt)->frags[to];
3790
3791 if (todo >= skb_frag_size(fragfrom)) {
3792 *fragto = *fragfrom;
3793 todo -= skb_frag_size(fragfrom);
3794 from++;
3795 to++;
3796
3797 } else {
3798 __skb_frag_ref(fragfrom);
3799 skb_frag_page_copy(fragto, fragfrom);
3800 skb_frag_off_copy(fragto, fragfrom);
3801 skb_frag_size_set(fragto, todo);
3802
3803 skb_frag_off_add(fragfrom, todo);
3804 skb_frag_size_sub(fragfrom, todo);
3805 todo = 0;
3806
3807 to++;
3808 break;
3809 }
3810 }
3811
3812 /* Ready to "commit" this state change to tgt */
3813 skb_shinfo(tgt)->nr_frags = to;
3814
3815 if (merge >= 0) {
3816 fragfrom = &skb_shinfo(skb)->frags[0];
3817 fragto = &skb_shinfo(tgt)->frags[merge];
3818
3819 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3820 __skb_frag_unref(fragfrom, skb->pp_recycle);
3821 }
3822
3823 /* Reposition in the original skb */
3824 to = 0;
3825 while (from < skb_shinfo(skb)->nr_frags)
3826 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3827 skb_shinfo(skb)->nr_frags = to;
3828
3829 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3830
3831onlymerged:
3832 /* Most likely the tgt won't ever need its checksum anymore, skb on
3833 * the other hand might need it if it needs to be resent
3834 */
3835 tgt->ip_summed = CHECKSUM_PARTIAL;
3836 skb->ip_summed = CHECKSUM_PARTIAL;
3837
3838 skb_len_add(skb, -shiftlen);
3839 skb_len_add(tgt, shiftlen);
3840
3841 return shiftlen;
3842}
3843
3844/**
3845 * skb_prepare_seq_read - Prepare a sequential read of skb data
3846 * @skb: the buffer to read
3847 * @from: lower offset of data to be read
3848 * @to: upper offset of data to be read
3849 * @st: state variable
3850 *
3851 * Initializes the specified state variable. Must be called before
3852 * invoking skb_seq_read() for the first time.
3853 */
3854void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3855 unsigned int to, struct skb_seq_state *st)
3856{
3857 st->lower_offset = from;
3858 st->upper_offset = to;
3859 st->root_skb = st->cur_skb = skb;
3860 st->frag_idx = st->stepped_offset = 0;
3861 st->frag_data = NULL;
3862 st->frag_off = 0;
3863}
3864EXPORT_SYMBOL(skb_prepare_seq_read);
3865
3866/**
3867 * skb_seq_read - Sequentially read skb data
3868 * @consumed: number of bytes consumed by the caller so far
3869 * @data: destination pointer for data to be returned
3870 * @st: state variable
3871 *
3872 * Reads a block of skb data at @consumed relative to the
3873 * lower offset specified to skb_prepare_seq_read(). Assigns
3874 * the head of the data block to @data and returns the length
3875 * of the block or 0 if the end of the skb data or the upper
3876 * offset has been reached.
3877 *
3878 * The caller is not required to consume all of the data
3879 * returned, i.e. @consumed is typically set to the number
3880 * of bytes already consumed and the next call to
3881 * skb_seq_read() will return the remaining part of the block.
3882 *
3883 * Note 1: The size of each block of data returned can be arbitrary,
3884 * this limitation is the cost for zerocopy sequential
3885 * reads of potentially non linear data.
3886 *
3887 * Note 2: Fragment lists within fragments are not implemented
3888 * at the moment, state->root_skb could be replaced with
3889 * a stack for this purpose.
3890 */
3891unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3892 struct skb_seq_state *st)
3893{
3894 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3895 skb_frag_t *frag;
3896
3897 if (unlikely(abs_offset >= st->upper_offset)) {
3898 if (st->frag_data) {
3899 kunmap_atomic(st->frag_data);
3900 st->frag_data = NULL;
3901 }
3902 return 0;
3903 }
3904
3905next_skb:
3906 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3907
3908 if (abs_offset < block_limit && !st->frag_data) {
3909 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3910 return block_limit - abs_offset;
3911 }
3912
3913 if (st->frag_idx == 0 && !st->frag_data)
3914 st->stepped_offset += skb_headlen(st->cur_skb);
3915
3916 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3917 unsigned int pg_idx, pg_off, pg_sz;
3918
3919 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3920
3921 pg_idx = 0;
3922 pg_off = skb_frag_off(frag);
3923 pg_sz = skb_frag_size(frag);
3924
3925 if (skb_frag_must_loop(skb_frag_page(frag))) {
3926 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3927 pg_off = offset_in_page(pg_off + st->frag_off);
3928 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3929 PAGE_SIZE - pg_off);
3930 }
3931
3932 block_limit = pg_sz + st->stepped_offset;
3933 if (abs_offset < block_limit) {
3934 if (!st->frag_data)
3935 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3936
3937 *data = (u8 *)st->frag_data + pg_off +
3938 (abs_offset - st->stepped_offset);
3939
3940 return block_limit - abs_offset;
3941 }
3942
3943 if (st->frag_data) {
3944 kunmap_atomic(st->frag_data);
3945 st->frag_data = NULL;
3946 }
3947
3948 st->stepped_offset += pg_sz;
3949 st->frag_off += pg_sz;
3950 if (st->frag_off == skb_frag_size(frag)) {
3951 st->frag_off = 0;
3952 st->frag_idx++;
3953 }
3954 }
3955
3956 if (st->frag_data) {
3957 kunmap_atomic(st->frag_data);
3958 st->frag_data = NULL;
3959 }
3960
3961 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3962 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3963 st->frag_idx = 0;
3964 goto next_skb;
3965 } else if (st->cur_skb->next) {
3966 st->cur_skb = st->cur_skb->next;
3967 st->frag_idx = 0;
3968 goto next_skb;
3969 }
3970
3971 return 0;
3972}
3973EXPORT_SYMBOL(skb_seq_read);
3974
3975/**
3976 * skb_abort_seq_read - Abort a sequential read of skb data
3977 * @st: state variable
3978 *
3979 * Must be called if skb_seq_read() was not called until it
3980 * returned 0.
3981 */
3982void skb_abort_seq_read(struct skb_seq_state *st)
3983{
3984 if (st->frag_data)
3985 kunmap_atomic(st->frag_data);
3986}
3987EXPORT_SYMBOL(skb_abort_seq_read);
3988
3989#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3990
3991static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3992 struct ts_config *conf,
3993 struct ts_state *state)
3994{
3995 return skb_seq_read(offset, text, TS_SKB_CB(state));
3996}
3997
3998static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3999{
4000 skb_abort_seq_read(TS_SKB_CB(state));
4001}
4002
4003/**
4004 * skb_find_text - Find a text pattern in skb data
4005 * @skb: the buffer to look in
4006 * @from: search offset
4007 * @to: search limit
4008 * @config: textsearch configuration
4009 *
4010 * Finds a pattern in the skb data according to the specified
4011 * textsearch configuration. Use textsearch_next() to retrieve
4012 * subsequent occurrences of the pattern. Returns the offset
4013 * to the first occurrence or UINT_MAX if no match was found.
4014 */
4015unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4016 unsigned int to, struct ts_config *config)
4017{
4018 struct ts_state state;
4019 unsigned int ret;
4020
4021 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4022
4023 config->get_next_block = skb_ts_get_next_block;
4024 config->finish = skb_ts_finish;
4025
4026 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4027
4028 ret = textsearch_find(config, &state);
4029 return (ret <= to - from ? ret : UINT_MAX);
4030}
4031EXPORT_SYMBOL(skb_find_text);
4032
4033int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4034 int offset, size_t size)
4035{
4036 int i = skb_shinfo(skb)->nr_frags;
4037
4038 if (skb_can_coalesce(skb, i, page, offset)) {
4039 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4040 } else if (i < MAX_SKB_FRAGS) {
4041 skb_zcopy_downgrade_managed(skb);
4042 get_page(page);
4043 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4044 } else {
4045 return -EMSGSIZE;
4046 }
4047
4048 return 0;
4049}
4050EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4051
4052/**
4053 * skb_pull_rcsum - pull skb and update receive checksum
4054 * @skb: buffer to update
4055 * @len: length of data pulled
4056 *
4057 * This function performs an skb_pull on the packet and updates
4058 * the CHECKSUM_COMPLETE checksum. It should be used on
4059 * receive path processing instead of skb_pull unless you know
4060 * that the checksum difference is zero (e.g., a valid IP header)
4061 * or you are setting ip_summed to CHECKSUM_NONE.
4062 */
4063void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4064{
4065 unsigned char *data = skb->data;
4066
4067 BUG_ON(len > skb->len);
4068 __skb_pull(skb, len);
4069 skb_postpull_rcsum(skb, data, len);
4070 return skb->data;
4071}
4072EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4073
4074static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4075{
4076 skb_frag_t head_frag;
4077 struct page *page;
4078
4079 page = virt_to_head_page(frag_skb->head);
4080 __skb_frag_set_page(&head_frag, page);
4081 skb_frag_off_set(&head_frag, frag_skb->data -
4082 (unsigned char *)page_address(page));
4083 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4084 return head_frag;
4085}
4086
4087struct sk_buff *skb_segment_list(struct sk_buff *skb,
4088 netdev_features_t features,
4089 unsigned int offset)
4090{
4091 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4092 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4093 unsigned int delta_truesize = 0;
4094 unsigned int delta_len = 0;
4095 struct sk_buff *tail = NULL;
4096 struct sk_buff *nskb, *tmp;
4097 int len_diff, err;
4098
4099 skb_push(skb, -skb_network_offset(skb) + offset);
4100
4101 skb_shinfo(skb)->frag_list = NULL;
4102
4103 while (list_skb) {
4104 nskb = list_skb;
4105 list_skb = list_skb->next;
4106
4107 err = 0;
4108 delta_truesize += nskb->truesize;
4109 if (skb_shared(nskb)) {
4110 tmp = skb_clone(nskb, GFP_ATOMIC);
4111 if (tmp) {
4112 consume_skb(nskb);
4113 nskb = tmp;
4114 err = skb_unclone(nskb, GFP_ATOMIC);
4115 } else {
4116 err = -ENOMEM;
4117 }
4118 }
4119
4120 if (!tail)
4121 skb->next = nskb;
4122 else
4123 tail->next = nskb;
4124
4125 if (unlikely(err)) {
4126 nskb->next = list_skb;
4127 goto err_linearize;
4128 }
4129
4130 tail = nskb;
4131
4132 delta_len += nskb->len;
4133
4134 skb_push(nskb, -skb_network_offset(nskb) + offset);
4135
4136 skb_release_head_state(nskb);
4137 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4138 __copy_skb_header(nskb, skb);
4139
4140 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4141 nskb->transport_header += len_diff;
4142 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4143 nskb->data - tnl_hlen,
4144 offset + tnl_hlen);
4145
4146 if (skb_needs_linearize(nskb, features) &&
4147 __skb_linearize(nskb))
4148 goto err_linearize;
4149 }
4150
4151 skb->truesize = skb->truesize - delta_truesize;
4152 skb->data_len = skb->data_len - delta_len;
4153 skb->len = skb->len - delta_len;
4154
4155 skb_gso_reset(skb);
4156
4157 skb->prev = tail;
4158
4159 if (skb_needs_linearize(skb, features) &&
4160 __skb_linearize(skb))
4161 goto err_linearize;
4162
4163 skb_get(skb);
4164
4165 return skb;
4166
4167err_linearize:
4168 kfree_skb_list(skb->next);
4169 skb->next = NULL;
4170 return ERR_PTR(-ENOMEM);
4171}
4172EXPORT_SYMBOL_GPL(skb_segment_list);
4173
4174/**
4175 * skb_segment - Perform protocol segmentation on skb.
4176 * @head_skb: buffer to segment
4177 * @features: features for the output path (see dev->features)
4178 *
4179 * This function performs segmentation on the given skb. It returns
4180 * a pointer to the first in a list of new skbs for the segments.
4181 * In case of error it returns ERR_PTR(err).
4182 */
4183struct sk_buff *skb_segment(struct sk_buff *head_skb,
4184 netdev_features_t features)
4185{
4186 struct sk_buff *segs = NULL;
4187 struct sk_buff *tail = NULL;
4188 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4189 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4190 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4191 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4192 struct sk_buff *frag_skb = head_skb;
4193 unsigned int offset = doffset;
4194 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4195 unsigned int partial_segs = 0;
4196 unsigned int headroom;
4197 unsigned int len = head_skb->len;
4198 __be16 proto;
4199 bool csum, sg;
4200 int nfrags = skb_shinfo(head_skb)->nr_frags;
4201 int err = -ENOMEM;
4202 int i = 0;
4203 int pos;
4204
4205 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4206 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4207 struct sk_buff *check_skb;
4208
4209 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4210 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4211 /* gso_size is untrusted, and we have a frag_list with
4212 * a linear non head_frag item.
4213 *
4214 * If head_skb's headlen does not fit requested gso_size,
4215 * it means that the frag_list members do NOT terminate
4216 * on exact gso_size boundaries. Hence we cannot perform
4217 * skb_frag_t page sharing. Therefore we must fallback to
4218 * copying the frag_list skbs; we do so by disabling SG.
4219 */
4220 features &= ~NETIF_F_SG;
4221 break;
4222 }
4223 }
4224 }
4225
4226 __skb_push(head_skb, doffset);
4227 proto = skb_network_protocol(head_skb, NULL);
4228 if (unlikely(!proto))
4229 return ERR_PTR(-EINVAL);
4230
4231 sg = !!(features & NETIF_F_SG);
4232 csum = !!can_checksum_protocol(features, proto);
4233
4234 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4235 if (!(features & NETIF_F_GSO_PARTIAL)) {
4236 struct sk_buff *iter;
4237 unsigned int frag_len;
4238
4239 if (!list_skb ||
4240 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4241 goto normal;
4242
4243 /* If we get here then all the required
4244 * GSO features except frag_list are supported.
4245 * Try to split the SKB to multiple GSO SKBs
4246 * with no frag_list.
4247 * Currently we can do that only when the buffers don't
4248 * have a linear part and all the buffers except
4249 * the last are of the same length.
4250 */
4251 frag_len = list_skb->len;
4252 skb_walk_frags(head_skb, iter) {
4253 if (frag_len != iter->len && iter->next)
4254 goto normal;
4255 if (skb_headlen(iter) && !iter->head_frag)
4256 goto normal;
4257
4258 len -= iter->len;
4259 }
4260
4261 if (len != frag_len)
4262 goto normal;
4263 }
4264
4265 /* GSO partial only requires that we trim off any excess that
4266 * doesn't fit into an MSS sized block, so take care of that
4267 * now.
4268 */
4269 partial_segs = len / mss;
4270 if (partial_segs > 1)
4271 mss *= partial_segs;
4272 else
4273 partial_segs = 0;
4274 }
4275
4276normal:
4277 headroom = skb_headroom(head_skb);
4278 pos = skb_headlen(head_skb);
4279
4280 do {
4281 struct sk_buff *nskb;
4282 skb_frag_t *nskb_frag;
4283 int hsize;
4284 int size;
4285
4286 if (unlikely(mss == GSO_BY_FRAGS)) {
4287 len = list_skb->len;
4288 } else {
4289 len = head_skb->len - offset;
4290 if (len > mss)
4291 len = mss;
4292 }
4293
4294 hsize = skb_headlen(head_skb) - offset;
4295
4296 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4297 (skb_headlen(list_skb) == len || sg)) {
4298 BUG_ON(skb_headlen(list_skb) > len);
4299
4300 i = 0;
4301 nfrags = skb_shinfo(list_skb)->nr_frags;
4302 frag = skb_shinfo(list_skb)->frags;
4303 frag_skb = list_skb;
4304 pos += skb_headlen(list_skb);
4305
4306 while (pos < offset + len) {
4307 BUG_ON(i >= nfrags);
4308
4309 size = skb_frag_size(frag);
4310 if (pos + size > offset + len)
4311 break;
4312
4313 i++;
4314 pos += size;
4315 frag++;
4316 }
4317
4318 nskb = skb_clone(list_skb, GFP_ATOMIC);
4319 list_skb = list_skb->next;
4320
4321 if (unlikely(!nskb))
4322 goto err;
4323
4324 if (unlikely(pskb_trim(nskb, len))) {
4325 kfree_skb(nskb);
4326 goto err;
4327 }
4328
4329 hsize = skb_end_offset(nskb);
4330 if (skb_cow_head(nskb, doffset + headroom)) {
4331 kfree_skb(nskb);
4332 goto err;
4333 }
4334
4335 nskb->truesize += skb_end_offset(nskb) - hsize;
4336 skb_release_head_state(nskb);
4337 __skb_push(nskb, doffset);
4338 } else {
4339 if (hsize < 0)
4340 hsize = 0;
4341 if (hsize > len || !sg)
4342 hsize = len;
4343
4344 nskb = __alloc_skb(hsize + doffset + headroom,
4345 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4346 NUMA_NO_NODE);
4347
4348 if (unlikely(!nskb))
4349 goto err;
4350
4351 skb_reserve(nskb, headroom);
4352 __skb_put(nskb, doffset);
4353 }
4354
4355 if (segs)
4356 tail->next = nskb;
4357 else
4358 segs = nskb;
4359 tail = nskb;
4360
4361 __copy_skb_header(nskb, head_skb);
4362
4363 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4364 skb_reset_mac_len(nskb);
4365
4366 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4367 nskb->data - tnl_hlen,
4368 doffset + tnl_hlen);
4369
4370 if (nskb->len == len + doffset)
4371 goto perform_csum_check;
4372
4373 if (!sg) {
4374 if (!csum) {
4375 if (!nskb->remcsum_offload)
4376 nskb->ip_summed = CHECKSUM_NONE;
4377 SKB_GSO_CB(nskb)->csum =
4378 skb_copy_and_csum_bits(head_skb, offset,
4379 skb_put(nskb,
4380 len),
4381 len);
4382 SKB_GSO_CB(nskb)->csum_start =
4383 skb_headroom(nskb) + doffset;
4384 } else {
4385 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4386 goto err;
4387 }
4388 continue;
4389 }
4390
4391 nskb_frag = skb_shinfo(nskb)->frags;
4392
4393 skb_copy_from_linear_data_offset(head_skb, offset,
4394 skb_put(nskb, hsize), hsize);
4395
4396 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4397 SKBFL_SHARED_FRAG;
4398
4399 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4400 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4401 goto err;
4402
4403 while (pos < offset + len) {
4404 if (i >= nfrags) {
4405 i = 0;
4406 nfrags = skb_shinfo(list_skb)->nr_frags;
4407 frag = skb_shinfo(list_skb)->frags;
4408 frag_skb = list_skb;
4409 if (!skb_headlen(list_skb)) {
4410 BUG_ON(!nfrags);
4411 } else {
4412 BUG_ON(!list_skb->head_frag);
4413
4414 /* to make room for head_frag. */
4415 i--;
4416 frag--;
4417 }
4418 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4419 skb_zerocopy_clone(nskb, frag_skb,
4420 GFP_ATOMIC))
4421 goto err;
4422
4423 list_skb = list_skb->next;
4424 }
4425
4426 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4427 MAX_SKB_FRAGS)) {
4428 net_warn_ratelimited(
4429 "skb_segment: too many frags: %u %u\n",
4430 pos, mss);
4431 err = -EINVAL;
4432 goto err;
4433 }
4434
4435 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4436 __skb_frag_ref(nskb_frag);
4437 size = skb_frag_size(nskb_frag);
4438
4439 if (pos < offset) {
4440 skb_frag_off_add(nskb_frag, offset - pos);
4441 skb_frag_size_sub(nskb_frag, offset - pos);
4442 }
4443
4444 skb_shinfo(nskb)->nr_frags++;
4445
4446 if (pos + size <= offset + len) {
4447 i++;
4448 frag++;
4449 pos += size;
4450 } else {
4451 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4452 goto skip_fraglist;
4453 }
4454
4455 nskb_frag++;
4456 }
4457
4458skip_fraglist:
4459 nskb->data_len = len - hsize;
4460 nskb->len += nskb->data_len;
4461 nskb->truesize += nskb->data_len;
4462
4463perform_csum_check:
4464 if (!csum) {
4465 if (skb_has_shared_frag(nskb) &&
4466 __skb_linearize(nskb))
4467 goto err;
4468
4469 if (!nskb->remcsum_offload)
4470 nskb->ip_summed = CHECKSUM_NONE;
4471 SKB_GSO_CB(nskb)->csum =
4472 skb_checksum(nskb, doffset,
4473 nskb->len - doffset, 0);
4474 SKB_GSO_CB(nskb)->csum_start =
4475 skb_headroom(nskb) + doffset;
4476 }
4477 } while ((offset += len) < head_skb->len);
4478
4479 /* Some callers want to get the end of the list.
4480 * Put it in segs->prev to avoid walking the list.
4481 * (see validate_xmit_skb_list() for example)
4482 */
4483 segs->prev = tail;
4484
4485 if (partial_segs) {
4486 struct sk_buff *iter;
4487 int type = skb_shinfo(head_skb)->gso_type;
4488 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4489
4490 /* Update type to add partial and then remove dodgy if set */
4491 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4492 type &= ~SKB_GSO_DODGY;
4493
4494 /* Update GSO info and prepare to start updating headers on
4495 * our way back down the stack of protocols.
4496 */
4497 for (iter = segs; iter; iter = iter->next) {
4498 skb_shinfo(iter)->gso_size = gso_size;
4499 skb_shinfo(iter)->gso_segs = partial_segs;
4500 skb_shinfo(iter)->gso_type = type;
4501 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4502 }
4503
4504 if (tail->len - doffset <= gso_size)
4505 skb_shinfo(tail)->gso_size = 0;
4506 else if (tail != segs)
4507 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4508 }
4509
4510 /* Following permits correct backpressure, for protocols
4511 * using skb_set_owner_w().
4512 * Idea is to tranfert ownership from head_skb to last segment.
4513 */
4514 if (head_skb->destructor == sock_wfree) {
4515 swap(tail->truesize, head_skb->truesize);
4516 swap(tail->destructor, head_skb->destructor);
4517 swap(tail->sk, head_skb->sk);
4518 }
4519 return segs;
4520
4521err:
4522 kfree_skb_list(segs);
4523 return ERR_PTR(err);
4524}
4525EXPORT_SYMBOL_GPL(skb_segment);
4526
4527#ifdef CONFIG_SKB_EXTENSIONS
4528#define SKB_EXT_ALIGN_VALUE 8
4529#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4530
4531static const u8 skb_ext_type_len[] = {
4532#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4533 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4534#endif
4535#ifdef CONFIG_XFRM
4536 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4537#endif
4538#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4539 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4540#endif
4541#if IS_ENABLED(CONFIG_MPTCP)
4542 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4543#endif
4544#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4545 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4546#endif
4547};
4548
4549static __always_inline unsigned int skb_ext_total_length(void)
4550{
4551 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4552#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4553 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4554#endif
4555#ifdef CONFIG_XFRM
4556 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4557#endif
4558#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4559 skb_ext_type_len[TC_SKB_EXT] +
4560#endif
4561#if IS_ENABLED(CONFIG_MPTCP)
4562 skb_ext_type_len[SKB_EXT_MPTCP] +
4563#endif
4564#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4565 skb_ext_type_len[SKB_EXT_MCTP] +
4566#endif
4567 0;
4568}
4569
4570static void skb_extensions_init(void)
4571{
4572 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4573 BUILD_BUG_ON(skb_ext_total_length() > 255);
4574
4575 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4576 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4577 0,
4578 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4579 NULL);
4580}
4581#else
4582static void skb_extensions_init(void) {}
4583#endif
4584
4585void __init skb_init(void)
4586{
4587 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4588 sizeof(struct sk_buff),
4589 0,
4590 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4591 offsetof(struct sk_buff, cb),
4592 sizeof_field(struct sk_buff, cb),
4593 NULL);
4594 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4595 sizeof(struct sk_buff_fclones),
4596 0,
4597 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4598 NULL);
4599 skb_extensions_init();
4600}
4601
4602static int
4603__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4604 unsigned int recursion_level)
4605{
4606 int start = skb_headlen(skb);
4607 int i, copy = start - offset;
4608 struct sk_buff *frag_iter;
4609 int elt = 0;
4610
4611 if (unlikely(recursion_level >= 24))
4612 return -EMSGSIZE;
4613
4614 if (copy > 0) {
4615 if (copy > len)
4616 copy = len;
4617 sg_set_buf(sg, skb->data + offset, copy);
4618 elt++;
4619 if ((len -= copy) == 0)
4620 return elt;
4621 offset += copy;
4622 }
4623
4624 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4625 int end;
4626
4627 WARN_ON(start > offset + len);
4628
4629 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4630 if ((copy = end - offset) > 0) {
4631 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4632 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4633 return -EMSGSIZE;
4634
4635 if (copy > len)
4636 copy = len;
4637 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4638 skb_frag_off(frag) + offset - start);
4639 elt++;
4640 if (!(len -= copy))
4641 return elt;
4642 offset += copy;
4643 }
4644 start = end;
4645 }
4646
4647 skb_walk_frags(skb, frag_iter) {
4648 int end, ret;
4649
4650 WARN_ON(start > offset + len);
4651
4652 end = start + frag_iter->len;
4653 if ((copy = end - offset) > 0) {
4654 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4655 return -EMSGSIZE;
4656
4657 if (copy > len)
4658 copy = len;
4659 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4660 copy, recursion_level + 1);
4661 if (unlikely(ret < 0))
4662 return ret;
4663 elt += ret;
4664 if ((len -= copy) == 0)
4665 return elt;
4666 offset += copy;
4667 }
4668 start = end;
4669 }
4670 BUG_ON(len);
4671 return elt;
4672}
4673
4674/**
4675 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4676 * @skb: Socket buffer containing the buffers to be mapped
4677 * @sg: The scatter-gather list to map into
4678 * @offset: The offset into the buffer's contents to start mapping
4679 * @len: Length of buffer space to be mapped
4680 *
4681 * Fill the specified scatter-gather list with mappings/pointers into a
4682 * region of the buffer space attached to a socket buffer. Returns either
4683 * the number of scatterlist items used, or -EMSGSIZE if the contents
4684 * could not fit.
4685 */
4686int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4687{
4688 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4689
4690 if (nsg <= 0)
4691 return nsg;
4692
4693 sg_mark_end(&sg[nsg - 1]);
4694
4695 return nsg;
4696}
4697EXPORT_SYMBOL_GPL(skb_to_sgvec);
4698
4699/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4700 * sglist without mark the sg which contain last skb data as the end.
4701 * So the caller can mannipulate sg list as will when padding new data after
4702 * the first call without calling sg_unmark_end to expend sg list.
4703 *
4704 * Scenario to use skb_to_sgvec_nomark:
4705 * 1. sg_init_table
4706 * 2. skb_to_sgvec_nomark(payload1)
4707 * 3. skb_to_sgvec_nomark(payload2)
4708 *
4709 * This is equivalent to:
4710 * 1. sg_init_table
4711 * 2. skb_to_sgvec(payload1)
4712 * 3. sg_unmark_end
4713 * 4. skb_to_sgvec(payload2)
4714 *
4715 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4716 * is more preferable.
4717 */
4718int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4719 int offset, int len)
4720{
4721 return __skb_to_sgvec(skb, sg, offset, len, 0);
4722}
4723EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4724
4725
4726
4727/**
4728 * skb_cow_data - Check that a socket buffer's data buffers are writable
4729 * @skb: The socket buffer to check.
4730 * @tailbits: Amount of trailing space to be added
4731 * @trailer: Returned pointer to the skb where the @tailbits space begins
4732 *
4733 * Make sure that the data buffers attached to a socket buffer are
4734 * writable. If they are not, private copies are made of the data buffers
4735 * and the socket buffer is set to use these instead.
4736 *
4737 * If @tailbits is given, make sure that there is space to write @tailbits
4738 * bytes of data beyond current end of socket buffer. @trailer will be
4739 * set to point to the skb in which this space begins.
4740 *
4741 * The number of scatterlist elements required to completely map the
4742 * COW'd and extended socket buffer will be returned.
4743 */
4744int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4745{
4746 int copyflag;
4747 int elt;
4748 struct sk_buff *skb1, **skb_p;
4749
4750 /* If skb is cloned or its head is paged, reallocate
4751 * head pulling out all the pages (pages are considered not writable
4752 * at the moment even if they are anonymous).
4753 */
4754 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4755 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4756 return -ENOMEM;
4757
4758 /* Easy case. Most of packets will go this way. */
4759 if (!skb_has_frag_list(skb)) {
4760 /* A little of trouble, not enough of space for trailer.
4761 * This should not happen, when stack is tuned to generate
4762 * good frames. OK, on miss we reallocate and reserve even more
4763 * space, 128 bytes is fair. */
4764
4765 if (skb_tailroom(skb) < tailbits &&
4766 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4767 return -ENOMEM;
4768
4769 /* Voila! */
4770 *trailer = skb;
4771 return 1;
4772 }
4773
4774 /* Misery. We are in troubles, going to mincer fragments... */
4775
4776 elt = 1;
4777 skb_p = &skb_shinfo(skb)->frag_list;
4778 copyflag = 0;
4779
4780 while ((skb1 = *skb_p) != NULL) {
4781 int ntail = 0;
4782
4783 /* The fragment is partially pulled by someone,
4784 * this can happen on input. Copy it and everything
4785 * after it. */
4786
4787 if (skb_shared(skb1))
4788 copyflag = 1;
4789
4790 /* If the skb is the last, worry about trailer. */
4791
4792 if (skb1->next == NULL && tailbits) {
4793 if (skb_shinfo(skb1)->nr_frags ||
4794 skb_has_frag_list(skb1) ||
4795 skb_tailroom(skb1) < tailbits)
4796 ntail = tailbits + 128;
4797 }
4798
4799 if (copyflag ||
4800 skb_cloned(skb1) ||
4801 ntail ||
4802 skb_shinfo(skb1)->nr_frags ||
4803 skb_has_frag_list(skb1)) {
4804 struct sk_buff *skb2;
4805
4806 /* Fuck, we are miserable poor guys... */
4807 if (ntail == 0)
4808 skb2 = skb_copy(skb1, GFP_ATOMIC);
4809 else
4810 skb2 = skb_copy_expand(skb1,
4811 skb_headroom(skb1),
4812 ntail,
4813 GFP_ATOMIC);
4814 if (unlikely(skb2 == NULL))
4815 return -ENOMEM;
4816
4817 if (skb1->sk)
4818 skb_set_owner_w(skb2, skb1->sk);
4819
4820 /* Looking around. Are we still alive?
4821 * OK, link new skb, drop old one */
4822
4823 skb2->next = skb1->next;
4824 *skb_p = skb2;
4825 kfree_skb(skb1);
4826 skb1 = skb2;
4827 }
4828 elt++;
4829 *trailer = skb1;
4830 skb_p = &skb1->next;
4831 }
4832
4833 return elt;
4834}
4835EXPORT_SYMBOL_GPL(skb_cow_data);
4836
4837static void sock_rmem_free(struct sk_buff *skb)
4838{
4839 struct sock *sk = skb->sk;
4840
4841 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4842}
4843
4844static void skb_set_err_queue(struct sk_buff *skb)
4845{
4846 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4847 * So, it is safe to (mis)use it to mark skbs on the error queue.
4848 */
4849 skb->pkt_type = PACKET_OUTGOING;
4850 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4851}
4852
4853/*
4854 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4855 */
4856int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4857{
4858 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4859 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4860 return -ENOMEM;
4861
4862 skb_orphan(skb);
4863 skb->sk = sk;
4864 skb->destructor = sock_rmem_free;
4865 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4866 skb_set_err_queue(skb);
4867
4868 /* before exiting rcu section, make sure dst is refcounted */
4869 skb_dst_force(skb);
4870
4871 skb_queue_tail(&sk->sk_error_queue, skb);
4872 if (!sock_flag(sk, SOCK_DEAD))
4873 sk_error_report(sk);
4874 return 0;
4875}
4876EXPORT_SYMBOL(sock_queue_err_skb);
4877
4878static bool is_icmp_err_skb(const struct sk_buff *skb)
4879{
4880 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4881 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4882}
4883
4884struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4885{
4886 struct sk_buff_head *q = &sk->sk_error_queue;
4887 struct sk_buff *skb, *skb_next = NULL;
4888 bool icmp_next = false;
4889 unsigned long flags;
4890
4891 spin_lock_irqsave(&q->lock, flags);
4892 skb = __skb_dequeue(q);
4893 if (skb && (skb_next = skb_peek(q))) {
4894 icmp_next = is_icmp_err_skb(skb_next);
4895 if (icmp_next)
4896 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4897 }
4898 spin_unlock_irqrestore(&q->lock, flags);
4899
4900 if (is_icmp_err_skb(skb) && !icmp_next)
4901 sk->sk_err = 0;
4902
4903 if (skb_next)
4904 sk_error_report(sk);
4905
4906 return skb;
4907}
4908EXPORT_SYMBOL(sock_dequeue_err_skb);
4909
4910/**
4911 * skb_clone_sk - create clone of skb, and take reference to socket
4912 * @skb: the skb to clone
4913 *
4914 * This function creates a clone of a buffer that holds a reference on
4915 * sk_refcnt. Buffers created via this function are meant to be
4916 * returned using sock_queue_err_skb, or free via kfree_skb.
4917 *
4918 * When passing buffers allocated with this function to sock_queue_err_skb
4919 * it is necessary to wrap the call with sock_hold/sock_put in order to
4920 * prevent the socket from being released prior to being enqueued on
4921 * the sk_error_queue.
4922 */
4923struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4924{
4925 struct sock *sk = skb->sk;
4926 struct sk_buff *clone;
4927
4928 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4929 return NULL;
4930
4931 clone = skb_clone(skb, GFP_ATOMIC);
4932 if (!clone) {
4933 sock_put(sk);
4934 return NULL;
4935 }
4936
4937 clone->sk = sk;
4938 clone->destructor = sock_efree;
4939
4940 return clone;
4941}
4942EXPORT_SYMBOL(skb_clone_sk);
4943
4944static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4945 struct sock *sk,
4946 int tstype,
4947 bool opt_stats)
4948{
4949 struct sock_exterr_skb *serr;
4950 int err;
4951
4952 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4953
4954 serr = SKB_EXT_ERR(skb);
4955 memset(serr, 0, sizeof(*serr));
4956 serr->ee.ee_errno = ENOMSG;
4957 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4958 serr->ee.ee_info = tstype;
4959 serr->opt_stats = opt_stats;
4960 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4961 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4962 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4963 if (sk_is_tcp(sk))
4964 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4965 }
4966
4967 err = sock_queue_err_skb(sk, skb);
4968
4969 if (err)
4970 kfree_skb(skb);
4971}
4972
4973static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4974{
4975 bool ret;
4976
4977 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4978 return true;
4979
4980 read_lock_bh(&sk->sk_callback_lock);
4981 ret = sk->sk_socket && sk->sk_socket->file &&
4982 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4983 read_unlock_bh(&sk->sk_callback_lock);
4984 return ret;
4985}
4986
4987void skb_complete_tx_timestamp(struct sk_buff *skb,
4988 struct skb_shared_hwtstamps *hwtstamps)
4989{
4990 struct sock *sk = skb->sk;
4991
4992 if (!skb_may_tx_timestamp(sk, false))
4993 goto err;
4994
4995 /* Take a reference to prevent skb_orphan() from freeing the socket,
4996 * but only if the socket refcount is not zero.
4997 */
4998 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4999 *skb_hwtstamps(skb) = *hwtstamps;
5000 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5001 sock_put(sk);
5002 return;
5003 }
5004
5005err:
5006 kfree_skb(skb);
5007}
5008EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5009
5010void __skb_tstamp_tx(struct sk_buff *orig_skb,
5011 const struct sk_buff *ack_skb,
5012 struct skb_shared_hwtstamps *hwtstamps,
5013 struct sock *sk, int tstype)
5014{
5015 struct sk_buff *skb;
5016 bool tsonly, opt_stats = false;
5017
5018 if (!sk)
5019 return;
5020
5021 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5022 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5023 return;
5024
5025 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5026 if (!skb_may_tx_timestamp(sk, tsonly))
5027 return;
5028
5029 if (tsonly) {
5030#ifdef CONFIG_INET
5031 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5032 sk_is_tcp(sk)) {
5033 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5034 ack_skb);
5035 opt_stats = true;
5036 } else
5037#endif
5038 skb = alloc_skb(0, GFP_ATOMIC);
5039 } else {
5040 skb = skb_clone(orig_skb, GFP_ATOMIC);
5041 }
5042 if (!skb)
5043 return;
5044
5045 if (tsonly) {
5046 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5047 SKBTX_ANY_TSTAMP;
5048 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5049 }
5050
5051 if (hwtstamps)
5052 *skb_hwtstamps(skb) = *hwtstamps;
5053 else
5054 __net_timestamp(skb);
5055
5056 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5057}
5058EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5059
5060void skb_tstamp_tx(struct sk_buff *orig_skb,
5061 struct skb_shared_hwtstamps *hwtstamps)
5062{
5063 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5064 SCM_TSTAMP_SND);
5065}
5066EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5067
5068void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5069{
5070 struct sock *sk = skb->sk;
5071 struct sock_exterr_skb *serr;
5072 int err = 1;
5073
5074 skb->wifi_acked_valid = 1;
5075 skb->wifi_acked = acked;
5076
5077 serr = SKB_EXT_ERR(skb);
5078 memset(serr, 0, sizeof(*serr));
5079 serr->ee.ee_errno = ENOMSG;
5080 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5081
5082 /* Take a reference to prevent skb_orphan() from freeing the socket,
5083 * but only if the socket refcount is not zero.
5084 */
5085 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5086 err = sock_queue_err_skb(sk, skb);
5087 sock_put(sk);
5088 }
5089 if (err)
5090 kfree_skb(skb);
5091}
5092EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5093
5094/**
5095 * skb_partial_csum_set - set up and verify partial csum values for packet
5096 * @skb: the skb to set
5097 * @start: the number of bytes after skb->data to start checksumming.
5098 * @off: the offset from start to place the checksum.
5099 *
5100 * For untrusted partially-checksummed packets, we need to make sure the values
5101 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5102 *
5103 * This function checks and sets those values and skb->ip_summed: if this
5104 * returns false you should drop the packet.
5105 */
5106bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5107{
5108 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5109 u32 csum_start = skb_headroom(skb) + (u32)start;
5110
5111 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5112 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5113 start, off, skb_headroom(skb), skb_headlen(skb));
5114 return false;
5115 }
5116 skb->ip_summed = CHECKSUM_PARTIAL;
5117 skb->csum_start = csum_start;
5118 skb->csum_offset = off;
5119 skb_set_transport_header(skb, start);
5120 return true;
5121}
5122EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5123
5124static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5125 unsigned int max)
5126{
5127 if (skb_headlen(skb) >= len)
5128 return 0;
5129
5130 /* If we need to pullup then pullup to the max, so we
5131 * won't need to do it again.
5132 */
5133 if (max > skb->len)
5134 max = skb->len;
5135
5136 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5137 return -ENOMEM;
5138
5139 if (skb_headlen(skb) < len)
5140 return -EPROTO;
5141
5142 return 0;
5143}
5144
5145#define MAX_TCP_HDR_LEN (15 * 4)
5146
5147static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5148 typeof(IPPROTO_IP) proto,
5149 unsigned int off)
5150{
5151 int err;
5152
5153 switch (proto) {
5154 case IPPROTO_TCP:
5155 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5156 off + MAX_TCP_HDR_LEN);
5157 if (!err && !skb_partial_csum_set(skb, off,
5158 offsetof(struct tcphdr,
5159 check)))
5160 err = -EPROTO;
5161 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5162
5163 case IPPROTO_UDP:
5164 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5165 off + sizeof(struct udphdr));
5166 if (!err && !skb_partial_csum_set(skb, off,
5167 offsetof(struct udphdr,
5168 check)))
5169 err = -EPROTO;
5170 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5171 }
5172
5173 return ERR_PTR(-EPROTO);
5174}
5175
5176/* This value should be large enough to cover a tagged ethernet header plus
5177 * maximally sized IP and TCP or UDP headers.
5178 */
5179#define MAX_IP_HDR_LEN 128
5180
5181static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5182{
5183 unsigned int off;
5184 bool fragment;
5185 __sum16 *csum;
5186 int err;
5187
5188 fragment = false;
5189
5190 err = skb_maybe_pull_tail(skb,
5191 sizeof(struct iphdr),
5192 MAX_IP_HDR_LEN);
5193 if (err < 0)
5194 goto out;
5195
5196 if (ip_is_fragment(ip_hdr(skb)))
5197 fragment = true;
5198
5199 off = ip_hdrlen(skb);
5200
5201 err = -EPROTO;
5202
5203 if (fragment)
5204 goto out;
5205
5206 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5207 if (IS_ERR(csum))
5208 return PTR_ERR(csum);
5209
5210 if (recalculate)
5211 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5212 ip_hdr(skb)->daddr,
5213 skb->len - off,
5214 ip_hdr(skb)->protocol, 0);
5215 err = 0;
5216
5217out:
5218 return err;
5219}
5220
5221/* This value should be large enough to cover a tagged ethernet header plus
5222 * an IPv6 header, all options, and a maximal TCP or UDP header.
5223 */
5224#define MAX_IPV6_HDR_LEN 256
5225
5226#define OPT_HDR(type, skb, off) \
5227 (type *)(skb_network_header(skb) + (off))
5228
5229static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5230{
5231 int err;
5232 u8 nexthdr;
5233 unsigned int off;
5234 unsigned int len;
5235 bool fragment;
5236 bool done;
5237 __sum16 *csum;
5238
5239 fragment = false;
5240 done = false;
5241
5242 off = sizeof(struct ipv6hdr);
5243
5244 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5245 if (err < 0)
5246 goto out;
5247
5248 nexthdr = ipv6_hdr(skb)->nexthdr;
5249
5250 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5251 while (off <= len && !done) {
5252 switch (nexthdr) {
5253 case IPPROTO_DSTOPTS:
5254 case IPPROTO_HOPOPTS:
5255 case IPPROTO_ROUTING: {
5256 struct ipv6_opt_hdr *hp;
5257
5258 err = skb_maybe_pull_tail(skb,
5259 off +
5260 sizeof(struct ipv6_opt_hdr),
5261 MAX_IPV6_HDR_LEN);
5262 if (err < 0)
5263 goto out;
5264
5265 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5266 nexthdr = hp->nexthdr;
5267 off += ipv6_optlen(hp);
5268 break;
5269 }
5270 case IPPROTO_AH: {
5271 struct ip_auth_hdr *hp;
5272
5273 err = skb_maybe_pull_tail(skb,
5274 off +
5275 sizeof(struct ip_auth_hdr),
5276 MAX_IPV6_HDR_LEN);
5277 if (err < 0)
5278 goto out;
5279
5280 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5281 nexthdr = hp->nexthdr;
5282 off += ipv6_authlen(hp);
5283 break;
5284 }
5285 case IPPROTO_FRAGMENT: {
5286 struct frag_hdr *hp;
5287
5288 err = skb_maybe_pull_tail(skb,
5289 off +
5290 sizeof(struct frag_hdr),
5291 MAX_IPV6_HDR_LEN);
5292 if (err < 0)
5293 goto out;
5294
5295 hp = OPT_HDR(struct frag_hdr, skb, off);
5296
5297 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5298 fragment = true;
5299
5300 nexthdr = hp->nexthdr;
5301 off += sizeof(struct frag_hdr);
5302 break;
5303 }
5304 default:
5305 done = true;
5306 break;
5307 }
5308 }
5309
5310 err = -EPROTO;
5311
5312 if (!done || fragment)
5313 goto out;
5314
5315 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5316 if (IS_ERR(csum))
5317 return PTR_ERR(csum);
5318
5319 if (recalculate)
5320 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5321 &ipv6_hdr(skb)->daddr,
5322 skb->len - off, nexthdr, 0);
5323 err = 0;
5324
5325out:
5326 return err;
5327}
5328
5329/**
5330 * skb_checksum_setup - set up partial checksum offset
5331 * @skb: the skb to set up
5332 * @recalculate: if true the pseudo-header checksum will be recalculated
5333 */
5334int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5335{
5336 int err;
5337
5338 switch (skb->protocol) {
5339 case htons(ETH_P_IP):
5340 err = skb_checksum_setup_ipv4(skb, recalculate);
5341 break;
5342
5343 case htons(ETH_P_IPV6):
5344 err = skb_checksum_setup_ipv6(skb, recalculate);
5345 break;
5346
5347 default:
5348 err = -EPROTO;
5349 break;
5350 }
5351
5352 return err;
5353}
5354EXPORT_SYMBOL(skb_checksum_setup);
5355
5356/**
5357 * skb_checksum_maybe_trim - maybe trims the given skb
5358 * @skb: the skb to check
5359 * @transport_len: the data length beyond the network header
5360 *
5361 * Checks whether the given skb has data beyond the given transport length.
5362 * If so, returns a cloned skb trimmed to this transport length.
5363 * Otherwise returns the provided skb. Returns NULL in error cases
5364 * (e.g. transport_len exceeds skb length or out-of-memory).
5365 *
5366 * Caller needs to set the skb transport header and free any returned skb if it
5367 * differs from the provided skb.
5368 */
5369static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5370 unsigned int transport_len)
5371{
5372 struct sk_buff *skb_chk;
5373 unsigned int len = skb_transport_offset(skb) + transport_len;
5374 int ret;
5375
5376 if (skb->len < len)
5377 return NULL;
5378 else if (skb->len == len)
5379 return skb;
5380
5381 skb_chk = skb_clone(skb, GFP_ATOMIC);
5382 if (!skb_chk)
5383 return NULL;
5384
5385 ret = pskb_trim_rcsum(skb_chk, len);
5386 if (ret) {
5387 kfree_skb(skb_chk);
5388 return NULL;
5389 }
5390
5391 return skb_chk;
5392}
5393
5394/**
5395 * skb_checksum_trimmed - validate checksum of an skb
5396 * @skb: the skb to check
5397 * @transport_len: the data length beyond the network header
5398 * @skb_chkf: checksum function to use
5399 *
5400 * Applies the given checksum function skb_chkf to the provided skb.
5401 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5402 *
5403 * If the skb has data beyond the given transport length, then a
5404 * trimmed & cloned skb is checked and returned.
5405 *
5406 * Caller needs to set the skb transport header and free any returned skb if it
5407 * differs from the provided skb.
5408 */
5409struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5410 unsigned int transport_len,
5411 __sum16(*skb_chkf)(struct sk_buff *skb))
5412{
5413 struct sk_buff *skb_chk;
5414 unsigned int offset = skb_transport_offset(skb);
5415 __sum16 ret;
5416
5417 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5418 if (!skb_chk)
5419 goto err;
5420
5421 if (!pskb_may_pull(skb_chk, offset))
5422 goto err;
5423
5424 skb_pull_rcsum(skb_chk, offset);
5425 ret = skb_chkf(skb_chk);
5426 skb_push_rcsum(skb_chk, offset);
5427
5428 if (ret)
5429 goto err;
5430
5431 return skb_chk;
5432
5433err:
5434 if (skb_chk && skb_chk != skb)
5435 kfree_skb(skb_chk);
5436
5437 return NULL;
5438
5439}
5440EXPORT_SYMBOL(skb_checksum_trimmed);
5441
5442void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5443{
5444 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5445 skb->dev->name);
5446}
5447EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5448
5449void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5450{
5451 if (head_stolen) {
5452 skb_release_head_state(skb);
5453 kmem_cache_free(skbuff_head_cache, skb);
5454 } else {
5455 __kfree_skb(skb);
5456 }
5457}
5458EXPORT_SYMBOL(kfree_skb_partial);
5459
5460/**
5461 * skb_try_coalesce - try to merge skb to prior one
5462 * @to: prior buffer
5463 * @from: buffer to add
5464 * @fragstolen: pointer to boolean
5465 * @delta_truesize: how much more was allocated than was requested
5466 */
5467bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5468 bool *fragstolen, int *delta_truesize)
5469{
5470 struct skb_shared_info *to_shinfo, *from_shinfo;
5471 int i, delta, len = from->len;
5472
5473 *fragstolen = false;
5474
5475 if (skb_cloned(to))
5476 return false;
5477
5478 /* In general, avoid mixing slab allocated and page_pool allocated
5479 * pages within the same SKB. However when @to is not pp_recycle and
5480 * @from is cloned, we can transition frag pages from page_pool to
5481 * reference counted.
5482 *
5483 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5484 * @from is cloned, in case the SKB is using page_pool fragment
5485 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5486 * references for cloned SKBs at the moment that would result in
5487 * inconsistent reference counts.
5488 */
5489 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5490 return false;
5491
5492 if (len <= skb_tailroom(to)) {
5493 if (len)
5494 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5495 *delta_truesize = 0;
5496 return true;
5497 }
5498
5499 to_shinfo = skb_shinfo(to);
5500 from_shinfo = skb_shinfo(from);
5501 if (to_shinfo->frag_list || from_shinfo->frag_list)
5502 return false;
5503 if (skb_zcopy(to) || skb_zcopy(from))
5504 return false;
5505
5506 if (skb_headlen(from) != 0) {
5507 struct page *page;
5508 unsigned int offset;
5509
5510 if (to_shinfo->nr_frags +
5511 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5512 return false;
5513
5514 if (skb_head_is_locked(from))
5515 return false;
5516
5517 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5518
5519 page = virt_to_head_page(from->head);
5520 offset = from->data - (unsigned char *)page_address(page);
5521
5522 skb_fill_page_desc(to, to_shinfo->nr_frags,
5523 page, offset, skb_headlen(from));
5524 *fragstolen = true;
5525 } else {
5526 if (to_shinfo->nr_frags +
5527 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5528 return false;
5529
5530 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5531 }
5532
5533 WARN_ON_ONCE(delta < len);
5534
5535 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5536 from_shinfo->frags,
5537 from_shinfo->nr_frags * sizeof(skb_frag_t));
5538 to_shinfo->nr_frags += from_shinfo->nr_frags;
5539
5540 if (!skb_cloned(from))
5541 from_shinfo->nr_frags = 0;
5542
5543 /* if the skb is not cloned this does nothing
5544 * since we set nr_frags to 0.
5545 */
5546 for (i = 0; i < from_shinfo->nr_frags; i++)
5547 __skb_frag_ref(&from_shinfo->frags[i]);
5548
5549 to->truesize += delta;
5550 to->len += len;
5551 to->data_len += len;
5552
5553 *delta_truesize = delta;
5554 return true;
5555}
5556EXPORT_SYMBOL(skb_try_coalesce);
5557
5558/**
5559 * skb_scrub_packet - scrub an skb
5560 *
5561 * @skb: buffer to clean
5562 * @xnet: packet is crossing netns
5563 *
5564 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5565 * into/from a tunnel. Some information have to be cleared during these
5566 * operations.
5567 * skb_scrub_packet can also be used to clean a skb before injecting it in
5568 * another namespace (@xnet == true). We have to clear all information in the
5569 * skb that could impact namespace isolation.
5570 */
5571void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5572{
5573 skb->pkt_type = PACKET_HOST;
5574 skb->skb_iif = 0;
5575 skb->ignore_df = 0;
5576 skb_dst_drop(skb);
5577 skb_ext_reset(skb);
5578 nf_reset_ct(skb);
5579 nf_reset_trace(skb);
5580
5581#ifdef CONFIG_NET_SWITCHDEV
5582 skb->offload_fwd_mark = 0;
5583 skb->offload_l3_fwd_mark = 0;
5584#endif
5585
5586 if (!xnet)
5587 return;
5588
5589 ipvs_reset(skb);
5590 skb->mark = 0;
5591 skb_clear_tstamp(skb);
5592}
5593EXPORT_SYMBOL_GPL(skb_scrub_packet);
5594
5595/**
5596 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5597 *
5598 * @skb: GSO skb
5599 *
5600 * skb_gso_transport_seglen is used to determine the real size of the
5601 * individual segments, including Layer4 headers (TCP/UDP).
5602 *
5603 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5604 */
5605static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5606{
5607 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5608 unsigned int thlen = 0;
5609
5610 if (skb->encapsulation) {
5611 thlen = skb_inner_transport_header(skb) -
5612 skb_transport_header(skb);
5613
5614 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5615 thlen += inner_tcp_hdrlen(skb);
5616 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5617 thlen = tcp_hdrlen(skb);
5618 } else if (unlikely(skb_is_gso_sctp(skb))) {
5619 thlen = sizeof(struct sctphdr);
5620 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5621 thlen = sizeof(struct udphdr);
5622 }
5623 /* UFO sets gso_size to the size of the fragmentation
5624 * payload, i.e. the size of the L4 (UDP) header is already
5625 * accounted for.
5626 */
5627 return thlen + shinfo->gso_size;
5628}
5629
5630/**
5631 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5632 *
5633 * @skb: GSO skb
5634 *
5635 * skb_gso_network_seglen is used to determine the real size of the
5636 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5637 *
5638 * The MAC/L2 header is not accounted for.
5639 */
5640static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5641{
5642 unsigned int hdr_len = skb_transport_header(skb) -
5643 skb_network_header(skb);
5644
5645 return hdr_len + skb_gso_transport_seglen(skb);
5646}
5647
5648/**
5649 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5650 *
5651 * @skb: GSO skb
5652 *
5653 * skb_gso_mac_seglen is used to determine the real size of the
5654 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5655 * headers (TCP/UDP).
5656 */
5657static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5658{
5659 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5660
5661 return hdr_len + skb_gso_transport_seglen(skb);
5662}
5663
5664/**
5665 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5666 *
5667 * There are a couple of instances where we have a GSO skb, and we
5668 * want to determine what size it would be after it is segmented.
5669 *
5670 * We might want to check:
5671 * - L3+L4+payload size (e.g. IP forwarding)
5672 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5673 *
5674 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5675 *
5676 * @skb: GSO skb
5677 *
5678 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5679 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5680 *
5681 * @max_len: The maximum permissible length.
5682 *
5683 * Returns true if the segmented length <= max length.
5684 */
5685static inline bool skb_gso_size_check(const struct sk_buff *skb,
5686 unsigned int seg_len,
5687 unsigned int max_len) {
5688 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5689 const struct sk_buff *iter;
5690
5691 if (shinfo->gso_size != GSO_BY_FRAGS)
5692 return seg_len <= max_len;
5693
5694 /* Undo this so we can re-use header sizes */
5695 seg_len -= GSO_BY_FRAGS;
5696
5697 skb_walk_frags(skb, iter) {
5698 if (seg_len + skb_headlen(iter) > max_len)
5699 return false;
5700 }
5701
5702 return true;
5703}
5704
5705/**
5706 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5707 *
5708 * @skb: GSO skb
5709 * @mtu: MTU to validate against
5710 *
5711 * skb_gso_validate_network_len validates if a given skb will fit a
5712 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5713 * payload.
5714 */
5715bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5716{
5717 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5718}
5719EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5720
5721/**
5722 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5723 *
5724 * @skb: GSO skb
5725 * @len: length to validate against
5726 *
5727 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5728 * length once split, including L2, L3 and L4 headers and the payload.
5729 */
5730bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5731{
5732 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5733}
5734EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5735
5736static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5737{
5738 int mac_len, meta_len;
5739 void *meta;
5740
5741 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5742 kfree_skb(skb);
5743 return NULL;
5744 }
5745
5746 mac_len = skb->data - skb_mac_header(skb);
5747 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5748 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5749 mac_len - VLAN_HLEN - ETH_TLEN);
5750 }
5751
5752 meta_len = skb_metadata_len(skb);
5753 if (meta_len) {
5754 meta = skb_metadata_end(skb) - meta_len;
5755 memmove(meta + VLAN_HLEN, meta, meta_len);
5756 }
5757
5758 skb->mac_header += VLAN_HLEN;
5759 return skb;
5760}
5761
5762struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5763{
5764 struct vlan_hdr *vhdr;
5765 u16 vlan_tci;
5766
5767 if (unlikely(skb_vlan_tag_present(skb))) {
5768 /* vlan_tci is already set-up so leave this for another time */
5769 return skb;
5770 }
5771
5772 skb = skb_share_check(skb, GFP_ATOMIC);
5773 if (unlikely(!skb))
5774 goto err_free;
5775 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5776 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5777 goto err_free;
5778
5779 vhdr = (struct vlan_hdr *)skb->data;
5780 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5781 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5782
5783 skb_pull_rcsum(skb, VLAN_HLEN);
5784 vlan_set_encap_proto(skb, vhdr);
5785
5786 skb = skb_reorder_vlan_header(skb);
5787 if (unlikely(!skb))
5788 goto err_free;
5789
5790 skb_reset_network_header(skb);
5791 if (!skb_transport_header_was_set(skb))
5792 skb_reset_transport_header(skb);
5793 skb_reset_mac_len(skb);
5794
5795 return skb;
5796
5797err_free:
5798 kfree_skb(skb);
5799 return NULL;
5800}
5801EXPORT_SYMBOL(skb_vlan_untag);
5802
5803int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5804{
5805 if (!pskb_may_pull(skb, write_len))
5806 return -ENOMEM;
5807
5808 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5809 return 0;
5810
5811 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5812}
5813EXPORT_SYMBOL(skb_ensure_writable);
5814
5815/* remove VLAN header from packet and update csum accordingly.
5816 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5817 */
5818int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5819{
5820 struct vlan_hdr *vhdr;
5821 int offset = skb->data - skb_mac_header(skb);
5822 int err;
5823
5824 if (WARN_ONCE(offset,
5825 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5826 offset)) {
5827 return -EINVAL;
5828 }
5829
5830 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5831 if (unlikely(err))
5832 return err;
5833
5834 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5835
5836 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5837 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5838
5839 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5840 __skb_pull(skb, VLAN_HLEN);
5841
5842 vlan_set_encap_proto(skb, vhdr);
5843 skb->mac_header += VLAN_HLEN;
5844
5845 if (skb_network_offset(skb) < ETH_HLEN)
5846 skb_set_network_header(skb, ETH_HLEN);
5847
5848 skb_reset_mac_len(skb);
5849
5850 return err;
5851}
5852EXPORT_SYMBOL(__skb_vlan_pop);
5853
5854/* Pop a vlan tag either from hwaccel or from payload.
5855 * Expects skb->data at mac header.
5856 */
5857int skb_vlan_pop(struct sk_buff *skb)
5858{
5859 u16 vlan_tci;
5860 __be16 vlan_proto;
5861 int err;
5862
5863 if (likely(skb_vlan_tag_present(skb))) {
5864 __vlan_hwaccel_clear_tag(skb);
5865 } else {
5866 if (unlikely(!eth_type_vlan(skb->protocol)))
5867 return 0;
5868
5869 err = __skb_vlan_pop(skb, &vlan_tci);
5870 if (err)
5871 return err;
5872 }
5873 /* move next vlan tag to hw accel tag */
5874 if (likely(!eth_type_vlan(skb->protocol)))
5875 return 0;
5876
5877 vlan_proto = skb->protocol;
5878 err = __skb_vlan_pop(skb, &vlan_tci);
5879 if (unlikely(err))
5880 return err;
5881
5882 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5883 return 0;
5884}
5885EXPORT_SYMBOL(skb_vlan_pop);
5886
5887/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5888 * Expects skb->data at mac header.
5889 */
5890int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5891{
5892 if (skb_vlan_tag_present(skb)) {
5893 int offset = skb->data - skb_mac_header(skb);
5894 int err;
5895
5896 if (WARN_ONCE(offset,
5897 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5898 offset)) {
5899 return -EINVAL;
5900 }
5901
5902 err = __vlan_insert_tag(skb, skb->vlan_proto,
5903 skb_vlan_tag_get(skb));
5904 if (err)
5905 return err;
5906
5907 skb->protocol = skb->vlan_proto;
5908 skb->mac_len += VLAN_HLEN;
5909
5910 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5911 }
5912 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5913 return 0;
5914}
5915EXPORT_SYMBOL(skb_vlan_push);
5916
5917/**
5918 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5919 *
5920 * @skb: Socket buffer to modify
5921 *
5922 * Drop the Ethernet header of @skb.
5923 *
5924 * Expects that skb->data points to the mac header and that no VLAN tags are
5925 * present.
5926 *
5927 * Returns 0 on success, -errno otherwise.
5928 */
5929int skb_eth_pop(struct sk_buff *skb)
5930{
5931 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5932 skb_network_offset(skb) < ETH_HLEN)
5933 return -EPROTO;
5934
5935 skb_pull_rcsum(skb, ETH_HLEN);
5936 skb_reset_mac_header(skb);
5937 skb_reset_mac_len(skb);
5938
5939 return 0;
5940}
5941EXPORT_SYMBOL(skb_eth_pop);
5942
5943/**
5944 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5945 *
5946 * @skb: Socket buffer to modify
5947 * @dst: Destination MAC address of the new header
5948 * @src: Source MAC address of the new header
5949 *
5950 * Prepend @skb with a new Ethernet header.
5951 *
5952 * Expects that skb->data points to the mac header, which must be empty.
5953 *
5954 * Returns 0 on success, -errno otherwise.
5955 */
5956int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5957 const unsigned char *src)
5958{
5959 struct ethhdr *eth;
5960 int err;
5961
5962 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5963 return -EPROTO;
5964
5965 err = skb_cow_head(skb, sizeof(*eth));
5966 if (err < 0)
5967 return err;
5968
5969 skb_push(skb, sizeof(*eth));
5970 skb_reset_mac_header(skb);
5971 skb_reset_mac_len(skb);
5972
5973 eth = eth_hdr(skb);
5974 ether_addr_copy(eth->h_dest, dst);
5975 ether_addr_copy(eth->h_source, src);
5976 eth->h_proto = skb->protocol;
5977
5978 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5979
5980 return 0;
5981}
5982EXPORT_SYMBOL(skb_eth_push);
5983
5984/* Update the ethertype of hdr and the skb csum value if required. */
5985static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5986 __be16 ethertype)
5987{
5988 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5989 __be16 diff[] = { ~hdr->h_proto, ethertype };
5990
5991 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5992 }
5993
5994 hdr->h_proto = ethertype;
5995}
5996
5997/**
5998 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5999 * the packet
6000 *
6001 * @skb: buffer
6002 * @mpls_lse: MPLS label stack entry to push
6003 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6004 * @mac_len: length of the MAC header
6005 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6006 * ethernet
6007 *
6008 * Expects skb->data at mac header.
6009 *
6010 * Returns 0 on success, -errno otherwise.
6011 */
6012int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6013 int mac_len, bool ethernet)
6014{
6015 struct mpls_shim_hdr *lse;
6016 int err;
6017
6018 if (unlikely(!eth_p_mpls(mpls_proto)))
6019 return -EINVAL;
6020
6021 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6022 if (skb->encapsulation)
6023 return -EINVAL;
6024
6025 err = skb_cow_head(skb, MPLS_HLEN);
6026 if (unlikely(err))
6027 return err;
6028
6029 if (!skb->inner_protocol) {
6030 skb_set_inner_network_header(skb, skb_network_offset(skb));
6031 skb_set_inner_protocol(skb, skb->protocol);
6032 }
6033
6034 skb_push(skb, MPLS_HLEN);
6035 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6036 mac_len);
6037 skb_reset_mac_header(skb);
6038 skb_set_network_header(skb, mac_len);
6039 skb_reset_mac_len(skb);
6040
6041 lse = mpls_hdr(skb);
6042 lse->label_stack_entry = mpls_lse;
6043 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6044
6045 if (ethernet && mac_len >= ETH_HLEN)
6046 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6047 skb->protocol = mpls_proto;
6048
6049 return 0;
6050}
6051EXPORT_SYMBOL_GPL(skb_mpls_push);
6052
6053/**
6054 * skb_mpls_pop() - pop the outermost MPLS header
6055 *
6056 * @skb: buffer
6057 * @next_proto: ethertype of header after popped MPLS header
6058 * @mac_len: length of the MAC header
6059 * @ethernet: flag to indicate if the packet is ethernet
6060 *
6061 * Expects skb->data at mac header.
6062 *
6063 * Returns 0 on success, -errno otherwise.
6064 */
6065int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6066 bool ethernet)
6067{
6068 int err;
6069
6070 if (unlikely(!eth_p_mpls(skb->protocol)))
6071 return 0;
6072
6073 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6074 if (unlikely(err))
6075 return err;
6076
6077 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6078 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6079 mac_len);
6080
6081 __skb_pull(skb, MPLS_HLEN);
6082 skb_reset_mac_header(skb);
6083 skb_set_network_header(skb, mac_len);
6084
6085 if (ethernet && mac_len >= ETH_HLEN) {
6086 struct ethhdr *hdr;
6087
6088 /* use mpls_hdr() to get ethertype to account for VLANs. */
6089 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6090 skb_mod_eth_type(skb, hdr, next_proto);
6091 }
6092 skb->protocol = next_proto;
6093
6094 return 0;
6095}
6096EXPORT_SYMBOL_GPL(skb_mpls_pop);
6097
6098/**
6099 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6100 *
6101 * @skb: buffer
6102 * @mpls_lse: new MPLS label stack entry to update to
6103 *
6104 * Expects skb->data at mac header.
6105 *
6106 * Returns 0 on success, -errno otherwise.
6107 */
6108int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6109{
6110 int err;
6111
6112 if (unlikely(!eth_p_mpls(skb->protocol)))
6113 return -EINVAL;
6114
6115 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6116 if (unlikely(err))
6117 return err;
6118
6119 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6120 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6121
6122 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6123 }
6124
6125 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6126
6127 return 0;
6128}
6129EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6130
6131/**
6132 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6133 *
6134 * @skb: buffer
6135 *
6136 * Expects skb->data at mac header.
6137 *
6138 * Returns 0 on success, -errno otherwise.
6139 */
6140int skb_mpls_dec_ttl(struct sk_buff *skb)
6141{
6142 u32 lse;
6143 u8 ttl;
6144
6145 if (unlikely(!eth_p_mpls(skb->protocol)))
6146 return -EINVAL;
6147
6148 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6149 return -ENOMEM;
6150
6151 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6152 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6153 if (!--ttl)
6154 return -EINVAL;
6155
6156 lse &= ~MPLS_LS_TTL_MASK;
6157 lse |= ttl << MPLS_LS_TTL_SHIFT;
6158
6159 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6160}
6161EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6162
6163/**
6164 * alloc_skb_with_frags - allocate skb with page frags
6165 *
6166 * @header_len: size of linear part
6167 * @data_len: needed length in frags
6168 * @max_page_order: max page order desired.
6169 * @errcode: pointer to error code if any
6170 * @gfp_mask: allocation mask
6171 *
6172 * This can be used to allocate a paged skb, given a maximal order for frags.
6173 */
6174struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6175 unsigned long data_len,
6176 int max_page_order,
6177 int *errcode,
6178 gfp_t gfp_mask)
6179{
6180 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6181 unsigned long chunk;
6182 struct sk_buff *skb;
6183 struct page *page;
6184 int i;
6185
6186 *errcode = -EMSGSIZE;
6187 /* Note this test could be relaxed, if we succeed to allocate
6188 * high order pages...
6189 */
6190 if (npages > MAX_SKB_FRAGS)
6191 return NULL;
6192
6193 *errcode = -ENOBUFS;
6194 skb = alloc_skb(header_len, gfp_mask);
6195 if (!skb)
6196 return NULL;
6197
6198 skb->truesize += npages << PAGE_SHIFT;
6199
6200 for (i = 0; npages > 0; i++) {
6201 int order = max_page_order;
6202
6203 while (order) {
6204 if (npages >= 1 << order) {
6205 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6206 __GFP_COMP |
6207 __GFP_NOWARN,
6208 order);
6209 if (page)
6210 goto fill_page;
6211 /* Do not retry other high order allocations */
6212 order = 1;
6213 max_page_order = 0;
6214 }
6215 order--;
6216 }
6217 page = alloc_page(gfp_mask);
6218 if (!page)
6219 goto failure;
6220fill_page:
6221 chunk = min_t(unsigned long, data_len,
6222 PAGE_SIZE << order);
6223 skb_fill_page_desc(skb, i, page, 0, chunk);
6224 data_len -= chunk;
6225 npages -= 1 << order;
6226 }
6227 return skb;
6228
6229failure:
6230 kfree_skb(skb);
6231 return NULL;
6232}
6233EXPORT_SYMBOL(alloc_skb_with_frags);
6234
6235/* carve out the first off bytes from skb when off < headlen */
6236static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6237 const int headlen, gfp_t gfp_mask)
6238{
6239 int i;
6240 unsigned int size = skb_end_offset(skb);
6241 int new_hlen = headlen - off;
6242 u8 *data;
6243
6244 if (skb_pfmemalloc(skb))
6245 gfp_mask |= __GFP_MEMALLOC;
6246
6247 size = SKB_DATA_ALIGN(size);
6248 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6249 size = kmalloc_size_roundup(size);
6250 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6251 if (!data)
6252 return -ENOMEM;
6253 size = SKB_WITH_OVERHEAD(size);
6254
6255 /* Copy real data, and all frags */
6256 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6257 skb->len -= off;
6258
6259 memcpy((struct skb_shared_info *)(data + size),
6260 skb_shinfo(skb),
6261 offsetof(struct skb_shared_info,
6262 frags[skb_shinfo(skb)->nr_frags]));
6263 if (skb_cloned(skb)) {
6264 /* drop the old head gracefully */
6265 if (skb_orphan_frags(skb, gfp_mask)) {
6266 kfree(data);
6267 return -ENOMEM;
6268 }
6269 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6270 skb_frag_ref(skb, i);
6271 if (skb_has_frag_list(skb))
6272 skb_clone_fraglist(skb);
6273 skb_release_data(skb, SKB_CONSUMED);
6274 } else {
6275 /* we can reuse existing recount- all we did was
6276 * relocate values
6277 */
6278 skb_free_head(skb);
6279 }
6280
6281 skb->head = data;
6282 skb->data = data;
6283 skb->head_frag = 0;
6284 skb_set_end_offset(skb, size);
6285 skb_set_tail_pointer(skb, skb_headlen(skb));
6286 skb_headers_offset_update(skb, 0);
6287 skb->cloned = 0;
6288 skb->hdr_len = 0;
6289 skb->nohdr = 0;
6290 atomic_set(&skb_shinfo(skb)->dataref, 1);
6291
6292 return 0;
6293}
6294
6295static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6296
6297/* carve out the first eat bytes from skb's frag_list. May recurse into
6298 * pskb_carve()
6299 */
6300static int pskb_carve_frag_list(struct sk_buff *skb,
6301 struct skb_shared_info *shinfo, int eat,
6302 gfp_t gfp_mask)
6303{
6304 struct sk_buff *list = shinfo->frag_list;
6305 struct sk_buff *clone = NULL;
6306 struct sk_buff *insp = NULL;
6307
6308 do {
6309 if (!list) {
6310 pr_err("Not enough bytes to eat. Want %d\n", eat);
6311 return -EFAULT;
6312 }
6313 if (list->len <= eat) {
6314 /* Eaten as whole. */
6315 eat -= list->len;
6316 list = list->next;
6317 insp = list;
6318 } else {
6319 /* Eaten partially. */
6320 if (skb_shared(list)) {
6321 clone = skb_clone(list, gfp_mask);
6322 if (!clone)
6323 return -ENOMEM;
6324 insp = list->next;
6325 list = clone;
6326 } else {
6327 /* This may be pulled without problems. */
6328 insp = list;
6329 }
6330 if (pskb_carve(list, eat, gfp_mask) < 0) {
6331 kfree_skb(clone);
6332 return -ENOMEM;
6333 }
6334 break;
6335 }
6336 } while (eat);
6337
6338 /* Free pulled out fragments. */
6339 while ((list = shinfo->frag_list) != insp) {
6340 shinfo->frag_list = list->next;
6341 consume_skb(list);
6342 }
6343 /* And insert new clone at head. */
6344 if (clone) {
6345 clone->next = list;
6346 shinfo->frag_list = clone;
6347 }
6348 return 0;
6349}
6350
6351/* carve off first len bytes from skb. Split line (off) is in the
6352 * non-linear part of skb
6353 */
6354static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6355 int pos, gfp_t gfp_mask)
6356{
6357 int i, k = 0;
6358 unsigned int size = skb_end_offset(skb);
6359 u8 *data;
6360 const int nfrags = skb_shinfo(skb)->nr_frags;
6361 struct skb_shared_info *shinfo;
6362
6363 if (skb_pfmemalloc(skb))
6364 gfp_mask |= __GFP_MEMALLOC;
6365
6366 size = SKB_DATA_ALIGN(size);
6367 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6368 size = kmalloc_size_roundup(size);
6369 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6370 if (!data)
6371 return -ENOMEM;
6372 size = SKB_WITH_OVERHEAD(size);
6373
6374 memcpy((struct skb_shared_info *)(data + size),
6375 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6376 if (skb_orphan_frags(skb, gfp_mask)) {
6377 kfree(data);
6378 return -ENOMEM;
6379 }
6380 shinfo = (struct skb_shared_info *)(data + size);
6381 for (i = 0; i < nfrags; i++) {
6382 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6383
6384 if (pos + fsize > off) {
6385 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6386
6387 if (pos < off) {
6388 /* Split frag.
6389 * We have two variants in this case:
6390 * 1. Move all the frag to the second
6391 * part, if it is possible. F.e.
6392 * this approach is mandatory for TUX,
6393 * where splitting is expensive.
6394 * 2. Split is accurately. We make this.
6395 */
6396 skb_frag_off_add(&shinfo->frags[0], off - pos);
6397 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6398 }
6399 skb_frag_ref(skb, i);
6400 k++;
6401 }
6402 pos += fsize;
6403 }
6404 shinfo->nr_frags = k;
6405 if (skb_has_frag_list(skb))
6406 skb_clone_fraglist(skb);
6407
6408 /* split line is in frag list */
6409 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6410 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6411 if (skb_has_frag_list(skb))
6412 kfree_skb_list(skb_shinfo(skb)->frag_list);
6413 kfree(data);
6414 return -ENOMEM;
6415 }
6416 skb_release_data(skb, SKB_CONSUMED);
6417
6418 skb->head = data;
6419 skb->head_frag = 0;
6420 skb->data = data;
6421 skb_set_end_offset(skb, size);
6422 skb_reset_tail_pointer(skb);
6423 skb_headers_offset_update(skb, 0);
6424 skb->cloned = 0;
6425 skb->hdr_len = 0;
6426 skb->nohdr = 0;
6427 skb->len -= off;
6428 skb->data_len = skb->len;
6429 atomic_set(&skb_shinfo(skb)->dataref, 1);
6430 return 0;
6431}
6432
6433/* remove len bytes from the beginning of the skb */
6434static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6435{
6436 int headlen = skb_headlen(skb);
6437
6438 if (len < headlen)
6439 return pskb_carve_inside_header(skb, len, headlen, gfp);
6440 else
6441 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6442}
6443
6444/* Extract to_copy bytes starting at off from skb, and return this in
6445 * a new skb
6446 */
6447struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6448 int to_copy, gfp_t gfp)
6449{
6450 struct sk_buff *clone = skb_clone(skb, gfp);
6451
6452 if (!clone)
6453 return NULL;
6454
6455 if (pskb_carve(clone, off, gfp) < 0 ||
6456 pskb_trim(clone, to_copy)) {
6457 kfree_skb(clone);
6458 return NULL;
6459 }
6460 return clone;
6461}
6462EXPORT_SYMBOL(pskb_extract);
6463
6464/**
6465 * skb_condense - try to get rid of fragments/frag_list if possible
6466 * @skb: buffer
6467 *
6468 * Can be used to save memory before skb is added to a busy queue.
6469 * If packet has bytes in frags and enough tail room in skb->head,
6470 * pull all of them, so that we can free the frags right now and adjust
6471 * truesize.
6472 * Notes:
6473 * We do not reallocate skb->head thus can not fail.
6474 * Caller must re-evaluate skb->truesize if needed.
6475 */
6476void skb_condense(struct sk_buff *skb)
6477{
6478 if (skb->data_len) {
6479 if (skb->data_len > skb->end - skb->tail ||
6480 skb_cloned(skb))
6481 return;
6482
6483 /* Nice, we can free page frag(s) right now */
6484 __pskb_pull_tail(skb, skb->data_len);
6485 }
6486 /* At this point, skb->truesize might be over estimated,
6487 * because skb had a fragment, and fragments do not tell
6488 * their truesize.
6489 * When we pulled its content into skb->head, fragment
6490 * was freed, but __pskb_pull_tail() could not possibly
6491 * adjust skb->truesize, not knowing the frag truesize.
6492 */
6493 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6494}
6495EXPORT_SYMBOL(skb_condense);
6496
6497#ifdef CONFIG_SKB_EXTENSIONS
6498static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6499{
6500 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6501}
6502
6503/**
6504 * __skb_ext_alloc - allocate a new skb extensions storage
6505 *
6506 * @flags: See kmalloc().
6507 *
6508 * Returns the newly allocated pointer. The pointer can later attached to a
6509 * skb via __skb_ext_set().
6510 * Note: caller must handle the skb_ext as an opaque data.
6511 */
6512struct skb_ext *__skb_ext_alloc(gfp_t flags)
6513{
6514 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6515
6516 if (new) {
6517 memset(new->offset, 0, sizeof(new->offset));
6518 refcount_set(&new->refcnt, 1);
6519 }
6520
6521 return new;
6522}
6523
6524static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6525 unsigned int old_active)
6526{
6527 struct skb_ext *new;
6528
6529 if (refcount_read(&old->refcnt) == 1)
6530 return old;
6531
6532 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6533 if (!new)
6534 return NULL;
6535
6536 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6537 refcount_set(&new->refcnt, 1);
6538
6539#ifdef CONFIG_XFRM
6540 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6541 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6542 unsigned int i;
6543
6544 for (i = 0; i < sp->len; i++)
6545 xfrm_state_hold(sp->xvec[i]);
6546 }
6547#endif
6548 __skb_ext_put(old);
6549 return new;
6550}
6551
6552/**
6553 * __skb_ext_set - attach the specified extension storage to this skb
6554 * @skb: buffer
6555 * @id: extension id
6556 * @ext: extension storage previously allocated via __skb_ext_alloc()
6557 *
6558 * Existing extensions, if any, are cleared.
6559 *
6560 * Returns the pointer to the extension.
6561 */
6562void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6563 struct skb_ext *ext)
6564{
6565 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6566
6567 skb_ext_put(skb);
6568 newlen = newoff + skb_ext_type_len[id];
6569 ext->chunks = newlen;
6570 ext->offset[id] = newoff;
6571 skb->extensions = ext;
6572 skb->active_extensions = 1 << id;
6573 return skb_ext_get_ptr(ext, id);
6574}
6575
6576/**
6577 * skb_ext_add - allocate space for given extension, COW if needed
6578 * @skb: buffer
6579 * @id: extension to allocate space for
6580 *
6581 * Allocates enough space for the given extension.
6582 * If the extension is already present, a pointer to that extension
6583 * is returned.
6584 *
6585 * If the skb was cloned, COW applies and the returned memory can be
6586 * modified without changing the extension space of clones buffers.
6587 *
6588 * Returns pointer to the extension or NULL on allocation failure.
6589 */
6590void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6591{
6592 struct skb_ext *new, *old = NULL;
6593 unsigned int newlen, newoff;
6594
6595 if (skb->active_extensions) {
6596 old = skb->extensions;
6597
6598 new = skb_ext_maybe_cow(old, skb->active_extensions);
6599 if (!new)
6600 return NULL;
6601
6602 if (__skb_ext_exist(new, id))
6603 goto set_active;
6604
6605 newoff = new->chunks;
6606 } else {
6607 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6608
6609 new = __skb_ext_alloc(GFP_ATOMIC);
6610 if (!new)
6611 return NULL;
6612 }
6613
6614 newlen = newoff + skb_ext_type_len[id];
6615 new->chunks = newlen;
6616 new->offset[id] = newoff;
6617set_active:
6618 skb->slow_gro = 1;
6619 skb->extensions = new;
6620 skb->active_extensions |= 1 << id;
6621 return skb_ext_get_ptr(new, id);
6622}
6623EXPORT_SYMBOL(skb_ext_add);
6624
6625#ifdef CONFIG_XFRM
6626static void skb_ext_put_sp(struct sec_path *sp)
6627{
6628 unsigned int i;
6629
6630 for (i = 0; i < sp->len; i++)
6631 xfrm_state_put(sp->xvec[i]);
6632}
6633#endif
6634
6635#ifdef CONFIG_MCTP_FLOWS
6636static void skb_ext_put_mctp(struct mctp_flow *flow)
6637{
6638 if (flow->key)
6639 mctp_key_unref(flow->key);
6640}
6641#endif
6642
6643void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6644{
6645 struct skb_ext *ext = skb->extensions;
6646
6647 skb->active_extensions &= ~(1 << id);
6648 if (skb->active_extensions == 0) {
6649 skb->extensions = NULL;
6650 __skb_ext_put(ext);
6651#ifdef CONFIG_XFRM
6652 } else if (id == SKB_EXT_SEC_PATH &&
6653 refcount_read(&ext->refcnt) == 1) {
6654 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6655
6656 skb_ext_put_sp(sp);
6657 sp->len = 0;
6658#endif
6659 }
6660}
6661EXPORT_SYMBOL(__skb_ext_del);
6662
6663void __skb_ext_put(struct skb_ext *ext)
6664{
6665 /* If this is last clone, nothing can increment
6666 * it after check passes. Avoids one atomic op.
6667 */
6668 if (refcount_read(&ext->refcnt) == 1)
6669 goto free_now;
6670
6671 if (!refcount_dec_and_test(&ext->refcnt))
6672 return;
6673free_now:
6674#ifdef CONFIG_XFRM
6675 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6676 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6677#endif
6678#ifdef CONFIG_MCTP_FLOWS
6679 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6680 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6681#endif
6682
6683 kmem_cache_free(skbuff_ext_cache, ext);
6684}
6685EXPORT_SYMBOL(__skb_ext_put);
6686#endif /* CONFIG_SKB_EXTENSIONS */
6687
6688/**
6689 * skb_attempt_defer_free - queue skb for remote freeing
6690 * @skb: buffer
6691 *
6692 * Put @skb in a per-cpu list, using the cpu which
6693 * allocated the skb/pages to reduce false sharing
6694 * and memory zone spinlock contention.
6695 */
6696void skb_attempt_defer_free(struct sk_buff *skb)
6697{
6698 int cpu = skb->alloc_cpu;
6699 struct softnet_data *sd;
6700 unsigned long flags;
6701 unsigned int defer_max;
6702 bool kick;
6703
6704 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6705 !cpu_online(cpu) ||
6706 cpu == raw_smp_processor_id()) {
6707nodefer: __kfree_skb(skb);
6708 return;
6709 }
6710
6711 sd = &per_cpu(softnet_data, cpu);
6712 defer_max = READ_ONCE(sysctl_skb_defer_max);
6713 if (READ_ONCE(sd->defer_count) >= defer_max)
6714 goto nodefer;
6715
6716 spin_lock_irqsave(&sd->defer_lock, flags);
6717 /* Send an IPI every time queue reaches half capacity. */
6718 kick = sd->defer_count == (defer_max >> 1);
6719 /* Paired with the READ_ONCE() few lines above */
6720 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6721
6722 skb->next = sd->defer_list;
6723 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6724 WRITE_ONCE(sd->defer_list, skb);
6725 spin_unlock_irqrestore(&sd->defer_lock, flags);
6726
6727 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6728 * if we are unlucky enough (this seems very unlikely).
6729 */
6730 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6731 smp_call_function_single_async(cpu, &sd->defer_csd);
6732}